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ABSTRACT 

The literature review identified the current scientific understanding of element 

and lime interactions with clay minerals and the leaching protocols used to assess 

contaminant mobility. This understanding formed the basis for the mechanisms 

postulated for clay-contaminant-lime interactions and the appropriate methods of 

chemically assessing time-dependent interactions. 

Two refined clay minerals English China Clay (predominantly kaolinite) and 
Wyoming Bentonite (predominantly sodium-montmorillonite) were used to assess the 

time-dependent effects of mineral structural chemistry on clay-contaminant-lime 
interactions. The two clays, representing the extremes of structural negative charge 
development, were contaminated with 5000ppm of either Pb2+ or Fe3+ ions, the 

sources of which were Pb(NO3)2(, ) and Fe(N03)3.9H20() respectively. Eighteen clay- 

contaminant-quicklime mixes were compacted and stored in controlled conditions. 
Changes in the physico-chemistry of the samples was monitored after 7 days, 

175 days and 301 days curing by performing batch leaching tests and monitoring 

changes in undrained shear strength and Atterberg Limits. Each batch test was 

performed using de-ionised water as the leachant. The variables studied in the batch 

tests were, solid to liquid ratio, test duration, initial particle size, and batch mixer 

rotation speed. The effects of changing the batch test operating parameters and 
increasing the curing period were assessed by measuring changes in solution pH, 

conductivity and by analysis of soluble Ca, Na, Al, Si, Mg, Mn, Pb and Fe fractions. 

The solidification processes due to lime addition were found to be different for 

the two minerals. English China Clay and Wyoming Bentonite pozzolanic reactions 

were found to be based on Al and Si dissolution from the respective mineral. This 

dissolution was only detectable after 175 and 301 day's curing, suggesting that initial 

7 day undrained shear strength increases and changes in Atterberg Limits were 

associated with ion exchange effects alone. 

The difference between the dissolution of Si and Al from the two minerals had 

a significant impact on re-crystallisation. Pb2 ions were found to enhance 

solidification by enhancing dissolution of Al from English China Clay, whilst Fe3+ 

ions were found to have inhibitive effects preventing interaction of Cal' ions in the 
formation of calcium aluminate hydrates. On re-crystallisation, the Pb2{ and Fe3+ ion- 
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contaminated English China Clay samples had respectively higher and lower 

undrained shear strengths than the uncontaminated samples. Contaminants were 
found to have no appreciable influence on Wyoming Bentonite re-crystallisation. 

Development of the batch leaching test demonstrated that changing the 

operational parameters had no effects on the observed trends associated with the time- 

dependent stabilisation and solidification reactions. It was also shown that successful 

solidification could be monitored using simple conductivity measurements without 

the need for expensive, complex elemental analysis. 
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1.0 INTRODUCTION 

1.1 THE LEGACY OF CONTAMINATION 

Public awareness of the adverse effects of contamination on the environment has 

grown considerably over the last two decades, partly due to the active involvement of 

environmental groups. This has produced pressure upon government bodies to act 

urgently by introducing new legislation to control waste disposal. With increasing 

demands for environmental responsibility, the European Community has set strict 

controls on the content and quantity of waste that can be disposed of at sea or applied to 

land. The economic consequence of this has been greatly increased costs for industries 

producing toxic wastes as by-products of their production processes, and for governments 

or other bodies who are responsible for cleaning up contaminated sites for future 

development or public use (derelict industrial sites, docks, canals, etc. ). Two of the 

major categories of material that need to be dealt with are clay-based sediments deposited 

under water and clays that contain inorganic contaminants, the remediation of which 

forms the basis of this thesis. 

Major source of contamination derives from industrial processes. The 

composition of the contamination varies enormously from one industrial process to 

another. Typical sources of such contamination are copper, lead and zinc smelting 

industries, duplicating and photographic equipment manufacturing industries, 

pharmaceutical industries and sewage treatment works. Whilst industries are now closely 

controlled and produce waste materials that are both identifiable and are treated, this has 

not always been the case. By studying the waste materials (known as waste streams or 

sludges) produced by modern processes, good indications of the contamination of the 

environment caused by past industrial processes can be obtained. These contribute to the 

contamination of sediments in rivers, canals, lakes and reservoirs following transport via 

air and/or water, and to land by these routes or by direct contact. This highlights an 
important fundamental principle: remove one stage from the source-pathway-receptor 

series and there is no risk due to contamination. Although controls on material handling 

and disposal now in place reduce the risk of contamination to an acceptably small level 
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by removing the source, the degree of control until relatively recently has been minimal 

and much contamination has been caused. Indeed metal contamination can result from 

sources as apparently innocuous as fly ash and colliery spoil heaps. In Europe alone 

there are just under one million known or potentially contaminated sites requiring 

remediation. Although this thesis only deals with the contaminated environment, the 

technology put forward could be adapted to treat the waste sludges directly in 

combination with the addition of a pozzolana (Lutz & Minehan, 1986). 

1.2 ALTERNATIVE REMEDIATION TECHNOLOGIES 

Due to the variability of contaminant composition in clays and sediments it is 

difficult to find a single treatment which fulfils all the requirements to render that 

material `safe' in the long-term. Prior to disposal of contaminated materials such as 

excavated clays and dredged sediments, assurance is necessary that toxic elements will in 

some way be contained permanently within the waste disposal facility boundaries, or at 

least that losses will be kept to a sufficiently low level that no harmful effects occur to the 

environment. Methods of disposal currently available and under research include 

spreading on land, de-watering and landfill disposal, encapsulation and burial, and 

stabilisation and disposal on land or in landfill sites. The main aim of these processes is 

either to affect the source or the pathway to inhibit future adverse effects. There are 
intermediate processes that can be used to increase the physical, chemical and cost 

effectiveness of the primary disposal methods, such as precipitating toxic metal species 
from the waste materials by altering the pH of the solutions. Toxic metals also tend to 

attenuate preferentially on small mineral particles. Thus it is possible to remove a large 

quantity of certain contaminants by removing specific particle sizes as a means of pre- 

treatment. 

Stabilisation techniques generally involve mixing the contaminated material with 

a chemical additive such as lime or cement. The combination of a high pH and the 

production of cementitious compounds create a solidified mass which encapsulates 

contaminants chemically stabilised within the encapsulating material resulting in the 

reduced mobility of toxic elements in the waste. Stabilisation methods tend to cost less 
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than other treatments such as vitrification, organic encapsulation (e. g. thermo-setting 

plastic) or electro-osmosis, but their application can be limited due to the contaminant 

composition and the limitations of the `fixation' processes. For example, both the solids 

content and the form of the toxic species present in the contaminated material influence 

their suitability. The environment is similarly important because, for example, if water 

can permeate through the contaminated deposit, some species will become mobile. In 

addition, the presence of some contaminants can impede or enhance the creation of the 

cementitious products that are associated with the solidification process. 

1.3 THE NEED FOR ECONOMIC SOLUTIONS 

The problems, in terms of numbers of sites and varieties of contamination, are as 

serious worldwide as they are in Europe. While in some European countries the 

government has to pay for remediation of sites if the industrial polluter cannot pay or 

cannot be made to pay, the USA has firmly embraced the philosophy that the polluters 

must pay for the clean up of contamination. In order for these industries to remain 

competitive with industries in countries where pollution control is not so rigorous and/or 

to reduce the burden on governments, there is a need to develop economical treatment 

and disposal techniques. Thus, any technique that is simple to operate, can deal with 
large amounts of contaminated soil and does not require large quantities of expensive 

additives is of major importance. 

Chemical stabilisation using lime would satisfy these criteria. Furthermore, the 

addition of lime to clay soils has proved to be of great benefit in improving their 

engineering properties, making the material physically as well as chemically stable. 
Supplies of lime, more so than cement, are relatively high around the world making lime 

an almost universally viable option. There is consequently a need to investigate lime 

stabilisation of contaminated clays and clay-based sediments. In particular there is a need 
to understand the processes controlling physico-chemical behaviour, and therefore 
inherently the processes controlling ion mobility in the aqueous phase. 
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1.4 THE THESIS 

The requirement for lime stabilisation and solidification of contaminated clays has 

been established along with the necessity to understand the mechanisms associated with 

the process. The thesis aims to investigate the physico-chemical mechanisms of clay- 
lime-contaminant interactions. It was important that the testing methods used to monitor 

these chemical mechanisms reflected the requirements for cost-effective analysis using 

simple inexpensive testing protocols. 

Chapter 2 describes sources of both organic and inorganic contaminants as well as 

providing examples of sites where they can be found. In addition the fundamentals of 

clay mineralogy are presented from the perspective of understanding contaminant 
interactions. This was considered to be essential to enable engineers to appreciate some 

of the complex chemical interactions discussed later in the thesis. The processes relating 

to stabilisation are reviewed thereafter together with the chemical methods currently 

adopted to assess contaminant leachability. 

From the information gained in the literature a research philosophy was 

formulated and this is presented in Chapter 3. Chapter 4 describes in detail the 

experimental methodology, and data collected from the resulting laboratory programme 

are presented in Chapter 5 and discussed in detail in Chapter 6. Finally, Chapter 7 

concludes the discussion and highlights areas where further research would be beneficial 

in improving the understanding of stabilised and solidified contaminated clays. 
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2.0 LITERATURE REVIEW 

2.1 INTRODUCTION 

Lime stabilisation is a technique used worldwide in construction to improve 

the engineering properties of soils prior to site development. The technique is used on 

a variety of clay mineral types often under environmental extremes. Alteration of 

properties such as plasticity, compressibility and permeability can all occur as a result 

of the addition of stabilising agents. However, in most cases stabilising methods are 

adopted to induce rapid cost-effective improvements in soil strength and stiffness, and 

resistance to weakening/softening by water. Many sites are directly or indirectly 

contaminated by organic and inorganic contaminants by society, although elevated 

concentrations of elements and compounds can occur from naturally occurring 

sources. Lime stabilisation is a chemical approach to ground improvement whereby 

clay soil is modified and particles are subsequently bonded together by a process of 

cementation. The presence of `contamination' alters the initiation, development and 
final properties of the stabilising soil and potentially the rate at which improvements 

will develop. 

This review aims to: 

" identify some of the most prolific sources of contamination, 

" identify how the chemical structure of clay soils and in particular mineral charge 
development affects the interaction of contaminants, 

" explain the fundamental principles of the initial stabilisation and longer-term 

solidification brought about by the addition of lime, 

" explain how inorganic contaminants are involved in the stabilisation. and 

solidification process, and 

" describe the fundamental characteristics of chemical leaching tests currently used 
to assess the quantities of contaminants present in soil. 
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2.2 CONTAMINATION 

2.2.1 Introduction 

A contaminant can be generally described as a chemical element, ion or 

compound that has the ability to pose an immediate or long-term threat to human 

health or the environment, mainly as a result of its toxic properties. Chemical 

contamination is prevalent in the environment, considerably complex, and 

predominantly heterogeneous with a diverse level of containment. Contaminants 

consequently pose problems to engineers seeking to reduce their bioavailability. To 

understand the behaviour of these contaminants within the chemistry of the natural 

environment, it is important to categorise contaminants. 
Contaminants can be divided into two broad categories, organic and inorganic 

contaminants, although organic contaminants can often occur with an attached 
inorganic group. The structure of organic compounds is based around molecules 

containing carbon, whereas inorganic chemistry encompasses all elements and 

compounds that do not involve carbon-based chemistry. 

2.2.2 Sources of contamination 
2.2.2.1 Organic compounds 

Many organic compounds originate from crude oil, including motor oils, 
lubricating oils, heating oils, plastics, detergents, paints, and antifreeze. Crude oil is 

the source of 70% of Britain's organic chemicals. The components of crude oil must 
be partially separated by distillation and if necessary modified, prior to being useful. 
Many types of organic contaminants can result from this process and can be found 

polluting the environment. They can be generally characterised as follows. 

Volatile organic compounds (VOCs) such as chlorinated solvents, have been 

in widespread use since World War II. In their pure form at ambient temperatures, 

many of the VOCs are liquids, often called NAPLs (non-aqueous-phase liquids), 

which are sparingly soluble in water. The distribution of these contaminants in an 

environment such as an aquifer is quite complex (e. g. Fretwell et al, 1998). The 

petroleum hydrocarbons are referred to as LNAPLs because they are less dense than 

water and are often found contaminating the upper layers of aquifers. Chlorinated 

solvents referred to as DNAPLs are more dense than water and are often found 
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contaminating the lower levels of aquifers hence creating a different remediation 
problem to LNAPLs (Mackay, 1998; Delaney et al, 1998; Rivett et al, 1998). 

Separation and modification industries such as refineries are one of the first 

potential sources of organic contamination (e. g. Christofi et al, 1998; Wallace et al, 
1998; Pritchard, et al, 1991). The second source of organic contaminants is from the 

distribution, use, and disposal of the carbon-based products. This may be the result of 
leaking oil tanks (e. g. Ulfig et al, 1998), leaking fuel storage tanks at fuel stations 
(e. g. Davis, 1998), accidental spills (e. g. Muvrin et al, 1998), the deposition of 

pesticides on fields, or the placement of waste sludges in land based trenches. 

Broholm et al (1998) describes the leakage of coal tar from storage tanks at a coal 

carbonation plant releasing phenols, naphthalenes, mono-aromatic hydrocarbons 

(BTEXs) and polyaromatic hydrocarbons (PAHs) into an aquifer. Prior to improved 

environmental awareness, UK based gasworks were responsible for disposing of 

waste locally and are one source of soil and groundwater contamination by a suite of 

organic and inorganic compounds, including aromatic and polyaromatic hydrocarbons 

and ammonia (Torstensson et al, 1998). 

It is important to exert careful control over both the disposal of potential 
contaminants and remediation of contaminated sites (e. g. Csizer et al, 1998). The 

current basis for safe disposal and remediation relies heavily upon risk assessment 
techniques. Ferguson et al (1998), Sowinski (1998), Wcislo (1998), Poborski (1998) 

and Feige-Munzig (1998) discuss such ideas. The degree of control applied to a 
disposal method is directly associated with the current levels of understanding, 

technology, cost, environmental awareness and consequently government policy. 

An example illustrating the consequences of lack of understanding and 
awareness was the disaster at Love Canal in the United States of America (USA). In 

1978, the US President declared that a major chemical emergency existed at Love 

Canal (Niagra Falls, New York). Officials of the Hooker Chemicals and Plastics 
Corporation acknowledged that from 1942 to 1953 the company disposed of some 
20 x 106 kg of chemical wastes in an uncompleted canal. Adjacent land was 

subsequently sold to allow an elementary school to be built in 1955. By 1966, the 

remainder of the site was covered by a housing development. The selling of such a 

site by the company cannot be considered gross negligence on the part of the 

company since warnings about the dangers of the site were apparently communicated 
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to the purchaser. By 1987, approximately $100 million (US) had been spent on site 

remediation, resident relocation, and human health investigations. Cytogenetic 

assessments of 36 former residents of the Love Canal area highlighted chromosomal 

abnormalities and damage (Deegan, 1987A&B). 

Military sites are also well known as a source of organic contaminating 

substances. Many USA Department of Defence (DOD) sites are contaminated with 

explosive waste as a result of explosives manufacturing, munitions loading, assembly 

and packing operations, explosives machining, casting and curing, and laboratory 

testing of munitions. One of the major explosive wastes of concern at DOD sites is a 

residue from land disposal of explosives-contaminated process water (U. S. EPA, 

1993). Explosives-contaminated waters are subdivided into red water, which comes 

strictly from the manufacture of TNT and which ceased in the mid-1980s, and pink 

water, which includes any wash-water associated with military processes involving 

contact with TNT. Pink waters are notably derived from demilitarisation operations 

conducted in the 1970s, which used jets of hot water to mine the explosives out of the 

munitions. The residual waters were placed in settling basins so that solid explosive 

particles could be removed, and the remaining water was siphoned into lagoons. 

Contaminants often present in these lagoons and the surrounding soils are illustrated 

in Table 2.1. On some sites rocket and gun propellants can be found (U. S. EPA, 

1993; Whittaker et al, 1998). 

Table 2.1 shows the frequency of occurrence of various nitroaromatics and 

nitroamines that occur at explosives-contaminated sites (U. S. EPA, 1993). The 

remediation of military sites contaminated with explosives creates many unique 

physical handling problems as well as the potential chemical contamination problem. 
The chemical behaviour and interaction within the natural environment of 

organic contamination generally necessitates that it is investigated independently from 

inorganic compounds. However, as new chemicals that combine organic and 
inorganic species are increasingly developed there is a need to combine treatment 

methods. 
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Table 2.1 Nitroaromatics and Nitroamines study by US Army Cold Regions 

Research and Engineering Laboratory (CRREL) and the Missouri 

River Division (MRD) of explosives-contaminated soils from army 

sites (Adapted from U. S. EPA, 1993). 

Category Contaminant Frequency (%) 

CRREL MRD 

Nitroaromatics TNT 85 76 

TNB 53 38 

DNB 25 19 

2,4-DNT 41 17 

2,6-DNT 

4-Amino-DNT 6 3 

2-Amino-DNT 27 11 

Nitroamines RDX 44 28 

HIM 27 4 

Tetryl 8 14 

Glossary of terms: 

TNT - 2,4,6-Trinitrotoluene 

TNB - 1,3,54rinitrobenzene 

DNB - 0-dinitrobenzene 

2,4-DNT - 2,4-dinitrotoluene (2,4-dinitromeihylbenzene) 

2,6-DNT - 2,6-dinitrdoluene (2,6-dinitromethylbenzene) 

RDX - Cyclo-1,3,5-trimdhylene-2,4,6-rinitroamine 

HMX - Cyclo-1,3,5,7-tetramethylene-2,4,6,8-tdranitramine 

Tdryl Trinitro-2,4,6-phenylmethylnitamine 

2.2.2.2 Inorganic compounds 
Inorganic contamination encompasses all contaminating elements and 

compounds that do not involve carbon-based chemistry. Inorganic contamination 
does occur independently in spite of its frequent association with organic 

contamination. There are also situations when inorganic elements are chemically 
incorporated within the structure of organic molecules such as herbicides including 

diquat and paraquat (Mossom, 1998; McBride, 1994). Elements occur naturally as 

trace elements that are essential for life. However, elements within an industrialised 

area are present in wild herbage, particularly leaves, at very high concentrations, i. e. 
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those beyond the requirements for life. A trace element is defined as an element in 

natural materials such as the lithosphere, that is present at a level < 0.1%. If 

concentrations are high enough, they can be toxic to living organisms (Adriano, 

1986). Trace elements include trace metals, heavy metals and micronutrients 
(Elejalde et al, 1992). Heavy metals are those elements having densities greater than 

5.0 gcm"3, and include As, Cd, Cr, Co, Cu, Pb, Hg and Ni (Sparks, 1995). Table 2.2 

illustrates natural concentrations of some of these elements, ions and compounds in 

groundwater whilst Table 2.3 shows the concentrations of trace elements in soil 
forming rocks and other natural materials. The values stated are highly variable, 
inherently site specific with bioavailability also being site specific and clearly above 

what could be classified as guideline values. The effects, significance and occurrence 

of these elements in the US are further illustrated in Table 2.4. These tables clearly 

portray the significance and prevalence of inorganic contamination in the natural 

environment. 

Mixtures of inorganic elements within a soil matrix create very complex 
chemical equilibrium environments from which removal of the contaminating 

elements is very expensive if indeed possible. In many respects the presence of 

several inorganic elements in the solid and or liquid phases mixed together with 

varying behavioural characteristics is a more difficult remediation problem than that 

of many organic contaminants, which can be susceptible to natural attenuation via 
biodegradation. For many forms of potential inorganic contamination, the element, 
ion or compound likely exists naturally in varying concentrations depending on 

potential sources. Assessment of the level at which an element is thought to cause 

pollution has far-reaching implications. Experience has shown that as research in the 
field of risk assessment develops the assessment of what is regarded as pollution 

changes. However, consideration of natural concentrations of elements in 

groundwater and rocks helps to create a degree of perspective. 
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Table 2.2 Natural concentrations of some elements, ions, and compounds in 

groundwatera'b (Sparks, 1995) 

Concentration Concentration 
Element Typical value Extreme value Element Typical value Extreme 

value 

Ma jor elements (mg lit ef) Bi <20 
Ca -------------- - 1--- -------- 

. 0-115050c ° ---- 9 <100-2,000 
<500° Cd <1.0 

C1 1.0-70° 200,000d CO <10 
<1,0000 Cr <1.0-5.0 

F 0.1-5.0 70 Cu <1.0-30 
1,600° Ga <. 0 

Fe 0.01-10 >1,000v Ge <20-50 
K 1.0-10 25,0004 Hg <1.0 
Mg 1.0-50° 52,0004 I <1.0-1,000 48d 

<400° Li 1.0-150 
Na 0.5-120° 120,0004 Mn <1.0-1,000 10b 

<1000° Mo <1.0-30 10 
NO3 0.2-20 70 Ni <10-50 
SiO2 5.0-100 4000° P04 <100-1,000 
SO4 3.0-150° 200,00011 Pb <15 

<2,0000 Ra <0.14.09 0.7 ctg 

Sr 0.14.0 50 Rb <1.0 
----------- Trac e elements (mg lite r r)- - "---- --- Se <1.0-10 

Äg -------------- 0 ------------ -----"----------- Sn Q00 
Al <5.0-1,000 Ti <1.0-150 
As <1.0-30 4 U 0.1-40 
B 20-1,000 5 V <1.0-10 0.07 
Ba 10-500 Zn <10-2,000 

<10 Zr <25 
rwiu uragun Ityaa). 

bBased on an analysis of data presented in Durfer and Becker (1964), and Ebens & Schakleäe (1982). 

In relatively humid regions. 
'In brine. 

In relatively dry regions. 
%In thermal springs and mine areas. 
'Picocuries liter-' (i. e., 0.037 disintegrations sec"). 
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Sources of inorganic contamination are vast and depend on the past and 

present industrial development of a particular country. Examples of some further 

possible sources are industrial sludges or by-products from for example, copper, lead, 

iron and zinc smelting industries (e. g. Daniels et al, 1998; Hadjihristova, 1998), 

mining operations (e. g. Ceto et al, 1998; Winnicki, 1998) duplicating and 

photographic manufacturing industries (e. g. Kucar et al, 1998), pharmaceutical 
industries, plating and electroplating works (e. g. Grabar et al, 1998), battery 

manufacturing works and both new and old military sites. Examples of some 

elements that may become released into the environment from these processes are 

given in Table 2.5. 

Table 2.5 The composition of particular industrial waste streams and sludges 
(after Landreth, 1982) 

Sludge description Annual 

production 

(tonnes, wet) 

% 

Solids 

Density 

(Mg se') 

PH Constituents 

> 10 g kg-' 

(dry) 

Constituents 

0.1-10 g kg' 

(dry) 

Constituents 

1-100 mg kg' 

(dry) 

Electroplating 50 32 1.27 7.6 Ca, Cr, Cu, Fe, Be, Cd, Pb, Mg. As, Hg 

sludge SO4, Cl, Si Mn, Ni, Zn 

Nickel-cadmium 100 40 1.25 12.3 Ca, Ni, Cl, Si Cd, Cr, Cu, Fe, As, Hg 

battery sludge Pb, Mg. Zn 

Pigment 17000 25 1.17 8.4 Ca, Cr, Fe, Pb, As, Cd, Cu, Mn, Hg 

production Mg. SOS, Cl, Si Ni, Zn 

Chlorine 3 000 59 1.57 9.5 Ca, SO4, Cl, Si Cu, Fe, Mg, As, Cd, Cr, 

production brine Mn, Ni, Zn, Hg Pb 

Glass etching 2000 47 1.41 8.3 Ca, SOS, Cl, Si Cu, Fe, Pb, Mg, As, Cd, Cr, 

sludge Mn, Ni, Zn Hg 

A further potential source of trace element contamination is sewage sludge, 

which in the past has been deposited directly into rivers, oceans and on land. Millions 

of tons of this type of waste are processed each year, consequently making sewage a 

very important potential contamination source. Table 2.6 lists some of the important 

trace elements found in sewage sludges from five different countries. There is 

variability in the concentration of particular elements between countries. For 

example, the UK Pb levels relative to the U. S. Pb levels may indicate sampling 

variability, although more likely it is indicating varying levels and types of industrial 

activity. 
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Potential sources and pathways of contamination continually change due to the 
development of new industrial processes and methods of waste disposal, which 
demonstrates the importance of retaining records about the history and previous usage 

of a site. This is important because it provides information about the type and 
distribution of contaminants, the potential for changes in contaminant form with time 

due to natural environmental processes and the legal implications for the current and 
future owners or developers of the site. 

Changes in type and level of pollution are recorded in naturally deposited 

submerged sediments. Research on from the Fourth Estuary by Lindsay et al (1998) 

indicate some changes in the levels and type of contamination created before, during 

and after the industrial revolution. Core sample contamination changes with depth 

indicate that the lower Forth Estuary has been affected by substantial industrial 

pollution in the recent past. However, lower heavy metal concentrations in the 

surface core samples reflect the fact that in recent years some industrial discharges 

have been reduced, perhaps due to pollution control legislation. Lindsay et al (1998) 

were also able to attribute the presence of radionuclides to discharges from Sellafield, 

Cumbria, highlighting a reduction in Cs137 from Sellafield since 1975. A reduction in 

the discharge limits of cooling water from nuclear submarines has also led to a three- 

fold reduction in surface sediment Cs6° levels since 1975. Radioactive inorganic 

contamination is a relatively new problem, having developed over the last 50 years 

and originating from energy generation facilities and military weapons testing and 

manufacture. Disposal of military wastes and remediation of contaminated sites has 

notably become an important issue in recent years especially since the end of the cold 

war. 

Historical site information is clearly important at old military sites because 

there is a possibility of discovering dangerous and potentially explosive material as 

well as radioactive material. A long established Navy base in Portsmouth, England, 

highlights some of the problems associated with military sites. The `Glory Hole' was 

an arm of Eastney Lake in the extreme Southeast corner of Portsea Island, 

Portsmouth, which was bunded off and infilled by the Royal Navy between 

approximately 1914 and 1955. A wide variety of naval scrap and waste materials 

were dumped into this muddy creek, including asbestos from boiler and armaments 
lagging, lead from submarine and other batteries, mercury from switchgear, zinc and 

cadmium plated metal objects. No records of the wastes deposited are available. The 
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2 ha site was covered over with topsoil onto which naval married quarters were 

constructed between 1955 and 1965. Some of this was leased for council tenancy 

during the mid-1980s. During the course of nearby excavations to construct a new 

marina in the late 1980s, substantial contamination was found. Typical results, 
highlighted in Table 2.7, demonstrated that the site was unfit for family habitation 

(Walton et al, 1998). 

Table 2.7 Summary results of selected significant contaminant 

concentrations found in the surface soils at the Lumsden Road 

(Glory Hole) site (Walton et a1,1998) 

Chemical 

determined 

Detected range 
(mg kg"1) 

Arithmetic mean 
(mg kg 1) 

ICRCL (gardens) 

threshold trigger 

(mg kg 1) 

Arsenic <3-700 13 10 

Cadmium <1-17 1 3 

Copper <6-10 000 230 130 

Lead <20-96 000 1400 500 

Mercury <1-590 7 3 

Zinc 11-11 000 440 300 

T AH <50-150 88 50 

Asbestos 10-1000 36 10 

This case proves the necessity to have a clear strategy to prevent 

contamination before and after military bases are abandoned and is the basis for 

further research (e. g. Barnett, 1998; Drawbaugh, 1998; Touchette et al, 1998; Rury et 

al, 1998). 

2.2.2.3 Radioactive compounds 
In the USA (as for most countries with a past or present military capability), 

contamination from military sites is a problem due to its extent, distribution and 

variation. 
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Several radioactive elements including uranium, radium and radon occur 

naturally in soil and groundwater (e. g. Strzelecki et al, 1998). Radioactive 

contamination can also result from processes associated with the production of 

nuclear energy and nuclear weapons, or indeed fallout from disasters or through 

disposal of wastes. Some of the behavioural characteristics of these radionuclides are 
discussed by Myasoedov (1998), Soundararajan (1998), Burmistrov et al (1998), and 

Firsova et al, (1998). Kisseleva et al (1998) also discusses the long-lasting alterations 
in the immune system of Chernobyl accident victims. 

The Nuclear Weapons Complex (NWC) in the USA is a collection of very 
large factories devoted to metal fabrication, chemical separation processes, and 

electronic assembly associated with the production of nuclear weapons. In 

approximately 50 years of nuclear weapons production, these factories have released 

vast quantities of hazardous chemicals and radionuclides to the environment. 
Evidence exists that air, groundwater, surface water, sediment, and soil, as well as 

vegetation and wildlife, have been contaminated at most, if not all, nuclear weapons 

production facilities. Table 2.8 shows the types and complexity of wastes often found 

at NWC sites. 
Most sites in non-arid locations also have surface contamination. Almost 

4000 solid waste management units have been identified throughout the NWC, and 

many of these sites require some form of remedial action. Substantial quantities of 

waste have also been buried at the NWC, often with inadequate records of the burial 

location or composition of the waste buried (U. S. EPA, 1993). 
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Table 2.8 Nuclear weapons site contaminants and contaminant mixtures 
(Adapted from U. S. EPA, 1993) 

Inorganic Contaminant Organic Contaminants Organic Mixtures of 
Radionuclides Metals Other Facilitators' Contaminants 

Americium-241 Chromium Cyanide Bense Aliphatic acids Radionuclides and 
Cesium-134, -137 Copper Chlorinated hydrocarbons Aromatic acids metal ions. 

Cobalt-60 Lead Methylethyl ketone, Chelating agents Radionuclides, metals, 
Plutonium-238, -239 Mercury cyclohexanone, Solvents, diluents, and organic acids. 
Radium-224, -226 Nickel acetone Polychlorinated and chelate Radionuclides, metals, 
Strontium-90 biphenyles and selected radiolysis and natural organic 
Technetium-99 polycyclic aromatic fragments Substances. 

Thorium-228, -232 hydrocarbons Radionuclides and 
Uranium-234, -238 synthetic chelating 

Agents. 

Radionuclides and 

Solvents. 

Radionuclides, metal 

ions, and 

Organophosphates. 

Radionuclides, metal 

ions, and petroleum 
Hydrocarbons. 
Radionuclides, chlorinated 

solvents, and petroleum 

Hydrocarbons. 

Petroleum hydrocarbons 

and polychlorinated 

Biphmyls. 

Complex solvent mixtures. 

Facilitators are organic compounds that interact with and modify metal or radionuclide geochemical behaviour. 

An extensive study of Department of Energy (DOE) sites and military bases in 

the USA that further illustrates pollution has recently been conducted. The sites are 
located around the US and were also sites for weapons production. Radioactive 

wastes were produced and at some military based toxic chemicals were disposed of in 

water supplies. Riley et al (1992) reports contamination of soils/sediments and 

groundwater at 91 waste sites on 18 DOE facilities, occupying 7280 km2 in 48 states. 
It is reported that much of the wastes now contaminating the subsurface environment 
were disposed of on the ground surface, in ponds, pits, injection wells and landfills. 
Leaking subsurface storage tanks are also adding to this contamination problem. 
Over 100 individual chemicals and mixtures have been discovered, the most prevalent 
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metals being Pb, Cr, As, and Zn while the major anion found was N03". The sources 

of the metals and anions are associated with reactor operations (Cr and Pb), irradiated 

fuel processing (Cr, NO3 CN, and F), uranium recovery (NO3"), fuel fabrication (Cr, 

N03-, and Cu), fuel production (Hg), and isotope separation (Hg) (Stenner et al, 1988; 

Rogers et al, 1989; Evans et al, 1990). 

Tables 2.9a and 2.9b show the levels of contamination and 1995 approved 

clean-up costs for some of America's most secret military bases. 

2.2.3 Conclusions 

The total area of the world contaminated by organic and inorganic 

contamination is vast and poorly documented. Contamination of land and water 

resources is inherently site specific as well as historically specific. Bioavailability of 

many contaminants is also site specific and consequently the approach to 

contamination remediation must be considered in a site-specific manner. The sheer 

variability in the contaminated sites described shows that there can never really be a 

unique solution to remediating a contamination problem. Consequently, any 

remediation strategy will encompass a variety of processes carefully engineered to 

produce an environment meeting a predetermined level of risk. 
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2.3 CLAY-ELEMENT INTERACTIONS 

2.3.1 Introduction 

When a waste spill occurs or when a contaminant is slowly deposited on a site, 
the first mechanism to be considered is the interaction of the contaminant with the 

solids, interstitial fluids and gases in the surface `soil' deposits. The depth, and 

physical and chemical nature of the surface layers and subsurface layers varies 

considerably and are dependent on the geological and environmental influences of the 

local environment developed over millions of years. Soil and subsoil layers are 

complex, dynamic, multicomponent and multiphasic. 
Soil systems can be broadly defined as the surface layer of the lithosphere in 

contact with the atmosphere where the influence of the climate or the terrestrial 

ecosystems or human beings on the lithosphere material can be characterised. 
Subsurface systems are those subsurface layers of the lithosphere just below soil 

systems where the influence of the climate or the terrestrial ecosystems or human 

beings on the groundwater flows or groundwater quality can be characterised. 

Understanding the fundamental factors governing the formation of `soil' deposits, 

their composition and subsequent interaction with contaminants is important when 

considering interactions with stabilisation and solidification treatments. 

2.3.2 Soil formation and structure 
Lithospheric materials can be defined as `primary' or `secondary' materials. 

Primary lithospheric materials include metamorphic and sedimentary rocks. The 

action of the climate via glacial or water action, wind, heating and cooling results in 

fracturing, weathering, and transport of solutes and particles subsequently structuring 

porous spaces. These physical processes are accompanied by the action of terrestrial 

ecosystems including the action of microorganisms, plant roots, water, nutrients, 

mineral carbon and oxygen. These large-scale changes in the natural landscape occur 

naturally over geological timescales but can often occur more rapidly due to the 

actions of humans. Once the macro structure has been physically broken down into 

particles of a smaller size, chemical transformations due to solubilisation, hydrolysis, 

hydration, carbonation, oxidation and reduction can occur much more readily forming 

secondary minerals such as clays. 
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The solubilisation effects of water on rock minerals are partly dependent on 
the dipole nature of water molecules. The development of slight positive charge 

around the hydrogen nuclei and negative charge around the oxygen nucleus due to the 
high electronegativity of oxygen allows the dissolution of ionic solids such a KCI. 

During hydrolysis, cations are released from the soil minerals because they are 

exchanged by H+ at the crystal surface. Metallic cations and silica are released into 

solution. This is the main process by which soluble silica enters the soil solution and 
is released from the soil (Jauzein, 1998). These released cations may react with the 

soluble silica forming new minerals or be involved in cation exchange reactions. 
During hydration, minerals such as CaSO4 (gypsum) absorb water often 

causing increases in volume. Many clays allow water between the lattice layers, 

causing expansion and potentially increasing the rate of decomposition. 

During carbonation of Ca and Mg carbonates, soluble bicarbonates are formed 

as shown in Equation 2.1. Indeed Equation 2.1 is an example of carbonation and 

hydrolysis. 

H2O + CO2 q H2CO3 q H+ + HC03 Equation 2.1 

Atmospheric Carbonic Bicarbonate 
carbon acid ion 
dioxide 

In aluminosilicate minerals, carbonation involves the exchange of H+ for 

cations at the crystal surface with the formation of soluble metal carbonate. All 

soluble carbonate and bicarbonate products can be removed by leaching. 

In a soil system where the availability of oxygen varies such as in a peat, the 

chemical environment equilibrates between reducing (under waterlogged conditions 

of low or zero oxygen availability) and oxidising (under aerated conditions of optimal 

oxygen availability) conditions. These conditions are generally termed redox 

conditions. Essentially redox reactions occur together and can be described in terms 

of electron transfers. The electron donor that loses an electron is oxidised and the 

electron acceptor is reduced. 

Since physical and chemical transformations vary with climate and surface 
geological features so secondary clay mineral structure varies enormously throughout 

the world. Physically, clay minerals are defined as those particles in a soil system 

smaller than 2µm. Chemically the fundamental structure of many minerals is based 
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upon silicates, iron and aluminium oxides and hydroxides. In many areas of the world 

minerals tend to be of the layer silicate form. In glaciated or and regions where the 

soil has not been subjected to intense or prolonged weathering the soil is typically of 

the iron and aluminium oxide or hydroxide form. Layer silicates are the most stable 

and persistent silicates which occur as weathered products of primary minerals and 

are essentially constructed of silicon bonded to oxygen in stable tetrahedral structures 

and aluminium bonded to oxygen in octahedral structures. These fundamental 

mineral building blocks are illustrated in Figure 2.1. 

Silicon 
Aluminium 

Oxygen 

Tetrahedral Structure Octahedral Structure 

Figure 2.1 The fundamental building blocks of clay minerals 

ding 

These basic tetrahedral and octahedral structures can form complex sheets 

when joined together. An example of an octahedral sheet is illustrated in Figure 2.2. 

Figure 2.2 Octahedral sheet structure 
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Layer silicates derive their name from the tetrahedral and octahedral silicates 
and aluminates in their structural sheets. 1: 1 layer silicates are so called because each 

individual layer is constructed from one tetrahedral silicate sheet and one octahedral 

aluminate sheet. The sheets are bonded together by the sharing of 02" ions between 

the octahedral A13+ cation and Si4+ cation. Each layer stacks to form a crystal of the 

1: 1 mineral. Layers are attracted together by a variety of bonding mechanisms, 

including, attraction via ions in solution and in some cases hydrogen bonding. The 

dioctahedral 1: 1 mineral called kaolinite can be seen in Figure 2.3. 

od 
en 
V 

y 

CC 
Ü 

HYDROXYL (OH) GROUPS. 
POTENTIAL SURFACE 
ADSORPTION SITES 

Hydrogen 
T1I1 1" bonding 

01 
TETRAHEDRAL CATION 

OXYGEN ()o (Si 
, 

AP') 

OCTAHEDRAL CATION (APB, Mgt+, Fe's, Fe") 
" HYDROGEN 

Figure 2.3 The structure of the 1: 1 dioctahedral mineral kaolinite 

(Adapted from McBride, 1994) 

The layers of kaolinite are held together by relatively strong hydrogen bonding 

between the OH groups of one layer and the 0 groups of the other layer. This 

interlayer bonding reduces the tendency for the layers to separate, producing a 

material with low surface area, low cation exchange capacity and low swelling 

potential when water is added. The mineral halloysite has the same 1: 1 structure as 
kaolinite with the exception of a sheet of water molecules between the layer. Heating 

hallosite causes irreversible collapse to the kaolinite structure. The ideal structure of 
kaolinite Si4A14Olo(OH)8 has no effective charge. However this mineral has a small 

measurable charge deficit due to fractured edge sites, a small degree of isomorphous 
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substitution (see smectites) and potential for pH manipulation of charge on the 
hydroxyl edge sites. Dragun (1988) states that at low pH the equilibrium Equation 

2.2, below, is valid, resulting in a high proportion of positive charge sites on the clay 

surface, attracting anions. At high pH equilibrium Equation 2.3, is valid, resulting in 

a high proportion of negative charge sites on the clay surface, attracting cations. 

XOH + I{ XOH2+ Equation 2.2 
XOH q H+ + XO" Equation 2.3 

Where X= Mineral Structure. 

The relative magnitude of permanent and pH-dependent charge in soil is 

determined by the type and amount of clay minerals and organic matter present. 
Bohn et al (1985) suggest a simple rule of thumb which states that about 5-10 per cent 

of the negative charge on 2: 1 layer silicates such as smectites and vermiculites is pH- 
dependent while about 50 percent of the charge on 1: 1 clay minerals such as kaolinite 

can be pH-dependent. Ross (1989) states that the main reason for this difference is 

due to the vertical stacking of kaolinite lattices which exposes a large vertical or edge 

surface area compared to the horizontal or planar surface area. Since smectites do not 

stack in this way, their horizontal or planar surface areas can be up to twenty times 

higher than their vertical or edge surface areas. 
Many layer silicates commonly found in soils are similar in structure to mica. 

Essentially they are two tetrahedral sheets which sandwich a single sheet of 

octahedrally co-ordinated cations (2: 1 layer silicates) and include smectite, 

vermiculite, illite and chlorite, each representing a clay group. 

2.3 2.1 Smectites 

Smectites are a group of minerals based on either the trioctahedral 2: 1 talc 
(Mg3SL Olo(OH)2) or dioctahedral 2: 1 pyrophyllite (Al2Si4Olo(OH)2) structure. 
Smectites differ from these neutral structures due to the actions of isomorphous 

substitution. 
During the physical and chemical weathering processes, isomorphous 

substitution can occur within the octahedral or tetrahedral sheets of minerals. 
Essentially quantities of the elements present in the mineral structure are displaced by 

other elements of a lower valence, or charge, including magnesium and iron (II). This 
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substitution (see smectites) and potential for pH manipulation of charge on the 

hydroxyl edge sites. Dragun (1988) states that at low pH the equilibrium Equation 

2.2, below, is valid, resulting in a high proportion of positive charge sites on the clay 

surface, attracting anions. At high pH equilibrium Equation 2.3, is valid, resulting in 

a high proportion of negative charge sites on the clay surface, attracting cations. 

XOH + H'<: -: > XOH2' Equation 2.2 
XOH q H' + XO- Equation 2.3 

Where X= Mineral Structure. 

The relative magnitude of permanent and pH-dependent charge in soil is 

determined by the type and amount of clay minerals and organic matter present. 

Bohn et al (1985) suggest a simple rule of thumb which states that about 5-10 per cent 

of the negative charge on 2: 1 layer silicates such as smectites and vermiculites is pH- 

dependent while about 50 percent of the charge on 1: 1 clay minerals such as kaolinite 

can be pH-dependent. Ross (1989) states that the main reason for this difference is 

due to the vertical stacking of kaolinite lattices which exposes a large vertical or edge 

surface area compared to the horizontal or planar surface area. Since smectites do not 

stack in this way, their horizontal or planar surface areas can be up to twenty times 

higher than their vertical or edge surface areas. 

Many layer silicates commonly found in soils are similar in structure to mica. 

Essentially they are two tetrahedral sheets which sandwich a single sheet of 

octahedrally co-ordinated cations (2: 1 layer silicates) and include smectite, 

vermiculite, illite and chlorite, each representing a clay group. 

2.3.2.1 Smectites 

Smectites are a group of minerals based on either the trioctahedral 2: 1 talc 

(Mg3Si4Oio(OH)2) or dioctahedral 2: 1 pyrophyllite (Al2Si1O1o(OH)2) structure. 
Smectites differ from these neutral structures due to the actions of isomorphous 

substitution. 
During the physical and chemical weathering processes, isomorphous 

substitution can occur within the octahedral or tetrahedral sheets of minerals. 

Essentially quantities of the elements present in the mineral structure are displaced by 

other elements of a lower valence, or charge, including magnesium and iron (II). This 
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displacement creates a measurable charge deficit within the layers of the mineral 

structure leading to the attraction of positively charged cations, usually in the form of 

positively charged metals in solution. This deficit is responsible for the majority of a 

clay's cation exchange capacity. Schofield (1949) found that the cation exchange 

capacity of a clay subsoil at Rothamsted Experimental Station in England was 

relatively constant between pH 2.5 and 5, but increased between pH 5 an 7. He also 

showed that the cation exchange capacity of montmorillonite did not vary below pH6, 

but increased as pH increased from 6 to 9. He ascribed the constant charge 

component to isomorphous substitution and the variable charge to ionisation of H 

from SiOH groups on the clay. The dioctahedral smectite, montmorillonite illustrated 

in Figure 2.4 has the general formula: 

M+X+y(A12-xMgx)(Sis-yAly)O1 o(OH)2 

Where x 0.4 and x>y, M' = balancing monovalent exchangeable cations. 

The relatively low layer charge of smectites allows layers to separate 

producing a material with high surface area, high cation exchange capacity and high 

swelling potential when water is added. 

DIOCTAHEDRAL SMECTITE 
(MONI'MORH LONITE) 

U 
an 
Üýq 

[L 
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Xý 
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SHEET 

TETRAHEDRAL 

OCTAHEDRAL 

TETRAHEDRAL 

IT 

TETRAHEDRAL 

ý0C 
A IEDRAL 

/ TETRAHEDRAL 
\ 

" TETRAHEDRAL CATION 
OXYGEN (O''-) 0 (Si AID') 

OCTAHEDRAL CATION (AID, Mgt 
, Fez+, Fe's) 

" HYDROGEN 

Figure 2.4 The general structure of 2: 1 dioctahedral smectite 
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An example of the important effect of differing exchange cations on the c-axis 

spacing (Figure 2.4) and hence potentially physical properties of montmorillonite and 

vermiculite is depicted in Table 2.10. 

Table 2.10 Measured c-axis spacings for common Vermiculite and 

Montmorillonite minerals saturated with exchangeable K}, Na+, 

and Mg2'' cations (After McBride 1994) 

Mineral Exchange Ion c-Spacing (A) 

Air-Dry Wet Glycerol Added 

Montmorillonite K+ 11.6 »20 17 

Na+ 12.4 »20 17 

Mge+ 14.7 19.5 17 

Vermiculite K+ 10.0 10.0 10.0 

Na+ 12.0 14.7 12.8 

Mg2+ 14.2 14.2 14.2 

2.3.2.2 Vermiculites 

Vermiculites occur in soil in both dioctahedral and trioctahedral forms. The 

most common in the clay fractions of soil is the dioctahedral form whilst the 

trioctahedral form is found in large particles because of the weathering of 

trioctahedral micas or chlorites. The layer charge of vermiculites is higher than that 

of smectites, which is localised in the tetrahedral sheet resulting in the higher cation 

exchange capacities. The typical formula of trioctahedral vermiculite is: 

M$0.33("`Q, A1, Fe3ý3(S13AI)Olo(OH)2 

McBride (1994) suggests that the higher layer charge causes the exchangeable 

cations to electrostatically pull the layers together more energetically and limit the 

extent of layer separation. K+ and other large weakly hydrating cations such as Cs+ 

and Ba2+ readily displace the hydrated cations such as Mg(HZO)62+ from the interlayer 

regions of vermiculite, causing the layers to collapse together and `fixing' the K+ into 

the mica like structure. 
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2.3.2.3 Mites tes 

The structure of illite is very similar to that of mica although it is less 

crystalline, contains less K+ and more water than mica. The K+ is essentially fixed 

between silicate layers producing a material with little swelling potential, low surface 

area and low cation exchange capacity. 

2.22.4 Chlorites 

Similarly to vermiculite, chlorites contain tetrahedrally charged 2: 1 layers with 

the octahedral layers being either dioctahedral or trioctahedral in nature. Similarly to 

vermiculite, usually the dioctahedral chlorites are found in the clay size fraction of 

soils. The major structural difference between chlorites and vermiculites is the 

presence of a positively charged metal hydroxide (brucite) sheet between the 2: 1 

silicate layers. The general structural formula is 

[4Z+sM3 )3(Si A)4O10(OH)2]x [(r%42+sM3)3(OH)6]x+ 

2: 1 Layer Brucite Sheet 

Typically, the interlayer sheet of the primary mineral chlorite is Mg(OH)2- 

During weathering and isomorphous substitution, the Mg2+ is displaced by Al 3+ 

producing an excess of positive charge, which partially balances the 2: 1 structure 

charge deficit. Particularly in acid soils, the hydroxide interlayer sheet will be 

predominantly Al(OH)3 resembling gibbsite rather than brucite. Due to the interlayer 

sheets being filled by rigid interlayer sheets rather than the hydrated interlayers of 

vermiculite, chlorites have low surface areas, low cation exchange capacities and do 

not expand in water. Figure 2.5 shows diagrammatically the structural differences of 

some of the minerals described and Table 2.11 shows typical cation exchange 

capacities and surface areas for these secondary minerals. 
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KAOLINITE 

HALLOYSITE 

-+2 

+2 WATER 

ILLITE VERMICULITE 

WATER 

CHLORITE SMECTITE 

Figure 2.5 Some typical layer silicate mineral structures 

(Adapted from McBride, 1994) 

Table 2.11 Cation exchange capacity and surface area of secondary soil 

minerals (Adapted from Sparks, 1995) 

Mineral Specific surface 

area (m2 g-') 

Cation exchange 

capacity (cmol kg') 

Kaolinite 7-30 2-15 

Halloysite 10-45 10-40 

Talc 65-80 <I 

Montmorillonite 600-800 80-150 

Dioctahedral vermiculite 50-800 10-150 

Trioctahedral vermiculite 600-800 100-200 

Chlorite 25-150 10-40 
Allophane 100-800 5-350 
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2.3. Z. S Clays from arid or glacial climates 
As previously mentioned clays throughout the world are not simply comprised 

of layer silicates. In and or glacial regions composition will consist of oxides, 
hydroxides, and oxyhydroxides formed from the parent rock over millions of years. 
These minerals tend to be hexagonal or cubic close packed 02. and / or OH" with Fei+, 

A13 a+, 3+ in the octahedral sites. Unlike the layer silicates, Fe and Al oxides 
do not tend to take part in isomorphous substitution and as such do not develop 

permanent structural charge. Hence, it is possible for these minerals to have very high 

surface area and very low cation exchange capacities (McBride, 1994). The low 

capacities achieved are due to limited pH-dependent surface adsorption previously 
described for layer silicates. Three of the most common crystalline oxides found in 

soils are gibbsite, geothite, and hematite. However, not all minerals are crystalline. 
Allophane, a non-crystalline hydrous aluminosilicate, is common in soils formed from 

volcanic ash and have been found in soils formed from glacial tills. McBride (1994) 

states that allophane consists of extremely small spherical aluminosilicate particles in 

which M3+ occupies both octahedral and tetrahedral sites. Tetrahedral A13+ would be 

expected to generate permanent negative charge in the structure, yet there is no 
indication that allophanes possess permanent charge. The cation exchange capacity of 

allophane is determined by the pH of the soil solution. 

Z 3.2 6 Cation permeability interactions 

The structure of the mineral and the proportion of specific elements present 

within exchange sites between the mineral structural layers affect the physical 

properties. Figure 2.6 illustrates the behaviour of sodium and calcium when present 

at exchange sites of kaolinite, illite and montmorillonite in varying proportions. Due 

to the structure of the minerals, kaolinite has a very low exchange capacity, illite has a 
low capacity due to the very stable presence of K+, and montmorillonite has a very 
high exchange capacity. It is important to note, however that many salts can increase 

soil permeability by causing soil shrinkage to the point of causing cracking. The 

consequences of ' this may be enhanced ion movements. For example, aqueous 

solutions of NaCl, CaCl2, MgC12, KCI, NH4C1, K2C03, CaSO4, MgSO4, K2SO4, 
NaNO3, FeSO4, and FeO increase the permeability of Bentonite (see Table 2.12). 
However, aqueous solutions of CaCO3, MgCO3, Na2SO4, and Na2SO3 have negligible 
effect on Bentonite permeability (see Table 2.12). 
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Figure 2.6 Variability of clay permeability with type and proportion of 

exchangeable cation (Jauzein, 1998) 

Table 2.12 Effect of various salt solutions on Bentonite permeability 

(Alther et al, 1985) 

Salt Log Permeability, cm/sec 
0% 0.25% 0.5% 1% 2% 3% 4% 5% 8% 

NaCl 7.38 - - 7.29 7.24 - - 6.88 
CaC12 7.41 6.96 6.79 6.73 6.74 - - 6.74 --- 
MgCI2 7.41 7.08 6.85 6.78 6.78 - - 6.80 - 

KC1 7.41 7.46 7.34 7.30 - 6.80 - 6.70 - 
NI14C1 7.41 7.41 7.29 6.97 6.78 6.54 - - - 
CaCO3 7.41 - - - 7.42 7.38 7.37 7.37 7.43 
MgCO3 7.46 - - - 7.34 7.30 7.30 7.23 7.21 
K2CO3 7.41 - - 7.34 7.20 6.95 6.78 6.71 - 
CaSO4 7.46 7.16 6.97 6.96 - 7.03 - 7.01 - 
MgSO4 7.46 7.29 7.04 6.94 - 6.90 - 6.92 - 
K2SO4 7.46 - - - 7.27 7.05 6.93 6.84 - 
Na2SO4 7.46 - - - 7.37 7.40 7.40 7.37 - 
Na2SO3 7.40 - - - 7.41 7.43 7.44 7.29 - 
NaNO3 7.40 - - - 7.35 7.24 7.22 7.10 - 
FeSO4 7.33 - 7.24 7.01 6.87 - 6.78 - - 
FeO 7.33 - 7.05 6.93 6.91 -_ 6.95 - - 

2.3.2.7 Soil organic matter 
Soils are not simply formed by alteration of inorganic lithospheric materials, they 

combine with organic biospheric materials. The main difference between soils and 

subsoils are, soils tend to have a higher content of active organic constituents, higher 
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surface area with larger electric charge, more active biological and biochemical 

processes, greater porosity and hence more rapid fluxes of materials including 

changes in water content. The structure of soil with depth can be categorised as a 

series of profiles with horizons. Fundamentally, these consist of : 

"0 horizon: accumulation of organic matter overlying the soil with several layers 

depending on decomposition, 

"A horizon: humified organic matter with mineral material, 

"E horizon: characterised by loss of organic matter, Fe and Al oxides and clay 
minerals, 

"B horizon: characterised by the accumulation of clay or the development of a 
distinctive structure, and 

"C horizon: soil formation less affected by surface processes. 

The structure of subsoils below 1 to 1.5 meters in temperate regions to about 3 

meters or more in tropical regions the main modified factors are water dependent, 

even if roots are observed down to 5-10 meters (Jauzein, 1998). The structure of the 

unsaturated zone and the saturated zone are also modified mainly by wetting and 
drying as well as variability in the water table level creating cracks and fissures. 

Considering the 0, A and E horizons the organic matter has important 

implications to chemical behaviour. Helling et al (1964) found that in soils with 

uniform clay mineralogy, about 92 per cent of the variation in cation exchange 

capacity could be attributed to their clay and organic matter contents. The results of 

several investigations have suggested that organic matter content mainly determines 

soil cation exchange capacity in cultivated topsoils, with clay content mainly 

responsible for the cation exchange capacity of subsoils (Wright et al, 1972). Particle 

sizes within the clay fraction appear to contribute differently, with the < 0.2 µm clay 
fraction being the main cation exchange capacity contributor in the B horizons 

(Wilding et al, 1966). Only clay colloids can generate a positively charged surface 

when the soil is acidic, while both clay and organic colloids will have negatively 

charged surfaces when the soil `solution' is alkaline. A simplified illustration of the 

constituents of soil organic matter is depicted in Figure 2.7. 
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Figure 2.7 Schematic fractionation of soil organic matter (Ross, 1989) 

The mechanism for the attenuation capacity of organic colloids is the same as 
that for layer silicates and is therefore equally important when considering lime-clay- 

contaminant interactions. The organic material humus is typically the substance that 

is involved in attenuation of cations. Humus is the relatively stable fraction of soil 

organic matter which remains in soils after the chemicals comprising plant and animal 

residues (amino acids, carbohydrates, fats, waxes, resins, and organic acid) have 

decomposed. Dragun (1988) describes humus as a series of relatively high molecular 

weight polymers. The typical humus colloid is comprised of (i) a central unit 

containing primarily C and H, and (ii) a colloidal surface comprised of carboxylic 

(COON) and hydroxyl (OH) functional groups. Infrared spectroscopic studies by 

Schnitzer et al (1969) identified the fulvic acid fraction (Figure 2.7) as the main 

organic component (87%) of the leachate from a humic surface soil. Schnitzer et al 
(1969) had also shown, by selectively blocking both acid carboxyl (COOH) groups 

and phenolic hydroxyl (OH) groups on their fulvic acid fraction, that both COOH and 
OH groups are important sites of metal bonding. These functional groups, when 
dissociated, possess negative charges and are depicted in Figure 2.8. These findings 

were further validated by Schnitzer (1977) and the complexation mechanisms of 

metals to humic acids by Stevenson (1977) and Livins (1991). 
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Figure 2.8 Development of p11-dependent charge in organic colloids 

An empirical study of fulvic acid with an ionic strength of 0.1 and pH 3 by 

Schnitzer and Hansen (1970) identified an ̀ organic matter Lyotropic' series. 

decreasing affinity 
Fe3+ > A13+ > Cu2+ > Ni2+ > Co2+ > Pb2+ = Ca2+ > Zn > Mn2+ >Mgx+ 

According to McBride (1994) the affinity of humus for the essential 

macronutrients, Ca2+ and K+, is (fortunately for plants and animals) higher than 

electronegativity would predict, suggesting that complexing or chelating groups in 

humus select for these metals on the basis of ionic size. 

Perhaps the most important control of humic and fulvic acids and their metal 

complexes is the relative viscosity they impose on the soil `solution'. Ross (1989) 

defines relative viscosity as the ratio of the solution viscosity to that of pure water. 
The viscosity is influenced by changes in the molecular configuration of the polymer, 

which can occur, by the addition of an electrolyte. The result is ionisation of the 

polymer and expansion of the organic molecule due to repulsive forces by similarly 

charged functional groups on the polymer chain (Hayes et al, 1978). Research by 

Smith et al (1964) concluded that increased concentration of Na and K in the soil 

solution would act to increase the mobility of humic substances. However, Hayes et 

al (1978) found that increasing the pH increased the dissociation of the polymer 

carboxyls increasing molecular expansion and solution viscosity thus reducing humic 
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polymer mobility. This would be an important mechanism during high pH lime 

treatment of contaminated surface soils. Ritchie et al (1982) found the solubility of 
humic acid-metal complexes increased when more hydrated species of complexing 

cations were involved. Ross (1989) suggests that these more hydrolysed ions e. g. 
Fe3+ and Al occur at higher pH implying greater metal-humate mobility with 
increasing soil solution pH. Whatever the solubility of humic substances the 

permanent and temporary charges developed in soils due to mineral and organic 
fractions are of importance to natural attenuation and lime treatment processes. They 

are summarised schematically in Figure 2.9. 

These schematic diagrams show the relative contributions of variable pH- 
dependent charge sites (cation exchange capacity (CEC, )) and permanent cation 

exchange capacity (CECp) to the total soil cation exchange capacity (CECt). 

Depending on mineralogy, temperate mineral soils are likely to have measurable 
CECt at any pH due to the presence of CECp on 2: 1 clay minerals, with additional 

CEC� determined primarily by the amount of soil organic matter present. The large 

proportion of organic colloids in peat soils accounts for the dominance in these soils 

of CECY. The presence in highly weathered tropical soils of allophane and hydrous 

oxides of Fe and Al with very high isoelectric pHs (point of zero charge) may result in 

a net positive charge and the dominance of anion exchange in these soils at low pH 
(after Ross 1989). 
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Figure 2.9 Schematic effect of pH on surface colloidal charge for temperate 

mineral and organic soils and tropical soils (Ross, 1989). 
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2.3.3 Predicting clay-ion behaviour 

2.3.3.1 Introduction 

It is apparent from the discussion of temporary and permanent charge on clay 

minerals that this potential for partial element containment is important. It is also 
important to consider that some elemental ions are contained in preference to others. 
Selectivity of one ion for another by cation exchange within a mineral is complex. 
Exchange depends on the physical and chemical behaviour of both the ion present in 

the mineral and the exchanging ion. Hence, selectivity depends on surface charge, ion 

radius and the thermodynamics of the chemical reaction. The thermodynamics and 

equilibrium behaviour of these reactions can be used to predict the quantities of 

reaction product of exchange reactions. However, where more than one exchanging 
ion exists, the theory becomes very complex and unpredictable and from an 

engineering perspective a descriptive analysis is required. 

23.3 .2 The condition for equilibrium 
Cation exchange reactions are rapid, reversible and stoichiometric, where 

quantities of exchanged ions are chemically equivalent. Although the exchange 

process can be considered instantaneous, ion diffusion to or from the colloid surface is 

probably the rate-limiting step, especially in heterogeneous field conditions (Bohn et 

al, 1985). Cation exchange reactions may be driven in either direction by 

manipulating the concentrations of reactants and products. This principle is used in 

soil extraction techniques such that a salt solution, such as ammonium acetate, is 

leached through the soil sample. In this instance, the exchanging cation is the 

ammonium ion (NI14) and the displaced ion can be measured in the solution. 

EJ-Ca + 2NH4+ q -2NH4 + Ca2+ 

Due to the relative charge difference, two ammonium ions are required to 

replace one calcium ion. The reversible relationship between a cation in water with 
an exchangeable cation at equilibrium can be described by Equation 2.4 (after 
Dragun, 1988). 

G 
k(dcs) 

C. Equation 2.4 

k(ads) 

42 



Where 

C, = concentration adsorbed on soil surfaces (µg/gram soil) 
Cc = concentration in water (µg/m1) 

k(des) = desorption rate 
k(ads) = adsorption rate 

Analysis of this equation reveals that the equilibrium distribution of a cation is 

governed by the two opposing rate processes. The adsorption rate is the rate at which 

the dissolved cation in water transfers into the adsorbed state and the desorption rate 
is the rate at which the cation transfers from the adsorbed state into water. The 

adsorption coefficient Kd is the simplest way of expressing the extent of adsorption 

and is defined as the ratio of CS/Ce. Hence, the more adsorption that occurs, the 

greater the magnitude of Kd. 

Table 2.13 identifies the Kds for some common elements. It is evident that 

there is a large variation even for a single element. Since the magnitude of Kd is 

dependent upon the size and charge of the cation and upon the soil properties, and 
because the soil properties vary widely among soils, an elements Kj also varies 

widely among soils. 

Table 2.13 Ranges for Kds for various elements in soils and clays 
(Dragun, 1988) 

Element Observed 

Range (mUg) 

Element Observed 

Range (mUg) 

Element Observed 

Range (mUg) 

Ag 10-1,000 Cr(VI) 1.2-1,800 Po 196-1,063 

Am 1.0-47,230 Cs 10-52,000 Pu 11-300,000 

As(III) 1.0-8.3 Cu 1.4-333 Ru 48-1,00 

As(V) 1.9-18 Fe 1.4-1,000 Se(IV) 1.2-8.6 

Ca 1.2-9.8 K 2.0-9.0 Sr 0.2-3,300 

Cd 1.3-27 Mg 1.6-13.5 Tc 0.003-0.28 
Ce 58-6,000 Mn 0.2-10,000 Th 2,000-510,000 

Cm 93-51,900 Mo 0.4-400 U 11-4,400 
Co 0.2-3,800 Np 0.2-929 Zn 0.1-8,000 
Cr(III) 470-150,000 Pb 4.5-7,640 
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Dragun (1988) states if ions were point charges then no preference for ions of 

the same valence would exist; however, ions do have significantly different hydrated 

sizes. Since electrostatics are involved in the attraction of ions at a charged soil 

surface then it can be predicted that the ion with the smallest hydrated radius and 
largest charge will be preferentially accumulated. Marshall (1975), reporting the 

results of cation exchange research on montmorillonite clay by Schachtschabel 

(1940), gives the following order of cation exchange: 

Replaceaäüty 30 

Monovalent cations: Li+ > Na+ > W> Rb+ > Cs' 

Divalent cations: Mg2+ > Ca 2+ = Srr+ > Ba2+ 

The order for replaceability on kaolinite is very similar as suggested by Bohn et al 

(1985): 
Replaceabllity 

Li+ Na+ > K'' -- NH4+ > Rb+ > Cs+ sze Mgi+ > Ca2+ > Sr' 2... 

... = Ba2+ > La3+ se H+(Als+) > Th4+ 

This order is termed the Lyotropic series and represents increasing cation 

replaceability, or decreasing cation attraction, with increasing radius, increasing 

atomic number and thus decreasing polarising power and ionic hydration. Generally, 

less hydrated ions with smaller hydrated radii, such as Na+ and K+, are more strongly 

attracted to charged mineral surfaces. Cation valency is the second major controlling 
factor on the order of exchange, with multivalent ions being more strongly retained 

than monovalent ions (Ross, 1989). Clearly cation exchange and selectivity on 

mineral surfaces are significant in helping to explain physico-chemical changes due to 

contaminant attenuation and indeed the early improvements induced by the addition 

of lime. Appendix A2 contains a brief description of some of the more fundamental 

mechanisms governing these ion mineral interactions, including the Eisenman energy 

model of cation exchange, the Stem diffuse double layer model of cation exchange, 
the effects of ionic potential, reaction enthalpy (are exchange processes exothermic or 

endothermic? ) and entropy (system disorder). 

The cation selectivity of organic colloids described in Section 2.3.2.7 depends 

on the configuration of carboxylic and phenolic groups on organic molecules because 
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it is this which determines the surface negative charge density. Ross (1989) suggests 

that two or three adjacent groups on aliphatic and aromatic compounds attract 

multivalent cations more selectively than when they are widely spaced (Talibudeen, 

1981). Talibudeen (1981) states that the influence of one carboxyl group on the 

dissociation of an adjacent carboxyl group is negligible when they are separated by 

more than four CH groups. He specifies three general rules of organic colloid-cation 

selectivity: (1) multivalent cations are preferred to monovalent cations; (2) transition 

group metals (Fe, Mn, Cu, Zn) are preferred to strongly basic (alkali) metals (K, Na, 

Ca, Mg), and (3) cation selectivity increases with cation exchange capacity. 

2.3.3.3 Organic contaminant attenuation and organophilic clays 

There has been much interest in using clays, in particular high surface area 
smectites, for removal of organic pollutants from water. In the context of lime 

stabilisation, the removal of organics in this way is thought to remove the impeding 

effects of many organic molecules on the stabilisation mechanisms. Clays created in 

the natural environment contain exchangeable metal ions which make clay surfaces 
hydrophilic and ineffective at sorbing non-ionic organic compounds. There are 
however few ionic organic species that occur in soils as pollutants, with perhaps the 

exception of certain herbicides such as diquat and paraquat. The chloride salt of 

paraquat is shown in Figure 2.10. 

2+ 
[H3C 

-/\N- H3C 20 " 

Figure 2.10 Chloride salt structure of the herbicide paraquat 

McBride (1994) explains that these cations are strongly attenuated by cation 

exchange reactions on smectite and less strongly on vermiculites and kaolinite. He 

also states that the selectivity of the clay is far greater for the organic cation than the 
inorganic cations it displaces resulting in very little desorption even for very high 

concentrations of competing inorganic cations. However, these organic cations are 
apparently adsorbed less strongly on soil humic material especially when the pH is 
lowered and the W ions preferentially occupy the negative carboxylic functional 
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groups. High molecular weight organo cations are adsorbed with higher selectivity on 

minerals. The order of preference for a series of ammonium cations on smectite is: 

(CH3CHZCH2)4N+ > (CH3CH2)4N+ > (CH3)4N+ 

This order is not simply due to differences in electrostatic attraction but more 

to do with increasing entropy (disorder) as the molecule increases in size. This is 

linked to the idea that as the molecule increases in size, more water must be displaced 

from the exchange site to accommodate the cation. These organo cations do not 

possess the strong hydration forces of some inorganic cations that keep the interlayer 

of swelling clays expanded. This can lead to collapse of the interlayer and 

subsequently flocculation of the mineral. The low hydration forces associated with 

attenuated organo cations changes the properties of the mineral exchange surface 

from hydrophilic to organophilic, a property exploited in smectites to improve 

adsorption of non-polar organic molecules. These modified clays are referred to as 

organoclays and are very effective in sorbing non-ionic organic compounds 

(Mortland, 1970; Mortland et al, 1986). Zhang & Sparks (1993) found that untreated 

montmorillonite adsorbed little phenol but adsorption was greatly improved after the 

clay was modified with HDTMA+ (hexadecyltri-methyl-ammonium). Zhang et al 

(1993) showed that the surfactants in the exchange sites of the clay are not easily 

desorbed suggesting that organoclays are stable complexes. Although currently cost 

may be inhibitive, organoclays clearly have a number of potential uses including use 

as landfill liners for improved organic leachate retention. Soundarajan et al (1990) 

also suggests the use of organoclay in wastewater treatment and spill control 

situations. 
Generally in current in-situ conditions unmodified clays with high permanent 

charge, including vermiculites, do not expand significantly in water. This is 

insufficient space for the larger organo cations. McBride (1994) also suggests that 

since silicate clays with high charge localised in the tetrahedral sheet (e. g. 

vermiculites) hydrate more strongly than those with lower charge localised mainly in 

the octahedral sheet (e. g. smectites), organocations adsorb less energetically on 

vermiculite surfaces because of the greater energy cost in displacing the water from 

the adsorption site. This is illustrated diagrammatically in Figure 2.11. 
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It is therefore clear that unmodified clays of the appropriate mineralogy can be 

partially successful with specific ionic organic compounds. It is also clear that to 

retain non-ionic organic compounds a modified clay is necessary. Although 

expensive, once mixed it is possible that the attenuated organic compound may not 

interfere with any stabilisation and solidification reactions once a solidifying reagent 

has been added. This would result in the permanent binding of the compound 

permanently within a monolithic mass. This would be especially beneficial in 

situations involving mixtures of ionic organic compounds, non-ionic organic 

compounds and inorganic ionic compounds. 
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Figure 2.11 Selectivity of mineral structure cation exchange sites for large 

organic cations. (after McBride, 1994) 
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2.4 STABILISATION/SOLIDIFICATION PROCESSES 

2.4.1 Introduction 

In the context of treating contaminated land, stabilisation refers to the fixation 

of a contaminant to the chemical structure of a soil material whilst solidification refers 

to the cementation of the soil material due to the addition of a solidification reagent 

such as lime or cement thereby reducing the flow of solution through the solidified 

mass. Stabilisation/solidification methods, sometimes called immobilisation methods, 

change the physical state of a contaminated material, such as solidifying a 

contaminated sludge, sediment or clay. In addition, chemical stabilisation can reduce 

the availability of contaminants to potential sensitive targets, usually by containment 

within a solid product of low permeability. Harris (1995) recently reviewed some 

aspects of stabilisation/solidification methods whilst Malone & Larson (1983) discuss 

some of the more fundamental stabilisation reaction processes. A number of case 

studies discussing the stabilisation of a PCB-contaminated road base, steel industry 

sludge, rotary kiln slag from a secondary lead smelter and a former ash fill site have 

been qualitatively reviewed by MacKay & Emery (1993). 

Commercial systems and applications would incorporate both stabilisation and 

solidification processes. Solidification following stabilisation aims to reduce 

exposure of the stabilised material to the environment through a process of creating a 

monolithic mass of low permeability. Some systems generate substantial heat that 

may drive off volatile constituents, however, generally the destruction or removal of 

contaminants is not the objective of stabilisation/solidification technologies. 

The success of a treatment process depends on whether contaminants become 

available again if the physical or chemical nature of the treated product changes in the 

external environment, such as exposure to acid, cationic leachates or physical 
destruction of the monolithic mass through processes such as wetting and drying and 
freezing and thawing. Chemical reactions such as oxidation of sulphides forming 

expansive sulphates may also destroy the monolithic mass. Hence, the essential 

concepts for choosing a stabilisation method are therefore: 

" the ability to achieve and maintain chemical stability or permanently bind 

contaminants, entrapping them over the long-term whilst retaining the desired 

physical properties, and 
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" the methods to be used to determine treatability including short and long-term 

performance. 

Smith (1998) suggests that the effectiveness of stabilisation/solidification 

methods depend on: 

" proper characterisation of the material to be treated so that the most appropriate 
formulation can be selected, 

" effective contact between the contaminants and treatment reagents, which for 

many systems involves achieving a well mixed system, hence requiring 

appropriate mixing equipment, 

" control over external factors including temperature, humidity, degree of mixing 
allowed after reagents have been added and begun to react, since these directly 

affect the setting and strength development hence potentially, the long-term 

durability of the finished matrix, and 

" absence of chemical substances that may inhibit the stabilisation/solidification 
process, or addition of pre-treating agents to render such substances harmless. 

Generally, stabilisation/solidification systems can be classified according to 

the main stabilising agent added. They can be based on cement/lime, pozzolana, 

silicate, thermoplastic or polymer systems. Commercially, systems available in the 
U. S. are proprietary in nature, relying on mixtures of those agents identified above. In 

many instances waste sources of reactive agents have been utilised, including, cement 
kiln dust, lime kiln dust and steel slag fines. Depending on the source, resources such 

as cement kiln dust may contain reactive lime, calcium silicates, pozzolanic clay 

minerals and alkali sulphates creating some potentially complex chemical reactions. 
Organic binders tend be more expensive because they rely on refined materials 

such' as asphalt, polyethylene, resins, epoxies, urea formaldehyde, polyesters and 

potentially organophilic clays. Indeed the employment of an organic binder in itself 

may not be environmentally desirable. Their application, therefore, tends to be 
limited to particularly hazardous wastes, such as nuclear wastes, and highly toxic 
industrial waste (Hinsenveld, 1993). 
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Stabilisation and solidification in the U. S. and Canada is regarded as an 
established technology for treating inorganic contaminants (U. S. EPA, 1989; 

U. S. EPA, 1991; Bishop, 1990). Although techniques have also been adopted in 

Europe, doubts exist about the physical and chemical nature of the processes, the 

testing and predicting performance and subsequently the long-term performance. 
Although many experts believe that a high proportion of stabilised contaminants will 

ultimately be released, the concentrations in the leachate at any one time can be low 

enough to pose no direct hazard to the environment. However, if the waste leaches 

for an extended period, the environment will become loaded with contaminants unless 
the contaminants are remineralised and components are incorporated into soil organic 

matter (Hinsenveld, 1993). 

The situation is exacerbated by the fact that with the exception of 
thermoplastic-based methods and some propriety lime-based methods, one of the 
limiting factors associated with conventional systems is that very low concentrations 

of organic contaminants can interfere dramatically with crystallisation (setting) 

processes. Hence, much recent research has focussed on methods of stabilising and 

solidifying mixed organic and inorganic contaminated systems. One approach 
incorporates organophilic clays to preferentially absorb organic contaminants prior to 

the conventional stabilisation and solidification treatment. Other adsorbents could 
include ion exchange resins, activated carbon and zeolites. Although this research is 

in its infancy, refined adsorbents such as organophilic clays are very expensive which 

currently make the application of the technology inhibitive. Many stabilisation and 

solidification processes produce heat, which can lead to the volatilisation of VOCs. 

In these situations, the process should be executed in a closed system, where the 

VOCs can be trapped, and subsequently treated. This increases the expense and 

reduces the financial viability of the whole approach. 

2.4.2 The clay-lime reaction 
The addition of lime, either in the form of quicklime (CaO(, )) or as hydrated or 

`slaked' lime (Ca(OH)2), to a soil system initiates a two-stage reaction. The reactions 

of cement could be considered similar because cement is 70% CaO(, ), although it also 
contains significant gypsum CaSO4(s) to control the reaction rate. During the first 

stage, if added, the quicklime reacts with water in the soil system according to the 
following equation: 
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CaO + H2O = Ca(OH)2 + heat 

This reaction is highly exothermic, producing approximately 17 x 109 joules 

per kilogram of calcium oxide. Quicklime is sometimes used purely as a de-watering 

agent due to the benefits of dehydration of the soil system by reaction and by steam 

generation. Associated with the first stage of the reaction, within minutes to hours of 

mixing, there is a decrease in the plasticity of the clay caused by the flocculation of 

the clay particles. This is accompanied by an increase in strength caused by both the 

dehydration and fundamental changes in the clay particle chemistry. This 

modification of the clay occurs immediately in a well mixed system and is due to the 

exchange of cations such as Na and H+ in the clay mineral structure for Cat+. 

The second stage of the reaction process, termed solidification, occurs in the 
longer term over a period of days and weeks and is the result of pozzolanic reactions 

(Glendinning & Boardman, 1996). These reactions have been studied and reported in 

detail by many researchers including Arman & Munfakh (1970, Eades & Grim (1960) 

and Diamond & Kinter (1965). Sherwood (1993) defines a pozzolana as a material 

that is capable of reacting in the presence of water, at ordinary temperatures, to 

produce cementitious compounds. In simplified terms, the addition of lime to a clay 

in appropriate quantities (generally between 1-7%) creates a highly alkaline 

environment (, zzpH 12.4) and promotes the dissolution of silica and alumina from the 

clay mineral structure, particularly at the edge sites of the clay plates, permitting the 

formation of calcium silicate hydrate and calcium aluminate hydrate gels. These gels 

crystallise with time to create cementitious reaction products that are analogous to the 

composition of cement paste. The dissolution effects of high pH on the basic building 

`blocks' of clay minerals including silicon oxides, aluminium oxides and iron oxides 
is evident from observation of Figure 2.12 

The second-stage reaction generally results in continued reduction in a clay's 

plasticity as reported by Lund & Ramsey (1959), Wang et al (1963) and Jan & 

Walker (1963). However, lime affects the liquid limit in various ways. Wang et al 
(1963) and Jan & Walker (1963) reported decreases in the liquid limit, whereas 
Zolkov (1962) reported substantial increases. Lund & Ramsey (1959) and Taylor & 

Arman (1960) found increasing and decreasing liquid limits that were dependent on 
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the soil type. Along with changes in Auerberg Limits there is usually an increase in 

shear strength on addition of lime (Thompson, 1966). Thompson (1965) showed that 

organic matter with a high exchange capacity retarded the strength producing 

pozzolanic reactions, probably due to the process of Ca attenuation. However, a study 
by Arman and Munfakh (1970) concluded that organic soil-lime mixtures produce 

cementitious products similar to those reported for inorganic soil-lime reactions and 

that the organic matter does not appear to block the reaction that results in an increase 

in the soil strength. In the context of treating contaminated land, the most significant 

physical change is in permeability because it could either lead to an increase or 

decrease in soluble contaminant mobility due to leaching. In the short-term after 

addition of lime it is expected that the permeability will increase, the degree 

depending on the mixing, mellowing (the time the mixture is left before compaction), 

compaction and curing conditions (the environment in which the cementitious gels 

crystallise) during lime treatment. This increase in permeability was hypothesised by 

Townsend and Klym (1966) when their tests on lime-treated heavy clays exhibited 

slight increases in permeability. McCallister and Petry (1992) reported on research by 

Ranganatham (1961) who found a ten-fold increase in permeability after adding lime 

to expansive clays. Fossberg (1965) however, reported a reduction in permeability 

after treating a clay with lime. In the longer-term this tendency for increased 

permeability can reverse as the calcium aluminate hydrate and calcium silicate 

hydrate gels form and crystallise in the pore spaces between the flocs (El-Rawi et al, 

1981). This theory is reinforced by the research of Gutschick (1978) who reported 

that the permeability of a lime-flyash-aggregate canal liner showed initial increases in 

permeability which gradually decreased to produce flow rates comparable with the 

natural clay. 
Column leaching tests on lime-treated clays by McCallister & Petry (1992) 

concluded that lime dramatically increased the permeability of soil with maximum 

permeability occurring at the lime modification optimum. This lime modification 

optimum is the minimum percentage lime content required to create a significant 

change in material characteristics. It is determined by addition of specific quantities 

of lime to clay-water mixtures and determining the minimum lime content at which 

the pH does not increase on addition of higher lime contents. According to the 

research of McCallister & Petry (1992) column leachate pH increased as the lime 

content of the sample increased but decreased linearly during the leach cycle. 
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Calcium concentration in the leachate was lowest in specimens prepared at the lime 

modification optimum but increased as the lime content increased. Hence they 

concluded that there is strong evidence to suggest that calcium removal and 

permeability are in correlation to the complex ion interaction within the soil-lime 

mixture (cation exchange and solidification mechanisms) and therefore the lime 

modification optimum is a central parameter in determining the leaching properties of 
lime-treated soils. 

Glendinning (1995) compiled observations of a number of researchers 
investigating the addition of lime and suggested reaction mechanisms to help explain 

changes in the physical behaviour of clays. The results of this compilation are 

summarised in Table 2.14a, 2.14b, 2.14c 
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Table 2.14a Summary of suggested reaction mechanisms (Glendinning, 1995) 

Author 

Newman (1987). 

Diamond and Kinter (1965). 

Lees eta! (1982). 

Hilt and Davidson (1960). 

Diamond and Kinter (1965). 

49 

Bell (1988). 

Observation 

Flocculation. 

Flocculation in calcium 

saturated clay. Changes in 

plasticity, shrinkage and 

swelling. Increase in strength. 

Clay + 2% lime addition gives 

sharp increase in 0. 

Limitation to the increase in 

plastic limit with addition of 

more lime. 

Limitation of lime taken out of 

solution, Ca in same proportion 

as hydroxyl ions. No overall 

charge change. Able to wash 

out. No heat given off. 
Increased adsorption. Not able 

to fully wash out. 
Non-linear relationship between 

lime % and strength gain aller 
2% addition for 

montmorillonite; 2-4% for 

kaolinite. 

Suggested Mechanism 

Cation exchange leading to 

reduction of double layer. 

Formation of small amounts of 

cementitious material at points 

of contact. 

Modification by flocculation 

and particle rearrangement. 

Lime-fixation-crowding of 

cations within clay structure. 

Physical absorption of lime -a 
single molecular layer of 
Ca(OH)2. 

Chemical reaction at contact 

points. 

The existence of an optimum 

addition of lime. 

Lees at al (1982). 

69 

I Bell (1988). 

Decrease in 0 for kaolinite 

with increases for lime addition 

over 2%. 

No decrease in strength with 
larger additions of lime to 

montmorillonite. 
Decrease in maximum dry 

density. 

Optimum lime addition/particle 

rearrangement dominant 

stabilising factor. 

Pozzolanic reactions dominant 

stabilising factor. 

Formation of cementitious 

compounds that form 

interlocking compounds. 
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Table 2.14b Summary of suggested reaction mechanisms (Glendinning, 1995) 

Author 

Brandl (1981). 

Mateos (1964). 

Eades and Grim (1966). 

Diamond and Kinter (1965). 

Harty and Thomson (1973). 

Quigley and DiNaro (1978). 

Moore and Jones (1971). 

Mateos (1964). 

9f 

Observation 

Swelling potential/pressures 

reduced. 

Formation of calcium 

aluminate hydrates/silicate 

hydrates at high pH (high 

lime content). 

Greater improvements with 
highly weathered soils. 

Greater improvements using 

high lime contents on 

weathered soil than non- 

weathered. 

Reactivity greatly reduced 

with high iron content. 

Lesser degree of 
improvement using illite and 

chlorite than 

montmorillonite. 

Higher increases in plastic 
limit with increasing clay 

Suggested Mechanism 

Formation of cementitious 

compounds that form 

interlocking compounds. 

High pH induces solubility of 

silicates and aluminates in 

the clay, hence reaction able 

to occur. 

Lime adsorption leads to 

reaction at clay surfaces, 

giving rise to precipitate 

reaction. 

Weathering increases clay 

susceptibility to dissolution 

of silica and alumina. 

Weathering increases 

smectite content that reacts 

via a different mechanism. 

Iron in the form of positively 

charged aggregations 

reducing ion-exchange 

capacity. 
Cation exchange capacity 

reduced. 

content. 
Bell (1988). Kaolinite + 2% lime, liquid 

limit rise; kaolinite +< 2% 

lime liquid limit falls. 

Clay is the reactive clay 

constituent. 

Particle surfaces modified by 

the action of hydroxyl ions. 
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Table 2.14c Summary of suggested reaction mechanisms (Glendinning, 1995) 

Author Observation Suggested Mechanism 

Bell (1988). Higher compaction densities Expandable minerals have 

obtained in kaolinite than greater affinity for water due 

montmorillonite. to shape and higher specific 

surface. 
Lees et al (1982). No clear optimum of Initial formation of 

moisture content-dry density cementitious compounds 

compaction curve- most affects compactibility- 

noticeable in montmorillonite montmorillonite most 

reactive. 
Bell (1988). Dramatic immediate increase Expansive clays react more 

in the unconfined quickly due to greater cation 

compressive strength with exchange capacity. 

small lime addition in 

montmorillonite. 
Lees et al (1988). Cohesion and unconfined Both affected by the same 

compressive strength part of the mechanism. 

correlation. 

Clearly due to differences in mineral structure, individual mineral chemistry 

will vary thus affecting the development of lime stabilised material and the final 

physical properties including the unconfined compressive strength, the liquid limit, 

the plastic limit and the cohesion and angle of friction. Glendinning (1995) 

summarises in Table 2.15 the effects of lime on some of these physical properties for 

a variety of British clay minerals. 

57 



o, 
C' 

eio 

G7 

E 

0 

'C 
C 
at 

yw 

CL 

i  

In 

ei 

. tý 
ht 

H 

z ä 

ý p Ö 
'ti wa 

ý 
9 

O O 
ý" 

% 

u c. P+ O2 

0 
e 4 1 2 

I 
C) 00 _ 

V 
i H VJ N VJ 

W 
N 

y 
m N 

Q 
v 

L 

% Vl 

.Ob y 
"d) 

.O p VOi W 

5 
T 

ffi 

ý 
aOWO t N 

Q 
U "I q 

y O ýC 

ffi d a 
i 

y yý 

Ö 
ai 8 d 'O 

8 m O w H 
" ý- ICI 

IG 
H 

>, 
DD 

'T "-" p4 b ýo . 1ý' ?7 ý y 
"a, m ý 

A ýý ý x ý O Q Q 

O 

O 

M M 
N 

d 7 N " 

W O 

y N 

V 
0ý 

r 
W O v ,y 

b 
.C 

'SS N M 

0 

y ö 19 
n 

n 
N 

00 

/ý h O N 
t ýf 

Oý 
h 

O 
vl 

1"0 'ý 
N N N 

N 

1 
a 

O 
O 

v n N 

O 8 
w .2 

to 

fJ ä 
ý 

cý 

f g 
^0 

. 3 

ä 

b 

cd 

Ei 
U 

G 

a 

äo 

cn 

0 U 

aý 
w~ 
0 

N 

U 

0 
z 

00 tn 



ON 

eö 

C7 

as 

0 

ti 

0 

"O 

y 
6, 

t 

Q 
Q 
0 

r. + 
". n 

Mi  
I+y 

.ý N 

., 

.C 
H 

Ü ö ö 

öy 2 

W 
. 
°ý. 

ä ö ö 

0 wö ° 

~ 
ý 

G! 

Ipl 

+Uý+ 
U 

i 

ýwO C 
O 
rn ýU 

OD 

. 
^ýy, 

w 
n2 

; 4ý 
CD 

h 

Cý w N 

00 
N 
N 

N 

y e" "C 
o W 

w "y 
- 

- 
yl 00 

WÖ ýY 

"ä 

Nib 

1 
CD y 

y 

0 

v 

In 
vii 

ºý Ö 

v 

O. 
M 

N 

N 
M 
N 

M 

vý 
M 
0 

- 

00 
19 
`n 

N 

vi 

O 
19 
N 

0 ca 

a a 
a. 

b ä 
Ü 

cd 

U 

. fý 
r. + 

H 

I 

a U 

y 
cd 

ä 
aý 

ä 
a 
T 
a 

cr ä 
(D 

a a 

Q 
V) 

CA W2 I (LI 

a 
0 U 

Q 
w 
0 U 

N 
. Lý 

y 

rA 

U 

aý ö 
z 

rn 
In 



2.4.3 Principles of chemical stabilisation of contaminants 
There are several different reaction processes that combine to facilitate 

chemical stabilisation of inorganic contaminants in clays and hence have a large effect 

on the lime modification and solidification reactions. The primary aim for the benefit 

of the environment is to stabilise the association of the contaminants with the clays 

such that they are not mobile and subsequently not bio-available. The initial 

association between metal contaminants and clays occurs via the previously discussed 

cation exchange reaction. This complex reaction occurs in accordance with the 

Lyotropic series that varies significantly with changing humus, mineral composition 

and pH of a soil. However, in general (as previously stated) ions having a higher 

valency state substitute for ions of a lower valency on the exchange sites of the clay 

minerals. This `natural' substitution causes temporary stability, but the metal ions 

could become disassociated by future cation exchange. In addition, the quantity of 

contaminant rendered immobile by cation exchange is finite and determined by the 

specific structure of the clay mineral present. Thus some means of both creating 
further association 'of the free metal ions and preventing disassociation needs to be 

sought. There are broadly three ways that such stability can be brought about. 
The first is to increase the pH of the environment in order to bring about 

enhanced surface adsorption at the mineral edge sites. This mechanism was 

previously discussed in Section 2.3.2 and remains successful as long as the pH 

remains high, but its effectiveness is also dependent on specific mineral structure and 

will reduce if the pH reduces. Assurance of continued high pH is likely to pose a 

problem, however, because natural groundwater tends towards acidity rather than 

alkalinity (Figure 2.12). Therefore an artificial means of maintaining a high pH needs 
to be provided. In addition a further consideration must be made since the process of 

cation exchange inherently results in the displacement of the host cations from the 

clay. For example, it is probable that following penetration of metal ions through a 

clay barrier lining a landfill site, cation exchange would occur to a significant degree. 

This would in turn result in the displaced ions such as Na' creating a plume of 

pollution leading away from the site in the direction of groundwater flow. The 

consequences of Na+ pollution might not prove as severe as those of the escaping 

metal ions, but nevertheless they could form a subsequent problem that would need to 
be addressed. Griffin & Shimp (1975) noted this behaviour whilst investigating the 

attenuation of metals from landfill leachate on kaolinite (1: 1 lattice type clay mineral), 



montmorillonite (2: 1 expanding lattice), and illite (2: 1 non-expanding lattice, mica 
type). During column leaching of landfill leachate through these clays, elution of 

soluble Ca, and to a lesser degree soluble Fe and Mn was observed. The elution of 

soluble Ca was attributed to Ca being the predominant exchangeable cation present on 

the clays. However, the elution of soluble Mn was not attributed to cation 

exchangeable metals. Griffin et al. (1976) state that Mn is three times more abundant 

on the surface of kaolinite than on montmorillonite and that this difference 

corresponds to the increased elution from kaolinite columns. Thus the potential for 

the elution from clays is not purely dependent on cation exchange but also on surface 

adsorption. However, on addition of lime to a soil system this is likely to be the main 

mechanism for the release of metals from the treated material. 
The second mechanism is similarly pH-dependent and relies upon 

precipitation of salts from solution. As well as increasing the surface adsorption of 
ions, increasing the concentration of OH" ions in solution can ultimately result in the 

formation of metal complexes and subsequently precipitation of the metal salt will 

occur. This mechanism is of significance when considered along with the lime 

solidification reaction. Griffin & Shimp (1976) considered the precipitation reactions 

of lead (Pb) from landfill leachate along with Pb adsorption on the surface of 
kaolinite. They showed that species other than Pb2+ were relatively insignificant at 

pH values less than 6. It was evident that at values above a pH of 6 adsorption of Pb 

coincided with the formation of hydroxyl Pb species. Precipitation was found to be 

an important mechanism for Pb removal and the effect is depicted in Figure 2.13. 

Precipitation of specific metal salts under conditions of high pH thus provides an 
important means of reducing the mobility of metal ions as long as the pH remains 
high. Reversal of precipitation would occur if the pH reduced to a lower level, 

although this level depends on the cation present, thus presenting the same long-term 

limitation as that of surface adsorption. 
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Figure 2.13 Distribution of Pb (II) species in 4x 10-4M Pb(N03)2 and uptake by 

0.1g kaolinite from 60m1 of solution (Griffin & Shimp 1976). 

An additional problem is the amphoteric nature of metals. This means that as 

the pH of a solution containing certain metals in solution rises from acidic pH 1 

towards alkaline, between say pH 7-11, the metal precipitates due to its reduced 

solubility. At a higher pH, possibly pH 9 to pH 12, the metal solubility increases 

(MacKay & Emery, 1993). Cr and Pb are heavy metals that have amphoteric 

hydroxides and this behaviour is illustrated in Figure 2.14. Based upon Figure 2.14 

and research undertaken by Wilk (1997) it would appear necessary that for 

precipitation to occur with optimum effect, the stabilising reagent should be added in 

such a proportion as to ensure the optimum pH. One limitation of this theory would 

be that if the pH is not high enough the solidification reactions would not be 

optimised and the pH of the material may fall rapidly due to leaching, potentially 

releasing the contaminant into solution. The theoretical solubility predicted by Figure 

2.14 of one element in solution is also not likely occur since in the case of lime 

stabilisation, the porewater is likely to be highly saturated with Ca ions thus, due to 
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equilibrium, significantly reducing the likelihood that comparatively small quantities 

of contaminant would be released into solution. 
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Figure 2.14 Theoretical solubilities of metal hydroxides as a function of pH 

(adapted from U. S. EPA, 1987 and Wilk, 1997) 

The third means of improvement consequently produces the most important 

potential change in properties, since it provides a long-term stabilising process that 

acts subsequently to adsorption and metal precipitation. This reaction process is that 

of cementation via the clay-lime reactions described above. Dissolution of alumina 

and silica and subsequent crystallisation of calcium aluminate hydrate and calcium 

silicate hydrate gels produces a very strong and stiff, yet brittle, cemented structure. 
The principle of contaminant stabilisation, or fixation and encapsulation, is that 

contaminants become physically and chemically bound into the cemented structure. 
According to this principle the cemented structure of crystallised calcium silicates and 

calcium aluminates, which essentially binds the flocculated particles (containing the 

adsorbed ions) together, also incorporate the precipitated metals (held as an 

amorphous mass in the pore spaces between the flocs). It is unclear whether the 
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cementation reactions would be inhibited by the presence of the contaminant ions or 

metal precipitate in the soil structure, and in particular whether the gel crystallisation 

process would result in a continuous cemented structure being formed. This is 

because little published research directly concerning clay-lime-contaminant processes 

are available. However direct parallels have been researched in the form of cement 

stabilisation and lime-fly ash stabilisation of contaminated sludges (as have waste 

materials including cement kiln dust, waste lime tailings and clays from the 

manufacture of brick; see Stanczyk et a1,1982). Some of this research will now be 

presented in section 2.4.4 and 2.4.5. 

2.4.4 Cement stabilisation 
Betteker et al (1986) performed extensive research into the 

stabilisation/solidification of contaminated dredged material, including the addition of 
Type 1 Portland cement and two proprietary pozzolanic additives. The technologies 

were assessed for both physical and chemical stabilisation. The cement-based and 

pozzolanic-based additives were used to convert contaminated sediment into a 

solidified mass, in the manner discussed above. A polymer was added to determine 

its effect on the leaching of selected organic compounds, clearly different to the 

chemistry of inorganic fixation processes previously discussed. Physical stabilisation 

was assessed by measuring the changes in unconfined compressive strength, while 
leaching tests were used to evaluate the chemical stabilisation. Leachates were 

analysed for PAHs, PCBs, arsenic, zinc, cadmium and lead. 

This research concluded that physical stabilisation of single contaminated 
dredged material is a viable option, but no single process formulation proved to be 

effective in providing chemical stabilisation for all contaminants as a group. Portland 

cement proved to be the most effective at treating arsenic, while more than half of the 

PCBs could not be detected in the leachate of Portland cement solidified sediment. 
Those PCBs that did leach were measured at less than one part per billion. Zinc, 

cadmium and lead were contained most effectively by the proprietary pozzolanic 

additive with no detectable concentrations of the metals in any of the leachates. The 

polymer additive was most effective at containing the PAHs, with more than half the 

PAHs being completely immobilised. Those PAHs that were not totally immobilised 

were found in concentrations four or five orders of magnitude lower in the leachates 

than in the untreated sediment. This indicates that some organic contaminants can be 
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treated by solidification processes as well as inorganic contaminants, and highlights 

the fact that every waste to be treated should be assessed independently to design the 

most appropriate stabilisation mix. Landreth (1982) carried out similar investigations, 

producing similar conclusions. 
Cement stabilisation and solidification research was also carried out by Wilk 

(1997) on Pb, Cr, Cd, As and Hg. The chemistry of contaminated mature cement 

paste reactions was investigated by means of sequential batch leaching tests with 
O. IM acetic acid as the leaching agent. The research concluded that the metal 

mobility as a function of pH was in general far less than would be predicted by the 

theoretical solubility of the corresponding metal hydroxides, particularly for lead. 

This was partially attributed to the incorporation of the metals into the cement 
hydration products, an idea reinforced by the fact that there appeared to be a 

correlation between increasing Pb leachability with increasing alumina leachability as 

well as a similar correlation between Cr and Si. Although this correlation was 
discussed for Pb and Cr none the other metals apparently had any correlation to Si and 
Al solubility. The researchers also suggested that combinations of the three metals 

were shown to be slightly better stabilised in a cement matrix than were the individual 

metals. It is a possibility that the reason there is a lower solubility in the batch tests 

than theory predicts and that this reduces further for addition of mixtures of elements 
is due to the effects of equilibrium conditions in the batch test and the effects of very 
high ionic concentrations of leachable Ca. Similar tests were carried on a dolomitic 

soil and a siliceous soil for comparison and it was determined that generally the 

metals were stabilised better in the dolomitic soil than in the siliceous soil due in part 
to pH effects. It is also possible although not mentioned in the report that organic 
humus improved attenuation, although no total organic carbon tests were reported to 
have been carried out. 

Attempts were made by Wilk (1997) to improve the various mix designs by 

adding different types of cement with a degree of success as well as adding adsorption 

agents to attenuate the apparently troublesome lead due to its amphoteric nature and 
high solubility at high pH. The report states that this was very effective in `certain' 

circumstances. The results of the various mixes are summarised in Table 2.16 
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Table 2.16 Qualitative guide for stabilisation of metals studied (Wilk, 1997) 

Metal Good Better Best 

Pb Type I cement Type I cement with silica Type V with silica fume and a 

fume little extra gypsum (ý) 

Cd Cement with silica Higher cement factor, no Still more cement for long- 

fume silica fume (1(J) term durability 

Cr Portland cement Portland cement with silica Same, but with oxidation 
fume inhibitor to avoid hexavalent 

chromium 

As Portland cement Portland cement with Same, but with higher cement 

with added FeSO4 preoxidation of As to its factor and higher Fe/As ratio 

highest oxidation state with 
H202 and added FeSO4 

Hg Portland cement Higher cement factor More cement to ensure 

strongly reduced porosity 

Addition of most of the improvement agents appears to be sensible with 

logical effects with the exception of adding no silica fume (y1) and a little extra 

gypsum (4). Firstly silica fume may be improving attenuation and solidification. 

Naturally with higher silica content and subsequent attenuation perhaps more calcium 
is required and generally more cement to retain a high pH to initiate solidification 

reactions. Figure 2.14 suggests the higher the pH and subsequently the cement 

content the higher solubility of Cd. Furthermore, there appears no reasonable reason 
for reduced performance on addition of silica fume especially as it appears to improve 

the behaviour of the metals in some of the other mixes. The addition of gypsum 
(CaSO4) is also puzzling. The author acknowledges that this is intended to produce 
increased quantities of ettringite on hydration of the cement, and that apparently this, 

under `certain' conditions, particularly at high pHs, suppressed metal leachability. 

Although the production of different hydration products is very important and 

possibly one of the reasons for improvement, the production of ettringite causes 

volume increases which may produce a material of lower density and perhaps higher 
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porosity, possibly resulting in a material more susceptible to leaching in the longer 

term. Alternatively perhaps the slower rate of crystallisation produces more 

cementitious `gels' incorporating more Pb into the final crystalline structure. The 

question arises, why is this increased concentration of gypsum more successful for Pb 

and not required for the other metals? Perhaps the answer lies in the fact that at the 
higher pH most of the other metals have precipitated and remain retained as solids 

within the monolithic mass whereas more Pb is soluble at the high pH due to its 

higher amphoteric behaviour and must take part directly in the crystallisation 

reactions. This clearly requires more detailed investigation since its implications are 

potentially highly valuable. 

2.4.5 Lime-fly ash stabilisation 
By far the most widely researched pozzolana used in stabilisation processes 

has been fly ash. Weng & Huang (1994) investigated a specific fly ash with cement 
for treating industrial wastewaters. The chemical composition of the fly ash used was 
dominated by silicates (Si02,44%) and aluminates (A12O3,31%), with smaller 

amounts of iron, calcium, magnesium, potassium and titanium oxides. The addition 

of cement created a high pH environment, thus resulting in the formation of calcium 

silicates and aluminates. As with the clay-lime reaction, this cementitious reaction 
bound the particles together producing a solidified matrix. Weng & Huang (1994) 

also stated that the high proportion of silica, alumina and iron oxide implied that the 
fly ash would be a good metal adsorbent, at least for Zn (II) and Cd (II). Although fly 

ash has a relatively low metal adsorption capacity relative to activated carbon, it can 
be obtained cheaply in large quantities and used as a neutralising agent in the 

treatment process due to its generally alkaline nature. 
Landreth (1982) evaluated the containment efficiency and physical properties 

of four different stabilisation/solidification processes when applied to common 
industrial wastes. The four treatment processes included a patented lime fly ash 
additive. The chemical success of the treatments was monitored via column tests, 

whilst durability was assessed using compression, freeze-thaw, permeability and 
Atterberg Limit tests. Landreth (1982) stated that the lime-fly ash treatment achieved 

a variable degree of success, containing electroplating sludge to a relatively high 

degree but losing contaminants to a higher degree than the control columns for the 

untreated nickel-cadmium battery and glass-etching sludges. Some of these effects 
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could be predicted. If the principal fixation mechanism is adsorption, then generally 
at high pH cations are preferentially retained whereas at low pH anions are 

preferentially retained. Hence in the case of chlorine production sludge, it is no 

surprise that Cl" and SO-4 ions are mobile at high pH. This prediction is possible 

assuming that they are not partially immobilised by retention or incorporation within 
the crystallising calcium silicates and aluminates. However in complex mixtures of 

pozzolanic material, organic and inorganic contaminants, the chemistry is not 

necessarily predictable due to complex chemical speciation and the potential for 

inhibitive effects on the crystallisation processes. 

2.4.6 Stabilisation via sorption alone 
Recent investigations as part of NATO/CCMS Pilot Studies (Smith, 1998) 

have researched the sorption and solidification of selected heavy metals and 

radionuclides onto unconventional sorbents. The goal of the pilot study was to 

develop cost-effective unconventional sorbents, preferably metallurgical waste solids. 
The removal capacities of heavy metals Cd, Pb, and Cu and radionuclides 137Cs (half 

life 30 years) and 90Sr (half life 28 years) and the sorption modelling of `red muds' 

and fly ashes, products from the Bayer process for the manufacture of alumina, were 

studied. Metal uptake (sorption) and release (desorption) were investigated by batch 

experiments. The leaching solutions adopted for batch tests were distilled water, 

saturated aqueous carbonic acid (pH 4.75), and H2CO3/NaHCO3 buffer solutions (pH 

7.0) to simulate carbonated groundwater conditions. Red muds and especially fly 

ashes were shown to exhibit a high capacity for adsorption of heavy metals. The 

sorption sequence in accordance with the order of insolubility of the corresponding 

metal hydroxides was Cu>Pb>Cd. A statement was then made that the metals were 
held irreversibly and would not leach out into carbonic acid or bicarbonate-buffered 

solutions. This is a bold statement since although the metals may not be exchanged 
by hydrogen ions from a weak acid this does not mean that there would not be 

preferential sorption of another ion should it come into contact with the system. The 

report further states that bauxite wastes of alumina manufacture (red muds) are 

capable of removing the radionuclides 137Cs and 90Sr from water, but heat treatment is 

detrimental to the surface hydroxyl sites that are important for ion-exchange sorption 

of 90Sr. It is argued that Caesium uptake is predominantly irreversible and dependent 

on the specific surface area of the sorbent. A rise in pH favours the exchange sorption 
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of Sr on the hydroxyl sites as would be expected by a metal on a pH sensitive 
hydroxyl site. The report, however, does not state how the predominantly irreversible 

nature of these sorption processes are measured. 
Solidification of the red muds and fly ash was carried out by adding to them a 

mixture of cement, standard sand, and water. When metal-loaded solid waste was 

added (up to 20% by mass) to Portland cement-based formulations, the fixed metals 

did not leach out from the solidified blocks over extended periods with the exception 

of Cue+, which reached a concentration of 0.4mg/kg after 8 months in water of pH 8- 

9. In solid-waste concentrations below 20%, the compressive strengths and shear 

strengths of the doped concrete did not significantly differ from the control concrete 

suggesting that the presence of ions and precipitates did not interfere with the 

solidification reactions. However, it was highlighted that there is a critical weight 

percentage of 10-20% additives above which the strength declines dramatically. 

2.4.7 Organophilic clay-reagent stabilisation and solidification processes 

Recent investigations as part of other NATO/CCMS Pilot Studies (Smith, 

1998) have also researched the sorption and solidification of selected organic 

chemicals. Conventional stabilisation and solidification methods based on purely 

cementitious and pozzolanic products have had limited success at treating soils 

contaminated with organic compounds. The `Envirotreat' project involved 

developing a range of modified organophilic clays. Commercially available 

organophilic clays are typically made by the substitution of quaternary ammonium 

salts (NH4) into smectite clay minerals (e. g. montmorillonite). The primary objective 

of the project was to modify the clays by substitution of the cations between clay 
layers to improve stabilisation of organic contaminants by: 

" increasing the size of the interlamellar spacing within the clays to accommodate 
large molecules, such as PCBs and PAHs; to increase the effective surface area; 

and to increase the reactivity by introducing selected pillaring agents, 

" optimising the polarity of the interlamellar environment to increase the absorption 

and adsorption of organic contaminants, 
" providing a reactive environment on interlamellar clay surfaces to chemically bind 

contaminants permanently, and 
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" providing an active medium for effective treatment of heavy metals and other 
inorganics by cation exchange processes or interaction with pillaring molecules 

which can then be immobilised within the cementitious matrix following alkaline 

precipitation. 

Laboratory trials developed a range of specific clays for treating specific non- 

polar organic contaminants. According to Smith, (1998) reporting on an `Envirotreat' 

publication, the clay formulation used was A13+ pillared and Fe3+ exchanged and then 

treated with benzyl quaternary ammonium salt. Due to commercial interests and 

prevent synthesis of the material this description is deliberately vague. However, the 

modified clay was produced as a suspension with a modified clay concentration of 

20g/l. Prior to field trials the proportions of cement, fly ash and clay for the grout and 

the optimum grout : soil ratio was determined. 

Field trials were carried out on a site occupied since the turn of the century by 

a variety of industrial operations, including a chemical waste `quarantine store', 

chemistry laboratory, flammables store, battery bank, engine testing areas, 

underground storage tanks, and nucleonic laboratory. Site characterisation was very 
limited with specific PAH concentrations at 12mg/kg well below the current (1998) 

U. K. threshold value for residential development (50mg/kg for 16 U. S. EPA PAHs) 

and the 1000mg/kg for commercial developments. Maximum copper, lead, and zinc 

concentrations were 635,3330 and 785mg/kg respectively. Likely other unconfirmed 

contaminants included flammable materials, solvents, concentrated sulphuric acid, 

oils, gasoline, and radioactive species. Grout was added to the 6m2 soil system to a 
depth of 2.5m using an auger producing 900mm diameter overlapping columns of soil 

mixed with reactive agents. Volume increase was reported as about 6.5%. 

The effectiveness of the treatments were assessed based on : 

9 unconfined compressive strength (ASTM method), 

" leachability using an aggressive acid leaching medium (U. S. EPA Toxicity 

Characteristic Leaching Procedure, TCLP), and 

" Durability via freeze/thaw, wet/dry and permeability tests. 
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The results of testing cores taken at 44 and 57 days were judged `satisfactory'. 

Unconfined compressive strength values exceeded the target value of 35OkPa, which 

was particularly true for the mixes containing quicklime. The PAH concentrations in 

the leachates were all below 2ggIL. The desired target for the heavy metal 

concentrations were 50 times the U. K. drinking water values, however, the results for 

chromium, copper, lead and zinc were described only as satisfactory with no specific 

values reported. All samples failed the ASTM freeze-thaw test and only one sample 

satisfied the permeability criterion of less than 1x 10"9m/s, whilst this one exception 

was probably due to the presence of natural bentonite according to the report author. 
A more positive note was the fact that permeability values decreased with time as 

expected due to the continuing cement hydration processes. 

Smith (1998) states that the largest weakness in the study was the fact that there 

were no control mixes not containing the modified clay. Thus, the possibility that a 

similar `satisfactory' performance could have been achieved in the absence of the clay 

cannot be ruled out. The detailed leaching results for metals are not given in the 

reports, but it should be noted that the criteria applied 50 times the U. K. drinking 

water limits seems quite generous. Smith (1998) also states a calculation shows that 

the PAHs in the treated soil would be reduced to about 8.5mg/kg compared to 

12mg/kg in the soil due to dilution by the other ingredients. The concentration of 

modified clay is about 500mg/kg. Given the low solubility of the PAHs, and the 

probable inefficient mixing, it seems unlikely the clay could have a profound effect on 
binding the PAHs. 

Organophilic clay adsorption prior to stabilisation such as that demonstrated by 

the `Envirotreat Process' clearly has potential but needs to be employed in better 

designed studies that are more likely to reveal the claimed benefits of the active 
ingredient. 

2.4.8 The origin of hydrogen ions (acids) in soil 
There are a large variety of potential sources of acids that can affect soil 

chemistry and stabilised soils in particular, some natural and some industrial. By 

natural processes, ammonium ions are produced in soils during the decomposition of 

plant residues and humus by micro-organisms (Hutchinson, 1980) as well as being 

added in large quantities as fertilisers. Some bacteria can oxidise ammonium ions to 
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form H+ and N03". A variety of organic acids are also produced via direct release 
from organic residues (Dragun, 1988). The addition of monocalcium phosphate 
fertiliser to agricultural soil also increases the acidity of a soil, since, the fertiliser 

reacts with water to produce dicalcium phosphate and phosphoric acid (Adams, 

1984): 

Cä(H2PO4)2 = CaHPO4 + H3P04 

Micro-organisms can break down plant residue and soil organic matter using 

reduced sulphur (S) or sulphate (SO42-) from the soil system. These sources of 

sulphur are then oxidised by bacteria aerobically which is inevitably accompanied by 

the release of two H' ions (acid) for every oxidised S atom: 

H2S + 2O2 = 2H+ + SO42, 

S+1.502 + H2O = 2H+ + S04 2- 

Dragun (1988) suggests that if plant uptake of SO42" is occurring with plant 

release of OH', then no change in soil acidity will occur. However, if the release of 

OH" is slow then SO42 may accumulate resulting in increased acidity because the 

plants are not releasing OH" to neutralise the generated W. CO2 in soil water also 

affects acidity. When dissolved in water CO2 reacts to form the weak acid H2C03. 

Pure water in equilibrium with atmospheric CO2 (0.03%) has a pH of around 5.6, 

mildly acidic. However, the activity of micro-organisms and subsequent aerobic 

biodegradation of soil organic material results in the production of CO2 which in 

topsoils could result in soil air concentrations of CO2 exceeding 1% with a pH of 

perhaps 4.9. This is illustrated in Figure 2.15 
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Figure 2.15 Relationships between soil chemoheterotrophs (decomposers) and 

Solar radiation 

photosynthesis 

photoautotrophs (plants) in the soil-plant ecosystem (adapted from 

Ross, 1989) 

It is also known that the oxidation of pyrite (FeS2) in mine spoils, drained 

tideland soils, estuarine muds affects soil pH. Oxidation of pyrite forms sulphuric 

acid: 

2FeS2 + 7H20 + 7.502 4HZSO4 + 2Fe(OH)3 

Mine spoils contain large amounts of pyrite and consequently pH values can 
be as low as 2. 

A well publicised source of acidity to soil is from acid rain, snow, hail etc. 
Nitric oxide, sulphur dioxide and nitrogen dioxide are all responsible for formation of 

acidic compounds in rain water and can have a pH as low as 4 

Frink et al (1977) states that in the North-eastern U. S. where acid deposition is 

high, agricultural practice usually necessitates the addition of a few thousand pounds 

of limestone per acre to neutralise acidity generated by a combination of natural 

processes and fertiliser amendments. 
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Acidity neutralisation has an important role in the remediation of many sites 
including the Gulf Coast Lead (GCL) site in Tampa, Florida (Furman et al, 1985). 

Works at this facility involved the recovery of Pb from acid batteries. Soil and 

groundwater contamination resulted from the percolation of acid metal contaminated 

wash waters from an unlined surface pond. A subsurface acid reaction barrier, 

consisting of a deep trench filled with crushed limestone and oyster shells was laid to 

intercept and neutralise acid groundwater that migrated off the site. 

Ravenfield Tip site in South Yorkshire, England also incorporated acidity 

neutralisation as part of a remediation strategy (Khan et al, 1980). This site regarded 

as the United Kingdoms `Love Canal', was comprised of a group of sandstone 

quarries which were utilised for the disposal of acid tars, contaminated earth, slags, 

chromium waste, fluoride waste, nickel waste, phenolic waste and other chemicals. 

Waste was excavated then mixed with quicklime at ratio ranging from 1: 4 to 1: 10 

depending on the degree of acidity, deposited, covered with 15cm to 23cm of 

limestone chips and subsequently covered with subsoil and soil. 

Controlling acidity is an important aspect of lime based stabilisation and 

solidification technologies. 

2.5 METHODS' OF REAGENT APPLICATION 

2.5.1 Ex-situ methods of application 
The practical applicability of a treatment is frequently dependent on site 

conditions, plant access conditions and the final placement method adopted for the 

treated waste. Hence, with regard to stabilisation and solidification methods in-situ 

and ex-situ application can be considered. 
Ex-situ stabilisation and solidification methods are generally applied in three 

ways: plant processing methods, direct mixing methods and drum processing 

methods. 

2.5.1.1 Plant processing methods 
Plant processing methods involve excavation with subsequent addition of 

reactive agents via a plant specifically designed for the process or adapted from 

concrete batching and mixing plants. Boardman & MacLean (1996) describe such a 

method currently used in the U. K. whilst Stanczyk et al (1982) illustrate how 
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solidification and stabilisation processes can be appropriate for rapid treatment of 

hazardous chemicals and in particular waste spills. Figure 2.16 illustrates a specially 

designed plant being used in the U. K. to add lime to sewage sludge cakes whilst 

Figure 2.17 depicts an adapted version of this plant being used to treat dredged 

contaminated canal sediment with lime. Stabilisation/solidification of contaminated 

dredged material is discussed in some detail by Betteker et al (1986). 

Input of material 
to be treated 

passing through a 
sizing screen prior 

to mixing 

Figure 2.16 Mobile lime treatment mixing plant in the U. K. 
(after Boardman & Maclean, 1996) 

2.5.1.2 Direct mixing methods 

Direct mixing methods require excavation of the contaminated material, 

transportation to a designated area of the site, placement of the material in layers and 

subsequent mixing of reactive agents using mechanical plant. This method is 

particularly useful for treating waste in lagoons. 
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Figure 2.17 Mobile lime treatment of contaminated canal sediment in the U. K. 

2.5.1.3 Drum processing methods 

Drum processing methods involve the placement of the contaminated material 

in drums where it is mixed with the reactive agent and allowed to set. The material 

and the drum are subsequently co-disposed. 

Relative to the other methods plant processing has considerable advantages 
because it ensures adequate mixing of contaminated material and reactive agent. 
There are three key steps utilised during plant processing: 

" pre-treatment to homogenise, grade or dewater the material as well as perhaps a 

soil washing process to concentrate contaminants, 

" mixing the wastes with reactive ingredients to create a pumpable slurry or a 

material compatible with standard earth moving machinery, and 

" placement and curing. 
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Curing of pumpable material has the potential disadvantage that a mould or 
lagoon is required. It also ensures contact with water where compaction of solid 

material may not. When material is placed in lagoons in this fashion cold joints can 

occur which are areas of weakness where water can access with the potential for 

mobilisation of contaminants. Apart from traditional disposal routes for treated 

materials, there are reported cases such as, Emery (1980) and MacKay et al (1993), 

where treated material has been used successfully as a construction base. 

2.5.2 In-situ methods of application 
2.5.2.1 Surface clay-reagent mixing 

The usual procedure for surface clay-lime mixing and other cementitious 

reagents involves spreading the reagent onto the surface and mixing to a depth of 200- 

400mm using a purpose-built rotavator or standard excavation equipment. This 

approach is often used to stabilise road foundations and is illustrated by Smith (1996). 

Application of stabilisation and solidification to waste stored in lagoons is also 

typically performed using conventional construction equipment, such as backhoe 

excavators and draglines. Effective mixing is very difficult to achieve. The primary 

purpose of these operations is usually to improve the physical characteristics of the 

material (U. S. EPA, 1990-A). Slurry spreading onto the surface of a material to be 

treated is less successful due to its propensity to flow, and thus achieves a non- 

uniform distribution. With respect to lime treatment it was traditional practice to 

allow the clay-lime mix to stand for a period of typically 24 h, either in a stockpile or 
for single layer treatment in situ, in order that complete lime distribution could occur. 
This process, known as mellowing, was considered vital for full modification of the 

clay minerals. Current thinking, however, suggests that immediate water content 

adjustment (where necessary) and compaction is more beneficial in achieving a long- 

term strength gain (Holt & Freer-Hewish, 1996). Glendinning et al (1998) also 

suggested that the compaction of the clay-lime mix is important to achieve the 
intimacy of contact of the modified clay particles necessary for the full benefits of the 

reaction to be achieved. In addition a minimum air void content should be aimed for 

since this will again aid the reaction process. For these reasons the water content 
should be slightly higher than the optimum water content determined for the clay-lime 
mix and an appropriate level of compaction should be applied to achieve a dry density 

close to the maximum achievable. Figure 2.18 highlights the water content - dry 
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density relationships for eight soils (Table 2.17) compacted according to the standard 
Proctor method. 

Table 2.17 Key to soil properties for Figure 2.18 

No. Description Sand Silt Clay Liquid Limit Plasticity Index 

1 Well-graded loamy sand 88 10 2 16 

2 Well-graded sandy loam 72 15 13 16 --- 
3 Med-graded sandy loam 73 9 18 22 4 

4 Lean sandy silty clay 32 33 35 28 9 

5 Lean silty clay 5 64 31 36 15 

6 Loessial silt 5 85 10 26 2 

7 Heavy clay 6 22 72 67 40 

8 Poorly graded sand 94 -6-- - --- 
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Figure 2.18 Water content-dry density relationships for eight soils compacted 

according to the standard Proctor method 

(after Johnson and Sallberg, 1960) 

Glendinning et al (1998) state that immediate compaction would undoubtedly 
be beneficial for contaminated soil treatment, as long as thorough mixing is possible, 

since the pozzolanic reaction bonds that form at an early stage would assist with 

contaminant retention and minimise the flow of water through the stabilised material. 
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25.22 Deep clay-reagent miring 
An alternative treatment in situ for deep deposits is to form reagent columns, 

which are cylindrical columns of stabilising reagent mixed with clay typically 0.5- 

1. Om in diameter. The technique for lime columns was developed in Sweden (Broms 

& Boman, 1976) for stiffening and strengthening soft, wet clayey soils. A lime 

content of typically 10% is used, the lime being incorporated through the stem of an 

auger that is first driven into the ground to an appropriate depth. The rotation of the 

auger is reversed as the lime is fed into the soil, causing mixing and a degree of 

compaction. Such a technique could provide a suitable containment measure if 

continuous lime columns were constructed around the edge of a contaminated mass, 

such as a dredge tip. Care would be needed in design to ensure intimate mixing, as 

high a compacted density and thus as low a permeability as possible in the constructed 

columns. Indeed the technique could be used to create an underlying clay-reagent 

blanket in situ by constructing a series of continuous piles over the whole site, but 

only feeding reagent into perhaps the lowermost one metre of the internal columns. 

Construction of a surface clay-reagent layer would complete the barrier, although 

such a layer would need to be designed to cope with significant settlements. This 

technique was used extensively by the company Bachy Environmental on behalf of 

ICI Explosives in the winter and spring of 1994-1995. The technique is illustrated in 

Figure 2.19. The site was situated on a peninsula on the Southwest coast of Scotland 

30 miles south west of Glasgow, England. The site was formally a landfill and was 

the repository for most of the waste from the chemical manufacturing operations on 

the site for 40 years. Records of the site combined with a site investigation confirmed 

that areas of the landfill contained waste of a low pH including, high ammonium and 

a host of heavy metals to a depth of 5 meters. The site was remediated due to the 

migration of contaminant in the groundwater towards environmentally sensitive areas. 
Much of the contamination from the manufacture of silicone was described as "friable 

to crystalline or slightly `rubbery' grey/white silicone gel with dilute hydrochloric 

acid". Laboratory trials were performed using the `Colmix process' which was a 

slurry mixture incorporating cement, PFA and lime. After small-scale field trials 

samples of treated waste were sampled by redrilling and by casting samples in the 
laboratory. These samples were subjected to permeability tests, acid neutralisation 
capacity tests, strength tests and leachability tests. The results highlighted the 

acceptably high pH nature of the final product which would reduce the solubility of 
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metals whilst also producing a material with a permeability less than 1x10-7 m/s and 

strength of greater than 100kPa and 200kPa after 7 and 28 days respectively. Based 

on this information the full-scale works were undertaken. In total using a specially 
designed auger to inject the slurry and compact the material 2,407 columns with a 

cross sectional area of 0.765m2 were produced to a depth of 5m. Assessment of the 

in-situ strength created by the works was performed by in-situ dynamic penetration 

tests and confirmation of the success of the treatment was to be assessed by 

resampling the site 12months after treatment. It is evident from Bachy (1995) that 

although the initial site investigation was very thorough the monitoring of the 

development of the treated site was not. One clear argument is that there are not any 

recommended tests specifically for stabilisation and solidification processes, so what 

should be measured is difficult to assess? Clearly the investigators did assess the 

main controlling factors of pH, permeability and strength, however, although adding 

to expense more frequent monitoring of these variables in situ would have been 

appropriate. It is difficult to criticise the process because the precise details of the site 

and all the works performed were not available at this time. However, it is clear that 

the development of sites such as this are essential to develop understanding and allow 

further implementation of the technology in other environments. 

International Waste Technologies and Geo Con, Inc. have developed a similar 
in-ground mixing method in the U. S.. The process was evaluated under the U. S. EPA 

Superfund Innovative Technology Evaluation (SITE) Program in 1988 (U. S. EPA, 

1990-B). Other in-situ stabilisation/solidification processes are under development 

and scheduled for demonstration under the SITE program (U. S. EPA, 1992-A, 

U. S. EPA, 1992-B). An established ground improvement (solidification) technique 
incorporating jet grouting also has potential for application. Barry (1982) examined 
this concept in a report for the U. K. Department of the Environment where two 

significant disadvantages were identified: 

Even permeation of the treatment agent into the ground was difficult to ensure, 
and 

" Due to the need for sufficient overburden pressure to withstand the injection 

pressures required, treatment depth was limited to in excess of 2m. However, it 

was highlighted that temporary surcharging may overcome this limitation. 

80 



I; n 

"L 

Figure 2.19 Deep clay-reagent mixing (From Bachy Environmental 

advertisement video of ICI Explosives site remediation project, 

1995) 

A variation of this technique Soilcrete® Jet Grouting is described by Smith 

(1998). During this process, soil is loosened by the high pressure action of water, 

often sheafed in a cone of air (jet-cutting). The loosened soil is partially removed to 

the surface via air-lift pressure as the remaining soil is simultaneously mixed with 

cementitious or cement/bentonite grout. Columns can be made to overlap, thus 

treating all of the soil. The columns have diameters of 0.5-1.8m, depending on soil 

type. Compressive strengths of up to IOMPa can be achieved in granular soils and 

5MPa can be achieved in cohesive soils. It is suggested that some binding of 

inorganic contaminants can be expected and that permeabilities in the range of Ix 10-6 

to 1x 10"9m/s can be achieved. A variation of the jet-cutting process, in which the soil 

is displaced by clean material introduced at the base of the hole, has been applied to 

permit ex situ treatment of the displaced soil. 
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2.6 SITE APPLICATION OF TECHNOLOGIES / RECENT CASE 
STUDIES 

Recent large scale case studies by NATO and reported by Hinsenveld (1993) 

highlight the difficulties in reviewing the limited number of applied stabilisation and 

solidification technologies in the field. Even on the scale of a NATO pilot study, 

results lacked the detailed information required to critically compare one method to 

another. This was not helped by the fact that many manufacturers of propriety mixes 
keep details of their additives out of the public domain for reasons of commercial 

confidentiality. The cases within the NATO/CCMS Pilot Study all applied cement, 

pozzolanic material or lime stabilisation and solidification agents. The sites available 

to the researchers were large with metal and organic contamination providing the 
ideal opportunity to test the viability of stabilisation and solidification technologies. 

Table 2.18 summarises the site-specific details for each of the three processes 

reviewed. The studies reviewed were : 

" EIF Ecology, France. In-situ surface lime stabilisation of a site contaminated with 

a variety of hydrocarbons and heavy metals. 
" TREDI, France, using the Prefix process (specific reagent unknown) to stabilise a 

former industrial disposal site contaminated mainly with chromium, sulphates and 

sulphides. 

" Hazcon, presently IM-Tech, United States, applying ex-situ treatment with 
Portland cement to a site containing large amounts of organic components. It is a 

propriety process using a patented non-toxic chemical called Chloranan 

(U. S. EPA, 1989-B). Chloranan is claimed to neutralise the inhibiting effects that 

organic contaminants have on the hydration of cement-based materials. 
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Table 2.18 Site details of the NATO/CCMS case studies 
(adapted from Hinsenveld, 1993) 

Processhechnique 

Manufacturer 

Lime stabilisation 
EIF-Ecology 

Petrifrx 

TREDI 

Portland cement 
Ilazcon (presently IM-Tech) 

Country France France United States 

City Site A. Marais do Ponteau-Lavers Site C: Neslo-Somme Douglassville, PA 

(near Manville) Site D: Bellay-Aln 

Site B: Bourron Marione 

Area(m) Site B: 4,200 Total of five areas in the site: 200,000 

Depth (m) Site B: 6-7 Site C: 5 Unknown 

Site D: 2.3 

Amount of soil to be Site A. 22,000m5 Site C: 6,804 tonnes 200,000mß 

treated Site B: 22,680 tonnes Site D: 8,165 tonnes 

Source Site A: Industrial residues of the Site C: Industrial residues Oil recycling facility, with wastewater 

Levere petrochemical plant (sludges Site D: Sludges from tannery sludge, recycled oil and filtercake 

and sediments) plant wastewater treatment 

Site B: Industrial residues from an 

old refinery (mainly acid tars and 
filtration residues) 

Type of soil Site A: Not known Site C: Black-coloured sludges Five different wastes: Site A. Oily 

Site B: Top layer-light viscous and silty material sludge from wastewater treatment 

material; middle layer-aqueous Site D: Not known Site B: Oily Sltercake 

liquid; bottom layer-sticky material Site C: Oil and oily water 

(composition unknown) Site D: Sludge (landfarming area) 

Site E: Plant processing areas 

Type and Site A. Not known Site C: Concentrations in Lead 3,000-22,000mg/kg (0.3-22%); 

concentrations of Site B: Not known leschate: COD up to 450 mg/l; oil and grease 10,000-250000mg/kg (I- 

contaminants iron up to 47mg/1; ammonia up to 25%); VOCs 0-150mg/kg; semivolatile 

80mg/l; traces of copper and zinc organics 12-530mg/kg; PCBs 1.2- 

(concentrations in material itself 34mg/kg; pH 2.6-7.0 

unknown) 
Site D: Chromium 8,700mg/kg; 

sulphide 475mg/kg; sulphates 

500mg/kg; nitrogen 

350,000mg/kg (35%) 

Main lesson learned Absence of data concerning the original waste characteristics and Leachato characteristics of treated 

concentrations makes evaluation and technology transfer impossible. material alone are not sufficient for a 

good evaluation; leacbate quality from 

both treated and untreated waste was 
identical. The raw material feed system 

and the blender may be critical in the 

process 
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2.6.1 Evaluation of operations 
Site A, Marias De Ponteau-Lavera 50km west of Marseille is an old salt marsh 

by the coast in which was dumped residues from the lava petro-chemical plant for 15 

years between 1955 and 1974. The activities on this site were described by the 
Agence Nationale pour la Recuperation et 1'Elimination des Dechets (ANRED), 

(1988). An initial assessment of the of the quantities and nature of the waste to be 

treated on the site led to trials of the following disposal possibilities: 

" Incineration in an industrial waste incinerator, 

" Recycling as feed stock in a cement factory, 

" Incineration in a thermal power plant, and 

" Recycling in an oil refinery. 

These approaches were deemed unsuccessful due to the heterogeneity of the 

material. Consequently a stabilisation and solidification operation was carried out in 

1978. A patented solidification process was adopted based mainly on the use of lime 

as the reactive agent. The method of agent addition was not specified, however, from 

the date of treatment it was likely that there would be no specialised mixing 

equipment. Treated samples were taken via the excavation of a number of trenches 

and samples removed from 3 horizons described as the surface treated zone, mid- 

treated zone and below treated zone. The report was not clear about the depth or year 
of excavation, however, a backhoe excavator was required and the report implies that 

excavation was immediately after treatment. No characterisation of the levels of 

contaminants prior to treatment was reported. 
Site B, Bourron Marlotte was an ancient sandpit on the edge of the forest of 

Fountainebleau near Paris that had been used as a dumping site until 1971 by an old 
refinery. The site was remediated in 1985 using the EFI Ecologie stabilisation 
process. No information was provided about the method of addition of the 

stabilisation reagent or indeed the year when samples were recovered for testing. 
Treated samples were recovered in the same manner as site A. A significant 
observation during excavation was the sandy soil under the treated zone appeared to 
be still contaminated with untreated tar. Limited characterisation of the levels of 
contaminants prior to treatment is reported in Table 2.19. Although not mentioned in 
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the report (ANRED, 1988), the levels of sulphates and chemical oxygen demand 

(COD) shown in Table 2.19 could suggest that the site was undergoing natural 

attenuation via anaerobic digestion of the organic pollution by bacteria. The site may 

not have required stabilisation if the dispersion of contamination was at a similar rate 

to degradation. 

Table 2.19 INSA test results of untreated material from Site B-Bourron 

Marlotte (ANRED, 1988) 

Measurement Upper layer Middle layer Bottom layer 

pH 3.5 2.05 2.10 

Resistivity (units unino n) 7,900 232 232 

COD (mg/kg) 4,800 1,960 52,000 

Sulphates (mg/kg) 260 1,829 41,220 

Hydrocarbons (mg/kg) 15 20 < 0.1 

Site C, Nesle-Somme near Paris was an industrial waste dump in silty material 

overlying a chalky aquifer which was subsequently contaminated with nitrogen 

compounds and metals. The site was discovered during the first national inventory of 

hazardous dumps carried out in 1978. The waste consisted mainly of black coloured 

sludges and silty material. Analysis of leachates indicated COD up to 450mg/1, iron 

up to 47mg/l, ammonia up to 80mg/1 and traces of copper and zinc. In 1980 the site 

was stabilised by TREDI using the Petrifix prior to site development in 1985. Again 

details of the year of sampling were not given. For testing and evaluation purposes, 

two samples were removed from 0-1.5m (humus soil) and a third at about 4m where 
the treated material was black and crumbly with a strong smell of organics and 
ammonia. 

Site D, Bellay-Ain near Lyon was a number of wastewater disposal lagoons 
for a tanning factory. Once these lagoons reached capacity in 1980 the local authority 
insisted the sludge was pre-treated prior to disposal since it contained 8,700mg/kg 

(8.7%) chromium, 475mg/kg sulphides, 500mg/kg sulphates and 0.35% nitrogen. 
Treatment took place in 1982 again by TREDI using the Petrifix process. The treated 

sludge was disposed at a low swampy area with lush vegetation. Excavation of the 
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swampy site revealed a humus soil layer 0.80m deep followed by approximately 
1.20m of treated material under which some material appeared untreated to a depth of 

approximately 2.5m where original soil was found. Suprisingly two samples were 
taken from the upper layer with only one taken from the treated material with no other 

samples taken from the apparently untreated layer. 

Treated material from the four sites was subjected to limited physical and 

chemical analysis. A single set of physical tests to determine permeability and 

unconfined compressive strength were carried out on the material at the mid depth of 

excavation. The results of these physical tests are summarised in Table 2.20 

Table 2.20 Physical characteristics of treated material from the French sites 

(adapted from ANRED, 1988) 

Sample Permeability (m/s) Unconfined compressive 
(Middle layer of excavation) strength (kg/cm2) 

Site A 7.9 x 10 4.7 

Site B 1.2 x 10"5 3.8 

Site C 3.4 x 10-8 1.1 

Site D --- 1.0 

Chemical testing was based around two French leaching tests. One test called 

the INSA test was designed for testing waste material to assess the appropriateness for 

disposal of the waste in special industrial waste landfills. The main features of the 

INSA test are: 

" extraction liquid - demineralised water saturated with CO2 and air (pH 5), 

" tested material crushed into particle sizes < 4mm, 

" 100g of material mixed with 1 litre of extraction fluid, 

" waste material and extraction fluid agitated for 16 hours then analysed, and 

"a second extraction on the same material was carried out. 

The second leaching test called the oedometric pressure-leaching test was 
based on the use of a pressure permeater. This test developed by the French is 
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described by ANRED (1988) and apparently takes into account the specific 

characteristics of solidification techniques. Figure 2.20 shows a cross section of the 

apparatus. 

Leaching Fluid 
Filler joint OUT 

Confinir 

Contact 

Leachini 
Ir 

Figure 2.20 Oedometric pressure leaching apparatus 

(adapted from ANRED, 1988) 

Bolts 

Upper 
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The test initially evaluates the permeability if the treated material and is then 

operated as a leaching cell. The pressure of the inputted leaching fluid is adjusted in 

order to achieve a discharge of 0.01 cm3/s (36cm3/hour). Successive extractions are 

made and it is possible to add separately the extracted quantities of every contaminant 

and to represent their variation as a function of the quantity of liquid discharged 

through the sample. According to ANRED (1988) this function is hyperbolic and its 

interpretation allows the evaluation of the total quantity of the considered contaminant 

that can be extracted if the volume of extraction liquid or the time of extraction was 

infinite. The resulting figure is considered as the maximum extractable quantity of 

the considered contaminant (mg/kg), hence a long-term scenario. 

A significant evaluation of the efficiency of the stabilisation and solidification 

treatment at these old sites remains difficult, mainly due to the lack of knowledge of 

the initial physical and chemical characteristics of the untreated material as well as the 

quantities of reagent added to stabilise the material. The important factor that can be 

interpreted from the data in the tables is that the metal concentrations appear low. 

Although it is not possible to relate this data to the untreated material, low metal 
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concentrations would be expected at high pH. It is also clear that levels of sulphates 
and ammonium ions are high. This would also be expected since at moderate to high 

pH it would not be expected that negative sulphate ions would be stabilised. This is 

highlighted by the comparison of the one set of pre-treatment data in Table 2.19 for 

site B, including, pH, chemical oxygen demand (COD) and hydrocarbon content (HC) 

with the post-treatment data for site B in Table 2.21. Similarly ammonium ions 

would not take place in precipitation reactions, perhaps only in cation exchange 

reactions and surface adsorption reactions, suggesting why these ions remain in high 

concentrations. Although no data regarding the pH immediately after treatment 

exists, the most disturbing data from a stabilisation perspective is the relatively low 

pH of all Petrifix samples. Encouragingly the lime stabilised sites A and B retain high 

pH, although surprisingly the leachability of lead highlighted in Table 2.21 for these 

sites is quite high. Table 2.20 highlighting the physical characteristics clearly show 

the lime-treated sites A and B with higher strengths, whilst permeability is clearly 

variable. 

Comparison of the INSA test leachable fractions of chemicals from Tables 

2.21 and 2.22 with those of the Oedometric permeameter in Table 2.23 show 

surprisingly similar results. This is significant due to the clear difference in the 

testing method. 

Perhaps the most important point to be taken from these pilot studies is the 

need for a thorough scientific approach to investigation and reporting data. Only by 

this approach will it be possible to improve knowledge in the large scale application 

of the stabilisation and solidification technology. 
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2.6.2 The HAZCON process 
The major objective of the HAZCON solidification SITE programme 

demonstration test discussed by U. S. EPA (1989-B) was to develop reliable 

performance and cost information. The summary of projects in Table 2.18 indicates 

the area for the test was a former oil reprocessing plant in Douglassville, PA, 

containing a wide range of organic and heavy metal contaminants. Six sites were 

treated and are referred to as the Lagoon North (LAN), Lagoon South (LAS), Filter 

Cake Storage Area (FSA), Drum Storage Area (DSA), Plant Facility Area (PFA), and 
Landfarm Area (LFA). The contaminated soil was excavated and screened to remove 

aggregate and debris greater than 3 inches in diameter. The material was then fed to 

the Hazcon Mobile Field Blending Unit (MFU) along with cement and Chloranan. 

Cement was used on an approximately 1: 1 ratio with soil, whilst the soil-Chloranan 

ratio was 10: 1. The MFU utilised a mixing screw to blend the four feed components. 
Trial tests were performed where treated material was placed in 0.7645m3 moulds and 

allowed to cure. Whilst curing took place the excavation holes were lined with 
impervious plastic liners and partially filled with clean soil. After 48-96 hours curing, 

the solidified blocks were placed in the lined excavations and covered with clean soil. 
The blocks were sampled at 28 days along with the surrounding clean soil. Samples 

were removed in three phases: before treatment, as a slurry exiting the MFU for 

analysis after 7 days of curing, and then the buried blocks after 28 days curing. 
Physical tests performed were: 

" bulk density (results summarised in Table 2.24), 

" moisture content, 

" permeability (results summarised in Table 2.24), 

" unconfined compressive strength of the solidified cores (results summarised in 

Table 2.24), and 

" weathering tests - freezelthaw and wet/dry. 

Chemical tests as well as the following leaching tests were performed to 
identify metal and organic constituents: 
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" Toxicity Characteristic Leaching Procedure (TCLP) - Standard leaching 

procedure used for measuring leachability of contaminants (results in Table 2.25), 

" ANS 16.1-simulates leaching from the intact solidified core in relatively stagnant 

groundwater regimes, and 

" MCC-1P-simulates leaching from the intact solidified core in relatively stagnant 

groundwater regimes. 
The latter two tests are used by the nuclear industry to model leaching 

behaviour. In an attempt to predict the long-term integrity of the stabilised and 

solidified mass X-ray diffraction was carried out to try to identify crystalline structure 
in the solid. Scanning electron microscopy was also used to attempt to characterise 

porosity and hydration products by viewing the presence of fractures and unreacted 

soil/waste material. Some of the important physical and chemical results are 

summarised in Tables 2.24 and 2.25. 

Table 2.24 Physical properties of the HAZCON material during the SITE 

programme (U. S. EPA, 1989-B) 

Location Untreated Soil 28-Day Cores 

Bulk Density Permeability Bulk Density Permeability Unconfined compressive 
(g/ml) (cm/s) (g/ml) (cm/s) strength (kPa) 

DSA 1.23 0.57 1.95 1.8 x 10 7674 

LAN 1.40 1.8 x 10-3 1.61 4.0 x 10"9 3 606 

FSA 1.60 Impermeable 1.51 8.4 x 10"9 1510 

LFA 1.68 2. O x 10"2 1.84 4.5 x 10-9 6515 

PFA 1.73 7.7 x 10"2 2.07 5. O x 10-10 10852 

LAS 1.59 1.5 x 10-5 1.70 2.2 x 10-9 6129 

93 



Table 2.25 Chemical properties of the HAZCON material during the SITE 

programme (U. S. EPA, 1989-B). 

TCLP Leachate Concentrations (mg/1) 
Location Untreated Soil 28-Day Cores 

VOC BNA* Pb VOC BNA Pb 
DSA 0.02 ND 1.5 0.38 ND 0.007 
LAN 0.02 1.02 31.8 0.05 1.45 0.005 

FSA 1.03 2.81 17.9 0.72 2.79 0.400 
LFA 5.10 0.010 27.7 0.37 0.10 0.050 

PFA 1.10 0.010 22.4 0.84 0.11 0.011 

LAS 0.05 0.010 52.5 0.11 0.73 0.051 
v w- v U14U1C vig m1G L, UDOII 

BNA-Base Neutral Acid Extractable 

A summary of the key results reported from HAZCON `SITE' demonstration 

were as follows: 

" The volume of the solidified soils compared to the untreated soils increased by 

approximately 120%. 

" The unconfined compressive strength varied from 1430kPa-10200kPa and 
importantly found to be inversely proportional to the oil and grease concentration. 

" The TCLP leach data suggest that the metals were immobilised despite the organic 

contamination present. 

" The TCLP leach data performed on treated and untreated showed similar 

concentrations of volatile organics and BNAs in their respective leachates, 

suggesting no success at stabilising non-polar organic molecules as expected. 

" The microstructural study of the solidified soil showed the following: 

  High porosity 

  Brownish aggregates passed through the process unaltered 
" Mixing was not efficient 

  Encapsulation is a major part of the solidification process 
" The cost of the treatment was $205/ton utilising the Mobile Field Blending Unit in 

1989. 
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2.6.3 Conclusions to the pilot studies 
The results of the French and U. S. pilot studies highlight that the processes of 

stabilisation and solidification are very poorly understood and data is not reported to a 

suitable high degree to make significant analytical conclusions based upon the 

chemistry of the reactions taking place. Indeed it is often the case that comparisons of 

processes are reported by individuals with a potential bias for one process over 

another. This is often the case in arguments comparing cement treatment relative to 

CaO treatment, irrespective of the fact that cement is over 70% CaO. A case in fact is 

a document comparing the French technologies to the HAZCON process. The author 

describes the process of contaminant retention : 

`In the EIF Ecology lime stabilisation process, the contaminants are essentially 

trapped due to the low solubility in the high pH environment of the mix. Release, 

therefore, strongly depends on the acid neutralisation capacity of the stabilised 

product. In general, lime as a sole binder is not very effective' 

In many respects the high pH and acid neutralisation capacity are valid 

statements. However the author fails to describe the considered irreversible 

solidification reaction associated with the crystallisation of calcium silicates and 

calcium aluminates which creates a medium of low permeability and high stability. 

The author goes on to describe the HAZCON cement process: 

`In the HAZCON process, heavy metals are retained in the stabilised product 

mostly by physical entrapment and precipitation. The buffering capacity of the 

stabilised material leads to a strong reduction in leachate concentrations. ' 

Due to the nature of both stabilisation methods, if they were both applied in an 

optimum individual design mix, the results are likely to be similar since both methods 

rely on precipitation at high pH and subsequent solidification due to re-crystallisation. 
One concession is made by the fact Chloranan may be a potential benefit in treating 

heavy metals in an organically contaminated environment. However, without 

comparison with pure cement stabilisation under similar contamination circumstance 

claims are hard to substantiate. 
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2.7 CHEMICAL ANALYSIS OF CONTAMINATED MATERIALS 

2.7.1 Introduction 

Much of the chemical analysis performed on contaminated material is to 

assess which elements and compounds are present and how mobile they are in an 

aqueous environment. Subsequently, the methods adopted to assess this chemical 
behaviour can be divided into two categories. Firstly, it is important to determine the 

total content of all elements and compounds within a material, which may become 

mobile due to passage of solutions and chemical transformations. Generally for 

inorganic materials and contaminating compounds this is achieved by aggressive 

reaction of the contaminated material with acids, termed acid digestion. In the 

context of a material such as clay much of the silicate and aluminate content are very 

stable and insoluble in concentrated nitric and hydrochloric acid. Therefore, if a total 

elemental analysis is to be carried out hydrofluoric acid must be used. Unfortunately, 

much specialised equipment is required since this acid is so dangerously aggressive 

that it dissolves virtually all materials. 

The second category of analysis attempts to investigate the mobility of the 

elements from the contaminated material into the surrounding environment. This 

process is termed leaching behaviour. The ideal leaching test and model, which does 

not yet exist, would aim to predict how materials behave naturally in a specific fluid- 

soil or fluid-waste environment. With respect to heavy metal contaminated soils, this 
focuses on modelling the movement of metals in a variety of forms through a soil 

structure toward water resources and hence enable prediction of the long-term effects 

on the ecosystem. 

To provide the best data relating to the actual leachability of metals at a 

specific site, in-situ measurements could be considered to provide the most complete 

representation. This would have to occur over large time-scales to account for 

changes in the environmental surroundings, including, temperature, rainfall, periodic 

rain acidity and the subsequent effects that these parameters have on biological 

activity. Based upon an analysis of this data, a treatment could be designed and 

applied to that particular site under those particular conditions and that particular 
time. However, those conditions could vary considerably in the longer-term and the 
initial assessment cannot occur indefinitely. For this reason, many testing approaches 
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attempt to emulate longer-term behaviour by exaggerating conditions in the short- 

term (aggressive tests). It is not necessarily possible or economically viable to control 

environmental parameters such as temperature, leach rates, or long-term freeze-thaw 

effects in situ, hence environmental conditions are emulated and manipulated in a 

laboratory environment. This in itself creates difficulties for the researcher because 

many environmental conditions cannot be adequately or cost effectively modelled in 

the laboratory. This includes factors such as: 

" leaching fluid (leachant), 

" material heterogeneity and physical behaviour of the macrostructure, and 

" the presence and activity of biological species in conditions ranging from aerobic 

to anaerobic. 

From these simplified considerations it is clear that no leach model or testing 

method can fully emulate the entire scope of environmental effects and therefore 

results from any such tests must be cautiously interpreted with an understanding of 

the materials physico-chemistry and compared solely on a relative basis. Research 

must aim to minimise variability, providing useable information, which may or may 

not be used to estimate long-term behaviour. 

A substantial compilation and evaluation of leaching tests was composed by 

Löwenbach, 1978 on behalf of the U. S. EPA. Lewin et al, 1994 made significant use 

of this report when producing the U. K. National Rivers Authority Interim NRA 

guidance (R &D Note 301) for a U. K. leach test. Due to the existence of such 

thorough material for assessing leaching tests, this section only attempts to provide 

the basic fundamental concepts. For more detailed information about leach test 

approaches and methodology Löwenbach (1978) and Lewin et al (1994) should be 

consulted. 

Many batch-leaching tests were initially developed for assessment of the 

short-term impact of wastes to landfill. Development was due to the complexity, time 

dependence and resultant cost of column leaching methods. The first batch testing 

methods were probably developed in the United States of America by the United 

States Environmental Protection Agency (EPA) and have undergone several 

refinements over the last two decades. Since the development of the batch extraction 

tests, several other tests very similar to the initial EPA tests have been developed 
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throughout the world to satisfy the individual requirements of a country's 
environmental governing body. It is very difficult to investigate batch tests and 

compare their results since for example in the USA, the nuclear industry has one 
testing method, the EPA has another test method outlined in the Code of Federal 

Regulations (CFR) and the American Standards of Testing and Materials (ASTM) has 

two different tests. It is also a fact that certain states in the USA have their own 

testing methods, for example the Minnesota Pollution Control Agency (MPCA) 

"Land Disposal Leach Test"; the Illinois Environmental Protection Agency test 

(IEPA); the IU Conversion Systems test (IUCS) which was an adaptation of the early 
Pennsylvanian Department of Environmental Resources test (DER), (Welsh et al, 

1981). The Waste Research unit at the Harwell Laboratory in the U. K. has also 
developed a test as well as the UK National Rivers Authority. 

The situation is clearly complicated with many organisations setting their own 

testing criteria and standards. Hence, a general review of the mechanisms will be 

provided. 

The types of test recently categorised by Environment Canada, Wastewater 

Technology Centre (1990), are summarised in Figure 2.21, and will thereafter be 

briefly described. 

Extraction tests are performed by placing a leachant in contact with a 
potentially contaminated material for a specific duration without replacement of the 

leachant at any time. A sample of leachate is removed throughout the test or more 

usually at the end of the test after solid separation and is chemically analysed to 

determine the soluble elemental fraction. Most extraction tests conform to one of the 

following categories: agitated extraction tests; non-agitated extraction tests; sequential 

extraction tests and concentration build-up tests. 

2.7.2 Agitated batch leaching tests 

Agitated extraction tests achieve equilibrium or steady state conditions as 

quickly as possible by mixing, stirring or shaking the contaminated material with the 
leachant. The tests measure the chemical properties of the system rather than rate- 
limiting mechanisms. The methods of mixing samples can be important since it 

determines the level of particle abrasion. Methods of mixing commonly adopted are 
illustrated in Figure 2.22. 
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Agitated Extraction Tests 

EXTRACTION 
Non-agitated Extraction Tests TESTS 

Specific amount of 
leachant and test 
material without Sequential Chemical Extraction Tests 
leachant renewal 

Concentration Build-up Tests 

Figure 2.21 Leaching test categories (Adapted from Environment Canada, 

1990 and reported by Lewin et a1,1994) 

Sequential extraction tests involve separation of the waste from the previous 

leachant and adding this solid to a fresh leachant hence potentially allowing further 

leaching to occur. In theory the sequential extraction can be unlimited and may be 

analogous to column leaching. Some tests are performed with increasingly aggressive 

leachants. Lewin et al (1994) states that the resulting fractions of this type of test are 

not well defined in terms of chemical speciation and do not provide quantitative data, 

therefore they cannot be applied to field conditions. 
Non-agitated tests involve placing a monolithic mass into a leachate bath and 

monitoring chemical changes within the batch solution. This is usually modelled by 

diffusion mechanisms and essentially provides data on rate limiting physical 

mechanisms in the leaching process from the monolithic samples rather than chemical 

characteristics of the material. These tests have been generally developed for 

application to radioactive waste. 
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Concentration build up tests involve repeatedly contacting aliquots of fresh 

contaminated material with the same leachate at very low cumulative liquid to solid 

ratios and monitoring the subsequent chemical changes. 

To highlight the shear variability of agitated leachate tests currently being 

used throughout the world Löwenbach (1978) and Lewin et al (1994) provide a 

summary in Table 2.26. 

A- Mechanical stirrer 

VARIABLE SPEED 

B- Mechanical vibrator table 

WASTE MATERIAL AND 
LEACHING FLUID 

STIRRER MADE FROM 
NON-REACTING 
MATERIAL f 

WASTE MATERIAL 
AND LEACHING 
FLUID 

C- Mechanical roller 

s 

D- Mechanical end over end shaker 

Figure 2.22 Mixing methods for extraction tests 

VARIABLE FRROTT.. NCY 

100 
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SPEED WASTE MATERIAL 
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FLUID 

WASTE MATERIAL 
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2.7.3 Dynamic leaching tests 

Dynamic tests are tests, which involve continuous or intermittent renewal of 

the leachant to retain a high concentration difference between the solid and liquid 

phase. This is analogous to potential difference in electronics. Although these tests 

are potentially more complex, expensive and time consuming than batch tests, they do 

provide data relating to the kinetics of contaminant mobilisation and the likely 

complex mechanisms related to leaching. 

Column flow through leaching tests are probably the most well known 

dynamic test. Leachant is continually passed through a laboratory or undisturbed 
field sample for as long as desired by the researcher, potentially years. Lewin et al, 

(1994) states that these methods are not considered to be suitable for regulatory 

purposes due to the poor reproducibility and lengthy duration of the tests. Figure 2.23 

shows a simplified model of the apparatus required. 

Deionised Water 
Supply Tank 

9 

A 

ia 
Peristaltic 
Pump 

Constant 
Head 

Leaching 
Column 

Deionised Water 
Overflow Tank 

Deionised Water Flow 
Direction 

Sample collection 

Figure 2.23 Simplified column leaching apparatus 

Clearly one of the large limitations of this test is the velocity of flow of water 
through the sample. Forcing the leachant through the sample at higher pressures 

104 



could increase this, but how representative would this accelerated leaching be relative 
to the environment? Tests by Griffin et al (1976) overcame the low permeability and 
low flow through clay samples of landfill leachate by addition of sand to the clay 

samples. Although the permeability difficulty was overcome, there was clearly the 

potential for leachate reactions with the sand. A potential improvement on the 

technique in the 1990's would be to replace the sand with very small diameter Teflon 

beads. 

' Flow around tests generally used by the nuclear industry for radioactive waste 

repository studies can allow leachant to flow around monolithic samples, changing the 

leachant continuously or intermittently. Periodically either the monolithic mass and 

or the leachant is removed for chemical analysis. Soxhlet test apparatus applies a 

similar principle although leachant is boiled, condensed and repeatedly recirculated 

through or around the sample. The data produced is believed to provide information 

on the maximum amount of a contaminant that can be removed under extreme 

circumstances. These tests have also been used in radioactive studies. 

Serial batch tests are perhaps one of the simplest dynamic tests. The tests are 

performed in the same manner as the batch extraction tests highlighted in Figure 2.22 

and Table 2.26 with the exception that after agitation of the solid and liquid for a 

predetermined duration, the solid and liquid are separated and the solid added to a 

new leachant. An extraction profile can be established from the data, which could be 

used to model temporal release of leachable contaminants. Similarly to the standard 

extraction tests there are many serial tests currently in use, some of which are 

described in Table 2.27. 
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2.7.4 Leach test parameters 
Many leach test parameters significantly affect the elution of elements or 

compounds into solution. Some of the most important are: 

" solid to liquid ratio (agitated tests only), 

" composition of leaching solution, 

" sample preparation method, 

" leaching period, 

" contact method, 

" test environmental conditions, 

" solid and leachate separation method, and 

" sample storage and sample analysis method. 

2.7.4.1 Solid to liquid ratio 
Solid to liquid ratio clearly has an effect on the quantity of soluble elements 

found in the final leachate after a dynamic test. However, the effect of doubling the 

quantity of solid to liquid is not necessarily directly linearly proportional to the 

quantity of elements or compounds found in the resultant leachate. This depends on 

how much available soluble material is present and upon final equilibrium conditions. 

It is therefore conceivable that at very low solid to liquid ratios more mg of an 

element may be released into the final leachate per kg of solid waste present than for a 

high solid to liquid ratio. It is also possible that at low solid to liquid ratios some 

elements will become mobile that were not mobile at higher solid to liquid ratios. 

However, it is important to keep solid to liquid ratio high enough to avoid over 

dilution of important elements to the point where they are below the detection limits 

of analytical equipment. High ratios also have the potential to limit the effects of 

sampling errors. 

Solid to liquid ratio could also partially govern the rate of particle breakdown 

since it influences particle contact time with solution. This factor can be significant 

when dealing with expansive materials such as sodium bentonites. Indeed if a 

material such as sodium bentonite can absorb many times its own mass in water (e. g. 

Wyoming Bentonite 500%) then it has a clear minimum solid to liquid ratio. 
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Solid to liquid ratio can be interpreted as dry solid to liquid ratio or indeed wet 

solid to liquid ratio. This is an important factor since some tests may require the 

water content of the solid to be taken into account when the leachate is added 
therefore creating an effective dry solid to liquid ratio. Alternatively, some tests may 

stipulate that the material is oven dried prior to testing. Although it is generally 

considered standard practice to dry material in an oven at 105 ± 0.5°C, in 

circumstances where a contaminated material has been stabilised or solidified, drying 

may significantly change the chemistry of precipitates or other chemical species. This 

hypothesis is based on the fact that some reactions are exothermic (produce energy) or 

endothermic (require energy). Therefore by applying energy in the form of heat, 

exothermic reactions may be inhibited and endothermic reactions may be promoted. 
Cation exchange and surface adsorption are examples where such a theory would be 

relevant (see Appendix 2-Table A2.1). Furthermore the structure of clay minerals, 

more precisely c-axis spacing (see Table 2.10) can be significantly affected by 

temperature which could translate directly to chemical behaviour. 

2.7.4.2 Leachant composition 
Leachant composition is critical when determining contaminant release and 

has been subject to substantial investigation. In terms of practical application for 

prediction of in-situ behavioural characteristics, actual site water is likely to be 

preferable, although this may be subject to a very limited `shelf' life and subsequently 

storage conditions are important. Many attempts particularly in the landfill industry 

have been made to produce synthetic chemical leachants to simulate actual site 

conditions. Although this could provide flexibility, clearly specific sites can vary 

significantly. A direct result of these considerations is that a standard solution is 

required, hence, deionised water is often stipulated. Lewin et al, 1994 states that 

many tests require leachant to simulate rain. Carbon dioxide saturated deionised 

water can be used for this purpose. This is relatively simple to produce by allowing 
the deionised water to equilibrate overnight with air, producing water with a pH of 
5.6. According to Lewin et al (1994), the median pH of rainwater samples collected 

at Warren Springs Laboratory's national monitoring network in 1990 was pH5.5. The 

appropriateness of this mild acid leachant is further verified by the acidic conditions 

created in surface soil layers via organic degradation processes producing elevated 
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CO2 levels discussed in Section 2.4.8 (the origin of hydrogen ions in soil which may 
damage stabilised soils) and illustrated in Figure 2.15. 

Many dynamic leaching tests are designed as semi-predictive tests and utilise 

aggressive leachants which contain weak acids such as acetic acid, strong acids such 

as nitric acid/hydrochloric acid mixtures or complexing agents which have a high 

affinity for certain elements, essentially stripping contaminants from the waste or soil. 
Aggressive acids are usually added either as a fixed quantity at the beginning of a test 

or added gradually throughout the entire test to retain a specific constant pH. 
Aggressive acids will dissolve precipitates and the high hydrogen ion concentration 

could exchange with contaminants at any potential cation exchange site. The 

implication of adding such acids are especially detrimental to stabilised materials 

since the strong acid has the potential to neutralise the pH-dependent benefits of some 

stabilisation and solidification methods. The stabilisation and solidification methods 
directly affected include, lime stabilisation, cement stabilisation, adsorption 

stabilisation such as modified clays and any combination of these methods. For the 

purposes of contaminated land investigations, it is generally not appropriate to use 

strong acids or complexing agents. 

2. Z4.3 Sample preparation methods 

The importance of sample preparation including drying and crushing of the 

sample depends on the sample being tested. If the material to be tested consists of 
inherently large particles such as colliery spoil or landfill material is it appropriate to 

dry and crush the larger particles into smaller particle to increase surface contact with 

the leachant. In this particular example, this may be valid due to the relatively high 

porosity of the material. However, for solidified products resulting from lime or 

cement addition it could be argued that the solidified monolithic mass with the desired 

low permeability partly relies on its bound nature to retain some elemental species. In 

this example, complete crushing prior to testing may not provide representative 
behavioural characteristics. Although this hypothesis is valid this produces a 

circumstance where the material is not easily tested using a rapid agitated batch test, 

and suggests that the only representative approach would be a column-leaching test. 
A column test is probably preferable but not necessarily resource economic. Perhaps 

an appropriate compromise would be to develop a test involving partial breakdown of 
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a monolithic mass into smaller representative particle sizes that could be tested in a 

rapid agitated batch test. 

2.7.4.4 Leaching period 

The leaching period is of interest since it controls, although not solely, particle 

abrasion and subsequent breakdown. Furthermore, the leaching period will determine 

whether equilibrium conditions are reached. Maximum species concentrations in a 

batch test will occur upon attainment of equilibrium. Equilibrium is a unique 

thermodynamic state of a system depending only on temperature. Subsequently this 

state provides a framework within which comparisons to other systems may be made. 

True equilibrium, or steady state conditions are unlikely to be reached in natural 

systems. For such systems the extent of the reaction which is related to equilibrium 

may be a more useful concept (Löwenbach, 1978). Equilibrium conditions of rapid 

agitated batch tests can be considered to have been reached when the total dissolved 

solids (elements) have reached steady state conditions. This can be measured 

indirectly via monitoring conductivity. Another useful indicator is when pH reaches 

steady state, as this is a measure of H+ ion concentration. Both these methods are 

particularly useful when considering lime or cement stabilised materials due to the 

high Ca2+ ion content and the very high pH induced by reagent addition. 

The leaching period of column tests is also important since the contaminated 

material is continually subjected to fresh leachant over a time-period dependent on 

pore-volume and permeability. Therefore the driving force for desorption is constant 

resulting in time-dependent desorption curves. 

2 Z4. S Contact method 

The contact method variable is directly associated with the leaching period in 

the sense that the two together affect particle breakdown. Figure 2.22 illustrates 

typical contact methods for rapid agitated batch tests that usually involve interaction 

within a sealed container. Clearly the level to which the container is filled is also 

relevant since this governs the amount of air and also CO2 present and the degree to 

which the solid and liquid can be agitated within the confined space. 

The contact method is also of importance in column tests since the shape and 

orientation of the confined material as well as the pressure at which the leachant is 

passed though the sample governs the sample structural breakdown. Sample shape 
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(height to diameter ratio) can have a large influence on end effects that result in non- 

uniform flow through the ends of the sample. This can directly affect the quantities of 

contaminant removed from a sample. Pressurised leachant flow is often desirable for 

materials of very low permeability to reduce the time of a test that can take many 

months or even years if not pressurised. 

2. Z4.6 Test environmental conditions 

Probably the most dominant test environmental condition is temperature, 

which affects the results of both extraction and dynamic tests. Temperature affects 
both the solubility and importantly the rate of reactions. Thus, changes in the 

temperature of a system may change the reaction mechanism. For convenience most 
leaching tests are performed at room temperature without any temperature control 

although raised temperatures are sometimes applied to simulate the effects of self 
heating radioactive wastes or biological activity in landfill sites. It is clear, however, 

that large changes in temperature from summer to winter will affect attenuation and 
desorption reactions and subsequently the results of a series of tests. 

2.7.4.7Solid and leachate separation methods 
This is generally not a significant factor for samples where solids settle within 

a few minutes and the solution can be decanted through filter papers. Lewin et al 
(1994) states glass fibres should be used when hydrophobic, low solubility organic 

molecules are expected in the leachate, since they could have a high affinity for filters 

composed of an organic polymer. 0.45µm membrane filters, such as cellulose acetate, 

should be used for metal species in place of glass. Filter papers do pose a particular 
problem for sequential rapid extraction batch tests since the material on the filter must 
be placed in a fresh container with fresh leachant. In some cases, the filter paper is 

also placed in the fresh container. It is therefore especially desirable to use a filter 

paper that does not contain elements that may be released into solution or 

alternatively attenuate elements from the waste. 
Centrifugation is often used in tests. Where possible this should be avoided 

since batch tests are usually designed to mix waste and leachant in a specific manner 
for a specified time period and the action of centrifugation can cause particle abrasion 

and if not refrigerated, significant heat which may significantly affect the leachate. 
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Furthermore, each waste solution must be considered independently since the speed of 
revolution and time duration of centrifugation required to separate the solid from the 
liquid will vary from sample to sample. In circumstances involving thixotropic 

wastes, centrifugation may be the only method capable of separating the liquid from 

the solid. However, it must be remembered that in these circumstances the separation 
technique is particularly aggressive and perhaps produces a leachate that does not 

reflect the true quantitative properties of the original waste-solution mixture. It is also 
important that flocculating agents are not added to force solid liquid separation since 

this will clearly alter the chemistry of the mixture. 

2.7.4 8 Sample storage and sample analysis method 
There are many standards including ASTM standards that specify procedures 

for appropriate sample storage methods that largely depend on the types of 

contaminants present. In almost every case, particularly for metal contaminated 

solutions, it is specified that the sample should be acidified using very pure acids to 

pH 4 and stored at 4°C to prevent biological activity. Clearly, if acids are added care 

should be taken since HCl would not be suitable if anion analysis for Cl is required. 
The choice of analytical method may depend on the facilities available, however, 

some methods are more sensitive than others for specific elements. Methods such as 
Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP), Atomic 

Absorption spectrometry (AA) or Graphite Furnace (GF) are often used. 

2 74.9 Further significant factors affecting leachate generation 
In Table 2.28, Löwenbach (1978) summarises the significance of pH, redox 

potential, buffer capacity, complexation capacity, ionic strength, dielectric constant 

and surface area and suggests how these variables may affect leachate generation. 
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2.8 LABORATORY LEACHING TEST RESEARCH 

Much research has been performed in the field of the leachability of 

contaminating elements and compounds from wastes, although very little has been 

carried out on stabilised wastes and that which has been carried out is of limited 

quality for determining reaction processes. The majority of previous research has 

focussed on the effects of changing the operating parameters of rapid agitated batch 

leaching tests. 

Paule (1981) performed a statistical analysis investigating three experimental 

variables: 

1. the extractor (60 and 180 cycles per minute (cpm)) shaker tables illustrated in 

Figure 2.22B, and the National Bureau of Standards (NBS) mixer illustrated in 

Figure 2.22D, 

2. the solid/liquid ratios 1/4,1/10, and 1/20, and 

3. the mixing time (24 and 48h). 

These tests were carried out on the ASTM Special Fly Ash using only distilled 

water as the leaching agent. During the tests, fifteen elements were extracted by two 

independent laboratories and analysed by a third laboratory using Inductively Coupled 

Plasma spectroscopy (ICP). The elements investigated were aluminium, vanadium, 

magnesium, silicon, boron, barium, calcium, chromium, potassium, molybdenum, 

sodium, nickel, arsenic, iron, and selenium. By statistical comparison, the 60cpm 

shaker table at the 1/4 solid to liquid ratio and at 24 hour test interval showed the 

greatest variability. Analysis of pH, aluminium and vanadium show the 60cpm 

shaker table results were all low relative to the 180cpm shaker table and the NBS 

mixer results. However, magnesium and silicon showed the opposite effect. For all 

the extractors boron, barium, calcium, potassium, molybdenum, sodium and nickel 

were of a lower value for lower solid to liquid dilution ratios. Paule (1981) proposed 
the following potential models : 
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1. All extractable material is physically leached from the solid and the use of lower 

solid to liquid ratios simply dilutes the extracted material by an amount 

proportional to the liquid content as illustrated in Figure 2.24. 

a 
0 
I- L 
w 
d 
d 
Ö 

at 
uu 

ea 
w 

.a L 

d 

Figure 2.24 Diluted solution theory 

This type of curve was obtained for, aluminium, boron, barium, calcium, 

chromium, iron, potassium, magnesium, molybdenum, sodium, nickel and selenium. 

2. Alternatively, there is a large supply of extractable material in the solid to saturate 

the leaching liquid at all experimental dilutions. This would result in constant 

concentration at all experimental dilutions as illustrated in Figure 2.25. This was 

observed for vanadium and arsenic. However, for vanadium using the 60cpm 

extractor, the results were low. This could be due to the fact that the other two 

methods caused some degree of particle abrasion, thus potentially releasing more 

vanadium. However, it would be expected that this would also result in the 

release of greater concentrations of the other elements, which was not observed. 
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Figure 2.25 Saturated solution theory 
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3. As the aluminium, magnesium and silicon concentration changes are generally in 

opposite directions, there may be chemical equilibrium involved, such that a low 

aluminium concentration observed with the 60cpm shaker table can occur with 
high magnesium and silicon concentrations for this extractor. Similarly, the 1/4 to 
1/20 dilution of aluminium for both the 180cpm shaker table and the NBS mixer 

could result in the observed increases in magnesium and silicon concentrations for 

these extracts. The flat dilution curves for arsenic and vanadium could be a result 

of similar equilibrium, except in this case the increase in concentration due to 

shifted chemical equilibrium is approximately balanced by the dilution in going 
from 1/4 to 1/20. 

Larson et al (1981) carried out the EPA Extraction Procedure on wastes from 

electroplating factories, chlorine production and glass etching. Column leaching to 

simulate a landfill was achieved by mixing these wastes with municipal wastes and 

exposing them to a fixed quantity of deionised water each week. The EP Test is a 

prediction test to see whether a material can be categorised as hazardous, but, as 

currently designed, it did not always predict which constituents might represent the 

greatest pollution problems when co-disposed with municipal waste. Larson et al 

suggests that the EP Test will probably over estimate the release of cadmium, copper, 
lead and mercury. No arsenic or selenium was found in any EP Test extracts although 
it was found in large scale test cell leachates. 

Welsh et al (1981) compared three acid extraction batch leaching protocols: 

the Minnesota Pollution Control Agency (MPCA) `Land Disposal Leach Test' (1978), 

the proposed ASTM `Leaching of Waste Materials, method B test (1978)' and the 

EPA proposed `Extraction Procedure (1978). Boiler ash, an incinerator ash and an 
industrial wastewater treatment sludge were tested with respect to arsenic, chromium, 
lead and silver. All extractions utilised the stirrer extractor in Figure 2.22A. Each test 

on a particular waste with each method had a different final pH. It was found 

generally that greater amounts of metals were extracted at lower pH levels regardless 

of the test procedure used. 
Jackson et al (1981) evaluated leaching of a standard fly ash by three batch 

extraction methods and compared these results with those obtained from column leach 

tests. Three types of mixer were utilised in the testing, see Figures 2.21B, 2.21C and 
2.21D. Five solid to liquid ratios, 1/4,1/10,1/20,1/40, and 1/80 were studied. 
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Leaching times ranging from 1 hour to 96 hours were used to assess the leachability 

of selenium, chromium and arsenic. Column test methods had leachant application 

rates of 1.8,2.2,2.4, and 3.5 mm/year/acre. With respect to the batch testing, the 

selenium results showed that after one hour leaching, time does not play an important 

role. As the solid to liquid ratio decreases, the amount of selenium leached per 

gramme of sample increases. Larger quantities were also leached using the 

reciprocating mixer in Figure 2.22D. The four lowest solid to liquid ratios tested with 

the roller mill mixer shown in Figure 2.22C produced the most consistent levels of 

pH, selenium and chromium, while the shaker table in Figure 2.22B gave the least 

consistent results. It was suggested that the shaker table at 70cpm does not give 

enough agitation to keep the sample mixed with the leaching fluid, where as the NBS 

mixer probably causes some particle abrasion. After six hours leach time, it was 
found that there was no significant agitation time relationship for chromium with any 

of the mixers. Examination of the arsenic results using the shaker table and NBS 

mixer indicates that after twelve hours leach time, the amount of arsenic leached does 

not exhibit a consistent pattern. The data for the roller mill mixer relating to arsenic 

were too scattered to be conclusive. As the solid to liquid ratio decreases, the 

concentration of the metals in the leachates also increases for any of the mixers. 

Whether a forty-eight hour leach test time is necessary is uncertain, i. e. although 

concentrations of metals did increased in some cases with increased test duration, 

there is no consistency in these increases. For these reasons, the NBS mixer utilising 

a 20/1 liquid to solid ratio and a leach time of twelve hours was chosen for 

comparison with the column leach test. The similarity in the quantities of element 
leached is apparent by observation of Table 2.29. 

pH values of the final leachate for the column tests ranged from 8.1 to 9.2 

while the batch tests range from 9.8 to 10.4. During column tests, selenium 

concentrations levelled out at 250µg/l after about twenty days testing, where as the 

chromium concentrations decreased throughout the entire sixty day period, at which 

the final value was 50µg/l. The amount of arsenic leached over the first five days 

declined very rapidly and then appeared to level out until day twenty, when the 
leachates from all four columns began to increase in arsenic concentration. 
Application rate data indicated that the leaching of arsenic was leach rate dependent, 

which agreed with the batch test data. 
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Table 2.29 Concentration of Selenium, Chromium, and Arsenic leached using 
the batch extraction and column test methods. 
(K. Jackson et at 1981) 

Batch Test, 20/1 Liquid to solid Ratio. Contaminant Column Leach Tests, at the 
12 hours Leach Time, NBS Mixer, end of 60 Days, 
250 Selenium 270 
62 Chromium 50 
819 Arsenic 2362 

Sack et al (1981) also evaluated fly ash leachability using batch extraction 
leaching procedures, specifically the EPA Extraction Procedure and the ASTM 

method. The acidified EPA procedure was found to extract more metals on a mg/kg 
of ash basis, although the ASTM method gave higher solution concentration. The EP 

method used a solid to liquid ratio of 1/20, a leachate buffered to pH 5.0 and a twenty- 
four hour leach time, where as the ASTM method used 350g of ash in 1400m1 of 
water over forty-eight hours. For the contact times studied, i. e. two to forty-eight 

hours, no one elution time could be chosen which would allow equilibrium for all the 

parameters. Although certain elements evidenced sensitivity to the presence (aerobic 

conditions) or absence (anaerobic conditions) of oxygen, no pattern was found. 

During repeated extraction of the same fly ash with fresh leachate, release of metals 

was found to be highly pH-dependent. Most of the mobilisation tended to occur in the 
first two extractions for the acid test, while release occurred more gradually for five to 

seven extractions using de-ionised water. 
Perhaps one of the most important studies in the UK was carried out by the 

National Rivers Authority (NRA). The main objective of the study reported by 

LeJeune et al (1996) was to validate the use of the NRA Interim Guidance Note on 
leaching tests for contaminated land. The strategy of the study was to assess the 

variability of results within laboratories and between laboratories when reference 
materials were leached under standard conditions. The two reference contaminated 
soils were typical of metalworks soils and gasworks soils. Initial analysis of the 

material highlighted an approximately 25% variability in the material of which 10% 

was apportioned to analytical error. Six samples of each material were sent to four 

laboratories and a single-step NRA batch leach test and a two-step sequential batch 

test were performed. Statistical analysis of the data highlighted significant differences 

between the data sets of the four laboratories for half the elements or compounds 

analysed. Furthermore, there was no evidence for systematic under-reporting or over- 

120 



reporting of individual elements or compounds by any particular laboratory. Intra- 

laboratory variability was particularly high for Pb and to a lesser extent Fe. The 

variability of the data was so high that it was expressed that acceptance limits would 
have to be set with very high tolerance bands. The researchers advised that variability 

could be reduced by using larger samples, conducting more tests, possibly taking 

more finely divided particles. In addition, there was no clear advantage in using the 

two-step sequential leach test so the additional cost and complexity was not justified. 

Many more leach test comparisons have been performed by researchers on 

specific waste materials using a variety of tests monitoring the release of specific 

elements of interest. Examples include: leach testing of foundry process wastes, 

Boyle et al (1983); development of a Canadian data base on waste leachability, Cöte 

et al (1983); the effect of storage on leaching properties of metal-finishing sludges, 
Saunders et al (1983); column leach testing of solid industrial wastes, Darcel et al 
(1983); chromium-bearing waste slag: evaluation of leachability when exposed to 

simulated acid precipitation, Kilau et al (1984); testing of hazardous wastes to assess 

their suitability for landfill disposal, Young & Wilson (1982); interpreting results 

from serial batch extraction tests of waste and soil, Houle & Long (1980); a 

comparative field'and laboratory study of fly ash leaching characteristics, Dodd et al 

(1981); use of batchwise extraction procedure for coal ash disposal evaluation, 

Villaume et al (1981); modified leach test incorporating an elutriation step for the 

evaluation of metal sludges, Penland et al (1981); a comparison of groundwater 

quality at selected landfills to leaching test results, Rinaldo-Lee et al (1981), 

compilation and evaluation of leaching test methods, Löwenbach (1978). 

Very few tests have been carried out specifically to investigate the behaviour 

of stabilised contaminated soil. Dermatas (1994) investigated the effectiveness of a 
lime based treatment in immobilising Cr3+ using a flow through leach test with acidic 

and water leachants. The tests were performed on mixtures of clay and sand that had 

been contaminated by 4040mg of solid chromium nitrate (Cr3) per kg of solid `soil'. 

Quicklime (CaO) was added at 10% and sodium sulphate was added at 5%, both 

contents on a dry weight basis of the dry mixes. Samples were compacted using a 

standard compactive effort. Soil permeability was shown to increase because of lime 

treatment and the sulphate addition did not appear to affect permeability. Essentially, 

for the flow through tests, no chromium was leached from the treated 

montmorillonite-sand specimens whereas significant quantities were leached from the 
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untreated and treated kaolinite-sand specimens. Comparison of the leaching results to 

pH for the kaolinite samples emphasised that as pH dropped the Cr leachability 

dramatically increased. 

Akhter et al (1990) carried out similar work using cement, lime and 

pozzolanic agents such as fly ash and slag to immobilise As, Cd, Cr and Pb at levels 

of 10,000ppm in Mississippi loess soils. Leachability was assessed using the U. S. 

EPA Toxicity Test. They concluded that in no case does fly ash improve the 

performance when mixed with other binding agents. Slag offers superior performance 

compared to fly ash in any combination and has potential for general utility in 

practice. They also conclude that Type I Portland cement is a very versatile and 
dependable reagent compared to the other agents such as lime, particularly in the 

cases of As and Cr. They also argue that in the case of lime addition the leaching 

results are marginally acceptable. Again, the difficulty in accepting the conclusions is 

because in the tests, cement was added at a much higher percentage than lime and the 

pozzolanic additives were not added in similar proportions. Some of this data is 

summarised in Table 2.30. Since the mix designs are so highly variable between the 

two added fixing agents and the type of lime used has not been stated, the results 

highlighted in Table 2.30 do not necessarily lead to the conclusions stated. 

Cartledge et al (1990) carried out similar leach tests on cement treated Cd and 
Pb hydroxide sludges. They discovered very low leachate concentrations of Cd in the 

cement treated sample whilst Pb samples treated with cement leached a considerably 
higher proportion of Pb and would represent a serious threat to groundwater. They 

concluded that the Cd-cement system involved Cd(OH)2 which provides nucleation 

sites for precipitation of calcium silicate hydrate `gel' and calcium hydroxide with a 

very impervious coating. However, the Pb-cement system involves hydroxide, 

sulphate, and nitrate mixed salts (nitrate from added Pb(N03)), which retard cement 
hydration reactions by forming an impervious coating around cement clinker grains. 
It is also suggested that as pH in the cement pore waters undergoes fluctuations during 

the progress of hydration, the Pb salts undergo solubilisation and reprecipitation on 
leachable surfaces of the cement matrix. 
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Table 2.30 Leachability of elements in soil stabilised with added pozzolanic 

agents (after Akhter et at (1990) 

Weight of additive per 100g of soil Leachate 

Cd (10,000ppm) EP, ppm 

Cement Fly ash Slag Lime Silica 

21 0.0 21 0.0 0.0 0.02 

0.0 0.0 41 1.2 0.0 0.08 

Weight of additive per 100g of soil Leachate 

Pb (10,900ppm) EP, ppm 

Cement Fly ash Slag Lime Silica 

22 0.0 22 0.0 0.0 0.18 

0.0 0.0 44 1.3 0.0 0.55 

Weight of additive per 100g of soil Leachate 

As (12,200ppm) EP, ppm 

Cement Fly ash Slag Lime Silica 

22 0.0 22 0.0 0.0 57.7 

44 0.0 0.0 0.0 0.0 4.56 

0.0 0.0 109 3.3 0.0 74.9 

Weight of additive per 100g of soil Leachate 

Cr + (12,200ppm) EP, ppm 

Cement Fly ash Slag Lime Silica 

26 0.0 26 0.0 0.0 58.5 

0.0 0.0 129 3.9 0.0 38.5 

Young et al (1984) carried out an investigation to determine the ability of 

chemical treatment to reduce the leaching of metals from fly ash. Samples of fly ash 

were treated with Portland cement, chemically pure lime, and phosphoric acid and 

subjected to a column leaching process. Leachates were sampled and analysed using 
X-ray fluorescence and atomic absorption spectrometry. Results concluded that 
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Portland cement or lime reduced the quantity of leached arsenic by 40 to 80% relative 
to the control sample, whereas those treated with phosphoric acid yielded 50 times 

more arsenic. Portland cement reduced the total leached quantity of lead, selenium, 

copper, calcium, and total dissolved solids from 30 to 50% below the total leached 

quantities for untreated ash samples. Young et al (1984) concluded that generally 

samples treated with Portland cement showed the most uniform reduction in leachate 

concentrations and that compaction and curing of the chemically treated ash samples 

showed little improvement in the ability to control the amount and types of metals 

appearing in the leachates. 

The difficulty with accepting aspects of this work relate to the fact that the 

type of chemically pure lime used was not stated i. e. either CaO, Ca(OH) or perhaps 

even CaCO3. The maximum leached quantities of mercury and particularly lead in 

the fly ash were 0.0002gg/L and 0.011 µg/L. These levels are so low that it is difficult 

to accept the absolute value even with a suggested error of 30% for the lead samples. 

Any differences brought about by addition of even a chemically pure fixing agent 

could have a significant contaminated fraction at these low detection levels and affect 

the leached quantity. Furthermore, the levels stated comparing control samples with 

cement treated samples and lime-treated samples show significantly different 

proportions of potential error with no apparent explanation in the text. 

In conclusion, there is a clear lack of understanding regarding determination of 

appropriate chemical testing methods for assessment of lime-treated clay soils. 
Furthermore, it is evident that there is rarely an attempt to understand the mechanisms 

of contaminant interactions. There is a clear need to investigate the mechanisms of 

stabilisation and solidification reactions and to try to develop simple chemical batch 

tests to fulfil this requirement. 
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CHAPTER 3.0 
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3.0 RESEARCH PHILOSOPHY 

Stabilisation and solidification agents, including lime and lime-based products, 
have been successfully used worldwide for the treatment of contaminated soils. 
However, the technique has not been used extensively in the UK. This is associated 

with the fact that the technique has been used unsuccessfully when applied 
inappropriately or without full understanding of the mechanisms. This has occurred, 

for example, at sites with large mixtures of organic and inorganic waste such as old 

gasworks (e. g. Portsmouth, 1998). There has been a move in the UK to begin to 

remediate contaminated land rather than dig it up and dispose of it in landfill. 

Stabilisation and solidification will prove important in this process due to its 

inherently low cost. However, to achieve this aim there needs to be a development of 

tests within the UK to measure the success or failure of stabilisation and 

solidification. When this has been achieved contractors will be able to tender for 

remediation projects knowing that it is possible to supply a client with guarantees as 

to the longer-term outcome of a stabilisation and solidification approach. 

The literature has shown that there are several mechanisms controlling the 

success or failure of stabilisation and solidification of contaminated clay soils. These 

are: 

" Clay natural attenuation of inorganic contamination. 

9 Modified clay natural attenuation of organics. 

" Precipitation of metals at high pH. 

- Metal hydroxide solubility variations to be considered. 

" Dissolution of clay structure and re-crystallisation of cementitious ̀gels'. 

- Effects of contaminants on this solidification. 

The mechanisms involving natural attenuation (cation exchange) are well 

understood and frequently investigated although they have seldom been considered 
specifically in the context of stabilisation and solidification. Solidification 

mechanisms are poorly understood and little research has been carried out to 
determine how clay dissolves and how this varies from one clay type to another. 
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Site-based research has usually been performed as a side issue to the main 

remediation project. This has resulted in incomplete pre-treatment and/or post- 

treatment physical and chemical investigations. 

As a result of the current understanding and the incomplete and inconclusive 

research to date, the research reported in this thesis aimed to investigate the 

fundamental physico-chemical developments of lime-treated refined minerals 

containing high purity contaminants. Metal contaminants were chosen due to their 

presence at most contaminated sites and the fact that they are usually readily treatable 

with stabilisation and solidification. The contaminants Pb2' and Fe3+ were chosen due 

to their frequent presence at contaminated sites and the fact that they have 

significantly different charge. English China Clay was chosen as one mineral for 

investigation because it was known that this mineral developed very small amounts of 

predominantly pH-dependent structural charge. Wyoming Bentonite was chosen as 

the second mineral because it represented the opposite extreme to English China Clay 

by having large quantities of predominantly permanent negative charge as well as pH- 

dependent charge sites. Since these minerals represented opposite extremes of 

structural charge development, it was felt that other clay minerals would exhibit 

physico-chemical behaviour between these extremes. 

It was the aim to perform physical and chemical tests on sample mixes based 

on the two clays over three curing periods, after 7 days curing to allow for natural 

attenuation and metal precipitation (stabilisation) and after 175 days and 301 days 

curing to assess the developments of solidification. Two quicklime contents were 

chosen for each of the clays and, because it was important to assess the time- 

dependent developments for materials with no lime and/or no contamination, a full 

suite of control samples was required. This resulted in 9 mix designs for each clay. 

The literature demonstrated that contaminated material was usually tested in 

rapid batch extraction tests often using an acidic leachant. Although the principle of a 

rapid cheap extraction test was a valuable concept, the use of an acidic leachant was 

considered inappropriate for assessing the mechanisms of a remediation technique 

that relies upon a high pH environment. Furthermore, natural attenuation mechanisms 

were also considered important to the understanding of stabilisation and solidification. 
These mechanisms would not be clear if the leachant contained high quantities of W 

ions. Hence, an approach was formulated to use de-ionised water as a leachant in a 
batch extraction test. It was hoped that this would provide a more realistic extraction 
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environment in which to measure chemical changes brought about by cation exchange 

and mineral dissolution and re-crystallisation. 
From the perspective of regulatory control, environmental scientists have 

been aware of the limitations of batch extraction tests to assess the leachability of 

contaminants from materials incorporated in a monolithic mass. Consequently this 

effect was examined by testing 10mm and 20mm monolithic masses. Due to the fact 

that the suggested batch extraction test no longer followed any standard protocols it 

was deemed necessary to investigate how the presence of monolithic masses was 

affected by adjusting the batch test parameters used to control the level of mixing. 

These included: 

" Solid to liquid ratio, 

" Mixer rotation speed, 

" Test duration, and 

" Initial size of monolithic mass. 

To remove the effects of changing temperature conditions it was considered 

necessary to perform the tests in a regulated thermal environment of 11.5°C ± 0.5°C. 

Chemical and physical analysis had to be performed using the resources 

available within the laboratory. Hence, chemical analysis of solutions was performed 

using Inductively Coupled Argon Plasma Atomic Emission Spectroscopy. Resources 

including the initial purchase cost and the final disposal through the University health 

and safety organisation stipulated that only small contaminated samples could be 

produced hence physical testing was limited to undrained shear strength 

measurements using the shear vane and also Atterberg Limit tests. This also limited 

the exposure of contaminated materials to a general geotechnical engineering 
laboratory where the health and safety of personnel were of paramount importance 

and subject to considerable regulation. 
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3.1 AIMS AND OBJECTIVES 

The thesis aim is to determine whether the addition of lime to clay minerals 

can stabilise metal ionic contaminants by removing them from the aqueous phase. 

Fulfilment of this aim will be achieved by meeting the following objectives: 

" Develop a chemical batch leaching test which is suitable for assessing lime 

(specifically CaO) stabilised clays, 

" Determine the leachability of contaminants (specifically Pb(N03)2 and Fe(N03)3 ) 

in the short term and longer term from lime treated contaminated clay, 

" Investigate the soluble chemistry of the lime-clay reaction. Specifically, 

determine any substantial chemical behaviour changes from the short term to the 

longer term relative to control tests, 

" Assess the effects of contaminants on the soluble chemistry of the lime-clay 

reactions and the effects of the lime-clay reactions on the contaminants, 

" Determine physical changes by performing simple index tests, and finally, 

" Compare the changes in the physical behaviour and water-soluble chemical 
behaviour to determine whether the lime-clay-contaminant reactions occur 

simultaneously or concurrently. 
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CHAPTER 4.0 
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4.0 EXPERIMENTAL METHODOLOGY 

Prior to the commencement of this laboratory-based experimentation and final 

specification of the objectives, a clear outline of the experimental approach was 

prepared. This provided a well defined and logical progression to the experimentation, 

ensuring completion within the restricted time-scale and budget, and also allowed for 

the development of new ideas as the programme progressed. In outline, the 

experiments consisted of mixing lime with clays contaminated with heavy metals and 

monitoring the performance of the resulting mixes. Performance was measured in 

terms of the strength of the lime-clay mixes and leachability of the contaminants. 

4.1 MATERIALS SPECIFICATION 

4.1.1 Clay minerals 
Two clay minerals were used in the investigations, English China Clay Grade 

50 a white powder, was supplied by Watts, Blake, Bearne and Co. of Newton Abbott, 

Devon, UK. Wyoming Bentonite a light grey powder, was supplied by Steetley 

Minerals Ltd. of Middlesborough, UK (see Figure 4.1). 

The dominant mineral composition of the English China Clay is well ordered 
kaolinite and muscovite, with minor constituents being quartz, feldspar and tourmaline. 
Some of the chemical and physical characteristics are described by the supplier in Table 

4.1. For the purposes of this study the important characteristics described in the table 

are: 

" the predominantly kaolinite nature (SL1A1401o(OH)8), 

" the high quantities of both silicon and aluminium oxides in similar proportions, 

" the presence of mica (e. g. KMg3(AlSi3O10)(OH)2 with K or Na exchangeable ions) 

and quartz (SiO2) in low but potentially significant quantities, 

" the 0% carbon content reducing the complexity of the chemical reactions, 

" the slightly acidic pH, and 

" the low surface area predicted for a kaolinite material in Table 4.1. 
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The Wyoming Bentonite clay is predominantly sodium montmorillonite with 

minor constituents of quartz and feldspars. The supplier's data in Table 4.2 summarise 

the mineral composition illustrating: 

" the very high montmorillonite content, which along with the feldspars has a very 
high cation exchange capacity, 

" the very high silicon oxide content relative to a high aluminium oxide content, 

" the presence of significant proportions of iron, calcium, magnesium and sodium 

oxides, 

" the high amount of `structurally bound' water; and 

" the very high, although significantly variable, liquid limit value. 

Table 4.1 Mineralogical and chemical composition of English China 

Clay (adapted from Watts Blake Bearne & Co. PLC, 1998) 

CHEMICAL ULTIMATE 
ANALYSIS 

MINERALOGICAL 
CONSTITUENT 

CALCULATED 
COMPOSITION 

(RATIONAL 
ANALYSIS) 

Si02 48.0% 
Ti02 0.1 % Kaolinite 69 % 
A1203 36.1 % 
Fe203 1.0 % Potash Mica 24 % 
CaO 0.1% 
MgO 0.2 % Soda Mica 1% 
K20 2.8% 
Na2O 0.1 % Quartz 5% 
Loss on ignition 11.6 % 
Carbon --- Carbonaceous 0% 
pH 5.0 matter 
Surface area (by 12 m2/g 
nitrogen 
adsorption) 
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Table 4.2 Mineralogical and chemical composition of Wyoming 

Bentonite clay (adapted from Steetley Minerals Ltd, 1998) 

CHEMICAL CHEMICAL 
COMPOSITION 

(RANGE %) 

MINERALOGICAL 
CONSTITUENT 

CALCULATED 
COMPOSITION 

(X-RAY 
ANALYSIS) 

Si02 62 - 66 
A1203 20 - 24 Montmorillonite 92 % 
Fe203 3-4.5 
CaO 0.5 -1.3 
MgO 1.7-2.3 Quartz 3% 
K20 0.3-0.6 
Na20 2-4 
Bound Water 5.50 Feldspars 5% 
Bulk Powder 
Density 800 - 950 kg/m' 
Liquid Limit 600 - 750 

4.1.2 Lime used in laboratory investigations 

The lime used throughout the experimental programme and referred to in this 

thesis is fine ground quicklime; calcium oxide (CaO(, )) Grade SG60 supplied by Buxton 

Lime Industries (BLI). The physical untreated nature of the material is illustrated in 

Figure 4.1 

Figure 4.1 The untreated nature of the clay and the lime supplied 
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To ensure consistent chemical composition, all lime used during testing had 

been permanently stored in a kiln at or above 450°C for no longer than one month due 

to the gradual agglomeration of particles within that time in the kiln. Lime stored for 

longer than this period had been discarded. A minimum period of storage had been 

specified as 24 hours to ensure complete dehydration prior to use. Lime for use in all 

experimentation has been removed from the kiln and passed through a 420µm sieve 

whilst still hot and used immediately to reduce the potential for hydration and 

carbonation in the atmosphere. The particle size of SG60 highlighted in Table 4.4 

ensured that obtaining the fraction < 420µm was a simple operation not requiring 

particle crushing hence. reducing handling time in the atmosphere. Table 4.3 lists the 

principal components of the lime as being CaO(,, ) and CaCO3(, ). The presence of forms 

of Mg, Fe, Al, Si, Mn, Pb in the lime is important, since these elements have been 

investigated in the main chemical batch testing programme discussed later. Analytical 

grade CaO() would have been used in preference to Grade SG60 to remove the 

interference of the trace elements in the chemical reactions and subsequent analysis. 

However, costs were inhibitive for the quantities required. It is also clear that in 

practice a form of lime similar to SG60 would be used in situ. 

Table 4.3 Chemical composition of quicklime (CaO) SG60 (BLI, 1998) 

CHEMICAL TYPICAL ANALYSIS 
(% MAS 

SPECIFICATION 
(% MAS 

Calcium Oxide, CaO 95.63 93.0 minimum 
Calcium Carbonate, CaCO3 2.23 7.0 maximum 
Magnesium Oxide, MgO 0.47 1.0 maximum 
Calcium Sulphate, CaSO4 0.12 0.2 maximum 
Ferric Oxide, Fe203 0.07 0.15 maximum 
Aluminium Oxide, A1203 0.11 0.2 maximum 
Silica, SiO2 0.74 1.0 maximum 
Combined Moisture, H2O 0.63 1.0 maximum 
Manganese, Mn 160 ppm 200 ppm maximum 
Fluorine, F 70 ppm 100 ppm maximum 
Lead, Pb 2 ppm 5 ppm maximum 
Arsenic, As 0.4 ppm 1 ppm maximum 
* Specification limits given at 95 % confidence levels 
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Table 4.4 Physical composition of quicklime SG60 (BLI, 1998) 

PHYSICAL TYPICAL ANALYSIS 
MASS) 

SPECIFICATION 
(% MASS) 

Grading :% passing 3.35mm 
75 m 

100 
54.7 

99.50 minimum 
30 minimum 

- Bulk densit 1250kg/m3 T 
[* Specification limits given at 95% confidence levels 

4.1.3 Contaminating metals added during the investigations 

The reagents added to simulate inorganic metal contamination were lead (II) 

nitrate (Pb(NO3)A, )) providing the lead (II) ion (Pb2) and, iron (III) nitrate 

(Fe(NO3)3.9H2O(, )) providing the iron (III) ion (Fe3). Both were of analytical reagent 

grade, supplied in solid form by Fisher Scientific of Loughborough. The two reagents 

were chosen due to their prevalence at many contaminated sites and their properties 

highlighted below: 

" Pb(NO3)44 and Fe(NO3)3( are both acidic, 

" Pb(NO3)A4 and Fe(NO3)3(4 precipitate at high pH, and 

" The charge to ion radius (ionic potential, see Figure 6.4) are significantly different 

which would create interesting differences in attenuation. 

Fe(NO3)3.9H2O(. ) was chosen since it is relatively innocuous compared with 

lead. Pb(NO3)u$) was chosen since it was considered necessary to apply the technique 

to at least one environmentally toxic and problematic element that exhibits an 

arnphoteric nature. 

The nitrate form of these chemicals has been chosen for their high solubility 
(hence a potential for high cation mobility) and to limit the effects of the anion on the 

lime-induced pozzolanic stabilisation reactions. All nitrates are soluble and as such will 

not react with any elements released from the clays to form precipitates. Nitrates are 

also not currently reported to inhibit the stabilisation and solidification reactions. The 

high solubility allowed small volumes of reagents to be added in solution, allowing the 

relatively low water contents required to obtain optimum dry density to be achieved 
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easily. The high solubility also ensured a high degree of mixing of the reagents with 
the clay minerals resulting in more evenly distributed attenuation reactions. 

Table 4.5 illustrates the respective chemical composition of these reagents. 
The trace elements were present in very small quantities. There were however slight 
differences in the quantities of trace elements present in the Fe(N03)3.9H20(. ) relative 

to the Pb(NO3)u8) that could have been significant. The chemical batch test analysis 

can detect levels of elements to fractions of a part per million, hence, it was important 

to mention their presence. The reported parts per million in Table 4.5 are on the basis 

of mass of ion to mass of compound added. 

Table 4.5 Chemical composition of the Fe(N03)3.9H20 and Pb(NO3)2 

(Fisher, 1996) 

Fe NO3 3.9H2O , Pb N O3)2(s) 
LOT ANALYSIS QUANTITY LOT ANALYSIS QUANTITY 
Molecular Mass 404.00 g/mol Molecular Mass 331.20g/mol 
Acidity 0.06600 meq/g pH (5%, aq. Soln. ) 3.510 
Assay 98.97 % Assay 99.45 % 
Calcium, Ca 2.100 ppm Calcium, Ca < 0.500 ppm 
Total chloride, Cl" < 0.00050 % Total chloride, Cl" < 0.00050 % 
Copper, Cu < 2.000 ppm Copper, Cu < 0.500 ppm 
Potassium, K < 2.000 ppm Potassium, K < 2.000 ppm 
Magnesium, Mg 2.600 ppm Magnesium, Mg < 0.200 ppm 
Sodium, Na < 2.000 ppm Sodium, Na < 10.000 ppm 
Total phosphorus, P < 2.000 ppm Total phosphorus, P < 10.000 ppm 
Lead, Pb 5.600 ppm Iron, Fe < 1.000 ppm 
Total sulphur, S < 4.000 ppm Total sulphur, S < 10.000 ppm 
Total silicon, Si < 0.400 ppm Total silicon, Si < 0.500 ppm 
Zinc, Zn 13.000 m Zinc, Zn < 0.500 m 
Liu uIarautls are CSpeciauy relevam to is= a nical analysts. 

Variable decimal places represent the degee of accuracy of the measurement equipment. 

4.1.4 The water quality used at different stages of the investigations 

Two grades of water were used throughout the study. The water used in all 
aspects of reagent and sample preparation and experimentation (unless otherwise 

stated) was prepared according to B. S. 3978 Grade 1 (BSI, 1987) and is hereafter 

referred to as ICP water. The lowest grade water hereafter referred to as RO water 
has been produced by purification of standard mains water using deioniser units 



supplied by Purite Limited, Thame, Oxon, England. The mains water has been passed 
initially through a granular activated carbon filter, primarily to remove chlorine from 

the water. The water has then been passed through a Purite RO 100 reverse osmosis 

unit. This water provided typically 96% rejection of mineral ionisable impurities and 

99.8% rejection of organics and bacteria. With medium hardness waters (up to 

200ppm total dissolved solids) the quality achieved can be compared to that of single 

distilled water. The applications for this water were non-critical glassware rinsing and 

for the initial stages of cleaning laboratory soil mixers and spatulas. The RO water has 

been stored in 40 litre tanks and passed through a Purite STILLplus HP system to 

produce the B. S. 3978 Grade 1 ICP water on demand. This ICP water system 

comprised a N340 nuclear ion exchange cartridge, a C340 organic removal cartridge, a 

type BF02 (0.2µm) bacterial filter and a conductivity meter. The system is illustrated 

in Figure 4.2. The typical quality of this ICP water was critical for all chemical 

analysis and an analysis is detailed in Table 4.6. 

Table 4.6 Typical ICP water quality (Purite, 1998) 

IMPURITY TYPICAL QUALITY ACHIEVED 
Conductivity at 25°C 0.05 µS cm (18 megohm cm) 
Heavy Metals 0.0001 ppm 
Total Organic Carbon (T. O. C. ) < 30 ppb 
pH Neutral 
Bacteria and Po rens 99 % plus rejection 
Supplier suggested General Reagent Glassware Atomic Haematology Applications 

Laboratory Make Up Rinsing Absorption 
and ICP 
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Conductivity display Purite RO 100 
Reverse osmosis 

BF02 bacterial unit 
N340 nuclear filter 
ion exchange 

cartridge Granular 
activated carbon 

filter 

40 litre RO water 
storage tanks 

a ýi^ 

Figure 4.2 Water purification system for RO and ICP water production 

4.1.5 Application and quality of acids used during the investigations 

Where contaminated solids have been acid digested to determine acid digestible 

metal fractions or where chemical samples required stabilising prior to storage and 

subsequent chemical analysis, small quantities of high purity `Aristar' nitric acid 

(HNO3( )) and hydrochloric acid (HC1(aq)) reagents supplied by B. D. H. Laboratory 

supplies, Poole were used. In all other situations such as acid washing batch leaching 

test containers or glassware to remove chemical residues a lower purity, less expensive 

GPR nitric acid has been used. Details of the high purity of these acids are shown in 

Table 4.7. It was clear that the addition of these acids to samples being preserved for 

sensitive chemical analysis would not significantly affect the results. 
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Table 4.7 Chemical impurities in concentrated Aristar Hydrochloric acid 

and Aristar Nitric acid (BDH Laboratory Supplies, 1998) 

CHEMICAL ARISTAR HC4, v 
MAXIMUM LIMITS 

OF IMPURITIES 
AFTER IGNITION 

(PPM) 

ARISTAR HNO3(, q) 
MAXIMUM LIMITS OF 

IMPURITIES AFTER 
IGNITION (PPM) 

Phosphate and silicate (as P04) 0.1 0.1 

Sulphate (SO4) 0.2 0.5 
Aluminium (Al) 0.005 0.02 
Arsenic (As) 0.005 0.005 
Cadmium (Cd) 0.003 0.005 
Calcium (Ca) 0.005 0.05 
Chromium (Cr) 0.005 0.01 
Cobalt (Co) 0.005 0.005 
Copper (Cu) 0.002 0.005 
Iron (Fe) 0.1 0.2 
Lead (Pb) 0.002 0.005 
Magnesium (Mg) 0.005 0.01 
Manganese (Mn) 0.005 0.005 
Mercury (Hg) 0.001 0.001 
Nickel (Ni) 0.005 0.005 
Potassium (K) 0.001 0.01 
Sodium (Na) 0.005 0.1 
Strontium (Sr) 0.005 0.01 
Tin (Sn) 0.05 0.1 
Vanadium (V) 0.01 0.01 
Zinc (Zn) 0.005 0.01 
Ammonium (NH4) 0.5 ---- 
Barium (Ba) 0.005 ---- 
Molybdenum (Mo) 0.005 ---- 
Free Chlorine (Cl) 0.5 ---- 
Bromide and Iodide (Br) 50 ---- 
(as sulphates) 5 
Gold (Au) ---- 0.01 
Silver (Ag) ---- 0.01 
Chloride ---- 0.1 

Bold characters are especially relevant to later chemical analysis. 
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4.2 EQUIPMENT 

i 

Figure 4.3 Z-blade mixing equipment prior to cleaning and acid washing 

Prior to each mix all clay was cleaned from the mixer and the mixer washed 

with a 50% dilution of acetic (ethanoic) acid, a weak acid. HNO3(aq) would have been a 

more satisfactory cleaning agent, however, it was important not to damage the 

stainless steel construction of the mixer or potentially the mixer bearings. After acid 

washing, the mixer was rinsed with RO water twice and finally with ICP water. 

Compaction was performed via two methods. Preliminary optimum water 

content compaction curve tests for the clay lime mixes were performed using a 

standard mechanical proctor compaction machine. The finalised mixes were 

compacted using a standard hand held 4.5kg hammer due to the dimensions of the 

compaction moulds (see note on Figure 4.3). 
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4.2.1 Sample mixing and compaction equipment 

All clay, contaminant and lime samples were mixed together using the z-blade 

mixer illustrated in Figure 4.3 



4.2.2 Chemical measurement 

4.2.2.1 Batch test equipment 

The batch testing equipment was based on the end over end mixer design of the 

ASTM Designation : D3987-85 Standard Test Method for Shake Extraction of Solid 

Waste with Water (ASTM, 1988). The mixer was designed to rotate 6x21 containers 

(a total mass of approximately 15kg) end over end about their centroid at speeds 

variable from zero to 300rpm within a cold room environment set at 11.5°C ± 0.5°C. 

The details of the constructed mixer are illustrated in Figure 4.4. 

2 litre, wide neck 
fluorinated 

Variable HDPE container 

speed motor with polypropylene 

Figure 4.4 Constructed batch test mixer 

Model 81-72 
Ross 'Sure-flow' 
Combination pH 
Electrode with 

glass body 

The 21 containers used in conjunction with the mixer during the batch tests 

were Nalgene fluorinated high-density polyethylene (FHDPE) with wide necks and 

leak-proof polypropylene lids, specifically designed as short-term leaching containers. 

These were supplied by Fisher Scientific of Loughborough. Ideally Teflon containers 

would have been used for all testing, however cost was inhibitive since 18 containers 

were required to carry out the daily testing programme. 
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The batch mixer was located and run in a cold room especially constructed for 

the purpose of this testing programme. The dimensions of the room were 3m wide by 

8m long by 3m high. The cold room plant consisted of an evaporator, a condensing 

unit, a thermostat to control the temperature and a clock to control the periodic 
defrosting of the condensing unit. This unit was designed to maintain a temperature 

range capability of 0°C-16°C when placed in a laboratory environmental air 

temperature of 16°C-34°C with lighting and mechanically induced heating loads. 

Design and installation was carried out by T. S. Refrigeration of Leicester. 

4.2.2.2 pH and conductivity measurement 

pH measurement was performed throughout using an Orion 520A pH meter 

supplied by QuadraChem Laboratories Ltd., East Sussex, in conjunction with a series 

of three Model 81-72 Ross `SURE-FLOW' combination electrodes with glass bodies. 

The three electrodes were used in a rotation cycle dependent on the electrode cleaning 

requirements. All electrodes were cleaned according to the manufacturers instructions, 

however after use in Wyoming Bentonite based sludges, it was necessary to stand the 

electrode in `Triton X' (a strong detergent) to remove residue and to keep the 

electrode within the required operating parameters. The probe was classified as being 

within operating parameters when the probe measured OmV ± 35mV when placed in 

pH 7 buffer solution. Probes were calibrated prior to each measurement using three 

buffers pH 4.0, pH 7.0 and pH 9.2. Fresh buffers were used each day to ensure 

consistency of measurement. Before the pH buffers were used they were left in the 

cold room to achieve the correct temperature. These electrodes had a pH range of 0- 

14 over a temperature range of 0- 100°C. They were particularly recommended for 

use at pH>12 or <2 and had superior performance in `dirty', difficult environments 

such as soil suspensions, sludges, colloids, viscous, and organics (Orion, 1998). For 

convenience, in conjunction with the pH electrodes, an Orion model 917005 epoxy 

construction automatic temperature compensation probe was. used to correct pH 

readings to the equivalent pH at 25°C. 

The conductivity meter used in all testing was a Hanna Instruments HI 9033 

Multi-range conductivity meter with automatic temperature compensation. 
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4.2.2.3 Solution separation techniques and ICP analysis 
All solutions created by the batch tests and acid digestion tests requiring 

filtration were filtered through 150mm diameter Whatman No. 542 Hardened Ashless 

Filterpapers. All funnels and conical flasks used in this process were of plain 
borosilicate glass construction. Where filtration was not possible or not completely 

satisfactory, centrifuging was used. Where centrifuging was utilised, acid washed 

Nalgene Oakridge 50m1 capacity Polysulfone centrifuge tubes were used. These were 

proved to be the most resistant to very high pH conditions. Although Teflon tubes 

have a higher resistance to the chemical attack, they must be used in a cooled 

centrifuge not available for this research. The centrifuge itself was a Hettich Universal 

3 0F with an operating range of 0-11000 revolutions per minute (rpm). 

All filtered solutions created for chemical analysis were stored in acid washed 

Nalgene 125ml capacity FHDPE wide necked bottles and stored in a cold room at 

4± 1°C. No sample was stored for longer than 48 hours before chemical analysis. All 

solution chemical analysis performed (unless stated otherwise) was to determine the 

soluble concentrations of Ca, Pb, Fe, Al, Si, Mg, Mn, and Na. This was achieved 

using an Atom Scan Inductively Coupled Argon Plasma Atomic Emission 

Spectrometer supplied by Thermo Jarrell Ash, and is illustrated in Figure 4.5 

4.2.3 Physical analysis equipment 
Liquid and plastic limits were carried out using the cone penetrometer 

equipment illustrated in Figure 4.6 and to an adapted British Standard methodology 

described in Section 4.6. 

4.3 MATERIALS CHARACTERISATION 

To establish a clear and successful programme of research it was essential to 

characterise the behaviour of the materials being used. Much of the chemical and 

mineralogical information has been obtained from the respective manufacturers and 

suppliers. The testing of other physical and chemical properties as well as general 
initial material preparation will be discussed in detail below. 
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Figure 4.5 Computer controlled inductively coupled argon plasma atomic 

emission spectrometer 

Figure 4.6 Liquid and plastic limit analysis equipment 
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4.3.1 Lime requirement 
The initial consumption of lime (ICL) test was performed to BS 1924 (BSI, 

1990A). The test was developed by Eades and Grim (1966) and is based on the 

philosophy of adding sufficient lime to a soil to satisfy cation exchange capacity of the 

soil and satisfy all initial or short-term reactions yet still provide enough lime and a 
high enough pH to sustain the strength-producing lime-soil pozzolanic reactions 

(Little, 1995). The ICL test was performed on each of the two clays and the ICL 

values obtained were the basis for all mix designs for optimum stabilisation and 

solidification of uncontaminated English China Clay and Wyoming Bentonite. The 

quantity of lime determined by the ICL test on the uncontaminated minerals was also 

added to the contaminated samples. This provided the datum from which the effects of 

addition of contaminants were assessed. Variations in physical and chemical behaviour 

depend on the concentration of calcium and hydroxide ions and since the addition of 

contaminating metal cations may reduce the quantity of hydroxide ions in solution 

through precipitation reactions, the differences observed were significant. The 

concentration of calcium ions affects the degree of. cation exchange which can occur 

and since cation exchange is involved in the initial modification reactions this was also 

significant. Hence it was very important to add the same quantities of lime to both 

contaminated and uncontaminated samples to be able to compare results. Lime was 

added to an uncontaminated clay based on a percentage of the dry mass of the 

uncontaminated clay. Where lime was added to a contaminated clay this percentage 

was added based upon the combined dry mass of clay and contaminant. The error 
incurred was small as the mass of contaminant was only small (20g of contaminant in 

4000g of clay). 

The initial consumption of lime test (ICL) was performed in accordance with 
BS 1924 for English China Clay and an adapted method for Wyoming Bentonite. This 

was because the inherent physical swelling characteristics of Wyoming Bentonite on 

addition of water made it impossible to carry out the test by adding only 100ml of 

water to 20g of Wyoming Bentonite. In order to obtain a solution whereby the pH 

could be determined it was necessary to perform the tests at much higher solid to 

liquid ratios. The tests were repeated as described by BS 1924 but at a range of solid 

to liquid ratios, including 20g : 300ml, 20g : 520ml and 20g : 1000ml. Although it was 

evident at specific lime contents that lower solid to liquid ratios resulted in lower pH 
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values as predicted by the equation for pH (Equation 4.1), the maximum pH plateau at 

each of these solid to ratios occurred within half of one percent percentage lime 

addition. 

pH = -Loglo[Wconcentration (mole/dm3)] Equation 4.1 

On this basis a close approximation of the optimum lime content was 

determined. Rogers et al (1997) investigated in detail the effects of solid to liquid ratio 

on the ICL value. 

4.3.2 Compaction 

Compaction control was considered to be an influential factor in this study 

because it affected the interpretation of virtually every aspect of the physical and 

chemical testing hereafter. The compaction of materials containing a variety of 

inorganic compounds created a situation with conflicting interests in respect to test 

data comparison. In the final application of this treatment method in situ, the aim of 

compaction is to maximise density and therefore minimise voids and permeability. 

Based on this hypothetical ideal, the first and most appropriate condition for a 

contaminated site would be to determine the optimum compaction conditions for each 

specific soil condition and contaminant condition. The addition of a single anion or 

cation in solution can have a large effect on the level of compaction of a clay. This 

behaviour is dependent on the chemical structure of the mineral. If the mineral has the 

capacity for cation exchange, which is the case for Wyoming Bentonite, flocculation of 

particles may occur. Investigations of the addition of lime to clays frequently refer to 

this phenomenon as modification. It is also reasonable to suggest that the development 

of the pozzolanic reactions over various curing times are affected by the initial 

compaction conditions, since this has direct influence on particle spacing and 

subsequently crystallisation reactions. 

For a standard compactive effort at the optimum water content an optimum dry 

density of 1200kg/m3 was achieved for Wyoming Bentonite alone whereas on the 

addition of 2.5% lime an optimum dry density of 1070kg/m3 was achieved. The 

compactability issue was complicated further on the addition of lime with Fe 3+(, 
q) and 

Pb2+( cations due to the precipitation of the insoluble metal hydroxides and increased 
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flocculation. In the context of this research, a varying level of compaction for each 

clay, each lime content, each contaminant and all the associated mix combinations of 

these would have made comparison of physical and chemical data difficult. 

In order that the time-dependent effects of the contaminants on the lime- 

stabilised clays could be determined the optimum water content for a specific 

compactive effort was determined for each of six clay and lime mixtures not 

accounting for the effects of the added contaminants. This resulted in six optimum 

water contents. When Pb" or Fe3+ ions were added to these six mixtures, the optimum 

water contents of the respective uncontaminated sample was used, thus allowing for 

direct comparison of the effects of contaminant addition. 

Two compaction test methods were adopted to determine the compaction 

characteristics of the clay lime mixes. The first method was performed in accordance 

with BS 1377 (BSI, 1990B). This method was used solely for English China Clay with 

no added lime or contaminants. An automatic compaction machine set for a 11 

`Proctor' mould and a 50mm diameter circular faced 2.5kg hammer falling 300mm, 27 

times on each of the three compaction layers in the 11 mould was employed for this 

purpose. This resulted in a compactive effort of 596 kJm 3 being applied. 

As previously discussed the addition of lime causes a chemical reaction with a 

clay mineral changing its physical properties. The initial modification is almost 

instantaneous and further reactions are time-dependent. To obtain the compaction 

characteristics of this modified clay the time between mixing the lime with the 

hydrated clay and the moment the mix is compacted had to be accounted for. 

Additionally re-use of this modified clay after a single compaction was not appropriate 

since properties were changing within seconds to minutes of mixing. Hence to obtain a 

series of dry density and water content relationships the clay water content had to be 

adjusted prior to the addition of lime. For these reasons an adaptation of BS (1377) 

was performed on mixes of both English China Clay and Wyoming Bentonite where 
lime was added. This adapted method was also used for Wyoming Bentonite with no 

added lime or contaminants. It was found that water added to previously hydrated 

Wyoming Bentonite would not mix thoroughly due to the hydrated clay agglomerating 
into large pieces with the additional water acting only to lubricate the movement of this 

mass around the inside of the mixer. The following mixes were investigated with the 

adapted method. 
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" English China Clay with 0.5% lime, 

" English China Clay with 1.5% lime, 

" English China Clay with 2.5% lime, 

" Wyoming Bentonite with no added lime, 

" Wyoming Bentonite with 2.5% lime, 

" Wyoming Bentonite with 7.0% lime, and 

" Wyoming Bentonite with 10.0% lime. 

In all cases the percentage lime addition was based on the dry mass of clay 

present. The initial consumption of lime (ICL) values for English China Clay and 

Wyoming Bentonite were 1.5% and 7% respectively. In both cases a lime content 

both higher and lower was chosen with 2.5% lime allowing direct comparison of water 

content-compaction characteristics of both clays. 
The method for the above stated mixes was varied from BS1377 in the 

following ways : 

1. Twenty four hours prior to compaction testing, the unhydrated clay to be used in 

testing was placed in a sealed polythene bag to prevent water loss or gain and a 

sample taken for water content analysis. 

2. The equivalent of 4kg dry mass of clay (to the nearest 0.01g) was placed in the 

mixer with the required mass of water to achieve the desired water content for 

compaction. 

3. The sample was sealed in the mixer to reduce loss of water from evaporation and 

thoroughly mixed for 20 minutes. If lime had not been added, the sample was then 

mixed for a further 20 minutes. If required, lime was evenly distributed over the 

mixing clay in the desired percentage, and allowed to mix for the further 20 

minutes. 
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4. Water content was measured prior to performing a compaction test according to 

BS1377. Over a ten minute period, the clay was broken into 20mm pieces and the 

compaction test was performed. At the end of the test a further measurement of 

water content was made and compared with that immediately prior to mixing to 

evaluate losses due to evaporation throughout the test. 

5. The mixer was cleaned and washed with single distilled water, dried and a new clay 

sample added. 

6. Steps 1 to 5 were repeated continuously at incremental values of water contents 

until the relationship between water content and dry density was observed. 

4.3.3 Levels of contamination _ 
Literature illustrates that contamination can be present in hugely varying 

concentrations from hundreds of parts per million to tens of thousands of parts per 

million. A level of 5000ppm of contamination was chosen primarily because 5000ppm 

would react with significant quantities of hydroxide ions and because of the risk 

associated in using higher levels in the laboratory. The large effects due to flocculation 

on Atterberg Limits and shear strength due to small additions of ions such as Ca2+ ions 

are highlighted by Anson & Hawkins (1998). This highlighted that a concentration of 

5000ppm of contamination would have a significant effect on measured properties. 

The quantity of contaminant was added based on a mass of Fe3+ ion and Pb2+ ion to dry 

mass of clay basis and not based of the equivalent number of moles of Fe3+ ion to Pb2+ 

ion for the following reasons : 

1. Lead is very toxic via ingestion, inhalation and absorption through the skin, hence it 

was not desirable to use unnecessarily high quantities in the laboratory. 

2. The resulting varying amount of positive charge from adding 5000 ppm Pb2+(,, and 

5000 ppm Fei+(aq)would provide useful information regarding the varying effects of 

OH'(4 removal from the system hence the effects on the initial and longer-term 

time-dependent strength increases brought about by lime addition. Ultimately this 
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could indicate whether the initial increase in strength is truly due to cation exchange 

and that subsequent strength increase is due to the production and crystallisation of 

calcium-aluminium-silicates. 

3. The cost of adding the mole equivalent of each ion was inhibitive. 

4.4 LABORATORY `FULL-SCALE' SAMPLE PREPARATION 

4.4.1 Introduction 

The high cost of the contaminants required that the quantity of clay in each mix 

was not significantly greater than that required to fulfil the test requirements for that 

particular mix. A proportion of each mix combination of lime, clay and contaminant 

was to be tested on twelve occasions; four batch tests with varying operating 

parameters repeated at three different curing periods. The ASTM D3987-85 Standard 

Test Method for Shake Extraction of Solid Waste with Water (ASTM, 1988) 

recommended batch test containers should be between 80% - 90% full by volume. 

Knowing the volume of the containers the solid to liquid ratio of each batch test and 

the relative densities of each of the compacted clay-water-contaminant and lime mixes 

it was possible to calculate precisely the required mass of sample for each batch test. 

This enabled detailed planning and calculation of costs. Sixteen kilograms of each mix 

design were required to fulfil the test requirements. Limitations in the number of batch 

tests physically possible in a single day required six batch tests on each of four 

consecutive days. This combined with the limited four kilogram mechanical mixer 

capacity led to four mixes of the same mix design compacted into four separate 

compaction tubes over a four day period. Although this could not have been avoided, 

the clear disadvantage was the potential for slight variations in mix quantities of clay, 

contaminant and lime. 

4.4.2 Contaminant preparation 

In order to achieve a consistent level of mixing of the clay and contaminant, the 

contaminant was added as a solution. To simplify addition of contaminant solutions to 
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the clays bulk quantities of the required solutions were prepared such that each 200m1 

of ICP water contained 20.0000g ± 0.0001g of either the Fe3' or Pb2+ ion. 

4.4.3 Clay-contaminant-lime mix preparation 
The full-scale testing samples were prepared and compacted in a similar manner 

to that described in Section 4.3.2. This was performed as follows : 

1. Approximately 4kg of untreated clay of known water content measured to ± 0.01 g 

was placed in the mechanical mixer (see Figure 4.3). 

2. The mass of water to be added to achieve the required water content for 

compaction was calculated. If a contaminant was not to be added to the mix, this 

mass of ICP water was added to the clay and mixed for 20 minutes. Where 

contaminant was added to the mix, the effective dry mass of clay in the mixer was 

calculated and the required mass of contaminant ion to be added to the effective dry 

mass of clay to achieve the required 5000ppm contaminant to dry clay ratio 

calculated. The volume of contaminant solution was then calculated along with the 

extra ICP water needed to achieve the required final clay water content for 

compaction. The volume of contaminant solution to be added was measured 

precisely using pipettes and burettes. The contaminant solution and the extra ICP 

water were mixed together and added to the clay in the mechanical mixer and mixed 

thoroughly for 20 minutes. After this period a sample of the mixture was taken to 

measure water content and the remainder removed from the mixer and sealed in 

polythene bags for 24 hours at 11.5°C ± 0.5°C to allow for any cation exchange or 

adsorption to occur. Where a contaminant was not added, these samples were also 

stored for 24 hours at 11.50°C ± 0.5°C to ensure consistency in the methodology. . 

3. After 24 hours storage and cleaning of the mixer, the mass of the bag and clay was 

measured and the contents of the bag placed in the mixer again. Measuring the 

mass of the emptied bag allowed the precise mass of the clay in the mixer to be 

calculated. Using the measured water content of the clay in the bag the effective 

dry mass of clay and contaminant in the mixer was calculated. Based on this 
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effective dry mass of clay and contaminant, the required mass of lime to be added 

was calculated. This mass of lime was evenly distributed over the mixing clay 

mixture and allowed to mix for 20 minutes. In the event that lime was not added, 
the sample was still mixed for 20 minutes. Where contaminants were added the 

lime added to the mixture was based on the combined dry mass of clay and 

contaminant because in the field the precise mass of contamination may not be 

easily assessed from one region to another. 

4. The sample mixes were broken into pieces of 20mm or less and compacted into pre- 

weighed twin wall HDPE pipes 2% wet of the optimum water contents measured in 

the preliminary compaction tests under the compactive effort of 596 Um3. The 

precise details for the compaction of the full-scale samples is illustrated in Table 4.8. 

5. The compacted samples were trimmed and the material density determined. The 

samples were sealed to the atmosphere by pouring molten paraffin wax at 40 ± 

5.0°C on each end of the sample in the mould and allowing it to solidify on cooling. 

The samples were stored at 11.5°C ± 0.5°C until required for testing at each of the 

three time-dependent curing periods, 7days, 175days and 301days. The process was 

repeated for the three other mixes of the same clay, contaminant and lime 

proportions and then for all other mix specifications. One sample preparation was 

carried out on each of 72 days to allow for consistency of curing period when 

samples were batch tested on 72 consecutive days for each of the three curing 

periods. Hence mixing occurred over 72 consecutive days and batch testing over 
216 days. Figure 4.7 illustrates one of the standard compacted samples waiting for 

shear strength determination and subsequent extraction for batch testing at 301 days 

after initial compaction. 
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Figure 4.7 Compacted sample for full scale laboratory testing 

4.5 BATCH TESTING 

The aim of batch testing was to measure changes in the concentrations of the 

water soluble contaminants, lime and elements from the clay structure due to the time- 
dependent lime reactions. To assess the effect of the batch test parameters on the 

changes in concentration of soluble elements a series of batch tests with varying 

operating conditions were performed. 

4.5.1 Pre-batch test clay analysis via acid digestion 

Prior to initiation of the batch tests it was necessary to determine the most 
important chemical elements involved during the lime reactions and assess which 

elements were most likely to be released into solution during the whole batch-testing 

schedule for all mix designs. This was important due to the very high financial and 

time cost of ICP analysis. Clearly soluble Ca, Fe, and Pb had to be measured since 

their reactions within the clay environment were of immediate interest. To determine 
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the other significant elements for analysis a very aggressive series of acid digestions 

were performed on three samples of each uncontaminated untreated clay using a 

mixture of nitric and hydrochloric acids. One sample was acid digested once, another 

acid digested twice and the third acid digested three times. Comparison of data from 

these three samples determined the most appropriate number of acid digestions for 

future tests to determine the total acid soluble fractions. Complete digestion and 

analysis of the clay was not possible since this would have required the use of 

hydrofluoric acid to dissolve the silicates and aluminates. This compound was banned 

from the laboratory due to its health and safety implications as well as the fact that it 

can only be used in conjunction with laboratory equipment constructed from Teflon. 

The methodology of the acid digestions was determined by a laboratory approved 

method, since resulting solutions would be passed through the ICP analysis equipment: 

1. Approximately Ig of oven dried (105 ± 0.5°C) clay measured to 0.1mg was 

placed into each of three acid washed glass conical flasks. 

2. Approximately 40m1 of ICP water was added to each of the flasks. 

3. Via a pipette precisely 2.7ml of Aristar concentrated HCl and 1.3ml of Aristar 

concentrated HNO3 were added to each of the three conical flasks. 

4. Further ICP water was added until the total volume of each flask was 

approximately 50ml. 

5. An acid washed stirrer magnet was added to each flask and the flasks placed on 

a heated magnetic stirrer in a fume cupboard where the samples were allowed to 

simmer gently, gradually evaporating the solution until only 5ml of solution 

remained in the flask. 

6. Approximately 40ml of ICP water was added to each of the three flasks. One 

sample was gently warmed and filtered into a volumetric flask. 

7. Stages 3,4,5 were repeated for the other two samples. 

8. Approximately 40m1 of ICP water was added to each of the flasks. Again one 

sample was gently warmed and filtered into a volumetric flask. 

9. Stages 3,4,5 and 8 were repeated for the final flask. 

10. The residues of each sample were all rinsed into the volumetric flasks with ICP 

water and the volume made up to precisely 100ml or 200ml. 

11. Samples were shaken and stored at 4±0.5°C until ICP analysis. 
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12. Stages 1 to 11 were repeated for the other clay type. 

The ICP analyser (Figure 4.5) was standardised (calibrated) using three 
`multiquant' solutions to analyse the solutions produced from the above acid 
digestions, which enabled the system to rapidly test the concentration ± 20% of several 

elements. The elements included: Mg, Al, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, 

Ag, Cd, Ba, Hg, Pb, Bi, Li, Ti, Be, V, B, Sn, Na, Zr, P, K, Mo, and W. Based on an 

analysis of the acid soluble concentrations of these elements from the clay minerals, the 

following eight elements were considered significant and included in the ICP analysis 

of batch test solutions: Fe, Pb, Ca, Na, Si, Mg, Al and Mn. 

4.5.2 Batch testing methods and undrained shear strength measurements 

Each batch test was performed on a daily basis in the order in which the 

samples were created, thus allowing each sample to be tested at exactly the same time 

interval after initial mixing and compaction. The batch tests were performed on 4 

samples of each design mix detailed in Table 4.8. Each of the four compacted samples 
from each of the 9 mix designs were allocated to one of the following set of batch 

testing parameters: 

"6 hour test duration, 30 rpm mixer rotation speed, 

" 24 hour test duration, 30 rpm mixer rotation speed, 

"6 hour test duration, 60 rpm mixer rotation speed, and 

" 24 hour test, 60 rpm mixer rotation speed. 

Once allocated to one of the series of parameters, the sample was tested under 

these parameters for each of the three time periods i. e. 7 days, 175 days and 301 days. 

Due to the limited availability of time during one day, only one mixer could be 

operated on a daily basis, hence, one set of the above mentioned parameters were 

tested each day. The mixer illustrated in Figure 4.4 was therefore designed to hold six 

containers to test the following material parameters under each of the 4 batch test 

mixing parameters: 

" 10mm solidified cubes, 1: 10 solid to liquid ratio (0.170kg of dry solid), 

" 20mm solidified cubes, 1: 10 solid to liquid ratio (0.170kg of dry solid), 
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" 10mm solidified cubes, 1: 20 solid to liquid ratio (0.090kg of dry solid), 

" 20mm solidified cubes, 1: 20 solid to liquid ratio (0.090kg of dry solid), 

" 10mm solidified cubes, 1: 40 solid to liquid ratio (0.045kg of dry solid), and 

" 20mm solidified cubes, 1: 40 solid to liquid ratio (0.045kg of dry solid). 

After 301 days (approximately 10 months), only the samples previously tested 

in 6 hour 30rpm and 24 hour 30 rpm batch tests were tested for a third time. This was 

carried out to free time for other tests and reduce costs. 

Twenty four hours prior to a batch test, the water content of the sample was 

assessed from the residues of a series of three shear vane measurements taken on the 

sample prior to extraction. The shear vane tests were performed in accordance with 
BS 1377 (BSI, 1990B) with the exception of the requirements for depth of vane 

penetration and the spacing of measurements. Unfortunately each plastic mould 

contained the samples to be tested at three time periods, subsequently limiting the 

available depth of penetration of the shear vane to 40mm. The spacing suggested by 

the standard for a circular mould was also not followed since this would have 

significantly disturbed a large proportion of the sample required to remain in tact for 

the batch tests. This made it impossible to follow the precise British Standard test 

method, although the approach remained consistent throughout. The method is 

illustrated in Figure 4.8. 

After performing the strength test one third of a compacted sample was 

removed in one circular piece by cutting the tube and sample with a high tensile 

strength stainless steel wire. The removed sample was stored in a sealed plastic bag 

over night and the remaining compacted sample in the plastic tube was re-sealed with 

paraffin wax. Both the removed and re-sealed samples were stored in the cold room at 

11.5°C ± 0.5°C. 

On the morning of a batch test the solidified sample was cut using a stainless 

steel cheese wire and a scalpel into 10mm and 20mm cubes. The six 21 containers 

were filled with the required amount of wet material of the appropriate cube size to 

achieve the desired dry mass content to a precision of 0.01g. The mass of water in the 

solid material was calculated and further ICP water was added to achieve the desired 

dry solid to liquid ratio. To ensure that the material remained at 11 ± 0.5°C desired for 

the test, the added ICP water was stored at 11 ± 0.5°C over night prior to addition to 
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the 21 containers. The containers were then placed in the mixer in Figure 4.4 and the 

test initiated. During the 6 hour tests the mixer was stopped every hour for 10 minutes 

whilst pH and conductivity of the six samples was monitored. During 24 hours tests 

the mixer was stopped every 2 hours for the first 6 to 8 hours to monitor pH and 

conductivity. The 24 hour tests were then allowed to run over night and pH and 

conductivity measured at the end of the test. At the end of the test the samples were 

left undisturbed for 10 minutes and approximately 200m1 of solution filtered through 

Whatman 542 hardened ashless filter papers. It was clear that all English China Clay 

solids separated easily from the solution making filtration the most favoured method of 

separation. However, Wyoming Bentonite exhibited a high degree of physical 
behavioural variation dependent on the contaminant and lime mix designs. It was clear 

that at high lime contents and iron (III) contents the solid material flocculated allowing 

significant separation of solid from liquid, hence, filtration was the most favoured 

method to ensure uniformity in methodology. This flocculation is evident in Figure 

4.9. 
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Figure 4.8 Shear strength measurement 
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I 

Figure 4.9 Wyoming Bentonite with 7.0% lime settling after a batch test 

However, some Wyoming Bentonite mixtures required up to 6 hours filtering 

and others could not be filtered. Where filtration was possible over a long time period, 

a portion of the sample was filtered and another portion centrifuged at 11000rpm for 

30 minutes. This allowed direct comparison of the two separation methods for these 

troublesome samples. Clearly where samples could not be filtered centrifugation was 

the only option. Figure 4.10 shows an uncontaminated, untreated Wyoming Bentonite 

sample requiring centrifugation after a batch test with the liquid fraction having been 

removed. There is a distinct difference in physical characteristics when compared with 

the treated Wyoming Bentonite sample illustrated in Figure 4.9. 
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Figure 4.10. Uncontaminated, untreated Wyoming Bentonite after a batch test 

with solution removed. 

It was apparent however that certain samples and indeed certain solid to liquid 

ratios centrifuged better than others did. It was often evident that a slightly green, but 

translucent solution was produced by centrifugation. The difficulties encountered with 

centrifugation included the fact that a faster speed and duration of centrifugation was 

required to achieve complete separation of solid and liquid. A faster centrifugation 

speed was not possible due to the lack of equipment that could operate at these higher 

rotational velocities. A longer duration was also not possible since the centrifuge was 

not cooled, hence, the spinning samples generated significant heat. This could have the 

effect of changing the chemistry and the separation properties of the solid and liquid 

fractions and also caused distortion and on several occasions disintegration of the 

centrifuge tubes. Furthermore, it was not desirable to add a flocculating agent since 

this would clearly alter the chemistry of the material rendering the resulting chemical 

analysis difficult to interpret. Subsequently all samples were centrifuged at the same 

speed and duration. Therefore the degree of solid and liquid separation of the 

centrifuged samples was directly dependent on their respective physico-chemistry and 

the results could be interpreted on a relative basis and be related to physical behaviour. 
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All sample solutions were stored in 200m1 fluorinated HDPE bottles at 4± 

0.5°C for no longer than 24 hours at which point the samples were analysed by ICP. 

Precisely 1/2m1 of concentrated Aristar nitric acid was added to every 100m1 of sample 

to reduce the pH and preserve the sample. Acid was not added to centrifuged samples 

since the small quantities of mineral present reacted violently with acid and the low 

storage temperatures to produce a gelatinous material which could not be passed 

through the ICP analyser. 

During the third batch testing period (301 days), where possible, due to the 

constraints of material properties linked to mix design, the residues of samples from 6 

hour 30 rpm tests, IOm and 20mm cube size, and 1: 10 solid to liquid ratios were wet 

sieved. The solid retained on a 631im sieve was oven dried at 105 ± 0.5°C and acid 

digested twice according to the method described in Section 4.5.1, and precisely 

analysed by ICP for the eight significant elements discussed in Section 4.5.3. 

During a four day testing period where batch tests were being performed on 

samples of the same mix design the 2 litre batch containers were simply washed and 

rinsed several times with ICP water and allowed to air dry prior to use the next day. 

However, after four days testing when the mix design changed a new set of acid 

washed containers were used, whilst the other used containers were acid washed. 

It should also be noted that all liquids, wet solids, or sludges resulting from the 

preparation of sample mixes or produced from the batch tests or other related tests 

were concentrated into a dry solid by evaporating the liquid in a fume cupboard. The 

resulting solid material was sealed and stored in heavy duty plastic bags prior to 

disposal in landfill by the University Health and Safety Organisation. Each week a 

volume of approximately 100 litres of contaminated sludge was disposed of in this 

manner. 

4.5.3 Inductively coupled argon plasma atomic emission spectrometer analysis 

Based upon the results of the initial ICP `multiquant' analysis of the acid 

digested samples (detailed in Section 4.5.1) an estimation of the likely elemental 

release concentrations from the batch tests was made. Hence a program was written 

for the ICP spectrometer which was standardised to search for elements in solution at 

or below the following concentrations: Fe (10.00ppm), Pb (10.00ppm), Ca (10.00ppm 
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and 100ppm), Na (10.00ppm), Si (5.00ppm), Mg (10.00ppm), Al (2.00ppm), Mn 

(1.00ppm). Although not all solutions could be filtered or collected from each batch 

test sample, it was still possible to quantitatively analyse a small representative fraction 

of the solution. In determining the elemental concentration, the ICP spectrometer 

control system assumes that the sample analysed comes from a sample of I litre in 

volume, hence, it is a simple calculation to determine what the actual value is for the 

particular volume of liquid present in each batch test solid to liquid ratio. 

Where an element concentration was significantly below the level for which the 

equipment was standardised, the level of element detected was usually slightly 

overestimated or alternatively described as below detection limits. For example, if a 
10ppm Ca solution was tested with the above mentioned program, the 10ppm Ca 

standard would produce a result of 10ppm Ca whilst the 100ppm Ca standard would 

produce a result of approximately 12ppm. This behaviour varied slightly from one 

element to another due to variations in the wavelengths emitted and subsequently 

detected for each specific element under analysis. Where a sample solution contained 

more of an element than the spectrometer was standardised to detect the concentration 

was usually underestimated or described as saturated. To overcome this problem the 

ICP analyser was programmed and standardised to detect higher concentrations. 

However, for each specific element there is a specific maximum concentration that can 
be detected for a specific wavelength. Usually there were two or three wavelengths 

that could be used for each specific element, each with a higher or low detection 

concentration capability. The difficulty associated with changing the detected 

wavelength for a specific element was that some wavelengths interfered with each 

other potentially producing rogue results. Hence, it was important to check the 

manufacturers instructions for information regarding wavelength interference of one 

element relative to another and balance this factor with the required range of maximum 

and minimum detection limits. One solution to the problem of very high 

concentrations of a specific element was to precisely dilute the sample to a 

concentration that was easily within the detection range of a wavelength that did not 
interfere with a wavelength of another element. Hence, when samples varied 

significantly from one batch test to another it was often necessary to analyse a sample 

three or four times at several dilutions to obtain precise concentrations of all the 

elements required. 
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4.5.4 Sample mix acid digestions after 301 days curing 
After 301 days 1 sample from each of the 18 mix designs along with 1 

quicklime sample and each of the untreated unhydrated clays was dried at 105±0.5°C 

for 24 hours, crushed with a pestle and mortar and acid digested twice according to the 

method described in Section 4.5.1. The samples were precisely analysed by ICP (not 

multiquant analysis approximation) for the eight selected elements. The purpose for 

this study was to check that all the contaminants were present in proportions of 
5000ppm and that no cross contamination occurred during the preparation of the mix 
designs. It was also an intention to determine whether the presence of the 

contaminants and / or lime affected the acid soluble fractions of the selected elements 
in the mix designs after a substantial curing period. Results from these tests could 

suggest mechanisms that govern long-term stability behaviour. 

4.6 ATTERBERG LIMITS 

Liquid limit and plastic limit (i. e. Atterberg) tests were performed on one 

sample from each of the 18 mix designs at the same time periods as the batch tests i. e. 

7 days, 175 days and 301 days. Samples were extracted from the same mould for each 

mix design for all three time periods to ensure direct comparability. The methods were 

'performed using the equipment illustrated in Figure 4.6 according to BS 1377 (BSI, 

1990B) with the exception of sample preparation. Due to the formation of precipitates 
in many of the mix designs it was not felt appropriate that the samples were dried in 

the oven. This would have affected the hydration of precipitates that were considered 

of potential importance with regard to crystallisation and physical behaviour. A 

particle size analysis performed on untreated clay using a sedimentation technique 

showed that 98% of English China Clay was below 15µm and 51% was below 2µm 

whilst 98% of Wyoming Bentonite was below 15µm and 84% was below 2µm. It was 

therefore clear that drying and crushing were certainly not required for samples that 

had not been solidified with lime. Where samples had solidified on addition of lime the 

samples were not dried, but were crushed at their extracted water content using a 

pestle and mortar. Once particles appeared to be approximately I mm in diameter 

further water was added to the mixture and further particle crushing was performed 
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using a strong spatula. This process was continued, often for up to 6 hours, until a 

consistent smooth mixture was created. Clearly, similarly to the plastic limit test, this 

approach to the liquid limit test was subjective and dependent on the operator. The 

test was therefore performed by the same operator to try to limit any potential 

variability in the sample preparation. 

4.7 THE POTENTIAL FOR VARIABILITY AND 

EXPERIMENTAL ERROR 

4.7.1 Introduction 

The ability to identify and reduce sources of experimental error and therefore 

maximise repeatability and confidence was as important as the fundamental concepts 

upon which the research was based. If the measured data were highly variable or were 

obtained with little or no control then it becomes invalid to base any arguments 

conclusively and therefore science has not been significantly developed by the research 

process. In one sense the concept of a sound research approach was one of the 

`foundation stones' of this project because of the relatively poor execution and / or 

reporting of preceding research. 

This section has been structured in an order that follows the progression of the 

research and highlights when and why some specific decisions were made without the 

benefits of hindsight. Within each section, an estimate of the potential error is 

provided. 

4.7.2 Initial material characterisation 
The initial particle size distribution performed using a sedimentation technique 

was important to highlight that Wyoming Bentonite had a higher proportion of very 

fine material than English China Clay. The analysis was performed by an external 

laboratory and a chemical dispersant was used to overcome the swelling properties of 

the Wyoming Bentonite. Due to the limited information provided by the laboratory it 

was difficult to assess potential error although the important factor was, not the 

absolute values of particle size determined but the relative difference between samples, 

which could affect compaction. 
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Subsequent to the particle size distribution the ICL tests were performed. The 

most likely error associated with this test was due to the variation in test methodology 

adopted for the Wyoming Bentonite assessment. Due to variations in the test the ICL 

value determined for Wyoming Bentonite was a best estimate. In the context of the 

research this was not a significant difficulty because all Wyoming Bentonite samples 

were treated with same best estimated ICL lime content. A further consideration for 

any test where the measurement of pH is important is that one pH probe design will 

give different pH measurements to another. This is due to the fact that there are 

specific probes designed to measure extremes of pH from the highly acidic to the 

strongly alkaline. To limit the `drift' in the pH scale associated with using an 

inappropriate pH probe, special probes to measure very alkaline sludges were 

purchased and prior to each pH measurement the probe was calibrated with three 

solutions of known pH, one acidic, one neutral and one alkaline. Section 4.2.2.2 

describes in detail the precautions taken when measuring pH to limit the potential for 

error. The pH probes used throughout the study had a manufacturer's stated accuracy 

off 0.01 pH divisions. However previous experience has shown that in solutions of 

high pH containing mineral particles an accuracy of ± 0.10 pH divisions was more 

likely. The fact that the pH measurements were conducted in a thermally controlled 

environment also ensured that the readings did not vary due to temperature variations. 

4.7.3 Determination of acid soluble mineral fractions and ICP analysis 

Determination of the acid soluble fractions of the treated and untreated 

minerals had several potential sources of error that were minimised. The use of very 

precise balances (accurate to ± 0.0001g), pipettes (accurate to ± 0.01ml), volumetric 

flasks (accurate to ± 0.5ml) and very expensive pure concentrated acids and B. S. 3978 

Grade 1 de-ionised water limited controllable error to insignificant proportions. If 

there had been an error of ± 0.0001g when measuring lg of sample for an acid 

digestion test this would have resulted in an error of± 0.01%. Hence for a clay sample 

containing 10000mg/kg Ca the accuracy of the measurement would be 10000mg/kg ± 

1 mg/kg. If there had been a final volumetric error oft 1 ml in a 100ml volumetric flask 

the error would only have been ± 1%. Hence for a clay sample containing 

10000mg/kg Ca the accuracy of the measurement would be 10000mg/kg f 100mg/kg. 
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Where error could have occurred was when samples were filtered through a filter 

paper that in itself contained chemical elements. However, discussion of this point 

with the manufacturers `Whatman' suggested that the problem existed for all of their 

products that were within the resource capacity of the research. Furthermore, any 
likely error would be constant throughout the research so changes in chemistry would 

still be notable and not be due to changes in the composition of the filter material. The 

company `Whatman' were unable to suggest what the likely error would be after 

passing solutions through their papers but reassuringly described it as negligible. 

The focus on the potential variability of elements from this analysis was 

therefore on the actual ICP analytical technique. Here there were many influencing 

factors. Essentially the process worked by injecting a very fine spray of sample 
(almost a gas) at a known controlled rate into very pure argon gas that had been highly 

excited (plasma). Some of the energy from the plasma excited electrons in the atoms 

of elements present in the solution to higher energy orbitals within the atom. The 

electrons were not stable in these higher energy orbitals and as a result fell to lower 

energy orbitals and in doing so emitted electromagnetic radiation of specific 

wavelengths. This resulted in the atoms of a specific element releasing one or two 

wavelengths that were only released by the atoms of that element. These wavelengths 

were detected by electromagnetic sensors and converted into an electrical signal that 

the computer showed as intensity peaks where essentially the area below the peak 

related to the concentration of the element in the sample solution. Unfortunately when 

analysing mixtures of elements some wavelengths were within a very narrow 

wavelength range and the radiation from different elements interfered with each other 

producing larger intensity peaks and consequently higher measured concentrations than 

those actually present in the sample. This was overcome in this research by choosing 

to detect wavelengths that were sufficiently separated so as not to mutually interfere. 

One potential drawback was that some wavelengths were more sensitive than others 

and could detect lower levels of the desired element. Therefore the determination of 

some elemental concentrations were precise to parts per billion whilst others were 

precise to a tenth of a part per million. The magnitude of this variability is highlighted 

in Table 4.9. 
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Table 4.9 Wavelengths measured during precise ICP analysis including 

maximum and minimum detection limits 

Element Primary detection 

wavelength / line 

(nm) 

Minimum detection 

limit 

(mg/I or mg/kg) 

Maximum detection 

limit 

(mg/l or mg/kg) 

Calcium (Ca) 393.366 0.0003 15.0000 

Silicon (Si) 251.611 0.005 250.000 

Aluminium (Al) 167.081 0.015 750.000 

Sodium (Na) 588.995 0.10 5000.00 

Lead (Pb) 220.353 0.14 7000.00 

Iron (Fe) 259.940 0.015 750.000 

Magnesium (Mg) 279.553 0.001 50.000 

Manganese (Mn) 257.610 0.003 150.000 

Once the wavelengths that did not interfere had been chosen the system had to 

be calibrated using solutions of known standard element concentration. It was 
therefore necessary to estimate the concentration of an element that was required to be 

measured, and prepare a standard to that concentration, which in itself could induce a 

small error. Standards were prepared from solutions containing 1000mg/l of the 

desired element. To create a standard of 10mg/I in a 11 volumetric flask lOml of the 

1000mg/kg standard was added to a 11 volumetric using a IOml pipette accurate to ± 

0.01 ml and the volumetric flask filled with ICP water. Therefore if there was a 

volumetric error of ± 0.01 ml in the pipette measurement this would have resulted in an 

accuracy of ± 0.1%. Hence the 10mg/1 sample would have contained 10mg/1 ± 

0.01mg/l and all samples analysed after calibration using this one elemental standard 

would have an accuracy off 0.01 mg/l. 
The calibration process essentially told the system that the area under an 

intensity plot related to a specific concentration. If the actual concentration of the 

sample was say 10 to 30% above the standard concentration the error would have been 

large because the system could not have identified this size of intensity peak. 
However, if it were 10 to 30% below the standard it was likely to be insignificant. To 

complicate matters these effects varied slightly from one element to another. Hence 
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with the initial acid digestion tests (not those performed on samples after 301 days 

curing) a `multiquant' analysis of 32 elements was performed. The standard for this 

`multiquant' test was a mixture of a few elements and the system essentially estimates 

the concentration of the other elements. The results of this test were therefore ± 30 to 

40%. However it did provide an estimate of what elemental concentrations to expect 

so that the batch test analysis could be carried out precisely. 

On the basis of the results of the multiquant testing two standard solutions 

were created for future precise analysis. One standard was created containing eight 

element concentrations and the system was programmed to analyse the wavelengths of 

these elements which would not interfere and would be suitable to analyse the batch 

test solutions. The other standard was the B. S. 3978 Grade 1 de-ionised water that 

was essentially the blank control solution. Each batch test sample was analysed by this 

programme and any element that was measured to be significantly above the standard 

concentration was either re-analysed using another standard of higher concentration or 

if the system was close to the maximum concentration detection limits the sample was 

diluted. If the analysed elemental concentration was significantly below the standard 

concentration then there was no alternative but to analyse the sample after the system 

had been calibrated with a lower standard concentration. Furthermore, the system was 

programmed to analyse each element four times and average the result as well as 

calculate the variation between each of the four analyses. To further improve 

confidence in the data and to overcome the fact that as the system temperature 

increased the results were sometimes affected, immediately after standardisation, 

during and after a series of analysis the standard was analysed against itself. If there 

was variation in the results of analysis of the standard greater than 1% (for a standard 

of I Oppm this equates to 1 Oppm ± 0.1 ppm) then the system was re-standardised and 

the previous samples were analysed again. This was clearly quite laborious but 

ensured that the main potential for error was limited to the standardisation of the ICP 

equipment. This potential for error cannot really be calculated since it varies with 

experience and from one operator to another and indeed one laboratory to another. 
This error was therefore limited or kept constant by ensuring that analysis was 

performed throughout by a single operator on the same equipment. 
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4.7.4 Preparation of compacted samples 
After completion of the acid digestion tests and analysis the preliminary 

compaction tests were performed. Perhaps the most significant source of variability 

was between the Wyoming Bentonite samples without lime addition and those with 
lime addition. The samples without lime had such a high degree of cohesion that 

frequently material would adhere to the compaction equipment. This was limited as far 

as possible by continual cleaning of the apparatus. This difficulty did not arise for the 

lime-treated samples due to the flocculation processes. It was therefore evident that all 
Wyoming Bentonite samples with no added lime would behave in a consistent manner. 

This was highlighted by comparison of the full-scale compaction results and the 

preliminary data in Figure 5.4 and 5.5. To reduce error each full-scale result illustrated 

was the average obtained from the preparation of four samples. The preliminary and 
full-scale results are very similar and the variations are predominantly associated with 

the fact that the full-scale testing samples were compacted wet of optimum and in 

some cases contained added contaminants. However, the preparation of these 

contaminated samples could contain some error, specifically in respect to the addition 

of the contaminants. Although the mass of contaminant added to the prepared 

solutions was measured to ± 0.0001g and the volume of contaminated solution added 

to the clay in the mixer was measured to ± 0.2m1 the acid digestion data of 1.0000g ± 

0.0001g after 301 days suggest that only 4200ppm of Pb was present in the mineral. 

This is a potential error of 16%. It may be hypothesised that this error is linked to 

digestion of only Ig of material and that some contaminant is retained on the organic 

molecules of the filter paper media. The latter point is highly unlikely because of the 

highly acidic nature of the filtered solution. The former point is also unlikely because 

in the one case when an arithmetic error resulted in the addition of only 2500ppm Pb, 

the acid digestion data suggested that only 2100ppm Pb was present, half the quantity 

measured for all samples. This suggested three possibilities to explain the variation. 
The first was that the standard used to measure the soluble Pb concentration was not 

significantly close to the actual soluble Pb concentration present in solution thereby 

inducing error, which was later found not to be the case. The second hypothesis was 

that the acid digestion was not sufficient to remove attenuated Pb from exchange sites 

or that Pb was incorporated in the pozzolanic reaction products. This was also 
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unlikely because exactly the same behaviour was seen for the Wyoming Bentonite with 
high permanent charge and for English China Clay with pH-dependent charge. The 

third hypothesis was that during the sample mixing phase and addition of the 

contaminant to the mixer some contaminated solution was lost onto the surfaces of the 

mixer and not incorporated into the samples. If this was the case then it would be 

likely the same effect would be seen in the Fe3+ ion contaminated samples. This was 
indeed the case and can be seen in the data when the iron present naturally in the clay 

without contamination is accounted for along with the effect due to sample dilution on 

addition of lime. For English China Clay this process resulted in an added soluble Fe 

concentration of approximately 4100ppm. This was the same level of error assessed 

for the Pb2+ ion contaminated samples. For Wyoming Bentonite the amount of soluble 

Fe added appeared to be slightly higher although it is suggested that this was due to 

partial dissolution of Fe from the clay matrix during the high pH conditions of curing 

for 301 days prior to acid digestion. 

The effect of the reduced contaminant content on the interpretation of data 

obtained from the experimentation was not important because it remained constant for 

all samples and the resulting data has been interpreted on a relative basis. 

4.7.5 Batch testing 

The potential for error in the chemical batch tests was very difficult to assess. 

All the tests were performed in precisely the same manner and all equipment was 

thoroughly washed with a nitric acid solution and rinsed with B. S. 3978 Grade 1 de- 

ionised water to eliminate cross-sample contamination. It was therefore important to 

assess the repeatability of the tests. Although no test was repeated exactly, it was 

found that tests involving changes in rotation speed and cube size were the same after 

chemical analysis of pH, conductivity and the eight selected elements. On this basis 

essentially each experiment was performed four times (two cube sizes at two rotation 

speeds). Each of these tests showed the same time-dependent chemical characteristic 
behaviour for the specific clay, contaminant and lime mix design. However, error 

could have occurred during the preparation of the tests where a mass of clay and a 

mass of water were measured. The mass of clay and mass of water added to each 
batch test container was measured to within ± 0.01g. For a batch test with a 1: 20 solid 
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to liquid ratio the mass of effective dry solid added was 90.00g ± O. Olg (± 0.01%) and 

the mass of water added was 1800.00 ± O. Olg (± 0.0006%). This level of error would 

clearly have little influence on the results of the soluble element analysis. Hence the 

estimated error in the soluble elemental results for 1: 20 solid to liquid ratio batch tests 

could be listed as follows: 

Estimated error due to test preparation ± 0.0106% 

Estimated error due to ICP calibration ± 0.1% 

Estimated error due to diluting the elements in the sample 

solution by 100 times if required (i. e. 1 ml in 100ml) ± 1% 

The maximum estimated error in the concentrations of soluble elements from 

the batch tests would therefore be approximately ± 1.2%. Analysis of a batch test 

solution resulting in a soluble Ca concentration of 100mg/l would therefore realistically 

contain 100mg/1 ± 1.2mg/l. This level of accuracy is clearly lower than the detection 

limits of the ICP equipment for any of the elements listed in Table 4.9 and was 

therefore likely to be the controlling factor in the chemical analysis of samples where 

the solid and liquid fractions were easily separated by filtration methods. 

4.7.6 Shear strength measurements 

This procedure was performed three times for each sample and because there 

were four samples of the same design mix, the final undrained shear strength value 

obtained was the average of 12 readings. Clearly by not performing the test precisely 

to British Standard recommendations the results were open to error. It was the 

relative differences between sample mixes at varying curing times that was significant 

and not necessarily the absolute value obtained. However, the maximum variation 
between any of the 12 readings at any one curing time and for any one sample mix was 
lOkPa. This result was for the Wyoming Bentonite sample contaminated with Pb2+ 

ions and with 7.0% lime added and cured for 7 days. The average undrained shear 

strength measurement for the sample was 140kPa, 5kPa below the maximum capacity 

of the shear vane, which could have accounted for the high variability observed in the 

171 



measurements. Generally the variation between the 12 undrained shear strength 

readings per mix design at any one curing time did not vary by more than ± 3kPa. 

4.7.7 Atterberg limit measurements 

Atterberg Limit tests are renowned for being highly subjective. All tests were 

performed precisely as described in the British Standards apart from the fact that prior 

to testing samples were not dried prior to crushing and performing the test. This was a 

very difficult decision to make and was an educated assessment on the likely effects of 

drying on the hydration properties of precipitated metal ions and potential changes in 

the behaviour of attenuated ions. To limit repeatability error a single person performed 

the tests. This would not only help to limit variations due to the subjective nature of 

the tests themselves but would also ensure that samples were crushed to the same 

degree by hand prior to commencing the test. Due to the fact that each test took on 

average 6 to 8 hours to perform (particularly for Wyoming Bentonite samples) and the 

fact that the tests were performed at specific curing times it was not possible to repeat 

an entire test. Purely from observation all the English China Clay liquid limit 

determinations were performed without any difficulty and there were essentially no 

deviations of the data from the linear regression line (water content against cone 

penetration). Hence the data could be interpreted with a high level of confidence. The 

same was also true of the Wyoming Bentonite samples with either added lime and/or 

contaminants. The addition of divalent and trivalent cations resulted in a material 

which was easier to mix with water and this improved the repeatability of cone 

penetrations at each water content. In contrast the untreated, uncontaminated 

Wyoming Bentonite produced highly variable results at each water content. Although 

this may have been attributed to variations in water content throughout the mixed 

sample every effort was made to ensure consistent mixing was performed. With the 

exception of the untreated, uncontaminated Wyoming Bentonite sample the estimated 

error in the liquid limit values of the other samples is ± 2%. 

Several plastic limit determinations were made on each mix design. With the 

exception of the untreated, uncontaminated Wyoming Bentonite the procedure was 

readily producing plastic limit values within ± 1% water content. In contrast English 

China Clay plastic limits were only within ± 2% water content. This was attributed to 
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the fact that the English China Clay was quite `silty' compared to the highly plastic 
Wyoming Bentonite. 

Analysis of the above discussions highlights that in the majority of cases the 
likely variability is reduced to proportions that are difficult to measure. The tests were 

performed in precisely the same way, which was likely to induce the same degree of 

variability between samples. Since the results were interpreted on a relative basis small 
levels of variability were not likely to lead to misinterpretation of the large physico- 

chemical changes observed. 
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CHAPTER 5.0 
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5.0 RESULTS 

The results in chapter 5 are divided into the following sections: 

" The preliminary characterisation of the chemical (acid digestion and ICL) and 

compaction properties of the minerals studied, 

" the effects of the chemical batch test operating parameters, including solid to 
liquid ratio, test duration, rotation speed, initial cube size and curing period on the 

pH, conductivity and leaching concentrations of elements from each of the clay- 
lime-contaminant mixes, 

" detailed results from one set of batch test operating parameters highlighting the 

important curing time-dependent trends in pH, conductivity and element release 
for each of the clay-lime-contaminant mixes, 

" the solubility of elements after acid digestions of the samples cured for 301 days, 

and 

" the changes in physical behaviour with curing time in terms of undrained shear 

strength and Atterberg limits. 

5.1 PRELIMINARY MATERIAL CHARACTERISATION 

5.1.1 Particle size distribution 

Untreated English China Clay and Wyoming Bentonite particle size 
distribution by sedimentation (illustrated in Figure 5.1) confirmed the prominence of 

clay particles (< 2µm) in the clay samples. 
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Figure 5.1 Particle size distribution of clay samples by sedimentation 

5.1.2 Acid soluble clay fractions 

The results displayed in Table 5.1 show the quantity of acid soluble elements 

present in the untreated clay minerals (± 20%) achieved by the series of acid 

digestions. The highlighted italic elements in Table 5.1 represent the most likely 

elements to yield information of value after stabilisation and solidification reactions 

relevant to this test programme. It is also apparent by inspection that the optimum 

number of acid digestions is 2. 
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Table 5.1 Aquarega soluble elements in English China Clay and 
Wyoming Bentonite. 

Element Wyoming 

Bentonite, 1 

digestion 

mg/kg * 

Wyoming 

Bentonite, 2 

digestions 

mg/kg * 

Wyoming 

Bentonite, 3 

digestions 

mg/kg " 

English 

China Clay, 

1 digestion 

mg/kg * 

English China 

Clay, 2 

digestions 

mg/kg a 

English China 

Clay, 3 

digestions 

mg/kg * 

Mg 1374±275 1333±±267 1306±±261 214±43 221±44 228±46 

Al 1793±359 1736±347 17031341 1796±360 1787±357 1780±356 

Ca 5341±1068 5256±1051 5153±1030 219±44 223±45 236±47 

Cr D D D D D D 

Mn 60±-12 66±13 56f11 8±2 11±2 14f3 

Fe 1105±±221 1070±214 10491210 626±125 683±137 757±151 

Co D D D D D D 

Ni D D D D D D 

Cu D D D D D D 

Zn 69±14 64±13 64±13 7±2 28±6 18±4 

As D D D D D D 

Se D D D D D D 

Sr 162±32 156±31 152±30 36±7 50±10 50±10 

Ag D D D D D D 

Cd D D D D D D 

Ba 81±16 78±16 85±17 110±22 152±30 171±34 

Hg D D D D D D 

Pb D D D D D D 

Bi D D D D D D 

Li D D D D D D 

Ti D D D D D D 

Be D D D D D 2±0.5 

V D D D D D D 

B 31±6 36±7 36±7 D 18±4 19±4 

Sn D D D D D D 

Na 11380±2276 1068012136 10389±2078 D D D 

Zr 69±14 68±14 62±12 728±146 707±141 668±134 

Si 2271±454 2210±442 2161±432 1547±309 1837±367 1855±371 

1' 153±31 155±31 154±31 183±37 237±47 280±56 

K D D D D D D 

Mo D D D D D D 

W 112±22 112±22 105±21 119±24 128±26 104±21 

Notes: * mg of element per kg of clay. 

D= below detection limits. 

Bold italic characters represent chosen elements. 
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5.1.3 Initial consumption of lime tests 

The results of the adapted initial consumption of lime test (ICL) on Wyoming 

Bentonite are depicted in Figure 5.2. It is evident that the ICL for Wyoming 

Bentonite lies between 5% and 8% lime addition and probably the lower end of this 

range. Figure 5.3 illustrates the results of the standard ICL test on English China 

Clay. An ICL value of 1.5% was determined for English China Clay. 
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5.1.4 Preliminary dry density-water content investigations 

The test data portrayed in Figures 5.4 and 5.5 were the basis upon which the 

main test programme clay samples were compacted, as described in Chapter 4.0. 

Figure 5.4 shows a series of dry density-water content curves for Wyoming Bentonite 

with varying additions of lime with no contaminants. The superimposed black, red 

and blue points represent the full-scale lime-treated contaminated and uncontaminated 

samples (i. e. not the preliminary compaction tests that were performed to characterise 

the materials) compacted in the twin-walled plastic pipes. Each superimposed point is 

the average dry density achieved for the four compacted samples of each sample mix 
design. All the curves and superimposed points illustrated in Figure 5.4 show clear 

trends. The dry densities measured represent samples compacted immediately after 

mixing and it is clear that the optimum dry density for this specific compactive effort 

reduces on the addition of lime. However, it is interesting to note that the optimum 
dry density appears to increase as a higher percentage of lime is added and this also 

corresponds to slightly lower optimum water contents as the lime content increases. 

This trend appears to continue above the optimum 7.0% lime content. The 

superimposed full-scale dry densities also reflect these trends. 

The full-scale dry densities achieved for the 2.5% and 7.0% lime-treated 

samples coloured blue and red respectively in Figure 5.4 also highlight trends 

dependent on the contaminant present. In both these cases the Fe3+ ion contaminated 

samples produce higher dry densities than the Pb2+ ion contaminated samples which 

are higher than the uncontaminated samples. However, the uncontaminated sample 

produces a higher dry density than the Pb2+ ion contaminated sample for the samples 

not treated with lime. In all cases it is evident that all the final full-scale testing 

samples did not quite achieve the dry densities observed in the preliminary 

compaction tests. This is likely to be due to the fact that these samples were 

compacted 2% wet of optimum to reduce the permeability. 
Figure 5.5 illustrates similar curves and superimposed full-scale dry density 

information for English China Clay. Again when lime is added the optimum dry 

density decreases. However, unlike Wyoming Bentonite samples, as the lime content 
increases the optimum dry density appears to decrease with a corresponding increase 
in the optimum water content. It is also clear that the sample treated with 2.5% lime 

produces similar values to the optimum 1.5% lime content. These trends are also 
evident in the full-scale samples. With the exception of the 2.5% lime-treated 

179 



samples, the full-scale dry density data suggest that the highest dry densities are 

achieved for uncontaminated samples with lower values obtained for Pb2+ ion 

contaminated samples and even lower values for Fe3+ ion contaminated samples. For 

the full-scale 2.5% lime-treated sample, the Fe3+ ion contaminated sample has a 
higher dry density than the Pb2+ ion contaminated sample. These trends relating dry 

density with lime content for the contaminated English China Clay and the Wyoming 

Bentonite are illustrated further in Figure 5.6. 
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5.2 BATCH EXTRACTION TESTS 

The chemical batch tests were designed and with two primary aims: 

" to determine whether a cost effective extraction test can be used to assess time- 
dependent chemical developments (stabilisation and solidification) of clay-lime- 

contaminant mixes, and 

" to determine the most significant extraction test parameters (solid to liquid ratio, 
test duration, rotation speed, initial cube size) that control the concentration of 

elements in leachate at various curing times. 

The above aims are inter-related. Hence, the results highlighting the important 

trends associated with the extraction test parameters will be presented initially, and on 

the basis of a short discussion the results relating to the first aim will be presented. 

The importance of the latter aim within this study is to clarify whether or not the batch 

test operating parameters affect the interpretation and monitoring of the chemical 

changes highlighted in the former. Hence the discussion of batch test parameters will 
be limited to the major `macro' chemical changes. Appendix A presents all `macro' 

and `micro' pH, conductivity and elemental variations due to varying batch test 

operating parameters. This is included in full in the Appendix for the benefit of 

researchers in the field of batch leach test development. 

5.2.1 The effects of extraction test parameters on element concentrations 
Batch test results include the measurements of the final pH and conductivity 

after 6hr/30rpm, 6hr/60rpm, 24hr/30rpm and 24hr/60rpm tests on samples at the solid 
to liquid ratios 1: 10,1: 20,1: 40 with 10mm and 20mm initial cube sizes as well as ICP 

measurement of Ca, Fe, Pb, Na, Si, Mg, Al and Mn in the final solutions of these 

tests. Due to problems associated with filtration of Wyoming Bentonite samples 

containing no lime and 2.5% lime, only Wyoming Bentonite samples with 7.0% lime 

could be analysed confidently by ICP. However, pH and conductivity data was 

obtained for most Wyoming Bentonite samples. Both pH and conductivity are 
important indicators that relate to the development and changes in chemical 
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stabilisation and solidification reactions. pH measurements provide data that help 

predict how pH sensitive charge sites are behaving and whether contaminants will be 

precipitated as well as the likelihood for continued solidification reactions. 
Conductivity, essentially measuring the quantity of dissolved solid, also provides 
information relating to the development of chemical reactions and highlights the 

development and success of stabilisation and solidification reactions. To make 
judgements on these measurements it is important to know how the batch test 

parameters affect these pH and conductivity results and how these results relate to the 

leachability of ions (including contaminants) into solution. 

At a specific solid to liquid ratio the result of reducing initial cube size, 
increasing rotation speed and increasing test duration is to cause increased particle 
breakdown and increased solid and liquid interaction. This results in the solid and 
liquid phases moving closer to a chemical equilibrium. Increasing the proportion of 

water in the extraction test by reducing the solid to liquid ratio has a different effect. 

This results in a complete change in the final equilibrium condition by diluting 

element concentrations. Dilution of the soluble element concentrations, such as Ca 

released from a lime-treated material, can promote further dissolution of this element 
if more element is present to allow this change or permit the dissolution of another 

element which may not have been soluble at higher solid to liquid ratios. Dilution 

also has a disadvantage because it is possible that the dilution process will dilute an 

element concentration to below analytical detection limits. On this basis the effects of 

changing the extraction test parameters initial cube size, rotation speed, and test 

duration will be considered prior to solid to liquid ratio. 

5.2.1.1 English China Clay sample variations due to changing initial cube size 

The effect of varying cube size on the pH, conductivity and elemental release 
in batch tests varied between English China Clay and Wyoming Bentonite lime- 

contaminant mixes. Hence the results of each mineral type will be presented 
independently. 

Generally for English China Clay samples with no added contaminants or lime 

increasing the initial cube size had no appreciable effect on the pH of the final batch 

test solutions at any solid to liquid ratio or curing period. However, at 7 days curing 

and the solid to liquid ratio 1: 10 the 20mm cubes produced an increase in solution 

conductivity of between 1% to 4% depending on the other batch test parameters 
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(Table 5.2-reference A). English China Clay samples with Pb2 ion contamination 

and no lime produced higher pH values at the lower 1: 40 solid to liquid ratio for 

10mm cubes at any curing period, although there was very little effect on the final 

solution conductivity (Table 5.2-reference B). English China Clay samples with Fe3+ 

ion contamination and no lime showed no appreciable variations in either pH or 

conductivity at any solid to liquid ratio or curing period (Table 5.2-reference Q. 

Table 5.4 summarises the general trends in element concentrations associated with 
increasing the initial cube size and it is evident that for English China Clay samples 

with no added lime there were no apparent measurable changes between cube sizes, 

although small reductions in soluble Ca and Fe did occur for the Fe3+ ion 

contaminated samples. 
With the exception of the Fe 3+ ion contaminated samples, all English China 

Clay-lime-contaminant mixes showed no appreciable change in pH or conductivity 

when the initial cube size was changed at any curing period or solid to liquid ratio. 
For samples with only 1.5% lime the conductivity occasionally fluctuated and this 

appeared to be directly related to small fluctuations in the concentration of Ca in 

solution. This phenomenon appeared most predominant for the uncontaminated and 

Pb2+ ion contaminated samples (Table 5.2-reference D, E, G, H). The Fe 3+ ion 

contaminated samples at both 1.5% and 2.5% lime content illustrated that the 10mm 

cube sizes frequently produced higher pH values although this trend was not 

consistent. Furthermore, these samples exhibited no appreciable variability in 

conductivity due to changing the initial cube size (Table 5.2-reference F, I). 

Table 5.4 illustrates that frequently for English China Clay-contaminant-lime 

mixes the larger cube size produced higher Ca concentrations. However, only the 

Pb2+ ion and uncontaminated samples (not Fe3) with 2.5% lime produced small 
increases in Al concentrations, whilst all other elements analysed for showed no 

apparent change. 

5.21.2 Wyoming Bentonite sample variations due to changing initial cube size 
Wyoming Bentonite-contaminant mixes with no added lime illustrated the 

general trend where the smaller 10mm initial cube size produced a final leachate with 
lower pH and higher conductivity than the 20mm initial cube size at any curing period 
(Table 5.3-reference A-C). For the samples where filtration and ICP analysis was 
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possible the higher conductivity related to higher combined concentrations of Ca and 
Na in solution hence the higher conductivity. 

Wyoming Bentonite with no contamination and 2.5% lime produced the result 

where the 10mm cube tests had generally higher solution pH and conductivity, 

particularly at 7 days and 175 days curing. This result was less pronounced during 24 

hour tests probably due to increased particle breakdown (Table 5.3-reference D, E). 

Similar samples contaminated with either Pb2+ or Fe3+ ions with 2.5% lime exhibited 
little variation between cube sizes in pH or conductivity at any solid to liquid ratio or 

curing time (Table 5.3-reference F, G). For all clay-contaminant mixes with 7.0% 

lime there were also no clear trends between cube sizes relating to pH (Table 5.3- 

reference H-7). Furthermore, conductivity fluctuated depending on the combined 

concentrations of Ca and Na present in solution, a trend highlighted in Table 5.4. 
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5.2.1.3 English China Clay sample variations due to changing rotation speed and 
test duration 

Due to limited resources comparisons relating to changes in rotation speed 

were only possible on samples cured for 7 days and 175 days for both English China 

Clay and Wyoming Bentonite mixes. Furthermore, the behaviour of samples due to 

changes in rotation speed occasionally varied with test duration. Studying these two 

parameters highlighted the fact that rotation speed, test duration and initial cube size 

were inter-related and therefore associated with time-dependent physico-chemical 

changes due to stabilisation and solidification. 

English China Clay with no contaminants or lime exhibited little variability in 

either pH or conductivity due to increasing rotation speed (Table 5.5-reference A). 

However, generally 24 hour tests produced small decreases in both pH and 

conductivity, particularly during 60rpm tests (Table 5.6-reference A). English China 

Clay-contaminant mixes with no lime exhibited little change in pH or conductivity 
due to increasing rotation speed (Table 5.5-reference B, Q. However, increasing test 

duration resulted in small reductions in the pH for both contaminants whilst only the 

Fe3+ ion contaminated sample exhibited an associated small increase in conductivity 
(Table 5.6-reference B, Q. Tables 5.9 and 5.10 highlight very small changes in 

leachate element concentrations due to increasing rotation speed and test duration for 

these mix compositions with no lime added. Increasing both parameters had similar 

effects on soluble element concentrations although clearly test duration has more 
influence on the soluble Si concentrations of the contaminated mixes. The effects on 

the soluble element species present are generally small and vary depending on the 

contaminant present. This is reflected in the limited changes in both conductivity and 

pH. 
English China Clay with no contamination and 1.5% lime and the similar 

sample contaminated with Pb2+ ion contamination exhibited little change in pH due to 
increasing rotation speed although occasionally there was evidence of a slight 
increase in conductivity. The similar sample with Fe3+ ion contamination exhibited 

small increases in both pH and conductivity due to increasing rotation speed and this 

was particularly evident after 7 days curing (Table 5.5-reference D-F). The effect of 
increasing test duration on the clay-contaminant mixes with 1.5% lime was to 
increase both pH and conductivity and again the effect was most apparent after 7 days 

curing (Table 5.6-reference D-F). 
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English China Clay samples with no contaminants and 2.5% lime exhibited no 

clear trends for pH and conductivity relating to either increasing rotation speed or test 

duration (Tables 5.5 and 5.6-reference G). This was due to large inter-sample 

variations over the three curing periods. However the similar contaminated samples 
did exhibit some trends. The sample with Pb2+ ion contamination generally exhibited 

no significant change in pH when rotation speed was increased although conductivity 

did increase for 60 rpm tests over a6 hour duration after 7 days curing (Table 5.5- 

reference H). The sample contaminated with Fe3+ ions generally exhibited little 

change in either pH or conductivity on increasing rotation speed although at 7 days 

curing the 24hr/60rpm test did produce lower pH levels (Tables 5.5 and 5.6-reference 

I). The effect of increasing test duration is clear for the contaminated samples with 

2.5% lime. Both pH and conductivity increase and the effect is most predominant 

after 7 days curing and during 30rpm tests. 

Generally Tables 5.3 and 5.4 illustrate clear tends for all samples with lime 

added. However, increasing rotation speed has no clear effect on Ca concentrations 

since they appear to fluctuate between samples and between curing periods. Other 

elemental concentrations appear to be relatively unaffected by increased test duration. 

However, increasing test duration increases Ca concentration for all mixes with added 

lime although these increases vary significantly with curing time. Furthermore, 

soluble Al concentration also varies in a fluctuating manner with the exception of the 

Fe3+ ion contaminated sample with 1.5% lime which exhibits increases with 
increasing duration. This suggests that the sample with Fe contamination has a 

significantly different physico-chemistry to the other mixes which requires further 

investigation. The high variability of the soluble Al concentrations for the lime- 

treated samples also suggests that Al is an important element in the chemistry of the 

lime-treated English China Clay samples. 

5.2.1.4 Wyoming Bentonite sample variations due to changing rotation speed and 

test duration 

The effects of varying rotation speed and test duration on Wyoming Bentonite 

samples with no contaminants or lime were highly variable with no apparent 
distinguishable trends (Tables 5.7 and 5.8-reference A). Increasing the rotation speed 
for the Wyoming Bentonite samples with contaminants and no lime resulted in no 

obvious change in pH or conductivity (Table 5.7-reference B, Q. However, 
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increasing the test duration on these contaminated samples resulted in a lower final 

pH and higher conductivity particularly for the higher solid to liquid ratios (Table 5.8- 

reference B, Q. 

Wyoming Bentonite-contaminant-2.5% lime and Wyoming Bentonite- 

contaminant-7.0% lime mixes exhibit very similar behaviour although the increases 

are more evident at the higher lime content. Increasing rotation speed and duration 

had no apparent effects on pH although conductivity did appear to increase. This was 

particularly evident for samples after 7 days curing and during tests of 6 hours in 

duration. With the exception of the contaminated samples with 2.5% lime increasing 

test duration tended to increase the conductivity particularly at 7 days and 175 days 

curing for tests at the higher rotation speed. These trends are highlighted in Tables 

5.7 and 5.8 reference D-1. 

Table 5.9 and 5.10 illustrate that the changes in soluble element concentrations 

due to increasing rotation speed and test duration relate to Ca, Na, Si and Al. The 

changes in Al and Si are small and the elements that are most likely to affect 

conductivity measurements are the fluctuating levels of soluble Ca and Na that are 

involved in the cation exchange reactions. 

In conclusion it is evident that increasing test duration and rotation speed will 

enable the closed system of the batch test to move closer to a chemical equilibrium 

condition. However, the measured variations in pH, conductivity and soluble 

elements between mix designs is complicated due to the variable effects of the 

interacting contaminants. This is particularly evident for samples treated with lime 

where the contaminants inhibit the solidification reactions. 
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5.2.1.5 English China Clay and Wyoming Bentonite sample variations due to 

changing solid to liquid ratio 
It was evident from the above discussion of the effects of initial cube size, 

rotation speed and test duration on the observed changes in pH and conductivity were 

relatively small. Therefore, it is reasonable to assess the effects of solid to liquid ratio 
for one set of initial batch test parameters. The data discussed in this section was 
from 6 hour / 30 rpm tests with an initial cube size of 20mm. 

Figure 5.7 illustrates the effects of increasing solid to liquid ratio on the end of 
batch test solution pH values of English China Clay samples. It was evident that 

increasing solid to liquid ratio resulted in a larger increase in pH as the lime content 
increased. These increases were of a greater magnitude when increasing the solid to 

liquid ratio from 1: 40 to 1: 20 than from 1: 20 to 1: 10 although the trends appeared 

very similar in nature. It was also clear that as the lime content increased the spread 
in the increase in pH results for the various contaminated mixes reduced implying that 

the lime content was predominantly controlling the change. 
Consideration of the increase in solid to liquid ratio from 1: 40 to 1: 20 showed 

that all contaminated samples with no added lime displayed a decrease in pH whilst 

the uncontaminated sample displayed an increase in pH. This was not the case for the 

similar increase in solid to liquid ratio 1: 20 to 1: 10 where all samples with no added 
lime displayed a decrease in pH. The reduction in pH of the contaminated samples on 
increasing solid to liquid ratio was understandable because of the acidic nature of the 

contaminants. If there were higher solids content then there were more acidic 

contaminants present hence a reduction in pH. Furthermore, as the pH reduced there 

were fewer positive charge sites on the clay surface to adsorb metal ions. This was 
likely to have an effect on both pH and conductivity due to changes in equilibrium. 

The increase in pH of the uncontaminated samples due to increasing solid to 
liquid ratio from 1: 40 to 1: 20 and the subsequent reduction due to increasing solid to 
liquid ratio from 1: 20 to 1: 10 was probably due to changes in ion equilibrium 

concentrations and not absolute variations in solid content. The latter point regarding 
absolute variations in solid content should be explained. For samples tested with a 

solid to liquid ratio 1: 40,1: 20 and 1: 10,0.045kg, 0.090kg and 0.170kg of effective 
dry solid was added respectively to the batch test containers. It could be suggested 
that it was not simply doubling the solid to liquid ratio which was important to 

monitor changes in pH but also that it was important to precisely double the solid 
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content. This was not carried out during the tests because the volume of the batch test 

containers was not large enough to contain 0.180kg of dry solid at the solid to liquid 

ratio 1: 10 and it was not considered that a reduction in dry solid to 0.170kg would be 

significant so long as the solid to liquid ratio was controlled. The effect was also 

clear for the Wyoming Bentonite samples illustrated in Figure 5.8. A further 

consideration may be that as the volume of ICP water present reduces so does the 

volume of dissolved oxygen that could impact on the redox conditions of the system 

and therefore pH. 

Although curing period had an effect, the results were too scattered to 
determine a specific pattern of behaviour. An interesting point to note is that there 

was no change in the increase in pH of the Fe3+ ion contaminated English China Clay 

samples with 2.5% lime addition at all curing periods due to an increase in solid to 

liquid ratio from 1: 20 to 1: 10 whilst there was a significant increase due to a lime 

addition of 1.5%. It was also clear that for the Fe3+ ion contaminated English China 

Clay with 1.5% lime the increase in pH due to the change in solid to liquid ratio from 

1: 20 to 1: 10 was related to curing time. In fact as curing time increased the increase 

in pH increased. This suggested a time-dependent change in the physico-chemical 
behaviour of the Fe 3+ ion contaminated sample. The effect was also evident for 

24hr/30rpm, 6hr/60rpm and 24hr/60rpm batch tests. The likely reason was that at 
1.5% lime addition there was an equilibrium being established with time between 

dissociation of Ca(OH)2 and the high concentration of Fe in solution. It is feasible 

that as curing period increased and solid to liquid ratio increased from 1: 20 to 1: 10 

that there were increases in the quantity of soluble Fe adsorbed onto the surfaces of 

the English China Clay resulting in a change in solution equilibrium allowing further 

dissolution of Ca(OH)2. The Fe3' ion contaminated English China Clay sample with 
2.5% lime added saturated both the 1: 20 and 1: 10 solid to liquid ratios with hydroxide 

(OH') ions hence there was no measurable change in pH. 
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Increasing the solid to liquid ratio from 1: 40 to 1: 20 
for English China Clay design mixes 

0.4 

0.3 

CL 
0.2 

ä 0.1 

c0 

-0.1 

-0.2 

Increasing the solid to liquid ratio from 1: 20 to 1: 10 
for English China clay design mixes 

0.4 

0.3 

x 0.2 CL 
c 

0.1 

0 

-0.1 

-0.2 

" Clay only, 7 days curing 

- Clay only, 175 days curing 

-+- Clay only, 301 days curing 

" Gay + 2500/5000ppm Pb, 7 
days curing 
Clay + 2500/50ODppm Pb, 
175 days curing 

" Gay + 2500/5OODppm Pb, 
301 days curing 

" Clay + SOOOppm Fe, 7 days 
curing 

" Gay + SODOppm Fe, 175 
days curing 

" Gay + SOOOppm Fe, 301 
days curing 

Figure 5.7 The increases in end of batch test pH with percentage lime 

addition due to increasing the solid to liquid for English China 

Clay design mixes 

Figure 5.8 highlights similar pH behaviour for the Wyoming Bentonite design 

mixes. The most apparent differences include the fact that as the percentage lime 

increased from 0% to 2.5% to 7.0% the increase in pH continually increased. It was 

clear however that the largest increase in the increase of pH occurred due to the initial 

small input of lime similarly to the English China Clay samples. Furthermore, it was 

apparent that the Fe 3+ ion contaminated sample increases in pH were the lowest, often 

negative suggesting dilution of OH- ions whilst the uncontaminated and Pb2+ ion 
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contaminated sample pH increases were higher and very similar in magnitude. 

Similarly to the English China Clay samples as the lime content was increased the 

spread in the increases in pH for the various samples reduced, again highlighting the 

dominant effects of the lime. 

Increasing the solid to liquid ratio from 1: 40 to 1: 20 ý- Clay only, 7 days curing 

for Wyoming Bentonite design mixes 
Clay only, 175 days curing 
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days curing 
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Increasing the solid to liquid ratio from 1: 20 to 1: 10 
for Wyoming Bentonite design mixes 
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Figure 5.8 The increases in end of batch test pH with percentage lime 

addition due to increasing the solid to liquid for Wyoming 

Bentonite design mixes 
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The trends for hydrogen ion concentration (pH) appeared relatively clear. The 

changes in levels of dissolved solids (conductivity) due to changing the solid to liquid 

ratio, which includes all cations and anions, was also significant. Previous ICP 

analysis had shown that for English China Clay samples the most significant 
dissolved solids affecting conductivity, other than hydrogen ions and hydroxide ions, 

were soluble Ca and the respective soluble Fe or Pb. With respect to Wyoming 

Bentonite OH, Ca, Na and Fe or Pb were the most likely to affect the conductivity 

measurements and subsequent increases. Figure 5.9 illustrates the effects of 
increasing solid to liquid ratio from 1: 40 to 1: 20 to 1: 10 on the conductivity of end of 
batch test solutions for 20mm cubes sizes and 6hr/30rpm batch test parameters for 

English China Clay. The stated factor of increase in conductivity is equal to the 

conductivity at the higher solid to liquid ratio divided by the conductivity at the lower 

solid to liquid ratio. 

Observation of Figure 5.9 for English China Clay highlighted that increasing 

solid to liquid ratio from 1: 40 to 1: 20 produced very similar behavioural patterns to 

increasing solid to liquid ratio from 1: 20 to 1: 10. It could be argued that the general 

trend was a decrease in the increase in conductivity with increasing lime content when 

the solid to liquid ratio was increased. Closer observation of the specific design 

mixes showed a variety of trends dependent on the contaminant present. Firstly at all 

curing periods the Fe3+ ion contaminated sample displayed an increase in the factor of 
increase in conductivity on addition of 1.5% lime followed by a decrease in the factor 

of increase in conductivity on addition of 2.5% lime. This variation showed that 

changing solid to liquid ratio had a larger effect on conductivity readings at 1.5% lime 

addition relative to 0% and 2.5% lime addition. Similarly to the pH variations this 

effect was likely to be due to initial increases in solid to liquid ratio allowing higher 

levels of dissolved solids whilst the increases in conductivity after further increases in 

solid to liquid ratio were affected by saturated solutions. Although the absolute 

values were very similar for the change in solid to liquid ratio from 1: 40 to 1: 20 the 7 

day cured sample increases were consistently slightly higher than the 175 day cured 

sample increases which were higher than the 301 day cured sample increases. This 

implies that as curing period increased, increasing the solid to liquid ratio had less 

effect on the increase in conductivity, hence indicating a degree of solidification. 
Consideration of the Pb2+ ion contaminated sample showed that as the lime 

content increased the effect of increasing solid to liquid ratio reduced. It was also 
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clear that as curing time increased this effect reduced significantly implying a degree 

of solidification. At first observation the uncontaminated sample appeared to behave 

in a rather illogical fashion. However, the absolute conductivity values measured 

relative to the contaminated samples were very low hence only a slight variation in 

absolute magnitude related to significant factors of increase. Subsequently at 0% lime 

addition the increasing factor of increase in conductivity due to increasing curing time 

signified a release of elements with curing time. On addition of lime to the 

uncontaminated sample the effect of the Ca and OH was significant and there were 

more dissolved solids. As the curing time increased the solid to liquid ratio had less 

effect on conductivity due to the involvement of Ca in the crystallisation processes, a 

resultant effect of solidification and stabilisation. 
The result of increasing the solid to liquid ratio of Wyoming Bentonite batch 

tests showed similar behaviour (Figure 5.10). As the lime content increases there was 

a general reduction in the factor of increase in conductivity due to changes in solid to 

liquid ratio. It was apparent that the change in solid to liquid ratio had the greatest 

effect on Fe3+ ion contaminated samples followed by Pb2+ ion contaminated samples 

and then uncontaminated samples which was a sign that the solutions were becoming 

saturated with dissolved solids. 
An important feature illustrated by Figures 5.7 to 5.10 for both English China 

Clay samples and Wyoming Bentonite samples was that at the highest lime addition 
doubling the solid to liquid ratio increased pH from between approximately 0.1 and 
0.2 pH divisions for both clays and all design mixes. Furthermore, the same change 
in solid to liquid ratio resulted in an increase in conductivity by a factor between 1.2 

to 1.6. 
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Figure 5.9 The increases in end of batch test conductivity with percentage 

lime addition due to increasing the solid to liquid English China 

Clay design mixes. 
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lime addition due to increasing the solid to liquid for Wyoming 
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With such distinct changes in pH and conductivity brought about by 

increasing solid to liquid ratio at high lime contents it was reasonable to suggest that 
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any solid to liquid ratio could be used to monitor time-dependent changes to the most 

relevant elemental releases due to lime addition. The effect of solution saturation and 

equilibrium conditions would be significant if the absolute contaminant concentration 

was required and this has always been an argument against the use of batch leach 

testing and `trigger' levels. However, for monitoring time-dependent changes in 

soluble elemental concentrations ICP data of the eight key elements has shown that 

the same concentration trends were evident whatever the solid to liquid ratio. 

However, if the absolute levels of elements are important then Table 5.12 highlights 

the most significant changes to due to increasing solid to liquid ratio. Considering 

English China Clay mixes with no lime added it was evident that the acidity of the 

contaminated mixes mobilised many of the metals which were monitored. The fact 

that doubling solid to liquid ratio doubled element concentrations showed that the 

solutions were not saturated. The trends of the English China Clay mixes with either 

1.5% or 2.5% lime were almost the same for each contaminant mix design. For the 

Pb2+ ion contaminated and uncontaminated samples with 1.5% lime at 7 days curing, 

doubling solid to liquid ratio almost doubled Ca content, however after 175 and 301 

days curing substantial soluble Ca had been used in pozzolanic re-crystallisation 

reactions and doubling solid to liquid ratio only increased Ca concentrations by about 

25% to 50%. Furthermore, Table 5.12 shows that increasing solid to liquid ratio 

resulted in a small decrease in soluble Si and Mg concentrations which was likely to 

be due to the large increase in soluble Ca concentration and possibly that there was a 
higher possibility of an interaction of Si4+ ions and Mg2+ ions with exchange sites. 

This did not explain the fluctuations in soluble Al concentration when solid to liquid 

ratio increased from 1: 20 to 1: 10 (Table 5.11). Interestingly at 7 days curing as solid 

to liquid ratio was doubled soluble Al concentration halved. At 175 days curing all 

soluble Al concentration values were similar in magnitude . 
At 301 days there was a 

further change where increasing solid to liquid ratio resulted in an increase in soluble 
Al concentration. 
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Table 5.11 Al concentration variations for uncontaminated English China 

Clay samples with 1.5% lime due to increasing solid to liquid ratio. 

Curing time Solid to liquid ratio 
(Days) Al concentration 

for 1: 10 

Al concentration 
for 1: 20 

Al concentration 

for 1: 40 

7 1.76 3.10 4.87 

175 13.39 14.78 11.53 

301 15.37 12.59 9.89 

The conclusion was therefore that there were potentially several reaction 

stages linked to stabilisation and solidification, which had varying equilibrium 
behaviour during closed batch tests. A likely mechanism was that at 7 days curing 

very little mineral dissolution had occurred. At 175 days sufficient dissolution had 

occurred to release significant quantities of Al into solution but limited re- 

crystallisation had occurred. Therefore, if soluble Ca concentrations were still high 

this may have partially controlled the quantity of Al in solution. At 301 days curing 

significant re-crystallisation had occurred with a large reduction in soluble Ca 

concentrations that resulted in an unsaturated solution where the soluble Al 

concentration was controlled by dilution processes. Direct evidence for this process 
lies in the data from the English China Clay mix with 5000ppm Fe3+ and 1.5% lime. 

Changes in soluble Ca concentrations due to changing solid to liquid ratio were the 

same as the other mixes at 7 days, but were not affected by increasing curing time. 

This suggested that no pozzolanic reactions were occurring and therefore the soluble 
Al concentrations were very low due to limited dissolution. A further argument could 
be that the constantly high Ca saturated solution equilibrium was such that Al was not 
dissolved into solution. However, the very fact that Ca concentrations remained high 

for Fe contaminated samples implies that no solidification was occurring. The trends 
for the mixes containing 2.5% lime were exactly the same although soluble Ca 

concentrations were slightly elevated. 
The behaviour of the Wyoming Bentonite samples was similar with occasional 

exceptions. With the exception of one sample with added Fe3+ ions, the contaminated 
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samples with no lime could not be filtered and the ICP analysis of the centrifuged 

samples was not reliable. Understanding of these difficulties were not essential for 

discussion in this report therefore they were presented in Appendix Al. The samples 

with no lime or 2.5% lime that could be filtered behaved considerably differently to 

the Wyoming Bentonite samples with 7.0% lime (ICL value) which could be filtered. 

Considering first the Fe3+ ion contaminated Wyoming Bentonite with no lime, 

the large increases in soluble Ca, Na, Mg and Mn when the solid to liquid ratio was 
doubled were likely to be due to increasing the available soluble solids content in an 

unsaturated solution and the fact that the mix was less alkaline than samples with 

added lime which could have influenced the release of Mn into solution. The effect 

on the release of Si and Al into solution were more difficult to understand especially 
if the solutions were not saturated. It was clear however that Ca, Na, Si, Mg, Al and 
Mn solution concentration variations with solid to liquid ratio changed with time 

suggesting that because little solidification was likely to occur at the reduced 

alkalinity that any soluble Si and Al could be due to cation exchange reactions. Both 

Si and Al have higher ionic potentials than Ca, Na, and Mg and if in an ionic form in 

solution they would be likely to be involve in exchange processes as previously 

stated. The reductions often seen for the soluble Si and Al on increasing solid to 

liquid ratio could therefore be linked to the fact that there was likely to be more 
disorder in the system and more opportunity to be involved in exchange reactions. A 

further more likely possibility was that because the Fe 3+ ion contaminated Wyoming 

Bentonite still had significant plasticity there was a tendency for the material to 

agglomerate within the batch test vessel. Hence on increasing the solid to liquid ratio 

there was the potential for increased agglomeration and less particle-leachant 
interaction and therefore reduced soluble Si and Al concentration. It could be argued 
therefore that the same behaviour would be expected of the other elements such as Ca. 

This may not have been the case because the Ca may have been more readily 

available due to its exchange from the exchange sites by the added Fe3+ ions. It was 
likely therefore that the observed behaviour was a complex mix of all these 
interactions and equilibrium changes. 

On addition of a small quantity of lime (2.5%), relative to the ICL value 
(7.0%), to the Pb2+ and Fe3+ ion contaminated Wyoming Bentonite the behaviour of 
doubling the solid to liquid ratio was complex. Many of the elemental releases 
fluctuated with curing time due to the cation exchange processes related to the initial 
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flocculation and then by a limited level of solidification. On a molecular level there 

were more Fe3+ contaminant ions present than Pb2+ ions and these Fe3+ ions satisfied 

more of the structural charge deficit on the Wyoming Bentonite. Therefore for the 

Fe3+ ion contaminated samples there was more Ca likely to be in solution to be 

affected by increasing solid to liquid ratio. The large time-dependent increases in 

soluble Na concentration were also a result of the exchange process. The behaviour 

of the other elements was likely to be related to the behaviour of the samples with no 

added lime and also the onset of limited solidification. 
The samples with the ICL 7.0% lime content behaved more predictably which 

was expected because the system was probably saturated with Ca ions and had a 

consistently high pH thereby consistently promoting pozzolanic solidification 

reactions. The time-dependent fluctuating soluble Ca concentrations observed when 
increasing solid to liquid ratio were the result of slight differences in Na exchange and 

the availability of Ca to be involved in pozzolanic reactions. There was a slight 

variation in the binding properties of the cubes used in the batch tests due to 

contaminant affects and this would have an effect on particle breakdown and therefore 

the changes in ion exchange that could occur during the batch test. The Na 

concentration was linked to the exchange processes and the interaction of all potential 

exchanging ions in the system. It was therefore not unexpected with the high lime 

content that doubling solid to liquid ratio almost doubled soluble Na concentrations. 
The time-dependent variation in soluble Na release due to changing solid to liquid 

ratio was also linked to the pozzolanic solidification reactions because as the material 

solidified there was reduced breakdown of the monolithic cubes. 
Comparing the changes in chemistry brought about by changing solid to liquid 

ratio did help develop understanding of some of the chemical processes occurring 
including equilibrium changes. It was also evident that solid to liquid ratio was the 

most important batch test variable out of all the variables tested (initial cube size, 

rotation speed, test duration, solid to liquid ratio). The second most important 

variable was test duration. The likely reasons for their importance were that solid to 
liquid ratio would change the final chemical equilibrium point whilst test duration 

would most likely to affect how close the chemical system got to reaching this 

equilibrium. Although changing the batch test parameters affected the resultant 

chemistry this could be considered insignificant if the changes of chemistry with time 

and lime content were still evident. This hypothesis is only valid so long as the test is 
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not being performed to compare the results to statutory `trigger' levels. Since the 
basis of this study was to assess whether a batch test could indicate changes in the 

chemistry of clay-contaminant-lime mixes then it is apparent that any of the batch test 

parameters could be chosen to assess changes with time. It may be useful to mention 
at this stage that perhaps an understanding of the chemical developments with time of 
clay-contaminant-lime mixes is of more use in risk based regulatory control than 

comparing data with `trigger' levels. 
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5.2.2 End of test pH and conductivity variations with curing time for English 
China Clay and Wyoming Bentonite samples 
This section will present the results to examine whether a rapid cost effective 

extraction test can be used to assess time-dependent chemical developments 

(stabilisation and solidification) of clay-lime-contaminant mixes? 
Not only will the chemical developments be illustrated in data from batch tests 

(6hr/30rpm, 1: 20 solid to liquid ratio, 20mm initial cube size) but these data will be 

used to explain physical changes that have an effect on material durability. These 

changes in behaviour with time were the most significant observations during this 

study and as such will be discussed in detail. 

At the end of a chemical batch test the final pH and conductivity of the 

solution and suspended solids provides substantial information about changes in the 

general quantity of dissolved solids and the very important H30+ ion concentration. If 

the tests are carried out at different curing times the changes in stabilisation and 

solidification reactions can be monitored via these simple pH and conductivity 

measurements. Although it is clear that some tests do not achieve equilibrium, the 

trends of all batch tests performed for a specific mix design are the same. The reasons 
for a sample not reaching equilibrium in the solution is due to the fact that the tests 

are essentially on small stabilised monolithic masses with continually changing 

strengths and plasticity properties. These strengths and plasticity properties change 

with the type of contaminant present and the quantity of lime added which in itself is 

a contaminant. Hence any batch test using any solid to liquid ratio, any cube size, any 
test duration and any test speed can be used to help explain the stabilisation and 

solidification reactions. The cautionary note must be that the choice of solid to liquid 

ratio may be important if very small soluble quantities of elements are involved which 

may be diluted below detection limits. The converse is also true if there are very high 

soluble concentrations of one element, equilibrium may reduce the concentration in 

solution of one ion due to the high concentration of another. In the case of lime 

treatment the soluble concentration of elements released during stabilisation and 
solidification have been shown to be high for the minerals studied. For these reasons 
the most time economic 6hr test duration, the most time economic 20mm cubes, the 

most energy economic 30rpm test speed, and the most time economic 1: 20 solid to 
liquid ratio have been chosen for analysis. The 1: 20 solid to liquid ratio was chosen 
since it shows high levels of important elements such as Si, Al, Na and Ca. In many 
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cases the 1: 10 solid to liquid ratio required significant dilutions prior to ICP analysis 

which was very time consuming and required an initial analysis to determine the level 

of dilution required. This was not very time and material economic and could lead to 

increased experimental error. The 1: 40 solid to liquid ratio diluted some elements to 

levels very close to the detection limits that could lead to a higher degree of 

experimental error. A consideration must also be made of the pH that results from the 

different solid to liquid ratios. If the pH was to reduce too significantly then some 

contaminants previously of low solubility could become significantly soluble which 

would not necessarily represent the behaviour of the monolithic mass. 

Figure 5.11 illustrates the variation of end of batch test pH and conductivity 

for English China Clay and Wyoming Bentonite design mixes. Considering initially 

the pH data for both the English China Clay and Wyoming Bentonite mix designs 

there were a number of trends. As expected, generally for both clay design mixes the 

higher the percentage lime addition the higher the final pH values. For the English 

China Clay samples with 2.5% lime addition, the highest pH was generated for the 

uncontaminated sample followed by the Pb2+ ion contaminated sample and then the 

Fe3+ ion contaminated sample. At 1.5% lime addition the uncontaminated and Pb2+ 

ion contaminated samples produced very similar pH values whilst the Fe3+ ion 

contaminated sample pH values were significantly lower. Untreated English China 

Clay pH values were significantly lower and acidic. The variations due to 

contaminant addition were the same as those of the lime-treated samples although the 

magnitude of variation was far more exaggerated. 
For the Wyoming Bentonite samples the variations due to lime addition were 

more distinct than those of the English China Clay samples due to the larger increases 

in lime addition. For the 7.0% lime addition, the highest pH was generated by the 

Pb2+ ion contaminated sample followed by the uncontaminated sample then the Fe3+ 

ion contaminated sample. The trends were the same for the 2.5% lime addition 

samples, whilst, similarly to the English China Clay mixes the samples with no lime 

addition, the highest pH was produced by the uncontaminated sample followed by the 

Pb2+ ion contaminated sample and the Fe3+ ion contaminated sample. It was evident 

that the pH of the uncontaminated Wyoming Bentonite samples were far higher than 

those of the uncontaminated English China Clay samples and this was due to the 

naturally high pH properties of the clay. 
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Perhaps the most significant observation was that uncontaminated and Pb2+ 

ion contaminated samples for both clays showed reductions in pH with increasing 

curing time. For lime-treated samples the largest decrease could be seen between 7 

and 175 days curing with smaller reductions between 175 and 301 days. For samples 

not treated with lime there was also a reduction in pH although this appeared directly 

proportional to the curing period. Fe3+ ion contaminated samples did provide the 

exception. For English China Clay samples contaminated with Fe3+ ions and treated 

with both 1.5% and 2.5% lime there were only very small reductions in pH when 

curing period was increased. For Fe3+ ion contaminated samples not treated with lime 

there were slight increases in pH with curing period. The Wyoming Bentonite 

samples contaminated with Fe3+ ions and treated with 2.5% and 7.0% lime showed 
decreases in pH similar in magnitude to the other contaminated and uncontaminated 

samples. The Fe3+ ion contaminated Wyoming Bentonite sample with no lime 

addition showed higher increases in pH than the respective English China Clay 

sample. 

Indirect consideration of the variation in dissolved solids content via solution 

conductivity measurements further illustrated the significance of the variation in pH 

readings with curing time. Generally for both clay samples the highest conductivities 

and hence quantities of dissolved solids were achieved by the samples with the 

highest percentage lime additions. However, this was not always true due to 

variations brought about by varying levels of crystallisation with increasing curing 

time. Consideration of the English China Clay samples with 1.5% lime illustrated 

that the Pb2+ ion contaminated sample had the highest conductivity values followed 

by the uncontaminated sample. Conversely at 2.5% lime addition the uncontaminated 

sample had the higher conductivity relative to the Pb2+ ion contaminated sample. 
Significantly for samples containing Fe3+ ion contamination the sample with 2.5% 

lime had the highest conductivity followed by the sample with no added lime 

followed by the sample with 1.5% lime. For English China Clay samples with no 
lime addition the highest conductivity was achieved by the Fe3+ ion contaminated 

samples followed by much lower conductivities for the Pb2+ ion contaminated 

samples and then the uncontaminated samples. The Pb2+ ion contaminated sample in 

this case was unduly low relative to the Fe3+ ion contaminated sample since only 
2500ppm Pb2+ ions was added to this sample relative to the 5000ppm of Fei; ions to 
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the Fe3+ ion contaminated sample. This was an error during the initial stages of 

sample preparation. 
Consideration of the conductivities of Wyoming Bentonite samples illustrated 

significantly different behaviour. For samples with 7.0% lime addition at 7 days 

curing the uncontaminated and Pb2+ ion contaminated samples had a higher 

conductivity than the Fe3+ ion contaminated samples. However, at 175 and 301 days 

curing both the uncontaminated and Pb2+ ion contaminated samples had lower 

conductivities and hence lower levels of dissolved solids relative to the Fe3+ ion 

contaminated sample. For samples with only 2.5% lime addition the trend was 

significantly different with the Fe3+ ion contaminated sample producing the highest 

conductivities at any curing period followed by the Pb2+ ion contaminated sample 
followed by the uncontaminated sample. For samples with no lime addition the Fe3+ 

ion contaminated sample had the highest conductivity followed by the Pb2+ ion and 

uncontaminated samples which had similar conductivity values. An important point 

to note was that the conductivities of the uncontaminated and Pb2+ ion contaminated 
Wyoming Bentonite samples with no lime were much higher than the respective 
English China Clay samples. However, the conductivities of the uncontaminated and 
Pb2+ ion contaminated Wyoming Bentonite samples with 2.5% lime were much lower 

than the respective English China Clay samples. This was likely to be linked to pH 

and the effects of cation exchange. 
Perhaps the most significant difference between the English China Clay and 

Wyoming Bentonite conductivities was the change in conductivity with curing period. 
For English China Clay samples with lime added, as curing period increased there 

were very large decreases in conductivity for all samples with the exception of the 

Fe3+ ion contaminated samples. However, for Wyoming Bentonite with lime added 
the conductivity of all samples including the Fe3+ ion contaminated samples reduced 

significantly. The reductions in conductivity values were most significant for the 
higher lime contents. At 7 days curing the conductivity of the Fe 3+ ion contaminated 

sample with 7.0% lime was lower than those of the other samples with 7.0% lime. 

However, at 175 and 301 days curing the converse was true. A further important 

factor to consider was that with the exception of the Fe3+ ion contaminated samples, 
the Wyoming Bentonite with 7.0% lime had only slightly higher conductivities than 

the English China Clay samples with only 2.5% lime. 
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Figure 5.11 Variation of end of batch test pH and conductivity for English 

China Clay and Wyoming Bentonite design mixes. 1: 20 solid to 

liquid ratio, 20mm cube size, 6hr/30rpm batch tests 
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5.2.3 ICP chemical analysis of end of batch test solutions 
5.2.3.1 Gravity filtered English China clay samples with time added 

Figure 5.12 illustrated the time-dependent behaviour of Ca, Al and Si on 

addition of 1.5 and 2.5% lime to English China Clay design mixes. The plots showed 
the proportions of the elements in solution after gravity filtration of mixtures from 

6hr/30rpm batch tests with a 1: 20 solid to liquid ratio and 20mm cube sizes. Both 

plots essentially illustrated the same behavioural trends although the magnitudes of 

element release were different. 

Consideration of the soluble Ca data of either plot showed that for the Pb2+ ion 

contaminated and the uncontaminated sample as the curing time increased there was a 

reduction in the soluble Ca release with the most substantial reduction occurring 
between 7 and 175 days curing. It was clear that the behaviour of Pb2+ ion 

contaminated and the uncontaminated sample were similar in nature whilst the Fei{ 

ion contaminated sample was significantly different. In fact the high level of soluble 

Ca release of the Fei{ ion contaminated sample remained constant at all curing times. 

Consideration of the soluble Al data on both plots illustrated that for the Pb2+ 

ion contaminated and the uncontaminated samples soluble Al release tended to 

increase with increased curing time. Significantly the increase in the soluble Al 

release of the Pb2; ion contaminated sample was more than double that of the 

uncontaminated sample. The Fe3+ ion contaminated sample again behaved 

significantly differently, tending to release a constant level of soluble Al at all curing 

periods. 

It was evident that little soluble Si was released from any of the design mixes 

although that which was released appeared at a relatively constant level at all curing 

periods. Furthermore, it appeared that the uncontaminated sample released the most 

soluble Si followed by the Pb2+ ion and then the Fe3+ ion contaminated samples. 
The two plots in Figure 5.12 did show some interesting variations. One 

observation was that for the Pb2+ ion and uncontaminated mixes with 1.5% lime after 
175 days curing the level of soluble Al released appeared to have reached an 

optimum. A second observation involved the soluble Ca releases. It would be 

expected that the mixes including the higher percentage lime would release a higher 

level of soluble Ca and that was clearly the case for all samples. It was also not 

surprising that the Fei{ ion contaminated sample with 1.5% lime released more 

soluble Ca than the Pb2+ ion contaminated or the uncontaminated samples with the 
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same lime content. However, on addition of 2.5% lime to these contaminated mixes 

and after 7 days curing the Fe3+ ion contaminated sample released less soluble Ca 

relative to the other samples. The potentially anomalous behaviour of the Fe3+ ion 

contaminated sample was also reflected in the soluble Al release after 7 days curing. 
The level of soluble Al released was significantly higher than the other two mixes, 

which was not the case for the Fe3+ ion contaminated sample with 1.5% lime. 

5.2.3.2 Gravity filtered Wyoming Bentonite samples with time added 
Figure 5.13 illustrated the time-dependent behaviour of soluble Ca, Al, Si, Na 

and Mg on addition of 2.5 and 7.0% lime to Wyoming Bentonite design mixes. The 

plots showed the proportions of the elements in solution after gravity filtration of 

mixtures. 

Observation of the soluble Ca plots of samples containing 7.0% lime revealed 

that as the curing time was increased the level of released soluble Ca significantly 

reduced in much the same way as the English China Clay samples, with the exception 

that the Fe3+ ion contaminated sample also showed a dramatic reduction in soluble Ca 

release with increased curing time. It was evident that again the Pb21 ion and the 

uncontaminated samples released similar levels of soluble Ca after 7 days curing 

whilst the Fe3+ ion contaminated sample released more than double the quantity of 

soluble Ca. However, after 175 and 301 days curing time all design mixes released 

similar proportions of soluble Ca. Furthermore, the levels of soluble Ca released at 

these later curing times were almost zero. 
Analysis of the soluble Na plots for samples with 7.0% lime content revealed 

that the soluble Na release was similar in nature to the soluble Ca plots with a few 

subtle differences. Firstly, the Pb2+ ion contaminated and the uncontaminated samples 

showed similar magnitudes of soluble Na release and similar levels of reduction with 
increased curing time. After 175 days curing the level of soluble Na release showed 

no significant further reduction and remained constant at a relatively high level of 

release. The Fe 3+ ion contaminated sample behaved slightly differently, releasing 

more soluble Na than the other two samples and showing a reduced level of reduction 

with increased curing time but still essentially levelling off at a constant level after 
175 days curing time. 

Unlike the English China Clay plots the soluble Al release from the Wyoming 

Bentonite samples with 7.0% lime was quite low. Again the Pb2+ ion contaminated 
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and the uncontaminated samples released more soluble Al than the Fe 3+ ion 

contaminated sample. However, for all samples as the curing period increased the 

soluble Al release increased in an almost linear manner. Again, unlike the English 

China Clay design mixes, it was the soluble Si release which was more prominent 
than the soluble Al release for the Wyoming Bentonite samples with 7.0% lime 

content. Although the soluble Si releases were clearly of a greater magnitude than the 

soluble Al releases the behavioural patterns with respect to the effects of the 

contaminants were the same. 
An important point of note was that for other solid to liquid ratios and test 

durations the elemental release of soluble Si and Al for Wyoming Bentonite design 

mixes with 7.0% lime behaved slightly differently. The release of soluble Al tended 

to be significantly lower and the soluble Si release significantly higher. 

Consideration of the soluble Mg plots in Figure 5.13 should be taken with 

caution due to the very low concentrations detected. With the exception of the Pb2+ 

ion contaminated sample reading at 301 days curing the level of soluble Mg released 

appeared relatively constant for all mixes at all curing periods. The results of the 
Wyoming Bentonite samples with 2.5% added lime should also be observed with 

caution unlike the samples containing 7.0% lime. This was due to the fact that the 

Fe3+ ion contaminated samples with 2.5% lime content reported in the plots were the 

only samples that could be gravity filtered. Although the batch test mixtures were 

sufficiently flocculated to enable filtration, the period of filtration was 12 hours 

compared to 10 minutes for the samples containing 7.0% lime. 12 hours could have 

been sufficient time for significant chemical changes. This may have been the reason 
that the Fe3+ ion contaminated samples with 2.5% lime content showed significantly 

elevated soluble Si, Al and Mg relative to the other samples that would not be 

expected. 
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Figure 5.12 Variation of end of test soluble Ca, Al and Si with curing time for 

English China Clay design mixes with 1.5 and 2.5% lime content. 

Solutions analysed were from gravity filtered 6hr/30rpm batch tests with 

a 1: 20 solid to liquid ratio and 20mm cubes 
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Figure 5.13 Variation of end of test soluble Ca, Al, Si, Na and Mg with curing 

time for Wyoming Bentonite design mixes with 2.5 and 7.0% lime 

content. Solutions analysed were from gravity filtered 6hr/30rpm 

batch tests with a 1: 20 solid to liquid ratio and 20mm cubes 
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5.2.3.3 Gravity filtered English China clay samples with no lime added 
Figure S. 14 illustrated the time-dependent behaviour of soluble Ca, Al, Si, Mg, Pb 

and Fe of English China Clay design mixes with no lime added. The plots showed the 

proportions of the elements in solution after gravity filtration of mixtures from 6hr/30rpm 

batch tests with a 1: 20 solid to liquid ratio and 20mm cube sizes. Consideration of 

soluble Ca release showed that the uncontaminated sample released essentially no soluble 
Ca at any curing time whilst the Pb2; ion contaminated sample released a constant level of 

approximately 6ppm Ca in solution at all curing periods. However, the Fe3+ ion 

contaminated sample produced a soluble Ca concentration of approximately 20ppm at 7 

days curing reducing almost linearly to approximately 7ppm at 301 days curing. The 

soluble Si curve of the Fe3+ ion contaminated sample was precisely the same shape as the 

soluble Ca curve although of a much lower magnitude. However, the soluble Si curves 
for the Pb2{ ion contaminated and uncontaminated samples were significantly different to 

the corresponding soluble Ca curves. The level of soluble Si fell from 7 to 175 days 

curing and remained relatively constant at this level from 175 to 301 days curing. 
Furthermore, the level of soluble Si released by the uncontaminated sample was more 

than that released from the Pb' ion contaminated sample and in all cases substantially 

more than the levels released by the samples with lime added. The soluble Al levels 

released by the uncontaminated and Pb2` ion contaminated samples were effectively zero 

whilst the levels released by the Fe3+ ion contaminated sample was again higher than that 

released on addition of 2.5% lime. Furthermore, the level of soluble Al for this sample 

appeared to increase from 7 to 175 days curing and significantly reduced from 175 to 301 

days curing. 

Analysis of the soluble Mg plots revealed further interesting behaviour. With the 

exception of the Fe3+ ion contaminated sample at 301 days curing there appeared to be a 

contaminant dependent release of soluble Mg. The uncontaminated sample released no 

significant levels of soluble Mg whilst the concentration in solution of the Pb2+ ion 

contaminated sample was about 3.5ppm at 7 days and slightly increased from 7 to 175 to 

301 days curing. The Mg concentration in solution of the Fei{ ion contaminated sample 

was about 7ppm and increased slightly from 7 to 175 days curing but then appeared to 

abruptly decrease from 175 to 301 days curing. Perhaps one of the most significant 
details of the plots was that the uncontaminated English China Clay mix design released 

no measurable soluble Pb or Fe, whilst the level of soluble Fe released from the Fe3' ion 

contaminated sample showed a significant linear reduction with increasing curing time. 
Although unfortunately the Pb2+ ion contaminated sample contained only 2500ppm Pb2+ 
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ions rather than the desired 5000ppm Pb2' ions the reduction of soluble Pb concentration 

with increasing curing time was visible in Figure 5.14. 
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5.2.3.4 Centrifuged Wyoming Bentonite design mixes with no time added 
Figure 5.15 illustrated the time-dependent behaviour of soluble Ca, Al, Si, Mg, 

Na, Pb and Fe of Wyoming Bentonite design mixes with no lime added. The plots 

showed the proportions of the elements in solution after centrifugation of mixtures from 

6hr/30rpm batch tests with a 1: 20 solid to liquid ratio and 20mm cube sizes. The results 
in these centrifuged plots must be interpreted with caution since the aggressive 

centrifugation process was used because of the difficulties in separating solids from 

liquids for the Wyoming Bentonite samples that did not contain 7.0% lime. It could 

therefore be argued that the presence of elements in the solution is in part due to the 

specific level of flocculation of particles at a specific curing time due to the addition of 

the contaminants. The validity of this statement was clearly evident in Figure 5.15 

where the shape of the majority of curves for soluble Ca, Si, Al, Na and Fe were the 

same. This was strong evidence that elements were being measured in specific 

proportions relative to one another and an argument in favour of a specific level of 

flocculation aiding particle separation due to particle addition. Analysis of the soluble 

Ca concentrations illustrated that the uncontaminated sample released the most 

soluble Ca followed by the Pb2+ ion and then the Fe3+ ion contaminated samples. The 

same was true for the soluble Si and Al concentrations. Analysis of the soluble Na 

released showed the Fe3+ ion contaminated sample produced the highest 

concentrations followed by the uncontaminated and then Pb2+ ion contaminated 

samples. However, consideration of the soluble Fe and Mg plot showed again the 

highest concentrations for the uncontaminated samples followed by the Pb2+ ion 

contaminated and then the Fe3+ ion contaminated samples. Further evidence to 

support the flocculation theory was due to the fact that the Fe 3+ ion contaminated 

sample appeared to produce lower soluble Fe concentrations than all other samples. 

An important point to note was that for all centrifuged samples the soluble Si 

and Al concentrations were higher suggesting that there may have been very fine 

mineral particulates in the solutions. 
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Figure 5.15 Variation of end of test soluble Ca, Al, Si, Na, Mg, Pb and Fe with 

curing time for Wyoming Bentonite design mixes with no lime 

added. Solutions analysed were samples from 6hr/30rpm batch 

tests with a 1: 20 solid to liquid ratio and 20mm cubes centrifuged 

at 11000rpm for 30 minutes 
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5.23 
.5 Centrifuged Wyoming Bentonite samples with 2.5% lime added 

Figure 5.16 illustrated the time-dependent behaviour of soluble Ca, Al, Si, Mg, 

Na, Pb and Fe of Wyoming Bentonite design mixes with 2.5% lime added. Similarly to 

the Wyoming Bentonite samples with no lime added, the solution elemental 

concentrations after centrifugation appeared to be significantly dependent on the level of 
flocculation. The shapes of the soluble Ca and Si curves were again almost identical. 

The levels of soluble Al and Si were also again very high which could have been the 

result of the aggressive centrifugation. If flocculation was a key factor then the fact that 

the levels of elements increased significantly with increased curing time suggest that the 

samples were less flocculated at increased curing periods and may have regained a degree 

of plasticity. 

Wyoming Bentonite design mixes with 2.6% lime 
Samples centrifuged at 11000rpm for 30 minutes 
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Figure 5.16 Variation of end of test soluble Ca, Al and Si with curing time for 

Wyoming Bentonite design mixes with 2.5% lime added. Solutions 

analysed were samples from 6hr/30rpm batch tests with a 1: 20 

solid to liquid ratio and 20mm cubes centrifuged at 11000rpm for 

30 minutes 
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5.3 PHYSICAL BEHAVIOUR 

5.3.1 End of batch test particle size distribution and chemical analysis 
An analysis of the physical breakdown of the monolithic cubes during the 

batch tests provided a link between the chemical batch test results and the physical 

test results. Figure 5.17 illustrated the results of a series of wet sieving experiments 

after 301 days curing on the residues of 6hr/30rpm batch tests for 10mm and 20mm 

cube sizes with a 1: 10 solid to liquid ratio. Tests were not performed on English 

China Clay samples with no added lime or English China Clay with 5000ppm Fe with 

1.5% lime because all solids passed through a 63µm sieve. Tests were also not 

performed on Wyoming Bentonite samples with no added lime or Wyoming 

Bentonite samples with only 2.5% lime because the end of the batch test solid 

material was a very thick sludge that would not wash easily through a sieve (see 

Figure 4.10). 

Analysis of Figure 5.17 revealed that English China Clay samples broke down 

into a higher proportion of small particle sizes than the Wyoming Bentonite samples. 

It was also immediately evident that the 20mm cube sizes of both clay design mixes 
broke down more readily into small cube sizes. Consideration of the 10mm or 20mm 

cube sizes revealed an order of resistance to particle breakdown. For Wyoming 

Bentonite with 10mm cube sizes the order of increasing resistance to particle 
breakdown was: 

Wyoming Bentonite + 5000ppm Fe +7.0% lime < Wyoming Bentonite + 7.0% lime < 

Wyoming Bentonite + 5000ppm Pb + 7.0% lime. 

A similar series in order of increasing resistance to particle breakdown could 

also be suggested for English China Clay samples with 10mm cubes: 

English China Clay English China Clay + 5000ppm Fe English China Clay + 

5000ppm Pb < English China Clay + 5000ppm Fe + 1.5% lime < English China Clay 

+ 5000ppm Fe + 2.5% lime < English China Clay + 5000ppm Pb + 1.5% lime < 

English China Clay + 5000ppm Pb + 2.5% lime < English China Clay + 1.5% lime < 

English China Clay + 2.5% lime. 



The order of increasing resistance to particle breakdown suggested above was 
based on the percentage of particles passing a 63µm sieve. However, it was apparent 

that for the English China Clay samples with no contaminants and added lime the 

chart showed a well graded material unlike the contaminated samples. Therefore if 

particle breakdown was considered on the basis of particles passing a 150µm sieve the 

order would have been significantly different. 

5.3.2 Acid digestion 

5.3.2.1 Acid digestion of particles from batch test mixtures retained on a 631cm sieve 

In order to assess the chemistry of small particulates after the batch test 

samples from three of the design mixes retained on a 63µm sieve during the above 

mentioned particle size distribution were acid digested. For comparison a sample of 

the source design mixes stored in the plastic pipe curing containers was also acid 
digested, the results of which are displayed in Table 5.13. 

Consideration of the English China Clay + 5000ppm Fe + 2.5% lime samples 

clearly showed that the orange coloured material retained on the sieve contained 

substantially more acid soluble Ca, Fe, Si, Mg, Al and Mn. This suggested that the 

particles retained on the sieve were hydrated lime particles with Fe3+ ion 

contamination on the surface. The Fe3+ ion contamination would be in either a 

precipitated form or be incorporated in re-crystallised cementitious compounds. This 

was confirmed by comparing these elemental releases with those of acid digested lime 

and dried untreated English China Clay shown in Table 5.14. Comparison of the 

Wyoming Bentonite + 5000ppm Fe + 7.0% lime illustrated similar behaviours. The 

material retained on the sieve contained more acid soluble Ca, Fe and Mn which again 

signified a high lime content. The levels of acid soluble Na, Mg and Al were 

significantly lower for the sieved retained material possibly suggesting a very low 

clay content. However, the low acid soluble Na content could have been due to the 

high cation removal of Na+ ions from the clay due to exchange reactions. Comparison 

of the Wyoming Bentonite samples + 5000ppm Pb + 7.0% lime showed similar 
behaviour in many respects, however the level of acid soluble Fe in the sieve retained 

sample was elevated and there was less acid soluble Pb on the sieved sample. 
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5.3.2.2 Acid digestion of compacted clay-lime-contaminant mixes 
Due to the potential for errors arising from of cross contamination between 

samples during the mixing process, a sample of each design mix was also acid 
digested. The results of this process were illustrated in Tables 5.15 and 5.16. 

Analysis of the English China Clay data in Table 5.15 suggested no cross 

contamination from this source although the levels of metal ions present appear lower 

than those actually added. The levels of acid soluble Pb in the uncontaminated 

samples appeared slightly high especially when compared with the sample direct from 

the bag in Table 5.14. However, this was also the case for the levels of acid soluble 
Fe, Si and Mg which could suggest a chemical reaction occurring in the design mix 
sample which had a higher water content and had been stored for 301 days prior to 

testing. 

It was important to note that the uncontaminated and Pb2+ ion contaminated 

mixes with added lime showed elevated levels of Si and Al relative to the 

uncontaminated sample with no lime added suggesting pozzolanic reactions. 
Furthermore, the Fe3+ ion contaminated sample with added lime also showed slightly 

elevated levels of acid soluble Si and Al but not to the same extent as the Pb2+ ion 

contaminated and uncontaminated samples with added lime. Only a small proportion 

of these increases could be due to the acid soluble Si and Al content found in the lime 

added (Table 5.14). 
Analysis of the Wyoming Bentonite data in Table 5.16 showed similar trends 

to English China Clay. Although the uncontaminated samples with no lime showed 

elevated levels of acid soluble Pb and Fe this was consistent with the levels found in 

samples direct from the mineral supplier. In addition it was clear that the lime-treated 

samples showed significantly elevated levels of acid soluble Si, Al, Fe, Mg and Mn. 

The higher levels of acid soluble Si, Al and Fe could not be attributed simply to these 

elements being present in the added lime and were probably due to the effects of 

pozzolanic reactions. However, it was feasible to link a proportion of elevated Mg 

and Mn to that present in the lime. The possible exception to this was the level of Mn 

released from samples containing Fe3+ ion contamination, which were significantly 

elevated relative to all other samples. It was also evident that the Fe3+ ion 

contaminated samples with added lime released significantly less acid soluble Si 

although similar levels of Al relative to the other lime-treated samples. Hence the 
Fe3+ ions appeared to inhibit the release of acid soluble Si possibly as a result of 
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inhibiting the pozzolanic reactions. A further interesting observation was that all 

samples whether treated with lime or not released effectively the same levels of acid 

soluble Na. Furthermore, Pb2+ and Fe3+ ion contaminated samples with no added lime 

released more acid soluble Ca than the uncontaminated sample with no lime. 

Although initially this may have been attributed to increased cation exchange of Ca2+ 

ions naturally present on the exchange sites this was unlikely to be the case since it 

would have been expected that this Ca would be released anyway due to the acid 

digestion treatment. 
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5.3.3 Shear strength measurements 
There was a hypothesis that the breakdown of particles in the batch tests 

represented by the particle size distribution in Figure 5.17 was related to shear 

strength of the various clay-contaminant-lime mixes. The hypothesis was based on 

the fact that as shear strength increased the particle breakdown would reduce during 

the batch tests. The order of increasing shear strength at 301 days curing for English 

China Clay (ECC) was: 

ECC + 5000ppm Fe < ECC + 5000ppm Fe + 1.5% lime < ECC only < 

ECC + 2500ppm Pb < ECC + 1.5% lime < ECC + 5000ppm Fe + 2.5% lime < 

ECC + 2.5% lime or ECC + 5000ppm Pb + 1.5% lime or 

ECC + 5000ppm Pb + 2.5% lime. 

The final three mixes could not be placed in order because all measurements 

were above the capacity of the shear vane i. e. greater than 145kPa. The order 

suggested by the mass of particles below 63µm after the batch tests was: 

ECC + 5000ppm Fe or ECC only or ECC + 5000ppm Pb < 

ECC + 5000ppm Fe + 1.5% lime < ECC + 5000ppm Fe + 2.5% lime < 

ECC + 5000ppm Pb + 1.5% lime < ECC + 5000ppm Pb + 2.5% lime < 

ECC + 1.5% lime < ECC + 2.5% lime. 

The order of increasing shear strength at 301 days curing for Wyoming 

Bentonite (WB) was: 

WB + 5000ppm Fe < WB only < WB + 2.5% lime < WB + 5000ppm Pb + 2.5% lime 

< WB + 5000 Fe + 2.5% lime < WB + 7.0% lime < WB + 5000ppm Fe + 7.0% lime 

or WB + 5000ppm Pb + 7.0% lime 

The order suggested by the mass of particle below 63µm after the batch tests 

was: 

'WB + 5000ppm Fe +7.0% lime < WB + 7.0% lime < WB + 5000ppm Pb + 7.0% lime 



It was clear that the particle breakdown during batch tests was not simply 
linked to the shear strength. However, this does not mean that the release of elements 
during the batch test cannot be linked to physical properties. 

Analysis of the English China Clay shear strengths in Figure 5.18 does reveal 

several trends. Firstly at 7 days curing with no lime present the Pb2+ ion contaminated 

sample had a higher shear strength than the uncontaminated sample which was again 
higher than the Fe3+ ion contaminated sample. Again at 7 days curing, on addition of 

1.5% lime, the strength of the Pb2+ ion contaminated sample increased the most 

significantly followed by only small increases for the uncontaminated and Fe3+ ion 

contaminated samples. An addition of 2.5% lime resulted in a linear increase in the 

shear strength of the Pb2+ ion contaminated sample followed by an increase in the 

shear strength of the Fe3+ ion contaminated sample with no significant change in the 

uncontaminated sample. Consideration of the effects of curing time on the mix 
designs revealed further trends. Increasing curing time resulted in slight increases in 

shear strength for the Fe3+ ion contaminated samples that were especially notable at 

the higher lime contents. In addition, it was apparent that even without the addition of 

lime the shear strength of the uncontaminated sample increased by about 10% over 

301 days curing. This was not due to a change in the water content because this was 

monitored and seen to remain unchanged with curing time. Probably the most 

significant trend was that the Pb2+ ion contaminated sample with 1.5% lime achieved 

the highest shear strength at both 175 and 301 days curing. However, for samples 

with 2.5% lime added the shear strengths of both the Pb2+ ion and uncontaminated 

samples achieved the maximum measurable shear strength of the shear vane, 

significantly higher than the respective Fe3+ ion contaminated sample. 

The shear strength results of Wyoming Bentonite illustrated in Figure 5.18 

were not quite so distinct. However, it was clear that the uncontaminated sample and 

the Fe3+ and Pb2+ ion contaminated samples with no added lime increased in strength 
from 7 days curing to 301 days curing. For the samples with 2.5% added lime the 

Pb2+ ion contaminated samples and Fe3+ ion contaminated samples appeared to 

produce higher shear strengths than the uncontaminated samples at both 175 and 301 

days curing. It was also clear from the rate of increase in shear strength of the 

contaminated samples that the addition of 2.5% lime had a more significant effect on 

these samples than the uncontaminated sample. Furthermore, it was apparent that for 

the samples with 2.5% added lime curing time had very little effect on the shear 
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strength of Fei' ion contaminated samples and the uncontaminated samples whereas 

there was a large increase in the shear strength of the Pb2+ ion contaminated samples 

when curing time increased from 7 to 175 days. When 7.0% lime was added to the 

mixes the Fei' and Pb2+ ion contaminated samples produced similar shear strengths at 

7 days curing whilst all samples recorded shear strengths beyond the range of the 

shear vane at both 175 and 301 days curing. 
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Figure 5.18 Shear strength variation with lime addition at various curing times 

for English China Clay and Wyoming Bentonite design mixes. 
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5.3.4 Atterberg limit test results 
5.3.4.1 Liquid limits 

Figure 5.19 illustrated the variation in the liquid limit characteristics of 
English China Clay and Wyoming Bentonite design mixes with lime at varying curing 

periods. It was immediately evident that the two clay minerals behaved differently. 

Observation of the English China Clay plots revealed that as the lime content 
increased for all design mixes the liquid limit also increased. At 0% lime content the 

Pb2+ ion contaminated sample cured for 7 days had the highest liquid limit. It was 

clear that for all design mixes at 0% lime content that as curing time increased the 

liquid limit reduced. The Pb2+ ion contaminated sample was slightly different since 

the liquid limit initially reduced from 7 to 175 days curing and then slightly increased 

from 175 to 301 days curing. Furthermore, at 0% lime content the reductions in 

liquid limit with curing time were very small for the Fe3+ ion contaminated sample 

relative to the Pb2+ ion contaminated and uncontaminated samples. On addition of 
1.5% lime the liquid limit increased substantially for all design mixes. However, as 

curing time increased there was a significant reduction in the liquid limits particularly 
for the Pb2+ ion and uncontaminated samples. On addition of 2.5% lime the liquid 

limits of the Pb2+ ion and uncontaminated samples remained generally unaffected 

relative to the 1.5% lime addition. However, the liquid limits of the Fe 3+ ion 

contaminated samples continued to increase almost linearly. Similarly to the 1.5% 

lime addition, as the curing time was increased the liquid limits reduced, again most 

significantly for the Pb2+ ion and uncontaminated design mixes. 
In contrast the Wyoming Bentonite mix designs illustrated in Figure 5.19 

showed very large reductions in the liquid limits as the lime content was increased. 

The uncontaminated mix designs were clearly affected the most by the addition of 
lime followed by the Pb2+ ion contaminated mixes and then the Fe3+ ion contaminated 

mixes. At 0% lime addition the addition of contaminants reduced the liquid limit, 

most significantly on addition of Fe3+ ions. This effect was also evident on addition 
of lime although as the lime content increased the effect was less observable. This 

could be seen by the fact that as the lime content was increased the liquid limits of all 
design mixes tended towards a single value. 

The effects of increasing curing time were diverse. For the Fe3+ ion 

contaminated sample there was little effect on the liquid limit. For the Pb2" ion 

contaminated sample at all lime contents increasing curing time reduced the liquid 
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limit. Furthermore, the effect was most noticeable between 7 and 175 days curing. 

For the uncontaminated Wyoming Bentonite sample at 0% lime the liquid limit 

appeared to increase significantly between 7 and 175 days curing and then reduce 

significantly between 175 and 301 days curing. On addition of lime to the sample the 

tendency was for a reduction in the liquid limit with increased curing time. 
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Figure 5.19 Liquid limit variation of English China Clay and Wyoming 

Bentonite design mixes with lime content at varying curing periods 
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Figure 5.20 illustrated how the gradients of the liquid limits plots of water 

content against cone penetration for English China Clay and Wyoming Bentonite 

design mixes varied with lime content and curing period. The English China Clay 

plot showed a high level of variability that was difficult to decipher. Essentially the 

plot showed that there was no significant change in the gradient as the lime content 
increased. However, as the lime content increased there was a slight divergence of 

the results increasing the range from the maximum to minimum gradient value which 

did not appear to be directly dependent on contaminant or curing time. 

The Wyoming Bentonite plot showed many trends since the effect of adding 

contaminants and lime resulted in very large changes in the gradient. Indeed 

comparison of Figure 5.20 with the liquid limit plot in Figure 5.19 showed that the 

two were almost identical. It was apparent therefore that the effects on the liquid 

limits due to adding contaminants and lime were due, in part, to the changing gradient 

of the line. Figure 5.20 identified that as the lime content increased for all design 

mixes the gradient significantly reduced. The Pb2+ ion contaminated and 

uncontaminated samples also behaved similarly. Generally at all lime contents as the 

curing time increased from 7 to 175 days the gradient significantly reduced with little 

change from 175 to 301 days. For the Fe3+ ion contaminated sample with no lime and 

with 2.5% lime it was interesting to note that as the curing period increased so did the 

gradient perhaps indicating an increase in plasticity. This suggests that plastic limits 

and liquid limits are not independent and are inherently associated with physico- 

chemistry. Perhaps the most significant observation, and similarly to the liquid limit 

plot in Figure 5.19, as the lime content increased the gradient of all samples tended 

towards a single value. Furthermore, it was apparent for the Fe3+ ion contaminated 

sample that this single value was achieved at 2.5% lime addition at 7 days curing 

which was strong evidence that flocculation i. e. a reduction in the thickness of the 
diffuse double layer was the cause. This is important because this phenomena is 

suggested as a way of measuring appropriate quantities of lime addition for treating 

clay soils. 
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5.3.4.2 Plastic limits 

Figure 5.21 illustrated the plastic limit variations of English China Clay and 
Wyoming Bentonite design mixes with lime content at varying curing periods. It was 

evident that addition of lime to both clays and for all the design mixes increases the 

plastic limit of the material. Consideration of the English China Clay design mixes 

showed that at 0% lime content the addition of Pb2' ions increased the plastic limit 

whilst Fe3+ ions had the same effect but to a lesser extent. On addition of 1.5% lime 

there was a significant increase in the plastic limits. At 7 days curing the effect of this 

addition was most significant on the Pb2+ ion contaminated and the uncontaminated 

samples. As the curing time increased for this addition of lime the plastic limit of the 

Pb2+ ion and Fe3+ ion contaminated samples did not reduce significantly whilst for the 

uncontaminated sample the plastic limit reduced to a value below that of any of the 

samples at any curing time. On further addition of lime to 2.5% there was very little 

increase relative to the 1.5% lime addition for the Pb2+ or Fe3+ ion contaminated 

samples at any curing period. This was also the case for the uncontaminated sample 

at 7 days curing. However, at 175 and 301 days curing the plastic limits of the 

uncontaminated samples with 2.5% lime appeared at a level between those of the Pb2+ 

and Fe3+ ion contaminated samples. 

Observation of the Wyoming Bentonite plastic limit plots showed an 

apparently high level of variability. However, generally as the lime content increased 

there was a linear increase in the plastic limit of all design mixes. At 0% lime content 
(with the exception of one sample) as the curing period increases the plastic limit 

reduced. It is also clear at 7 days curing time and 0% lime content that the Pb2+ ions 

increased the plastic limit. On addition of 2.5% lime at 7 days curing time both the 

Pb2+ and Fe3+ ion contaminated samples produced the highest plastic limit values 
followed by the uncontaminated sample. At 175 and 301 days curing time the Fe3+ 

ion contaminated sample had the highest plastic limit followed by the Pb2+ ion 

contaminated sample and then the uncontaminated sample. On addition of 7.0% lime 

at 7 days curing time the uncontaminated sample produced the highest plastic limit 

value followed by the Pb2+ ion and then the Fe3+ ion contaminated samples. At 175 

and 301 days curing time Fe3+ ion contaminated sample produced the highest plastic 
limit value followed by the Pb2+ ion contaminated sample and then the 

uncontaminated sample. It was generally evident that for samples with added lime as 
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the curing period increases the plastic limit reduced and the effect was not obviously 

affected by the presence of a particular contaminant. 
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Figure 5.21 Plastic limit variation of English China Clay and Wyoming 
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S. 3.4 3 Plasticity index 

Figure 5.22 illustrated the plasticity index variation of English China Clay and 
Wyoming Bentonite design mixes with lime content at varying curing periods. From 

an initial observation it was clear that the effects of contaminants and lime on the 
liquid limit of Wyoming Bentonite dictated the Wyoming Bentonite plasticity 
indexes. Although addition of lime did increase the plastic limits of the samples the 

increases were almost linear and of a small magnitude relative to the changes in liquid 

limits. Hence for the Wyoming Bentonite the plasticity index plot had the same 

general shape and characteristics to the liquid limit plot. 
The English China Clay plasticity index plot was not so straightforward. The 

most apparent observation was that for the Fe3+ ion contaminated samples as the lime 

content increased the plasticity index increased almost linearly, similarly to both the 

liquid and plastic limit plots. There was also very little variation in the Fe3+ ion 

contaminated samples with curing time. The Pb2+ ion contaminated and 

uncontaminated samples behaved similarly. For both Pb2+ ion contaminated and 

uncontaminated mixes at all lime contents the plasticity index reduced between 7 and 

175 days curing and then increased slightly from 175 to 301 days curing. 

Consideration of the uncontaminated samples showed that as the lime content 

increased from 0% to 2.5% at all curing periods the plasticity index increased slightly. 

On further addition of lime at 7 days curing the plasticity index continued to increase 

whilst at 175 and 301 days curing this increase in lime content resulted in a slight 

reduction in the plasticity index. Consideration of the Pb2+ ion contaminated sample 

showed that as the lime content increased from 0% to 2.5% at 7 days the plasticity 
index increased only to decrease significantly on addition of more lime. However, the 

plasticity index of the Pb2+ ion contaminated samples at 175 and 301 days curing 

tended to decrease almost linearly as lime content increased. 

Evidently there are associations between physical and chemical properties of 
lime-treated contaminated clays. These associations will be discussed in detail in 

Chapter 6. In addition explanations of the physico-chemical behaviour will be 

postulated. 
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6.0 DISCUSSION 

In Chapter 5 the results from the laboratory investigations were presented in 

an order which characterised the materials and allowed the effects of changing the 

batch test parameters for each of the mix designs to be assessed. Having established 

that the parameters of the batch test, with the exception of solid to liquid ratio, have 

little effect on the release of ions into solution, one series of batch tests (6hr/30rpm 

tests with a 1: 20 solid to liquid ratio and 20mm cube sizes) was chosen for further 

analysis. This section will discuss the pH and conductivity of the solutions resulting 

from these batch tests, and the effects on pH and conductivity due to changing solid to 

liquid ratio and variations in solution element concentration. Subsequent to the 

presentation of the basic chemistry of the batch tests, a transition to the physical 

behaviour will be made via a discussion of the particle size grading analysis of the 

residues of a specific set of batch tests and aggressive acid digestion of all samples. 

The physical properties of shear strength, liquid limits, plastic limits and plasticity 

index of all the design mixes will then be discussed. The discussions of the results 

will hypothesise the mechanisms linking the time-dependent changes in the batch test 

chemistry and physical properties. 

This Chapter could have been structured in a way that illustrated the effects of 

lime on the time-dependent physico-chemical developments of the two clay minerals 

English China Clay and Wyoming Bentonite. Following this discussion the effects of 

the Pb2+ and Fe3+ contaminant ions on these time-dependent lime reactions could have 

been discussed. Indeed Boardman eta! (1999-A) discuss the time-dependent physico- 

chemical developments of lime-clay mixes from this perspective. Furthermore, 

Boardman et al (1999-B) discuss the time-dependent physico-chemical developments 

of lime-clay-contaminant mixes and Boardman et al (1999-C) discuss appropriate 

short-term and long-term testing procedures for contaminated soils treated with pH- 

dependent stabilisation and solidification agents. 

However, this chapter was not structured in this way because it was important 

to consider the changes in physico-chemical developments in terms of ionic 

interactions prior to, and after the onset of, pozzolanic reactions to understand the 

mechanisms involved in contaminant retention. This was important because the ionic 

interactions were different at high and low pH, and both immediately after mixing and 
after a long curing time. As Pb(NO)2 and Fe(NO)3 can be considered to be acidic 
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ionic contaminants with specific physico-chemical interactions, hydrated CaO 

(Ca(OH)2) can be considered to be an alkaline ionic contaminant with specific 

physico-chemical interactions. The minerals studied have opposite extremes of 

permanent negative charge and develop varying pH-dependent charge attracting both 

cations and anions. Hence understanding the mechanisms governing the interaction 

of these ions with the minerals provides a model from which other ionic interactions 

can be postulated and considered in the context of other remediation approaches, such 

as modified mineral attenuation, phyto-remediation, electro-osmosis, and slurry wall 

or landfill liner retention barrier systems. Furthermore, although other contaminating 
ions will behave differently when exposed to varying soil pH conditions, the retention 

processes and the soil physical characteristics will be more easily predicted. 
Interpretation of the contents of this chapter can made from the alternative 

perspective as follows: 

" To find information on the clay-lime mix interactions refer to Sections: 

6.1.2,6.1.3.1,6.2.1,6.2.2.1,6.2.3.1,6.2.3.3,6.2.4.1,6.2.4.3,6.3.3.1, 

6.4.1.2 and 6.4.2.2. 

" To find information on the clay-lime-contaminant interactions refer to 

Sections: 6.1.3.2,6.2.2.2,6.2.3.2,6.2.4.2,6.2.4.4,6.3.3.2,6.4.1.2 and 

6.4.2.2. 

6.1 PRELIMINARY MATERIAL CHARACTERISATION 

6.1.1 Initial particle size and chemical characterisation 
The initial particle size distribution of the untreated clay minerals (Figure 5.1) 

confirmed that Wyoming Bentonite contained a much higher proportion of particles 

< 2µm (84%) relative to the English China Clay (51%). This was relevant because it 

was directly linked to the available mineral surface area for chemical interactions. 

The acid soluble fractions of these minerals were also substantially different. These 

initial classification results provided useful information for test and analysis design. 

The Wyoming Bentonite samples had significantly higher acid soluble levels of Ca, 

Mg, Mn, Fe and Na whilst the levels of acid soluble Al and Si were very similar. The 

majority of the Ca and Na were likely to come from the cation exchange sites of the 
Wyoming Bentonite. Although the English China Clay sample was predominantly 
kaolinite (Table 4.1 reported 69%) with essentially no permanent charge the mineral 
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was not pure and contained a small proportion of Quartz and Micas which explained 
the presence of some of the elements. Although a proportion of the other elements, 
including Mg, Mn, Fe, Al and Si, may also have been from cation exchange sites, 

especially in the Wyoming Bentonite, it was likely that some originated from the clay 

mineral structure itself. This was significant since for both clay minerals the levels of 
Al and Si which were acid soluble were similar in magnitude and could be directly 

compared in the batch tests to show the differing stabilisation and solidification 
behaviour of the two minerals. It could be expected that once stabilisation and 

solidification reactions were in progress, similar levels of Si and Al from the two 

minerals would be soluble. This was not the case and will be discussed in detail later 

and compared with the precise acid digestion data collected after 301 days. 

6.1.2 Mechanisms controlling the initial consumption of lime test (ICL) 

The results of the initial consumption of lime (ICL) tests on the minerals were 

clear for the English China Clay. However, interpretation of the results from the 

adapted Wyoming Bentonite test required a degree of speculation. It was evident 
from Figure 5.2 that the requirement to add additional water to perform the test 

affected the ICL value. It could be expected that the addition of excess water to the 

Wyoming Bentonite tests would reduce the expected pH of the solutions, particularly 

at the lower lime additions, by definition of the pH measurement. 

pH = -loglo(Hydrogen ion concentration, mol/dm3) Equation 6.1 

By a similar argument it was evident that the asymptote upon which the ICL 

was based could be shifted to a higher percentage lime addition. Analysis of Figure 

5.2 did however show that these variations were relatively small and that the ICL 

value of 7.0% for Wyoming Bentonite was likely to be reasonably accurate. 
Arguments about the mechanisms governing the determination of the ICL 

value of different clay minerals have been complex and diverse, but highly important 

with respect to predicting the lime required to develop stabilisation and solidification 

within a soil. An explanation of the mechanisms governing the determination of the 
ICL value will be suggested below because it is also relevant to later discussions. 

Although ultimately there are many inter-dependent factors occurring simultaneously, 
the chemical processes involved in determination of the ICL value have been 

associated with the mineral characteristics illustrated in Figure 6.1. 
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This hypothesised model for the mechanisms governing determination of the 
ICL value would suggest that for a clay with predominantly pH-dependent surface 

adsorption sites such as English China Clay, very little lime would need to be added 
to achieve a high pH because few Ca2+ or OH' ions would be involved in immediate 

chemical interactions with the mineral. Initially the increased pH would create more 

negative charge sites on the clay surfaces which would attract Ca2+ ions and move the 

dissolution equilibrium of Ca(OH)2 to release more Ca2+ ions and Off ions thereby 

increasing pH. Due to the limited solubility of Ca(OH)2 this process would not 

require the addition of high percentages of CaO. 

It is important to consider system disorder (particle orientation) when 
discussing surface adsorption. Hydroxyl groups on the mineral structure (Figure 6.3), 

are responsible for the hydrogen bonding of the mineral layers. This interparticle 

hydrogen bonding derived from the highly electro-negative oxygen atom would be 

disrupted by the creation of the alkaline environment resulting in particle re- 

orientations in the ICL test solutions. 
On the basis of the above model, Wyoming Bentonite, with a high number of 

negative permanent charge sites, would have different behaviour. Depending on the 

ionic potential and concentrations of interacting ions, Caa+ ions would be `removed' 

from solution displacing ions on the exchange sites (Nat ions in the case of Wyoming 

Bentonite). Similarly to English China Clay this process would be expected to move 

the Ca(OH)2 dissolution equilibrium to produce more Ca2+ and OH' ions thereby 

raising the pH quickly. The ICL value of Wyoming Bentonite was 7.0%, which was 

evidence that this did not happen, hence the model has failed. A hypothesised 

mechanism to explain why the pH did not rise quickly at low lime contents for 

Wyoming Bentonite incorporates a combination of chemical interactions: 

1. The stoichiometric exchange reaction releasing Na+ ions limited further 

dissolution of Ca(OH)2 due to equilibrium conditions limiting pH increase. 
2. The release of high concentrations of Na+ ions which are similar in nature to H+ 

ions, interfered with the pH probe measurement of H+ ions producing an 

apparently more acidic solution pH than that actually present. This could not be 

entirely the case because this would have over-estimated the ICL value and on this 
basis significant stabilisation at lower lime contents would have been expected, 

which was not the case. 
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3. The Wyoming Bentonite had a higher number of surface adsorption (hydroxyl) 

sites than English China Clay. Montmorillonite does have surface hydroxyl sites 

which would be involved in chemical interactions (Figure 6.3) and the increased 

surface area due to particle orientations and disorder would suggest that these sites 

would be more available for chemical interactions. However, Wyoming Bentonite 

had a significantly higher ICL value than English China. It was previously 

suggested that the release of Na+ ions into solution due to cation exchange with 
Ca2+ ions would reduce the dissolution of lime. Alternatively as a higher quantity 

of solid lime was added more Na+ ions were displaced which had a higher 

solubility than the Ca2+ ions thereby allowing more dissolution of Ca(OH)2. As 

the Ca2+ ions were interacting with exchange sites OH' ions were attracted to the 

Ca2+ at the edges of these sites resulting in the unexpected low pH. This would 

also explain some of the pozzolanic dissolution phenomena to be discussed later 

where the location of mineral dissolution varied for different minerals. 
Furthermore, the gradual addition of lime would cause the water between 

interacting layers to be excluded resulting in particle flocs surrounded by water. 
These changes in particle orientation and disorder in solution would also have an 

effect on future chemical interactions. A simplified image of this process and the 

effects of system disorder are illustrated in Figure 6.2. 

On the basis of the ideas relating to the mechanisms controlling the ICL 

determination it would be possible to hypothesise the outcomes of testing 

contaminated soils, varying the ICL solid to liquid ratio, and varying the soil 

mineralogy. These ideas are open to considerable conjecture by various investigators. 

Investigations by Ho and Handy (1963A and 1963B) would tend to support the 

hypothesis via measurements of zeta potential (a quantity related to the net negative 

or positive charge by the clay particles in dilute suspension) of lime-treated Bentonite 

aged either for several days (`fresh') or a year ('aged'). Their results showed that 

Ca2+ ion saturated Bentonite had a zeta potential of about -20 millivolts. Small 

additions of lime caused a slight increase in this value and larger additions generated a 

modest decrease for both fresh and aged samples. Na saturated Bentonite had a zeta 

potential of about -40 millivolts; additions of lime up to about 6 percent caused strong 

proportional reductions to -26 millivolts for fresh samples and -22 millivolts for the 

aged samples, whereas higher additions of lime caused no further change. However, 
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Diamond and Kinter (1965) disputed the ideas of ionic interactions with Bentonite 

because ionic interactions were often above the cation exchange capacity of the 

mineral and suggested that physical adsorption of the CaO molecule was more likely. 

These latter ideas were disputed by Ho and Handy (published in Diamond and Kinter, 

1965) and pH-dependent surface ionic adsorption was the suggested mechanism. 

Water molecules `squeezed' out 

sb from between layers 

I 
fi' 

Sý 

n 

s 

s' 

O`. 

6- 

Figure 6.2 Monovalent and divalent cations between multiple clay surfaces 
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6.1.3 Dry density water-content relationships 
6.1.3.1 Clay-lime mixes 

The preliminary dry density-water content compaction curves (Figures 5.4 and 
5.5) showed for both clays that the addition of lime increased the optimum water 
content and reduced the magnitude of the dry density at this optimum water content. 
This was due to the initial flocculation of particles on addition of lime and the 

production of a compacted material with a higher proportion of voids. The higher 

required water content was not due to the water required to hydrate the lime because 

the measured water content was carried out at 105 ± 0.5°C, not sufficient to reverse 

the hydration reaction. Hence this extra required water was also a result of the 
flocculation reactions. More water was needed to reduce the resistance to shearing to 

a minimum so that density was maximised i. e. to remove suctions. The dry densities 

achieved for the final design mixes (Figure 5.6) also illustrated this behaviour. 

Furthermore, it was clear that the contaminant present affected the dry density due to 

cation exchange, where applicable. 

The physical changes can be associated with many of the ionic interaction 

principles suggested to govern the ICL test in Section 6.1.2. Since all samples were 

compacted with the same energy per unit volume and 2% wet of the predetermined 

optima for each clay-lime mix, the changes seen with contaminants present can only 
be due to contaminant addition. 

The untreated uncontaminated Wyoming Bentonite samples achieved much 
lower dry densities than the same English China Clay samples due to the fact that 

Wyoming Bentonite hydrated, retaining significant quantities of water within its 

structure around exchange sites. It consequently expanded significantly and produced 

a material of lower density. This would not have been expected from the initial 

grading of the dry material because there was a higher proportion of Wyoming 

Bentonite particles that were significantly smaller than those of English China Clay. 

6 . 1.3 2 Clay-lime-contaminant mixes 
The contaminated English China Clay samples with no lime added exhibited 

reduced dry density because the particle flocculation increased due to the addition of 
an ionic contaminant. On addition of lime the dry density achieved reduced further 

although the lime-treated contaminated samples still had lower dry densities. Several 
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mechanisms could be postulated. The first was that the OH' ions liberated by the 

addition of lime reacted with the contaminant ions, hence moving the Ca(OH)2 

equilibrium to release more Ca2+ and OH" ions and thereby increasing flocculation 

caused by the Cat-'. However, the reduced quantity of Fe 3+ ions would also reduce 
flocculation. Hence it would be feasible to suggest that a variety of ions in 

equilibrium of varying charge and radius can achieve a higher degree of flocculation 

than any one ion due to system disorder. The second hypothesis was that the 

contaminant precipitate produced on the addition of lime might partially bind particles 
together physically and hence impede compaction with a compaction hammer. A 

combination of these factors is feasible. 

Wyoming Bentonite behaved differently to the English China Clay samples 
(Figure 5.6). Initially the Fe3+ ion contaminated sample had a higher dry density than 

either the uncontaminated or Pb2+ ion contaminated samples. This did not happen for 

the equiverlant English China Clay samples. Due to its structural differences 

Wyoming Bentonite was more likely to react to the processes of cation exchange and 
flocculation than the English China Clay. An explanation as to the different 

behaviour of the two clays was only evident by observation of the samples during 

compaction. It was clearly visible that wet untreated Wyoming Bentonite had very 

significant plasticity that made it very difficult to compact with a hammer due to 

adhesion to the base of the hammer. On addition Fei ions the difficulties due to the 

plasticity reduced. However, on addition of lime the level of flocculation was so 

significant that dry density decreased. The flocculation was so rapid, within seconds 

of the addition of lime, that the material gained a level of increased strength and 

reduced plasticity which made it difficult to compact. This could help to explain why 

the dry densities increased marginally when the lime addition was increased from 

2.5% to 7.0%. Some of these behavioural characteristics will become more apparent 
later during the discussion of the Atterberg Limits and the shear strength results. 
Plasticity was not a problem for compaction of the English China Clay simply due to 
its inherent low plasticity and very low cation exchange capacity. 

It is important to note that the final design mix samples were deliberately 

mixed on the wet side of optimum to achieve the minimum permeability. Therefore 

the dry densities achieved were expected to be slightly lower than the optimums 
determined by the initial characterisation. 
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6.2 CORRELATION BETWEEN CHEMICAL 

MEASUREMENTS AND SHEAR STRENGTH 

6.2.1 Introduction 

Once the soluble element contents and specifically the soluble Ca, Al, Si and 
Na contents of the filtered end of batch solutions were known in conjunction with the 

end of batch test pH and conductivity, it was possible to use the end of batch test pH 
and conductivity alone (as illustrated in Figure 5.11) to explain many of the time- 
dependent chemical and physical properties of both clay-lime and clay-lime- 
contaminant interactions. Specifically pH and conductivity variations with curing 

time can be used to infer whether the stabilisation and solidification reactions were 

taking place without the need for complex chemical analysis. With care, the shear 

strength improvements have been associated with these changes. 

Prior to discussion of the detailed ̀ micro' element chemical releases during 
batch tests the `macro' processes governing release should be highlighted. There 

were four processes that governed the release of the Pb, Fe, Ca, Si, Al and Na into 

solution during batch tests. 

1. Firstly there were the cation exchange reactions, which were 

predominantly associated with Pb2+, Fei+, Ca2+ and Na+ ion releases from 

the Wyoming Bentonite samples only. 

2. Secondly there were the stabilisation and solidification reactions, which in 

the longer-term created a strong material of low permeability which would 
limit the release of all elements and incorporate some of these elements in 

the crystallisation products. This mechanism was relevant to both clay 

minerals, although the mechanisms were different. 

3. Thirdly the development of the solidification reactions with curing time 

affected how the cubes in the batch test broke down, and therefore the 

surface area in contact with the leachant and subsequently the element 
release with curing time. The process governing this mechanism were the 
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effects of the high pH creating more soluble Si and Al from dissolution 

reactions at the clay mineral surface. 

4. Fourthly there was the method of separation of the solid and liquid phases 

at the end of the batch test. This latter mechanism was relevant for those 

Wyoming Bentonite mixes with lime additions below 7.0% where 

separation was via centrifugation. The success or otherwise of 

centrifugation appeared to be associated with the degree of flocculation of 

the mineral particles and resulted in the release into solution of very high 

levels of Ca, Fe, Si and Al, which disguised the changes in these element 

concentrations due to solidification reactions. The high levels of the 

elements found to be present were due to fine clay particulates held in 

suspension in solution, a situation noted by the cloudy nature of the 

supernatant. Therefore the changes being observed for the samples which 

were easily filtered were more likely to relate to cation exchange where 

appropriate, stabilisation and solidification reaction chemistry and particle 

breakdown (i. e. strength of the solidified mass). The difficulty therefore 

arose in distinguishing between the effects associated with changing 

solidification reactions and those of particle breakdown. 

6.2.2 Measured chemical changes due to particle breakdown and time- 

dependent chemical reactions 
6.2.2.1 Clay-lime mixes 

On addition of lime to a sample a reduction in the particle breakdown would 
be generally expected due to increased strength properties associated with initial 

stabilisation reactions and subsequent time-dependent solidification reactions. If on 

addition of lime there were increases in elemental release with time this could not be 

associated with reduced particle breakdown but only with the chemistry related to 

stabilisation and solidification reactions. However, the problem arose when there was 

a reduction in elemental release and pH and conductivity since it was unclear whether 
these reductions were due to changes in chemistry or changes in particle breakdown. 

Both these mechanisms would be of benefit at limiting element migration in situ. 
A hypothesis can be constructed for English China Clay to suggest that much 

of the release of elements was primarily due to chemical processes although it was not 
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possible to ascertain the precise proportion. The basis for the argument explained 
below is that if one of the lime-treated clays, either English China Clay or Wyoming 

Bentonite can be found, which breaks down into small particles, any reductions in 

conductivity or soluble Ca concentration are due to chemical changes and not due to 

partial breakdown of the monolithic masses. 
Analysis of the particle breakdown curve for samples batch tested after 301 

days curing in Figure 5.17 showed that for English China Clay mix designs with 1.5% 

lime content, at least 83% of particles by mass for both 20mm and 10mm initial cube 

sizes broke down into particles smaller the 63µm. Due to the time dependence of 

solidification it could be argued that particle breakdown of the English China Clay 

samples with 1.5% lime would be greater at 175 days curing and greater still at 7 days 

curing. This hypothesis was supported by the shear strength data in Figure 5.18 that 

illustrated that at 7 days curing the shear strength was much less than that at 301 days 

curing. Due to the high particle breakdown at the end of these batch tests after 301 

days curing it was likely that the observed changes with curing time of pH (hydrogen 

ion concentration) and conductivity (dissolved solids) for the end of batch test 

solutions of English China Clay samples with 1.5% lime content in Figure 5.11 were 

predominantly due to chemical changes. The changes in conductivity and pH of the 

English China clay samples with 2.5% lime illustrated in Figure 5.11 were a similar 

shape even though there was less particle breakdown (70% < 63µm). This was 

evidence to suggest that the observed change in element release into solution (Si, Al 

and Ca) depicted in Figure 5.12 was predominantly due to chemical changes. 

Distinguishing between chemical changes associated with the particle 
breakdown and time-dependent chemistry of Wyoming Bentonite samples was not as 

easy due to the high undrained shear strengths of the clay-lime mixes. This was 

compounded by the fact that it was not possible to sieve samples with only 2.5% lime 

addition due to the fact that the material obtained from the batch test was a thick 

sludge similar to that illustrated in Figure 4.10. However, increases in the soluble 

concentrations of Si discussed later and illustrated in Figure 5.13 confirmed that 

chemical changes were detectable irrespective of particle breakdown. To make 
further judgements about Wyoming Bentonite the contaminated samples had to be 

considered. These are discussed in Section 6.2.2.2. 
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6.2.2.2 Clay-lime-contaminant mixes 
Figure 5.17 illustrated that contaminants significantly affected the breakdown 

of the cubes in the batch tests. The influence of contaminants on this process was 

more evident for Wyoming Bentonite mixes than English China Clay mixes. For any 

of the contaminant mixes with lime added the lowest mass passing a 63µm sieve after 

a batch test with 20mm cube sizes was 92% for English China Clay + Pb2+ ions + 

2.5% lime whilst only 41% for Wyoming Bentonite + Pb2+ ions + 7.0% lime. For the 

uncontaminated Wyoming Bentonite sample with 7.0% lime the mass passing a 63 

µm sieve was 41% clearly indicating the increased resistance of the Pb contaminated 

sample to particle breakdown. pH and conductivity data in Figure 5.11 illustrated that 

all these samples exhibited the similar reductions in pH and conductivity signifying 

that chemical processes were occurring. 

6.2.3 Relationships between shear strength and soluble chemistry for English 

China Clay 

6.2.3.1 Clay-lime mixes 
Figure 5.18 highlighted the large increases in shear vane strength of English 

China Clay with increasing lime content and curing time. ICP chemical data in 

Figure 5.12 for uncontaminated English China Clay with 1.5% and 2.5% lime all 

showed increases in soluble Al concentrations, reductions in Ca concentrations and 

very low, relatively constant Si concentrations with increasing curing time. For 

English China Clay with a 2.5% lime content, the soluble Ca concentrations 
illustrated in Figure 5.12 reduced by a higher proportion with curing time than the 

sample with 1.5% lime whilst the Al concentrations again increased. The large 

reduction in Ca and increase in Al leached into solution at 175 and 301 days curing 

was not evident at 7 days, which suggested that at 7 days curing there was limited 

pozzolanic reaction activity and that activity increased with increasing curing time. 
Although not supported with data due to the limitations of the shear vane equipment, 
it was evident that the English China Clay samples with 2.5% lime resulted in higher 

undrained shear strengths. This suggested that substantial benefit was gained by 

adding lime above the ICL. 

ICP data in Figure 5.12 illustrated that on addition of lime to English China 

Clay samples, only Al appeared to become more soluble with curing time with no 

263 



measurable Si activity. Although it would be expected that soluble Al would decrease 

due to re-crystallisation of calcium aluminate hydrates at the continued high pH, 
further dissolution would be expected hence retaining the high concentrations of 

soluble Al at longer curing times. However, the level of soluble Al would also be 

expected to reduce after a very long curing time due to a reduction in the pH and the 

re-crystallisation of cementitious reaction products on the surfaces of the mineral 

particles, the source of alumina. Perhaps this was not seen here due to testing at 

limited curing periods. 

6.2.3.2 Clay-lime-contaminant mixes 
The behaviour of the contaminated samples was different. Batch tests on 

English China Clay with Pb2+ or Fe3+ ion contamination and no lime exhibited an 

initial liberation of soluble Si at 7 days curing, with large reductions in Si 

concentration from 7 days to 175 days and subsequently 301 days (Figure 5.14). 

However, on addition of lime to this Pb2+ ion contaminated English China Clay 

sample, there were large reductions in soluble Ca concentrations and large increases 

in soluble Al concentrations with no soluble Si activity. For lime-treated English 

China Clay with 5000ppm Fe3+ ions there were very small reductions in soluble Ca 

concentrations and no increases in soluble Al. Instead of reductions in soluble Ca and 

increases in soluble Al there were essentially constant high levels of both elements at 

all curing periods. However, increasing the lime content for this sample from 1.5% to 

2.5% lime resulted in higher constant concentrations of both Al and Ca in batch test 

solutions (Figure 5.12). It was also clear from Figure 5.12 that the higher lime 

content resulted in larger reductions with time in soluble Ca concentrations for the 

Pb2+ ion contaminated and uncontaminated samples. English China Clay had 

essentially no cation exchange capacity thus it was reasonable to suggest that changes 

in soluble Ca and Al concentrations were due to the formation of calcium-aluminate- 
hydrate gels as the pozzolanic reactions progressed. Significantly Pb2+ ion 

contaminated samples treated with 2.5% lime liberated nearly 2.5 times more soluble 
Al than all other lime-treated samples at 175 and 301 days curing (Figure 5.12). This 

could help explain why these samples showed larger shear strength increases than 

uncontaminated mixes with the same lime content (Figure 5.18). Interestingly 

English China Clay '+ 5000ppm Fe with 2.5% lime liberated more soluble Al at 7 days 

curing compared to all other mixes with the same lime content. This may explain its 
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apparent higher strength relative to the other samples with no lime and the 

uncontaminated English China Clay sample with 2.5% lime at 7 days curing. This 

trend of increased strength as leached Al concentration increased was reflected by all 
other lime-treated English China Clay samples. 

The undrained shear strength of the lime-treated Fe3+ ion contaminated 

samples were low relative to the lime-treated uncontaminated samples and the Pb2+ 

ion contaminated samples (Figure 5.18). One suggested hypothesis incorporated two 

mechanisms. Firstly the quantities of OT(8q) required to react with the two different 

contaminants was substantially different. For every mole of the Olf(aq) anion required 
to react with the added Pb2+(eq) cation, 5.56 moles of OH'(eq) was required to react with 
the added Fei+(, q) cation. Also for every mole of Pb(OH)2(g) precipitated there were 
3.7 moles of Fe(OH)3(s) precipitated, hence more precipitate was present to interfere in 

the crystallisation of any pozzolanic reaction products. If crystallisation could not 

occur it was reasonable to suggest that Ca could remain at a constant level in some 

soluble form and be detectable using ICP and conductivity. These ideas were 

reflected in Figure 5.11. Where lime was present, with the exception of the Fe3+ ion 

contaminated sample; there were significant reductions with time in pH and 

conductivity with curing. Clearly as pH = -Loglo[H30+](sy) where [H30+](ey) represents 
hydrogen ion concentration in moles/dm3, a small change in pH reflects a relatively 
large change in [H30+](8q). The reduction in pH reflected an increase in (H30)+(eq), i. e. 

a reduction in OH"(eq). The reductions in conductivity reflect the reduction in 

concentrations of all anions and cations, although perhaps the most significant being 

the ICP measured reductions in soluble Ca concentration and the reduction in 

hydroxide ions due to precipitation reactions. These reductions in pH were clearly 

evident for contaminated English China Clay samples with lime relative to the 

uncontaminated English China Clay samples with lime. 

The second suggested mechanism for the reduced physical and chemical 
development of the Fei ion contaminated samples with lime relate to the very slow 
creation of iron-aluminate-hydrates relative to calcium-aluminate hydrates. In a 
system of mixed Fe3' and Ca2+ ions it would be likely that Fe3+ ions would be 

involved preferentially to Ca2+ ions, although this behaviour would have to be in 

equilibrium with the precipitation reaction involving the Fe 3-" and OH' ions. 

The Pb2+ ion contaminated samples exhibit increased chemical activity and 
improved strength development particularly in the early stages of solidification. Pb2+ 
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ions have a similar charge and size to Ca2+ ions (Figure 6.4) and as such behave 

similarly during pozzolanic reactions. However, this cannot explain why more 

soluble Al was produced during the early stages of solidification reactions. This 

would suggest that the presence of Pb2+ ions aided the dissolution of the aluminates 
from English China Clay. 
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Aside to the considerations due to the addition of contaminants, an important 

issue is the selective dissolution of Al relative to Si during pozzolanic reactions. This 

issue will be addressed in the next section. 

6.2.3.3 Suggested mechanisms governing selective dissolution of the English China 

Clay structure due topozzolanic reactions 
Initial inspection of acid digestion data in Table 5.14 would suggest that the 

higher soluble Al than Si concentrations observed in batch test solutions due to 

pozzolanic reactions were due to lower levels of Si present in the mineral structure 
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(564mg/kg acid soluble Si relative to 4272mg/kg acid soluble Al). Caution should be 

used in interpreting such acid soluble data because the solubility of a mineral is 

significantly different in acid and alkaline environments. Figure 2.12 illustrates that 
in alkaline environments above pH 10.5 both silicon oxides and aluminium oxides are 

similarly susceptible to dissolution whilst below pH 3 (the condition during acid 
digestion) aluminium oxides are significantly more susceptible to dissolution than 

silicon oxides. On this basis the acid digestion did not necessarily reveal the relative 

quantities of soluble Al and Si. To obtain these data acid digestion using hydrofluoric 

acid would have been required, a chemical not permitted for use during this study due 

to health and safety restrictions. However, analysis of Figure 6.2 suggested a 

mechanism that would govern the release of Al preferentially to Si during 

solidification reactions. The hydroxyl group attached to the mineral surface 

responsible for interparticle hydrogen bonding was pH sensitive and at high pH the 

OH' ions were attracted to the sites interacting with the hydrogen atom. This in turn 

created negative charges at these sites thus attracting Ca2+ ions. The attraction of the 

OH' ions to these sites initiated mineral dissolution directly next to a source of Al 

atoms in the mineral structure. The fact that Ca2+ ions were also attracted to these 

sites resulted in a ready supply of Ca2+ to create the calcium-aluminate-hydrate gels 

prior to re-crystallisation. 

However, it was found that that when no lime was added to the contaminated 

English China Clay samples Si became the most susceptible to dissolution. These 

samples were acidic when in solution (between pH 3 and pH 5; Figure 5.11). An 

initial suggestion could be that the Si4+ was displaced from surface adsorption sites by 

the sites becoming positively charged. This was unlikely because this Si release 

would be evident for the lime-treated samples after dissolution of these sites. One 

potential explanation was that because the hydroxyl sites become positively charged 
in acidic conditions excess H+ ions were repelled from these sites and were attracted 
to the electronegative oxygen associated with the silicon atoms (Figure 6.3). It was at 
these sites where dissolution occurred. Hence dissolution according to acid 

environments illustrated in Figure 2.12 would occur. 
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6.2.4 Relationships between shear strength and soluble chemistry for Wyoming 

Bentonite 

6.2.4.1 Clay-lime mixes 
Figures 5.11 and 5.18 suggested that the chemical and strength behaviours of 

filtered Wyoming Bentonite samples were similar to those of English China Clay. In 

many ways this appeared to be the case but with the added effects due to the 

Wyoming Bentonite chemical structure and subsequent cation exchange capability 

releasing Na+ and Ca2+ ions. This was evident by consideration of uncontaminated 

Wyoming Bentonite with 7.0% lime. The concentrations of soluble Ca illustrated in 

Figure 5.13 clearly decreased significantly with increasing curing time. Although still 

high the soluble Na concentrations also reduced with increasing curing time whilst the 

soluble Si concentrations increased significantly. Significantly virtually no soluble Al 

was liberated relative to soluble Si, unlike the English China Clay samples. 

6.2.4.2 Clay-lime-contaminant mixes 
The soluble Na and Ca concentrations for Wyoming Bentonite + 5000ppm Pb 

with 7.0% lime were similar to the uncontaminated Wyoming Bentonite sample with 

7.0% lime. If the presence of Pb2+ ions was responsible for liberation of extra soluble 

Al in English China Clay with subsequent larger increases in vane strength of these 

samples, it is possible that the reduced amount of available soluble Si in the Wyoming 

Bentonite samples explains why the Wyoming Bentonite with Pb2+ ion contamination 

strength behaviour does not reflect the behaviour characteristics of English China 

Clay. It was consequently hypothesised that exchange of Pb2+ for Na+ ions in the 

Wyoming Bentonite structure had reduced the effect of increased liberation of soluble 

Si on addition of Pb2+ ions, as was the case for increased soluble Al liberation on 

addition of Pb2+ ions to the English China Clay sample. 

One of the most significant results for Wyoming Bentonite was for the Fe3+ 

ion contaminated sample with 7.0% lime. The presence of the Fe3+ ions did not 

significantly inhibit the pozzolanic reactions and the undrained shear strength 
increases " were similar to the Pb2+ ion contaminated and uncontaminated samples 

treated with lime. The occurrence of pozzolanic chemistry for the Fe3+ ion 

contaminated Wyoming Bentonite sample was apparent by the reduction in pH and 

conductivity of the samples in Figure 5.79, unlike the equivalent English China Clay 

sample. To explain why Fe 3+ ion contamination inhibited the pozzolanic reactions of 
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English China Clay and not Wyoming Bentonite a hypothesis involving three 

mechanisms was developed. Firstly, it could be argued that this effect was due to the 
higher (7.0%) lime content of the Wyoming Bentonite sample relative to the (2.5%) 

lime content of the English China Clay sample, resulting in a higher OT(ay) 

availability and increased pozzolanic activity. However, this was not necessarily the 

case because similar reductions in pH and conductivity occurred for the Wyoming 

Bentonite samples to which 5000ppm Fe3+ ion contamination and 2.5% lime were 

added (an addition well below the ICL for Wyoming Bentonite) and the English 

China Clay samples to which 5000ppm Fe3+ ion contamination and 2.5% lime were 

added (an addition above the ICL value). The second suggested mechanism was due 

to the inter-layer cation exchange sites attenuating significant quantities of Fe3+ ions 

from solution, resulting in reduced levels of precipitate interfering with pozzolanic 

solidification reactions. Thirdly iron-silicate-hydrate may have hydrated faster and 

crystallised to produce a stronger material than crystallised iron-aluminate-hydrate. 

Although this discussion is speculative, the difference between the predominant Al 

dissolution from English China Clay and Si dissolution from Wyoming Bentonite 

would be a significant factor. Due to the large conductivity and soluble Ca reductions 

with time, illustrated in Figures 5.11 and 5.13 respectively, it could be speculated that 

Fe3+ ions did not interact at all with the dissolved mineral and did not produce iron- 

silicate-hydrates but produced calcium-silicate-hydrates. This is a suggested area 

requiring further study. 

6.2.4.3 Suggested mechanisms governing selective dissolution of the Wyoming 

Bentonite structure due topozzolanic reactions 
Inspection of Figure 6.3 suggested that the majority of edge sites of 

montmorillonite minerals were associated with the tetrahedral silicate structure. It 

was also hypothesised that if Off ions were attracted to Ca 2+ ions on exchange sites as 
suggested in Section 6.2.1, then mineral dissolution could also be initiated at these 

sites, adjacent to tetrahedral silicates. The fact that small quantities of soluble Al 

were also produced via dissolution processes suggests that proportions of all 
Wyoming Bentonite mineral surfaces were involved in dissolution processes and that 
dissolution occurred into the mineral structure. 
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6.2.4.4 The influence of contaminants on pozzolanic reactions 
It was evident that the cation exchange sites were very important and could 

affect which contaminant precipitated at high pH. Furthermore, cation exchange sites 

could control the quantity of contaminant precipitated and therefore reduce positive or 

negative effects of contaminants on pozzolanic reactions. Due to the fact that the 

pozzolanic reactions of the Fe3+ ion contaminated Wyoming Bentonite samples with 

7.0% lime were relatively unaffected compared with the similar English China Clay 

samples it was important to try to gain more information from the data about these 

processes. It was considered important to distinguish what proportion of Pb2+ ions 

were removed by cation exchange and what proportion were removed by precipitation 

to aid analysis. It was apparent that a higher proportion of the 5000ppm Pb2+ ions 

were precipitated relative to the 5000ppm Fe3+ ions by observing the soluble Na 

concentrations of the samples with 7.0% lime content (Figure 5.13). It was clear that 

the uncontaminated and Pb2+ ion contaminated samples had similar soluble Na 

concentrations. Since Pb2+ ions have a slightly smaller ionic potential than Ca2+ ions 

(Figure 6.4), it was reasonable to suggest that Ca2+ ions could have occupied more 

exchange sites than the Pb2+ ions. Further evidence for this existed in Figure 5.13, 

where at 7 days curing i. e. during the natural attenuation period prior to solidification 

reactions, there were fewer Ca2+ ions released from the Pb2+ ion contaminated sample 

than the uncontaminated sample. However, Fe3+ ions have a higher ionic potential 

than Ca2+ ions hence they were likely to be attenuated preferentially to the Ca2+ ions. 

Again this was illustrated in Figure 5.13 at 7 days curing this by the significantly 

higher quantity of soluble Ca released than either the Pb2+ ion contaminated or the 

uncontaminated samples. 
It was previously discussed that there was a higher number of Fe3+ ions 

present than Pb2+ ions, hence the higher concentrations of soluble Na in Figure 5.13 

for the Fe 3+ ion contaminated samples relative to the other samples could be 

explained. Based on these facts (including the ionic potentials of Cat+, Pb2+ and Fe3+ 

ions) and the fact that for the lime-treated samples no soluble Pb or Fe was detectable 

by ICP, clearly a higher proportion of Pb2+ ions was precipitated relative to Fe3+ ions. 

Therefore, it may have been expected that the Pb2+ ion contaminated Wyoming 

Bentonite sample would behave similarly to the uncontaminated English China Clay 

sample by having improved strength properties. There was one flaw in the hypothesis 

that more Pb2+ ions were precipitated than Fe3+ ions. If this were the case the pH of 
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these samples could be expected to reduce significantly. An explanation as to why 
this did not happen comes from Figure 5.11 and an analysis of the pH changes of 

contaminated English China Clay samples. Since removal of contaminant from 

solution was essentially only possible via precipitation reactions, and all lime-treated 

samples showed no evidence of contamination of either soluble Pb or Fe, then one 

would expect reductions in pH as a result. For both English China Clay samples with 
1.5% and 2.5% lime these reductions were only apparent for the Fe3+ ion 

contaminated sample and not the Pb2+ ion contaminated sample (Figure 5.11). 

Therefore, for the Wyoming Bentonite sample that had a naturally higher pH than 

English China Clay it would also not have been expected to see reductions in pH due 

to the precipitation of Pb2+ ions. Subsequently for Wyoming Bentonite it was feasible 

that Pb2+ ions were precipitated and not necessarily attenuated. 

6.2.4 S Wyoming Bentonite at time additions below the ICL value 
The relationship between strength and chemistry was not as easy to determine 

for the 2.5% lime addition as for the 7.0% lime addition due to the inability to filter 

the material from these batch tests. Figure 5.18 showed that on addition of 2.5% lime, 

both Fe3+ and Pbz+ ion contaminated samples were stronger than the respective 

uncontaminated samples at any curing time. It was also evident for the 2.5% lime 

addition that the strength of the Fe3+ ion contaminated samples did not increase 

significantly with time where as that of the Pb2+ ion contaminated samples did. At 

this low level of lime addition reliable ICP data were not available. Therefore it was 

necessary to utilise the variation in pH and conductivity in Figure 5.11 to infer the 

chemical behaviour of the Wyoming Bentonite samples with 2.5% lime addition. 
Observation of the pH variation of all the samples with 2.5% and 7.0% lime showed a 

clear small reduction with curing time of all contaminated and uncontaminated 

samples, which was not the case for all the English China Clay samples with 2.5% 
lime. This suggests that more lime must be added to raise the pH to increase the 

pozzolanic reaction activity. 
The processes controlling the increased strength of the contaminated samples 

was revealed by the conductivity data in Figure 5.11. The ions that were most likely 

to cause changes in conductivity were Cat+, Na+, Fei+, Pb2+ and NO3. For the 
Wyoming Bentonite samples with 7.0% lime the ICP data confirmed that the changes 
in conductivity with curing time were essentially due to reductions in soluble Ca and 
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Na concentrations (Figure 5.12). The higher conductivity of the Fe3+ ion 

contaminated samples with 7.0% lime at 175 and 301 days curing related partly to the 
higher soluble Na concentration, illustrated in Figure 5.12 and explained earlier by the 

preferential exchange of the Fei ions than the Ca2+ ions or Pb2+ ions. The 

conductivity data clearly indicated that the increased strength of the Wyoming 

Bentonite samples with 2.5% lime was associated with the large differences in the 

conductivity between the mixes. Firstly the reduction in conductivity with time was 
likely to be due to the changes in Ca2+ and Na+ ions. These were significantly less at 

2.5% lime content than for the samples with 7.0% lime content due to the reduced pH 

limiting the dissolution of silicates and hence re-crystallisation of calcium silicates. 

Therefore the removal of soluble Ca by this process was significantly less. Secondly 

the conductivity of the Fe3+ ion contaminated samples with 2.5% lime addition was 

consistantly higher than the Pb2+ ion contaminated samples with 2.5% lime addition 

which was consistantly higher than the uncontaminated samples with 2.5% lime 

addition. This was for the following reasons: 

" The higher proportion of Fe3+ than the Pb2+ ions exchanging for Na+ ions 

resulted in higher concentrations of soluble Na, which were not necessarily 

involved in the re-crystallisation process after limited dissolution. 

However, the argument of a high proportion of Fe3+ ion rather than Pb2+ 

ion attenuation may not have been as valid here as it was for the samples 

with 7.0% time content, because the reduced concentration of Ca2+ ions 

present on addition of only 2.5% lime reduced the competition for 

exchange sites and therefore potentially more Pb2+ ions would be 

exchanged for Na+ ions. 

" Due to the charge on the Fe3+ ion contamination and the fact that more 

Fe3+ than Pb2+ ions were added, there would also be significantly more 

N03 present in the Fe3+ ion contaminated samples than the Pb2+ ion 

contaminated samples. The Pb2+ ion contaminated samples also had 

significantly more ions in solution than the uncontaminated samples with 
2.5% lime addition. However, this argument would also have been valid 

at any lime content because it was dependent on the contaminant added. 
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It is therefore likely to be the case that the attenuation of the contaminants 
resulted in the clear strength trends, a mechanism indicated by increasing Na 

availability in solution and measurable via conductivity. 

6.2.4.6 Wyoming Bentonite behaviour for samples containing 0% lime 

Wyoming Bentonite samples with no added lime behaved quite differently to 

the English China Clay samples. Figure 5.11 illustrated this, with the Wyoming 

Bentonite samples exhibiting significantly higher pH values than the English China 

Clay samples whilst the Pb2+ ion contaminated and uncontaminated samples produced 

significantly higher conductivity values. ICP analysis of centrifuged sludges 

produced in batch tests was illustrated in Figure 5.15, but appeared to show no 

obvious trends that could be related to the pH, conductivity or shear strength results. 
As previously explained the ICP data represented the degree of separation of the clay 

and leachant, which was directly linked to particle flocculation. This was apparent by 

observation of the behaviour of Si, Al and Ca. The clear pattern was that the Fe3+ ion 

contaminated samples apparently released the smaller quantities of each of the three 

elements, followed by the Pb2+ ion contaminated sample and then the uncontaminated 

sample. Since Fe3+ ions have a higher ionic potential than Pb2+ ions and that there 

were more Fe3+ ions present than Pb2+ ions, this order of element release was a 
flocculation effect. This hypothesis was supported by the fact that the Fe3+ ion 

contaminated sample released the most soluble Na and the least soluble Fe, a process 
indicating cation exchange. Since there was such a high degree of flocculation due to 

the addition of contaminants the particle separation via centrifugation for the Fe3+ ion 

contaminated samples the results perhaps showed similar detail as the filtered English 

China Clay samples. However, the chemistry of the other samples was obscured by 

the poor solid and liquid separation. It was clear however that the observed 
flocculation effects reflected in the ICP data of these centrifuged samples could reflect 

changes in Atterberg Limits which were also associated with flocculation. 

Due to the poor solid and liquid separation an alternative extraction technique 

was required to identify the changes in the properties of the Wyoming Bentonite 

samples with no added lime compared with other samples. Acid digestion after 301 
days curing was potentially more useful for these samples because the acid digested 

mixture was highly flocculated by the addition of high concentrations of H+ ions 
hence easily filtered. This will be investigated in the next section. 
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6.3 ACID DIGESTION OF CLAY-CONTAMINANT-LIME 

MIXES 

6.3.1 Introduction 

The technique of acid digesting samples after a significant curing period 

revealed a great deal about the changes brought about by the addition of both lime and 

contaminants to the minerals. Significantly it revealed information regarding the 

pozzolanic reactions on addition of lime. This was achieved by analysing for 

increases in acid soluble Al, Si, Mg, Ca and Mn. One disadvantage of the aggressive 

acid analysis was that for minerals with significant cation exchange capacity, the 

majority of ions on exchange sites would be replaced predominantly with H+ ions 

thereby eliminating, albeit partially, analysis incorporating cation exchange effects. 
The results of such an analysis on English China Clay and Wyoming Bentonite were 
illustrated in Tables 5.13 and 5.14 respectively. 

Unlike the water-based batch tests, only lg of material was acid digested. 

This would result in higher levels of variability between samples due to sampling 

error. Therefore, to help to illustrate the relevance of changes between samples, the 

absolute values obtained from acid digestions were represented in Figures 6.5 and 6.6 

and not increases in acid soluble fractions relative to the untreated, uncontaminated 

minerals. In addition, because CaO additions were completely soluble in the acid 

mixture and the element concentrations were represented in mg per kg of clay, the 

element concentrations were corrected for the dilution effect due to the addition of 
lime. 

6.3.2 Acid digestion of clay mixes with no added lime 

6.3.2.1 Uncontaminated clay mixes 
Figure 5.18 illustrated that from 7 days curing to 301 days curing there was an 

increase in the shear strength of Wyoming Bentonite with no lime or contaminants 

added. Acid digestion of the uncontaminated sample after 301 days curing (Table 

5.16) and the untreated suppliers sample (Table 5.14) revealed material chemical 

changes due to curing of the compacted sample containing only de-ionised water. 
The cured sample exhibited reductions in acid soluble Ca, Fe, Si and Mn whilst levels 

of Al increased. It was possible that the hydration and expansion of the mineral 
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structure was such that changes in the cation exchange equilibrium occurred slowly 
with curing time, resulting in the strength increases. 

Similarly to the Wyoming Bentonite samples the English China Clay samples 

with de-ionised water and no added lime (Table 5.15) which were compacted and 

cured for 301 days had slightly different behaviour on acid digestion than the material 

provided by the supplier (Table 5.14). It was clear that the sample with no 

contaminants had similar concentrations of acid soluble Ca, higher concentrations of 

acid soluble Fe, Si and Mg, and less Al. There were clearly chemical changes taking 

place for English China Clay samples suggesting that cation exchange suggested for 

Wyoming Bentonite was not likely. The process which was likely to be responsible is 

called the `Gley' process and is discussed in detail in the next section. 

6.3.22 Contaminated clay mixes 
Similar strength increases to those of the uncontaminated samples occurred for 

the Fe3+ and Pb2+ ion contaminated Wyoming Bentonite samples with no lime, 

although the absolute shear strength values of the Fe3+ ion contaminated samples were 
higher than the similar Pb2+ ion contaminated samples. The difference in the absolute 

shear strength values were likely to be due to the flocculated material achieved 
immediately after mixing compacting to a different degree, as illustrated by Figure 

5.4. However, the changes in shear strength with curing time for these samples were 
likely to be due to chemical changes. It could be argued that these chemical changes 

would also be affected by the initial compaction and subsequent particle spacing. 
However, the effects of changes in cation exchange behaviour would be observed 

after acid digestion because the high concentration of W ions added during acid 
digestion would displace ions from these sites. The process that could account for the 

measured changes after acid digestion would be the isomorphous substitution of Ca, 

Fe, Si and Mn for Al in the Wyoming Bentonite structure. 

Relative to the uncontaminated Wyoming Bentonite sample, the Pb2+ ion 

contaminated Wyoming Bentonite sample with no lime released similar levels of acid 
soluble Ca, Fe, and Mn and more Si, Mg. Furthermore, the Fe3+ ion contaminated 
sample released more acid soluble Ca, Al, and Mn and less Si. 

The Pb2+ ion contaminated English China Clay sample had similar 

concentrations of acid soluble Ca and Mg, higher concentrations of Si and lower 

concentrations of Fe and Al than the uncontaminated English China Clay sample. The 
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Fe3+ ion contaminated sample had similar concentrations of acid soluble Ca and Mg, 

and lower concentrations of Si, and Al. 

It was clear that the different contaminants in the samples induced release of 
different elements from the mineral structure. A recent paper by Lessovaia (1998) 

suggested a process called the `Gley' process to explain this. The process is 

connected with the change of redox potential of soil via moistening. A material being 

reduced gains electrons whilst a material being oxidised loses electrons. As a result, 
the soil physical properties degrade and elements including Fe and Mn are reduced 

and become mobile, ultimately being removed from the soil. Although neither the 

acid digestion data nor the batch test data showed increases in Mn content, there were 

clear increases in mobility of the other elements. The further addition of the positive 
ions Pb2+ and Fe3+ and negative N03 into the pore water solution would interact with 

this process by providing a source of electron acceptors and electron donors 

respectively. Figure 5.18 illustrated that, similarly to the Wyoming Bentonite, the 

`Gley' process was likely to be responsible for strength increases with curing time of 

the untreated uncontaminated English China Clay samples. 

6.3.3 Acid digestion of clay mixes with added lime 

6.3.3.1 Uncontaminated clay mixes 
The effect of adding lime to the clay mixes was complex. Analysis of the 

samples in Figures 6.5 and 6.6 revealed that as the percentage lime addition increased 

linearly, so did the acid soluble Ca fraction and this increase was essentially the same 
for all contaminated mixes. Back calculation indicated that the Ca concentrations 

measured related directly to the percentage lime added. This had the important 

implication that during the aggressive acid digestion process the re-crystallised 

calcium-aluminate-hydrates and calcium-silicate-hydrates were soluble. On the basis 

of this argument changes in acid soluble Si and Al release due to addition of lime 

should have been apparent. 
At this stage it is important to remember that the water based batch tests 

suggested that for English China Clay samples Al was predominantly involved with 

solidification reactions whilst for Wyoming Bentonite Si was predominantly involved 

with solidification reactions. Figures 6.5 and 6.6 suggested different behaviour. For 

all clay-lime mixes the acid soluble Al concentrations were significantly higher than 
the acid soluble Si fractions. However, as the lime content was increased the acid 
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digestable concentrations of both Al and Si increased for both minerals which 
signified that pozzolanic reactions were occuring. This highlighted a very important 

fact relating to acid digestion data and pH variation in general. Figure 2.12 illustrated 

that above approximately pH 10 both aluminium oxides and silicon oxides were liable 

to dissolution whilst below pH 3 aluminium oxides were liable to dissolution and 

silicon oxides were almost insoluble. It was therefore foreseeable that whilst samples 

were in conditions of high pH such as those found after lime addition both calcium- 

aluminate-hydrates and calcium-silicate-hydrates were formed which were more 

soluble in acid than the original mineral aluminates or silicates. 

6 . 3.3.2 Contaminated clay mixes 
It is important to note that for all Wyoming Bentonite-contaminant-lime mixes 

the acid soluble levels of Na released were essentially constant. This, combined with 

the fact that soluble Ca levels related well to the percentage lime added, suggested 

that all ions on cation exchange sites were replaced by H+ ions during acid digestion. 

On addition of 2.5% lime to the Wyoming Bentonite-contaminant mixes, there 

were small increases in the acid soluble Al levels suggesting that some pozzolanic 

reactions had taken place. For the uncontaminated sample there was a similar 
increase in the soluble Si. Significantly for the contaminated samples there were 

reductions in the levels of acid soluble Si (Figure 6.5). This was contrary to the water 
based batch chemistry and suggested that a silicon compound was being formed 

which was less soluble in acid than water. Increasing the lime content of the samples 

to 7.0% further enhanced the acid soluble Al and Si trends. Furthermore, at this 

higher lime content less acid soluble Al was produced by the contaminated samples 

than the uncontaminated sample suggesting that the contaminants did tend to inhibit 

pozzolanic reactions. 

Further to the solidification reactions involving Si and Al it would appear from 

Figure 6.5 that Mg, Fe and to a lesser extent Mn were also involved in solidification 

reactions. Interestingly the increases in acid soluble Fe with lime content increased in 

a similar way as the increases in Mn for the Fe3+ ion contaminated sample. The same 

was also true for the Pb2+ ion and uncontaminated samples. 
The Wyoming Bentonite-contaminant mixes with 2.5% lime clearly showed a 

level of pozzolanic activity. However, Figure 5.18 showed that the strength increases 

at 301 days curing for the Fe'+ and Pb2+ ion contaminated samples due to the addition 
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of 2.5% lime were higher than those of the uncontaminated sample. For the Fe3+ ion 

contaminated sample most of the increase happened at 7 days, suggesting that the 
increase was related to flocculation effects. However, for the Pb2+ ion contaminated 

sample much of the strength increase happened after 7 days, suggesting a 

solidification reaction. 
The acid soluble element trends of the English China Clay-contaminant-lime 

mixes were similar in nature to those of the Wyoming Bentonite, with the following 

exceptions: 

" There were no high levels of acid soluble Na from the cation exchange 

sites. 

" Although there were quantities of acid soluble Fe present, the levels did 

not increase with increasing lime content suggesting that Fe sites within 

the English China Clay were not significantly affected by the high alkaline 

conditions on addition of lime. Similarly there was no appreciable change 

in acid soluble concentrations of Mn or Mg. 

Furthermore, the acid soluble levels of Si and particularly Al for all samples 

with or without lime were significantly less than those of the Wyoming Bentonite. 

Since the same quantity of material was acid digested for both English China Clay 

and Wyoming Bentonite, it could be argued that this was due to a lower surface area 

susceptible to dissolution. On this basis similar behaviour would have been expected 

at high pH resulting in reduced solidification reactions for English China Clay. 

Clearly this did not occur because there were significant strength increases similar to 

those of Wyoming Bentonite attributable to pozzolanic reactions. Therefore the 

quantity of acid soluble Si or Al from untreated clays prior to lime addition cannot be 

used as a guide to predict successful solidification. However, time-dependent 

changes in acid soluble elements can be used as an assessment tool for lime-treated 

clays. 
Similarly to the water-soluble chemistry of the batch tests, the acid digestion 

tests highlight that there were no increases in the acid soluble levels of Al in the Fe3+ 
ion contaminated samples with lime after 301 days curing time. This suggested that 
there were no solidification reactions taking place. 
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A further disadvantage of the acid soluble data was that it did not indicate why 
the Pb2 ion contaminated sample with lime had higher strength gains than the 

uncontaminated sample with lime. Figure 5.18 indicated that the Pb2+ ion 

contaminated sample with 1.5% lime at 301 days had significantly higher strength 

than the uncontaminated sample, whilst the acid digestion data suggested that 

uncontaminated sample produced more calcium-aluminate-hydrates than the Pb2+ ion 

contaminated sample. 
It was clear therefore that acid digestion could provide information about the 

development of the chemistry of samples due to the addition of lime. However due to 

the different solubility of Si and Al compounds in the highly acid environment, it was 

difficult to see the changing trends between the clay types. It was also the case that 

the ability to observe the chemistry relating to precipitation, cation exchange, and the 

interaction of Ca in the formation of calcium-aluminate-hydrate and calcium-silicate- 

hydrate was lost by acid digestion. Furthermore, it was difficult to relate the changes 

in chemistry to observed changes in physical characteristics. 

6 . 3.3.3 Acid soluble constituents of material retained on 63pm sieves after batch 

tests at 301 days 

Time constraints during the testing programme dictated that only the solid 

residues of batch tests performed at 301 days could be graded. This grading was 

performed on material not filtered after a batch test. Acid digestion tests were very 

useful to determine the absolute quantities of elements (particularly metals) present in 

a graded material. Again due to time constraints it was only possible to determine the 

constituents of materials retained on 63µm sieves after some of these batch tests at 

301 days curing (Table 5.13). Comparison of the English China Clay + 5000ppm Fe 

+ 2.5% lime material retained on a 63µm sieve after the batch test and the material 

stored in the twin-walled pipe revealed that the material on the 63µm sieve contained 

approximately three times the quantity of Ca. Therefore, large proportions of the 

material on the sieve were particles of lime. It was therefore not surprising that levels 

of the contaminant were also high. This suggested that Fe3+ ions precipitated around 

the lime particle in lime-treated English China Clay mixes. It was also evident that 

there were significantly elevated levels of acid soluble Si, Mg, Al and Mn around or 
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incorporated in the particles, which would be consistent with high levels of 

pozzolanic reactions immediately adjacent to the lime particles. 
The particles retained on a 63 gm sieve after tests on Wyoming Bentonite + 

5000ppm Fe + 7.0% lime were significantly different. Although the level of Ca in the 

samples was higher than the general Wyoming Bentonite + 5000ppm Fe + 7.0% lime 

samples, it was not high enough to be predominantly composed of lime particles. The 

fact that the acid soluble Na levels in the material were low did not necessarily 

suggest that the material was not mineral based, since most of the acid soluble Na 

would have been exchanged by Ca and washed away in the solution on sieving. The 

particles contained more acid soluble Mn, less Mg and Al, and similar quantities of Fe 

and Si. 

The particles retained on a 63 gm sieve after tests on Wyoming Bentonite + 

5000ppm Pb + 7.0% lime were also unusual. Relative to the acid digestion data for 

the Wyoming Bentonite + 5000ppm Pb + 7.0% lime sample stored in the twin-walled 

pipes, the material retained on the 63µm sieve contained similar levels of acid soluble 

Ca, higher levels of Fe, Si, significantly higher levels of Mn, and lower levels of Pb, 

Na, Mg and Al. It was difficult to suggest what the material was although for both 

mixes the particles retained on the 63µm sieve were black in colour and granular in 

nature whilst smaller particulates were grey in colour. Since initial mineral 

classification determined that all Wyoming Bentonite particles were smaller than 

63µm it was likely that the digested particles were agglomerations of a specific 

particle fraction within the clay containing significant quantities of Mn and Fe. 

The significance of these data was in the different materials from the two 

minerals retained on the same sized sieve and the fact that for English China Clay the 

contaminant appeared to precipitate around the CaO particles, which in itself was 
likely to inhibit the development of pozzolanic reactions. Unfortunately data were not 

available for all samples. Consequently it was difficult to suggest reaction 

mechanisms. Evidently both acid-based and water-based chemical tests are beneficial 

so long as the results are interpreted with an appreciation of the differences between 

the tests. 
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Figure 6.5 The acid digested concentrations (mg/kg of dry solid) of Na, Al, Fe, 

Si, Mg, Ca, Pb and Mn in Wyoming Bentonite samples cured for 

301 days 
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Figure 6.6 The acid digested concentrations (mg/kg of dry solid) of Na, Al, Fe, 

Si, Mg, Ca, Pb and Mn in English China clay samples cured for 

301 days 

NOTE: Pb CONTAMINATED ENGLISH CHINA CLAY SAMPLES WITH NO ADDED LIME ONLY 

CONTAINS 250OPPM Pb WHILST ALL OTHER SAMPLES CONTAIN 5000PPM Pb. 
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6.4 ATTERBERG LIMITS 

Similarly to the changes in shear strength, changes in Atterberg Limits with 

curing time revealed information about changes in the physical particles due to the 

initial chemical induced flocculation and the subsequent pozzolanic reactions. 
Sherwood (1993) stated that the addition of lime to a clay resulted in flocculation of 

particles due to cation exchange, resulting in a reduction in plasticity (increase in the 

plastic limit) which continued to decrease with time due to continued pozzolanic 

activity at high pH. This raised the issue of the relative effects when lime was or was 

not present with or without contaminating cations and the mineral had only a small 

amount of pH-dependent charge or no permanent structural charge. This was the case 

when considering English China Clay relative to Wyoming Bentonite. 

6.4.1 English China Clay 

6.4.1.1 Samples without lime added 

The Atterberg Limit trends portrayed in Chapter 5.0 (in particular the liquid 

limit data in Figure 5.19) showed that English China Clay had very different 

behaviour to Wyoming Bentonite. This phenomenon was due to the different origin 

of charge on the two clay minerals and the effects of pH on these charge sites. The 

mechanisms followed closely those that governed the determination of the ICL value 
in Figure 6.1. Prior to addition of anions and cations, and consequently adjustment of 

pH, the interparticle forces acting on English China Clay were based on hydrogen 

bonding. Essentially hydrogen bonding is where the electrons in a bond are not 

shared evenly between the atoms. That is the oxygen in the hydroxyl group is more 

electronegative and draws the electrons towards itself, creating a positive dipole on 

the hydrogen which is attracted to the negative dipole on an oxygen on another 

mineral particle. As previously discussed in the literature review, the source of 

charge for English China Clay was predominantly due to hydroxyl groups on the edge 

sites that were a source of pH-dependent charge. If the pore water was highly 

alkaline, the charge on the mineral was negative attracting cations such as H30+, Pb2+, 

Ca2+ and Fei+. If the pore water was highly acidic, the charge on the mineral was 

positive attracting anions such as N03 and OH'. Since the pH at which English China 

Clay has no charge (either positive or negative) was not known, it was difficult to 
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state categorically the mechanisms occurring on addition of lead nitrate or iron (III) 

nitrate. End of batch test pH data in Figure 5.11 illustrated that the Fe3+ ion 

contaminated sample remained at a constantly low acidic pH, whilst that of the Pb2+ 

ion contaminated sample and the uncontaminated samples were at a much higher pH 

and that pH reduced with time. Care must be taken when considering these pH values 

since in the small pore water volume relative to the batch test volume the pH would 

be considerably lower and the change in pH more significant. However, the pH of the 

Fe3+ ion contaminated samples was so low that it would have been expected that the 

charge on the hydroxyl groups of the mineral was positive. If flocculation of the Fe3+ 

ion contaminated sample was occurring the mechanism could be that the positively 

charged hydroxyl groups were attracted together by sharing of an anion in solution. If 

this was the mechanism it is necessary to try to determine why the Pb2+ ion 

contaminated sample had a higher plastic limit than the Fe3+ ion contaminated sample. 

An explanation could lie in the fact that the Pb2+ ion contaminated sample had a much 

higher pH than the Fe3+ ion contaminated sample. If this pH was above the point of 

zero charge for'the mineral the attraction of the Pb2+ ion would have been greater than 

the attraction of the NO ion for the Fe3+ ion contaminated sample, therefore 

producing a more highly flocculated material of lower plasticity and consequently 

higher plastic limit, as illustrated in Figure 5.21. This argument is valid because the 

Pb2+ ion is smaller than the NO ion and has a higher charge density. However, it 

was evident that the range of variation in the plastic limits illustrated in Figure 5.21 

was only 3% and, although the contaminated materials had clearly the higher plastic 

limits, caution must be observed in the interpretation of these results. 

Analysis of the liquid limits illustrated in Figure 5.19 showed that the Fe3+ ion 

contaminated sample had the lowest liquid limit and this did not vary with curing 
time. However, the uncontaminated and Pb2+ ion contaminated samples with no lime 

at 7 days curing had much higher and similar liquid limits to the Fe3+ ion 

contaminated sample respectively. In addition, as the curing period increased the 

liquid limit of these two mixes reduced towards the liquid limit of the Fe3+ ion 

contaminated sample. Curiously, Figure 5.11 also noted a reduction in the pH of 

these two samples with time. Figure 5.18 showed that at 7 days curing the Pb 2-'* ion 

and uncontaminated samples had higher strengths. As previously stated this was in 

part due to the different levels of achieved compaction illustrated in Figure 5.6. This 

reduced compactability suggested that the Fe3+ ion contaminated sample was 
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flocculated to a higher degree than the other mixes, contrary to previous charge 

related arguments. Figure 5.18 also showed that the strength of the uncontaminated 

sample, and more so the Pb2+ ion contaminated sample, increased with curing time, 

which was not the case for the Fe3+ ion contaminated sample. Consideration of all 
these facts suggested that the liquid limit of samples with no lime present was not 

simply due to flocculation brought about by the pH-dependent charge. Since the Fe3+ 

ion contaminated sample was so acidic, Figure 2.12 suggests that silicon oxides and 

more so aluminium oxides will be dissolved. This would not necessarily occur to the 

same extent at the higher pH of the Pb2+ ion and uncontaminated samples. This idea 

was verified by the soluble Si and Al releases of the samples in Figure 5.14. If this 

was the case then perhaps even after only 7 days curing the effect was noticeable and 

the changes in liquid limit, plastic limit and subsequently plasticity index were not 

solely related to flocculation. With regard to the reductions in liquid limit with time 

for the Pb2+ ion and the uncontaminated sample, perhaps the explanation was related 

to the pH reduction and the gley effect mentioned previously. 

6.4.1.2 Samples with time added 

The behaviour of English China Clay samples with lime was more difficult to 

understand. The most important point to aid understanding was that the pore water 
pH was highly alkaline. Furthermore, alkalinity often reduced significantly on 

addition of a contaminant due to precipitation reactions as well as reducing with time 

due to mineral dissolution and crystallisation. The importance of the changing pH 

was due to the position of the pH-dependent point of zero charge and the fact that at 
high pH the hydroxyl groups on the clay have a negative charge attracting cations. 
Therefore the mechanisms governing changes in Atterberg limits were: 

" pH-variable charge on the mineral edge sites which, when alkaline, attracted 
cations, which in turn were attracted to the slight negative dipole on the oxygen of 
other mineral particles as well as the nitrate anions and hydroxide ions. 

" Precipitation of the metal hydroxide which could bind particles together and 
limit the lime interaction with the mineral by coating particles. 

" Contaminants could inhibit or improve the development of time-dependent 

pozzolanic reactions. 
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Since the pH of all English China Clay samples with lime was very high, 

between approximately pH 11.0 to pH 12.6 (from batch tests Figure 5.11), it was clear 

that charge sites on the hydroxyl groups would have been positive, although the mixes 

at the lower pH would have a slightly lower quantity of positively charged sites. 

Figure 5.21 and 5.19 illustrated that in the case of English China Clay mixes 

there were increases in both plastic limit and liquid limit due to the addition of lime. 

The changes in plastic limit with time were small in magnitude and unclear. Clearly 

the addition of lime caused flocculation in all cases, and yet the Pb2+ ion contaminated 

samples had higher plastic limits than the Fe3+ ion contaminated samples. This was 

attributed firstly to the fact that, since English China Clay had such a low cation 

exchange capacity, there were more Fe3+ compounds precipitated than Pb2+ 

compounds, and consequently the Fe3+ ion contaminated samples were likely to be 

bound together better by hydrated precipitates. If this was the only mechanism 

responsible, the Fe3+ and Pb2+ ion contaminated samples would have been expected to 

have lower plastic limits than the uncontaminated sample and the Fe3+ ion 

contaminated sample to have had the highest liquid limit. Consequently there must 

also be a link with chemical reactions involving the clay mineral. It had been 

previously suggested that the Fe3+ ion contamination inhibited the dissolution of the 

English China Clay mineral, whilst the Pb2+ ion contamination appeared to aid 

dissolution and re-crystallisation and resulted in more rapid strength increases on 

addition of lime than the uncontaminated sample. This rate increase in the pozzolanic 

reactions due to the addition of Pb2+ ions was likely therefore to explain the very low 

plastic limit and high liquid limit of the Pb2+ ion contaminated samples. 

The liquid limits of the Pb2+ ion and uncontaminated English China Clay with 
lime samples reduced with curing time whilst the liquid limit of the Fe3+ ion 

contaminated sample with lime did not. This was attributed to the fact that for the 

lime-treated samples containing Fe3' ion contamination there were essentially no 

pozzolanic reactions since little mineral dissolution in the form of Al and/or Si, or 

reductions in pH or conductivity, was detected in the leachates of the batch tests. 

Figure 5.19 also illustrated that as the lime content of the Fe3+ ion contaminated mixes 
increased the liquid limit increased linearly with very little change with curing time 

relative to the other mixes. Since pozzolanic reactions were not responsible for the 

increases with increased lime content, the increase must have been related to 
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increased flocculation. Further evidence for this behaviour lay in the fact that the pH 

of Fe3+ ion contaminated sample was lower than the other samples due to higher 

levels of precipitation. Therefore increasing the pH would increase the number of 

negatively charged hydroxyl sites and therefore, when Ca2+ ions interacted with these 

sites more flocculation would occur. However, the Pb2+ ion contaminated and 

uncontaminated mixes in Figure 5.19 did not show the same linear increase in liquid 

limit with increasing lime content. The reductions in liquid limit with time must 

therefore be associated with the pozzolanic reactions. Indeed the reduced pH and 

soluble Ca content due to crystallisation processes found in the batch test data for 

these samples would also result in the reduced level of flocculation observed in Figure 

5.19. 

The effects of lime and contaminants on the liquid limits and plastic limits of 
English China Clay were therefore summarised in Figure 5.22. For Fe3+ ion 

contaminated English China Clay samples, as the lime content was increased there 

was a linear increase in the plasticity index. For the Pb2+ ion and uncontaminated 

mixes the behaviour was different. At 7 days curing as lime content was increased the 

plasticity index tended to increase. However, as curing time was increased, 

increasing the lime content resulted in a decrease in the plasticity index, particularly 
for the Pb2+ ion contaminated sample. 

6.4.2 Wyoming Bentonite 

The Atterberg Limits behaviour of Wyoming Bentonite samples were easier to 

explain than the English China Clay samples due to the fact that the majority of cation 

exchange capacity was due to permanent mineral structural charge, and not pH- 
dependent charge, and this permanent charge dominated physico-chemical 
developments. 

6.4.2.1 Samples without lime added 
Similarly to the English China Clay samples with no lime the differences in 

plastic limit due to the addition of contaminants was only small, up to 5% water 

content (Figure 5.21). However, Figure 5.19 illustrated that the variation in liquid 

limit due to contaminant addition was large, up to a water content of 300%. Clearly 

ionic contaminants had a very large effect on the liquid limit of Wyoming Bentonite 

and therefore inherently mineral structure orientation. The effects on the mineral 
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structure appeared to be related to flocculation, with the higher valency ions having 

the larger effect on the diffuse double layer. This was consistent with the Lyotropic 

series and the fact that there were also more Fe3+ ions present. Figure 5.19 did 

however suggest large fluctuations in the liquid limit of uncontaminated Wyoming 

Bentonite with no lime added. Although there were likely to be some chemical 

changes with time purely due to the addition of water it was not expected that these 

changes could cause such large fluctuations. Indeed the Wyoming Bentonite 

supplier's data stated a liquid limit in the range 400% to 600% due to the difficulties 

in measuring the liquid limit of untreated Na Wyoming Bentonite. Discussion with 

the supplier confirmed that the data in Figure 5.19 were not unexpected. However on 

addition of ions with a higher ionic potential the liquid limit test was far easier to 

perform and the results were repeatable. 
Figure 5.19 showed that for the Pb2+ ion contaminated sample the liquid limit 

reduced as curing time was increased. This time-dependent change indicated a 

chemical reaction with time. There were two mechanisms that could have been 

partially responsible for the change. 

Although ICP data were not available to confirm the theory it was felt that 

because the ionic potential of Pb2+ ions was only slightly higher than that 

of Na+ ions, initially a relatively high degree of cation exchange occurred 

which resulted in some flocculation. As curing time progressed, further 

cation exchange occurred due to disorder and entropy considerations. This 

would not be expected for the Fe3+ ion contaminated sample, since Fe3+ 

ions have an ionic potential far higher than that of Na+ ions and Fe3+ ions 

were present in higher concentrations. This could have also explained why 

the phenomena occurred for the Pb2+ ion contaminated sample with a lime 

content (2.5%) well below the ICL of Wyoming Bentonite. 

" The acid soluble data in Figure 6.1 showed that for samples with no lime 

present there were higher concentrations of soluble Si present in the Pb2+ 

ion contaminated sample with no lime relative to the other similar Fe 3+ ion 

contaminated and uncontaminated samples. This suggests that Pb2+ ions 

were interacting with the mineral particularly at the sites of the clay 

adjacent to silicates possibly in turn suggesting that lead-silicate 
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compounds were being produced with time and thus increasing bonding 

between particles. 

6.4.22 Samples with lime added 
On addition of lime to Wyoming Bentonite the material became far more 

workable and the Atterberg Limit tests became easier to perform. The liquid limit 

continued to reduce and converge on a constant value for all mixes, whether 

uncontaminated or contaminated with Pbz+ or Fe3+ ions (Figure 5.19). It was clear 
however that the Fe 3+ ion contaminated sample converged on this value on addition of 

only 2.5% lime. This effect was directly linked to cation exchange and flocculation 

due to ionic interactions with the charge sites on Wyoming Bentonite. This suggested 

that essentially the ions present with an ionic potential greater than that of Na+ ions 

would cause flocculation to occur until all Na+ ions were exchanged, resulting in the 

liquid limit converging. However, the plastic limit plot in Figure 5.21 showed that on 

addition of lime the plasticity of all samples continued to increase almost linearly with 
lime content with no apparent convergence. Combining the effect of both liquid limit 

and plastic limit in the plasticity index illustrated in Figure 5.22 revealed that the 

addition of lime produced a reduction in plasticity index which was almost linearly 

proportional to increasing lime content. It was also evident that the presence of ions 

with a higher ionic potential reduced the gradient of the plot. This did of course 

neglect the concentration factor regarding the increased quantity of Fe3+ ion 

contamination present relative to Pb2+ ion contamination. 

6.4.3 Interpretation of Atterberg Limits 

The above discussions raised the issue of the practical use of the Atterberg 

Limit tests in their current form for assessing a material under varying chemical 

conditions. As with all testing protocols, interpretation of the results must be 

considered with an understanding of the fundamental concepts upon which the tests 

are founded. This will be discussed below. 

The liquid limit test relates to the water content required for a cone to 

penetrate a material by a pre-determined amount due to the input of a constant amount 
of energy. For the cone to penetrate it must overcome the material interparticle 
frictional forces causing both lateral and vertical particle movements, a process 
associated with the shearing action of the particles. Similarly the plastic limit relates 
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to the lowest water content that is able to retain sufficient suction to avoid cracking 

once a material has been rolled to specified dimensions. For both the tests the clear 

common factors are achieving shearing at unknown water contents due to 

predetermined methods of inducing shear, factors more usually associated with the 

rheology of a material and frequently assessed in sprayed concrete applications for the 

purposes of determining material workability. This is an interesting concept because 

it is not dissimilar to lime-treated clay minerals and the requirement to achieve a level 

of durability. On this basis the tests indicate changes in the physico-chemistry of a 

material associated with the interaction of water. 

Particularly for the liquid limit test, the issue was related to the practical value 

in determining the water content to achieve a specific penetration when it was the 

change in water interaction over a range of water contents with the material which 

was of interest. It was more appropriate to interpret the variation in penetration 

('shearing') over a range of moisture contents to understand the physico-chemical 

changes. Figure 5.20 achieved this by plotting the gradient of the linear portion of the 

standard liquid limit plot (% water content / mm penetration) against changing 

chemical conditions (lime content). 

Figure 5.20 illustrated for Wyoming Bentonite that the trends associated with 

the `% water content / nun penetration' and lime content were consistent with the 

trends of liquid limit and lime content. This implied that the addition of highly 

charged ions primarily affected the way in which water interacted with the mineral 

charge sites. This was observed by the fact that less water was required to achieve the 

same physical penetration characteristics as lime was added. However, for English 

China Clay the trends associated with the `% water content / mm penetration' and 
lime content were not consistent with the trends of liquid limit and lime content. 

Limited change was observed in the `% water content / mm penetration' against lime 

plot whilst increases were seen in the liquid limit on addition of lime. Due to the very 

small pH-dependent charge it would not have been expected that the addition of ions 

would significantly affect how water interacted with the mineral. However, it was 

noted that the liquid limit increased on addition of lime to the English China Clay 

without an appreciable change in the `% water content / mm penetration' relationship, 

and reduced on addition of lime to Wyoming Bentonite and with a change in `% water 

content / mm penetration' (Figures 6.7 and 6.8). The reason for this was considered 

to be associated with the different type and location of charge sites and how these 
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affect particle orientation, and consequently how water can be physically present 

within these particle orientations. 
On addition of lime to Wyoming Bentonite, the permanent charge sites had a 

more prominent effect than the surface pH-dependent charge sites (Figure 6.3). 

However, it should still be recognised that the pH-sensitive charge sites did still 

generate a small negative charge thereby attracting positively charged species. The c- 

axis spacing limited the amount of water that could physically fit into the space 
between attracted particles. This resulted in a `soup' of flocculated particles of 

reduced plasticity in water with a net reduction in the interaction of water with the 

mineral structure. It was clear that the plasticity of the material would affect the 

liquid limit due to the way in which the liquid limit was measured, hence the two 

properties were not mutually exclusive. 
On addition of lime to English China Clay only surface pH-dependent charge 

sites could immediately interact with the chemicals. Prior to lime addition these sites 

were utilised in hydrogen bonds, bonding the particles together (Figure 6.3). On 

addition of lime the OH' ion was attracted to the X-01f+ (where X is the mineral 

structure; see Equation 2.3). This resulted in a breakdown of the mineral to mineral 
hydrogen bonds and produced a net negative charge on the hydroxyl groups. This in 

turn attracted dissociated Ca2+ ions along with its associated water. Therefore the net 

result of lime addition in the short-term was to reduce interparticle hydrogen bonding 

and attract Ca2+ ions and water into spaces between particles. Hence the English 

China Clay mineral structure could accommodate more water with its structure. In a 

similar way to the hydrogen bonding the presence of Ca2+ ions on the hydroxyl group 

could attract the electronegative oxygen on another mineral molecule. The resultant 

effect was a material of reduced plasticity but with the ability to retain more water 

within its structure. 

It was clear from Figure 6.7 that lime interaction with clays of limited 

structural charge resulted in an increase in liquid limit, but the ratio of the water 

content to penetration did not change appreciably. However, it was clear from Figure 

6.8 that lime interaction with clays of high structural charge resulted in an increase in 

liquid limit in the same way as a clay with low structural charge but also that the ratio 

of the water content to penetration reduced appreciably. 
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The ideas relating to Atterberg Limits above are hypothetical, but could help 

formulate a research project to develop a simple index test which could be used to 

measure associations between physical and chemical behavioural characteristics. 
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7.0 CONCLUSIONS 

In Chapter 6 the results from the laboratory investigations were discussed. 

This discussion highlighted the physico-chemical relationships of clay-contaminant- 
lime mixes. This chapter will present the main significant conclusions of that 

discussion and on the basis of those conclusions proposals for further research will be 

recommended. 

7.1 BATCH TEST DEVELOPMENT 

The development of the chemical batch extraction test with de-ionised water 

as the leachant proved to be very successful for monitoring the clay-contaminant-lime 

interactions with time. However, to have confidence in the meaning of the results it 

was important to assess the effects on the chemistry due to adjustment of the 

operating parameters of the tests. The following batch test parameters had no 

appreciable effect on the leached concentrations of elements from the tested clay- 

contaminant-lime mixes: 

" changing the initial cube size from 10mm to 20mm, and 

" increasing test rotation speed from 30rpm to 60rpm. 

Although test duration and solid to liquid ratio had an effect on the measured 

element concentrations in solution, so long as the tests operating with the same 

parameters were compared, the chemical trends remained the same. This was 

significant because from the perspective of regulatory control the absolute 

concentration value was important, whilst from the perspective of determining 

controlling mechanisms, relative changes were important. The effect of increasing 

the test duration from 6 hours to 24 hours was to move the closed chemical system 

closer towards a specific equilibrium condition. In the chemical extraction test, apart 
from pH, the solid to liquid ratio had the largest effect on the concentrations because 

it changed the final equilibrium condition. The changes highlighted were: 

" for solutions not saturated with any particular element, doubling the 

solid to liquid ratio doubled element concentrations, and 
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" for solutions close to saturation with a particular element such as Ca, 

doubling the solid to liquid ratio significantly increased the 

concentration of that element (Ca) as well as often increasing the 

concentration of other elements. However, in some cases the solubility 

of other species reduced. 

These trends were particularly relevant to lime-treated materials. Immediately 

after mixing clay and lime the soluble Ca concentrations saturated solutions, whilst 

after a significant curing period the soluble Ca had reduced via re-crystallisation 

processes to a level where solutions were not necessarily saturated. Therefore, it was 

important to consider curing time and solid to liquid ratio together. To prevent the 

generation of a saturated solution during batch tests, reducing the solid to liquid ratio 

was an option. However, the consequence of this was to reduce the soluble 

concentration of some elements including Si and Al to below analysis detection 

limits. In addition, too much dilution could have reduced the solution pH to the point 

where more contaminants were soluble, which would not have been representative of 

the compacted samples. Since all the batch tests performed revealed the same 

chemical changes and the fundamental mechanisms of clay-contaminant-lime 
interactions were important, the most economical test was recommended as the 6 hour 

/ 30rpm test with a 1: 20 solid to liquid ratio and a 20mm initial cube size. 

7.2 LIME CLAY REACTION MECHANISMS 

The two clays with significantly different quantities of structural charge, 
English China Clay (predominantly kaolinite) and Wyoming Bentonite 

(predominantly sodium-montmorillonite), behaved completely differently in both the 

modification and subsequent solidification phases after the addition of lime. During 

the initial modification reactions the interaction mechanisms of the lime with the 

minerals were as follows: 
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" English China Clay 

  After 7 days curing the solid CaO hydrated, releasing both Ca2+ cations and 
OH' anions into the pore water of the compacted clay mixture. This was 

evident in the batch tests at 7 days due to the high solution pH and soluble Ca 

concentrations, which resulted in high solution conductivity. The very low 

soluble concentrations of either Si or Al in the batch test solutions indicated 

that no mineral dissolution had occurred, hence pozzolanic reactions had not 

yet begun. 

  The high pore water pH generated by the OH' ions interacted with the 
hydroxyl groups on the clay structure generating pH dependent negative 

charge on the mineral at these sites. These negative sites, which were 

previously involved in hydrogen bonding with other mineral sheets, 

consequently attracted Cat ions in the pore water solution. The result of this 

chemical interaction was particle flocculation and consequently increases in 

the undrained shear strength, plastic limit and the liquid limit of the material. 
  Addition of lime above the ICL value was of little benefit as it resulted in no 

improvement in the shear strength or plastic limit, and only with a marginal 
increase in the liquid limit. 

" Wyoming Bentonite 

  After 7 days curing it was evident from the low soluble Ca concentration and 
high soluble Na concentration in the batch test solution that the Ca2+ cations 
from the lime had exchanged for Na ions on the Wyoming Bentonite 

permanent negative charge sites. Similarly to English China Clay, the very 
low soluble concentrations of either Si or Al in the batch test solutions 
indicated that no mineral dissolution had occurred. 

" The resultant effect of the cation exchange reaction was flocculation of the 

mineral particles, and consequently a reduction in the plastic limit of the 

material and an increase in undrained shear strength. 
  In contrast to English China Clay, the result of flocculation was a reduction in 

the liquid limit. This was due to the higher ionic potential of the Ca2+ ions 

relative to the Na+ ions reducing the c-axis spacing, thereby reducing the 
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potential for the material to retain, and consequently swell on the addition of 

water. 

  The addition of lime below the ICL was found to be beneficial as it resulted in 

an increase in the undrained shear strength and a reduction in plasticity. These 

changes were marginal compared to the samples with the ICL value of lime 

addition. 

The longer-term solidification developments of the two clays due to the addition 

of lime were identified as being due to the following mechanisms: 

" English China Clay 

" After 175 days and 301 days curing the batch test solutions exhibited small 

reductions in pH and large reductions in conductivity relative to the samples 

cured for 7 days. The reduction in conductivity was attributable to reductions 

in soluble Ca concentrations in the clay pore water. 
  The reduction in Ca concentration was accompanied by a large increase in the 

soluble Al concentration although there was no Si present in solution. This 

indicated that the high pore water pH had initiated dissolution of Al from the 

mineral but not Si. The reduction in the soluble Ca concentration was a result 

of re-crystallisation of calcium-aluminate-hydrates. 

  The Al was dissolved from the mineral and not Si because of the location of 
the pH-dependent charge sites. These sites are located adjacent to sources of 
Al. Hence since the Ca2+ ions were attracted to the pH-dependent negative 

charge generated by the OH' ions and the hydroxyl groups, all the components 
for pozzolanic reactions were present. 

  Associated with the above chemical interactions were large increases in the 

undrained shear strength of the material, reductions in the liquid limit and 

marginal reductions in the plastic limit. 

  Acid digestion data at 301 days curing illustrated that samples containing lime 

released significantly more Al than samples with no lime confirming that 

pozzolanic reactions were occurring. 
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" Wyoming Bentonite 

  Similarly to English China clay, after 175 days and 301 days curing, the batch 

test solutions exhibited reductions in both pH and conductivity. In contrast to 
English China Clay there were large reductions in the concentrations of both 

Ca and Na in the batch test solutions. 

  The reduction in Ca concentration was accompanied by a large increase in the 

soluble Si concentration and a moderate increase in the Al concentration in 

solution. This indicated that the high pore water pH had initiated dissolution 

of predominantly Si from the mineral. The reduction in the soluble Ca 

concentration was a result of re-crystallisation of calcium-silicate-hydrates. 
The predominance of calcium-silicate-hydrates was due to the mineral 

containing more Si and the fact that dissolution would have occurred near the 

cation exchange sites, the same location as the Ca2+ ions and the source of Si. 

  The above pozzolanic reactions were accompanied by increases in strength for 

the 2.5% and 7.0% lime content although, no change was observed in liquid or 

plastic limits. 

7.3 STABILISATION/SOLIDIFICATION OF CONTAMINANTS 

7.3.1 Stab ilisation/solidification of contaminants 
Stabilisation in the short-term of the Pb2+ and Fe3+ ion contaminated samples 

due to the addition of lime was controlled by the following processes: 

" English China Clay 

  On addition of lime to the contaminated clay samples the high pH 

environment resulted in the contaminants being removed from the aqueous 

phase by precipitation of the ions as solid hydroxides. Due to the development 

of only small quantities of pH-dependent negative charge only a small 
proportion of each contaminant would be present on these sites. 

  At 7 days curing the batch test chemistry for the Pb2+ and Fe 3+ ion 

contaminated samples was the same as the uncontaminated mix, showing no 
indication of pozzolanic reactions. There was also no contamination present 
in the aqueous phase. 
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  At 1.5% lime addition and 7 days curing the uncontaminated sample was 

stronger than the Fe3+ ion contaminated sample, which illustrated that the Fe 3+ 

ions had a negative influence on the chemical improvements of the mineral. 
In contrast the Pb2+ ion contaminated sample with 1.5% lime was stronger 
than the respective uncontaminated sample, which illustrated that Pb2+ ions 

had a positive influence on the chemical improvements of the mineral. 

  Increasing the lime content above the ICL requirement for the uncontaminated 

sample significantly improved the strength properties of both the contaminated 

samples. 

" Wyoming Bentonite 

  Stabilisation of contaminants on Wyoming Bentonite was the product of 

cation exchange of the Pb2+ and Fe3+ ion contaminants for Na+ ions and the 

precipitation of the contaminant hydroxides at high pH due to the addition of 
lime. The cation exchange was evident by the high soluble Na concentrations 

in the batch test solutions from all the mixes. 

  Similarly to the English China Clay samples, the batch test data confirmed that 

there was no pozzolanic activity at 7 days curing. 

  Associated with the above attenuation reactions there were increases in shear 

strength which were attributed to flocculation of mineral particles. At 2.5% 

lime addition both the Pb2+ and Fe3+ ion contaminated samples had a higher 

shear strength than the uncontaminated samples, clearly a result of increased 

flocculation. However, at 7% lime addition all samples had similar strengths 
due to the saturation of the pore water solution with Ca2+ ions. 

  The plasticity of all samples reduced similarly. However as the concentration 

of ions in solution increased, the liquid limit reduced tending towards one 

specific value. This was associated with the increased flocculation due to the 

presence of contaminants reducing the c-axis spacing, and hence the ability of 
Wyoming Bentonite to swell on addition of water. 

In the longer term the contaminants had significantly different effects on the 

solidification reactions: 
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" English China Clay 

  As the curing time increased from 7 days to 175 days to 301 days the batch 

test solution conductivity of the Pb2+ ion contaminated samples with either 
1.5% or 2.5% lime reduced in a similar manner as the uncontaminated 

samples, with an associated reduction in the soluble Ca concentration. 
However, there was almost twice the concentration of soluble Al released 
from the Pb2+ ion contaminated sample suggesting that Pb2+ ions were 

aiding mineral Al dissolution. 

  Associated with the above chemical reactions were significant increases in 

undrained shear strength and reductions in the liquid limit, in a similar way 

to the uncontaminated sample. However, at 1.5% lime addition the Pb2+ 

ion contaminated sample had a significantly higher undrained shear 

strength than the uncontaminated sample with the same lime addition. 

  At 175 days and 301 days curing, the Fe3+ ion contaminated sample 

exhibited no reduction in soluble Ca concentrations. At the ICL value 
(1.5%) no appreciable Si or Al was water soluble and there were no 

changes with time. Associated with these chemical changes were small 
increases in undrained shear strength. However, above the ICL value high 

quantities of water soluble Si was produced at 7 days but there was no 

observed change with time. However, strength increased moderately. 

This suggested that Fe3+ ions were inhibiting the solidification process at 

two stages. The first stage was during the mineral dissolution and the 

second stage was due to Fe3+ ions, and not Ca2+ ions, reacting to form 

cementitious gels and thereby creating a material with lower undrained 

shear strength. 

" Wyoming Bentonite 

  At 175 days and 301 days curing for all mixes at the ICL lime content the 

soluble Ca concentrations reduced to - almost zero concentration and 

soluble Na concentrations reduced significantly, whilst soluble Si 

concentrations increased together with smaller increases in soluble Al 

concentrations. This resulted in a significant reduction in solution 

conductivity and a small reduction in pH. Associated with these processes 
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there were large increases in undrained shear strength for all clay- 

contaminant mixes at the ICL lime content. This suggested that the 

contaminant present neither impeded nor improved the dissolution or re- 

crystallisation processes. 

  At lime contents below the ICL lime content (2.5%), and particularly at 
175 and 301 days curing, the contaminated samples exhibited higher 

undrained shear strengths than the uncontaminated samples. Although 

elemental analyses were not available, there were very small reductions in 

solution pH and conductivity suggesting that there was a small amount of 

solidification occurring. However, the significant strength increases of 

these samples suggested that flocculation processes over a longer curing 

period were predominantly responsible. 

7.4 FUTURE WORK 

7.4.1 Author's comments 
The development of pozzolanic reactions appeared to relate directly to 

reductions in hydroxide ions, which could be monitored by a pH probe, and large 

reductions in Ca2+ ions that correlated clearly to large reductions in batch test solution 

conductivity measured by a conductivity probe. Therefore, an ideal, but cheap and 

simple, test to monitor stabilisation and solidification reactions in situ is via long-term 

pH and conductivity measurements of the material in de-ionised water. Furthermore, 

it was apparent that physical developments could be associated with the fundamental 

chemistry of the stabilisation and solidification reactions. Essentially the behaviour of 
the mineral charge sites governed changes in physical properties in the short-term. In 

the longer-term it was hypothesised that the location of these charge sites and their 
behaviour relative to the OH" ion governed where dissolution of the mineral was 
initiated. 

The batch test data indicated that contaminants were successfully removed 
from solution so long as the pH remained high. In a carefully engineered 
environment the pH would remain high and metals which precipitate at this high pH 

would remain in the solid phase. The success of the process would necessarily be soil 
specific since different contaminants reacted in different ways with the clay-lime 

mixes. Nevertheless, the technique could prove to be of considerable practical 
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benefit. One limitation of the batch test is that it does not provide much information 

about how contaminants interact with pozzolanic reaction products or the re- 

crystallisation process. To understand this aspect of the lime reaction more clearly a 
future study of cementitious solidification products is required using x-ray diffraction 

techniques. 

7.4.2 Proposals for future research 
Many important conclusions about the selective dissolution of minerals on the 

addition of lime were made on the basis of the results from the water soluble batch 

tests. Furthermore, the suggested mechanisms relating to the effects of contaminants 

on these processes were also based on data from the batch tests. Therefore, it is 

important to assess the applicability of this batch test to `real' soils having mixed 

mineralogy and particularly the effects that humic substances have on the reactions 
due to lime addition, and hence the results of the batch test. Based upon these 

foundations a database on the effects of various contaminants on the lime reaction of 
`real' soils should be developed with the philosophy of not simply measuring 
leachability, but understanding their interactions with the fabric of the soil and 

therefore allowing a degree of predictability. It would then be possible to develop the 

batch test further into a simple test for use in situ whereby only simple pH and 

conductivity measurements would be required to assess the development of the 

stabilisation and solidification reactions. This has clear implications as to the 

appropriateness of current regulatory leach testing strategies world-wide and 
highlights the fact that an engineering approach needs to be developed. On the basis 

that acid based leaching tests `destroy' the mechanisms which make stabilisation and 

solidification viable for contaminated sites, these tests are not appropriate for risk 

assessment purposes on the basis of achieving a specific regulatory value. They are 

useful in studying the development of stabilisation and solidification reactions when 
interpreted with an understanding of the reaction mechanisms. 

Clearly the adsorption of problem contaminants onto exchange sites is an 
important factor which will increase the applicability of the process to problem 

remediation sites. This is particularly relevant to mixed organic and inorganic 

contaminated sites where organic contaminants can severely inhibit the potential 
benefits of lime addition. It is therefore imperative to assess and develop low cost 

adsorbents for both organic and inorganic contaminants. The difficulty lies in the 
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sheer number of organic contaminants and assessing the most prolific species on 

contaminated sites. On this basis it would be beneficial to construct a database of 

contaminants present on contaminated sites within the UK and Europe as well as 
identification of the chemical nature of the soil within which the contaminants lie. 

This is occurring slowly within the research community, although research 

approaches to date have not been sufficiently thorough to be of benefit to the general 

research community. There is also a clear need to have specific sites available to the 

research community with the support of the Environment Agency where developing 

remediation techniques can be assessed in a natural environment without excessive 

overheads. 

7.5 SUMMARY 

Development of the batch leaching test demonstrated that changing the 

operational parameters had no effects on the observed chemical trends associated with 
the time-dependent stabilisation and solidification reactions brought about by the 

addition of lime to clay minerals. It was also shown that successful solidification 

could be monitored using simple conductivity measurements without the need for 

expensive, complex elemental analysis. 
The batch test highlighted that Pb2+ ion and Fe3+ ion contamination 

specifically, could be stabilised in the short-term and the longer term. This 

stabilisation and solidification process was attributed to a combination of natural 

attenuation and precipitation in the short-term and additionally incorporation into 

recrystalised silicate and aluminate hydrates in the longer-term. 

The chemical reaction processes due to the addition of lime were found to be 

different for the two clay minerals. Furthermore there was a clear difference between 

the short-term reactions and the longer-term reactions. English China Clay and 
Wyoming Bentonite pozzolanic reactions were based on Al and Si dissolution from 

the respective mineral. This dissolution was only detectable in the longer-term 

suggesting that the short-term undrained shear strength increases and changes in 

Atterberg Limits were associated with ion exchange effects alone. Large increases in 

undrained shear strength were associated with increases in soluble Si and Al and 

reductions in soluble Ca, the result of solidification. 
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The difference between the dissolution of Si and Al from the two clay 

minerals had a significant impact on re-crystallisation. Pb2+ ions were found to 

enhance solidification by enhancing dissolution of Al from English China Clay, whilst 
Fe3+ ions were found to have inhibitive effects preventing interaction of Ca2+ ions in 

the formation of calcium aluminate hydrates. On re-crystallisation, the Pb2+ ion 

contaminated English China Clay samples had higher undrained shear strengths than 

the uncontaminated samples whilst the Fe3+ ion contaminated English China Clay 

samples had lower undrained shear strengths than the uncontaminated samples. 
Contaminants were found to have no appreciable influence on Wyoming Bentonite re- 

crystallisation. 

Natural attenuation can reduce the leachability of ionic contaminants. 
However, the attenuation process is reversible in both the short term and the long 

term. Incorporation of precipitated contaminants into a stabilised matrix and 
incorporation of contaminant-silicate hydrates and contaminant-aluminate hydrates 

into this matrix reduces the longer-term contaminant mobility. Lime stabilisation is 

an effective remediation technique for ionic contamination when applied in an 

engineered environment. Furthermore, the simple batch test that was developed 

proved to be of considerable benefit in monitoring the success or failure of the 

process. 
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APPENDIX 1 

DETAILED PRESENTATION OF THE BATCH TEST 

RESULTS AND THE EFFECT OF THE INITIAL 

OPERATING PARAMETERS ON THE 

SOLUTION CHEMISTRY 



A1.2 BATCH EXTRACTION TESTS 

Batch test results include the development of pH and conductivity during 

6hr/30rmp, 6hr/60rpm, 24hr/30rpm and 24hr/60rpm tests on samples at three solid to 

liquid ratios and two different cube sizes as well as ICP measurement of Ca, Fe, Pb, 

Na, Si, Mg, Al and Mn in the final solutions of these tests. As a result of the 

complexity and volume of data as well as the requirement to highlight variations 
induced by changing operating parameters each specific clay design mix will be 

presented independently. 

A1.2.1 English China Clay with no contaminants or lime 

A1.2.1.1 Solid : liquid ratio 
Inspection of Figures A1.7- A1.10 clearly illustrates that solid to liquid ratio 

has the most influential effect on conductivity out of the parameters tested. Increases 

in solid to liquid ratio in distinct increments results in discrete increases in 

conductivity within the range 5µS/cm to 20µS/cm. In all cases as the test duration 

increases so does the conductivity. pH values at specific solid to liquid ratios are very 

similar and are in the range 5.7-6.2. Figure A1.9 (24hr/30rpm); Figure A1.10 

(24hr/60rpm) and Figure A1.7 (6hr/30rpm) do however indicate that as solid to liquid 

ratio increases, pH tends to decrease. 

Tables A1.2 to Al. 11 also highlight that as solid to liquid ratio and 
conductivity increases, in many cases soluble Ca and Si in solution increases although 

some variability is evident at the low levels measured. All other elements, Fe, Pb, Na, 

Mg, Al and Mn show very low levels below or near detection limits. 

A1.2.1.2 Cube Size 

Figures A1.7 to A1.10 illustrate that all pH and conductivity values for 

specific solid to liquid ratios do not change with varying cube size. Chemical data in 

Tables A1.2 to A1.9 do however highlight that generally at the smaller cube sizes 

more Ca, Na are released with no observable significant differences for the other 

elements 

1 0-ý 194 



A1.2.1.3 Rotation speed and test duration 

Comparison of Figure A1.7 (6hr/30rpm) and Figure A1.8 (6hr/60rpm) at 7 and 
175 days curing time shows little change in final pH values and conductivity with 
increased rotation speed. These plots are very similar to the 24 hours tests although 

the higher rotation speeds generate slightly higher pH values. Increased test duration 

appears to release less Ca and more Si and Mg. It is also evident that the longer test 

duration creates slightly higher pH values. Inspection of Tables A1.2 to A1.9 

suggests that at higher rotation speeds more Ca, Si and Mg are released whilst the 

other element are below detection limits. Furthermore, increasing test duration tends 

to produce higher concentrations of Si, Mg and lower concentrations of Ca 

A1.2.1.4 Curing Time 

In all cases the tests carried out at 7 days show the most variability in 

conductivity and pH between initial cube sizes at the same solid to liquid ratios. It is 

also evident that the scatter of pH values is most pronounced for the 24hr tests. 
Tables Al. 2 to Al.!! indicate that as curing time increases the already low levels of 

soluble Si, Na, Mn and Mg decrease further whilst Al levels increase and all other 

elements remain relatively constant. 



Figure A1.7 Conductivity and pH characteristics for English China Clay with 

no contaminants or lime during 6hr/30rpm Batch Tests 
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Figure A1.8 Conductivity and pH characteristics for English China Clay with 

no contaminants or lime during 6hr/60rpm Batch Tests 
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Figure A1.9 Conductivity and pH characteristics for English China Clay with 

no contaminants or lime during 24hr/30rpm Batch Tests 
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Figure A1.10 Conductivity and pH characteristics for English China Clay with 

no contaminants or lime during 24hr/60rpm Batch Tests 
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A1.2.2 English China Clay with 2500ppm Pb and no lime 

A1.2.2.1 Solid : liquid ratio 
Inspection of Figures A1.11 to A1.14 highlights solid to liquid ratio has the 

largest effect on conductivity and pH. Unlike the uncontaminated sample with no 
lime, as solid to liquid ratio increases in discrete increments conductivity increases in 

discrete increments and pH decreases. Doubling the solid to liquid ratio doubles 

conductivity. The conductivity of the solid to liquid ratios 1: 10,1: 20 and 1: 40 are all 

generally approximately 290µS/cm, 1501S/cm and 8010cm respectively. 

pH values range from 4.6-5.8 depending on the solid to liquid ratio. The 

lower solid to liquid ratios tend to produce more variable pH values between cube 

sizes for specific solid to liquid ratios although conductivity measurements remain 

similar. 
Tables A1.12 to A1.21 illustrate doubling the solid to liquid ratio doubles the 

concentrations of Ca, Pb, Mg and Mn in solution, whilst Si concentrations nearly 

double and Na concentrations increase. At the 1: 10 solid to liquid ratio the 

concentration of Ca; --10ppm, Pb--80ppm, Na; -2ppm, Siý--3ppm, Mg: z, 8ppm and 

Mn, tO. 6ppm, whilst Fe and Al are below detection limits. 

A1.2.2.2 Cube Size 

Figures Al. 1 l to Al. 14 illustrate that generally the 10mm cube sizes produce 

slightly higher solution pH values, especially at the lower solid to liquid ratios. 

Considering conductivity the 10mm cubes achieve the plateaux value the quickest 

with both sizes ultimately producing the same final value. During the 30rpm tests the 

10mm cubes generally release slightly more Ca whilst Pb, Na, Si, Mg and Mn appear 

in similar quantities for all cube sizes. 

A1.2.2.3 Rotation speed and test duration 

Comparison of Figures Al. I l to Al. 13 illustrates that generally the 6hr/30rpm 

tests produce slightly higher pH values than 24hr/30rpm tests, although, conductivity 
is similar in all cases. With the exception of high variability at low solid to liquid 

ratios the 6hr/60rpm and 24hr/60rpm tests illustrated in Figures A1.12 and Al. 14 do 

not show significant variation in pH and conductivity due to the extended test 

duration. Changing the rotation speed from 30rpm to 60rpm does not appear to 



produce higher pH values for the 20mm cubes relative to the 10mm cubes for the 

lower solid to liquid ratios. In all cases the 6hr/60rpm tests (Figure A1.12) clearly 

produce the least variability between cube sizes at any solid to liquid ratio. However, 

although pH values do not vary significantly during 6hr tests, values tend to rise 
during 24hr tests at all curing time periods. 

Comparison of Tables A1.12, A1.13, A1.14 and A1.17, A1.18, A1.19 

illustrates that 24hr/30rpm tests release more Pb, Si, Mg, Mn and less Ca than 

6hr/30rpm tests. This trend is also similar when comparing 24hr/60rpm and 
6hr/60rpm tests. The other elements not mentioned due not appear to change 

significantly. The lower test rotation speeds release more Ca and less Pb, Na, Si, Mg 

and Mn for both 6hr and 24 hr tests. 

A1.2.2.4 Curing Time 

With the exception of the 1: 40 solid to liquid ratio, increasing curing time 

results in the 10mm and 20mm cube sizes producing similar pH values. As curing 

time increases the final batch pHs reduce by approximately 0.1 depending on the 

initial solid to liquid ratio whilst conductivity values do not appear to change. 
Analysis of Tables A1.12 to A1.21 illustrates that as curing time increases Pb 

and Si concentrations decrease whilst Na levels increase with Mg, Ca and Mn 

remaining relatively constant for specific solid to liquid ratios and test parameters. 



Figure A1.11 Conductivity and pH characteristics for English China Clay with 

2500ppm Pb and no lime during 6hr/30rpm Batch Tests 
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Figure A1.12 Conductivity and pH characteristics for English China Clay with 

2500ppm Pb and no lime during 6hr/60rpm Batch Tests 
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Figure A1.13 Conductivity and pH characteristics for English China Clay with 

2500ppm Pb and no lime during 24hr/30rpm Batch Tests 
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Figure A1.14 Conductivity and pH characteristics for English China Clay with 

2500ppm Pb and no lime during 24hr/60rpm Batch Tests 
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A1.2.3 English China Clay with 5000ppm Fe and no lime 

A1.2.3.1 Solid : liquid ratio 
Inspection of Figures A1.15 to A1.18 shows that as solid to liquid ratio 

increases conductivity increases and pH decreases. Doubling the solid to liquid ratio 
increases conductivity by 1.5 in every case. The conductivity of the solid to liquid 

ratios 1: 10,1: 20 and 1: 40 are all generally approximately 1300µS/cm, 2000µS/cm 

and 3200 pS/cm respectively whilst pH values are approximately 2.55,2.65 and 2.80 

respectively. 
Tables A1.22 to A1.31 show that as solid to liquid ratio doubles, the 

concentration of leachable Fe increases by 2.2 whilst Ca, Mg, Si, Al and Mn 

concentrations double and Na increases by a small amount. At 1: 10 solid to liquid 

ratio after 7 days concentrations of Ca; tý20ppm, Fe: 325ppm, Na; --2ppm, Si; --7ppm, 

Mg--l3ppm, Al;: 67ppm and Mn ; t1.2ppm whilst Pb is below detection limits. 

A1.2.3.2 Cube Size 

In all cases at all solid to liquid ratios the 10mm cubes produce slightly higher 

pH values than 20mm cubes and often slightly higher conductivity. In most cases the 

10mm cubes release slightly more Ca and Fe whilst Na, Si, Mg, Al, and Mn appear 

unaffected. 

A1.2.3 3 Rotation speed and test duration 

Comparison of Figures A1.15 and A1.17 illustrates that the 6hr/30rpm test 

again produces slightly higher pH values and slightly lower conductivity than 

24hr/30rpm tests. These trends are mirrored in 60rpm tests illustrated in Figures 

A1.16 and Al. 18. At the lowest solid to liquid ratio the pH and conductivity values 

are higher for 60rpm tests than 30rpm tests. This is most apparent for conductivity 

values. All tests appear to produce similar pH and conductivity variations throughout 

the tests although pH values clearly fall consistently over 24hr tests which is not so 

apparent during 6hr tests. 

Inspections of the data in Tables A1.22 to A1.31 highlight that changing 

slightly reduces the concentrations of Ca, Fe, Pb and Na. It is clear however that 

increasing rotation speed does not affect Si, Mg, or Mn leachability whilst Al 

increases during 6hr tests at 7 days curing only. Increasing test duration increases Si 



and Mn at 7days curing with no change in Mg. There is however an increase in Al 

content during 30rpm tests at 7 days curing although not during 60rpm tests. Levels 

of Ca, Na, Fe and Pb do generally tend to decrease with increasing test duration. 

A1.2.3.4 Curing Time 

In many tests at the lower solid to liquid ratios it is evident that after 175 days 

curing pH and conductivity have slightly reduced relative to 7 days. However after 

301 days these values have returned to values similar in magnitude to those at 7 days. 

Analysis of the data Tables A1.22 to A1.31 indicates that between 7 days and 175 

days levels of Fe and Si significantly reduce whilst levels of Mg, Al and Mn increase. 

No significant trends are observable for Na and Ca. 



Figure A1.15 Conductivity and pH characteristics for English China Clay with 

5000ppm Fe and no lime during 6hr/30rpm Batch Tests 
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Figure A1.16 Conductivity and pH characteristics for English China Clay with 

5000ppm Fe and no lime during 6hr/60rpm Batch Tests 
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Figure A1.17 Conductivity and pH characteristics for English China Clay with 

5000ppm Fe and no lime during 24hr/30rpm Batch Tests 

English China Clay and 
S000ppm Fe only after 7 days 

Compacted 815/97 
3500 3 

3000 tt-ý ------ - 4 2.9 
E 2500 
N 2.8 
i2000 

2-7 ä 

1500 
9f !ý2.6 

1000 
U 

5 2.5 

0- ý+ +ý -ý ++ ++2.4 
05 10 15 20 25 30 

English China Clay and 
5000ppm Fe only after 175 days 

Compacted 815/97 

3500 3 

2.9 

2500 " 

2000 = i 
2.8 

{ 2.7 ä 
1500 \" -- - =- $ y 

Ö 
1000 _ " 

2.6 

U 

500 2.5 

0 2.4 

05 10 15 20 25 30 

Time (Hours) 

English China Clay and 
5000ppm Fe only after 301 days 

Compacted 815197 
3500 f3 

3000 t-F-f----- j 
g 2.9 

2500 
" 

V 
ca a, f 2.8 

  2000 ý.  ! -. 
15M 

" s 2.7 ä 

! 
1000 

6 2. 
~ 

2 5 5w . 

0- -+1" -{-1-}- +44 Y+t { +F i ifi+F+ 1 #, 1 2.4 

  20mm Cubes and 1/10 Solid to 
Liquid Ratio Conductivity 

" 20mm Cubes and 1/20 Solid to 
Liquid Ratio Conductivity 

  20mm Cubes and 1/40 Solid to 
Liquid Ratio Conductivity 

  10mm Cubes and 1/10 Solid to 
Liquid Ratio Conductivity 

" 10mm Cubes and 120 Solid to 
Liquid Ratio Conductivity 

- 10mm Cubes and 1/40 Solid to 
Liquid Ratio. Conductivity 

--+---- 20mm Cubes and 1/10 Solid to 

Liquid Ratio pH 
" 20mm Cubes and 1/20 Solid to 

Liquid Ratio pH 

" 20mm Cubes and 1/40 Solid to 
Liquid Ratio. pH 

" 10mm Cubes and 1/10 Solid to 
Liquid Ratio. pH 

" 10mm Cubes and 1/20 Solid to 
Liquid Ratio pH 

10mm Cubes and 1/40 Solid to 
Liquid Ratio pH 

10 15 20 25 30 

Time (Hours) 



Figure A1.18 Conductivity and pH characteristics for English China Clay with 

5000ppm Fe and no lime during 24hr/60rpm Batch Tests 
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A1.2.4 English China Clay with no contaminants and 1.5% lime 

A1.2.4.1 Solid : liquid ratio 
Inspection of Figures A1.19 to A1.22 shows that as the solid to liquid ratio 

increases both conductivity and pH increases. At 7 days curing the conductivity of 
6hr/30rpm tests with 20mm cube sizes (Figure A1.19) at the solid to liquid ratios 

1: 10,1: 20 and 1: 40 are 5430µS/cm, 3300 gS/cm and 1870µS/cm respectively whilst 

pH values are 12.49,12.33 and 12.08 respectively. At 175 days curing the 

conductivity values are 1337µS/cm, 1049µS/cm, 707µS/cm and pH values are 11.95, 

11.79 and 11.57 respectively whilst at 301 days curing conductivity values are 

1045µS/cm, 757µS/cm, 527µS/cm and pH values are 11.73,11.54 and 11.35. 

Increasing the solid to liquid ratio at 7 days curing from 1: 40 to 1: 20 therefore 

increases conductivity by a factor of approximately 1.76 and pH by approximately 

0.25 pH divisions. Increasing solid to liquid ratio further from 1: 20 to 1: 10 increases 

conductivity by a factor of approximately 1.65 and pH by approximately 0.16 pH 

divisions. At 175 days curing, conductivity increases by a factor of 1.48 and pH by 

0.22 pH divisions for a change in solid to liquid ratio of 1: 40 to 1: 20. Increasing solid 

to liquid ratio from 1: 20 to 1: 10 at 175 days curing increases conductivity by a factor 

of 1.27 and pH by 0.16 pH divisions. These changes brought about by varying solid 

to liquid ratio and curing period are clearly evident visually by the spacing between 

pH and conductivity lines in Figure A1.19 (Also Figures A1.21 and A1.22). 

Analysis of data Tables A1.32 to A1.41 illustrates that as solid to liquid ratio 
decreases and curing period increase, Ca concentrations significantly decrease by 

factors similar to those for conductivity changes. By observation of Table A1.32 for 

20mm cubes and 6hr/30rpm tests at 7 days it is clear that increasing solid to liquid 

ratio from 1: 40 to 1: 20 results in an increase in concentration of Ca from 115ppm- 

276ppm. A reduction in Si from 1.88ppm-1.13ppm, Mg from 0.019-0.157 and Al 

from 4.87-3.10 also occurs. The similar increase in solid to liquid ratio from 1: 20 to 

1: 10 results in an increase in Ca concentration from 276ppm-390ppm, Si from 

1.12ppm-1.63ppm, Mg from 0.015ppm-0.018ppm and a reduction in Al from 

3. l0ppm-1.76ppm. For both these increases in solid to liquid ratio at 7 days during 

24hr/30rpm tests and 24hr/60rpm tests, Tables A1.37 to A1.39 and A1.40 to A1.41 all 

show significant increases in Ca, whilst other elements show variable trends. 



" 

However at 175 days and 301 days curing all tests produce increases in Ca, Na and Al 

with increasing solid to liquid ratio. 

A1.2.4.2 Cube Size 

At solid to liquid ratios 1: 20 and 1: 40 the pH values related to 10mm cubes 
tends to be slightly higher than 20mm cubes. Where the resulting conductivity is 

higher, which can be for either 10mm or 20mm cubes, this appears to relate closely to 

the concentration of Ca in solution. 
Inspection of Tables A1.32 to A1.41 illustrates that generally the larger initial 

cube size results in slightly higher concentrations of Na and Si whilst Al and Mg 

concentrations generally remain similar. These results are more consistent at 175 and 
301 days curing. 

A]. 2.4.3 Rotation speed and test duration 

No obvious trends in pH appear evident for increasing rotation speed at any 

curing time, although conductivity levels are slightly higher in some cases. It is clear 

that as the tests progress particularly for 24hr tests, pH generally continues to increase 

relative to 6hr tests. 

Considering 6hr tests at 175 days curing (Table A1.33 and A1.36) increasing 

rotation speed results in a reduction in Ca, Na and Si concentrations whilst Al 

increases in concentration and other elements remain relatively unaffected. 
Increasing test duration for 30rpm tests generally results in increases in Ca, Si 

concentrations whilst Na, Mg and Al concentrations remain unaffected. However 

increasing test duration for 60rpm tests at 175 days curing has similar effects although 
Na, Mg concentrations increases and Al concentrations reduce. 

A1.2.4.4 Curing Time 

Increasing curing time has a large effect on pH and conductivity as previously 

mentioned. These changes are most apparent between 7 days curing and 175 days 

curing although significantly changes are still occurring between 175 days and 301 

days. 

Analysis of the data Tables A1.32 to A1.41 illustrates that as curing period 
increases Ca concentrations significantly decrease, Mg, Al and Na concentrations 



increase (Al very significantly) whilst all other elements remain relatively unaffected 

or are below detection limits. 



Figure A1.19 Conductivity and pH characteristics for English China Clay with 

no contaminants and 1.5% lime during 6hr/30rpm Batch Tests 
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Figure A1.20 Conductivity and pH characteristics for English China Clay with 

no contaminants and 1.5% lime during 6hr/60rpm Batch Tests 

English China Clay and 1.5% Lime after 175 Days. 
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Figure A1.21 Conductivity and pH characteristics for English China Clay with 

no contaminants and 1.5% lime during 24hr/30rpm Batch Tests 

English China Clay and 1.5% Lime after 7 days 
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Figure A1.22 Conductivity and pH characteristics for English China Clay with 

no contaminants and 1.5% lime during 24hr/60rpm Batch Tests 
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A1.2.5 English China Clay with 5000ppm Pb and 1.5% lime 
A very significant result is that even at the very high pH values illustrated in 

Figures A1.23 to A1.26, the levels of leachable Pb reported in Tables A1.42 to A1.51 

are below detection levels despite the amphoteric nature of the element and after 301 

days curing its soluble fraction is effectively zero. 

A1.2.5.1 Solid : liquid ratio 

Inspection of Figures A1.23 to A1.26 illustrates similar behavioural patterns to 

uncontaminated English China Clay with 1.5% lime. However the changes in pH and 

conductivity as solid to liquid ratio increases are slightly different. 

Increasing solid to liquid ratio from 1: 40 to 1: 20 at 7 days for 20mm cubes 

during 6hr/30rpm tests (Figure A1.23) increased the end of test conductivity from 

1820µS/cm to 3140µS/cm a factor of 1.73 whilst pH increased by 0.27 from 12.15 to 

12.42. Similarly increasing solid to liquid ratio from 1: 20 to 1: 10 increased the end of 

test conductivity from 3140µS/cm to 5030µS/cm a factor of 1.60 whilst pH increased 

by 0.18 from 12.42 to 12.60. Increasing solid to liquid ratio from 1: 40 to 1: 20 at 175 

days for 20mm cubes during 6hr/30rpm tests (Figure A1.23) increased the end of test 

conductivity from 852µS/cm to 1318µS/cm a factor of 1.50 whilst pH increased by 

0.22 from 11.55 to 11.77. Similarly increasing solid to liquid ratio from 1: 20 to 1: 10 

increased the end of test conductivity from 1318µS/cm to 1574µS/cm a factor of 1.19 

whilst pH increased by 0.11 from 11.77 to 11.88. 

As conductivity increased by specific factors due to changes in curing time 

and solid to liquid ratio these factors are similar to those changing Ca concentrations 
in solution. These trends are evident in Figures A1.23 to A1.26 and Tables A1.42 to 

A1.51. 

Using the 6hr/30rpm tests with 20mm cube sizes as an example, increasing 

solid to liquid ratio from 1: 40 to 1: 20 to 1: 10 at 7 days also reduces concentrations of 
Si from 1.12ppm to 0.603ppm to 0.429ppm respectively, Mg from 0.0212 to 0.0156 

to 0.0095 respectively and Al from 5.12ppm to 4.28ppm to 1.28ppm respectively. 
However at 175 and 301 days, the 1: 20 solid to liquid ratio releases the most Al, 

approximately 32ppm. 



A1.2.5.2 Cube Size 

At the lowest solid to liquid ratio 1: 40, the 10mm cube size tends to produce 
the highest final pH at any curing time. However on the basis of conductivity the 
highest variation between cube sizes tends to occur at the highest solid to liquid ratios. 

During 7 day curing tests, with the exception of 6hr/30rpm tests (Tables A1.42 

to A1.44), the 10mm cube size released the most Ca. During 175 day and 301 day 

curing tests 20mm cubes appeared to release more Ca. Generally however it was the 

10mm cubes at specific solid to liquid ratios that released more Na, Si, and Mg with 

Al remaining unaffected (Table A1.42 to A1.51). 

A1.2. S. 3 Rotation speed and test duration 

The higher rotation speed during 6hr tests had no apparent effect on pH or 

conductivity at any test duration or curing period (Figures A1.23 to A1.26). At 7 days 

the higher rotation speed for both test durations released significantly more Ca, more 

Pb and less Na whilst generally all other elements remained unaffected. However at 
175 days the higher 60rpm rotation speed released significantly less Ca than the 

30rpm rotation speed at the solid to liquid ratios 1: 20 and 1: 40 for 24 hr tests and for 

all solid to liquid ratios for 6hr tests. 

Increasing test duration at 7 days curing appears to have no appreciable effect 

on pH or conductivity. However comparison of at 175 days curing and 301 days 

curing suggests that increasing the test duration results in higher final pH and 

conductivity values. Ca leachability highlighted in Tables A1.42 to A1.51 is also 
higher at these higher pH and conductivity values. Comparison of 60rpm tests in 

Tables A1.45, A1.46, and A1.50, A1.51 at 7 and 175 days clearly illustrates that as 

test duration increased more Ca, Na, Si and Al are released. These trends are not as 

clear for 30rpm tests. 

A1.2.5.3 Curing Time 

It was previously mentioned that increasing curing time has significant effects 

on pH and conductivity. This is reflected as expected in massive reductions in Ca, 

increases in Na, increases and then reductions in Al and reductions in Si. Although 

present at levels near or at detection limits there are also reductions in Pb leachability. 



Figure A1.23 Conductivity and pH characteristics for English China Clay with 

5000ppm Pb and 1.5% lime during 6hr/30rpm Batch Tests 
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Figure A1.24 Conductivity and pH characteristics for English China Clay with 

5000ppm Pb and 1.5% lime during 6hr/60rpm Batch Tests 
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Figure A1.25 Conductivity and pH characteristics for English China Clay with 

5000ppm Pb and 1.5% lime during 24hr/30rpm Batch Tests 

English China Clay and 
5000ppm Pb and 1.5% Lime after 7 days 
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Figure A1.26 Conductivity and pH characteristics for English China Clay with 

5000ppm Pb and 1.5% lime during 24hr/60rpm Batch Tests 

English China Clay and 
5000ppm Pb and 1.5% Lime after 7 days 
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A1.2.6 English China Clay with 5000ppm Fe and 1.5% lime 

Similarly to the lime treated Pb contaminated samples, leachable Fe 

concentrations are found below detection limits in all batch tests performed. 

A1.2.6.1 Solid : liquid ratio 
Considering 6hr/30rpm tests (Figure A1.27) with 20mm cube sizes at 7 days 

curing, the conductivities at the solid to liquid ratios 1: 40,1: 20 and 1: 10 are 

891 gS/cm, 1592µS/cm and 2840µS/cm respectively whilst pH values are 10.98, 

11.12 and 11.29 respectively. At 175 days curing end of test conductivity values are 

823µS/cm, 1540µS/cm and 2730µS/cm respectively whilst pH values are 10.74, 

11.07 and 11.25 respectively. There are no significant changes at 301 days curing. 
Increasing solid to liquid ratio from 1: 40 to 1: 20 at 7 days curing increases 

conductivity from 891 µS/cm to 1592µS/cm, a factor of 1.79 whilst pH increased by 

0.14 pH divisions from 10.98 to 11.12. Increasing solid to liquid ratio from 1: 20 to 

1: 10 increases conductivity from 1592µS/cm to 28401S/cm a factor of 1.78 whilst pH 
increased by 0.17 pH divisions from 11.12 to 11.29. 

Increasing solid to liquid ratio from 1: 40 to 1: 20 at 175 days curing increases 

conductivity from 823µS/cm to 1540pS/cm, a factor of 1.87 whilst pH increased by 

0.33 pH divisions from 10.74 to 11.07. Increasing solid to liquid ratio from 1: 20 to 

1: 10 increases conductivity from 1540µS/cm to 2730µS/cm a factor of 1.77 whilst pH 

increased by 0.18 pH divisions from 11.07 to 11.25. These trends are repeated in the 

other batch test results. Direct observation of Tables A1.52, A1.53 and A1.54 

identifies that the factors of increase in conductivity with increasing solid to liquid 

ratio are directly related to Ca concentrations. 
Inspection of Figures A1.27 to A1.30 highlights that the solid to liquid ratio 

1: 40 creates the most variability in pH between cube sizes. At all solid to liquid ratios 

and curing times conductivity apparently remains unaffected regardless of cube size. 
It is also apparent from analysis of Tables A1.52 to A1.61 that Ca concentrations 
decrease with decreasing solid to liquid ratio, Na and Al also decrease and Si 

concentrations increase whilst other elements remain relatively unaffected or below 

detection limits. 



A1.2.6 2 Cube Size 
Analysis of Figures A1.27 to A1.30 highlights that 10mm cubes tend to result in 

the highest solution pH and conductivity. However inspection of Tables A1.52 to A1.61 

highlights no obvious trends in Al, Si or Ca content with cube size variation. This is also 

true for Na and Mg at 7 days curing. However after 7 days curing 10mm cube sizes 

generally release more Na, Mg and Al into solution. 

A1.2.6.3 Rotation speed and test duration 

Figures A1.27 and A1.28 illustrate that increasing rotation speed for 6hr tests 

substantially increased pH and conductivity particularly at higher solid to liquid ratios. 

Comparison of Figures A1.29 and A1.30 suggests that increasing rotation speed for 24 hr 

tests slightly reduce pH and conductivity values. Tables A1.52, A1.53 and A1.55, A1.56 

show that increasing rotation speed for 6hr tests significantly increased Ca concentrations 

at 7 days curing with no significant subsequent change at 175days curing. Al levels 

significantly increase at all curing times whilst other elements remained unaffected. 

Consideration of 24hr tests in Tables A1.57, A1.58 and A1.60, A1.61, illustrates 

increasing rotation speed at 7 days curing reduces Ca concentration for specific solid to 

liquid ratios whilst at 175 days curing there is no significant difference. Na also tends to 

increase, although there is no significant variation in Al concentrations. 

Increasing test duration for 30rpm tests illustrated in Figures A1.27 and A1.29 

shows large increases in pH and conductivity at all curing times and solid to liquid ratios. 
Analysis of Tables A1.52 to A1.59 shows that as test duration increases Ca and Al 

increase significantly whilst Si and Mg exhibit moderate increases and Na concentration 

reduces. These trends are also similar for 60rpm tests. 

A1.2.6.4 Curing Time 

Increasing curing time from 7 days to 175 days results in a small reduction in 

conductivity and pH and only very small changes continue to occur between 175 days and 
301 days. These trends are also reflected in the chemical data. Ca and Na concentrations 

reduce, Si concentrations moderately increase whilst Mg concentrations remain 

unaffected. For 6hr tests Al concentrations appear to significantly reduce from 7 days 

curing to 175 days curing then increase from 175 days curing to 301 days curing. 
However for 24 hr tests Al levels are high at 7 days curing and then increase slightly at 
175 days and remain stable at this level at 301 days. 



Figure A1.27 Conductivity and pH characteristics for English China Clay with 

5000ppm Fe and 1.5% lime during 6hr/30rpm Batch Tests 

English China Clay and - -a 20mm Cubes and 1/10 Solid to 
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Figure A1.28 Conductivity and pH characteristics for English China Clay with 

5000ppm Fe and 1.5% lime during 6hr/60rpm Batch Tests 
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Figure A1.29 Conductivity and pH characteristics for English China Clay with 

5000ppm Fe and 1.5% lime during 24hr/30rpm Batch Tests 

English China Clay and 
5000ppm Fe and 1.5% Lime after 7 days 
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Figure A1.30 Conductivity and pH characteristics for English China Clay with 

5000ppm Fe and 1.5% lime during 24hr/60rpm Batch Tests 
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A1.2.7 English China Clay with no contaminants and 2.5% lime 

A1.2.7 1 Solid : liquid ratio 
Inspection of Figures A1.31 to A1.34 shows that as the solid to liquid ratio 

increased both conductivity and pH increased. At 7 days curing the conductivity of 
6hr/30rpm tests with 20mm cube sizes (Figure A1.31) at the solid to liquid ratios 

1: 10,1: 20 and 1: 40 were 7970µS/cm, 5870µS/cm and 3350 pS/cm respectively whilst 

pH values were 12.67,12.55 and 12.34 respectively. At 175 days curing the 

conductivity values were 3810pS/cm, 2630µS/cm and 1661µS/cm respectively whilst 

pH values were 12.41,12.22 and 11.98. Increasing the solid to liquid ratio from 1: 40 

to 1: 20 at 7 days curing from increased conductivity by a factor of 1.75 and pH by 

0.21 pH divisions. Increasing solid to liquid ratio further from 1: 20 to 1: 10 increased 

conductivity by a factor of 1.35 and pH by 0.12 pH divisions. At 175 days curing 

conductivity increased by a factor of 1.58 and pH by 0.24pH divisions for a change in 

solid to liquid ratio of 1: 40 to 1: 20. Increasing solid to liquid ratio from 1: 20 to 1: 10 

at 175 days curing increased conductivity by a factor of 1.45 and pH by 0.19 pH 

divisions. 

Analysis of chemical data Tables A1.62 to A1.71 illustrate that as solid to 
liquid ratio decreased and curing period increased Ca concentration significantly 

decreased by factor similar to those for conductivity changes. Observation of Table 

A1.62 for 6hr/30rpm tests at 7 days and 20mm cube sizes shows clearly that 

increasing solid to liquid ratio from 1: 40 to 1: 20 resulted in an increase in 

concentration of Ca from 261ppm to 475ppm, a reduction in Si from 1.04ppm to 

0.466ppm, Mg from 0.0143ppm to 0.0109ppm and Al from 0.692ppm to 0.0637ppm. 

At 175 days curing and 301 days curing all tests produced increases in Ca and Na 

whilst Al reduced with increasing solid to liquid ratio. 

It is evident from Figures A1.31 to A1.34 that the solid to liquid ratio 1: 40 

results in the highest level of variability in pH values between the two cube sizes. 

A1.2. Z2 Cube Size 

By observation of Figure A1.31 to A1.34,10mm cubes generally produced 

slightly higher pH values. Again where the resulting conductivity was found to be 

higher for either 10mm or 20mm cubes, Ca levels in the leachates were found to be 



correspondingly higher. The larger cube size also tended to release higher 

concentrations of Na, Si, Mg and Al. 

A1.2. Z3 Rotation speed and test duration 

Comparison of 6hr tests at 7 and 175 days curing (Figures A1.31 and A1.34) 

illustrates that at all solid to liquid ratios the 60rpm tests tended to produce slightly 
lower pH and conductivity values. These trends were more defined at 175 days 

curing. During similar comparisons of 24hr tests at 7 days curing (Figures A1.33 and 
A1.34) it is clear that the 60rpm tests produced lower pH values but higher 

conductivity values at specific solid to liquid ratios. At 175 curing for 24hr tests, the 

60rpm pH and conductivity values were both much higher than for the 30rpm tests. 

These differences in conductivity and pH are again in proportion to leachable Ca 

levels. Tables A1.62, A1.63 and A1.65, Mb illustrate that increased rotation speed 
during 6 hr tests did increase leached Si and Al. 24hr test data in Tables A1.67 to 

A1.68 and Tables A1.70 to A1.71 illustrate that the higher rotation speed generally 

produced more Ca, Si and less Al. Generally however higher concentrations of Ca 

and Mg were found at higher rotation speeds. 

Increasing test duration has a variety of effects. 30rpm tests depicted in 

Figures A1.31 and A1.33 illustrate high variability in pH and conductivity. At 7 days 

curing the 24hr tests clearly produced higher pH values and lower conductivity values 

at specific solid to liquid ratios. At 175 days curing, 24hr tests resulted in lower pH 

and conductivity values. At 301 days curing pH values were higher whilst again 

conductivity was significantly lower at the higher test duration. Once again it appears 

that changes in conductivity were directly linked to changes in Ca concentration and 
is illustrated by the data in the tables. During the longer curing periods the 24hr tests 

released more Na, Si and Mg whilst Al showed no obvious trends. Comparison of 

60rpm tests (Figures A1.32 and A1.34) illustrates that at 7 days curing, 24hr tests 

produced similar pH values but higher conductivities. However, at 175 days curing, 
24 hr tests produced significantly higher pH and conductivities. Interestingly for 

60rpm tests (Tables A1.65, A1.66 and A1.70, A1.71) 24hr tests produced less Na, Si, 

Mg and Al, the opposite of 30rpm tests.. 



A1.2. Z4 Curing Time 

For all test parameters, increasing curing period for specific solid to liquid 

ratios dramatically reduced pH and conductivity. The change was most obvious 
between 7 and 175 days curing although still very significant between 175 and 301 

days curing. The changes in conductivity with curing time were clearly reflected in 

changes in Ca concentrations, an example of which is shown in Tables A1.62 to 

A1.64. It is also clear at all solid to liquid ratios that increasing curing time tends to 

increase Na, Si, Mg and Al although in the case of Na, Si and Mg the optimum 

concentrations were achieved at 175 days curing and remained at a similar level after 

301 days curing. 



Figure A1.31 Conductivity and pH characteristics for English China Clay with 

no contaminants and 2.5% lime during 6hr/30rpm Batch Tests 
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Figure A1.32 Conductivity and pH characteristics for English China Clay with 

no contaminants and 2.5% lime during 6hr/60rpm Batch Tests 
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Figure A1.33 Conductivity and pH characteristics for English China Clay with 

no contaminants and 2.5% lime during 24hr/30rpm Batch Tests 
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Figure A1.34 Conductivity and pH characteristics for English China Clay with 

no contaminants and 2.5% lime during 24hr/60rpm Batch Tests 
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A1.2.8 English China Clay with 5000ppm Pb and 2.5% lime 

Significantly at 7 days curing most Pb is released by the 1: 20 solid to liquid 

ratio with a concentration of approximately 1.6ppm being typical. Increasing curing 
time effectively reduces the leachability of Pb to zero (see Tables A1.72, A1.73 and 
A1.74). 

A1.2.8.1 Solid : liquid ratio 
Figures A1.35 to A1.38 illustrate that as the solid to liquid ratio was increased, 

pH and conductivity increased. At 7 days curing the end of test conductivities of 

6hr/30rpm tests with 20mm cube sizes (Figure A1.35) at the solid to liquid ratios 

1: 10,1: 20 and 1: 40 were 7280µS/cm, 5170µS/cm and 2940µS/cm respectively whilst 

pH values were 12.64,12.53 and 12.32 respectively. At 175 days curing the end of 

test conductivity values were 2170µS/cm, 1699µS/cm and 1201 p S/cm respectively 

whilst pH values were 11.90,11.81 and 11.69 respectively. At 301 days curing end of 

test conductivity values were 1662µS/cm, 1390µS/cm and 993µS/cm respectively 

whilst pH values were 11.84,11.71 and 11.50. Increasing the solid to liquid ratio at 7 

days curing from 1: 40 to 1: 20 therefore increased conductivity by a factor of 1.75 and 

pH by 0.21 pH divisions. Increasing solid to liquid ratio further from 1: 20 to 1: 10 

increased conductivity by a factor of 1.41 and pH by 0.11 pH divisions. At 175 days 

curing, increasing solid to liquid ratio from 1: 40 to 1: 20 increased conductivity by a 

factor of 1.41 and pH by 0.12 pH divisions. Further increases in solid to liquid ratio 

from 1: 20 to 1: 10 increased conductivity by a factor of 1.28 and pH by 0.09 pH 

divisions. At 301 days increasing solid to liquid ratio from 1: 40 to 1: 20 increased 

conductivity by a factor of 1.40 and pH by 0.21 pH divisions. Further increasing solid 

to liquid ratio from 1: 20 to 1: 10 increased conductivity by a factor of 1.20 and pH by 

0.13 pH divisions. 

Analysis of data Tables A1.72 to A1.81 illustrate that as the solid to liquid 

ratio decreased and curing period increased Ca concentrations in leachates 

significantly decreased. For 6hr/30rpm tests with 20mm cube sizes at 7 days Table 

A1.72 clearly shows that increasing solid to liquid ratio from 1: 40 to 1: 20 resulted in 

an increase in concentration of Ca from 246ppm to 418ppm, a reduction in Si from 

0.844ppm to 0.409ppm, Mg from 0.0175ppm to 0.0124ppm and Al from 3.70ppm to 

1.59ppm. The similar increase in solid to liquid ratio from 1: 20 to 1: 10 resulted in an 



increase in Ca from 418ppm to 695ppm, a reduction in Si from 0.409ppm to 
0.239ppm, Mg from 0.0124ppm to 0,0147ppm and Al from 1.59ppm to 0.0211ppm. 

At 175 and 301 days curing all test produced increases in Ca and Na with increasing 

solid to liquid ratio whilst the solid to liquid ratio 1: 20 produced the most Al. It was 

also clearly evident that the solid to liquid ratio 1: 20 produced the least variability in 

pH and conductivity results between the two cube sizes. 

A1.2.8.2 Cube Size 

Generally by observation of Figures A1.35 to A1.38,10mm cubes produce 

slightly higher final pH values. Where the resulting conductivity was higher, it was 

clear that Ca levels were also higher, with no apparent trends for the other elements. 

The exception to this was Al at 175 and 301 days curing where 20mm cubes tended to 

release more Al whilst at 7 days curing more Pb was released (Tables Al. 73, A1.74, 

A1.78, A1.79). 

A1.2.8.3 Rotation speed and test duration 

Comparison of 6hr tests at 7 days curing (Figures A1.35 and A1.36) illustrates 

that at all solid to liquid ratios pH did not change significantly with increased rotation 

speed whilst conductivity values did slightly increase. At 175 days the high rotation 

speed produced significantly higher pH and conductivity. Comparison of Tables 

A1.72, A1.73 with A1.75, A1.76 illustrate that the Ca levels are again related to 

conductivity, particularly at the lower solid to liquid ratios. It was also clear that the 

higher rotation speed generally released less Pb, Na, Si, Mg and Al especially at 175 

days curing 
Comparison of 24hr tests at 7 and 175 days (Figures A1.37 and A1.38) 

illustrates that at all solid to liquid ratios pH values are slightly reduced at the higher 

rotation speed whilst conductivities remained unaffected. Tables A1.77 and A1.80 at 
7 days curing clearly showed lower Ca release at the higher rotation speed along with 

reduced Pb, Si and Al particularly at the solid to liquid ratio 1: 20. Tables A1.78 and 
A1.81 at 175 days curing showed lower Ca release at the higher rotation speed along 

with reduced Na, increased Si and Al, again particularly at the solid to liquid ratio 
1: 20. 

Increasing test duration has varying effects. 30rpm tests (Figures A1.35 and 
A1.37) illustrate that at any curing period 24hr tests have higher final pH and 



conductivity values particularly at the longer curing periods. With the exception of 

the 1: 10 solid to liquid ratio, at 7 days curing the higher conductivities were related to 

Ca concentration (Tables A1.72 to A1.74 and A1.77 to A1.79). At 7 days curing and 

specifically the 1: 20 solid to liquid ratio, 24hr tests released more Pb, Ca and Si whilst 

other elements remained unaffected (Tables A1.72 and A1.77). At higher curing 

periods 24hr tests'only appeared to release more Ca whilst other elements remained 

unaffected. 
Comparison of 60rpm tests (Figures A1.36 and A1.38) showed lower pH and 

conductivity for 24 hr tests at 7 days curing with higher pH and conductivity at 175 

days curing. Tables A1.75, A1.76 and A1.80, A1.81 explain this behaviour with 

varying Ca concentrations. 24hr tests release more Pb, Na and Si at any curing period 

and more Al only at the 1: 40 solid to liquid ratio. 

A1.2.8.4 Curing Time 

At 7 days pH and conductivity values remained similar throughout a test at 

specific solid to liquid ratios whilst at 175 and 301 days there was a gradual increase 

in these values throughout the test duration. Increasing curing period from 7 days to 

175 days resulted in large reductions in pH and conductivity with reduced although 

significant reductions in pH and conductivity from 175 days to 301 days. Tables 

A1.72 to A1.74 relate this to large reductions in Ca and Pb. Levels of Na and Al 

increase from 7 days curing to 175 days curing and remain relatively constant at these 

values at 301 days curing. Levels of Si tend to increase from 7 days curing to 175 

days curing and decrease from 175 days curing to 301 days curing. 



Figure A1.35 Conductivity and pH characteristics for English China Clay with 

5000ppm Pb and 2.5% lime during 6hr/30rpm Batch Tests 
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Figure A1.36 Conductivity and pH characteristics for English China Clay with 

5000ppm Pb and 2.5% lime during 6hr/60rpm Batch Tests 
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Figure A1.37 Conductivity and pH characteristics for English China Clay with 
5000ppm Pb and 2.5% lime during 24hr/30rpm Batch Tests 
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Figure A 1.38 Conductivity and pH characteristics for English China Clay with 

5000ppm Pb and 2.5% lime during 24hr/60rpm Batch Tests 

English China Clay and   20mm Cubes and 1/10 Solid to 
5000ppm Pb and 25% Lime after 7 days Liquid Ratio Conductivity 
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A1.2.9 English China Clay with 5000ppm Fe and 2.5% lime 

Most importantly Tables A1.82 to A1.91 show that at all curing periods 

essentially no Fe was released into solution. 

A1.2.9.1 Solid : liquid ratio 
Inspection of Figures A1.39 to A1.42 illustrates that as solid to liquid ratio 

was increased pH and conductivity increased. In all tests there were very distinct 

increases in conductivity with increasing solid to liquid ratio. The most apparent 
behaviour related to solid to liquid ratio was the fact that the pH of 1: 10 and 1: 20 

solid to liquid ratios were very similar in magnitude. 

At 7 days curing the conductivities of 6hr/30rpm tests with 20mm cube sizes 

(Figure A1.39) at the solid to liquid ratios 1: 10,1: 20 and 1: 40 were 3520µS/cm, 

2700µS/cm and 1685µS/cm whilst pH values were 11.90,11.90 and 11.76. At 175 

days curing the conductivity values were 3160µS/cm, 2470µS/cm and 1581µS/cm 

whilst pH values were 11.68,11.68 and 11.44. Increasing the solid to liquid ratio at 7 

days curing from 1: 40 to 1: 20 increased conductivity by a factor of 1.60 and pH by 

0.14 pH divisions. Further increases in solid to liquid ratio from 1: 20 to 1: 40 

increased conductivity by a factor of 1.30 and pH by 0.00 pH divisions. Increasing 

the solid to liquid ratio at 175 days curing from 1: 40 to 1: 20 increased conductivity by 

a factor of 1.56 and pH by 0.23 pH divisions. Further increases in solid to liquid ratio 
from 1: 20 to 1: 10 increased conductivity by a factor of 1.28 and pH by -0. O1pH 

divisions. 

Data Tables A1.82 to A1.91 illustrate that as solid to liquid ratio decreases and 

curing period increases Ca concentration only decreases by a small amount. 
Observation of Table A1.82 for 20mm cubes and 6hr/30rpm tests at 7 days curing 
illustrates that increasing solid to liquid ratio from 1: 40 to 1: 20 resulted in an increase 

in concentration of Ca from 205ppm to 368ppm. A similar increase in solid to liquid 

ratio from 1: 20 to 1: 10 resulted in an increase in Ca concentration from 368ppm to 

528ppm. At 175 days curing and 301 days curing all tests produced increases in Ca 

and Na concentration with increasing solid to liquid ratio whilst the solid to liquid 

ratio 1: 20 again produced the most Al. Mg and Si concentrations remained at similar 

magnitudes for all solid to liquid ratios and curing periods. 



It is evident that the solid to liquid ratio 1: 40 results in the highest pH and 

conductivity variability between the two cube sizes. 

A1.2.9.2 Cube Size 

Observation of Figures Al. 39 to Al. 42 illustrates again that 10mm cubes 

produced higher final pH values. Analysis of Tables A1.82 to A1.91 shows that Ca 

concentrations tended to increase with increased cube size whilst there were no clear 

trends at any curing period for differences in other element release between cube sizes 

at specific solid to liquid ratios. 

A1.2.9.3 Rotation speed and test duration 

Comparison of 6hr tests at 7 days curing (Figures A1.39 and A1.40) illustrate 

that at all solid to liquid ratios pH did not vary significantly with increasing rotation 

speed whilst conductivity did increase slightly. The latter fact is also evident in the 

higher Ca levels in solution at the higher rotation speed (Table A1.82 and A1.85). At 

175 days both pH and conductivity were slightly higher at the higher rotation speed, 

again reflected in the Ca levels illustrated in Tables A1.83 and A1.86. Generally at 

the higher rotation speed more Na, Si, Mg and Al were released. Comparison of 24hr 

tests at 7 days curing (Figures Al. 41 and A1.42) shows a slightly different result. The 

higher rotation speed tended to produce slightly lower pH and conductivity values 

whilst at 175 days pH values were higher and conductivity values were unchanged. 
Again variation in conductivity was reflected in Ca levels whilst generally other 

elements showed similar concentrations at both speeds. Al was the exception 

producing slightly higher concentrations at the higher rotation speeds. 

Increasing test duration had varying effects. For 30rpm test at 7 days curing 

the longer test duration produced higher pH and conductivity values. At 175 days 

curing both test durations produced similar values whilst at 301 days the longer test 

duration produced higher pH and conductivity values. At 301 days with the exception 

of Ca, both durations released similar quantities of each element. 

AL2.9.4 Curing Time 

Consideration of 30rpm tests (Figures A1.39 and A1.41) illustrates that 
increasing curing period from 7 days curing to 175 days curing generally resulted in 

small decreases in pH and conductivity. Between 175 days curing and 301 days 



curing pH continued to drop with little change in conductivity. Between 7 days 

curing and 175 days curing 60 rpm tests (Figures A1.40 and A1.42) showed slight 

increases in pH whilst conductivity values reduced. 

Generally Tables A1.87 to A1.91 indicate a reduction in Ca, Si and Mg whilst 

Al increases and Na fluctuates as curing period increases. Table A1.87, A1.88, A1.89 

and A1.82, A1.83, A1.84 illustrate that Al reaches optimum at 175 days and retains 

this concentration level at 301 days. 



Figure A1.39 Conductivity and pH characteristics for English China Clay with 
5000ppm Fe and 2.5% lime during 6hr/30rpm Batch Tests 
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Figure A1.40 Conductivity and pH characteristics for English China Clay with 
5000ppm Fe and 2.5% lime during 6hr/60rpm Batch Tests 
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Figure A1.41 Conductivity and pH characteristics for English China Clay with 
5000ppm Fe and 2.5% lime during 24hr/30rpm Batch Tests 
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Figure A1.42 Conductivity and pH characteristics for English China Clay with 

5000ppm Fe and 2.5% lime during 24hr/60rpm Batch Tests 

English China Clay and   20mm Cubes and 1/10 Solid to 

5000ppm Fe and 25% Lime after 7 days Liquid Ratio Conductivity 
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A1.2.10 Wyoming Bentonite with no contaminants or lime 
A 1.2.10.1 Centrifugation 

Due to the inherent nature of Wyoming Bentonite neither gravity nor vacuum 
filtration was possible. It was also not possible to fully centrifuge the samples to 

ensure completely satisfactory separation. As a result a standard speed and maximum 
duration of centrifugation was adopted allowing data to be considered relatively. 
Chemical data illustrated in Tables A1.92 to A1.101 therefore show very high levels 

of element concentrations that would not be present if filtration was possible. It 

should also be noted that the solid to liquid ratio 1: 10 separated far better under 

centrifugation than all other solid to liquid ratios. Therefore when considering the 

chemical data of centrifuged material on a relative basis it is important to consider 
1: 20 and 1: 40 solid to liquid ratios only. However later material will be considered 

where centrifugation and or filtration was carried out. In these cases the data from 

1: 10 solid to liquid ratio for the centrifuged samples provides a quantitative result 

which can be considered similar to the filtered samples. 

A1.2.10.2 Solid : liquid ratio 
Inspection of Figures A1.43 to A1.46 illustrates clearly that increased solid to 

liquid ratio results in a reduction in pH and an increase in conductivity. At 7 days 

curing the conductivity of 6hr 30rpm tests with 20mm cube sizes (Figure A1.43) at 

the solid to liquid ratio 1: 10,1: 20 and 1: 40 were 947µS/cm, 675µS/cm and 466 

pS/cm respectively whilst pH values were 10.13,10.24 and 10.27 respectively. At 

175 days curing the conductivity values were 864µS/cm, 583 µS/cm and 367µS/cm 

respectively whilst pH values were 10.16,10.21 and 10.13 respectively. At 301 days 

curing conductivity values were 845µS/cm, 620µS/cm and 443µS/cm respectively 

whilst pH values were 10.13,10.14 and 10.06 respectively. Increasing solid to liquid 

from 1: 40 to 1: 20 at 7,175 and 301 days curing therefore increased conductivity by 

factors of 1.45,1.59 and 1.40 respectively whilst pH increased by -0.03, -0.11 and 
0.08 pH divisions respectively. Further increasing solid to liquid ratio from 1: 20 to 

1: 10 increased conductivity by a factors of 1.40,1.48 and 1.36 respectively whilst pH 
increased by -0.11, -0.05 and -0.01 pH divisions respectively. 

Clearly at all solid to liquid ratios there is a high degree of variability in pH 
and conductivity data. Consideration of the solid to liquid ratios 1: 20 and 1: 40 clearly 



shows that the quantities of elements present after standard centrifugation were 
directly related to solid to liquid ratio. Analysis of Table A1.93 illustrates how 

elements were released in specific proportions after centrifugation. Therefore if 

95ppm of Ca was released from one test this would also show fixed levels of the other 

elements. If another test released similar levels of Ca the levels of the other elements 

would also be similar. This is illustrated by comparison of the 1: 10 solid to liquid 

ratio, 20mm cubes with the 1: 20 solid to liquid ratio, 10mm cubes in Table A1.93. 

A1.2.10.3 Cube Size 

It was evident in all tests that 10mm cube sizes produced significantly lower 

final pH values and higher conductivities than 20mm cubes at the same solid to liquid 

ratios. These higher values represent the amount of breakdown of the cubes into the 

developing sludge. It was therefore expected that after centrifugation those cubes 

more readily broken down would produce higher elemental concentrations. This is 

clearly evident for most 10mm cube tests relative to 20mm cube tests (Tables A1.92 

to A1.101) 

A1.2.10.4 Rotation speed and test duration 

During 6hr tests at 7 days curing (Figures A1.43 and A1.44) the 30rpm tests 

produced the higher pH and conductivity values. However at 175 days both 60rpm 

and 30rpm tests produced values within the same range. Analysis of data Tables 

A1.92, A1.93 and A1.95, A1.96 illustrates that both test speeds produce very similar 

at specific solid to liquid ratios data although 30rpm tests tend to be slightly elevated. 

During 24hr tests at 7 days curing (Figures A1.45 and A1.46) the 30rpm tests 

generally produce slightly higher pH values and lower conductivities. At 175 days, 

although pH values are higher, conductivities are similar to those of the 60 rpm tests. 

Chemical data Tables A1.97, A1.98 and A1.100, A1.101 show that the 60 rpm tests 

generally break down more of the solid cubes therefore resulting in higher elemental 

concentrations after centrifugation. 

Analysis of Figures A1.43, A1.44 and Figures A1.45, A1.46 highlight that 

both test durations result in a similar range of pH values whilst 24 hr tests have 

slightly elevated conductivities a specific solid to liquid ratios. It is clear that both 6hr 

and 24hr tests do not achieve equilibrium. However it is certain by the final pH and 

conductivity gradients of the tests that the 24hr tests are closer to equilibrium. 



Analysis of data Tables A1.92, A1.93, A1.94 and A1.97, A1.98, A1.99 along with 
A1.95, A1.96 and A1.100, A1.101 illustrates that higher quantities of elements are 
released from the 24hr tests as expected. 

AL2.10. S Curing Time 

Observation of Figures Al. 43 to Al. 46 generally infers that as curing period 
increases pH and conductivity are reduced. For example Figure A1.43 illustrates 

reductions in pH of 10mm cubes at the 1: 40 solid to liquid ratio from 10.26 to 10.22 

to 10.11 and curing period was increased. Tables A1.95, A1.96 and A1.100, A1.101 

also report increased centrifuged elemental release with increased curing period that 

suggests the samples are less easy to centrifuge which implies a chemical is change 

altering physical properties. 



Figure A1.43 Conductivity and pH characteristics for Wyoming Bentonite with 

no contaminants or lime during 6hr/30rpm Batch Tests 
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Figure A1.44 Conductivity and pH characteristics for Wyoming Bentonite with 

no contaminants or lime during 6hr/60rpm Batch Tests 

Wyoming Bentonite only after 7 days   20mm Cubes and 1/10 Solid to 
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Figure A1.45 Conductivity and pH characteristics for Wyoming Bentonite with 

no contaminants or lime during 24hr/30rpm Batch Tests 

Wyoming Bentonite only after 7 days   20mm Cubes and 1/10 Solid to 
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Figure A1.46 Conductivity and pH characteristics for Wyoming Bentonite with 

no contaminants or lime during 24hr/60rpm Batch Tests 

Wyoming Bentonite only after 7 days -a 20mm Cubes and 1/10 Solid to 
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A1.2.11 Wyoming Bentonite with 5000ppm Pb and no lime 

A1.2.11.1 Solid : liquid ratio 
Inspections of Figures A1.47 to A1.50 show a more constructed pattern of 

behaviour for pH and conductivity than for Wyoming Bentonite without Pb. 

Increasing solid to liquid ratio clearly increases conductivity and reduces pH. 
At 7 days curing the conductivity of 6hr 30rpm tests with 20mm cube sizes 

(Figure A1.47) at the solid to liquid ratios 1: 10,1: 20 and 1: 40 were 950µS/cm, 

573µS/cm and 438µS/cm respectively whilst pH values were 9.77,9.92 and 9.93 

respectively. At 175 days curing conductivity values were 1021µS/cm, 525µS/cm 

and 346µS/cm respectively whilst pH values were 9.64,9.80 and 9.83 respectively. 

At 301 days curing conductivity values were 973µS/cm, 603µS/cm and 406µS/cm 

respectively whilst pH values were 9.72,9.79 and 9.69. Increasing solid to liquid 

ratio from 1: 40 to 1: 20 at 7,175 and 301 days curing therefore increased conductivity 

by factors of 1.31,1.52 and 1.49 respectively whilst pH values increased by -0.01, - 
0.03 and 0.10 pH divisions respectively. Increasing solid to liquid ratio further from 

1: 20 to 1: 40 increased conductivity by factors of 1.66,1.94 and 1.61 respectively 

whilst pH increased by -0.15, -0.16 and -0.07 pH divisions respectively. 

Generally it is clear that the higher solid to liquid ratios produce higher final 

conductivities and as Tables A1.102 to A1.103 illustrate, in the majority of cases 

higher final conductivities result in higher centrifuged elemental releases. It is also 

clear that these elemental releases are directly linked to the efficiency of solid and 

liquid separation as illustrated by the similarity of the results produced by the 1: 10 

solid to liquid ratio, 20mm cubes and the 1: 20 solid to liquid ratio, 10mm cubes in 

Table Al. 106. Other data table results show similar trends. 

A1.2.11.2 Cube Size 

Figures Al. 47 to Al. 50 illustrate that 10mm cube sizes produce lower final 

pH and higher final conductivities than 20mm cubes for the same solid to liquid ratio. 

Tables A1.102 to A1.112 also illustrate higher centrifuged final elemental 

compositions for 10mm cubes. Comparison of the solid to liquid ratio 1: 40,10mm 

cubes for uncontaminated Wyoming Bentonite (Table A1.101) and Pb contaminated 
Wyoming Bentonite (Table Al. 111) shows very similar elemental releases, naturally 



with the exception of Pb content, suggesting that the effects of centrifugation are 
measurable greater than the chemical effects of the Pb contamination. 

A1.2.11.3 Rotation speed and test duration 

Increasing rotation speed has no measurable effects on pH and conductivity 
for 6hr tests or 24hr tests. 

Increasing test duration tends to have variable effects on pH for each rotation 

speed but certainly increases conductivity for both rotation speeds at all curing 

periods. It is also clear that at the 1: 20 and 1: 40 solid to liquid ratios which centrifuge 

similarly, the longer durations result in a higher release of elements as expected. 

A1.2.11.4 Curing Time 

With the exception of 6hr/30rpm tests (Figure A1.47) all tests show no 

significant reduction in final pH or conductivity as curing period increases from 7 

days to 175 days. However, comparison of 7 days curing and 301 days curing 
(Figures A1.47 and A1.49) shows significant reductions in pH for the higher solid to 

liquid ratios. Tables Al. 102 to Al. 111 at the solid to liquid ratios 1: 20 and 1: 40 do 

not clearly illustrate any changes in the release of elements that could be linked to this 

pH variation. Based upon this analysis it cannot be certain that the addition of Pb has 

created any significant flocculation of the clay particles. 



Figure A1.47 Conductivity and pH characteristics for Wyoming Bentonite with 

5000ppm Pb and no lime during 6hr/30rpm Batch Tests 
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Figure A1.48 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Pb and no lime during 6hr/60rpm Batch Tests 
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Figure A1.49 Conductivity and pH characteristics for Wyoming Bentonite with 

5000ppm Pb and no lime during 24hr/30rpm Batch Tests 
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Figure A1.50 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Pb and no lime during 24hr/60rpm Batch Tests 
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A1.2.12 Wyoming Bentonite with 5000ppm Fe and no lime 
A1. Z. 12.1 Centrifugation 

Prior to consideration of the chemical data relating to Fe contaminated 
Wyoming Bentonite, it is important to discuss the effects of centrifugation. Initially 

an attempt was made to pressure filter samples through glass fibre filters. This only 

resulted in blocked filters after a few seconds without sufficient leachate for analysis. 
However, it was evident after batch tests that a physical change had occurred due to 

particle flocculation and clearly filtration over a long time period could be possible. 
Hence the chemical data obtained in Tables A1.112, A1.115, A1.122 and A1.123 

were obtained by gravity filtration of samples for 24hrs in a room at 11.5°C ± 0.5°C to 

limit evaporation. Comparison of Tables A1.122 with A1.118 and A1.123 with 
A1.120 illustrates the differences between filtered and centrifuged samples for the 

various solid to liquid ratios and cube sizes at specific curing periods. In both cases 
1: 10 solid to liquid ratios data obtained via centrifugation is very similar to that from 

filtered material. It could also be argued that data from the 1: 20 solid to liquid ratios 

are acceptable, although very clearly that obtained from the 1: 40 solid to liquid ratios 

are unacceptable. 

Visual analysis of centrifuged samples showed clearly that at the 1: 40 solid to 
liquid ratios, samples tended to be a clear yellow solution, indicating a high iron 

content in these samples. This was validated by the chemical analysis for example 
Table A1.122 relative to A1.119. Due to filtration time constraints and the limited 

resources to carry out filtration, samples were centrifuged. The conclusion of these 

considerations is that only samples at the 1: 10 and 1: 20 solid to liquid ratios should be 

considered unless the sample was filtered. 

A1.2.12.2 Solid : liquid ratio 
Inspection of Figures A1.51 to A1.54 shows yet more distinct variation in pH 

and conductivity than either uncontaminated Wyoming Bentonite or Wyoming 

Bentonite contaminated with 5000ppm Pb. Increasing solid to liquid ratio results in 

large reductions in pH and large increases in conductivity. At 7 days curing the 

conductivity of 6hr/30rpm tests with 20mm cube sizes at the solid to liquid ratios 
1: 10,1: 20 and 1: 40 were 2460µS/cm, 1464µS/cm and 885µS/cm respectively whilst 

pH values were 8.25,8.57 and 8.91 respectively. At 175 days curing conductivity 



values were 2140µS/cm, 1371 pS/cm and 697µS/cm respectively whilst pH values 
were 8.63,8.90 and 9.15 respectively. At 301 days curing conductivity values were 
2210µS/cm, 1145µS/cm and 992µS/cm respectively whilst pH values were 8.69,9.05 

and 9.18 respectively. Increasing solid to liquid ratio from 1: 40 to 1: 20 at 7,175 and 
301 days curing increased conductivity by factors of 1.65,1.97 and 1.15 respectively 

whilst pH values increased by -0.34, -0.25 and -0.13 pH divisions respectively. 
Similarly increasing solid to liquid ratio further from 1: 20 to 1: 10 increased 

conductivity by factors of 1.67,1.56 and 1.93 respectively whilst pH values increased 

by -0.32, -0.27, and -0.36 pH divisions respectively. 

Table A1.112 for 6hr/30rpm tests shows typical levels of elements leached 

after batch tests at 7 days curing. 20mm cubes were shown to release 34.2ppm Ca, 

0.101ppm Fe, 542ppm Na, 0.769ppm Si, 3.88ppm Mg and 0.0520ppm Mn with 

essentially no Pb or Al in final leachates. Clearly the large increases in Ca and Na are 
important and represent the exchanged fraction of the clay for the Fe contamination. 
Reducing the solid to liquid ratio from 1: 10 to 1: 20 reduced the concentration of Ca, 

Fe, Na, Mg and Mn whilst slightly increasing Si and Al. These trends were evident 
for all tests at the solid to liquid ratios 1: 10 and 1: 20 either filtered or centrifuged. 

A1.2.12.3 Cube Size 

Analysis of Figures A1.51 to A1.54 shows that the smaller cube size generally 

produces lower pH values and higher conductivity values at all solid to liquid ratios 

and especially for 6hr tests. These trends were also evident in the chemical data 

Tables A1.112 to A1.123 where 10mm cubes released more Ca, Na, Si and Mg as 

well as less Fe, Al and Mn. These trends were more apparent as the curing period 
increased (e. g. Tables Al. 114 and Al. 119) and may be related to reduced flocculation 

hence subsequently reduced effectiveness of centrifugation, although this was not 

evident from visual analysis of the leachate. 

A1.2.12.4 Rotation speed and test duration 

Comparison of 6hr tests at 7 days curing (Figures A1.51 and A1.52) illustrate 

that higher rotation speed produces higher pH values whilst conductivities remain 

unaffected. At 175 days neither pH nor conductivity appeared affected by increased 



rotation speed. Analysis of Tables A1.112 and A1.115 at 7 days showed that the 
higher rotation speed tended to release less Ca, Na, Si, Mg and Mn. 

Comparison of 24hr tests at 7 days curing (Figures A1.53 and A1.54) illustrate 

similar pH behaviour whilst at all curing periods although particularly high solid to 
liquid ratios the higher rotation speed produced lower conductivities. Comparison of 
Tables A1.117 and A1.120 relate this to reduced levels of Ca, Na and Mg with 

slightly increased Si at the higher rotation speed. 
Comparison of 30rpm tests (Figures A1.51 and A1.53) illustrate that the 

longer test duration has no effect on pH at 7 days, although at lower solid to liquid 

ratios pH tends to reduce. Increasing test duration clearly increases conductivity at all 

curing periods and solid to liquid ratios. Consideration of the 1: 10 solid to liquid ratio 

in Tables A1.112, A1.113, A1.114 and A1.117, A1.118, A1.119 illustrate that 

increasing test duration increases Na significantly whilst Ca and Mg increase 

moderately and other element fluctuate in level. Comparison of 60rpm tests (Figures 

A1.52 and A1.54) show no significant effects on pH or conductivity when test 

duration is increased with the exception that there is reduced variability in the 

behaviour of the two cube sizes during 24 hr tests. Analysis of Tables A1.115, 

A1.116 with Tables A1.123, A1.121 shows that at 7 days curing Mg, Si, Ca and Na 

levels increase whilst Mn levels reduce when test duration is increased. These trends 

were also similar at 175 days curing. 

A1.2.12.5 Curing Time 

As curing period increases all tests show slight increases in pH and reductions 

in conductivity especially during 24hr tests. Tables Al. 112 to Al. 123 for the 1: 10 

solid to liquid ratio shows significant reductions in Ca and Na whilst Si, Mg, Al and 

Fe slightly increased, suggesting continued chemical activity. 



Figure A1.51 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Fe and no lime during 6hr/30rpm Batch Tests 
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Figure A1.52 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Fe and no lime during 6hr/60rpm Batch Tests 
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Figure A1.53 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Fe and no lime during 24hr/30rpm Batch Tests 
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Figure A1.54 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Fe and no lime during 24hr/60rpm Batch Tests 
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A1.2.13 Wyoming Bentonite with no contaminants and 2.5% lime 
A1.2.13.1 Centrifugation 

All samples for this design mix had to be centrifuged since at no curing period 
could sludges be gravity or vacuum filtered even over a period of days. However it 

was visually evident that samples centrifuged at 7 days curing produced clear 

colourless solutions with the exception of the 1: 40 solid to liquid ratio which 

produced clear yellow solutions indicating a high Fe content. It was clearly evident 

that samples were undergoing a degree of flocculation. However at 175 and 301 days 

curing no samples showed any visual evidence of flocculation and visually appeared 

to have regained a level of plasticity. This was reflected in the difficulty with which 

solid and liquid could be separated via centrifugation. Tables A1.124 to A1.133 

illustrate these changes chemically. Due to these changes, samples after 7 days curing 
behaved similarly to untreated uncontaminated Wyoming Bentonite and the chemical 
data is subject to the same analysis restrictions. Hence after 7 days curing only the 

1: 40 and 1: 20 solid to liquid ratios will be considered further. 

A1.2.13.2 Solid : liquid ratio 
Inspections of Figures A1.55 to A1.58 show distinct changes in conductivity 

behaviour with increasing solid to liquid ratio although pH values showed high 

variability. At 7 days curing the conductivity of 6hr/30rpm tests with 20mm cube 

sizes of the solid to liquid ratios 1: 40,1: 20 and 1: 10 were 1639µS/cm, 1317µS/cm 

and 949µS/cm respectively whilst pH values were 11.69,11.69 and 11.55 

respectively. At 175 days curing the conductivity values were 1066µS/cm, 785µS/cm 

and 579µS/cm respectively whilst pH values were 11.30,11.20 and 11.04 

respectively. At 301 days curing conductivity values were 1106µS/cm 733µS/cm and 

657µS/cm respectively whilst pH values were 11.17,11.07 and 11.05 respectively. 

Increasing solid to liquid behaviour from 1: 40 to 1: 20 at 7,175 and 301 days curing 

therefore increased conductivity by factors of 1.39,1.36 and 1.12 respectively whilst 

pH values increased by 0.14,0.16 and 0.02 pH divisions respectively. Increasing 

solid to liquid ratio further from 1: 20 to 1: 10 increased conductivity by factors of 
1.24,1.36 and 1.51 respectively whilst pH values increased by 0.00,0.10 and 0.10 pH 
divisions respectively. 



Inspection of Table A1.124 for 6hr/30rpm tests at the 1: 10 solid to liquid ratio 
showed typical levels of elements released at 7 days. 20mm cubes released 4.73ppm 
Ca, 0.3273ppm Fe, 217ppm Na, 38.2ppm Si, 0.204ppm Mg and 1.227ppm Al. Table 
Al. 124 also illustrates that as the solid to liquid ratio reduced levels of Ca, Fe, Si, Mg 

and Al increased whilst Na levels reduced. However Tables A1.125, A1.126 and 
A1.130, A1.131 illustrate that at 175 and 301 days curing decreasing solid to liquid 

ratio from 1: 20 to 1: 40 resulted in reduced levels of Ca, Fe, Na, Si, Mg and Al. This 

was clearly a result of the effects of centrifugation and essentially dilution obscuring 

variations brought about by chemical changes. However chemical change was clearly 

taking place as illustrated by the changing difficulty in solid and liquid separation. 

Observation of Figures A1.55 and A1.57 clearly demonstrate that as curing 

period increased there was significant variation in conductivity between the solid to 
liquid ratios whilst pH values at different solid to liquid ratios tended towards one 

value. 

AL2.13.3 Cube Size 

Analysis of Figures A1.55 to A1.58 shows that the smaller cube size generally 

produced higher pH and conductivity values at 7 and 175 days curing. These effects 

were less pronounced during 24 hr tests and this was probably due to more particle 
breakdown. At 7 days curing and especially at the solid to liquid ratios 1: 40 and 1: 20 

(Tables A1.124, A1.129 and A1.127, A1.132) the 10mm cube sizes released more Ca, 

Mn and less Fe, Si, Mg, Al whilst Na was variable. The already observed changes 
illustrated by centrifugation at the curing periods 175 and 301 days curing were also 

evident here with the 10mm cube sizes at the solid to liquid ratios 1: 40 and 1: 20 

releasing more of all elements than the 20mm cube sizes. 

A1.2.13.4 Rotation speed and test duration 

Comparison of 6hr tests at 7 days curing (Figures A1.55 and A1.56) show that 

higher rotation speed produces similar pH values although significantly higher 

conductivities particularly at the higher solid to liquid ratios. Comparison of Tables 

A1.124 and A1.127 relate this to much higher levels of Ca, Na and Si. Other 

elements including Fe, Mg and Al also showed an increase in level at the higher 

rotation speed. Comparison of 6hr tests at 175 days curing showed reduced pH at the 



higher solid to liquid ratios and higher conductivity at the lower solid to liquid ratios 
for increased rotation speed. 

Comparison of 24hr tests in Figures Al. 57 and Al. 58 showed similar trends 

although pH values at 7 days were significantly lower for the higher rotation speed. 
Observation of Figures A1.55 and A1.57 for 30rpm tests showed that at 7 days 

curing, increasing test duration has no effect on pH or conductivity values. At 175 

and 301 days increasing test duration resulted in higher final pH and conductivity 

values. Tables A1.124, A1.125, A1.126 and A1.129, A1.130, A1.131 relate this to 

increased Ca, Fe, Na, Si, Mg and Al. Consideration of 60rpm tests (Figures A1.56 

and A1.58) showed no variation in pH as test duration increased at 7 days curing 

whilst conductivity values increased. At 175 days curing pH and conductivity values 

tended to increase with increasing test duration. Tables Al. 127 and Al. 132 at 7 days 

curing show as duration increased levels of Ca, Na, and Si increased whilst levels of 
Fe, Mg and Al decreased. At 175 days curing Tables A1.128 and Be show that all 

these elements increased in concentration. 

A1.2.13.5 Curing Time 

Figures A1.55 to A1.58 show clearly that pH and conductivity significantly 

reduces as curing period increases. A further interesting factor is that as curing period 
increases all pH values of all solid to liquid ratios tend towards a single value. Due to 

the large change in physical behaviour reducing the effectiveness of centrifugation it 

is not possible to fully interpret chemical changes with increasing curing period. It is 

however clear that there is a reduced level of flocculation a clear indicator of 

continuing chemical activity. 



Figure A1.55 Conductivity and pH characteristics for Wyoming Bentonite with 

no contaminants and 2.5% lime during 6hr/30rpm Batch Tests 
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Figure A1.56 Conductivity and pH characteristics for Wyoming Bentonite with 

no contaminants and 2.5% lime during 6hr/60rpm Batch Tests 
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Figure A1.57 Conductivity and pH characteristics for Wyoming Bentonite with 

no contaminants and 2.5% lime during 24hr/30rpm Batch Tests 
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Figure A1.58 Conductivity and pH characteristics for Wyoming Bentonite with 

no contaminants and 2.5% lime during 24hr/60rpm Batch Tests 
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A1.2.14 Wyoming Bentonite with 5000ppm Pb and 2.5% lime 
A1.2.14.1 Centrifugation 

The effects of centrifugation are again important for this design mix prior to 

analysis of the chemical data. At 7 days curing all samples could be filtered over a 
24hr period in the cold room whilst at 175 and 301 days curing samples would not 
filter and had to be centrifuged. For comparison samples from one batch test at 7 

days curing were centrifuged and chemically analysed and in parallel samples were 
filtered and analysed. The results of this analysis are shown in Tables A1.144 and 
A1.134. It is clear that for all solid to liquid ratios all Na values detected relate very 

well between centrifuged and filtered samples, however, only the 1: 10 solid to liquid 

ratio centrifuged values for all elements are similar to the respective filtered values. 
This is particularly important when considering the leachability of Pb. Clearly for all 
filtered samples at 7 days curing (Tables A1.139, A1.137, A1.142 and A1.144) Pb is 

not detected, however after centrifugation Pb is present in high quantities which does 

not necessarily reflect the true chemical composition. 

A1.2.14.2 Solid : liquid ratio 
Inspection of Figures A1.59 to A1.62 shows variations in pH and conductivity 

that are a direct result of changing solid to liquid ratio. Increasing solid to liquid ratio 

results in large increases in both pH and conductivity. At 7 days curing the end of test 

conductivity values of 6hr/30rpm tests with 20mm cube sizes at the solid to liquid 

ratios 1: 10,1: 20 and 1: 40 were 2900µS/cm, 1931 gS/cm and 1348µS/cm respectively 

whilst pH values were 11.98,11.78 and 11.58 respectively. At 175 days curing 

conductivity values were 1814µS/cm, 1219µS/cm and 863µS/cm respectively whilst 

pH values were 11.42,11.34 and 11.26 respectively. At 301 days curing conductivity 

values were 1737µS/cm, 1159µS/cm and 847µS/cm respectively whilst pH values 

were 11.39,11.21 and 11.07 respectively. Increasing solid to liquid ratio from 1: 40 to 

1: 20 at 7,175 and 301 days curing increased conductivity by factors of 1.43,1.41 and 
1.37 respectively whilst pH values increased by 0.20,0.08 and 0.14 pH divisions 

respectively. Increasing solid to liquid ratio further from 1: 20 to 1: 10 increased 

conductivity by factors of 1.50,1.49 and 1.50 respectively whilst pH increased by 

0.20,0.08 and 0.18 pH divisions respectively. Analysis of the chemical data from the 

filtered samples in Tables A1.139, A1.137, A1.142 and A1.144 illustrate that as solid 



to liquid ratio decreased, levels of Si and Mg increased, Na decreased, Ca fluctuated 

and Pb, Fe, Al and Mn were generally below detection limits. At 175 and 301 days 

curing samples were centrifuged and as expected, as solid to liquid ratio decreased 
levels of Ca, Fe, Pb, Na, Si, Mg, Al and Mn decreased. 

It is evident from the data tables that the addition of the Pb contaminant 
liberated more Na from the Wyoming Bentonite compared with the uncontaminated 
lime treated sample due to the increased cation exchange. 

A1.2.14.3 Cube Size 
Analysis of Figures A1.59 to A1.62 shows the smaller cube size generally 

produces higher pH and conductivity values especially at the lower solid to liquid 

ratios. Since Na concentrations of both filtered and centrifuged samples are similar in 

magnitude for specific solid to liquid ratios (e. g. Tables A1.144 and A1.134) and that 

Na concentrations are the highest of all elements it is not surprising that Na release 

changes similarly to conductivity. Hence where conductivity is higher for a specific 

cube size Na levels are also higher. The levels of other elements appear highly 

variable and not dependent on cube size. Observation of Figure A1.59 to A1.62 

illustrates that the solid to liquid ratio 1: 40 results in the highest degree of variability 
between cube sizes. 

A1.2.14.4 Rotation speed and test duration 

Comparisons of 6hr tests at 7 days curing (Figures A1.59 and A1.60) indicate 

slightly higher pH and conductivity values for the higher rotation speed. Tables 

A1.144, A1.135 and A1.137, A1.138 illustrate that this is in part due to significantly 
higher Na concentrations at 7 and 175 days curing. 7 day curing results for filtered 

samples in Tables A1.144 and A1.137 illustrate that levels of Fe and Mg reduce, Si 

remains unchanged and Ca varies with increasing rotation speed. 
Comparison of 24hr tests at 7 days (Figures A1.61 and A1.62) indicate similar 

pH and conductivity for varying rotation speeds which is again illustrated in similar 
Na levels at specific solid to liquid ratios. At 175 days curing conductivity values are 

unaffected hence Na levels are similar in Tables A1.140 and A1.143, although pH 

values are significantly lower as the rotation speed increases. 

Comparison of 30rpm tests (Figures A1.59 and A1.61) show that at 7 days 

curing the longer test duration increases pH and conductivity values whilst at 175 and 

140 



301 days curing this effect is reduced to insignificant at 301 days. These changes are 
again reflected in Na changes in Tables A1.134, A1.135, A1.136 and A1.139, A1.140, 
A1.141. It is also clear that the longer duration releases generally more Si, Mg and Al 

at any curing period, either filtered or centrifuged. Comparison of 60rpm tests 
(Figures A1.60 and A1.62) show no significant changes in pH or conductivity with 
increases test duration at 7 days or 175 days. Analysis of Tables A1.137, A1.138 and 
A1.142, Al. 143 do however show similar behaviour to the 3 0rpm tests. 

AL2.14. S Curing Time 

It is evident from Figures A1.59 to A1.62 that as curing period increases pH 

and conductivity drop significantly from 7 to 175 days curing and continue to 

decrease by a reduced magnitude from 175 to 301 days curing. The chemical data 

shows highly variable behaviour although similarly to Wyoming Bentonite with no 

contaminants and 2.5% lime, as pH and conductivity drops with increasing curing 

period the degree of flocculation appears to reduce. It is also clear that as curing 

period increases the variation in pH due to changes in solid to liquid ratio is less 

significant. 



Figure A1.59 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Pb and 2.5% lime during 6hr/30rpm Batch Tests 
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Figure A1.60 Conductivity and pH characteristics for Wyoming Bentonite with 

5000ppm Pb and 2.5% lime during 6hr/60rpm Batch Tests 
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Figure A1.61 Conductivity and pH characteristics for Wyoming Bentonite with 

5000ppm Pb and 2.5% lime during 24hr/30rpm Batch Tests 
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Figure A1.62 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Pb and 2.5% lime during 24hr/60rpm Batch Tests 
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A1.2.15 Wyoming Bentonite with 5000ppm Fe and 2.5% lime 
A1.2.15.1 Centrifugation 

All tests at all curing periods for this design mix filtered easily due to 
flocculation of the clay particles. Significantly no Fe was released at any curing 

period from any filtered sample. 

It was considered a good opportunity to assess the effects of centrifugation on 
samples easily gravity filtered. The assessment was made on sludges produced by 

24hr/30rpm batch tests at 175 and 301 days curing at all solid to liquid ratios and cube 

sizes. Comparison of Tables A1.155, A1.156-and A1.151, A1.152 show clearly that 

the results are very similar for most elements. It was however clear that centrifuged 

samples release slightly less Ca and Na. At the lower solid to liquid ratios levels of 
Fe, Si, Mg and Al were all higher. However, at the solid to liquid ratio 1: 10 and a 
lesser extent 1: 20 there was essentially no difference between filtered and centrifuged 

samples. 

A1. Z. 15.2 Solid : liquid ratio 
Inspections of Figures A1.63 to A1.66 illustrate a number of trends relating to 

solid to liquid ratio. In every case at every curing period, as solid to liquid ratio 
increased conductivity increased. At 7 days curing, as solid to liquid ratio increased 

pH also increased whilst often at 175 days pH decreased with increasing solid to 

liquid ratio (e. g. Figures A1.64 and A1.66). 

At 7 days curing the conductivity of 6hr/30rpm tests with 20mm cube sizes 

were, 4130µS/cm 2670µS/cm and 1680µS/cm respectively whilst pH values were 

11.78,11.69 and 11.51 respectively. At 175 days curing the values were, 3110µS/cm 

1905µS/cm and 1160µS/cm respectively whilst pH values were 11.04,11.09 and 

11.07 respectively. At 301 days curing the values were, 3080µS/cm 18751AS/cm and 

1140µS/cm respectively whilst pH values were 11.00,11.05 and 10.99 respectively. 

Increasing solid to liquid ratio from 1: 40 to 1: 20 at 7,175 and 301 days curing 

therefore increased conductivity by factors of 1.58,1.64, and 1.64 respectively whilst 

pH increased by 0.18,0.02, and 0.06 pH divisions respectively. Increasing solid to 

liquid ratio further from 1: 20 to 1: 10 increased conductivity by factors of 1.55,1.63 

and 1.64 respectively whilst pH increased by 0.09, -0.05 and -0.05. 



It is very clear that there is little variation in conductivity values between cube 
sizes for specific solid to liquid ratios, although in the case of pH there is high 

variability. 
Table Al. 150 for 24hr/30rpm tests shows typical levels of elements leached at 

7 days curing. 20mm cubes release 51.8ppm Ca, 0.0900ppm Fe, 744ppm Na, 

15.8ppm Si and 0.0697ppm Mg whilst other elements remain below detection limits. 

Tables Al. 145 to A1.154 all generally show reductions in Ca and Na when solid to 
liquid ratio is reduced whilst levels of Si and Mg were clearly variable. It is therefore 

certain that changes in conductivity were predominantly related to changes in Na and 

to a lesser extent Ca. 

A1.2.15.3 Cube Size 

Generally the smaller cube size produces higher conductivity values. 
However at 7days curing where the solid to liquid ratio 1: 10 produced the highest pH 

of all the solid to liquid ratios, the 10mm cubes produced the higher pH of the two 

cube sizes (Figure A1.63). At 175 days curing where the solid to liquid ratio 1: 10 

produced the lowest pH of all the solid to liquid ratios, the 10mm cubes produced the 

lower pH of the two cube sizes (Figure Al. 64). The effects on conductivity are 

reflected in the Na concentration variations in Tables A1.145 to A1.154. 

A1.2.15.4 Rotation speed and test duration 

Comparison of 6hr tests (Figures A1.63 and A1.64) show that at 7 and 175 

days curing the higher rotation speed generally produced the lower pH values and 

similar conductivity values. Tables A1.145, A1.146 and A1.148, A1.149 show the 

higher rotation speed releases more Fe and Si whilst levels of Ca and Na show 

variable nature. Comparisons of 24hr tests (Figures A1.65 and A1.66, Tables A1.150, 

A1.151 and A1.153, A1.154) show similar behaviour to 6 hr tests, although the higher 

rotation speed also releases more Ca and Na after 24hr tests. 

Comparison of 30rpm tests (Figures A1.63 and A1.65) show no change in 

final pH at any curing period due to the increased test duration although at 175 and 
301 days curing conductivity levels are higher, particularly for the 1: 10 and 1: 20 solid 
to liquid ratios. This effect on conductivity is again reflected in Ca and particularly 
Na levels reported in Tables A1.146, A1.147 and A1.151, A1.152. Comparisons of 



60rpm tests (Figures A1.64 and A1.66, Tables A1.153, A1.154 and A1.148, A1.149) 

show exactly the same behaviour as 30rpm tests for varying test duration. 

AL2.1S. 5 Curing Time 

As curing period increased from 7 to 175 days, pH reduced significantly with 

moderate changes in conductivity. From 175 to 301 days curing pH slightly 
decreased with little change in conductivity. Tables A1.145 to A1.154 show 

generally small reductions in Ca as curing period increases. Levels of Na and Si 

generally increase with little variation in Mg whilst levels of Pb, Al and Mn remain 
below detection limits. 



Figure A1.63 Conductivity and pH characteristics for Wyoming Bentonite with 

5000ppm Fe and 2.5% lime during 6hr/30rpm Batch Tests 
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Figure A1.64 Conductivity and pH characteristics for Wyoming Bentonite with 

5000ppm Fe and 2.5% lime during 6hr/60rpm Batch Tests 
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Figure A1.65 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Fe and 2.5% lime during 24hr/30rpm Batch Tests 

Wyoming Bentonite and 5000ppm Fe   20mm Cubes and 1110 Solid to 

and 25% lime after 7 days Liquid Ratio Conductivity 

Compacted 16/7197   20mm Cubes and 1/20 Solid to 
Liquid Ratio Conductivity 

4500 12 
" 20 C b d 1/40 S lid 

4000 ay______a 
$ 

mm u es an o to 
Liquid Ratio. Conductivity 

118 " 10mm Cubes and 1/10 Solid to 

35M Liquid Ratio. Conductivity 
"-+ '--" " 10mm Cubes and 1/20 Solid to 

y 
0_" " --11.6 Liquid Ratio Conductivity 

10mm Cubes and 1/40 Solid to 
T ý. 7ý 

}- -- --- Liquid Ratio. Conductivity 
29 4= 11 j . O. f 20mm Cubes and 1/10 Solid to 

2MO Liquid Ratio pH 

1ý t 11.2 " 20mm Cubes and 120 Solid to 
i id R ti H 

ö 
? qu a o. p L 

0 1000 $ " - 20mm Cubes and 1/40 Solid to 

t 11 Liquid Ratio pH 
" 10mm Cubes and 1/10 Solid to 

Liquid Ratio. pH 
0 +ý- T++r +-ý 10.8 " 10mm Cubes and 1/20 Solid to 

0 5 10 15 20 5 3D Liquid Ratio. pH 

TIIIIC (Hours) 
10mm Cubes and 1/40 Solid to 
Liquid Ratio. pH 

Wyoming Bentonite and 5000ppm Fe 

and 25% lime after 175 days 

Compacted 1517/97 

3  T 12 

3000 11.8 
E 2500 
y 11.6 
i 2000 s-s---  

11.4 ö, 
1500 

9 yý -d t  11.2 
1000 

v -ý $ 

500 

0 +-+ , ++ ýýtt++ + 10.8 

05 10 15 20 25 30 

Time (Hours) 

Wyoming Bentonite and 5000ppm Fe 

and Z5% lime after 301 days 

Compacted 15/7197 
9500 12 

i 

3000 
r- # - 

11 8 f ± . 
E2500 11.6 
N 
12000 & -a -- - .. - --   11.4 

1500 
a 

11.2 

Ü 1000 itI --- 
i 

11 

500 10.8 

0 +1 + t++ý +++ -+++ t++ 10.6 

0 5 10 15 20 25 30 
Time (Hours) 



Figure A1.66 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Fe and 2.5% lime during 24hr/60rpm Batch Tests 
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A1.2.16 Wyoming Bentonite with no contaminants and 7.0% lime 

A1.2.16.1 Centrifugation 

All tests carried out at all curing periods for this design mix and all other 

contaminated mixes with 7.0% lime filtered easily due to highly flocculated clay 

particles. This result make it very straight forward to compare and contrast the 

chemical data sets. 

A1.2.1ä2 Solid : liquid ratio 
Inspection of Figures A1.67 to A1.70 illustrates that at all curing periods as 

solid to liquid ratio increased both pH and conductivity increased in distinct 

increments. At 7 days curing the conductivity of 6hr/30rpm tests with 20mm cube 

sizes at 1: 10,1: 20 and 1: 40 solid to liquid ratios were 10050µS/cm, 7360µS/cm and 

4820µS/cm respectively whilst pH values were 12.78,12.60 and 12.32 respectively. 

At 175 days curing conductivity values were 3150µS/cm, 2180µS/cm and 1361 µS/cm 

respectively whilst pH values were 12.18,11.97 and 11.74 respectively. At 301 days 

curing conductivity values were 2920 pS/cm, 2040 gS/cm and 1348 µS/cm 

respectively whilst pH values were 12.05,11.82 and 11.60 respectively. Increasing 

solid to liquid ratio from 1: 40 to 1: 20 at 7,175 and 301 days curing therefore 

increased conductivity by factors of 1.53,1.60 and 1.51 respectively whilst pH 

increased by 0.27,0.23 and 0.22 pH divisions respectively. Further increasing solid 

to liquid ratio from 1: 20 to 1: 10 increased conductivity by factors of 1.37,1.44 and 

1.43 respectively whilst pH increased by 0.18,0.21 and 0.23 pH divisions 

respectively. 
It is very clear that all cube sizes produce similar pH and conductivity values 

at specific solid to liquid ratios. 
Table A1.162 for 24hr/30rpm tests with a 1: 10 solid to liquid ratio shows 

typical levels of elements leached at 7 days curing. 20 mm cubes produced leachate 

concentrations of 85. lppm Ca, 842ppm Na, 1.05ppm Si and 0.0186 ppm Mg whilst 
other elements remained below detection limits. As solid to liquid ratio was increased 

at all curing periods from 1: 40 to 1: 20 to 1: 10 Ca levels were seen to fluctuate, Na 

levels increased, Si, Mg and Al levels reduced whilst Mn, Fe and Pb were generally 

well below detection limits. In other tests however Al concentrations also increased 

slightly. 



AL2.16.3 Cube Size 

Figures A1.67 to A1.70 surprisingly show that the 20mm cube size generally 

produced the higher pH and conductivity values at any curing period. The chemical 
data in Tables A1.157 to A1.166 relate this to the larger cube size releasing more Na 

into solution. 

A1.2.16.4 Rotation speed and test duration 

Comparison of 6hr tests (Figures Al. 67 and A1.68) illustrates that at 7 days 

curing as rotation speed increased pH slightly reduced whilst conductivity remained 

relatively unaffected. However, at 175 days curing pH values were similar although 

conductivity was clearly higher. Tables A1.157, Al. 158 and A1.160, Al. 161 indicate 

variable behaviour. At 7 days curing the higher rotation speed resulted in higher 

concentrations of Ca, lower Mg and similar levels of Si and Na (reflected in the 

conductivity values) At 175 days curing Na concentrations reduced whilst levels of 

Ca, Si, Mg and Al were similar for the increased rotation speed. 

Comparison of 24hr tests (Figures A1.69 and A1.70) illustrates that the higher 

rotation speed produced higher pH values and significantly higher conductivity values 

at all curing periods and solid to liquid ratios. Analysis of Tables A1.162, A1.163 and 

A1.165, A1.166 show that at 7 days curing the higher rotation speed releases 

significantly more Ca and Na whilst at 175 days curing Na levels were most likely to 

be the controlling factor with respect to conductivity since there was a large reduction 
in Ca concentration. Generally increasing rotation speed during 24 hr tests increases 

Ca, Na, Si, Mg whilst producing variable results for Al for different solid to liquid 

ratios. 
Consideration of 30rpm tests (Figures A1.67 and A1.69 appear to suggest that 

as test duration was increased any curing period both pH and conductivity were 

reduced. Tables A1.157, A1.158, A1.159 and A1.162, A1.163, A1.164 suggest that 

increasing test duration has little obvious correlation to Ca concentrations due to 

highly variable behaviour at all curing periods. The 24hr test duration did however 

produce similar concentrations to the 6hr test duration for Na at 7 and 175 days 

curing, higher Na levels at 301 days curing, significantly higher Si at all curing 

periods, reduced Al and similar Mg at all curing periods. 



Consideration of 60rpm tests (Figures A1.68 and A1.70) suggested that as test 

duration was increased at 7 and 175 days pH and conductivity increased significantly. 
Tables A1.160, A1.161 and A1.165, If show the longer duration produced 

significantly more Ca at 7 days and slightly more Ca at 175 days. Levels of Na were 

also higher whilst Si, Mg and Al were similar in magnitude to the shorter test 

duration. 

A1.2.16.5 Curing Time 

Figures A1.67 to A1.70 all illustrate that as curing period increases pH and 

conductivity were reduced significantly. Tables A1.157 to A1.166 all indicate large 

reductions in Ca and Na. Si and Mg levels increased continually from 7 to 175 to 301 

days curing whilst Al increased from 7 to 175 days curing and remained stable at this 

level at 301 days curing. 



Figure A1.67 Conductivity and pH characteristics for English China Clay with 

no contaminants and 7.0% lime during 6hr/30rpm Batch Tests 

Wyoming Bentonite and 7.0% Lime after 7 days -F - 20mm Cubes and 1 /10 Solid to 
Compacted 10/5W Liquid Ratio Conductivity 

12= 13   20mm Cubes and 1/20 Solid to 
Liquid Ratio Conductivity 

12 8 " 20mm Cubes and 1/40 Solid to 

1 Liquid Ratio Conductivity 

,,, ý 
  

-f -- 2 12.6   10mm Cubes and 1110 Solid to 
" Liquid Ratio. Conductivity 

80M 12 4   10mm Cubes and 1/20 Solid to 
N ""- -" . Liquid Ratio. Conductivity 

" 
x 

r ý- -. #: 
- 

ý ". ý 12 2 10mm Cubes and 1/40 Solid to P 
6000 ,'- 

ý -" . = Liquid Ratio Conductivity 
r 

12 " 20mm Cubes and 1/10 Solid to 
Liquid Ratio pH 

4000 11.8 " 20mm Cubes and 1/20 Solid to 
*- $ Liquid Ratio. pH 

11.6 f- 20mm Cubes and 1/40 Solid to 
2000 Liquid Ratio pH 

11.4 " 10mm Cubes and 1/10 Solid to 
Liquid Ratio. pH 

0 +-+-+ -+-+ -i-+-+ +- - +- +r -+- 11.2 f 10mm Cubes and 1/20 Solid to 
0 2 468 Liquid Ratio. pH 

Time (Hours) 10mm Cubes and 1/40 Solid to 
i L quid Ratio pH 

Wyoming Bentonite and 7.0% Lime after 175 days 
Compacted 1016197 

4000 13 

35500 $ 12.8 
t 

3 12.6 

2500 ý .r 12.4 
Y 

12.2 
2000 

12 
1500 - * 1.8 11.8 

V ý 

11 6 . 
500 11.4 

0 11.2 
0 2 4 6 8 

Time (Hours) 

Wyoming Bentonite and 7.0% Lime after 301 days 
Compacted 1016W 

4000 13 

3500 12.8 

E 3000 12.6 

y 
2500    12.4 

4ý 2000 
  12.2 

r " 12 a 

1500 
S ' 11 s 

1000 
11.6 

500 11.4 

0 11.2 
0 2468 

Time (Hours) 



Figure A1.68 Conductivity and pH characteristics for English China Clay with 

no contaminants and 7.0% lime during 6hr/60rpm Batch Tests 
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Figure A1.69 Conductivity and pH characteristics for English China Clay with 
no contaminants and 7.0% lime during 24hr/30rpm Batch Tests 
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Figure A1.70 Conductivity and pH characteristics for English China Clay with 

no contaminants and 7.0% lime during 24hr/60rpm Batch Tests 
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A1.2.17 Wyoming Bentonite with 5000ppm Pb and 7.0% lime 

A significant point of general note is that no Pb was released into any filtered 

leachate in any test at any curing period. 

A1.2.1 Z1 Solid : liquid ratio 
Inspection of Figures A1.71 to A1.74 shows that as solid to liquid ratio 

increases pH and conductivity values increase. At 7 days curing the conductivity of 
6hr/30rpm tests with 20mm cube sizes at the solid to liquid ratios 1: 10,1: 20 and 1: 40 

were 9460pS/cm, 7120µS/cm and 4450µS/cm respectively whilst pH and 

conductivity values were 12.72,12.57 and 12.31 respectively. At 175 days curing the 

conductivity values were 3220µS/cm, 2260µS/cm and 1404µS/cm respectively whilst 

pH values were 12.22,12.08 and 11.90 respectively. At 301 days curing the 

conductivity values were 2500µS/cm, 1629µS/cm and 1063µS/cm respectively whilst 

pH values were 11.94,11.69 and 11.45 respectively. Increasing solid to liquid ratio 
from 1: 40 to 1: 20 at 7,175 and 301 days curing therefore increased conductivity by 

factors of 1.60,1.61 and 1.53 respectively whilst pH increased by 0.26,0.18 and 0.24 

pH divisions respectively. Increasing solid to liquid ratio further from 1: 20 to 1: 10 

increased conductivity by factors of 1.33,1.42, and 1.53 respectively whilst pH 

increased by 0.15,0.14 and 0.25 pH divisions respectively. 

It is clear that all cube sizes produce similar pH and conductivity values at the 

specific solid to liquid ratios. 
Table A1.172 for 24hr/30rpm tests with 1: 10 solid to liquid ratio shows typical 

concentrations of elements at 7 days curing. 20mm cubes released 96.3ppm Ca, 

830ppm Na, 0.571ppm Si and 0.0119ppm Mg whilst other elements were below 

detection limits. Tables A1.167 to A1.176 show that as the solid to liquid ratio 
increased from 1: 40 towards 1: 10 at all curing periods Ca concentrations fluctuated, 

Na and Al concentrations increased, Si and Mg concentrations reduced whilst 

concentrations of Mn, Fe and Pb were generally well below detection limits. With the 

exception of the Al behaviour this was very similar to the Wyoming Bentonite with 
7.0% lime design mix. 



A1.2.17.2 Cube Size 

There appears to be no obvious link between cube size and pH and 

conductivity. Observation of the data Table A1.167 to A1.176 also suggests no 

obvious trends relating cube size to the concentration of element release. 

A1.2.17.3 Rotation speed and test duration 

Comparison of 6hr tests (Figures A1.71 and A1.72) at 7 and 175 days curing 
illustrates that as the rotation speed was increased pH was unaffected whilst 

conductivity values were slightly higher. Tables A1.167, A1.168 and A1.170, A1.171 

illustrate that the higher rotation speed released more Si whilst other elements 

appeared similar in concentration or fluctuated significantly highlighting no direct 

trends to rotation speed. 
Comparison of 24 hr tests (Figures A1.73 and A1.74) at 7 days and 175 days 

curing shows the higher rotation speed resulting in slightly lower pH values and 

slightly higher conductivity values. At 7 days curing the results of each test at 

specific solid to liquid ratios appear very similar (Tables A1.172 and A1.175) whilst 

at 175 days (Tables A1.173 and Al. 176) significantly more Ca and Na were released 

for the higher rotation speed. There were also slight increases in Al at this higher 

rotation speed. 

Observation of Figures A1.71 to Al. 74 illustrates that as the tests progressed 

pH and conductivity increased towards equilibrium values. 24hr tests were clearly 

closer to achieving the pH and conductivity equilibrium plateaux than 6hr tests 

although chemically the differences were not necessarily significant. Consideration 

of 30rpm tests (Figures A1.71 and A1.73) suggest that at 7 and 175 days curing the 

longer test duration resulted in slightly lower final pH values and slightly higher 

conductivity values. At 301 days curing the longer duration produced both higher pH 

and conductivity values. At 7 days curing Tables A1.167 and A1.172 show the longer 

duration producing significantly higher concentrations of Ca and slightly higher Na 

whilst the other elements were at similar levels between tests. At 175 days curing 
Tables A1.168 and A1.173 show the 24hr test duration producing similar levels 

relative to the 6hr test of Ca, Si and Mg and less Na. At 301 days Tables A1.169 and 
Al. 174 show the 24hr test producing similar concentrations of concentrations of Ca 

and Si, higher concentrations of Na and lower concentrations of Al relative to 6hr 

tests. 



Considerations of 60rpm tests (Figures Al. 72 and Al. 74) show the same pH 

and conductivity trends as the 30 rpm tests. At 7 days the chemical data in Tables 

A1.172 and A1.175 also show similar trends to the 30rpm tests. However at 175 days 

curing (Tables A1.173 and A1.176) the 24hr test duration produces significantly 
higher concentrations of Ca, Na and Al whilst Mg levels were similar to the 6hr tests. 

A1.2.1 Z4 Curing Time 

Figures A1.71 to A1.74 illustrate that as curing period increased both pH and 

conductivity reduced very significantly. Tables A1.167 to A1.176 illustrate huge 

reductions in Ca and Na whilst levels of Si, Al and Mg increase, Si most significantly. 



Figure A1.71 Conductivity and pH characteristics for Wyoming Bentonite with 

5000ppm Pb and 7.0% lim e during 6hr/30rpm Batch Tests 
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Figure A1.72 Conductivity and pH characteristics for Wyoming Bentonite with 

5000ppm Pb and 7.0% lime during 6hr/60rpm Batch Tests 
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Figure A1.73 Conductivity and pH characteristics for Wyoming Bentonite with 

5000ppm Pb and 7.0% lime during 24hr/30rpm Batch Tests 

Wyoming Bentonite and 5000ppm Lead - -s- - 20mm Cubes and 1/10 Solid to 
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Compacted 2616197 " 20mm Cubes and 120 Solid to 
Liquid Ratio Conductivity 

10000 - 13 
  20mm Cubes and 1/40 Solid to 

____- 12-8 Liquid Ratio. Conductivity 
    

- 
  10mm Cubes and 1/10 Solid to 

8000 r" 
-- . -_ _... .. _. . _,. _... -_.. _. ý 

12.6 Liquid Ratio. Conductivity 

70M 12.4   10mm Cubes and 1/20 Solid to y 
"_------: --N 

- 
Liquid Ratio. Conductivity 

E 
6000 _ ___ ---. _. .. __. __. _. " 12.2 

10mm Cubes and 1/40 Solid to 

12 Liquid Ratio Conductivity 

r 

5000 

11 8a 
" 20mm Cubes and 1/10 Solid to 

+ _a . Liquid Ratio. pH 
11.6 " 20mm Cubes and 1/20 Solid to 

r_ 3000 . Liquid Ratio pH 
0 11.4 

" 20mm Cubes and 1/40 Solid to 
2ý 11.2 Liquid Ratio. pH 
1000 11 " 10mm Cubes and 1/10 Solid to 

Liquid Ratio. pH 
0 10.8 " 10mm Cubes and 1/20 Solid to 

0 5 10 15 20 25 30 Liquid Ratio. pH 

Time (Hours) 
10mm Cubes and 1/40 Solid to 
Liquid Ratio. pH 

Wyoming Bentonite and 5000ppm Pb 
and 7.0% lime after 175 days 

Compacted 2616197 
4000 13 

3500 12-8 
12.6 

-9 3000 t 12 4 r . 
2500 /  12.2 

2000 
12 _ 

t. _ 
11.8 

1500 11.6 
V 

1000 
it- 

11.4 

11.2 
500 

11 
0 -+ 10.8 

0 5 10 15 20 25 30 

Time (Hours) 

Wyoming Bentonite and 5000ppm Pb 
and 7.0% lime after 301 days 

Compacted 2616197 

aooo 
3500 
3000 

255 

2000 " 

1500 
V 

1000 

500' 

0 
0 

+-1 4 -f -1+ -+ Ii -H- II -I 

5 10 15 20 

Time (Hours) 
25 30 

13 

12.8 

12.6 

12.4 

12.2 

12 
= 

11.8 a 

116 

11.4 

11.2 

11 

10.8 



Figure A1.74 Conductivity and pH characteristics for Wyoming Bentonite with 

5000ppm Pb and 7.0% lime during 24hr/60rpm Batch Tests 

Wyoming Bentonite and 5000ppm Pb - - - 20mm Cubes and 1110 Solid to 
and 7.0% lime after 7 days 
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A1.2.18 Wyoming Bentonite with 5000ppm Fe and 7.0% lime 

A significant point of general note is that no Fe was released into any filtered 

leachate in any test at any curing period. 

A1.2.18.1 Solid : liquid ratio 
Inspection of Figures A1.75 to A1.78 illustrates that increasing solid to liquid 

ratio increases pH and conductivity. At 7 days curing the conductivity of 6hr/30rpm 

tests with 20mm cubes sizes at the 1: 10,1: 20 and 1: 40 solid to liquid ratios were 

8690µS/cm, 6440µS/cm and 3870µS/cm respectively whilst pH values were 12.48, 

12.36 and 12.13 respectively. At 175 days curing the conductivity values were 

4250µS/cm, 2860µS/cm and 1828µS/cm respectively whilst pH values were 12.00, 

11.91 and 11.74 respectively. At 301 days curing the conductivity values were 

37009S/cm, 2490µS/cm and 1602µS/cm respectively whilst pH values were 11.93, 

11.82 and 11.64 respectively. Increasing the solid to liquid ratio from 1: 40 to 1: 20 at 

7,175 and 301 days curing therefore increased conductivity by factors of 1.66,1.56 

and 1.55 respectively whilst pH increased by 0.23,0.17 and 0.18 pH divisions 

respectively. Increasing the solid to liquid ratio further from 1: 20 to 1: 10 increased 

conductivity by factors of 1.35,1.49, and 1.49 respectively whilst pH increased by 

0.12,0.09 and 0.11 pH divisions respectively. 
Tables A1.182 for 24hr/30rpm tests at the solid to liquid ratio 1: 10 shows 

typical concentrations of elements produced at 7 days curing. 20mm cubes produced 
314ppm Ca, 0.1 l4ppm Fe, 11 l2ppm Na, 1.09ppm Si and 0.0554ppm Mg whilst other 

elements were below detection limits. Tables Al. 177 to Al. 186 highlight that the 
higher levels of conductivity coincide well with the higher Na concentrations in the 

leachates. However, generally the 1: 20 solid to liquid ratio at 7 days curing produced 
the highest concentration of Ca followed by the 1: 10 and then the 1: 40 solid to liquid 

ratios. At 175 and 301 days curing Ca and Mg concentrations fluctuate whilst Na and 
Al continue to increase and Si decreases with increasing solid to liquid ratio. 

A1.2.1&2 Cube Size 

There are no obvious trends relating cube size to pH and conductivity 

variations. Analysis of the chemical data tables generally indicate that 10mm cubes 



produce slightly higher concentrations of Si and Na., Mg and lower concentration of 
Al. 

A1.2.18.3 Rotation speed and test duration 

Similarly to the design mixes Wyoming Bentonite with 7.0% lime and 
Wyoming Bentonite with 5000ppm Pb and 7.0% lime, as the batch tests progress pH 
and conductivity clearly increase towards an equilibrium plateaux. Again it is clear 
from the gradients of the pH and conductivity graphs that the 24hr tests are probably 
closer to the equilibrium levels than the 6hr tests. 

Comparison of 6hr tests (Figures A1.75 and A1.76) at 7 days curing illustrates 

that the higher rotation speed slightly increases the pH and conductivity values. At 

175 days pH values were similar and conductivity values were higher for increased 

rotation speed. Tables A1.177, A1.178 and A1.180, A1.181 show that at both 7 and 
175 days curing the higher rotation speed produced significantly higher 

concentrations of Ca and Al, higher levels of Ca and lower levels of Si. However, the 
higher rotation speed produced higher concentrations of Na at 7 days curing and 
lower concentrations at 175 days curing. 

Comparison of 24hr tests (Figures A1.77 and A1.78) illustrates that the higher 

rotation speed at 7 days curing resulted in similar pH values and significantly higher 

conductivity values. At 175 days curing the higher speed produced lower pH values 

and only slightly higher conductivity values. Tables A1.182, A1.183 and A1.185, 

A1.186 illustrate that at 7 days curing the higher rotation speed produced higher 

concentrations of Ca, lower concentrations of Si and similar concentrations of Mg and 
Na. At 175 days curing the increased rotation speed resulted in higher Ca levels, 

significantly higher Al, higher Na and lower Si whilst Mg remained at similar levels. 

Consideration of 30rpm tests (Figures A1.75 and A1.77) show that the longer 

test duration increased final pH and conductivity values at any curing period although 
the trend was less obvious at the longer curing periods. Tables A1.177, A1.178, 
A1.179 and A1.182, A1.183, Ag all generally show that the longer duration produced 
higher concentrations of Ca and Na, lower concentrations of Si and Al whilst similar 
concentrations of Mg. 

Consideration of 60rpm tests (Figures A1.76 and A1.78) show that the longer 

test duration produced slightly high pH and significantly higher conductivity values 
particularly at 175 days curing. Tables A1.180, A1.181 and A1.185, A1.186 show at 



7 days curing Ca concentrations were higher and Si concentrations were lower whilst 

at 175 days curing Ca concentrations fluctuated, Na concentrations were much higher, 

Si concentrations were lower whilst Mg and Al concentrations were unaffected by the 

increased test duration. 

A1.2.18.4 Curing Time 

Figures A1.75 to A1.78 all illustrate again very large reductions in pH and 

conductivity as curing period increases. Tables A1.177 to A1.186 relate this to very 
large reductions in Ca and Na concentrations, increases in Si concentration and no 
significant change in Mg concentration. Concentrations of Al increase from 7 to 175 

days curing and then reduce from 175 to 301 days curing 



Figure A1.75 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Fe and 7.0% lime during 6hr/30rpm Batch Tests 
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Figure A1.76 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Fe and 7.0% lime during 6hr/60rpm Batch Tests 

Wyoming Bentonite and 5000ppm Fe -  - - 20mm Cubes and 1/10 Solid to 
and 7.0% lime after 7 days Liquid Ratio Conductivity 
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Figure A1.77 Conductivity and pH characteristics for Wyoming Bentonite with 
5000ppm Fe and 7.0% lime during 24hr/30rpm Batch Tests 
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Figure A 1.78 Conductivity and pH characteristics for Wyoming Bentonilc with 
5000ppm Fe and 7.0% lime during 24hr/60rpnn Batch Tests 
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APPENDIX 2 

CLAY-ION-INTERACTIONS: 

ENERGY MODELS 



A2.1 THE EISENMAN ENERGY MODEL OF CATION EXCHANGE 

In order to predict selectivity and general ion behaviour it is useful to develop 

models. McBride (1994) explains a descriptive interpretation of cation exchange 
developed by Eisenman (1961) which provides a theory for the different behaviour of 
ions of different radius. The electrostatic attraction energy, E between the adsorbed 

cation, A+, and the surface charge site is inversely proportional to the sum of r8, the 

effective radius of the charge site, and rA, the radius of cation A+. Hence Equation 

A2.1. 

oc 
e2 Equation A2.1 (r. +r,, 

Where: 

e is the electronic charge unit 

The exchange cation at the charge site is shown in Figure A2.1 below, but the 

direct contact shown here would require that energy be used to force aside water 

molecules separating the cation from the surface. This water is held by hydration of 
the site and the cation and hence the energy that must be expended should be 

proportional to the energy of hydration of the site, ES, and of the cation, EA. Hence 

the total energy Eid, resulting from the movement of ion AA from solution into contact 

with the surface is given by Equation A2.2. 

Ems, oc - 
ez +E, +E,, Equation A2.2 

rs + rA 

h o-F l3 



Figure A2.1 Schematic depiction of the clay surface-exchange cation 

interaction in the case of (A) no water molecules present, (B) water 

present on a `weak field' exchanger, and (C) water present on a 

`strong field' exchanger (after McBride, 1994). 
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The adsorption of ion A' is inherently accompanied by the desorption of ion 

B', so that the overall change in energy for the exchange of ion B' by ion A is given 

by Equation A2.3. 

e2 e2 
AE, 

ý, t x-- (FH 
- E,, ) Equation A2.3 

rs +r8 +r, 

Where: 

rB and ER are the radius and hydration energy of ion B. 

According to McBride (1994) this simple electrostatic model creates two 

limiting cases. When the structural charge is located well beneath the surface, which 
is the case for layer silicate clays after isomorphous substitution in the octahedral 
layer, then the distance between the exchange cation and the site of negative charge 
(rt + r:, or r, + r13) must be large, so that the electrostatic term in Equation A2.3 



becomes small. The implication of this is that the energy of exchange, AEM , 
is 

largely dependent on the difference in hydration energies of ions AA and B. This 

weak field case is illustrated in Figure A2.1B where strongly hydrating cations such 

as Li+, Cat+, and Mg2+ are not attracted strongly to the surface to overcome the forces 

of hydration. Only weakly hydrating cations such as K+ and Cs+ are expected to come 
into direct contact with the surface. McBride (1994) suggests that this behaviour of 

cation adsorption is appropriate for smectites, with the result that the energy of the 

exchange reaction is dependent on the hydration properties of the exchanging cations. 

This behaviour is clear from Table A2.1, where weakly hydrating cations 

spontaneously displace strongly hydrating cations from the clay, and energy is 

released in the process. 

Table A2.1 Cation exchange data for the replacement of Na+ by other alkali 

metals on smectite (Gast, 1969). 

Replacing Ion Ion Radius Hydration Energy Reaction Heat 

(M') (A) (kcal/mol) (A H) (kcallmol) 

Li+ 0.60 124 +0.019 cm&d.. &> 
K+ 1.33 77 -1.16 («om) 
Rb+ 1.48 72 -1.92 cým> 
Cs+ 1.69 66 -2.65 

A second possible limiting case for ion exchange based on the model occurs if 

the structural charge is at or near the solid surface, so that r8 is small relative to rA and 

rB. This results in the electrostatic term in Equation A2.3 being very significant and 

may contribute more to DES, than the hydration term. This is the strong field case 

illustrated in Figure A2.1 C, where all cations are in direct contact with the clay 

surface. No permanent-charge clays are known to possess strong field behaviour, 

although Fe oxide minerals which develop negative charge by the dissociation of H2O 

molecules have revealed a preference for smaller cations in the order Li' > K+ > Cs+, 

consistent with strong field exchanger behaviour. Clearly this order of selectivity is 

the opposite of that observed for permanent-charge layer silicate clays and according 



to McBride (1994) may reflect the small effective radius (ra) of the charged hydroxyl 

group at the oxide surface. 
With ionic radius and charge being very important, a number of examples 

illustrating how these properties vary across the periodic table are illustrated as ionic 

potentials in Figure A2.2. 

Figure A2.2 Ionic potentials (ZIr) of important ions found in soil 

(Loughnan, 1969) 
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However conceptually useful, the Eisenuran model is incomplete since it does 

no take into account entropy (disorder) changes associated with cation exchange. 

Entropy is calculated according to Equation A2.4 (Hill et al, 1989). 

Entropy (JK"'), S= klnW Equation A2.4 

Where 

k= Boltzmann Constant =1.38 x 10"23JK' 

W= The number of ways in which a change can occur. 

For ions of equal charge, these entropy changes are quite small, however, for 

exchange between ions of different charge, the change in entropy may be substantial 

driving a reaction one way or the other. The sources of increased entropy in an 



exchange reaction are changes in disorder of water molecules and cations, both 

adsorbed and in solution. 

A2.2 CATION EXCHANGE BETWEEN IONS OF UNEQUAL CHARGE 

At low salt concentrations, Ca2+ is a good competitor for exchange sites on 

clays occupied by monovalent ions but does not compete very well for sites occupied 
by cations of higher charge such as A134. This is illustrated by Figure A2.3 

Figure A2.3 Measured isotherms at low electrolyte concentrations for Ca2+ 

adsorption on K+, Cue+, and Al3+ saturated smectites 

(McBride, 1994) 
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Results such as this could lead to the conclusion that electrostatic force only and 
hence cation valency governs selectivity as commonly observed for metal (M) on 

clays: 

M'+ >m 2+ > M+ 

Surprisingly however thermodynamic studies of ion exchange have shown that the 

spontaneous exchange of low-charge by high-charge cations on clays is an 

endothermic process. Essentially this means that the reaction requires a net input of 

energy for the reaction to occur. Hence A H, the enthalpy change for the reaction is 

defined to be positive. 

The trends associated with changing enthalpy (energy) and entropy(disorder) 
of the reaction are evident in Table A2.2. 



Table A2.2 Thermodynamic data for the exchange of Nll. º' and K' on smectile 

by alkaline earth metals (adapted from Gilbert et a!, 19711) 

Adsorbing Displaced Enthalpy ('hanks Entropy ('hangs 

loll Ion A I1° (kcal/mol) A S" (cal/degree-mole) 

Mg'`' ? NI I., 12 71) S '2 

Mn"' 2N 11.1' +2.74 i5 83 

Ca 2 2NI1.1' 42.70 ' 5.72 

Sr2 2N11.1' +2.20 14 1.1 

Bat- 2N114' +192 13.30 

(. a2 2K' +3.87 16.7 

It has been hypothesised that the increase in entropy resulting from 

displacement of monovalent ions by divalent ions could arise from increased disorder 

of either cations or water molecules in the exchange reaction The more strongly 

hydrating cations could have greater rotational mobility (disorder) at the clay surface 

than monovalent ions which may form ion pairs with the surface exchange sites. This 

is illustrated in Figures A2.4 and Figure A2.5. 

Figure A2.4 Cations approaching a single smectite clay plate with octahedral 

layer charge (after McBride, 1994) 
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Figure A2.5 Monovalent and divalent cations between aligned smectite clay 

plates with octahedral layer charge (after McBride, 1994) 
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In Figure A2.4 the Na' ions can approach the surface charge quite closely, 

whereas the Cat' can not due to strongly held hydration shells. Thus electrostatically 

the Na' ion may be more stable thus explaining the endothermic nature of the Na' 

replacement by Cat' exchange reaction. Figure A2.5 illustrates what may occur if the 

clay plates become aligned and the ions situate between the plates. This geometr 

would prefer multivalent ions. Hence electrostatics and entropy considerations would 

result in the development of the system illustrated in Figure A2.6. Note the ions are 

in their most stable location with the calcium ions between the clay layers and the 

sodium ions on the outer surface of the clay layer. 

Figure A2.6 Monovalent and divalent cations between multiple clay surfaces 

(after McBride, 1994) 



A2.3 THE STERN DIFFUSE DOUBLE LAYER MODEL OF CATION 

EXCHANGE 

Many models of cation exchange at colloidal surfaces have incorporated a 
diffuse double-layer structure, which represents the parallel alignment of the 

negatively charged colloid surface and the positively charged layer. This model 

essentially explains the spatial distribution of ions relative to the charge surface since 

this cannot be determined experimentally. Arnold (1978) and White (1979) give a 

comprehensive introduction to the theory of these models. The most widely accepted 

model is the Stem model illustrated in Figure A2.7. 

Figure A2.7 The Stern diffuse double layer model of cation exchange 
(Van Olphen, 1977) 
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In the stern layer that lies immediately adjacent to the colloid surface, 

electrical charge decays linearly with distance from the colloid surface. The stern 
layer of cations is separated from the outer diffuse 

, or Gouy, layer by the outer 
Helmholtz plane. Electrical charge decays exponentially in the Gouy layer. 

The colloidal properties of clays, such as dispersion, flocculation, and 

swelling, are influenced by the counter-ion distribution and as such it is an important 

theory. This model assumes that the surface can be visualised as a structurally 
featureless plane with evenly distributed charge, while counter-ions are assumed point 

charges in a uniform liquid continuum. Clearly simplified, the equilibrium 



distribution of counter-ions in the Gouy-Chapman diffuse double-layer theory is 

represented by the Boltzmann equation, Equation A2.5: 

-. W(x) 

n(x) = noe kT Equation A2.5 

Where n(x) and yr (x) are (respectively) the local concentration of counter-ions and 

the electrical potential at a distance, x, from the surface; no is the concentration of 

counter-ions in bulk solution (i. e., at x= oo ); e is the unit of electronic charge; k is the 

Boltzmann constant; Tis temperature (K); z is the charge of the counter-ion. 

The equation therefore predicts a higher local concentration of cations near a 

negatively charged clay surface than in the bulk solution, and a lower concentration of 

anions near the surface than in solution (McBride, 1994) with concentrations tending 

towards that of the bulk solution as one move away from the colloid surface. 

However, McBride (1994) also states that modem statistical mechanical models of 

this clay interfacial region have predicted that ion-ion correlation (electrostatic) 

effects should cause deviations from this classical picture, such as positive adsorption 

of anions at intermediate distances from the surface when the cation is divalent or 

multivalent. 

An important aspect of the diffuse double layer theory is, what occurs when 

concentration of the bulk solution is increased? Neilsen et al. (1972) illustrate in 

Figure A2.8 that the main effect of a higher bulk solution ionic concentration is to 

decrease the `thickness' of the diffuse double. Reduction in the thickness of the 
diffuse double layer also occurs when the exchanging ion has a larger valency. 



Figure A2.8 Distribution of monovalent cations and anions near the surface of 

a montmorillonite particle at three different concentrations in the 

bulk solution (original source: Neilson et a!., 1972) 
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By combining the Boltzmann equation with other classical continuum 

equations that establish interrelationships among electrical potentials, charge 

imbalances and surface charge densities an equation describing the decrease in 

electrical potential with distance from the charged surface can be written (McBride, 

1994). For clays with low charge densities, and assuming an electrolyte of 

monovalent ions (z = 1) Equation A2.6 is valid. 

yr(x)=yroe"' Equation A2.6 

Where: 

VO is the potential at surface (x = 0) 

k can be thought of as the reciprocal of the double layer thickness. 

k is controlled by the system described by the Equation A2.7. 

I 
k=A. z 

E kT 
Z Equation A2.7 



Where A is a constant, z is the counter-ion charge, no is the electrolyte concentration, 

and e is the dielectric constant of the solvent. By inspection it is clear, exchange 
ions with low charge, solutions with low salt concentrations, and solvents with high 

dielectric constants (e. g. water) should expand the double layer of negatively charged 

clays. The significance of this is that an expanded double layer means that the 

negative electrical potential extends further away from the surface increasing the 
likelihood of electrostatic particle-particle repulsion, increasing the tendency of the 

particles to remain suspended in water as a stable colloidal dispersion. 

Although the double layer theory was initially applied to clays of permanent 
charge, it was later used to describe the electrical potential at variable-charge (e. g., 

oxide) surfaces. McBride (1994) states that this application requires that the Nernst 

equation (Equation A2.8) be used first to determine the surface electrical potential, 

yro , as a function of the solution pH. 

VO = -2.303 F 
(pH - PZC) Equation A2.8 

Where: 

F is the Faraday constant 
R is the ideal gas constant. 

This model predicts that surface charge increases exponentially as the pH is 

adjusted away from the point of zero charge (PZC). Since surface charge, which 

governs adsorption on certain mineral structures, varies from positive to negative as 

the pH moves from acidic to alkaline, there exists a pH at which there is no charge 
developed on the mineral surface, the PZC. The pH at which this occurs is mineral 
dependent, an example of which is illustrated in Figure A2.9. 



Figure A2.9 Surface Charge of Geothite (FeOOH) in Solutions of 1.0,0.1 and 
0.01 M NaCl during Acid Base Titrations 
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It is suggested by McBride (1994) that the use of the Nernst equation and 
diffuse double layer theory is not appropriate to surface adsorption since cations and 

anions may adsorb on oxides by direct co-ordination to the charged surface group. 
Consequently, the selectivity of metal ions for Fe oxides follows the order: 

Li+>Na+>K+ 

This order is the opposite of that expected for exchangeable cations that are 

separated from the surface by hydration water. The equation also assumes that the 

activity of H' at the surface does not change with pH. This cannot be the case since 
H+ is also potentially adsorbed on the mineral surface. 

A2.4 HYDROLYTIC EXCHANGE 

Hydrolytic exchange is the process of cation exchange when the cation is a 
hydrogen ion H+ or more precisely H3O+ ion. It should be noted that where 

permanent charge exchange sites are considered, only monovalent ions appear to be 

exchanged by hydrogen ions. Water dissociates into ions as shown by Equation A2.9. 

The exchange process of H+ for Na+ on a smectite mineral is shown in Equation 

A2.10. 



2H2 Opi <> H3O+(aq) + OH"(ao) Equation A2.9 

H2C03+(Nä SMECTCIE)=>Nä +HCO3'+(W-SMBCTTIE) Equation A2.10 

The concentration of H30+ ([H30+]) and OH" ions in solution in water is usually 

approximately the same and results in a pH of around 7. This occurs since equation 
A2.11 the ionic product for water Kw is always valid. 

Kw = [H301 x [OH] =1x 10"14 moles2 dm6 Equation A2.11 

Equation A2.12 shows how the pH of a solution is calculated mathematically. 

pH = -Loglo[H301 Equation A2.12 

Hence if the pH is known Equation A2.12 can be used to calculate hydrogen ion 

concentration and Equation A2.11 can be used to calculate hydroxide ion 

concentration 

Yý 



APPENDIX 3 

CLAY, CONTAMINANT AND LIME 

MIX PREPARATION 



A3.1 CONTAMINANT PREPARATION 

In order to achieve a consistent level of mixing of clay and contaminant, the 

contaminant was added as a solution. Prior to mixing, the required contaminant 

solutions were created. In the case of the iron contaminant 403.999g 

Fe(NO3)3.9H2O() provides 55.847g Fe3+ ion. Therefore to add 1.000g Fei+, 7.234g 

Fe(NO3)3.9H2O(, ) has to be added. Thus to achieve 5000ppm Fe3+ based on a dry mass 

of clay, 36170.18g of Fe(NO3)3.9H2O(, ) has to be added to 1,000,000g of dry clay. 
Thus 144.680g of Fe(NO3)3.9HzO(g) has to be added to 4kg of dry clay. For 

convenience 144.6807g of Fe(NO3)3.9H2O(. ) has been added to every 200m1 of ICP 

water. Thus in a 1L volumetric flask 723.4036g of Fe(N03)3.9H20(S) has been added. 

This has been measured out in parts on a balance readable to 4 decimal places. Thus 

200ml of solution provides 20g of Fe3+ ion. A similar calculation has been performed 
for Pb(NO3)2(, ) based on providing 20g of Pb2+ ion in 200m1 of solution. 

A3.2 CLAY, CONTAMINANT AND LIME MIX PREPARATION 

The mixes have been carried out in a similar manner to those of the 

preliminary compaction tests described in Section 4.3.2. The mixes were carried out 

as follows : 

1. Approximately 4kg of untreated clay was precisely measured and placed in a 

sealed polythene bag 24 hours prior to the mix. The water content of this clay was 

established in an oven at 105 ± 0.5°C over 24 hours. 

2. The clay from the sealed bag was placed in the mechanical mixer, the mass of clay 

residue in the plastic bag measured, and the precise mass in the mix calculated. 

3. The mass of water to be added to achieve the required water content for 

compaction was calculated. If a contaminant was not to be added to the mix, this 

mass of ICP water was added to the mix in one pour evenly distributed over the 

clay and mixed for 20 minutes (see Figure 4.3). Where contaminant was added to 

the mix, the effective dry mass of clay in the mixer was calculated and the required 

mass of contaminant to be added to the effective dry mass of clay to achieve the 

required 5000ppm contaminant to dry clay ratio calculated. The contaminant 

105 



solutions created prior to the mix contain 20g of contaminant in 200ml of solution; 

hence the required volume of this solution to add to the clay was calculated. The 

volume of contaminant solution to be added was measured precisely using pipettes 

and burettes. Additionally the mass of extra ICP water to achieve the water 

content required for compaction was calculated. It was assumed that the density of 

the extra ICP water added and the densities of the contaminant solution were both 

equal to 1000kg/l. Although this is not precisely the case, in practice the 

difference has been shown to be insignificant in achieving the desired water 

content for compaction. The contaminant solution and the extra ICP water were 

mixed together and added evenly over the clay in the mechanical mixer in one pour 

and mixed thoroughly for 20 minutes. After this period a sample of the mixture 

was taken to measure water content and the remainder removed from the mixture 

and sealed in polythene bags for 24 hours at 11.5°C ± 0.5°C to allow for any cation 

exchange or adsorption to occur. Where contaminant has not been added, these 

samples were also stored for 24 hours at 11.50°C ± 0.5°C to ensure consistency in 

the methodology. 

4. After 24 hours storage and cleaning of the mixer, the mass of the bag and clay was 

measured and the contents of the bag placed in the mixer again. Measuring the 

mass of the emptied bag allows the precise mass of the clay in the mixer to be 

calculated. Using the measured water content of the clay in the bag the effective 

dry mass of clay and contaminant in the mixer was calculated. Based on this 

effective dry mass of clay and contaminant, the required mass of lime to be added 

was calculated. This mass of lime was evenly distributed over the mixing clay 

mixture and allowed to mix for 20 minutes. In the event that lime was not added, 

the sample was still mixed for 20 minutes. Where contaminants were added the 

lime added to the mixture was based on the combined dry mass of clay and 

contaminant because in the field the precise mass of contamination may not be 

easily assessed from one region to another. 

5. The sample was broken into pieces of 20mm or less. The resulting material was 

compacted into pre-weighed twin wall HDPE pipes with the same compactive 

effort per unit volume assessed in the initial compaction tests for each specific clay 



and lime mix design. The initial proctor compaction tests utilised a 1L mould with 

a 2.5kg mass, falling 300mm, 27 times onto each of three layers of clay in the 

mould. Thus the energy supplied to the sample in the initial Proctor compaction 

tests Ep: 

(23 x 9.81 x 300 x 27 x 3) 
1000 _595.96) 

Hence work done per unit volume of soil WD : 

596 
= WD = 000 

0396Jcm-3 = 596k1m-3 
1 

The method of applying the same compactive effort in the final mix 

compactions was varied from the initial `proctor' compaction tests due to the larger 

volume of the double walled plastic moulds and the required increase in the quantity 

of sample to be placed in the mould to fulfil the testing programme. The compaction 

specification for each sample actually used is shown in Table A3.1. A compaction 

hammer of greater mass and greater fall height was chosen to reduce the number of 
hammer drops per layer. Three layers were chosen since three samples from each 

plastic pipe were required to be tested at three time periods. Thus the consistency of 

compaction of each layer for each of the three tests was essentially independent and 
likely to be consistent. Considering the English China clay compaction specifications 

1 to 3 in Table A3.1, the required number of hammer drops was calculated from the 

preliminary investigative compaction tests as follows : 

(4.5 x 9.81 x 0.450 x3x A) 
= 596000Jm-3 

;rx0.1502 
4x0.130 

Where X= Compaction hammer drops per layer. 

596kJm'3 = compactive effort applied in preliminary proctor 

tests. 

Thus X= 22.97 = 23 Compaction hammer drops per layer. 



The same method was applied to the Wyoming Bentonite specifications 4 to 6 in 

Table A3.1 for a compaction depth of 0.170m. 

Table A3.1 Compaction specifications of mixes in twin-walled plastic 

pipes 

CLAY / CONTAMINANT / LIME MIX DESIGN 

1. 2. 3. 4. 5. 6. 
SPECIFICATION ECC ECC ECC WB WB WB 

Only +1.5% +2.5% only +2.5% +7.0% 
Lime Lime Lime Lime 

Required water content 
according to initial compaction 29.30 34.45 35.65 46.00 58.30 60.60 
tests (%) 
Mould Diameter (m) 0.150 0.150 0.150 0.150 0.150 0.150 
Total Compacted Depth (m) 0.130 0.130 0.130 0.170 0.170 0.170 
Compaction Hammer Mass (kg) 4.5 4.5 4.5 4.5 4.5 4.5 
Compaction Hammer Fall 0.450 0.450 0.450 0.450 0.450 0.450 
Height (m) 
Number of Compacted Layers 3 3 3 3 3 3 
in Mould 
Number of Compaction 23 23 23 30 30 30 
Hammer Drops per Layer 
Energy per Unit Volume (kJm 596 596 596 596 596 596 
3) 

NB.: ECC = English China Clay WB = Wyoming Bentonite 

The compaction specifications applied to contaminated samples are detailed below : 

Compaction specification 1 was used to compact ECC+2500ppm Pb2+ and 
ECC+5000Fe3+ 

Compaction specification 2 was used to compact ECC+1.5%Lime+5000ppm Pb2+ 

and ECC+1.5%Lime+5000ppm Fe3+ 

Compaction specification 3 was used to compact ECC+2.5%Lime+5000ppm Pb2+ 

and ECC+2.5%Lime+5000ppm Fei+. 

Compaction specification 4 was used to compact WB+5000ppm Pb2+ and WB 

+5000ppm Fe3+ 

Compaction specification 5 was used to compact WB+2.5%Lime+5000ppm Pb2+ 

and WB+2.5%Lime+5000ppm Fe3+ 



Compaction specification 6 was used to compact WB+7.0%Lime+5000ppm Pb2+ 

and WB+7.0%Lime+5000ppm Fe3+ 

6. The compacted samples were trimmed and the material density determined. The 

samples were sealed to the atmosphere by pouring molten paraffin wax at 40 ± 

5.0°C on each end of the sample in the mould and allowing it to solidify on 

cooling. The samples were stored at 11.5°C ± 0.5°C until required for testing at 

each of the three time-dependent curing periods, 7days, 175days and 301 days. The 

process was repeated for the three other mixes of the same clay, contaminant and 
lime proportions and then for all other mix specifications. One sample preparation 

was carried out on each of 72 days to allow for consistency of curing period when 

samples were batch tested on 72 consecutive days for each of the three curing 

periods. Hence mixing occurred over 72 consecutive days and batch testing over 

216 days. 


