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Abstract

Spatial and temporal information exist widely in engineering fields, espectally
in airport environmental management systems. Airport environment is influ-
enced by many different factors and uncertainty is a significant part of the
system. Decision support considering this kind of spatial and temporal infor-
mation and uncertainty is crucial for airport environment related engineering
planning and operation. Geographical information systems and computer aided
design are two powerful tools in supporting spatial and temporal information
systems. However, the present geographical information systems and computer
alded design software are still too general in considering the special features in
airport environment, especially for uncertainty. In this thesis, a series of param-
eters and methods for neural network based knowledge discovery and training
improvement are put forward, such as the retative strength of effect, dynamic
state space search strategy and compound architecture. Fuzzy sets are adopted
to support the sustainability evaluation, and a hierarchical pyramid architec-
ture is proposed to simulate the decision process of human panel meetings. For
uncertainty in geometrical object, a grey geometry representation using grey
systems is developed. The union, intersection and difference operation are also
defined. Based on these work, a neural network based noise, emission and waste
model is established which is completely different from the present mainstream
models. In addition to these works, the user friend interface for 3D airport
operation planning is also explored and a convenient computer aided design fa-
cility is combined into the prototype. With a set of available noise data from
Manchester airport, we verified some of our proposed models and the result is
very promising.

Key words: Neural Networks, Intuitionistic Fuzzy Sets, Grey Geometry, Rough
Sets, Airport Noise, Airport Environment Evaluation Systeins
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Chapter 1

Introduction

1.1 Challenge to airport environment models

As transportation hubs, airports comprise many modes of air and surface trans-
port. Changes in the magnitude of these operations tend directly and indirectly
to lead to corresponding social and environmental change, not least of which are
employment opportunities and adverse environmental impacts [133]. On the one
hand, society needs economic development to meet its social objectives, and a
healthy natural environment is a precondition for society’s existence. The result-
ing tension gives rise to the necessity for sustainable airport development (78],
rather than airport development at undue environmental cost. Sustainable air-
port development requires a carefully planned balance between socto-economic
and environmental objectives. The scale and risks of airport operations mean
that operational decisions require careful planning before practical implemen-
tation. Similarly, sustainable development concerns prevention of the potential
degradation of the foundation of the existence for human society, and hence
also needs to be taken into account before the construction of airport-related
infrastructure. This planning has to be based on a realistic analysis of the opera-,
tional and environmental data monitored from airport operations. In this sense,
a comprehensive decision support system is & necessary part of sustainable air-
port development. The decision support systems have to be able to simulate
different design and operation at airports. Different from other transportation
modes, airport operation involves not only the 2D operation of surface transport,
its 3rd dimension is significant for air side operation. Therefore, a fuily fune-
tional Computer Atded Design (CAD) facility for the 3D operation at airport
is necessary in addition to the 2D facility in traditional GIS-T[125]. In addition
to this, a decision support system for airport environment has to accommo-
date those uncertainties existing in the operation of airports. With the rapid



development of airport relevant models, many models have been developed for
airport operation and environment, such as SIMMOD (local airspace, runway
and apron planning) [23] INM [41] (noise exposure) and EDMS [33] (concentra-
tion and distribution of gaseous pollutants). However, each model focuses on
some specific part of the system and provide separate and limited design facility.
They represent the same operation in different formats and provide very limited
data input facility. The input data in one model is usually not applicable to the
other models. The learning curves for these models are not flat because of their
limited input facility. More importantly, the significance of uncertainty has not
gained enough attention in these systems at all. Most derivation of their data
come from some mathematical models under some unrealistic assumption about
airports. In fact, each airport operates on a unique geographical environment
which is completely different from other airports. The weather condition can
change significantly between airports and the local residence may have different
reaction. All these natural and human factors could cause significant uncertain-
ties which could not match with the condition required for those models. The
existence of these uncertainties make a realistic mathematical models suitable
to each airport very difficult if not impossible.

In fact, all the environmental problems associated with airport operations
are related with the operation of air and surface traffic, and the same design
of airport operation could be used to evaluate both operational requirements
and environment requirements. An integrated 3D design facility will benefit the
WHAT IF scenario analysis especially for those long term planning design such
as sustainability analysis. With the increased awareness of the significance of
environment to human being, a large amount of operational and environmental
monitoring data have been produced in large airports. It provides a good foun-
dation for realistic analysis of airport operation and its related environmental
problems. In the same time, the development of artificial intelligence, eépocially
soft computing technology, makes it possible to accommodate uncertainties into
airport decision models.

1.2 Potential of GIS and soft computing in air-

port environment modelling

As is well known, hoth Geographic Information Systems (GIS}) {198, 29] and
air transport have experienced rapid developments in recent years. The im-
provements in computer hardware and software have contributed to the wide
application and development of GIS; at the same time, socio-economic changes

and technology development has helped contribute to a sharp increase in air



transport use and demand.

As a powerful spatial database management and analysis tool, GIS has found
an important role in surface transport and formed its own, widely recognised
moniker — GIS-T [125]. GIS-T covers much of the broad scope of surface trans-
port and provides an efficient medium for planning and evaluating the future
generations of surface transport systems [158]. However, the application of GIS
to air transport is not well established. There is research into and applications
of GIS to airport operations, but most focus on the land side operation, such
as pavement managemment [122], underground water investigations [149], crash
risk distribution analysis [154], etc. Recently, some applications on air side op-
erations have emerged, such as the Aircraft Noise Monitoring and Management
System (ANMMS) developed by the Los Angeles Department of Airports [3].

Among the various commercial GIS software, many embed GIS-T functions
into their new versions or as plug-in components, such as the network analysis
component for ArcView {1] and a series of GIS-T products of GIS/Trans [69].
There is also specific GIS software for GIS-T functions, such as TransCAD [43]
. However, these software are dedicated to surface transport, and do not con-
sider the issues presented by, for example, air side operations. Furthermore, the
fourth dimension ~ time — is generally not a part of most GIS software. Com-
pared with surface transport, the application of GIS to air transport has not
to date received sufficient attention from the GIS fraternity. This is surprising,
since the aviation industry is developing at such a speed in recent years that its
influence on the environment and society cannot be ignored. Today there are
many computer models and database management systems applied in the daily
operation of aviation, such as the airport operation model SIMMOD [23], the
atreraft noise model, INM [41], and the emission model, EDMS [9]. In addition
to these models, most relevant data such. as flight trajectory and daily opera-
tions data can be found in the database systems of most major airports. The
common feature of these models and data is the way in which they handle the
spatial dimension, although they are processed by different systems for different
purposes. With increasing demand for air travel and the environmental consid-
erations which arise, the aviation industry faces huge challenges as a result of
seeking higher efficicncy on its operations and planning activities. This poscs
the requirement to integrate these different models and data to realise higher
operating efficiency and support a more environmentally benign operation.

Clearly GIS is a suitable platform to integrate various models and data. With
the development of the GIS application, the function of GIS has exceeded its
original purpose [160]. From this point of view, GIS is the suitable interface for
integrating different computer models with monitoring data, existing databases

and users. However, compared to surface transport, air transport has its own



special spatial and temporal characteristics. These include:

» A third dimension to handle flight trajectory is necessary;

o Heavily influenced by uncertain and dynamic weather conditions, espe-
cially wind direction; '

o Environmental considerations, especially aircraft noise sensitivity;
o Significant impact on land use in the vicinity of an airport;
¢ Continuous expansion and modification of infrastructure;

o Uncertainties in 4D (3D+time) have to be considered.

These special features are not addressed directly in the present structure of
GIS-T applications. The present GIS and GIS-T' are designed to answer queries
concerning 2D location only. However, queries on 3D and even 4D (time) are
typical features of airport operation. A fully developed GIS-T has to meet
many diverse needs including transportation inventory, modelling and opera-
tional problems, so a GIS application for air transport has to meet the diverse
needs of air transport too. Therefore, it is necessary to investigate ways to ap-
ply GIS to the air transport system to accommodate these special requirements.

Considering the next generation of air transport operations, where Global Po-
sitioning Systems, GIS and an Intelligent Air Transportation System will play
the central role in its planning and operation. Here, the key technology in ap-
plying GIS to airport environment model is the realistic model established from
real world data. Compared with theoretical models derived from assumptions
and simplification of the real world, a realistic model has to consider the large
amount of uncertainties existing both in the GIS representation and airport
operations.

A large amount of airport operation data, such as weather conditions and
human perception of the environment disturbance, are associated with uncer-
tainties. In the same time, the spatial and temporal data in GIS have significant
uncertainty as well. With the continuing development of Geographical Informa-
tion Systems (GIS), the issue of data quality has hecome a major concern in its
further application [61, 76, 75, 114]. Perfect data are rarely obtainable in the
real world since most data contain errors and missing values. The traditional
computing methods employed in GIS have difficulty in dealing with these kinds
of imperfect data, and as such a methodology is required which allows for and
that can handle imperfect data. ‘

At the same time, airport development involves many human perception
issues, such as noise disturbance and economy factors. Compared with other



physical parameters, human perceptions are more difficult to model with an
accurate measurement due to their very nature. The same thing may mean
different things to different people. Therefore, technology in dealing with such
uncertainty is an essential part of an airport environment evaluation model.
With the development of soft computing, such techniques are available to
airport environment models now, Neural networks, fuzzy sets, rough sets and
- grey sets provide us with choices in dealing with uncertainty in airport envi-
ronment evaluation. Neural networks are good at simulating a black box where
input and output training data are available. Explicit knowledge about the
black box is not required and they are capable of simulating very complicated
relationships between inputs and outputs. The abundant in-situ data collected
at airports provide ideal conditions for the application of neural networks. Fuzzy
sets aim at representing those objects with fuzzy boundaries, and are suitable
especially in representing human perception in fuzzy concepts such as sustain-
ability. Rough sets approximate a set using two crisp sets, which provide tools
for approximating influenced area. Grey sets appear as a new field, and provide
opportunity to represent those vague objects in a map and preserve their un-
certainty information. The uncertainty in airport environment models could be
modeled using different models according to their different features, and a thor-
ough study of the application of these modules would be of benefit to airport
environment evaluation, especially to the sustainable development evaluation as

well.

1.3 Overview of the dissertation

This thesis investigates the essential techniques in developing an airport envi-
ronment evaluation model. The next chapter gives the background of airport
environment models. Chapter 3 presents our methodology in dealing with un-
certain information in the airport model, and then Chapter 4 discusses various
algorithms in detail and Chapter 5 demonstrates some experiments for the pro-
posed methods. While chapter 6 describes a prototype system for. airport envi-
ronment evaluation and decision support, and in the end we give our conclusions

of the whole thesis.
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Chapter 2

Background and related

work

2.1 Airport environment problems

The environment by-product is becoming more serious than ever before with
the development of aviation [133, 78]. The key for taking action in advance is to
know what it would be in advance, and check the consequence of our planning
operation before they are realized physically. In aviation, this function has
been realized well for operation analysis, passenger forecasting, noise contour
etc [95, 38, 182, 68, 12, 41, 14]. However, a synthesized audit of the potential
environment limitation is still an open problem.

The environment problems had not been paid much attention in the early
days of aviation, and a dramatic turnabout developed in 1960s with the in-
creased awareness of the environment problems in general [14]. Because of the
important role of the airport to the local economy, its propelling to the devel-
opment of the economy is stressed far more than its negative influence to the
environment. It is this kind of positive action to the economy that drives the
aviation to expand at a surprisingly high speed. Whereas, unlike in its childhood
when the aviation was so weak that it did not have any significant influence on
its environment, current aviation has become an important cause for changes
in the global environment. It is now at the stage when its environmental by-
products can never be neglected again and its negative effect to the survival of
humanity has to be taken account seriously. Compared with surface transport,
environment pollution at airports shows not only 2D spatial feature, but 3D as
well, as shown in Figure 2.1.

The environment problems caused by the operation of airports can be classi-



Figure 2.1: Pollution from 3D air traffic

fied as: noise, emission, waste, fuel consumption, water pollution as well as land
use effect. Most of the environment researches for airport focus on the noise
in the vicinity of the airport at this moment because of its direct disturbance
to the local residence [41, 35, 55, 45, 66, 186, 188, 46, 119, 127]. The noise is
produced by engines of the aircraft and influences the Land use near the airport
seriously. With the development of new generation of quiet aircraft, the noise.
level is improved for the airport, but its frequency is becoming higher and higher
as a result of satisfying the increased demand for air transport. Because of the
simultaneous effect, most of the current complaints about airport environment
come from the noise disturbance [45, 66, 188, 127], and the airport development
is facing increasing pressure from their noise effect.

However, noise is only part of the environment problems in airports. It is
highlighted because that it has the simultaneous cffect compared with others.
From the point of view of sustainable development, it may not be the most
significant one in the environment problems. There may be some long term
effects to the health of people, but its effect to the area would disappear when it
stops. On the contrary, the influence of the gas emission and pollution in water
system is far more complex than noise and has a long term effect. The noise
would not accumulate with the long term operation of the airport, but the gas
emission and water pollution do.

Trains and cars do produce some noise 107], but it is negligible compared
to aircraft. The main source of noise from an airport is aircraft, and it disturbs
only the close vicinity area around the airport. Unlike noise, the serious gas
emisstons from the airport are produced not only by aireraft, but also cars,
buses and trains. The individual car has less emi‘ssion. than individual aircraft,
but the huge amount of cars bring more emissions than aircraft as a whole.

Furthermore, the emission from cars does not only influence the vicinity of



the airport, but also other areas along the road networks. The aircraft would
distribute emissions along its flight route, but its emissions would disperse in
a large area. It does contribute to the global warming but does not influence
the specific area as seriously as cars. Considering the different number of the
moving cars and aircraft every day in the world and their different distribution
space, it is obvious that the road traffic brings more serious gas emissions to the
local people than air flight. Whereas, due to the interface and hub function of
the airport, it concentrates every mode of transportation within a narrow area
and then the combined gas emissions are more serious [144].

Some of the gas emissions could be removed from the airport area by wind
and rain, but most of them would be left in the soil or underground water
system. It seems not so serious to cause enough cautions now but it does not
mean it would be the same in the future. In the same time, the de-icing process
in the airport produces lots of chemical pollution and it would cause serious
degradation to the local water and soil system if something went wrong [185].
The waste in the terminals and from various facilities in the airport would cause
some problems too without compatible treatment.

All the noise, emission, soil and water pollution would change the land use
dramatically [20, 22]. Those areas under the highest noise disturbance and
serious emission influence would not be suitable for residence and the ecology
system suffer very much too. Because of noise problem alone, many properties
near to the airports have been devalued seriously [127]. On the other hand, this
increased pollution comes as a result of consumption of fossil fuel, a very limited
source for the human being [120]. An over consumption would threaten the life
of the future generation.

Therefore, the development of airports brings a serious of environment prob-
lems, such as noise, gas emission, water pollution, waste, land use and fuel con-
sumption problems, The extreme of any one of these problems would threaten
the future life of human being as well as the ecology near the airports. With the
development of the civilization of the whole society and the increased pressure
from the surface transport, it is inevitable that more and more airports would
apbear everywhere. An efficient 3D multiple model transportation system is the
future of the global transportation system. Therefore, it is not realizable that
we limit the influence of the airports only to some desert area so as to avoid
the annoying problem of environment. The only feasible way for the aviation is
to develop in a self controlled way - so called sustainable transportation system
[147]. - _

The sustainable development requires that the airport satisfies not only the
contemporary people but also their children, the future generation and forever.

It is true that the gas emission and water pollution may not appear very serious



for some airports today, but we may not say the same in the future. The envi-
ronment degradation is not revertible in some sense, and it would be too late
to recover when the gas emission and water pollution influence our life in the
same strength like what noise does today. Aviation is a global industry, and it
would be a giobal problem if something wrong and dificult for any individual
to change it. Therefore, compared with the application of Information Technol-
ogy (IT) in the surface environment analysis, the application of IT to aviation
environment audit has more reasons to go far in advance of the development of
the industry itself. This is determined by the audit itself: the early we find our
potential problems, the better chance we have to avoid it | Therefore, an airport
oriented environment management decision support system is a necessary basis
for the further development of aviation industry.

2.2 Sustainability of airport operation

With the increasing awareness of the environment problems, sustainability has
become a very popular topic in various fields. Whereas, sustainability itself
involves so much that it is difficult to give a very clear description. Generally,
a sustainable development means the development should satisfy both current
and future demand. Here, sustainability is related closely to the development,
and hence it means a development with lower price rather than stop. This def-
inition is a very general description and we have to find its concrete meaning
for a special field. “A sustainable transportation system is defined as one in
which fuel consumption, vehicle emissions, safety, congestion, and social and
economic access are of such levels that they can be sustained into the indefi-
nite future without causing great or irreparable harm to future generations of
people throughout the world.” [147] In fact, with the ongoing globalisation, it
is inevitable that the demand for transport to increase become bigger and big-
ger [98). The same situation can be found in airport development [78]. One
side, the demand for additional capacity keeps increasing; on the other side, the
environment consideration requires the control of its further expansion. This
conflict is the centre content of the sustainability of airport development.
Unlike otlier transport modes, the alrport serves not only for aviation but
also involves surface transport, it is especially true for the big airport acting as
a hub of the regional transport. The airport provides a transit station where
various modes of transport meet and divert. In fact, the airport plays as a sink
and source of the traffic along the surface road and airway networks. Thus it
results a highly concentration of the various traffic in a relative small area. In
the same time; with the development of the airport, a series of businesses and

services related to the airport are introduced into this area, and the increased



employment brings in a further increasing of its neighbour residence. All of
these in turn rise the problem of sustainability for its further development. On
the other hand, the individual airport is only a node in the whole networks, its
position in the whole network need to be taken into account for its sustainability.
Therefore, the sustainability of an airport can not be accessed only by itself,
and it has to be related to all the partners. Thus, the sustainability of airport
consists of network sustainability and local sustainability, as shown in Figure
2.2,

The sustainability of the airport means the ability of the airport to go on its
development satisfying the demand of society without unrecoverable degrada-
tion to its environment. As the interface between different modes of traffic, the
airports constitute a spatial network and its sustainability as an individual has
to meet the sustainability of the network as a whole. In this sense, an unsustain-
able airport for the local region may be sustainable for the whole network. For
example, a big airport appears unsustainable because of its heavy traffic, but
the equivalent distributed small airports may bring more roads, oceupy more
lands, and disturb more natural environment. The big airport concentrates
most air and surface transports and has less sustainability for its vicinity, but
it does release other places to be disturbed and reduce the land use of road
networks and runways. This is similar to the comparison between a big city
and rural area. A big city concentrating various industries and traffics is less
sustainable as an individual, but it may help the environment in larger area.
The research has shown that rural area was less environmentally sustainable
as a result of the extent of its dependency on the motor car [121]. Therefore,
it is not appropriate to simply say that a big airport is less sustainable than
small one. The conclusion depends on the scale of the consideration and con-
crete context of the specific airport. The conclusions may be on the contrary if
the effect /passenger/km and the land use are taken into account. For example,
if Heathrow airport is dispersed as 20 small airports, the effect/passenger/km
and the land use would be far more inefficient than it is for Heathrow as a big
airport.

Apart from the network effect, the sustainability of an airport is a kind of
harmonisation of its partners within or near the airport, such as the airlines, sur-
face traffic, relevant businesses, surrounding residencies, environment, ecosys-
tem etc. This harmonisation requires that the interest of every partner should
be respected and the benefit of one partner shbuld not bring an unrecoverable
destruction to another partner. Generally, the sustainability analysis involves
three partners: society, environment and economy [31, 8, 145]. Whereas, the
operation of the airport brings all the benefits and problems for the airport, and
its surrounding ecosystemn is the most vulnerable part in its partoers, hence we
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Figure 2.2: The relationship between the individual airport and airport network

separate them from the three systems and then divide the airport as five sub
systems: operation, environment, society, economy and ecosystem. The sustain-
ability of the airport is determined by the incorporation of its five subsystems
and its position in the network, as shown in Figure 2.3.

Airport Sustainability’ Metwork Position

Society. Environment Operation Economy Ecology

Figure 2.3: The airport sustainability and its factors

¢ The operation system is the special feature of the airport. Airport, espe-
cially those airports act as a hub of the local transportation system, forms
a high density of air traffic and surface traffic in a relative small area. This
include the landing and taking off of the aircraft, the movement of various
vehicles in the taxi way and apron of the airport, the crowded traffic of
those roads and railways leading to the airport. The change of the opera-
tion would bring a great difference to these traffic and then influence very
much on the entire system. The operation system is the key system in the
airport development.

¢ Environment system is the most typical indicator of the sustainability.
For the airport, the environment system refers to its noise, gas emissions,
waste, energy consume as well as water pollution. The existence of the
airport would inevitably bring the environment changes to its local com-
munity, and the problem is what is the acceptable change. Most of the
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current practices highlight the noise problems, but gas emission may be
more serious if take into account their long term effect.

+ Society system includes the residence of the neighbourhcod area, the local
council and the native government, various agencies like schools, medical
centres and so on. The soclety is the consumer of the airport and also
the victim for its negative effect. Therefore, The society system plays the
key role in the further development of the airport, and they have to make '
choice between the benefit and the harm, especially the current benefit
and the long term degradation. The airport development can not go over
the limit of the law that the society imposes on the airport.

s Economy system is the driver of the development of the airport, and it
means the economy benefit from its operation. This benefit is very attrac-
tive to the local economy and brings high standard life and employment.
It is the economic benefits that bring and keep driving that airport going
on its development. Therefore, the sustainable development has to find
its role in the economy system, otherwise it is impossible to realise it.

e Ecosystem is the surrounding ecosystem, include various animals, plants
and birds. Ecosystem itself may not influence the development of the
airport, but their fate is associated with the living enviornment of human
being, and their extinction would influence the life of human being.

The five systems have a very sophisticated interaction with each other and
their synthetic development determines the sustainability of the system, as
shown in Figure 2.4. Usually, the economy is the motivation of the airport,
and hence the requirement for developing economy enables the airport opera-
tion. The operation of airport would bring the development of economy but
cause environmental problems inducing social concerns about the development
of airport, and then limit the operation of airport. The change in ecosystem
would influence the life of people and then increase the pressure on operation.
It is the interaction and incorporation between the five subsystems that de-
termines the sustainability of ailrport in the end. The five systems form an
organised airport system and the state of the whole airport system is controlled
by the combination of its five subsysfems. The system could be stable only
when the combination could harmonise every subsystem and any action of a
single subsystem without consideration of others would introduce abnormal in-
terruption to the whole system and then introduce unsustainable development.
This kind of unsustainable development has the feature that some subsystemn
is developed quickly on the basis of the destruction of other subsystem. This
kind of development would result in the collapse of the whole system in the end
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although for some period some single system appears to be prospective. For
example, the increasing of the operation in the airport would bring economic
benefits to the society, but its unlimited development would close the airport
itself in the end if it introduces an unacceptable environment to the society.

Figure 2.4: The subsystems of factors for sustainability

The sustainability of airport is easy to talk about with abstract language but
difficult to access due to its complicated factors. First of all, the general concept
of sustainability relates more to the entire society than to special individuals. It
is easy to understand the sustainability of the human society, but very difficult
to extract it from an individual airport. No matter what the individual airport
does, its developing or closure hardly changes the sustainability of the whole
society. However, it does matter if the same operation was carried out in all the
airports and other sectors of our society. In this meaning, there is individual
sustainability even if we stress the whole society or the global effect. It is
the individual sustainability that constitutes the global sustainability. It is
impossible for us to reach a sustainable development without starting from
the individual partner. If all the partners reached their limit state, then the
whole society reaches its limit without any doubt. Hence, the first step for us
to carry out a sustainable development is to pursue the individual sustainable
development. It is not a sufficient condition of global sustainability, but it is a
necessary condition. ‘

Sustainability is a general concept, and different people may have different
interpretations. Therefore, indicators representing factors in different systems
" or subsysteins have to be adopted to measure these factors quantitatively, An
absolute input and output (waste output) ‘measured increase in value for an

airport can imply that the airport is moving away from environmental sustain-
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ability [187]. Obviously, the increase has to be measured against the specific
context of the airport concerned. In this sense, the environmental sustainability
of an airport is reflected by a balance between its environmental indicators and
the environmental requirements of people. The balance has to be maintained
continuously: the waste output (unwanted output) should never reach such a
level that human beings cannot live with it. In this thesis, we adopt a narrow
definition of sustainability: a continuous balance between conflicting indicators.
Here, by conflicting indicators, we refer to those indicators with opposite effects
to each other, such as the production of noise in the business of the airport and
the human perception of noise by the surrounding population. A sustainable
airport development requires a continuous balance between these conflicting in-
dicators. This balance has to be maintained between each pair of conflicting
indicators, and the sustainability of the airport is determined by the continuous
balance of all involved indicators at different levels. In this thesis, we focus
mainly on noise sustainability as a result of a continuous balance between noise
and human perception, which is only part of the sustainability of an airport as
a whole.

Another difficulty is the fuzziness of the sustainability [25]. In fact, what
appears as a reasonable requirement now may not be acceptable for future gen-
erations. People always try their best to improve their life better and better,
and the potential influence of our environment degradation to the future genera-
tion may not be well understood at this moment. Some factors seem acceptable
today may not be the same for tomorrow. For example, most of the researches
and practice to improve the environment in the airport are focusing on the noise
problem {41, 65, 179, 46, 119, 127]. Whereas, the impact of noise can be detected
now, but the potential change of the environment coming from the long term
gas emissions has possibility to be more serious even if they seem not important
now,

Therefore, the measurement of the sustainability of the individual partners
of the whole society is meaningful even if it does not directly relate to the
global sustainability, and the assessment of the sustainability has to consider
the limitation of our knowledge and the complexity of the sustainability of
airports. As aforementioned, the sustainability is influenced by many factors in
different layers (network and individual airport). All these factors are dynamic
and interactive, and then the assessment of sustainability should be dynamic and
interactive. On the other hand, our limited knowledge prevents us from giving a
very clear boundary between sustainable and unsustainable development, hence
a fuzzy measure of the sustainability appears to be applicable.

Generally, the sustainability is a fuzzy concept. There is no very clear bound-

ary between sustainable and unsustainable development. A development with-
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out any side product is the upper boundary of the sustainability, whereas, a
development with a completely destruction of the surrounding environment and
ecosystem could be regarded as the bottom boundary for the sustainability.
Anything in between is a fuzzy concept between these two extremes. Therefore,
the sustainability could be measured with a fuzzy membership rather than a

concrete conclusion.

2.3 Swustainable airport development and envi-

ronment models

The a.ppli'cation of IT in aviation is very successful for its operation, and it is
difficult to imagine what it would be without the modern IT technology in avi-
. ation. In this sense, the application of IT in aviation is more successful than
other transportation modes in fact. For example, the air side operation modél
SIMMOD has been successfully applied in many airports in the world. With
the development of the IT industry, more and more powerful operation models
is appearing, such as the Airport Machine, TAAM, HERMES etc [132]. How-
ever, the environment audit for the airport has not reached the same level as
operation. There have been some successful models for airport environment,
such as INM, NOSIM [68, 41, 35, 132] and ADMS [33]. INM and NOSIM
are noise models, which predict aircraft noise level according to a standard en-
gine test curve. ADMS is an emission model for airport which is capable to
give very detail about the possible concentration of the emission under given
weather conditions. Odoni et. al. investigated existing models related to air-
port operation and reported their investigating result for models listed in Table
2.1 [132). In their analysis, they classified the models into 5 categories accord-
ing to their functionalities: capacity and delayed model, conflict detection and
resolution models, human/automation models, cost/benefit analysis models and
noise models. The distribution of the number of models in these five categories
is shown in Figure 1. It is certain that the analysis made by Odoni et. al
does not exclude the existence of other models, but it does reveal the general
effort of the application of I'T in airport enviromnent management in compar-
ison with other activities. Among these 5 groups, the first 4 groups are about
operation simulation and analysis, which have always been in the focus of the
aviation industry, and only the last one involves environment - noise. However,
as aforementioned, noise is only a part of the indicators of environment, and
there are many other relevant indicators which are not fully considered yet in
these models. For these existing models, Odoni et. al. recognised their problems

in communication: there are so many completely different formats for the same
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Function Models

CAPACITY AND DELAY LMI Runway Capacity Model,

MODELS FAA Alrfield Capacity Model,
AND (Approximate Network De-
lays), THE AIRPORT MA-
CHINE, SIMMOD, TAAM (To-
tal Airspace & Airport Modeller),
HERMES (HEuristic Runway
Movement Event Simulation),
NASPAC, TMAC, FLOWSIM,

ASCENT
CONFLICT DETECTION and RAMS (Reorganized ATC Math-
RESOLUTION MODELS ematical Simulator), ARC2000

(Automatic Radar Control for
the years beyond 2000), .BDT
(Banc De Test), NARSIM, ASIM
(Airspace SIMulation), RATSG
{Robust Air Traffic Situation
Generator), TOPAZ (Traffic Or-
ganization and Perturbation An-

alyZer)
HUMAN / AUTOMATION SDAT (Sector Design Analy-
MODELS sis Tool), DORATASK, MI-

DAS (Man-Machine Integration,
Design, and Analysis System),
PUMA (DRA)

Cost /Benefit Analysis Models ACIM (The ASAC Air Carrier
Investment Model), NARIM (
The National Airspace Resource
Investment Model}

NOISE Models Integrated Noise Model (INM),

' NOISIM

Table 2.1: Existing computer models related with airport traffic management

airport operation, and their usage requires considerable training z;nd expertise
in the field [132].

Figure 2.5 reflects a general ratio between the different functionalities but
does not exclude other existing models. There are a lot of similar models could
be listed in Table 1. As environmental models, noise is the one who received
the most investment in computer modelling for airport environment because of
their obvious significance for the airport and residential community relation-
ships. In addition to the models listed in Table 1, there are alsc some other
environmental models developed in the recent years. For instance, the Heli-
port Noise Model (HNM) [57] developed by FAA, the Noise Integrated Routing
System (NIRS} [124] developed by Metron, the Aircraft Noise Prediction Pro-
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Figure 2.5: The distribution for the number of available models in Table 2.1

gram (ANOPP) [34] from NASA Langley Research Center, the Rotorcraft Noise
Model (RNM) developed by Wyle Laboratories, Noise Model Simulation (NM-
SIM) also from Wyle [108]. In environment emission side, there is also a specific
model for airport environment emission simulation, Emissions and Dispersion
Modeling System (EDMS) developed by FAA [56].

As pointed by Odoni et. al, the formats of these models are very different
from each other, and they separately analyse only some part indicators of the
whole system. However, all these come from the same operation of the airports,
hence there existed a huge amount of duplicated data inputs with different for-
mats. Usually, these inputs require deep knowledge of expertise in airport oper-
ation. It limits the application convenience of computer modelling for airports,
and makes it much more expensive than it should be, such as the complicated
analysis of SIMMOD. In addition to this, the generalised equations adopted
in these models can not fully reflect the specific features of individual airports
due to thelr different geographical and operational environments. For instance,
INM model relies on a predefined NPD (Noise vs. Power vs. Distance) curve,
which is measured under specific weather situation and geographical conditions.
Those conditions may not be the same for other airports, and the engine thrust
and weather change are very difficult to know in advance, hence their results
may not necessarily reflect the real situation around every airport. Figure 2.6
shows the monitoring data for departure BOE757 at Manchester airport, and it
is obvious that its engine thrust is much more complicated than the theoretical
data in NPD table.

From INM, the points in Figure 2.6 should distribute along a single curve
with known engine thrust and distance. However, because of the uncertain wind
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Figure 2.6: The monitoring data for BOE757 departing from Manchester airport

speed, temperature and takeofl weight, the aircraft speed does not follow exactly
the scheme in INM, which results in a very different engine thrust configuration
changing all the time according to wind speed and other factors. Obviously,
INM model is acceptable as a simulation tool for general trends analysis, such
as the average value in Figure 2.6, but not be able to reveal the real perception
of airport noise for the residents. It is the individual pulse of noise that annoy
people rather than the average value.

As a hub of the transportation network, operations at airports are typically
spatial and temporal sensitive. Different flight trajectories and road networks
will bring completely different distributions of noise and emissions at and around
airports. Their operation times are also limited by the acceptability of the res-
idents. Therefore, the computer models have to have spatial and temporal fea-
tures, and provide a simple but powerful spatial and temporal design capability
following the habit of air traffic control in the vicinity of airports. The linkage
between Geographical Information Systems with noise and emission models have
brought light to this field, but it is still an open field for the airport environment
management software. An integrated model combining both the universal data
format and uncertainty treatment is preferable in alrport environment analysis.

Most environmental problems in the airports come from the routine oper-
ation of the airport, and the evaluation or audit of the potential environment
problems has to be based on the operation analysis first. That means the dif-
ferent scenarios have to be simulated in the different systems again and again.
Because of the possible changes of the planning outline and operation scenario,
this audit would be terribly time consuming and high cost. On the other side,
the existed models work well in general, but it may have bias for specific airports
due to its general formulations. This kind of bias may not he important in the

single analysis, but a combination of them from multiple models may enlarge it
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to an unaccepta,'ble level.

The environment audit serves for the evaluation of the potential environ-
mental problems caused by the operation of the airport. Hence, it involves all
the results of the models aforementioned. It has to be able to relate the sus-
tainability of the airport to the components of the whole system. Obviously, all
these require a model with feasibility to different data formats. QOn the other
side, all the operations carried ouf in the airport are some kind of allocation
problem with respect to the specific spatial and temporary requirement. There-
fore, spatial and temporary are the two dominant characteristics of the airport
* operation. It indicates that a traditional database can not provide the neces-
sary function in the spatial and temporary management of the airports. The
spatial database GIS is a reasonable candidate for integrating the different data
and requirements. Compared with other industry, the airports provide a bet-
ter condition for the application of GIS in its environment auditing. With the
increasing awareness of the potential environment problems and the social rela-
tionship with its neighbourhood, most big airports in the world have established
an efficient environment monitoring system to record the noise, gas emission and
other indicators. The operation of these systems had formed huge database on
the environment data. In the same time, the rapid development of Internet and
intranet enables the geographically distributed complaints and suggestions from
the surrounding residents and societies to come into the airport in real time. On
the other side, various data on operation are recorded in database for forecasting
the future passenger demand. All these data are recorded in the corresponding
airports and reflect their specific spatial and temporal conditions. Therefore, it
provides a good foundation for the application of GIS system. Combined with
the advanced technology in soft computing, GIS would provide a powerful tool
in the airport sustainable development.

However, these data come from the real world measurement, and the com-
plicated weather conditions and the engine response to these conditions will
be combined into these data. It means that uncertainty becomes a significant
factor in the environment prediction and analysis. The airport environment
model has to be able to model those operations under uncertain and dynamic
weather conditions and uncertain engine status. In addition to this, the spatial
information itself is associated with uncertainty as well, such as the errors in
measurement of spatial locations. More importantly, the sustainability is in fact
a concept relating to human perception, which is much more uncertain than the
physical measurement. For instance, for the same aircraft, some people may feel
it’s noise unacceptable, but some other people in the same location may not con-
sider it a problem at all. A model tuned with data under a standard condition
like INM is bound to produce big errors when the target airport has a complete
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different condition, and the uncertainty associated with each individual airport
can only be tracked with data from the concerned airport. Therefore, the pur-
pose of this thesis is to investigate the essential technique in dealing with the
uncertainty associated with an airport environment evaluation model. We will
focus mainly on neise but the same technology is applicable to emission and
other environmental problems as well.
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Chapter 3

Methodology

3.1 A Conceptual Ffamework for Society-Oriented

Decision Support

Individual intelligence, like the individual expert in different fields, has attracted
most efforts in research on Artificial Intelligence (AI). Most methodologies in
AT are designed for simulation of the learning and reasoning process of the indi-
vidual human brain, such as fuzzy logical reasoning [104], neural networks [89],
genetic algorithms [71], ete. Multi-criteria decision making [117] is one of the
areas in Al which considers more than one human brain, but it still does not
consider fully the hierarchical interactions in human society. Social intelligence
represents collective intelligence. Here, by society, we mean the hierarchical
structure of human organisation. Social intelligence is therefore very different
from individual intelligenee in that individuals in a social environment cannot
always optimise their own benefit, and where the benefit of the society as a
whole may be more important. Therefore, a solution beneficial to individuals
may not necessarily be an acceptable solution to a society. In this sense, social
intelligence needs to involve interaction and negotiation - what has been called
“communicative competence” [81]. Based on an investigation of the interactions
between residents living adjacent to an airport and that airport’s operations,
we present a formulation of a hierarchical model of a society-oriented decision
making process for airport development. The complexity of the interactions
between the different individuals or agencies provides a challenge in simulating
social intelligence. As a discussion for the further development of our research,
we present our view on a social intelligence model based on what we have es-
tablished in this research.

With the increasing application of information technology in airport oper-
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ations and planning, recent years have seen the development of a number of
models to help improve their operation, assess economic effects, evaluate en-
vironmental impacts, etc. However, there has yet to be developed a “society-
oriented model” which has the potential to integrate all these sub models to
form a hierarchical open structure to allow interaction and negotiation between
different parties. Therefore, it is necessary to investigate the feasibility of such
a model.

In most research into sustainability, the key subsystems are typically com-
posed of local residents, the environment and the economy [31, 8]. For airports,
their operation is often perceived to be the main cause of most sustainability
problems - their ecosystem is more fragile and vulnerable. Considering these
special features, the sustainability of an airport - and hence its future growth
potential - has to consider the incorporation of and harmonisation between its
operations, the environment, local residents, the economy and the ecosystem.

As a soclety-oriented model for the sustainability of airports, any model
formulation has to deal with interactions and combinations between different
subsystems. It is very difficult to establish a rule to say what is more important
for the development of the airport. To those who see the economic subsystem of
sustainable development as important, they may consider that further airport
development should be given priority, but what of its impact on the other sub-
systems? At what price is this acceptable when its impact on other subsystems
{e.g., the environment) are brought into the equation? For any given subsystem,
there remain many components which need to be balanced before a decision can
be reached. In the airport operation subsystem, for example, increasing capacity
can be constrained by the facilities at the airport, such as length of the runway,
terminal design, surface access transport and so on. For the environment sub-
system, the status of the system is not only controlled by aircraft noise levels
but also by the emissions arising from aircraft and ground operations as well
as other factors which have to be taken into account. The local residents sub-
system is more complex - people are very different from one another and what
may be an acceptable level of airport operations for some may be completely
unacceptable for others. The cconomic subsystem also involves very different
components, such as the airport operator, airline operators, related businesses
and so on. Their individual benefits may not be mutually beneficial. As for
the ecosystemn, it also has tremendous diversity, since different species of flora
and fauna may have completely different adaptation capacities to the changes
induced by the airport’s operation. Therefore, when we view an airport in this
context, the airport system consists of five subsystems, where each subsystem
is composed of a series of special systems. This taxonomic chain could continue

to a very fine level of detail depending on the level of analysis required. Hence,
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an audit of the sustainability of an airport has to reflect this special structure
of the airport system.

It is well known that the decision making process for a very complicated
problem in human society is, in general, not carried out by one person. A
committee consisting of individuals with different expertise is a typical scheme.
The advantage of this kind of process is that it engages different viewpoints,
involves consideration of as many factors as possible and provides a more reli-
able solution after consulting all members. Here, we adopt a similar structure
to simulate this kind of decision making process in our proposal for an intelli-
gent audit system of airport sustainability. We call it the pyramid-committee
structure. The “pyramid” represents the hierarchical/vertical structure of key
relationships between the components and the system. The “committee” refers
to the lateral/horizontal layers in the structure, which represent the relation-
ships between different agents or “experts” in the same system, as shown in
Figure 3.1. In this system, the process of assessing sustainability is composed
of a series of actions to determine the sustainability of its components and then
" to negotiate their requirements at the committee level.

Sustainability of the airport

0

Figure 3.1: The structure of the pyramid-committee system

For the vertical structure, an intelligent audit agency sits at the top of the
entire system, at the apex of the pyramid. Every subsystem is then represented
by an agency in the first layer. For the final audit of sustainability, the apex
is the “chair of the committee” of the first layer. Similarly, the five agencies

in the first layer could be partitioned further into more subsystems. Thus, for
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example, all transport modes and their infrastructures could in principle be
included within the subsystems. These would result in increasing the height
of the pyramid because the whole system is formed layer by layer. Like the
committee in the first layer, a series of committees in the sub-layers can be
established. Each of these could be regarded as a preofessional committee in
support of a specific area. Their chairs are then the agencies in the immediate
upper layer. In this way, a hybrid system with a vertical pyramid and horizontal
committee organisation structure is established to simulate a decision making
system for resolving complicated problems involving both different interests and
interest groups in a society. '

Before any change in the airport’s planned operation, the pyramid is by
definition in a state of temporary stability. Any proposed change will break
this stable state so the system has to be able to find a new state where each
member can survive and the system returns to stability. Given the structure
and function of the pyramid-committee system, its operation can be initiated by
any node within the pyramid. For example, a proposal to improve the airport’s
sustainability overall can be initiated from the apex and then propagated to
the nodes below or additional runway capacity can he proposed by any mem-
ber of the operations committee for consideration and resolution. The specific
requirement is discussed in the appropriate committee, and if its impact can-
not be kept within that local committee, then the impact has to be evaluated
by other committees and propagated in both directions to each relevant parent
node. This process is shown in Figure 3.2.

The process of balancing each member’s interest in a local committee is the
basic unit of operation. Balance is in fact a. process of negotiation of the impact
of a proposal for change on each of the committee’s other members. If the
impact is deemed acceptable to each member and the change can be seen to
benefit the committee as a whole, then this proposed change can progress. The
whole process is a kind of iteration of the same operation for each committee.
If a solution acceptable to each node is found, then this proposal for change
succeeds, otherwise it fails. Obviously, the key here is the evaluation of the
impact of this proposed change on other members or nodes. To initiate this
interaction, we have first to cstablish their relationships. It could be established
using the algorithms available in soft computing.

For interactions between the different components of this system, physi-
cal laws have the highest priority because of their sound foundations both in
mathematics and in practice, such as the relationship between noise levels and
attenuation. Expert knowledge and statistical relationships have the second pri-
ority in the system. Most of the relationships belong to this category because
of the complexity of our understanding of what, for example, sustainability and
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sustainable development “really means”, together with the range of numerical
indicators which are chosen to determine sustainability criteria. The relation-
ships established from ANN could be applied only when cthers are not available.
Similar to human emotions, intuition in this context is not necessarily as reliable
as the application of logic but it is better than nothing.

In this way, a complicated interaction knowledge base is formed, and its
links with the pyramid-committee are shown in Figure 3.3. The outcome of the
committee deliberations in the pyramid-committee structure is highly reliant
on the relationships in the knowledge base, and every “meeting” is in fact a
negotiation process controlled by the relationships in the knowledge base. In
terms of sustainability, any proposed development scenario has to meet the re-
quirement of the co-existence of the different interests represented in the whole
system. The “meta rule” illustrated in Figure 3.3 serves as the mechanism by
which any conflict between different members in a committee are overcome with
a multi-criteria decision strategy [103] where harmonisation is required and has
to be made. By meta rule, we mean the rules that control the priority of rules
in a knowledge base. For example, we have rules or maps in the knowledge base
that establish the relationship between aircraft operations and the dispersion of
emissions from those operations, as well as the relationship between aircraft op-
erations and airline benefits. These rules can and often do conflict: for example,
the enhanced benefits to an airline arising from increasing aircraft operations
may mean a further degrading of local environmental conditions. However, a
carefully planned and limited increase in aircraft operations may be more ap-
propriate in order to satisfy passenger demand and airline competitiveness. In
addition, environmental concerns may have overriding priority when aircraft
emissions resulting from increased operations approach national limits or where
internationally agreed standards may be breached. This example illustrates
the point that these kind of “meta rules” cannot be considered in isolation or
independently in such binary relationships - they have to be considered at a
“committee” level.

With the pyramid-committee as aforementioned, a conceptual model sys-
tem for evaluating sustainability and its associated indicators is presented and
illustrated in Figure 6. It is obvious that the crucial part of the system is
the knowledge extraction component which is at the centre and represents the
basis of the whole system. By knowledge extraction, we mean the process to
identify the relationships between different subsystems and factors. In the pyra-
mid structure, we are emphasising the interaction between different nodes, such
as the relationships between passenger ninbers and emissions, between engine
type and aircraft noise distribution, ete. The knowledge extraction process

establishes the interactions between different relevant factors - for example, a
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mapping function between noise frequency and weather conditions, geographi-
cal location, aircraft speed and location is a result of the knowledge extraction
process.

The airport database represents all the possible data about the airport in
order to evaluate its sustainability, such as aircraft operation records, environ-
ment monitoring data, manufacturers’ performance data on aircraft engines,
cars and buses, ete. Based on these data, the knowledge extraction process is
carried out to establish relationships between the different components of the
system. The artificial neural networks, expert systems, geographical information
systems, various airport operational and environmental models are potential

- servers for the knowledge extraction operation. With the relationships between
different components of the system extracted, a relational knowledge base is
formed which provides a necessary basis for the constitution of the pyramid-
committee, According to the different subsystems of the airport, a pyramid
scheme of committees simulating the human government inquiry process is es-
tablished. Combined with the airport database and the extracted knowledge
base, a hierarchical analysis of the sustainability of an airport can be conducted
within the pyramid-committee.

In the final analysis, with the help of a geographical information system, the
evaluation results are presented in spatial and temporal form since sustainability
indicators in particular may have different spatial and temporal sensitivities.
For example, local residents are more susceptible to the effects of aircraft noise
events at night even if the levels may be lower than during daytime operations,
Therefore, endurance to the same nuisance or pollutant can vary depending on
where and when it happens. Therefore, a spatial and temporal distribution of
these indicators in a GIS environment is more helpful for the user to evaluate
the results,

Obviously, the most important technology in this pyramid system is the
simulation of the interaction between different components of the system as well
as the media to integrate these technologies. Here, we adopt neural networks to
establish the interaction from in-situ data. The human perception is simulated
using fuzzy sets. They are integrated into GIS and grey sets and rough sets
are considercd to represent those uncertainties associated with- the spatial data
in GIS. The same technology can also be applied to temporal data as well.
Therefore, the key to the environment evaluation of airports is the way we
apply soft computing into this domain. The rest of this chapter focuses on the
methods available in soft computing.
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3.2 Geographical Information Systems

The first obvious uncertainty associated with GIS is the spatial errors arising
from the inclusion and use of imperfect data. There are many sources for spatial
errors, such as positional accuracy problems with measurement, human inter-
pretation problems resulting from different data providers and data integration
problems as a result of multiple data sources [40]. These errors are not nec-
essarily static, but may also be subject to change with time [29]. In addition,
different operations of GIS may produce new errors related to the organisa-
tion of computer storage and data structure. Taking these errors together, the
existence of spatial errors can seriously erode the quality of GIS output, es-
pecially when many outputs emanate from derived results rather than original
measurement. However, most GIS functions simply assume perfect data qual-
ity in their operation, and as a result little attention has been paid to data
quality issues [28]. Most efforts concerning data quality are still at the research
level [61, 76, 75, 91, 114]. In the evaluation of spatial errors, statistical tests
have been applied successfully to assess the significance of output errors {74, 28].

The second important uncertainty is human perception. The most impor-
tant difference between human representation and machine representation of the
world is the so called accuracy or completeness of the respective representations.
In our daily communication, for example, it is rare for us to exchange precise or
accurate numerical information. In most cases, we use a flexible language that
employs loose concepts like “highly”, “probably”, “very possibly”, etc. This
kind of human language is not what the current generation of GIS can handle;
rather we have to state clearly and in numerical terms what we mean by, for
example, “near to a river” - i.e., 10.3 kms. This vagueness or fuzziness does not
influence cur communication, but it presents a big challenge for a machine to
understand and represent. GIS represents geographical data as exact numbers,
and hence its information retrieval is based on the traditional two-value logic:
TRUE or FALSE. For instance, although aircraft noise around an airport is in
fact a continuous distribution, we have to draw a line on a noise contour map
somewhere to say that, on one side of this line, people exposed will be disturbed
but, on the other side, they will not. This line can pass between two houses,
with the implication that people can be classified as noise sufferers depending
solely in which house they reside. This can mean that one household receives
compensation {e.g., double glazed windows) whereas the other does not. This
problem arises from the use of traditional two-value logic, there being no middle
ground for a GIS based on this approach [29].

With the increasing use of GIS applications in industry and public life, the

demands for decision support using spatial data are also increasing dramatically.
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More and more decision support systems based on GIS are being developed and
decision support functions are becoming embedded in GIS. In fact, the con-
cept of GIS itself has also arguably changed, with decision support functions
becoming an integral feature [111, 117]. To this end, GIS is no longer simply a
spetial database for manipulating spatial data, but also a more fully functional
information system with data analysis and decision supporting functions as well
- for example, knowledge extraction or data mining functions are now seen to
be a necessary part of any contemporary GIS [111, 84]. Such functions require
capability in reasoning with available data, and an ability to mimic human in-
telligence in making a decision under given constraints. Here, uncertainties like -
missing values, incomplete or vague information, unknown mechanisms and fac-
tors are the main issues influencing the quality of outputs. Unlike geographical
data, the spatial distribution of attributes in GIS is much more complicated,
and it is controlled not only by their spatial location, but also involves many
other known or unknown factors. For instance, the distribution of atmospheric
emission pollutants is controlled not only bjr geographical features but also by
wind direction, wind speed and ambient air temperature. Each of these factors
involves a huge amount of uncertainty and are subject to change with time,
Obviously, uncertainty is an inevitable characteristic of any GIS and a modern
system must be able to deal with it in order to provide a more reliable and
human friendly service.

3.3 Fuzzy sets

Before we discuss fuzzy sets, we should clarify first what is meant by a crisp
set. By crisp sets, we mean the traditional sets where only two classes exist:
TRUE or FALSE. For a subset S in a domain U=x1,x2,,xn, a crisp set has the
following mapping function

plz:) — {0,1}

For example, we consider the spatial relationship of some entities with a pollu-
tion source P. We want to find all entities which are near to P. With crisp sets,
we can only classify the entities into two classes: ‘near’ or ‘not near’. Therefore,
we have to clarify what is ‘near’ in the first place. In GIS, we can give a user
defined distance d, and query all entities which have a distance from P less than
d. The result is shown in Figure 3.5(a). With distance d, we can draw a circle
around P: all t.hoée entities outside this hashed circle are not near to P, and all
entities inside it are near to P. According to crisp sets, only A and B would be

included in the output for entities near to P, However, the entity D is adjacent
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to A and it is really difficult to comprehend intuitively why they are treated
so differently. In fact, they have only a very minor difference in their distances
to P, and so it would be more reasonable to classify them together. This is a
typical problem arising from the use of crisp sets, and so we need a different
approach to recognise this kind of conceptual fuzziness.
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Figure 3.5: Crisp sets and fuzzy sets

3.3.1 Fuzzy sets

Fuzzy set theory was proposed originally by Zadeh [232]. Fuzzy sets are designed
to provide a representation for those values in the middle ground between the
two values of traditional sets. They are designed to represent values accurately
rather than precisely. For the entities in Figure 3.5(b), their distances to P
are indicators of their spatial relationship to P. Instead of having two classes
‘near’ and ‘not near’ to P, we can allow some entities to be near to some degree.
For instance, entity G could be classified as ‘definitely not near’ P whereas B
would be ‘definitely near’ to P, with other entities in between. Compared with
traditional sets, the characteristic function can thercfore take not only 0 and 1
values, but also a number between § and 1. .

Formally, a fuzzy subset S in a domain U=x1,x2,,xn is defined as a set of
ordered pairs

S ={(x,us(z;)) : z; € U}

where pg({z;) — [0,1] is the membership function of S and is the grade of
belongingness of x to § [232]. With fuzzy membership, a fuzzy concept can be
represented as

.
S = Z#s(ﬂfi)/ﬂfi (3.1)
i=1
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The membership pg(z;) provides a powerful tool in representing imprecise
boundaries of the kind shown in Figure 3.5(b). We can define a membership
function as a function of distances of an entity to P, reaching 1 when the entity
is adjacent to P but 0 when it is far away from P>. Then we get a continuous
spatial distribution of membership as shown in Figure 3.5(b). It is clear that A
and D have similar memberships in a fuzzy set. Therefore, we can say that B
is the nearest entity to P, A and D are near to P to a high degree, but G has

. the lowest degree near to P. Using Equation 3.1, we can éxpress the concept of
‘near to’ P as
SneaT=E+'(l"5_5+0_5'+%+%+&g+%+9‘_l'
B D ¢ E I F H G

Clearly, this equation gives a more complete description of the relationships
between these entities and P. The output of a fuzzy operation in a GIS gives
a result like Figure 3.5(b). Therefore, fuzzy sets provide us with a powerful
tool to represent these kind of classification errors [40, 77] and imprecise bound-
aries [110].

In the representation and analysis of spatial error, statistical analysis re-
mains the main tool used in GIS applications but fuzzy sets are gaining in
significance. Their increasing application even resulted in a confusion between
probability and fuzzy set interpretations (60, 61]. Although clearly different
from the traditional two valued logic, fuzzy sets are not so sensitive to small
spatial errors [91], and more suitable when representing ambiguous boundaries.
Hence its application has been investigated for most GIS operations involving
uncertainties, such as the reasoning process [80], viewshed operations [58, 59],
information representation [193], object modelling [126, 44}, map similarity [82],
area calculation [64], information retrieval [141] and data integration [6].

3.3.2 Intuitionistic fuzzy sets and their distances

Fuzzy sets can be compared using their similarity or distance measures defined
on their memberships. For instance, the distance between two fuzzy sets is de-
fined using the distance between the memberships of their elements [99]. In the
case of intuitionistic fuzzy sets, the membership is represented by two values
rather than by a single number. Therefore, with intuitionistic fuzzy sets, more
parameters have to be taken into consideration when measuring their distance.
Atanassov [17] considers the distances between intuitionistic fuzzy sets as two
dimensional and defined the two dimensional (2D) distances for intuitionistic
fuzzy sets. Szmidt and Kacprzyk [168, 171, 175] proposed and applied the three
dimensional (3D} distances for intuitionistic fuzzy sets. However, although the

3D distances are accepted as a correct representation, many people do not think
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it necessary. G. Deschrijver, C. Cornelis and E. E. Kerre proved in their paper
(48] that the 2D Buclidean and Hamming distance and also their 3D counter-
parts given by Szmidt and Kacprzyk all generate the same topology. Therefore,
the mainstream opinion about 3D distances is that it is useless and not neces-
sary. This conclusion implies that the hesitation margins in intuitionistic fuzzy
sets are redundant information as well. However, we would show here that this
is not always true.

Distance is a measure of the similarity or difference between sets[86]. There-
fore, for a selected distance measure, the relative order or ‘spatial distribution’
of sets is fixed with respect to a selected reference set. This is very important
in real world application like information retrieval in databases, fuzzy number
ranking [184], decision making and cased based reascning [173, 174, 172, 170,
169, 167, 165, 164, 163, 162, 161, 112, 178]. The information retrieval could be
conducted consistently only when we have fixed ‘spatial distribution’, and the
query like ‘find the 5 most similar sets with respect to set A’ could be imple-
mented using a distance measure. If the hesitation margin was really redundant
and the 3D distances could be completely replaced by the 2D distances, then
the order of their measuring result or ‘spatial distribution’ of the measured sets
have to match each other in both 2D and 3D representation, in other wards,
they should be consistent.

Interval-valued fuzzy sets [153] and intuitionistic fuzzy sets [15] are mathe-
matically equivalent [50, 194, 30, 27, 49]. However, there is much debate in the
fuzzy logic research community on the semantic differences between them {42].
Due to mathematical equivalence, we focus only on intuitionistic fuzzy sets and
the result can be easily applied to interval-valued fuzzy sets as well.

Intuitionistic fuzzy sets were introduced by Atanassov [15]:

Definition 1 (Intuitionistic fuzzy sets) An intuitionistic fuzzy set A in X

is given by

A= {(-’L’, P:A(m): VA(:!")) |:C € X}
where

At X — 0,1, va: X —[0,1]
and

0 < pa(z)+ralz) €1 Ve X.

For each x, the numbers pa(z) and va(zx) are the degree of membership and
degree of non-membership of © to A respectively.

Obviously, an intuitionistic fuzzy set becomes a fuzzy set when v,(z) =
1 — pa(x). The distance between two fuzzy sets A and B is defined as [99]
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¢ the Hamming distance d; (A, B)

di1(4,B) = 3 ualz:) — ppl:)] (3.2)

=1

s the normalised Hamming distance {; (4, B)
1 "
11(A,B) = ;Z (ra(zi) — pe(@dl (3.3)
i=1

e the Euclidean distance e;(4, B)

er(4,B) = | 3 (ua(2:i) — up(z:))? (3.4)

i=1

e the normalised Euclidean distance g,(4, B)

7

(A,B) = | 23 (kale:) ~ nn(z0)? (35)

i=1

However, an intuitionistic fuzzy set is different from a fuzzy set when v4(z) #
1 — pafz). In these cases, an extra parameter has to be taken into account
when working with intuitionistic fuzzy sets: the hesitancy degree 74(z) of = to
A [15, 16, 17]

Ta(x) =1 —pa(x) —va(z)

The Hesitancy degres 74(z) is an indicator of the hesitation margin of the
membership of element z to the intuitionistic fuzzy set A. It represents the
amount of of lacking information in determining the membership of z to A.

Two different distances of intuitionistic fuzzy sets can be adopted. If only
ta(x) and v4(z) are considered, a 2D distance [17] can be adopted. However,
if the third parameter, i.e. the hesitancy degree, is taken into account then a
3D distance can be adopted.

For two intuitionistic fuzzy subsets A and B defined on a finite universe of
discourse X, Atanassov defined the distance functions between two intuitionistic
fuzzy sets in [17] as:

¢ the Hamming distance dz(A, B)

d2(A,B) = % > llmates) — pa(@d)l +vale:) — va(z:)|] (3.6)

i=1
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» the normalised Hamming distance I3{A, B)
1 n
124, B) = o= > llua(@:) — pal)| + lvalz) ~va(z)l] . (3.7)
i=1 .

¢ the Euclidean distance e2(A, B)

ez(A, B) = d % Z[(ﬂA(Is) — u(z))? + (valz:) — va(2:))?) (3.8}

¢ the normalised Euclidean distance gz(A, B)

q(A, B) = \] 2_115 Z[(MA(&’&) = pp(x)) + (valz:) — ve(z4))?] (3.9)

Szmidt and Kacprzyk [168] modified the above distances to include the third
parameter 74(z) as follows:

¢ the Hamming distance da{A, B)

da(A, B) = :i; > lealzi)—psl@dl+vale)—ve (@)l +ralz)—ra(z:)l] (3.10)

i=1 .
¢ the normalised Hamming distance {3(A, B)
1 n
ls(A,B) = 5~ D llia(@s) — ps(@)| + |valzs) — vslz:)| + |raz:) — 7o (z:))
i=1

(3.11)
¢ the Euclidean distance e3(A, B)

e3(A, B) = J % Y lma(@) — pa(@)? + (va(ms) - ve(@:))? + (ralz:) = 78(w:))?

i=1

(3.12)

¢ the normalised Euclidean distance ¢3(A, B)

1«
qs(4, B) = \j o D lmalz) — uple))? + (vale:) — vs(®:))? + (ta(z:) — 78(2:))?)
i=1
(3.13)
Grzegorzewski in [79] argues that these 3D distances do not show better
performance than their 2I} counterparts, because the third parameter 74(z)
can be expressed in terms of the other two. Within the 2D representation,

Grzegorzewski recently proposed 2D Hausdorff distances for intuitionistic fuzzy
sets [79).
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3.4 Neural networks

Artificial neural networks (ANNs) are inspired by the mechanisms of the hu-
man brain when establishing interrelations between a variety of information
sources. This refers to intuitive reasoning rather than the logical reasoning nor-
mally executed by machine. One of the most popular training schemes is the
back-propagation (BP) network [151]. The back-propagation neural network
architecture is a hierarchical design consisting of fully interconnected layers or
rows of processing units (Figure 3.6). The interconnections are called weights
and provide the means for ANN to save knowledge, the process of “learning”.
This process modifies the weights by incorporating the errors in the mapped
output. Based on the calculation of error gradients, such errors are then back-
propagated from the output neurons to all the hidden neurons; subsequently all
the weights are adjusted with respect to the errors. The BP process is repeated
until the error cutput has been reduced to a specified minimum value. The
weights are then fixed and saved as a record of the knowledge pertaining to this
system. Thus for a given input, an output is then associated with the fixed
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Figure 3.6: Structure of BP neural networks

The information processing operation facilitated by back-propagation per-
forms an approximation of the bounded mapping function f: A | R* — R™,
This function is from a compact subset A of n-dimensional Euclidean space to
a bounded subset f[A] of m-dimensional Euclidean space, by means of train-
ing with examples (z1, v1), (2, ¥2)s .-y {Tk, Y&}, ... of the mapping, where
yr = f(zx). It is assumed that the mapping function f is generated by select-
ing xk vectors randomly from A in accordance with a fixed probability density
function P(z).

36



The operational use to which this network is put once training has been
performed (on a set of experimental or observed data) makes use of the random
selection of input vectors x in accordance with P{x). ANN then models the
mapping by utilising simple neurons based on either a linear or a non-linear
activation function. Because of the large number of neuron connections, model
behaviour is characterised by co-operation between neurons. Thus an incorrect
decision introduced by a few neurons does not influence the outcomes from its
associated mapping.

ANN has a robust quality with respect to uncertain or deficient information,
even though such information influences many aspects of a complex system, for
example the propagation of uncertainty. ANN can apply additional neurons and
weights as required to take full account of such influences, and thus possesses
an in-built capability for including any relation once it has been trained using
a reference data set.

ANN may well have a large number of nodes, yet the activation function
at each node is very simple. The complex knowledge contained within the
training data is saved in the form of connections between the various nodes..
The connections and activation functions determine the behaviour of the neural
network, Thus, no matter how complicated the mechanisms, ANN has the
capability of mapping it without having to incorporate a prior supposition or
simplification.

The existence of large numbers of nodes needed to represent knowledge pro-
vides the robust structure for uncertain or incomplete inputs. The limited con-
nection weights have the advantage of dramatically reducing the requirement for
computer memory. Kolmogorov’s “Mapping Neural Network Existence Theo-
rem” [88, 90] has demonstrated that ANN is capable of implementing a mapping
function to any desired degree of accuracy, and can thus enhance the decision
support ability of GIS.

Neural networks are good at mapping a ‘black box’ between inputs and
outputs. In environmental GIS applications, the spatial attributes only come
from a limited number of monitoring stations over limited time intervals. Hence,
it is necessary to obtain data for other spatial locations and time spans, and
the only thing we can do here is to derive these data from monitoring stations
near by or by monitoring over time, However, because of the complexity of
the real world, there are no suitably precise mathematical models to simulate
these data exactly. Therefore, neural networks provide a powerful tool for this
type of situation, and it can also benefit a variety of decision making processes.
Neural networks have mainly been applied to spatial interpolation [148], spatial
attributes mapping [220, 219, 218, 217] and error simulation [26).

In addition to fuzzy sets and neural networks, there are other models which
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can be deployed in SC, including rough sets [138], grey systems [47] and genetic
algorithms [71]. Fuzzy set and neural network models also have many extended
versions, such as interval valued fuzzy sets [153), intuitionistic fuzzy sets [13],
type 2 fuzzy sets [123], Hopfield neural networks [92], adaptive resonance the-
ory neural networks [32], radial basis function neural networks [137] and fuzzy
neural networks [102]. These methods are also receiving attention from the GIS
community, and some have already been investigated, such as rough sets (5],
genetic algorithms [195] and rough fuzzy sets [6].

3.5 Rough sets

The real world is inherently uncertain, imprecise and vague. Rough set theory
focuses on the uncertainty caused by indiscernible elements with different values
in decision attributes. It approximates the underlying set with two crisp sets.
Therefore, the cardinality of elements in these two sets has a direct influence on
the uncertainty of their corresponding rough set as a whole. Consequently, it is
important that we consider the roughness of a rough set to have some under-
standing of the results in any decision making system. Knowing some bounds of
this roughness before implementing the set operations can be important. Much
research has been carried out on rough set theory, applications and their com-
bination with fuzzy sets [51, 52, 53, 96, 97, 106, 130, 131, 143, 152, 196, 199,
230, 231]. As for roughness, there has been some research on the roughness of
fuzzy sets [19, 24, 233].

3.5.1 Rough approximation and roughness

Rough sets consider any set as a set defined or described by a set of attributes.
As pointed out by Pawlak [140](page 2),“Rough set philosophy is founded on
the assumption that with every object of the universe of discourse we associate
some information (data, knowledge).” Therefore, a rough sct is defined with a
set of attributes and the relation between these attributes. It is expressed as
an information system where an information system is considered to be a data
table with attributes as columns and ohjects as rows. Each entry in the table is
a value for the information system. Here, we give a brief introduction to rough

set concepts from the relevant literature.

Definition 2 (Information systemsfl106)) We define an information sys-
tem A by a pair (U, A), where U is a non-empty, finite set of objects called

the universe and A is a non-empty, finite set of attributes
A=(UA).
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Euvery attribute a € A of an object has a velue. An attribute’s velue must be ¢
member of the set V,, which is called the value set of attribute a.

a:U—-V,

Definition 3 (Indiscernibililty relation[140]) Given an information sys-
tem (U, A) and subset B C A, B determines a binary relation I(B) on U:

{(z,y) € I(B) iff a(z) = a(y) for everya € B
where a(z) denotes the value of atiribute a for element x.

Obviously, I{B) is an equivalence relation, any two elements belong to I{B)
are identical from the point of view of a. An equivalence class of I(B) is denoted
by B(z). If {(z,y) € I{B), ¢ and y are B-indiscernible[140]. Equivalence
classes of I(B) are called B-granules[140].

A decision system is a special case of an information system. Suppose d is
a decision attribute and d ¢ A. We have to make a decision for d based on
the information in (U, A). Then an information system including d is a decision
system

A= (U Au{d})

where, d is called a decision attribute, and o € A as condition attribute. For
a given information system, we can describe a set accurately with its uniquely
identified attributes. However, it may happen that some elements with different
decision attribute values may belong to a single I{B). In this case, we describe
the set using the notion of an approximation.

Definition 4 (Approximation[140]) A = (U, A} is e given information sys-
tem, X C U is a set. For a given set B C A, the set X is approrimated with
two sets B (X) and B*(X)

B.(X) = | J{B(z) : B(z) C X}
el

B (X) = | J{B(): Blz)n X 0}
el

here, B(x} refers to an equivalence class of I{B) containing x. B.(X) and
B*(X) are called B-lower and B-upper approximation of X, respectively.

The B-lower approximation contains objects that are known to be members
of X, it is the union of all B-granules that are included in the set. The objects
in the set of the B-upper approximation are possible members of X. It is the
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union of all B-granules that have a nonempty intersection with the set. The
B-boundary region is defined as the difference between the upper and the lower
approximation[140]

BNp(X) = B*(X) — B.(X)

This is the set of objects which have an unknown relationship with X. Some
of them may be members of X, and others not. Obviously, elements in the
B-lower set clearly belong to X, but elements in the B-boundary set may or
may not belong to X. Therefore, the uncertainty of a rough set comes from
the B-boundary set. The relative size of a B-boundary set with respect to the
B-lower and B-upper sets has significant influence on the uncertainty of the
set as a whole. In rough sets, the accuracy of approximation is defined to
measure this significance.

Definition 5 (Accuracy of approximation[106]) A = (U, A) is an infor-
mation system, X C U and B C A, B,(X) end B*(X) are B-lower and B-
upper approzimation of X with respect to B. The accuracy of epprorimation is

defined as ap(X)
|B.(X)|
ap(X) = ==
0= B
where X # 0, |Bo(X)| and |B*(X)| are the cardinalities of B,(X) and B*(X)

respectively.

This coefficient is in fact very important, as it indicates how many elements in
the set are certain and the accuracy of the approximation. The propagation
of this coefficient under different set operations has not been fully investigated.
It is also our view that the propagation of roughness of the set as a result of
approximation opel'ation has not gained enough attention. Here, we will focus
on the propagation of this roughness,

Roughness [139] is a complementary concept to the accuracy of approxima-
tion. Roughness of a set X in information system A = (U, A) is reflected by
the ratio of the the number of objects in its B-boundary to that in its upper

approximation.

Definition 6 (roughness of approximation) The roughness R°(X) for a
set X approrimated by B,(X) and B*(X) is defined as the significance of the
uncertain elements to the set. This significance can be expressed as the ratio
between the cardinalities of boundary set BNp(X) and B-Upper set B*(X)

oo BNa(X) _ |B(X)] = |B(X)]
BolX) =500 = 1B

40



The roughness of approximation measure is, in some sense, the amount of
uncertainty of the underlying set. A roughness of 1 shows that we have no
certain knowledge on the underlying set, and a roughness of 0 means we know
everything for sure about the underlying set. It is obvious that there is a
relationship between the roughness of approximation R°g{X) and accuracy of
approximation ag{X)

R°p(X)=1-ap(X)

3.5.2 Set-oriented rough set interpretation and its opera-
tions

In this paper, similar to [128], we adopt the set-oriented interpretation of rough
sets [06, 128, 138, 230] and define a rough set as a pair of disjoint sets.

Definition T [230] Let pair apr = (U, B) be an approzimation space on U and
U/B denotes the set of all equivalence classes of B, The family of oll definable
sets in approzimation space apr is denoted by Def(apr). Given two subsets
A, A* € Deflapr) with A, C A, the pair (A., A™) is called a rough set.

Here, A, is the lower approximation of X = (A4,, A*), and A* is the upper
approximation of X. To differentiate the set-oriented rough set operation from
others, we adopt A, and A* instead of B, and B* hereafter. The accuracy
and roughness are also represented as a4 and RS. Here, we adopt the Iwinsky
type set-oriented rough sets [96], although there are other similar definitions of
set-oriented rough sets, such as the P-rough sets defined by Pawlak [138, 230].

Let U be the universe, and X3, X2 < U. The union, the intersection, the
difference and the complement of rough sets have the following properties[96,
128, 230]:

e Union

A (X1 UXp) = A (X)) U A(X2), AM(X1UXs)= A*(X1)UA*(X2)

e Intersection

AXI N X)) = A (X)) N A(X2), AY(X;NX2) = A*(X1) N A*(X2)

e Difference

AdX] = X)) = Au(X1) — A% (Xa), A™(X)1 — Xa) = A*(X1) — A,(X2)

41



» Complement
A(—Xy) =-A(X1), A*(-X1) = -A(X))

It should be noted that different views exist for rough sets interpretation,
so do their properties. A comprehensive review was given by Yao in [230]. Our
approach follows the set-oriented view although future work will present our
results for other interpretations. '

3.6 Grey systems

The Grey System was proposed by Professor Julong Deng in 1982 [47]. Grey
systems are concerned with the information belonging to the grey category.
Because of insufficient information, most of the statistical characteristics of the
system may not be clearly identified. However, the data available may reveal
the range of information. We now provide a number of definitions.

Definition 8 (Grey numbers[113]) A grey number is a number with clear
uppei- and lower boundaries but which has an unknown position within the bound-
aries. '

A grey number a* for the system is expressed mathematically as [37)
a* =[a",a]={a” <t<at}

where t is the unknown number represented by e, a~ and a* are the upper
and lower limits of the unknown number. When ¢~ = a¥t, we have a white
number.

Each grey number is associated with a degree of greyness to represent its
uncertainty. '

Definition 9 (Degree of greyness for grey numbers[113]) The significance
of the unknown interval to the white number represented by a grey number is
called the degree of greyness.

The degree of greyness a function of the interval and the underlying white
number. Because the underlying white number is unknown, the degree of grey-

ness is usually expressed as a function of the two boundaries of a grey numnber.
9°(a*) = f(a”,a*)

In what follows, we will only focus on the application of grey numbers and
the concept of degree of greyness to set uncertainty. There has not yet been a
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formal definition of grey sets although grey sets are referred as interval-valued
fuzzy sets in some research [49]. We have defined grey sets specifically for grey
numbers in a previous paper [214]. In this paper, we will define and analyse
grey sets in a more general sense and we do not limit them to just grey numbers,
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Chapter 4

Methodology extensions

4.1 Distance between intuitionistic fuzzy sets

4.1.1 Comparison of 2D and 3D distances

Because the hesitant degree can be expressed in terms of the membership and
non-membership degrees, it is argued that 312 distances are not necessary as
their 2D counterparts provide sufficient measures. As we will show, this is
not the case, because 2D and 3D functions could lead to contradictory results.
Therefore, we claim that 3D geometrical representation of intuitionistic fuzzy
sets can not be simply replaced by their 2D counterparts.

To do this, in the following, the concept of consistency of distances of intu-
itionistic fuzzy sets is introduced. As aforementioned, the distance between sets
is a measure of the siinilarity or difference between these sets. Therefore, two
distance measures should give consistent results if one could be replaced by the

other.

Definition 10 (Consistent distances) For any three intuitionistic fuzzy sub-
sets A, B, C of the universe of discourse X, the distances D, and D, defined on
X are said to be consistent 4f the following conditions hold:

1. Di(A,C) = Di(A, B) < Ds(A,C) = Dy(A, B)
2. Di(A,C) > Di(A, B) & Da(A,C) > Da(A, B)

Clearly, two distances for intuitionistic fuzzy sets which are consistent main-
tain the same order between any triple of intuitionistic fuzzy sets. Therefore,
when two distances are consistent then one of them can be replaced with the
other, with the only effect on the magnitude of the distances but no change
on the order between intuitionistic fuzzy sets. It is easy to prove that the 2D
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(3D) Hamming distance is consistent with the 2D (3D} normalised Hamming
distance, and the 2D (3D) Euclidean distance is consistent with the 2D (3D)
normalised Fuclidean distance. In particular, we have the following lemma for
the 2D and 3D distances for fuzzy sets.

Lemma 1 The 2D distances in Egquations (3.6)-(3.9) end 3D distances in
(8.10)-(3.18) coincide with their 1D distances counterparts in (3.2)-(8.5) when
the fwo sets in comparison are fuzzy sets.

Proof We will prove the result just for the Hamming distances di,dz,ds, be-
cause in similar way, we can prove it for the other distances.

For fuzzy sets A, B € U, we have va(z;) = 1 — pa(z;) , vp(z) = 1 —
up{z;) and Ta{x;) = 7(x;) = 0. Thus

44, B) = %ijm(aa ~ ip ()| + a(z) — va(i)]
= ilm (z:) — pp ()|
- dIEA,B)
and
B(A8) = 53 laa(o) = e+ Ioa(s) ~ vola +rals) = 7ol

= ZluA(ﬂ«"é)—ﬂB(ﬂ«"i)l
= dy(A,B)

Therefore, we have
d3(A1 B) = d?(A! B) == dl(A, B)

Obviously, 2D and 3D distance representations are really redundant for fuzzy
sets because they provide the same results than their 1D distance counterparts.
Clearly, for fuzzy sets because the distances in Equations (3.6)-(3.9), (3.10)-
{3.13) and (3.2)-(3.5) coincide with their counterparts we have that they are

consistent.

Corollary 1 The 2D distances in Equations (3.6)~(3.9) and 3D distances in
(8.10)-(8.13) are consistent to their 1D counterparts in (8.2)-(3.5) for fuzzy
sets. '

As aforementioned, it was argued that 3D distances on intuitionistic fuzzy

sets were not necessary because their third parameter can be expressed in terms



of the other two, and therefore the same results regarding the ordering of intu-
itionistic fuzzy sets would be obtained using their 2D counterparts. However,
this is not the case as we show in the following:

Lemina 2 The 2D distances for intuitionistic fuzzy sets in Equations (3.6)-
(3.8) are not consistent with the 3D distances in Equations (3.10)-(3.13)

Proof We provide the proof just for the Euclidean distance, the proof for the
rest being similar.

Let A = {{z,1~2v,v)}, B = {{z,v,1 -~ 2v}} and C = {{z,v,v)} be three
intuitionistic fuzzy sets of the universe of discourse X = {z} with v ¢ [0,0.5].
According to Equation (3.8) and (3.12), we have

e3(A,B) = |1 — 3u|, e3(A4,C) =1 - 3]
v2
2
Therefore, we have ea( A4, B) > e2(A,C) when e3(A, B) = e3(A,C), which obvi-

ously imply that e and e3 are not consistent.

e2(A,B) =|1—-3v|, e2(A,C)=—|1-3vy

As the above result shows, the application of a 2D and a 3D distance to
the same set of three intuitionistic fuzzy sets provides a different ordering or
representation of it. Using the 3D distance both B and ' are at the same
distance from A, while with the 2D distance B is further from A than C. Clearly,
this last result is due to the fact that the hesitation margins of the intuitionistic
fuzzy sets are not taken into account. Although the hesitation margin can be
derived from the other two, this does not mean that it has not an effect on the
representation of the intuitionistic fuzzy sets.

For the above example, the difference in the results obtained can be seen
clearly when comparing both the 2D and 3D geometrical representation of the
three intuitionistic fuzzy sets. The three Intuitionistic fuzzy sets A, B and C
are represented as points A, B and C in 3D interpretation and A., B and Cs
in 2D interpretation, as shown in Figure 4.1.

In Figure 4.1, A2DB5 is parallel to AB, hence its length is not changed.
However, A2C5 has an angle with AC, and it is the projection of AC in plane
pv, therefore, its length is less than AC. This is clearly a consequence of taking
into account the third parameter of intuitionistic fuzzy sets. Although having
the same relationship with the other two parameters in A, B, C, the effect of
taking it into account does not lead to the same results regarding their relative
ordering,. ‘

Another argument to support the use of the three dimensions of intuitionistic

fuzzy sets when calculating their distance is the following. If only two parame-
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Figure 4.1: The inconsistency between 2D and 3D distances of intuitionistic
fuzzy sets

ters among the three (i(z}, v(x), 7(x)) were sufficient to represent the distances
because of their dependence (u(z) + v(z) + 7(z) = 1), then there would be no
reason why the definition of the distance functions should based on (u(x), v(x))
and not on (i(z), 7(x)) for example. As a consequence, the same results regard-
ing the relative ordering should be obtained no matter which two parameters are
used to measure the distance between intuitionistic fuzzy sets. Therefore, given
three intuitionistic fuzzy sets their relative positions obtained with a 2D dis-
tance should be the same no matter we use (u(r),v(z)) or {(u(x), 7(x)). Again,
this is not the case as we show using the same intuitionistic fuzzy sets A, B and
C of Lemma 2. Using the distance e; we get opposite conclusions:

ea(A, B) > e3( A, C) for 2D interpretation based on u(x) and v{z)

ea{ A, B) < e3(4,C) for 2D interpretation based on p{z) and 7{z)

From the point of view of continuity or related concepts, the 3D distance does
not reveal more than the 2D distance as proved in [48]. However, the application
of intuitionistic fuzzy sets may require more than a distinction between two sets.
The same continuity does not guarantee the same order, and hence the result
for a query may be different. The 3D distance reveals the impact of hesitation
margins in the relative order. This is an important factor in decision making
because it reflects the influence of lacking of information (173, 174, 172, 170,
169, 167, 165, 164, 163, 162, 161, 112, 178]. A query based on 2D distances may

not reflect the same situation as if based on 3D distances. It is necessary to keep
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3D distances as a supplement to the simplicity of 2D distances and therefore it
is worthwhile to investigate the 31 Hausdorff distances for intuitionistic fuzzy
sets.

4.1.2 Extended Hausdorfl distances between intuitionistic
fuzzy sets

Given two intervals U = [u;,us] and V = [y, va) of R, the Hausdorff metric is
defined as [94]
My (U, V) = max{|u; —v1], Jug — val}

The Hausdorff metric applied to two intuitionistic fuzzy sets, A(z) = [pa(z), 1—
va(z)] and B(z) = [ue(z), 1 — ve(z)], gives the following:

My (A(z), B(z)) = max{|pa(z) — pp(z)l, [valz) — va(z)|} (4.1)

The following 2D Hausdorff based distances between intuitionistic fuzzy sets
have been proposed [94, 79]

¢ The Hamming distance dy{A, B)

dn(4, B) = Zmax{ima(wa) ua(@l lvale) —va(=)l}  (42)

i=1

¢ The normalised Hamming distance i,(A, B)

In(A, B} = Zmaw{lm ra)—ﬂB(wz)l lvalz:) —ve(z)l}  (4.3)

1—1

e The Euclidean distance ey, (A4, B)

en(A,B) = JZmat{ palr) — pp(z))?, (valz) — ve(z:))?} (4.4)

e The normalised Euclidean distance ¢;, (A4, B)

qn(A, B) = \j %Z’r’fla-’ﬂ{(lm(m) — pup(z:))?, (valz:) — ve(x:))?} (4.5)

i=1

Obviously, distances (4.2)—(4.5) do not take into account the third parameter
. of intuitionistic fuzzy sets, 74 (x) and rp(z}. To do this, a 3D extended Hausdorff
distance is necessary. A straightforward way to get this is to implement the
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corresponding difference between 74(x) and () in (4.1):
Mn(A(z}), B(z)) = max{|pa(z) — pa(z)|, lva(z) — vB(z)|, |Ta(2) — 7B(2)|}

In the following we present the corresponding 3D extended versions of the
above 2D Hausdorff based distances for intuitionistic fuzzy sets:

Definition 11 (Extended Hausdorff distances) For any two intuitionistic
fuzzy subsets A = {{xs, pa(2i), va(xy)) : 2 € X} and B = {{xi, pp(x:), vp(2:))
z; € X} of the universe of discourse X = {z1,Z0,.:.,Zn}, we have:

o The Hamming distance dep (A, B)

den(A, B) = 3 max{|ualz:)—ps(z:)], [valz)—va(z:)), [7alz:) —Ts(z:)|}

=1
(4.6)
o The normalised Hamming distance lop(A, B)
1 n
len(A,B) = n Zmﬂx{WA(ﬂ?i)—uB(mi)l, |va(z:)—ve(z:)l, |Ta(z:)—T8{x)|}
i=1
(4.7)

e The Euclidean distance e.n{A, B)

een(A, B) = | Y _ maz{(ualz:) - 1)) (va(T:) — vB(ze)2, (ral®s) ~ 78(2:))%)
i=1
(4.8)

o The normalised Euclidean distance qep{A,B)

qen(A, B) d me{ palz:) = pa(zd)?, (vales) — ve(x:)?, (ralz:) — 78(z:))*}
(4.9)

The following example shows that for the same set of intuitionistic fuzzy sets,
opposite results can be derived when applying the above 3D extended Hausdorff

distances and the corresponding 2D versions.

Example Let us consider the following three intuitionistic fuzzy sets A, B, C
in X = {z}:

A = {{z,0.25,0.25)}, B = {(z,0.2,0.2}}, C = {(z,0.18,0.32)}
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The application of the 2D Hausdorff (4.2)—{4.5) results in
dr(A, B) = 0.05, [5(A4, B) = 0.05, ex (A, B) = 0.05, gu(4, B) = 0.05

dn(A, C) = 0.07, In(A,C) = 0.07, e (A, C) = 0.07, gn(A, C) = 0.07

and we conclude that in any case B is closer to A than C. However, the
application of the 3D extended Hausdorff distances (4.6)-(4.9) results in

den{A, By =01, l.n(A,B) = 0.1, e.n(A,B) =0.1, gn(4,B) =0.1

den(A, C) = 0.07, Len(A, C) = 0.07, een(A, C) = 0.07, gen(A,C) = 0.07

and thus, we conclude that C is closer to A than B. It is clear that the appli-
cation of the 2D HausdorfT distance and 3D extended Hausdorff distance may
result in contradictory results. ‘The reason behind this difference resides again in
the implementation or not of the hesitation margins in the distance function. In
2D representation, the hesitation margins are neglected completely. However,
75(x) = 0.6 > 7a4(z) = To(x) = 0.5 means that the real difference between
A and B could be much greater than their 2D distances. Therefore, the 3D
distance reveals the significant influence of the lacking of information in this
comparison. It could be crucial in real world decision making where lacking of
information cannot be simply ignored.

The above example proves the following result:

Lemvma 3 For intuitionistic fuzzy sets, the 2D Hausdorff distances are not con-
sistent with the 3D extended Hausdorff distances.

‘ In the following we present some properties of the 3D extended Hausdorff
distances shared by the 2D Hausdorff distances.

Lemma 4 Let X denote a finite universe of discourse. All functions from
definition 11 are metrics.

Lemma 5 For any two intuitionistic fuzzy subsets A = {{(zy, ppa(z;), va(z)) :
2 € X} and B = {{zi, pp(xs),ve(zs)) 1 5 € X} of the universe of discourse
X ={z1.22,...,2,}, the following inequalities hold:

d2(A, B) £ dn(A, B) < den(A, B) ; 12(4,B) < h(A, B) < len(A, B)
e2(A,13) S en(A, B) S een{A,B) 1 q2(A, B) < qu(A, B} < gen(A, B}

Proof For any nonnegative numbars a,b,¢, it is clear that max{a,b,c} >
max{a,b}, hence don(A, B) > di(A, B). Obviously 1 57 [lnalz:) — pez)| +
[val@:) —vp(r:)|] < 202, max{|ualz:) — pa(z:)l, [va(zs) — va(z:}|}. Therefore



dz(A, B) < dn(A, B). Then we have d3(A4,B) < d,(4,B) < den(A,B). The
others inequalities can be proved in a similar way.

Lemma 6 For any two intuitionistic fuzzy subsets A = {{x;, pa(z;), va(z:)) :
z; € X} and B = {{x;, up{z:),vp{z;)) : z; € X} of the universe of discourse
X ={z1,%2,..., 1.}, the following inequalitics hold:

deh(Ay B) S n, tek(A, B) .<... 11 eeh(Ay B) S '\/5: qt!h(As B) S 1

In contrast with conclusions from [79], we note that these inequalities do
not include those 3D representations in Equations (3.10-3.13). The reason for
this being that lemma 4 in [79] does not hold for some special cases. For
examnple, when A = < 2,0.7,0.1 > and B = < 7,0.3,0.2 > then e,(4,B) =
0.4 > e3(A,B) =0.36. :

- Lemma 5 presents a general relationship between 3D Hausdorff distances and
2D Hausdorff distances, but lacks to provide conditions to assure their consis-
tency. The following results presents a condition under which both 2D Hausdorff
distances and 3D extended Hausdorff distances are consistent, and therefore the
same conclusions can be derived no matter which Hausdorff distance is used.

Lemma T Given any two intuitionistic fuzzy subsets A = {(xs, pa(x:), valz:)) :
z; € X} and B = {{x;,up(x:),ve(z;)} : x; € X} of the universe of dis-
course X = {x1,Zy,-..,Zn}, the following relationship holds between 3D ex-
tended Hausdorff distances and 2D Hausdorff distances: If (up{x;} — pa(z;)) *
(vB(x;) —va(zy)) <0 for each x; € X, then

d;;(A,B) = den(A, B), (A, B) = len(A, B), en(A4, B) = een (A, B), gn(A, B) = g (A, B)

Proof We only prove the results for the Hamming distance, because the other
relationships can be proved in a similar way. When (tp () —pa(z;))* (vp(z;) —

va(zi)) <0, [ralz:) =78 ()| < max{[pa(z:)—pa(z:)l, [va(z;)—ve(z;)|} holds.
Therefore,

max{[palz:) ~ wa(z:), [val@:) — va(z), |Talz:) — 78 (2:)|}
= max{|pa(z:) = pa(), [va(z:) —va(zl} Ve e X

Hence, den{A, B) = di(A, B).

The following result expresses the relationship between the 3D distances in
Equations (3.10-3.13) and the 3D extended Hausdorff distances.

Lemima 8 Given any two infuitionistic fuzzy subsets A = {{z;, palz;:},valz))
r; € X} and B = {{z;, ppl{z), vz} 1 2, € X} of the undverse of discourse
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X ={z1,22,...,Zn}, the following relationships hold:
den(A, B) = ds(4, B), len(A, B) =13(A, B), ecn(A, B) > es(A, B), gen(4A, B) > q3(A, B)
Proof

Alua(@i) - pa(@)] +walze) - va(@)l + Ira () = 75(20)]) =
lna(ws) — polx)| + Jva(z:) —va(z)l if (us(:) — pa(zi)) * (welzd) —valzi)) 2 0;
lita(e:) — el if (ue(z:) — pa(z:)) * (va(e:) — valz:)} <0
and |ug(zi) — pa(z)l > |va(z:) — valz:)|;
[valz:) —valz:)| if (pe(z:) — pa(@:)) x (val{r:) - va(z:)) <0
and |pp(z:) — pa{z)l < |vB(z:) ~ va(z:)].

Hence, we can conclude that §[|ua(z:) — ua(z:)| + |va(z:) —ve ()| +|Tal@:) —

rp(x;)|] is equal to the maximum of |za(x;} — pp(z:)l, [valzi) — ve(z;)| and
|Ta(z:) — Tr(Z:)|, and therefore d3(A, B) = d.n(A, B). The same result can be
obtained for I3 and lp. For the Euclidean distance, we get:

max{(pa(zs) — ua(x:))?, (val@i) — ve(z:))?, (talze) — r5(2:))’} =
(ra(z:) — polz:) +valm:) — velz:))? if (us(z:) — palz:)) = (ve(z:) — valz:)) > 0;
max{(pa(r:) ~ ps(2:))?, (valz:) — ve(z:))’}
if (up(ws) — pale:)) * (vp(x:) — valz:)) <0.

and we can conclude that e.n(A, B) > e3(A, B). The same result can be
obtained for ¢3 and gy,

4.1.3 3D Spherical distance
Limitation of linear distances

Research in cognition science [39] has shown that people are faster at identifying
an object that is significantly different from other objects than at identifying
an object similar to others. The semantic distance between objects plays a
significant role in the performance of these comparisons [190]. For the concepts
represented by fuzzy sets and intuitionistic fuzzy sets, an element with full
menbership (non-membership)} is usually much easier to be determined because
of its categorical difference from other elements. This requires the distance
between intuitionistic fuzzy sets or fuzzy sets to reflect the semantic context of
where the membership/non-membership values are, rather than a simple relative .
difference between them.

In contrast to traditional fuzzy sets where only a single number is used
to represent membership degree, more parameters are needed for intuitionistic
fuzzy sets. Geometrical interpretations have been associated with these pa-

rameters, which are especially useful when studying the similarity or distance
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between intuitionistic fuzzy sets. One of these geometrical interpretations was
given by Atanassov in [17], as shown in Figure 4.2(a), where a universe U and
subset OST in the Euclidean plane with Cartesian coordinates are represented.
According to this interpretation, given an intuitionistic fuzzy set A, a function
fa from U to OST can be constructed, such that if w € U/, then

P = fu(u) e OST

is the point with coordinates (ra(u),v4(u)} for which 0 < pa(u) < 1,0 <
valu) €1, 0 palu) +valu) < 1.

We note that the triangle OST in fig. 4.2 (a) is an orthogonal projection
of the 3D representation proposed by Szmidt and Kacprzyk [168], as shown in
fig. 4.2 (b). In this representation, in addition to pa(u) and v4(u), a third
dimension is present, Ta{u) = 1 — pa{u) — va(u). Because pa(u) + va(u) +
Ta(u) = 1, the restricted plane RST can be interpreted as the 3D counterpart
of an intuitionistic fuzzy set. Therefore, in a similar way to Atanassov procedure,
for an intuitionistic fuzzy set A a function f4 from I/ to RST can be constructed,
in such a way that given u € U, then

S = fa(u) € RST

has coordinates (pea(u), va(u), 7a(u)) for which 0 < pa(u) < 1,0 < valu) <
1, 0 < 7a(u) <1 and pa(u) +valu)+7a(u) = 1.

Vy

5(.1)

Ha

(s V) T(1.0.0)

o(n.0) T Wy a
a. 2D representation h, 3D representation

Figure 4.2: 2D and 3D representation of intuitionistic fuzzy sets

Most existing distances based on the linear representation of intuitionistic
fuzzy sets are lincar in nature, in the sense of being based on the relative differ-
ence between membership degrees [99, 15, 16, 17, 168, 166, 161, 176, 162, 177,
163]. '

All the above distances clearly adopt a linear plane interpretation, and there-
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fore they reflect only the relative differences between the memberships, non-
memberships and hesitancy degrees of intuitionistic fuzzy sets. The following
lemma proves that:

Lemma 9 For any four intuitionistic fuzzy subsets A = {(us, paus), va(ws)) :
i € U}, B = {{uspB(w),ve(w)) : wi € U}, C = {{u;, po(us), vo(w)) :
u; € U} and G = {{u;, pe(ws), ve(u)) : u; € U} of the universe of discourse
U = {uy,us,...,us}, if the following conditions hold

pa(us) — palus) = polus) — pel(us)

va(u:) — vplw) = vo(us) ~ vo(u)

then
D(A,B) = D(C,G)

being D any of the above Atanassov’s 2D or Szmidt and Kaceprzyk'’s 3D distance
functions.

Proof The proof is obvious for Atanassov’s 2D distances. For Szmidt and
Kacprzyk’s 3D distances, the proof follows from the fact that

[palus) — pplu) = po(w) — po(w)l A va(w) — ve(w) = ve(w) — ve(u)]

imply that

Ta(w;) — mB(u) = 7o (ui) — T (ui)

If |7a(w;) — TB(w;)| = |refui) — Te{us)|, the condition in lemma (9) can be
generalised to
|alws) — pp(us)] = lrc(u) — palu)|

va(us) ~ ve(u)| = |ve{w) — vo(ui)l

This means that if we move both sets in the space shown in Figure 4.2(Db)
with the same changes in membership, non-membership and hesitancy degrees,
then we obtain exactly the same distance between the two fuzzy sets. This
linear feature of the above distances may not be adequate in somne cases, because
human perception is not necessarily always linear.

For example, we can classify the human behaviour as perfect, good, accept-
able, poor and worst. Using fuzzy sets, we can assign their fuzzy membership
as I, 0.75, 0.5, 0.25 and 0. To find out if someone’s behaviour is perfect or
not, we only need to check if there is anything wrong with them. However, to
differentiate good from acceptable, we have to count their positive and negative

points. Obviously, the semantic distance between perfect and good should be



greater than the semantic distance between good and acceptable. This semantic
difference is not captured by using alinear distance between their memberships.

Therefore, a non-linear representation of the distance between two intuition-
istic fuzzy sets may benefit the representative power of intuitionistic fuzzy sets.
Although, non-linearity could be modelled by using many different expressions,
we will consider and use a simple one to model it. Here, we propose a new geo-
metrical interpretation of intuitionistic fuzzy sets in 3D space using a restricted
spherical surface. This new representation provides a convenient and also simple

non-linear measure of the distance between two intuitionistic fuzzy sets.
Spherical Interpretation of Intuitionistic Fuzzy Sets: Spherical Dis-
tance

Let A = {{u, pa{u),va(u)} : u € U} be an intuitionistic fuzzy set. We have
palu) +va(u) +1a(u) =1
which can be equivalently transformed to
4P 422 =1

with

2

2? = pa(u), v¥=valy), 2 =7alz)

It is obvious that we could have other transformations satisfying the same func-
tion. However, as shown in the existing distances, there is no special reason to
discriminate ga(u), va(u) and 74(u). Therefore, a simple non-linear transfor-
mation to the unit sphere is selected here. .

Figure 4.3: 3D sphere representation of intuitionistic fuzzy sets
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This last equality represents a unit sphere in a 3D Euclidean space as shown
in Figure 4.3. This allows us to interpret an intuitionistic fuzzy set as a restricted
spherical surface. An immediate consequence of this interpretation is that the
distance between two elements in an intuitionistic fuzzy set can be defined as the
spherical distance between their corresponding points on its restricted spherical

“surface representation. This distance is defined as the shortest path between
the two points, i.e. the length of the arc of the great circle passing through both
points. For points P and @ in Figure 4.3, their spherical distance is [2]:

4(P,Q) = rocos {1 - 1 [(er — )" + (vr — 10)? + (2 — 20)7]}

This expression can be used to obtain the expression of the spherical dis-
tance between two intuitionistic fuzzy sets, A = {{u;, pa(u;),va(w)) 1 u; € U}
and B = {{u;, pp(u:), ve(wi}) : uy € U} of the universe of discourse U =
{u1,u2,...,u,}, as follows:

4,(4,B) = 23" arccos {1 - 2 [(Viaa(w) — vVrep(wn))’
=1
+ (Vva(uw) = Vvsu))’ + (Vralu) — \/TB(“e))z]}

(4.10)

where the factor 2 is introduced to get distance values in the renge [0, 1] instead
of [0, §]. Because p4{u;)+va(ui)+74(u;) = 1 and pp(us)+vp(w)+7p(w) =1,
we have that

™

ds(A, B) = %Z arccos (\/,t_m(u,;)#g(u,-) + Vvaluve(u) + \/TA(ui)TB(ui))

i=1
This is suminarised in the following definition:

Definition 12 (Spherical distance) For any two intuitionistic fuzzy sets A =
{{us, palus), val)) t u; € U} and B = {{us, pp(w;),va{u:)y + u; € U} of
the universe of discourse U = {uy,u0,...,u,}, their spherical and normalised
spherical distances are:

o Spherical distance ds{(A, B)

n

4,(4,5) = 2 3 axceos (sl nn () + v/valuvs(es) + v/7alun) a0

i=1

e Normalised spherical distance d,.(A, B)

dns(A, B) = ni'n' Zarccos (ﬂA(ui)uB(ui) + \/UA(ui)z/B(ui) + \/TA(ui)TB(u,-))
i=1



Clearly, we have that 0 < d;(A,B) <nand 0 < d,,(4,B) <1

Different from the distances in Section 3.3.2, the proposed spherical distances
implement in their definition not only the difference between membership, non-
membership and hesitancy degrees, but also their actual values. This is shown
in the following result: '

Lemma 10 A = {{us, pa(us), valus)) 1 vy € U} and B = {{wi, pp(us), vp(ui)) :
u; € U} are two intuitionistic fuzzy subsets of the universe of discourse U =
{u1,u2,...,us}, and a = {a1,82,...,8,} and b = {by,b2,...,bp} two sets of
real numbers (constants). If the following conditions hold for each u; € U

pe(us) = pa(u) +a;

vp(u) = valw) +b; -
then the following inequalities hold

"

2
z Zarccos\/l —e} <dy(4,B)< = Zarccos VI = )1 = Jad] — 5]}
t= 1=1
2 + 5
= v/1—e€? <ds(A,B) < — T =l =T
o 2 arccos € = ns( ) = r ;arcms \/( c )( !a1| | z|)

where, ¢; = max{|ai|,|b;]} and e; = min{la;|,|b:|}. The mazimum distance
between A and B is obtained if and only if one of them is a fuzzy set or their

available information supports only opposite membership degree for each one.

Proof According to Definition (12), we have

dy(A, B) Zarccos( s () + /alvs (e +/7almrs(u)
Because A and B satisfy
palus) = palug) +a;

vp(ui) = valug) + b

then
Ta(u) =1 — pa(w) — valug) —a; — b
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and

4,4, B) = 23" arecos (v/palu)(hal) + @) + v/Vau) (7w T 57

gl

+ V(1= pealus) — va(ud (1 — palus) —va(w) — ai — b))
Let

flu,v) = \/u(u+ai)+\/v(v+bi)+\/(Twu—v)(l-—u—fu-—'ai —b;)

Denoting a = |a;| and b = |b;|, then we distinguish 4 possible cases
Case 1: a; > 0 and b; > 0. In this case,

fl,v) = Vulu+a) + Vel +b + /(1 -u—v)(l—u—v—a-b)

Let f'(u,v)}u = 0, we have

_a{v—1) _a(l=a—b—v)
U = 5 and u = St b
Let f'{u,v}|s =0, then
_ blu—1) and v = b{(l —a-—b—u)
a 2b+a
where ) ; .
z—————a(v_ ) <Oandfu=——-—(u_ ) <0
b a
hence the valid solutions are
_a{l-a—b-—v) _b(l—a—b—u)
“= 2a+ b and v = 2b+ a
Solving these equations, we have
_a(l—a—b) _bl—-a=1b)
U= s MU e

hence

a(l—a—"5) bl —a—b) VI~ 07
= =+/1- b)?
fo f( 2a+0) 7 2(a+d) (a+b)
Obviously, the third square root in f(u,v) must be defined, we have
0€<u<<l—a—-band0<v<l—-—a—->

The boundary points are reached when u and v get their minimum or maximum



values. Assume ¢t = 74({u;), they have to satisfy

utv+i=1
fu=1l—-a—-bandv=1—a—bthent=2a+2b—1, we have (1 —u—v){1 —
u—v—a—>)=(2a+2b—1)(a+b~—1) <0, the third square root in f(u,v) is
not defined. therefore, we have three boundary points for A

u=0, v=1—a—b, t=a+b

u=l—-a-b v=0, t=a+b
=0, v=0, t=1

Thus

A=f01-a-b)=I-al-a-b)
fo=fl~a=b0)=/1-b)01—a—-b)
f2=£(0,00=vI—a=5

Ifa; >0 and b; > 0, then a + b < 1, we have

k<

o< fo

The relationship between f; and f» depends on the relationship between a and
b. Let ¢ = max{a,b} and ¢ = min{a, b}, then we have

VI=c(l-a-b) < flu,v) < V1-¢?

Case 2: a; < 0 and b; < 0. In this case, the same conclusion is obtained following
a similar reasoning. '

Case 8 a; <0 and b; > 0. In this case,

fl, vy = Vulu—a)+Vo(w+b) + /(1 —u—v)(l—u—v+a—1b)
Let f'(u,v)|. = 0, we have

_a{l -v) _all+a-b-v)
y = 2 and u = P
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Let f'(u,v)|, = 0, then

- b(1 — u) and v — —b(l-;—i—z—bb—u)

Foruzgﬂ,:—”landv=ﬂ~1;—“l,wegeta=b, hence
u=1l—vandu—a=1—v—b

Clearly, both A and B are fuzzy sets under this situation. According to lemma
12, we know that

VI—a < flu,v) < V1-a?
For v = %_—“)— and v = ﬂ%f;Tb_ﬁ, we have
u= “(Q(Z ig)b) and v = — b(i(ﬁ a—;)b)
fa>b
u>0and v <0
otherwise

u<land v>0

hence the only valid solution exists when & = 0, in which case

fo=viT@

Foru=M andvz-ﬂlz'—fg-:—_u—),we have
_a{l+b) 1-4
u——g-g-——andv— 5 .
then

fr = s a>band b #0;
' v1—-5b2 a<hb.

For set A, u+wv <1, and

A

=

+

=

—
|

+— <1

]
>
&

then
(a—b)(1+b)<0

60



however 1 + b > 0, which implies a < b. Therefore we have

fi=V1-¥

Similarly, for u = ‘ﬂ-l-j";;b_ﬂ and v = i(l;'_"l, we have ¢ > b and

%a—b
fo=+v1-0a?

For # and v under the second situation, we have
a<u<1land0<v<1-max{a,b}

theréfore, we have boundary points for A

Thus

fs = = V1
fo=f(a,0) = /(1 —a)(1-1b)

Denoting e = min{a, b}, we have

V1-e? 2 flu,v) 2 vmin{(l —a)(1 —a+0),(1 -a)(1 - b)}

Let ¢ = max{a,b} then

V1 —e2 > flu,v) > min{(1 —c)(1 — c+e), (1 ~a)(l ~b)}

Thus

Vi—e?> flu,v) = (1 —c)(l—a—b)

Case 4: a; > 0 and b; < 0. Again, following a similar reasoning to the one in

case 3, the same conclusion can be drawn in this case.
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In the four cases we conclude that

ki)

2 = — 22
=53 arccos /1 — e? < du(4, B) < = 12 arccos 1/ (1 — e){1 — las| — (b))

Li=1

2 & — 2 &
= 1—e? <d, = — e)(1 = as| — |B;
— figlarccos\/ ef <d. (A, B)< o Z arccos \/(1 e )(1 = Jas| — [b:])

=1

where ¢; = max{|a;|,|b;|} and e; = min{|a;|,|b;}.

According to the boundary points discussed in the four cases, if a;b; > 0
holds for each u;, we have

palu) =0, va(w)=1l-a-b, 7a(w)=a+b
or
pa(u)=1—a—b, valw}=0, 7a(ui}=a+b
hence, the set B has to satisfy
wplui) =0, ve(w)=1-a, 75w =0
~or
pp(ui) =1-"b, vp(w)=>, 7p{u)=0

Obviously, B is a fuzzy-set. Similar conclusion can be drawn if a;b; < 0 holds
for each u; and /(1 — ¢){1 —c+e) < /(1 —a){l —b). However, if a; < 0 and
b; > 0 hold for each u; and /(1 —a){l —a +b) > /(1 —a)(1 —b), we have

palug) =a, valw) =0, 7alu)=1-a
hence, the set B has to satisfy
pp(u) =0, velw) =06 7a(u;)=1-10

Obviously, A is an intuitionistic fuzzy set with available information sup-
porting membership only, and B is an intuitionistic fuzzy set with available
information supporting non-membership only.

Due to the non-linear characteristic of the spherical distance, they do not
satisfy lemma 9. However, the following properties hold for the spherical dis-

tances:

Lemma 11 A = {{us, pa(us), valug)) s u; € U} and B = {{u;, up(w;), ve(us)) «
u; € U} and E = {{u, up(us}, ve(w)) : us € U} are three intuitionistic fuzzy
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subsets of the universe of discourse U = {uy,u2,...,un}, anda = {ay,a2,...,8,}
and b = {bi,bz, vvoybn} two sets of real positive numbers (constants) satisfying
the following conditions

| (u:) — palus}| = ai,  |ve(ui) = va(udf = b

lue(w:) — palw)| = ai,  [vE(us) — valus)| = b
If E is one of the two extreme crisp sets with either up(u;) =1 orvp(uw;) =1
for all u; € U, then the following inequalities hold

dy(A, B) < da(A,E), dns(A, B) < dns(A, E)

The distance between intuitionistic fuzzy sets A and B is always lower than the
distance between A and the ertreme crisp sets E under the same difference of
their. memberships and non-memberships.

Proof We provide the proof just for the extreme fuzzy set with full member-
ships, the proof for full non-membership being similar.
With E being the extreme crisp set with full memberships, we have

pe{w) =1, velu)=0, 75(u;)=0

Because |ug{u;) — pa(u;)| = a; and |vp(u;) — va(w;)f = by, then we have
palws) =1—a;, va(w)=>b; 7Ta(u)=a;—b;
From | g(us) — paluws)] = a; and |wp(u:) — va(w;)| = bi, we have
pp(u) =1-2a;, vp(w)=2b;, 7u(w) = 2{a; —b;)

Therefore, we have

T

d{A,B) = %Zarccos (\/(1 —a;}(1 — 2a;) + /207 + /2{a; — b5)2>

i=1

| = %iarccos (\/5(3,: + /(1 —a)(l ~ Qai))
i=1

and
n

ds(A, E) = % Zarccos (V1—a,) -

i=1
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Obviously, we have

V2a; + /1 — a){1 — 2a3) > VI — a;

Thus
ds(A, B) < ds(A, E)

and dividing by n
dns(A, B) < dns(A, E)

Lemma 11 shows that the extreme crisp sets with full memberships or full
non-memberships are categorically different from other intuitionistic fuzzy sets.
With the same difference of memberships and non-memberships, the distance
from an extreme crisp set is always preater than the distances from other intu-
itionistic fuzzy sets. This conclusion agrees with our human perception about
the quality change against quantity change, and captures the semantic difference
between extreme situation and intermediate situations.

Spherical Distances for Fuzzy Sets

As we have already mentioned, fuzzy sets are particular cases of intuitionistic
fuzzy sets. Therefore, the above spherical distances can be applied to fuzzy sets.
In the following we provide lemma 12 for the distance between two fuzzy sets.

Lemma 12 Let A = {(u;, pa(u:)) 1 u; € U} and B = {{us, upl{w;)) : ui € U}
be two fuzzy sets in the universe of discourse U = {uj,ug,...,tun}, and a =
{a1,a2,...,0:} is a set of non-negative real constants. If |pa(u:)— pp{u:)| = a;
holds for each u; € U, then the following inequalities hold

n . n
2 Zarccos Vv1—a?<d, (A B)< 2 Z arccos V1 — a;
T s

i=1 i=1

T

2 < P
—_ Z arccos v 1 —a;? < dys(4,B) € — Z arceosv'1 — a4
nm & nw

i=1
The mazrimum distance between A and B is achieved if and only if one of them

is a crisp set.

Proof According to Definition (12}, we have

n

dq.(4,B) = % Z aArccos (\/,t_m(u.i),ug('u.i) + \/VA (ui)wp (1) + '\/TA(?L.E)TB(U.L-))

i=1
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For fuzzy sets, we have
Talw;) =0and va(u;) =1 — pa(u)
T8(u;) =0 and vp(u;) =1 — pup(u;)
Considering |pa(w;) — pa(u;)| = a; and pa(y;) = 0, we have
pa(us) = palus) o

If
puplug) = pa{us) + e

then

4u(4,B) = 2 3" axceos (Vialudan(@) + VI~ waw)1 — fnlas)
i=1

= 2 Y arecos (Vira(ua) ain) a9 + /T = sl (1 — iala) — 7))

i=]1

This can be rewritten as

ds(A,B) = ;ZT-ZMCCOS filua(w:))
i=1

with fi(t) = \/t(t +a;) + /(1 —t)(1 =t — a;), t € [0,1 — a;]. The extremes of
function f;(¢) will be among the solution of

ft)=0te(0,1-a)

and the values 0 and 1 — a4, i.e, among I_—z“i,O and 1 — ¢;. The maximum
value VT — e;2 is obtained when ¢ = 1;2“1, while the minimum value /1 — a; is

obtained in both 0 and 1 — a;. We conclude that

—Zaxccosvl—a,g<d (4, B) SEZ’IICCOS v1i—a;
7r i=1

i=1

When t = 0 or t = 1 — a;, we have respectively pa(u;) = 0 and pp(u;) =
1—a;+ea; = 1, which implies that one set among A and I has to be crisp in order
to reach the maximum value under the given diffcrence in their membership
degrees.

Following a similar reasoning, it is easy to prove that the same conclusion
is obtained in the case pp(u;) = palu;) — ;. If the last case of bring pp(u;) =

pa(us) — a; for some 4, and pp(u;) = pa(u;) + a; for some j, then we could



separate the elements into two different groups, each of them satisfying the
inequalities, and therefore their summation obviously satisfying it too. The
normalised inequality is obtained just by dividing the first one by n.

Because spherical distances are quite different from the traditional distances,
the semantics associated to them also differ. For the same relative difference
in membership degrees, the spherical distance varies with the locations of its
two relevant sets in the membership degree space, 2D for fuzzy sets and 3D for
intuitionistic fuzzy sets. The spherical distance achieves its maximum when one
of the fuzzy sets is an extreme crisp set. The following example illustrates this
effect.

Example Consider our previous example about human behaviour, we can clas-
sify our behaviour as perfect, good, acceptable, poor and worst. Their corre-
sponding fuzzy membership as 1, 0.75, 0.5, 0.25 and 0. A= {(4,0.75) : u € U},
B = {{u,05):u € U} and E = {{u,1) : w € U} are three fuzzy subsets and
U = {u} is a universe of discourse with one element only.

From Section 3.3, we have

di(4, B) = 11(A, B) = e1(A, B) = q1(4, B) = 0.25
d1(A, E) = 1, (A, E) = e1(A, E) = q1(A, E) = 0.25
Obviously, we have
d1(A,B) =di(4,E), L(A,B)=1(A E)

er{A,B)=¢e1(AE), (A, B)=q{AE)

From Definition 12, we have

dne{A, B) = do{A, B) = % iarccos (\/0.75 x05+ /(1 -0.75)(1 = 0.5)) = 0.17

i=1

dns(A,E) = dy(AE) = %Zarccos (\/0.75 * 1) - 0.33
i=1

Obviously, the traditional linear distance of fuzzy scts does not differentiate
the scinantic difference of & crisp set from a fuzzy set. However, d,(A4, E) and
dns{A, E) are much greater than d; (4, B) and d,s(4, B). It demonstrates that
the crisp set E is much more different from A than B although their membership
difference appears the same. Hence, the proposed spherical distance does show
the semantic difference between a crisp set and a fuzzy set. This is useful when
this kind of semantic difference is significant in the consideration.
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Figure 4.4 shows four comparisons between the spherical distance and the
Hamming distance for two fuzzy subsets 4, B with a universe of discourse with
one element U = {u}. The curves represent the spherical distance, and lines
denote Hamming distances. Figure 4.4(a) displays how the distance changes
with respect to up(r) when pa{z) = 0, fig. 4.4(b) uses the value pa(z) = 1,
in fig. 4.4(c) the value p4(z) = 0.2 is used, and finally pa(z) = 0.5 is used in
fig. 4.4(d). Clearly, the spherical distance changes sharply for values close to
the two lower and upper memberships values, but slightly for values close to the
middle membership value. In the case of the Hamming distance, the same rate
of change is always obtained.
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Figure 4.4: Comparison between spherical distances and Hamming distances for
fuzzy sets

Figure 4.5 displays how the spherical distance and Hamming distance changes
with respect to up(zx) for all possible values of i 4(x). Figure. 4.5(a), shows that
the spherical distance forms a curve surface, while a plane surface produced by
the Hammming distance is shown in fig. 4.5(b). Their contours in the bottom
show their differences clearly. The contours for spherical distances are ellipses
coming from (0,0) and (1, 1) with curvatures increasing sharply near (0,1) and
(1,0). Compared with thesc ellipses, the contours of Hamming distance are a
set of parallel lines. The. figures prove our conclusions in lemma 12: the spheri-
cal distances do not remain constant as Hamming distances do when both sets

expetience the same change in their membership degrees.

67



Figure 4.5: Grid of spherical distances and Hamming distances for fuzzy sets

4.1.4 Application of distance between intuitionistic fuzzy
sets to airport sustainability with respect to aircraft
noise

An accurate prediction of aircraft noise has to have accurate input parameters
such as engine thrust. In reality, it is very difficult to keep accurate records
of thrust for the whole journey, especially during the approach. The thrust
is controlled by computers and is changing dynamically according to the wind
speed and afrcraft direction so as to keep it within the approach zone. Therefore,
it is unrealistic to get accurate thrust measurements for the whole journey, and a
more realistic requirement would be an interval of thrust rather than an accurate
value.

Sustainability refers to the ability of airport to continue its operation without
significant degradation of environment in its vicinity. The most notable issue in
the environment of an airport is noise disturbance. Therefore, we need to find
a way to quantify noise disturbance. Disturbance of aircraft noise at airport
is a very complicated issue, it involves not only the measurement of noise at a
specific location, but also the different responses of different individuals to the
same noise level as well. For the same aircraft, some people may feel it very
annoying, but some other people in the same location may not feel it to be a
problem at all. Therefore, a one side measurement of noise level only would not
be able to reflect the real disturbance of people around the airport in concern.
It is necessary to take into account the different perceptions of people to the
same noise level.

Given a set of sensitive neighbour areas, the problem is to find a way to map
the interaction between noise level and people in these areas. It is clear that
fuzzy sets are a good option in setting up this interaction. Each person in the
set could have a different ‘membership function, and the same noise level could
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produce different annoyance, as shown in Figure4.6. Because of the inaccurate
thrust, we adopt interval-valued fuzzy sets to consider the inaccurate noise levels
caused by the inaccurate thrust. Therefore, the sustainability is converted into
a distance to the worst scenario where each person is suffering a full disturbance.
This sustainability is a distance to the unsustainable status, so the larger is its
value, the more acceptable the airport is with respect to noise disturbance.

4 Fuzzy membership 4 Fuzzy membership

[  § BTN ——-

e

Nc Np

Noise Ieveg Noise level

(@ - ()

Figure 4.6: Different fuzzy membership values for the same noise level

.

Based on this idea, the noise disturbed population can be considered as a
universe IJ at an airport. Each person living in this area is an element z; € U.
An interval-fuzzy set A C U is the set with each element z € A is associated
with an interval as its fuzzy membership pa(z;) = [a,b], where0 < a < b < 1.
Considering the interval input of thrust, the output of the neural network for
noise level would be an interval as well, hence the membership function of each
person shown in Figure 4.6 will be an interval as well. Depending on the un-
derstanding of the nature of this interval, it could also be considered as a grey
set, if the interval represents only a single value. However, the distance between
two such sets would follow the same representations due to their same represen-
tation form. Here, we do not differentiate the two representations and use the
notation of interval-valued fuzzy sets. This set can easily be transformed into
intuitionistic fuzzy set and then we can get their distance following equations
in Section 4.1.

Consider the worst scenario as set B C U where for each element x; € B,
we have

.UB(SC'E') =1, UB(.’L':‘) = 0, and TB(.Tg‘) =0

Then we have

LA, B) = = Y maz{lua(z:) = D) lva(@)l, [razi))

i=1
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QEh(A'-‘B) = %Zmam{(ﬂA(xz) - 1)2’('}‘4(3713))21 (TA(mi))z}
t=1

4.5 5 en ()

el
4,2 Significance analysis using neural networks

4.2.1 Relative Strength of Effect

The Kolmogorov mapping neural network existence theorem [5] has proved that:
given any continuous function

wp: " — R™

Y = p(X)

v can be implemented exactly by a three-layer neural network having n input
nodes, 2n+1 hidden nodes and m output nodes. Thus a three layer neural
network has the capability to implement any continuous mapping. It iz well
known that the knowledge representation of ANN is in the form of the connection
weights between the nodes of different layers. Hence the relative significance of
the individual input nodes for the output value could be identified from the
distribution of these connection weights.

Having established a functional input/output relation, which is expressed
via the adaptive setting of weights by means of the application of some learning
laws within the processing elements of the network, our interest concentrates on
searching for 2 method of identifying what role these different factors play in the
total system mechanism., At some stage, after the training process the neural
network is no longer allowed to adapt. The output O can then be written as
{see Fig 4.11)

_ 1

Cl4ew

where ug = ZOjTUjk + o
I

0;

Or (4.11)

_ 1

Tl 4 e

U; = Zw,-_.,-Oi +9j
i

where w is a connected weight, # is a threshold, O, is the value of input unit.
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Thus we have .
Or = 1 (4.12)
| 4o TV T

Since the activation function is a Sigmoid function as shown in Equation 4.12,
which is differentiable, the variation of Oy with the change of O; can be calcu-
lated by the differentiation of the equation:

BOk -y 3 ZWJnkG uk)Win 14 G (45,)

n dn-1 (4.13) ‘
I/an—zjn—xa(ujnq)wzrn adn—a G{Uj_ 2) WtﬂG(uh)

where Glug) = %2, and O;,.,0;. _,,0;,._;,-..,0; denote the hidden units
inthe n,n—1,n—2,...,1 hidden layers. Obviously, no matter what the neural
network approximates, all items on the Right Hand Side of Equation 4.13 always
exist [90]. According to Equation 4.13, a new parameter RSEy; can be defined
as the Relative Strength of Effect for input it ¢ on output unit k.

Definition 13 (Relative Strength of Effect (RSE)) : For a given sample
setS = {51,52,53,...185,...,5¢}, where, s; = {X, Y}, X = {z1,%2,23,...,2p},
Y = {y1,¥2:¥3:---1 ¥}, if there is a neural network trained by BP algorithm
with this set of samples, the RSEy; erists as

RSE’C% CZ Z Z JﬂkG(uk)an—]jnG(ujn)
Jn Jn—1 (4.14)
W,

Fn-—2in— IG(ujn—l )Iera—leuLzG(ujn—Q) . i]lG(qu )

where C is a normalized constant which controls the mazimum absolute value of
RSEy; as unit, and the function G denotes the differentiation of the activation
function. G, W and u are oll the same as in Equation 4.13.

It should be noted that the control of RSE is done with respect to the
corresponding output unit, which means all RSE values for every input unit on
the corresponding output unit are scaled with the same scale coefficient. Hence,
it is clear that RSE ranges from -1 to 1. .

Compared with Equation 4.13, RSEy; is similar to the derivative except for
its scaling value. But it is a different concept from the differentiation of the
original mapping function. BESE}; is a kind of parameter which could be used
to measure the relative importance of input factors to output units, and it shows
only the relative dominance rather than the differentiation of one to one input
and output. The larger the absolute value of RSE}, is, the greater the effect the
corresponding input unit has on the output unit. The sign of RSE}; indicates
the direction of influence, which means positive action applies to the output
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when RSFy; > 0, and negative action when RSE;; < 0. Here, positive action
denotes that the cutput increases with increment of the corresponding input,
and decreases with reduction of the corresponding input. On the contrary,
negative action indicates that the output decreases when the corresponding
input increases, and increases when the corresponding input decreases. The
output has no relation with the input if RSEy; = 0. RSE; is a dynamic
parameter which changes with the variation of input factors. Hence, we can
clagsify the input factors dynamically based on their RSE values, and do the
hierarchical analysis with ANN.

According to Equation 4.14, one can calculate the values of RSEy; by the
following steps:

1. Enter all the values of the input units, calculate all values of %; in the
hidden units and wug in the cutput units by the standard BP method,
where u; represents uj,, U4y Uj,_gs' .. Uy

2. Caleulate the values of the G function in the output units and hidden

units as oy
€
) = ey
e
Cla) = Aoy

3. Assume RS as a temporary variable in every unit for calculating RSE. For
the output units, we have

RS(u) = Gluy)

4. Calculate the RS values of the units in preceding layers as follows:

RS(uj,) = Glu;, wy, kRS (ur)

[ ]

. Calculate the RS values of the units in other hidden layers
RS(uj, ) = Gluj,_ Jwj,_,j, RS(uj,)

Repeat this calculation up to the first hidden layer

6. Calculate the RSy; value as

RSJ“' = IVT RS(‘UJI)

71

7. Assume the number of input units as p, RSk, = max{|RSk1[, |[RSkal, ..., |RSkp|}
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then control the value of RS;; such that

BRSEy = ~———

In this manner, the RSEy; value can be calculated. Now that the value of
RSEy; shows the relative influence, & comparison may be carried out to find
the key input units from all input units by their RSE);. Therefore, the RSEy;
may be considered a very important index to evaluate the relative significance
of all inputs. '

4.2.2 The constant RSE within the concerning scope

The items in the right side of equation 4.14 can be separated as two groups: the
first is a group of weights W and the latter is a group related to the differentiation
of the Sigmoid function,-the activation function (see Figure 4.12}.

The weights of a neural network are fixed when the process for learning has
been completed, so the values of the first group are fixed when the inputs are
changing; whereas, the values of the latter group are varying with the changing
of inputs.

Concerning equation 4.14, we can find that the variability of RSEy; is due
to the changing of the values in the latter group which vary with the changing
of the input values. After a neural network has been trained with samples,
the influence of the input on the output should be determined. Because the
knowledge provided by the samples is contained in the weights of the neural
network, we can find the consequence of the input on the output using these
weights. Generally, the scope of the variability of the inputs is considered in
small domains in engineering, and we can separate the whole domain into several
parts according to the different characteristies of engineering. We can regard the
differentiation of the simulated function as constant within one part (piecewise
linear) so as to obtain a global relative strength effect which does not vary. with
the changing of input position in input space.

If we are not concerned with the variability of the influence of the changing
of domains of inputs, then we can regard the trained neural network as a linear
network, or its activation function is a linear function when we calculate the
values of RSEki.

Suppose the activation function as

Flxy==
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then its differentiation can be obtained as
G{z) =1
So, the RSE can be written as

RSEG=C S ..y WikWin15aWin_sjnos Win—sinos - Wiz (4.15)
Jn Jn-1 n
The RSE in equation 4.15 stands for the relative importance of every input
unit on one output unit in a neural network in the “global” sense, similar to
the linear components of the interaction matrix in RES. So, we can define the
Global Relative Strength of Effect (GRSE) that the input unit has on the output
unit for a certain input domain in a neural network as follows:

Definition 14 (Global Relative Strength of Effect (GRSE)) For a given
sample set S = {s1,82,83,...,8j,...,5:}, where, s5; = {X, Y}, X = {1, 20,23,...,2,},
Y = {y,¥2,Y3,-.-,Yq}, if there is a neural network trained by BP algorithm

with this set of samples, the RSEy; exists as

GRSEki = CZ Z ane Z ankwjn—ljnwju—zjn—lan—sjnv2 e IV"’jl (4‘16)

Jn Jn-1 51

where C' is a normalized constant which regulates the mazimum absolute value
of GRSEy; as 1.

The GRSE;; shows the general consequence of every input unit on one
output unit in a certain scope of sample space, so it is the preferential parameter
~ for the measuring of importance of input units on cutput units rather than the
actual numerical value of the influence of input units on output units in a specific
position in input space. The GRSE}; is a macroscopic or general parameter and
the RSE); is a microcosmic or particular parameter; the former measures the
influence of input unit within the entire input space, but the latter does this
only at one specific position in input space.
Just like RSE, this GRSE value is also different, from the differentiation value.
It demands no continuity for the function, so, no matter what the function is,
the strength of effect always exists. This is reasonable according to the fact that
many functions are not differentiable in some domains or at some points, and
the method is suitable for extension to other neural network models.
According to the value of GRSE);, we can assess how much influence the
input unit has on the output unit. The more there is revising of the weight due
to the input unit , the larger the variance of the weights becomes linked to this

input unit. Because the original values of the weights are similar, the larger the
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absolute values of the weights is, the more the effect of the input unit will have
on the output. So, the GRS E}; shows the global dominance of input on cutput.
The GRSE}; has properties as follows:

e The GRSE}; is a relative value for the comparison of the influence of
every input unit versus every output unit;

s The GRSEy; is a value for a certain scope of input space rather than a
true value for one specific position in input space;

s The GRS Ey; is a measurement of the after effect of one input unit on one A
of the output units, and the output increases with the increasing of input
when GRSE}; > (0, and the output decreases with the increasing of input
when the GRSEy; < 0, and the output has no relation with the input
when their GRSE; = 0;

e The absolute value of GRSEki shows how much this input unit controls the
output unit compared with other input units, and the larger the absolute
value is, the more the influence of this input is.

According to these properties, we can evaluate the importance of system input
on system output, or the interaction between inputs and outputs. The larger
the absolute value of GRSE}; is, the more important these inputs are. So, we
can find out the factors which determine the state of output, and ignore those
factors whose GRS Ey; is near to zero. Thus, we can control the key factors of
engineering so as to make the system behave in the way that we need, or at
least to avoid major problems.

4.3 A new method to evaluate a trained artifi-

cial neural network

One of the problems in the application of an artificial neural network (ANN) in
engineering practice is the difficulty in verifying its function after the training
stage. The usual way is to keep some sample data out of its training set so as
to test it later. However, it is difficult to decide how much data should be left
out since this would reduce the limited data in the training set. On the other
hand, it is impossible to test every possible situation in that the artificial neural
network is applied usually when we do not know all possible situations. Hence, a
simple method which links the general field knowledge and the network structure
is better for evaluating the operation of an artificial neural network. Here, a
new approach based on the analysis of network structure and field knowledge is

preSented to help test the function of the artificial neural network.



In comparison with the current local sample testing approach, we propose a
new global method to validate the trained artificial neural network. Based on
our work on RSE and GRSE, we put forward a new concept - Potential Relative
Strength of Effect (PRSE) and the Global PRSE. They provide a link between
network structure and field knowledge, which serves as an audit of the trained
neural network.

The PRSE and GPRSE are parameters calculated from the network connec-
tions distributed in the network, and they reflect the different roles of the input
parameters in determining the values of the outputs for the network. From the
specific field knowledge or statistics, it is possible to know which parameters are
more dominant and important in the process to determine the output. There-
fore, the PRSE and GPRSE from a trained artificial neural network should
match the specific field analysis if the network is trained successfully. In this
way, a complementary method to current testing is provided to give a global
view of the behaviour of the trained artificial neural network.

4.3.1 Traditional Validation

The capability to learn from examples by machine without prerequisite knowl-
edge about the specific problem has enabled ANN to become a popular mode] in
engineering applications. Many engineering problems, such as civil engineering,
environmental engineering and transportation engineering, involve a number of
uncertain mechanisms which complicate the interactions between their different
factors. These unknown mechanisims bring the “black box” problems suitable
for an ANN to interpret. Because of this kind of incomplete knowledge with
respect to the domain problems, the significance of the validation of a trained
network appears more important than ever. ‘

There have been numerous different ANN models and a variety of methods
for training them; however, the validation of a trained neural network is still
carried out using mainly the local sample testing method. This approach ran-
domly separates the entire available data set into two different sets: the training
set and the test set. The training set is then used to train the network and the
test set is adopted to test the function of the trained network, as shown in
Figure 4.7.

In addition to the two sets partition, there is some other validation method
which divides the data further, such as the so called cross-validation [87]. This
testing method comes from the standard statistics tool cross-validation [159].
After the available data set is randomly partitioned into a training set and a test
set, the training set is divided further into two disjoint subscts: an estimation
subset and a validation subset. The estimation subset is used to select the
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Available Data

Training Set Test Set

‘Estimation Subset Test Subset

Figure 4.7: The partition of the available data

model (structure and parameters of the network}, but the validation subset is
used to test or validate the model. The external test set serves for checking the
generality of the trained network.

It is obvious that this kind of validation needs a large amount of data. For
the available data set, it has to be divided into two or three separate parts
and the real data for training the network is only one part of them. However,
the data requirement for training a neural network efficiently is also very high.
According to the Vapnik-Chervonenkis (VC) dimension {189)], the following rule
applies [105}): '

Let N denote a multi-layer feed forward network whose neurons use a sigmoid

activation function 1

- 1+ ey,

e(v)

The VC dimension of N is O(W?)}, where W is the total number of free parame-
ters in the network. The number of samples needed to learn a mapping reliably
is proportional to the VC dimension of that mapping [87], hence the required
. number of samples for training a neural network is also O(W?2).

In engineering practice, it is sometimes difficult to find sufficient data to
train networks. Most data comes from costly measurements carried out on site
and involve various uncertainties and complex interactions. With the limited
data set, it is difficult to know what the effect would be if only a small part
of the available data is used to train the network. There would be two kinds
of data set available: ideally distributive data without redundancy and data
with repeat and redundancy. For the first group, the pattern existing in the
testing data would not be able to be represented in the network trained with
the other partial data; and the good agreement for the redundant data in the
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second group is not reliable for data not considered. The crucial problem for
current validation methods is its basic assumption: '

» The data in the testing set is representative enough for covering the inter-
esting scope;

e All the patterns in the testing set have been represented in ‘the training

set.

In fact, the reason for ANN to be applied is precisely because there is no
clear understanding about the mechanism reflected by the data set, Therefore,
it is difficult to know if the testing data set has included all possible situations.
Considering the potential size of neural networks applied in engineering practice,
it is impossible sometimes for the testing set to include all the possible situations
within the scope of interest, With limited available data, the more the testing
samples are, the less the training data would be and then the poor reliability of
the trained network.

Therefore, a better way to check and validate the trained neural network
should be to make full use of the available data at the training stage and find
the false mapping without or with less involvement of the mass validation data.
Here, a new parameter is put forward to find a different approach to evaluate a
trained neural network.

4.3.2 PRSE and GPRSE

RSE is a dynamic parameter changing with the variation of the input values
of the network. RSE is sensitive to a change in sign of the connecting weight
and output of each individual node. However, the absolute value of the con-
necting weight and individual node is more meaningful in the wider context,
indicating the potential maximum capability for a relevant factor to control the
corresponding output.

Hence a new parameter can be defined which can judge the degree of impor-
tance of a variable on the system, measuring the relative significance of inputs
with respect to outputs in the trained neural network. On the basis of RSE, the
Potential RSE and Global Potential RSE (GPRSE) have been defined.

Definition 15 (Potential RSE (PRSE)) : For a neural network trained us-

PRSE;; =

ing the BP algorithm and for a given reference data set S = {s1,52,83,..-,5j,...,50},
where, s; = {X, Y}, X ={z1,2z2,23,....,2p}, Y = {1, ¥2, Y3, .- .- Yy }+
2 2oty o 2y Wik IG@ONW;, 5 1G] - IWis |Gy, )|
201 25y gy o 2oy (WikllG Wy, 215, |G (us M- Wi Gy, )]

(4.17)
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where, I =1,2,3,...,p, and the function G denotes differentiation of the acti-

vation function. W is a connected weight and e is the input value in its corre-
sponding node.

Definition 16 (Global Potential RSE (GPRSE)) : For a neural network
trained using the BP algorithm and for a given reference data set § = {5, 52, 53, .
where, s; = {X,Y}, X = {z1,22,Z3,.. ., Tp}, ¥ = {¥1,¥2, Y3, -+, Ug}*

i 2oin e o Wi kWi gl - (Wi
310 e 2y Wikl Wi _isal - - Wil

GPRSE; = (4.18)

where, W is a connected weight and e is the input value in its corresponding
node.

PRSE and GPRSE are measures of the absclute value of every weight and
node value. The absolute influence of every connection and node is thus ac-
cumulated. Hence, no matter which factors are dominant, the contribution of
every factor will be incorporated within the calculation of PRSE and GPRSE.

Compared with RSE, the removal of the different signs makes the PRSE and
GPRSE less sensitive to a small change of input, thus they are measures of the
potential within a wider scope of neighbourhood rather than a detailed trend
at a specific point.

4.3.3 Validation with PRSE

In engineering practice, the exact independence between different factors repre-
sented by RSE is difficult to know because of our ignorance of the complicated
interactions. However, the statistics and expertise often have the ability to know
roughly which factor is dominant and their relative importance index, In this
sense, it is possible to know the GPRSE for the interest scope even before we
begin to train the neural networks. This provides us with an alternative for
evaluating and validating a trained neural network.

As we know, a suitably trained neural network is able to map the relation-
ships between its input factors and output attributes. This efficient mapping
has a precondition: the network can recognise the different roles of the different
factors for its mapping function. An important factor should be able to play a
significant role when a suitable input is fed into the network. The GPRSE should
agree with the field knowledge obtained from statistics or expertise. Hence, a
comparison between the GPRSE and the field knowledge about the dominance
of different factors in the system would help us to evaluate the trained network.

The GPRSE is defined as a global parameter within the scope of interest,

and is capable to indicate the general significance of the individual factors.
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However, some relationships may be very complicated and a general validation
is not sufficient to audit network behaviour, and the PRSE for some special
points would be helpful to validate its function in some special segments. As
we know from Chapter 3, the PRSE relies on the specific point in input space
but is not so sensitive to its position changes like RSE. It reflects a potential
dominance within a wider scope of the neighbourhood of the input point. The
scheme to evaluate and validate a trained neural network with GPRSE and
PRSE is shown in Figure 4.8.

Available Data
y 4
Large Training Set Statistics or Expertise
{ ¥
ANN »| GPRSE p| Field Knowledse
»|  Small Test » PRSE

Figure 4.8: The evaluation scheme

Similar to the traditional test, the available data are separated into two
different sets: the training set and the test set. However, the number of the
samples in the test set could be reduced dramatically if suitable field knowledge
about the specific problem is possible. Although satisfying the training data,
the false mapping would produce some false details in the resultant mapping
relationships. There would be some distortions of the connection weights to
provide such kinds of false detail. These changed connections would change their
absolute significance and thus be reflected in the changes of GPRSE. Therefore,
the disagreement between the GPRSE from the trained network and the field
knowledge from statistics and expertise indicates the unrcliable mapping of the
trained network,

The trends audit with GPRSE would prevent most of the false mappings.
Only the false mapping that possesses similar GPRSE values with our knowledge
could survive this evaluation. The PRSE audit could be conducted with some
key samples where field knowledge is possible. Compared with RSE, PRSE
reflects the potential dominance of the factor within a wider scope and hence

provides an indicator about local distortions. Those false mappings satisfying .
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the GPRSE would be exposed if the specific field knowledge is available in a-
few local segments. In this way, the possible false mappings could be filtered
dramatically without using large amounts of testing data. Hence, most data
- could be adopted as training data and the feasibility of the trained network
could be improved dramatically. It should be noted that the small test data
set for PRSE needs only the relevant dominance rather than the corresponding
output. However, it can also serve for traditional testing as a supplement to the
proposed method if their cutputs are known.

In this way, the available data set is fully applied to the training stage
and hence improves the reliability of the trained network considerably. The
evaluation and validation of the trained network is carried out mainly with the
global parameters GPRSE, as well as the PRSE for some key points.

4.4 The role of redundant structure of neural

networks

One of the difficulties in establishing a Neural Network (NN) is the determi-
nation of its structure. It is a common understanding that only the simplest
network structure can give the best solution. Therefore, various network prun-
ing technologies have been developed [129, 146, 85, 83, 118, 116, 155]. However,
one of the key features in neural networks s that they perform complicated anal-
vses or mapping by means of a combination of huge amounts of simple neurons
[90]. The real biological world does not necessarily rely on strict mathematics
or pruning technology to run their activities, but they do display such an array
of perfect functions that scientific method may never be able to explain ade-
quately. The ‘compound eye’ of an insect [101] is just one of these amazing facts:
in addition to its ability to accommodate overlapping inputs, it involves many
other different mechanisms which makes it impossible to simulate with only a
simple structure. This fact does not exclude the notion that simple overlapped
inputs may contribute to its powerful function.

Bearing this in mind, a simple approach to making use of overlapped or
redundant inputs to improve the training results of NN is put forward here.
This method employs multiple input nodes for the same input parameter in
the network structure and simulates their influences in the compound eye of
insects [201] by a random initialisation of their connecting weights. Unlike re-
dundant hidden nodes, overlapped inputs do not produce more dintensions in
the solution space and hence do not involve new uncertainties. In principle, we
prove that the proposed overlapped input structure could be replaced exactly

by an equivalent ordinary neural network structure. However, the difficulty in
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initialising the connecting weights between different nodes makes it very rare
for an ordinary network to find the same ideal solution. With the increment of
the number of the overlapped input nodes in the input layer, the distribution
of the ideal connecting weights tends to approach zero, and hence a random
initialisation around zero would appear to be suitable for the proposed simple
structure. This conclusion does not exist in traditional neural networks. There-
fore, the proposed method has more chance to find the ideal solution with the
same available training data than the traditional one. Because of the differ-
ent initialisation of the connecting weights, the same input from different input
nodes may have different influences to the training operation. This difference
may reduce with the training process, but it would not disappear completely.
Therefore, the node for the same input may “see” different “pictures” and re-
flects the position effects of the compound eye of insects in some senses.

In conclusion, a simple partition example is llustrated to show the efficiency
of the proposed method. The details neglected by traditional networks are re-
vealed clearly using the proposed networks. This shows that a simple overlapped
input does improve the training of the neural networks.

4.4.1 Compound eye and redundant structure

It is well known that insects are very sensitive to objects moving around them.
Research shows that Drosophila, the fruit fly, has a reiterated pattern of 800
ommatidia in its compound eye [101], and the lacewing Mallada basalis (Walker)
has approximately 600 ommatidia [201]. There is a lens in every ommatidium
and hence the compound eye is composed of a large number of lenses. Instead of
one lens they see through spheres with many lenses. Fach lens of the compound
eye catches its own image. The more lenses the compound eye bears, the higher
the resolution of the image. The two large spherical eyes of a fly give an almost
complete 360 degree vision.

The mechanisms of the compound eye are very complicated and still being
analysed although some have been recognised. For example, a well-focused clear
zone diurnal eye of the Skipper butterfly is illustrated in Figure 4.9 [93]. The
parallel rays falling on the eye pass through many facets to converge on a small
region of the receptor layer.

The individual ommatidium of the insect’s compound eye possesses only
a few photoreceptors. For example, there are 8 photoreceptors in the adult
Drosophila ommatidium {197]. Obviously, the single ommatidium cannot catch
very much information about its view. However, a large number of them makes
the insect very sensitive to its visual environment, It proves that the combina-

tion of the large number of ommatidia improves dramatically the function of the
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Figure 4.9: A well-focused clear zone eye

insect eye. There are some differences between the images captured by different
ommatidia from different angles; however, the main image taken by these om-
matidia are similar to each other in that they come from the same picture. In
another words, there is some kind of redundant structure in the compound eye
of insects, and that structure contributes to the combination of the final image.
Inspired by the compound eye of insects, we constitute a redundant struc-
ture for neural networks, as shown in Figure 4.10. Figure 4.10 illustrates the
structure of a NN with redundant inputs and an ordinary NN. A, B and C
are the attributes of the observed object, and they serve as the inputs of the
neural network. For the ordinary one, there are only three input nodes in this
case: A, B and C. There are 9 nodes in the input layer of the redundant one
for the same object here, and it corresponds to three lenses in the compound
eye. The first three input nodes act as one “lens”, the second three nodes as
another lens, and so do the other three nodes in the input layer of the NN with
redundant inputs. In this way, the redundant NN could “see” three similar “im-
ages” for the same sample data at the same time, just like the insect’s mosaic
image from its compound eye. In this way, the input “image” is multiplied as a
number of similar “images” from a series of input “lenses”, and their messages
are projected to the hidden layer to combine into a single “picture”. Due to the
random initialisation of the connecting weights, it is acknowledged that the dif-
ferent “lens” would “sce” a different “image”. This difference could be reduced
with the learning operation, but it is difficult to remove completely statistically.
Thus to some extent this mechanism simulates the operation of the compound

eye of an insect.
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Figure 4.10: Redundant input NN and ordinary NN

4.4.2 Properties of the redundant structure

According to Figure 4.10, it is obvious that the structure of the hidden layers
and the output layer of the two different kinds of structure are exactly the same
structure: they have the same number of nodes and connecting weights. The
only difference comes from the input layer and their connecting weights with the
first hidden layer. In principle, there should be an equivalent ordinary network
structure to the redundant one.

Considering a network with n input factors, suppose there are k input sets
in its corresponding redundant network, Wj; is the connecting weight between
input factor i and node j in the first hidden layer, Vi denotes the value in input
node i, then the receipt of the hidden node j in the redundant network is:

nxk
Vij = Z wi Vi + 0;
i=1
Change the order of the input factors so that all the first n input nodes are from
factor 1, and the second n input nodes from factor 2, and so on. Then we have
Equation 4.19.
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nxk

Vij = ZwijVi-f-ij

i=1
k 2 nxk .
=1 Z Wy + v2 Z kw,'j + .. 4w Z Wi + oy (4.19)
i=1 i=k+1 i=(n—1)xk+1

"
=3 wsvs +0y

z=1

Here, w;; means the connection between input node i and the hidden node
j after the changing of the order for input nodes. represents the value of input
factor s. w/,; is the connecting weight between input s and hidden node j in the
equivalent ordinary network.

sxk
wey = Z Wi (4.20)
{s—1)x k+1

According to Equations 4.19 and 4.20, the compound input ANN can be con-
verted exactly into an equivalent ordinary one. Therefore, it does not introduce
any new parameters, thus does not bring new uncertainties to the network.
This is very different from a pure increment of the hidden nodes where new
uncertainties are inevitable.

Suppose that a global minimum point in the error space requires the con-
necting weight between input factor m and node n in the first hidden layer to
be W’,,, in the ordinary NN, and v'i, (i=1, 2, k) for the compound input,
where k means the number of the sub networks. Then

k
f !
W1nn = E Win
=1

Suppose the initialised value of W',,., Is Wins, and wy, for w's,. Considering
the random feature of 1W,,,,, and wy,, thus

Elwy,) = E(Wpn) =0

and
n
lim E Wi, = 0
koo £ :
i=

Therefore, the increment of the number of nodes for the same input factor does
not increase the initial weight of its corresponding traditional NN,
According to the Jaynes’ Maximum Entropy Principle {100], we should as-
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sume that w;, = Ymn when we do not know the value of every wy,. It is clear

2
that -
lim wy, = li =" =
kioo Win kl.r{.lo k 0

Therefore, a large number of sub networks in the redundant input NN would
move the start point towards the true global minimum in the error space under
the condition of a small value initialisation within [-1,1]. The true global min-
imum in the error space is a precondition for NN to give a reliable solution to
its mapping. The random initialisation of weights within the neighbourhood of
0 is more reasonable for a redundant input NN than an ordinary one.

4.5 Data mining using neural networks

As a candidate for data mining in rich data situations, neural networks {NN)
have received great attention in recent years. Various models for extracting
rules or knowledge from a trained neural network are presented. Andrew et
al. provides a very good review of these methods {10]. Most of these existing
methodologies focus on the transformation from implicit neural network knowl-
edge representation to explicit rule based structures [183, 11, 62, 63, 115, 54,
157, 136, 156]. This is preferable but difficult to realise for a complicated do-
main where a solution surface may be approached only by a very fine granularity
of space division. Although NN has provided us with a powerful capability to
map the input-output relationship, what it does not do well is its self expla-
nation. It is its lack of explanation mechanism that prohibits many potential
applications [181].

Here we will not attempt to extract all the knowledge implicitly represented
by NN. Instead, we will try to provide some understandable explanation to the
mapping results of a trained NN on the basis of its weight connections and
training samples.

4.5.1 Dynamic state space

In traditional Euclidean space, all dimensions have equivalent significance. There-
fore, coordinates x, y and z make exactly the same contribution in determining
the position of a point in 3D space. However, the significance of different input
factors are different in neural networks, hence their contribution in determining
output are not equivalent, Here, we define a new space for searching the relevant
points. ‘

For a given problem domain €}, there are a number of indicators to describe
the features of a case C; (0 < § < 8) in : i1,42,...,%,, N is the number
of features nccessary to discriminate Cj from Cy (k # j). A Dynamic State
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Space {DSS5) is a space defined in Q with iq,4a,...,i, as its dimensions. The
significance of ‘dimensions is s1, sg,...,8,. For a point in DSS, its necessary
number of dimensions n and significance g (0 < [ < n) is subject to change
with time and relevant problem domain.

DSS is clearly different from traditional Euclidean space in that the signif-
icances of its dimensions are changeable and its dimension number n depends
on the problem’s domain.

The distance between two points is defined as:

D = /|81, — 11,)% + |S2](te, ~ 2,02 + ... + |Snl(ing — in,)?

where the subscripts a and b dencte two different points in DSS.

With DSS, the training and test samples in NN could be considered as a set
of points in DSS with their inputs and cutputs as coordinates of corresponding
dimensions, Therefore, a set of samples in neural network training and testing
would become a set of points in DSS. The significance of dimensions in DSS
are different from those in traditional space and the necessary dimensions in
searching some relevant points also depend on the searching condition. The
points and dimensions with different significance are shown in Figure 4.11.

.llig

iy ¢
Figure 4.11: Points in dynarnic state space

A search in DSS for a desired set of points could be conducted in two different

ways:

s Dimension path: search only one dimension every time and stop when
there is only one point left or no further dimensions are available. The -
search order follows the significance of the dimensions, the most significant

dimension would be called first.

e Distance path: calculate the distance in DSS for all available points and
order the result accordingly. A predefined threshold is adopted to cut
those irrelevant points.
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In this way, the relevant points in the available data set could be located quickly
~and provide the basis for explaining a new case. The result for a new case must
come from its relevant case, or the relevant poihts in DSS. The significance
of the dimensions indicates the possible change of a new case compared to its
relevant old case, thus providing a mechanism to explain the mapping result of
neural networks.

4.5.2 Query based on DSS

Having obtained the mapping results and RSE from a trained NN, the domi-
nances of the different attributes are known. Due to the possible complexity of
real world problems mapped by NN, it is difficult and unnecessary to trace all
the possible rules hidden in the connecting weights. As an intuitive mapping
tool, NN has the capability to give an acceptable approximation of the map-
ping operation. Our task here is to provide a reasonable and understandable
explanation of the intuitive reasoning of NN,

Suppose an active case C is fed into the network so as to obtain a mapping
output OC. We need to find a reasonable explanation for the output OC. The
operational process for extracting this explanation from a trained neural network
is 1llustrated in Figure 4.12.

Figure 4.12: The DSS explanation

_ The active case C is fed first into the trained neural network and its RSE is
then adopted as significance of dimensions in DSS. Then a search for relevant
cases in the training sample is carried out in DSS with the dimension path or

distance path. The result of this search would be a set of cases which is similar
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to the new case. A comparison is conducted between the output of the neural
network for the new case and the similar cases found with the DSS search. There
are two possible results for this comparison:

e One similar case is found from the training cases. Its output attribute
may or may not be similar to the new case.

e Several similar cases are found, and they may or may not share the similar
output with the new case.

For those relevant cases with similar output as the new case, they are a very
good explanation of the result: this is based on the existing cases, and they
share the similar cutput because they have similar inputs, most notably sharing
similar inputs for those significant attributes. If their cutputs are different, then
RSE analysis is called in to explain the difference: the attribute with a bigger
RSE and output difference would be considered first. Sometimes, however, the
combination of small RSE attributes may change the results, hence combined
RSE may be taken into account when RSE itself cannot explain the result.
When more than one relevant case is left, the explanation would prefer those
with a similar output like the new case. If none of them agrees with the new
case, a similar RSE analysis would be called in to explain the result.

4.6 'Roughness bounds of rough sets

The real world is inherently uncertain, imprecise and vague. Rough set theory
focuses on the uncertainty caused by indiscernible elements with different values
in decision attributes. It approximates the underlying set with two crisp sets.
Therefore, the cardinality of elements in these two sets has a direct influence on
the uncertainty of their corresponding rough set as a whole. Consequently, it is
important that we consider the roughness of a rough set to have some under-
standing of the results in any decision making system. Knowing some bounds of
this roughness before implementing the set operations can be important. Much
research has been carried out on rough set theory, applications and their combi-
nation with fuzzy sets [51, 52, 53, 96, 97, 106, 130, 131, 143, 152, 196, 199, 230,
231]. As for roughness, there has been some research on the roughness of fuzzy
sets [19, 24, 233]. However, as an important feature of rough sets, roughness has
not yet received sufficient attention. Qur research supplements this research by
investigating the bounds of roughness for rough sets.

Because elements of rough sets are essentially uncertain we have to consider
different set operations {e.g. Union, Intersection, Difference and Complement}.
This section considers the roughness of these operations.
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4.6.1 Union of rough sets

For the roughness of approximation on union of rough sets, we have the following
theorem.

Theorem 1 The following inequality holds for the roughness of approzimation
for & union of two rough sets X = X; UX,

RY(X1)+ Ry(Xa) -1 < RH(X) < 1~ RS (X1)R%(X2)

2 — R} (X1) - Ry (Xa)

Proof The roughness of approximation of the union set can be expressed as

A" (X1) UA™(X2)] = [A(X1) U A(X)]
[A*(X1) U A*(X3)|
_AU(X) U AL(X)
|A* (X1} U A* (X2}

R4(X) =

= 1

Cardinality represents the number of elements in a set. For any two crisp sets
A and B, we have |[AU B| < |A| + |B| and |AU B| > max{|A|,|B[}. Therefore

_ max{[A(X1)], | A (X2}
|A*(X1)] + [A*(X2)|

R3(X) <1
In order not to lose the generality, assume that |A4,({X1)] = |A. (X2}, then

o) 1A, (X1)]
RE(X) < 1~
A0 A (X0 + 1A ()]
. 1
< 1_|A°(x1)| A~ {X2)

Ao T 1A

S(X : N
Because that |4, (X1)| 2 |A«(X3}], then IQE:\:;I < {ﬁgfzg} Considering that

as(Xp) = % and aa(X2) = J&E{ﬁ:—;;l, we have

_oa(Xaa(X)
aa{Xy) +aa(Xeo)

RL(X)<1

Here, aea(X1) and a4{X2) mean the accuracy of the approximation for X 1
and X5. Considering their relationship with the roughness of approximation
aa(X)=1—R5(X), we have

. 1= RS (X0) RS (Xs)
RaX) < 57 (300 - (%)

The same conclusion will be drawn if we assume |A,.(X2)! > [A.(X1). Ina
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similar way, we can prove the lower limit

_ ALKV | AL (X))
|A*(X1)| U |AY(X2)!

AKX+ [AX)]

- max{|A4*(X1)],|A*(X2)(}

RYU(X) = 1

Assume |A*(X1)| > |A*(X2)l, then

A+ [A(X2)]
|A*(X1)]
2 R(X)}+Ra(X2) -1

Ry(X) 2z 1

Similar to the upper limit, the assumption for |A*(X;)| > |A*(X2}| does not
influence the final result.

This theorem can also be applied to accuracy of the approximation.

Corollary 2 The accuracy of approrimation for a union of fwo rough sets sat-

isfies
aa(X1)aa(Xs)

as(X1) +aa(Xe2)

We can also extend this theorem to a union of more than two rough sets:

O.’A(Xl) +CEA(X2) > aA(X) >

Lemma 13 X; € U,Xz. e U,...,X &€ U are n sets, and their roughness
of approzimation are R (X1), RS (X2}, ..., R4 (X,). Their union set X has a
roughness of approzimation R4(X), then R%(X) satisfies the following condi-

tion:
R < RYUX)< R
where n i
R = ZR?\(X'E) —n-+1
i=1
and

Re—1-— IR0 - Ry(XD)
S 15231 = R (XM I Tj=i (1 = RA(X5))]

The proof for this lemma is similar to Theorem 1 and this leimma can also be

applied to accuracy of approximation.

Corollary 3 Xy € U, Xo € U,..., X, € U are n sets, and their accuracy
of approzimation are aa(X 1), aa{Xz), ..., @a(X,). Their union set X has an
accuracy of approvimation a,(X), then a4{X) satisfies the following condition:

- H?:]aA(X';‘-)
(44 Xi Za' X 2 1 .
; AR 2 aa ) 2 S T ) ey aa(5))
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4.6.2 Intersection of rough sets

For the intersection of two rough sets, the roughness for the resultant rough set
is determined not only by the roughness of the two operand sets, but also the
distribution of the two lower approximation of the two operand sets. Indeed,
the roughness of approximation for the intersection set can be 0 or 1 regardless
of the roughness values of two rough sets. As an example, we consider the
intersection set X between rough sets X; and Xo. |

|A*(X1) N A" (X2)| — JA(X1) N AL (X2)]
IA*(X1) N AY(X3)
_ [A*(-Xl) n A*(XZ)l
|[A* (X1} N A*(X2)]

Ry(X) =

=1

According to the definition of rough sets, A*(X1)NA*(X2) 2 A (X1)NA(X>).
* * (X .

We have | 4*(X1)NA* (X2)| 2 |A.(X1)NA.(X2)]. Thus 0 < {38008l < 1.

No matter what roughness values for the two operand sets, we have

A(X)NALX)] )
Xy nay) 0 AN A(X)] =0

|A*(X1) N A*(XZ)l =
|A* (X1} N A*(X2)]

Consequently, we have 0 < R3(X) < 1.
This particular case illustrates that in general the roughnesses of the two

I, I Ad(X) NA(XD)] = |A"(Xp) N AT(Xy)]

rough sets can not bound the roughness of their intersection. Obviously, the
same conclusion holds for the accuracy of approximation and the roughness of
the intersection of more than two rough sets.

4.6.3 Difference of two rough sets

The upper and lower limits for difference set is provided by the following theo-
rem.

Theorem 2 The roughness for approrimation of the difference set of two rough
sets satisfies the following rules

o If|4°(X2)] < |Au(XD)], then

R (X1) + (RH(X1) — 1)s.
1+ (R5(X1) — D).

< BA(X) < Ry(Xy) + 57
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o [fIAY(X2) 2 |A(X))] and |A.(X3)| < |AY(Xy)], then

a(X1) + (Ra(X1) — 1)s.
1+ (B5(X1) — 1)s,

SR(X)<1

o if |A*(X2)| = |A«(X1)| and |A(X2)| > |A*(X1)|, then the roughness of
approzimation of operands can not bound the roughness of approximation .
for the difference set under this situation

AL (X * AM(X.
where, 8§, = fA.Exfg and s = 'A*EX‘:; .

Proof

|4*(X71) = A, (X2)] — JA(X1) — A*(X2)|
JA*(X1) — A (X))
ALK = JA(XG) N A (X5)|
JA*(X1)| = [A*(X1) N A (X2)]

R =

= 1

o |A*(X3)| <€ 1A4,(X1)|. Under this situation, we have |4, (X2)| < |A*{(X1)].

Therefore
e 4.(X0)] — |4°(X%)]

|4 (X))

Ry(X) <1~
Considering R5{X;) =1— 1%17(%% and assume §* = {%, we have

a(X) € R3(X1) + 57

Similarly, let s. = Iﬁ:gxf) , we can get the lower limit:

. ~ |4, (X1)]
RY(X) =2 1 |A*(X1)]| = 1A X2}

RY(X1} + (RY(X1) —D)sa
T LH(RA(X) - L)s,

o |A*(X3)| > [AL(X1)| and |A.(X32)| < |A*(X1)|. For this case, we have
max{|A"(Xz) N A(X1)I} = |A(X1)} and max{[A.(X3) N A" (X))} =
|AL(Xa]). Thus

|A*(X1)l —_ IA*(Xl)l —
|A* (X))
_ [A (X))
| A*(X1)| — |4 (X2)]
R (X1) + (R (Xy1) — 1)s.
- 14+ (RS (X1) — 1)s.

Ha(X)

IA

1- 1

R(X) > 1
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o [A*(X2)| > |AL(Xy)| and |A.(X2)] > |A*(X1)|. Similar to last case, we
have max{|A*(X2)NA4,(X1)|} = |[A.(X1)| and max{[4. (X2)NA* (X )|} =
|A*(X1)|- Then, we have RS (X) < I—M;ﬂ%al?ﬁ(ﬁﬂ = 1. For the lower

limit, we have R(X) > 1 - ]A_*()lﬁf‘['(—z(%W‘ Obviously, the roughness
of approximation does not exist under this situation. This is because

|A«{X1)] is less than |A*(X2)|, and the whole set X has been removed
in the extreme situation. If |A,(X2) N A*(X1)] = |A.(X1)|, then we have
RS(X) 20, |

Obviously, a corresponding conclusion exists for accuracy of approximation.

Corollary 4 The accuracy of epproximation of the difference set of two rough
sets satisfies the following rules

o If|AY(X2)] < |A(Xy)], then

aa(X1) .
1—_—;;(—);1E 2oa(X) 2 as(X1)—s

o If|A™(X2) = |A(X1)| and JAL(X2)| = |A*(X1)|, then

aa{X1)

—_ > XY >
1—ca(X1)ss zaa(X)20

o if |AY(X2)| = |AAX))| and llA*(Xz)’ > IA*(X4)|, then the accuracy of
approximation of operands can not bound the accuracy of approzimation

for the difference set under this situation

AWLX _JAMXD)
where, 8, = {T\:)lli and §* = ]A,(Xf) .

4.6.4 Complement of rough set

The upper and lower limits of complement set can be derived from the difference

set.

Theorem 3 The roughness of approrimation for a complement set of a rough

set can be represented as
0 RH(X) < s

where s is the ratio between the cardinelities of the B-upper approximations of
C e — 1ANX)
XadU:s= A (o7

Proof U is a universe, we have X € U and A.(U) = A*(U) and RS(U) =0

. AT(X A X
then [A4*(X)| < |AU)| Let Xy = X, Xs = U, s = 53 and ¢ = 3G
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according to the theorem for a difference set, we have R (X) < Ry (U)+s =s.

aU)+(RAU) —1t ¢

BA(X) 2 1+ (R(UY -1t~ 1t

Because X € U, s0 0 < ¢ < 1, therefore we have R (X) > 0. We know that for
any R%(X), R3(X) = 0, then we have R4 (X) > max{0, -1} > 0.

For accuracy of approximation, we have similar conclusion.

Corollary 5 The accuracy of approzimation for a complement set of a rough
set can be represented as
1>2a4(X)>1-5

where s is the ratio between the cardinaiities of the B-upper approximations of
XandU: s= %H.

Roughness is an important indicator for the uncertainty associated with
a rough set. It propagates through various set operations and influences the
accuracy of the results of set operations. We proved that there is no defined
bound for the intersection operation of any two rough sets but there are bounds
for union, complement and most difference operations. The results show that
we can get some indication of the roughness or accuracy of the resulting rough
sets before completing an operation involving two or more large rough sets. This
is beneficial for decision making involving large volume of rough set operations.

4.7 Grey sets and grey geometry

4.7.1 Grey sets
There are two particular uncertainties associated with sets:

¢ We may have a concept that is imprecise or uncertain. In this case the
concept itself is fuzzy.

e The elements of the sets are uncertain.

The fuzzy concepts are caused by our ambiguous description, which is a per-
ception uncertainty. However, the uncertain element is a result of the uncertain
status or the incompleteness of information on the status of the element. In this
situation, the concept of the set is clear, but the status of an element is unde-
termined. A third type of uncertainty is a combination of both uncertainties,
which is more common in the real world.

Many models have been developed in an attempt to tackle uncertainties
associated with sets, such as probability [21], fuzzy sets [232] and rough sets



[138]. The concept of probability is closely related to set operations, and reflects
the randommness of an event. However, it does not reveal the aforementioned
fuzzy concepts and uncertain position of elements. Fuzzy sets and rough sets
are the two mainstream models in set uncertainty. Some methodologies merging
these two models have been proposed, such as the fuzzy rough and rough fuzzy
sets [51, 130, 231]. This section presents a new approach to unifying fuzzy sets
and rough sets through the notion of a grey set, based on grey systems. The
advantage of this approach is that in this one model we can discuss the various
uncertainties more clearly.

Fuzzy sets and rough sets cover different uncertainties in sets, thus being
complementary to each other. Fuzzy sets concern the fuzziness of concepts
caused by human perception, it does not focus on the unknown status of indi-
vidual elements caused by incomplete information. Some extended fuzzy sets
have involved incomplete information in some sense, like interval-valued fuzzy
sets. As extensions of fuzzy sets, they have close relationships with fuzziness. On
the contrary, rough sets are much more powerful in dealing with incompleteness
of information rather than fuzziness. Rough sets clearly separate those elements
with clear status from the elements with lack of information by means of its set
approximation and equivalence relation. Therefore, a combination of the two
models is an attractive direction for research. There have been many research
on this subjects, such as the fuzzy rough sets [51, 130, 231).

However, the uncertainty caused by incomplete information has not yet been
fully investigated although rough sets have made some progress. Rough sets
mainly deal with elements which have only three value logic: YES, NO or
UNKNOWN, There is no consideration for something in between like the fuzzy
- concepts. The introduction of tolerance instead of equivalence improves it [106],
but a more general model is necessary to describe the information incomplete-
ness both for rough sets and fuzzy scts. In addition to this, the uncertainty
of a set as a whole has not been investigated as much as individual elements.
A general model for set uncertainty is a necessary component in uncertainty
models for sets. Here, we introduce the degree of greyness from grey system
into set uﬁcertainty, and define a generalised set - grey set. The next Section
firstly provides an overview of grey numbers and grey systems.

Both traditional crisp sets and fuzzy sets need a clear defined membership or
characteristic function value. Rough sets have a similar real number membership
function like fuzzy sets[106]. However, this clear defined number is difficult to
know in some situation. If a human brain has a “fuzzy” concept, how can we ask
the human brain to give a clear defined value for a fuzzy perception? Interval
valued fuzzy sets have successfully expressed this situation in the case of fuzzy

sets, and we will extend this to a more general level using grey numbers. Similar
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to grey numbers, we classify sets into three categories: white sets, grey sets and
black sets. For the sake of simplicity, we limit the value of a set character
function within [0,1].

Before the definition of grey sets, we extend the definition of grey numbers
to the diserete situation. The grey numbers discussed so far are concerned
only with continuous numbers. For instance, the underlying white number for
a grey number [0.2,0.8] can be any real number v satisfying 0.2 < » < 0.8.
There are potenﬁially infinite options satisfying this condition., However, there
are situations that the white number can only have limited options within its
boundary. As an example, we know a white number w could be any one among
0.2, 0.5 and 0.8, but it can not be any other number. That is to say, for instance,
0.3 is not an option at all. Traditional grey systems or interval values do not
include this situation. Here, we extend the definition of grey numbers to discrete
situations,

Definition 17 (Discrete grey numbers) A discrete grey number is a num-
ber with clear upper and lower boundaries but which has limited options inside
its boundary.

A discrete grey number v* can be expressed as follow:
U:I: = {U_: V1, VU2, --. ,'Uk,?)+}

where, 7" <1 <m < ... <vtand 0 <k < oo

Corresponding to discrete grey numbers, the grey numbers introduced in last
section are called continuous grey numbers. Similar to continuons grey numbers,
a discrete grey number represents an underlying white number. The underlying
white number expressed by a discrete grey number can only be one and only one
of the limited candidates inside its boundary. However, the nnderlying white
" number expressed by a continuous grey number has infinite options because of
its continuous domain. Without specific notation, we call both grey numbers
in this paper. A set of grey numbers was called grey set in [214], and we call it
grey number set here to differentiate it from the grey sets defined in this paper.
The grey number set with lower and upper limits n~ and n™ is represented as
[n~,n*]¥ in this paper. A grey number set within 0 and 1 would be [0,1]%,
which is clearly different from a real number set [0, 1].

Definition 18 (White set) For a set W C U, if the characteristic function
value of each e with respect to W can be expressed with a single white number
veV

xw:U—-V
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then W is a white set.

In fact, the white sets are the same as type-1 fuzzy sets, here we call it white
sets to differentiate it from other extended fuzzy sets.

Definition 19 (Black set) For a set B C U, if the characteristic fmiction
vaelue of each e with respect to B can only be expressed with a grey number
bt = [0, 1] or bt = {0,'01.,’(.?2, ceey 1}

XB:Um»{bi}
then B is a black set. Here, 0 < vy <13 <...<1

Definition 20 (Grey set) V¥ = [0,1]% is a grey number set. For a set G C
I/, if the characteristic function value of e with respect to G can be expressed
with a grey number v¥ = v~ ,v¥] € VT or vt = {v=,v1,v,..., 0,07} € VE

xo:U—-VE
then G is a grey set.

Similar to the expression of a fuzzy set, a grey set G is represented with its
relevant elements and their associated grey number for characteristic function:

G=vi/e; +votfea+.. .+ v F/en

The characteristic function here is a general expression, it does not exclude
any relevant criteria in defining a set. Therefore, it can be replaced by a prob-
ability function, membership function, possibility function ete. For a white set,
we know clearly the relationship between an element and a set. Obviously, a
white set here is different from a crisp set in traditional sets. A white set has a
clear relationship between the set and relevant elements, and that relationship
is not necessarily a crisp relationship. If we replace the characteristic function
with fuzzy membership function, then the white set become a standard type-1

fuzzy set.

Student evaluation There are five students in table 4.1, their name, gender,
working attitude and exam results are listed in the table. A set A for evaluating
the study of students is to be established with respect to different attributes.
Assume q; is a student in the table, and ¢ = 1,2,3,...,n. n is the number of
students. We can get A directly from Exam Result attribute in the table, and it
is also possible to establish A indirectly using other attiibutes, such as Working

Attitude and Gender. Here, we adopt Working Attitude to establish a grey set.
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| Name | Gender | Working Attitude | Exam Result |
Mike Male Good Good
Jane | Female Neutral Good
Claire | Female Neutral Neutral
David { Male Neutral Poor
Lisa | Female Poor Poor

Table 4.1: Information for 5 people

The exam result shows some kind of relationships with Working Attitude.
A characteristic function is established according to the relationship between
Working Attitude and Exam Result:

1 if a;'s Working attitude = good;
Ffal(ai) = [0,1] if a;'s Working attitude = neutral;
0 if @;’s Working attitude = poor.

Under this characteristic function, A = [1,1)/Mike+[0,1]/Jane+[0,1]/Claire+
[0,1]/David+[0,0])/Lisa = 1/Mike+[0,1]/Jane+[0,1])/Claire+[0, 1]/ David--
0/Lisa. Qbviously, A is a grey set. .

It is clear that a grey set has ill defined relationships between some elements
and the set, and their characteristic functions have a grey number for a given
attribute value.

From this example, it is clear that there are two different kinds of students
in a grey set A according to their characteristic function values: students with
white numbers {0 or 1) and students with grey numbers. They are two different
categdries. We can classify the elements relevant to a grey set into three different
categories: white, grey and black elements.

Definition 21 (White element) U s the universe of discourse, G is a grey
set and G G U. e is an element relevant to G and e € U. v¥ is the value for
characteristic function of e with respect to G. If v— = vt then ¢ is called a
white element

Definition 22 (Grey element) U is the universe of discourse, G is a grey
set and G C U. e is an element relevant to G and e € U. vE is the value for
~ characteristic function of e with respect to G. If v™ # v, then e is called a
grey element

Definition 23 (Black element) U is the universe of discourse, G is a grey
set and G C U. e is an clement relevant to G and e € U, v* is the value for
characteristic function of e with respect to G. If v~ =0 and vt =1, thene is
called a black element
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Because of the existence of grey and black elements, the relationships be-
tween some elements and a grey set are not completely known. The value for its
corresponding characteristic function can only be expressed as a grey number.
This is caused by the incomplete information of this element. Similar to the case

for a grey number, the uncertainty caused by the information incompleteness
can be measured using a degree of greyness. Considering the specific feature of
grey sets, the degree of éreyness for an element and a set are defined here.

Definition 24 {Degree of greyness for an element) U i3 the finite uni-
verse of discourse, e is an element and e € U. For a grey set G € U,
the characteristic function value of e with respect to G is vt = [v—,vt] or
vt = {v™,v1,v2,...,vk,vF}. The degree of greyness g°q(e) of element e for
set G is expressed as
vt —o=

QOG(E) = pmex __ vmz’n
Here,y™® gnd v™i" gre the maximum value and minimum value of character-
istie function, 0 < v Sy <wm <. .S <vt €<l and 0 <k < o0.

According to our definition for grey sets, we have

. ™aT — 1

and

therefore

Pole)=v* v

Based on the degree of greyness for an element, a degree of greyness for a
set is defined as follow.

Definition 25 (Degree of greyness for a set ) U is the finite universe of
discourse, G is a grey set and G C U. ¢; is a an element relevant to G and
e; e U. 1=1,2,3,...,n and n is the cardinality of G. The degree of greyness

of set G is defined as
o= > 9°cled)
n
Example for degree of greyness According to the given definition, the un-
certainty caused by incomplete information for the evaluation of students un-
der different considering attributes can be measured using the degree of grey-
ness for the elements and sets. Considering data in table 4.1, we evaluate
their results with respect to the three different attributes and setup three sets:

A = {evaluation using working attitude}, B = {evaluation using exam results}
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and C' = {evaluation using gender}. It is ocbvious that B set is a white set where
the result is evaluated by itself. For C set, one can not know if a male (female)
has a good or poor result because that both results exist in table 4.1 for male
(female). Therefore, C is a black set. From our previous analysis, A is a grey
set. Therefore, we have 4

A= 1/Mike +[0,1]/Jane + [0,1]/Claire + [0,1)/David + 0/ Lisa

" B= 0/Mike + 0/ Jane + 0/Claire + 0/ David + 0f Lisa
C =1/Mike + 1/Jane +1/Claire + 1/ David + 1/Lisa

The degree of greyness of each element in the relevant set is derived frdm their
characteristic functions. For instance, the degree of greyness for Jane could be
calculated as

ga(Jane)=1-0=1

gu(Jane) =0-0=10
gelJane)=1—-1=0
For the grey set A derived from Working attitude, its degree of greyness is

o O0+14+14+1+0

0.6

The results for the sets evaluated according to Exam Result, Working attitude
and Gender are shown in Table 4.2.

Name | Exam Result | Working attitude Gender
Element | Set | Element | Set Element | Set

Mike 0 0 1

Jane 0 1 1

Claire 0 0 1 0.6 ] 1

David 0 ] 1

Lisa 0 0 1

Table 4.2: Example for degree of greyness

From Table 4.2, it is clear that a white set has a degree of greyness of 0, a
black set has a degree of greyness of 1 and a grey set has a degree of greyness
between 0 and 1. '

Theorem 4 U is the finite universe of discourse, G is a grey set and G C U.
e is an element and e € U. v¥, is a value for the characteristic function with

respect to e. g°qle) is the degree of greyness of e, and ¢°¢ is the degree of
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greyness for G. The following properties hold for e and G:
o G is o white set iff ° =0
o iz o black setiff ° =1
o G is a crisp set iff g° = 0 and v¥, € {0,1} foranye c U
o G is a type-1 fuzzy set iff ¢°, = 0 and v, € [0,1] for any e € U

e G is an interval-valued fuzzy set iff v£, is a continuous grey number for
anyeecl

Proof Assume the value of characteristic function as v;%. i is the index of the
element. If g°- = 0, then Y ¢°z(e;) = 0. We have ¢g°g(e;) = 0 for any ¢, and
therefore v;~ = vt for any 4. Thus v; is a white number for any ¢, and Gis a
white set. If G is a white set, then v; is a white number for any ¢ and v;~ = v;+.
Thus g°;(e;) = 0 for any 4, and " g°¢(e;) = 0. Therefore g°; = 0. The second
conclusion can be proved in a similar way.

From the first rule in this theorem, G is a white set when ¢°4 = 0. Then
v; ¥ = v € [0,1]. Obviously, v is a white number between 0 and 1. Therefore, G
is a type-1 fuzzy set. If we know (7 is a type-1 fuzzy set, then its fuzzy mem-
bership has a clear defined white number between 0 and 1 as its value, then
g°c(e) € [0,1] for any e € U. Therefore its degree of greyness for each element
is 0, then we know g°¢ = 0.

The third rule is straight away. If we have ¢°; = 0 then G is a white set. For
a white set, if v%, € {0,1}, then its characteristic function would only have a
value of D or 1. It is clear that G is a crisp set. If G is a crisp set, it is clear that
vt, € {0,1} and g°, = 0 hold. Similarly we can prove the fourth conclusion.

If we consider characteristic function as fuzzy membership function g and
V* =[0,1)*, then we have
pe U — vt

Under continuous grey number, v* = [v~,v¥] C V£ can be considered as an
interval d and d € D[0,1]. Here D[0,1] represents an interval between 0 and 1.
Hence the grey set G can be expressed as

pg: U — D[0,1]

this is an interval valued fuzz set. For an interval valued fuzzy set, the fuzzy
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membership ¢t can be considered as characteristic function, then we have
x.U — D[0,1]

Assume the membership interval d = [v=,vT], which is a continuous interval.
Represent this continuous interval with a continuous grey number v+ = d =
[v~,v?], then we have a grey set with p as characteristic function.

uU — VE

This theorem shows that grey sets extend crisp sets, fuzzy sets and interval-
valued fuzzy sets.

Theorem 5 G is a rough set iff °o > 0 and v¥, C {0,1} holds for anye € U.
Here, U is the finite universe of discourse, G is a grey set and G C U, e is an
element and e € U. v%, is a value for the characteristic function with respect
to e. g°q 1s the degree of greyness for G.

Proof If v*, C {0,1} holds for any e € U, then v%, is a discrete grey number,
and vt, = {0,1}. There are only three options for the result value of v¥.: 0,
1 or {0,1}. The elements in U can be classified into three different crisp sets
according to the value of v¥,: G, for v, =1, F for v, = {0,1} and ~ G for
vE, =0, Obviously, G.N ~ G = ®. If ° > 0, then F # &, The elements in F
are not determined, and they may belong to G or ~ G with more information.
There are two possible extreme situations: v*, = 1 for cach e € F or v¥, =0
for each e € F'. For the first sitnation, we get the maximum G* = G, U F. For
the second situation, we get the minimum &.. Obviously, G* 2 G 2 G,. Let
R = U x U be an equivalence relation on the universe U, [e] g is the equivalence
class containing e. Thus each e € U represents an equivalent class [e]r. The
clements in [e]r should include all validate characteristic function values for
e € U. From our analysis of G, and G*, we have

e vt =1ife; € [e]p and [e]r C G,

o There is at least one clement e; satisfying v*

[e]lr € G*

e, = 1 for each e; € [e]p if

Here, i is the index of the clements in [e¢]g, i =1,2,...,k. k is the number
of the elements in [e]s. Thercfore, we have

e eJrCCGiffec G,

* [elpnG#Difec G
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Then we have the lower approximation R,((G) and the upper approximation
R*(G) as follows:

* R.(G)={eeUllelr CG} =G
¢ R*(G)={ec Ulle]nNG # P} =G*

Obviously, under the given condition, a grey set is equivalent to a rough set.
For a rough set G, it satisfies the two equations above. A characteristic function
could be established:

1 if e € R.(G);
fale) = ¢ {0,1} ife€ R*(G) but e ¢ R.(Q);
0. if e ¢ R*(G).

Obviously, the value of this characteristic function contains discrete grey
number, Assume V* = {0,1}, then G satisfies

xe:U— VE

This is a grey set.

This theorem proves that grey sets include rough sets as a special case.

There are many models for uncertainty representation, but the main stream
methodologies at present are fuzzy sets and rough sets. They represent different
aspects of uncertainties, and provide complementary functions in uncertainty
modelling. There have been considerable efforts in unifying them by means of
fuzzy rough or rough fuzzy modcls. However, we present a different route to this
unification: a grey model. We propose grey sets unifying fuzzy sets and rough
sets in a simple model. Our results show that a grey model can be specified to
both fuzzy sets and rough sets.

4.7.2 Grey geometry

As a mathematical foundation of numerous geometrical operations, computa-
tional geometry is playing a significant role in the development of areas like
computer graphics [7, 67], computer aided design [191, 192], Geographical In-
formation Systems (GIS) [109, 72, 70] etc. However, the complexity of the real
world raises also many challenges to the further application of computational
geometry. One of these is the representation of uncertainties in geometrical
objects [73, 200]. Because of various limits in measurement, data in the real
world are sometimes not so accurate in the sense of mathematics. There may

be different errors involved in the measuring operations, such as the errors from
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equipment, the errors from human operations etc. In the same time, the accu-
racy is a relative concept, and it is subject to changes under different scales. For
instance, the distance measurement may be accurate in the scale of Kilometres,
but it may contain a significant unknown for Millimetre scale. It is very com-
mon in engineering that the measured data contains some errors, and thus the
geometrical object can not be kept strictly in the sense of traditional geometry.
This problem is not so obvious in traditional application areas like co.mputer
graphics or computer aided design for small size entities. However, its exis-
tence significantly influences the application of computational geometry in new
application areas where a huge amount of large scale geometrical objects are
concerned, such as GIS [109]. There are many operations sensitive to errors and
other uncertainties in GIS, such as data structure tuning, generalisation, topol-
ogy, overlay, spatial accuracy and analysis [36]. The traditional geometry does
not consider these uncertainties at all, and hence its application in problems
involving large amount of uncertainties is limited. Some methodologies have
appeared in the application side, such as the buffer zone approach proposed in
GIS research [200]. To embrace the challenge of computing applications, a sys-
tematic iﬁvestiga.tion into the representation of uncertainties, especially errors
in measuring data, is essential. In the late 70’s, Azriel Rosenfeld introduced
fuzzy geometry to consider fuzziness in geometry [150], which is then applied
into to image processing [135]. Fuzzy logic is the most popular technique in
dealing with uncertainties related with human perception. Whereas, the wide
existence of measuring errors in spatial data involves not only human percep-
tions, but also the limitation of equipment and other physical limitations. This
kind of uncertainty is different from the human perceptions in that they have
clear boundaries but unknown positions within its boundaries. It demonstrates
our limited or imperfect knowledge of the geometrical features of the real world
objects, hence a methodology specifie for this kind of uncertainty is needed for
a further contribution of computatiénal geémetry to the computing industry.
Here, we define a new type of uncertainty representation for geometry using
grey systems [47], an emerging theory to treat with imperfect information, as a
step forward to enable geometry to support spatial analysis with uncertainties.

By grey geometry, we mean the geometry where every object is considered
as a grey object. Different from objects in traditional geometry, objects in grey
geometry have no clearly defined positions or boundaries but a known scope of
possible values, This is different from fuzzy geometry in that a grey object has
clear definition of its scope, and it can move around only within that scope.
It is clearly defined in the sense of its scope, but not determined with respect
to its exact position of boundaries. As in the case of traditional geometry, the
first thing for grey geometry is to define its elements which constitute the grey
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geometrical objects.

Grey points

The basic element for a geometrical operation is a point, and it is the same for
grey geometry. Different from traditional geometry, a 2D point in grey geometry
is not strictly a “point” in the sense of traditional geometry. It is some kind of
“area” where its position is bounded. The comparison between traditional point
and grey point is shown in Figure 4.13. Figure 4.13(a)} is a point in traditional
geometry, and Figure 4.13(b) represents a grey point in grey geometry.

Definition 26 (Grey point) For a given grey number ¥ = [11,z2] in X
dimension, and y* = [y1,ys] in Y dimension, a grey point P(z*,y*) is repre-
sented as

' P(z*,y*) = P([z1,22), [y1,9])

A grey point P(z*,y*) represents a point p(z,y) where z € [r1,22] and
¥ € [y1,v2)-

Y 4 | v
2 .-
B
: &
O % » X 0 521 ;{2 — X

@ ()
Figure 4.13: Comparison between traditional points and grey points

Figure 4.13(a} is a point in traditional geometry, and Figure 4.13(h) repre-
sents a grey point in grey geometry. Obviously, a grey point is not an exact
_ position of point, and it is in fact a bounded area or volume where the point

exists.

Grey lines and grey segments

Similar. to traditional geometry, we define the grey line as the “line” passing
through two grey points. It consists of all the collinear grey points on this
“line”. More accurately, a grey line is defined in the form of its grey parameters

in analytic geometry.
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Definition 27 (Grey line) : For given grey numbers a* = [a1,as], b =
[b1,b2] and & = [e1,¢2), a grey line is defined as

atr+bfy+ et =0

where, x and y are the coordinates of the two dimensions. Obviously, the
value of x and y would also be grey values.

Similar to line segment in traditional geometry, a grey segment is a closed
subset contained between two grey end points on a grey line. Figure 4.14 demon-
strates a 2D grey segment between grey point P1 and P2. From Figure 4.14, it
is clear that grey segment defines an area where the segment may fall in, but
the exact position of the segment is unknown. Both the length and direction
are grey values and they have upper and lower limits as other grey numbers.
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Figure 4.14: Comparison between traditional line segments and grey line seg-
ments

Grey Polygons

In computational geometry, the most important shape is a polygon. It is the
basis for modern computer visualisation and graphics. Its feature is also the
most important content in grey geometry.

In traditional geometry, “a polygon is the region of a plane bounded by a
finite collection of line segments forming a simple closed curve” [134]. Similarly,
a prey polygon is a grey region of a plane bounded by a finite collection of grey
line scgments forming a simple closed grey curve.

Definition 28 (Grey polygons) : Let P, P,,, P, be n grey points in a plane,
and S, = P1Ps, 53 = B Ps, ..., 5,1 = Po_1Pn, S, = B, Py be n grey segments
eonnecting the grey points, then these segments bound a polygon iff
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s The intersection of each pair of grey segments adjacent in the cyclic or-
dering is a single grey point shared between them: S; N S;y1 = Pig1, for
ali=1,2,...,n (we defilnen+1=1)

¢ Nonadjacent segments do not intersect: S;NS; =0, forall j#£ i+ 1.

Y4 Y4

(a) )

Figure 4.15: Comparison between traditional polygons and grey polygons

The comparison between grey polygon and traditional polygon is illustrated
in Figure 3 It shows a grey polygon with regular inner and outer boundaries.
However, the inner and outer boundaries may not even be similar shapes. The
inner boundary defines an area where the points definitely belong to the polygon,
but the area between inner and outer boundaries refers to points which may or
may not belong to the polygon. It is the so called grey area.

Grey distances

In traditional geometry, distance is the shortest length of path from one point
to another point. It is in fact the length of line segment passing through the
two points, as shown in Figure 4.16(a). In grey geometry, the distance between
two grey points is the length of grey line segment passing through the two grey
points, as illustrated in Figure 4.16(b).

Definition 29 (Grey distance} : For two given grey points Py([z11, T12], [y11, ¥12])
and Po([xar, T22], [y21, Y22]), their grey distance is a grey value D

D =[D",D%]

where D™ = y/{z21 — 212)% + (y21 — y12)2 and DT = /(222 — 211 )% + (Y22 — y11)?
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Figure 4.16: Comparison between traditional distances and grey distances

Degree of greyness for 2D grey objects

In geometry, both lines and polygons consist of points. A line segment can be
considered as a set of points distributing on the segment. Similarly, a polygon
is a set of points bounded within the boundary of the polygon. A line segment
or .a polygon could be considered as sets consisting of points. Therefore, a grey
point, a grey line segment or a grey polygon could be considered as grey sets
of points. In these sets, each point is associated with a degree of greyness:
0<g7 <0

In most cases, it is very difficult to quantify the membership of each individ-
ual points of a geometrical object. However, it is it is possible for us to know
which part has a certain relationship with the object and which part has only
unknown information. In this case, we take a discrete grey number {0,1} as
their unknown characteristic function value of elements. For those known ele-
ments, their characteristic function value would be 1 or 0 depending on if they
are in the object or not. From definition 24, we have the propertics of degree of
greyness of geometrical objects:

o If P is a grey point, p is a point and p ¢ P, then ¢°(p) = 1;

o If PP is a grey line segment (P) and P; are the two end grey points), p
is a point and p € Py I%, then we have

go()_ 1 fpePUR
P 0 ifpePPandpgd PLUR

e If Pis a grey polygon, pis a point and p € P, P, Ps,..., P, are its grey
vertexes and PP, P2p3,..., PP, are its grey boundaries (scgments).
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The degree of greyness of element p is

°(p) = 1 Hpe PARBUPRPU...UP, 1 PLUPP
TW=10 ipe P P,UPPU...UP, P,UPP

With the value of degree of greyness for each element, we now can calculate
the degree of greyness of each set according to Definition 25:

. . g2 P) = Sl
s Grey points P: g&(P) = =i=1-;

P

» Grey segments Py Py: gh(P1Ps) = ;i";l—l;

iy
» Grey polygons P: g&(P) = %j;_l

Where n,, n; and np are the total number of points in a‘ grey point, a grey
segment or a grey polygon, my, my and mp are the number of points in the
unknown (boundary) region of objects. Obviously, these parameters vary with
the change of the resolution of the object representation. If the resolution is fine
enough, then the ratio of %‘:ﬁ, ’;‘—f and %f would converge to 1, %f— and %E Here,
lg and [, refer to the boundary length of a grey segment {the total length of the
two grey end points and the total length of the whole grey segment. Similarly,
Spg denotes the area of boundary region (grey segments), and Sp represents the
whole area of the grey polygon P.

Therefore, we have

o Grey points P: g&(P) = 1;

s Grey segments P| Py: g&(P P2} = %f—;
e Grey polygons P: g&(P) = gﬁ

Degree of greyness of a set indicates the uncertainty associated with the
set. Therefore, it is a good indicator for uncertainty control. Under the given
assumption here for geometry, we consider the characteristic function value as
three categories: 0, 1 or {0,1}. Obviously, from Theorcm 5 we know that a
grey set is equivalent to a rough set. From Definition 24 and Definition 6, the
degree of greyness is equal to the roughness under this condition. Therefore, the
bounds of roughness in Section 4.6 are applicable to the degree of greyness of
grey geometrical objects. It provides a convenient tool to control the uncertainty

in GIS operation.

4.7.3 Application of grey geometry to GIS

In GIS, overlay operation is & routine work of most spatial queries. For simple

overlay operations such as a simple overtap of each other, this does not cause
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any problem. However, for complicated operation, such as union, intersection
and difference of two or more than two layers, the resulted map may has a
completely different uncertainty associated with it. As a media of spatial infor-
mation systems, it is essential to keep track with this uncertainty change and
reveal its reliability to users. However, most of the present GIS do not consider
this important issue at all. Some research has been carried out for this problems,
and some proposals are proposed such as the buffer zone methods [9]. Here, we
propose the adoption of grey geometry in dealing with this issue.

In real world measurement, a grey point represented as grey dimension
z*, 4% may not be appropriate. There is no reason that the grey point can
not be grey in another direction. Therefore, we propose a radius representation
of grey point for GIS:

P(p,r}=(z,9,7)

Where, P is a grey point, p is a crisp point which is the centre of the grey point,
and we call it core of grey point P. » is a crisp number representing the radius
of the grey point, and we call it. the grey span of P. In this way, a grey point is
represented by a circle in a GIS map, the centre of the circle is its core, and the
radius of the circle is its grey span. It is obvious that it is the relative size of the
grey span of vertexes that decides the degree of greyness of a spatial object in
GIS. In GIS, the most significant spatial object is polygon, so we would focus on
the representation of its uncertainty in GIS. Considering the reality that most
geographical measurement would have only a tiny grey span compared with the
size of the segment of polygon in concern, we can approximate the degree of
greyness of a polygon P as

S (s i) x ]
= 1) UM i) x L)

Figure 4.17 demonstrates the uncertain boundary of a grey polygon. There-

g&(P) = 3

[+

fore, the degree of greyness of a polygon can be easily computed using their .
grey vertexes. For any operation between two grey polygons, their grey ver-
texes would be automatically reserved together with the parts remained at the
resulting polygon. If a new vertex is created between the two polygons, then
the grey span will follow the one with small grey span which could be derived
from a linear interpolation.

With the grey representation, a polygon in GIS will keep its uncertainty with
it no matter what operation and how many operations have been carried out,
and this information is essential for its final users to know its reliability after
large amount of integration and overlay operations. The degree of greynesé of

some resulting polygon may be much larger that its original antecedents, such
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Figure 4.17: The partition problem

as a difference operations in Figure 4.18, 4.19 and 4.20. Due to the small size of
a resulting polygon, its uncertainty may become too significant to its location.
For example, a move of 5 metres is not a big problem for object such as a

continent in the map, but it may move one house to the other side of the road.
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Figure 4.19: Operand shape B
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Chapter 5

Application experiments

5.1 The role of redundant structure of neural

networks

To demonstrate the performance of the redundant NN, a simple example for
partition is illustrated here in Figure 5.1. Points in Figure 5.1 belong to two
different parts. The input factors of the network are the coordinates of the
points, and the output is 0 for points located to the left and 1 for the right. This
simple problem shows the difference between the networks trained with simple
inputs and redundant inputs under conditions of the same random initialisation
operation. The training points include the vertex of the two parts and some
inside points produced randomly.

b
(0360) a (270,360

20,3600)

L
(139!@\ (140,180)

20,0)
(0,0) B (270,0

Figure 5.1: The partition problem

- After some trials, the minimum requirement for the humber of hidden nodes
is 2 (one hidden layer). Two networks are established: each with two hidden
nodes, the redundant input network with 30 sets of inputs. With exactly the

same initial hidden layer and output layer as well as their connections, two
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networks for the same application are established under the same error limit.
Their different outputs are compared in Figure 5.2. The status of points in the
whole area in Figure 5.2 is calculated with the redundant input and ordinary
one. Figure 5.2(a) is produced by the redundant input network, and 5.2(b) by
the ordinary one. It is obvious that the redundant one gives a better resolution
than the ordinary. The detail in the central area has a higher resolution. The
ordinary NN is less accurate; its centre boundary is estimated as an arch which

s different from Figure 5.1. The arch in the ordinary NN produces information
that does not exist in the training set. This is not the best of solutions according
to Jaynes’ Maximum Entropy Principle [100].

(a) .

Fizure 5.2: The results of compound and standard input

To test the reliability of this difference, the initial connection weights are
updated with random initialization and the same experiment is repeated. In
the end, all converged networks give similar differences between the two kinds
of networks. However, our experiment shows also that convergence is difficult
with a minimum number of hidden layer nodes: both structures have over 95%
of failures (not convergent in the end). Figure 5.3 demonstrates some results
from failed networks. The compound {redundant) one takes much longer. In a
real world application, the optimum hidden node number is difficult to know in
advance, and it is more likely that the neural network is initialised with a strue-
ture involving some extra hidden nodes. Therefore, a series of experiments for
redundant hidden nodes are carried out to test their influence on neural network
learning. The results demonstrate that, in addition to the improvement in the
solution compared with the network with ideal network structure, a redundant
structure shows also a robust feature for the possible false solution introduced
by extra hidden nodes.

Figure 5.4 shows the results of this experiment for acceptable and false map-
ping rates which change with respect to different network size. Here, by size we



Figure 5.3: The convergent results from networks with 3 and 4 hidden nodes

mean the number of hidden nodes in the hidden layer for the ordinary network
and the number of the sub input sets in redundant networks with 3 hidden
nodes in the hidden layer. Figure 5.4(a) shows the result for ordinary networks
and Figure 5.4(b) gives the performance of redundant input networks.
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Figure 5.4: The rate (%) of acceptable and false mapping vs. network size
(a-ordinary network; b-redundant input)

The common perception is that a neural network of small size is more reli-
able. However, it is true only for the minimum size which is less likely to learn
the idiosynerasies or noise in the training data [15] - although it may involve
strong non convergence as aforementioned. The example here shows that the
small size with extra hidden nodes would have a high probability to give a false
mapping, as demonstrated in Figure 5.4(a). This result is caused by the poor
initialization of the weights. With the increment of the hidden nodes, the ideal
distribution of the initalised weights approaches 0 (Equation 7) and hence the
starting position for the learning is improved.

The redundant hidden nodes are sometimes inevitable for a complicatea'ap-
plication due to our ignorance of the “black box” structure of NN. Figure 5.4(a)}
demonstrates that an ordinary network with 3 hidden nodes for this problem
is highly likely (80%:20%) to introduce false solutions. Because of this, all the
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experiments in Figure 5.4(b) are based on 4 hidden nodes to test its robustness.
Figure 5.4(b) shows that the increment of a redundant input network has a
similar function like hidden nodes in reducing possible false solutions. However,
the redundant input network has a crucial difference from the pure extra hidden
nodes: it does not introduce any new parameters to the network. Hence it keeps
the generality of the trained network.

Redundant structure does not always have negative effects with regard to
the training of neural networks. It could play a significant role in improving
the network performance under certain conditions. The redundant structure
proposed here does not introduce new uncertainties into the network, but it
reduces the possibility of false mappings and improves mapping quality. The
method propesed is novel although simple, it does bring new problems like longer
training times, but it provides a prospective direction for the improvement of

neural network training operations, especially for hardware realisation.

5.2 Significance analysis using neural networks

One of the limitations of BP algorithm is the existence of local minima in its
error surface. This means that it might not yield a right solution to the map-
ping procedure, and its RSE can not reveal the true mechanisms either. We
applied two methodologies here to overcome this problem: a hybrid method of
dynamic BP with random optimization [18} and the proposed redundant struc-
ture in Section 5.1. For the first method, learning begins with the modified BP
method and changes into the random optimization approach when the learning
process gets stuck in a local minimum. In addition, the dynamic adaptation of
structure and parameters is applied to the whole process of learning where both
the structure of the neural network and its learning parameters are modified
dynamically according to the changes in error. In tle second method, we sct
a rclatively large redundant input sets to see if we can reduce the number of
hidden units from the first method.

As mentioned above, RSE is different from the derivative of the output with
respect to the input.” However, if enough learning has been done, the RSE is able
to approximate the scaling differentiation when the original mapping function
is differentiable. Hence, the RSE method can be tested with a differentiable
function for a demonstration. As an example, we consider a simple nonlinear
equation as follows '

z = 0.52% +0.1zy — 0.9y°
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e
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[ [Nolx v [z |
1 0.37 | 0.81 | -0.5 16 0.94 | 0.98 | -0.33
2 08104 021 |17 0.06 | 0.49 | -0.21
3 06207 |-02 |18 0.25 { 0.75 | -0.46
4 0881005039 |19 0.15 } 059 % 0.3
5 0.88 [ 0.53 | 0.19 | 20 0.59 | 0.79 | -0.34
6
7
8
9

06406 |-008)21 (031]093|-0.71
006 ) 0.62 | -0.34 | 22 | 041 | 0.29 | 0.02
085103 (031 ;23 081013032
043 1 0.69 | -0.31 | 24 | 0.77 | 0.09 | 0.3
10 (032042 |-01 |25 |0.73]0.280.22
11 1085|076 |-0.09 | 26 | 0.34 | 0.54 | -0.19
12 ] 0.64 | 052 }-0.01 | 27 | 0.83 | 0.83 | -0.22
13 (056 | 097 | -065 28 |09 |0.84-0.16
14 1038102 {004 |29 | 042 ] 0.46 | -0.08
15 |0.27]005]004 |30 |039]055]|-0.18 |

Table 5.1: Training sample set of nonlinear equation

the derivative can be obtained as

dz
Oz

‘We will now show that the feasibility of RSE for equation this equation can
be verified by its derivative. We choose the values of x and y within [0,1]
randomly, and get the corresponding z values from the given equation. One sets
up a training sample set containing 30 samples as shown in Table 5.1,

The structure of a neural network is initialized as shown in Figure 5.5a.
After 1044 iterations of learning, the error has been reduced to 10E-4, and the
number of hidden units has been increased to 6 (Figure 5.5b) from 3. As a
result of dynamic adaptation, the structure of the neural network has changed.

(a) (b)

Figure 5.5: The change of network structure for a nonlinear equation

Another group of samples which does not belong to the training sct is used

118



No. sample output

x y Z | zo [ error
1 0.81 | 0.15 | 0.32 | 0.30 | -0.02
2 083 (043026 | 0.24 | -0.02
3 063|037 101 0.09 | -0.01
4 1 069 [ 014 | 0.13 | -0.01
5 0.56 [ 0.32 | 0.08 (CG08 | O
6 0231097 ({-08 {-076! 004
7 02810181001 |0 -0.01
8 0910611013 | 0.12 | -0.01
9 063 [ 0361 0.1 0.1 0
10 049 ] 0.74 | -0.33 | -0.34 | -0.01

Table 5.2: The capacity of neural network for a nonlinear equation

to test the trained neural network. The testing results are listed in Table 5.2
which shows that the absolute errors between the outputs of the neural network
and the ideal values are not more than 0.04. At the same time, most of their
relative errors are also lower than 10% except for the 7th sample in Table 5.2.
The z value of the 7th sample is too small to compare its relative error, and its
absolute error is also very small.

With the trained neural network, the RSE can be obtained from Equations
4.14, and the corresponding derivatives can be worked out with the given nonlin-
ear equation. We compared these results to test the capability of RSE as shown
in Table 5.3. The first two columns are the x, y input data, and the second two
columns are their derivatives. The third two columns are the derivatives divided
by their maximum value, which is the controel that is applied to the derivatives
of the same sample. The two columns to the far right are the RSE values.

Because of the existence of error, the values of RSE are not exactly the same
as the controls of the derivatives. However, it is clear enough that the values of
RSE display a similar relative dominance to the controls of the derivatives shown
in Table 5.3, We can make the RSE approximate the derivative with any desired
degree by increasing the number of iterations. Here, we intended to demonstrate
the capabilities of RSE, and we paid attention only to the relative dominance
of inputs rather than the exact derivative. The comparison of RSE with the
controlled derivative in Table 5.3 is shown in Figure 5.3. It is obvious that the
results in Figure 5.3 show the agreement between RSE and the derivative.

For the same application, we adopt our redundant model with 30 sets of
input units. However, we set 2 units in the hidden layer to check the result.
After 5000 iterations of learning, we got simifar error. The corresponding output
test and RSE results are shown in Table 5.4 and 5.5.

Table 5.4 and 5.5 illustrate the capability of redundant network structure.

119



No. input derivative control RSE
x |y |0z/0z | 0z/0y | 8z/0x | 0z/0y | RSE.. | RSE,,
1 0.2 102|022 -0.34 0.65 -1 0.58 -1
2 02}08]028 -1.36 | 0.21 -1 0.24 -1
3 0.8(02]|082 -0.28 1 -0.34 1 -0.41
4 0808|0288 -1.28 | 0.61 -1 0.63 -1
5 0.5 | 0.5 | 0.55 -0.85 | 0.65 -1 0.69 -1
6 0.5)02] 052 031 |1 -0.6 1 -0.7
7 0.2 05025 -0.88 0.28 -1 0.32 -1
8 05|08 0.58 -1.31 | 0.44 -1 0.39 -1
9 0.8 05]0.85 -0.82 |1 096 |1 -0.83

Table 5.3: The derivative and RSE of a nonlinear equation

No. sample output

X y z [ 2o, | error
1 08110151032 1032 10
2 088 | 043026 | 0.24 | -0.02
3 063 ]037 (01 0.09 | -0.01
4 1 0691014 |0.14 { O
5 0.56 | 0.32 ) 0.08 | 0.07 | -0.01
6 0.23 1097 | -0.8 | -0.76 | 0.04
7 028|018 | 001 JO -0.01
8 091 1061|013 | 013 |0
9 063|036 | 0.1 0.09 | -0.01
10 [ 049|074 | -0.33 ] -0.35 | 0.02

Table 5.4: The capacity of the redundant network for a nonlinear equation

- No. input derivative control RSE
x |y [92/0x]0z/0y | dz/0z [ 8:/0y | RSE., | RSE,,
1 0202|022 -0.34 | 0.65 -1 0.68 -1
2 021081028 -1.36 | 0.21 -1 0.29 -1
3 0.810.210.82 -0.28 1 -0.34 1 -0.60
4 0.8 081|088 -1.28 | 0.61 -1 0.69 -1
5 0.5 05055 -0.85 | 0.65 -1 0.61 -1
6 0.5 02| 0.52 -0.31 1 -0.6 1 -0.73
7 021051025 -0.88 ) 0.28 -1 0.29 -1
8 0.5} 081|058 -1.31 0.44 -1 0.37 -1
9 0.8 05| 0385 -0.82 1 -0.96 1 - | -0.91

Table 5.5: The derivative and RSE of a nonlinear equation from redundant
network

120



Although there is a corresponding traditional network with the same capability,
but; it is very difficult to find in most cases, and our redundant structure provides
an efficient way to reduce hidden layer units so as to reduce the extra parameters.
The reduction of those extra parameters help to reduce the complexity and hence
increase the reliability of trained networks.

This nonlinear equation is simple, but the result has demonstrated the ef-
ficiency of RSE. Clearly, the RSE reflects the dynamic variation of the effect
for inputs acting on output. With the same operation, one can analyze more
complicated problems.

5.3 A new method to evaluate a trained artifi-

cial neural network

We have shown in last section that an ill-defined neural network will give false
results. Hence it is necessary to evaluate a trained neural network to see if
it gives a correct mapping. In Section 4.3, we have proposed a novel method
in evaluating a trained neural network. To illustrate the applicability of the
proposed evaluation method, we use the same partition example as illustrated
in Figure 5.1. Obviously, the maximum significance of the two dimensions (x,y)
are exactly the same: no influence to the output in the left side of AB and
same importance along the boundary interface. Therefore, the field knowledge
advises:
GPRSE, = GPRSE,

PRSE® = PRSE?

where, ‘a’ represents an arbitrary point in the two parts of Figure 5.1.

For a simple problem like this example, it is applicable to test the trained
neural network in the whole scope of interest. Therefore, the traditional test-
ing method is applied here to validate the applicability of the new approach
proposed here. As suggested in Section 4.3, a three layer network (one hid-
den layer) has the ability to approach any continuous mapping. Hence, we
investigate only the structure with one hidden layer here. The structure with
3,4,5,6,7,8,9,10 and 15 hidden nodes are studied with a random initialised con-
nection weights within [0,1]. For every structure, 10 converged networks with
different initial connection weights are established.

Coincidently, the acceptable and false mappings are equivalent in the 90
established nctworks: 45 for true and the other 45 for false. The true mapping
appears similar with each other, as shown in Figure 5.6. However, the false

mapping shows the diversity of the possible false solutions, two examples are
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demonstrated in Figure 5.7. It should be noted that all the false mappings in
these experiments converge well and have the potential to converge further.

Figure 5.6: The results of two acceptable mappings

Figure 5.7: Some results of the false mappings

Obviously, the results of the acceptable mapping and the false mapping are
very different. It could be easily found for a simple problem by this exhaustive
testing method. However, it is not so easy for a complex engineering problem
where a large scale network involved. Because of the potential complexity of
the engineering problems, it is impossible to test every possible situation in fact.
The only way for testing it with the traditional method is to keep large amount
of samples out of the training set and then test the trained network with this
reserved data set. As aforementioned, this operation reduces the available data
set for training the network and can not prove the applicability of the network
for the data not included in the testing set in the end. For example, the false
mappings in Figure 5.7 may find a lot of satisfactory test results if the test
points are not located in the distorted areas. Hence, the conclusions hased on
this kind of local sample testing are not reliable if we cannot make an efficient
distribution of the test data. '

Based on the trained neural networks, the GPRSE results for the acceptable
mapping and false mapping are calculated and illustrated in Figure 5.8.
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Figure 5.8: The comparison of GPRSE

The Figure 5.8(a) shows the GPRSE for the acceptable group, and Fig-
ure 5.8(b) is the GPRSE for the false mapping group. The GPRSE pairs for x
and v distributed along the line of GPRSE=0.5, it proves that the GPRSEx is
close to GPRSEy for the acceptable group. On the contrary, most GPRSE pairs
for the false mapping group are far from each other in Figure 5.8(b). Obviously,
the false mapping is reflected well by their GPRSE, that is: GPRSEx GPRSEy
for the false mapping, Compared with aforementioned field knowledge, it is
reasonable to evaluate the trained network by means of GPRSE: the network
would be false mapping if its GPRSE pairs for x and y have a large distance
from each other. Among the 90 trained networks, only one is an exception to
this rule, and the probability for this rule to identify the false mapping is larger
than 0.99.

The exception of the pure GPRSE identification is in the false mapping
group. As demonstrated in Figure 5.8(b}, the network 26 (6 hidden nodes)
possesses a GPRSE pair of 0.499 for x and 0.501 for y. According to the first
equation in aforementioned field knowledge, this network should be an accept-
able one. However, its exhaustive testing shows a distorted result as shown in
Figure 5.9.

Obviously, this mapping forms another kind of pattern with equivalent GPRSE
pairs for this problem. Hence the GPRSE identification docs not work in this
special case. However, although this pattern keeps the equivalent GPRSE pairs,
but its local distortion could be found with some local PRSE evaluation, For
example, we sclect one centre point in every partition to do the PRSE analysis.
Here, the points are (70,180) for the leff partition and (210,180) for the right
part. The result of their mapping from the exceptional network 26 in the false
mapping group and a nermal network 11 in the acceptable group are listed in
Table 5.6. The column ‘O;" means the ideal output, and ‘0., is the real output
from the trained network.

The two points selected hore located in the centre of the two parts and the
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Figure 5.9: The result of the exception case

[ Group [No.Ix [y | O:;] O] PRSE, | PRSE, |

FALSE |26 [70 |180]0 |0 [0.43 0.57
FALSE |26 |210180 |1 |1 0.71 0.29
Accept |11 |70 J180|0 |0 | 0.48 0.52
Accept |11 [210 (1801 |1 0.48 0.52

Table 5.6: Comparison between the two cases

variance of x or y would not causes the change of the output within their neigh-
borhood. Therefore, their PRSE should be equivalent to each other. Qbviously,
the network 11 in the acceptable group agrees with this analysis well, but the
exceptional case in the false mapping group does not meet this requirement.
However, the mapping results of both cases are satisfactory. Obviously, the tra-
ditional testing method fails to find the problem in this case, and the proposed
PRSE analysis works well.

Generally, the GPRSE identification works well if the general trends is clear
enough. For complicated problems, the general trends may not be so clear and
then PRSE may be involved to validate it further. .

An exhaustive testing for the possible situations for a neural network by
means of the testing samples is impossible and not necessary. It would reduce the
limited available data for training the neural networks in engineering practice.
Hence this work presents a new methodology to combine the field knowledge on
the trends analysis with the network validation process [208].

As a global parameter, the GPRSE is a very good indicator for the behaviour
of a trained neural network. As the index of the importance of the input pa-
rameters on determining the output, GPRSE should agree with the special field
knowledge of the relative role of the individual input parameter. For a com-
plicated problem where GPRSE is not clear enough, the PRSE analysis serves
for further investigation. Therefore, an analysis of the specific field knowledge
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['INDEX | OUTLOOK | TEMP(F) | HUMIDITY(%) | WINDY? | CLASS |
1 sunny 75 70 true Play
2 sunny 80 90 true Don’t Play
3 sunny 85 85 false Don’t Play
4 sunny 72 95 false Don’t Play
5 sunny 69 70 false Play
6 overcast 72 90 true Play
7 overcast 83 78 false Play
8 overcast 64 65 true Play
9 overcast - | 81 75 false Play
10 rain 71 80 true Don’t Play
11 rain 65 70 true Don’t Play
12 rain 75 80 false Play
13 rain 68 80 false Play
14 rain 70 96 false Play

Table 5.7: Training data set for data mining [142]

combining with a few sample tests would give a better audit to the efficiency of
the trained artificial neural networks, In this way, the available data could be
fully applied to the training stage and the validation is simple and efficient.

5.4 Data mining using neural networks

For the sake of simplicity, a very small data set on weather conditions and play
decisions is used to demonstrate the utility of this new approach and shown
in Table 5.7 [142]. “Outlook” represents the day with or without cloud and
rain. An “outlook™ can be clear sky without cloud or heavy rain with full
cloud. Hence, cloudiness is a condition for rain and represents the degree of the
possibility of rain.

Bearing these in mind, we regard “outlook” as a fuzzy concept about the
weather with two ultimate states: sunny or rain, and overcast as a middle
state. The fuzzy membership for outlock is thus considered as a linear function.
Simitarly, “Windy?” and “Class” items are considered as fuzzy concepts with
two ultimate states: true or false for “windy” and play or don’t play for “class”.
A similar linear membership is also assigned to them. To increase the number of
the available data set, we insert middle values into the intervals of the original
data set and calculate the output as a linear value. However, only the original
data sct is adopted as the candidate explanation points in the DSS operation.

A neural network consisting of 3 layers is established. The RSE values for
the training points are listed in Table 5.8.

From the values in this Table it is obvious that the RSE values are dynamic



[ Index | Outlook | Temperature | Humidity | Windy |
1 -0.66 -0.588 -1 0.171
2 -1 -0.644 -0.682 (.365
3 -0.761 -0.425 -1 -0.408
4 -1 -0.503 -0.721 -0.215
5 -1 -0.578 -0.877 -0.006
6 -1 -0.878 -0.752 -0.078
7 -1 -0.554 -0.897 -0.1
8 1 0.128 0.087 -0.519
9 -0.996 -0.58 -1 -0.133
10 1 0.174 0.292 -0.847
11 0.502 -0.053 -0.646 -1
12 0.709 -0.017 -0.164 -1
13 1 0.123 0.046 -0.919
14 -1 -0.563 -0.494 -0.641

Table 5.8: The RSE values for the training set

| Corresponding Original Concepts | Values after Transition | Group |

Qutlook: Raining 0

Temperature: 75 0.5 (60-90)

Humidity: 70 0.14 (65-100) Input
Windy: True 1

Class: Don't Play 0.0456

RSE for Outlook 0.764

RSE for Temperature 0.047 QOutput
RSE for Humidity -0.326

RSE for Windy -1

Table 5.9: The input and output of the new case

from one sample to the others. When a new case is fed into the NN, a new
group of RSE values could be calculated with the network in the same way.
These serve as the dimensions of significance in DSS as shown in Figure 4.12.
This significance is a dynamic index because it changes with the variance of the
different combinations of weather conditions shown in Table 5.8. In this way,
our new approach is able to trace the dynamic changes in the different roles of
the same parameter in different situations.

As an example, a new case (Outlook: Raining, Temperature: 75, Humidity:
70, Windy: True) is fed into the trained NN. The input, output and RSE of the
network are shown in Table 5.9.

Comparing Table 5.8 with Table 5.9, it is clear that the new case produces a
" new group of RSE values which are different from those in Table 5.8. Therefore,
the dominant role is sensitive to the different combinations of the weather condi-

tions here. Hence a DSS approach is more likely to give a reasonable conclusion
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compared with a traditional space approach.

Complete Set: 1,2,3,4, 5, ,

Wmdy Nodg: 1,2, 6, 810

~Outlod Node: 10

Figure 5.10: Search in DSS

Following the process shown in Figure 4.12, the DSS search strategy is es-
tablished as shown in Figure 5.10. The “Windy” item has the highest absolute
value of RSE (1.0), so it should be the first attribute to be searched in the
DSS as aforementioned. The DSS focuses only on those cases near to the active
cases, hence only the sample 1, 2, 6, 8, 10 and 11 are left after the first dimension
search (Dimension path). Because the relevant set has more than one case and
there are still available dimensions left, the search needs to be extended to the
next dimension. In addition to *Windy”, “Outlook” has a second big absolute
value of RSE, and it is applied as the second attribute here to be investigated
for a further search of the DSS. It is obvious that only samples 10 and 11 are
left after the suitable neighbours search because zall others in the “windy” node
have a different “outlook” when compared with the active case. The extension
of the DDP can be stopped at this point because “temperature” and “humidity”
have very low RSE absolute values here and the two samples in the suitable set
have output similar to the output of the active case from the trained network.
Therefore, a simple DSS as demonstrated in Figure 5.10 is established.

The explanation for the result of this new case can be derived from the DSS
search shown in Figure 5.10. For this case, the two relevant cases 10 and 11 are
similar to the new case. Their two most significant coordinates are exactiy the
same, therefore their output would be the same.

The explanation can be described as follows:

The most important attributes are “Windy” (RSE=1} and “Qutlook” (RSE=0.764)
for the new case. There are two very similar cases in the training samples: 10
and 11, and both have the same output “Don’t play”. Therefore, the new case
should have the same output.

The lack of a readily understandable explanation for the ‘black box’ op-
eration of neural networks proliibits some potential further deployment. The
current emphasis on rule extraction from neural networks is difficult to marry
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up with the powerful capability of neural networks in mapping complicated rela-
tionships. Based on the Relative Strength of Effect (RSE) approach, a new type
of neural network explanation strategy has been presented in this paper - based
on Dynamic State Space search and RSE explanations. Unlike current neural
network rule extraction methods, our approach does not attempt to extract all
possible knoﬁrledge present in a system; rather, it aims to extract an explana-
tion which is understandable only in the context of a specific query about the
mapping results of a neural network.

As an illustration, a small data set on the relationship between weather
conditions and play decisions was presented to demonstrate the utility of the
proposed approach. The example showed that the DSS search from RSE was
an effective alternative in the resulting explanation of the NN. It traced those
significant weather conditions in a dynamic way and provided a meaningful
explanation of the output of the NN,

5.5 Noise evaluation using neural networks

Noise disturbance at ‘airports‘ is the miost significant environment problem at the
moment, and most airports are adopting noise models for their operation plan-
ning. As aforementioned in Section 2.3, most existing noise models are based
on some standard tuned data sets. For example, INM adopts NDP data sets as
its foundation [41]. Normal NDP data consist of two or more noise curves [4].
A noise curve reflects the relationship between distances and noise levels un-
der specific engine power (thrust in pounds) and operation mode {(departure or
approach) under a standard condition. However, these curves give only mea-
surements at the following 10 distances: 200, 400, 630, 1000, 2000, 4000, 10000,
16000 and 25000 feet. Any noise level in between these measurements or in
between those given thrusts has to be evaluated using mathematical models,
such as linear interpolation, logarithmic interpolation and extrapolation. How-
ever, these mathematical models are established against a standard measuring
environment at a specific airport for the test. The geographical condition and
environment parameters at other airports may not be the same as the testing
airport, so models established in INM may not give results as ncar to the real
world measurement as expected. To adjust those parameters in INM to suit the
local geographic and environmental condition at an airport is complicated and
difficult, and there are many mathematical models involved into these processes
to consider the relationship between noise level and temperature, wind speed
and direction, and other acoustics factors. Due to the complexity of natural
environment at an airport, these models cannot fit with every airport and are

bound to produce further errors and uncertainty. Therefore, a simple way of
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establishing noise simulation at a local airport would be a great help in airport
noise simulation and operation planning. Here, we adopt neural networks as the
universal models for adapting standard NDP curves to local conditions.

5.5.1 Available data

Because of the significant impact of aircraft noise on airport development, most
large airports in the world have already started to monitor the noise level in the
vicinity of airports. With the incorporation of Manchester airport in our EPSRC
research “A decision support system for sustainable airport development”, we
collected some monitored noise records from two monitor stations: Kell House
Farm and Broad Oak Farm. Their locations are shown in Figure 5.11.
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Figure 53.11: Location of the two monitor stations

The data were monitored during the period of 1998-2001, and the largest
volume of data are recorded for B757: 10408 records from Kell House Farm
and 7368 records from Broad Oak Farm. The recorded data attributes include
aircraft type, operation mode, direct distance to the monitoring station, station
name, maximum noise level] recorded and its recording time. Considering the
volume of the data, we show it by its noise distribution against distance under
departure or approach operation in Figure 5.12, 5.13, 5.14 and 5.15.

The monitored data in Figure 5.12, 5.13, 5.14 and 5.15 scatter everywhere
along the same distance. Obviously, a general model suitable to each airport is
very difficult to establish for such data set without knowing more information
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Figure 5.12: Noise distribution against distance for departing flights recorded
at Kell House Farm station
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Figure 5.13: Noise distribution against distance for approaching flights recorded
at Kell House Farm station
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Figure 5.14: Noise distribution against distance for departing flights over Broad
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Figure 5.15: Noise distribution against distance for approaching flights over
Broad Oak Farm station
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about the flight speed, thrust, weight, trajectory, wind speed and direction,
terrain of the airport etc. Among these factors, the weather conditions and geo-
graphical features of the vicinity of an airport would not be as different as those
between two airports. The monitored data are measured at the local weather
and geographical condition, hence their influence to the noise level at the rel-
evant airport has already been embedded into the monitored data. A model
established from the monitored data is suitable only to the airport where data
are collected. Therefore, the weather and geographical conditions are not as
significant as distances and thrusts of flights for a local noise model. Therefore,
NDP curves are accurate as long as the weather and geographical conditions
at a local airport match those conditions of a standard testing airport. The
disagreement between INM model results and in-situ monitoring data comes
from the difference between their weather and geographical conditions. There-
fore, a local NDP curve could be established considering the same relationships
as INM: the relationship among noise levels, operation modes, distances and
thrust. Other factors are not significant for the observations in the vicinity of
the same airport. The data in Figure 5.12, 5.13, 5.14 and 5.15 have attributes
for noise levels, distances and operation mode. However, thrust is missing in
the collected data set. Actually, for the same distance at the airport and obser-
vation location, there is more than one point in all 4 figures. It is mainly caused
by their different thrust at that distance. Because of the automatic landing con-
trol for the direction of approach, the thrust.is often changed during approach
operation and causes larger fluctuation of the points in Figure 5.13 and 5.15
than 5.12 and 5.14. It proves that thrust is a significant factor determining
the monitored noise levels. Therefore, it is essential to get the thrusts of those
monitored points in Figure 5.12, 5.13, 5.14 and 5.15. However, the thrusts are
not, recorded in the monitored data, and it is very difficult to get it due to the
large number of possible flight trajectories.

5.5.2 Reverse map thrust using neural networks and NDP
data

We made an attempt to establish neural networks without thrusts, but the
result is not satisfactory. The result is especially poor when a network trained
using data from one monitoring station is applied to the other station. They
are not better than an average estimation in most cases. It proves again that
thrusts are essential in the noise evaluation in airports. Now that NDP curves
provide the relationships among noise levels, operation modes, distances and
thrust, it is possible to establish a model to do a reverse map to find thrust
from known noise level as well. Neural networks provide ideal tools in doing
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this reverse mapping from the available standard NDP curves. There will be
difference between the obtained thrust and those measured in flights. However,
it is possible to establish mathematical models to adjust an obtained thrust
into & measured thrust. Compared with adjustment of noise at every concerned
location involving huge amount of factors, it is much easy to adjust a single
thrust from a single aircraft engine.

Based on the aforementioned idea, we need to establish the reverse map
from known noise levels to their corresponding thrusts. Before establishing the
reverse map, we need to evaluate the capacity of neural networks in mapping
the NDP curves. We adopt the data from standard NDP database in INM here.
The NDP databases in INM contains a set of NDP data for 224 aircraft types.
There are four kinds of NDP noise data:

o Lip A-weighted sound exposure level;

e L agmes Maximum A-weighted sound level with slow-scale exponential time
weighting;

o Lppy Effective tone-corrected perceived noise level;

¢ LpnTsmez Maximum tone-corrected perceived noise level with slow-scale
expenential time weighting.

The aim of the first experiment is to investigate the capability of neural
networks in simulating NDP curves. To this end, we adopt the aircraft with the
maximum number of available data in NDP databases. After comparing data
in the database using SQL, B737-200 has the maximum number of rows in the
database. Therefore, we adopt B737-200 data as the test bed for neural network
simulation. To test the trained neural networks, we separate the original NDP
data into two different groups: those data measured at a distance of 200, 630,
2000, 6300 and 16000 feet are used as training data to establish the neural
network. The data measured at 400, 1000, 4000, 10000 and 25000 feet are
applied as testing data. The two data sets are shown in Table 5.10 and 5.11.
In these two tables, the column “L_200" refers the noise levels at a distance
of 200 feet. Same explanation applies to other columns starting with “L”.
“ACFT.DESCR” indicates the aircraft type, “NOISE_TYPE” represents the 4
aforementioned noise types, “OP_MODE” differentiates the two operation mode
approach (A} and departure (D)}, and “THR_SET” is the thrust value.

Using the training data in Table 5.10, a neural network with 10 sets of
compound inputs and 8 nodes in the hidden layer is established. The inputs
include noise type, operation mode, distance and thrust, and the output is
noise level. After 5000 iterations, the error is reduced to below 2E-4. With the
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T | THRSET | L200 | L6380 | L3000 | L6300 ]| L-i6000

ACFT_.DESCR NOISE-TYPE l CP-MODE I
B737-200 E] D 16000.00 115.00 109.50 100.80 §0.10 79.80
B737.200 5 D 14000.00 113.10 106.70 98.00 87.30 77.00
B?37-200 s D 12000.00 110.20 103.50 84.70 83.00 73.70
B737-200 5 D 10000.00 106,60 100.00 91.30 80.70 70.60
BT37-200 5 D 8000.00 102.70 96.10 87.60 77.20 67.40
B737-200 5 r 6004.00 08.60 92.00 83.40 73.00 63.10
B737-200 s A 5000.00 98.50 92.10 83.00 71.40 60.00
BT37-200 5 A 3000.00 94.00 87.50 78.40 66.70 55.30
B737-200 P D 16000.00 125.80 114.50 101.48 86,70 73.40
BT37-200 P D 14003.00 123.50 112.20 99.10 84,30 71.00
B7A7-200 P D 12000.00 120.90 108.50 98,20 81.20 G7.80
B737-200 P D 10000.00 117.20 106.10 92.80 77.80 64.10
BY37-200 P D 8004.00 113.40 102.40 89,20 74.20 60.50
B737-200 P D 6000.00 109.30 98.00 84,70 69.50 55.70
BT37-200 P A 5000.00 110.40 87.10 82,20 65.90 51.60
B737-200 P A 3000.00 105.80 92.70 77.70 60.90 46.00
B737-200 M D 16000.0¢ 113.80 103.40 90.90 76.50 63.30
B737-200 M D 14000.00 111.40 101.00 88,50 74.10 60.90
B737-200 M D 12000.00 108.50 98.10 86.50 71.00 57.80
B737-200 M D 10000.00 105.10 94.70 B2.30 67.90 54.80
B737-200 M D #000.00 101.20 90.90 78,50 64.40 51.60
BYT37T-200 M D 6000.00 96.80 86.50 74.10 50.90 47.00
B737-200 M A 5000.00 93.80 84.80 72.40 £8.80 46.60
B737-200 M A 3000.00 90.60 79.70 67.30 53.60 41.50
B737-200 E D 16000.00 117.40 111.00 102.70 92.70 83.20
B737-200 B D 14000.00 1t4.50 108.20 59.90 89.80 80.30
B737-200 E D 12000.00 111.30 104.90 96.60 86.50 76.90
B737-200 B D 10000.00 108.40 101.60 93.00 82.50 72.70
B737-200 E D 8000.00 104.60 a7.70 88.90 78.50 68.60
B737-200 B D 600000 100.60 93.60 84.40 74.10 64.10
BT37-200 E A 5000.00 103.30 93.80 82.70 70.30 59.10
B737-200 B A 3000.00 09.70 a0.30° 75.00 64.00 54.20
Table 5.10: The training NDP data set for B737-200
ACPFT.DESCR NOISE.TYFPE | OF _MODE ! THR.SET L_4{)(} I L1000 ] [ AT I L1500 l L_25000 ]
BT47-200 5 D 16000,00 112.30 10630 04.60 85.20 T4.40
B737-200 5 D 14000 .00 109.50 103.50 91.80 B2.40 71.60
BTIT-200 8 D 12000.00 106G.40 100.20 88.40 79.00 68.30
BT37-200 5 D 10000.00 102.90 5G.80 B5.10 75.00 65.30
B737-200 5 D &O00.00 99.00 92.90 81.50 T2.50 62.20
B737-200 s D 6000.00 04.80 88.80 77.40 68.30 57.00
B737-200 5 A 5000.00 04.90 &8.80 T6.30 6G.00 53.90
B737-200 s A 3000.00 20.40 84.20 7T1.70 61.30 49.30
B7AT-200 P D 16000.00 110.20 106.50 92.70 80,20 66.60
n7iT-200 P D 14000.00 116,90 107.20 o040 TT.00 6430
B737-200 P D 12000.00 114.20 104.40 87.40 T4.70 GO. 90
B737-200 P D 10000.00 L10.70 101.00 84.00 71.10 57.60
B737-204} P D 8000.00 107.00 a7.40 80 40 67.610 53.50
B737-200 P D GONG.00 102.70 92.90 75.70 62.810 48.70
B737-200 P A 5000.00 102.50 01.39 T72.50 58.90 44.40
BTAT-200 P A 3000.00 98.10 86.90 67.70 53.60 33.40
B737-200 M D 16000.00 107.80 98.70 B2.50 T0.10 56. 6
B7i7-200 M D 14000.00 105.40 96,30 810 67,580 54.20
B737-200 M D 1200(3.00 102.50 0:3.30 T7.00 64.60 51.00
B737-200 j ot D 10000034} 90,10 20.00 73.80 G1.60 48.00
B737-200 M D 8000.00 95.20 86.10 T0.20 5320 4500
BTIT-200 i D GDOO.0D ). 80 B81.80 G5.80 53.70 b, 24
B737-200 M A 51410.00 89,30 80.00 64.31} 52.90 4350
BT37-200 M A 3000.00 2ti.20 74.00 £9.20 47,70 35,40
BTIT-200 E o 16000.00 113.70 107.90 045,00 B3. LD 78,20
B737-200 E B 1400000 110.00 105.10 94.00 85.30 TH.30
BT3IT-200 E D 12000.00 LO7.70 101.80 00.70) 81.90) T1.90
BY3T-200 E D 10000.00 104.50 98.40 86.00 T7.80 67.60
737200 E D 8000.00 1M 70 94.410) #2.80 T4.70 63.50
BT3T-200 E o] 60O00.00 2660 90.30 TR0 69,30 L8.80
B7T-200 E A 500004 97.70 89.50 TH 40 64.00 Ha_30
BT37-200 E A 300600 94.20 26.00 71.40 60,34 K10

Table 5.11: The testing NDP data set for B737-200
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established neural networks, we get the noise prediction as shown in Table 5.12
for those test data in Table 5.11.

Obviously, the trained neural networks has obtained a reasonable mapping
capability in the NDP curves, and all test results are above 90% in accuracy.
The percentage of records with a noise level lower than a given difference or
error is demonstrated in Table 5.13 and Figure 5.16.
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Figure 5.16: Noise prediction against B737 test data {NDTP)

From Table 5.13 and Figure 5.16, it is clear that the prediction accuracy
increases with the control difference. It demonstrates that an acceptable pre-
diction is about 2 dBA in difference. This is actually caused by our big distance
span in the data set. We hold half of data for test, and use only half the data to
train the network, which results in the large distance span in the data set. For
example, “I._400" is taken out as test data, this leaves no data between “L_200”
and “L_630". Therefore, the prediction accuracy would not be as high as if we
use the whole data set as training data. However, our purpose here is to prove
the capability of the neural network mapping for NDP curves. To this end, the
trained neural network has been provided with enough evidence.

Having verified the capability of neural networks in mapping NDP curves, we
now establish a neural network to do reverse mapping to get the missing thrusts
for our in-situ data. Here, to match our monitored data, we adopt only the .
maximum A-weighted sound level with slow-scale exponential time weighting
Lasmz- The aim of this experiment is to simulate NDP curves using neural

networks so-as to get those missing thrust values in our data set. For this
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ID | NOISE_TYFE | OP.MODE | THR.SET ]| Distance | Noise.Level | ANN Output | Brior | Adcuracy |
1 E D 12000 400 107.7 108.819 1.118 98.96
2 E D ¥4000 400 110.9 111.8634 0.9634 99.13
3 E A 5000 400 97.7 97.8967 0.19867 29.79
4 E D 6000 400 96.6 87.1337 0.5337 99.45
5 E D 10000 400 104.5 105.354 0.854 99.18
4 E D 16000 400 113.7 114.5012 0.8012 99.29
7 E A 3000 400 04.2 93.2741 -0.9259 99.02
8 | |2} 8000 400 100.7 101.4599 0.7599 99.24
9 M A 5000 400 89.3 89.9427 0.6427 99.28
10 M D 6000 400 90.8 90,2614 -0.5386 99.41
11 M A 3009 400 84.2 B4.8067 0.6087 99.28
12 M D 8000 400 95.2 94.7469 -0.4531 99.52
13 M D 16000 400 147.8 108.8854 1.0854 98.99
14 M D 10000 400 9.1 58.8235 -0,2766 99.72
15 M D 12000 400 102.5 102.5172 0.0172 09.98
18 M D 14000 400 105.4 105.8613 0.4613 B90.56
17 P D $000 400 102.7 102.0667 -0.6343 99.38
18 P D 8000 400 107 105.978G -1.0214 99.05
15 P D 10000 400 110.7 109.2891 -1,4109 93.73
20 P D 12000 400 114.2 112.0714 -2.1286 98.14
21 P A 3000 400 98.1 9G.1784 -1.0216 98.041
22 P D 16000 400 112.2 116.371 -2.8209 97.63
23 P D 14000 400 116.9 114.407 -2,493 97.8T
24 P A 5000 400 102.5 101.0659 -1.4341 98.61
25 S A 5000 400 294.9 95.9135 1.0135 08.93
26 s D G000 400 94.8 95.115 0.315 9967
27 s D -hiley) 400 99 99.6523 0.6523 99.34
28 5 D 10000 400 102.9 103.6343 0.7343 99.29
29 5 D 12000 400 106.4 107.0807 0.6807 99.36
30 s A 3000 400 90.4 90.5793 ©.1793 99.80
a1 s D 16000 460 112.3 112.598 G.206 99.74
32 S D 14000 400 109.5 110.048 0.546 09.50
33 E D 12000 1000 101.8 102.218 0.418 99.59
34 E D 14000 1000 105.1 105.5612 0.4612 99.56
35 E A 5000 1000 89.5 00.151%9 0.6519 99.27
36 E D 8000 1000 90.3 00,2744 -0.0256 99.97
a7 E D 10000 1000 98.4 98.5548 $.1548 99 .84
as E D 16000 1000 107.9 108.5846G 0.6846 99.36
a9 E A 3000 1000 88 85.66G7 -0.3333 89.61
40 E D 8000 1000 94.4 44.5724 0.1724 099.82
41 M A 5000 1000 80 81.5987 1.5967 98.00
42 M D 6000 1000 81.8 §2.6205 £.8205 98.99
43 M A 3000 1000 74.9 T6.B3T2 1.9372 97.41
44 M D 8000 100G 86.1 86.9159 0.8159 99.05
45 M D 160400 1000 [ g 14131455 2.G1556 97.35
a6 M D 10000 1000 a0 80.9094 0.9004 98,99
47 M D 12000 1000 93.3 94.G197 1.3187 98.58
48 M D 14000 1000 96.3 08.0783 1.7783 98.15
49 P D 6000 1000 92.9 95.7413 2.8413 96.94
50 P D 8000 1000 97.4 99.8504 2.4%304 07.48
51 1 4 D 10000 1004 101 103.4285 2.42B5 97.59
52 P D 12000 1000 104.4 106G.5221 2.1221 97.07
53 P A 3000 1060 8G.9 8R8.956 2,056 97.63
54 P D 16000 1000 106.5 111.5108 2.0108 98.16
55 P D 14000 1000 107.2 106.1945 1.9045 98.14
56 P A 5000 1000 91.3 93.9266 2.6266 07.12
57 s A 5000 1008 83.8 89.8143 1,0343 98.84
2 s D G000 1000 88.8 BO.5T7h 0.775 99.13
59 s D 8000 100) 92.9 94,0872 1.1372 98.78
60 s D 10000 1000 06.8 98.036 1.236G 98.72
€1 5 D 12000 1000 100.2 101.5G53 1.3693 98.64
62 5 A 3000 1000 84.2 84.676% 4765 49.43
63 s D 16000 1000 106.3 17,4119 1.1119 HER
[} s D 14040 1000 103.5 104.6757 1.1757 98.86
G5 E D 12000 A0MH) 0.7 831741 -2.3259 07.44
66 E D 14000 4(H10 04 01.2756G -2.7244 97.10
67 E A 5000 4000 5.4 745656 -0.8344 93.89
0B E D 800D 000 785 T7.76GT -0.7433 99.07
69 E D 10000 4000 86.9 £5.158 -1.742 97.09
70 E o 160400 4000 96.9 . 94.8700 «3.0201 06.88
71 E A 3000 4000 71.4 70.7051 -0.6949 99.03
T2 E D 8000 4000 82.8 81.619% -1.1805 98 57
T3 M A S000) 40 64.3 62.9174 -1.73%26 D7.83
74 M D GO0 1000 658 Gh.d328 -0,36G72 99.44
TH M A 3000 40043 59.2 50.351 0.151 09.74
76 M D A0040 4000) T0.2 60009206 -1.1074 03.42
77 M D 16000 40040 ¥2.5 821048 =(1.3052 99.52
78 M D 10000 4000 T3.8 72.608] “1.1910 93,38
79 I D 12000 A0 v TH.9489 -1.0911 98.64
80 M D 13000 4000 B0O.1 731107 -0.9593 0276
a1 P D GO0 AUy THT TEOHG 2.3105 96.93
82 P D 004+ 4000 0.4 ’1.B727 1.4727 DB.LT
83 P D 10000 S0 84 854164 t.atGd 98.31
84 P B 12000 A00n 87 4 83.6226 1.2224G 98.60
85 P A 2000 4000 6T.7 H9.54857 1.885T 97.2]3
86 P D 16000 AB00 92.7 94,1067 14067 08.48
87 P D 14000 A00r 90.4 61.5074 1.1074 08.78
BB P A 5004y |00H) T2.5 T3.TLO7 t1.2107 098.32
89 S A 2000 4000 7G.3 TH 6497 -0 6553 90.14
S0 g ] 6000 A0 T7 4 TT. 4G -(0.3004 a17.49

Table 5.12: The test results for B737
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Difference(dBA)  Records with higher dif- Records with lower dif-

' ference ference (%)
0 160 0
(.05 157 1.875
0.1 157 1.875
0.5 131 18.125
1 93 41.875
1.5 57 64.375
2 44 72.5
3 ‘ 22 86.25
5 9 94.375

Table 5.13: Noise level testing result for B737 testing data

experiment, we need the same aircraft as the one with the maximum number of
available monitored data. Here, the aircraft determined by our monitored data
is B757. Therefore, we adopt the NDP data for B757. The data are shown in
Table 5.14.

The NDP data for each aircraft are very limited and we have to fully make
use of the available data. Here, the “leave-out-one cross validation” method
is adopted in the training of neural networks. From the experiment in Sec-
tion 5.1, redundant structure could be applied if compound inputs were estab-
lished. Here, we adopt a compound input of 10 sets and set the hidden layer
node number as 6. The inputs are operation mode (OP_.MODE), maximum
noise level (Noise_Level) and distance, the output is the thrust. After 30000
iterations using “leave-out-one cross validation”, the errors are reduced to lower .
than 2.0E-4. The cross validation results are shown in Table 5.15.

In Table 5.15, “Qutput” is the result from the trained neural network. The
values in the two columns are close to each other in all rows, and their maximum
difference is less than 14%, and over 88% rows have difference less than 5%.
Table 5.16 gives the number of records with errors lower than the given error
in the first column (%) and their corresponding accuracy. The result is also
demonstrated in Figure 5.17.

It proves that the trained neural network is valid to derive thrusts from the
measured noise levels. From the trained neural network, we can get the GRSE
and GPRSE as shown in Table 5.17.

The distance has the dominant role in determining thrust, and the noise
has important role as well. The operation scems not very significant to thrust,
The conclusions agree with our data set: a longer distance and lower noise level
indicate less thrust from the engine. The operation mode determines if the
thrust is stable or not, but it does not determine its values.

Using the trained neural networks, we got the missing thrusts for the moni-
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[ OP.MODE | THRSET [ Noise_Level | Distance |
D 24000.00 101.50 200
A 5000.00 95.10 200
D 13000.00 97.40 200
D 30000.00 103.30 200
D 36000.00 105.50 200
A 12000.00 99.60 200
D 24000.00 97.20 400
A 500000 90.80 400
D 13000.00 93.30 400
D 30000.00 99.60 400
D 36000.00 102.50 400
A 12000.00 95.00 400
D 24000.00 94.00 630
A 5000.00 87.70 630
D. 13000.00 90.20 630
D 30000.00 96.70 630
D 36000.00 100.20 630
A 12006.00 91.70 630
D 24000.00 90.40 1000
A 5000.00 84.30 1000
D 13000.00 86.80 1000
D 30000.00 93.60 1000
D 36000.00 97.70 1000
A 12000.00 88.10 1000
D 24000.00 84.70 2000
A 5000.00 78.70 2000
D 13000.00 80.90 2000
D 30000.00 88.30 2000
D 36000.00 93.30 2000
A 12000.00 82.10 2000
D 24000.00 77.90 4000
A 5000.00 72.00 4000
D 13000.00 73.90 4000
D 30000.00 81.90 4000
D 36000.00 87.30 4000
A 12000.00 75.20 4000
D 24000.00 73.20 6300
A 5000.00 66.80 6300
D 13000.00 68.60 6300
D 30000.00 77.10 6300
D 36000.00 82.30 6300
A 12000.00 59,90 6300
D 24000.00 68.20 10000
A 5000.00 61.10 10000
D 13000.00 62.50 10000
D 30000.00 71,00 10000
D 36000.00 76.50 10000
A 12000.00 63.90 10000
D 24000.00 G2.70 16000
A 5000.00 54.70 16000
D 13000.00 55.80 16000
D 30000.00 66.00 16000
D 36000.00 69.70 16000
A 12000.00 57.20 16000
D 24000.00 57.00 25000
A 5000.00 48.20 25000
D 13000.00 418.80 25000
D 30000.00 59.90 25000
D J6000.00 62.60 25000
A 12000.00 50.40 25000

Table 5.14: The NDP data set for B757
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ID | OP_MODE [ Noise_Level | Distance | THR-SET [ Output Error(%) | Accuracy(%)
1 D 101.5 200 24000 26596.23 | 10.82 89.18
2 A 95.1 200 5000 5568.96 11.38 88.62
3 D 97.4 200 13000 14714.59 | 13.19 £6.81
4 D 103.3 200 30000 31375.67 | 4.59 95.41
5 D 105.5 200 36000 36216.89 | 0.60 99.40
6 A 99.6 200 12000 13054.69 | 8.79 91.21
7 D 97.2 400 24000 23287.58 | 2.97 97.03
8 A 80.8 400 5000 4756.88 4.86 95.14
9 D 93.3 400 13000 12667.77 | 2.56 97.44
10 [ D 99.6 400 30000 29489.32 | 1.70 98.30
11 | D 102.5 400 36000 35607.06 | 1.09 98.91
12 | A 95 400 12000 11287.57 | 5.94 94.06
13 | D 94 630 24000 22941.51 | 4.41 95.59
14 | A 87.7 630 5000 4844.48 3.1 96.89
15 | D 90.2 630 13000 1277453 | 1.73 98.27
16 | D 96.7 630 30000 29430.99 | 1.50 98.10
17 | D 100.2 630 36000 356950.00 | 0.14 99.86
18 | A 91.7 630 12000 11640.76 | 2.99 97.01
19 | D 90.4 1000 24000 23224.82 | 3.23 96.77
20 1 A 84.3 1000 5000 5109.48 2.19 97.81
21 | D 86.8 1000 13000 13537.38 | 4.13 95.87
21D 93.6 1000 30000 30240.69 | 0.80 99.20
23| D 97.7 1000 36000 36493.77 | 1.37 98.63
24 | A 88.1 1000 12000 12443.16 | 3.69 96.31
25 | D 84.7 2000 24000 23174.27 | 3.44 96.56
26 | A 78.7 2000 5000 4811.40 3.77 96.23
27 | D 80.9 2000 13000 12802.22 | 1.52 98.48
281D 88.3 2000 30000 30378.65 | 1.26 98.74
29 | D 93.3 2000 36000 36076.92 | 0.21 99.79
30 | A 821 2000 12000 11790.73 | 1.74 98.26
31 | D 77.9 4000 24009 23226.52 | 3.22 96.78
32 | A 72 4000 5000 4677.88 6.44 93.56
33 | D 73.9 4000 130600 12613.89 | 2.97 97.03
3 | D 81.9 4000 30000 30660.87 | 2.20 97.80
35 | D 87.3 4000 36000 35473.90 | 1.46 98.54
36 | A 75.2 4000 12000 11653.14 | 2.89 97.11
37 | D 73.2 6300 24000 23997.99 | 0.01 99.99
38 | A 66.8 6300 5000 5144.88 2.90 97.10
39 | D 68.6 6300 13000 13461.06 | 3.55 96.45
440 | D 77.1 6300 30000 30851.30 | 2.84 97.16
41 | D 82.3 6300 36000 35625.38 | 1.04 98.96
2 | A 69.9 6300 12000 12323.32 | 2.69 97.31
43 | D 68.2 10000 24000 - 23272.40 | 3.03 06.97
44 | A 61.1 10000 5000 53172.64 3.45 96.55
15 | D 62.5 10000 13000 12854.63 | 1.12 98,88
46 | D 71.9 10000 30000 30115.38 | 0.38 99.62
47 | D 76.5 10000 36000 35765.91 | 0.65 99.35
48 | A 63.9 10000 12000 11831.20 | 1.41 98.59
49| D 62.7 16000 24000 23677.24 { 1.34 98.66
50 | A 54.7 16000 5000 4893.96 212 97.88
31 D 55.8 16000 13400 1312247 | 0.94 99.06
52 1 D 66 16000 30000 30124.92 | 0.42 99.58
53 | D 69.7 16000 36000 36237.75 | 0.66 99.34
54 | A 57.2 16000 12000 1174492 1 2.13 97.87
85 | D 57 25000 24000 24197.14 | 0.82 99.18
5 | A 48.2 25000 5000 5205.95 4.12 95.88
57 | D 48.8 25000 13000 12798.09 | 1.55 98.45
58 | D 50.9 25000 30000 30183.23 | 0.61 99.39
59 | D 62.6 25000 36000 35705.06 | 0.82 99.18
GO | A 50.4 25000 12000 11895.75 | 0.87 99.13

Table 5.15: The test results for a neural network established from NDP déta of

B757
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Error (%) Records with lower error  Accuracy (%)

0 60 : 0.00
1 46 : 23.33
2 32 46.67
3 20 66.67
4 11 8L.67
5 6 90.00
6 ] 91.67
7 4 93.33
8 4 93.33
9 3 95.00
10 3 95.00
15 0 100.00

Table 5.16: Mapping results of the reverse neural network from NDP data

100.00 records with lower
90,00 1™
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70.00 1
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Figure 5.17: Mapping results of the revers mapping neural network from NDP
data

Factor GRSE | GPRSE
Operation mode | -0.02 0.03
Noise level 0.23 0.20
Distance . 1.0 0.78

Table 5.17: GRSE and GPRSE for a neural network established from NDP data
of B757 '
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tored data. As suggested by GRSE, the distance is the dominant factor of the

thrust values, so we demonstrate their distribution against distance in Figure
5.18, 5.19, 5.20 and 5.21.
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Figure 5.18: Thrust distribution against distance for departing flights over Kell
House Farm station

Data in Figure 5.18, 5.19, 5.20 and 5.21 demonstrate very high relevance
to data in Figure 5.12, 5.13, 5.14 and 5.15. The noise level values in Figure
5.12, 5.13, 5.14 and 5.15 show some line patterns, and these results in the curve
patterns in Figure 5.18, 5.19, 5.20 and 5.21. For the same noise level, the thrust
values increase with distances. For the same distance, thrust increases with
noise values and jumps from one curve to a curve above it. Obviously, it is the
same as that has been revealed by GRSE and GPRSE. It proves the efficiency
of GRSE and GPRSE.

5.5.3 Noise level prediction using neural networks

Having got the thrusts for cach record, we establish a neural network using the
measured data at Kell House Farm station. Similar to the NDP network, we
adopt the same input parameters: distance between an aircraft and the station,
operation mode of the aircraft and thrust of the aircraft. The output is the
maximum noise level at the monitoring station. For the sake of speed, we use
10 sets of inputs again in the compound structure. We use 10 sets of input
as compound inputs again, and 8 hidden layer nodes. There ar.e 10408 records
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Figure 5.19: Thrust distribution against distance for approaching flights over
Kell House Farm station
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Figure 5.20: Thrust distribution against distance for departing flights over
Broad Oak Farm station '
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Figure 5.21: Thrust distribution against distance for approaching flights over
Broad Oak Farm station

for B757 at Kell House Farm station. We separate the data into two different
groups: each record with an odd number as index is hold as training data, and
each row with an even number as index is kept as testing data. In this way, we
have 5204 rows in both groups. After 5000 iterations, the error is reduced to
lower than 1.0e-d. The testing result is shown in Table 5.18 and Figure 5.22.
In Table 5.18 and Figure 5.22, the “difference” refers to the difference be-
tween the measured ncise level and the output noise level from the trained
neural network. The “records with lower difference (%)” represents the per-
centage of records with a noise level lower than the corresponding difference. It

Difference(dBA)  Records with higher dif- Records with lower dif-

ference ference (%)

0 4208 0

.05 3251 37.53
0.1 1879 63.89
0.5 160 96.92
1 65 98.75
1.5 18 99.65
2 9 99.82
3 3 99.94
5 1 99.08

Table 5.18: Noise level testing result for Kell House Farm station
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Figure 5.22: Noise prediction against data from Kell House Farm station

is obvious that the percentage of records with Iower. difference is very high for
difference over 0.5 dBA. It is a very accurate prediction for noise level at air-
ports. However, this result is a test for the data measured at the same station,
and it needs a further test against data from a different station. Therefore, we
carried out the test using data measured at Broad Oak Farm station. There
are 7368 records measured at Broad Oak Farm station. We applied the trained
NDP neural network to get the thrust, then using the obtained thrusts together

" with measured distances, operation modes to derive the noise levels using our
trained neural networks form I{ell House Farm data. The result is demonstrated
in Table 5.19 and Figure 5.23. ' _

Cornparing Figure 5.22 and 5.23, the prediction accuracy for Broad Oak
Farm station is slightly lower than the test results from test data at Kell House
Farm station. However, considering the model is established with data from Kell
House Farm station, the test results at Broad Oak Farm station are actually
acceptable. For prediction difference of 0.5 dBA, there are nearly 85% of the
predictions are accurate enough. Obviously, with the involvement of thrusts,
it is possible to give a very high accuracy in the prediction of noise level at
airports.

One would wonder if NDP model is good enough in doing this. To test the
capacity of a neural network trained from NDP data, we established a similar
model using NDP data in Table 5.14. The structure of the network is exactly
the same as the network for Kell House Farm station. Using “leave one out”
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Difference(dBA) Records with higher dif- Records with lower dif-

ference ference (%)
0 7363 0.07-
0.05 5472 25.73
0.1 4308 41.53
0.5 1111 84.92
1 651 91.16
1.5 547 92.58
2 485 93.42
3 320 95.66
5 87 \ 98.82

Table 5.19: Noise level testing result for Broad Oak Farm station
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Figure 5.23: Noise prediction against data from Broad Oak Farm station
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Difference{dBA) Records with higher dif- Records with lower dif-

ference ference (%)
0 5204 0
0.05 5008 3.77
0.1 4794 7.88
0.5 3129 ' 39.87
1 1379 ‘ 73.50
1.5 638 87.74
2 301 04.22
3 93 - 98.21
5 16 99.69

Table 5.20: Noise level testing result for Kel! House Farm station using NDP
network :

cross validation method, we established the NDP neural network for noise level.
Applying this NDP neural network, we got the test results for the test data at
Kell House Farm station as shown in Table 5.20 and Figure 5.24.
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Figure 5.24: Noise prediction against data from Kell House Farm station using
NDP network

Comparing Figure 5.22, 5.23 and 5.24, it is clear that the neural network
_trained with NDP data could give reasonable prediction (70%) only when the
difference is at 1 dBA or above, and its prediction is very poor for 0.5 dBA
(40%). However, the neural network trained with data measured at Kell House
station could give much better results for both data sets. To check the prediction
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Difference(dBA} Records with higher dif- Records with lower dif-

ference ference (%)

0 7168 0

0.05 7165 2.76

0.1 6951 5.66

0.5 4990 ) 32.27

1 2066 71.96

1.5 1339 81.83

2 . 1201 83.70

3 1011 86.28

5] 703 90.46

Table 5.21: Noise level testing result for Broad Oak Farm station using NDP
network

quality of the neural network trained with NDP data for data measured at the
Broad Oak Farm station, we applied the trained network of NDP data to our
data set from Broad Oak Farm station. The results are given in Table 5.21 and
Figure 5.25.
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Figure 5.25: Noise prediction against data from Broad Oak Farin station using
NDP network

The results in Table 5.21 and Figure 5.25 are very similar to the results
in Table 5.20 and Figure 5.24. It proves that the model obtained from NDP
data gives similar result to both sets of data. The poor results from the model
trained with NDP data are caused by the difference between the geographi-
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Input NDP Kell House Farm
GRSE | GPRSE | GRSE | GPRSE
Operation mode | -0.014 | 0.049 0.012 | 0.085
Distance -1 0.772 -0.064 | 0.1
Thrust 0.171 | 0.179 1 0.815

Table 5.22: GRSE and GPRSE of the trained neural networks using NDP data
and Kell House Farm data

cal and weather conditions of the standard airport condition of NDP test and
Manchester airport. This complex relationship is very difficult to tune with
INM, but it is very convenient using neural networks. The data are measured
at Manchester airport, so its values have already reflected the geographical and
weather conditions at Manchester airport. The trained model is not applicable
to other airport, but has better performance at the local airport.

The GRSE and GPRSE values of the two models trained with NDP data
and Kell House Farm data are listed in Table 5.22.

The data in Table 5.22 show that the dominant factor in NDP model is
distance, but it changes to thrust in the model trained with Kell House Farm
data. T_he NDP data are obtained under standard airport under the condition
that the aircraft is flying parallel to the sea surface. However, the monitored
data come from various operations of aircraft when they take off or land into
the airport under difference complicated weather conditions. Therefore, the
frequency of the change of their thrust is much higher than the standard testing
conditions. This means that noise level is more frequently influenced by thrust
rather than distance in the real operation condition. Therefore, the model
from NDP data is bound to give high errors for the real operation. It provides
evidence in the other hand that airports could reduce noise level by improved
operation under the same geographical conditions.

5.5.4 Probability model

Although our model does give satisfactory results, it is not reliable to give
accurate noise level prediction due to the very fact that an accurate thrust is
difficult to get. In addition to thrust, there are also other factors difficult to
quantify under real operation of the airport, such as the dynamic wind speed and
direction ete. Therefore, under the same condition of the distance, operation
and thrust, there are different noise levels existing in the data sets. This causes
some very significant errors for some individual test records. This kind of errors
would never be able to be removed from the neural network models considering
only limited factors. Therefore, a more reasonable way in evaluating airport

noise is the evaluation of its probability to get noise over some given noise
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level. Bear this in mind, we processed the data sets to create noise probability
distribution data. According to INM model, noise level has a linear relationship
with thrust and a logarithmic relationship with distance [4]. It is reasonable to
consider the probability of noise over some given noise level following the same
relationships. Therefore, we divide the thrust and distance into intervals and
derive the probability of each point using its two adjacent intervals, as shown
in Figure 5.26.

Figure 5.26: The probability calculation method

In Figure 5.26, B, C, D, E and F are the location points dividing AB into
equal intervals in distance or thrust, To derive the probability of noise level
over a given noise level L, we use those measured data located within the two
adjacent intervals. For example, if we want to get the probability for noise level
over 70 dBAs at location B, we can count all the measured noise levels located
within the interval AB and BC and calculate the probability Pg as

number of records with noise level higher than 70 within AC
number of all records within AC

Pg =

Because of the linear relationship, we can have larger intervals for thrust,
and the distance interval. would need to be smaller because of the proposed
logavithmie relationship in INM. In this way, we can make better use of the
available data.

Following this idea, we divide the thrust into 8 intervals, and distance into
50 intervals, The probability is caléulated as aforementioned. Here, we control
the minimum number of records required in each location as 3 records to take
account those irregular records. The noise levels are also divided into 20 different
ievels as the reference noise. Therefore, for each given noise level, we have
7 x 50 probability points, and we have 7000 points in total. We calculate the
probability for each operation mode separately, and hence we would have 14000
points if all of them had more than 3 records in their adjacent intervals.

With the B757 data sets at Kell House Farm station, we got 7180 rows in
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Difterence(dBA)  Records with higher dif- Records with lower dif-

ference ference (%)

0] 5530 0

0.05 1202 © o 78.26401447
0.1 648 88.28209765
0.2 350 93.67088608
0.3 166 96.99819168
0.4 65 08.82459313
0.5 . 18 99,67450271
3.6 1 99.98191682
0.7 0 100

Table 5.23; Noise probability testing result for Broad Oak Farm testing data

Difference(dBA) Records with higher dif- Records with lower dif-

ference ference (%)

0 7180 0

0.05 1806 74.84679666
0.1 860 88.02228412
0.2. 403 _ 94.38718663
0.3 200 97.21448468
0.4 114 . 98.41225627
0.5 48 09.33147632
0.6 18 99.74930362
0.7 3 99.95821727
0.8 1 99.98607242

Table 5.24: Noise probability testing result for Kell House Farm testing data

total. It is obvious that nearly half of considered points can not satisfy the
validation requirement of at least 3 records in their adjacent intervals. For
Broad Qak Farm station, we got 11060 rows in total. o

For probability calculation, larger data set is preferred. Here, we adopt
Broad Oak Farm data to establish the neural network for probability prediction
because of its size, To test a trained network against data from the same site,
we separate the data set into two sets, one set for training and another set
for testing. Each set has 5530 samples. The networks have 4 inputs: distance,
operation mode, referencing noise level and thrust. The output is the probability
for the noise level of a location is higher than the referencing noise level, We
still use 10 sets of inputs as the compound inputs. With many trivial tests, a
network is established with two hidden layers consisted of 8 hidden nodes in the
first hidden layer and 3 hidden nodes in the second hidden layer. The test results
are shown in Table 5.23 and 5.24. Figure 5.27 and 5.28 give the relationship
between network output errors (probability difference} and the probability of a
testing sample.
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Figure 5.27: Noise probability prediction errors for Broad Qak Farm testing
data
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Figure 5.28: Noise probability prediction errors for Kell House Farm testing
data
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Comparing Table 5.23, Figure 5.27 and Table 5.24, Figure 5.28, it is clear
that the noise probability prediction of the trained neural network has simi-
lar accuracy in both sites although the data measured in these two sites are
independent to each other. Figure 5.29 and 5.30 give the comparison of the in-
dependent probability distribution for approaching flights between the two sites
with respect to distance under the reference thrust of 4229.42 pounds,
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Figure 5.29: Probability for appreaching flights at Kell House Farm with respect
to distance under the reference thrust of 4229.42 pounds

Based on our experiments on the noise prediction at airports using neural
networks trained with in-situ data, it is clear that neural networks provide a
convenient tool in adjusting the standard NDP curves to local conditions and
hence a network trained with in-situ data can give better prediction than models
based on standard NDP curves. Limited by our data availability, we derive
thrusts through a reverse mapping neural network simulating standard NDP
curves. Such a methodology is bound to enforce a standard NDP curve to the
relationships between thrusts and noise levels, and it can increase the accuracy
of NDP prediction in reality. Similar phenomena exist including between the
derived thrusts and in-situ noise data. However, the relative difference between
the standard NDP prediction and neural network prediction is at least the same
as shown in this rescarch. The superiority of neural networks over standard
NDP model at a local airport is obvious.
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Chapter 6

Prototype

6.1 Structure of the prototype

There are two different strategies to model the airport environment for given
operational scenarios: firstly, to model each indicator separately using individual
models (the usual approach adopted), or secondly, to integrate them to establish
a specific environmental evaluation model. The first strategy is relatively simple,
but involves large amounts of work in data input and interpretation. The same
data would have to be repeatedly input to different systems in different formats.
The bias and errors in the general model from the different geographical and
social environments are difficult to consider in this way. Furthermore, this work
can easily result in new errors and uncertainties. One of the important tasks
for any decision support system is to relieve the user from this kind of work and
increase the reliability of the data input and output. Therefore, we highlight
the second approach for our airport environment decision support system here
- a specific model for the sustainable development of an airport.

Because of the dynamic features of the environmental indicators and the rel-
atively stable mechanisms for pollution calculation and their parameters (taken
from the manufacturers of power plant and vehicles), the basic system is sep-
arated into two parts: an open database and an inference engine. The open
database is for the standard parameters like emission coefficients for different
power plant and the user defined operation profile data. As a facility for data
mining, the inference engine serves for deriving the general and airport specific
environment indicators. For most of the currently available models, the user
could input only some profile data and cannot change other data in the database.
However, the understanding of the indicator itself is still under development and
many relevant parameters are not known at this moment, hence an open struc-

ture is a better solution for possible future expansion or updates. Therefore, the



proposed system provides complete user control over the whole database part.
The user controlled database drives the inference engine to retrieve, caleulate
and evaluate different indicators according to airport operational scenarios, en-
vironmental science and data mining from databases. According to the results
of the inference engine, the user could modify the operational data to exam-
ine different consequences for different development strategies. In this way, the
database and inference engine interact with each other in accordance to the
user’s will - as shown in Figure 6.1.

User
Figure 6.1: Two main components of the system: database and reference engine

Both the database and indicator engine are composed of many different sub
. models. With respect to their different functions, the framework of the whole
system can be illustrated further in Figure 6.2.

l Operation Profile ' I Relational Datebases J Temporal Data

\J

—>] Object Oriented Data Structure

h 4

] External Models | ﬁwsom’ng Algorithmi, Spatial data
‘ General Indicators I4—-| Indicator Loading ]

————{ Indicator Limits J Spatial Distnibution of The Indicators l
[Ai.rpnﬂ. Specific Indicators J——b[ Visual Interface or GIS l

Figure 6.2: The system structure

Here the highlighted boxes represent those components constituting the
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database, or the open part of the system where the user has full control of
its contents. Other boxes form the inference engine.

The open database gets information from the user and drives the operation
of the inference engine. It is divided into six parts according to the differ-
ent functions: operational profile, relational databases, temporal data, spatial
data, indicator limits and object oriented database. The operational profile
incorporates temporal operational detail. By defining different operational sce-
narios, the user is able to check their consequences from the point of view of
their impact on the airport environment. The relational databases in’ Figure
6.2 represent those aircraft and vehicle data provided by their manufacturers
and the indicators of current interest, such as the coefficients for engine emis-
sions, aircraft noise curves, selected indicators, ete. Because of the dominance
of relational databages in industry, most monitoring data also belong to this cat-
egory. The temporal data consists of the infrastructure modifications proposed
at some specific time in the future, such as a new runway, new teriminals and so
on. The spatial data part serves for the spatial definition of the infrastructure.
The different temporal and spatial arrangements could be defined and modified
through the two relevant interfaces. The indicator limits are designed for the
user-defined indicator limits. These limits are dynamic and represent different
interpretations at different times and places. The last item in the database is an
object oriented data structure. This is the internal representation of the airport
environment data type.

The inference engine receives information from the database, makes vari-
ous data mining operations in reasoning and calculations and then sends out
output indicator values. It consists of 7 different parts with respect to their
different functions: reasoning algorithms, external models, loading of various
indicators, spatial distribution of the indicators, visual interface or GIS, general
and airport specific indicators. The reasoning algorithms play a significant role
in the reference engine system. It serves to calculate the environmental indicator
loaded from the database using different algorithms. The external models refer
to those existing models, such as INM, EDMS, ete. The user has the option
to call external models as an alternative to the internal calculations. After the
operation of the reasoning engine, the loading of various indicators are obtained
and recorded in the indicator loading part. If necessary, a more detailed and
airport specific analysis is available through the “spatial distribution of indica-
tors” part and GIS part. By means of the “spatial data” desighation, the user
is free to design different areas or points as interested objects. The land use and
residential influences could be considered using GIS.

Following this idea, a prototype was developed for an alrport environment
decision support system. The system consists of three sub systems: full func-
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tional neural network tool, a full functional CAD tool and a prototype of airport
decision support system. All software were developed under Microsoft Visual
C++ 6.0.

6.2 Implementation of neural networks - NRSE

NRSE means a neural network tool with RSE calculation capability. NRSE
provides full functionality for a neural network tool with BP models, this in-
cludes data input, data process and mapping, output presentation etc. NRSE
could deal with data in different formats: data input from key board, text files,
databases and even GIS raster maps. The data processing function can convert
different data into the internal objects and then employ neural network algo-
rithms to get the output. Depending on the requirement, the output could be
in the form of on screen printing, text files or GIS maps. In addition to the
outputs of neural networks, RSE and its relevant values (Section 4.2) of each
input node could be calculated from a trained neural network.

Users

!

Netwotk Management Objects

y

Network Construction and Data Inprat Objects

l

Data Objects

Figure 6.3: The NRSE structure

Considering efficiency in input and output management, the objects in NRSE
are not strictly encapsulated as independent objects according to their different
data. The objects are organised with respect to their roles in the input and
output of the networks operation. There are three different categories of object
classes in NRSE code: objects for data structures, objects for network man-
agement and objects for network construction and data I/Q {input/output).
Their relationship is shown in Figure 6.3. The network management objects are
the top layer objects communicating with user. It passes user’s requirement or
input to network construction and data I/O objects, which constructs neural

networks or converts input data into data objects. -



[ Object | Role |

CNetNodes Represent the neural network node values
CNetParameters | Contain all parameters for a neural network
CNetWeights Record the connection weights of neural networks
CSample Store the training samples of neural networks
CInputOutputs | Keep original concepts of input and output nodes

Table 6.1: NRSE objects for data structure

6.2.1 Objects for data structure

No matter what data format of the input data, it has to be converted to an
understandable data format inside the neural networks to be processed. In
NRSE, the data structure are mainly represented as five data objects; CNetN-
odes, CNetParameters, CNetWeights, CSample'and ClInputQutputs as shown
in Table 6.1.

These data objects are the internal representation of the neural networks
in NRSE, and any input data have to be converted into these internal data
representation. The sample set for training are converted into CSample first, and
then the inputs and outputs are represented in the format of ClnputOQutputs.
Only data in CInputOutputs could be applied into the network and got node
values in the form of CNetNodes together with CNetWeights. All these data
are encapsulated together by CNetParameters. The roles of these objects in the
operation of a neural network is shown in Figure 6.4. Their head file contents
are listed in Appendix A.1.

Clample

v

CNetParameters CNefWeights

\
CNetNodes

Figure 6.4: The roles of data objects in NRSE

6.2.2 Objects for network construction and data I/0

As a-fully functional neural network tool, NRSE provides comprehensive data
input and a user friendly network construction facility. To this end, the program

implements a series of network construction and data input objects to fulfil this



Object Role

CAddDatabaseDlg | Add new data from databases

CBmpSampleDig Input data from GIS maps

CBpParaDlg Set the BP environment parameters for a neural network
CGisQueryDlg Present network mapping result in the form of GIS map
CModifyWeightDlg | Modify the connection weights of networks

COutTableDlg Present output in the form of a database table
CProcessDlg Set dynamic parameters before starting training
CSetNetDb Establish a new neural network from a database
CSetupDlg Setup a neural network manually |

Table 6.2: NRSE objects for network construction and data input

requirement. Compared with other neural network tools, NRSE provides some
special input and output facilities. Some of the objects in this category are
listed in Table 6.2.

The objects in Table 6.2 can be separated into three different classes ac-
cording to their roles: network setup, network modification and network I/0,
as shown in Figure 6.5. The objects in network setup group are responsible to
setup a network structure including the structure of the network and its initial
parameters. Having a new network established, its parameters are modifiable
through objects in network modification group. A trained neural network will
then accept new inputs and give outputs in the required form of users through
object in network I/O group. It should be noted that Table 6.2 and Figure 6.5
demonstrate only part of the objects for network construction and data I/0,
There are many other objects such as those Page objects for user wizard are
not included here for simplicity.

Networl setup: Networl modification: Network 1/
CBpPaaDlg o | ChddDatabaseDly o] CBtpSampleDlg
CSetNetDb CModifyWeightDig "} CGisQueryDlg
C3etupDlg CProcessDlg COutTableDig

Figure 6.5: Object for network construction and data 1/0

6.2.3 Objects for network management

Considering efficiency of the operation, most complicated action functions are
directly encapsulated into the network management objects. Compared with
the other two groups, management objects has more complicated structure and
functions. The two main objects in this group are CNRSEDoc and CNRSEView.
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Function Name ' Role of Function

ReadGISMapDoc(char* lpszPathName}) Convert GIS map into in-
ternal data representation

ReasonBP() Map input data to output
data without RSE values

ReasonRse(int) Map input data to output

data with RSE values
DoBpLearn{UINT m_CurSamNo, BOOL IsLearn) Train a neural network
with given samples

Table 6.3: Main functions in CNRSEDoc

Function Name Role of Function

DrawGisMap(CDC* dc) Present a GIS map as reason-
ing results ,

DrawRse{CDC* dc, int height) Display RSE and GRSE val-
ues

DrawBpReasonResult{CDC * dc, int height) Show BP mapping results

DrawStructure{(CDC* pDC, int height) Demonstrate the network
structure

DrawError(CDC* de, int height) Give errors in the current

training process

Table 6.4: Main functions in CNRSEView

The contents of their head files are shown in Appendix A.2, Among these two
objects, CNRSEDoc manages the storage, training and various calculations;
whereas CNRSEView is mainly responsible for the 1/0 and user interaction
and communication.

CNRSEDoc is the object holding network data and responsible for network
training, mapping and RSE evaluation. The main data member in CNRSEDoc
is m_Para, which is a CNetParameters data type holding all network parameters
including network nodes, weights and samples as explained in Section 6.2.1.
In addition to message map functions and storage function, some significant
calculations functions for neural networks are shown in Table 6.3. It includes
functions for training process, reasoning with or without RSE evaluation and
GIS map operation.

Compared with NRSEDoc, the main responsibility of NRSEView is the pre-
sentation of the mapping results in the form of Graphics, GIS maps, Databases
tables or text files. In addition to the usual message functions, some typical
functions are listed in Table 6.4, CNRSEView holds more data members than
CNRSEDoc, but. they are mainly parameters for the presentation environment.
The details of these parameters could be found in Appendix A.2.2
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6.2.4 User interface and functionality

Based on the cbjects implemented, NRSE provides a user-friendly user interface
to its users. A user would not need deep knowledge to setup a neural network
and start its training. There is a step by step network setup wizard to get a
user through the whole process of establishing a new neural network. Figure
6.6 shows the starting page of the wizard. Different from other neural network
tools, the compound model in Section 4.4 has been incorporated into NRSE (as
shown in Figure 6.6).
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Figure 6.6: A wizard for establishing a new neural network

The network can also be established directly from your training data set,
and the system can automatically assign those boundary values for each input
and output nodes according to your provided training data. It is simple to
check the training process and update the training parameters because of the
objects in Section 6.2.2. Figure 6.7 demonstrates the dialog box for setting
network training parameters before starting the training process. Figure 6.7
shows that NRSE provides many different methods of BP training, including
the standard BP training, dynamic step and momentum method, track decrease
and regular decrease, track mean errors as well as some combinations. Here,
the dynamic step and momentum method, track decrease and regular decrease
and track mean errors refer to the weight updating frequency and momentum
modification method with respect to the dynamic training error change. The
dynamic step and momentum method may automatically increase or decrease
it according to the dynamic errors; the track decrease and regular decrease will
only decrease it with the reduction of errors; whereas the track mean errors will
only keep pace with the mean errors. According to the availability of testing
samples, the trained neural network could be validated by independent sample
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set or “leave one out validation”. If the sarnple set is very limited, then a “leave
one out validation” could be selected. Under this situation, a text log file will
be created to record the test results for each iteration. In NRSE, a training
precess can be monitored through a dynamic updated graphic presentation as
shown in Figure 6.8. The whole process could be controlled by an advanced
error threshold and maximum number of training iterations. In addition to
this, the process could also be interrupted anytime by an user through function
key. An interrupted training can be easily resumed as well.

: Maximum eror for tralning: -.
Maximum no of steps for training: EW—__“
Frequency for tralning: r|_‘_w_‘;—-
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Figure 6.7: A dialog box for setting the training parameters
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Figure 6.8: A dynamic monitoring of the training process

A distinct feature of NRSE comparéd with other neural network tools is
its facility for RSE (GRSE, PRSE and GPRSE) and GIS maps. RSE and
GRSE. values could be easily calculated from a trained neural network. As
a global parameter, GRSE could be derived from the network parameters at
any time, but RSE values have to be derived together with given input node
values. Because of this, the reasoning operation of NRSE provides two options:
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reasoning with or without RSE values. Figure 6.9 demonstrates an output of
RSE values. In addition to RSE analysis, NRSE incorporates GIS map analysis
function as well, and it could accept Idrisi GIS maps as inputs or training
data, and provides facility to give output GIS maps with given input GIS maps.
Figure 6.10 is a GIS map created by NRSE from input maps. The map here is
presented in Idrisi environment.

NRSE provides a convenient facility for the user to modify network param-
eters. This includes not only parameters like training momentum and error
thresholds, but also the network structures and connection weights. For exam-
ple, users are free to change the connection weights and fix it while allow other
weights to be updated in training. Figure 6.11 shows the dialog box which
appears when a corresponding connection weight is double clicked in weights
observation window.
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Figure 6.9: RSE values from a trained neural network

6.3 Implementation of CAD facility

As explained in Chapter 1, a decision support system for airport enviromnent
has to consider the third dimension in addition to the usual 2D operation for
flight trajectory. Sustainability is usually evaluated against a long term like
20 - 50 years, hence its relevant airport planning involves not only changes in
operation details but also some construction changes as well. Therefore, the
CAD f{acility for airport environment evaluation has to provide user-friendly
function to give users freedom to change both operation details and construction
details in 3D space. To fulfil this requirement, a CAD system was developed
for the airport decision support system. Considering its close relationship with
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Figure 6.11: Facility for network connection weight modification
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Function Name Role of Function

GetDistance(CRealPoint& p, int dimension) Calculate distance between

two points
GetShortDisToSegment(CRealPoint pl, Find the shortest distance be-
CRealPoint p2, int dimension) tween a point and a segment
of line

Rotate(double angle, double xc, double yc) Rotate the coordinates of a
point with a given angle
GetDisPtoLine(CRealPoint pl, CRealPoint Get the shortest distance be-

p2, int dimension) tween a point and a line

ScreenToReal{CMapScaledr scale) Convert the coordinates from
screen system to real world
system

Table 6.5: Main functions in CRealPoint

the airport environment prototype, this system was embedded into the airport
environment systemn rather than a standalone system like NRSE.

There are mainly three core objects in the CAD facility: CRealPoint, CJoint
and CEntity. CRealPoint encapsulates the data defining a 3D point and its
relevant functions. Cloint represents a joint point between lines. CEntity en-
capsulates all data and functions related with geometrical entities. Their full
lists are shown in Appendix B.

CRealPoint is the basic data structure for a point in the CAD facility, In
addition to the three coordinates m_X, m_Y and m_Z, it provides two additional
parameters: m.M for uncertainty and m_Sign for its attribute control mark.
Here, m_Sign is a conserved parameter for any control use in program. However,
m.M is a significant feature of CRealPoint. It means that CRealPoint will
be able to keep not only the three coordinates as a result of measurement,
but also its error or uncertainty. Here, we use the grey geometry point as its
representation: the three coordinates m.X, m.Y and m_Z represent its core
point, and the m_M denotes its grey radius. .

CRealPoint provides the cell component for complex geometrical shapes. All
shapes, including points, line segments, squares, polygons, circles, ellipses and
complex rings, can be represented with a set of organised points. Here, CEntity
is the object to encapsulate all these shapes and their corresponding operations.
Compared with CRealPoint, CEntity has much more complicated data members
and functions. There are 21 data members in CEntity, and the most important
members are m_PointsSet, m_Sort, m_SubEntity and m_Uncertainty, as shown
in Table 6.6.

For a simple entity, such a polyzon, m_PointsSet holds all the points in the

form of an array of CRealPoint. For complex entity, such as a ring, m_SubEntity



Name Data Type Role

m-PointsSet  CArray<CRealPoint, CRealPoint> A set of points consti-
tuting the shape

m_Sort int A mark for different
shapes

m-SubEntity CTypedPtrList<CPtrList,CEntity*> A set of entities con-
stituting a cormplex

_ entity like ring

m-Uncertainty CArray<double,double> A set of parameters

for uncertainty

Table 6.6: Main data members in CEntity

holds a set of entities which hold their own points. The key in identifying dif-
ferent entities is m.Sort. Pepending on the value of m_Sort, different geomet-
rical shapes could be constructed using CEntity, such as points, line segments,
Bezier curves, polylines, polygons, rectangles, ellipses, arcs, rings and compound
shapes. Some typical shapes created using CEntity is shown in Figure 6.12.
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Figure 6.12: Geometrical shapes created using CEntity

CEntity encapsulates all operations for an entity into the object. Considering
the variety and complexity of operations for an entity, there are more functions
in CEntity and they are much more complicated than CRealPoint. Depending
on m_Sort, these operation may operate on m_PointsSet or recursively operate
CEntity through m.SubEntity, as shown in Figure 6.13. Some functions are
demonstrated in Table 6.7.

There are two functions clearly distinet from other CAD environment: QOver-
layOperation and GetUncertainty. OverlayOperation is designed for overlay

operation in GIS environment. It carries out operations between two objects,
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Figure 6.13: Relationship between CEntity operation and m_PointsSet

Function Name

Role of Function

DrawEntity(CDC*, BOOL)
GetLength{CMapScale&, int sub=0)

GetArea(CMapScale&, int sub=-1)
FindCenter()

GetIntersection{CEntityé&,
CArray<Cloint,Cloint>&, int}

PtInEntity( CRealPoint)

OverlayOperation(CEntity&,

CTypedPtrList<CPtrList, CEntity*>&, int, double)

GetUncertainty{CMapScale&: scale)

Draw the entity

Calculate the length of the
entity boundary

Get the covering area of
the entity

Find the centre point of an
entity

Derive the intersection
points between two enti-
ties

Ceck if a point is inside an
entity or not

Overlay two entitics for
AND, OR and DIFFER-
NCE operation

Compute uncertainty of an
entity

Table 6.7: Main functions in CEntity
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‘such as UNION, INTERSECTION, DIFFERENCE and simple overlay. Figure
4.18 and Figure 4,19 present two operand objects, and Figure 4.20 demonstrates
" their DIFFERENCE. GetUncertainty is responsible for uncertainty evaluation.
As aforementioned, each CRealPoint ohject stores its uncertainty in its m.M
metnber, and this information provides the basis for GetUncertainty to derive
the uncertainty of each shape object. Therefore, the uncertainty of each shape
could be checked using GetUncertainty function. This functionality provides a
powerful capability for the airport environment information system to evaluate
its uncertainty associated with map data. It is significant especially for those
GIS related system where mass overlay operations are routine work, Those
overlay operation can easily bring together objects with different uncertainty,
this make the new object show different uncertainty from any of its operands.
With CEntity, all information on uncertainty is kept in CRealPoint, and it will
be transfered to the new object no matter how many overlay operations have
been carried out. Therefore, its uncertainty information will be kept as well.
Table 6.7 presents only part of the available functions of CEntity, and the full
list is provided in Appendix B.2. CEntity provides convenient tools to input,
modify and edit maps. All processes could be simply realised on the screen
by moving and clicking mouse. For example, .a complicated geometrical shape
could be assembled by creating its parts first, and then assembled together by
a “stick” operation. It makes the design and modification of airport structure
an easy task, especially considering the frequent change during a long term
operation scenario.

6.4 Implementation of airport model - PANDA

For an airport environment evaluation model, the most important indicators
to be evaluated are those indicators about emission, noise, water consumption
and waste. All these relate to the operation of airports. Therefore, the model
has to consider both operation side and environment side together. For a long
term evaluation, analytical model is useful in most cases, and a detailed spatial
model would be useful when some snapshot is necessary for some specific time
points. In this sense, both analytic model and spatial model are useful. To this
end, PANDA is implemented as a model to facilitate both analytic and spatial
analysis.

6.4.1 Objects of PANDA

As a prototype of an airport environment evaluation model, cbjects are used
to model the components of airports. Depending on the complexity of objects,
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Object

Role

CAircraftEmissionLinkData
CAircraftGenOptData

CAircraftOperationData

Link aircraft emission databases with aircraft
in the airport

Contain data for general airport operation
details

Keep data for aircraft operation

CFugitiveData Store data. for airport fuel tanks

CIndicatorLimits Hold user defined limits of environment indi-
cators

CInfrustructure Record data for airport infrastructure

CNoiseData Relate aircraft operation with its manufac-
turer provided noise data

CPassengerNumber Give the passenger numbers of each trans-
portation mode and their ratio

CRunwayData Hold runway data for the airport

CServiceGseData Hold service related fugitive emission sources
data

CSurfaceData Keep data for surface transport

CWasteWaterElectricityData  Store all data about waste, water and elec-
tricity at an airport

Keep weather data at an airport

Hold all data for airport operation and envi-

ronment

CWeatherData
CHubAirport

Table 6.8: PANDA objects for data structure

some objects provide only data structure, and some other objects encapsulate
both data and functions together. Similar to NRSE, the objects in PANDA can
be classified into three different groups: data objects, model construction and
[/0O objects, management objects. '

Data objects

PANDA has to represent those airport components contributing to the envi-
ronment problem. It includes all the airport infrastructure components and
operation details need to be modcled in PANDA. Here, a specific data structure
is constructed to represent different components and operation details. Some
of the data ohjects are listed in Table 6.8. It should be noted that PANDA
includes all those objects in Table 6.1, CEntity and CRealPoint in addition to
the objects in Table 6.8. The reason is that PANDA integrates these together.

Due to the complexity of an airport infrastructure and operation, each data
object contains many data members. Some objects are basic data objects which
provide only a data structure for relevant data representation, some other ob-
jects are advanced objects involving other object as their members and com-

plicated functions. In Table 6.8, CAircraftEmissionLinkData, CAircraftQp-
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erationData, CFugitiveData, ClndicatorLimits, CInfrustructure, CNoiseData,
CPassengerNumber, CRunwayData, CServiceGseData, CSurfaceData, CWasteW-
aterElectricityData and CWeatherData are basic objects; whereas CHubAir-
port and CAircraftGenQptData are advanced objects. Both CAircraftOpera-
tionData and CPassengerNumber are members of CAircraftGenOptData, and
all objects are direct or indirect members of CHubAirport. Their relationship
is shown in Figure 6.14
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Figure 6.14: Relationship between data objects of PANDA

Compared with basic data objects, the advanced objects are more compli-
cated with their associated data members and functions. CHubAirport is the
main data object encapsulating most data and functibna]ity in PANDA. Some
of its associated data members are listed in Table 6.9, and some of its represen-
tative functions are listed in Table 6.10. For the full list of data members and
functions of each object, please refer to Appendix C.1.

Similar to other airport environment information systems, PPanda is associ-
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Name

Data Type

Contents

m.SuslndicatorValueSet
m_SusIndicatorNameSet
m.WasteData
m_WaterDatay
m-ElectricityData

‘ m_Weather

m.-AnnLevelAircraft

m-AnnProbaAircraft

m.Ann

m.NoiseLimit
m-NoiseCurve

m-NoiseData
m-MotorwayData

m_CarParkLinkData

m_CarParkData
m-RailData
m_ServiceGseData
m_IndicatorLimits
m_FugitiveData

m_RunwayData
m_RunwayUsageData

m_AircraftOptData

m_EmissionLink

m_Emission
m_Infrustructure

m-NumEmissionYear

double**

CStringArray
CWasteWaterElectricityData
CWasteWaterElectricityData
CWasteWaterElectricityData

CWeatherData

CStringArray
CStringArray

CNetParameters

float
CArray<double,double>

CNoiseData
CArray<CSurfaceData,CSurfaceData>

CArray <CSurfaceData,CSurfaceData>

CArray <CSurfaceData,CSurfaceData>
CArray<CSurfaceData,CSurfaceData>
CServiceGseData

ClIndicatorLimits
CArray<CTugitiveData,CFugitiveData> )

CTypedPtrList<CPtrList CRunwayData*>
CRunwayUsageData

CAircraftGenOptData

CAircraftEmissionLink Data

double***
CArray <Clnfrustricture, Clnfrustructure >

int

A set of values for sus-
tainable development
indicators;

A set of names for sus-
tainable development
indicators;

Data about waste;
Data about water con-

sumption;

Data about electricity
consumption;

Data about weather
condition;

Data about aircraft

noise level from neural
networks;

Data about aircraft
noise probability from
neural networks;

Data about established
neural networks;

The limit noise value;
Data  about noise
boundary;

Data about noise;
Data about motorway
around an airport;
Data about roads link-
ing car parks near an
airport;

Data about car parks
near an airport;

Data about rails near
an airport;

Data about airport fuel
service;

Data about user de-
fined indicator limits;
Data about fugitive
emission at an airport;
Data about runways;
Data about runway us-
age;

Data about aircraft op-
eration at an airport;
Data about the links
between aircraft and
emission databascs;
Data about emission at
an airport;

Data about airport in-
frastructure;

Number of years for the
evaluation of emission
accumulation

Table 6.9: Main data members in CHubAirport
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ated with a series of standard databases as its references. It includes databases
_ for aircraft parameters such as engine, weight and passenger numbers, car park
factors databases for car park emissions, car park operation databases, cold
start databases, electricity, water and waste databases, GSE databases for fugi-
tive emissions, ICAO data bank for aircraft engine exhaust emissions ete. All
these databases serve as a reference for the relevant data objects to derive their
data using the standard databases.

6.4.2 Objects for model construction and I/0

Although PANDA is only a prototype, it is necessary to provide some input
and output functionality to make the system convenient for its user to use it.
To this end, a series of objects for model construction and I/0 operation are
implemented. These objects provide model construction interface using wizard,
and direct link with MSAccess database for data input. The output of the model
could be visualised as text output or graphics. Some of the relevant objects are
listed in Table 6.11. It should be noted that not all objects in this group are
shown in this table.

With these objects, users have freedom to update any data at any stage.
The user defined infrastructure, operational scenarios and other related data
will be kept in the database as objects, and those scalar data from external
relational database will still be kept in their corresponding relational databases.
They will be called in only when it is necessary, such as neural network training
and historical statistical analysis. Objects in Table 6.11 will keep the linkage
between relational database and the object oriented data structure. This linkage
could be modified by its user at any time, as shown in Figure 6.15.

<7 Onjerts for mndel T
R etationat construction and [0 Object
Database : Oriented

) F 3 data
Structure
| — e

Figure 6.15: Relationship between objects of PANDA and relational databases
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Function Name

Role of Function

Insertinfrustructrure( CEntity&, CMapScale&)

ModifyInfrustructure(CString;

Scale&)
CheckCapacity()

GetGeneralNoise(BOOL)

CEntity, CMap-

GetTotalIndicator Value{double**)

GetSusIndicators()

GetWasteWaterElectricityConsumption()

GetSurTraflicFuelConsumption{BOOL)

GetAirFuelConsumption()

GetCarparkEmission()

GetEmissionDispersion{CRealPoint,

double)

AnnReason(CStringArray&, CSample&)

GetNoiseDataStatistics(CString,

double, double)
GetFugitiveEmission()}

GetGseEmission()

GetAirportServiceEmission()

GetColdStartEmission()

GetSurTransEmissions(BOOL)

CSiring,

CRealPoint,

CString,

Drawlndicators(CDC*, int, int, int, CString, CRecté,
int, int, CPoint, CStringArray™ monitor==NULL)

GetAircraft Emission()

Add in new airport infras-
tructure;

Modifying existing infras-
tructure;

Check airport operational
capacity;

Find general noise level
and frequency probability;
Evaluate the indicators to
give a general evaluation;
Calculate the indicators of
sustainable development;
Compute waste, water and
electricity consumption;
Evaluate the fuel consump-
tion of surface vehicles;
Find fuel consumption of
aircraft operation;
Estimate car park emis-
sion;

Disperse emission in at an
airport

Call neural network to get
indicator values

Calculate statistics of mon-
itored noise data;
Bvaluate fugitive emission
at an airport;

Derive airport fuel tank
emission;

Estimate airport service re-
lated emission;

Evaluate cold start emis-
sion;

Calculate emission from
surface transportation near
an airport;

Visualise indicator values;

Calculate aircraft emission;

Table 6.10: Main functions in CHubAirport
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Object

Role

CAircraftEmissionSetupDlg

Setup the link between aircraft emission
databases and aireraft engine;

CCompRateDlg Define the composition of aireraft fleet at an
airport;
CFugitiveEmissionDlg Input data for airport fuel tanks;
ClIndicatorLimitDlg Define limits of environment indicators;
ClInfrustructureDlg Design or input airport infrastructure;
CMonitoringDataDlg Input or link airport monitoring data;
CNoiseAnalysisDlg Setup parameters for noise analysis;
CNoiseDataDlg Input noise related data; )
CNoiseDistributeDlg Define the noise distribution parameters;
CProjectSetting Establish project environment;
CRunwayOptValueDlg Define runway operation data;
CRunwayUsapgeDlg Design ratio of operation among runways;

CSurVehicleDistributeDlg

Distribute surface vehicles on roads;

Table 6.11: PANDA objects for model construction and I/O

6.4.3 Management objects

Similar to NRSE, there are mainly two management objects in PANDA: CPan-
daDoc and CPandaView. It is at this level that PANDA integrates all objects
in the neural network systems, CAD facility and airport systems. CPandaDoc
is responsible for data integration menagement and storage, and CPandaView
manages all the interaction between different objects and users. Both CPan-
daDoc and CPandaView contain a number of data members, the data members
in CPandaDoc serve for the persistent storage of the model, but the data mem-
bers of CPandaView are mainly active only in the operation stage of the model.
Some of the representative data members of the two objects are shown in Ta-
ble 6.12 and 6.13. It should be noted that most data members of NRSE and
CEntity are also included in CPandaDoc and CPandaView, and they are not
included in Table 6.12 and 6.13. In Table 6.12, the most important data mem-
bers are m.Airport and m_EntitySet. m_Airport is an object of CHubAirport
and holds all data relevant to an airport environment. m_EntitySet is a set
of entities of CEntity, which represent the spatial infrastructure of an airport.
PANDA is able to run analytical analysis using m_Airport without considera-
tion of spatial details. In the same time, it can also make spatial analysis by
means of a combination of m_Airport and m_EntitySet. In Table 6.13, the mmost
important data members are m_Indicator and m_CurrentEntity. m_ Indicator is
the current active indicator under consideration, and all operations are working
on this specific indicator. m_CwrrentEntity indicates the current active entity in

consideration, so any spatial operation is related to this entity. Both mmembers
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Name Data Type Contents

m_dbName CString Name of associ-
_ ated database;
m-Airport CHubAirport Data for an air-
port;
m-FieldsType CStringArray Database fleld
_ data types;
m.DatabaseFields  CStringArray Database field
names;
m-DocName CString Model name;
m.Bkglmage CBkglmage Data for back-
ground image;
m-Scale CMapScale Scale of real
data to screen
size;
m-_EntitySet CTypedPtrList<CPtrList, CEntity*> A set of spa-

tial entities con-
stituting the air-
poit;

Table 6.12: Main data members in CPandaDoc

are directing the focus point to specific target in the relevant airport.

Because of the encapsulation of CEntity and CHubAirport, the operation
functions of CPandaDoc and CPandaView are mainly for data storage and view
management. In addition to this, the usual message mapping functions are parts
of the two objects as well. Table 6.14 and 6.15 demonstrate some representative
functions in these two objects. Table 6.14 shows that PANDA can manage
not only its own data, but also data from ArcView and data from relational
databases like MSAccess. This functions provides powerful capability for the
user to modify and access these data. Table 6.15 demonstrates the functions for
user to get dynamic output for any required airport location or map for a large
area. These functions are essential for users to check WHAT IF scenarios.

6.4.4 TUser interface and functionality

The functionality of PANDA is mainly for analysing the sustainability of a
proposed airport development plan, such as a new runway, a new terminal,
increase of flights or passenger number ete. For a propesed new development of
an airport, PANDA is a prototype to evaluate its potential effect on the airport
environment such as noise and cmission. This functionality is illustrated in
Figure 6.16.

The model is established using user provided airport data, vehicle and air-

craft data from standard relational databases, airport monitor data and neural
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Name Data Type Contents

m_MonitorSet CStringArray A set of monitoring
points;

m_NonSpatialDrawAction  int An indicator for output
presentation;

m-Indicator CString The current sctive indi-
cator;

m-ZValueEdit CZValueEdit* A pointer to Z value edit

m-.Selected

m-CurrentEntity

CArray<int,int>

CEntity

panel;

An array of numbers rep-
resenting the selected en-
tities;

The current selected en-
tity;

Table 6.13: Main data members in CPandaView

Function Name

Role of Function

Updatelnfrustructure{CArray < CEntity*, CEntity*>&)

OpenAttachedFiles(LPCTSTR)
SaveAttachedFiles(LPCTSTR)

ReadDatabase()

SaveDatabase()

OpenArcView(LPCTSTR)

ShowEntityXYData(int)

Modify the infras-
tructure at an- air-
port;

Open a model file;

" Save a model file;
Read data from a
database;

Save data into a
database;

Open a file in Ar-
cView format;
Display the geomet- -
rical data of an en-
tity;

Table 6.14: Main functions in CPandaDoc
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Function Name

Role of Function

GetGridStructure(intd,intéz,int&,int&,int &, int&)

GetEmissionMonitorValue()

GetNoiseMonitorValue{(BOOL)

DeﬁneEntityProperty(CEntity*)

Calculate grid structure;
Find emission at a moni-
toring position;

Get noise values for a
moenitoring position;
Modify the properties of
an entity;

DrawThemeMap(CDC*) Draw the theme map of
required airport area;
GetContour(CDC¥*, double, Calculate a contour for a
CArray<double,double>&;, int, COLORREF, given indicator;
BOOL) '
SelectEntity(CPoint) Find selected entity ac-
cording to given point;
Table 6.15: Main functions in CPandaView
+— Develonment User General
1 Indicators
Spatial Planning Scerarios CEatity 7
e MNurmber of flights t
» Nhxure of the planned NRSE
flights 4
Mumber of cars, trains, ,
M e termils oo » PANDA M—— Relational Databases
* Trjectones of flights
Surface road network * Estermal
Surface railway
newotk . -
e Waste source NRSE Moritor Data

Figure 6.16: Airport development evaluation using PANDA
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networks. After a model has been established, then a series of WHAT IF scenar-
ios about airport plamming could be tested in the model, such as a new runway
next year, a significant increase of flight numbers etc. This test will bring some
results on the concerned indicators, and then a comparison could be made be-
tween different scenarios. To this end, a user-friendly interface has a crucial role
in this analysis. Based on the implemented objects in PANDA, an interface with
an “easy to use” feature has been established. A user wizard will guide the user
through the different stages of establishing the model. Figure 6.17 demonstrates
the first page for a wizard to establish a model.

Aircraft configuration - -

Dalabbsaﬁf&[m. . T S
Table name: Iairclaluype ] ] ':‘ ’ _.C.teLk.._!
Fields in the tabla: ) WVehicle |d; -
Noise Id : xal i 1aiﬂ:loft name :
Engine type Id.
- angine name :

It fow Bngine number,

‘ -——) I ]Nn of angines per aircr

" Passenge number |d:

" sy Passenger
Freight 1d:
- map r Iqughl o

< Ptk { Mest > . I Canosl i HaIpJ

Figure 6.17: A wizard for establishing an alrport model in PANDA

Having established the airport model, it is easy to modify it any any stage.
Figure 6,18 illustrate a dialog box for modifying the distribution of passengers
and employees in different transport modes.

In addition to data input through a dialog box, spatial data can also be
inserted directly by mouse click on screen or using databases. All functionality
of CEntity is available for PANDA. Figure 6.20 shows an a runway, its trajec-
tories and some surface roads constructed through CEntity. In Figure 6.20, the
‘tool bar in the right side provides convenient tools for inputting a new airport
related infrastructure, such as runways, terminals, tanks, roads and trajectories,
The 3D facility in CEntity provides PANDA a powerful capability in trajectory
design. Figure 6.19 shows the sclected trajectory’s third dimension in a specific
pop up window. The third dimension valucs could be visually modified through
this window. The top tool bar in the window present quick access to airport
analysis functions. For example, noise analysis will give the distribution of noise

around the airport using neural networks, as shown in Figure 6.21.
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Figure 6.18: A dialog box for modifying passenger and employee distribution in
PANDA
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Figure 6.21: Spatial analysis output in PANDA
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6.4.5 Sustainability evaluation

One of the most distinctive features of Panda is its ability to provide a sus-
tainability evaluation considering both airport and their residents in the same
time. At the moment, most of other systems simply consider sustainability in
the view of airport operator only, and they have not taken into account the
different perceptions of different people in the vicinity of airports. Such a one
sided consideration brings a big gap between the two parties. On airport side,
with the develbpment of aircraft technology, they are claiming that they have
controlled the noise level at an reasonable [evel. However, the residents still feel
disturbance in their lives, and m.any of them are against of any expansion of the
airport operation. In fact, what the airport has claimed is really true. The noise
level has been controlled to some given level. However, the problem is that the
given level is not necessarily acceptable to everyone. Because of the difference
between human perceptions, an acceptable noise level for A may not be so for B.
Therefore, a satisfactory noise distribution in the view of airport operator may
be very annoying for some local residents. To satisfy both sides, the acceptable
noise distribution has to take the different perceptions into account.

As stated in Chapter 3, we adopt the distance between intuitionistic fuzzy
sets to measure the sustainability in Panda. The concept is not only applicable
to the airport as a whole, it is also possible to analyse sustainability of each
residential area as well. In Panda, we can derive the sustainability of a specific
person at a specific location, a group of people in the same residential area and
the whole airport. In the case of an individual, the sustainability is calculated
as a distance between two sets with single element. For specific residential area,
it could be cousidered as a subset of the airport. Hence, the sustainability
could be revealed not only for the airport, but also for individuals or different

* residential areas as well. Figure 6.22 and 6.23 demonstrate the result for noise
sustainability analysis for the residential areas. Figure 6.24 and 6.25 give the
comparison of the changes of noise level and noise probability over a given noise
level. Obviously, the maximum noise level itself cannot reflect the disturbance
increase revealed by the probability model. It illustrates the efficiency of the
proposed fuzzy distance and probability model.
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Chapter 7

Conclusions

Airport environment is influenced by many different factors and uncertainty is a
significant part of the system. Its uncertainties come from different sources, such
as weather change, human perception, operation parameters ete. Therefore, a
system for airport environment evaluation has to build up sufficient mechanism
in dealing with the uncertainties involved in the operation of airports. This
thesis has investigated the applicability of soft computing technology into air-
port environment evaluation systems, and focused on the technology of neural
networks, fuzzy sets, rough sets and grey sets. Under the concept of sustainable
development of aifports, new methods are defined in establishing, training and
interpreting a neural network, and the uncertainty representation of GIS object
using grey sets and rough sets as well as the sustainability evaluation using
interval-valued/intuitionistic fuzzy sets. With a set of available noise data from
Manchester airport, some of our proposed models were verified and the result
is very promising. Based on all these works a prototype system was developed
for airport environment evaluation — Panda.

It is clear that uncertainty due to the airport operation has to be tackled
in an airport environment evaluation system due to its significance. Consid-
ering the existence of uncertainties, 3D Hausdorff distances and spherical dis-
tances between intultionistic fuzzy sets are defined and applied to derive the
noise sustainability of an airport’s operation. Uncertainty propagation is in-
vestigated, and it is proved that there are bounds in rough sets operation. To
unify fuzzy sets, rough sets and grey systems, grey sets are defined and their
relationship with fuzzy sets and rough sets are investigated. Based on grey sets,
grey geometry is proposed to represent uncertainties in Geographical Informa-
tion Systems. In addition to uncertainty, the unknown relationship between
airport input and its waste output is another difficulty, and neural networks

are adopted to address this problem. To improve the neural network training
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and explanation, new ﬁarameters and structure are defined and applied to net-
work evaluation and data mining. RSE and GRSE are effective parameters in
establishing the properties of neural network models. Together with the pro-
posed dynamic state space, RSE and GRSE help with interpretation of results
from a trained neural network. PRSE and GPRSE are useful in evaluating a
trained neural network. Furthermore, it is shown that a redundant structure is
beneficial to neural network training and compound eye inputs are effective in
network training as well. The noise simulation through in-situ data proves that
our model has better adaptability to local conditions than standard models like
INM. Noise disturbance can be better tackled with a probability distribution,
which can reveal those increased disturbances hidden by maximum noise level
measurements. These ideas have been implemented in the prototype PANDA
and NRSE with a 3D facility to carry out WHAT-IF scenarios and would be
a useful addition to commercial systems if adopted. To simulate social intelli-
gence in human society, a social intelligence decision support framework is also
proposed which has a pyramid style architecture.

The research work has demonstrated the usefulness of soft computing in
airport environment decision support systems. The proposed application of
intuitionistic fuzzy sets and grey geometry are especially promising for future
applications. However, there are still limitations to the present system. The
present work does not take multiple indicators into consideration in the mea-
surement of sustainability in the form of distance between intuitionistic fuzzy
sets, but multiple indicators are inevitable in real world situation if the whole
airport needs to be evaluated. The proposed pyramid architecture has not been
fully implemented in the prototype, and some human involvement is still needed.
The next step for the proposed system is to implement a negotiating and com-
promising model among different members in a committee using soft computing
technology. Although spherical distance hetween intuitionistic fuzzy sets is de-
fined, its application still needs exploring thoroughly. Noise is the only indicator
being investigated in details here, and other relevant indicators need to be in-
vestigated as well. Grey geometry provides a new way in representing spatial
uncertainty associated with spatial operations, and it opens a new field in the
research of spatial uncertainty models. A further step is to link it with tempo-
ral and other uncertainties. The coupled effect of spatial, temporal, operational

and perceptional uncertainties is an interesting area for further research.
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Appendix A

NRSE objects

A.1 Data objects

A.1.1 CNetNodes

class CNetNodes : public CObject
{
protected:
DECLARE SERIAL{CNetNodes)

public:

int m_numNewPara;

int m_FunctionType;

double m_RseOpt;
CNetNodes(CNetNodes& node);
CNetNodes();

virtual CNetNodes();

double m_NodeValue, m_NodeError;
CNetNodes &operator=( CNetNodes& };
virtual void Serialize(CArchive& ar);

h

A.1.2 CNetParameters

class CNetParameters : public CObject

{

public:
CNetParameters();
virtual CNetParameters();
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protected: .
DECLARE_SERIAL{CNetParameters)

public:

int* m_NodeNumArray;

double m_FErrorLimit, m_Error, m_InitError;
double m. LearnStep, m_LearnMomentum;

UINT m_Step, m.StepLimit;

UINT m-StepEnd, m InitStep, m_NumSample;
int m_LayerNum, m_StepDraw;

CArray <CNetWeights, CNet Weights> m_WeightArray;
CArray<CNetNodes,CNetNodes> m_NodeArray;
double** m_Sampleln;

double** m_SampleQut;

double* m_SampleError;

CloputOutputs* m_Input;

ClnputOutputs* m_Output;

CViewEnvironment m_EnView;

double m_ModifyE;

public:

long m_ValidationIndex;

int m_Validation;

void ClearSamples();

double m_DynamicErrorLimit;
int m_numNewPara;

int m-RateCompound;
CString m_Name;

void RelnitParameters();

virtual void Serialize(CArchive& ar);
b
A.1.3 CNetWeights

class CNetWeights : public CObject
{

protected:
DECLARE_SERIAL({CNetWeights)

public:
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int mnumNewDPara;

BOOL m_CanModify;

CNetWeights(CNet Weights& weight);

CNetWeights();

virtual CNetWeights();

CNetWeights &operator=( CNetWeightséz );

double m Weight, m_Old Weight, mn_DetWeight, m_OldDetWeight,;
virtual void Serialize(CArchive& ar);

h

A.1l.4 CSample

class C3ample : public CObject
{
public:
CSample();
virtual CSample();

protected:
DECLARE_SERIAL(CSample)

public:

CStringArray m_SamInput;
CStringArray m_SamQutput;
CSample &operator={ CSample& );

public:

BOOL‘Compare(CSample& s);
CSample{CSampleés ¢);

void Copy{CSample& s);

virtual void Serialize(CArchive& ar);

b
A.1.5 ClInputOutputs

class CInputOutputs : public CObject

{

protected:
DECLARE_SERIAL{CInputOutputs)

public:
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ClnputOutputs{);

virtual CInputOutputs(); -

CString m_Name;

BOOL m.IsConcept;

double m_Max, m_Min;
CStringArray m_.ConceptRule;
double* m_ConceptValue;

virtual void Serialize(CArchived ar);

b

A.2 DManagement objects

A.2.1 CNRSEDoc

class CNRSEDac : public COleServerDoc
protected:
CNRSEDoc();
DECLARE_DYNCREATE(CNRSEDoc)

public:

CNRSESrvritem* GetEmbeddedItem()

return (CNRSESrvritem*)COleServerDoc::GetEmbeddedItem();
virtual BOOL OnNewDocument();

virtual void Serialize(CArchivedz ar);

protected:

virtual COleServerltem* OnGetEmbeddedItem();
unsigned m_StartTiime;

CGISMapDoc ReadGISMapDoc(char* IpszPathName);
CStringArray Autolnput;

CSample InterToOut{UINT i, BOOL IsReason);

void ReasonRse(int);

void ReasonBP(});

void RelnitRse();

void GetRse(int type, int nCut);

BOOL ReasonInput();

double DoBpLearn(UINT m_CurSamNo, BOOL IsLearn);
void BpAdjustWeight();

void BackPropError();

double GetError(UINT m.CurSamNo};
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void BpForwardReason(BOOL IsRse);
BOOQOL IsInit;

CNetParameters m_NetPara;

virtual CNRSEDoc();

int WeightNumber(int layer, int i, int j);
int NodeNumber(int a, int b);

void SampleClear();

#ifdef DEBUG

virtual void AssertValid() const;

virtual void Dump(CDumpContexté de) const;
F#tendif

protected:

virtual CDocObjectServer* GetDocObjectServer(LPOLEDOCUMENTSITE
pDocSite); '

afx.msg void OnFileNew();

afx_msg void OnFileNewSample(};

afx_msg void OnFileOpenSample(};

afx_msg void OnFileAddFilesample();

afx_msg void OnFileAddHandsample();

afx.msg void OnEditWeights();

afx_msg void OnFileNewFromdhb();

afx msg vold OnReasondb();

afx_msg void OnReasongismap();

afx_msg void OnEditObservation();

afx_msg void OnGisMapann();

afx_msg void OnGisSaveAnnbmp();

afx_msg void OnGisOpenAnnbmp();

afx_msg voild OnFileExportSampleDh();
)

afx_msg void OnFileExportAnnmodel();
afx_msg void OnFileOpenAppann();

afx_msg vold OnReasondbRse();
DECLARE_MESSAGE_MAP{)

afx_msg BSTR OutputValue(short Number);

afx msg void ExcuteBpReason();

afx_msg void ExcuteRseReasoning();

afx_msg BOOL LoadExistedNet(LPCTSTR. NetName);
afx_msg BOOL InputValue(short Number, LPCTSTR Value);

DECLARE_DISPATCH MAP()
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DECLAREINTERFACE MAP()

private:

void ScaleRse(int layer);

void InitWeight();

void DoTransfer(CStringArray& s, double* v, BOOL Isln, float noise);
b

A.2.2 CNRSEView

class CNRSEView : public CScrollView {
protected:
CNRSEView();
DECLARE_DYNCREATE(CNRSEView)

public:

CNRSEDoc* GetDocument();

CNRSECntrItem* m_pSelection;

virtnal void OnDraw(CDC* pDC);

virtual BOOL PreCreateWindow{CREATESTRUCT& cs);

protected:

virtual void OnInitialUpdate();.

virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
virtual void CnBeginPrinting(CDC* pDC, CPrintInfo* plnfo);
virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
virtual BOOL IsSelected(const CObject* pDocltem) const;
virtual CNRSEView();

#ifdef DEBUG

virtual void AssertValid{) const;

virtual void Pump(CDumpContext& dc) const;

#endif

protected:

* afx.msg void OnContextMenu{CWnd*, CPoint point);
afx_msg void OnDestroy();
afx_msg void OnSetFocus{(CWnd* pOldWnd);
afx_msg void OnSize(UINT nType, int cx, int cy);
afx_msg void OnInsertObject();
afx_msg void OnCancelEditCrir();
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afx_msg void OnCancelEditSrvr();

afx_msg void OnViewStructure();

afx_msg void OnViewSamples();

afx_msg void OnViewWeight();

afx_msg void OnViewSampleErrors();

afx_msg void OnReasonBp();

afx_msg void OnLearnBp();

afx_msg void OnLearnStop();

afx_msg void OnViewFigure();

afx_msg void OnLearnOn(});

afx_msg void OnUpdateLearnOn{CCmdUI* pCmdUT};
afx_msg void OnUpdatel.earnStop(CCmdUT* pCmdUI);
afx_msg void OnUpdateLearnBp(CCmdUI* pCmdUI});
afx_msg void OnReasonRse();

afx_msg void OnViewGrse();

afx_msg void OnViewThreshold();

afx_msg void OnViewGfrse();

afx_msg void OnViewName();

afx.msg void OnViewCurrentgis();

afx_msg void OnRButtonDown(UINT nFlags, CPoint point);
afx_msg void OnGisOpen();

afx_msg void OnGisExtract();

afx_msg void OnGisOpenbmp();

afx.msg void OnGisModifybmp();

afx_msg void OnViewCurrentbmp(};

afx_msg void OnLButtonDbICIk{UINT nFlags, CPoint point);
afx._ﬁlsg vold OnViewNodevalue();

afx_msg void OnReasonPrse();
DECLARE_MESSAGE_MAP()

private:

CSize m_sizeScreen;

COLORREF m_oldColor;

CPoint m_Checkl?;

BOOL m_GisOpen;

CGISMapDoc mapinfo;

unsigned char* m_GisValue;

CSize DrawGisMap{CDC* de);

UINT DrawThreshold{CIDC* de, int height);
UINT DrawRse(CDC* dc, int height);
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void DoBpLearnLoop(int LearnType, long Index);

UINT DrawFigureCoordinate(CDC* de, intéz dx, inté dy, int vPos);
CSize m_ScaleArray[20];

UINT DrawError(CDC* de, int height);

UINT DrawBpReasonResult{(CDC * dc, int height);

UINT DrawSampleErrors(CDC* de, int height);

UINT DrawSamples(CDC* dc, int height);

UINT DrawStructure(CDC* pDC, int height);

UINT DrawWeights{CDC* dc, int height);

UINT DrawNodeValue(CDC* dc, int height);

public:

int m_TextHeight;

CDC dcMem;

CImageObject *m_pImageBmp;
void RelnitVariables();

};
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Appendix B

Objects for CAD facility

B.1 Objects for points

B.1.1 CRealPoint

class CRealPoint : public COhject
{
protected:
DECLARE_SERIAL{CRealPoint)

public:

double m_Z;

double m_Y:

double m_X;

double m.M,

int m_Sign;

double GetReatDistance{CRealPoint, CMapScale, int);
CRealPoint GetExtendPoint{CRealPoint, double);
void RealToScreen{CMapScaleéz);

void ScreenToReal(CMapScaleds);

double GetShortDisToSegment(CRealPoint, CRealPoint, int);
double GetDisPtoLine(CRealPoint, CRealloint, int);
double GetDistance(CRealPoint&, int);

CRealPoint Tolnt();

void Rotate(double, double, double);

BOOL operator!=(const CRealPointé};

BOOL operator==(const CRealPoint&};
CRealPoint(}; '
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CRealPoint(double m X, double m_Y, double m.Z=0, double m_M==0, int
sign=0);

CRealPoint(CRealPoint&);

virtual CRealPoint();

CRealPoint &operator=(const CRealPoint& };

virtual void Serialize(CArchive& ar);

}i

B.1.2 CJoint

class Cloint
{
public:
int m_Kind;
int m_Position;
Cloint& operator=(Claint&);
int m_Seg2;
int m_Segl,
int m.IdSub2;
int m_IdSubl;
int m_IdEntity2;
int m_IdEntityl;
CRealPoint m_Joint;
Cloint();
Cloint(CRealPoint, int, int, int, int, int, int);
virtual CJoint();

b

B.2 Object for entity

class CEntity : public CObject
{
protected:
double GetBoundaryRegn{CMapScaledz, int);
int CheckOverInyUncertainty(CEntity&, CMapScale&, int);
DECLARE_SERIAL(CEntity)

public:

CArray<CRealPoint, CRealPoint> m_PointsSet;
CArray<int, int> m_StyleSet;
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int m_Sort;

double m_Capacity;

CString m_Statement,;

long m Duration;

long m_StartTime;

CArray<double,double> m_SegFeature; //Not complete yet, reserved for
future use !

COLORREF m_BackGroundColour;

CArray<double,double> m_Uncertainty;

CStringArray m_Variable; //Not complete yet, reserved for future use !

CString m.Function;

CString m Name;

BOOL m_Visible;

BOOL m_Closed;

int m FillStyle;

int m_LineStyle:

int m_LineWidth;

CTypedPtrList <CPtrList,CEntity*> m_SubEntity;

COLORREF m_FillColour;

COLORREF m.LineColour;

void AssignUncertainty(double};

double GetUncertainty(CMapScale& scale);

CRealPoint GetLabelPos();

double GetRealDistance(CRealPoint, CRealPoint, CMapScale, int);

BOOL GetDistributionPoints(double, CArray<CRealPoint,CRealPoint>&,
CMapScale);

double FindEndValue(int, BOOL);

void SetLineWidth(int);

vold SetLineStyle(int);

void SetLineColour(COLORREF};

double GetArea(CMapScale&, int sub=-1};

void Transform3DLine(CMapScalede);

CRealPoint GetNodeCoordinate(int Jdnt sub=0);

void DrawColourMark(CDCH*, int, int, COLORREF};

int SelectNode(CPoint, int& sub);

int GetNodeNumber(int sub=0};

double SetZValue{double, int, int sub=0, BOOL IsTurnPoint=FALSE});

double GetZValue(int, int sub=0};

double GetRouteDistance{int, int, CMapScaled, int sub=0);
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double GetLength(CMapScaled, int sub=0};

void DoScale{double, double,double);

BOOL EntityInterchange(CEntity&:);

void RemoveRepeatBoundarys();

int LineInEntity(CRealPoint, CRealPoint);

int FindCommonPoint{CArray<ClJoint,CJoint>&);

int RemoveFalseRing(CTypedPtrList< CPtrList, CEntity* >&, double);

int RemoveRepeats();

void VectorMapOverlay (CTypedPtrList<CPtrList, CEntity*>*, CTypedPtrList<CPtrList,
CEntity*>*, int, CTypedPtrList< CPtrList, CEntity*>*, double, CMapScale&);

BOOL operator!=(CEntity&);

BOOL operator==(CEntity&);

void TransformToLine();

void MatchBoundary(CRealPoint, intéz, int&);

int PtStrictInEntity(CRealPoint);

double GetDisPtoLine(CRealPoint, CRealPoint, CRealPoint};

BOOL GetInterPoint(CRealPoint&z, double);

BOOL CheckRepeatJoint{CRealPoint, CArray<CJoint, CJoint>4&);

CEntity* FindEntity(int);

void MatchPoints{(CArray<CJoint, Cloint>&, BOOL);

" BOOL ClearRepeatJoint{CRealPoint, CArray<ClJoint, CJoint>&};

BOOL CheckRepeatPoint(CRealPoint, CArray<CRealPoint, CRealPoint>&,
double); .

int GetJointSLPt{ CRealPoint, CRealPoint, CRealPoint, CRealPoint, CArray<CJoint,
Cloint>&);

int GetJointLinePoint{CRealPoint, CRealPoint,CArray<CJoint, CJoint>4);

int GetJointLinePoints(CEntity&, CArray<Cloint, CJoint>&);

BOOL EntityInclude(CEntity&);

BOOL FormRing(CTypedPtrList <CPtrList,CEntity*>4&, BOOL);

BOOL IsSelLine(CRealPoint, CRealPoint, CRealPoint, double);

int InsertNode{CRealPoint, double, double, int); |

CRealPoint GetPointInLine(CRealPoint, CRealPoint, double};

int PtInEntity{CRealPoint);

double GetDistance{CRealPoint, CRealPoint, int};

int OverlayOperation{CEntity&, CTypedPtrList<CPtrList, CEntity*>&,
int, double); | '

BOOL StretchEllipse(const CEntity&, CPoint, int);

BOOL StretchPartEllipse{CEntityé, double, double, double, double, dou-
ble, double};

CEntity* FindSubEntity(int);
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void Stretch(CEntityé&, CPointdz, CSellndicator&, double, double, double,
double, double, double, double, double);

BOOL UpdateMoveXY{CEntity&, double, double, double ,double, int, CSellndi-
catoréz);

void MoveWithSel(CDC*, CPoint&, CPoint, doubledz, CPoint&, RECT&:,
BOOL & m._BeginMove, CSellndicatoréz, CEntity&:);

BOOL MoveWithArcEnds(CDC#, int, CPoint&, CPoint, CSellndicatordz,
double&); ' “

int GetRgnEntity{CRgné&, double);

void RelnitializeSub();

BOOL GetExPEllipse( CEntityé&:, double,double,dcuble, CRealPointé,doubledz,inté);

BOOL GetJointPforEllipse{ CEntityés, CArray<CJoint,Cloint>4&);

- BOOL GetBezierJoint(CEntity&, CArray<CJoint,Cloint>&);

BOOL GetJointPforTwoBezier( CEntityéz, double, double, double, CRealPointéz,
doubleé:, intd);

BOOL GetJointPforBeizer(CEntity&, double, double, double, CRealPointé,
double&);

void AdjustRectCordinates(double,double,double,double,doubleés,doubleds,doubled,doubled};

BOOL FindPInterLine{CEntity&, CArray<CJloint,Cloint>&, int);

BOOL PinArc(CRealPoint, deuble);

int FindLineCircleInterP(CEntity8z, CRealPoint*};

CRealPoint FindBezierPoint(double);

int FindLineInterP (CRealPoint, CRealPoint, CRealPoint, CRealPoint, CRe-
alPoint&, int);

BOOL GetPartCompound(CRealPoint™, int);

int GetIntersection(CEntity&, CArray<CJoint,Cloint>&, int);

BOOL GetCompoundEnds(CRealPointé:;, CRealPointéz):

RECT FindStretchCompoundXY();

BOOL StretchPartArc(const CEntitydz, CRealPoint, CRealPoint,. CReal-
Point, int, int);

CPoint UpdateStretchPoint{double, double, CRealPoint, CPoint);

BOOL UpdateStretchX Y (const CEntity&, CRealPoint, double, double, int};

void EllipseToBezier(};

BOOL StretchArc(const CEntity&, CPoint, int};

CPoint RotatePoint(CPoint, double, double, double);

CRealPoint Rotateloint(CRealPoint, double, double, double);

BOOL GetControlPoints(CPoint *);

CPoint FindCenter();

void ModifySort();

BOOL ShowEntityXYDatal();
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RECT FindMaxPoints(CPoint);
BOOL DrawCompCtrl(CDC*};
BOOL ReversePointOrder();
CSellndicator IsSelCurve(double, double, double, double, int, CPoint);
BOOL DrawCompoundPath(CDC*, BOOL);
CSellndicator IsSelCurve(double, double, int, CPoint, BOOL);
CSellndicator CheckCompound(int, int, int, longéz, CPoint);
BOOL FindPathEnds(double&, doubleé, doubled, double&);
BOOL Rotate{double, double, double); '
BOOL Move(double,double);
BOOL FindPartArcEnds(int&, int&, int&, int&, int);
BOOL FindArcEnds9(intéz, int&, intdz, int&);
BOOL DrawArc(CDCH, int, int, double, double, double, double, double);
BOOL DrawEllipse(CDC*, int, int, double, double, double);
~ BOOL DrawArcTo(CDC * de, int, int, double, double, double, double, dou-
ble};
vold DrawMarkForCurve(CDC*, int);
CSellndicator IsSelCurve(int, CPoint);
void FindArcEnds(int&,intéz,int&,int&);
BOOL IsSelControlHandle(int int, CPoint p);
BOOL IsSelControlHandle(CPoint, CPoint);
void DrawCircleMark(CDC¥, int, int};
void DrawFrame(CDC*);
double NearestDis(CPoint, int&);
void DrawSelControl(CDC*);
void Copy(CEntityé&:);
int IsControlPoint(CPoint);
CSellndicator CheckLine(CPoint&, int, int, int, int);
CSellndicator CheckLine{CPoint&, int};
BOOL IsSelPoint{CPoint, CPoint);
RECT FindMaxMiniXY();
int IsSelLine{CPoint, int, int, int, int);
void RelnitializeData();
int IsSelLine(CPoint,int);
CSellndicator IsSelected(CPoint);
void AdjustRectCordinates(int,int,int int,intdz,intée,intéz,int&z);
void DrawhIark(CDC*, int, int);
void DrawSelhlark(CDC*);
void DrawEntity(CDC*, BOOL);
CEntity& operator=(CEntity&);

199



CEntity(CEntity&);

virtual void Serialize(CArchive& ar);
CEntity();

virtual CEntity();

private:

int RemoveQverlay(CEntity&, CTypedPtrList<CPtrList, CEntity*>&, dou-
ble);

int SubOverlay(CEntity&, CTypedPtrList <CPtrList, CEntity*>&, double);

void RateEntity(double);

int OverlayWithoutJoint (CEntity&, CTypedPtrList<CPtrList, CEntity*>&,
int);

int PolygonOverlay( CEntity&, CTyped PtrList<CPtrList, CEntity*> &, int);

int RingOverlay(CEntity&, CTypedPtrList< CPtrList, CEntity*>4, int, dou-
ble);

int AdditionOverlay(CEntity&, CTypedPtrList<CPtrList, CEntity*>&, dou-
ble);

JE
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Appendix C

PANDA

C.1 Data objects

C.1.1 CAircraftEmissionLinkData

class CAircraftEmissionLinkData : public CObject
{
protected: .
DECLARE_SERIAL(CAircraftEmissionLinkData)

public:

CString m_SVFuel;
CString m_SVclass;
CString m_SVfreight;
CString m_SVnumPas;
CString m_SVvField;
CString m_SVtbName;
CString m_SVdbName;

" CString m_EVfreight;
CString m EVnumPas;
CString Array m_fieldsEFCarparkV;
CString m_idEFCarparkV;
CString m_tbEFCarparkV;
CString m dbEFCarparkV;
CString m_NoiseCurveType;
CString m_thrustNoise;
CString m_EVNoiseld;
CString m_typeNoise;
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CStringArray m_disNoise;

CStringArray m_fieldsNoise;

CString m_idNoise;

CString m.tbNoise;

CString m_dbNoise;

CStringArray m-fleldsEFMotorway;

CString m_idEFMotorway;

CString m_tbEFMotorway;

CString m_dbEFMotorway;

CStringArray m_fieldsEFColdStartV;

CString midEFColdStartV;

CString m_tbEFColdStartV;

CString m_dbEFColdStartV;

CStringArray m.fieldsEFRoadInAirport;

CString midEFRoadInAirport;

CString m_tbEFRoadInAirport;

CString m.dbEFRoadInAirport; .
CAircraftEmissionLinkDatadz operator =(const CAircraftEmissionLinkData

BOOL operator ==({const CAircraftEmissionLinkData &);
" BOOL CheckData();

BOOL CheckDatabase{CString&z, CString, CStringArray&);
virtual void Serialize{CArchive& ar);
void RelnitializeData();
CStringArray m_EFfields;

CString m_EFidField;

CString m_EFthName;

CString m_EFdbName;
CStringArray m-FuelCFields;
CString m_FuelCidField,;

CString m_FuelCtbName;

CString m FuelCdbName;
CStringArray m-Stage;
CStringArray m_StageValue;
CStringArray m.Indicators;

CString m_EVnField;

CString m_EVeFicld;

CString m EVvField;

CString m_EVibName;

CString m_EVdbName;
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CAlircraftEmissionLinkData();
virtual CAircraftEmissionLinkDataf);

};

C.1.2 CAircraftGenOptData

class CAircraftGenQOptData : public CObject
{
protected:
DECLARE_SERIAL(CAircraftGenOptData)

public:

void ClearRailData();

void ClearRoadData();

CStringArray& GetSurVehicleType(int);

CAircraftOperationData GetSurVehicledata(ing, int, int);

BQOL GetUnitPasRate(int, CArray<double, double>&);
CArray<CPassengerNumber,CPassengerNumber> m_PassengerNumber;
double m_PeakHourRatio;

double m_WorkHours;

int m_TimeType;

CAircraftGenOptData& operator =(const CAircraftGenQOptData &);
BOOL operator ==(const CAircraftGenOptData &);

virtual void Serialize(CArchive& ar);

long GetUnitMovement(int};

BOOL GetUnitValue(int, CArray<double,double>&};

BOOL GetUnitType(int, CStringArray&);

int GetTypes{CStringArrayé);

void Relnitialize();

int m_Type;

.int m_Period;

int m_First;

CTypedPtrList <CPtrList, CAircraftOperationData*> m_Units;
CTypedPtrList <CPtrList, CAircraftOperationData*> m_RoadCar;
CTypedPtrList<CPtrList, CAircraftOperationData*> m_RoadBus;
CTypedPtrList <CPtrList, CAircraftOperationData*> m_Train;
CTypedPtrList <CPtrList, CAircraftOperationData* > m_RoadTruck;
CTypedPtrList <CPtrList, CAircraftOperationData*> m_MotorwayCar;
CTypedPtrList<CPtrList, CAircraftOperationData*> m_MotorwayBus;
CTypedlPtrList <CPtrList, CAircraftOperationData*> m_MotorwayTruck;
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CTypedPtrList<CPtrList, CAircraftOperationData*> m_CarparkCar;

CTypedPtrList <CPtrList, CAircraftOperationData* > m_CarparkBus;

CTypedPtrList<CPtrList, CAircraftOperationData*> m_CarparkTruck;
- CAircraftGenOptData();

virtual CAircraftGenOptDataf);

}

C.1.3 CAircraftOperationData

class CAircraftOperationData : public CObject
{
protected:
DECLARE_SERIAL({CAircraftOperationData)

public:

void RelnitializeData();

CStringArray m_VPasRate;

BOOL operator ==(const CAircraftOperationData &3;
virtual void Serialize(CArchive& ar);
CAircraftOperationData(CAircraftOperationDatadz);
CStringArray m_VRate;

CStringArray m-VType;

CAircraftOperationData();

virtual CAireraftOperationData();
CAircraftOperationDatad&s operator =(const CAircraftOperationDatade);

b

C.1.4 CFugitiveData

class CFugitiveData : public CObject
{
protected:
DECLARE_SERIAL({CFugitiveData)

public:

virtual vold Serialize(CArchive& ar});

BOOL operator ==(const CFugitiveData &);
CFugitiveDatad: operator =(const CFugitiveData &);
CFugitiveData{const CFugitiveData&);

float m_VapourPressure;

int m_TurnoverNumber;
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float m_TurnoverFactor;

int m.TankTime;

int m_TankNumber;

CString m_TankName;

float m_TankCapacity;

float m_ProductFactor;

float m_MolecularWeight;
float m_Diameter;

float m-AverageVapourHeight;
float m_AverageTemperatureChange;
float m_AveragePressure;
CFugitiveData();

virtual CFugitiveData();

b

C.1.5 ClIndicatorLimits

class ClIndicatorLimits ;: public CObject
{
protected:
DECLARE_SERIAL{CIndicatorLimits)

public:

double m_RefDistance;

double m_FuelConsumption;

ClIndicatorLimits(const CIndicatorLimits&);

BOOL operator==(const ClndicatorLimits&};
ClIndicatorLimits& operator={const ClndicatorLimits&);
double m_-WaterLimits;

double m_ElectricityLimits;

double m_WasteLimits;

void RelnitialiseData();

virtual void Serialize(CArchive& ar);

double m_NoiseTimeLimits:

double m_NoiseLevelLimits;

CArray<double, double> m_EmissionDispersionLimits;
CArray<double, double> m_EmissionLoadingLimits;
ClndicatorLimits(};

virtual CIndicatorLimits();

b
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C.1.6 ClInfrustructure

class CInfrustructure : public CObject { protected:
DECLARE._SERIAL(CInfrustructure)

public:

CString m _Function;

void RelnitializeData();

virtual void Serialize(CArchive& ar);

BOOL operator =(const Clnfrustructure &);
BOOL operator =={const CInfrustructure &);
Clnfrustructure& operator =(const Clnfrustricture &);
Clnfrustructure(const Clnfrustructure&);
double m_Volume;

long m.Capacity;

long m_ServicePeriod;

long m_StartTime;

CString m_Name;

Clnfrustructure();

virtual CInfrustructure();

b

C.1.7 CNoiseData

class CNoiseData : public CObject
{
protected:
DECLARE_SERIAL(CNoiseData)

public:

CString m.PositionField;

CString m_tbName;

CString m_dbName;

void Relnitialize();

CString m_OpTypeField;

CString m_ArcTypeField;

CString m_TimeField;

CString m_DisField;

CString m_LevelField;
CNoiseData{const CNoiseData&);
virtual void Scrialize(CArchive& ar);
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CNoiseData();

virtual CNoiseData();

CNoiseDatadz operator=(const CNoiseDatadz};
BOOL operator==(const CNoiseDatadz);

b

C.1.8 CPassengerNumber

class CPassengerNumber : public CObject
{
protected:
DECLARE.SERIAL(CPassengerNumber)

public:

double m_PasBusRate;

double m_PasCarRate;

double m_EmpBusRate:

double m_EmpCarRate;

virtual void Serialize{ CArchive& ar);

BOOL operator !=(const CPassengerNumber&);

BOOL operator ==(const CPassengerNumber&);
CPassengerNumber& operator =(const CPassengerNumber&);
CPassengerNumber(const CPassengerNumber&s); |
long m_ExtraSurPas;

long m_Employee;

long m_AirMovement;

CPassengerNumber();

virtual CPassengerNumber();

b

C.1.9 CRunwayData

clags CRunwayData : public CObject
{
protected:
DECLARE_SERTAL{CRunwayData)

public:
CString m.Duration;
CString mStartTime;

CRunwayData& operator =(const CRunwayData &);
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BOOL operator ==(const CRunwayData &);
CStringArray m_Fields;

CString m.JdField;

CString m_tbName;

CString m_dbName;

void RelnitializeData();

virtual void Serialize(CArchive& ar);
CStringArray m_StageValue;
CString m_Length;

CString m_Capacity;

CString m_Usage;

CString m_Name;

CRunwayData();

virtual CRunwayData();

h

C.1.10 CServiceGseData

class CServiceGseData : public CObject
{
protected:
DECLARE_SERIAL(CServiceGseData)

public:

void RelnitializeData();

CString m_Vehicle;

CArray<float,float> m _Factors;

float m_ConsumptionRate;

virtual void Serialize(CArchivedz ar);
CServiceGseData{const CServiceGseDatad);
float m_RatioAirside;

float m_ConversionFactor;

CArray <float,float> m_FuclService;

CArray <float,float> m_FuelGSE;
CServiceGseData();

virtual CServiceGseData();

CServiceGseData& operator ={const CServiceGseData &);
BOOL operator ==(const CServiceGseData &);

15
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C.1.11 | CSurfacéData

class CSurfaceData : public CObjeét

{
protected: DECLARE _SERIAL(CSurfaceData)

public:

CString m_Vehicle;

int m_Time;

CSurfaceData(const CSurfaceDatade);
virtual void Serialize{(CArchive& ar);

double m_Length;

long m Number;

CString m_Name;

CSurfaceData();

virtual CSurfaceData();

CSurfaceDatad operator =(const CSurfaceData &);
BOOL operator ==({const CSurfaceData &);

b

C.1.12 CWasteWaterElectricityData

class CWasteWaterElectricityData : public CObject
{ .
protected:
DECLARE SERIAL(CWasteWaterElectricityData)

public:

CString m_AnnFile;

void RelnitializeData();

virtual void Serialize(CArchive &ar);

BOOL operator !=(const CWasteWaterElectricityData & e);

BOOL operator ==(const CWasteWaterElectricityData & e);

CWasteWaterElectricityDatads operator =(const CWasteWaterElectricity-
Data & e); .

CWasteWaterElectricityData(const CWasteWaterElectricityDatadz);

CString m_PlaceField;

CString m_TimeField;

CString m_thName;

CString m.dbName;

CString m_Valuelield;
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(CString m_NumPasField,;
CWasteWaterElectricityData();
virtual CWasteWaterElectricityData();

h

C.1.13 CWeatherData

class CWeatherData : public CObject
{
protected:
DECLARE_SERIAL(CWeatherData)

public:

int m_AtmosStability;

void RelnitializeData();

virtual void Serialize(CArchive& ar);
CWeatherData(const CWeatherDatad);
double m_WindDirection;

double m_-WindSpeed;

double m_Temperature;

CWeatherData();

virtual CWeatherData();

CWeatherDatads operator =(const CWeatherData &);
BOOL operator =={const CWeatherData, &);

5

C.1.14 CHubAirport

class CHubAirport : public CObject
{
protected:
DECLARE_SERIAL(CHubAirport)

public:

CString m_Exelnfo,

double** m_SusIndicatorValueSet;
CStringArray m.SuslndicatorNameSet;

'I CWasteWaterElectricityData m_WasteData;
CWasteWaterElectricityData m_WaterData;
CWasteWaterElectricityData m_ElectricityData;
CWeatherData m_-Weather;
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CStringArray m-AnnLevelAircraft;

CStringArray m_AnnLevelFiles;

CStringArray m_AnnProbaAireraft;

CStringArray m_AnnProbaFiles;

CNetParameters m_Ann;

float m_NoiseLimit;

double m_detNoiseDis;

double m_minNoiseDis;

double m_maxNoiseDis;

CArray<double,double> m_NoiseCurve;
CArray<double,double> m _NoiseDis;

CNoiseData m_NoiseData;
CArray<CSurfaceData,CSurfaceData> m_MotorwayData;
CArray<CSurfaceData,CSurfaceData> m_CarParkLinkData;
CArray<CSurfaceData,CSurfaceData> m_CarParkData;
CArray<CSurfaceData,CSurfaceData> m_RailData;
CServiceGseData m_ServiceGseData;

CIndicatorLimits m_IndicatorLimits;
CArray<CFugitiveData,CFugitiveData> m_FugitiveData;
CTypedPtrList < CPtrList, CRunwayData* > m_RunwayData;
CRunwayUsageData m_RunwayUsageData;
CAircraftGenOptData m_AircraftOptData;
CAircraftEmissionLinkData m_EmissionLink;

double*** m_Emission;

CArray <Clnfrustructure,Clnfrustructure> m_Infrustructure;
void SetMaxDisplayValue{double);

void SetupEmissionArray(int, int, int);

void InsertInfrustructrure(CEntity&, CMapScale&);

void ModifyInfrustructure(CString, CEntityds, ChMapScale&);
void DeleteInfrustructure(CString, CString);

CString CheckCapacity(); '

BOOL GetGeneralNoise(BOOL);

void GetTotallndicatorValue(double**);

BOOL GetSusIndicators();

BOOL GetSeasonRation(double*);

int Get Waste WatcrElectricity Consumption();

BOOL GetSurfVehicleFuelCoef(CString Arrayéz, CArray<double,double>&);
BOOL GetSurTrafficFuel Consumption(BOOL);

BOOL GetAirFuelConsumption();

double GetInfrusVolume{CString);
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int GetNumSpecificInfrustructure(CString);

void ClearSpecificInfrustructure(CString);

void GetInfrustructure(CString, CArray<Clnfrustructure, CInfrustructure>&});

BOOL GetVehicleClass(CStringArray&, CArray<int,int>&};

BOOL GetUnitAirFreight(CStringArray&, CArray<double,double>é&);

BOOL GetYearAirFreight(CArray<double,double>&); ,

BOOL GetUnitVFreight{CStringArray&, CArray<double,double>&);

BOOL GetSurVPasNumber(CStringArray&s, CArray<int,int>&);

long GetSurVehicleNumber(int, CString, CString, int);

BOOL GetAircraftPasNumber(CStringArray&, CArray<long, long>&);

BOOL GetAirPasYearNumber(CArray <long,long>&);

BOOL GetVehicleType(CStringArray&, CString);

BOOL GetCarparkEmissionFactor{CStringArrayé, double®*);

BOOL GetCarparkEmission();

double GetEmissionDispersion(CRealPoint, CRealPoint, double};

void DoEmissionDispersion( CArray <CRealPoint, CRealPoint > &, CArray<double,
double>4&, CRealPoint, double);

BOOL LoadAnn(CString};

int WeightNumber(int, int, int);

int NodeNumber(int, int);

CSample InterToOut();

void BpForwardReason(};

void DoTransfer(CStringArray&, double*, float);

BOOL AnnReason(CStringArrayé, CSample&);

BOOL WriteNoiseSamples{CString, CString, CString, int, int);

BOOL GetMaxMinMonitorNoise(CString, CString, CString, doubleé, dou-
bledz);

BOOL ReadNoiseTypes(BOOL, CStringArray&);

BOOL DrawNoiseCurve{CDC*, CString, CRect. int);

BOOL GetMaxMinNoiseMonitorDis(CString, CString, CString, double&,doubled);

BOOL GetMonitorNoiseCurve(CString, CString, CStfing, double, int);

double GetNoiscDataStatistics{CString, CString, CString, double, double);

void DefinelndicatorLimits();

BOOL GetFugitiveEmission();

BOOL GetGseEmission(};

BOOL GetAirportServicecEmission();

int GetRoadStage(int, CStringArrayé); _

BOOL GetColdStartEmissionFactor(CStringArray&s,double**);

BOOL GetColdStartEmission();

void RelnitializeEmission();
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BOOL GetSurEmissionFactors(BOOL,CStringArrayéz,double**);

BOOL GetSurTransEmissions(BOOL);

BOOL GetRunwayUsageDB(CStringArray&, double**);

BOOL CheckDbData();

BOOL GetSOperationTime(double**);

BOOL GetVOperationTime(CStringArray&s, double***);

CRunwayData* GetRunwayData(int);

virtual void Serialize{CArchiveds ar);

void RelnitializeData();

BOOL GetFuelConsumption(const CStringArrayds, double**);

BOOL GetEngineType(const CStringArray&, CStringArray&, CArray<int,int>&);

CPoint DrawFigCoordinate{(CDC*, int&, inté, int, int, int,CString, int,
CStringArray* monitor=NULL); ,

CPoint DrawIndicators{CDCH*, int, int, int, CString, CRect&, int, int, CPoint,
CStringArray* monitor=NULL);

BOOL GetAircraftEmission();

CHubAirport();

virtual CHubAirport();

BOOL GetEmissionFactors(CStringArrayé&z, double**);

private:

double m.MaxValue;

int m NumEmissionYear;

int m Numlndicator;

int m NumStage;

|

C.2 Management objects

C.2.1 CPandaDoc

class CPandaDoc : public COleServerDoc
{
protected:
CPandaDoc(}; :
DECLARE_DYNCREATE(CPandaDoc)

public:

CString m_dbNarne;
BOOL m_dBMark;
float m_Version;
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int m_idEmission;

CHubAirport m.Airport;

CStringArray m_FieldsType;

CStringArray m-DatabaseFields;

CString m_DocName;

int m.AnalysisType;

CBkglmage m_Bkgimage;

CMapScale m.Secale;

CActionSign m_ActionSign; .
CTypedPtrList<CPtrList, CEntity*> m_EntitySet;
CTypedPtrList<CPtrList, CEntity*> m_BackEnSet;
CPandaSrvrlitem* GetEmbeddedItem() return (CPandaSrvrItem*}COleServerDoc::GetEmbeddedIte

virtual BOOL OnNewDocument();

virtual void Serialize(CArchive& ar); _
virtual BOOL OnOpenDocument(LPCTSTR, IpszPathName);
virtual BOOL OnSaveDocument{LPCTSTR IpszPathName);

protected:
virtual COleServerIltem* OnGetEmbeddedItem();

public: )

void UpdateBackgroundBoundary(CPoint);

void UpdateMapMax();

void UpdateMapMax(CEntity*);

void OpenTemplate();

void ClearBackgroundEntities();

int GetSubsetInFunction(CString, CArray<int,int>&};

void Updatelnfrustructure{CArray <CEntity* CEntity* > &);

BOOL OpenAttachedFiles(LPCTSTR);

BOOL SaveAttachedFiles(LPCTSTRY);

BOOL ReadDatabase();

BOOL CheckDatabase(const CString&, const CStringde, const CStringAr-
ray&e);

BOOL SaveDatabase();

BOOL OpenDatabase(CString, CString, CString, CStringArray&, intdz);

BOOL OpenArcView(LPCTSTR);

void DoScale(double,double,double);

int CutEntity{int, CPoint);

BOOL ShowEntityXYData(int);
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BOOL StickEntity(int, BOOL, int, BOOL);
BOOL InsertEntity(CEntity*, int, BOOL);
CEntity* DeleteEntity(int);

void OrderEntity(int,int);

double FindNearestDis(CRealPoint, int&, int&);
CEntity* FindEntity(int);

void RelnitializeData();

virtual CPandaDoc();

#ifdef DEBUG

virtual void AssertValid() const;

virtual void Dump(CDumpContext& dc) const;
f#endif

protected:

virtual CDocObjectServer* GetDocObjectServer(LPOLEDOCUMENTSITE
pDocSite);

afx_msg void OnProjectSettings();

afx_msg void OnOperationprofileComposition(};

afx_msg void OnOperationprofileFugitivefueltanks();

afx.msg vold OnOperationprofileGseandservivefuel();

afx_msg void OnOperationprofilelnterroadtraffic();

afx_msg void OnOperationprofileMotorwaytraffic();

afx_msg vold OnOperationprofileRunwayoperationtime();

afx_msg void OnOperationprofileRunwayusage();

afx_msg void OnProjectDatabase();

afx_msg void OnProjectIndicatorlimits();

afx_msg void OnOperationprofileNoise();

afx.msg void OnNoiseAcesssamples();

afx_msg void OnOperationprofileCarpark();

afx_msg void OnOperationprofileSurpasdistribution();

afx_msg void OnProjectInfrustructure();

afx_msg void OnOperationprofileAirportroadtraffic();

afx_msg void OnOpcrationprofiteAirportemployeesandextrasurfacepassengers();

afx_msg void OnProjectMonitoringdata(); '

afx_msg void OnOperationsRatiomotorwaytraffic();

afx_msg void OnOperationsRatiocarpartraffic();

afx_msg void OnProjectUpdatetemplate();

afx.msg void OnFileSaveAs(); .

DECLARE_MESSAGE_MAP()

DECLARE_DISPATCHMAP()



DECLARE_INTERFACE_MAP()

private:
int m.FileOption;

h

C.2.2 CPandaView

class CPandaView : public CScrollView
{
protected:
CPandaView();
DECLARE.DYNCREATE{CPandaView)

publie:

CPandaCntrltem* m_pSelection;

CPandaDoc* GetDocument();

virtual void OnDraw(CDC* pDC);

virtual BOOL PreCreateWindow(CREATESTRUCT&: ¢s);

protected:

virtual void OnlnitialUpdate();

virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);

virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* plnfo);

virtual void OnEndPrinting{CDC* pDC, CPrintInfo* pInfo);

virtual void OnPrint(CDC* pDC, CPrintInfo* pInfo);

virtual BQOL IsSelected(const CObject* pDocltem) const;

virtual void OnActivateView (BOOL bActivate, CView* pActivateView, CView*
pDeactiveView);

public:

double m_ViewScale;

BOOL m_BkMapLoaded;
CDC m_BkMapDe:

BOOL m_ShowBackEntity;
CStringArray m_MonitorSet;
int m_OldBackOption;
double m_ScaleTheme;

int m_BackgroundOption;
CDC m-deMemn;
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int m_NonSpatialDrawAction;

int m_DrawMode;

int m_idRoadStage;

CString m Indicator;

int m_Time;

CZValueEdit* m.ZValueEdit;

CPoint m_MovePoint1;

double m_CurrentAngle;

BOOL m_InRotate;

RECT m_CurrentRect;

BOOL m_OnStick;

CPoint m.0OldPoint;

CEntity* m_TempEntitySet;

BOOL m_BeginMove;

BOOL m_RBStatus;

BOOL m_LBStatus;

CSellndicator m-SelObject;

CPoint m_MovePoint;

UINT m_KeyboardStatus;

CArray <int,int> m_Selected;

CEntity m_CurrentEntity;

BOOL m_NewEntity;

CPoint m_CurrentPoint;

void GetGridStructure(int&,int&e,intdz,int&,int&, intée);

BOOL ReadINMNoiseContour(CString, CString);

BOOL GetEmissionMonitorValue();

BOOL GetNoiseMonitorValue(BOOL);

BOOL DefineEntityProperty{ CEntity*);

double GetFuzzyMembership(double, double, double);

BOOL DefineGreyNodes{CEntity*);

void GetInterval Thrust(CString interval, double& min, doubled: max};

void GetMapGrid(CArray <CRealPoint, CRealPoint>>&, CArray<double, double>&,
BOOL IsArea=FALSE);

BOOL GetDispersion(CArray <CRealPoint, CRealP01nt>& CArray<double, double>&
int, int, CStringde, ‘

BOOL IsPeak=FALSE);

CSize DrawThemeMap(CDC*);

void PrepareThemeMap{CArray<double,double>&, BOOL);

int GetContourNode(int i, int j, int, double, double, double, CArray<double,
double>&, CArray<CRealPoint,CRealPoint>&};
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void GetGridNode(int, int, double, double, double*, double*);

CEntity GetContour(CDC*, double, CArray<double,double>&, int, COL-
ORREF, BOOL);

void DrawSelMark{CDC*, CPoint&);

void DrawSelMark(CDC¥, int, int);

void DrawColourMark(int);

BOOL RotateWithSel(CDC*, CPoint);

void DoScale(double,double,double);

void InvalidatePart();

void RemoveSelMark();

BOOL DoStickEntity(CPoint);

RECT FindGroupMaxRect(int};

void MoveSize(CDC*, CPointé&z);

void MoveWithSel{CDC*, CPoint&);

void MoveWithCreate(CDC*, CPoint&);

BOOL CutPath{CPointéz);

BOOL InsertNode{CPoint&);

int CheckConnection{CRealPoint&:);

void ChangeSelOrder();

void AdjustReetCordinates(int,int,int,int,int&,inté,int&,inté);

void SelectEntity(CPoint);

void CreateEntity(CPoint);

void StopForAction();

virtual CPandaView();

#tifdef DEBUG

virtual void AssertValid() const;

virtual void Dump{CDumpContexté: de¢) const;

#endif

protected:

afx_msg void OnDestroy();

afx_msg void OnSetFocus{CWnd* pOldWnd);

afx_msg void OnSize(UINT nType, int cx, int ¢y);

afx _msg void OnlnsertObject();

afx_msg void OnCancelEditCntr{);

afx_msg void OnCancelEditSrvr();

afx,insg void OnLButtonDown{UINT nFlags, CPoint point);
afx_msg void OnLButtonDbIClk(UINT nFlags, CPoint point);
afxmsg vold OnMouseMove(UINT nFlags, CPoint point);
afx_msg void OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags);
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afx_msg void OnKeyUp{UINT nChar, UINT nRepCnt, UINT nFlags);
afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
afx_msg void OnContextMenu(CWnd* pWnd, CPoint point);
afx_msg void OnMapEdit();

afx.msg void OnMapEditAre();

afx_msg void OnMapEditBackward();

afx-msg void OnMapEditCurve();

afx_msg void OnMapEditCurveclosed();

afx_msg void OnMapEditCurvepath(};

afx msg void OnMapEditCut();

afx_msg void OnMapEditEllipse();

afx_msg void OnMapEditForward();

afx_msg void OnMapEditLine();

afx.msg void OnMapEditPath();

afx.msg void OnMapEditPoint();

afx_msg void OnMapEditPolygon(};

afx_msg veid OnMapEditPopClose();

afx_msg void OnMapEditPopColour();

afx.msg void OnMapEditPopStyle();

afx_msg void OnMapEditPopZedit(});

afx.msg void OnMapEditRectangle();

afx_msg void OnMapEditReleaseRing();

afx_msg void OnMapEditRing();

afx.msg void OnMapEditRotate();

afx_msg void OnMapEditSelect(};

afx_msg void OnMapEditStick():

afx_msg void OnMapEnlarge();

afx_msg void OnMapShrink();

afx.msg void OnUpdateMapEditRing(CCmdUI* pCmdUI}),
afx_msg void OnUpdateMapEditStick(CCmdUI* pCmdUT);
afx.msg void OnUpdateMapEditReleaseRing{CCmdUT* pCmdUT);
afx_msg void OnUpdateMapEditRotate(CCmdUI* pCmdUI};
afx.msg void OnUpdateMapEditCut(CCmdUI* pCmdUI);
afx.msg void OnUpdateMapEditPopZedit(CCmdUI* pCmdUI);
afx.msg void OnUpdateMapEdit{CCmdUI* pCmdUI);
afx_msg void OnUpdateMapEnlarge(CCmdUT* pCmdUI);
afxansg void OnUpdateMapShrink(CCmdUT* pCmdUT);
afx_msg void OnVIEWEntity(); '
afx_msg void OnViewContour();

afx_msg void OnMapEditPopDatabase();
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afx_msg void OnMapEditPopLineColour();

afx_msg void OnMapEditPopLineStyle();

afx_msg void OnMapEditPopLineWidth(); -

afx_msg void OnUpdateMapEditPopColour{CCmdUI* pCmdUT});
afx.msg void OnUpdateMapEditPopClose(CCmdUI* pCmdUT};
afx_msg void OnUpdateMapEditPopStyle(CCmdUI* pCmdUI);
afx_msg void OnMapEditPopBackgroundcolour();

afx . msg void OnUpdateMapEditPopBackgroundcolour{ CCmdUI* pCmdUI);
afx_msg void OnEmissionsAircraftassociatedenﬁssion();
afx_msg void OnEmiSsionsAirportservice();

afx.msg void OnEmissionsCarparkcoldstart();

afx_msg void OnEmissionsGroundsupportequipment();

afx_msg void OnEmissionsInterroademission();

afx msg void OnEmissionsMotorwayemission()};

afx_msg void OnEmissionsTankfugitiveemission();

afx.msg void OnViewActiveemission();

afx_msg void OnViewAircraftemission();

afx_msg void OnViewAirportservice();

afx.msg void OnViewCarparkcoldstartemission();

afx_msg void OnViewFugitiveemission();

afx msg void OnViewGroundsupportequipment(};

afx_msg void OnViewlInterroademission();

afx_msg void OnViewMotorwayemission();

afx.msg void OnAiporttoolTerminal();

afx_msg void OnAirporttoolCarpark();

afx msg void OnAirporttoolMonitor();

afx_msg void OnAirporttoolResident(};

afx_msg void OnAirporttoolRoad();

afx_msg void OnAirporttoolRotate();

afx_msg void OnAirporttoclRunway();

afx_msg void OnAirporttoolSensitivearea();

afx_msg void OnAirporttoolTank(};

afx_msg vold OnAirporttoolTrajactory();

afx_msg void OnAirporttoolMotorway();

afx_msg void OnViewMonitoringNoiseCurve();

afx_msg void OnNoiseDistribution();

afx_msg void OnViewClearBackground();

afx_msg void OnViewShowBackground();

afx_msg void OnEmissionsDispersion();

afx_msg void OnAirporttoolGse(};
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afx_msg void OnEmissionsCarpark(};

afx_msg void OnViewCarparkemission();

afx_msg void OnAirporttoolTaxiway();

afx_msg void OnUpdateEmissionsDispersion{CCmdUI* pCmdUI);

afx_msg void OnUpdateNoiseDistribution(CCmdUT* pCmdUT});

afx_msg void OnOtherindicatorsAircraftiuel();

afx.msg void OnViewAircraftfuelconsumption();

afx_msg void OnOtherindicatorsAirportroadfuel();

afx_msg void OnOtherindicatorsMotorwayfuel();

afx_msg void OnViewRoadfuelconsumption();

afx_msg void OnViewMotorwayfuelconsumption();

afx_msg vold OnOtherindicatorsWaste();

afx_msg void OnViewWaste();

afx_msg void OnSustainabilityindicatorsRelativeindicators();

afx.msg void OnViewRelativeindicators(};

afx_msg void OnNoiseNoiselevel();

afx.msg void OnNoiseNoisefrequency();

afx_msg void OnViewNoisefrequency();

afx_msg void OnViewNoiselevel();

afx_msg void OnProjectSpatial();

afx_msg void OnOperationsCheckeapacity();

afx_msg void OnSpatialEmissiondispersionindicators();

afx_msg void OnSpatialNoisefrequencyindicators{);

afx_msg void OnSpatialNoiselevelindicators();

afx_msg void OnViewMonitordispersion();

afx_msg void OnViewMonitornoisefrequency();

afx_msg void OnViewMonitornoiselevel(); ‘

afx_msg void OnUpdateViewShowBackground(CCmdUI* pCmdUI);

afxansg void OnUpdateViewClearBackground{CCmdUI* pCmdUI);

afx.msg void OnUpdateProjectSpatial(CCmdUI* pCmdUI);

afx_msg void OnUpdateSpatialEmissiondispersionindicators(CCmdUI* pCm-
dUl};

afx_msg void OnUpdateSpatialNoisefrequencyindicators(CCmdUI* pCmdUI);

afx_msg voild OnUpdateSpatialNoiselevelindicators(CCmdUI* pCmdUT);

afx_msg void OnToolsShowbackentitys();

afx.msg void OnToolsClearbackentitys();

afx_msg void OnUpdateToolsClearbackentitys(CCmdUI* pCmdUI);

afx_msg vold OnUpdateToolsShowbackentitys{CCmdUI* pCmdUI);

afx_msg void OnToolsMergebackentities();

afx_msg void OnUpdateToolsMergebackentities{ CCmdUI* pCmdUI);
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afx_msg void OnFileOpenexternalfiles();

afx_msg void OnUpdateFileOpenexternalfiles(CCmdUI* pCmdUT};
afx_msg void OnIndicatorsEdmsemission();

afx_msg void OnViewEdmsemissions(};

afx_msg void OnSpatiallnmcontours();

afx_msg void OnSpatiallnmindicator();

afx_msg void OnViewInmnoiselevel();

afx_msg void OnUpdateSpatiallnmeontours(CCmdUT* pCmdUT};
afx_msg void OnUpdateSpatiallnmindicator(CCmdUI* pCmdUT);
afx.msg void OnViewBackgroundmap();

afx_msg void OnUpdateViewBackgroundmap(CCmdUT* pCmdUT);
afx_msg void OnBackgroundBoundary();

afx.msg void OnMapEditPopUncertainty();

afx_msg void OnMapEditPopThrust();

afx_msg void OnUpdateMapEditPopThrust(CCmdUT* pCmdUI);
afx.msg void OnMapEditPopGreynodes();

afx_msg void OnNoiseSpatialLevelSustainability();
DECLARE.MESSAGE_MAPY{)

private:

CString m_ObjectFunction;
b
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Appendix D

Author’s relevant

publications

Some contents discussed in this thesis have been published in academic confer-

ences or journals.

¢ Neural networks and its application: [205, 210, 209, 220, 219, 208, 218,
217, 229, 227, 228, 226, 222, 224, 225, 223]

L

Fuzzy sets: (211, 212, 213]

Rough sets: [215, 216, 213, 212]

Grey sets: [202, 213, 212, 211, 203]

GIS: [207, 205, 220, 218)

e Decision support: {206, 205, 187, 180, 221, 204]
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