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SUMMARY

This report presents an Optimality Criteria method for the optimal
' design of civil engineering structures subject to multiple behavioural
constraints on element stresses and nodal displacements and also to

constraints on design variebles,

The method makes use of s first order approximation for both
-deflection and stress constiraints instead of the zero order approximation
.based on the concept of Fully Stressed Design used for stress constrﬁints
by the majofity of Optimslity Criteris approaches., The better approximation
for stress constraints, introduced by considering the stress components
as linear combinations of the generalized displacements, removes the
difficulties arising from the use of stress ratios which, particularly
for a well-known 10-bar planar truss, leads in many cases to a wrong

design.

The method is also used to design continuous beams with t£5ered
elements. The beam has rectangular or I-ghape sections. The depth
of sections at nodal points is chosen for the design variable since
the depth of the tapered elements is continuocusly varyiné. The maximum
bending stress at any section of the beam can be expressed by a linear
combination of the rotational displacements of"ﬁhe section concerned
and another séction adjacent td;it at en infiniﬁeéimally small distance
away and thus the proper apprg;;ﬁation_for,bendihg stresses is always

possible,

A redesign algorithm is derived from the Kuhn-Tucker necessary
conditions for optimality end the Newton-Raphson method is used to solve

the system of nonlinear constraint equations: When applied to various




trusses and continuous beams it proves accurate and efficient,

probably due to its mathematical rigour and the proper approximation
for a1l kinds of constraints. The method can also Bolve the problems
with nonlinear objective functions and thus enables us to obtain
pinimum cost designs es well as minimum weight designs. For civil
engineering structures, which are of great variety in their types

of element and predominant constraints, the method presented in this

report shows much promise.
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NOTATION

F Cost objective function

7 Weight objective funétion

’)S Design Vector in general terms

/J:. Design variable 1 in truss probleams
As Size of member & in truss problems
Dy Degign variable i in beam problems

de¢¢xy Depth of beam element t varying linearly

Ame 3 Lagrenge multiplier associated with jth stress constraini
ﬂ’ %, 5’ Prescribed values of behavioural constraints
; 4;, D¢ Minimum size rest.ricﬁions on design variables
| Fs Axial force of member s due to actual loads

;-SC"J Axial force of member s due to a unit load applied at the node
- and in the direction associated with the kth deflection component

/05 Mass density of member s
'Ls - Length of member s
Es Elastic modulus of member s
B¢ Breadth of beam element t with rectangular section ‘
' ﬂﬂ Flange area of beam element t with I-section }
| £ Mags density of beam element ¢ }
L+ - Length of beam element + :
L Elastic modulus of beam element +t :
Y The kth constraint function ' |
Uy Deflection component Xk :
6’ Stress of member § or at node j
A Number of design variables ‘
m Number of stress constiraints ‘
”n Nuerber of deflection constraints ‘
q k Lagrange multiplier sssociated with kth deflection constraint |
|
|
|
|
|
|
|
|
|
|
|
|
\
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Axdal force of member s due to two unit loads, each applied at
one of the nodes connecting member 8 in the direction of member s

Bending moment distribution over beam element t due to actual loads

Bending moment distribution over beeam element t due to a unit
load applied at the node associated with (/g

Bending moment distribution over element + due to two couples
associated with 6?

Derivative of objective function with respect to design variable i
Coefficient to evaluate approximate deflections in beam problenms
Coefficient to evaluate spproximate stresses in beam problems
Coefficient to evaluate spproximate deflection gradients in bean
problems, and approximate deflections and deflection gradients

in truss problems '

Coefficient to evaluate approximate stress gradients in beam
problems, and approximate stresses and stress gradients in truss

problems

Transformation matrix to obtain depths of nodes from design
values in beam problems

Retio of the depth of node t +to design value i
Ratio of the depthof mode £+1 to that of node t
Set of active design variables

Set of pasgive design variables

Set of active deflection constraints

Set of active stress constraints



1. INTRODUCTION

The desire for structural éptimization might date back to the
dawn of humsn civilization., The development of structural forms,
such as arches, domes, beams, slabs, ect., was inevitably of a very
slow evolutionary process, but probably in an optimal manner, In
fact they have been in use for hundreds of years or even thousands of
years, and if seems that no radical changes of basic structural forms
have yet appeared in spite of recent striking developments in theory

and technologies,

Nevertheless, the revolution in calculation brought about by
the computer together with improvements in other techniques has made
a new wave of innovative designs possible. It enables the designer
to focus more on the physical reality rather than a mathematical
abstraction, largely by providing extensive capability of structural
analysis by now, Whereas structural analysis can be carried out with
reasonable accuracy solely by the computer, it can hardly be said
that structural design is also the subject the computer can yield
satisfactory results without human intervention and/or excessive
simplification, Probably human judgement should always play a more
important role in any kind of engineering design., The designer need
not and must not hand over whole responsibility to the computer, but
he may wish to rely on the capabilities of the computer to such

extent as to make the most appropriate configuration or proportions of

~ the structure be selected under the necessary conditions of selection

which he is liable to feed into the computer,

The emergence of mathematical programming techniques enabled a

wide range of optimization problems in engineering to be solved




rigourously., Among them are the problems of optimal design of
structures, which have a significant amount of quantifiable portions.
The combining of computer oriented structural analysis techniques

with mathematical programming methods led to the development of
automated procedures for iterative redesign directed towerds an
optimum.design. In this approach structural design is idealized as

a problem of mathematical extremization of pre-defined merit in a
solution space constrained by prescribed quentities such as stress and
deflection 1imits, Since the problem of structural design usually
involves a large number of quantifisble solution variables and response
values, its subproblem consisting of those quantities may be of great
importance, and undoubtedly the mathematical solution to the subproblem
contributes to the whole solution process to quite a meaningful extent,
Any sutomated procedure, if it can solve the subproblem mathematically
or numerically and thus give an optimum design, will be of much greater
help to the designer than providing merely capability of structural
analysis, Since it decides the design values set by the designer
wvithout requiring human intervention, the designer can put aside
numerical manipulations, concentrate on innovative designs and even

use trial and error without worrying the burden of repeated calculations.

It seems, however, that such optimum design procedures as to be
applicable universally and confidently to practical structures have
not yet appeared although enormous development has been achieved during
the past two decades. As the structures being designed become larger
and more complex, the solution process by mathematical programming
techniques confronts serious difficulties and becomes increasingly
inefficient and inaccurate, In the solution space with greatly

increased dimension, the elaborate mathematical transformations for



determining search directions and step sizes become not only time-
consumning but often erronecus. To offset some of these difficulties
optimality criteria approaches were proposed, but these slso confront

difficulties in the presence of multiple constraints.

Behind the development of optimum design methods the aircraft
and asercspace structures have provided a strong driving force, Their
designs should be directed towards an obvious and urgent objective -
ninimizing the weight without compromising structural integrity.
Naturally light weight and high strength materials are used. The
structural form will be of truss-type, if applicable, to increase the
stiffness of the overall structure, Therefore the problems of this
category may be those of finding the minimum weight designs of trusses
where only a few deflection constraints are likely to be eminent, The
optimality criteria methods are particularly suitable for these problems

and have been used successfully,

The design of eivil ehgineering structures, however, puts forward
different aspects. They may be assembled with bar elements, bending
elements or both types of elements, Stress constraints will be of
greater importance in many cases, and many of them will becone
equally restrictive conétraints. The objective is undoubtedly
cogteminimization, but the cost of a stfucture is by no means such
a physical quantity as the weight which can be defined and stated in
a definite form, Moreover, reducing the costs for materials may
cause increases of other costs, and the relative importance among
various costs may vary from problem to problem. For the problems of
this nature mathematical programming technigues may be suitable in
the light of their generality, but they will soon become inefficient

as the size of problems inereases., The optimality criteria methods,




on the other hand, may suit large-scale problems, but their problem-
dependent nature and lack of mathematical rigour meke it difficult to

apply them directly to civil engineering structures.

Amorig the various optimality criteria approaches, the method
developed by Taig and Kerr of British Aircraft Corporation has ability
to solve rigourously problems with multiple constraints making use
of the Newton-Raphson method. The work described in this thesis
attempts firstly to improve the method substantially in both respects
of relisbility and efficiency, secondly to extend the scope of problems
it can tackle to such extent as to inelude structures with bending
elements and problems where stress constraints are rather restrictive,
and consequently to provide a basis for further developments leading

to practical use of optimization methods for ecivil engineering structures.

The central feature of the optimization process is the solution
of the optimality criteria and constraint equations for the Lagrange
multipliers. Since the constraint equations in structureal optimization
problems are highly involved nonlinear equations, it is not at all an
easy task to find their solution which satisfies the bptimality conditions.
Moreover, it is always possible to encounter many local minima, which
are hardly recognizable because the behaviour of the constraint surfaces
in the design space is not yet fully understood. Therefore finding
the optimum solution to any problem, even within the context of thé
quantifiable aspects, seems still remote from materialization. When

the author started this work, he came across a quotation,

" The optimist proclaims that we live in the best of all posgsible

worlds; and the pessimist fears this is true, " ~ J«Be Cabell,



in the book, " Methods of Optimization ", by G.R, Walsh, Wiley, 1975,
and felt that he did not need to fear the true optimum could be found

by the mathematical and/or numerical optimization methods.

In Chapter 2 a comparison is made between mathematical programming
techniques and optimality criteria methods by listing advanteges and
disadvantageé of both classes. A review on various optimality
criteria methods appears in Chapter 3., Chapter 4 describes the purpose
and scope of this work and delineate the problems treated in this work.
Chapter 5 is devoted to a detailed description of the method developed
in this work, It starts with depicting some aspects of the problem
end proceeds with a step-by-step description of the method. In
Chapter 6 examples of stress limited trusses are taken, and an
interesting feature concerning optimality of fully stressed designs.
of trussges is explored. A range of truss problems widely appearing
in the literature are solved and their results are compared favourably
with those obtained by other methods in Chapter 7. The trusses are
subjected to both deflection‘and stress constraints, The adverse
effect from using stress ratios to resize oversiressed members is
demonstrated also in this chapter. A number of beam examples are
treated in Chapter 8, They are 2 to 5 span continuous beams with
varying seétions end subjected to both deflection and stress constraints.
Chapter 9 discusses some.difficulties of this method encountered
throughout this work and suggests possible further developments to
counter the difficulties and_also to extend the scope of problems to
which the method can be applied. Appendix "A" provides a guide for
the user and notes for the programmer of the TRUSS-~program developed

in this work. Appendix "B" is for the BEAM-program,




2. MATHEMATICAL PROGRAMMING TECHNIQUES
and OPTIMALITY CRITERIA METHODS

The first attempt at c?upling finite element analysis and
nonlinear mathematical programming to create automated optimum design
capabilities for elastic structural systems was by Schmit 1). He
presented some three~bar truss results different from and apparently
lighter than fully stressed designs. Naturally the contrary~to-intuition
results brought attention to the potential flaw in the basic premise
of the simultaneous failure mode method, which was a prevailing
approach at the time., Since then various mathematical.programming
technigues such as Sequence of Linear Programs (SLP}, Sequence of
Unconstrained Minimizations Techniques (SUMT) and Methods of Feasible

Directions have been used to tackle siructural design problems

combining with computer aided structural analysis methods.

The structural optimization problem viewed as & nonlinear

mathematical programming problem will have the form of

to minimize w (5}
\ .. .(2.1)
subject to 3& (X) - jﬁ s o,
P AN /
vhere & ” o
X = {2, 22, .. cog )T

Since the constraint equations In the majority of the problems are
highly involved nonlinear equations and hardly explicit, the solution
to the problem has to be found in an iterative way., The usual
approach therefore is that of determining successive moves from

a trial design as shown below,



,X,(HN . X 4{0-) dt ... e {(2.2)

~ —

Using the information obtainable from a trial design, 2S(V’, the

solution algorithm decides a direction vector, _o! ”), and a step size,
’f (¥} such that the resulting design, 5‘” 7} is an improved one.

The improved design may not be the optimum and thus it is used as

the trial design of this step to improve the design further,

Various mathematical programming techniques may adopt different
strategies in deciding the direction vector and the step size but

they all have the following features in common.

2) Any design problem, whether it is the design of a structural
system or individual elements, cen be formulated as a

mathematical programming problem.

b) The behavioural characteristics of the optimum design
need not be presumed, rather they emerge as a consequence

of the design procedure,

e) A wide variety of constraints on structural behaviour
including stress, displacement, buckling, dynamic and thermal

response can be dealt with,

d) The objective function is not necessarily restricted to
representing a specific merit such as the weight of the
structure, it may have any complicated form es long as it is

differentiable.

The mathematical programming techniques are therefore rather general

and can be used as a "black-box" optimizer if a proper algorithnm




1s provided,

However, difficulties arise when the problem involves a great
humber of design variables, Since the wa& of search is direct,
many entries constituting the direction vector, E!(kﬁ in Fqu. {2.2)
may be erroneous and thus the convergence to the optimum becomes
painfully slow as.the number of design variables increases, For this
reason these approaches are not very successful and the practical
use of them has been restricted to problems of & moderate size in
spite of their problem—independent nature., Indeed, a grim éssessment
of them appeared in 1971 (in Ref. 2 and also in Ref. 3). The decade
1960-1970 was characterized as a "period of triumph and tragedy for

the technology of structural optimization", and it was also sﬁggested

- that the mathematical programming approach to structural optimization

was little more than "an interesting research toy".

Leaving the aforementioned approaches, using purely numerical
search based on the mathematical form of the problem, another class
of approaches, called optimality criteria methods, emerged in the
late 1960's, These are the approaches to find the optimum design
of a structure in an indirect manner meking use of the nature peculiar
only to the optimum structure. Whereas the mathematical programming
techniques stick to the mathematical form and.the local behaviour
of the objective functions and the constraint equations, the new
methods consider the physical behaviour of the structure implied
in the mathematical form and aim at reaching the optimum design
by solving a system of nonlinear equations obtained by applying
the Kuhn-Tucker necessary conditions, These methods also adopt an

iterative method but find the nexit design from the information




obtained by analysing the current design rather than by deciding on

a move from the current design.

The following recurrence relation is used in most optimality
criterias methods,

Cree) _ F) e CF) e e e . (2
-, = C:- x‘ ( 03)

&

The correction factor, C;*’, in Equ. (2.3) should be determined for
each design variable, Seemingly, the set of correction factors may

become erroneous, as the direction vector in Equ, (2.2), when the

problem involves too many design varisbles. But this is not the case

with the optimality criteria methods, Rather, difficulties are
encountered when there are many behavioural constraints, The

correction factor for the ith design variable is determined from

, 9% 4
c ¢ = ():24 0 )"’ e (244)
‘ oW
=1 E7

vhere
Zk ; Lagrange multiplier,

A ; relaxation parameter,

The values of the Lagrenge multipliers are determined such that

the design resulting from them satisfies Equ. (2.5).

IAGAE N E& Y = 6, Aetz-m - -« .(2.5)

The redesign process by Equ. (2.3) is repeated until

Zz&'—%ﬁ_ A ¢ X5
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holds for all design variables except those controlled by the side
constraints. Equ. (2.5) and Equ., (2,6) are the optimality criteria

derived from the Kuhn~Tucker neccessary conditions.

The derivatives in Equ., (2.4) are obtainable directly from
the results of structural analysis., Determining the Lagrange multipliers,
on the other hand, not only calls for a significanﬁ amount of computing
but sometimes confronts difficulties particularly when the problem
involves many behavioural constraints, The number of design variables,
however, does not affect the ease and stability of determining
the Lagrange multipliers and the correction factors., Since the same
set of Lagrange multipliers are used for all design variables, it
is straightforward to determine the correction factors for any number

of design variables once the set of Lagrange multipliers are determined,

The feabtures of the optimelity criteria methods with some
references to those of mathematical programming techniques are

Jisted below.

a) The optimality criteria metheds usually tackles the design
problem of & structural system, leaving that of individual

elements to the mathematical programming techniques.

b} The methods are still efficient even for large-scale
problems while the mathematical programming techniques
suffer from numerical difficulties arising from the increased

number of design variables,

e} It is necessary to explore the behavioural characteristics
of the optimum design to develop an optimality criteria

| method, Therefore the method so developed must be
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problem—dependent,

d) The existence of multiple constraints, particularly of
different types, presents difficulties and diminishes the

admirable efficiency of the methods,

e) The majority of the problems tackled to date by the optimality
criteris methods have a specific class of objective functions

representing the weight of the structure,

There are other classes of approaches falling into the category
of mathematical programming. Among them geometric programming has
beén successfully employed for the civil engineering structures
such ag reinforced concrete beams, Templeman and Winterbottom 4)
demonstrated that many problems arising in optimum structural design could .
be formulated in such & way‘as to be easily and rapidly solved
using geometrie programming, end that geomeiric programming was
particularly suitable for the design of many different types of -

bending elements and so general that it could be programmed as &

standard package of subroutines.

5) and Morris é) that geometric

It was also shown by Templeman
programming could also be used for the optimum design of structural
systems such as the truss-type structures solved previously by
various methods, Nevertheless, it appears that the method also

confronts difficulties as the number of design variables and/or

behavioural constraints increases,




3. REVIEW ON VARIOUS OPTIMALITY CRITERTA METHODS

In developing an optimality criteria method for a particular
class of problems, the first task is to establish the optimality
criteria relevant to the problem since the optimality criteria
methods are problem-dependent, Based on the principle of minimum
potential energy, Prager 7) 8) 9) 10)developed optimality criteria
for such structures as beams, sandwich plastes and trusses subject
to a single behavioural constraint or multiple constraints., VenKayya

and co-workers 11) 12) 13)

derived a strain energy criterion, also based
on the principle of minimum potential energy, and coupled it with a
search procedure to find the optimai design. When multiple constraints
are present, & Lagrangisn approach is used and the optimality criteria
become similar to the Kuhn-Tucker necessary conditions, from which

many authors in the 1970's derived directly the optimality criteria

mainly for trusses subjeclted to static loading.

7-10) L4111 be hard for

~ The analytical treatments by Prager
practical use, although they provide a deeper insight into the
analyticel nature of the optimality criteria. The strain energy

1-13) 1aises & little doubt vhether it

criterion by Venkayya et &l
cen alvay yield the true optimum, For a stress limited truss the
requirement "the ratio of the strain energy in the element tb its
energy capacify should be the same throughout the structure™ in

Ref. 12 can be replaced by "all elements should be equally stressed"
when the truss is made of one material, Therefore this criterion will
lead to a fully stressed design, which may not be the optimum., A test

on & three-bar truss built with different materials was made in

Ref. 14 and proved the resulting design vas not optimum,

12
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The second phase of developing an optimality criteria method
is that of devising an algorithm to force the design to satisfy
the established optimality criteria, When the problem is subject
to only a single behavioural constraint the algorithm will be
straightforward. Determining the Lagrange multiplier and the correction
factor for each design variable in Equ, (2,4) is gimply a matter of
scaling such that the resulting Lagrange multiplier satisfies the
constraint in an equality sense. The major difficulties in this
phase stem from the presence of multiple behavioural constraints.
It is not at 811 an easy task to find whether & constraint is active
and, if so, what the contribution of the constraint is to the overall
requirement, Many authors, who established essentially the same
optimality ecriteria, adopted different schemes to tackle these
problems, A number of optimality criteria methods dealing with truss
problems subject to multiple behavioural constraints are to be

outlined under separate headings bearing the authors! names,

Prior to describing the solution algorithms, the optimality
criteria and recurrence relations which most methods share are presented,

The kﬁﬁcomponent of the generalized displacements, { , is expressed as

L k2
- FFL e e e e e e e e
”f - ; ﬂt. E; ' (3.1)

vhere 4, E-,[;Tepresent area, elastic modulus and length of member

Ly and 5)}%“’ represent axial forces of member , due to actual

and corresponding virtual loads, Throughout a redesign iteration,

Uy end its derivatives with respect to the design variables are

evaluated from Equ, (3.2) and (3.3) assuming that % and,E-“bremain

unchanged,



£
Né_—_z:_.ﬁéé_. N € 1)

where

Cit * £ ; constant
e _ _Ca . ) ‘
24, E ot (3.3)

Then the optimality criteris, Equ. (2.6) and Equ. (2.5), and the
recurrence relation, Equ. (2.3) and (2.4}, for the truss problems

will appear as follows,

cad c.
ﬂ J& - j v . » . . . - e .
; ik Lt -4)

L

AU — B ) = 0 » ketoum - o (35
AT = g e e e e (346)

1

c.r = [iﬁg*‘fL_‘IN e '(3.'7)‘

£
[3 = ﬂ' £ ﬁ;’z

In most cases, the design values, /. , are determined, repeatedly
in a redesign iteration, from the Lagrange multipliers using the

following relation,

A = [m 24,"-?%"%—]% """" - (3.8)
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3,1 Gellatly and Berke 15)

'This method desls with the deflection constraints in Equ. (3.7)
separately. From the results of structural analysis and the virtual
unit load method, the derivatives of deflection constraints with
respect to design variables are calculated. Combinations of new
design values are computed from Equ. {3.5) and (3.8) essuming that
only one constraint takes part in Equ. (3.8) for each combinationm,
Then the largest area is selected for each member from all the
combinations. The areas so generated are compared with those based
upon stress ratios or minimum sizes and the larger values are selected
for each member, This evaluation of areas is made again for each
deflection constraint, but in this case those members critically designed
in the preceding step by stress limits or minimum sizes' or by a
deflection constraint other than that being currently cénsidered are
kept at their previcus values and considered as passive., This cycle
is repeated untll no transfer occurs between the members designed by
deflections and by siresses or minimum sizes. The resulting design
is then réanalysed and scaled until eriticel, Throughout the redesign
process, Equ. (3.8} for each design variable and each constraint
equation will be evaluated several times, assuming that C}ﬁ,<r
remain unchanged., In this case the axial forces of each member due

to actual and virtual loads are assumed constant,

In this method it is not necessary to decide the set of active
constraints in advance, If only one active constraint emerges the
method will work, but difficulties arise if there are more active

constraints, Let us assume that two deflection constraints emerged

and determined the values of active design variables at the end of



16

a redesign procedure, Then the design variables would be divided
into two groups, each governed by one of the two constraints, Therefore
it cannot be said that the two constraints maske the set of active
constraints in a strict sense. For this reason the method may not
be accurate or efficient when the problem is subject to many behavioural

constraints.

3,2 Venkayys, Khot and Berke 16)

This method also uses the virtual unit load to derive the
derivatives of deflection constraints, For the truss problem, the
ratio of the derivative of constraint £ to that of the objective function
appearing in Equ. (2.4)'and Equ, (2.6) happens to be the same as the
virtual strain energy density per unit mass of member . when the

virtual unit load is associated with constraint'é o

This method therefore uses the term, virtual strain energy
density, instead of the ratio of the derivatives in Equ. (2,4) and
{2.6) snd states "the optimun structure for a specified displacement
is the one in which the virtusl strain energy dengity per unit mass
is the same for all its elements". In the presence of multiple
constraints the optimality condition becomes "the virtusl strain
energy densities of a member associated with all the constraints,
each multiplied by & weighting parameter constant for all members,
add up to unity". The weighting parameter stands for the Langrange

multiplier and this condition is exactly the ssme as that of Equ. (3.4)

The jterative algorithm proposed in this method determines

the values of the Lagrange multipliers very simply as shown below.
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2&. = t‘-g.g.lﬁ)L. ot * - (309)

iwr A E
The Lagrange muliiplier associated with constraint 4 1s set to
the ratio of the total weight to the amount of the é'y' displacement.

Therefore the less restricitive the constreint is, the greater the

associated Lagrange multiplier becomes,

This method is very simple but gives rise to asdverse situations
because the multipliers associated with inactive constraints should
venish but do not. When this method wes applied to the three-bar
truss in Ref, 14 the weights of the resulting designs were ever
increasing,.

3.3 Berke and Khot 1)

This method proposed a simple iterative scheme to determine

| the values of the L'agrange multipliers, Firstly initiasl values of

all lagrenge multipliers are obtained considering all constraints

separately. With these ﬂ's, 44‘:- are calculated from Equ. (3.8)

and used for evaluating g from Equ, (3,2). 1If U so evaluated

satisfy Equ. (3.5) for all # the latest values of A's are accepted
as the final values of the current redesign iteration, Otherwise,

they are updated using the following relation.

(v,
(et Lf&/ /

7

The prime in Equ. (3.10) means that those terms corresponding to

2
2 ) -3 - Gao)

passive variables in Equ. (3.2) are deducted from the evaluated
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ﬁétw and the prescribed 44 .

This simple formula assumes that A, effects only the satisfaction
of the é’y’ constraint, At the outset and during the iteration,the
multipliers are treated separately but interrelated indirectly
siﬁce a1l the multipliers participate in evaluating the deflection
values., This approach also has the effect of eliminating inactive
constraints and showed reasonably good behaviour when aspplied to the

three-bar truss in Ref, 14.

Later, Gellatly et al 18)reported that the method showed rather
high sensitivity to the initial values of A’s and low rate of
convergence when applied to a small problem involving only‘two
behavioural constraints. They also suggested that it might be most
effectively used in combination with other solution techniques.

The unstableness of the method even for such & small problem suggests
that it may not be appropriate for large-scale problems in spite

of its simplicity.

344 Kiusalaas 19) and Rizzi 20) 21)

Tn the foregoing methods the relaxation parameter # has been
2 , vhich is e moderate value for the truss problems. In this method
a relaxation parameter of different type was used and resulted in

the following relation being introduced into the recurrence relation,

Equ, (2.3).

ki

his)
C‘.(H= o - ({_d)&gak_%‘::_ el (3.11)

D x:
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Here & is a scalar relaxation parameter that ranges in value from

zero to unity, and is adjusted so as to improve convergence.

Khot et a1 22

made a comparison of the two types of recurrence
relation, exponentiel and linear, and presented the following

relation existing between the relaxation parameters.

d_:[.l__i_] N € )

Therefore if N =2 and « =05  Equ. (2.4) and Equ, (3,11) yield
the same value for the correction factor., A further comparison was
nede by Arora 23) between the step size ?{ €¥? in Fqu. (2.2), when

the gradient projection method was used, and the scalar relaxation

parameter o( as follows,

A T S RN c RO

Tt appears therefore that the matter is not the type of the parameter

but the value assigned to it.

The Lagrange multipliers are chosen in such a way that the
resulting design satisfies all the constraints currently considered
active in an equality sense within a first order epproximation,

In other words the resulting lagrange multipliers move the design

to the intersection of hyperplenes, each tangent to one consiraint

~ gurface at the current design. For this purpose it is necessary to

form a system of linear equations and solve it for As. If
some of A's turn negative, they are deemed to be associated with
jnactive constraints and new AS are found with the remaining

active constraints,.

Naturally the relaxation parameter & takes part in the linear
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equations end plays an important role in determining the values of
the Lagrange multipliers., Therefore it seems that the success of
this method is sensitive to some extent to the value of of whereas
the parsmeter N in other method does not affect the values of the

Lagrange multipliers.

3.5 Dobbs and Nelson 2+) 25)

In this method en auxilliary function ¢J(}) is formed such that

4
9.9(2)"):[{“15]2 coe e e 0 (304)

i=f

where

. g 20

D X
- coe e e e e (3,15)
kT

and is minimized by solw}ing the set of equations

20
? Ak

for the Lagrange multipliers ﬂ{, o« If the get of multipliers so

o, ‘g = 14,28, ,m s e e e e (3.16)

obtained satisfies the optimality criteria, Equ. (2.6), the values
of I; will be unity for all ¢ and ¢ ¢R)uill be zero. If not, & ‘
new design is obtained from I‘; and Equ. (2.3) and (2.4). In this case

the method restricts the values of I; within a certain limit as follows. ‘

A

T. € 1 « A -« « «. (3,17

»

{ - a
Any I; 1less than f-4 or greater than /+A are set to the limit

value,

o



If there are any design variables less than their minima, they

are deleted from Equ. (3.14) and a new design is sought. This process

is repeated until no design variable is found less than its minimum

'size. At the ocutset of the process amctive or near active constraints

take part in Equ. (3.15), but on completion of the process some

Lagrange multipliers will be negative., If this happens, the whole

process should be repeated after deleting those constraints associated

with negative Lagrange multipliers from Equ. (3.15).

This method was applied to the beam examples in Ref. 14.
Tt was found that the success of the method was sensitive to the
value of A and moreover the appropriate value of A varied from
problem to problem,

3,6 Khan, Willmert and Thornton 26}27)

This rather simple method involves only one active constraint.
The most restrictive deflection constraint is congidered active and
the stress constraints are treated as side constraints using siress

ratiolas the bther methods. Therefore determining the Lagrange

multipliers is just a matter of scaling, This method uses a relaxation

parsmeter to control the rate of convergence and stability ranging

{
oc.oco0f 3 -— £ Q.2
N

as appropriate reportedly.

The value of the parasmeter used in this method is rather small
comparing with AN =2 generally adopted in various optimality criteria
methods and thus results in a small step size. In general, several

constraints are active at the optimum. Therefore, the method

21
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dealing with only one active constraint at a time will seldom find
the exact solution. The results of sample problems reported were

not exact sotutions.

3.7 Taig and Kerr 28)

This method is arigourcus approach to tackle suitably problems
involving multiple constraints. The optimality criteria equations,
Equ., (3.4) and (3.5), are solved for the Lagrange multipliers using
the Newton;Raphson method. The number of optimality criterie
equations is J+m (number of design variablessnumber of constraints)
vhereas the number of unknowns is 7 . However, Eque (3.4) mekes

/46' ’s and As interrelated and gives values of A7’s from As .
Therefore the problem is to solve & system of nonlinear constraint
equations in the space spanned by A’s . Since strict equalities are
not observed for the inactive constraints they should be excluded
from the system of the equations, The passive design variables

should also be excluded since they are not determined by Equ, (3.4).

In spite of its mathematical rigour, the method confronts a
number of difficulties stemming from how to discriminate active/inactive
constraints and the appearance of negative Lagrange multipliers
during the Newton-Raphson iterations. This thesis describes work
done to improve the method in many respzcts. The improvements will
be presented in chapter 5 in full detail. In addition the use of
the Newton-Raphson method was extended to problems with stress limits

as behavioural constraints and beam problems.



3.8 Sander, Fleury and Gersadin 29)30)31)32)

In these works, a proper linearization of the stress constraints
was introduced by considering the stress components as linear
combinations of the generalized displacements. The optimality
criteris approaches were related to the dual statement of the problem
as an auxiliary maximization problem in the Lagrange multipliers.

The problem in its primal form was solved in terms of the reciprocal
variables. The use of the reciprocal variables made the deflection
end stress constraints of the truss problems linear at the expense

of making the objective function nonlinear,

3,9 Applications to Bending Flements

28) was applied to the design of

The method by Taig and Kerr
continuous beams in Ref; 14. An optimality criterion for continous
beams subjeect to multiple deflection constraints was derived and the
numerical solution for the problems was based on the Newton-Raphson

method, Although some difficulties were encountered the method

showed promising from the viewpoint of accuracy and rapid convergence,

Armand and Lodier 33) derived an.optimality criterion for
I
finite element structural representations using constant-moment
plate~bending triangular elements. Only single displacement

constraint was involved in ihe solution process and stress limifs

were treated as side constraints,

34)

Gorzynski and Thornton presented & design method for trusses

and frames based on a recursion formuler similar to that given by



Venkayya. 13) but with the requirement that the energy ratios of all
nmembers at convergence be the seme eliminated. Instead, the energy
ratio of esch member was allowed to become as large as possible,

The energy ratio was defined as the ratioc of the actual strain energy -
of a member to the strain energy capacity of the member, which was

taken to be the strain energy that would be in the member when the
entire cross section was stressed to the yield point. The ratio

was also referred to as the "efficiency" of the member, which made

the efficiency of the oversll structure when summed over a2ll the members.,
The solution algorithm was therefore the maximization of the efficiency

of the structure. The method looks attractive, but it is not obvious

. if the method yields true optima,




4. THE PURPOSE OF THIS WORK

The various optimality criteria methods, as outlined in the
preceding chapter, generally concern truss problems with prédominant
deflection constraints, frequently encountered in the design of
gireraft structures, OStress constraints are usually treated as side
constraints, Therefore the number of stress constrain£s does not
affect the stebility and efficiency of the methods, They merely

replace the minimum size restrictions,

In designing structures for stress constraints, the fully
stressed design approach hés been uged for reasons of simplicity.
When deflection constraints are preseht this approach is no longer
applicable, and therefore the optimality criteria approaches become
more useful and reliable design methods, These approaches are
particularly good at designing structures for deflection constraints
because deflection constraints are seldom active except those at top
nodes of a cantilever-type truss or at midspans gnd thus only a few
: active constraints have to be dealt with., If the stress constraints.
are to be treated as behavioural constraints, & large number of active
stress constraints will disturb the solution process. For this reason
~ the majority of the optimality criteria methods put aside the stress
constraints while the optimality criteris equatioqs are solved, and.

later take into account the stress limits using the stress ratio method.

The purpose of this work is first of all to devise s solution
scheme to cope with difficulties arising from multiple constraints

as well as to yield exact solutions, It was felt that for this
28)

purpose the method presented by Taig and Kerr was appropriate

25
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since it took advantage of the splendid Newton-Rephson method.
Nevertheless, it was found that the method also had drawbacks, as

was usually the case, and & number of modifications were necessary.

The next objective is to extend the scope of problems to be
dealt with by the new method, Stress limits are treated as behavioural
constraints and thus take part in the solution process of the
optimality criteria equations, This of cause gives rise to a large
number of active.constraints, and thus requires a more powerful
solution scheme., Then the three basic constraints - deflection
constraints, stress constraints and minimum size restrictions - are
treated properly, all within a first order approximation. Other
types of constraints, such as stability and dynamic response, may
be of potentially greater importance, but they are generally and
generically related to the three basic constraints and excluded

from the scope of this work.

A further and rather important extension in the context of
civil engineering is to apply the method to the bending elements.
In this work, however, the type of problems is restricted to the

design of continuous besams,

The behaviour of bending elements is certainly different from
that of bar elements, The response quantities are dependent not
only on the cross sectional area but also on the shape of the section..
Therefore some characteristics of the section, qualitative or quantitative,
need to be predetermined, This work concerns éwo types of sections,
reétangular section and I-section., The breadth of the rectangular
section is predetermined, whereas the depth is allowed to vary and

thus makes the design variable, For the I-section, the depth is the



design variable, and the cross sectional areas of both flanges, upper

and lower, are predetermined,

The stress and elongation of a bar element are both inversely
proportional to the cross sectional sarea, the design variable,
Therefore, it 1s possible to express the stress of a member as a
linear combination of the generalized displacements with constant
coefficlents and thus to obtain the stress gradients in the same
wvay as the deflection gradients. However, the bending stress at
the extreme fibres of a rectangular beam sectlon is inversely
proportional to the depth squared whereas the flexural.flexibility of
the section is inversely proportional to the depth cubed. The
coefficients therefore are not constant but linear functions of the
depths when the stress at the extreme fibres is expressed as & linear
combination of the generalized rotational displacements with them,
This also applies to the I-section beams. This fact makes the
expressions of the stress gradients more complicated and the solution

process more difficult,

In this work, the depths at nodes are taken as the design
variables, As a consequence of this the beam element will have a
tapered configuration, Vhich enables continuity of structure at
the element boundaries. As there can be many elements in & span
the profile view of the beam will appear contihuously varying as

commonly seen in eivil engineering structures such as bridges.

Employing tapered elements as well as taking stress constraints

into secount in the solution process creates a number of difficulties

27

not only in esteblishing an appropriate optimality criterion but devising

an algorithm to solve the equations rigourously. It seems that there




has been no published method to tackle such.a problems A survey

paper by Haftka and Prasad > indicated only the use of fully

stressed design approach for the siress constraints, Prasad and

Haftka 36) derived a formula to obtain the derivatives of the stresses

of plate finite elements, but it was assumed that the stress~displacement
relstion 1s independent of the design variables. The use of tapered
elements is hardly found in the literature, In some analytical
approaches for simple structures such as circular diéks, tapered

shapes were dealt with, Miller and Moll 37) presented an automatic
design scheme for tapered member gabled frames using & modified

38)

interior penalty function approach., Venkateswara Rao proposed an
optimality criterion approach using tapered finite elements, but it
vas applied to a simple problem, optimization of a cooling fin with

& temperature constraint,.

In summary , the purpose of this work is to develop an optimality
eriteria method té solve the design problems of structures built
with either bar or beam elements subject to the three basie constraints,
deflection, stress and minimum size, The stress constraints should be
treated as behavioural constraints. The method should be stable and
reliable based on the mathematical rigour. The method may require
more computing time per iteration than other methods, but largely the
stability should bring the method back to efficiency., It is the
ultimate objective to make the optimality criteria method efficient,
reliable and problem—-independent, such that it can handle all kinds of

elements and constraints, and eventuaslly applicable to practical civil

engineering structures.




5¢ THE OPTIMALITY CRITERIA METHOD DEVELOPED

The optimality criteris method developed in this thesis tackles
the optimal design of structures falling into two types. These are
Plenar or space f{russes assembled with bar members and continuous
beams assembled with tapered elements, both subject to deflection
and stress constraints, Due to the different structural behaviour
the equations and formulae adopted in developing the optimality
criteria method for one type are different from those for the other.
Prior to the step-by-step description of the method some aspects of

the problems are depicted,

The truss-type structures are those appearing widély in the
1iteratﬁre and have no particular cenditions imposed in this thesls.
Their minimum=-weight designs sre sought., The bar membeis teke
axial forces and their stiffnesses are strictly proportional to
their cross-sectional areas, Besides such behavioural constraints
as deflection of nodes and/or stresses in bars, the trusses are
subject to side constraints of minimum size restriction and design
variable linking. The problenm therefore is the minimization of
the weight of a truss expressed as a linear function of a set of’
design variables A, , the cross-sectional areas of individual
or groups of bars and can be represented mathematically as:-

' /4
minimize W o= ) 77’; A;‘

=7

subject to
U — Uy € o , f=d. .-, n

G =5 <o, jeim
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where
' A; 3 the /th design variable,
the #£th deflection component, '

“e

gstress of the J'th member,

prescribed values,

LT

& 9 8

mass density of member s ,

N

length of member s ,

cross sectional area of member s ,

&

set of member No.'s associated with

N

design variable A

A -

The categories of design variables other than the cross-sectional
area of each member, such as the topology and geometry of the
gtructure and material properties, aré assumed predetermined.

For simplicity the above mathematicsal expression involves only one
load case, but the extension for multiple load cases presents no
difficulties. L{é and 6 in Equ. (5.1) represent only the
magnitudes of the corresponding deflection end stress., The number

of design variables, bar members and deflection components are

represented by £, and # , and unless otherwise stated throughout




this thesis suffix ¢ takes the values 1,...,¢ , ‘j takes l,eaey72

Cand £ takes lyesesy 7 o

The beam-type structures are those such as is shown in Fig. 1.
The beam may be of rectangular section with predetermined breadth
or I-section whose flanges have.a predetermined cross sectional area,
The depths at the nodes are allowed to vary and thus make a set of
design variables, Therefore any element of the beam has linearly ,
varying depths. It is also assumed that the loads are applied only

at the nodes,

Node £ Node C+f

b red

a) Profile View

dt dt
1 - = At
b) Rectangular Section ¢) I-section

Fig. 1 A Typical Design of Beam

A deflection constraint may be imposed on any node, but one node
per span would be reasonable, The stress at any of the nodes of a
element makes a stress constraint. An element, say element t in

¥ige. 2, has linearly varying depths and s subject to linearly varying

31



/lff_ Mt+r

/Vaa/e €-7 Nadle t Noode €+1

@ .
—#*J;hH"h""h—~—“‘h_ji\\\\\j!!!!i\\\\qtH

ye—— L gt _—']\

Fige 2 A Typical Beam Element

The area where the max. bending
stress at the midst of the
element is the greatest.

1.0 | 1 1 1
1.0 2.0 3.0 4.0 5.0

Fig. 3 Relationship between the maximum
bending stresses at various points
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bending moments. If we let f¢ be the ratio of the depth at node t+1
to the depth at node ¢ end §,; be that for the bending moments as

expressed in Equ. (5.2),

e = dee / dr
} ............... (5.2)
vhere de ¢ depth &t node ¢,

My ¢ bending moment at node £,

we establish a relationship between the maximum bénding stresses at
node ¢, t+7 and at the midst of element ¢ denoted by 07, 6z,, and

o respectively, as follows:~-

X . _ . 2(L4+ &) . &
b7 ¢ Gme t G, = 1 (4 f;f"' (5.3)

. . . 7F*8 .
G 2 et G =1 IR S (5.4)

for the I-section, The shaded area of Fig. 3 representing those
combinations of » and §, in which §,,, is greater then any of 6

end f§,, for the rectangular section shows that there is only a_little
chance for @, to be greater than & and #},, except for those elements
close to a point where the sign of bending moment changes and thus
unlikely to be subject to big bending moments, For the I-section,

U,me can never be greater than any of fz and fr.r, and therefore

taking into account the maximum bending stresses at nodes will be

reascnable,




The objective function of this problem takes the form of Equ.
(5.5).

F':'C*idtdf R €159

ter

wvhere ( , o, &nd /! are constants, end [ may represent the cost
of the beam if appropriste constents are chosen., If we let the constants

have the following values,
C = o.o0

/3 - 7.0 4 (506)
e = -é— (/&—f Beerle-t + fe Bele ), tat-,m
/p 60 Z—O =/,, Bmlh= ¢.0 J

vhere /. : mass density of element £,
Be ¢ breadth of element ¢,

Ly ¢ length of element £.

F represents the total weight of the rectangular section beam or that
of the I-section beam provided that  represents the weight of flanges
and B¢ represents the breadth of the web of element ¢ . Multiplying
_Q’t by appropriate values and sssigning ﬁ some value possibly less than
1.0 will allow Equ. (5.5) to represent the cost of the beam. In the

case of the I-section beam, the second term of Fqu. (5.5) represents

the cost of the web including stiffeners while C represents the cost

of the flanges,

Eque (5.7) is the mathematical expression of the constraints,

U&-—Eﬁ- € o » é‘:f;z;";% ]
G- T < o, jmtsm b oo )
dt - de € o, t =12,-,m |
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which is in implicit terms the same as that for the truss problem,

but the way of design variable linking is different. A group of nodes
may have the same depth, Some other group, however, will contain

those nodes whose depths are not the same but instead interpolated by
two design variables. The design variable linking for the beams

is refered to as ‘design variable linking by ratio', and will be
explained later. For the beam problems, 9¢ represents the number of
deflection constraints, m represents the number of nodes, stress
constraints and design variables. Thus the number of elements is #2-7 .
When design variable linking is employed /£ represents the number of

design varisbles instead.

5,1 Constraints and Their Derivatives

The scope of most optimization techniques is the minimization
(or maximization) of differentiable merit functions subject to
constraints on the design variables in which the constraint functions
are also differentiable, It is also the case with the techniques for
structural optimization and all the .foregoing methods require the use
of derivatives of the constraint function and of the obje chive
function with respect to the design variables, The objective function
may well be of the form of Equ. (5.1) or Equ, (5.5) and the derivation
of its derivativés is straightforward., However, the constraint
equations arising in the structural optimization problem hardly have
explicit expressions in terms of the design variables and thus there

is no way to determine thelr derivatives but by numerical approaches.,
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Since the calculation of the derivatives takes a significant
part of the total computing effort, it is important to carry out the
task as efficiently as possible, The Virtual Load mgthod, based on
the principle of virtual work, has most been used particularly for
the optimality criteria methods, An approach based on the concept
of the design space was first suggested by Fox 39)40). Another
approach, called State Space method, has been developed by Heug and
41)42) 43)

rade an analysis of the various

44)

Arora y and Arora and Haug

methods mentioned above. Recently Johnson presented a general
expression for the derivation of design sensitivities via the flexibility

method.

In this work the Virtual Load method was used becauses-

a) as far as the constraint equation has the form of Equ. (5.1)

or Equ. (5.7) it makes no difference whichever method is used,

"b) this method allows us to selectively determine the derivatives
of the constraints congidered as active in a particular

redesign process,

¢). the optimality criteria method of this thesis requires not
only the derivatives of the constraints but the explicit
expressions of the constraints in terms of the design variables,
although they are of an approximation, which can be given only

by the Virtual Load method,

d) it is even more desirable for the beam problems since the
beams treated in this thesis can be analyzed more efficiently

by the force method.,



5.1,1 Deflection Constraints

The Virtual Load method mskes it possible to obtain explicit

expressions for the constraints in the vicinity of the current design
and thus to express their derivatives with respect to the design
varisbles. The deflection component, 4/;6 s 18 now expressed in the
form of the work done by a unit virtual load associated with Uy
Ué - Fs Fs® Ls
57 as Eg

for trusses,

Uy

-f L
_ ):”' 12 Me > Me c20H® 4
> Fe B¢ o)’

o

for rectangular section beams, and

“4%

-t plp
= E L Ae Exd - My CZ)(é} A
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fof I-section beams where

Fs :
/:; %)

Mt (=)

(%)
Me 2373

£y
Qe ?

Ape *

raxial force of member s due to actual loads,

(5.8)

(5.9)

(5.10)

axial force of member s due to & unit load applied at

the node and in the direction associated with the 4th

deflection component,

elastic modulus of member s
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bending moment distribution over element ¢ due to actual loads,

bending moment distribution over element ¢ due to a unit

load applied at the node associated with ¢ ,

elastic modulus of element ¢ ,

depth of element ¢ varying linearly,

cross—sectional area of a flange of element £



If we let
%
(o' = b (5.11)
Es
and
Ci = ) _ G4’ - - - (5.12)

sex;

to include all members controlled by the same design variable A; ,

then Equ. (5.8) becomes

V/
Uy N (5.13)
i=f ﬁi
Therefore
2% - Cig _ (5.14)
24 A2

agsuming that the forces £ and ;;“’ are independent of 4, and
thus {4 remains constant. Equ. (5.13) and Equ. (5,14) together with
the assumption of the constant Qg allow us to determine readily the
magnitude of a deflection eomponent and its derivative with respect to
any design varjable whenever the design changes; This remains valid
until a redesign iteration finishes and the structure with the new

design is analyzed and thus new k;éfg are calculated,

For the beam problems, such formulations as Equ. (5.13) and Equ,
(5.14) call for more complicated process. Not only the depth of an
element but the bending moment distributed over the element vary
continuously. Moreover, the depth at any point of an element has to.
be decided by two design varibles. An important assumption, however,
enabled the depths at nodes to be the design variables, It is that
the ratio of the depth at a node to the depth of its adjacent node,

i.e /7 in Equ. (5.2), remains unchanged throughout a redesign
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iteration, Based upon this assumption and Simpson's rule Equ. (5.9)

can be modified as follows,

| k)
Uy = oo p 2Lar [ fes o Admted (e + ie“e”]
ErtBer b gy p Ao -1 d?
¢
2 Lt [ fe th) . 2 fomd &) . ﬁ)l .
LeBe ae? A 2? dﬂf'
oy -
} 2ie | F® | 28 Ine® , hme t,f’"]
et Ee B¢ de? (7+ 23 a2 (re ;-.E‘Jsdﬂf F-
- { | 2Lt [ 18Fme-f® 1 B) | 2Le [1% 4 f,.;“‘)l
B Tt dta { Et-fﬁt—f[({.;. I": )2 +‘7[t J EtBt [f'+ (1+1)? }

t_

=Z._€e1 T C 1))

where

@, = 2Let [ 16 Fon b1 ftfﬂ]* 2Lt [ffm“‘ _/_éﬁ_] (5.16)

Etes Bty (-,u;... EeBr (7+ 12 )3
Lo % Lm = o0
o= dﬂf’/ oy
due= F et deg) = E 1R A
Clysy= “g“'(df + ofgqe) =-£~C )dt

J( t‘b; the value of Mecx) Me o>® ot mode ¢
A
£ B3 the value of Met: Mece>® at node £47,

‘i’) the value of Me Cx)'M*"")Cé) at the midst of element %

)
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As is the case with the truss problems, it is assumed that A7¢<¢=)
k)
and M, ¢x are independent of dp , and so are f,_- s H:‘) and J[,,.f‘) .
As 1 and )., ere assumed unchanged, af‘,s remain constrant untill

a redesign process finishes, The derivative of é/,; have the form of

Bqu, (5017) [

ol Cedd
_a?éi____g L N A )

Ces

7 - Zlf-f [ 3-2](7" {—- J{(ﬁ)] zl,t (f) 3z i”'é (5 18)
Et.sBer (1+-—~J4 Febt (14K
taking into account the existence of d,e and dme-s in Equ. (5,15)

vhich are governed partly by the design variable ¢, .

Equ. (5.19) = (5.22) are the deflection constraints and their
derivatives for I-section beams derived in the same way as for the

rectanguler section beams.

t=f 4

#
Qep -Llet [ H,,e-,)z P “@f[f‘b _J’&L’_] * * (5.20)

3~'£f-r@w (e C1+ 17 )3
.aaé -2 Ce” . ... . o o e o e e e +(5.21)
2 ag?

’ Le-t /534»1{ f (3 Cb /é,fnt(ﬁ) . 5,22
Cek 3££-r@(t—f[(f+ J{'j JEtHff "‘ (/-fi")a] 15.22)

5.1.2 Stress Constraintsg
The stress of any member of a truss can be cobtained from generalized

displacements and the stress-displacement relation existing in the

structural system, For the stress of a particular member, say member J

in Fig. 4, to be expressed in terms of virtual work we simply employ a
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pair of unit virtual loads to obtain the relative displacement of

the nodes connecting the member to the overall systenm.

L. N

9N

N

Fig. 4 Virtual Loads to express the Stress of
Member‘f in terms of Virtual Work.

The member stress (§; can then be found by virtual work:

S
" BEYL 5
G = s L B— c e e e (5,23
G ; oy santls (5.23)

vhere ;;9” is the axial force of member s due to the two unit

joads as shown in Fig, 4. If we let

d'/ = FsFs fj’[s f/
g E; L;
. and
-/
dj = ) _ dy
ser;
then
Ly
0. = —tf
G
e=7
Therefore
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Eque (5.24) and Equ, (5.25) have been derived in the same way as
Equ. (5.13) and Equ. (5.14) were done and the same assumption is
applied. in fact, any member stress of a truss is & linear combination
of generalized displacements with a set of coefficients independent of

the member sizes.

This fact applies also to the beam problems, but the different
nature of the problem presents some difficulties, The coefficients
used for converting displacements into stresses are no longer
independent of the design variables., Obtaining stresses at nodal
points gives rise to even more difficulties. But the following
procedure mekes the calculzstion simple and efficient and the result

sccurate,

If we are to find the maximum bending stress at point Q of
Fig, 5-a, we may employ a pair of virtual .loads applied at point P
and R respectively as shown in the figure, provided that the beam

segment P-R has a constant section, The magnitude of the virtual loads,

g z s is obtainable from the slope-deflection equations of the beam
segment, Fige 5-b ghows the deformed shape of the beam due to the‘virtual
loads after introducing hinges‘at the supports., Since the beam is
analysed by the force method and the bending moments at the nodes due
to the virtual loads have to be calculated, it is necessary to calculate

g , &and then & and & . If the beam segment P-R has a constant

section & can be calculated as follow,

ED
o = be -
= 2
ETI 8D
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(a) Virtual Loads to express the meximum bending
stress at Q in terms of wvirtusl work

(b) Deformation of the simply supported
beam due to the Virtual Loads

N\
(c) Deformation of the beam after
R approached 1o P

Tig. 5 Virtual Loads to express the Stress Constraint
at point P in terms of wvirtual work.
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vhere
B i breadth of the section,
D 3 depth of the section,

E 3 elastic modulus of the segment,

Let point R approach infinitesimally to point P. Then Q approaches

to P and the value of b approaches to zero, but the value of &

dose not change and remains as a finite value. Fig, 5~c shows the
deformed shape when point R has approached to point P, and in this case
the requirement of the segment P-R having & constant section is by

all means met, The slope deflections &, and &, can be calculated from

& easily.

. "
Let P be at node j and M{f'-“)"’ be the virtual bending moments
so caleulated and distributed over element t, Then the maximum

bending stress at node j can be found by

- Lt .

N ==z 72 Metx) Meexd 97 Ao

J =7 - E: Be dttx)a
< b

- Z _dgs_ ................ (5.26)
L=t t
c o 2Lt [ SEFme-s P (0, 24e 24 Ime ¥’
bf} Et—rBt-f[ Cr+ ,; )? f EeBe (7+ r‘)‘] v (5427)

in the same way as for the deflection constraint.

The derivation of the derivatives, however, should be made
differently, The magnitude of the virtual loads depends on the depth
at node j and so do £ 9, Fme V7 end 4, Y. Therefore the

derivatives should be expressed as follows,
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Lw
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R
‘51F57

e

R

.l - ZL‘t"f 32)7(mt-f(j) g) sz J} 3 e
Q’f/ Et—rgt-r[ Cf+ _.,) e } EtBt[J[ a"‘é)—,] (5.29)

t-'!

where Jt_} = 4:{ f:j , © otherwise.

Also for the I-section beams we use the same virtual loads, but

the bending stress of the flanges at node j, g? y and its derivatives

with respect to the design variables read as follows.

E:)L'_L_!"-:L... ...... e (5430)
J A

t=1

Ltr g J(m I.'- 4) J) &7[”, ¢ 5") .
bf/ 3£th9¢)[ c{.+ J[ ] 35 f/?fff (f-_ffz.)‘] (5431)
o Ay’ r 6 o
9 - % A T %4 (5.32)
,’ — Lt-[ rféjrm t-v J)
d,tj .‘jEt_,/yc.,l.({'t;f_)! .}; 3£t'€;ll (,1".)3] (5 33)

6.2 Design Variable Linking by Ratio

Design variable linking generally stands for assigning one
value to a number of design veriables, and thus results ina
reduction of the number of independent design variables, improved
refficiency in designing and ease of construction, This ordinary

way of design veriable linking was employed for the truss problems



as shown in Eque (5.1) but will not show such usefulness for the beam

problems concerned, It diminishes the adventage of using tapered

elements.

The way of design variable linking for the beam problems is
illustrated in Fig. 6. The depths at node 1, 4, 6, 9, are the
design variables ‘&) 'by ¢y d, respectively. But the depths at node 2
and 3 are decided by interpolating the values of design variable s’ and
‘b, and so on, The beam elements are divided into a number of groups
each of which contains several consecutive elements, The element
belonging to a group have the same rate of tapering. A transformation
matrix, { Tei } y is now defined and from the matrix and the values
of the design variables we obthain the depths at nodes as shown

in Equ. (5034-) .

fde} = {Teey{D0e} o0 oo v o (5434)

Node No.
1 2

[ESSR——— | %
=

emmmm oo
o

P EX
N, .
o

Design Variable No.

Fige 6 Node No, and Design Veriable No.
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Let the objective function, Equ. (5.5), have the form of

Equ. (5.35) assuming that 4 is unity,

-1
F - C + }:df dt . e e . . . . (5035)

and o{¢ have the form as in Equ. (5.6)¢ Then the objective function,
representing the weight of the beam, can be expressed in terms of

design variables as follows,

on L
F=C+ ) de) TuDi
E=1 c=7

1]

O
e
™

"
=
e

=1 i“f
2

= C+ » HDccc m (530
i=1

where / is the number of design variables, Let #; be multiplied
by some value and /2 take some value possibly less than unity. Then

the objective function expressed by

' /
F :: C + Z{;‘J)‘ﬁ . e - . e - . e (5037)
=1 :

may represent the cost of the beam. The meaningfulness of this cost

objective function has not been investigated in this work.,

The derivatives of constraints with respect to design variables
are derived from Equ. (5.17) and Equ, (5.28) using the transformation

matrixe
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3 DA +0/§] 4%.5‘-3 ;z}.-? (5.40)
n _7_ d ,
. t- f-
Q{y = ; '—“‘F‘"‘ """ (5.41)
where ‘
};::' = ;/:-
K={t: T #o0}
d;}\}' = f} t:f J '3 A: , .

o, oatherwise,



The ratio Jz; is assumed constant throughout a redesign iteration,
This assumption, together with those in the preceding section leads
to constant C;¢ and Céf throughout a redesign iteration.

The derivatives of constraints for I-section beams are derived from

Equ. (5.21) and Equ. (5.32) in the same way.

O - _p Ch_

5D 233 (5.42)
” —. ¢ ’ .

Cip = Z e _Ce . (5.43)
tﬂ‘{ te

26 _ i Tecl . L ...

Ex il v +c@ 4 re o3 (5.44)
- Tacde!

= te Hef ' C e e s e e e -

di = ) —= (5.45)

=1 (13

Most problems treated in this thesis are subject to such design
varisble linking as is illustrated in Fig, 7 rather than in Fig. 6.
Fach span has three groups of elements, The elements of the second
group are made to have equal depths by further linking the two design
varisbles governing their depths. The foregoing equations are still
valid even after this further design variable linking provided that
the two corresponding columns of the transformation matrix are merged

into one column to correspond with the new design variable,

D, D D Da D
4’ ‘; s } f

Fig, 7 Design Variables for the Beam Problems,
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5.3 The Optimelity Criteris

The optimality criteris, upon which the proposed method is based, ‘
are to be derived from the Kuhn-Tucker necessary conditions

expressed as:-

_a__ﬁ_’..,_z_q‘i‘!&.;.z_lnjzi— ')i = () .- (5.46)
% J

Y; (A, - 4;) = 0 R ¢ )

,Q_E_}_%;\‘Qﬁ:i.r 2”:_]-.?_62.—')/‘:0 . . {5.48)

.Y{( ____D‘.)_-_-,O C e e e s (5,109)

for the beam problems, and

Ao Clp = i) = 0 - oo (5.50)

|

-ij ( (5.51)

)
{
<
-
I
<

-+ (5.52)

W
L&)

2.&, }lﬂ'j; ,Y,(_

for both problems, where 2* ’ l”fj and ﬁ& are Lagrange

multipliers.
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Prior to formulating the optimality eriteria the design variables
and constraints are classified by their roles during the redesign
process. The design variables are divided into two groups. Group 1
contains those design variables whose values are greater than their
specified minimum values, These are the 'active' variables and their
agsocisted Lagrange multipliers, 'Y£ , will be zero. Group 2 contains
the remaining design variables, the 'passive' variables, whose values
are set to the specified minima and whose associated Lagrange multipliers,

Yi , may be greater than or equal to zero. The constrainis are
also divided into two groups, active and inactive ones., The Lagrange
multipliers, ﬂ& or Qmj associated with active constraints
.may be greater than or equal to zero, and those associated with
insctive constraints will be zero. Some index sets concerning these
clagsifications are made as follows to be used in the forthcoming

equations.

G1=1é: A4i >4 o Do >N},
set of group 1 design variables;

G2={¢: A=A o Di= Dl
set of group 2 degign variables;

U=1i#: ¢t = d}
set of active deflection constraints;

S={j: 6 =751

set of active stress constraints,
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The optimality criteria for the truss problems can be derived

directly from the Kuhn-Tucker necessary conditions, Equ. (5,46}, and
Eque (5.1), (5.14) and (5.25) as follows,
v:

f =t = . e . .
Z;{[ZA& e t %Am cLJ]"' 7 { (5.53)

Equ. (5.53) excludes those terms associated with inactive constraints
vithout loss of generality because the associated Lagrange multipliers
vanish., Since the last term of Equ, (5.53) is nonnegative and, if

< belongs to Group 1, can be excluded by the same argument, the
optimality eriteria, completed by the rest of the Kuhn-Tucker necessary

conditions, can better be expressed as follows.

4 . d4y]=1 ,icar.
7 [g%awjgx@dg] , CEGT . (5.5)

W
&

'ZT{?[Z; R Cox + }___‘zﬂde] s (€ G2 (5.55)

Jes

Az ( ty - u ) = 0

htj(b} i @-3"0 R Ty
'Y‘- ( -44. — /46.. , = 0 r l-
A%, A, Yi . >0

Physically, any term of Equ. {5.54)

Gk
2& 'qc zﬁi o 2ﬂU /7: ?4
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represents the sum of the product of some non-negative coefficient

5y the virtual strain energy density of each member associated with
design variable ﬁ& under the virtual loads concerned with the active
constraint £ or J o If there is no design variable linking, it simply
represents the virtual strain energy density of the member multiplied

by the non-negative coefficient, the Lagrange multiplier. It can
therefore be stated that Equ. (5.54) for each design variable is

& linear combination with non-negative coefficients of virtual strain
energy densities, each of which is concerned with an active constraint,
and that at the optimum the linear combination with the same non-negative
coefficients for any of the design variables, is equal to unity for

Group 1 design varisbles and less than or equal to unity for Group 2.

The optimality criteria for the beam problems come from the
Kuhn-Tucker necessary conditions, Equ. (5.48), and Equ. (5.37),

(5038)’ (5040)’ (5-42) and (5044)0

:;#D /35’ [ ;z;: £ Gt + ;Z::jlﬂtitiﬁ J

th K/?n*;.T“H, $1,ie6z2
LA R X RS N RN ENENRSER ] (5.58)

for the rectangular section beams,
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Jjes
.((If/ﬂ) '; Z[—h‘z—‘{— = { , £ €61
ri j& Ay J (5.59)

'5?/75/%’[,); Ay Cik +Z:;,t, i ]

JE8

ZJ_Msr, ;€62

T ) T g

[EE R AR XA RERERLN] (5.&)
for the Iwsection beams, and for both beams completed by

1

} I E R RN F NS ENN N NN R NE NN R RN (5.61)

et [ - e
|

W

0

0

=

0

In the foregoing optimality criteria and constraint equations,
Uy eand 6\ represent only the magnitudes of the corresponding
deflection and stress. This provision has been made in order to
keep the Lagrange multiplier positive even though its associated

constraint is & negative deflection or a negative stress (compressive

stress of a bar or negative bending moment at a node), and in consequence

such values as of Qg , ,[;9- ) Cotr s d:,-/- and /"f/ should be multiplied by

~1 if the corresponding constraint, 4 or g‘ is negative.

Three-bar truss, as shown in Fig. 8, has been teken &s an
illustrative example, Table~l shows the final design and its response

quentities such as member stresses, stress gradients and Lagrange

o
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- [
[ 70 } 70 _}l
Material Data
elastic modulus - H 10% Ksi
7o0* J mass density $ 0.1 pei
stress limits
member 1 ;3 T 50 Ksi
member 2  ; + 55 Ksi
_L_ s50 K member 3 ; + 10 Ksi
) minimum size 3 Ol in2
, deflection limits ; none
\
Loo%
Fig, &8 Three-Bar Truss Problen
Table-l Fina) Design of 3-Bar Truss
- 2
Menber | Area Stress _’// A
; . Y. ¥ #;
€i) (Ao (6} J=7 J =2 ¢ ¢
1 4£e2527 | 5040 11.50 0.3478 0 1.4143 14142
2 4Le5326 | 55.0 0.,2705 | 11,78 0 1.0003 1.0000
3 0.1000 5.0 1,115 1.479 1.427 1.4341 1.4242
A Az
0.2205 0.08215 13={)

¥ left hand side of Equ. (5.53) times %;’



multipliers, and that the optimality critera, Equ. (5.54)-(5.56),

are 81l satisfied,

& .. Redesign Algorithm

Having established the optimality critefia, it is now necessary
to devise a redesign algorithm which will force the design to satisfy
the cptimality criteris. The key feature of the redesign process -
of this thesis is the use of the Newbon-Raphson method to solve the
system of nonlinear constraint equations for the Lagrange multipliers,
This approach was first presented by Taig and Kerr 28) but no improvement
has yet been reported in the literature. The method of this thesis
achieved a number of improvements. These will be explained wherever

appropriate,

At the outset of the redesign process, such values as of @4,
-59‘ , Coas aé/ and A7, are determined from the initial design and used
to find a new defign hopefully satisfying the optimality criteris.
" While the design changes they also change, and in addition they can
be evaluated only numerically by means of & structural reanalysis,
Therefore, to find the optimum design, there is no alternative to
using an iterative method, A new design can be found from Equ. (5.54),
(5.57) or (5.59) assuming that Qe bt_‘j , Cite , d‘j and /l:f/
remain unchanged until the redesign iteration finishes. Then the
structure of the new design is analysed, new values of the coefficients
are determined and the next redesign iteration starts, The resulting
set of design values after a redesign iteration are compared with the
set current at entry to the iteration and accepted when changes in the

objective function or of individual variables are below an acceptable

tolerance,

56
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There are & group of values to be determined in each redesign
iteration. They ere the Lagrange multipliers and the only information
not obtainable from the results of structural analysis. Therefore,

' the main task of & redesign iteration is thet of determining the values

of the Lagrange multipliers.

One pass through the redesign process is illustrated in Fig. 9
and is referred to as one iteration. Before entering the Newton-Raphson
process it is necessary to £ind which constraints are active since we
~ need not consider inactive constraints and then to calculate such

values as of Ce ,c% s ete, for the active constraints and all

i
- design variables. The Newton-Raphson process starts by estimating

the Lagrange multipliers and proceeds in an iterative way, The

process may be interrupted by the appearance of negative Lagrange
multipliers. Therefore it is sometimes unavoidable tordiscard some of
the active constraints and get the Newbton-Raphson process to start again,
So far, all design variables are deemed to be active, i.e. in Group 1, but
upon completion of the process some of them may be found below their
minimum values, If this happens, the variables below their wminima

Imust be set to the minima and another round of the Newbton-Raphson

process starts including only the remaining mctive design variables.

A detailed description of the redesign process follows.

5e4el TFinding active constraints

In the first redesign iteration, the most critical constraint(s)
is the only active conséraint. Whilst the redesign proceeds iteration
by iteration, however, the set of active constraints gradvally
expands by taking more constraints if they are more restrictive than

any of those considered active in the preceding iteration. In other




( ENTER )

| Anavysis

Find active constraints

Calculate c;s,dij, ete.
for active constraints
and all design variables

=

[Estimate A ]

Determine a new
design from Equ.(5,66)

Update A by Equ.(5.67)

Delete inactive
constraints if any

any
deleted
?
NO

YES

Remove Group 2 variables
from the design space

any
removed
7

Flow Diagram of the Redesign Process
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words the number of asctive constraints grows up to a certain redesign

iteration and thereafter the set of active constraints becomes fixed.

This approach shows efficiency but has a fallacy due to the absence of
some active constraints in the earlier redesign iterations, What the

fallacy is, how to get rid of it and the advantage of this strategy

will be discussed later,

5.2 Estimating Lagrange multipliers

The Newbon-Raphson method is used to solve theactive constraint
equations in Equ. (5.56) and (5.61) for the Lagrange multipliers, A’s |,
associsted with the deflection and stress constraints, The first task
therefore is estimating initial values for 2’ . These should be as

accurate as possible: otherwise the Newton~Raphson procedure will be

disturbed,

We first assume that the contribution of each‘term in Equ. (5.54)
to the overall value is the same and makes unity altogether, Then each
Lagrange multiplier is estimated in turn such that the associated
constraint eqution is satisfied by the estimated value. Let #, be the
number of active constraints and 2p be the Lagrange multiplier associated
with the pth deflection constraint. We obtain the following equations

from Equ. (5054), (5056) and (5-13)-

! R
T A Cr 7o (a)

C; —
dp = L —E= = up - AD)
[ <




We now modify Equ. (b) such that

¢ — e
P = - P (e)
P R
where 5:: means summation over ¢ for which Cip > o,
+
7 means summation over ( for vhich Cip € 0.

_."

Equ. (a) is introduced only into the left hand side of Equ. (c) to
avoid a negative argument with a non-integer exponent. Then Ap

is obtainable from the new equation as shown in Equ. (5.62).

1 )
A, = £ [ Zleapf)* 12 ..
p z [ W‘EC*?/‘“] (5.62)

For the qth stress constraint, the associated Lagrange multiplier

will be estimated ag follows,

4
L %(d‘ﬁ;)‘ ]Z_ , (5.63)

Ao =
Fo o T di/n;

—£

We leave the beam problems for the time being. Equations
and formulae applicable to the beam problems will appeer at the end

of this section,

5+4¢3 Improving Larange multipliers by the Newton-Raphson method

The estimatied Lagrange multipliers are now introduced into the
constraint equations and examined if they satisfy all the active

 constraints in the equality semse. The approximate constraint equations,
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_ ¢ —

a£ "“04 - Z—A.L._ [j‘& = o] L R R (5-64)
P [

ﬁmfzzdﬁ_ﬁ=o-...- (5.65)

R S e

are not expressed in terms of the Lagrange multipliers but the design
variables, Therefore we first determine the design variables from Equ.

(5¢54) with the Lagrange multipliers, and introduce them into the above

constraint equations.

Eque (5.54) is re-formed to determine the design variables as

q; = D——- Zgﬁcga £y ﬂn;gi.d-'[ ]?J' C e (5.66)
keu Jes ‘<

and the value of A; so determined is used to evaluate Equ. (5.64)

and (5.65). The values of 4, given by Equ. {5.66) are kept for the
~ time being eveﬂ if they are less then the minimum value. For some
design variable, however, the value of the expression in the bracket
may be negative, If this happens the design variable is given the
minimum value, excluded when updating the Lagrange multipliers and

re=calculated in the next iteration,

The values of A4; determined above do not really make a design
at this point, Theéir role:is in fact a set of Intermediate parameters
vhich make it possible to evaluate Equ. (5.64) and (5.65) and determine
the Newton direction with the current values of the Lagrange multipliers,
However, if all the forthcoming requirements are met the valueé will meke

the design of the current redesign iteration,
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The design values obtained above may or may not satisfy the
constraint equstions, Equ. (5.64)-(5.65). If not, the Lagrange
multipliers are updated aiming at a better satisfaction to the constraint
equations by the improved design values calculated from the new Lagrange
~multipliers. This task 1is done by the Newton-Raphson method and the

following relation is used,

R(f? - A(O)"'—“ XH X{z - (J&U}im)— Mk ) (5.67)
Xzt Xzz b"}“f{lj”) 6
{8y _ & 45 CaSe ]
A =5t = 14 5 Sk e
_ 19081 - 5_ 1 d:,'d;&
xzz - {3—;\::'3} —'{ chGi ’453{4 }3‘25“,
? e e s (5.68)
- ﬂd‘ { & dl'
Kie {aﬂm?} {_Z—wrzt At }ﬁ=3m
Xzf = szT

Zl' - iﬁl,az,...lafn.rﬂ}"--."... (5.69)
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In eveluating each entry of the Jacobian matrix, the summation is
only over the Group 1 design variables since the rest, Group 2 design
variables, have been given their minimum values, and therefore they

are not sensitive to the Lagrange multipliers,

If the updated set of Lagrange multipliers, A?, yield design
values satisfying the constraint equations, Equ. (5.64)-(5.65), the
Newton~Raphson procegs finishes. But probably there remain some design
variables below their minimum values, If a particular constraint is
found to be inactive we should delete the corresponding rows and columns
from the matrices in Equ. (5.67) and (5.69) and set the associate Lagrange
multiplier to zero. During the Newton-Raphson process some 2’s may
turn negative, If this happens we should either consider the corresponding
constréints inactive or do some remedial measures. Therefore it is more
than desirable to know the set of active constraints in advance since
it reduces the order of Jacobian matrix remarkably and will meke the

Newton-Raphson process more stable and efficient.

5eLel Deleting constraints relating to negative Lagrange multipliers

The appearance of negative Lagrange multiﬁliers during the
Newton=Raphson procesg creates difficulties since the multipliers are
not allowed to have negative values, A negative Lagrange multiplier
indicates that its associated constraint selected as active is not

getive and thus should be deleted from the set of active constraints,

It was found that as the Newbon-Raphson process proceeded, successive
values of each multiplier did not smoothly converge to final values
but showed a good deal of "noise" over the trend values, This led to

the difficulty of clearly distinguishing between those multipliers which




wvere definitely converging to a negative value, and therefore were to

be eliminated as relating to inactive constraints, and those converging
to small positive values, Fig 10 illﬁstrates the two possible sequences.
The solution process converged rapidly once the correct set of active
constraints were identified, but premature elimination of an ultimately
active constraint on the first occasion that the associated multiplier
vent negative caused instability and "looping"™ in which a constraint
continued to flip between active to inactive states., Damping of the
Newton=-Raphson process did not solve this problem but the successful
method finally adopted was simply te allow any multiplier which went
negative, one more chance before eliminatién. Its value was set to

zéro for the purpose of determining the new design from Equ. (5,66)

and & new value of the multiplier calculated from Equ. (5.67)e A
multiplier which went negativé twice in successive iterations was deemed

40 be associated with an inactive constraint which was then eliminated.

L
Pe

Value of A

-
—

\i,:”’/ck\
e P

‘ol ~¢\§%;iﬂ<r#¢{} tterations
| ~

Fig. 10 Progress of Lagrange multipliers during
Newton-Raphson iterations. _
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If more than one multiplier went negative, all of them were set
to zero and the Newbon-Raphson process continued, If there was at
least one multiplier which came back positive, the Newton-Raphson method
vas allowed to proceed, Table-2 shows the history of the process when
Example-l of Ref. 14 was solved. The example was the same as Ex,B-5
appearing later, except that its elements were not tapered and stress
constraints were treated as side constraints, At the second step of
Table=-2 two multipliers went negative and were set to zero., One of
them came back positive at the next step and as the Newton-Raphson
process proceeded further the rest 2lso came back positive. Eventually
the process converged as shown and the final values satisfied all the
~constraints exactly. An explanation of the above is given in Fig, 11,
two-dimensional space spanned by 2z and A; , although the behaviour
of the multipliers are not clearly known, Heavily overestimated Ar at
P; could have caused the negative Az at Pz but P, was made to move
to Ps by setting A2 to zero and thereafter the process converged

to the true solution,. - -

Table~3 shows another case where the multiplier was allowed to

stay even though it turned negative successively., 24; was always
negative and therefore set to zero at every step. The process did

convergé but the final values did not satisfy any of the active constraints,
It appears that the process‘converged to S’ in Fig. 12 which satisfied
neither of the constraints, and that the true solution is $ at which
Ur(R)=0 and A4 =0 , Therefore it is a remsonable measure to
deem a constraint inactive when its mssociated multiplier turns negative
twice in succession. Another adverse situation happened as shown in
Table-l, Successively setting the ﬁegative multipliers to zeré gave

rise to divergence. Therefore if any multiplier set to zero causes




Table-2 Iteration History of Newbton-Raphson Process
- successful case

Velues of Lagrange Multipliers
Tter, Aq Az 2s Aq
1 9,988 12,690 . 7,338 8,166
2 0 0 3,658 54955
3 0 3,920 44906 6,720
4 ©135 6,163 6,422 6,879
5 752 7,416 7,637 6,998
6 1,707 7,069 84294 6,880
7 24243 6,611 84647 6,775
8 2,308 6,556 8,705 6,770
9 2,309 64556 8,706 6,770
P

Hg C,R‘_) - 33‘* ]

Uy LAY — Uy

Fig. 11 Newton-Raphson process
- successful case




Table=3 Iteration History of Newbton~Raphson Process
- unsuccessful case

, Values of Lagrange Multipliers
Iter, A As A3 24
1 2,309 6,556 8,706 64770
2 0 11,590 54964 54203
3 0 11,530 6,050 59433
4 0 11,600 64,066 54431
5 0 11,590 6,063 59432
6 0 11,590 6,063 54432

Ay

Fig., 12 Newton-Raphson
- unsuccessful case

-
1
1
1
1
1
1
(]

process

Table-4 Iiteration History of Newton-Raphson Process
-~ unsuccessful case

of Lagrange multipliers
Tter Aq Az A5 As As
1 1,885 7,073 8,496 5,982 1,011
2 3,723 1,572 9,752 21,020 0
3 12,910 0 0 21,800 0
4 0 850, 300 82,180 0 0
5 .o - 0 1. 0 .| 25,920 .| .“2x10°
6 10 e ax1o™ o] ¢ i 0| 12x10% | 1 00
i ' 0 0 4x10% 1x10* | 4x10%
8 0 2x10*? 0 0 0
9 0 0 3x10%7 9x10%% 0
10 0 2x10%% 0 0 0
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other multipliers to turn negative, &8s Az of Table-}, it should be
deemed to be associated with an insctive constraint which has to be

eliminated,

The strategies of finding active constraints and deleting inactive
constraints explained above achieved substantial improvements on Taig's
method 28).‘ Taig's method deletes inactive constraints one by one
vhenever negative multipliers appear. 1If & number of multipliers turn
negative the method picks up one of them according to their magnitudes
and deletes its associated constraint. This method therefore could
delete a wrong constraint and require more Newton-Raphson iterations
until the set of active constraints is fixed, In addition, this method
considers all the constraints asctive at‘the outset of each redesign
jteration. This costs many Newton~Raphson iterations with high order

Jacobian matrices in every redesign iteration to get the set of active

constraints fixed,

For the purpose of assessing the improvements a measure of efficiency

was taken as follows.

- 2
Vi ; A)" *I,;
vhere WA order of Jacobian matrix,

I, ¢ number of Newbon-Raphson iterationswhere Jacobian

matrices of order Ni were solved.

When the beam example taken in this section was solved by Taigls
method and the method of this thesis, the values of A7 were 6,225 and
1’155 respectively. For this example, the method was five times as

efficient as Taig's,
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5.5 Use of stress ratio

However, the strategy of finding active constreints has a
.fallacy as mentioned in Section 5.4.1. If & member stress 6. is
not included in the set of active constraints the member size #4. when
calculated from Eque (5.66), may be underestimated because the predominant
term containing d ... is absent, and if 6% is in fact active this

underestimation makes the design biased against the optimum design.

Although we show later that the concept of fully-stressed-designs
can 1éad to non—-optimé, it wag felt thet for members such as those
just described, the concept might lead towards more realistic and

unbiased designs, We therefore introduced an alternative redesign

- method for this group of members,

A second value for the member size Ax was calculated from the

member stress (i and its permitted value 0 asi-

i.e. making the member fully stressed.

1f A5 vas larger than the value from Equ. (5.66), then Ao vas
used for the'next design stage snd the design variable removed from

the active set, Group 1, The new set was called Group 3.

In summary, if A 4-* is the value given by Equ. (5.66) and A is

the minimum size, then the new value /A, is given as below.

ﬁ‘- A-* all active varisbles — Group 1

-~
-

3 minimum size - Group 2

LY
i

™.
-

; stress ratio size =~ Group 3

X
u
D

“




the initial stages,

This process proved very successful in avoiding biased designg in

Variables assigned to Group 3 went to Group 1 or

Group 2 before the desipgn process terminated.

Table~5 shows active constraints and Group No.'s of the design

variables in each iteration when the 3~bar truss was designed by the

method of %this thesis,.

was the only active constraint and design variable 2 and 3 were of Group 3.

Tn the first iteration the stress of member 1

In iteration 2 design variable 2 went to Group 1 while the associated

member stress became active, Design‘variable 3 stayed in Group 3 up

~ to iteration 5, but eventually went to Group 2 in iteration 6.

5.4.6 Changing active into passive design variables,

in Group 1 and has a greater value than its minimum value,
design variable may be contained either in Group 2 or in Group 3. The
varisbles contained in Group 3 are passive in nature and treated in the

same way as those of Group 2 during the redesign process.

As defined in Séction 5.3, an active design varieble is one contained

Table-5 Active Constraints and Group

¥o.'s of 3=Bar Truss.

Group No, of
Iteration | Active Design Varisbles
No. Constraints i

1 2 3

1 1 1 3 3

2 1 2 1 1 3

3 1 2 1 1 3

A 1 2 1 1 3

5 1 2 1 1 3

6 1 2 1 1 2

A passive



Upon completion of & round of the Newton~Raphson process those
design variables, given their values by Equ. (5.66) and thus considered
active so far, are not necessarily above their minimum values or the
values dgtermined by the stress ratios where these apply., If all the
active variables have values big enough to stand in Group 1 the redesign
iteration finishes, otherwise the redesign iteration requires another
round of the Newton-Raphson process, Before the new round starts,
some of the active variables below their minimum values or the values
by stress ratios are removed to Group 2 or Group 3 and made passive,.
Then the new Newton-Raphson process is carried oul in the subspace,
of the original design space, spanned by the active variable coordinates.,
Since the passive variables are given fixed values, they no longer

have a part in the redesign process.

Fig. 13 shows how the design of 3-bar truss behaved in the
succegsive rounds of the Newton-Raphson process, The first round
in redesign iteration 6 found design Py in the 3-dimensional design
space, in which the area of member 3 was below the minimum, Therefore
& new design, represented by P, 1in both figures, was generated
. by giving the varlable of member 3 its minimum, Since the design
P, was not the optimum, the next round was carried out in the

2~dimengional design space and found the optimum design.

This way of treating passive variables is another important
improvement on Taig's methed. In Taig's method, any variable for
vhich Eque (5.66) defines a velue below the minimum is set to the minimum
immediately, But this approach sometimes presented serious numerical

difficulties when beam problems were solved, The beam problems had
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we‘ifé t contour

(a) 3-dimensional space

Fig. 13 Design Space Map of 3«Bar Truss Problem

Table~6 Two Designs of Exemple-l of Ref. 14.

Element Design Values
No. "Design 1 Design 2
10 52,30 55409
11 37.21 40439
12 42,26 38.34
13 5449 48459
1, 62,80 56.32
15 61.61 54485
Total 75322 14429
Volume
Design 1 3 solved by Taig's method

Design 2

-
?
.
r

solved by the method of this thesis.
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nuch relaxed minimum size restrictions, l.e. large minimum sizes,
compared with the truss problems usually appearing in the literature.
Therefore many variables were set to the minima and this shift of the
design within a Newbon-Raphson iteration was big enough to form a loop.
Setting these varisbles to their minima had the conseguence of changing
the Lagrange multiplieis, and thus the resulting.Newton direction was
that at a point different from the current set of the Lagrange
multipliers. This shift of the design values therefore often

ceused & loop to form. The length of the loop was usually 2 but
sometlmes reached 30 when two or three active constraints were
involved. Keeping the value of Equ. (5.66) even if it was below

the minimum removed the problem of the loop.

Another interesting result is that the two approaches of Taig
and this thesis resulted in different designs for the beam example
of the preceding section., Table-6 sﬁows the total volumes of the designs
'and the values of some variables which were given apparently differeﬁt
values., They are seemingly two different local minima, but were not
examined closely to explore their nature, However, the method of
this thesis resultedrin the same design,,i.e, design 2, even when the

design given by Taig's method was used as the initial design.

5447 Terminating a redesign iteration

A round of the Newton-Raphson process is terminated when changes
of individual values of the Lagrange multipliers or the residual of
the constraint equations are below an acceptable tolerance, Having
terminated the round the design veriables are examined to see if any
of them should be removed to Group 2 or Group 3, If there are none

the current redesign iteration finishes,



T4

If there are such variables the next round of the Newton-Raphson
process sterts having removed them to Group 2 or Group 3 and taking
the solution of the last round as its starting values, This epproach
vas quite helpful since it took advantage of the characteriétics of
the Newton~Raphson method, stable and very fast if used with good

estimates,

The method developed in this work follows the line of mathematical
rigour at the costAof ease of computing, In particular the way of
treating passive variables callg for more Newbon-Raphson iterations.
However we can reduce computing effort substantially by taking better
estimates of the Lagrange multipliers as explained above., In addition
further improvement was achieved by giving the Lagrange multipliers,
as the starting values of the current iteration, the final values of
the first round of the preceding iteration when the set of active

constraints did not change.

5.4+8 Differences for the beam problems

Although the same approach can be used for the beam problems,
there are a number of differences due to the different structural
behaviour of the bending elements from that of the bar elements,

* Equations and formulae applicable to the beam problems are shown below.

The estimation of 1’s for the beam problems will be made based
on the same.concept, but further assumptions are yet required. Those
terns not including (s or dij in Equ. (5.57) and (5.59) ere neglected
and the objective function is assumed linear, When design variable

linking is employed, the following relations are also assumed to hold.




™~
1l

g
il

gk
=
W/t
£
1"
oy
[QM

223 =7 Q
™
L 7l _ 4
I)‘.* e '-D,
- 72!' bg : Z‘ Zs
D = T
< Z=7 /]

Then the Lagrange multipliers are estimated from

2 3
LA /1%

{ -
% = 2
Sﬂd . UP - _ZL,;?‘}D/D‘;J
5 = 1 r;ziz’:-‘?z;;/d,}éé
3 Na —~
3 G~ L2y/o7

for the rectangular gsection beam, and

A :Z:ia [

z 2
L0 Y g ]% .
uf - g v / o

=gt |

for the I-section beam.

§ Lo/

T

fo)

(5470)

(5471)

- (5.72)

(5.731

75



76

To determine the design varisbles for the rectangulasr beam from

the Lagrange multipliers, Equ. (5.57) is re-formed as:

Di_(.?-f-ﬂ)“ B - w; = o N
{ é;{nt - My
U :*““fo L ¢t (5474)
Pl jes i & 5 |
3
/3’;" [gjq& C‘k-’-JeZ.Sq“:’d‘jJ J

The roots of Equ. (5.74) may be obtained in en iterative way, but

their nature should be considered here. If %, 1is equal to zero,

i.es no active stress constraint is found at the nodes governed,

fully or partly, by the ith design variable, the solution is sﬁraightforward.
A unique positive root will be found if «); is positive, no root

vill be aveilable otherwise, If <¢J; is positive, there is no definite

vay to explore the existence or uniqueness of the roots. If we agsume

that the objective function is linear, the first of Equ. (5.74) becomes

4

D+ 4D - W o= o

and we know from the Descartes' sign rule that & unique positive real
root exists if W, is positive, and otherwise there is no positive
resl root, It appears that EBqu. (5.74) slso follows this rule since

/B is usuelly given a value not far from unity,

From the above discussion and the fact that U is always
nonnegative, we can conclude that the existence of a unique positive

real root of Equ. (5.74) depends solely on the sign of 4}, The design

variables with nonpositive w)~value are therefore given the minimunm

values while the rest have the roots of Equ, (5.74). This method also
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applies to the I~-section beam but the equation whose rootls are sought.

Equ, (5.75), which came from Equ. (5.59), is used for the I-section beam,

2

—
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(5.75)

(5.77)

(5.78)

(5479)

for the I-section beam, are expressed in terms of the depths at nodes.

Therefore it is necessary to determine the depths from the design

values using the transformation matrix, { Ty;} , defined in Equ, (5.34)

Then the equations (5.76) - (5.79) will be evaluated using the depths

“so obtained,




The entries of the Jacobian matrix in Fqu., (5.67) are obtained

as follows instead of using Equ, {5.68).
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gnd for the I-section beanm
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5ed o9 Summary of differences between the methods of Taig and this thesis

The differences between the methods of Teig and this thesis are
listed in Fig. 14. The improvements echieved can be summarized in
two respects. Firstly, the strategies of finding and deleting consiraints
have been changed entirely. These prevented the constraints fronm
filpping between active to inactive states and improved the efficiency
gubstantially, Secondly, postponing the removal of Group 2 variables
until the completion of a Newton-Rephson process, i.e. Stage 9,
eliminated the formation of loops which is a fatal drawback of the

Newton-Raphson method .



Stage of
redesign Differences
Process
1, Find active Taig's method does not have this stage.
constraints. It considers all the constraints active.
2. Calculate Taig's method calculstes Cyp for all
Cit, dij the deflection constraints, but does
fo; ;ct{;e not caleulate d; since it treats
constraints stress limits as side constraints.
3, Estimate A's the same, .

Le Determine a Taig's method removes variables below
new deslgn. their minima to Group 2 at this stage.

5. Update A’s the same,

6. Delete When some negative s appear, Taig's
inactive method deletes one of them each time,
constraints The method of this thesis may delete
if any. several constraints at a time or may

not delete any depending on the
history of the A% . '

7. If any -
deleted, the same,

GO TO 3.

8. If converged, In Taig's method, EXIT,

In this method, GO TO 9,

9. Remove Group 2 Taig's method does not have this stage.
variables.

This operation is carried out at stage
4 ingtead, ' :

10.

I1f any removed,
GO TO 4.
EXIT otherwise,

Taig's method does not have this stage.

Fig, 14 Differences between the methods of
Taig and this thesis,

80



5,5 Optimality Test

Another application of the optimality criteria is to test if a
given design 1s at a locsl minimum, Having analysed the structure,
we can find which constraints are active/inactive, which design
variables ere active/passive, and from Equ. (5.56) which Lagrange
fnul‘tipliers should be greater than/equal to zero for the optimality
Then the system of simultaneous linear equations,

of the design.

Eque (5.53), will be solved for the Lagrange multipliers.

For the sake of convenience and geometrical explenation, the

equations of Equ. (5453) are rearranged end expressed in metrix form.
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Then Equ. (5.82) becomes

Ny A B
A O /~ = ~' e e e e e (5,83)
v o I 1 B2

and we first solve

/\/17\ =Bd ....----~“"'---"-"""(5.84)

~ ™

for & and with the solution we find Tz from
N = 5} A e e e e . (5.85)

The matrix 4@' in Equ. (5.84) may not be & square matrix but

. rather a rectangular matrix with a greater number of rows than of
columns., To set up #n approach for finding 2 we defiﬁe the residual
vector for Equ. (5.84), form the square of its length, and then

look at the conditions for its length to be a minimum. The square

of its length is expressed by

1t

(Ar A - Bs YT (WA - B1)

~

L

LH

AT AT w 2XTMTBr + B8 -+ (5.86)
and the stationary conditions are
/1/{7'/\/12—/\/,7@-,:;0 e e e e e e e e (5,87)

The square matrix N17af+ is nonsingular provided that the column vectors

A~ -



of A, are linearly independent and, if so, we can find 2 from

Z = (/VITI\/f)—.{f_l/_fféf ceee e e e (5,88)
minimizing /¢ 2) but not necessarily satisfying Equ. (5.84).

By substituting Equ. (5.88) into Equ. (5.84) we obtain

Pz=11-No(wrwn) " wm]8g =Q «- (589
If Equ. (5.89) holds, A obtained from Equ. (5.88) is really the
solution of Equ. (5.84) snd we can proceed to Equ. (5.85) and fiﬁd
\l o Then the optimelity will be ensured if no negative entry

d

exists in either .of g or i .

Geometrically & column vector of Q& is the projection of a
negative constraint gradient onto the subspace spanned by the active
design verieble coordinates, and &+ dis that of the cost gradient,
Solving Eque (5.84) for A is therefore determining the set of
coefficients with which the cost gradient is considered to be a

linear combination of the constraint gradients, each multiplied by -l.

~If the cost gradient does not lie in the space generated by the

constraint gradients, Equ. (5.84) has no solution, vector PP defined

in Equ. (5.89) exists, and the optimality is disproved. The exigtence

of vector P y the projection of the cost gradient ondo the intersection

of all the hyperplanes perpendicular to the constraint gradients,
suggests that there are better designs lying along PP with the same

set of active constraints as that of the current design. When P

vanishes but a negative Lagrange multiplier, A or?7 s &ppears there are

better designs with a different set of active constraints,
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6., STRESS LIMITED TRUSSES

A number of stress limited truss problems are solved in section
6.1. They are 25-bar, 55-bar, ‘72-bar, and 12/-bar trusses and their
solutions are seldom found in the literature. It is demonstrated
how rigourcusly and rapidly the method described in the preceding
chapter solved the problems where many active constraints are present.

In section 6.2, the nature of the fully stressed designs for a stress
limited truss is investigated thoroughly in connection with the

optimality of those designs.

. 6,1 Exsmples

Ex,T=1 25-Bar Truss Case T

This problem, shown in Fig. 15, is the same as the 25-bar space
truss frequently appesring in the literature, but in Case I stress
limits for each group of members are the only behavioural constraints.
The optimum design shown in Table-7 is not a fully stressed design.
Neither of the members 12 and 13 associated with the fifth design
variable.is fully stressed despite the design variable being in Group 1..
Their stresses are only 18% and 21% of the permitted value respectively,

24,)

This problem was also solved by Dobbs and Nelson and a design weighing

351,4 LB wag obtained after 4 iterations,

Ex,T=2 25-Bar Truss Case II

This is the same example as Ex,T-1 but no design variable
linking is employed and the compressive stress limit is set to ~35,000

psi for a1l pembers instead of those in Fig. 15, The final design after




Materiael Data - -

E = 107 pei
,-":-" 0.1 pCi
min, size j 0,01 in®

Stress Limits (psi)

Members

1
2-5
6- 9

10-11
12-13
14~17
18-21
22=25

Tensile Compressive

100" —d
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40,000
40,000
40,000
40,000
40,000
40,000
40,000
40,000

-35,090
~11,590
-17,300
-35,090
~35,090
- 6,760
- 6,960
~11,080

Fig. 15

Applied Loads (Kipsl

Node Y¥=Force Y~Force Z~Force

Load Case 1
1 1.0
2 -
3 0.5
6 0.5

Load Case 2
1 -
2 -

25~Bar Truss

10,0
10.0

20,0
~20.0

=5.0
~5.,0

-5-0
5.0




18 redesign iterations is showm in Table-8, and at this design the

value of Equ, (5.54), the optimality criteria equation, for each of

twenty Group 1 variables is exactly 1,0000,

Table=7 Designs of 25-Bar Truss

Member Case 1 Case III
1 0,01 0.01
2-5 1.2441 1.9845
6-9 1.1182 2.9973
10-11 0.01, 0.01
12-13 0.1052 0.01
‘14-17 0.5519 0.6841
18~21 1.6501 1,.6773
22-25 1.3010 2.6609
Iteration 13 8
Weight - 343.524 5454168
Table~8 25-Bar Truss Case II
Member Area Member Aresa Member Aresa
1 0.0l 10 0,01 - 19 0,317
2 0.448 11 0,01 20 0.353
3 0.339 12 0,01 21 0.192
4 0.400. 13 0,01 22 0.256.
5 0.379 1 0.096. 3 0.356 -
6 0.368. 15 0,061 24 0.444
7 0.580 16 0,112 25 0.242
8 0.523. 17 " 0,060
9 0.318 18 0.224 :
Weight 82,978
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Ex.T=3. 55~Bar Truss -

This example, illustrated in Fig. 16, is to show the ability
of the method presented in this thesis to solve large-scale systems
of simultaneous non-linear equations. The final design in Table-9
is exact to the extent of 1,0000 for all of the 35 design variables,
including 35 active stress constraints, and achieved after only 11
iterations. The design has no Group 2 variables, the siress of a
member associated with each design variable is active, and thus
there are 35 active constraints. The optimelity criteria equations,
Eque (5454}, end the constraint equetions, Equ. (5.56), totaling 70

equations are all satisfied in an equality sense as exactly as 1,0000..

Ex Tei 72—Baf Truss Case I

. The truss, illustrated in Fig. 17, is another example solved
by many researchers but mainly subjected t§ stress and deflection limits.
The problem when subject only to stress limits was solved by Dobbs and
" Nelson 24) but the result does not seem meaningful, Among sixteen
design variables only four were of Group 1 and in addition very close
to their minimum values. In Ex.T—A.the applied loads are ten times
the magnitudes of those commonly used in the literature and deflection
constraints are neglected, Table-1l0 shows the final design including
ten Group 1 variables and it was obtained only after 6 iterations.

This problem shows a good behaviour in terms of quick convergence.
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Material Data

E =3 x 107 psi
f = 0,28 pei
min, size j; 0.1 in2

Fig. 16

Stress Limits

2 26 27 2 29 3 3 3 3 3 B

1B ik X 47 X 1 b Xz Xa Xz X2\

N/ X/ N/ B/ N/ 4 B2/ 4 45\, |.

Ay L 2 3 4 5 AN 8 9 10 11 124\
| 12 @ 240" |
LOAD CASE 1!
30 Kips each
LOAD CASE 2
20 K;pé_each 20 Kips each
LOAD CASE 3
60 Kips each 60 Kips each

Deflection Limits

+20 Ksi

or

none

-=15 Kei

55eBér Truss
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]q________
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]
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19

9,12

gon 37

| 113,16

17,20

b

20 |
15 3
1
1
18
13
13,15
2, 3
A 83
5 9
3l133 6"7
22 20}, 21
23 \\‘\\\33\\\
49,51 10,11
|40 38},39
41 45
67,69 14,15
58 56l,57
59 63
18,19
7,757 »

Fig, 17

Material Dats

E = 107 psi
£ = 0.1 pei
stress limit

min, size

+25 Ksi
0.1 in®

Applied Loads (Kips)

Cage T

Node X-Force Y~-Force Z-Force

load case 1

72-Bar Truss
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1 50,0 50.0 =50.0
load cese 2
1 had - —50.0
2 - bt -50.0
3 - - "50-0 ]
4 - - "50.0
Case II _
Node X-Force Y~Forece Z~Force
load case 1
1 5:0 5.0 "'500
load case 2
1 - b "5.0
2 - - -5,0
3 - - "500
4 o - -500
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Table-9 Design of 55-Bar Truss

Member Ares 0.c* Member Area 0.C2
1 3.0051 1.0000 30,40 2.8690 1,0000
2 3.4616 1,0000 § 31,41 2.7787 1.0000
3 4.8156 1.0000 32,42 2.9514 1.0000
4 ALAT2 1.0000 33,43 0,3510 1.0000
5 2,6440 1.0000 3444 2.8679 1,0000
6 1.0267 1.0000 45 3.2380 1.0000
7 1.6334 1.0000 46 3.1638 1.0000
8 1.1206 1,0000 47 3.6543 1,0000
9 2.8802 1.0000 48 3.4362 1.0000

10 445948 1.0000 49 2.2941 1.0000
11 3.1986 1,0000 50 2.5137 1,0000
12 2.3948 1.0000 51 3.4825 1.0000
13-23 2.9287 1,0000 52 1.4712 1.0000
24, 4.0618 1.0000 53 2.4118 1.0000
25,35 2.1887 1,0000 54 3.5342 1.0000
26,36 0.5399 1.0000 55 2.,9894 1,0000
27,37 1.0197 1.0000 :
28,38 2.7165 1,0000
29,39 3.9627 . 1.0000

No. of Iteration ; 11

Total Weight 5 13834.1

No. of Active Constraints; 35
%0.C. ; Values of Equs (5.54)

Table-10 Designs of 72-Bar Truss

Member Case 1 Case II
1=-4 1.9543 0.1565
5=12 0.8591 045453
13-16 0.,6292 , 0.4130
17-18 ’ 0.8520 0.5664
19~-22 1.9923 0,5232
23-30 0.7245 0.5172
31-34 0.1 0.1
35-=36 0.1 0.1
L1=48 0.6626 0.5117
L9m52 0.1 0.1
53-54 0,1 0.1
55=58 2.9667 1.8863
5966 0.6396 0.5124
67-70 0al 0.1
T1=72 0.1 0.1
Iteration 6 A
Weight €09.721 379.622

o
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Ex,T~5 12/-Bar Truss Case T

This truss, which was solved by Sheu 45) for deflection limits,
is illustrated in Fig. 18. Ex,T=5 is a varistion of the original
problem, where no displacement limit is present but instead stress
1imits of 10 XKsi are imposed on &ll members., Interestingly the
optimum design obtained after 13 redesign iterationsisnot a fully
stressed design, Member 14/ is the most stressed among those associated
with the 44*" design variable which belongs to Group 1, but its stress is -

86% of the permitted stress.

The redesign process, however, failed to get rid of all Group 3
variables. The stress of member 122 was included in the set oflactive
constraints at the cutset of the redesign iteration but deleted during
‘the Newton-Raphson process, and therefore remained in Group 3. But
the optimality Qf the design was confirmed by the optimality test
made on completion of the redesign process. The problem was slso
solved by the stress ratio method, which gave a fully stressed design.
Whereas the optimum design had 18 active stress constraints, this
design had 19 to include the stress constraint of member 144. The
optimality test for the design resulted in a negative‘Lagrénge multiplier
associated with the stress of member 144 and disproved its optimality,
although it was quite close to the optimum design, The two designs

are shown in Table-11.




. loading 1

1Kip

loading 2

1Ki

>

material data
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18

Fig.

0.1 in®

= 10" psi
f = 0.1 pei
minh, size

E

124-Bar Truss
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Table=11 12/-Bar Truss Case 1

ouber | PR | w0 | wemver | 2| r
5- 8 0.111 0.111 81- 84 | 0,214 0.2 : ‘
9-12 0.111 0,112 85- 88 | 0.214 0.214 ‘

13-16 0.111 0.113 89~ 92 { 0.214 04214 ‘

17-20 0,114 0.114 109-110 | 0,171 04174

21-24, 0.163 0.163 113-114 | 0.154 0.119

25-28 0.608 0.608 115-116 | 0.107 0.118

29-32 0.522 0.521 117-118 | 0,158 0.162

33-36 04371 0.378 121-122 | 0.136 0.136

37-40 0.196 0,193 123-124 | 0,119 0.120

77-80 | 0.272 | 0.279 |

f:::git 107.269-| 107.308
|

Other member sizes are all at their minima, (0.1)

6,2 Optimality of Fully Stressed Designs

The stress ratio redesign algorithm based on the concept of
fully stressing has been of great appeal to the engineer owiﬁg to
its simplicity. It gives a fully stressed desigﬁ (FSD), which in
many cases_is the optimum when the structure is subjected only to

atress limits and built with one material,

A simple and rather artificial example, Ex.T-6 the S—bar truss
in Fig. 19, shows interesting features of FSD's. Table~12 lists three
typical FSD's among innumerable FSD's of the problem, Design 1 and
3 of table=12 are the two extremes, and Design 2 is that obtained

after a single stress ratio redesign from a uniform design. The



streastisplacement relation in Equ, (6.1) shows that the five member
stresses are not independent, and thus we can express the stress of

member 5 in terms of other member stresses as in Equ, (6.2).

Table~12 FSD's of 5-Bar Truss

Design 1 Design 2 Design 3 Stress
Member [ 4. A 5; A; A; A R ﬁiiim
i 3 ‘ ‘ ) £ B ¢ gns
1 3.9000 | 3.120 - 202310 { 0,1061 | 0O, - =25,00
2 0.1 2.520 | 30,00 1.7690 | 3.8939 | 5.76 - 25.00
3 C.1 2,520 | 30,00 1.7690 | 3.8939 | 5.76 - 25400
4 0,1414 | 54280 - 2.,5017 | 5.5069 | 11,52 = |-25.00
5 3.6771 | O. - 2.1034 | 0.1 0. [*63.64| 37.50
Voot 342, 442214 569, 64

a

Ot

Material Data

E = 107 psi
F = 0,1 pci

n
360 Stress Limits;

425 Ksi for Member 1-4,
+37.5 Ksi for Member 5,

Uy Minimum Size ; 0.1 in?

100 Kips

Fig, 19 5-Bar Truss
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5 - 2 ! 2 2 2 3 4 (6.2)

Since the stress limits for each member were chosen deliberately

such fhat

ot
Sl
i

_ 1 Ao~ 4~
= = +26‘_+26;

the stress ratio redesign immedietely brought the design to an FSD

but to different FSD's whenever different triesl designs were used,

The Lagrange multipliers for the designs of Table-12 cannot be
deternined direetly due to the functional dependency existing between
the stress constraints; Those for Design 1 snd 3 were obtained
assuming, without loss of validity, that A;= 0 and A, =23 . Design
1 is the optimum as is seen from the nonnegative values of the Lagrange
multipliers, For Design 3 the negative value of 15 disproves the

optimality.

The stress ratio method simply forces each member fully stressed
" without looking at the optimality and shows such a fallacy as
demonstrated above. Besides the fact that an FSD is not necessarily

the optimum the fallacy, which can be encountered for sny structural

system since the relation in Equ, (6.1) exists in most cases,




diminishes the value of the stress ratioc method.

In many cases éf stress limited trusses for which an FSD is
the optimum, the design makes the truss degenerate to a statically
determinate truss when the minimum size restriction is infinitesimally
small, The stress of each member in these designs is active if the
member beiongs to Group 1 and is otherwise inactive, If we further
assume that the stress limits of tension and compression are the same
in pagnitude and that the truss is made of one material, we can find
interesting characteristics of the Legrange multipliers. We obtain
various optimum designs in accordance with various minimum size
restrictions, The Lagrange multiplier associated with the stress
1imit of each Group 1 member is constant regardless of what the design
is and in fact the same as that of its degenerate truss as long as
the set of Group 1 members remains unchanged. Table-13 shows these
characteristics of the well-known 10-bar truss Case I-a, Ex,T-7,
eppearing in Fig, 20. Assuming that there is no design variable

linking the proof of this assertion is as follows.

Let
- /.E., & ; mess density, elastic modulus, stress limit of eny
member,
E™% axial force of member ¢ of the degenerate truss,
G = F / A : stress of member ¢ |,
5:,9": EYY A : stress of member ¢ under the unit
virtual load applied to both ends and in the direction

of member  ,

2122 ,
L JIJ of the degenerate truss,

J




Material Data

E = 107 psi
f = 041 pei

125 Ksi for Member 1-9,
varying for Member 10,

Elastic Modulus
Mass Density
Stress Limits

- -y -e

-360"

360"

Design Conditions in Various Problems

Cage T-a Case I=b Caée J~c Cagse IT (Cage IIT

Stress Linmit of

Member 10 (Ksi) 25 50 125 125 25
min, size (in%) varying varying 0.1 0.1 0.1
Deflection Limit (in) none none 2.0 2.0 2,0
Loads P; (Kips) 100 100 100 150 100
Loads P2 (Kips) : 0 0 e} 50 50

Fige 20 10~Bar Truss
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Table-13 Designs of 10-Bar Truss Case I-a

fﬁember Member sizes of variocus designs The same for all designs
Gy 1 2 3 4 A; Y 0.C. | Stress
1* S © 8,0062 | 8,062, § 8,6214 |11.52 | - | 1,000 | -25.00 |
2* 4 349938 | 3.9379 | 3.3787 | 5,76 | - 1.000 | -25,00
3 - 0,01 [ 0., 1.0 - 22,1 | 0.386] 15,53
4 - 0.01 0.1 1.0 - 22,1 | 0,386 | 15,53
5% - 8 7.9938 | 7.9381 | 7.3788 | 11.52 | =~ 1,000 | 25.00
6 - 0,01 0.1 1.0 - 36 0. 0.
7* 5.6569 | 5.6481 | 5.5690 | 4.7782 | 11,52 | - 1.000 | -25,00
g* 506569 | 5.6657 | 5.7448 | 6,5356 | 11,52 | = 1.000 | 25,00
9 - 0.01 | 0.1 1.0 - 11.6 | 0.772 | ~21.97
0% | 5.6569 | 5.6481 | 5.5690 | 4.7782 | 11,52 | - [ 1,000 | 25.00

Total |1584.,0 | 1584.92] 1593.20( 1675.82

Weight

Design 1 : Deterninate

Design 2 : min, size = 0,01

min, size = 0,10

Design 3
Design 4 : min, size = 1,00
0.C. : the value of Equ. (5.54)

* : Group 1 members

Since the degenerate truss is statically determinate, it is easily

found that

2P LE L

a4

\ | = (6.3)

Let {A;*} be an optimum design subject to a certain minimum

size restriction, Then Equ. (6.4) must hold.
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L N = L N GGT s P, for iedr o (e
Je61 ‘ Jeaf J

If we introduce Eque (6.5), derived from the reciprocal theorem, into

(6.4) we obtain Eque (6.6)a

. L e

A R OF)
ST ARG GD = pli, Jor iedr - - (66
Jeefzj (5 fhes - i

The elongation of member ( , 041, due to the actual loads can be

obtained by

- 7 EECL L,y EEYL
Jeat £ jeaz £
B SR C2
- T EYCE vz o e
Jeat

vhere |j?2 is the summation of the virtual strain energies over Group 2
members, If we substructure the truss into S1 consisting of Group 1
members and S2 consisting of Group 2 members, |JZ is the same as

the work done by the nodal forces due to the actual loads through the
boundary nodes (froﬁ S1 to S2) ag they ride along the displacements -
due to the virtual loads. The eddition of U2  to the first term

of Equ. (6.7) has the same effect as the subtraction of the work done
by the boundary nodal forces from S2 to S1 and also as the removal of
the forces applied to S1 from S2 through the boundary nodes. Since

51 is the same structure as the degenerate iruss, Equ. (6.7) becomes
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4 = ZE"”%?‘“LJ , ferall o oo . .(68)

. Multiplying both sides of Equ. (6.8} by —%— results in Equ, (6.9).
3

LD /. . '
Z:r__/:_g’__o__{_‘é’_g.\(" = 5{\—/0_-_‘-5——- = f../.‘ 5 far- all & -+ (649)
JEG € ‘

By equating Equ. (6.6) and (6.9) for all ¢ ¢ &7 we obtain

ﬁ((‘) 1. = G\.C{') _CDJ' or ¢ £ e .
; ; ; JZ&; ; ZJ , 7 €eGf, (6.10)
and in matrix form,
(GO = A G@H ™), o (e
{0}({)}{2".'_%(»)} =_{'0},. (6.22)

The matrix  { G}“"} in Equ. (6411) is nonsingular
because Equ.(6.11) has a unidue solutionfor --{ A;} — end from

Equ. (6.12) we obtain
{qj_qj(w.} = {0} N (%K)
which proves the assertion,

For Group 2 members Equ, (6.14) replaces Equ. {6.0)

z gj@-@c£)+#i = /QZ‘ C e e e e (6414)

Jeat
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From Equ, (6,9) end (6.14) we can find a simple expression to determine

the T5 .
I ‘
. Jear
67 y2
= S R SRR . R (-
£l (=] (6.15)

It can be concluded thet for the particular problems mentioned above
the Lagrange multipliers, both A% and Y¥ , and the stress of each
member are not sensitive at all to the changelof the minimum size
restrictions. Since the Legrange multiplier represents the sensitivity
of the objecti#e function to the associated constraint, it is quite
easy to determine the change of total weight due to the change of
stress limit, 1If, forlinstance, we increase the stress 1limit of 10~bar

truss Case I-a to 30, the decrease of total weight will be

/ Y F “”LJ R fza “” _2,.,:,3{;') Uae ane

Jeaf JE&!

17) demonstrated that an

With 10-bar truss Case I-b, Ex.T-8, Berke
FSD is not necessarily the optimum design. Table-1l/ shows two FSD's
and two optimum designs according to the different minimum size
restrictions, The optimality of the FSD's is disproved by the negative
Lagrange multiplier, It is also noted that the two optimum designs,

neither of which is a fully stressed design, have different 7A's .




Table~1/ Optimum Designs and FSD's of 10-Bar Truss Case I-b

Design 4

FSD, min, size = 1,0

Design 1 Design 2 Design 1,2
Mge&er Area A; Area %4 Y; |Stress
1 8.1002 | 14.16 9.0000 | 14.88 - =25.00
2 3.9001 3.12 3.0000 2.40 - ~25.00
3 0.1 2.52 1.0 2.16 30 25,00
4 0.1 2,52 1.0 2,16 | 30 25.00
5 7.9002 2.88 7.0001 8.16 - 25,00
6 0.1 - 1.0 - 36 0.
7 5.5156 6.2/ o427 4«80 - ~-25.00
8 | 5.7984 | 16,80 | 7.0711 | 18,24 | - 25.00
9 0.1414 5.28 1.4142 6.72 - ~25,00
10 2.6771 - 2.8285 - - 37.50
32;§it - 1497.64 1584401
Design 3 Design 4 Design 3,4
M??Eer Area A; Ares 1, v, Stress
1 11,8940 | 17,28 | 1049450 | 17.28 - =25,00
P 0.1061 0. 1.0605 | Q. - ~25.00
3 3.8940 | 5,76 | 2.9409 | 5.76 | - 25.00
4 3.8940 | 5,76 | 249410 | 5.76| - 25.00
5 | 4.1061 | 5.76 | 5.0608 | 5,76 | = 25400
6 0.1 - 1.0 - 36 Oe
7 0.,1500 0. 1.4981 0. - -25.00
8 11,1638 | 23.04 9.8197 | 23.04 - 25,00
9 5.5069 | 11.52 4e1591 | 11,52 - ~25400
10 0.1 0. 1.0 0, ~63.64] 37.50
f,g;;%t 1725.26 1701,03
Design 1 ; Optimum Design, min. size = 0.1
Design 2 j; Optimum Design, min. size = 1.0
Design 3 ; FSD, min, size = Q.1
’

102
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7. TRUSSES WITH DEFLECTION AND STRESS CONSTRAINTS,

Firstly zeroc and first order approiimations to stress gradients
in truss problems with deflection &nd stress constraints are discussed
in section 7.1l. How the use of a zero order approximation can affect
the resulting design, is presented. A number of truss problems
frequently appearing in the literature are solved and their results
are compared with the results obtained by other methods in section

7.2, Among them the well knownl10-bar truss shows interesting features.

7,1 Approximation to Stress Gradients

For the prolems involving deflection constrainﬁs a fully stressed
design or an evenly stressed design, obtained from the stress ratio
method, is seldom the optimum design, The optimality criteria methods
are therefore preferably used for the problems falling into this
category, but many of them treat the stress limits as side constraints
by using the stress ratio based on the concept of fully stressing.
Having found & new design from the optimality criteria, including
only the deflection constraints, the methods resize the overstressed
members using the stress ratio, The use of stress ratios for stress
limits may improve the efficiency of the redesign but may give a

ﬁrong design.

The stress gradients obtained from Equ. (5.25), (5.40) or (5.44)
with constant {fg and ﬂfj are of first order approximation to the
ﬁrue gradients in the whole design space, and exact st the current
design., On the other hand, the approximation from the siress ratio
is merely the :coordinate vector. of the design variable with which the

member concerned is associated, and therefore referred to as Zero order
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29)

approximation. Sander and Fleury presented a graphical comparison

of the two kinds of approximation, and it is shown in Fig, 21.

Zero Order First Order
Approximation Approximation

Fige 21 Comparison of Approximations-of- Zero Order .
- and First Order to True Stress Gradient.

The problems with a fewer number of active constraints than that
‘of design variables'may have a good number ofdbsignswhich all satisfy
the same set of active constraints in an equality sense, In this case
the crude approximation to the stress gradients made by the stress
ratio method can lead to a design ﬁith the same set of active
constraints as the optimum design but different from it, and with very

slow convergence,

Table-15 shows two quite different designs of 10~-bar truss
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Case I1I, Ex,T~9, which were obtained by the method of this thesis
and the method using stress ratios respectively., In both designs, the
vertical deflection at node @ and the stresses of member 3 and 6
vere the active constraints., It is interesting to note that the
significantly heavier non-optimum design was due almost solely to the
overestimated size of member 6 and at the optimum member 6 was kept
at the minimum as well as fully stressed, Amazingly, the increase

of the weight of member 6 by 29.6 pounds called for the increase

of total weight by 290.6 pounds., As a matter of fact, the value of
'75 at the optimum is 500, and therefore the total weight will
inerease by 500 units as the size of member 6 increases by dne unit,
although its own weight increases by only 36 units of weight., Two
optimum designs in which 12§ = 0,1 and 125 = 0,2 were imposed
respectively are compared in Table-16 to demonstrate the usefulness
of the values of the Legrange multipliers. Each represents the

-gensitivity of the total weight to the corresponding constraint,

Table-15 Designs of 10-Bar Truss Case IIIX

Member . Design 1 Design 2
1 13.7636 12,7996
2 642471 ' 741239
3 1,9732 1.9702
4 0.1 0.1
5 7.6011 11,3854
6 C.l 0.9220
7 1.3662 5.9279 A
8 9.8195 - 6.5315
9 - 0ad 0.1
10 8.8347 ] 10,0747
Weight 2096.62 2387.18

Design 1 ; by the method of this thesis
Design 2 ; by the method using stress ratio



and the minimum size have different effects on the total weight., A

more flexible member 6 would allow the size of members 1 and 8 to

Table-16 Change of Total Weight due to
" different Minimum Sizes on A4

Member Design 1 Design 2 Changes of
At =01 ] Ai=0.2)| Area Weight
1 13,7636 | 13.6168 ~0.1468 | =5.2848
2 642471 6.4189 0.1718 6.1848
3 1.9732 1.9725 ~0.0007 | -0.025
4 0.1 0.1 0. - 0.
5 7.6011 8.2235 0.6224 | 22,4064
6 0.1 0.2 0.1 3.6
7 1.3662 2,0862 0.7164 | 36.4731
8 9.8196 9.2311 -0.5885 | -29.9615
9 0.1 0.1 c. 0.
10 8.8347 9.0777 0.2430 | 12,3715
st | 2096.62 | 2u2.39 45,77
Vs 500 425

Change of total weight calculated from Y,
= 0.1x(500+425)/2 = 46,25

decrease as they become more stressed.

stressed at the optimum, But its axial force has an adverse effect

on the total weight., Greater axial force of member 6 makes node

a

deflect more,

to reduce its axial force,

The two active constraints associated with member 6, its stress

So member 6 was fully

Thus the size of member 6 was kept at the minimum
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Since the method using stress ratio decides

the size of member 6 by its stress ratio without considering the effect

of its axial force, it happened to give & bigger size to member 6 and

resulted in the heavier non-optimum design,



The optimality test on the non-optimum design yielded a non-zero
vector P defined in Eq. (5.89)., The entries of the vector were zero
except that corresponding to member 6. Therefore the test disproves
the optimality and suggests that there exists a better design along
the negative coordinate direction associated with member 6 as was

expected,

7.2 Examples

Ex.,T=10 10-Bar Truss Case I-c

This problem is one of the most frequently used examples in
the literature and shows a number of interesting features. A number

of results obtained by various methods are compared in Table-17,

The method of this thesis and Fleury et al 20/, both using

~a first order approximation to the stress constraint, gave the best
solution within a reasonable nmumber of redesign iterations. In the
golution, member 6 is not only at its miﬁimum but also fully stressed
as wag the case of iO-bar truss Case IIT in the preceding section.

It appears that the numerical instability and slow convergence

28)

encountered in the first solution of Taig et al vas largely due
to the behaviour of member 6, The optimality criteria involving
deflection constraints forced the size of member 6 to decrease in
the earlier iterations., As the design approached to the optimum,

the stress of member 6 increased and the stress ratio made the member

bigger. In consequence the size of member 6 oscillated.

The second solution of Taig et al 28) was obtained by fixing

member 3 at its minimum bearing in mind that the vertical deflections
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Table-17 Comparison of Various Designs for 10-Bar Truss Case I-c

Degignas obtained by

Member|Gellatly| Venkayysl Taig~l §Taig-2 |Schmit |Berke Rizzi
a5 | 3] G | e |ue | an |
1 20,027 |23.408 |22.57 |23.94 |24.260 |23.536 |23.934
2 {15,598 [14.904 15,43 [24.73 24,260 [14.915 |14.733
3 | 0.242 | 0,201 | 0,57 | 0,10 | 0,100 | 0.527 | 0,100
4 | 0,00 | 0,128 | 0.0 | 0,10 | 0,200 | 0.100 | 0,100
5 131,352 |30.416 [31.98 |30.73 [33.432 |30.860 |30.731
6 | 0.138 | 0.101 | 0.58 0,10 0.100 | 0,100 | 0,200
7 |22.206 |21.084 22,76 |[20.95 [20.740 |21.231 |=20.954
8 | 8.347 | 8.696 | 644 | 8,54 | 8.338 | 7477 | 84542
9 | 0,000 | 0,28 | 0,20 | 0,10 | 0.100 | 0.100 | 0.100.
10 [22.059 [21.077 [21.82 |20.84 [19.690 |21.092 |20.836
wotal 15112,13 5084, (5167 | 5077 |5089.0 |5061.86 | 5076.66
ght
1ot 18 25 | 32 | 8 23 | 28 11
Designs obtained by
Member|Dobbs Taleb= |Khan Fleur Arora This
(25) |Agha(47)] (27) (30{ 1 (23) Thesis
1 [23.290 [25.586 |24.169 [23.20 [23.27 23,204
2 [15.428 |14.808 -]14.805 |15.22° 15,286 115.219
3 | 0,220 | 0,200 | 0,406 | 0,55 | 04557 04547
4 | 0,00 | 0,100 | 0,100 | 0,10 | 0,100 0.100
5 |30.500 |26.778 {30.980 |[30.53 [30.031 30,528
6 | 0,100 | 0.343 | 0.100 | 0,10 | 0.100 0,100
7 |20.980 |20.485 |21.046 |21.04 21,198 21,040
8 | 7.649 | 84036 | 7.547 | 7.46 | 7.468 74458
9 | 0,100 | 0,200 | 0,000 | 0,10 | 0.100 0,100
10 {21.818 {23,099 |20,937 [21.52 |21.618 21,523
3§§Z%t 5080.0 |5070.8" |5066.98 | 5060.85 |5061.65 | 5060.87
e 15 2% | 18 14 13 11

¥ Deflections at nodes q and D were violated. °

If scaled,

51

69.74e

+# Number of Analysés.
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at nodes @ and b should reach the 1imit at the same time for the
design to be optimum, This design, slso obtained by Rizzi 27,
wag found to be another local minimum with a set of active constraints
different from that of the design obtained by the method of this
thesis. Table-18 shows these designs and other designs obtained
vhen the problem was subject to different sets of constraints.
Design 3 was obbained when the stress constraints were relieved
expecting the same set of active constraints, deflections at nodes

Q@ eand b , as in the Rizzi's solution. However the method found
different active constraints, deflections at nodes b and € , and
resulted in a better design as shown in Table-18, In this design
the stress of member 6 reached 35.5 Ksi, which méde the deflection st
node ¢ at the limit, Another trial was made assuming that the
deflection constraints were imposed only on nodes @ and b , and

resulted in Design 4 in which the deflection at b was the only

active constraint.,

In all designs, Design 1, 3 and 4, deflections at nodes d and D
used to make the set of active constraints one time in the iteration'
history but eventually deflection at node A was deleted from the
set as shown in Table-19. It appears that the valley where the local
ninimm obtained by Rizzi 2%, Design 2 in Table-18 and Fig. 22,
resides is narrow and thus the redesign process seldom goes into the
- valleye. But it could not get out of the v#lley wheﬁ Design 2 was used
as the starting values, It is also notable that the design converged
very quickly to the optimum once the right set of active constraints
were identified, For Design 1, 3, 4 and 5, only two or three redesign
iterations were sufficient, Fig. 22 depicts an imaginary design space

map of the problem and locates the designs in Table-18 on the maﬁ.
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Table-18 Designs of 10~Ber Truss Casg I-c and its Variations

Member | Design 1| Design 2} Design 3} Design 4| Design 5

214040 20,954 21,839 22,306 16,625
Te458 84542 50803 46102 64835
0.1 0.1 0.1 C.1 C.1

10 21,523 20,836 21,579 21.865 16,970

ki 23,204 23,934 22,433 22,107 18.998
2 15,219 14,733 15,259 15.461 12,000
3 04547 0.1 0,961 1.434 0.1
4 0.1 0.1 0.1 0.1 0.1

5 30,528 30,731 30,913 31.377 24384
6 0.l 0.1 0.1 0.1 0.1
7

8

9

Total 1 cnen.e7 | 5076.66 | 5022.55 | 5003.51 | 4068.00

Weight

Acti node - node node node node
crivel  p a, b b, ¢ b g, b

Const= :

rainte megber ‘ mezber

Design 1 j; Design of this thesis,
Design 2 ; Design of Rizzi(21) and Taig(28),
)

Design 3 3 2,0 inch deflection 1limits on all nodes,
no stress limits,

Design 4 ; 240 inch deflection limits on nodes a and b,
no stress limits,

‘Design 5 ; 2.5 inch deflection limits on all nodes,
325 Ksi stress limits on all members,

Teble-19 Sets of Active Constraints in Ex.T-10

Iteration Design 1 Design 3 .| Design 4
-7 node a node a node a
8 node a,b node a,h node a,b
9 node a,b node a,b node a,b
member 6
10 node b node b node b
member 6
1l - node b node b,e¢ node b
member 6
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Constraint Surface of Deflection at Node b

Deflection at Node ¢

Stress of Member 6

Deflection at Node
W= 5003051

W = 5022.55
W = 5060.87

W = 5076,66

Fig, 22 Design Space Map for 10-Bar Truss Case I-c¢

Design 5 in Table-18 was obtained when the problem was subject
to the deflection constraints of 2.5 inch imposed on all nodes and
the stress limits of 25 Ksi on a1l members, In this design member
3 was at the minimum and both deflections at nodes @ and b were

active as in Design 2 but accompanying stress of member 6.




FxeT=11 10-Bar Truss Case TI

This problem has also been & popular example,

The result given

by the method of this thesis is compared favourably with other

results in Table=20.

Member 6 shows a particular behaviour also

in this problem, When the problem was solved by the method using

optimality criteris and stress ratios, the design was 7.5% heavier

than the design obtained in this thesis,

Table-20 Comparison of Various Designs for 10-Bar Truss Case IT

Designs obtained by

¥ember|Venkayya] Schmit | Dobbs Taleb- | Khan Rizzi This
(13 (46) (25) | Agha{47)] (27) (21) |Thesis
1 | 25,419 | 23.346] 27.233| 19.767 | 26,541 25.291 | 25.285
2 1 144327 | 13,6541 16,653 14,404 | 13.219 | 14.374 | 14375
3 3 L44 | 1.970] 2,024 1,969 | 4.835( 1,970 | 1.970
A 0,363 | 0,100] - 0,100| 0,100 0,100] 0,100 ©.100
5 | 25,190 | 24.290| 25.813| 23,130 | 24.716| 23.533 | 23.531
6 0,417 { 0,100| 0,100| 0.,205| 0,108}. 0,100, 0.100.
7 | U.bi2 | 12)54 | U8 | 1l2mr| 15775 | 12,825 | 22,828,
8 | 12,083 | 12.670] 12,776| 12.534 | 12.664| 12.389 | 12.391
9 0,513 | 0.100{ 0.200] 0.,100| 0,100] 0,100 0,100
10 | 20.261 | 21,971| 22.137| 25.320 | 18,438 | 20.328 | 20.329
rf:g?alt 4895.60 [4691.8 | 5059.7 | 4651.27 | 4792.52 | 4676.92 | 4676.93
gn
No, of 4, 22 12 23* 9 12 9

Tter.

¢ Deflection at node A wag violated,
If scaled, 4861.51,

‘¢« Nunber of analyses.
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Ex,T~12 25-Bar Truss Case III

This problem is the same as Ex,T-1l, 25~bar trussg Case I,
shown in Fig, 15 except that deflection limits of 0.35 inch are
imposed on the nodes, The final design shown in Table~7 1s one of the
best among those appearing in the literature. The deflection constraints
et the top nodes in y-direction and the stress constraint éf membér
20 were active.' The method using stress ratios as well as optimalitby
criteria yielded almost the same design and the optimality test

proved its optimality.

Ex,T~13 72-Bar Trugs Case II

This problem is illustrated in Fig, 17 and the same as Ex.T-4,
72-par truss Case I; except the magnitudes of the applied loads
end the deflection constraints, The final design shown in Table~10
is also one of the best presented so far in terms of both accuracy
and efficiency. Tor this problem and 25-bar truss Case III, comparisons
befueen the results of:thié thesis and those presented-in the. -
literature are prepared in Table-21 in terms of the total weight

achieved and the number of iterations reqﬁired.

The method using stress ratios as well as optimality criteria
yielded a design close to the optimum design, but the optimaliby
test disproved its optimality. Both designs involved the same set
of sctive constraints, the deflections at node 1 in x- and y=~direction

and the stress of the member'connecting nodes 1 and 5.
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Table-21 Comparison of the Designs for
25— gnd 72-Bar Trusses

Method 25-Bar Truss 72=Bar Truss

. Iter. Weight Tter. Weight

Gellatly (15)} 7 545436 8 395,97
Venkayya (13) 6 54549 11 381,2
Venkayya (16) - - 4 381.1
Templeman (4) 7 545432 - -
Teig  (28)] - - 5 - 379.6
Schmit  (46)) 15 545423 21 388.6
Terai (48) 17 551.6 - -

Berke (17) - - 3 379.67
Rizzi (21)] 10 545,163 - -
Dobbs  (25)| 10 55344 - -~

Fleury (30)] 6 545,23 5 379.66

Khan (27| 8 553494 9 387.67

This Thesis 7 545,166 3 379.622

Ex.T=14 61-Bar Truss Case I

This problem is illustrated in Fig. 23 and its two different
designs are shown in Table-22; ‘Design 1 was obtained from the method

of this thesis snd Design 2 came from the method using stress ratios

in addition to optimality criteria, This example also demonsirates

that the use of stress ratios can lead to & wrong design.

The set of active constraints in Design 1 contained one deflection
and fourteen stress constraints., But Design 2 involved two more

stress constraints, the stresses of members 15 and 21,




5 10 15 20 25 ag 3s

7 | 240 45 50 T
(8]
- o X, X R s 2 X M % 5 X K m X, 80X, B 8
‘ A
4 g 14 /7 24 29 34 39 Ll 42 &S &9
[ 12 x 360" .
LOAD CASE 1
L
- 50 Kips edch — 10 Kips each
LOAD %ASE 2 | # ‘ ‘
o |
- 50 Kips each -——10 Kips each—
LOAD CASE 3 '
I t
' N
~—10 Kips eaxch — ~ 50 Kips edch -
Material Data CASE 1 CASE 11
E = 3x107 psi Deflection Limit: 6“ on wpper nodes 6" on lower nodes
P = 0,28 pci Minimum Size 0,1 in® 0,5 in?
 Stress Limit @ 25 Ksi ’ support at node 2
‘ remov ed.

Fig. 23 61-Bar Truss

¢1T
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Table-22 Designs of 6l1-Bar Truss

Case I Case II

Design

Varisble | Member Design 1 Design 2

Nupber Area o.c.* Ares Area 0.c.*
1 ;i 0,1000§ 00,0000 0.,1000 3,1996 | 1.0000
2 2,3 6.0857] 0.9994 | 6.,5718 446678 | 1,0000
3 by b Q,5085 0.9969 11,4292 3,3019 1,0000 -
A 6 2,0363{ 1,0058 0,1000 0.5000| 0.1672

-5 7,8 A.7602] 0,9988 £.2384 4.0259 1 1.0000
6 9,10 2,3986] 0,989 4.,0888 9,3471| 1.0000
7 11 1.1739{ 1.0084 0.1000 10,5000 | 0.0568
8 12,13 34407 00,9992 3.7623 2,4132| 1,0000
9 14,15 { 4.0197{ 1.0055 2.2759 12,6249 | 1.,0000
10 16 0.8955] 1.0007 0,1000 0.5000 | =0,6927
11 17,18 1.92271 0.9987 2.3483 0,9016 | 1.0002
12 19,20 6,49981 1,0027 5.6735 15,2378 | 1,0000
13 : 21 0.6953| 0.9984 0.2302 1.3866 | 00,9995
14 22,23 1,7396| 1,0007 1.7108 2.7072 | 1.0001
15 2,425 7.80241 1.0017 7.,0298 14.7195 ]| 1,0000
16 26 0.,1433] 0.9934 0.,1173 0.5000 | 0,504
17 27,28 3,0376| 1.0002 2,9866 3.,8742 | 1.,0000
18 29,30 7.0304| 11,0010 6,4689 11,6142 | 1.0000
19 kil 0.1000| 0.0725 0.,1000 0.5000 ] 0.0248
20 32,33 4e3921| 1.0001 443919 4,9687 | 1,0000
21 34,35 10,3228| 11,0001 { 10,2873 10,9712 { 1.0000
22 36 0.3865 1,000 0.3555 0.5000 0.3592
23 37,28 3.98151 1.,0001 449281 5.7434 1 1.0000
2/, 39,40 17,4357 1.0000 | 17.8287 |.14.97051 1,0000
25 41 6.7906| 0.9999 647509 6,7875 | 1.0000
26 42,43 5.1457| 1.0000 5.2499 4.6023 | 11,0000
27 by b5 17,3211 | 1.0000 | 17,7011 | 14.8852 | 1.0000
28 46 - 0.,4191{ 1.0007 |- 0.4064 0,5000 | 0,3052
29 47,48 AeR314 ] 1340000 443188 3.,9475 | 21,0000
30 49,50 10.,1439| 11,0000 | 10.3660 8.7233| 1.0000
31 51 0.,1000| -0,0795 0.1000 0,5000 0.0237
32 52453 3,1766| 1.0000 342437 2,6768 | 1.0000
33 54455 445861 1,0000 4e5558 3.8129 | 1,0000
34 56 1,0151] 0,9999 1.0433 0.5000 | =0.7453
35 57,58 1,02401 11,0000 1.0423 1.1770 | 1.0000
36 59,60 0.7242| 1.0000 0.7372 0.8324 | 1.0000
37 61 0.1000{-11,9673 0,1000 0.5000 | 0.5289
No. of Tterations 18 18 8
Total Weight 33623 34032 37943

# value of Eque (5.54)




117

Ex,T=15 61-Bar Trusg Cage I1I

This problem is also illustrated in Fig. 23 and the final
design is showm in Table-22, The set of active constraints of the
desipn contained two deflection and nine stress congtraints. The
values of Equ. (5.54), the optimality criteria equation, for the
twenty-seven Group 1 design variables were all 1,0000 except three

when evaluated after 8 redesign iterations,

Ex,T-16 12/-Bar Truss Case IT

The 124-bar truss probleﬁ solved by Sheu45) is illustrated in

Fig., 18, Table~23 provides comparisons between the designs by Sheu 45)

and this thesis and the iteration histories., It is noted that the

redesign process of this thesis was faster and resulted in a little

different design,

Ex,T-17 200~Bar Truss

The 200~bar truss problem shown in -Fig, 24 was first solved . ...

12) and later by Arora et al 42), Venkayya 49),

27)

by Venkayys el al

Fleury 31) and Khan et al
12)

o« Table-2/ shows that the designs
by Venkayya et al and this thesis are quite different. Iteration

history and comparisons with other results appear in Table-25,
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L]

. Table~.23 12/~Bar Truss Case II

(a) Comparison of the Design Values

) This Sheu(45) This Sheu(45)
Member | thesis | Method 2 | MO"PeT |Thesis | Method 2
21-24 | 0,1138 0.1267 81-84 0.1388 | 0.1566
29~32 | 0.6976 0.6977 89-92 0.1220 | 0.1255
3336 | 0.5351 045645 103=-104 | 0,1127 | 0.,1358
37=40 | 0.2312 0,2738 109-110 | 0,2957 | 0.2815
L1~4d, | 0,1162 0,1168 111-112 ] G.l 0,1013
4748 | 0.1 041459 113-114 | 0.1501 | 0,1401
49=50 | 0,2015 0,1657 | 115=116 | 0,2414 | 0.2208
51~52 | 0.,1732 0.,1317 117-118 | 042945 | 0.2815
57~58 | 0.1428 0.1718 119-12G6 | 0.1 0.1307

68 0.1 0.1307 121-122 | 0.1593 | 0,1822
69 0.1 0.1013 123124 | 0,2323 | 0,1972
Weight { 126477 | 127,29

Other member sizes are &ll at their
ninima (0.1) in both designs.

(b) Comparison of the Iteration Histories

Number of | Total Weight,
Analyses | This Thesis gz:ggéSi §2§ﬁ£é5%
1 20439 204,09 204,09 ey
2 134.84 186,78 186,78 :
3 129.85 154.87
4 128,33 143,92 141,80
5 127,63 ' 136,20
6 127.33 136.81
7 126,98 132,93
8 126.87
9 126,84 130,68 130, 87
10 126,81
11 126,79 129,04 128,85
12 126.77
13 128,08
15 127.49
18 127,29




Table-24 Designs of 200-Bar Truss

El, No | Area [El. No| Area {El1, No | Area |El. No| Area [El, No| Ares

1 |0.182 40 | Q.1 81 {9.592] 120 | 2.545] 159 | Q.1
1 1.348 0,233 5,737 2,558 0.210
2 10,1 43 | 8,073 82 | 1.,136{ 121 | G.1 160 {12,609
1,313 4,798 1.988 0,237 14.981
5 | L.765 44 10,321 83 0.1 122 | 8.832| 161 | 1.707
3,402 1.850 - {0,201 10.649 1.175
6 | 0.214 45 | 0.1 84 | 6.358] 123 | 0.405| 162 | 0.505
1.771 0,127 74220 0.966 1.251
7 0.1 46 | 4485 85 | 0.407) 124 } 0.714] 163 | 7.937
0.173 4318 0.984 0.991 9,800

8 | 2.357 47 | 0.292 86 | 0,414 125 | 6,914 170 | 0.1

9 {0,126 48 | 0.228 87 | 5,997 132 | 0.1 171 | Q.2
0,742 0.749 5,626 0,116 0.816

10 | 0.130f 49 | 4.673] 94 | O.1 133 | 0,156] 172 | 0.1
: 0.782 3.346 0,116 0.634 0.816
11 | 2.708 56 | 0.1 95 | 0.1 134 ] 0.156] 173 | 0.125
1.156 0,116 0.491 0.634 0,703
18 | 0.1 57 | 0,1 96 | 0.1 135 | 0,215] 178 | 8.713
0,116 1 04333 0.491 0.512 6.713
19 | 0.1 58 | 0.1 97 | 0.113] 140 [10.391] 179 | 0.101
0.377 1 0.333 | 0.318 7.285 0.713
20 1 0.1 59 | 0.1 102 110.573] 141 | 0.180] 180 | 4.044
0.377 0,208 6,688 0,587 40281
21 | 0,1 64 | 9.334 103 | 0.119] 142 | 2.686 181 [13.113
26 | 6,755 65 | 0.1 104 | 1,229 143 | 9.361] 182 | 0.530
27 | 0.1 66 | 0,413] 105 | 6.926] 144 | 0,730 183 | 1.747
0.538 1.950 8.288 1,049 1.317
28 | 0,294 67 | 5.163] 106 | 0.427] 145 | 0.437] 184 | 8.937
1.895 54326 0.88. *1,011 10.950
29 | 3.351 63 | 0.254] 107 | 04430 146 | 7,447 191 | 64139
2.4%? 0,813 0.984 8.969 5.073
30 | 0.165 69 | 0,320 108 | 6.611] 153 | 2.445] 192 | 3.833
0.750 0.954 6.770 2.495 34243
31 { 0,177 70 [ 5.435] 115 [ 1.539] 154 { 0,816 195 [11.151
32 | 3.903 77 | 0.644] 116 | 0.820] 157 | 8,025] 196 [17.098
2.278 1.391 : 0.605 5,695 20,687
39 | 0,125[ 78 | 0.446] 119 | 9.577] 158 3.976] 197 | 7.892
1.294 0.343 6.274 3,932 9,594

1 0.182 ; Design of this thesis '
1.348 ; Design by Venkayya - Ref. 12
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'Material Dats

Material ; Steel

E= 30 x 106 pei

f = 0.283 pei

Stress Limit ;210,000 psi

Min, Size ; 0.1 in®

Applied Loszds

Toad Case 1 3 1 Kips acting in positive X direction at nodes

Load Case 2 ; 1 Kips acting in negative Y direction at nodes
1, 2, 3, 4y 5, 6, 8, 10, 12, 14, 15, 16, 17,
18’ 19’ 20, 22’ 24, — s 71’ 72’ 73, 74—’ 750

Load Cage 3 ; Load Case 1 and 2 acting together,

Note

The original problem set by Venkayya 12) was subjected to
5 loading cases, but it can be redeuced by symmetry and
design variable linking to 3. '

0.5 in. of a/gf/ec{.«'an limits were cmposed on all nodes.

(b} Other Degign Information

Fig. 24  200~Bar Truss

Table-25 200-Bar Truss - Iteration History and
Comparisons with Other Results,

_ This Thesis OCther Resul+ts
Noo of [ gt ess Limit | oo
Tters (+10 Kei) Total Weingt Method Remark
8 29,091 32,996 Khan (27) Stress Limit; 410 Ksi
9 ) 29,073 - -
10 29,055 - -
11 - 29,067 - -
12 29,041 - 29,700 Venkayya(49) ] Stress Limit; +30 Ksi
13 29,020 29,037 Fleury (31) | max. stress ;10,623 psi
1 29,009 - -
15 29,001 28,963 Arora (42) Stress Limit; +30 Ksi
16 28,992 - -
- - : 31,020 Venkayya(12) | Stress Limit; #10 Kei
No, of Iterationms,
unknown -
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8, CONTINUOUS BEAMS WITH TAPERED ELEMENTS

A range of beam problems and their solutlons are presented in
tﬁis chapter, They are 2 to 5 span continuous beams assembled with
tapered beam elements, The design process decides the depths at the
nodes and these depths decide the tepered configurations of elements
so ag to maintain continuity of structure at the element boundaries,
Deflection and/or stress constraints are imposed on nodes and the
loads are applied only to nodes. The shape of sections is rectangular
or I-~shape, The term "cost™ throughout this chapter means either the

total weight or the cost defined by Eque (5.5) or Equ. (5.37).

The problems and their solutions are i1llustrated in the figures
25 to 34 The nodes at which deflection and/or stress constraints are
active are indicated in the figures by #d and/or xs representing
active deflection and stress constraints respectively. The deéign
values also appear in tables 26 to 33 together with the values ?f the
optimality eriteria equations. These values are given to showvto
vhat extent the designs satisfy the optimality criteria, No other
results are available.in the literature for the results of this thesis

to be compared with,

Ex.B=1 2-Span Beam Case I

A simple 2-gpan beam was taken first so as to show the ways of
design variable linking and their effects., The problem and a number
of solutions under various conditions appear in Fig. 25. The self-weight
of the beam was neglected, its section was of I-~-shape having constant
flange areas, 4000 mmz, and the cost function was linear., The minimum

size was 300 mm for all design variables, This problem, Ex.B-l, was
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120 K
60 XN
1 , 5 , 17 “Section"

i l O I I A R _;&_ ']‘

e ’ 1 A0 D.

o _l {
. 4 @ 2000 12 @ 2000 . PO

Material ; Steel

{y; = Looo mm®

E = 210,000 N/mm?
P =185  glen’
o= 160 N/mmz

ExoB-1
4 P L
300 300

160 N/mm? stress

active stress constraint

FY-
+«d ; active deflection constiraint
Ex,B=2
4,
300 l ]
+
1049.3 %d 9?9.3
A ~ 1 B
48 mm deflection
Ex,B=3 _
4 i L}
300 ' - I ] . ggg
T—— _ e e ..
o 1209.7  *% 1399.6 ‘
48 mm deflection
Ex,B-4
} _ .
300 1 300
¥ A +d | =
”" 1309.4 1309.4 -

28 mm deflection

Fig 25 Designs of 2-Span Beam
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subject only to stress constraints at nodes and as shown in Fig. 25
the stress at node 11, to which the point load 120 KN was applied,
reached the permitted stress, 160 N/ﬁmz. The design valueg and other

results are shown in Table-26 and Table=34,

Table~26 Designs of 2-Span Beam

Design ExeB-l Ex.,B=2 Ex,B-3 Ex,B-4

Verte [T | 120 | 011 (21 [ 01| (21 | 1) (2]
1 300 045654 300 0.4966 300 ~0,0483 | 300 | ~0.0551
2 1032 0.,099891 1049 | 1.0019 | 300 0.8909 | 300 | 0.8237
3 300 | 0.,3021 | 949 | 0.9976 | 1210 1.0017 | 1309 | 1.0007
4 - - - - 1400 0.9998 300 0. 6489
5 - - - - 300 045604 - -

Cost .

of web | 1673290 2306300 2015530 2021540

No. of :

Tter, | - 16 20 22 oy

pinimum size § 300 mm

(1) Design values, i.e., depth of the beam

(2) Values of optimality criteria equation,
Equ, (5-59){

Ex,B=2 2-Span Beam Case TT

This problem is the same ag Ex.B-1 but deflection constraints
were imposed on the midspans, nodes 3 and 11, in addition, FEach
deflection 1limit was set to a five hundredth of the span length,

The design values and other results are shown in Fig, 25 and Table-~26,
and Table~34, The deflection st node 11 reached the 1imit, 48 mm,

" and no other constraints, deflection or stress, were active,
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Ex,B=3 2~Span Beam Case IIT

This is the ssme as Ex.B-2 but with a different way of design
variable linking, The elements of the right span were divided into three
groups, each having the seme rate of tapering, Therefore, the number
of design vpriables changed from 3 into 5. The deflection at node 11
was also active, The design values and other results of this problem

are slso shown in Fig. 25 and Table-26, and Table-34.

Bt B=f 2=8Span Beam Cage IV

This is the same as Ex,B=3 but the middle part of the righf span
was made to have the same depth by linking further the two design '
variables governing the depths of the part. In consequence the numbér
bf design varisbles was reduced by one, As in Ex.B-2 and Ex.B-3,
the deflection at node 11 was active, and the design values and
other results are shown in Fig, 25, Table~-26, and Table-34. It is
interesting to note that the depth at node 5 has been set to th—;
ninimum in Ex.B-3 and Ex,B-4, The maximum bending stress at the
node was 117'and-116“N/ﬁm2-respectivelj5-both well 'below the permitted ... i.::

value 160 N/ﬁm2-

Ex,B=5 3-Span Beam Case I

A 3-span beam is shown in Fig 26, It is assembled with 30
elements and subject to 3 load cases, The self-weight of this beam

was not taken into account, The minimum size restriction was

400 mm for all design variables,

The first problem concerning this beam, Ex,B-5, was assumed




Node Numbers

1 ) 21 31
N SR N O N U T N A N A TN I A
n . A
8@1200 : 12@1200 10@ 1200
30 KN each 30 KN each 30 KN edach
S T T SR N TN S N R W DA A
LOAD CASE 1
30 KN each 30 KN each 30 KN each
| T I I D T | I S T | } S W
‘ . LOAD CASE 2
30 KN each | 30 |KN each
L1 Lol P IS W
LOAD CASE 3
. Material : Comerete
E = 30000 N /mm?
Ex.B-5, rectangular sectjon, g= f.00, a0 design variable linking p = 24 g/em
. . e i = 7o df/ﬂ!m;

" Fig. 26 3-Span Beam & ExB-5

¥ active

stress constraints

get
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to have rectangular sections with a constant breadth, 400 mm for all
eiements. Stress 1imit of 10 N/mm2 was lmposed on the sections of

ell nodes, but neilther deflection constraints nor design variable
linking were adopted. The cost function of this problem was assumed
to be linear, The design values, the values of the optimality criteria
equation, Equ. (5.57), and other results ere given in Fig. 26,

Table-~-27, and Table=34.

Table~27 Design of 3-Span Beam Case I, ExeB=5.

(1| (2 (3) (1) | (2) (3) (1) | (2) (3)

. 3 | 400 | 0,0111 | 11} 432 | 1.0031 | 21 | 788 |. 1,0005
2 | 400 | 0,0626 | 12} 400 | —0.0058 § 22 | 667 | 1.0007
3 | 437 { 0.9988 | 13[ 400 [ 0.2421 | 23 { 519 [ 1.0012
4 454 | 0,9985 14| 443 0.9968 2, | 400 0,2113
5 | 423 1 0,9982 | 15| 484 | 0.9972 || 25 | 400 | =0.0595
6 | 400 | 0.0875 || 16} 467 | 0.9969 [ 26 | 451 | 0.9984

T [ 400 (=042433 | 17{401 | 0.9974 { 27 | 520 | 0.9988
8 | 526 1,0018 | 18 400 [ -0.1306 | 28 ( 533 { 0.9991~
9 | 692 | 1,0013 | 19(400 { 0.1305 | 29 | 493 | 0.9992

10 | 577 | 1.0019 {| 20| 623 | 1.0011 || 30 | 400 | =0.0442

' ‘ 31 | 400 | -0.0088

Cost of the beam ; 16507800

No, of iterations; 11

mimimun size 3 400 nm

(1) Design variable numbers

(2) Depths of the beam, design values.

(3) Values of optimality criterim equationm,
Eque (5457)




128

ExoB=6 3=Span Beam Case IT

This problem is the same as Ex,B-5 bul with deflection limits
of 6 mm, 10 mm and 8 mm imposed on the midspans respectively and design
variable linking, The design values and other results are shown in
Fig. 27, Table-28 and Table=34, The deflections at the midspans were
all active and the stress of one node (29} was the only active stress
constraint, The stresses at the intermediate supports, nodes 9 and
21, were only 80% and 70% of the permitted value respectively. This
fact shows that deflection constraints are rather predominant in this
problem and the depths at the supports have been decided by the

stiffhess requirements.,

Table-28 Designs of 3-Span Bean

Design ExeB~b Ex.B-7 Ex.B~-8

Veriable 7y T (@) | () (2) (1) (2)
1 400 0.1438 400 0.1951 400 ~0.0005,
2 521 0,9992 598 1.0008 432 0,9978

3 791 1.0031 | 1568 0.9978 1725 1.0013

4 443 | 0.9978 | 400 0.1564 400 | -0.0015
5 1035 1,0009 2167 . 1,0008 | 2058 |- 0,9977
6 499 | 0.9995. | 656 | 0.9985 | 89 | 1.,0013
7 403 | 1.0004 | 450 | 0.9999 | 451 | o0.9981

Cost 19930600 230859 226411

et | w | y

minimum size ; 400 mm

(1) Design values,

(2) Values of optimality criteria equation,
Equ. (5.57) or (5.59)



Ex.B-6, rectangular section, g=1.00
400 521 | 791 443 | 1035 499

e

Ex.B-7 l~section, p= 0.75

400 508 1568 400 2187 656 450
J[\: *d T S S LSH.
Ex.B-8, I-section,p:O.?S, stress limits only

451

400 __432 1'7"25 : . 400 . 2058 689

- 1 L
! .S +S *5
#d ¢ agctive deflection constraint® _ | \ /

%5 ! agctive stress comstraint

Fig. 27 Various Designs of 3-Span Beam

62T
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This problem is the same as Ex,B-b6 but with I-shape sections and
the nonlinear cost function. The flanges of I-shape sections were
assumed to have e constant cross sectional area, 24000 mma, and
the exponent used in the nonlinear cost function, Eque (5.37), was
set to 0,75, i.ee 3 = 0.75. The design and other resulis are shown
in fig. 27, Table~28 and Table~34. In this design the stresses at the
intermediﬁte supports were all active and called for very deep sections
vhereas the section at the midst, node 15, was understressed (77% of

the permitted) and set to the minimum depth. The design values were

decided‘generally by stréngth'requirements.

ExoB~8 3~Span Beam Case IV

|
\
\
\
Ex,B=7 3=Span Beam Cese 11T
|
|
|
Thls problem is the same &s Ex,B-7 except that no deflection
congtraints are imposed, The resulting design, shown in Fig, g? and l
Table-28, is similar to that of Ex.B=7, Instead of the deflection
constraint at node 5, the midst of the first span, the siress at a

nearby node, node 3, was active.

ExeB=9 /4-Span Beam Case I

The configuration of this beam, the applied loads for each of
the three load cases and other design conditions are illustrated in-
Fige 28, The problems concerning this beam take into account the

self-weight of the beam,

However, the first problem of this beem, Ex,B~9, was solved for

two cages, neglecting and considering the self-weight., The beam was
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1 9 _ 2] 31 37

R T O TR O NN A N T U U N YO NN YU I NN U UG U T N N N AN

ﬁ% A .5

o i #rh

EX.B“9,1U o é’ @& 1’200 72 @ 7206 0 @ f200 —m b 5@ 200 —

Ex.B-{1~3 f— ¢ @ 2000 /28 2Lsoo 7o @ Zoao b @ 2000 —al
60 KN each 58 kN - each

NN

VL bbb pareach

70 kW each

15 KN each

. y PRI TN S S SN Y SR S P Y N Y T
o LOAD| CASE 1
, A/‘ , 58 KN each 80 KN each i '
Jofveeet VALV LV LV B L L oK eeck || 15 KV ead)
LOAD| CASE 2 |
y p , 60 kN each 65 KN each
: N
A PRI s ihiavac ST N U N 0 O 00 I O O A A O O O
LOAD CASE 3
Ex.B-9 _ Ex.B-10 Ex.B-11,12,13
Material  m— 1T Material [ IT Material
; comerete ' ; toncrete ; Steel
D So-4 D ro-y D
E = 30000 N/mm? E 30000 yfmm* E = 270,280 A//wm"
1 pz2e grem? L L =24 g/cm? _L f =785 8/cm?
f— g00—] F =10 w/mmt LI__. = fo A/met L—I_J T =760  N/mm?
ggeoo mm2

I
l

Looo mm® byt de!:yt'ﬂj in Ex.B-13

Fig. 28 Problems of 4~Span Beam

et



assumed to have rectangular sections with a constant breadth, 800 mm,
and subject to deflection constraints of 8, 12, 10 and 6 mm at the
midspans respectively as well as stress limits -of 10 N/mm2 at the
nodes. The cost function was assumed linear, The resulting designs
for the both cases are shown ir; Fig. 29 and Teble-29, Considering
self-weight naturally called for deeper sections but the middle

part of the third span became shallower.

Table=29 Designs of 4~Span Beam Case I, Ex,B-9,

Design ExyB=9=] Ex,B~9~2

Variable{ (1) (2} (1) (2)
1 300 0,0509 | 300 0.0402
2 395 0,9979 | 409 0.9997
3 819 1.0006 | 916 1.0000
4 830 1,0005 892 0.9999
5 716 0.9983 | 848 1,0010
b 591 1.0008 | 568 | 0.999.
7 658 0.9993 | 1704 049996 _
8 300 -0,0103 | 310 1,0019 )
9 300 ~0.1012 | 300 | -0.2872

Cost 501539 532967
Teers 7 i

Exo,B=9=1 ; negiecting self~weight,
ExeB~9-2 ; considering self-weight.
minimum size ; 300’ mm

(1) pesign values.

(2) Values of optimality criteria

equation, Bque (5.57).




Ex.B-0-1, neglecting seif-weight, £=1.00
300 r39'5 | 819 __830 716 591 658 300 300
od -u-s ¢d g

IN—\ /{ 8

Ex.B-8-2, considering self-weight, A=1.00

300 409 916 892 8\48 568 70:. 310 300
.S ’ *S o 4 5 N d ! +5
o 7/

#»d ; active deflection constramnt

xs ; dctive siress constraint

Fig. 29 Designs of 4-Span Beam
with rectangular section

€t
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Ex¢B=10 /-Span Beam Case 1T

This problem 1s the same as Ex.B-9 except that the sections are
of I-ghape and both flenges of any sectlon have & congtant cross

sectional area, 36000 -

s &nd the cost function is nonlinear with

£2 =0,75. Fig, 30 and Teble-30 show apparently different two
designs of this problem, each satisfying the optimality criteria.
Design 1 was obtained by the optimality criteris method of this thesis
including both deflection and stress constraints, whereas Design 2
was obtained by using the optimality'criteria method for deflection

constraints and the stress ratio method for stressg constraints.

In order to explore the nature of the design space, a few
trials were made, Firstly the design process of the first method was
started using Design 2 as starting values. But the design did not
move away from Design 2, Conversely the design process of the second
method was started using Design 1 as starting values, Also in this
cagse, the design did not'move eway from the initiel design, Deéign.l.
Secondly an initial design, other than a uniform design which had
always been used, was selected by an engineer-without'looking-atIany S
of the two designs and used in both design methods, The design was
on the side of Design 1 and it was hoped that both methodskled to
Design 1, but the use of a different initial design made no difference,
Lastly linear cost function was used instead., This made no differencs
either and it became clear that the feasible region of the design space

was non-convex and there were two local minima or even more,.




| . . :
} Ex.B-10, I-section, #=0.75
| Design 1 ; obtained by the method of this theis

300 470 3153 2271 | 2344 399 2120 506 -

L

[] KN ] Lo

*S 5 S *5S

Design 2 ; obtained by using stress ratios for strss [imits

300 . 1884 1 39.0L - 382 3094 __ 1080 . 19jO3 364 300
*S *S ad *S *S %S S ‘
xd ; active deflection constraint

%S : active stress censlraint

Fig. 30 Two Local Minimum Designs of 4-Span Beam with I-section

Get



Table ~30 Two Designs of Ex,B-10, 4-Span Beam Case 1I.

Design Design 1 Desgign 2
Variable (1) (2) (1)
1 300 0.3070 300
2 470 1.0004 1884
3 3153 1.0007 3904
4 2271 0.9999 382
5 2344, 049990 3004
6 399 1,0016 | 1080
7 2120 1.,0005 1903
8 506 | 1,001 364
9 300 045105 300
Cost’ 2001470 2030390
Toers 27 22

pinimm size 3 300 nm

(1) Design values

{2) Values of optimslity criterias equation,
Equa (5.59).

Ex,B=11 /=Span Besm Case TII

In this problem the beam has the same configuration as that of
Ex¢B~9 snd Ex,B=10 but is made of BteelAinstead of concrete and
therefore subject to different design conditions. Tﬁe length of an
element is 2000 mm instead of 1200 mm. The flanges of any section
have a constant cross sectional area, 4000 mm2. Stress 1imits of
160 N/mm2 are imposed on the sections of all nodes, Deflection limits
imposed on the midspans are 16, 24, 20, 12 mm respectively. Each of
them is equal to a thousandth of the length of the corresponding span.
The elastic modulus of the material used is assumed 210,000 N/mm2 .

The cost function, as in Ex,B-10, is nonlinear with 3 = 0.75.
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The design and other results are shown in Fig, 31, Table-31, and

Table=3L, The deflection at each midspan reached the limit and the

stress of the section at a support was active.

Table-31 Designs of 4-Span Beam, Ex,B-11, 12, 13,

minimum size ;3 300 mm

(1) Design values

(2) Values of optimality criteria equation,

Equs (5059) .

Ex,B-12 /=Span Beam Case IV

This is the same as ExB-11 exceplt that the.deflection constraints

Design Ex,B-11 Ex,B=12 Ex,B=13
Variable (1) (2) (1) (2) (1) (2)
1 300 0.5338 300 0,3174 | 300 0.4047

2 793 0.9999 439 0.9989 543 1.0000
3 2545 1,0000 2905 1.0004 1263 1.0001
4 2669 1.0003 2099 1.0022 1282 0.9999
5 1838 0.9982 1968 0.,9981 1146 1,0020
6 1533 1,0007 863 1,0002 965 049990
7 1759 0.9998 1712 1,0000 1501 1,0002
8 423 1.0000 304 0.9998 305 1,0011
9 300 0.3215 300 0.4886 300 045325

Cost '

of Web 2496010 2133880 ;678920

No, of L

Ther, 21 15 19

were relaxed, The deflection limits were doubled, In other words,

each midspan was allowed to deflect up to a five hundredth of the

length of its corresponding span.

shown in the same figure and tables as those of Ex,B-11,

The design and other results are

137

In the design

six gstress constralnts were active while only one deflection was active,




EXeB-11, I-section, Steel, /!, = o978
3aoo 7293 2545 2449 7838 /633 7259 423 ~  3eo
] T

LA i 1 ¥

Ex.B-12, I-secbion, Sleel, p= 0.95

309 439 2905 2099 7968 £43 7772 364 300
L 1 1 | 1 L) ¥ ¥
xS s
z 2 d; active deflection constraint
. # € active Stress constrasnt
EX'B‘13; I-section, Steel, /3:0.75“ .
300 : S48 fzfa : S282 774&E P48 158 f Jo& 360
L] L) ] ) )
M" 5 xd +d
& o |

Flange Area Distribution in Ex.B-13L |

1
! Zooo mm* . fooe mm? _ L0680 mmd So0a | dooo mm?

X
]

ad

Fig. 31 Various Designs of 4~Span Beam made of Steel
‘ 7 _

[LA—

el
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ExeB=13 /-Span Besm Case V

This problemn is the same ag Ex,B=12 except that the cross sectional
' afeas of flanges of some elements were increased as shown in Fig, 31,
Therefore the size of flanges in this problem varies from element to
element, The design obteined and other resulis are sﬁoun in Fig. 21,

Table~31l and Table=34,

ExeB=1/) /~Span Beam Case VI

This problem and the design resulted in after 12 redegign
iterations are shown in Fig, 32, In the solution process, the stress
at node 31 was included in and deleted from the set of active constraint
alternately and thus its associated design variable was treated as

of Group 3, However, the optimality test showed that the design was

quite close to the optimum,

*¥
L

ExeB=15 A-~Span Symmetric Beam Case T

This beam is illustrated in Fig., 33, Since the structural
configuration and the applied loads are both symmetriec the resulting ‘
design must by symmetric, too, The beam is made of concrete, whose
elastic modulus, nass density and permitied stress are 30,000 N/mmz,
2.4 g/'r:m3 and 10 N/mm2 respectively, The deflection 1limits imposed

on midspans are 8, 10, 10, & mnm.

The first problem, Ex,B-15, is of rectangular section with a
constant breadth, 400 mm, The cost function was assumed linear and

the self-weight was neglected, In the resuliing design, showm in

Fige 33 and Table=32, two midspans, nodes 15 and 27, were not only




Node Numbers

1 9 21 31 37 Seetion’
gorrrrrrrrrr rrryre et e g et r___—_!T
#r e s L 4
— § @ ose ‘2 @ zeoo 70 @ 2ovo ———————E@to00— Sl i
30 kNeach 58 KN each v .
Lbbbhig ! l lr L I l l I rneach P fa f : e'acf . é”:"/"‘-‘f‘f‘ 4000 mm

LOAD |case 1
Material ; Steel

$£8 KNV each bo &N each .
sreoct | LUV LTI LU LT sopens, |smos &« 2rooee o/me
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-— S
e KN each 6- = séo ~/mm
~ 33 Ky eech]
Ir.k.’v.e.af‘i [ ) { f‘/\i i“f‘ PR S | ] Ll l l l ] 1 L ARARER
LoAD CAsz 3
Ex.B-14, p=o7s
300 2273 74876 - 208k 208 2087 300
' *$ " Y ks b ed »s Cost of Web ; 1008730

No. sf Lter.; 72

**'d; active def!ect":‘on constraint

$#S; qactive stress constraint

Fig. 32 Another Problem of 4-Span Beam & its solution
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Node Numbers 14

1 9 21 33 41
ANEEEEENEN NN e
2 o .

“— 8 @ 1200 — 1 12 @ 1200 ——T—— 12 @ 1200 8 @ 1200

GOKI‘ITOKN 7OKN6OKN 25 KN each
25 each
L B ] | 11
LOAD[CASE 1
120 KN 120 XN
40 KN each 40 IIG\T e]ach
LOAD CASE 2
Material ; Concrete
E = 30,000 N/mz?
FP= 2 g/cm3 #d ; active deflection constraint
= 10 I»I/mm2 #5 3 sctive stress constraint

Ex.B-15, rectangular section, neglecting self-weight, /5= 1.00
30 300 650 558 593 558 649 __ 300,5 200

]

" xd ’ ' % d *d “q

yrrrey

Ex,B-16, I-section, neglecting self-weight, B = 0,75

300 300 9% 896 839 896 924 300 300
L) i ; s ] - s 1 ;’5 4 s L : s T !
A
iny

EX,B-17, I-section, considering self-weight, /3 = 0.75

300 300 1079 679 1983 679 1079 300 300
1 1 ; - . T e T T Y T

- ,

e

Fige 33 4=-Span Symmetric Beam and the Designs
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deflected up to the limit ﬁut fully stressed whereas none of the
sections at the supports is fully stressed, It appears that the
deflections were controlled more by the sections at the adjacent
- supports while the stresses were controlled more by the sections at

the midspans,

The design 18 not strictly symmetric. The 8th design value is
very close to the minimum size but it still stends in Group l. It
is easily foreseeable that the design variable should have gone to
Group 2 meking the design symmetrie, but this implies a change of
the nature of the desgign. Currently there are 9 active constraints,
including 3 minimum size constraints, in the 9-dimensional design
space, Therefore if design variable 8 had gone to Group 2, the active
constraint gradient must have been linearly depéndent and for this
reason one of the active deflectlon or stress constraints should have
been put aside as inactive, although it was in fact active, for the
design process to be successful, It seems that the slightly unsymmetric
design, which satisfied the optimality criteria very well, was resulted
in due to rounding error, and the design process incidentally stopped

at the design obtained,

EXeB=16 4=Span Symmetric Beam Case II

In this problem the beam had T-shepe sections with a constant
flange area, 2400 mm2. The self~weight and the deflection constraints
yere ﬁeglected. The cost function was assumed nonlinear with B = 0.75,
In the resulting design none of the deflections at the midspans
exceeded the 1imits. Therefore the same design could have resulted

"even if the deflection constraints had also been considered., However

an adverse situation arose when the problem was solved considering
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the deflection constraints as well, The deflections at nodes 5 and
37 took part in the set of active constraints in iterations 2, 3 and
4 and ceaused déletion of some stress constraints, and particularly

in iteration 4 the deletioﬁ became more violent and the design process
failed to continue, This aspect needs further research on the

interrelation between deflection and stress constraints.

Teble~-32 Degigns of 4-Span Symmetric Beam

Design FxeB-15 Ex.B-16 Fx,B~17
Variable | (1) | (2) (1) (2) (1) (2)

1 300 | 0.1184 | 300 | =0.0000 300 | 0.0491

2 300 | 0.7328 | 300 | -0.0003 300 | 0.1612

3 650 | 1.0001 | 924 1.0004 | 1079 | 1.0003

L 558 | 1.0000 | 896 1.0009 679 | 0.9906

5 593 | 1.0003 | 889 0.9975 | 1983 | 1,0059

6 558 | 0.9988 | 896 1.0009 679 | 0.9906

7 649 | 1.0036 | 924 1.0004 | 1079 | 1.0003

8 300.5! 0.9971 | 300 | -0.0003 | 300 | 0.1612

9 300 | 0,1590 | 300 | -0.0000 300 | 0,0491
Cost 22756600 1378270 1426980
No, of ‘
Thor 21 18 25 | |

minimum size ; 300 mm
(1) Design valuese.
(2) Values of optimality eriteris equation,

EquO (5.57) or (5.59).

ExeB-17 A=-Span Symmetric Beam_Case IIT

This problem was the same as Ex.B-16, but the self-weight and
deflection conatraints were considered, However, the deflection

constraints did not take part in the set of active constraints




throughout the design process, therefore such a problem as explained
in Ex,B-16 was not encountered, It is interesting to note that the
désign of this problem, shown in Fig. 33 and Teble-32, is quite
different from that of Ex.B-16 in gpite of the faet that treating
Selfuweight is the only difference between the two problems.
Although the design process vas made to stop after 25 iterations and
yielded the design satisfying the optimality criteria fairly well as
shown in Table-32, the cost was still decreasing and the section at
node 21 was getting deeper. It is also notable that the section at
node 21 is not fully stressed (82% of the permitted) and there is no
active stress constraint associaled with the 5th design variable,

the depth at mnode 21,

Exo.B~18 5=Span Bean

The problem and its solution are shown in Fig. 34 and Table-33.
It i3 interesting as well as foreseeable that active stress constraints
occurred at supports and active deflection constraints occurred at

midspans.

Table 34 1lists the beam problems solved so far by the optimality
criteris methpd of this thesis and other information concerning the
resulting designs. The designs converged within 10 to 20 re&esign
iterations under a rather strict cutoff eriterion, 0,001 times ihe
current value for each design verisble, and the last column of
the table shows how fast the designs converged, It is also notable
that the number of redesign iterations was scarcely sensitive elther
to the size of problems or to the number of active constraints. The

tables 26 to 33 show the values of the optimality criteria equation
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Ex.B-18, A= 0.75
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*d ; active deflection constracnt
4 ¥8 ; active stress coastradnt

Fig. 34 5-Span Beam & the Design
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of the resulting designs demonstrating how accurate the solutiens
are, The values were obtained by evaluating the optimality
criteria squation using the Lagrange multipliers determined during

the last redesign iteration and the constraint gradients evaluated

from the final design.

Table-33 Design of 5-Span Beam, Ex,B-18

Design
Varisbile. (1) (2)
1 400 0,2280

2 400 0.,2446
3 525 1.0003
4 1999 0.9999
5 846 0.9995
6 2651 1.0011
7 1142 1.0005 -
8 618 0,9972
9 400 0.3688

Cost

of Web 2093400

NO. of

Iter. 14

minimem size ; 400 mn

(1) Design velues

(2) Values of optimslity criteria equation,
Baque (5059).
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Teble~3, List of the Beam Problems solved and
Some informetion concerning their Designs,

\
| 1
No. of { No, of { No, of Design| No. of Active]' No, of '
Examp}e' :Spans - Load Variables Constraints Tterations
Cases fgr, 1] Grs 2 [def.| str. | (1) | (2)
ExyBwl 2 1 1 2 - 1 16 11
Ex¢B~2 2 1l 2 1 1 0 20 2
ExeB~3 2 1 2 3 1 0 22 10
ExoeB=i 2 1 1 3 1 0 14 9 |
Ex,B-5 | 3 3 19 | 12 - 119 1| 4 j
Ex,B=6 3 3 6 1 3 1 18 3
ExaB-7 3 3 5 2 1 4 17 7
Ex,B-8 3 3 5 2 - 5 1 7
Ex.B-9=1| 4 3 6 3 2 4 7 3
Ex¢B=0~2] 4 3 7 2 2 5 8 5
Ex4B-10 4 3 7 2 1 6 27 15
ExoB=11 | 4 3 7 2 4 1 21 |
Ex,B-12 4 3 7 2 1 6 15 7
Ex.B=13 4 3 7 2 3 3 19 10
Ex.B-14 | 4 3 5 2 1 3 Y12 | -
ExeB=15 4 2 6 3 4 2 21 2
Ex4B=16 4 2 5 4 - 5 18 6
ExeB-17 | 4 2 5 A 4 >25
Ex,B-18 5 3 6 3 3 3

(1) required to meke the design converge such that the change
of any design value is less than 0,001 times its current

value,

|
|
|
\
}
Y| 7 }
|
|
|
\
\

(2) required to make the cost of the design less than 1,01
times that of (1).
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9, DISCUSSION AND SUGGESTIONS FOR FURTHER DEVELOPMENT

»

Major improvements achieved in this work are in iwo respects,
Firstly the stability and efficiency have been improved substantially
compared with Taig's method, The strategies of deleting inactive
constraints during the Newton-Raphson process and removing passive
design variebles were entirely changed to eliminate possibilities
of 'oscillating' and'loopingt A different approach of finding active
constraints has brought about not only stability but also efficiency.
| Secondly the scope of problems to be solved by the method has been
extended, Stress constraints can take part in the Newton-Raphson
process, This was possible due to the improved stability of the method,
and in conseguence exact solutions were almost always obtainable.
Beam problems of a practical scale can also be solved by the method,
This may be a notgble improvement for the optimum design of eivil

engineering structures, -
"‘TT)

Nevertheless, further developments are necessary in the both
regpectse In the following sections, some difficulties encountered
are explained and the areas of possible further developments are

suggested,

9,1 Selecting Active Constraints.

An important improvement was the way of selecting active
constraints. The set of active constraints was made to expand gradually
as the design process proceeded by taking more critical: constraints
if there were any. A possible criticism of this approach might be that
the incorreet sets of active constraints at earlier stages of the

design process could direct the design wrongly., However, the approach
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has been good encugh to fix the correct set of active constraints
vithin a reasonable number of redesign iteratlions and caused no
adverse situations when coupled with stress ratio to cope with the
sbsence of some stress consirsints in the set, In the design space
shown in Fige 35, P; 1is the optimum design when Constraint 1 is

the only constraint whereas FB is the optimum when both Constraint 1
and 2 are imposed. If the design process starts at P, considering
Constraint 1 only, the moves will be towards P, rather than P4 end
eventually the design will pass by Pj. Then Constraint 2 will be
included in the set of active constraints and make the design

process find P, .

Constraint 3

Constraint 1

Constraint 2

Cost. Contour ~.

Fig, 35 Process of Finding Active Constraints
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In the large-scale problems, 12/~bar and 200-bar trusses, too
many active constraints in earlier redesign iterations in fact caused
disturbance during the Newton-Raphson process. It appeared that
considering unnecegsarily many constraints when the design was still
remote from the optimum was not helpful., For these problems, therefore,
iﬁ made the method more efficient to consider a constraint as active
when i1t was violated by more than a certein amount and to reduce the

amount gradually as the design process proceeded,

9,2 Initial Fstimates of Lagranre multipliers

28)

The mein criticism of the method by Taig and Kerr ‘hes been

that the Newton-Raphson process requires good initial estimates of
the Lagrange multipliers which are not always easy to obtain.zz)Bl)
This alsc applies to the method of this thesis. However, the
extensive numerieal experiments made throughout this wofk showed

thet the estimates of the Lagrange multipliers ovbtained from Equ;(5;62)
and {5.63) were good enough for the Newbton-Rephson process to reach

the solution within a reasonable mmmber of iterations,

Nevertheless, a difficulty arose in comnection with the design
variable linking by ratio for the beam problenms. Failure.in estimating
the Lagrange multiplierg for beam problems was experienced, but only
occasionaly, The method assumes equal coniributions from each- .
constraint and this sometimes lead to.the values in the brackets
of Eque (5.70) = (5,73) becoming negative and making it impossible
to obtain estimates of the Lagrange multipliers from the equations,

It appears that this failure should be blamed on the assumption

used for evaluating %]’ and Zip included in Equ. (5.70) = (5.73).
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The stress at node 31 in Ex,B=9 and the stress at node 15 in

Ex.B-18 took part in the set of active constraints in the 5th and

6th redesign iteration regpectively, and thelir associated Lagrange
mltipliers could not be estimated from Equ, (5,70) - (5.73).l For
these case an alternative way was used, Whenever a negative value

is assigned to the twackets of Equ, (5.,70) = (5.73) the design
process automatically switches over to Equ. (5.88), the linesar
équations for optimality test, {o obtain estimates of the Lagrange
multipliers, Therefore the estimates of the Lagrange multipliers

in iteration 5 for Ex.B-9 and in iteration é for Ex,B~18 were obtained
from Eque (5.88) and thereafter the problems were solved successfully

as shown in the precedihg chapter,

Since Equ. (5.,88), used for optimality test of a design, is
based on good mathematical grounds it is worth considering the sole
use of this equation for estimeting the Lagrange multipliers. However,
the use of Eque (5.,88) in the earlier redesign iterations sometimes
created another problem, It gave negative estimates to some of the
Lagrange multipliers, énd caused disturbance of the Newlton-Raphson process.
So far, the use of Equ., (5.70) - (5.73) coupled with the use Equ,

(5.88) as an emergency measure has been satisfactory,

9,3 Functional Dependency of Constraints

Anothér difficulty is the possible singularity of the Jacobian
ratrix in Eque (5.67)s If functional dependency exists in the set
of active constraints, the Jacobian matrix becomes singular and the
Newtbn—Raphson procesg fails to proceed, In Ex,T-12, 25-Bar Truss

Case III, and Ex,T-13, 72-Bar Truss Case II, the design variable




linking keeps the designs doubly symmetric end in addition the applied
loeds are arranged symmetrically or doubly symmetrically, Therefore
the X= and Y-directional deflections at node 1 of Ex,T-13 under load
cage 1 are kebt the same at any deslpgn subject to the design variable
linking. This fact led to severely ill-conditioned Jacobisn matrices,
and resulted in deletion of one of the two deflection components from
the set of active constraints, The deletion did no harm to the
Newton=Raphson process except requiring more computing time. However,
it is sensible to consider one of the two deflection components as
inactive throughout the design process. In Ex,T-12, the Y=directional
deflections at node 1 and 2 were always the ssme under load case 1 and
the seme in magnitude under load case 2, and thus the same situatibn

as in Ex.T-12 happened,

It is more than desirable to take only one member stress as an
active constraint from the members controlled by a design variable,
This approach prevents singularity of the Jacobian metrix, more™
fruitfully reduces the number of active consiraints, and has raised
no disturbences such as taeking different member stresses as an active
_constraints from iteration to iteration. In Ex,T-8, 10-bar truss
Case I-b, members 3 and 4 always carry forces with the same magnitude
and thus it is very likely that both members are assigned the same area
in en optimum design, If they have the same size, the derivatives of
both member stresses with respect to each design variable except those
assoclated with members 3 and 4 become the same, If the sizes of
members 3 and 4 go to Group 2, the gradients of both member stresses
in the subspace spanned by Group 1 design variables will become
identicel and thus one of the two member stresses will be deléted
from the set of active constraints. In order to avoid this situation

the sizes of members 3 and 4 were linked so ns to be represented by

152
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one design varisble and only one of the two member stresses was taken

as an active constraint throughout the design process,

In the beam problems with design variable linking the stresses
only at the boundary nodes and at only one node among the inside nodes
of a group of elements having the same rate of tapering were allowed
to take part in the set of active constraints for the same reason
as in the truss problems. In addition, the deflections were taken
into account only at one node per span, Neverthelesg, there is
a possibility of the number of active constraints exceeding the number
of design variables and thus of functional dependency between the active
constraints, It 1s possible that the stresses at nodesg "a", "b" and
tel gand fhe deflection at node "b" in Fig, 36 are all active, If
this happens to all spans the number of active constraints exceeds
the number of design variables by the number of spsns., Even if this
happens only to.a particular spasn there sitill exist possibilities
of nearly dependent constraints which may result in ill—conditigyed
Jacobian matrices during the Newlon-Raphson process. Therefore it will
be reasonable to pfevent all. the constraints in Fig. 36 from being. . .
active at the same time by dropping the least restrictive constraint,

although no such a situastion has yet been encountered.

node Wgh node "pH"

'i"sa * 5

! N
Y

ol, 3 deflection constraint at node b,
“$q 4SprSe 3 stress constraints at nodes &, b, c.

Fig. 36 Possible Consiraints in a Span of Beam Problems.

o
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However, & serious problem could arise from dropping the wrong
constraint when &ll the constraints are really active and functionally
dependent, Of the dependent constraints we have several different
independent subsets, each calling for different sets of the Lagrange
multipliers, Moreover, sdme of them could require some negative
Lagrange multipliers and therefore may cause fmilure of the Newlon-
Raphson process or deletion of the constiraints requiring nggative
Legrange multipliers, Detecting functionsal dependenc& between the
constrairs considered as active and deciding which constraints should
be dropped are the aspects which require further research for the

method of this thesis to be completely successful,

9, Use of Stress Ratio

The stress raio algorithm is used in many methods to replace’
gtress constraints, whereas the method of this thesis uses it only as
a temporary measure as wasle#plained in section 544.5. In section 7.1l
it was demonstrated that the use of stress ratio could lead to a wrong
design., In spite of this, the stress ratio algorithm has been popular
due to its simplicity and, in many cases of truss problems, resulted

in designs close to the optimum,

In the beam problems, however, failure of the design process vas
often experienced when stress ratio was used to replace stress constraints
taking part in the Newbton-Raphson process, When the deflection constraint
at node "b" of Fig. 36 was active during the Newbon-Raphson process,
but later the depth et node "b" as well as the depths at nodes "a"
and "c" were decided rather by stress ratio, the next round of the

Newton-Raphgon process was soon disturbed, The design variables
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governed predominantly by the constraint, deflection at node "b", were
deemed 28 inactive variables and thus removed from the design space,
In this consequence, the deflection gradient in the subspace spanned
by the Group 1 design variables became almost null leading to nearly

singular Jacobian matrices.

Moreover, the design variable linking by ratio makes it difficult
to use the stress ratio method effectively. The required depths at
individual nodes may be caleculated by stress ratios with a certain
accuracy, but accurate transformation of the depths into the_design
values is impossible since the transformation'matrix in Equ. (5.34)

is not invertable,

9,5 Damping of Newton~Ravhson Step Sizes

One of the important improvements achigved in this work was
eliminating possibilities of a."loop" forming during the Neutog;ﬁaphson
process as mentioned in Chapter 5. When Taig's method was used for
deflection constrained beam problems, it was sometimes experienced that
the Newton~Raphson process neither converged nor diverged, but oscillated,
The Jacobian matrix gave the same Newton direction.in.every 2 or even
30 iterations., This drawback was eliminated as was explained in section
5.4.6, but loops formed when the set of active constraints changed in
Ex,T-10, 10=-bar truss Case I-c, and in Ex,T-13, 72-bar truss Case II,
Participation of & new constraint in the set of active constraints:
might have led to poor estimates of the Lagrange multipliers and thus
a loop in the Newbton-Raphson process, To overcome this problem we
may consider damping the Newton-Rephson process, by scaling down the

calculated step size but it is not desirable since damping only increases




156

the number of Newton-Raphson steps required and moreover this situstion
happens very rarely, The method adopted in this thesis firstly allows

the Newton-Raphson process to proceed without dﬁmping up to a certain

number of steps, say 20 steps, and then, if the process does not

converge, introduces & damping factor, say 0.5, and starts the Newton-Raphson
process again, This procedure may be repeated, but only one round

wag enough to reach the solutions in the two problemé vhich have had

this difficulty, Ex.T-10 and Ex,T=13, In the later iterations this

~ problem did not arise since the set of active constrainis contained

correct entries.

9,6 Reducing Computing Time

Although the method of this thesls can give exact solutions
in & stable manher the most painful aspect of the method is the significant
amount of computing effort involved in the Newton-Raphson process.
Fleury 32) suggested that a hybrid optimelity criterion "characterized
by a mix of zero and first order approximations of the constraints™ was
obtainable by applying the FSD concept for the less criticel stress
constraints., It may be helpful for truss problems but is doubtful
if it can give'correct solutiong to the beam problems treated in this

thesis.

An spproach to reduce remarkably  the amount of computing in&olved
in the Newton-Raphson process is conceivable, Particularly in the
bean problems with design variable linking, it may be & reasonable
approximation to neglect )({2 y >(21 and the off-diagonal entries
of ><3gin Equ. (5.67). Using this epproximation we can updafe the

Lagrange multipliers associated with deflection and stress constraints
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separately and moreover finding the component of Newton-Raphson steps
mssociated with eaeh siress constraint is quite straightforward,
Alternatively we can consider >(2,and find the components asgocliated

with stress constraints after obtaining those associated with the
deflection constraints by inverting )({1 « This approximation does

not affect the validity of the results provided no active constraints

are incorrectly deleted., A few beam problems have been solved successfully
using this approximetion, but much more numerical experiment and

improvements are necessary to use it with confidence,

9,7 Possible Cther Structures

There is plenty of room, as is often the case, for further developments
to improve the reliability and efficiency and to extend the scope of
problems to be tackled by the method of this thesis, In particular
the beam problems with I-shape sections can be formulated in & number f

of different ways and solved by the method with minor changes, +

Firstly the flange areas can be taken as the design varisbles
instead of the depths at nodes, The problem then becomes that of
lminimizing the cost of flanges assuming that the configuration of web
is fixed, This problem can be solved in the same way as tﬁe truss
problemé. The bending stress can be expressed as a linear combination
of the generalized rotational displacements with constant coefficlents,.

The design variable linking by ratio is no longer bothersome,

Secondly the problem can be formulated as one of deceniralized
problems, The beam is first designed by considering the depths at
nodes as the design varisbles and then, with the depths so determined,

the flange areas are redistributed as explained in the preceding




paragraph, and vice versa, In this problem, the cost of webs and the
cost of flenges are minimized in seperate processes and this procedure
mey be repested for several times. However, there 1s a little doubt

whether the repeated processes will really reduce the total cost.

On the contrary, both the depths at nodes and the flange areas
cen be considered at the same time, Geometrical similarity existing
between availsble I~-section members or those reasonably proportioned
mekes 1t possible to establish relationships between various properties
of a section. We assume that the area of a flange, /y- y can be

expressed in terms of the depth, D , as

and determine the constants, ¢ and /4 s Dy regression analysis from
available or optimally proportioned I-shape sections. Then the flange
areas vary during the design process, but only depending on the

depths of nodes, | -

Application of the method to other types of structures such as

rigid frames is also possible, The virtual loads to express bending

158

stresses in terms of virtual work as illustrated in Fig, 5 are applicable,

but in case of rigld frames it is desirable to obtain fixed end mements

rather than slope deflections since the frames are analysed preferably

by the displacement method,.
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10, CONCLISION

An optimslity eriteria nethod has been presented, The method is
to solve the design problems of structures built with either bar or
bean elements subject to deflection, stress and minimum size constraints,
The use of the Newton-Raphson method in problems of structural optimization

28)

first proposed by Talg and Kerr was improved in both respects of

relisbility and applicability.

Well known truss problems were solved by the new method and the
results were compared fevourably with other published results. A number
of continuous beams with tapered elements were designed by the nethod,
The resulting designs satisfied the optimality conditions very well,
but there wére no other solutions to these problems in the literature
to be compared with, The stress constraints in both truss and beam
.problems were approximated within firsf order using the method of
virtusl work es was often the case with the deflection constraints, and
it was demonstrated that a proper approximation should bhe used_giso to

the stress consiraints rather than the crude stress ratio approximation,

S8ince the design problems are usually subject to inequality
congtraints it-is‘necessafy to discriminate asctive constraints, which .~ _
is generally lmown to be a difficult task, In the method of thislthesis,
however, the simple conviction that the design would ;ove on towards
the optimum even when not all the active constraint were taken into
sccount proved successful in selecting the correct set of aciive

constraints,

The Newton-Raphson method has been surprisingly good at solving the
optimality criterias and constraint equetions for the Lagrange multipliers.

Large-scale systems of highly involved nonlinear equations were solved
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without raising severe difficulties such as looping or diverging.
Failure was occasionally experienced, but the blame lay rather on the
functional dependency gxisting between the censtraint functions. It

is generally known that the success of the Newton-Raphson method is too
gsengitive to the initial values for the method to be universally
applicable to‘systems of nonlinear equations, Because of thls drawback
inherent in the Newton-~Raphson method, the methods by Marquardtso)

or Jones 51) are sometbime used for problems, such as nonlinear
parameter estimation, where good initial values are not always

possible to obtain, For the problems solved in this thesis, however,
the Newton-Raphson method was so good that it was not necessary to

resort to other methods.

The optimality criteria method presented in this thesis proves
a promising method in many respecés. It solves design problems rigourously
and results in exﬁct golutions in & steble menner, It is also possible
to extend the scope of problems the method can tackle. Its ability
to handle bending elements as well as bar elements and multiﬁie deflection
and stress constraints, as has been shown throughout this thesis,
proves that it is feasible to develop the ﬁethod to the extent
of automated design procedures for. practical.civil enginsering

structures.

Although the Newbton-Raphson process adopted by the method involves
a large amount of computing effort, the stebility of the design process
mekes the method efficient compared with some other crude methods,
Mreover , ever increesing availability of computers will allow the
engineer to be able to afford to use rigourcus methods and obtain

better solutions rather than to rely on crude methods.
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APPENDIX A

How to use the "TRUS"™ program

A.l, A Guide for the Uger

A,1,1 What the program does.

This program provides a preliminary design for plane and space
trusses., A typical problem and its design obtained by this program are
shown in Fige 1. The design given is & minimum-weight design satisfying
optimality conditioﬁs. 4Before uging the program you should decide

the followinge.

1) configuration of the truss,

2) material properties such as elastic modulus, mass
density and permitted stress,

3} loading conditions,

4) deflection limit you wish to impose on the nodes, "

5) minimum sizes of the members,

6) grouping of members such that the members belonging to a
group are of the same material and cross sectional ares,

7} your trial design.

If you prepare a set of data, the progfam will give you an optimum
design minimizing the wgight of materiel used. The printed results show
the cross sectional area of each group of members, the member number
mostly stressed among those belonging to the group, its stress and the
load case number, and the deflection of each nédal point in each direction

under each load case as given in Fig. 2.
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(b) Minimum-weight Design

Fig. 1 A Sample Truss Problem and its Solution,
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A;1.2 Preparing & set of data

Most of the data input part and analysis paert of this program
have been taken from the program presented in "The Finite Element Method",
Brd edition, by 0.C. Zienkiewicz, McGraw-Hill, London, 1977. Therefore,
preparation of data for this program is much similar to that for the

program in the bock.
1, The title card - FORMAT(20A4)

The first four columns of this card must contain "TRUS" and the rest

( columns 5-80) may be any alphanumeric information to be prinfed with

output as Pagé header

[rlelds]s] [ l+le] 17le[-iala]\

Parts of the sample data taken from the problem of Fig. 1 will

appear whenever appropriate.

—T
/

2, Data for the problem size — FORMAT(16I5)

[TTTTa T Il T Tl 1T [ UL f2] I8

Columns ~ Degecription | Variable
1to05 Number of nodal points NUMNP
6 to 10 Number of members _ NUMEL
11 to 15 Number of groups of members NUMMAT
16 to 20 Dimension of co-ordinate space NDM
21 to 25 Max, number of ﬁembers of ;any greup: . - MX

3. Co-ordinate data — FORMAT(215,7F10,0)
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Clojo
b4 z ol. o
RE o 210 . o
- ! Zlz2lef - 314 ]e
& o ol. 3ldlo
/

The first card must contain "COOR" in columns 1 to 4 &nd the

following cards are for node numbers, generator increments and co-ordinates,

Nodal co-ordinates can be generated along a straight line described by

the values input on two successive cards,

The value of the node number

is computed using the N and NG on the first card to compute the sequence

N, NNG, N+2G, etce. NG may be input as a negative number and nodes need

rniot be in order, The input of co-ordinate data terminates with blenk

card (s).
Columnsg Description
1+to 5 Node number
6 to 10 Generator increment
11 to 20 ZX-co-ordinate
21 to 30 Y-co—ordinate
31 to 40 Z-co—ordinate

4Le Member data - FORMAT(16I5)

E|L]l gl . A1/
7 P, 2 7] | ]
4 2 5 |
7 / 5 4| |
9 2 4 4] 1

Varisble
—-’T

N

NG

X(1,N)

X(2,X)

X(3,N)
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The first card must contain "ELEM" in columns 1 to 4. The
following cards contain the member number, tvo nodes connected to
the member and generator increment., Members must be in order, If
member cards are ocmitted the member data will be generated from the
previous member with the nodes all incremented by the generstion
inerement, LX, on the prefious menber, Generation to the maximum

nenber number occurs when & blank card is encountered,

Columns Desceription Variasble
1lte5 Menber number L '
6 to 10 not in use | -

11 to 15  Node 1 number IX{1,L)

16 to 20  Node 2 number IX(2,L)

21 to 25 Generation increment , G

5. Boundary restraint data ~ FORMAT(16I5)

-18lolUN

For each node which has been restrained on a support, a boundary
condition card must be input, preceded by the first cerd containing "BCUNY
in columns 1 to 4. The convention used for boundary resiraints is = 0 for
no restraint and # O for restraint. The input of boundary restraint ,

deta terminstes with blank card(s).
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Columns Description Variable
1l to5 Node number X

6 to 10 not in use : -
11 to 15  Boundary cocde for X-direction ID(1,N)
16 to 20 Boundary code for Y-direction ID(2,N)
21 to 25 Boundary code for Z-direction ID(3,N)

The input of the data for structural configuration terminates with

WEND" card.

6. Enter the design process - FORMAT(A4),FORMAN215,7F10.0)

DlEjg W

YDEGN™ in columns 1 to 4 of the first card makes the program snter
the design process. In columns 1 to 5 in the next card, you enter the
number of load cases and in columns 6 to 10 & number up to which }bu
wish the iterative design process to proceed. The figure 0,001 in
“columns 11 to 20 makes the design process terminate when the change of
any design value is less than 0,001 times its current value. Recommended
figures are 10 - 20 for the limit on the number of redesign iterations

and 0.0 -~ 0,001 for the cuboff ecriteria,

7, Force data — FORMAT(215,7F10,0)




173

Force data can be generated in the same way as for the co-ordinate
data, In columns 11 to 20, 21 to 30 and 31 to 40 you should input
¥~-, Y= and Z-directional forces respectively being applied to the node
numbered as in columns 1 to 5, Presence of a generator increment in
columns 6 to 10 mwakes force data generated along a straight line described
by the values input on two successive cards, but in the case of force
data the magnitudes of the loads on the two cards may be the same and
thus the same loads will be generated., The input of force data in each

load case terminates with 2 blank card.

8, Grouping of member - FORMAT (16I5)

TR I IITE

The members nurmbered between that in columns 1 to 5 and that in
columns 6 to 10 inclusively are made to belong to the groups numbered
MA in columns 16 to 20 incremented each time by the number LX in columns
11 to 15, In this sample problem, each group contains only one m;ﬁber.

If LK is zero, all the members, 1 to 10, will belong to one group.

Column Description ‘ Variable
1 tob Member number N
6 to 10 Member number NN
11 t0 15 Increment for group number 1K
16 to 20 Group number MA

9, Materisl properties and trisl design - FORMAT(2I5,F10,0)

{ {le 7lolalolo}.
oj.|1 4l .]¢o
4 ol.l7 ald .ol {111 I-l2lel. o]
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The groups of members, numbered between that in rolumns -1 to 5 and that

in columns 6 to 10 inclusively are assumed to have the same material

properties and initial sizes described throughout the columns 21 to 70.

Columns
1to5
6 to 10

11 ﬁo 20

21 to 30

31 to 40

41 to 50
51 to 60

61 to 70

Deseription Variable
Group number MA
Group number MAK
Elastic modulus D{1,MA}
Mass density D(3,M8)
The size of trial design D(4,MA)
Mimimun size D{5,MA)
Permitted tensile stress D{6,MA)
Permitted compressive stress D{7,MA)

10, Deflection limit - FORMAT(8F10,0), FORMAT(16I5)

2 [ o (&

bW [

The deflection 1limit of the figure in the first card may be imposed

on every node in every direction. However, it is desirable to specify

the nodes and directions on which the deflection 1imit is to be imposed.

You can easily select the nodes which are likely to deflect more than

others and thus you may wigh to check their deflections by imposing a

deflection limit. In columns 1 to 5 you put node number and in columns

6 to 10 the number 1, 2 or 3 corresponding to X-, Y- or Z-~direction

respectively.

Input of node numbers and directions terminates with a
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blank card, In the sample problem, the deflections at nodes 2, 3, 4
and 5 in Y~direction are limited to 2.5.

11. The last card - FORMAT(20A4)

[slrlolp] | 1 |

The last card contains the word "STOP" in columns 1 to 4, which
stops the design process. However, you cen start another design process

by giving esnother tille card instead.

A,2 Notes for the Programmér

A,2,1 Varisbles and arrays

Some interger variables defining the configuration of a truss

being designed are listed below

Varigble Degeription
" NUMNP Number of nodes
NUMEL Number of members
NUMMAT Number of groups of members
NDM Dimension of co-ordinate spacse
NEQ Order of global stiffness matrix

LDCS Fumber of load cases

These are defined from data input, except NEQ, and used throughout
the design process without changing, Other integer variables of relative

importance are listed below,



Variable
ITER
NC
NQC
NSC
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Description

Redesign iteration number

Number of active constraints

Number of active deflection constraints

Number of active stress constraints

In this program, & big array "M" is declared in the blank COMMON

ares and partitioned to store a number of arrays mostly used for storing

dete and for work spaces at analysis stege. Among them some arrays

of relative importance are listed below.

Current design value

Minimum size ' P
Permitted tensile stress

Permitted compressive stress

Design values scaled until eritical

Degign values in preceding iteration

Boundary restraint code, equation number
Co~ordinates of nodal points
Node numbers connected to a member

Pointer array to locate the diagonal
entries of global stiffness matrix

Member numbers belonging to each group and the

Pointer Array Degeription
N6 D{1,MA) Elastic modulus
D(2,MA) not in use
D{(3,MA) Mass density
D(4,MA)
D(5,MA)
D(6,MA)
D(7,MA)}
D(8,MA)
D(9,M4)
D(10,MA) 7 of Equ.(5.1)
N7 ID
NE . X
N9 IX
N12 JDIAG
N15 MAT
number of members
NA A

Globel stiffness metrix




Pointer

NE

N2l

7

Array Description
DEA C;p e&nd 0%7 in Equ. (5.53)
FK Jacobian matrix in "REDEGN®

Other arrays declared in a number of labeled COMMON areas are

listed belows -

Label

DEGN
DEGN

DEGN

" DEGN
ACTV
ACTY
ACTV

BIDE

ACTD

ACTD

ACTD

Array Degeription
DISP Deflections of nodes
STRS Stresses of members

STRN(I,N) = (0,0 when the strezs of member
N is inactive in locad case 1

= 1,0 when the tengile astress of member N
is active in load case T

= = 1,0 when the compressive stress of member
N is mctive in load case I

- W - Length of each member and its

X=y Y=, Z-components

ICOL Equation number or member number concerning
each active constraint -

IROW Load case number concerning each active
constraint arranged consistently with those for
ICOL

IGR Group number of each design variable, 1, 2 or 3

PLR Lapgrange multipliers

SDISP = 1 for active deflection constraint

0 for inactive deflection constraint

-~ 1 for the deflection component on which
no limit is imposed \

ICL Member number concerning each active stress
constraint
-IRW Load case number concerning each active stress

.constraint arrenged consistently with those for ICL
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Ae242 TFlow disgram and subroutines i

Fige. 2 shows the overall flow diagram of the design process and ‘
Fige 3 shows the subroutines arranged according to their levels in the
structure of the program, The iterative stage of the design process ‘

is deseribed further in Fige. 4.

Flow Subroutines
( srart )
Establish Pointers, -+« - PCONTR ~----+v---- PMESH

READ} Data for
Structural Configuration,

Establish Profile [ -~ - - PCONTR -----+-"-"- PROFILE

of Eguations,.

READ Force Data -.-- . PCONTR ‘
READ Data for  |-r--- PCONTR - :--.-- - INIDEG
Design Conditions,
Establish .
Weight Gradient,
Tterative -+~ --PGONTR - - -+ - -~ PFORM
SCLING
Analysis ~ Redesign GRADNT
Process REDEGN . .
ACTCOL |
Optimality Test -~ -+*PCONTR :----"-"~- LAMMDA

- \

Figs 2 Overall Flow Diagram of the "TRUS" Program




Main Program

BLOCK DATA ]

PCONTR

PROFIL INIDEG DUMARR| |PLOAD PSEIM PMESH
SETMEM GENVEC
PFORM FSDEGN GRADNT REDEGN LAMMDA SCLIKG
ELMLIBY | ADDSTF PZERO ACTéOL MODIFY F04ARF'

Figs 3

DOT

Subroutines of the "TRUS" Program
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FLOW SUBROUTINES

( ENTER )

L__ANALYSIS cesstbssansantne

PFORM ————ELMLIB, ADDSIF
ACTCOL

Find active constraints svsssesss OCLING

Calculate Cux,dij, ete. seessenss GRADNT
for active constraints
and 811 design variables

ACTCOL

T

IEStimate A J seeser st ? REDEGHN

pc

Determine a new eosodessses  REDEGN

ACTCOL
design from Equ.(5.66)

Upd&te A by Equ.(5.67) Ssasqdoennene REDEGN

Delete inactive REDEGN

LI NN L I MODIFY
constraints if any

any

deleted
I’

NO

YES

MODIFY

Remove Group 2 variables eehosssss REDEGN

from the design space

any
removed
?

Fig., 4 Iterstive Design Stage
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APPENDIX B

How to use the "BEAMM" Progrem

B.1 A Gulde for the Uger

B,1.1 What the progrem does and what you should do before using it.

This program provides & preliminary design for continuous beams with
rectangular or I-shape sections. A typical problem and its solution are

shown in Fig. 1. Before using the program you should decide the following,

1) number of sﬁan, the length of each span,
2) material properties such as elastic-modulus, mass dengity and
permitted stress,
3) type of section, rectangular or I-shape, |
L) Dbreadth of rectangular section or cross sectional area of a
flange of I-section (Both flanges, upper arnd lower, should have
the same cross sectional area;), +
5) thickness of web of I-section,
6) number of load cases,
7) for each load case, the magnitudes of concentrated loads
(or couples) and their locations {Distributed loads must be
replaced by concentrated loads, Downward loads and clockwise
couples should have ™" sign.),
8) the points at which you would like to impose deflection
and/or stress limits and check if the resulting deflections
and/or stresses are within the limits,

9) the deflection limits at various points,

10) the minimum values you went to impose on the depths of the nodes,
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{(a) The 4-Span Beam Problem
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(b) A Possible Design, No linking of depths.

- r
b
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7

(c) A Possible Design, Linking of depths by ratio.

2373 L th 28 92.

A\/ % \/

(d) A Design obtained from the Program,

v

(e) A Possible Design, 3 groups of segmente per span,
the samé depth at the middle part of each spane

FPige 1 A Typical Beam Problem and Possible Designs
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11) your trial design.

AAs shown in Fig, 1, the beam has many segments, each having a tapered or flat
configuration, The boundaries of segments are called nodes, to which °
the program assigns their depths., You should now decide the nodes bearing

in mind thet;

1) the loads and couples can be applied only to the nodes,
2} deflection and stress limits are observed only at the nodes,

3) the segment between two adjacent nodes must be made of one material,

If you prepare a get of data, the program will give you an optimum
design by printing the depth of each node, In addition the response
gquantities such as the deflections and the stresses of the extreme fibres

at 811 nodes under the most critical load case are also given.

The depths of individual nodes can either vary independently as
shown in Fig, 1«b or be linked as shown in ¥Fig, 1~c, d and e. In order
to obtain a design with linked depths you must divide the beam seggents
in groups, each containing a number of segments which all have either the
gseme rate of tapering or & congtant depth, In this case the number of
design values, which make a design, reduces to the mumber of groups plus
one, This number reduces further by one whenever a group of segments

having a constant depth is assigned.

The resulting design will normally be the minimum weight design.
However, you may obtain a minimum cost design if you can define a cost

function as follous.

= o DP




. where

cost per unit length of the beam,

e

I

D

ol )/3 ; constants,.

depth of the beam segment,

e

Since the flenges of I-section beam are predetermined, the cost defined
by § does not include the cost of flanges. The constants o4 and A

‘should be decided by yourself,
Bs1,2 Preparing a set of data

1, The title card — FORMAT(20A4).

The first four columns of this cerd must contain the word "BEAM",
and the rest (columns 5~80) will be any alphanumeric information to be
érinted with output as page header. Since this card also serves &s a

start-of-problem-card, you must not miss this card,

lelelgld T [«[«] {elelalulplele] lol-lziel Gl TTTITET (1T

*

Parts of the sample deta taken from the problem‘of Fig, 1 will

appear whenever appropriate.

2. Data for the configuration of the beam and the design conditions

— FORMAT (1615)

44 . 217 /i 8
7 4 7 7
g 712 7lo é )

Card 1, Columns Description Variable
1 to 5 Nunber of spans NUMSFE
6 to 10 Number of nodes NUMNP
"11 to 15 Number of design values NUMDV
16 to 20 Number of load cases NUMLC .

21 to 25 Number of groups of segments NGR
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Card 2,
1to 5

6 to 10

11 to 15

16 to 20

Card 3, Columns
lto 5
6 to 10

11 to 15

Columns

Description

if =0,
if =1,
if =0,
if =2,
if =3,
if =4,
if =0,
if 40,
if =0,

if #0,

atress 1limits only
deflection and stress limits
ne linking of depths

linking as in Fig. l-e
linking &s in Fig; 1-c
linking as in Fig, 1-4
rectanfular section
I-section

not including self weight

including self weght

Deseription

Number
Nurber

ete,

of segments in Spen 1

of segments in Span 2

3, Co-ordinate data - FORMAT(I5,F10,0,I5,F10,0) .

2k Ole v Llololel. i
g 2lolelol. 317 Sizlelole].
3{ Hzlelele]. 317 S12lelolo]. h

-1
7
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Variable

MD1

MD2

MD5

MD8

Variable
SP(1)
SP(2)

etc.

Columng 1 to 5 and columns 16ito 20 eontain two node numbers, each

followed by its co-ordinate.

The co~ordinates of the nodes lying between

the two nodes are automatically generated slong a straight line such that

they are erranged at intervals of the same distance,
required for you to provide a card whenever the interval changes,
of co-ordinate data finishes when the last node number appears in

columns 16 to 20.

Therefore it 1is

Input
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Le Segment date - FORMAT(I5,F10.0,15)

/ 2o]o]o]. sl¢l |/
7 71 - 8147 314

{ 217 elelolol- 314

! diel. 34| |
{ zel. 3141 |

The first card is for the cross sectional area of flanges. Columns
1 to 5 and columns 16 to 20 contain two segment numbers, both assumed .to
have a flange area of that in columns 6 to 15, The segments whose numbers
- @re lying between the two given in the card have the same flange area,
The segments must be numbered from left to right in the same way as the
nodes, Therefore the two nodes of the ith segment have the numbers i
and itle If your beam is tobe built with segments having different flange
areas you will need more than one card for input of flange areas. Input
of the data for flange areas © terminates when the last element number

appears in columns 16 to 20,
- —rY

The following cards are for mass density, elastic modulus, permitted
stress and thickness of web respectively. If your beam has elements of
rectangular sections you must omit the last card, the card for thickness

of web, and replace flange areas with breadths of segments,

5, Force data = FORMAT(215,2F10,0)

2 & 32le].
flo /17 $1L1, ]
718 2|o £l

2 A0 ziol. f
22 316 gl 1]

|

2 8 S1.

7o zlo $181.
22 2|87 gled.
216 30 FAl-R
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3l2 3¢ gl.

2 8 sl
/o 2]|e ? ._1
2|2 30 JO vj
312 314 321, ‘\

Columns 1 to 5 and 6 to 10 contain two node numbers, and columns 11 to
20 and 21 to 30 contain a concentrated load and a couple respectively. The
nodes lying between the two nodes are sssumed to have the same wneentrated
load and couple, The force data for one load case terminates with a
-blank card, Since the example is subjected to three load cases, you need
three blank cards as shown above, In the example there are no couples

applieds In this case you simply leave the corresponding columns,

6. Data for deflection limits - FORMAT (I10,F10.0)

& Fi2l.

7|15 4 . -+
214 4lo
3l4 2]4].

Columns 1 to 10 end columns 11 to 20 contain & node number and the
deflection limit imposed on that node respectively. The data for deflection

1imits terﬁinates with a blank card.

7. Data for your trial design - FORMAT(I5,F10,0,I5)

LTI T T ldelolol. T T T 1 WA

Usually, a uniform design, i.e. equal depth for any node, makes a
good triel design as far as it is reasonable, However, you may decide
your own design and feed it into the computer., The way of data generation

is the same as that for segment dats.
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g, Data for minimum size - FORMAT(I5,F10,0,I5)

M AT I BRI I A T

You may impese different minimum size restrictions on each design

value, The way of data generation is the same as that for segment data.

9, Data for grouping segments — FORMAT(1615)

g 4 4 4 3 3 6
é

The number of segments belonging to eacﬁ group should be provided
if the depths of nodes are to be linked, The numbers should be arranged
such that each of them corresponds to a group numbered from left to right,
If the linking is to be as shown in Fig, 1-d, i.,e. MD2 = 4, a further
set of data is necessary as shown asbove, Each of the data represents

e A
7

" a group number whose segments have the same depth.

10, Parameters for printing control -~ FORMAT(16I5)

LAl [ [ dr=] E1 T el T 11

The design process is in an iterative way. In other words, the

program derives a new design from the information obtainable by analysing
the given trial design, and then tskes the new design as the trial design
at the next stage. This process is repeated until the optimality
conditions are met., Therefore you can get the computer to print.many
designs, mostly the designs obtained during the iterative process, but
you may not wish all of them. The number you put in columns 1 to 5 makes

the computer not print the design values until the redesign iteration
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humber reaches thet number., The number in columns 6 to 10 is for

the bending moments at nodes under each load case, When the number

in ecolumns 11 to 15 is other than zero, the computer prints various
kinds of information obtained during the redesign procesa such as active
constraints, lagrenge multipliers, and so on. These may not helpful

for the ordinary user,

11. Enter the Design Process - FORMAT(A4),FORMAT(I10,3F10,0)

YDEGN" in columns 1 to 4 of the first card makes the program
enter the design processs In columns 1 to 10 of the next card, you
enter a number up to which you wish the iterative design process to
proceed. The figure 0,001 in columns 11 to 20 makes the design process
terminate when the change of zny design value is less than 0.001 %imes
its current value. Recommended figures are 10 ~ 20 for the limit on
the number of redesign iﬁerations and 0,01 - 0,001 for the cutoff
eriteria, The following figures in columns 21 to BO‘and 31 to 40 are

o and B3 being used in the cost function,

If you want & minimum weight design, then you may leave these columns,

columns 21 to 40

12. The last card = FORMAT(2044)

SEEE TTTTIY
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The last card containsthe word "SIOPY in columns 1 to 4y which
stops the design process you started by giving the word "BEAM", At
this stage, however, you can start another design process by giving

another title card instead,

' B,1.3 The results printed

Fig. 2 shows the printed results of the problem of Fig, 1 obitained
after 12 redesign iterations., Fig. 1~d shows the same design as that
of Fig. 2. The deptha of the nodes at which the rate of tepering
changes, the depths of individual nodes, maximum bending stresses at
nodes and deflections at nodes are gi&en in Fig. 2. The stresses and
deflections are those under the load case most critical to the node
concerned and Fig, 2 salso shows the load case numbers. It is also
shown in the figure that the stresses at node 9 under load case 1, at
node 21 under load case 2 and at node 31 at load case 3, and the deflection
et node 26 under load case 3 reached the limits., YRGHT" under the
heading "L-R" stands for the word "right" and means that the corresponding
stress is that of the section located on the right hand of the
corresponding node. As far as the problem of Fig., 1 is concerned “LEFT or
" RGHT" makes no difference, However, if your beam is subjected to couples
or built with segments of different materials, "LEFT" will appear in

the column when the stress at the left hand side section is more critiesal,

The units used are mm for depths and deflections, and N/mm2 for
stresses, The units for input date should follow those as shown in
Fige 1, i.e, mm for length, KN for point loads, KN-m for couples, N/mm2

for stresses, and g/en® for mass densities.
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B.2 Notes for the Programmer

B.2,1 Variables and arrays

Integer variables defining the configuration of a beam being designed

and design conditions are listed below,

Variable Deseription

NUMSP Number of spans

NUMNP Number of nodes

NUMEL Number of beam segments
NUMDV Number of design variables
NUMLOC Number of load cases

NGR Number of groups of segments
NEQ Order of flexibility matrix -

These variables are defined from data input, except NWUMEL and NEQ which
are derivable, and used throughout the design process without changing,

Other integer variables varying from iteration to iteration are listed below.

--

Variable Desceription

ITER Redesign iteration number

NAC | Number of active constraints

¥AQC Number of active deflection constraints
NASC Number of active stress constraints

During a redesign iteration in the subroutine named@ REDEGN, the number
of active constralints changes since some constraints formerly considered
pctive may found inactive, Therefore NC, NQC and KSC replace NAC, NAQC
and NASC respectively in "REDEGN" and they are allowed to change, Some

other important scalar variables will be explalned later when appropriate.

The majority of arrays share the blank COMMON area. A big array "M"

is declared in the area and partitioned fo store all the data arrays and

o




most of the other arrays for pieces of Information obtained or simply

for working spaces.

Each array in a subprogram.is variably dimensioned

to the exact size required for each problem by using a set of pointers

egstablished in the calling program.

are not varying from iteration to iteration are listed below,

Pointer Array

Description

1
KO

N1
N2

N3
K9

N4
N5
N6
N7
N8
N9
N10

N1l

N12
N13

N14
N15

N16

NES
JD

X
BR

RHO
WEB

E
SA
F
c
SP
SL
HE

CON

NED

D(1,1)
D(1,2)
p(1,3)
D(1,4)
D(1,5)
D(1,6)

FLX

RIG

Number of segments in each span.

Pointer array to locate the diagonal entries of
flexibility matrix.

Co-ordinste of each node.

Flange area of each I-ghape segment or breadth
of each rectangular segment,

Mass density of each segment.

Thickness of the web, later weight of the
flanges of each I-ghape segment.,

Elastic modulus of each segment,

Permitted stiress of each segment.

Point load applied to each node in each load case,
Couple applied to each node in each load case.
Length of each span. -
Length of each segment.,

RHO{I)%*WEB(I)#SL(I) for I-section,
RHO(I)#BR(I)#SL(I} for rectangular section.

. Deflection limit imposed on any node,

Number of segments linked as a group.
Design values obtained from stress ratio.
Degign values in the preceding iteration.
Current design values,

Minimum size restrietions,

Values of Equs (5.57) or (5.59), work spacs.
Scaled design values,

#; in Equ. (5.37).

SL(I)/(3,0¢E(I)#BR(I)) for I-section,
2,0 # SL(I)/(E(I)*BR(I)) for rectangular section.

Flexural rigidities, EI, of three sections of each
segment, multiplied by 2 for I-section or 12 for
rectangular section,

The partitioned arrays whose lengths
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Pointer Array
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Description

N17

N18
N19
N20
N21
N22
N23
N24
N25
N26

N27
N28
N29

N30

N31

N32
N33

ACCE

WK
DR
PK
BMT
BM
DISP

AN
SeN(1,T)

IGR
IMD
RD(1,7)
RD(2,J)
BETA

TRAN
LINKF

Entries of flexibility matrix and later those of its
decomposed matrix,

Work space, stress at each node in most eritical load case,
Work space,.

Work space, response ratio of stress at each node.

Work space.

Bending moment at each node in each load case,

Deflection at each node in each load case,

Work gpace, design variable in "REDEGN".

Work space, minimum or stress ratio size in"REDEGN"

0.0rwhen the stress at node J is inactive in load
" case I, ' '

1.0 when the stress at node J is active and positive
in loed case I,

- =-=],0 when the stress at node J is active and

negative in load case I.
Group number of each design variable, 1, 2 or 3.
Work space
Depth at each node
RD(1,J+1)/RD(1,3)
Work gpace,
Sun of the lengths of the segments linked as gfgroup.
Tranformation matrix in Equ. {5.34).

Group numbers of segments so linked as to have the
same depth,

These arrays, except "RHO", and an interger variable "NEND" make the

set of the parameters of the subroutine "DESIGN™, 'NEND" has been set

to "N33" plus the length of "LINKF" in the calling program UWPCONTR" and

transferred to "DESIGN™ to be used as the pointer when a new array is

defined and made t0 share the blank COMMON area, In YDESIGN" some more

partitioned arrays with fixed lengths are defined as follows,
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Pointer Array Degeription

N40 QK . Depth of each node when scaled by stress ratio.
N41 FK Work space,

N42 F1 Work space.

N4i3 IQK Node number whose stress decides

D(I,1) for each design varisble,

and used in the subroutine ®“SCLKG", "QK*, "FK" and “F1" are used only

when D(I,1) are decided from the depths of individual nodes, QK(J), by
minimizing the sum of squares of the differences between QK(J) and those
obtainable from D(I,1). This approach of deciding D(I,1) has been generally
unsuccessful and therefore made not to take part in the ordinary

design process. However, the set of the FORTRAN statements for this
approach still resides In the program and can be used under & ceftain

condition, being explained later, for possilde further developments,

Now, the pointer "NEND" is set to "N43" plus the length of "IQK"
and the design process enters the iterstive stage. In each iteration a
number of arrays are defined by partitioning the array ™" starting at
the location "NEND". As the number of active constraints varies from
iteration to iteration, so do the lengths of these arrays. The following

arrays are used in the subroutine "GRADST",

Pointer Array Description

N50 PLR Lagrange multipliers

N51 ICL Node number concerning each active constraint,
deflection constraint and lower node number first.

N52 IRW Load case number concerning each active constraint,
arranged consistently with those for ICL.

N53 JLR = 1 when the stress concerned is at the left hand

side element of the node.
= 2 when at the right hand side element.
when both elements are equally stressed, 2 is

assigned,
N54 CEA Values of dt# and by g pearing in Equ. (5.15)
(5.16), (5.19), (5.20), (5.26)5 (5.27); (5.30),(5431)4
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Values of (7 +7)%or (7+/:)* uged for evaluating

Values of (i-i‘ %5 or ('/+4.) used for
evaluating 4;4 and b¢ .

RD(1,1}/D(J,3), i.e. the ratio of depth of node to
design value defined in Equ. (5.39) end (5.41), later

Te M or 6 T M
7% g5
in Fqu. (5.74), (5.75), (5.80), (5.81).

Pointer Array Description
N55 DRl
Qrde and bt‘ .
N56 DR2
N57  GMM{J,I)
fﬁﬁ?*@ﬁ ?;z
W58 TMP Work space.

In the subroutine "REDEGN" the following arrays are used,

Pointer Array

N70

N71
N72

N73
N74
N75
N76
N77

N78
N79

B

RP
AB

TPK
P

F

FK

INE
ISY
JDG

Descripntion

Prescribed limit of each active deflection/stress
congstraint.

To store initial estimates of the Lagrange multipliers

Values of % in Equ. (5.74) or (5.75) for
Group 1 design varisbles,

Work space

Values of the Lagrange multipliers in the
preceding Newton iteration,

Residuals of the active constraint equations yhen
evaluated using the Lagrange multipliers,

Entries of Jacobian matrix.
Work space for deleting inactive constraints,
Work space for deleting inactive constraints.

Work space for removing inactive design variables.

If enother redesign iteration is to be carried out, the partitioning

of the array "M" is repested starting at "NEND". Whereas the array "M"

in the calling progrems is an integer array, many of the arrays in the

subprograms are real arrays. For this reason an integer variable "IPR"

is used to adjust the length of each partitioned real array. For instance,

the required length of "F" is "NAC" and thus the pointers are set such

that the length of "F" is equal to "NAC #IPR" and "IPR" is give an

sppropriste value,

In this program "IPR" is set to 2 in "BLOCK DATA"

L
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since the program has been run on PRIME machines end these machines use

2-byte interger variables and j-byte single precision reasl variables,

If you wish to use double precision real variables, "IPR" has to be set

to 4e On the contrary, if you msre to use long . integers by using the

option ~INTL, you should set "IPR" to 1 to save the core size,

There are many other arrays not taking part in the array "M" but

declared in a number of labeled COMMON arems. Some of them eannot take

part in "M" since they should keep the information obtained in the preceding

iteration,

The others may go into the array "M", but they have remained

in the labeled COMMON areas merely for the reason of simplicity during

the development of this program. Some arrays of importance are listed

Values of Ci4 and dy appearing in
in EqU. (3038) - (5&45).

Velues of (1+5)%3.0  or (1+R)%/2, used
for evaeluating &’ and dg’ in Equ. (5.18)},
(5422), (5.29), (5.33).

Values of (4 % Y )W2.0 or (7+Y Va0 used
for evaluating (.’ and dy’ .

/3'{4' in Equ. (5057) - (5060)’ (5.74), (5-75)!

1 when deflection at node 1 1s active.

0 vhen deflection at node I is inactive,

Load case number making node I most deflected.
Max, response ratio of deflection at each node.

To store the information stored in ICL, IRW, ILR
in the preceding iteration,

below,.
Label Array Desceription
INDI TEA
INDI DR3
INDI DR
NONLIN HH
(5.80), (5.81).

DEFLCT  LCL(I) =
DEFLGT  LRW(I)
DEFLCT DK
ACTV JCL, JRW,

JiR,XCL,

KRW,KLR
ACTV FI

The valueg of the Lagrange multipliers obtained at
the end of the first round of the Newton-Raphson
process in the preceding redesign iteration.
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Fige 3 shows the oversll flow diagram of the design process and

Fig. 4. ghows the subroutines arranged according to their levels in

the structure of the progrem, The design process can be divided largely

into four stages as indicated in Fig. 3.

is deseribed further in Fig. 5.

Stages

-------

Noniterative
Design
Stage

Tterative -« - -
Degign
Stage

Optimality -- - -
Test
Stage

Flow,

( srarT )

Set Pointers

and

Input Data

Determine those values

constant throughout

The Design Process

Tterative

Analysis -~ Redesign

Process

1

Confirm 3if the
Design is optimum
using Equ.(5.88),(5.89)

EXIT

Fig, 3 Overall Flow Diagram

Among them the iterative stage

Subroutines

+ PCONTR

!
PMESH

GENDAT

nnnnnn

DESIGN

L T

+ DESIGN

L.
ANLS1, ANLS2,
SCLNG, GRADST,
REDEGN

DESIGN
]
LAMMDA
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Main Program BLOCK DATA
PCONTR
PMESH DESIGN
C 11
GENDAT SETMEM
ANLS1 GRADST REDEGN LAMMDA SCLHG
¢
ants2 | | vIRMT LAMM2 .
J\__J
)
ACTCOL OPTCRT A FOLARF
DOT SLCT

Fig. 4 Subroutines of the "BEAM" Program
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FLOW SUBROUTINES

( ENTER )

l ANALYSIS sSesssstResrEBeRt e ANLSl, ANLSZ ACTCOL
Find &Ctive Constrﬁints ............ SCLNG - FOAARF
(optionally)
Calculate Ci" dfj ’ CtC. [ X XN LN KN GRADST ANLSZ"_" ACTCOL
Tor active constraints . VIRMT, —— ACTCOL
and all design variables SLCT,
OPTCRT
@‘Stim&te 7‘;—' shsvase Bsssenannal REDEGN LAMM2
_ (occasionally)
DEtermjne a neu 'EXRIINEEENNNEZN] REDEGN OPTCR’E
design from Equ.(5.74)
Update A by Equ.(5,67)] e+e+efoeseeeee REDEGN FOLARF
Delete :-LnaCt:}ve [ E P IR TN Y REDEGN - SLC?["‘
constraints if any
any
deleted
?
NO
< 2 '
conv%%§§§:22»_——*-“4>—
YES '
Remove Group 2 varisbles volov.u.... REDEGN SLCT
from the design space ' ‘
any YES

removed
?

Fige 5 Tterative Design Stage
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The roles of important subroutines are described below.

PCONTR

DESIGN

ANLS1

ANLS2

SCLNG

first establishes the pointers to partition the array "M" in

the blank COMMON area and reads date by calling PMESH. Then
PCONTR calls DESIGN th enter the design process.

determines firstly those values constant throughout the design
procesa before entering the iterative process. The constant
coefficients and exponents used in the solution process are
determined according to whether the beam is of rectangular section
or of I-section, The transformation matrix, {Tei } in Equ. (5.34)
and the cost gradient vector, {#4;)} are also established at this
stage. Then it carries out the iterative process by establishing
pointers and calling ANLS1, ANLS2, SCLNG, GRADST and REDEGN
repeatedly. Upon completion of the iterative process it calls
LAMMDA to confirm the optimality of the resulting designe The

last Process is in fact unnecessary since the optimality of the
design is tested in each iteration in GRADST when there is-no change
in the set of active constraints; This optimality test is useful
only when the design process terminates before the set of active
constraints is fixed.

generates the depths of nodes from the new design by using the
tranformation matrix, { Ty, }, establishes the flexibility

matrix of the new design, and decomposes it by calling ACTCOL,
establishes the right hand side from the given load case, determines
the redundsnt moments by calling ACTCOL, and determines the

bending moment distributions under the given load case and stores
them in array BMT. ‘

determines the reéponseratios for deflections and stresses, finds

scaling factor, finds more actlve constraints if any, determines




GRADST

REDEGN

ACTCOL

FOLARF

VIRMT

OPTCRT

SLCT

LAMMDA

LAMMZ2
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stress ratio sizes for Group 3 veriables, and prints design
values and response quantities, deflection' and stress, scaled
until critical,

prints node numbers and loed case numbers at which the deflectlon
and/or stress are active, establishes DR1, DR2, DR3, DR, and GMM,
calculates such coefficients as CEA and DEA, and evaluates the

optimality equation (Equ. (5.57) or (5.59)), if the set of active

_consbraints has not changed, and prints the evaluated values,

@stimates the Lagrange multipliers, determines the design values

" from the values of the Lagrange multipliers using Equ. (5.74) or

(5.75), evaluates the constraint equations, Eque (5.76) - (5.79),
and updetes the Lagrahée multipiiers if necessary by using Equ. (5.67)
and calling FO4LARF, It deletes inactive constraints and removes
inactive design varisbles if any by calling SLCT.

carries out triangular decompositién and/or forward reduction of
linear equations,

gives solutions to systems of linear equations,. )
egtablisghes virtual loads to express stress constraints in terms
of virtuel work, calculates the.bending moment distributions under
the virtual losds, and returs them to GRADST.

calculates the values of 1 in Equ. (5.74), (5.75), (5.82) or
(5.81) and returns them to REDEGN, GRADST, LAMMDA or LAMMZ2,

is used to rearrange various arrays when inactive constraints or
variables are to be deleted and to sort arrays.

tests the optimelity of a design using Equ. (5.88) and (5.89).

provides estimates of Lagrange multipliers, as an alternative but

uged ohly occasionally, using Equ, (5.88).
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Be2,3 Use of slternative approaches,

For the purpose of test or further development, we can use alternative
approaches by giving some values to the control parsmeters other than
those declared in BLOCK DATA, If we feed U"DATA"™ card before "DEGN" card
the program flow enters a module to change the values of the parameters,
The next card "MIHD" makes the program expect data for MD10O and MD11 with
' FORMAT(1615), and "JCOB" is for MD3 and MD16, Different'approaches

éffected by different values of these parameters are listed below.

1. If MD10O = 10, the Lagrange multipliers are estimated by LAMM2,

2., If MD11 »ITER, the values of D(I,1) are determined differently
as explained in section B,2.1l.

3¢ I1If MD3 < 0, or MD3,0 the entries of the Jacobian matrix,
Equ. (5.67), (5.80), (5.81),ere evaluated differently, The effect
of this is not yet understood. ‘

4Ls If MD16 # 0, the entries of Xjzand X21, and the off-diagonal
entries of X3;in Equ. (5.67), (5.80) and (5,81) are negiected.
This approach reduces computing time significantly and was successful

in a few problems, This aspect together with that of simplifying

Jacobisn wetrices requires further research.

When finding new active constraints such factors as "SFAC" and "SFAC3"
are used. A constraint, formerly inactive, becomes an active constraint
in the subroutine SCING when its response ratic time SFAC i1s greater than
that of the most eritical constraint among those considered active so far.
In the program SFAC is initially set to 0.99 and approaches to unity as

follows iteration by iteration.

SFAC = (1.0 + SFAC)/2.0




SFAC3 is for those stress constraints associated with Group 3 design

variables and updated by

SFAC3 = (SFAC3+SFAC4)/2.0

In the program both SFAC3 and SFACL are set to 0,98 and therefore
SFAC3 is kept 0,98 all the time., We can change the values of these
parameters by feeding first "FCTRY card and then the values of SFAC,

SFAC3, SFACL with FORMAT (8F10.4).

The Newton-Raphson process is made to stop when the change of any
Lagrange multiplier is less than "DRIM" times the current value and
allowed to go up to ®IRIM" iterations before daﬁping of the step sizes
is introduced, In the program IRIM and DRIM are set to 40 and 0,0015
respectively., We can also change these values by feeding "NEWT" card
and desired values with FORMAT(I5 ,F10.4). An MEND" card mzkes the
program flow get out of the module, and we can start the design process

by.feeding "DEGN" card,









