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Abstract 

This thesis covers work carried out on algae bioreactors as a tertiary treatment process for 

wastewater treatment. The process was primarily assessed by the removal of Phosphorus 

and Nitrogen as an alternative to chemical and bacterial removal.  Algal bioreactors would 

have the added advantage of carbon sequestration and a by-product in the energy rich algal 

biomass that should be exploited in the existing AD capacity. 

 

Laboratory scale bioreactors were run (4.5-30L) using the secondary treated final effluent 

from the local Loughborough sewage works. In a preliminary series of experiments several 

different bioreactor designs were tested. These included both batch feed and continuous 

flow feed configurations.  

 

The bioreactors were all agitated to keep the algal cells in suspension. The results 

demonstrated that the most effective and easy to operate was the batch feed process with 

the algal biomass by-product harvested by simple gravitational settling. Experiments also 

compared an artificial light source with natural light in outdoor experiments.  Outdoor 

summer light produced greater growth rates but growth could not be sustained in natural 

UK winter light. 

 

Light intensity is proportional to productivity and algae require a minimum of around 

97W/m
2
 to grow, an overcast winter day (the worst case scenario) was typically around 

78W/m
2
, however this was only available for a few hours per day during Nov-Jan. The 

process would be better suited to areas of the world that receive year round sunlight.  

 

It was shown that phosphorus could be totally removed from wastewater by the algae in 

less than 24 hours depending on other operating variables. With optimisation and addition 

of more carbon, a HRT of 10-12 hours was predicted to achieve the EU WFD / UWWTD 

standard. It was further predicted that the process could be economically and sustainably 

more attractive than the alternatives for small to medium sized works.  Biomass 
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concentrations of between 1-2g/L were found to best achieve these removals and produce 

the fastest average growth rates of between 125-150mg/L/d. The uptake rates of 

phosphorus and nitrogen were shown to be dependent on the type of algae present in the 

bioreactor. Nitrogen removal was shown to be less effective when using filamentous blue-

green algae whilst phosphorus removal was almost completely stopped compared to 

unicellular green algae that achieved a nitrogen uptake of 5.3mg/L/d and phosphorus 

uptake of 8mg/L/d.  Soluble concentrations of Fe, Ni and Zn were also reduced by 60% in 

the standard 10 hours HRT. 

 

The predominant algae were shown to depend largely on these concentrations of 

phosphorus and nitrogen, and the strain most suited to that specific nutrient or 

temperature environment dominated. 

 

Nutrient uptake rates were linked to algal growth rates which correlated with the 

availability of Carbon as CO2. CO2 was shown to be the limiting factor for growth; becoming 

exhausted within 10 hours and causing the pH to rise to above 10.5. The literature showed 

this was a common result and the use of CO2 sparging would more than double 

performance making this process a good candidate for waste CO2 sequestration. Heat 

generated from combustion or generators with exhaust CO2 would also be ideal to maintain 

a year round constant temperature of between 20-25°C within the bioreactors. A number of 

possible uses for the algal biomass generated were examined but currently the most 

feasible option is wet anaerobic co-digestion. 

 

Further economic analysis was recommended on the balance between land area and 

complementary biomass generation for AD. It was also suggested given the interest as algae 

as a future fuel source, the process could also be adapted for large scale treatment and 

algal biomass production in areas of the world where land was available.  

 

Key words- algae, lagoons, wastewater, phosphorus, nitrogen, biofuel, bioreactor, nutrient 

removal, eutrophication, sewage, carbon. 
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1. Introduction 

1.1 The problem 

With the phenomenal increase in urban population and industrial growth, some of the 

major problems of a basic nature confronting mankind are those of quality and quantity of 

food, drinking water, disposal of sewage, industrial wastes, CO2 / other toxic emissions and 

fuel shortages. Algal bioreactors / HRAPs using suitably controlled algal growth can provide 

potential solutions to some of these sustainability issues / problems. 

 

Algae are synonymous with eutrophic natural waters. STW discharge final effluent to the 

local water course. This effluent contains a high concentration of essential growth nutrients, 

P, N and other trace elements. The STW have been targeted to reduce the nutrients 

released to meet the EU water directive UWWD 1991 & WFD 2003 set standards, which 

over time become more stringent. The removal of nutrients, especially P is a difficult and 

costly process and can involve the use of unsustainable chemicals. 

 

Eutrophication is frequently a result of nutrient pollution such as the release of sewage 

effluent and run-off from fertilizers into natural waters. Eutrophication generally promotes 

excessive plant growth, in turn; these mass blooms usually result in large scale decay and a 

rapid increase in BOD. This is likely to cause severe reductions in water quality. 

 

Eutrophication has moved up the agenda as a result of the WFD and there is much debate 

as to the most appropriate ways of controlling nutrient releases into the environment. 

Nutrient removal at the sewage works is not as successful as hoped. This is especially true of 

removing P. Enrichment in activated sludge is difficult to control especially with large 

variable amounts of storm water, chemical removal is unsustainable. 

 

1.2. Why is P and N removal important? 

The removal of N from wastewater is desirable for other reasons: 
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• As free ammonia it is non-polar and toxic to fish and other aquatic organisms; the EU 

limit is 0.5mg/L as NH3. 

• Ammonia is also an O consuming compound and therefore exerts a risk of O 

depletion.  

• Along with P, N is a plant nutrient and consequently contributes to eutrophication. 

• As the nitrate ion it can combine with haemoglobin, a potential hazard to infants. It 

may also be reduced to mutagenic nitrosamines in the gastrointestinal tract. The EU 

limit is 50mg/L as NO3. 

 

Both P and N are now regulated with the prospect of lower permissible concentrations in 

the future. 

 

The human population and volume of wastewater is increasing along with the 

implementation of ever stricter discharge standards. The cost of resources such as 

chemicals and electricity are increasing in cost at a faster rate than inflation and no longer 

sustainable. Innovation is necessary to provide cheap, clean, sustainable and more efficient 

wastewater treatment processes. 
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Figure 1 - Showing the P cycle 

 

1.3. Benefits of using a biological method 

• A biological method is natural and does not require the use of unsustainable 

chemicals 

• Once the system has been set up, the running costs are lower 

• Instead of having a process to remove just P or just N, the biological process can 

remove both P and N whilst simultaneously sequestering C, reducing other trace 

nutrients and providing oxygen for improved BOD reduction through an 

algae/bacteria co-symbiotic relationship 

• A biomass by-product is created that can be used as an energy source or fertiliser 

• The water utilities are familiar with bio-processes 
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1.4. The solution and motivation for work 

Biological processes are usually more sustainable since they operate at normal 

temperatures and pressure although usually slow. Microscopic algae could be used for 

nutrient removal through controlled, accelerated eutrophication as a tertiary treatment 

process. It has been investigated to determine whether it could replace existing processes 

and is possible in the UK climate. 

 

The aims were therefore to determine whether algae could be grown in sewage effluent to 

concentrate plant nutrients, N and P and other trace elements whilst sequestering C. The 

surplus algal biomass could be converted into biogas by anaerobic digestion and / or used 

as a nutrient rich fertiliser.  

 

There is sufficient evidence to provide an initial motivation for a controlled investigation on 

algal bioreactors. The idea is based on recreating a natural process that achieves the same 

result. Algae have already been shown to be successful at growing in a range of different 

stages of a smaller wastewater treatment process. 

 

Along with the motivation from an economic and sustainability view point, I am personally 

motivated by a passionate interest in environmental management and biological processes. 

This was a great opportunity to combine research on an exciting area of biology with a 

number of interlinking modern environmental issues. 

 

1.5. About the project 

The project studied the environmental parameters required to optimise this waste-algae-

energy process by considering algal growth rate as a function of light, temperature, biomass 

concentration, nutrient concentration, CO2 and pH. 

 

A set of experiments was run to test the P, N and C removal capabilities and growth rate of 

different strains of algae under varying light and temperature conditions. These 
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experiments also report on tests on how the algae can be removed from the wastewater 

before discharge. All the experiments studied the design of a photo-bioreactor / HRAP 

system that was suitable for use within an operating sewage treatment works. 

 

A considerable amount of research is currently being carried out in the field of algal biomass 

cultivation as an alternative to traditional crops for the creation of biofuel. The majority of 

the research into algal biomass production is from five main areas.  

 

• Small scale, more control, higher value products 

o Industrial bioreactors: 

 

• Large scale, less control, cheaper 

o Large scale saline oceans or pools 

o Naturally eutrophic lakes and water courses 

o Tanks or ponds, HRAPs 

o Sewage lagoons 

 

Each method has its own advantages, which will be considered in the literature review, but 

this project will be dealing specifically with using industrial bioreactors for experimentation 

and investigating HRAPs for scale up, both using wastewater. The use of wastewater as a 

medium for growing algae has a number of economic and environmentally sustainable 

benefits: 

 

• Already high in nutrients, no need for additional fertiliser 

• Not in competition for use with land based crops, industries or human consumption 

• Located in and around sewage treatment works that may not be suitable for other 

land use 
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Due to the relatively small volume available it is not seen as having a significant impact on 

global fuel production; other methods would be needed for this, i.e. large scale desert 

based lagoons. 

 

The project should be judged as an engineering and scientific extension to sewage 

treatment. It has looked at existing work investigating algal lagoons which have been used 

in sewage treatment in warm countries for some time. Using experimentally based methods, 

it expanded on the key objectives previously listed to address the possibilities for extension 

to the existing knowledge base. 

 

1.6. Design requirements for the photo-bioreactor system 

A bioreactor is to support a biologically active culture. Its type is defined by its mode of 

operation, they can be batch or continuous flow. Bioreactor design is a complex engineering 

task but under these engineered optimum conditions the microorganisms or cells are able 

to perform their desired function with greater efficiency.  

 

Quantitative assessment of the bioreactor's environmental conditions (CO2, Oxygen, 

nutrient concentration, flow rates, lighting, temperature, pH, and agitation 

speed/circulation rate) need to be monitored, reported and controlled to allow 

comparisons. 

 

The system should minimize costs (capital investment, operational and maintenance costs 

and other costs derived from economic and environmental restrictions) whilst optimizing 

performance to achieve acceptable EU WFD standards for the treated effluent and reach 

maximum algal yields. 

 

Algal bioreactor performance is based on a number of variables; some are difficult to 

control such as ambient temperature, solar radiation and wastewater quality. Other 

variables can be included into the design of a new system such as size of plant, channel 

width, pond depth (governing light penetration), design discharge, pump capacities and 
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agitation method. The final factors affecting performance are the control variables such as 

biomass concentration, HRT and CO2 sparging for pH control. The overall performance will 

be based on, the effluent quality, the removal of nutrients C, N and P, algae production 

rates and any revenue generated by the algal biomass. 

 

Summary of design requirements: 

 

• To Remove P and N from wastewater using algae. Primarily to focus on reducing the 

concentration of P to meet EU standards of a maximum of 1mg/L (95%). 

• Minimising energy usage. 

• Minimise land area usage. 

• Have a method of removing decaying algal cells from the system to prevent re-

mineralisation of nutrients into solution. 

• Ensure the greatest penetration of light into the fluid to maximise photosynthesis. 

• The ability to meet the optimum temperature for performance of the system by 

being able to utilise waste heat and control the bioreactor temperature.  

• Minimise HRT to reduce both capital and running costs 

 

A species of algae that would be ideal for this process would possess the following 

characteristics: 

 

• Ability to grow on sewage 

• Effective at removing both P and N 

• Relatively high growth rate 

• Easily harvested 

• Not largely affected by the presence of bacteria 

• Could withstand some extreme environmental condition, i.e. high temperature, pH 

or salinity to prevent invasion from other species 
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1.7. Structure of the thesis 

This introduction to the project is followed by a section containing background information 

about the topics discussed throughout this thesis. This is provided to fill basic knowledge 

gaps on the subject required for understanding the issues directly related to this thesis. 

Section 3 then provides a critical review of the existing literature on nutrient removal by 

algal bioreactors and HRAPs along with the integral topics directly associated with this 

project. It shows information about the research that has already been carried out and 

identifies knowledge gaps to provide a direction to advance the current scientific 

understanding. It also enables a platform for comparison with existing results. 

 

Once the knowledge gaps have been identified from the literature review, a concise 

summary of the aims and objectives are listed. 

 

The methodology section describes the experiments carried out, the different reactors used, 

the light and temperature conditions used, the procedures used and details specific 

information about the standard methods used for testing. Following this is a detailed 

analysis of the results gathered from all the experiments, how they link together and 

compare with previous work to derive conclusions listed in the next section. After the 

conclusions is a section that draws all the findings together to describe a recommended 

design for an optimal performance pilot plant. This is accompanied by a critical summary of 

the work carried out and suggested recommendations for further work. The thesis closes 

with a bibliography of references and appendix.  

 

1.8. Hypothesis 

Nutrient removal from wastewater can be achieved more sustainably and more effectively 

using a biological process of algal growth in bioreactors than it can by using existing 

methods. Algal growth will sequester Carbon and improve effluent quality by reducing other 

pollutants. The biomass by-product can be used as a fuel source. 
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2. Background Reading 

2.1. An introductory guide to the algae 

2.1.1. Introduction to algae 

Cryptogamia is a class of plant lacking both seeds and flowers of which algae is a division. All 

algae lack leaves, roots, flowers, seeds and other organ structures that characterize higher 

plants. Algae are autrophic microscopic plants that require only inorganic nutrients to grow. 

In aquatic environments, they are the baseline of food webs. Algae range from single-cell 

organisms to multicellular organisms, some with complex differentiated forms for example 

the marine seaweeds. The study of marine and freshwater algae is called phycology. 

 

All types of algae differ from photosynthetic bacteria. Photosynthetic bacteria do not have 

chloroplasts or any membrane bound organelles, instead photosynthesis takes place 

directly within the cell and no oxygen is evolved.  

 

Cyanobacteria (blue-green algae), are Prokaryotic algae similar to bacteria. They conduct 

photosynthesis on specialized cytoplasmic membranes called thylakoid membranes, rather 

than in the chloroplast organelles. These are no longer strictly classed as algae; as they were 

traditionally in old text books which are now regarded as outdated. The term algae is 

restricted to Eukaryotic organisms.  

 

Eukaryotic algae conduct photosynthesis within membrane-bound structures (organelles) 

called chloroplasts. Chloroplasts in plants and eukaryotic algae have evolved from 

cyanobacteria. Cyanobacteria cells average around 5μm in diameter and are therefore 

smaller than Eukaryotic algae which average around 12-22μm. 

 

Diatoms, also known as Bacillariophytes are unicellular, microscopic Eukaryotic algae that 

can be between 5μm and 5mm. A characteristic feature of diatom cells is that they are 

encased within a unique cell wall made of silica (hydrated silicon dioxide) called a frustule. 
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Approximately 100,000 known species exist with more than 400 new specimens being 

described each year (Danielo, 2005). The microscopic forms that live suspended in the 

water column are called phytoplankton. 

 

Algae are distinguished from other protozoa in that they are photoautotrophic although this 

is not a hard and fast distinction as some groups contain members that are mixotrophic, 

deriving energy both from photosynthesis and uptake of organic carbon either by 

osmotrophy (the uptake of dissolved organic compounds by osmosis for nutrition), 

myzotrophy (piercing the cell wall/membrane and sucking out the cellular contents to 

digest), or phagotrophy (wherein particles are enveloped by the cell membrane and 

internalized for digestion). 

 

Most algal cells are only slightly denser than water; which gives rise to their slow settling 

rate. A stationary cell will be at a disadvantage because it will absorb the nutrients in its 

contact layer; for the cell to remain bathed in a continuing supply of dissolved nutrients it 

must keep moving. The natural tendency for algae is to sink. This can guarantee movement 

throughout the medium but can be lethal as cells fall out of the lighted zone. Some species 

are shaped in such a way as to help reduce rates of fall. A greater ratio of surface area to 

volume including hair-like cell outgrowths is just one of many naturally evolved attributes. 

Buoyancy can be generated from gas products as with the blue-green algae. 

 

Some species of algae are so rich in oil that it accounts for over 50% of their mass, thus 

providing both buoyancy and a nutrient store. The National Renewable Energy Laboratory 

(NREL) has selected approximately 300 species of both fresh-water and salt-water algae to 

be stored in their species collection at the Marine Bio-products Engineering Center 

(MarBEC). These oil rich strains are part of an international culture bank available for 

research. There is also interest in algae as a source of other by-products such as bio-ethanol 

and biogas. 
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2.1.2. Diversity of algal species 

Freshwater algae are a very diverse group of plants found in all moist situations. An 

abundance of the more common unicellular algal forms are predominantly found in low-

lying quiet waters such as pools, ditches and lakes. Algae can exist under very varied 

temperature conditions. In temperate and arctic climates many can survive prolonged 

freezing, even when in their ordinary vegetative condition. Numerous healthy algae do not 

suffer ice damage from low temperatures and when the ice melts, can re-grow. In 

Arctic/Antarctic regions or mountainous areas like the Alps or Andes there are snow-floras 

that mainly consist of algae that pass their entire existence in snow and ice. These are 

known as Cryoplankton and contain a red pigment which gives rise to the term “red snow”. 

Algae also occur in hot springs. They can survive in hot water and hot vapour up to a 

temperature of 94.5°C. Some of these species become encrusted with carbonate of lime or 

silica. These robust algae that exist at both low and high temperatures, with a few 

exceptions, are species of Myxophyceae and Bacillariales genera. 

 

Freshwater algae species have a strong cell wall to resist osmotic pressure and some can 

also withstand exposure to salt water but few algae can be isolated near the mouths of 

rivers where there is a frequent change in the salinity. Species of algae can grow in all 

conditions of varying salinity, from 3.6ppm to 40000ppm and up to 100% in the dry season 

at Laguna Madre, Texas. Saltwater algae have three main habitats: Living in suspension in 

open waters, growing on Littoral rocks; twice daily covered and uncovered by tides and 

growing on Sublittoral rocks; the region below the low water mark. More algae live in 

coastal regions as these areas are normally more nutrient rich than out at sea. The oceans 

however contain the largest mass of algae. They are thought to be responsible for 70% of all 

biogenic CO2 fixation (120x10
12

 tonnes/year) and for about 73-87% of the net global 

production of oxygen. Much of the CO2 is sequestered and precipitates either as organic 

matter to be fossilized or as calcite.  Ocean algae are normally blue-green algae due to their 

small size.  
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2.1.3. Classification of algal species 

There are many different types and species of algae that range in size and organisation. 

Chlorophyll is present in all photosynthetic representatives of the algae. The chlorophyll 

pigment is borne in distinct cell organelles called chloroplast and the colour provides the 

observer a means of grouping the algae into classes. The combinations of photosynthetic 

pigments present have an important role in algal classification. There are eight main 

divisions of freshwater algae which are classified according to their colour and other 

differences. Algae can be various colours and a single variety may change colour depending 

on the phase of growth it is in. These colour differences arise due to the proportions of 

different auxiliary photosynthetic pigments present in addition to the green chlorophylls. 

Some pigments do not mask the Chlorophyll-a that is present in all algae; here the 

Chlorophyll-a is dominant and the algae will be green (Chlorophyta and Euglenophyta). The 

green algae are the largest and most successful group of algae from which the 

embryophytes (higher plants) evolved. The green reflectance colour represents the section 

of the spectrum (green-550nm) where the photosynthetic rate is the lowest (purple-420nm 

and red-660nm, being the highest). If Carotenoids are dominant the algae will be yellow-

brown, yellow-golden or yellow-green. This is the case with Chrysophyta, Pyrrophyta, 

Cryptophyta, Bacillariophyta and Xanthophyta. All these pigments are lipid soluble 

compounds; unlike the entirely different water soluble pigments found in Cyanobacteria 

(blue-green algae). These mask the chlorophylls and other pigments giving the cells a blue-

green or red colour.  

 

Another characteristic that can be used for classification is how the excess organic matter 

stored as a food reserve created as a result of photosynthesis. Starch, glycogen, 

glycoproteins, paramylum, leucosin, oils and fats can all be found. 

 

The chloroplast traps and utilizes light energy to convert CO2 to Carbohydrate. Chlorophyll-a 

is the most common primary pigment involved in photosynthesis and is the one pathway by 

which the absorbed radiation is converted to chemical energy. The efficiency of the 

chloroplast as a light trapping organelle is directly related to the surface area it presents to 



32 

 

the incident of light. Typically algae have a very large surface area to volume ratio to aid 

efficiency. This is not only important for trapping light but the cell surface is also means for 

mass transfer of both nutrients and dissolved gases. A high efficiency gives rise to intensive 

rates of metabolism and rapid multiplication of algal cells (under optimal conditions, in 

excess of 300g/m
3
/d. 

 

As with most biochemistry, the biochemistry of algal cells is of a very complex nature. The 

cells adaptations to changes in conditions can be rapid due to the intense rates of cell 

division. They can, as eukaryotes, quickly adapt to different conditions compared to the 

prokaryotes which must rely on mutation. For a good review of the general characteristics 

of algal physiology, ecology and taxonomy refer to Harris (1978). 

 

2.1.4. Cyanobacteria 

Blue-green algae are also frequently found in still freshwaters. In temperate lakes, they 

form dense populations after the water column has become stratified at the end of spring 

and the low density warm epilimnion is established above the cold deeper hypolimnion. 

 

Due to their different pigment, blue-green algae can use lower light intensities more 

effectively so they can thrive below the surface deep in the epilimnion. Blue-green algae 

can control their buoyancy via gas vacuoles. Cells exposed to dim light form more gas 

vacuoles and become positively buoyant, floating upwards to regions of higher light 

intensity. The resulting increase in photosynthesis, increases production of low molecular-

mass sugars, these increase the tugor pressure within the cell, when tugor pressure reaches 

a critical value, some of the gas vacuoles collapse and the cell begins to sink promoting 

formation of new gas vacuoles. Buoyancy is then lost near the surface due to increased 

production of starch grains, this extra ballast make the algae sink. In dense blooms of blue-

green algae, there can be large competition for limited CO2 which can depress 

photosynthesis. The tugor pressure in the cells can no longer rise to the critical value. All the 

algal cells will then congregate on the surface and become trapped there. These conditions 

can kill the algae causing them to rot. 
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In lakes that have been polluted with organic sewage or nutrient salts, e.g. phosphates, 

certain blue-green algae often form enormous blooms. Lowered oxygen concentration in 

the water, brought about by heterotrophic bacteria breaking down organic material, 

stimulates blue-green algal photosynthesis. In water that has become badly polluted with 

organic sewage, blue-green algae are often almost the only algae that can still survive and 

grow. 

 

2.1.5. Key variables 

Algae rely on a number of essential parameters for growth. Light, temperature, P, N, C, 

trace nutrients and pH. Any of these could be a rate limiting factor for growth. The balance 

of these parameters is affected by many factors, some linked to the season.  Where 

nutrients are in excess then CO2 or light could easily be the limiting factor, in conditions 

where fast growth rates are observed, Silicon could be the limiting factor for diatoms. Any 

number of scenarios can exist that place each variable as the limiting factor. Maintaining 

the correct balance for a specific species is the most important aspect of creating optimal 

conditions. 

 

2.1.5.1. Light 

A minimum intensity of light is required as sunlight (or artificial light) as a source of radiant 

energy for photosynthesis to occur. Each algal specie has its own optimal light intensity but 

as a general rule, more is better. Seasonal variations in light intensity affect the growth 

rates of photosynthesising organisms. Within a water body, the depth of penetration will 

depend on the concentration of algae or the turbidity of the water. The wavelength and 

type of light can also affect the penetration and how efficiently algal cells can use it. 
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2.1.5.2. Temperature 

Algal cells also have an optimal working temperature. Seasonal variations in temperature 

are closely associated with that of light although the monthly temperature variation lags 

behind the illumination. 

 

Temperature has little effect when light is limiting. When light is not limiting, increase in 

temperature can increase the rate of photosynthesis, growth/doubling rates are 

consequently increased.  

 

2.1.5.3. Nutrients 

The major nutrients of concern to algal growth are consequently those which are important 

for all plants; Carbon, Nitrogen, Phosphorus. Sulphur and Silicon can also be added to the 

list. Minor nutrients tend to be metals and are only required in trace amounts; most are 

toxic at larger concentrations. However, the iron content of the medium may have a 

significant effect on the algae’s growth. 

 

P is one of the essential elements for the algae and is found in two types, dissolved 

inorganic P (DIP) or dissolved organic P (DOP) and particulate P bound into various forms 

which may vary greatly in biological availability. The majority of P in the open environment 

comes from municipal waste, urban and agricultural runoff. PO4 is the ubiquitous form of 

the element, found in both the organisms and in the environment. No oxidation or 

reduction steps are required for environmental cycling, metabolism and macromolecular 

synthesis.  

 

When P levels are high, phytoplankton cells are able to accumulate P reserves well in excess 

of their immediate requirements. This is the phase of ‘luxury consumption’. They can then 

utilise these reserves during periods of low concentration, hence when P in the water is 

depleted, growth will not necessarily stop immediately. For these reasons, growth rates do 

not follow exactly the concentration of P as they will tend to uptake whatever is available as 
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fast as possible. When P is readily available uptake will be quicker. This could be used 

advantageously for increasing P update in wastewater treatment. 

 

Small cells tend to grow faster and have the highest affinity for P uptake. Small cell size 

means that the surface area / volume ratio is high, so that the uptake of nutrients from the 

water is efficient and rapid. Algae may take up sufficient DIP in one hour to last at least two 

weeks but over a long time period there is a strong link between P concentration and algal 

growth. Slower growth has the advantage of leading to longer life and lower loss rates. 

 

2.1.5.4. Carbon (specifically CO2) 

This is also a crucial factor when considering the design of algal bioreactors / HRAPs. It has 

been noted that CO2 can be deficient in municipal wastewaters in relation to their P and N 

content; for the greatest biomass production of algae additional CO2 supplementation to 

that naturally found in the atmosphere could greatly improve performance. Increasing 

levels of CO2 within the bioreactor will have a toxic effect on bacteria found naturally in 

sewage effluent that has a negative effect on algal growth and production.  

 

2.1.5.5. Bacteria 

The presence of bacteria in wastewater however is also considered as a factor stimulating 

algal growth owing to CO2 production. They are also responsible for the heterotrophic 

biodegradation of mixed organic load. The presence of bacteria can adversely affect growth 

of the algae, decreasing rate of divisions and/or yields. Some algal species are more 

resistant to the presence of bacteria and hence be found to dominate in poor quality water. 

Microscopic analysis of my culture samples shows that bacteria may be feeding on algal 

cells and hence reducing productivity. 
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2.1.5.6. pH 

pH is an important factor for algal growth, CO2 supplementation can be introduced to 

improve growth rates and control pH at an optimal value. 

 

2.2. Uses of algae 

2.2. Applications and uses of algae 

Algae Biomass has a wide range of different uses which will be important as we move 

toward a more environmentally sustainable and less damaging urban society. The uses of 

algae in modern society include food, industry, pharmaceuticals and fuel; the combination 

of its growth applications and processes make it a highly economical product (see 3.2.3.). Its 

traditional use involves treating waste streams such as sewage or flue gas. During these 

applications, the growth process sequesters CO2 and other pollutants. 

 

2.2.1. Why are algae so important? 

Much of the oil deposits are thought to be derived from sedimentation of algae in the 

oceans for millions of years. A product that took millions of years to form will be exhausted 

by humans in less than 200 years. The carbon from CO2 that was trapped within the algal 

cells and subsequently in fossil fuels over a period of millions of years is being returned to 

the atmosphere in an instant. 

 

• Algae are the origin of all plant life on the planet, without which animals would not 

survive. 

• Algae are the basis for many food chains.  

• Algae are responsible for all the oil and gas that we are now using to power our lives.  

• Algae are responsible for perhaps 50-80% of the world’s oxygen production; mainly 

due to the vast quantities found in the oceans.  

• Algae are responsible for the original aeration of the planet’s oxygen atmosphere 

(When oxygen producing micro organisms evolved and started releasing oxygen, 

initially levels in the atmosphere did not rise; all the oxygen produced was used in 

oxidation reactions that occurred with other elements to produce the oxides that we 

now use).  
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By using algal biofuels and avoiding fossil fuels we can attempt to reduce global warming 

and run our economies on cleaner power that is at least carbon neutral. Biofuels from algae 

are far superior to traditional biofuels originating from higher plants, crops and trees for a 

number of reasons: 

 

• Algae are more efficient photosynthesisers than terrestrial plants. 

• Algae have much higher growth rates and require a much smaller land area.  

• They do not compete for land with food crops or require the use of limited resources 

such as fresh water.  

• Algae are much more suited to growing in conditions that are not suitable for other 

plants such as hot dessert and in waste or saline water.  

• Due to their micro size they can be used in a number of useful applications such as 

treating wastewater and flue gas from power stations; waste heat is likely to be 

available in these situations to further increase growth rates.  

 

2.2.2. Methods of cultivating algae 

Light nutrients and mixing are required to maximise growth, they are cultured in clear tanks 

or shallow ponds. There are four common systems used for cultivating algae:  

 

• Open photo-bioreactor tanks 

• Closed photo-bioreactor tanks 

• Shallow raceway tracks or ponds 

• Large scale oceans or desert pools 

 

Each system would typically use a certain type of water (fresh, waste or saline), however 

there is no hard and fast restriction and ultimately it would depend on the application and 

geographic location. The nature of closed tanks more or less restricts it to fresh water to 

prevent contamination. Similarly, oceans and to a large extent desert pools, are restricted 

to saline water (with the possible exception being areas where vast quantities of 

wastewater are available, such ideal locations exist in the UAE). A great advantage of algae 

is that many species can grow in saline or poor quality water. This means that no extra 

demand has to be placed on fresh water. 
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Any translucent container can be classed as a photo-bioreactor. The closed systems are 

protected from the outside environment and have two major advantages: Conditions can 

be more controlled and are much safer from external contamination from unwanted 

species. The most common use of a closed system is when the requirement is to grow a 

single species that may be wanted for a specific trait (high oil content), product, food or 

pharmaceutical. The most common way of producing a monoculture is serial dilution. A 

sample containing the desired algae is diluted with filtered water. Small amounts from this 

diluted sample are added to a large number of growing containers. The dilution is 

performed in such a way using microscopic analysis with the expectation that a number of 

the containers will contain only cells of the required specie. Successful growing containers 

are used to start larger cultures. When growing monocultures, the environment must be 

closely controlled to prevent the culture being contaminated with unwanted organisms. 

These bioreactors can require large capital investment. 

 

If the tank is not protected from the outside environment it is classed as an open system. 

These open systems are exposed to the elements so can be contaminated by a whole range 

of microorganisms, algae or bacteria. Growth factors are difficult to control in open systems. 

Monocultures can work in open systems when the required specie can grow in some 

extreme condition and out compete other algae. It can also work if there is a simple 

inexpensive system of selecting out the desired algae. 

 

Algae can also be cultured in open pond systems like raceway tracks and lakes. Large tanks 

or ponds can be made as big as required for large scale production. For their size they tend 

not to be as costly as photo-bioreactors as they can be simple waterproofed lined shallow 

excavations with simple mixing. 

 

The biggest system for potential large scale cultivation and harvesting of algae is in oceans 

or huge desert pools. There are still a number of significant issues to be overcome, i.e., 

providing the resources other than sunlight to make the process work. 
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There is a limit to how deep (or wide, if a vertical tank is used) a tank or container can be, 

due to the penetration of sunlight though densely populated algal cultures. The depth can 

be increased by adding agitation methods to move the algae in and out of the lighted zone 

or even by using species with lower chlorophyll and light requirements, however this is 

considered an unrealistic approach when attempting to maximize productivity. 

 

2.2.3. Applications of algae growth 

The use of algae does not have to be limited to the biomass produced. Its growth phase can 

also have an important role in modern society and make the production of algae more 

economically attractive. Instead of focusing on producing algae; it can be the useful by-

product of another process, namely important pollution control methods: 

 

• Wastewater treatment 

• Flue gas cleaning and CO2 sequestration 

• Water pollution limitation, i.e. capture of fertilizer runoff from farms 

 

All methods of algae production have their own advantages, although the use of 

wastewater as a medium for growing algae has a number of environmental benefits and 

appears to be a good option initially. However, algal production from wastewater treatment 

is not seen as having large-scale impacts on replacing global fuel demands; other methods 

may be needed for this. Careful life-cycle and cost / benefit analysis are required and 

include rapidly changing data, information 

 

Sewage lagoons provide a method of growing algae and have the benefit of being naturally 

high in nutrient concentration. The large scale production potential is limited by quantity of 

resources (wastewater and land). Lagoons are also highly susceptible to seasonal variations 

and foreign invasion with little control over what species will grow. In terms of biomass 

production, these changes in species could alter biomass growth rate and nutrient uptake 

rate. This could potentially be a benefit or a problem; the specie best suited to a specific set 

of environmental conditions should dominate however their N:P nutrient ratio requirement 
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may vary widely amongst species, creating unpredictable nutrient removal performance 

within the system. 

  

The main focus is on the tertiary treatment for removing plant nutrients, P & N. Algae are 

also capable of removing other nutrients including heavy metals and potentially absorbing 

persistent organic pollutants (PDPs). Where high quality water standards must be met, less 

sustainable chemical processes can be replaced by biotechnological processes such as algal 

reactors that can not only reduce costs but also produce valuable by-products. 

 

Flue gas emissions are a source of CO2. In addition to pumping exhaust gases directly into a 

pond, or some kind of bioreactor, on which the algae feed, the bioreactor can be installed 

directly on top of a smokestack. This technology has been pioneered by Massachusetts-

based GreenFuelTechnologies. 

 

Water pollution limitation can be provided locally by small scale systems designed to 

remove nutrients and other elements such as heavy metals. It is also reported that growth 

is possible at low water qualities. 

 

2.2.4. Can we put all the pieces together? 

As mentioned in the previous section, when considering algal growth there are a number of 

factors that influence its efficiency. If all the essential ingredients are in excess (light, 

temperature, CO2 and nutrients) and other key variables are controlled (bacteria and pH) 

then there is no reason why excellent algal growth could not be achieved. When 

considering algal growth on a scale large enough to affect the worlds fuel supply, two more 

essential ingredients arise that need to be in excess; water and land/space. By definition, 

one of the six essential ingredients will always be the limiting factor restricting further 

increases in growth rates and productivity. The challenge is to maximise the availability of 

all six essential parts. 
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All algal systems have the potential to utilise waste CO2 from sources such as power stations. 

To be economically viable (avoiding transportation) the CO2 source must be located close to 

the bioreactor especially if any waste heat is to be utilised to enhance algal growth. Another 

benefit of using flue gas is the potential to utilise the waste heat that is normally associated 

with the flue gas as well as improving growth rates. This may attract additional financial 

support from the ROC system. 

 

An STW would provide water and nutrients. It is likely that the works will be located close to 

or have its own AD and/or CHP engine producing, waste heat, CO2 or both. This 

incorporates four of the six major essential ingredients for significant algal biomass 

production. The land requirement will always be relative to the water quantities available.  

 

Light is the essential component not fully freely available for WWT. It is dependent on 

geographical, seasonal and random weather variations. For high value materials, we could 

place the whole system in a geographic location guaranteed to receive strong sunlight all 

year round. This however may produce more issues than it solves. Nutrients, water and CO2 

all become scarcer as you move towards these light intense geographic locations like 

deserts (bright areas tend to be hot, this normally also means dry with high evaporation 

rates, a disadvantage for water-based life forms). Urban centres gather around fresh water 

resources and are subsequently the major producers, directly or indirectly of nutrients and 

CO2.  

 

2.2.5. Focused algae production 

Areas that are bright, hot, wet and spacious do exist; such as tropical rainforest. Even if 

tropical rainforests are not suitable for large scale algal production, some potential 

locations do exist. Large hot deserts in coastal regions will have an unlimited supply of 

warm saline water (or examples like the UAE, large quantities of warm wastewater).  

 

Ensuring the excess availability of all six essential ingredients for algal growth on a large 

scale is the major difficulty with the mass utilisation of algae. This thesis however suggests 
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that large scale processing into a manageable operation may not currently be within reach 

except in these circumstances. 

 

Four locations that have been suggested are: 

 

• Desert regions in mid/south USA – Issues with availability of nutrients and CO2 

• Desert coastal regions of Africa – Issues with availability of nutrients and CO2 

• Desert regions in the middle-east located close to coastal cities 

• Warm tropical oceans close to nutrient discharge – Issues containing algae 

• Centralised STW 

 

2.2.6. Harvesting and concentrating techniques – Algal separation from water 

Harvesting: 

• Gravitational settling 

• Polymer flocculation and settling 

• DAF 

• Membrane filtration 

 

Concentrating: 

• Further gravitational settling or Centrifuging 

• Drying 

 

The main limitation preventing a wider exploitation of sewage algae is the lack of a cheap 

and effective harvesting technique. Harvesting of algal biomass, whilst essential is also 

expensive and difficult. Benemann and Oswald (1996) report that these options are 

available but an optimum solution has not been found or incurs huge costs, deeming it 

unsustainable. 

 

The most productive algae are the single celled microalgae. These cells have such good 

buoyancy that it may take up to 48 hours for them to settle even in perfectly still conditions. 

Using gravitational settling with this type of algae is not an option as shown by this thesis. 

However further experiments showed that selecting for fast settling algae solved this 

problem but incurred additional agitation costs. 
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Polymer flocculants would reduce settling time. However, one of the aims of this thesis is to 

avoid using additional chemicals. Flocculants may also have a negative effect on re-using 

the algae. 

 

DAF may be a possible technique to separate buoyant algae however the small size of the 

cells can still cause significant problems without coagulants. 

 

Another process is cross flow membrane filtration. In cross flow filtration, the feed is passed 

across the filter membrane (tangentially to the filter membrane) at some pressure 

difference. Material which is smaller than the membrane pore size passes through the 

membrane as permeate or filtrate, and everything else is recycled and retained on the feed 

side of the membrane as retentate. 

 

This mode of operation is used for high solids feeds because of the risk of blinding in dead 

end filtration. With dead end filtration, solids material can quickly block (blind) the filter 

surface, causing a cake formation. With cross flow filtration the tangential motion of the 

bulk of the fluid across the membrane scows the particles from the filter surface and rub 

them off. This means that a cross flow filter can operate continuously at relatively high 

solids loads without cake blinding. 

 

The permeate is of very high quality and all the algae are retained in the bioreactor. The 

major disadvantage to this process is the energy requirements to create a fast enough flow 

rate and high enough pressure. This is required to keep the membrane clean and produce 

permeate flow through the membrane. 

 

Once the algae have been separated from the water, concentrating is relatively easy due to 

the greatly reduced volume. A wet sludge can be produced by further gravitational settling 

within an hour. A dry sludge can be produced by using the energy intensive method of 

centrifuging and a dry solid can be produced by allowing the sludge to dry in air over a 
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period of 24 hours, this however requires additional land area than the previous two 

options. This is common at STW. The actual time and space required is dependant 

environmental factors.  

 

2.2.7. Use of biomass (Non fuel types) 

Algae have a wide range of uses apart from as energy crops as listed and explained below. 

The use of algae in a number of these applications is not new and has been traditional 

procedure for many years, e.g. food in Japan, agar gels and glues.  

 

• Human food and nutritional supplements  

• Livestock feed 

• Colourings 

• Fertilizers and soil conditioners 

• Pharmaceuticals 

• Agar  

 

Algae are of increasing commercial interest, cultivated as a high nutritional value 

supplement. They can be high in protein and are excellent sources of vitamins A, B1, B2, B6, 

niacin and C. They are rich in beta-carotene, iodine, potassium, iron, magnesium and 

calcium. It is a known fact that fish oil contains the omega-3 fatty acids docosahexaenoic 

acid, commonly known as DHA and eicosapentaenoic acid, or EPA. The Martek Biosciences 

Corporation discovered that DHA in fish originates from algae (Martek, 2010). They have 

begun to manufacture it directly from the algal source. A wide range of different species of 

algae are eaten directly by humans. Algae are also used as a successful livestock feed due to 

the low cost and high nutritional value; this is especially useful in fish farming.  

 

The natural pigments produced by algae can be used as an alternative to chemical dyes and 

coloring agents. Many paper products used today are not currently recyclable due to the 

presence of chemical inks. Paper recyclers have found that inks made from algae are more 

easily broken down. There is also much interest in the food industry into replacing the 

coloring agents that are currently used with coloring derived from algal pigments. Algae has 
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long been used as a fertilizer due to its high nutrient content and can be used to make 

certain pharmaceuticals; both cosmetic and medicinal. There are well known commercial 

uses of algae as agar for both food and substrate for other growth. 

 

2.2.8. Algae biofuels 

Currently the major driving force is for the use of algae in large scale production of biofuels. 

The idea of using algae as a fuel source has been considered since at least the middle of the 

last century but is only now becoming more popular due to an increase in cost and damage 

from fossil fuels. Scientific research, better technologies and processes are improving the 

economic viability. 

 

There are numerous ways that algae can be used as an energy source. Algae have a huge 

environmental benefit over fossil fuels but the most important factor is making the 

production of biofuel more economically viable. 

 

Some uses are: 

• Oil Extraction from Algae 

• SVO and Biodiesel  

• Alcohol (Ethanol, Methanol, Propanol and Butanol) 

• Methane/Biogas 

• Pyrolysis 

• Gasification  

• Biomass 

• Hydrogen 

 

Algal biomass contains three main components, carbohydrate, protein and natural oils. The 

economics of fuel production from algae (or from any biomass) demand that we utilize all 

the biomass as efficiently as possible. It depends on the recovery of the hydrocarbon and 

use of the remaining components. A series of techniques have been used to extract energy 

as above from algal biomass to generate renewable fuel.  
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2.2.8.1. Algae and oil 

Algae can produce vastly superior amounts of vegetable oil, compared to terrestrial crops 

grown for the same purpose. Microalgae have much faster growth-rates than terrestrial 

crops. The oil yield per unit area of algae is estimated to be between 5,000 to 20,000 gallons 

per acre, per year (4.6 to 18.4 l/m
2
 per year); this is 7 to 30 times greater than the next best 

crop, Chinese tallow (0.64 l/m
2
 per year) or Palm Oil (0.6 l/m

2
 per year). Currently most 

research into efficient algal-oil production is being done in the private sector, but if 

predictions from these small scale production experiments bear out then using algae to 

produce biodiesel, bioethanol and biobutanol may be the only viable method by which to 

produce enough automotive fuel to replace current world gasoline usage. 

 

The difficulties in efficient oil production from algae lie not in the extraction of the oil. This 

can be done using methods common to the food-industry such as hexane extraction. There 

is still a requirement to find an algal strain with a high lipid content, fast growth rate, easy 

to harvest and a cost-effective cultivation system (i.e., type of photo-bioreactor).  

 

Open-pond methods have largely been abandoned for the cultivation of algae with high-oil 

content. Many believe that a major flaw of the Aquatic Species Program (Benemann, 1998) 

was the decision to focus their efforts exclusively on open-ponds. Algae in an open-pond 

environment are subject to wide swings in temperature and pH, and competition from 

invasive algae and bacteria. Open systems using a monoculture are also vulnerable to viral 

infection. The open-pond method makes the entire process dependent upon the hardiness 

of the strain chosen, requiring it to be resilient compared to a closed system in order to 

withstand these environmental variables. For a given amount of photosynthetic energy, an 

algae strain producing relatively high levels of oil will produce relatively less protein and/or 

carbohydrate, usually resulting in the species being less hardy, or having a slower growth 

rate. Algal species with lower oil content, not having to divert their energies away from 

growth, have an easier time in the harsher conditions of an open system.  

 



47 

 

Research into algae for the mass-production of oil is mainly focused on microalgae; 

organisms capable of photosynthesis that are less than 2 mm in diameter, including the 

diatoms and cyanobacteria; as opposed to macroalgae, e.g. seaweed. This preference 

towards microalgae is due largely to its less complex structure, fast growth rate, and high oil 

content (for some species). 

 

The aquatic species program selected around 300 species of algae that could be potentially 

useful as a source of oil. These were mainly found to be green algae and diatoms (Aquatic 

Species Program: close out report). 

 

It is known that under certain growth conditions, algal cells produce more oil. Conditions 

which increase growth rates reduce their oil content. Nutrient starving such as limiting 

nitrogen with green algae increases the oil content. This was studied extensively by the 

Aquatic Species Program. There was consensus among the studies showing increased oil 

production under stress and linked to cessation of cell division. While the rate of production 

of all cell components is lower under nutrient starvation, oil production seems to remain 

higher, leading to an accumulation of oil in the cells. The increased oil content of the algae 

however does not to lead to increased oil overall. In fact, oil production per unit reactor is 

lower during periods of nutrient deficiency. Higher levels of oil in the cells are more than 

offset by lower rates of cell growth.  

 

In diatoms, with the activity of ACCase, a lack of silicon also leads to an augmentation in 

lipid synthesis. 

 

2.2.8.2. Oil extraction from algae 

Algal oils have a number of commercial and industrial uses as previously discussed and are 

extracted through a wide variety of scientific methods. 

 

Expression/Expeller press: The simplest method is mechanical crushing. When algae are 

dried it retains its oil content, which then can be "pressed" out with an oil press. Since 
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different strains of algae vary widely in their physical attributes, various press configurations 

(screw, expeller, piston, etc) work better for specific algae types. Many commercial 

manufacturers of vegetable oil use a combination of mechanical pressing and chemical 

solvents in extracting oil. Estimates of the cost to extract oil from microalgae vary, but are 

likely to be around $1.80/kg (compared to $0.50/kg for palm oil). 

 

Soxhlet extraction: An extraction method that uses chemical solvents. Oils from the algae 

are extracted through repeated washing, or percolation, with an organic solvent such as 

hexane, benzene or petroleum ether, under reflux in safety protected equipment. This 

process is widely used in the food industry and is relatively inexpensive. There are problems 

for example, Benzene is classified as a carcinogen and most chemical solvents are a flame 

and explosion hazard. 

 

Osmotic shock: Osmotic shock is a sudden reduction in osmotic pressure; this can cause 

cells in a solution to rupture. Osmotic shock is sometimes used to release cellular 

components, such as oil.  

 

Ultrasonic-assisted extraction: Ultrasonic extraction, a branch of sonochemistry, can greatly 

accelerate extraction processes. Using an ultrasonic probe and reactor, ultrasonic waves can 

be used to create cavitation bubbles and pressure / temperature waves in a solvent 

material. When these bubbles collapse near the cell walls, shock waves and liquid jets are 

created that cause the cell walls to break down and release their contents. 

 

Enzymatic extraction: Enzymatic extraction can be used to degrade the cell walls and 

release the oil. The costs of this extraction process are estimated to be much greater than 

hexane extraction but may have fewer risks for food and pharmaceutical grade oils. The 

enzymatic extraction can be supported by ultrasonication. The combination "sonoenzymatic 

treatment" allows for faster extraction and higher oil yields. 
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Supercritical fluid: In supercritical fluid/CO2 extraction, CO2 is liquefied under pressure and 

heated to the point where it has the properties of both a liquid and a gas. This liquefied 

fluid then acts as a benign solvent for extracting the oil.  

 

Other methods are still being developed, including ones to extract specific types of oils, 

such as those with a high production of long-chain highly unsaturated fatty acids. 

 

2.2.8.3. SVO and biodiesel 

The algal-oil feedstock that is used to produce biodiesel can also be used for fuel directly as 

SVO. Whilst using the oil in this manner does not require the additional chemical and energy 

needed for transesterification, (processing the oil with an alcohol and a catalyst to produce 

biodiesel), the use of SVO does require modifications to a normal diesel engine, whereas 

biodiesel can be run in any modern diesel engine, unmodified. SVO can be used in an 

unmodified diesel engine providing the viscosity is reduced with white spirit, petrol or 

similar (as a dual fuel mixture). 

 

SVO, extracted from oil can be refined for traditional transport fuels to produce gasoline, 

diesel, propane, or kerosene. 

 

Biodiesel is alkyl esters made from the transesterification of vegetable oils. Algal-oil can be 

processed into biodiesel as easily as oil derived from land-based crops. Biodiesel is 

biodegradable and non-toxic, and produces significantly fewer emissions than petroleum-

based diesel when burned. Biodiesel is a better solvent than standard diesel and so causes 

less engine wear. Currently, only some vehicle manufacturers state that their diesel engines 

can be run with 100% biodiesel. 

 

2.2.8.4. Alcohol 

Biologically produced alcohols, most commonly ethanol and methanol, and less commonly 

propanol and butanol are produced by the action of microbes and enzymes through 
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fermentation. This is a potential use of the algal biomass, specifically the remaining fraction 

after initial processing, i.e. oil extraction. 

 

2.2.8.5. Biogas 

Biogas produced and recovered by the process of anaerobic digestion of organic material is 

the most widely used biofuel at the moment and has the advantage that most large UK 

sewage works already have anaerobic digesters. 

 

2.2.8.6. Pyrolysis 

Pyrolysis is the chemical decomposition of organic materials by heating in the absence of 

oxygen or any other reagents. The resulting carbonization produces various grades of 

hydrocarbon residue. 

 

2.2.8.7. Gasification 

Synthesis Gas (Syngas) is generated during the pyrolysis and gasification of a carbon 

containing fuel to a gaseous product. The product will contain varying amounts of carbon 

monoxide, CO2 and hydrogen. Syngas can be used as a fuel or as an intermediate for the 

production of other chemicals. 

 

2.2.8.8. Solid biomass 

Algae can be grown to produce biomass, which can then be harvested, dried and 

combusted in the same manner as wood, to produce heat and electricity. 

 

2.2.8.9. Hydrogen 

Algae can be used as a biological source for the production of hydrogen. In 1939 Hans 

Gaffron observed that the algae, Chlamydomonas reinhardtii (a green alga), would 

sometimes switch from the production of oxygen to the production of hydrogen. Gaffron 
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was unable to explain this change but in 1998, professor Anastasios Melis discovered that 

depriving the algae of sulfur was the switch from the production of oxygen (normal 

photosynthesis), to the production of hydrogen. He found that the enzyme responsible for 

this reaction was hydrogenase, but the hydrogenase did not work in the presence of oxygen, 

suggesting a role for sulphur oxidation. Melis found that oxygen transport was dependant 

on a sulphur enzyme, diverting metabolism via hydrogenase activity. Chlamydomonas 

moeweesi was found to be a good strain for the production of hydrogen.  

 

In 2001 Melis started his own company to try to commercialize hydrogen production, the 

company failed however research continues at the Photobiological Hydrogen Production 

Program, started in 2004. Ely and Chaplen are also researching this field, hoping to develop 

oxygen-tolerant strains of cyanobacteria that can produce hydrogen continuously. 

 

2.3. The basics of wastewater treatment, why phosphorus removal is 

important and a guide to eutrophication 

2.3.1. Background of wastewater treatment 

With the growth of the human population, people began to live in larger and more densely 

populated groups; the removal of human waste became a serious issue. Where small 

populations exist and land is abundant, small low energy treatment plants to deal with the 

sewage to remove carbon, ammoniacal, nitrogen and pathogens were normal.  In modern 

times, centralisation of facilities is more popular as land has become less accessible and a 

broader range of pollutants have been consented. When an area becomes densely 

populated, it is much more difficult to install individual systems and becomes more efficient 

to deal with the problem by installing more pipes and pumps that carry the waste away to a 

well controlled centralised outlet. European wide regulations (WFD2003) are now in place 

which aspires to ensure that wastewater streams are of natural quality and not exerting an 

influence on biodiversity. 
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Sewage consists of water-borne domestic and industrial waste which is enriched with 

dissolved and suspended organic and inorganic constituents. It also contains faecal and 

other potentially pathogenic bacteria. Currently the sewage has to be treated before its 

disposal for three main reasons. Firstly, the anaerobic digestion of sewage produces stinking 

and offensive odours, secondly the contamination of potable water with raw sewage is 

potentially a health risk and thirdly the waste stream is a sustainable reusable source of 

inorganic nutrients such as nitrogen, phosphorus, potassium and sulphur that left untreated 

can have detrimental effects on the environment. Recycled sewage effluent is now also an 

important component in water supply (5-10%). 

 

2.3.2. Overview of the main wastewater treatment processes 

A typical wastewater treatment plant operates four main processes; the processes within 

these stages consist of physical, biological and chemical processes. The actual standard 

required for the effluent discharge depends on the flow rate of receiving water. 

 

2.3.2.1. Preliminary treatment 

The first stage consists of two main physical processes. Screening through a series of 

screens decreasing in size removes the coarse, medium and fine solids. This is mainly for 

protection of the subsequent treatment units. The second stage removes sand and grit via 

settlement in a grit chamber. This dense material settles much faster than the organic 

matter which stays in suspension for treatment in downstream units. 

 

2.3.2.2. Primary treatment 

The main aim of primary treatment is to remove a large part of the suspended solids and 

hence reduce the BOD (typically by 30%) directed to the secondary treatment. This is done 

by gravitational settlement tanks; this remaining mass of solids is the raw primary sludge. 

Material that has a lower density than water such as detergents will rise to the surface of 

the sedimentation tanks where it is collected and removed for subsequent treatment. The 
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process can be enhanced with the use of phosphate precipitating chemicals such as Fe and 

Al.  

 

2.3.2.3. Secondary treatment 

The main aim of the secondary treatment is to remove the dissolved organic matter and any 

remaining fine suspended organic matter. The processes are controlled accelerated natural 

decomposition mechanisms in bioreactors. The controlled conditions ensure short time 

scales for treatment. The removal of organic matter in the secondary stage is carried out by 

adapted soil and river bacteria which include ammonia oxidisers. The microorganisms, 

particularly the nitrifiers, need to be kept in contact with and have a good supply of oxygen 

as it is an aerobic process. This is the basic process however there is a wide variety of 

secondary treatment processes, the main ones are: 

 

• Algal stabilisation ponds 

• Land disposal systems 

• Anaerobic reactors 

• Activated sludge systems 

• Aerobic biofilters 

 

Going into detail about each process is beyond the scope of this thesis however details of 

them can be found for example in the CIWEM British Practice Manual. 

 

2.3.2.4. Tertiary treatment 

The main aims for tertiary treatment are: 

 

• Achieving low solids values 

• The removal of pathogenic organisms 

• The removal of heavy metals 

• The removal of nutrients, mainly N and P 
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Tertiary treatment is mainly achieved using sand filters whose backwashing requires large 

amounts of power which can be costly. To remove or kill pathogenic organisms, sometimes 

UV lamps are used. Chemical precipitation processes are used to remove nutrients into a 

sludge. Biological processes using P accumulating organisms may not be able to achieve the 

consistency of chemical treatment. 

 

2.3.3. The importance of nutrient removal, specifically P removal 

Most stages in the treatment process work well and easily meet the required standard. The 

later tertiary stage of nutrient removal is not so successful, can be costly and involve the use 

of large amounts of chemicals. This is especially true for the removal of Phosphorus.  

 

A standard of 1mg/L PO4 needs to be met 95% of the time to meet the UWWTD or WFD. 

This is difficult and costly with traditional chemical methods. Meeting N and P standards are 

important for preventing / controlling Eutrophication. P is often regarded as the main 

problem in cases of eutrophication in natural waters subjected to point source pollution 

from sewage since the normal background concentration is less than 0.5mg/L. The 

concentration of algae and the eutrophic state of natural waters correspond well to 

phosphorus level. Ecosystems receiving more nitrogen than the plants require are called 

nitrogen-saturated. Phosphorus is much less soluble in water than nitrogen so consequently, 

phosphorus is a much more important growth limiting nutrient in aquatic systems. 

 

2.3.4. Eutrophication 

Growth of algae in water; reservoirs, rivers and other water supplies have a number of 

undesirable effects. Waters that contain an abundance of dissolved nutrients are capable of 

supporting a dense crop of algae. N & P are essential to growth and if these are limited in 

quantity, little growth occurs. Water which is fertile i.e. rich in dissolved nutrients, is termed 

eutrophic. In eutrophic situations, the deeper waters, which are often cool and dark, usually 

become totally depleted of oxygen, particularly during summer. 
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The most general problem is a lack of oxygen in the water needed for animals to survive. 

Algae also cause discolouration and bad taste in the water with some species producing 

toxins harmful to higher forms of life involved in that food chain. Algae can also cause 

additional problems during water treatment and reduce the aesthetical and recreational 

value of natural waters. 

 

The oxygen depleted water results from the microbial breakdown of sedimenting algal and 

animal wastes / remains that build up during active periods like the summer, especially in 

eutrophic environments where nutrients are in excess. In autumn, as the surface water 

(epilimnon) cools to a temperature lower than the deep hypolimnon a switch or mixing 

process occurs in the stratified layers. The now less dense, murky oxygen depleted water 

from the bottom comes to the surface replacing the clear cooling water. As a result, fish and 

other organisms, which need oxygen, can sometimes be killed through suffocation by this 

upwelling. The water may produce bad odours as a result of the decomposition. Some 

waters are naturally eutrophic, but many lakes and rivers also become so, through the 

effects of human activity. P in detergents is prohibited in Finland / Switzerland to protect 

the predominately lake surface waters. 

 

2.3.5. P & N removal techniques from wastewater 

Phosphate removal from wastewater involves the incorporation of phosphate into a 

particulate form which is then removed as suspended solids. The phosphate can be 

incorporated as either micro-organisms or metal phosphate precipitates. 

 

Growing biomass to treat sewage is a technique that has been used for many years. 

Duckweed covered sewage lagoons and reed beds are the most common non-bacterial 

options. The growth of biomass requires a certain amount of nutrient to be present; sewage 

is an ideal location. A fast growing water based plant is favourable. 
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A reed bed is an artificially created wetland planted with specially selected species of reed. 

They are mainly used in rural areas that do not have nearby sewage treatment facilities. A 

reed bed is capable of fully treating sewage and relies on biological processes. They are 

efficient and cheap to run, produces reeds which can be harvested for compost and avoids 

the need for chemical treatment. (See “Reed Beds for the Treatment of Domestic 

Wastewater, Grant and Griggs”) 

 

A sewage lagoon has the more specific purpose of removing P and N. They are usually one 

of the final processes in a water treatment system and consist of a large tank / pond 

growing some form of plant life with good nutrient removal properties such as duckweed. 

The nutrient absorption is proportional to plant biomass growth. A study by Al-Nozaily 

showed that the P and N uptake rates and duckweed growth rate are inhibited by high 

levels of ammonia, N removal is not affected by the depth of tank and P removal is lower 

than that of algae-based ponds (Arceivala, 1981). It is noted that duckweed is considerably 

easier to harvest than algae. 

 

Nitrification is the biological oxidation of ammonia to nitrate. The micro organisms, 

Nitrosomonas and Nitrobacter carry out the reaction but acid produced by the process 

lowers the pH so alkalinity may have to be added. The nitrate is then biologically converted 

to gaseous nitrogen by denitrification. 

 

Biological treatment is generally a more attractive option although physical/chemical 

processes exist. Breakpoint chlorination is accomplished by the addition of chlorine to the 

waste stream to oxidise ammonia-nitrogen to gaseous nitrogen. Air stripping of ammonia 

consists of raising the pH of the wastewater to pH11.5; this is induced artificially however it 

occurs naturally during plant growth when the CO2 concentration is reduced. At high pH the 

solution will contain mostly ammonia as a dissolved gas. With enough air-water contact, the 

ammonia gas will be stripped from solution. Selective ion exchange is accomplished by 

passing the wastewater through an ion-exchanger bed which exhibits a high selectivity for 
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the ammonium ion. Filtration of the wastewater is usually required before the ion-

exchanger to prevent fouling of the natural zeolite used in this process.  

 

2.3.6. The use of controlled eutrophication through algal bioreactors and HRAPs 

to remove P and other pollutants 

A solution to meeting P standards and preventing the release of nutrient rich sewage 

effluent may exist by performing a wastewater treatment stage of controlled 

eutrophication. 

 

Algae adapted specifically for growing in wastewater and consuming P and other pollutants 

can be grown in a controlled environment. They can be used to remove these pollutants 

before being discharged to natural waters, avoiding downstream growth. The algae would 

not be discharged with the treated effluent (free of nutrients and suspended solids) but 

instead used to treat the continuous flow of wastewater and be regularly harvested to 

maintain the algae concentration at an optimum value. The collected biomass rich in carbon 

and nutrients can be used to produce higher value products such as fertiliser or sustainable 

fuel source. 

 

During the algae’s growth process they fix large amounts of CO2 from the atmosphere. 

Additional CO2 can be used to promote more intensive growth and maintain unfavourable 

conditions for bacteria. The presence of algae in water, even in small quantities may give it 

an odour or taste. However the majority of freshwater algae tend towards the purification 

of water due to their capacity to absorb and utilise many diverse kinds of organic 

substances. It is unlikely that wastewater would be used directly for drinking water 

treatment without first being discharged into a natural water course for further natural 

purification or involve treatment processes such as activated carbon to remove dissolved 

organics.
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3. Literature Review 

3.1. Summary of literature review 

The progress in this field has been very fast over the past 5 years and the population of 

literature is on-going, this has meant that the literature review had to be updated regularly. 

The initial search for literature in 2006 turned up very little data. Therefore, whilst in the 

experimental planning phase a vast majority of this literature did not exist. Re-planning a 

similar project with the combined accumulation of knowledge over the past 5 years would 

give a very different approach. There is a detailed description provided of the experiments 

that still need to be examined based on the culmination of the project findings, the 

literature and recent data up to early 2011. 

 

A comprehensive search for literature has been carried out that covers the range of topics 

related to this project. Where possible, the literature is from modern sources, avoiding 

older papers that are either out of date or referenced by more modern work. The range of 

experimental work carried out is fairly small however the nature of this topic provides so 

many variable parameters that many combinations of these can be tested. In general, there 

is much agreement about the mechanisms and processes involved in this field. Most 

experimental data provide similar results and suggested theory. 

 

The main disagreement is not that the process can work but instead, if nutrient removal 

rates and biomass production can be sustained in unfavourable conditions. The 

disagreement within the field is related to the economic viability of producing large 

quantities in the open environment to match the production of energy from fossil fuels.  

Most people accept however that when the main focus is wastewater treatment, the 

economics are no longer a barrier; instead any by-products such as algal biomass and 

improvements in sustainability become benefits. 
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The main lack of work so far has been implementing all the individual successful procedures 

into a single unit based at a wastewater treatment works. This is a difficult step to take 

however due to minimal work having been carried out using natural wastewater in 

uncontrolled environments which are realistic to real life. Previous work has either tested 

for individual parameters or optimised laboratory setups, mainly using artificial wastewater. 

 

The focus is to test real life conditions, wild algae and variable sewage under low light 

conditions to determine if the process is possible in the UK and how this could be combined 

with the industrial processes shown in the literature. A scale up design should make best 

use of the most effective pond procedures and mechanisms whilst overcoming the issues 

and problems other people have experienced across the range of variables and 

environmental parameters. 

 

Throughout the literature I have then examined the numerous tools available for controlling 

these parameters to optimise efficiency. The work leads on to describe a suggested design 

on a treatment facility based on my experimental data and the findings from literature. 

 

Table 1 – Summary of papers that were read and not reviewed, in favour of using other papers 

Title Author Year Reason 

Chemical Processes for 

Phosphate Removal 

Jenkins et al. 

 

1971 Due to the age of the paper and the 

evaluation that chemical treatment 

is not the way forward 

Modelling of Phosphorus 

precipitation in 

wastewater treatment 

plants with enhanced 

biological phosphorus 

removal 

 

Maurer & Boiler 1999 Having read through other more 

suitable papers, I felt this did not 

contribute anything for my research 

The Removal of 

Phosphorus During 

Wastewater Treatment: 

A Review 

Yeoman et al. 1988 Focusing on a review of chemical P 

removal from 1988; the paper did 

not provide any useful information 

Microalgae as a Source of 

Liquid Fuels 

 

Benemann et al. 1982 With the amount and quality of 

recent papers, it was unnecessary 

to include this 
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The relative importance 

of Lemna gibba L., 

bacteria and algae for the 

nitrogen and phosphorus 

removal in duckweed-

covered domestic 

wastewater 

Korner & 

Vermaat 

1998 Taking into consideration the 

amount of papers I have on this 

topic, the age of the paper and the 

specific relevance. Having looked 

over this paper I felt it was not 

beneficial for inclusion 

Sewage nutrient removal 

by a shallow algal stream 

Hemens & 

Mason 

1968 Taking into consideration the 

amount of papers I have on this 

topic, the age of the paper and the 

specific relevance. Having looked 

over this paper I felt it was not 

beneficial for inclusion 

Ecological Water 

Treatment System for 

Removal of Phosphorus 

and Nitrogen from 

Polluted Water 

Drenner et al. 1997 Taking into consideration the 

amount of papers I have on this 

topic, the age of the paper and the 

specific relevance. Having looked 

over this paper I felt it was not 

beneficial for inclusion 

Nutrient Removal by 

Thermophilic Fischerella 

(Mastigocladus 

laminosus) in a Simulated 

Algaculture Process. 

Radway et al. 1994 Taking into consideration the 

amount of papers I have on this 

topic, the age of the paper and the 

specific relevance. Having looked 

over this paper I felt it was not 

beneficial for inclusion 

Nitrogen Removal in 

Pond Systems With 

Different Configurations 

and Geometries 

Silva et al. 1995 Taking into consideration the 

amount of papers I have on this 

topic, the age of the paper and the 

specific relevance. Having looked 

over this paper I felt it was not 

beneficial for inclusion 

Wastewater Nutrient 

Removal by Marine 

Microalgae Grown on a 

Corrugated Raceway. 

Craggs et al. 1997 Taking into consideration the 

amount of papers I have on this 

topic, the age of the paper and the 

specific relevance. Having looked 

over this paper I felt it was not 

beneficial for inclusion 

Microalgae and 

Wastewater Treatment. 

Hammouda et 

al. 

1995 Taking into consideration the 

amount of papers I have on this 

topic, the age of the paper and the 

specific relevance. Having looked 

over this paper I felt it was not 

beneficial for inclusion 

Where is biological Barnard & 2006 The paper did not include any 
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nutrient removal going 

now? 

 

Steichen 

 

information about the use of algae 

for wastewater nutrient removal 

Nitrification in bulk water 

and biofilms of algae 

wastewater stabilization 

ponds 

Babu et al.  

 

2007 Taking into account the content, 

age and relevance of this paper 

compared with the numerous other 

papers I have on a similar area of 

research, I have decided not to 

include it in the literature review 

Process performance 

assessment of algae-

based and duckweed-

based wastewater 

treatment systems 

Zimmo et al.  

 

2002 Taking into account the content, 

age and relevance of this paper 

compared with the numerous other 

papers I have on a similar area of 

research, I have decided not to 

include it in the literature review 

Selection of natural 

treatment processes for 

algae removal from 

stabilisation ponds 

effluents in Brasilia, using 

multicriterion methods 

Neder et al.  

 

2002 Taking into account the content, 

age and relevance of this paper 

compared with the numerous other 

papers I have on a similar area of 

research, I have decided not to 

include it in the literature review 

Comparison between 

algae-based and 

duckweed-based 

wastewater treatment: 

Differences in 

environmental conditions 

and nitrogen 

transformations 

Zimmo et al. 2000 Taking into account the content, 

age and relevance of this paper 

compared with the numerous other 

papers I have on a similar area of 

research, I have decided not to 

include it in the literature review 

The role of algae in a 

deep wastewater self-

regeneration pond 

Arauzo et al.  

 

2000 Taking into account the content, 

age and relevance of this paper 

compared with the numerous other 

papers I have on a similar area of 

research, I have decided not to 

include it in the literature review 

An integrated duckweed 

and algae pond system 

for nitrogen removal and 

renovation 

Steen et al.  

 

2000 Taking into account the content, 

age and relevance of this paper 

compared with the numerous other 

papers I have on a similar area of 

research, I have decided not to 

include it in the literature review 

Performance of a pilot-

scale high rate algal pond 

system treating abattoir 

Evans et al. 2005 Taking into account the content, 

age and relevance of this paper 

compared with the numerous other 
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wastewater in rural 

South Australia: 

nitrification and 

denitrification 

papers I have on a similar area of 

research, I have decided not to 

include it in the literature review 

Nitrogen 

Transformations and 

Removal Mechanisms in 

Algal and Duckweed 

Waste Stabilisation 

Ponds 

Zimmo  

 

2003 Taking into account the content, 

age and relevance of this paper 

compared with the numerous other 

papers I have on a similar area of 

research, I have decided not to 

include it in the literature review 

Design and Analysis of 

Microalgal Open Pond 

Systems for the Purpose 

of Producing Fuels. 

Welssman & 

Goebel 

1987 Taking into account the content, 

age and relevance of this paper 

compared with the numerous other 

papers I have on a similar area of 

research, I have decided not to 

include it in the literature review 

Systems and Economic 

Analysis of Microalgae 

Ponds for Conversion of 

CO2 to Biomass. 

Benemann & 

Oswald  

 

1996 Taking into account the content, 

age and relevance of this paper 

compared with the numerous other 

papers I have on a similar area of 

research, I have decided not to 

include it in the literature review 

Waste Stabilization 

Ponds: Effluent Quality 

Requirements and 

Implications for Process 

Design 

Mara  

 

1996 Taking into account the content, 

age and relevance of this paper 

compared with the numerous other 

papers I have on a similar area of 

research, I have decided not to 

include it in the literature review 

Biogas Production from 

Algae Biomass Harvested 

at Wastewater 

Treatment Ponds 

Salerno et al. 2009 The topic of the paper would be 

useful but it is so badly presented 

with important information 

missing, it is impossible to make 

sense of how they carried out the 

experiments. From what I can tell 

they have serious floors in the 

control of the experiments they 

carried out. 

 

3.2. General Findings 

G. Shelef (1980) studied algal species in wastewater under varying parameters; season, 

temperature, pH, organic loading, retention time, depth and agitation methods. It was 
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found that the algal population in wastewater was made up of six major algae species. 

Euglena gracilis, Scenedesmus dimorphus, Chlorella vulgaris, Ankistrodesmus falcatus, 

Actinastrum gracillimum and Micractinium pusillum. Although they all have optimal 

temperatures around 25°C, Scenedesmus and Euglena are more tolerable to low 

temperatures and tend to dominate at around 15°C. 

 

A resource availability analysis by the aquatic species program indicated that significant 

potential land, water and CO2 resources exist to support the algal biomass technology. 

 

“The first work done in earnest by DOE on demonstration of algae technology for energy 

production predates the Aquatic Species Program. In 1976, the Energy Research and 

Development Administration (before it folded into DOE) funded a project at the University 

of California Berkeley’s Richmond Field Station to evaluate a combined wastewater 

treatment/fuel production system based on microalgae. Over the course of several years, 

the Richmond Field Station demonstrated techniques for algae harvesting and for control of 

species growing in open ponds. By the time the Aquatic Species Program took on 

microalgae research, emphasis had already moved from wastewater treatment based 

systems to dedicated algae farm operations. From 1980 to 1987, the program funded two 

parallel efforts to develop large scale mass culture systems for microalgae. One effort was 

at the University of California, and it was based on a so-called “High Rate Pond” (HRP) 

design. The other effort was carried out at the University of Hawaii, where a patented 

“Algae Raceway Production System” (ARPS). Both designs utilized open raceway designs. 

The HRP design was based on a shallow, mixed raceway concept developed at Berkeley in 

1963 and successfully applied in wastewater treatment operations in California. The ARPS 

was really a variation on the same concept. Both efforts carried out their test work in ponds 

of 100 square meters or less. They studied a variety of fundamental operational issues, such 

as the effects of fluid flow patterns, light intensity, dissolved oxygen levels, pH and algae 

harvesting methods. At the conclusion of the smaller scale tests conducted in California and 

Hawaii, the program engaged in a competitive bidding process to select a system design for 

scale-up of algae mass culture. The HRP design evaluated at UC Berkeley was selected for 



64 

 

scale-up. The “Outdoor Test Facility” (OTF) was designed and built at the site of an 

abandoned water treatment plant in Roswell, New Mexico. From 1988 to 1990, 1,000 

square meter ponds were successfully operated at Roswell. This project demonstrated how 

to achieve very efficient (>90%) utilization of CO
2
 in large ponds. The best results were 

obtained using native species of algae that naturally took over in the ponds (as opposed to 

using laboratory cultures).” Aquatic species program 

 

Finding algal strains to grow is not very difficult. Cultivating specific strains of algae for 

biodiesel could, however, be a bit more difficult, as they can require high maintenance and 

could get easily contaminated by undesirable species. The algal ponds are open systems and 

hence vulnerable to being contaminated by other algal species and bacteria. The real 

challenge with open ponds is that the species of algae that have the highest oil content are 

not necessarily the quickest to reproduce. This creates a problem where other species take 

over the pond. 

 

In an open pond there is much less control over water temperature, CO2 and lighting 

conditions. Ponds in which algae are normally cultivated are called ‘raceway’ ponds, 

whereby the water, algae and nutrients are moved around a circuit. The ponds are kept 

shallow and the algae are kept in suspension to aid photosynthesis. The ponds operate in a 

continuous manner with a steady production of algae. 

 

Photo-bioreactors can be used for a more controlled environment; this comes with extra 

cost and energy usage. The efficiency and oil yields would be significantly higher and could 

work out more beneficial in the long run. 

 

In work carried out by the aquatic species program, they found an inability to maintain 

laboratory organisms in the field. Algal species that looked very promising when tested in 

the laboratory were not robust under conditions encountered in the field. In fact, the best 

approach for successful cultivation of a consistent species of algae was to allow a 
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contaminant native to the area to take over the ponds. This evidence almost suggests that 

testing with specific species for use in open field environments is pointless. 

 

A problem with the HRTs in bioreactors and tanks is not necessarily due to nutrient removal 

rates but can be limited by the reproduction rates of algal cells. This can be a common 

problem and has been stated by Abeliovich (1976). “Whenever we tried to reduce the 

retention time of the wastewater in the high rate oxidation ponds to less than four days, 

the algal culture was washed out of the pond, and we were left with an anaerobic pond 

practically free of algae.” 

 

Abeliovich (1976) also found that high ammonia concentrations inhibit photosynthesis and 

growth of algae at pH values over 8.1. 

 

The most common set up for algae cultivation is long shallow ‘raceway track’ tanks with the 

use of rotary paddles. Another popular choice is small diameter tall circular Perspex tanks; 

these provide the best surface area to volume ratios for maximum sunlight. A disadvantage 

to this type of tank is the small amount of air contact surface; gives rise to a reduced CO2 

concentration in the tank. 

 

A popular method of agitation is the use of paddle wheels that move the fluid around the 

tank and help keep algae in suspension. It may be possible for these to be wind powered. 

 

3.3. Nutrient removal technologies 

3.3.1. Phosphorus removal 

Chemical techniques 

Morse et al. (1998) produced a comprehensive review of technologies that remove and 

recover P from wastewater. These technologies include chemical precipitation, BPR, 

crystallisation, novel chemical precipitation approaches and a number of wastewater and 
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sludge-based methods. They provide a very useful and informative paper about the existing 

technologies. However they do not mention, algal ponds, lagoons or any kind of algal based 

treatment. They provide a full 2 page summary of all the other technologies. The main 

details are as follows: 

 

Removal was initially achieved by chemical precipitation, which remains the leading 

technology today (1998). Chemical precipitation is in essence a physico-chemical process, 

comprising the addition of a divalent or trivalent metal salt to wastewater, causing 

precipitation of an insoluble metal phosphate that is settled out by sedimentation. The 

most suitable metals are iron and aluminium, added as chlorides or sulphates. Lime may 

also be used to precipitate calcium phosphate. Anionic polymers may be used to assist solid 

separation. Chemical precipitation is a very flexible approach to P removal and can be 

applied at primary, secondary or tertiary stages during WWT. 

 

Strickland (1998) looked into the development and application of P removal from 

wastewater using biological and metal precipitation techniques. They look at the program 

of technology development in response to the wastewater treatment directive, biological 

treatment, iron salt dosing and biological filters. 

 

He states that for surface water reservoirs, the concentration of P needs to be reduced to 

below 0.01mg/L to reliably control algal growth. Based on results from the literature review, 

I would state that the figure is closer to 0.04mg/L, never-the-less it is still very low. 

 

The results of the large scale BNR at Northampton STW show that the effluent was reduced 

to 1.7mg/L on average throughout the year. Cambridge could only reduce P to 2-3mg/L due 

to the weak sewage at 120mg/L BOD. 

 

When Strickland (1998) was using an established chemical process, two trials were run, one 

at Letchworth and one at Northampton. At Letchworth STW they tested both ferric and 

ferrous sulphate. When using a higher Fe:P ratio, the % P removal was greater. It was shown 
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that the use of ferrous sulphate was more effective than ferric sulphate (and also lower in 

cost) and could remove 97% of P in the trial, achieving 0.29mg/L. Northampton STW trials 

confirmed ferrous sulphate could achieve <1mg/L P with a 2.4:1 Fe:P dosing ratio. Louth 

STW switched from ferric sulphate to ferrous sulphate and saw an average annual 

improvement, reducing effluent P from 2.6mg/L – 2mg/L. 

 

The paper highlights the difficulties in reducing P to low concentrations using these 

methods. 

 

Takacs et al. (2006) provide a case study from the Washington, DC area showing that 

chemical P removal can achieve extremely low levels. The Chesapeake Bay area of 

Washington, DC has very stringent discharge P requirements, essentially down to the 

detection limit (0.01mg/L). They examine two plants that use different chemical P removal 

technologies. 

 

Using Ferric, extremely low orthophosphate levels (<0.02mg/L) can be achieved over a wide 

range of pH values (5.7-8), this is shown for a large data set plotting concentration vs. pH. 

When simultaneous precipitation is used, a 3.9:1 Fe:P ratio is required however when 

tertiary clarification is used, it only requires a ratio of 2.5:1. 

 

Takacs et al. (2006) also show that chemical P removal can consistently reduce P to 

<0.2mg/L, often to below the detection limit of 0.01mg/L in the pH range of 6.2-7. 

 

Valve et al. (2002) looked at enhancing BPR from municipal wastewater with partial 

simultaneous precipitation. They carried out pilot-scale tests to enhance P removal using 

ferrous sulphate in a biological P and N removal process. 

 

Previous studies in Finland have shown that with biological P removal (BPR) very consistent 

results with effluent P levels of less than 0.5mg/L can be achieved even under winter 

conditions as long as N removal or nitrification is not needed. When N removal was 
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combined with BPR to treat normal municipal wastewater, wide variations were 

encountered: effluent soluble P varied between 0.2-2.5mg/L. 

 

During the start up period, P removal was effective with an effluent P of less than 0.3mg/L. 

This was well in accordance with earlier observations that BPR is effective when nitrification 

is incomplete. The results indicated that Fe(II) competes with the PAOs and will inhibit the 

BPR process completely at doses exceeding 9g/m
3
 of Fe(II). The goal of an effluent P level of 

0.5mg/L can be attained with 5g/m
3
 of Fe(II). A consistent effluent concentration of 0.3mg/L 

could not be achieved with this method. 

 

It can be concluded that the Fe very effectively binds the free P thus preventing the PAOs 

from using it for poly-P build up in the cell which is essential for the functioning of BPR. 

 

This review has shown that there are issues with using simultaneous P and N removal 

during this process. Simultaneous P and N removal is an integral part of algal treatment 

without the need for additional chemicals. 

 

Morse et al. (1998) talk about the development of crystallisation technology that started in 

the 1970s, in response to more stringent P removal requirements combined with the desire 

to produce a more marketable end-product. The crystallisation process is based on the 

crystallisation of calcium phosphate on a seeding grain, typically sand, within a fluidised 

reactor. Process conditions are adjusted to promote calcium phosphate crystallisation by 

adding either caustic soda or milk of lime. The high rate of crystallisation allows a short 

retention time and therefore a small reactor. Pellets are periodically removed and replaced 

by smaller diameter seed grains. This allows continuous operation and ensures good 

fluidisation. 

 

Ion exchange, magnetic attraction and adsorbents have also been investigated for their 

potential to remove P from wastewater. In the RIM-NUT ion exchange-precipitation process, 

ammonia and phosphate ions are removed from tertiary wastewater to produce struvite. 
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The process uses a cationic resin to remove the ammonium ions and a basic resin to remove 

phosphate ions. Regeneration releases the ammonium and phosphate which are then 

precipitated as struvite. 

 

From the preceding literature review, it can be seen that see that today, nobody wants to 

use chemical treatment due to the high running costs, corrosive and unsustainable nature. 

It prevents easy recycling of the sludge to agriculture and inhibits anaerobic digestion. It is 

mainly used at the tertiary stage to focus on P removal. In the following sections we review 

the biological techniques. 

 

Biological techniques 

Morse et al. (1998) also state that more recently however, the most popular method has 

become BPR and is now firmly established. The development of BPR was based on research 

in the late 1950s, which found that, under certain conditions, activated sludge could take up 

P in considerable excess to that required for normal biomass growth. Based on this 

phenomenon, known as ‘luxury uptake’, a number of applications and processes have been 

developed and the technology is now firmly established, particularly for new or 

redeveloped works serving large populations. The technology has the advantage of avoiding 

the use of chemicals and excess sludge production. However, it requires more complex 

plant configurations and operating regimes. Recovered P is in general biologically bound 

and can be released into solution under anaerobic conditions. Careful sludge management 

is therefore essential. 

 

Craggs et al. (1996) studied P removal from wastewater using an algal turf scrubber. The 

algal turf scrubber consisted of an inclined floway strip with attached periphyton, micro 

algae and bacteria. The strip was 6.5m wide and 1012m
2
 total surface area. Essentially 

influent would flow down the strip and P removal would occur. The P concentration in the 

influent was around 3mg/L Biomass was mechanically harvested every 1-2 weeks. The algal 

species composition varied throughout the year. 
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The hydraulic loading rate was varied over different times of the year. This had a large 

effect on the P removal rate, as you increase the volume, the growth rate and P removal 

rate / L decrease. During the winter growth rate dropped to 4.45mg/L/d. During the 

summer, the highest growth rates were achieved at 68.6mg/L/d. 

 

When the lowest hydraulic loading rate was used, P concentration was reduced to 0.4mg/L, 

when it was doubled, P concentration was only reduced to 0.9mg/L. The influent pH of 

between 7.5-8 would rise during the treatment to around 9.5-10 depending on the loading 

rate and subsequent algal activity / L. This correlates well with other literature and my own 

work. 

 

Achieving growth rates of up to 68.6mg/L is good for achieving a sub 1mg/L P target. If 

loading rate was reduced the growth rate / volume would increase however the total 

weight would still remain fairly constant. In this case it is unfair to compare against other 

growth rate experiments. 

 

Toms et al. (1975) wrote an extensive early paper regarding the details of polishing lagoons 

and the affects of algal growth on performance. They show that lagooning buffers effluent 

between the treatment works and river, changing the BOD, reduces the existing SS however 

may increase SS due to algal growth which plays a big role in nutrient stripping, especially P. 

 

They pose questions relating to design and performance that are very similar to the 

questions asked about the process suggested in this thesis: What is the required HRT? 

Seasonal variations? Operating conditions? Are nutrients reduced and what are the removal 

mechanisms? What should the depth of the lagoon be? What effect will algal growth have 

when discharged to the river? They investigate the factors that affect the growth of algae in 

the lagoons. 

 

They note that different operating conditions still produce similar dominant algal genera 

and relative proportions; the population being dominated by green and green-yellow algae 
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with blue-green algae only occurring occasionally. Scenedesmus, Ankistrodesmus, 

Actinastrum, Dictyosphaerium, Chlorella, Coelastrum, Kirchneriella, Chlamydomonas, 

Heteromastix, Cryptomonas and Rhodomonas. 

 

Algae require and complex combination of environmental factors, particularly light, CO2, N, 

P and trace elements. They require sufficient time to grow and divide. Due to high P and N 

loading, algal growth is unlikely to be limited by lack of these elements. They state that in 

the early stages CO2 is unlikely to be limited but given sufficient time and light to grow, 

inorganic carbon would become the limiting factor. Algal growth are largely controlled by 

physical factors, seasonal light and temperature, HRT, turbidity and biological grazing. 

 

It was seen that growth should only occur if the HRT exceeds 2 days and the algal 

population declines with depth of lagoon. The model they created indicated that for a given 

HRT, if it is desired to produce the maximum quantity of algae for nutrient stripping and / or 

harvesting the lagoons should be as shallow as possible. HRTs would be longer in the 

autumn and spring than in the summer and they state it is unlikely that exploitable 

quantities of algae could be grown in the winter in the UK. When the lagoons were 

operated as a series, extensive growth of filamentous algae was observed. They do not offer 

an explanation for this. 

 

The growth of algae in the lagoons produces 15x more oxygen than they use for respiration, 

aiding to improved BOD removal. The paper reports no recorded instance of algae 

harvesting from a lagoon system in the UK but propose flocculation and lime addition as 

possible methods. They state that the control and growth of algae may provide a 

commercially exploitable product from the lagoons. 

 

With increasing concern about eutrophication, considerable interest has been attached to 

the removal of P from sewage effluents. They show a strong correlation between growth of 

algae and significant removals of P. Where algae did grow they also show seasonal 

variations between high summer populations (May - August) and high P removal (80% 
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reduction) compared to the reduced P removal (20% reduction) when populations were low 

in the winter. 

 

Interestingly they show that the P content of the algae was 3.5%, considerably higher than 

the 0.5-1% normally assumed. They show that additional P reduction was from precipitation 

of hydroxyapatite due to high pH values caused by photosynthetic uptake of CO2 by algae. 

There was 4x more P as sediment in the mud in lagoons with high algal growth than those 

without algal growth. 

 

They produced a very interesting graph plotting soluble P vs. pH showing that P is 100x 

more soluble at pH8 than it is at pH10. This could be a factor associated with the 

importance of keeping pH low to aid P uptake by algae. 

 

For lagoons to remove P, they state that the HRT must be long enough and the depth must 

be shallow enough, speculating that it is unlikely sufficient algae could be grown in the 

winter to bring about significant removal of P. 

 

Nitrate removal did not correlate as well with algal growth, suggesting that a mechanism 

other than uptake by algae may be important such as bacterial denitrification; nitrate to 

nitrite to nitrogen gas. 

 

One of the principal mechanisms of ammonia loss is diffusion to the atmosphere, this loss 

depends upon the concentration of free ammonia which in turn depends on the pH. The 

concentration of free ammonia increases by a factor of about 70% if the pH value is 

increased from 7-9 at 20°C. With the rise in pH from algal growth, considerable losses of 

ammonia would be expected. They state lagoon pH could be raised artificially due to 

lagoons not offering a feasible means of significantly reducing the concentration of 

ammonia. 
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Barnard & Oleszkiewicz (2005) write a report into the recent development in biological 

nutrient removal. They state that the term biological nutrient removal (BNR) designates the 

simultaneous removal of N and P in a single sludge system. Over the last 30 years BNR has 

grown from a few plants in sensitive areas to widespread global use. 

 

Recent developments in the technology have been stimulated by the requirement for even 

higher levels of treatment to protect water bodies from eutrophication. BPR is facilitated by 

PAOs that require a basic sequence of an un-aerated zone free of oxygen and nitrates, 

referred to as the anaerobic zone followed by an aerated zone. An anoxic zone may be 

introduced before and/or after the anaerobic zone where endogenous denitrification takes 

place. 

 

The PAOs take up P in the aerobic zone and, after recycling with RAS to the anaerobic zone, 

use that P form of energy to take up and store VFAs that is in turn used to take up and store 

P during aeration. 

 

 

Figure 2 - Showing the three stage Bardenpho process 

 

Nitrification is the rate limiting step in the BNR plants and determines the plant size. The 

growth rate of the nitrifying organisms reduces sharply with a drop in temperature and they 

may be washed out of the system at low temperatures. Floating plastic media may be 
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added to the aeration basin for the organisms to grow on. The media is retained by fine 

screens. 

 

Manyumba et al. (2008) looked into the problem of meeting the P consent with biological 

nutrient removal under UK winter conditions. They state that P removal can be achieved by 

biological uptake of P, chemical precipitation or a combination of both of these. However, 

the biological route is generally considered to be the more sustainable alternative and for 

larger sites, it may also offer significant savings in capital and operating costs 

 

Although biological P removal is considered to be the most sustainable option for P removal, 

it has always been problematic for plants that remove both N and P due to the inadequate 

concentration of organic material during wet periods. P removal systems can either be P 

limited or carbon limited. P-limited systems achieve a near-complete P removal whereas 

carbon-limited operations achieve only partial P removal – this is an obvious problem when 

carbon is limited during wet weather periods. 

 

They looked at two BNR configurations, the Johannesburg (JHB) process and a combined 

JHB and five-stage Bardenpho process. They were evaluated over a period of 2 years to 

assess the impact of sewage strength on bio-P removal. The JHB achieved an average 

effluent total P of 2.4mg/L and the combined JHB and five-stage process averaged 1.4mg/L 

effluent  total P. 

 

They found acetate dosing proved successful as a source of volatile fatty acids (VFAs) in the 

anaerobic zone during periods of low-strength sewage. An acetate dosing strategy based on 

the influent flow rate to the plant was found to be a simple and effective technique that 

ensured that a consent of <1mg TP/L could be met. 

 

Christen (2007) wrote a short report stating that in the future there will be requirements for 

much lower levels of P discharge, between 0.01-0.05mg/L. With a growing population, there 

is a need for better nutrient removal technologies. A Las Vegas STW expects to achieve 
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annual averages of 0.02mg/L. He states that research now shows a near 100% P removal 

may be possible and no scientific limit exists. Work should be started now to develop these 

technologies for the future. He adds that economics is a big factor and other large sources 

such as urban and agricultural runoff remain virtually unregulated. 

 

Thus, two types of P removal strategies exist, retaining the P within the solids or biomass 

within the plant or removing it at the end of the process, e.g. by chemical precipitation. The 

design approach can be black box based on empirical experience or mechanistic using 

fundamental knowledge. This leads to the aim or research question to investigate if algae 

can remove P more sustainably or more economically than the alternatives. The biomass 

and oxygen production are the potential advantages compared to other tertiary treatment 

techniques. 

 

 

3.3.2. Algal nutrient removal from wastewater 

Aslan & Kapdan (2006) looked into batch kinetics of N and P removal from synthetic 

wastewater by algae. Batch experiments were carried out to investigate the effect of the 

initial N and P concentrations on nutrient removal performance of microalgae Chlorella 

vulgaris. 

 

The N concentration was varied between 13.2–410mg/L while P concentration was 

between 7.7–199mg/L, keeping N:P ratio around 2:1 in the synthetic wastewater. 

 

The experiments were performed maintaining the pH at 6.5-7.0 and at room temperature 

(20±2°C) with artificial illumination (39.8W/m
2
) provided continuously from one side of the 

flasks by using 36 W/54 fluorescent lamps. The flasks were aerated to provide CO2 and for 

mixing via an air pump. Each experiment lasted 10 days. The experiments were conducted 

in batch by using 1000ml flasks. At the beginning of each series of experiments, 800 ml of 

culture medium was inoculated to flasks with a suspension of pre-cultured cells. 
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From what I can tell from the crowded graphs, is a P removal of 5mg/L in 10days, 0.5mg/L/d 

or 0.02mg/L/h. The N removal was about 25mg/L in 10 days, 2.5mg/L/d or 0.1mg/L/h. The 

graphs show so much data, all the lines appear straight. If I had wrote this paper, I would 

have looked at the graph and considered that this shows nothing, then split it up into 

smaller ranges. 

 

They carried out a good experiment but struggled to convey any decent useable results, 

they do not state a growth rate and their main findings are: Experimental results indicated 

that effluent water quality decreases with increasing nutrient concentrations. Algae culture 

can remove N more effectively compared to P. 

 

The paper is badly written: They state that experimental results indicated that C. vulgaris 

can completely remove up to 21.2mg/L ammonia- N concentration. This is useless data 

because is this in 1 day, 50 days, ever?  

 

The author goes on to state the efficiency of removal as a %. How is this useful, if the initial 

concentration is 1000mg/L P, the algae are still only going to remove the same amount 

leaving the efficiency as a tiny figure, and over how much time? This could be % removal 

with a HRT of a year; it is as if the author has not thought through the data they are 

presenting. What is the point of doing an experiment and writing a paper if you are going to 

provide results in useless units that cannot be compared to any other work. I can take from 

this an example of how not to present data. 

 

Garcia et al. (2000) studied HRAPs operating strategies for urban wastewater N removal in 

Spain. N removal efficiencies under different HRTs were compared. This was to allow a 

comparison of N removal efficiency as a sole function of HRT. 

 

They used two experimental HRAPs (1.5m
2
, 570L per unit), each with a secondary clarifier 

for algal biomass separation (0.025m
2
, without recirculation), were fed with urban 
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wastewater for a one-year period using two peristaltic pumps connected to a storage tank. 

The HRAPs were agitated using a paddle wheel mixer. 

 

Monthly average total solar radiation varied between 150cal/cm
2
/d in November to 

630cal/cm
2
/d in June. Monthly average temperature varied between 11°C in January and 

25°C in July. The nutrient concentrations were 51mg/L N and 8.5mg/L P – Similar to 

Loughborough before RAS installation. pH was measured but no results were shown. 

 

HRT was the same as the cellular retention time, because there was no biomass recycling 

from the clarifiers. HRAP A was always operated at a higher HRT than HRAP B. Both HRAPs 

were subjected to the same environmental conditions of solar radiation, air temperature 

and influent water quality. Grab samples of influent, effluent of the HRAP (mixed liquor) and 

final effluent from the clarifiers were taken once a week. The annual average N removal was 

73% for HRAP A, and 57% for HRAP B. 

 

The concentration of N and P was only slightly affected by sedimentation in the storage 

tank, as compared to raw wastewater, because these nutrients were mainly present as 

dissolved inorganic compounds. This is an important point as I will be storing the effluent 

for my experiments in a similar way. 

 

The conclusion of this study is that HRT determines both the N removal efficiency and the 

distribution of N forms in the effluent of a HRAP. The N removal level can be controlled 

through suitable HRT operating strategies. By operating at a HRT of 4 days in spring and 

summer, and 10 days in autumn and winter, N concentration in the effluent of a HRAP 

system can be reduced to less than 15mg/L N. 

 

Camargo & Mara (2007) and Camargo & Mara (2010) produced two papers regarding 

ammonia volatilisation in waste stabilisation ponds. The 2007 paper reports findings of 

experimental data. They collected ammonia gas coming out from WSPs to determine the 

importance of ammonia volatilisation as a mechanism of nitrogen / ammonia removal, 
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showing that it accounted for just 3% of the total N removal in their experiments. They 

concluded that Ammonia volatilization was not the most important mechanism involved in 

either total nitrogen or ammonia removal processes. Ammonia and total nitrogen were 

mainly removed by biological algal uptake under summer conditions and Ammonia removal 

in maturation ponds cannot be predicted with models based on mass transfer equations for 

ammonia volatilization as this is only a minor pathway for ammonia removal in maturation 

ponds.  

 

The 2010 paper continues the topic in more detail and concludes that ammonia removal by 

volatilisation makes little or no contribution to nitrogen removal by WSP either in summer 

or winter. High pH and water temperature values should not necessarily favour ammonia 

volatilisation over alternative mechanisms like algal uptake. An increasing pond water 

temperature increases phytoplanktonic activity and consequently, in-pond algal biomass 

would take up and remove ammonium to a faster rate than expected via ammonia stripping. 

The increment of pH in WSP is a consequence of algal activity and it makes a small 

contribution to ammonia volatilisation process as ammonia concentration drops due to 

algal uptake. 

 

The findings reported here are important for algal bioreactor and HRAP design when 

considering the importance of nutrient removal mechanisms and the optimal pH and 

temperature parameters to ensure an efficient performance. Taking into account these 

findings, it may not be worth factoring in ammonia volatilisation as an N removal 

mechanism. This would be dependent on the N removal rate of the algal species and how 

much gas sparging affects ammonia volatilisation. 

 

Woertz et al. (2009) produced a study investigating lipid productivity and simultaneous 

nutrient removal by green algae grown during treatment of municipal wastewaters 

supplemented with CO2 for the production for biofuel feedstock. I have focused on the 

municipal wastewater experiments. 
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Algal growth in wastewater treatment ponds contributes to treatment mainly through 

dissolved oxygen production and nutrient assimilation. However, the C:N and C:P ratios in 

domestic sewage are 3.5:1 and 20:1 respectively. These are low compared to typical ratios 

in rapidly growing algae biomass of C:N - 6:1 and C:P - 48:1. This lack of carbon leads to 

limitations in algae production and incomplete assimilation of wastewater nutrients by 

algae. The experiments described in the present research overcame the carbon limitation of 

the wastewaters by addition of CO2 to the cultures. 

 

The municipal wastewater experiment was run under semi-continuous operation for 18 

days to study the effects of CO2 levels and HRTs on algal growth and nutrient removal. 

Control cultures with addition of air only were used to simulate the carbon limitation typical 

of wastewater ponds and to differentiate the effect of CO2 addition on productivity. 

 

Municipal wastewater was treated in semi-continuous indoor cultures with 2–4 day HRTs. It 

was illuminated from two sides by a total of four 40W full spectrum fluorescent bulbs 

operated on a 16:8 hour L:D cycle. When on, the bulbs provided an average luminance that 

totalled 41.7W/m
2
 at the two faces of each bottle. The cultures were agitated by magnetic 

stirrers and the temperature ranged from 23 to 25°C. 

 

Primary clarifier effluent was collected at the San Luis Obispo, California, municipal 

wastewater treatment facility. The wastewater had a starting pH of 7.2, 51mg/L N and 

2.1mg/L P. The CO2 concentration in the blend was set to maintain pH between 7.0 and 8.0. 

Results were collected using 4, 3 and 2 day HRTs. 

 

The municipal wastewater cultures were dominated by algae in the Chlorella, Micractinium, 

and Actinastrum genera. The lipid contents of the algae from the municipal wastewater 

experiments ranged from 4.9–11.3% of the biomass by weight. Ammonium was the main 

form of N in the influent wastewater, and after algal growth, organic N was predominant. 

Ammonia volatilization was minor, the greatest amount was from the air-sparged treatment, 
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which accounts for 7% of the influent total N. Since this treatment developed the highest 

pH at 10.3 due to lack of CO2 sparging, it was the most prone to ammonia volatilization. 

 

3 and 4 day HRTs provided similar results, increasing from 100-800mg/L algae concentration 

in 18 days. Whilst the 2 day HRT only achieved 300mg/L. Sparging with CO2 more than 

doubled the biomass concentration compared to sparging with air. 

 

Maximum lipid productivity for the municipal wastewater was 24mg/day/L, observed in the 

3-day HRT cultures. Over 99% removal of N and P was achieved. The lipid content of the 

volatile solids peaked at Day 6, during exponential growth, and declined thereafter. Peak 

lipid content ranged from 14–29%. The lipid productivity was 17mg/day/L which is 

equivalent to 11,000L/ha/year if sustained year round. 

 

The results suggest that CO2-supplemented algae cultures can simultaneously remove 

dissolved N and P to low levels while generating a feedstock potentially useful for liquid 

biofuels production. 

 

Ruiz-Marin et al. (2010) looked at the growth and nutrient removal in free and immobilized 

green algae in batch and semi-continuous cultures treating real wastewater.  

 

One of the limitations for the development of wastewater treatment systems based on 

microalgae is the harvest of the biomass at the end of the treatment process. However, the 

immobilization of cells can represent an alternative for solving the problem as well as 

providing advantages such as an increase in the cell retention time within bioreactors and 

higher metabolic activity.  

 

Two species of microalgae were used: S. obliquus, isolated from a hypereutrophic soil and C. 

vulgaris, isolated from agricultural soil. They were grown as immobilized and free-cells and 

were compared to test its ability to remove N and P in batch cultures of urban wastewater.  
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For initial experiments, artificial wastewater was only used for the acclimatization of cells 

and for direct comparison with real urban wastewater. For all other experiments, real 

secondary effluent was used. Due to its nature, there was large variation in the 

concentration of N in the wastewater used for the experiments; 34–48mg/L (this is not a 

comparatively large variation) so percentages of removal were used to determine removal 

efficiency. Why? That is the worst thing to do, this creates a bigger problem than it solves; if 

the algae are removing N at a specific rate, percentage removals are going to cause widely 

different results depending on the initial concentration whilst having no value for 

comparison. Just be sensible and measure it in concentration reduction per day. This 

statement does however highlight an important point about the difficulties of using natural 

wastewater for experimentation. 

 

Stock suspensions of C. vulgaris and S. obliquus were cultivated in 3L bioreactors containing 

2.5L of artificial wastewater at 25 ± 1°C and light intensity of 27W/m
2
. The bioreactors were 

aerated to keep free-cells and immobilized beads in suspension and in completely mixed 

conditions. 

 

The best microalgae-growth configuration for urban wastewater treatment was established 

and chosen to be used in bioreactors running under the same conditions as batch cultures 

but in semi-continuous mode. Moreover, photosynthesis–irradiance curves suggested an 

optimum light intensity of 40W/m
2
 to be used. 

 

Scenedesmus obliquus showed a higher N and P uptake rate in urban wastewater than 

Chlorella vulgaris. When tested in semi-continuous mode, S. obliquus was more effective in 

removing N and P for longer periods (181h) than batch cultures. The beads require more 

effort to keep in suspension. 

 

They state that immobilized systems could facilitate the separation of the biomass from the 

treated wastewater although in terms of nutritional value of the biomass, immobilized 

systems do not represent an advantage over free-cell systems.  
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The results showing a pH of 10.1 as standard for the experiments. This is a normal value to 

be recorded in experiments without CO2 addition. The control, without algal activity had a 

pH of 8.5. 

 

The experiment is good but without using biomass productivity to determine growth rate it 

is impossible to compare with other experiments. 

 

Jimenez-Perez et al. (2004) performed laboratory experiments to study growth and P and N 

uptake in two species of free and immobilized planktonic green algae, Scenedesmus 

intermedius and Nannochloris sp.  

 

They carried out practically the same experiment as the previous paper. They did not 

measure growth rate in mg/L for comparison either. It is understandable why researchers 

do not want to carry out absolute growth rate studies, They are difficult, invasive, time 

consuming and inaccurate however they are the only way to produce results that can be 

directly compared to other work. My results are taken from experiments carried out in this 

way to determine absolute biomass quantities. 

 

Both culture types (free and immobilized) were maintained under standard conditions in an 

incubation chamber with a 14:10 L:D cycle at 24W/m
2
 supplied by cool-white fluorescent 

tubes and kept at a constant temperature of 20 ± 2°C. Culture pH ranged between 8 and 9 

but it does not state how it was maintained. No method of agitation is given.  

 

P and N uptake rates for S. intermedius were 0.014 and 0.012mg/h P and 0.022 and 

0.009mg/h N for free and immobilized cells respectively. Rates for Nannochloris sp. were 

0.006 and 0.009mg/h P and 0.011 and 0.006mg/h N. Per what quantity? Per m
3
? Without 

supplying the unit of volume it means nothing. 
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They state that P and N removal rates obtained in the present study, which used species 

isolated from wastewater, are markedly higher than rates described in experiments that 

used commercial species, probably because the former species are better adapted to high 

nutrient concentrations. I would agree with that. 

 

Their analysis of the results is ludicrous, measuring random sized cell growth, and P and N 

uptakes per arbitrary culture size. This paper is a waste of time, no recordable numerical 

data can be taken from it. 

 

Hameed (2007) performed laboratory experiments to study N and P uptake by the 

unicellular green microalga Chlorella vulgaris immobilized in calcium alginate beads. He 

studied the effect of algal density in bead, bead size and bead concentrations on 

wastewater nutrient removal. 

 

The cultures were kept at pH 6.5 - 7.2 under aseptic conditions, aerated by filtered air and 

maintained at temperature of 25 ± 2°C, with light intensity of 36W/m
2
 using a 16:8 L/D cycle. 

 

Increasing bead concentrations caused significant reductions in the treatment efficiency. 

Dense beads would reduce the amount of light penetrating through the reactor, and 

enhance the self-shading effects, which limit the metabolic activities of algal cells. In the 

reactors with high beads concentrations, large numbers of beads settled at the bottom of 

the reactors due to the heavy weight of the large numbers of beads and the insufficient 

supplied air to completely suspend all the beads in these reactors. 

 

P removal was 0.25mg/L/h and N removal was 0.97mg/L/h. These were only achieved using 

a medium bead density. The high bead density did not perform as well. They mention air-

striping of ammonia is a possible mechanism for N removal in an intensely aerated micro-

algal system with alkaline pH. See my other comments regarding this. 
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The N and P uptake rates were initially high for the first 12 hours followed by a period of 

decline for 12hours until uptake almost stops. This could be due to a lack of C as none was 

added. They state that the pH in all the reactors was alkaline and ranged between 7.9 

usually recorded in the control reactors in the different experiments and 9.3 recorded in 

different reactors with different types of beads. This verifies my theory. They produce a 

similar pH curve as my experiments show. 

 

Lau et al (1995) carried out laboratory scale batch experiments to examine the effect of 

initial inoculum sizes of algae on the reduction of nutrients from primary settled municipal 

sewage. The microalgae, Chlorella vulgaris was used with four initial inoculum sizes. 

 

Shatin Sewage Treatment Works is a major secondary sewage treatment plant in Hong Kong. 

Such wastewater had average values of 84.3mg/L N, 4.29mg/L P and pH of 7.10. 500ml 

conical flasks containing 300ml settled sewage were used containing four different initial 

inoculum sizes: Low, medium, concentrated and super-concentrated. The algae were 

cultured at 24 ± 1°C, with illumination of 41.7 ± 3W/m
2
 from cool white fluorescent tubes 

with L:D cycles of 16:8 for 10 days. The flasks were aerated with filtered air. 

 

The initial concentration size did not affect the growth rate, lower initial concentrations had 

greater capacity for growth before reaching a maximum concentration. The drop in growth 

rate in the 2 more concentrated batches towards the end of the experiment was put down 

to depletion in nutrients, creating an unfavourable N:P ratio. Higher concentrations provide 

a faster removal rate. The results showed that 33mg/L N was removed in 8-10days 

(0.15mg/L/h). 

 

The graph of pH shows a sharp rise from pH7 to around pH8.5 which then increases more 

slowly, reaching a pH of around pH9.5. This correlates with all other experiments that do 

not use additional CO2 to control pH. 
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P removal was shown to be around 3.5mg/L in 10 days (0.015mg/L). The fast initial uptake 

followed by a period of slower uptake correlates with the inhibitory increase in pH. If pH 

control was used through CO2 addition, I would expect their uptake rates to be more linear. 

 

During the experimental period, even in the super-concentrated cultures, the self-shading 

problem was not found probably due to good mixing. 

 

These results indicated that the efficiency of reducing wastewater-borne nutrients by an 

algal system was directly related to the physiological activity and growth of the Chlorella 

cells which in turn were affected by the initial inoculum size. The super-concentrated 

culture seemed to be more beneficial as this treatment achieved satisfactory nutrient 

removal within 7 days instead of 10. 

 

Chen et al. (2003) looked at nutrient removal by the integrated use of HRAPs and 

macrophyte systems in China. They operated at pilot scale to investigate the performance 

of a HRAP under the temperate climate conditions of Shanghai, China. The results indicated 

that the HRAP gave good efficiency for nutrient removal, especially during summer. With a 

HRT of 4 or 8d according to the season. 

 

The HRAP system was continuously fed from a settling tank with raw domestic wastewater 

from the university. The HRAP was 0.3m (except in August 0.45m). A paddle wheel operated 

continuously to maintain the water flow at a constant velocity of 0.15m/s.  

 

Preliminary assays were conducted during the first 5 months in order to optimize the HRT. 

The HRT was changed to follow the seasonal variations in climatic conditions – This has 

been typical for all similar experiments in the literature. 

 

The temperature ranged between 10-30°C and the solar radiation ranged between 5-

20MJ/m
2
 



86 

 

The influent was at pH7.5 which increased to 8.6 and 9.1 in the effluent for winter and 

summer respectively. This is a sign of carbon limitation, the extent of which was dependant 

on the productivity. Summer N removal was 5.15mg/L/d which dropped to 2.86mg/L/d in 

the winter. Summer P removal was 0.25mg/L/d which dropped to 0.2mg/L/d in the winter.  

 

Cromar et al. (1996) looked at the influence of environmental parameters on biomass 

production and nutrient removal in a HRAP. This is a very relevant paper which reinforces 

certain literature data from other papers however they do not represent nutrient removal 

as an absolute value. They use a 3.1m
3
 raceway pond with synthetic media, producing a 

mean growth rate of 76mg/L/d. The only pH data they give is a total range measured over 

the whole 7 month period of pH7.4-10.8 which is expected for a setup not using additional 

CO2. 

 

They show that the HRAP algal concentration is a function of day length and produce a 3D 

graph of algal concentration vs. temperature vs. irradiance. This is a great graph and shows 

the importance of temperature and irradiance in combination. A low temperature or 

irradiance will be inhibitory regardless of the level of the other parameter. 

 

Camargo et al. (2010) studied N removal in maturation waste stabilisation ponds 

via biological uptake and sedimentation of dead biomass and reported findings from work 

carried out between 2004 and 2007. Using an experimental pilot scale WSP system at Esholt 

Wastewater Treatment Works. They collected samples of settled organic nitrogen from the 

maturation ponds in order to estimate seasonal sedimentation rates of organic nitrogen. 

 

They found algal N uptake to be the major mechanism for ammonium removal under 

favourable environmental and operational conditions for phytoplanktonic activity in 

maturation WSP. In summer, algal N uptake was found responsible for the majority of the 

ammonium removed and along with sedimentation of dead algal biomass, it constitutes the 

dominant N removal mechanism in maturation ponds. However, it is important to highlight 



87 

 

that once dead algal biomass reaches the bottom of the pond, anaerobic digestion of pond 

sediments partially recycles ammonium N to the water column. 

 

They go on to state that solids removal units would complement the highly efficient algal N 

uptake. I would totally agree with this important comment and highlight regular biomass 

removal as an important part of the process of nutrient removal and subsequent production 

of biofuel. 

 

Griffiths (2009) produced a detailed paper containing very relevant information about 

parameters involved in algal P removal from wastewater. 

 

The Logan City Environmental Department operates a facility that consists of 460 acres of 

fairly shallow lagoons (~ 5’deep) for biological wastewater treatment that meets targets for 

primary and secondary treatments (solids, biological oxygen demand (BOD), and pathogen 

removal). Significant natural algal growth occurs in these lagoons, which improves BOD 

removal through oxygenation and also facilitates N removal through volatilization as 

ammonia under high pH conditions created by algal growth. P, however, is non-volatile and 

stays in the water and likely cycles in and out of algal cells as they grow and die in the 

lagoons. In the near future, the regulatory limits on P released from the Logan wastewater 

treatment facility are likely to become significantly lower to counter potential downstream 

eutrophication. One way to potentially lower P levels in the wastewater effluent is through 

management of algal growth in the lagoons. As mentioned above, algal growth naturally 

occurs in the treatment lagoons and if the algal biomass is harvested when growth yields 

are highest, the P contained in the cells could be removed to obtain P-free water. The algal 

biomass could then be used for production of biofuels. This research focuses on laboratory 

and pilot assessments to show the ability of algae indigenous to the Logan lagoons to 

uptake P and produce biomass that can be used for biofuel production. 
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Because temperature changes significantly from summer to winter at the Logan wastewater 

facility, algae were grown at 4, 10, 20, and 30°C to determine the effect of temperature on 

algae growth. 

 

Logan lagoons effluent was incubated in 250ml Erlenmeyer flasks in the laboratory to 

stimulate growth of native algae populations. The flasks were placed on a shaker table to 

keep the samples well mixed and to prevent the algae from settling. ‘Plant growth and 

natural sunshine’ fluorescent lights were placed around the shaker table to promote 

photosynthesis. 

 

Alkaline conditions lead to the volatilization of ammonia (NH3) since its solubility in water is 

a strong function of pH. Higher temperatures also facilitate volatilization. Increased algal 

growth raises the pH due to the use of CO2 by algae during photosynthesis. pH > 10 can 

easily be reached in algal cultures in the absence of a significant buffer or CO2. 

 

P uptake rates were observed to be the greatest at higher temperatures. During the first 5 

days of growth, P uptake rate at 30°C is much faster than at colder temperatures. When the 

light intensity is held constant, the results indicate that the maximum growth rate can be 

described as a function of temperature. 

 

They then carried out a CO2 addition experiment: The lab scale raceway reactors were made 

of ¼” acrylic sheeting.  The reactors have two channels and a length to width ratio of 2:1. 

Mixing was accomplished by a paddlewheel set-up. An electric motor was used to rotate 

paddle wheels at approximately 10rpm. 

 

The transparent acrylic was used to allow light penetration for photosynthesis to occur in a 

laboratory environment. Plant growth fluorescent bulbs were used for the light source. The 

bulbs provided the red light necessary for photosynthesis around 680nm. Four plant growth 

fluorescent bulbs were mounted on the bottom and two on each 2ft side for a total of eight 

bulbs around each reactor. The eight bulbs provide an average light intensity of 764 ± 
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20.8W/m
2
 in an empty reactor using a L:D cycle of 14:10. Temperature was held at 21 ± 3°C. 

The variation in temperature came from the lights warming the reactors followed by the 

reactors cooling after the lights were turned off. 

 

CO2 addition was achieved through pumping pure CO2 through spargers mounted to the 

bottom of the reactors. The amount of CO2 added to the reactor depended on the pH level. 

A gas solenoid was placed in between the CO2 source and reactor. The solenoid was 

controlled by a program written in Lab View based on pH level. pH8 was chosen because 

the optimal pH level has been reported to be in the range 7.5-8.5. In this experiment, if the 

pH level went above pH8, the solenoid would open allowing CO2 to flow into the reactor 

until the pH level dropped below pH8 again. 

 

Whilst most other papers report the addition of CO2 to double productivity, this experiment 

showed that the productivity only slightly increased. An important finding was shown that 

the oil content of the algal cells was 3-4 times higher when CO2 addition was used. 

 

Adding my own thoughts to this paper based on a collaboration between this and other 

reviewed papers; N:P ratio can be controlled by pH which can in turn be controlled by CO2 

addition. If the N:P ratio is too high, N can be reduced through ammonia volatilisation by 

raising the pH which also slows P uptake due to lack of CO2. In contrast, P uptake can be 

increased relative to N reduction by keeping the pH low (high CO2 content), reducing 

ammonia volatilisation and improving algal productivity. 

 

Larsdotter (2006) produced a paper on microalgae for P removal from wastewater in a 

Nordic climate as part of a research project aiming to develop and evaluate a hydroponic 

system for wastewater treatment in Sweden. They carried out testing on nutrient removal 

by microalgae. 
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The P assimilation was dependent on algal growth which is directly associated with 

inorganic carbon assimilation by the algae which causes a pH increase. Results confirm the 

rise in pH, 7.6-8.7 for a reduction in P of 1.5mg/L/d. 

 

He states, results from an intensive study during summer showed that culture depths of 

17cm gave higher removal efficiencies (78% - 92%) than cultures of 33cm (66% - 88%). On 

the other hand, the removal rate per area was higher in the deeper cultures, which implies 

that these may be preferred if area is of concern (regardless of the available land factor, one 

would always use the most efficient system which in this case is deeper tanks so this point is 

invalid). This is a perfect example of why you cannot measure in % removed, for real 

comparison you must use absolute values. In this case, a greater depth is going to remove a 

greater quantity of nutrient for the same biomass concentration in absolute terms however 

due to the more limited availability of light, the removal rate per volume is obviously going 

to be lower. An optimum depth must be chosen to minimise the HRT for a specific reduction 

in nutrient concentration. 

 

He does state an important point regarding an advantage of shallower tanks; the 

temperature is slightly increased due to the energy input being greater per volume. This is 

still irrelevant if a deeper tank is still more efficient.  

 

Over the year, there were large fluctuations in algal growth and removal efficiency as a 

result of the seasonal variations in light and temperature. During winter, P removal 

efficiencies lowered. Additional illumination during winter improved the P removal in the 

shallow cultures but did not have a significant effect on the deep cultures. 

 

Longer HRT gave higher algal biomass concentration and higher P removal efficiency. Hence, 

the residual P concentrations were lower with longer HRT. – Obviously but what about 

when measured as uptake per day? Is not the aim to maximise the P uptake rate to 

minimise the HRT? If you leave the effluent in for an extended period, it will obviously drop 

to 0mg/L. 



91 

 

 

The results of his experiment show that there is higher P precipitation at higher pH. All 

literature states that optimum performance for algal productivity is at lower pH, Using 

increased pH for P removal by precipitation in a system like this is not a viable mechanism. 

 

Gronlund (2002) looked at using microalgae for wastewater treatment in a cold climate. The 

paper does not provide any experimental data but makes the following statements. 

 

He concludes that the production of micro-algae, given proper conditions may be high 

enough to improve wastewater treatment in ponds in cold climate, from a treatment 

perspective as well as a sustainability perspective. 

 

Microalgae may perform tertiary treatment due to their ability to incorporate inorganic N 

and P at growth, and also have the capacity to remove heavy metals as well as some toxic 

organic compounds. 

 

The laboratory experiments showed that micro-algae collected in mid-Sweden regions can 

grow readily in wastewater between 5-10°C.  

 

In my opinion, based on results from literature, the issue is not whether the process is 

possible in a cold climate, it is the greatly reduced productivity compared with 30°C that 

reduces its feasibility when the temperature is not artificially raised. It is promising that 

algae will grow at 5°C as wastewater temperature is fairly consistent and typically above 5°C 

year round unless a region experiences a long period of very cold weather. For the process 

to be in a temperate region, waste heat will be required. 

 

3.3.3. Algal ponds 

Silva et al. (2008) looked at integrating filamentous ‘green tide’ algae into tropical pond-

based aquaculture. ‘Green tide’ algae with fast growth rates and efficient nutrient uptake 
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bloom in eutrophic environments. These same characteristics are sought after for algae in 

integrated aquaculture systems. 

 

They used three filamentous ‘green tide’ algae, Cladophora coelothrix, Chaetomorpha 

indica and Ulva sp. First testing survival and growth were across the extremes of salinity in 

ponds (0 to 45%). Subsequently, the interactive effects of salinity (15, 36 and 45%) and a 

broad range of N concentrations were examined (0, 0.1, 0.5, 1, 10mg/L). 

 

They showed that the species tested have a broad tolerance to salinity (ranging from 5 to 

45‰) with each having a different optimum for growth (C. coelothrix 30%, C. indica 20% 

and Ulva sp. 15%).  

 

They do not provide much data on the effect of N concentration however the 

concentrations they used are in an order of magnitude lower than normally found in 

wastewater, so the results are not useful. The interesting point in terms of literature data is 

their analysis and findings that these specific species and no doubt many others are tolerant 

to a wide range of salinities which could be useful in large scale algal biofuel projects in the 

future. 

 

Zimmo et al (2005) studied the effect of organic surface load on process performance of 

pilot-scale algae and duckweed-based waste stabilization ponds.  

 

Removal efficiencies in pilot scale algae-based ponds, ABPs and duckweed-based ponds, 

DBPs were assessed during two periods of 4 months each. During Periods 1 and 2, the effect 

of low and high organic loading was studied.  

 

The pilot plant experimental pond system set-up was at the new campus of Birzeit 

University, Jerusalem. The pilot plant was built with reinforced concrete walls to ensure 

water tightness. Each system consisted of four equally sized ponds in series 3m length, 1m 

width, and 0.9m depth and was fed with a constant flow rate of 0.86m
3
/d. A 10cm sand 
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layer was brought into each pond to simulate a real pond bottom. The theoretical retention 

time in each pond was 7 days. Baffles at the outlet of each pond were constructed to avoid 

short-circuiting and transfer of floating materials to the consecutive ponds. The ABPs and 

DBPs were fed with three categories of influents during three successive periods. From 

December to August, treatment systems received wastewater from the Birzeit University of 

low organic strength. From September to February wastewater from Al-Bireh was used 

which contained high N concentrations (100mg/L) - This resulted in complete decay of 

duckweed and the ponds were operated temporarily as algae-based ponds. From February 

to August treatment systems received strong wastewater from the Faculty of Commerce. 

Two periods of 4 months each were monitored in order to compare the removal efficiency 

of the two systems at low and high organic loading conditions.  

 

During the course of the two experimental periods, water samples were collected from the 

influent and effluents of each pond. Removal of BOD, ammonia, total N and total P were 

investigated.  

 

The duckweed Lemna gibba biomass in DBPs was maintained at a wet weight density of 

600g/m
2
 by harvesting the surplus every 5 days. This density was selected to prevent 

overcrowding and to maintain sufficient cover to minimize the development of algae in 

duckweed ponds.  

 

No mixing was mentioned and this is reflected in the results that show a variation in 

parameter measurements over the depth of the pond. Higher pH was measured in the ABPs 

compared to the DBPs. The pH was slightly higher near the surface of the pond, which is 

expected in an unmixed pond with greater productivity occurring in the more heavily 

lighted regions. 

 

N removal rates in ABPs were linearly correlated with BOD surface loading rates while in 

DBPs, N removal rates were almost constant irrespective of BOD. Overall N removal rate in 
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the algae system was significantly higher than in the duckweed system. Higher N removal 

rates would be expected in the pond with the highest pH which was the case.  

 

Organic loading had no effect on total P removal efficiency in both systems. Higher P 

removal efficiency was achieved in the duckweed system than in the algae system. In ABPs, 

P removal is due to sedimentation of incorporated P in particulate and decayed algae. The P 

removal rate in the algal pond was only 0.004mg/L/h which is expected without biomass 

harvesting. None of the nutrients contained in the algae can be removed from the system. 

Duckweed uptake of P in the DBPs and subsequent harvesting accounted for higher removal 

compared to ABPs. 

 

The development of a slime layer on duckweed roots in Ponds 1 and 2 during the period of 

high organic loading was observed which probably inhibited plant nutrient uptake.  

 

The duckweed growth rate was around 11mg/L/d which is on the low end of the spectrum. 

Average growth rates for algae are recorded at 10-15x this rate. 

 

During low loading, the well-maintained duckweed cover prevented elevation of pH through 

algae growth due to the shading provided by the duckweed cover. Therefore the unionized 

fraction of ammonia was kept below the level of toxicity.  

 

Yan & Jameson (2004) looked into the application of the Jameson Cell technology for algae 

and P removal from maturation ponds. 

 

This paper describes a cost effective induced air flotation process utilising the Jameson Cell 

technology to simultaneously remove algae and P from wastewater maturation ponds. The 

Jameson Cell is a patented technology. It uses a plunging jet to generate air bubbles and 

results in a more effective flotation process. It has major advantages over conventional 

flotation technologies, including a more compact design and lower capital cost, a minimum 

amount of maintenance and the ability to operate at elevated temperatures. 
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Optimum conditions for algal flocculation were identified using jar tests. Pilot plant trials 

were then carried out to examine the robustness of the chemical regimes found and to 

optimise the Jameson Cell operating parameters. 

 

This new treatment process has been shown to be capable of achieving algal removal 

efficiencies of over 98% and residual levels of total P to below 0.3mg/l in the treated 

effluent.  

 

The process requires chemical dosing to achieve flocculation which we are trying to avoid in 

this project. It is however an interesting technology with possible applications pending 

further testing without using chemical coagulants. They state that the chemicals are added 

to precipitate dissolved P. If a chemical coagulant is not required for algal flocculation then 

it could be an effective method of harvesting. This is the only paper that report on the use 

of this technology in this way so further research would be needed. 

 

Zimmo et al. (2004) assessed N removal processes and N mass balances across pilot-scale 

algae and duckweed-based WSPs during three periods of 4 months, each under different 

operational conditions.  

 

During periods 1 and 2, the effect of cold and warm temperature was studied. During 

periods 2 and 3, the effect of low- and high-system OLR was studied in warm seasons 

operation. The pilot-scale system consisted of two parallel treatment streams, each with 

four similar ponds in series fed with domestic sewage with HRT of 7 days in each pond. Each 

pond had a depth of 0.9m and a surface area of 3m
2
. Inflow was kept at 0.38m

3
/d in both 

ABPs and DBPs. 

 

Period 1 was from December to April during cold season (average water temperature=10 ± 

3°C) and the influent wastewater was of low/medium strength (BOD=149 ± 20mg/L). Period 

2 was from April to August during warm season (average water temperature=20 ± 4°C) 
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using the same wastewater source as in period 1 (BOD=167 ± 15mg/L). Period 3 was from 

April to August the following year during warm season again (average water 

temperature=21 ± 4°C) and the wastewater used was of high organic loading (BOD=375 ± 

32mg/L). 

 

In ABPs sedimentation and de-nitrification were the two main fluxes responsible for 

removing N from the wastewater. Depending on temperature and OLR, ABPs showed higher 

N removal via sedimentation (46–245% higher) compared to DBPs. The difference increased 

with higher temperature and lower OLR. Higher increase in sedimentation in ABPs over 

DBPs was observed during period 2. De-nitrification and volatilisation rates were higher in 

ABPs than DBPs by 7–37% and 7–51%, respectively. 

 

The contribution of algae to sedimentation was similar during periods 2 and 3. They state 

that sedimentation was the main removal pathway. This is an important point and can be 

utilised providing a method for regular sediment removal is employed otherwise the 

nutrients stay in the system. 

 

Overall N removal was higher during warm temperature in both ABPs and DBPs, but similar 

during periods 2 and 3. N removal in DBPs was 20%, 10% and 8% less than removal in ABPs 

during the three experimental periods, respectively. In DBPs, the duckweed cover prevents 

sunlight penetration and consequently algae will not develop as in algae ponds. Therefore, 

sedimentation was limited. They found that Ammonia volatilisation in both systems was not 

a large contributor to N removal during the entire experimental period.  

 

N recovery via duckweed harvesting represented an important N-removal component. 

Harvesting algae will have the same effect, if not greater as identified by their higher 

production rates. Annoyingly in their conclusions they do not state whether they think the 

use of duckweed is a good idea. From the results they present I would say that 

incorporating duckweed has a number of disadvantages: 
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• Prevention of algal growth through shading 

• A single surface layer of duckweed vs. algae dispersed throughout the volume 

• Reduced gas exchange at the surface of the pond 

• Less productive than algae 

 

Zimmo et al. (2003) provides another paper using a similar experimental setup as his 

previous papers, they focus this study on the comparison of the ammonia volatilisation rate 

in ABPs and DBPs treating domestic wastewater. They conclude that ammonia volatilisation 

is the least important method for N removal.  

 

I agree that the effectiveness of this mechanism is directly related to high pH. The high pH 

required for any considerable ammonia volatilisation is something we are aiming to avoid 

and therefore further analysis in this area is not required. 

 

Kim et al. (2002) operated HRAPs to evaluate the design parameters and characteristics of 

filamentous algae matrix (FAM) as the predominant species for treating polluted rural 

stream water. The porous and gelatinous FAM was formed like a sponge, which functions to 

prevent excessive loss of the algae in the effluent and can easily be retrieved from the 

ponds.  

 

A pilot-scale plant was built at the Agriculture and Rural Development Corporation. A steel 

storage tank was 8m
3
 and the HRAP size was 6m

3
. Each basin was baffled, separated into 

five compartments; length:2m , width:1m and height:0.6m. This was used to maintain plug 

flow. The dominant algae were Spirogyra species adhering at a low water depth and seeded 

in the HRAP to form the FAM. 

 

The experiment was performed during the period of June to October. The water depth of 

HRAP was 0.3m and HRT was 4 days. N concentration was 6.59 to 15.01mg/L and P 

concentration was 0.88 to 1.89mg/L. The concentrations were artificially controlled by 

added nutrients.  
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The organic fraction of harvested FAM was about 88%, which is suitable for use as fertilizer. 

The HRAP system using FAM was found to be an effective nutrient removal process not 

requiring any artificial carbon sources for nitrification. At HRT 4 days, the N and P removal 

efficiencies were 85.9% and 65.8% (from what initial concentration? Not stated), 

respectively. When the pH and water temperature were maintained above 9 and 15°C, HRT 

required for achieving a 70% N removal efficiency could be reduced by about 3 days (or to 

3days? It is not clear). The oxygen production rate by FAM was calculated as 1.45mg/L/m
2
 

O2. The design surface area of HRAP needed per rural inhabitant was about 2.72m
2
. 

 

The English is quite bad so it is difficult to understand what they mean. I have done my best 

to translate but it is not helped by the bad use of data analysis. I do not know why they are 

working in removal efficiencies. In this paper they state the concentration range in the 

effluent and then mix about % values and HRTs for different experiments. I cannot use this 

data for comparison. All they need to state is the environmental conditions and the 

corresponding nutrient uptake rate. A % is irrelevant if you are required to meet a specific 

absolute standard, i.e.1mg/L. I have used this paper as an example of poor data available 

within this subject area and to show why using % removal is not a fair measurement for 

comparison.  

 

If we take an absolute value of 40mg/L/d and our influent has a concentration of 60mg/L. 

We can instantly show that a HRT of 1.5days is required for treatment. Stating a % removal 

means we also require data for the initial concentration and HRT used for each specific 

experiment which often is missing. 

 

Ramanan et al. (2010) Looked into enhanced algal CO2 sequestration through calcite 

deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Biological CO2 

sequestration using algal bioreactors is one of the most promising and environmentally 

benign technologies to sequester CO2. This research study was taken up to alleviate certain 
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limitations associated with the technology such as low CO2 sequestration efficiency and low 

biomass yields.  

 

Industrial revolution in the 20th century has pumped in huge volumes of CO2 into earth’s 

atmosphere. Concentration of CO2 in the atmosphere is still increasing in the current 

century and the outcome of this increase has already witnessed a profound effect on global 

environment. Recently, it has been widely accepted that global warming is because of 

greenhouse gas emissions from anthropogenic activities. Thus actions are being taken to 

mitigate the greenhouse gas emissions from anthropogenic activities, especially in the case 

of large point source emissions, through various mechanisms and protocols. CO2 capture 

and storage technologies form an integral part of these measures considering their 

potential for greenhouse gas emissions abatement. 

 

Photosynthesis has long been recognized as a means to sequester anthropogenic CO2 and 

algae have also been identified as fast growing species whose carbon fixing rates are much 

higher than those of terrestrial plants. The continuous cultivation of algae would not only 

help in bio-fixation of CO2 but also yield value added products from biomass such as 

proteins, fatty acids, vitamin A, minerals, pigments, dietary supplements for human, animals 

and aquaculture and other bio-compounds. On the other hand, processes in algal photo-

bioreactors are still under scrutiny with problems of low biomass yield and inefficient CO2 

utilization. 

 

Carbon concentrating mechanism (CCM) plays a major role in photosynthesis and has 

evolved in algae and green plants. However, CCM acts as an enhancer for higher growth 

rates in algae and hence have been preferred for sequestration studies. Cyanobacteria and 

microalgae have been recently subjected to numerous investigations for their ability to 

utilize DIC. It is proven that these photosynthetic organisms are able to change their relative 

affinities for DIC (HCO3
-
 and CO2), depending on the concentration in the external medium, 

and there is some active accumulation mechanism which allows CO2 to be concentrated 

inside the cell. However, there has been no general agreement on the roles of CO2, 
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bicarbonate ion and carbonic anhydrase (CA) in algal photosynthesis at high external CO2 

concentrations. Some interesting phenomenon such as calcite formation is associated to 

DIC mechanism and may serve as an additional route to sequester carbon. 

 

Preliminary flask experiments were carried out to screen for high CO2 fixing organism 

among 10 different algal strains. The CO2 fixation inside the mini-raceway pond depended 

on variables including pH and calcium chloride concentration for calcite production and was 

therefore optimized in flask scale studies prior to actual experimental run (mini-raceway 

pond). About 10 algal species were screened for their ability to exhibit high growth rate at 

10% CO2 concentration in flask scale experiments. S. platensis and Chlorella sp. showed 

higher growth rates among the 10 species of algae in flask scale experiments. Both these 

species exhibited higher intake of CO2 for growth as evidenced from the reducing CO2 

concentration on an hourly basis. 

 

Pure cultures of Spirulina platensis (Cyanobacteria, Oscillatoriales) and Chlorella sp. 

(Chrolophyta, Chlorophyceae) were used. S. platensis was grown in modified Zarrouk 

medium devoid of bicarbonate ion (carbon free media) whereas Chlorella sp. was grown in 

Bold Basal Media. Both cultures were acclimatized with 2% CO2 enriched air prior to 

inoculation in the mini-raceway pond. The mini-raceway pond was maintained under sterile 

conditions to avoid contamination. It was constructed consisting of a shallow tank with a 

working volume of 8L and a headspace of 156L which was enclosed to avoid CO2 leakage 

and injected with a range of CO2 concentrations (1%, 5%, and 10%). The system was 

maintained at 30°C under 12:12 L:D illumination cycles of 6W/m
2
 during light cycle supplied 

by artificial lighting. The mini-raceway pond was inoculated with a constant inoculum 

(0.15g/L) and one experimental set was allowed to run for 25 days. Three experimental sets 

were run in each CO2 concentration. 

 

Growth, alkalinity and pH measurements were made in triplicate every 24h. The growth was 

measured by monitoring the optical density at 670nm. The dry weight was also calculated 
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to determine the biomass concentration. The pH of the mini-raceway pond was maintained 

at 10.0 during the CO2 sequestration experiment runs. 

 

The CO2 concentration in the mini-raceway pond was maintained by injecting the CO2 into 

the headspace of the system. Both the algal species were subjected to a range of CO2 

concentration (1%, 5% and 10%). The CO2 fixation efficiency was calculated daily in terms of 

CO2 consumed by the organisms in the mini-raceway pond. After the measurements, the 

system was again maintained at the initial CO2 concentration of the experimental run. The 

calcite production inside the photo-bioreactor was carried out by the addition of 0.1M of 

calcium chloride for S. platensis and 0.8 M of calcium chloride for Chlorella sp. in the culture 

medium and the resultant calcite formed was removed daily from the photo-bioreactor. A 

blank experimental run was also performed without the inoculation of cyanobacteria. 

 

The study demonstrates an increase in CO2 sequestration efficiency by manoeuvring 

chemically aided biological sequestration of CO2. Chlorella sp. and Spirulina platensis 

showed 46% and 39% mean fixation efficiency, respectively, at input CO2 concentration of 

10%. The effect of acetazolamide, a potent carbonic anhydrase inhibitor, on CO2 

sequestration efficiency was studied to demonstrate the role of carbonic anhydrase in 

calcite deposition. Calcite formed by both species was characterized by scanning electron 

microscopy coupled electron dispersive spectroscopy and X-ray diffraction.  

 

In the actual experimental run, Chlorella sp. showed remarkable sequestration efficiency in 

the order of 59%, 51% and 46% for input CO2 concentrations of 1%, 5% and 10%, 

respectively. This strain showed higher growth and subsequently higher fixation efficiency 

within 10 days of experimental run, however, mean fixation efficiency declined after 15 

days. In contrast, S. platensis was a relatively slower growing organism with lesser mean 

fixation efficiency of 53%, 41% and 39% for input CO2 concentrations of 1%, 5% and 10%, 

respectively. S. platensis had sustained mean fixation efficiency until 25 days of 

experimental run. Growth of both the species was enhanced in presence of CO2. The 

biomass growth rate of S. platensis was 110.4mg/L/d at input CO2 concentration of 10% 
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whereas biomass growth rate of Chlorella sp. was 84mg/L/d at the same input 

concentration. The growth rate of both the species seemed to increase with increasing CO2 

concentration. 

 

The organisms did not have a lag phase at concentration higher than the atmospheric 

concentration which implies photosynthetic capability of these organisms is limited by 

atmospheric CO2 concentration. Higher CO2 concentration would therefore aid in higher 

photosynthetic activity, nevertheless, ability to fix CO2 gradually decreased. A host of 

photosynthetic organisms have shown a similar trend where higher growth has been 

observed with increased CO2 concentration suggesting the possibility of CO2 being a limiting 

factor for growth. Conversely, concentrations higher than 15–20% have been shown to be 

inhibiting the growth of algae. 

 

Chlorella sp. is known to be a high CO2 fixing organism which has been validated in our 

study. The overall scheme of calcite deposition coupled CO2 fixation with commercially 

utilizable biomass as a product seems a viable option in the efforts to sequester increasing 

CO2 emissions. 

 

The calcite deposition coupled CO2 fixation approach undertaken in this study is a novel 

advance in CO2 sequestration research. The characterization of material obtained after 

precipitation has demonstrated that the material is calcite formed from biologically aided 

chemical conversion of bicarbonates. The CO2 fixation efficiency and growth rate of algae 

were substantially higher when coupled with calcite deposition even in mini-raceway pond 

system. Both the species were efficient sequesters of CO2 with Chlorella sp. showing better 

sequestration efficiency compared to S. platensis. However, S. platensis had much higher 

calcite deposition rate and calorific value, 4303kcal/kg biomass as compared to 2298kcal/kg 

biomass calorific value obtained for Chlorella sp. 

 

They made an interesting and important finding: The influence of pH, a critical parameter 

for growth rate of algae was monitored and a study on pH at which maximum growth rate 
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was achieved was conducted prior to actual experimental run. Both the organisms were 

subjected to a pH range of 6–13 at constant input CO2 concentration of 10%. A pH of 10.0 

was found to be the optimum for both the organisms with highest growth rate of 

140mg/L/d and 80mg/L/d observed for S. platensis and Chlorella sp., respectively. The 

media pH was found to play a vital role in growth of the organism with slightly acidic pH of 

6.0 showing the least growth rates for both the organisms. The total alkalinity profile of the 

experimental run was also monitored to ascertain the role of alkalinity on CO2 fixation. It 

revealed that the total alkalinity levels inside the mini-raceway pond increased with time 

and this may be because of the formation of bicarbonates which was subsequently 

converted into calcite keeping the pH of the media high even after high input CO2 

concentrations. 

 

This is an important finding and the only one of its type reported. Up until now, high pH has 

been considered detrimental to productivity because they were associated with carbon 

limitation. This shows that when CO2 is in excess, the pH can be artificially raised and may 

produce a benefit. We obviously cannot take 1 experimental data set as fact however pH is 

a very important parameter in optimising growth and therefore more research needs to be 

done in this specific area. This 2010 paper is excellent and a great example of how fast new 

research in this area is evolving. 

 

Park & Craggs (2010) produced a report on wastewater treatment and algal production in 

HRAPs with CO2 addition. HRAPs provide improved wastewater treatment over 

conventional wastewater stabilisation ponds; however, algal production and recovery of 

wastewater nutrients as algal biomass is limited by the low C:N ratio of wastewater.  

 

The C:N ratio of domestic wastewater (typically 7:1) is low compared to that of algal 

biomass (typically 15:1); therefore algal production and recovery of wastewater nutrients as 

algal biomass in HRAP could be enhanced by CO2 addition. Controlling pond water pH to 

below 8 with CO2 addition may also enhance algal production by preventing ammonia 

inhibition of algal growth. 
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For example, when the pH rises to 9.5 (20–25°C) total free ammonia concentration of only 

34 and 51g/m
3
 has been found to cause 50 and 90% reductions in photosynthesis, 

respectively, of the freshwater alga Scenedesmus obliquus , which often grows in HRAP. 

Moreover, aerobic heterotrophic bacteria which use photo-synthetically derived oxygen to 

break down dissolved organic compounds (BOD removal) and release CO2 and nutrients (N 

and P) have an optimum pH of 8.3, above which bacterial activity is increasingly inhibited. 

However, controlling HRAP pH to below 8 will reduce nutrient removal by physico-chemical 

processes such as ammonia volatilisation and phosphate precipitation occurring at pH9, 

which could reduce overall nutrient removal unless offset by increased algal assimilation. 

 

They state that there is little information in the literature on CO2 addition to wastewater 

treatment HRAPs and that Laboratory scale research on CO2 addition to wastewater grown 

algae cultures has demonstrated higher algal photosynthetic efficiencies and productivities 

compared to controls without CO2 addition. CO2 addition to pilot-scale nutrient media 

HRAPs has been shown to more than double algal production. 

 

They investigate the influence of CO2 on wastewater treatment performance and algal 

production in two pilot-scale HRAPs operated with different HRTs (4 and 8 days) over a New 

Zealand Summer (November–March). Weekly measurements were made of influent and 

effluent flow rate and water qualities, algal and bacterial biomass production, and the 

percentage of algae biomass harvested in gravity settling units.  

 

Experiments were conducted using two identical pilot-scale HRAPs (West and East), which 

were a part of an Advanced Pond System (APS) treating domestic wastewater in New. Each 

HRAP was a single-loop raceway (surface area: 31.8m
2
, depth: 0.3m, volume: 8m

3
) with 

semi-circular end-walls; lined with HDPE plastic; and with a HDPE dividing wall separating 

the two raceway channels. A free standing, 1m wide, galvanised steel paddlewheel 

circulated the pond water around the HRAP raceway to give mean surface velocity of 

0.15m/s. The HRAPs each received anaerobic digester effluent (1m
3
/d) which was added at 
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the pond bottom downstream of the paddlewheel. The influent to the West HRAP was 

diluted with 1m
3
/d of tap water (simulating recycle of treated effluent after complete algae 

and nutrient removal) to give HRTs of 4 and 8 days respectively for the West and East 

HRAPs. Effluent from the HRAPs was taken from the pond bottom upstream of the 

paddlewheel to ensure complete mixing within the HRAP. 

 

The maximum pH of the HRAPs was maintained below 8 through pH controlled addition of 

CO2. The CO2 addition system consisted of a CO2 gas cylinder, a CO2 gas regulator, a gas flow 

meter (0–12 L/min range), a solenoid valve and gas diffusers. Pond water pH was measured 

every five seconds with a pH probe and, when the pH exceeded the pH8 set point, the 

controller opened the solenoid valve and bubbled CO2 into the ponds (2L/min) through two 

CO2 gas diffusers placed on the pond bottom in turbulent zones (one just before the 

paddlewheel and the other before the downstream pond corner). When the pond water pH 

reduced to pH 7.8 the controller closed the solenoid valve halting CO2 addition. The pH 

probes were calibrated 1–2 times a week with standard pH solutions (pH 7 and 10). The 

temperature range of the experiment was 18.5 to 23.5°C. The dominant algal species 

present in both HRAPs during this 5 month study included the colonial algae Scenedesmus 

sp, Microactinium sp, Pediastrum sp, and the single cell alga Ankistrodesmus sp. 

 

250L gravity algal settling cones (ASCs) were used to harvest the algal biomass grown in the 

HRAPs. Effluent from each HRAP was divided between two ASCs and introduced horizontally 

into each cone at mid-depth. 

 

The maximum DO was consistently about 100% saturation during the day with high 

photosynthetic activity. The DO dropped at night to the minimum values which never 

reached 0% showing that sufficient algal photosynthesis occurred. During day and night 

cycles the pH varied between 8 and 6.5 respectively. 
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Their results showed high dissolved organic compound removal rates which may indicate 

that CO2 addition to HRAPs enhances aerobic heterotrophic bacterial degradation of organic 

matter by preventing high pH (>9) inhibition and ammonia toxicity. 

 

This research shows that the wastewater treatment HRAPs with CO2 addition achieved a 

mean and maximum algal productivity of 55.7mg/L/d and 82.3mg/L/d respectively for the 

HRAP at 4d HRT and 30.0mg/L/d and 50.7mg/L/d for the 8d HRT HRAP. They state that the 

reduced algal productivity in the 8d HRAP may have been due to increased light shading by 

the higher bacterial solids concentration in this pond.  

 

The aim is to reduce the HRT, which in cost terms means, less space required to treat the 

same volume of wastewater. Reducing HRT is expected to increase biomass production due 

to the greater availability of required nutrients. i.e., on a daily basis, the 4d HRAP received 

twice as much nutrient than the 8d. If all the nutrients were used, you could expect twice 

the growth rate. So I disagree with them with regard to their reasoning behind reduced 8d 

productivity as it looks like they may have overlooked this important factor.  

 

Algae biomass produced in the HRAPs was efficiently harvested by simple gravity ASCs 

(mean harvested algal productivity: 38.3mg/L/d for the 4d HRAP and 25mg/L/d for the 8d 

HRAP respectively). Higher bacterial composition and the larger size of algal/bacterial flocs 

in the 8d HRAP increased harvest ability (83%) compared to that of 4d HRAP (69%). They 

state that the algae could be efficiently harvested in simple gravity settlers with a retention 

time of 3h or less. 

 

This is a well writing paper with good presentation of data and a good source of information. 

 

Heubeck et al. (2007) investigated the influence of CO2 scrubbing from biogas on the 

treatment performance of a HRAP. However, from the paper I could not work out if any of 

the experiments involved any biogas, it seemed like only CO2 was added. They state: The 
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experiments presented in this paper were conducted to examine the effects of CO2 addition 

(and reduced culture pH) on algal growth and wastewater treatment in batch cultures. 

 

Biogas produced by anaerobic treatment of wastewater can be collected and used for 

power 

generation. However, the biogas may require scrubbing to prevent corrosion by H2S and to 

improve engine efficiency by reducing the CO2 content. HRAP can be used to scrub biogas 

during the daytime when they are carbon-limited and have high pH. This study investigates 

the influence of the CO2 addition from biogas scrubbing on high rate algal pond wastewater 

treatment performance and algal production.  

 

Firstly CO2, H2S and most other trace gases would be scrubbed from the biogas, leaving 

almost pure methane which is more easily handled and utilised. Secondly the CO2 

transferred into the HRAP water may overcome carbon limitation of algal growth (due to 

CO2 depletion) and increase algal productivity and nutrient assimilation. Thirdly the 

reduction in pond water pH (often 10) to more neutral levels (optimum: pH 8.3) by CO2 

addition may further stimulate aerobic bacterial degradation of the waste and prevent 

ammonia toxicity of algal growth in wastewater cultures. 

 

Batch culture experiments were conducted in 2L laboratory microcosms and in 20L outside 

mesocosms. 

 

Inside: The cultures were grown under constant conditions (20 ± 1°C, 12:12 L:D cycle, 

1.61MJ/m2 provided by fluorescent light bulbs and constantly mixed with magnetic stirrer 

bars). One flask had CO2 addition and pH control set to 8 whilst three went without CO2 

addition. 

 

Outside: Four batch culture mesocosms were run (20L HDPE buckets, surface area: 750cm
2
 

and depth:27cm) with continuous mixing from magnetic stirrer bars. They were filled with 

19L of HRAP water. Cultures were dominated by colonial algae Micractinium sp. and 
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Scenedesmus sp. that are typical for HRAP. The temperature varied between 20.9–22.2°C. 

Two had CO2 addition and pH control set to 8 whilst two went without CO2 addition. 

 

The 2L laboratory experiments had algal growth rates around 54mg/L/d for experiments 

with CO2 addition and 44mg/L/d without. Non pH regulated experiments reached pH10.8 

and did not increase further – showing a strong upper limit. N reduction was 7mg/L/d 

(0.3mg/L/h) reaching 0mg/L. CO2 addition gave the lowest P concentrations of near 0mg/L, 

the average rate of removal was about 1mg/L/d. 

 

The results of the outside experiment were only carried out over 3 days and were not very 

conclusive This is not a long enough time period to make any real judgements however they 

did achieve a biomass growth rate of 33mg/L/d and N reduction of 4mg/L/d. The pH in non 

regulated experiments again reached 10.8. I do not know why the experiments were only 

carried out for three days. 

 

Results indicate that CO2 addition and reduced culture pH increased algal production and 

nutrient assimilation, decreased high pH mediated nutrient removal processes (phosphate 

precipitation and ammonia volatilisation), but had little influence on the ability of the 

culture to remove filtered BOD. Disinfection, as indicated by E.coli removal; was reduced, 

however, further research on virus removal, which is not affected by culture pH, is required. 

 

They conclude: These experiments demonstrate the potential to scrub CO2 from biogas 

using HRAP 

water without decreasing the effectiveness of wastewater treatment and enabling 

increased recovery of wastewater nutrients as algal biomass. I would say they demonstrate 

the potential to add CO2 into HRAPs for improved productivity and treatment efficiencies 

but experiments would have to be done with biogas to confirm this claim. 

 

It would be interesting to investigate if this process could be incorporated with CO2 addition 

and whether or not it had negative effects on the quality of scrubbed biogas. Consensus in 
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the literature is that this process can improve the biogas quality and greatly reduce the CO2 

content. 

 

Al-Nozaily et al. (2000) studied the performance of duckweed covered sewage lagoons, N 

and P balance and plant productivity. 

 

Laboratory scale experiments were performed in a non-continuous batch reactor system 

with 

0.8 to 41.2L with domestic sewage exposed to constant light intensity, temperature and 

humidity. The contribution of duckweed (L. gibba) to N and P removal in duckweed-covered 

sewage lagoons was studied at N concentration of 25±96mg/L with 10, 30, 70 and 95cm 

deep reactors, and liquid mixing intensity of 0, 0.3, 1.0, 2.3 and 34.1W/m
3
. Duration of each 

experiment was 20d with biomass harvesting every 5d.  

 

I wanted to use this paper to get results of P and N removal rates and biomass generated 

using duckweed however the paper is so badly written it is difficult to pull any data from it. 

From what I gather the maximum removal rates were 2.2mg/L/d N and 0.1mg/L/d P. I could 

not find a figure for duckweed growth rate. 

 

Shilton et al. (2008) wrote a paper on the advantages of WSPs with regard to solar aeration 

and disinfection, co-digestion, bio-CO2 scrubbing and biofuel production. They also 

considered the performance and benefits of HRAPs making this statement: 

 

Daytime algal photosynthesis in WSP assimilates CO2 from the pond water at a rate that is 

faster than both diffusion of CO2 from the atmosphere and CO2 release from bacterial 

degradation of the organic waste. The growth of 1 tonne of algae biomass in an HRAP 

assimilates approximately 1.6 tonnes of CO2 (assuming a carbon content of, 46% of the 

algae dry weight) (Benemann 2003). As a result, the pond water becomes CO2 depleted and 

can be used to scrub CO2, and impurities such as hydrogen sulphide, from biogas or exhaust 

gases that are sparged through it (Heubeck et al, 2007). Scrubbing CO2 using WSP also 
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boosts algal production by overcoming carbon limitation. CO2 addition to HRAP has been 

shown to more than double algal productivity. 

 

They also recognise the potential of algae as a biofuel, having higher productivity than most 

land plants and containing oils that can be converted to biodiesel. The paper is a good 

account of sustainable water treatment technology and echoes the findings in other reports. 

 

3.3.4. Algal Bioreactors 

Ai et al. (2008) carried out research to develop an algal bioreactor for use in space to 

provide protein and oxygen for future astronauts and remove CO2 as part of a controlled 

ecological life support system. They evaluated the performance of the bioreactor.  

 

The experiment was highly controlled and detailed as follows: Spirulina platensis, a type of 

filamentous Cyanobacterium was grown in optimal artificial medium, sterilized by supplying 

ozone. Light was provided by two electromagnetic inductive lamps (80W) at 60W/m
2
, 24h/d 

(well in excess of any other literature data). The temperature was maintained at 30°C +/- 

2.0°C. The pH was constantly monitored and maintained between pH8-10 which they state 

to be optimal. This was achieved by providing the required amount of CO2. The dissolved 

Oxygen was maintained between 6-10mg/L. The salinity and electric conductivity were also 

continuously measured. The bioreactor was agitated by mechanical rotation at 40-60rpm, 

enough to meet the demand of mixing. The PVC reactor was 45cm in length and 30cm in 

internal diameter, making it a total of 3.18L. 

 

The demonstration results were successful, meeting the design requirements. They report 

that the density of algae in the photo-bioreactor increased from 0.174g/L to 4.064g/L after 

7 days growth. This is almost double the maximum concentration I took my bioreactors to 

and equates to a growth rate of 560mg/L/d which is vastly in excess of any other literature 

values. Benemann, who has carried out extensive research into the subject produced 

conservative estimates of 33mg/L/day. Bioreactors, under controlled conditions will 
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produce growth rates significantly higher. The maximum growth rate I observed was just 

over 150mg/L/d, I estimate that I could have achieved in excess of 300mg/L/d with 

complete optimisation. Consistent growth rates over 7 days of 555mg/L/d may be possible 

with the experimental set up they demonstrate. The design of this particular bioreactor was 

highly complex and highly optimised; growth rates in excess of 300mg/L would be expected. 

 

The experiment was really well structured; all the variables were controlled and constantly 

measured providing excellent data. All of the parameters were kept at optimum levels; this 

provides a good idea of maximum growth. I feel the experiment could be extended by a) 

repeating with the same conditions and b) repeating with various strains of algae. The paper 

provides quality details, diagrams and pictures of the experiment. 

 

Hu et al. (2008) carried out a study into producing estimates of biomass growth with 

variable light and temperature conditions using a mathematical model for computer 

simulation. They focus on the accuracy of the mathematic model so the details about their 

experimental data are a bit thin. 

 

They state that experiments show that the utilization of red lights of 620nm wave length, 

light intensity within the range of 10-60W/m
2
 can significantly affect the growth of 

microalgae, so red LEDs were used as the light source in their experiments. 

 

They grow a type of green microalgae, Spirulina platensis in artificial medium in a bioreactor 

of unspecified dimensions. Details about agitation, CO2 and pH conditions are omitted. 

 

Experiments with an unspecified constant temperature and varying light intensities were 

carried out. At 20W/m
2
 the initial growth rate was around 144mg/L/d but only reached a 

maximum concentration of 0.8mg/L. At 40W/m
2
 the initial growth rate was around 

126mg/L/d but reached a higher maximum concentration of 1.2mg/L. These growth rate 

results are within a standard reported range found in the literature and correlate with the 
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theory of faster initial growth at lower light intensities with inhibition as the concentration 

becomes denser and the penetration depth of the light reduces. 

 

A second experiment was carried out maintaining a constant unspecified light intensity and 

varying the temperature between 28-34°C. At 28°C the growth rate was 108mg/L/d, this 

increased to 168mg/L/d at 30°C and then fell to 127mg/L/d and 120mg/L/d at 32°C and 

34°C respectively. These values do correlate with other temperature data that shows that 

each strain of algae have a working temperature range where growth rate increases until a 

point where it becomes inhibitory. Exact temperatures vary with specie however these 

results match other literature data. 

 

Despite lack of detail regarding the experimental methods and parameters, the results are 

useful. The temperature results would have been more beneficial if the experiment had 

been carried out over a wider range, 20, 25, 30 and 35°C for example. 

 

Nakajim & Takahash (1991) looked into the use of a photo clarifier, a type of partially 

shaded bioreactor for algae-liquid separation. They aim to maintain a high density of algae 

whilst separating them from water, maximising the efficiency minimising the cost. They 

identify that solids-liquid separation remains a difficult problem. They state, considering 

that the removal efficiency may be higher as the contact area between the organisms and 

the treated wastewater increases, and that the surface-to-volume ratio increases with a 

decrease in the size of organisms, it is advantageous to use unicellular microalgae, which 

grow dispersively. Thus, dispersing the cells in order to increase reaction efficiency while at 

the same time separating the cells from the treated wastewater becomes an important 

problem for the development of a photo-bioreactor using photosynthesis. 

 

They ran an experiment to compare the difference between using a photo clarifier for 

separation and a control without a photo clarifier. The photo clarifier runs on a continuous 

loop (whilst lit), medium from the main bioreactor flows into the photo clarifier and flows 

back to the main bioreactor from a small illuminated area, where the algal cells gather. 
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Effluent is pumped out of the photo clarifier from a shaded region at the same rate the 

main bioreactor is continuously fed to maintain equilibrium. 

 

The algae used are a unicellular green algae, Euglena gracilis grown in artificial medium. The 

temperature was maintained at 22.5 +/- 1.5°C. Light was irradiated in a 12-h cycle at 

38.8W/m
2
, all pumps stopped during dark. The bioreactor was aerated, no pH data is given. 

 

Unfortunately they give their growth results in cells/ml which I cannot compare to other 

literature, however the growth curve is in the standard form of slow initial growth when the 

density is low followed by a period of fast growth rate until a limit is reached (normally 

based on the light intensity) and the algal concentration plateaus. 

 

The main finding is that the use of a photo clarifier produced an algal concentration 4x 

higher than the control after 31 days growth. 

 

Guo et al. (2008) investigated improving hydrogen photo-production regulated by 

carbonylcyanide m-chlorophenylhrazone from marine green algae Platymonas 

subcordiformis grown in a CO2-supplemented air bubble column bioreactor. They wanted to 

develop an integrated process of CO2-fixation and H2 photo-production.  

 

H2 photo-production by microalgae has been documented among the genus Chlorococcales 

and Volvocales (Chlorophyceae) (Happe et al. 2002), with some algae tolerant to extremely 

high CO2 concentration (850%) and even in exhaust flue gas. The freshwater green alga, 

Chlamydomonas reinhardtii, is a well-established model strain that produces H2 photo-

biologically under sulphur deprivation in a two-stage system. To further improve H2 

production, this paper investigates two new process strategies of CO2-supplementation and 

the use of an air bubble column photo-bioreactor to increase both cell growth and starch 

accumulation of P. subcordiformis, eventually leading to improved H2 production. 
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P. subcordiformis, wild-type, was grown photo-autotrophically in a 600ml bubble column 

bioreactor system (50mm diam, 400mm ht) at 25°C in an autoclaved natural seawater 

medium, supplemented with micronutrients with initial pH8. 

 

Compressed air and CO2 were mixed and metered through calibrated flow meters, and 

sterilized using 0.22µm membrane filters before entering the system. The bottom of the 

bioreactor was filled with a porous quartz sieve (10mm diam), which dispersed the 

airstream. The cultures were illuminated from two sides with cool white fluorescent lamps 

which provided an average light intensity of 10W/m
2
 under 14h:10h L:D cycle. CO2 was 

added up to 15% in air; normal air, 1%, 3%, 5%, 10%, and 15% CO2. The CO2 was 

supplemented only during illumination.  For H2 production, 7-day old cells from the 

bioreactor were harvested. They were prepared for photo-biological H2 production under 

continuous illumination by cool-white fluorescent light (16W/m
2
). 

 

The maximum cell concentration was attained when 3% CO2 was used. This clearly indicated 

that air (containing 0.03% CO2) is deficient for optimal growth. 1% and 5% CO2 also 

performed better than air whilst 10% and 15% performed worse. 

 

The pH in the air-grown culture increased from an initial pH8 to a maximum pH9.6. The 

initial increase in pH is due to the photosynthetic consumption of dissolved CO2 and then 

the pH value remained constant. When the algal cells were grown under CO2-supplemented 

air, the pH continually decreased. This decrease in pH was expected because CO2 

supplementation buffered the medium as a result of the CO2/HCO3
-
 balance. The decrease 

in pH had a positive correlation with the supplementation of CO2 concentrations. 

 

During the H2 production stage, H2 was detected soon after the beginning of illumination 

and its yield was higher in CO2-grown cells when compared to that of air-grown cells. H2 

photo-production was enhanced by 60% for 3% CO2-grown cells when compared to air-

grown cells, with the highest rate of H2 production of 3.2 ± 0.12µmol H2/mg Chl /h. 

Improved H2 production correlated well with the increase in starch accumulation. The 
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results were in agreement with Yoon et al. (2002) who reported that CO2 injection in the cell 

growth phase increased not only the cell concentration but also the H2 production per g of 

Anabaena variabilis. 

 

Rodolfi et al. (2008) carried out an experiment with similar design parameters to my 

experiment however it is not so relevant as they looked into nutrient deprivation. Their 

experiment was extremely well done and reported and the results are very useful with 

regard to my project. 

 

They looked at strain selection, induction of lipid synthesis and outdoor mass cultivation in a 

low-cost photo-bioreactor for microalgae oil production. They screened thirty micro algal 

strains in a laboratory for their biomass productivity and lipid content. Four strains (two 

marine and two freshwater) were selected because they were robust, highly productive and 

had a relatively high lipid content. They were cultivated under N deprivation in 0.6L bubbled 

tubes. 

 

Of these four strains, only the two marine microalgae accumulated lipid under such 

conditions. One of them, the eustigmatophyte Nannochloropsis sp. F&M-M24 attained 60% 

lipid content after N starvation. This was then grown in a 20L Flat Alveolar Panel photo-

bioreactor to study the influence of irradiance and nutrient (N or P) deprivation on fatty 

acid accumulation.  

 

For strain selection, cultures were grown in an orbital incubator flushed with air/ CO2 (5%) 

at a temperature of 25°C, under continuous illumination (100µmol PAR photons/m
2
/s) 

provided by daylight fluorescent tubes. The second stage of strain selection used 0.5L of 

culture, bubbled with a sterile air/CO2 mixture (3%) to support growth and maintain pH 

within the desired range (7.5–8.1). The tubes were immersed in a water bath thermo-

regulated at 25°C. Continuous artificial illumination (about 200µmol PAR photons/m
2
/s) was 

provided by daylight fluorescent tubes on both sides of the water bath. The 20L bioreactor 
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was kept at 25°C, the optimal temperature for Nannochloropsis sp. CO2 was continuously 

added to the air stream (3%) to maintain pH7.5 +/- 0.2.  

 

The outdoor scale-up experiment used modules that were 1m high, 2.5m long and, on 

average, 4.5cm thick, with a culture volume of 110L. For mixing, compressed air was 

bubbled at the bottom of the reactor through a perforated plastic tube. CO2 was injected 

into the culture through a gas diffuser placed in an un-aerated zone, as carbon source and 

for pH regulation. A control unit provided temperature regulation. CO2 was injected during 

daylight hours to maintain pH in the range 7.5–8.0. The cooling system prevented the 

culture temperature to exceed the value of 30°C. The natural solar irradiance was between 

14-17MJ/m
2
/day (a normal day is around 20MJ/m

2
/day). 

 

An N-sufficient control was measured against the deprivation experiments, nutrient 

deficiency was attained by replacing the daily harvested culture volume with nutrient (N, P 

or both N and P) depleted medium. In the N-sufficient culture, N was added in amounts 

equal to 10% of productivity. N-limited cultures were obtained by adding N in amounts 

equal to 5%, 2.5%, or 1.25% of their productivity. The experiment started with an N-

sufficient culture which was distributed in four equal volumes and diluted with fresh 

medium containing the different N levels. 

 

With N-deprivation it took a few days to decrease productivity and about 2 weeks to halt 

growth completely. Lipid content increased after about 5 days of N-deprivation and reached 

50% of the dry biomass by the end of the experiment (21 days).  

 

I note that after 15 days, the lipid content had reached 42%. Following this period, no extra 

growth occurred. So if the algae were harvested at just 42%, in the long run you would gain 

17.6% more oil by saving the extra 6 days to increase the lipid content to 50%. Lack of P 

elicited a similar response, but it took longer to decrease productivity (about 1 week) and 

halt growth (20 days). Lipid productivity increased from 117mg/L/d in nutrient sufficient 

media (with an average biomass productivity of 360mg/L/day and 32% lipid content) to 
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204mg/L/day (with an average biomass productivity of 300mg/L/day and more than 60% 

final lipid content) in N deprived media. 

 

In a two-phase cultivation process (a nutrient sufficient phase to produce the inoculum 

followed by a N deprived phase to boost lipid synthesis) the oil production potential could 

be projected to be more than 90kg/ha/d. The experiments showed that this marine 

eustigmatophyte has the potential for an annual production of 20 tons of lipid per hectare 

in the Mediterranean climate and of more than 30 tons of lipid per hectare in sunny tropical 

areas. 

 

This experiment is an example of near perfect conditions for algal growth when in N-

sufficient conditions. It was also a result of strain selection to identify the most productive 

micro algae. In their main experiment they report growth rates of 360mg/L/d and up to 

1450mg/L/d during their light intensity experiment. 300-600mg/L/d seem to be a 

reasonable range for fully optimised bioreactors, 1450mg/L/d is nearly 10x higher than my 

maximum recorded growth rate. 

 

3.3.5. Carbon fixation 

Higher plants take CO2 from the air but for algae, CO2 is always a limiting factor because it 

must be dissolved in the water medium in which they grow. However, this drives a reaction 

in Eq. (4) to produce more OH
−
, creating the alkaline conditions found in algal ponds as 

explained in the equations here: 

 

CO2 + H2O <-> H2CO3 (1) 

H2CO3 <-> H
+
 + HCO3

-
 (2) 

HCO3
-
 <-> H

+
 + CO3

2-
 (3) 

CO3
2-

 + H2O <-> HCO3
-
 + OH

-
 (4) 
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Yun et al. (1997) carried out a study into CO2 fixation by algae, Chlorella vulgaris in 

wastewater discharged from a steelmaking plant with the aim of developing an 

economically feasible system to remove ammonia from wastewater and CO2 from flue gas 

simultaneously. Recently, research on CO2 fixation using actual flue gas from a boiler and a 

power plant was carried out in a small raceway pond equipped with paddle wheels for 

mixing and showed that direct blowing of flue gas into algal culture did not inhibit the algal 

growth.  

  

Since no P compounds existed in the wastewater, external P was added, the optimal 

concentration required to balance the ammonia was found to be 46mg/L. They made some 

interesting discoveries; when P was not added to cultures, the initial rate of ammonia 

removal was very slow because of P limitation, however when P was not limiting the 

ammonia removal rate was independent of P concentration, reaching its maximum value of 

0.86 mg/L/hr. The P content in harvested biomass increased proportionally to the amount 

of P added showing the algae’s large capacity for P uptake and storage. C. vulgaris, utilized 

ammonia in preference to nitrate as a nitrogen source. Nitrate was not consumed until the 

ammonia in wastewater was exhausted. The pH value of the culture decreased according to 

the uptake of ammonia and increased as nitrate was assimilated after the depletion of 

ammonia. However, P was continuously removed throughout the duration of growth. 

 

All experiments were performed at constant temperature of 27°C in a light incubator in 

which the average light intensity was maintained at 22W/m
2
 with 12 x 20 watt ‘warmwhite’ 

fluorescent tubes. The media was buffered, controlled at pH8; the algal growth in buffered 

wastewater was better than that in unbuffered raw wastewater when supplying air or air 

containing 5% CO2. However, when 15% CO2 was supplied, the algal growth in the raw 

wastewater was better than that in buffered wastewater. An explanation was not provided. 

However, I would theorise that the larger quantities of buffering solution required to 

maintain pH when 15% CO2 is added affected cell metabolism more than the fall in pH in the 

unbuffered experiments. 
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When the inoculum was prepared by air bubbling, the best growth was achieved in 5% CO2 

The growth was somewhat inhibited in 15% CO2 When the inoculum was adapted to 5% CO2, 

5% CO2 still gave the best growth, but the cell growth in 15% CO2 was enhanced compared 

with the culture grown by supplying air. CO2 removal rates were estimated at 26.0 mg/L/hr 

CO2. Since the typical concentration of CO2 of flue gas is around 15% CO2, adaptation of C. 

vulgaris to high CO2 concentration would be necessary for the direct use of flue gas. In a 

separate experiment, it was found that a gradual increase of CO2 concentration gave even 

better growth in high CO2 concentrations (up to 30%). This provides a very good case for the 

fast and effective adaption of algae to suit their environment. 

 

Kaladharan et al. (2009) looked at CO2 sequestration using varying concentrations of CO2 at 

0, 5, 10, 15 and 25 mg/L over 2 hour periods. They used 5 types of marine and micro algae 

but do not state the light or temperature conditions. The results are inconclusive however 

they show that certain strains of marine algae sequester 100% of the CO2 up to and 

including concentrations of 15mg/L. At 25mg/L CO2 the sequestration drops to 60% showing 

this specific strain, Ulva lactuca can sequester 180mg/L/day CO2 at a concentration of 

1.67g/L algal biomass which I have assumed is wet weight as this has not been made clear. 

 

The paper does not specify enough details about the experiment to provide useful analysis 

however it does provide some data that can be used as a comparison to other experiments. 

 

Benemann (2003) prepared a report into the biofixation of CO2 and greenhouse gas 

abatement with microalgae as a technology roadmap. The report provides in depth detail 

about the technologies and gives some general figures however does not provide specific 

details about individual experiments. They state that microalgae contain roughly 45% C 

which equates to 1.64 kg CO2 / kg biomass.  

 

Benemann et al. (2003) produced another report on the controlled eutrophication process: 

using microalgae for CO2 utilization and agricultural fertilizer recycling. Carrying out a study 

into the Salton sea, a specific area with high eutrophication problems, they state a figure of 
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33mg/L/day biomass growth at a cost of $100/mt. The majority of this cost is from the 

transfer of flue gas from the power plants into the ponds. 

 

From the literature we can expect somewhere between 10-20mg/L/hr CO2 sequestration 

during photosynthesis which should roughly equate to a growth rate of 6-12mg/L/hr (72-

144mg/L/d). Benemann quote a conservative 33mg/L/d which is fair considering the 

enhanced difficulties with larger production volumes. 

 

Godosa et al. (2010) investigated the influence of real flue gas sparging/scrubbing (7% CO2) 

on the performance of two 465L HRAPs treating diluted swine manure at 10 days HRT under 

continental climatic conditions in Spain. 

 

The experimental set-up consisted of two identical raceway HRAPs constructed in white 

flexible PVC with a total volume of 465L and a surface of 1.54m
2
 (2.3m long, 0.70m wide 

and 0.3m deep) . The experimental systems were operated from April to July. 

 

The main experiment was operated in three periods, acclimatisation without CO2, 2.2L/min 

and 5.5L/min gas sparging. The control was operated without additional CO2 for all three 

periods.  

 

The natural solar irradiation was between 6000-7000 Wh/m
2
/d. The temperature ranged 

between 10 and 20°C. A paddle wheel was driven by a motor engine for agitation. Effluent 

sedimentation was carried out in 7L settlers located at the outlet of each photo-bioreactor. 

 

The plot of pH vs. time shows the pH to be a direct function of the rate of CO2 addition. 

 

N and P removal efficiencies were not significantly affected by flue gas input which suggests 

that CO2 sparging does not compromise wastewater treatment in HRAPs. 
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98±1% N removal within the 10d HRT was consistently maintained, regardless of the 

environmental and operational conditions. 

 

CO2 sparging resulted in lower pH values (≈2 units lower) and an enhanced nitrification 

compared to the system operated in the absence of flue gas supply. 

 

Biomass concentration was only higher (30% than in the control HRAP) when flue gases 

were supplied at 5.5L/min, probably due to the fact that the higher irradiances and 

temperatures prevailing within this experimental period resulted in an inorganic carbon-

limited scenario in the control HRAP. 

 

3.3.6. Effect of pH 

Mostafa and Helling (2001) studied the metabolism of isoproturon by  two soil and 

freshwater microorganisms, green alga Chlorella kesslerei and cyanobacterium Anabaena 

inaequalis, as a function of pH.  

 

Isoproturon degradation by Anabaena after 10 days at pH 5.5 was 3– 4 times greater than 

corresponding values at pH 7.5. Since the reduction in biomass due to high concentrations 

of the herbicide was similar at both pH levels, faster degradation at pH 5.5 seems to result 

from enhanced metabolic activity of the algal cells under the more acidic media conditions. 

The isoproturon accumulation by Chlorella kesslerei was 5x greater at pH5.5 than it was at 

pH8. 

 

Beuf et al. (2000) studied the effect of external pH on inorganic carbon assimilation in 

unicellular marine green algae. Three algae were used, C. littoral, S. bacillary and C. 

saccharophila. They were isolated in the marine Biotechnology Institute. The algae were 

grown at 25°C in seawater. The media was bubbled with air for low carbon conditions and 

air enriched with 5% CO2 for high carbon conditions. 
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Marine microalgae live in a habitat where the dissolved inorganic carbon concentration is 

relatively high (about 2µmol/L), but where the dominant form of inorganic carbon is HCO3
–
 

and the equilibrium concentration of CO2 is only 10μmol/L, Burns and Beardall (1987). 

Seawater is naturally buffered (usually the pH is between 8.1 and 8.4). 

 

Regardless of the growth conditions, activities related to carbon fixation, that is, 

photosynthetic oxygen evolution, inorganic carbon uptake and assimilation were enhanced 

when the measurements were performed at acidic pH. All three algae could grow at pH 4, 

and grew better at pH 5–6 than at pH 8. This indicates that this marine alga is able to use 

CO2 more efficiently than HCO3
–
. 

 

No evidence could be found for the existence of an alternative inorganic carbon assimilation 

system specific for low pH and low inorganic carbon conditions. Better growth ability of the 

algae in acidic conditions could not be explained by an inorganic carbon assimilation 

mechanism specific to low pH, but is probably explained by a better ability to use CO2 than 

HCO3
–
. However, the results indicated that these algae were able to fix inorganic carbon 

over a wide range of environmental pH. This stability guarantees the growth potential in 

surroundings with unstable pH, such as estuarine and coastal waters. 

 

This is an important paper with regards to my research. Not only does it show similar 

findings to mine with regard to pH response and favoured forms of inorganic carbon. It also 

shows that even algae whose natural environment is in higher pH respond better in more 

acidic conditions. 

 

Serralta et al. (2006) studied the effect of pH on biological P uptake. They operated an 

anaerobic / aerobic laboratory scale SBR to study the effect of pH on enhanced biological P 

removal. Seven steady states were achieved under different operating conditions. In all of 

them, a slight variation in the pH value was observed during anaerobic phase. However, pH 

rose significantly during aerobic phase. The increase observed was due to P uptake and CO2 
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stripping. A constant P uptake rate was observed until pH values exceeded from 8.2–8.25, 

decreasing as pH continued rising. 

 

They state that the enhanced biological phosphorus removal (EBPR) process is considered 

as the most suitable method for P removal from wastewater as it avoids chemicals dosage 

and reduces sludge production. It results from the activity of polyphosphate accumulating 

organisms which are capable of taking up P beyond the stoichiometric requirements for 

growth and storing it as polyphosphate. 

 

The paper correlates with other literature and the findings in my experiments that biological 

metabolism decreases as the pH rises above an inhibitory value of around 8. Studies agree 

that this is a direct result of a reduction in CO2, the form of inorganic carbon that is more 

easily assimilated by organisms. 

 

3.3.7. Light and photosynthesis 

Radiometric measurements of light such as Watts are quantities of radiant energy whereas 

photometric measurements of light such as Lux and Lumens are the radiant energy in the 

visible range (380nm to 770nm). PAR, photosynthetically active radiation from wavelengths 

between 400 and 700nm is measured in microeinsteins, µE. We can attempt to convert lux 

and einsteins into a standard unit of W/m
2
 however these can only be estimates without 

knowing the full spectral composition of each specific light source used. 

 

Kirk (1994) writes that light is a continual stream of photons travelling at 3 x 10
8
m/s. Full 

summer sunlight receives about 10
21

quanta/m
2
/s of visible light. The amount of energy in a 

photon varies with the wavelength (a photon from the red end of the spectrum contains 

only 57% as much energy as a photon from the blue end of the spectrum). To add to this 

complication further, each photosynthetic organism responds differently to different 

wavelengths of light. In general, green plants reflect mainly green light but have absorption 

peaks at around 450nm and 680nm which provide a much better rate of photosynthesis. 
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Photosynthesis works in 2 parts, light reactions and dark reactions. Light reactions take 

place in the thylakoid membrane system where hydrogen is withdrawn from water to 

create NADPH2 from NADP, releasing oxygen. Inorganic P and ADP is converted to ATP. 

 

Dark reactions take place in the stroma of the chloroplast where NADPH2 is used to reduce 

CO2 to the level of carbohydrate, the energy is supplied by the breakdown of ATP. 

 

The Lux (lx) is the SI unit of illuminance. Illuminance is a measure of the luminous flux over 

a given area. It is the amount of lumens per square metre;  1 lx = 1 lm/m
2
. 

 

1 lumen is 1 candela . steradian, 1 lm = 1 cd . 1 sr.  

 

1 cd = 1 lm / 1 sr 

 

Luminous intensity is measured in cd or lm / sr 

 

A full sphere has a solid angle of 4π steradians, therefore a 1 candela light source emits a 

total luminous flux of 4π lumens. 

 

The candela is the luminous intensity, in a given direction, of a source that emits 

monochromatic radiation at a frequency 540 × 10
12

 hertz and that has a radiant intensity in 

that direction of 
1
⁄683 watt per steradian. 

 

Irradiance (normally referred to as intensity) is measured in W/m
2
. 

 

Therefore it is impossible to make an accurate conversion between Lux and Irradiance 

unless you know the full spectral composition on the light.  
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The theoretical maximum is 683 lux = 1 W/m
2
 however this also needs to be adjusted by 

applying a specific coefficient for each particular light source. A halogen lamp used in the 

experiments may have a luminous efficacy of radiation of 15% meaning 0.15 x 683 lux = 1 

W/m
2
. 

 

This would mean 1 Lux = 1/102.45 W/m
2
 

 

Because different wavelengths produce different amounts of energy; there is no single or 

exact conversion between W and µE/s without knowing the full spectral composition of the 

light. For typical sunlight, a conversion factor is 1W = 5µE/s which will be used as a guide 

throughout this thesis in order to keep all light units in W/m
2
. 

 

Wahal & Viamajala (2010) looked into maximizing algal growth in batch reactors using 

sequential change in light intensity. They state that algal growth requires optimal irradiance, 

in photo-bioreactors, optimal light requirements change during the growth cycle. At low 

culture densities, a high incident light intensity can cause photo-inhibition, and in dense 

algal cultures, light penetration may be limited. Growth rates and biomass concentrations 

of cultures exposed to constant light were measured and compared with the growth kinetic 

parameters of cultures grown using sequentially increasing light intensities based on 

increasing culture densities during batch growth. Changes to higher light levels were made 

when growth was observed to stop at the lower intensity. At each illumination level, growth 

stopped after a certain biomass concentration was achieved. Increase in light intensity led 

to a resumption of growth but the cultures reached stationary phase again. This 

phenomenon is likely due to inadequate availability of light to sustain growth at higher cell 

concentrations. 

 

For this study, they used a lipid-producing micro algal strain, Neochloris oleoabundans, 

grown in batch photo-bioreactors. They used artificial media that was not nutrient limited 

and maintained a constant 20°C for all experiments. The bioreactors were mixed using a 

combination of built in paddles and the bubbling of an air / CO2 mixture through each 
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reactor. After the start of the experiments, gas flow rates were manually adjusted using in-

line valves to maintain pH7. 

 

For initial experiments, N. oleoabundans cultures were grown at six different levels of 

irradiance, 70.8 (14.2), 91.2 (18.2), 130.4 (26), 177.8 (35.6), 220.0 (44), and 273.1 (54.6) 

μmol/m
2
/s (W/m

2
) to determine the effect of different light intensities on algal biomass 

accumulation under constant illumination. Thereafter, effects of sequential increase in 

incident light intensities on growth were studied using the three light levels specified below. 

The irradiance was provided by fluorescent light tubes placed around the bioreactors, and 

different light levels were attained by changing the distance between fluorescent tubes and 

the bioreactors along with the number of tubes switched on. The illumination was provided 

by a bank of 12 (six on each side of bioreactor) Ecolux Sunshine 40W fluorescent tubes. The 

average light intensities with four, eight, or 12 fluorescent tubes switched on were 

calculated to be 91.2, 177.8, and 273.1μmol/m
2
/s, respectively. Throughout the 

experiments, the cultures were exposed to a light–dark cycle of 12h that was maintained 

using a timer connected to the light circuit.  

 

Their results show that reactors operated under conditions of sequential increase in 

irradiance levels yield up to a 2-fold higher biomass concentration when compared with 

reactors grown under constant light without negatively impacting growth rates. In addition, 

this tailored light supply results in less overall photon use per unit mass of generated cells. 

At fixed light intensities, around 34W/m
2
 was found to be the optimum. A maximum growth 

rate for all experiments was found to be 55mg/L/d, this is within the normal range of other 

literature data. 

 

Wahal & Viamajala (2010) is a very well presented paper and very detailed experiment. The 

results are good and provide useful data for my project. Ultimately, when growing algae on 

a large scale, the use of artificial light is not going to be an option, the algae will be subject 

to what is naturally available. The results here may be useful if agitation could be adapted 

to control how long algae spend in lighted zone. 
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Babu et al. (2010) looked at nitrification rates of algal–bacterial biofilms in WSPs under light 

and dark conditions. They used synthetic wastewater under 3 light intensities; the light 

condition was at 17-19W/m
2
. The results were not conclusive and I feel the experiment 

could have been better designed. 

 

Bartosh & Banks (2007) provide an excellent report detailing their experiments into algal 

growth response and survival in a range of light and temperature conditions. They used 

Scenedesmus subspicatus and Chlorella vulgaris as representative species typically found in 

waste stabilisation ponds. Their experiments were designed to test the ability of the 

organisms to survive and grow under a range of different temperatures and light intensities 

that might occur in mid to high latitude regions. 

 

They state that in temperate and continental regions of both the northern and southern 

hemisphere, WSPs are subject to seasonal variations in light and temperature: in extreme 

cases this may include ice cover for extended periods in winter. At higher latitudes reduced 

light intensity and changes in day length may also have a significant effect on pond 

performance. The current study examined the effect of these parameters on two algal 

species commonly encountered in WSPs, with a view to determining their influence on 

winter survival and spring recovery. 

 

They used artificial non nutrient-limited medium however no details of pH, CO2 addition or 

agitation method were given. The growth was assessed using optical density and 

photosynthetic rate for a combination of temperatures of 5, 10, 15 and 20°C at light 

intensities of 7.8 (1.6), 15.7 (3.1), 31.3 (6.3), 47 (9.4), 62.7 (12.54) and 78.3 (15.7) µmol/m
2
/s 

(W/m
2
).  

 

C. vulgaris had a higher rate of growth and photosynthetic activity than S. subspicatus at 

low temperatures but had reached its maximum growth rate at 15°C. S. subspicatus showed 

a higher growth rate than C. vulgaris at higher temperatures, and did not achieve its 
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maximum growth rate over the range of temperatures studied. For both species light was 

not limiting to growth above 47µmol/m
2
/s. The photosynthetic rate at least doubled when 

the temperature was raised from 10-15°C. The photosynthetic rate fell for both species 

when raised to 20°C. 

 

Survival of the two species under dark conditions was tested at 4°C and -20°C using direct 

plating and growth tests. C. vulgaris was able to survive at 4°C for a much longer period 

than S. subspicatus and a portion of the population was able survive -20°C. The different 

responses of the two species to dark and cold conditions are indicative of the range that 

may occur across a wider population, and show why in practice some species may appear 

earlier and compete more effectively in early spring but then lose advantage as the 

temperature and light intensity increases into the summer. 

 

Curtis et al. (1994) prepared a paper looking at light penetration in waste stabilization 

ponds. They state the penetration of light into WSPs was studied because of its importance 

in pathogen removal and algal productivity. The attenuation of light in ponds was 

dominated by light absorption by humic substances and algae. Longer wavelengths 

penetrate much better than short wavelengths. Differences in algal concentrations cause 

the differences in light attenuation seen between ponds, though they also cause some 

spectral variation because short wavelengths are more affected by changes in algal biomass 

than long ones. Measurements were taken on experimental wastewater treatment ponds 

of various sizes and HRTs, detailed in the paper. All measurements were taken in full 

sunlight. 

 

Rodolfi et al. (2008) carried out a side experiment from the main one carried out (see algal 

bioreactors section), this focused on measuring the effects of light intensity. When 

Nannochloropsis sp. F&M-M24 was grown with one-side illumination, an increase of 

irradiance from 115 to 230µmol photons/m
2
/s brought biomass productivity from 610-

850mg/L/day and FA from 14.7% to 19.6%. With two-side illumination, productivity and FA 

increased from 970-1450mg/L/day and 24.3-32.5% when the irradiance was increased from 
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115-230µmol photons/m
2
/s. It is worth noting that with two-side illumination at an 

irradiance of 115µmol photons/m
2
/s, both the culture productivity and the FA were higher 

than with one-side illumination at an irradiance of 230µmol photons/m
2
/s, despite the fact 

that the same amount of photons impinged on the culture in the two different conditions. 

This is due to halving the required light penetration depth and producing a more evenly 

lighted zone. 

 

3.3.8. Temperature 

Cho et al. (2007) studied the effect of temperature and salinity conditions for growth of 

green algae Chlorella ellipsoidea and Nannochloris oculata. Four temperatures (15, 20, 25, 

and 30°C) & three salinity (10, 20, and 30) conditions were tested in triplicates. Specific 

growth rate (SGR), maximum density, and duration to reach maximum density were 

measured. 

 

The cultures were grown in 250ml flasks containing artificial medium. The intensity of 

illumination as maintained at 31µmol photons/m
2
/s, 24h/d. The flasks were hand agitated 

twice a day. No pH conditions were given. 

 

They state that the SGR in C. ellipsoidea were fairly similar, but the highest maximum 

density was achieved in C. ellipsoidea at 15°C and 10. The maximum density of N. oculata 

was significantly affected by temperature, but not salinity. The highest maximum density 

was achieved in N. oculata at 25°C and 30, but SGR was significantly lower than that of N. 

oculata at 25°C and 10. Based on these results, the condition of 15°C and salinity 10 seemed 

to be optimal for maximum density of C. ellipsoidea, and the condition of 25°C and 10 and 

30 for SGR and maximum density for N. oculata, respectively. 

 

This experiment shows us that each species varies greatly in growth rate and optimum 

temperature, here N. oculata, preferred warmer temperatures 25°C and 30°C and have a 

higher growth rate than C. ellipsoidea that preferred 15°C. It shows us that using cell count 
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to measure growth rate is acceptable for comparison within that specific experiment but is 

totally useless when comparing species or against anyone else’s work. This is because cell 

size of each species varies and would produce misleading results in terms of growth rate. It 

shows us that the salinity results are inconclusive, probably because species are either 

adapted for sea water, fresh water or estuarine conditions. Salinity experiments should 

probably only be carried out as a final experimental stage to find the optimum condition 

when all other parameters have been confirmed and are kept constant. There were too 

many plots on each graph to make any sense of them. The growth rate results follow the 

standard curve found in other literature, it is a shame they cannot be used to compare 

against other experiments at those temperature and light conditions. 

 

Butterwick et al. (2005) studied the diversity in the influence of temperature on the growth 

rates of freshwater algae. They state that most planktonic algae will grow, albeit slowly in 

some cases, at temperatures between 10 and 20°C. It is in this range, and at higher 

temperatures, that most systematic measurements of algal growth rates in relation to 

temperature have been made. However, there are actually few supporting experimental 

studies in which the comparative performance of representative species has been followed 

at small intervals over a wide range of temperature. 

 

In this study seven species of common planktonic freshwater algae, from a number of major 

groups, have been grown in culture over a range of temperature between 2-35°C and their 

growth rates determined. 13 additional species were used to test growth and viability in the 

higher temperature range, 20–35°C. There were considerable differences between species 

for growth at low and high temperature. 

 

Unfortunately they measure growth rate in divisions/day so cannot compare cross specie 

but do produce good results with regard to the effect of temperature range. 

 

All the tests were carried out in 125mL glass-stoppered bottles using unspecified medium. 

They were all lit by a bank of ‘daylight’ fluorescent lamps at 20 ± 4W/m
2
. They state that 
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this level lies on or near the light-saturation region of growth for many algal species, but 

may be supra-optimal for some at low temperature. Details about pH and agitation method 

are not specified. 

 

The results show a trend that nearly all species increase in productivity up until their 

optimal temperature value and then sharply deteriorate at a critical temperature. 

 

Differences between species appear mainly in the temperature range 25–35°C. All 21 

species tested showed active growth at 25°C. At 27°C A. formosa died and C. furcoides did 

not grow. At 30°C the diatoms, flagellates and the xanthophyte Tribonema died, except for 

the diatom Fragilaria crotonensis which grew vigorously. Growth was obtained at this 

temperature with all five green algae (chlorophytes), although that of the cyanophytes, 

Planktonema bourrellyi and P. mougeotii was not sustained. Only Aphanizomenon flos-

aquae survived with moderate growth at 35°C, a lethal temperature for the other species.  

 

They produce an informative chart showing all the species plotted against temperature. 

They show either sustained growth, non-sustained growth or lack of growth represented by 

three different symbols. This has little use, if they had instead used a single black circle for 

each bit of data, varied the diameter of the circle to represent growth rate, they could have 

plotted all of their results on a very useful and easy to read chart. 

 

Unfortunately the growth rates cannot be compared across species; if this was possible we 

could use this data to draw conclusions as to whether the highest growth rates occur in 

species that prefer warmer temperatures. This would be useful in system design. If we 

found a high growth rate specie at a temperature of 30-35°C, a system could be controlled 

at this temperature using waste heat. Not only would growth rate be high, the risk of 

contamination from competing species would be low due to the number of species that can 

survive at this temperature. 
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Vona et al. (2004) looked at temperature responses of growth in cryophilic and mesophilic 

algae. They used Koliella antarctica and Chlorella saccharophila that they kept routinely 

maintained at 6°C in 250ml Erlenmeyer flasks containing 100ml artificial nutrient medium 

under continuous illumination (24W/m
2
). The atmosphere of the incubator was enriched 

with 5% CO2 in air. Chlorella sorokiniana was grown in batch culture at 35°C under 

continuous illumination (50W/m
2
) and flushed with air containing 5% CO2. Cool-white 

fluorescent lamps (Philips TLD 30W/55) provided the illumination. The flasks were stirred 

magnetically. No pH is specified. 

 

Growth of K. Antarctica and C. saccharophila was tested at 5, 10 and 15°C; growth of C. 

sorokiniana was tested at 20, 25, 30 and 35°C. Water-jacketed culture vessels (250ml) were 

used to maintain the temperatures. Growth rate was measured as increase in optical 

density, I looked into this possibility as a quick and easy way to measure growth rate but it 

cannot be compared against any other experiments, only being used to measure change. 

 

The paper essentially showed that the two cryophilic algae that grow in extremely cold 

conditions showed their best growth around 10°C and the mesophilic algae, Chlorella 

sorokiniana would not grow below 20°C but growth rate peaked at 35°C. 

 

This adds to the bank of evidence that 35°C appears to be an upper limit in which algae can 

grow and that each specific specie has certain temperature limitations based on their 

natural environment. 

 

Bouterfas et al. (2002) studied the effects of light and temperature on the growth of three 

freshwater green algae isolated from an eutrophic lake. They were identified as 

Selenastrum minutum, Coelastrum microporum, F. astroidea and Cosmarium 

subprotumidum.  
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Experiments were performed to determine the growth rate over a wide range of light 

intensities (6–91W/m
2
) and temperatures (15, 20, 25, 30 and 35°C), using a 15:9 L:D 

photoperiod cycle. 400W Phyto-Claude halogen lamps were used for illumination. 

 

They were studied in batch cultures under non-nutrient limited conditions using artificial 

medium. Air was bubbled through the bioreactor using compressed and filtered air, pH data 

is not given.  

 

Due to using a growth rate measurement of divisions/day they cannot cross compare 

species, fortunately they show their graphs for each specie separately. The data produced is 

very good, it is just poorly presented. If I had access to the raw data I would reproduce the 

graphs in a different form. The graphs plot the growth rate vs. light intensity, providing a 

separate graph for each temperature. It would have been good to see an additional graph 

showing all the temperatures together to make a direct comparison. The data provides solid 

evidence for the change in performance under different light and temperature conditions. 

 

As the temperature increases, the performance at higher light intensities increases (At 15°C 

Selenastrum minutum peaks at 26W/m
2
 however at 35°C it peaks at 84W/m

2
). Light 

intensity which is too strong for the corresponding temperature is inhibitory. In general 

there is a sharp rise in performance with increase in light intensity from 0-40W/m
2
. 

Between 40-100W/m
2
 there is only small gain in performance, if any. The performance 

more than doubles for all species with an increase from 15-30°C. Performance increases 

with every increase in temperature, however the improvement between 30-35°C is small. 

 

The maximum growth rates occur at 35°C (marginally higher than 30°C), the corresponding 

optimum light intensities are 420 for Selenastrum minutum, 400 for Coelastrum 

microporum and 400 for Cosmarium subprotumidum.  

 

The key points from this paper that correspond with other literature are: Growth is 

significantly enhanced at higher temperature, however anything above 30°C tends not to 
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provide any benefit. Too high a light intensity is inhibitory, this is temperature dependent 

however values above 200 generally do not provide a significant gains in performance. 

Getting the optimum temperature and light intensity for the specie is important as they 

have shown it has a large effect on growth rate. 

 

Sterner & Grover. (1998) studied algal growth in warm temperate reservoirs, examining N 

concentrations and temperature. 

 

Essentially, they collected samples from two lakes during various times of the year, with 

varying light intensities and temperature. They varied the samples nutrient concentration 

by dilution. They tested each case for growth rates to produce a 3D plot of growth rate vs. 

temperature vs. nutrient concentration. The graph is excellent and shows consistent 

responses to both nutrient concentration and temperature in different ways. 

 

In general they state that algal growth was frequently and strongly nutrient limited, 

particularly when temperature was >22°C. By itself, N was more often stimulatory than P, 

though strong additional enhancement of growth by P and trace nutrients was often 

detected. Maximal growth was an increasing function of temperature. 

 

They show that the dissolved inorganic N is limited below values of 0.25mg/L for all 

temperature values however, as temperature increased and the corresponding growth rate 

increased the nutrient demand was higher. On nutrient limited samples, temperature had 

no effect on growth rate. When nutrients were non-limited above 0.25mg/L and 

temperature kept constant, there was no increase in growth rate. Between 5-30°C, there 

was an almost linear increase in growth rate for samples where the nutrient concentration 

was non-limited. Dissolved inorganic N was only tested up to values of 2mg/L which is low 

compared to wastewater; there is no evidence here that higher nutrient concentrations are 

inhibitory. Further test would have to be carried out up to values of 100mg/L to determine 

if certain species are inhibited by high nutrient concentrations.  
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They attempt to produce a model for these values but state that even with unusually 

detailed, site-specific fitting of model parameters, accurately modelling algal growth in 

natural ecosystems can remain a challenge. 

 

Wilde et al. (1991) looked at the cultivation of algae and nutrient removal in a waste heat 

utilization process. They focus on the design and economics and do not carry out any 

experiments themselves to provide data. Therefore this is not useful to my project. 

 

Goldman & Carpenter (1974) aimed to produce a model of the effect of temperature on 

algal growth using collected data. They plot growth rate vs. temperature for all data points 

and use this to show the maximum growth rate as a function of temperature. The problem 

is that they are using growth rates measured in divisions per day and comparing them cross-

species which I have shown to be problematic. This problem could have been avoided if 

they had plotted a curve for the mean growth rate at each temperature rather than using 

the maximum, the result I feel would have been fairly similar, just with a shallower gradient. 

The sheer number of data points means this is a useful resource.  

 

The number of data points above 30°C is small compared to that below however it is fair to 

say that on average, the growth rates are slightly higher in the 30-35°C temperature range. 

They show the growth rate increase to be fairly linear as temperature increases. Compared 

to 5°C, 15°C is 2x as productive and 30°C is 4x as productive. This is an important finding as 

it is averaged over so many data points. Compared to Sterner & Grover (1998) who show 

30°C as being 3.5x as productive as 5°C, it is fairly consistent. Bouterfas et al. (2002) did not 

measure temperatures below 15°C however they show that performance at 30°C is at least 

2x greater than 15°C which matched the other findings. Vona et al. (2004) show 

performance to be 4.25x better at 30°C than at 5°C. Butterwick et al. (2005) show the peak 

performance to be 4-5x greater than at 5°C. 
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3.3.9. Agitation method 

Continuous or timed agitation of the bioreactor is required to keep algae in suspension and 

maintain levels of dissolved gases and mix nutrients. There are limitations to the speed of 

agitation due to both the high power consumption and the damage to organisms. 

Turbulence is an important factor for the growth of microscopic algae. A number of 

techniques can be used to promote mixing in the tanks: the use of surface wind, paddle 

mixing and also air-lift pumps. 

 

Agitation is one of the major external parameters which regulate algal growth. The 

advantages of keeping the algal suspension in movement are numerous. The continuous 

mixing prevents sedimentation of the algal biomass and keeps the nutrients in active 

contact with the algal cell surface, stimulating nutrient uptake. It will also prevent thermal 

stratification and avoid photo-inhibition. In tall vertical transparent plastic tubes, good 

mixing can be obtained by bubbling CO2 from the bottom. In flat tanks, paddle wheels or jet 

pumps are used to circulate the whole body of water. A study by Persoone showed that in 

shallow tanks simple air-lift pumps are very efficient in keeping algal suspension in 

continuous movement. It was found that agitation significantly improves growth rates 

(about 30% increase) when compared to a non-agitated control. The CO2 in the air being 

pumped through stabilizes the pH which otherwise is increased by the consumption and net 

reduction of CO2. Pumping CO2 through the tank not only provides agitation but also 

increases the amount of CO2 available for photosynthesis.  

 

Any energy expenditure for mixing is going to make up a substantial percentage of the 

running costs; these need to be assessed for economic viability. 

 

Algae can be grown in a photo-bioreactor, essentially a bioreactor with a light source. As 

algae grow and multiply, they become so dense that light cannot penetrate very far into the 

reactor. Algae only need about 1/10
th

 of the light they receive from direct sunlight. A mixing 

device can be used to move the algal cells about, ensuring they all get time in the lighted 

zone. 
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3.3.10. Algal growth rate 

The work I carried out looks at algal growth rates in mg/L/day to give an indication to the 

quantity of biomass that could be produced when scaling up the project. The literature 

varies in the way it specifies growth rate. The good papers tend to state their growth rates 

in mg/L/day or similar units which can easily be converted. This gives a quantitative 

approach for cross-experimental comparison. Many papers in the literature state growth 

rate as cell divisions per day, this trends towards papers that are not so well written or 

thought out. This may be done for a number of reasons:  

 

• The author(s) have not given any thought to the analytical comparison of data 

• The author(s) have chosen not to provide absolute data due to the invasive 

nature of the experimental technique 

• The author(s) have chosen not to provide absolute data due to the effort 

involved in collecting the data in this form 

 

The collection of absolute growth rate data is a difficult task to undertake, requiring more 

effort and more disruption to the experiment than other methods such as optical 

measurement. It requires taking regular samples, the larger the sample, the more accurate 

the results that can be achieved. The samples cannot be replaced and any biomass removed 

in this manner is lost. This has a direct effect on the state of the experiment. This problem 

can be overcome somewhat by accounting for loses however it is still an invasive process 

 

Accurate results tend to be difficult to achieve because of the difficulties involved in 

collecting a uniform, representative sample. Non-invasive measurement processes are 

difficult to verify because they are not a physical representation of mass. 

 

Division rate measurements tend to be more accurate and less invasive than absolute mass 

measurements therefore using cell division rates is a great technique for comparing results 
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from the same experiment with the same specie whilst repeating the experiment for 

different environmental parameters. As soon as you want to compare the division rate data 

with any experiment using a different species, the data becomes useless. The cell size for 

each algal species varies; therefore division rate is meaningless in terms of mass gain (the 

most important factor for both performance and comparison). 

 

Findings show that in general cell division rate decreases as cell size increases. This 

correlates with well known scientific theory that larger cells reproduce slower. Larger cells 

may divide more slowly but each division is a greater mass increase than it is for smaller 

cells. It cannot be claimed that a fast division rate represents a high growth rate. Therefore 

it may be concluded that the fundamental trend in growth rates can be measured as dry 

matter rather than division rate which must be adjusted for cell size. Many papers lack in 

reporting a growth rate however most, where appropriate will report a division rate. 

 

Nielsen (2006) carried out an experiment to investigate the relationship of cell size and 

division rate differences between green algae and cyanobacteria of both unicellular and 

colony-forming variants. The algae were grown in round-bottomed flasks containing 

artificial media that was frequently replenished to ensure nutrients were not exhausted. 

They were lit by 40W/m
2
 continuous light (fluorescent tubes, Philips TLD Aquarelle and 

Philips TLD 90 Warm White) and kept in 17°C. The algae were kept in suspension by 

bubbling with atmospheric air that had been passed through 0.3mm glass microfiber filters 

(Whatman Hepa-Vent). 19 species of green algae (Chlorophyta) and 9 species of 

cyanobacteria were grown. They comprised unicellular as well as colony-forming species. 

The maximum division rate was recorded for each species under exponential growth. 

 

Nielsen found that Eukaryotic green algae and prokaryotic cyanobacteria apparently follow 

the same algometric relationship between size and maximum growth rate. Both unicellular 

green algae and cyanobacteria showed significant relationships between cell size and 

maximum growth rate, growth rate decreased as cell size increased. The relationship 

between cell size and maximum growth rate was weaker for unicellular cyanobacteria than 
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for unicellular green algae, due to the wider range of growth rates reported as maximum 

growth rates for picoplanktonic cyanobacteria. When only colony-forming forms were 

considered, no relationships between colony size and maximum growth rate for either 

green algae or cyanobacteria were found. A range of 0.1-4 div/day was found. 

 

Tang (1995) also carried out research, to measure cell division rates. These growth rate 

results were compiled and adjusted to a temperature of 20°C for direct comparison. Results 

were only taken where the light was 40W/m
2
 or greater. The algae species considered were 

(Chlorophyta, Chrysophyta, Pyrrophyta) comprising five classes (Bacillariophyceae, 

Chlorophyceae, Chrysophyceae, Dinophyceae and Prymnesiophyceae). 

 

Tang found that algae demonstrate a relationship between both cell carbon content with 

growth rate and cell volume with growth rate. As cell volume and carbon content increase, 

division rate decreases. The change was much greater for carbon content than volume due 

to carbon being an important growth controlling factor. A range of 0.19-3.95 div/day was 

found, i.e. similar to Nielsen. 

 

3.3.11. Metals and algae 

Azeeza and Banerjeea (1986) studied the effect of copper and cadmium on carbon 

assimilation and uptake of metals by algae. They used two species of blue-green algae, 

Spirulina platensis, a filamentous form and Anacystis nidulans, a unicellular form grown in 

artificial aqueous media which was treated with Cu and Cd in varying concentrations. They 

studied the uptake of the metals, carbon assimilation and Chl A content. 

 

They state that Cu and Cd inhibit many biochemical activities like photosynthesis, N fixation, 

nutrient uptake etc. Cd exposure commonly causes a decrease in Chl A content and 

photosynthesis for many algal species. Their experiments showed that the addition of high 

concentrations of Cu and Cd, 0.1-10ppm were inhibitory for the production of Chl A and 
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subsequent assimilation of carbon. On average, a small addition of 0.01ppm of Cu and Cd 

was beneficial for metabolism. 

 

Vymazal (1984) carried out a study of the uptake rates of heavy metals by algae from 

enriched natural waters in a continuous flow system. Two types of algae were used, 

naturally growing periphyton community and periphytic filamentous green algae 

Cladophora glomerata and Oedogonium rivulare. Uptakes of nine heavy metals - Pb, Cd, Cu, 

Co, Cr, Ni, Zn, Fe and Mn were tested during batch experiments of four hours exposure. 

During these experiments, a light intensity of 48W/m
2
 was used (measured on water 

surface). Two types of bioreactor were used, in the first, agitation of water was from a 

pump motor, the second was slightly bubbled with air. Water in the model was 

continuously enriched with N & P compounds to speed up the periphyton growth. It was 

reported that choosing the level of metal concentration to use is difficult due to large 

variations in toxicity of different metals to different strains of algae. After a period of 

control, the water in the model was spiked with a mixture of the nine heavy metals. The 

metals were introduced as inorganic salts. 

 

Uptake mechanisms of each metal varied slightly between the different types of algae, all 

metals increased during four hours exposure but not in the same way. Some metals were 

removed continuously (Ni, Cr, Fe and Mn), other metals were removed more rapidly during 

the first hour or first two hours of exposure and then only slight removal continued (Cu, Pb, 

Cd, Co). Uptake of Zn was rather unambiguous. Results of these experiments suggest that 

the course of uptake for individual metals could be similar for most periphyton algae. 

 

According to the results metal uptake courses can be divided approximately into three 

groups:  1. rapid uptake during the first hour of exposure and then only slight uptake 

appears, 2. rapid uptake during first two hours of exposure appears and then only slight 

uptake takes place and 3. continuous uptake appears during the entire four hour exposure. 
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Iron removal was very rapid during the entire four hour exposure with periphyton as well as 

with both filamentous algae. In absolute values, up to 94.5% of iron was removed after the 

four hour exposure. Zinc was removed to a high extent, up to 97.6% but the courses of 

uptake were quite heterogeneous. Zinc uptake courses were found to be a combination of 

all types mentioned above. Uptake of nickel increased slightly during the exposure. The 

uptake courses were very similar for periphyton community as well as for both filamentous 

green algae. Nickel and chromium were removed to the lowest extent. 

 

This paper is very useful and provides a good basis for comparison with my experiments. 

 

Boullemant et al. (2009) studied the uptake rate of Cd complexes by three freshwater algae, 

Chlamydomonas reinhardtii, Chlorella fusca, and Pseudokirchneriella subcapitata at two pH 

values (7.0 and 5.5). Uptake of the Cd complexes over time was characterized by high initial 

uptake rates but tending toward a plateau after about 30 min. When the pH was dropped 

from 7 – 5.5, the initial uptake rate decreased by 2-60x depending on the algal strain and Cd 

ion. The experiments were run at ambient laboratory temperature of 21°C. 

 

The findings in this paper correlate well with (Vymazal, 1984) and my results, showing 

initially fast uptake rates of metals followed by a plateau. The papers do not specify a 

reason for the plateau; my main theory is the bio-unavailability of specific ions of each 

metal that may be present in solution. 

 

Yu et al. (1999) report that Biosorption of heavy metals is an effective technology for the 

treatment of industrial wastewaters. The uptake capacities of the biomass of a group of 

nine marine macro algae for heavy metal ions (cadmium, copper and lead) were evaluated. 

Equilibrium isotherms for each biomass heavy metal system were obtained from batch 

adsorption experiments. The maximum uptake capacities of the biomass ranged from 

around 0.8 to 1.6 mmol/g (dry), which were much higher than those of other types of 

biomass. The results indicated that the biomass of the marine algae is suitable for the 
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development of efficient biosorbents for the removal and recovery of heavy metals from 

wastewater. 

 

This experiment used harvested marine algae that had been pre-dried and ground. The 

biomass was mixed with the heavy metal solution at 21°C for 24hrs. The uptake rates in this 

experiment were not a factor of biomass metabolism; this shows that macro (and micro) 

algae cell structure / permeability are highly suitable for heavy metal removal mechanisms. 

 

In general, the heavy metal uptake capacities varied significantly for different types of 

biomass studied. For divalent heavy metal ions, the reported values for bacterium biomass 

typically ranged from 0.05 to 0.2 mmol/g; for fungi and yeast, 0.2 to 0.5 mmol/g; for fresh 

water algae, 0.5 to 1.0 mmol/g and for marine algae, 1.0 to 1.5 mmol/g. Among these 

values, the capacities of the biomass of a few species of marine macro algae, commonly 

known as brown algae, were much higher than those of other types of biomass. The results 

show the metal removal properties for each of the 9 algal strains are very similar, lead is 

most effectively removed, then copper, then cadmium. 

 

The literature shows that algae have the capacity to remove commonly found metal ions 

from aqueous solution. Various uptake mechanism exist however it appears common for a 

fast uptake rate followed by a plateau. Higher concentrations of certain metals have been 

shown to be toxic to algae as would be expected. Yu shows algal cells to be the most 

biosorbent biomass material; this may be contributing to the fast uptake rates in live 

experiments and may be responsible for causing a plateau in uptake rates when the 

material becomes saturated. Overall it shows the potential for algae to be used as a method 

of heavy metal removal, a useful attribute to have for wastewater treatment. 
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3.4. Benefits of algae 

3.4.1. Algal biofuel 

The subject of algal biofuel is fast moving with the regular production of articles and papers 

from a number of different authors stating similar things. 

 

The following is an overview of the common findings:  

 

The plant-like organisms employ photosynthesis to convert sunlight and CO2 into energy so 

efficiently that they can double their weight several times a day and have the potential to 

produce significantly more oil per acre than crops like corn or soybeans. Algae oil content 

can vary from 4 to 50 percent by weight, depending on the species and growing conditions. 

Algae thrive on a diet of wastewater and carbon dioxide, a greenhouse gas. Wastewater is 

attractive because it has the nutrients algae need to eat, especially phosphates and nitrates, 

but wastewater alone does not provide a balanced diet. Most wastewater has too much N 

and P and not enough carbon. The algae cannot assimilate all the N and P, CO2 must be 

added. CO2 is created at many wastewater treatment plants when sludge is incinerated or 

processed in an anaerobic digester to produce biogas Greer (2009). 

 

Algae grow much faster and produce more oil than terrestrial plants (some as high as 50 

percent); they accumulate large amounts of oil when they experience environmental stress, 

Pienkos et al. (2010).  

 

Algae use their oil the same way animals use body fat, as a source of energy when times are 

lean. For animals, lean times come between feedings; for algae, this happens every night, 

when there is not any light to power photosynthesis. Oil production also helps algae 

overcome the stress of growing in full sunlight, which can be hard on these cells, particularly 

when they are starved of one or more nutrients. Such deprived algae tend to generate 

highly reactive chemicals called free radicals, which can cause molecular havoc within. The 

conversion of CO2 to oil prevents the build up of free radicals, helping the cells avoid 

internal damage. 



144 

 

 

A hectare of soybeans, for example, typically produces only about 500L of oil each year, 

whereas a hectare of algae growing in a shallow pond can easily generate 9000L of oil, 

perhaps as much as 47 000L annually. That makes algae many times as productive as oil 

palms, the most oil-rich source of biodiesel now in use. For making the most oil in the least 

amount of space, algae win hands down, Pienkos et al. (2010). 

 

Some companies have shown they can produce oil at a rate of 1500 gal/ac/yr, and aim to 

produce 4000-5000 gal/ac/yr in the near future. Some are reporting that they can produce 

up to 6000gal/ac/yr from algae, even though they are not yet operating on a large scale. In 

comparison, palm, canola and soy yields 650, 150 and 50gal/ac/yr respectively, Mascarelli 

(2009). 

 

Growing the alga Chlorella vulgaris in a raceway – a shallow outdoor pond – can give 

between 10-50t/ha/year of algae, with an oil content of about 25% dry weight. It is 

estimated that 10% of the UK’s surface area would be required by algae production if this 

method of producing biofuel was used to fuel all our transport, Houlton (2009). 

 

The yield of oil from algae is over 200 times the yield from the best performing 

plant/vegetable oils. The author states that high oil species of microalgae cultured in growth 

optimized conditions of PBRs have the potential to yield 19,000–57,000L of micro-algal oil 

per acre per year. He goes on to say that oil supply is based on the theoretical claims that 

47,000–308,000 L/hectare/ year of oil could be produced using algae. Firstly, these figures 

do not match up, secondly, he then later states that the per unit area yield of oil from algae 

is estimated to be from between 20,000 to 80,000L per acre, per year. This third figure does 

not match either of the first two. Three different statements of oil yield have been made, 

leaving doubt to the validity of the paper! To date, none of the projected algae and oil yields 

has been achieved. Producing 100 tons of algal biomass fixes roughly 183 tons of CO2. The 

calculated cost per barrel would be only $20. Currently, a barrel of oil in the U.S. Market is 

selling for over $100 per barrel, Demirbas (2010). 
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Pienkos et al. (2010) wrote that one man’s pond scum is another man’s gold. This attitude 

has lead to a hundred or so start-ups in the algal biofuel field. He states that large tracks of 

desert might be the ideal place to grow algae as long as enough water and the proper 

nutrients can be secured. 

 

There are about 30000 known species to consider but with new technologies we can now 

grow thousands of cultures simultaneously at the micro-litre scale using advanced liquid-

handling devices and robotics. Instruments can isolate single oil-filled cells from their 

cultures based on how the cells fluoresce. With our improved understanding of flow 

dynamics, we can engineer ponds and bioreactors that require the least amount of energy 

to mix. And new polymers that are both stronger and cheaper can withstand months of 

punishing sunlight, enabling more affordable photo-bioreactors. 

 

Mascarelli (2009) state that several companies now say that they are close to overcoming 

the technical hurdles to making algae-derived biofuels competitive on a commercial scale. 

 

Companies can choose from a diverse range of growing techniques, from inexpensive open 

ponds to carefully controlled enclosed tanks, to coax algae into secreting the desired 

product, which might be ethanol, biodiesel, or pump-ready gasoline. The algae can be 

indigenous strains or genetically engineered organisms. 

 

Solazyme, Inc., founded in 2003 and one of the first algae companies to emerge, says that 

his company has used algae to produce more than 10000gal of oil at a quality that meets 

existing fuel standards. 

 

One issue is that algae cultures grown in an open pond can easily be contaminated and 

overtaken by invasive species. NREL researchers also ran into difficulties with contamination 

by non-native algae species and with the replication of laboratory conditions in the field. So, 
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some companies have opted to grow their algae in enclosed containers that allow them to 

precisely control the light, CO2, and water conditions needed by various strains of algae. 

 

Closed systems have shown over time that they have significant yield benefits and merits 

over open ponds, others maintain that enclosed growth systems, commonly called “photo-

bioreactors”, are far too costly to make algae competitive with fossil fuels. 

 

Greer (2009) write that Sunrise Ridge is among a number of start-ups and universities 

designing systems to grow algae in wastewater from municipal and industrial treatment 

facilities. 

 

Sunrise Ridge takes CO2 from the plant's flue stacks and bubbles it through the plastic 

greenhouses. The enclosed greenhouses maintain desired CO2 concentrations by preventing 

the gas from bubbling out into the atmosphere. In initial testing, algae reduced nitrate 

levels in the wastewater to as low as two part per million. N removal is a primary focus of 

the research, since local treatment facilities must reduce N in treated effluent flowing into 

the Chesapeake Bay (as reported by Takacs, 2006). 

 

Current biological N removal techniques using bacteria are very expensive. It costs three to 

four times more to remove N than our projected costs for algae systems. Cost calculations 

for an algae system at a combined industrial and municipal wastewater plant in Hopewell, 

Virginia, which included the land, algae ponds and harvesting and biodiesel conversion 

technologies, were about $25 million. Costs for a conventional biological N removal system 

were quoted at $100 million. But despite lower costs, STWs are not sold on the technology; 

they are sceptical about algae because no one has done this on a large scale. 

 

This study looks at adding CO2 to high-rate algae ponds used at wastewater treatment 

facilities to achieve complete tertiary nutrient removal. The desired result is to eliminate 

the CO2 limitations of municipal wastewater. The high-rate ponds are shallower than 

conventional ponds and designed with continuous raceways. A paddlewheel mixes the 
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water, pushing it around the raceway; it is simulating a shallow river, an environment that 

favours rapid algal growth. Algae that work well under laboratory conditions do not always 

perform well after scale up. This is because the sunlight levels are higher and temperature, 

CO2 and nutrient levels vary more. 

 

Higher algae levels produce more oxygen, which promotes the growth of bacteria that 

decomposes organic wastes. The bacteria give off CO2 that is used by the algae. Producing 

oxygen at a faster rate means you can treat the water with a lower HRT. Aeration is an 

energy intensive process, accounting for 45 to 75% of a plant's total energy costs. Algae in 

conjunction with bacteria can reduce this cost.  

 

Pittman et al. (2011) looked at the potential of sustainable algal biofuel production using 

wastewater resources. 

 

It has been appreciated for some years now that microalgae can be potentially utilised for 

low-cost and environmentally friendly wastewater treatment compared to other more 

commonly used treatment processes. Although the application of microalgae in the 

wastewater industry is still fairly limited, algae are used throughout the world for 

wastewater treatment albeit on a relatively minor scale. Wastewaters derived from 

municipal, agricultural and industrial activities potentially provide cost-effective and 

sustainable means of algal growth for biofuels. 

 

The major problem with most wastewaters is the very high concentrations of nutrients, 

particularly total N and total P concentration as well as toxic metals, which require costly 

chemical-based treatments to remove them during wastewater treatment. Total N and P 

concentrations can be found at values of 10–100mg/L in municipal wastewater and 

>1000mg/L in agricultural effluent. 

 

The ability of microalgae to effectively grow in nutrient-rich environments and to efficiently 

accumulate nutrients and metals from the wastewater, make them an extremely attractive 
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means for sustainable and low cost wastewater treatment. Many species of microalgae are 

able to effectively grow in wastewater conditions through their ability to utilise abundant 

organic carbon and inorganic N and P in the wastewater. Microalgae are efficient in 

removing N, P and toxic metals from wastewater and therefore have potential to play an 

important remediation role particularly during the final (tertiary) treatment phase of 

wastewater. Algae-based treatments have been found to be as efficient at removing P from 

wastewater as compared to chemical treatment. 

 

Most of the research on algal wastewater treatment has come from the analysis of 

laboratory-based small scale and pilot pond scale cultures, and from experimental high-rate 

algal ponds. High-rate algal ponds which are shallow raceway-type oxidation ponds with 

mechanical mixing have been shown to be highly effective for wastewater treatment. 

 

Studies have analysed the growth of microalgae under a variety of wastewater conditions. 

These studies have principally been focussed on evaluating the potential of algae for 

removing N and P, and in some instances metals from wastewater. These initial 

experimental studies, particularly those that have also assessed variables for maximal algal 

biomass production and methods for harvesting algal biomass from wastewater, will be of 

significant benefit for the evaluation of wastewater-grown microalgae as a biofuel. 

 

The efficient growth of microalgae in wastewater depends on a number of variables. As 

with any growth medium, critical variables are the pH and temperature of the growth 

medium, the concentration of essential nutrients, including N, P and organic carbon (and 

the ratios of these constituents), and the availability of light, O2 and CO2. 

 

There may be some drawbacks in using artificial wastewater to assess conditions in real 

wastewater. Direct comparisons of artificial wastewater with municipal wastewater have 

found that although nutrient removal rates are equivalent, micro-algal growth rates are 

higher in artificial wastewater. This is likely due to increased toxicity of the real wastewaters, 

inhibitory or competitive effects of indigenous bacteria and protozoa, and by the different 
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chemical composition of the wastewaters. Only a handful of the literature data comes from 

experiments using real wastewater, all others are controlled artificially. 

 

The study produced a table of growth rate results from various sources. The majority range 

from 25-80mg/L/d, one experiment recorded 127mg/L/d and another recorded 346mg/L/d. 

These are all within the common range that I have found. 

 

Based on current technologies algal cultivation for biofuel production alone is unlikely to be 

economically viable or provide a positive energy return. Dual-use microalgae cultivation for 

wastewater treatment coupled with biofuel generation is therefore an attractive option in 

terms of reducing the energy cost, GHG emissions, and the nutrient (fertiliser) and 

freshwater resource costs of biofuel generation from microalgae. The high biomass 

productivity of wastewater-grown microalgae suggests that this cultivation method offers 

real potential as a viable means for biofuel generation and is likely to be one of many 

approaches used for the production of sustainable and renewable energy. If micro-algal 

biofuel production is to be economically viable and sustainable, further optimization of 

mass culture conditions are needed. 

 

Park et al. (2011) looked at the wastewater treatment process of high rate algal ponds for 

biofuel production. They produce a great paper focusing on all the important aspects 

relating to Nutrient removal by algae for bio fuel production. 

 

While research and development of algal biofuels are currently receiving much interest and 

funding, they are still not commercially viable at today’s fossil fuel prices. However, a niche 

opportunity may exist where algae are grown as a by-product of HRAPs operated for 

wastewater treatment. In addition to significantly better economics, algal biofuel 

production from wastewater treatment HRAPs has a much smaller environmental footprint 

compared to commercial algal production HRAPs which consume freshwater and fertilisers.  
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HRAPs are shallow, open raceway-type ponds and have depths of 0.2-1m. Mixing is 

normally provided by a paddlewheel to give a mean horizontal water velocity of 

approximately 0.15–0.3m/s. Raceway configuration may be as a single loop or multiple 

loops around central dividing walls. The pond bottom may be either lined or unlined 

depending on soil conditions and local regulations, and CO2 can be added into a counter 

current gas sparging sump creating turbulent flow within the pond. They have been used for 

treatment of municipal, industrial and agricultural wastewaters. However, the use of 

wastewater treatment HRAPs for algal production and biofuel conversion has received little 

attention. Both fundamental and field-scale research is needed to optimise algal production 

and harvest from wastewater treatment HRAPs while maintaining high effluent water 

quality. 

 

Algae growing in wastewater treatment HRAPs assimilate nutrients and thus subsequent 

harvest of the algal biomass recovers the nutrients from the wastewater. 

 

The algal biomass produced and harvested from these wastewater treatment systems could 

be converted through various pathways to biofuels, for example anaerobic digestion to 

biogas, trans-esterification of lipids to biodiesel, fermentation of carbohydrate to bio-

ethanol and high temperature conversion to bio-crude oil. The simplest and most cost-

effective option to convert algal biomass to biofuel would be anaerobic digestion in an 

ambient temperature covered digester pond to produce methane-rich biogas although 

more expensive heated and mixed anaerobic digesters could also be used. Biogas 

production rates from laboratory-scale ambient temperature covered digester ponds have 

been shown to be similar to those of heated mixed digesters (0.21–0.28m
3
CH4/kg algal 

volatile solids (VS) added). 

 

There are many critical environmental (light and temperature), operational (pH, CO2 and 

nutrients) and biological (zooplankton grazers and algal pathogens) parameters that affect 

HRAP wastewater treatment. These need to be researched extensively. 
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In the absence of nutrient limitation photosynthesis increases with increasing light intensity 

until the maximum algal growth rate is attained at the light saturation point. Increasing the 

light intensity beyond this point can lead to photo-oxidation (also known as photo-

inhibition), damaging the light receptors of the algae and decreasing the photosynthetic 

rate and productivity. While the light saturation level is dependent on algal strain and 

culture density, the growth of most algal species is inhibited at light levels > 40W/m
2
, which 

is only about 10–17% of maximum summer and winter solar PAR radiation, 400 and 

240W/m
2
 respectively. 

 

As algal concentration increases so does the shading effect this biomass creates. For 

example, an algal concentration of 300mg/L will absorb almost all of the available light 

(PAR) within the top 15cm of the HRAP, leaving the rest of the pond depth in the dark. 

Typically HRAPs are designed with a depth of about 30cm, however, turbulent eddies, 

resulting from water flow around the pond, and paddlewheel mixing provide a degree of 

vertical mixing through the pond depth thus ensuring that the algal biomass is 

intermittently exposed to light. 

 

Algal productivity increases with increasing pond temperature up to an optimum 

temperature above which increasing algal respiration and photorespiration reduce overall 

productivity. The optimal temperature measured under conditions of maximum algal 

growth rate (sufficient nutrient and light conditions) varies between algal species, but is 

often between 28 and 35°C for many algae. The authors state that optimal temperature 

varies when nutrient or light conditions are limiting. I would argue it is the other way round, 

optimal light intensity increases with temperature. 

 

The pH of the pond water affects many of the bio-chemical processes associated with algal 

growth and metabolism, including the bio-availability of CO2 for photosynthesis and the 

availability and uptake of nutrient ions. Pond water pH is in turn a function of algal 

productivity, algal/bacterial respiration, the alkalinity and ionic composition of the culture 

medium, autotrophic and heterotrophic microbial activity (e.g. nitrification and de-
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nitrification) and the efficiency of the CO2 addition system. Algal photosynthesis in HRAP 

raises pH by consumption of CO2 and HCO3, often exceeding pH > 11. 

 

The elevated pH can act to enhance ammoniacal- N removal from the pond liquid via 

ammonia volatilization. The equilibrium shift to higher free ammonia concentrations at high 

pH can significantly inhibit algal growth. For example, free ammonia concentrations of 34 

and 51g/m
3
 at pH 9.5 (20–25°C) reduced algal photosynthesis of the freshwater algae, 

Scenedesmus obliquus, by 50% and 90%, respectively. Moreover, aerobic heterotrophic 

bacteria that oxidize organic matter in wastewater treatment HRAP have an optimum pH of 

8.3, above which bacterial activity is increasingly inhibited. The optimal pH of many 

freshwater algae is about 8. A pH above or below 8 decreases productivity. 

 

Domestic sewage typically contains insufficient carbon to fully support optimal algal 

production (3–7 C:N ratio in sewage versus 6–15 C:N in algal biomass). CO2 addition has 

been shown to enhance algal productivity in experimental scale WWT HRAPs and is indeed 

standard practice at all commercial algal production HRAP systems. By comparison, CO2 

addition is presently not used in wastewater treatment HRAPs except in a few small pilot-

scale experimental trials. 

 

Intense photosynthesis in HRAPs can increase pond water daytime dissolved oxygen levels 

to >200% saturation. High dissolved oxygen levels in excess of normal air saturation are 

believed to impact on algal productivity. 

 

The ratio of N:P in algal biomass can vary from about to 4:1 to almost 40:1 depending on 

algal species and nutrient availability in algal culture therefore, high productivity may be 

achieved even at relatively low N:P ratios in wastewater treatment HRAPs. By definition, 

attempting to reduce N and P to very low levels will usually result in one of the nutrients 

becoming limiting. 
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HRAPs are susceptible to grazing by herbivorous protozoa and zooplankton (e.g. rotifers and 

cladocerans) which can reduce algal concentration and production to low levels within just 

a few days. (I personally witnessed this process happening under a microscope). Fungal 

parasitism and viral infection can also significantly reduce the pond algal population within 

a few days and trigger changes in algal cell structure, diversity and succession. 

 

Maximum algal production in wastewater treatment HRAPs could be achieved by alleviating 

rate limiting conditions, overcoming inhibitory parameters and through control of algal 

grazers and pathogens. 

 

CO2 addition to wastewater treatment HRAPs augments carbon availability for algal growth 

and also serves to mitigate pH inhibition. This can be simply achieved by controlling the 

HRAP’s maximum pH to <8.0 by CO2 addition. While nutrient removal (which is often an 

important wastewater treatment objective) by physico-chemical processes such as 

ammonia volatilization and phosphate precipitation may be reduced by CO2 addition to a 

wastewater treatment HRAP, it has been shown that this reduction in treatment can be 

offset by the increased algal production and associated nutrient assimilation into this 

biomass. CO2 addition has been shown to more than double algal productivity in laboratory 

studies. Waste gaseous emissions, such as flue gas from fossil fuel burning power plants, 

could be used as a CO2 source to minimize operational costs in full-scale applications. 

Alternatively at wastewater treatment facilities, if biogas is produced onsite from anaerobic 

digestion and burned for electricity/heat production, then this exhaust gas could be used as 

the CO2 source for the HRAPs. 

 

The reduction in loss of N through ammonia volatilization enables greater N recovery from 

the wastewater through assimilation into algal/bacterial biomass. Providing a potential for 

nutrient recycling. 

 

The ideal attributes of algal species for use in wastewater treatment HRAPs are: (1) high 

growth rate (high productivity) when fed with wastewater nutrients which are 
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predominantly ammoniacal- N and phosphate-P; (2) tolerance to seasonal and diurnal 

variation in outdoor growth conditions; (3) form aggregates thereby enabling simple gravity 

harvest. High levels of valuable algal cell components (e.g. lipid for biodiesel) could also be 

desirable. Algal species’ dominance in HRAP may be determined by many environmental 

(temperature, light), operational (pH, nutrient composition and concentration, hydraulic 

retention time) and biological parameters (algal pre-adaptation and seeding, gazers and 

parasites). However, attempts to grow introduced algal species in HRAP as monocultures for 

periods greater than 3 months have all failed due to contamination by other native algae 

and/or zooplankton. Control of grazers, parasite and fungi is difficult, research and 

knowledge is limited. Using a method of selective recycling of harvested algal biomass could 

be a useful technique. 

 

It seems apparent that we either use photo bioreactors, allow invasive species to dominate 

or set up strong environmental conditions suitable for only specific species. 

 

Algae are very difficult to remove due to their small cell size (<20µm), similar density to 

water (1.08–1.13g/ml) and strong negative charge on the cell surface particularly during 

exponential growth. They have adapted this way as a means of survival, being able to stay in 

the lighted region with little to no agitation without sinking to the bottom or being held on 

the water’s surface. Chemical flocculation is expensive, reduces the value of the product 

and makes algal recycling difficult. Mechanical methods are energy intensive, greatly 

increasing operational costs. Enhancing natural aggregation/bio-flocculation of algae to 

encourage simple gravity settling would appear to be the most promising option to achieve 

both a high quality treated effluent in terms of total suspended solids and economically 

recovering algal biomass for biofuel use. (This correlates with the results of my 

experimentation). Many of the algal species (Scenedesmus sp., Micractinium sp., 

Actinastrum sp., Pediastrum sp., Dictyosphaerium sp., Coelastrum sp.) that dominate 

wastewater treatment HRAPs often form large colonies (50–200µm). 
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Both fundamental and field-scale research is urgently needed to optimise algal production 

and harvest from wastewater treatment HRAPs, however for these systems this must be 

achieved while maintaining high effluent water quality. 

 

Wastewater treatment HRAPs are presently the only economically viable way to produce 

algal biomass for conversion to biofuels with minimum environmental impact. Optimising 

harvestable algal yield requires better understanding of the influence of parameters such as 

CO2 addition, species control, control of grazers and parasites and natural bio-flocculation, 

as these parameters are currently poorly researched for wastewater HRAP systems. Further 

research at both fundamental and field-scale will assist optimisation of harvestable algal 

yield and thus further improve the economic viability and the full-scale implementation of 

biofuel production from wastewater HRAPs. 

 

Subhadra & Edwards (2010) reports about an integrated renewable energy park approach 

for algal biofuel production in United States. Another paper was written, Subhadra (2010) 

providing details on a similar topic. 

 

They both provide a wider view of integration of a number of renewable energy 

technologies. The papers are not detailed enough on my specific topic and therefore only 

provide information about the proposed energy projects. It is however a major scale up 

similar to the process proposed in this project. 

 

The renewable energy project location is aggregated in a ‘corridor’ primarily comprising 

regions of New Mexico, Arizona, and Colorado as well as parts of Utah, Texas and Nevada. 

Further, substantial saline ground-water resources (15 billion acre-feet of brine water) that 

cannot be used for traditional agriculture or for drinking water, but that can be used for 

algal culture, are contained within several huge aquifers in this proposed corridor. Most of 

these states also possess vast stretches of under-developed semi-arid land suitable for 

large-scale biomass production from feed stocks such as algae and switch grass. The arid 
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climatic conditions coupled with plentiful sunlight and saline water in the region can 

support a diversified and strong algal biofuel industry. 

 

I would suggest that a project at that scale is missing one vital ingredient. That being, where 

are the nutrients coming from? 

 

Radakovits et al. (2010) studied genetic engineering of algae for enhanced biofuel 

production. 

 

The interest in a variety of renewable biofuels has been rejuvenated due to the instability of 

petroleum fuel costs, the reality of peak oil in the near future, a reliance on unstable foreign 

petroleum resources, and the dangers of increasing atmospheric CO2 levels. Photosynthetic 

algae, both microalgae and macro-algae (i.e., seaweeds), have been of considerable interest 

as a possible biofuel resource for decades. 

 

The development of algal biofuels has been held back by lack of research in certain areas. 

These include developing low-energy methods to harvest micro-algal cells, difficulties in 

consistently producing biomass at a large scale in highly variable outdoor conditions, the 

presence of invasive species in large-scale ponds, low light penetration in dense micro-algal 

cultures and the lack of cost-effective bio-energy carrier extraction techniques. The 

development and engineering of select micro-algal strains are required to improve the 

yields of bio-energy carriers. 

 

Current commercial agriculture crops have been cultivated for thousands of years, with 

desired traits selected over time. It stands to reason that with microalgae, it would be 

beneficial to use genetic engineering in an attempt to bypass such a lengthy selection 

process. However, despite the recent advances in biotechnological approaches, the full 

potential of genetic engineering in some micro-algal species, particularly diploid diatoms, 

can be fully realized only if conventional breeding methods become firmly established, 

thereby allowing useful traits or mutations to be easily combined. Since the topic of micro-
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algal sexual breeding is beyond the scope of their review, they focus on genetic engineering 

approaches that could be utilized in the industry’s efforts to improve microalgae as a source 

of biofuels. 

 

Significant advances in micro-algal genomics have been achieved during the last decade. 

Expressed sequence tag databases have been established; nuclear, mitochondrial, and 

chloroplast genomes from several microalgae have been sequenced; and several more are 

being sequenced. 

 

The report goes into significant detail about the genetic engineering procedures however it 

is beyond the topic of this thesis. The main focus is on engineering for increased lipid 

content whereas the focus of this thesis is primarily nutrient removal and the production of 

algal biomass as a by-product. It is however an interesting and important part of the future 

research as genetic engineering will be essential to maximising productivity. 

 

Beer et al (2009) also look at engineering algae. They focus on bio-hydrogen and biofuel 

production. There is currently substantial interest in utilizing eukaryotic algae for the 

renewable production of several bio-energy carriers, including starches for alcohols, lipids 

for diesel fuel surrogates, and H2 for fuel cells. 

 

Recently, there has been considerable progress in identifying relevant bio-energy genes and 

pathways in microalgae, and powerful genetic techniques have been developed to engineer 

some strains via the targeted disruption of endogenous genes and/or transgene expression.  

 

Collectively, the progress that has been realized in these areas is rapidly advancing our 

ability to genetically optimize the production of targeted biofuels. 

 

Importantly, genetic manipulation techniques have been developed for some species, and 

are increasingly being applied to optimize biofuel production in several algal systems. In 

contrast to traditional nutrient manipulation approaches, metabolic engineering improves 
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control over metabolic pathways, increases the diversity of available phenotypes, and 

results in a more reproducible and predictable system. 

 

Significant advances include: (a), the efficient expression of transgenes; (b), a novel 

mechanism for gene regulation in algae using riboswitches; (c), inducible nuclear promoters 

and luciferase reporter genes, and (d) inducible chloroplast gene expression. To date, the 

generation of stable nuclear transformants in microalgae has relied primarily on random 

genomic integration, intensive screening, and the subsequent isolation of knockout mutants. 

 

Additional genome sequencing efforts are necessary, and research directed toward 

generating more universal/general genetic transformation tools and screening methods will 

facilitate the development of informed strategies to optimize the accumulation of targeted 

biofuels. Significant breakthroughs in the development of improved tools for genetic 

manipulation in eukaryotic algae, and the current level of interest in algal-based biofuels 

and phototroph basic research will undoubtedly provide further advances in the coming 

years. 

 

The paper goes into detail about the advancements in algal genetic engineering for 

enhanced performance. The main focus is again on Metabolic engineering toward enhanced 

lipid bio-synthesis. Again, they go into detail regarding genetic engineering processes that 

are outside the topic of this thesis. Most see this being the area where the majority of the 

money will come from. The two papers correlate with the information they provide and 

agree that genetic engineering is an important step to making algal biofuels economically 

viable. I have no doubt that with the use of genetic engineering, it is possible to make a 

strain of algae that can be used in large ponds, with all the right properties for oil 

production and resistance from invasive species. 

  

Demirbas (2010) reports about the use of algae as biofuel sources. He provides a standard 

report detailing production techniques, costs, algae to energy conversions. It is one of many 

reports on a similar topic, but one of the most recent, providing up-to-date data. 
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Biofuels production costs can vary widely by feedstock, conversion process, scale of 

production and region. Algae will become the most important biofuel source in the near 

future. Microalgae appear to be the only source of renewable biodiesel that is capable of 

meeting the global demand for transport fuels. Microalgae can be converted to bio-oil, bio-

ethanol, bio-hydrogen and bio-methane via thermo-chemical and biochemical methods. 

 

Photo-bioreactors have higher efficiency and biomass concentration (2–5g/L), shorter 

harvest time (2–4 weeks), and higher surface-to-volume ratio (25–125/m) than open ponds. 

However the most commonly used systems include shallow big ponds, tanks, circular ponds 

and raceway ponds due to the greatly increased capital and running costs of bioreactors. 

 

Tubular photo-bioreactors consist of transparent tubes that are made of flexible plastic or 

glass. Tubes can be arranged vertically, horizontally, inclined, helical, or in a horizontal thin-

panel design. Tubes are generally placed in parallel to each other or flat above the ground 

to maximize the illumination surface-to-volume ratio of the reactor. The diameter of tubes 

is usually small and limited (0.2m diameter or less) to allow light penetration to the centre 

of the tube where the light coefficient and linear growth rate of culture decrease with 

increasing unit diameter. 

 

A turbulent flow is maintained in the reactor to ensure distribution of nutrients, improve 

gas exchange, minimize cell sedimentation, and circulate biomass for equal illumination 

between the light and dark zones. The highest cost for closed system is the energy cost 

associated with the mixing mechanism. Regardless of using closed photo bioreactors or 

open ponds, he highlights harvesting as the most difficult problem to solve and the most 

energy intensive process for the production. 

 

High nutrient wastewater from domestic or industrial sources, which may already contain N 

and P, can be added to the algal growth media directly. This allows for algae production to 

be improved cheaply, while simultaneously treating wastewater. Alternately, salt water can 
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be used, either from saline aquifer or sea water. This means that competition for valuable 

water resources will be low. 

 

An important statement made is that controlling feed CO2 in response to signals from pH 

sensors minimizes loss of CO2 and pH variations. 

 

Li et al. (2008) produces a standard report on biofuels from microalgae, backing up the 

reports by other researchers and repeating much of the same information already found. 

They do write an interesting section on the use of wastewater. 

 

It is estimated that the biomass productivity of microalgae could be 50 times more than 

that of switch grass, which is the fastest growing terrestrial plant. One of the major 

disadvantages of using microalgae for biofuel production is the relatively low biomass 

concentration in the micro-algal culture (typically in the range of 1-5g/L) due to the limit of 

light penetration, which in combination with the small size of algal cells (typically in the 

range of 2-20µm in diameter) makes the harvest of algal biomasses relatively costly and 

energy intensive. This is a significant concern needs to be addressed properly. The large 

water content of harvested algal biomass also means its drying would be an energy-

consuming process. These problems are expected to be overcome or minimized by further 

research and technology development. 

 

Sun drying is probably the cheapest drying method that has been employed for the 

processing of micro-algal biomass (at high solids concentration , after gravitational settling). 

However, this method takes a long time, requires large drying surface, and risks the loss of 

some bio-reactive products. I found this to be by far the cheapest and most effective 

method, it is very easy, requires basic, inexpensive  equipment, is fast enough and has no 

associated energy costs. It is important to find the balance between the drying efficiency 

and cost-effectiveness to maximize the net energy output of the fuels from microalgae 

strategy. 
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Micro-algal farming using wastewater is the most promising approach in terms of 

economics.  In addition to the apparent benefit of combining micro-algal biomass, and 

therefore biofuel, production and wastewater treatment, successful implementation of this 

strategy would allow the minimizing of the use of freshwater, another precious resource 

especially for dry or populous countries, for biofuel production. Extensive works have been 

conducted to explore the feasibility of using microalgae for wastewater treatment, 

especially for the removal of N and P from effluents, which would otherwise result in 

eutrophication if dumped into lakes and rivers. Ironically enough, it is algae in the lakes and 

rivers that cause this problem. It is simply a matter of allowing the consumption of N and P 

by microalgae in a controlled manner that benefits rather than deteriorates the 

environment. Levels of several contaminant heavy metals have also been shown to be 

reduced by the cultivation of microalgae. A major concern associated with using 

wastewater for microalgae cultivation is contamination. This can be managed by using 

appropriate pre-treatment technologies to remove sediment and to deactivate (sterilize) 

the wastewater. 

 

Even though the open pond systems seem to be favoured for commercial cultivation of 

microalgae at present due to their low capital costs, closed systems offer better control 

over contamination, mass transfer, and other cultivation conditions. The combination of the 

closed photo-bioreactor and open pond combines the benefits of the two and has been 

demonstrated to be effective at a 2-ha scale. 

 

Pokoo-Aikins et al. (2010) looked at the design and analysis of biodiesel production from 

algae grown through the sequestration of CO2 from the flue gas of a power plant. The 

proposed system provides an efficient way to the reduction in greenhouse gas emissions 

and yields algae as a potential alternative to edible oils currently used for biodiesel 

production. 

 

Photosynthetic growth of algae requires CO2, water and sunlight. Temperature should be in 

the range of 20–30°C in order to have good growing conditions. Algae also need other 
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inorganic nutrients like P and N in order to grow. The fact that micro algae grow in aqueous 

suspensions, allows for more efficient access to H2O, CO2 and other nutrients which explains 

the potential for the production of more oil per unit area than other crops currently used. 

 

Important favourable factors about the process are:  

• No competition for land with crops. 

• No competition with the food market. 

• Ability to grow in water with high levels of salt so there is no additional demand of 

fresh water. Also, areas with saline ground water that has no other useful 

applications can be targeted. 

• Overall use less water than oilseeds. 

• High oil yield: algae (of the aquatic species) require less land for growth than 

biodiesel feedstock from terrestrial plants because they are capable of producing 

more oil per hectare. Furthermore, the oil content in algae (per dry weight) can reach 

as high as 80%. It is worth noting that the oil from microalgae can be extracted with 

yields up to 80–90%. Under optimal conditions, microalgae have lipid content 

between 5 and 20% dry weight while under unfavourable conditions lipid content 

increases between 20 and 50%. 

• Efficient sequestration of CO2: another reason why microalgae are attractive is that 

CO2 (of about half of the of dry algae weight) is needed for growth. CO2 is a common 

industrial pollutant, thus microalgae can contribute to reducing atmospheric CO2 by 

consuming CO2 wastes from industrial sources such as power plants. 

 

The choice of algae species should address specific characteristics that allow the use of flue 

gas as the CO2 source. Much research has been done on the tolerance of different species 

to flue gases. Several species were found to be suitable for the growth of algae using flue 

gas. One of these many species is Chlorella. Chlorella is tolerant to CO2 concentrations of up 

to 40% by volume and up to 40°C. The oil content of Chlorella typically ranges between 28 

and 32% dry weight. To try and save on energy costs for the process, drying should be done 

using excess flue gas. 
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This paper, along with so many other papers and reports focus on the economics of the 

procedure base on theoretical values. They also mainly focus on the algae to biodiesel 

conversion process. Such a small amount of the research being done is focusing on 

physically doing experiments on wastewater or flue gas to grow algae. Without more solid 

results on the growth phase, Producing reports of theoretical oil conversion efficiencies is 

pointless and should be the final stage in the research chain. 

 

Brune et al. (2003) produced a further study into the Salton Sea area - The controlled 

eutrophication process; microalgae for biofuels production and fertilizer recycling at the 

Salton Sea, California. A potential site for a large-scale integrated microalgae CO2 bio-

fixation process is the Salton Sea in Southern California. This large (905km
2
), shallow, inland 

lake receives about 10,000 tons of N and P per year from agricultural drainage waters and 

other sources, resulting in massive algal blooms, fish kills and other negative environmental 

impacts. It is 69m below sea level, has no outlet, and has been accumulating salt and 

nutrients from storm water, treated sewage, industrial waste discharges, and agricultural 

drainage for nearly 100 years.  

 

Over geologic time, the Salton Basin and Lake Cahuilla have been periodically flooded due 

to natural diversions of the Colorado River, but after each diversion ceased, the area 

became a dry lake bed. More recently, as the region developed and large scale agricultural 

irrigation and municipal and industrial waste streams from the U.S. and Mexico were 

created, the Sea has become a permanent body of water, with evaporative losses 

approximately equal to tributary inflows. The build up of salts and nutrients from 

agricultural, municipal, and industrial discharges from the Imperial and Coachella valley’s 

has led to the development of an inland hyper-eutrophic, hyper-saline lake. As the Sea has 

increased in salt content, it has seen a transition of ecosystems from freshwater to brackish 

to salt tolerant organisms. 
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Reducing the salinity will not resolve one of the most serious water quality problems in the 

Salton Sea; the high nutrient loads that are causing eutrophication. The large-scale algae 

blooms, cyclic low oxygen levels, massive fish mortalities, and frequent odour problems that 

are caused by eutrophication represent major water quality problems that must be 

addressed. 

 

The need for nutrient management on such a large scale provides an opportunity to utilize 

and recycle waste nutrients within a private enterprise while providing a public 

environmental service. The ‘Partitioned Aquaculture System’, developed at Clemson 

University, integrates microalgae bio-fixation of CO2 with fish aquaculture promoting a high 

rate of harvestable algae and fish production. 

 

Nutrient inputs currently eutrophying the Salton Sea may be recovered using 4,000 acres of 

CEP units producing an algal sludge that may be blended with waste paper to be fermented 

into methane gas fuelling 20MW of exportable electricity generation capacity, bio-fertilizer 

production, and 20,000tons of fish biomass, while abating as much as 200,000tons of 

greenhouse gases, all while generating a cash flow of nearly $20,000,000 per year. 

 

This physical separation of the fish culture ponds from algal production and water 

purification allows separate optimization of these processes and thus, maximizes overall 

system performance. In the initial work on the PAS, algal productivities of 6 to 12mg/L/day 

were sustained throughout the growing season as opposed to 1-3mg/L/day in conventional 

ponds. These are low values compared to the rest of the literature. 

 

They use a novel harvesting system. A conveyor belt starting at the base of the pond rises 

out of the water carrying algal biomass, the top of the belt rotates round, and the algae is 

mechanically scraped off the belt and collected as a thick sludge. Because the water can 

drain off before the collection point, the biomass concentration harvested is high. 
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3.4.2. Algae for industrial applications 

There are many conflicting statements on the potential of micro-algae for high biomass 

production, but there is a general agreement that the current production systems are not 

economically viable for biomass production alone. The difficulties include high capital 

infrastructure costs, problems of contamination through open pond systems and costs 

associated with harvesting and drying. These costs adversely affect the competitiveness of 

aquatic biomass production systems, compared to land-based agriculture and forestry. The 

harvesting technique is highlighted as a key area for research. 

 

Harmelen and Oonk (2006) prepared a report for the international network on biofixation 

of CO2 and greenhouse gas abatement. The report assesses the practical applications of 

microalgae in biofuels production, focusing on the global potential of microalgae processes 

for GHG abatement in conjunction with municipal and agricultural wastewater treatment. 

 

It claimed the most plausible immediate applications are in conjunction with advanced 

wastewater treatment processes, for the removal and recovery of nitrogen and phosphorus, 

thus allowing the re-use of these plant nutrients in agriculture. Algal treatment of 

wastewater is common in rural areas using algal ponds. The next step is to optimise the 

process and utilise the biomass by using CO2 fertilisation, biomass harvesting and putting 

the product to beneficial use. They suggest algal ponds need to be fertilized with CO2 

(preferably from flue gases) which could double production rates. The advantage of algae is 

their ability to directly use fossil CO2 from flue gases and similar sources, high productivities 

over other plants, high nutrient content and their use in environments not suitable for 

conventional agriculture. Microalgae technologies are helped by their very short generation 

times and relative simplicity in scalability of their hydraulic production systems allowing 

faster process development at smaller scales. 

 

The harvesting process was identified as a current technological limitation due to their small 

cell size along with the relatively high cost of the cultivation systems and undeveloped 
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nature of this technology. They conclude that harvesting would need to be by flocculation 

and settling. I agree with these findings. 

 

They predicted 100 tons dry biomass per hectare per year (54.8mg/L/d) stating that the 

predictions must be demonstrated in practice, requiring considerable R&D. This productivity 

could reduce the land footprint to as low as 1/10
th

 that of conventional biofuels production 

processes. 

 

Nevertheless, they predicted higher costs of producing biofuel from microalgae than from 

higher plants and state that the additional costs must be justified in quality of biomass, ease 

of conversion into desired biofuels, co-production of higher value products, the efficient use 

of land using small footprint high productivity systems, the use of underutilised land, water 

and nutrient resources, reduced environmental impact and benefits from growth 

applications. The combination of these positives could justify long term development of 

algal bioreactors for multi benefit as well as solely for biofuels production. 

 

In their review, Harmelen and Oonk also state the next 10 year focus of R&D for microalgae 

biofuels production should be in conjunction with wastewater treatment; basing the 

economics against the alternative technologies currently employed. In wastewater 

treatment microalgae substitute fossil energy used in conventional processes for solar 

energy; reducing CO2 emissions as well as producing renewable biofuels. Fertilisers can be 

produced from nitrogen-fixing blue-green algae, cyanobacteria, which Harmelen and Oonk
 

predicted could provide 10 million tons in CO2 abatement for every 1 million tons of N 

fertiliser produced. 

 

They suggest microalgae production processes would be limited to locations with flat land 

with the availability of nutrients in wastewaters but in favourable sunny climates with 

average annual temperatures of 15°C. The CO2 required should be provided by flue gases 

from on site CHP power plants. 
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 Carlsson et al. (2007) also prepared an introductory report on the findings from the EPOBIO 

project detailing the use of micro and macroalgae for industrial applications. 

 

They also reported the small size of algae (3-30µm) would contribute to the high cost of 

harvesting (20-30% of the total cost of biomass production). The dilute nature of media 

(0.5g/L or less) requires large volumes to be handled. They also suggested that attempting 

to keep cultures to a selected specific species would recommend complex bioreactor design 

under extreme conditions. They predicted that 1.5km
2
 of algal pond is required to fix the 

CO2 from a 150MW power plant. 

 

Selection of a suitable production system for the purpose would be important. Bioreactors 

are not suitable for wastewater treatment because of their costs. Higher value products 

where additional control is required were more suited to closed bioreactors. Cleaning 

bioreactors due to wall-growth would also cause abrasion and limit bioreactor life time. 

Pond biomass concentration could be achieved to between 0.1-0.5g/L compared to 2g/L+ in 

bioreactors (in fact my bioreactor results correlate, obtaining an algal concentration in 

excess of 2g/L was easy). 

 

Wastewater applications - Macro- and micro-algae can be applied to sequester, remove or 

transform pollutants such as excess nutrients, xenobiotics, and heavy metals from 

wastewater, or CO2 from exhausts. These applications are known as phycoremediation. The 

treatment processes yield an output in the form of algal biomass that can be used to 

produce chemicals, biofuels or biogas as by-products (Munoz and Guieysse, 2006). 

 

Micro-algae are often applied in the tertiary treatment of domestic wastewater in 

maturation ponds, or in small-to-middle scale municipal wastewater treatment systems. 

The most common designs include facultative ponds, which are relatively deep and support 

surface growth of micro-algae, and high-rate algal ponds (HRAPs), which are shallow and 

depend on mechanical mixing to maximize algal production and removal of biological 

oxygen demand. HRAPs are the most cost effective reactors for liquid waste management 



168 

 

and capture of solar energy; productivities of up to 50t/ha/y (27.4mg/L/day) are feasible. 

Typically, there is no effort made to control the species composition in wastewater 

treatment ponds. However, having specific species that sediment, float or flocculate 

efficiently would greatly facilitate harvesting, which is an expensive step. They estimate 

production costs of 2 - 4 € / kg algal dry weight. Biofuel production in conjunction with 

wastewater treatment and fertiliser recycling is seen as a near-term application (5 to 10 

years), since the algae are already used in wastewater treatment. 

 

The relative affinity of raw Sargassum biomass for various divalent metal cations was 

determined at environmentally relevant concentrations to be Cu > Ca > Cd > Zn > Fe (Davis 

et al. 2003). Also micro-algae have been used to remove heavy metals from wastewater 

(Wilde and Benemann, 1993; Perales-Vela et al. 2006). 

 

3.4. Overall summary 

It would appear that a major knowledge gap exists in collecting absolute growth rate data 

to support the large amounts of theoretical oil yields especially when using an open 

environment. 

 

There has been limited research carried out on using the algae to energy process as a 

sewage treatment process or more importantly actually using effluent even though one of 

the initial points raised is that in the short term, this process needs to be combined with 

wastewater treatment to make it economically viable. Once this is achieved, research can 

build off this to expand it to more large scale production. 

 

Another knowledge gap is the vessel this process should be carried out in. Bioreactors are 

deemed uneconomical yet lagoons and HRAPs may not produce the right environment to 

maximise algal growth through lack of light and agitation issues. 
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Another area is determining performance using algae; how low can P concentrations be 

reduced to and at what HRTs? Is it worth fighting to use a specific algal strain or should the 

most dominant just be prevalent? 

 

Having identified the knowledge gaps, this research project will concentrate  on using algae 

to reduce P to extremely low levels and to <1mg/L within the shortest HRT. Whilst meeting 

this P standard I will investigate the effects on other quality standards, N concentration and 

SS. I aim to identify the best vessel and process to maximise the P removal efficiency and 

biomass growth rate. The work has identified the need to study naturally occurring algal 

strains that grow in real sewage effluent. Part of the study will look at the feasibility of this 

process in low light conditions during the UK winter. 
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4. Aims and Objectives 

4.1. Aim 

The main aim of the project is to provide an in-depth review of current research on using 

algae to remove nutrients, primarily P and operate a ‘sewage to algae to energy’ process. 

This existing knowledge should be extended through investigation, using experimental 

techniques to design and optimise a sustainable method for this process whilst minimising 

costs (capital investment, operational and maintenance costs and other costs derived from 

economic and environmental restrictions). The primary focus is to achieve acceptable EU 

WFD standards for the treated effluent with a secondary focus on maximising the algal yield. 

 

The literature shows us that good technologies for P-removal exist. The purpose of this 

project will be to show that the tertiary algal treatment method can be more efficient, more 

sustainable, cheaper (at least in terms of offsetting the by-product / energy generation), 

more reliable and also reduce P to lower levels or meet the current 1mg/L standard with a 

shorter HRT. 

 

4.2. Key objectives 

Compile information and prepare a full assessment of previous work regarding key areas of 

the research; P and N removal, sewage treatment, algal growth and biofuel. Use this 

information to carry out detailed, well controlled laboratory experiments using a series of 

experimental rigs to provide results from which I can derive conclusions and new 

knowledge.  

 

The experimental methods include studying the growth rates of algae as a by-product of the 

removal/fixation of N, P and C from wastewater. Measure how the growth rates were 

affected by changes in light, temperature, CO2 concentration, algal concentration and 

nutrient concentration to determine an optimal process. 
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The objectives in 11 key areas have been identified below  

 

4.2.1. P and N removal 

Reduce P and N concentration in wastewater to meet EU discharge standards of a maximum 

of 1mg/L P and 5mg/L N (95%) using algae as a sustainable method of cutting costs and 

minimising energy use, improving sustainability. 

 

Study the uptake rates of P, the total quantities being removed from a real works effluent 

and what levels of P removal are achievable. Is this method and removal rates competitive 

with existing processes such as chemical treatment and bacterial processes (acintobacter), 

BPR, and would it be economically viable? 

 

Study the uptake rates of P, N & C from real sewage effluent and what levels of P & N 

removal are achievable. To design an algal bioreactor / HRAP to meet P & N concentration 

standards for discharge and at fast enough rates to be economically viable. The method will 

be compared for synergy with the standard de-nitrification process and biological nutrient 

removal processes. Can P & N removal be successfully combined in a single process? 

 

4.2.2. Carbon sequestration 

Determine the amount of C fixation during this process. Analyse how much C is taken up 

from the effluent and see if this is a viable C sequestration process. Is the fixation of 

additional waste C possible, e.g. combustion exhaust? Compare this data with previous 

work. 

 

4.2.3. Algal growth rates & concentration 

To create conditions promoting high growth rates of algae and hence high uptake rates of 

nutrients. Quantify these growth rates and perform mass balance analysis with nutrient 
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uptake. Compare the algal growth rates achieved with data from literature for similar 

processes and also with existing methods of algal biomass production specifically for biofuel.  

 

Is the growth rate consistent and can it be controlled? Are the algal growth rates and 

production high enough to consider them a valuable by-product?  

 

Study the effects of bioreactor algal concentration with regard to growth rates, light 

penetration and competition for nutrients. Therefore provide suggestions on optimal algal 

concentration within the bioreactor. 

 

4.2.4. Trace nutrients and quality standards 

Assess whether or not the growth of algae has other positive or negative effects on the 

treatment of sewage other than the removal of P &N. 

 

4.2.5. Algae / effluent separation 

Provide a technique for the separation of algal solids from the discharged effluent. The 

technique should be fast and have low energy requirements whist being effective at 

achieving the highest concentration (>6% for direct feeding to AD). The discharge should 

meet EU standards of a maximum of 35mg/L suspended solids (95%).  

 

4.2.6. Seasonal variation 

Compare results from artificial light with those from natural light. Establish whether the UK 

can sustain year round algal growth with the natural light intensity available, providing 

quantitative data on seasonal variations to allow scale up to open, natural conditions at a 

STW. 
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Are the light intensities high enough and daylight hours long enough in the winter to sustain 

algal growth to meet P removal requirements? 

 

4.2.7. Use of algae 

Assess the potential uses of the algal biomass by-product as a sustainable fertilizer or fuel 

source, investigating the options available, AD, liquid fuels and combustion.  

 

4.2.8. HRT, bioreactor design and optimisation 

Optimise the HRT throughout the whole system to reduce both capital and running costs. 

 

Determine the best design based on literature and experimental data. What type of 

bioreactor / HRAP design will work best? Use this data to indicate optimal dimensions and 

values for all parameters involved in the system. 

 

4.2.9. Bioreactor design scale up 

Devise experiments that determine the suitability, barriers, advantages and disadvantages 

of this process for use in the UK. 

 

Investigate how these experimental techniques can be scaled up to full scale level. Produce 

an optimal performance pilot plant design for further studies at the sewage works based on 

the successful laboratory rig. 

 

To consider the possible use of this process as an industrial technique for value added by-

products and provide new information regarding the best designs for an industrial scale 

operation. 
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4.2.10. Integration 

Investigate the prospects for integration with waste heat from the CHP / AD. Assess the 

effects of temperature on algal growth rate and metabolism. Consider whether heating the 

effluent would be a barrier to discharge due to watercourse temperature requirements. 

 

Can the same industrial units provide additional CO2. 

 

 

4.2.11. Further work 

Using the findings from this project, make new conclusions about the prospects and 

suggestions for further research in this area to develop the method and improve its 

effectiveness. 
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5. Methodology 

5.1. Bioreactor designs 

 

The experimental period consisted of initial testing followed by 3 major phases of 

bioreactor development, each including numerous experimental stages. 

 

Initial testing was carried out to ensure the algae could be grown in a laboratory bioreactor 

under artificial lights as a simple batch feed process. A mixture of final effluent was 

collected from Loughborough, Long Whatton tertiary treatment lagoon and various holding 

ponds around the university. The mixture was selected to ensure a broad inoculant of 

natural species best suited to growing in the UK climate in the nutrient rich mixture found in 

sewage effluent. They could then be refined by selective pressure from reactor design; it 

was fed on Loughborough final effluent. 

 

Using a 4.5L beaker under artificial lamps (spec in section 5.1.1.) a algal culture began to 

grow, reaching a concentration of more than 500mg/L, high enough to allow 

experimentation on a continuous flow process to begin (stage 1). The initial batch testing 

demonstrated reductions in nutrient concentration of both N and P to below their required 

EU standard of 5 and 1mg/L respectively. It was noted that the growth of duckweed on the 

surface of the bioreactor obscured light penetration into the vessel and all duckweed was 

removed prior to starting stage 1 continuous experimentation. 

 

The feed effluent for all experiments was obtained from Loughborough sewage treatments 

works and therefore had a large variation in properties such as nutrient concentration. This 

work was to use real sewage effluent was chosen over artificial media in order to account 

for the wide variation of environmental conditions likely to occur naturally. It produced less 

controlled experiments due to the varying P concentration and varying algae concentration 

/ specie mix. This however better represented real life and provided more valuable results 

that could be reproduced in field experiments.  
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5.1.1. Phase 1 - Continuous Flow Bioreactor – Single Vessel System 

The first bioreactor used was a single continuous flow Perspex tube with a conical base. It 

had a circular cross sectional area of 154cm
2
 (14cm in diameter) with a usable height of 

65cm providing a 10L capacity. The conical base was 12cm in height and led to a flat bottom 

with an outlet tube on the side, used for sludge removal. The bioreactor also had built in 

pipes on the side for inflow and outflow (see fig. 3). The inflow of final effluent was 

continuously pumped into the bioreactor, controlled by a peristaltic pump (Watson Marlow, 

model 50SS, fig. 4). The pump was variable speed (minimum 0.25rpm) and the flow rate 

could be adjusted to control the HRT of the bioreactor. The HRT was defined as the time 

required for the flow throughput to equal the volume of the vessel. The outflow was 

unrestricted to maintain constant volume in the bioreactor.  

 

 
Figure 3 - The bioreactor with light and mechanical stirrer 
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Figure 4 - The Watson Marlow pump 

 

The feed flowed bottom to top, here the effluent flowed out via the outlet pipe into a 

settling tank (Fig. 5). The treated effluent spilled over as discharge whilst the algae were 

collected at the bottom to be recycled back to the main bioreactor (see fig. 5). The algae 

and effluent in the main bioreactor were mixed by a mechanical stirrer to keep the algae 

cells moving and in suspension. The stirrer was kept the same throughout all experiments. 

The algal cells were buoyant enough to stay dispersed in suspension for an hour, therefore 

the mechanical stirrer was controlled by a timer to come on for 1 minute every 8 hours. The 

bioreactor had a sludge outlet pipe at the base equipped with a manual valve, to remove 

dead algal cells or clumps that were too big to remain in suspension would typically collect 

as a sludge in or around the outlet tube. This meant it was possible to manually remove the 

algal sludge from the base of the bioreactor. The removal prevented re-mineralization of 

nutrients from decaying cells. 
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Figure 5 - System flow diagram of the phase 1 continuous flow process 

 

Samples were taken daily to measure the P & N levels at the inflow and outflow, monitoring 

the performance of the bioreactor. 

 

The main problem with this first design of continuous flow bioreactor was that it was 

completely mixed and without baffling. The nutrient concentration in the feed, introduced 

into the bottom of the bioreactor, was rapidly dispersed and diluted throughout, therefore 

the nutrient discharge concentration was equal to the nutrient concentration within the 

bioreactor. To achieve the required EU standard, the small dilution ratio limited how fast 

effluent could be pumped in and limited the overall minimum concentration that could be 

achieved. The maximum uptake rate of nutrients by the algae was restricted (see discussion 

in section 6.).  A longer HRT could produce lower nutrient concentrations in the treated 

discharge and low HRTs were used to meet the EU requirements (1mg/L P). 
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The bioreactor was artificially illuminated from fixed intensity halogen lamps around the 

tank to provide light for the algae to optimise photosynthesis. The lamps produced a 

luminosity of 121W/m
2
 at a distance of 1cm however this declined to 40W/m

2
 at 8cms from 

the lamp, less than 20% of the minimum expected from natural daylight (see section 6.). 

The light energy produced was adequate to perform the experiments in a laboratory 

however would not be economically feasible for scale up. The lamps could not provide a 

luminosity to match natural light, see discussion about this in the results. The lamps were 

kept the same throughout all the experiments however the light intensity was varied (due t 

the inverse square law) by changing the distance between the lamp and the bioreactor. 

 

These initial experiments were a success, showing P could be reduced to below the required 

EU WFD concentration level however the bioreactor setup needed re-designing.  

 

5.1.2. Phase 2 - Continuous Flow Bioreactor – Second Generation Larger Scale 

Multi Vessel System 

This initial bioreactor designed for the project using a single stage photo-bioreactor design 

showed promising results. The main issue was the dilution ratio into the single bioreactor 

when final effluent of high nutrient concentration was added. A high dilution ratio was 

required to keep the concentration below the standard of 1mg/L, thus limiting the HRT.  

 

The second experimental phase was an evolution of the first in that the process was 

expanded to allow multi stage flow. Two additional bioreactor vessels were constructed and 

had a design based on the original bioreactor but using larger dimensions, given below (see 

Fig. 6).  
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Figure 6 - Example of the 2

nd
 generation bioreactors at full capacity 

 

The two new bioreactors were identical. They had a cross sectional area of 314cm
2
 (being 

20cm in diameter) with a usable height of 95cm providing a 30L total capacity but with an 

operating capacity of 15L. The design of the base of the bioreactor was improved by 

providing a steeper conical shape with the outlet tube connected to the bottom, this made 

the removal of the sedimented decaying algal sludge a much more efficient process and 

allowed the tanks to be emptied more quickly enabling an easy method of cleaning. The 

base section was 12cm in height (See Fig. 7). The new bioreactors were equipped with the 

same inflow, outflow and sludge discharge tube arrangement as the first design. 
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Figure 7 - Detail of the conical base 

 

The original 10L bioreactor was kept in place with the additional two (second generation 

design) 15L bioreactors added. The three bioreactor vessels were combined in series to 

solve the short circuit baffling problem from the first experimental phase. Designed to give 

plug flow and a strong concentration gradient; they reduced the potential for short 

circuiting (see fig. 8). Basic theory (Levenspiel, 1992) suggests three tanks in series will 

reduce short circuiting by 50%. By adding a 2
nd

 tank that feeds into the final tank, the 

process of reducing 20mg/L to 1mg/L was split into 20 to 5 and 5 to 1. This makes a more 

efficient P removal process as the overall concentration in the first tank will be higher, 

therefore giving faster P removal and faster growth. In theory adding the third tank can split 

the process further, 20 to 10, 10 to 3 and 3 to 1. 

 

The overall aim of this new design was to achieve lower final nutrient concentrations for the 

same HRT that are compliant with the EU UWWTD and WFD. At full scale, It may be possible 

to switch bioreactors in / out of service depending on the P concentrations. 
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Figure 8 - Showing overall setup with all 6 tanks 

 

Final effluent from Loughborough sewage works was pumped into the bottom of the first 

vessel at a controlled rate. The effluent flows from the top of vessel one to the bottom of 

the next until the final settling tank. All the bioreactor vessels were lit with fixed intensity 

halogen lamps. The mechanical stirring was controlled by timers as in the first experimental 

phase (where stirring in the tanks was found to be required at most for 1 minute every 8 

hours) to avoid algal precipitation and decay.  

 

Less stirring reduced the algal concentration in the very top layer of each tank and hence 

the transfer of cells from one tank to the next, those cells that are transferred to the next 

tank (were smaller, younger, more buoyant) are thought to be the most productive and 
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continue to improve the quality of the process in the later stages, however these are the 

cells discharged at the end of the process and also the hardest to separate. Occasional 

stirring is necessary to keep enough algae in suspension throughout the tank without losing 

them to the sludge at the base, whilst the rest periods allowed sedimentation of unwanted 

biomass (clumps or dead algal cells). The algae collected in the final settling tank was 

returned to the first vessel to replenish the algal concentration, whilst sedimented biomass 

collected from the base of the three bioreactors was collected and stored for digestion. 

 

 
Figure 9 - Diagram showing the system flow for phase 2 

 

Algae became attached to the connecting pipes, through physical resistance and to the 

bioreactor walls where light intensity was greatest. The growth on the walls reduced the 

illumination within the whole reactor. Rotation of lighting position, regular scrubbing of 
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bioreactor walls and cleaning the connecting pipes was necessary. All cleaning was carried 

out between experimental runs. 

 

Tall clear tanks were chosen to allow light penetration to all areas of the fluid whilst land 

area usage is minimised. Energy costs are reduced because the flow through the system is 

generated by a small gravitational gradient and agitation of the tanks is barely required. The 

final stage requires a method of separating the algae from the discharge. The algae 

settlement rate needed to be predictable because of their rapid deterioration if stored too 

long or losses if the flow rate was too high.  

 

Throughout the experiments, the HRT was varied. P reduction to meet EU requirements 

could be achieved at a flow rate of 16L / day (48 hour HRT) however there was poor 

separation of the fine algal cells from the discharge. The maximum achieved by gravity was 

4L / day (8 day HRT).  

 

An increase in bioreactor volume requires an increase in flow rate to maintain the original 

HRT. This increase in flow meant a faster rate of transfer of algal cells from one bioreactor 

vessel to the next and subsequently out of the system. 

 

Because dilution was not now a critical factor due to the multi stage setup, it meant the HRT 

could be reduced by a factor of 2-3. This meant that a 4x increase in total bioreactor volume 

could increase the flow rate by up to 12x.  

 

The overall concentration of suspended algae in each tank was affected by the algal growth 

rate, flow rate of the system and return rate back into the 1st tank. The algal growth rate 

was slower than the transfer rate and as the flow rate was increased, more algae were lost 

out the end of the system. The separation of algae could not keep up with HRTs of less than 

8 days. This meant the return of algae to the first tank could not keep up with the reduction 

of algae from flow transfer. The effect of this was a wash out of the algae. A maximum HRT 

of 24 hours would be required when considering feasible capital costs at full scale. As a 
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consequence, experimental trials were carried out with membrane separation using cross 

flow filtration.  

 

The artificial light intensity remained constant throughout the experiment at 121W/m
2
 (see 

5.2.2.1.). 

 

The temperature of the experiment was recorded and allowed to vary with the temperature 

of the laboratory and was in the range of 7-22°C; this better represented field experiments 

that have a wide range of naturally occurring temperatures.  

 

The key design issue became finding a separation process for removing very fine, buoyant 

algal cells from water that was quick enough and avoided damaging the algae for re-

introduction into the system. 

 

A cross flow filtration membrane system was added to the end of the process as shown in 

fig. 10. 

 

Figure 10 - Showing the cross flow filter attachment to the final settling tank 

 

The cross flow filter was energy intensive, requiring a high flow rate to keep the membrane 

clean and high pressure to drive the effluent through the membrane.  
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• Initial testing showed that a fast enough flow through the membrane could not be 

achieved.  

• There was serious concern that the velocities and pressures may have been stressing 

the algae causing a release of stored P. 

• The system was hard to work with in the laboratory and would be difficult to scale, 

requiring large numbers of units.  

• The project is looking into pushing for more sustainable methods. 

• The wastewater treatment industry is familiar with settlement and less familiar with 

membrane filtration. 

 

For these reasons, further development of the system was not considered.  

 

5.1.3. Phase 3 – Sequencing Batch Feed Bioreactor 

Retaining algae in the system is very important for this process as it is the algae that are 

fully responsible for the mechanics. Following the issues maintaining the algal concentration 

in the continuous flow bioreactor system and poor performance of the cross flow filtration 

membrane; phase 3 was introduced as a sequencing batch feed process where biomass 

were not removed and cannot be lost from the system, except during sampling. 

 

After each batch the contents of the bioreactor were left to settle, enabling the separation 

of the algae from the treated effluent. Every time the effluent was removed, it left behind 

the fastest settling algal cells and flocs. Using selective pressure by repeating this technique 

of fast gravitational settlement, a fast settling algal culture developed following the forced 

removal of the more buoyant algal cells. The separation process had reduced to 5-10mins 

allowing the HRT to be reduced to whatever was required to obtain final nutrient 

concentrations of either 0mg/L or the EU standards. Constant agitation, keeping the algae in 

suspension was a trade-off for fast gravitational settling. 

 

This batch feed bioreactor design was used for the majority of the experiments. The process 

was much simpler, easier to operate and proved to be able to better achieve lower P 
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concentrations overall, often 0mg/L than the continuous flow process as the results in 

section 6.3.2.2. show. The batch feed bioreactor consists of a clear vessel, it was stirred 

continuously at 80rpm by the same mechanical mixer as used in the continuous and lit by 

fixed intensity halogen lamps (see fig. 11). 

 

The cross sectional area of the bioreactor was 254cm
2
 (18cm in diameter) with a usable 

height of 18cm providing a volume of 4.5L. As a sequencing batch bioreactor, feed and 

discharge tubes were not required. 

 

 
Figure 11 - Showing the 4.5L batch feed bioreactor soon after an initial inoculation 

 

The individual batches are not affected by flow rate and do not experience algal losses. Each 

batch could be designed as a completely separate experiment allowing adjustment of the 

starting P and biomass concentrations; it also allows detailed control over the HRT. Every 

batch feed fully replenished the nutrients in the bioreactor. This follows the previous batch 

achieving the required standard and being drained of the treated effluent. Before feeding, 

the mixing device is switched off to allow the separation of algae from the treated effluent. 

10 minutes settling was sufficient for decanting effluent that met the suspended solids WFD 

regulation of 35mg/L. The effluent was used for analysis, leaving behind the algae to be 

used in the next feed. The batch time varied between 24 and 72 hours dependant on the 

nature of the experiment being carried out. Strictly controlled environmental parameter 

experiments were carried out over a 24hr period. Longer experimental runs over periods of 

8-30 days were batched and sampled at varying intervals of between 1 and 3 days to build 
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up a picture of productivity vs batch time. An operational process could be expected to be 

12 hours for complete P removal, or less to meet the 1mg/L standard. In terms of P removal 

per time; these results were much better than those from phase 2. 

 

With every 4L feed the algal concentration increased due to growth. Typically an 

experiment was started with an initial inoculation of about 500mg/L while it was allowed to 

increase to around 2000mg/L over about 10 days. When the algal concentration became 

too great it began to affect the light penetration and was harvested for digestion. A 

proportion was retained as an inoculant to achieve the 500mg/L starting concentration for 

the next 10 day run for example. The results had shown a further increase in biomass 

concentration would not be beneficial for algal growth or final nutrient concentration (see 

section 6.).  

 

 
Figure 12 - Diagram showing the process flow of the batch feeding 

 

Another major benefit of this process configuration was the ease of operation, maintenance, 

measurement / analysis and control to a fixed P standard. Specific variables can be better 

controlled and measured after a set time from feeding. The single controlled tank also 

makes it easier to monitor growth rates. The experiments can be repeated identically many 

times to allow improved statistical analysis of feeding frequency and to study when 

nutrients such as carbon become limiting. 
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The process was shown to be reducing P concentration to 0mg/L within 24 hours without 

CO2 addition. A comprehensive set of results were obtained (section 6.3.2.) for the full 

range of water quality indicators under different lighting and temperature conditions. 

 

5.2. Methods of Analysis 

5.2.1. Standard Methods 

These were all carried out in accordance with international standard methods (APHA 2005). 

The variation in sample size and equipment used are described. The sampling except for the 

suspended solids analysis did not require the removal of algae. Therefore, during the 

collection of samples for analysis the mechanical stirrer was switched off for 2 or 3 minutes 

allowing the majority of the algae to settle. This provided a sample virtually free of 

suspended solids. The samples were pre-filtered using a Whatman No.1 10µm filter paper 

to remove any remaining particles that may affect the chromatograph. This type of sample 

was neither too intrusive nor affected any of the results by removing algae from the system. 

The suspended solids samples were taken on mixed bioreactor contents and carried out to 

measure the biomass concentration. These samples did cause significant losses which were 

taken into account when preparing the mass balance analysis. 

 

5.2.1.1. Phosphorus and Nitrogen 

The Phosphorus and Nitrogen measurements used a 20ml pre-filtered sample as noted 

above. The sample had to be filtered to remove particles that could clog the 

chromatographic column, no other pre-treatment was needed. Phosphorus and Nitrogen 

analysis were carried out by means of the Dionex ICS -1000 ion-chromatographic method 

calibrated against NO3 and PO4 internal standards (APHA, 2005). It produced results in mg/L 

NO3 and mg/L P. Each test on the machine used an injection volume of 1ml. 

 

The early measurements used the Palin colorimetric test technique however whilst 

providing scoping data it became apparent that the accuracy of the tests and margin for 
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error were outside the tolerance level for the project (a range >5% over 3 identical samples). 

None of these results were used in the data analysis in section 6. 

 

5.2.1.2. Suspended Solids 

The total mass of suspended solids was determined by filtration of a water sample using the 

standard 1.2 µm grade GFC, 7 cm discs under the application of a vacuum pump. The disks 

were weighed (before and after filtration) dry at room temperature (after 5 minutes of 

cooling in a desiccator). Drying was usually for 2 hours at 105°C. 50ml samples were usually 

used (1/20 L) therefore the total weight difference was multiplied by 20 to express the mass 

of SS found in mg/L (APHA, 2005). 100-150ml samples of the treated effluent were used 

when available. 

 

The suspended solids measurements were used for two reasons, to determine whether the 

treated effluent was within EU standards of 35mg/L and to determine the concentration of 

algae in the bioreactor, primarily to measure growth rate. Measuring algal concentration 

was intrusive. The most accurate result was provided by using the biggest sample from the 

bioreactor, 150ml, even up to 300ml. Often It was not feasible to remove this much from 

the bioreactor, especially at the start of the SBR experiment or when repeating the 

measurements as the algal losses were shown to have a dramatic effect on the performance 

of the experiment. Often 3 x 50ml samples were used as a compromise between achieving 

an accurate result and not removing too much algae from the bioreactor. 

 

When measuring biomass concentration, the samples were extracted from the middle of 

the bioreactor to get the best representation and maintain a consistent standard procedure. 

 

The measurements of suspended solids in the final discharge effluent after the algal had 

been removed by gravitational settling were carried out initially to ensure the EU standard 

of 35mg/L was being met. A culture of fast settling, self flocculating algae had been 

developed meaning very low suspended solids content was retained in the solution. The 
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results showed that the concentration was always less than 5mg/L (often close to 0) with no 

increase in inorganic matter from the initial influent. Based on these negligible results, 

further analysis was not carried out.  

 

5.2.1.3. IC and TOC 

The IC and TOC were analysed by the high-temperature combustion method using a Total 

Carbon analyser Rosemount Dohrmman DC 190. Measurements required only a small 

sample of 5ml to be taken from the bioreactor. Each sample was tested three times for 

accuracy. The actual injection volume was only 2µl which allowed duplicates. The samples 

were also pre-filtered as noted above (section 5.2.1.).  

 

5.2.1.4. pH 

The pH of the effluent was measured by using a portable standard electronic pH-EC-TDS 

meter (Hanna HI 9812) in the bioreactor for 5 seconds. The pH meter was buffered using a 

standard pH7 solution prior to every use because of drift. The same instrument measured 

electrical conductivity and total dissolved solids. According to the manufacturer, the EC/TDS 

only required calibration 1-2 times / year. It was checked quarterly with standard isotonic 

solutions. 

 

5.2.1.5. Metals 

The measurement of metals used a 20ml sample taken from the bioreactor. The samples 

had no pre-treatment other than pre-filtering, as noted above (Whatman No.1), to remove 

suspended solids. Each metal to be tested required about 5ml and the procedure was the 

same for each metal.   

 

Dissolved metals were then tested from all samples using an Inductively Coupled Plasma 

(ICP) analyser (Thermo Jarrel Ash Atom Scan 16). This provided results in mg/L of the 

specific metals, Fe, Ni, and Zn by comparison with calibration standards. Each metal was 
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analysed in triplicate and an average was taken from the results. The ICP’s detection limit 

for each of the tested elements is dependent on its wavelength and is presented in Table 2. 

               
Table 2 - ICP’s wavelength and detection limit 

Element Wavelength/nm Detection  limit 

mg/L 

Fe 259.940 0.002 

Ni 221.647 0.005 

Zn 213.856 0.002 

 

 

5.2.2. Non-standard Methods 

5.2.2.1. Light 

The light was measured in Lux using a ‘Precision Gold N76CC’ light meter. This could 

determine the intensity of light across the bioreactor from the light source. The units in Lux 

were converted to W/m
2
 using a conversion factor of 1/103 as derived from the literature 

review.  

 

5.2.2.2. Temperature 

The experiments were run in the unheated pilot plant laboratory. The temperature was 

measured at the time of taking samples for other experimental variables. A thermocouple 

was used to give a reading to the nearest 0.1°C. Both the temperature of the effluent in the 

bioreactor and ambient temperature was measured. Due to the high specific heat capacity 

of water, the temperature of the effluent was not very responsive to the change in air 

temperature. A drop in temperature was noticed over weekends when the heating was off 

in the adjacent room and doors were always shut allowing the bioreactor to slowly cool. 

This was only ever an issue during cold spells during the winter. The effect would be greater 

outside, however larger volumes, shorter HRT and possibly CO2 injection from CHP would 

prevent any serious change in temperature from that of the normal range. The results from 

temperature experiments are shown in section 6.3.2. 
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Temperature data was also archived from the sewage works thermocouple to compare with 

the laboratory data. 

 

5.3. Experimental Methods and Stages 

5.3.1. Experiment Protocol  

5.3.1.1. Collection of effluent from Severn Trent Water 

The final effluent feed for all experiments was taken from Severn Trent Water, 

Loughborough sewage works from the combined final discharge of all the clarifiers. A 25L 

bucket was filled by lowering it by rope into the discharge channel, once filled, it was 

hoisted out and capped ready for transportation back to Loughborough University. The 

weather conditions were noted. 

 

5.3.1.2. Phase 1 - Continuous Flow Bioreactor – Single Vessel System 

Every new batch of the Loughborough final effluent collected was analysed for N and P. 

After the algal bioreactor settling tank, the treated discharge was also sampled for N and P. 

Daily grab samples were taken from the surface of the settling tank. The feed tank was kept 

topped up for continuous running and as discussed in 5.1.1., recycling the algal concentrate 

from the settlement tank to the main bioreactor was done every few days. With the known 

volume of the bioreactor and the flow rates, uptake rates of nutrients could be calculated. 

This reactor was run for a period of 6 months (results shown in 6.1.). 

 

5.3.1.3. Phase 2 - Continuous Flow Bioreactor – Second Generation Larger Scale Multi 

Vessel System 

The multi tank continuous flow bioreactor followed a similar procedure to the single tank 

continuous flow bioreactor. However in this case the bioreactor could be sampled at 

different points in the treatment train along the series of tanks. This was used to show the 

reduction in nutrient concentration along the series of tanks and how well each tank 

performed in the sequence compared to a single tank using this method of ‘baffling’. 
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Recirculation to the first feed tank from the final settler was intermitted, replenishing algal 

concentration in the initial bioreactor tank from that collected in the settling tank and 

sampling were the main operational tasks. Cleaning the algae from the reactor walls was 

necessary every 7 days to prevent build up, that, over time reduced light penetration. 

Discharging algal sludge from the base of the tanks and regularly cleaning the connecting 

tubes from a build-up of algae prevented re-release N and P. The experimental run was over 

a period of 5 months. 

 

5.3.1.4. Phase 3, Exp.1 - Batch feed bioreactor – P uptake rates and loading 

The feed was sampled for P and then the required volume was added to bioreactor to give 

the desired load. Sampling for P was at 2 ,4, 8 and 24 hours after feeding to monitor the 

change in P concentration. With the simpler batch system, it was possible to run 2 duplicate 

bioreactors to compare the reproducibility under the same conditions. 

 

Results would also show periods when more frequent samples were required, the sampling 

times were adjusted based on this. Samples might be taken typically at 0, 0.5, 1, 2, 8.5, 

10.88, 12.35 and 14 hours after feeding to produce more detailed uptake results. 

 

5.3.1.5. Phase 3, Exp.2 - Batch feed bioreactor – Algal growth rates 1 (Predominately P 

uptake) 

Starting from an algal concentration of 400mg/L, the bioreactor was batch fed 7 times over 

8 days. Before each feeding, the algal biomass concentration was measured using 

suspended solids. This provided data showing the growth rates to estimate doubling times 

and compare with literature. 
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5.3.1.6. Phase 3, Exp.3 - Batch feed bioreactor – Full measurement tropical and temperate 

conditions 

Measurements for all variables were taken at the standard intervals over a 24 hour period 

for one reactor at a constant 34°C maintained in a warm room and a second at ambient 

temperature in the laboratory. This was repeated for a range of algal biomass 

concentrations. This experiment was repeated with two levels of light, 140W/m
2
 and 

58W/m
2
. 

 

At the start of the 24 hour period batch feed, the bioreactor would be fed with 4.5L of final 

effluent. At this point the biomass concentration was recorded along with the nutrient 

levels and all other variables, IC, pH, metals, temperature, conductivity, TOC. Samples were 

taken at 2, 4, 8, 12 and 24 hours after the initial feeding. After 24 hours the biomass 

concentration was recorded to show the growth over that period. At this point the treated 

effluent was drained and the cycle was started again to record a new data set for the next 

batch, this time with a different initial biomass concentration. 4 different biomass 

concentrations were measured for each light and temperature combination (a total of 16 x 

24 hour data sets). The tropical experiments were run with one of the bioreactors in a 

constant temperature room (34°C). 

 

5.3.1.7. Phase 3, Exp.4 - Batch feed bioreactor – N uptake rates 

After feeding the bioreactor with 4.5L of final effluent, the N concentration was recorded. 

Every 2-3 days the final N concentration was recorded and the bioreactor fed again with 

fresh effluent. Knowing the start and finish N concentrations along with the time period 

between feeding, an uptake rate could be calculated. Taking the samples for measurement 

was done in exactly the same way as all other experiments as described in the standard 

methods, 5.2.1.1. 
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5.3.1.8. Phase 3, Exp.5 - Batch feed bioreactor – Algal growth rates 2 (Predominately N 

uptake) 

Algal growth rates 2 was an evolution on the first experiment. Care was taken to account for 

all algal loses from the system from sampling and loses in effluent volume from sampling 

and evaporation. This was necessary to provide accurate results for total algal growth as 

opposed to net change in biomass concentration within the bioreactor. Providing this algal 

growth data allows for adjustment to nutrient uptake rates per unit of algal growth. 

 

To help algal loss reduction, instead of sampling every day, the biomass concentration was 

sampled every 3-4 days. The data set was then collected over 24 days instead of 8 as in the 

previous experiment, Algal growth rates 1. 

 

5.3.1.9. Phase 3, Exp.6 - Batch feed bioreactor – Outdoor vs. laboratory conditions 

Two identical bioreactors were fed during summer (July – August) and sampled every 3-4 

days. One kept in normal laboratory conditions, under artificial light and the other was 

placed outside under natural light. The same effluent source was used for both. The 

experiment was run for 37 days including time to acclimatise to the new environment. 

 

5.3.2. Summary  

Table 3 - Summary of experiments 

Model Type and purpose of 

experimental study 

Light Temperature Dimensions 

    

Single tank continuous flow 

bioreactor 

   

Nutrient Uptake – Varying the 

HRT to determine how fast the 

process works and the effects 

on the algal concentration and 

120W/m
2
 17 ± 4°C 154cm

2
 x 65cm, 

10L 
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separation process. 

    

Multi tank continuous flow 

bioreactor 

   

Nutrient Uptake – Varying the 

HRT to determine how fast the 

continuous flow process can 

work now the multi stage 

system has been included. 

120W/m
2
 17 ± 4°C 2 x 314cm

2
 x 

95cm, 30L (15L 

used) + 1 x 

154cm
2
 x 65cm, 

10L. Total 40L 

    

Batch feed bioreactor    

To determine P uptake rates 

during batch process. 

120W/m
2
 17 ± 4°C 254cm

2
 x 18cm, 

4.5L 

Finding the growth rate of 

unicellular green algae. 

120W/m
2
 17 ± 4°C 254cm

2
 x 18cm, 

4.5L 

Studying well controlled batch 

feed experiments varying the 

biomass concentration. 

Recording 13 performance 

indicators under temperate lit 

conditions. 

120W/m
2
 17 ± 4°C 254cm

2
 x 18cm, 

4.5L 

Studying well controlled batch 

feed experiments varying the 

biomass concentration. 

Recording 13 performance 

indicators under tropical lit 

conditions. 

120W/m
2
 34 ± 0.5°C 254cm

2
 x 18cm, 

4.5L 

Studying well controlled batch 

feed experiments varying the 

40W/m
2
 17 ± 4°C 254cm

2
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4.5L 
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biomass concentration. 

Recording 13 performance 

indicators under temperate 

low light conditions. 

Studying well controlled batch 

feed experiments varying the 

biomass concentration. 

Recording 13 performance 

indicators under tropical low 

light conditions. 

40W/m
2
 34 ± 0.5°C 254cm

2
 x 18cm, 

4.5L 

Studying the N uptake rates for 

filamentous blue-green algae. 

120W/m
2
 17 ± 4°C 254cm

2
 x 18cm, 

4.5L 

Studying the growth rate for 

filamentous blue-green algae. 

120W/m
2
 17 ± 4°C 254cm

2
 x 18cm, 

4.5L 

Outdoor vs. laboratory 

conditions comparison 

experiment. Initial testing of 

process in a less controlled 

environment outside. 

120W/m
2
 

Laboratory and 

200-1000W/m
2
 

outside 

19 ± 4°C Laboratory 

and 16 ± 10°C 

outside 

Each 254cm
2
 x 

18cm, 4.5L 
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Figure 13 - Timeline of experimental procedure 
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6. Interpretation of Results 

6.1. Phase 1 - Continuous Flow – Single Vessel Bioreactor 

Fig. 14 below shows the results from the first phase of experimentation using the 

continuous flow reactor shown in fig. 3. and described in  section 5.1.1. 

 

 

Figure 14 - Comparing the effluent feed P and N concentrations with the discharge P and N concentrations over a 

period of 6 weeks. The HRT during this period is shown; it varies between 3.5 and 5 days. 

 

Fig. 14 shows the comparison between the feed and discharge nutrient concentrations 

along with the HRT at the time.  

 

During the 40+ days the experiment ran for, improvements were made iteratively to 

optimise the performance of the process; this can be seen in the last 16 days where the 

average discharge P concentration was 0.62 ± 0.21mg/L compared to the first 23 days when 

it was 1.39 ± 0.52mg/L. 
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The improvement in P concentration was put down to better control of the flow rate, 

removal of dead algal cells and more effective return of algae collected from the settling 

tank.  

 

The performance of the reactor was able to achieve the WFD target and the results showed 

sub 1mg/L P were possible. The HRT however during this experiment was on average 4.29 

days + 1 days settling time (the variation in HRT was caused by adjusting the flow rate to 

control the biomass concentration). This amount of time is impractical at a sewage works. 

This HRT was limited by the dilution ratio required to achieve the WFD P concentration in 

the completely mixed bioreactor, washout of algae from the bioreactor and speed of 

settling to collect the algae for reuse. To overcome these problems were the objectives of 

the subsequent designs as detailed in section 5. 

 

The algae species in the system appear to have little to no effect on the N concentration as 

shown in fig. 14 where the N concentration was actually increased at times. The results 

show the N concentration of influent and effluent vary without correlation. Integrating the 

area under each of the curves shows the net change in N is close to 0. The composition of 

the decaying sludge was measured which suggested only a trace of N indicating a low cell 

content. Cell growth theory suggests that uptake of N is expected to be at least 5 times as 

great as for P. 

 

Observations of the solution under 100x magnification showed that the protozoa were 

eating the algae. It was not clear to what extent this affects the biomass concentration since 

this was an observation rather than an objective of the thesis, however it was accepted that 

this will occur across all system designs and is not a factor that can easily be controlled.  
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6.2. Phase 2 - Continuous Flow– Second Generation Larger Scale Multi 

Vessel System Bioreactor 

6.2.1. P Uptake 

 

Figure 15 - Shows the STW effluent feed to the experiment and the discharge P concentrations for the continuous 

flow multi vessel system at HRT of 48 hours. 

 

Fig. 15 shows a consistent discharge P concentration of below 0.5mg/L whilst the 

Loughborough STW final effluent feed varies between 1.5 and 4mg/L. The phase 2 reactor 

often reduced P to 0mg/L showing complete removal was possible. The results varied 

between 0-0.63mg/L thus with an average from all samples of 0.27mg/L compared with an 

average feed P concentration of 2.95mg/L. This was achieved with a HRT of 48 hours, i.e. 

half that of the phase 1 bioreactor.  

 

The overall process concept was the same as the single vessel continuous flow system but 

these experiments demonstrate the importance of creating a concentration gradient to 

ensure the best removal rates. In this way, the HRT can be reduced whilst producing 

discharge P concentrations of less than half that previously achieved. The feed P 
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concentrations during this experimental run were less than a third of the original 

experiment due to the installation of a RAS fermenter at Loughborough STW, see section 

6.3.3. 

 

Again however the experiments suggested that the HRT in this experiment was limited by 

washout of algae from the bioreactor and settling velocity of the algae to collect for reuse. 

 

6.2.2. N Uptake 

 

Figure 16 - Shows the feed and discharge N concentrations for the continuous flow multi vessel system. 

 

Fig. 16 shows some reduction in N concentration however not enough to meet the 5mg/L N 

standard average residual (22mg/L NO3). The average NO3 concentrations across the 

experimental run were 45.23mg/L for the discharge from a feed of 69.2mg/L. 
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When comparing these results to the previous single vessel system where there was no net 

change in N concentration (Fig. 14), It can be seen that there was a significant improvement 

in uptake rates. These results from phase 2 suggest greater growth. 

 

There was an average net reduction in NO3 of 23.97mg/L which is 5.41mg/L N. There was an 

average net reduction in P of 2.68mg/L giving an N:P ratio of 2.02:1. Algal physiology would 

suggest a larger uptake of N. The excess uptake of P compared to N could be explained by 

the algae using the P during the energy conversion process of photosynthesis rather than 

using it in cell biomass. 

 

The suspended solids concentration of the discharge was measured across all the 

experiments carried out with all results showing a 0 or near 0 result. 

 

6.3. Phase 3 – Sequencing Batch Feed Bioreactor 

6.3.1. P Uptake Rate 

 

Figure 17 - Shows the change in P concentration after batch feeding. 
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Fig 17 is a very important graph, it shows the results from two experiments under the same 

conditions (using different feed effluent) performed 11 days apart with 2 separated 

instances run each time. It shows that within each experiment, the separate runs are highly 

reproducible, producing almost exactly the same results each time. The two experiments 

differ slightly with regard to their P concentration however the falloff / uptake rate of P is 

identical at 0.33mg/L/hr. 

 

The trend shows at what point a 0mg/L value of P should occur if the uptake rate was 

constant. It is expected that the uptake rate would remain constant providing there is 

available CO2 and soluble P. The raised pH to above 10 could make all the available P 

insoluble. 

 

If the P becomes insoluble at high pH, it may precipitate out and be retained for the next 

feed. After feeding the pH is returned to a normal value between 7 and 8 causing the 

precipitated P to become soluble again; spiking the P concentration to above the initial 

value of the effluent. 

 

This experiment was repeated many times using varying conditions; the results were highly 

reproducible and are discussed fully in 6.3.2.2. It was concluded therefore that CO2 is 

utilised as the preferred source of carbon. The exhausted CO2 and subsequent rise in pH 

and its effects are attributed to the slowdown in P uptake. This has also been demonstrated 

by (Ruiz-Marin et al, 2010) who was also researching algal nutrient removal using real 

wastewater. 

 

6.3.2. Comparison between tropical and temperate conditions 

Throughout section 6.3.2. I refer to temperate and tropical conditions as stream 1 and 

stream 2 respectively. Each experiment I carried out was done twice at the same time; in 

18°C and 34°C. All the legends used in graphs for this section show 8 lines, 4 from stream 1 
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and 4 from stream 2. The numbers following the stream indicator on the legend show the 

start and finish dry biomass weight in mg for that experiment, i.e. the change in biomass 

over the 24hr experiment. All the experiments were carried out in 4.25L bioreactors. 

6.3.2.1. pH and Inorganic Carbon 

Carbon is required for algal growth in the greatest concentration, according to literature 

Tezuka (1989), 50-300 times as much by weight than P. The most available source is 

dissolved CO2 in solution.  

 

 

Figure 18 - Shows the change in pH over time after feeding. The key shows the start and finish total algal biomass 

(mg) for each repeat of the experiment. The room temperature experimental stream results are highlighted in bold 

on the graph showing the increased activity. 

 

If the algae are using dissolved CO2, it would be expected that the solution would become 

more alkaline as more CO2 via carbonic acid is used faster than it is replaced from the 

atmosphere. This equilibrium with the atmosphere might be improved by using a shallow 

turbulent carrousel type reactor that would induce more gas into the solution.  
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These pH changes are some of the most consistent and reproducible values. The pH is 

shown to rise from around 7.5 to 10.5 in 24 hours. 50% of the increase in pH happens in the 

first 4 hours when CO2 is abundant. The rate of increase gradually declines as the available 

CO2 is reduced. 

 

When CO2 is limited the algae are able to use the carbonates / bicarbonates at a much 

slower rate, this can be seen in fig. 19 below. This only starts to occur after CO2 has been 

exhausted at around 10 hours after feeding. 

 

 

Figure 19 - Shows the change in IC over time after feeding for different ranges of algal concentration, shown in the 

key. The room temperature experimental stream results are highlighted in bold on the graph. 

 

The IC remains constant for the first 10 hours, dropping by about 5mg/L (0.5mg/L/hr) on 

average in this time. After 10 hours there is a much sharper decline of on average 14mg/L 

(1mg/L/hr). The data presented in fig. 18 and 19 suggests the CO2 is virtually exhausted 

within 10 hours of feeding when the carbonates become the source of carbon. The increase 

rate of IC uptake correlates with the timing of the pH results. As exhaustion of CO2 occurs, 
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demand for IC increases. The difference between tropical and temperate (normal and 

highlighted respectively, fig. 19) matches the difference in growth rates. 

 

The lower pH values for the tropical environment compared with the temperate 

environment suggest CO2 is still available. This correlates with the IC results that show no 

reduction in IC for the tropical environment. The pH change correlates well with all the 

other performance indicators, it almost directly links to use of CO2 and hence growth.  

 

When matching this finding with all the other data for the 24 hour batch feed experiments 

(shown in figs 17-26); the results show a significant reduction in performance after this time, 

indicating that a lack of CO2 is seriously inhibitory. This is discussed in the following sections. 

 

Growth and nutrient uptake continues but at a much lower rate, suggesting that activity is 

possible at these high pH values. Work by Ramanan et al showed that pH10 produced the 

maximum growth rate whilst the pH was artificially controlled and CO2 was kept in excess. 

This was the only experiment I found in the literature that tested a range of pH values 

without CO2 being limited. 

 

These results show that algae can use both these common sources of carbon, but showing a 

preference for dissolved CO2. This would recommend that adding CHP exhaust to the algal 

bioreactors would improve performance. 

 

CO2 is the least abundant and in greatest demand, and rapidly becomes the limiting factor. 

The pH can be maintained by replacing the CO2 used, keeping it in excess. This could be 

achieved by bubbling an additional supply from the base of the bioreactor through the 

solution. Adding CO2 in surplus would be ideal as long as the pH did not fall to an inhibitory 

level and could be supplied from the scrubbed biogas or CHP exhaust. The concentration of 

CO2 addition must be carefully controlled as Yun et al found 5% CO2 to be more effective 

than 15% CO2. Using a higher CO2 concentration will make it harder to regulate an optimal 

pH. The literature shows algae typically have a working pH range of between 7 and 12 with 
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an optimum value of 10. Maintaining optimal pH and surplus CO2 are important and 

relatively easy variables to manage in the wastewater treatment environment especially 

with the carbon emission incentives proposed by the regulators.  

 

6.3.2.2. P Concentration 

 

Figure 20 - Shows the change in P concentration over time after batch feeding for various concentrations of algae. 

The temperate stream 1 experiments show a better performance over the tropical stream 2 experiments.  

 

The algal bioreactor at room temperature was consistently reduced the P to 0mg/L 

concentration. The time taken to reduce the concentration to 0mg/L varies between 12 and 

48 hours depending on the availability of essential nutrients and conditions for growth and 

therefore nutrient uptake. The initial concentration of P was shown to be variable however 

the results show that the discharge P concentration remains below 0.3mg/L throughout all 

room temperature experiments. Whilst the P is in demand the uptake rate will increase at 

higher concentrations. The rapid fall off of nutrient concentration during the first 10 hours 

could partly be due to an initial excess luxury storage uptake of P which is then held in the 
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cells for future use when P is exhausted. Algae may buffer the solution by storing easily 

obtainable nutrients when at high concentration. The uptake is assisted by the 

concentration gradient. They use their own stores when solution concentration is low. 

Exhaustion of the CO2 after 10 hours however and subsequent rise in pH could also be 

affecting the algal metabolism. The trend of reduction for all nutrient uptake and 

metabolism after around 10 hours is as noted previously across all the data in these results 

and it is suggested based on this data and previous work that the change in performance 

are due primarily to available carbon becoming a limiting nutrient.  

 

For fig. 15, 17, 20 there was removal of P down to 0.5mg/L within the first 12 hours after 

feeding indicating to us that the 1mg/L EU standard could be met within 6 hours (even 

without further optimisation or CO2 addition). Following this there was a “tail off” of 

nutrient uptake as might be expected from nutrient limiting conditions. Total removal of P 

to the detection limit is generally within 24 hours likely to be due to slower metabolism 

using carbonates as a carbon source. The gradient of P uptake rate shows that maintaining 

CO2 in excess should result in complete removal of P within 12 hours. This can be seen by 

the trend line plotted in fig. 17. which is extrapolated and demonstrates total P removal in a 

12 hour HRT. This is irrespective of other optimisation factors such as, intensity of light, 

increase in temperature, selection of specific algal strains, pH control and bioreactor design 

where the HRT could be further reduced to 6 hours. 

 

In terms of proposed bioreactor design, it is concluded from the data that HRT is one of the 

most important factors. The HRT is a major influence on cost. The results from these 

experiments suggest cost-effective HRTs over full life-time analysis. 

 

For a 70,000pe such as Loughborough with a 21ML/day flow, a 5000m
3
 bioreactor would be 

required for a 6 hour HRT. At £200/m
3
 we can expect a capital cost of £1m + other running 

costs. Some of this cost may be offset by power generation from produced biomass 

however a full life cycle analysis is recommended to determine full costs and benefits. 
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According to Severn Trent Water, the costs of chemicals for chemical treatment are rising at 

3-4x standard inflation. 

 

An interesting observation on the P concentration patterns was an initial rise in P 

concentration. This was a consistent observation shown to happen in most of the data 

collection. Each time the algae are batch fed, the P concentration makes on average a 40% 

rise for the first 2 hours. It then drops off linearly for the next 6 hours to the CO2 exhaustion 

point; there is then an inflection and a gradual tail off to 0mg/L at some point within the 

next 8-16 hours. The times varied according to the initial concentration and HRT as noted. 

 

The phenomenon of an initial rise in P concentration could be explained in a number of 

ways. Using the theory that algal cells store more nutrient than they can currently use 

based on the phosphorus accumulating organism model we could hypothesise that when 

suddenly placed in an environment where P is readily available, the algal cells equilibrium is 

disturbed causing the release of some of the stored P. This could also be an action in 

response to the sudden availability of P. This would assume a voluntary release of P.  

 

A second explanation could be an involuntary release of P caused by stress. When the algae 

are batch fed, the mixing device is switched off and the algal cells allowed to settle to the 

bottom of the tank. Here they form a concentrated layer enabling the ‘treated’ effluent to 

be decanted. The concentrated algal sludge remains in the bottom of the tank, before a 

new batch of final effluent is added for feeding. This period of 5-10 minutes, in a highly 

concentrated, non-mixed, dark, low carbon environment could be enough to stress or shock 

the cells into releasing their stored nutrients. A similar phenomenon is found with bacteria 

stressed by low redox (BPR). None of the other papers found in the literature went into as 

much detail in analysing P uptake and release and therefore I cannot determine if anyone 

else has noted this. 

 

The different batches and experiments with the algae show a very consistent P 

concentration fall off gradient (0.4mg/L/hr +/- 0.15mg/L/hr) during the first 10 hours when 
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at steady state. Small variations in it would be caused by: initial P concentration, algal 

concentration and availability of light. From fig. 20 we have a P uptake of 0.35mg/L/hr along 

with a matching N uptake of 0.25mg/L/hr, this resulted in an algal growth rate of 30mg/L/hr 

(360mg/L/day, taking into account the algae really only grow vigorously for 10 hours until 

the CO2 is exhausted. This equates to 29.4mg/L/hr C giving a C:N:P ratio of around 84:1:1 

which is reasonable. A C:N:P ratio of 50-300:6:1 might be expected from the literature 

(Tezuka, 1989) but the ratio has been shown to vary depending on species as demonstrated 

from the numerous accounts in Section 4. According to Park et al the ratio of N:P in algal 

biomass can vary from about to 4:1 to almost 40:1 depending on algal species and nutrient 

availability in algal culture. All the results gathered with green chlorophyta algal flocs show 

an N:P ratio of between 2-3.5:1 however the results with the blue-green filamentous algae 

show more in the region of 5.5:1 which is closer to what is expected for algae in general. 

 

6.3.2.3. N Concentration 

 

Figure 21 - Shows the change in N concentration over time after batch feeding. Stream 1 are highlighted bold on the 

graph.  
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Under tropical conditions, the results show there was no uptake of N. Under temperate 

conditions, the uptake of N was consistent at 0.25mg/L/hr regardless of the initial 

concentration compared to P as noted before at 0.35mg/L/hr. 

 

Comparing the N uptake with P uptake, over 24 hours there was on average 5.3mg/L/day as 

N and 1.5mg/L/day as P giving an N:P ratio of 3.53:1. This was higher than the 2.02:1 

measured in the continuous flow multi vessel system; in this case the initial P concentration 

was on average twice as high which could also explain the difference as well as the different 

reactor design. 

 

6.3.2.4. Metals 

Originally five elements were selected to test for (Section 5.2.1.5.), 2 of these showed no 

change in concentration, so the analysis was reduced to 3; Fe, Ni and Zn. 

 

Metal ions will change in solubility with the pH rise caused by the algal growth. I have 

shown the pH to increase considerably but the rapid drop in metal concentration shown fig. 

22 is faster than the rise in pH. 
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Figure 22 - Shows the change in Fe concentration over time after feeding. 

 

There is an obvious drop in FE concentration within the first 2 hours of feeding (0.02-

0.0075mg/L average). This could be explained by the ion binding to the algal cells or a 

metabolic use triggered by the growth rate at the high concentration of carbon. Following 

the initial 2 hours, the concentration remains constant which could be due to the decrease 

in solubility of FeOH as the pH rises. Some organic iron would be expected to have a high 

bioavailability, these may be used quickly resulting in this early drop in concentration. This 

leaves behind Fe ions which have low bioavailability to the algae, hence showing no change 

in concentration for the remaining time of the experiment. Iron is also poorly soluble, it 

could be a trace element that is rate limiting.  
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Figure 23 - Shows the change in Ni concentration over time after feeding. Room temperature experiments are 

highlighted. 

 

At temperate conditions, Ni shows very similar properties to Fe, except over a slightly 

longer time period of about 5-10 hours. In tropical conditions, there is no effect on Ni 

concentration. Solubility might be expected to increase in a warmer environment but this is 

not consistent as the results show a slight rise in concentration. 

 

Ni shows similar behaviour to Fe; after the initial 10 hour period, the Ni concentration does 

not change, this could also be linked to the reduction in metabolism. 
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Figure 24 - Shows the change in Zn concentration over time after feeding. 

 

The Zinc pattern in Fig. 24 is similar to both Fe and Ni with an uptake followed by a rise. 

Over both temperature conditions, Zn has a steady fall off over 24 hours (0.025-0.01mg/L 

average). 0.01mg/L in the first 10 hours and 0.005mg/L in the next 14 hours; a reduced rate 

after 10 hours as shown with other nutrients. 
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6.3.2.5. Growth rate 

 

Figure 25 - Shows the growth rate within the 4.5L bioreactor for a range of biomass concentrations. Temperate 

conditions shown in blue, tropical in red. 

 

Fig. 25 indicates that in general, growth rate is a function of biomass concentration, 

proportional to the original inoculum size up to an optimum of around 1.4g/L. Above this 

however the reduced growth rates are attributed to competition for light and nutrients. Fig. 

25 does show an anomaly at concentration 1636mg/L during the tropical phase of 

experiments. This anomaly may be due to the unstable nature of the tropical experiments 

as we have seen from fig. 17 onwards.  

 

6.3.2.6. Effects of temperature 

Overall the performance indicators it has been shown that the temperate condition 

experiments noticeably outperformed the bioreactors in the tropical conditions. The 

exception to this was the tropical experiment between biomass concentration of 1.3-

1.6mg/L. This showed the highest growth rate of all experiments and the corresponding P 

uptake is shown in Fig. 20 which correlates perfectly with this finding. The growth rates for 
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all the experiments can be seen in fig. 25. They all match up with their respective results for 

P uptake, heavy metal uptake, pH change and inorganic carbon use showing a strong 

relationship between biomass concentration -> nutrient use -> growth rate. The best 

growth in the temperate conditions occurred at an algal concentration of between 1-1.8g/L 

and between 1.3-1.7g/L in the tropical conditions. 

 

Metabolism of algae that naturally occur in low temperature regions have been shown to 

perform best and efficiently within their natural temperature range. When the temperature 

is raised to 34°C+, performance in terms of N, P and C uptake drops significantly. Over a 

long enough time period, the algae would be expected to adapt to increased temperatures 

and outperform the cold temperature conditions. At warm temperature, over a number of 

weeks and months, performance did improve as the culture adapted, a visual change was 

also noticed in the appearance characteristics of the algae but this was not explored further 

as the process of natural selection and evolution is beyond the scope of this project. It is 

recommended that this is an important area for development of the process and should be 

explored in more depth in further work.  

 

The best achievable performance would in theory be under hot conditions and this is likely 

to be linked to high light intensity, using an algal strain that has evolved to operate at these 

tropical temperatures. This has been shown by Cromar et al who demonstrate the 

importance of light intensity and temperature on growth rate achieved. 

 

Each algal species will have evolved to suit the local climate and conditions, The best suited 

wild type algae to specific conditions will then dominate at that time. With regard to 

artificially raising the temperature to tropical conditions in a naturally cold climate, no or 

few algae species suited to these conditions will be present to form a new culture. Unless a 

specific culture inoculum is added, but the naturally occurring species will slowly adapt 

through natural selection enabled by very fast reproduction rates.  
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In the tropical condition experiment, the P removal was not as adversely affected as the N 

removal which was completely inhibited (Fig. 21).  

 

6.3.2.7. Effects of light 

The 8 experimental runs with phase 3 reactor as discussed above were repeated but this 

time the light sources were moved 10cm away from the bioreactor walls. This reduced the 

light from 136W/m
2
 to 39W/m

2
. 

 

 

Figure 26 - Shows the growth rate within the 4.5L bioreactor for the low light experiments at 39W/m
2
. Temperate 

conditions shown in blue, tropical in red. 

 

The experiments shown in fig. 26 show in most cases decay and death of the algae. The 

growth rates are mostly negative, showing a net loss in biomass. The results for the 

performance indicators correlated with this and can be found in appendix 1. 

 

It was concluded from these results that the performance of an algal bioreactor system was 

mainly dependent on the intensity of light. The bioreactor required a minimum of 97-
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136W/m
2
 to be effective. The normal daylight intensity in the UK for the shortest day of the 

year is 505W/m
2
 in the sun and 78W/m

2
 in fully overcast conditions (as found from the light 

meter data collected with this project).  

 

6.3.3. Change in P concentration over time and the effect on algal species 

 

Figure 27 - Shows the change in Loughborough sewage works final effluent P concentration over the 3 year period of 

the project. It reflects the installation of a RAS fermenter at the works. 

 

Over the 3 years of experimentation (Nov, 06 – Nov, 09), final effluent was collected from 

Loughborough sewage treatment works (LSTW). The P concentration of every sample from 

LSTW was recorded over this period. The P concentration in the effluent steadily reduced 

over this period. This reduction is due to the installation of BPR augmented by a new RAS 

fermenter to provide soluble P removal at the works to meet WFD. 

 

The Severn Trent works in Loughborough choose to use this new technology that extends 

the Bardenpho process shown by Barnard & Oleszkiewicz (2005) in section 3.3.1. A side 

stream fermenter is added into the RAS return loop as an extra process as shown in fig. 28. 
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This side stream takes a small proportion of return sludge and allows it to ferment over 

several days to release more VFA which then pass back into the anaerobic reactor.  

 

 

Figure 28 - Example of a side stream fermenter in the Bardenpho process 

 

As shown by the graph, the pre-2008 P concentration varied between 12-18mg/L due to 

rainfall effects. This is many times higher than the required 1mg/L WFD standard for P. With 

the installation of the new RAS fermenter at LSTW, by 2008 the P concentration is shown to 

drop suddenly below 4mg/L, ranging between 1.49mg/L and 4.12mg/L through the year. 

 

As this process became established within LSTW, it became increasingly effective, reducing 

P to between 1-2mg/L by early 2009 and then by late 2009 consistently meeting the WFD 

standard of 1mg/L P. 

 

LSTW is a great case study for this technology as these independent results show a dramatic 

improvement in P reduction after its installation, followed by gradual increase in 

effectiveness to eventually have LSTW able to meet the required EU standard through the 

installation of the RAS fermenter.  

 

The steady reduction in P caused it to become limited with respect to N, favouring an 

environment suited to N fixing algae. There was a subsequent change in the algal species 

from unicellular green algae to a filamentous blue-green algae (known for their N fixing 
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capabilities). N removal increased but this had a drastic effect on P removal, producing 

unfavourable results. This showed that N removal was possible however algal growth rates 

were significantly lower, less than a 1/3 of that experienced with the mix of P favouring 

unicellular algae.  

 

Samples from the bioreactor were studied under the microscope on numerous occasions. It 

was expected that the mix of algal species seen at various times would change. Without in 

depth analysis it is impossible to say just how the specie concentrations changed. It was 

noted that in general, the common species remained similar and examples can be seen in 

the microscope photos taken. 

 

 

Figure 29 - Shows the diversity of algal species initially found in the bioreactor samples. A) Scenedesmus denticulatus 

B) Pediastrum boryanum var. Longicorne C) Micractinium quadrisetum D) Closterium ehrenbergii E) Pediastrum 
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boryanum var. Cornutum F) Scenedesmus dimorphus  G) Scenedesmus communis  H) Chroococcus turgidus  I) 

Golenkinia paucispina J) Closterium moniliferum K) Oedogonium obtruncatum L) Cylinddrospermum muscicola M) 

Chlorella vulgaris. 

 

Whilst studying the algal samples under a microscope, many different species of algae were 

found, far more than the extent of the photos show. Although there are no pictures, 

members of the Euglena class of algae were identified as a common specie. 

 

The microscopic analysis of the samples suggested that the Scenedesmus class were the 

most common species but it is possible they may have been the most easily identifiable 

algae. A species that tended to clump together such as chlorella were more difficult to 

identify. The majority of the photos come from cells found alone as most of the algae being 

viewed were in large groups making it impossible to distinguish individual shapes. 

 

The micrographs taken were identified by comparing them to drawings and images found in 

the book, “Freshwater Algae: Identification and Use as Bioindicators”. The species identified 

are as follows: Scenedesmus dimorphus, Scenedesmus denticulatus, Scenedesmus ellipticus, 

Scenedesmus communis, Oedogonium obtruncatum, Closterium moniliferum, Closterium 

ehrenbergii, Pediastrum boryanum var. longicorne, Pediastrum boryanum var. cornutum, 

Golenkinia paucispina, Micractinium quadrisetum, Chlorella vulgaris, Cylinddrospermum 

muscicola, Chroococcus turgidus. Euglena gracilis and other species in the Euglena class 

were found although as previously mentioned I did not capture any micrographs of these. 

 

Scenedesmus denticulatus and Scenedesmus dimorphus were the most commonly identified 

and are considered an indicator of mildly to moderately nutrient enriched water (John et al, 

2003). Sewage oxidation ponds have been shown before to support extensive growth of 

unicellular algae, e.g., Chlorella, Chlamydomonas, Scenedesmus and Euglena (Kumar and 

Singh, 1979). When pond temperature is about 15°C Scenedesmus and Euglena have the 

advantage (Azov et al). G. Shelef (1980) studied algal species in wastewater under varying 

parameters; season, temperature, pH, organic loading, retention time, depth and agitation 
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methods. He found that the algal population in wastewater was made up of six major algae 

species. Euglena gracilis, Scenedesmus dimorphus, Chlorella vulgaris, Ankistrodesmus 

falcatus, Actinastrum gracillimum and Micractinium pusillum. Although they all have 

optimal temperatures around 25°C, Scenedesmus and Euglena are more tolerable to low 

temperatures and tend to dominate at around 15°C. 

 

The experiments I carried out had a normal operating range of between 12-18°C and I also 

found that Scenedesmus and Euglena dominated throughout the majority of the 

experiments until the species switched as detailed below. 

 

The drop in P concentration had a dramatic effect on the algal species and overall growth 

rate. In 2009 when the average P concentration in the effluent feed dropped to around 

1mg/L there was a change in the algal species present in the bioreactor. The algae type 

changed from flocculating unicellular green algae, Scenedesmus, Euglena and Chlorella that 

were predominately P dependant to a uniform long filamentous blue-green algae that 

formed larger filament strand entangled flocs with a higher affinity for N compared with P. 

This change in nutrient uptake behaviour was directly paralleled by the drastic change in the 

type of algae present in these open reactors. 
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6.3.4. N Uptake Rate 

 

Figure 30 - Shows the uptake of N over time and the reproducibility of the results between 2 independent streams. 

The saw tooth effect is caused by the cyclic batch feeding followed by N uptake by the algae. 

 

The first thing to note from the results shown in fig. 30 is the consistency in values between 

two independent bioreactors. Using the same effluent feed source, over the same time 

period, they had an almost identical performance. 

 

The gradients of the lines vary between 7-18mg/L/d NO3 uptake. The change in gradient 

correlates with the batch process time; the shorter batches have an overall faster uptake 

rate. This is in-line with the previous results, showing an increased uptake rate immediately 

after feeding where all nutrients are in excess, compared with the uptake rate after two 

days where the performance tails off due to the exhaustion of CO2. 

 

Fig. 30 shows that reaching the required standard of 22mg/L NO3 (<5 as N) is possible 

however with the reduction in productivity after 2 days the required HRT shown here of 4-5 

days was not a realistic option without optimisation. The fastest uptake rate from the 
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results was 0.75mg/L/hr which is slower than the rate achieved with the unicellular green 

algae in previous experiments of 1mg/L/hr. At 0.75mg/L/hr, a HRT of 2.2 days is required to 

reduce the concentration of NO3 by 40mg/L. 

 

The N concentration in the effluent feed for this experiment was on average 13.5mg/L N, 

18x as high as the P concentration, 0.75mg/L P. Throughout all the experiments, although 

with this one in particular the N has always been in excess with respect to the theoretical 

predicted growth requirements based on an N:P growth ratio of 6:1. This would explain why 

it has been more difficult to achieve an N concentration of <5mg/L as quickly as is possible 

for P. 

 

Experiments using the green algal flocs (section 6.3.2.3.) were shown to be able to reduce 

NO3 to less than 22mg/L within 24 hours without optimisation of the bioreactor to enhance 

growth. This performance in uptake rate and algal growth rate was not be matched by the 

blue-green filamentous algae used in the low P experiments. 

 

Molecular diffusion mass transfer theory would suggest that nutrient capture rates are 

greater when concentrations are at their highest. However there are no results in these 

experiments to back this up because this behaviour seen in results is better accounted for 

by the predominant effect of CO2 on metabolism. It is recommended that carrying out 

further experiments keeping CO2 in excess whilst maintaining an optimal pH (8-10) would 

be better for monitoring of P and N uptake rates. These experiments were limited by CO2. 
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6.3.5. Importance of light and comparison between outdoor and laboratory 

results 

 

Figure 31 - Shows the difference in light penetration through an empty bioreactor, comparing natural and artificial 

light. 

 

It has been suggested that the most often encountered limit to algal growth rate is the 

intensity of light (Richmond 2004) and it is the concentration of biomass within the reactor 

usually limits light penetration and growth. Mixing energy can be used to overcome this 

limitation by moving algae in and out of the lighted regions. 

 

Fig. 31 shows how low the intensity of light is from an artificial source compared to natural 

light and how quickly it reduces with distance. For artificial light, the reduction of light 

intensity with distance through the bioreactor is very high. The light source is adjacent and 

intensity decreases with distance due to the inverse square law. Natural light intensity does 

not reduce with distance; the source is of infinite distance away when compared to the 

range of distances being measured causing the photons to appear parallel in nature. The 

atmosphere also causes diffraction of the light meaning the photons hit the target from a 

much wider angle rather than just the point source. Natural light also has a much broader 



228 

 

spectral range. Natural light is far more variable in intensity with large changes between 

night and day and between cloud and direct sun. 

 

Table 4 - Shows the results from the light intensity data collected during the course of the experiments. 6 Results 

were required for each time of year, these were all recorded within 3 days of the date shown and within 30mins of 

the time shown when the specific conditions were met. Overcast results indicate 8/8 oktas cloud cover. 

Date Time of Day Condition Light Intensity (W/m
2
) 

21
st

 Dec 2009 12:00 Overcast 76 

21
st

 Dec 2009 15:00 Overcast 14 

21
st

 Dec 2009 12:00 Direct sunlight 605 

21
st

 Dec 2009 15:00 Direct sunlight 256 

21
st

 Jan 2010 12:00 Overcast 85 

21
st

 Jan 2010 15:00 Overcast 26 

21
st

 Jan 2010 12:00 Direct sunlight 700 

21
st

 Jan 2010 15:00 Direct sunlight 58 

21
st

 Feb 2010 12:00 Overcast 95 

21
st

 Feb 2010 16:00 Overcast 41 

21
st

 Feb 2010 12:00 Direct sunlight 843 

21
st

 Feb 2010 16:00 Direct sunlight 171 

21
st

 Mar 2010 12:00 Overcast 125 

21
st

 Mar 2010 16:00 Overcast 80 

21
st

 Mar 2010 12:00 Direct sunlight 1103 

21
st

 Mar 2010 16:00 Direct sunlight 454 

21
st

 Apr 2010 13:00 Overcast 131 

21
st

 Apr 2010 17:00 Overcast 107 

21
st

 Apr 2010 13:00 Direct sunlight 1126 

21
st

 Apr 2010 17:00 Direct sunlight 707 

21
st

 May 2010 13:00 Overcast 142 

21
st

 May 2010 18:00 Overcast 137 

21
st

 May 2010 13:00 Direct sunlight 1168 
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21
st

 May 2010 18:00 Direct sunlight 823 

21
st

 Jun 2010 13:00 Overcast 172 

21
st

 Jun 2010 18:00 Overcast 150 

21
st

 Jun 2010 13:00 Direct sunlight 1244 

21
st

 Jun 2010 18:00 Direct sunlight 994 

21
st

 Jul 2010 13:00 Overcast 178 

21
st

 Jul 2010 18:00 Overcast 133 

21
st

 Jul 2010 13:00 Direct sunlight 1179 

21
st

 Jul 2010 18:00 Direct sunlight 856 

21
st

 Aug 2010 13:00 Overcast 141 

21
st

 Aug 2010 17:00 Overcast 113 

21
st

 Aug 2010 13:00 Direct sunlight 1142 

21
st

 Aug 2010 17:00 Direct sunlight 681 

21
st

 Sep 2010 13:00 Overcast 121 

21
st

 Sep 2010 17:00 Overcast 76 

21
st

 Sep 2010 13:00 Direct sunlight 1117 

21
st

 Sep 2010 17:00 Direct sunlight 497 

21
st

 Oct 2010 13:00 Overcast 115 

21
st

 Oct 2010 17:00 Overcast 45 

21
st

 Oct 2010 13:00 Direct sunlight 865 

21
st

 Oct 2010 17:00 Direct sunlight 217 

21
st

 Nov 2010 12:00 Overcast 96 

21
st

 Nov 2010 15:00 Overcast 30 

21
st

 Nov 2010 12:00 Direct sunlight 698 

21
st

 Nov 2010 15:00 Direct sunlight 66 
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Table 5 - Shows the amount of daylight hours received per day for different months throughout the year in central 

London, latitude 51° 30' North. 

Month Daylight Hours / Day 

December 7.5 

January, November 8 

February, October 10 

March, September 12 

April, August 14 

May, July 16 

June 16.5 

 

 

An experiment moving the source 10cm away (in 1cm increments) from the reactor wall, 

reducing the light intensity from 136-29W/m
2
 demonstrated a decrease in algal productivity. 

During the experiments carried out with the light source placed 10cm (29W/m
2
) away from 

the reactor wall, algal growth stopped and began to biodegrade. All other performance 

indicators remained constant showing no algal activity. 

 

Light intensity through the reactor with respect to depth into the tank is a factor of surface 

light intensity and concentration of algal biomass. As the concentration of algal biomass 

increases, light penetration into the bioreactor decreases. Mixing not only helps to keep 

algae in suspension but also ensures they spend an equal amount of time in adequately 

lighted regions. The literature data from various papers show a general consensus of a 

maximum carrousel reactor depth of 30cm. 

 

When comparing full artificial lighting with UK natural light (Fig. 31) it can be seen that the 

luminosity of natural light is in a much higher order of magnitude than full artificial lighting. 

Summer natural light – 1165W/m
2
, winter natural light – 582W/m

2
, full artificial light – 

136W/m
2
. A typical overcast autumn day will achieve around 194W/m

2
. 
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The natural light will contain a spectrum much more suited to biological growth than 

artificial light due to the evolution of the organism under natural light. The algae being used 

in this process originally derived from a local wastewater treatment plant will have adapted 

and evolved to suit this specific spectrum of light. Ignoring luminosity, the growth rates in 

natural light would be expected to be higher due to the spectrum alone. 

 

 

Figure 32 - Shows the performance of the laboratory bioreactor and the outside bioreactor using the same feeding 

effluent. The falloff in N concentration over time is shown by the step changed between the 2 curves. 

 

This experiment was an initial test to see if the results from the laboratory could be 

matched outside and perform without a constant artificial light source. After a short 

acclimatisation period, the outside bioreactor stream performed within the EU set standard, 

as low as 2mg/L NO3.  

 

The results are similar to those shown in section 6.3.4. The uptake rate over the first 2 days 

after feeding is demonstrated (days 5 and 14 in Fig. 32) to be much faster than the following 
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days when CO2 has become exhausted. This can be seen where the batch process time is 

increased and the additional drop in concentration is small. 

 

The first test in external conditions performed almost as well as the laboratory experiments 

despite being at a disadvantage with diurnal light and large periods of shade, having been 

placed (for security reasons) in a partly shaded area.  

 

The outdoor experiment was not in an ideal location. To avoid interference, we were 

limited to this location. The area was secluded but unfortunately also subject to shade for 9 

of the 16 hours of daylight experienced in July. As an example of comparison, after 20 days 

acclimatisation, the outside reactor was consistently reducing NO3 to under 10mg/L whilst 

the laboratory experiment had reached steady state and reduced NO3 to <1mg/L 

consistently over the remaining 360 hours of experiment.  

 

It was predicted therefore that an external bioreactor with the correct set up that is with, 

for example, a shallow optical depth, an established culture kept at a consistent 

temperature (which effluent usually is) and with carbon kept in excess would perform 

better than these laboratory results. It was concluded this was due to the increased 

intensity / wavelength of light and a larger set up that would provide a more consistent and 

better availability of nutrients. 
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6.3.6. Growth rates 

 

Figure 33 - Algal growth cycle showing losses at feeding/measuring points. The saw-tooth effect is caused by the 

reduction of biomass from losses during sampling followed by a re-growth period. 

 

Algal growth rates for fig. 33 shows a consistent gradient as the total concentration of algae 

increases at an average rate of 124.49mg/L/day (SD of 2.56, Max of 128.44mg/L/day, Min of 

120.89mg/L/day). In the laboratory conditions used, these results were therefore 

reproducible. Because the concentration of algae increased whilst the growth rate 

remained constant, this shows the doubling rate of the algae has reduced. At 700mg/L the 

average doubling rate of all algal cells contained within the system was 7 days compared to 

16 days at 2000mg/L. Making the assumption that the algal cell doubling rate is fairly 

constant we can conclude that at higher concentrations a much larger proportion of the 

biomass is inactive or dead. The fastest growth rates occurred between 1000-1900mg/L 

with higher concentrations providing only marginal increases. The growth rate began to 

drop at concentrations above 1900mg/L and was lower (100mg/L/day) below 1000mg/L. A 

tail off in growth rate is expected as the biomass increases incrementally. Availability of 

light diminishes, availability of nutrients diminishes and there is more competition for these 
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limited resources causing a greater die away. Disease is also more likely to increase. Simple 

kinetics models would predict an increase in growth rate and biomass concentration until 

there is a rate limiting nutrient. For algal growth however, nutrient concentrations are low 

and with a semi-batch operation, the saw effect is shown in Fig. 33 due to batch feeding and 

sample removal. Growth rate tail off does not appear to happen until algal concentrations 

of 1900mg/L. We can conclude from this that this rate limiting maximum concentration was 

not an important factor at these concentrations however it has been shown there is no real 

advantage in maintaining a concentration of 1800mg/L over 1400mg/L. A healthier bio-

reactor would be more beneficial and any advantages of maintaining a high concentration 

of algae do not compensate for the loss of light. It was concluded that maintaining a 

concentration of algae in the range of 1000-2000mg/L would be acceptable. 

 

 

Figure 34 - An increase in growth rate as the algal concentration increases 

 

Throughout the project, a range of over 20 growth rate experiments with varying algal 

species suggested that standard algal growth rates in un-optimised bioreactors vary 

between 50-200mg/L/day and can be shown to increase with algal concentration. Fig. 34 
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shows the trend is not linear but there is a slight increase in growth rate as the 

concentration increases between 400 and 1600mg/L. It shows a prominent increase in 

growth rate above 1000mg/L which correlates well with Fig. 33 This behaviour at lower 

concentrations is expected if a constant doubling rate is assumed from standard microbial 

growth rate equations. The trend shown in Fig. 34 fits a doubling rate model of 4 days. 

Initial algal concentration + (doubling factor/day x Death loss factor x days) = final algal 

concentration. Averaging all the experiments carried out shows an average growth rate of 

143.2mg/L/day with SD of 16.2mg/L/day. A maximum of 152mg/L/day was achieved at an 

algal concentration of between 1200-1600mg/L. One can expect somewhere between 10-

20mg/L/hr CO2 sequestration during photosynthesis which should roughly equate to a 

growth rate of 6-12mg/L/hr (72-144mg/L/d). 

 

Other results collected from the literature show a wide range of values. Wahal & Viamajala
 

looked into maximizing algal growth in batch reactors using sequential change in light 

intensity. They found a maximum across growth rate across all their experiments of 

55mg/L/d. Ai et al reported growth rates of 560mg/L/d consistent growth for 7 days. This is 

a surprisingly high value compared to the other data found in the literature. It was however 

carried out is a highly optimised bioreactor and therefore you would also expect the testing 

to stringent. Comparing with the results I collected, I would suggest this is a feasible growth 

rate however due to the nature of their experiment, I would also suggest this is close to the 

upper limit. With complete optimisation of my experiments I would predict the growth rate 

to be increased 2-4x which is in line with the results they demonstrate. Hu et al found 

growth rates of 108-168mg/L/d. Rodolfi et al report growth rates of 360mg/L/d. Craggs et al 

found winter and summer growth rates of 4.45 and 68.6mg/L respectively.  Pittman et al 

produced a table of growth rates they found from literature; the majority range from 25-

80mg/L/d, one experiment recorded 127mg/L/d and another recorded 346mg/L/d. Cromar 

et al produced a mean growth rate of 76mg/L/d. Ramanan et al found growth rates of 84-

140mg/L/d. In another experiment, Park & Craggs found growth rates of between 30-

80mg/L/d. Heubeck et al found growth rates of between 44-54mg/L/d. Standard 

experiments appear to show a normal range of between 30-150mg/L/d with highly 
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optimised bioreactors reaching growth rates up to and possibly in excess of 600mg/L/d. The 

results from my experiments compared to the literature data indicate good performance for 

an un-optimised bioreactor, with numerous different configurations producing 120-

150mg/L/d. The maximum growth rate achieved in a 24 hour batch experiment was 

280mg/L. 80% of this growth occurred in the first 10 hours equating to a growth rate of 

540mg/L/d during active periods. 

 

Table 6 - the summary of different growth rate experiments under varying conditions. 

 

 

Laboratory experiments using full artificial light produced growth rates of up to 

150mg/L/day. As noted this value is similar to other results in the literature and It could be 

used feasibly to scale up and produce an economic estimate for treatment operation. The 

laboratory experimental results achieved are un-optimised with respect to; pH, 

temperature, mixing, nutrient stability, low light intensity used and was not supplemented 

with CO2. These suggest that growth rates and removal of priority pollutants, P & N could be 

further improved and optimised by using a pilot/full scale outdoor set up. For example Ai et 

al reported growth rates of 560mg/L/d in highly optimised photo bioreactors. 

 

The highest growth rates achieved (>150mg/L/day) came from floc algal strains (chlorella 

sp) that show a high affinity for P. The data shows a direct link to quantity of nutrient 

removed and growth rate of algae.  
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When the algal strain changed to filamentous blue-green, the results show the growth rates 

reduced to less than 33% of the maximum achieved with the unicellular green algae flocs. 

Nielsen (2006)  and Tang (1995)  show that the range in growth rates across all the different 

species is so big that we would expect 2 species chosen at random to have very different 

growth rates. The focus here is to grow for maximal nutrient removal rates, if the focus was 

on producing large quantities of biomass, then investigation into the fastest growing species 

would be more important. I did however find a correlation between growth rate and 

nutrient uptake rate, with the two expected to be closely linked. The biggest limitation to 

algal species choice is their ability to thrive in the environmental conditions found in 

wastewater. 
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7. Summary and Final Discussion 

7.1. Discussion of results summary  

The aim of this project was to determine whether using algae to remove nutrients, primarily 

P from real wastewater via the production of algal biomass was achievable and sustainable 

in meeting the WFD standards within a reduced HRT.  

 

The main considerations were: 

• Reducing P to very low levels 

• Reducing P to 1mg/L within the shortest HRT 

• Whilst achieving the P standard, are other quality standards also met, N 

concentration and SS 

• Whilst achieving the P standard what is the growth rate of the biomass produced 

• Can this process be sustained year round in the UK 

 

The most conclusive outcome of the results was the reduction of P to below the detection 

limit. This result was repeatable and clearly showed that algae are capable of removing all 

available soluble P. 

 

With this knowledge, the question was, under optimal conditions, how fast can the P 

concentration be reduced to 1mg/L. This of course depends on the starting concentration of 

P however the uptake rate was fairly constant at about 0.33mg/L/hr whilst CO2 is in excess 

with the only variation factor being the concentration of algal biomass present. The 

concentration of algal biomass is an easily controlled variable which can be set at 1500mg/L 

for optimal uptake rates. 

 

Experiments were not carried out in completely optimal conditions, i.e. set pH, temperature 

and light intensity whilst nutrients are maintained in excess. Due to this I cannot conclude 
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exactly what P uptake rates are possible however based on literature findings, it is not 

unlikely that the rate may be 50-100% higher (producing up to double the algal growth rate). 

 

Using optimal conditions of pH8, 1000W/m
2
 light intensity, 25°C, 1500mg/L biomass 

concentration and excess CO2; I would expect a P uptake rate of at least 0.5mg/L/hr and 

algal growth rate of 250mg/L/d. With an example starting P concentration of 8mg/L, to 

reach the WFD standard of 1mg/L would require a HRT of 14 hours producing 250mg of 

algal biomass over the day. 

 

This achievement is realistic during summer months in the UK when daylight hours are in 

excess of 16 hours. The process would work perfectly with 1 batch feed per day per tank. 

Gravitational settlement would be completed over night ready for the next feed. 

 

Using all the results gathered it is not clear whether the process would work during the 

winter months. From the results gathered for varying light conditions matching those 

experienced during winter; theoretically the algae would grow during light hours. In the 

above example during winter months with light intensity of 150W/m
2
 the HRT may be 

between 2-3 days. 

 

Whilst the P standard of 1mg/L is met, N concentration is reduced and can meet the 5mg/L 

standard however I can conclude that with using this process alone it is difficult to 

guarantee that N will always meet the required WFD standard. N removal was not made the 

primary focus of this research as its removal is less problematic than P, with other 

sustainable removal mechanisms already existing. 

 

After fast gravitational settling, SS were reduced to below 5mg/L which is well within the 

WFD standard of 35mg/L. ( see p194 Results and Discussion). Heavy metals, Fe, Ni and Zn 

were found to also be reduced during this process by 60-80% in the experiments carried out. 
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7.2. Comparison of analysed results with hypothesis 

Nutrient removal from wastewater can be achieved more sustainably and more effectively 

using a biological process of algal growth in bioreactors than it can by using existing 

methods. - The major energy requirement came from mechanical stirring for agitation. By 

integrating gaslift CO2 sparging we could reduce the need for mechanical stirring whilst 

increasing Carbon sequestration. Pumping energy requirements exist regardless of the 

process being used. The process did not require the use of any chemicals. The shallow tank 

depth used does require a greater land area though. 

 

Algal growth will sequester Carbon – The project showed that available Carbon was the 

major limiting factor. For the process to be successful, Carbon would have to be added to 

increase the level to at least twice of what is naturally available. 

 

The process would improve effluent quality by reducing other pollutants. – Whilst the 

photosynthesis and eutrophication processes of algae are well understood, their interaction 

with and use of metals had not been so commonly researched. The hypothesis was based 

on the theory that algae would require trace amounts of certain metals. This was shown to 

be the case when results showed a consistent 60% reduction in the concentration of Fe, Ni 

and Zn. 

 

The biomass by-product can be used as a fuel source. – This project did not carry out 

experiments using the algal biomass recovered however the growth rates and yields 

showed that scaled up applications at STWs could produce enough algae to make the 

process at least carbon-neutral. As demonstrated in the literature, the process of turning 

algae into fuel is becoming a more commonly researched topic (out-weighing researchers 

trying to find feasible and economical ways of growing the algae). The focus is on the algae 

to bio-diesel process. Whilst this has not yet been shown on a large scale level that is 

competitive with fossil fuel production; commercial organisations are now able to produce 

bio-diesel on a small scale using more controlled systems.   
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7.3. Contributions 

The project tested both the continuous flow process and batch feed process establishing 

that for operating and performance reasons, the batch feed process was more effective. It 

is easier to manage, produces more consistent results, has a less complex setup and can 

reduce P faster and to lower levels, subsequently producing more algae. 

 

The project showed that fast separation of algae from water was possible after switching off 

the stirrer. To keep the algae in suspension, the system requires continuous agitation. This 

method of fast gravitational settling could be scaled up to an industrial level. 

 

The project showed that P removal from wastewater using algae is possible to 

concentrations below the detection limit. Results demonstrated that a maximum of 12 

hours HRT would be required for total P removal. Results predict that with an optimised 

bioreactor working to a standard of 1mg/L P, <6 hours HRT would be required. These would 

run on an agitated biomass concentration of between 1.4-1.9g/L. 

 

The project showed that N removal from wastewater using algae could be a competitive 

process however it was more difficult to achieve the required EU standard of 5mg/L due to 

N being in excess compared to P. 

 

The project showed that significant growth of algal biomass is produced and has vast 

amounts of potential uses, the simplest and most logical being anaerobic digestion using 

existing on site equipment. 

 

The project showed that using natural light was better and recommended for all further 

work. The low artificial light intensity used in experiments showed that the algae could grow 

for most of the year in natural light. Winter sunlight intensity is 5x greater and has a wider 

spectrum than the artificial lights used in the experiments but natural winter poor light 

conditions and short light cycles were not tested. 
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The project showed that the process requires CO2 in excess of that which can be transferred 

naturally or available. Bubbling additional CO2 into the base of the reactor was 

recommended to increase carbon capture, algal growth rates and nutrient removal rates 

and remove the need for mechanical stirring. 

 

The project also showed that it was important for specific algal strains to operate at their 

adapted temperatures. Raising the temperature to tropical conditions does not improve 

metabolism for UK climate algal strains. 34°C was shown to be detrimental. 

 

Literature states that CO2 and light are the most important factors for photosynthesis. The 

project confirmed they were the key variables with the concentration of P available. This 

suggests promising results and further work at a larger scale was recommended. 

 

The project provides the fundamentals for a sustainable sewage treatment process showing 

that high biomass growth rates are achievable, on a large scale this could contribute 

towards the fight against global warming and in the long term has the potential to be the 

basis for the production of the worlds fuel supply. 

 

7.4. Comparison with closest rivals 

Ruiz-Marin et al wrote a 2010 paper entitled “Growth and nutrient removal in free and 

immobilized green algae in batch and semi-continuous cultures treating real wastewater”. 

Their topic is similar to this thesis. Essentially attempting to remove P & N via the growth of 

algal biomass in real wastewater. They focused on determining if immobilized algae are 

better than free algae. They claimed that immobilized systems could facilitate the 

separation of the biomass from the treated wastewater although in terms of performance, 

immobilized systems did not represent an advantage over free-cell systems. I only worked 

with free-cell systems due to enhanced system simplicity and better distribution of 

nutrients across the cells surface. 
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They used both Scenedesmus and Chlorella algae, two of the common algae worked with in 

my thesis. Their system was also managed without the addition of CO2 and like my thesis, 

reached a common pH of 10.1 with the non-algal control maintaining pH8.5. They showed 

that aeration was enough to keep the algal cells in suspension. 

 

Unfortunately the results they obtained could not be contrasted with my experiments. They 

carried out a decent experiment but measured nutrient uptake as a % rather than an 

absolute rate whilst not producing growth rate data. 

 

Griffiths produced a 2009 thesis entitled “Removal and utilization of wastewater nutrients 

for algae biomass and biofuels”, a similar title to my thesis. Tasked with the problem of 

reducing P discharge from the Logan City sewage treatment facility where algae grow 

naturally in the lagoon, they looked into two aspects, 1) harvesting the naturally occurring 

algae to remove P from the system and 2) laboratory and pilot assessments on the ability of 

the indigenous algae to uptake P. Both of these with the intention of using the biomass for 

biofuel production. 

 

They used plant growth fluorescent bulbs to encourage photosynthesis in a transparent 

acrylic rig with mechanical stirring for agitation. A similar setup to my experiments. They 

also experienced the standard pH > 10 whilst not using additional CO2. They also found 

Scenedesmus and Chlorella to be the most dominant species observed in the Logan lagoons. 

 

They carried out a CO2 addition experiment where pH was maintained at 8 via automatic 

CO2 release. They found that oil content within the cells was 3-4 times higher whilst using 

CO2 addition. Another good finding that backed up other authors was the increased 

productivity at higher temperatures up to 30°C. 

 

They carried out a smaller number and range of experiments than I undertook in my project, 

finding similar growth curves however the numbers involved were smaller. P reduction over 
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days rather than hours under lower algal biomass concentrations producing growth rates of 

around 15mg/L/d. 
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8. Conclusions 

8.1. P and N removal 

Algal bioreactors were shown to be able to reduce critical nutrient concentrations of N and 

P to below the detection limit.  

 

The removal rates of P and N were directly related to the strain of algae present in the 

bioreactor. The flocculent unicellular green algae were predominately found at higher P 

concentrations whilst the filamentous blue-green algae were predominant at low P, 

removing mostly N. It is suggested therefore that the specific type of algae present will 

depend on the concentration of nutrients in the treated effluent as the specie most suited 

to those conditions will dominate. With low concentrations of P, species that have a high P 

requirement will not be able to compete with other species with a lower affinity for P will 

dominate. In the experiments reported, the flocculant green algae were displaced by the 

filamentous blue-green algae. 

 

The best nutrient removal rates occurred when there was a mixed culture of 10 or more 

different species of algae present. When a single species completely dominated the 

performance was inhibited. With uniform filamentous blue-green algae; the growth rates 

fell to less than 33% and the nutrient uptake rate dropped. A mixture of algae will mean the 

P:N concentration ratio is less critical for ensuring high growth rates.  

 

When CO2 was freely available after the initial batch feeding, P uptake rates were shown to 

be up to 8mg/L/d. After 10 hours once the CO2 had become exhausted the P uptake rate 

dropped to 1.3mg/L/d. There was a strong correlation between dissolved CO2 and P uptake 

rate. The rise in pH to above 10.5 due to the consumption of CO2 is thought to have been 

inhibitory however a previous experiment suggested that the optimal pH value may have 

been around pH10, producing the fastest growth rates; a range of pH6-13 was tested. The 

majority of previous work however maintain pH8 as an assumed optimum.  
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The results from my experiments found that CO2 always becomes the limiting factor first. 

This was shown by experiments maintaining a constant light intensity, constant 

temperature and availability of P & N; the performance drops in correlation with the 

consumption of CO2, demonstrated by pH rise. The post 10 hour metabolism reduction was 

observed across all performance indicators and confirms previous work where pH was 

measured but CO2 sparging was not used. 

 

In a wastewater treatment system designed for the removal of nutrients; the P and N 

concentrations should never become rate limiting as the algal bioreactors could be re-fed 

on demand by monitoring to achieve the EU WFD standards. 

 

P removal is likely to be the major design criteria and the results have shown that this is 

possible to <1mg/L for the EU WFD and UWWTD within 10 hours in bioreactors with 

between 1-2g/L algal biomass concentration. The results do not show simultaneously 

control of the N concentration to <5mg/L as N due to N being in excess compared to P. The 

results show a steady N uptake of 5.5mg/L/d. This needs further work to optimise. 

 

8.2. Carbon sequestration 

Effluent pH increase shows a direct correlation with the decrease in IC. The rise in pH is 

linked to the reduction in dissolved CO2. As the rate of increase in pH level slowed, the rate 

of decrease in Carbonate increased indicating the switch to Carbonate once the majority of 

CO2 had been used, clearly shown by the increase in pH. This behaviour was confirmed by 

all similar experiments found in the literature. It was therefore concluded that CO2 was the 

preferred source of carbon, only switching to carbonate when CO2 became limited. As 

noted in section 6.3., this has a dramatic effect on reducing nutrient uptake and algal 

growth rate. 
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Maintaining an optimum pH for algal growth is an important design consideration. A rise or 

fall outside the active pH range becomes a limiting factor. Dissolved CO2 concentration 

should always be kept in excess so a natural pH8 could be controlled by monitoring the 

release of additional CO2. If the optimum pH was found to be 10, pH could be artificially 

raised whilst still ensuring CO2 was in excess. 

 

The need for additional CO2 in this system makes it a perfect candidate for the scrubbing of 

waste gases rich in CO2. A gaslift stream from the base of the bioreactor is recommended to 

be incorporated. This gaslift system may be enough to replace the mechanical stirring 

process for agitation. 

 

8.3. Algal growth rates & concentration 

Without further optimisation of light, species, temperature or excess CO2, growth rates 

were found to be between 100-150mg/L/day; this compares well with the literature 

(findings shown in section 6.3.6.). Light intensity is increased when outside under natural 

light, direct sunlight was measured to be at least 40x more intense than artificial light when 

measured at the centre of the bioreactor. Unlike the artificial light from the halogen lamps 

used, natural light contains the full spectrum of electromagnetic radiation required for 

optimal plant growth and therefore it is suggested that this may be a further benefit from 

scale up studies on outside bioreactors. This combined with the cost of power has led to the 

recommendation that natural light is used for the scale up trials. The lowest intensity of 

natural light during winter drops below 97W/m
2
 during overcast conditions however 

sunlight intensity is in excess of 194W/m
2
 and should be enough to maintain a base level of 

growth. The day length remains unsolved; artificial light may be required to increase the 

daylight hours during winter. 

 

Algal growth rate and nutrient uptake rate were affected by biomass concentration. 

Between 500 - 1000mg/L the growth rates increased at a fast rate. A slower increase in 

growth rate was found as the concentration of algae continued to rise to 1900mg/L. Algal 
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growth rates began to decline above this limit. No advantage was found in maintaining an 

algal concentration of 1800mg/L over 1400mg/L. At high concentration, light penetration 

was reduced and death rate was increased. The results suggest that an optimum bioreactor 

concentration of algal biomass is around 1500mg/L. 

 

The results show that whilst enough light and carbon are available, P, N and other trace 

nutrients such as metals will also be removed at a constant rate in proportion to growth 

rate. Under the conditions of my experiments, maximum growth rates were found to be 

around 540mg/L/day. This could be increased further with increases in natural light 

intensity and optimisation of temperature, pH and algal strain; further laboratory work on 

more intense bioreactors is suggested. 

 

8.4. Trace nutrients and quality standards 

Trace metals, Fe, Zn and Ni found naturally in the effluent were shown to be reduced by 

70% within 10 hours of feeding. The reduction in removal rate after 10 hours correlates 

with the exhaustion of dissolved CO2 and rise in pH. Metal concentrations may be reduced 

further if they are not limited by the overriding need to control N & P. 

 

8.5. Algae / effluent separation 

The selection of a fast settling, self flocculating algal species mix was a simple process. This 

enabled fast gravitation settling times of less than 10 minutes leaving effluent SS of <5mg/L. 

The algae free effluent can be separated from the thick settled sludge layer enabling a self 

seeding process ready for the next batch feed. The gravitational settling worked for both 

the in situ batch feed process and continuous flow process using a settling tank. 

 

Cross flow filtration and dead end filtration were found to be unsuccessful. 
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8.6. Seasonal variation 

8.6.1. Light 

From the light intensity measurements and the literature data, it was established that 

natural light has a far greater intensity than is sustainably possible to reproduce with 

artificial light. The light rays from the sun are parallel, meaning the intensity does not 

decline over the depth of the empty bioreactor however the origin of the weak artificial 

light is so close to the bioreactor, the intensity reduces by about 90% over its depth due to 

the inverse square law. The results showed that nutrient removal could be just as successful 

outside as it is under controlled laboratory conditions. 

 

On fully overcast days, the range of light intensities experienced during different times of 

the day and year was small compared to direct sunlight where the angle of the sun was a 

more significant factor. The light meter data confirms that the light intensity ranges 

between 78-155W/m
2
 during mid-winter and mid-summer respectively on a fully overcast 

day. When the sun is obscured behind 6/8 cloud cover, these values are roughly doubled, 

for 3/8 cloud cover they roughly tripled to 233-466W/m
2
. Direct sunlight ranges between 

602-1262W/m
2
 for mid-winter and mid-summer respectively. 

 

It was shown that the minimum light intensity required to achieve the results in this project 

were between 97-136W/m
2
. When comparing the required light intensity with those 

experienced naturally in the UK; it can be seen that for the majority of daylight hours 

throughout the year, natural light intensity is adequate for algal growth. The question 

remains whether the days are too short during winter to maintain adequate growth. The 

bioreactor design would need to be completely open to prevent shading issues due to the 

low angle of the sun in the winter. 
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8.6.2. Temperature 

Algal species being kept at their optimal temperature for growth was shown by results 

(section 6.3.2.6.) and literature to be important. Raising the temperature for the cold water 

inoculum algae to 34°C was found to be detrimental however theory suggests that 

productivity should be higher at warmer temperatures with algae suited to those conditions. 

From the literature in section 4, I conclude that the majority of algae increase in 

productivity with an increase in temperature up to about 30°C. By 35°C most algal species 

cannot function. It is also concluded that the respective light intensity and temperature 

need to be suitable. One study into the effects of light and temperature on the growth of 

three freshwater green algae isolated from an eutrophic lake found that as the temperature 

increases, the performance at higher light intensities increases and light intensity which is 

too strong for the corresponding temperature is inhibitory. It was also found that the 

performance increases with every increase in temperature, however the improvement 

between 30-35°C is small before becoming quickly detrimental to growth. This finding was 

confirmed by an experiment that looked at the influence of environmental parameters on 

biomass production. It was found that the HRAP algal concentration is a function of day 

length. A 3D graph of algal concentration vs. temperature vs. irradiance showed that a low 

temperature or irradiance will be inhibitory regardless of the level of the other parameter. 

 

Further work on optimal temperature should be carried out once a steady state has been 

achieved in the pilot plant using constant conditions. 

 

Water has a high specific heat capacity and hence reacts slowly to external temperature 

changes. Sewage temperature does not vary greatly; temperature data from the treatment 

works shows a May-September average of 17°C and a November-March average of 9°C.  

 

The temperate algae used will have an optimum operating temperature between 15-25°C, 

typical UK summer temperatures. The bioreactor will perform better under a constant 

temperature, maintaining it will not only maximise growth but also provide a more 

controlled environment to promote steady state. Waste heat from the proposed digester 
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could be used. A temperature reduction process may be required prior to discharge 

depending on the effluent discharge standards and results of a seasonal trial. The heated 

effluent should still be suitable for discharge to the environment as temperatures above 

25°C are not envisaged. 

 

8.6.3. Comparison: Outdoor vs. laboratory conditions 

When comparing performance between laboratory conditions and outside experiments, 

existing literature suggested that a number of factors need to be considered; temperature 

variance, availability of light (cloud/shade/night-time/seasons) and contamination from wild 

species.  

 

The results presented here demonstrate that whilst there is an available supply of CO2, the 

light intensity was the next most important factor leading to a limitation of growth. 

 

In laboratory conditions using artificial light, light intensity can be maintained constant 24 

hours a day however this intensity was low compared to natural light with halogen lamps. 

The intensity next to the light source is enough for algal growth however this drops 

exponentially through the depth of the bioreactor. The results showed no growth was 

possible when the light source was moved 10cms away from the tank corresponding to an 

80% reduction in light intensity.  

 

In natural light, the intensity is variable depending on time of day, season, cloud cover and 

shade. During daylight in winter in overcast conditions, as expected the light intensity at the 

surface of the bioreactor is poor, less than that produced by the halogen lamp. The light 

intensity from the halogen lamp diminishes so quickly that by the centre of the bioreactor it 

was less than that measured in natural winter overcast light. 

 

The results obtained from the external experiments show that performance is almost as 

effective as laboratory conditions, even with the unfavourable conditions noted. Insufficient 
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work was carried out in external conditions (specifically during winter season) to draw 

suitable conclusions and this is discussed more in the further work. 

 

The application of this process externally promises favourable results. This is pending a year 

round pilot plant experiment located at a sewage works. In tropical countries with less 

seasonal variation this process looks to be even more attractive. 

 

Contamination in outside conditions is less controllable than in a laboratory due to easier 

access by wild species but it is anticipated that any working system will have the 

environmental conditions tuned to a consistent steady state making contamination less 

likely. 

 

8.7. Use of algae 

Without further experimentation conclusions cannot be drawn on the most efficient way to 

use the algal biomass by-product. In terms of fuel it was concluded that making use of the 

onsite AD equipment would be the obvious choice for turning algae into energy. 

 

8.8. HRT, bioreactor design and optimisation 

8.8.1. Continuous flow vs. batch process 

Algae have a better capacity to uptake nutrient from higher concentration environments (at 

least within the range found in municipal wastewater). The continuous feed process dilutes 

the high nutrient concentration influent into the bioreactors reducing the overall 

concentration. This had three significant implications:  

 

1) There is a continuous supply of new nutrient as feed for the algae meaning the 

nutrient concentration cannot easily be exhausted. However, this continuous dilution 

does mean that the overall nutrient concentration always remains low which may 

reduce the algal uptake rate of nutrients based on simple kinetics. A batch process 
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can be used to provide an initial high concentration of nutrients whilst ensuring the 

system is re-fed before nutrient exhaustion. If the total amount of nutrient was 

identical in both cases, simple kinetics shows that nutrient is removed faster at the 

higher concentration and therefore reducing the time required to meet a specific 

standard. This was shown to be true in the results. 

 

2) The low overall nutrient concentration can produce a consistent discharge 

concentration due to the buffering capacity of the system however it could not 

achieve as consistently low concentrations as is possible in a batch process due to a 

continuous supply of nutrients into the system. An extensive baffling arrangement or 

carousel design could be used to solve this problem. Extensive baffling would provide 

a large distance between the inlet and the outlet, reducing the change of ‘short 

circuiting’ the system. This arrangement however sets up another problem, detailed 

next. 

 

3) The flow of effluent carries the algal cells with it. When the flow rate of wastewater 

is greater than the growth rate of algae, the biomass concentration is reduced at the 

start of the system, reducing the nutrient removal capacity and creating wasted 

volume in the tank. A feedback loop is required to constantly replenish the inlet area. 

 

8.8.2. Algal diversity 

The algae have evolved to efficiently use the various nutrients available and as shown, can 

adapt to suit the environmental conditions presented. When an environment is unchanged 

for a longer period of time, the adaption of algae to this specific environment becomes 

obvious as the species can become closer to a mono-culture supported in the results by 

steady state, metabolism factors, nutrient removal, pH change and growth rates. Reduction 

in nutrient concentrations become greater and more effective when there is a high growth 

rate. Steady state reactors would avoid changes in algal diversity. 
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With regard to cultivating algae on wastewater, there may be potential in experimenting 

with algal species that are not found naturally in the bioreactor conditions but this requires 

specific work and is unlikely to be useful due to the dominant nature of more suitable algal 

species. Trying to put specific species into open systems was reported in the literature 

review and it failed. Whichever species is best suited to the current conditions will naturally 

dominate and further adapt to the conditions hence we expect to see the best possible 

growth developing over a year to compensate for seasonal effects. The efficiency of algal 

growth and nutrient removal are expected to improve by changes to the physical process 

design. 

 

If the process incorporated waste heat to raise the temperature to levels that may not be 

suitable for naturally occurring algal species; investigation into species more tolerant to high 

temperatures would be worthwhile. 

 

The dominating algal species could vary throughout the year. In the results reported here, 

they were mostly dependent on the concentration of nutrients available. Temperature and 

light effects due to the current season could also be important factors. This may give rise to 

inconsistent yields of algae and varying performance in terms of nutrient removal. 

 

8.9. Bioreactor design scale up and industrial integration 

See section 9. 

 

8.10. Overall Conclusion 

The feasibility of implementing a wastewater nutrient removal system combined with the 

production of algae biomass on a large scale in the UK is good. The use of waste heat would 

mitigate the problems associated with low winter temperatures experienced in the UK 

climate. Regardless of this, the process could be successful in warmer areas of the world 

and is a promising system for developing countries. 
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This project assessed the feasibility of this system as a nutrient removal process in which it 

was successful; it also produced a valuable biomass by-product. In terms of using 

wastewater ponds as a method of producing algal biomass, the scale of the process is 

limited by the volume of wastewater processed by each specific sewage treatment works 

and the land available for use. It would be possible to produce a significant amount of 

biomass but in the grand scheme of things, the contribution from wastewater processes will 

only scrape the surface of what is required for global energy consumption. To really make a 

difference by using this technology as a renewable fuel, large areas of desert will need to be 

filled with specifically designed lagoons for massive-scale algal growth.  

 

The UK is not highlighted as a specific part of the world where algae production rates are 

likely to be significant, however as a process used primarily as a method of controlled 

eutrophication for the treatment of wastewater with the algal by-product harvested at low 

cost for energy recovery then the whole system is likely to be very successful. With the 

integration of waste heat to control effluent temperature, there are no barriers to success 

as the results are successful under lighting conditions less than those experienced naturally 

during UK winter. The effluent would benefit from any increase in temperature up to 

around 30°C, therefore using any available waste heat. Waste CO2 would also be utilised 

based on availability controlled automatically by pH monitoring. 

 

Field conditions are different from the lab. Light is only available during certain hours of the 

day and the temperature falls at night. Seasonal variations will also play a massive role in 

biomass production, growth and efficiency. 

 

The findings of this project may not indicate that a combined wastewater treatment and 

biomass production system is the best approach to solving the worlds fuel problems but this 

research has shown that algae is the answer in some capacity. The process may not 

currently be working as efficiently as it could but it is close to achieving its potential with 
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the use of a well regulated temperature and excess CO2; continued research in this area is 

essential, a mass form of alternative fuel is critically needed. 

 

In terms of wastewater treatment, the use of algae has many benefits to enhance 

performance. These included P and N removal, heavy metal removal, oxygenation and 

reduction of BOD. Without focusing on biomass or biofuel production, algae are definitely 

the answer to future improvements of large scale wastewater treatment. 
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9. Design of an Optimum Performance Pilot Plant 

Based on the results from my experiments and the data recorded in more recent literature, 

I can make a decent proposal for the design of an optimum performance pilot plant to carry 

out the treatment of wastewater using algae.  

 

Specific details are pending further experimental research as detailed in the further work 

section of this thesis. However, I believe there is enough data to enable the outline design 

of this system to provide maximum efficiency. 

 

For this design we will assume the use of real sewage effluent that contains a P 

concentration of between 2-15mg/L and excess N in relation to P based of an N:P ratio of 

5:1. The process will be tertiary treatment and occur as the final stage. 

 

9.1. Design specification 

The process must ensure that steady state is maintained to keep a healthy consistent mix of 

algae optimised for efficient nutrient removal. The primary focus is to maximise the nutrient 

uptake rate to reduce capital cost and land requirements by lowering the HRT. This is 

achieved by providing optimal environmental conditions for algal growth.  

 

CO2 is to be kept in excess. Natural light should be used; the bioreactor will require an open 

design to ensure the light intensity and availability is maximised. The pH should be 

maintained at the optimal value. Temperature should also be kept at the optimal value 

however this is likely to be as high as is possibly feasible up to a maximum of 30°C. 
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9.2. Physical dimensions and system processes 

Transparent tall narrow tubes have the greatest surface area for light penetration along 

with a smaller land usage however they are not economically viable when compared to the 

shallow tank carrousel design.  

 

Two types of tank are required, a more complex active tank - a HRAP incorporating the air-

CO2 gaslift process where the algae grow and a basic settling tank ensuring the active tank 

can be used continuously for growth. 

 

The active tank should be shallow (between 30-60cm pending further experiments) to 

ensure maximum light capture. The gaslift process could operate through a tall baffled tube 

built into the base of one side of the tank to allow maximum contact with the solution. 

Combined with a paddle wheel to keep the algae in suspension; this would create a gentle 

flow across the shallow tank (2-4m wide and 10-30m long) and back on a return loop to the 

entry point of the gaslift. The CO2 depleted solution would then be refreshed to maintain 

CO2 concentration in excess of algal requirements. 

 

When the effluent has met the required P & N standards, the agitating flow would be 

switched off for 10 minutes allowing the majority of the algae to settle and remain in the 

active tank. The majority of the treated effluent would be drained into the settling tank to 

enter the settling phase. The active tank would be re-filled with untreated influent and the 

batch process started again. 

 

The settling tank would be of basic design with dimensions set by the size of the works. It 

would incorporate a circular cone shaped bottom, funnelling down towards a sludge 

collector. The clear treated effluent could spill off the top of the settling tank and be 

discharged. The settled algal sludge would be regularly removed to prevent nutrient re-

mineralisation. The active tank would also incorporate a method for collecting the settled 

algal sludge when necessary. Any collected algal sludge would either be returned to the 
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active tanks or sent for processing into biofuel. The exact amounts would be set by ensuring 

the active tanks were maintained at an algal biomass concentration of around 1.5g/L. 

 

 A 21,000,000L/d works (requiring 5000-10000m
3
 tank volume) using an average tank depth 

of 60cm would require a land area of approximately 100m x 100-200m using a 6 hour HRT. 

The exact size requirements would depend on the established night time and winter 

performances. 

 

9.3. Environmental parameters 

CO2 will be controlled and kept in excess. Light will be maximised. Temperature should be 

maximised where possible up to the determined optimum value, likely to be 30°C. pH will 

be maintained at the optimal value as determined by further work; this is likely to be 

somewhere between pH8-11. 

 

9.4. Temperature control 

I recommend the addition of heat to raise the temperature to as close as possible to the 

optimum value. This could be achieved through the gaslift process or through a heat 

exchanger. This recommendation is based on a waste heat source being used from a local 

process such as power generation. 

 

The temperature may need to be reduced slightly during winter months as the optimal 

temperature is a function of light intensity. 
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10. Further Work and Recommendations 

10.1. CO2 

Further work is necessary to study the effect of keeping CO2 in excess, preventing it from 

becoming a limiting factor. This should help maintain a constant pH level for optimal algal 

growth. The mechanical stirrer should be replaced by an gaslift system that maintains 

dissolved CO2 based on the real time monitoring of pH. 

 

Further work on how increased CO2 affects algal growth and the uptake of N and P with the 

results from this research is needed.  

 

Studying the introduction of excess CO2 is important because of the extra benefits derived 

from sequestration and its potential to increase biogas and biofuel from waste. The data 

suggests it is necessary for improved performance. 

 

10.2. Additional heat and temperature optimisation 

Addition of waste heat e.g. from digestion, to raise and standardise the temperature should 

be addressed as priority. This should increase metabolism when using an algal strain suited 

to those specific temperatures. Experiments could be carried out using temperatures 

between 20-30°C on temperate strains for UK conditions. Tropical inoculums are suggested 

for temperatures of up to 35°C. 

 

Carrying out temperature optimisation experiments for the range suggested would be an 

important part of developing the technology. Temperature optimisation varies widely 

between species and depends on other environmental factors such as light intensity; this 

may explain the lack of literature data regarding conclusive temperature optimisation 

results. 
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10.3. pH optimisation 

The majority of the literature assumes an optimum of pH8. This is possibly due to the 

relationship with low carbon concentration, creating high pH and subsequent low 

productivities. The only experiment in the literature to carry out a fair pH optimisation test 

whilst maintaining excess carbon concentration found the optimum pH to be 10. 

 

pH optimisation would need to occur whilst keeping the other environmental variables 

constant and take into consideration the effects from buffering the solution at high pH 

values. I recommend testing a range between pH8 – 11. 

 

10.4. Tank dimensions 

A shallow tank, covering a larger surface area allows more light to enter the system and 

ultimately increase the temperature. The larger surface area would in turn result in greater 

heat loss if the air temperature was lower than the water temperature. 

 

Whilst a shallow tank at 30cm depth will receive more energy per area, a 60cm tank depth 

may actually be more efficient as it can treat twice as much volume. Determining the most 

efficient configuration in terms of light, temperature and absolute removal rate per square 

metre is recommended for pilot plant design. 

 

10.5. Control of algae species 

The results have shown that a mixed culture works better than a dominating single strain. 

Further research is suggested to control the algae species within the system. Controlling of 

environmental conditions and maintaining optimum conditions for the chosen species is a 

recommended start to this research.  
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10.6. Alternative organisms 

The findings from this project would suggest that using alternative plants such as reeds, 

duckweed and hyacinth in artificial wetlands are not as effective as the algae with respect 

to N, P and C uptakes. Whilst these have been shown to work, higher efficiencies are likely 

to be found by pursuing further research focused on algae.  

 

10.7. Pilot plant 

Based on the recommendations from this report; a study of the cost benefit of optimal 

aspect ratios of algal bioreactor design compared to the alternatives is suggested along with 

performance vs. economic viability.  

 

An outside reactor without artificial lighting was suggested for the extended study of small 

scale pilot experiments located at sewage works. The main focus should be to compare 

summer and winter results. The experiments would incorporate agitation by CO2 gaslift. 

 

Following refining of the small scale pilot experiments then a large full scale demonstration 

plant could be planned after a season of pilot plant data. The design should incorporate the 

successful techniques established whilst using control where necessary to maintain steady 

state. 
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