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Using tpe assumed stress approach first presented by
T.H.H.Pian, two finite elements‘hgve“been developed. which may
be used for the analysis of thin shells and box structures.
One has seven degrees of freedom at each node, the other
has twelve, In addition, improved elements for two-
dimensional membrane analyses have also heen produced and
compared, An existing program for the handling of the
conputation involved in such analyses has been developed to
allow the large number of equations resulting from -
practical three-dinlensional problems,

A wide ranging comparison of the new shell.elements
with existing Iknowledge of a variety of structures is
presented in the thesis which enables the user-engineer to
select the. appropriate element in any given set of
circumstances. Also there are included the resulis cof
analysing some pracfical problems, in particular a motorway
bridge deck of cellelar coastruction.

In generai, good results are achieved although the
improvements over e xisting nethods is more significant for
‘box structures, for which less is known, than the thin

shells about which more is known,
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Introduction

The design of structures involves at soue stﬁge a
determination - analysis - ¢f the stresses or straoins
throughout the structure under a variety of loading cases.
For nany years engineers hove sought methods which will
improve their knowledge of and ability to analyse sitructures,
In all cases, the theories produced are limited in their
scope of application, A% the outset of any analysis the
real-life structure hac to be simplified to a, greater orx
lesser extent and it 1s one of the aims of research to
reduce the difference between reality and theory as much
as possible,

Of the nmany techniques developed *to determine stress
and stroin distributions in linearly elastic structures,
the Finite Element lLiethod is one which is copable of general
application, (Foxr a full description of the method seec
Zienkiewicz ‘1) or Holand & Bell (2) )

This technique consists, in principle, of dividing
a complex problew intoc small parts each of which is
analysed separately., These emall parts, called “Finite
elenents", are assembled together to produce an analysis
of the whole, Ythilst, ideally, each elenent wouvld be
analysed exactly, it is not in general possible to Qo
this; some degree of approximation is iﬁvolved. This 1s
done by chosing a finite set of basic solution patterns
each of which satisfies the boundory conditions of the
element, Bince‘we may use the Principle of Superposition,
the best apprbximate solutior to a particular loading may
be obtained by linear combinations of this basic set. The

extent to which this solution maiches the exrct distribution
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depeinds on the choice of +the busic sets

The basic patvleras ére expressed i terus oX the -
volues of the C¢istribution ot certuin discrete points,
lcrovm ags nocdes, and the values ocre reierred to as "Cegrees
of ireecom", This exuresses the Tect that these values are
to be determined independently, the values at all other
points in the problem are interpolated between them by the
basic distribution patterns. The greater the number of
degrees of freedom in the whole problem the greater the
complexity of variation that can be generated from
linear combinations of the basic patterns within each
element, |

As an 1llustration of these fundamental principles,
consider the one-dimensional distribution of stress shown
in Tig, 1(a)e. Ve first divide the region of the problem;
in this case the horizontal axis, into, say, four segements;
(finite elements), Taking next as the basic set in each
segﬁment only the constant d;stribution we can approximate
to the original by such as i£ fig., 1(b),

1f, instead, we allow a linear variation through
each element we can obtain a better approximation, fig, 1(¢).
If, in addition, we divide the problem into a greater
number of scgments, or elements, we have an even better
result, rig. 1(d). Ve say that by further subdivision
the solution is "converging" to the exact distribution.
0f course, had the original distribution - the "exact"
solution ~ been composed of straight lines, we coﬁ;d haver .
complete convergence simply by - sﬁitable choice of elements,
This is important to note since with most eleﬁents there
are specicl loading or boundary conditions for vhich they

can provide an exact solution., This in no way improves
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its ability to match any other, more genéral; stress or
strain distribution,

 This then is the basis of the Finite Elcment Hethod:
that by sufficient subdivision of the original problem we
can obtain as exact a solution as we require; To improve
an approximate solution two approaches are possible, Either
improve the variztion of stress/strain within each element,
keeping the same number of elements, or increase the number
of elements with the same degree of approximation within
each element,

A great deal of success has been achieved by pursuing
thie latter course, but many problems remain unsolved and
thus, in this thesis, we are concerned with the former
approach., A considerable amount of effort has been devoted
to the development of a wide range of two dimensional
elements of véryiné sophistication, from the earliest
Taig elenent - a membrane triangular elemecnt with two

e (6) —~ to the complex

(8)

degrees of Ffreedom at each nod
iso—parametric.elements of Zienkiewicaz. These are all
limited to in-plane (memﬁrane) forces, Correspondingly,
elenents have also been developed to solve problems with
forées whblly-outmof—plane (bending).(S)

Wlork by Douthwaite(7) on a rectangular membrane
element has shovm that benefits can be gained from the .
use of additional degrees of freedom at each node, Following
this, this thesis begins with an examination of this aspect
of membrene element improvement, V/hilst some interest derives
from this particular problem, the primory object of this
author's work is the combination of membhrane and_bending

effects into a shell element, This field has received some

attention yet lacks features essential for the routine
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analysis of shell structures. Thilst much design work has
been carried out using plane analogies for essentially
three dimensional problems, there are many instances in
ihlch such calculations are barely justifiable and &
gen.ine need evists for anelyses which properly represent
three dimensional interactions, One class of such problems
includes those in which the thicknesses of the structural
elements cre small in relation to their other diﬁensionsa
This allows not only the classical shell problems such as
cylinders, but also problems containing = sharp
discdntinuity in the slope of the geometry at, for example,
the corner of a box. An illustratioﬁ of this is the
typical cellular construction of motorway bridges popular
today., The object of this work is to allow the engineer
to solve both of these types of problem with the same
shell finite element, using as coarse a mesh as possible.
Lltimately, each structural element would be represented
by a single element unless geometrical considerations
ruled otherwise. I'or example, in a motorway bridge the
webs of the cells would be represented by a single clement
from top o bottom. (Present limitations insist that
longitudinal subdivision be used, although only a few
elements should, ideally be required.) All this arises
from a complementary ideal, which is that as far as possible
the uszer-engineer should have to specify as little data
as possible that is not normally generated in an
engineering definition of the problem on, say, a drawving.
In fairness, it should also te pointed out that it is
possible that in the future cutomatic mesh generation

will provide another ansvier to this problem,



(18)

Smooth curved shells, such as a cylindrical roof, will
have to be represented by multi-faceted polyhedra in which
each face is an element, but again the object is to
reduce %0 a nimimum the number of elements. The
generation of the data for the definition of each facet
is tpdious and error-prone,

Yhilst several elements have been developed to
solve thin shell problems, quite successfully in mony cases,
they lack, in general, one important feature, This is,
see Tig. 2, the transmission of out-of-plane bending
nonecnts from one element into the in-planc moment of an
adjacent element. In a membrcne shell this effect is not,
of course, present, nor would it be if all elemcnts lay
in the same plane. Zowever, flat two dimensional elenents,
when used to apyroximate to a smooth curved shell, do no%t
lie so ond the absence of this effect can he quite marked,

Such elenents are capable of solving problems of
smooth curved shells using a large nesh of elcecments to
reduce the ongle between neighbouring ele:ents as much as
possible, In the box-type of structure this effect cannot
be ignored, indeed it cdominates much of the stress
distribution. An element capable of representing this effect
is required for the analysis of present day structures,

Plate elements have been developed which include
out—-of-plane rotations as independent degrees of freedom,

(5)

In particular, that of Allwood and Cormes has been used
in this work, In order to complete the full shell effect
a membrane element is required that will combine with this
plate element to produce the interconnection, The first

of twio si:ell elements, called 87, includes rotations about

all three rectangular axes as independent degrees of
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out-of-plane
bending

g

in-plane
“membrane

1

Fig. 2 Interaction between bending a~d

membrane action at a box corner
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freedon, Considering only the average rotation about a
giveﬁ direction at any point as a degree of freedonm has
one serious implication, “hat is, that the rotaotion of
any line dravm in the plone of the element throuéh that
point is the same ant¢ consequently no shear sitrzin is
allowed to develop. In terms of derivetives the average
rotation, & = 2(5“ —‘A*) andthe shear stroin, ¥ = ( +\3)
In some instances the enforced zZero shear strain at the
nodes can be particularly serious, although it will be
demonstrated that for many practical problems cuite
cdecuate solutions are obtained despite thié errer,

On the other hand, it will ¢lso be shown that there
are important cases when this shear strain is so
significant in the distribution of stiresses that soiutions
cannot be appreoacihed without allowing shear to develop.
Tor these problems a more sonhisticcted element has been
develoned, called 812, which uses derivatives such as i?ﬁ*%%‘
as independent degrees of freedom, (The significance of these
names will becomé apvarent loter,) In botﬁ,elements the
bending effects are represented by the same plate elenent
in combination with different membrane eleunents,

The coﬁtents of thiz thesgis are divided into two parts.
The first examines a range of membrane elements, two of
vhich are selec¥ed as suitcble for shell elements., These
latter are then com>ored in the second half and the
circumstances under w.ich the simpler S7 clement is
applicable ore largely delimitec and one importont
example of the use of the 512 element ccncludes the work.

It is the object of researclh such as this to nrovide the

byt
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user-engineer with rules under which he may use any
particular element with some measure of confidence in the
results, without having to reconsider the underlying

assumptions on every occasion,
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Chapter One Derivation of pleone stress elements

11 Displacement approach

Historically, the first finite elenent approach
consisted of determining the minimum potential energy
solution from a basic set of displacement patterns. It
was congsidered an importent condition for convergence,
indeed later proved as sufficient (10) that these bosic
patterns be comppotible, That is to say, the values of
displacenents along a comaon boundary should not be different
Tor adjacent elenents. Put another way, the displacements
along such a boundary should éepend only on the valﬁes of
the degrees of freedon at either end of it.

Vhilst this condition of compatibility is not a
necessary condition, ( see, for instance, Bazeley et.al.(11))
it is often difficult to predict the resulis of using
non-compatibly formulated elements, The more complex the
elenent, the more difficult it becomes to devise fully
compatible displaceizent patterns. There is even no /
gunarantee of the existence of such patterns. Mewer '
inprovements to this method, such as area coofdinates;

" (see Bazeley et,al. (11)) and iso-parametric elements;(8) N
have enabled the develonment of compprtible elements af the

expense of a greater guantity of computation,

1.2 Assumed stress approach

An alternative solution to the problem of compatibility
was put forward in 1964 by Pian;(4) This hybrid method
agsumes displacement patterns around the boundary olone,
Uithin the element, stress distribution patterms are

assumed instead, As a result, there is no difficulty in
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ensuring compatibility between elelents,
In contrast with the disnlacement aporoach this method

ninimises the complementary eneirgy functional,TT :

T

n

U”Fi—fulslds tosscben (1)

where
U = strain energy

u, = bounndary displacement produced

by ith nodal degree of freedom

S;

corresponding boundary force
By expressing the sitresses, ¢ , as polynomials with
unknown coefficients,tg s
9-"—"139@__ Geteo e eCe (2)
Pian showed that

U= I{?toH

g

[ * =
- .t \ - i
H: P GIIJJ.? dv BesdeBOCD (3)

noj

where

ond T is the elasticity matrix:

€ = Heo ovisesno (4)
Furtﬂer; he showed that by assuming polynémial interpolation
functions for the boundary displaecements in terms of the

nodal displacements, q

4= Leg
the work done by the boundary forces can be expressed

as:

vvhere
C
T = éPS chdS casceoee (5)
and P, is derived Ifrom P and revresents the stresses clong

the boundary.
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Iiinimising the complemnentary energy, Pian finally arrived-
at the stiffness matrix, k

t -1

k= 7Y, H ', T sesesncs (6)

Y/hilst for the Pian method, unlike the displacement
approach, there is no rigid constraint on the number of
unknown stress coefficients,ﬁ » that can be used with a
given confipuration of element degrees of freedom, there
is one important factor +to be borne in mind, which was first
pointed out by Tong and Pianu(13)

This concerns the lower limit of the number of

Sefricients, NSTRIC, If we denote the rank of a matrix by

r{ ), we have, from equation (5) above:

r(k) £ min{ x(1%), »&E"), r(1) )

= min( T(T), T(H) ) P sorean (7)
since column rank = row rank: r(Tt) = r{1T)
and H is non-singular: r(H—1) = r(H) = NSTRAC

If, for a given type of element, there are m degrees
of freedom which are required to represent ri; id body motion

then
r(k) é k1 - m s o PR RS AS (8)

where k1 is the number of degrecs of freedom of the element,

Thus from equations (7) & (3) we have that:

HSTRZC = k4 - D
For example, consider the element Pian first derived which
vvas a rectangular element with two degrees of freedom at
each node, For this element:

k1 =8 and m=3
Thus to ensure that the element will always provide a
solution when only rigid body motion has been constrained

fron the elearent:
HSTREC =2 5
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In practice this reqguirement is not entirely
necessary, for in an aasembly of elewents there may be
sufficient independent equations to provide a solution even
with the minimum constraints. In some of the elements to be
considered in later chapters, a value of HSTRIC less than
the strict minimum has been used without any undue harm
other than the failure with an artificial prohlem of one
element with three constraints, —~

There is no rigid upper limit on NSTREC, but as the
stress FTunctions increase in lengih, the element will
converge to the equivalent displacement element. It appears,
however, that there is no real beneiit in continuing beyond
a relatively short function. This has heen discussed by

Cornes(14)

and so will not te pursued further here, As far
ag possible the minimum practical value has been used
throughout.

(4)

Pian's original paper only ccnsidered a
rectangular element in plene stress but subsequently
rectangular and right-angled triangular elements for plate
bending have been developed. (See Bevern and Taylor (15))
Howrever, it is necessary for the adequate representation of
problem geometiies to have elements which are cither general
triangles or quadrilaterals, Such an element has been
produced for the plate bending caese and is quite successful,
(See Allwood and Cornes (5)) '

For the general polygonel element, it is simpler to
work in terms of each side of the element in turn, the
‘finol element stiffness mairix being the combination of
contributions from each, Thig methed was first used by N

(5)

Alilwood and Cornes for the plate bending element., The

only restriction imposed by this approach is that each

-
‘-h._._h._____“ .
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nodal degrese oI fieadom wuz’ introduce disPlaceﬁents aloﬁg
the two adjacent boundaries only., In practice this means that
the interpolation polynomials must be functions of x' alone
and not of y'.‘(See fig, 3 for notation,)

For the H matrix (equation (3) ) we cclculate the HI
metrix which is the integiral of the H matrix under the
side in gquestion. The integral for the whole area of the
elcment is then the sum of the individual HI matrices.:

The TI matrix, similcrly, is the integral along the
one edge of the element of the T matrix., (equation (5) )
It is convenient to work in terms of the stresses and
displacenents releted to the get of ares parallel and normal
to the side itself. If Ii is the matrix which transforms the
global stresses into these axes and I, interpolates the
corresponding displacenents from the nodal displacements, we

‘hove that

N

7T = fP tuT‘ItoL ds sescanos (9)
i S

/
Further, we may consider 1. as being composed of two other

matrices L' and U/, where

L = L'.W
and L' interpolates the edge displacements from the-nodal
displecements given in local terms and W trausforms the

nodal displacenments from global to local axes.

1.3 llew plane stress elenents

The work of Douthwaite (7) snovved that considerable
benefits can accrue from the increasing of the degrees of
freedom per node from twrvo to four, especially in problems
which contain a measure of in-pl-ne bending, such as in a

cantilever, However, the particular degrees of freedon he
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chose; u,v,%i;%ﬁ, are appliceble only to rectangular
elements, This is because that for the general polygon in
the Pian method it is necessary'to express the nodal
degrees of freedom in the global axés in terms of those in
the local axes parallel and rurmal to each edge in turn,
However, the four first derivatives of dicsplacenent,
Q” 13 D:f each individually give rise to components
of all four of the "rotated" derivatives, (See secction 1.4)
Logically, the next element to be considered after thé simple
"pu-v" element ig that with the full set of six degrees of
freedom at each node, including all the derivatives of
displacement as independent degrees: u,v, %% %:; A ;té

(The derivatives may be interpreted thus:

%{;g% : rotations of x and y axes respectively
%i:%% : direct strains in x and y directions respectively)

However, it is important to realise that for a given number
of elements in a mesh, the computation involved in producing
a solution from start to finish including both the
calculation of the element stiffness matrices and the
solution of the asgembled equations, increases more than
proportionally with the number of degrees of freedom at each
node, It is, thus, essential to keep these to a mimimum,
balancing this against the inprovements to be gained from
more sophisticated displacements and stress patterns,

The choice of a set of degrees of freedom between the
simple two and the complete six is limited by the one
important factor already mentioned, Since we are concerned.-
with the general polygonal element, it is essential that the
solution of any problem in one set of axes is the scme as
in a rotated set of axes, This in turn implies that the seb

of nodal degrees of freedom expressed in one set of axes, must
ey BUE
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be related to the corresponding degrees of freedom in

another set of axes at an angle to the first set. The set

of four degrees of freedon used hy Douthwraite (7), for exzample,
caniot be =0 expressed and is thus not suitable for a general
nolygonal eleizent., Two variatles are significant in this
context in that they are invariant under an axis rotation =nd

are thus emminently cguitable as degrees of freedonm, These are:

(i) average rowuation, @ = % %i"%@
. - . . a4 4 )
(ii) dilation, e = ( 3. gi)

and two further eleuencs have been derived, one using three
dezrees of freedom ond the other four, The Former takes the
average rotation ir addition to the two direct disnlacements
and the latter both of the above.

To swarise, the elements to be considered are:-

TAIG u,v

PIAN u,v

RuECT4 u,v, %i ’gg .
HDIL] Bd Du , v, IV
G.u116 U.,V, 5;‘,—) .‘T:—'jJ Dx 2 ‘;5
GLl3 u,v,8

GIl4 u,v,e,@

In section 1,4 below the stiffness matrix for the six
degree of freedom element, GIN6 will be derived in detail, In
this derivation the only changes that need be made for the
other nodal configurations are in the L matrixz, The changes
to this are elementary and need no elaboration, The
differences in the behaviour of these elements will be

exapined in detail in chapter tiree,
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ERE) .

1.4 VYerivation of element stiffness meirix

(16)

Following Iiallick and Severn , the stress patterns
assumed For this element are hased on the Alry sitress
function, This iz defined such that the function ¢ leads

GO

2 2
o = OJ_’ - . 0 y . 38

o y* Y dx° T Xy 0xOy
The following form is assuned for @:

%

1l

A1(y2/2) + A2(y3/6) + AB(X‘fZ} + A4(X3/6) + As(zy)
v A (xy®/2) + i (xzy/z) v Agyh/12) 4 ag(xb/12)

+ A10(x Ng /2) LA 1(x y/6) + Aqgixy3/6) & A13(y5/20)

+

A14(X3T /12) + A,15(~< y/2) + A (x057/2) + Ay (xty/12)

+ A18(x5/20)
cua00000 (10)

However, § must satisfy the biharmonic equation which

givas us:

= i .
Ay = =4y + L)
A16 = "A14/6 = %‘.’118 neesscengc (11)

St i, s

_ - -
hyg = =hyo/6 - s

-

Ve thus have 15 independent stress cecefficients,

(i,e, HSTREC = 15), Noting what was scid earlier sbout the
value of u3TRIEC this, strictly, allows us to use only a
triangle. (3 nodes * 6 d,f, - 3 rigid body = 15), TFor a
quadrilateral we would need 21 indepeﬁdent stress
coefficients, o considsrabile Jjump in the gquantity of
comphutotion reguired. As a consequence, although there is no

theorecical reason vhy not, iz degree of freedom

(uadrilateral elements have not been considered in this thesds;
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From eguations (2),(12),&(11) we have the following

P matrix:

(1 ¥y 0 0 0 x O y2n%X2 H%Xz 0 xy :
;
; K ’ 1 2 2 1 2
E O 0 1 x 0 0 3 -3 X -ty Xy 0 :
(0 0 0 0 1 -y -~x Xy Xy —%xz w%yz :
y3—3x2y/2 xyg-x3/6 —%Xzy -%X3
—%YB néyzx xzywy3/6 | x3—3xy2/2

2 - 2
sxy2/2 dCy-yo/3  dxytexd/3 3xcy/e )
ife also have from the eqguation of clasticity:
€ = l%a‘ -y, )
it X Yy

ey = -1—,‘(6" -y & )

S Yy x
= 20 ¢
B

X cee0oad o (15)
Xy
which gives us the I metrix of equation (4) as:

(1 =y O )
( )
E—V i 0 3
( 0 0 2(1+v) )

The PS mabtrixz is derived frow: the above P matrix by

malking the following substitution:

X = X, + sLgosat
1

S=efi
y = Y, ¢ shsinx

v/here (11,Y1) are the coordinates of the first node of
the side and L is the leugth of the side, This gives the
a3tress, in global axes; olong .the boundary. The
transformation of these stresses into those in local axes

iz given by:
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o

.2 2 v
sin d.ck + oS8 aEU& - Z3indcos#. L

. . . - . 2 2
r - -singcos .o, slndcosd.oy —ny(s1n:x - cosw )
I"rom this the matrix ¥ is obtained:

. . 2 s 2
-Sinucosy sinacogo coS W - sinw)

.2 .
sin’= cosza ~2sinsicosd g

ror the L matri: vwre shall consider the following set of

degrees of freedom:

1 ‘2: A, ev dy
4 s o= ! 3 -S-:* g Ej .

The matrix L is comnpounded from two other motrices L' and W

where:

L? are tihe interpolation polynomiecls for +vhe degrees of
freedom in local =xes and

W is the transforuation of these into global axes.

Using the nototion of fig.3 we have the following

relations:
u'! = u,cosm + v,sine ) X = x'.cos% - y'sina
(
v! = ~u,sinv + v.cosol ; ( ¥ = Xx'.3in® + y'cosd
Therefore:
e ]
Q&.‘, = coszy.@.‘: + sn_nacosd.a“’ + sindcosy @Y + sin 0( DY,
Dx oxr dy DL 0;3
%53 = —sindcosd,%& + cos%x,é: - 31n:x 5“ + sinolcosy, 3:
Nj ox. 29 Dx Ty
- l r
%i. = -sindcosd,2¥ - sin%y.a: + cosgm.éi + ginsicoss. v
2% e 24 o 04
) i
gﬁ. = sin%x,@f - sindcosw=%3 —'Slﬂ&COSd.aJ + cos%;,fx
3 23¢ PR 0% oy

L. I B I I I B NN (13)
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From these relations we can obtain the matrix 1/:

5 0 8 8 8 8 5 5 8 35 0 s P S sEEesewass b * ® 8 8 a4 & v s v e P

D

e

DITTO

E c s 0 0 0 0 . )
(-s ¢ 0 0 0 0 : i
; 0 0 c2 s; 802 82 E (l)

E 0 0 =-~sc ¢ -8 sc .

E 0 0 -sc -82 c2 8¢ :

E 0O 0 5° _s¢ -sc¢ c° : 3
2 . )
% . )
( . §

where ¢ = coS &

8 = sin«

{le now have to calculaie the interpolation polynomicls for L',
Assume the following forms for u' & v! along the edge:

ut(s) = as” & bs®

3 + 152 4+ R[S + n

+c¢cs +d
vi(s) = ks

vhere s = x'/L

Thus, if we substitute

f= 253 - 332 +1

g = 33 - 28° + 8

h = 3s° - 287

k = & 2

we have for L':

£ 0 L.g 0O 0 O03h O Lk O 0 O

Be B

0 f 0 O L.g 0:0 h O OZLXk 0)

Thus all the component matrices have been derived and
the next cheapter considers the problem of generating an

elenent stiffness matrix from then,
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Chiznter Two . The technigue of setting up an elenent

stiffness nmatrix

2.1 Introduction

The next stage of the development of a finite element
is to produce a program capable of generating a porticular
element'stiffness matrix from the deta. In the previous
chapter, the companents of the element stiffness matrix were
derived, Whilst it is possible to proceed to an explicit
form of the H and T matrices, this is not idecl. Tor,
although the work involved in producing the early regular
clenent stiffness matrices was not cumbersome, that for the
general polygon is, liot only are lengthy expressioans
involved in d eriving the components of the stiffness matrix;
but the pregram which results is also tedious, error-prone,
and difficult to test.

Furthermore, it was knovm in advance that several
different formulations 6f the plane stress stiffness natrix
were to be tried, so that several alternative approaches tfo
the element stiffness program were followed to find that

which is most amenable to modification,

2.2 Algebraic technique

The first of these consisted of the provision of a
package of subroutines for the algebraic manipulation of

polynomials.(17)

This proved to be feasible and such a
nackage, albeit rudimentary, wac written, Commands and data
for this package were set up which would compute the H and T
matrices and produce the algebraic results., These were then
input into a program which interpreted them and produced a

suitable FORTRAN subroutine.
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Although capable of achicving its object; the process
itself, and the resulting subroutines, proved too cunbersome

to be of anything but academic value,

2,3 Humexriccl technigue

The next attempt was tp use an entirely nymerical
technique; defining all the basic functions using the
PORTRAT arithmetic statement function facility, which allows
the programmer to define functions which can then be used in
a manner simnilar to the internal functions such as SIil or COS,
Each of the basic matrices used in calculating the H and T
matrices is supplied as an crray of integers which refer to
onc of the buili-in functions, The integrations over the area
and alonsg the boundary are corried out numerically msing a

five-point Gaussian algorithm,(18)

This algorithm was
used since it is alwost twice as accurate as the Simpson
rule of the same degree,

This technique proved more successful. and wvas used for
some time to produce solutions to simple problems, Although
the resulting program was more concise than any previous,
execution times were excessive. However, it should be noted
that this technique of defiﬁing the baéic matrices by integer
arrays leads to a program which does not expand
proportionally when including further formulations of elements
in the same besic program. The execution times were largely
the result of evaluating each of {the component matrices each

time that any array element was computed.

2.4 Iixed technique

The third and present version is a combination of the
itwo techniques. The functions which are polynomials are

stored by specifying only the number of terms and thé
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i
'

cozfiicient and powers of eacﬁ term. Trigonometric functions
are stored in much the same way as before, In the
calculation of both H and T the product of three basic
matrices is required to be integrated, In this program the
first part of the product is formed algebraically and the
individual terms stored dynanmically in a linear array with
an integer matrii of pointers, The final product is
integrated numerically using the same algorithm as before,

The three basic matrices for each of H and T are
specified by integer arrays which refer to the list of
aféilable functions, These, and the polynomials themselves,
are stored in DATA areas, The trigonometric functions\§re
built into the program itself, The DATA areés are kept in
separate overlay areas for ezgch element and are brought in

from backing store as required, and then transferred to a

common area of core store,

3

For instance, the polynomial x” - 3xy2/2 vould be

repregsented by the following seven numbers:

2 1 3 0 -1.5 2 1

= P
E‘\ 1"—--\\‘ ar';“ -
number .. N )
of terms coefficient power power second tern

of x of ¥y

For the elasticity matrix, say, the following list of
built-in functions is reguired:
1 ev 2{1+v) (vhere v is Poisson's Ratio)

The integer matrix defining the elasticity matrix is then:

1t 2 0 3
2 1 0
oo 5]
where O refers to the zero function.

In both the H and T matrices the middle of the three

component matrices is independent of % and y and involves



(37)

only the basic properties and geometry of the element

itself, such as Poisson's Ratio, thickness and so on, This
natrix is formed first and then used to pre-multiply the next
matrix to form an algebroic form of the intermediate product.
This product is stored in a linear array in the same way as
the basic polynomials. The final product is formed one array
elenent at a time, with the integration being carried out
numerically as described in the next seetion, No final

algebraic product is formed, (For details see Appendix Three)

2,5 Simplification of HT matrix

If the HI matrix is numerically evaluated directly as a
double integral, the number of Gaussian points at which the
value of the integrand is required is 21, However, the
integration is simplified, and in computer terms, shortendd
by a transformation which splits the double integral over an
area into two single integrals. The first, an improper
integral (that is, one between algebraic not numeric limits)
is evaluated algebraically from the powers of each term and
the coefficients, The second integral is evaluated numerically,
This latter, being now a single line integral, requires
only five Gaussian points. Since the integrand has to be
evaluated at each gaussian point this transformation reduces
guite considerably thc computation required. Fotable savings
were in foct achieved,

m, . o =
1he nathematics of the transformation are as follows:

AR M e
{
j j 5(1.,3)(}-7;}.3 = f Ff,':’l') dx
2 i ¥ o XTe
- \_,. 3:- :.(;ﬂ
where F(") = LG‘(-"—\,‘jJJ
Y- e

& (-\'-‘{"3_"])" ff(""‘j)dj
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2.6 Segmentation of program

Having vritten the program for one element, any other
element only requires minor changeé to tﬁe program in-
addition to a new segnent of DATA statements, In fact, a
complete new elenent can be generated, incorporated into the
program and tested in a single computer run vwith a
considerable degree of confidence that it will be correct.

The block layout of the element calcuvlation is as
shovm in fig.4. The development of this program was greatly
facilitated by a considerabls division into subroutines, each
of which could be written and tested independently and then
"plugged—~in" to the rest of the developing program, In

additicn, this appnroach made it easier to try out the
three methods discussed above, by a simple replacement of
relevant subroutines.

The same can be said of the control systen, described
in more detail in Appendix One, The value of dividing a large
progrom into as many small sezmenis as reasonable is

indisputables
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Chapter Three Comparigon of plane stress elements

3.1 Introduction

Yihilst some efforts have been made to produce a
criferion for the comparison of finite elements, these
have so far had only limited success.(19) Until it i=
possible to make a more impartial aﬁd direct comparison
of differently formulated stiffness matrices, it is still
necessary to select a set of fundamental problems on which to
base an evaluation, The seleetion of such problems can, and
indeed does, influence the apparent relative merits of
individual elenments. This is particularly so if problems
vhich can be solved exactly by one element and nct by
another are chosen., In this case, it is left to judgement
as to the severity and significance of the errors, Such
judgement must include an assessment of the likelihood of
encountering in real 1ife a situation in which the relevqnt

problem occurs,

3.2 Basis for comparison

TPive types of problem were selected for the comparative
tests on the various plane stress elements considered:
1 The bending of a short rectangular (2:1)

cantilever with various meshes

2 The stretching of the same plate with various
meshes

3 The pure shear of a square plate with various
meshes

4 The bending of a cantilever of varying aspect

ratio with & single mesh
5 The stretching of the same plate with varying

aspect ratio and a single mesh
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These problems are shown in figs. 5,6 & 7,

3.5 =Resulis of comparative fesis

The ra2sults of these tests for all elements are plotted
in figs. 8,9,11,15,& 16 and iisted ian tables 2 — 6.

Thilst it can be seen from these figures that all the
elements are conver;ent - indeed they must be so, following

the proof of this by Pian(ia)

- the rates of convergence are
not the same and differ according to the type of problem

attempted,

35351

Convergence in test 1 is extremely rapid for all
elements, Almost all the results, apart from those from a
single element, nmesh A, are within 15% of the convergent

result,

3&302

Hot so repid is the convergence in the second test,
In addition, the convergence for GEN3 and GBH4 is not
monotonic, The deflected shape of the plate when stretched,
(fig., 10) is somewhat different from the usual "necling"
noted with a larger aspect ratio. However, the same effect -
outward displacement of horizontal edges near loaded end -
wag just noticeable in the experiments c-rried out by

(7)

Douthwaite, This effect is because, with the small aspect
ratic, the load has become more distinctly two point loads
rather than a distributed load over the whole end of the

plate,
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Fig. 10 Deflected shape
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3:3.3

Success in the shear test (tesﬁ 3) depends primarily
upon whether the actual edge displacement pattern is
present in those available to any particulsr element - that
is to say, whether or not the sides may take up a linear

displacement and whether the sides may rotate relative to
each other at each node. This is possible for all these

elements except those in which the average rotation is
considered as a degree of freedom, GENF and GIN4, In these
cases the "corners" of eacn element are considered as being
"rigid joints™ as in, saj, a plane freme analysis,

Although the solution obtained from these elements
converges, (fig.11) the edge displacement which corresponds
to this is as shown in fig. 12 and furtner, direct stresses
are inducpd in addition to a varying shear stress, (see figz,13)
The overall effect ¢f this varies depending on the extent to
which shear dominates the action of any particular problem
considered, In addition, it skould be neoted¢ that both the
GEN4 and GI6 elcments require generalised dilation forces
to represent properly a shear force, These r1esult from the
fact that the shear force produces a displacement in the -
same direction as the dilation degree of freecdom, The effect
of neglecting these is shown in the results for the GLIM

element and can be seen to be rather marked.

3:3.4

The effect of using an average rotation can also be
seen in the deflected shape of the lower edge of the
cantilever problem, test 1., Talke, for instance, the mesh C,
Yhe deflection for this case is ahown in fig. 14(a) for the

elemént GIWA, Definite errors can be seen which result frgm
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the fact that the slopes a2t each node are conalderably less
than the correst vealues, However, the GEl6 solution, f1g°14\b),

does not contain this particulor error,

3.3.5

The results of the tests 4 and 5 (figs., 15 & 16) are
not unimportant, In effect, these tests measure the ability
of the elenents to cope with situations in which the stress
in one direction is varying consicerably more rapidly than in
the other. The large aspect ratio used means that the
resulting stiffness equations night be illmconditioned; but
errors are unlikely to have arisen from this source - gee
chapter six where this question will be examined,

The basic Pian element performs particularly poorly in
this context, The consequence is that any element subdivision
of a problem for this element must be such that all the
elements are as near "square" as possible, This can cause
quite a considerable increase in the number of nodal points
if the mesh is to bz relined more in one region thon in
another,

The three degree of freedom element, GIH3, is a
marked improvement on the basic element but nevertheless,
up to 25 errors were recorded. This is in contrast to the
9,5 errors of the GiN4 element, The very good behaviour of
the RECT4 elenent is, as always, restricted by the limited
type of problem open to it, and that of the GEN6 element is
achieved at an increascd cost in computing time, The GEN4

s a general element is tiwus an acceptable compromise,
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It was shovm by Allwood(21)

that, for the displacement
method, it is always better to use a general quadrilateral
element subdivision than one into triangles with the same
node positions. The argument, substantiated by example, was
based on the number of unknown coefficients in the
displacement patterns which were available for independent
evaluation. It is found that the stress distribution of the
quadrilateral can be _linear, whilst that of the triangle
is constant. Two triangles can only produce a step functioﬁ
not a linear variation,

It is not possible to argue in the same way for the
assumed stress approach since the same stress patierns are
available to.xboth the triangle and the quadrilateral.
Neverfheless, examples (see fiys, 17 & 18) indicate that the
same theorem may be true., In this case the fact probably
stens from the incompatibility between the edge displacenentis
and the stress distributions; the discrepancy will be
greater for the two triangles than an equivalent
quadrilateral since the.former include a contribution from
fhe common boundary betwesn the two elenents in addition to
the external boundary. |

Jince only a triangle has been made avazilable for the
Gill6 configuration, this element has been omnitted from this

comparison,

3.4.1

From these results it can also be seen that, as
expected, the PIA clement as a triangle is exactly the same
as the Taig triangle. This is because the two elenénts

E Ld

require the same stress distributions = constont - and these
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Meshes used for comparison of quadrilaterals & triangles

//// Loads: same

as on ﬁg.a
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match the edge displacements exectly. This is the only case
amongst the elements examined where this is so. The sane
effect would not be observed, for example, with the Rian

elenent and the Taig rectangle.

3.5 Calculation of stresses

3651
In chapter one, equation (6), where the element
stififness matrix was shown to be:

toH"1.T

k=T
we can also see how to calculate stresses, using the stress
assumption, IFor:

é:H—1,T,g cecoesce (14)
where g are the nodal displacements for the element. The
matrix H™'.T is known as the stress matrix. From
equation (14) we can calculate the stress at any point within
the element using the appropriate coordinates in equation (2):

g = P.ﬁ
The subroutine which calculates the stresses is written to
print out the values of the stresses at the nodes ond nmidsides.
Alternative points could have been used and, in fact, a

stress plotting program has been written (see appendix two)

vvhich allows this facility.

3.5.2

For the GDN6 element an alternative is available since
the strains are calculated ags independent degrees of freedom
at each node, The stresses may be calculated (equation (4) )
from them usingthe relation:

g=1"¢
In addition, this feature of the GIii6 element allows an

implied constT&int of stress as well &s displacement;
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34543

For those elements which have constant, or near constant,

stress boses, the value calculated from the stress functions
| for each element is most logically assigned to the centroid
of that element, This creates difficulties in plotting
stresses on the boundary of the problem, The best that can
be done is some form of extrapolation, ilothing more
sophisticated than manual extirapolation has been attempted
in this work, although 6thers have investigated this,

(22))

(éee Vlilson
30544

As a comparison, c¢ongider the longitudinal stress
along the lower edge of the 15:1 cantilever in test 4,
(Cant, 4/15) Theé Yesults for this from four ¢ifferent
elements aré shown in table 1,The notes (a) — (¢) refer

to section 3.5.5)

x |node!"exact" Rect16 GEL4 GEN6 GIII6

ing (1) (i) (iii) (ii)
o| 1| -11250 | 10497 | -3275] -11850 | -11450
30! 4 ~-8437 -3656 -8402 -3650 ~3550
60 T ~5625 ~5769 <5727 ~-5550 ~5600
90| 10 -2312 ~2383 -2749 -2785 -2770

o (a) . (b)
1201 13 ] 0 ! f1373_ +66 +740 +3
X = distance from supwnorted end

Table 1: Longitudinal stress (p.s.i.) along lower edge
of cantilever 4/15
(i) Stresses calculated from an interpoletion of the

nodal. degrees of freedom
(i) Stresses from stress polynomials
(1ii) Stresses from nodal strain degrees of frecdom
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3s545

(a) The stresses from the Rect16 elements are
virtually constant across the whole eiement and thus the
values quoted at nodes 4,7 & 10 are averaged values coming
from a step function distribution which is discontinuous
at these points. This accounts for the non-zero stress at
x = 120, In reality the value ~1373 should be considered as
the value at the point x = 105, The same applies to the
value at the other end, x = 0.

(p) This non-zero stress arises from a zero
horizontal strain and a non-zero vertical strain multiplied
by Poisson's Ratio, It is reasonable to expect a non-zero
strain locally under the point load and hence the positive
longitudinal stress, This i&'a feature of the stress
distribution not picked up by eny of the element stresses
derived from nodal displacements or assumed stress
distributions'which average out many such local variations,

(¢) This value at the root of the cantilever is in
error &b the result of the difficulty in correctly
representing the coustraint condition at this point. The
stféin in the vertical direction should be zero and that
horizontally, non-zero, This implies that the dilation
is non-zero., However, in the converse situation, a non-zero
value of dilation is attributed équall&,to the strain in
each direction ﬁé&iﬁg.ﬁhe:éffeéseé incorrectc However, the
effect is very local and apnears not to iﬁpair‘the results
elsewhere. The quoted values were obtained, in fact, by

congtraining the dilation to be zero,
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3.6 Stresgs free boundaries

It is possible in this particulgr method to constrain
certain boundary stresses to zero by the imposition of
zeros in the assumed stresses, (See Pian (23)) This
introduces one or more zero columns into the P matrix.
Conflicting opinions have been expressed (Dungar & Severn(24),
and Pian(23));it is not apparent that this refinement
significently alters the solutions obitained by the standard
element, other than at the boundary itself, Ppovided that
intelligence is employed in the interpretation of the
results when zero stresses are expected but small values are
printed out, no trouble should arise from the use of
gtandard eleinents, Since the stress paliern selected from
the basic set by the energy minimisation process is a smoothe:d
out version of the exact distribution, it is not clear that
this process of imposing a stress value at a particular
point is correct., In gencral, the stress calculated
ot any point by the assumed stress approach refers to =z

small region around that point and not just at that point

it=elf,

3.7 Conclusions

30711

For problems in which in-plane bending (cantilever)
action dominates then GEN4 provides a marked improvement
over basic two degree of freedom elements, However, the
inability of this element to represent shear is a
drawback althouvszh the PIAN o¥ Taig elements are quife

satisfactory for such situations,
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3-702

The GIEN6 element combines the virtues of the two and
four degree of freedom elements but at a considerable
increase in expense, l'or many situations this expense may
not be paralileled with a similar improvement in the results,
compared with the GEN4 element, Provided it is possible to
determine in advance. which to use, PIAN and GEIl4 are to be

preferred on.the grounds of econony.

3.6.3

As a prospective membrane component of a shell element
GEN4 is immediately atbtractive in that its average rotation
degrees of freedom fit well with the out—of-plane rotations
of o bending element., However, the effect of the distorted
shear stress under some circumstances resulting from the
use of GEN4 may be 2 problem and will be investigated in
later chapters, For situations in which shear is present at
a significant level, GEN6 can be used also in conjunection
with the same bending element to produce a more sophisticated

shell element capable of representing shear more correctly.
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Toble 23 Resulss of bending lozdense (test 1)

Elcz:aent_4 A B ] C D L
Di].00560 | .00956| 01241 o1233f_.01309
PIANiD2|,00193] ,00318] ,00406 | .00405 | ,3C431
K 4 12 2 | 32 1 48
D1l .01077| 01276 .01352 .0013691 ,01394
GRN3 |D2|,00:49| 00459 00492 ; 00503 ' ,00512
! ¥ 6 ! 18 36 48 ¢ T2
e U WU SUUUTY USSR
| D1} 401377} +013341 ,01416 ; L0134 1 L0115
RICT4 | D2| 400582 | 400474 | 00494 | 00496 | L00510
Nl oo10 27 51 | 68 100
SRS AU O AU SR U SUUE SO
'D1}.01452] ,01502| ,01373 | 01394 | 01417
GEN4:D2! ,00483 | ,00460 | (00506 | L0050/ | ,00523
im 3 24 9 | o 96
S U S S R
D1].01315 | .01373! .31446 b ,01473
G:1761D2| ,00399 | 100446 { ,0046S ! | ,00437 |
B! 16 1 42 (E P52
A .. . L E
iD11.00960 | ,01267 .01395 :.01)71 201390 ’
Rect) Def.00385 .00436 | ,00459 1'00‘73 00485 !
16 N ‘ 10 27 51 i 68 100 |

3
.

A e e e+ ot f—

tion Tox DY = ,01333 (Sce sun:loment
w0 chanter 3)



(65)

Blcrmont A | B c D B
D11,00450 § 031641 L0U187 | 00199 | 3211
PIAE|N21,00017 1 L0021 ,00038 | .00043 | ,000%
i 4 12 24 32 o3
D1;.00156 ; 02190 | J02254 | (00246 | .05293
GEI3|D2),0C041 1 00094 | ,0G132 | ,00112 | L0013
I 5 13 36 o 72
D1{.00189 | .00211 | ,00253 | ,00269 | L0503
RICTA{ D2 ,00062 ¢ LO0DST | LOD096 | 05105 | L65123
N ; 10 27 51 63 100
| -
p1!,00145{ ,00230! ,00290 ! .00272 ; ,00306
GEri4| D2{ ,00054 | ,00091}{ ,00138 1} ,00122 | ,00144
1 8 24 48 64 96
! .
D1.,00230| ,00275 | .00288 00313 |
GIN6] D2] ,00042 | ,00071 ] 400090 | .00106
R 16 42 78 154
e - )
: D1!.,001591 ,00197 ! 00244 | .00249 | ,00274
[ Rect: D2{.00032| 00061 | 00087 ; ,00093 | ,00106 i
i 16 | W 10 27 | 51 68 | 100
i i : :
D1 = horizontel dzflection of loaded nodes
D2 = wvertical deflection of loaded nodes
N = number of uwnconstrazined ecuctions

Table 3: Results of stretching case (test 2)
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. : -
‘Blement W X 4 z
i - - e

PIAN < exact > :

[ S e [ UN USROS |
1 5

N 24 42 57 i 72 i

RECT4 e @XACY {3 !

[

Dt | .,00118 00113 .00100 .00095
GIN4 {D2 | .00076 .00085 .00082 .00088

N 33 57 77 97 !

e s . ———— ' — _..]"
GENG B T S S

B Y TV S ._...___..?I_._.._. —— e _,E,..._.__-. PR TV PSPPI

| R?gts — exact % o 5

exact solution = L00089 ins,

D = horizontal deflection of upper left corner
D1 gae deflection withovt dilation force
D2 = as D1 but including dilation force,

Bxact solution is obtsined from:-

_ 5000
‘txy = 48%%

.00089 ins

Table 4: Results from shear problem (tust 3)
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| Blementl 3:1 | 4.5:1] 6:1 | 7.5:1] 15:1 |
E Ip | ,00338 | ,00837 | .01636 | .02493] .07127 |
| PLANIRY .94 73 57 o4 .02
| zd .87 | a0 | .55 | .44 | 02
34 i -
[y
% iD | 400388 | ,01192 | 402677 § «05013| ,33745
: GEN3{R1} 1,08 98 93 089 075
5 iR2| 499 « 9% .90 .83 .75
! )
% é —
9 D | 400402 | 01266 | ,02937 | .05684 | ,44977
i i
'RECT4 |R1] 1.12 1,04 1,02 1,01 1,00
| R2{ 1.03 99 «35 099 1,00
- _
D |.00391 | L01212 | J02732 | .05337 | ,40008
| GZ4IRI| 1,09 1,00 «S7 95 .91
| R2} 1,00 095 0 34 293 1
FTTTT - T
i 'D .01263 b 405670 | 44861
R2 299 299 .99
D | 601217 |,02824 | 05466 | 443257
Rect R1! 1,00 093 1 597 96
16 R2] 095 - 95 .95 .96
- & - |
§E1§,0036o 01215 |,02880 | .05625 | 24997
121,00390 | .01275 {,02958 | ,05721 | (45177
D = Finite clement Vertical deflection at load
E1 = CSZimonle heom theory oversge Geflection
L2 = Sheor-corrected acfiection at load
Rt = D/, R2 = D/

Table 5: Resuvlis from test 4.



! Elamcnti J:1 ¢ 4.5 6:1 | T.5:1 1 15:1
]'.. e e me ammn bn e - —— . —— .,...__..._‘;_._......,. [
i praw D 1+00020 !,00030 | 400040 |,0C050 |.00099
i ER 1,00 1,00 | 1.00 1,00 .99
| gmys P {+00022 | 400030 | ;00038 |,00045 | 400085
R | 1,10 1,00 295 .90 1 .85
RECT4 2 .00025 |,00032 } ,00042 |,00052 }.00103
R { 1,15 1,07 1,05 | 1,04 1,03
s L - - I
;D 1,00024 |,00036 | 400040 |.00050 1,00097
G4 R 11,20 | 1,20 § 1,00 | 1,00 | .97
: ! .
] : | |
' gmve D | | 00035 »00053 |,00102
R 11T 1,06 | 1,02
Rect? | 200032 500041 |,00050 ;400100
i 16R | 1.07 ¢ 1,02 | 1200 : 1,00 |
k i ' .l
| Ixact %oooozo .00030 | ,00040 |,00050 ' ,00100

D = <Tinite element average horizontal
deflection
R = Dfexact

"ixact" deflection obizined from Hooke's Law

Table 6: Results from test 5.
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7

i ; i

Element] A | AT | G ¢ § B ET
E . ————— .‘T-. ———t - fa— i s - e ——
PIAN  },00560{,00280 | 401241 | 400812 },01309 | ,00985
s : U S .
GEN3  {.01077 [.00771 | 01552 | L01131 | .01394 | .01149
- , —— h- it e v b
H
emi4  1,014521,00857 I ,01378 | .01034 £.01417 | ,01296
i : ' i i
e =
| Taig 00282 | .00812 | 400985

Table: 7t Results from comparison of triangles

quadrilaterals for bending problen,
(see test 1)

Supplement To Chapter Three:

Deflection of cantilever loaded vertically at

lower end corner,

(25)

From Timoshenko & Goodier

formula for the "effect of shearing force':

S 3 2
e _ Pl Pc..
deflection, d,, = 551 + 5Fn 1
E
Tet 4, = 1 value = r1’
Te 4 = usual value = ST
_ 3(1+V) Dy 2
Then d, = d1(1 + = (l) )

If we have that v = '/

b2
then d, = d,(1+ ($)9)

we have the following
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Chap ter Four HMiscellaneous Plane Stress Problems

4,1 Introduction

In addition to the comparative tests of chapter three, a
selectiéon of problems was solved using the GEN4 elenent,
This not only provides further validity to the process, but

also demonstrates the range of suitable problems,

4,2 Simply supported deep beam

The problem of determining the stresses in a deep beam
with simple supports (see fig.19) is one which does not
have a simple solution. A finite difference technique and
experimnental model results have been compared with other
approxinate analyses (See Iyengar et,al.(27)) The results
here for the GEN4 element using a coarse mesh of 3 x 4
elements are compared with those of the authors of (27)
usinga 4 x 8 finite difference mesh, For a comparison; the
elementary bending theory results are also shown, (figs,

20 & 21)

Although the finite element mesh is rather coarse, the
agreement is good, The point of greatest discrepanéy; the
horizontal stress at the bottom of the centre-line section;
is that result most contesteﬁ by all the analyses quoted
in (27). The ronge of results quoted is 1,0 - 1,5 p.s.i.
vvhilst the maximum in the GIM4 distribution is 0.8 p.s.i.
Otherwise the results are very similar and show well the

deviation from the simple theory;
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4,3 Diametrically opposed point loads on a circular disc

This problem has a solution by Timoshenko and Goodier(25)

and quite a successful solution was obtained using the GEN4
element, The mesh is shovm in fip, 22, Similar meshes have
been. used with other finite elements. (See, for example,
(27),(28))

Since the problem has gymmetry about- both the vertical
and horizontal axes, it is only necessary to consider one
quadrant.

The results, see figs, 23 & 24, are quoted in the

non-dimensional units of d't/

pe 1t should be noted that the
scale of fig.24 is much greater than that of fiz.23 and that
small variations in the major stress will introduce
proportionally more significent errors in the minor stress.
In view of this the finite =lement results are quite close
o the "exact® so@ution, bearing in mind that this is an
example of the difyiculty in the Finite Element method of
solving problems with point loads, Such loading cases
introduce infinite discontinuities in the exact stress
distributions vhich have to be rounded to a finite guantity
in the finite process., levertheless, reasonable solutions
are usually obtainec in all regions not too close to the
discontinuity, igain, it must be remembered that the stresses
calculated for any point are the result of a process which
averages the stress over the region around that point, thus

obscuring the discontinuities in the exact distributions,
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4,4 DPian's stretched plate problem

This problem was selected by Pian(23) as a test of
his original element and a comparison with his "stress free
boundary" elements. (See section 3.6) It is included here
because shear effects were expected to be quite significant
in the rezion of the loads and the efiect of this on the
G4 solution is of some interest, The mesh used by Pian
(fig. 25) was very much finer than that used here -~ 48
elenents instead of 15, 112 equations instead of 63 -
and the results obtained are shown in figs.26 - 28,

Apart from the 2ins, nearest to the load, the results
for the deflection of the panel centre line are barely
distinguisable, In the remaining small region, the analytic
solution quoted by Pian ceases to exist and there is a
difference between the two finite element solutions, (Tor
the analytical solutinn, see Warren, et.al.(zq)) Also there
is general agreement between the results for the direct
stress distribution (fig.27) across a transverse section
5ins, from the load, Small negative stresses oceur at the
outer edge for both finite elenent solutions in comparison
vith the analytic solution which has a small positive value,

Turning to examine the shear stress across the same
section, fig, 22, we find that both finite element solutions
have discrepancies between thewselves and the analytic
solution, On the one hand; the Pian solution has a non-zero
shear at the centre line of the section whilst it agrees
with the analytic sclution away from this edge. On the other
hand, the Gilll4 solution has a nearly zero shear stress at
this point, but in the adjoining region the shear stress

is sonewhat lower than the analytic solution, This might
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have been expected since it is shear which the GLIi4 element
is poor at représenting. lievertheless, although the
individual element stresses vary quite considerably, fig.29,

the everaged nodal volues are considerzblsy better, (fig.28)
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Chapter Pive Shell element derivation

5.1 Basic shell assumptions

A fundamental concept in the development of a shell
element is the division of the stress distribution into
two parts — in-plane (membrane) and out-of-plane (bending) -
which’ can be first considerede separately and then combined
together.(See Bogner etoal°(31)). Timoshenko (32) defines
a shell as being thin when its thickness is smell in
relation to its other dimensions. To be more specifie, the
elenents developed in this work satisfy the following
conditions:

(2) o shear between thé“inside and outside surfaces
is allowed to develop. Put another way, normals
to the mid-plaine remain normal in the stresced
state,

(b) Direct and shear stresses in the plane of the
element vary linearly across the thickness of the
element,

(c) Out of plane shear stresses vary parabolically .
across the thickess, having zero value on the
surfaces, reaching a maximum on the mid-plane.

Both the Cornes bending element(14)

and the two
membrane elemen ts, GLEM4 and GEH6, satisfy these conditions,
Je now prodeed to consider the combination of bending and

nembrane elements inte a shell element

5.2 BSeven degree of Ffreedom shell element, 37

This element combines the GEN4 membrane element having
four degrees of freedom at each node with the bending

element, having three degrecs of freedcm per node,
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The set of seven degrees of freedom for the shell

element,in its own plane, is

u, v, w, 6_, 6, 8 , e

x! Ty? Tz
Thus these separate easily into two subsets:

x?! gy

the first of which is the set of GEN4 degrees of freedom

u, v, e, GZ w, ©
and the second those of the bending elenent, The combination
of the two separate elements is thus simply a case of
re-~ordering the degrees of freedom in the sequence set out
above. These then have to be rotated into the same set of
degrees of Ireedom, but in the global axes, In fact, the
re~ordering is incorporaited into the same transformasion as
the rotation to produce a single operation, the details

of which are set out in section 5.4,

priap iy

The second shell element combines the same bending
element with GEN6 for the membrane contribution. For this

shell element the twelve dgrees of freedom are:

P v du Dy B__‘{ 9‘-"’ Do )
u" v’ W’ ?ﬁ\,% ,ﬁ‘ﬁff%\-;'-ai) 5’-:-;') 6‘:’}1’%1—2-

However, in this case the degrees of freedom of the two

component matrices are:

. a 90' ‘)V ':'b
nembrane: u, v, Sﬁ‘; e )D?"SB
bending: w, OX, Gy

The first step in relating these two subsets to the set of

t welve degrees of freedom is to realise that:
= (v _2v
8, = %(55

X 22
6 = ¥(&w -2
y = HE-2)

However, for the thin shell bending only out-of-plane, the

two component derivatives in each of QX and Oy are

numerically equal, Consider fig, 30(a), Here 91:= Qf .

ox
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and 6, =-%:. Under our assumptions, {(see 5,1) we have that
91 = 92. Consequently, we must have a stiffness relation
. . - . _  Ow du
which constrains the shear strain )’XZ = 5, to be zero,
in addition to the previous equations for 9y9 (Correspondingly,

¥ must also be zero.)

ya
Further, no consideration has yet been given to the
out—-of-plane direct strain éz =%5—:. In order that we satisfy

the thin shell assumptions, we must also have this zero,

Thus we nust include in the shell element three extra
stiffness equations in addition to the original nine from the
nembrane (K1) and bending (K2) stiffness matrices.

These are:

2r’xz = ((?E+é%i-) = 0

= (dw 49 =
¥yz ﬁ(Sa.bﬁ%) 0
éZ :%L: = 0

Provided no "forces" are made to act on these degrees of
freedom, we may write these equations in the standard

stiffness matrix form:

I3 = K5edg :
where 25 = 0, dy = ('gxﬁi and K = E : % 0 %
z
g 00 8]

where the value of o is, so far, immaterial, say 8 =1,
K1,K2 & K3 can be agembled together to make the full local
shell element, This is now expressed in terms of the
following degrees of freedomn:
u,v, %:; , %{;, Df—,—,.’ %:f » Wy Oypr O, b’xz’ b’yz,Gz

These can be transformed uniquely into the set of twelve
that we require,

This is again incorporated with the rotation into

global axes and the details are given in section 5.5,
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) 93." %(9'181)

(a) Bending case .

Ad

-1
2y
' \ . >
4 Ry
r =

{(b) Membrane case

Fig. 30 Components of average rotatior:
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5.4 Transformation of 87 from local to global axes

g = global degrees of freedom for one node
ql= local n 1] 1 1 n 1t

The transformation between the two can be written:
q' = B.gq

If the element has, say, three nodes the full transformation

is: ( )
q': B 0 0 « 4
~€ (o B o) =°
(0 0 B)
or: qe' = C.qe
If 17 = local element stiffness nmatrix
¥ = global " " n
then %
K = CQK’OC

For the S7 shell element the X' matrix is composed of:

' K, = in-plane stiffness matrix
K2 = outwof~plane stiffness matrix
and then:
K' = (K, 0)

, .
E 0 x, g seseseas (15)

In detail, the transformation, including the re-ortering
of the degrees of freedom, is showvm in table 8, which is
expressed in terms of the direction cosines in the

following way:

ul = 11 1 + 12.V + lBQW

! =
Vo= mpeu 4 M,V o+ Do W ,
w! = njeu + DyoV + njow ‘

vhere li’mi’ni are direction cosines.



(1, 1, 1 0 0 0 0)
( m, D, 7ng 0 0 0] 0 )
(0 0 0 0 0 0 4)
(0 0 0 mel,=l,m, mlg-l,my mply=lym, O )
( n, n, n, 0 0 )
(00 0 myny=ngmy mng-ngmg myny-nomy 0 )
(0 0 0 mngl,-lmm, nlz=ling nyl-l,ng 0)

Table 8: Transformation matrix, B for S7 element

5.5 Transformation of 812 from local 1o global axes

This is the same as for 87 dbut with XK' = ( kK, 0 O )
(O K2 0 )
(o o© K3)

and the transformation is given in table 9, at the end of
this section, However, one significant point still remains to
be considered., Vhen two elements meet at an angle, the
special degrees.of freedom sz’ Xyz, ¢, will not be the
same for each and indeed, in global terms, the matrix K3
will by now be transformed into different parts of the '
assembled equations, Furthermore; although it is essential
that for the bending case (fig. 30(a) ) these terms be zero,
for an eleuent at, say, right angles to this, these degrees .
of freedom now become membrane degrees of freedom (fig,30(b) ),
and are allowed to develor independently as befitis a

membrane problem,

A fundamental technique in the stiffness method is that
specific equations can be made to "dominate” and become
independent of the rest simply by the numerical technique
of multiplying them by a large factor, This, for example,
can be used to impose finite or zero settlements upon
certain direct displacements., Similarly here, if normal

stiffness equations are superimposed on the special
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equations introduced in 5,3, and the value of § is made
sufficiently small, +the effect of the special "constraints”
will be insignificant in the presence of ordinary stiffness.
In this way we are able to make elements meeting at an

angle remain rigidly counected together by these peculiar
constraints unless there is a real elmment which is capable
of taking these strains and which allow these shear and

direct strains to develop,

1.41,14
my [ Rpis) S —_—
112 111, | 1415 | 13 122 L1, | 151, 1312_]132
T Lmy [ Tymy | Lymg [ Lmy {1omy | Lomg § 1oy | 1pmy {1smg
m121 m1l2 m1l3 m211 m222 m213 m311 m312 mjzj
m, MW, | my0p | Mooy W, mylg | Mamy | mem, fmg
ny n,ing
-%-(n‘lm2 -A-(n1m3 %(n2m1 %(nzm %(n3m1 %(n3m2
_m1n2) -m1n3) ~m,ny -m2n3? j?3n1) —m3n2)
F(1yn,| 2(1yn, 1#(1,n, H(1m, F(1,n, 14(15n,
-n,1,) —n113§ ~n,1,) —n213) -n311) —n312)1
2l1n1 10, l1n3 1n, j21,n4 12p3 l3n1 13n2 213n3{
+n1l2 +n1l3 +n211 +n213 +n311 +n312 i
2n1m1 n,m, n1m3 Ny, 2n2m2 n2m3 n3m1 n3m2 2n3m3
- D, | DN | +myn, , *mon | Hmgn, | 4mon, ! .
n, nyn, | nyng i ongn, |n, Dol | Doty | Bpn, § Dy

Table 9: Transformation matrix, B for S12 element
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Chapter Six Basic tests on the shell element, S7

6.1 Introduction

The testing of the plane stress elements as reported

in Chapter Three and that of the bending element by Cornes(14)
has validated the behaviour of the component elemen ts under

a variety of practical situations. It is not necessary to
perform exactly the same tests on the shell elements, Two
points remain, however, vhich need consideration, Firstly, it
is hoped that the S7 and 812 eleiients wan be used with
particularly coarse meshes. The degree to which this is

possible has to be determined particularly in relation to

the geometric approximation of curved surfaces, Additionally,

the effect of using plane elenments and polyhedra tc represent

curved elements and doubly curved shells need examingtion,
Jecondly, the inability of the 57 element to represent shear
correctly needs to be assessed in the shell condition,

The element 87 involves considerably less computation
than the twelve degree of freedom element, 512, especially
in situations where geometric considerations.prevent the use
of a coarser mesh by the 812 element than the S7. As a
consequence, it is intended to use the latter as far as
poséible, resorting to the more sophisticated element in
problems for vwhich the 57 elenent is not capable of

producing a good solution,

6.2 Basis of evaluation

Siwx: % problems were selected for the basis of

evaluating the 57 element and these cover a wide range

of aspects of the use of the element. These problems are:
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Simple portal

This problem demonstrates that this element
correctly represents rigid joints between elements

meeting at right angles.

Cantilevers

This set of three cantilevers covers a variety of
problems in vhich elements again nmeet at right angles,
Also included is an example in which beam elenents are

combined with the shell element,

Numerical stability

A sequence of channel cantilevers with an increasing
stiffness ratio is exemined to establish the numerical
stability of the combination of element and nethod of

solution of the. equations.

Simply supported box beam with end diaphragms

This problem is included in order to demonstrate the
care required in assessing the implications of using

the average rotetion in the shell element 87,

Cylindricel shell

A‘sequence of cylindrical shells with increasing
fineness of subdivision of the curved direction is
compared in'order to determine the degree of geometrical

approximation required for a given stress accuracy.

" Spherical cap

This problem is a thin shell with double curvature

and considerable bending effects,
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6.3 Results of evaluation

6.3.1 Simple portal

A simple portal (see fig.31) was analysed with
three finite elements, one for each of the structural
" elements, The results are compared with a two dimensional

area-moment analysis of the equivalent portal frame,

Deflection of upper right corner
= .025 ins 37 shell element

= ,025 ins Area momrent analysis

Bending moment at supports _
= 13.74 x 10% 1b-in  S7 shell element

= 13.71 x 104 1lb-in Ares moment analysis

GeBe2 Cantilevers

Three cantilevers of various cross—secfions
have been analysed, fhe first two using shell elements only,
the last vrith a nixture of shell elements and beams. These
also illustrate the ability of the S7 element to represent

"corner" situations,

A I-beam
B Square hollow box beam
C Channel beam

In all cases the depth was relatively large in relation
to the length as this represents a more exacting task and
the results quoted for comparison include the shear

correction term given in chaspter three.



(92)

1000 Ibs

1009 Ibs

24ins

- 24ins

[ , b : ) "-
© Young’'s Modulus = 30x10 p.s.i.
Poisson’s Ratio = °*3 ;

-ﬂ:l{ickness 2. 1in

'Fig. 31 Simple portal - test T
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Cantilever A

For this problem the length of the cantilever was
divided into three equal-sections. The deptﬁ of the web was
a single element whilst the flanges were two elements each,
one on either side of the web, (See fig. 32) The load was

placed centrally on the flange.

Second moment of area 5.63%6 x 106 ins4 '

n

Humber of equations = 126
laximun deflection = ,00169 ins. simple theory
= ,L,00170 ins 87 shell element
Ind rotation = 00001 radians simple theory
= ,00001 radians S7 shell element

Cantilever B

For this pfoblem the length of the cantilever was
divided into four elements but otherwise the division was
that dictated by the geometry of the problem., Two load cases
were considered, bending and torsion, which introduce

quite différent stress patterns,

148 ins4

112

Second moment of area

i

'umber of equations

Bending load case:

llaximum deflection .00225 ins simple theory

00219 ins S7 shell elecent

Torsional load case:

End rotation

.00006.radians simple theory

= ,L0000% radians S7 shell element
For the second load case the simple theory does not |
include the effect due to the end deformations being

different from each other,
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o 11-2ins
. , F
8-2861 . —"

5000 Ibs - Poisson's Ratio= ‘3

Fig.32 Cantilever A -_'_"tets:t 2

. _ .
Young's Modulus = 30x10 p.s.i.

Poisson's Ratio = 3

Thickness s 2ins

* case 1 ‘
10001bs *~ “*10001bs oL

Fig.33 Cantilever B - ‘test 2.

b6
Young's Modulus = 30x10 p.s.i.
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Cantilever C

For this problem (see fig, 34) the wed is represented
by a shell element and the two flanges by beam elements
eccentrically placed along the edges i.e. the neutral axzes
of the beams are offset from the edges of the elemcntis
comprising the web. This example is included here to
establish the validity of the method prior to its use in
one of the problems of Chapter Seven., An oblique load was
considered and so for a theoretical solufion we superimpose
two separate calculations, These arc only approximate
gince some of the load is taken in torsion and the
end conditions of this example cannot be nmatchea

correctly by simple theory.

For the vertical deflection:

P = 939.7 lbs. Second moment = 19,46 ins*

Using the rotation and deflection of node A we can obtain

the average vertical deflection for the top flange,
vertical deflection = L025 simple theory

(ins)
= ,023 37 shell solution

For the horizontal deflection:

P= 375.0 1bs Second moment = 5,06 ins4
Horizontal
horizont?l d§flection = ,L,037 simple theory
ins

.028 37 shell solution

6.%.3 Hunmerical stability problem

A channel cantilever was examined, with a
longitudinal division of the flange into two instead of
one as for cantilever B above. The point P (see fig.35)

was varied in position in order to induce an increasing
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Young's Modulus = 30x10°p.s.i.

'_ Poisson's Ratio =z -3

10001bs o -

5-75ins | o

Los

-25insH je
\"'|-3-875ins

Fig. 34 Cantilever C -. test 2

500 Ibs

Young's Modulus= 30x1_05p.s.i.

<
—21t

Eoisson's Ratio = *3

‘(hickncss = 2ins

Fig.35 - Channel cantilever - numerical
stability (test3)
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stiffness ratio. The variation in the solutions - see

table 10 below - is remarkably slight despite the aspect

ratio of the slender element reaching 30,000:1, This

indicates that any errors in the solution of problems

using this shell element with this method of solving the
resulting equations are unlikely to be the result of numerical
inaccuracy or near singularity. The c auses are more likely

to arise from the basic theoretical problems which are;

in part, discussed in the succeeding sections.

OP deflectiog forces at node A (1lbs/in)
(£ft) (ins x 1077) horiz | vertical | shear
1.0 366 476 83 15
1.5 366 476 83 15
1.7 365 %79 84 16
1.9 364 474 83 17
1,99 359 467 83 18
19999 356 466 82 18
Exact deflection = 370 x 1O-Sins.

Table 10: Humerical stability problem: end results

for deflection and forces.

6.3.4 Simply supported box beam with end diaphrasgms

The problem to be considered in this section is
shown in fig.36 and consists of a simply supported box beam
with transverse diaphragms across the ends and a line load
across the centre line,

Yfithout the end diaphragms the S7 element gives a good
solution to the central deflection, see table 11. Although
the stresses at the free edge are usually small but non-zero,
this makes little difference normally to the overall

deflections, This is the result produced here,
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solution ggégg de{igg;ion
87 (no diaphragn). 16 326
S7 (0.5" diaphragnm) 16 . 288
S7 (5,0" diaphragm)| 16 139
S7 (mesh (i) ) 24 o 337
S7 (mesh (ii) ) 18 .286
S12 (no diaphragm) 16 0343
S12 (5.,0" diaphragm) 16 e 342
Theoretical i 0312

Table 11: Central deflection of simply supported

hox beam.
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In reality, the addition of a diaphragm at the free
ends of the box should make but little difference to the
results. However, the second result in table 11 shows
that for the 37 element this is just not so: the addition
of the diaphragm reduces tue central deflection quite
considerably, Further, the thicker the diaphragm the
greater this effect, (It should be noted that diaphragms
- of the relative proportions of the thicker diaphragm are
today being used in bridge structures - see chapters 8 & 9)
/e now 3eek an explanation for thisg efrfect,

Although, on the simple beam theory no shear effects
are included in this problem, in any beam with finite depth
a certain amount of shear must take place; particularly
over the supports, On the other hand, the variety of problems
g0 far considered in this thesis demonstrate that the local
distortions which result from the use of S7 and GEN4 in
these circumstances do not coﬁtribute appreciably to the
overall results. (See, for example, fig. 14{(=a) chapter
three, where the vertical deflection zlong the horizontal
edges was examined in detail,) Under pure in-plane shear
the edge shape adopted by GEN4 and S7 is shown in fig. 12,
At the supported vertical edges of the webs in the present
problem, this shape is superimposed on the correct pure .
rotation of the beam at this point. As before, the result
without the diaphragm shows that this does not produce
global errors., However, if an end diaphragm is now added,
this will-tend to be bent to the same shape, see fig. 37.
This shape involves out-of~-plane bending and the diaphragm
is likely to be particularly stiff against this
deformation pattern, and so will introduce large negative
noments at the corners of the free end as it resists this

bending, These moi:enis reduce the central deflection,
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In addition, thicker diaphragms will be even more stiff
and contribute larger moments, This is borne out by the results
already quoted. Two remedies for this problem were
pursued and will now be considered.
(a) finer mesh with S7
(b) same mesh with 812
The first line of attack requires further understanding
of the S7 deformation in oxrder to fefine the mesh most
successfully. The distribution of é across the element; as
shown in fig.37 is assumed by the Cornes bending element

— and hence 57 also -~ to be linear between the values at the
ends, Since, here, these end values are the same, 6 must be
constant across the element, If, by some means, the
distribution of 600111(1 be made so that the resultant
moment across the end can be zero, we can confine the effect
of these negative moments toc local distortions, rather than.
the present overall effect, A~

The simplest way of improving the distribution of O
is by making the diaphragm of two elements and the
distribution can then be bi-linear, Two different meshes
which includc this are shown in fig. 38 and the resulis for
these are included in table 11, These are much closer to
the expected results and the above explanation scems
justified, However, the penalty imposed by this is twofold,
A considerable increase in the computation is required—for
both meshes and even so we are left with important erroneous
distortions of the diaphragm, The second remedy must now be
considereds

As will be recalled from previous chapters, the GEN6
and S12 elements allow in-plane shear to take place at the

corners of an element, As was shown for GEN6 in fig, 14(b),

this removes the local distortions introduced by GILNH4,
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Thicknesses:
fop = -3333ins
bottom = -25ins

sides a lin~

Diaphfagm

2:208ins - : S : :
& Y o .
' Young's Modulus = 30x10 p.s.i.
: -L—sins — X
L 3 Poisson’'s Ratio = -15
| \simplc o : :

support

—

F'ig. 36 Simply supported box beam with
.- - end diaphragm -test 4

Fig. 37 Deflected shape of end diaphragm

5 ’, . USing 57, ";.':,' .
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Fig. 38 Additional meshes used with S7-
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Correspondingly, since the correct effects should now be
represented by 812 at the corners of the beam, we expect
better results than from 37 and ~table-11 - this is so, The
end diaphragm can now rotate as expected without the
additional deformation introduced by S57.

In general, this latter approach is the more acceptable
since even with mesh refinement, 57 still has erroneous
gtresses locally, Thus we must expect to have to resort to
using S12 for box-type problems in which diaphragms are

included at stregss-free boundaries,

64345 Cylindrical shell with line load

This problem was included to discover the degree
of geometric accuracy required for a given stress accuracy.
A cylindrical shell vwith a line load along the crowvn and
supported rigidly along the edges was divided into four
elements along the generator of the surface and into a
varying number — N -« in the other direction, Four cases
were analysed with N = 2,3,4,6, The problem is shown in
fig. 39 and the results obtained for the crown deflection
are given in table 12, The resulting distributions of
bending moment along the free edge are shown in fig,40,
These results show that even the coarsest representation
gives a reasonable solution and for many purposes would be
quite sufficient, but for further accuracy four
subdivisions would appear quite adequate.

This example also shows that for shells curved in one
direction only, the element S7 can provide efficient and

accurate solutions,
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1000 1bs

Young's Modulus 30x10" p.S.i.

i

Poisson's Ratio

+3

Thickness =_=A 4ins

Fig. 39 Cylindrical shell with line load
' : - test 5_ |
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‘Bending moment (lb-_in x10

00 - . §O. . 100 N 15°
Meridional - angle (8)
Fig.40 Bending moment -along free edge of cylindrical shell
o with line load - test 5.

20°

(so1)
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n | 4versge central)
2 01913
3 02054
4 02074
& 02120

Table 12: Average central deflection of crown
of c¢ylindrical shell with line load

64346 Spherical cap

This problem, fig.41, which has a Timoshenko
solution (32), is a standard test case for shell finite
elements and has been solved quite successfully with a
number of quite elementary elements, These elexments require
a fine mesh, not necessary with the S7 element. We should
expect this element to be capable of quite good solutions,
with far fewer elemen_ts°

Being axially symmetric, only a slice of the problem
need be analysed, as shown in fig. 41, Two meshes were used,
thLe first considered a 224° slice of the shell and used
only three elements; the second considered a 10° slice and
10 elements, The results are plotted in figs, 42 -~ 45,

The principal discrepancy occurs at the crown of the
shell where, according to Timoshenko, no bending takes place,
only membrane action, That is to say, the‘inside and
outside stresses should be equal. However, it can be éeen
from the results that the finite element solution introduces
guite an amount of bending at this point. This stems from
the fact that the geometric approximation used, when the full
shell is considered, introduces a "point" at the crown which

can withstand the bending which & "ilat"!‘icrown cannot, This



3 elements

4

- foung;'s Modulus = 10x 10° p.-s.i. 0 CO&I"SF mesh
-:Poisslon's Réfiio = 2 B | . i 10 glements )

- Thickness = 2-36 ins.

- 'Norn;\al pres sure = 184 p.':-'..i.

Fine mesh

, -

Fig. 41 Spherical cap

(LOL)
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-2000
.'— "! -'-“-.’ . ”’:’.
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Fig. 42" Radial stresé_on inside of spherical cap
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Fig. 43 Radial stress on outside of spherical cap
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error can be reduced markedly by making the topmost element

small and horizontal, .
The results for maximum siresses, table 13, can be
conpared with the solution quoted.by'Argyris (33)
200 elements but no advantage was taken of the radial
synmetry of the problem, The correct maxima are, naturally,
the more difficult to obtain being, for some, at a

boundary, The alteration to the mesh sugpgested above would

considerably improve these resulis - the error occurving

which used

at the point of maximum stress,

. . S7 37
Timoshenko |Argyris coarse fine
inside 8170 7360 6404 7876
radial stress

outside 4600 4520 5637 4593
inside 3500 3550 5687 4593

hoop stress '
outside || 3740 3710 5579 4372

Table 13: liaximum stresses in spherical 6ap'

6.4 Conclusions

In this chapter, six tests have been discussed, The S7
element produced acceptable solutions to five of these,
Indeed, efficient and encouraging results were obtained, In
the remaining case of a simply supported box beam with
disphragms over the supports, the problems encountered were
best resolved by resorting to the nore sophisticated St2
elenent.

In all other circumstances, however, remarkably
efficient solutions can be obftained with guite coarse
geometric representation, (test V) The full effects of

. transmitting stresses around bhox corners are vell catered
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for (tests I & II) and there is high numerical stability
in the solution process and the elenent so that large and
small, long and thin elements can be used in conjunction
with each other (test III), In addition, if the full
details of stresses in flanges, reductions in the
computation can be obtained by use of beams in conjunction

wvith elements.(test II)



(114)

Chanter Seven Thin shells and box structures analysed

7.1 Introduction

In this chapter we shall consider some practical
problems selected to cover a wide range of engineering
applications to confirm the abilities of the 37 element. No
such wide ranging collection of problems has been found in
the literature and so this collection could Form the basis
on which to test any further elements which might be
develowed,

In all cases the mesh was chosen to be the minimum
feasible for practical use., An increaas in the number of
elements would produce an improvement in the results quoted
in this thesis.

These examples are divided into two sections and
within each the complexity increases from that examined in
chapter six. The first section contains those problenms
which have previously been categorised as shells, These
problems may be solved by elements which ignore the
transmission of in-plane rotations from one element to
another as a bending rotation, This is not serious if the
adjacent elements meet at a sufficiently small angle and the
mesh is fine, These elements have been used with sone
success in such situations but are not of any use where the
angle between elements is significant, such as at a corner
of a box.

The second category contains those problems for which
the type of element mentioned in the previous papagraph are
&» not applicable i,e, box-like structures, This;;he type
of problem to which this study makes a particular

contribution,
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T.2 Cylindrical shell with dead load

This problem has already been solved by finite eleménts,
but these have been relatively elementary. 1t is important
that any more developed element should provide an adequate
solution, preferably with a coarser mesh,

Being doubly symmetric (see fig, 46) only a quarter
need be considered and here a 4 x 4 mesh was used, The basic
tests in Chapter 3ix indicate that this should be adequate,

The shell is loaded by its own dead weight and supported
by rizid diaphragms at either end, but free along the &idea,
The diaphragms were rigid only in their ovm plane and
infinitely flexible in bending. The results from the S7
shell element are compared with a solution by Clousgh &
Johnson(34) using a mesh 16 x 22, They also quote an "exact"
solution of the Domnell-~Jenkins shell equation which is
barely distinguishable from the finite element solution

It can be seen from figs., 47 & 48 that the displacement
sélutions agree quite well and the stresses; figs, 49 & 50,
moderately well. The greatest discrepancy occurs along the
free edge where such errors, whilst not large, might be
expected,(Values at boundary nodes do not possess the same
advantage of nodel averaging or interpolation as internal
nodes,) In addition, of course, the loading by point loads
only contribute an error at the edge as a result of
ignoring moment resultants. The ease with which such loads
can be imposed must be balanced against the penaliy of
introducing innaccuracies; the former may often be felt

to be the more important,
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7.3 Arch dams

The calculation of stresses in arch dams is one which
has received much attention by the profession in recent
years. Several methods of analysis have been compared(BS)(js)
and, in general, the finite element technigue appears to be
the-most accurate and adaptable in a wide range of
situations. It cannot be hoped that, in view of the
specialised attention the problem has receivedy this new
element will provide chegper or more exact solutions,
However, it is advantageous if the same elenrent that is
capable of solving very different problems can also
perform adeguately here,

The pressure loading facility of the Loughborough
program is capable of the calculation of a hydrostatic load
but on the following simple basis, The depth of the centroid
of each element is calculated and hence, Trom the height
of the surface of the liquid given in the data, the
pressure at this point obtained. The total force on the
element, provided it is below the water level, is
calculated assunming that this pressure is constant over the
whole element, This force is then gpﬁlied in equal parts to
all the nodes of the element in the appropriate normal

direction.
Te3e1 Arch dam i

The first dam to be considered (see fig.51) was

(37) to demonstrate a finite difference

used by Hansteen
technique, The same dam was also solved using finite

elemants by Holand & Rldstadt(38) with a fine mesh of
triangles; 11 x 9 (i.e., 180 elements) - these are the

(39)

results quoted. A later finite element solution by liegard
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of the same dam used only 6 x 4 rectangular elements, both
plane and curved., All three of these solutions are essentially
the same, The mesh employed for the S7 shell solution used

" 4. .4 plane rectanglar elements. The results, shown in

figs., 52 - 55, indicate a generally correct solution. Although
the hethod of representing the hydrostatic loads gives the
correct resultant force for this regular mesh, it is
erroneous in its distribution, particularly at the

boundaries., As a consequence we find that the moments;

figs, 54 & 55, are much better then the deflections 2nd
forces, figs. 52 & 53. Tor a greater accuracy a finer mesh
should be used. In contrast with the cylinder under uniform
pressure or point loads, a greater degree of geometrical
accuracy is required for a similar stress accuracy, (For

further discussion of this see section 7.5)

Ta342 Arch dam 2

The second, somewhat more realistic, dam was first

analysed by Zienkiewicz(BG)

but then taken as the dzsign
type 1 for the Inst, of Civil Engineers' review of techniques
for arch dam analysis,(BS) The mesh used (see fig,56) here
is substantially the same as that by Zienkiewicz except that
the sloping boundary is represented exactly by extra
triangles rather than an approximate step boundary. This
in itself will introduce some differences ' in addition’ to
other approximations,

The solutions as presented in figs, 57 - 59 differ
from Zienkiewicz's solution by a similar quantity as other

(35)

solutions presented in o There iis no "exact" solution
with which 40 me ;e a comparison. In the absence of such an

arbiter, the S7 solution may be considered acceptable,
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7.4 Cylindrical shells with edge beams

Tables of stresses in a range of practical cylindrical
shells with edge beams rigidly supported at the ends of the
beams have been produced by Gibson.(4o) Two typicai shells
were selcted for a comparison with the finite element
method: one, fig,60, a multishell of °~ fairly 7
v,large longitudinal span, the other, fig., 62, a single shell
rmich shorter in comparison, In both cases a uwniform vertical
load of 56 1lb/sq.ft.was applied to the shell surfaces and
the corresponding dead+live load to the beams,

Por the first casc, the finite element analysis waé
carried out for the symmetric half of a three span roof
and the results fbr the transverse bending moment across the
centre line are shown in fig, 61, These compare quite closely
with those of Gibson except near the edge beams where the
finite elements may have difficulty in providing the.
correct representation, '

For the second shell?two finite element anaiysesfwere
vaed, One represented the edge beams by finite elements
and the other by beams egcentrically placed to the main
shell, 'The results are shown in figs: 63 - 65, Ther
principle discrepancy bedtween the finite element and Gibson's
results is in the transverse bending moment at the crown of
the centre line (fize, 65) vhere the latter results give
zero but both the finite element resulis are distinctly
QOn—zero;

The main point to notice is that the multi-shell roof
hés a much larger length/depth ratio than this single shell
roof and we alreody know that S7 (and GEN4) has difficulty
in representing the shear in problems where this is

significant. It is quite possible that the differences in
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the results are due to this,

7.5 Rectangular tank filled with liguid

Wle now turn to the solution of problems in which
structural elements meet at angles too large to be ignored,
in particular those'meeting at right angles.

The first problem to be considered is a simple shell
problem involving a distinct "corner" in the shell, The tank
is made of uniform thickness material, rigidly constrained
at the base and filled with water. Because of symmetry only
a quarter of the original problem need be analysed here, Two
meshes are compared in oréer to assess the degree of
subdivision required for a given degree of accuracy in the
results, The pressure loading due to the water was
calculated . using the crude facilities available and,
although gquite adequate for the fine mesh, does introduce
some errors for the cozrse mesh, In particular, the load at
the upper free edges is too large - resulting in an increase
in deflection. The use of accurately calculated loads would
inprove this solution, Nevertheless, the cruder results are
shovn here in order to demonstrate what imay be achieved
by elenentary techniques and meshes,

The problem and meshes are shovm in fig.66 and the
results compared in figs. 67 & 63 with an experimentel
regsult and another finite elenent solution by Cheung &

Davies, (41 )

As a comparison, the value of deflection outwards
at the top of the centre line in the longer side (fig.67) can
be estimated using the solution by Timoshenko(Bz) for a

plate fully restrained on three sides and loaded

_ hydrostartically. The value obtained from this is 1.1x1072

which is close to that determined for the complete tank

by the finite elements.(1.2x10'2) The corresponding
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calculation is not valid at all for the shorter side since
this deflects inwards in this problem whilst as an
independent plate it would deflect outwards, The bending
nement at the top of the longer side centre line is
estinated as 12 lb-in/in and at the corner 36 lb-n/in.

The experimental rcsults validate the finite element
calculations but the finite elexzent used by Cheung & Davies
includes only bending effects translated into three
dimensional terms. They neglect any in-plane membrane effects
arising from a moment generated in an elenment at right
angles to another, 4 reasonable solution is achieved by

Cheung and Davies because these efTfects are small. Tomparing
the horizontal and vertical bending moments at the corner
from the S7 shell solution (see fig.69) confirms that
the vertical, whilst being non-zero, is much smaller than
the horizontal moment, It is this vertical moment which is
transmitted into the in-plane of the other side. This is an
important principle to note yet again, that a more
elementary element may give equally good resulis to the nmore

sophisticated elements developed in this thesis,

7.6 Folded plate beam

Although for most purposes é bezm of peculiar cross
section, such as shown in fig., 70, need not be analysed on
any other basié than as a simple beam, it may be necessary
at times to obtain the detailed variation of stresses across
the beam section. TFor the purposes of comparison, the two

Lo(42) was

span continuous beam analysed by Scordelis &
considered, Using a finite segment technique they calculated
the stresses at points A & D at various sections along the
beam,

The finite element analysis here used only a basic mesh



Bending  moment

\

(Ib-infin)

PRI

20

0

tlorazontal moment 0-

Vertntal moment L —

Fig.69

8 16

Helght (ins) - . - : o

Bendmg moments in short szde at cdrner

S L . ]

el .
Y T T I, "

271)

e



L83

80 lblsq ft.

LJL&LJ.I,J LlLJ

X |.-5ﬂ-»5ﬂ —H— 101t -—;psn -*——1011——-*5"-*511-1

Transverse ' section

- -
in._.._
|

b= 201t 4= 20 ft —obé=20 f1 =446 20 ft == 201t == 241t = 201t

___L.ongitudin'al section

Young's Modulus = 3-66p.s.i._"

Poisson's Ralio = 0.

l-'l.g. 70 K deldcd. .‘plate‘ beam -

. . .
) ) i : B
S AR e et Sy b i b W b g e



(144)

of 28 elements for the symuetric half of the beam., Dach plane
part of the cross section was represented by a single
element, i,e. four in the half section, and the longer span
divided into four and the shorter into three.

The beam was subjected to a uniform load of one pound per
square foot of projected area, 4t all three supports all
nodes at that section were constrained, at one as a pin,
and the others ag rollers, The results for both deflections
and longitudinal stresses at‘the points A ~ D along the beam
aretabulated along with the comparative results in tables
14 & 15 and graphically in figs., 71 & 72.

The finite element here provides quite an efficient
golution bearing in mind the amount of information available
for a minimal mesh.

These detaiied results should be compared with the

results which would have been obtained from a simple beam

theory.
Central deflection longer span = 109 x 1001
Central deflection shorter span = 35 x 107C+4

These predict quite well the deflection of the central part
of the beam but édo not include the deflection arising from
the deformation of the cross section: the outer edges

deflect considerzgbly more,
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X Point A Point B Point C »oint D
(£8) | g7 sen | &7 sar | s7 sen | 87 sen
5 0 0 ) 0 0 0 0 0

20 524 411 237 216 82 - 89 82 82
40 615 514 302 281 101 121 103 111
60 422 308 169 159 61 T3 61 66

80 0 0 0 0 0 0 Q 0
100 290 193 75 66 ~-12 -3 9 13
124 354 282 11 110 =5 6 19 25

144 0 0 0 0 0 0 0 0

Table 14: Deflections along folded plate beam (ft x 10"4)

0 | =53 0| =50 o | -56 ol s5 0
10 | -305 -400 | 150 169 ~142

20 -556 =525 262 257 253 262 |-210 =232
30 | 643 327 323 -289
40 ~518 ~584 294 279 266 213 (=221 =273
50 -450 2473 206 . 192

60 | ~183 -135 j 104 751 75 70 | =76 -63
70 379 ~216 ~126 123

80 | 817 960 [-451 -527 |-267 -360 | 255 340
90 | 437 -228 -185 167
100 =60 =17 80 473 ~27 ~33 ~95 12
112 -235 130 180 45 -65
124 ~368 =354 226 213 87 119 67 =122
134 =208 134 65 -68

144 | 25 0| -15 0 | 32 01 37 0

Table 15: Longitudinal stresses along beam (p.s.i,)

SeL - Scordelis & Lo(42)
ST ~ finite elenent

X ~ distance along bean
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7.7 Cellular bridge deck

One important type of structure in the construction
industry is the cellular bridge deck., Although considerable
design work has been done in the past by considering such
bridges as simble beams with peculiar section properties,
the present trend to shorter, wider bridges with sloping
side sections and a greater attention to detail requires more
sophisticated analyses,

In seetion 6,3.4 we considered a simply supported box
beam, It was found that transverse diaphragms caused
erroneous results to be produced, arising from the efiect that
using average rotation as a degree of freedom has on shear
representation, However, provided there are no such diaphragms
over the support, good resulté were noted,

This particular bridge structure has no such diaphragns
and we can feel confident is using 857 in this analysis
rather than resorting to S12. {The converse situation will
be s considered in chapter eight.,)

The current technique of using anaiagous srid or space
frames requires the calculation of a large number of properties
not relevant to the definition of the original structure. The
data preperation for this finite element method is much
simpler and is thus to be preferred in those cases where
the results can be guaranteed,

The sectional view of ‘the bridge is shown in fig,73.

It has a sloping section on one side only and was, in reality,
one independent half of the dual carriageway bridge used at
Jesmond Dene on the Al in lewcastle-on-Tyne, There was
originally a 1° transverse slope on the top slab .which has
been ignored in this analysis, One symuetric half of a single

span was considered, -iivided into four elements longitudinally
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with rigid supports at one end and conditions of symmetry at
thé other.
Two loading cases are considered here, The first, the
more academic case, is a2 pair of uniform line loads over
the outer webs, The second, more realistic, represents the
HA lane load on the Left hand lane, Both cases are shown in
fig. 73, and were chosen in order to make a comparison
with results previously obtained from a space frame
analogy by Turner.(43)
These results are shown in figs. 74 - 77 and agree

well, Considerable confidence may thus be placed in the

use of 37 in this context.

T8 Fachine tool cantilever section

The machine to0l industry also has meny problems
concerning the analysis of box-type members about vhich
little systematic knovledge is currently available, As part
of a research programnite, one firm engaged in the design of
machine tools carried out some elementary tests on a perspex
model, Their concern was to extend their kncwledge of the
effect of the fixing of the end of a cantilever. Vhilst
existing theory could ad:quately cover the behaviour of
uniform sections, there existed no such theory ¥elating
to the end fixings and the rigidity of such fixings
materially affects the stability of the cutting tool,

The problem to be examined is shown in fig. 78. It
consists of a uniform 5 in, square box of length 20 ins,,
bolted down by the bottom surface over a region of a 5 ins,
square to a rigid mild steel block., The box was constructed
from 4in. thick perspex.(Young's modulus = 6.5 x 105 P.S.1.

Poisson's ratio = .21) lieasurements were made of the
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flexibility of the end remote from the supnort, A sequence
of additional members was considered and the actual tests
compared are showvn in fig, 79.

The experimental work was carried out using a "quasi-
static" technigue in which a load was applied sinusoidally
but at such a low frequency as to make dynamic effects
negligible, This approach was used in order ito take advantage
of existing equipment primarily designed for dynamic
experiments and to overcome the effects of creep. The
effects of this technique are partly exmined later,

The 87 shell element was used to carry out a finite
element analysis using the mesh shown in fig, 80(a) and with
load case I (see fig. 31) The finite element results are
compared with the experimental values in table 16, These
show that the finite element model is an accurate  _ .
representation for Tests III - VI where the effect of a
stiff bracing diagonal member reduces the flexibility of
the base plate. In tests I & ITI the finite element
representation does not allow the real flexibility to
develop due to the support conditions, (see fig., 80(a) )

The experimental model for all these tests(I - VI) had bolts
which were positioned very close fo the edge of the square
base which was pocketed and reinforced with additional
pieces of perspex.

A second experimental test of model I had been made with
four plain bolts at a distance +in. from the edges of the
base square. The eesult does not agree with the finite
element result with a rigid Yase. (see table 17) It was
decidged that test 2 of model I would be examined in
greater detail rather than test 1 of the same model, TFour

additional nodes were adéed to the base plate of the
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' Test Experimental | Finite Element
I 900 512
II 750 489
111 453 378
IV 386 362
V' 34°7 333
VI 347 328

(flexibility x 106 in/1b)

Table 16: Flexibility of cantilver

first series of tests,

Test flexibility
experimental 37380
finite elenient
rigid

up 1624
down 1064
pinned
up 6244
down 4900
average finite
element 3458
flexibility x 106 in/1b)

Table 17: TFlexibility of cantilever

test 2 model I

Point lodel T Kodel III | Liodel VI
A1 =3395 -2278 ~1584
A2 ~2786 ~16673 =1260
B 4232 2474 704
Table 13: Stresses in side of cantilever (p,s.i.)

A, middle of side to the immediate front of the )
diaphragm
A2 similar but to the rear

see
fig.78

B at the extreme rear end
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cantilever as shovm in fig. 80(b). Four support conditions
were considered, Tirstly, the difference between pinned

and rigid support at these four points was considered,
Secondly, as mentioned above, the effect of the "quasi-static"
testing was examined by taking an "up" and a "down" case
with each of the pinned and rigid cases, giving four in
total, The difference between "up" and "dovn" is the point
at which the base plate lifts-off from the mild steel base,
In the "dovm" case the rear edge 1lifts and the front edge
is supported and vice versa for the "up" case, The
flexibilities calculated for the finite eiement model are
given in table 17. These show the coiisiderable variation
that can be generatéd by the details of the support
condition, The fact that the average of zll four cases is
near the measured flexibility is probably fortuitous.

The existing theory for analysing the end section
considered the contribution to stiffness by the side walls
to be insignificant when the diagonal member is present.
Howéver, if we consider the stresses in the side wall for
cases 1, I1II, & VI of the finite element solution, we can
see that even in the least flexible case the stresses at
the extreme rear position cannot be ignored.(see table 18)

A further test was compared in which five extra
diaphragms were included to examine the effects of these on

the torsional flexibility of the beam. These diaphraogms were
1/8in. thick with a 2%in. square hole cut out from the
centre. (see fig. 80(c) ) The results obtained are shown in
table 19,

It is interesting to note that the difficulty earlier
encountered with a diaphragm at the end of the simply

‘supnorted heam does not appear to affect this problem
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noticeably., This is largely due to the fact tnat at the
sections where the diaphragms are included there is little
or no shear between the top and bottom flanges in
comparison with the bending ?ffects. It is this shear which
gives rise to the difficulty and when bending dominates no
problem is seen, This is pearticularly importent since the
37 element provided in this example exceptionally efficient
and economic solutions in these series of tests which would

not have been the case if the 512 element had béen used,

IT IT
Load case- I average |at load III IV
Experimental 328 331 572 385 | 380
Finite element 331 382 463 289 | 288

Table 19: Flexibility of cantilever with diaphragms

6

four load cases (107° in/1b)
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Chapter Bight Gateshead Viaduct

8.1 Introduction

In this and the following chapter a detailed examination
is maie of a multi~cell box-type motorway bridge using the
new shell elements in a practical situation. The structure
is the Gateshead Viaduct on the A1(i) outside Yewcastle-~on~Tyne,
A model analysis of this structure (fig.82) has been carried
out by Turner (43) using prestressed reinforced plastere

This technique has been developed by Brock(44)

primarily

for wlimate load determination., However, the behaviour of

the composite material, particularly when prestressed, is

sufficiently linear for comparison to be made with the

finite element analysis. (Details of model are shown in fig,83)
The examination of this structure is divided into two

parts, The first, in this chapter, is concerned with simple

loading cases, compares the finite element analysis with

the model results and attenpts to explain the action of the

bridge in distributing stresses from the loads to the supports.

The second part, in the iiext chapter, demonstrates the power

of the finite el ement method by showing the changes to the

gstresses and deflections resulting from strucifural

modifications chosen in the light of the results of +this

chapter,

8.2 Choice of shell el enent

It was this type of structure, simply supported box-type
with en¢ diaphragm which gave rise to errors when using the
shell element S7, as shown in chapter six. It is thus necessary
to use the element 3512 in order to remove this difficulty.

The effect of using the element 87 is demonstrated in fig. 84,
This shows that the deflection at the centre of the bridge






Fig, 82 (cont'd)
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under a simple line load is about a quarter the value from
congsidering the bridge as a simple beam. (If the epd
diaphragm is removed this error largely disappears.)
Further, the totul bending moment at the centre line is
4760 1b-in compared with the correct value of 11,000 1lb-in,
Similarly, the bending moment at the support should be
zero but is instead -1370 ib-in. This is the result of
the by now well known effect of shear at the box cormer.
Consequently, in the rest of this chapter and in the next
all the analyses are carried out using the S12 element.
This is at some extra expense, since twice as many
elements are required - triangles instead of rectangles -
aind more equations -~ 864 instead of 504 ~ as the 87
element would have demanded, The idealisation used is
shown in fig., 85, This structure will be referred to

as GH312/1 and the transverse sections through nodes will
be called I,II,IIT,IV: I is over the support and IV the
centre line, The view shown in fig, 85 is ﬁaken looking
from underneath the bridge. The eige beams were
repessented by triangular elenents as showvm and although
these elements are peculiar in that they are thicker

than their depth, numerical problems are not expected

to arise. For this first structure the four nodes
indicated were supported on rollers with one node -
constrained transversely to prevent rigid body motion

of the whole structure. Since an odd number of elements
were regquireu across the top and boitom slabs, it was not
possible to use a mesh entirely symmetrical, This.
pfoduced slight variations in the results at the two
innermost nodes on each transverse section for the line

load case., However, these were not significant,
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8.3 Stresses from strains

With the S12 element the strains éxx’ @ & are

yy' T zz
three of the independent degrees of freedom at each
node, It is possible, therefore, to derive stresses from
these as an alternative to the values obtained by
averaging the stresses calculated in each element
meetj_ng at that node. From a practical point of view, it
is considerably easier to compute the walue of the
stresses‘ét any point from the strains than to extract
the values from the elemcnts and average. These two
techniques are compared in fig. 86 which shows that
although there is some difference between
the two this is not particularly significant, If a
choice is to be made on this basis, the stresses

calculated from the strains are nearer the values from

the simple beam theory than those from
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the elements, In addition, their distributions =re, where
appropriate, somewhat éﬁoother, from this, and the fact
already mentioned that in,practice they are simpler to produce
the subsequent calculétions and results have been derived

from these stresses rather than those in each element.

8.4 Comparison of results

It is a useful initial test to discover how close the
finite element and model results agree with the simple beam -
theory for a uniform load across the centre line of the
bridge. Whilst it is true that the cross section of this
bridge is vastly different from a simple beam, nevertheless
engineers are prepared to consider it as such for loading
cases uniform across the bridggu

Vertical defelections of the four sections are shown
in fig.87. and show close agreement between the finite element
analysis and the simple beam theory,

The finite element analyses were carried out assuming

6 PoeSeis) and Poisson's

values of Young's lodulus { = 2 x 10
Ratio ( = .15) which were determined experimentaliy by
Turner(43) as the best equivalent values to tzke for the
plastéf model he used, These were obtained from a simple
beam prestressed and reinforced in similar fashion to the
model, The prestressing of the model produces better linearity
of the stress-strain relationship than a simple reinforced
model would have. The results quoted are from a best line
fit through a sequence of measurements at varioﬁs
incremental values of the loads,

The validity of these and other underlying assumptions
can best be compared initially by considering the vertical

deflection of the centre line for the line load. The

experimental results were for six point loads across the
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centre line and are the average of tests carried out on two
identical models, For the line load, an appropriate
combination of these results has been taken and the comparison
can be seen in fig., 88, Also shown in fig. 89 are the
longitudinal strains at the centre line in the top slab for
both model and finite élement results, It should be borne

in mind that the finite element and simple beam theory
results for deflections 4o not include the effect due to the
finite thickness of the diaphragm which reduces the effective
span of the bridge. This effect in the model will tend fo
reduce the deflcctions somewhat,

The bending moments at the transverse sections can be
" calculated from the siresses obtained at each node. The
distributions of bending moment across each section so
.calculated is somewhat crude due to the coarseness of the
subdivision into elements. The cross section is divide@ into
six parts and the total bending moment in each derived, which
is then distributed evenly'across'each part, This is the
distribution plotted..The éimple bending mOment diagram
for the line load is shown in fig, 90 and can be seen to be
very close to that predicted by the simple beam theory. The
distribution of bending moment across the four sections is
shown in fig. 91. These distributions are virtually constant
apart from the outer edges where it is expected to be lower
due to the éloping section,

It is also possible to consider the effect of
concentrating the same total load at one outer edge node,
point A on fig,83, as a point force. (This load case will
be called POINT1) The cqrresponding results for vertical
deflections are shown in figs. 9é & 93 and for the bending

moment in fig. 94.



08

06

‘04

~ Vertical disptacement (ins)

02

| $12 analysis o
" -~ Plaster model Lo
| - ~— 0 -0 o o—
. ! /J
o~ o © o- o °
{ L
l‘ - -
!

Vertical displacement of centre line under line load -

model and finite element comparison

(€ls)



80 | S12 analysis o
_ K Ptaster model _O
] e . a
\ .
= o - / POINTI
c ;
€ w0
n . -
u ‘ .
3 2 =8 8: 3\8 =8
o . &
S Line ltoad / . RRT 9%0_
-
o

Fig.89 Longitudinal strain across centre line - model & finite element

results

(bL1) _



Total Bén,ding moment ( Ibs=-in x 103)

12

10 1

o R ena's
Simpl[¢ theory
S12 —_—Q —

centre

support : Longitudinal section of half-span line

Fig.90 Bending moment diagram for line load (GHS12/1)

-
-

(5L})

[
!



" Support

Scale

¥ L)
400 Ib-inl/in

_l:.inc toad

F LY. AV 4

7

AV

1 11

Fig. 91 Distribution

1

111 I

<

of bending moment for__line. load ( GHS12/1)

(9L1)



Simple theory e —m e e
|
) 08 S$12 analysis o \
.- |
. |
- .E [
e : 06
c .
& |
. E
o .
g -
§os v
3 w
"; ' -y
L2 | 3
- 02 11
o s
B .
0 1

Fig.92 Vertical displacement of transverse sections under POINT1 (GHS12/1)

N
'

R

Ly



A
4

L (sd

S$12 analysis o

Plaster model -Q -

02 |

v e'r_ti'éa'l displacement (ins)

.- Fiqg.93 " Vertical displacement of centre line under load POIN-T1 -

model & finite element comparison

(sL1)



T.'!iiw,«aaﬁ! R

‘_\\ w\




(
.
r
/ '
] -
W
J. -
J T
A :
»
r
.
4
.

POINT

[ —

/1
/|
/
)

]

Fig.94 Distrib

ution of be

.,

'!-.

.

ndin'gf moment for POINT1 (GHS12/1)

(6L1)



(180)

From the independent rotational degrees of freedom it is
also possible to compute the shear strains, in particular
the in-plane shear strain distribution os shown in fig,95 for
the top slab. From thié it can be seen that this shear strain
does not play an important pért in the uniform lbad case but
acts significantly to transfer the load from the edge to the
centre in the load case POINTI.

In fig,96 the longitudinal displacements of the top slab
are shown, displaying the distortion of the slab under the
two load cases considered, These are consistent with the
shear distributions in fig, 95.

The'main point of interest to emerge from these results
ie the negative moment generated in part of the diaphragm
over the supports for load case POINT1. The origin of this

is discussed in the next section,

8,5 Action of bridege under load case POINTI

A simplified model of the bridge can be considered as
composed of two independent longitudinal beams connected by
the rigid diaphragm at the supports. This diaphragm has the
erfect of ensuring that the end rotations of each beam
remain the same. The point load is supported bu one beam and
the end rotation of this beam is resisted by the stiffness
of the unloaded beam. This resistance reduces the deflection
of the loaded side from that expected if it were simply
supported and independent. This reduction causes a negative
moment on the diaphragm where it is attached to the loaded
beam, Detailed calculations show that only about half of the
totval load can be transmitted from one side to the other by
this mechanism, Another action must be sought to account for
the remainder,

As noted in the previous section, significant shear
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Fig.95 Shear strain in top slab for line load & POINT1 (GHS12/1)




. ' : ‘ . SRR Centre
Support : : Line

——#.

1 : ll. : ceomo 1v

- Fig.96 'Longftudinal displacement of tbp" sl‘_ab' -ﬁnfdﬁ-cr Tline  load (GHSIZIT).

——— o S



Support

¢

Centre
Line

o g

'.

m

e,
~

—

iv

ctab under l!radcase POINT!

Scale

[ .

(za1)

-002ins



(183)

stressés are generated in the
bridge is considered "sliced®
these shear stresses generate
édges-which combine to result
the lengith of the slice. This

reduce the central deflection

top and bottom slabs. If the
into two pieces lonzitudinally
shear forces on the "exposed"
in a distributed moment along
distributed moment acts to

of the loaded side and transmit

tile load directly to the other side,
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Chapter Nine Gateshead Viaduct (modified)

9.1 PYroposed structural modifications

From the results of the last chapter it is possible
to suggest some modifications to the original structure
and these will be examined in this chapter. In particular
the effects of additional diaphragms will be considered,
Such diaphragms will increace the cost of the structure
due to additional labour, extra shuttering, difficulty
of recovering the shuttering and other éonstructional
reasons, thus their effectiveness in reducing stresses
and deflections must be studied. It should be noted that
the modifications reported below were made with only
minor alterations to the original pack of data cards -
no renumbering of noues or similar changes were necessary.
The ease with which these modifications can be made is
part of the power of the finite element method.

VWhilst the analysis reported in chapter eight used
a line support across the full width of the bottom slab,
the model and structure had only two point supports. (The
model tests for point loads were in fact carried out with
the line support but further tests used the recal point
supports.) For the convenience of the analysis these
supports have been taken under the two inner webs, The
actual model supnorts were 4 ins gpart instead of 5 ins
but considering the thickness of the webs - 1 in - this
is not significant.

The action of the bridge in transmitting a load
from the outer webs to the supports might be esided if
more of the load were taken directly in a transverse

direction to all the main webs rather than via the



(185)

massive diaphragm at the supports. An extra diaphragm
at the centre line should thus modify the stress
distribution quite significantly. Thus for the first
structural modification a centre line diaphragm of
thickness 2 ins was added and to keep the volume of
material more or less coustant the thickness of the
support diaphragm was reduced to 4 ins. This main
diaphrazm cannot be reduced much further as an additional
@esign criterion is with the M.0.T. HB load directly
over the diaphragm which then takes the full lcad as a
transverse cantilever.

This process wasd® then extended by adding further
diaphragms to prouuce an "egg-box" type of structure.
FTive diaphragms were inserted at equal distances between
the supports., The total volume wos agein kept roughly
constant, Here the support diaphragm can be reduced:
below the previous design thickness because the length
of the heavy vehicle is such that it is supported by
three adjacent diaphragms acting as cantilevers, The
support and centre line diaphragms were taken as 2 ins
thick and the rest as 1 in thick,

To summarise, the following three structures viere
analysed and are to be presented below:

GHS12/2 The same structure as that in chapter

eight but with two point supports
instead of a line support

GHS12/3 As GHS12/2 but with a centre line

diaphragm of 2 ins and a support
diaphragm reduced t0 4 insg thick,

GHS12/4 Centre line and support diaphragms

2 ins thick, additional diaphragms
1 in thick,
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9.2 Loading cases

FPor this comparison four load cases viere analysed;
of which three were simple point and line loads and the
fourth was based on LIOT requirements,

the first three cases were:

- LINE: uniform line load ac¢ross centre line,
total load 1000 1b,

POINT : Point load of 1000 1b at A (see fig. 83)

POINTZ2: o " " " v B moon "oy
The last load case; referred to below as REAL, consisted
of the following loads required by LOT:

(a) Dead load

The dead load of the full structure ~ 150 lb/cu.ft. -
was scaled to the model dimensions and applied as a
distributed load to the top slab. The load - applied
to the overhanging cantilevers was increased by a factor
of 2.59 to represent the continuation of the structure
over adjacent spans.

Dead load on main span 306 1b/sq.ft.

H

Dead load on cantilevers

722 1b/sq.ft.

(b) Lane loads (HA)

The full scale live loads were taken from B3S153
with a load factor of 24 and do not need scaling for the
model effect. Again, the loads on the cantilevers were
increased by a factor of 2.59. The main span was
loaded by:

Two lanes ( on carriageway with HA knife load)

515 1b/sq.ft

Fast lane (on carriageway with HB load)

398 1b/sq.ft.
Remainder of top slab 340 1b/sq.ft.
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The knife edge load HA was taken as 232 1lb total,

(c) Heavy vehicle,

The HB load was taken in the analysis as a. total
of 1440 1b and represents a full scale load of 370 tons,
This load was distributed over the outside element

adjacent to the centre line,

9.3 Discussion of the results

Looking first at displacements, Table 20 gives the
maximum vertical displacements on the centre line. These
results show that as expected the addition of a centre
line diaphragm, GHS12/3, reduces the maximum displacement.
e lateral distortions across seections I (over supportd)
to IV { at centre line) are shown in Figs. 97 to 109,
rigs. 97 — 105 show vertical displacements across all
sections for each separate load case and structure. The
centre line displacements for each load case are
combined for each structure in figs. 106 - 109, As can
be seen from the latter set of figures the single
additional diaphragm, GHS12/3, causes the transverse
distortions to be reduced but the results from adding
extra diaphragms, GHS12/4, are very similar to those
for GHS12/3. These changes are most marked for the POINT
load cases but are still present in all cases.

The design of the supports is dependent on the
rotation of the diaphragm over the supports but it was
found that this is unaffected by the structural changes.

As in chapter eight, the total bending moment at
the four sections I ~ IV has been calculated. (Table 21.) .
These results provide a check on the accufacy of the
calculations, both of the strains from the finite element

analysis and the subsequent derivation of bpending moments,
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In particular the non-zero total moments at the
supports for the point and line loads is a measure of
the errors in the other values. The average error is
about 4% of the centre line value, The corresponding
simple beam solution is also shown in the tables The
average error at the centre line is 2% from this solution,

Attention was‘drawn in chapter eight to the
distribution of bending moment across transverse seetions
and the way in which concentrated lozds ore transferred
to all parts of the structure, These distributions for
the POINT load cases and the "REAL" loads are shown in
figs. 110 = 112, In each of these figUres the results
for each structure are sho@n on a separate sheet, For
ease of comparison the two modified structures - CGHS12/3
and /4 are transparencies. The bottom pagé in each case
is the result for the structure GHS12/2,

The mechanism by which loads at the outer edge of
the centre line are transferred to the supports was
discussed in chapter eight and was shown to generate a
negative bending momenti at the support. Table 22 shows
how this is reduced systematically by the continued
introduction of extra diaphragms, confirming the
hypothesis that such structural changes would assist
the distribution of such loads directly to all the
main webs. Fig, 111 particularly shows how this
occurs.

For the REAL load case the maximum bending moment
on the centre line increases with the addition of the
single central diaphragm ~ from 1515 1b-in/in to 1722.
(see table 23.) This is due to the reduced lateral
distortion,plotted in fig. 109, causing more load to be

transferred to the centre webs., This change in bending
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moment distribution can also be seen in fig, 112.

However, the maximum bending moment an the centre
line for the third structure, GHS12/4, with several
diaphragms shows a reduction to 1490 1b-in/in. (Table 23)
The distribution of bending moment across the centre
line is now again more uniform but that at the.support
has become more concentrated over the supports., The
support digphragms were reduced in thickness from 5 ins
for the oriéinal structure GHS12/2 to 4 ins for /3 and
2 .ins for /4. The effect of a larger negative support
bending moment on the central webs fs to reduce the
positive bending moment on the centre line,

These effects are due to the greater flexibility
of the support diaphragm coupled with the more
homogeneous bhehaviour of the structure with its
"egg~box" type layout,

The plaster model referred to in chppter eight was
also tested to failure under the loading case REAL, It
was observed that the failure resulted from a
longitudinal crack opening in the top slab adjacent to
and parallel with one of the main supported webs, Table
25 shows the transverse stress in the slabd calculated for
this load case by the finite element analysis. These
results show that this particular stress is tensile
and of the same order as the major longitudinal stress
at tie centre line, Furthermore, this stress increases
with the reduction in t:.:e thickness of the support
diaphragn.

In general, these results indicate that the
addition of diaphragmus to this structure does not
produce as significant changes in the stresses and

displacements as might be expected,
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Line load POINT POIHT2 REAL
GHS12/2 L0476 L1012 .0612 2164
¢HS12/3 L0457 .0872 .0598 . 2095
GHS12/4 || - .0454 .0885 .0610 .2101

Pable 20: liaximum vertical displacement on

Centre line (ins) (A1l at poiut A)

Section Line load POINTY POINT2 RBAL
~369 -~299 ~-419 -19177
T -415 -387 -464 -19357
support -453 -604 -693 ~20930
(0) (0) (0)
3457 3919 3378 13659
11 3473 3570 3730 13516
3472 3645 3534 13770
(3667) (3667) (3667)
ITT 6725 6934 6581 31091
6762 6728 6776 31363
7235 7054 7126 31900
(7333) (7333) (7333)
10722 10716 10822 354738
v 10695 10607 10686 35017
centre 11029 10829 10998 35340
line (11000) (11000) (11000)

Table 21: Total bending moment (1lb-in) at four
transverse sections for GH312/2 - /4 and
for simpie beam ( ).

POINT1 POINT2
GHS812/2 177 ~156
GHS12/3 -148 -100
GHS12/4 ~109 ~76 i

Table 22: Maximum negatiye bending moment at
' support. (1lb-in/in)
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line load P INT1 POINTZ REAL
GHS12/2 425 629 715 1515
GHS12/3 440 571 525 1722
GHS12/4 443 585 558 1490
Table 23: Maximum bending moment (1lb-in/in) on
centre line., All at Point B except for
DAL which wére at Point C
Point A Point B Point C
GHS12/2{{ 121 385 425
GHs12/3 112 375 440
GHS12/4 114 396 443
Table 24: Distribution of bending moment (1b-in/in)
along centre line for Line load. (See
fig. 83 for position of A,B &C)
Transverse stress in  Longitudinal
top slab above . stress in slab at
support points, Point C at centre
GHS12/2 1530 -1600
GHS12/3 1590 ~1800
GHS12/4 1760 - =1600
Table 25: Comparison of transverse stress in

top slab above support with longitudinal
stregs at Point C on centre line for
REAT load case (p.s.i.)
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Chapter Ten Conclusions

The first part of the work reported in this thesis
was devoted to the development of plane stress elements,
primarily with a view to the eventual combination of
one of them with a plate bending element to solve shell
problems. However, a secondary conclusion can be drawn
from the results, There are two classes of plane stress
problems which can be solved ﬁore effectively by some
elements and not by others: those problems with dominant
shear stress and those with dominant in-plane bending.

In particular, with elements derived from assumed stress
functions, an element with only two degrees of freedom
per node is quite sufficient for the solution of problems
which primarily involve shear effects,,but is poor at
representing in-plane bending. Conversely, these latter
problems are well—solvgd with elements having three or
four degrees of freedom per node, but shear effects are
not now well catered for, In particular, the use of
average rotation as a degree of freedom implies zero
shear strain at each node. If both types of stress
distribution are required to be represented satisfactorily
in the same problem, it is necessary to use an element
with six degrees of freedom at each node. This element
combines the good features of both the two and four
degree of freedom elements,

In the latter part of the work two shell elements
were developed and examined in some detail, one with
seven degrees of freedom per node, the other with itwelve.
It is perhaps fair to say at this stage that it now |
appears that a more conventional six degree of freedom

per node element could probably have been used as
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effectively as the set of seven used here, However, the
principal comments made in this thesis are unaffectedd
by the choice.

Although quite straightforward for the seven
degree of freedom shell element, the combination of
membrane and bending elements required special
consideration for the twelve degree of freecdom case. In
particular, a successful approach was developed to impose
the three constraints which distinguish thin shells from
general three dimensional stress problems, i.e. zZero
normal and out-of-plane shear strains,

As a result of the use of the four degree of freecom
membrane component, the seven degree of freecdom shell
elevient gives zero shear gtrain between the planes of
adjacent elements. Although, des»nite serious implications,
correct solutions to many problems have been obtainedq,
the deleterious effect of using average rotations as
degrees of freedom was demonstrated most dramatically
in Chopter Sir with the analysis of a simply supported
hollow box beam. The seven degree of freedom element
provided an excellent solution if no end diaphragms were
present, but as soon as these were added the errors
involved in the solution considerably reduced the central
deflection - in some cases to a third of the correct
value, ‘his same effect was also demonstrated for the
Gateshead Viaduct,

In general, it appezmrs that if significant shear
strain interacts with members stiff in bending there will
be serious errors., This situation commonly occurs where
three elements meet at a box-type corner. This also is
the case when plané elcments are used‘to represent

doubly curved shells, In these cases the twelve degree



(210)

of freedom element can be used successfully, the most
notable example quoted is the Gateshead Viaduct. The
difficulties encountered with the seven degree of freedom
element here are of course likely to be suffered when
using any shell element embodying the average rotation
approach,

It has hot been possible to provide watertight
criteria upon which to base a decision of whether or
not to use the seven degree of freedom element in any
particular situation. Until such criteria are available,
extreme caution must be taken with the use of the above
general guide lines and if there is any lilkelihood of
the eryors of the ahove type being significant, correct
solutions can only be guaranteed with the more

sophisticated twelve degree of freedom element.
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Appendix One  Loughborough Finite Element Program

The finite element process consists of several steps,
(see fig. 113 ) each of which is, relatively, independent
from the others. This seguence is linear in the standard
case, but could be considered as re-entrant or iterative
in some non-standard cases, such as material with non-linear
elastic properties.

Whilst it is entirely feasible to write a program as a
single unit, this can become over-~large on even a moderately
sized machine, introducing the need for overlay éystems and
conplex techniques for muliiple re-use of the core storage.
In order to facilitate the vriting and subsequent development
of the program, it was found to be of considerable advantage
to split the czalculation into several independent sub-programs
corresponding to the logical steps in the procéss. These
programs were then linked together as a fixed linear chain
or controlled by a small master program which sequenced
the calls to individual programs according to input
commands,

_The Loughborough system spliig the process into the
following seven sub-processes:

1 Input of problem data

2 Output of perspective drawing on graph plotter

3 Calculation and assembly cf eleiient stiffnesg
matrices

4 Constraining and reduction of assembled equations

5 Backsubstitution of force vetors and output of

deflections on line printer
6 Calculation and output on line printer of element
stresses or forces

7 Output on graph plotter of a selection of gtresses
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Each sub-program is independent bhut requires the results
of any %ogically previous program to be left on two magnetic
tapes in standard form. This concept allows several
advantages, of which the following ore some:

1 The development of any one sub-process can be
carried out using the two magnetic tapes of results from a
previous run of a test case up to the sub-process in question,
This may well decrease the amount of computer time required
for development quite considerably. It also means that only
a small seetion of the total gystem is under alteration at
any one time and the effects of any changes made are thus
limited,

2 uite épart from development work, it may also bé
“an advantage to retai: the magnetic tapes from z production
run if further processing might be required. At present, two
principal -nstances should be noted.

Firstly, the time up to the end off the reduction of
the overall equations comprises the bulk of the computation
and only a short time is required for the backsubstitution
and output., It is possible with this system, then, to input
subsequent loading cases on the same basic structure having
examined the results from an initial run: The cost of these
subsequent cases is much less than the first run,

Secondly, the stress resullts stored on the magnetic
tapes can be used as input for the stress plotting prosram.
(See Appendix 2) The selection of stresses can often be done
best after a partial examination of the results,

The mathematical techniques of the system are, for the
most part, standard and well-tried., However, there are points
to note in one section, the solution of the equations.

The method used is a Choleski triangular decomposition

as recomuended by Wilkinson as likely to yield the most
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accurate results fof a minimum of computation. The procedure
adopted in this system is matkematically identical to the
standard, but the computer programming involves a virtual
store technique., By this means, the moving lozenge of
‘equations required at any one stage is kept, wheﬁ possible,
entirely in the core store, If however, the number of
degrees of freedom or the size of the bandwidth precludes
this possibility, then the disc b~cking store is called into
use., The detailed flow chart is showm in fig. 115

The complete system as at present is shovn schematically

in figJd14 , The commands, which are read at run time from

cards, are currently as follows:

#EYPART )
**3TOP )

self-explanacory
*¥DULP
*“RESTART )
¥XANALYSE - complete finite element analysis
*%PLOT graphical output of stresses
*3#FDRAY] perspective drawing of mesh
#*RUN

This last command is used to run an
individual program. Thus sequences of programs can be built
up to suit individual requirements for special circumstances

or during the testing of a new program or sub-process.
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Apnendir Two  Siress Plotting

Py

A recurrent problem which besets every user of the
Finite DTlement l:ethod is the interpretation of the results,
Often large quantities of output are produced which have
then to be digested into a form more readily understood. In
particular, the averaging of stresses at nodal points and the
selectioﬁ of the appropriate parts of the output can consunme
" many hours for even a relatively simple problen, It is not
too difficult a task when two dimensional analyses are
considered but the degree of topological complexity of which

he shell elcments are capablz of reproducing, the Gateshead
Viaduct, for example, tiake the design of automatic stress
digesting rather difficult, “hilst the ideal is foi the
enzineer to specify the port of the structure and the
particular stress in which he is interested in a very
elementary way, related as far as possible to his ordirary
nomenclature, there are considerable complications in making
the specification unique,

The most com:on way of beginning such a speciiication
is Yo define a section tvhrough the structure, Having done
this for a simple classical shell, such aé the spherical
cap, the problem is almost solved, since the resulting
gectional view cab be topologically deforned into a straight
line, Arbitrary, but reasonable, assumptions could be made
about where to commence and end the plot, using surface
distances as one coordinate, However, when the section is
multi-éonnected, 80 that it camnot be deformed into a
straight line, there is no unique line along which to plot
the stresses, Tven if the two ends of the required line were
specified, therg will often be more than one path between

them, Cvviously,the human eye would select a particular path
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such as the shortest, which might be, say, the top slab of a
bridge deck. However, such "obvious" human decisions cannoct
be translated readily into computer terms, In addition, it
may not always be the "obvious" path that is required,

The Loughborough system for plotting stresses has used
a compromise solution. The section required is s+ill
specified and stresses are calculated in terms local to this
plane and the normal to the surface, but the elements along
the section which are required have to be specified manually
by the uger in the order required for plotting. The progran
does check, however, that this "chain" of elements does link
together by its global coordinates and that they also lie
on the specified section, These elements are specified by
using the numbers printed on the element data sheeta.

The program automatically averages the values at any
point from adjacent elements. If a genuine discontinuity
exists it is podsible to specify this by commencing another
sub~chain along tﬁé same section, The program allows sub-
chains of up to ten elements which are averaged at all
internal points but when these individual sub-chains are
linked together no averaging takes place between them, There
is also no need that the plane section chosen should pass
through nodal points nor lie along an element edge,

Certain techniques exist for plotting smooth curves
through a set of given discréte values, but these are apt
to produce erratic results when a limited number of points
is availsble, Discontinuities or sharp changes in the graph
are also difficult to reproduce without absurd assumptions.

Until better methods are avilable, the values are
joined by straight lines,

The axes for the plotter output have to be specified in

detail by the user since the standard software availableé for
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*

the drawing of axes was totally inadequate; often failing to
produce a readable result, The number of tick marks, the
values attached to them and the wvalues at the origin are now
under the control of the user,

This problem 4ypifies the constant compromise in this
aorf of work., A conflict arises bweteen allqwing the user
control over the output and on the other hand reducing the
anount of effort he has vo use and the input to prepare for
a given output.

The data sheet required for the selecting of stresses
is shown in fig.116.

The data for the plotting is given in a series of commands
of which four are éurrently availanle:

1 WEW AXES

2 READ
3 PLIOT
4 STOP

The first is obvious in its action and.is called every
time axes are required to be drawn, All graphs are drawn
on the samé axes unless this commrand is interspersed with
others,

The second command allows the direct input of vglues Trom
cards, This can be of use if previous results are‘required _
to be piotted alongside the new calculations.

The third command takes the next chain of values from
a disc file as left there by the stress selection program,
These valiues are averaged vlgre apuropriate, There is room if
in future a smoothing subroutine is required to replace the
present straight line segment graph.

The last command closes the plotter and signifies the

end of a run.
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The NEV/ AXRS command also reqguires on the following

two cards these data items:

a)
b)
c)
a)

number of tick marks for the X axis
incremental value beitween two tick makks
X value at origin

title for X axis

g) =~ h) On the next card the same items but for Y axis.

In fig.d17. an examnle of the output from these two

prograns is shown, The straight line graﬁh was input using

the READ command and the other by PLOT., The data required

for the plotting program is as follows:

NEW AXEIS
10 12
6 500
PLOT
READ

2

0 2000

STOP

0 DISTAUCE ALONG X~AXIS (INS)

0 IONGITUDIFAL S3TRESS (3XX) P.S.I.

120 ¢C
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Appendix Three Liatrix integers and built-in functions

The following lists are the built-in fdhctions and their
corresponding reference numbers., These functions are
available to all elements if required, They are selected

according to tue matrix integers. (see below)

Functiong for matrix N (elasticity matrix)

1 1

-V

2(1+v)
t2(1+v) /5

= WD

Tunctions for I metrix (transformation of siresses)

e

~2*SIN*COS
~STiF*GOS

SIN*COS

COS*COS ~ SIN®SIH
STH*3IH

COS*C0S

~SIN

cos

STN*SIN - COS¥COS

w OO oy N

"COESTant" functions for L matrix (elge displacements)

1 FL
2 SIH

3 ~SIN

4 c0S

5 BL#(0S*COS
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6 ~5L*SIH*SIN
7 -6/EL

8 ~BL*SIH

9 BL*C0S

10 -C08

1 1

12 6/EL

13 2% 5L

4 =BL*SIN*COS
15 BLADIN*GIN

16 BL*3IN*COS

Polynomial funciions

A11. the polynomiai functions for the P matrix and L matrix
are stored in a linear array called FUHS. This array is
set vup for each element from DATA statements, This array
is the same for all the nlane stress elements except the.
PIAN elenent, A different array is also required for the

bending element,

FUNS — for plane stress elements

function integer parameters

1 1 1 1 0 0

X 5 1 1 i 0

y 9 1 1 0 1

—X 13 1 ~1 1 0

-~y 17 1 -1 0 1

yeix® 21 2 1 0 2 ~5 2
X2ty 28 2 1 2 0 ~5 0
-xy 35 1 1 1 1
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—y° 43 1 =5 0 2
yo-3x°y/2 47 2 10 3 ~1.5 2
X0 ~3xy°/2 54 2 1 30 ~1.5 1
—ixo 61 1 ~5 3 0
4y’ 65 i -5 0 3
3xy°/2 69 1 1.5 1 2
3x2y/2 73 ’ 1.5 2 1
1x°%y-y°/3 77 2 5 2 1 -1/3 0
Ixy°-x>/3 84 2 R 2 ~1/3 3
—tx’y 91 | -5 2 1
~bxy® 95 a5 1 2

xyPex’/6 99 2 ! 1 2 -1/6
xCy—-y° /6 106 2 1 2 1 ~1/6 0
287-38%41 120 3 2 3 32 1
s2-25%+s 127 31 3 =2 2 1
352-28> 134 2 3 2 2 3
g7 -5° 139 2 1 3 -1 2
1-8 144 2 1 0 -1
s 149 1 1 1
3(s-s°) 152 2 .5 1 .5 2
+(s%-s) 157 2 .5 2 -5 1

Matrix integers

For each separate element five matrices ar: specified by
integerss Pmatrix by P1, Nmatrix by N1, i matrix by B1;
L matrix by two integer matrices, CC1 & At,

For the elements RECT4, GIN3, GEN4 & GIN6 the matrices
P1, W1 & B1 are the same for each element. CC1 & At are

however different,



T~

M1

.
=T 1| N

[ ATEERN |
N S

CC1s
for GIENG6:
{ 120
( 120

120
120

for GEN4:
( 120 120

{ 120 120

for GEN3:

120 120
g 120 120
for RECT4:
( 144 144
E 120 120
Al

for GENG:
(4 2 5

5 4 14

0
5
0

0
o

1

127
127

127

127

127
127

16
6

5
O

17

127
127

127

134
134

127
127

16
5
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0
9

21

4

3

3
2

o

-

0
O

13 35 35

127
127

134
134

134
134

149
134

127
127

134
134

139

149
134

T L

15 4 2 5

o 35 47 99 91
106 54
39 43 €9 77 84 173

35 0 65 95

134
134

139
0

139
139

16

t6 3 4 14 6

134
134

139 ;
139 )

16
5

139
139

15
16

i

139
139

61

139
139

)
)
)
)
)

139)
139
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for GLI4:

4 2 1 13 4 2 1 13 )
(3 4 1 13 3 4 1 13)
for GEN3: |

4 2 13 4 2 13)

13 4 13 3 4 133
for RECT4:

The array FUNS and the intger matrices for PIAH and the
bending element are similar to the above and are not

quoted here in detail,

Details of prozsram

To illustrate the program techniques used in thelsetting up
of the element stiffness matrices three exitracts from the
program are given here. (See pages238,239 ,240 )

The first is taken from the subroutine to set wp HI and is
the section which converts the integer matrig N1 - called
ENIH - into a real nmatrix EN, using the actual values given
for each element of TT (thickness) and V (Poisson's Ratio)
The second and third extracts are taken from the subroutine
to set up TI. The first of these is the section which
generates the first algebraic product of Mt.L The II matrix
has already been set up in an array T and the éonstants

in the L matrix in au array CONST (corresponding to A1). The
integers for the polynomial functions are stored in CC, The
product is stored dynamically in the array STORZ, with an
array LML of pointers which indicate the position in STCRE

at which eazch array element of the product is stored.
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The final extract is the algebraic multiplication and
numerical integration of the complete product of the TI
matrix, The Ps matrix is derived from the integer matrix

P which points to the array FUNS.

ak
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