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Abstract 
of a PhD Thesis on 

Prediction of Zone Temperatures, Cooling Loads and IIluminances from 
Numerical Simulation of the Interaction Between 

Fluorescent Lighting and HV AC Systems 

by 

T.M. Chung 

A numerical model has been developed for the dynamic simulation of heat and 

radiation transfer from lamps and ballasts in an enclosure. The model, named 

LITEACl, calculates temperatures, cooling loads and illuminances at each simulation 

time step. LITEACl is an improvement upon existing models in the literature in the 

following aspects: it performs dynamic simulation for all nodes without assuming that 

some nodes are massless; it calculates Illunnnances on room surfaces; and it runs faster 

on a desktop computer. In order to refine the simulation of the two-way interaction 

between lighting and HV AC systems, a fluorescent lamp positive column discharge 

model, named LAMPPC, has been incorporated into LITEACl to improve calculation 

of the conversion of input electrical energy into light, thermal radiation and heat. 

LAMPPC employs established principles in plasma physics to quantify the energy 

conversion processes. It was tested, as a stand-alone program, using published 

experimental results. The integration of LAMPPC with LITEACl produces a new 

model called LITEAC2. Predictions of LITEACl and LITEAC2 have been shown to 

give good agreement with experimental and theoretical results in the literature. A 

laboratory test cell has been constructed for the further validation of LITEAC2. The 

main contributions to knowledge of this work consist of: the inclusion of a fluorescent 

lamp discharge model within the numencal simulation of the interaction between 

lighting and HV AC systems; the methodologies developed for the calculation of heat 

and radiation transfer from lamps; the ability to calculate light output and lamp power. 
-

These afford significant improvements over previous numerical studies of 

lighting/HV AC interaction through integration of thermal and lighting performance 

simulation. Designers are now able to predict both the dynamic cooling load due to 

lighting and the thermal effects on the room illuminance provided by fluorescent 

lighting installations. This work also introduces a tool for the research community to 

look seriously into the effect oftemperature on the performance oflightfng systems and 

Its implication on energy efficiency. C 
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Chapter One 

Introduction 

1.1 Background 

For people to work efficiently and in comfort in modern office buildings, a 

good visual and thermal environment is essential Provided that adequate glare 

controls are installed, a good visual environment can be realized using daylight which 

is preferred by many people both for its quality and its energy saving potential. 

However, due to the variable nature of daylight, electric lighting is essential in 

modern office bmldings. In Hong Kong, due to the shortage of land, office buildings 

are high rise and the ceiling height of typical offices is small so that only a shallow 

perimeter area near windows has sufficient daylight for general illmnination. Hence, 

electric lighting is the main light source in office buildings in Hong Kong and in deep 

plan buildings worldwide. In the SUbtropical climate of Hong Kong, smnmer is long, 

and hot and hnmid. Therefore, air-conilltioning is essential in office buildings so as to 

provide a comfortable environment for office workers. Even during winters, arr

conilltioning is very often necessary to extract the heat generated internally by 

lighting, equipment and occupants. Heating is not a major requirement m Hong Kong; 

although heating systems are installed in many first class office buildings, they are in 

operation for very short periods (less than 10 days on average) each year. 

Hence, lighting and RV AC are the two major energy consnmers in modern 

office bmldings m Hong Kong as well as in many other parts of the world. The actual 

proportions of electricity used by lighting and RV AC respectively vary 

geographically and seasonally WIth changes in climate. In offices in the UK, hghting 

often accounts for around. 50% of the electricity used (Energy Efficiency 

Office 1991). In California, U.S.A., lighting accounts for more than 40% of all 
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commercial electric energy use (California Energy Commission 1993). Accordmg to 

the Hong Kong Census and Statistics Department (1996), the commercial sector in 

Hong Kong consumed 64,751 TJ of electriCity m 1996. There is no detailed data about 

the split of this figure into consumption by lighting, RV AC and other equipment. 

However, surveys in individual buildings (Chow and Chan 1993; Lam 1995) showed 

that RV AC accounted for 54% to 60%, and lighting accounted for 21 % to 28%, of the 

total electricity consumption of a building. Therefore, a good estimate is that about 

55% (which amounts to about 35,600 TJ) is consumed by RV AC, and about 25% 

(which amounts to about 16,200 TJ) is consumed by lighting. An energy saving of 

only 1 % of each would be equivalent to 518 TJ, which at present prices would save 

about HK$ 119 million or UK£ 9.3 million. 

Although lighting and RV AC are different systems in a building and proVIde 

different functions, they have a mutual effect upon each other when they are operating 

simultaneously. Lighting produces heat which must be taken away by the air

conditioning In order to maintain thermal comfort. At the same time, air-conditioning 

affects the lamp temperature which in turn has a strong Influence on the light output 

of fluorescent lamps, these bemg the major type of light source in use nowadays. In 

other words, there is a mutual interaction between lightmg and RV AC: lighting adds 

to the cooling load and the ambient temperature affects the lighting output. This , 

mutual interaction is shown schematically in Figure 1.1 and it is discussed in the 

following paragraphs. 

1.1.1 The heating effect of electric lighting 

The energy consumed by electric lighting appears as heat in building interiors 

and thus lighting power is a large source of heat gain in buildings. In fact, in interior 

zones of typical office buildings where solar heat gain is absent, lighting is the largest 

source of heat gain. This heat gain may be beneficial to occupants in buildings 

2 
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situated at locations with a cold climate, but for hot clunates and for the cooling 

season of temperate climates this heat gaIn adds to the cooling load of the air

conditioning system. 

Electric lamps convert electrical energy to light. However, even for the most 

efficient light source, a large proportion of the energy input to the luminaire is 

converted to heat directly and is sensed as a raised temperature on lamp and ballast 

surfaces. The remaining energy is radiated out from the lamp as electromagnetic 

radiation in both the viSIble and inVIsible ranges of wavelength. Ultimately, all 

electric energy input to lightmg (less a small proportion which is lost to the outsIde 

through windows) becomes heat gain to the space in two forms. One form is the 

convective and/or conductive heat gain due to the raised temperature on lamp and 

ballast surfaces; tins adds heat to the space instantaneously. The second form IS 

thermal and visible radiation emitted from the lamps which is absorbed by room and 

furniture surfaces and causes an increase in room and furniture surface temperatures; 

this temperature increase WIll, after a time lag, add heat to the space through 

convection. At steady state, the rate of space heat gain due to lights is equal to the 

lighting power input if all the lighting radiation are trapped within the space (e g. for 

an interior zone WIth no windows). However, in most offices, lights are switched off 

after office hours and some energy conscious occupants turn off the lights when the 

room is unoccupied, also, some bnilding management systems (HMS) do this via 

occupancy detectors; thus, steady state conditIons are not normally attained due to 

these on/off cycles. The mstantaneous rate of heat gain from lIghts therefore depends 

on a number of factors which include the on/off schedule of the lighting, the 

configuratIon of the room, room surfaces and furniture thermal properties and the 

room ventilation rate. 
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1.1.2 The effect of the HVAC system on lighting perfonnance 

The perfonnance of fluorescent lamps, which are the most widely used lamps 

in office buildings, is affected by the HV AC system. The luminous flux output, the 

lighting power and the efficacy of fluorescent lamps are closely related to the 

minimum lamp wall temperature (IESNA 1993). Figure 1.2 shows the variation of 

light output, lamp power and efficacy with the minimum lamp wall temperature. For 

tubular fluorescent lamps inside a box luminaire (the most common configuration in 

modem office bwldings), the minnnum lamp wall temperature depends on the 

following factors: the lamp compartment arr temperature; the dimeusions of the 

luminaire; the number of lamps inside the luminaire; the space between lamps; 

whether the luminaire is vented; the ventilation rate through the lamp compartment. 

Verderber et al. (1988) quoted statistIcs m the United States and deduced that about 

73% of fluorescent lamps in offices are operating at a temperature 10° to 20°C higher 

than the optimum temperature for maximum light output and highest efficiency. It 

would mean, from Figure 1.2, that these lamps give only 70 to 90% of their maximum 

light output. 

Energy for lighting and the number of lamps required to provide the desired 

illuminance will be minimized if the lamps are operated at their most efficient 

temperature. The heat gain to the building space from the lamps would also be 

mInimized at this condItion, meaning minimum cooling loads from lighting and hence 

less energy for providing best comfort conditions for the occupants. 

1.2 Research motivation 

In the preceding sectlOn it was stated that there is a two-way interaction 

between lighting and RV AC systems. Factors affecting these interactions are 

complex, but it is necessary to consider these interactions in combination. There have 
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been some studies of these interactions reported in the literature. However, most 

studies so far have treated the interactions in only a 'one-way' manner, i.e. either the 

heat released from luminaires as a coolmg load for the aIr-conditioning (Kimura and 

Stephenson 1968; Mitalas and Kimura 1971; Ball and Green 1983; Sowelll989, 

1990), or the effects of air temperature and ventilation around the lamps on the 

performance of the lamps in respect of light output and efficiency (Siminovitch et 

a!. 1984, 1988). Furthermore, mathematical models oflightingIHV AC interactions in 

the literature (e.g. Ball and Green 1983; Sowell1989, 1990) were developed for the 

calculation of coolmg load due to lights but not for the calculation of light output or 

illuminance on room surfaces m conjunction with the RV AC system. There do not 

appear to have been any mathematical modelling studies of the effect of the ambient 

thermal environment on light output or on lighting system efficiency. Studies of how 

the thermal environment affects the light output of fluorescent lamps have been 

largely experimental and empirical with little attention to the physical processes that 

cause the dependence oflight output on ambient temperature (Siminovitch et al. 1984; 

Collins et a!. 1992). In order to perform the following tasks: calculation of the 

transient cooling load from lighting so that effects of changes in the thermal 

enVIronment on lighting power are taken into account, and calculatIOn of light output 

and lighting system efficiency during the whole period when air-conditioning IS on, it 

is necessary to study the interaction in a 'two-way' manner, i.e. to model the mutual 

interaction. 

The study of these interactions can be done either theoretically (using 

analytical or numerical modelling techniques), or experimentally (using purpose-bUilt 

model rooms or 'real' rooms in existing office buildings). Performing experimental 

studies is expensive, and usually gives results which are 'system specific', that is, they 

are only applicable to the building/room configurations investigated. Sowell (1990) 

argued that full-scale test cells were not the best way to assess the thermal effects of 

lighting because of problems in obtaining a balance between measured addition and 
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removal of heat. Sowell (1990) also pointed out that errors occurred in the results of 

the experimental study of Treado and Bean (1992) on lighting/lN AC interaction 

(details of this experimental study WIll be described in Chapter 8) due to difficulties 

encountered in accurate measurement of air mass flow rates and of temperatures, and 

in elimination of boundary losses. On the other hand, numerical modellmg techniques 

have been developed to a stage such that these can be used to simulate many physical 

situations, thereby removing the need to carry out an exhaustive range of actual 

physical experiments. TIns is particularly true for experiments whIch require 

extensive change of parameters to obtain a set of meaningful results. With today's fast 

and powerful desktop computers, many codes of numerical models can be run 

conveniently on a desktop machine. 

In consideration of the above background, It is proposed to undertake a 

numerical study of the interaction between lighting and RV AC systems using 

mathematical modelling techniques, with the aim of predicting not only cooling loads 

and temperatures but also light output and lighting system performance; it is also 

proposed to investIgate applicatIon of the results to reducing energy consumption by 

lighting and hence to increasing efficiency. 

1.3 Research objectives 

The objectives of this study are as follows: 

(i) Based on fundamental principles of heat transfer, to produce a mathematical 

model for calculatmg the conversion of lighting energy into air-conditioning 

load for the typical lighting systems in office enviromnents. 

(Ii) To model the conversion of electrical energy to light and heat using a 

fluorescent lamp positive column model, and thus to investigate the 

relationship between light output/efficiency of fluorescent lamps and the 
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ambient thennal environment, as well as the effect of different HV AC designs 

on lightmg perfonnance in respect oflight output and energy efficiency. 

(iii) To validate the models using published results from the literature and 

experimental data from a simple test cell constructed in the laboratory. 

(iv) To assess the implications of the models for the design of lighting and HVAC 

systems for office buildings. 

1.4 Research methodology 

Several tasks were identified for this study of the interaction between lighting 

and HV AC systems. These tasks are descnbed below: 

1.4.1 Literature search 

A search of the literature on the subject has been undertaken during the initIal 

stage of the research. Developments in the subject have also been regularly reviewed 

during the course of the project. The major papers reviewed are listed in the Reference 

section at the end of this thesIs. Literature that has been reviewed includes papers on 

modelling of heat gain or cooling load due to lighting, design guides for the 

calculation of cooling loads from lighting, articles on the perfonnance characteristics 

of fluorescent lamps under different ambient thennal conditions and mathematical 

models of the positive column of fluorescent lamps, as well as experimental studies. 

It may be worthwhile to mention that during the early stage of this research, 

contacts were made with local and intemationalluminaire manufacturers requesting 

data on the build up of temperature inside luminaires. Some data were obtained 

relating to the safety ofluminaires due to temperature rise. It was found that these data 

were of little value for this study as the temperatures measured were related to the 

starter, capacitor, wiring, or lamp holder, but there were no temperature data relatmg 
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to the lamp surface, luminaire walls or the air inside the luminaire. It can be 

concluded that the major lamp and luminaire manufacturers do not have useful data 

for this research. However, this does not suggest that such data are unnecessary but 

only that current design practice ignores the effect of temperature on light output and 

efficiency of fluorescent lamps. The problem actually exists as Verderber et al. (1988) 

deduced from statistics in the United States that about 73% of fluorescent lamps in 

offices are operating at 10° to 20°C higher than the optimum temperature for 

maximum light output. It can be deduced from Figure 1.2 that these lamps emit only 

about 70 to 90% of their maximum light output. 

1.4.2 Mathematical modelling 

The main task of the research is to produce a detailed mathematical model of a 

typical fluorescent luminaire within a typical air-conditioned office for the study of 

both the heat release from the luminaire and the temperature build-up inside the 

luminaire. This will be a completely new model developed for this research and it will 

be called LITEACl. LITEACl will be different from existing models and it will treat 

the heat transfer inside the enclosure in a more comprehensive manner than existing 

models (SoweIl1989, 1990; Ball and Green 1983). 

One shortcoming of existing models is that they do not calculate the 

conversion of electrical energy into light and heat but assume either that the energy 

input to lights is divided arbitrarily into light (short-wave radiation), long-wave 

radiation and convective heat (Ball and Green 1983), or that detailed data in short

wave radiation power output of the lamp is known (Sowell 1989, 1990). Furthermore, 

in existing models, the effect of lamp-wall temperature on light output and lighting 

power is either ignored (Ball and Green 1983), or taken into account using empirical 

curves (Sowell 1989, 1990). Thus, existing mathematical models of lightingIHV AC 

interaction simulate essentially the effect of lighting on cooling load of RV AC. As 
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mentioned previously, this study focuses on the two-way interaction between hghting 

and RV AC system design. Hence, the aim of the mathematical model to be developed 

in this research is to not only simulate and predict the effect of lighting on RV AC 

coolmg load, but also to predict, by theoretical calculations based on the conversion of 

energy inside the fluorescent lamp, the effect of the ambIent thermal environment 

(which is affected by the RV AC system) on the light output and hence the illuminance 

on room surfaces. To do the latter, a model of the fluorescent lamp dIscharge, which 

simulates the dependence of light output on lamp-wall temperature based on 

theoretical calculatIons of the physical processes insIde the discharge, will be 

developed specially for this research. This will be basically a fluorescent lamp 

posItive column model based on similar hypotheses as used in previous positive 

column models such as Waymouth and Bitter (1956) and Lama et al. (1982). This 

model will be called LAMPPC and will be incorporated into LITEACl as a 

subroutine for the better simulation of light output and lIghting power without the 

necessity of using empirical data on the temperature dependence of light output. The 

integration of LAMP PC into LITEACI will form a new program called LITEAC2. A 

schematic diagram showing the energy flow path modelled in LITEAC2 is gIVen in 

Figure 1.3. 

1.4.3 Model validation 

In order to fully test the proposed new mathematical model LITEAC2 (which 

combines the room model LITEACl and the fluorescent lamp model LAMPPC), 

validation of the model is performed in several different ways. Firstly, computer

generated results of the room model LITEACl are compared with a simple analytical 

example which has a closed form solution. Secondly, the fluorescent lamp positive 

column model LAMPPC is validated against published data from modelling and 

experimental studies. Thirdly, the combined room and fluorescent lamp model 

LITEAC2 is validated with experimental data from two dIfferent sources which are: 
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(i) experimental data from a full-scale test perfonned at the National Institute of 

Standards and Technology (NlST) in the USA as published in Treado and 

Bean (1988, 1990 and 1992), and 

(ii) the data from measurements inside a laboratory test cell containing a 

fluorescent luminaire, constructed as part of tIns research. 

In addition to experimental validation, the simulated results of the room 

model, LITEACl, and the combined room and fluorescent lamp model, LITEAC2, 

are compared with that of Sowell's LIGHTS model (SowellI989, 1990) for several 

configurations. 

1.5 Outline of thesis 

The thesis is organised into 11 chapters. In this chapter, Chapter 1, an 

introduction to the need for studying the two-way interaction between lighting and 

HV AC system is given. The background, the motivation, the objectives and the tasks 

of the research work are established. An overview of the work perfonned in this study 

is given and the organisation of the thesis is outlined. 

Chapter 2 is the literature survey on the subject of heat from lights in an 

enclosure. It first gives a summary of the development of theoretical models of 

lighting heat transfer. Experimental studies on this subject are also reviewed. A 

review of current design guides then follows. The shortcomings of these models and 

of the current design guidance are then addressed. 

One of the objectives of this study is to develop a fluorescent lamp model 

suitable for incorporation into the heat transfer model of a room with a lurninaire. 

Therefore, a review of fluorescent lamp models is given in Chapter 3. Experimental 

studies of the fluorescent lamp positive colunm are also reviewed. Current design 
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guidance on the treatment of thermal effects on light loss and lamp power is also 

discussed in Chapter 3. 

In Chapter 4, the proposed new mathematIcal model of an enclosure with 

luminaires, LITEAC1, is described in detail. The derivation of the model from first 

principles is presented together with the solution scheme for coding into a computer 

program. A simple test of LITEACI using an enclosure with closed analytical 

solution IS described. 

Chapters 5 and 6 contain the main thrust of this research work. In Chapter 5, 

the new model of a fluorescent lamp positive column, LAMPPC, is elaborated; this 

model is suitable for incorporation into a heat transfer model of an enclosure for 

smdying the two-way interaction of lighting and RV AC systems. The chapter opens 

with a discussion of the fluorescent lamp energy balance and the energy conversion 

processes inside the fluorescent mbe. It is followed by a discussion of the balance of 

the different mercury excited states inside the fluorescent mbe. 

In Chapter 6, the procedure and approximations used to solve the energy 

balance and the continuity equations developed In Chapter 5 are described in detail. 

The algorithm for the calculation of light output from the fluorescent lamps is also 

descnbed. 

Chapter 7 describes the validation of the new fluorescent lamp model, 

LAMPPC, using experimental results from the literature. The results predicted by the 

model are compared With experimental results, and with results predicted by more 

sophisticated models used in plasma physics research; a discussion on the validity of 

LAMPPC used in this smdy is given. 

Chapter 8 descnbes the validation of the new lightingIHV AC interaction 

model, LITEAC2 (which integrates LITEACl and LAMPPC), based on experimental 
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results from the literature. The simulated results from LITEACl and LITEAC2 are 

compared with the experimental data of the full-scale test performed at NIST as 

published in Treado and Bean (1988,1990 and 1992); the validity of LIT EA Cl and 

LITEAC2 when used as a simulation tool is discussed. 

Chapter 9 descnbes a laboratory test cell constructed for the further validation 

of LITEACl and LITEAC2. Details of the test cell and of the companson between 

measured results and simulated results are given. The validity of LITEACl and 

LITEAC2 for use in simulations for small enclosures is tested. 

Chapter 10 summarises the comparison of LITEACl and LITEAC2 with an 

existing model, the 'LIGHTS' model, which has been claimed by Sowell (1990) as a 

"numerical lightingIHV AC test cell". Comparisons are made for one particular 

experimental configuration of the NIST as well as for the laboratory constructed test 

cell. 

Chapter 11 discusses the possible applications of the new lightingIHV AC 

interaction model, LITEAC2, in design. Lastly, conclusions of the research work and 

recommendations for future study are given. 
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Figure 1.1 

Schematic diagram showing the 2-way mutual interaction between HV AC system and 
fluorescent lighting system. 
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Chapter Two 

Heat From Lights in an Enclosnre 

2.1 Background 

The two major research objectives stated in Section 1.3 are as follows: (i) the 

development of a dynamic heat transfer model of the energy transport of lighting in an 

enclosure; (ii) the development of a fluorescent lamp positive column model which 

sm1Ulates the conversion by the fluorescent lamp of electrical energy into light and 

heat. In order to help defme the current research so that improvements can be made to 

previous studies, literature concerning the study of the transport oflighting energy and 

its effects on the thermal environment and cooling load of an enclosure are reviewed 

and sururnarised in this chapter. The literature reviewed include theoretIcal modelling 

studies, experimental works and current design guidance. 

2.2 Summary of previous studies 

It has long been recognized that lighting is a source of indoor heat gain and 

can cause thermal discomfort to occupants. There have been a number of studies 

relating to heat gain from lighting, and discomfort due to heat and radiation from 

lighting. 

During the first half of the 20th century, incandescent lamps were the main 

artificial light source. Incandescent lamps are not efficient in their light production 

and produce a lot of heat, so heat gain and thermal discomfort produced by 

incandescent lightmg has always been a problem of concern. However, in the early 

days of this century, artificial lighting did not provide a lighting level as high as we 

enjoy today, so heat gain from lights was not a significant problem due to these low 
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Illuminance levels. The effects of such heat gains began to be senously studied in the 

late 1930's when the general illuminance levels were high enough to produce 

discomfort. The first serious study of lightmg heat gain was by Sturrock (1938) who, 

using measurements in occupied bUildings, discussed the heating effects produced by 

mcandescent lamps together with methods for removing this heat before it entered the 

room space. 

During the 1940's, fluorescent lamps became available for general office 

lighting use. This represented an improvement to the problem of lighting heat gain 

compared to incandescent lamps because, for the same illuminance, fluorescent lamps 

produce much less heat. Again, lighting standards at that time did not regard the 

heating effect from lights as a serious concern, even though the efficiency of 

fluorescent lamps was not as high as that of today. Air-conditioning was also not as 

common as it is today, therefore studies of how heat from lighting affects air

conditioning were rare until the late 1960's. 

In the late 1960's through to the early 1970's, several analytical models of heat 

transfer from lighting in a typical office room were developed (Kimura and 

Stephenson 1968; Nevins et a1. 1971; Sowell and O'Brien 1973). The analytical study 

of Kimura and Stephenson (1968) led to experimental studies which were aimed at 

determining values of coefficients of the Z-transfer functions used in the analytical 

study (Nottage and Park 1969; Mitalas and Kimura 1971). Based on these 

experimental studies, design values of the coefficients used in the transfer function 

method for cooling load calculation were derived by Mltalas (1973a, 1973b) and these 

coefficients are still in use in current design guides (ASHRAE 1997). 

2.3 Review of models of heat transfer from lighting 

The first theoretical modelling study of heat transfer from hghting in a typical 

office configuration is that of Kimura and Stephenson (1968). They used a simple 
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model of a room WIth a ceilmg plenum, a recessed lummaire and a heat-storing floor 

slab. Lighting power was split arbitrarily into "upward" (released to plenum space) 

and "downward" (released to room space) fractions. Each of these fractions was 

assumed to be equally divided into a convective and a radiative heat transfer 

component but without any justifications. Using the response factor method 

developed by Stephenson and Mitalas (1967), they showed that the mstantaneous 

cooling load due to lights can be expressed in terms of two coefficients: 

!l.. = 1- Ae-Bt 

W 

where q is the instantaneous cooling load at time t caused by lights (W), 

W is the power input to lights at time 1 (W), 

(2.1) 

A (dimensionless) and B (hour") are coefficients to be determined by 

experiment, 

t is the time after the lights are turned on (hours). 

Subsequently, the values of coefficients A and B were detennined by Mitalas 

and Kimura (1971) using data from measurements in a full scale room calorimeter. As 

reported by Mltalas (1973b), results from the experimental study were of hmited 

value for design calculations because they dId not cover a sufficiently broad range of 

room constructions, ventilation apparatus or installation arrangements; all these 

factors affect the values of the coefficients A and B. Mitalas (1973b) showed, using Z

transfer functions, that the cooling load at time to, which is a whole number multiple 

of a fixed time step after lights on, i.e. 1=10 =n.d, where n is a whole number and .d is a 

time step interval (usually one hour), is given by: 

(2.2) 

where q(/o) = cooling load from lights at t=n.d (W), 
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W(t.) = power input to lights at t=nL1 (W), 

a" a2 and b, are transfer functIon coefficients (dimensionless). 

The a, coefficient is the ratio of cooling load one hour after the lights are 

switched on to the power input to lights. It depends mainly on the short-term thermal 

storage characteristics of the room. These short-term characteristics depend, in turn, 

on the proportions of the lighting power that are dissipated by radiation and by 

convection, the luminaire geometry and lamp arrangement, the ventIlation rate, the 

ventilation air supply and return arrangement, the type of ceiling, and the thermal 

properties of the surface layer of furniture, walls, floor, etc. The b, coefficient is a 

measure of the rate of cooling load mcrease or decrease after the lights are sWItched 

on or off, respectively. Its value is a strong function of room thermal storage 

characteristics and it also varies with changes in the heat transfer coefficient between 

room air and various surfaces in the room. Based on the experimental study ofMitalas 

and Kimura (1971), design values of a, and b, were given by Mitalas (1973b) in 

tabular form. These values are used in the transfer function method for cooling load 

calculation in the ASHRAE Handbook of Fundamentals (ASHRAE 1997). While a, 

and b, are independent coefficients, a2 is dependent on a, and b, as follows: 

(2.3) 

Sowell and O'Brien (1973) constructed a detailed analytical model 

representing a buildmg unit cell with a fluorescent fitting recessed into the plenum. 

The unit cell was discretized into a number of nodes, and heat transfer in the form of 

conduction, convection and radiation between nodes was considered. For the steady

state condition, a heat balance equation in vector-matrix form was obtained. Sowell 

and O'Brien (1973) solved this vector-matrix equation numerically, and a set of 

steady-state nodal temperatures was obtained to enable the prediction of the effects of 
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the lighting system on the thermal environment in the living space. More details of the 

vector-matrix equation will be given in Chapter 10. 

Ball and Green (1983), in an ASHRAE-funded project, made a study using 

mathematical modelling of the transient energy transfer caused by lighting. Their 

model was based on heat balance calculation procedures in an explicit transient finite 

difference formulation and sunulated primarily the conditions in a single specific 

building section with the room, the plenum and the luminaire being considered 

separately. Ball and Green (1983) compared their model predictions with the 

experimental results of Mitalas (1973b) and found some good and some poor 

agreements. Although Ball and Green gave no explanation of the poor agreements, 

they did mentioned that many assumptions were made regarding the physical 

properties of the test room facility of Mitalas. These assumptions might contnbute to 

the large discrepancies found in some of the cases. Despite the poor agreement found 

In some of the test results WIth experimental data, Ball and Green (1983) developed 

sets of weighting factors for coolmg load calculations and made some 

recommendations for their use. According to Ball and Green (1983), their aim was for 

the inclusion of the results of their project in the ASHRAE Handbook. However, 

results derived from their project were not used (with no reasons given) in revising the 

design data in the ASHRAE Handbook so that the latest edition of the Handbook 

(ASHRAE 1997) still uses the results ofMitalas (1973b). 

Sowell (1990) added dynamic sunulation to Ius earlier steady-state model 

(Sowell and O'Brien 1973), so that now the heat balance equation had an additional 

term comprising the product of heat capacitance and rate of temperature change. The 

modified equation will be discussed in Chapter 10. Sowell (1990) solved this vector

matrix equation by partitioning the equation into those nodes with finite thermal mass, 

and those nodes (with actual mass below a certain pre-defined value) declared to be 

massless. He also included the effect oflamp wall temperature on lamp power, and on 
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luminous output, using empirical curves. Sowell called his model a "numerical 

lighting / HV AC test cell" and he argued that the use of his numerical test cell had 

advantages over the use of full-scale physical test cells. His numerical test cell was 

implemented in the 'C' programming language and was called the LIGHTS program 

(Sowell 1989). The LIGHTS program predicts temperatures and heat fluxes for all 

nodes, and cooling loads for the room. More details of the capabilities of LIGHTS 

will be discussed in Chapter 10. The LIGHTS program was validated by a number of 

simple examples with known solutions. Comparisons were also made with results 

from the NIST physical test cell (Treado and Bean 1988, 1990, 1992); however, 

agreement was generally poor. Sowell attributed the discrepancies between his model 

and the NIST data to model deficiencies or experimental error. 

2.4 Experimental studies 

2.4.1 Luminaire calorimeters 

There have been several important experimental studies on the thermal 

performance of lighting systems and the interaction between lighting and HV AC 

systems. Early experimental works were aimed at the measurement of the energy 

distnbution characteristics of various types of fluorescent luminaires using small 

calorimeters. Later works measured various interactJon parameters using full scale 

room test facilities. Some of these studies were aimed at getting data for the derivation 

of values of coefficients (e.g. for the transfer function method) used in design 

ca1culatJons of cooling load due to lighting. Other studies were aimed at the validation 

of theoretical models of the interaction between lighting and HV AC systems. 

Examples of the research efforts using small fluorescent luminarre 

calorimeters include: Bonvallet (1963), Ballman and Bradley (1964), Sylvester 

(1964), Ballman and Mueller (1965), and Nevins et al. (1971). These studies used 
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small calorimeters to measure the heat released from a luminaire to the ambient air 

and/or the heat gained by air circulated through a luminaire. Typically, the 

calorimeters consisted of insulated boxes, with the luminaire mounted on the bottom 

face. An external fan attached to a duct allowed air to be drawn through the luminarre 

into the box and then exhausted from the box, which served as a plenum. The boxes 

were usually fitted with temperature sensors to measure air and luminaire surface 

temperatures; luminaire light output and power consumption were measured together 

with ventilation airflow rate. With the temperature difference between the air before 

and after passing through the luminaire and the air mass flow rate, the heat given off 

by the lamps can be deduced. These luminaire calorimeters provided much needed 

information regarding the heat output of lighting systems. 

These luminaire calorimeters did not emulate the environmental conditions in 

which luminaires are usually installed, i.e. in a room with a plenum. Therefore, the 

calorimeters had weaknesses, for example, the thermal conditions surrounding the 

luminaire were not representative of a typical office room environment. This meant 

that the heat exchange by various modes was likely to be different in an actual 

installation than in a small calorimeter. Also, heat storage m the room and plenum 

could not be evaluated by a luminaire calorimeter. 

2.4.2 Early full scale room tests 

Due to these weaknesses of luminaire calorimeters, several researchers 

measured the thermal performance of lighting systems in full scale test rooms. Early 

full scale room tests of the thermal performance of fluorescent luminaires are reported 

by Boyer (1966, 1967, 1968) and Nottage and Park (1969). Boyer's work was 

primarily concerned with comparing steady state temperature and arrflow conditions 

for different air handling systems. The work of Nottage and Park was concerned WIth 

heat transfer from the luminaire to the room and plenum under steady state conditions. 
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These full scale tests gave more realistic heat exchange data than the simple luminaire 

calorimeters, but did not measure the transient lIghting thermal performance or the 

heat storage effects. Two important full scale room tests, which included transient 

measurements, are the studies performed by Mitalas and Kimura (1971) at the 

National Research Council of Canada and those performed by Treado and Bean 

(1988, 1990, 1992) at the National Institute of Standards and Technology (NlST) in 

the U.S.A. The experiment of Mitalas and Kimura (1971) will be reviewed next, 

whilst the NlST tests will be reviewed in Chapter 8, together with a dlscussion of the 

validation of the model developed in this research. 

2.4.3 The experiment of Mitalas and Kimura 

The fIrst full scale test room for the measurement of transient lighting thermal 

performance was built by Mitalas and Kimura (1971) at the National Research 

Council, Canada. They used the full scale test room to determine the model 

coefficients for the theoretical model published by Kimura and Stephenson (1968) 

(equation 2.1). In this full scale test facility, cooling load profiles were measured for a 

variety of configurations, including different supply and return air locations, with and 

Without furnishmgs and carpet. These measurements (and the subsequent derivation of 

the weighting factors for design calculations) represented a great step forward for the 

calculation of cooling loads due to lighting. Since the set of design data derived from 

this test facility is still in use in the ASHRAE Handbook (ASHRAE 1997) as wIll be 

discussed in Section 2.5, some more details of this full scale test room are given in the 

following paragraphs. 

Mitalas and Kimura's calorimeter was a guarded full scale room of floor 

dimensions 3.05 by 4.27 m (10 by 14 ft) and ceiling height 2.75 m (9 ft). There was a 

1.07 m (3.5 ft) plenum space between the ceiling and the underside of the floor above. 

The floor to floor distance was 3.97 m (13 ft). Six lightmg fixtIrres each containing 
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two 40 W fluorescent lamps were installed, each being recessed into the ceiling in the 

room; a duplicate ceiling was installed in the guard space below. This meant the 

power input from lighting including ballast into the room space was approximately 

590 W or a power density of 45.3 W m·2 (4.2 W f\"2). Illuminance at desk height was 

approximately 1400 lux (130 foot-candles). An air-conditioning system was installed 

such that the supply was through a ceiling diffuser and the return could be either 

through a high side-wall return gnlle or through the ceiling plenum space. There was 

a duplicate ceiling arrangement below the floor of the test room, and the calorimeter 

room was guarded also by a circulation of air at the same temperature as the inner 

surface of the walls through the space between the inner and outer walls. To ensure 

that no high thermal conductivity elements pass from the test room to the 

surroundings, the floor was a precast concrete slab supported by a timber frame; the 

floor of the room above was suspended from a structural steel frame. To simulate an 

area in a large office space in a multi-storey building, all inside wall surfaces of the 

test room were finished with specularly reflecting aluminium foil. With this 

calorimeter room, Mitalas and Kimura (1971) determined the coefficients A and B in 

equation (2.1). 

They found that for times greater than 1 hour after turning the lights on, q/W 

could be represented by an expression with a single time constant, but for times less 

than 1 hour after switching on, the cooling load was smaller than that calculated by 

the simple formula. For the case they reported in MItalas and Kimura (1971), they 

found that A = 0.698 and B = 0.0924 k' which corresponded to a fraction of input 

power p dissipated into the plenum space of 0.5 and convective heat transfer 

coefficients h at both the floor and ceiling surfaces of the room of about 5.68 W m·2K"' 

(1.0 Btu/(£f h OF». 

Subsequently, the results of this experimental study was published in Mltalas 

(1973a, 1973b). Mitalas did 26 tests with different combinations of the supply and 
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return airflow rates and arrangements, and furnishings in the room to determine the 

coefficients at> a2, and b, in equation (2.2). In these 26 tests, a, was found to be 

between 0.44 and 0.87. The lowest value, 0.44, was for the case where the supply of 

ventilation air was through a diffuser in the ceiling, the return was through a grille 

below the ceiling and the room was not furnished. The highest value, 0.87, was for the 

case where ventilation air was supplied and returned through the luminaires. The 

experimentally-determined values of b, varied between 0 89 and 0.97 which was not 

due to changes in room construction (as only one room construction was used for all 

the tests), but instead was due to different ventilation rates, types ofIuminaires and the 

manner in which ventilation air was supplied and exhausted. A sununary of the 

experimental values of these coefficients is given in Appendix A. The experimental 

values by itself had little value for design calculations as they did not cover a broad 

range of room construction. However, Mitalas (1973a, 1973b) used these 

experunental results and the calculation methods described by Mitalas and Stephenson 

(1967) and by Stephenson and Mitalas (1967) to derive a set of design data for 

cooling loads caused by lights. The experiments were simply grouped into four cases 

with each case being given a single representative design value of at" CalculatIOn was 

used to derive the design values of b, for five types of envelope construction 

characterised by their specific mass and four different types of room circulation. The 

calcnlation for one envelope construction was compared with the experimental value 

and good agreement was found. This set of design data, given in Appendix A, is still 

in use in the most recent edition of the ASHRAE Handbook - Fundamentals volume 

(ASHRAE 1997). 

2.4.4 The NIST full scale tests 

Since the mid-1980's, buIlding energy analysis computer sirnulations have 

been popular for the evaluation of building performance. Computer programs like 

BLAST (UIUC 1986) and DoE-2 (LBL 1979) have been developed to calculate 
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building energy usage for hourly or other penodic time intervals. These programs 

calculate coolmg, heating and lighting loads for transient heat storage, and heat gains 

due to building envelope heat transfer, lighting, internal equipment and occupancy 

factors. Observing the fact that little information was available regarding the lighting 

energy distribution fractions which were needed as input parameters for these bUIlding 

energy analysis computer programs, Treado and Bean (1988, 1990, 1992) carried out 

full scale measurements of the interaction between lighting and RV AC systems at the 

Building and Fire Research Laboratory of the National Institute of Standards and 

Technology (NIST) in the U.S.A.. The primary objective of the NlST tests was to 

measure cooling load profiles and to detennine lighting energy distribution fractions 

for various room temperatures, airflow rates and airflow configurations. More details 

of this NlST test room will be discussed in Chapter 8. 

2.5 Present design guidance 

The ASHRAE Handbook has some considerations on the cooling load from 

lights. In the latest edition of the ASHRAE Handbook - Fundamentals Volume 

(ASHRAE 1997) - the transfer function method (TFM) is used as the fundamental 

methodology for the calculation of coolmg load. ASHRAE (1997) also gives the 

following simplified methods to be used as alternatives to the TFM method: the 

cooling load temperature differences (CLTD) method; the solar cooling load (SCL) 

method; the cooling load factors (CLF) method; the total equivalent temperature 

difference (TETD) method; and the time averaging (TA) method. Only the TFM 

method, or alternatively the CLF and TA methods, can be applied in the calculabon of 

cooling load due to lighting. These three methods are summarised next. 

In the TFM method, the instantaneous rate of heat gain from electric lighting 

is calculated first from: 
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where qeF heat gam due to lighting in watts (W), 

W = total lamp wattage (W), 

(2.4) 

F eF lighting use factor, a value from 0 to 1 to account for the proportion of 

usage oflightmg (dimensionless), 

F,. = lighting special allowance factor, a value to account for the power 

dissipated by the ballast (dunensionless). 

The transfer function method can be used for conversion of heat gain to 

cooling load. If the heat gain q (} is given at equal time mtervals, the correspondmg 

cooling load Quat time Bcan be related to the current value of qUand the preceding 

values of cooling load and heat gam by (ASHRAE 1997): 

(2.5) 

where 0 is the time interval (usually 1 hour) and the terms Vo, VI' ••• ' WI,W2, ••• are the 

coefficients (dimensionless) of the room transfer function. These coefficients depend on: 

(1) the size of the time interval 0 between successive values of heat gain and cooling 

load; (2) the nature of the heat gain (how much is in the form of radiation and where it is 

absorbed); (3) the heat storage capacity of the room and its contents. 

For estimating the cooling load due to lighting, only the coefficients WI, VI and 

V2 are required. These correspond to the coefficients hI' a l and a2 m the treatment of 

Mitalas (1973a, 1973b). Equation (2.5) becomes: 

(2.6) 
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ASHRAE (1997) gives a table (Table 24 of Chapter 28) for the selection of the 

value of WI for the approximate space envelope construction and the range of air 

circulation; another table (Table 25) permits the selection and calculation of VI and V2 

for the appropriate type of furrushlng, air supply and return, and type of light fixture. 

Values gIven in these tables are based on the experimental results of Mitalas and 

Kirnura (1971). 

ASHRAE (1997) also gives a one-step hand calculation procedure called the 

cooling load factor (CLF) method which is based on the transfer function method. By 

this method, the instantaneous cooling load due to lighting is given by the following 

equation: 

where W = tota1lamp watts from luminaire data (or from electrical plans) (W), 

F uJ= lighting use factor (dirnensionless), 

F .. = lighting special allowance factor (dirnensionless), 

(2.7) 

CLF = cooling load factor, by hour of occupancy, which is given m Table 38 of 

Chapter 28 of ASHRAE (1997). The CLF values given in this table are 

based on the assumption that the conditioned space temperature is 

continuously maintained at a constant value and the cooling load and 

power input to the lights eventually become equal if the hghts are on for 

long enough. If the cooling system operates only during occupied hours, 

or if the lights are left on for 24 hours a day, then the CLF is equal to 1.0 

for all time. 

Another method recommended by ASHRAE (1997) to be used as an 

alternative to the TFM method is the time averaging (TA) technique which recognizes 

that the cooling load for a space at a given hour is the sum of all convective heat gains 
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and the non-radiant portion of conductive heat gains to that space, plus the amount of 

previously stored radiant heat released back to the space during the same hour. In 

other words, the coolmg load for the current hour IS approximated by averaging the 

hourly radiant components of heat gain for the previous 1 to 7 or 8 hours with those 

for the current hour, and then adding the result to the total convective heat gain for the 

current hour. 

The ASHRAE calculation for the cooling load produced by lighting uses the 

experimental data of Mitalas and Kimura (1971) which is lImited to only a few 

configurations of room construction, ventilation arrangements, and lighting. Also, 

ASHRAE categories are not inclusive of all combinations of variables. Therefore, 

sometimes it is not certain which ASHRAE category should be chosen. Using the next 

incorrect case or slightly inappropriate category would cause 1 % to 4% over

prediction of the cooling load according to Rundquist (1990). 

2.6 Summary 

From the above literature reView, the early model of Kimura and 

Stephenson (1968) provided a useful method of calculation of cooling load from 

lighting which is still being used. However, coefficients used in the calculation are 

based on experimental results of only 26 tests performed in one single test room. 

Moreover, current design guidance on the classification of buildmgs for selection of 

coefficients for cooling load calculation does not include all combination of variables. 

Further experiments can be performed for the determination of coefficients for more 

configurations, but experiments are expensive and time consuruing. Hence, it is 

considered that a good numerical model can help the design process by performing 

the cooling load calculation either directly or indirectly by determining coefficients 

(or weightmg factors) for calculations using the conventional methods recommended 

in some design guides. 
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Further steady-state and transient models developed previously performed 

calculations of the cooling load and temperature distribution inside the enclosure. 

However, these models did not give good agreement with experimental results. These 

models, although treating the heat transfer from lighting in much detail, did not 

represent well the heat and radiation output from the lamps which is the only source 

of heat inside the enclosure. Existing models just assume that a proportion of the input 

power to the lamps becomes radiation and the rest becomes convective heat loss from 

the lamps. Furthermore, an existing transient model had to assume that some nodes 

were massless in order to obtain a solution. Therefore, it is considered that, a new 

hghtmgIHV AC interaction model is to be developed in this research to make a better 

representation of the power flow from lamps inside the enclosure by integrating a 

fluorescent lamp positive column model into a room heat transfer model. 
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Chapter Three 

Effects of Temperature on Fluorescent Lamp Performance 

3.1 Background 

The light output of fluorescent lamps depends on the minimum lamp wall 

temperature (also called the cold spot temperature) which is the temperature of the 

coldest spot on the surface of the fluorescent tube (IESNA 1993; Elenbaas 1971). It is 

also known that this dependence is due to the fact that the properties of the lamp 

discharge depend on the mercury vapour pressure inside the lamp tube, which ID turn 

changes with the minimum lamp wall temperature; this is because mercury vapour 

condenses on the cold spot of the lamp wall. Studies of thermal effects on light output 

have been largely empirical (e.g. Siminovitch et al. 1984, 1988; Collins et al. 1992), 

and have attempted to find the relationship of light output and lighting power with 

ambient temperature or the lamp wall temperature. These studies obtained empirical 

results but only for several specific lamp-ballast systems. It IS uncertain whether these 

empincal results can be applied to other types oflamp-ballast combinations. 

Sowell's 'LIGHTS' model discussed in Section 2.3 includes a provision for 

using empirical results for simulating the effect of lamp wall temperature on the light 

output and lamp power of fluorescent lamps. Despite the fact that 'LIGHTS' permits 

user input of these temperature-dependent performance data for fluorescent lamps, 

such data are not normally included in the lamp or luminaire data sheets provided by 

the manufacturers. In all the sample data files included in the LIGHTS program 

diskette distributed by Sowell (1989), only one set of data was presented of the 

dependence of light output and lamp power with lamp wall temperature. This set of 

data, which consisted of one curve for relative light output and one curve for relative 

lamp power, was taken from the illS Lighting Handbook (IESNA 1984) and appeared 
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also in Treado and Bean (1988, 1992). Although Treado and Bean (1988) measured 

the relative light output and relative lighting power of the lamps used in one 

configuration of the NIST full scale tests, the data presented were incomplete. 

Therefore, apparently, Sowell (1990) was not able to use these measured data in the 

validation of LIGHTS using the NIST experimental results. Evidently, due to the lack 

of other sources of data, the curves that were published in a lighting handbook were 

used in the numerical experiments described in Sowell (1990). However, neither 

Sowell (1990) nor Treado and Bean (1988, 1992) discussed the validity of the 

handbook data for the lamps used m the NIST experiments or in other examples given 

by Sowell (1990). 

Another reason for the importance of investigatmg into the effect of the 

thermal environment on the light output of fluorescent lamps is that photometric data 

for lamps and luminaires are usually obtained wder the standard testing condition 

which is open air at a temperature of 25°C. However, lamps in service are usually 

operating at an ambient thermal environment different from this standard testing 

condition. Design calculations of lighting levels on the working plane usually use 

photometric data measured wder this standard testing condition. In practice, lamps 

housed within luminaires are usually operated at an ambient temperature which is 

higher than 25°C, and if allowance is not made for this thermal effect in the design 

calculation, then the actual lighting level will be lower than the calculated design 

values. This can result in incorrect levels of illuminance, which may, in turn, have an 

adverse effect on the performance of office workers or may cause visual discomfort to 

some workers. Hence, the ability to quantify the effect of the thermal environment on 

the light output of fluorescent lamps is important in the lighting design process in 

order that a more accurate determination can be made of light output, and hence of 

illuminance levels, on the working plane or other room surfaces. Furthermore, lamps 

which are operatmg at high ambient temperatures do so at lower efficiency, thereby 

creating more heat while emitting less light; this results in higher cooling loads 
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produced by lights and requiring extraction by the RV AC system. Thus, more 

accurate calculation of the cooling load from lights requires a better knowledge of the 

effects of temperature on light output and lamp power. Therefore, it is considered that 

improvements to the modelling of the interactions between temperature, light output 

and lamp power are essential, and will help to improve the simulation of lighting and 

RV AC systems. 

In this research, an attempt is made to use a fluorescent lamp positive column 

model for the simulation of the thermal effect on light output and lighting power. The 

application of a fluorescent lamp positive column model in the study of 

lightingIHV AC interaction is discussed in the following chapters. Here, however, a 

review of the various numerical and analytical positive column models IS given in 

Section 3.2. The simulation results of the positive column model developed in this 

research will be compared with published experimental data. A summary is therefore 

given in Section 3.3 of some important experimental measurements from fluorescent 

lamp discharge experiments. In order to study the current status of design guidance 

concernmg the estimation of thermal effects on lIght output and lamp power, a 

literature survey of relevant information has been performed and a summary is given 

in Section 3.4. 

3.2 Review of theoretical studies of the fluorescent lamp positive column 

discharge 

3.2.1 Background 

Published theoretical studies of the fluorescent lamp discharge, consist of 

numerical and analytical models that simulate the physical processes occurrmg in the 

discharge (Waymouth and Bitter 1956; Cayless 1963; Lama et al. 1982). These 

models simulate the collision processes that occur between the accelerated electrons 
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and the different species of the rnercury atorns. These collision processes occur in a 

region called the positive column of the discharge (see Appendix B), which occupies 

over 95% of the length of fluorescent tube; as a result, these rnodels are called positive 

column rnodels of the rnercury-rare-gas dIscharge. The positIve column rnodels also 

explain how electrical power is converted to ultraviolet (UV) radiation with sorne 

power losses In the discharge and via the tube wall. As far as rnodelling of the 

interaction between lighting and RV AC systerns is concerned, to date, there have been 

no atternpts to ernploy a positive column rnodel within numerical simulations wluch 

describe the variations of light output and lamp power with minimum lamp wall 

ternperature. 

In addItion to the ternperature dependence of light output and lamp power, 

another irnportant factor which will affect the accuracy of the sirnulation of 

lighting/HV AC interaction is the precision in the input data of the proportions of the 

input electrical energy that would be converted to light, heat, and other radiation. The 

reason for this IS that current lighting/HV AC sirnulation programs sirnulate how 

electrical energy input to the lighting system is finally dissipated as heat, and thus 

contributes to RV AC cooling load. In the steady state, electric power input to lighting 

is considered as being equal to the cooling load of RV AC system. Early rnodels such 

as those of Sowell and O'Brien (1973) were developed for the sirnulation of the 

steady state temperature distribution inside the roorn. As regards the accuracy of the 

input data on lighting power consumption, the division of lighting power into light 

and heat would have little effect on the steady state results. However, rnodels 

developed more recently, such as Ball and Green (1983) and Sowell (1989), atternpt 

to simulate the transient and dynamic cooling loads and ternperature distributions due 

to hghting. The division of lighting power input into light and heat now becorne 

important, and will affect the results of transient and steady state cooling loads and 

temperature distributions. This is because the proportions of light and heat output 

frorn the lamps will affect the amount of energy that is transferred to roorn 
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components before it is sensed as heat and the amount of energy that is sensed as heat 

immediately. Thus, accurate data on the ratios of light output and of heat generated 

are essential in obtaining accurate results in dynamic simulations of lightingIHV AC 

systems. In existing models, data on light output of the lamps is allowed as a user 

input; the models calculate short-wave radiation power from the input data of lamp 

light output using a preset constant which is called the lmninous efficacy of radiation. 

The difference between the input data value of the electrical power consumed by the 

lamps (which is usually assumed to be the rated power of the lamps) and the 

calculated value of short-wave radiation power is assumed to be dissipated as heat on 

the lamp surface. If the conversion of electrical energy into light and heat in the 

fluorescent lamp can be simulated by the model, then user input of light output data 

will not be necessary. A fluorescent lamp model which requires the input of 

information which consists only of lamp wattage or lamp current, lamp length and 

diameter and fluorescent powder type, and which simulates the conversion process of 

electrical energy into light and heat inside the fluorescent tube, will make improved 

predictions of the proportions of radiation and convection. In addition, greater insight 

will be obtained into the physical process of conversion of electrical energy into light 

and heat. 

The conversion of lamp electncal energy into visible light energy can be 

divided into two major processes. The first process is the conversion of electrical 

energy into ultra-violet radiation (the resonance lines) in the mscharge inside the 

fluorescent lamp. The second process is the subsequent conversion of the ultra-violet 

radiation produced by the discharge into visible light; this takes place via the 

phosphors coated on the inside surface of the fluorescent lamp tube wall. The first 

process is very temperature sensitive because the discharge propertIes depend on the 

mercury vapour pressure inside the tube which in turn depends on the cold-spot 

temperature of the tube wall (e.g. Elenbaas 1971). In order to calculate the light output 

and lamp power and to obtain a clearer picture of the effect of the lamp wall 
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temperature on the luminous output and lamp power of the fluorescent lamp, the 

dIscharge process insIde the fluorescent tube needs to be studied. There have been a 

number of theoretical and experimental studies of the fluorescent lamp dIscharge 

published in the literature. Some of the theoretical modelling studies are discussed in 

the next sub-section. 

3.2.2 Fluorescent lamp positive column models 

At the time when the fluorescent lamp became commonly available as an 

artificial light source, Kenty (1950) carried out a comprehensive quantitative analysis 

of the positive column of a 40-W fluorescent lamp. In this work, Kenty combined the 

experimental values of electron temperature, electron density and the densities of the 

mercury 3p states, with estimated values of tranSItion rates, to obtain a self-consIstent 

picture of the radiation from the discharge at a single current, tube size, fill pressure, 

and mercury vapour pressure. 

Based on Kenty's results, Waymouth and Bitter (1956) (also, Waymouth 

1971) performed a numerical modelling of the positive column of fluorescent lamps. 

They considered three important relationships between four variables: electron 

density, electron temperature, axial electric field strength, and current denSIty. In word 

form, the three relationships are: 

(i) Rate of creation of ion-electron pairs = rate of loss of ion-electron pairs 

(ii) Rate of energy mput to the electron gas from the electric field = rate of loss of 

energy by electrons 

(iii) Current density = electron denSIty times electron mobility times electric field 

strength. 
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In seeking a numerical solution to the above equations, Waymouth and Bitter 

used the following five basic hypotheses: 

(1) Only mercury is ionized and excited; inelastic collisions with rare gas atoms 

can be ignored. 

(ii) The type of rare gas determines the mobilities of electrons and ions. The effect 

of elastic collisIOns with mercury can be neglected. 

(iii) The loss of ions is purely by ambipolar diffusion, With volume recombination 

being negligible. 

(iv) The electron gas has a Maxwellian distribution of velocities, with a 

temperature determined by the ionization balance equation; the temperature is 

assumed to be independent of radial position in the discharge tube. 

(v) All ionization from the ground state takes place by two-stage processes, i.e. 

via an intermediate excited state; direct Ionization from the ground state can be 

neglected. 

The above assumptions will also be used in the fluorescent lamp positive 

column model developed in this research. Justifications of the above assumptions Will 

be given in Chapter 5. 

Waymouth and Bitter considered a simplIfied energy level diagram for mercury 

consisting of only four levels: the ground state, the radiating state, the metastable state 

and the ionised state. They also used an approximation that radial variations ill the 

discharge tube of all the parameters could be ignored and the average values over the 

radial position were used for all the parameters. In their analysis, they used two 

adjustable parameters: the cross-section for ionisation from atoms in radiating and 

metastable levels; and the effective lIfe time for quanta of the resonance line. By using a 

cross section for ionisation of the excited states equal to 3.3 times the cross section for 
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ionisation of the ground state, together with a mean life time for ultraviolet photons in 

the discharge of 3.6 times that employed by Kenty for diffusion in un-ionised vapour, 

they obtained good agreement with the experimental results of Kenty, Easley and 

Bames (1951). 

Cayless (1963) produced a more comprehensive positive column model in 

which the variation of quantities with radial position was considered. Furthermore, 

Cayless included more mercury excited states then those considered by Waymouth 

and Bitter. He derived a set of seven simultaneous second-order differential equations. 

His method of obtaining a solution was to assume radial distributions for several 

variables and to use these to solve the ionisation balance equation for electron 

temperature. This value of the electron temperature was then used to solve 

simultaneously the differential equations for radial dependence of the rest of the 

variables. The new values of radial distributions were then used to obtain a new value 

for electron temperature, and the process was repeated to obtain convergence. Cayless 

also used Kenty's cross sections and obtained a remarkably good fit to experimental 

data WIthout the use of any arbitrary fitting constants. 

Lama et al. (1982) elaborated an analytical model of the low pressure mercury

argon discharge. This model was based essentially on the same approximations as 

those used by Waymouth and Bitter (1956). In order to obtain analytical expressions 

for the electron temperature, the resonance radiation and the electric field, four more 

approximations were made which greatly simplified the analysis. They obtained a 

fairly good approximation of the parametric dependence on the discharge Variables. 

In all the above work, a Maxwell-Boltzmann distribution of the electron 

energy, which is the energy distribution of electrons under thermodynamic 

equilibrium, was adopted in their calculations. The experimental studies of Kenty 

(1950) and Easley (1951) were often quoted for justification of the adoption of a 
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Maxwell-Boltzmann distnbution. However, in low-pressure mercury-rare-gas 

discharges, the local thermodynamic equilibrium conditions are not attained, so that 

the electron energy distribution function may deviate Significantly from the MaxweII

Boltzmann shape (Vriens 1973). Due to this, Vriens (1973) proposed a two-electron

temperature model in which the electrons were assumed to form two groups - the bulk 

electrons and the tail electrons - with each group described by an electron 

temperature. Vriens used this two-temperature model to study the energy balance in 

low-pressure rare-gas discharges. 

Wmkler et aI. (1983) used a coIIisional-radiative model which included eight 

mercury levels coupled with the numerical solution of the Boltzmann equation. In this 

model, argon excitation and ionisation were also included, but the contnbution of the 

argon ions to the charged particle distributIon was not taken into account. The model 

assumed standard radial profiles of particle densities and used Holstein's theory of 

resonance radiation trapping (Holstein 1947). 

Dakin (1986) established a more complete model of radial vanations in the 

low-pressure mercury-argon positive column. In this model, the electron energy 

distnbution function was assumed to follow the two-temperature group model of 

Vriens (1973). However, argon excitation and ionisation were neglected. The model 

can be applied to both classical and compact fluorescent tubes. 

More recently, Zissis et al. (1992) included argon excitation and ionisation in 

their coIIisional-radiative model of the mercury-argon low-pressure discharge positive 

column. They made no assumptions on the radial profiles and used a non-Maxwell 

electron energy distribution function proposed by Lagushenko and Maya (1984). 

Again, this model can be applied to both classical and compact fluorescent tubes. 

The model of Waymouth and Bitter (1956), which has become the classical 

theoretical study of fluorescent lamp discharge, was successful in explaining the 
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general properties of the fluorescent lamp discharge although two adjustable 

parameters had to be used. Due to the fact that computers were not powerful at the 

time when Waymouth and Bitter developed their model, they had to use graphical 

methods for their solution of the dependence of resonance radiation output with 

discharge variables. It is considered here that, for an initial attempt to integrate a 

fluorescent lamp positive column model into a numerical lightingIHV AC interaction 

simulation model, a numerical model based on the same hypotheses as used by 

Waymouth and Bitter (1956) will be appropriate, but with a different method of 

solution and written into computer codes. Though more recent fluorescent lamp 

positive column models have made refinements to the classical model of Waymouth 

and Bitter, the refmements are mainly for the interest of the plasma physicists who are 

interested in fine details inside the discharge. These refinements are considered 

unnecessary for the purpose of this research. A fluorescent lamp positive column 

model, which is based on established hypotheses with a newly developed solution 

method, has been developed for this research and the model is described in Chapter 5. 

3.3 Review of experimental studies of the fluorescent lamp positive 

column discharge 

A major task of the present work is to incorporate a fluorescent lamp positive 

column model into a room thermal model for the better simulation of the mutual 

interaction of lighting and RV AC. The fluorescent lamp positive column model 

developed as part of this research for this purpose will be validated, as a stand-alone 

model, by experimental results of the fluorescent lamp discharge reported in the 

literature. For this reason, a brief review of the experimental studies conducted to date 

of the fluorescent lamp positive colunm model is given m this section. The following 

paragraphs review the measurement techniques, followed by some important 

experimental studies of the Iow pressure mercury-rare-gas discharge. 
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3.3.1 Measurement techniques 

Measurements of the physical parameters of the low pressure mercury vapour 

discharge, such as electric field strength, electron temperature and densities of various 

mercury species, were performed as early as in the 1920's by a number of workers. 

These early measurements were carried out before the availability of the fluorescent 

lamp for general lighting applications. They were directed mainly at investigating the 

electron mobility and the ionization processes in discharges in pure mercury vapour. 

In the early 1950's, the fluorescent lamp became available in substantial quantities for 

lighting applications and, therefore, considerable interest arose in measurements of 

discharges in mixtures of mercury vapour and rare gas (mainly argon). 

Early measurements employed the Langmuir probe tecbmque and its various 

improvements (reviewed in Verweij (1961)). The probes are small wires (about I mm 

diameter and a few mm long), which are inserted into the plasma and collect a current 

from the plasma without substantially disturbing its characteristics. Probe techniques 

yield valuable information on electron temperature, electron energy distribution 

function, electric field strength, densities of various mercury species In the discharge 

and other microscopic plasma parameters. Since a probe has to be inserted into the 

plasma during measurement, some destruction or disturbance to the discharge is 

unaVOidable and this limits the accuracy of probe methods. 

Optical techniques which are non-destructive and non-intrusive have been 

developed for measurements of species densities in the discharge. An example of 

these optical techniques is the Hook method (reviewed in Marlow (1967)) which 

employs an interferometer-spectrometer system. More recently, lasers have been used 

in the diagnostics of low-pressure mercury discharge. There have been a number of 

measurement techniques using lasers and these techniques have been used 

successfully in understandmg the microscopic processes taking place inside the low-
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pressure mercury discharge. A good review of laser diagnostics in low-pressure 

mercury rare-gas discharge is given by Maya and Lagushenko (1990). The following 

paragraphs summarise some major experimental work on the fluorescent lamp 

discharge. 

3.3.2 Important experimental studies 

Kenty et al. (1951) performed an experimental study of the elastic losses in a 

low-pressure mercury-argon discharge. They measured the electron concentrations 

and electron temperatures in the axis of the discharge in a tube of 36 mm internal 

diameter, an argon filling pressure of 465 Pa, a mercury vapour pressure determined 

by the lamp wall temperature and a discharge current of 420 mA. They used their 

measured results to deduce the elastic collision losses in the discharge. 

Bames (1960) measured the radiant intensities of the mercury resonance lines 

just inside the wall of a lamp with an inside diameter of 36 mm for currents 400 mA 

to 2 A and various lamp wall temperatures and rare gas fillings. 

Verweij (1961) carried out several senes of measurements of electron 

temperature, electron concentration and electric field strength usmg the Langmuir 

probe method. He used Ins results to deternune the mobility of electrons in the 

positive column of low-pressure mercury-argon discharges. Verweij's experimental 

data have been frequently quoted by many authors for comparison with model results. 

Koedam and Kruithof (1962) determined the densities of mercury triplet states 

as a function of discharge parameters using two different methods: (i) by absorption 

measurements and (iJ) by measurements of the 253.7 nm radiation yield. Koedam et 

al. (1963) measured the radiation output of various lines emitted by the low-pressure 

mercury-argon positive column. They then used their radiation data together with 

volume and wall losses calculated from the electron temperature and electron density 
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measured by Verwelj (1961) to study the energy balance of the low-pressure mercury

argon discharge. 

Denneman et al. (1980) measured the radiation efficiency of 38 mm and 

26 mm fluorescent lamps, each for 2 types of rare-gas fillmg, using a 200 mm 

ultraviolet integrating sphere. They also measured the electric field strength, electron 

temperature and axial electron density using probe diagnostics. 

Van de Weijer and Cremers (1982, 1985 and 1987) used a pulsed dye laser to 

measure the lifetimes and densities of excited mercury states of the low-pressure 

mercury-rare-gas discharge. They then used their results to calculate the UV radiation 

output of the discharge as a function of mercury vapour pressure or cold-spot 

temperature. 

Bigio (1988) measured the radial distribution and absolute densities of the 

excited states of mercury with two laser-based dIagnostic techniques. His results 

indicated that the assumption used in early positive column models of a parabohc

type radial density dependence for the excited mercury states were only correct for 

certain particular discharge condItions. Bigio showed that the radial distributions 

depend critically on many parameters such as the mercury pressure, the lamp wall 

temperature, the current, and the argon pressure. 

Results of these studies reported ID hterature will be used for the validation of 

the fluorescent lamp positive column model developed in this research. DiSCUSSIOn of 

the validation results will be given in Chapter 7. 

3.4 Present design guidance 

In order to study the current status of design guidance concernmg the 

estimation of thermal effects on lighting performance, a review of the current design 
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guidance on the treatment of light loss and lamp power changes due to the ambient 

thennal environment is given in this section. 

The standard photometrIc measurement of fluorescent luminaires is perfonned 

at an ambient temperature of 25°C with one type of lamp-ballast combination 

(lESNA 1993). However, under actual operating conditions, lamps are not usually 

operated at an ambient temperature of 25°C. Hence, hght output and other 

perfonnance characteristics of the fluorescent luminaire will differ from that given in 

the test data. To account for this in the design of lighting systems, the calculation of 

light output from the luminaire involves the use oflight loss factors (LLF). The recent 

(8th
) edItion of the Lighting Handbook of the Illuminating Engineering Society of 

North America (lESNA 1993) divides light loss factors into two groups: recoverable 

and non-recoverable. Recoverable factors are those that can be changed by regular 

maintenance, such as cleaning and relamping luminaires. Non-recoverable factors are 

those attributed to equipment and site conditions and cannot be changed with nonnal 

maintenance. The total hght loss factor is the product of all the apphcable factors 

listed below: 

Non-recoverable 

Luminaire ambient temperature factor 

Heat extraction thennal factor 

Voltage-to-luminaire factor 

Ballast factor 

Ballast-lamp photometric factor 

Equipment operatmg factor 

Lamp position (tIlt) factor 

Luminaire surface depreciation factor 
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Recoverable 

Lamp lumen depreciation factor 

Luminaire dirt depreciation factor 

Room surface dirt depreciation factor 

Lamp burnout factor 

Of these light loss factors, the first two of the non-recoverable factors are 

closely related to ambient temperature and the performance of RV AC systems. They 

are defined in the Lighting Handbook of the IIIummatmg Engineering Society 

(IESNA 1993) as follows: 

The lummaire ambient temperature factor is the fractional lumen loss of a 

fluorescent luminaire due to internal luminaire temperatures differing from the 

temperature at which photometry was performed. This factor should take into 

consideration any variation in the temperature around the luminaire, the means of, and 

conditions of, mounting the luminaire, and the use of any insulation in conjunction 

with the application of the luminaire. 

This factor is not normally provided by luminaire manufacturers and IESNA 

(1993) does not give a method for its determination. However, IESNA (1993) state 

that the factor can be estimated on the following basis. "Luminaire photometry is 

performed m 25°C ambient stIll aIr. For each degree ofnse m ambient temperature 

above this value, the cold-spot temperature of the lamp rises by about O.6°C. The 

effect of lamp temperature rise can be estimated from the manufacturer's izterature, 

recognizing that lamps in lummazres generally operate at temperatures greater than 

the optImum. Judgment must be applIed to factors such as the effect of open versus 

enclosed lummaires, pOSSIble air movement and the fact that the plenum temperature 

WIll have a greater effect than the room temperature on recessed lummazres." 
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The above method of estimating the luminaire ambient temperature thermal 

factor is very crude. Firstly, the effect of lamp temperature rise on the lamp 

performance is not given by most lamp manufacturers. Secondly, the lamp may not be 

operating at its optimum lamp wall cold-spot temperature in 25°C ambient still air. 

The heat extractIon thermal factor is the fractional lumen loss or gain due to 

the airflow. This factor is useful in assessing the lamp performance in air-handling 

luminarres in which the fluorescent lamps are integrated with the HV AC system as a 

means of introducing rur to, or removing air from, the zone in question. Arrflow 

across the lamps has a very significant effect on lamp wall temperature and 

consequently on the light output and other performance characteristics of the lamps. 

IESNA (1993) state that manufacturers would provide specific luminaire test data for 

this factor at various air flows; they also state that typically the factor would approach 

a constant value for air flows in excess of 0.005-0.01 m3 
S·I (10-20 ft'/min) through 

the lamp compartment of a luminaire. However, most manufacturers do not supply 

luminaire test data with respect to thermal effects on lamp performance. 

Ji and Davis (1996) recommended the use of three thermal factors in lighting 

design calculations to account for the change in power and light output of recessed 

fluorescent luminaires. Two of these factors, named the first and second thermal 

factors for power (TFWI and TFW2), are concerned with the change in active power 

due to temperature changes within the luminaire and within the plenum, respectively. 

The third factor, named the thermal factor for light output (TFL), is concerned with 

the change in lumen output due to changes in plenum temperature. The effects which 

are considered by these thermal factors are presented in Table 3.1 together with their 

definitions. Ji and Davis (1996) gave values of these factors for different 

combinations of five luminaire types, three lamp types and three ballast types based 

on experimental measurements. 
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According to Ji and Davis (1996), correction for the change in lumen output 

due to thennal effects within the luminaire is not necessary since the effect is 

accounted for in photometric measurement of luminaires. This is questionable for the 

following reason. Luminaire manufacturers usually give photometric data relative to 

the lumen output of bare lamps, e.g. light output ratios are given in tenns of lumen 

output of luminaire relative to the lumen output of bare lamps, and mtensIty 

distribution data are usually given in tenns of candela per 1000 lumens of bare lamps. 

This allows the designer to calculate luminaire light output and intensity distribution 

when different types of lamps are used. Although it is not clearly defined, it is 

generally understood by designers that the lumen output of bare lamps used to derive 

luminaire data is measured when the bare lamps are at an ambient temperature of 

25°C. Strictly speaking, thennal effects within the luminaire on light output is taken 

into account in photometric testing of lunnnaires only for the type of lamp used In the 

test. When different types of lamps are put inside a lurninaire, there may be a 

difference in ambient temperature surrounding the lamps and the response of the 

lamps to different ambient temperatures may be different from the lamps used in 

photometric testing. Hence, it is still necessary to consider the change in light output 

due to thennal effects within the luminaire when the lamps installed are different from 

the lamps used in photometric measurement. 

3.5 Summary 

Existing numerical models of the interaction between lighting and RV AC 

systems use only empirical results in dealing with the dependence of lamp 

perfonnance on minimum lamp wall temperature. However, empirical results are not 

generally available for all lamp configurations. Lamp manufacturers do not nonnally 

supply these data in the lamp data sheet or manual. The validity of simulation results 

is therefore limited If the variations of lamp power and light output with minimum 

lamp wall temperature are approximated using handbook curves or data such as those 

47 



in IESNA (1993). From the literature reviewed In section 3.2, the dependence of light 

output and lamp power on minimum lamp wall temperature can be calculated using a 

numerical model of the fluorescent lamp positive column discharge. If a fluorescent 

lamp positive column model can be integrated into a numerical lighting/HV AC 

interaction model, then calculations oflight output and lamp power can be performed 

at each time step without the use of empirical curves. 

Due to the lack of data for deriving the thermal factors recommended by Ji and 

Davis (1996) as discussed in Section 3.4, currently the thermal effects on light output 

are either completely ignored or audaciously assumed in lighting design calculations. 

The use of correction factors for thermal effects in lighting deSign calculations is an 

acceptable approach for obtaining a more accurate prediction of lighting levels during 

the design stage. However, experimental measurements have to be performed to 

obtam these factors for each type of lamp-ballast-luminaire combination over a wide 

range of plenum temperatures. Experimental measurements are expensive and time

consuming and usually are restricted to several configurations only. It is therefore 

considered that a good numerical model of lighting/HV AC interaction can be used to 

determine these factors With much less effort. Lighting design calculatIOns can then 

take the thermal factors into account with the aim to obtain a more accurate 

calculation of the Installed lighting levels. 

The research reported in this thesis seeks to apply a numerical fluorescent 

lamp positive column discharge model as part of the numerical simulation of 

lighting/HV AC interaction. The heat and light transfer module of the interaction 

model is described next. The fluorescent lamp positive column discharge model is 

descnbed in Chapter 5 and its solution methodology is described in Chapter 6. 
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Table 3.1 

Thermal factors recommended by Ji and Davis (1996) for use in lighting design 
calculations to account for the change in power and light output of recessed 
fluorescent lamp luminaires. 

Factor Effect Definition 

TFWl Change in active power The ratio of the active power of the 

First thennal due to thermal effect lamplbaIlast system m the luminaire 

factor for within luminaire. at 25°C to the active power of the 

power bare lamplbaIlast system when 

operated at 25°C. 

TFW2 Change in active power The ratio of active power of a 

Second due to plenum luminaire at a certain plenum 

thennal factor temperature not equal to temperature to the active power of 

for power 25°C. the luminaire at 25°C. 

TFL Change in lumen output The ratio of the light output of a 

Thermal due to plenum luminaire at a certain plenum 

factor for light temperature not equal to temperature to the light output of the 

output 25°C. luminaire at 25°C. 

None Change in lumen output None 

due to thermal effect 

within luminaire; this 

effect is accounted for in 

photometric testing of 

luminaire. 
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Chapter Four 

The Mathematical Model of Light and Heat Transfer in a 

Room with Luminaires 

4.1 Compartmentization of a room 

The room model developed in this study is a dynamic mathematical model for 

simulating transient heat flow and temperature for a room and a plenum with (or 

without) luminaues. To conform with most modern offices, the room being modelled 

is considered to have three separate sections or compartments: the luminaue, the 

plenum (ceiling void) and the occupied space ( conditioned space). As most offices 

have more than one luminaire, the use of only one luminaire compartment means that 

all luminaires are "lumped" to form a single compartment. Each section is divided 

into a number of nodes. The model is designed to be flexible so that it can simulate 

different room configurations, hence the number of nodes in each of the three sections 

can be varied. Figure 4.1 shows a schematic diagram of the three sections and the 

distribution of nodes. Dividmg the enclosure into three sections has the benefit of 

simplifying the radiation form factor matrices. However, the computer program 

developed for the model has the flexibility of defining the number of nodes in any 

section to be zero. Hence, rooms without a plenum can be modelled nsing two 

sections: the luminaire and the occupied space; and rooms in which only batten 

fittings are used can be modelled by one section only. An example of simulation in an 

enclosure With a single compartment is given in section 4.4. 
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4.2 Heat balance equation 

The model developed in this research uses fundamental heat transfer principles 

in the form of heat balance equations about the nodes. It differs from existing models 

by other researchers in three main aspects. Firstly, it solves the dynamic heat balance 

equations without assuming any node to be massless; secondly, it calculates 

Illuminance on room surfaces; and thirdly, a fluorescent lamp positive colunm model 

can be incorporated to simulate the variation of light output from the lamp with 

ambient temperature. Hence, the model calculates not only the dynamic temperature 

variation but also the simultaneous lighting levels in a room with both the air

conditioning and the lighting operational. 

Each node is assumed to be isothermal. If any surface deviates significantly 

from the isothermal condition, then the surface can be divided into smaller elements to 

form different nodes (each with a different temperature) provided the physical 

properties of all nodes and the conduction coupling between adjacent nodes are 

known. For each node, the following heat balance equation holds. This equation 

relates the temperature rise of each node in one time step to the total net heat gain of 

that node m that time step: 

(4.1) 

where ml = mass of node j (kg), 

cp. = specific heat capacity of node I (J kg·· K··), 

Ll7; = temperature rise of node j in one time step (K), 

qGI = total (electrical) energy input at node I in one time step (J), 

qLl = total (net) long-wave radiation heat gain to node j in one time step (J), 

qs. = total (net) short-wave radiation heat gain to node j in one time step (J), 

qH. = total (net) convection heat gain to node j in one time step (J), 

q c. = total (net) conduction heat gain to node j in one time step (J). 
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As shown in this heat balance equation, the net heat gain to a node consists of 

five components: energy input (for lamp and ballast nodes only), long-wave (infrared) 

radIation, short-wave (viSible) radiation, convection and conduction. Each of these 

components is calculated separately as described below. 

4.2.1 Energy input at the lamp node(s) 

As the purpose of this model is to study the interaction between lightmg and 

air-conditioning, the only energy mput to the enclosure considered is the electrical 

energy consumed at the lamp and ballast nodes, all other energy sources (such as 

occupants, casual and solar heat gains, for example) are not considered. Electncal 

energy input to the lamp is dissipated inside the fluorescent lamp tube and converted 

to light and heat at the lamp tube wall. Therefore, the energy input to the lamp is 

assumed to be at the lamp surface, i.e. the lamp node. 

Figure 4.2 shows a schematic diagram of the major heat transfer paths 

conSidered in the model developed in this research. Part of the electrical energy input 

to the fluorescent lamp is converted to visible radiation by the discharge and 

fluorescent powder. The rest is dissipated as heat on the lamp tube wall. This heat is 

then transferred to other luminaire and room components through thermal radIation, 

convection and conduction. 

Fluorescent lamp power input as well as the light output depend on the 

minimum lamp-wall temperature which in turn depends on the operating enviromnent. 

Therefore, when modelling the fluorescent lamp power input one cannot simply use 

the rated power of the lamp. The change of power input to the lamp can be modelled 

by using an empirical curve such as that published in IES Lighting Handbook (IESNA 

1993). This is the approach used in Sowell's LIGHTS model (SowellI989, 1990). An 

empirical curve can also be incorporated in the room heat transfer model being 

descnbed in this chapter for the calculation of the power input to the lamp node. The 
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computer code written for the room heat transfer model which allows user input of an 

empirical curve for the calculation of lamp power input and light output is named 

LITEACl. In LITEACl, the power input at the lamp nodes is calculated by 

multiplying the rated power of the lamp with a fraction (the relative power, user input 

from empincal data), the latter depending on the minimum temperature of the lamp 

nodes. The curve of relative power against minimum lamp wall temperature can be 

obtained from published data m the IES Lighting Handbook (IESNA 1993). It was 

mentioned in Chapter 3 that this 'handbook curve' may not well represent all the 

lamps in use. Some more empirical curves can be obtained in Siminovitch et 

al. (1984); however, data for only a few lamp-ballast combinations are available. 

In order that the calculation of power input to the lamp can be carried out 

without relying on empirical data, a numerical model of the discharge process inside 

the fluorescent lamp can be used. As the lamp power depends on the intensity of the 

discharge in a region called the positive column of the fluorescent lamp, the numerical 

model is referred to as a fluorescent lamp positive column model which relates the 

total power dissipation in the lamp to the minimum lamp wall temperature. A 

fluorescent lamp positive column model specially developed for this research (in 

Chapter 5) will be used to calculate the variation of lamp power under different 

operating conditions. The positive column model will be integrated with the room 

heat transfer model to form a lightmgIHV AC interaction model and the integrated 

model will be called LITEAC2. 

4.2.2 Energy input at the ballast node 

The fluorescent lamp needs a ballast to be connected in series to the mains 

electricity supply for its operation. The ballast serves two functions: (1) it generates a 

high electromotive force (e.m.f.) together with a starter for the initial start up of the 

fluorescent lamp; (ii) it lImits the current flowing through the fluorescent lamp 
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dIscharge after the discharge has been initiated. Conventionally, the fluorescent lamp 

ballast is an electromagnetic choke consisting of an iron core with wires wound 

around it. The choke generates an inductance when an alternating current passes 

through it. This inductance lImits the current flowing through the fluorescent lamp 

discharge. The ballast consumes power itself because: (i) the varying magnetic field 

generated by the alternating current flowing through the choke also generates current 

in the iron core which will be dissipated as heat in the iron core; (ii) the wire 

wounding around the iron core has electrical resistance and current flowing through it 

generates heat. Recently, some fluorescent lamps can be operated using the high 

frequency electronic ballast which basically converts the low frequency (50-60 Hz) 

mains supply to a high frequency alternating current in the range of 20-50 kHz. Under 

this high frequency, the iron core loss is reduced and hence electronic ballasts are 

more efficient. 

The power consumed at the ballast, i.e. the ballast loss, depends on the type 

and the quality of the ballast used. In both LITEACl and LITEAC2, the rated ballast 

power loss can be inputted and the ballast power loss is then calculated assuming the 

ballast loss has the same variation as the lamp power. Alternatively, if the rated power 

of the ballast is not known, it can be assumed to be a fraction of the lamp power. For 

common electromagnetic choke ballasts this fraction is between 0.15 and 0.25 

(lESNA 1993). The power input at nodes other than the lamp and the ballast is 

assumed to be zero. 

4.2.3 Long-wave radiation 

The net rate of long-wave radiation input to node i, q u' is obtained by 

subtracting the radiant exitance (radiosity) of i from the irradiance on i as follows: 

(4.2) 

54 



where EL" Mu and A, are, respectively, the irradiance (yV m-2
), radiant exitance 

(radiosity) (yV m-2
) and area (m-2

) with reference to node I (all symbols with a 

subscript L refer to long-wave radiatIOn). Using form factors ~" reflectances Plo and 

emlssivities &" ELl and MLI are given, respectively, as follows: 

(4.3) 

where the last equality in equation (4.3) uses the reciprocity relation of radiation form 

factors, and 

Mu = M[.ol +PuEu = M[.o, +PuLF.MIJ 
J 

(4.4) 

where M[.o, is the radiant enussive power from a grey surface, and is given by the 

Stefan-BoltzInann law: 

(4.5) 

Equation (4.4) is actually a set of simultaneous linear equations which can be 

solved by an iteration process such as the Jacobi or Gauss-Seidel iteration method to 

yield the long-wave radiant exitance ML, for all nodes i. 

Combining equations (4.2), (4.3), (4.4) and (4.5), gives: 

tlLI = (ELl - E,&;4 - PL,ELI)A, 

= [(1-Pu)Eu - E,aT,4]AI 

= A,(I-Pu)LF.MIJ - A,E,&;4 
J 
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Assuming all surfaces are diffuse grey, then PLI = 1-&" and equation (4.6) 

becomes: 

tiL, = A,SI(IFyMl,i -0'7;4) 
j 

4.2.4 Short-wave radiation 

(4.7) 

If all surfaces (includmg the light emitting surfaces) are assumed to be diffuse, 

then equations similar to equations (4.2), (4.3) and (4.4) above apply also to short-

wave radiation. Due to the random orientation of the fluorescent powder coating, 

fluorescent tubes can be assumed to have more or less a diffuse emission. Also, the 

assumption of diffuse surfaces is good for all surfaces in a normal office environment 

except for the situation where there may be a reflector which has a large specular 

component inside the luminaire. Using symbols similar to the long-wave radiation 

terms but with a subscript S denoting short-wave radiation, the following equation 

gives the net short-wave radiation heat gain as: 

ESI and Ms, are given respectively by: 

Ms, = Msol + Ps,Es, = Ms., + Ps, L FyMSJ 
j 

(4.8) 

(4.9) 

(410) 

where Mso, is the luminous power per unit area emitted from surface i (W m·2), and IS 

zero except for the lamp and diffuser nodes. In a fluorescent lamp, the luminous 
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power emission MSoI is related to the property (quantum effiCiency and spectral 

distribution) of the fluorescent powder in the lamps and to the dIscharge intensity 

inside the lamp. The discharge intensity is, in turn, related to the mercury vapour 

pressure inside the lamp. As mercury vapour inside the lamp condenses at the coldest 

spot, the discharge intenSity and hence the luminous flux emission depend on the 

minimum lamp wall temperature. In LITEAC2, a fluorescent lamp positive column 

model will be used to calculate MSo• for the lamp nodes. This positive column model 

will be described in Chapter 5. In LITEAC1, MSo• for the lamp nodes is calculated 

from the lumen output of the lamp by assuming a lummous efficacy of radiation 

emitted from the lamp. 

Similar to equation (4.4), equation (4.10) also represents a set of simultaneous 

equations which can be solved by an iteration process such as the Jacobi or Gauss

Seidel iteration methods to yield the short-wave radiant exitance Ms. for all nodes i. 

Combining equations (4 8), (4.9) and (4.1 0), the short-wave radiation heat gain 

of node I is then given by: 

qs. = A.[(I-Ps.)LFifM~ - MSoll 
j 

4.2.5 Convection 

(4.11) 

For surfaces m contact with an arr node there is convection heat exchange 

between the surface and the air node. The convection heat gain of node i is given by: 

(4.12) 
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where h, is the convective heat transfer coefficient of node i (W m,2 K'I), and Ta is the 

temperature of the air node adjacent to node i (K), 1; is the temperature of the node i 

(K), and A, is the area of node i (m2). 

The rate of heat transfer by convection to the air node is then found from: 

(4.13) 

where the sum is taken over all nodes in contact with the air node. 

Values of the convective heat transfer coefficient used in equations (4.12) and 

(4.13) will be calculated by the methods described in Appendix C. 

If there is air exchange between air nodes in different sections, then the 

convection heat gain of air node 'm' due to this air exchange is calculated from: 

qeo, = IVyPacpa(T.} -T.,) (4.14) , .. 

where Vg is the volume flow rate of air between air nodes 'm' and 'aj' (m3 S'I); Pa and 

cpa are the density (kg m'3) and specific heat capacity (J kg'l KI) of air, respectively, 

which are assumed to be constant over the range of air temperatures concerned; Ta, 

and Ta} are the air temperature (K) of the air nodes 'ai' and 'a;', respectively. 

4.2.6 Conduction 

For nodes in contact with each other, there is conduction heat transfer between 

them. The total conduction heat transfer rate to node i is calculated by: 
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tj Cl = L: Cl' (1) - 7;) (4.15) 
1 

where C;I is the conductance from node] to node i (yV Kt) and the sum is taken over 

all nodes in contact with node i. 

4.3 Solution scheme 

In order to obtain a solution to the set of heat balance equations for all nodes 

(equation 4.1) for the temperature rise of each node in one time step, the mass, 

specific heat capacity, reflectivity, emissivity and initial temperature of each node 

must be known or assumed; a time step is then selected. The rates of heat gam by 

different modes are then calculated one by one using equations (4.2) to (4.15) with 

nodal temperatures equal to that at the beginning of the time step. In the calculation, 

consideration is given not only to heat exchange between nodes within a section, but 

also to heat exchange by short wave radiation transmitted from one section to another, 

by conduction between adjacent nodes of different sections, and by air exchange 

between sections. These rates of heat gain to each node by different modes are then 

added together. This total rate of heat gain to a node is then mUltiplied by the time 

step and divided by the heat capacity of the node in order to obtain the temperature 

change of the node during the time step period according to equation (4.1). This 

temperature change is then added to the nodal temperature prevailing at the start of the 

same time step. In other words, the model uses the forward finite difference method in 

the calculation of the nodal temperatures one time step forward. The calculation 

scheme also implies that the surface capacitance nodes are placed at the inside of the 

surface conductance. It is assumed that the room air is kept at a constant temperature 

by an ideally-controlled air-conditioning system; therefore, the heat convected to the 

room air node is equal to the cooling load due to lighting. From the short-wave 

radiation falling on a nodal surface, and from a knowledge (or an assumption) of the 
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spectral distribution of the light, the Illuminance on the surface can be calculated 

using the relative spectral sensitivity curve of the Commission Internationale de 

L'Eclairage (CIE, International Commission on Illumination) (CIE 1983). The 

calculation of the short-wave radiation (and hence illuminance) on a nodal surface 

assumes that all surfaces are perfectly diffusing and that radiation form factors can be 

used to describe the coupling of radiation between surfaces. 

Stability and convergence of the numerical scheme used in the model have 

caused some concern during the development of the model. In fact, the stability of the 

numerical scheme depends very much on the input values of the parameters, such as 

areas, heat capacities and heat transfer coefficients. In Sowell's LIGHTS program 

(Sowell 1989, 1990), nodal heat capacities smaller than a certain value (user defined) 

are assumed to be 'massless', so that the transient problem becomes a steady-state 

one, and in this way the problem of instability due to small mass and large 

conductances is eliminated. In the present numerical model, no node is assumed to be 

massless; therefore the time step has to be small: in the validation described in 

Chapters 8 and 9, a time step of 1.0 second is used to ensure stability. The Gauss

Seidel iteration method is used to solve the simultaneous equations [equations (4.4) 

and (4.10)] for a faster convergence. 

The numerical model is coded in FORTRAN77 and can be compiled using 

any FORTRAN77 compiler. It has been compiled and has been run successfully on an 

Intel Pentium desktop computer using Microsoft FORTRAN 5.1 under MS-DOS; it 

has also been operated using Microsoft FORTRAN PowerStation 1.0 under Windows 

3.1, and a Sun SPARCserver 670MP using Sun FORTRAN under UNIX. With very 

minor modification, it has also been compiled successfully on a V AX machine. 

The computer program listing ofLITEACl is illustrated in Appendix E. 
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4.4 Test of the room model with a simple analytical example 

In order to test the validity of, and to establish confidence in, the room heat 

transfer model, a two-step validatIOn process was adopted. Firstly, the room model 

LITEACI was tested using a simple configuration with a known analytical solution. 

Secondly, the results predicted by both LITEACl and LITEAC2 are compared with 

experimental data from the NIST test cell and from a laboratory-constructed test cell. 

The simple analytical example is discussed in this section while the experimental 

validation is discussed in Chapters 8 and 9. 

4.4.1 Cubic enclosure without light sources 

The analytical case studied is a cubic enclosure of unit length of side. Each 

surface has a unit area and a unit thermal mass. For calculation SImplicity, the 

convection coefficient of each surface is assumed to be 1 W m·2 Kt. In order to obtain 

a closed form analytical solution, the radiation heat exchange must be ignored. In the 

simulation, all surfaces are assumed to be perfect reflectors in long-wave radiation. 

Short-wave radiation is absent as there is no light source within the enclosure. These 

assumptions suppress the radiative heat transfer mechanism, making convection the 

only heat transfer mechanism within the enclosure. 

This case is simulated using LITEACI With seven room nodes only, one air 

node and six identical room surface nodes, while the number of nodes in the luminaire 

and plenum sections are both zero. In the data file for room nodes, all six room 

surface nodes are each given an area of 1 m" a thermal capacity of 1 J Kt, long-wave 

emissivity of 0 and long-wave reflectivity of 1. The rur node is held at a constant 

temperature of 37°C while the six surface nodes each have initial temperatures of 

25°C. 
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, 
I ~ 

The analytical solution of this simple configuration can be easily obtained as 

follows. Let T. be the air temperature (constant) and T, be the temperature of a room 

surface node (a function of time t); then: 

dT 
mc-' = hA(T - T) dt ., (4.16) 

where m, c, h, and A are the mass, specific heat capacity, convective heat transfer 

coefficient and area of the room surface node, respectively. 

Using simple integration, the above equation can be solved analytically for T, 

as a function of t and the solution can be wntten as follows: 

T,(t) = T. -[T. -T,(o)]exp( - ::!t) (4.17) 

The solution generated by LITEACI can be made to agree with equation 

(4.17) to any desired accuracy by adjusting the time-step used in the simulation as 

shown in Table 4.1 and in Figure 4.3. 

4.4.2 Cubic enclosure with long-wave radiation 

The cubic enclosure With the same dimensions as the one described above has 

been used again for another simulation in which long-wave radiation is considered. 

Two opposite surfaces (top and bottom) are assigned a thermal capacity of 2 J Kl 

while the other four surfaces have each a thermal capacity of I J Kl. All six surfaces 

are assigned an emissivity (and also a reflectivity) of 0.5. The simulated results are 

shown in Figure 4.4. These results show that the surfaces approach equilibrium slower 

than the case without radiation. This is explained by the fact that the additional heat 

loss path due to radiation from the surfaces will extend the time reqUired to reach 
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equihbrium. Figure 4.4 shows also that the surfaces WIth a higher thermal capacity 

approach equihbnum slower than the surfaces with a smaller thermal capacity. The 

reason for this is that surfaces with high thermal capacity need to absorb a larger 

amount of heat for the same temperature increase as compared with surfaces with a 

smaller thermal capacity. The results cannot be compared with a corresponding 

analytical solution since the latter is impossible for the case with radiation introduced 

(which makes the differential equation non-linear). 

One may argue that the above comparisons do not prove how well the model 

represents physical reality. However, the simple analytical example together with a 

sensitIvity test by includIng radiation do verify that the computation of heat transfer in 

an enclosure in LITEACl correctly predicts the trends of temperature change of 

surfaces in the enclosure and hence the analytical test serves to increase confidence in 

the 'correctness' of the model. 

4.5 Summary 

A numerical model has been derived for the computation of the heat transfer 

inside a typical office room with the artificial light source as the only heat and 

radiation source and an ideally-controlled air-conditioning system as the only heat 

sink to extract all the heat gain of the air inside the room. In this model, all modes of 

heat transfer (conduction, convection and radiation) are considered. The model allows 

the temperature effects on the heat and radiation output of the artificial light source to 

be taken into account dynamically. The temperature effect on lamp performance can 

be taken into account either using empirical curves or using a numerical simulation of 

the fluorescent lamp positive column dIscharge, to be descnbed in Chapter 5. 

Computer codes have been wntten for the model; the code which allows user input of 

empirical data oftemperatnre effects on lamp performance is named LITEACl. 
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The heat transfer computation in LITEACI has been verified by comparison 

with a simple analytical test. This has shown that the model behaves correctly by 

predicting the correct temperature changes in a simple cubIC enclosure with known 

analytical solution when radiation is ignored. It has also been shown that when 

radiation is included, although an analytical solution cannot be obtained for 

comparison, the model behaves as expected by predicting the correct trends of 

temperature changes. 

Therefore, the next stage is to develop a fluorescent lamp positive column 

model for integration into the dynamic room heat transfer model that has been 

described in this chapter. The objective is to obtam not only a good prediction of the 

temperature and cooling load, but also a good prediction of the lighting performance 

in the room. The fluorescent lamp positive column model is described next 

(Chapter 5). 
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Table 4.1 

Simulated room surface temperature (T J for different time-step values as compared 
with the calculated temperature using equation (4.17) for the simple cubic enclosure 
with analytical solution. T. is the air temperature in the enclosure which is kept 
constant at 37°C. For small time-steps, the numerically calculated surface 
temperatures agree very closely with the analytically calculated values. 

Tune T. (0C) T, ("C) T, (0C) 
t (5) byEq. at tune-step = (m seconds) 

(4.17) 

1.0 0.5 025 0.1 0.01 0001 00001 000001 

0 37 25 25 25 25 25 25 25 25 25 

1 37 325855 37.0000 340000 33.2031 328159 32.6076 325877 325857 325855 

2 37 35.3760 370000 362500 35.7986 35.5411 353922 353776 35.3761 35.3760 

3 37 364026 370000 368125 36.6199 36.4913 364115 36.4035 364026 364026 

4 37 367802 370000 369531 36.8797 36.8226 367846 367807 367803 367802 

5 37 369191 37.0000 369883 369619 36.9382 369212 369193 369192 369192 

6 37 369703 370000 369971 36.9880 36.9784 369711 369703 369703 369703 

7 37 36.9891 370000 369993 369962 369925 369894 369891 369891 369891 

8 37 369960 37.0000 36.9998 369988 369974 36.9961 369960 369960 369960 

9 37 369985 37.0000 37.0000 369996 36.9991 369986 369985 369985 369985 

10 37 369995 37.0000 37.0000 36.9999 369997 369995 369995 369995 369995 

11 37 369998 37.0000 370000 370000 36.9999 369998 369998 369998 36.9998 

12 37 369999 370000 370000 370000 37.0000 369999 369999 369999 369999 

13 37 37.0000 370000 37.0000 370000 37.0000 37.0000 370000 37.0000 370000 
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Simulated room surface temperature with different time-step values as compared with 
the calculated temperature using equation (4.17) for the simple cubic enclosure with 
analytical solution. 
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capacity of I J K" and nodes with thermal capacity of 2 J K". All simulations used a 
time-step of 0 001 s. 

69 



Chapter Five 

Modelling of the Fluorescent Lamp Positive Column 

5.1 Background to using a fluorescent lamp positive column model in 

this study 

In Chapter 4, a numerical model of the heat and radiation transfer in a room 

enclosure, named LITEACI, was presented. In this model, the artificial light source is 

the only source of heat and radiation and all heat gain to the room air is considered to 

be extracted by an ideally-controlled air-conditioning system so as to keep the room 

air temperature constant. LITEACI calculates, at each time step, the temperatures of 

nodes (room components) and cooling load due to lighting in an enclosure from user 

input data of the electrical power rating of lamp, the light output of lamp and the 

physical properties of nodes: area, thermal capacity, emissivity, reflectance, 

transmittance, body type, characteristic length, conductance and radiation form 

factors. In other words, the transient state temperature variations of the nodes and the 

transient state cooling load profiles are the output of the room heat and radiation 

transfer model. Other output parameters are the heat and radIation fluxes at the nodes. 

The transient state temperature variations of the nodes and the transient state 

cooling load profiles depend on how much electrical power input to the lamps is 

converted to radiation and how much IS converted to convective/conductive heat. This 

is because radiation transfer energy directly to the nodes which absorb the radiation 

energy and can retain the energy for a time period before releasing it to the air to 

become the cooling load whilst convective heat released by the lamps to the air 

becomes cooling load instantaneously. In existing models, the proportions of 

convective heat and radiation output from the lamps have to be assumed arbitrary. In 
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LlTEACI, the radiation power output from the lamps is calculated using the rated 

light output of the lamps (from lamp data) and an assumed value (user defined) of the 

luminous efficacy of radiation to convert the light output in lumens to radIation power 

in watts. The convective heat is then assumed to be the difference between the input 

electrical power to the lamps and the radiation power output of the lamps (calculated 

by dividing the light output by the luminous efficacy of radiation). 

The conversion of electrical power into light and heat takes place inside the 

fluorescent lamp. As reviewed in Chapter 3, there are several existing fluorescent 

lamp positive column models that calculate the conversion of the input electrical 

power of a fluorescent lamp into various forms of power output from the positive 

column of the lamp: UV radiation, other visible and inviSible radiation, and heat 

dissipated inside the lamp and at the lamp wall. These existmg models simulate the 

physical processes inside the fluorescent lamp discharge using established theories in 

atomic and plasma physics. Most of these models were theoretical studies in physics 

without clear specific applications. One objective of this research is to apply a 

fluorescent lamp discharge model to simulate the conversion of electrical power into 

light and heat. All existing models cannot be applied directly for this purpose. 

Therefore, a fluorescent lamp positive column model is developed in this work for the 

integration into the room light and heat transfer model described in Chapter 4. The 

fluorescent lamp model used here is based on the same hypotheses used by previous 

workers. However, the equations of the model (to be descnbed in this chapter) are 

written from first principles and the solution method (to be described in Chapter 6) is 

developed in this work. This fluorescent lamp positive column model requires only 

input of the radius of the fluorescent tube and the lamp current from the user 

(available in lamp data sheets), and the minimum lamp wall temperature from the 

room heat and radiation transfer model. It calculates the power output of the 

fluorescent lamp discharge in various forms: UV radiation, other radiation and heat. A 

method of calculation of the light output (from the fluorescent lamp) from the value of 
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DV radIation power output calculated by the fluorescent lamp positive column model 

is also developed in this research. The calculation ofIight output requires user mput of 

the relative spectral power distribution of the lamp which IS a property of the 

phosphors used in the lamp (Section 6.4). The fluorescent lamp model then returns the 

light and heat output from the lamps to the room heat and radiation transfer model 

which will in turn calculate nodal temperatlires, heat and radiation fluxes and cooling 

load in the next time step. The node temperatlire of the lamp will become again an 

input to the fluorescent lamp model for the calculation of light and heat output. The 

calculations repeat for all time steps. Figure 5.1 gives a simple flow diagram showing 

the flow of data in the integrated room heat and radiation transfer model and 

fluorescent lamp positive column model. 

In this way, the combined model of room heat transfer and the fluorescent 

lamp discharge calculates not only the effect of heat output from hghting on the 

cooling load in an enclosure, but also the effect of the ambient thermal environment 

upon the performance of the lighting system itself. This is because the variations of 

the light output, lamp power and lamp efficacy with the minimum lamp wall 

temperatlire are simulated by the fluorescent lamp positive column model and the 

variation of the minimum lamp wall temperatlire with the ambient thermal 

environment in the enclosure is simulated by the room heat and radIation transfer 

model. Hence, it can be said that the integration of a fluorescent lamp discharge model 

with a room heat transfer model produces a numerical model of the mumal interaction 

between lighting and air-conditioning systems in an enclosure. This chapter is devoted 

to the discussion of the fluorescent lamp positive column model used in this research. 

In this section, some background to fluorescent lamp operation is given first. 
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5.1.1 Operation of a fluorescent lamp 

Fluorescent lamps are low pressure mercury discharge lamps. A typical 

fluorescent lamp consists of a long glass tube of diameter either 38 mm (T12) or 26 

mm (T8) with two electrodes, one at each end of the tube. Smaller tube diameters are 

used in compact fluorescent lamps. The electrodes are coated WIth alkaline earth 

oxides to facilitate the emission of electrons. The tube is filled with a rare-gas, such as 

argon or krypton, or a mixture of argon and krypton, at a pressure of about 300 to 

500 Pa. A small amount ofhquid mercury is introduced into the tube so that at normal 

room temperatures there is a mercury vapour partial pressure of about 0.8 to 1.3 Pa. A 

potential difference applied across the two electrodes accelerates the electrons which 

are emitted from the electrodes. These accelerated electrons collide inelastically with 

the mercury atoms in the tube, losing kmetic energy to the mercury atoms which in 

turn excites the mercury atoms to higher energy levels. As the excited mercury atoms 

relax back to the ground state or to an intermediate metastable state, the energy which 

they absorbed during excltahon is dissipated as quanta of electromagnetic radiation. 

This process occurs in a region called the 'positive column' of the discharge. The 

positive column occupies over 95% of the length of the tube (Elenbaas 1971). The 

radiation emitted consists mainly of two lines in the ultraviolet (UV) band, at 

253.7 mn and at 185.0 mn, which are often called the resonance lines (Elenbaas 

1971). The emitted radiation contains also some weak lines in the visible and invisible 

wavelengths. The output energy of the 253.7 mn line is about 5 to 8 hmes larger than 

the output of the 185.0 mn lme (Bames 1960). Fluorescent powder, or phosphor, on 

the inside surface of the tube wall converts the UV radiation to visible light. The uuit 

can be used for various lighting applications. 

The nmnber of inelastic collisions in the discharge depends on the mobility of 

electrons and on the density of the mercury atoms. The nmnber of mercury atoms 

being excited to the resonance and upper energy states depends on the energy 
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distribution of the electrons. The radiation emitted during de-excitation of the mercury 

atoms suffers from self absorption withIn the positive column. This self absorption is 

the absorption of the emitted UV radiation quantum by a ground state mercury atom 

which will then be excited. The excited mercury atom has the same probability of re

emitting the absorbed UV quantum as other excited mercury atoms. This phenomenon 

is often called radiation trapping or imprisonment of radiation (Holstein 1947, 1951). 

The self absorption increases with the number of mercury atoms in the gaseous state 

in the tube. As there is an excess amount ofliquid mercury inside the tube, the number 

of mercury atoms in the gaseous state is determined by the saturated vapour pressure 

of mercury at the minimum temperature of the tube wall. Hence, for a fixed lamp

ballast system, the variable which affects light output of a fluorescent lamp is the 

minimum lamp wall temperature (also called the cold spot temperature) which is the 

temperature of the coldest spot on the lamp wall. The two competing processes, 

namely increase of UV quanta emitted and increase of self-absorption with density of 

mercury atoms, give rise to the following phenomenon: the light output increases with 

minimum lamp wall temperature at first up to a maximum - it then decreases with 

further rise in the minimum lamp wall temperature. There is thus an optimum 

minimum lamp wall temperature at which the hght output is a maximum. 

5.1.2 Modelling a/lamp perfonnance 

To account for the above effect, previous models of the interaction of lighting 

and cooling systems such as that of Sowell (1989, 1990) made use of empirical curves 

to relate light output and lamp power to the minimum lamp wall temperature. 

However, the use of empirical curves gives no physical insight into the mechanism of 

conversion of electrical energy into light and heat within the fluorescent lamp. 

Knowledge of the physical processes inside the fluorescent lamp discharge tube 

allows the calculation of the division of electrical energy into light and heat, which is 

important in the dynamic simulation of cooling load (explained in Section 3.2). 
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Furthennore, it is necessary to use different curves for lamps of different type and of 

different size which are usually not readily available. In order to obtain a physical 

insight and to calculate the conversion of electric energy into light and heat from first 

principles (thus avoiding the need of an arbitrary assumption of the diVIsion of light 

and heat output from the fluorescent lamp), a mathematical model of the discharge 

process inside the fluorescent tube is necessary. In a fluorescent lamp discharge 

model, the energy balance is considered in relation to the density of mercury atoms 

which in turn depends on the ambient temperature. 

In this study, the aim is to investigate the macroscopic behaviour of the 

fluorescent lamp with respect to a change of thennal environment, rather than to 

investigate the detailed processes occurring inside the fluorescent tube; it will not, 

therefore, be necessary to use a rigorous and detailed fluorescent lamp positive 

column model in which the radial variation of mercury excited state densities, for 

example, is considered. Instead, a model with sufficient details only will be 

developed. Such a model considers the major mercury excited states, uses published 

values of transition rates between different states, and treats radiation trapping with a 

simple fonnulation, while ignoring the radial variation of discharge properties and the 

excitation of rare-gas atoms. In this way, the processes taking place within the 

fluorescent tube will be modelled in sufficient detail so as to advance the current 

status of RV AC/hghtmg interaction modelling to beyond the level of reliance upon 

simple empirical curves which are only available for a few types ofIamp. 

In this chapter, the fluorescent lamp positive column model developed in this 

study is described. The discussion begins with statements of the hypotheses and 

approximations used in deriving the model equatIons, and is then followed by a 

detailed description of the fluorescent lamp energy balance and the conservation of 

different mercury states in the discharge at equilibrium. 
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5.2 Hypotheses and approximations 

The processes which take place inside the fluorescent lamp discharge 

(described briefly in section 5.1) are complex. In order that these processes can be 

described in the form of manageable mathematical equations which can be solved to 

obtain the relationships between the various forms of power dissipation in the 

discharge and the mininlUm lamp wall temperature, some hypotheses and 

approximations have to be employed. Along lines similar to existing models of 

Waymouth and Bitter (1956) and Lama et al. (1982), the following main hypotheses 

are employed in this study: 

(i) Electron energy distribution is assumed to be Maxwellian and characterized by 

a constant electron temperature independent of the radial position in the 

discharge tube. 

Probe measurements of Easley (1951) show that this hypothesis is 

valid in the discharge found in typical fluorescent lamps except at high 

electron energies. The deviation from the Maxwellian distribution of the high 

energy electrons brought about the creation of a two-electron-temperature 

group model of low pressure gas discharges (Vriens 1973). In Vriens' model, 

the electron energy distrIbution is characterized by two electron temperatures: 

one for the low energy electrons and one for the high energy electrons. 

Although Vriens (1973) showed some improvements of his calculated results 

over models that considered only a Maxwelhan electron energy distribution, 

he pointed out that his method lacked physical explanation. Furthermore, 

Vriens (1973) did not give quantitatively the improvement of his model in the 

calculation of the radiation power output for the mercury-argon discharge 

compared with earlier models. In more recent models such as that of Zissis et 

al. (1992), a non-Maxwellian electron-energy distribution function was used 

but with an analytical approximate solution only. In view of that existing 

76 



models which assume a Maxwellian electron energy distribution (e.g. 

Waymouth and Bitter 1956, Cayless 1963 and Lama et al. 1982) give good 

agreement to experunental results, it is considered that a Maxwelhan electron 

energy distribution with a constant electron temperature throughout the whole 

posItive column is good enough for the purpose of the current research. 

(ii) Only mercury is ionised and excited while inelastic collisions with rare-gas 

atoms can be neglected. 

This hypothesis is approximately true because the excitation and 

ionisation energy of the rare-gas atoms is higher than could be provided by the 

electrons. The rare-gas serves as a buffer to control the mobility of electrons 

and to retard the diffusion of electrons to the tube wall. The very weak argon 

lmes observed in the fluorescent lamp discharge justifies this assumption. In 

some recent works, e.g. Winkler et al. (1983) and Zlssis et al. (1992), argon 

excitation and ionisation were included. However, they all showed that the 

contribution of rare-gas excitation and ionisation to the energy balance of the 

fluorescent tube discharge is very small, rare-gas excitation and ionisation will 

be neglected in this model. 

(ui) Loss of electrons and mercury ions is purely by ambipolar diffusion to the tube 

wall where they recombine. Recombination within the positive column is 

negligible. Ambipolar diffusion is the diffusion of electrons and positive 

mercury ions in the positive column plasma to the tube wall at the same rate 

(see Appendix B). 

The maintenance of electrical conductivity in the discharge plasma 

requires production of electron-ion pairs as fast as they are lost by 

recombination. In many existing models (e.g. Waymouth and Bitter 1956, 

Cayless 1963, and Lama et al. 1982), a diffuSIOn-controlled positive column is 

assumed. The principal loss process IS the diffusion of the electron-ion pairs to 

the tube wall and recombination at the tube wall, rather than volume 
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recombination. If mercury ions only (but not rare-gas ions) are assumed to be 

present ID the positive column, then the diffusive motion of the electrons and 

ions is governed by the ambipolar diffusion law (see Appendix B). 

(iv) The excited mercury atoms are de-excited by spontaneous emission of photons 

and by superelastic coIIisions with electrons. Losses due to diffusion of 

excited atoms to the tube waIl and de-excitation by coIIisions with rare-gas 

atoms can be ignored. 

In the energy balance equation of the positive column [equation (5.1)], 

the diffusion loss is expressed by the term Wd!ll' This term is simply assumed to 

be negligible throughout this study. According to Lama et al. (1982), the 

diffusion rates of the excited atoms are much smaIler than the radiation rate 

and the superelastic coIIision rate, therefore, ignoring the diffusion loss does 

not affect the calculation results of radiation power loss, ionisation loss and 

elastic coIIision loss. 

(v) The positive column is assumed to be uniform and free of striations. 

This assumption is very good as the positive column of fluorescent 

lamp discharge under normal operating conditions are uniform and free of 

striations. Only under abnormal operating conditions (e.g. when the lamp is 

near to its end of life or when the voltage is too low) when striations occur, 

which would appear as alternate light and dark rings running to-and-fro inside 

the fluorescent tube. 

The above hypotheses have been used by other workers in low-pressure 

mercury-rare-gas positive column models (e.g. Waymouth and Bitter 1956, 

Waymouth 1971, and Lama et al. 1982) and have been shown to be reasonable 

assumptions by the good agreement with experimental results (Lama et al. 1982). 
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5.3 Fluorescent lamp energy balance 

The principal function of an electric lamp is to convert electrical energy into 

light energy. In a fluorescent lamp, this conversion occurs through a number of 

processes within the lamp discharge tube. The major processes are shown 

schematically in Figure 5.2. 

Electrical energy input to the fluorescent lamp discharge becomes principally 

the kinetic energy of the electrons due to acceleration of electrons by the electric field 

within the plasma. The kinetic energy of the electrons IS dissipated in one of the 

following processes (Waymouth 1971): 

(i) inelastic collisions with mercury atoms causing excitation to higher energy 

levels; 

(ii) ionization of the mercury atoms; 

(iii) elastic collisions with the rare-gas atoms; and 

(iv) diffusion to the tube wall and recombmation with excited atoms there. 

The electrons may also collide with excited mercury atoms causing de

excitation of the eXCited mercury atoms which results in the excitation energy being 

released back to become kinetic energy of the electrons. This process is called 

superelastic colliSIOns or sometimes referred to as elastic collisions of the second kmd 

(Zissis et al. 1992). 

An energy balance equation for the electrons in the positive colmnn can be 

written as follows: 

(5.1) 
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where E IS the electric field strength across the discharge tube (V m·I
),} is the electric 

current density (A m·2), and the • W' terms denote the local energy gains or losses per 

unit time per unit volume of the positive column (yV m"). The SUbscripts me/, lOn, el, 

difJ, and se/ denote inelastic collision, ionization, elastic collision, diffusion, and 

super-elastic collisions, respectively. In equation (5.1), it is assumed that the 

recombination of electrons with ions within the plasma is negligible (hypothesis (m) 

of Section 52) and that the thenual flux conducted through the electron gas IS zero. 

The last assumption follows from the fact that the electron temperature T. is taken to 

be constant throughout the positive column in this study (hypothesIs (i) of 

Section 52). 

The terms W, •• l' w,o.' W,l, Wd@ and W,el can be evaluated using the equations 

described in Appendix D. However, due to mathematical complexity and the 

difficulty in obtaining reliable data on the cross sections and the electron energy 

distribution function, approximations are used to evaluate these tenus as descnbed in 

Section 6.1 2. 

As the main function of the fluorescent lamp is to produce radiation from 

which light is obtained by fluorescence, the relationship between radiation in the 

discharge and the W terms in equation (5.1) is described here. The net radiation loss 

from the discharge is given by the difference between the inelastic collision loss and 

the super-elastic collision loss. This is because the excited atoms can either decay 

spontaneously with emission of radiation or can collide super-elastically with an 

electron, transferring their extra energy back to the electron. Hence, the net radiation 

power loss of the positive column per unit volume W",d is given by: 

w..ad = w;..l - W,el (5.2) 
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The radiation emission from the discharge contains mainly the two ultra-violet 

wavelengths 253.7 nm and 185 nm, with some weak lines in the visible and inviSible 

wavelengths. Therefore, the radiation loss can be written as: 

W"'d = W,'4 + w.ss + w". + w". (5.3) 

where W,'4 and W1SS are the power losses (per unit volume) due to emissions in the 

two ultra-violet wavelengths 253.7 nm and 185 nm respectively; w" ... and W .. are the 

power losses (per unit volume) due to weak emissions in the viSible and invisible 

bands resulting from excitations of mercury atoms to energy states higher than the 

resonance states. These radiation losses occur in the form of emission of quanta of 

energy and each quantum has an energy equal to the product of the electronic charge 

and the energy level difference in electron volts between the excited state and the [mal 

state after the transition. The number of quanta that can escape the plasma in urnt time 

per unit volume is equal to the number density (number per unit volume) of the 

excited state in the plasma divided by the effective life time of the state in the plasma. 

The radiation power is then equal to the number of quanta escaping the plasma per 

urnt time per unit volume multiplied by the energy gap of the transition. Expressions 

giving the radiation power losses will be given in equations (6.10) to (6.13) m 

Chapter 6. A diagram showing the flow of energy in a fluorescent lamp IS shown in 

Figure 5.2. 

As can be seen in equations (D.l)-(D.5) of Appendix D, the power loss terms 

(Wterms) each depend on the density of all species of mercury atoms, cross-sections 

of ionisation and excitation of mercury atoms, the rate of re-combination at the tube 

wall and the density of rare-gas in the tube. A continuity equation can be set up for 

each species of the mercury atom; the set of continuity equations for all species of the 

mercury atom, together with the energy balance equation, form the equation set of a 

positive column model of the fluorescent lamp. Simplifications and approximations 
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(to be described in Chapter 6) have to be made in order that the set of model equations 

becomes solvable for the power loss terms (Wterms) in equation (5.1) as functions of 

the minimum lamp wall temperature. Oetails of the mercury levels considered and the 

continUIty equations used in this study are discussed in the following sections. 

5.4 Mercury atom energy levels 

In the fluorescent lamp mercury-rare-gas discharge plasma, ten species of the 

mercury atom are considered to be important in the generation of radiation quanta 

(e.g. Kenty 1950). These are the ground state (6'80), the two metastable states (6'Po 

and 6'P2), the two resonance states (6'P, and 6'P,), the four upper states (7'8" 6'0" 

6'02, and 6'0,), and the ionised state (FIg). In the model developed in this research, 

following the treatment of Cayless (1963), the three upper states 6'0" 6'02, and 6'0, are 

lumped into a fictitious level which gives out quanta of inviSible radiation (with 

wavelength between 297 om to 366 om) upon decay. The eight mercury atom energy 

levels considered in this model are summarised in Table 5.1 and these are shown, 

together with the transitions taken into account, in Figure 5.3. 

5.5 Balance of mercury states at equilibrium 

Following the nomenclature used by many previous workers (e.g. Waymouth 

and Bitter 1956; Lama et al. 1982; Zissis et al. 1992), the 'density' of electrons or 

mercury states refers to the number of electrons or mercury states, respectively, per 

unit volume of the positive column. It is also noted that some authors (e.g. Cayless 

1963) used the term 'concentration' to mean the same thing (i.e. 'density'). At 

equilibrium, the rate of creation of a species of mercury is equal to the rate of loss of 

the species; hence, a mercury state density balance equation which describes tlus 

equality can be written for each mercury state. These balance equations are often 

referred to as continuity equations (Zissis et al. 1992). 
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5.5.1 Ground state density 

At eqUilibrium, the rate of change of the ground state density is equal to zero: 

where ~k (j,k=0,1, ... ,6) are the transition rate coefficients (m3 s"), defined as the 

number of transitions from state j to state k per state j atom per electron per second; 

Ko. is the ionisatIon rate coefficient of the ground state (m3 s"), defined as the rate of 

ionisation per electron per mercury ground state atom; <0 is the effective life time of 

the spontaneous decay from the /' state to the ground state (s); Do is the ambipolar 

diffusion coefficient (m2 s"); A is the diffusion length (m); Ne> ~ (j=0,1, ... ,6) are the 

densities (number per unit volume of the positive colUInn) of electrons and the j"' 

mercury state, respectively. 

In the above equation, the first term represents the excitation of the ground 

state to the six excited states, the second term represents ionization from the ground 

state, the third term represents the super-elastic decay of the six excited states to the 

ground state, the fourth term represents the spontaneous decay of the six excited states 

to the ground state with emission of a photon, and the last term represents the rate of 

recombination of ions and electrons which is assumed to be purely an ambipolar 

diffusion phenomenon. 

5.5.2 Excited state density 

Again, at equilibrium, for the k'" (k = I, ... ,6) excited state: 
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6 1~ 6 

- LKkjNeNk -K/aNeNk + LK'kNeN, + LK'kNeNJ 
)-1+1 )=0 ):1+1 

k-I k-I N 
- LKkjNeNk - L -+ = 0 

,=0 ,=0 'kj 

(5.5) 

where .; is the effective life tune of the spontaneous decay of the !Ch state to the jth 

state (s); and all other symbols have the same meaning as those defined in equation 

(5.4). 

Equation (5.5) represents a set of 6 equations, one for each of the 6 excited 

states k=1 to 6. The first term represents loss of the !Ch state due to inelastic collisions 

causing excitation to higher levels. The second term represents loss due to ionization. 

The third and fourth terms represent the increase to the !Ch energy state due to 

excitatIOn from lower states and to super-elastic de-excitation of higher states, 

respectively. The fifth term represents loss due to super-elastic de-excitation of the !Ch 

state. The last term represents the spontaneous decay of the !Ch state with emission of a 

photon, and is wntten in a general form in equation (5.5) that includes decay 

transitions to all lower states; however, there are only several 'permissible' transitions 

that emit photons. 

5.5.3 Electron density and ionised state density 

During ionisation of mercury, one electron escapes from each mercury atom. 

Hence, the electron density and the iomsed state density are equal. Hypothesis (iii) in 

Section 5.2 states that loss of electrons and ions is purely by ambipolar diffusion to 

the tube wall, where they recombine. Therefore, at equilibnum, the rate of creation of 

electron-ion pairs is equal to their rate of loss due to recombination at the tube wall 

wluch is the same as the rate of ambipolar diffusion to the tube wall. 
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(5.6) 

where all symbols have the same meaning as those defined in equation (5.4). 

Equation (5.6) is called the ambipolar diffusion equation (see Appendix B). 

The first term is the sum of the rate of ionization from the ground state and the six 

excited states. The second term IS the ambipolar diffusion rate to the tube wall. 

5.6 Electric current density 

Electric current inside the fluorescent lamp discharge is carried mainly by 

electrons. The current carried by ions is very small and can be neglected (Elenbaas 

1971). This is due to the fact that the ions have a much larger mass than the electrons 

and hence the mobility of ions in the discharge is very small compared With the 

electrons. In this study, the electric current inside the fluorescent lamp discharge is 

assumed to be carried completely by the flow of electrons. 

The electric current density j (A m-2
) IS equal to the product of the electron 

density Ne (m·3), the electronic charge e (C) and the electron drift velocity v (m S·I) 

which is govemed by the electron mobility Pe (m2 V·IS·I) and the electric field strength 

E (V m-I) across the positive column. It is expressed as: 

(5.7) 

5.7 Summary 

A fluorescent lamp positive column model has been derived for the integration 

into a room heat transfer model with a fluorescent lamp system as the only heat source 
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and an ideally-controlled air-conditioning system for keeping the room air 

temperature constant. This fluorescent lamp positive column model employs the same 

established hypotheses used by previous workers (Waymouth and Bitter 1956; Lama 

et al. 1982). These hypotheses have been described here with justifications. The 

equations describing the positive column model are the energy balance equation (5.1), 

the continuity equatIOns (5.4)-(5.6), and the electrical conductivity equation (5.7). 

In this chapter, the energy balance of the fluorescent lamp discharge have been 

described With some details of how the input electrical energy to the fluorescent lamp 

is dissipated inside the tube. The most important form of the energy dissipation inside 

the fluorescent tube is the inelastic collisions which excite mercury atoms to higher 

energy levels and when these excited atoms relax back to the ground state or some 

intermediate metastable levels radiation is emitted. The radiation power loss have 

been descnbed and explained. 

Based on the conservation of the densities of mercury states at equilibrium, 

continuity equations (5.4)-(5.6) have been derived. These continuity equations are 

written in a general form that include all transitions: inelastic excitation, super-elastic 

de-eXCitation, iouisation, and spontaneous decay with photon eruission. However, not 

all transitions are 'permitted', and some transitions are small enough to be ignored. In 

the next chapter, chapter 6, simplifications to the continuity equations will be 

described. 

The set of model equations, i.e. the energy balance equation (5.1), the 

continuity equations (5.4)-(5.6) and the electrical conductivity equation (5.7), are 

written here in more comprehensive forms then those in previous works such as 

Waymouth and Bitter (1956) and Waymouth (1971). Furthermore, six excited 

mercury energy states are considered in this study as oppose to only two excited states 

(the resonance states) were considered in the work ofWaymouth and Bitter (1956). 
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The aim of using a fluorescent lamp positive column model is to obtain the 

functions describing the variations of light output and lamp power with minimum 

lamp wall temperature. The formulation of the fluorescent lamp positive column 

model has been described in this chapter. The scheme of solution for these equations 

so that the light output and lamp power can be calculated for different minin1um lamp 

wall temperatures will be descnbed in the next chapter. 
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Table 5.1 

Mercury energy levels considered in the positive column model used in this research. 

Mercury energy level Index Threshold potential 
(eY) 

Ground level6'So 0 0 

FIrSt metastable level 63p 0 I 466 

Triplet resonance level 63p, 2 4.87 

Second metastable level 63P2 3 543 

Singlet resonance leveI6'P, 4 6.68 

Upper level of the 404.7-546.1 nm group (73S,) 5 7.70 

A fictitious leve1lumping all upper levels WD,.2.3) 6 8.85 

Ionised state 70rl 10.44 
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Data input from user: 

Nodal data of initial temperature, 
area, thermal capacity, emissivity, 
reflectivity, transmittance, 
radiation form factors, body type, 
characteristic length. 

Lamp length, diameter, current; 
relative spectral power 
distribution of phosphors; 
quantum efficiency ofphosphors. 

Data transfer at each time step· 

Power of visible radiation 
output; power of heat 

dissipated at lamp wall, light 
(lumen) output oflamp. 

Room heat and radiation 
transfer model 

Fluorescent lamp positive 
column model 

Figure 5.1 

Data transfer at each 
time step: 

Minimum lamp node 
temperature 

Simulation results (output to user) consist of the 
following parameters at intervals specified by user: 

Nodal temperature, 
Heat and radiation fluxes at each node, 

Illuminance on each node, 
Cooling load of room. 

Simple flow diagram showing the data flow in the program LITEAC2. 
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Figure 5.2 
Schematic diagram showing the energy conversion processes in a fluorescent lamp. 
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Simplified energy level diagram of the mercury atom. Transitions that produce 
radiation are shown as dotted lines with arrow heads. No other transitions are shown. 
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Chapter Six 

Methodology for Solving the Fluorescent Lamp Positive 

Column Model 

6.1 Approximations used to solve the equations 

The set of equations that comprise the fluorescent lamp positive column model 

was described in Chapter 5. This set of equations is comprised of the energy balance 

equation (5.1), the continuity equations (5.4)-(5.6) and the electron current density 

equation (5.7). In order to solve this set of equations to obtain relationships between 

light output, lamp power and minimum lamp wall temperature, some further 

approximations are necessary. These approximations, which are discussed in the 

following sub-sections, have been specially designed for this study and they dIffer 

from the approxlIllations used in existing positive column models. 

6.1.1 Approximations for simplifying the continuity equations 

The first approximation is that the mercury ground state density No is assumed 

to be equal to the density of mercury atoms NHg in the positIve column. This 

approximation is justified because the mercury ground state density is much (about 2 

to 3 orders of magnitude) greater than the densities of the excited states (Kenty 1950). 

(6.1) 

The second approximation is to assume that direct ionisation from the ground 

state, and ionisation from the levels higher than the 63p 2 metastable level, can all be 

neglected. The approximation that direct ionisation from the ground state can be 
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ignored was also used by Waymouth and Bitter (1956), and by Lama et al. (1982). 

Direct ionisation from the ground state is unlikely because of the high value of the 

mercury ionisation energy compared with the electron energy. Due to the high 

population densities of the 6'P 0,1,2 states compared with the higher energy states, 

ionisation from the higher energy states is very low compared with the ionisation from 

the 6'P 0,1,2 levels; therefore, all ionisation from higher energy states are neglected. In 

other words, the transition rates Ko" K." Ks. and K6/ in equations (5.5) and (5.6) are all 

equal to zero. 

It is further assumed that excitation to the 7'81 and 6'01,2,' levels comes only 

from the ground and the triplet 6'P 0,1,2 levels, and that the decay of these levels can 

only take place with the release of quanta of radiation. It is also assumed that the 

transitions between the triplet 6'P 0,1.2 levels and both the 7'81 and 6'01,2,3 levels have 

insignificant contributions to the balance of the triplet 63p 0,1,2 levels and therefore that 

these transitions can be ignored in the continnity equations of the triplet 63p 0,1,2 levels, 

Furthermore, both the 738 1 and 630 1,2,3 states decay to the three triplet 63Po,I,2 levels, 

resulting in the emission of several lines in the visible and invisible wavelengths, 

respectively. As these emissions are weak, in order to simplifY the continuity 

equations for the 7381 and 630 1,2,3 states, it is assumed that the decays of the 738 1 and 

630 1,2,3 states to the triplet 6'P 0,1,2 levels can be treated as if these decays were to a 

single fictitious level with an energy equal to the triplet resonance state, i.e, level 2, 

Using these approximations, equations (5.4) to (5.6) can be rewritten as: 

KOINeNO +K2INeN2 + K31Ne N3 +K.INeN. 

-(KlO + ±KI) +K17)NeNI = 0 
,-2 
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KozN,No +K'2N,N, +K'2N,N, +K42 N,N. 

-(K20 +K2' + I,K2J +K27)N,N2 - ~2 =0 
J" Z"20 

Ko,N,No +K13 N,N, +K23N ,N2 +K4,N,N4 

-(tK'J +K'4 +K'7)N,N, = 0 
}<o 

K04 N,No +K'4N,N, +K24 N,N2 +K'4 N,N, 
, N 

-L K.JN,N4 - --!- = 0 
):0 1"40 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

where all symbols have the same meanings as previously defined in equations (54)-

(5.6). 

6.1.2 Approximations for energy terms 

For the purpose of this study, it is not necessary to evaluate the energy tenns 

using the forms gIven in Appendix D [equations (0.1)-(0.5)]. The following approach 

is used to evaluate, at equihbnum, the radiation power loss, the ionisation loss and the 

elastic collision loss of the positive column. 
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In equation (5.2) the difference between inelastic collision power loss and 

super-elastic collision power loss is equated to the net radiation power loss. 1bis net 

radiation power loss consists of power losses due to the emission of the two ultra

violet lines, 253.7 um and 185 nm, from the decay of the two resonance states, and 

due to emission of several weak lines in the visible and invisible wavelengths from 

the decay of the upper states. The net radiation loss is calculated as the sum of these 

four 'types' of emissions as given in equation (5.3). All these radiation losses occur in 

the form of emission of quanta of energy and each quantum has an energy equal to the 

product of the electronic charge and the energy gap in electron volts between the 

excited state and the final state of the transition. The number of quanta that can escape 

the plasma in umt time per unit volume is equal to the density of the excited state in 

the plasma divided by the effective life time of the state in the plasma. The radiation 

power is then equal to the number of quanta escaping the plasma per unit time per unit 

volume multiplied by the energy gap of the transition. The radiation power losses of 

the two resonance lines are as given below: 

N2 
W;'4 =eV2-. 

"2 
(6.10) 

(6.11) 

where W;'4 and W,8S are the power losses (per unit volume) (yV m·') due to emissions 

in the two ultra-violet wavelengths 253.7 nm and 185 nm, respectively; e is the 

electronic charge (C); V2 and V4 are the energy level (eV) of the 6'P, and 6'P, mercury 

states respectively; N2 and N. are the number of the 6'P, and 6'P, mercury atoms, 

respectively, per unit volume of the positive column (m·'); and ,,; and ,,; are the 

average effective life time of the 6'P, and 6'P, mercury atoms, respectively. 
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For the emissions of weak visible and mvisible lines resulting from decays of 

the upper states, it is assumed, as discussed in section 6.1.1, that these upper states 

decay to a single fictitious level having an energy equals to the triplet resonance state 

6'P" i.e. level 2. With this assumption, a single effective life time for each upper state 

is used in the following expressions for the weak visible and invisible power losses. 

(6.12) 

(6.13) 

where Wvu and Wov are the power losses (per unit volume) (Wm") due to weak 

emissions in the visible and invisible bands, respectively, resulting from excitations of 

mercury atoms to energy states higher than the resonance states; e is the electronic 

charge (C); v:" Vs and V. are the energy levels (eV) of the 6'P" 7'S, and 6'D"2,, 

mercury states respectively; Ns and N. are the number of the 7'S, and 6'D,.2,3 mercury 

atoms, respectively, per unit volume of the positive column (m"); and r; and r; are 

the average effective life time of the 7'S, and 6'D,,2,, mercury atoms, respectively. 

For the ionisation loss, as ionisation from states other than the triplet 6'Po",2 

states are ignored, only three terms under the sununation sign in equation (0.2) of 

Appendix D need to be considered. As the mercury atoms are ionised, they attain 

energy higher than the minimum energy of the ionised state V;. Following Hoyaux and 

Sucov (1969), the average energy level V;' corresponding to the ionised state is 

assumed to be given by: 

3kT. 
V;' = v. + "'2e" (6.14) 
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where k is the BoltzInann constant, T, is the electron temperature (K) and e is the 

electronic charge (C). 

This is the average energy loss for each ionisation. The ionisation energy loss 

for each mercury state is the product of the number of ionisations from the state and 

, the average energy loss for each ionisation. Then, using the transition rate coefficients 

K17, KZ7' K'7' the ionisation loss Wwn is calculated from the following equation: 

Wwn = KI7NeNIe(~ + 3;; -~) + KZ7NeNze(~ + 3;; -Vz) 

+K37NeN,e(~ + 3;; -v,) 
(6.15) 

where Ne is the electron density (m·') in the positive column; NI, Nz and N, are the 

densities (m·') of the 6'P 0' 6'P I and 6'P z states, respectively; and V;, k, Te and e have 

the same meanings as defined in equation (6.14). 

Elastic collisions in the positive column refer to the collision between the 

electrons and the rare-gas atoms resulting in a transfer of momentum from the 

electrons to the rare-gas atoms. This means that the electrons lose energy while the 

rare-gas atoms gains energy resulting in an increase in temperature of the rare-gas. 

The elastic collision loss rate is the product of energy loss per electron per collision, 

the collision frequency and the electron density. According to Waymouth (1971), the 

electron loses, in an elastic collision, on average a fraction of its energy equal to 

8m, 
-3-' where me and mrg are the masses of the electron and the rare-gas atom, 

m,g 

respectively. Since the average electron kinetic energy is kT" the mean energy loss per 

collision, E,I' is given by: 
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8rne 
Eel =-3-kT. 

rnrg 
(6.16) 

The average collision frequency Vc per rare-gas atom is the average electron 

velocity divided by the electron mean free path A.., as follows: 

(6.17) 

Therefore, the total elastic collision loss is: 

(6.18) 

6.2 Transition rate coefficients 

The transition rate coefficients ~k in equations (6.2)-(6.9) can be obtained by 

an integration of the collision cross section QiEe) over the electron energy 

distribution function (EEDF) ftEe) as follows: 

(6.19) 

To simplify the solution process, and realiSing the facts that: 

(i) reliable data on the cross sections for transitions between the various mercury 

states are sparse, and 

(ii) the EEDF is not well known for many cases, 
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the transition coefficients used in the present study were not obtained by the above 

integral. Instead, the method of Hoyaux and Sucov (1969) is followed and the 

transition rate coefficients ~k are assumed to be dependent on the electron 

temperature T. as given in equation (6.10) for ascending transitions (k»): 

(6.20) 

where the coefficients C;k are constants to be determined using experimental values of 

transition rates and electron temperature quoted in literature. 

Hoyaux and Sucov (1969) used a simple inverse dependence of transition rates 

on electron temperature for all descending transitions: 

(6.21) 

where the coefficients A!J are constants derived by Hoyaux and Sucov (1969) using 

the results of Kenty (1950). However, in the present study it is considered not 

necessary to use another set of coefficients A!J since there is the Klem-Rosseland 

relationship between the downward transition coefficient and the corresponding 

upward transition coefficient as follows (Hoyaux and Sucov 1969; Lama et al. 1982): 

(6.22) 

The above relationship is based on detailed balancing of excitation and de

excitation by electron collisions (Hoyaux and Sucov 1969), this relatIonship is 

generally valid as long as the electron energy distribution is Maxwellian which is one 
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of the hypotheses (hypothesis (i) of Section 5.2) used in this study. The relatIonship 

was used successfully by Lama et al. (1982). 

The trausition rates obtained from the literature are those corresponding to a 

minimum lamp wall temperature of 42°C and are taken from Winkler et al. (1983). 

Using the experimentally measured electron temperature of 11500 K for a lamp-wall 

temperature of 42°C, the set of modified continuity equations (6.2)-(6.9) for the 
, 

particle densities is solved iteratively to obtain convergence on a solution of the 

particle densities at the lamp wall temperature of 42°C. These particle densities are 

then used to calculate the constant coefficients C;k . These constants C;. are then used 

to calculate the trausition rate coefficients ~k at different electron temperatures. 

6.3 Effective life times 

The effective life times of the radiating states are also very important in the 

adequate explanation of the observed emission of radiation from the discharge. The 

resonance states emit photons which suffer from self-absorption while travelling 

through the dIscharge plasma. The repeated absorptions and re-emissions of photons 

on the way to the tube wall increase the effective mean life times of the mercury 

resonance states. Accurate knowledge of the effective life times is important in the 

numerical modelling of the emission, absorption and re-emission of radiation by the 

resonance states. In the model developed here, the effective life times for the 

resonance states 63p, and 6'P, as well as the 73S, and 63
D,.2.3 states are needed in order 

to solve the set of simplified continuity equations (6.2)-(6.9). 

The magnitude of the effective life time is influenced by many factors among 

which are the mercury atom density, the broadening of the hyperfine structure of the 

resonance lines due to thermal motIon of the atoms (Doppler broadening) and the 

interaction of the mercury atoms with mercury and argon atoms (collision broadening) 

(Holstein 1947, 1951). Holstein performed an analYSIS of the effective life time by 
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considering Doppler broadening and collision broadening separately and obtained 

different relations for the two cases. Walsh (1959) investigated the combined effects 

of both Doppler and collision broadening. However, there are still unsolved problems 

concerning the hyperfme structure of the lmes and researchers are still active in this 

subject; examples of recent works include those of van de Weijer and Cremers (1985, 

1987), Post (1986) and Post et al. (1986). 

In order to keep the analysis as simple as possible, Holstein's theory for a pure 

Doppler broadening (Holstein 1951) is adopted here in the calculation of the effective 

life time. The expression giving the effective life time of a radiating state is as 

follows: 

(6.23) 

where k. is the absorption coefficient at the centre of the resonance line (m"), R is the 

radius of the discharge tube (m) and't is the natural life time of the radiating state (s). 

Following Winkler et al. (1983), use is made of the following expressIOns for the 

absorption coefficient of the two resonance lines 253.7 nm and 185 nm: 

(6.24) 

(6.25) 

The values of the natural life time are discussed in various articles such as Van 

de Weijer and Cremers (1985,1987). In this work the values of natural life time used 

in the calculation are the measured values of Van de Weijer and Cremers (1987), 

which are 120 ns and 1.3 ns for the 6'P, and 6'P, states, respectively. 
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6.4 Light output 

Existing positive column models calculate the UV radiation output from the 

fluorescent lamp discharge but not the visible light output of the fluorescent lamp. 

The aim of using a fluorescent lamp positive column model in this work is to calculate 

the light output and lamp power at different minimum lamp wall temperatures. The 

following is a description of the method of calculation of light output from the 

fluorescent lamp developed during this study. 

The light output of a fluorescent lamp is mainly from the fluorescence of the 

phosphors after excitation by the UV radIation emitted from the discharge. Hence, the 

light output from the lamp can be derived from a knowledge of the relative spectral 

power output S( A) of the phosphors in the lamp. In this work, the relative spectral 

power output S( A) is defined such that: 

jS(A)dA = 1 (626) 
vu 

where the integral sign j denotes integration over all visible wavelengths. Then, the 
vu 

power output in wavelength interval A. to A. +<lA. is 

W(A) = S(A)· w;,hO, (6.27) 

where w;,hO, is the total output power of the emitted radiation from the phosphors in 

the lamp. 

Suppose the number of quanta in the wavelength interval A. to A. +dA. emitted 

per second is n .. , then the power output ID tins wavelength interval is: 

102 



n;.hc 
W(A)=

A 
(6.28) 

where h is the Planck's constant (= 6.626x 1 0.24 Js) and ~ is the velocity of light 

(= 3.0xlO' m s·'). 

According to EIenbaas (1971), it is observed that for the present-day 

phosphors, only one quantum of visible light is emitted if a phosphor is excited by one 

quantum ofUV radiation. However, there is a small loss ofUV quanta which do not 

excite any phosphor. Define the quantum efficiency of the lamp phosphor 1] as the 

ratio of the total number of quanta of vlSlble radiation emitted per second from the 

phosphors to the number of quanta of the UV radiation (253.7 um and 185 um) 

emitted per second from the discharge: 

(629) 

where n"4 and n,8S are the number of quanta emitted per second of the 253.7 urn line, 

and of the 185.0 urn line, from the positive colunm, respectively. 

From equations (6.27) and (6.28), the number of visible light quanta emitted 

per second can be written as: 

(6.30) 

Therefore, 

103 



(6.31) 

The number of quanta emitted per second of the UV emission from the 

discharge can be expressed in terms of the power of the emission as follows: 

n2S4 = 253.7W,S4 

he 
(6.32) 

nIBS 
185.0W;ss 

he 
(6.33) 

Adding equations (6.32) and (6.33), the sum of the UV quanta emitted per 

second is: 

253.7W,S4 + 185.0W;s5 
n2S4 +nlss = 

he 
(6.34) 

Combining equations (6.29), (6.31) and (6.34), it can be shown that the 

quantum efficiency l] is given by the following expression 

_WphOSJ A~ 
17- W S( )253.7 dA 

where Wuv 

uv ,. 

253.7W,S4 + 185 OW;ss 
253.7 

(6.35) 

(6.36) 

According to CIE (1983), visible light flux is radiant power weighted 

according to the spectral sensitivity of the human eye. Therefore, the visible light 
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output <I>, in lumens, from the phosphors due to DV radiation emitted from the 

positive column is given by: 

<I> = F· 683· Wpho, IS(A)V(A)dA (6.37) 
vu 

Substituting for 1] with the expression given in equation (6.35): 

IS(A)V(A)dA 
<I> = F· 683 .11. W ..!v~u -----::--

uv I A 
vu S(A) 253.7 dA 

(6.38) 

In the above two equations, F is a factor to correct for loss of radiation and 

emitted light at the ends of the lamp and absorption ofIight by the phosphor and glass 

bulb. F is quoted by Jerome (1953) to be 0.75 which is a representative value for most 

lamps. The factor 683 is the maximum luminous efficacy of radiation, i.e. the 

maximum luminous flux per watt of radiant power, which is equal to 683 ImIW 

occurring at a wavelength of 555 nm. V( A) is the cm relative spectral luminous 

efficiency for photopic vision of the human eye (Cm 1983). 

cm pUblication No. 15.2 (Cm 1986) gives the relative spectral power 

distributions of 12 types of typical fluorescent lamps representmg standard, broad

band and three-narrow-band fluorescent lamps. From these spectral power 

distributions, the integrals IS(A)V(A)dA and IS(A)+A can be evaluated. 
vu vu 25 .7 

Using literature values of the quantum efficiency (Jerome 1953), the light output due 

to DV radiation <I> can be calculated by equation (6.38). 

105 



There is a small light output due to the visible emission of the discharge 

dJ.rectly. This is calculated by assuming that half of the visible emission can escape 

through the phosphor coating and that the only visible lines emitted are 404.6 nm, 

435 8 nm and 546.1 nm so that the mean V(A.) is 0.334. Hence, the total luminous flux 

output of the fluorescent lamp is calculated by the following formula: 

[ 

fS(A)V(A)dA ] 
<I> = 683· 0.75·1J· W.. A + OJ·w.u ·0334 

fS(A)-dA 
253.7 

(6.39) 

In the above equation, the fIrst term is the light output from the UV activated 

phosphors and the second term is the light output due to the viSible lines in the 

discharge. 

6.5 Solution scheme 

The following steps describe the solution scheme developed in this work for 

solving the fluorescent lamp positive column model to obtain the light output and 

lamp power at different minimum lamp wall temperatures. 

1. Calculate the ground state density No by using equation (6.1) and Dalton's Law of 

partial pressure: 

(6.40) 

where PHg is the mercury vapour partial pressure (pa) at the minimum lamp wall 

temperature, and Tg is the gas temperature inside the lamp in K. 

The mercury vapour partial pressure (pa) at the mininIum lamp wall temperature 

is calculated using the following correlation equation (Antoine equation, quoted 
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in Dean (1992» derived from the data of mercury vapour pressure m 

Dean (1992): 

( 
311014) 

_ t0025-MLWT+26742 
PH. -10 (641) 

where ML WT is the minimum lamp wall temperature in cC. 

The gas temperature inside the lamp is assumed to be given by the elevation ~T 

above the minimum lamp wall temperature using the indirectly measured values 

ofKenty et al. (1951). ~T is larger for a lower minimum lamp wall temperature 

(MLWT), e g. ~T=15.8°C when MLWT=60°C and ~T=42.7°C when 

MLWT=17°C. 

2. Calculate the electron density N. using equation (5.7) in the following form and 

an initially guessed value (for iteration purpose) of electric field strength E: 

1 
N ---=--• - ep.E1IR' 

(6.42) 

where 1 IS the electric current (A) in the positive column, e is the electronic 

charge (C), P. is the electron mobility (m2 Y-'s·'), R is the radius (m) of the 

discharge tube. 

In the above equation, the positive column current 1 is assumed to be constant 

and for a typical 40-W (diameter 38 mm, length 1.2 m) fluorescent lamp, 

1=420 mA. The electron mobility P. depends on the density of the rare-gas. 

Following Lama et al. (1982), P. is calculated by an inverse dependence of the 

rare-gas density N", as follows: 

(6.43) 
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3. Calculate the electron temperature T. by an iteration method. An initial value of 

T. is guessed, then all the transition rates ISk and KkJ are calculated using this 

guessed value of T. and the equations (6 20) and (6.22). 

4. Using the set of transition rates obtained from step 3 above, solve the set of 

simultaneous equations (6.3)-(6.8) for the number densities of the six excited 

mercury states NI' N2, N3, N4, Nj and N •. In the computer code LAMPPC, the 

Gauss elimination method is used for solving the set of simultaneous equations 

(6.3)-(6 8). 

5. Calculate T, using the ambipolar diffusion equation (6.9) and the densities of the 

mercury trIplet states NI' N2 and N3 obtained from step 4. This equation is 

rewritten by removing the common factor of the first three terms exp(-4.97elkTJ: 

(6.44) 

where 

K' =C (kT.)t(1+5.76e)ex (_0.7ge) 
17 17 e 2kT. p kT. (6.45) 

K' =c (kT.)t(1+ 554e
)ex (_057e) 

27 27 e 2kT. p kT. (6.46) 

K' = C (kT.)t(l+ 4.97e) 
37 37 e 2kT. (6.47) 

Rearrangement of equation (6.44) gives the following expression for 1'.: 
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(6.48) 

6. Compare the newly calculated value for 1". from equation (6.48) with the guessed 

value for Te' If their difference is larger than a pre-set value, say I K, then the 

new Te IS used to calculate again all the transition rates 1St and Kkj by equations 

(620) and (6.22). This new set of transition rates is used to calculate the densities 

of the mercury excited states as described in step 4. Using the new triplet state 

densities, a new value of Te is calculated again as described in step 5. Repeat this 

process until Te converges. 

7. Use the converged value for Te to calculate the transition rates according to 

equations (6.20) and (6 22). Using these transition rates, solve the set of equations 

(6.3)-(6.8) for the mercury excited state densities, NI> N] ,NJ , N" Ns and N6• 

8. Combining equations (5.1), (5.2) and (5.3), the energy balance equation can be re-

written as: 

E· j = w". + ~8S + W"" + w", + W",. + We] (6.49) 

After obtaining Te , Ne , No , NI , N] , NJ , N. , Ns and N6 , the above energy balance 

equation (6.49) is used to calculate the electric field strength E again. This value 

of E is then compared With the initially assumed electric field strength (in step 2). 

If the difference between the newly calculated and the initial assumed value of 

electric field strength is greater than a preset value, say 0.1 VIm, then the 

calculations are repeated from step 2 until convergence. 

9. On convergence of both E and Te , the set of equations are solved and all the 

unknowns E , Te , N. , No , NI , N] , N3 , N. , N j and N6 are found. Then the power 

ofUV lines 253.7 urn and 185 urn are calculated by equations (6.10) and (6.11). 
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The visible and non-visible radiation output power from the 7'Sl and 6'D1,2" 

states are estimated by equations (6.12) and (6.13). The ionisation loss and elastic 

collision loss are then estimated by equations (6.15) and (6.18), respectively. The 

sum of these power terms gives the total lamp power. 

10. The light output is then calculated by equation (6.39) WIth values of W .. and W", 

from equations (6.36) and (6.12) respectively. The illuminance on room surfaces 

can then be calculated by multiplying the light output with the ratio of short-wave 

radiation falling on the surface to that emitted from the lamps. 

A set of computer codes is written in FORTRAN, and is named LAMPPC, for 

the solution scheme described above. LAMPPC is included in the program LITEAC2 

as a subroutine which gets an input of minimum lamp wall temperature and returns to 

the main program the following variables: total lamp power, power of viSible 

radiation output from the lamp and total light output of the lamps. The program listing 

of LAMP PC is included in LITEAC2 in Appendix F. 

6.6 Summary 

Due to the complexity of the equations of the fluorescent lamp positive 

column discharge described in Chapter 5, approximations have been made to simplify 

the equations so that a solution giving the light output and lamp power as functions of 

minimum lamp wall temperature can be obtained. The approximations for simplifying 

the continuity equations are mamly to neglect those transitions which are considered 

small. ApproximatIons are also used in the calculation of the energy terms in the 

energy balance equations. A method modified from Hoyaux and Sucov (1969) is used 

in the derivation of transition rate coefficients for use in the continuity equations. For 

the effective life times of the mercury excited states, the Holstein theory (Holstein 

1951) is adopted in this work. 
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Using the mimmwn lamp wall temperature (calculated in the room heat and 

light transfer model) as an input to the fluorescent lamp positive column model, an 

iteration method is adopted for the calculation of the electron temperature and the 

densities of electron and mercury states. The different components of the energy loss 

from the fluorescent lamp are then calculated. The light output from the lamps are 

then calculated by knowing the spectral emission of the phosphors used in the 

fluorescent lamp. The lamp power can also be calculated by multiplying the electric 

field strength With the current in the positive column. The power loss due to ionisation 

and elastic collisions of the electrons with the rare-gas atoms can also be calculated 

and these are treated as heat dissipated from the fluorescent lamp. This positive 

column model, which is named LAMPPC, will be integrated into the room heat 

transfer model for the calculation of the conversion of electrical energy Into light, 

radiation and heat. 
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Chapter Seven 

Validation of the Positive Column Model with 

Published Experimental Results 

7.1 Introduction 

The fluorescent lamp positive column model, LAMPPC, elaborated in 

Chapters 5 and 6, can be validated on its own using the results of experimental 

measurements of mercury-rare-gas discharge reported in the literature. Comparison of 

the values for various parameters predicted by LAMPPC with correspondmg 

experimental data quoted in the literature is essential before LAMPPC could be used 

with confidence for the modelling of lighting / RV AC interaction. There are a number 

of fluorescent lamp positive column parameters which have been measured 

experimentally. The parameters which will be used here for the comparison are: 

electron temperature, electric field strength, electron and mercury state densities, 

radiation output, volume losses (elastic collision loss) and wall losses (ionisation 

loss). 

A review of experimental measurements of mercury-rare-gas discharge has 

been given in Chapter 3. In the next section a summary of the experimental results 

will be given. Results calculated using LAMPPC will then be compared WIth the 

corresponding experimental results. 

7.2 Summary of experimental results in the literature 

In order to facilitate the comparison of expenmental results with calculated 

values, published results of some important experimental measurements of low

pressure mercury-rare-gas discharge are tabulated in Tables 7.1-7.3. Table 7.1 gives 
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the results of measurements of electric field strength, electron temperature and axial 

electron density. The experimental data listed in this table are taken from Kenty et al. 

(1951), Verweij (1961), and Denneman et al. (1980). There is reasonably good 

agreement between the sets of measured data from different work. These data are 

plotted on Figure 7.1-7.3 where they are compared with values calculated using 

LAMPPC. 

Table 7.2 gives the results of measurements of the energy balance of 10w

pressure mercury-rare-gas discharge, i.e. the power dissipation by radiation, power 

dissipation inside the positive column (volume losses) and power dissipation at the 

lamp wall (wall losses) at different lamp wall temperatures. The volume losses are 

mainly due to elastic collision of the rare-gas atoms by electrons; therefore, the values 

for elastic collision loss calculated by LAMPPC will be compared with the 

experimental data of volume losses reported by Koedam et al. (1963). The wall losses 

are mainly due to energy released at the lamp wall when mercury ions recombine with 

electrons at the lamp wall; therefore, the values for ionisation power calculated by 

LAMPPC will be compared with the experimental data of wall losses reported by 

Koedam et al. (1963). As there are not many direct measurements of the radiation 

output, volume losses and wall losses reported in the literature, the data of Koedam et 

al. (1963) only are listed in this table with the total lamp power output data measured 

by Verweij (1961) listed in the same table for reference. The two sets of total power 

output measurements are in good agreement with each other, differing by less than 

10% for lamp wall temperatures of at least up to 60°C. 

Table 7.3 gives the results of measurement of the axial densities of mercury 

excited states at different lamp wall temperatures. The experimental data listed in this 

table are from Koedam and Kruithof(1962), Van de Weijer and Cremers (1987), and 

Bigio (1988). It can be seen that some large discrepancies occur in these sets of 

experimental data. 
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Despite the discrepancies occurring between different measurements, these 

experimental results provide good data for the validation of LAMP PC as a stand alone 

model. The experimental results shown in Tables 7.1-7.3 will be compared with the 

calculated results of LAMPPC. The comparison is discussed in the following section. 

7.3 Comparison of results calculated using LAMPPC with published 

experimental results 

7.3.1 Electron temperature 

Figure 7.1 shows the variation of electron temperature with minimum lamp 

wall temperature as predicted using LAMPPC. Also plotted in this figure are the two 

sets of measured data as obtained by Kenty et al. (1951) and by Verweij (1961). The 

agreement between the LAMPPC model prediction and both sets of measured data is 

seen to be remarkably good. 

7.3.2 Electricfield strength 

Figure 7.2 shows electric field strength plotted against minimum lamp wall 

temperature as predicted by LAMPPC and as measured by Verweij (1961). 

Agreement between the LAMPPC prediction and the measured values is very good, 

with differences remaining within 5%. Moreover, LAMPPC predicts the general trend 

in change of electric field strength With minimum lamp wall temperature, and the 

order of magnitude of the predicted electric field strength is correct. Shown also in 

this figure is a curve of the calculated results of a recent model by Dakin (1986). 

Dakin gave only results for the range of lamp wall temperatures between 20°C and 

60°C. Comparing the agreement LAMPPC-calculated results and Verweij's 

experinIental data, the LAMPPC model is better than and is valid over a wider range 

than Dakin's model. 
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7.3.3 Electron density 

Figure 7.3 shows the average electron density plotted against minimum lamp 

wall temperature. The figure shows the results predicted by LAMPPC, and also two 

sets of measured data, one by Kenty et al. (1951) and the other by Verweij (1961); 

also shown are the predictions by the model of Dakin (1986). The measured data 

plotted in the figure have been converted to average density by assuming a parabolic 

. axial density 
radial distnbution of electron density, i.e. average denSity 2.4 (Dakin 

1986). The figure shows that there is good agreement between the results predicted by 

LAMPPC and the experimental data, and also that the results predicted by LAMPPC 

offer a closer fit to both sets of expermIental data than those ofDakin (1986). 

7.3.4 Mercury resonance state density 

LAMPPC calculates the densities of all mercury excited states considered in 

the model. The density of the mercury resonance state 63p 1 is used here for a 

comparison of LAMPPC-calculated values with published data of mercury state 

density measurement. Figure 7.4 compares the calculated mercury resonance state 

density with three sets of measured data: Koedam and Kruithof(1962), Van de Weijer 

and Cremers (1985) and Bigio (1988); also shown are the model-based predictions of 

Dakin (1986). All three sets of published data were originally given as the on-axis 

densities of the resonance state, but the pomts plotted in Figure 7.4 are the average 

densities (assummg a parabolic radial distribution of the resonance state). The figure 

shows that the LAMPPC-calculated resonance state density agrees well with the three 

sets of measured data for lamp wall temperatures lower than 40°C with discrepancies 

being less than 17%. There is, however, a higher discrepancy between the calculated 

resonance state density and the experimental data for lamp wall temperatures above 
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40°C. Results predicted by LAMPPC agree well with those ofDakin (1986) for lamp 

wall temperatures up to 50°C after which some divergence occurs. 

7.3.5 Radiation output power 

As the aim of using LAMPPC is to simulate the effect of ambient temperature 

on light output, a good agreement between the predicted radiation output and 

experimental data is important, perhaps more important than the fit of mercury state 

densities. In Figure 7.5, the radiation output power predicted by LAMPPC is 

compared with both the measured values of Koedam et al. (1963) and the model 

predictions ofDakin (1986). The figure shows that the predictions of LAMP PC agree 

with the experimental data reasonably well; both the shape and the magnitude of the 

curve are similar to those of the experimental data. However, LAMPPC predictions 

are generally higher than the measured values for all lamp wall temperatures. For 

lamp wall temperatures between 30° and 80°C, LAMPPC predictions are 10-15% 

higher than the measured values. In view of the complexity of the low pressure 

mercury discharge, it can be considered that LAMPPC simulates the radiation output 

to a reasonable degree of accuracy. 

7.3.6 Volume losses 

"Volume losses" is the term used in Koedam et al. (1963) to mean the power 

losses which come mainly from the elastic collisions within the positive column. 

Figure 7.6 compares the elastic collision loss as predicted by LAMPPC with the 

experimental data of Koedam et al. (1963). The figure shows that the calculated curve 

fits the experimental data closely except perhaps at low lamp wall temperatures. 
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7.3.7 Wall/osses 

"Wall losses" is again the tenn used in Koedam et a1. (1963) to mean the 

power losses at the walls of the positive column discharge. Wall losses are due mainly 

to the energy release when mercury ions recombine with electrons at the lamp wall. 

Figure 7.7 compares the calculated ionisation power using LAMPPC with the 

experimental data of wall losses as measured by Koedam et al. (1963). The figure 

shows that the calculated curve fits very closely to the experimental data. The 

calculated curve also predicts correctly that minimmn wall losses occur within the 

range ofminimmn lamp wall temperature of 40° to 60°C. 

7.4 Summary 

From Figures 7.1-7.7, It can be seen that there is, in general, very good 

agreement between values predicted by the fluorescent lamp positive column model 

LAMPPC and published experimental results. It can be concluded that LAMPPC is 

able to simulate well the fluorescent lamp positive column, and can be used to 

calculate the conversion of electrical energy into light, radiation and heat to an 

acceptable degree of accuracy. Therefore, LAMPPC will be integrated into the room 

heat and light transfer model descnbed in Chapter 4 so as to fonn a model, named 

LITEAC2, for the simulation of lightingIHV AC interaction. Such a model wIll then 

be able to simulate the effects of air-conditioning on light output in greater detaIl than 

is currently possIble with existing models. Validation of the combined model 

LITEAC2 is discussed in the next chapter. 
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Table 7.1 

Published data of measured electric field strength, electron temperature and axial 
electron density in low-pressure mercury-rare-gas discharge by several authors. 

Lamp wall Electnc field Electron AxIal electron 
Author temperature strength temperature densIty 

rC) (Vm-') (K) (x 10" m-') 

Kenty, Easley and Bames 17 15000 5.44 
(1951) 

30 13300 4.79 
Internal dIameter: 36 mm; 

40 11300 5.00 
Filling gas: A at 465 Pa; 

50 10100 5.77 
Current: 420 mA 

60 9800 5.77 

VerwelJ (1961) 11 79 16300 620 

Intemal dIameter: 36 mm; 20 83 15200 550 

Flllmg gas: A at 400 Pa; 30 86 13700 500 

Current. 400 mA 42 81 11400 490 

50 73 10200 5.20 

60 65 9300 620 

70 60 8600 7.70 

80 58 8100 1050 

Dermeman et al. (1980) 42 81±1 12900±500 5±5% 

Internal dIameter: 36 mm; 

Flllmg gas A at 400 Pa; 

Current: 400 mA 

118 



Table 7.2 

Published data of measured radiation power output, volume losses, wall losses, total 
power output and power input oflow-pressure mercmy-rare-gas discharge at different 
lamp wall temperatures by several authors. 

Author 
Lamp wall RadIation Volume Wall Power Power 

temperature output losses losses output mput 
(0C) (Wm·') (Wm-') (Wm-') (Wm-') (Wm-') 

VerwelJ (1961) 11 31.6 

Internal dIameter. 20 33.2 
36mm; 

30 34.2 
Fillmg gas: 

42 32.5 A at 400 Pa, 

Current· 400 mA 50 292 

60 25 S 

70 23 S 

SO 230 

Koedam, Kruithof 10 S.1 195 2.9 305 314 
and RIemens (1963) 

20 159 14.5 23 32.7 332 
Internal dIameter. 

30 21.9 9.S 1.9 341 34.2 36mm; 

Fillmg gas 42 22.3 5.9 1.5 29.7 32.5 

A at 400 Pa; 50 200 4.7 1.5 262 29.5 

Current· 400mA 60 17.2 44 1.5 231 25.S 

70 14.5 45 1.7 20.7 23 S 

SO 11.3 55 2.2 19.0 23.0 
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Table 7.3 

Published data of measured on axis mercury state densities in low-pressure mercury
rare-gas discharge positive column at different lamp wall temperatures by several 
authors. 

Author 
LampwaU Axial6'P. AXIaI6'P I AXlaI6'P, 

temperature eC) density density denSIty 
(xI017 rn") (xI017 rn") (xI017 m") 

Koedam aod Krwthof 5 0.2 - 0.6 
(1962) 10 0.8 - 1.5 
Internal charneter: 15 1.3 0.1 24 
36 mm; 

20 18 05 3.2 
Fillmg gas: A at 
372Pa; 25 2.4 08 4.3 

Current· 400mA, 30 30 1.4 5.3 

35 37 23 63 

40 4.3 3.3 69 

42 4.5 3.8 -
45 5.0 - 7.5 

50 - 5.9 78 

55 5.9 78 -
60 6.3 108 8.1 

67 6.5 125 81 

70 - 155 -
vao de Welj er aod 30 36 1 8 64 
Cremers (1987) 40 4.7 39 79 
Internal charneter: 50 56 69 88 
36 mm; 

60 6.3 9.6 95 
Fillmg gas: A at 
400 Pa; 70 6.9 11.7 98 

Current· 400 mA. 80 7.3 13.6 10.2 

Blgio (1988) 20 1.72 0.42 3.88 

Internal charneter 30 2.89 1.71 6.94 
34 mm; 40 387 383 9.30 
FIllmg gas' A at 
374 Pa, 

Current: 400mA 

SLAmethod 

Same as above 20 180±0.13 0.35±O 25 3.14±O.12 
Hook method 30 330±0.35 1.90±0 15 59±O.3 

40 4 80±0 25 4.4±O 1 85±O3 
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Electron temperature vs minimum lamp wall temperature. 

121 



90.------------------------------------------, 

E 
~ 
.r:: 

80 

70 

60 

Ca 50 

! 
." 
"i 
';; 40 

~ 
.! w 

30 

20 

• 
.." ....... 

.. ' .'t •. ", 

-Calculated by lAMPPC 

• Measured data of VerwelJ (1961) 

10 .••••• Model resuHs of Oakln (1986) 

-',. 
'. 

O+----+----+_---+----+_--~----+_--~--~ 
o 10 20 30 40 50 60 70 80 

Minimum lamp wall temperature ("C) 

Figure 7.2 

Electric field strength vs minimum lamp wall temperature. 
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Figure 7.3 

Electron density (average) vs minimum lamp wall temperature. 
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Figure 7.4 

Mercury 63p 1 density (average) vs minimum lamp wall temperature. 
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Total radiation power output vs minimum lamp wall teruperature. 
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Figure 7.6 

Volume losses (elastic collision loss) vs minimum lamp wall temperature. 
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Wall losses (ionisation power) vs minimum lamp wall temperature. 
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Chapter Eight 

Validation of the LightinglllV AC Interaction Model 

with Published Experimental Results 

8.1 Introduction 

In Chapter 2, a brief summary of the experimental works on lighting th=al 

performance and lightingIHV AC interaction has been given. The NIST test cell 

reVIewed briefly in Chapter 2 gave valuable data on the study of hghtingIHV AC 

interaction. These data include steady-state temperatures, lighting energy distributIon 

fractions, and transient cooling load profiles, for various room temperatures, airflow 

rates and airflow configurations. In spite of the fact that relatively httle measured data 

is available on lighting performance, such as lighting power and light output, in the 

NIST reports (Treado and Bean 1988, 1992), the published experimental data on the 

NIST full-scale test cell are most suitable for the validation of the models LITEACI 

and LITEAC2 developed in this study (Chapters 4-6). The limIted amount of detailed 

measured light output data reported in the NIST reports permits only partial validation 

of the model LITEAC2 on the prediction of light output and illuminance under 

different ambient temperatures. The validation using a laboratory constructed test cell 

(to be described in Chapter 9) will supplement this by making comparison between 

predicted illuminance and measured values. Before the validation of the models 

LITEACl and LITEAC2 is discussed, some more details of the NIST test room are 

given first in the following section. 
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8.2 The NIST test cell 

Treado and Bean (1988, 1990, 1992) reported on full-scale measurements of 

the interaction between lighting and HV AC carried out at the Building and Fire 

Research Laboratory of the National Institute of Standards and Technology (NlST) in 

the U.S.A. The NlST test facility was constructed within a large environmental 

chamber and was divided into two sections: a large insulated shell encIosmg the test 

room area, and a smaller attached control room for housing instrumentation. It was 

extensively instrumented to allow the measurement of cooling load, lighting power, 

airflow rate, surface and air temperatures, heat flow rate and lighting level. 

The test room was of dimensions 4.27 m in length and 3.66 m in width, with a 

conditioned room space height of 2.44 m and a plennm height of 0.76 m. The test 

room floor slab was elevated to accommodate a lower plenum beneath the floor. All 

other room surfaces were adjacent to temperature-controlled guard air spaces. 

Duplicate lighting and RV AC systems were installed in both the test room plenum 

and the lower plenum. 

Identical lighting systems were installed in the room plenum and the lower 

plenum. During the initial stage of measurements, each plenum had four recessed 

luminaires, 0.6 m wide by 1.2 m long. Each of the lurninaires contained four 40 W 

fluorescent lamps and a parabolic dIffuser. During the later stages of measurements, 

the type and number ofluminaires were varied as test parameters, namely, acrylic lens 

(prismatic diffusers), 2 lamp luminaires and 34 W lamps were tested. 

The HV AC system consisted of three air handling units which serviced seven 

individually controlled zones, including the test room and surrounding spaces. Chilled 

water for cooling were drawn from the enviromnentaI chamber supplies. Each air 

handling unit consisted of a fan and chilled water coil, with separate electric duct 

heaters for each supply duct. Independent temperature control was allowed for each of 
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the seven supply systems. One air handling system was dedicated to the test room 

only. The second air handling unit serviced the east, south, west and upper guard air 

spaces. The third air handling unit serviced the lower plenum and north guard air 

space. 

Measurements of test room temperatures were made using an array of 64 

thermocouples, in a 4 by 4 by 4 grid. The upper 16 thermocouples were in the plenum 

while the 48 thermocouples below the suspended ceiling measured the room 

temperature. Surface temperatures were measured throughout the test room and inside 

the luminaires by thermocouples affixed on wall surfaces, at the centre and around the 

perimeter. Heat flux transducers were mounted on each room surface for the 

measurement of heat flow through the walls. 

Thermopiles were used to control the test room boundary conditions. To 

maintain a boundary condition such that the test room is surrounding by similar 

spaces, the temperature difference across each wall was sensed by thermopiles with 

the control system keeping the thermopile readings equal to zero; this was done by 

varying the power supplied to the appropriate electric duct heater which was used to 

control the room and air space temperatures. In this way, the boundary condItion of no 

net heat flow through taking place the walls was maintained. Thermopiles were also 

used to maintain equal surface temperatures at the top of the ceiling and the top of the 

floor, and also equal temperatures at the bottom of the floor and the bottom of the 

ceiling. 

Light (illuminance) levels in the test room were measured continuously at the 

centre of each surface using colour corrected silicon photovoltaic cells. Periodically, 

detailed light distribution measurements were also taken using an array of photocells. 
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Full detaIls of the NIST test room facilities with detailed drawmgs are given in 

Treado and Bean (1988). Several of these drawings are reproduced in Figures 8.1-8.3 

to help the reader to understand the experimental setup. 

Both steady state and transient tests were run in the test cell. Steady state tests 

involved establishing a test configuration and allowing conditions to stabIlize; then, 

measurements of temperatures, lighting power and lighting levels were taken. To 

make a transient test, the lighting system was switched either suddenly on or suddenly 

off and then the response of the cooling load was measured. 

There were two stages of measurements reported by Treado and Bean (1988, 

1992). The first stage tests were described in an interim report by Treado and Bean 

(1988). During this stage of measurements, the primary parameters varied were 

airflow configuration, airflow rate and room air temperature, and the tests were aimed 

at evaluating the effects of these parameters on the transient and steady state 

performance of the lighting and HV AC systems. Tests were executed for 27 basic 

configurations consisting of combinations of three variations of each of the primary 

parameters as follows: 

Airflow return: - ceiling grille 

Airflow rate: 

- luminarre side slots 

- lamp compartment 

- 0.0566 m3 
5.

1 (120 cfin); 

[i.e. 0.0142 m3 
5.

1 (30 cfin) per luminaire] 

- 0.0755 m3 
5.

1 (160 cfin); 

[i e. 0.0189 m3 
5.

1 (40 cfin) per luminaire] 

- 0.0944 m3 S·1 (200 cfin); 

[i.e. 0.0236 m3 
S·1 (50 cfin) per luminaire] 

Room air temperature: 21.1°C (70 OF) 

23.9°C (75 OF) 

26.7°C (80 OF) 
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The 27 combinations of basic configurations were tested with only one type of 

luminaire; this was a fluorescent luminaire With four 40 W lamps, standard choke 

ballasts and parabolic reflectors. Return air was directed either through the lamp 

compartment, through slots in the sides of the luminaire, or through the ceiling grille 

return. The first stage tests were carried out with constant supply air volume and with 

carpet on the floor. 

In the second stage of measurements (Treado and Bean 1992), in addition to 

the three test parameters described above, the luminaire type (i.e. the number of lamps 

in each luminaire and the type of diffusers used), the number of lummaires and the 

lamp wattage were also test parameters which were varied. In addition to the four-

40W -lamp parabolic luminaire used in the first stage measurements, three other 

different luminaire types were used, namely, four-40W-lamp with acrylic lens, two-

40W-lamp with acrylic lens, and two-34W-lamp with acrylic lens. The number of 

luminaires was also varied, with two of the configurations consisting of three 

luminaires only for the 2-lamp cases (40 W or 34 W). These combinations were 

included to enable comparison of Identical luminaire configurations with lamps of 

different wattage, and identicalluminaire types with different numbers of luminaires. 

The combinations of different luminaire types were tested with or Without carpet and 

With or without furnishings. Airflow rate was also varied through five ranges in the 

second stage of measurements instead of only three variations used in the first stage 

tests. 

8.3 Validation of LIT EA Cl and LITEAC2 

In modelling the NIST test room using LITEACl and LITEAC2, 23 nodes are 

used. These consist of 5 luminaire nodes, 9 plenum nodes and 9 room nodes. This 

division is similar to that used in the NIST numerical model (Treado and Bean 1988), 

except that 2 nodes are added: the carpet surface and the base of the luminaire 
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diffuser. In addition, 4 NIST nodes are eliminated: floor middle and ceiling middle, 

which are actually the same node and considered unnecessary in the current validation 

exercise; ceIling top and floor surface, which are actually the same node and are 

combined into a single node; ceiling bottom and floor bottom, which are also the same 

node and are also combmed into a single node in this validation exercise. Defining 

nodes in a similar way as in the NIST numerical model would ensure that the physical 

data of the nodes stated in the NIST reports (Treado and Bean 1988, 1992) can be 

used as the input data in the validation runs conducted in this study. 

Data concerning the dimensions, the heat capacity, the emissivity and the 

reflectivity of nodes were obtained either from the NIST reports (Treado and Bean 

1988, 1992) or were calculated from data in the ASHRAE Handbook (ASHRAE 1993) 

using information given in the NIST reports. Radiation form factors were calculated 

using the view factor programs 'VF' and 'FACTS' included in 'LIGHTS' (Sowell 

1989). Convective heat transfer coefficients were determined from correlations given in 

Holman (1992). Conductance values of the materials used in the construction of the 

NIST test cell were obtained from ASHRAE Handbook (ASHRAE 1993). The set of 

nodal data used in the validation are given in Appendix G. 

ValIdation runs were performed using both the simulation programs LITEACl 

and LITEAC2. In the case of LITEAC1, since the fluorescent lamp positive column 

model was not included in it, changes in light output and lighting power were 

accounted for by empirical curves, with lamp data concerning the relative power and 

relative light output being obtained from Sirninovitch et al. (1984). Lamp power 

balances and luminous efficacies were obtained from DorIeijn and Jack (1985). The 

transmittance values of the prismatic diffusers used in the NIST test cell are not 

available in the published reports. According to IESNA (1993), the transmittance of a 

clear prismatic lens has a range between 0.7 and 0.92, and it is reasonable in the 

simulations here to assume the transmittance to be 0.8. 
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Steady-state and transient test results published in the NIST reports were 

compared with results predicted from simulations using LITEACl and LITEAC2. For 

the steady-state runs, calculations were performed with lights turned on at the start 

until temperatures and illuminance levels at all nodes attained constant values. Details 

of the comparison of steady-state test results are discussed in section 8.4. 

For transient tests, comparison is made for profiles of node temperatures and 

cooling load between the NIST experimental results and the simulation results from 

LITEACl and LITEAC2. Results of two kinds of simulation tests, namely, the 'lights 

on test' and 'lights on/off cycles test', will be reported in section 8.5. 

8.4 Steady-state comparisons 

Steady-state test results reported in the two NIST reports (Treado and Bean 

1988, 1992) consisted mainly of measurement of the parameters needed for the 

evaluation of hghting system performance. These test data included minimum lamp 

wall temperature, elevation of minimum lamp wall temperature above room 

temperature, relative lighting power, relative light output and relative lighting 

efficacy. These data were published in Treado and Bean (1988, 1992) in the form of 

graphs. Numerical values were directly read from the graphs for this comparison 

exercise. 

For the minimum lamp wall temperature, the 'average' value was given for 

each configuration tested. According to Treado and Bean (1988), the 'average' 

minimum lamp wall temperature for a certain test was calculated by simply taking the 

arithmetic average of the lamp temperature minima for each luminaire. The elevation 

of minimum lamp wall temperature above room temperature reported by Treado and 

Bean (1992) was the difference between the measured minimum lamp wall 

temperature and the measured room air temperature. The measured room air 
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temperature could be different from the controlled 'set-point' room air temperature 

which was used as a test parameter. 

In Treado and Bean (1992), results on the relative performance of the lighting 

system were given as plots of the relative lighting power, relative light output and 

relative lighting efficacy against the minimum lamp wall temperature for each 

luminaire type and air return configuration. The reference values for derivmg the 

relative lighting performance parameters were the corresponding individual maximum 

values in each combination ofluminaire type and air return configuration. For all the 

tests reported, absolute values of lighting power, light output and efficacy were not 

published and these values cannot be deduced from the published relatIve values. The 

only test configuratIons for which measured values of lighting power are obtainable 

from Treado and Bean (1988) are those with 4 x 4 lamp parabolic diffuser and lamp 

compartment return. No data on measured light output and lighting power are 

available for other configurations. 

Comparison is therefore made between simulation results from LITEACl and 

LITEAC2 and the NlST measured steady-state resnlts (reported in Treado and Bean 

1992) for the minimum lamp wall temperature and its elevation above room 

temperature for all 40 configurations (to be described below). Comparison between 

simulation results and measured results for the relative light output, relative lighting 

power and relative lighting efficacy can only be made for the 9 (out of the 40) 

configurations with the 4 x 4 lamp parabolic diffuser and lamp compartment return. 

The 40 configurations consist of combinations of the following four varied 

parameters: 

Lurninaire types: - 4 x 4 lamp 40 W, parabolic diffuser 

4 x 4 lamp 40 W, prismatic diffuser (acrylic lens) 

4 x 2 lamp 40 W, prismatic diffuser (acrylic lens) 
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Airflow return: - ceiling grille 

Airflow rate: 

- lamp compartment 

- 0.0944 m' S·I (200 cfin); 

[i.e. 0.0236 m' S·I (50 cfm) per luminaire] 

- 0.0755 m's·1 (160 cfm); 

[i.e. 0.0189 m' S·I (40 cfm) per luminaire] 

- 0.0566 m' S·I (120 cfm); 

[i.e. 0.0142 m' S·I (30 cfm) per luminaire] 

- 0.0378 m' S·I (80 cfm); 

[i.e. 0.00944 m' S·I (20 cfm) per luminaire] 

Room air temperature: - 26.7°C (80 OF) 

23.9°C (75 OF) 

21.1 °C (70 OF) 

Tables 8.1-8.3 show the comparison between predicted results and 

experimental results for all the 40 different configurations. Configurations with the 

same luminaire type are grouped into one table for convenience of presentation of 

results. For ease of reference to the NIST configurations in the presentation of results 

here, each NIST configuration is given a number consisting of 5 digits: dld,d,d.ds. 

The digtt dl gives the number of luminaires in the test room; d, gives the number of 

lamps in each luminaire; d, is either 1 or 2 and represents the type of diffuser used in 

the luminaire (1 = prismatic diffuser, 2 = parabolic diffuser); d.ds is a 2-digit serial 

number representing different configurations within the group with the same 

luminaire type. For example, the configuration number 44101 represents the fust 

configuration in the series with 4 luminaires in the test room, 4 lamps in each 

luminaire and prismatic diffuser. The 40 configurations considered in this validation 

exercise are all listed in Tables 8.1-8.3. Treado and Bean (1988, 1992) did not use any 

numbering system in their reports so that the configuration numbers used here cannot 

be referred directly to the NIST reports. 
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Table 8.1(a) shows the comparison between results of minimum lamp wall 

temperature and its elevation above room temperature for the 12 configurations WIth 

the luminaire type 4 x 4-lamp 40 W parabolic reflector. The percentage deviations of 

the calculated value from the measured value are also given in this table. It can be 

seen from the table that there are good matches between predicted and measured 

minimum lamp wall temperatures (MLWT). Comparing the results of LIT EA Cl with 

LITEAC2, LITEAC2 always gives a slightly higher ML WT than LITEACl. This can 

be explained by the fact that lighting power calculated by LITEAC2 is always higher 

(and closer to the measured lighting power) than that calculated by LITEACl. For 

five of the 12 configurations both LITEACl and LITEAC2 predicted lower values of 

ML WT than those measured, while for the other 7 configurations both LITEACl and 

LITEAC2 predicted higher values ofML WT than those measured. 

Table 8.l(b) compares the measured and predicted values of lighting power, 

relative lighting power (RLP), relative light output (RLO) and relative lighting 

efficacy (RLE). Only the 9 configurations for which Treado and Bean (1988) give 

absolute measured values of lighting power are included in this table. It can be seen 

from this table that there is an excellent match between the LITEAC2-predicted 

lighting power and the measured lighting power. LITEACl predicts a lighting power 

which is 5-6% lower than the measured values. This is probably due to the use of an 

inappropriate empirical curve for the change of lighting power with mimmum lamp 

wall temperature in LITEACl. The lower lighting power predicted by LITEACl also 

explains why values of the MLWT calculated by LITEACl are lower than those 

predicted by LITEAC2. The comparison between measured and calculated values of 

relative lighting power, relative light output and relative lighting efficacy is not 

meaningful because the reference maximum values for the calculation of the relative 

values of the measured data are not known. However, the relative values are given in 

Table 8.1 (b) for completeness. 
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Table 8.2 shows the comparison between results of minimum lamp wall 

temperature and its elevation above room temperature for the 19 configurations with 

the luminaire type 4 x 4-lamp 40 W prismatic diffuser (acrylic lens). It can be seen 

that for all but 2 of the 19 configurations, there is excellent agreement between the 

predicted values (both LITEAC1 and LITEAC2) and the corresponding measured 

values. The relatively large discrepancy between the predicted and measured results 

for the case labelled with a configuration number 44113 may be due to errors in 

measurement. This configuration had all settings exactly the same as those of 

configuration number 44103 except for the airflow rate, which was 0.0566 m3 
S-I for 

configuration 44113 and 0.0944 m3 
S-I for configuration 44103. It is illogical for 

configuration 44113, which had a lower airflow rate, to have a lower measured lamp 

wall temperature (47.8°C) than configuration 44103 (49.8°C), which had a higher 

airflow rate. When comparing the measured ML WT for configurations 44113 and 

44114, it is also illogical to have a lower lamp wall temperature for a ceiling grille 

return than that for lamp compartment return with all other settings exactly the same. 

Thus, it is believed that errors occur in the measured results of configuration 44113. 

Table 8.3 shows the comparison between results of minimum lamp wall 

temperature and its elevation above room temperature for the 9 configurations with 

the lurninaire type 4 x 2-lamp 40 W prismatic diffuser (acrylic lens). The match 

between predicted and measured values for these 9 configurations is, in general, very 

good. Typical deVIations are to within 2% while only one configuration (42103) 

shows a larger dIscrepancy of about 9%_ This larger discrepancy is for the 

configuration with a high return airflow rate through the lamp compartment and the 

discrepancy is thought to be due to an error in the assumed model convection 

coefficients. 
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8.5 Transient test results 

Transient tests were run in the NIST test cell by Treado and Bean (1988, 1992) 

to detennine the response of the cooling load to a step change in lighting power, i.e. 

switching on or switching off of lamps. Starting from a steady-state condition with the 

lights off for a long period of time, the lighting system was switched on and the 

cooling load monitored until equilIbrium conditions were attained. After the steady

state condition had been attained with the lights on, the lighting system was switched 

off and again the cooling load was monitored until equilibrium conditions were again 

attained. As described by Treado and Bean (1988), the lighting system was the only 

planned heat source in the test room. Under ideal conditions, the measured cooling 

load would be zero with the test room at equilibrium and the lights off. At equilibrium 

with the lights on, the cooling load would be equal to the lighting power if the NIST 

test cell was well insulated. However, there were small heat gains to the test room 

which caused slight coolmg loads WIth the lights off. Treado and Bean (1988) 

assumed this zero offset to be constant for the duration of a test, and the measured 

coolIng loads were adjusted accordingly. The typical zero offset was less than 20 W, 

compared to the smallest lighting power tested (of the order of 350 W). According to 

Treado and Bean (1988), the measured cooling loads were also adjusted so that the 

equilibrium cooling load was equal to the measured lightmg power with the lights on 

and the test room at equilibrium. Treado and Bean (1988) estimated that this 

correction factor was less than four percent, and it varied with airflow rate, increasing 

slightly as airflow increased. Transient tests were run in the NIST test cell with the 

combinations described in sectIon 8.4. However, the actual cooling load data were not 

published and they are not available. Results were published as coolmg load 

regression curves only in Treado and Bean (1992). These curves are regression curves 

based on the double exponential regression model as described in Treado and 

Bean (1988). Most of the curves are very similar to one another With only small 

differences for different configurations. 
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Transient simulations were conducted using LITEACI and LITEAC2 for all 

the configurations described in tables 8.1-8.3. However, because most of the measured 

data are not available for comparison, this validation exercise considers only the one 

configuration for which the experimental data can be obtained from Sowell (1990). 

Measured data which are available include cooling load, lighting power, air 

temperature, lamp temperature as well as room surface temperatures. Sowell (1990) 

made the criticism that problems existed with the NIST experimental data, so that 

meaningful comparisons could not be made with calculated results and that only one 

single set of data could be used for comparison with calculated results. This set of data 

was the transient test results for the configuration number 42101 in Table 8.3. This 

was the configuration in which the test room was installed with 4 static lurninaires 

(i.e. air return not through lurninaire) with a prismatic diffuser (acrylic lens) and two 

40 W lamps each. The air return was through a ceiling grille to a plenum above an 

acoustic tile suspended ceiling with a nominal supply airflow rate of 0.0944 rn's'!. 

Room air temperature was kept at 23.9°C. The floor was covered with carpet. 'Lights

on' and 'lighting on-off cycle' tests were modelled with LITEACl and LITEAC2. 

Comparisons with measurements are discussed below. 

8.5.1 Lights ON test 

For the 'lights on' simulation, tests were conducted with all the lamps 

switched on at time zero, and then are kept on at all times. In the simulations, the node 

temperatures, coolmg load and lighting power were calculated for each time step. The 

results of the test runs for the configuration 42101 are plotted in figures 8.4-8.8. 

Figure 8.4 shows the LITEACl and LITEAC2 simulated lighting power and 

cooling load, compared with the NIST test results. From Figure 8.4, it can be seen that 

both simulated lighting power curves match the experimental one excellently with 

deviations of only about 1.5%. It is not surprising that there is good agreement 
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between the LITEAC1 simulated lighting power and the measured lighting power, 

since the lighting power is an input in LITEACl. However, the lighting power in 

LITEAC2 is calculated by the fluorescent lamp positive column model LAMPPC and 

a good agreement between predicted and measured values shows that LAMPPC is 

capable of simulating the lamp power correctly. 

Figure 8.4 also shows that there is good agreement between the two predicted 

cooling load curves and the expenmental one. It appears in Figure 8.4 that, for the 

initial five hours, both LITEAC1 and LITEAC2 predict cooling loads lower than 

experimental results whilst both models predict cooling loads higher than 

experimental results after hour 7, with errors within 5-6% for most hours. The 

predicted shape of the cooling load curve for the initial hours is sensitive to the 

convective heat transfer coefficients; hence, a small error in the convection 

coefficients would cause an error in the calculation of cooling load. This partly 

explains the discrepancy in the initial hours. The discrepancy in the later hours is due 

mainly to experimental difficulty in minimising net heat loss rate from the test cell. At 

equilibrium, the cooling load should theoretically equal the lighting power, because 

lightmg power was the only heat source inside the test cell. The two simulated coolmg 

load curves approach the corresponding lighting power line with cooling load equal to 

lightmg power after about hour 20. However, as can be seen from Figure 8.4, the 

measured cooling load is always lower than the measured lighting power. According 

to Treado and Bean (1988), despite the use of an active guard space control system, 

small heat losses from the test cell to the surroundings occurred during the tests. 

Treado and Bean (1988) did mention that corrections were made to the measured 

coolmg load so that cooling load equalled measured lighting power with the lights on 

and with the test room at eqnilibrium, but this correction was assumed to be constant 

throughout the whole test. It can be seen from Figure 8.4 that there were fluctuations 

m the measured cooling load and it is not clear whether the set of data used in this 

validation exercise had been corrected or not. This experimental error, due to small 
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heat gains/losses from other sources, would be the main cause for the discrepancy in 

later hours. 

Figure 8.5 shows the predicted lamp temperature plotted against tune for 

simulations using LITEACl and LITEAC2. Also shown in this figure is the curve of 

measured lamp temperatures in the NIST test cell as reported by Sowell (1990). This 

figure shows that the lamp temperature rises to its equilibrium value within the first 

two hours. There is very good agreement between the simulation results ofLITEAC2 

and the NIST experimental results, with differences of less than 0.6°C in 45°C 

between simulated and experimental temperatures. The differences between predicted 

lamp temperatures by LITEACl and the measured lamp temperatures are slightly 

higher but are still within about 1°C. 

Figure 8.6 shows the plenum wall temperatures predicted by both LITEACl 

and LITEAC2 with the NIST measured results plotted on the same graph. There is no 

significant difference between the simulated results of LITEACl and LITEAC2. 

When the simulatIon results are compared with the NIST data, however, the simulated 

plenum wall temperatures are about 1°C higher than the NIST test results at 

equilibrium. Curves of the plenum ceiling temperature (not shown for conciseness) 

exhibit similar behaviour to those of the plenum wall temperature. ThIs discrepancy of 

about 1°C in 24°C - which is actually not large for a model that considers all modes 

of heat transfer - may be due to small errors in the input heat transfer coefficients 

and/or radiation form factors. Another possible cause of discrepancy between model

predicted and experimental results is error in the measurement of temperatures. 

Treado and Bean (1988) reported that the NIST temperature measurements were 

accurate to within 0.28°C (or 0.5°F, as reported). However, this error might be just the 

error of the thermocouple junction temperature (Sowell 1990). Treado and 

Bean (1988) did not discuss any error that might have been caused by a possible 
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difference between junction temperature and the true surface temperature (the result of 

imperfect contact between the thermocouple and surface, for example). 

Figures 8.7 and 8.8 show the temperatures of two room nodes: walls and floor, 

respectively. Again, there is no significant difference between the simulated results of 

LITEACI and LITEAC2. The simulated temperatures are all higher than the 

corresponding measured results by about 1°C for the wall and about 1.2°C for the 

floor. This discrepancy can be attributed to either error in the input convective heat 

transfer coefficients or experimental error due to imperfect contact between 

thermocouple and surface. It can be noted from Figures 8.7 and 8.8 that both 

LITEACl and LITEAC2 correctly predicted that the floor temperature was slightly 

higher than the wall temperature. 

8.5.2 Lights ON/OFF cycles 

For 'lights on/off cycles' tests, no experimental data on temperature profiles 

were published. Only coolmg load profiles for some configurations are obtainable 

from Treado and Bean (1992). Since the cooling load profiles for various 

configurations are similar in shape, only the configuration number 42101 is used for 

comparison between simulated and experimental data. 

For 'lights on/off cycles' tests, simulations were conducted for a period of five 

days with lamps on for 12 hours (lamp switched on at hour 0) and lamps off for 12 

hours (lamps SWItched off at hour 12) each day. Test simulations were also conducted 

for periods longer than five days and simulation results showed almost exactly the 

same daily cooling load profile repeated from day 3 onwards; hence, It is considered a 

period of 5 days is long enough to obtain the druly transient cooling load profile for 

'lights on/off cy1ces' tests. Figure 8.9 shows the LITEACl and LITEAC2 simulation 

results for the profile of cooling load as a fraction of the lighting power for 

configuration 42101 over a 24-hour period, starting at hour 18 of day 3. Also ShOWll 
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in Figure 8.9 are the NISI test results (Ireado and Bean 1992) for the same 

configuration. The figure shows that there is no significant difference between 

simulated results of LIIEACl and LIIEAC2 and these results agree well with the 

NISI test results. The small discrepancy between simulated and experimental results 

can be attributed to errors in the input convective heat transfer coefficients. 

8.6 Discussion 

8.6.1 Minimum lamp wall temperature 

In all simulatIons described in this chapter, the mean lamp wall temperature is 

assumed to be equal to the minimum lamp wall temperature. TIns may have 

introduced errors in the simulation results. SoweIl (1990) quoted that experimental 

data of lamp wall temperature generally showed a difference of 5.5°C between the 

hottest and coldest parts of the lamp wall. Assuming that there is an even distribution 

of temperature between the lnghest and lowest values, the minimum lamp wall 

temperature is about 2.5° to 3°C below the average lamp wall temperature. From 

Figure 7.5, this difference means that LAMPPC predicts a radiation output 3 to 4% 

higher if the average lamp wall temperature is taken to be equal to the minimum lamp 

wall temperature. 

The error due to the difference between mean lamp wall temperature and 

minimum lamp wall temperature can be reduced by dividing the lamp wall into more 

than one node with the lowest of the simulated temperatures of the lamp nodes taken 

to be the minimum lamp wall temperature. In the simulation of a laboratory test cell to 

be described m Chapter 9, the lamp wall is dIvided into an upper half node and a 

lower half node. The lower of the simulated lamp node temperatures is taken as the 

minimum lamp wall temperature. It will be shown in chapter 9 that tIns improves the 

prediction of the minimum lamp wall temperature. The prediction of minimum lamp 
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wall temperature can be even better if the lamp wall is further divided into more 

nodes. However, there will be difficulties in obtaining accurate radiation form factors 

and convection heat transfer coefficients for all the lamp nodes due to the more 

complicated geometries. 

8.6.2 Change in convective heat transfer coefficients 

In sections 8.4 and 8.5, the convective heat transfer coefficients were ascribed 

to be one of the source of modelling errors. AB described in Appendix C, the 

convective heat transfer coefficient for each node is calculated according to empirical 

correlation equations published recently. The correlation equation used for each node 

is selected in accordance of the geometry of the node (see Table C.1) and the 

temperature difference between the node and the adjacent air. However, as the heat 

transfer coefficients of the NIST test cell surfaces under actual operating conditions 

are not available, it is thought that errors may occur in the heat transfer coefficients 

and these errors could be a reason for the discrepancies found between modellmg and 

experimental results. There is a temptation of trying to adjust the heat transfer 

coefficients (and other model variables) to obtain agreement with the experimental 

results. However, to do this would be pointless unless experimental measurements 

could be used to 'validate' the adjusted coefficients and correlations could be 

developed to extend the adjusted coefficients to other room configurations. 

In order to test the sensitivity of the model predictions to variations in the heat 

transfer coefficients, tests have been performed by using heat transfer coefficients 

different from those calculated by the correlations as described in Appendix C. A test 

run was performed using heat transfer coefficients 30% lower than those used for the 

configuration 42101 as described in section 8.5. A better fit of the cooling load curve 

was obtained as shown in Figure 8.10. However, poorer agreements with experimental 

results were obtamed for the lamp node temperature and other room surface 
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temperatures. Figure 8.11 shows the result for the lamp node temperature. Hence, 

adjustments of the heat transfer coefficients may give better agreement with 

experimental results for one parameter but poorer agreement for another parameter. 

8.7 Summary 

In this chapter, both steady-state and transient simulation results of both 

LITEAC1 and LITEAC2 are compared with experimental results oftests conducted in 

NIST. For the 40 configurations considered, predicted steady-state results, which 

include minimum lamp wall temperature, elevation of minimum lamp wall 

temperature above room temperature, relative lighting power, relative light output and 

relative lighting efficacy, of both LITEAC1 and LITEAC2 compare well with 

experimental data. For most cases, predicted results deviate from experimental data by 

less than 5%. There are a few cases with higher deviations. Inter-comparison between 

experimental results show that expenmental error existed in the case with 

exceptionally high deviation. Another author, Sowell (1990), commented also that 

problems existed m the NIST test data. Detailed properties of the materials used in the 

NIST test cell and values for the heat transfer coefficients are not known, so that 

errors in the model input data could be one cause of the deviation between predicted 

and experimental results. 

Transient temperatures and cooling load profiles predicted by both LITEAC1 

and LITEAC2 also compare well with experimental data. Deviations of the calculated 

cooling load from the experimental results during the initial hours of transient 

operation can be attributed to errors in the estimation of heat transfer coefficients. 

Discrepancy in the later hours is due mainly to experimental error in minimizing heat 

gains/losses from other sources and the magnitude of the corrections made to the 

measured data. In general, the simulated temperature profiles and the corresponding 

experimental profiles are in good agreement. Those discrepancies found can be 
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attnbuted to experimental errors in the measurement of temperature due to improper 

contact between thermocouple and surface as commented by Sowell (1990). 

Detailed data on light output and lighting levels were not published in the 

NIST reports (Treado and Bean 1988, 1992) and are not available for comparison with 

predicted results. Comparison between the only set of measured lighting power data 

available and the corresponding predicted values shows good agreement especially for 

LITEAC2. This good agreement between LITEAC2 simulated lighting power with the 

expenmental data shows that the positive column model in LITEAC2 is capable of 

simulating the power consumed by fluorescent lamps without the need for input data 

on lamp power. 

In view of the complexity of the models and the uncertainty in input 

parameters, the agreement between the simulated results and the experimental data is 

generally considered to be good. It can be concluded that both the models LITEACl 

and LITEAC2 are suitable numerical models for simulating the interaction between 

lighting and HV AC operation. Both models behave similarly in the simulation of 

coolmg load and temperature. However, when LITEACl is used, a good empirical 

curve is required as mput data to represent the variation of lamp power and of light 

output with lamp wall temperature. Lamp manufacturers do not normally include 

these data in the lamp data sheet or manua1. On the other hand, LITEAC2 requires 

input conceruing the relative spectral power output of lamps which is more often 

given in lamp data sheets. 

The fact that LITEAC2 gives a better simulation of lighting power and light 

output than LITEACl is encouraging, and this shows that LITEAC2 can simulate the 

effect of temperature changes on lighting power and light output without the use of 

empirical curves. 
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In order to test the validity of LIT EA Cl and LITEAC2 for an enclosure with 

different dimensions and to compare predIcted ilhuninances with measurements, 

further experimental validation using a laboratory constructed test cell has been 

carried out. The construction of the laboratory test cell and the validation results are 

descnbed in the next chapter. 
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Table 8.1(a) 

Minimum lamp wall temperature and elevation of minimum lamp wall temperature 
above room temperature. Comparison between NIST measurements and predicted 
results from LITEACI and LITEAC2 for the configurations with the luminaire type 
4 x 4 lamp parabolic diffuser. 

Configu- AIrflow AIrflow 'Set-pomt' Measured Measured PredIcted Predicted 
ranon No rate return Roomalf MLWT elevatton MLWT elevatJon 

(rn'/s) type tempera- ("C) ("C) by by 
ture LITEAC1 LITEAC1 
('C) ('C) ('C) 

44201 00944 LC 267 409 138 414 147 

44202 00944 CG 239 449 206 440 201 

44203 00944 LC 239 384 142 390 151 

44204 00944 LC 21 1 360 146 365 154 

44205 00755 LC 267 438 166 419 152 

44206 00755 CG 239 459 219 445 206 

44207 00755 LC 239 387 145 396 157 

44208 00755 LC 21 1 362 148 371 160 

44209 00566 LC 267 443 172 427 160 

44210 00566 CG 239 461 218 451 212 

44211 00566 LC 239 392 ISO 403 164 

44212 00566 LC 21 1 376 161 380 169 

MLWT = Mlmmum lamp waIl temperature 
Measured elevation = Measured ML WT - measured room air temperature (see note below) 
LC = tamp compartment return 
CO = cedmg gnlle return 

PredIcted PredIcted Percent-
MLWT elevation age 
by by dCVlatJon 
LITEAC2 LITEAC2 LITEAC1 
('C) ('C) vs 

measured 

417 150 652% 

445 206 -243% 

392 153 634% 

366 155 548% 

423 156 -843% 

451 212 ·594% 

398 159 828% 

375 164 811% 

430 163 -698% 

457 218 -275% 

406 167 933% 

381 170 497% 

Note: The measured elevanon ofmmunurn lamp wall temperature above room temperature IS the 
difference between the measured minunurn lamp wall temperature and the measured room air 

temperature The measured room air temperature could be different from the connolled 'set-point' 
room air temperature winch was used as a test parameter (Treado and Bean 1992). 
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Percent-
age 
devIation 
LITEAC2 
v. 
measured 

870% 

o ()()O/o 

775% 

616% 

-602% 

-320% 

966% 

1081% 

-523% 

000% 

1133% 
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Table 8.1(b) 

Lighting power, relative lighting power (RLP), relative light output (RLO) and 
relative lighting efficacy (RLE). Comparison between NIST measurements and 
predicted results from LITEACI and LITEAC2 for the configurations With the 
luminaire type 4 x 4 lamp parabolic diffuser and lamp compartment return. 

Config- LlghtlOg RLP RLO RLE LIghbng RLP RLO RLE LIghbng RLP RLO RLE 
uratton power NIST NIST NIST power by by by power by by by 
No NIST expt expt expt by UTEACI UTEACI UTEACI by UTEAC2 UTEAC2 LITEAC2 

expt UTEACI UTEAC2 
(W) (W) (W) 

44201 743 0969 - - 704 0982 0980 0997 748 0982 0997 0991 

44203 754 0983 0963 0969 711 0992 0992 0999 755 0991 0987 0973 

44204 767 1 0964 0953 717 1 1 0999 762 1 0972 0949 

44205 737 0961 0943 0970 702 0979 0976 0997 746 0979 0998 0996 

44207 753 0982 - - 710 0990 0990 0999 754 0990 0990 0977 

44208 764 0996 1 0994 716 0998 0999 1 759 0996 0978 0959 

44209 730 0952 0948 0985 699 0975 0971 0996 744 0976 1 1 

44211 753 0982 0965 0973 708 0987 0986 0999 752 0987 0993 0982 

44212 757 0987 0998 1 714 0995 0996 0999 757 0993 0982 0965 
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Table 8.2 

Minimum lamp wall temperature and elevation of minimum lamp wall temperature 
above room temperature. Comparison between NIST measurements and predicted 
results from LITEACl and LITEAC2 for the configurations with the luminaire type 
4 x 4 lamp prismatic diffuser (acrylic lens). 

Configu- Atrflow Airflow 'Set-potnt' Measured Measured PredIcted PredIcted PredIcted 
rabon No rate return ROOmatT MLWT eievatlon MLWT elevatIon MLWT 

(m'/s) type tempera- ("C) ("C) by by by 
ture UTEACI LlTEACI LITEAC2 
(0C) (0C) (0C) ("C) 

44101 00944 CO 267 519 259 525 258 531 

44\02 00944 LC 267 484 224 490 223 495 

44103 00944 CO 239 498 266 502 263 508 

44\04 00944 CO 21 I 476 272 479 268 485 

44105 00944 LC 21.1 429 225 440 229 445 

44106 00755 CO 267 523 263 533 266 539 

44107 00755 LC 267 493 233 494 227 499 

44\08 00755 LC 239 475 23 I 469 230 475 

44109 00755 CO 21 I 484 280 487 276 494 

44110 00755 LC 211 444 239 445 234 450 

44111 00566 CO 267 527 267 544 277 549 

44112 00566 LC 267 502 242 500 233 506 

44113 00566 CO 239 478 236 521 282 527 

44114 00566 LC 239 482 238 476 237 482 

44115 00566 CO 21 I 492 281 498 287 505 

44116 00566 LC 21 I 455 249 452 241 457 

44117 00378 CO 267 535 266 558 291 562 

44118 00378 LC 267 508 248 51 I 244 517 

44119 00378 LC 239 492 249 487 248 493 

MLWT = Mlmrnum lamp wall temperature 
Measured elevatIon = Measured ML WT - measured room air temperature (see note below) 
LC = lamp compartment return 
CO = ceding gnlle return 

PredIcted Percent- Percent-
elevatIon age age 
by devtatIon deVlatton 
LITEAC2 L\TEACI LlTEAC2 
(0C) vs vs 

measured measured 

264 -039% 193% 

228 -045% 179% 

269 -113% 113% 

274 -147% 074% 

234 178% 400"10 

272 114% 342% 

232 -258% -043% 

236 -043% 216% 

283 -143% 107% 

239 -209% 000% 

282 375% 562% 

239 -372% -124% 

288 1949% 2203% 

243 -042% 210% 

294 214% 463% 

246 -321% -1.20% 

295 940% 1090% 

250 -161% 081% 

254 -040% 201% 

Note. The measured elevanon ofmimmum lamp wall temperature above room temperature)s the 
chfference between the measured rmnimum lamp wall temperature and the measured room atr 
temperature The measured room all temperature could be chfferent from the controlled 'set-pomt' 
room aIr temperature winch was used as a test parameter (Treado and Bean 1992). 
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Table 8.3 

Minimum lamp wall temperature and elevation of minimum lamp wall temperature 
above room temperature. Comparison between NIST measurements and predicted 
results from LITEACl and LITEAC2 for the configurations with the lurninaire type 
4 x 2 lamp prismatic diffuser (acrylic lens). 

Configu· AIrflow AIrflOW 'Set-potnt" Measured Measured Predicted Predicted PredIcted 
rabon No rate return Room aIr MLWT elevatton MLWT elevatton MLWT 

(m'/s) type tempera· ("C) (0C) by by by 
ture LITEAC1 UTEAC1 LlTEAC2 
("C) ("C) ("C) ("C) 

42101 00944 CO 239 474 232 461 222 466 

42102 00944 Le 239 403 165 404 165 406 

42103 00944 Le 21 1 357 153 378 167 379 

42104 00755 CO 239 469 225 465 226 471 

42105 00755 Le 239 407 170 407 168 413 

42106 00755 Le 21 1 372 167 381 170 386 

42107 00566 CO 239 482 237 472 233 477 

42108 00566 Le 239 424 191 419 180 422 

42109 00566 Le 21 1 388 183 393 182 396 

ML WT = Mtmmum lamp wall temperature 
Measured elevation = Measured MLWT - measured room aIr temperature (see note below) 
Le = lamp compartment return 
CO = ceilIng gnlle return 

PredIcted Percent- Percent-
elevation age age 
by deVlatlon deVlanon 
LITEAC2 UTEAC1 UTEAC2 
("C) vs vs 

measured measured 

227 431% -216% 

167 000% 121% 

168 915% 980"10 

232 044% 311% 

174 -118% 235% 

175 1 80"10 479% 

238 ·169% 042% 

183 -576% -419% 

185 .() 55% 109% 

Note' The measured elevatton ofnummurn lamp wall temperature above room temperature is the 
dtfference between the measured mimmurn lamp wall temperature and the measured room aIT 
temperature. The measured room aIT temperature could be dtfferent from the controlled 'set·pomt' 
room aIT temperature winch was used as a test parameter (Treado and Bean 1992). 
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Cut-away schematic view of the NIST test facility (From Treado and Bean 1988). 

153 



.Ao 

Guard Air Space 
2° Cone. 7 

""'" 7 ........ / ........ /'/ V Wall 
~ 

/ SUlpendad ~ 

~i 
Aeoualle nle 

~ 
Control 
Room TeltRoom 

t.. .. 
.... :c .. 1! . ' Cl! ~ .. 

7 ........ /~/'" 
11 

Floor SUlpendad Call. AC. ,"a' 

Figure 8.2 

Elevation view of the test room (From Treado and Bean 1988). 
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(From Treado and Bean 1988). 
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Cooling load and lighting power ofNIST test cell for lights-on test with the configuration 
of 4 x 2 lamp prismatic diffuser, ceiling grille return, airflow rate 0.0944 m3s'! and room 
air temperature 23.9°C. Comparison between LITEAC1, LITEAC2 and measured results. 
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Lamp node temperature ofNIST test cell for lights-on test with the configuration of 4 x 2 
lamp prismatic diffuser, ceiling grille return, arrflow rate 0.0944 m3s·1 and room arr 
temperature 23.9°C. Comparison between LITEACI, LITEAC2 and measured results. 
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Plenum wall node temperature of NIST test cell for lights-on test with the configuration 
of 4 x 2 lamp prismatic diffuser, ceiling grille return, airflow rate 0.0944 m3s·1 and room 
air temperature 23.9°C. Comparison between LITEACI, LITEAC2 and measured results. 

158 



25.0 

245 

U 240 
0 -e 
::I -I! .. 
Do 
E 235 .s 
iii 

'" E 
0 
0 

23.0 0: 

225 

220 

Figure 8.7 

f. 

I~ 

o 3 6 9 

-

--PredIcted by LlTEAC1 

•..•.. Predicted by LlTEAC2 

--NIST experimental data 

12 15 18 21 24 27 30 33 36 
Time (hr) 

Room wall temperatures ofNIST test cell for lights-on test with the configuration of 4 x 2 
lamp prismatic diffuser, ceIlmg grille return, airflow rate 0.0944 m's-I and room air 
temperature 23.9°C. Comparison between LITEAC1, LITEAC2 and measured results. 
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Room floor temperatures of NIST test cell for lights-on test with the configuration of 
4 x 2 lamp prismatic diffuser, ceiling grille return, airflow rate 0 0944 m3s·1 and room arr 
temperature 23.9°C. Comparison between LITEAC1, LITEAC2 and measured results. 
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Cooling load fraction of NIST test cell for 'lights on/off cycles' test with the 
configuration of 4 x 2 lamp prismatic diffuser, ceiling grille return, airflow rate 0.0944 
m3s·1 and room air temperature 23.9°C. Comparison between LITEAC1, LITEAC2 and 
measured results. 
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Effect on predicted cooling load with the convective heat transfer coefficients in the 
model data lowered by 30%. 
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Effect on predicted lamp node temperature with the convective heat transfer 
coefficients in the model data lowered by 30%. 
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Chapter Nine 

Fnrther Experimental Validation of LIT EA Cl and 

LITEAC2 

9.1 The laboratory test cell 

In the previous chapter, validation of the two models LITEACl and LITEAC2 

using the published experimental data measured in the NIST full-scale test cell 

(Treado and Bean 1988, 1992) has been discussed. The dimensious of the NIST full

scale test cell were fixed, and although there is generally good agreement between 

simulated and experimental results, it would be useful to investigate whether the 

models give a simIlarly good agreement with experimental data for a cell of different 

dimeusions. 

The reasons for undertaking a further validation exercise using a laboratory 

test cell are: 

(i) to test the validity of LITEACl and LITEAC2 in predicting iIIuminances for 

which data is not available in the NIST tests; 

(li) to measure the change of illuminance with respect to lamp wall temperature 

(by providing a wide range of supply air temperature into the test cell) so that 

illuminance predictions by LITEAC2 under different lamp wall temperatures 

can be validated. 

(Hi) to test the vahdJ.ty of LITEACl and LITEAC2 using an enclosure of non

typical dimensions. 

A laboratory test cell containing a fluorescent luminaire, a 'plenum' or ceiling 

void, and a 'room space' was constructed for this further validation exercise. TIns cell 
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was not intended to be a scaled down model of an office, but rather a room with small 

dimensIOns. This can be used to further validate the models LITEACl and LITEAC2 

because the models are designed such that it can be used for different dimensions; 

suitable values for convectIve heat transfer coefficients and radiation form factors are 

required of course, as appropriate. 

The cell is 1.5 m long, 1 m wide and 1 m high. It is constructed of plywood of 

thickness 9.5 mm, and insulated on the outer faces with expanded polystyrene of 

thickness 15 mm. The height of the cell is divided by a 'suspended ceiling' into a 

'ceiling void' 0.2 m in height and a 'room space' 0.8 m in height. A 

1200 mm x 300 mm fluorescent luminaire was installed at the centre of the 

'suspended ceiling', with its axis along the length of the cell. The luminaire holds a 

1200 mm long fluorescent lamp. Figure 9.1 illustrates the arrangement. 

Thermocouples were attached to the lamp and luminaire surfaces and to the walls, 

floor and ceiling surfaces as shown in Figure 9.1, for the measurement of node 

temperatures. One thermocouple was used for each node. An air-conditiouing 

laboratory unit (manufactured by P.A. Hilton Ltd.) was used to supply cool air to the 

cell, for cooling load removal. 

From the cell physical dimensions and its construction materials, data for the 

heat capacity, emiSSivity and reflectivity of the nodes were obtained from the 

ASHRAE Handbook (ASHRAE 1993). Radiation form factors were calculated from 

the physical dimensions using the view factor programs 'VF' and 'FACTS', which are 

included irI 'LIGHTS' (SowellI989). Approximations were used in the calculation of 

form factors for surfaces inside the luminaire. Convective heat transfer coefficients 

were estimated for the geometries concerned using correlations given in Holman 

(1992). Conductance values were obtained from the ASHRAE Handbook (ASHRAE 

1993). These data are shown in Appendix H. 
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9.2 Transient test results 

To include both the 'lights on' and 'lights off tests, experimental 

measurements were made for the case with the lamp switched on for 23 hours and 

then switched off. Measurements of temperatures at node surfaces were taken every 

minute for the first ten minutes after the lamp was switched on, then at every 10 

minutes throughout the rest of the 'lamp on' period; this was repeated at every minute 

for the first ten minutes after the lamp was switched off and then at every 10 minutes 

for up to 10 hours after the lamp was switched off. 

The preceding situation was simulated using both the LITEACl and LITEAC2 

models, and the comparisons of the Simulated results with the measured results are 

shown in figures 9.2 to 9.6. Figure 9.2 shows the temperatures of the two lamp nodes 

(upper and lower) plotted against tinJe as measured and as predicted by LITEAC1 and 

LITEAC2. It can be seen from this figure that the lamp node temperatures predicted 

by LITEACl and LITEAC2 are very much the same as each other. The temperatures 

for the lamp upper node predicted by both LITEAC1 and LITEAC2 are very close to 

the experimentally measured values. However, the predicted lamp lower node 

temperatures of both models are about 2.8°C higher than the measured values. This 

can be explained by the fact that the predicted lamp lower node temperature represents 

the average temperature over the entire lower half of the lamp, while the measured 

lamp lower node temperature is the temperature measured at one point only. The 

discrepancy may also be partly due to uncertainty in the convection coefficient 

assumed for the lamp lower node. 

Figure 9.3 shows the predicted and measured temperatures of two other 

lurninaire nodes: lurninaire air and lurninaire housing. LITEAC1 and LITEAC2 gave 

almost identical results to one another for lurninaire air and lurninaire housing 

temperatures. The predicted temperatures are lower than the corresponding 
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experimental values by 2 to 2.SoC. The discrepancy is believed to be due partly to 

experimental error in the measurement and partly to inaccuracy in the input data for 

heat transfer coefficients used in the simulations. 

Figure 9.4 shows the predicted and measured temperatures for three plenum 

nodes: plenum air, lurninaire housing top and ceiling. The figure shows again that the 

temperatures predicted by the two models LITEACl and LITEAC2 are very close to 

each other. The figure shows also that both the LITEACl and LITEAC2 models 

predicted values for plenum air temperatures which agree very closely with the 

measured values. The predicted lurninaire housing top temperatures are about 1°C 

lower than the measured values, wlnlst the predicted ceiling temperatures are about 

3.5°C lower than the measured values. The discrepancy between predicted and 

measured temperatures can be attnbuted to experimental error or to inaccuracy in the 

input data for heat transfer coefficients used in the simulations. The larger discrepancy 

of the calculated ceiling temperatures from the measured values may be due to the fact 

that the ceiling was not isothermal with the centre portion of the ceiling (which was 

just above the luminaire and subjected to higher radiation) being at a higher 

temperature. The ceiling temperature was measured by a thermocouple at its centre so 

that Its reading could be conSiderably higher than the average temperature. 

Figure 9.5 shows the temperature of three room nodes: room air, walls and 

floor. This figure shows again that there is no significant difference between the 

predicted temperatures by the two models. The figure shows also that there is good 

agreement between the simulated results of both models and the measured results, 

with differences ofless than O.3°C. The simulated results correctly predicted that the 

room air temperature was higher than the floor temperature which was in turn higher 

than the wall temperature. 

Figure 9.6 shows a comparison of the floor illuminance predicted by 

LITEAC2 with that predicted by LITEAC1, and with the measured floor illuminance. 
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It can be seen from this figure that LITEAC2 gives a excellent agreement with the 

experimental data, while LITEACl gives illummance values which are about 10% 

lower than the experimental values. This provides clear evidence that the positive 

column model in LITEAC2 can simulate the light output accurately even without 

input data of the total luminous flux output of the lamps. The discrepancy between the 

illuminance values predicted by LITEACl and the measured illuminance IS 

considered to be due mainly to the inaccuracy in the input data for light output of the 

lamp and its variation with temperature. 

9.3 Prediction of the change of illuminance with lamp wall temperature 

In order to test the performance of LITEAC2 in predicting illuminance on 

,room surfaces under dIfferent temperature conditions, experiments have been carried 

out using the laboratory constructed test cell with different supply air temperatures. In 

these experiments, the lamp wall temperatures were measured using three 

thermocouples attached to the lamp wall; the lowest of these three readings was taken 

to be the minimum lamp wall temperature. The minimum lamp wall temperatures that 

were obtained ranged from l7.4°C to 62.7°C. The corresponding average 

illuminances on the floor were measured using six lux meters. Simulations were then 

carried out using LITEAC2 for three cases with the test cell air temperature kept 

constant at lOoC, 25°C and 40°C. PredIcted illuminance values at different minimum 

lamp wall temperatures ranging from 15°C to 65°C were extracted from the output 

data files. The predicted and the measured illuminances are plotted together in 

Figure 9.7. This figure shows that there is good agreement between the measured and 

the predicted illummances. The illuminance values shown in Figure 9.7 for lamp wall 

temperatures of around 45°C were higher than those shown in FIgure 9.6 because the 

prismatic diffuser (which was used in the tests shown m Figure 9.6) was removed for 

the experiments in which the data in Figure 9.7 were extracted from. The results from 
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Figures 9.6 and 9.7 therefore show that LITEAC2 predicts illuminance sufficiently 

well for different situations. 

9.4 Summary 

From the results presented, it can be concluded that both lighting and air

conditioning interaction models, LITEACl and LITEAC2, give predictions which are 

generally in good agreement with experimental data. Those discrepancies found have 

been attributed to experimental errors or inaccurate input data especially in terms of 

the convection coefficients. The assumption of isothermal surfaces in the 

measurement as well as simulation might also be a cause of the discrepancies between 

calculated and experimental data. 

For LITEACl to give good predictions, good empirical curves to represent the 

change of lamp power and light output with lamp wall temperature must be obtained 

as input data. Lamp manufacturers do not normally include these data in their lamp 

data sheets or manuals. The incorporation of a fluorescent lamp positive column 

model into the lighting and air-conditioning interaction model LITEAC2 avoids the 

use of such empirical curves and gives improved predictions of the luminous flux 

output from lamps and hence room surface illuminances; predictions of temperature 

remain the same. The positive column model also permits a better understanding of 

the conversion of electrical energy into visible and invisible radiation, and then into 

heat. 

The use of a laboratory-constructed test cell in this validation exercise shows 

that the models LITEACl and LITEAC2 can be applied to the simulation of 

lightingIHV AC interactious in a small enclosure. From the validation exercises 

described in chapter 8 and in the present chapter, there is evidence that the two models 

LITEACl and LITEAC2 are valid not only for a particular test cell or configuration, 

but also for dtfferent-sized enclosures in general. The validity of any model depends 
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on the accuracy of its input data; for many cases, accurate input data such as that for 

heat transfer coefficients is difficult to obtain. 

It is impossible and impractical to test the models for all types of dimensions 

of rooms found in practical cases. Even if tune and resources penmt extensive 

experimental measurements to be carried out for validation of theoretical models, 

discrepancies between experimental and theoretical results will always exist and it is 

never certain whether these discrepancies are due to experimental errors or model 

deficiencies. 

In view of the good results obtained thus far, together with difficulties and 

expense encountered in experimentation, further validation of the models was 

considered uunecessary. The validation exercises carried out so far have already built 

confidence in the validity of the numerical models to be used as a tool for the 

simulation of lighting/HV AC interaction in enclosures. 

In order to compare the performance of LITEAC2 with an existing model 

LIGHTS (Sowell 1989, 1990), which was validated using data from the NIST full

scale test facility, simulations were carried out using LITEAC2 and LIGHTS for the 

NIST configuration used in the validation of LIGHTS, and also for the laboratory test 

cell. The results of these simulatIons will be discussed in the next chapter. 
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Chapter Ten 

Comparison with LIGHTS 

- a Published LightingIHVAC Numerical Model 

10.1 Introduction 

In Chapters 8 and 9, details of the validation of the two models LITEACl and 

LITEAC2 have been presented for the cases of a full-scale test room and a laboratory 

constructed test cell. To investigate the performance of the models developed in this 

research, LITEACl and LITEAC2 are compared with an existing numerical model 

called LIGHTS (Sowell 1989, 1990) which has been clanned to qualify as a 

"numerical lighting/HV AC test cell". The comparison was carried out using a 

particular configuration of the NIST tests and also the experimental data obtained 

from the laboratory constructed test cell. 

10.2 Summary of LIGHTS 

It was already mentioned in Chapter 2 that Sowell (1989, 1990) developed the 

numericallighting/HVAC test cell which is called 'LIGHTS'. The LIGHTS program 

was designed to allow modelling of the thermal and luminous performance oflighting 

systems in buildings. According to Sowell (1989), LIGHTS is sufficiently general to 

allow representation of almost any lightmg configuration, room construction or size, 

and RV AC airflow path. Once a room has been defined, its dynamic operation can be 

sunulated by LIGHTS over a specified period. The results of the simulation include 

temperatures of surfaces and aIr masses, heat flows at various places in the room, and 

short wave (luminous) and long wave (thermal) radiation flux flow rates at all 

surfaces. 
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Sowell (1989) stated that LIGHTS was intended primarily for researchers 

interested in modelling the thermal and luminous processes in a room at a relatively 

high level of detail. Similar to LITEACI and LITEAC2, LIGHTS requires a 

considerable amount of input data. For example, the required input data for a detailed 

representation includes short and long wave radiative properties of all surfaces, 

convection coefficients at all air/surface boundaries, conduction and mass properties 

of all solid elements, and lamp performance as a function of wavelength and 

temperature. Additionally, the mitial temperatures must be given or assumed for all 

surfaces and air masses. However, for most configurations detailed input data are not 

always available and some approximations and/or estimations have to be made in the 

input data. 

According to Sowell (1989), the mathematics of LIGHTS is rigorous. 

LIGHTS is a completely general, lumped parameter thermal and luminous 

representation of the building zone, including the lighting and RV AC systems. 

LIGHTS is based on an earlier steady state model developed by Sowell and 

O'Brien (1973). In this steady state model, the basic equation employed is, in vector

matnxform: 

(10.1) 

In the above equation, the first term (! represents the vector of source powers 

at each node, and the term U'(1)·T represents conductive/convective heat trausfer 

away from each of these nodes. T is the vector of nodal temperatures which must 

satisfY this equation. The other two terms represent net radiative transport away from 

each node in the short- and long-wave ranges, respectively. Each of these can be 

further sub-divided into a number of bands for more detailed analysis if the radiative 

properties are known for each individual band. In these terms Am is a diagonal matrix 

of surface areas, V' and v' are special transfer matrices describing inter-reflections and 
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transmissions within the enclosure(s) for the short- and long-wave bands, respectively, 

and .r and J'l are matrices of source radiation terms at each node in the short- and 

long-wave bands, respectively. The right hand side is a zero vector, indicating a power 

balance at steady state. This equation is non-linear due to temperature dependence of 

the terms Q', if and J'l. 

LIGHTS, as a dynamic model, is an extension of the steady state model of 

Sowell and O'Brien (1973). The transient state is taken into account by adding finite 

heat capacitance for some nodes. Then, equation (10.1) becomes: 

.. 
M ·t= QO _Uc ·T-Am ·LV] .J; (10.2) 

J 

where M is a diagonal matrix of heat capacitances and t is the time derivative of the 

nodal temperature vector. To facilitate solution, Sowell (1989) partitioned the vector 

of nodes into nodes With finite thermal mass and those declared to be massless. Then 

the above equation becomes: 

where the subscripts s and d denote steady-state quantities and dynamic quantities, 

respectively. 

Matrix algebra then leads to an equation exactly hke the steady state equation 

(10.1) but with the temperature vector representing only the nodes which are assumed 

to be mass1ess (called algebric nodes in Sowell 1990), and a specially defined Q' term, 

Q; which represents the effect of net heat transfer from the dynamic nodes. The 
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1- __ 

I remainder of the partitioned set is exactly like equation (10.2), but involves only the 

dynamic nodes in the time derivative temperature vector. That is, 

(10.4) 

The result of the partitioning is a set of algebraic equations representmg nodes 

which are assumed to be massless and a set of differentIal equations governing 

massive nodes. These two sets of equations are coupled through the temperature 

vector. 

LIGHTS uses the following solution scheme as described by Sowell (1989). 

With initial conditions defined, the algebraic set is solved using Newton-Raphson 

iteration. The differential set is then solved after the next time step, using a variable 

time step, predictor-corrector method. In each corrector step, the algebraic set is 

solved again, since the temperature of the algebraic nodes must be updated as the 

dynamic node temperatures adjust to their new values. Also, because lamp and ballast 

power and luminous output depend on lamp wall temperature, the luminous flux 

calculations must be repeated at each step toward convergence. The process is then 

repeated throughout the period of interest. Truncation error is controlled within a user

specified range by automatic adjustInent of the integration time step. 

LIGHTS reads zone geometric, thermal, and radiative properties from an input 

file. Also, the input file includes definition of which nodes are to be held at constant 

temperature, and which are to be held at specified net heat transfer rates. LIGHTS 

uses a convenient scheme to specify nodal power versus time so that various on/off 

tests can be simulated. The input file also includes a user defined thermal mass 

threshold so that any node with thermal mass less than the threshold is treated as 

massless. In this way, LIGHTS allows steady state solutions to be obtained without a 
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long dynamic simulation, and without changes to the model itself; one merely sets a 

high mass threshold so that all nodes are treated as massless. 

LIGHTS gives output to a file which can consist of input echo, user-defined 

int=ediate reports, and final state reports of temperature, net heat flux, and radiative 

and convective transfer rates at each node and through each path. User-defined reports 

allow output of requested quantities (temperatures, heat fluxes, etc.) at selected nodes 

and at selected times. 

By modern standards, LIGHTS is not considered to be a ''user friendly" 

program. The user must know exactly how to create the input file. He/she must also 

know how to avoid program instability. For these reasons, it is unlikely that LIGHTS 

will satisfy the requirements of lighting and/or HV AC designers for performing 

design calculations using simple-to-use practical software. Sowell (1989) classified 

LIGHTS as a research tool for the study of the interaction between lighting and 

HV AC systems. 

10.3 Comparison of LIGHTS and LITEAC2 simulations of the NIST 

test cell 

Since the simulation results of node temperatures using LITEACl and 

LITEAC2 are found to be very similar to those presented in Chapter 8, only the results 

of LITEAC2 will be compared here with the results of LIGHTS. The same 

configuration (configuration number 42101) as that described in Section 8.5 is used 

for this comparison exercise. Details of this configuration have been described in 

Section 8.5 and therefore will not be repeated. This particular configuration is selected 

for the comparison exercise because more details are available for this configuration 

than for the others and Sowell (1990) lumselfused this configuration for validation of 

the LIGHTS model. 
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Figure 10.1 shows the LITEAC2 and LIGHTS simulated lighting powers and 

cooling loads, together with the NIST test results. TIns figure shows that LITEAC2 

and LIGHTS give very close results for the lighting power and both simulated lIghting 

power curves fit the experimental data excellently. It is not surprising that there is 

good agreement between the LIGHTS simulated lighting power and the measured 

lighting power as the lamp power is an input to LIGHTS. On the other hand, the lamp 

power in LITEAC2 is calculated by the fluorescent lamp positive column model and 

the good agreement between predicted and measured values here shows that the 

positive column model is capable of simulating the lamp power correctly. 

Figure 10.1 shows also that there is good agreement between the cooling load 

curves predicted by LITEAC2 and by LIGHTS, and that these predictions fit closely 

the experimental data. The small difference between the two predicted curves is 

insignificant in view of the possible experimental error as discussed in Section 8.6. 

Figure 10.2 shows the lamp node temperature plotted against time from 

simulations using LITEAC2 and LIGHTS. Also shown in this figure are the measured 

lamp temperatures in the NIST test cell as reported by Sowell (1990). The two 

simulation-based curves agree closely with each other, and both fit the experimental 

data well. The lamp node temperatures predicted by LITEAC2 are closer to the 

measured results than are the LIGHTS-predicted values, by about 0.2°C. 

Figure 10.3 shows the plenum ceiling temperatures predicted both by 

LITEAC2 and by LIGHTS, together with the measured results. LIGHTS-predicted 

plenum temperatures are about 0.2°C closer to the measured data than are the 

LITEAC2-predicted temperatures. However, this small difference is insignificant in 

view of the possible experimental error as discussed in Section 8.6. 

Figure 10.4 shows the temperatures of the room floor surface. Both LITEAC2 

and LIGHTS give simulated temperatures slightly higher than the measured results. 
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LITEAC2-predicted floor temperatures are about O.5°C higher than those predicted by 

LIGHTS. Again, the difference is within experimental error and LITEAC2 and 

LIGHTS are as good as each other. 

As shown in Figures 10.1-10.4, there is no significant difference between the 

simulation results using LITEAC2 and that using the LIGHTS model. However, 

significant differences did occur between the computation times required: using a 

fixed time step of 1 second and a simulated period of 96 hours, and running on a 

personal computer with an Intel Pentium-IOOMHz processor, LITEAC2 required 12 

minutes of computation time whilst LIGHTS required 3 hours and 37 minutes of 

computation time. The LIGHTS model can run faster if the time step is allowed to 

vary between a minimum and a maximum. Even with a minimum time step of 0.36 

seconds and a maximum time step of 18 seconds, 15 minutes of extra computation 

time (compared with LITEAC2) was required for LIGHTS to complete a simulation 

run with the same configuration. 

10.4 The laboratory test cell 

The laboratory-constructed test cell described in Chapter 9 was also simulated 

using LIGHTS. Simulation results using LITEAC2 are already descnbed in Chapter 9, 

and are compared here with those from LIGHTS. 

Figure 10.5 shows the temperature of the two lamp nodes as predicted by 

LITEAC2 and by LIGHTS, together with the measured values. The figure shows that 

LITEAC2 gives a better fit to the measured lamp node temperatures than does 

LIGHTS. The LIGHTS-simulated temperatures are much higher than the measured 

temperatures. The difference between LITEAC2-simulated temperatures and 

LIGHTS-sunulated temperatures is larger in this case than in the NIST case (Figure 

10.2). 
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Figure 10.6 shows the comparison between LITEAC2 and LIGHTS in respect 

to two other luminaire node temperatures: luminaire air and luminaire housing. It can 

be seen from the figure that both LITEAC2 and LIGHTS give very similar results 

with differences of less than O.5°C. Both results fit the experimental data reasonably 

well, with reasons for small discrepancies explained in Section 9.2. 

Figure 10.7 shows the comparison between LITEAC2 and LIGHTS in respect 

to three nodes in the plenum compartment: plenum air, luminaire housing top and 

plenum ceiling. For these nodes, LITEAC2 and LIGHTS simulations are very close to 

each other, with differences of less than 0.8°C. For plenum air and luminaire housing 

top temperatures, simulated results from both LITEAC2 and LIGHTS fit the 

expenmental data reasonably well. The reasons for the relatively larger discrepancy 

between model-predicted and experimentally-measured results of plenum ceiling 

temperatures have been explamed in Section 9.2. 

Figure 10.8 shows the comparison between LITEAC2 and LIGHTS in respect 

to three room nodes: room air, room walls and floor. The scale of this figure is 

magnified for clarity because temperatures between hour 5 and hour 23 fall within the 

one degree range 20.6° to 21.6°C. It can be seen from the figure that there is good 

agreement between the simulated temperatures from both LITEAC2 and LIGHTS and 

the measured values. Both models correctly predicted that the room air had the highest 

temperature amongst the three nodes followed by the floor and then the room wall. 

However, while LITEAC2 predicted temperatures that are closer to the experimental 

data, LIGHTS predicted temperatures that are about O.5°C higher than the LITEAC2-

predicted temperatures. 

LIGHTS does not give output of illuminance on surfaces directly, whereas 

LITEAC2 is able to do this. A comparison between the LITEAC2-predicted 

illuminance and the measured illuminance was already discussed in Section 9.2 

(Figure 9.6). 
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10.5 Summary 

In this chapter, the perfonnance of LITEAC2 is compared with the existing 

model LIGHTS which has been claimed to be a "numericallightingfHV AC test cell". 

The comparison is perfonned with respect to a selected configuration of the NIST 

tests, and also the test configuration carried out in the specially made laboratory test 

cell. 

Figures 10.1-10.8 show that the simulation results ofLITEAC2 and LIGHTS 

are close to each other. These results show that both models are similar in respect to 

simulation of lighting power, cooling load and temperature. However, for all cases 

simulated, LITEAC2 runs faster than LIGHTS on a personal computer. More 

importantly, LITEAC2 gives good predictions for illuminance on room surfaces, a 

capability which LIGHTS does not process. 

Based on the comparisons made between the two models LITEAC2 and 

LIGHTS, it can be said that both models give reasonably good predictions of lighting 

power, cooling load and temperatures. However, LITEAC2 is superior to LIGHTS m 

at least two respects; firstly, it runs faster on a personal computer and, secondly, it 

calculates with reasonable accuracy the illuminance on room surfaces. 
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and LIGHTS predictions, and measured results. 
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Chapter Eleven 

Conclusions 

11.1 Summary of the research 

The interaction between lighting and HV AC systems has been studied using 

numerical modelling techniques. This study has generated essentially a numerical 

model LITEAC2, which represents substantial original work and includes innovative 

methodologies in several respects, for the simulation of the interaction between 

lighting and HV AC systems. 

LITEAC2 consists of two major components: firstly, a room heat and radiation 

transfer model which simulates the heat and radiation transfer in a room enclosure; 

secondly, a fluorescent lamp positive column discharge model which accounts for the 

conversion of supplied electrical energy into lIght, long-wave radiation and heat 

energies together with the dependence of the output energies on lamp parameters such 

as minimum lamp wall temperature. 

The room heat transfer model simulates the heat and radiation (Iong- and 

short-wave) transfer inside a room enclosure m which lamps and ballasts are the 

sources of heat and radiation. Surface temperatures can be predicted at each time step 

by this room heat transfer model. Heat fluxes can also be calculated. Cooling load can 

be predicted at each time step in the form of the heat gain to the room air node, the 

latter being kept at a constant temperature by an ideally-controlled air-conditioning 

system. This room heat transfer model has been derived from basic heat transfer 

principles and accounts for radiation, convection and conduction. The computer 

program of the heat transfer model derived here allows for the use of smaller time 

steps than those of existing models and hence allows for the inclusion of small 
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thermal capacities in the transient computations without mathematical instability. This 

represents an improvement on previous models such as Sowell (1989, 1990) in which 

some nodes have to be assumed massless (i.e. of zero thermal capacity). 

The fluorescent lamp positive column model, named LAMPPC, simulates the 

energy conversion processes inside the fluorescent lamp discharge and their 

dependence on fluorescent lamp parameters. The electrical input energy to the lamps 

and ballasts (which are the only power sources considered in LITEAC2) is converted 

to light (visible radiation), long-wave radiation and heat energies with output energy 

amounts and proportions depending on the type of lamp and ballast. Since both light 

and long-wave radiation outputs will not appear immediately as a cooling load to the 

room air, the relative proportions of each output will have an effect on the rate of 

build up of cooling load due to lighting. Previous models either assumed arbitranly a 

ratio of radiation and convection output from the lamps (Kimura and Stephenson 

1968) or allowed for the inputting of a value of the light output from the lamps, 

calculating the radiation and convection components accordingly (Sowell and O'Brien 

1973; Sowell 1990). In LITEAC2, the energy conversion processes inside the 

discharge of the fluorescent lamp are modelled and the light (visible radiation) output, 

long-wave radiation output and heat loss by convection are then calculated without the 

need to input data about the total light output from the lamp nor about the proportions 

of radiation and convection. LAMPPC is applied, as a subroutine in LITEAC2, to 

simulate the energy conversion processes inside the fluorescent lamp. LAMPPC 

calculates the output of the fluorescent lamp discharge, consisting of two ultra-violet 

lines and several weak visible and invisible lines, which depend on the electric current 

supplied to the lamp and the mercury vapour pressure inside the discharge tube. The 

electric current supplied to the lamp, which in turn depends on the lamp-ballast 

combination, is an input parameter to LAMPPC. The mercury vapour pressure inside 

the fluorescent lamp tube depends on the minimum lamp wall temperature which is 

calculated at each time step in the room heat transfer model. Inputting data concerning 
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the spectral power distrIbution of the phosphors used in the fluorescent lamp allows 

the calculation of light output from the fluorescent lamp. The spectral power 

distribution of fluorescent lamps can be obtained from manufacturers. There is also a 

set of 12 typical fluorescent lamp spectral power distributions published in CIE 

(1986). Therefore, LITEAC2 not only calculates cooling load and temperatures but 

also permits the simulation of the variation of light output WIth the ambient 

temperature around the lamp which is a well-known effect in fluorescent lighting. The 

development and inclusion of a fluorescent lamp discharge model within the 

numerical simulation of the interaction of lighting and RV AC systems, together with 

the methodologies developed for the calculation of heat and radiation transfer from 

luminaires and for the calculation of light output and lamp power represent essentially 

new work; these also represent significant improvements to previous numencal 

studies of lightingIHV AC interaction published in the relevant lIterature. 

The development of LITEAC2 can be summarised into the following five 

stages: 

(1) In the first stage, a typical office room was modelled by dividing it into three 

sections: the luminaire, the plenum and the occupied room space (called the 

'room' for simplicity) (Chapter 4). Each of these three sections was divided into 

nodes: an air node and a number of surface nodes. Each node was assumed to be 

isothermal. A heat balance equation was used to relate the temperature change of 

each node in one tIme step to the heat gain or heat loss of the node in that time 

step. Conduction, convection and radiation heat transfer between nodes were 

considered, while energy input from an outSide source was considered only for 

lamp and ballast nodes. For radiation transfer, long-wave (or thermal) radiation 

and short-wave (or visible) radiation were considered separately. For the 

calculation of cooling load, the room air node was assumed to be kept at a 

constant temperature by an ideally-controlled air-conditioning system. In this 

stage the variation of lamp performance (light output and lamp power) was 
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considered using empirical curves. A FORTRAN program named LlTEACl was 

written to encode this model, and this program was tested using a simple 

configuration for which an analytical solution could be obtained. LITEACl can be 

used for any lamp type, not necessarily fluorescent lamps. 

(2) In the second stage of the study, a fluorescent lamp positive column model was 

developed and used to simulate the conversion of electrical energy input to the 

fluorescent lamp into light, thermal radiation and heat (Chapters 5). Prior to this 

study, there have been no previous trials of applying a fluorescent lamp positive 

column model to the study of the interaction between lighting and RV AC systems. 

A model with sufficient details was derived in this study to enable the simulation 

of the conversion of the input electrical energy into light, thermal radiation and 

heat and to account for the macroscopic behaviour of the fluorescent lamp with 

respect to a change of thermal environment. The fluorescent lamp positive column 

model derived in this study uses the same basic hypotheses as those used by 

previous workers (Waymouth and Bitter 1956; Lama et al. 1982) but considers 

additional mercury energy levels and transitions. Furthermore, all equations used 

in the positive column model of this study were derived from first princIples using 

the basic hypotheses; also, these equations were written in a more comprehensive 

form in this thesis then those published by previous workers. The method of 

solution of the model equations was also specially derived for this study (Chapter 

6). The fluorescent lamp positive column model was encoded and named 

LAMPPC. LAMPPC can, if wished, be run as a stand-alone program for the 

simulatIon of the fluorescent lamp discharge. As a stand-alone program, LAMPPC 

was tested using experimental measurements reported in the literature (Chapter 7). 

For the study of Iighting/HV AC interaction, LAMPPC was incorporated into the 

room heat transfer model as a subroutine for the prediction of radiative and 

convective components of the heat output from the lamp and for the improved 

simulation of the effect of temperature on lamp performance. This integration 

generated a new program called LITEAC2. 
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(3) The third stage of this study was the validation of LITEACl and LITEAC2 using 

experimental data from the literature (Chapter 8). The published data from the 

NIST full-scale measurements carried out by Treado and Bean (1988, 1992) was 

used ID the validation. Both steady-state and transient results were considered. For 

most cases, the simulated steady state results deviated from the NIST experimental 

data by less than 5%. The few cases with higher devianons were explained by the 

fact that experimental errors might exist in the NIST measurements as shown in 

the inconsistencies existing in some of the data (Sowell 1990). Discrepancy was 

also attributed to the fact that detailed properties of materials used in the NIST test 

cell were not available, so that errors existed in the input data to the model. 

Transient temperature and cooling load profiles calculated by both LITEACl and 

LITEAC2 also agreed well with experimental data. 

(4) In the fourth stage of this study, a simple laboratory test cell was constructed and 

measurements were taken of temperature and illuminance so as to obtain data for a 

further validation of the two programs LITEACl and LITEAC2 (Chapter 9). The 

aim of this stage was to test LITEACl and LITEAC2 for a cell of different 

dimensions from the NIST test cell and to obtain more illuminance data for 

validation to include a wider range of lamp wall temperature than those given in 

the NIST test cell. Results from this stage of the study showed that both LITEACl 

and LITEAC2 gave good predictions of node temperatures and LITEAC2 gave 

better predictions of illuminance then LITEACl. 

(5) The fifth stage of the study was a comparison between the simulations carried out 

with LITEAC2 and the simulations made with LIGHTS (Sowell 1989, 1990) 

(Chapter 10). The comparison was performed WIth respect to a selected 

configuration of the NIST tests and the test configuration carried out in the 

laboratory test cell. It was found that both models were equally good for the 

calculation of lighting power, cooling load and temperature. However, LITEAC2 

is able to calculate with reasonable accuracy the illuminance on room surfaces; 
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LIGHTS is incapable of doing this. Furthennore, LITEAC2 runs faster than 

LIGHTS on a personal computer. 

11.2 Application ofLITEAC2 in design 

Current practice in lighting design does not, in general, consider the effects of 

temperature on light output. However, smce a large proportion of lamps in existing 

buildmgs are operating at temperatures higher than the optimum 01 erderber et aI. 

1988), the effects of temperature on light output is receiving more attention. This is 

shown in IESNA (1993) which states that a non-recoverable light loss factor called 

the luminaire ambient temperature factor can be used in lighting calculations. 

However, IESNA (1993) does not give a method for the detennination of the 

luminaire ambient temperature factor; instead it states arbitrarily that for each degree 

of rise in luminaire ambient temperature above 25°C, the cold-spot temperature of the 

lamp rises by about 0.6°C. This means that data on the variation of light output with 

cold-spot temperature has to be obtained before the luminaire ambient temperature 

factor can be determined. However, manufacturers do not nonnally give data on the 

variation of light output with temperature. Hence, LITEAC2 can be used for a 

simulation during the design stage. The following is a description of how LITEAC2 

can be used in design. 

In the design of the lighting installation for an office room, a target maintained 

illuminance is selected according to design guidelines in lighting codes such as the 

CmSE Code for Interior Lighting (cmSE 1994) and the IES Lighting Handbook 

(IESNA 1993). A luminaire type and a lamp type are then chosen. The 'lumen 

method' (CmSE 1994; IESNA 1993) is then used for the determination of the number 

of luminaires required to give the target illuminance on the working plane. Before 

using the 'lumen method' fonnula, a 'maintenance factor' and a 'utilisation factor' 

have to be determined from the data given by manufacturer (CmSE 1994); or 

equivalently, a 'light loss factor' and a 'coefficient of utilisation' are determined when 
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the guidelines in the North American lES Lighting Handbook (IESNA 1993) is 

followed. The maintenance factor (or light loss factor) is dermed as the ratio of 

maintained illuminance to initial illuminance. The utilisation factor (or coefficient of 

utilisation) is defined as the ratio of luminous flux incident on the reference plane to 

the total lamp flux. A suitable luminaire layout is then determined and the spacing to 

height ratio is checked in order to meet the requirement on uniformity. 

To consider the effect of temperature on light output, LITEAC2 can be used to 

simulate the office room for the planned on/off schedule. Illuminance values predicted 

by LITEAC2 can be checked with the value calculated by the 'lumen method' but 

using a maintenance factor or a light loss factor of 1. A unity light loss factor or 

maintenance factor is used because LITEAC2 does not consider light depreciation due 

to dirt deposition or due to lamp depreciation; in other words, the initial illuminance is 

calculated. If the illuminance predicted by LITEAC2 is lower than the 'imtIal' 

illuminance calculated by the 'lumen method', then the results show that the lamps are 

operating at temperatures dIfferent from the optimum. To obtain the design target 

illuminance, either more luminaires have to be installed, or methods have to be 

applied so as to reduce the luminaire ambient temperature, e.g. by increasing the 

ventilation rate to the plenum. 

After the lighting installation is designed, LITEAC2 can be used to predict the 

cooling load due to lighting at time intervals determined by the program user. 

LITEAC2 can also be used to predict the temperatures at room surfaces when the 

lighting system is the only heat and radiation source in the room. LITEAC2 can be 

used in its present form by designers who require a numerical tool to verify their 

designs without the use of 'mock-up' facilities. With further development, the user

friendliness of LITEAC2 can be improved such that it can be routinely used by 

lighting designers. 
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11.3 Conclusions 

The following conclusIons can be drawn from this study: 

(1) The two-way interaction between lighting and HV AC systems inside an enclosure 

can be studied using a newly developed numerical scheme called LITEAC2. 

LITEAC2 represents an improvement to previous studies published in the 

literature as it allows not only for the calculation of cooling loads and the 

temperature changes of room surfaces, but also for the change with ambient 

temperature of light output levels and power consumed by lamps and ballasts. It 

permits faster calculations than a recent program called LIGHTS of the transient 

state cooling loads, temperatures and illuminances without the necessity of 

assuming that nodes with small thermal capacities are massless (Le. of zero 

thermal capacity). 

(2) A fluorescent lamp positive column model has been derived and incorporated 

within a lightmg/HV AC simulation model. It permits improved simulation of the 

variation of light output and lamp power with minimum lamp wall temperature of 

a fluorescent lamp. This enables the calculation of the conversion of electrical 

energy input to the fluorescent lamp system into different energy output forms: 

light, thermal radiation, and heat dissipated from the lamp surface. The 

incorporation of the fluorescent lamp positive column model into the 

lightingIHV AC interaction simulation results in more accurate predictions (than 

models that use only empirical curves to account for variation oflight output with 

temperature) of the dynamic cooling load and temperature changes, as well as 

illuminances on surfaces, inside the enclosure. This represents a major step 

forward compared with the previous practice relying on empirical curves to 

account for the variation of performance of fluorescent lamps with minimum lamp 

wall temperature. 
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(3) Validation of LITEAC2 using published data from a full-scale lightingIHV AC 

interaction test facility was successful. Validation of LITEAC2 using a simple test 

cell constructed in the laboratory was also successful. 

(4) The new numerical solution scheme developed for LITEAC2 allows faster 

computation of the transient state with the results for cooling load and temperature 

changes being comparable to those calculated using a numerical lightingIHV AC 

test cell in the literature. Designers can use LITEAC2 to verifY their designs 

without the need for 'mock-up' facilities. With further work it can be developed 

into a user-friendly package for everyday use by lighting designers. 

(5) LITEAC2 introduces a tool for the research community to investigate seriously 

into the effect of temperature on the performance of fluorescent lighting systems. 

LITEAC2, which can calculate the dynamic lighting energy use WIth the air

conditioning in operation, can be used by building energy researchers to simulate 

the lighting energy use in bUIldings for whole bUIlding energy simulation with 

other energy simulation programs. 

11.4 Recommended further work 

For more accurate predictions of: (1) the cooling load and temperature changes 

due to lighting, and (ii) the changes in light output, lighting energy consumption and 

working plane illwninance due to thermal effects, the following further work is 

recommended: 

(1) Use LITEAC2 to perform numerical experiments on an extensive collection of 

lamps and lummaire types and for different enclosure configurations. These 

numerical experiments would produce new design data for the calculation of 

cooling load due to lighting and for the calculation of light loss factors due to 

thermal effects. 
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(2) Take a wide range of field measurements for comparison with simulated results 

from LITEAC2. Although LITEAC2 has been sufficiently validated in this study 

so as to give confidence in its perfonnance, a range of field measurements would 

be useful in determining full extent of its applicability. The lamp power, 

illuminance, lamp temperature, luminaire, plenum and room temperatures should 

be field tested. A variety of sites should be chosen to represent different 

combinations of lamps, ballasts and lurninaire types, with different room 

dimensions and configurations. 

(3) Numerical experiments could be perfonned to evaluate the effect of innovative 

designs of luminaires for keeping the lamp wall temperature at optimum values, 

such as the thennal bridge method proposed by Verderber et al. (1988) and Packer 

and Siminovitch (1991). These numerical experiments could reduce the number of 

physical experiments needed for the assessment of the effectiveness of these 

innovative luminaire designs. Heat recovery luminaires should also be 

investigated in this respect. 

(4) Physical experiments should be carried out to investigate the heat transfer inside 

the luminaire. These experiments should be specially directed for the 

measurement of convection coefficients under the conditions which would 

nonnally occur inside lurninaires. The convection coefficient over the lamp 

surface would have a significant effect on the minimum lamp wall temperature 

which affects the lamp perfonnance. Accurate data for convection coefficients 

over the lamp surface inside the lurninaire compartment are not available at 

present and this has a bearmg on the numerical simulation using LITEAC2. 

(5) Experimental measurements should also be perfonned to investigate the variation 

of light output and lamp temperature in relation to parameters such as the lamp 

separation, air flow, luminaire size and construction, and other features of the 

luminaire. 
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(6) LITEAC2 can be used to perfonn simulations of an extensive collection of room 

and luminaire configurations in order to generate tables of light loss factors due to 

thennal effects for a wide range of luminaire type, lamp type, room construction 

and configuration and plenum temperatures. These tables of lIght loss factors 

should provide simple-to-use design data for the designers to consider the thermal 

effects on lighting perfonnance in the design of lIghting systems. 
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Abbreviations 

ASHRAE American Society of Heating, Refrigerating and AIr-conditioning 
Engineers, Inc., U.S.A. 

CO Ceiling grille return 

CIE Commission IntematIonale de L'Eclairage 

CLF Cooling load factor 

CLTD Cooling load temperature differences 

EEDF Electron energy dIstribution function 

RV AC Heating, ventIlating and air-conditioning 

IESNA Illuminating Engineering Society of North America 

LC Lamp comparhnent return 

LLF Light loss factor 

ML WT Minimum lamp wall temperature 

NIST National Institute of Standards and Technology, US. Deparhnent of 
Commerce, U.S.A. 

RLE Relative lighting efficacy 

RLO Relative light output 

RLP Relative lighting power 

SCL Solar cooling load 

T12 Tubular fluorescent lamp WIth diameter equals to 12 x one-eighth of an 
inch (i.e. 1.5 inch or 38 mm) 

T8 Tubular fluorescent lamp with diameter equals to 8 x one-eighth of an 
inch (i.e. 1 inch or 26 mm) 

TA Time average 

TETD Total equivalent temperature difference 

TFL Thermal factor for light output 
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TFM 

TFWI 

TFW2 

UV 

Transfer function method 

First thermal factor for power 

Second thermal factor for power 

Ultraviolet 
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Nomenclatnre 

A Coefficient in the exponential fit of Stephenson and Mitalas (1967) 
( dimensionless) 

Am Diagonal matrix ofsurface area of nodes - in LIGHTS model of Sow ell 
(1989) 

AI Surface area of node i (m2) 

Aq Reduced transition coefficient from state k to state J for descending 
transitions (k>J) 

B Coefficient in the index of exponential fit of Stephenson and Mitalas (1967) 
(h0') 

Cy Heat conductance from node i to node j (yV K') 

C,k Reduced transition coefficient from state J to state k for ascending 
transitions (k>J) 

CLF Cooling load factor (dimensionless) 

c or cp. Specific heat capacity of node I (J kgo'K') 

cpa Specific capacity of air (J kgo' KO') 

C Velocity oflight (=3.0x10· m s") 

D. Ambipolar diffusion coefficient 

D m Diffusion coefficients of the electrons • 

E Electric field strength (V mol) 

Ee Energy of the electron (1) 

Eel Mean energy loss per elastic collision (1) 

~k Energy gap between/,' and k!' states (1) 

Eu Long-wave radiation irradiance on node i (yV mo~ 

Es. Short-wave radiation irradiance on node i (yV mo2) 

e Electronic charge (=1.60217733x10o
'9 C) 
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F A factor to correct for loss of actinic radiation and emitted light at the ends 
oflamp 

Fy Radiation fonn factor (fraction of radiation emitted from node i that falls on 
node)) 

F,a Lighting special allowance factor, a value to account for the power dissipated 
by the ballast (dimensionless) 

Ful Lighting use factor, a value from 0 to 1 to account for the proportion of us age 
oflighting (dimensionless) 

f(E,) Energy dIstribution function of electrons 

~ Statistical weight of the/,' state 

h or hi Convective heat transfer coefficient of node i (yV m-2K") 

h Planck's constant (=6.626x10·24 Js) 

I Electric current through positive colunm (A) 

f(T) Matrix (N x N) of source radiation at each node in the long-wave band - in 
LIGHTS model of Sow ell (1989) 

Matrix (N x N) of source radiation at each node m the short-wave band - in 
LIGHTS model of Sow ell (1989) 

j Current density (A m-2
) 

IS. Ionisation rate coefficients of the/,' state V=0,1, ... ,6) (m' s-') 

ISk Transition rate coefficients (m' s-'); number of transitions from statej to 
state kper state) atom per electron per second (,=0,1, ... ,6) 

k Boltzmann constant (=1.380658x10-23 J K") 

k. Absorption coefficient at the center of the resonance line (m-') 

M Diagonal matrix of heat capacitances of nodes - in LIGHTS model of 
Sowell (1989) 

Mu Long-wave radiant exitance (radiosity) of node i (yV m-2
) 

Mw. Long-wave radIant emissive power of node i (yV m-,) 

Ms. Short-wave radiant exitance (radiosity) of node i (yV m-2
) 

Ms.. Short-wave radiant emissive power of node i (yV m-2
) 
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MLWT 

(4,{E.J 

Qe 

q(t.) 

qSi 

Minimum lamp wall temperature ("C) 

Mass of node I (kg) 

Electron rest mass (=9.1 093897x 10-31 kg) 

Mass of rare gas (kg) 

Electron density (m-3
) 

Number density of mercury atoms (m-3
) 

Number density of the l' state (m-3
) 

Number density of rare gas (m-3
) 

Number of quanta of wavelength A. 

Partial pressure of mercury vapour (pa) 

Vector (column matrix) of source powers at each node - in LIGHTS model 
of Sow ell (1989) 

Momentum transfer cross-section for the elastic collisions between 
electrons and mercury atoms of the l' state (m2

) 

Collision cross-section of the transition from statej to state k (m2
) 

Cooling load at time e (W) 

Cooling load from lights at time t=t. =nLl (W) 

Total (net) conduction heat gain to node i in one time step (1) 

Heat gain due to lighting in watts (W) 

Total (electrical) energy input at node i in one time step (1) 

Total (net) convection heat gain to the air node in one time step (1) 

Total (net) convection heat gain to node i in one time step (1) 

Total (net) long-wave radiation heat gain to node i in one time step (1) 

Total (net) short-wave radiatIon heat gain to node i in one time step (1) 

Heat gain at time e (W) 

Rate of change ofIong-wave radiation input to node I (W) 
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q SI Rate of change of short-wave radiation input to node i (JV) 

q HI Rate of change of convection heat input to node I (JV) 

q H. Rate of heat transfer by convection to the air node (JV) 

q Ca< Heat gain of air node' QI' due to air exchange between air nodes in different 
sections (JV) 

q c. Rate of change of conduction heat input to node i (JV) 

R Radius of fluorescent lamp tube (m) 

S( A) Relative spectral power distribution of light output from fluorescent powder 
(mn-I) 

T Vector of nodal temperatures - in LIGHTS model of Sow ell (1989) 

T. Air node absolute temperature (K) 

T. Electron temperature (K) 

Tg Absolute temperature of gas inside fluorescent tube (K) 

7; or T, Absolute temperature of node i (K) 

t Vector of the time denvatives of nodal temperatures - in LIGHTS model of 
Sowell (1989) 

t (or tJ Time after the lights are turned on (h or s) 

U(I) N x N matrix (N=number of nodes) of conductive/convective heat transfer 
coefficients - in LIGHTS model of Sow ell (1989) 

V(A) Relative spectral luminous efficiency for photopic vision of the standard 
cm observer 

Special transfer matrix (N x N) descnbing inter-reflections and 
transmissions within the enclosure for long-wave radiation - in LIGHTS 
model of Sowell (1989) 

V' Special transfer matrix (N x N) descnbing inter-reflections and 
transmissions within the enclosure for short-wave radiation - in LIGHTS 
model of Sow ell (1989) 

v; Energy level of the ionised state of mercury (e V) 
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V/ Average energy level that the mercury atom has to attain for ionisation to 
take place (eV) 

Vu Volume flow rate of air in between air nodes '01' and 'a;' (m3 sol) 

v; Energy level ofthej'" state (eV) 

v Electron drift velocity (m sol) 

v. Velocity of the electron (m sol) 

VD' WD (n = 0,1,2 .... ) Coefficients of transfer function 

W( A) Power output in wavelength interval A. to A. +dA. per unit wavelength per unit 
volume of plasma (W nm-'m-3) 

W(t.) Power input to lights at time t= t. =nL1 (W) 

WI8S Power of the 185 nm line per unit volume of plasma (W m-3
) 

W;S4 Power of the 254 nm line per unit volume of plasma (W m-3
) 

Wd!lf Power loss due to diffusion per unit volume of plasma (W m-3
) 

w,,1 Power loss due to elastic collisions per unit volume of plasma (W m-3) 

w,.<I Power loss due to inelastic collisions per unit volume of plasma (W m-3) 

Ww• Power loss due to ionization per unit volume of plasma (W m-3) 

W.. Power of emitted inviSible lines per unit volume of plasma (W m-3) 

~h.. Total power output of the fluorescent powder in the lamp (W) 

w"el Power loss due to super-elastic collisions per unit volume of plasma (W m-3) 

W"" Approximate total power ofUV radiation emission per unit volume of 
plasma (W m-3

) 

Wvu Power of emitted visible lines per unit volume of plasma (W m-3) 

tl Time step (s or h) 

tlT Elevation of rare-gas temperature inside the lamp above the minimum lamp 
wall temperature eC) 

tlr; Temperature rise of node I in one time step (K) 

A Diffusion length (m) 
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<l> Luminous flux output per unit volume of positive column (Im m·3) 

<l>/amp Total luminous flux output of fluorescent lamp (Im) 

o Tune interval in Transfer Function Method calculation (usually 1 hour) 

El Emissivity of node i 

11 Quantum efficiency ofphosphor 

A. Wavelength (nm) 

A.. Electron mean free path (m) 

Il. Electron mobility (m2 V"s") 

Vc Average frequency of collision between electron and rare-gas atoms per 
rare-gas atom (s") 

Po Density of air (kg m·3
) 

Pu Reflectance of node i with respect to long-wave radiation 

Ps. Reflectance of node i with respect to short-wave radiation 

cr Stefan-Boltzmaun constant (= 5.669xlO" W m·2K"4) 

't Natural life time of radiating state (s) 

'teff Effective life time of radiating state (s) 

z-; Average effective life time ofthej'" state (s) 

z-;. Effective life time of the spontaneous decay ofthej'" state to the!(h state 
(j=1,. .. ,6; k=O, ••• 5; k<.J) (s) 
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Appendix A 

Transfer function coefficients for the calculation of cooling 

load due to lights 

A.1 Coefficients determined experimentally by Mitalas 

The transfer function coefficients al. a2 and hi of equation (2.2) were 

determined experimentally by Mitalas (1973b) for 26 configurations. These 

experimentally determined coefficients are shown in Table A. I. 

A.2 Design data derived by Mitalas from the experimental results 

Mitalas (1973b) derived design values of a l by simply grouping the features of 

the room furnishings, lighting fixtures, and ventilation system into four combinations 

WIth each case represented by a single value of at" These four groups are given in 

Table A.2. The design values of hi derived by Mitalas (1973b) are listed in Table A.3. 
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TableA.l 

Mitalas' experimental detennined Z-transfer coefficients for lights. (ModIfied from 
Mitalas 1973b) 

Ventilation 
Test No. Rate Supply type Return type Furnishing a! a2 

(rn's·!) 
I 0.0472 CD-NID SP-SL BR 0.44 -0.35 
2,3 0.0472 CD-NID RP-SL BR 0.56 -0.45 
4 0.0472 CD-ID RP-SL BR 0.50 -0.40 
5,6 0.0472 CD-ID RP-SL FO 0.55 -0.45 
7,8 00312 CD-ID RP-SL FC 0.51 -0.43 
9, 10, 11 0.0661 CD-ID RP-RLSS FC 0.63 -0.56 
12,13 0.0661 CD-ID RP-RL FC 0.58 -0.51 
14, IS, 0.0312 WFCU SP-SL FC 0.53 -0.47 
16, 17 
18 0.0312 WFCU RP-SL FC 0.59 -0.52 
19 0.0312 WFCU RP-RLSS FC 0.55 -0.47 
20,21, 0.0661 LSS SP-RL FC 0.87 -0.80 
22 
23,24, 0.0661 CD-ID SP-SL FC 0.59 -0.56 
25 
26 0.0661 CD-ID SP-SL BR 0.58 -0.51 

Notes: 
Ventilation rate was originally given by Mitalas (1973b) in cfm (cubic feet per 
minute), the ventilation rates in the above table have been converted to rn's·!: 
0.0312 rn's·! = 66 cfm; 0.0472 rn's·! = 100 din; 0.0661 rn's·! = 140 cfm. 
Supply type: 
CD-NID = Supply air flow is via non-insulated ducts to ceiling diffusers. 
CD-ID = Supply air flow is via insulated ducts to ceIling diffusers. 
WFCU = Supply air is by wall fan coil units. 
LSS = Supply air flow is via insulated ducts to luminaire side slots. 
Return type: 
SP-SL = Static plenum and static luminaire. The return air passes from the 

occupied space through wall grilles. 

b! 

0.91 
0.89 
0.90 
090 
0.92 
0.93 
0.93 
0.94 

0.93 
0.92 
0.93 

0.97 

0.93 

SP-RL = Static plenum and return luminaire. The return arr passes from the 
occupied space through the lurninaire and then via insulated ducts through 
the plenum space. 

RP-SL = Return plenum and statIc luminaire. The return air passes from the 
occupied space through ceiling gnlles and through the plenum. 

RP-RL = Return plenum and return luminaire. The return air passes from the 
occupied space through the lurninaire and through the plenum. 

Furnishings: 
BR = Bare room, no fumitures, no carpet. 
FO = FurnitIIre only - table, chair and filing cabinet; no carpet. 
FC = FurnitIIre and carpet. Table, chair and filing cabinet, and carpet. 
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TableA.2 

Design values of a l coefficient in equation (2.2) derived by Mitalas. (Modified from 
Mitalas 1973b) 

Furnishings Air supply and return Type of light Value of a l 

fIXture 

Heavyweight, Low rate; supply and Recessed, not 0.45 
single furnishings, return below ceiling vented 
no carpet (V :::; 0.00254 m3s·l /m2)[.J 

Ordinary furniture, Medium to high rate; Recessed, not 0.55[bJ,[cJ 

no carpet supply and return below vented 
ceiling or through ceiling 
grille and space 
(V ;:: 0.00254 m3s-1 Im~['J 

OrdInary furniture, Medium to high rate or Vented 0,65[CJ 

with or without fan coil or induction type 
carpet air conditioning terminal 

unit; supply through 
ceiling or wall diffuser; 
return around light 
fixtures and through 
ceiling space 
(V ;:: 0.00254 m3s-l /m2)['J 

Any type of Ducted returns through Vented or free- 0.75 or 
furniture light fixtures hanging in airstream greatetdJ 

with ducted returns 

Notes: 

[a] V is the room air supply rate, it was given in units of cfm per sq. ft of floor area 

in Mitalas (1973b); 0.00254 m3s-l/m2 = 0.5 cfm per sq. ft. 

[b] Increase a l by 0.05 when carpet is used. 

[c] The effect on a l value by furnishings decreases when light fixtures are used as air 

supply and/or return registers. 

[d] The a l value is equal to the fraction of light power input that is picked up by 

ventilation air at light fixtures or 0.75, whichever is greater. 
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TableA.3 

The hI values calculated by Mitalas (1973b) for different room air circulation rates 
and envelope construction. (Modified from Mitalas 1973b) 

Room envelope constructionlb] 

Room air 51 mm[cJ 76mm[cJ 152 mm[cJ 203mm[cJ 305mm[cJ 

circulation[aJ wood floor concrete concrete concrete concrete 
and floor floor floor floor 
type of supply Specific mass per unit floor area, kg m·' 
and return 49[d] 196[d] 367[d] 587[dJ 783[dJ 

Low 0.88 0.92 0.95 0.97 0.98 

MedIUm 0.84 0.90 0.94 0.96 0.97 

High 0.81 088 0.93 0.95 0.97 
, 

Very High 0.77 0.85 0.92 0.95 0.97 

(see Note [b]) 0.73 0.83 0.91 0.94 0.96 

Notes: 

[a] Low: Low ventilation rate - minimum required to cope with cooling load from 

lights and occupants in intenor zone. Supply through floor, wall, or ceiling 

diffuser. Ceiling space not vented (not used for return air), and h = 2.3 W m-'K-I 

(where h = inside surface convection coefficient used in the calculation of hI 

value). 

Medium: Medium ventilation rate, supply through floor, wall or ceiling diffuser. 

Ceiling space not vented (not used for return air), and h = 3.4 W m-'K-I. 

High: High ventilation rate - room air circulation induced by primary air of 

induction unit or by fan coil unit. Return through ceiling space and 

h = 4.5 W m-'K"I. 

Very high: High room air circulation used to minimise temperature gradients in a 

room. Return through ceiling space and h = 6.8 W m-'K"I. 

[b] Floor covered with carpet and rubber pad; for a floor covered only with floor tile, 

take the next hI value down the column. 

[c] Floor thickness values given in Mitalas (1973b) were in inches. 

[d] Specific mass values given in MitaIas (1973b) were in lb/ft'. 
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AppendixB 

The fluorescent lamp positive column and ambipolar 

diffusion 

Diffusion of electrons and ions takes place in the plasma of the fluorescent 

lamp discharge. Electrons diffuse to the walls faster than the positive mercury ions 

due to that electrons have a much smaller mass and higher random thennal velocities. 

Therefore, there is a charge separation so that an excess of positive ions exists in the 

centre of the positive column. This results in a positive charge at the centre of the 

plasma (hence the name positive column is given) and a negative charge near the wall. 

This charge separation has two effects: 

(I) It tends to attract the electrons, slowing down their diffusion rate to the wall. 

(ii) It produces a radial electric field, which accelerates the rate of diffusion of 

positive ions to the wall. 

The net effect is that the diffusion of electrons is slowed down and that of ions is 

accelerated until they both diffuse at the same rate. This phenomenon is called 

amblpolar diffusion. The rate at which electrons and positive ions are diffusing is 

called the ambipolar diffusion rate. 

The ambipolar diffusion coefficient D. can be calculated from the transport 

equations for ions and electrons (Waymouth 1971): 

(B.l) 

(B.2) 
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where r, and r. are the particle current densities of ions and electrons, NI and Ne are 

the ion and electron densities, !l, and !l. are the ion and electron mobilities, DI and D. 

are the ion and electron diffusion coefficients, and Er is the radial electric field due to 

the excess ion space charge. The quantity Er can be eliminated between the two 

equations by noting that N, = N. in the positive column (the symbol N. will be used in 

the following), and the particle fluxes r l and r. are equal (the symbol r will be used 

in the following) (Waymouth 1971): 

(B.3) 

The diffusion coefficient of a charged particle can be expressed in terms of its 

mobility by the relationship (Waymouth 1971): 

D=pkT 
e 

(B.4) 

AI
. 1 1 1 

so, smce !ll«!l., -+-"" -. Thus: 
Pt P. P, 

r = p,k(T. + 7;) dN, 
e dr 

(B.5) 

In a low pressure mercury discharge positive column, the ion temperature is low, 

300 K to 500 K at most, while Te IS of the order of 10,000 K. Therefore, the following 

equation is obtained between the electron diffusion flux and the radial gradient of 

electron density (Waymouth 1971): 

p,kT. dN, dN. 
r=-----=-D -

e dr a dr (B6) 
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In equation (B.6), Dais the ambipo\ar illffusion coefficient: 

IJ,kr. 
D =-

a e 

B-3 
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Appendix C 

Calculation of convective heat transfer coefficients 

For most situations in a typical occupied enclosure, free convection takes place 

over surfaces inside the enclosure because the velocity of air flow near the surface 

nodes is not high. In fact, in both LITEACl and LITEAC2, the air withm a 

compartment is considered in bulk as a single air node and the air velocity, which is 

not calculated, is assumed to be very low so that free convection takes place between 

a surface node and the air node. However, for return air via luminaires, air velocity 

inside luminaire may be high enough for forced convection to take place on the 

luminaire and lamp surfaces. Therefore, the programs LITEACl and LITEAC2 

calculate the convection coefficient based on node geometry and temperature or allow 

direct input of a convection coefficient for each node which can be calculated 

elsewhere based on the velocity of air flow through the luminaire. 

In both LITEACl and LITEAC2, a subroutine CONVEC is used for the 

calculation of the heat gain/loss due to convective heat transfer between the surface 

node and the adjacent air. In this subroutine, the convective heat transfer coefficient h, 

in equations (4.12) and (4.13) is calculated based on empirical equations for free 

convection given m Holman (1992) as described below. 

A surface node is assumed to be isothermal. For an isothermal surface, 

Holman (1992) gives the following functional form for the dimensionless Nusselt 

number to represent the average free-convection heat transfer coefficient for a variety 

of cIrcumstances: 

(C.l) 
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hL 
where Nu=

k 

Gr is the Grashof number and Pr is the Prandtl number: 

v 
Pr=

a 

(C.2) 

(C.3) 

(CA) 

C and m are constants depending on the geometry and range of values of the 

product Gr j'rr 

The subscript f represents that the properties in the dimensionless groups Nu, 

Gr and Pr are evaluated at the film temperature T, 

In equations (C.2) to (CA), L is the characteristic length of the surface which 

depends on the geometry of the surface; k is the thermal conductivity of air; g is the 

gravitational acceleration; ~ is volume coefficient of expansion of air; T .. is the surface 

temperature; T", is the air temperature; v is the viscosity of air; a is the thermal 

diffusiVity of air. 

The product of Gr and Pr is called the Rayleigh number Ra. 

Ra (C.S) 

In the subroutine CONVEC, Ra is calculated first assuming Pr and V to be 

constant throughout the range of temperatures considered. The values used are taken 

from Holman (1992) for a temperature of300 K: 
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-- -

v = 15.69 x 10-6 m2s·' 

Depending on the body type and the range of Ra, the subroutine CONVEC 

uses different values for the constant C and the power index m in equation (C. I ) for 

the calculation of hi' The values of C and m are taken from Holrnan (1992) and are 

listed in Table C.l. 

In the input data, a number is used to represent the node geometry (body type) 

of each node; the numbers used for all node geometries considered are listed in 

Table C.l. The characteristic length is also an input parameter for each node, which 

should be calculated according to (see Holrnan 1992): 

Horizontal plates: 

Vertical plates: 

Area 
L=--

Perimeter 

L = Height of plate 

Horizontal cylinder: L = Diameter of cylinder 

The Rayleigh number Ra is calculated using equation (C.5) at each time step 

using the calculated node temperature and air temperature at the time step. Then, 

depending on the body geometry and the range of Ra, the constant C and power index 

m are detennmed accordrng to Table C.l. Equation (C. 1 ) is used to calculate the 

Nusselt number over the node. Finally, equation (C.2) is used to calculate the 

convective heat transfer coefficient hi using a value of thermal conductivity of air at 

the 300 K and the characteristic length of the surface. The calculated h, will be used 

for the computation of convective heat transfer between the surface node and the 

adj acent air node. 
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Table C.I 

Coefficient C and power index m for different geometry used in LITEACI and 
LITEAC2 for the calculation of convective heat transfer coefficient hi in equation 
(C.I) and (C.2). 

Body type 
number used 

Node geometry inLITEACI Ra=Grl'rf C m 
and 

LITEAC2 

Horizontal plate - 1 :S:8x 10' 0.54 0.25 
heated upper surface 

> 8 x 10' 0.15 0.3333 

Horizontal plate - I :S:lx105 0 0 
cooled upper surface 

> I x 105 0.27 0.25 

Horizontal plate - 2 :S: 1 x 105 0 0 
heated lower surface 

>lxlO5 0.27 0.25 

Horizontal plate - 2 :S:8x 10' 0.54 0.25 
cooled lower surface 

> 8 x 10' 0.15 0.3333 

Vertical plate 3 all 0.59 0.25 

Horizontal cylinder 6 :S:I X 102 1.02 0.148 

I x 102 
- I X 104 0.85 0.188 

1 x 104 
- 1 X 107 0.48 0.25 

> 1 x 10 0.125 0.3333 

Other body type 7 all h, is an input parameter 

Forced convection 7 N.A. hi is an input parameter 
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AppendixD 

Explicit forms of energy dissipation terms in the energy 

balance equation of the fluorescent lamp discharge 

The terms W"",I' W",", Wel, Wd!lJ' and W,el in equation (5.1) can be calculated if 

the cross-sections of transitions for inelastic collisions (including ionization) and for 

elastic collisions, the diffusion coefficient of the electrons and the electron energy 

distribution function are known. These terms can be written in a more explicit form 

(Zissis et al. 1992) as: 

(DJ) 

W"," = NeL,N}E}.(v,Q,,) (D.2) 
} 

(D.3) 

(D.4) 

(D.5) 

where Ne is the electron density (m·'), i.e. the number of electrons per unit volume of 

the positive colunm; ~ is the density (number per unit volume of positive colunm) of 

the/,' mercury state (m·'); NHg is the total density of the mercury atoms (m'); me is the 

electronic mass (kg); mj is the mass of the /" mercury state (kg); ~k is the energy gap 
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(J) beiWe~nl' and /(" states; Ee is the energy of the electron (J); Ve is the velocity of the 

electron (m s"); Q,t is the cross section (m2
) for the transition between the J-th and /(" 

mercmy states; Q; represents the momentum-transfer cross section (m2
) for the 

elastic collisions between electrons and mercmy atoms of the J-th state; D; is the 

diffusion coefficient of the electrons. In equations (D.I) to (D.S), quantities written in 

the form (A) represent the average value of A over the electron energy distribution 

fiEe), i.e. 

(D.6) 
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AppendixE 

Program LITEACl 

E.! Description of the program 

The computer program LITEACl consists of a main program and four 

subroutines: LWAVE, SWAVE, CONVEC and LPLL. The main program and these 

four subroutines are described in the following sub-sections. 

E.1.1 Main program LlTEAC1 

The mam program reads input data from six data files. Features and data 

content of these six data files are described m Section E.3. The main program reads the 

nodal data of area, thennal capacity, long- and short-wave emissivity, reflectance and 

transmittance, and initial temperature, and also the body type and the characteristic 

length for each node for the calculation of convective heat transfer coefficient 

(Appendix C), and a matrix of radiation fonn factors between parrs of nodes. The main 

program also reads the number of on-off cycles of the lights, the number of hours with 

lights on in one cycle and the time step for the simulation. The main program then 

reads, from the lamp data file, the rated lamp power, the rated lumen output, the rated 

ballast power, the luminous efficacy of radiation, and a set of data points to represent 

the empirical curves of lamp power and light output against mirumum lamp wall 

temperature. Using the temperature of the lamp node at the start of each time step (the 

input initial lamp node temperature for the first time step or the calculated lamp node 

temperature for other time steps) as input, the main program calls the subroutine LPLL 

to calculate the lamp power and light output of the lamp node in that time step. From 

the lIght output calculated by LPLL, the main program then calculates the short-wave 

power output of the lamp node using the input value of the luminous efficacy of 
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radiation. If there are more than one lamp nodes defined, then the lamp power and the 

short-wave radiation power are assumed to be equally divided between all the lamp 

nodes. The main program then calls L WA YE, SW A YE and CONVEC in turn to 

calculate the net nodal heat gains due to long-wave radiation, short-wave radiation and 

convection. The calculation of the conduction heat gain is included in the main 

program. With all these net heat gains calculated for the time step, the main program 

then calculates the temperature change of the node in the time step. The calculation is 

repeated for all nodes. The new set of nodal temperatures will then be used to perform 

calculations for a successive new time step. The calculations are repeated for the 

period of simulation specified in the input file 'INDAT' (Section E.3). LITEACl gives 

output at intervals specified in the input file 'INDAT'. The output data, which are 

wntten to file names specified in the input file 'INDAT' (Section E.3), consist of nodal 

temperatures, power gains at each node, cooling load, conductive and convective heat 

fluxes at each node, long- and short-wave radIation fluxes at each node, illuminance on 

each nodal surface. 

E.1.2 Subroutine LWAVE 

L WA YE calculates the long-wave (thermal) radiation exchange between nodes 

in a compartment. This subroutine requires input, from the main program, the 

following data: number of nodes, number of 'lens' (Le. transparent/translucent to long

wave radiation) nodes, the node numbers of all lens nodes, long-wave emissivities of 

all nodes, reflectances of all nodes, areas of all nodes, temperatures (at start of the time 

step) of all nodes, and a form factor matrix of the form factors between pairs of nodes. 

Using a COMMON statement, LWAVE also shares the transmittance data of the nodes 

in all three sections: the luminaire, the plenum and the room. This is required because 

L WA YE calculates the long-wave radiation transfer between nodes in an enclosed 

section, but the lens nodes may transmit long-wave radiation to adjacent sections. An 

example is that if the diffuser of a luminaire is transparent/translucent to long-wave 
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radiation, it will transmit long-wave radiation from the luminaire compartment to the 

room compartment and vice versa. Therefore, transparent/translucent nodes need 

special treatment. With all these data, L WAVE calculates the net heat gain due to 

long-wave radiation for all nodes according to equations (4.2)-(4.7). It then returns the 

long-wave radiation heat gains for all nodes to the main program. 

E.1.3 Subroutine SW A VE 

SWAYE calculates the short-wave (visible) radiation exchange between nodes 

in a compartment. This subroutine requires input, from the main program, the 

following data: number of nodes, number of 'lens' (i.e. transparent/translucent to 

short-wave radiation) nodes, the node numbers of all lens nodes, number of 'lamp' 

nodes (i.e. nodes generating short-wave radiation), the node numbers of all lamp 

nodes, short-wave emissivities of all nodes, reflectances of all nodes, areas of all 

nodes, and a fonn factor matrix of the fonn factors between pairs of nodes. Using a 

COMMON statement, SWA VE also shares the short-wave transrmttance data of the 

nodes in all three sections: the luminaire, the plenum and the room. SWA YE differs 

from LW A YE in that SW A YE does not require the data of nodal temperatures but 

requires data of the short-wave power output of the 'lamps' nodes. SWA YE calculates 

the net heat gain due to short-wave radiation for all nodes according to equations (4.8)

(4.11). It then returns the short-wave radiation heat gains for all nodes to the main 

program. 

E.1.4 Subroutine CONVEC 

CONVEC calculates the net heat gain due to convection for all nodes in contact 

with the air node in the compartment. It also calculates the net convective heat gain of 

the air node. It requires input from the main program the following data: number of 

nodes, the body type of each node (AppendIX C), the characteristic length of each node 

(Appendix C), the area of each node, and the temperatures of all nodes. It uses the 
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correlations described in Appendix C for the calculations of the convective heat 

transfer coefficients. It then calculates the net convective heat gain for all nodes 

according equations (4.12)-(4.13). It returns to the main program the convective heat 

gain for all nodes in the compartment in a vector variable. 

E.1.5 Subroutine LPLL 

This subroutine calculates the lamp power and lamp lumen output using points 

in empirical curves (Section 4.2.1). It requires input of the following data: number of 

lamp nodes, temperature of each lamp node, rated lamp power and rated lumen output 

of the lamp, the number of points (N) in the empirical curves, an N x6i matrix 

contaming the points in the empirical curves of relative lamp power and relative light 

output against minimum lamp wall temperature. LPLL compares the temperatures of 

all lamp nodes and finds the mininlum lamp wall temperature as the lowest 

temperature amongst all the lamp nodes. It then calculates the lamp power and light 

output by linear interpolation between the two points with temperatures nearest to the 

mininlum lamp wall temperature. 

E.2 Program listing 

PROGRAM LITEACl 
C 

C TRANSIENT THERMAL MODEL OF AN ENCLOSURE WITH A FLUORESCENT LUMINAIRE 
C AS THE ONLY HEAT AND RADIATION SOURCE AND AN IDEALLY CONTROLLED 
C AIR-CONDITIONING SYSTEM FOR KEEPING ROOM AIR TEMPERATURE CONSTANT 
C 
C THE ENCLOSURE IS DIVIDED INTO 3 SECTIONS: 
C 
C 
C 
C 

1. THE LUMINAIRE SECTION; 
2. THE PLENUM SECTION; 
3. THE ROOM SECTION. 

C FOR ALL SECTIONS, THE FIRST NODE IS THE AIR NODE 
C 
C 

REAL AL(20),AP(20),AR(20),CL(20),CP(20), 
1 CR(20) ,EML(20) ,EMP(20) ,EMR(20) ,FL(20,20) ,FP(20,20) ,FR(20,20), 
2 CHARLL(20),CHARLP(20) ,CHARLR(20) , 
3 RHOLL(20),RHOLP(20),RHOLR(20),RHOSL(20),RHOSP(20),RHOSR(20), 
4 TRANSL(20) ,TRANSP(20),TRANSR(20) ,TRANLL(20) ,TRANLP(20) , 
5 TRANLR(20),DTIME,LAMPP,LAMPLM,LPMAX,LLMAX,EFFIC,SWPOW,BALPOW, 
6 CHRP,CHRL,CHPL,CKBS(30),OUTIME 
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C 

DOUBLE PRECISION TL(20),TP(20),TR(20),TDUM(S),DTL(20), 
1 DTP(20),DTR(20) ,QGL(20) ,QGP(20) ,QGR(20) ,QLL(20) ,QLP(20) , 
2 QLR(20) ,QSL(20) ,QSP(20) ,QSR(20) ,QHL(20) ,QHP(20) ,QHR(20), 
3 QCL(20) ,QCP(20) ,QCR(20) ,DQL(20) ,DQP(20) ,DQR(20) , 
4 ELL(20) ,ELP(20) ,ELR(20) ,RLO(SO,3) ,ESL(20) ,ESP(20) , 
5 ESR(20),QCDUM,TENV 

INTEGER NTIME,NTOFF,NHROFF,NDAY,NTONDT,NTOFFT,IKBS(30,S), 
1 NBTL(20) ,NBTP(20) ,NBTR(20) , 
2 NLAL,NLAP,NLAR,NLAMPL(S) ,NLAMPP(S) ,NLAMPR(S) , 
3 NLNL,NLNP,NLNR,NLENSL(S,3) ,NLENSP(S, 3) ,NLENSR(S, 3) , 
4 NTYPEL,NTYPEP,NTYPER 

CHARACTER B,HORM 
CHARACTER*12 INPUT1,INPUT2,INPUT3,INPUT4,INPUTS, 

1 OUTPU1,OUTPU2,OUTPU3,OUTPU4 
COMMON /LW/ TRANLL, TRANLP, TRANLR, ELL, ELP, ELR, 

1 /SW/ TRANSL,TRANSP,TRANSR,ESL,ESP,ESR 

C FORMAT STATEMENTS 
C 

27 FORMAT (1X,F10.2,12F11.S) 
C 
C SPECIFYING INPUT AND OUTPUT FILENAMES 
C 

C 

OPEN (7,FILE='INDAT',STATUS='OLD') 
READ (7,*) INPUT1,INPUT2,INPUT3,INPUT4,INPUTS,OUTPU1,OUTPU2, 

1 OUTPU3,OUTPU4,B,NTlME,NHROFF,DTlME,OUTIME,HORM 
CLOSE (7) 
IF «HORM .EQ. 'H') .OR. (HORM .EQ. 'h'» THEN 

OUTIME=OUTIME*3600. 
ELSE IF «HORM .EQ. 'M') .OR. (HORM .EQ. 'm'» THEN 

OUTIME=OUTIME*60. 
ELSE IF «HORM .EQ. 'S') .OR. (HORM .EQ. 's'» THEN 

OUTIME=OUTIME 
ELSE 

WRITE (*,*) (' OUTPUT TIME INTERVAL ERROR') 
STOP 

END IF 

C READ INPUT DATA 
C 

C 

C 

OPEN (S,FILE=INPUT1,STATUS='OLD') 
READ (S,*) NL,NLAL, (NLAMPL(I) ,I=1,NLAL) ,NLNL, 

1 «NLENSL(I,J) ,J=1,3),I=1,NLNL) ,NBASTL, (TL(I),I=1,NL), 
2 (AL(I) ,I=1,NL), (CL(I) ,I=1,NL), (EML(I),I=1,NL), (RHOLL(I) ,I=1,NL), 
3 (RHOSL(I) ,I=1,NL) , (TRANLL(I),I=1,NL), (TRANSL(I) ,I=1,NL) , 
4 «FL(I,J),J=1,NL),I=1,NL), (NBTL(I) ,I=1,NL) , (CHARLL(I),I=1,NL) 

CLOSE (S) 

OPEN (9,FILE=INPUT2,STATUS='OLD') 
READ (9,*) NP,NLAP, (NLAMPP(I) ,I=1,NLAP) ,NLNP, 

1 «NLENSP(I,J) ,J=1,3),I=1,NLNP) , (TP(I),I=l,NP), 
2 (AP (I), I=l,NP), (CP (I) ,I=l,NP) , (EMP (I), I=l,NP) , (RHOLP (I), I=l,NP) , 
3 (RHOSP(I),I=l,NP), (TRANLP(I) ,I=l,NP) , (TRANSP(I) ,I=l,NP) , 
4 ( (FP (I, J) ,J=l, NP) , I=l, NP) , (NBTP (I) , I=l,NP) , (CHARLP (I) ,I=l, NP) 

CLOSE (9) 

OPEN (10,FILE=INPUT3,STATUS='OLD') 
READ (10,*) NR,NLAR, (NLAMPR(I) ,I=l,NLAR) ,NLNR, 

1 «NLENSR(I,J) ,J=1,3) ,I=l,NLNR), (TR(I) ,I=l,NR), 
2 (AR (I) , I=l, NR) , (CR (I) ,I=l, NR) , (EMR (I) ,I=l, NR) , (RHOLR (I) , I=l, NR) , 
3 (RHOSR(I) ,I=l,NR) , (TRANLR(I) ,I=l,NR) , (TRANSR(I) ,I=l,NR) , 
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C 

C 

C 

C 
C 

C 

C 

C 

C 
C 

C 

C 

4 ((FR{I,J) ,J=l,NR) ,I=l,NR), (NBTR{I) ,I=l,NR), (CHARLR{I) ,I=l,NR) 
CLOSE (10) 

IF ({NLAL .NE. 0) .OR. (NLAP .NE. 0) .OR. (NLAR .NE. 0» THEN 
OPEN (11,FILE=INPUT4,STATUS='OLD') 
READ (ll,*) LPMAX,LLMAX,BALPOW,EFFIC, 

1 NPOINT, ({RLO{I,J),J=l,3),I=l,NPOINT) 
CLOSE Ill) 
END IF 

OPEN (12,FILE=INPUT5,STATUS='OLD') 
READ (12,*) NCOND, ({IKBS{I,J),J=l,5),CKBS{I),I=l,NCOND), 

1 CHRP,CHRL,CHPL,TENV 
CLOSE (12) 

AL (I) =1. 0 
AP (I) =1. 0 
AR (I) =1. 0 

OPEN (13,FILE=OUTPUl,STATUS='NEW') 

OPEN (14,FILE=OUTPU2,STATUS='NEW') 

OPEN (15,FILE=OUTPU3,STATUS='NEW') 

OPEN (16,FILE=OUTPU4,STATUS='NEW') 

X=O. 
WRITE (13,27) X, (TL(I)-273.,I=l,NL) 
WRITE (14,27) X, (TP{I)-273.,I=1,NP) 
WRITE (15,27) X, (TR(I)-273.,I=l,NR) 
WRITE (16,27) X,LAMPP+QGL(NBASTL),ESR(8)*EFFIC 
IF «B.EQ. 'Y') .OR. (B.EQ. 'y'» THEN 

NDAY=NTIME 
NTIME=86400 

ELSE 
NDAY=l 
NTIME=NTIME*3600 

END IF 
NTOFF=NHROFF*3600 

NTYPEL=l 
NTYPEP=2 
NTYPER=3 

C CALCULATE VALUES OF THE POWER INPUT AT NODES 
C 

DO 45 I=l,NL 
QGL(I)=O. 

45 CONTINUE 
DO 46 I=l,NP 
QGP(I)=O. 

46 CONTINUE 
DO 47 I=l,NR 
QGR(I)=O. 

47 CONTINUE 
NTONDT=NINT(FLOAT(NTIME)/DTIME) 
NTOFFT=NINT(FLOAT(NTOFF)/DTIME) 
DO 700 LL=l,NDAY 
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C 

C 

C 

DO 700 KK=l,NTONDT 
IF (KK .GT. NTOFFT) THEN 

LlIMPP=O. 
SWPOW=O. 

ELSE 
DO 50 K=l,NLAL 

TDUM(K)=TL(NLAMPL(K» 
50 CONTINUE 

IF (NLAL .NE. 0) THEN 
CALL LPLL(NLAL,NLAMPL,LAMPP,LlIMPLM,LPMAX,LLMAX,TL,NPOINT, 

1 RLO) 
SWPOW=LlIMPLM/EFFIC 
END IF 

END IF 
IF (NLAL .EQ. 0) GO TO 60 
IF (LlIMPP .EQ. 0.) THEN 

QGL(NLAMPL(l»=O. 
ELSE 

QGL(NLAMPL(l»=LAMPP/NLAL 
END IF 
IF (NLAL .GT. 1) THEN 

DO 55 K=2,NLAL 
QGL(NLAMPL(K»=QGL(NLAMPL(l» 

55 CONTINUE 
END IF 

C LUMINIARE NODE NBASTL IS THE BALLAST NODE 
C 

60 QGL(NBASTL)=BALPOW*LAMPP 
C END IF 

IF (NL .NE. 0) CALL LWAVE(NL,NTYPEL,NLNL,NLENSL,EML,FL,RHOLL, 
1 AL,TL,QLL) 

IF (NP .NE. 0) CALL LWAVE(NP,NTYPEP,NLNP,NLENSP,EMP,FP,RHOLP, 
1 AP, TP, QLP) 

IF (NR .NE. 0) CALL LWAVE(NR,NTYPER,NLNR,NLENSR,EMR,FR,RHOLR, 
1 AR,TR,QLR) 

C ====================================(8/2/95) 
IF (SWPOW .EQ. 0.) THEN 

DO 65 I=l,NL 
QSL(I)=O. 
ESL(I)=O. 

65 CONTINUE 
DO 66 I=l,NP 
QSP(I)=O. 
ESP(I)=O. 

66 CONTINUE 
DO 67 I=l,NR 
QSR(I)=O. 
ESR(I)=O. 

67 CONTINUE 
GOTO 70 

END IF 
C ==================================== 

IF (NL .NE. 0) CALL SWAVE(NL,NTYPEL,NLNL,NLENSL,NLAL,NLAMPL, 
1 FL,RHOSL,AL,SWPOW,QSL) 
IF (NP .NE. 0) CALL SWAVE(NP,NTYPEP,NLNP,NLENSP,NLAP,NLAMPP, 

1 FP,RHOSP,AP,SWPOW,QSP) 
IF (NR .NE. 0) CALL SWAVE (NR,NTYPER,NLNR,NLENSR,NLAR,NLAMPR, 

1 FR,RHOSR,AR,SWPOW,QSR) 
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C ============================================== 
70 

C 

400 

410 

420 
C 

IF (NL .NE. 0) CALL CONVEC (NL,NBTL,CHARLL,AL, TL, QHL) 
IF (NP .NE. 0) CALL CONVEC(NP,NBTP,CHARLP,AP,TP,QHP) 
IF (NR .NE. 0) CALL CONVEC (NR,NBTR, CHARLR,AR, TR, QHR) 

DO 400 I=l,NL 
QCL(I)=O. 
CONTINUE 
DO 410 I=l,NP 
QCP(I)=O. 
CONTINUE 
DO 420 I=l,NR 
QCR(I)=O. 
CONTINUE 

DO 450 I=l,NCOND 
IF (IKBS(I,l) .EQ. 1) THEN 

IF (IKBS(I,3) .EQ. 1) THEN 
IF (IKBS(I,5) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TL(IKBS(I,2»*AL(IKBS(I,2» 
ELSE IF (IKBS(I,5) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TL(IKBS(I,2»-TL(IKBS(I,4»)*AL(IKBS(I,4» 
END IF 
QCL(IKBS(I,4»=QCL(IKBS(I,4»+QCDUM 
QCL(IKBS(I,2»=QCL(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 2) THEN 
IF (IKBS(I,5) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TL(IKBS(I,2»*AL(IKBS(I,2» 
ELSE IF (IKBS(I,5) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TL(IKBS(I,2»-TP(IKBS(I,4»)*AP(IKBS(I,4» 
END IF 
QCP(IKBS(I,4»=QCP(IKBS(I,4»+QCDUM 
QCL(IKBS(I,2»=QCL(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 3) THEN 
IF (IKBS (I, 5) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TL(IKBS(I,2»*AL(IKBS(I,2» 
ELSE IF (IKBS(I,5) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TL(IKBS(I,2»-TR(IKBS(I,4»)*AR(IKBS(I,4» 
END IF 
QCR(IKBS(I,4»=QCR(IKBS(I,4»+QCDUM 
QCL(IKBS(I,2»=QCL(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 0) THEN 
IF (IKBS(I,5) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TL(IKBS(I,2»*AL(IKBS(I,2» 
ELSE IF (IKBS(I,5) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TL(IKBS(I,2»-TENV)*AL(IKBS(I,2» 
END IF 
QCL(IKBS(I,2»=QCL(IKBS(I,2»-QCDUM 

END IF 
ELSE IF (IKBS(I,l) .EQ. 2) THEN 

IF (IKBS(I,3) .EQ. 1) THEN 
IF (IKBS(I,5) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TP(IKBS(I,2»*AP(IKBS(I,2» 
ELSE IF (IKBS(I,5) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TP(IKBS(I,2»-TL(IKBS(I,4»)*AL(IKBS(I,4» 
END IF 
QCL(IKBS(I,4»=QCL(IKBS(I,4»+QCDUM 
QCP(IKBS(I,2»=QCP(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 2) THEN 
IF (IKBS (I, 5) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TP(IKBS(I,2»*AP(IKBS(I,2» 
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ELSE IF (IKBS(I,S) .EQ. 2) THEN 
QCDUM=CKBS(I)*(TP(IKBS(I,2))-TP(IKBS(I,4)))*AP(IKBS(I,4)) 

END IF 
QCP(IKBS(I,4))=QCP(IKBS(I,4))+QCDUM 
QCP(IKBS(I,2))=QCP(IKBS(I,2))-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 3) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TP(IKBS(I,2))*AP(IKBS(I,2)) 
ELSE IF (IKBS(I,S) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TP(IKBS(I,2))-TR(IKBS(I,4)))*AR(IKBS(I,4)) 
END IF 
QCR(IKBS(I,4))=QCR(IKBS(I,4))+QCDUM 
QCP(IKBS(I,2))=QCP(IKBS(I,2))-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 0) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 
QCDUM=CKBS(I)*TP(IKBS(I,2))*AP(IKBS(I,2)) 

ELSE IF (IKBS(I,S) .EQ. 2) THEN 
QCDUM=CKBS(I) * (TP(IKBS(I,2))-TENV) *AP(IKBS(I,2)) 

END IF 
QCP(IKBS(I,2))=QCP(IKBS(I,2))-QCDUM 

END IF 
ELSE IF (IKBS(I,l) .EQ. 3) THEN 

IF (IKBS(I,3) .EQ. 1) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 
QCDUM=CKBS(I)*TR(IKBS(I,2))*AR(IKBS(I,2)) 

ELSE IF (IKBS(I,S) .EQ. 2) THEN 
QCDUM=CKBS(I)*(TR(IKBS(I,2))-TL(IKBS(I,4)))*AL(IKBS(I,4)) 

END IF 
QCL(IKBS(I,4))=QCL(IKBS(I,4))+QCDUM 
QCR(IKBS(I,2))=QCR(IKBS(I,2))-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 2) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TR(IKBS(I,2))*AR(IKBS(I,2)) 
ELSE IF (IKBS(I,S) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TR(IKBS(I,2))-TP(IKBS(I,4)))*AP(IKBS(I,4)) 
END IF 
QCP(IKBS(I,4))=QCP(IKBS(I,4))+QCDUM 
QCR(IKBS(I,2))=QCR(IKBS(I,2))-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 3) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TR(IKBS(I,2))*AR(IKBS(I,2)) 
ELSE IF (IKBS(I,S) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TR(IKBS(I,2))-TR(IKBS(I,4)))*AR(IKBS(I,4)) 
END IF 
QCR(IKBS(I,4))=QCR(IKBS(I,4))+QCDUM 
QCR(IKBS(I,2))=QCR(IKBS(I,2))-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 0) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 
QCDUM=CKBS(I)*TR(IKBS(I,2))*AR(IKBS(I,2)) 

ELSE IF (IKBS(I,S) .EQ. 2) THEN 
QCDUM=CKBS(I) *(TR(IKBS(I,2))-TENV) *AR(IKBS(I,2)) 

END IF 
QCR(IKBS(I,2))=QCR(IKBS(I,2))-QCDUM 

END IF 
ELSE IF (IKBS(I,l) .EQ. 0) THEN 

IF (IKBS(I,3) .EQ. 1) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TENV*AL(IKBS(I,4)) 
ELSE IF (IKBS(I,S) .EQ. 2) THEN 

QCDUM=CKBS(I) *(TENV-TL(IKBS(I,4))) *AL(IKBS(I,4)) 
END IF 
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C 

C 

C 

C 
C 

C 

QCL(IKBS(I,4))=QCL(IKBS(I,4))+QCDUM 
ELSE IF (IKBS(I,3) .EQ. 2) THEN 

IF (IKBS(I,S) .EQ. 1 ) THEN 
QCDUM=CKBS(I)*TENV*AP(IKBS(I,4)) 

ELSE IF (IKBS(I,5) .EQ. 2) THEN 
QCDUM=CKBS(I)*(TENV-TP(IKBS(I,4)))*AP(IKBS(I,4)) 

END IF 
QCP(IKBS(I,4))=QCP(IKBS(I,4))+QCDUM 

ELSE IF (IKBS(I,3) .EQ. 3) THEN 
IF (IKBS(I,5) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TENV*AR(IKBS(I,4)) 
ELSE IF (IKBS(I,5) .EQ. 2) THEN 

QCDUM=CKBS(I) * (TENV-TR(IKBS(I,4))) *AR(IKBS(I,4)) 
END IF 
QCR(IKBS(I,4))=QCR(IKBS(I,4))+QCDUM 

END IF 
END IF 

450 CONTINUE 

DO 500 I=l,NL 
IF (CL(I) .NE. 0.) THEN 
DQL(I) =QGL(I)+QLL(I) +QSL(I) +QHL(I)+QCL(I) 
DTL(I) =DQL(I) *DTIME/CL(I) 
TL(I)=TL(I)+DTL(I) 
END IF 

500 CONTINUE 
DO 510 I=l,NP 

IF (CP(I) .NE. 0.) THEN 
DQP(I) =QGP (I) +QLP (I) +QSP(I) +QHP(I)+QCP(I) 
DTP(I)=DQP(I)*DTIME/CP(I) 
TP(I)=TP(I)+DTP(I) 
END IF 

510 CONTINUE 

DO 515 1=2,NR 
IF (CR(I) .NE. 0.) THEN 
DQR(I) =QGR(I) +QLR(I) +QSR(I) +QHR(I) +QCR(I) 
DTR(I) =DQR(I) *DTIME/CR(I) 
TR(I)=TR(I)+DTR(I) 
END IF 

515 CONTINUE 

IF (FLOAT(KK)/ANINT(OUTIME/DTIME) .EQ. 
1 FLOAT(KK/NINT(OUTIME/DTIME))) THEN 

IF «HORM .EQ. 'H') .OR. (HORM .EQ. 'h')) THEN 
X=FLOAT(KK)*DTIME/3600. 

ELSE IF «HORM .EQ. 'M') .OR. (HORM .EQ. 'm')) THEN 
X=FLOAT(KK)*DTIME/60. 

ELSE IF «HORM .EQ •• S') .OR. (HORM .EQ. 's')) THEN 
X=FLOAT(KK)*DTIME 

END IF 

IF (NL .NE. 0) WRITE (13,27) X, (TL (I) -273. ,I=l,NL) 
IF (NP .NE. 0) WRITE (14,27) X, (TP (I) -273., I=l,NP) 
IF (NR .NE. 0) WRITE (15,27) X, (TR(I)-273.,I=1,NR) 

WRITE (16,27) X,LAMPP,LAMPLM,QGL(NBASTL),ESR(8)*EFFIC, 
1 QCR(l),QHR(l) 

END IF 
700 CONTINUE 
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CLOSE (13) 
CLOSE (l4) 
CLOSE (15) 
CLOSE (16) 
STOP 
END 

C 
SUBROUTINE LWAVE(N,NT¥PE,NLN,NLENS,EM,F,RHOL,A,T,QL) 

C 
C THIS IS A SUBROUTINE TO CALCULATE THE LONGWAVE RADIATION EXCHANGE 
C 

REAL EM(20),F(20,20),RHOL(20),A(20),EB(20),SIGMA, 
1 TRANLL(20) ,TRANLP(20) ,TRANLR(20) 

DOUBLE PRECISION T(20),QL(20),EL(20),EXITL(20),EXDUM(20), 
1 EXLENS,ELL(20),ELP(20) ,ELR(20) ,EXITL2(20) 

COMMON /LW/ TRANLL, TRANLP, TRANLR, ELL, ELP, ELR 
INTEGER NLENS(5,3) 
SIGMA=5.669E-8 
DO 100 I=2,N 
EB(I)=EM(I)*SIGMA*T(I) **4. 
EXITL (I) =EB (I) 
EXITL2(I)=0. 

C WRITE (*,*) I, TRANLL(I) , TRANLP(I), TRANLR(I) 

C 

C 

100 CONTINUE 

150 IF (NLN .EQ. 0) GO TO 180 
DO 160 K=l,NLN 
EXLENS=O. 
IF (NLENS(K,2) .EQ. 1) THEN 
IF (TRANLL(NLENS(K,3» .NE. 0.) 

1 EXLENS=TRANLL(NLENS(K,3»*ELL(NLENS(K,3» 
ELSE IF (NLENS(K,2) .EQ. 2) THEN 

IF (TRANLP(NLENS(K,3» .NE. 0.) 
1 EXLENS=TRANLP(NLENS(K,3»*ELP(NLENS(K,3» 

ELSE IF (NLENS(K,2) .EQ. 3) THEN 
IF (TRANLR(NLENS(K,3» .NE. 0.) 

1 EXLENS=TRANLR(NLENS(K,3»*ELR(NLENS(K,3» 
END IF 
EXITL(NLENS(K,l»=EXITL(NLENS(K,l»+EXLENS 
EXITL2(NLENS(K,1»=EXLENS 

160 CONTINUE 
c ========z_============================================== 

C 

C 

180 DO 250 I=2,N 
EL(I)=O. 
DO 200 J=2,N 
EL(I)=EL(I)+F(I,J)*EXITL(J) 

200 CONTINUE 
EXDUM(I)=EXITL(I) 

EXITL(I) =EB(I)+RHOL(I) *EL(I)+EXITL2 (I) 
250 CONTINUE 

DO 300 I=2,N 
IF (ABS(EXITL(I)-EXDUM(I» .GT. 0.0001) GO TO 180 

300 CONTINUE 

DO 420 I=2,N 
EL(I)=O. 
DO 420 J=2,N 
EL(I)=EL(I)+F(I,J)*EXITL(J) 

420 CONTINUE 
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450 

460 

C 

DO 460 I=2,N 
QL{I)=A{I)*{EL{I)-EXITL{I» 
DO 450 K=l,NLN 

IF (I .EQ. NLENS{K,l» THEN 
IF ({NTYPE .EQ. 1) .AND. (TRANLL{I) .NE. 0.» THEN 
QL{I)=A{I)* (l.-RHOL{I)-TRANLL{I»*EL{I) 

ELSE IF ({NTYPE .EQ. 2) .AND. (TRANLP{I) .NE. 0.» THEN 
QL{I)=A{I)*{l.-RHOL{I)-TRANLP{I»*EL{I) 

ELSE IF ({NTYPE .EQ. 3) .AND. (TRANLR{I) .NE. 0.» THEN 
QL{I)=A{I)*{l.-RHOL{I)-TRANLR{I»*EL{I) 

END IF 
END IF 

CONTINUE 
IF (NTYPE .EQ. 1) THEN 

ELL{I)=EL{I) 
ELSE IF (NTYPE .EQ. 2) THEN 
ELP{I)=EL{I) 
ELSE IF (NTYPE .EQ. 3) THEN 
ELR{I)=EL{I) 

END IF 
CONTINUE 
RETURN 
END 

SUBROUTINE SWAVE{N,NTYPE,NLN,NLENS,NLA,NLAMP,F,RHOS, 
1 A,SWPOW,QS) 

C 
C THIS IS A SUBROUTINE TO CALCULATE THE SHORT WAVE RADIATION EXCHANGE 
C 

REAL F{20,20) ,RHOS (20) ,A(20) ,SWPOW,TRANSL(20) ,TRANSP(20) , 
1 TRANSR(20) 

DOUBLE PRECISION QS(20) ,EXITS (20) ,EXDUM(20) , 
1 EXLAMP,EXLENS(5),ESL{20),ESP{20),ESR{20),ES{20) 

INTEGER NLENS{5,3),NLAMP{5) 
COMMON /SW/ TRANSL,TRANSP,TRANSR,ESL,ESP,ESR 

C LAMP POWER IS ASSUMED TO BE EQUALLY SHARED AMONG LAMP NODES 
IF (NLA .EQ. 0) GO TO 150 
EXLAMP=SWPOW/NLA 
DO 100 K=l,NLA 
EXITS{NLAMP{K»=EXLAMP/A{NLAMP{K» 

100 CONTINUE 
C ======================================================== 
C 

C 

C 

C 

C 

C 

150 IF (NLN .EQ. 0) GO TO 180 
DO 160 K=l, NLN 

IF (NLENS{K,2) .EQ. 1) THEN 
EXLENS{K)=TRANSL{NLENS{K,3»*ESL{NLENS{K,3» 

ELSE IF (NLENS{K,2) .EQ. 2) THEN 
EXLENS{K)=TRANSP{NLENS{K,3»*ESP{NLENS{K,3» 

ELSE IF (NLENS{K,2) .EQ. 3) THEN 
EXLENS{K)=TRANSR{NLENS{K,3»*ESR{NLENS{K,3» 

END IF 
EXITS{NLENS{K,l»=EXLENS{K) 

160 CONTINUE 
C ======================================================== 

180 DO 400 I=2,N 
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C 

C 

ES(I)=O. 
DO 200 J=2,N 
ES(I)=ES(I)+F(I,J)*EXITS(J) 

200 CONTINUE 

EXDUM(I) =EXITS (I) 

EXITS(I)=RHOS(I)*ES(I) 
DO 250 K=l,NLA 
IF (I .EQ. NLAMP(K» EXITS(I)=EXLAMP/A(I)+RHOS(I)*ES(I) 

250 CONTINUE 
DO 260 K=l,NLN 
IF (I .EQ. NLENS(K,l» EXITS(I)=EXLENS(K)+RHOS(I)*ES(I) 

260 CONTINUE 
400 CONTINUE 

C ========================================================== 
C 

C 

C 

C 
C 

C 

DO 500 1=2,N 
IF (ABS(EXITS(I)-EXDUM(I» .GT. 0.0001) GO TO 180 

500 CONTINUE 

680 DO 700 1=2,N 
ES(I)=O. 
DO 700 J=2,N 
ES(I)=ES(I)+F(I,J)*EXITS(J) 

700 CONTINUE 

DO 750 1=2,N 
QS(I)=A(I)*(ES(I)-EXITS(I» 
DO 730 K=l,NLN 
IF (I .EQ. NLENS(K,l» THEN 

IF (NTYPE .EQ. 1) THEN 
QS(I)=A(I)*(l.-RHOS(I)-TRANSL(I»*ES(I) 

ELSE IF (NTYPE .EQ. 2) THEN 
QS(I)=A(I)*(l.-RHOS(I)-TRANSP(I»*ES(I) 

ELSE IF (NTYPE .EQ. 3) THEN 
QS(I)=A(I)*(l.-RHOS(I)-TRANSR(I»*ES(I) 

END IF 
END IF 

730 CONTINUE 
IF (NTYPE .EQ. 1) THEN 
ESL(I)=ES(I) 
ELSE IF (NTYPE .EQ. 2) THEN 
ESP(I)=ES(I) 
ELSE IF (NTYPE .EQ. 3) THEN 
ESR(I)=ES(I) 

END IF 
750 CONTINUE 

RETURN 
END 

SUBROUTINE CONVEC(N,NBT,CHARL,A,T,QH) 

C THIS IS A SUBROUTINE TO CALCULATE THE CONVECTIVE HEAT EXCHANGE 
C 

INTEGER NBT(20) 
REAL A(20),CHARL(20) 
DOUBLE PRECISION T(20),QH(20),RA,HC,TF,PR,DYNVIS 
DO 100 1=2,N 
TF=(T(I)+T(1»/2. 
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IF (TF .GE. 300.) THEN 
DYNVIS=(1.8462+(TF-300.)*0.2288/S0.)*1.E-S 
PR=0.708-(TF-300.)*0.011/SO. 
ELSE 
DYNVIS=(1.8462-(300.-TF)*0.2472/S0.)*1.E-S 
PR=0.708+(300.-TF)*0.014/S0. 
END IF 

C RA=S.63694E10*CHARL(I)**3.*ABS(T(I)-T(1»/(T(I)+T{1» 
RA=122l38S.l7S*CHARL(I)**3*ABS(T(I)-T(1»*PR/(TF**3*DYNVIS*DYNVIS) 
IF (RA .EQ. 0.) THEN 
HC=O. 
ELSE 

C RA IS RAYLEIGH NUMBER AND IS EQUAL TO GrPr 
C 

IF (NBT(I) .EQ. 1) THEN 
IF (T(I) .GT. T(l» THEN 
IF (RA .LE. 8.E6) THEN 
HC=0.S4*RA**0.2S*0.02624/CHARL(I) 
ELSE 
HC=0.lS*RA**O.33333333*0.02624/CHARL(I) 

C THE USE OF DIFFERENT EQUATIONS FOR RA LE OR GT 8E6 IS ACCORDING TO 
C HOLMAN 
C THE TWO EQUATIONS HAVE A CROSSOVER AT RA=4.7383843E6 

END IF 
ELSE 

IF (RA .GE. 1.ES) THEN 
HC=O.27*RA**O.2S*0.02624/CHARL(I) 
ELSE 
HC=O. 
END IF 

END IF 
ELSE IF (NBT(I) .EQ. 2) THEN 

IF (T(I) .GT. T(l» THEN 
IF (RA .GE. 1.ES) THEN 
HC=0.27*RA**O.2S*0.02624/CHARL(I) 
ELSE 
HC=O. 
END IF 

ELSE 
IF (RA .LE. 8.E6) THEN 
HC=O.S4*RA**O.2S*0.02624/CHARL(I) 
ELSE 
HC=O.15*RA**0.33333333*0.02624/CHARL(I) 
END IF 

END IF 
ELSE IF (NBT{I) .EQ. 3) THEN 

HC=O.S9*RA**O.2S*O.02624/CHARL(I) 
ELSE IF «NBT(I) .EQ. 4) .OR. (NBT(I) .EQ. S) .OR. 

1 (NBT(I) .EQ. 6» THEN 
C THE FOLLOWING CORRELATIONS FOR NATURAL CONVECTION FROM HORIZONTAL 
C CYLINDERS IS ACCORDING TO MORGAN 1975 

IF (RA .LE. 1.E2) THEN 
HC=1.02*RA**0.148*O.02624/CHARL(I) 

ELSE IF (RA .LE. 1.E4) THEN 
HC=O.8S*RA**0.188*O.02624/CHARL(I) 

ELSE IF (RA .LE. 1.E7) THEN 
HC=0.48*RA**O.2S*0.02624/CHARL(I) 

ELSE 
HC=0.12S*RA**0.3333*O.02624/CHARL(I) 

END IF 
C ACCORDING TO DATA IN KUEHN AND GOLDSTEIN 
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C Nu=0.7S*Nu{AVE} FOR UPPER HALF OF CYLINDER 
C Nu=1.22*Nu{AVE} FOR LOWER HALF OF CYLINDER 

IF {NBT{I} .EQ. 4} THEN 

C 
C 
C 

C 

HC=HC*0.7S 
ELSE IF {NBT{I} .EQ. S} THEN 

HC=HC*1.22 
END IF 

ELSE IF {NBT{I} .EQ. 7} THEN 
HC=CHARL{I} 

ELSE 
HC=O. 

END IF 
END IF 
QH{I}=HC*{T{l}-T{I}}*A{I} 

100 CONTINUE 
QH{l}=O. 
DO 200 J=2,N 
QH{l}=QH{l}-QH{J} 

200 CONTINUE 
RETURN 
END 

SUBROUTINE LPLL{NLA,NLAMP,LAMPP,LAMPLM,LPMAX,LLMAX,T,NPT,RLO} 

C THIS IS A SUBROUTINE TO CALCULATE THE EFFECT OF MINIMUM LAMP WALL 
C TEMPERATURE ON LAMP POWER AND LAMP LUMEN OUTPUT 
C 
C RLO{SO,3} IS A MATRIX ON THE RELATIVE LIGHT OUTPUT AND RELATIVE 
C LAMP POWER TO BE READ FROM AN INPUT FILE CONTAINING LAMP DATA 
C THE FIRST DATA OF THIS FILE IS THE NUMBER OF TEMPERATURE POINTS, 
C THE FIRST COLUMN IS THE MINIMUM LAMP WALL TEMPERATURE, 
C THE SECOND COLUMN IS THE RELATIVE LIGHT OUTPUT, 
C THE THIRD COLUMN IS THE RELATIVE LAMP POWER 
C 

C 

C 

REAL LAMPP,LAMPLM,LPMAX,LLMAX 
DOUBLE PRECISION TLMIN,T{20},RLO{BO,3},RT 
INTEGER NLAMP{S} 
TLMIN=T{NLAMP{l}} 
IF {NLA .GT. l} THEN 

DO 100 I=2,NLA 
TLMIN=DMIN1{TLMIN,T{NLAMP{I}}} 

100 CONTINUE 
END IF 

IF {{TLMIN .LT. RLO{l,l}} .OR. {TLMIN .GE. RLO{NPT,l}}} THEN 
LAMPP=O. 
LAMPLM=O. 

ELSE 
DO 200 I=l,NPT-l 
IF {{TLMIN .GE. RLO{I,l}} .AND. {TLMIN .LT. RLO{I+l,l}}} THEN 

RT={RLO{I+l,l}-TLMIN}/{RLO{I+l,l}-RLO{I,l}} 
LAMPP =LPMAX*{RLO{I+l,3}-RT*{RLO{I+l,3}-RLO{I,3}}} 
LAMPLM=LLMAX*{RLO{I+l,2}-RT*{RLO{I+l,2}-RLO{I,2}}} 
GO TO 300 

END IF 
200 CONTINUE 
300 CONTINUE 

END IF 
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RETURN 
END 

E.3 List of input data necessary for LITEACl 

SIX data files are needed for LITEACI: 

I. A text file named "INDAT" containing the following: 

(i) Input filenames for data of nodes in the three sections - one file for each section. 

(ii) Input filename oflamp data. 

(Hi) Input filename of data concerning inter-section conduction and convection. 

(iv) Output filenames: calculated temperature of nodes - one file for each section. 

(v) Output filename for other output. 

(vi) A text variable stating whether on/off cycles are to be simulated: Y or N. 

(vii) Number of cycles (ifY for (vi) above)/Number of hours run (ifN for (vi) above). 

(viii) Number of hours lights on. 

(ix) Time step m seconds. 

(x) Output time interval in hours or minutes. 

2. A data file for the luminaire section containing the following: 

(i) Number of nodes in the section. 

(li) Number oflamp nodes in the section. 

(iii) Node numbers of lamp nodes (if any). 

(iv) Number oflens (diffuser) nodes. 

(v) Node number of lens (diffuser) nodes (if any); section and node number of the 

node opposite to the lens node. 

(vi) Node number of ballast (if any). 

(vii) Initial temperatures of nodes. 

(viii) Area of nodes. 

(ix) Thermal capacity of nodes. 

(x) Emissivity of nodes. 
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(xi) Reflectivity of nodes for long-wave radiation. 

(xii) Reflectivity of nodes for short-wave radiation. 

(xiii) Transmission coefficient of nodes for long-wave radiation. 

(xiv) Transmission coefficient of nodes for short-wave radiation. 

(xv) Form factors - a N x N matrix. 

(xvi) The type of body of each node for the calculation of convective heat transfer 

coefficient. 

(xvii) The characteristic length of each node for the calculation of convective heat 

transfer coefficient. 

3. A data file for the plenum section containing the same items as in the data file for the 

luminaire section. 

4. A data file for the room section containing the same items as in the data file for the 

luminaire section. 

5. A data file for the lamp containing the following: 

(i) Lamp power in Watts. 

(ii) Luminous flux output in lumens. 

(iiI) Ballast power. 

(iv) Luminous efficacy of radiation. 

(v) Number of curve points for light outputJIamp power vs temperature relationship. 

(vi) A set of three values: temperature, relative light output and relative lamp power. 

6. A data file containing the following information for inter-section conduction! 

convection: 

(i) Number of conductors. 

(ii) A set of 6 values giving the section and node numbers and the conductance. 

(iii) Air flow rates: supply to room, room to plenum, plenum to supply. 

(iv) Environmental temperature. 
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AppendixF 

Program LITEAC2 

F.l Description of the program 

The computer program LITEAC2 consists of a main program and seven 

subroutines: LWAVE, SWAVE, CONVEC, LAMPPC, GAUSSPIV, SPIV and 

UNPIV. The subroutines LAMPPC, GAUSSPIV, SPIV and UNPIV form the 

fluorescent lamp positive column model described in Chapters 5 and 6. The main 

program and all subroutines are descnbed in the following sub-sections. 

F.I.I Main program LITEAC2 

The main program is very similar to that of LITEACl (described in Section 

E.1.l of Appendix E) with the following dIfferences: 

(i) LITEAC2 reads input data from five data files only. The lamp data file used in 

LITEACl is not necessary. Instead, the following data are included in the 

luminaire data file: total number of lamps, ballast power, the propertIes of the 

phosphors in the lamp represented by the integrals IS(J)V(J)dJ and 
vu 

I S(J) 25~ 7dJ in equation (6.39), and the quantum efficiency of the .... . 

phosphors. 

(ii) The main program ofLITEAC2 compares the temperatures of all lamp nodes at 

each time step and fmds the minimum lamp wall temperature before calling the 

subroutine LAMPPC. (This comparison between temperatures of lamp nodes 

was included in the subroutine LPLL in LITEACl.) 
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(iii) The subroutine LAMPPC, which is the fluorescent lamp positive column 

model, is used in LlTEAC2 in place ofLPLL. 

F.l.2 Subroutines LWAVE, SWAVE and CONVEC 

The subroutines L WA YE, SWA YE and CONVEC are the same as those 

described in Sections E.1.2, E.1.3 and E.1.4, respectively, of Appendix E. 

F.l.3 Subroutine LAMPPC 

LAMPPC gets the following value from the main program: minimum lamp 

wall temperature, the quantities represented by the integrals f S(.tl)V(.tl)d.tl and 
vu 

f S(.tl) 25~.l.tl in equation (639), and the quantum efficiency of the phosphors. 
vu 

LAMPPC perform calculations according to the steps described in Section 6.5. It 

returns to the main program the following variables: the total lamp power, the power 

of visible radiation output from the lamp and total light output of the lamps. 

F.l.4 Subroutines GAUSSPlV, SPIV and UNPIV 

These are subroutines used in LAMPPC for solving the set of simultaneous 

equations (6.3)-(6.8) for the number densities of the 6 mercury excited states in the 

positive column. The subroutine GAUSSPIV is a standard program for solving 

simultaneous equations in the form ofAX=B where A is an n x n matrix and X (the 

unknown) and B are column vectors. Gauss elimination with row and column pivoting 

is the method used in this subroutine. The subroutine SPIV is used by GAUSSPIV to 

rearrange the order of rows and columns for the fastest gauss elimination for obtaining 

solution. The subroutine UNPIV is used for undoing the column rearrangements so 

that the output ofGAUSSPIV is in the correct order. 
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F.2 Program listing 

PROGRAM LITEAC2 
C 
C TRANSIENT THERMAL MODEL OF AN ENCLOSURE WITH A FLUORESCENT LUMINAIRE 
C AS THE ONLY HEAT AND RADIATION SOURCE AND AN IDEALLY CONTROLLED 
C AIR-CONDITIONING SYSTEM FOR KEEPING ROOM AIR TEMPERATURE CONSTANT 
C 
C THE ENCLOSURE IS DIVIDED INTO 3 SECTIONS: 
C 1. THE LUMINAIRE SECTION; 
C 2. THE PLENUM SECTION; 
C 3. THE ROOM SECTION. 
C 
C FOR ALL SECTIONS, THE FIRST NODE IS THE AIR NODE 
C 
C 

C 

REAL AL(20),AP(20),AR(20),CL(20),CP(20), 
1 CR(20),EML(20),EMP(20),EMR(20),FL(20,20),FP(20,20),FR(20,20), 
2 CHARLL(20) ,CHARLP(20) ,CHARLR(20) , 
3 RHOLL(20) ,RHOLP(20) ,RHOLR(20) ,RHOSL(20) ,RHOSP(20) ,RHOSR(20) , 
4 TRANSL(20) ,TRANSP(20) ,TRANSR(20) ,TRANLL(20) ,TRANLP(20) , 
5 TRANLR(20) ,DTIME,LAMPP,LAMPLM,EFFIC, SWPOW,BALPOW, SSLL02 ,SSLVL, 
6 QEFFI,CHRP,CHRL,CHPL,CKBS(30),OUTIME 

DOUBLE PRECISION TL(20),TP(20),TR(20),DTL(20), 
1 DTP(20),DTR(20) ,QGL(20),QGP(20) ,QGR(20) ,QLL(20) ,QLP(20) , 
2 QLR(20) ,QSL(20) ,QSP(20) ,QSR(20) ,QHL(20) ,QHP(20) ,QHR(20), 
3 QCL(20) ,QCP(20) ,QCR(20),DQL(20) ,DQP(20) ,DQR(20) , 
4 ELL(20) ,ELP(20) ,ELR(20) ,ESL(20) ,ESP(20), 
5 ESR(20),QCDUM,TENV 

INTEGER NTIME,NTOFF,NHROFF,NDAY,NTONDT,NTOFFT,IKBS(30,S) , 
1 NBTL(20) ,NBTP(20) ,NBTR(20) , 
2 NLAL,NLAP,NLAR,NLAMPL(S) ,NLAMPP(S) ,NLAMPR(S) , 
3 NLNL,NLNP,NLNR,NLENSL(S, 3) ,NLENSP(S,3) ,NLENSR(S,3) , 
4 NTYPEL,NTYPEP,NTYPER,NLAMPS 

CHARACTER B,HORM 
CHARACTER*12 INPUT1,INPUT2,INPUT3,INPUTS, 

1 OUTPU1,OUTPU2,OUTPU3,OUTPU4 
COMMON /LW/ TRANLL, TRANLP, TRANLR, ELL, ELP, ELR, 

1 /SW/ TRANSL,TRANSP,TRANSR,ESL,ESP,ESR 

C FORMAT STATEMENTS 
C 

27 FORMAT (lX,F10.2,12F11.S) 
C 
C SPECIFYING INPUT AND OUTPUT FILENAMES 
C 

OPEN (7,FILE='INDAT',STATUS='OLD') 
READ (7,*) INPUT1,INPUT2,INPUT3,INPUTS,OUTPU1,OUTPU2, 

1 OUTPU3,OUTPU4,B,NTIME,NHROFF,DTIME,OUTIME,HORM 
CLOSE (7) 
IF «HORM .EQ. 'H') .OR. (HORM .EQ. 'h'» THEN 

OUTIME=OUTIME*3600. 
ELSE IF ( (HORM .EQ. 'M' ) .OR. (HORM .EQ. 'm' ) ) THEN 

OUTIME=OUTIME*60. 
ELSE IF ( (HORM .EQ. 'S' ) . OR. (HORM .EQ . 's' » THEN 

OUTIME=OUTIME 
ELSE 

WRITE (*, *) (, OUTPUT TIME INTERVAL ERROR') 
STOP 

END IF 
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C 
C READ INPUT DATA 
C 

OPEN (a,FILE=INPUT1,STATUS='OLD') 
READ (a,*) NL,NLAL, {NLAMPL{I),I=l,NLAL),NLNL, 

1 ({NLENSL{I,J) ,J=1,3),I=1,NLNL) ,NBASTL, (TL{I),I=l,NL), 
2 (AL (I) ,1=l,NL) , (CL (I) ,1=l,NL) , (EML (I) ,1=1 ,NL) , (RHOLL (I) ,I=l,NL) , 
3 (RHOSL{I) ,I=l,NL) , (TRANLL{I),I=l,NL), (TRANSL{I) ,I=l,NL) , 
4 ({FL{I,J) ,J=l,NL) ,I=l,NL), (NBTL{I) ,I=l,NL), (CHARLL{I) ,I=l,NL), 
5 NLAMPS,BALPOW,SSLL02,SSLVL,QEFFI 

CLOSE (a) 
C 

C 

C 
C 

C 

C 

C 

C 

C 

C 

C 
C 

OPEN (9,FILE=INPUT2,STATUS='OLD') 
READ (9,*) NP,NLAP, (NLAMPP{I),I=l,NLAP),NLNP, 

1 ({NLENSP{I,J),J=1,3),I=l,NLNP), (TP{I),I=l,NP), 
2 (AP{I) ,I=l,NP), (CP{I) ,I=l,NP), (EMP{I) ,I=l,NP), (RHOLP{I) ,I=l,NP), 
3 (RHOSP{I) ,I=l,NP) , (TRANLP{I) ,I=l,NP) , (TRANSP{I),I=l,NP), 
4 ({FP{I,J) ,J=l,NP) ,I=l,NP), (NBTP{I) ,I=l,NP), (CHARLP{I) ,I=l,NP) 

CLOSE (9) 

OPEN (lO,FILE=INPUT3,STATUS='OLD') 
READ (lO,*) NR,NLAR, (NLAMPR{I) ,I=l,NLAR) ,NLNR, 

1 ({NLENSR{I,J),J=1,3),I=l,NLNR), (TR{I),I=l,NR), 
2 (AR{I) ,I=l,NR), (CR{I) ,I=l,NR), (EMR{I) ,I=l,NR), (RHOLR{I) ,I=l,NR), 
3 (RHOSR{I) ,I=l,NR) , (TRANLR{I) ,I=l,NR) , (TRANSR{I) ,I=l,NR) , 
4 ({FR{I,J),J=l,NR),I=l,NR), (NBTR{I),I=l,NR), (CHARLR{I),I=l,NR) 

CLOSE (lO) 

OPEN (12,FILE=INPUTS,STATUS='OLD') 
READ (12,*) NCOND, ({IKBS{I,J),J=l,S),CKBS{I) ,I=l,NCOND) , 

1 CHRP,CHRL,CHPL,TENV 
CLOSE (12) 

AL (l) =1. 0 
AP (l) =1. ° 
AR{l) =1. 0 

OPEN (13,FILE=OUTPU1,STATUS='NEW') 

OPEN (14,FILE=OUTPU2,STATUS='NEW') 

OPEN (lS,FILE=OUTPU3,STATUS='NEW') 

OPEN (16,FILE=OUTPU4,STATUS='NEW') 

X=O. 
WRITE (13,27) x, (TL{I)-273.,I=1,NL) 
WRITE (14,27) x, (TP{I) -273.,I=1,NP) 
WRITE (lS,27) x, (TR{I)-273.,I=1,NR) 
WRITE (16,27) X,LAMPP,SWPOW,LAMPLM,QGL{NBASTL),ESR{8)*EFFIC 
IF ({B.EQ. 'Y') .OR. (B.EQ. 'y'» THEN 

NDAY=NTIME 
NTIME=a6400 

ELSE 
NDAY=l 
NTIME=NTIME*3600 

END IF 
NTOFF=NHROFF*3600 
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C 
C 

C 

NTYPEL=l 
NTYPEP=2 
NTYPER=3 

C IF «NLAL .NE. 0) .OR. (NLAP .NE. 0) .OR. (NLAR .NE. 0» 
C 1 CALL LAMPTC(C) 
C 
C CALCULATE VALUES OF THE POWER INPUT AT NODES 
C 

C 

C 

C 

C 

DO 45 I=l,NL 
QGL(I)=O. 

45 CONTINUE 
DO 46 I=l,NP 
QGP(I)=O. 

46 CONTINUE 
DO 47 I=l,NR 
QGR(I)=O. 

47 CONTINUE 
NTONDT=NINT(FLOAT(NTIME)/DTIME) 
NTOFFT=NINT(FLOAT(NTOFF)/DTIME) 
DO 700 LL=l,NDAY 

DO 700 KK=l,NTONDT 
IF (KK .GT. NTOFFT) THEN 

LAMPP=O. 
SWPOW=O. 
LAMPLM=O. 

ELSE 

IF (NLAL .NE. 0) THEN 

TLMIN=TL(NLAMPL(l» 
IF (NLAL .GT. 1) THEN 

DO 52 I=2,NLAL 
TLMIN=DMIN1(TLMIN,TL(NLAMPL(I») 

52 CONTINUE 
END IF 

C THE FLUORESCENT LAMP POSITIVE COLUMN MODEL IS USED TO CALCULATE 
C LIGHT OUTPUT AND LAMP POWER 
C 

CALL LAMPPC(TLMIN,LAMPP,SWPOW,LAMPLM,SSLL02,SSLVL,QEFFI) 
LAMPP=NLAMPS*LAMPP 
LAMPLM=NLAMPS*LAMPLM 
SWPOW=NLAMPS* SWPOW 
EFFIC=LAMPLM/SWPOW 

END IF 
END IF 
IF (NLAL .EQ. 0) GO TO 60 
IF (LAMPP .EQ. 0.) THEN 

QGL(NLAMPL(l»=O. 
ELSE 

QGL(NLAMPL(l»=LAMPP/NLAL 
END IF 
IF (NLAL .GT. 1) THEN 

DO 55 K=2,NLAL 
QGL(NLAMPL(K»=QGL(NLAMPL(l» 

55 CONTINUE 
END IF 
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C 
C LUMINIARE NODE NBASTL IS THE BALLAST NODE 
C 

60 QGL(NBASTL)=BALPOW*LAMPP 
C END IF 

C 

IF (NL .NE. 0) CALL LWAVE(NL,NTYPEL,NLNL,NLENSL,EML,FL,RHOLL, 
1 AL,TL,QLL) 

IF (NP .NE. 0) CALL LWAVE(NP,NTYPEP,NLNP,NLENSP,EMP,FP,RHOLP, 
1 AP,TP,QLP) 

IF (NR .NE. 0) CALL LWAVE(NR,NTYPER,NLNR,NLENSR,EMR,FR,RHOLR, 
1 AR,TR,QLR) 

IF (SWPOW .EQ. 0.) THEN 
DO 65 I=l,NL 
QSL(I)=O. 
ESL(I)=O. 

65 CONTINUE 
DO 66 I=l,NP 
QSP(I)=O. 
ESP(I)=O. 

66 CONTINUE 
DO 67 I=l,NR 
QSR(I)=O. 
ESR(I)=O. 

67 CONTINUE 
GOTO 70 

END IF 
c ===================================_ 

IF (NL .NE. 0) CALL SWAVE(NL,NTYPEL,NLNL,NLENSL,NLAL,NLAMPL, 
1 FL,RHOSL,AL,SWPOW,QSL) 
IF (NP .NE. 0) CALL SWAVE(NP,NTYPEP,NLNP,NLENSP,NLAP,NLAMPP, 

1 FP,RHOSP,AP,SWPOW,QSP) 
IF (NR .NE. 0) CALL SWAVE (NR,NTYPER,NLNR,NLENSR,NLAR,NLAMPR, 

1 FR,RHOSR,AR,SWPOW,QSR) 
c ============================================== 

70 

C 

400 

410 

420 
C 
C 

IF (NL .NE. 0) CALL CONVEC(NL,NBTL,CHARLL,AL,TL,QHL) 
IF (NP .NE. 0) CALL CONVEC (NP,NBTP, CHARLP,AP,TP, QHP) 
IF (NR .NE. 0) CALL CONVEC (NR, NBTR, CHARLR,AR, TR, QHR) 

DO 400 I=l,NL 
QCL(I)=O. 
CONTINUE 
DO 410 I=l,NP 
QCP(I)=O. 
CONTINUE 
DO 420 I=l,NR 
QCR(I)=O. 
CONTINUE 

DO 450 I=l,NCOND 
IF (IKBS(I,l) .EQ. 1) THEN 

IF (IKBS(I,3) .EQ. 1) THEN 
IF (IKBS(I,5) .EQ. 1 ) THEN 
QCDUM=CKBS(I)*TL(IKBS(I,2»*AL(IKBS(I,2» 

ELSE IF (IKBS(I,S) .EQ. 2) THEN 
QCDUM=CKBS(I) * (TL(IKBS(I,2»-TL(IKBS(I,4»)*AL(IKBS(I,4» 

END IF 
QCL(IKBS(I,4»=QCL(IKBS(I,4»+QCDUM 
QCL(IKBS(I,2»=QCL(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 2) THEN 
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IF (IKBS(I,S) .EQ. 1 ) THEN 
QCDUM=CKBS(I)*TL(IKBS(I,2»*AL(IKBS(I,2» 

ELSE IF (IKBS(I,S) .EQ. 2) THEN 
QCDUM=CKBS(I)*(TL(IKBS(I,2»-TP(IKBS(I,4»)*AP(IKBS(I,4» 

END IF 
QCP(IKBS(I,4»=QCP(IKBS(I,4»+QCDUM 
QCL(IKBS(I,2»=QCL(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 3) THEN 
IF (IKBS (I, S) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TL(IKBS(I,2»*AL(IKBS(I,2» 
ELSE IF (IKBS(I,S) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TL(IKBS(I,2»-TR(IKBS(I,4»)*AR(IKBS(I,4» 
END IF 
QCR(IKBS(I,4»=QCR(IKBS(I,4»+QCDUM 
QCL(IKBS(I,2»=QCL(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 0) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TL(IKBS(I,2»*AL(IKBS(I,2» 
ELSE IF (IKBS(I,S) .EQ. 2) THEN 

QCDUM=CKBS(I) *(TL(IKBS(I,2»-TENV) *AL(IKBS(I,2» 
END IF 
QCL(IKBS(I,2»=QCL(IKBS(I,2»-QCDUM 

END IF 
ELSE IF (IKBS(I,l) .EQ. 2) THEN 

IF (IKBS(I,3) .EQ. 1) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TP(IKBS(I,2»*AP(IKBS(I,2» 
ELSE IF (IKBS(I,S) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TP(IKBS(I,2»-TL(IKBS(I,4»)*AL(IKBS(I,4» 
END IF 
QCL(IKBS(I,4»=QCL(IKBS(I,4»+QCDUM 
QCP(IKBS(I,2»=QCP(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 2) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TP(IKBS(I,2»*AP(IKBS(I,2» 
ELSE IF (IKBS(I,S) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TP(IKBS(I,2»-TP(IKBS(I,4»)*AP(IKBS(I,4» 
END IF 
QCP(IKBS(I,4»=QCP(IKBS(I,4»+QCDUM 
QCP(IKBS(I,2»=QCP(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 3) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 
QCDUM=CKBS(I)*TP(IKBS(I,2»*AP(IKBS(I,2» 

ELSE IF (IKBS(I,S) .EQ. 2) THEN 
QCDUM=CKBS(I)*(TP(IKBS(I,2»-TR(IKBS(I,4»)*AR(IKBS(I,4» 

END IF 
QCR(IKBS(I,4»=QCR(IKBS(I,4»+QCDUM 
QCP(IKBS(I,2»=QCP(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 0) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TP(IKBS(I,2»*AP(IKBS(I,2» 
ELSE IF (IKBS(I,S) .EQ. 2) THEN 

QCDUM-CKBS(I)*(TP(IKBS(I,2»-TENV)*AP(IKBS(I,2» 
END IF 
QCP(IKBS(I,2»=QCP(IKBS(I,2»-QCDUM 

END IF 
ELSE IF (IKBS(I,l) .EQ. 3) THEN 

IF (IKBS(I,3) .EQ. 1) THEN 
IF (IKBS(I,S) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TR(IKBS(I,2»*AR(IKBS(I,2» 
ELSE IF (IKBS(I,S) .EQ. 2) THEN 
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C 
C 

QCDUM=CKBS(I)*(TR(IKBS(I,2»-TL(IKBS(I,4»)*AL(IKBS(I,4» 
END IF 
QCL(IKBS(I,4»=QCL(IKBS(I,4»+QCDUM 
QCR(IKBS(I,2»=QCR(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 2) THEN 
IF (IKBS(I,5) .EQ. 1 ) TIIEN 

QCDUM=CKBS(I)*TR(IKBS(I,2»*AR(IKBS(I,2» 
ELSE IF (IKBS(I,5) .EQ. 2) THEN 

QCDUM=CKBS(I)*(TR(IKBS(I,2»-TP(IKBS(I,4»)*AP(IKBS(I,4» 
END IF 
QCP(IKBS(I,4»=QCP(IKBS(I,4»+QCDUM 
QCR(IKBS(I,2»=QCR(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 3) THEN 
IF (IKBS(I,5) .EQ. 1 ) TIIEN 

QCDUM=CKBS(I)*TR(IKBS(I,2»*AR(IKBS(I,2» 
ELSE IF (IKBS(I,5) .EQ. 2) TIIEN 

QCDUM=CKBS(I)*(TR(IKBS(I,2»-TR(IKBS(I,4»)*AR(IKBS(I,4» 
END IF 
QCR(IKBS(I,4»=QCR(IKBS(I,4»+QCDUM 
QCR(IKBS(I,2»=QCR(IKBS(I,2»-QCDUM 

ELSE IF (IKBS(I,3) .EQ. 0) TIIEN 
IF (IKBS(I,5) .EQ. 1 ) THEN 

QCDUM=CKBS(I)*TR(IKBS(I,2»*AR(IKBS(I,2» 
ELSE IF (IKBS(I,5) .EQ. 2) TIIEN 

QCDUM=CKBS(I) * (TR(IKBS(I,2»-TENV) *AR(IKBS(I,2» 
END IF 
QCR(IKBS(I,2»=QCR(IKBS(I,2»-QCDUM 

END IF 
ELSE IF (IKBS(I,l) .EQ. 0) TIIEN 

IF (IKBS(I,3) .EQ. 1) THEN 
IF (IKBS(I,5) .EQ. 1 ) TIIEN 

QCDUM=CKBS(I)*TENV*AL(IKBS(I,4» 
ELSE IF (IKBS(I,5) .EQ. 2) TIIEN 

QCDUM=CKBS(I)*(TENV-TL(IKBS(I,4»)*AL(IKBS(I,4» 
END IF 
QCL(IKBS(I,4»=QCL(IKBS(I,4»+QCDUM 

ELSE IF (IKBS(I,3) .EQ. 2) TIIEN 
IF (IKBS(I,5) .EQ. 1 ) TIIEN 

QCDUM=CKBS(I)*TENV*AP(IKBS(I,4» 
ELSE IF (IKBS(I,5) .EQ. 2) TIIEN 

QCDUM=CKBS(I)*(TENV-TP(IKBS(I,4»)*AP(IKBS(I,4» 
END IF 
QCP(IKBS(r,4»=QCP(IKBS(I,4»+QCDUM 

ELSE IF (IKBS(I,3) .EQ. 3) THEN 
IF (IKBS(I,5) .EQ. 1 ) TIIEN 

QCDUM=CKBS(I)*TENV*AR(IKBS(I,4» 
ELSE IF (IKBS(I,5) .EQ. 2) TIIEN 

QCDUM=CKBS(I) *(TENV-TR(IKBS(I,4») *AR(IKBS(I,4» 
END IF 
QCR(IKBS(I,4»=QCR(IKBS(I,4»+QCDUM 

END IF 
END IF 

450 CONTINUE 

DO 500 I=l,NL 
IF (CL (I) .NE. 0.) TIIEN 
DQL(I) =QGL(I) +QLL(I) +QSL(I) +QHL(I)+QCL(I) 
DTL(I)=DQL(I)*DTIME/CL(I) 
TL(I)=TL(I)+DTL(I) 
ELSE 
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TL(I)=TL(l) 
END IF 

500 CONTINUE 
DO 510 I=l,NP 

IF (CP(I) .NE. 0.) THEN 
DQP(I)=QGP(I)+QLP(I)+QSP(I)+QHP(I)+QCP(I) 
DTP(I)=DQP(I)*DTIME/CP(I) 
TP(I)=TP(I)+DTP(I) 
ELSE 
TP (I) =TP (1) 
END IF 

510 CONTINUE 
C IF (CR(l) .EQ. 0.0) THEN 

C 

C 
C 

C 

C 

C 

DO 515 I=l,NR 
IF (CR(I) .NE. 0.) THEN 
DQR(I) =QGR(I) +QLR(I) +QSR(I) +QHR(I)+QCR(I) 
DTR(I)=DQR(I)*DTIME/CR(I) 
TR(I)=TR(I)+DTR(I) 
ELSE 
TR (I) =TR (1) 
END IF 

515 CONTINUE 

IF (FLOAT(KK)/ANINT(OUTIME/DTIME) .EQ. 
1 FLOAT(KK/NINT(OUTIME/DTIME») THEN 

IF ((HORM .EQ. 'H') .OR. (HORM .EQ. 'h'» THEN 
X=FLOAT(KK)*DTIME/3600. 

ELSE IF ((HORM .EQ. 'M') .OR. (HORM .EQ. 'm'» THEN 
X=FLOAT(KK)*DTIME/60. 

ELSE IF ((HORM .EQ. 'S') .OR. (HORM .EQ. 's'» THEN 
X=FLOAT(KK)*DTIME 

END IF 

IF (NL .NE. 0) WRITE (13,27) X, (TL(I) -273.,I=l,NL) 
IF (NP .NE. 0) WRITE (14,27) X, (TP(I) -273.,I=l,NP) 
IF (NR .NE. 0) WRITE (15,27) X, (TR(I) -273., I=l,NR) 

WRITE (16,27) X,LAMPP,SWPOW,LAMPLM,QGL(NBASTL),ESR(8)*EFFIC, 
1 QCR(l),QHR(l) 

END IF 
700 CONTINUE 

CLOSE (13) 
CLOSE (14) 
CLOSE (15) 
CLOSE (16) 
STOP 
END 

SUBROUTINE LWAVE(N,NTYPE,NLN,NLENS,EM,F,RHOL,A,T,QL) 

C THIS IS A SUBROUTINE TO CALCULATE THE LONGWAVE RADIATION EXCHANGE 
C 

REAL EM(20),F(20,20) ,RHOL(20) ,A(20) ,EB(20) ,SIGMA, 
1 TRANLL(20) ,TRANLP(20) ,TRANLR(20) 

DOUBLE PRECISION T(20),QL(20),EL(20),EXITL(20),EXDUM(20), 
1 EXLENS,ELL(20) ,ELP(20) ,ELR(20) ,EXITL2(20) 

COMMON /LW/ TRANLL, TRANLP, TRANLR, ELL, ELP, ELR 
INTEGER NLENS(5,3) 
SIGMA=5.669E-8 
DO 100 I=2,N 
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C 

EB{I)=EM{I)*SIGMA*T{I)**4. 
EXITL{I)=EB{I) 
EXITL2{I)=0. 

100 CONTINUE 
c ======================================================== 
C 

C 

150 IF (NLN .EO. 0) GO TO 180 
DO 160 K=l, NLN 
EXLENS=O. 
IF (NLENS{K,2) .EO. 1) THEN 

IF (TRANLL{NLENS{K,3» .NE. 0.) 
1 EXLENS=TRANLL(NLENS(K,3»*ELL(NLENS(K,3» 

ELSE IF (NLENS(K,2) .EO. 2) THEN 
IF (TRANLP{NLENS(K,3» .NE. 0.) 

1 EXLENS=TRANLP(NLENS(K,3»*ELP(NLENS{K,3» 
ELSE IF (NLENS(K,2) .EO. 3) THEN 

IF (TRANLR(NLENS(K,3» .NE. 0.) 
1 EXLENS=TRANLR(NLENS(K,3»*ELR{NLENS{K,3» 

END IF 
EXITL(NLENS(K,l»=EXITL(NLENS(K,l»+EXLENS 
EXITL2(NLENS(K,1»=EXLENS 

160 CONTINUE 
C ======================================================== 

C 

C 

C 
C 

180 DO 250 I=2,N 
EL(I)=O. 
DO 200 J=2,N 
EL(I)=EL{I)+F(I,J)*EXITL(J) 

200 CONTINUE 
EXDUM(I) =EXITL (I) 

EXITL(I)=EB(I) +RHOL(I) *EL(I)+EXITL2 (I) 

250 CONTINUE 
DO 300 I=2,N 
IF (ABS(EXITL{I)-EXDUM(I» .GT. 0.0001) GO TO 180 

300 CONTINUE 

DO 420 I=2,N 
EL(I)=O. 
DO 420 J=2,N 
EL(I)=EL(I)+F(I,J)*EXITL(J) 

420 CONTINUE 
DO 460 I=2,N 
OL(I)=A{I)*{EL(I)-EXITL(I» 
DO 450 K=l,NLN 

IF (I .EO. NLENS(K,l» THEN 
IF {(NTYPE .EO. 1) .AND. (TRANLL{I) .NE. 0.» THEN 
QL(I)=A(I)*{l.-RHOL(I)-TRANLL(I»*EL(I) 

ELSE IF {(NTYPE .EO. 2) .AND. (TRANLP{I) .NE. 0.» THEN 
QL(I)=A{I)*(l.-RHOL(I)-TRANLP(I»*EL(I) 

ELSE IF ({NTYPE .EO. 3) .AND. (TRANLR(I) .NE. 0.» THEN 
OL(I)=A{I)*(l.-RHOL(I)-TRANLR(I»*EL{I) 

END IF 
END IF 

450 CONTINUE 
IF (NTYPE .EO. 1) THEN 

ELL (I) =EL (I) 
ELSE IF (NTYPE .EO. 2) THEN 
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C 

C 

ELP(I)=EL(I) 
ELSE IF (NTYPE .EQ. 3) THEN 
ELR(I) =EL(I) 

END IF 
460 CONTINUE 

RETURN 
END 

SUBROUTINE SWAVE(N,NTYPE,NLN,NLENS,NLA,NLAMP,F,RHOS, 
1 A, SWPOW, QS) 

C THIS IS A SUBROUTINE TO CALCULATE THE SHORT WAVE RADIATION EXCHANGE 
C 
C 

REAL F(20,20),RHOS(20),A(20),SWPOW,TRANSL(20),TRANSP(20), 
1 TRANSR(20) 

DOUBLE PRECISION QS(20),EXITS(20),EXDUM(20), 
1 EXLAMP,EXLENS(5),ESL(20),ESP(20),ESR(20),ES(20) 

INTEGER NLENS(5,3),NLAMP(5) 
COMMON /SW/ TRANSL,TRANSP,TRANSR,ESL,ESP,ESR 

C LAMP POWER IS ASSUMED TO BE EQUALLY SHARED AMONG LAMP NODES 
IF (NLA .EQ. 0) GO TO 150 
EXLAMP=SWPOW/NLA 
DO 100 K=l,NLA 
EXITS(NLAMP(K»=EXLAMP/A(NLAMP(K» 

100 CONTINUE 
C ======================================================== 
C 

C 

C 

C 

C 

C 

150 IF (NLN .EQ. 0) GO TO 180 
DO 160 K=l,NLN 

IF (NLENS(K,2) .EQ. 1) THEN 
EXLENS(K)=TRANSL(NLENS(K,3»*ESL(NLENS(K,3» 

ELSE IF (NLENS(K,2) .EQ. 2) THEN 
EXLENS(K)=TRANSP(NLENS(K,3»*ESP(NLENS(K,3» 

ELSE IF (NLENS(K,2) .EQ. 3) THEN 
EXLENS(K)=TRANSR(NLENS(K,3»*ESR(NLENS(K,3» 

END IF 
EXITS(NLENS(K,l»=EXLENS(K) 

160 CONTINUE 
c ======================================================== 

C 

C 

180 DO 400 I=2,N 
ES(I)=O. 
DO 200 J=2,N 
ES(I)=ES(I)+F(I,J)*EXITS(J) 

200 CONTINUE 

EXDUM(I) =EXITS (I) 

EXITS(I)=RHOS(I)*ES(I) 
DO 250 K=l,NLA 
IF (I .EQ. NLAMP(K» EXITS(I)=EXLAMP/A(I)+RHOS(I)*ES(I) 

250 CONTINUE 
DO 260 K=l,NLN 
IF (I .EQ. NLENS(K,l» EXITS (I)=EXLENS (K) +RHOS(I) *ES(I) 

260 CONTINUE 
400 CONTINUE 
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C ========================================================== 
C 

C 

C 

C 
C 

C 
C 
C 

C 

DO 500 I=2,N 
IF (ABS(EXITS(I)-EXDUM(I» .GT. 0.0001) GO TO 180 

500 CONTINUE 

680 DO 700 I=2,N 
ES(I)=O. 
DO 700 J=2,N 
ES(I)=ES(I)+F(I,J)*EXITS(J) 

700 CONTINUE 

DO 750 I=2,N 
QS(I)=A(I)*(ES(I)-EXITS(I» 
DO 730 K=l,NLN 
IF (I .EQ. NLENS(K,l» THEN 

IF (NTYPE .EQ. 1) THEN 
QS(I)=A(I)*(l.-RHOS(I)-TRANSL(I»*ES(I) 

ELSE IF (NTYPE .EQ. 2) THEN 
QS(I)=A(I)*(l.-RHOS(I)-TRANSP(I»*ES(I) 

ELSE IF (NTYPE .EQ. 3) THEN 
QS(I)=A(I)*(l.-RHOS(I)-TRANSR(I»*ES(I) 

END IF 
END IF 

73 0 CONTINUE 
IF (NTYPE .EQ. 1) THEN 
ESL(I)=ES(I) 
ELSE IF (NTYPE .EQ. 2) THEN 
ESP (I) =ES (I) 
ELSE IF (NTYPE .EQ. 3) THEN 
ESR (I) =ES (I) 

END IF 
750 CONTINUE 

RETURN 
END 

SUBROUTINE CONVEC(N,NBT,CHARL,A,T,QH) 

C THIS IS A SUBROUTINE TO CALCULATE THE CONVECTIVE HEAT EXCHANGE 
C 

INTEGER NET (20) 
REAL A(20),CHARL(20) 
DOUBLE PRECISION T(20) ,QH(20) ,RA,HC,TF,PR,DYNVIS 
DO 100 I=2,N 
TF=(T(I)+T(l»/2. 
IF (TF .GE. 300.) THEN 
DYNVIS=(l.8462+(TF-300.)*0.2288/s0.)*1.E-s 
PR=0.708-(TF-300.)*0.011/s0. 
ELSE 
DYNVIS=(l.8462-(300.-TF)*0.2472/s0.)*1.E-s 
PR=O.708+(300.-TF)*0.014/s0. 
END IF 

C RA=s.63694E10*CHARL(I)**3.*ABS(T(I)-T(l»/(T(I)+T(l» 
RA=122138s.17s*CHARL(I)**3*ABS(T(I)-T(l»*PR/(TF**3*DYNVIS*DYNVIS) 
IF (RA .EQ. 0.) THEN 
HC=O. 
ELSE 
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C RA IS RAYLEIGH NUMBER AND IS EQUAL TO GrPr 
C S.63694E10=9.S*.70S*2/1S.69E-6**2 
C 12213SS.17S=9.S*(1.0132ES/2S7)**2 
C NBT(I) =1 MEANS HORIZONTAL PLATE UPPER SURFACE 
C NBT(I) =2 MEANS HORIZONTAL PLATE LOWER SURFACE 
C NBT(I)=3 MEANS VERTICAL PLATE 
C NET(I)=4 MEANS HORIZONTAL CYLINDER UPPER HALF 
C NET(I)=S MEANS HORIZONTAL CYLINDER LOWER HALF 
C NBT(I) =6 MEANS HORIZONTAL CYLINDER WHOLE 
C NBT(I)=7 MEANS OTHERS 

IF (NBT(I) .EQ. 1) THEN 
IF (T(I) .GT. T(l» THEN 
IF (RA .LE. S.E6) THEN 
HC=O.S4*RA**O.2S*O.02624/CHARL(I) 
ELSE 
HC=O.lS*RA**O.33333333*O.02624/CHARL(I) 

C THE USE OF DIFFERENT EQUATIONS FOR RA LE OR GT SE6 IS ACCORDING TO 
C HOLMAN 
C THE TWO EQUATIONS HAVE A CROSSOVER AT RA=4.73S3S43E6 

END IF 
ELSE 

IF (RA .GE. 1.ES) THEN 
HC=O.27*RA**O.2S*O.02624/CHARL(I) 
ELSE 
HC=O. 
END IF 

END IF 
ELSE IF (NET (I) .EQ. 2) THEN 

IF (T(I) .GT. T(l» THEN 
IF (RA .GE. 1.ES) THEN 
HC=O.27*RA**O.2S*O.02624/CHARL(I) 
ELSE 
HC=O. 
END IF 

ELSE 
IF (RA .LE. S.E6) THEN 
HC=O.S4*RA**O.2S*O.02624/CHARL(I) 
ELSE 
HC=O.lS*RA**O.33333333*O.02624/CHARL(I) 
END IF 

END IF 
ELSE IF (NET (I) .EQ. 3) THEN 

HC=O.S9*RA**O.2S*O.02624/CHARL(I) 
ELSE IF «NET(I) .EQ. 4) .OR. (NET (I) .EQ. S) .OR. 

1 (NBT(I) .EQ. 6» THEN 
C THE FOLLOWING CORRELATIONS FOR NATURAL CONVECTION FROM HORIZONTAL 
C CYLINDERS IS ACCORDING TO MORGAN 1975 

IF (RA .LE. 1.E2) THEN 
HC=1.02*RA**O.14S*O.02624/CHARL(I) 

ELSE IF (RA .LE. 1.E4) THEN 
HC=O.SS*RA**O.lSS*O.02624/CHARL(I) 

ELSE IF (RA .LE. 1.E7) THEN 
HC=O.4S*RA**O.2S*O.02624/CHARL(I) 

ELSE 
HC=O.12S*RA**O.3333*O.02624/CHARL(I) 

END IF 
C ACCORDING TO DATA IN KUEHN AND GOLDSTEIN 
C Nu=O.7S*Nu(AVE) FOR UPPER HALF OF CYLINDER 
C Nu=1.22*Nu(AVE) FOR LOWER HALF OF CYLINDER 

IF (NET (I) .EQ. 4) THEN 
HC=HC*O.7S 
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ELSE IF (NBT(I) .EQ. 5) THEN 
HC=HC*1.22 

END IF 
ELSE IF (NBT(I) .EQ. 7) THEN 

HC=CHARL(I) 

C 
C 
C 

ELSE 
HC=O. 

END IF 
END IF 
QH(I)=HC*(T(l)-T(I»*A(I) 

100 CONTINUE 
QH(l)=O. 
DO 200 J=2,N 
QH(l)=QH(l)-QH(J) 

200 CONTINUE 
RETURN 
END 

C =================================================================== 
subroutine lamppc(tcsa,wlampt,waviso,lamplm,ssllo2,sslvl,qeffi) 
c 
c This is a subroutine of a positive column model of a fluorescent lamp 
c 
c Defining variables: 
c tcs - cold spot temperature in C 
c trg - rare-gas temperature in K 
c trgc - rare-gas temperature in C 
c te - electron temperature 
c kte - kb*te 
c phg - mercury vapour pressure 
c prg - rare-gas vapour pressure 
c dnO - mercury ground state density 
c dn1 - mercury 1st excited state 6-3PO density 
c dn2 - mercury 2nd excited state 6-3P1 density 
c dn3 - mercury 3rd excited state 6-3P2 density 
c dn4 - mercury 6-1P1 density 
c dns - mercury 7-3S1 density 
c dn6 - mercury upper level density 
c dnrg - rare-gas density 
c dne - electron density 
c ue - electron mobility 
c ui - ion mobility 
c arnbi - arnbipolar diffusion coefficient 
c vi - mercury ionization level 
c v1 - mercury 6-3PO state level 
c v2 - mercury 6-3P1 state level 
c v3 - mercury 6-3P2 state level 
c v4 - mercury 6-1P1 state level 
c vS - mercury 7-3S1 state level 
c v6 - mercury upper state level 
c coeion - ionization coefficient 
c rate(i,j) - transition rate from state i to j , 7 denoting ionized 
c state 
c ratemr - 6-3P2 to 6-3Pl transition rate 
c ratemO - 6-3P2 to 6-1S0 transition rate 
c raterO - 6-3P1 to 6-1S0 transition rate 
C raterrn - 6-3P1 to 6-3P2 transition rate 
c rateOr - 6-1S0 to 6-3P1 transition rate 
c gamma - 6-3P2 popUlation fraction 

F-14 



c w254 253.7 nm uv radiation power 
c efs - electric field 
c wesl - elastic scattering loss 
c pci - positive column current 
c me - electron mass 
c mrg - mass of rare-gas atom 
c mfp - mean free path 
c wil - ionization loss 
c w185 - 184.9 nm uv radiation power 
c woth - other radiation power - assumed to be equal to w185 
c wlamp - lamp power 
c effi - lamp efficacy 
c 

c 
c 
c 

c 

c 

c 

c 

c 

real kb, tes, trg, te, phg, dnrg, dne, dnO, dnl, dn2, dn3, dn4, 
1 dnS, dn6, ue, ui, vi, vi, v2, v3, v4, vS, v6, tau2, tau4, 
2 tau5, tau6, rate(O:7,O:7), a(6,6), b(6), x(6), w254, efs, wesl, 
3 pci, kte, me, mrg, mfp, w254pm, weslpm, mfpO, uio, prg, 
4 wil, wilpm, wlamp, wlampt, tubel, rad, effi, wvis, wnv, wothpm, 
5 w185, w185pm, tel, efal, kboe, kteoe, rate1?, rate27, rate3?, 
6 ambior, kteoep, c(O:7,O:7), trgd, dn1n, dn2n, dn3n, dn4n, 
7 waviso, wphos, lamplm, tcsa, wvispm, wnvpm, 881102, aslvl, qeffi 
integer icol(6) 

defining constants 

pi=3.1415927 
rad=O.018 
tubel=1.2 
kb=1.380658e-23 
e=1.6021773e-19 
kboe=8.6174e-5 
prg=400. 
dnrg=prg/(kb*298.) 
me=9.1093897e-31 
mrg=6.63e-26 
mfpO=1.43e19 
mfp=mfpO/dnrg 
vi=10.44 
v1=4.66 
v2=4.87 
v3=5.43 
v4=6.68 
v5=7.70 
v6=8.85 
ueO=1.24e25 
ue=ueO/dnrg 

uiO=4.45e21 
ui=uiO/dnrg 

pci=O .42 

te=11500. 
tcs=42. 
trgd=50. 
dne=2.1e17 

dn1=1.845e17 
dn2=1. 558e17 
dn3=2.952e17 
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c 

c 

c 

c 

c 

c 

c 

c 

dn4=1.8e16 
dnS=1.Se14 
dn6=S.le13 

phg=lO.**(lO.02S-3110.14/(tcs+267.42» 
trg=tcs+273.+trgd 
dnO=phg/(kb*trg) 

tau2=S./8.*2.23e-16*dnO*rad*1.2e-7/sqrt(trg)*sqrt(pi* 
1 alog(2.23e-16*dnO*rad/sqrt(trg») 
tau4=S./8.*71.8e-16*dnO*rad*1.3e-9/sqrt(trg)*sqrt(pi* 

1 alog(71.8e-16*dnO*rad/sqrt(trg») 

tauS=tau4 
tau6=tauS 
efs=pci/(pi*rad**2*e*ue*dne) 
kte=kb*te 
kteoe=kte/e 
kteoep=kteoe**l.S 

rate(O,l)=2.9Se34/(dnO*dne) 
rate(O,2)=1.6e3S/(dnO*dne) 
rate(O,3)=1.S7e3S/(dnO*dne) 
rate(O,4)=7.41e33/(dnO*dne) 
rate(O,S)=2.7e33/(dnO*dne) 
rate(O,6)=1.08e33/(dnO*dne) 

5 -rate(l,O)=S.ge33/(dnl*dne) 
rate(l,2)=6.S6e34/(1.4S*dnl*dne) 
rate(l,3)=8.e34/(1.4S*dnl*dne) 
rate(l,4)=3.47e33/(1.4S*dnl*dne) 
rate(l,S)=1.08e33/(1.4S*dnl*dne) 

rate(l,6)=1.08e33/(1.4S*dnl*dne) 

rate(l,7)=6.e32/(1.4S*dnl*dne) 
rate(2,O)=1.8Se34/(1.4S*dn2*dne) 
rate(2,l)=4.1ge34/(1.4S*dn2*dne) 
rate(2,3)=1.2ge3S/(1.4S*dn2*dne) 
rate(2,4)=S.87e33/(1.4S*dn2*dne) 
rate(2,S)=1.91e33/(1.4S*dn2*dne) 
rate(2,6)=6.S6e32/(1.4S*dn2*dne) 
rate(2,7)=3.e32/(1.4S*dn2*dne) 
rate(3,O)=4.S6e34/(1.4S*dn3*dne) 
rate(3,l)=8.e34/(1.4S*dn3*dne) 
rate(3,2)=2.2e3S/(1.4S*dn3*dne) 
rate(3,4)=1.S7e34/(1.4S*dn3*dne) 
rate(3,S)=7.14e33/(1.4S*dn3*dne) 
rate(3,6)=2.6e33/(1.4S*dn3*dne) 
rate(3,7)=2.1e33/(1.4S*dn3*dne) 

rate(4,S)=1.e31/(1.4S*dn4*dne) 
rate(4,6)=1.e31/(1.4S*dn4*dne) 
rate(4,7)=O 
rate(S,6)=1.e31/(1.4S*dnS*dne) 
rate(S,7)=O 
rate(6,7)=O 

rate(4,O)=7.ge32/(1.4S*dn4*dne) 
rate(4,l)=6.0e32/(1.4S*dn4*dne) 
rate(4,2)=2.02e33/(1.4S*dn4*dne) 
rate(4,3)=2.91e33/(1.4S*dn4*dne) 
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c 
c 

c 

rate(5,O) =rate (0,5) *exp (v5!kteoe) !3. 
rate(5,1)=rate(1,5)*exp«v5-vl)!kteoe)!3. 
rate(5,2)=rate(2,5)*exp«vS-v2)!kteoe) 
rate(5,3)=rate(3,5)*exp«vS-v3)!kteoe)*5.!3. 
rate(5,4)=rate(4,5)*exp«vS-v4)!kteoe) 
rate(6,0)=rate(0,6)*exp(v6!kteoe)!5. 
rate(6,1)=rate(1,6)*exp«v6-vl)!kteoe)!5. 
rate(6,2)=rate(2,6)*exp«v6-v2)!kteoe)*3.!5. 
rate(6,3)=rate(3,6)*exp«v6-v3)!kteoe) 
rate(6,4)=rate(4,6)*exp«v6-v4)!kteoe)*3.!5. 
rate(6,5)=rate(5,6)*exp«v6-v5)!kteoe)*3.!5. 

a(1,1)=rate(1,0)+rate(1,2)+rate(1,3) 
1 +rate(1,4)+rate(1,5)+rate(1,6)+rate(1,7) 
a(1,2)=-1.*rate(2,1) 
a(1,3)=-1.*rate(3,1) 
a(1,4)=-1.*rate(4,1) 
a(l,5)=-l.*rate(5,l) 
a(1,6)=-1.*rate(6,1) 
b(1)=rate(0,1)*dnO!1.45 
a(2,1)=-1.*rate(1,2) 
a(2,2)=rate(2,0)+rate(2,1)+rate(2,3)+rate(2,4) 

1 +rate(2,5)+rate(2,6)+rate(2,7)+1.e13!(1.45*dne*tau2) 
a(2,3)=-1.*rate(3,2) 
a(2,4)=-1.*rate(4,2) 
a(2,5)=-1.*rate(5,2) 
a(2,6)=-1.*rate(6,2) 
b(2)=rate(0,2)*dnO!1.45 
a(3,1)=-1.*rate(1,3) 
a(3,2)=-1.*rate(2,3) 
a(3,3)=rate(3,0)+rate(3,1)+rate(3,2) 

1 +rate(3,4)+rate(3,5)+rate(3,6)+rate(3,7) 
a(3,4)=-1.*rate(4,3) 
a(3,5)=-1.*rate(5,3) 
a(3,6)=-1.*rate(6,3) 
b(3)=rate(0,3)*dnO!1.45 
a(4,1)=-1.*rate(1,4) 
a(4,2)=-1.*rate(2,4) 
a(4,3)=-1.*rate(3,4) 
a(4,4)=rate(4,0)+rate(4,1)+rate(4,2)+rate(4,3) 

1 +rate(4,5)+rate(4,6)+rate(4,7)+1.e13!(1.45*dne*taU4) 
a(4,5)=-1.*rate(5,4) 
a(4,6)=-1.*rate(6,4) 
b(4)=rate(0,4)*dnO!1.45 
a(5,l)=-l.*rate(l,5) 
a(5,2)=-1.*rate(2,5) 
a(5,3)=-1.*rate(3,5) 
a(5,4)=-1.*rate(4,5) 
a(5,5)=rate(5,0)+rate(S,1)+rate(S,2)+rate(S,3)+rate(5,4) 

1 +rate(S,6)+rate(5,7)+1.e13!(1.45*dne*tauS) 
a(S,6)=-1.*rate(6,S) 
b(5)=rate(0,S)*dnO!1.45 
a(6,1)=-1.*rate(1,6) 
a(6,2)=-1.*rate(2,6) 
a(6,3)=-1.*rate(3,6) 
a(6,4)=-1.*rate(4,6) 
a(6,S)=-1.*rate(5,6) 
a(6,6)=rate(6,0)+rate(6,1)+rate(6,2)+rate(6,3)+rate(6,4) 

1 +rate(6,S)+rate(6,7) +1.e13! (1.45*dne*tau6) 
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I 

~ 

c 

c 

c 
c 

b(6)=rate(O,6)*dnO/1.4S 

call gausspiv(a,b,x,icol,6) 
dn1n=x(1) 
dn2n=x(2) 
dn3n=x(3) 
dn4n=x(4) 
dnSn=x(S) 
dn6n=x(6) 

if «abs(dn1n-dn1)/dn1 .gt. 0.001) .or. 
1 (abs(dn2n-dn2)/dn2 .gt. 0.001) .or. 
2 (abs(dn3n-dn3)/dn3 .gt. 0.001) .or. 
3 (abs(dn4n-dn4)/dn4 .gt. 0.001) .or. 
4 (abs(dnSn-dnS)/dnS .gt. 0.001) .or. 
S (abs(dn6n-dn6)/dn6 .gt. 0.001» then 

dn1=dnln 
dn2=dn2n 
dn3=dn3n 
dn4=dn4n 
dnS=dnSn 
dn6=dn6n 

go to S 
end if 

c(O,l)=rate(O,l)/(kteoep*(1.+0.S*vl/kteoe)*exp(-vl/kteoe» 
c(O,2)=rate(O,2)/(kteoep*(1.+0.S*v2/kteoe)*exp(-v2/kteoe» 
C(O,3)=rate(O,3)/(kteoep*(1.+0.S*v3/kteoe)*exp(-v3/kteoe» 
C(O,4)=rate(O,4)/(kteoep*(1.+0.S*v4/kteoe)*exp(-v4/kteoe» 
c(O,S)=rate(O,S)/(kteoep*(1.+0.S*vS/kteoe)*exp(-vS/kteoe» 
c(O,6)=rate(O,6)/(kteoep*(1.+0.S*v6/kteoe)*exp(-v6/kteoe» 
C(l,2)=rate(l,2)/(kteoep*(1.+0.S*(V2-vl)/kteoe) 

1 *exp«vl-v2)/kteoe» 
c(l,3)=rate(l,3)/(kteoep*(1.+0.S*(v3-v1)/kteoe) 

1 *exp«v1-v3)/kteoe» 
c(l,4)=rate(l,4)/(kteoep*(1.+0.S*(v4-vl)/kteoe) 

1 *exp«vl-v4)/kteoe» 
C(l,S)=rate(l,S)/(kteoep*(l.+O.S*(VS-vl)/kteoe) 

1 *exp«vl-vS)/kteoe» 
C(l,6)=rate(l,6)/(kteoep*(1.+0.S*(v6-vl)/kteoe) 

1 *exp«vl-v6)/kteoe» 
C(l,7)=rate(l,7)/(kteoep*(1.+0.S*(vi-vl)/kteoe) 

1 *exp«vl-vi)/kteoe» 
C(2,3)=rate(2,3)/(kteoep*(1.+0.S*(V3-v2)/kteoe) 

1 *exp«v2-v3)/kteoe» 
c(2,4)=rate(2,4)/(kteoep*(1.+0.S*(V4-v2)/kteoe) 

1 *exp«v2-v4)/kteoe» 
C(2,S)=rate(2,S)/(kteoep*(1.+0.S*(vS-v2)/kteoe) 

1 *exp«v2-vS)/kteoe» 
C(2,6)=rate(2,6)/(kteoep*(1.+0.S*(V6-v2)/kteoe) 

1 *exp«v2-v6)/kteoe» 
C(2,7)=rate(2,7)/(kteoep*(1.+0.s*(vi-v2)/kteoe) 

1 *exp«v2-vi)/kteoe» 
C(3,4)=rate(3,4)/(kteoep*(1.+0.S*(v4-v3)/kteoe) 

1 *exp«v3-v4)/kteoe» 
C(3,S)=rate(3,S)/(kteoep*(1.+0.S*(vS-v3)/kteoe) 

1 *exp«v3-vS)/kteoe» 
C(3,6)=rate(3,6)/(kteoep*(1.+0.S*(v6-v3)/kteoe) 

1 *exp«v3-v6)/kteoe» 
c(3,7)=rate(3,7)/(kteoep*(1.+O.s*(vi-v3)/kteoe) 
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c 

c 
c 

c 
c 

c 
c 

c 

c 

1 *exp( (v3-vi) /kteo';) j 

c(4,S)=rate(4,S)/(kteoep*(1.+0.S*(vS-v4)/kteoe) 
1 *exp «v4-vS) /kteoe)) 
c(4,6)=rate(4,6)/(kteoep*(1.+0.S*(v6-v4)/kteoe) 

1 *exp ( (v4-v6) /kteoe)) 
C(4,7)=rate(4,7)/(kteoep*(1.+0.S*(vi-v4)/kteoe) 

1 *exp ( (v4-vi) /kteoe) ) 
c(S,6)=rate(S,6)/(kteoep*(1.+0.S*(v6-vS)/kteoe) 

1 *exp«vS-v6)/kteoe)) 
C(S,7)=rate(S,7)/(kteoep*(1.+0.S*(vi-vS)/kteoe) 

1 *exp«vS-vi)/kteoe)) 
c(6,7)=rate(6,7)/(kteoep*(1.+0.S*(vi-v6)/kteoe) 

1 *exp «v6-vi) /kteoe)) 

C(l,O)=rate(l,O)*kteoe 
c(2,0)=rate(2,0)*kteoe 
c(2,1)=rate(2,1)*kteoe 
c(3,0)=rate(3,O)*kteoe 
c(3,1)=rate(3,1)*kteoe 
c(3,2)=rate(3,2)*kteoe 
c(4,O)=rate(4,O)*kteoe 
c(4,1)=rate(4,1)*kteoe 
c(4,2)=rate(4,2)*kteoe 
c(4,3)=rate(4,3)*kteoe 
c(S,O)=rate(S,O)*kteoe 
c(S,l)=rate(S,l)*kteoe 
c(S,2)=rate(S,2)*kteoe 
c(S,3)=rate(S,3)*kteoe 
c(S,4)=rate(S,4)*kteoe 
c(6,O)=rate(6,O)*kteoe 
c(6,1)=rate(6,1)*kteoe 
c(6,2)=rate(6,2)*kteoe 
c(6,3)=rate(6,3)*kteoe 
c(6,4)=rate(6,4)*kteoe 
c(6,S)=rate(6,S)*kteoe 
c(7,O)=O. 
c(7,1)=O. 
c(7,2)=O. 
c(7,3)=O. 
c(7,4)=O. 
c(7,S)=O. 
c(7,6)=O. 

tcs=tcsa-273. 
10 trgc=tcs+trgd 
lS trg=trgc+273. 

phg=lO.**(lO.02S-3110.14/(tcs+267.42)) 
dnO=phg/(kb*trg) 

tau2=S./8.*2.23e-16*dnO*rad*1.2e-7/sqrt (trg) *sqrt (pi* 
1 alog(2.23e-16*dnO*rad/sqrt(trg))) 

tau4=S./8.*71. 8e-16*dnO*rad*1.3e-9/sqrt (trg) *sqrt (pi* 
1 alog(71.8e-16*dnO*rad/sqrt(trg))) 

tauS=tau4 
tau6=tauS 
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c 
c 

c 

c 

c 

efs=80.-0.3*tcs 
20 dne=pci/(pi*rad**2*e*ue*efs) 

te=12000. 
30 kte=kb*te 

kteoe=kboe*te 
kteoep=kteoe**l.S 

rate(O,l)=C(O,l)*kteoep*(l.+O.S*vl/kteoe)*exp(-vl/kteoe) 
rate(0,2)=c(0,2) *kteoep* (1.+0.S*v2/kteoe) *exp(-v2/kteoe ) 
rate(0,3)=c(0,3) *kteoep* (1.+0.S*v3/kteoe) *exp(-v3/kteoe ) 
rate(0,4)=C(0,4)*kteoep*(1.+0.S*v4/kteoe)*exp(-v4/kteoe) 
rate(O,S)=C(O,S)*kteoep*(l.+O.S*vS/kteoe)*exp(-vS/kteoe) 
rate(0,6)=c(0,6)*kteoep*(1.+0.S*v6/kteoe)*exp(-v6/kteoe) 
rate(1,2)=C(1,2)*kteoep*(1.+0.S*(V2-vl)/kteoe)* 

1 exp «vl-v2) /kteoe) 
rate(1,3)=c(1,3)*kteoep*(1.+0.S*(v3-vl)/kteoe)* 

1 exp«vl-v3)/kteoe) 
rate(1,4)=C(1,4)*kteoep*(1.+0.S*(V4-vl)/kteoe)* 

1 exp «vl-v4) /kteoe) 
rate(l,S)=C(l,S)*kteoep* (l.+O.S*(vS-vl)/kteoe) * 

1 exp «vI-vS) /kteoe) 
rate(1,6)=C(1,6)*kteoep*(1.+0.S*(v6-vl)/kteoe)* 

1 exp ( (vl-v6) /kteoe) 
rate(1,7)=C(1,7)*kteoep*(1.+0.S*(vi-vl)/kteoe)* 

1 exp ( (vI-vi) /kteoe) 
rate(2,3)=c(2,3)*kteoep*(1.+0.S*(v3-v2)/kteoe)* 

1 exp «v2-v3) /kteoe) 
rate(2,4)=c (2,4) *kteoep* (l.+O.S* (v4-v2)/kteoe) * 

1 exp «v2-v4) /kteoe) 
rate{2,S)=C{2,5)*kteoep* (1.+0.5* (v5-v2)/kteoe) * 

1 exp «v2-vS) /kteoe) • 
rate(2,6)=c(2,6)*kteoep*(1.+0.S*{v6-v2)/kteoe)* 

1 exp ( (v2 -v6) /kteoe) 
rate(2,7)=c(2,7) *kteoep* (l.+O.S* (vi-v2)/kteoe) * 

1 exp ( (v2 -vi) /kteoe) 
rate(3,4)=C(3,4)*kteoep*(1.+0.S*(V4-v3)/kteoe)* 

1 exp{{v3-v4)/kteoe) 
rate{3,5)=c{3,S)*kteoep*(1.+0.S*(VS-v3)/kteoe)* 

1 exp ( (v3-vS) /kteoe) 
rate(3,6)=C(3,6)*kteoep*{l.+0.S*(v6-v3)/kteoe)* 

1 exp ( (v3 -v6) /kteoe) 
rate(3,7)=C(3,7)*kteoep*(1.+0.s*(vi-v3)/kteoe)* 

1 exp ( (v3 -vi) /kteoe) 

rate(4,S)=C{4,5)*kteoep*(1.+0.S*(VS-v4)/kteoe)* 
1 exp«v4-vS)/kteoe) 
rate(4,6)=c (4,6) *kteoep* (l.+O.S* (v6-v4)/kteoe) * 

1 exp ( (v4-v6) /kteoe) 
rate(4,7)=C(4,7)*kteoep*(1.+0.S*(vi-v4)/kteoe)* 

1 exp«v4-vi)/kteoe) 
rate(S,6)=c(S,6)*kteoep*(1.+0.S*(v6-vS)/kteoe)* 

1 exp ( (vS -v6) /kteoe) 
rate(S,7)=C(S,7)*kteoep*(1.+0.s*(vi-vS)/kteoe)* 

1 exp ( (vS-vi) /kteoe) 
rate(6,7)=c(6,7)*kteoep*(1.+0.S*(vi-v6)/kteoe)* 

1 exp«v6-vi)/kteoe) 

rate(3,2)=C(3,2)/kteoe 
rate(3,1)=c(3,1)/kteoe 
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c 
c 

c 

c 
c 

~ 

rate(3,O)=c(3,O)/kteoe 
rate(2,1)=c(2,1)/kteoe 
rate(2,O)=c(2,O)/kteoe 
rate(l,O)=c(l,O)/kteoe 

rate(4,O)=C(4,O)/kteoe 
rate(4,1)=c(4,1)/kteoe 
rate(4,2)=C(4,2)/kteoe 
rate(4,3)=c(4,3)/kteoe 

rate(S,O)=c(S,O)/kteoe 
rate(S,l)=c(S,l)/kteoe 
rate(S,2)=c(S,2)/kteoe 
rate(S,3)=C(S,3)/kteoe 
rate(S,4)=c(S,4)/kteoe 
rate(6,O)=c(6,O)/kteoe 
rate(6,1)=c(6,1)/kteoe 
rate(6,2)=c(6,2)/kteoe 
rate(6,3)=c(6,3)/kteoe 
rate(6,4)=c(6,4)/kteoe 
rate(6,S)=C(6,S)/kteoe 

33 a(1,1)=rate(1,O)+rate(1,2)+rate(1,3) 
1 +rate(1,4)+rate(1,S)+rate(1,6)+rate(1,7) 
a(1,2)=-1.*rate(2,1) 
a(1,3)=-1.*rate(3,1) 
a(1,4)=-1.*rate(4,1) 
a(l,S)=-l.*rate(S,l) 
a(1,6)=-1.*rate(6,1) 
b(1)=rate(O,1)*dnO/l.4S 
a(2,1)=-1.*rate(1,2) 
a(2,2)=rate(2,O)+rate(2,1)+rate(2,3)+rate(2,4) 

1 +rate(2,S)+rate(2,6)+rate(2,7)+1.e13/(1.4S*dne*tau2) 
a(2,3)=-1.*rate(3,2) 
a(2,4)=-1.*rate(4,2) 
a(2,S)=-1.*rate(S,2) 
a(2,6)=-1.*rate(6,2) 
b(2)=rate(O,2)*dnO/l.4S 
a(3,1)=-1.*rate(1,3) 
a(3,2)=-1.*rate(2,3) 
a(3,3)=rate(3,O)+rate(3,1)+rate(3,2) 

1 +rate(3,4)+rate(3,S)+rate(3,6)+rate(3,7) 
a(3,4)=-1.*rate(4,3) 
a(3,S)=-1.*rate(S,3) 
a(3,6)=-1.*rate(6,3) 
b(3)=rate(O,3)*dnO/l.4S 
a(4,1)=-1.*rate(1,4) 
a(4,2)=-1.*rate(2,4) 
a(4,3)=-1.*rate(3,4) 
a(4,4)=rate(4,O)+rate(4,1)+rate(4,2)+rate(4,3) 

1 +rate(4,S)+rate(4,6)+rate(4,7)+1.e13/(1.4S*dne*tau4) 
a(4,S)=-1.*rate(S,4) 
a(4,6)=-1.*rate(6,4) 
b(4)=rate(O,4)*dnO/l.4S 
a(S,l)=-l.*rate(l,S) 
a(S,2)=-1.*rate(2,S) 
a(S,3)=-1.*rate(3,S) 
a(S,4)=-1.*rate(4,S) 
a(S,S)=rate(S,O)+rate(S,1)+rate(S,2)+rate(S,3)+rate(S,4) 
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c 
c 

c 

1 +rate(s,6)+rate(s,7)+1.e13/(l.4s*dne*taus) 
a(s,6)=-1.*rate(6,s) 
b(s)=rate(O,s)*dnO/1.4s 
a(6,l)=-1.*rate(l,6) 
a(6,2)=-1.*rate(2,6) 
a(6,3)=-1.*rate(3,6) 
a(6,4)=-1.*rate(4,6) 
a(6,s)=-1.*rate(s,6) 
a(6,6)=rate(6,O)+rate(6,l)+rate(6,2)+rate(6,3)+rate(6,4) 

1 +rate(6,s)+rate(6,7)+1.e13/(l.4s*dne*tau6) 
b(6)=rate(O,6)*dnO/1.4s 

call gausspiv(a,b,x,icol,6) 
dn1=x (1) 
dn2=x(2) 
dn3=x(3) 
dn4~x (4) 
dns=x (5) 
dn6=x(6) 

c Calculate electron temperature using balance of ion creation and decay 
c 

c 

c 

c 

c 

c 

c 
c 

rate17=c(l,7)*1.e-13*kteoep*(l.+0.s*s.78/kteoe)*exp(-0.77/kteoe) 
rate27=c(2,7)*1.e-13*kteoep*(l.+0.s*s.s7/kteoe)*exp(-0.s6/kteoe) 
rate37=c(3,7)*1.e-13*kteoep*(l.+0.s*s.01/kteoe) 

35 ambi=ui*kteoe 

ambior=ambi/(rad/2.4)**2 
te1=(vi-v3)/(kboe*alog«rate17*dn1+rate27*dn2+rate37*dn3) 

1 /ambior» 

if (abs (te1-te) .It. 1.) go to 60 
te=(te1+te)/2. 

go to 30 
60 continue 

w2s4=e*v2*dn2/tau2 
w18s=e*v4*dn4/tau4 
wesl=8.*sqrt (me/3.) *kte**l.s*dne/(mrg*mfp) 
vi1=vi+1.s*kteoe 
wil= (rate (1,7) *dn1* (vi1-v1)+rate(2,7)*dn2* (vi1-v2) + 

1 rate(3,7)*dn3*(vi1-v3»*dne*e*1.4se-13 
wvis=e* (vs-v2) *dns/taus 
wnv=e* (v6-v2) *dn6/tau6 
wlarnp=w2s4+w18s+wesl+wil+wvis+wnv 
efs1 2 sqrt(wlamp/(e*ue*dne» 

if (abs(efs1-efs) .It .. 1) go to 80 
efs=efs1 
go to 20 

80 continue 

effi=w2s4/wlamp 
w2s4pm=w2s4*pi*rad**2 
w18spm=w18s*pi*rad**2 
weslpm=wesl*pi*rad**2 
wilpm=wil*pi*rad**2 
wvispm=wvis*pi*rad**2 
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wnvpm=wnv*pi*rad**2 
wothpm=wvispm+wnvpm 
wlampt=wlamp*pi*rad**2*tubel 

c 
c Assume value of 62.15 from Jerome (1953) (Standard cool white) 
c Value for 185 nm calculated from 62.15*253.7/184.9 
c Variables sellou=sum of Elambda*lambda/253.7 and 
c selyba=sum of Elambda*y-bar incorporated so that the program can be 
c used for other lamp types 
c 
c Variables ssll02=sum of S{lambda)*lambda/253.7 and 
c sslvl=sum of S{lambda)*V{lambda) 
c qeffi=quantum efficiency 
c 

wuv=tubel*{253.7*w254pm+185.*w185pm)/253.7 
wphos=qeffi*wuv/ssll02 

c 
c Above expression is not absolutely correct as ssll02 obtained from 
c Jerome (1953) is not normalised. This does not affect the calculation 
c of lamplm but affects that of waviso. 
c 

lamplm=683.*{O.75*wphos*sslvl+0.5*0.388*wvispm*tubel) 
waviso=0.75*wphos+0.5*wvispm*tubel 

c 
c 

c 

return 
end 

*----------------------------------------------------------------
*-----------------------------------------------------------------

SUBROUTINE GAUSSPIV{A,B,X,ICOL,N) 
c 
C GAUSS ELIMINATION SOLVE AX=B WITH ROW AND COLUMN PIVOTING 
C 
C A = INPUT REAL ARRAY OF N X N COEFFICIENTS, IS DESTROYED 
C B INPUT REAL ARRAY, N RIGHT HAND SIDES, IS DESTROYED 
C X = OUTPUT REAL SOLUTION ARRAY DIMENSION N 
C ICOL = WORKING INTEGER ARRAY DIMENSION N 
C N = INPUT INTEGER VALUE, NUMBER OF EQUATIONS 
C 
C 

REAL A{N,N) ,B{N) ,X{N) 
INTEGER ICOL{N) 

C FIRST INITIALIZE ICOL 
DO 5 K=l,N 

5 ICOL{K)=K 
C OUTER LOOP - ELIMINATE COLUMN 

DO 30 K=1,N-1 
C FIND THE BEST PIVOT ELEMENT 

CALL SPIV{A,B,N,K,ICOL) 
C THIS LOOP - ROW TO OPERATE ON 

DO 20 I=K+1,N 
C THIS LOOP ACTUALLY DOES IT 

Z=A{I,K) 
DO 10 J=K,N 

10 A{I,J)=A{I,J)-A{K,J)*Z 
C OPERATE ALSO ON B 

20 B{I)=B{I)-B{K)*Z 
30 CONTINUB 

C NOW BACK-SUBSTITUTE 
X{N)=B{N)/A{N,N) 
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C TAKE ROWS IN REVERSE ORDER 
DO 50 K=N-1,1,-1 

C SUM OVER KNOWN RESULTS 
SUM=B (K) 
DO 40 J=K+1,N 

40 SUM=SUM-X(J)*A(K,J) 
50 X(K)=SUM 

C FINALLY UNDO REORDERING 
CALL UNPIV(X,B,N,ICOL) 
END 

C 
C 

SUBROUTINE SPIV(A,B,N,K,ICOL) 
C 
C SUBROUTINE TO PIVOT EQUATIONS A 
C 

C SEARCH N X N REAL ARRAY A FOR LARGEST ABSOLUTE VALUE A(I,J) 
C FOR I,J .GE. K. THEN SWITCH ROWS AND COLUMNS TO BRING THIS TO 
C A(K,K). ALSO SWITCH RIGHT HAND SIDE VECTOR B AND COLUMN 
C MEMORY ARRAY ICOL. 
C 

REAL A(N,N),B(N) 
INTEGER ICOL(N) 
IF (K .GE. N) RETURN 

C SEARCH A FOR LARGEST A(I,J) 
ABSMX=O. 
IMAX=K 
JMAX=K 
DO 10 J=K,N 

DO 10 I=K,N 
ABSA=ABS(A(I,J» 
IF (AB SA • GT. ABSMX) THEN 
ABSMX=ABSA 
IMAX=I 
JAMX=J 

END IF 
10 CONTINUE 

C SWITCH ROWS K AND IMAX IN A,B 
DO 20 J=l,N 

TEMP=A (K, J) 
A (K, J) =A(IMAX, J) 

20 A(IMAX,J)=TEMP 
TEMP=B (K) 
B (K) =B (IMAX) 
B(IMAX)=TEMP 

C SWITCH COLUMNS K ,JMAX IN A, ICOL 
DO 30 I=l,N 

TEMP=A (I, K) 
A(I,K)=A(I,JMAX) 

30 A(I,JMAX)=TEMP 
IT=ICOL (K) 
ICOL(K)=ICOL(JMAX) 
ICOL(JMAX)=IT 

C SCALE ROW K 
Z=A(K, K) 

C 
C 

DO 40 J=K,N 
40 A(K,J)=A(K,J)/Z 

B (K) =B (K) /Z 
END 
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, 
, 

, -
I 

I C 
C 
C 
C 
C 
C 
C 

SUBROUTINE UNPIV(X,B,N,ICOL) 

UNDO COLUMN REARRANGEMENTS 

ON INPUT X IS REAL SOLUTION VECTOR LENGTH N WHICH HAS BEEN REORDERED. 
INTEGER ARRAY ICOL ON INPUT TELLS DESIRED ORDER, B IS USED AS WORKING 
SPACE. ON OUTPUT X IS THE SOLUTION IN THE CORRECT ORDER. 

REAL X (N), B (N) 
INTEGER ICOL (N) 
DO 10 J=l,N 

ITRUE=ICOL (J) 
10 B(ITRUE)=X(J) 

DO 20 J=l,N 
20 X(J)=B(J) 

END 

F.3 List of input data necessary for LITEAC2 

Five data files are needed for LITEAC2: 

1. A text file named "INDAT" containing the following: 

(i) Input filenames for data of nodes in the three sections - one file for each section. 

(h) Input filename of data concerning inter-section conduction and convection. 

(hi) Output filenames: calculated temperature of nodes - one file for each section. 

(iv) Output filename for other output. 

(v) A text variable stating whether on/off cycles are to be siInulated: Y or N. 

(vi) Number of cycles (ifY for vi above)/Number of hours run (ifN for vi above). 

(vii) Number of hours lights on. 

(viii) TiIne step in seconds. 

(ix) Output time interval in hours or minutes. 

2. A data file for the luminaire section containing the following: 

(i) Number of nodes in the sectIon. 

(ii) Number of lamp nodes in the section. 

(Hi) Node numbers oflamp nodes (if any). 

(iv) Number oflens (diffuser) nodes. 
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(vi Node number of lens (diffuser) nodes (if any); section and node number of the 

node opposite to the lens node. 

(vi) Node number of ballast (if any). 

(vii) Initial temperatures of nodes. 

(viii) Area of nodes. 

(IX) Thermal capacity of nodes. 

(x) Emissivity of nodes. 

(xi) Reflectivity of nodes for long-wave radiation. 

(xii) Reflectivity of nodes for short-wave radiation. 

(xlii) Transmission coefficient of nodes for long-wave radiation. 

(xiv) Transmission coefficient of nodes for short-wave radiation. 

(xv) Form factors - a N x N matrix. (N = number of nodes in the section) 

(xvi) The type of body of each node for the calculation of convective heat transfer 

coefficient. 

(xvii) The characteristic length of each node for the calculation of convective heat 

transfer coefficient. 

(xviii) Total number of lamps in the section. 

(xix) Ballast power. 

(xx) Property of the phosphor: the quantity JS(..l)~d..l in equation (6.39). 
vu 253. 

(xxi) Property of the phosphor: the quantity J S(..l)V(..l)d..l in equation (6.39). 
vu 

(xxii) Quantum efficiency of the phosphor. 

3. A data file for the plenum section containing items (i)-(xvii) as in the data file for the 

luminaire section. 

4. A data file for the room section containing items (i)-(xvii) as in the data file for the 

luminaire section. 
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5. A data file contaimng the following information for inter-section conduction! 

convectIOn: 

(1) Number of conductors. 

(il) A set of 6 values giving the section and node numbers and the conductance. 

(iii) Air flow rates: supply to room, room to plenum, plenum to supply. 

(iv) Enviroumental temperature. 
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AppendixG 

Input data for the NIST test cell 

The data used in the input files for the validation runs of the programs 

LITEACl and LITEAC2 using the NIST test results are listed in Tables G.1-G.8. In 

Tables G.l, G.3 and G.S, data concerning mitial temperatures, surface areas, thennal 

capacities, ernissivities and reflectivities were obtained from the NIST reports (Treado 

and Bean 1988, 1992). Transmittance values were assumed (see Section 8.3). Some of 

the thennal capacity data were calculated from the materials property data in the 

ASHRAE Handbook (ASHRAE 1993) using dimension and mass information given 

in the NIST reports. The body type and characteristic length were obtained from 

information in the NIST reports and these data are used for the determination of 

convective heat transfer coefficients by the correlations given in Holman (1992). 

Radiation form factors (in Tables G.2, GA and G.6) were calculated using the view 

factor program 'VF' and 'FACTS' included in 'LIGHTS' (Sowe111989). The lamp 

data (in Table G.7) concerning the relative lamp power and relative light output were 

obtained from Siminovitch et al. (1984). The conductance data (in Table G.8) were 

obtained from information given in Treado and Bean (1988). 

G-l 



Table G.t 

Nodal data for the luminaire section used in the validation runs of LIT EA Cl and 
LITEAC2 described in Chapter 8. 

Lummaire atr 

IrutIal 2969 
Temperature (K) 

Surface Area 1 
(m') 

Thermal capacIty 294.36 
(IlK) 

Enussivity 0 

ReflectlVlty for 0 
long-wave 
ramatlOn 

ReflectlVlty for 0 
short-wave 
ramatIon 

Transnussion 0 
coefficient for 
long-wave 
ramatIon 

TransmissIOn 0 
coeffiCIent for 
short-wave 
radiatIon 

Body type 0 
(see note below) 

Charactenstic 0 
length (m) 

Body type: 
0= Not apphcable 
1 = honzontal plate upper surface 
2 = honzontal plate lower surface 
3 = vemcal plate 
4 = honzontal cyhnder upper half 
5 = honzontal cyhnder lower half 
6 = honzontal cylinder (whole CYhnder) 

Lamp 

2969 

1.1674 

2123.1 

0.9 

0.1 

0.9 
" 

0 

0 

6 

0.038 

DIffuser top Ballast Lummatre 
housmg 

296.9 296.9 2969 

2.9729 0.1236 4831 

2734.7 11394.6 16123.4 

0.9 0 09 

01 0 0.1 

0.1 0.7 08 

0 0 0 

0.8 0 0 

1 0 2 

0.9 0 09 
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TableG.2 

Fonn factors for calculation of radIation transfer between luminaire nodes - used in 
the validation runs ofLITEACl and LITEAC2 described in Chapter 8. 

Form factor Luminarre aIr Lamp DIffuser top Ballast Luminaire 
matnx housmg 

Lummairearr 0 0 0 0 0 

Lamp 0 0.01156 040336 0 0.58508 

DIffuser top 0 0.1584 0 0 0.8416 

Ballast 0 0 0 1 0 

Lununarre 0 014139 0.51791 0 03407 
housmg 
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TableG.3 

Nodal data for the plenum section used in the validation runs ofLITEACl and 
LITEAC2 descnbed in Chapter 8. 

Plenumatr LurmnalTe 
housmg 

top 

Imtlal 2959 2969 
Temperature 
(K) 

Surface Area 1 4831 
(m') 

Thennal 154017 161234 
capacIty (IlK) 

ErmSStVIty 0 09 

ReflectiVIty for 0 01 
long-wave 
radlatton 

ReflechVlty for 0 07 
short-wave 
radiation 

Transtlllsslon 0 0 
coefficient for 
long-wave 
radlatton 

TranStnlSSlOn 0 0 
coeffiCIent for 
short-wave 
radlatlon 

Body type (see 0 1 
note below) 

Charactenshc 0 09 
length (m) 

Body type· 
0= Not applicable 
I = honzontal plate upper surface 
2 = honzontal plate lower surface 
3 = v_cal plate 
4 = honzontal cylinder upper half 
5 = honzontal cylinder lower half 

Plenum 
steel 

2969 

27871 

3008174 

09 

01 

02 

0 

0 

3 

038 

6 = honzontal cylinder (whole cylinder) 

East 
plenum 

wall 

2962 

32516 

309553 

09 

01 

03 

0 

0 

3 

076 

G-4 

South West North Celltng 
plenum plenum plenum 

wall wall wall 

2962 2962 2962 2959 

27871 27871 32516 156077 

715961 309553 277269 3412683 

09 09 09 09 

01 01 01 01 

03 03 03 03 

0 0 0 0 

0 0 0 0 

3 3 3 2 

076 076 076 397 

Suspended 
cedmg top 

2969 

126438 

251251 

09 

01 

05 

0 

0 

1 

169 



TableG.4 

Fonn factors for calculation of radiation transfer between plenum nodes - used in the 
validation runs ofLITEACl and LITEAC2 described in Chapter 8. 

Form factor Plenum air Lummalre Plenum East South West North Cedmg Suspended 
mab1x housmg steel plenum plenum plenum plenum cedmg top 

top wall wall wa1l wall 

P)enumatr 0 0 0 0 0 0 0 0 0 

Lummatre 0 001997 010382 003857 006140 003857 006140 049792 017836 
housmg top 

Plenum steel 0 017995 039359 003440 001244 002393 000197 027231 008142 

East plenum 0 006685 003440 0 008231 003334 008231 038728 031352 
wall 

South plenum 0 009122 001066 007055 0 007055 004722 039226 031754 
wall 

West plenum 0 006685 002393 003334 008231 0 009277 038728 031352 
wall 

North plenum 0 009122 000169 007055 004722 007952 0 039226 031754 
wall 

Cethng 0 015412 004863 006916 008172 006916 008172 0 049550 

Suspended 0 006820 001796 006916 008172 006916 008172 061209 0 
cethng top 

G-5 



TableG.5 

Nodal data for the room section used in the validation runs of LIT EA Cl and 
LITEAC2 described in Chapter 8. 

Room air DIffuser 
bottom 

Imbal 2969 2969 
Temperature 
(K) 

Surface Area I 29729 
(m') 

Thennal 0 27347 
capacIty (J/K) 

EmiSSIVIty 0 09 

Reflechvlty for 0 01 
long-wave 
radlanon 

ReflechVlty for 0 01 
short-wave 
radIation 

Transtnlsslon 0 0 
coeffiCient for 
long-wave 
radlahon 

TranStnlSSlOn 0 08 
coeffiCient for 
short-wave 
radl8hon 

Body type (see 0 2 
note below) 

Charactensttc 0 09 
length (m) 

Body type: 
0= Not applicable 
1 = honzontal plate upper surface 
2 = honzontal plate lower surface 
3 = verI!cal plate 
4 = honzontal cylmder upper half 
5 = honzontal cylinder lower half 

Suspended 
cedIng 
bottom 

2969 

126438 

25125 1 

09 

01 

07 

0 

0 

2 

169 

6 = honzontal cylmder (whole cylmder) 

East wall South wall West wall North wall Carpet 
surface 

2962 2962 2962 2962 2957 

89187 104051 89187 104051 156077 

987532 2305507 987532 1152754 138525 

09 09 09 09 09 

01 01 01 01 01 

05 05 05 05 03 

0 0 0 0 0 

0 0 0 0 0 

3 3 3 3 I 

244 244 244 244 397 
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Floor 
surface 

2957 

156077 

6825365 

09 

01 

0 

0 

0 

0 

0 



TableG.6 

Fonn factors for calculation of radiation transfer between room nodes - used in the 
validation runs ofLITEACl and LITEAC2 described in Chapter 8. 

Form factor Room aIr DIffuser Suspended East wall South wall West wall North wall Caq>et 
malnx bottom ceding surface 

bottom 

RoomalT 0 0 0 0 0 0 0 0 

Diffuser 0 0 0 011785 015780 011785 015780 044870 
bottom 

Suspended 0 0 0 015818 018196 o 15818 018196 031972 
ceding 
bottom 

East wall 0 003928 022409 0 017769 011788 017769 026337 

South wall 0 004508 022095 015231 0 015231 016331 026604 

West wall 0 003928 022409 011788 017769 0 017769 026337 

North wall 0 004508 022095 015231 016331 015231 0 026604 

Caq>et 0 008547 025881 015050 017736 015050 017736 0 
surface 

Floor surface 0 0 0 0 0 0 0 0 
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Floor 
surface 

0 

0 

0 

0 

0 

0 

0 

0 

1 



TableG.7 

Lamp data used in the validation ofLITEACl described in Chapter S. 

Rated lamp power 320 W (8 lamps x 40 W) 

Lummous flux output 24800 lumens (8 lamps x 3100 Im) 

Ballast power 55 W (6.9 W per lamp) 

Lummous efficacy of radiatIOn elnltted by lamp 340lmW-1 

Pomts for definmg relallve lzght output (RLO) and relallve lamp power (RLP): 

[Data obtamed from Surunovltch et a!. (1984)] 

MLWT(K) RLO RLP 

0 0 0 

286 0521 0.9433 

289 0660 0.9902 

292 0777 09966 

295 0870 09976 

298 0.936 09886 

301 0.974 09814 

304 0.990 0.9691 

307 0998 0.9632 

310 0994 0.9546 

313 0983 0.9450 

316 0.964 0.9304 

319 0.939 0.9155 

322 0.909 08971 

325 0876 08808 

328 0840 0.8644 

331 0.805 0.8465 

334 0.774 08302 

337 0.742 08159 

473 0 0 
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TableG.8 

Conductance data used in the validation runs ofLITEACl and LITEAC2 descnbed in 
Chapter 8. 

From node To node Conductance One-way or 
(Wm"K") two-way 

LUIl1UllI1re node: Room node: 53.33 2 
dIffuser top dIffuser bottom 

Lwmnarre node: Lummarre node: 63187 2 
ballast housing 

Lummaire node. Plenum node. 126373 2 
housing Iwmnarre housmg top 

Plenum node: Room node: 48 2 
suspended ceIling top suspended ceIimg 

bottom 

Plenum node: Room node' 9818 2 
ceIimg floor surface 

Room node' Room node: 2.73 2 
carpet surface floor surface 
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AppendixH 

Input data for the laboratory test cell 

The data used in the input files for the validation runs of the programs 

LITEAC 1 and LITEAC2 using the laboratory test cell results are listed in Tables H.2-

H.9. In Tables H.2, H.4 and H.6, data concerning surface areas, thennal capacities, 

emissivities and reflectivities were calculated from the cell dimensions and the 

materials property data (listed in Table H.l) obtained from the ASHRAE Handbook 

(ASHRAE 1993) and Holman (1992). Radiation fonn factors (in Tables H.3, H.5 and 

H.7) were calculated using the view factor program 'VF' and 'FACTS' included III 

'LIGHTS' (Sowell 1989). The lamp data (in Table H.8) concerning the relative lamp 

power and relative light output were obtained from Siminovitch et al. (1984). The 

conductance data (in Table H.9) were obtained from the conductivity data of materials 

in ASHRAE (1993) and Holman (1992). 
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Table H.t 

Materials data used for the calculation of the mput data for the laboratory test cell. 

Nodes Material Density 
Specific 

Thermal Data source heat 
(kg m-') 

capacity conductivity 

(J kg-'K') (Wm-'K') 

Ceiling 

All plenum nodes Plywood 540 1210 0.12 ASHRAE 
Suspended ceiling (1993) 
All room nodes 

Floor 

Luminaire Nickel 7933 460 19 Holman 
housing steel (1992) 

Ballast Iron 7897 452 73 Holman 
(1992) 

Lamp wall Glass 2470 750 1.0 ASHRAE 
(1993) 

All air nodes Air at 1.177 1005.7 - Holman 
300K (1992) 
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TableH.2 

Nodal data for the luminaire section used in the validation runs ofLITEACI and 
LITEAC2 using the laboratory test cell (described in Chapter 9). 

Lummarre 
air 

Imbal 291.7 
Temperatlrre (K) 

Surface Area 0 
(m') 

Thermal capacIty 23455 
(JIK) 

EmISSIVIty 0 

ReflecbVIty for 0 
long-wave 
rachabon 

Reflecbvlty for 0 
short-wave 
rachabon 

TransmIssIon 0 
coefficient for 
long-wave 
rachabon 

Transmission 0 
coefficIent for 
short-wave 
rachabon 

Body type 0 
(see note below) 

Charactensbc 0 
length (m) 

Body type: 
0= Not applIcable 
I = honzontaI plate upper surface 
2 = honzontal plate lower surface 
3 = vemcal plate 
4 = honzontal cylInder upper half 
5 = honzontal cylmder lower half 

Lamp 
upper 

291.7 

00716 

1326915 

09 

0.1 

09 

0 

0 

4 

0038 

6 = honzontal cylInder (whole cylmder) 

Lamp DIffuser Ballast Lurnmarre 
lower top housmg 

291.7 291.7 291.7 291.7 

0.0716 0216 0003456 04644 

1326915 849.2 81.55 909.1 

0.9 0.9 0 09 

0.1 0.1 0 0.1 

0.9 0.1 0.7 0.8 

0 0 0 0 

0 08 0 0 

5 I 0 2 

0038 0.2032 0 02032 
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TableH.3 

Fonn factors for calculation of radiation transfer between lurninaire nodes - used in 
the validation runs ofLITEACl and LITEAC2 using the laboratory test cell 
(descnbed in Chapter 9). 

Form factor Luminaire Lamp Lamp Diffuser Ballast Luminaire 
matrix arr upper lower top housmg 

Luminarrearr 0 0 0 0 0 0 

Lamp upper 0 0 0 0 0 1 

Lamp lower 0 0 0 0.7048 0 0.2952 

Diffuser top 0 0 02336 0 0 07664 

Ballast 0 0 0 0 1 0 

Lummarre 0 01542 00455 0.3565 0 0.4438 
housmg 
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TableH.4 

Nodal data for the plenum section used in the validation runs ofLITEACl and 
LITEAC2 using the laboratory test cell (described in Chapter 9). 

Plenum air Lurmnalre 
housmg 

top 

Intuat 2917 2917 
Temperature (K) 

Surface Area (m') 0 04644 

Thennal capacity 363985 9091 
(IlK) 

ErmsslVlty 0 09 

ReflecbVlty for 0 01 
long·wave 
radlabon 

ReflectlVlty for 0 07 
short-wave 
radlabon 

Transnusslon 0 0 
coeffiCIent for 
long-wave 
radlabon 

Transnuss10n 0 0 
coefficIent fOT 
short-wave 
rad18tlon 

Body type (see 0 1 
note below) 

Charactensbc 0 02032 
length (m) 

Body type: 
0= Not apphcable 
I = honzontal plate upper surface 
2 = honzontal plate lower surface 
3 = vertIcal plate 
4 = honzontal cyhnder upper half 
5 = honzontal cyhnder lower half 
6 = honzontal cyhnder (whole cyhnder) 

East 
plenum 

wall 

2917 

02 

1244 7 

09 

01 

03 

0 

0 

3 

0762 

South West North CedIng 
plenum plenum plenum 

wall wall wall 

2917 2917 2917 291 7 

03 02 03 15 

18671 1244 7 18671 92583 

09 09 09 09 

01 01 01 01 

03 03 03 03 

0 0 0 0 

0 0 0 0 

3 3 3 2 

0762 0762 0762 09847 

H·S 

Suspended 
cedlOg top 

2917 

128 

39955 

09 

01 

05 

0 

0 

1 

04148 



---------------------------------------------! 

TableH.5 

Fonn factors for calculation of radiation transfer between plenum nodes - used in the 
validation runs ofLITEACl and LITEAC2 using the laboratory test cell (described in 
Chapter 9). 

Form factor Plenum air LummalTC East South West North Cedmg Suspended 
mat", housmg top plenum plenum plenum plenum cedmg top 

wan wall walI walI 

Plenum air 0 0 0 0 0 0 0 0 

LununalTe 0 0 00336959 00523831 00336959 00523831 05980013 02298407 
housmg top 

Eastptenum 0 00782419 0 0089441 00150947 0089441 03851389 03426425 
wall 

South 0 00810890 00596273 0 00596273 00438008 04046174 03512382 
plenum wall 

West plenum 0 00782419 00150947 0089441 0 0089441 03851389 03426425 
wall 

North 0 00810890 00596273 00438008 00596273 0 04046174 03512382 
plenum wall 

Celhng 0 01851412 00513519 00809235 00513519 00809235 0 05503080 

Suspeoded 0 00833891 00535379 00823214 00535379 00823214 06448923 0 
celhng top 
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TableH.6 

Nodal data for the room section used in the validation runs ofLITEACl and 
LITEAC2 using the laboratory test cell (described in Chapter 9). 

RoomalT Diffuser 
bottom 

ImtIal 2917 2917 
Tempe!1lture (K) 

Surface Area (m') 0 0216 

Thermal capacity 15568236 8492 
(IlK) 

EnuSSIVlty 0 09 

ReflectIvity faT 0 01 
long-wave 
radlatton 

ReflectIVIty for 0 01 
short-wave 
radlatton 

TransnusslOn 0 0 
coefficient for 
long-wave 
radiatIon 

TransnusslOn 0 08 
coeffiCIent for 
short-wave 
radlatton 

Body type (see 0 2 
note below) 

Charactensttc 0 02032 
length (m) 

Body type. 
0= Not apphcable 
I = honzontal plate upper surface 
2 = honzontal plate lower surface 
3 = vertIcal plate 
4 = honzontal cyhnder upper half 
5 = honzontal cyhnder lower half 

Suspended 
celitng 
bottom 

2917 

128 

39955 

09 

01 

07 

0 

0 

2 

04148 

6 = honzontal cylmder (whole cylmder) 

East wall South wall West wall North wall 

2917 2917 2917 2917 

08 12 08 12 

49789 74684 49789 74684 

09 09 09 09 

01 01 01 01 

05 05 05 05 

0 0 0 0 

0 0 0 0 

3 3 3 3 

24384 24384 24384 24384 
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Floor 
surface 

2917 

15 

92583 

09 

01 

03 

0 

0 

1 

09847 



TableH.7 

Fonn factors for calculation of radiation transfer between room nodes - used in the 
validation runs ofLITEACl and LITEAC2 using the laboratory test cell (described in 
Chapter 9). 

Fonnfactor Roomalf DIffuser Suspended East wall South wa1l Westwatl North wall Floor 
malnx bottom cedmg surface 

bottom 

Roomalf 0 0 0 0 0 0 0 0 

Dtffuser 0 0 0 01285107 01836662 01285107 01836662 03756462 
bottom 

Suspended 0 0 0 01347953 02093741 01347953 02093741 03116612 
cedmg 
bottom 

East wall 0 00346979 02163464 0 02029125 00920864 02029125 02510443 

South wall 0 00330599 02240303 0135275 0 0135275 02152694 02570904 

West wall 0 00346979 02163464 00920864 02029125 0 02029125 02510443 

North wall 0 00330599 02240303 0135275 02152694 0135275 0 02570904 

Floor surface 0 00540930 02667818 01338903 02056723 01338903 02056723 0 
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TableH.8 

Lamp data used in the validation ofLITEACl using laboratory test cell described in 
Chapter 9. 

Rated lamp power 40W 

Lwmnous flux output 3400 lumens 

Ballast power 69W 

Lwmnous efficacy of raruabon enutted by lamp 340lmW·' 

Pomts for defimng relallve light output (RLO) and relallve lamp power (RLP) 

MLWT(K) RLO RLP MLWT(K) RLO RLP 

0 0 0 312 0988 0.9488 

286 0.521 09433 313 0.983 09450 

287 0562 0.9598 314 0.978 0.9420 

288 0610 0.9728 315 0.971 09362 

289 0660 0.9902 316 0.964 09304 

290 0695 09932 317 0957 09255 

291 0738 0.9942 318 0948 0.9205 

292 0.777 0.9966 319 0939 09155 

293 0810 0.9990 320 0.931 0.9113 

294 0843 1.0000 321 0.919 09033 

295 0870 09976 322 0.909 08971 

296 0893 0.9910 323 0898 08899 

297 0917 0.9900 324 0.888 0.8873 

298 0.936 0.9886 325 0.876 08808 

299 0952 0.9881 326 0.864 08751 

300 0.964 0.9836 327 0852 0.8694 

301 0974 09814 328 0.840 08644 

302 0981 0.9802 329 0829 0.8568 

303 0.986 0.9731 330 0.817 0.8517 

304 0990 0.9691 331 0.805 08465 

305 0993 09642 332 0.795 08397 

306 0995 0.9632 333 0.783 08343 

307 0998 0.9632 334 0.774 08302 

308 0.999 0.9623 335 0.762 08228 

309 0.998 0.9594 336 0.752 08194 

310 0994 0.9546 337 0.742 08159 

311 0991 09517 473 0 0 
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TableH.9 

Conductance data used in the validation runs ofLITEACl and LITEAC2 using the 
laboratory test cell described in Chapter 9. 

From node To node Conductance One-way or 
(Wm·'K·') two-way 

LllIIlI1llIJre node· Room node: 44.79 2 
dtffuser top dtffuser bottom 

Luminaire node Lununaire node. 631.87 2 
ballast housing 

Lummarre node Plenum node: 631.87 2 
ballast lummarre housing top 

Lummarre node· Plenum node 1263.73 2 
housmg lummarre housmg top 

Plenum node: Room node: 126 2 
suspended ceilmg top suspended ceIlmg 

bottom 

Plenum node: Amb,ent enVIronment 1.887 2 
east plenum wall 

Plenum node: Amb,ent envrronment 1.887 2 
south plenum wall 

Plenum node: west Amb,ent envrronment 1.887 2 
plenum wall 

Plenum node: Amb,ent envrronment 1.887 2 
north plenum wall 

Plenum node: Amb,ent envrronment 1.949 2 
ceIling 

Room node: Amb,ent envrronment 1.887 2 
east wall 

Room node: Amb,ent envrronment 1887 2 
south wall 

Room node: AmbIent envrronment 1887 2 
west wall 

Room node· Amb,ent enVIronment 1887 2 
north wall 

Room node· Ambient envrronment 1.795 2 
suspended ceIlmg 
bottom 
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Appendix I 

Publications originated from this work 

Refereed Journal Papers: 

Chung, T.M., and D.L. Loveday (1998) 1-2 
''Numerical modeling oflightingIHV AC interaction in enclosures: Part I: 
light and heat transfer in a room" 
International Journal of Heatzng, Ventilating, Air-conditioning and 
Refrigeratzng Research, 4 (1), pp. 67-84. 

Chung, T.M., and D.L. Loveday (1998) 1-20 
''Numerical modeling oflightingIHV AC interaction in enclosures: Part IT: 
effect of including a fluorescent lamp positive colunm model" 
International Journal of Heating, Ventilating, Air-conditioning and 
Refngerating Research, 4 (1), pp. 85-104. 

Refereed Conference Paper: 

Chung, T.M. (1997) 1-40 
"Numerical simulation of the ambient thennal effect on light output of 
fluorescent luminaires in an enclosure" 
Proceedings of LUX PACIFICA '97 (3rd Pacific Basin Lighting 
Congress), Nagoya, Japan, October 1997, pp. B36-41. 
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Numerical Modeling of Lighting/HV AC 
Interaction in Enclosures 

Part I: Light and Heat Transfer in a Room 

Tse-Ming Chung 
Member ASHRAE 

D.L. Loveday, Ph.D. 

A numerical model based on heat transfer equal/ons was developedfor the dynamIc sImulation of 
a room with lamps in iUmrnalTfS as the onl)' power source. The model was used to consider heat 
transfer by conduction, convection and radiatIon between sUrfaces In the lumlnaire, the plenum 
space and the room space. Also, It was used to calculate temperatures, cooling loads, and /tghl/ng 
levels at each tIme step. It was designed to beflexible so that different room configurations could 
be simulated. The main dIfferences between this model and previous models in the literature are 
that,firstly, thIs model does not assume that some nodes are massless; secondly, it calculates Illu
minance on room surfaces; and thirdly, afluorescent lamp positIve column model can be incor
porated at a later stage for Improved sImulatIOn of lIghting levels for a room, these differences 
represent an Improvement on similar eXISllng models. The present model was valldoted. using the 
experimental results reported by Treado and Bean (1988, 1992), and uSing further expertmental 
measurements obtained from a laboratory-constructed test cell. Further valIdation was con
ducted uSing the numencal test cell developed by Sowell (1990). Results predicted by the model 
agreed well with expenmental resultsfrom both the NIST test cell and the laboratory test cell. The 
Incorporation of afluorescentlamp positive column model is presented in Part 11. 

INTRODUCTION 
Electric hghting and air-conditioning are the two major consumers of electncal energy In 

most modem office buildings. They are essential In modem, deep plan office buddings, partIcu
larly In trOPICal regions and in metropolitan areas where natural ventllatton is precluded for rea
sons of air qualIty and nOIse. The actual proportions of electricity used by lighting and 
.Ir-condltionlng depend on the deSIgn of hghting and heating, ventdation and aI/-conditioning 
(HV AC) systems, and these proportions also vary geographically and seasonally with changes 
In chmate. LIghting or air-conditioning alone can account for 2()'SO% of the total electrICIty 
con.umptlon In a modem office bUIlding. As a result, a small percentage saving of hghting 
andlor HV AC energy consumption can result in a substantial saving of money. 

Although hghtlng and HV AC are separate systems In a buddIng and proVIde different func
tions, they mutually affect one another when they are operating simultaneously. Lighting 
Imposes a heat gain which must be removed by the air-conditioning in order to maintain occu
pant therm.1 comfort; at the same time, air-condItioning affects the fluorescent lamp operating 
temperature, WhICh, In turn, IS closely related to the light output of the lamp. 

It IS the relationship between lamp and HV AC operation whIch is the subject of study in this 
paper. A numerical model that can simulate the mutual interaction between lighting and HV AC 
was developed. The model integrates a fluorescent lamp posItive column model WIth a room 

Tse-MiDg Chung IS an asslStant professor In the Department of Budding ServiCes Engmccnng. The Hong Kong Poly
techmc URlVerslty. Kowloon. Hong Kong D.L Loveday IS a reader 10 Ctvd and BuJldlDg Engmeenng. Lougbborough 
University. Leicestershire. U K 
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model, the latter compnsed of a lummaire, a plenum, an occupied space and ventdallon mlet' 
and outlets. In this way, the model could be used to sImulate both the transient and the 
steady.state cooling load caused by lights, as well as the variatIon of Iightmg levels with ume on 
both the worktng plane and the other room surfaces 

The goal of this research is to develop a numerical model for the SImulatIon of the mutual 
interaction between HV AC and lighting which WIll find applications m areas such as deSIgn cal· 
culations of cooling load and hght output, budding energy analySIS, and the evaluation of the 
performance of hghttng systems as affected by room characteristIcs and HV AC system deSIgn> 
Inllial deSIgns of new luminatre apphances can also be evaluated by thIS numencal tool so that 
the necessity of experImental evaluation can be minimIzed In thIS sense, the model can be used 
to aid the future design of lumtnaires. 

Detads of the room model are dIscussed in this paper with the objective of descnbing how the 
mathematical model was constructed from the fundamental heat balance equations; the f1uores· 
cent lamp positive column model Itself WIll be dIScussed In Part 11. Before we dISCUSS the math· 
ematlcal model of a room containing luminaires, we begin with a revIew of the background to 
this field and deSCribe previous studies of the coolIng loads caused by hghbng. 

COOLING LOAD CAUSED BY LIGHTING 
Lighting power is a large source of heat gain in buildings because the energy consumed by 

electric lighting appears ultimately as heat in buiIdtng interiors, even if it has been converted to 
viSIble radIatIon. In fact, in interior zones of office buddtngs where solar heat gain IS absent, 
Iightmg IS the major source of heat gain. This heat gain may be benefiCIal to occupants in bUIld· 
ings located in cold chmates, but for hot climates and the coohng season of temperate chmate, 
thIS heat gatn adds to the cooling load of the air.conditioning system. 

Even forthe most efficient light source, a large proportion of the power input to the lumInaore 
IS convened to heat directly and is manIfested as a nse in temperature of the lamp and ballast 
surfaces The remaining power IS radIated out from the lamp as electromagnetic radiatIon In 

both the viSIble and tnfrared wavelengths. Hence, power input to hghttng becomes heat gain to 
the space in two forms' One form IS the convective or conductive heat gain due to the raISed 
temperature of the lamp and ballast surfaces; these add heat to the space instantaneously. The 
second form IS radIation emitted from the lamps. This radIant energy is first absorbed by room 
and furniture surfaces, causing an increase tn their surface temperatures This temperature 
increase finally adds heat to the space through convection after a time lag. At steady state, the 
space heat gain due to lights IS equal to the lighting power input If all the hghting radIation" 
trapped wlthtn the space (e.g. for an tntenor zone WIth no wtndows). However, steady state con· 
dlllons are not normally attamed due to these onloff cycles, smce most offices hghts are usually 
SWItched off outsIde office hours, and some energy·conscious occupants may turn off the lights 
when the room is unoccupIed. The tnstantaneous heat gain from lights therefore depends on 
many factors, includtng: the onloff schedule of the lightIng, the configuration of the room, room 
surface and furmture thermal propertIes, room ventilatIon rate, etc. 

PREVIOUS STUDIES 
Perhaps the first model of heat transfer in lighting was produced by Ktmura and Stephenson 

(1968). They used a SImple model of a room with a celhng plenum, a recessed lumtnalre and a 
heat·storIng floor slab. Lighting power was split arbitrardy into "upward" (released to plenum 
space) and "downward" (released to room space) fractIons. Each of these fractions was assumed 
to be equally diVIded into convective and radlative heat transfer. Usmg the response factor 
method developed by Stephenson and Mitalas (1967), they showed that the instantaneous cool· 
mg load due to hghts can be expressed in terms of two coefficients. Subsequently, Mitalas and 
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K,mura (1971) bUilt a calonmeter to determine the values of these coefficients. Mltalas (I 973a, 
1973b) funher showed, uslOg Z-transfer functions, that the coolIng load at time In' which is a 
whole number mUltiple of a fixed time step after lights on, i.e. I = In = nil, where 11 is a whole 
number and II is a time step interval, IS given by: 

where 
q(r.) = coohng load due 10 hghlS at t = nh 
W(r.) = power onpullo hgbts all = nh 

11. vl and ""I are coefficients of transfer function with v2 = 1 - wl - VI 

(I) 

Based on the experimental study of M,talas and KImura (1971), design values of V, and "'t 
were denved by Mltalas (l973a, 1973b) These values were used in the transfer function method 
for coolIng load calculation in the 1993 ASHRAE Handbook However, thIS handbook uses the 
following equation for the calculation of cooling load from lights: 

(la) 

ThIS relates the coohng load due to the hghts at the current hour (In)' to the power mput to 
hghts at the current hour (In) and I hour beforehand (In.t) Values of the coefficient Vo used by 
ASHRAE (1993) in Equation (la) are exactly the same as those of Vt originally derived by 
Mitalas. The authors noted also that an earher edition of ASHRAE Handbook (ASHRAE 1981) 
used Vt and v2 coeffiCients in the same way as derived by Mltalas (1973a, 1973b). 

Sowell and O'Bnen (1973) constructed a detailed analytical model representing the buildlOg 
unot cell wuh a fluorescent lummalre recessed into the plenum The unit cell was dlScretlzed mto 
a number of nodes and the heat transfer modes of conductIon, convection and radiation between 
nodes were conSIdered. In the steady-state condmon, a heat balance equation in vector-matnx 
form was obtained Th,s vector·matrlx equation was solved numerically and a set of steady-state 
nodal temperatures was obtained to enable the prediction of the effects of the IIghtmg system on 
the thermal enVIronment in the living space 

Ball and Green (1983), repon results from an ASHRAE-sponsored study, using mathematIcal 
modeling" of the tranSIent energy transfer caused by lighting. Their model simulated primanly 
the conditions in the test room faCility used by Mitalas and Kimura (1971), with the room, the 
plenum and the luminalre being considered separately. The model was used to generate the 
transfer function coefficients Vt and Wt in Equallon (I) for the expenmental conditions used by 
Mualas and K,mura. Some good and some poor agreements were found. However, with a caveat 
for the case in which a large discrepancy was found in the v, value, they made recommendalIOns 
for the use of the model generated transfer coefficients for coohng load calculations 

Sowell (1990) added dynarmc simulation to his earher steady-state model so that the heat bal
ance equation had an addItional term compnsmg the product of heat capacItance and rate of tem
perature change. This vector-matrix equation was solved by partItioning It mto nodes With finite 
thermal mass and nodes that were assumed to be massless. He also added the effect of lamp wall 
temperature on lamp and ballast power, and on luminous output. usmg empirical curves. Sowell 
called hIS model a "numencallighting/HV AC test cell" and he argued that the use of hIS numer
Ical test cell had advantages over the use of full-scale physical test cells. HIS numerical test cell 
w"' implemented ID the C programmmg language and called the UGHTS program (Sowell 
1989). The UGHTS program was validated by a number of simple examples WIth known solu
tIOns Compansons were also made with results from the NIST phySIcal test cell (Treado and 
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Bean 1988, 1990, 1992); however, agreement was generally poor. Sowell (1990) attrIbuted the 
discrepancies between the model and the NIST data to model deficiencies or experimental error 

MODEL EQUATIONS 
The room model developed In our study is a dynamic mathematical model for simulating 

transient heat flow and temperature for a room with lummaires and a plenum. The model useS 
heat balance equations for the nodes based on fundamental heat transfer principles. It dIffers 
from the previous models by other researchers In three main aspects; firstly, It solves the 
dynamic heat balance equatIons without assummg any node to be massless; secondly, it calcu
lates Illuminance on room surfaces; and thirdly, a fluorescent lamp pOSItive column model can 
be Incorporated to sImulate the vanation of light output WIth ambIent temperature. Hence, the 
model calculates not only the dynamic temperature vanation but also the dynamIC lightmg levels 
m a room WIth both alr-condltiomng and hghtlng on. 

To conform WIth most modem offices, the room model was comprIsed of three separate sec
tIons (companments): the luminaire, the plenum (ceiling VOId) and the room (conditIOned 
space). Each sectIOn is dIvided into a number of nodes The model was designed to be fleXIble 
so that it could SImulate dIfferent room configurations; to achieve thIS, the number of nodes In 

each of the three sectIons could be vaned A node represents an isothermal surface For mo.t 
cases the walls, floor and celhng of the room (and plenum) could be assumed to be isothermal 
surfaces and each is represented by one surface node. Lamp and luminaire surfaces are usually 
non-isothermal. The model allowed a non-isothermal surface to be dIVided mto smaller elements 
to form dIfferent nodes (each with a dIfferent temperature) provided that the phYSIcal properties 
of all nodes, the radIatIon form factors and the conductIon coupling between adjacent nodes are 
known It IS anticipated that m most slmulations, due to the complexity when too many node. 
are used, lummaire and lamp surfaces have to be assumed isothermal. Figure I shows a sche
matIc dIagram of the three sectIons and the dlstnbutlon of some nodes. 

For each node, the followmg equatIon can be made for the heat balance: (ThIS equatIon relate. 
the temperature rise of each node in one tIme step to the total net heat gam of that node In one 
tIme step) 

where 
m, = rnassofnodei 
cp. = speCific heat capacity of node, 

liT, = temperature nse of node; ID one time step 
qc, = total (electncal) energy mput at node r ID onc time step 
qLl = total (net) long·wave radJatlon heat gaIn to node; in one time step 
qs. = total <net) short-wave radlallon heat gain to node i m one lime slep 
qH, = total (net) convection heat gaID to node; 10 one time step 
qc. = total (net) conduction heat galD to node i ID one lime step 

(2) 

As shown in thIS heat balance equation, the net heat gain to a node consIsts of five compo
nents: energy input (for lamp and ballast nodes only), long-wave (mfrared) radIatIOn, short-wave 
(viSIble) radIation, convection, and conduction. Each of these components is calculated sepa
rately, as deSCrIbed below. 

Energy Input at a Node 
As the purpose of this model was to study the interactIon between hghting and air-condlllon

ing, the only energy tnput considered was the electrical energy consumed at the lamp and ballast 
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Figure 1. Schematic diagram of the three sections and the distribution of 
some typical nodes. 
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nodes, no other power sources were considered. Fluorescent lamp power input, as well as the 
hghr output, depend on the mtnimum lamp wall temperature (also called the cold-spot tempera
lure which is the temperature of the coldest spot on the lamp wall) which ID turn depends on the 
operatmg environment. Therefore, when modehng the fluorescent lamp power input one cannot 
Simply use the rated power of the lamp. As the lamp power depends on the discharge CUlTent 
mSlde the fluorescent tube, a posittve column model of the fluorescent lamp (see, for example, 
Waymouth (197 I» was used to calculate the vanation of lamp power under different operating 
<onditions. This posittve column model could be incorporated into the room model for improved 
Simulation of the variation of hght output With ambient temperature. 

The positive column model was added in the form of a subrouttne so that It could be substi
tuted (for companson purposes) by other methods of calculation of the variatIon of lamp power 
and hght output with ambient temperature such as the use of empmcal curves. In thiS paper, the 
results obtained from a room model Simulation calculated usmg empirical curves were com
pared With results from the LlGIITS program Details of the positive column model are 
dc,cn bed in Part 11. 

The power consumed at the ballast depends on the quahty of the ballast. For calculation pur
poses 11 IS usually assumed to be a fraction (e.g. 0.1 5) of the lamp power. The power input at 
nodes other than the lamp and the ballast IS assumed to be zero. 
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Net Long-Wave Radiation 

The nel rale of long-wave radlalion flow 10 node i IS obtained by subtractlDg the radIant ex i
lance (radlOsity) of I from the irradIance on i as follows: 

(3) 

where El.., M", and A. are, respectively, the irradiance, radiant exitance (radiosny), and area wnh 
reference 10 node I (all symbols WIth a subscripl L refer 10 long-wave radiation). Using radlallon 
form faclors F,., reflectancesp", and emisslvities e" etc. E" and M" are given as follows: 

where the lasl equality in Equallon (4) uses Ihe reciprocIty relation of radiation form factors 

Mu = MLo, + PL,EL, = MLo, + PL,LF'JML} 
J 

(4) 

(5) 

where M Lo. is the rad,anl errussive power from a gray surface, and is given by !he Slefan-Boltz
mann law· 

(6) 

Equation (S) is actually a sel of simullaneous linear equations thal can be solved by an Ilera
lion process such as the Jacobi or Gauss-Seidel ileration method. 

Combimng Equallons (3), (4), (5) and (6): 

'iL, = (EL,-E,ar: -PL,EL,)A, 

= [(I-PL,)EL,-E,a-t.1A, 

= A,(I-PL,)LF'JMLj-A,E,a-t. 
J 

and assumlDg all surfaces 10 be dIffuse grey, then PI.. = I - e, and Equation (7) becomes: 

Net Short-wave Radiation 

(7) 

(8) 

If all surfaces (lDcluding the hghl-emilllng surfaces) are assumed 10 be diffuse, then equations 
similar 10 Equations (3), (4), and (5) above also apply 10 short-wave radiation. F1uorescenllubes 
have more or less a diffuse emission, and the assumption of dIffuse surfaces is a good one for all 
surfaces in a normal office environment, except !hal there may be a refleclor which has a large 
specular componenl inside the luminrure Using symbols similar 10 the long-wave radiallon 
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tenns but WIth a subscnpt S denoting short-wave radiation, the followlDg equatIon gIves the net 
short-wave radIatIon heat gaID' 

ESI and Ms, are given, respecltvely, by: 

and 

MS, = MSo,+ps,Es, = MSo/+Ps,LF"Ms, , 

(9) 

(10) 

(11) 

where M so. IS the lumlDous power per unn area emllled from surface I, and is zero except for the 
lamp and dIffuser nodes. In a fluorescent lamp, the luminous power emIssIon Mso,IS related to 
the property (quantum effiCIency and spectral dtstrlbutlon) of the fluorescent powder in the 
lamps and the discharge intensity InsIde the lamp. The dIscharge intensny, m turn, IS related to 
the mercury vapor pressure inside the lamp. As mercury vapor inside the lamp condenses at the 
coldest spot, the discharge IOtenslty and hence the luminous flux emISSIOn depend on the mlOl
mum lamp wall temperature. A fluorescent lamp positive column model can be used to calculate 
Mso, for the lamp nodes (to be descnbed in a further paper). Otherwtse, Mso, for the lamp nodes 
can be calculated from the lumen output of the lamp by assuming a lumtnous efficacy of radIa
tion emilled from the lamp. 

SImIlar to Equatton (5), Equatton (11) is also a set of simultaneous equatIons whIch can be 
solved by an iteration process such as the Jacobi or Gauss-Seldel iteratIon method. 

Combintng Equattons (9), (10), and (11), the short-wave radIation heat gaIn of node i is then 
gIven by. 

(12) 

Convection 

For surfaces in contact WIth an air node there is convectton heat exchange between the surface 
and the air node. The convectIon heat gatn of node i is: 

IfH. = A,h,(T. - T,) (13) 

where h, is the convectIVe heat transfer coefficient of node i, T. is the temperature of the aIr node 
adjacent to node i. and Tits the node temperature. 

The convectton to the aIr node is then: 

(14) 

where the sum is taken over all nodes in contact with the air node. 
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In the computer program developed for the model. the convecltve heat transfer coefficient h, 
was calculated based on empIrical equatIons for free convectIon gIven m Holman (1992). The 
geometry and dImensions of a node were input parameters for the calculation of convectIOn 
coefficIent. For example. the geometry of the lamp was a horizontal cylmder. walls are ventcdl 
surfaces. floor and ceiling are honzontal surfaces. and the ballast IS assumed 10 be an Irregular 
solid. A surface (node) was assumed to be isothermal and the temperature dIfference between 
the surface and adjacent air was calculated at each time step With this temperature dIfference, 
the convective heat transfer coefficient was calculated using appropriate empirical equations and 
correlation constants. as gIven m Table 7·1 of Holman (1992). All nodes m the model are treated 
separately. yieldmg separate convection coefficient values. The computer program also allowed 
input of the convectIve heat transfer coefficient dIrectly. where this is known. e.g through 
expenmental determinalton. For cases in wblch air return IS through the lummaire companment, 
forced conveclton may happen and the convective coefficients over lamp and lummaue surfaces 
then have to be determmed ellber by calculallon using known empIrical equallons such as tbo,e 
given in Holman (1992). or by expenmental measurements. 

If there IS air exchange m between 8lr nodes in dIfferent sections. then the convection heat 
gain of air node ai due to tbls air exchange is calculated from: 

(15) 

where v,j IS the volume flow rate of air in between air nodes ai and aJ and p. and cpa are the den· 
sity and specific heat capacIty of air. respecltvely, whIch are assumed to be constant over the 
range of air temperatures concerned. 

Conduction 

For nodes in contact with each other. there is a conduction heat transfer between them. The 
total conducllve heat transfer to node i IS calculated from: 

qc, = LCJ,(1~ - T,) 
J 

(16) 

where S, is the conductance from node j to node i and the sum IS taken over all nodes in contact 
wllh node, 

SOLUTION SCHEME 
In order to get a solution. the mass. heat capacIty. reflectivuy. emIssIvity and mltial tempera· 

ture of each node had to be known or assumed. A time step was then selected The rates of heat 
gam by dIfferent modes were then calculated one by one uSIng Equations (3)-(16) with nodal 
temperatures equal to that at the begmnmg of the time step. In the ca\culatlon. considerallon was 
gIven not only to heat exchange between nodes within a section but also to heat exchange by 
shon wave radIatIOn transmuted from one sectIon to another. by conducllon between adjacent 
nodes of dIfferent secllons. and by 8lr exchange between sections. These rates of heat gain to 
each node by dIfferent modes were then added together. This total rate of heat gam to a node 
was then multiplied by the time step and divided by the heat capacity of the node to get the tern· 
perature change of the node during the lime step penod. as given by Equallon (2). This tempera· 
ture change was then added to the nodal temperature prevailing alone time step before. In other 
words, the model used the forward finite difference method in the calculallon of the nodal tern· 
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peratures one time step forward. It was assumed that the room aIr was kept at a constant temper· 
ature by an ideally-controlled alf-condllloning system; therefore, the heat convected to the room 
air node was equal to the coohng load due to hghtlng. From the shon-wave rad,at,on falling on a 
nodal surface, the dlumlnance on the surface could be calculated using the CIE relatIve spectral 
.enslllvlty curve (CIE 1983), and either knowing or assuming the spectral d,str,bution of the 
hght. 

The Gauss-Seidel iteratIOn method was used to solve the SImultaneous equations [EquatIons 
(5) and (JI» for fast convergence. Stab,hty and convergence of the numencal scheme used in 
the model caused some concern in the development of the model. In fact, the stabilIty of the 
numencal scheme depends very much on the input values of the parameters, such as areas, heat 
capacitIes and heat transfer coeffiCIents. In Sowell's LIGHTS program (Sowell 1989), nodal 
heat capacities smaller than a certam value (user defined) are assumed to be 'mass less' , so that 
the transient problem becomes a steady·state one, and in thIS way the problem of ,"stab,lity due 
to small mass and large conductances is eliminated. In the present numerical model, the maxI· 
mum tIme step to ensure numencal stabdlty depends on the relative thermal masses of the 
nodes To include nodes WIth small thermal masses such as the lamp node but not assuming 
them to be 'massless', a small time step (of the order of seconds) has to be used to ensure numer
Ical stability. In the validation run (descnbed next), a tIme step of 1.0 second was used to ensure 
stablhty. Since the program will not be used dIrectly for simulatIon on an annual basIS, the shon 
time step mterval will not mcrease the computational time unduly. For buddmg energy slmula
non on an annual basis, the model can be used as a "pre-processor" to generate weighnng factors 
and Jightmg energy dlstnbutlOn fractions These pre-processor results are then used in bUlldmg 
energy analysis programs. The numencal model was coded m FORTRAN77, and therefore 
could be complied usmg any FORTRAN77 complier. It has also been compIled and run success
fully on several recent models of desktop computers. 

MODEL VALIDATION 
The model descnbed prevIOusly was valIdated using expenmental data and a numencal test 

cell (Sowell's LIGHTS program, 1989) Sowell's model uses an empirical curve m place of the 
posItive column model to account for the vanation of Jight output WIth lamp-wall temperature. 
In order to make direct comparison with the LIGHTS program, simulations were performed 
usmg the; room model as descnbed in this paper but without the mclusion of the poslllve column 
model of the fluorescent lamp. For identificatIOn purposes, thIS version of our numerical model 
IS termed LITEACI. The versIon mcorporatlng the posItIve column model is termed LITEAC2, 
and wdl be discussed In Pan IT Two sets of experimental data were used for the validation exer
c". The first set conSIsted of measurements in a full-scale room taken at the US National Insti
tute of Standards and Technology (NIST), and published in two NIST repons (Treado and Bean 
1988, 1992). The second set was a series of measurements taken m a speCIally-constructed labo
ratory-scale test cell containing a lummaire. The follOWing deSCribes the results of these vahda
tlon exercises. 

The NIST Test Cell 
Treado and Bean (1988, 1990, 1992) reponed on full·scale measurements of the interaction 

between hghting and HV AC carned out at NIST's Bulldmg and Fife Research Laboratory They 
u.ed a test room of dimensions 4.27 m long and 3 66 m wide, with a conditIOned room space 
heIght of 2.44 m, and a plenum height of 0.76 m. Four lummalfes, each 06 m WIde by I 2 m 
long, were recessed into the plenum. In the case considered here, each of the luminaires con
tamed two 40 W lamps and an acryhc dIffuser. It was configured with rur return through a ced-
109 grIlle to the plenum. Supply air flow rate was 0 0944 m3/s. In the validatIOn work conducted 
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here, the N1ST test room was divided mto 23 nodes: 5 luminaire nodes, 9 plenum nodes and 9 
room nodes. This divIsion is similar to that used m the N1ST numencal model (Treado and Bc.n 
1988) with the following changes: 2 nodes are added: the carpet surface and the base of the 
lummaire diffuser; in addition, four NIST nodes were ehminated: middle floor and middle ceil
ing. These were actually the same node and considered unnecessary in the current validanon 
exercise' ceIlmg top and floor surface, which were .ctually the same node, and were combined 
into a smgle node, and ceIlmg bottom and floor bottom (which are also the same node and are 
also combined mlo a single node In this validation exercise ) 

Data concernmg the dimensions, the heat capacity, the emissivity and the reflectivity of nodes 
were obtained either from the N1ST reports or were calculated from data in ASHRAE (1993). 
Radiation form factors were calculated using the view factor programs VF and FACTS included 
m LIGHTS (Sowell 1989). Convective heat transfer coefficients were calculated accord 109 to 
empmcal equations for free convection given in Holman (1992). Conductance values were 
obtamed from ASHRAE (1993) 

In thiS study, as the fluorescent lamp posillve column model was not included, lamp data con
cemmg the relative power and relative hght output was obtained from Siminontch et al. (1984); 
lamp power balances and luminous efficacles were obtained from DortelJn and Jack (1985). The 
transmlltance of the prismatic diffusers used 10 the NIST test cell is not available in the pub
hshed reports Accordmg to IESNA (1993), the transmittance of clear prismallc lens has a range 
between 0.7 and 0 92 and It IS reasonable in the calculations here to assume the transmittance to 
beO 8. 

To faclhtate companson with the results pubhshed in the N1ST reports (Treado and Bean 
1988, 1992), two kinds of simulation tests, namely, the "hghts on" test and "lighting onloff 
cycles" test, are reported here 

Lighting ON Test 

Simulatlons were conducted, usmg both the present model and Sowell's LIGHTS model, for 
the NIST test cell where all the lamps were sWitched on at lime zero, and then were kept on at all 
umes. Inlllal temperatures of the nodes are as those given in the N1ST reports (Treado and Be.n 
1988, 1992). In the simulations, the node temperatures, coohng load and lightmg power were 
calculated for each time step. 

The results are shown in Figures 2 and 3. In Figure 2 the lamp temperature is compared 
against time, as predicted by simulauons using the present model LITEACI along With those 
from the LIGHTS model. Also shown In thiS figure IS the lamp temperature measured In the 
NIST test, and the lamp temperature predicted by LIGHTS (Sowell 1990). This figure shows 
that the lamp temperature rose to its equlhbrium value within the first two hours. There IS very 
good agreement between the simulation results of both the LITEACI model, the LIGHTS 
model, and the NIST experimental results, with differences of less than I·C between simulated 
and measured temperatures. WhIle there is no significant difference between the simulation 
results from the LITEACI model and those from the LIGHTS model, Significant differences did 
occur, however, between the computatton times required. Namely, using a fixed time step of one 
second, a Simulated period of 96 hours, and runnmg on a personal computer with an Intel Pen· 
tium-IOOMHz processor, the LITEACI model required nine minutes of computatIOn lime, 
whereas the LIGHTS model required three hours and 37 minutes of computation time. The 
LIGHTS model can run faster If the time step IS allowed to vary between a mimmum and a max
imum Even with a minimum time step of 0.36 seconds amI a maximum time step of 18 seconds, 
15 minutes of computanon time was reqUired for LIGHTS to complete a simulatIOn run with the 
same configuratIOn. 
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LITEACl, LIGHTS. and measured results 

FIgure 3 shows a comparison of the IIghtmg power and cooling load simulated by LITEAC I. 
the NIST test data. and the simulated results from the LIGHTS model. Good agreement is 
shown between the three cooling load curves; that is. between the predicted result of the current 
model. the predicted result of the LIGHTS model. and the NIST experimental results. For IIght-
109 power. the agreement between the simulated results of the two models and the NIST expen
mental result was excellent. 
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lighting On/Off Cycles 

Further simulatlons were conducted. using both LlTE4.CI and LIGHTS. assuming a pcnod 
of five days, with lamps on for 12 hours (lamps switched on at hour 0) and lamps off for I:! 
hours (lamps sWItched off at hour 12) each day. F,gure 4 shows The LITEACI and LIGHTS 
SImulation results of the coohng load profile as a fraction of the lighting power over a 24-hour 
penod, starting at hour 18 of day three are shown in FIgure 4 Also shown in F,gure 4 are the 
NIST test results (Treado and Bean 1990) for the same configuratIOn. The figure shows that the 
SImulated results agree well with each other and WIth the NlST test results. 

The Laboratory Test Cen 
For funher vahdatlon of the model, a laboratory test cell containing a f1uorescentluminaIrc. ~ 

plenum or ceIling VOId, and a room space was constructed. ThIs cell was not a scaled-down 
model of an office. but a room with small dimenSIOns. Th,s set-up could be used to vahdate the 
model because the model IS deSIgned such that It can be used for dIfferent dImenSIons, prOVIded 
that suitable values for heat transfer coefficients and rad,atIon form factors are Inserted a' 
appropriate 

The cell was 1.5 m long, I m WIde, and I m high It was constructed of 9 5 mm thIck pl)
wood. and Insulated on the outside WIth expanded polystyrene The heIght of the cell ,,~, 
dIVIded by a suspended celhng mto a cedmg VOId of 0.2 m m height and a room space of 08 m 
In heIght FIgure 5 Illustrates how a 1200 mm x 300 mm fluorescent lumlnalre was mstalled at 
the center of the 'suspended celhng', WIth its axis along the length of the cell, and holdmg ~ 
1200 mm long fluorescent lamp To measure node temperatures, thermocouples were attached 
to the lamp and lumlnaire surfaces, and to the walls, floor and ceIlmg, as shown in Figure 5 
Temperature measurement uncertamty was estImated to be ±1.0·C. Three lux meters, consISting 
of color and cosine corrected slhcon photocells were used to measure Illuminance on the floor 
The uncertamty of the photocells were estImated to be ±2% of the reading. An aIr-condItIOnIng 
laboratory Unit was used to supply cool aIr to the cell. 
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Figure S. Cooling load fraction of NIST test cell--comparison between 
LITEACl, LIGHTS, and measured results 

From the cell physical d,mensIOns and lis constructIOn materials, data for the heat capaclly, 
emlsslvlly, and reflecllvlIY of the nodes were obtained from ASHRAE (1993). Radiation form 
factors were calculated from the physical dimensions uSing the view factor programs VF and 
FACTS, whIch are included In LIGHTS (SoweIl1989). Approximauons were used in the calcu
lation of form factors for surfaces insIde the lumina"e. Convective heat transfer coeffiCIents 
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were estImated for the geometnes concerned accordmg to equations gIven m Holman (1992) 
Conductance values were obtained from ASHRAE (1993) 

To mclude both the "hghts on" and "hghts off' tests, expenmental meru.urements were made 
for the case when the lamp was switched on for 23 hours, and then sWItched off Measurement, 
of temperatures at node surfaces were taken every mmute for the first ten mmutes after the lamp 
was swttched on, then at every 10 minutes throughout the rest of the "lamp on" penod; thl~ "'" 
repeated at every mmute for the first ten mmutes after the lamp was sWItched off and then .t 
every 10 minutes for up to 10 hours after the lamp was sWItched off. Durmg the test, the ambIent 
air temperature around the test cell was IS 7·C. 

The precedmg sItuation Was stmulated using both the LlTEAC I and LIGHTS models, and the 
compansons are shown in FIgures 6 to 10. Figure 6 shows the lemperatures of the Iwo node. for 
the lamp. The temperatures for the lamp upper node predicted usmg LITEAC I agreed vcr} 
closely with the experimentally measured values. However, the lamp's lower node temperature, 
that were calculated with LIlEACI were about 2.S·C hIgher than the measured values. Th" can 
be explained by the fact that the calculated lamp lower node temperature represents the average 
temperature over the enure lower half of the lamp, while the measured lamp lower node temper· 
ature was taken al a single point only, which could be unrepresentative of the overalllempera· 
lure. The lamp upper temperatures predicted usmg the LIGHTS program were about 2·C hIgher 
than the expenmentally measured values, whIle for the lamp lower temperatures, values pre
dicted using the LIGHTS program were about 6·C hIgher than the expenmental values. Thu,. 
for the Simulation of lamp temperatures, LIlEACI gives results closer to the expenmental val
ues than those given by the LIGHTS program. FIgure 7 shows Ihe temperatures of two other 
luminalre nodes'lummaire air and luminalre housing. Both LITEACI and LIGHTS gave simIlar 
results for luminalre air and for luminalre housing temperatures, both of whIch were lower than 
the correspondmg experimentally-measured values by between 2 and 2.5·C. ThIs discrepancy 
may be due 10 the assumptIon thal an Isothermal surface IS not good enough for the lamp and 
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Figure 6. Lamp node temperatures of laboratory test ce~omparison between 
LITEACl, LIGHTS, and measured results 
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Figure 8. Plenum node temperatures of laboratory test cell-comparison between 
LlTEACl, LIGHTS, and measured results 

luminalre housing, andlor inaccuracies 10 the mput data of the heat transfer coeffiCIents used in 
the slmulal1ons. 

The temperature of three plenum nodes. plenum air, lummalre housing top and cedmg are 
shown 10 FIgure 8. The figure shows that both the LITEACI and LIGHTS models predIct values 
for plenum aIr temperatures and luminalre housing top temperatures which match very closely 
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Figure 9. Room node temperatures of laboratory test celHomparison between 
LITEACl, LIGHTS, and measured results 

wIth the measured values. LITEACI and LIGHTS also gave very sImilar results for the ceiling 
temperatures However, there is a mis-match between the sImulated and measured results of the 
ceIling temperature The cause of thIS dIScrepancy IS thought to be due to experimental error In 

the measurement of the ceIling temperature or to madequate insulation. 
FIgure 9 shows the temperature of three room nodes: room air. walls and floor The figure 

shows that there is good agreement between the SImulated results of both models and with the 
measured results Both the simulated and the measured results show that the room air tempera
ture IS higher than the floor temperature wh,ch is 10 turn hIgher than the wall temperature How
ever, the results from LITEAC I were closer than those from LIGHTS to the experimentally 
measured results. 

FIgure 10 shows a comparison ofthe floorJlluminance calculated by LITEACI, and that mea
sured experimentally It can be seen that there are deVIations of about 10% between the calcu
lated and measured Illuminance values It will be shown m Part 11 that the match between 
calculated and measured illuminance values can be Improved by incorporating a fluorescent 
lamp positive column model in LITEACI. The LIGHTS program does not mclude an output or 
the iIIummance of room surfaces so that thIS comparison cannot be made 

CONCLUSIONS 
A mathematIcal model was denved based on heat transfer prinCIples for the sImulatIOn of the 

effects of IOtenor lighting on the cooling load In enclosed spaces, as well as simulatmg the 
change in IightlOg level. A computer program based on the model equations was written In 

FORTRAN and called LITEACI. ThIs program was compared WIth Sowell's LIGHTS program 
(Sowell 1989), and was found to gIve very SImilar results but to run much faster on a personal 
computer. Comparison of the SImulated results from LITEACI with the experimental measure· 
ments from the NIST test cell (constructed specifically for the study of the mteractlOn between 
HV AC and lighting) IOd,cates good agreement The model was further validated uSlOg a labora· 
tory constructed test cell containing a fluorescent lummaire. Compamon of predicted tempera· 
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Figure 10. Floor illuminance oClaboratory test cell-eomparison between 
LITEACl and measured results 

tures from LITEAC I with measured results from this laboratory test cell revealed good 
agreement Prediction of floor illuminance by LITEAC I was found to give only moderate agree
ment with expenmental results. A positive column model has been incorporated mto LITEACl 
With the aim of Improvmg the simulation of lighting outputs; details of the posillve column 
model will be discussed m Part n. It is not possible to predlctlllummance With LIGHTS, and so 
LI1EAC I represents an advancement on previous models in that respect. 

NOMENCLATURE 

0 Slefan-Boltzmann constant = 5 669 x F. Ramabon form factor (fractIon of radla-
10-8 W/(m2 K4) lion etnttted from node ithat falls on node 

I!J. Time step, s or h J) 
El EmISSIvity of node i h, Convective heat transfer coeffiCIent of 
p", Reflectance of node i WIth respect to node I,W/(m2 K) 

long-wave radiation m, Mass of node I, kg 
Ps, Reflectance of node I WIth respect to 

short-wave radiatIOn 
Mu Long-wave rad,ant exllanee (radtoSJty) of 

node I, W/m2 
A, Surface area of node i, m2 MLo, Long-wave raruant enusslVe power of 
C. Heat conductance from node i to node j. node I, W/m2 

WIK MSI Short-wave ramant eXltance (radloslty) of 
cp, Specific heat capacIty of node I, J/(kg. K) node,. W/m2 
I!J.T, Temperature nse of node lID one time Ms.. Short-wave radJant emlSSlve power of 

step. K node I. W/m2 
E", Long-wave radIation Irradiance on node q(1.) Cooling load from lights at time I = I, = 

i, W/m2 nI!J.,W 
Es, Short-wave radiation irradiance on node qc, Total (net) eonducllon heat gam to node I 

I, W/m2 
ID one Ume step, J or W s 
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Total (eleclncal) energy mput at node I m 
one bme step9 J or W s 

Total (net) convectIon heat gam to node I 
In onc bme step, J or W s 

Total (net) convecnon heat garn to the air 
node tn one time step. J or W 5 

Total (net) long-wave radIation heat garn 
to node i m one tIme step, J or W s 

REFERENCES 

HV AC&R REsEARCH 
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Numerical ModeIing of Lighting/HV AC 
Interaction in Enclosures 

Part 11: Effect of Including a Fluorescent 
Lamp Positive Column Model 

Tse.Ming Chung 
Member ASHRAE 

D.L. Loveday, Ph.D. 

A numencal model ofthefluorescent lamp positIve column sUltablefor use in simulatmg the inter
actIOn between Itghting and HVAC systems in enclosures IS presented. The model was modified 
from eXlSllng models m the literature to mclude only sufficient detaIls for simulating the conver
sIOn of electnc energy into lIght and heat. Details of the fluorescent lamp pOSItive column model 
are descT/bed. The model presented was incorporated w,th,n an eXlstmg model, UTEACI 
(described m Part I). that hod been usedfor modeling the interaction between lightmg and HVAC 
S)stems In enclosures. The resultmg model, called UTEAC2. was tested by simulating the perfor
mance of afluorescenllamp rn a laboratory construcled lesl cell. I1 was found thal the positIve 
column model enabled better predIctions for the llghling/alr-condltlonlng rnteractlOn. and 
Improved Ihe modeling of illuminance on room surfaces. 

INTRODUCTION 
In Part I. the authors presented a model described the mutual interaction between lightmg and 

nu-conditioning systems It was stated that the model was used to calculate not only the effect of 
heat output from lIghting on the coolIng load in an enclosure. but also the effect of the ambient 
thermal environment upon the performance of the IIghtmg system itself. To do thiS requires a 
knowledge of how the light output, lamp power and lamp efficacy vary with the ambient thermal 
environment In the enclosure. 

Fluorescent lamps are low pressure mercury dIscharge lamps. A tYPiCal fluorescent lamp con
sists of a long glass tube of d,ameter either 38 mm (T12) or 26 mm (T8) With two electrodes, 
one at each end of the tube. Smaller tube d,ameters are used in compact fluorescent lamps. The 
electrodes are coated with alkalme earth oxides to faCilitate the emission of electrons. The tube 
IS filled with a rare-gas. such as argon or krypton or a mixture of argon and krypton. at a pres
sure of about 300 to 500 Pa. A small amount of mercury is mtroduced into the tube so that at 
normal room temperatures there is a mercury vapor pressure of about 0.8 to I 3 Pa. A potential 
difference applied across the two electrodes accelerates the electrons emitted from the elec
trodes. These electrons collide inelastically with the mercury atoms ID the tube. losmg kmetlc 
energy, thereby excltmg the mercury atoms to higher energy levels. As the excited mercury 
atoms relax back to the ground state or an intermediate metastable state, the energy which they 
absorbed dunng excitatton is dissipated as quanta of electromagnetic radiation. This process 
occurs ID a regIon called the poslllve column of the discharge which occupies over 95% of the 
length of the tube. The radiatIOn emitted consIsts of two resonance lines in the ultraviolet (UV) 

Tse.Mmg Chung IS an assistant professor ID the Depamnent of Buddmg Services Englneenng. The Hong Kong Poly
lechnlc Unlversll)'. Kowloon. Hong Kong D.L Loveday IS a reader ID CIVIl and Budding EnglOeenng. Loughborough 
Um\erstty~ Lelcestershtre. U K 
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band, at 253.7 nm and 185 0 nm with some other weak lines 10 the vIsible and IOvlslble band, of 
wavelengths. Fluorescent powder, or phosphor, on the mside surface of the tube wall conven, 
the UV radiauon to vIsIble hght for various Iighung apphcauons. 

The number of melastic colhsions 10 the dIScharge depends on the mob,hty of electron, and 
the denSIty of mercury atoms. The number of excltations to the resonance and upper energy 
states depends on the energy dIStributIon of the electrons. The radlauon eml!ted dunng de·ext!· 
taUon of mercury atoms suffers from self absorption within the positive column. ThIS ,cif 
absorpuon, often called radIatIon trapping or impnsonment of radIatIon (Holstem 1947, 1951), 
Increases with the denSIty of mercury atoms. Since there is an excess amount of mercury inSldc 
the tube, the density of mercury atoms IS determIned by the saturated vapor pressure of mercury 
at the cold spot temperature of the tube wall Hence, for a fixed lamp·ballast system, the vanable 
affectlOg the hght output of a fluorescent lamp is the mlOlmum lamp wall temperature (also 
called the cold·spot temperature) whIch IS the temperature of the coldest spot on the lamp wall 
The two competmg processes of mcreaslOg UV quanta emItted, and increasing self.absorpuon 
WIth denSIty of mercury atoms, gIve nse to the phenomenon that the hght output has a maXImum 
WIth respect to changes in the mlOimum lamp wall temperature; i e. there IS an optimum value of 
the minimum lamp wall temperature at whIch the hght output IS at a maxImum. 

PrevIous models of the IOteractlon between IightlOg and zone cooling systems, such as that of 
Sowell (1989, 1990), made use of empincal curves of the hght output and lamp power agam,t 
mlOlmum lamp wall temperature in order to account for this effect. However, the use of emptrt· 
cal curves gIves no phySlcallOSlght mto the mechanism that convens eleclncal energy mto hghl 
and heat withm the fluorescent lamp. Funhermore, It IS necessary to use dIfferent curves for 
lamps of different type and dIfferent size. In order to obtam a phySIcal inSIght and to calculate 
the conversion of eleclnc power into light and heat from first pnnciples, a mathematIcal model 
of the dIscharge process inSIde the fluorescent tube has 10 be used. In a fluorescent lamp dlS' 
charge model, the energy balance is considered 10 relatIon to the density of mercury atom, 
whIch 10 turn depends on the ambient temperature. 

In this paper is descnbed the effect of mcludmg a fluorescent lamp poSItIve column model, m 
which the effect of ambient temperature on lamp performance IS treated from first pnnclples, m 
our eXlStmg model LITEACI for descnbmg the IightmgIHVAC mteracuon as elaborated 10 Pan I 

FLUORESCENT LAMP ENERGY BALANCE 
Electrical energy input to the fluorescent lamp dbcharge becomes pnnclpally the kineuc 

energy of the electrons due to acceleration of electrons by the electric field within the plasma 
The kineuc energy of the electrons is dissipated 10 one of the following processes: (I) melasuc 
colliSIOns WIth mercury atoms which results in emISsion of radiatIOn; (Ii) ionIzatIon of the mer· 
cury atoms, and (lIi) elasuc colhslOn with the rare·gas atoms 

An energy balance equation can be wntten as follows' 

(I) 

where E is the electriC field across the dIScharge tube,j IS the electric current density, Wine! IS the 
melasuc colhslOn loss per unit volume of plasma, w'on is the ionizatIon loss per UOlt volume 
and We/IS the elastIC colliSIon loss per UOlt volume. 

The melastlc colliSIon loss is dISsipated mainly as radiation emissions 10 the ultraviolet wave· 
lengths 253 7 nm and 185 nm with some weak emISSIons m the viSIble and inVISIble bands of 
wavelengths. The IOOlzaUon and elastIC colhslOn losses are finally dissipated as heat m the tube 
wall and 10 the plasma 
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The lOelastlc collmon loss W,." can be subdIvided into tenns that give the power losses of 
radIation emissions in different wavelengths: 

W, •• , = W254 + W I8S + W.os + W •• (2) 

where W2S4 and W l8S are the losses (per unit volume) due to emissions 10 the two ultravIOlet 
"avelengths 253.7 nm and 185 nm respectIVely, W,." and W •• are the power losses (per umt vol
ume) due to weak emIssions 10 the vIsIble and invisIble bands resultlOg from excitatlons of mer
cury atoms to energy states hIgher than the resonance states These radIation los.es occur 10 the 
form of emISSIOn of quanta of energy and each quantum has an energy equals to the product of 
the electronic charge and the energy level dIfference 10 electron volts between the excIted state 
and the final state of the transItion. The number of quanta that can escape the plasma 10 umttlme 
per unIt volume IS equal to the number denSIty of the excited state in the plasma dIvIded by the 
effective life time of the state 10 the plasma The followlOg equations give the radIation power 
lo~s terms W254' W I8S' W",P and WnV" 

(3) 

(4) 

(5) 

(6) 

These power loss tenns depend on the denSIty and energy dlstnbution of electrons, the denS!
tIe> of all specIes of mercury atoms, the rate of lomzation of mercury atoms, the rate of re-com
blOatlon 'at the tube wall and the denSIty of rare-gas in the tube. If the electron energy 
dlstrlbution in the plasma and the colhsion cross sectIons between the electrons and the dIfferent 
species of mercury atoms are known or can be assumed, then the number densities of the mer
cury states can be found by solvlOg a set of SImultaneous equations. 

THE FLUORESCENT LAMP POSITIVE COLUMN 
MODEL USED IN THIS STUDY 

As already stated, a model of the positive column is Important for under>tandlng the mecha
n"m in converting electrical energy into light energy inSIde a fluorescent lamp. In our study, the 
mm was to Investigate the macroscopIc bebavlor of the fluorescent lamp WIth respect to a 
change of thennal environment, rather than to IOvestlgate the deladed processes occumng inside 
the fluorescent tube; we dId not, therefore, use a ngorous and detaded fluorescent lamp posItIve 
column model, in which the radial vanatlOn of mercury excIted state denMlIes, for example, 
"ere consIdered Instead, in developing the model the follOWing were considered the major 
mercury excited states, the hterature values of transitIon rates between dIfferent states, and radI
atIOn trapping WIth a SImple fonnulation. The radIal vanatlOn of discharge properties and the 
excitatIOn of rare-gas atoms were Ignored In this way, the processes taking place wlthlO the 
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fluorescent tube were modeled ID sufficIent detaIl so as to advance the current statu, of 
HV AC/hghtlDg interaction modelIng beyond Ibe level of rehance upon simple empmcal cur\,e,. 

Mercury atom energy levels considered in the model 
A slmphfied pIcture of mercury atom energy levels was used In this model. This slmphfied 

mercury energy level dIagram consIsts of only eight levels. as shown in Figure I: 

Equations relating the densities of mercury states 
At equihbnum. Ibe rate of change of Ibe ground state densIty is equal to zero 

In Ibe above equation. Ibe first term represents Ibe excitation of the ground state to the SIX 
excIted states. the second term represents Ionization from Ibe ground state. the third term repre· 
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Figure 1. Simplified energy diagram of the mercury atom. Transitions that produce 
radiation are shown as dotted lines with arrow heads. No other transitions are shown. 
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,ents the inelasuc decay ofthe six excIted states to the ground state, the founh term represents 
the spontaneous decay of the six excited states with emissIOn of a photon, the last term repre
sents the rate ofrecombinauon oftons and electrons, which is assumed to be purely an ambipo
lar dIffusion phenomenon. 

AgaIn, at equlllbnum, the rate of change of the klh state density is equal to zero. Therefore, for 
the k'" excIted state: 

(8) 

This represents a set of SIX equations, one for each of the six excited states k = I to 6. The first 
term represents the klh state loss due to Inelastic collisIOns causing excItation to higher levels. 
The second term represents loss due to iOnIzation. The thud and fourth terms represent, respec
tIvely, the Increase in the lc'h state due to excitation from lower states, and the inelasuc de-exclta
lion of higher states. The fifth term represents loss due to Inelastic de-excitation of the klh state. 
The last term represents the spontaneous decay of the lc'h state WIth emiSSIon of a photon. ' 

Electron Density and Ionized State Density 
At equilibrium, electrons are assumed to come only from the ionizauon of mercury atoms; 

hence, the electron denSIty and the iOnIzed state density are equal. Assuming that there IS no 
recombInation of electrons and ions WIthin the plasma, then the loss of electrons and ions takes 
place only by ambipolar dIffusion to the tube wall, where they recombine Therefore, the rate of 
creation of electron-Ion paus is equal to the rate ofloss due to recombinatIOn at the tube wall 

(9) 

ThIs is called the amblpolar diffusion equauon. The first term IS the sum of the rate of IOniza
tIOn from the ground state and the six excIted states. The second term IS the amblpolar dIffusion 
rate to the tube wall. 

Electric Current Density 

(10) 

The electric current denSIty IS governed by the electron mobilIty and the electnc field across 
the posiuve column Waymouth and Bmer (1956) used a hypotheSIs that the electron mobilIty IS 
determined solely by collIsions WIth rare gas atoms and esumated the electron mobIlIty as a 
funclIon of electron temperature from Integrals of coll1S10n probabilIty over the electron dlstn
bution. VerweiJ (1961) dId an experimental measurement of electron mobIlIty in mer
cury-rare-gas posItive columns, thIS data was used In the model under dISCUSSIon. 

Model Equations 
EquatIOns (7) and (10), together WIth the energy balance Equation (I), form the set of model 

equations. ThIs set of equations can be solved for the number densities of mercury states by 
USIng some approximatIons which are elaborated in Appendix A and an iteralIon method 
descnbed In AppendIX B. After solving for the mercury state densIties, the power radIated from 
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the discharge in the UV, visIble and mVlsible bands can be calculated when the effectIve hfe 
times of the correspondmg states are known. 

VALIDATION OF THE POSITIVE COLUMN MODEL 

It is possIble to validate our poSlllve column model by companng calculated results of elec
tron temperature, eleclnc field strength, electron denSity and resonance state denSIty WIth exper
imental data quoted m the literature. As quoted above, Verweij's anicle (1961) relatmg to 
posillve column measurement includes very rehable data used by many authors for companson 
With model results. 

Figure 2 shows the variation of electron temperature WIth miOlmum lamp wall temperature as 
predicted by our model; also plotted are the measurements obtamed by VerweiJ As seen in the 
figure, the agreement is very good. 

Figure 3 shows the model-predicted electric field strength plotted against the miRlmum lamp 
wall temperature; Verwelj's experimental results are also plotted in the same figure. The agree
ment between the model-predicted and measured values IS not very good. However, the model 
does predict a decrease in electric field strength as the minimum lamp wall temperature 
mcreases, and the order of magnitude of the electric field strength is correct. 

Figure 4 shows the electron denSIty plotted against nunimum lamp wall temperature. The fig
ure shows not only the calculated results of this model and Verwelj's expenmental data but .ho 
the results pred,cted by the model of Oakin (1986) The figure shows that the current model 
gives a better fit to the experimental data then does the model of Oakin. 

Figure 5 compares the resonance state density as predicted by our model With two sets of 
measured data, one by Koedam and KrUlthof (1962) and the other by BlglO (1988), the model 
results of Oakm (1986) are also shown for companson. It can be seen that the calculated reso
nance state denSIty agrees well WIth the measured data by Koedam and KrUlthof (1962) More 
recent measurements by Blgio (1988) gave higher resonance state densllles at 20, 30 and 40· C 
and the calculated results of current model agree beuer to these pOInts than do the results calcu
lated by Oakin (1986) ,-,-,-
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Figure 2. Electron temperature versus minimum lamp wall temperature. 
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Figure 4. Electron density versus minimum lamp wall temperature. 

It can be concluded that the model presented here can simulate the fluorescent lamp positive 
column to a good degree of accuracy; further. It gives better agreement With experiment than 
previous models. Next. the new model can be incorporated into the lighting and air·condltioning 
Interaction model LITEAC I. already described Part I of this paper. and it can be determined 
whether there IS an Improvement m Simulating the effects of atr-condlliomng on hght output. 

CALCULATION OF LIGHT OUTPUT FROM FLUORESCENT LAMP 
After the radiation power terms have been calculated usmg the positive column model. the 

hght output from the lamp can be derived from a knowledge of the relative spectral power out· 
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Figure 5. Resonance state (63PI) density versus minimum lamp wall temperature. 

put S(l) of the fluorescent powder in the lamp. Here, the relative spectral power output S(l) is 
defined such that f S(l)d). = I, i e. the power output per unit wavelength, per UDlt volume of the 
positive column, of hght from the fluorescent powder in wavelength interval 1 to 1 + & IS 
W(l) = S(l) WpM, where WPM' IS the total output power per unIt volume of the positive column 
of the fluorescent powder tn the lamp. 

The quantum effiCIency of the lamp phosphor 11 can be defined as the ratio of the number of 
quanta of visible light emItted from the phosphor to the total number of quanta of UV radiation 
reachtng the tube wall, I.e.' 

(11 ) 

where nl is the quanta, per unIt wavelength interval per UDlt volume of the posItive column per 
unit lime, emitted from the phosphors in the wavelength interval 1 to 1 + &; n254 and nl85 are 
the quanta of the 253.7 nm and 185 0 nm emission from the positIve column that reach the tube 
wall per unit volume of the positive column per unIt time, respectively. 

It can be shown that the quantum efficiency 11 is given by the followtng expression: 

(12) 

where 

253.7W2S4 + 18SWI85 
W •• = 253.7 (13) 
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Then, the visIble light output from the phosphors per unit volume of the positive column due 
to UV radIation emitted from the posIUve column is: 

(14) 

Combmmg EquatIOns (12) and (14) gIves: 

(15) 

In the above two equations, F IS a factor to correct for loss of emitted light at the ends of the 
lamp and absorption of light by the phosphor and glass bulb. F IS quoted by Jerome (1953) to be 
075 which IS a representaUve value for most lamps. The factor 683 IS the maxImum lummous 
efficacy of radIation, whIch IS 683 ImlW, occumng at a wavelength of 555 nm V().) IS the r~la
live spectrallummous effiCIency for photopIC vision of the human eye of the CIE (1983). 

CIE (1986) gives the relative spectral power dlstnbuUons for 12 types of typical fluorescent 
lamps, represenllng standard, broad-band, and three-narrow-band fluorescent lamps. From these 
spectral power dlstnbutions, the integrals and can be evaluated Using literature values of the 
quantum efficiency (Jerome 1953), the light output due to UV radiation <I> can be calculated 
using Equation (15). 

There IS a smalI light output due tu the VIsible emission of the dIscharge directly. This IS cal
culated by assumlOg that half of the visible emiSSIon can escape through the phosphor coating 
and that the only viSIble lines emitted are 404 6 nm, 435 8 nm, and 546.1 nm so that the mean 
V(J.) IS 0 334. Hence, the totallummous flux output of the fluorescent lamp is calculated by the 
following formula: 

(16) 

In the above equauon, L is the length of the poslUve column and d is the d,ameter of the lamp. 
The first term is the light output from the UV activated phosphors and the second term is the 
hght output due to the visible lines in the dIscharge. 

HVAClLIGHTING SIMULATION: RESULTS AND VALIDATION 

Existing HV AClhghtmg simulation models rely on empirical curves for predicllng lamp per
formance. We now include a fluorescent lamp positive column model in such a simulation. The 
fluorescent lamp posiuve column model, as described above, was lOcorporated into the lighting 
and alt-condiuonlOg interacuon model LITEACI as a subroutine replacing the existlOg subrou
line whIch calculates the variatIOn of light output WIth minimum lamp wall temperature from 
empirical curves. The modIfied IIghung and air-conditioning lOteraction model incorporating 
wlIh the posItive column model is called LITEAC2. In order to valIdate LITEAC2 and to deter
mine the level of improvement (if any) over LlTEACI, the laboratory-constructed test celI used 
ID the prevIous validation exercise for LlTEACI (See Part I of this paper for details) is used 
agaID. 

1-28 



94 HV AC&R RESEARCH 

Measurements m the test cell were taken for the case With the lamp switched on for 23 hours. 
and then switched off (for further delalls. refer to Pan I of this paper). Slmulations were per
formed using LITEACI and LITEAC2. and the results are shown in Figures 6 to 10. 

In Figure 6 IS shown the temperature of the two lamp nodes plotted against time for the simu
lation results of LITEAC2 and LITEAC I. and for the expenmental results. It can be seen from 
thiS figure that the lamp node temperatures calculated by LITEAC2 do not show a slgmficant 
difference from the corresponding lamp node temperatures calculated by LITEACI. The lamp 
upper node temperature matches very well with the measured data, whilst the lamp lower tem
perature is about 2.SoC higher than the measured data. As discussed in Pan I, this can be 
explamed by the fact that the calculated lamp lower node temperature represents the average 
temperature over the entire lower half of the lamp, whereas the measured lamp lower node tem
perature IS the temperature at one point only. 

Figure 7 shows the comparison of LITEAC2 With LITEACI and with the expenmental data 
for two other lurmnaire node temperatures: luminarre 31r and luminaire housing. This figure 
shows again that there is no significant difference between the calculated results of LlTEAC2 
andLITEACI. 

Figure 8 shows the companson of Simulation results from LlTEAC2 of three plenum node 
temperatures wllh the corresponding predictions of LITEACI, and with the experimental data 
Again, there IS no significant difference between the results of LITEAC2 and LITEACI. Figure 
9 shows the simulated and expenmental results of three room nodes. Again, there IS no signifi
cant difference between the results of LITEAC2 and LITEACI. 

Figure 10 shows a companson of the floor iIIummance predicted by LITEAC2 with that pre
dicted by LITEACI, and with the measured floor Illuminance. It can be seen from thiS figure 
that LITEAC2 gives a remarkably good match with the experimental data, while LITEAC I 
gives an illuminance value about 10% lower than the expenmental value. 

From the results given above, it can be concluded that the lighting and alT-condllionlng inter
action model LIlEACI gives good predictions when compared With experimental data. For 
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LITEACI 10 gIVe good predIctions, good empirical curves to represent the change of lamp 
power and light output with lamp wall temperature must be obtained as input data. Lamp manu
facturers do not normally Include these data in the lamp data sheet or manual. The incorporatIOn 
of a fluorescent lamp positive column model mto the lighting and air-cond1l10mng interaction 
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model LlTEAC2 avoids the use of these empIrical curves and gives improved predictIons of 
lummous Ilux output from lamps and hence room surface IlIuminances, though there IS httle 
effect on prediclIons of temperature. The posiuve column model also permits a better under· 
standmg of the conversIOn of electrIcal energy into visIble and InvisIble radIatIon, and then Into 
heat. 
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CONCLUSIONS 
A mathematical model of the fluorescent lamp positive column was developed. CalculatIOn 

results of the electron temperature, electric field strength, electron densIty and resonance state 
density by the posllive column model agreed well wIth published expenmental data. The posi
tive column model was successfully incorporated IOtO a lighting and air-condItioning lOteracuon 
model, and expenmental data from a laboratory-constructed cell containmg a single fluorescent 
lummaire were used for the validation of the model. The agreement between the sImulated and 
expenmental results was remarkably good While mclusion of the positive column model had 
httle effect on predictIons of zone temperature there "'. a sIgnificant improvement in predlc
lIons of zone dlummance. Calculated floor dluminances by the Iightmglair-condltlomng mterac
tlOn model incorporaung the posItIve column model agreed much better.wlth the expenmental 
data than dId the dlumlOances calculated by a model without the positive column model. It is 
therefore concluded that the numencal model presented of the IOteraction between hghtmg and 
aIr-conditIOning can be used for the simulation of the two way interaction between lighting and 
mr-conditioning in a room, and can lead to better sImulatIOn of the effect on hght output offluo
rescent lamps due to variations of the ambient temperature. 

APPENDIX A 

Approximations used to solve the set of model equations 
In solVIng the set of model equations, several hypotheses descnbed below were employed 

The main hypotheses were: 

The electron energy distribution was chosen to be Maxwellian, and the electron temperature 
wass independent of radIal positIon. In numerical models of the fluorescent lamp posllive 
column, the electron energy is usually assumed to follow a Maxwell-Boltzmann distnbution 
(Waymouth and Bitter 1956, Cayless 1963, Lamma et al. 1982), in whIch the electron energy 
IS described by a smgle electron temperature. Some recent models used a two-temperature 
group electron energy distnbution (Vriens 1973, Dakm 1986) or a non-Maxwell electron 
energy distnbution function (Lagushenko and Maya 1984, ZISSIS et aI 1992). The authors 
thmk that, for theu purposes, it was suffiCIent to assume a Maxwelhan electron energy dIstri
butIon, and that the translllon rates are dependent on the electron temperature as descnbed in 
a sub-S!'ctlOn below. 

2. Only mercury was assumed to be ionized and eXCIted, whdst inelasuc colhslOns WIth rare-gas 
aloms were completely ignored This assumption IS justified since the iomzation and excIta
tIOn of rare-gas atoms needs a much higher energy than the kinetic energy acqUIred by most 
of the electrons. 

3. All Ionization was assumed to take place by two-stage processes, dIrect ionization from the 
ground state could be neglected. Furthermore, ionizatIon from levels higher than the 63pz 
metastable level could also be neglected. Agam, thIS IS justified by the fact that there is a very 
small amount of high energy electrons for the duect Ionization of mercury atoms. 

4. Loss of electrons and Ions was assumed to take place purely by amblpolar diffusion to the 
tube wall, where they recombine. Recombination withm the positIve column IS negligIble. 

5 The exclled mercury atoms were assumed to be de-eXCIted by the spontaneous emIssion of 
photons, and by inelasuc colhslOns WIth electrons. Losses due to diffusion of eXCIted atoms 
to the tube wall, and de-excitatlon by collisions WIth rare-gas atoms, were ignored. 

6 The posItIve column was assumed to be uniform and free of strlations. 

The above hypotheses are the same as those used by earlier investlgators, e g. Waymouth and 
Bmer (1956), Cayless (1963), and Lama et al. (1982). These investIgators also assumed that 
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electron and Ion mobihties were determined by the rare-gas only but they stated that thIs 
assumption was not completely valid especially at hIgh mercury pressures. For the purposes of 
the present study. Verweij's (1961) measurement results for electrOn mobIlity were adopted. and 
an empmcal dependence of the electrOn mobihty on the mercury density was used. 

In addition to the above hypotheses. some further approximations were used m solvmg the set 
of model equations. The first of these approximations is that the mercury ground state denSIty IS 
assumed to be equal to the denSIty of mercury atoms. Th,s approxImation is justIfied because the 
mercury ground state denSIty is about 2 to 3 orders of magmtude greater than the densities of the 
excited states. 

(17) 

HypotheSIs (3) implies that the transitIon rates Ko.. K4/. Ks,. and Kr. are all equal to zero. It is 
further assumed that excltallon to the 73S I and 6 3D

'
.2.3 levels comes only from the ground and 

the triplet 63Po.l.2 levels; and the decay of these levels can only take place WIth the release of 
quanta of radiation. Using these approximations. Equations (7) to (9) can be rewntten as: 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 
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The above slmphfied EquatIOns (17) to (25) are solved, together WIth the energy balance 
Equatton (1), using the scheme described in Appendix B. There are some approxImations used 
m the transition rate coefficients, effecttve life tImes, and ionization and elastic colhslon losses 
These approxImations are discussed in the followmg paragraphs. 

Transition rate coefficients 

The transItIon rate coeffiCIents in the above equations 1St can be obtained by an mtegratton of 
the collision cross section over the electron energy dlstnbullon functIon as follows: 

(26) 

In order to simplify the solution process, and due to the scarcIty of reliable data on the cross 
secttons for transitIons between the vanous mercury states are sparse, and the electron energy 
d,strIbution is assumed to be Maxwellian described by a smgle electron temperature, we do not 
perform the above integration, but mstead follow the method of Hoyaux and Sucov (1969) to 
determme the transillon rate coeffiCIents. Here, it was assumed that the tranSItion rate coeffi
CIents 1St were dependent on the electron temperature T. as follows. 

For ascending transItions (k>J): 

(27) 

where the coefficients 0t are constants, to be determmed using experimental values of transi
tton rates and electron temperature, as quoted in the hterature. 

Hoyaux and Sucov (1969) used a simple Inverse dependence of transiuon rates on electron 
temperature for all descendtng transItions: 

(28) 

where the coefficients At} are constants derived by them using the results of Kenty (1950). How
ever, the authors propose that It is easier and more consistent to use the followmg relationshIp 
wh,ch applies directly to the transition rate coefficients for downward tranSItions: 

(29) 

The above relationship comes from the Klem-Rosseland relationship and is based on detatled 
balancing of excitatIon and de-excItation by electron colliSIons. As discussed by Hoyaux and 
Sucov (1969), this relatIonship is generally valid as long as the electron energy distnbution is 
Maxwelhan. 

Transllton rates used for the calculatIon are those corresponding to a mmimum lamp wall 
temperature of 42'C and are taken from Wmkler et al. (1983). Using the expenmentally mea
sured electron temperature of 11500 K for 42'C lamp wall temperature, the set of conttnuity 
equattons for the particle densities is solved iteratIvely to obtain a convergence solutIon of the 
partIcle denSItIes at the lamp wall temperature of 42'C. These particle densiues are then used to 
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calculate the constant coefficients St. These constants 0t are then used to calculate the tran,,
tion rate coefficients 1St at different electron temperatures. 

Effective liCe times 

The effective hfe limes of the radIating states are also very important for the adequate expla
nation of the observed emissIon of radiation from the discharge. The resonance states emIt pho
tons whIch suffer from self-absorption whilst travehng through the dIscharge plasma. The 
repeated absorptions and re-emissions of photons on the way to the tube wall mcrease the effec
tive mean hfe times of the mercury resonance stales. Accurate knowledge of the effecllve hfe 
limes is essential for the numerical modeling of the emISsion, absorption and re-emISSIon of 
radiation by the resonance states In our model, the effective life limes for the resonance Slales 
6

3
PI and 6 'PI as well as the 73S1 and 630 1.2.3 states are needed in order to solve the set of bal

ance equatIons. 

The magnitude of the effective hfe tIme is mfluenced by many factors, amongst which are the 
mercury atom density, the broadening of the hyperfine structure of the resonance hnes due to 
thermal motIOn of the atoms (Doppler broadenmg), and the interaction of the mercury atoms 
with mercury and argon atoms (collision broadening). Holstein (l947, 1951) performed an anal
YSIS of the effective hfe time by considering Doppler broadening and collision broadening sepa
rately, and then obtaining different relallons for each of the two cases. Walsh (I959) 
mveslJgated the combined effects of both Doppler and collision broadening However, there stdl 
remain unsolved problems concerning the hyperfine structure of the hnes, and researchers are 
sllll active in this subject; examples of recent work include those of van de Weljer and 
Cremers (I985), Post (1986) and Post et al. (1986). 

In order to keep the analySIS as simple as poSSIble, Holstein's theory for a pure Doppler 
broadenmg (Holslem, 1947) was used in our model. The expression givmg the effecllve hfe 
lime is as follows: 

k.R[ Itln(k.R) )1/2't 

t'ff = 1.6 (30) 

where k. is the absorpllon coeffiCIent at the center of the resonance line, R the radius of the dl<
charge tube, and r the natural hfe time of the radIating state Following Wmkler et al. (l983), we 
use the following expressions for the absorption coefficient ofthe two resonance hnes 253.7 nm 
and 185 nm. 

(31) 

(32) 

The values of the natural hfetime are dIscussed in various an,cles such as van de Weljer and 
Cremers (1985). A natural hfetime was used of 120 ns and 1.3 ns for the 63P I and 61P

I 
states, 

respecllvely. 

Ionization and Elastic Collision Losses 

As stated preVIOusly, we ignore ionlzallon from states other than the tnplet 63Po.I,2 slates 
Following Hoyaux and Sucov (1969), we assume funher that the average energy level corre-
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sponding to the iomzed state IS V, + 3kT,12, rather than sImply V, Then, the iomzation loss is 
calculated by the following equabon: 

(33) 

The elastic colhsion loss rate is the product of energy loss per electron per colhsion, the colli
sIOn frequency and the electron denslty_ According to Waymouth (1971), the electron loses on 
average a fraction oftts energy equal to 8m,13m,g' Also, according to Lamma et al. (1982), Ifthe 
average electron kinetic energy is kT, and the average electron speed is (3kT,Im,)lfl, then the 
elastic collIsion loss is: 

('34) 

APPENDIXB 

Solution Scheme 

To solve the above set of Equations (7)-(14), the follOWing steps were taken: 
1. The ground state density No was calculated using Equation (17) and Dalton's Law of partIal 

pressure: 

(35) 

where PH, is the mercury vapor pressure at the minimum lamp wall temperature and Tg is the 
gas temperature mside the lamp m kelvms. 

In LITEAC2, the minimum lamp wall temperature was the lowest temperature of all lamp 
nodes. The gas temperature inside the lamp was assumed to be given by the elevatIOn aT above 
the mmimum lamp wall temperature, using the indirectly measured values of Kenty, Easley and 
Barnes (1951). DT IS larger for a lower minimum lamp wall temperature (ML WT), e g. aT = 
IS.SoC when MLWT = 60°C and aT = 42.7°C when MLWT = 17°C. 
2 The electron density N, was then calculated using Equabon (10) in the following form and a 

esbmated value of e1ectnc field strength E: 

(36) 

In the above equabon, the positive column current I was assumed to be constant, and can be 
obtamed from the lamp data provIded by the manufacturer. 
3 The electron temperature T, was then calculated, using an Iteration method. An mitial value 

of T, was esbmated, then all the tranSlbon rates 1St and Kt,) were calculated usmg thIS estI
mated value of T, and the Equations (27) and (29). 
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4. USIDg the set oflransltion rates from step 3. the set of simultaneous Equations (19}-{21) was 
solved for the number densities NI' N2• and N3 of the mercury triplet states 63po• 63PI• and 
63P2• respectively. 

5. Te was then calculated using the ambipolar diffusion Equation (25) This equallon is rewnt
len by talong out the common factor of the fIrSt three terms exp( -4.97elkTe): 

(37) 

where 

, (kTe)312( 5.76e) (0.79.) 
Kt7 = Ct7 e 1 + 2kTe exp - kTe (38) 

, (kTe)312( 5.54e) (0.57 e) 
K27 = C 27 e I + 2kTe exp - kTe (39) 

, (kTe)312( 4.97 e) 
K37 = C 37 e I + 2kTe (40) 

Re-arrangement of Equallon (37) gives the folIowlDg expression for Te: 

(41) 

6 The newly calculated Te was compared WIth the estimated Te. If the difference is larger than a 
pre-set value. say I K, then the new Te value IS used to calculate all the transItion rates IS, 
and Kit} agaID. from Equations (27) and (29). This new set of transition rates was used to cal
culate the densitIes of the tnplet states. as descnbed in step 4. USIDg the new triplet state den
sItIes. a new value for Te was calculated agalD. as descnbed in step 5. This process was 
repeated until Te converges to a cenain value. 

7. The converged value for Te was then used to calculate the transition rates in the set of equa
tions (I9}-{25). according to Equat'-ns (27) r"d (29). Using these translllon rates. the set of 
Equations (I9}-{21) was solved for the dens1l1es. NI' N2• and N3• of the triplet states. The 
densities of the 61PI• 73S1 and 63°1.2.3 states. N4• Ns• and N6• were then calculated uSing 
Equations (22). (23). and (24). 

8. After obtaimng TO' Ne. No- NI' N2• N3• N4• Ns• and N6• the energy balance Equallon (I) was 
used to calculate the electric field E again. This value of E was then compared WIth the ini
tially assumed electnc field (ID step 2) !fthe difference between the newly calculated and the 
imllalIy assumed value of electnc field strength IS greater than a preset value. say 0.1 Vim. 
then the calculations are repeated from step 2 until convergence. 

9. On convergence of both E and Te. the set of equations were solved and all the unknowns E. 
Te. Ne. No. NI' N2• N3• N4• Ns• and N6 were found. The power of UV lines 253.7 nm and 

I-37 



VOLUME 4, NUMBER I,JANUARY 1998 
103 

185 nm were then calculated USIng Equations (3) and (4) The visible and Invisible radiation 
output power from the 73S, and 630 ,,2,3 states were estimaled by Equations (5) and (6). 

10 The light output was then calculaled from Equation (16), with values for W •• and W.
1s 

derived from Equallons (13) and (5), respectively. The Illuminance on room surfaces was 
then calculated by multiplYIng the light output With the ratio of shon-wave radiatIOn falbng 
on the surface to that emitted from the lamps. 
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NOMENCLATURE 
A DiffuSion length. m NH, Number density of mercury atoms, m3 

'" Luminous flux output per umt volume of 
N.J Number density of the j'h state. m3 positive column, lm m3 

t'P/Ulllp T-otal luminous flux output of fluorescent N" Number density of rare gas, m3 

lamp,lm PH, Partial pressure of mercury vapor, Pa 
r Natural hfe bme of radiating state, s Qj,(U) ColhsJOn cross·sectton of the tranSitIon 
r'ff EffOCbve bfe time of rawatlng state, s from state j to state k 
r· Average effective hfe tIme oftheJ1h state, S R Rawus of fluorescent lamp tube, m 

) 
S(.t) Relative spectral power dJstnbullon ofhght ,. Effective hfe lime of the spontaneous decay output from fluorescent powder, IImm }O 

of the J" state to the ground state, s 
T. Electron temperature, K 

T/ Quantum effiCiency of phosphor 
T, Absolute temperature of gas Inside .t Wavelength, nm 

fluorescent tube, K ", Electron mobdlty, m2/CV s) U Electron energy. eV A., Reduced translbon coeffiCIent from state k to v Electron dnft velocity, mls 
state] for descenwng tranSlbons (k >]) V().) Relative spectral lununous efficiency for 

S. Reduced transItIon coeffiCIent from state J to photopic VISion of standard CIE observer 
state k for ascending tranSlbons (k > J) ~ Energy level of the J" state, e V 

Du Amblpolar diffUSion coefficient W().) Power output ID wavelength Interval .t to.t 
E Electnc field strength, V/m + dt per umt wavelength per umt volume 
e Elcctroruc charge = I 60217733 x 10-19 C of plasma, W/(nm m3) 

F A factor to correct for loss of acunic radiation W,SS Power of the 18S nm hne per umt volume 
and emitted bght at the ends of lamp of plasma, W/m3 

!(U) Energy dlStnbution funcuon of electrons W2S4 Power of the 254 nm line per unit volume 
g) StatiS\lcal weight of the ,'" state of plasma, W/m' 
I Electric current Ihrough poSItive column, A W" Power loss due to elastIc colhslOns per urut 
] Current density. Nm2 volume of plasma, W 1m3 

~ Boltzmann constant Wlnel Power loss due to melasttc colhslons per 
= 1.380658 X 10-23 J K-I unit volume of plasma, W/m3 

IS. Transition rate coeffiCients m3 s-I W ... Power loss due to loruzatIon per umt 

k" Absorpuon coeffiCient at the center of the volume of plasma, W/m' 
resonance hne W •• Power of enuned mvisIble IIDes per unit 

me Electron rest mass = 91093897 X 10-31 kg volume of plasma, W/m3 

Wph<n Total power output of the fluorescent mrg Mass of rare gas, kg 
powder ID the lamp, W n, Number of quanta of wavelength.t 

W.u Power of enutted VISible lInes per umt 
N, Electron denSIty, m3 

volume of plasma, W/m3 
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Numerical Simulation of the Ambient Thermal Effect on Light Output of Fluorescent 
Luminaires in an Enclosure 

T.M.Chung 
(The Hong Kong Polytechnic University) 

Abstract 

The !tghl OUIPUI of j/uorescelll lamps IS sensl/iv. 10 

changes of ambient temperatllre andlor air flow rale 
around Ih. lamps. This Is due 10 /hal Ihe rad,anl 
power of resonance UY rad,allOn generaled In Ih. 
low-pressure mercury discharge depends on Ih. 
m.rcury vapour pressure Inside Ihe discharge lub. 
The mercury vapour pressure InsIde the fluorescent 
lamp ,ube changes wl/h Ih. minimum lamp wall 
temperature because mercury condenses on Ihe cold .. 
SpOI of Ihe lamp wall In Ihls $/Uo/. a numerical 
model of Ih. low-pressure mercury rare-gas 
dIScharge posl/lVe column /9 appfted 10 slmulale Ihe 
effect of ,ube walllemperawre on Ihe lighl OUIPUI of 
Ihe fluores"enllamp A numertcal model o/the heat 
frans/er in an enclosure is used 10 SImulate the heat 
transfer Insldl! tire IlInl;narre comparlmenl This heat 
transfer nUlJel ,'ak·ulales Ihl! lamp wall temperature 
which Is Ihen w.ed In Ihe positive column model for 
Ihe cakulallon of hghl Oulpul The heal transfer 
model. which cOlUlders rad,allOn, conducllon and 
convl!,tian, ,un also ",,/ude heal transfer In Ihe 
cel/mg plellum tlllJ In 'he room space. This paper 
discusses how the fluorescent posllive column 
numerical model Is Incorporated mto a numerical 
model of 11,. heal /ransfer In a compartmenl ThIS 
combined pOSlllve column and heal Iransfer mod.1 
will find app/tcallons In Ih. deSign of j/uorescenl 
lum/nolres so as to ensure that fluorescent lamps 
inside the lummolre compartment are operatmg 
under optimum ambient thermal conditions which 
Will ~ve maXimum hghl OUlpul 

I. INTRODUCTION 

It is well known that the light output of a fluorescent 
lamp depends on the lamp wall temperature which in 
turn depends on changes of ambient thermal 
condillons around the lamp. There is an optimum 
lamp wall temperature for whIch fluorescent lamps 
give maximum light output. Fluorescent lamps which 
are put Inside an enclosed Iwmnaire compartment 
may operate at a temperature much higher than the 
optimum resulting in a decrease 10 light output and 
efficlency_ On the other hand. If the return air flows 
through the lamps in an air-handling lumina"e. it is 
poSSIble that the lamps are cooled too far below the 

optimum temperature, again resulttng a decrease in 
light output and efficiency. 

Previous numerical models developed for the 
simulation of the interactIon between lighting and air
condItioning. such as that of Sowell [1.2). made use 
of empIrical curves of the light output and lamp 
power agaInst mmlmum lamp wall temperature in 
order to account for the temperature effect on light 
output. However, the use of empirical curves gives no 
physical insightmto the methamsm of conversion of 
electrical energy mto light and heat WIthin the 
fluorescent lamp. Furthermore, It is necessary to use 
different curves for lamps of d,fferent type and 
different s,ze_ In order to obtalll a phys,cal insight 
and to calculate the convers,on of electrical power 
into hght and heat from first principles. a 
mathem.t,c.1 model of the dl<charge process inside 
the fluorescent lamp has to be used 

In view of the above. a numerical model has been 
developed to simulate the mutual interaction between 
fluorescent lamps and Ihe ambient thennal 
environment The model comb,"es a fluorescent lamp 
dIScharge model wllh a heat transfer model in an 
enclosure The fluorescent lamp positive column 
model simulates the process of conversion of 
electrical energy to light and heat. The heat transfer 
model simulates the heat transfer between surfaces 
inside an enclosure which can be just a single 
luminaire compartment, or a room enclosure 
comprising a luminaire. a plenum. an occupied space 
and venlllat,on inlets and outlets. The three modes of 
heat transfer, conduction, convectIOn and radiation 
are all considered in the model This heat transfer 
model calculates the lamp wail temperature which Is 
then used in the positive column model for the 
calculation of light oulput. 

The goal of the research is to develop a numerical 
model for the simulation of the mutual interaction 
between lighting and air-cond'tionlng which will find 
applications in areas such as. 
(i) evaluallon ofperfonnance of the lighting system 

as affected by room characteristics and design of 
the air-conditioning system 

(iI) design calculations of cooling load due to lights 
and light output due to changes in thermal 
conditions 
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(iil) bUIlding energy analysis 

The firstllem of the above can include evaluation of 
new IUmln31re designs to ensun: that fluorescent 
lamps inSIde the luminaire compartment are operating 
under optimum ambient thennal conditions. The use 
of thIS numerical tool can minimize the necesslly of 
experimental evaluation 

In this model, the fluorescent lamp is the only source 
of energy input to the room, i e all other sources of 
energy mput are not considered. For apphcations 
such as annual buildIng energy analysIS, thIS model 
can be used as a "pre-processor" to generate lighting 
load weighting factors and hghung energy 
distribution fractIons for input to bUIlding energy 
analySIS programs. 

1. TilE FLUORESCENT LAMP l'OSlTI\'E COl.VMN 
MODEL 

In the nuorescent lamp posItive column model, 
energy balance IS examined In relation to the 
densities of different species of mercury atoms which 
in turn depend on the lamp wall temperature. The 
model first calculates how the mercury densities 
change with changes in minimum lamp wall 
temperature and then how changes in mercury 
densities affect the energy balance. In the followlllg 
descriptIon of the fluorescent lamp positIve column 
model, the energy balance in the dIScharge is first 
described followed by a deSCription of the balance of 
mercury specu:s. 

2.1 Fluorescent lamp energy balance 

The function of an electric lamp LS to convert 
electrical energy into light energy. In a fluorescent 
lamp, this conversion occurs through a number of 
processes WIthin the lamp dIScharge tube 

Electrical energy input to the fluorescent lamp 
dIScharge becomes prlnc ipally the kmetlc energy of 
the electrons due to acceleratIon of electrons by the 
electric field wlthm the plasma. The kinetIC energy of 
the electrons is dISSIpated in one of the following 
processes 
(I) inelastic colhsions with mercury atoms causing 

eXCItation to higher energy levels; 
(11) Ionization of the mercury atoms: 
(iii) elastic colhsions wllh the rare-gas atoms; and 
(IV) diffus,on to the tube wall and recombmation with 

eXCited atoms there. 

The electrons may also collIde with exclled mercury 
atoms causing de-excltation which results in the 
excllatlon energy being released back to the 

electrons. Th.. process IS called superelastlc 
ColliSions or sometimes referred to as elastt~ 
collISIons of the second kind 

An energy balance equation for the electrons in the 
positive column can be written as follows: 

E • J - IV_I - W •• - ":' - 11'"'6 + W~I = 0 (I I 

where E is the electric field across the dIScharge tuhe. 
J is the electric current density, and the W terms 
denote the local energy gains or losses per unit tIme 
per umt volume of the positive column The 
subSCripts met, ion, et, dlj]; and set denote inelastic 
collision ionization, elastic colhslon, diffUSion, and 
super-el;stlc collISIons, respectively. In equation (I I. 
it is assumed that Ihe recombinallon of electrons with 
ions within the plasma is neghglble and that the 
thermal flux conducted through the electron g.. i, 
zero The last assumption follows from the fact th.1I 
the electron temperature T, is taken to be constd"t 
throughout the posillve colunm in thIS study. 

rh. net radiation loss W." of the discharge is given 
by the difference bctween the inelastic collISion I"" 
W_, and the super-elastic collision loss .W",. Th" " 
because the excited atoms c.tn either decay 
spontaneously with cmlSsion of radIation or colhde 
super-elastically with an clectron transferring their 
c,tra cnergy back to the electron Hence, the net 
radiation power loss of the positive column per lime 
volume is given by: 

W.,.,=w..,-w", (2) 

The radIatIon emission from the discharge contains 
mainly the two ultra-violet wavelengths 253.7 and 
185 nm WIth some weak lines in the visible and 
inviSIble wavelengths. Therefore, the radIation loss 
can be written as 

(3) 

where W," and W"s arc the losses (per unit volume) 
due to emISsions in the two ultra-violet wavelengths 
253 7 and 185 nm respecllvely; W", and W ~ are the 
power losses (per UQlt volume) due to weak 
emISSIons In the VISible and invisible bands resulting 
from excitations of mercury atoms to energy states 
higher than the resonance states These radIation 
losses occur in the form of emission of quanta of 
energy and each quantum has an energy equals to the 
product of the electromc charge and the energy level 
dIfference m electron volts between the excited state 
and the final state of the tranSItIon. The number of 
quanta that can escape the plasma in unit time per 
unit volume is equal to the number density of the 
eXCIted state in the plasma dIvided by the effect". 
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hfe lIme oflhe stale (t,') in Ihe plasma. The radlalion 
power IS Ihen equ.1 10 Ihe number of quanla escapIng 
Ihe plasma per unil lime per unil volume mulliphed 
by Ihe energy g.p oflhe lransillon. 

N, 
11', .. =<1',-. 

r, 

N, 
11'_ = e(V, - 1',)-. 

r, 
N. 

W~ = e(V. - 1',)-. 
r, 

(4) 

(5) 

(6) 

(7) 

In equalions (4}(7), • is Ihe eleclronic charge and V, 
d.noles Ihe energy level oflheJlh state 
The power loss terms (11' terms) all depend on Ihe 
density of all species of mercury atoms, cross· 
sections of loni""tion and excitation of mercury 
atoms, Ihe rate of re-combination at Ihe tube wall and 
the density of rare·gas in the lube. A eonllnulty 
equalion can be sel up for each specics of Ihe 
mercury atom. The sel of continuity equations for all 
species of the mercury atom together with the energy 
balance equation form Ihe equalion sol of a positive 
column model of the fluorescenl lamp. 
Simphfications and approxImations h.ve to be m.de 
in order Ihnt the .et of model equntions becomes 
solvable 

22 Continuity equations 

The ground slnte densIty is governed by the following 
continuity equation: 

(8) 

In the above equation, KI• denotes the transItion rate 
coefficient from state J 10 slnte k, N, denotes the 
electron density, N. the ground state denSIty and ~ 

Ihe Jth excited state density; T ~, denotes the 

effectove hfe time of the spontaneous decay of the /" 
state to the ground stntc, D. dcnoles the amblpolar 
diffuSion coefficienl; and /I. is Ihe diffusion length, 

The first term in equation (8) represents the 
excitation of the ground slnte 10 Ihe SIX excited states, 
the second lerm represents ionizallon from the 
ground stale, the Ihlrd term represents the super· 
elasllc decay of the six exciled slates 10 Ihe ground 

stale. the fOllrth term represents the spontaneous 
decay oflhe SI< excIted state, to Ihe ground state with 
emission of a photon, the lasl tcrm represents the rale 
of recombination of Ions and electrons which is 
assumed to be purely an amblpolar dIffusion 
phenomenon. 

AgaIn, al equlhbrlum, the kth eXCIted stale IS 
governed by Ihe following conllnuit) equ.tlon: 

• , I 

- L K~N,N, -K"N,N, +LK~N,N, 
Id.1 I D 

• '-I '-I N (9) 
+ L K~N,N,-LK~N,N, -L-+=O 

l",j.1 ,*0 ,~u r., 
In this model 6 excited slntcs are considered, 
therefore equallon (9) represents a set of 6 equations, 
one for each of Ihe 6 excited stales k= I to 6. The fU'S1 
term represents loss of the Alh stale due to inelastic 
collISions causing eXCItation 10 hIgher levels. The 
second term represents loss due to ioni""tion. The 
third and fourth terms represent Ihe increase in the 
klh slate due 10 excilalion ITom lower states and 
super-elastic de-excltntlon of hIgher states 
rc<pectlvcly '11e fifth tenn represenls loss due to 
.uper-elastlc de-excitallon of Ihe kth stale. The last 
torm repro.enls the spontaneous decay of the kth state 
with emiSSion of a photon. thiS b:ml IS written in 
general form in equation (9) Ihat includes decay 
transitions to all lower states, however, there arc only 
several 'permlsslble' tranSitions that emit photons. 

At eqUIlibrium. the rule of creation of electron-ion 
p.irs IS equal 10 the rate of loss due to recombination 
at tube wall which i. the same as the rate of 
.",blpolar diffusion 10 Ihe tube wall. Therefore, the 
electron denSIty and the iomzed slate density are 
governed by Ihe follOWing equallon which is called 
Ihe amblpolar equalion. 

IKNN_D.N,=O 
,~O If r I A: 

(10) 

The firsl term of equation (10) I' the sum of the rate 
of ionization from Ihe ground state and the six 
excited states The second tcnn IS the ambipolar 
diffusion rate 10 the tube wall whIch represents the 
rate of loss of electrons and mercury ions 

2 3 Electric currenl density 

The electriC current density is equ.llo the product of 
the eleclron density N" Ihe electronic charge e and 
Ihe eleelron velOCIty v which IS governed by the 
electron mobility p. and the eleclrlc field E aerosslhe 
positive column 

J= N,ev= N,el',E (11) 
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2 4 Solution scheme 

Equations (I) to (11) fonn the set of equations of the 
fluorescent lamp posItIve column model. In deriving 
Ihe above equations and in order to solve this set of 
equallons some approxlmallons have to be employed 
Due to limitation of space, the approximations and 
the modified set of equations are not given here. 
More detaIls of the approximations used with full 
dIScussions WIll be published In a research paper. 

In the solullon processes, the electron temperature is 
first calculated using an iteration method Then the 
transition rales K,. and K., in equations (8)-(10) are 
calculated using the value of electron temperature 
USing this set of transition rates, the set of 
simultaneous equations (8)-(10) IS solved for the 
number densities N~ • No, N, • Nll NJ • NI. NJ and 
N. With these number densilies, equations (4)·(5) 
are used to calculate Ihe power output of the 
253.7 nm and 185 nm UV hnes and also equatIOns 
(6)-(7) are used to calculate the VISIble and non
VISIble radiation output. All tenns In the energy 
balance equation (I) can also be calculated. 

2 5 Calculation of light OUlput 

1 he light output from the lamp can be derived from a 
knowledge of Ihe relallve speclral power output S(J.} 
of the fluorescent powder in the lamp. In here, the 
relative spectral power output S(.I) is defined such 
Ihat 
IS(.I)d.l = I (12) 

I e. the power output in wavelength interval J.. to 
J..+dJ.. is 

W(.!) = S(.!) W,... (13) 

where W,... is the total output power of the 
~uorescent powder ID the lamp. 

Usmg Ihe quantum efficiency of the lamp phosphor '1 
whIch IS defined such that 

,,= In,d.! 

nZS4 +nm 
(14) 

It can be shown that the quantum effiCIency '11$ equal 
to the following expression 

11' .... I .! ,,=- S('!)-d.l 
W.. 2537 

(15) 

In equation (14), n, IS the number of quanta of the 
wavelength J..; n,,, and nIl! are the numbers of quanta 
of the 253.7 nm and 185.0 nm emission from the 
positive column, respectIvely. In equation (15), 

253 7W,,, + I 85W, .. 11'-='-'...-"',.,..,..-'--"'-
" 2537 

(16) 

Then the VISIble light output from the phosphors due 
10 UV radIation emitted from Ihe posillve column is 
et> = F 683 11',.... IS(.I)V(.!)d.! (17) 

Substltutmg for '1 with the expressIOn given above 
IS(.!)V(.!)d.! 

et>=F·683 "'W.,.! (18) 

IS(.I) 2537 d.! 

In equations (17) and (18), F is a factor to correct for 
loss of radiation and emitted light at the ends of the 
lamp and absorplion of hght by the phosphor and 
glass bulb. F IS quoted by Jerome [3] to be 075 
which is a representative value for most lamps. The 
factor 683 i. the maximum luminous efficacy of 
radiatIon which is 683 ImIW occurring at a 
wavelength of 555 nm V(.!) is the CIE relallve 
spectral luminou. efficiency for photopic vision ot 
the human eye. 

cm pubhcallon No. 15.2 [4] gives relative spectral 
power dlStrlbullons of 12 type. of typical fluorescenl 
lamps representing standard, broad-band and three
narrow-band fluorescent lamps. From these spectral 
power dIstribution. the integrals 

IS(.I)V(.I)d.! (19) 

.I 
and IS(.I) 253.l.l (20) 

can be evaluated. Using litcrature values of Ihe 
quantum efficiency [J], the light output due to UV 
radlallon <I> can be calculated by equallon (18) 

There is a small light output due to the vislbl. 
emission of the dIscharge directly. This IS calculated 
by assuming that half of Ihe visible emission can 
escape through the phosphor coating and that th. 
only visible lines emitted are 404.6 nm, 435 8 nm and 
546 I nm so that the mean V()') IS 0 334 Hence, the 
total luminous flux output per unit volume of Ihe 
pOSItive column of the dIscharge of the fluorescenl 
lamp IS calculated by the following fonnula: 

IS(.!)V(.t)cLl. 
et> = 683 (0.75 " 11'" .! 

Is(.I) 253.7 d.l (21) 

+0.5 11'.,.0.334) 

In Ihe above equallon, the first tenn IS the light output 
from the UV activated phosphors and the second 
tenn IS the light output due to the VISIble lines In the 
discharge. 
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The total luminOUS flux output of the fluorescent 
lamp is then equal to the expressIon of (21) 
multiphed by the length L and the cross-sectional 
area of the dIscharge tube (with d equals to the 
dIameter oflhetubc). 

d' 
~ ... =~'L'I\"4 (22) 

3. TilE IIEAT TRANSFER MODEL OF A:\ 
ENCLOSURE 

3.1 The enclosure 

The enclosure conSIdered in the heat transfer model 
can be a single enclosure, such as a luminatre 
compartment. or a room comprising luminaires, a 
plenum (celltng void) and an occupied room space 
The enclosure is divided into a number of nodes. 
Each node represents an isothermal surface. 

3 2 The model heat transfer equations 

ThIS model uses fundamental heat transfer principlos 
in heat balance equations for tho nodes The throo 
modes of heat transfer between nodes are considered 
For radiation heat transfer, short-wave radIation 
(mainly visible light) and long-wave radiation are 
calculated separately. For each node, the following 
heat balance equation holds. This equation relates the 
temperature rise of each node in one time step to the 
total nct hcat gain of that node in onc timc step. 

m,c",tl.T, =q(" +'1/, +q.., +q", +'11'1 (23) 

where m, .. mass of node I. 
e,.. a specific heat capacity of node I, 
4T, = tempcrature rise of node 1 in one 

time step, 
q,. = total (electrical) energy input at node 

I in onc time step. 
q/J - total (net) long-wave radIation heat 

gain to node I in one time step. 
q~ - total (net) short-wave radiatIon heat 

gain to node i in one time step, 
qm total (net) convectton heat gain to 

node I In one time step, 
q" total (net) conduction heat gain to 

node 1 in one time step. 

The energy Input at node " q,,,. for the lamp and 
ballast nodes IS calculated by the fluorescent lamp 
model descrtbed above ThIS depends on the lamp 
used and the lamp wall temperature. 

The rate of net long-wave radlatton to node 1 is 
obtained by subtracllng the radIant exitance 
(radloStty) of, from the IrradIance on , as follows. 

q" = (E" - M'.I)A, (24) 

where E,,, M" and A, are respectively the irradiance, 
radIant eXltance (radiosity) and area WIth reference to 
node 1 (all symbols with a subscrtpt L refer to long
wave radIation) Using form factors F«, and 
emlsslvities £, etc. equation (24) can be written as 
follows 

q" - A,&,(LF.Mt" -oT,') (2S) , 
where a is the Stefan-Boltzmann constant and 7j is 
the absolute temperature orthe Ith node. 

Usmg sinul .. treatment as above for the short-wave 
radIation and assumtng all surfaces within the 
enclosure are perfectly dIffuse, then the rate of net 
short-wave radiation to node 1 can be written as: 

q, =A,[(I-p.)LF.M.-M,.1 (26) 
/ 

where P. IS the short-wave reflectance of the Ith 
surface and M"'I# is the luminous power per unit area 
emttt<'() from the 'lit surface. M,. IS uro eKcept for 
the lamp and dIffuser nodes. In a fluorescent lamp the 
luminous power emtssion M.... is related to the 
property (quantum effiCIency and spectral 
dIStribution) of the Ruorescent powder in the lamps 
and the dIScharge intenSIty Inside the lamp. The 
fluorescent lamp positive column model described 
above is used to calculate M. .. for the lamp node. 
Consideration of the VISIble radiatIon can be divided 
into a number of wavelength bands if reflectance etc. 
are known for each surface for each wavelength 
band ThIs dIvision mto dIfferent wavelength bands 
will make the calculatIon of iIIummance more 
accurate. 

For surfaces in contact With an Blf node there is 
convection heat exchange between the surface and 
the air node. The convection heat gaIn of node 1 is: 

(27) 

where h, IS the convectIve heat transfer coefficient of 
node I, and Tu is the temperature of the air node 
adjacent to node 1 

As shown in this heat balance equation (23), the net 
heat gain to a node consists of five components· 
energy input (for lamp and ballast nodes only), long
wave (inli'ared) radiation, short-wave (VISible) 
radiation, convection and conduction. Each of these 
components IS calculated separately as described 
below The convection to the air node is then gIven by 
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I q", = Lh,(T, - T. )A, (28) 

where the sum is taken over all nodes tn contact with 
the air node 

For nodes In contact with each other. there is a 
conduction heat transfer between them. The total 
conducuve heat transfer to node, IS calculated by 

(29) 
I 

where C" is the conductance 1T0m node J to node I 
and the sum is taken over an nodes in contacl with 
node I 

3 3 Solullon scheme 

In order to gel a solution, the mass, heat capacity, 
renectivity, emissivity and initial temperature of each 
node must be known or assumed A lime step is then 
selected. The rates of heat gain by different modes 
are then calculated one by one using equauons (24) 
to (29) with nodal temperatures equal to Ihat at the 
beginning of the time step. The power on the lamp 
node and the shalt-wave rad,al,on emitted from the 
lamp node are calculated using the nuorescent lamp 
positive column model with the temperature of the 
lamp node as input. Equation (23) IS then used 10 
calculate the temperature change in one time stcp 
This temperature change is Ihen added 10 Ihe nodal 
temperature prev8lhng at one time step before. In 
other words, the model uses the forward finite 
difference method on the calculalion of the nodal 
lemperatures one time slep forward. From the sholt
wave radiation falhng on a nodal surface, the 
illuminance on Ihe surface can be calculated using the 
CIE relalive spectral sensitIVity curve, and either 
knowing or assuming the spectral dIStribution of the 
light. 

- 4. PRELIMINARY RESULTS 

ThIs model has been vahdated using experimental 
results repolted in literature. Further validation has 
also been done usmg a laboratory constructed lest 
cell With a simple luminaire installed. Results show 
good agreemenl of calculated values with 
experimental dala bolh for light levels and 
temperatures. It is found Ihal with the incorporation 
ofa nuorescent lamp posilive column model on a heat 
transfer model, the hghllng/alr·conditioning 
onteracllon is belter predicted together with an 
improvement In the modehng of ilIummance on room 
surfaces. The results of the vahdation runs of this 
model Will be discussed in detaIled research papers 
which are being prepared and will be published in an 
mternational research Journa!. 

5. CONU.II~ION 

A mathematical model of the nuorescent lamp 
postllve column can be used to SImulate the eOect of 
the thermal environment inSide IUmtn31re 
compaltments within enclosures on the hght output 
and power input to the lamp This fluorescent lamp 
pOSitive column model can also be Incorporated mto 
a heat Iransfer model of an enclosure to Simulate the 
mutual interaction of lighting and the thennal 
environment which may include effects on the air
conditioning Investigations on the pOSSible 
apphcations of the mathematical model are bemg 
done 
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