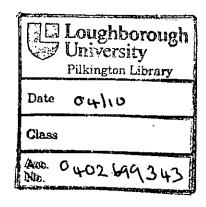
IMPROVING MAIN CONTRACTORS' SITE COORDINATION IN THE HONG KONG BUILDING PROJECTS

by


Kung Wing Andy NG

A Doctoral Thesis submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University

January 2009

© by Kung Wing Andy NG 2009

TABLE OF CONTENTS	Page No.
Table of Contents	i
Abstract	ʻii
Certificate of originality	v
Acknowledgement	vi
List of Chapters	vii
List of Equations	xx
List of Figures	xxi
List of Tables	xxiii
List of Appendices	xxxviii
Chapters	1
References	347
Bibliography	360
Appendices	364

ABSTRACT

Construction industry is one of the main pillars of the economy of Hong Kong. Over the years, Hong Kong construction industry has earned a reputation for the rapid construction of quality high-rise first class building. It is a common practice of the main contractors to sublet most of their works to subcontractors in the HK building projects. The percentage gross value of main contract work performed by subcontractors increased from 57 per cent to 67 per cent during 1981 to 2005 according to government statistics for 2006 (Census and Statistics Department, 2007). It is anticipated that more numbers of subcontractors would be involved due to the rapid development of high-rise buildings in the last decade. As a result, the role of the main contractor has been gradually transformed from a constructor to a manager of subcontractors of the projects. The performance of the subcontractors is one of the most important factors governing project performance.

In recent years, there are increasing complaints from subcontractors that they cannot performance effectively and efficiently due to poor site coordination by main contractors. An average of 35.10 per cent of productivity wasted due to site coordination problems caused by main contractors was stated by the respondents of a questionnaire survey. The aim of this thesis is to formulate relationships in terms of multiple regression equations to explain how the performance of subcontractors is affected by the critical site coordination problems caused by main contractors, and to develop framework to improve site coordination. The following objectives are defined to achieve the aim of the study.

- a. Identify and review the common criteria currently used by main contractors to evaluate the performance of subcontractor in HK building projects.
- b. Identity and review the important factors influencing the performance of subcontractors.
- c. Identify and analyze the critical site coordination problems caused by main contractors that adversely affect the performance of subcontractors.
- d. Identity and analyze the essential causes of the site coordination problems.
- e. Investigate how the site coordination problems affect subcontractors' performance.
- f. Develop a framework and recommend actions to enhance site coordination leading to improved subcontractor performance.

The research findings were based upon literature surveys, well-structured in-depth interviews and questionnaire surveys. From these, this research produced the following achievements.

- a. Through questionnaire survey, time, cost, quality, and safety and health are identified as the four principal criteria currently used by the main contractors to assess the performance of their subcontractors in the HK building projects.
- b. Site coordination was identified as the most important factor governing subcontractors' performance through a series of well-structured in-depth interviews to industrial practitioners.
- c. Six critical site coordination problems that have adversely impact to subcontractors' performance were identified and reviewed through questionnaire survey.

- d. Twelve essential causes of the site coordination problems were identified and reviewed through questionnaire survey.
- e. Twelve multiple regression equations for different type of subcontractors were generated by SPSS software that explain how the six critical site coordination problems affected subcontractors' performance.
- f. Six multiple regression equations were generated to explain the contributions of the twelve essential causes to the six critical site coordination problems.
- g. Eight 'most essential' causes of the four 'most critical' site coordination problems were identified through backward elimination multiple regression analysis method.

 A series of figures were constructed to link the 'most essential' causes to the site coordination problems and then to the project performance of subcontracts, that serve as a framework to main contractor to formulate strategy to improve their site coordination.
- h. Based on the framework, four possible actions were recommended to main contractors to improve the site coordination.

CERTIFICATE OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this thesis, and that neither the thesis nor the original work contained therein has been submitted in support of an application for another degree or qualification at this or any other university or other institution of learning.

ACKNOWLEDGEMENT

My heartfelt thanks is expressed to my supervisor, Professor A. D. F. Price for his continuous encourage, excellent guidance and valuable advice in the development of this thesis. Although he has already been very busy in his teaching work, he has still assigned a lot of his time to supervise my work without any hesitation. Without his thoughtful comments and close supervision, my thesis would not be completed.

I would also express my thanks to the interviewees for sharing their views with me and my friends who have helped to distribute and collect the questionnaire.

I am very grateful to the continuous support of my wife Marine and my daughter Wing-Sum for tolerating me through this research.

vi

LIST	LIST OF CHAPTERS		Page No
СНАР	TER ON	E: INTRODUCTION	
1.1	Introdu	ection to subject matter	1
	1.1.1	Construction industry today	1
	1.1.2	Subcontracting system	2
	1.1.3	Management of subcontractors	3
1.2	Aim an	d objectives	6
	1.2.1	Aim	6
	1.2.2	Objectives	6
	1.2.3	Scope of study	7
	1.2.4	Assumptions	7
1.3	Justific	ation for the research	7
	1.3.1	Increasing involvement of subcontractors	7
	1.3.2	Feedback from industry	8
	1.3.3	Government concern	9
1.4	Overvi	ew of research methodology	10
1.5	Summa	ary of main findings	14
	1.5.1	Relationship to explain the performance of	14
		subcontractors	
	1.5.2	Framework to improve site coordination	15
1.6	Guide (to the thesis	16

CHAI	PTER TW	O: RESEARCH DESIGN AND MET	HODOLOGY
2.1	Introdu	iction	21
2.2	Broad a	areas of research interest	22
2.3	Delinea	te the research problem	23
2.4	Researc	ch Aim and objective	23
	2.4.1	Scope of study	25
	2.4.2	Assumptions	25
2.5	Theore	tical framework	26
	2.5.1	Subcontractor performance analysis	26
	2.5.2	Improving the site co-ordination	27
2.6	Researc	ch design	28
2.7	Summa	ary	45
CILAY			
СНА	PTER TH	REE: LITERATURE REVIEW	
3.1	Strateg	y of literature review	50
3.2	Multila	yered subcontracting	50
	3.2.1	Functions of subcontracting	51
	3.2.2	Structure of multilayered subcontracting	52
	3.2.3	Types of subcontractors	52
	3.2.4	Problems of multilayered subcontracting	53
3.3	Project	objectives for building projects	55
	3.3.1	Traditional project objectives	55
	3.3.2	Contemporary approach	57

	3.3.3	Hong Kong building projects	60
3.4	Perform	nance evaluation	62
3.5	Factors	governing the performance of subcontractors	64
	3.5.1	Overall success factors	65
	3.5.2	Determinants for particular project outcomes at	67
		different locations	
	3.5.3	Determinants for outcomes of Hong Kong projects	70
3.6	Factors	influencing site work	71
3.7	Applica	tions of Multiple Regression Analysis and Neural	74
	Networ	k Analysis	
3.8	Summa	ry	77
CHAI	PTER FO	UR: DATA COLLECTION	
4.1	Introdu	ection	87
4.2	Approa	ches adopted for each stage of work	87
	4.2.1	Stage One: Measuring the performance of	87
		subcontractors	
	4.2.2	Stage Two: Factor governing the performance of	88
		subcontractors	
	4.2.3	Stage Three: Site coordination problems	99
	4.2.4	Stage Four: Causes of site coordination problems	90
	4.2.5	Stage Five: Forecasting the performance of	9(
		subcontractors & Stage Six: Contribution of the	

causes to site coordination problems

4.3	Summa	ary	95
		/E: MEASURING THE PERFORMANC	E OF
SUBC	CONTRAC	CTORS	
5.1	Introdu	ection	96
5.2	Researc	ch methodology	96
5.3	Data an	alysis	98
	5.3.1	Time	99
	5.3.2	Safety and health	99
	5.3.3	Quality	100
	5.3.4	Cost	101
	5.3.5	Potential for long-term development	102
	5.3.6	Sustainability	103
	5.3.7	Public image	103
5.4	Summa	ry	104
		: FACTORS GOVERNING THE PERFO	ORMANCE OF
SUBC	ONTRAC	CTORS	
6.1	Introdu	ction	106
6.2	Importa	ant factors	106
6.3	Researc	h methodology	108

6.4	Data ar	nalysis	110
	6.4.1	Common views from the interviewees	110
	6.4.2	Views from main contractor's site management	111
	6.4.3	Views from main contractor's frontline staff	113
	6.4.4	Views from subcontractors	117
6.5	Summa	ary	120
	PTER SE	VEN: SITE COORDINATION PROBLEMS	BY MAIN
7.1	Introdu	action	122
7.2	Commo	Common site coordination problems 12	
7.3	Research methodology		127
7.4	Data ar	nalysis	129
	7.4.1	Frequency of occurrence	129
	7.4.2	Degree of potential impact on site work	130
	7.4.3	Aggregated importance score	133
	7.4.4	Guidelines to enhance site coordination	135
7.5	Summa	nry	136
СНАІ	PTER EIG	GHT: CAUSES OF SITE COORDINATION	
PROE	BLEMS		
8.1	Introdu	ıction	138

8.2	Potentia	al causes of site coordination problems	138
8.3	Researc	ch methodology	140
8.4	Data an	nalysis	142
	8.4.1	Degree of contribution to site coordination	142
		problems	
	8.4.2	Frequency of occurrence	144
	8.4.3	Aggregated importance score	146
8.5	Summa	ry	147
CHAI	PTER NIN	NE: FORECASTING THE PERFORMANCI	E O F
SUBC	CONTRAC	CTORS	
9.1	Introdu	ction	149
9.2	Researc	ch methodology	149
9.3	Coding	system	150
9.4	Descrip	tive statistics for site coordination problems	151
	9.4.1	Type of respondents	151
	9.4.2	Descriptive statistics for all replies	152
9.5	Type of	models analyzed	160
	9.5.1	Main models and sub-models	160
	9.5.2	Standard form and simple of regression equations	161
9.6	Time pe	erformance analysis	164
	0.6.1	Analysis for all types of subcontractors (SP-Time-	164

		All)	
	9.6.2	Analysis for finishing work subcontractors (SP-Time-	167
		Fin)	•
	9.6.3	Analysis for structural work subcontractors (SP-	170
		Time-Str)	
	9.6.4	Analysis for building services work subcontractors	172
		(SP-Time-BS)	
	9.6.5	Neural network analysis for time performance	175
	9.6.6	Summary for time performance analysis	176
9.7	Cost per	rformance analysis	177
	9.7.1	Analysis for all types of subcontractors (SP-Cost-All)	177
	9.7.2	Analysis for finishing work subcontractors (SP-Cost-	181
		Fin)	
	9.7.3	Analysis for structural work subcontractors (SP-Cost-	184
		Str)	
	9.7.4	Analysis for building services work subcontractors	187
		(SP-Cost-BS)	
	9.7.5	Neural network analysis for cost performance	189
	9.7.6	Summary for cost performance analysis	190
9.8	Quality	performance analysis	192
	9.8.1	Analysis for all types of subcontractors (SP-Quality-	192
		All)	
	9.8.2	Analysis for finishing work subcontractors (SP-	195

		Quality-Fin)	
	9.8.3	Analysis for structural work subcontractors (SP-	198
		Quality-Str)	
	9.8.4	Analysis for building services work subcontractors	200
		(SP-Quality-BS)	
	9.8.5	Neural network analysis for quality performance	203
	9.8.6	Summary for quality performance analysis	204
9.9	Summai	ry	205
СНАР	TER TE	N: CONTRIBUTIONS OF THE CAUSES TO T	THE
SITE	COORDII	NATION PROBLEM	
10.1	Introdu	ction	211
10.2	Researc	h methodology	211
10.3	Coding	system	212
10.4	Descript	tive statistics for causes of site coordination	214
	problem	ns ·	
	10.4.1	Type of respondents	214
	10.4.2	Descriptive statistics for all replies	215
10.5	Type of	models analyzed	225
	10.5.1	Main models and sub-models	225
	10.5.2	Standard form and simple form of regression	226

equations

10.6	Analysis	for SCP1	228
	10.6.1	Analysis for all type of respondents for SCP1 (Ca-	228
		SCP1-AR)	
	10.6.2	Analysis for subcontractors for SCP1 (Ca-SCP1-	231
		SC)	
	10.6.3	Analysis for main contractor for SCP1 (Ca-SCP1-	233
		MC)	
	10.6.4	Analysis for consultants/clients for SCP1 (Ca-	236
		SCP1-CC)	
	10.6.5	Neural network analysis for Ca-SCP1 models	239
	10.6.6	Summary for analysis of the causes to SCP1	240
10.7	Analysis	for SCP2	242
	10.7.1	Analysis for all type of respondents for SCP2 (Ca-	242
		SCP2-AR)	
	10.7.2	Analysis for subcontractors for SCP2 (Ca-SCP2-	245
		SC)	
	10.7.3	Analysis for main contractor for SCP2 (Ca-SCP2-	247
		MC)	
	10.7.4	Analysis for consultants/clients for SCP2 (Ca-CP2-	250
		CC)	
	10.7.5	Neural network analysis for Ca-SCP2 models	253
	10.7.6	Summary for analysis of the causes to SCP2	254

10.8	Analysis	for SCP3	256
	10.8.1	Analysis for all type of respondents for SCP3 (Ca-	256
		SCP3-AR)	
	10.8.2	Analysis for subcontractors for SCP3 (Ca-SCP3-	259
		SC)	
	10.8.3	Analysis for main contractor for SCP3 (Ca-SCP3-	261
		MC)	
	10.8.4	Analysis for consultants/clients for SCP3 (Ca-	264
		SCP3-CC)	
	10.8.5	Neural network analysis for Ca-SCP3 models	267
	10.8.6	Summary for analysis of the causes to SCP3	268
10.9	Analysis	for SCP4	270
	10.9.1	Analysis for all type of respondents for SCP4 (Ca-	270
		SCP4-AR)	
	10.9.2	Analysis for subcontractors for SCP4 (Ca-SCP4-	273
		SC)	
	10.9.3	Analysis for main contractor for SCP4 (Ca-SCP4-	275
		MC)	
	10.9.4	Analysis for consultants/clients for SCP4 (Ca-	278
		SCP4-CC)	
	10.9.5	Neural network analysis for Ca-SCP4 models	281
	10.9.6	Summary for analysis of the causes to SCP4	282
10.10	Analysis	for SCP5	284

	10.10.1	Analysis for all type of respondents for SCP5 (Ca-	284
		SCP5-AR)	
	10.10.2	Analysis for subcontractors for SCP5 (Ca-SCP5-	287
		SC)	
	10.10.3	Analysis for main contractor for SCP5 (Ca-SCP5-	289
		MC)	
	10.10.4	Analysis for consultants/clients for SCP5 (Ca-	292
		SCP5-CC)	
	10.10.5	Neural network analysis for Ca-SCP5 models	295
	10.10.6	Summary for analysis of the causes to SCP5	296
10.11	Analysis fo	or SCP6	298
	10.11.1	Analysis for all type of respondents for SCP6 (Ca-	298
		SCP6-AR)	
	10.11.2	Analysis for subcontractors for SCP6 (Ca-SCP6-	301
		SC)	
	10.11.3	Analysis for main contractor for SCP6 (Ca-SCP6-	303
		MC)	
	10.11.4	Analysis for consultants/clients for SCP6 (Ca-	306
		SCP6-CC)	
	10.11.5	Neural network analysis for Ca-SCP6 models	309
	10.11.6	Summary for analysis of the causes to SCP6	310
10 12	Summary		311

CHAP	TER ELI	EVEN: IMPROVING THE SITE COORDINA	ATION
11.1	Introdu	ction	317
11.2	Analysi	ng the causes of site coordination to project	318
	perform	nance	
	11.2.1	Analysis for all types of subcontractors	318
	11.2.2	Analysis for finishing work subcontractors	320
	11.2.3	Analysis for structural work subcontractors	323
	11.2.4	Analysis for building services work subcontractors	324
11.3	Summa	ry	325
СНАР	TER TW	ELVE: CONCLUSIONS, RECOMMENDAT	IONS
AND F	URTHE	R RESEARCH	
12.1	Introdu	ction	328
12.2	Conclus	ions	329
	12.2.1	Performance evaluation of subcontractors	329
	12.2.2	Factors governing the performance of subcontractor	331
	12.2.3	Critical site coordination problems caused by main	333
		contractors	
	12.2.4	Essential causes of the site coordination problems	334
	12.2.5	Relationships to explain how site coordination	336
		problems affect the performance of subcontractor	
	12.2.6	Contributions of the causes to site coordination	348

problems

12.3	Recomn	nendations for improving site coordination	339
	12.3.1	Recruitment and on-the-job training	341
	12.3.2	Informal meeting	341
	12.3.3	Partnership	342
	12.3.4	Enhance the site team	342
12.4	Limitati	ions of study	343
12.5	Further	research	344
	12.5.1	Path analysis	344
	12.5.2	Different nature of work	345
	12.5.3	Different location	345
	12.5.4	Further study for individual cause	346
	12.5.5	More project objective	346

LIST OF EQUATIONS		Page No
Equation 1.1:	Regression equation to analyze the performance of	15
	subcontractors	
Equation 2.1:	Form of multiple regression equation	39
Equation 2.2:	Correlation coefficient equation	42

LIST OF	FIGURES	Page no.
Figure 1.1:	Outline of the theoretical framework	11
Figure 1.2:	Thesis layout	20
Figure 2.1:	Theoretical framework	47
Figure 2.2:	Relationships of the dependent variables and	28
	independent variables	
Figure 2.3:	Research work flow chart	48
Figure 2.4:	Research work flow from Stage Three to Stage	33
	Seven studies	
Figure 2.5:	Statistical technique selection flow-chart	39
Figure 2.6:	Structure of a typical neural network	49
Figure 3.1:	The eternal triangle between cost, time and quality	57
Figure 5.1:	Mean score of performance objective	99
Figure 6.1:	Mean score for factors by the interviewees	110
Figure 7.1:	Aggregated importance score for problems to	133
	subcontractors' performance	
Figure 8.1:	Mean score for degree of contribution	142
Figure 8.2:	Mean score for frequency of occurrence	145
Figure 8.3:	Aggregated importance score for causes to site	146
	coordination problems	
Figure 9.1:	Distribution of the replies of site coordination	152
	problem survey	

Figure 10.1:	Distribution of the replies of the causes of site	214
	coordination problem survey	
Figure 11.1	Linkage for time performance analysis of all types of	318
	subcontractors and structural work subcontractors	
Figure 11.2:	Linkage for the cost performance analysis of all	319
	types of subcontractors	
Figure 11.3:	Linkage for quality performance analysis of all types	320
	of subcontractors	
Figure 11.4:	Linkage for time performance analysis of finishing	321
	work subcontractors	
Figure 11.5:	Linkage for cost performance analysis of finishing	322
	work subcontractors	
Figure 11.6:	Linkage for quality performance analysis of	322
	finishing work subcontractors	
Figure 11.7:	Linkage for cost performance analysis of structural	323
	work subcontractors	
Figure 11.8:	Linkage for quality performance analysis of	324
	structural work subcontractors	
Figure 11.9:	Linkage for the time, cost and quality performance	325
	analysis of building services work subcontractors	
Figure 11.10	Linkage of subcontractor' performance analysis	327
Rigure 12 1:	Proposed path analysis model	344

LIST OF TABLES		Page no
Table 1.1:	Productivity waste	9
Table 1.2:	Regression equations to analyze the performance	15
	of subcontractors	
Table 2.1:	Summary of dependent variables and	27
	independent variables	
Table 3.1	Summary of subcontractors' performance	78
	evaluation objectives and criteria	
Table 3.2	Summary of the factors related to the inherent	79
	project characteristics	
Table 3.3	Summary of the factors related to the ability of	81
	key participants of the subcontracts	
Table 3.4	Summary of the factors related to the influences	81
	of the key participants to the subcontracts during	
	construction stage	
Table 3.5	Summary of common site coordination problems	83
Table 3.6	Summary of causes to site coordination problems	85
Table 5.1:	Average score of the subcontractors'	97
	performance evaluation objective and criteria	
Table 6.1:	List of factors discussed during the interviews	109
Table 6.2:	Ten most important success factors from main	111
	contractor' site management	

Table 6.3:	Ten most important success factors from main	115
	contractor' frontline staff	
Table 6.4:	Ten most important success factors from	118
	subcontractors	
Table 7.1:	Mean score for site coordination problems to	128
	subcontractors' performance	
Table 7.2:	Frequently occurring site coordination problems	129
Table 7.3:	Significant impact site coordination problems	131
Table 7.4:	Aggregated importance score for the eight main	135
	types of site coordination problems	
Table 8.1:	Causes of main contractor' site coordination	141
	problems	
Table 8.2:	Mean score for degree of contribution	144
Table 8.3:	Mean score for frequency of occurrence	146
Table 8.4:	Aggregated importance score for the three main	147
	type of causes	
Table 9.1:	Overall coding system	151
Table 9.2:	Coding system for site coordination problems	151
Table 9.3:	Type of respondents of the questionnaire survey	152
	on site coordination problems	
Table 9.4:	Descriptive statistics for project outcomes	153
	achievements	

Table 9.5:	Descriptive statistics for site coordination	154
	problems	
Table 9.6:	Comparison between finishing work	155
	subcontractors and the overall data	
Table 9.7:	Comparison between structural work	156
	subcontractors and the overall data	
Table 9.8:	Comparison between building services work	158
	subcontractors and the overall data	
Table 9.9:	Mean score for achievements in project outcomes	159
Table 9.10:	Total mean score for the six critical site	160
	coordination problems	
Table 9.11	Models generated to assess the impact of site	161
	coordination problems	
Table 9.12:	Regression equation code for site coordination	163
	problems analysis	
Table 9.13:	Descriptive statistics for SP-Time-All model	164
Table 9.14:	Correlation coefficient of SP-Time-All model	166
Table 9.15:	Regression equations of SP-Time-All model	166
Table 9.16:	R, R Square, Adjusted R Square, F-statistic and	167
	Significance Level values of the stage regression	
	equations of SP-Time-All model	
Table 9.17:	Correlation coefficients of SP-Time-Fin model	168
	and comparison with SP-Time-All model	

Table 9.18:	Regression equations of SP-Time-Fin model	169
Table 9.19:	R, R Square, Adjusted R Square, F-statistic and	170
	Significance Level values of the stage regression	
	equations of SP-Time-Fin model	
Table 9.20:	Correlation coefficients of SP-Time-Str model	170
	and comparison with SP-Time-All model	
Table 9.21:	Regression equations of SP-Time-Str model	171
Table 9.22:	R, R Square, Adjusted R Square, F-statistic and	172
	Significance Level values of the stage regression	
	equations of SP-Time-Str model	
Table 9.23:	Correlation coefficients of SP-Time-BS model	173
	and comparison with SP-Time-All model	
Table 9.24:	Regression equations of SP-Time-BS model	174
Table 9.25:	R, R Square, Adjusted R Square, F-statistic and	175
	Significance Level values of the stage regression	
	equations of SP-Time-BS model	
Table 9.26:	Neural network analysis for time performance	175
Table 9.27:	Comparison of multiple regression method and	177
	neural network method for time performance	
Table 9.28:	Descriptive statistics for SP-Cost-All model	178
Table 9.29:	Correlation coefficient of SP-Cost-All model	179
Table 9.30:	Regression equations of SP-Cost-All model	180
Table 9 31.	R R Square Adjusted R Square F-statistic and	181

	Significance Level values of the stage regression	
	equations of SP-Cost-All model	
Table 9.32:	Correlation coefficients of SP-Cost-Fin model	182
	and comparison with SP-Cost-All model	
Table 9.33:	Regression equations of SP-Cost-Fin model	183
Table 9.34:	R, R Square, Adjusted R Square, F-statistic and	183
	Significance Level values of the stage regression	
	equations of SP-Cost-Fin model	
Table 9.35:	Correlation coefficients of SP-Cost-Str model	184
	and comparison with SP-Cost-All model	
Table 9.36:	Regression equations of SP-Cost-Str model	186
Table 9.37:	R, R Square, Adjusted R Square, F-statistic and	186
	Significance Level values of the stage regression	
	equations of SP-Cost-Str model	
Table 9.38:	Correlation coefficients of SP-Cost-BS model and	187
	comparison with SP-Cost-All model	
Table 9.39:	Regression equations of SP-Cost-Str model	188
Table 9.40:	R, R Square, Adjusted R Square, F-statistic and	189
	Significance Level values of the stage regression	
	equations of SP-Cost-BS model	
Table 9.41:	Neural network analysis for cost performance	190
Table 9.42:	Comparison of multiple regression method and	191
	neural network method for cost performance	

Table 9.43:	Descriptive statistics for SP-Quality-All model	192
Table 9.44:	Correlation coefficient of SP-Quality-All model	194
Table 9.45:	Regression equations of SP-Quality-All model	194
Table 9.46:	R, R Square, Adjusted R Square, F-statistic and	195
	Significance Level values of the stage regression	
	equations of SP-Quality-All model	
Table 9.47:	Correlation coefficients of SP-Quality-Fin model	196
	and comparison with SP-Quality-All model	
Table 9.48:	Regression equations of SP-Quality-Fin model	199
Table 9.49:	R, R Square, Adjusted R Square, F-statistic and	197
	Significance Level values of the stage regression	
	equations of SP-Quality-Fin model	
Table 9.50:	Correlation coefficients of SP-Quality-Str model	198
	and comparison with SP-Quality-All model	
Table 9.51:	Regression equations for SP-Quality-Str models	199
Table 9.52:	R, R Square, Adjusted R Square, F-statistic and	200
	Significance Level values of the stage regression	
	equations of SP-Quality-Str model	
Table 9.53:	Correlation coefficients of SP-Quality-BS model	201
	and comparison with SP-Quality-All model	
Table 9.54:	Regression equations of SP-Quality-BS model	202
Table 9.55:	R, R Square, Adjusted R Square, F-statistic and	202
	Significance Level values of the stage regression	

	equations of SP-Quality-BS mode2	
Table 9.56:	Neural network analysis for quality performance	203
Table 9.57:	Comparison of multiple regression method and	204
	neural network analysis for quality performance	
Table 9.58:	R value for the standard form regression	207
	equations for project performance	
Table 9.59:	Summary of the simple form regression	209
	equations for project performance	
Table 9.60:	Analysis of the importance of the site	210
	coordination problems	
Table 10.1:	Coding system for general terms	212
Table 10.2:	Coding system for causes of site coordination	213
	problems	
Table 10.3:	Type of respondents of the questionnaire survey	214
	on the causes of site coordination problems	
Table 10.4:	Descriptive statistics for site coordination	216
	problems for all types of respondents	
Table 10.5:	Descriptive statistics for causes of site	217
	coordination problems for all types of	
	respondents	
Table 10.6:	Comparison between subcontractors and the	218
	overall data for site coordination problems	

219

Table 10.7: Comparison between subcontractors and the

	problems	
Table10.8:	Comparison between main contractors and the	220
	overall data for site coordination problems	
Table 10.9:	Comparison between the main contractors and	221
	the overall data for causes of site coordination	
	problems	
Table10.10:	Comparison between the consultants/clients and	222
	the overall data for site coordination problems	
Table 10.11:	Comparison between consultants/clients and the	223
	overall data for causes of site coordination	
	problems	
Table 10.12:	Highest mean score for the causes of site	224
	coordination problems	
Table 10.13:	Models generated to assess the contribution of	225
	the causes to the site coordination problems	
Table 10.14:	Coding system for the standard form and simple	227
	form regression equations	
Table 10.15:	Correlation coefficient of Ca-SCP1-AR model	229
Table 10.16:	Regression equations of Ca-SCP1-AR model	230
Table 10.17:	R, R Square, Adjusted R Square, F-statistic and	230
	Significance Level values of the stage regression	
	equations of Ca-SCP1-AR model	

overall data for causes of site coordination

Table 10.18:	Correlation coefficients of Ca-SCP1-SC model	231
	and comparison with Ca-SCP1-AR model	
Table 10.19:	Regression equations of Ca-SCP1-SC model	232
Table 10.20:	R, R Square, Adjusted R Square, F-statistic and	233
	Significance Level values of the stage regression	
	equations of Ca-SCP1-SC model	
Table 10.21:	Correlation coefficient of Ca-SCP1-MC model	234
Table 10.22:	Regression equations of Ca-SCP1-MC model	235
Table 10.23:	R, R Square, Adjusted R Square, F-statistic and	236
	Significance Level values of the stage regression	
	equations of Ca-SCP1-MC model	
Table 10.24:	Correlation coefficient of Ca-SCP1-CC model	237
Table 10.25:	Regression equations of Ca-SCP1-CC model	238
Table 10.26:	R, R Square, Adjusted R Square, F-statistic and	239
	Significance Level values of the stage regression	
	equations of Ca-SCP1-CC model	
Table 10.27:	Summary of neural network analysis for cause to	240
	SCP1	
Table 10.28:	Comparison of multiple regression method and	241
	neural network method for SCP1	
Table 10.29:	Correlation coefficient of Ca-SCP2-AR model	243
Table 10.30:	Regression equations of Ca-SCP2-AR model	244
Table 10 31.	R R Square Adjusted R Square, F-statistic and	244

	Significance Level values of the stage regression	
	equations of Ca-SCP2-AR model	
Table 10.32:	Correlation coefficient of Ca-SCP2-SC model	245
Table 10.33:	Regression equations of Ca-SCP2-SC model	246
Table 10.34:	R, R Square, Adjusted R Square F-statistic and	247
-	Significance Level values of the stage regression	
	equations of Ca-SCP2-SC model	
Table 10.35:	Correlation coefficient of Ca-SCP2-MC model	248
Table 10.36:	Regression equations of Ca-SCP2-MC model	249
Table 10.37:	R, R Square, Adjusted R Square, F-statistic and	250
	Significance Level values of the stage regression	
	equations of Ca-SCP2-MC model	
Table 10.38:	Correlation coefficient of Ca-SCP2-CC model	251
Table 10.39:	Regression equations of Ca-SCP2-CC model	252
Table 10.40:	R, R Square, Adjusted R Square, F-statistic and	253
	Significance Level values of the stage regression	
	equations of Ca-SCP2-CC model	
Table 10.41:	Neural network analysis for Ca-SCP2 models	254
Table 10.42:	Comparison of multiple regression method and	255
	neural network method for SCP2	
Table 10.43:	Correlation coefficient of Ca-SCP3-AR model	257
Table 10.44:	Regression equations of Ca-SCP3-AR model	258
Table 10.45 :	R, R Square, Adjusted R Square, F-statistic and	259

equations of Ca-SCP3-AR model **Table 10.46:** Correlation coefficient of Ca-SCP3-SC model 259 Table 10.47: Regression equations of Ca-SCP3-SC model 260 R, R Square, Adjusted R Square, F-statistic and 261 Table 10.48: Significance Level values of the stage regression equations of Ca-SCP3-SC model Table 10.49: Correlation coefficient of Ca-SCP3-MC model 262 Regression equations of Ca-SCP3-MC model 263 Table 10.50: 264 **Table 10.51:** R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP3-MC model Correlation coefficient of Ca-SCP3-CC model 265 Table 10.52: Regression equations of Ca-SCP3-CC model Table 10.53: 266 267 Table 10.54: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP3-CC model 268 **Table 10.55:** Neural network analysis for Ca-SCP3 models Comparison of multiple regression method and 269 **Table 10.56:** neural network method for SCP3 Correlation coefficient of Ca-SCP4-AR model 271 Table 10.57: 272 Regression equations of Ca-SCP4-AR model **Table 10.58:** 272

Significance Level values of the stage regression

R, R Square, Adjusted R Square, F-statistic and

Table 10.59:

Significance Level values of the stage regression equations of Ca-SCP4-AR model Table 10.60: Correlation coefficient of Ca-SCP4-SC model 273 **Table 10.61:** Regression equations of Ca-SCP4-SC model 274 Table 10.62: R, R Square, Adjusted R Square, F-statistic and 275 Significance Level values of the stage regression equations of Ca-SCP4-SC model Table 10.63: Correlation coefficient of Ca-SCP4-MC model 276 Table 10.64: Regression equations of Ca-SCP4-MC model 277 Table 10.65: R, R Square, Adjusted R Square, F-statistic and 278 Significance Level values of the stage regression equations of Ca-SCP4-MC model Correlation coefficient of Ca-SCP4-CC model 279 **Table 10.66: Table 10.67:** Regression equations of Ca-SCP4-CC model 280 Table 10.68: R, R Square, Adjusted R Square, F-statistic and 281 Significance Level values of the stage regression equations of Ca-SCP4-CC model Table 10.69: Neural network analysis for Ca-SCP4 models 282 Table 10.70: Comparison of multiple regression method and 283 neural network method for SCP4 Table 10.71: Correlation coefficient of Ca-SCP5-AR model 285 Table 10.72: Regression equations of Ca-SCP5-AR model 286 R, R Square, Adjusted R Square, F-statistic and 286 Table 10.73:

equations of Ca-SCP5-AR model Table 10.74: Correlation coefficient of Ca-SCP5-SC model 287 Table 10.75 Regression equations of Ca-SCP5-SC model 288 Table 10.76: Table 10.76: R, R Square, Adjusted R Square, F-289 statistic and Significance Level values of the stage regression equations of Ca-SCP5-SC model Table 10.77: Correlation coefficient of Ca-SCP5-MC model 290 Table 10.78: Regression equations of Ca-SCP5-MC model 291 Table 10.79: R, R Square and Adjusted R Square, F-statistic 292 and Significance Level values of the stage regression equations of Ca-SCP5-MC model Table 10.80: Correlation coefficient of Ca-SCP5-CC model 293 Table 10.81: Regression equations of Ca-SCP5-CC model 294 R, R Square, Adjusted R Square, F-statistic and 295 Table 10.82: Significance Level values of the stage regression equations of Ca-SCP5-CC model Table 10.83: Neural network analysis for Ca-SCP5 models 296 Comparison of multiple regression method and 297 Table 10.84: neural network method for SCP5 Correlation coefficient of Ca-SCP6-AR model 299 Table 10.85: Table 10.86: Regression equations of Ca-SCP6-AR model 300 R, R Square, Adjusted R Square, F-statistic and 300 Table 10.87:

Significance Level values of the stage regression

	Significance Level values of the stage regression	-
	equations of Ca-SCP6-AR model	
Table 10.88:	Correlation coefficient of Ca-SCP6-SC model	301
Table 10.89:	Regression equations of Ca-SCP6-SC model	302
Table 10.90:	R, R Square, Adjusted R Square, F-statistic and	303
	Significance Level values of the stage regression	
	equations of Ca-SCP6-SC model	
Table 10.91:	Correlation coefficient of Ca-SCP6-MC model	304
Table 10.92:	Regression equations of Ca-SCP6-MC model	305
Table 10.93:	R, R Square, Adjusted R Square F-statistic and	306
	Significance Level values of the stage regression	
	equations of Ca-SCP6-MC model	
Table 10.94:	Correlation coefficient of Ca-SCP6-CC model	307
Table 10.95:	Regression equations of Ca-SCP6-CC model	308
Table 10.96:	R, R Square, Adjusted R Square, F-statistic and	308
	Significance Level values of the stage regression	
	equations of Ca-SCP6-CC model	
Table 10.97:	Neural network analysis for Ca-SCP6 models	309
Table 10.98:	Comparison of multiple regression method and	310
	neural network method for SCP6	
Table 10.99:	R value of the of the standard form regression	313
	equations of overall data	
Table 10 100:	Analysis of the importance of the causes to the	314

site coordination problems

Table 11.1:	Relationships between causes, site coordination	326
	problems and project performance	
Table 12.1:	The ten most important causes	332
Table 12.2:	The six critical site coordination problems	334
Table 12.3:	The twelve essential causes of site coordination	336
	problems	
Table 12.4:	Regression equations for performance of	337
	subcontractors	
Table 12.5:	Regression equations for contributions of causes	338
	to site coordination problems	
Table 12.6:	Summary of 'most critical' site coordination	339
	problem and project outcomes influenced	
Table 12.7:	Summary of 'most essential' causes and 'most	340
	critical' site coordination problems	

LIST OF APPENDICES

A	Questionnaire for the survey on productivity waste,	364
	performance of subcontractors and contribution of	
	the causes to the site coordination problem	
В	Data of the survey on productivity waste	369
C	Questionnaire for the survey on the criteria to assess	374
	the performance of subcontractors	
D	Questionnaire for the survey on critical site	377
	coordination problems	
E	Questionnaire for survey on essential causes for site	380
	coordination problems	
F	Details of the interviews for the surveys on	383
	performance assessment criteria, critical site	
	coordination problems and essential causes to the	
	problems	
G	Details of the interviews for identifying the factors	386
	governing the performance of subcontractors	
н	Mailing address for the questionnaire survey on	389
	productivity waste, forecasting the performance of	
	subcontractors and evaluate the causes of the site	
	coordination problem	
T	Data of the survey on exiteria to assess the	302

	performance of subcontractors	
J	Data of the survey on identifying the important	394
	influencing factors for subcontracts	
K	Data of the survey on identifying critical site	398
	coordination problems	
L	Data of the survey on identifying essential causes for	400
	site coordination problems	
M	SPSS regression printouts for site coordination	402
	problems analysis	
N	Neural network analysis outputs for site	423
	coordination problems analysis	
O	Data for the survey on forecasting the performance	436
	of subcontractors	
P	Scatterplot matrix for site coordination problems	439
	analysis	
Q	SPSS regression printouts for the causes to the site	442
	coordination problems analysis	
R	Neural network analysis outputs for the causes to	529
	the site coordination problems analysis	
S	Data for the survey on the contribution of the causes	572
	to site coordination problems	
T	Scatterplot matrix for causes of the site coordination	577
	problems analysis	

CHAPTER ONE

INTRODUCTION

1.1 Introduction to subject matter

1.1.1 Construction industry today

Construction industry is one of the main pillars of Hong Kong's economy. It employed eight per cent of approximately three million working population and contributed to 3.4 per cent of Hong Kong's GDP according to government statistics for 2005 (Census and Statistics Department, 2006). As of June 2006, the industry employed 52,000 site workers. The employment level for the broader building, construction and real estate sectors is at around 250,000 and includes professionals such as architects, surveyors, structural engineers, building services engineers and civil engineers. The value of construction work performed by main contractors in the second quarter of 2006 was HK\$22.4 billion. Public sector work accounted for 39.5 per cent of that gross construction work. Over the next five years, the Hong Kong Government has earmarked \$29 billion a year on average for public projects expecting to create about 14,000 new construction jobs in 2006/07. As the prosperity of the economy of Hong Kong and its growth is heavily dependent upon the state of the construction industry, construction industry can be seen as a barometer of the Hong Kong' economy (Rowlinson and Walker, 1995).

Over the years, Hong Kong construction industry has earned a reputation for the rapid construction of quality high-rise first class buildings such as the 88-storey height

International Finance Centre II and the 62-storey Cheung Kong Centre. The industry is dominated by a small number of large local contractors and overseas contractors. A substantial number of companies are being both developers and contractors. Due to fluctuation of workload, there is a high level of subcontracting in the projects. Most of the local construction companies are small in size, about 97 per cent of them had less than HK\$10 million gross value of construction work performed in 2004 (Hong Kong Trade Development Council, 2006). The majority of them are performing subcontractor role in the building projects.

1.1.2 Subcontracting system

Subcontracting system is very important to the local construction industry as labour-only subcontractors and fee subcontractors contributed 23 per cent and 44 per cent of the gross value of construction work performed in 2005 according to government statistics for 2005. Main contractors normally divide the project into work packages by trade and sublet them to the first layer trade subcontractors. The first layer trade subcontractors further divide their work packages into smaller packages and sublet them to the second layer subcontractors. The subletting process may sometimes go down several more layers and can be characterised as multilayered subcontracting. The workers actually tend not be employees of the first layer subcontractors, however, according to the principle of ultimate responsible, the first layer subcontractors should be accounted for the performance of their sub-subcontractors. A survey (Cheng and Law, 2005) to review the degree of subcontracting shows that 74 per cent, 15.6 per cent and 4.2 per cent of the respondents were usual second layer, third and fourth layer subcontractors.

This approach has been in operation for a long period of time in Hong Kong as a strategy to deal with long-term environmental uncertainties and to buffer the technical core of main contractors against short-term contingencies (Sozen, 1999). However, the approach creates problems, such as greater demand in coordination work and high mobility of the worker causing poor workmanship.

Due to the rapid development in terms of complexity and size of building projects, the use of subcontractors has rapidly increased. As a result, the role of main contractors have gradually transformed from a constructor to a manager of subcontractors of the project. Frisby (1990) defined the management of the subcontractors as one of the key functions of the main contractor. The performance of the subcontractor is one of the most important factors governing project performance.

1.1.3 Management of subcontractors

The subcontractor is an independent company and not an employee of the general contractor. It is necessary to establish and maintain a firm, but cooperative relationship with subcontractors to encourage such co-operation enables all parties to make money on the project, and can lead to other mutual benefits as well (Frisby, 1990). Unfortunately, most subcontractors in Hong Kong complain that they are unable to efficiently and effectively perform their site works due to the main contractors' poor site coordination. A survey has been conducted to identify the essential factors affecting the performance of the subcontractors in the building construction projects in Hong Kong. The key influencing factors identified can be classified into three main categories:

- a. inherent project characteristics;
- b. ability of the key participants; and
- c. the influences of the participants to the subcontracts.

The survey showed that main contractor's site coordination was the most important factor governing the performance of subcontractors during the construction stage.

A survey to identify and rank the importance of the common site coordination problems caused by the main contractors that hinder subcontractors' performance has been developed. The survey results recommended that as a priority main contractors should improve the quality of construction information provided to subcontractors and ensure that the scope of interfacing works for each subcontract were clearly specified in the subcontract documents and well coordinated through the regular site meetings.

Nineteen common site coordination problems caused by the main contractors that can adversely affect subcontractors' performance were identified through literature review and advices from experienced industrial practitioners. According to their nature, these problems were classified into eight groups of problems critical to the successful site coordination of subcontractors work:

- a. construction information;
- b. working programme;
- c. preparation for work place;
- d. interfacing work;
- e. material support;

- f. plant support;
- g. response to site problems; and
- h. access to work place.

A follow-up questionnaire survey was conducted that filtered the nineteen common problems into six critical site coordination problems for detail study.

Sixteen key causes of site coordination problems relating to the main contractors were identified through literature review and advice from experienced industrial practitioners.

According to their nature, these causes were classified into three groups of causes essential to the site coordination problems:

- a. staffing;
- b. technical; and
- c. management system.

A follow-up questionnaire survey was conducted that filtered the sixteen key causes into twelve essential causes to the site coordination problems for detail study.

This thesis explains the impact of the site coordination problems to the performance of subcontractors and analysis the essential causes of the problems in the Hong Kong building projects.

1.2 Aim and objectives

1.2.1 Aim

The aim of this research is to establish the relationships between site coordination problems caused by main contractors and performance of subcontractors at the construction stage in the Hong Kong building projects. This involves an analysis of the essential causes of the problems and provides guidelines to main contractors to enhance their site coordination. The aim will be achieved through the following objectives.

1.2.2 Objectives

- a. Identify and review the common criteria to evaluate the performance of subcontractors currently used by the main contractors in HK building projects.
- b. Identify and review the important factors governing the performance of subcontractors.
- c. Identify and analyse the critical site coordination problems caused by main contractors that adversely affect the performance of subcontractors.
- d. Identify and analyse the essential causes of the site coordination problems.
- e. Investigate how the site coordination problems affect the performance of subcontractors.
- f. Develop a framework and recommend actions to main contractors for improving site coordination.

1.2.3 Scope of study

This thesis only covers building construction projects as civil engineering main contractors do not subcontract such a large proportion of work to subcontractors since the nature of work does not involve as many different trades and is not too labour intensive.

1.2.4 Assumptions

Some of the respondents of the surveys of this research may perform the role of main contractor and subcontractor in different projects. In the surveys of this research, respondents were requested to fill the questionnaires according to their roles in their current projects or the projects with highest contract sums if they were handling several projects at the same time.

Some of the respondents may be the second, third or even lower layer of subcontractors in a project. In the surveys, it was assumed that their replies represented the views from the first layer subcontractors as long as they were the party actually carrying out the production work for the project.

1.3 Justification for the research

1.3.1 Increasing involvement of subcontractors

A survey by Lai (1987) showed that the average number of subcontractors involved in HK projects ranged from 17 to 54. It is expected that more numbers of subcontractors would be involved in a project due to rapid development of high-rise buildings in the last decade. The percentage gross value of main contract work performed by subcontractors

increased from 57 per cent to 67 per cent during 1981 to 2005 according to government statistics for 2006 (Census and Statistics Department, 2007). The site coordination of subcontractors has thus become extremely complicate and enhancing main contractors' site coordination has become a priority.

1.3.2 Feedback from industry

In recent years, there are increasing complaints from the subcontractors that they cannot perform their work effectively and efficiently due to the site coordination problems caused by main contractors. A questionnaire survey was conducted to investigate whether the site coordination problems have seriously affected the productivity of the subcontractors. Data collection using a questionnaire survey in which respondents were requested their views on the amount of productivity that had been wasted due poor site coordination by the main contractor of their current projects. A total of 197 valid replies were received from main contractors, subcontractors, consultants and property developers in this questionnaire survey. A copy of the questionnaire and the summary of the replies are attached as Appendix A and B respectively. The survey findings can be regarded as a manifestation of the common views of the industry as the mean working experience in the construction industry of the respondents is around 10 years. The productivity wasted due to site coordination problems was stated by the respondents as an average of 35.10 per cent. Table 1.1 summarises the mean percentage of productivity waste stated by different groups of respondents in a descending order of priority. The results show that the performance of subcontractors on structural work could be seriously hindered by the site coordination problems. The main reason is that the nature of structural work is not

easy to accommodate the re-schedule of working sequences to mitigate the impact of problems. It is not surprised that the mean percentage of the main contractor group is the lowest in this survey, however, they still admit that almost 20 per cent of the productivity had been wasted due to site problems even they might make a one-sided judgement when filling the questionnaire.

Table 1.1: Productivity waste

Characteristics of the respondents	No. of replies	Mean	
		(per cent)	
Subcontractor – builders' work (structural work)	34	45.88	
Subcontractor – building services work	40	41.00	
Consultants and property developers	25	39.36	
Subcontractor – builders' work (finishes work)	43	38.09	
Main contractor	55	19.87	
Total	197	35.10	

1.3.3 Government concern

The Hong Kong Government appointed the Construction Industry Review Committee to comprehensively review the current state of the industry and to recommend improvement measures in April 2000. The report by the Committee published in January 2001 stated that multilayered subcontracting has frequently been cited as a key factor contributing to substandard work in local construction because of the following reasons.

a. Most of the subcontractors, especially those at the lower tiers in the multilayered subcontracting system, do not enter into the formal subcontracts with the main

- contractors. This increases the difficulties for the main contractors in exercising adequate direct control and supervision over subcontractors' work.
- b. Broker-type subcontracting creates multiple, non value-adding layers in the project delivery team, complicates communications.
- Inadequate main contractor site supervision had aggregated the problem of multilayer subcontracting.

The Public Policy Working Paper: Working Situations of Subcontractors and Their Employees under the Multilayer Subcontracting of Construction Works and Its Impacts on Construction Industry (Cheng and Law, 2005) summarises the problems of extensive subcontracting such as difficulties in supervision and management and recommends the main contractors to enhance their subcontractors management system that clearly record all the subcontracting activities on their sites and inform their clients of such records.

1.4 Overview of research methodology

The aim of this thesis is to formulate relationships to illustrate how the performance of subcontractors is affected by the site coordination problems and develop framework to improve site coordination. Figure 1.1 gives a brief picture on the essential content of this research.

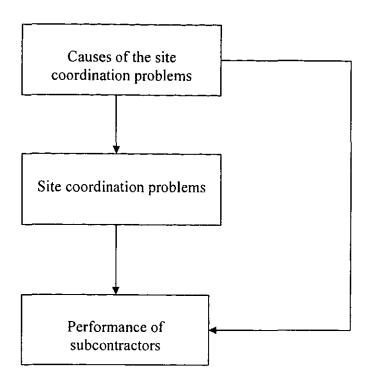


Figure 1.1: Outline of the theoretical framework

In each stage of study, the work was divided into two phases. The aim of the first phase was to consolidate a preliminary list of causes, problems and performance evaluation criteria through literature review and advices from experienced industry practitioners. The aim of second phase was to identify the important items from the preliminary list through in-depth interviews or questionnaire surveys.

Based on the results of the studies, a questionnaire survey was formulated to collect data for establishing the relationships and analyzing the essential causes to the site coordination problems. The below briefly describes the content of each stage of research work.

Stage One: Measuring the performance of subcontractors

In recent years, broader project objectives are being introduced to assess the performance of the main contractors of building projects. This stage of work aimed to establish the criteria that main contractors were currently using to evaluate the performance of their subcontractors. After the consultation with experienced industrial practitioners, essential subcontractor performance evaluation criteria were shortlisted and categorised into seven objectives. A questionnaire survey was conducted and used to rank the importance of these objectives. The survey results show that time, safety and health, quality and cost are the four current principal construction project objectives for subcontracts.

Stage Two: Factors influencing the performance of subcontractor

In this stage, factors influencing subcontractors' performance for the Hong Kong building projects were reviewed. A preliminary list of factors was prepared based on previous studies of success factors for building projects because there were no similar studies relating to subcontractors. These factors were grouped into three main categories. Through the in-depth interviews to the industrial practitioners, the ten most important factors were shortlisted. Site coordination was found to be the most important factor under the category of influences of the participants to the subcontracts.

Stage Three: Site coordination problems

The critical site coordination problems caused by main contractors that can hinder subcontractor performance were identified and analysed in this stage. Nineteen common problems were identified and classified into eight groups through literature review,

observed common industrial practices and advices from the experienced industrial practitioners. A questionnaire survey was conducted to rank the importance of the problems to the performance of the subcontractors.

Stage Four: Causes of site coordination problems

The essential causes of the site coordination were identified and analysed in this stage. Sixteen possible causes were identified and classified into three groups through observed common industrial practices and advices from the experienced industrial practitioners. A questionnaire survey was carried out to examine the contributions of the causes to the site coordination problems.

Stage Five: Forecasting the performance of subcontractors

Relationships to explain how the site coordination problems affect the performance of subcontractors were established in this stage. A questionnaire survey was developed based on the six critical site coordination problems as identified in the previous stages of work and the three principal project outcomes: time; cost; and quality. Multiple regression analysis method and neural network analysis method were used to generate the regression equations to relate the site coordination problems with the performance of subcontractors.

Stage Six: Contribution of the causes to site coordination problems

Questionnaire survey method was adopted to collect data to investigate the contributions of the twelve essential causes identified in the previous chapter to the six critical site

coordination problems. Multiple regression analysis method and neural network analysis method were used to formulate the regression equations to relate the causes to the site coordination problems.

Stage Seven: Improving the site coordination

Among the six critical site coordination problems, some of them bear more impact than others on the time, cost and quality performance of the subcontracts. Backward elimination multiple regression method was adopted to identify the 'most critical' site coordination problems to subcontractors' performance. Similarly, the 'most essential' causes to the critical site coordination problems were identified from the twelve essential causes adopting the backward regression multiple regression method. This provides the main contractors the information to develop framework to improve the site coordination.

1.5 Summary of main findings

1.5.1 Relationship to explain the performance of subcontractors

Relationships based on the occurrence of the six critical site coordination problems caused by main contractor, in terms of multiple regression equation format shown in Equation 1.1, was developed to explain the degree of achievement in time performance, cost performance and quality performance of the subcontractors in the HK building projects. In this analysis, a total of 12 regression equations were formulated for different type of sub-contractors. Table 1.2 is an extract of the analysis that lists the three regression equations formulated based on the replies from all types of sub-contractors.

 $P = A + W_1SCP1 + W_2SCP2 + W_3SCP3 + W_4SCP4 + W_5SCP5 + W_6SCP6$

Equation 1.1: Regression equation to explain the performance of subcontractors

Where P_T, P_C P_O is the project performance: Time, Cost and Quality.

SCP1 to SCP6 are the critical site coordination problems.

 W_1 to W_2 are the partial regression coefficient for SCP1 to SCP2 respectively.

A is a constant which is the y-intercept of the equation.

Table 1.2: Regression equations to analyze the performance of subcontractors

Project performance	Regression equation
Time	P _T = 11.645 - 0.229xSCP1 - 0.343xSCP2 - 0.314xSCP3 -
	0.031xSCP4 + 0.001xSCP5 - 0.068xSCP6
Cost	$P_C = 9.522 + 0.015xSCP1 - 0.040xSCP2 - 0.308xSCP3 -$
	0.162xSCP4 + 0.084xSCP5 - 0.087xSCP6
Quality	$P_Q = 10.564 - 0.160xSCP1 - 0.096xSCP2 - 0.283xSCP3 -$
	0.094xSCP4 - 0.024xSCP5 - 0.002xSCP6

1.5.2 Framework to improve site coordination

Eight 'most essential' causes to the 'most critical' site coordination problems which consequently affected the performance of subcontractors were summarized below. Based on the information, main contractor can formulate measures to avoid the occurrence of

the causes in order to provide efficient and effective site coordination for their subcontractors.

- a. Staff the main contractor are too inexperienced to coordinate the site work.
- b. Main contractor does not have sufficient directly employed workers to carry out the temporary work.
- c. Design of the temporary work provided by main contractor does not meet the requirements requested by the sub-contractors.
- d. Job duties of main contractor's staff are unclear.
- e. Main contractor does not have sufficient staff to coordinate the site work.
- f. Main contractor does not have sufficient staff to coordinate the technical administration work.
- g. Communication paths within main contractor organization are unclear.
- h. Frontline staff of main contractor do not have sufficient authority to handle the site co-ordination.

1.6 Guide to the thesis

This thesis contains ten chapters. The schematic guide to the thesis layout is illustrated in Figure 1.2. A brief description of each chapter is presented below to summarize the thesis.

Chapter One provides an introduction to the subject matter, aims and objectives and justification for the research. Overview of the research methodology, summary of the main findings and the guide to the thesis are also presented.

Chapter Two analyses the nature of the research topic, and explains the research philosophy and the structure of the research methodology. The selection, strengths and limitations of the data analysis tools adopted for establishing the forecasting model are discussed.

Chapter Three provides a literature review on the knowledge in the context of the research topic. It critiques the publications on strengths and problems of subcontracting, objectives of building projects, success factors for building projects, and applications of multiple regress analysis and neural network analysis.

Chapter Four explains the methodology and approaches adopted for data collection for this research. The designs for the questionnaire surveys are discussed in detail in this chapter.

Chapter Five describes the common project objectives for main contracts of building project, and presents the questionnaire survey that concluded the common criteria that main contractors are currently using to assess the performance of their subcontractors in the HK building projects.

Chapter Six reviews the critical success factors for building projects, and explains the process that identifies the important factors governing the performance of subcontractors in the local building projects through in-depth interviews to industrial practitioners.

Chapter Seven analyses the critical site coordination problems caused by main contractors. The results of the questionnaire survey have been presented in tables and bar charts and the importance of these problems to the performance of subcontractors has been analysed. Explanations from industrial practitioners on the survey results are presented.

Chapter Eight summarizes the essential causes of site coordination problems. The results of the questionnaire survey that rank the importance of these causes to the problems have been presented in tables and bar charts with explanations.

Chapter Nine presents the questionnaire survey and explain the relationships between the outcomes of a subcontract and the critical site coordination problems. Data analyses by means of multiple regression analysis and neural networking analysis have been included in this chapter.

Chapter Ten presents the questionnaire survey and determine the contributions of the essential causes to the critical site coordination problems. Data analyses by means of multiple regression analysis and neural networking analysis have been included in this chapter.

Chapter Eleven presents a series of figures to illustrate the influences of the 'most essential' causes to the 'most critical' site coordination problems, and subsequently to the

three principal project outcomes of the subcontracts in HK building projects based on the survey results of Chapter Nine and Chapter Ten.

Chapter Twelve concludes the findings of this thesis and summarizes the recommendations to main contractors to enhance the site coordination. The room for further study of this research area are also explored and discussed in this chapter.

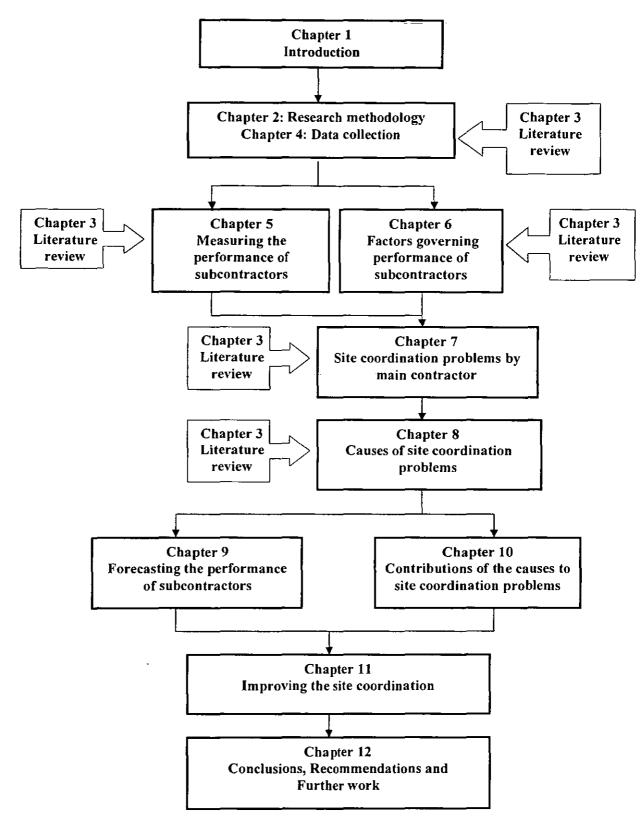


Figure 1.2: Thesis layout

CHAPTER TWO

RESEARCH DESGIN AND METHDOLOGY

2.1 Introduction

This chapter explains the adopted research methodology which was based on the research process model for basic and applied research as proposed by Sekaran (1992). This comprises the following major steps.

- a. Observations: Identify the broad areas of research interest.
- b. Problem definition: Delineate the research problems.
- c. Research topic definition: Define the aim and objectives of the research.
- d. Theoretical framework: Identify the input variables and outputs, and construct their relationships.
- e. Research design: Design the data collection methods and the flow of the research work.
- f. Data analysis and interpretation: Select appropriate statistical models and software programmes for data analysis; and interpretation of the results and formulate recommendations.

The common problems of building projects in Hong Kong were reviewed through a preliminary literature review and observations of industrial practices. One essential problem identified was the unsatisfactory performance of subcontractors. A researchable

topic that could make contribution to the industry was thus formulated: improving the performance of subcontractors through proper site coordination.

The research aim was established through the discussions with experienced industrial practitioners which covered two major areas: the impact of site coordination problems on subcontractor performance; and the causes of poor site coordination. Six research objectives were developed based on the research aim. A detail literature review was undertaken to consolidate the list of the influencing factors and outputs of subcontracts. The research focused on studying the influences of site coordination problems on subcontractor's performance and the causes of such problems. The theoretical framework of this research has been presented in Figure 2.1 (see page 47). The research work was divided into seven stages of studies. Multiple regression analysis and neural network analysis were adopted to analyze the data as literature review had suggested that these two methods were commonly used in studies of similar nature.

2.2 Broad areas of research interest

The first step in most research exercises is to identify broad areas of research interest. Hong Kong construction projects have long been associated with poor quality of workmanship (Tam and Tong, 1996; Kam and Tang 1998). It is commonly agreed within the industry that multilayered subcontracting is one of the main causes of this problem. A preliminary literature review was undertaken to explore supporting publications. One essential document was identified: the Construction Industry Review Committee Report (2001) which reviewed the current state of the industry. The report cited the multi-layered

subcontracting system as a key factor contributing to substandard work in local construction. It would therefore be interesting to study the issues related to the management of subcontractors.

2.3 Delineate the research problem

The research problem was delineated through the discussions with experienced industry practitioners and a preliminary literature review. Due to rapid development of high-rise buildings in Hong Kong in recent years, the involvement of subcontractors in building projects has rapidly increased. However, there has been increasing complaints from the subcontractors that they could not perform effectively and efficiently due poor site coordination by main contractor.

Questionnaire survey method was adopted to justify the research problem. In the survey, respondents were requested to quote a percentage to represent their views on the amount of productivity wasted due to poor site coordination by main contractor. As the survey result showed there was an average of 35.10 per cent wasted productivity claimed by the respondents, a further step was worth to proceed to finalize the research aim, objectives and scope of study.

2.4 Research aim and objectives

The research aim and objectives of the study were formulated taking into account of the follow four criteria defined by Sternberg (1981).

a. Does it make a contribution to the field?

- b. Is it original?
- c. Is it researchable?
- d. Is it dealing with unpopular ideologies or stigmatized or illegal groups?

Subcontracting is an important feature of the Hong Kong construction industry, for example, in 2005 subcontractors performed 67 per cent of the gross value of main contract according to government statistics (Census and Statistics Department, 2006). The findings of this research should thus contribute to the advancement of the local construction industry.

The management of subcontractors is a very complicate issue. The preliminary literature review shows that there are lots of publications focused on the pre-contract matters. However, there is lack of research directly related to the management of subcontractors at the construction stage. This research could fill up the 'hole' of the recent studies and produce an 'original' work in this study area.

This research topic is supported by the industrial practitioners and is researchable as the data to formulate the subcontractors' performance regression equations and the framework to enhance the site coordination could be obtained from the industrial practitioners through questionnaire survey.

The aim of this research is to establish the relationships between the site coordination problems caused by main contractors and the performance of subcontractors at the

construction stage in the Hong Kong building projects. This study involves an analysis of the essential causes of the problems so as to recommend improvements to main contractors to enhance site coordination. The following objectives are defined to achieve the aim of this study:

- a. Identify and review the common criteria currently used by main contractors to evaluate the performance of subcontractor in HK building projects.
- g. Identity and review the important factors influencing the performance of subcontractors.
- h. Identify and analyze the critical site coordination problems caused by main contractors that adversely affect the performance of subcontractors.
- i. Identity and analyze the essential causes of the site coordination problems.
- j. Investigate how the site coordination problems affect subcontractors' performance.
- k. Develop a framework and recommend actions to enhance site coordination leading to improved subcontractor performance.

2.4.1 Scope of study

This thesis only covers building projects as civil engineering projects are not as labour intensive and involves fewer trades. As a result, civil engineering contractors do not subcontract their work to the same degree.

2.4.2 Assumptions

Some of the survey respondents had working experience in main contractors as well as subcontractors. Some of them were also handling several projects at the same time. They

also performed the role of main contractor and subcontractor in different projects. From stage one to stage four studies, respondents were requested to complete the questionnaire based on their working experience. From stage five to stage seven studies, respondents were requested to provide data for their current projects or the projects with highest contract sums of their current projects.

Subcontractors are usually small firms. They work on different projects at different levels of subcontracting. It is pointless and perhaps impossible to trace out the level of subcontracting they belonged to. It was thus assumed that their replies represented the views from the first layer subcontractors as long as they were the parties actually carrying out the production work for the project.

2.5 Theoretical framework

This section defines the dependent variables and independent variables of the regression equations in this research, and constructs their relationships. This research work comprised two main parts:

2.5.1 Subcontractor performance analysis

The first part aimed to explain how site coordination problems affect the performance of the subcontractors. The dependent variables of the regression equations were the outcomes of the subcontracts, i.e. the essential criteria used to evaluate the performance of subcontractors currently used by the main contractors in HK building projects. The

independent variables of the regression equations were the site coordination problems caused by main contractors.

2.5.2 Improving the site coordination

The second part of the research was to establish a framework to improve the site coordination by analyzing the causes of the site coordination problems. Site coordination problems thus became the dependent variables of the regression equation for the second part research while the causes of the site coordination problems related to main contractor internal factors were the independent variables.

Table 2.1 and Figure 2.2 summarize and illustrate the relationships of the dependent variables and independent variables of the two parts of research.

Table 2.1: Summary of dependent variables and independent variables

Research work	Independent variables	Dependent variables
First part: Subcontractor	Site coordination problems	Outcomes of subcontracts
performance analysis		
Second part: Improving	Causes of site coordination	Site coordination problems
the site coordination	problems	

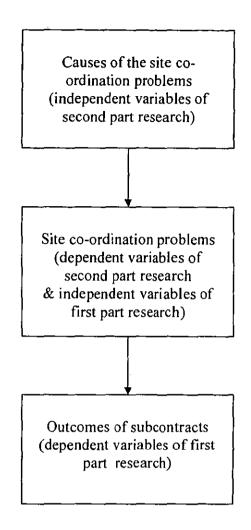


Figure 2.2 Relationships of dependent variables and independent variables

2.6 Research design

To meet the research objectives, this research was undertaken in the following seven stages. Figure 2.3 (see page 48) shows the flow of study for this research.

Stage One: Measuring the performance of subcontractors

Stage Two: Factor governing the performance of subcontractors

Stage Three: Site coordination problems

Stage Four: Causes of site coordination problems

Stage Five: Forecasting the performance of subcontractors

Stage Six: Contribution of the causes to site coordination problems

Stage Seven: Improving the site coordination

Stage One to Four each involved two phases of works. The aim of the first phase work

was to consolidate a preliminary list of causes, success factors, problems and

performance evaluation criteria through literature review, advices from experienced

industrial practitioners and observations. The aim of second phase work was to shortlist

the essential items from the preliminary list through in-depth interviews or questionnaire

surveys for constructing the subcontractor's performance relationships and site

coordination enhancement framework in Stage Seven work. The following paragraphs

explain the detail design of each stage of work.

Stage One: Measuring the performance of subcontractors

The definition of the dependent variables is the first to be finalized before selecting the

independent variables of the regression equations. The outcomes of a project are reflected

by the criteria used to assess the performance of the firm undertaking the project. Thus,

the first stage of this research was to identify and review the essential criteria that main

contractors were currently using to evaluate the performance of their subcontractors in

HK building projects.

- 29 -

A literature review was undertaken to analyze the different approaches to assess the outcomes of project. Twenty-two essential criteria to evaluate the performance of subcontractors of building projects were shortlisted through the consultations with the experienced industrial practitioners. According their nature, these criteria were classified into the following seven project objectives:

- a. time;
- b. cost;
- c. quality;
- d. safety and health;
- e. potential for long-term development;
- f. sustainability; and
- g. public image.

An integrated research approach was adopted including: a questionnaire survey to collect quantitative data; and in-depths interview to explore the possible causes for the findings. In the questionnaire survey, respondents who had worked in main contracting firms were requested to rate the level of importance from 1 (very important) to 7 (very unimportant) with 0.5 interval to the performance assessment criteria. The questionnaires were randomly distributed through private relationship to the industrial practitioners. A copy of the questionnaire is attached as Appendix C.

The importance of each criterion in assessing subcontractor performance was reflected by the mean score as assigned by the respondents. In this study, it was assumed that all the criteria were of equal importance to their respective performance evaluation objectives. Thus, the score for the performance evaluation objectives was the mean of the score of the criteria in the same group. The score of the objectives were summarized and presented in a descending order of levels of importance. The results shown that time, safety and health, quality, and cost were far more important than the other project objectives for the subcontracts of HK building projects. Experienced construction managers of main contractor were subsequently invited to express their views on the survey data through interviews.

Only time, cost and quality were selected as the outputs for the model to explain how the site coordination problems affect the performance of the subcontractors. The main reasons were that they had already been concluded as the three traditional principal project objectives and their achievements in a project could easily be quantified.

Stage Two: Factors governing the performance of subcontractors

The aim of this stage was to identify and review the important factors influencing the performance of subcontractors. There is lack of information on the success factors for subcontracts. A literature review was conducted to identify the critical success factors at main contract level. Adopting the model developed by Tam and Harris (1996), success factors for subcontract were classified into the following three headings and their relationships are shown in Figure 2.1 (page 47):

a. Inherent project characteristics: the nature and complexity of the main contract and subcontract, and the relationship among the key participants;

- b. Ability of the key participants: the knowledge, experience and financial abilities of the main contractor, design team, client and subcontractor, and the company support of their companies to the project; and
- c. Influences of the participants to the subcontracts: the performance of the main contractor, design team, client and other subcontractors at construction stage.

A preliminary list of factors that can affect the performance of subcontractors was formulated based on the literature review and observations to industrial practices. Indepth interviews were adopted because they permit the interviewees to suggest other factors that had not yet included in the preliminary list.

Three construction managers and three foremen from the main contractors were interviewed to express the points of view from management and frontline staff respectively. In order to obtain the views from different side, three project officers of the subcontractors were also interviewed. All the interviewees were from different firms. During the interviews, interviewees were reminded to refer only to the three basic project objectives, i.e. time, cost and quality, in making their options so as to maintain the consistence of the assumptions. Interviewees were requested a score from 1 (very unimportant) to 10 (very important) with 0.5 interview to each of the factors influencing the performance of the subcontractors and give a short explanation to support their options. According to the mean of score assigned by the interviewees, ten most important factors influencing the performance of subcontractors were identified, which showed that site coordination was the most important one at the construction stage.

Stage Three: Site coordination problems

Figure 2.4 shows the detail research work flow from Stage Three to Stage Seven study that illustrate the process from the consolidation of preliminary list of common site coordination problems and possible causes of the problems to the identification of 'most critical' site coordination problems and 'most essential' causes of the problems.

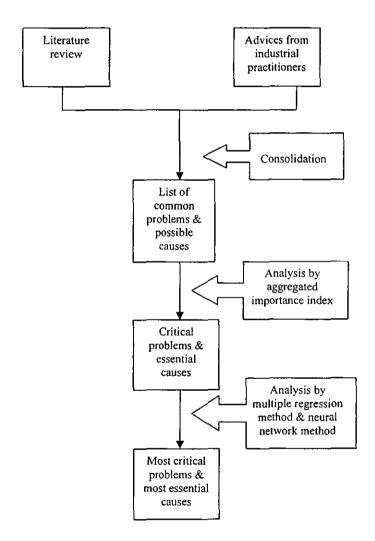


Figure 2.4: Research work flow from Stage Three to Stage Seven studies

The aim of Stage Three study was to identify and analyze the critical site coordination problems for establishing the subcontractors' performance regression equations. Nineteen problems caused by the main contractors that influence subcontractors' site work were identified through literature review, observed common industrial practices and advices from the experienced industrial practitioners. These problems were classified into the following eight groups:

- a. construction information;
- b. working programme;
- c. preparation for work place;
- d. interfacing works;
- e. access to work place;
- f. plant support;
- g. material support; and
- h. response to site problems.

An integrated research approach was adopted including a questionnaire survey to collect quantitative data and possible explanations to the survey results were collected through in-depth interviews. The overall degree of influence of the site coordination problems on subcontractors' performance depends on their frequency of occurrence as well as the potential degree of impact on site work. Based on their experience, respondents were requested to rate: from 1 (never happen) to 9 (happen every time) 0.5 intervals for the frequency of occurrence; and from 1 (very unimportant) to 9 (very important) with 0.5 intervals for the degree of potential impact to site work for each problem. In this 9-points

scoring scaling system, score above 5 represented that the problem occurred fairly frequently and had significant impact to site works.

Kadir et al (2005) derived the Severity Index formula to rank the overall implications of each of the factors affecting construction labour productivity based on the model by Lim and Alum (1995).

Severity Index = Importance Index x Frequency Index

Importance Index = Mean score on the Importance of each of the factor

Frequency Index = Mean score on the Frequency of Occurrence of each of the factor

Based on the model by Kadir et al (2005), aggregated importance score for each site coordination problem was taken as the combined score of frequency of occurrence and the potential degree of impact to the performance of subcontractors. The questionnaires were randomly distributed through private relationship to the industrial practitioners. Score of six site coordination problems were higher than 25 and they were selected as the input variables for the subcontractors' performance analysis. A copy of the questionnaire is attached as Appendix D.

Stage Four: Causes of site coordination problems

There are many factors affecting main contractors' site coordination work and they are interrelated. Adopting the approach used in Stage Two study, these factors were classified into the following three headings:

- a. Performance of main contractor, i.e. the contributions of the main contractors in managing the site coordination;
- b. Inherent project characteristics including the nature and complexity of the main contract and subcontract, and the relationships among the key participants; and
- c. Performance of other participants to the subcontract including the contributions made by client, design team and other subcontractors to the subcontract.

The aim of this stage was to identify and analyze the essential causes of the site coordination problems that related to the performance of main contractor. Sixteen causes were identified through literature review, observation of common practices and advices from the experienced industrial practitioners. These causes were classified into the following three groups according to their natures.

- a. staffing;
- b. technical; and
- c. management system.

A questionnaire survey and in-depths interviews were conducted to collect quantitative data and explore the possible explanation for the findings respectively. The overall degree of contribution of the causes on site coordination problems depends on their frequency of occurrence as well as the potential degree of impact on site coordination problems. Based on their experience, respondents were requested to rate each identified causes in terms of: the degree of impact from 1 (very unimportant) to 9 (very important),

with a 0.5 interval; and the frequency of occurrence in HK building projects from 1 (never happens) to 9 (happens every time), with a 0.5 interval. The causes with mean score over 5.0 were considered as to have significant impact to the site coordination problems and frequently occurring causes in the local building projects. Based on the model by Kadir *et al* (2005), aggregated importance score for each cause was taken as the combined score of frequency of occurrence and the potential degree of impact. Questionnaires were randomly distributed to industrial practitioners. Score of twelve essential causes were higher than 25 and they were selected as the input variables to establish the framework to enhance main contractors' site coordination. A copy of the questionnaire is attached as Appendix E.

Stage Five: Forecasting the performance of subcontractors

The aim of this stage of work was to establish mathematical relationships to explain how the site coordination problems affect the performance of the subcontractors. A questionnaire survey (see Appendix A) to serve the Stage Five and Stage Six studies was developed based on the three principal subcontractors' performance evaluation criteria, six critical site problems and twelve essential causes for the problems identified in the previous stages of work. In the survey, respondents were requested to define their roles and provide information based on their current projects or the projects with highest contract sum if they were handling several projects at the same time. If the respondents were working in main contractors, property developers and consultant firms, based on their current projects they were requested to rate: from 0 (never happen) to 10 (happen every time) with 0.5 interval for the frequency of occurrence for each of the six critical

site coordination problems; and from 0 (very unimportant) to 10 (very important) with 0.5 interval for the degree of contribution of each of the twelve essential causes to the problems in their current projects at the time they filled the questionnaires. If the respondents were working in subcontractors, they were requested to rate: from 0 (0%) to 10 (100%) with 0.5 interval for the achievement of each of the three principal performance evaluation criteria in addition to the data for the frequency of occurrence of site coordination problems and causes of the problems in their current projects at the time they filled the questionnaire. Achievement of time, cost and quality in their projects were estimated by comparing the actual construction time with the planned programme, actual expenses with the budget, and workmanship with the contract specification respectively. The questionnaires were distributed to industrial practitioners through private relationship.

Kinnear and Gray (2000) classified the nature of the research work into the following five types for the selection of the appropriate statistical technique for data analysis.

- a. Difference significant: For example, is resting heart rate the same before and after a fitness course?
- b. Variable associated: For example, do tall parents tend to have tall children?
- c. Prediction of scores or categories: For example, can university performance be predicted by aptitude tests?
- d. Population parameters from a sample: For example: is a coin as likely to turn up heads as it is tails?
- e. Latent variables: For example: can performance in a variety intellectual pursuits be accounted for in terms of general intelligence?

The nature of this research fits the condition of type Three described above. According the Figure 2.5, multiple regression method is thus considered as an appropriate approach for this study.



Figure 2.5: Statistical technique selection flow-chart (Kinnear and Gray, 2000)

Multiple regression method mainly deals with studies consisting of one dependent variable and many independent variables and is defined as:

$$y = a + b_0x_0 + b_1x_1 + b_2x_2 + b_3x_3 + b_4x_4 + b_5x_5 + \dots + b_kx_k$$

Where x_k is the independent variable

y is the dependent variable

a is a constant which is the y-intercept

 b_k is the partial regression coefficient for x_k

Equation 2.1: Form of multiple regression equation

The following statistical tests were used to assess the errors, significance, reliability and validity of the of multiple regression equations generated.

a. Visual examination

Before estimating the coefficients of the regression line, it is necessary to make sure that the independent variables are linearly related to the dependent variable. If there are not, data have to be transformed by taking logs or square roots to ensure that the relationships are linear. A scatterplot matrix of the independent variables and the dependent variable can provide preliminary information on the relationships between the dependent variable and independent variables.

b. Testing hypothesis

If there is no relationship between the independent variables and the dependent variable, the regression coefficient should be equal to zero. The hypothesis is:

$$H_0$$
: = b_1 = b_2 = b_3 = b_4 = b_5 b_k = 0

versa Ha: at least one bk is not zero

The hypothesis can be tested by using the F-statistic. If the F-statistic is large and the observed significance level is small, the hypothesis that $b_k = 0$ is rejected. At least one of the regression coefficients is thus not 0.

c. Outliers

Extreme cases have considerable impact on the regression solution and should be deleted.

Outliers were detected during data screening using Mahalanobis statistical method.

d. Fitting the regression model: The least-squares line

If all the points fall exactly on a straight line, it is not necessary to determine which line best summarizes the data points. There are many different lines that can be drawn through some of the data points. The least square method is used to fit the linear model for both the linear and multiple regressions. For each of the data points, the distance between the point and the regression line is calculated by drawing a vertical line from the point to the regression line. The sum of squared distances is the sum of the squared vertical distances between each of the points and the line. The best fit line is the one with the smallest sum of squared vertical distances between the points and the line.

e. The correlation coefficient

The statistic most frequently used for describing how well the model fits the data is the Pearson correlation coefficient (r). This method can provide an absolute measure that does not depend on the units of measurement and is easily interpretable. The correlation coefficient ranges from -1 to +1. If all of the points fall exactly on a line with a positive slope, the correlation coefficient has a value of +1. If all of the points fall exactly on a line with a negative slope, the correlation coefficient has a value of -1. The absolute value of the correlation coefficient describes how closely the points cluster around a straight

line. Large value indicates a strong linear relationship between the variables- the points are close to the line. The correlation coefficient can be calculated using Equation 8.2

$$r = b \times (s_x/s_y)$$

where s_x and s_y are the standard deviations of the independent and dependent variables; b is the slope of the regression line.

Equation 2.2: Correlation coefficient equation

f. Methods for selecting variables

Many different models can be built up from the same set of independent variables. For example, 32 different models can be formulated from data comprising five independent variables and one dependent variable. The method that can reduce the number of computations is to add or remove variables from the regression equation sequentially. The decision to add or remove an independent variable is based in how much it changes with multiple R². Whenever an independent variable is added to the regression model, R² increases or remains the same. It never decreases when a variable is added. Similarly, R² decreases or remains the same when a variable is removed from the model.

Forward selection starts with a model that contains only the constant term. At each step, one variable is added that results in the largest increase in multiple R^2 , provided that the change in R^2 is large enough to reject the null hypothesis. The process is stopped when there is no more variables that result in a significant increase in R^2 .

Backward elimination starts with a model that contains all the independent variables. At each step, independent variable that changes R² least is removed, provided that the change is small enough so that null hypothesis cannot be rejected. The process is stopped when removal of any variable in the model results in a significant change in R².

Stepwise variable selection is a commonly used method that is a combination of forward selection and backward elimination. It resembles forward selection except that after a variable is added into the model, any variables already in the model that are no longer significant predictors are removed. This means that variables whose importance diminishes as additional predictors are added are removed. The process starts with entering the first two variables in the same way as in forward selection. Variables in the model are examined to see if either of them meets the removal criteria. If so, the variable is removed and a new variable using the same rules as in forward selection is added. The process is stopped when there is no more variables meet the entry criterion.

g. Explaining the variability

R is the absolute value of Pearson correlation coefficient (r). R Square is the square of the correlation coefficient that describes what proportion of the variability of the dependent variable is 'explained' by the regression model. Adjusted R Square is an estimate of how well the model fits another data set from the same population. Since the slope and the intercept are based on the values of the first set of data, the model fits the first set of data somewhere better than it would another sample of cases. The value of Adjusted R² is thus always smaller than the value of R².

The major conceptual limitation of all regression techniques is that one can only ascertain relationships, but never be sure about underlying causal mechanism. As for cross reference purpose, neural networks technique was adopted as it is an information processing technology that stimulates the human brain and the nervous system. Neural networks learn from experience, generalize from previous examples to new ones and abstract essential characteristics from inputs containing irrelevant data.

Three distinct components, Input Layer, Hidden Layer and Output Layer can represent the Artificial Neural Network. Figure 2.6 (see page 49) is a diagrammatic presentation of the structure of a typical neural network. The input layer receives the input from the external environment and output layer presents the result to the user. The hidden layer undertakes the self-learning process like human brain to investigate the inter-relationship of the inputs and produce the necessary outputs.

SPSS11 is a very popular software adopted for multiple regression analysis. It was used to generate the regression equations to explain how the critical site coordination problems affect the performance of subcontractors and the contributions of the essential causes to the problems. NeuroShell2 is a software programme that mimics the human brain's ability to classify patterns or to make predictions based on past experience. It can solve problems that cannot be solved by conventional computer software written in a step-by-step mode and guide user to build sophisticated custom problem solving applications without programme. The correlation coefficients computed by multiple regression

analysis and neural networks analysis were compared to validate the reliability of the multiple regression equations generated.

Stage Six: Contribution of the causes to site coordination problems

The aim of this stage is to investigate the contributions of the essential causes to the site coordination problems. Data were collected through questionnaire survey (see Appendix A). Adopting the same approach of Stage Five study, SPSS11 was used to generate regression equations to relate the causes to each of the critical site coordination problems. NeuroShell2 was used to cross check the reliability of the regression equations.

Stage Seven: Improving the site coordination

Among the critical site coordination problems, some of them bear more impact than the others on the performance of subcontractors. Similarly, some of the essential causes bear more contributions to the occurrence of the critical site coordination problems. Backward elimination multiple regression method was used to identify the 'most essential' causes and the 'most critical' site coordination problems from the twelve essential causes and six critical site coordination problems. A series of figures were constructed in Chapter Eleven that link the 'most essential' causes to the 'most critical' site coordination problems and then to the project outcomes. The figures enable the main contractors to develop framework to improve the site coordination.

2.7 Summary

A seven-stage research methodology was formulated to achieve the research objectives.

The first four stages were conducted to shortlist the critical variables for detail study. A

full scale data collection exercise was carried out in Stage Five and Stage Six for building up the subcontractors' performance model and site coordination improvement framework. Data collection exercises were conducted through questionnaire surveys. Two different data analysis approaches, multiple regression technique and neural network technique, were adopted for cross reference purpose.

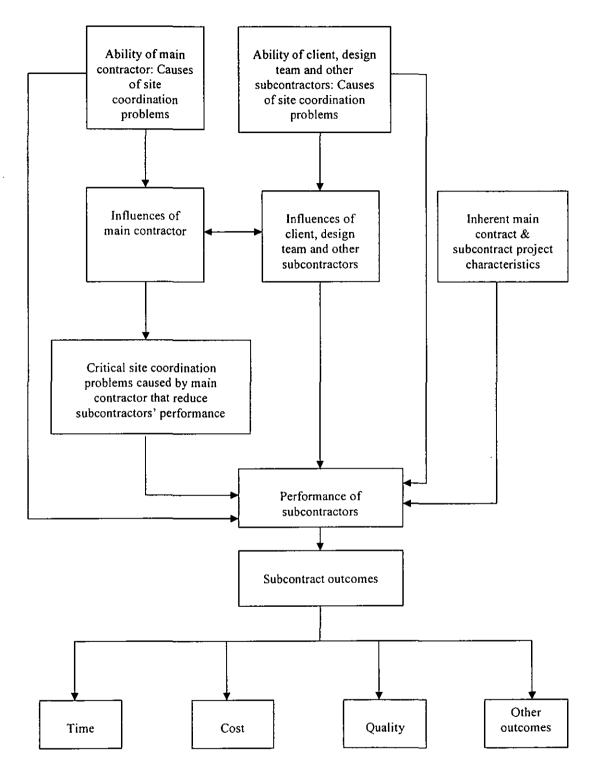


Figure 2.1: Theoretical framework

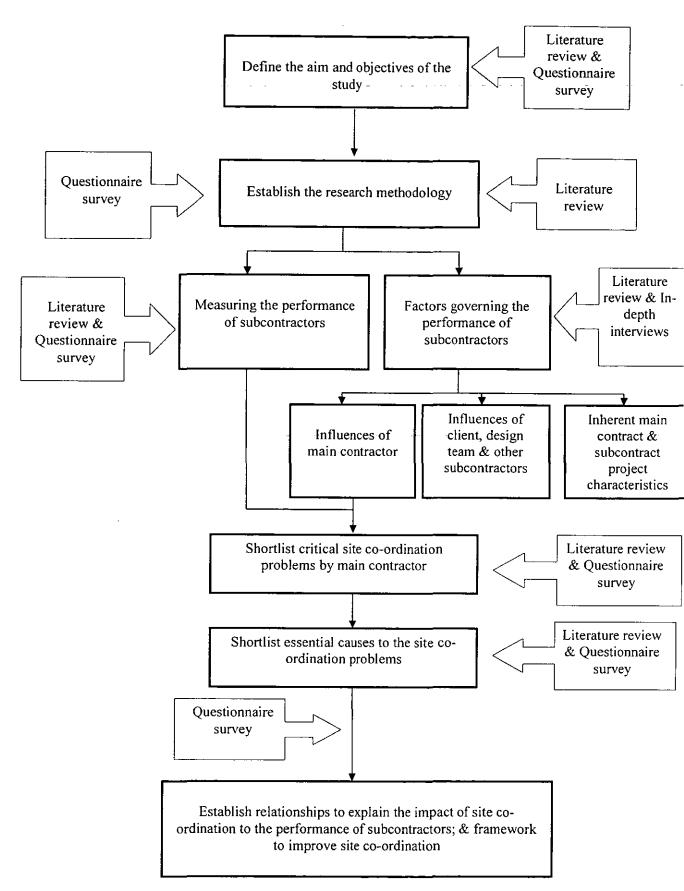


Figure 2.3: Research work flow chart

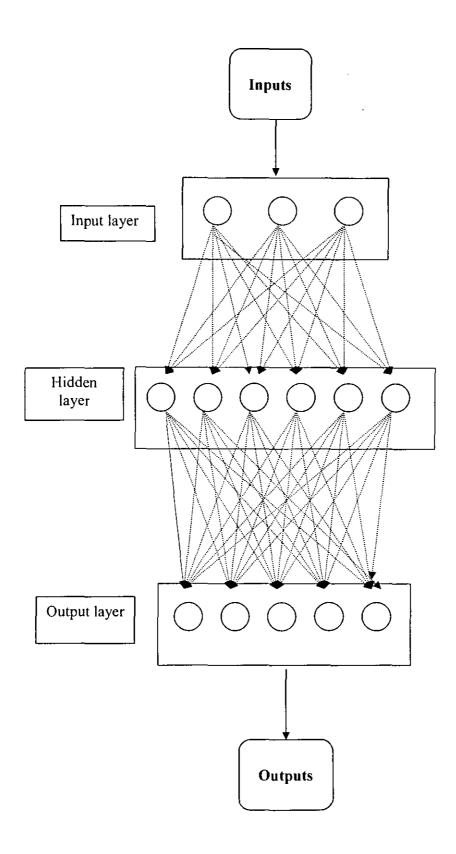


Figure 2.6: Structure of a typical neural network

CHAPTER THREE

LITERATURE REVIEW

3.1 Strategy of literature review

A literature review was undertaken to study the various issues related to the research topic. The aim was to explore the nature of multilayered subcontracting, summarize the essential approaches to identify the factors governing the performance of contractors for building projects and the applications of appropriate analytical approaches for this type of research. There are only a few publications that analyse the performance of subcontractors in building projects, consequently, the literature review mainly covered similar studies at the main contract level in order to extract the relevant information which could be modified to suite the nature of this research. The literature review included the following areas:

- a. characteristics of multilayered subcontracting;
- b. project objectives for building projects;
- c. factors governing the performance of contractors for building projects; and
- d. applications of multiple regression and neural network.

3.2 Multilayered subcontracting

This section explains the functions of subcontracting, describes the structure of multilayered subcontracting and discusses the associated problems and roles of different types of subcontractors.

3.2.1 Functions of subcontracting

Subcontracting is a common feature and long-established practice in the Hong Kong building industry (Walker and Flanagan, 1991). The use of subcontractors is a direct result of the complex and one-off temporary nature of contraction projects (Chan, Mok and Scott, 2001) and a subcontractor can be considered as an intermediary for the provision of various construction related services between the labour market and the main contractor (Hsieh, 1998) and provides one or more of the following four types of services:

- a. design input;
- b. bulk material supply;
- c. components prefabrication/preassembly; and
- d. site erection work.

Subcontracting is a strategy to deal with long-term environmental uncertainties and buffer the technical core of main contractors against short-term contingencies (Sozen, 1999). Construction firms can thus maintain a lean core size capable of undertaking the whole construction process (Sears, 1994) whilst shifting certain risks such market fluctuation on to their subcontractors (Reilly, 2001). There have many publications discussing the functions of subcontracting and Dombeger (1998-decromatic) concluded that the benefits could be categorised as follows.

- Specialisation: Different parties can concentrate on activities in which they are relatively more well-trained.
- b. Competition: Competition between subcontractors encourages innovative work practices.

- c. Cost savings: International studies show that significant cost savings are achieved by subcontracting, on average in the order of 20%.
- d. Flexibility: This is refers to the speed and cost of, adjustment to, changes in demand or supply conditions.

3.2.2 Structure of multilayered subcontracting

In multilayered subcontracting, main contractors divide the work into smaller packages by trade or area. In absence of any industry-wide registration or licensing scheme, subsubcontractors can further divide their work into smaller packages and sub-let them to another layer thus creating sub-sub-subcontractors. The sub-letting process may continue for several times before reaching the party actually carrying the production work. The intermediate layers of subcontractors are merely brokers and increase the tiers of subcontracting without adding real value to the project and have been referred to as non-productive subcontractors (Cheng and Law, 2005).

3.2.3 Types of subcontractors

According to different selection processes, first layer subcontractors can be classified as either: nominated subcontractors; or domestic subcontractors. Nominated subcontractors are usually designated to the main contractor by the Client to perform a specialty work. Although nominated subcontractors are selected by the Client, there is no formal contractual relationship between them. The main contractor and each nominated subcontractor will enter into a formal contract. Domestic subcontractors are the main contractor's choice and be further classified into two types: fee subcontractors and

labour-only subcontractors. The main difference between them is that fee subcontractor provides both labour and materials whilst the labour-only subcontractors only provide labour.

3.2.4 Problems of multilayered subcontracting

Multilayered subcontracting is an integral part of the production work of the local building projects. Any defects in this system would directly affect the whole construction process throughout the sector. Some publications have discussed the problems of excessive multilayered subcontracting as summarised below.

a. Latent subcontracting

Usually, the lower tiers subcontracting practices of the multilayered subcontracting are based on verbal agreement which makes them invisible to main contractors. Such practices have been referred to as latent subcontracting (Cheng and Law, 2005) which can result in the following problems

- Supervision and management become very difficult and costly to exercise a full site supervision system with detail record of all site activities.
- ii. Communication between the main contractor and the parties performing the work becomes indirect. Construction information thus needs to pass through several layers before reaching the workers and site problems cannot be reflected effectively (Sozen and Kuck 1999).

iii. Legal responsibility in latent subcontracting is unclear. Any fractures at the subcontracting chain would make it difficult to identify who should be held liable whenever there are legal disputes and quality problems (Kale and Arditi, 2001).

b. Non-productive subcontracting

Excessive subcontracting could be non-productive (Ngai 2001). The intermediate layers subcontractors are merely brokers. They get the job and re-contract to another subcontractor at a lower price to earn profit. The more the project brokers that exist, the high the number of subcontracting sub layers. This practice has existed in the local building industry for years because there is no: mandatory industry-wide subcontractor registration system; or strong and active trade unions to oversee the subcontracting. As a result, subcontractors who actually perform the construction works may be induced to save cost at the expense of quality (CIRC, 2001).

c. High mobility of workers

It is never easy to safely control site workers who are employed on daily basis by the sub-subcontractors or self-employed. The sub-subcontractors at the bottom of the multilayered subcontracting are often small firms. They are either self-employed or employ workers at a temporarily manner at a daily paid method because of uneven manpower requirements for different trades during the construction process and workers' own preferences (CIRC, 2001). Workers are called to work on site when they are needed, and are dismissed when they finish the work. Some workers may only involve in a job for

a few days. It is difficult to assume the continuity of the quality of workmanship with high mobility of workers.

d. Low worker's morale

The flexible employment relation described above (Kalleberg, 2000; Polivka and Nardone, 1998) implies that workers are particularly susceptible to unemployment, underemployment and social exclusion (SEPI, 2003; Wong and Lee, 2001) especially during the economic recession in last few years. Quality of work can only be maintained at the minimum acceptable standard if workers are at very low morale.

3.3 Project objectives for building projects

In order to identify project related success factors, it is necessary to define the criteria that are used to measure the outcomes of the project. The section below section describes the evolution of performance assessment for building projects.

3.3.1 Traditional project objectives

From the client's point of view, time, cost and quality are the three most common fundamental project objectives for a building project (Stuckenbruck, 1981; Bennett, 1983; Walker, 1990). Timely completion of a project is frequently regarded as a major criterion of measuring project success. The NEDO report for Faster Building Industry (1983) concluded that project success was a function of management effort necessary to complete in time. Besides project delays, cost overruns are frequently identified as one of the principal factors leading to the high cost of construction (Charles and Andrew, 1990).

The vast majority of construction projects are procured on a cost and time basis (Bennett and Grice, 1990; Rwelamia and Hall, 1995).

In a typical building contract, the developer stipulates his requirements in terms of completion time, project price and the required standard of workmanship. Contractors must thus attain the cost level as planned, meet the scheduled deadlines and achieve the specified quality level. However, these three project objectives often run in three different directions (Kharbanda *et al.*, 1987). Figure 3.2 below shows the interrelationship of these three project objectives. 'Cost' directly burns up the profit of a contractor, 'time' can be converted into costs by liquidated damages and time dependent preliminaries, while 'quality' alone does not, in the short term, represent cost to a contractor if poor quality work slips through inspections unnoticed (Tam, Deng, Deng, Zeng and Ho, 2000). It is quite normal for the senior management to expect all of a project's objectives to be met, however, project objectives are not interdependent and, as pointed out by Ward, Curtis and Chapman (1991), trade-offs may have to be made between each objective. The role of construction project manager is to maintain a good balance of these three goals.

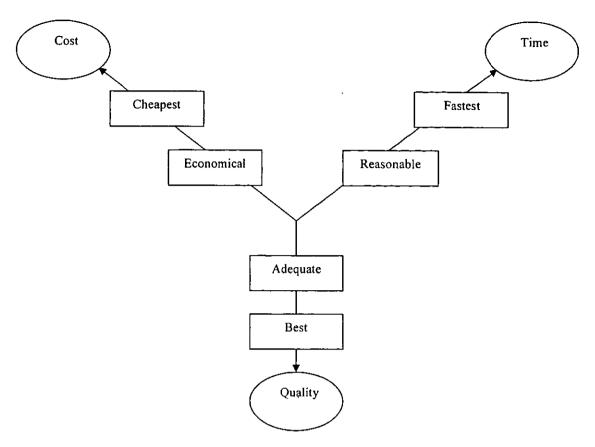


Figure 3.1: The eternal triangle between cost, time and quality (Kharbabda et al, 1987)

3.3.2 Contemporary approach

In the last decades, due to the rapid development in terms of the complexity and size of construction projects, and the increasing public concern on major developments, broader project objectives are being set for different projects according to their individual requirements. Safety and environmental concerns are the two most important performance factors to emerge in recent years.

Ofori (1992) suggested that the consideration of environmental issues should be part of the culture of the construction industry and be treated as the fourth dimension to construction project performance. The study of construction's impact in the environment has become a heated topic in the last decade (Morledge and Jackson 2001). The concept of 'Sustainable Development' is being widely implemented on construction projects. It emphasizes the balance and integration of the three sustainability pillars of economic development, social harmony and environmental protection. The International Council for Local Environmental Initiatives (1996) defined Sustainable Development as development that delivers basic environmental, social and economic services to all residences of a community without threatening the viability of natural, built and social systems depends. Sustainable Construction is a regarded as a way for the building industry to contribute to Sustainable Development (Bourdeau, 1999). The Sustainable Construction concept introduced by Kibert (1994) can be defined as the creation and responsible maintenance of a healthy built environment based on resources efficient and ecological principles.

Most contractors' financial losses associated with accidents, but not all, are also social costs (Tang et al, 2004), some of which are not incurred by contractors, but by society. There have been many studies (Everett and Frank Jr.,1996; Tang et al, 1997; Hinze, 2000) on the financial costs borne by contractors due to construction accidents and Tang et al (1997) summarized the financial costs into the following nine categories.

- a. loss due to the injured person's absence from work;
- b. loss due to the person's inefficiency after resuming work;
- c. medical expenses;
- d. fines and legal expenses;
- e. loss of time of other employees;

- f. equipment or plant loss;
- g. loss due to damaged material or finished work;
- h. loss due to idle machinery or equipment; and
- i. loss.

The success of a building project demands the full supports from client, design team, main contractor and subcontractors. Ashley *et al* (1987) identified six criteria most frequently used to measure the success of a project: schedule performance; budget performance; client satisfaction; contractor satisfaction; functionality; and project management/team satisfaction.

Liu and Walker (1998) establish a model to measure the success of a project which comprised two levels of outcome which were developed from the fundamental behaviour-to-performance-to-outcome cycle in psychology. The first level of project objectives is generally defined by client. The second level of objectives includes those which are typical of all permanent organizations involved in the project, namely, their survival in the market place. It is postulated that the valence of the first-level outcome (project success) is dependent on the instrumentality relating to the second-level outcome (participant satisfaction). Sanvdo et al (1992) concluded that the success for a given project as the degree to which project goals and expectations are met.

Project success can be measured by means of satisfaction of the participant. However, construction projects involve numerous stakeholders, whose needs could directly

influence the performance of subsequent projects (Leung, Ng and Cheung, 2004). It is difficult to represent participant satisfaction merely based in the project goals in terms of time/cost. Also, during the project development process, a dynamic temporarily multi-organisation system is often created that is continuously confronted with disparities between two levels of objectives: the temporary objectives of the construction project; and long-term objectives of the participating organisations and operational phase of the project (Mohsini and Davidson, 1992). Quality could be defined as 'value for money' from the client's point of view and the goal is client satisfaction (Rwelamia and Hall, 1995).

3.3.3 Hong Kong building projects

Among the three traditional building project objectives, time and cost are often more important than quality in the Hong Kong, which has developed a reputation for completing high-rise building projects in incredibly short periods of time. It arouses public interest as to the remarkable speed of construction and some even claim it can only be achieved in Hong Kong (Chan and Kumaraswamy, 1995). This is because the contract time set by the clients is usually unreasonably short due to the high cost of land. Under the keen competition environment, contractors have to accept such contract conditions and then to investigate measures to speed up the work as the project proceeds. Thus most of the production personnel of Hong Kong projects focus only on solving immediately site problems because their top priorities are to meet the production schedule. They consider that 'quality versus time versus cost' is a zero sum game, hence, whenever, there is a choice among the three, usually quality is the first to be sacrificed (Tam, Deng, Zeng

and Ho, 2000). As a result, the construction industry in Hong Kong has long been associated with poor quality of workmanship such as water leakages at the window frame and roof structure (Tam and Tong, 1996; Kam and Tang 1998).

The Hong Kong construction industry has had a poor site safety record for over a decade. Reasons for this poor performance such as extreme high level of subcontracting and high proportion of unskilled immigrants from China entering the industry and unreasonable short construction time etc. have been documented elsewhere (Lingard and Rowlinson, 1991, 1994). In July 1995, the Hong Kong government started to implement a new safety strategy, which emphasised a self-regulatory approach to safety management strategies. This had pushed the property developers to set this item as one of the contract objectives for their projects through requesting the construction companies to submit the safety management systems with their tenders in bidding the job. The results of study by Tam and Fung (1998) shown that the number of site accidents has been drastically reduced with the launching of site safety management system.

Environmental management has become a critical issue of the Hong Kong construction industry in recent decades (Tam, 2001) and the Hong Kong Government is taking the leading role in the promotion of sustainable construction. In 1995, the eco-business awards scheme was launched to grant awards to organizations demonstrating a strong commitment to environment protection (EPD, 2001). The use of precast construction would be feasible on many occasions in Hong Kong and therefore recommended that prefabrication should be promoted in the private sector as an alternative means of

environmentally friendly construction method (BDER, 2001). In February 2002, the Joint Practice Note No.2 issued jointly by the Building Department, Lands Department and Planning Department of HKSAR Government permitted the green features including prefabricated external walls to be exempted from the Gross Floor Area and/or Site Coverage calculations under the Building Ordinance. As a result of the above schemes, sustainable construction is considered as another essential goal for the local building projects.

The success and failure of construction project management reflects not only the teamwork of the project's management; it also reflects the management level of the construction enterprise. A "5+3" construction management model is formulated by Cheng (2005) that recommends to develop strategic partnering relationships to enhance cooperation among partners including subcontractors, reduce management cost, and builds up multi-directional trust for achieving a common goal.

3.4 Performance evaluation

Client satisfaction is an important tool to gauge the success of a project (Yasamis, Arditi and Mohammadi, 2002). The model developed for the measurement of client satisfaction includes the evaluation of achievement in product dimensions, services dimensions and culture dimension. The product dimension assesses the eight attributes of a product in order to evaluate the quality performance of contractors.

A study by Pongpeng and Liston (2003) attempted to identify a common set of contractor ability criteria to evaluate the overall performance of contractors. Nine groups of factors were categorized by applying factors analysis, namely 'engineering/construction', 'procurement/contract', 'project mangers', 'human resources', 'quality management systems', health and safety', 'plant/equipment', 'financial strength' and 'public relations'.

The simplest way to evaluate contractors' quality performance is to compare the workmanship with contract specification. The results of a survey (Kam, Kumaraswamy & Ng, 2004) on the use of construction specifications in Singapore shows that majority of respondents agreed that specifications were not being used in their full potential, especially at the site level. Specifications were generally perceived to be lacking coordination and containing ambiguities, irrelevant clauses and inappropriate standard.

Tam and Fung (1998) developed a model to evaluate the effectiveness of safety management strategies on safety performance in Hong Kong. The survey findings show that seven variables can explain about 40% of the safety performance of contractors: post-accident investigation; level of labour-only subcontracting; safety awards; safety training; safety committees; management involvement and safety orientation. Regular internal site safety inspection is an essential component of a safety management system. Laitien and Ruohomaki (1996) formulated a checklist for the weekly inspection based on participation and the principles of performance management and it had been tested at two construction sites. The results show that there was a significant improvement in safety performance of these two sites. The checklist includes working habits, scaffolding and

ladders, machines and equipment, protection against falling, lighting and electricity, order and tidiness.

Environmental performance assessment (EPA) has been designed for reviewing, monitoring, checking and evaluating environmental performance. Tam et al (2006) has identified evaluation factors and grouped them into seven major factors: management and training; air and noise; auditing; waste and water; cost saving on resources; energy; and regulation.

Poon et al (2004) conducted a survey on the causes and quantities of construction waste of five public housing projects through regular site visits and interviews to site management. Recommendations to reduce construction waste include the preparation of a detailed waste management plan at planning stage, good housing keeping and on-site sorting of inert from non-inert materials at construction stage.

3.5 Factor governing the performance of contractors

There has been considerable research aimed at identifying the determinants for the performance of the contractors in building project, however, most were focussed at the main contract level only. The literature reviews show that early studies on this issue mainly cover the success factors the project as a whole. The latest publications are more specific that investigate the determinants for particular project outcomes or location. The literature in this area has been divided into the following four headings:

a. 'Overall' success factors;

- b. Determinants for particular project outcomes at different locations;
- c. Determinants for outcomes of Hong Kong projects; and
- d. Factor influencing site work.

3.5.1 'Overall' success factors

There are many factors that can affect project outcome with certain factors having more impact than the others. Rockart (1982) used 'critical success factors' to describe these factors and are defined as those factors predicting success on projects.

Through interviews with construction project personnel and literature reviews, Ashley et al (1987) defined six criteria to measure the success of a project and concluded that planning effort, project team motivation, project manager goal commitment, project manager technical capacities, control systems, and scope and work definition are the critical success factors.

A case study research by Morris and Hough (1987) on eight large complex projects around the world consolidated forty-seven success factors, where were classified into six headings: project objectives, technical uncertainty innovation; politics; community involvement; schedule duration urgency; financial; and contract, legal and implementation problems.

Jaselkis and Ashley (1988) studied the information from seventy-eight projects and identified twenty-seven success factors and grouped them into four headings: project

manager's capabilities; experience and authority; the stability of project team; project planning and control effort. Through analysing the data by logistic regression, 'reducing team turnover' and 'program constructability' were found as the two key factors required for achieving 'overall' project success on construction works.

Mohini and Davidson (1992) adopted inter-organizational conflict among the project's task-organizations as a yardstick to analyse the significant determinants of performance for construction projects. The determinants were categorised into three main groups: domain consensus; availability and access to information; and interdependence of tasks.

Some studies had tried to forecast the success of a project based on factors already known at the pre-contract stage. Kometa *et al* (1995) studied the pre-contract client evaluation process and established who conducted an internal audit of their organisations before embarking on the briefing process, would generally have a higher level of success. Hatush and Skitmore (1997) analysed the perceived relationship between twenty contractor selection criteria currently in use and project success factors in terms of time, cost and quality involving a sample of eight experienced construction personnel. The results of the research indicated that past failures, financial status, financial stability, credit ratings, experience, ability and management personnel, and management knowledge are perceived to be the most dominant critical success factors affecting all three project success factors. Bedelian (1996) conducted a research to predict the success for UK construction projects and identified six critical success factors: clarity of tender documents; good client/contractor relationships; clear design brief with minimum

subsequent changes; time given to develop the design; early and detailed design and planning; and value engineering.

Early stage studies summarized above focussed on analysing the generic critical success factors for construction projects, which has laid down a good foundation to provide knowledge for the detail studies on the success factors for particular project outcomes and locations.

3.5.2 Determinants for particular project outcomes at different locations

In order to have better control on the projects, some studies were designed to identify the critical success factors for particular project outcomes. The results of a study by Jaselkis and Ashley (1991) demonstrated that key success factors affect project outcomes differently. For example, increasing the number of budget updates has more of an impact on achieving better budget performance than it does on achieving better schedule and overall project performance. Implementation of a constructability programme seems to have a significant impact on achieving overall project success and better schedule performance – especially on fixed-price contracts. The findings had found a good base for a series of follow-up studies. Chua et al (1997) investigated the key determinants for budget performance based on the data obtained in a questionnaire survey conducted by Jaselkis and Ashley (1988). Eight key factors were identified covering areas of the project manager, his team, planning and control efforts, namely: number of organisation levels between project manager and craftsmen; project manager experience on similar technical scope; detailed design complete at start of construction; constructability

programme; project team turnover rate; frequency of control meetings during construction; frequency of budget updates; and control system budget. Kog et al (1999) conducted a study based on the records in Jaselskis and Ashley (1991) and identified five key determinants for construction schedule performance: time devoted by the project manager to a specific project; frequency of meetings between the project manager and other personnel; monetary incentives provided to the designer; implementation of constructability; and project manager experience on projects with a similar scope.

Some publications focus on the factors for a particular location, for example, Kaming et al. (1997) studied factors influencing construction time and cost overruns in Indonesia. Inflationary increases in material cost, inaccurate material estimating and project complexity were found to be the main causes of cost overruns on high-rise building projects. The predominant causes of delay were design changes, poor labour productivity and inadequate planning. Walker (1995) developed a model to describe the factors affecting construction time performance of the construction projects in Australia, which classified the factors into four headings: construction management effectiveness; sophistication of the client and the client's representative in terms of creating and maintaining positive project team relationships with the construction management and design team; design team effectiveness in communicating with construction management and client's representative teams; and project scope and complexity. The research demonstrated that the construction management team's performance plays a pivotal role in determining construction time performance. There is also an important relationship between sound client's representative management effectiveness and good construction

time performance. Walker and Shen (2002) conducted another study on construction time performance in Australian projects using case study method. The results conclude that both ability, supported by organizational and team competence; and commitment to explore construction method options in a flexible manner, i.e. responding to unanticipated problems, are necessary to facilitate good construction time performance. A questionnaire survey by Nkado (1995) had consolidated 33 specific factors that influence the construction time in the UK projects from literature reviews. The factors were classified into six headings: Client; Design and specialist consultants; Contract; Project; Site management; and External influences. Respondents were requested to indicate whether or not they consider the individual factors in estimating construction time. An examination of the resulting consensual ordering of the factors shows that those high on the priority list are generally readily identifiable from project information and directly quantifiable by the contractor. Furthermore, their impact on construction time can be assessed explicitly.

Some studies were aimed to help the clients and their consultants in estimating or benchmarking the construction duration at the earliest stages of future projects. Bhokha and Ogunlana (1999) forecasted the construction duration of buildings at the predesign stage for Thailand projects based on eight variables: building function; structural system; functional area; height index; complexity of foundation works; exterior finishing, decorating quality; and site accessibility. Burrows *et al.* (2004) analysed the 'actual time' to construct buildings in the UK. The study investigated six variables of the 1,500 completed building projects: project sector, client type, procurement route, building function, contractor selection method, and region. Similar approach was adopted by

Skitmore and Ng (2003) to forecast both the construction time and cost for the projects in Australia, which were based on six variables: Client sector; Contractor selection method; Contractual arrangements; Project type; Contract period and Contract sum.

3.5.3 Determinants for outcomes of Hong Kong projects

Some studies have been conducted to identify the success factors for Hong Kong projects. Tam and Harris (1996) developed a model to predict the performance of the main contractors in local construction projects from the client's perspective. The resulting models produced six significant variables: Quality of the management-professional qualifications; Quality of management team-project leader's experience; Complexity of the project; Contractor's past performance or image; Architect's or client's supervision; and Control of the quality of work and work progress. These variables were used to measure the three dimensions of a project: Inherent characteristic of the project; Contractor's internal attributes; and External influence of the project team.

Kumaraswamy and Chan (1995) established a hierarchy to illustrate the factors that can contribute to construction project duration in Hong Kong. Construction time can be considered to be a function of all such primary, secondary and tertiary factors in the hierarchy of determinants of construction project duration.

Chan and Kumaraswamy (1998) conducted a similar study focused on the causes of construction delays in Hong Kong. The study classified the essential factors governing construction durations into eight categories: Project-related factors; Client-related factors;

Design team-related; Contractor-related factors; Material-related factors; Labour-related factors; Plant/equipment-related factors; and External factors.

Dissanayaka and Kumaraswamy (1999; 1999) evaluated the factors affecting the time and cost performance on Hong Kong building projects and grouped them into macro variables, each of which then 'covered' a large number of micro variables. All the selected micro variables may not be of the same importance in every project but may vary with the client's objectives, priorities, project conditions, constraints and complexities and the quality of the project team. The variables were also grouped into procurement and non-procurement variables.

Leung, Ng and Cheung (2004) adopted a new approach to review the success factors of projects in Hong Kong. The results of the study indicate that the satisfaction of the participants of a building project is more important to project success than meeting any particular project objectives and management mechanisms rather than particular project goal could directly affect the participant satisfaction. Cooperation/participation, task/team conflict and goal commitment are the critical factors influencing the final outcome (satisfaction) in the complicated management process.

3.6 Factors influencing site work

Some publications further streamlined their researches to the factors affecting productivity at the site work level. Herbsman and Ellis (1990) developed a statistical model that illustrated the quantitative relationships between influence factors and the

productivity. The critical productivity influence factors can be divided into two groups: Technological factors and Administrative factors. Technological factors include design data, material properties, and location factors. Administrative factors include construction method and procedures, equipment factors, labour, and social factors. Lim and Price (1995) cited the seven factors identified as affecting overall construction productivity in Singapore: Buildability; Structure of the industry; Training; Mechanization and automations; Foreign labour; Standardizations; and Building controls. Zakeri et al (1996) analysed the constraints to site work on Iranian construction projects. The common problems identified were rank through questionnaire survey method. Results indicate that the five highest-ranking problems are: Material shortage; Weather and site conditions; Equipment breakdown; Drawing deficiencies/changes orders; Lack of proper tools and equipment. Kadir et al (2005) studied the production factors critically influencing the site work for Malaysian residential projects. The results indicate that the top most important, frequent and severe factors that are adversely construction labour productivity at a projects level were material shortage at site and non-payment to suppliers causing the stoppage of material delivery. Cottrell (2006) established a regression model to relate the factors affecting site productivity to the process improvement initiatives executed both before and during construction stage. The model demonstrates the strong relationship of project performance to a variety of process improvement initiatives including design completeness, the definition of a project vision statement, testing oversight, and project manager experience and dedication.

As efforts have been rarely been made to obtain craft worker' input to examine the factors affecting the construction productivity, Dai et al (2007) measured the impact of 83 factors productivity factors, which had been identified through 18 focus group sessions with craft workers and their immediate supervisors on jobsites. The factors were categorized into eleven groups: Supervisor direction; Communication; Safety; tools and consumables; Materials; Engineering drawing management; Labour; Foreman; Superintendent; Project management; and Construction equipment. Makulsawatudom and Emsley (2001) conducted a questionnaire survey to collect views from craftsmen working on five construction projects on the factors affecting construction productivity. Eight factors that have the most effect on construction productivity are concluded: Lack of material; Lack of tools and equipment; Incomplete drawings; Overcrowding; Poor site conditions; Tools/equipment breakdown; Incomplete supervisor; and Rework.

There are studies focused on reviewing the degree of impact of the important factors to the productivity. Moselhi, Assem and Ei-Rayes (2005) investigated the impact of change orders on construction productivity and introduced a new neural network model for quantifying the impact. The change orders factors that affect labour productivity include intensity of the orders, timing in relation to projection, work type, type of impact, project phase, and on-site management. The impact of subcontracting on site productivity was evaluated through a questionnaire survey on general contractors in Taiwan (Hsieh, 1998). The survey findings demonstrate that contractual and behavioral linkages between firms call not only for the realization of an attractive gain from productivity improvement but also for an agreeable benefit-sharing mechanism between firms. Financial incentives are

very effective to improve site productivity. A questionnaire survey was conducted by Fagbenle, Adeyemi and Adesanya (2004) to determine the impact of non-financial incentives on bricklayers' productivity in Nigeria. Fifteen common non-financial incentive schemes were selected for the survey. The analysis of the survey concluded that non-financial incentive schemes could motivate bricklayers and increase the productivity in bricklaying work for 6 to 26%.

3.7 Applications of Multiple Regression Analysis and Neural Networks Analysis

The literature review undertaken shows that multiple regression analysis and neural network analysis are two common methods adopted for the researches involving forecasting models. Regression techniques often have been used because of their relative simplicity in both concept and application. It has the ability to develop causal models where the structural relationships of the variable can be established in a predictable and explanatory way. Neural network techniques are commonly adopted in the recent researches because it is designed to capture functional forms automatically, allowing the uncovering of hidden nonlinear relationships between the modelling variables.

Walker (1995) used multiple regression analysis to build up models to forecast the time performance for projects in Australia based on four variables. Tam and Harris (1996) adopted discriminant analysis to demonstrate that the performance of contractor measured in terms of time, cost and quality can be related to the characteristics concerning the project and the parties involved in Hong Kong Projects. Chan and Kumaraswamy (1999), and Leung and Tam (1999) applied this technique to establish

models to predict the overall duration and the hoisting time for a tower crane respectively for public housing projects. Skitmore and Ng (2003) adopted the same statistical approach using forward cross validation procedure to forecast the construction time and cost for the projects in Australia based on six variables.

The models formulated by Bhokha and Ogunlana (1999),based on eleven independent variables and a three-layered back-propagation network to forecast the construction duration at the predesign stage of buildings in Greater Bangkok, and the model formulated by Khosrowshahi (1999), based on eleven variables and a stochastic back-propagation paradigm with one hidden layer to predict the performance of the contractor at tender stage are typical applications of neural network analysis. This technique was also widely adopted in other studies such as: forecasting the cost index (Wang and Mei, 1998) and equipment productivity (Ok and Sinha, 2006); selection of vertical formwork systems (Tam et al, 2005); and assessing the maintainability of building façade (Chew, Silva and Tan, 2004).

Dissanayaka and Kumaraswamy (1999; 1999) analysed data by using multiple regression method and neural network method separately to establish models to forecast the time and cost performance for the projects in Hong Kong. Results using multiple regression suggest that procurement sub-systems variables are less significant than the non-procurement related (or intervening) variables in predicting time and cost performance levels. Results using neural network demonstrate that time over-runs appear to be greatly

influenced by non-procurement related factors while cost over-runs appears to be greatly influenced by both procurement and non-procurement related factors.

Some publications compared the accuracy of the multiple regression and neural network approaches. Goh (1999) assessed the accuracy of multiple regression approach in forecasting construction sector demands in Singapore. The results show that regression analysis may not be able to relate the complex nature of any macroeconomic relationships. Neural networks analysis recommended as it can form nonlinear mappings with hidden layers, however, the 'black-box' characteristic of neural networks is a major limitation, as its lacks explanatory capabilities. Vojinovic and Kecman (2001) test both approaches on common data sets for cost estimation for construction projects. The results showed that neural network models outperformed the multiple regression models in project cost estimating and forecasting. In static model simulations the performance of neural network models improved significantly improvements with the increase of the size of training data sets, while the improvements for multiple regression models were less significant. The study by Williams (2002) to predict the completed project cost using bidding data has different results. The best performing regression model produced superior predictions to the best performing neural network model. Hybrid models that used a regression model prediction as an input to a neural network were found to produce reasonable predictions. Therefore, it seems appropriate to agree with Makridakis et al. (1982) that no one technique is globally superior, but rather each method is appropriate for certain individual situations.

3.8 Summary

The nature of multilayered subcontracting of the local construction industry has been reviewed in this chapter. The problems of excessive multilayered subcontracting identified are grouped into four headings:

- a. latent subcontracting;
- b. non-productive subcontracting;
- c. high mobility of workers; and
- d. low worker morale.

By studying the publications related to the traditional building project objectives and the contemporary approach to assess the outcomes of building projects, the common objectives for the Hong Kong building projects were identified and used to measure the performance of subcontractors of this research. A set of measuring criteria for each of the project objective are selected based on the literature review on the methods of performance evaluation and they are summarized in Table 3.1.

Table 3.1: Summary of subcontractors' performance evaluation objectives and criteria

Objective and criteria	Corresponding criteria in the reference	Reference
Objective: Time		Chan & Kumaraswamy (1995); Tam et al (2000)
Progress of work follow schedule	Service dimension: timeliness	Yasamis et al (2002)
	Project monitoring	Pongpeng & Liston (2002)
Propose method to speed up progress	Ability to adjust a project	Pongpeng & Liston (2002)
Objective: Safety and health		Lingard & Rowlinson (1991& 1994); Tam and Fung (1998)
Follow safety rules	Working habits	Laitinen & Ruohomaki (1996)
	Health and safety control	Pongpeng & Liston (2002)
Propose method to eliminate potential danger to workers	Post accident investigation	Tam & Fung (1998)
Objective: Quality		Chan & Kumaraswamy (1995); Tam et al(2000)
Quality of work comply with	Compared with specification	Tam & Harris (1997)
specification	Product dimension: conformance	Yasamis et al (2002)
Quality of work comply with trade	Product dimension: perceived quality	Yasamis et al (2002)
standard	Inappropriate quality	Lam, Kumaraswamy & Ng (2004)
Objective: Cost		Chan & Kumaraswamy (1995), Tam et al(2000)
Amount of claims to main contractors	Claims	Frisby (1990)
Contributions on reducing construction	Ability to adjust a project	Pongpeng & Liston (2002)
Objective: Potential for long-term		Cheng (2005)
development		Cheng (2003)
Application of advance technology	Balance ability between conserving and challenging traditional operations or behaviours	Pongpeng & Liston (2002)
Relationship with participants	Culture dimension: Partnership development, Client focus Past client/contractor relationship	Yasamis et al (2002) Hatush & Skitmore, (1997)
Administrative issues such as submission	Procurement plan	Pongpeng & Liston (2002)
of records, sample, shop drawings	Trocurement plan	1 ongpeng & Dison (2002)
Objective: Sustainability		Tam (2001); EPD (2001); BDER (2001)
Suggestions to improve the design in terms of buildability; durability and maintainability	Production dimension: durability	Yasamis <i>et al</i> (2002)
Amount of nuisance such as duct, noise, vibration etc generated	Air and noise	Tam et al (2006)
Amount of construction waste generated	Waste reduction measures	Poon, Yu, Wong & Cheung (2004)
	Waste and water	Tam et al (2006)
Material wastage level	Waste reduction measures	Poon, Yu, Wong & Cheung (2004)
Objective: Public image		Pongpeng & Liston (2002)
Site tidiness	Product dimension: Aesthetics; Tidiness	Yasamis et al (2002)
	Housing keeping	Laitinen & Ruohomaki (1996) Poon, Yu, Wong and Cheung (2004)
Worker's working uniform	Housing keeping	Laitinen & Ruohomaki (1996); Poon, Yu, Wong & Cheung (2004)

Publications for the factors governing the performance of main contractors in building project have been reviewed. Adopting the model developed by Tam and Harris (1996), the important factors influencing the performance of subcontractors in the HK building projects were selected for this research and classified into three main categories. The references to each of the factors are summarized in Table 3.2, Table 3.3 and Table 3.4 as:

- a. inherent project characteristics;
- b. ability of the key participants; and
- c. influence of the participants to the subcontract.

The common site problems and the causes to these problems were examined by studying the publications for the factors affecting the productivity at the site work level. The problems are grouped into three categories according to the research theoretical framework shown in Figure 2.1 (page 47):

- a. influences of main contractor;
- b. influences of client, design team and other subcontractors; and
- c. inherent main contract and subcontract project characteristics.

Table 3.2: Summary of the factors related to the inherent project characteristics

Factor	Corresponding factor in the reference	Reference
Complexity of the works	Constructability	Chua et al (1997)
	Project complexity	Kaming et al (1997); Tam & Harris
		1997
	Project scope and capacity	Walker (1995)
Use of new technology	Technical uncertainty innovation	Morris & Hough (1987)
	Explore construction method options in a	Walker & Shen (2002)
	flexible manner	

Table 3.2: Summary of the factors related to the inherent project characteristics (Cont'd)

Restrictions due to	Location	Chan Kumaraswamy (1995)
environmental factors	<u> </u>	
Unrealistic contract duration	Unrealistic deadline for project	Kadir et al (2005)
	completion	
	Schedule duration urgency	Ashley et al (1987)
	Constructability programme	Ashley 1991, Chua et al (1997)
	Unrealistic contract duration	Kumaraswamy & Chan (1999)
Quality of the design document	Clear design brief	Bedelian (1996)
	Detailed design complete at start of	Chua et al (1997)
	project	
	Quality of deign	Tam & Harris (1996)
	Mistake and discrepancies in design	Kumaraswamy & Chan (1999)
	documents	
Buildability of the design	Buildability	Lim & Price (1995)
	Poor billability	Kadir et al (2005)
Relationships among the	Good contractor and contractor	Bedelian (1996)
participants	relationship	+
	Positive project team relationship	Walker (1995)
Payment methods	Punctuality of payment	Tam & Harris (1997)
Incentive scheme	Motivation	Lim & Price (1995)
	Project team motivation	Ashley et al (1987)
	Monetary incentive	Kog et al (1999)
Perceived profitability	Profitability	Tam & Harris (1996)
Risk sharing between the main	Risk allocation	Chan & Kumaraswamy (1995)
contractor and subcontractors		
Involvement of the	Early and detail design and planning	Bedelian (1996)
subcontractor in the design		
work		
Clarification of the	Scope and work definition	Ashley et al (1897)
involvement	Clarify of tender documents	Bedelian (1996)
Communication system	Access of information	Mohsini & Davidson (1992)
	Effectiveness in communicating with	Walker (1995)
	construction management	

Table 3.3: Summary of the factors related to the ability of key participants of the subcontracts

Factor	Corresponding factor in the reference	Reference
Technical ability	Technical ability	Pongpeng & Liston (2002); Hatush
		& Skitmore (1997)
	Project manager technical capacities	Ashley et al (1987)
Financial ability	Financial soundness	Hatush & Skitmore (1997)
Managerial ability	Management capacity	Ashley et al (1987)
	Project manager capacity	Jaselkis & Ashley (1988); Chua et al
		(1997)
Response to change	Project manager technical capacities	Ashley et al (1987)

Table 3.4: Summary of the factors related to the influences of the key participants to the subcontracts during construction stage

Factor	Corresponding factor in the reference	Reference
Plant support	Plan ownership programme	Tam &Harris (1996)
Material support	Material cost	Kaming et al (1997)
	Material shortage	Kumaraswamy & Chan (1999)
Staff support	Labour factor	Herbsman & Ellis (1990)
	Poor productivity	Kaming et al (1997)
Levels of coordination	Number of organization levels between	Chua et al (1997)
	project manager and craftsman	
	Drawing and sample approval process	Kumaraswamy & Chan (1999)
Payment	Late payment	Kadir et al (2005)
Construction communication	Change order by consultant	Kadir et al (2005)
Design changes	Minimum subsequent change	Bedelian (1996)
	Design change	Kaming et al (1997)
	Number of drawing amendments	Tam & Harris (1996)
Disputes settlement	Budget update	Ashley (1991)
	Disputes and conflicts	Kumaraswamy & Chan (1999)
Claims	Cooperation	Leung, Ng & Cheung (2004)
Response by the participants	Community involvement	Morris & Hough (1987)
	Response to unanticipated problems	Walker & Shen (2002)
	Low speed of decision making involving	Kumaraswamy & Chan (1999)
	all project teams	

Site coordination problem caused by main contractor is one of the influences of main contractor to the subcontracts at construction stage. Table 3.5 summarized the common site coordination problems selected for this research. According to their natures, they are grouped into eight main headings:

- a. construction information;
- b. working programme;
- c. preparation for work place;
- d. interfacing work to be completed by other subcontractors
- e. access to work place;
- f. plant support;
- g. material support; and
- h. response to site problems

Some publications have suggested possible causes to the occurrence of the site coordination problems. Table 3.6 summarizes the causes to each of the problems selected for this research and these causes are grouped into three categories according to their natures.

- a. Staffing;
- b. Technical; and
- c. Management system.

Table 3.5: Summary of common site coordination problems

Factor and Problem	Corresponding problem in the	Reference
	reference	
Factor: Construction		
information		
a. information not detail enough	Drawing Availability of information	Zakeri (1996)
	Incomplete drawing	Kumaraswamy & Chan (1998)
		Makulsawatudom & Emsley
		(2001)
	Design completeness	Cottrell (2006)
b. unclear or contradictory	Drawing/spec/change order	Zakeri (1996)
information	Redwork due construction error	Kadir et al (2005)
	Design completeness	Cottrell (2006)
Factor: Working programme		
a. working programme not detail	Construction method and procedure	Herbsman & Ellis (1990)
enough	Lack of proper plan	Zakeri (1996)
d. working sequence not practical	Construction method and procedure	Herbsman & Ellis (1990)
	Lack of proper plan	Zakeri (1996)
c. short notice for commencing	Delay in work permits	Dai et al (2007)
site work		
d. late change of working	Interface at work	Zakeri (1996)
programme	Late change of work	Kadir et al (2005)
Factor: Preparation for work		
place		
a. work place environment not	Lack of working facilitates	Zakeri (1996)
yet prepared such as general	Poor site condition	Kadir et al (2005); kulsawatudom
site cleaning, fresh air supply,		& Emsley (2001)
lighting		
b. inadequate or insufficient	Disruption of power/water supply	Kadir et al (2005)
temporary work support such		
as scaffolding, water & power		
supply		
Factors Interfacing work to be		
completed by other		
subcontractors		
1	D. C	V.,
a. work not yet completed	Performance of other subcontractors	Kumaraswamy & Chan (1998)
	Lack of coordination between the trades	Dai et al (2007)
b. work not accurately completed	Performance of other subcontractors	Kumaraswamy & Chan (1998)

Table 3.5: Summary of common site coordination problems (Cont'd)

Factor: Access to work place		
a. access road not yet ready	On-site transport difficulties	Zakeri (1996)
	Inappropriate vehicle traffic routes	Dai et al (2007)
b. access routing not convenient	On-site transport difficulties	Zakeri (1996)
	Inappropriate vehicle traffic routes	Dai et al (2007)
Factor: Plant support		
a. late to provide plant support	Equipment factors	Herbsman & Ellis (1990)
	Lack of proper tool and equipment	Zakeri (1996)
	Supply of plant	Kumaraswamy & Chan (1998)
	Equipment shortage	Kadir et al (2005)
	Tool availability	Dai <i>et al</i> (2007)
	Lack of tools/equipment	Makulsawatudom & Emsley
		(2001)
b. type of plant provided not	Equipment factors	Herbsman & Ellis (1990)
appropriate	Equipment breakdown	Zakeri (1996)
	Equipment shortage	Kadir et al (2005)
	Lack of tools/equipment	Makulsawatudom & Emsley
		(2001)
Factor: Material support		
a. insufficient amount	Material properties	Herbsman & Ellis (1990)
	Lack of material	Zakeri (1996)
	Supply of material	Kumaraswamy & Chan (1998)
	Late to supply material	Kadir et al (2005)
	Material shortage	Dai et al (2007)
	Lack of material	Makulsawatudom & Emsley
		(2001)
b. type of material provided not	Material properties	Herbsman & Ellis (1990)
appropriate	Poor material quality	Dai et al (2007)
Factor: Response to site		
problems		
a. late response to site problems	Inspection delay	Zakeri (1996)
	Slow response	Kadir et al (2005)
	Inspection delay	Dai et al (2007)
b. solution recommended not	Inspection delay	Zakeri (1996)
practical	Problem-solving skill	Pongpeng & Liston (2002)

Table 3.6: Summary of causes to site coordination problems

Category and cause	Corresponding cause in the reference	Reference
Category: Staffing	Labour factor	Herbsman & Ellis (1990)
a. staff too inexperienced to	Labour factor	Herbsman & Ellis (1990)
coordinate the technical	Training	Lim and Price (1995)
administration work	Quality of managers	Kumaraswamy & Chan (1998)
	Incapability of site staff	Kadir et al (2005)
	Project management experience	Pongpeng & Liston (2002)
	Incompetent supervisor	Makulsawatudom & Emsley 2001
		Cottrell (2006)
	Project manager capacities	
b. frequent change of personnel	Changing crew size and turnover	Zakeri (1996)
. 5 .	Foreman changes	Dai et al (2007)
c. staff too inexperienced to	Labour factor	Herbsman & Ellis (1990)
coordinate the site work	Training	Lim & Price (1995)
	Quality of managers	Kumaraswamy & Chan (1998)
	Incapability of site staff	Kadir et al (2005)
	Project management experience	Pongpeng & Liston (2002)
	Foreman incompetence	Dai et al (2007)
	Incompetent supervisor	Makulsawatudom & Emsley (2001)
	, ,	Cottrell (2006)
	Project manager capacities	
d. insufficient directly employed	Changing crew size and turnover	Zakeri (1996)
worker to carry out the	Amount of directly employed labour	Tam & Harris (1996)
temporary work		, ,
e. insufficient staff to coordinate	Changing crew size and turnover	Zakeri (1996)
the site work	Numbers of managers	Kumaraswamy & Chan (1998)
f. insufficient staff to coordinate	Changing crew size and turnover	Zakeri (1996)
the technical administration	Number of managers	Kumaraswamy & Chan (1998)
work		
Category: Technical	Technological group	Herbsman & Ellis (1990)
a. insufficient technical support	Design data	Herbsman & Ellis (1990)
from head office		
b. poor temporary work design	Lack of crafts productivity improvement	Dai et al (2007)
	suggestion	
c. insufficient site office space	Site congestion	Kadir et al (2005)
d. poor site layout	Site congestion	Kadir et al (2005)
e. poor project programme or	Inadequate planning	Makulsawatudom & Emsley (2001)
phasing of work		Moselhi, Assem & Rayes (2005)
	Project phase	<u></u>
Category: Management system	Administrative group	Herbsman & Ellis (1990)
a. unclear communication path	Poor communication	Zakeri (1996)
	Reporting system	Cottrell (2006)
b. insufficient authority for	Lack of authority to discipline craft	Dai et al (2007)
frontline staff	workers	
c. too much paper work	Excessive paperwork	Zakeri (1996)
•	Excessive paper work for request	Makulsawatudom & Emsley (2001)

A model to relate the causes to the site coordination problems and subsequently to the outcomes of the subcontracts was established in this study. The literature review undertaken shows that multiple regression analysis and neural network analysis are the two common methods to for this type of research. As a result, multiple regression analysis is adopted to generate the relationships in form of regression equation and neural networks analysis is used to validate the result.

CHAPTER FOUR

DATA COLLECTION

4.1 Introduction

To meet the research objectives, this research comprised seven stages of work. This chapter explains the methodology and approaches adopted to collect the data for this research. The purposes of the interviews to experienced industrial practitioners and the design of the questionnaire surveys including the aim of the questions, the format the questionnaires, the data collection methods adopted for each stage of research work are explained.

4.2 Approaches adopted for each stage of work

4.2.1 Stage One: Measuring the performance of subcontractor

Most well-established construction firms have already developed their own systems to periodically review the performance of their subcontractors. However, they are very reluctant to release the details of the system to the public. This survey was designed to collect the viewpoint from main contractors' staff as a reflection to the viewpoint of the companies. A list of common performance evaluation criteria was prepared based on the literature review findings. Seven experienced industrial practitioners were invited to comment on the appropriateness of the criteria selected for the research and the approach adopted to classify them. This was found to be a good approach for ensuring of each criterion was examined. The comments from interviewees would be accepted if they were

suggested by all of them. Appendix F shows the background information of the interviewees and the flow of the interviews.

The questionnaire for this survey has been presented in Appendix C. Question 1 and Question 2 of the questionnaires were used to collect the information of the current positions of the respondents in their firms and their years of experience in building industry to support the reliability of the data. Question 3 requested the respondents to rate the level of importance from 1 (very important) to 7 (very unimportant) with 0.5 interval to the essential subcontractor performance evaluation criteria identified through the literature review in Chapter Three. The questionnaires were randomly distributed through private relationship to the industrial practitioners in order to ensure the respondents had worked in main contracting firms.

4.2.2 Stage Two: Factor governing the performance of subcontractors

Three construction managers and three foremen of main contractors were interviewed as a means of data collection. They were asked to express the perspectives of the management and frontline staff respectively. In order to obtain the views from different sides, three project officers of the subcontractors were also interviewed. During the interviewes, the interviewees were reminded to refer only to the three basic project objectives, i.e. time, cost and quality, in making their options so as to maintain the consistence of the assumptions. Interviewees assigned a score from I (very unimportant) to 10 (most important) to each of the factors influencing the performance of the

subcontractors that were shortlisted through the literature review and give a short explanation for their options. The flow of the in-depth interview and the information of the interviewees are attached as Appendix G.

4.2.3 Stage Three: Site coordination problems

A preliminary list of common site coordination problems was prepared through the literature review. Seven experienced industrial practitioners (see Appendix F) were invited to comment on the appropriateness of the problems selected for the research and the approach adopted to classify them. The suggestions would be added into the preliminary list if they were advocated by all of the interviewees.

A questionnaire survey was adopted for this stage of work and the questionnaires were distributed to industrial practitioners through private relationship. Question 1, Question 2 and Question 3 are used to collect the background information of the respondents. As the overall degree of influence of the problems on subcontractors' performance depends on their frequency of occurrence as well as the potential degree of impact on site work, respondents were requested to rate: from 1 (never happen) to 9 (happen every time) with a 0.5 interval for the frequency of occurrence; and from 1 (very unimportant) to 9 (very important) with a 0.5 interval for the degree of potential impact to site work for each problem based on their current projects or experiences. In this 9-points scoring scale system, 5 represented a problem that occurred fairly frequently and had neutral importance to site works. A copy of the questionnaire is attached as Appendix D.

4.2.4 Stage Four: Causes of site coordination problems

A questionnaire survey method was adopted for this stage of work. A preliminary list of the key causes to site coordination problems was prepared through the literature review. Nine experienced industrial practitioners (see Appendix F) were invited to comment on the appropriateness of the cause selected for the research and the approach adopted to classify them. The suggestions would be added into the preliminary list if they were recommended by all of the interviewees.

The questionnaires were distributed to industrial practitioners through existing relationships. Question 1, Question 2 and Question 3 are used to collect the background information of the respondents. Respondents were requested to rate each identified causes in terms of: the degree of contribution by the cause to the problems from 1 (very unimportant) to 9 (very important), with a 0.5 interval; and the frequency of occurrence of the cause in HK building projects from 1 (never happen) to 9 (happen every time), with a 0.5 interval. In this 9-points scoring scale, 5.0 represented a cause that fairly contributed to the site coordination problems and occurred fairly frequently in the HK building projects. A copy of the questionnaire has been presented in Appendix E.

4.2.5 Stage Five: Forecasting the performance of subcontractors & Stage Six: Contribution of the causes to site coordination problems

A questionnaire (see Appendix A) was designed to collect data for Stage Five and Stage Six studies; and to estimate the amount of subcontractors' productivity waste due to poor site coordination by main contractors that justify the need of the research in Chapter One.

Two hundred and sixty-five questionnaires were distributed to construction companies by post. The companies were randomly selected from the Hong Kong Builder's Directory 2005-06 which listed over 1,500 construction companies in Hong Kong, and the information from the industrial practitioners. This method aimed to get the replies from the reputable main contractors and subcontractors. The mailing addresses are shown in Appendix H. In order to get some responses from the small size subcontractors to balance the views, the questionnaires were also distributed to industrial practitioners through private relationships. A brief introduction of the aim and the format of the questionnaire had been given to the industrial practitioners that fill the questionnaire and help to distribute the questionnaires. The questionnaire comprises five sections.

a. Section A (background information of the respondents)

The section aims to collate the background information of the respondents. Respondents were requested to state the nature of the business of their companies and guided to complete the appropriate sections of the questionnaire. The respondents' current positions in their firms and their working experience in construction industry were also requested. The information would be used to assess whether the replies could be regarded as the common views of the industry. Based on the nature of business, replies were classified into following three types:

- Type One: respondents working in subcontractors that need to complete all parts of the questionnaire;
- ii. Type Two: respondents working in main contractors that need to complete Section A, Section B, Section D and Section E of the questionnaire; and

iii. Type Three: respondents working in consultant firms and property developers that need to complete Section A, Section B, Section D and Section E of the questionnaire.

Type One respondents were requested to answer the questions based on their current projects or the projects that had the highest contract sums if they were handling several projects at the same time currently. Type Two and Three respondents were requested to answer the questions based on their experience for Section B, and their current projects or the projects that had the highest contract sums for Section D and Section E if they were handling several projects at the same time currently.

b. Section B (productivity waste)

The aim of this section is to collate quantity evidence on the complaints from subcontractors regarding the poor site management by main contractors. Type One respondents were asked whether they agreed that their firms were unable to carry out site work effectively and efficiently due to poor site coordination by main contractor of their projects. They were requested to assign a percentage to represent their views on the amount of their productivity that had been wasted due to site coordination problems caused by main contractors. Based on their experience, Type Two and Three respondents were asked whether they agreed that subcontractors were unable to perform site work effectively and efficiently due to poor site coordination by main contractor of their projects. They were requested to assign a percentage to represent their views on the amount of their productivity that had been wasted due to site coordination problems caused by main contractors.

c. Section C (project outcomes)

This section is designed to collect the data of the outcomes of the current subcontracts of the respondents. Jasekskis *et al* (1991) used a 3-level scale assigned by the project participants to measure the achievement of project outcomes: Outstanding; Average; and Failure. Tam and Harris (1996) used the traditional approach to measure the achievements in time performance and cost performance in a project, i.e. to compare actual completion time with the estimated contract duration in the tender, and compare the final cost of contract with tender respectively. Regarding the quality performance, a 5-level scale was adopted in which the quality of work was compared with the contract specifications. The scale ranges from poor quality compared with the specifications to good quality compared with the specifications.

The model to measure the subcontract project outcomes in this research is developed based on the approach used by Tam and Harris (1996). As multiple regression analysis method would be used to compute the data, respondents were requested to assign a score from 10 (represent 100% achievement) to 0 (represent 0% achievement) with a 0.5 interval to represent their views on the level of achievements in time performance, cost performance and quality performance in their current projects. The score of achievement in time performance is the comparison of the progress of work with the project programme. The score of achievement in cost performance is the comparison of the expenditure with the project budget. The score of achievement in quality performance is the comparison of the actual level of workmanship with the expected industrial trade standard for the project because the findings of the survey on project performance

evaluation in Chapter Five show that respondents prefer to adopt the industrial trade standard rather than the contract specification as the quality standard for their projects. Respondents could estimate the scores for the achievements in time performance and cost performance based on real figures. The scores are thus more reliable than the score for quality achievement as it is estimated mainly based on the professional judgment of the respondents.

d. Section D (site coordination problems)

The aim of this section is to collect data to establish the relationship between the six critical site coordination problems with the project outcomes. Respondents were requested to assign a score from (10 occurred in every site operation) to 0 (never occurred in site operation) with a 0.5 interval to show the frequency of occurrence of the site coordination problems caused by main contractors in their current projects.

e. Section E (causes of site coordination problems)

This section aims to collect data to formulate the relationship between the twelve essential causes with the six critical site coordination problems. Respondents are requested to assign a score from 10 (totally agree) to 0 (totally disagree) with a 0.5 interval to represent their views on the contributions of the causes to the occurrence of the six critical site coordination problems.

4.3 Summary

The preliminary lists for performance evaluation criteria, important factors governing the performance of subcontractors, common site coordination problems and key causes to site problems were prepared based on the findings from the literature review in Chapter Three. Interviews to experienced industrial practitioners were conducted in different stages of work in order to obtain the comments on the preliminary lists for the questionnaire surveys and rank the importance of the factors governing the performance of subcontractors in Stage Two work.

Questionnaire surveys were used to collect quantity data for estimating the productivity waste due to site coordination problems, identifying the critical site coordination problems and the essential causes to the problems, and establishing the link to forecast the impact of the critical site coordination problems to subcontract outcomes and the contributions of the essential causes to the problems. The questionnaire surveys were designed based on the guideline by Babbie (1992). The questions of the questionnaires were simple, short and in a self-administrated format. Respondents could complete the questionnaire within a few minutes and needed not to disclose the confident information of their companies.

CHAPTER FIVE

MEASURING THE PERFORMANCE OF

SUBCONTRACTORS

5.1 Introduction

In order to identify project related important factors for subcontracts for local building projects in Hong Kong, it is necessary to define the criteria that are used to measure the outcomes of the subcontract. Time, cost and quality are the three most common fundamental project objectives for a building project from the client's point of view (Stuckenbruck, 1981; Bennett, 1983; Walker, 1990). In recent years, due to the rapid development in terms of the complexity and size of construction projects, broader project objectives are being introduced. For example, Ofori (1992) defined the environmental issues as the fourth dimension to construction project performance. Sustainable construction is currently a popular topic in Hong Kong and many other countries. It could be considered as another essential objective for a project in the near future. The aim of this chapter is to identify the essential criteria that main contractors currently use to evaluate the performance of their subcontractors.

5.2 Research methodology

A literature review on the evolution of performance assessment for building projects has been presented in Chapter Three. Based on literature review and the advices from the experienced industrial practitioners, essential subcontractor performance evaluation criteria for building construction projects were shortlisted as shown in Table 5.1. These were grouped into different objectives including time, cost, quality, safety and health, sustainability, potential for long-term development and company image. Respondents who had worked in main contracting firms were requested to rate the level of importance from 1 (very important) to 7 (very unimportant) with 0.5 interval to the essential performance evaluation criteria. The questionnaires, attached as Appendix C, were randomly distributed through private relationship to the industrial practitioners and 27 valid replies were received. A summary of the replies is attached as Appendix I.

Table 5.1: Average score of the subcontractors' performance evaluation objective and criteria

		Overall score
Objective:	Time	1.58
Criteria:	Progress of work follow schedule	1.41
	Propose method to speed up progress	1.76
Objective:	Safety and health	1.93
Criteria:	Follow safety rules	1.88
	Propose method to eliminate potential danger to workers	1.98
Objective:	Quality	1.98
Criteria:	Quality of work comply with specification	2.04
	Quality of work comply with trade standard	1.91
Objective:	Cost	1.99
Criteria:	Amount of claims to main contractors	2.01
	Contributions on reducing construction cost	1.98
Objective:	Potential for long-term development	2.38
Criteria:	Application of advance technology	2.64
	Relationship with	
	a. Site representatives of the client/design team	1.73
	b. Other subcontractors	2.48
	c. Your staffs	2.56
	Administrative issues such as submission of records, sample, shop	2.54
	drawings	
	Availability of additional resources	2.31
Objective:	Sustainability	2.74
Criteria:	Suggestions to improve the design in terms of:	
	a. Buildability	2.69
	b. Durability	2.86
	c. Maintainability	2.86
	Amount of nuisance such as duct, noise, vibration etc generated	2.66
	Amount of construction waste generated	2.61
	Material wastage level	2.76
Objective:	Public image	3.32
Criteria:	Site tidiness	3.19
	Worker's working uniform	3.45

5.3 Data analysis

The survey findings can be regarded as a manifestation of the common views of the industry as 44.4 per cent of the respondents have over eight years of working experience in construction industry. Table 5.1 shows the mean of the scores assigned by the respondents to each criterion. This reflects the level of importance of these criteria in assessing subcontractors' performance. In this study, it was assumed that all the criteria are of equal importance to their respective performance evaluation objectives. Thus, the score for the performance evaluation objectives is the mean of the score of the criteria in the same group, as shown in Figure 5.1. Three experienced construction managers of main contractors were subsequently invited to express their views on the survey data through well-structure in-depth interviews. The following section summarises the general observations of their views.

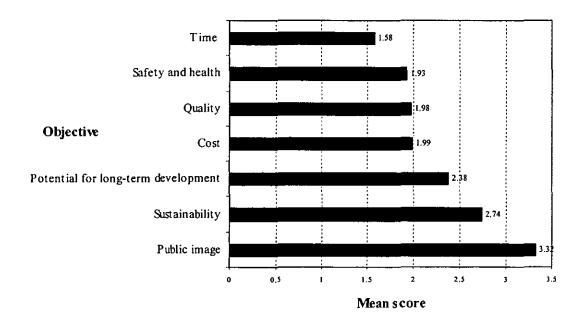


Figure 5.1: Mean score of performance objective

5.3.1 Time

Time was the most important subcontractor performance evaluation objective among the short-listed criteria for building projects. Its average overall score was 1.58, indicating that most of the respondents considered this as a priority target for their projects. The main reason being that performance in relation to this objective can be easily quantified by measuring the variance between the contract and actual project completion date. Respondents in general adopted a conservative approach to the management of their projects, for example, they prefer their subcontractors to strictly follow the project programme rather than propose new methods to speed up progress.

5.3.2 Safety and health

The average score for the Health and Safety objective was 1.93. The importance of this objective is slightly higher than those for quality and cost because construction companies have to face litigation and the site managements may be liable for personal responsibility for serious accident. Safety and health issue for building construction projects is receiving more government attention in the recent years, for example, the Buildings Department issued the Technical Memorandum for Supervision Plans to specify the safety requirements for different grade of construction work and request the contractor to submit a supervision plan at the time of application for consent to the commencement of works.

The questions for assessing the criteria of this objective were similar to those for time.

Respondents displayed a similar attitude for this item. They request their subcontractors

to follow the basic safety rules and do not expect them to propose new construction methods to eliminate potential dangers to workers. The survey shows that well-experienced respondents were far more ready to accept new method for site safety management. Perhaps, this may be a warning signal to voice out the dissatisfaction of the site management on the current safety management system.

5.3.3 Quality

The average score for this objective is 1.98, rated as only a fairly important factor because it is difficult to quantify the overall level of workmanship of a project. Construction projects comprise thousands of small jobs and it is impossible to review all of them so as to consolidate a final score to represent the quality standard of a project. Another reason for not ranking quality as the top priority objectives being that the property developers always set a very tight programmes for their projects due to high land costs. They need to make trade-offs and relax the demand on the quality of works provided that the project can be completed on time. Consequently, main contractors spend most their efforts to push their subcontractors to meet the tight project programme and the control on the quality of work would be of second priority.

One possible way of measuring the quality of construction work is to assess the degree of compliance of the work to the agreed standards. Works Specification of the contract is the official standard of workmanship for a project. Respondents prefer to adopt the industrial trade standard rather than the Works Specification of the contract as the quality

standard for their projects. This is because most of the standards specified in the Works Specification are unreasonably high in view of current tender price.

5.3.4 Cost

As commercial companies, it is no doubt that the prime objective of main contractors to maximize profits from their projects. However, the respondents take another view when assessing the performance of their subcontractors. Excessive claims to main contractor may cause additional financial burdens to the project. However, the survey shows that respondents do not rank this as a very important issue because main contactors are always in a favourable position when assessing subcontractors' claims. The average score for this criterion is thus only 1.99.

In Hong Kong, it is common for main contractors not to pay their subcontractors for claims unless they have got the payment for the respective variation order from the client. Final account preparation is a long process and it is also easy for the main contractors to find excuses to reject claims. Most of the local subcontractors are small companies and would not initiate legal action immediately even though their claims are supported with solid evidences. Their main concern is that the additional payments do not always cover the expenses. Instead, they would desire the main contractor to compensate their losses by awarding them high profit margin contracts in the future if long-term relationship is maintained.

5.3 5 Potential for long-term development

Long-term relationships are a key ingredient required to cultivate the mutual trust between main contractors and their subcontractors, which can significantly improve their performances. Main contractor would evaluate the potential ability of their existing subcontractors as this is one of the considerations to commit long-term co-operation plan with them. However, according to the survey result, this is not considered as a very important criterion as its overall average score is only 2.38.

Because of temporarily contractual relationships between the two parties and commercial secrets, main contractors do not expect to learn too much advance technology from their subcontractors. On the reverse, they may allocate additional efforts to help the subcontractors to build up good relationship with the design team/client's site representative. Subcontractors are not demanded to have strong ability in handling general administration work.

5.3.6 Sustainability

The average overall score for this item was 2.74, probably because sustainability is a new concept to the local construction industry and is not easy to measure and quantify. Most of the experienced industrial practitioners did not learn about the Sustainable Development concept in their formal study years ago. They tended to relate the concept with prefabrication technique and green building design. They also tended to claim that additional resources are required for arranging environmental protection provisions for the project. A set of questions under this evaluation objective is designed to review their

understandings on the different issues in the context of sustainable construction technology.

In local multi-layers subcontracting system, almost all the production work of a construction project is actually carried out by the subcontractors. They are therefore well-qualified to suggest alternative proposal to improve the design in terms of buildability, durability and maintainability of the construction work. Among these three items, buildability is most important one because a constructible design can significantly speed up the progress as well as to enhance the quality of the work. Durability and maintainability are less essential to contractors because these issues will be out their businesses after the property is handed over to the client. Main contractors are relatively more concerned about subcontractors' performance in reducing the nuisances and wastes generated from the construction operations rather than on improving the design because they need to fulfil the stringent control imposed by local government.

5.3.7 Public image

Marketing is a difficult task for construction companies. To upgrade the competitiveness of the company, they have started to allocate extra resources to this area. Apart from the development of company marketing plans, the efforts by the site staff should not be neglected. Tidiness of subcontractors' site facilities and their workers' working uniforms are crucial factors that influence public's impression on a project. This subsequently affects the image of the company. The survey result shows that site staffs do not regard this item as an important criterion as its average overall score is 3.32. They think that

public would not keep close view on their projects unless it is landmark building. They prefer to concentrate their effort on the production work and the company marketing work should be centrally organized by head office.

5.4 Summary

In Hong Kong, the role of main contractor has already been transformed from the actual production work to the management of the subcontractors. This study has made an attempt to analyze the criteria that they are using to assess the performance of their subcontractors.

According to the survey result, time is the most important criteria to evaluate the performance of subcontractors. With the increasing public concerns on the safety and health issues of the construction projects, this item has become as important as the other two traditional indicators, cost and quality. Respondents in general adopted a conservative approach to manage the matters related to time, safety and health. They demand their subcontractors to strictly follow their instructions.

Quality and cost are fairly important factors. Industrial trade standards are used to compare subcontractors' quality of work. Subcontractors are expected to make contribution in reducing the construction cost. Main contractors are not keen to review the potential abilities of their subcontractors for building up long-term relationship. Instead, they would like their subcontractors to maintain a good relationship with the site representative of the client and design team.

Sustainable Construction is a new concept to the local construction industry in Hong Kong. Main contractors currently do not strongly request their subcontractors to adopt the Sustainable Construction methods and to input additional resource for building up company image. However, it is expected that sustainability would be regarded as an essential objective that may be embedded within quality in near future when more and more local construction companies recognize the benefits they can gain from adopting the Sustainable Construction methods.

As a conclusion for this study, time, safety and health, quality and cost are regarded as the most essential criteria that currently used by the main contractors to assess the performance of their subcontractors. A study to investigate the factors governing the time, quality and cost performances of subcontractors is presented in the Chapter Six. The study did not include the safety and health criterion because there is no commonly agreed method to quantity and measure the achievement of this item. Thus in the typical HK building contract, the developer would only stipulate his requirements in terms of completion time, project price and the required standard of workmanship.

CHAPTER SIX

FACTORS GOVERNING THE PERFORMANCE OF SUBCONTRACTORS

6.1 Introduction

The essential criteria required to measure the performance of subcontractor have already been discussed in Chapter Five. Time, cost and quality were identified as the essential project outcomes of subcontracts for local building projects. There is an endless list of factors affecting the outcomes of a project. Certain factors have more impact than the others. Rockart (1982) used the term 'critical success factors' to describe these factors and are defined as those factors predicting success on projects.

The aim of this Chapter is to identify the main factors affecting the performance of a subcontractor and subsequently the outcomes of a subcontract in Hong Kong based building projects from the different perspectives of key participants in a subcontract. The key participants include the management and frontline staff of both the main contractor and subcontractors.

6.2 Important factors

Publications on the important factors affecting building project outcomes have been reviewed in Chapter Three. A list of factors shown in Table 6.1 that could affect the

performance of a subcontractor was developed based on the various studies on the determinants of the main contract outcomes. Most of the factors normally considered to have impact at a main contract level were not included as their impact at the subcontract level was considered to be somewhat remote. Adopting the model developed by Tam and Harris (1996), the factors were classified into the three main categories discussed below.

a. Inherent project characteristics

The inherent project characteristics include the nature and complexity of the subcontract work, and the relationships among the key participants. These factors contribute to the basic constraints and characteristics of the project

b. Ability of the key participants

The ability of the key participants refers to the knowledge, experience and company support their companies. These factors can impact on the potential to achieve tasks assigned under the subcontract.

c. Influence of the participants to the subcontracts

There is no guarantee to the success of a project even though the project has favourable inherent project characteristics and is handled by competent project participants. The influences made by the participants can enhance or even spoil the performance of the subcontractor.

6.3 Research methodology

Nine experienced industrial practitioners were interviewed as a means of data collection. All the interviewees had more than eight years working experience in the industry and were from different firms. During the interviews, the interviewees were reminded to refer only to the three basic project objectives, i.e. time, cost and quality, in making their options so as to maintain the consistence of the assumptions. Interviewees assigned a score from I (very unimportant) to 10 (most important) to each of the factors influencing the performance of the subcontractors and give a short explanation for their options. The flow of the in-depth interview and the information of the interviewees are attached as Appendix G.

Table 6.1: List of factors discussed during the interviews

Category	Factors
Inherent subcontract project	Complexity of the works
characteristics	Use of new technology
	Restrictions due to environmental factors
	Unrealistic contract duration
	Quality of the design document
	Buildability of the design
	Relationships among the participants
	Payment methods
	Incentive scheme
	Perceived profitability
	Risk sharing between the main contractor and subcontractors
	Involvement of the subcontractor in the design work
	Clarification of the involvement
	Communication system
Ability of key participants of	Technical ability
the subcontracts	Financial ability
	Managerial ability
	Response to change
Influences of the key	Plant support
participants to the subcontracts	Material support
during construction stage	Staff support
	Levels of coordination
	Payment
	Construction communication
	Design changes
	Disputes settlement
	Claims
	Response by the participants

6.4 Data analysis

6.4.1 Common views from the interviewees

Figure 6.1 summarizes the ten most important factors to the performance of subcontractors in a descending order of priority of the mean score assigned by the interviewees. The payment to the subcontractors and the perceived profitability of the subcontract are considered as the two most important factors. They believed that good profit margin could motivate the subcontractor to perform well. However, it is necessary to point out that subcontractors are normally medium to small size firms. In according to the local trade practice, subcontractors have to pay their sub-subcontractors, direct labours and material suppliers twice each month. Therefore, sound cash flow is essential to their survival, which is controlled by the punctuality and the degree of underestimation of the payment to them. A summary of the scores assigned by interviewees is attached as Appendix J.

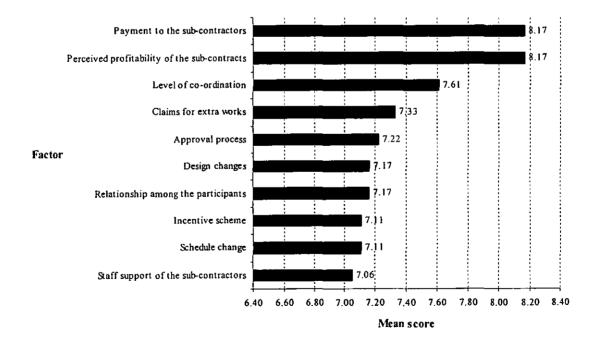


Figure 6.1: Mean score for the factors by the interviewees

6.4.2 Views from main contractor's site management

Table 6.2 shows the ten most important factors to the performance of the subcontractors in descending order of the mean score assigned by main contractors' site managers. The main contractor's site management manages the project from a macro perspective taking into account of the balance between the different objectives of a project. Basically, they would put the progress of work as the top priority objective.

Table 6.2: Ten most important factors from main contractor's site management

Score
8.00
7.67
7.50
7.33
7.33
7.33
7.17
7.17
7.00
7.00

a. Approval process

The approval of shop drawings, material samples and test reports is usually an on-going and complicate process. Delay due to the fault of any of the participants can interfere with the planned sequence of work. Subcontractors are very reluctant to allocate

additional effort to re-sequence the work to minimize the delay or to accelerate the following activities to catch up with the programme. Sometimes subcontractors may be willing to risk proceeding with the work without completing the approval process if they have good relationship with the main contractor.

b. Level of coordination

The wages of the workers is calculated on a daily basis. Sub-subcontractors are very much concerned with the productivity of their workers. As the mobility of the workers from project to project is high, sub-subcontractor would only keep their workers in the project if they can work with well organized site conditions, updated and sufficient information, constant workload, sufficient material and attendance from the main contractor etc.

c. Relationships among the participants

Relationships can be one of the inherent project characteristics as some participants may have been working together in the previous projects. Cooperative culture within the project is cultivated through mutual trust. However, it can easily be spoilt by inappropriate actions such as unreasonable late payment to the subcontractors. There are often some grey areas in the subcontract document, which can be clarified and agreed in a mutual beneficial way under a harmonic working environment.

d. Understanding on the subcontract works

The tender period for the local projects is normally very short. Both the main contractor and subcontractors usually have insufficient time to digest the document before submitting the tender. Most of the subcontractors also have a perception that the scope and nature of work would not vary too much from project to project. It may have the chance that they underestimate the scope of their works. Main contractors should have the responsibility for explaining the contract works to the subcontractors at the early stage of the project.

e. Design changes

Both the main contractor and subcontractors have found it difficult to plan their works if there are a lot of design changes during the construction stage. Although subcontractors can claim for compensation for the abortive work caused by design changes, it normally takes a long time to agree the amount of reimbursement with the respective parties. Subcontractors prefer to carry out their works without any disturbance and receive the payment on time in order to maintain a sound cash flow.

f. Unrealistic subcontract duration

Most of the contract duration of local projects is very short. However, subcontractors would still be willing to take up a job even though unrealistic contract duration is imposed because of keen competition in the industry. Under this situation, subcontractors will always seek opportunities to claim for extension of time for their contracts. This

would dilute their efforts in monitoring their works and subsequently deteriorate the friendship relationship with the other parties.

g. Staff support of the subcontractor

Because of low profit margin or inability of the managerial staff, subcontractors just sublet the work to their sub-subcontractors without providing any necessary guidance and supervision. As it is difficult to map a clear picture of the responsibility of the defective work under the multi-level subcontracting system, the sub-subcontractors would be no doubt to use the fastest method to complete their works with no concern to other parties. This of course would increase the demand of coordination work to the main contractor.

h. Response by the design team

Slow response of the design team to the requests such as outstanding construction information, attendance to the site test and operations etc. would cause a lot of unnecessary delay to the subcontract works. Subsequently, subcontractors would be discouraged and slow down their progress of work.

6.4.3 Views from main contractor's frontline staff

Table 6.3 shows the ten most important factors to the performance of the subcontractors in a descending order according to the mean of score assigned by the main contractors' frontline staff. The main contractor's frontline staff are those directly responsible for the site production work. They mainly concentrate on controlling the progress and the quality of the works. Most of them are not over sensitive to the cost implication in making any

decisions because they have the perception that it is the responsibility of the management to control the profit of a project and also normally they do not have the relevant costing information in hand for making the judgement. So their scoring patterns on the critical success factors are a bit different with that of the site management.

Table 6.3: Ten most important factors from main contractor's frontline staff

8.67 8.17 8.00
8.00
7.83
7.67
7.67
7.67
7.50
7.50
7.50

a. Buildability of the design

Due to tight programme, both the foremen and the subcontractors have to carry out the work with little time to digest the construction information. Design with good buildability can reduce the learning time and thus improve the productivity and quality of work. Buidability (Adams: 1989) is the extent to which the design of a building facilities ease of construction, subject to the overall requirement for the completed building. The

buildability of the design can be improved by providing a formal involvement of the front line staffs in finalizing the detail of the work.

b. Level of coordination

This is the main responsibility of the site foreman. The more effort they contribute on the coordination work, the better would be the progress and the accuracy of work. This can avoid unnecessary double handling of work, conflicts among the subcontractors etc. so as to maintain a stable working environment.

c. Claims for extra work

Most foremen understand that the subcontracts tend to have very low profit margins. Claims can provide additional profit to the subcontractors. The Foreman has to provide necessary assistance to the subcontractors in recording the abortive and additional work, and inform site management so that the subcontractors can receive the payment as soon as possible.

d. Staff support of the subcontractors

The subcontractors' representatives normally have to take up several jobs at the same time. So it is quite common that subcontractors just assign a very junior staff to take up the routine site matters and their project in-charge would directly contact the senior management of the main contractor for the contractual issues. In this case, the subcontract work sometimes would be out of control as the junior staff lacks of ability and experience to lead the project.

e. Approval process

Incompletion of the approval process on the samples, shop drawings and test reports is one of the common excuses claimed by the subcontractors for not commencing their work. A clear picture on the latest approval status can assist the foreman to monitor the subcontractors' work.

f. Incentive and feedback channel

Appropriate incentive schemes can motivate people and this is particularly effective for small and medium size firms as they can easily forecast the additional profit in return from the extra efforts contributed to the project. Formal channels to feedback comments on the performance of the subcontractors to the management are also important.

g. Acceptance of new ideas

With the introduction of the new construction methods, materials and management concept, subcontractors have to upgrade their technical knowledge. Sometimes it may take a long time to explain the new construction methods to the subcontractors as they are always reluctant to change.

6.4.4 Views from subcontractors

Table 6.4 shows the ten most important factors to the performance of the subcontractors in a descending order according to the mean of score assigned by the subcontractors. It is no doubt they would put the cost as top priority objective to be achieved in any project. Sometimes, long-term relationship can be scarified in return for immediate profit of a

project. They are more flexible in running the project, but quite sensitive to any actions by the main contractor that may affect their profit and cash flow.

Table 6.4: Ten most important factors from subcontractors

Score
8.67
7.83
7.67
7.50
7.33
7.33
7.17
7.17
7.17
7.17

a. Level of coordination

Subcontractors express that the main causes leading to the financial loss in a project are non-productive activities such as double handling of work, idling of workers due to poor coordination by the main contractor. They prefer the foreman to have around one week's advance planning to enable them to schedule the work force among different projects.

b. Claims for extra work

The strategy of the subcontractors to a project would be affected by the altitude of the main contractor towards their claims for extra works. They would become conservative in taking any pro-active actions to optimise their performance if their claims have been unreasonable rejected

c. Relationships among the participants

No contract document is perfect and can define all details of the works clearly. Under a co-operative working relationship, subcontractors would willing to carry out some extra works for no payment because they believe that main contractor would compensate them in another way later such better site storage areas and access route for delivering the materials.

d. Treated fairly

All subcontractors in a project must be treated fairly in terms of plant and material supports, priority of using the access road etc. Conflicts among subcontractors can cause never-ending problems to the project.

e. Plant support by the main contractor

Due to poor planning of work and lack of coordination, subcontractors complain the main contractor of not providing the necessary plants support to their work such as using the tower crane to deliver the heavy materials to the work place. This would cause the unnecessary wastage of manpower to the subcontractors.

f. Design change and schedule change

The subcontractors claim that the amount of extra expenses to re-plan the work due to these two problems would not easily be justified and to form a formal claim for reimbursement of money.

g. Incentive scheme

Subcontractors welcome any incentive scheme as they have a clear target to work for and it can provide additional profit to the project. However, they point out that the scheme must be well defined with achievable standards. On the other side, incentive schemes can spoil the mutual trust spirit between the main contractor and the subcontractors if it only demands the subcontractors to contribute additional resource without equal amount of rewards.

6.5 Summary

Unlike the main contractor, subcontractors may not have long-term planning and commitment to the industry. Thus, they would optimize their performance only if they have reasonable profit margin and can maintain a sound cash flow through out the project. During the construction stage, effective and efficient site coordination by the main contractor is important to ensure that subcontractors can proceed with their work. Besides, main contractor should provide necessary assistance to the subcontractors to prepare the claims for reimbursement for the extra work done and maintain an efficient shop drawing, material sample and test report approval system. Frequent design and schedule change would cause unnecessary disturbance to subcontractors' work. Good

relationships between the participants and the support from the subcontractors can also affects the outcomes of subcontracts. Finally, appropriate incentive schemes can motivate subcontractors to improve their performance.

As main contractor's site coordination would have direct influence to the performance of their subcontractors, a study was conducted to identity the critical site coordination problems that hinder subcontractors' site work and the analysis of the study is presented in the next chapter.

CHAPTER SEVEN

CONTRACTORS

SITE COORDINATION PROBLEMS BY MAIN

7.1 Introduction

There are many factors that affect project performance, with the subcontractors' performance being one of the most important factors. Chapter Six reports a study to identify the key factors affecting the performance of the subcontractors in the building construction projects in Hong Kong. The study shows that main contractor's site coordination is the most important influencing factor for subcontractors during the construction stage. This Chapter is an extension of that survey. It aims to identify and analyse the site coordination problems such as insufficient construction information and inaccurate interfacing works caused by the main contractors that can hinder subcontractors' performance on local building projects. A questionnaire survey has been conducted to identify and analyse the frequency of occurrence and potential impact on subcontractors' performance of the problems. The aggregated importance of the problems is analysed.

7.2 Common site coordination problems

Eighteen site coordination problems caused by the main contractors that influence subcontractors' time, cost and quality performance were identified through literature

review presented in Chapter Three. One more problem was added to the list after the interviews to the experienced industrial practitioners: *inadequate or insufficient site* reference point. These problems were categorised into the following eight groups.

a. Construction information

Due to the rapid development of construction projects in terms of size and complexity, the amount of project related information has increased substantially. Many property developers in Hong Kong set very tight programmes for their projects due to high land prices, consequently, construction details are often only finalised just before the site operations start. There is thus little time for the main contractor to analyse, extract and highlight the essential information from the construction information provided by the design team. Consequently, subcontractors have to perform the work with little time to digest or question the information provided.

b. Working programme

Planning to complete a construction project without an agreed time frame is asking for failure. A working programme provides a common reference and serves as the basis for the actions by all who use it. An easy understandable and well-detailed working programme can help subcontractors to understand and achieve the contractor's targets for the project. The logic shown in the working programme should be practical and fully recognise the characteristics of local industrial practices to avoid misunderstanding among the project participants. Subcontractors cannot efficiently and effectively organise their resources for the project if they have very short notice for commencing site work and the working instructions are revised at the last minute.

c. Preparation for work place

The working environment can have a substantial impact on workforce morale. Their productivity can be seriously reduced if the work place is below accepted standard such as full of rubbish and water, or inadequate levels of fresh air and artificial lighting in confined working places. Insufficient and inadequate reference points can directly affect the progress of work and workmanship. As few of the local workers have had any technical training course and thus little knowledge of site surveying techniques, they often cannot set out their work without considerable assistance with the main contractor. According to the local standard form of subcontract, main contractors have to arrange temporary works including scaffolding, water and power supply to subcontractors. As subcontractors tend to be experts in their related trades, they tend to perform most of the site work and not the main contractor. Therefore, they need to be consulted on temporary work design such as the layout of the scaffolding and working platform, locations of the water and power supply to avoid unnecessary doubling handling of temporary work provisions.

d. Interfacing work to be completed by other subcontractors

The number of subcontract packages on most Hong Kong building projects ranged from 17 to 54 (Lai, 1987). The subcontracting approach creates many interfaces between various packages of work. Site problems and disputes with subcontractors frequently arise if the scope of works is not well-defined. In the multi-level subcontracting system of Hong Kong, main contractors' instructions can take a several days to pass through many levels before reaching the subcontractor that actually carries out the work. Subcontractors

may not able to complete their own part of the interfacing work on time or to the quality required because they are unable to receive the latest working instructions and the content of the instructions may be distorted due to the over-long communication path. As the packages performed by different subcontractors are highly inter-related, late completion in one may delay the subsequent activities to be carried out by subsequent subcontractors, thus leading to a delay of the overall project progress. In order to minimize the impact to the project, subcontractors may need to split their site operations into several phases, however, this could cause unnecessary waste of manpower and results in claims from the subcontractors.

e. Access to work place

The time available for work may be reduced and workers' morale is adversely affected if they need to take a long time to arrive the work place due to inconvenient access route and adequate provisions. Construction workers can be exposed to unnecessary dangers if main contractor does not provide adequate access such as ladders and covered walkways.

f. Plant support

On most projects, subcontractors tend to have limited involvement which does not justify arranging expensive plant such as hoists. The main contractor usually responsible for providing and operating the major items of construction plant upon which the subcontractor relies. However, many main contractors tend to provide the minimum amount of plants in order to reduce costs. To avoid disputes among subcontractors, especially in the early morning when most of the subcontractors want their equipments as

soon as possible, main contractor should establish a system to coordinate the requests from the subcontractors.

g. Material support

Abduk Kadir et al. (1997) established that material shortage was the most important and frequently occurring problem adversely affecting construction labour productivity in Malaysia. In Hong Kong, most local domestic subcontractors are usually employed on a labour-only contract basis and paid on a daily basis, thus resulting in a highly mobile workforce. Construction materials are provided and delivered to the subcontractor's workface by main contractor. The subcontractors are very much dependent on the productivity of their workers and cannot afford to have their workers idle due to a lack of materials. Thus, subcontractor will only keep their workers on the project if main contractor can organise sufficient amounts and appropriate types of material for the work on time.

h. Response to site problems

All buildings are unique in terms of design. Unforeseen site problems are encountered every day. Subcontractors sometimes need to reschedule or even to suspend their work due to unresolved site problems. This can consume significant amounts of manpower if main contractor does not recommend practical solutions early enough. The main contractor is a bridge between the subcontractor and the design team. Delays in forwarding requests such as outstanding construction information, attending to the site test and operations etc. could cause a delay to the site work. Sometimes subcontractors

may be willing to take the risk of proceeding with the work without completing the approval process if they have good relationship with the main contractor, however, they may become discouraged and slow down if this happens too often.

7.3 Research methodology

A questionnaire survey was adopted in this study. The questionnaires were distributed to industrial practitioners through private relationship and 35 valid replies were received. The overall degree of influence of the problems on subcontractors' performance depends on their frequency of occurrence as well as the potential degree of impact on site work. Based on their current projects or experiences, respondents were requested to rate: from 1 (never happen) to 9 (happen every time) with a 0.5 interval for the frequency of occurrence; and from 1 (very unimportant) to 9 (very important) with a 0.5 interval for the degree of potential impact to site work for each problem. In this 9-points scoring scale system, 5 represented a problem that occurred fairly frequently and had neutral importance to site works. A copy of the questionnaire is attached as Appendix D

Table 7.1: Mean score for site coordination problems to subcontractor's performance

		Mean score (Frequency) (F)	Mean score (Potential Impact) (PI)	Aggregated importance score (F x PI)
Factor:	Construction information			(F X F I)
Problems:	a, information not detail enough	7.08	5.65	40.00
rroblems:	b. unclear or contradictory information	7.08	6.25	44.38
Factor:	Working programme	7.10	0.23	44,36
Problems	a. working programme not detail enough	4.65	4.38	20.37
TTODICINS	b. working sequence not practical	3.95	6.03	23,82
	c. short notice for commencing site work	4.73	6.25	29.56
	d. late change of working programme	3.68	6.13	22.56
Factor:	Preparation for work place	 _		<u> </u>
Problems:	a. work place environment not yet prepared such as general site cleaning, fresh air supply, lighting	4.63	3.13	14.49
	b. inadequate or insufficient site reference points	3.10	6.98	21.64
	c. inadequate or insufficient temporary work support such as scaffolding, water & power supply	3.50	5.85	20.48
Factor:	Interfacing work to be completed by other subcontractors			
Problems:	a, work not yet completed	5.55	6.05	33.58
·	b. work not accurately completed	5.70	6.78	38.65
Factor:	Access to work place			
Problems:	a. access road not yet ready	4.60	3.78	17.39
	b. access routing not convenient	3.93	3.05	11.99
Factor:	Plant support			
Problems:	a, late to provide plant support	5.10	6.38	32.54
	b, type of plant provided not appropriate	3.63	4.58	16.63
Factor:	Material support			
Problems:	a. insufficient amount	2.98	6.40	19.07
	b. type of material provided not appropriate	3.05	5.88	17.93
Factor:	Response to site problem			
Problems:	a. late response to site problems	5.03	3.78	19.01
	b. solution recommended not practical	3.40	5.73	19.48

7.4 Data analysis

Table 7.1 above shows the mean of the scores rated by the respondents on the frequency of occurrence and degree of potential impact on site work to each problem. As 9-points scoring scale system was adopted, the problems with mean score over 5.0 were shortlisted for detail discussion because these problems would occur more frequently and had significant impact to site works. A summary of all the data is attached as Appendix K.

7.4.1 Frequency of occurrence

Table 7.2 summarises the problems with mean score over 5.0 assigned by the respondents for frequency of occurrence in a descending order of priority, which can be regarded as common problems in the local building construction projects.

Table 7.2: Frequently occurring site coordination problems

Rank	Problems	Mean score for
		frequency
1	Construction information unclear or contradictory	7.10
2	Construction information not detail enough	7.08
3	Interfacing work not accurately completed	5.70
4	Interfacing work not yet completed	5.55
5	Late to provide plant support	5.10
6	Late response to site problems	5.03

The top two most frequent problems related to construction information. Their mean scores are well above the other problems. In the recent years, local main contractors have had less time and manpower to organise the construction information for their subcontractors due to the rapid development in terms of the complexity and size of construction projects, and local property developers usually set a very tight programme for their projects. Problems related to interfacing works to be completed by the other subcontractors were founded to be the most fourth and fifth frequent site problems. The survey conducted by Lai (1987) shown that the number of subcontract packages in the typical local building construction projects ranged from 17 to 54. The multi-level subcontracting system in Hong Kong has imposed additional difficulties to the main contractors' site coordination. Main contractors' instructions may take a few days to pass through several levels before reaching the subcontractors that actually carrying out the works. The content of the instructions may also be distorted due to the over-long communication path. Subcontractors are sometimes unable to receive the latest working instructions for their own portions of interfacing work on time and accurately. Late to provide plant support and response to site problems happens fairly frequently as their mean scores are only slightly above 5.

7.4.2 Degree of potential impact on site work

Table 7.3 summarises the problems with mean score over 5.0 assigned by the respondents for the degree of potential impact on subcontractors' site work in a descending order of priority, which can be regarded as essential impact to sub-contactors' performance.

Table 7.3: Significant impact site coordination problems

Rank	Problems	Mean score for
		potential impact
1	Inadequate or insufficient site reference points	6.98
2	Interfacing work by other subcontractors not accurately completed	6.78
3	Insufficient amount of material support	6.40
4	Late to provide plant support	6.38
5	Construction information unclear or contradictory	6.25
6	Short notice for commencing site work	6.25
7	Late change to working programme	6.13
8	Interfacing works not yet completed	6.05
9	Working sequence not practical	6.03
10	Type of material provided not appropriate	5.88
11	Inadequate or insufficient temporary work support	5.85
12	Solution recommended for site problem not practical	5.73
13	Construction information not detail enough	5.65

Thirteen out of the 19 problems selected for the questionnaire survey were considered as having significant potential impact. Possible explanations for the results are summarised below.

- a. Most of the local workers have little knowledge of site surveying techniques.

 They cannot set out their works unless main contractor can accurately mark the reference points on the work place and provide sufficient construction information.
- b. Subcontractors have to split their site operations into several phases if the required interfacing works are not completed accurately on time. Site progress would be seriously affected and consequently additional cost would be incurred due to double handling of work.
- c. Most local subcontractors are employed on a labour-only contract basis.

 Subcontractors cannot proceed with their works without sufficient material, plant and temporary work supports such as power and water supply, lighting and fresh air supply, and scaffolding from the main contractor.
- d. Due to tight project programme, subcontractors have to perform the work with little time to digest the construction information. Clear and sufficient construction information could help them to investigate the potential site problems. Subcontractors cannot efficiently and effectively organise their resource for the project if they always have very short notice for commencing the site work and the working instructions are always revised at the last minute.
- e. Subcontractors sometimes need to revise or even to suspend their work due to unforeseen site problems. This can consume unnecessary manpower if practical solutions are not recommended by the main contractor early enough.

7.4.3 Aggregated importance score

Aggregated importance score for each problem is taken as the combined scores of frequency of occurrence and the potential degree of impact. Figure 7.1 summarises the aggregated importance score for problems to subcontractor performance in a descending order of priority.

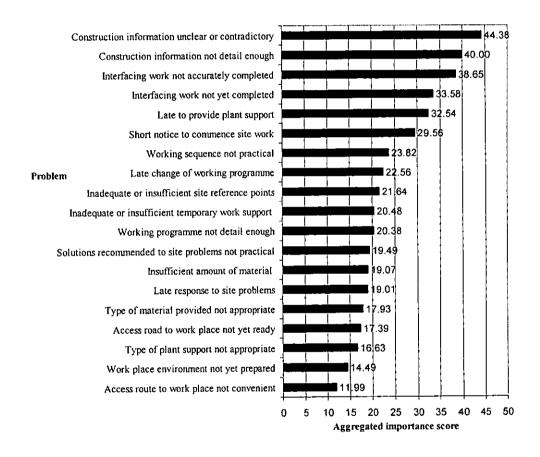


Figure 7.1: Aggregated importance score for problems to sub-contractors' performance

Unclear and contradictory construction information and insufficient construction information were the top two main problems. These two problems have high aggregated importance score because they happen very frequently in the local building construction projects and significant impacts to site works.

Although incomplete interfacing works, inaccurate interfacing works and to provide plant support on time may not frequently happen, they are still the third, fourth and fifth most essential problems because when they do happen they can induce a considerable consequential problems if they are not handled properly.

Time is the most important performance criterion used by the local main contractors to evaluate subcontractors' performance (Ng and Price, 2005). Accordingly, the main contractors try to avoid having too short notice to commence site work, impractical working sequence and late change of working programme. This has lowered their aggregate importance scores even though their potential impact scores are all above 6.

Although inadequate or insufficient site reference points is the most influential problems to subcontractors' site works, it is only the ninth essential problem because most main contractors would establish a strong site surveying team to handle the setting out work for their projects.

7.4.4 Guidelines to enhance site coordination

In this study, the problems were classified into eight types. It was assumed that the aggregated importance score for each type is the mean of the aggregated importance scores of all the problems in that group. This can be acted as a reflection to the overall influence that each type of problem may have on subcontractors' performance. Table 7.4 shows the aggregated importance score for each type of problem in a descending order of priority. These have been used to develop guidelines to help main contractors enhance their site coordination.

Table 7.4: Aggregated importance score for the eight main types of site coordination problems

Rank	Types of problems	Aggregated importance score
1	Construction information	42.19
2	Interfacing works by other subcontractors	36.09
3	Working programme	24.18
4	Plant support	23.89
5	Response to site problem	20.00
6	Preparation work for work place	19.90
7	Material support	18.48
8	Access to work place	14.53

According to the survey results listed in Table 7.4, main contractors should prioritise their organisation of construction information provided to subcontractors. The scope of the interfacing works for each subcontract must be clearly specified and subcontractors should be informed of the working schedule with reasonable advance notice to enable them to organise the logistics for the works. These two items could be achieved through well-prepared subcontract documents and well-organised regular site coordination meetings. Response to site problem and preparation for work place were of almost equal importance. Access to work place had the least impact to subcontractors' performance.

7.5 Summary

Based on literature and advice from experienced industrial practitioners, nineteen common problems caused by the main contractors during the construction stage that could hinder subcontractors' performance on building projects in Hong Kong have been identified. These problems were classified into eight main types of problem associated with subcontractors' site works.

This chapter revealed the six most frequent problems on building projects. Problems relating to construction information and interfacing works were found to be the most frequent problems. Main contractors were often late to provide plant support to subcontractors' works and respond to site problems. Thirteen problems were identified as having significant impact to site works. Site reference points and interfacing works were found to have the most significant impact on subcontractors' performance.

Aggregated importance scores for the problems were calculated to reflect their degree of importance due to their frequencies and impacts. The results shows that problems related to construction information and interfacing works were considered to be the most important problems to subcontractors' works.

In order to develop guidelines to help main contractors enhance their site coordination, a study on the causes to the important problems identified in this chapter was conducted

CHAPTER EIGHT

CAUSES OF SITE COORDINATION PROBLEMS

8.1 Introduction

Sixteen key causes of site coordination problems were identified from literature. A questionnaire survey was used to identify, shortlist and analyse the six critical site coordination problems that influenced the time, cost and quality performance of subcontractors in the HK building projects (as discussed in Chapter Seven). There are many causes of these problems; the aim of this chapter is to identify and analyse the essential causes related to the six critical site coordination problems. A questionnaire survey has been conducted to identify and analyse the frequency of occurrence of the causes and their degree of contributions to the problems. The aggregated importance of the causes was obtained by combining the degree of contribution and frequency of occurrence of the causes.

8.2 Potential causes of site coordination problems

Sixteen causes leading to site coordination problems due to poor performance of main contractor in a building project were identified through literature review shown in Chapter Three and advices from the experienced industrial practitioners. The causes of site coordination problems were grouped into three categories according to their nature (i.e. staffing; technical and management system), as summarised in Table 8.1.

a. Staffing

There is no guarantee to the success of a project even though main contractor can establish a well organised management system and possess the necessary technical knowledge to meet the nature of the project. Main contractor have to assign staff with necessary technical knowledge and experience to operate the management system. Staffing related causes included: insufficient staff or staff too inexperienced to coordinate the technical administration work; insufficient staff or staff too inexperienced to coordinate the site work; insufficient directly employed worker to carry out the temporary work; and frequent change of personnel.

b. Technical

Robbins (2005) defined the term technology as to how an organisation transferred its inputs into outputs. As the role of main contractors have already transformed from a constructor to a manager of subcontractors of the local building project, they should have adequate technical capacity to provide necessary assistance to subcontractors to perform well. Technical related causes included: insufficient technical support from head office; poor temporary work design; insufficient site office space; poor site layout; and poor project programme or phasing of work.

c. Management system

The responsibilities and duties of each member of the project team should be well defined to ensure the activities can proceed without any problems. During the project development process, a dynamic temporarily multi-organisation system is often created

that is continuously confronted with disparities between two levels of objectives: the temporary objectives of the construction project; and long-term objectives of the participating organisations and operational phase of the project (Mohsini and Davidson, 1992). Main contractors need to establish dynamic management systems that facilitate the coordination of activities and control the actions of their members. Management system related causes included: unclear job duties; unclear communication path; insufficient authority for frontline staff; unclear accountability system; and too much paper work.

8.3 Research methodology

A questionnaire survey was developed and distributed to industrial practitioners. Thirty-six valid replies were received. Respondents were requested to rate each identified causes in terms of: the degree of contribution by the cause to the problems from 1 (very unimportant) to 9 (very important), with a 0.5 interval; and the frequency of occurrence of the cause in HK building projects from 1 (never happen) to 9 (happen every time), with a 0.5 interval. In this 9-points scoring scale, 5.0 represented a cause that fairly contributed to the site coordination problems and occurred fairly frequently in the HK building projects. A copy of the questionnaire has been presented in attached as Appendix E. Table 8.1 presents the mean of the scores rated by the respondents. A summary of all the data is attached in Appendix L.

Table 8.1: Causes of main contractor's site coordination problems

		Mean score (Frequency) (F)	Mean score (Contribution) (C)	Aggregated importance score
				(F x C)
Category	Staffing			·
Causes	a. staff too inexperienced to coordinate the technical administration work	6.86	6.94	47.61
	b. frequent change of personnel	3.72	6.68	24.85
-	c. staff too inexperienced to coordinate the site work	5.76	6.19	35.65
	d. insufficient directly employed worker to carry out the temporary work	6.53	5.81	37.94
	e. insufficient staff to coordinate the site work	5.26	5.50	28.93
	f. insufficient staff to coordinate the technical administration work	5.17	5.23	27.04
Category	Technical			
Causes	a. insufficient technical support from head office	6.61	5.03	33.25
	b. poor temporary work design	6.06	4.93	29.88
	c. insufficient site office space	4.53	4.44	20.11
	d. poor site layout	3.17	3.91	12.39
	e. poor project programme or phasing of work	5.14	3.17	16.29
Category	Management system			
Causes	a. unclear job duties	7.11	7.09	50.41
	b. unclear communication path	6.44	7.03	45.27
	c. insufficient authority for frontline staff	5.19	6.97	36.17
	d. unclear accountability system	6.67	6.86	45.76
	e. too much paper work	6.56	4.83	31.68

8.4 Data analysis

8.4.1 Degree of contribution to site coordination problems

Figure 8.1 summarises the mean scores assigned by the respondents for the degree of contribution of the causes to the site coordination problems in a descending order of priority.

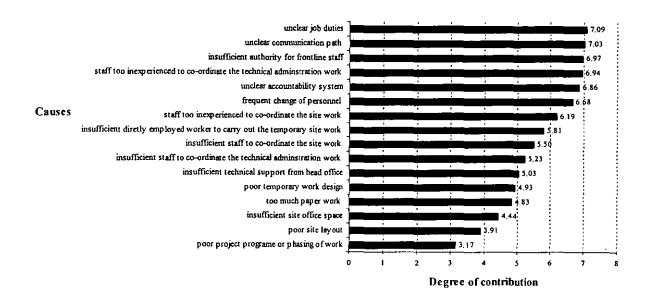


Figure 8.1: Mean score for degree of contribution

Eleven out of the 16 causes selected for the questionnaire survey were considered as having significant (i.e. mean scores are above five) contribution on main contractors' site coordination problems. The top three significant causes relate to management systems. Unclear job duties was found to be the largest contributing cause, probably because scope of work of each building project is different, however, works cannot be proceeded smoothly if the duties of key staff are not well defined. The mean score for unclear communication path is only slightly below the most crucial cause. One frequent

complaint from frontline staff in HK building projects is that they have too much responsibility but not enough authority to get the job done. This can be critical in HK building projects where project durations are often relatively short. The authority delegated to frontline staff must therefore align with stated job responsibilities, so that timely decisions can be made.

The role of the main contractor's project coordinator has become critical for the success of local multi-disciplinary construction projects (Jha, 2005). The project coordinator has to handle technical matters as well as management issues and thus needs to be a 'generalist' rather than 'specialist' (Powl and Skitmore, 2005). Due to rapid developments of construction projects in terms complexity and size, information has become so voluminous and complex that it cannot be passed in totality from one individual to the next (Chapman, 1999). Frequent changes of personnel could thus induce unnecessary uncertainties to the project if the appropriate systems are not in place.

Although the documentation requirements of the ISO standards can be extremely onerous and bureaucratic (Love et al., 1998), quality certification to recognized standards such as the International Organisation for Standardization (ISO) 9000 has become common place in HK based construction companies. The survey results show that the increase paper work has not unduly affect the site coordination work with a mean score below five. The bottom three causes relate to technical related cause and their mean scores are all below five.

In this study, it was assumed that all the causes are of equal importance to their respective category of main causes. The score for each category is the mean of the scores of the causes in the same category. Table 8.2 summarises the mean scores for degree of contribution of the categories of main causes to main contractor's site coordination problems. The result shows that management system related causes make the most significant contribution to main contractor's site coordination problems. The technical related causes were not so critical as its mean score was below five.

Table 8.2: Mean score for degree of contribution

Rank	Categories of main causes	Mean score
1	Management system	6.56
2	Staffing	5.22
3	Technical	4.29

8.4.2 Frequency of occurrence

Figure 8.2 shows the mean score assigned by the respondents for the causes' frequency of occurrence in the local building projects in a descending order of priority.

Thirteen out of the 16 causes selected for the questionnaire survey were considered as frequently occurring causes leading to site coordination problems in building projects as their mean scores were above five.

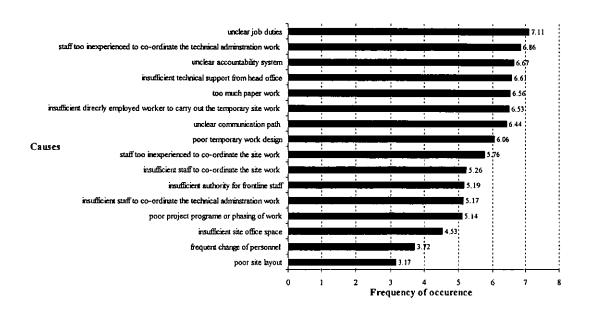


Figure 8.2: Mean score for frequency of occurrence

Project organisation is a dynamic temporarily multi-organisation system that is created during a project development process. *Unclear job duties* was found to be the most frequent cause and its mean score is well above the other causes. Performance of construction project manager was the single most critical factor affecting successful project outcomes (Hartman, 2000; Bandow and Summer, 2001). Unfortunately, local project managers tend to assign inexperienced staff to handle the technical administration work. There is little difference in the mean scores of the third to the seventh most frequent causes. Three out of four least frequent causes are technical related causes.

Table 8.3 summarises the mean scores for frequency of occurrence of the categories of main causes to main contractor's site coordination problems. The mean scores for all three categories are above five.

Table 8.3: Mean score for frequency of occurrence

Categories of main causes	Mean score
Management system	6.39
Staffing	5.55
Technical	5.10
	Management system Staffing

8.4.3 Aggregated importance score

Aggregated importance score for each cause is taken as the combined score of the degree of contribution and the frequency of occurrence. Figure 8.3 summarises the aggregated importance scores in a descending order of priority.

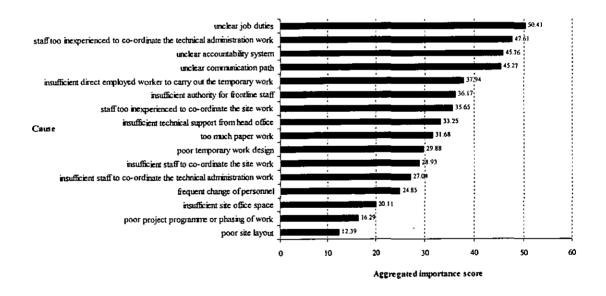


Figure 8.3: Aggregated importance score for causes to site coordination problems

As a nine-point scoring system was adopted for both the contribution and frequency

variable for this study, causes with aggregate importance score above 25 were considered

as the essential cause of site coordination problems in the HK building projects. Twelve out of 16 causes selected for the survey were considered as the essential causes as their scores are above 25. *Unclear job duties* was the most main cause of site coordination problems and its score is well above the others. Three out of the four highest scores causes are management system related causes. The three causes with the lowest scores are technical related causes.

Table 8.4: Aggregate importance score for the three main types of causes

Rank	Categories of main causes	Mean score
1	Management system	41.85
2	Staffing	33.64
3	Technical	22.37
3	Technical	22.37

Table 8.4 summarises the mean aggregate importance scores for the categories of main causes of main contractor's site coordination problems. The mean scores for management system related causes and staffing related causes are above 25. Even though the mean frequency score for technical is above five, its mean aggregate importance score is still below 25 because this category of cause has low mean contribution score.

8.5 Summary

Sixteen main contractor related causes that lead to ineffective and inefficient site coordination on HK building projects were identified from literature and advice from experienced industrial practitioners. These were classified into: staffing related causes;

technical related causes; and management system related causes. The results of the questionnaire survey show that:

- eleven causes made a significant contribution to main contractors' site
 coordination problems
- thirteen causes were identified as frequently occurring causes;
- twelve out of the initial 16 causes selected for the survey were considered as the essential causes based on their importance scores being above 25;
- unclear job duties was found to be the most important and the most frequent cause of site coordination problems: and
- the mean aggregated importance score of management system related causes was
 well above technical related causes and staffing related causes.

This chapter has identified twelve essential causes that contributed to the critical site coordination problems. Time, cost and quality are the three fundamental criteria used to assess the subcontract performance. A study to formulate the relationships among the identified essential causes, critical site coordination problems and the three project outcomes was conducted and has been presented in the following chapters.

CHAPTER NINE

FORECASTING THE PERFORMANCE OF

SUBCONTRACTORS

9.1 Introduction

The aim of this chapter is to explain the data analysis used to formulate the relationships that explain the outcomes of subcontracts in building projects based on the frequency of occurrence of the six critical site coordination problems as identified in the Chapter Seven. A questionnaire survey was conducted to achieve the purpose.

9.2 Research methodology

Data collected from Section C and Section D of the questionnaire, attached as Appendix A, were used for this stage of work. In Section C, respondents were requested to assign a score from 10 (represent 100% achievement) to 0 (represent 0% achievement) with a 0.5 interval to represent their views on the level of achievements in time performance, cost performance and quality performance of their firms in their current projects. In Section D, respondents were requested to assign a score from (10 occurred in every site operation) to 0 (never occurred in site operation) with a 0.5 interval to show the frequency of occurrence of the site coordination problems caused by main contractors in their current projects.

A descriptive statistic summary of the data is presented as a preliminary analysis of the data. Multiple regression analysis and neural network analysis were adopted to establish the forecasting models. The data analysis is divided into three main areas: the impact of site coordination problems to time performance, cost performance and quality performance of different types of subcontractors. For each forecasting model, stepwise and backward elimination multiple regression procedures were used to formulate the standard form regression equation that includes all the six critical site coordination problems and simple form regression equation that only includes the 'most critical' problems. NeuroShell2, a popular neural network analysis software, was used to generate the predicted project outcomes of the observed data. The correlation coefficients of the neural network outputs and the multiples regression questions are compared. Explanations to the findings of the analysis are presented as the conclusion of this chapter. The SPSS regression printouts and the neural network analysis outputs for this chapter are attached as Appendix M and Appendix N respectively.

9.3 Coding system

The coding systems summarized in Table 9.1 and Table 9.2 are adopted to simplify the description of the repeated terms and enhance the understanding of the flow of the data analysis work in this chapter.

Table 9.1: Overall coding system

Code	Item
SP	Site coordination problem
All	All type of subcontractors
Fin	Finishing work subcontractors
Str	Structural work subcontractors
BS	Building services work subcontractors

Table 9.2: Coding system for site coordination problems

Code	Site coordination problem
SCP1	Short notice to commence site work
SCP2	Late to provide plant support
SCP3	Interfacing work not yet completed
SCP4	Interfacing work not accurately completed
SCP5	Construction information not detail enough
SCP6	Construction information unclear or contradictory

9.4 Descriptive statistic for site coordination problems

9.4.1 Type of respondents

One hundred and seventeen replies were received in the questionnaire survey on the site coordination problems. The respondents were classified into three categories and are

shown in Table 9.3 and Figure 9.1. A table list the data of all the replies is attached as Appendix O.

Table 9.3: Type of respondents of the questionnaire survey on site coordination problems

Type of respondents	Number of reply		
Finishing work subcontractors	43		
Building services work subcontractors	40		
Structural work subcontractors	34		
Total	117		

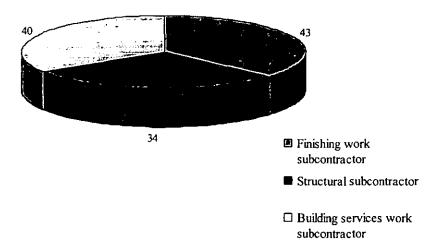


Figure 9.1: Distribution of the replies of site coordination problems survey

9.4.2 Descriptive statistics for all replies

Table 9.4 summarizes the descriptive statistics for the achievements in the three project outcomes in the current projects of the respondents in a descending order of priority. The mean scores of all the project outcomes are around 7. This shows that most of the respondents were able to achieve 70 per cent of their target standards in time performance,

cost performance and quality performance in their projects. The mean score for quality performance is the highest among the three outcomes. The mean scores for time performance and cost performance are almost the same. The lowest score for cost performance is 3 which is high under the 10-point rating system. The standard deviations for the three outcomes are not high and thus most of the scores concentrated around 5.5 to 8.5. Around 10 per cent of the respondents claimed that their projects could fully achieve the planned targets.

Table 9.4: Descriptive statistics for project outcomes achievements

Project	Mean score for	Standard	Maximum	Minimum
outcome	achievement in	deviation	score	score
	project outcome			
Quality	7.303	1.259	10.0	2.0
Cost	6.956	1.299	10.0	3.0
Time	6.940	1.579	10.0	1.0

The descriptive statistics for the frequency of occurrence of site coordination problems assigned by the respondents has been summarized in a descending order of priority in Table 9.5. Three out the six critical site coordination problems selected for this survey can be considered as frequently occurring problems in projects as their scores are over 5. SCP4 has the highest score and it is about 1.55 above the lowest score problem, SCP2. The standard deviations of the six site coordination problems are quite consistent and they are around 1.34 to 1.51.

Table 9.5: Descriptive statistics for site coordination problems

Site coordination	Mean score for	Standard	Maximum	Minimum
problems	frequency of	deviation	score	score
	occurrence			
SCP4	5.949	1.404	9.5	2.0
SCP6	5.551	1.377	8.5	1.5
SCP5	5.064	1.344	9.0	2.0
SCP1	4.927	1.419	9.0	1.0
SCP3	4.808	1.514	9.0	1.0
SCP2	4.402	1.425	8.5	1.0

a. Comparison between the finishing work subcontractors and the overall data

Table 9.6 compares the data of the finishing work subcontractors with the overall data. SCP1, SCP4, SCP5 and SCP6 are less frequently occurred in finishing work as their mean scores are lower than the overall data. The total score of the six site coordination problems are 0.34 lower than the overall data. This shows that less site coordination problems would occur in the finishing work in general. However, the time performance and cost performance of finishing work subcontractors are still below the overall data. Only the quality performance is almost the same as the overall data.

Table 9.6: Comparison between finishing work subcontractors and the overall data

A	В	С
6.674	6.940	-0.266
6.744	6.956	-0.212
7.302	7.303	-0.001
5.884	5.949	-0.065
5.302	5.551	-0.249
5.035	4.808	0.227
4.872	5.064	-0.192
4.849	4.927	-0.078
4.419	4.402	0.017
	6.674 6.744 7.302 5.884 5.302 5.035 4.872 4.849	6.674 6.940 6.744 6.956 7.302 7.303 5.884 5.949 5.302 5.551 5.035 4.808 4.872 5.064 4.849 4.927

- A: Mean score for achievement in project outcome or mean score for frequency of occurrence of the site coordination problems of finishing work subcontractors.
- B: Mean score for achievement in project outcome or mean score for frequency of occurrence of the site coordination problems of the overall data.
- C: Difference of A and B.

b. Comparison between structural work subcontractors and the overall data

The comparison between the data of the structural work subcontractors and the overall data is shown in Table 9.7. Four out of the six site coordination problems in structural work subcontractors have lower mean scores than the overall data. However, the total score of all the six site coordination problems are still 0.005 higher than the overall data.

This is because the increases in mean scores of SCP5 and SCP2 have compensated the total decreases in other four problems. This shows that these two site coordination problems would happen frequently in structural work. This may be because the structural work demands more plant support than the finishing work and building services work. Also, most of the structural work cannot be carried out without sufficient information while some of the finishing work and building services work can still be proceed based on the common trade practices if there are problems related to construction information. Although there is a slightly increase in total score of the frequency of occurrence of site coordination problems, structural work subcontractors still have better performance in time and cost than the overall data.

Table 9.7: Comparison between structural work subcontractors and the overall data

Outcomes/Variables	A	В	С
Time	7.221	6.940	0.281
Cost	7.335	6.956	0.379
Quality	7.353	7.303	0.050
SCP4	5.838	5.949	-0.111
SCP6	5.412	5.551	-0.139
SCP5	5.412	5.064	0.318
SCP1	4.779	4.927	-0.148
SCP3	4.662	4.808	-0.146
SCP2	4.603	4.402	0.201
		<u> </u>	

- A: Mean score for achievement in project outcome or mean score for frequency of occurrence of the site coordination problems of structural work subcontractors.
- B: Mean score for achievement in project outcome or mean score for frequency of occurrence of the site coordination problems of the overall data.
- C: Difference of A and B.

c. Comparison between building services work subcontractors and the overall data

The data of building services work subcontractors and the overall data have been compared in Table 9.8. More site coordination problems would be occurred in the building services work as its total score of all problems is 0.364 higher than the overall data. This is mainly due to increases in mean scores in SCP1 and SCP6. Building services work involves a lot of complicate coordination work among the different services systems especially the ceiling voids of the local high-rise buildings are always small. Unclear or contradictory construction information occurred frequently is thus expected by the building services subcontractors because main contractor are always unable to well plan the work well ahead. However, there is no significant impact on the performance of the building services subcontractors as the mean scores for the achievement of the three project outcome are about the same of the overall data. This shows that most of the site coordination problems can be resolved on site based on subcontractors' experience.

Table 9.8: Comparison between building services work subcontractors and the overall data

Outcomes/Variables	A	В	С
Time	6.988	6.940	0.048
Cost	6.863	6.956	-0.093
Quality	7.262	7.303	-0.041
SCP4	6.113	5.949	0.164
SCP6	5.938	5.551	0.387
SCP1	5.138	4.927	0.211
SCP5	4.975	5.064	-0.089
SCP3	4.688	4.808	-0.120
SCP2	4.213	4.402	-0.189

- A: Mean score for achievement in project outcome or mean score for frequency of occurrence of the site coordination problems of building services work subcontractors.
- B: Mean score for achievement in project outcome or mean score for frequency of occurrence of the site coordination problems of the overall data.
- C: Difference of A and B.

d. Summary of the descriptive statistics

Table 9.9 shows the mean scores for the achievements in project outcomes of different type of subcontractors in a descending order of priority. The two highest project outcomes achievement scores are from the structural work subcontractors and the two lowest project outcomes achievement scores are from the finishing work subcontractors.

Table 9.9: Mean score for achievements in project outcomes

Project outcome	Type of subcontractor	Mean score for
		achievement in project
		outcome
Quality	Structural work subcontractor	7.353
Cost	Structural work subcontractor	7.335
Quality	All types	7.303
Quality	Finishing work subcontractor	7.302
Quality	Building services work subcontractor	7.262
Time	Structural work subcontractor	7.221
Time	Building services work subcontractor	6.988
Cost	All types	6.956
Time	All types	6.940
Cost	Building services work subcontractor	6.863
Cost	Finishing work subcontractor	6.744
Time	Finishing work subcontractor	6.674

Table 9.10 shows the total mean score for the frequency of occurrence of the six site coordination problems for different type of subcontractors in a descending order of priority. The table shows that there is no significant difference in the amount of site coordination problems faced by the three types of subcontractors. It is therefore assumed

that there is no significant difference in the perception of site coordination problems amongst the three types of subcontractors.

Table 9.10: Total mean score for the six critical site coordination problems

Type of subcontractor	Total mean score for the six coordination		
	problems		
Building services work subcontractor	31.065		
Structural work subcontractor	30.706		
Finishing work subcontractor	30.361		
All types	30.701		

9.5 Type of models analyzed

9.5.1 Main models and sub-models

The project outcomes (i.e. time, cost and quality) are the dependent variables and the six site coordination problems are the independent variables of the regression equations. In this analysis, three main models to assess the impact of the site coordination problems to each of the project outcomes were formulated. Other than the main model, three submodels for the each type of subcontractors for each main model were also produced. As a result, three main models and nine sub-models were established in the analysis and are summarized in Table 9.11.

Table 9.11: Models generated to assess the impact of site coordination problems

Model code	Dependent	Type of	Type of data used for the analysis
	variable	model	
SP-Time-All	Time	Main model	All type of subcontractors
SP-Time-Fin	Time	Sub-model	Finishing work subcontractors
SP-Time-Str	Time	Sub-model	Structural work subcontractors
SP-Time-BS	Time	Sub-model	Building services work
			subcontractors
SP-Cost-All	Cost	Main model	All type of subcontractors
SP-Cost-Fin	Cost	Sub-model	Finishing work subcontractors
SP-Cost -Str	Cost	Sub-model	Structural work subcontractors
SP-Cost -BS	Cost	Sub-model	Building services work
			subcontractors
SP-Quality-All	Quality	Main model	All type of subcontractors
SP-Quality -Fin	Quality	Sub-model	Finishing work subcontractors
SP-Quality -Str	Quality	Sub-model	Structural work subcontractors
SP-Quality -BS	Quality	Sub-model	Building services work
			subcontractors

9.5.2 Standard form and simple form of regression equations

The regression equations of the models comprise six independent variables. In fact, some of the variables of the equations can be eliminated without having significant impact to the accuracy of the regression equations. The backward elimination method was adopted

to reduce the number of computations. The variable was eliminated if probability of F-to-remove was equal or greater than 0.100. In each stage of elimination process, the most insignificant independent variable was removed. The process would be terminated until no variable satisfied the elimination condition. For ease of reference in the data analysis, the regression equation containing all the six variables is named as standard form regression equation. The last stage regression equation generated in the elimination process is named as simple form regression equation. The simple form regression equation can able the main contractors to focus their efforts on monitoring the 'most critical' site coordination problems. As a cross check on how well the regression equations fit the data, the data were also processed by a neural network software called NeuroShell 2. In each model, two sets of neural network outputs were produced for the analysis that included all six independent variables of standard form regression equation and just the independent variables of the simple form regression equation respectively. Table 9.12 list the regression equation codes for different models.

Table 9.12: Regression equation code for site coordination problems analysis

SP-Time-All-final SP-Time-Fin-1 SP-Time-Fin-final SP-Time-Fin-final SP-Time-Fin-final SP-Time-Str-1 SP-Time-Str-1 SP-Time-Str-final SP-Time-BS-1 SP-Time-BS-1 SP-Time-BS-II SP-Time-BS-II SP-Time-BS-II SP-Cost-All-II SP-Cost-Fin-II SP-Cost-Fin-II SP-Cost-Fin-II SP-Cost-Fin-II SP-Cost-Fin-II SP-Cost-Fin-II SP-Cost-Fin-II SP-Cost-Fin-II SP-Cost-Fin-II SP-Cost-BS-II SP-Quality-All-II SP-Quality-Fin-II SP-Quality-Fin-II SP-Quality-Fin-II SP-Quality-Fin-II SP-Quality-Fin-II SP-Quality-Str-II SP-Quality-Str-II SP-Quality-BS-II SImple form SP-Quality-BS-II SP-Quality-BS-II SImple form	Regression equation code	Form of regression equation
SP-Time-Fin-final SP-Time-Str-I SP-Time-Str-I SP-Time-Str-final Simple form SP-Time-Str-final Simple form SP-Time-BS-1 Standard form SP-Time-BS-final Simple form SP-Cost-All-I SP-Cost-All-I SP-Cost-Fin-I SP-Cost-Fin-I SP-Cost-Fin-final Simple form SP-Cost-Fin-final Simple form SP-Cost - Str-I Standard form SP-Cost - Str-I Standard form SP-Cost - Str-I Standard form SP-Cost - Str-final Simple form SP-Cost - Str-final Simple form SP-Cost - Str-final Simple form SP-Cost - Str-I Standard form SP-Quality-All-I SP-Quality-All-I SP-Quality-All-Final Simple form SP-Quality - Fin-I Standard form SP-Quality - Fin-I Standard form SP-Quality - Str-I Standard form	SP-Time-All-1	Standard form
SP-Time-Fin-final SP-Time-Str-1 Standard form SP-Time-Str-final SP-Time-BS-1 Standard form SP-Time-BS-final Simple form SP-Cost-All-1 SP-Cost-All-final SP-Cost-All-final SP-Cost-Fin-final SP-Cost-Fin-final SP-Cost-Fin-final SP-Cost-Fin-final SP-Cost-Fin-final SP-Cost-Str-final SP-Cost -Str-final SP-Cost -Str-final SP-Cost -BS-1 Standard form SP-Cost -BS-final SP-Cost -BS-final SP-Cost -BS-final SP-Cost -BS-final SP-Quality-All-final SP-Quality-All-final SP-Quality-Fin-final SP-Quality -Fin-final SP-Quality -Fin-final SP-Quality -Fin-final SP-Quality -Str-final SImple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form	SP-Time-All-final	Simple form
SP-Time-Str-1 SP-Time-Str-final Simple form SP-Time-BS-1 Standard form SP-Cost-All-1 SP-Cost-All-final SP-Cost-Fin-1 Standard form SP-Cost-Fin-1 Standard form SP-Cost-Str-1 Standard form SP-Cost -Str-1 Standard form SP-Cost -Str-1 Standard form SP-Cost -BS-1 Standard form SP-Cost -BS-final Simple form SP-Cost -BS-final Simple form SP-Quality-All-1 Standard form SP-Quality-All-final Simple form SP-Quality -Fin-1 Standard form SP-Quality -Fin-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final	SP-Time-Fin-1	Standard form
SP-Time-Str-final SP-Time-BS-1 Standard form SP-Cost-All-1 Standard form SP-Cost-All-final Simple form SP-Cost-Fin-1 Standard form SP-Cost-Fin-1 Standard form SP-Cost-Fin-final Simple form SP-Cost-Str-I Standard form SP-Cost -Str-I Standard form SP-Cost -Str-final Simple form SP-Cost -BS-1 Standard form SP-Cost -BS-final Simple form SP-Cost -BS-final Simple form SP-Quality-All-I Standard form SP-Quality-All-final Simple form SP-Quality-Fin-I Standard form SP-Quality -Fin-I Standard form SP-Quality -Fin-final Simple form SP-Quality -Str-i Standard form SP-Quality -Str-i Standard form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form	SP-Time-Fin-final	Simple form
SP-Time-BS-1 SP-Time-BS-final Simple form SP-Cost-All-1 Standard form SP-Cost-All-final Simple form SP-Cost-Fin-1 Standard form SP-Cost-Fin-1 SP-Cost-Fin-final Simple form SP-Cost -Str-1 Standard form SP-Cost -Str-1 Standard form SP-Cost -BS-1 Standard form SP-Cost -BS-final Simple form SP-Quality-All-final Simple form SP-Quality-All-final Simple form SP-Quality -Fin-1 Standard form SP-Quality -Fin-final Simple form SP-Quality -Fin-final Simple form SP-Quality -Fin-final Simple form SP-Quality -Fin-final Simple form SP-Quality -Str-final Simple form	SP-Time-Str-1	Standard form
SP-Time-BS-final Simple form SP-Cost-All-1 Standard form SP-Cost-All-final Simple form SP-Cost-Fin-1 Standard form SP-Cost-Fin-final Simple form SP-Cost -Str-1 Standard form SP-Cost -Str-final Simple form SP-Cost -BS-1 Standard form SP-Cost -BS-final Simple form SP-Quality-All-1 Standard form SP-Quality-All-final Simple form SP-Quality -Fin-1 Standard form SP-Quality -Fin-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form	SP-Time-Str-final	Simple form
SP-Cost-All-1 Sp-Cost-All-final Simple form SP-Cost-Fin-1 Standard form SP-Cost-Fin-final Simple form SP-Cost-Fin-final Simple form SP-Cost -Str-1 Standard form SP-Cost -Str-final Simple form SP-Cost -BS-1 Standard form SP-Cost -BS-final Simple form SP-Quality-All-1 Standard form SP-Quality-All-final Simple form SP-Quality -Fin-1 Standard form SP-Quality -Fin-final Simple form SP-Quality -Fin-final Simple form SP-Quality -Str-final Simple form	SP-Time-BS-1	Standard form
SP-Cost-All-final Simple form SP-Cost-Fin-1 Standard form SP-Cost-Fin-final Simple form SP-Cost -Str-1 Standard form SP-Cost -Str-final Simple form SP-Cost -BS-1 Standard form SP-Cost -BS-final Simple form SP-Quality-All-1 Standard form SP-Quality-All-final Simple form SP-Quality -Fin-1 Standard form SP-Quality -Fin-final Simple form SP-Quality -Fin-final Simple form SP-Quality -Str-final Simple form	SP-Time-BS-final	Simple form
SP-Cost-Fin-1 SP-Cost-Fin-final SP-Cost -Str-1 Standard form SP-Cost -Str-1 Simple form SP-Cost -Str-final Simple form SP-Cost -BS-1 Standard form SP-Cost -BS-final Simple form SP-Quality-All-1 Standard form SP-Quality-All-final Simple form SP-Quality -Fin-1 Standard form SP-Quality -Fin-final Simple form SP-Quality -Fin-final Simple form SP-Quality -Str-1 Standard form SP-Quality -Str-1 Standard form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Standard form	SP-Cost-All-1	Standard form
SP-Cost-Fin-final SP-Cost -Str-1 Standard form SP-Cost -Str-final Simple form SP-Cost -BS-1 Standard form SP-Cost -BS-final Simple form SP-Quality-All-1 Standard form SP-Quality-All-final Simple form SP-Quality -Fin-1 Standard form SP-Quality -Fin-final Simple form SP-Quality -Fin-final Simple form SP-Quality -Str-i Standard form SP-Quality -Str-i Standard form SP-Quality -Str-final Simple form	SP-Cost-All-final	Simple form
SP-Cost -Str-1 SP-Cost -Str-final Simple form SP-Cost -BS-1 Standard form SP-Cost -BS-final Simple form SP-Quality-All-1 Standard form SP-Quality-All-final Simple form SP-Quality-Fin-1 Standard form SP-Quality -Fin-final Simple form SP-Quality -Fin-final Simple form SP-Quality -Str-1 Standard form SP-Quality -Str-1 Standard form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form	SP-Cost-Fin-1	Standard form
SP-Cost –Str-final SP-Cost –BS-1 Standard form SP-Cost –BS-final Simple form SP-Quality-All-1 Standard form SP-Quality-All-final SP-Quality –Fin-1 SP-Quality –Fin-final SP-Quality –Str-final SP-Quality –Str-final SP-Quality –Str-final Simple form	SP-Cost-Fin-final	Simple form
SP-Cost -BS-1 SP-Cost -BS-final Simple form SP-Quality-All-1 Standard form SP-Quality-All-final Simple form SP-Quality -Fin-1 Standard form SP-Quality -Fin-final Simple form SP-Quality -Fin-final Simple form SP-Quality -Str-1 Standard form SP-Quality -Str-1 Standard form SP-Quality -Str-1 Standard form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form	SP-CostStr-1	Standard form
SP-Cost -BS-final SP-Quality-All-1 SP-Quality-All-final SP-Quality -Fin-1 SP-Quality -Fin-final SP-Quality -Fin-final SP-Quality -Str-1 SP-Quality -Str-1 SP-Quality -Str-final SP-Quality -Str-final SImple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form	SP-Cost –Str-final	Simple form
SP-Quality-All-final Standard form SP-Quality-Fin-1 Standard form SP-Quality -Fin-final Simple form SP-Quality -Fin-final Simple form SP-Quality -Str-1 Standard form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form	SP-Cost -BS-1	Standard form
SP-Quality-All-final Simple form SP-Quality -Fin-1 Standard form SP-Quality -Fin-final Simple form SP-Quality -Str-1 Standard form SP-Quality -Str-final Simple form SP-Quality -Str-final Simple form SP-Quality -Str-final Standard form	SP-Cost -BS-final	Simple form
SP-Quality –Fin-1 SP-Quality –Fin-final SP-Quality –Str-1 SP-Quality –Str-final SP-Quality –Str-final SP-Quality –Str-final SP-Quality –Str-final SP-Quality –Str-final Standard form	SP-Quality-All-1	Standard form
SP-Quality –Fin-final Simple form SP-Quality –Str-1 Standard form SP-Quality –Str-final Simple form SP-Quality –BS-1 Standard form	SP-Quality-All-final	Simple form
SP-Quality -Str-1 Standard form SP-Quality -Str-final Simple form SP-Quality -BS-1 Standard form	SP-Quality Fin-1	Standard form
SP-Quality –Str-final Simple form SP-Quality –BS-1 Standard form	SP-Quality -Fin-final	Simple form
SP-Quality –BS-1 Standard form	SP-QualityStr-1	Standard form
	SP-Quality –Str-final	Simple form
SP-Quality -BS-final Simple form	SP-Quality -BS-1	Standard form
ı	SP-Quality -BS-final	Simple form

9.6 Time performance analysis

9.6.1 Analysis for all types of subcontractors (SP-Time-All)

a. Outliers and descriptive statistics for SP-Time-All model

A preliminary data analysis exercise was conducted to detect the extreme case using Mahalanobis statistical method. Two outlier cases were found and deleted from the data pool in order to achieve a more accurate result. One hundred and fifteen cases were included in the multiple regression analysis. Table 9.13 provides the descriptive statistics for the SP-Time-All model in the descending order of priority of the mean scores of the site coordination problems.

Table 9.13: Descriptive statistics for SP-Time-All model

*Mean	Standard deviation		
6.948	1.522		
5.961	1.382		
5.548	1.370		
5.070	1.323		
4.935	1.392		
4.796	1.488		
4.400	1.399		
	5.961 5.548 5.070 4.935 4.796		

^{*}Mean: mean score for achievement of time performance or mean score for frequency of occurrence of site coordination problems respectively.

b. Examining the variables of SP-Time-All model

The scatterplot matrix shown in Appendix P provides the preliminary visual examination on the relationship between time performance of the subcontractors and each of the six critical site coordination problems. The scatterplot shows that all the site coordination problems are fairly linearly related to time performance. Thus it is not necessary to transform the data by taking log or square root of any of the independent variables.

c. Testing hypothesis for SP-Time-All model

The F-statistics for the regression with all the six site coordination problems is 24.923 and the observed significance level is 0.000. The hypothesis that $b_k = 0$ is thus rejected. There is at least one of the coefficients is not 0.

d. The correlation coefficients of SP-Time-All model

Pearson correlation coefficient (r) describes how well the model fits the data. Table 9.14 summarizes the Pearson correlation coefficient (r) of the six site coordination problems in a descending order of priority of their absolute values. All the correlation coefficients are of negative values because the time performance achievement of the subcontractors would be deteriorated with the increase of the site coordination problems. Four out of the six site coordination problems have good correlation with time performance as their absolute scores are above 0.5.

Table 9.14: Correlation coefficient of SP-Time-All model

Variables	Pearson correlation coefficient (r)
SCP3	-0.666
SCP2	-0.650
SCP1	-0.627
SCP4	-0.560
SCP6	-0.411
SCP5	-0.392

e. Selecting variables for SP-Time-All model

Four stage equations were computed in the analysis using backward elimination method. SCP1, SCP2 and SCP3 were kept in the SP-Time-All-final regression equation. Table 9.15 lists the regression equations in each step of elimination process. The SP-Time-All-final equation shows that subcontractors' time performance mainly depends on the occurrence of short notice to commence site work (SCP1), late to provide plant support (SCP2) and interfacing work by other subcontractor not yet completed (SCP3).

Table 9.15: Regression equations of SP-Time-All model

Model	Regression equations
SP-Time-All-1	Time = 11.645 - 0.229xSCP1 - 0.343xSCP2 - 0.314xSCP3 -0.031xSCP4 +
	0.001xSCP5 - 0.068xSCP6
SP-Time-All-2	Time = 11.647 - 0.229xSCP1 - 0.342xSCP2 - 0.314xSCP3 - 0.031xSCP4 -
	0.068xSCP6
SP-Time-All-3	Time = 11.594 - 0.239xSCP1 - 0.354xSCP2 - 0.315xSCP3 - 0.071xSCP6
SP-Time-All-final	Time = 11.384 - 0.259xSCP1 - 0.368xSCP2 - 0.320xSCP3

f. Explaining the variability of SP-Time-All model

R Square, the square of the correlation coefficient, describes what proportion of the variability of the dependent variable is explained by the regression equation. Adjusted R Square can estimate how well the equation fits another set of data from the same population. Table 9.16 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values for the four stage regression equations. All the four stage regression equations are closely related to time performance as their R values are over 0.7. The R values for first two stage regression equations are the same. SCP5 and SCP4 are thus not too critical to the subcontractors' time performance.

Table 9.16: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Time-All model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
SP-Time-All-1		0.762	0.581	0.577	24.923	0.000
SP-Time-All-2	SCP5	0.762	0.581	0.561	30.184	0.000
SP-Time-All-3	SCP4	0.762	0.580	0.565	38.022	0.000
SP-Time-All-final	SCP6	0.760	0.577	0.566	50.507	0.000

9.6.2 Analysis for finishing work subcontractors (SP-Time-Fin)

a. The correlation coefficient of SP-Time-Fin model

Forty-three out of the 117 respondents were worked in the finishing work subcontractors. Table 9.17 shows the Pearson correlation coefficient (r) of the six site coordination problems of SP-Time-Fin model in a descending order of priority of their absolute values and the comparison with the values of SP-Time-All model. The site problems are

strongly related to time performance in the finishing work subcontracts as all their absolute r coefficients are above 0.5. SCP2, SCP4 and SCP1 are very strongly related to time performance as their absolute values are over 0.75. Compared with the SP-Time-All model, all the variables of SP-Time-Fin model have higher absolute value. This indicates that the site coordination problems of the finishing work subcontractors are more linearly correlated to time performance.

Table 9.17: Correlation coefficients of SP-Time-Fin model and comparison with SPTime-All model

Variables	A	В	C		
SCP2	-0.823	-0.650	0.173		
SCP4	-0.781	-0.560	0.221		
SCP1	-0.763	-0.627	0.136		
SCP3	-0.683	-0.666	0.017		
SCP6	-0.648	-0.411	0.237		
SCP5	-0.529	-0.392	0.137		

A: Pearson correlation coefficient (r) of SP-Time-Fin model.

B: Pearson correlation coefficient (r) of SP-Time-All model.

C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for SP-Time-Fin model

Table 9.18 lists the four regression equations generated in the analysis. SCP2, SCP4 and SCP6 were remained in the SP-Time-Fin-final regression equation. The SP-Time-All-

final equation also consists of three independent variables. However, only SCP2 is common in both of the SP-Time-All-final equation and SP-Time-Fin-final equation. The regression SP-Time-Fin-final equation shows that time performance of finishing work subcontractors depends mainly on three site coordination problems: *late to provide plant support (SCP2)*, interfacing work not accurately completed (SCP4) and construction information unclear or contradictory (SCP6).

Table 9.18: Regression equations of SP-Time-Fin model

Model	Regression equations
SP-Time-Fin-1	Time = 13.896 - 0.265xSCP1 - 0.429xSCP2 - 0.094x SCP3 - 0.300x SCP4 -
	0.158xSCP5 - 0.194xSCP6
SP-Time-Fin-2	Time = 13.794 - 0.293xSCP1 - 0.466x SCP2 - 0.280xSCP4 - 0.166x SCP5 -
	0.223xSCP6
SP-Time-Fin-3	Time = 13.456 - 0.256x SCP1 - 0.530x SCP2 - 0.290x SCP4 - 0.282xSCP6
SP-Time-Fin-final	Time = 13.375 - 0.607x SCP2 - 0.384xSCP4 - 0.333xSCP6

c. Explaining the variability of SP-Time-Fin model

Table 9.19 summarizes the R, R Square and Adjusted R Square values for the four stage regression equations for SP-Time-Fin model. The four stage equations are very strongly related to time performance as their R values are around 0.9. SP-Time-Fin-final equation is more strongly related to time performance than SP-Time-All-final equation as its R value is 0.130 higher.

Table 9.19: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Time-Fin model

Model	Variable R	R	R R Square	Adjusted R Square	F-statistic	Significance
SP-Time-Fin-1		0.906	0.821	0.791	28.486	0.000
SP-Time-Fin-2	SCP3	0.905	0.818	0.794	34.488	0.000
SP-Time-Fin-3	SCP5	0.898	0.806	0.786	43.445	0.000
SP-Time-Fin-final	SCP1	0.890	0.792	0.776	57.638	0.000
			1			

9.6.3 Analysis for structural work subcontractors (SP-Time-Str)

a. The correlation coefficient of SP-Time-Str model

Thirty-four out of the 117 replies were from the structural work subcontractors. Table 9.20 summarizes the Pearson correlation coefficient (r) of the six site coordination problems in a descending order of their absolute value for SP-Time-Str model and the comparison with the values of SP-Time-All model.

Table 9.20: Correlation coefficients of SP-Time-Str model and comparison with SPTime-All model

Variables	Variables A		С		
SCP3	-0.742	-0.666	0.076		
SCP2	-0.724	-0.650	0.074		
SCP1	-0.692	-0.627	0.065		
SCP4	-0.532	-0.560	-0.028		
SCP5	-0.409	-0.392	0.017		
SCP6	-0.346	-0.411	-0.065		

- A: Pearson correlation coefficient (r) of SP-Time-Str model.
- B: Pearson correlation coefficient (r) of SP-Time-All model.
- C: Difference of absolute value of A and absolute value of B.

There is only a slightly difference in the absolute value of the six variables and has no change in the order of priority of the variables in these two models. Four variables have absolute r coefficients above 0.5.

b. Selecting variables for SP-Time-Str model

Table 9.21 summarizes the regression equations in each stage of backward elimination analysis for SP-Time-Str model. Four stage regression equations were formulated in the analysis. The SP-Time-Str-final equation consists of SCP1, SCP2 and SCP3 which are the same of SP-Time-All-final equation. The SP-Time-Str-final indicates that time performance of the structural subcontractors depends mainly on three site coordination problem: short notice to commence site work (SCP1), late to provide plant support (SCP2) and interfacing work by other subcontractor not yet completed (SCP3).

Table 9.21: Regression equations of SP-Time-Str model

Model	Regression equations				
SP-Time-Str-1	Time = 12.299 - 0.350xSCP1 - 0.421xSCP2 - 0.420x SCP3 + 0.117x SCP4 +				
	0.119xSCP5 - 0.155xSCP6				
SP-Time-Str-2	Time = 12.542 - 0.314xSCP1 - 0.403x SCP2 - 0.422xSCP3 + 0.127x SCP4 -				
	0.137xSCP6				
SP-Time-Str-3	Time = 12.658 - 0.285x SCP1 - 0.352x SCP2 - 0.393x SCP3 - 0.114xSCP6				
SP-Time-Str-final	Time = 12.227 - 0.271x SCP1- 0.407xSCP2 - 0.394xSCP3				

c. Explaining the variability for SP-Time-Str model

Table 9.22 summarizes the R, R square, Adjusted R Square, F-statistics and Significance Level values of the four regression stage equations for SP-Time-Str model. The four stage equations are very strongly related to time performance as their R values are above 0.8. The change in R values is consistent in each of elimination process. SCP4, SCP5 and SCP6 thus have similar amount of influence on the time performance of the structural work subcontractors. Time-Str-final equation is slightly stronger related to time performance than of SP-Time-All-final equation as its R value is only 0.071 higher.

Table 9.22: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Time-Str model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
SP-Time-Str-1		0.844	0.712	0.648	11.103	0.000
SP-Time-Str-2	SCP 5	0.840	0.706	0.654	13.454	0.000
SP-Time-Str-3 .	SCP 4	0.836	0.698	0.657	16.773	0.000
SP-Time-Str-Final	SCP 6	0.831	0.697	0.660	22.320	0.000

9.6.4 Analysis for building services work subcontractors (SP-Time-BS)

a. The correlation coefficients of SP-Time-BS model

Forty out of the 117 replies were from the building services work subcontractors. Table 9.23 summarizes the Pearson correlation coefficient (r) for the six site coordination problems in a descending order of priority of their absolute values of the SP-Time-BS model and the comparison with the values of SP-Time-All model. In the building services work, only SCP3 is strongly related to time performance as its absolute r coefficient is

above 0.7. Four out of six variables have the absolute r coefficients lower than 0.5. Compared with the SP-Time-All model, four variables have higher absolute r coefficients.

Table 9.23: Correlation coefficients of SP-Time-BS model and comparison with SPTime-All model

A	В	С	
-0.711	-0.666	0.045	
-0.513	-0.627	-0.114	
-0.418	-0.650	-0.232	
-0.394	-0.392	0.002	
-0.371	-0.560	-0.189	
-0.258	-0.411	-0.153	
	-0.513 -0.418 -0.394 -0.371	-0.513	

A: Pearson correlation coefficient (r) of SP-Time-BS model.

B: Pearson correlation coefficient (r) of SP-Time-All model.

C: Difference of absolute value of A- absolute value of B.

b. Selecting variables for SP-Time-BS model

Table 9.24 lists the regression equations in each step of elimination process for SP-Time-BS model. Six stage equations were established in the analysis. The SP-Time-BS-final equation only has one independent variable, SCP3. This result matches the high absolute r coefficient of SCP3. The SP-Time-BS-final regression equation is very simple consisting of one independent variable only. It shows that the time performance of the

building services work subcontractors depends heavily the occurrence of *incomplete* interfacing work (SCP3).

Table 9.24: Regression equations of SP-Time-BS model

Model	Regression equations				
SP-Time-BS	Time = 8.906 - 0.075xSCP1 - 0.120xSCP2 - 0.498x SCP3 + 0.191x SCP4 -				
	0.047xSCP5 + 0.062xSCP6				
SP-Time-BS-1	Time = 8.907 - 0.057xSCP1 - 0.108x SCP2 - 0.514xSCP3 + 0.160x SCP4 +				
	0.046xSCP6				
SP-Time-BS-3	Time = 8.922 - 0.098x SCP2 - 0.540xSCP3 + 0.137x SCP4 + 0.029xSCP6				
SP-Time-BS-4	Time = 9.018 - 0.090x SCP2 - 0.536SCP3 + 0.141x SCP4				
SP-Time-BS-5	Time = 8.996 - 0.554SCP3 + 0.097x SCP4				
SP-Time-BS-final	Time = 9.361 - 0.506SCP3				

c. Explaining the variability of SP-Time-BS model

Table 9.25 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values for the six stage regression equations for SP-Time-BS model. The R values for all the six stage regression equations are above 7 and this shows that they are all strongly related to the time performance. R values of the SP-Time-BS-1 equation and SP-Time-BS-2 equation are the same. SCP5 thus has no significant impact to the time performance of the structural subcontractors. The different between the SP-Time-BS-1 and SP-Time-BS-final is only 0.011. This indicates that SCP3 is dominant in the time performance analysis. SP-Time-BS-final equation is not as accurate as SP-Time-All-final equation in explain the time performance for structural subcontractors as its R value is 0.049 lower.

Table 9.25: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Time-BS model

Variable	R	R Square	Adjusted R	F-statistic	Significance
removed			Square		
	0.722	0.522	0.435	5.998	0.000
SCP5	0.722	0.521	0.450	7.392	0.000
SCP1	0.721	0.519	0.464	9.451	0.000
SCP6	0.720	0.518	0.478	12.920	0.000
SCP2	0.716	0.513	0.487	19.487	0.000
SCP4	0.711	0.506	0.493	38.859	0.000
	SCP5 SCP1 SCP6 SCP2	removed 0.722 SCP5 0.722 SCP1 0.721 SCP6 0.720 SCP2 0.716	removed 0.722 0.522 SCP5 0.722 0.521 SCP1 0.721 0.519 SCP6 0.720 0.518 SCP2 0.716 0.513	removed Square 0.722 0.522 0.435 SCP5 0.722 0.521 0.450 SCP1 0.721 0.519 0.464 SCP6 0.720 0.518 0.478 SCP2 0.716 0.513 0.487	removed Square 0.722 0.522 0.435 5.998 SCP5 0.722 0.521 0.450 7.392 SCP1 0.721 0.519 0.464 9.451 SCP6 0.720 0.518 0.478 12.920 SCP2 0.716 0.513 0.487 19.487

9.6.5 Neural network analysis for time performance

Table 9.26 summarises the neural network analysis results in time performance for the different models in the descending order of priority of their correlation coefficients.

Table 9.26: Neural network analysis for time performance

Neural network output	A	В	С	D
SP-Time-Fin-1	0.905	10	43	0.0035768
SP-Time-Fin-final	0.900	8	43	0.0067964
SP-Time-Str-1	0.832	9	34	0.0007867
SP-Time-Str-final	0.873	8	34	0.0008179
SP-Time-All-1	0.763	14	117	0.0006010
SP-Time-All-final	0.763	12	117	0.0006462
SP-Time-BS-1	0.706	10	40	0.0000577
SP-Time-BS-final	0.772	7	40	0.0000046

A: Correlation coefficient.

B: Number of hidden neurons.

C: Number of patterns processed.

D: Minimum error when the training was stopped.

All the models computed by NeuroShell 2 software fit the data very well as their correlation coefficients are all over 0.7. The outputs of SP-Time-Fin model have the highest r coefficients which are over 0.9.

9.6.6 Summary for time performance analysis

Table 9.27 compares the correlation coefficients of the regression equations and the neural network analysis outputs. The correlation coefficients computed by these two methods are quite consistent for all the models and the maximum differences is only 0.061. As all the regression equations have high correlation coefficients, they are quite reliable to explain the relationship between subcontractors' time performance and the occurrence of the site coordination problems. Among the six coordination problems, *late to provide plant support* (SCP2) and *interfacing work not yet completed* (SCP3) are most critical to the time performance as they appear in three out of the four simple form regression equations.

Table 9.27: Comparison of multiple regression method and neural network method for time performance

Model	A	В	C	D
SP-Time-Fin-1	All	0.906	0.905	0.001
SP-Time-Fin-final	SCP2, SCP4, SCP6	0.890	0.900	-0.010
SP-Time-Str-1	All	0.844	0.832	0.012
SP-Time-Str-final	SCP1, SCP2, SCP3	0.831	0.874	-0.043
SP-Time-All-1	All	0.762	0.763	-0.001
SP-Time-All-final	SCP1, SCP2, SCP3	0.760	0.763	-0.003
SP-Time-BS-1	All	0.722	0.706	0.016
SP-Time-BS-Final	SCP3	0.711	0.772	-0.061

A: Independent variables included in the model.

B: Correlation coefficient computed by multiple regression method.

C: Correlation coefficient computed by neural network method.

D: Difference of B and C.

9.7 Cost performance analysis

9.7.1 Analysis for all types of subcontractors (SP-Cost-All)

a. Outliers and descriptive statistics for SP-Cost-All model

One extreme case was detected by adopting Mahalanobis method. As a result, one hundred and sixteen cases were included in the multiple regression analysis after deleting

the outlier. Table 9.28 provides the descriptive statistics for the SP-Cost-All model in a descending order priority of mean score of the site coordination problems.

Table 9.28: Descriptive statistics for SP-Cost-All model

Variables	*Mean	Standard deviation
Time	6.947	1.301
SCP4	5.935	1.403
SCP6	5.543	1.381
SCP5	5.060	1.350
SCP1	4.927	1.425
SCP3	4.819	1.516
SCP2	4.392	1.428

^{*}Mean: mean score for achievement of time performance or mean score for frequency of occurrence of site coordination problems respectively.

b. Examining the variables of SP-Cost-All model

The scatterplot matrix shown in Appendix P shows that all the site coordination problems are fairly linearly related to cost performance. Data transformation such as log or square root is not necessary.

c. Testing hypothesis for SP-Cost-All model

The F-statistics of the multiple regression analysis including all the six site coordination problems is 6.260. The value is not high but the observed significance level is 0.000.

Thus the hypothesis that $b_k = 0$ can still be rejected and it can be concluded that there is at least one of the coefficients is not 0.

d. The correlation coefficients of SP-Cost-All model

The Pearson correlation coefficients (r) of the six site coordination problems are summarized in Table 9.29 in a descending order of priority of their absolute values. All the r coefficients are of negative values because the achievement in cost performance would be decreased with the increase of occurrence of the site coordination problems. The model does not well fit with the data as the r coefficients all the site coordination problems are below 0.5. SCP3 has the highest absolute value while SCP5 has the lowest absolute value.

Table 9.29: Correlation coefficient of SP-Cost-All model

Variables	Pearson correlation coefficient (r)
SCP3	-0.471
SCP4	-0.398
SCP1	-0.373
SCP2	-0.367
SCP6	-0.294
SCP5	-0.223

d. Selecting variables for SP-Cost-All model

Five stage regression equations were computed in the backward elimination analysis.

Four independent variables were removed from the standard equation and the SP-Cost-

All-final equation consists of SCP3 and SCP4. Table 9.30 summarizes the regression equations in each step of elimination process. The SP-Cost-All-final equation shows that time performance of the subcontractors mainly depends on the occurrence two site coordination problems: interfacing work by other subcontractor not yet completed (SCP3) and interfacing work not accurately completed (SCP4). Both of these problems relates to the interfacing works by other subcontractors of the project. One possible explanation for this finding is that interfacing works are very complicate and difficult to complete to the satisfactions of the concerned subcontractors on time.

Table 9.30: Regression equations of SP-Cost-All model

Model	Regression equations
SP-Cost-All-1	Cost = 9.522 + 0.015xSCP1 - 0.040xSCP2 - 0.308xSCP3 -0.162xSCP4 +
	0.084xSCP5 - 0.087xSCP6
SP-Cost-All-2	Cost = 9.555 - 0.039xSCP2 - 0.302xSCP3 - 0.157xSCP4 + 0.083xSCP5 -
	0.085xSCP6
SP-Cost-All-3	Cost = 9.568 - 0.313xSCP3 - 0.173xSCP4 + 0.079xSCP5 - 0.087xSCP6
SP-Cost-All-4	Cost = 9.680 - 0.297xSCP3 - 0.152xSCP4 - 0.072xSCP6
SP-Cost-All-final	Cost = 9.490 - 0.311xSCP3 - 0.176xSCP4

e. Explaining the variability of SP-Cost-All model

Table 9.31 summarizes the R, R Square and Adjusted R Square values of the five SP-Cost-All model stage regression equations. The stages regression equations are only fairly explain the variability of the cost performance as their R values are round 0.5. The R values of the first two stage regressions are the same. SCP1 and SCP2 thus have minimal impact to the cost performance of the subcontractors.

Table 9.31: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Cost-All model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
SP-Cost-All-1		0.506	0.256	0.215	6.260	0.000
SP-Cost-All-2	SCP1	0.506	0.256	0.222	7.576	0.000
SP-Cost-All-3	SCP2	0.505	0.255	0.228	9.513	0.000
SP-Cost-All-4	SCP5	0.501	0.251	0.231	12.497	0.000
SP-Cost-All-final	SCP6	0.496	0.246	0.233	18.468	0.000

9.7.2 Analysis for finishing work subcontractors (SP-Cost-Fin)

a. The correlation coefficient of SP-Cost-Fin model

Table 9.32 summarizes the Pearson correlation coefficient (r) of the six site coordination problems in a descending order of priority of their absolute values for SP-Cost-Fin model and the comparison with the value of SP-Cost-All model. The SP-Cost-Fin model can fit the data much better than SP-Cost-All model as five out of the six independent variables have higher absolute r coefficients.

Table 9.32: Correlation coefficients of SP-Cost-Fin model and comparison with SP-Cost-All model

Variables	A	В	C
SCP4	-0.579	-0.398	0.181
SCP1	-0.507	-0.373	0.134
SCP3	-0.454	-0.471	-0.017
SCP2	-0.426	-0.367	0.059
SCP6	-0.357	-0.294	0.063
SCP5	-0.247	-0.223	0.024

A: Pearson correlation coefficient (r) of SP-Cost-Fin model.

B: Pearson correlation coefficient (r) of SP-Cost-All model.

C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for SP-Cost-Fin model

Six stage regression equations were generated in the backward elimination analysis. Table 9.33 lists the regression equations in each step of analysis. Only SCP4 was remained in the SP-Cost-Fin-final equation. The SP-Cost-All-final equation consists of two independent variables and SCP3 are commonly in these two regression equations. The SP-Cost-Fin-final equation shows that the cost performance of the finishing work subcontractors mainly depends on the accuracy of the interfacing work (SCP4).

Table 9.33: Regression equations of SP-Cost-Fin model

Model	Regression equations
SP- Cost -Fin-1	Cost = 11.013 - 0.155xSCP1 +.179xSCP2 - 0.277x SCP3 - 0.569xSCP4 - 0.016xSCP5 +0.098xSCP6
SP- Cost -Fin-2	Cost = 10.983 - 0.151xSCP1 +0.174xSCP2 - 0.279xSCP3 - 0.570xSCP4 + 0.092xSCP6
SP- Cost -Fin-3	Cost = 11.071 - 0.135x SCP1 + 0.161x SCP2 - 0.242x SCP3 - 0.538xSCP4
SP- Cost -Fin-4	Cost = 11.054 + 0.137xSCP2 - 0.279xSCP3 - 0.597xSCP4
SP-Cost-Fin-5	Cost = 10.882 - 0.220xSCP3 - 0.515xSCP4
SP- Cost -Fin-final	Cost = 10.478 - 0.635xSCP4

c. Explaining the variability of SP-Cost-Fin model

Table 9.34 summarizes the R, R Square, Adjusted R Square values, F-statistic and Significance Level values of the six stage regression equations for SP-Cost-Fin model.

Table 9.34: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Cost-Fin model

Variable	R	R Square	Adjusted R F-statistic Square	Significance	
removed					
	0.621	0.386	0.283	3.764	0.005
SCP5	0.621	0.385	0.302	4.639	0.002
SCP6	0.617	0.381	0.316	5.853	0.001
SCP1	0.613	0.375	0.327	7.807	0.000
SCP2	0.606	0.368	0.336	11.629	0.000
SCP3	0.579	0.335	0.319	20.645	0.000
	SCP5 SCP6 SCP1 SCP2	removed 0.621 SCP5 0.621 SCP6 0.617 SCP1 0.613 SCP2 0.606	removed 0.621 0.386 SCP5 0.621 0.385 SCP6 0.617 0.381 SCP1 0.613 0.375 SCP2 0.606 0.368	removed Square 0.621 0.386 0.283 SCP5 0.621 0.385 0.302 SCP6 0.617 0.381 0.316 SCP1 0.613 0.375 0.327 SCP2 0.606 0.368 0.336	removed Square 0.621 0.386 0.283 3.764 SCP5 0.621 0.385 0.302 4.639 SCP6 0.617 0.381 0.316 5.853 SCP1 0.613 0.375 0.327 7.807 SCP2 0.606 0.368 0.336 11.629

The R values of the six equations are around 0.6 and higher than that of SP-Cost-All model. The R values of the first two equations are the same. Thus SCP5 are not very critical to cost performance for finishing work subcontractors.

9.7.3 Analysis for structural work subcontractors (SP-Cost-Str)

a. The correlation coefficient for SP-Cost-Str model

Table 9.35 summarizes the Pearson correlation coefficient of the six site coordination problems in a descending order of priority of their absolute values of the SP-Cost-Str model and the comparison with the values of SP-Cost-All model.

Table 9.35: Correlation coefficients of SP-Cost-Str model and comparison with SP-

Cost-All model

A	В	С
-0.368	-0.367	0.001
-0.218	-0.294	-0.076
-0.208	-0.471	-0.263
-0.146	-0.398	-0.252
-0.101	-0.223	-0.122
0.007	-0.373	-0.366
	-0.368 -0.218 -0.208 -0.146 -0.101	-0.368 -0.367 -0.218 -0.294 -0.208 -0.471 -0.146 -0.398 -0.101 -0.223

A: Pearson correlation coefficient (r) of SP-Cost-Str model.

B: Pearson correlation coefficient (r) of SP-Cost-All model.

C: Difference of absolute value of A and absolute value of B.

In principle, the increase in site coordination problems would cause the decrease in cost performance. However, only five variables of the SP-Cost-Str model have negative r coefficients. SCP1 has a very low positive value. This shows that the occurrence of short notice to commence site work (SCP1) is not inversely proportional to the cost performance of the structural work subcontractors. All the six variables have the absolute r coefficients below 0.5 and they are lower than that of the SP-Cost-All model. SCP2 has the highest absolute value which is still only 0.368. Thus the variables are only very slightly linear related to cost performance for the structural work subcontractors.

b. Selecting variables for SP-Cost-Str model

Backward elimination method was used to compute the most simple regression equation of SP-Cost-Str model. Table 9.36 summarizes the regression equations in each stage of elimination process. Five stage regression equations were generated in the analysis. The Sp-Cost-Str-final equation consists of SCP1 and SCP2 which are not included in the SP-Cost-All-final equation. The SP-Cost-Str-final equation shows that the time performance of the structural work subcontractors depends on the occurrence of two site coordination problems: short notice to commence site work (SCP1) and late to provide plant support (SCP2).

Table 9.36: Regression equations of SP-Cost-Str model

Model	Regression equations
SP-Cost-Str-1	Cost = 8.223 + 0.249xSCP1 - 0.371xSCP2 - 0.118x SCP3 + 0.065xSCP4 +
	0.067xSCP5 - 0.043xSCP6
SP-Cost-Str-2	Cost = 8.237 + 0.251xSCP1 - 0.370xSCP2 - 0.118xSCP3 + 0.066xSCP4 -
	0.042xSCP6
SP-Cost-Str-3	Cost = 8.091 + 0.258xSCP1 - 0.387xSCP2 - 0.117x SCP3 + 0.057xSCP4
SP-Cost-Str-4	Cost = 8.181 + 0.270xSCP1 - 0.359xSCP2 - 0.104xSCP3
SP-Cost-Str-final	Cost = 8.096 + 0.226xSCP1-0.399xSCP2

c. Explaining the variability for SP-Cost-Str model

Table 9.37 summarizes the R, R square, Adjusted R Square, F-statistic and Significance Level values of the five stage equations for SP-Cost-Str model. All the five stage equations do not have good linear relationship with cost performance as their R values are below 0.5. The R values of SP-Cost-Str-1 and SP-Cost-Str-2 are the same. SCP5 should have the least contribution to the cost performance for structural work.

Table 9.37: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Cost-Str model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square	ı	
SP-Cost-Str-1		0.483	0.233	0.063	1.367	0.264
SP-Cost-Str-2	SCP5	0.483	0.233	0.096	1.700	0.167
SP-Cost-Str-3	SCP6	0.480	0.230	0.124	2.167	0.980
SP-Cost-Str-4	SCP4	0.475	0.226	0.148	2.912	0.051
SP-Cost-Str-Final	SCP3	0.463	0.214	0.163	4.220	0.024

9.7.4 Analysis for building services work subcontractors (SP-Cost-BS)

a. The correlation coefficient of SP-Cost-BS model

Table 9.38 summarizes the Pearson correlation coefficient (r) of the six site coordination problems in a descending order of priority of their absolute values of the SP-Cost-BS model and the comparison with the value of SP-Cost-All model. In building services work, only SCP3 is strongly related to cost performance as its absolute r coefficients is above 0.6. The absolute r coefficients of the other five variables are lower than 0.5.

Table 9.38: Correlation coefficients of SP-Cost-BS model and comparison with SP-Cost-All model

Variables	A	В	С
SCP3	-0.623	-0.471	0.152
SCP1	-0.421	-0.373	0.048
SCP5	-0.364	-0.223	0.141
SCP2	-0.339	-0.367	-0.028
SCP4	-0.327	-0.398	-0.071
SCP6	-0.261	-0.294	-0.033

- A: Pearson correlation coefficient (r) of SP-Time-BS model.
- B: Pearson correlation coefficient (r) of SP-Time-All model.
- C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for SP-Cost-BS model

Backward elimination method was adopted to reduce the number of computations in formulating the stage of regression equations of SP-Cost-BS model. Table 9.39 lists the regression equations in each step of elimination process. Six stage regression equations were generated in the analysis. The SP-Cost-BS-final equation consists of SCP3 only which has the highest absolute r coefficient. SCP3 is also an independent variable in SP-Cost-All-final model. The regression equation of SP-Cost-BS-final model is very simple consisting one independent variable only. This indicates that *the site coordination* problem-interfacing work not yet completed (SCP3) is a dominant factor influencing the cost performance of the structural work subcontractors.

Table 9.39: Regression equations of SP-Cost-Str model

Model	Regression equations
SP-Cost-BS-1	Cost = 8.858 + 0.067xSCP1 - 0.014xSCP2 - 0.535x SCP3 + 0.084x SCP4 -
	0.002xSCSCP5 - 0.046xSCP6
SP-Cost-BS-2	Cost = 8.858 + 0.067xSCP1 - 0.014x SCP2 - 0.535xSCP3 + 0.082x SCP4 - 0.047xSCP6
SP-Cost-BS-3	Cost = 8.864 + 0.071xSCP1 - 0.539x SCP3 + 0.075x SCP4 -0.050xSCP6
SP-Cost-BS-4	Cost = 8.709 + 0.047x SCP1 - 0.538xSCP3 + 0.071x SCP4
SP-Cost-BS-5	Cost = 8.744 - 0.516SCP3 + 0.089x SCP4
SP-Cost-BS-final	Cost = 9.077 - 0.472xSCP3

c. Explaining the variability of SP-Cost-BS model

Table 9.40 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values for the six stage equations of SP-Cost-BS model. The R values for all the six equations are above 0.6 and thus these models can give good explanation of the cost

performance of the building services work subcontractors. The R values of the first three models of the elimination process are the same. This shows that SCP5 and SCP2 are not most critical to the cost performance.

Table 9.40: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Cost-BS model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
SP-Cost-BS-1		0.630	0.397	0.288	3.625	0.007
SP-Cost-BS-2	SCP5	0.630	0.397	0.309	4.482	0.003
SP-Cost-BS-3	SCP2	0.630	0.397	0.328	5.765	0.001
SP-Cost-BS-4	SCP6	0.629	0.395	0.345	7.842	0.000
SP-Cost-BS-5	SCP1	0.628	0.394	0.361	12.035	0.000
SP-Cost-BS-final	SCP4	0.623	0.389	0.373	24.163	0.000

9.7.5 Neural network analysis for cost performance

The results computed by NeuroShell 2 software for cost performance analysis of different models are summarized in the descending order of priority of their correlation coefficients in Table 9.41. All outputs of the cost performance analysis except the SP-Cost-Str model outputs have correlation coefficient higher than 0.5. The output of SP-Cost-BS-1 has the highest correlation coefficient.

Table 9.41: Neural network analysis for cost performance

Model	A	В	С	D
SP-Cost-BS-1	0.741	10	40	0.0010414
SP-Cost-BS-final	0.688	7	40	0.0006779
SP-Cost-All-1	0.594	14	117	0.0011366
SP-Cost-All-final	0.514	12	117	0.0028543
SP-Cost-Fin-1	0.565	10	43	0.0002024
SP-Cost-Fin-final	0.578	7	43	0.0007973
SP-Cost-Str-1	0.472	9	34	0.0014023
SP-Cost-Str-final	0.422	7	34	0.0015519

A: Correlation coefficient.

B: Number of hidden neurons.

C: Number of patterns process.

D: Minimum error when the training was stopped.

9.7.6 Summary for cost performance analysis

Table 9.42 compares the correlation coefficients for the regression equations and neural network output. The correlation coefficients computed by the two methods are consistent in all the models. Except SP-Cost-BS-1, the differences of the correlation coefficients are less than 0.1. Five out of the eight equations and outputs have correlation coefficients higher than 0.5. They are fairly good to be used to predict the cost performance of subcontractors based on the occurrence of the site coordination problems. SCP5 and

SCP6 are not included in any of the simple form regression equation. So these variables are not very critical to the cost performance of the subcontractors.

Table 9.42: Comparison of multiple regression method and neural network method for cost performance

Model	A	В	C	D
SP- Cost -BS-1	All	0.630	0.741	-0.111
SP- Cost -BS-Final	SCP3	0.623	0.688	-0.065
SP-Cost-Fin-1	All	0.621	0.565	0.056
SP- Cost -Fin-final	SCP4	0.579	0.578	0.001
SP- Cost -All-1	All	0.506	0.594	-0.088
SP- Cost -All-final	SCP3, SCP4	0.496	0.514	-0.018
SP- Cost -Str-1	All	0.483	0.472	0.011
SP- Cost -Str-final	SCP1, SCP2	0.463	0.422	0.041
		<u> </u>		

A: Independent variables in the model.

B: Correlation coefficient computed by multiple regression method.

C: Correlation coefficient computed by neural network method.

D: Difference of B and C.

9.8 Quality performance analysis

9.8.1 Analysis for all types of subcontractors (SP-Quality-All)

a. Outliers and descriptive statistics for SP-Quality-All model

The preliminary data analysis has identified two extreme cases by adopting Mahalanobis method. One hundred and fifteen cases were included in the multiple regression analysis after deleting the outliers. Table 9.43 provides the descriptive statistics for the SP-Quality-All model analysis in a descending order of priority of the mean score of the site coordination problems.

Table 9.43: Descriptive statistics for SP-Quality-All model

Variables	*Mean	Standard deviation	
Quality	7.313	1.268	
SCP4	5.935	1.409	
SCP6	5.535	1.378	
SCP5	5.039	1.341	
SCP1	4.913	1.418	
SCP3	4.787	1.496	
SCP2	4.383	1.416	

^{*}Mean: mean score for achievement of quality performance or mean score for frequency of occurrence of site coordination problems respectively.

b. Examining the variables of SP-Quality-All model

The scatterplot matrix in Appendix P show that quality performance is basically linearly related to each of the site coordination problems. As a result, data transformation is not necessary.

c. Testing hypothesis for SP-Quality-All model

The F-statistics of the multiple regression analysis including all the six site coordination problems is 12.279. The value is high and the observed significance level is 0.000. The hypothesis that $b_k = 0$ is thus rejected and there should be at least one of the coefficients is not 0.

d. The Pearson correlation coefficients of SP-Quality-All model

Table 9.44 summarizes the Pearson correlation coefficients of the six variables in a descending order of their absolute values. As the quality performance achievement should be decreased with the increase of occurrence of site coordination problems according to basic principle, all the correlation coefficients are of negative values. The data of the variables are not well fit the models as only SCP3 and SCP1 have the absolute r coefficients slightly above 0.5.

Table 9.44: Correlation coefficient of SP-Quality-All model

Variables	Pearson correlation coefficient (r)
SCP3	-0.586
SCP1	-0.539
SCP4	-0.491
SCP2	-0.485
SCP5	-0.353
SCP6	-0.316

e. Selecting variables for SP-Quality-All model

Backward elimination analysis has generated five stage regression equations for SP-Quality-All model. SCP1 and SCP3 were remained in the SP-Quality-All-final equation. Table 9.45 summarizes the regression equations in each step of elimination process.

Table 9.45: Regression equations of SP-Quality-All model

Model	Regression equations
SP-Quality-All-1	Quality = 10.564 - 0.160xSCP1 - 0.096xSCP2 - 0.283xSCP3 -0.094xSCP4
	- 0.024xSCP5 - 0.002xSCP6
SP-Quality-All-2	Quality = 10.559 - 0.161xSCP1 - 0.096xSCP2 - 0.283xSCP3 - 0.094xSCP4
	-0.024xSCP5
SP-Quality-All-3	Quality = 10.511 - 0.160xSCP1 - 0.100xSCP2 - 0.288xSCP3 - 0.100xSCP4
SP-Quality-All-4	Quality = 10.310 - 0.199xSCP1 - 0.140xSCP2 - 0.294xSCP3
SP-Quality-All-final	Quality = 10.151 - 0.241xSCP1 - 0.345xSCP3

The SP-Cost-All-final equation shows that subcontractors' quality performance mainly depends on the occurrence of two site coordination problems: short notice to commence site work (SCP1) and interfacing work by other subcontractor not yet completed (SCP3).

f. Explaining the variability of SP-Quality-All model

Table 9.46 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the five SP-Quality-All model stage equations. The stages equations are good to explain the variability of the quality performance as their R values are above 0.6. The R values of the first three stage equations are the same. Thus SCP6 and SCP5 can be eliminated without inducing any significant impact to quality performance of the subcontractors.

Table 9.46: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Quality-All model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
SP-Quality-All-1		0.636	0.405	0.372	12.233	0.000
SP-Quality-All-2	SCP6	0.636	0.405	0.377	14.815	0.000
SP-Quality-All-3	SCP5	0.636	0.404	0.382	18.652	0.000
SP-Quality-All-4	SCP4	0.631	0.399	0.382	24.522	0.000
SP-Quality-All-final	SCP2	0.620	0.384	0.373	34.887	0.000

9.8.2 Analysis for finishing work subcontractors (SP-Quality-Fin)

a. The correlation coefficient of SP-Quality-Fin model

Table 9.47 summarizes the Pearson correlation coefficient (r) of the six site coordination problems in a descending order of priority of their absolute values of SP-Quality-Fin

model and the comparison with the r coefficients of SP-Quality-All model. SP-Quality-Fin model can fit the data of quality performance better than SP-Quality-All model as the r coefficients of all variables except SCP3 are higher than that of SP-Quality-All model.

Table 9.47: Correlation coefficients of SP-Quality-Fin model and comparison with SP-Quality-All model

Variables	A	В	С
SCP2	-0.612	-0.485	0.127
SCP4	-0.591	-0.491	0.100
SCPI	-0.560	-0.539	0.021
SCP3	-0.458	-0.586	-0.128
SCP6	-0.452	-0.316	0.136
SCP5	-0.401	-0.353	0.048

A: Pearson correlation coefficient (r) of SP-Quality-Fin model.

B: Pearson correlation coefficient (r) of SP-Quality-All model.

C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for SP-Quality-Fin model

Table 9.48 lists the regression equations in each step of backward elimination process. Five stage equations were generated in the analysis. SCP2 and SCP4 were remained in the SP-Quality-Fin-final equation, which are not included in the SP-Quality-All-final equation. The SP-Time-Fin-final equation of model shows that quality performance of

the finishing work subcontractors is mainly influenced by two site coordination problems: late to provide plant support (SCP2) and interfacing work not yet completed (SCP4).

Table 9.48: Regression equations of SP-Quality-Fin model

Model	Regression equations
SP-Quality-Fin-1	Quality = 10.902 - 0.153xSCP1 - 0.237xSCP2 - 0.031x SCP3 -
	0.182xSCP4 - 0.107xSCP5 - 0.071xSCP6
SP-Quality-Fin-2	Quality = 10.936 - 0.143xSCP1 - 0.225xSCP2 - 0.188xSCP4 - 0.105xSCP5
	- 0.062xSCP6
SP-Quality-Fin-3	Quality = 10.875 - 0.165x SCP1 - 0.221x SCP2 - 0.205x SCP4 -
	0.121xSCP5
SP-Quality-Fin-4	Quality = 10.736 - 0.278xSCP2 - 0.282xSCP4 - 0.112xSCP4
SP-Quality-Fin-final	Quality = 10.449 - 0.319xSCP2 - 0.296xSCP4

c. Explaining the variability of SP-Quality-Fin model

Table 9.49 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance level values for the five stage equations for SP-Quality-Fin model.

Table 9.49: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Quality-Fin model

Variable	R	R Square	Adjusted R	F-statistic	Significance
removed			Square		
	0.671	0.450	0.358	4.910	0.001
SCP3	0.670	0.450	0.375	6.043	0.000
SCP6	0.669	0.447	0.389	7.667	0.000
SCP1	0.658	0.434	0.390	9.952	0.000
SCP5	0.649	0.421	0.392	14.528	0.000
	SCP3 SCP6 SCP1	removed 0.671 SCP3 0.670 SCP6 0.669 SCP1 0.658	removed 0.671 0.450 SCP3 0.670 0.450 SCP6 0.669 0.447 SCP1 0.658 0.434	removed Square 0.671 0.450 0.358 SCP3 0.670 0.450 0.375 SCP6 0.669 0.447 0.389 SCP1 0.658 0.434 0.390	removed Square 0.671 0.450 0.358 4.910 SCP3 0.670 0.450 0.375 6.043 SCP6 0.669 0.447 0.389 7.667 SCP1 0.658 0.434 0.390 9.952

The five stage equations are strongly related to quality performance as their R values are over 0.6. The R value has gradually reduced by 0.001 in each of the first three elimination stages. This demonstrates that SCP3, SCP6 and SCP1 only have similar impact to the quality performance of the finishing work subcontractors.

9.8.3 Analysis for structural work subcontractors (SP-Quality-Str)

a. The correlation coefficient for SP-Quality-Str model

Table 9.50 summarizes the Pearson correlation coefficient of the six site coordination problems in a descending order of priority of their absolute values of SP-Quality-Str model and the comparison with the values of SP-Quality-All model. The r coefficients of all the six variables of SP-Quality-Str model are higher than that of SP-Quality-All model. This shows that the data for structural work subcontractors can better explain the quality performance than the overall data. Four out of six variables have r coefficients higher than 0.5. SCP3 is strongly related to quality performance as its absolute value is over 0.7.

Table 9.50: Correlation coefficients of SP-Quality-Str model and comparison with SP-Quality-All model

Variables	A	В	C
SCP3	-0.722	-0.586	0.136
SCP2	-0.609	-0.485	0.124
SCP4	-0.593	-0.491	0.102
SCP1	-0.590	-0.539	0.051
SCP5	-0.424	-0.353	0.071
SCP6	-0.372	-0.316	0.056

A: Pearson correlation coefficient (r) of SP-Quality-Str model.

B: Pearson correlation coefficient (r) of SP-Quality-All model.

C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for SP-Quality-Str model

Table 9.51 summarizes the regression equations in each stage of backward elimination process. Five stage regression equations were generated in the analysis. The SP-Quality-Str-final equation consists of SCP3 and SCP6. SCP3 is also a variable included in the SP-Quality-All-final equation. The SP-Quality-Str-final equation shows that the quality performance of the structural work subcontractors mainly depends on two site coordination problems: interfacing work not yet completed (SCP3) and construction information unclear or contradictory (SCP4).

Table 9.51: Regression equations for SP-Quality-Str models

Model	Regression equations
SP-Quality-Str-1	Quality = 11.676 - 0.117xSCP1 - 0.078xSCP2 - 0.423x SCP3 -
	0.099xSCP4 - 0.001xSCP5 - 0.157xSCP6
SP-Quality-Str-2	Quality = 11.673 - 0.117xSCP1 - 0.078xSCP2 - 0.423xSCP3 - 0.099xSCP4
	- 0.157xSCP6
SP-Quality-Str-3	Quality = 11.688 - 0.133xSCP1 - 0.443xSCP3 - 0.119xSCP4 - 0.174x SCP6
SP-Quality-Str-4	Quality = 11.532 - 0.511xSCP3 - 0.155xSCP4 - 0.165xSCP6
SP-Quality-Str-final	Quality = 11.304 - 0.604xSCP3 - 0.210xSCP6

c. Explaining the variability for SP-Quality-Str model

Table 9.52 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the five stage equations of SP-Quality-Str model. All the five stage

equations can strongly explain the quality performance of structural work subcontractors as their R values are above 0.7. There is no change to the R value when SCP5 is eliminated. The R value of SP-Quality-Str-final equation is 0.133 higher than that of SP-Quality-All-final equation.

Table 9.52: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Quality-Str model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
SP-Quality-Str-1		0.777	0.603	0.515	6.485	0.000
SP-Quality-Str-2	SCP5	0.777	0.603	0.533	8.519	0.000
SP-Quality-Str-3	SCP2	0.775	0.600	0.545	10.895	0.000
SP-Quality-Str-4	SCP1	0.767	0.589	0.548	14.314	0.000
SP-Quality-Str-final	SCP4	0.753	0.567	0.539	20.270	0.000

9.8.4 Analysis for building services work subcontractors (SP-Quality-BS)

a. The correlation coefficients of SP-Quality-BS model

Table 9.53 summarizes the Pearson correlation coefficient (r) for the six site coordination problems in a descending order of priority of their absolute values of SP-Quality-BS model and the comparison with the value of SP-Quality-All model. All variables except SCP3 have absolute r coefficients higher than 0.5 and are lower than that of SP-Quality-All model. The SCP6 is poorly linear related to quality performance as its absolute r value is very low.

Table 9.53: Correlation coefficients of SP-Quality-BS model and comparison with SP-Quality-All model

A	В	С
-0.631	-0.586	0.045
-0.486	-0.539	-0.053
-0.309	-0.491	-0.182
-0.289	-0.353	-0.064
-0.265	-0.485	-0.220
-0.145	-0.316	-0.171
	-0.631 -0.486 -0.309 -0.289 -0.265	-0.631 -0.586 -0.486 -0.539 -0.309 -0.491 -0.289 -0.353 -0.265 -0.485

A: Pearson correlation coefficient (r) of SP-Quality-BS model.

B: Pearson correlation coefficient (r) of SP-Quality-All model.

C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for SP-Quality-BS model

Table 9.54 lists the regression equations n each step of elimination process. Six stage equations were formulated in the analysis. The SP-Quality-BS-final equation only consists of one independent variable: SCP3, which is also included in SP-Quality-All-final equation. The SP-Quality-BS-final equation is very simple and consists of one variable only. This shows that quality performance of the structural work subcontractors is mainly governed by one site coordination problem: *interfacing work not yet completed* (SCP3).

Table 9.54: Regression equations of SP-Quality-BS model

Model	Regression equations			
SP-Quality-BS-1	Quality = 8.652 - 0.157xSCP1 - 0.038xSCP2 - 0.505x SCP3 + 0.104x			
	SCP4 + 0.045xSCSCP5 + 0.129xSCP6			
SP-Quality-BS-2	Quality = 8.651 - 0.173xSCP1 + 0.027xSCP2 - 0.489x SCP3 + 0.135x			
	SCP4 + 0.144xSCP6			
SP-Quality-BS-3	Quality = 8.639 - 0.180xSCP1 - 0.482xSCP3 + 0.149xSCP4 + 0.151xSCP6			
SP-Quality-BS-4	Quality = 9.030 - 0.120xSCP1 - 0.449xSCP3 + 0.161xSCP6			
SP-Quality-BS-5	Quality = 9.947 - 0.514xSCP3 + 0.122xSCP6			
SP-Quality-BS-final	Quality = 9.487 - 0.475xSCP3			

c. Explaining the variability of SP-Quality-BS model

Table 9.55 below summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values for the six stage equations of SP-Quality-BS model.

Table 9.55: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of SP-Quality-BS model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
SP-Quality-BS-1		0.659	0.434	0.331	4.212	0.003
SP-Quality-BS-2	SCP5	0.658	0.433	0.350	5.194	0.001
SP-Quality-BS-3	SCP2	0.658	0.433	0.368	6.672	0.000
SP-Quality-BS-4	SCP4	0.648	0.420	0.371	8.674	0.000
SP-Quality-BS-5	SCP1	0.642	0.412	0.381	12.980	0.000
SP-Quality-BS-final	SCP6	0.631	0.398	0.382	25.149	0.000

The R values of all the six stage equations are above 0.6 and this shows that they are can well explain the quality performance of the structural work subcontractors. The R values of the first three stage equations are almost the same. SCP5 and SCP2 can thus be removed without having any significant impact to quality performance. The R value of SP-Quality-Str-final equation is only 0.011 higher than that of SP-Quality-All-final equation.

9.8.5 Neural network analysis for quality performance

Table 9.56 summarises the results computed by NeuroShell 2 for quality performance analysis in a descending order of priority of their correlation coefficients. All the neural networks outputs except that of SP-Quality-Str-1 are well fit to the data as their correlation coefficients are all over 0.6. The SP-Quality-BS-1 output has the highest correlation coefficient which is over 0.65.

Table 9.56: Neural network analysis for quality performance

Model	A	В	С	D
SP-Quality-BS-1	0.876	10	10	0.0014589
SP-Quality-BS-final	0.633	7	10	0.0014196
SP-Quality-Fin-1	0.657	10	43	0.0000340
SP-Quality-Fin-final	0.646	8	43	0.0001712
SP-Quality-All-1	0.622	14	14	0.0010516
SP-Quality-All-final	0.611	12	14	0.0011757
SP-Quality-Str-1	0.378	9	34	0.0015638
SP-Quality-Str-final	0.770	7	34	0.0013248

A: Correlation coefficient.

B: Number of hidden neurons.

C: Number of patterns process.

D: Minimum error when the training was stopped.

9.8.6 Summary for quality performance analysis

The comparison of the correlation coefficient for regression equations and neural network outputs are shown in Table 9.57. All the regression equations except SP-Quality-Str-1 and SP-Quality-BS-1 are reliable to explain the quality performance of the subcontractors as their correlation coefficients computed by the two methods are consistent. The simple form regression equations consist of one to two independent variables only. SCP3 appear in three out of the four simple form equations.

Table 9.57: Comparison of multiple regression method and neural network analysis

for quality performance

A	В	С	D
All	0.671	0.657	0.014
SCP2, SCP4	0.649	0.646	0.003
All	0.777	0.378	0.399
SCP3, SCP6	0.753	0.770	-0.017
All	0.636	0.622	0.014
SCP1, SCP3	0.620	0.611	0.009
All	0.659	0.876	-0.217
SCP3	0.631	0.633	-0.002
	All SCP2, SCP4 All SCP3, SCP6 All SCP1, SCP3 All	All 0.671 SCP2, SCP4 0.649 All 0.777 SCP3, SCP6 0.753 All 0.636 SCP1, SCP3 0.620 All 0.659	All 0.671 0.657 SCP2, SCP4 0.649 0.646 All 0.777 0.378 SCP3, SCP6 0.753 0.770 All 0.636 0.622 SCP1, SCP3 0.620 0.611 All 0.659 0.876

A: Independent variable included the model.

B: Correlation coefficient computed by multiple regression method.

C: Correlation coefficient computed by neural network analysis method.

D: Difference of B and C.

9.9 Summary

A questionnaire survey was conducted to collect data to formulate equations that explained the performance of the subcontractors based on the occurrence of critical site coordination problems. One hundred seventeen valid replies were collected. A descriptive statistic analysis was carried out to give preliminary information of the data. Multiple regression method was used to generate the equations to forecast the performance. The data were also processed by neural network software and the outputs of the analyses were used to cross check the accuracy of the regression equation.

The descriptive statistic analysis shows that subcontractors have better performance in quality. Their achievements in cost and time are similar. The structural work subcontractors can achieve better project outcomes than the building services work subcontractors and finishing work subcontractors. This may be because the sequence of structure work is more straightforward and involves less interfacing work than the other trades. As a result, they have better performance.

SPSS software was used to generate the multiple regression equations. The analysis covered one main model for the three project outcomes separately. There were three sub-

models for each of the main models for different types of subcontractors. As a result, the analysis covered 12 models. Table 9.58 summarizes the standard form regression equations for different models in the descending order of their R values. All of them except SP-Cost-Str-1 are good to explain the relationship between project outcomes and site coordination problems as they have the R values over 0.5. The regression equations for the time performance are more accurate than other project outcomes as their R values are high. This may be because the measurement of time performance achievement is more reliable than other two project outcomes. As mentioned in the previous chapter that time is the most important criterion to assess the performance of the subcontractors in the local project. Thus, most the respondents of this questionnaire always have the accurate information about the progress of work.

Table 9.58: R value for the standard form regression equations for project performance

Model	Regression equation	R value
SP-Time-Fin-1	Time = 13.896 - 0.265xSCP1 - 0.429xSCP2 - 0.094xSCP3 -	0.906
	0.300xSCP4 - 0.158xSCP5 - 0.194xSCP6	{
SP-Time-Str-1	Time = 12.299 - 0.350xSCP1 - 0.421xSCP2 - 0.420xSCP3 +	0.844
	0.117xSCP4 + 0.119xSCP5 - 0.155xSCP6	
SP-Quality-Str-1	Quality = 11.676 - 0.117xSCP1 - 0.078xSCP2 - 0.423xSCP3 -	0.777
	0.099xSCP4 - 0.001xSCP5 - 0.157xSCP6	
SP-Time-All-1	Time = 11.645 - 0.229xSCP1 - 0.343xSCP2 - 0.314xSCP3 -	0.762
	0.031xSCP4 + 0.001xSCP5 - 0.068xSCP6	
SP-Time-BS-1	Time = 8.906 - 0.075xSCP1 - 0.120xSCP2 - 0.498xSCP3 +	0.722
	0.191xSCP4 - 0.047xSCP5 + 0.062xSCP6	
SP-Quality-Fin-1	Quality = 10.902 - 0.153xSCP1 - 0.237xSCP2 - 0.031xSCP3 -	0.671
	0.182xSCP4 - 0.107xSCP5 - 0.071xSCP6	
SP-Quality-BS-1	Quality = 8.652 - 0.157xSCP1 - 0.038xSCP2 - 0.505xSCP3 +	0.659
	0.104xSCP4 + 0.045xSCSCP5 + 0.129xSCP6	
SP-Quality-All-1	Quality = 10.564 - 0.160xSCP1 - 0.096xSCP2 - 0.283xSCP3 -	0.636
	0.094xSCP4 - 0.024xSCP5 - 0.002xSCP6	
SP-Cost-BS-1	Cost = 8.858 + 0.067xSCP1 - 0.014xSCP2 - 0.535xSCP3 +	0.630
	0.084xSCP4 - 0.002xSCSCP5 - 0.046xSCP6	
SP-Cost-Fin-1	Cost = 11.013 - 0.155xSCP1 +.179xSCP2 - 0.277xSCP3 -	0.621
	0.569xSCP4 - 0.016xSCP5 +0.098xSCP6	
SP-Cost-All-1	Cost = 9.522 + 0.015xSCP1 - 0.040xSCP2 - 0.308xSCP3 -	0.506
	0.162xSCP4 + 0.084xSCP5 - 0.087xSCP6	
SP-Cost-Str-1	Cost = 8.223 + 0.249xSCP1 - 0.371xSCP2 - 0.118xSCP3 +	0.483
	0.065xSCP4 + 0.067xSCP5 - 0.043xSCP6	

Some of the site coordination problems (independent variables) of the regression equations can be eliminated without imposing any major influence to the project outcomes (dependent variables). This can enable the main contractor to focus their efforts in handling the most critical site coordination problems. Table 9.59 lists the simple form regression equations that were formulated by adopting backward elimination method in the descending order of priority of their R values. Table 9.60 analyses the importance of independent variables to the project outcomes. *Interfacing work not yet completed (SCP3)* is the most importance site coordination problem to subcontractors' performance as it is the independent variable of eight out of the twelve simple form regression equations. Main contractor can take less attention on *insufficient construction information problem (SCP5)* as none of the simple form regression equation has this independent variable. Problems related to *construction information (SCP5 & SCP6)* are not most critical in the cost performance of the subcontractors.

Table 9.59: Summary of the simple form regression equations for project performance

Model	Regression equation	R value
SP-Time-All-final	Time = 11.384 - 0.259xSCP1 - 0.368xSCP2 -	0.760
	0.320xSCP3	
SP-Time-Fin-final	Time = 13.375 – 0.607x SCP2 – 0.384xSCP4 –	0.890
	0.333xSCP6	
SP-Time-Str-final	Time = 12.227 – 0.271x SCP1– 0.407xSCP2 –	0.831
	0.394xSCP3	
SP-Time-BS-final	Time = $9.361 - 0.506$ SCP3	0.711
SP-Quality-All-final	Quality = 10.151 - 0.241xSCP1 - 0.345xSCP3	0.620
SP-Quality-Fin-final	Quality = 10.449 - 0.319xSCP2 - 0.296xSCP4	0.649
SP-Quality-Str-final	Quality = 11.304 - 0.604xSCP3- 0.210xSCP6	0.753
SP-Quality-BS-final	Quality = 9.487 - 0.475x SCP3	0.631
SP-Cost-All-final	Cost = 9.490 - 0.311xSCP3 - 0.176xSCP4	0.496
SP-Cost-Fin-final	Cost = 10.478 - 0.635xSCP4	0.606
SP-Cost-BS-final	Cost = 9.077 - 0.472xSCP3	0.623
SP-Cost-Str-final	Cost = 8.096 + 0.226xSCP1 – 0.399xSCP2	0.463

Table 9.60: Analysis of the importance of the site coordination problems

Site coordination	A	Project outcome	Type of subcontractor
problem			
SCP3	8	Time, Quality, Cost	All type
			Finishing work
			Structural work
			Building services work
SCP2	5	Time, Quality, Cost	All type
			Finishing work
			Structural work
SCP1	4	Time, Quality, Cost	All type
			Structural work
SCP4	4	Time, Quality, Cost	All type
			Finishing work
SCP6	2	Time, Quality	Finishing work
			Structural work
SCP5	0	-	-

A: Total number of simple form regression equations has that site coordination problem.

CHAPTER TEN

CONTRIBUTIONS OF THE CAUSES TO THE SITE

COORDINATION PROBLEMS

10.1 Introduction

The aim of this chapter is to explain the data analysis process that generates the equations that assess the contributions of the twelve essential causes to the six critical coordination problems in HK building projects.

10.2 Research methodology

Data collected from Section D of the questionnaire, attached as Appendix A, were used for this stage of work. Respondents of the questionnaire are requested to assign a score from 10 (totally agree) to 0 (totally disagree) with a 0.5 interval to represent their views on the contributions of the causes to the occurrence of the critical site coordination problems.

Descriptive statistic analysis was used in the preliminary examination of the data. Multiple regression analysis using SPSS software was used in the formulation of the regression equations used to assess the contributions of the causes to each of the site coordination problems. In order to determine the views from the different parties involved in the subcontracts, the data analyses were conducted under four headings:

overall data that included data from Subcontractors, data from Main Contractors and data from Consultants/clients. Apart from the stepwise multiple regression method, the backward elimination method was also applied in order to identify the 'most essential' causes of the individual site coordination problems from the perspectives of the different parties. Neural network analysis using NeuroShell2 software was conducted to validate the multiple regression analysis results. A comparison of the views from different parties is presented in the conclusion of this chapter. The SPSS regression printouts and the neural network analysis outputs for this chapter are attached as Appendix Q and R respectively.

10.3 Coding system

In addition to the coding system used in Chapter Nine, the coding systems shown in Table 10.1 and Table 10.2 were adopted to simplify the description of the essential terms and enhance the understanding of the data analysis in this chapter.

Table 10.1: Coding system for general terms

Code	Item
Ca	Cause of site coordination problem
AR	All type of respondents
MC	Main contractors
SC	Subcontractors
) SC	Subcontractors
CC	Clients and Consultants
	Olionia and Consultanto

Table 10.2: Coding system for causes of site coordination problems

Code	Cause of site coordination problem
Cal	Staff of the main contractor are too inexperienced to coordinate the technical
	administration work.
Ca2	Staff of the main contractor are too inexperienced to coordinate the site work.
Ca3	Main contractor does not have sufficient directly employed workers to carry
	out the temporary work.
Ca4	Main contractor does not have sufficient staff to coordinate the site work.
Ca5	Main contractor does not have sufficient staff to coordinate the technical
	administration work.
Ca6	Main contractor does not have sufficient technical support from the head
	office.
Ca7	Design of the temporary work provided by main contractor cannot meet the
	requirements requested by the subcontractors.
Ca8	Job duties of main contractor's staff are unclear.
Ca9	Communication paths within the main contractor organization are unclear.
Ca10	Frontline staff of main contractor do not have sufficient authority to handle the
	site coordination.
Cal l	Accountability systems within the main contractor organization are unclear.
Ca12	Main contractor's site coordination system demands too much paper work.

10.4 Descriptive statistic for the causes of site coordination problems

10.4.1 Type of respondents

One hundred and ninety-seven valid replies were collected for the analysis of the causes of the site coordination problems. The respondents were grouped into three headings shown in Table 10.3 and Figure 10.1. For each site coordination problem, four analysis exercises were conducted to investigate the views that represented: the industry as a whole; subcontractors; main contractors; and consultants/clients. A summary of the data for this chapter is attached as Appendix S.

Table 10.3: Type of respondents of the questionnaire survey on the causes of site coordination problems

Type of respondent	Number of replies
Subcontractors	117
Main contractors	55
Consultants and clients	25
Total	197

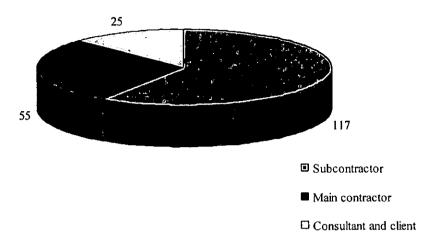


Figure 10.1: Distribution of the replies of the causes of site coordination problems survey

10.4.2 Descriptive statistics for all replies

Table 10.4 summarizes the descriptive statistics for the frequency of occurrence of the site coordination for all types of respondents in a descending order of priority of their mean scores. Five out of the six essential site coordination problems are considered as fairly frequently occurred problems as their mean scores are slightly higher than 5 under the 10-point scoring system. The difference in mean score between the most frequently occurred problem, SCP4 and the least frequently occurred problems, SCP2 is only 1 and the standard deviation of these six problems are quite consistent. It can thus be concluded that these six problems had the similar frequency of occurrence in the site operations.

Table 10.4: Descriptive statistics for site coordination problems for all types of respondents

Site coordination	Mean score for	Standard	Maximum	Minimum
problem	frequency of	Deviation	score	score
	occurrence			
SCP4	5.719	1.503	9.5	2
SCP6	5.462	1.487	9	1.5
SCP5	5.201	1.507	9	2
SCP1	5.071	1.511	10	l
SCP3	5.053	1.502	9	1
SCP2	4.721	1.513	9	1

The descriptive statistics for the contribution of the causes to the site coordination problems for all types of respondents has been summarized in Table 10.5 in a descending order of priority of their mean scores. All the causes are regarded to have essential contribution to the occurrence of the site coordination problems as their mean scores are over 5 under the 10-point scoring system. The mean score of the most essential cause, Ca9 is 6.297 which is only 1.025 higher than lowest mean score cause, Ca6. This shows that there was no dominant cause to the site coordination problems. The standard deviations of the causes are around two and are relatively high under the 10-point scoring system.

Table 10.5: Descriptive statistics for causes of site coordination problems for all types of respondents

Causes	Mean score	Standard	Maximum	Minimum
		deviation	score	score
Ca9	6.297	2.178	10	1
Ca8	6.170	1.918	10	2
Cal	6.127	1.990	10	1.5
Ca10	5.939	1.767	10	1
Ca3	5.660	1.999	10	0
Ca4	5.652	2.023	10	1
Ca12	5.599	1.964	10	1
Ca2	5.561	1.988	10	1
Ca5	5.510	1.996	10	1
Call	5.338	2.009	10	1
Ca7	5.272	2.022	9	1
Ca6	5.117	1.938	10	0

a. Comparison between subcontractors and the overall data

Table 10.6 compares the data of the subcontractors with the overall data. The order of priority of the frequency of occurrence of the site problems of these two sets of data is the same. But, the difference between the most and the least frequently occurred problems of the replies from subcontractors is enlarged to 1.547. The total mean score of the problems is 30.701 and is 0.526 lower than that of the overall data. This indicates that the total

amount of site coordination problems in a project claimed by subcontractor was less than those claimed by the main contractors and consultants/clients. This may be because subcontractors only assigned the score for the questionnaire based their own subcontracts while the other respondents assigned the score based on the whole building project and thus they have to face more site coordination problems.

Table 10.6: Comparison between subcontractors and the overall data for site coordination problems

Site coordination problem	A	В	С
SCP4	5.949	5.719	0.230
SCP6	5.551	5.462	0.089
SCP5	5.064	5.201	-0.137
SCP1	4.927	5.071	-0.144
SCP3	4.808	5.053	-0.245
SCP2	4.402	4.721	-0.319

- A: Mean score for frequency of occurrence of the site coordination problems of subcontractors.
- B: Mean score for frequency of occurrence of the site coordination problems of the overall data.
- C: Difference of A and B.

Table 10.7 compares the subcontractors' data with the overall data for the causes of site coordination problems. Subcontractors claimed that Ca9 was a dominant cause to the

problems as its score is over 7 and is 0.718 higher than the second essential cause. The difference between the most and the least essential causes is enlarged to 1.991 compared with the overall data.

Table 10.7: Comparison between subcontractors and the overall data for causes of site coordination problems

Causes	A	В	С
Ca9	7.162	6.297	0.865
Ca8	6.444	6.170	0.274
Cal	6.329	6.127	0.202
Ca12	5.765	5.599	0.166
Ca10	5.615	5.939	-0.324
Ca3	5.581	5.660	-0.079
Call	5.551	5.338	0.213
Ca7	5.500	5.272	0.228
Ca2	5.368	5.561	-0.193
Ca4	5.350	5.652	-0.302
Ca5	5.261	5.510	-0.249
Ca6	5.171	5.117	0.054
L	<u> </u>		

A: Mean score for the causes of site coordination problems of subcontractors.

B: Mean score for the causes of site coordination problems of overall data.

C: Difference of A and B.

b. Comparison between main contractors and the overall data

The comparison between the main contractors' data with the overall data has been presented in Table 10.8. The order of priority of the frequency of occurrence of these two sets of data is the same except SCP3 and SCP1. In fact, the difference in mean score of these problems is only 0.009. All the six problems were claimed by main contractors as slightly frequently occurred problems as their mean scores are just over 5. The difference between the most and the least frequently occurred problems is only 0.338. The total mean score of the problems is 31.785 which is 0.558 higher than that of the overall data.

Table 10.8: Comparison between the main contractors and the overall data for site coordination problems

Site coordination problem	A	В	С
SCP4	5.456	5.719	-0.263
SCP5	5.409	5.201	0.208
SCP3	5.273	5.053	0.220
SCP1	5.282	5.071	0.211
SCP6	5.247	5.462	-0.215
SCP2	5.118	4.721	0.397

- A: Mean score for frequency of occurrence of the site coordination problems of main contractor.
- B: Mean score for .frequency of occurrence of the site coordination problems of the overall data.
- C: Difference of A-B.

The comparison between the main contractors' data and the overall data for causes of site coordination problems is shown in Table 10.9. Subcontractors claimed that Ca10 was a dominant cause to the problems as its score is 6.4 and is 0.764 higher than the second essential cause. The difference between the most and the least essential causes is 1.800 and is greater than that of the overall data. Ca11, Ca9 and Ca7 were regarded as non-essential causes by main contractors as their scores are lower than 0.5. Nine out of the twelve causes have lower mean scores than that of the overall data. This may indicates that main contractors to a certain extent did not admit that they were the main contributor to the site coordination problems.

Table 10.9: Comparison between the main contractors and the overall data for causes of site coordination problems

Causes	A	В	С
Ca10	6.400	5.939	0.461
Ca4	5.764	5.652	0.112
Ca6	5.655	5.117	0.538
Ca5	5.500	5.510	-0.010
Ca8	5.482	6.170	-0.688
Ca2	5.464	5.561	-0.097
Ca3	5.400	5.660	-0.260
Cal	5.391	6.127	-0.736
Ca12	5.245	5.599	-0.354
Call	4.891	5.338	-0.447
Ca9	4.809	6.297	-1.488
Ca7	4.600	5.272	-0.672
		L	

- A: Mean score for the causes of site coordination problems of main contractors.
- B: Mean score for the causes of site coordination problems of overall data.
- C: Difference of A and B.

c. Comparison consultants/clients and the overall data

Table 10.10 compares the consultants/clients' data with the overall data. The total mean score of the six problems of consultants/clients is 32.426 and is 1.233 higher than that of the overall data. This indicates that the total amount of problems expected by the consultants/clients in their projects was higher than that claimed by the main contractors and subcontractors. All the six problems were claimed by consultants/clients as slightly frequently occurred problems and their mean scores are slightly over 5.

Table 10.10: Comparison between the consultants/clients and the overall data for site coordination problems

Site coordination problem	A	В	С
SCP3	5.720	5.053	0.667
SCP6	5.520	5.462	0.058
SCP5	5.380	5.201	0.179
SCP2	5.340	4.721	0.619
SCPI	5.280	5.071	0.209
SCP4	5.220	5.719	-0.499

- A: Mean score for frequency of occurrence of the site coordination problems of consultants/clients.
- B: Mean score for frequency of occurrence of the site coordination problems of overall data.

C: Difference of A and B.

The comparison between the consultants/clients' data and the overall data for the causes of site coordination problems has been presented in Table 10.11. The data of the third party of a subcontractor, consultants/clients, shows that there is no dominant cause to the problems. The mean scores of the causes gradually decrease from the most to the least essential causes. However, the difference between the most and the least essential causes is enlarged to 1.500 compared with the overall data. All the causes have scores over 0.5 and ten of them have higher mean scores than that of the overall data. Eight causes were regarded as essential causes by clients/consultant as their scores are over 0.6.

Table 10.11: Comparison between consultants/clients and the overall data for causes of site coordination problems

Causes	A	В	С
Ca4	6.820	5.652	1.168
Cal	6.800	6.127	0.673
Ca5	6.700	5.510	1.190
Ca2	6.680	5.561	1,119
Ca3	6.600	5.660	0.940
Ca10	6.440	5.939	0.501
Ca8	6.400	6.170	0.230
Ca6	6.200	5.117	1.083
Ca7	5.680	5.272	0.408
Ca12	5.600	5.599	0.001
Ca9	5.520	6.297	-0.777
Call	5.320	5.338	-0.018

- A: Mean score for the causes of site coordination problems of consultants/clients.
- B: Mean score for the causes of site coordination problems of the overall data.
- C: Difference of A and B.

d. Summary of the descriptive statistics

Table 10.12 summarizes the highest mean scores for the causes of the site coordination problems in a descending order of priority. Ca9 has the highest mean score. The most essential cause was claimed by subcontractors. Eight out of the twelve highest mean score causes were assigned by consultants/clients. Only one cause was from the main contractors. This indicates that consultants/clients generally agreed that site coordination problems were caused by main contractors.

Table 10.12: Highest mean score for the causes of site coordination problems

Causes	Highest mean score	Type of respondents
Ca9	7.162	Subcontractors
Ca4	6.820	Consultants/clients
Cal	6.800	Consultants/clients
Ca5	6.700	Consultants/clients
Ca2	6.680	Consultants/clients
Ca3	6.660	Consultants/clients
Ca8	6.444	Main contractors
Ca10	6.440	Consultants/clients
Ca6	6.200	Consultants/clients
Ca12	5.765	Subcontractors
Ca7	5.680	Consultants/clients
Call	5.551	Subcontractors

10.5 Type of models analyzed

10.5.1 Main models and sub-models

In the multiple regression analysis, the six critical site coordination problems are the dependent variables and twelve essential causes are the independent variables of the regression equations respectively. Similarly, the causes and the problems are the inputs and outputs of the neural network analysis. Six main models were processed for investigating the contributions of the twelve causes to each of the critical site coordination problems. In each main model, three sub-models were generated for each type of respondents. As a result, twenty-four models were compiled in this analysis and are listed in Table 10.13.

Table 10.13: Models generated to assess the contribution of the causes to the site coordination problems

Model code	Dependent variable	Type of model	Type of respondents	
Ca-SCP1-AR	SCP1-AR SCP1		All type of respondents	
Ca-SCP1-SC	SCP1	Sub-model	Subcontractors	
Ca-SCP1-MC	SCP1	Sub-model	Main contractors	
Ca-SCP1-CC	SCPI	Sub-model	Consultants/clients	
Ca-SCP2-AR	SCP2	Main model	All type of respondents	
Ca-SCP2-SC	SCP2	Sub-model	Subcontractors	
Ca-SCP2-MC	SCP2	Sub-model	Main contractors	
Ca-SCP2-CC	SCP2	Sub-model	Consultants/clients	
Ca-SCP3-AR	SCP3	Main model	All type of respondents	
Ca-SCP3-SC	SCP3	Sub-model	Subcontractors	
Ca-SCP3-MC	SCP3	Sub-model	Main contractors	
Ca-SCP3-CC	SCP3	Sub-model Consultants/client		

Table 10.13: Models generated to assess the contribution of the causes to the site coordination problems (Cont'd)

Ca-SCP4-AR	SCP4	Main model	All type of respondents
Ca-SCP4-SC	SCP4	Sub-model	Subcontractors
Ca-SCP4-MC	SCP4	Sub-model	Main contractors
Ca-SCP4-CC	SCP4	Sub-model	Consultants/clients
Ca-SCP5-AR	SCP5	Main model	All type of respondents
Ca-SCP5-SC	SCP5	Sub-model	Subcontractors
Ca-SCP5-MC	SCP5	Sub-model	Main contractors
Ca-SCP5-CC	SCP5	Sub-model	Consultants/clients
Ca-SCP6-AR	SCP6	Main model	All type of respondents
Ca-SCP6-SC	SCP6	Sub-model	Subcontractors
Ca-SCP6-MC	SCP6	Sub-model	Main contractors
Ca-SCP6-CC	SCP6	Sub-model	Consultants/clients

10.5.2. Standard form and simple form of regression equations

The regression equations of the models comprise twelve independent variables. In order to enable main contractors to enhance site coordination, the most essential causes among the twelve items have been identified by adopting the backward elimination method using SPSS software. In each stage of elimination process, the most insignificant variable was removed if probability of F-to-remove was equal or greater than 0.100. The process was stopped when no variables satisfied the elimination condition. Adopting the same system in Chapter Nine, the last stage regression equation of the elimination process is named as the simple form regression equation of a model and the equation using all the twelve independent variables is named as the standard form regression equation of a model.

As a cross checking process on the accuracy of the regression equations, the data were also processed by NeuralShell2. This neural network analysis covered both the standard form and simple form regression equations. A three layer back propagation paradigm neural network model was selected to analyse the data. Ten per cent of the data were extracted as the 'test set' for the network and complex and noisy mode was selected. As a result, learning rate and momentum factors is set to 0.05 and 0.5 respectively. Default number of hidden neurons was set. The calibration interval was set to 50 in order to achieve maximum accuracy. The training was stopped when the new test set average errors was climbing generally or at least not close to the lowest that has been shown. This software compiled a file to compare the actual and predicted outputs, and calculate the correlation coefficient of the hidden network which has been used to assess the reliability of the network. Table 10.14 illustrates the coding system for the standard and simple form of regression equations using the Ca-SCP1 model as an example.

Table 10.14: Coding system for the standard form and simple form regression equations

Type of regression equations
Standard form
Simple form

10.6 Analysis for SCP1

10.6.1 Analysis for all type of respondents for SCP1 (Ca-SCP1-AR)

c. Outliers for Ca-SCP1-AR model

Two extreme cases were found by adopting the Mahalanobis statistical method and they were deleted from the data for the analysis. As a result, one hundred ninety-five sets of data were included in generating the regression equations.

a. Examining the variables of Ca-SCP1-AR model

The scatterplot matrix shown in Appendix S provides the preliminary information of relationship between SCP1 and the twelve causes. The plots show that the causes are fairly linearly related to site coordination problems, SCP1. There is thus no need to transform the data for the multiple regression analysis.

b. Testing hypothesis for Ca-SCP1-AR model

The F-statistics for the regression analysis with all the twelve causes to the site coordination problems, SCP1 is 7.903 and the observed significance level is 0.000. Thus the hypothesis that $b_k = 0$ is rejected. There is at least one of the coefficients is not 0.

c. The correlation coefficients of Ca-SCP1-AR model

Table 10.15 summarizes the Pearson correlation coefficient (r) of the twelve causes of the site coordination problems of Ca-SCP1-AR model in a descending order of priority. All causes have positive coefficient because the increase of the causes should increase the site coordination problems. The coefficients range from 0.540 to 0.118. Only Ca2 is

fairly good in linear correlation with SCP1. The correlation coefficients of the other eleven causes are lower than 0.5.

Table 10.15: Correlation coefficient of Ca-SCP1-AR model

Variables	Pearson correlation coefficient (r)			
Ca2	0.540			
Ca4	0.486			
Ca1	0.462			
Ca5	0.426			
Ca3	0.394			
Ca7	0.363			
Call	0.317			
Ca8	0.311			
Ca10	0.297			
Ca6	0.293			
Ca9	0.234			
Ca12	0.118			

c. Selecting variables for Ca-SCP1-AR model

Ten stage regression equations were generated in the analysis for Ca-SCP1-AR model. Ca2, Ca4 and Ca7 were remained in the Ca-SP1-AR-final regression equation. Table 10.16 shows the standard form and simple form regression equations.

Table 10.16: Regression equations of Ca-SCP1-AR model

Model	Regression equations
Ca-SCP1-AR-1	SCP1 = 2.115 + 0.086xCa1 + 0.223xCa2 - 0.026xCa3 + 0.073xCa4 +
	0.077xCa5 - 0.054xCa6 + 0.126xCa7 - 0.017xCa8 - 0.028xCa9 +
	0.051xCa10 + 0.037xCa11 - 0.016xCa12
Ca-SCP1-AR-final	SCP1 = 2.284 + 0.275xCa2 + 0.129xCa4 + 0.103xCa7

d. Explaining the variability of Ca-SCP1-AR model

Table 10.17 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the ten stage regression equations of Ca-SCP1-AR model.

Table 10.17: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP1-AR model

Variable	R	R Square	Adjusted R	F-statistic	Significance
removed			Square		
	0.585	0.343	0.299	7.903	0.000
Ca8	0.585	0.342	0.303	8.661	0.000
Ca12	0.585	0.342	0.306	9.564	0.000
Cal 1	0.584	0.341	0.309	10.659	0.000
Ca3	0.584	0.341	0.313	12.024	0.000
Ca9	0.583	0.340	0.315	13.770	0.000
Ca10	0.581	0.338	0.317	15.984	0.000
Cal	0.578	0.335	0.317	19.000	0.000
Ca6	0.576	0.332	0.318	23.569	0.000
Ca5	0.573	0.328	0.318	31.092	0.000
	Ca8 Ca12 Ca11 Ca3 Ca9 Ca10 Ca1 Ca6	removed 0.585 Ca8 0.585 Ca12 0.585 Ca11 0.584 Ca3 0.584 Ca9 0.583 Ca10 0.581 Ca1 0.578 Ca6 0.576	removed 0.585 0.343 Ca8 0.585 0.342 Ca12 0.585 0.342 Ca11 0.584 0.341 Ca3 0.584 0.341 Ca9 0.583 0.340 Ca10 0.581 0.338 Ca1 0.578 0.335 Ca6 0.576 0.332	removed Square 0.585 0.343 0.299 Ca8 0.585 0.342 0.303 Ca12 0.585 0.342 0.306 Ca11 0.584 0.341 0.309 Ca3 0.584 0.341 0.313 Ca9 0.583 0.340 0.315 Ca10 0.581 0.338 0.317 Ca1 0.578 0.335 0.317 Ca6 0.576 0.332 0.318	removed Square 0.585 0.343 0.299 7.903 Ca8 0.585 0.342 0.303 8.661 Ca12 0.585 0.342 0.306 9.564 Ca11 0.584 0.341 0.309 10.659 Ca3 0.584 0.341 0.313 12.024 Ca9 0.583 0.340 0.315 13.770 Ca10 0.581 0.338 0.317 15.984 Ca1 0.578 0.335 0.317 19.000 Ca6 0.576 0.332 0.318 23.569

All the ten stage regression equations are fairly good linearly correlated to SCP1 as their R values of these models are ranged from 0.585 to 0.573. The R values for first three stage equations are the same and thus Ca8 and Ca12 are not essential causes to SCP1.

10.6.2 Analysis for subcontractors for SCP1 (Ca-SCP1-SC)

a. The correlation coefficients of Ca-SCP1-SC model

One hundred and seventeen replies were from subcontractors. Table 10.18 summarizes the Pearson correlation coefficients (r) of the twelve causes of Ca-SCP1-SC model in a descending order of priority and the comparison with the Ca-SCP1-AR model.

Table 10.18: Correlation coefficients of Ca-SCP1-SC model and comparison with

... Ca-SCP1-AR model

Variables	A	В	C
Ca2	0.451	0.540	-0.089
Cal	0.364	0.462	-0.098
Ca7	0.362	0.363	-0.001
Ca5	0.352	0.426	-0.074
Ca4	0.324	0.486	-0.162
Ca3	0.300	0.394	-0.094
Cal1	0.289	0.317	-0.028
Ca8	0.288	0.311	-0.023
Ca6	0.269	0.293	-0.024
Ca9	0.260	0.234	0.026
Ca10	0.252	0.297	-0.045
Ca12	0.158	0.118	0.040

A: Pearson correlation coefficient (r) of Ca-SCP1-SC model.

B: Pearson correlation coefficient (r) of Ca-SCP1-AR model.

C: Difference of absolute value of A and absolute value of B.

The data of the subcontractors indicate that causes do not have good linear correlation with SCP1 because all the r coefficients are below 0.5. Compared with the Ca-SCP1-AR model, ten out of twelve causes have lower r coefficients.

b. Selecting variables for Ca-SCP1-SC model

Eleven stage regression equations were generated. The Ca-SP1-SC-final regression equation consists of Ca2 and Ca4 only which are also the independent variables of the Ca-SP1-AR-final regression equation. Table 10.19 summarizes the standard and simple form regression equations of Ca-SP1-SC model.

Table 10.19: Regression equations of Ca-SCP1-SC model

Model	Regression equations
Ca-SCP1-SC -1	SCP1 = 1.743 + 0.044xCa1 + 0.284xCa2 - 0.102xCa3 - 0.020xCa4 +
	0.102xCa5 - 0.066xCa6 + 0.203xCa7 - 0.007xCa8 + 0.025xCa9 +
	0.084xCa10 + 0.007xCa11 + 0.019xCa12
Ca-SCP1-SC -final	SCP1 = 2.290 + 0.295xCa2 + 0.191xCa7

d. Explaining the variability of Ca-SCP1-SC model

Table 10.20 summarizes the R, R Square, Adjusted R Square F-statistic and Significance Level values of the eleven stage regression equations and all the eleven stage regression equations are only fairly good linearly correlated to SCP1 as their R values are all just slightly above 0.5. The R and R Square values for first five stage regression equations are

the same. Thus, Ca4, Ca8, Ca11 and Ca12 are not essential to SCP1 according to the views from subcontractors.

Table 10.20: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP1-SC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP1-SC-1		0.526	0.277	0.194	3.323	0.000
Ca-SCP1-SC-2	Call	0.526	0.277	0.201	3.660	0.000
Ca-SCP1-SC-3	Ca8	0.526	0.277	0.209	4.064	0.000
Ca-SCP1-AC-4	Ca4	0.526	0.277	0.216	4.553	0.000
Ca-SCP1-SC-5	Ca12	0.526	0.277	0.223	5.160	0.000
Ca-SCP1-SC-6	Ca9	0.525	0.276	0.229	5.933	0.000
Ca-SCP1-SC-7	Cal	0.524	0.274	0.235	6.932	0.000
Ca-SCP1-SC-8	Ca6	0.522	0.273	0.240	8.323	0.000
Ca-SCP1-SC-9	Ca5	0.518	0.269	0.243	10.286	0.000
Ca-SCP1-SC-10	Ca3	0.511	0.261	0.242	13.323	0.000
Ca-SCP1-SC-final	Ca10	0.500	0.250	0.237	19.008	0.000

10.6.3 Analysis for main contractor for SCP1 (Ca-SCP1-MC)

a. The correlation coefficients of Ca-SCP1-MC model

Fifty-five replies were from main contractors. Table 10.21 summarizes the Pearson correlation coefficients (r) of the twelve causes of Ca-SCP1-MC model in a descending order of priority and the comparison with the Ca-SCP1-AR model. The r coefficients range from 0.597 to -0.015. Ca12 have negative r coefficient. This is not in line with the general rule that score of the causes should be directly proportional to the score of

problems. However, the influence of this cause to SCP1 can be neglected in the multiple regression analysis as its absolute r coefficient is very slow. Compared with the Ca-SCP1-AR model, the r coefficients of the causes are not consistent. The difference between the highest and lowest r coefficients is over 0.5.

Table 10.21: Correlation coefficient of Ca-SCP1-MC model

Variables	Α .	В	С
Ca2	0.597	0.540	0.057
Ca4	0.597	0.486	0.111
Cal	0.595	0.462	0.133
Ca5	0.509	0.426	0.083
Ca3	0.474	0.394	0.080
Ca7	0.424	0.363	0.061
Ca9	0.329	0.234	0.095
Ca8	0.308	0.311	-0.003
Call	0.276	0.317	-0.041
Ca10	0.141	0.297	-0.156
Ca6	0.084	0.293	-0.209
Ca12	-0.015	0.118	-0.133

A: Pearson correlation coefficient (r) of Ca-SCP1-MC model.

B: Pearson correlation coefficient (r) of Ca-SCP1-AR model.

C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for Ca-SCP1-MC model

.Eleven stage regression equations were generated. The Ca-SP1-SC-final regression equation consists of Ca1 and Ca4 only. Ca4 is one of the three independent variables of the Ca-SP1-AR-final regression equation. Table 10.22 summarizes the standard and simple form regression equations.

Table 10.22: Regression equations of Ca-SCP1-MC model

Model	Regression equations
Ca-SCP1-MC -1	SCP1 = 2.924 + 0.354xCa1 - 0.121xCa2 - 0.004xCa3 + 0.187xCa4 +
	0.099xCa5 - 0.025xCa6 + 0.112xCa7 - 0.037xCa8 + 0.035xCa9 -
	0.095xCa10 + 0.059xCa11 - 0.098xCa12
Ca-SCP1-MC -final	SCP1 = 2.398 + 0.267xCa1 + 0.251xCa4

c. Explaining the variability of Ca-SCP1-MC model

Table 10.23 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the eleven stage regression equations. The stage regression equations are strongly linearly correlated to SCP1 as their R values range from 0.702 to 0.661. There is no difference in R values of first two stage regression equations. Ca3 have the lowest influence to SCP1 according to the views from main contractors.

Table 10.23: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP1-MC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP1-MC-1		0.702	0.493	0.348	3.397	0.002
Ca-SCP1-MC-2	Ca3	0.702	0.493	0.363	3.794	0.001
Ca-SCP1-MC-3	Ca9	0.701	0.492	0.377	4.261	0.000
Ca-SCP1-MC-4	Ca8	0.701	0.492	0.390	4.837	0.000
Ca-SCP1-MC-5	Call	0.699	0.489	0.400	5.507	0.000
Ca-SCP1-MC-6	Ca10	0.698	0.487	0.411	6.374	0.000
Ca-SCP1-MC-7	Ca2	0.695	0.483	0.419	7.488	0.000
Ca-SCP1-MC-8	Ca5	0.691	0.477	0.424	8.948	0.000
Ca-SCP1-MC-9	Ca7	0.684	0.468	0.425	10.976	0.000
Ca-SCP1-MC-10	Ca6	0.677	0.458	0.426	14.354	0.000
Ca-SCP1-MC-final	Ca12	0.661	0.437	0.416	20.206	0.000

10.6.4 Analysis for consultants/clients for SCP1 (Ca-SCP1-CC)

a. The correlation coefficients of Ca-SCP1-CC model

Twenty-five replies were from consultants/clients. Table 10.24 summarizes the Pearson correlation coefficients (r) of the twelve causes of Ca-SCP1-CC model in a descending order of priority and the comparison with the coefficients of the Ca-SCP1-AR model. The r coefficients of the causes decrease evenly from 0.755 to 0.399. Seven of them have r coefficient higher than 0.5. Compared with the Ca-SCP1-AR model, all causes except Ca5 have higher r coefficients.

Table 10.24: Correlation coefficient of Ca-SCP1-CC model

Variables	A	В	C
Ca2	0.755	0.540	0.215
Cal	0.709	0.462	0.247
Ca10	0.662	0.297	0.365
Ca8	0.639	0.311	0.328
Ca4	0.619	0.486	0.133
Ca9	0.565	0.234	0.331
Cal1	0.564	0.317	0.247
Ca6	0.498	0.293	0.205
Ca3	0.471	0.394	0.077
Ca12	0.441	0.118	0.323
Ca5	0.371	0.426	-0.055
Ca7	0.399	0.363	0.036

A: Pearson correlation coefficient (r) of Ca-SCP1-CC model.

B: Pearson correlation coefficient (r) of Ca-SCP1-AR model.

C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for Ca-SCP1-CC model

Eleven stage regression equations were generated. The Ca-SP1-CC-final regression equation consists of Ca2 and Ca8 only. Ca2 is one of the three independent variables

included in the Ca-SP1-AR-final regression equation. Table 10.25 summarizes the standard and simple form regression equations.

Table 10.25: Regression equations of Ca-SCP1-CC model

Model	Regression equations
Ca-SCP1-CC -1	SCP1 = 0.755 - 0.041xCa1 + 0.445xCa2 - 0.145xCa3 + 0.220xCa4 -
	0.185xCa5 + 0.153xCa6 - 0.039xCa7 + 0.185xCa8 + 0.138xCa9 -
	0.033xCa10 + 0.046xCa11 - 0.032xCa12
Ca-SCP1-CC -final	SCP1 = 0.177 + 0.442xCa2 + 0.336xCa8

c. Explaining the variability of Ca-SCP1-CC model

Table 10.26summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the eleven stage regression equations. The stage regression equations are very strongly linearly correlated to SCP1 as their R values are all over 0.8. The difference in R values for first five stage regression equations are the same. Ca1, Ca10, Ca11 and Ca12 are thus not essential causes to SCP1 according to the views from consultants/clients.

Table 10.26: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP1-CC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP1-CC-1		0.855	0.732	0.463	2.725	0.048
Ca-SCP1-CC-2	Cal	0855	0.731	0.504	3.216	0.024
Ca-SCP1-CC-3	Ca10	0.855	0.721	0.539	3.803	0.012
Ca-SCP1-CC-4	Call	0.855	0.731	0.569	4.523	0.005
Ca-SCP1-CC-5	Ca12	0.855	0.731	0.596	5.426	0.002
Ca-SCP1-CC-6	Ca7	0.854	0.729	0.618	6.540	0.001
Ca-SCP1-CC-7	Ca9	0.848	0.718	0.625	7.653	0.000
Ca-SCP1-CC-8	Ca6	0.842	0.709	0.632	9.249	0.000
Ca-SCP1-CC-9	Ca4	0.835	0.697	0.637	11.507	0.000
Ca-SCP1-CC-10	Ca5	0.832	0.691	0.647	15.686	0.000
Ca-SCP1-CC-final	Ca3	0.825	0.681	0.652	23.494	0.000
l	L		1			1

10.6.5 Neural network analysis for Ca-SCP1 models

The neural network analysis results computed by the NeuroShell2 software for the causes to the SCP1 are summarized in the descending order of priority of their correlation coefficients in Table 10.27. All neural network outputs of the causes to SCP1 analysis have correlation coefficient higher than 0.5. The output of Ca-SCP1-CC-final has the highest correlation coefficient.

Table 10.27: Summary of neural network analysis for cause to SCP1

Neural network output	A	В	С	D
Ca-SCP1-CC -final	0.822	6	25	0.0027509
Ca-SCP1-MC -final	0.658	9	55	0.0291110
Ca-SCP1-MC -1	0.631	14	55	0.0332604
Ca-SCP1-AR -1	0.630	20	197	0.0096772
Ca-SCP1-CC -1	0.614	11	25	0.0039261
Ca-SCP1-AR -final	0.587	15	197	0.0097156
Ca-SCP1-SC -1	0.523	17	117	0.0031408
Ca-SCP1-SC -final	0.501	12	117	0.0033870

A: Correlation coefficient.

B: Number of hidden neurons.

C: Number of patterns processed.

D: Minimum error when the training was stopped.

10.6.6 Summary for analysis of the causes to SCP1

Table 10.28 compares the correlation coefficients computed by the multiple regression method and the neural network method for the different models of SCP1. All the models except Ca-SCP1-CC-1 have consistent correlation coefficients computed by the two methods and the maximum differences is only 0.071. The correlation coefficients of all the regression equations are above 0.5. Among them, regression equations for the main contractors and consultants/clients are quite reliable to explain the relationship between

the contributions of the causes to the occurrence of the SCP1. Ca2 is the most essential cause among the twelve causes selected for the survey because it is only independent variable included in three out of the four simple form regression equations for SCP1. Ca4 and Ca7 are the second essential causes.

Table 10.28: Comparison of multiple regression method and neural network method for SCP1

Model	A	В	C	D
Ca-SCP1-AR -1	All	0.585	0.630	-0.045
Ca-SCP1-AR -final	Ca2, Ca4, Ca7	0.573	0.587	-0.014
Ca-SCP1-SC -1	All	0.526	0.523	0.003
Ca-SCP1-SC -final	Ca2, Ca7	0.500	0.501	-0.001
Ca-SCP1-MC -1	All	0.702	0.631	0.071
Ca-SCP1-MC -final	Cal, Ca4	0.661	0.658	0.003
Ca-SCP1-CC-1	All	0.855	0.614	0.241
Ca-SCP1-CC -final	Ca2, Ca8	0.825	0.822	0.003

A: Independent variables included in the model

B: Correlation coefficient computed by multiple regression method

C: Correlation coefficient computed by neural network method

D: Difference of B and C

10.7 Analysis for SCP2

10.7.1 Analysis for all type of respondents for SCP2 (Ca-SCP2-AR)

a. Outliers

One extreme case was detected by adopting Mahalanobis statistical method and was deleted from the analysis. As a result, there were one hundred and ninety-six sets of data for the multiple regression analysis to SCP2.

a. Examining the variables of Ca-SCP2-AR model

Scatterplot matrix shown in Appendix T indicates that causes are fairly linearly related to site coordination problems, SCP2. Data transformation is not necessary.

c. Testing hypothesis for Ca-SCP2-AR model

The F-statistics for the regression analysis with all the twelve causes to site coordination problems, SCP2 is 7.108 and the observed significance level is 0.000. The hypothesis that $b_k = 0$ is thus rejected and it can be concluded that there is at least one of the coefficients is not 0.

d. The correlation coefficients of Ca-SCP2-AR model

Table 10.29 summarizes the Pearson correlation coefficient (r) of the twelve causes of the site coordination problems to SCP2 in a descending order of priority. All causes have positive coefficient. The coefficients range from 0.505 to 0.103. Only Ca4 has r coefficient slightly higher than 0.5. The other causes do not have good linear correlation with SCP2.

Table 10.29: Correlation coefficient of Ca-SCP2-AR model

Pearson correlation coefficient (r)
0.505
0.486
0.432
0.418
0.387
0.352
0.318
0.314
0.306
0.278
0.209
0.103

e. Selecting variables for Ca-SCP2-AR model

Ten stage regression equations were generated in the analysis. The Ca-SCP2-AR-final regression equation consists of three variables, Ca4, Ca5 and Ca10. Table 10.30 shows the details of the standard form and simple form regression equations of Ca-SCP2-AR model.

Table 10.30: Regression equations of Ca-SCP2-AR model

Model	Regression equations
Ca-SCP2-AR-1	SCP2 = 1.187 - 0.007xCa1 + 0.046xCa2 + 0.081xCa3 + 0.122xCa4 +
	0.133xCa5 + 0.010xCa6 + 0.011xCa7 + 0.050xCa8 - 0.050xCa9 +
	0.141xCa10 + 0.055xCa11 - 0.068xCa12
Ca-SCP2-AR -final	SCP2 = 1.844 + 0.199xCa4 + 0.169xCa5 + 0.140xCa10

f. Explaining the variability of Ca-SCP2-AR model

Table 10.31 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the ten stage regression equations of Ca-SCP2-AR model.

Table 10.31: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP2-AR model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP2-AR-1		0.570	0.324	0.280	7.324	0.000
Ca-SCP2-AR-2	Cal	0.570	0.324	0.284	8.032	0.000
Ca-SCP2-AR-3	Ca6	0.570	0.324	0.288	8.880	0.000
Ca-SCP2-AR-4	Ca7	0.569	0.324	0.291	9.912	0.000
Ca-SCP2-AR-5	Ca2	0.568	0.323	0.294	11.145	0.000
Ca-SCP2-AR-6	Ca9	0.566	0.320	0.295	12.664	0.000
Ca-SCP2-AR-7	Call	0.565	0.319	0.298	14.770	0.000
Ca-SCP2-AR-8	Ca8	0.562	0.315	0.297	17.507	0.000
Ca-SCP2-AR-9	Ca12	0.559	0.312	0.298	21.669	0.000
Ca-SCP2-AR-final	Ca3	0.552	0.304	0.293	28.003	0.000

The ten stage regression equations are only fairly good linearly correlated to SCP2 as their R values range from 0.570 to 0.552. The R values for first three stage equations are the same. This indicates that Ca1 and Ca6 are not essential to SCP2.

10.7.2 Analysis for subcontractors for SCP2 (Ca-SCP2-SC)

a. The correlation coefficients of Ca-SCP2-SC model

The Pearson correlation coefficients (r) of the twelve causes of Ca-SCP2-SC in a descending order of priority and the comparison with the Ca-SCP2-AR model have been presented in Table 10.32.

Table 10.32: Correlation coefficient of Ca-SCP2-SC model

Variables	A	В	С
Ca5	0.387	0.486	-0.099
Ca10	0.385	0.387	-0.002
Ca4	0.384	0.505	-0.121
Ca3	0.364	0.418	-0.054
Ca9	0.364	0.209	0.155
Call	0.353	0.318	0.035
Ca8	0.345	0.306	0.039
Ca6	0.327	0.314	0.013
Ca7	0.308	0.278	0.030
Ca2	0.300	0.432	-0.132
Cal	0.252	0.352	-0.100
Ca12	0.181	0.103	0.078
			<u>. </u>

A: Pearson correlation coefficient (r) of Ca-SCP2-SC model.

P.

- B: Pearson correlation coefficient (r) of Ca-SCP2-AR model.
- C: Difference of absolute value of A and absolute value of B.

According to the subcontractors' data, all the causes are only fairly linearly correlation with SCP2 as the r coefficients range from 0.387 to 0.181. Compared with the Ca-SCP2-AR model, the r coefficient of the causes are more consistent. The difference between the highest and lowest r coefficients of Ca-SCP2-SC is only 0.206.

b. Selecting variables for Ca-SCP2-SC model

Ten stage regression equations were generated in the analysis. The Ca-SP2-SC-final regression equation consists of Ca4, Ca8 and Ca10. Ca4 and Ca10 are also the independent variables of the Ca-SP2-AR-final regression equation. Table 10.33 summarizes the details of the standard form and simple form regression equations.

Table 10.33: Regression equations of Ca-SCP2-SC model

Model	Regression equations
Ca-SCP2-SC-1	SCP2 = 0.964 - 0.065xCa1 + 0.036xCa2 + 0.057xCa3 + 0.060xCa4 +
	0.082xCa5 + 0.011xCa6 + 0.069xCa7 + 0.105xCa8 + 0.080xCa9 +
	0.164xCa10 + 0.026xCa11 - 0.028xCa12
Ca-SCP2-SC-final	SCP2 = 1.242 + 0.174xCa4 + 0.163xCa8 + 0.210xCa10
_	

c. Explaining the variability of Ca-SCP2-SC model

Table 10.34 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the ten stage regression equations. The R values of the stage regression equations range from 0.511 to 0.478. Only the first seven stage regression equation have

R value higher than 0.5. The R values for first three stage regression equations are the same. Thus Ca6 and Call are not essential to SCP2 according to the views from subcontractors.

Table 10.34: R, R Square, Adjusted R Square F-statistic and Significance Level values of the stage regression equations of Ca-SCP2-SC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square	1	
Ca-SCP2-SC-1		0.511	0.262	0.176	3.070	0.001
Ca-SCP2-SC-2	Ca6	0.511	0.262	0.184	3.380	0.000
Ca-SCP2-SC-3	Call	0.511	0.261	0.191	3.745	0.000
Ca-SCP2-AC-4	Ca12	0.510	0.260	0.198	4.187	0.000
Ca-SCP2-SC-5	Ca2	0.509	0.259	0.204	4.725	0.000
Ca-SCP2-SC-6	Cal	0.507	0.257	0.209	5.388	0.000
Ca-SCP2-SC-7	Ca3	0.505	0.255	0.214	6.268	0.000
Ca-SCP2-SC-8	Ca5	0.499	0.249	0.215	7.359	0.000
Ca-SCP2-SC-9	Ca9	0.490	0.240	0.213	8.856	0.000
Ca-SCP2-SC-final	Ca7	0.478	0.229	0.208	11.171	0.000

10.7.3 Analysis for main contractor for SCP2 (Ca-SCP2-MC)

a. The correlation coefficients of Ca-SCP2-MC model

Table 10.35 summarizes the Pearson correlation coefficients (r) of the twelve causes of Ca-SCP2-MC modal in a descending order of priority and the comparison with the Ca-SCP2-AR model. All causes except Ca6 and Ca12 have positive r coefficients. These two causes should have no essential influence in the multiple regression analysis as their absolute r coefficient is very low. The r coefficient of the causes gradually decreases

from 0.489 to 0.196. Only three causes have r coefficient slightly higher than 0.5. Compared with the Ca-SCP2-AR model, there is a bigger difference between highest and lowest r coefficients.

Table 10.35: Correlation coefficient of Ca-SCP2-MC model

Variables	A	В	C
Ca5	0.585	0.486	0.099
Ca4	0.573	0.505	0.068
Cal	0.508	0.352	0.156
Ca2	0.489	0.432	0.057
Ca3	0.458	0.418	0.040
Ca9	0.315	0.209	0.106
Ca7	0.303	0.278	0.025
Call	0.303	0.318	-0.015
Ca8	0.259	0.306	-0.047
Ca10	0.196	0.387	-0.191
Ca6	-0.028	0.314	-0.342
Ca12	-0.054	0.103	-0.157

A: Pearson correlation coefficient (r) of Ca-SCP2-MC model.

B: Pearson correlation coefficient (r) of Ca-SCP2-AR model.

C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for Ca-SCP2-MC model

Nine stage regression equations were generated. Ca1, Ca5, Ca6 and Ca12 are remained in the Ca-SP2-SC-final regression equation and none of them are common independent variable of the Ca-SP2-AR-final regression equation. Table 10.36 summarizes the details of the standard and simple form regression equations.

Table 10.36: Regression equations of Ca-SCP2-MC model

Model	Regression equations
Ca-SCP2-MC-1	SCP2 = 2.939 + 0.392xCa1 - 0.319xCa2 + 0.013xCa3 + 0.152xCa4 +
	0.258xCa5 - 0.042xCa6 + 0.029xCa7 - 0.055xCa8 + 0.057xCa9 +
	0.003xCa10 + 0.114xCa11 - 0.190xCa12
Ca-SCP2-MC-final	SCP2 = 2.957 + 0.232xCa1 + 0.333xCa5 - 0.038xCa6 - 0.136xCa12

c. Explaining the variability of Ca-SCP2-MC model

The R, R Square, Adjusted R Square, F-statistic and Significance Level values of the nine stage regression equations have been summarized in Table 10.37. All the regression equations have good linear correlation with SCP2. Their R values ranges from 0.729 to 0.692. The R and R Square values for first three stage regression equations are the same. Ca3 and Ca10 are regarded as non-essential causes to SCP2 according to the views from main contractors.

Table 10.37: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP2-MC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP2-MC-1		0.729	0.532	0.398	3.975	0.000
Ca-SCP2-MC-2	Ca10	0.729	0.532	0.412	4.440	0.000
Ca-SCP2-MC-3	Ca3	0.729	0.532	0.425	4.994	0.000
Ca-SCP2-MC-4	Ca7	0.728	0.531	0.437	5.654	0.000
Ca-SCP2-MC-5	Ca8	0.728	0.530	0.448	6.489	0.000
Ca-SCP2-MC-6	Ca9	0.727	0.529	0.459	7.544	0.000
Ca-SCP2-MC-7	Ca4	0.714	0.510	0.448	8.319	0.000
Ca-SCP2-MC-8	Ca2	0.702	0.493	0.441	9.526	0.000
Ca-SCP2-MC-final	Call	0.692	0.479	0.438	11.505	0.000

10.7.4 Analysis for main contractor for SCP2 (Ca-SCP2-CC)

a. The correlation coefficients of Ca-SCP2-CC model

Table 10.38 summarizes the Pearson correlation coefficient (r) of the twelve causes of the Ca-SCP2-CC model in a descending order of priority and the comparison with Ca-SCP2-AR model. All causes have positive coefficient. The r coefficients range from 0.755 to 0.417. Seven of them have r coefficient higher than 0.5. Ca8 and Ca2 are strongly linearly correlated to SCP2 as their r coefficients are over 0.7. Compared with Ca-SCP2-AR model, all except Ca5 have higher r coefficients.

Table 10.38: Correlation coefficient of Ca-SCP2-CC model

Variables	A	В	C
Ca8	0.755	0.306	0.449
Ca2	0.708	0.432	0.276
Cal	0.679	0.352	0.327
Ca9	0.635	0.209	0.426
Ca10	0.573	0.387	0.186
Ca4	0.559	0.505	0.054
Call	0.525	0.318	0.207
Ca3	0.489	0.418	0.071
Ca6	0.463	0.314	0.149
Ca7	0.462	0.278	0.184
Ca5	0.434	0.486	-0.052
Ca12	0.417	0.103	0.314

A: Pearson correlation coefficient (r) of Ca-SCP2-CC model

B: Pearson correlation coefficient (r) of Ca-SCP2-AR model

C: Difference of absolute value of A and absolute value of B

b. Selecting variables for Ca-SCP2-CC model

Eleven stage regression equations were generated in the analysis. Ca-SP2-SC-final regression equation consists of Ca2 and Ca8 and none of them are common independent

variable of the Ca-SP2-AR-final regression equation. Table 10.39 summarizes the details of the standard and simple form regression equations.

Table 10.39: Regression equations of Ca-SCP2-CC model

Model	Regression equations
Ca-SCP2-CC -1	SCP2 = 0.054 + 0.066xCa1 + 0.412xCa2 - 0.163xCa3 - 0.146xCa4 +
	0.237xCa5 - 0.080xCa6 + 0.098xCa7 + 0.492xCa8 + 0.158xCa9 -
	0.300xCa10 + 0.079xCa11 + 0.0004xCa12
Ca-SCP2-CC -final	SCP2 = 0.183 + 0.328xCa2 + 0.463xCa8

c. Explaining the variability of Ca-SCP2-CC model

The R, R Square, Adjusted R Square, F-statistic and Significance Level values of the eleven stage regression equations have been summarized in Table 10.40. All the regression equations are very strongly linearly correlated to SCP2. Their R values ranges from 0.908 to 0.860. The R and R Square values for first three stage regression equations are the same. Ca1 and Ca12 can thus be eliminated without causing significant influence to SCP2 according to the views from consultants/clients.

Table 10.40: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP2-CC model

Variable	R	R Square	Adjusted R	F-statistic	Significance
removed			Square		
	0.908	0.824	0.649	4.696	0.006
Ca12	0.908	0.824	0.676	5.549	0.002
Cal	0.908	0.824	0.698	6.538	0.001
Ca4	0.905	0.820	0.712	7.586	0.000
Call	0.905	0.818	0.727	8.983	0.000
Ca6	0.904	0.817	0.741	10.807	0.000
Ca7	0.901	0.812	0.749	12.916	0.000
Ca5	0.890	0.792	0.737	14.435	0.000
Ca3	0.880	0.779	0.730	17.231	0.000
Ca9	0.868	0.754	0.719	21.459	0.000
Ca10	0.860	0.740	0.716	31.243	0.000
	Ca12 Ca1 Ca4 Ca11 Ca6 Ca7 Ca5 Ca3 Ca9	removed 0.908 Ca12 0.908 Ca1 0.908 Ca1 0.908 Ca4 0.905 Ca11 0.905 Ca6 0.904 Ca7 0.901 Ca5 0.890 Ca3 0.880 Ca9 0.868	removed 0.908 0.824 Ca12 0.908 0.824 Ca1 0.908 0.824 Ca4 0.905 0.820 Ca11 0.905 0.818 Ca6 0.904 0.817 Ca7 0.901 0.812 Ca5 0.890 0.792 Ca3 0.880 0.779 Ca9 0.868 0.754	removed Square 0.908 0.824 0.649 Ca12 0.908 0.824 0.676 Ca1 0.908 0.824 0.698 Ca4 0.905 0.820 0.712 Ca11 0.905 0.818 0.727 Ca6 0.904 0.817 0.741 Ca7 0.901 0.812 0.749 Ca5 0.890 0.792 0.737 Ca3 0.880 0.779 0.730 Ca9 0.868 0.754 0.719	removed Square 0.908 0.824 0.649 4.696 Ca12 0.908 0.824 0.676 5.549 Ca1 0.908 0.824 0.698 6.538 Ca4 0.905 0.820 0.712 7.586 Ca11 0.905 0.818 0.727 8.983 Ca6 0.904 0.817 0.741 10.807 Ca7 0.901 0.812 0.749 12.916 Ca5 0.890 0.792 0.737 14.435 Ca3 0.880 0.779 0.730 17.231 Ca9 0.868 0.754 0.719 21.459

10.7.5 Neural network analysis for Ca-SCP2 models

The neural network analysis results computed by NeuroShell2 software for the analysis of causes to the SCP2 are summarized in the descending order of priority of their correlation coefficients in Table 10.41. The correlation coefficients of the outputs range from 0.849 to 0.471.

Table 10.41: Neural network analysis for Ca-SCP2 models

Neural network output	A	В	С	D
Ca-SCP2-CC -final	0.849	6	25	0.0004377
Ca-SCP2-MC -1	0.814	14	55	0.0135964
Ca-SCP2-MC -final	0.741	10	55	0.0109814
Ca-SCP2-CC -1	0.602	11	25	0.0004394
Ca-SCP2-AR -final	0.542	15	197	0.0114755
Ca-SCP2-SC -1	0.492	17	117	0.0051638
Ca-SCP2-AR -1	0.490	20	197	0.0117110
Ca-SCP2-SC -final	0.471	12	117	0.0071031

A: Correlation coefficient

B: Number of hidden neurons

C: Number of patterns processed

D: Minimum error when the training was stopped

10.7.6 Summary for analysis of the causes to SCP2 analysis

Table 10.42 compares the correlation coefficients computed by multiple regression method and neural network method for the different models of SCP2. All the correlation coefficients of the model except Ca-SCP2-CC-1 computed by these two methods are quite consistent and the maximum differences is only 0.085. The regression equations for data from consultants/clients and main contractors are good to explain the relationship for the contributions of the causes to the occurrence of the SCP2. Ca4, Ca8 and Ca10 are

equally essential among the twelve causes selected for the survey because they are included in two out of the four simple form regression equations for SCP2.

Table 10.42: Comparison of multiple regression method and neural network method for SCP2

Model	A	В	С	D
Ca-SCP2-CC -1	All	0.908	0.602	0.306
Ca-SCP2-CC -final	Ca2, Ca8	0.860	0.849	0.011
Ca-SCP2-MC -1	All	0.729	0.814	-0.085
Ca-SCP2-MC -final	Ca1, Ca5, Ca6, Ca12	0.692	0.741	-0.049
Ca-SCP2-AR -1	All	0.570	0.490	0.080
Ca-SCP2-AR -final	Ca4, Ca5, Ca10	0.552	0.542	0.010
Ca-SCP2-SC -1	All	0.511	0.492	0.019
Ca-SCP2-SC -final	Ca4, Ca8, Ca10	0.478	0.471	0.007

A: Independent variables included in the model

B: Correlation coefficient computed by multiple regression method

C: Correlation coefficient computed by neural network method

D: Difference of B and C

10.8 Analysis for SCP3

10.8.1 Analysis for all type of respondents (Ca-SCP3-AR)

a. Outliers

One extreme case was identified by Mahalanobis statistical statistical method and it was deleted from data. One hundred and ninety-six sets of data were included for the multiple regression analysis for SCP3.

b. Examining the variables of Ca-SCP3-AR model

The scatterplot matrix shown in Appendix T indicates that the causes are approximately linearly correlated to SCP3 based on visual examination of the data. As a result, there is no need to conduct data transformation for the multiple regression analysis.

c. Testing hypothesis for Ca-SCP3-AR model

The F-statistics for the multiple regression analysis with all the twelve causes to site coordination problem, SCP3 is 7.108 and the observed significance level is 0.000. The hypothesis that $b_k = 0$ is thus rejected and it can be concluded that there is at least one of the coefficients is not 0.

d. The correlation coefficients of Ca-SCP3-AR model

Table 10.43 summarizes the Pearson correlation coefficient (r) of the twelve causes of the site coordination problems to SCP3 in a descending order of priority. All causes have positive coefficients which range from 0.410 to 0.199. As all the r coefficients are below 0.5, the causes are only fairly linearly correlated to SCP3.

Table 10.43: Correlation coefficient of Ca-SCP3-AR model

Variables	Pearson correlation coefficient (r)		
Ca4	0.410		
Ca2	0.406		
Ca3	0.401		
Ca5	0.380		
Ca8	0.322		
Cal	0.318		
Ca10	0.306		
Ca7	0.291		
Ca6	0.259		
Call	0.282		
Ca9	0.222		
Ca12	0.199		

e. Selecting variables for Ca-SCP3-AR model

Ten stage regression equations were generated in the analysis. The Ca-SCP3-AR-final regression equation consists of three variables, Ca2, Ca3 and Ca8. Table 10.44 summarizes the details of the standard form and simple form regression equations of Ca-SCP3-AR model.

Table 10.44: Regression equations of Ca-SCP3-AR model

Model	Regression equations
Ca-SCP3-AR-1	SCP2 = 2.182 - 0.063xCa1 + 0.147xCa2 + 0.115xCa3 + 0.053xCa4 +
	0.090xCa5 - 0.055xCa6 + 0.045xCa7 + 0.093xCa8 - 0.019xCa9 +
	0.069xCa10 - 0.033xCa11 + 0.068xCa12
Ca-SCP3-AR-final	SCP2 = 2.562 + 0.153xCa2+ 0.162xCa3 + 0.119xCa8

f. Explaining the variability of Ca-SCP3-AR model

Table 10.45 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the ten stage regression equations of Ca-SCP3-AR model.

Table 10.45: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP3-AR model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP-AR-1		0.498	0.248	0.199	5.040	0.000
Ca-SCP3-AR-2	Ca9	0.498	0.248	0.203	5.518	0.000
Ca-SCP3-AR-3	Call	0.497	0.247	0.206	6.062	0.000
Ca-SCP3-AR-4	Ca4	0.495	0.245	0.209	6.723	0.000
Ca-SCP3-AR-5	Ca7	0.494	0.244	0.211	7.526	0.000
Ca-SCP3-AR-6	Ca6	0.492	0.242	0.214	8.570	0.000
Ca-SCP3-AR-7	Ca10	0.488	0.238	0.214	9.851	0.000
Ca-SCP3-AR-8	Cal	0.483	0.234	0.213	11.581	0.000
Ca-SCP3-AR-9	Ca12	0.478	0.228	0.212	14.123	0.000
Ca-SCP3-AR-final	Ca5	0.466	0.217	0.205	17.778	0.000

The ten stage regression equations are only fairly linearly correlated to SCP3 as all the R values of these models are below 0.5. The R values for first two stage equations are the same. This indicates that Ca9 is not essential to SCP3.

10.8.2 Analysis for subcontractors for SCP3 (Ca-SCP3-SC)

a. The correlation coefficients of Ca-SCP3-SC model

The Pearson correlation coefficients (r) of the twelve causes of Ca-SCP3-SC model, in a descending order of priority, and the comparison with Ca-SCP2-AR model are shown in Table 10.46.

Table 10.46: Correlation coefficient of Ca-SCP3-SC model

Variables	A	В	С
Ca2	0.351	0.406	-0.055
Ca5	0.336	0.380	-0.044
Ca4	0.323	0.410	-0.087
Ca3	0.320	0.401	-0.081
Cal	0.306	0.318	-0.012
Ca9	0.289	0.222	0.067
Ca8	0.286	0.322	-0.036
Ca6	0.273	0.259	0.014
Ca7	0.267	0.291	-0.024
Ca10	0.234	0.306	-0.072
Call	0.228	0.282	-0.054
Ca12	0.210	0.199	0.011

- A: Pearson correlation coefficient (r) of Ca-SCP3-SC model.
- B: Pearson correlation coefficient (r) of Ca-SCP3-AR model.
- C: Difference of absolute value of A and absolute value of B.

According to the subcontractors' data, all the causes are only slightly linearly correlated with SCP3 because all the r coefficients are below 0.04. The r coefficient of the causes of Ca-SCP3-AR model and Ca-SCP3-SC model are consistent. The biggest difference in r coefficient of these two models is only 0.072.

b. Selecting variables for Ca-SCP3-SC model

Eleven stage regression equations were generated in the analysis. The Ca-SP3-SC-final regression equation consists of Ca2 and Ca5. Ca2 is one of the three independent variables of Ca-SP3-AR-final regression equation. Table 10.47 summarizes the details of the standard form and simple form regression equations of Ca-SCP3-SC model.

Table 10.47: Regression equations of Ca-SCP3-SC model

Model	Regression equations
Ca-SCP3-SC-1	SCP3 = 1.531 + 0.020xCa1 + 0.146xCa2 + 0.021xCa3 + 0.055xCa4 +
	0.113xCa5 - 0.051xCa6 + 0.070xCa7 + 0.052xCa8 + 0.104xCa9 +
	0.019xCa10 - 0.082xCa11 + 0.094xCa12
Ca-SCP3-SC-final	SCP3 = 2.708 + 0.207xCa2 + 0.188xCa5

c. Explaining the variability of Ca-SCP3-SC model

Table 10.48 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the eleven stage regression equations of Ca-SCP3-SC model. All the

stage regression equations are only fairly linearly correlated to SCP3 as the R values of these models are below 0.5. The R values for first four stage regression equations are the same and the different between Ca-SCP3-SC-4 equation and Ca-SCP3-SC-5 equation is only 0.002. Ca1, Ca3 and Ca10 are thus not essential to SCP3 according to the views from subcontractors.

Table 10.48: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP3-SC model

Variable	R	R Square	Adjusted R	F-statistic	Significance
removed			Square		
	0.443	0.197	0.104	2.121	0.021
Ca10	0.443	0.197	0.112	2.335	. 0.013
Cal	0.443	0.196	0.120	2.589	0.008
Ca3	0.443	0.196	0.128	2.899	0.004
Ca6	0.441	0.195	0.135	3.266	0.002
Ca8	0.439	0.193	0.141	3.723	0.001
Ca4	0.437	0.191	0.147	4.322	0.000
Call	0.434	0.188	0.152	5.156	0.000
Ca7	0.429	0.184	0.155	6.319	0.000
Ca9	0.417	0.174	0.152	7.951	0.000
Ca12	0.395	0.156	0.141	10.518	0.000
	Ca10 Ca1 Ca3 Ca6 Ca8 Ca4 Ca11 Ca7 Ca9	removed 0.443 Ca10 0.443 Ca1 0.443 Ca3 0.443 Ca6 0.441 Ca8 0.439 Ca4 0.437 Ca11 0.434 Ca7 0.429 Ca9 0.417	removed 0.443 0.197 Ca10 0.443 0.197 Ca1 0.443 0.196 Ca3 0.443 0.196 Ca6 0.441 0.195 Ca8 0.439 0.193 Ca4 0.437 0.191 Ca11 0.434 0.188 Ca7 0.429 0.184 Ca9 0.417 0.174	removed Square 0.443 0.197 0.104 Ca10 0.443 0.197 0.112 Ca1 0.443 0.196 0.120 Ca3 0.443 0.196 0.128 Ca6 0.441 0.195 0.135 Ca8 0.439 0.193 0.141 Ca4 0.437 0.191 0.147 Ca11 0.434 0.188 0.152 Ca7 0.429 0.184 0.155 Ca9 0.417 0.174 0.152	removed Square 0.443 0.197 0.104 2.121 Ca10 0.443 0.197 0.112 2.335 Ca1 0.443 0.196 0.120 2.589 Ca3 0.443 0.196 0.128 2.899 Ca6 0.441 0.195 0.135 3.266 Ca8 0.439 0.193 0.141 3.723 Ca4 0.437 0.191 0.147 4.322 Ca11 0.434 0.188 0.152 5.156 Ca7 0.429 0.184 0.155 6.319 Ca9 0.417 0.174 0.152 7.951

10.8.3 Analysis for main contractor for SCP3 (Ca-SCP3-MC)

a. The correlation coefficients of Ca-SCP3-MC model

Table 10.49 summarizes the Pearson correlation coefficients (r) of the twelve causes of Ca-SCP3-MC model in a descending order of priority and the comparison with the Ca-

SCP3-AR model. All causes except Ca6 have positive r coefficients and the values range from 0.437 to -0.098. The absolute value of r coefficient of Ca6 is only 0.098. This cause should thus have no significant influence in the multiple regression analysis. Compared with the Ca-SCP3-AR model, there is a bigger difference between highest and lowest r coefficients.

Table 10.49: Correlation coefficient of Ca-SCP3-MC model

Variables	A	В	С
Ca3	0.437	0.401	0.036
Ca9	0.431	0.222	0.209
· Ca4	0.411	0.410	0.001
Ca7	0.380	0.291	0.089
Ca2	0.367	0.406	-0.039
Ca5	0.366	0.380	-0.014
Ca8	0.364	0.322	0.042
Call	0.333	0.282	0.051
Cal	0.327	0.318	0.009
Ca10	0.265	0.306	-0.041
Ca12	0.072	0.199	-0.127
Ca6	-0.098	0.259	-0.357

A: Pearson correlation coefficient (r) of Ca-SCP3-MC model

B: Pearson correlation coefficient (r) of Ca-SCP3-AR model

C: Difference of absolute value of A and absolute value of B

b. Selecting variables for Ca-SCP3-MC model

Ten stage regression equations were generated in the analysis. Ca3, Ca6 and Ca9 remained in the Ca-SP3-SC-final regression equation and Ca3 is a common independent variable of Ca-SP3-AR-final regression equation. Table 10.50 summarizes the details of the standard form and simple form regression equations. As the partial coefficient of Ca6 of the Ca-SCP3-MC-final equation is of negative value, Ca6 should not be considered in the analysis on the essential causes to SCP3.

Table 10.50: Regression equations of Ca-SCP3-MC model

Model	Regression equations
Ca-SCP3-MC-1	SCP3 = 3.454 + 0.104xCa1 - 0.193xCa2 + 0.157xCa3 + 0.070xCa4 +
	0.054xCa5 - 0.043xCa6 + 0.102xCa7 - 0.003xCa8 + 0.203xCa9 -
	0.028xCa10 + 0.0004xCa11 - 0.047xCa12
Ca-SCP3-MC-final	SCP3 = 3.318 + 0.213xCa3 - 0.033xCa6 + 0.206xCa9

c. Explaining the variability of Ca-SCP3-MC model

The R, R Square, Adjusted R Square, F-statistic and Significance Level values of the eleven stage regression equations have been summarized in Table 10.51. The stage regression equations are fairly good linearly correlated to SCP3. Their R values ranges from 0.611 to 0.573. The R values for first three stage regression equations are the same. Ca8 and Ca11 are thus not essential to SCP3 according to the views from main contractors.

Table 10.51: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP3-MC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP3-MC-1		0.611	0.373	0.194	2.086	0.040
Ca-SCP3-MC-2	Call	0.611	0.373	0.213	2.329	0.024
Ca-SCP3-MC-3	Ca8	0.611	0.373	0.231	2.622	0.014
Ca-SCP3-MC-4	Ca10	0.610	0.373	0.247	2.970	0.007
Ca-SCP3-MC-5	Ca5	0.608	0.370	0.260	3.378	0.004
Ca-SCP3-MC-6	Ca12	0.604	0.365	0.270	3.855	0.002
Ca-SCP3-MC-7	Cal	0.601	0.361	0.281	4.518	0.001
Ca-SCP3-MC-8	Ca2	0.593	0.351	0.285	5.303	0.001
Ca-SCP3-MC-9	Ca4	0.588	0.346	0.293	6.600	0.000
Ca-SCP3-MC-final	Ca7	0.573	0.329	0.289	8.320	0.000

10.8.4 Analysis for main contractor for SCP3 (Ca-SCP3-CC)

a. The correlation coefficients of Ca-SCP3-CC model

Table 10.52 summarizes the Pearson correlation coefficient (r) of the twelve causes of the Ca-SCP3-CC model in a descending order of priority and the comparison with Ca-SCP3-AR model. All causes have positive r coefficients and they range from 0.707 to 0.347. Seven out of the twelve causes have r coefficient higher than 0.5. Compared with Ca-SCP2-AR model, all causes except Ca5 have higher r coefficients.

Table 10.52: Correlation coefficient of Ca-SCP3-CC model

Variables	A	В	С
Ca8	0.707	0.322	0.385
Ca2	0.603	0.406	0.197
Ca12	0.595	0.199	0.396
Cal	0.553	0.318	0.235
Call	0.520	0.282	0.238
Ca9	0.516	0.222	0.294
Ca3	0.515	0.401	0.114
Ca4	0.491	0.410	0.081
Ca6	0.462	0.259	0.203
Ca10	0.440	0.306	0.134
Ca7	0.433	0.291	0.142
Ca5	0.347	0.380	-0.033

A: Pearson correlation coefficient (r) of Ca-SCP3-CCodel

B: Pearson correlation coefficient (r) of Ca-SCP3-AR model

C: Difference of absolute value of A and absolute value of B

b. Selecting variables for Ca-SCP3-CC model

Nine stage regression equations were generated in the analysis. Ca-SP3-SC-final regression equation comprised Ca2, Ca8, Ca10 and Ca12. Ca2 and Ca8 are common independent variables of the Ca-SP3-AR-final regression equation. Table 10.53

summarizes the details of the standard form and simple form regression equations. As the partial coefficient of Ca10 of the Ca-SCP3-CC-final equation is of negative value, Ca10 should not be considered in the analysis on the essential causes to SCP3.

Table 10.53: Regression equations of Ca-SCP3-CC model

Model	Regression equations
Ca-SCP3-CC-1	SCP3 = -0.216 - 0.131xCa1 + 0.289xCa2 - 0.040xCa3 + 0.064xCa4 +
	0.262xCa5 - 0.040xCa6 + 0.025xCa7 + 0.426xCa8 + 0.223xCa9 -
	0.324xCa10 - 0.197xCa11 + 0.404xCa12
Ca-SCP3-CC-final	SCP3 = 0.700 + 0.356xCa2 + 0.527xCa8 - 0.283xCa10 + 0.195xCa12

c. Explaining the variability of Ca-SCP3-CC model

The R, R Square, Adjusted R Square, F-statistic and Significance Level values of the nine stage regression equations have been summarized in Table 10.54. All the regression equations are very strongly linearly correlated to SCP3. Their R values ranges from 0.872 to 0.840. The R values for first four stage regression equations are the same. Ca3, Ca4 and Ca7 are non-essential causes to SCP3 from the views of consultants/clients.

Table 10.54: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP3-CC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP3-CC-1		0.872	0.761	0.522	3.187	0.028
Ca-SCP3-CC-2	Ca7	0.872	0.761	0.558	3.759	0.013
Ca-SCP3-CC-3	Ca3	0.872	0.760	0.589	4.438	0.006
Ca-SCP3-CC-4	Ca4	0.872	0.760	0.616	5.274	0.002
Ca-SCP3-CC-5	Ca6	0.871	0.759	0.638	6.284	0.001
Ca-SCP3-CC-6	Cal	0.869	0.756	0.656	7.524	0.000
Ca-SCP3-CC-7	Call	0.862	0.743	0.658	8.687	0.000
Ca-SCP3-CC-8	Ca9	0.853	0.728	0.657	10.190	0.000
Ca-SCP3-CC-final	Ca5	0.840	0.706	0.647	11.984	0.000

10.8.5 Neural network analysis for Ca-SCP3 models

The neural network analysis results computed by NeuroShell2 software for the causes of the SCP3 are summarized in the descending order of priority of their correlation coefficients in Table 10.55. The correlation coefficients of the neural network outputs range from 0.751 to 0.396. The first two highest correlation coefficients are from data consultants/clients' data while the lowest two are from the data of subcontractors.

Table 10.55: Neural network analysis for Ca-SCP3 models

Neural network output	A	В	C	D
Ca-SCP3-CC-final	0.751	7	25	0.0003079
Ca-SCP3-CC-1	0.745	11	25	0.0000132
Ca-SCP3-AR-I	0.686	20	197	0.0094536
Ca-SCP3-MC-final	0.571	9	55	0.0011292
Ca-SCP3-MC-1	0.569	14	55	0.0016370
Ca-SCP3-AR-final	0.490	15	197	0.0109852
Ca-SCP3-SC-1	0.435	17	117	0.0060636
Ca-SCP3-SC-final	0.396	12	117	0.0062016

A: Correlation coefficient

B: Number of hidden neurons

C: Number of patterns processed

D: Minimum error when the training was stopped

10.8.6 Summary for the analysis of the causes to SCP3

Table 10.56 compares the correlation coefficients computed by multiple regression method and neural network method for the different models of SCP3. Except Ca-SCP3-AR-1 and Ca-SCP3-CC-1, all the models have consistent correlation coefficients computed by the two methods and the maximum differences is only 0.089. The regression equations for the consultants/clients' data and main contractors are quite reliable to explain the relationship of the contributions of the causes to SCP3. Ca2 is the

most essential cause as it is included in three out of the four simple form regression equations. Ca3 and Ca8 are the second most essential causes as they are included in two simple form regression equations.

Table 10.56: Comparison of multiple regression method and neural network method for SCP3

Model	A	В	С	D
Ca-SCP3-AR-1	All	0.498	0.686	-0.188
Ca-SCP3-AR-final	Ca2, Ca3, Ca8	0.466	0.490	-0.024
Ca-SCP3-SC-1	All	0.443	0.435	0.008
Ca-SCP3-S -final	Ca2, Ca5	0.395	0.396	-0.001
Ca-SCP3-MC-1	All	0.611	0.569	0.042
Ca-SCP3-MC-final	Ca3, Ca9	0.573	0.571	0.002
Ca-SCP3-CC-1	All	0.872	0.745	0.127
Ca-SCP3-CC-final	Ca2, Ca8, Ca12	0.840	0.751	0.089

- A: Independent variables with positive partial coefficient included in the regression equation.
- B: Correlation coefficient computed by multiple regression method.
- C: Correlation coefficient computed by neural network method.
- D: Difference of B and C.

10.9 Analysis for SCP4

10.9.1 Analysis for all type of respondents for SCP4 (Ca-SCP4-AR)

a. Outliers

No extreme case was detected by the Mahalanobis statistical method. As a result, one hundred and ninety-seven sets of data were included in the multiple regression analysis of causes to SCP4.

a. Examining the variables of Ca-SCP4-AR model

The scatterplot matrix shown in Appendix T indicates that the causes are approximately linearly correlated to SCP4 based on visual examination of the data. Data transformation is thus not necessary for the multiple regression analysis.

c. Testing hypothesis for Ca-SCP4-AR model

The F-statistics for the regression with all the twelve causes to site coordination problem, SCP4 is 4.305 and the observed significance level is 0.000. The hypothesis that $b_k = 0$ is thus rejected and there is at least one of the coefficients is not 0.

d. The correlation coefficients of Ca-SCP4-AR model

Table 10.57 summarizes the Pearson correlation coefficient (r) of the twelve causes to the site coordination problems, SCP4 in a descending order of priority. All causes have positive coefficient. The r coefficients range from 0.358 to 0.190. The causes are thus only very fairly linearly correlated to SCP4.

Table 10.57: Correlation coefficient of Ca-SCP4-AR model

Variables	Pearson correlation coefficient (r)
Ca7	0.358
Ca9	0.350
Call	0.345
Ca3	0.339
Ca8	0.330
Ca4	0.314
Ca2	0.309
Cal	0.291
Ca5	0.283
Ca10	0.265
Ca6	0.213
Ca12	0.190

e. Selecting variables for Ca-SCP4-AR model

Ten stage regression equations were generated in the analysis. The Ca-SCP4-AR-final regression equation consists of Ca5, Ca7 and Ca9. Table 10.58 summarizes the details of the standard form and simple form regression equations of Ca-SCP4-AR model.

Table 10.58: Regression equations of Ca-SCP4-AR model

Model	Regression equations
Ca-SCP4-AR-1	SCP4 = 3.022 + 0.005xCa1 + 0.041xCa2 + 0.078xCa3 - 0.002xCa4 +
·	0.095xCa5 - 0.093xCa6 + 0.138xCa7 + 0.005xCa8 + 0.110xCa9 +
	0.023xCa10 + 0.037xCa11 + 0.031xCa12
Ca-SCP4-AR-final	SCP4 = 3.271 + 0.129xCa5 + 0.151xCa7 + 0.149xCa9

f. Explaining the variability of Ca-SCP4-AR model

Table 10.59 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the ten stage regression equations of Ca-SCP4-AR model.

Table 10.59: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP4-AR model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP34-AR-1	-	0.468	0.219	0.168	4.305	0.000
Ca-SCP4-AR-2	Ca4	0.468	0.219	0.173	4.722	0.000
Ca-SCP4-AR-3	Cal	0.468	0.219	0.177	5.222	0.000
Ca-SCP4-AR-4	Ca8	0.468	0.219	0.182	5.832	0.000
Ca-SCP4-AR-5	Ca10	0.468	0.219	0.186	6.581	0.000
Ca-SCP4-AR-6	Ca12	0.466	0.217	0.188	7.492	0.000
Ca-SCP4-AR-7	Ca2	0.465	0.216	0.191	8.712	0.000
Ca-SCP4-AR-8	Call	0.465	0.212	0.191	10.266	0.000
Ca-SCP4-AR-9	Ca6	0.452	0.204	0.188	12.325	0.000
Ca-SCP4-AR-final	Ca3	0.443	0.197	0.184	15.740	0.000

The ten stage regression equations are slightly linearly correlated to SCP4 as all their R values of these models are below 0.5. The R values for first five stage equations are the same. This indicates that Ca1, Ca4 and Ca8 are not essential to SCP4.

10.9.2 Analysis for subcontractors for SCP4 (Ca-SCP4-SC)

a. The correlation coefficients of Ca-SCP4-SC model

Table 10.60 summarizes the Pearson correlation coefficients (r) of the twelve causes of Ca-SCP4-SC model in a descending order of priority and the comparison with Ca-SCP4-AR model.

Table 10.60: Correlation coefficient of Ca-SCP4-SC model

Variables	A	В	C
Ca4 .	0.367	0.314	0.053
Ca7	0.352	0.358	-0.006
Ca5	0.313	0.283	0.030
Ca2	0.308	0.309	-0.001
Ca10	0.296	0.265	0.031
Call	0.286	0.345	-0.059
Ca3	0.276	0.339	-0.063
Ca6	0.275	0.213	0.062
Ca8	0.250	0.330	-0.080
Ca12	0.224	0.190	0.034
Cal	0.214	0.291	-0.077
Ca9	0.196	0.350	-0.154

A: Pearson correlation coefficient (r) of Ca-SCP4-SC model.

B: Pearson correlation coefficient (r) of Ca-SCP4-AR model.

C: Difference of absolute value of A and absolute value of B.

According to the subcontractors' data, all the causes were only very fairly linearly correlated with SCP4 as their r coefficients range from 0.367 to 0.196. Except Ca9, the r coefficients of the causes of Ca-SCP3-AR model and Ca-SCP3-SC model are consistent. The biggest difference in r coefficient of these two models is only 0.077.

b. Selecting variables for Ca-SCP4-SC model

Eleven stage regression equations were generated in the analysis. The Ca-SP4-SC-final regression equation consists of Ca4 and Ca7. Ca7 is one of the three independent variables of Ca-SP4-AR-final regression equation. Table 10.61 summarizes the details of the standard and simple form regression equations of Ca-SCP4-SC model.

Table 10.61: Regression equations of Ca-SCP4-SC model

Model	Regression equations
Ca-SCP4-SC-1	SCP4 = 3.159 - 0.078xCa1 + 0.166xCa2 - 0.075xCa3 + 0.128xCa4 +
	0.010xCa5 + 0.037xCa6 + 0.184xCa7 + 0.011xCa8 - 0.069xCa9 +
	0.157xCa10 - 0.001xCa11 + 0.068xCa12
Ca-SCP4-SC-final	SCP4 = 3.650 + 0.228xCa4 + 0.197xCa7

c. Explaining the variability of Ca-SCP4-SC model

Table 10.62 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the eleven stage regression equations of Ca-SCP4-SC model. All the stage regression equations are only fairly linearly correlated to SCP4 as their R values are

slightly below 0.5. The R values for first two stage regression equations are the same Call is not thus essential to SCP4 according to the views from subcontractors.

Table 10.62: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP4-SC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP4-SC-1		0.474	0.224	0.135	2.505	0.006
Ca-SCP4-SC-2	Call	0.474	0.224	0.143	2.759	0.004
Ca-SCP4-SC-3	Ca5	0.473	0.224	0.151	3.063	0.002
Ca-SCP4-SC-4	Ca8	0.473	0.224	0.159	3.433	0.001
Ca-SCP4-SC-5	Ca6	0.472	0.223	0.165	3.867	0.000
Ca-SCP4-SC-6	Ca9	0.469	0.220	0.170	4.393	0.000
Ca-SCP4-SC-7	Cal	0.465	0.216	0.174	5.063	0.000
Ca-SCP4-SC-8	Ca12	0.460	0.212	0.176	5.960	0.000
Ca-SCP4-SC-9	Ca3	0.455	0.207	0.178	7.300	0.000
Ca-SCP4-SC-10	Ca2	0.445	0.198	0.177	9.318	0.000
Ca-SCP4-SC-final	Ca10	0.427	0.182	0.168	12.685	0.000
			1	1		

10.9.3 Analysis for main contractor for SCP4 (Ca-SCP4-MC)

a. The correlation coefficients of Ca-SCP4-MC model

Table 10.63 summarizes the Pearson correlation coefficients (r) of the twelve causes of Ca-SCP4-MC model in a descending order of priority and the comparison with the coefficients of the Ca-SCP4-AR model. The r coefficients range from 0.503 to 0.006. Only Ca5 has the r coefficient slightly above 0.5. Ca6 and Ca12 have a very low r

coefficient. Compared with the Ca-SCP4-AR model, there is a bigger difference between highest and lowest r coefficients.

Table 10.63: Correlation coefficient of Ca-SCP4-MC model

Variables	A	В	С
Ca3	0.503	0.339	0.164
Ca5	0.457	0.283	0.174
Ca7	0.377	0.358	0.019
Ca2	0.374	0.309	0.065
Ca4	0.352	0.314	0.038
Ca9	0.348	0.350	-0.002
Ca8	0.324	0.330	-0.006
Cal	0.309	0.291	0.018
Call	0.285	0.345	-0.060
Ca10	0.248	0.265	-0.017
Ca6	0.067	0.213	-0.146
Ca12	0.006	0.190	-0.184

A: Pearson correlation coefficient (r) of Ca-SCP4-MC model.

B: Pearson correlation coefficient (r) of Ca-SCP4-AR model.

C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for Ca-SCP4-MC model

Twelve stage regression equations were generated for Ca-SCP4-MC model. Ca-SCP4-SC-final regression equation only has one independent variable, Ca3 which is included in Ca-SCP4-AR-final regression equation. Table 10.64 summarizes the details of the standard and simple form regression equations of the Ca-SCP4-MC model.

Table 10.64: Regression equations of Ca-SCP4-MC model

Model	Regression equations
Ca-SCP4-MC-1	SCP4 = 3.050 - 0.031xCa1 + 0.046xCa2 + 0.254xCa3 - 0.295xCa4 +
	0.312xCa5 - 0.011xCa6 + 0.166xCa7 - 0.139xCa8 + 0.198xCa9 +
	0.094xCa10 + 0.018xCa11 - 0.124xCa12
Ca-SCP4-MC-final	SCP4= 3.495 + 0.363xCa3

c. Explaining the variability of Ca-SCP4-MC model

The R, R Square, Adjusted R Square, F-statistic and Significance Level values of the twelve stage regression equations are summarized in Table 10.65. The stage regression equations are fairly good linearly correlated to SCP4. Their R values ranges from 0.623 to 0.503. The R values for first four stage regression equations are the same. Ca1, Ca2 and Ca11 are thus non-essential causes to SCP4 according to the views from main contractors.

Table 10.65: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP4-MC model

Variable	R	R Square	Adjusted R	F-statistic	Significance
removed			Square		
	0.623	0.389	0.214	2.226	0.028
Call	0.623	0.389	0.232	2.484	0.016
Cal	0.623	0.388	0.249	2.791	0.009
Ca2	0.623	0.388	0.265	3.168	0.005
Ca6	0.619	0.383	0.276	3.572	0.001
Ca10	0.613	0.376	0.283	4.048	0.001
Ca8	0.609	0.370	0.292	4.707	0.001
Ca7	0.594	0.352	0.286	5.334	0.000
Ca12	0.571	0.326	0.272	6.038	0.000
Ca4	0.553	0.306	0.265	7.494	0.000
Ca5	0.536	0.287	0.259	10.457	0.000
Ca9	0.503	0.253	0.239	17.950	0.000
	Call Cal Ca2 Ca6 Ca10 Ca8 Ca7 Ca12 Ca4 Ca5	removed 0.623 Cal1 0.623 Cal 0.623 Ca2 0.623 Ca6 0.619 Ca10 0.613 Ca8 0.609 Ca7 0.594 Ca12 0.571 Ca4 0.553 Ca5 0.536	removed 0.623 0.389 Cal1 0.623 0.389 Cal 0.623 0.388 Ca2 0.623 0.388 Ca6 0.619 0.383 Ca10 0.613 0.376 Ca8 0.609 0.370 Ca7 0.594 0.352 Ca12 0.571 0.326 Ca4 0.553 0.306 Ca5 0.536 0.287	removed Square 0.623 0.389 0.214 Cal1 0.623 0.389 0.232 Cal 0.623 0.388 0.249 Ca2 0.623 0.388 0.265 Ca6 0.619 0.383 0.276 Ca10 0.613 0.376 0.283 Ca8 0.609 0.370 0.292 Ca7 0.594 0.352 0.286 Ca12 0.571 0.326 0.272 Ca4 0.553 0.306 0.265 Ca5 0.536 0.287 0.259	removed Square 0.623 0.389 0.214 2.226 Ca11 0.623 0.389 0.232 2.484 Ca1 0.623 0.388 0.249 2.791 Ca2 0.623 0.388 0.265 3.168 Ca6 0.619 0.383 0.276 3.572 Ca10 0.613 0.376 0.283 4.048 Ca8 0.609 0.370 0.292 4.707 Ca7 0.594 0.352 0.286 5.334 Ca12 0.571 0.326 0.272 6.038 Ca4 0.553 0.306 0.265 7.494 Ca5 0.536 0.287 0.259 10.457

10.9.4 Analysis for main contractor (Ca-SCP4-CC)

a. The correlation coefficients of Ca-SCP4-CC model

Table 10.66 summarizes the Pearson correlation coefficient (r) of the twelve causes of the Ca-SCP4-CC model in a descending order of priority and the comparison with Ca-SCP4-AR model. The r coefficients range from 0.584 to 0.130. Five out of the twelve causes have r coefficient slightly higher than 0.5. Compared with Ca-SCP4-AR model, all causes except Ca5 and Ca7 have higher r coefficients.

Table 10.66: Correlation coefficient of Ca-SCP4-CC model

Variables	A	В	C
Call	0.584	0.345	0.239
Ca9	0.582	0.350	0.232
Ca8	0.576	0.330	0.246
Ca10	0.566	0.265	0.301
Cal	0.507	0.291	0.216
Ca2	0.470	0.309	0.161
Ca4	0.452	0.314	0.138
Ca12	0.420	0.190	0.230
Ca3	0.382	0.339	0.043
Ca6	0.343	0.213	0.130
Ca7	0.314	0.358	-0.044
Ca5	0.130	0.283	-0.153

- A: Pearson correlation coefficient (r) of Ca-SCP4-CC model.
- B: Pearson correlation coefficient (r) of Ca-SCP4-AR model.
- C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for Ca-SCP4-CC model

Nine stage regression equations were generated in the analysis. Ca-SP4-SC-final regression equation consists of Ca4, Ca5, Ca6 and Ca9. Ca5 is an independent variable of the Ca-SP4-AR-final regression equation. Table 10.67 summarizes the details of the

standard and simple form regression equations. As the partial coefficient of Ca5 of the Ca-SCP4-CC-final is of negative value, Ca5 should not be considered in the analysis of the essential causes to SCP4.

Table 10.67: Regression equations of Ca-SCP4-CC model

Model	Regression equations
Ca-SCP4-CC -1	SCP4 = 2.271 + 0.515xCa1 - 0.483xCa2 - 0.047xCa3 + 0.571xCa4 -
	0.556xCa5 + 0.276xCa6 - 0.312xCa7 + 0.186xCa8 + 0.319xCa9 +
	0.006xCa10 - 0.124xCa11 + 0.019xCa12
Ca-SCP4-CC-final	SCP4 = 2.084 + 0.389xCa4 - 0.326xCa5 + 0.224xCa6 + 0.232xCa9

c. Explaining the variability of Ca-SCP4-CC model

The R, R Square, Adjusted R Square, F-statistic and Significance Level values of the nine stage regression equations are summarized in Table 10.68. All the regression equations are strongly linearly correlated to SCP4. Their R values range from 0.794 to 0.717. The R values for first two stage regression equations are the same. Ca10 is a non-essential cause to SCP4 from the views of consultants/clients.

Table 10.68: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP4-CC model

Variable	R	R Square	Adjusted R	F-statistic	Significance
removed			Square		
	0.794	0.630	0.259	1.7	0.185
Ca10	0.794	0.630	0.316	2.009	0.116
Ca12	0.793	0.630	0.365	2.379	0.067
Ca3	0.793	0.628	0.405	2.815	0.037
Call	0.788	0.621	0.431	3.276	0.021
Ca8	0.783	0.613	0.453	3.843	0.011
Ca2	0.768	0.590	0.453	4.310	0.007
Ca1	0.758	0.574	0.462	5.116	0.004
Ca7	0.717	0.513	0.416	5.277	0.005
	Ca10 Ca12 Ca3 Ca11 Ca8 Ca2 Ca1	removed 0.794 Ca10 0.794 Ca12 0.793 Ca3 0.793 Ca11 0.788 Ca8 0.783 Ca2 0.768 Ca1 0.758	removed 0.794 0.630 Ca10 0.794 0.630 Ca12 0.793 0.630 Ca3 0.793 0.628 Ca11 0.788 0.621 Ca8 0.783 0.613 Ca2 0.768 0.590 Ca1 0.758 0.574	removed Square 0.794 0.630 0.259 Ca10 0.794 0.630 0.316 Ca12 0.793 0.630 0.365 Ca3 0.793 0.628 0.405 Ca11 0.788 0.621 0.431 Ca8 0.783 0.613 0.453 Ca2 0.768 0.590 0.453 Ca1 0.758 0.574 0.462	removed Square 0.794 0.630 0.259 1.7 Ca10 0.794 0.630 0.316 2.009 Ca12 0.793 0.630 0.365 2.379 Ca3 0.793 0.628 0.405 2.815 Ca11 0.788 0.621 0.431 3.276 Ca8 0.783 0.613 0.453 3.843 Ca2 0.768 0.590 0.453 4.310 Ca1 0.758 0.574 0.462 5.116

10.9.5 Neural network analysis for Ca-SCP4 models

Table 10.69 summarises the results computed by NeuroShell2 software for the analysis of the causes to SCP4 in the descending order of priority of their correlation coefficients. The correlation coefficients of the neural network outputs range from 0.757 to 0.426.

Table 10.69: Neural network analysis for Ca-SCP4 models

Neural network output	A	В	C	D
Ca-SCP4-AR -final	0.757	15	197	0.0060871
Ca-SCP4-CC-final	0.676	7	25	0.0093866
Ca-SCP4-CC-1	0.664	11	25	0.0122289
Ca-SCP4-MC-1	0.628	14	55	0.0083801
Ca-SCP4-SC-1	0.624	17	117	0.0033353
Ca-SCP4-AR-1	0.567	20	197	0.0052740
Ca-SCP4-MC-final	0.515	9	55	0.0120620
Ca-SCP4-SC-final	0.426	12	117	0.0039349

A: Correlation coefficient of the neural network output

B: Number of hidden neurons

C: Number of patterns processed

D: Minimum error when the training was stopped

10.9.6 Summary for the analysis of the causes to SCP4

Table 10.70 compares the correlation coefficients computed by the multiple regression method and the neural network method for the different models of SCP4. The correlation coefficient of Ca-SCP4-AR-final model computed by neural network method is much higher than that by the multiple regression method. This indicates that linear relationship may not be the best approach to explain the relationship of Ca5, Ca7 and Ca9 to SCP4. There are moderate differences in correlation coefficients of Ca-SCP4-SC-1 model and

Ca-SCP4-CC-1 model computed by the two methods and they are around 0.15. The other correlation coefficients computed by these two methods are quite consistent and the maximum differences is only 0.099. The regression equations for the consultants/clients and main contractors are quite reliable to explain the relationship of the contribution of the causes SCP4. Ca4, Ca7 and Ca9 are of equal importance to SCP4 as they are included in two out of the four simple form regression equations.

Table 10.70: Comparison of multiple regression method and neural network method for SCP4

Model	A	В	C	D
Ca-SCP4-AR-1	All	0.468	0.567	-0.099
Ca-SCP4-AR-final	Ca5, Ca7, Ca9	0.443	0.757	-0.314
Ca-SCP4-SC-1	All	0.474	0.624	-0.150
Ca-SCP4-SC-final	Ca4, Ca7	0.427	0.426	0.001
Ca-SCP4-MC-1	All	0.623	0.628	-0.005
Ca-SCP4-MC-final	Ca3	0.503	0.515	-0.012
Ca-SCP4-CC-1	All	0.794	0.664	0.130
Ca-SCP4-CC-final	Ca4, Ca6, Ca9	0.717	0.676	0.041

A: Independent variables with positive partial coefficient included in the model.

B: Correlation coefficient computed by multiple regression method.

C: Correlation coefficient computed by neural network method.

D: Difference of B and C.

10.10 Analysis for SCP5

10.10.1 Analysis for all type of respondents for SCP5 (Ca-SCP5-AR)

c. Outliers

No extreme case was detected from the raw data by the Mahalanobis statistical method.

As a result, 179 sets of data were included for the analysis of causes to SCP5.

b. Examining the variables of Ca-SCP5-AR model

The scatterplot matrix shown in Appendix T indicates that the causes are approximately linearly correlated to SCP5 based on visual examination of the data. There is no need to transform the data for the multiple regression analysis.

c. Testing hypothesis for Ca-SCP5-AR model

The F-statistics for the regression with all the twelve causes of site coordination problem, SCP5 is 4.819 and the observed significance level is 0.000. The hypothesis that $b_k = 0$ is rejected. It can thus be concluded that there is at least one of the coefficients is not 0.

d. The correlation coefficients of Ca-SCP5-AR model

Table 10.71 summarizes the Pearson correlation coefficient (r) of the twelve causes to the site coordination problems of Ca-SCP5-AR model in a descending order of priority. All causes have positive coefficient, but they are very fairly linearly correlated to SCP5 as the r coefficients decrease from 0.379 to 0.132. Ca10 has the highest r coefficient.

Table 10.71: Correlation coefficient of Ca-SCP5-AR model

Variables	Pearson correlation coefficient (r)
Ca10	0.379
Ca3	0.338
Ca7	0.335
Call	0.332
Ca4	0.323
Ca5	0.322
Ca2	0.241
Ca1	0.238
Ca9	0.278
Ca8	0.271
Ca6	0.260
Ca12	0.132

e. Selecting variables for Ca-SCP5-AR model

Ten stage regression equations were generated in the analysis. The Ca-SCP5-AR-final regression equation comprised Ca3, Ca7 and Ca10. Table 10.72 summarizes the details of the standard form and simple form regression equations of Ca-SCP5-AR model.

Table 10.72: Regression equations of Ca-SCP5-AR model

Model	Regression equations
Ca-SCP5-AR-1	SCP5 = 3.536 + 0.025xCa1 - 0.093xCa2 + 0.112xCa3 - 0.013xCa4 +
	0090xCa5 + 0.015xCa6 + 0.140xCa7 - 0.049xCa8 + 0.027xCa9 +
	0.216xCa10 + 0.074xCa11 - 0.068xCa12
Ca-SCP5-AR-final	SCP5 = 2.394 + 0.121xCa3 + 0.137xCa7 + 0.235xCa10

f. Explaining the variability of Ca-SCP5-AR model

Table 10.73 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the ten stage regression equations of Ca-SCP5-AR model.

Table 10.73: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP5-AR model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP5-AR-1		0.489	0.239	0.190	4.819	0.000
Ca-SCP5-AR-2	Ca4	0.489	0.239	0.194	5.283	0.000
Ca-SCP5-AR-3	Ca6	0.489	0.239	0.198	5.837	0.000
Ca-SCP5-AR-4	Cal	0.488	0.238	0.202	6.503	0.000
Ca-SCP5-AR-5	Ca9	0.487	0.237	0.205	7.311	0.000
Ca-SCP5-AR-6	Ca8	0.486	0.237	0.208	8.366	0.000
Ca-SCP5-AR-7	Call	0.482	0.233	0.208	9.596	0.000
Ca-SCP5-AR-8	Ca12	0.479	0.229	0.209	11.354	0.000
Ca-SCP5-AR-9	Ca2	0.474	0.225	0.208	13.901	0.000
Ca-SCP5-AR-final	Ca5	0.469	0.220	0.208	18.152	0.000

The ten stage regression equations are only slightly linearly correlated to SCP5 as all their R values range from 0.489 to 0.469. The R values for first three stage equations are the same. This indicates that Ca4 and Ca6 are not essential to SCP5.

10.10.2 Analysis for subcontractors for SCP5 (Ca-SCP5-SC)

a. The correlation coefficients of Ca-SCP5-SC model

Table 10.74 summarizes the Pearson correlation coefficients (r) of the twelve causes of Ca-SCP5-SC model in a descending order of priority and compares their coefficients with Ca-SCP5-AR model. According to the subcontractors' data, the r coefficients range from 0.475 to 0.167. The r coefficients of the causes except Ca2 and Ca10 of Ca-SCP5-SC model are higher than that of Ca-SCP5-AR model.

Table 10.74: Correlation coefficient of Ca-SCP5-SC model

0.475	0.335	0.140
		0.140
0.439	0.322	0.117
0.404	0.278	0.126
0.402	0.338	0.064
0.400	0.260	0.140
0.371	0.323	0.048
0.332	0.332	0.000
0.311	0.379	-0.068
0.283	0.271	0.012
0.264	0.238	0.026
0.197	0.241	-0.044
0.167	0.132	0.035
	0.402 0.400 0.371 0.332 0.311 0.283 0.264 0.197	0.404 0.278 0.402 0.338 0.400 0.260 0.371 0.323 0.332 0.332 0.311 0.379 0.283 0.271 0.264 0.238 0.197 0.241

A: Pearson correlation coefficient (r) of Ca-SCP5-SC model

B: Pearson correlation coefficient (r) of Ca-SCP5-AR model

C: Difference of absolute value of A and absolute value of B

b. Selecting variables for Ca-SCP5-SC model

Nine stage regression equations were generated in the analysis. Although the Ca-SP5-SC-final regression equation consists of Ca2, Ca5, Ca7 and Ca9, only Ca7 is one of the three independent variables of Ca-SP5-AR-final regression equation. Table 10.75 summarizes the details of the standard form and simple form regression equations of Ca-SCP5-SC model. As Ca2 has negative partial coefficient, Ca2 would be included in the analysis of the essential causes to SCP5.

Table 10.75: Regression equations of Ca-SCP5-SC model

Model	Regression equations .
Ca-SCP5-SC-1	SCP5 = 1.743 + 0.046xCa1 - 0.192xCa2 + 0.070xCa3 + 0.053xCa4 +
	0.201xCa5 - 0.0001xCa6 + 0.252xCa7 - 0.035xCa8 + 0.195xCa9 +
	0.001xCa10 + 0.016xCa11 - 0.054xCa12
Ca-SCP5-SC-final	SCP5 = 1.642 - 0.131xCa2 + 0.238xCa5 + 0.261xCa7 + 0.201xCa9

c. Explaining the variability of Ca-SCP5-SC model

Table 10.76 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the nine stage regression equations. All the stage regression equations are fairly good linear correlation in SCP5 as the R values of these models range from 0.608 to 0.597. The R values for first four stage regression equations are the same. Ca6, Ca10 and Ca11 are thus not essential to SCP5 according to the subcontractors' data.

Table 10.76: R, R Square, Adjusted R Square, F-statistic and Significance Level
values

of the stage regression equations of Ca-SCP5-SC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP5-SC-1		0.608	0.370	0.397	5.092	0.000
Ca-SCP5-SC-2	Ca6	0.608	0.370	0.304	5.608	0.000
Ca-SCP5-SC-3	Ca10	0.608	0.370	0.311	6.228	0.000
Ca-SCP5-SC-4	Call	0.608	0.370	0.317	6.979	0.000
Ca-SCP5-SC-5	Ca8	0.607	0.369	0.322	7.892	0.000
Ca-SCP5-SC-6	Cal	0.606	0.368	0.327	9.059	0.000
Ca-SCP5-SC-7	Ca4	0.605	0.366	0.331	10.586	0.000
Ca-SCP5-SC-8	Ca12	0.602	0.362	0.334	12.623	0.000
Ca-SCP5-SC-final	Ca3	0.597	0.356	0.333	15.497	0.000

10.10.3 Analysis for main contractor for SCP5 (Ca-SCP5-MC)

a. The correlation coefficients of Ca-SCP5-MC model

Table 10.77 summarizes the Pearson correlation coefficients (r) of the twelve causes of Ca-SCP5-MC modal in descending order of priority and the comparison with the Ca-SCP5-AR model. The r coefficients decrease from 0.331 to -0.071. Compared with the Ca-SCP5-AR model, all the courses have lower r coefficients. All causes except Ca12 have positive r coefficients. The r coefficient of Ca12 is only 0.071 and thus it should have no significant influence in the multiple regression analysis.

Table 10.77: Correlation coefficient of Ca-SCP5-MC model

Variables	A	В	С
Ca3	0.331	0.338	-0.007
Ca10	0.319	0.379	-0.060
Ca5	0.284	0.322	-0.038
Ca7	0.278	0.335	-0.057
Ca9	0.258	0.278	-0.020
Ca8	0.243	0.271	-0.028
Ca4	0.234	0.323	-0.089
Call	0.220	0.332	-0.112
Ca2	0.179	0.241	-0.062
Cal	0.125	0.238	-0.113
Ca6	0.061	0.260	-0.199
Ca12	-0.071	0.132	-0.203

A: Pearson correlation coefficient (r) of Ca-SCP5-MC model.

B: Pearson correlation coefficient (r) of Ca-SCP5-AR model.

C: Difference of absolute value of A and absolute value of B.

c. Selecting variables for Ca-SCP5-MC model

Ten stage regression equations were generated in the analysis. Ca-SP5-MC-final regression equation comprises Ca3, Ca10 and Ca12. Ca10 is a common independent variable of Ca-SP5-AR-final regression equation. Table 10.78 summarizes the details of

the standard form and simple form regression equations of the Ca-SCP5-MC model. As Ca12 has negative partial coefficient, Ca12 would be included in the analysis on the essential causes to SCP5.

Table 10.78: Regression equations of Ca-SCP5-MC model

Model	Regression equations
Ca-SCP5-MC-1	SCP5 = 3.237 - 0.001xCa1 - 0.114xCa2 + 0.239xCa3 - 0.162xCa4 +
	0.161xCa5 - 0.004xCa6 + 0.125xCa7 - 0.081xCa8 + 0.081xCa9 +
	0.428xCa10 - 0.055xCa11 - 0.269xCa12
Ca-SCP5-MC-final	SCP5= 3.136 + 0.213xCa3 + 0.388xCa10 - 0.260xCa12

d. Explaining the variability of Ca-SCP5-MC model

The R, R Square, Adjusted R Square, F-statistic and Significance Level values of the ten stage regression equations are summarized in Table 10.79. The stage regression equations are fairly good linearly correlated to SCP5 as their R values range from 0.549 to 0.511. The R values for first three stage regression equations are the same. Ca4 and Ca10 thus are non-essential causes to SCP5 according to the views from main contractors.

Table 10.79: R, R Square and Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP5-MC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP5-MC-1		0.549	0.302	0.102	1.511	0.158
Ca-SCP5-MC-2	Cal	0.549	0.302	0.123	1.688	0.109
Ca-SCP5-MC-3	Ca6	0.549	0.301	0.142	1.897	0.071
Ca-SCP5-MC-4	Cal l	0.548	0.300	0.160	2.143	0.045
Ca-SCP5-MC-5	Ca9	0.546	0.298	0.176	2.441	0.027
Ca-SCP5-MC-6	Ca8	0.543	0.295	0.190	2.808	0.016
Ca-SCP5-MC-7	Ca4	0.537	0.288	0.199	3.234	0.009
Ca-SCP5-MC-8	Ca5	0.532	0.284	0.210	3.878	0.005
Ca-SCP5-MC-9	Ca7	0.527	0.278	0.220	4.813	0.002
Ca-SCP5-MC-final	Ca2	0.511	0.261	0.218	6:013	0.001

10.10.4 Analysis for consultants/clients (Ca-SCP5-CC)

a. The correlation coefficients of Ca-SCP5-CC model

Table 10.80 summarizes the Pearson correlation coefficient (r) of the twelve causes of the Ca-SCP5-CC model in a descending order of priority and the comparison with Ca-SCP5-AR model. The r coefficients range from 0.675 to 0.050. Six out of the twelve causes have r coefficients higher than 0.5. Compared with Ca-SCP4-AR model, all causes have higher r coefficients except the three most poorly correlated causes, Ca3, Ca5 and Ca7.

Table 10.80: Correlation coefficient of Ca-SCP5-CC model

Variables	A	В	С
Call	0.675	0.332	0.343
Ca10	0.617	0.379	0.238
Ca9	0.569	0.278	0.291
Cal	0.549	0.238	0.311
Ca12	0.536	0.132	0.404
Ca8	0.517	0.271	0.246
Ca2	0.474	0.241	0.233
Ca4	0.356	0.323	0.033
Ca6	0.334	0.260	0.074
Ca7	0.232	0.335	-0.103
Ca3	0.193	0.338	-0.145
Ca5	0.050	0.322	-0.272

A: Pearson correlation coefficient (r) of Ca-SCP5-CC model.

B: Pearson correlation coefficient (r) of Ca-SCP5-AR model.

C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for Ca-SCP5-CC model

Nine stage regression equations were generated in the analysis. Ca-SP5-CC-final regression equation consists of Ca1, Ca3, Ca5, Ca7 and Ca11. Ca3 and Ca7 are common independent variables of the Ca-SP5-AR-final regression equation. Table 10.81

summarizes the details of the standard form and simple form regression equations. As the partial coefficient of Ca3, Ca5 and Ca7 are of negative values, these causes would not be considered in the analysis on the essential causes to SCP5.

Table 10.81: Regression equations of Ca-SCP5-CC model

Model	Regression equations
Ca-SCP5-CC-1	SCP5 = 3.773 + 0.863xCa1 - 0.318xCa2 - 0.198xCa3 + 0.067xCa4 -
	0.527xCa5 + 0.165xCa6 - 0.392xCa7 + 0.137xCa8 + 0.173xCa9 +
	0.052xCa10 + 0.321xCa11 - 0.076xCa12
Ca-SCP5-CC-final	SCP5 = 3.973 + 0.620xCa1 - 0.253xCa3 - 0.363xCa5- 0.229xCa7 +
	0.487xCall

c. Explaining the variability of Ca-SCP5-CC model

The R, R Square, Adjusted R Square, F-statistic and Significance Level values of the eight stage regression equations have been summarized in Table 10.82. All the regression equations are very strongly linearly correlated to SCP5. Their R values range from 0.919 to 0.893. The R of the first two stage regression equations are the same. Ca4 is a non-essential cause to SCP5 from the views of consultants/clients.

Table 10.82: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP5-CC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP5-CC-1		0.919	0.844	0.689	5.425	0.003
Ca-SCP5-CC-2	Ca4	0.919	0.844	0.712	6.382	0.001
Ca-SCP5-CC-3	Ca10	0.918	0.843	0.731	7.514	0.000
Ca-SCP5-CC-4	Ca12	0.916	0.838	0.741	8.632	0.000
Ca-SCP5-CC-5	Ca8	0.914	0.835	0.752	10.105	0.000
Ca-SCP5-CC-6	Ca2	0.908	0.824	0.752	11.384	0.000
Ca-SCP5-CC-7	Ca6	0.893	0.798	0.730	11.839	0.000
Ca-SCP5-CC-final	Ca9	0.877	0.769	0.708	12.655	0.000

10.10.5 Neural network analysis for Ca-SCP5 models

Table 10.83 summarises the neural network results computed by NeuroShell2 software for the analysis of the causes to the SCP5 in the descending order of priority of their correlation coefficients. The correlation coefficients of the neural network outputs range from 0.876 to 0.468. The neural network outputs of the consultants/clients' data and from the overall data have the highest and lowest correlation coefficients respectively.

Table 10.83: Neural network analysis for Ca-SCP5 models

Neural network output	A	В	С	D
Ca-SCP5-CC-final	0.876	8	25	0.0004074
Ca-SCP5-CC-1	0.779	11	25	0.0137959
Ca-SCP5-MC-final	0.652	9	55	0.0018430
Ca-SCP5-SC-final	0.586	13	117	0.0069866
Ca-SCP5-SC-1	0.568	17	117	0.0070013
Ca-SCP5-MC-1	0.547	14	55	0.0053994
Ca-SCP5-AR-1	0.440	20	197	0.0036203
Ca-SCP5-AR-final	0.468	15	197	0.0039374

A: Correlation coefficient

B: Number of hidden neurons

C: Number of patterns processed

D: Minimum error when the training was stopped

10.10.6 Summary for the analysis of the causes to SCP5

Table 10.84 compares the correlation coefficients computed by the multiple regression method and the neural network method for the different models of SCP5. There are moderate differences in correlation coefficients computed by the two methods for Ca-SCP5-MC-final and Ca-SCP5-CC-1 model and the differences are around 0.14. The other correlation coefficients computed by these two methods are quite consistent and the maximum differences is only 0.049. All regression equations except that for the overall

data are quite reliable to explain the relationship of the contribution of the causes to SCP5.

Ca3, Ca7 and Ca10 are the most essential cause to SCP5 as they are included in two out of the four simple form regression equations.

Table 10.84: Comparison of multiple regression method and neural network method for SCP5

Model	A	В	C	D
Ca-SCP5-AR -1	All	0.489	0.440	0.049
Ca-SCP5-AR -final	Ca3, Ca7, Ca10	0.469	0.468	0.001
Ca-SCP5-SC -1 All		0.608	0.568	0.040
Ca-SCP5-SC -final	Ca5, Ca7, Ca9	0.597	0.586	0.011
Ca-SCP5-MC -1	All	0.549	0.547	0.002
Ca-SCP5-MC -final	Ca3, Ca10	0.511	0.652	-0.141
Ca-SCP5-CC -1	All	0.919	0.779	0.140
Ca-SCP5-CC -final	Cal, Call	0.877	0.876	0.001
			1	

A: Independent variables included in the model.

B: Correlation coefficient computed by multiple regression method.

C: Correlation coefficient computed by neural network method.

D: Difference of B and C.

10.11 Analysis for SCP6

10.11.1 Analysis for all type of respondents for SCP6 (Ca-SCP6-AR)

a. Outliers

No extreme cases were detected by the Mahalanobis statistical method. As a result, 197 sets of data were included for the multiple regression analysis of causes to SCP6.

b. Examining the variables of Ca-SCP6-AR model

The scatterplot matrix shown in Appendix T indicates that the causes are approximately linearly correlated to SCP6 based on visual examination of the data. There is no need to transform the data for the multiple regression analysis.

c. Testing hypothesis for Ca-SCP6-AR model

The F-statistics for the regression with all the twelve causes of site coordination problems to SCP6 is 4.149 and the observed significance level is 0.000. The hypothesis that $b_k = 0$ is thus rejected. It can be concluded that there is at least one of the coefficients is not.

c. The correlation coefficients of Ca-SCP6-AR model

Table 10.85 summarizes the Pearson correlation coefficient (r) of the twelve causes to the site coordination problems, SCP6 in a descending order of priority. All causes have positive coefficient, but they are just fairly linearly correlated to SCP6 as the r coefficients range from 0.384 to 0.209.

Table 10.85: Correlation coefficient of Ca-SCP6-AR model

Pearson correlation coefficient (r)
0.384
0.348
0.299
0.299
0.293
0.276
0.272
0.266
0.252
0.244
0.231
0.209

d. Selecting variables for Ca-SCP6-AR model

Eleven stage regression equations were generated in the analysis. The Ca-SCP6-AR-final regression equation comprised Ca3 and Ca7. Table 10.86 summarizes the details of the standard and simple form regression equations of Ca-SCP6-AR model.

Table 10.86: Regression equations of Ca-SCP6-AR model

Model	Regression equations
Ca-SCP6-AR-1	SCP6 = 2.911 + 0.042xCa1 + 0.060Ca2 + 0.122xCa3 - 0.126xCa4 +
	0074xCa5 - 0.015xCa6 + 0.196xCa7 - 0.067xCa8 + 0.031xCa9 +
	0.050xCa10 + 0.046xCa11 + 0.054xCa12
Ca-SCP6-AR-final	SCP6 = 3.454 + 0.161xCa3 + 0.208xCa7

e. Explaining the variability of Ca-SCP6-AR model

Table 10.87 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the eleven stage regression equations of Ca-SCP6-AR model.

Table 10.87: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP6-AR model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		!
Ca-SCP6-AR-1		0.461	0.213	0.162	4.149	0.000
Ca-SCP6-AR-2	Ca6	0.461	0.213	0.162	4.546	0.000
Ca-SCP6-AR-3	Ca9	0.460	0.212	0.170	5.002	0.000
Ca-SCP6-AR-4	Cal	0.459	0.210	0.172	5.537	0.000
Ca-SCP6-AR-5	Ca10	0.457	0.208	0.175	6.190	0.000
Ca-SCP6-AR-6	Ca8	0.455	0.207	0.177	7.039	0.000
Ca-SCP6-AR-7	Call	0.451	0.203	0.178	8.087	0.000
Ca-SCP6-AR-8	Ca5	0.447	0.200	0.179	9.537	0.000
Ca-SCP6-AR-9	Ca4	0.444	0.197	0.180	11.757	0.000
Ca-SCP6-AR-10	Ca2	0.439	0.193	0.181	15.397	0.000
Ca-SCP6-AR-final	Ca12	0.428	0.183	0.175	21.791	0.000

The eleven stage regression equations are only slightly linearly correlated to SCP6 as all their R values range from 0.461 to 0.428. The R values for first two stage equations are the same. This indicates that Ca6 is not essential to SCP6.

10.11.2 Analysis for subcontractors for SCP6 (Ca-SCP6-SC)

a. The correlation coefficients of Ca-SCP6-SC model

Table 10.88 summarizes the Pearson correlation coefficients (r) of the twelve causes of Ca-SCP6-SC model in a descending order of priority and compares their coefficients with Ca-SCP6-AR model.

Table 10.88: Correlation coefficient of Ca-SCP6-SC model

Variables	A	В	С
Ca7	0.487	0.384	0.103
Ca2	0.320	0.299	0.021
Ca9	0.306	0.276	0.030
Ca3	0.304	0.348	-0.044
Ca4	0.281	0.244	0.037
Call	0.280	0.293	-0.013
Ca5	0.264	0.252	0.012
Ca6	0.241	0.266	-0.025
Cal	0.238	0.299	-0.061
Ca10	0.223	0.231	-0.008
Ca8	0.212	0.272	-0.060
Ca12	0.099	0.209	-0.110

- A: Pearson correlation coefficient (r) of Ca-SCP6-SC model.
- B: Pearson correlation coefficient (r) of Ca-SCP6-AR model.
- C: Difference of absolute value of A and absolute value of B.

The r coefficients range from 0.487 to 0.009 and they are more diverged compared with Ca-SCP6-AR model. The difference between the highest and lowest coefficient is 0.213 higher than that of Ca-SCP6-AR model.

b. Selecting variables for Ca-SCP6-SC model

Eleven stage regression equations were generated in the analysis. The Ca-SP6-SC-final regression equation comprised Ca2 and Ca7. Ca7 is one of the two independent variables of Ca-SP6-AR-final regression equation. Table 10.89 summarizes the details of the standard form and simple form regression equations of Ca-SCP6-SC model.

Table 10.89: Regression equations of Ca-SCP6-SC model

Model	Regression equations
Ca-SCP6-SC-1	SCP6 = 2.693 - 0.012xCa1 + 0.144xCa2 - 0.060xCa3 - 0.077xCa4 +
	0.039xCa5 - 0.080xCa6 + 0.385xCa7 - 0.077xCa8 + 0.141xCa9 +
	0.077xCa10 + 0.061xCa11 - 0.057xCa12
Ca-SCP6-SC-final	SCP6 = 2.962 + 0.130xCa2 + 0.344xCa7

c. Explaining the variability of Ca-SCP6-SC model

Table 10.90 summarizes the R, R Square, Adjusted R Square, F-statistic and Significance Level values of the eleven stage regression equations. The stage regression equations are slightly good linearly correlated to SCP6 as their R values of these models range from 0.545 to 0.512. The R values for the first four stage regression equations are the same.

Ca1, Ca4 and Ca11 are thus not essential to SCP6 according to the views from subcontractors.

Table 10.90: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP6-SC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
	removed			Square		
Ca-SCP6-SC-1		0.545	0.297	0.216	3.665	0.000
Ca-SCP6-SC-2	Call	0.545	0.297	0.224	4.037	0.000
Ca-SCP6-SC-3	Ca4	0.545	0.297	0.231	4.482	0.000
Ca-SCP6-SC-4	Cal	0.545	0.297	0.238	5.025	0.000
Ca-SCP6-SC-5	Ca5	0.544	0.296	0.244	5.684	0.000
Ca-SCP6-SC-6	Ca3	0.542	0.294	0.249	6.483	0.000
Ca-SCP6-SC-7	Ca8	0.539	0.290	0.251	7.488	0.000
Ca-SCP6-SC-8	Ca10	0.534	0.285	0.253	8.865	0.000
Ca-SCP6-SC-8	Ca12	0.530	0.281	0.256	10.955	0.000
Ca-SCP6-SC-8	Ca6	0.524	0.274	0.255	14.233	0.000
Ca-SCP6-SC-final	Ca9	0.512	0.262	0.249	20.227	0.000

10.11.3 Analysis for main contractor for SCP6 (Ca-SCP6-MC)

The correlation coefficients of Ca-SCP6-MC model

Table 10.91 summarizes the Pearson correlation coefficients (r) of the twelve causes of the Ca-SCP6-MC model in a descending order of priority and compares their coefficients with Ca-SCP6-AR model. The r coefficients range from 0.419 to 0.016. The r coefficients of the Ca-SCP6-MC are more diverged compared with Ca-SCP6-AR model.

The difference between the highest and lowest coefficient is 0.321 higher than that of Ca-SCP6-AR model.

Table 10.91: Correlation coefficient of Ca-SCP6-MC model

Variables	A	В	С
Ca3	0.419	0.348	0.071
Ca5	0.319	0.252	0.067
Cal	0.282	0.299	-0.017
Ca7	0.244	0.384	-0.140
Ca2	0.217	0.299	-0.082
Ca8	0.223	0.272	-0.049
Ca10	0.207	0.231	-0.024
Ca4	0.199	0.244	-0.045
Ca9	0.180	0.276	-0.096
Call	0.174	0.293	-0.119
Ca12	0.135	0.209	-0.074
Ca6	0.016	0.266	-0.250

A: Pearson correlation coefficient (r) of Ca-SCP6-MC model

B: Pearson correlation coefficient (r) of Ca-SCP6-AR model

C: Difference of absolute value of A and absolute value of B

b. Selecting variables for Ca-SCP6-MC model

Twelve stage regression equations were generated for Ca-SCP6-MC model. Ca-SP6-MC-final regression equation comprised one independent variable only, Ca3 which is also an independent variable of Ca-SP6-AR-final regression equation. Table 10.92 summarizes the details of the standard form and simple form regression equations of the Ca-SCP6-MC model.

Table 10.92: Regression equations of Ca-SCP6-MC model

Model	Regression equations
Ca-SCP6-MC-1	SCP6 = 2.975 + 0.185xCa1 - 0.212xCa2 + 0.271xCa3 - 0.197xCa4 +
	0.197xCa5 - 0.022xCa6 + 0.145xCa7 - 0.060xCa8 + 0.009xCa9 +
	0.133xCa10 - 0.0005xCa11 - 0.017xCa12
Ca-SCP6-MC-final	SCP6= 3.583 + 0.308xCa3

c. Explaining the variability of Ca-SCP6-MC model

The R, R Square, Adjusted R Square, F-statistic and Significance Level values of the twelve stage regression equations have been summarized in Table 10.93. The stage regression equations are fairly linearly correlated to SCP6. Their R values ranges from 0.509 to 0.419. The R values for first four stage regression equations are the same. Ca9, Call and Cal2 are thus not essential to SCP6 according to the views from main contractors.

Table 10.93: R, R Square, Adjusted R Square F-statistic and Significance Level values of the stage regression equations of Ca-SCP6-MC model

Variable	R	R Square	Adjusted R	F-statistic	Significance
removed			Square		
	0.509	0.259	0.047	1.223	0.300
Call	0.509	0.259	0.069	1.366	0.224
Ca9	0.509	0.259	0.091	1.537	0.159
Ca12	0.509	0.259	0.110	1.744	0.107
Ca8	0.507	0.257	0.127	1.985	0.070
Ca10	0.496	0.246	0.134	5.192	0.052
Ca4	0.482	0.232	0.136	2.416	0.040
Ca5	0.467	0.218	0.138	2.732	0.030
Ca6	0.451	0.204	0.140	· 3.200	0.020
Cal	0.436	0.190	0.143	3.993	0.012
Ca2	0.425	0.181	0.149	5.744	0.006
Ca7	0.419	0.176	0.160	11.293	0.001
	Call Ca9 Ca12 Ca8 Ca10 Ca4 Ca5 Ca6 Ca1 Ca2	removed 0.509 Ca11 0.509 Ca9 0.509 Ca12 0.509 Ca8 0.507 Ca10 0.496 Ca4 0.482 Ca5 0.467 Ca6 0.451 Ca1 0.436 Ca2 0.425	removed 0.509 0.259 Cal1 0.509 0.259 Ca9 0.509 0.259 Ca12 0.509 0.259 Ca8 0.507 0.257 Ca10 0.496 0.246 Ca4 0.482 0.232 Ca5 0.467 0.218 Ca6 0.451 0.204 Ca1 0.436 0.190 Ca2 0.425 0.181	removed Square 0.509 0.259 0.047 Cal1 0.509 0.259 0.069 Ca9 0.509 0.259 0.091 Ca12 0.509 0.259 0.110 Ca8 0.507 0.257 0.127 Ca10 0.496 0.246 0.134 Ca4 0.482 0.232 0.136 Ca5 0.467 0.218 0.138 Ca6 0.451 0.204 0.140 Ca1 0.436 0.190 0.143 Ca2 0.425 0.181 0.149	removed Square 0.509 0.259 0.047 1.223 Cal1 0.509 0.259 0.069 1.366 Ca9 0.509 0.259 0.091 1.537 Ca12 0.509 0.259 0.110 1.744 Ca8 0.507 0.257 0.127 1.985 Ca10 0.496 0.246 0.134 5.192 Ca4 0.482 0.232 0.136 2.416 Ca5 0.467 0.218 0.138 2.732 Ca6 0.451 0.204 0.140 3.200 Ca1 0.436 0.190 0.143 3.993 Ca2 0.425 0.181 0.149 5.744

10.11.4 Analysis for consultants/clients for SCP6 (Ca-SCP6-CC)

a. The correlation coefficients of Ca-SCP6-CC model

Table 10.94 summarizes the Pearson correlation coefficient (r) of the twelve causes of the Ca-SCP6-CC model in a descending order of priority and the comparison with the Ca-SCP6-AR model. The r coefficients range from 0.637 to 0.131. Compared with Ca-SCP6-AR model, all causes have higher r coefficients except three poorly related causes, Ca3, Ca5 and Ca7.

Table 10.94: Correlation coefficient of Ca-SCP6-CC model

Variables	A	В	С
Ca12	0.637	0.209	0.428
Cal1	0.535	0.293	0.242
Ca8	0.533	0.272	0.261
Ca6	0.510	0.266	0.244
Ca2	0.459	0.299	0.160
Cal	0.454	0.299	0.155
Ca10	0.448	0.231	0.217
Ca9	0.364	0.276	0.088
Ca7	0.358	0.384	-0.026
Ca3	0.340	0.348	-0.008
Ca4	0.331	0.244	0.087
Ca5	0.131	0.252	-0.121
		<u> </u>	<u> </u>

A: Pearson correlation coefficient (r) of Ca-SCP6-CCodel.

B: Pearson correlation coefficient (r) of Ca-SCP6-AR model.

C: Difference of absolute value of A and absolute value of B.

b. Selecting variables for Ca-SCP6-CC model

Eleven stage regression equations were generated in the analysis. Ca-SCP6-CC-final regression equation comprises Ca6 and Ca12. None of them are the independent variables of the Ca-SP6-AR-final regression equation. Table 10.95 summarizes the details of the standard and simple form regression equations.

Table 10.95: Regression equations of Ca-SCP6-CC model

Model	Regression equations
Ca-SCP6-CC-1	SCP6 = 1.687 + 0.187xCa1 - 0.012xCa2 + 0.040xCa3 + 0.043xCa4 -
	0.163xCa5 + 0.192xCa6 - 0.086xCa7 + 0.139xCa8 - 0.003xCa9 +
	0.035xCa10 - 0.031xCa11 + 0.277xCa12
Ca-SCP6-CC-final	SCP6 = 2.103 + 0.223xCa6 + 0.364xCa12

c. Explaining the variability of Ca-SCP6-CC model

The R, R Square, Adjusted R Square, F-statistic and Significance Level values of the eleven stage regression equations have been summarized in Table 10.96.

Table 10.96: R, R Square, Adjusted R Square, F-statistic and Significance Level values of the stage regression equations of Ca-SCP6-CC model

Model	Variable	R	R Square	Adjusted R	F-statistic	Significance
į	removed			Square		
Ca-SCP6-CC-1		0.734	0.539	0.079	1.171	0.394
Ca-SCP6-CC-2	Ca9	0.734	0.539	0.150	1.384	0.285
Ca-SCP6-CC-3	Ca2	0.734	0.539	0.210	1.639	0.193
Ca-SCP6-CC-4	Ca4	0.734	0.539	0.263	1.949	0.122
Ca-SCP6-CC-5	Cal1	0.734	0.539	0.308	2.338	0.071
Ca-SCP6-CC-6	Ca10	0.734	0.539	0.349	2.835	0.037
Ca-SCP6-CC-7	Ca3	0.733	0.537	0.383	3.478	0.018
Ca-SCP6-CC-8	Ca7	0.730	0.533	0.410	4.335	0.008
Ca-SCP6-CC-9	Ca5	0.725	0.526	0.431	5.547	0.004
Ca-SCP6-CC-10	Ca8	0.717	0.514	0.445	7.411	0.001
Ca-SCP6-CC-final	Cal	0.696	0.485	0.438	10.340	0.001

All the regression equations are strongly linearly correlated to SCP6. Their R values ranges from 0.734 to 0.696. The R and R Square values for first six stage regression equations are the same. Ca2, Ca4, Ca9, Ca10 and Ca11 are thus non-essential causes to SCP6 from the views of consultants/clients.

10.11.5 Neural network analysis for Ca-SCP6 models

Table 10.97 summarises the results computed by NeuroShell2 software for the analysis of the causes to the SCP6 in a descending order of priority of their correlation coefficients. The correlation coefficients of the neural network outputs range from 0.876 to 0.426. The neural network outputs of the consultants/clients models have the highest correlation coefficient.

Table 10.97: Neural network analysis for Ca-SCP6 models

Neural network output	A	В	C	D
Ca-SCP6-CC -final	0.876	6	25	0.0043619
Ca-SCP6-CC -1	0.717	11	25	0.0068663
Ca-SCP6-SC-1	0.598	17	117	0.0027775
Ca-SCP6-MC-1	0.528	14	55	0.0137411
Ca-SCP6-SC-final	0.515	12	117	0.0024615
Ca-SCP6-AR-1	0.449	20	197	0.0169730
Ca-SCP6-AR-final	0.427	15	197	0.0143446
Ca-SCP6-MC-final	0.426	8	55	0.0147633

A: Correlation coefficient

B: Number of hidden neurons

C: Number of patterns processed

D: Minimum error when the training was stopped

10.11.6 Summary for the analysis of the causes to SCP6

Table 10.98 compares the correlation coefficients computed by multiple regression method and neural network method for the different models of SCP6. Except that of Ca-SCP6-CC-final, all the correlation coefficients computed by the two methods are quite consistent and the maximum difference is only 0.053. The difference in correlation coefficients of Ca-SCP6-CC-final model by the two methods is only 0.180. The regression equations for consultants/clients' data are good to explain the relationship for the contributions of the causes to SCP6. Ca3 and Ca7 are the most essential causes as they are the variables of two simple form regression equations.

Table 10.98: Comparison of multiple regression method and neural network method for SCP6

Model	Ā	В	C	D
Ca-SCP6-AR -1	All	0.461	0.449	0.012
Ca-SCP6-AR -final	Ca3, Ca7	0.428	0.427	0.001
Ca-SCP6-SC -1	All	0.545	0.598	-0.053
Ca-SCP6-SC -final	Ca2, Ca7	0.512	0.515	-0.003
Ca-SCP6-MC -1	All	0.509	0.528	-0.019
Ca-SCP6-MC -final	Ca3	0.419	0.426	-0.007
Ca-SCP6-CC -1	All	0.734	0.717	0.017
Ca-SCP6-CC -final	Ca6, Ca12	0.696	0.876	-0.180

A: Independent variables included in the model.

B: Correlation coefficient computed by multiple regression method.

C: Correlation coefficient computed by neural network method.

D: Difference of B and C.

10.12 Summary

A questionnaire survey was conducted to collect data to formulate equations to assess the contributions of the twelve essential causes to the six critical site coordination problems to the performance of subcontractors. One hundred and ninety-seven valid replies were collected. A descriptive statistic analysis was conducted to preliminarily examine the data. Multiple regression analysis was adopted to generate the equations to explain the relationship between the causes and the site coordination problems. Backward elimination approach was used to identify the most essential causes to each of the site coordination problems. The data were also processed by neural network software as a cross checking purpose and the outputs of the analyses were used to validate the reliability of the multiple regression equations.

The descriptive statistic analysis shows that five out of the six essential coordination problems are regarded as fairly frequently occurred problems in the local building projects. All the causes of the problems are regarded to have essential contributions to the occurrence of the site coordination problems. The mean score of the most essential cause, Ca9 is 6.297 and it is only 1.025 higher than lowest mean score cause, Ca6. This

indicates that there was no dominant cause to the site coordination problems according to the descriptive statistic analysis.

SPSS software was used for the multiple regression analysis. The analysis covered six main models relating the causes to each of the site coordination problem. As the replies comprised the views from subcontractors, main contractors and consultants/clients, three sub-models for each main model were also computed. As a result, the analysis covered six main models and 18 sub-models.

a. Overall views

Table 10.99 summarizes the R value of the of the standard form regression equations of the overall data in the descending order of priority. The R values of the equations range from 0.585 to 0.461. These regression equations can be used to evaluate the contributions of the twelve essential causes to each of the critical site coordination problems. One way to analyze the importance of each of the causes to the problems is to count the number of simple form regression equations containing that cause as the independent variable. Table 10.100 summarizes the number of critical site coordination problems that were affected by a particular cause according to different type of respondents. According to the overall data, Ca7 is the most important causes as it is the independent variable of four out of the six simple form regression equations. Ca3 and Ca4 are the second important causes. Ca2, Ca8 and Ca10 are third importance causes. Ca1, Ca6, Ca9, Ca11 and Ca12 are less essential items as they are not included in any of the simple form regression equation.

Table 10.99: R value of the of the standard form regression equations of overall data

Model	Regression equation	R value
Ca-SCP1-AR-1	SCP1 = 2.115 + 0.086xCa1 + 0.223xCa2 - 0.026xCa3 +	0.585
	0.073xCa4 + 0.077xCa5 - 0.054xCa6 + 0.126xCa7 -	
	0.017xCa8 - 0.028xCa9 + 0.051xCa10 + 0.037xCa11	
	- 0.016xCa12	
Ca-SCP2-AR-1	SCP2 = 1.187 - 0.007xCa1 + 0.046xCa2 + 0.081xCa3 +	0.570
	0.122xCa4 + 0.133xCa5 + 0.010xCa6 + 0.011xCa7 +	
	0.050xCa8 - 0.050xCa9 + 0.141xCa10 + 0.055xCa11	
	- 0.068xCa12	
Ca-SCP3-AR-1	SCP3 = 2.182 - 0.063xCa1 + 0.147xCa2 + 0.115xCa3 +	0.498
	0.053xCa4 + 0.090xCa5 - 0.055xCa6 + 0.045xCa7 +	
	0.093xCa8 - 0.019xCa9 + 0.069xCa10 - 0.033xCa11	
	+ 0.068xCa12	
Ca-SCP5-AR-1	SCP5 = 3.536 + 0.025xCa1 - 0.093xCa2 + 0.112xCa3 -	0.489
	0.013xCa4 + 0090xCa5 + 0.015xCa6 + 0.140xCa7 -	
	0.049xCa8 + 0.027xCa9 + 0.216xCa10 + 0.074xCa11	
	- 0.068xCa12	
Ca-SCP4-AR-1	SCP4 = 3.022 + 0.005xCa1 + 0.041xCa2 + 0.078xCa3 -	0.468
	0.002xCa4 + 0.095xCa5 - 0.093xCa6 + 0.138xCa7 +	
	0.005xCa8 + 0.110xCa9 + 0.023xCa10 + 0.037xCa11	
	+ 0.031xCa12	
Ca-SCP6-AR-1	SCP6 = 2.911 + 0.042xCa1 + 0.060Ca2 + 0.122xCa3 -	0.461
	0.126xCa4 + 0074xCa5 - 0.015xCa6 + 0.196xCa7 -	
	0.067xCa8 + 0.031xCa9 + 0.050xCa10 + 0.046xCa11	
	+ 0.054xCa12	

Table-10.100: Analysis of the importance of the causes to the site coordination problems

Cause	AR	SC	MC	CC
Cal	-	-	SCP1, SCP2	SCP5
Ca2	SCP1, SCP3	SCP1, SCP3,	-	SCP1, SCP2,
		SCP6		SCP3
Ca3	SCP3, SCP5,		SCP3, SCP4,	-
	SCP6		SCP5, SCP6	
Ca4	SCP1, SCP2	SCP2, SCP4	SCP1	SCP4
Ca5	SCP2, SCP4	SCP3, SCP5	SCP2	
Ca6	-	-	-	SCP4, SCP6
Ca7	SCP1, SCP4,	SCP1, SCP4,	•	-
	SCP5, SCP6	SCP5, SCP6		
Ca8	SCP3	SCP2	-	SCP1, SCP2,
				SCP3
Ca9	SCP4	SCP5	SCP3	SCP4
Ca10	SCP2, SCP5	SCP2	SCP5	-
Call	-	-	-	SCP5
Ca12	•	-	-	SCP3, SCP6

AR: Overall views; SC: Views from subcontractors

MC: Views from main contractors; CC: Views from consultants/clients

b. Views from subcontractors

Table 10.100 concludes that Ca7 is the most important cause as it is the independent variable of four out of the six simple form regression equations according to the views from subcontractors. Ca2 is the second important causes. Ca1, Ca3, Ca6, Ca11 and Ca12 are not included in any of the simple form regression equations.

c. Views from main contractors

Table 10.100 indicates that Ca3 is the most important cause as it is the independent variable of four out of the six simple form regression equations according to the views from main contractors. Ca1 is the second essential causes. Ca4, Ca5, Ca9 and Ca10 are of equal importance. Ca2, Ca6, Ca7, Ca8, Ca11 and Ca12 are not included in any of the simple form regression equations.

d. Views from consultants/clients

The Table 9.131 shows that Ca2 and Ca8 are the most important causes as they are the independent variables of three out of the six simple form regression equations. Ca6 and Ca12 are of second importance to site coordination problems. Ca3, Ca5, Ca7 and Ca10 are not included in any of the simple form regression equations.

The above analysis shows that the views on the contributions of the twelve causes to the six site coordination problems from the three types of respondents are not consistent. As the number of data of the subcontractors, main contractors, and clients/consultant is approximately in the ratio of 4:2:1, the overall data can have a good balance to reflect the

opinions from the industry as a whole. Thus the analysis results of the overall data should be adopted to eliminate the biases from the different parties. The R values of the standard form regression equations of the overall data range from 0.585 to 0.461 and they are acceptable to be adopted to explain the relationship between the causes to the site coordination problems in the following chapters.

CHAPTER ELEVEN

IMPROVING THE SITE COORDINATION

11.1 Introduction

Six critical site coordination problems and twelve essential causes of these problems were identified in Chapter Seven and Chapter Eight. The regression equations to explain the relationships between the frequency of occurrence of the six critical site coordination problems and the performance of subcontractors in terms of time, cost and quality achievement were computed in Chapter Nine. The 'most critical' site coordination problems to subcontractors' performance were identified by adopting the backward elimination method. The regression equations to show the contributions of the twelve essential causes to each of the critical problems were developed in Chapter Ten. The 'most essential' causes to the site coordination problems were identified by adopting the backward elimination method. The aim of this Chapter is to construct linkage to relate the 'most essential' causes to the 'most important' site coordination problems and subsequently to the performance of subcontractors. The linkages were used to guide main contractors to formulate strategy to improve their site coordination.

11.2 Analyzing the causes of site coordination to project performance

11.2.1 Analysis for all types of subcontractors

a. Linkage for time performance analysis of all types of subcontractors

Figure 11.1 shows the relationships between causes, site coordination problems and time performance of all types of subcontractors. The figure demonstrates that: Ca2, Ca3, Ca4, Ca5, Ca7, Ca8 and Ca10 are the 'most essential' causes to the occurrence of problems SCP1, SCP2 and SCP3 which are the 'most critical' problems affecting the time performance of subcontractors on the Hong Kong building projects.

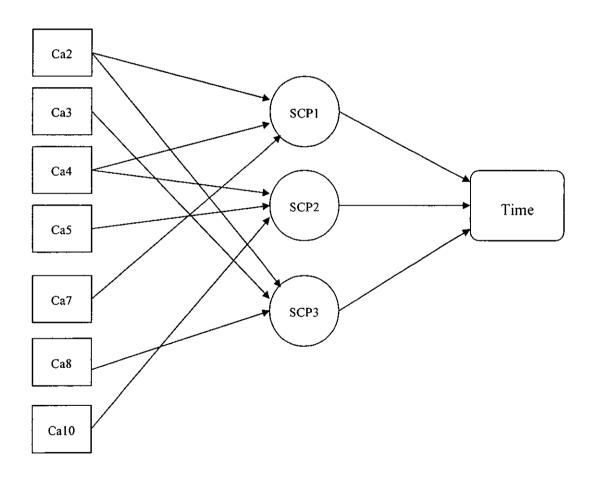


Figure 11.1: Linkage for time performance analysis of all types of subcontractors

and structural work subcontractors

b. Linkage for cost performance analysis of all types of subcontractors

Figure 11.2 relates causes, site coordination problems and cost performance of all types of subcontractors. The figure shows that: Ca2, Ca3, Ca5, Ca7, Ca8 and Ca9 are the 'most essential' causes of problems SCP3 and SCP4; and these two problems in turn directly affect the cost performance of all types of subcontractors.

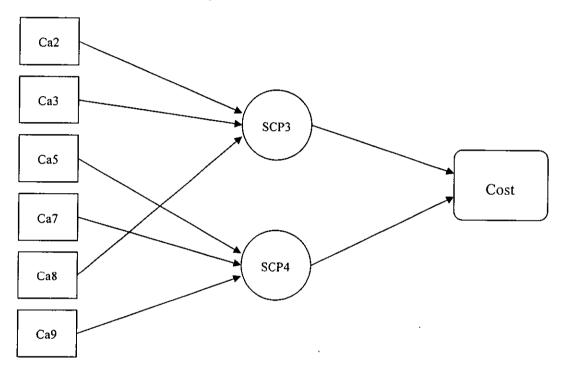


Figure 11.2: Linkage for the cost performance analysis of all types of subcontractors

c. Linkage quality performance analysis of all types of subcontractors

Figure 11.3 shows the relationships between causes, site coordination problems and the quality performance of all types of subcontractors. The figure demonstrates that: Ca2, Ca3, Ca4, Ca7 and Ca8 are the 'most essential' causes of problems SCP1 and SCP3; and these problems in turn directly affect the quality performance of all types of subcontractors.

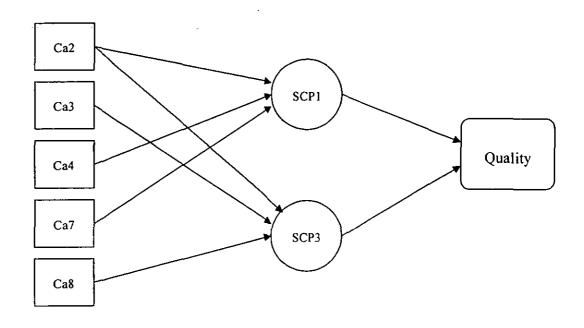


Figure 11.3: Linkage for quality performance analysis of all types of subcontractors

11.2.2 Analysis for finishing work subcontractors

a. Linkage for time performance analysis of finishing work subcontractors

Figure 11.4 shows the relationships between causes, site coordination problems and the time performance of finishing work subcontractors. The figure demonstrates that: the time performance of finishing work subcontractors is directly affected by SCP2, SCP4 and SCP6; and these three problems are mainly caused by Ca3, Ca4, Ca5, Ca7, Ca9 and Ca10.

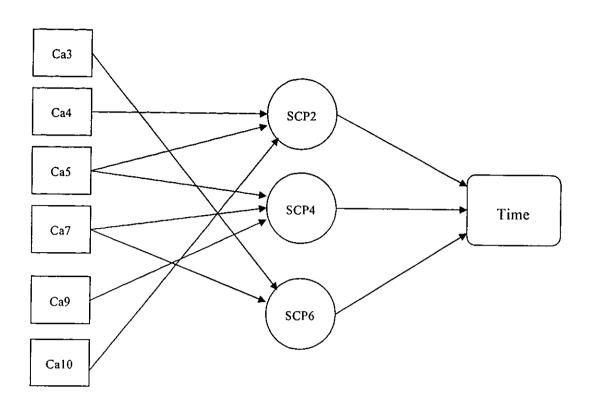


Figure 11.4: Linkage for time performance analysis of finishing work subcontractors

b. Linkage for cost performance analysis of finishing work subcontractors

Figure 11.5 relates causes, site coordination problems and the cost performance of finishing work subcontractors. The figure shows that: the cost performance of finishing work subcontractors is mainly influenced by one main site coordination problem, i.e. SCP4; which is mainly caused by Ca5, Ca7 and Ca9.

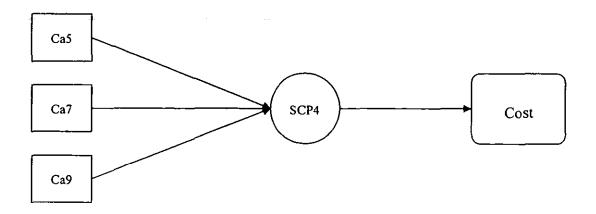


Figure 10.5: Linkage for cost performance analysis of finishing work subcontractors

c. Linkage for quality performance analysis of finishing work subcontractors Figure 11.6 illustrates the relationship between, site coordination and the quality

performance of finishing work subcontractors. The figure demonstrates that Ca4, Ca5, Ca7, Ca9 and Ca10 are the 'most essential' causes of problems SCP2 and SCP4 which

then directly affect the quality performance of the subcontractors.

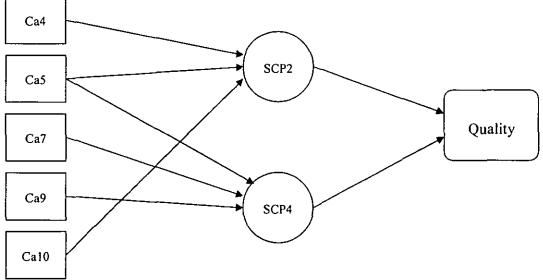


Figure 11.6: Linkage for quality performance analysis of finishing work subcontractors

11.2.3 Analysis for structural work subcontractors

a. Linkage for time performance analysis of structural work subcontractors

The linkage for time performance analysis of structural work subcontractors is the same as the linkage for time performance of all types of subcontractors as presented in Figure 11.1. Ca2, Ca3, Ca4, Ca5, Ca7, Ca8 and Ca10 are the main causes of problems SCP1, SCP2 and SCP3. These three problems in turn directly affect the time performance of structural work subcontractors.

b. Linkage for cost performance analysis of structural work subcontractors

Figure 11.7 shows the relationship between causes, site coordination problems and the cost performance of structural work subcontractors. The figure demonstrates that cost performance is mainly controlled by SCP2 caused by Ca4, Ca5 and Ca10.

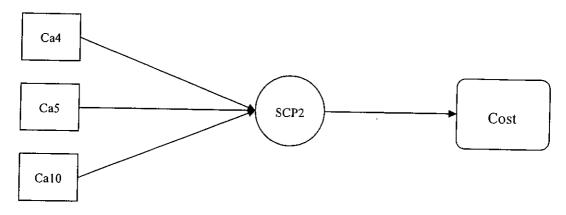


Figure 11.7: Linkage for cost performance analysis of structural work subcontractors

c. Linkage for quality performance analysis of structural work subcontractors

Figure 11.8 shows the relationship between causes, site coordination problems and the quality performance of structural work subcontractors. The figure demonstrates that Ca2, Ca3, Ca7 and Ca8 are the 'most essential' causes of problems SCP3 and SCP6. These problems directly affect the quality performance of the structural work subcontractors.

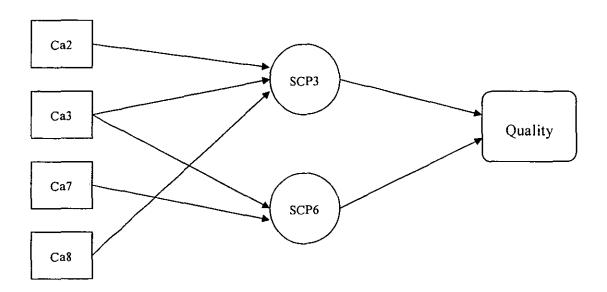


Figure 10.8: Linkage for quality performance analysis of structural work subcontractors

11.2.4 Analysis for building services work subcontractors

The linkages for the three project outcomes of building services subcontractors are the same as shown in Figure 11.9. Ca2, Ca3 and Ca8 are the 'most essential' causes contributing of problem SCP3 which in turn directly influences all the three project outcomes: time, cost and quality.

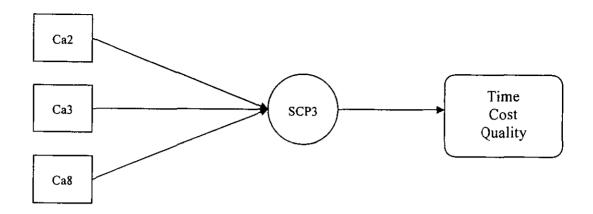


Figure 11.9: Linkage for the time, cost and quality performance analysis of building services work subcontractors

11.3 Summary

Some of the causes and problems are more important to different types of subcontractors. Figure 11.4 to Figure 11.9 illustrate how the 'most essential' causes contribute to the 'most critical' site coordination problems and subsequently influence the project outcomes of subcontracts for different types of subcontractors. These figures provide essential information to main contractors to formulate appropriate strategy to monitor the performances of different types of subcontractors.

Table 11.1 summarizes the 'most essential' causes, the 'most critical' site coordination problems and the respective project outcomes affected based on the data for all types of subcontractors. In order to enhance the site coordination, main contractors should focus their efforts on eliminating the causes, Ca2, Ca3, Ca4, Ca5, Ca7, Ca8, Ca9 and Ca10, in order to avoid the occurrence of problems, SCP1, SCP2, SCP3 and SCP4 according to the table.

Table 11.1: Summary of 'most essential' causes, 'most critical' site coordination problems and project outcomes

Causes	Problems	Project
		outcomes
		influenced
Staff the main contractor are too inexperienced to coordinate the site work	Interfacing work	Time, Quality,
(Ca2);	not yet completed	Cost
Main contractor does not have sufficient directly employed workers to carry	(SCP3)	
out the temporary work (Ca3);		1-
Job duties of main contractor's staff are unclear (Ca8)		
Staff the main contractor are too inexperienced to coordinate the site work	Short notice to	Time, Quality,
(Ca2);	commence site	
Main contractor does not have sufficient staff to coordinate the site work	work (SCP1)	
(Ca4);		
Design of the temporary work provided by main contractor does not meet		
the requirements requested by the sub-contractors (Ca7)		L. [1]
Main contractor does not have sufficient staff to coordinate the site work	Late to provide	Time
(Ca4);	plant support	
Main contractor does not have sufficient staff to coordinate the technical	(SCP2)	
administration work (Ca5);		
Frontline staff of main contractor do not have sufficient authority to handle		
the site co-ordination (Ca10)		
Main contractor does not have sufficient staff to coordinate the technical	Interfacing work	Cost
administration work (Ca5);	not accurately	
Design of the temporary work provided by main contractor does not meet	completed (SCP4)	
the requirements requested by the sub-contractors (Ca7);		
Communication paths within main contractor organization are unclear (Ca9)		

Figure 11.10 constructs the link from the 'most essential' causes to the 'most critical' site coordination problems and then the respective project outcomes. The figure shows that

interfacing work not yet completed (SCP3) is the most important one among the four 'most critical' site coordination problems as it has direct influence to all the three project outcomes. Ca2, Ca4, Ca5 and Ca7 are more important than the other 'most essential' causes as they have direct influence to two 'most critical' site coordination problems. Among them, staff the main contractor are too inexperienced to coordinate the site work (Ca2) is the most important one as it influence SCP3 and subsequently all the three project outcomes.

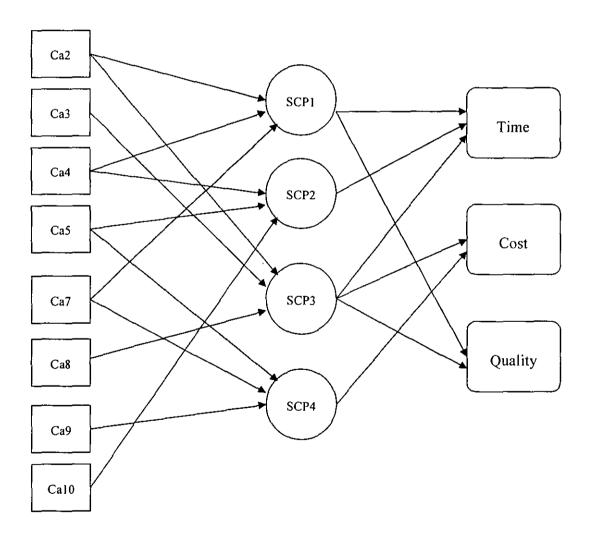


Figure 11.10: Linkage of subcontractor' performance analysis

CHAPTER TWELVE

CONCLUSIONS, RECOMMENDATIONS AND

FURTHER RESEARCH

12.1 Introduction

The economy of Hong Kong is heavily dependent upon the state of the property and the construction industry. The construction industry employs about eight per cent of working population and contributes 3.4 per cent of Hong Kong's GDP according to government statistics for 2005 (Census and Statistics Department, 2006). Due to the rapid expansion of project size and fluctuation of workload, there is a high level of sub-contracting in the projects. The labour-only subcontractors and fee subcontractors contributed 23 per cent and 44 per cent of the gross value of construction work performed in 2005. However, there are increasing complaints from the subcontractors that they cannot perform their site work effectively and efficiently due to poor site coordination by main contractors. Research was conducted to develop relationships to explain how the site coordination problems caused by main contractors affect the performance of subcontractors at the construction stage and analyze the main causes of these problems. The aim of the research was divided into the following six objectives which were achieved through a series of questionnaire surveys and in-depth interviews.

a. Identify and review the common criteria to evaluate the performance of subcontractors currently used by the main contractors in HK building projects.

- b. Identify and review the important factors governing the performance of subcontractors.
- c. Identify and analyse the critical site coordination problems caused by main contractors that adversely affect the performance of subcontractors.
- d. Identify and analyse the essential causes of the site coordination problems.
- e. Investigate how the site coordination problems affect the performance of subcontractors.
- f. Develop a framework and recommend actions to main contractors for improving site coordination.

Finally, four 'most critical' site coordination problems that have adverse impacts on the time, cost and quality performance of the subcontractors in the HK building project, and eight 'most essential' causes of these problems were identified and their relationships are shown in Figure 11.1 (see page 335). The following sections conclude how the objectives of this research have been achieved.

12.2 Conclusions

12.2.1 Performance evaluation of subcontractors

The role of main contractors on Hong Kong building projects has been gradually transformed from a constructor to a manager of subcontractors, consequently, the performance of subcontractors is one of the most important factors governing the project performance. In order to identify the project related factors influencing the outcomes of subcontracts, a questionnaire survey was conducted to identify the criteria that main

contractors currently using to assess the performance of their subcontractors. A <u>list</u> of criteria grouped into the following seven categories of project objectives was prepared based on literature review and advices from industrial practitioners.

- a. time;
- b. safety and health;
- c. quality;
- d. cost;
- e. potential for long term development;
- f. sustainability; and
- g. public image.

In the survey, respondents who had worked in main contracting firms were requested to rate the level of importance of the criteria. The survey results indicate that time is the most important criteria to evaluate the performance of subcontractors. The main reasons being that the clients would normally set very short contract durations for the local building projects due to high land price, and the performance in relation to this objective can easily be quantified. Main contractors thus set this as the top priority project objective and consequently the most important performance assessment criteria to their subcontractors. With the increasing public concerns on safety and health issues, this item has become as important as the other two traditional project objectives, cost and quality. The other three objectives selected for this survey are considered as less important objectives to subcontracts.

12.2.2 Factors governing the performance of subcontractors

There are numerous factors that can influence project outcomes such as site conditions, procurement system, and project organization etc. The factors governing the performance of subcontractors of HK building projects were identified and analyzed by adopting the in-depth interview method. A list of factors that could affect the performance of a subcontractor was developed based on the publications of the determinants of main contract outcomes. The factors were grouped in the following three categories by adopting the model developed by Tam and Harris (1996):

- a. inherent project characteristics;
- b. ability of the key participants; and
- c. influence of the participants to the subcontractors.

Views from the construction managers and foremen of main contractors, and the project officers of subcontractors were gathered through in-depth interviews. With reference to the three main traditional project objectives, i.e. time, cost and quality, interviewees were requested to rate the level of importance to each of the causes of poor performance of the subcontractors and give a short explanation for their options. Table 12.1 shows the ten most important causes in a descending order of priority concluded in this survey.

Table 12.1: The ten most important causes

Rank	Causes
1	Payment to the subcontractors
2	Perceived profitability of the subcontracts
3	Level of coordination
4	Claims for extra works
5	Approval process
6	Design changes
7	Relationship among the participants
8	Incentive scheme
9	Schedule change
10	Staff support of the subcontractors

Subcontractors are generally small firms and may not have long-term planning and commitment to the industry. They often optimize their performance only if they can forecast a reasonable profit margin and can maintain a sound cash flow throughout the project. Level of coordination is the third important factors because effective and efficient site coordination by main the contractor can ensure that subcontractors perform their work at full capacity during the construction stage. Main contractor should also provide necessary assistance to the subcontractors to prepare the submission to claim for reimbursement for the extra work done. Frequent delays in shop drawing, material sample and test report approval, and frequent design and schedule change can cause unnecessary disturbance to subcontractors' work. Good relationships between the

participants can cultivate the mutual trust atmosphere for the project. The amount of support from the subcontractors to the project can also affect the outcomes of subcontracts. Finally, appropriate incentive schemes can motivate subcontractors to upgrade their performance.

12.2.3 Critical site coordination problems caused by main contractors

Main contractor's site coordination is the most important cause for the poor performance of subcontractors during the construction stage. The critical site coordination problems that have adverse impact to the time, cost and quality performances of subcontractors were identified and analyzed by adopting questionnaire survey method. Nineteen common site coordination problems were identified through literature review and advices from industrial practitioners. These were categorized into the following eight groups.

- a. construction information;
- b. working programme;
- c. preparation for work place;
- d. interfacing work to be completed by other subcontractors;
- e. access to work place;
- f. plant support;
- g. material support; and
- h. response to site problems.

In this survey, respondents were requested to rate the frequency of occurrence and the potential impact on subcontractors' performance of each of the problems. The survey

results identified six most frequent problems on HK building projects. Problems relating to construction information and interfacing works were found to be the most frequent problems. Thirteen problems were identified as having significant impact to subcontractors' site works. Site reference points and interfacing works were found to have the most significant impact on subcontractors' performance. The level of importance of the problems to the performance of subcontractors was analysed by means of aggregated importance score which is taken as the combined scores of the frequency of occurrence and the potential degree of impact. The survey results show that six problems were regarded as critical site coordination problems. They are listed in Table 12.2 in the descending order of priority of their level of importance.

Table 12.2: The six critical site coordination problems

Rank	Site coordination problems
1	Construction information unclear or contradictory
2	Construction information not detail enough
3	Interfacing work not accurately completed
4	Interfacing work not yet completed
5	Late to provide plant support
6	Short notice to commence site work

12.2.4 Essential causes of the site coordination problems

Sixteen key causes leading to site coordination problems due to poor performance of main contractor in HK building projects were identified through literature review and advices from industrial practitioners. The causes were grouped into the following three categories:

- a. staffing;
- b. technical; and
- c. management system.

A questionnaire survey was developed to analyse the essential causes leading site coordination problems. Respondents were requested to rate each identified causes in terms of their contributions to the problems and the frequency of occurrence in HK building projects. The survey results show that eleven causes were found to have a significant contribution on main contractor's site coordination problems. Thirteen causes were identified as frequently occurring on HK local building projects. Twelve causes were considered as the essential causes based on the aggregated importance score which is the combined score of frequency of occurrence and the degree of contribution of the cause. The results have been shown in Table 12.3 in a descending order of priority of their level of importance.

Table 12.3: The twelve essential causes of site coordination problems

Rank	Causes of site coordination problems
1	Unclear job duties
2	Staff too inexperienced to coordinate technical administration work
3	Unclear accountability system
4	Unclear communication path
5	Insufficient direct employed worker to carry out the temporary work
6	Insufficient authority for frontline staff
7	Staff too inexperienced to coordinate the site work
8	Insufficient technical support from head office
9	Too much paper work
10	Poor temporary work design
11	Insufficient staff to coordinate the site work
12	Insufficient staff to coordinate the technical administration work

12.2.5 Relationship to explain how site coordination problems affect the performance of subcontractors

A questionnaire survey was developed to formulate regression equations to explain how the performance of the subcontractors was affected by the occurrence of the six critical site coordination problems in HK building projects. SPSS software was used to generate the multiple regression equations. The analysis covered one main model for the three project outcomes separately. There were three sub-models for each of the main models for different types of subcontractors. The analysis generated 12 regression equations are summarized in Table 12.4.

Table 12.4: Regression equations for performance of subcontractors

Type of subcontractor	Regression equation	
All types	Time = 11.645 - 0.229xSCP1 - 0.343xSCP2 - 0.314xSCP3 -0.031xSCP4 +	
	0.001xSCP5 - 0.068xSCP6	
Finishing work	Time = 13.896 - 0.265xSCP1 - 0.429xSCP2 - 0.094x SCP3 - 0.300x SCP4 -	
	0.158xSCP5 - 0.194xSCP6	
Structural work	Time = 12.299 - 0.350xSCP1 - 0.421xSCP2 - 0.420x SCP3 + 0.117x SCP4 +	
	0.119xSCP5 - 0.155xSCP6	
Building services	Time = 8.906 - 0.075xSCP1 - 0.120xSCP2 - 0.498x SCP3 + 0.191x SCP4 -	
	0.047xSCP5 + 0.062xSCP6	
All types	Cost = 9.522 + 0.015xSCP1 - 0.040xSCP2 - 0.308xSCP3 -0.162xSCP4 +	
	0.084xSCP5 - 0.087xSCP6	
Finishing work	Cost = 11.013 - 0.155xSCP1 +.179xSCP2 - 0.277x SCP3 - 0.569xSCP4 -	
	0.016xSCP5 +0.098xSCP6	
Structural work	Cost = 8.223 + 0.249xSCP1 - 0.371xSCP2 - 0.118x SCP3 + 0.065x SCP4 +	
	0.067xSCP5 - 0.043xSCP6	
Building services	Cost = 8.858 + 0.067xSCP1 - 0.014xSCP2 - 0.535x SCP3 + 0.084x SCP4 -	
	0.002xSCSCP5 - 0.046xSCP6	
All types	Quality = $10.564 - 0.160x$ SCP1 - $0.096x$ SCP2 - $0.283x$ SCP3 - $0.094x$ SCP4 -	
	0.024xSCP5 - 0.002xSCP6	
Finishing work	Quality = 10.902 - 0.153xSCP1 - 0.237xSCP2 - 0.031x SCP3 - 0.182xSCP4 -	
	0.107xSCP5 - 0.071xSCP6	
Structural work	Quality = 11.676 - 0.117xSCP1 - 0.078xSCP2 - 0.423x SCP3 - 0.099xSCP4	
	- 0.001xSCP5 - 0.157xSCP6	
Building services	Quality = 8.652 - 0.157xSCP1 - 0.038xSCP2 - 0.505x SCP3 + 0.104x SCP4 +	
	0.045xSCSCP5 + 0.129xSCP6	

12.2.6 Contributions of the causes to the site coordination problems

A questionnaire survey was conducted to formulate regression equations to assess the contributions of the twelve essential causes to the six critical site coordination problems. SPSS software was used to compute the regression equations. Table 12.5 summaries the regression equations formulated based on the overall views from subcontractors, main contractors and clients/consultants for each critical site coordination problem.

Table 12.5: Regression equations for contributions of causes to site coordination problems

Site coordination problem	Regression equation
Short notice to commence	SCP1 = 2.115 + 0.086xCa1 + 0.223xCa2 - 0.026xCa3 + 0.073xCa4 +
site work (SCP1)	0.077xCa5 - 0.054xCa6 + 0.126xCa7 - 0.017xCa8 - 0.028xCa9 +
	0.051xCa10 + 0.037xCa11 - 0.016xCa12
Late to provide plant	SCP2 = 1.187 - 0.007xCa1 + 0.046xCa2 + 0.081xCa3 + 0.122xCa4 +
support (SCP2)	0.133xCa5 + 0.010xCa6 + 0.011xCa7 + 0.050xCa8 - 0.050xCa9
	+ 0.141xCa10 + 0.055xCa11 - 0.068xCa12
Interfacing work not yet	SCP3 = 2.182 - 0.063xCa1 + 0.147xCa2 + 0.115xCa3 + 0.053xCa4 +
completed (SCP3)	0.090xCa5 - 0.055xCa6 + 0.045xCa7 + 0.093xCa8 - 0.019xCa9 +
	0.069xCa10 - 0.033xCa11 + 0.068xCa12
Interfacing work not	SCP4 = 3.022 + 0.005xCa1 + 0.041xCa2 + 0.078xCa3 - 0.002xCa4 +
accurately completed	0.095xCa5 - 0.093xCa6 + 0.138xCa7 + 0.005xCa8 + 0.110xCa9
(SCP4)	+ 0.023xCa10 + 0.037xCa11 + 0.031xCa12
Construction information	SCP5 = 3.536 + 0.025xCa1 - 0.093xCa2 + 0.112xCa3 - 0.013xCa4 +
not detail enough (SCP5)	0090xCa5 + 0.015xCa6 + 0.140xCa7 - 0.049xCa8 + 0.027xCa9 +
	0.216xCa10 + 0.074xCa11 - 0.068xCa12
Construction information	SCP6 = 2.911 + 0.042xCa1 + 0.060Ca2 + 0.122xCa3 - 0.126xCa4 +
unclear or contradictory	0074xCa5 - 0.015xCa6 + 0.196xCa7 - 0.067xCa8 + 0.031xCa9 +
(SCP6)	0.050xCa10 + 0.046xCa11 + 0.054xCa12

12.3 Recommendations for improving site coordination

Among the six critical site coordination problems, some of them bear more impact to the three subcontract project outcomes. Adopting the backward elimination multiple regression analysis method, the 'most critical' problems to the performance of subcontractors were identified and summarized in Table 12.6. The table shows that SCP1, SCP2, SCP3 and SCP4 have the highest impact to the performance of subcontractors.

Table 12.6: Summary of 'most critical' site coordination problem and project outcomes influenced

'Most critical' site coordination problem	Project outcomes	
	influenced	
Interfacing work not yet completed (SCP3)	Time, Quality, Cost	
Short notice to commence site work (SCP1)	Time, Quality,	
Late to provide plant support (SCP2)	Time	
Interfacing work not accurately completed (SCP4)	Cost	

Similarly, the 'most essential' causes to the 'most critical' site coordination problems summarized in Table 12.7 were also identified by adopting the backward elimination method. Ca2, Ca3, Ca4, Ca5, Ca7, Ca8, Ca9 and Ca10 contribute most to the 'most critical' site coordination problems.

Based on the information of Table 12.7, the following actions are recommended which aim to avoid the occurrence of the 'most essential' causes of the 'most critical' site coordination problems so as to improve the site coordination to subcontractors.

Table 12.7: Summary of 'most essential' causes and 'most critical' site coordination problems

'Most essential' causes	'Most critical' site
	coordination problems
Staff the main contractor are too inexperienced to coordinate the site	Interfacing work not yet
work (Ca2);	completed (SCP3)
Main contractor does not have sufficient directly employed workers to	
carry out the temporary work (Ca3);	
Job duties of main contractor's staff are unclear (Ca8)	
Staff the main contractor are too inexperienced to coordinate the site	Short notice to commence site
work (Ca2);	work (SCP1)
Main contractor does not have sufficient staff to coordinate the site	
work (Ca4);	
Design of the temporary work provided by main contractor does not	
meet the requirements requested by the sub-contractors (Ca7)	
Main contractor does not have sufficient staff to coordinate the site	Late to provide plant support
work (Ca4);	(SCP2)
Main contractor does not have sufficient staff to coordinate the	
technical administration work (Ca5);	
Frontline staff of main contractor do not have sufficient authority to	
handle the site co-ordination (Ca10)	
Main contractor does not have sufficient staff to coordinate the	Interfacing work not
technical administration work (Ca5);	accurately completed (SCP4)
Design of the temporary work provided by main contractor does not	
meet the requirements requested by the sub-contractors (Ca7);	
Communication paths within main contractor organization are unclear	
(Ca9)	

12.3.1 Recruitment and on-the-job training

The job duties of project coordinator in the modern construction projects are not confined to a single discipline, but are generally multidisciplinary. Jha (2005) has identified 24 attributes of a capable project coordinator through literature review and the most important ones through a questionnaire survey. Based on these attributes, local main contractors can develop their own requirements with reference to the company culture and the characteristics of the project to recruit or assigned adequate experience staff to take the role of project coordinator. Besides, construction companies should establish regular staff development training programme to enable the staff to cope with the rapid development of the industry.

12.3.2 Informal meeting

Frontline staff will be frustrated if they are not delegated with full authority and support by top management to carry out the site coordination work. The problem will be solved unless the staff can identify a clear communication channel to feedback their difficulties. As a dynamic temporarily site organization is formed due to fluctuation of workload at different stage of project (Mohsini and Davidson, 1992), project manager may not able to define the full detail of the job specification of the frontline staff in terms of duties and authority etc as well as the communication. Thus on the top of the formal meetings, project managers should provide more informal meeting opportunities to frontline staff such as short discussion at tea time because participation through frequent group discussions could increase cooperation and team spirit and results in greater knowledge (Champagne et al., 1987).

12.3.3 Partnership

Due to lack of long-term commitment of the subcontractors to the industry, there is limited trust between main contractor and subcontractors. The site problems are normally discussed at a win-lose climate. The HK main contractors should introduce the partnership approach in their projects. Through the active involvement of all key project parties, the project is more likely to be completed within budget, on time and with the least number of defects (Chan *et al.*, 2003). For instance, main contractors normally would design the temporary work mainly based on their experience and needs without paying much attention of the requirements from subcontractors. A profit sharing policy can be adopted through partnership approach such that subcontractors would be involved in finalizing the temporary work design. The cost saved in the temporary work would be shared by main contractor and subcontractors. As a result, unnecessary site coordination problems can be avoided.

12.3.4. Enhance the site team

Due to keep competition, the profit margins for the local building projects are generally low. In order to secure the profit, senior management of the main contractors would tend to sublet almost all their work to subcontractors including setting out work and general site cleaning work so as transfer most of the risk to subcontractors, and only maintain a very small team of site management staff and directly employed workers to carry out the emergency work. As a result, there is always insufficient staff to coordination the works and erect the temporary work for subcontractors. According to the finding of one of the surveys of this study, over 35 per cent of subcontractors' productivity was wasted due to

site co-ordination problems caused by main contractors. The direct cost of the productivity waste would be taken up by subcontractors. Main contractors would need to bear the indirect cost such as increase in overhead expensive due to project time overrun.

12.4 Limitations of study

A model was developed in this research to link the causes to the site coordination problems and then to the outcomes of subcontracts in the HK building projects. The limitations of this research observed are discussed in the following paragraphs.

Questionnaire surveys were designed to identify the criteria to evaluate the performance of subcontractors, critical site coordination problems and essential causes to the problems. The number of replies for these surveys range from 27 to 36. The findings of these surveys would be more convincing if more replies are received.

As multiple regression analysis method was adopted to establish the relationship that assesses the impact of the critical site coordination problems to the outcomes of subcontracts, number of data for the analysis must be high enough to assure the reliability of the survey findings. Data collection on the achievements in time, cost and quality performance by means of questionnaire survey method would appropriate as sample size would definitely be larger than case study method. In the questionnaire, respondents were requested to assign a score from 10 (represent 100% achievement) to 0 (represent 0% achievement) with a 0.5 interval to represent their views on the level of achievements in these three project outcomes in their current projects. The data collected were thus of

'self-assessed' nature by the respondents. Fortunately, the impact of the 'subjectivity' to this research was alleviated as more that one hundred set of data were collected in the survey.

Two sets of multiple regressions that relate the causes to the problems and the problems to the project outcomes were established respectively in this research. The most important cause to the project outcomes was identified by examining the links shown in Figure 11.10 (page 333). However, the reliability of using the causes to forecast the project outcomes has not been investigated in this research. This can be achieved by means of path analysis.

12.5 Further research

There are several recommendations for further research derived from this study. These have been summarized below.

12.5.1 Path analysis

Path analysis is a statistic method that aims to provide estimates of the magnitude and significance of hypothesized causal connections between sets of variables. Further research could be formulated by adopting path analysis to investigate the feasibility of using the causes of the problems to forecast the subcontract project outcomes. In this analysis, causes affect outcomes through Link 1 and Link 2 indirectly and through Link 3 directly. The path coefficients (beta weights) of the regression equations of Link 1, Link 2 and Link 3 are computed. The effect of the indirect link is calculated by multiplying the

path coefficients of Link 1 and Link 2. The effect of the direct link is the path coefficients of Link 3. The total effect of the causes to the outcomes is the sum of the direct effect and indirect effect as shown in Figure 12.1.

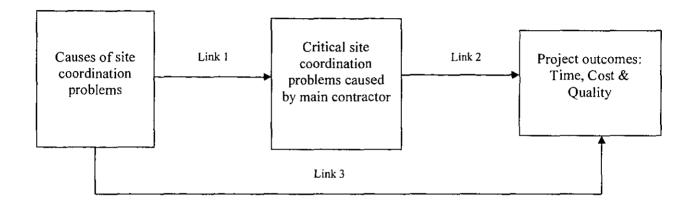


Figure 12.1: Proposed path analysis model

12.5.2 Different nature of work

This research covered the HK building projects. The study could be extended to different nature of work such as civil engineering project and large scale building alternation projects as main contractors of these projects also sublet significant amount of their work to subcontractors. The research methodology of this study can be adopted without demanding any major modification.

12.5.3 Different location

This research can be conducted for the projects at different countries. It is interesting to compare the results of different locations and investigate how they are affected by the

culture and procurement system etc. The findings of the study would be the essential information for the international construction companies.

12.5.4 Further study for individual cause

The essential causes to the site coordination problems have been identified in this research. There are rooms for further study on the occurrence of each of the cause. For example, the occurrence of the staff too inexperienced to co-ordinate technical administration work may be due to poor staff recruitment system designed by the human resources department, the fault of the project manager and other reasons. Thus further study can be developed to analyze the 'causes' to each essential cause to the site coordination problems adopting the similar research methodology.

12.5.5 More project objective

This research covered the three traditional project objectives. Due to the rapid development in terms of complexity and size of HK building projects in the recent years, broader project objectives such as sustainable construction are being introduced. The scope of study of this research can be extended to cover more project objectives to cope with the latest development of the industry.

REFERENCE

- Adams, S. (1989) *Practical buildability*. London: Butterworths.
- Ashley, D. B., Lurie, C. S. and Jaselskis, E. J. (1987) Determinants of Constructions of Project Success, *Project Management Journal*, 18(2), June 69-79
- Bandow, D. (2001) Time to create sound teamwork. *The Journal for Quality and Participation*, (24), 41-47.
- Bedelian, H. M. (1996) Success major projects in a changing industry. Civil Engineering, (114), August 117-123.
- Bennett, J. (1983) Project management in construction, Construction

 Management and Economic, (1), 183-97.
- Bennett, J. and Grice, T. (1990) Procurement system for building, Quantity
 Surveying Techniques: New Directions Brandon, P.S. (ed), Blackwell Scientific
 Publications, Oxford.
- Bhokha S. and Ogunlana S. O. (1999) Application of artificial neural network to forecast construction duration of buildings at the predesign stage, *Engineering*, Construction and Architectural Management, 1996 6/2, 133-144.
- Bourdeau, L. (1999) Sustainable development and future of construction: a
 comparison of visions form various countries, Building Research & Information,
 27(6), 354-366.
- Bromilow, F. J. (1974) Measurement and scheduling of construction time and cost performance in the building industry, *The Chartered Builder*, 10(9), June-July, 57
- Buildings Department Environment Report (2001), Buildings Department, Hong
 Kong SAR Government

- Buildings Department and Lands Department (2002) Joint Practice Note No.2,
 Hong Kong SAR Government
- Burrows, T. K., Pegg, I. & Martin J., (2004) Predicting building construction duration, In: Ellis R. & Bell M. (Eds.), COBRA 2004, 7-8 September 2004, Headingley Cricket Club, Leeds.
- Census and Statistics Department (2005), Statistical Report: 2005, Hong Kong SAR Government.
- Champagne, P. J. McAfree R. B. (1987), Organizational Behavior A Manager's View, St. Paul: West Publishing Company.
- Chan, A. (1999) Modelling building durations in Hong Kong, Construction

 Management and Economics, (17), 189-196.
- Chan, A. P. C., Chan, D. W. M. and Ho, K. S. K.(2003), An empirical study of the benefits of construction partnership in Hong Kong, Construction Management and Economics, (July), 523-533.
- Chan, E. H. W., Mok P. K. W. and Scott D.(2001) Statutory Requirements for Construction Professionals, The Hong Kong Institute of Construction Managers and The Hong Kong Polytechnic University.
- Chan, D. W. M. and Kumaraswamy, M. M. (1995) A study of the related factors affecting construction durations in Hong Kong. Construction Management and Economics, (13), 319-333.
- Chan, D. W. M. and Kumaraswamy, M. M. (1999) Modelling and predicting construction durations in Hong Kong public housing, Construction Management and Economics, (1999), 17, 351-362.

- Chapman, R. J. (1999) The likelihood and impact of changes of key project personnel on the design process. Construction Management and Economics, (17), 99-106.
- Charles, T. J. and Andrew, M. A. (1990) Predictors of cost-overrun rates, *Journal* of Construction Engineering and Management, ASCE 116, 548-52.
- Cheng, A. K. F. and Law C. H. (2005) Public Policy Working Paper: Working Situations of Subcontractors and Their Employees under the Multi-layer Subcontracting of Construction Works and Its Impacts on the Construction Industry, Hong Kong Democratic Party.
- Cheng, Y. X. (2005) "5+3": a construction project management model, *Engineer*, October 2005, p19-20
- Cheung, C. (2005) Hong Kong Builder Directory 2005-2006, Times Directories
 International Publishing.
- Chew M. Y. L., Silva N D. and Tan S. S. (2004) A neural network approach to assessing building façade maintainability in the tropics, *Construction Management and Economics*, (22), 581-594.
- Chua, D. K. H., Kog Y. C., Jaselskis E. J. (1997) Model for Construction Budget
 Performance Neural Network Approach, Journal of Construction Management
 Engineering and Management, September, 214-222.
- Construction Industry Review Committee (CIRC) (2001) Construct for Excellent,
 Hong Kong SAR.

- Cottrell, D. S. (2006) Contractor Process Improvement for Enhancing Construction Productivity, Journal of Construction Engineering and Management, Feb. 2006 p189-196
- Dai, J., Goodrum, P. M., and Maloney, W. F. (2007) Analysis of craft workers' and foreman's perceptions of the factor affecting construction labour productivity,
 Construction Management and Economics, (25), 1139-1152.
- Dainty, A. R. J, Cheng, M. I. and Moore, D. R. (2003) Redefining performance measures for construction project managers: an empirical evaluation.
 Construction Management and Economics, (21), 209-218.
- Dissanayaka, S. M. and Kumaraswamy, M. M. (1999) Evaluation of factors affecting time and cost performance in Hong Kong building projects. Engineering,
 Construction and Architectural Management, (6/3), 287-298.
- Dissanayaka, S. M. and Kumaraswamy, M. M. (1999) Comparing contributors to time and cost performance in building projects, *Building and Environment*, (34) 31-42.
- Domberger, D. (1998) The Contracting Organisation: A Strategic Guide to Outsourcing, England Oxford University Press.
- EPD (2001) Hong Kong Environement 2001, Hong Kong SAR Government.
- Everett, J. G. and Frank Jr, P. B. (1996) Costs of accidents and injuries to the construction industry, Journal of Construction Engineering and Management, 122 (2), 158-64.

- Fagnenle, O. I., Adeyemi, A. Y. and Adesanya, D. A. (2004) The impact of non-financial incentives on bricklayers' productivity in Nigeria, Construction

 Management and Economics, (22), 899-911.
- Frisby, T. N. (1990) Survival in the construction business: checklists for success.
 Kingston, Mass, R.S. Means
- Goh, B. H. (1999) An evaluation of the accuracy of multiple regression approach
 in forecasting sectoral construction demand in Singapore, Construction
 Management and Economics, (17), 231-241
- Hartman, F. T. (2000) The role of trust in project management. PMI Research
 Conference, 2000. Canada: Alberta.
- Hatush Z. and Skitmore M. (1997) Evaluating contractor prequalification data: selection criteria and project success factors, Construction Management and Economics (15), 129-147.
- Herbsman Z. and Ellis, E. (1990) Research of factors influencing construction productivity, Construction Management and Economics, (8), 49-61.
- Hinze, J. R. (2000) Incurring the costs of injuries versus investing in safety, in
 Coble, R. J., Hinze, J. and Haupt, J. and Haupt, T. C. (eds) Construction Safety
 and Health Management, Prentice-Hall, New Jersey
- Hsieh, T (1998) Impacts of Subcontracting on Site Productivity: Lessons Learned
 in Taiwan, Journal of Construction Engineering and Management, 124(2), 91100.
- ICLEI (International Council for Local Environment Initiatives) (1996) The Local
 Agnenda 21 Planning Guide, IDRC/ICLEI/UNEP, (8), pp.801-5

- Jha K. N. (2005) Attributes of a project co-ordinator, ARCOM 2005, 7-9
 September 2005, SOAS, London, U. K., 115-124.
- Jaselkis, E. and Ashley D B. (1988) Achieving construction project success through predictive discrete choice models, *In:* Association of Project Managers, 9th World Congress Project Management, 4-9 September, Glasgow, Scotland, 71-85.
- Jaselkis, E. and Ashley D. B. (1991) Optimal allocation of project management resources for achieving success, *Journal of Construction Engineering and Management*, 117(2), 321-340.
- Kadir, M. R. Abdul, Lee, W. P., Jaafar, M. S., Sapuan, S. M., & Ali, A. A. (2005), Factors affecting construction labour productivity for Malaysian residential projects. *Structural Survey*, Vol. 23 No.1 2005, 42-54.
- Kale S. and Arditi, D. (2001) General contractor' relationships with subcontractors: a strategic asset, *Construction Management and Economics*, (19), 541-549
- Kalleberg, A. L. (2000) Nonstandard Employment Relations: Part-time,

 Temporary and Contract Work, *Annual Review of Sociology*, (26), 341-365.
- Kam, C. W. and Tang, S. L. (1998) ISO9000 for building and civil engineering contractors, *Journal of Hong Kong Institution of Engineers*, 5(2), 6-10
- Kaming, P., F., Olomolaiye P.O. & Holt, G. D. (1997) Factors influencing construction time and cost overruns on high-rise projects in Indonesia,
 Construction Management and Economics, (15), 83-94.

- Khosrowshahi F. (1999) Neural network model for contractors' prequalification for local authority projects, Engineering, Construction and Architectural Management, (6/3), 315-328.
- Kharbanda, O. P., Stallworthy, E. A., and Williams, L. F. (1987) Project Cost
 Control in Action, 2th edition, Gower Technical Press, Aldershot, Hants.
- Kog, Y. C., Chua D. K. H., Loh, P. K. and Jaselskis E. J. (1999) Key determinants for construction schedule performance, *International journal of Project* Management, Vol 17 No.6, 351-359.
- Kometa, S. T. et. al, (1995) Project success and pre-contract client evaluation,
 ARCOM, September 18-20, 1995: The University of York, UK, 270-276
- Kumaraswamy, M. M. and Chan, D. W. M. (1998) Contributors to construction delays. Construction Management and Economics, (16), 17-29.
- Lai, M. Y., (1987) A review of the Sub-contracting System in Hong Kong

 Construction Industry, Unpublished MSc Thesis, University of Hong Kong.
- Laitinen, H. and Ruohomaki, I. (1996) The effects of feedback and goal setting on safety performance at two construction sites, *Safety Science*, Vol. 24, No. 1 pp.61-
- Lam, P., Kumaraswamy, M. M. and Ng, S. T. (2004) The use of construction specification in Singapore, Construction Management and Economic, 22, 1067-1079
- Leung, M. Y., Ng T. S., and Cheung S. O. (2004) Measuring construction project participant satisfaction, *Construction Management and Economic*, (22), 319-331.

- Leung A. W. T. and Tam C. M. (1999) Prediction of hoisting time for tower cranes for public housing construction in Hong Kong, Construction Management and Economics (17), 305-314.
- Li, B., Akintoye, A., Edwards, P. J. and Hardcastle, C. (2005) Critical success
 factors for PPP/PFI projects in the UK construction industry, Construction
 Management and Economics, (23), 459-471.
- Lim, E. C. and Price, A. D. F (1995) Construction productivity measurements for residential building in Singapore, *Proceedings of First International Conference* on Construction Management, Singapore, January 605-12.
- Lingard, H. and Rowlinson, S. (1991) Safety in Hong Kong' construction industry,
 Hong Kong Engineer, October, 38-44.
- Lingard, H. and Rowlinson, S. (1994) Construction site safety in Hong Kong,
 Construction Management and Economics, 12(6), 501-10.
- Liu, A. M.M. and Walker, A (1998) Evaluation of project outcomes, Construction
 Management and Economics, (16), 209-219
- Love, P.E.D., Gunasekaran A. and Li, H. (1998) Improving the competitiveness
 of manufacturing companies through continuous incremental change. TQM
 Magazine, 10(3), 177-85.
- Love, P.E.D., and Li H. (2000) Overcoming the problems associated with quality certification, Construction Management and Economics, (18), 139-149.
- Makridakis, S., Anderson, A., Carbone, R., Fildes, R. Hobbon, M. Lewandowski,
 R. Newton, J., Parzen, E. and Winkle, R. (1982) The accuracy of extrapolation

- (time series) methods: results of a forecasting completion, *Journal of Forecasting*, 1(2), 111-53.
- Kakulsawatudom A. and Emsley M. (2001) Factors affecting the productivity of the construction industry in Thailand: the craftsmen's perception, COBRA 2001,
 7-8 September 2001, Leeds Metropolitan University.
- Mohsini, R. A. and Davidson, C. H. (1992) Determinants of performance in the traditional building process, Construction Management and Economics, (10), 343-359.
- Morris, P. W. G. and Hough, G. H. (1987) The anatomy of major projects: a study
 of the reality of project management, New York: Wiley
- Morledge, R. and Jackson, F. (2001) Reducing environmental pollution caused by construction plant, Environmental Management and Health, 12 (2), 191-206
- Moselhi, O., Assem, I., Ei-Rayes, K. Chage Orders Impact on Labor Productivity,
 Journal of Construction Engineering and Management, March 2005, p354-359
- Ngai, K. L. J. (2001) Subcontractor's Role in Hong Kong Construction Industry:
 Actualizing the Real Benefits of Subcontractors, City University of Hong Kong
- NEDO (1983) Faster Building Industry, *HMSO*, UK
- Nkado, R N, (1995) Construction time-influencing factors: the contractor's perspective, Construction Management and Economics (13), 81-89.
- Ofori G. (1991) The environment: the fourth construction project objective?
 Construction Management and Economics, (10), 369-395.

- Ok, S. C. and Sinha, S. K. (2006) Construction equipment productivity estimation using artificial neural network model, Construction Management and Economics (24), 1029-1044.
- Orlikowski, W. J. (1994) Genre repertoire: the structuring of communication practices in organization, Adm. Sci Q., 31(4), 541-575.
- Polivka, A. E. and Nardone, T. (1989) On the Definition of Contingent Work,
 Monthly Labor Review 112(12), 9-16.
- Pongpeng, J. & Liston, J (2003) Contractor ability criteria: a view from the Thai
 construction industry, Construction Management and Economics (21), 267-282
- Poon, J., Potts, K., & Cooper, P. (2001) Identification of success factors in the construction process, COBRA 2001, 7-8 September 2001, Leeds Metropolitan University.
- Poon, C. S., Yu, A. T. W., Wong, S. W. and Cheung E. (2004) Management of construction waste in public housing projects in Hong Kong, Construction
 Management and Economics (22), 675-689
- Powl A. and Skitmore M. (2005) Related factors hindering the performance of construction project managers, Construction Innovation, (5), 41-51
- Reilly, P. (2001) Flexibility at Work: Balancing the Interests of Employer and Employee, USA:Gower.
- Robbins, S. P. (2005) Organizational behaviour, Prentice-Hall International Editions.
- Rockart, J. F. (1982) The changing role of the information systems executive: a
 critical success factors perspective. Sloan Mgmt. Review, 24(1), 3-13.

- Rwelamila P. D. and K. A. Hall (1995) Total systems intervention: an integrated approach to time, cost and quality management, *Construction Management and Economics*, (13), 235-241
- Sanvido, V., Grobler, F., Partfitt, K., Guvenis, M. and Coyle, M. (1992) Critical success factor for construction projects. *Journal of Construction Engineering and Management*, ASCE, 118(1), pp.94-111
- Sears, C. (1994) Construction Contracting, USA: Wiley Inter-science.
- Sekaran, U. (1992) Research Methods for Business A Skill Building Approach,
 2nd edn. Wiley, New York
- The Social and Economic Policy Institute (SEPI) (2003) Disconnected Youth, Disgruntled Adults: Social Exclusion and Social Cohesion in a Life-Course Perspective, Paper submitted to the Committee on Social Cohesion of the Central Policy Unit of the Hong Kong SAR Government
- Sozen, Z. and Kucuk, M. A. (1999) Secondary subcontracting in the Turkish construction industry, *Construction Management and Economics*, (17), 215-220.
- Sternberg D. (1981) How to complete and survive a doctoral dissertation, St. Martin's Press.
- Stuckenbruck, R. (1990) *The Implementation of Project Management*, Addison Wesley, New York.
- Tam, C. M. (1996) Benefits and Costs of the Implementation of ISO9000 in the Construction Industry of Hong Kong, *Journal of Real Estate Construction*, 6(1), 53-66.
- Tam, C. M., Deng, Z. M., Zeng, S. X., and Ho, C. S. (2000) Quest for continuous quality improvement for public housing construction in Hong Kong, Construction Management and Economics (18), 437-446.
- Tam, C. M. and Harris, F. (1996) Model for assessing building contractor. Engineering, Construction and Architectural Management, (3), 187-203.

- Tam C. M. and Fung, I. W. H. (1998) Effectiveness of safety management strategies on safety performance in Hong Kong, Construction Management and Economics (16), 49-55.
- Tam, C. M. and Tong, T. K. L., Lau T. C. T. and Chan K. K. (2005) Selection of vertical formwork system by probabilistic neural networks models, *Construction Management Economics*, (23), 245-254.
- Tam, W. Y. V., Bao, Q and Wu, D. (2001) The experience gained in implementing ISO14000 in Hong Kong construction industry, in Shen, L. and Chan, E. (eds) Proceedings of 2001 DRIOGM International Research Symposium on Development of Construction Management, Shenzhen University, Shenzhen, China, 17-18 November 2001, 99-113.
- Tam, W. Y. V., Tam, C. M., Yiu. K. T. W. and Cheung, S. O. (2006), Critical factors for environmental performance assessment (EPA) in the Hong Kong construction industry, Construction Management and Economics, (24) 1113-1123
- Tang, S. L., Lee, H. K. and Wong, K. (1997) Safety cost optimization of building projects in Hong Kong, *Construction Management and Economics*, 15(2), 177-186.
- Tang S. L., Ying, K. C., Chan W. Y. and Chan Y. L. Chan (2004), Impact of social safety investments on social costs of construction accidents, Construction Management and Economics, (22), 937-946.
- Vojinovic, Z. and Kecman V. (2001) Modelling empirical data to support project cost estimating: neural networks versus traditional methods, Construction Innovation 2001, 1:227-243.
- Walker, A (1990) Project Management in Construction, Granada, London.
- Walker, A. and Roger, F. (1991) Property and Construction in Asia Pacific: Hong Kong, Japan, Singapore, Hong Kong Oxford.
- Walker, D. (1995) An investigation into construction time performance,
 Construction Management and Economics (13), 263-274.

- Walker, D. and Shen, Y. J. (2002) Project understanding, planning, flexibility of management action and construction time performance: two Australian case studies, Construction Management and Economics (20), 31-44.
- Wang C. H. and Mei, Y. H. (1998) Model for forecasting construction cost indices in Taiwan, Construction Management and Economics, (16), 147-157.
- Ward, S. C., Curtis, B. and Chapman, C. B. (1991) Objectives and performance in construction projects. *Construction Management and Economics*, (9), pp.343-353
- Williams, T. P. (2002) Predicting completed project cost using bidding data,
 Construction Management and Economics (20), 225-235.
- Wong, H. and Lee K. M. (2001) Predicament, Exclusion and the Way Ahead: A
 Qualitative Study of Marginal Workers in Hong Kong, Hong Kong Oxford.
- Yasamis, F., Arditi, D. and Mohammadi, J. (2002) Assessing contractor quality performance. *Construction Management and Economics*, (20), 211-223.
- Zakeri, M., Olomolaiye, P. O, Holt, G. D. and Harris, F. C. (1996) A survey of constraints on Iranian construction operatives' productivity, Construction
 Management and Economics, (14), 417-426.

BIBLIOGRAPHY

- Ahmad, I.U. and Sein, M.K. (1997) Construction project teams for TQM: a
 factor-element impact model, Construction Management and Economics, (15),
 457-467.
- Al-Tabtabai H., Diekmann J., 1992, Judgemental forecasting in construction projects, Construction Management and Economics, (10), 19-30.
- Breshen M. and Marshall, N. (2000), Partnering in construction: a critical review
 of issues, problems and dilemmas, Construction Management and Economics,
 (18), 229-237.
- Carbonara N., Costantino N. and Garavelli A.C. (1997) Contractors and subcontractors in the construction industry: problems and perspective of interorganisation models, *Proceedings of 6th Annual IPSERA Conference 1997*.
- Catt R. (1996) Site Manager: the power behind the projects, Construction
 Management, C.I.O.B., Sept., 26-28.
- Chen P. and Partington, D. (2004) An interpretive comparison of Chinese and
 Western conceptions of relationship in construction project management work,

 International Journal of Project Management, (22) 397-406.
- Costantino N. (1998) Optimal contracting strategies in construction industry: a theory of games explanation, Proceedings of 7th Annual IPSERA Conference 1998.
- Dawood, N. (1998) Estimating project and activity duration: a risk management approach using network analysis, Construction Management and Economics, (16), 41-48.

- Drew, D. and Skitmore, M. (1997) The effect of contract type and size on competitiveness in bidding, Construction Management and Economics, (15), 469-489.
- Freeman. J.A. (1994) Simulating Neural Networks, *Mathematica*, 260-261.
- Fellows, R., Langford., D., Newcombe, R. and Urry, S. (2002) Construction
 Management in Practice, 2nd edition, Blackwell Science.
- Fisk, E. R. (2003) Construction Project Administration in Practice, 7th edition, Prentice Hall.
- Garnett N. and Pickrell, S. (2000) Benchmarking for construction: theory and practice, Construction Management and Economics, (18), 55-63.
- Hecht-Nielsen, R. (1991), Neurocomputing, Addison Wesley.
- Hillier F.S. and Lieberman G.J. (1995) Introduction to operations research, 6th
 edition, McGraw-Hill International
- Hinze J. and Tracey, A. (1995) The Contractor-Sub-contractor Relationship: The Sub-contractor's View, Construction Engineering and Management, Sept., 274-333.
- Kwakye, A. A. (1997) Construction Project Administration in Practice,

 Longman
- Lau, E. W. T. (1998) Managing Building Projects Without Going Mad, Asia
 Engineering, Sept., 7-10
- Lavender, S. (1996) Management for the Construction Industry, the Chartered
 Institute of Building

- Massey W. B. (1992) Subcontractors during the Tender Period-an Estimator's
 View, Construction papers No.2, the Chartered Institute of Building.
- McCabe, S. (2001) Benchmarking in Construction, Marston Book Services.
- Moynihan, M. (1999) Partnering-The Way Forward?, Hong Kong Construction
 Manager, (3), 11-14.
- Omar, E. A. A. and Mangin, J. C. (2002) A new cost control model and indicators to measure productivity sites, *Construction Innovation*, (2) 83-101.
- Pokora, J. and Hastings C. (1995) Building Partnerships: Teamworking and Alliance in the Construction Industry, Construction papers No.54, the Chartered Institute of Building.
- Rencher, A.C. (2002). The Multivariate Normal Distribution, Methods of Multivariate Analysis, 2nd edition., Wiley-Science.
- Seymour, D., Crook D. and Rooke J. (1997) The role of theory in construction management: a call for debate, Construction Management and Economics, (15), 117-119.
- Shieh H. W. and Wu K. Y. (2002) The relationship between total quality management and project performance in the building planning phase: An empirical study of real estate industries in Taiwan, *Total Quality Management*, (13) 133-151.
- Shtub, A. and Zimmerman, Y. (1993) Neural-network-based Approach for Estimating the Cost of Assembly Systems, *International Journal of Production* Economics, 32(2), 189-207

- Siobhan M. F., (1999) Nominated Sub-contractors, *Asia Engineering*, HKIE, September, 10-12, October, 14-16.
- Tang, Y. H. and Ogunlana, S. O. (2003) Selecting superior performance improvement policies, *Construction Management and Economics*, (21) 247-256
- Walker, A. and Newcombe, R. (2000) The positive use of power on a major construction project, *Construction Management and Economics*, (18), 37-44
- Walker D. H. T. (1997) Choosing an appropriate research methodology,
 Construction Management and Economics, (15), 149-159.
- Williams T. (2002) Predicting complete project cost using bidding data,
 Construction Management and Economics, (20), 225-235
- Winch, G., Usmani, A. and Edkins A. (1998) Towards total project quality: a gap analysis approach, Construction Management and Economics, (16) 193-207
- Yasamis, Y., Arditi, D. and Mohammadi, J. (2002) Assessing contractor quality
 performance, Construction Management and Economics, (20) 211-223

APPENDIX A

Questionnaire for the survey on productivity waste, performance of subcontractors and contribution of the causes to the site coordination problem

INTRODUCTION

The aim of this questionnaire survey is to investigate how main contractors' site coordination problems affect the performance of the subcontractors and the causes of these problems in the Hong Kong building projects. Please spend a few minutes to complete the following questions

All information collected	will be treated str	ictly confidential	and used
for academic study only.			

Section A: General information

1.	Natur	re of business of your company: (more than one box can be ticked)
		Main contractor:
		☐ Building construction work
		☐ Civil engineering work
		☐ Building maintenance work
		☐ Interior decoration work
		Subcontractor: Builder's work: specify your trade
		Subcontractor: Building services work: specify your trade
		Consultancy: please specify your discipline
		Government or public utilities company
		Property developer
		Material supplier: please specify the trade
		Other (please specify)
2.	Approx	ximate number of staff being employed by your firm now:
3.	Your	current position in your company:
4.	Your	years of experience in building construction industry:

If you are working in a firm performing the subcontractor role in a building project, please complete <u>ALL SECTIONS</u>.

If not, please complete **SECTION B, SECTION D and SECTION E ONLY**

SECTION B: Productivity waste

If you are working in subcontractors, please answer questions 5a based on your current project or the project with highest contract sum if you are handling several projects at the same time.

If you are not working in subcontractors, please answer 5b based on your working experience.

5a.	Do ye	Do you agree that your firm is unable to carry out site work effectively and efficiently				
	due to	due to poor site coordination by the main contractor of your project?				
		Yes:	Please assign a per cent (%) to represent your your productivity that has been wasted due to by the main contractor of your project:	poor site coordination		
			by the main contractor of your project.	(70)		
		No				
5b.	•	-	that subcontractors are unable to carry out site to poor site coordination by the main contractor			
		Yes:	Please assign a per cent (%) to represent your your productivity that has been wasted due to by the main contractor of your project:	poor site coordination		
	0	No				

SECTION C: Outcomes of your current project

(for respondents working in subcontractors only)

6. Compare with your project working plan, please assign a score from 10 (represent 100% achievement to your target) to 0 (0 represent 0% achievement to your target) with 0.5 intervals to represent your views on the level of achievement of the project objectives listed in Table 1 of your current project at the present moment.

Table 1

	Project objectives	Score
6a	Time	
6b	Cost	
6с	Quality	

SECTION D: Site coordination problems caused by main contractors

7. Please assign a score from 10 (occurred in every site operation) and to 0 (never occurred in site operation) with 0.5 intervals to represent your view on the frequency of occurrence of the site coordination problems listed in Table 2 caused by main contractor in your project.

Table 2

	Site coordination problems caused by main contractor	Score
7a	Short notice to commence site work	-
7b	Late to provide plant support	
7c	Interfacing work not yet completed	
7d	Interfacing work not accurately completed	
7e	Construction information not detail enough	
7f	Construction information unclear or contradiction	-

SECTION E: Causes of site coordination problems

8. Please assign a score from 10 (totally agree) and to 0 (totally disagree) with 0.5 intervals to represent your views on the contributions of the causes listed in Table 3 to the occurrence of the site coordination problems listed in Table 2.

Table 3

	Causes of site co-ordination problems caused by main	Score
	contractor of your project	
8a	Staff of the main contractor are too inexperienced to	
	co-ordinate the technical administration work.	
8Ь	Staff of the main contractor are too inexperienced to	·
	co-ordinate the site work.	
8c	Main contractor does not have sufficient directly employed	i
	workers to carry out the temporary work.	
. 8d	Main contractor does not have sufficient staff to	
	co-ordination the site work.	
8e	Main contractor does not have sufficient staff to	
	coordination the technical administration work.	
8f	Main contractor does not have sufficient technical support	
	from the head office.	
8g	Design of the temporary work provided by main contractor	
	does not meet the requirements requested by the	
	sub-contractors.	
8h	Job duties of the main contractor's staff are unclear.	
8i	Communication paths within the main contractor	
	organization are unclear.	
8 j	Frontline staff of main contractor do not have sufficient	
	authority to handle the site coordination.	
8k	Accountability systems within the main contractor	
	organization are unclear	
81	Main contractor's site coordination system demands too	
	much paper work	

APPENDIX B

Data of the survey on productivity waste

Data for the survey on productivity waste

Danly no	Role	Trade	Working experience (urs)	% of waste
Reply no.		building service work	Working experience (yrs) 4.0	
2	sub-contractor sub-contractor	building service work	13.0	60% 50%
3		structural work	2.0	70%
4	sub-contractor	building service work	15.0	
5	sub-contractor			55%
6	main contractor	building work	10.0	25%
7	sub-contractor	building service work	8.0	40%
	sub-contractor	finishing work	1.0	80%
8	sub-contractor	finishing work	6.0	30%
9	sub-contractor	structural work	14.0	50%
10	sub-contractor	structural work	11.0	50%
11	main contractor	building work	18.0	0%
12	sub-contractor	building service work	3.0	60%
13	sub-contractor	structural work	2.0	65%
14	sub-contractor	structural work	9.0	50%
15	sub-contractor	structural work	6.0	20%
16	sub-contractor	finishing work	5.0	50%
17_	sub-contractor	finishing work	4.0	80%
18	sub-contractor	structural work	12.0	60%
19	sub-contractor	finishing work	1.0	50%
20	sub-contractor	finishing work	7.0	50%
21	sub-contractor	structural work	9.0	40%
22	sub-contractor	finishing work	3.0	60%
23	sub-contractor	structural work	6.0	70%
24	sub-contractor	building service work	10.0	60%
25	sub-contractor	finishing work	7.0	40%
26	sub-contractor	finishing work	4.0	50%
27	sub-contractor	structural work	3.0	80%
28	sub-contractor	building service work	8.0	20%
29	sub-contractor	structural work	16.0	60%
30	sub-contractor	structural work	11.0	65%
31	sub-contractor	structural work	13.0	70%
32	sub-contractor	finishing work	2.0	65%
33	sub-contractor	finishing work	8.0	50%
34	main contractor	building work	19.0	10%
35	sub-contractor	finishing work	1.0	55%
36	sub-contractor	structural work	7.0	45%
37	sub-contractor	building service work	12.0	50%
38	sub-contractor	structural work	15.0	60%
39	sub-contractor	building service work	7.0	60%
40	sub-contractor	building service work	13.0	70%
41	sub-contractor	structural work	2.0	40%
42	sub-contractor	building service work	7.0	75%
43	sub-contractor	finishing work	3.0	60%
44	sub-contractor	building service work	1.0	55%
45	sub-contractor	structural work	6.0	70%
46	sub-contractor	structural work	4.0	60%
		building service work	9.0	35%
47	sub-contractor		8.0	50%
48	sub-contractor	building service work	<u> </u>	
49	sub-contractor	building service work	7.0	80%

50	I aub contractor	L.::13:	160	
51	sub-contractor sub-contractor	building service work structural work	16.0	60%
52	sub-contractor		3.0	55%
53	sub-contractor	structural work	2.0	40%
54	sub-contractor	finishing work	1.5	60%
55		structural work	2.0	75%
56	sub-contractor	finishing work	9.0	70%
57	sub-contractor	finishing work	5.0	60%
	sub-contractor	building service work	6.0	50%
58	sub-contractor	structural work	7.0	40%
59	sub-contractor	structural work	9.0	70%
60	sub-contractor	structural work	14.0	55%
61	main contractor	building work	21.0	30%
62	sub-contractor	building service work	7.0	60%
63	sub-contractor	building service work	6.0	55%
64	sub-contractor	structural work	11.0	40%
65	sub-contractor	building service work	7.0	60%
66	consultant/property developer	property developer	10.0	60%
67	sub-contractor	building service work	10.0	60%
68	main contractor	building work	10.0	0%
69	consultant/property developer	property developer	20.0	80%
70	consultant/property developer	property developer	18.0	80%
71	consultant/property developer	consultancy	15.0	25%
72	main contractor	building work	13.0	20%
73	sub-contractor	finishing work	10.0	90%
74	main contractor	building work	17.0	30%
75	main contractor	building work	18.0	20%
76	consultant/property developer	consultancy	15.0	50%
77	main contractor	building work	12.0	25%
78	main contractor	building work	10.0	20%
79	main contractor	building work	18.0	50%
80	sub-contractor	finishing work	15.0	90%
81	main contractor	building work	10.0	40%
82	sub-contractor	finishing work	20.0	13%
83	main contractor	building work	10.0	0%
84	consultant/property developer	consultancy	8.0	70%
85	sub-contractor	building service work	20.0	13%
86	main contractor	building work	12.0	0%
87	sub-contractor	building service work	15.0	25%
88	main contractor	building work	20.0	0%
89	main contractor	building work	9.0	70%
90	sub-contractor	building service work	3.0	40%
91	consultant/property developer	consultancy	12.0	40%
92	main contractor	building work	10.0	30%
93	main contractor	building work	10.0	0%
94	consultant/property developer	consultancy	12.0	70%
95	main contractor	building work	8.0	0%
96	consultant/property developer	property developer	12.0	0%
97	sub-contractor	building service work	6.0	40%
98	sub-contractor	building service work	25.0	60%
99	main contractor	building work	8.0	30%
100	sub-contractor	finishing work	15.0	70%
101	sub-contractor	building service work	14.0	50%
102	sub-contractor	finishing work	3.0	30%
103	sub-contractor	finishing work	27.0	15%
104	sub-contractor	finishing work	15.0	10%

30% 10% 20% 0% 15% 25% 30% 0% 20% 50% 30% 15% 15% 30%
20% 0% 15% 25% 30% 0% 20% 0% 20% 50% 30% 15% 15% 30%
0% 15% 25% 30% 0% 20% 0% 20% 50% 30% 15% 15%
15% 25% 30% 0% 20% 0% 20% 50% 30% 15% 15% 30%
25% 30% 0% 20% 0% 20% 50% 30% 15% 15% 30%
30% 0% 20% 0% 20% 50% 30% 15% 15% 30%
0% 20% 0% 20% 50% 30% 15% 15% 30%
20% 0% 20% 50% 30% 15% 15% 30%
0% 20% 50% 30% 15% 15% 30%
20% 50% 30% 15% 15% 30%
50% 30% 15% 15% 30%
30% 15% 15% 30%
15% 15% 30%
15% 30%
30%
0%
0%
50%
0%
0%
0%
40%
20%
30%
0%
30%
30%
30%
0%
50%
0%
0%
20%
50%
0%
0%
0%
10%
7%
5%
20%
0%
5%
0%
30%
0%
0% 30%
30%
30% 25%
30% 25% 0%
30% 25% 0% 25%

160	main contractor	huilding work	1.0	00/
	main contractor	building work	1.0	0%
161	sub-contractor	finishing work	3.0	15%
162	main contractor	building work	4.0	0%
163	main contractor	building work	23.0	13%
164	consultant/property developer	property developer	10.0	70%
165	main contractor	building work	15.0	40%
166	sub-contractor	building service work	8.0	80%
167	main contractor	building work	4.0	50%
168	main contractor	building work	18.0	60%
169	sub-contractor	building service work	12.0	60%
170	sub-contractor	structural work	15.0	10%
171	main contractor	building work	13.0	80%
172	consultant/property developer	property developer	6.0	50%
173	consultant/property developer	property developer	10.0	80%
174	consultant/property developer	property developer	5.0	4%
175	consultant/property developer	consultancy	10.0	60%
176	main contractor	building work	20.0	50%
177	main contractor	building work	8.0	0%
178	main contractor	building work	4.0	20%
179	main contractor	building work	25.0	30%
180	main contractor	building work	10.0	20%
181	sub-contractor	finishing work	22.0	60%
182	sub-contractor	finishing work	8.0	20%
183	sub-contractor	structural work	12.0	30%
184	main contractor	building work	10.0	30%
185	main contractor	building work	10.0	0%
186	sub-contractor	finishing work	5.0	35%
187	sub-contractor	finishing work	4.0	40%
188	sub-contractor	finishing work	2.0	20%
189	main contractor	building work	15.0	20%
190	sub-contractor	structural work	6.0	20%
191	main contractor	building work	1.0	0%
192	main contractor	building work	12.0	0%
193	main contractor	building work	7.0	30%
194	sub-contractor	structural work	3.0	25%
195	main contractor	building work	9.0	0%
196	main contractor	building work	8.0	20%
197	sub-contractor	building service work	4.0	10%

APPENDIX C

Questionnaire for the survey on criteria to assess the performance of subcontractors

INTRODUCTION

The aim of this questionnaire survey is to identify the essential criteria that main contractors are currently using to evaluate the performance of their subcontractors. If you are working in **Main Contractors** for the Hong Kong building projects, please spend a few minutes to complete the following questions

All information collected will be treate	ed strictly	confidential and	used
for academic study only.			

1.	Your current position in your company:
2.	Your years of experience in building construction industry:

Please rate the level of importance from 1 (very important) to 7 (very unimportant) with 0.5 intervals to the criteria listed in Table 1 used to evaluate the performance of the subcontractors in your projects.

Table 1

Item	Performance evaluation criteria	Score 1 (very important) to 7 (very unimportant)
a	Progress of work follow schedule	
b	Propose method to speed up progress	
с	Follow safety rules	
d	Propose method to eliminate potential danger to	
	workers	
е	Quality of work comply with specification	
f	Quality of work comply with trade standard	
g	Amount of claims to main contractors	

CONFIDENTIAL

h	Contributions on reducing construction cost	
i	Application of advance technology	
j	Relationship with site representatives of the	
	client/design team	
k	Relationship with other sub-contractors	
1	Relationship with your staffs	
m	Administrative issues such as submission of	
	records, sample, shop drawings	
n	Availability of additional resources	
o	Suggestions to improve the design in terms of	
	buildability	
p	Suggestions to improve the design in terms of	
	durability	
q	Suggestions to improve the design in terms of	
	maintainability	
r	Amount of nuisance such as duct, noise,	
	vibration etc generated	
S	Amount of construction waste generated	
t	Material wastage level	
u	Site tidiness	
v	Worker's working uniform	

Thank you for your help.

- End -

APPENDIX D

Questionnaire for the survey on critical site coordination problems

INTRODUCTION

The aim of this questionnaire survey is to identify the critical site co-ordination problem caused by main contractors that can hinder the performance of subcontractors in the local building projects.

All information collected will be treated strictly confidential and used

Nati	ure of business of your company: (more than one box can be ticked)
	Main contractor:
	☐ Building construction work
	☐ Civil engineering work
	☐ Building maintenance work
	☐ Interior decoration work
	Subcontractor: Builder's work: specify your trade
	Subcontractor: Building services work: specify your trade
G	Consultancy: please specify your discipline
	Government or public utilities company
	Property developer
	Material supplier: please specify the trade
	Other (please specify)
You	current position in your company:

- 4. Please give scores for the frequency of occurrence and potential impact to site work in the local building project for each of the site coordination problems listed in Table 1 by adopting the following 9-point scoring system:
 - i. from 1 (never happen) to 9 (happen every time) with a 0.5 interval for the frequency of occurrence in local building projects; and
 - ii. from 1 (very unimportant) to 9 (very important) with a 0.5 interval for degree of potential impact to site work in the local building projects.

Table 1: Site coordination problems adversely affected subcontractor's performance

Question		Score	Score
_		(Frequency)	(Potential
		` ' ' ' ' '	Impact)
a	construction information not detail enough		
b	unclear or contradictory construction		
	information		
С	working programme not detail enough		
d	working sequence not practical		
e	short notice for commencing site work		
ſ	late change of working programme	· · · · · · · · · · · · · · · · · · ·	
g	work place environment not yet prepared		
	such as general site cleaning, fresh air		
	supply, lighting		
h	inadequate or insufficient site reference		1
	points		
i	inadequate or insufficient temporary work	~· ·····]
	support such as scaffolding, water & power		
	supply		
j	interfacing work not yet completed		
k	interfacing work not accurately completed		
1	access road to work place not yet ready		
m	access routing to work place not convenient		
n	late to provide plant support		
0	type of plant provided not appropriate	-,	
p	insufficient amount of construction material		
q	type of material provided not appropriate		
r	late response to site problems		
S	solution recommended to solve site		
	problems not practical		

Thank you for your help

APPENDIX E

Questionnaire for survey on essential causes for site coordination problems

INTRODUCTION

ii.

The aim of this questionnaire survey is to identify the essential cause of the site coordination problems caused by main contractors that can hinder the performance of subcontractors in the local building projects.

All information	collected will be	treated strictly	confidential a	nd used
for academic stu	ıdy only.			

1.	Natu	are of business of your company: (more than one box can be ticked)
		Main contractor:
		☐ Building construction work
		☐ Civil engineering work
		☐ Building maintenance work
		☐ Interior decoration work
		Subcontractor: Builder's work: specify your trade
		Subcontractor: Building services work: specify your trade
		Consultancy: please specify your discipline
		Government or public utilities company
		Property developer
		Material supplier: please specify the trade
		Other (please specify)
2.	Your	current position in your company:
3.	Your	years of experience in building construction industry:
4.		se give scores for the frequency of occurrence and potential impact to site
		in the local building project for each of the site co-ordination problems
	listec	l in Table 1 by adopting the following 9-point scoring system:
	i.	from 1 (never happen) to 9 (happen every time) with a 0.5 interval for
		the frequency of occurrence in local building projects; and

from 1 (very unimportant) to 9 (very important) with a 0.5 interval for

degree of potential impact to site work in the local building projects.

Table 1: Causes of site coordination problems

		Score	Score
Question		(Frequency)	(Contribution)
a	unclear job duties		
b	unclear communication path		
c	insufficient authority for frontline staff		
d	unclear accountability system		
e	too much paper work		
f	insufficient technical support from head office		
g	poor temporary work design		
h	insufficient site office space		
i	poor site layout		
i	poor project programme or phasing of work		
k	staff too inexperienced to coordinate technical administration work		
<u> </u>	frequent change of personnel		
m	staff too inexperienced to coordinate the site work		
n	insufficient directly employed worker to carry out the temporary work		
0	insufficient staff to coordinate the site work		
p	insufficient staff to coordinate the technical administration work		

Thank you for your help.

- End -

APPENDIX F

Details of the interviews for the surveys on performance assessment criteria, critical site coordination problems and essential causes to the problems

Flow of the interviews to experienced industrial practitioners on the preliminary list of performance assessment criteria, site coordination problems and causes to the problems

Stage	Time allocated (Minutes)	Item to discuss
1	2	Introduction to the aim of the interview.
2	10	Completeness of the preliminary list of the performance assessment criteria.
3	5	Grouping of the performance assessment criteria.
4	10	Completeness of the preliminary list of the common site coordination problems.
5	5	Grouping of the common site coordination problems.
6	10	Completeness of the preliminary list on key causes of site coordination problems.
7	5	Grouping of the key causes of site coordination problems.

Details of the interviewees

1. Construction manager

- a. Mr. Percy ChanProject Manager of Gammon Construction Ltd.
- b. Mr. Y. K. Lau
 Construction Manager of Wan Chung Construction Co. Ltd.

2. Foreman

- a. Felix ChanPaul Y. General Contractors Ltd.
- b. Mr. Anson ChanHip Hing Construction Co. Ltd..

3. Sub-contractors

- a. Mr. Cheng Tak Man
 Shun Cheong Electrical Engineering Co. Ltd.
 Trade: building services
- b. Mr. Rocký YeungWoods Contracting Ltd.Trade: masonry

4. Consultant

a. Mr. Paul Lam
 Brighspect Limited
 (Authorized Persons, Chartered Suveyors)

APPENDIX G

Details of the interviews for identifying the factors governing the performance of subcontractors

Flow of the interviews to experienced industrial practitioners on the factors governing the performance of subcontractors

Stage	Time allocated (Minutes)	Item to discuss
1	5	Introduction to the aim of the interview and remind interviewees to refer the discussion on time, cost and quality performance only.
2	5	Explain the principle in classifying the success factors into three categories.
3	5	Discussion on definition of success factors and the scoring system for the survey.
4	20	Discussion on the factors of the inherent sub-contract project characteristics group. Assign score for each factor.
5	20	Discussion on the factors of the ability of participants of the sub-contracts group. Assign score for each factor.
6	20	Discussion on the factors of the influences of the key participants to the sub-contracts during the construction stage. Assign score for each factor.
7	5	Add the score and identify the ten most critical factors.
8	15	Interviewees to confirm the score for the ten most critical factors and conclude the discussion

Detail of the interviewees

1. Construction manager

- a. Mr. Cliff Leung
 Assistant Project Manager of Gammon Construction Ltd
- b. Mr. K. K. Lo
 Construction Manager of Dickson Construction Ltd
- c. Mr. Philip SiuSenior Project Manager of Paul Y. General Contractors Ltd.

2. Foreman

- a. Mr. Keith Lam
 China Resources Construction Company Ltd
- b. Mr. Hui Chak Ming
 Yau Lee Construction Co. Ltd.
- c. Mr. Chui Kwun Ching
 Hip Hing Construction Company Ltd

3. Sub-contractors

- a. Mr. Li Chi Wah
 Li Wah Construction & Engineering Co. Ltd.
 Trade: metal work
- b. Mr. Lau Wing HungLi Wah Construction & Engineering Co. Ltd.Trade: masonry
- c. Mr. Mr. Sam S. K. ChoiSundart Door & Flooring Installation Ltd.Trade: carpentry

APPENDIX H

Mailing address for the questionnaire survey on productivity waste, the performance of subcontractors and the causes of the site coordination problems

Mailing address list for questiomaire survey

1	T.	Company address
	-	A G Wilkinson & Associates Uses 2701, 276 The Center 99 Queen's Rand Centers, HX
		Assumble Contraction & Resorators Co. 1342 Hei Leve Safestric Courts Block B. 35 Hei Year Road, Kwan Tong Kowbon.
	•	AD +RG 1962 Lt Contra Road Construent Ben. 185
	-	ADC Engineering Training Co., Ltd. Under, UK. Freder Carre, J. Mel. Chomp St., Televana, Kondons
	_	Auto 114 197, 1983 Kins) Root, Owery Boy, 197
	•	AOC Design Ltd. 1481 Offensia Plan. 253 Kinn's Ref. 190.
	1	Although Community to List Use to U.S. Pe Lan Combat Black A. It Was Chie Road Kembon Ber Kenden
		America for Engineering Lid 135 Po Sans Rook Building, 3) Americ Street Motor East Resident
	•	Arched & Co (at Christoning Benness Used) 6F Venezi Camer, 1 Western Rock, North Print Hone Kase
	91	Anii Cantoninina Ca 2015-17 Mary Carles II. 2) Lea Hing Street, Kowdoon Ber Kendoon
	=	Asian Constitution Co. 16F Yea Tel Commercial Beilding Unit B, 72 With Steer, Hong Hoss Kewton
	7.	AZAL Engineering Ltd. 175 June Communical Centre, 138 June Read, North Print House, Kons.
	î.	AZKDS China Lid 15f Merupa Terrer, 132 Nofeta Roof, Trim Sta Teni Kondoon
	-	Bathle Ann Lid 15 F. Coreval Flence, Talkoe Pleas, 979 King's Road, Caurry Bry. PK
	=	Booky Sold-seeks Group Lid N. Harcons House, 19 Generales Road, Wanchai, HK
	=	Borbings, Casalemetion Co. Ltd. 276 Nov. Work Town 15-18 Chem V Bond Control Co. and Lines Kinn.
	=	Benner (China) Leaded 250 City Towns 21.13 Kinsh Bel Martis Paint 177
	=	Seri Siline Engineering Lid 1731 Mine Par Industrial Court Block B. 18 Ke Ve Street. Can Was Hone Keen
	<u>*</u>	Bineson Man Lee J.Jd. Seids 202, Block 1, Mofel Commercial Centre, 216 Sai Law Kott Rd. Trees Was, NT
	2	Botton Construction Co. Lai 4D MX Session To Seekelvisi Besiding Place 5, 764-762 Chemic She Was Rend, Kombon
Primital III (Conserved British, 2011). In the III (Conserved British,	21	Burdan Coustrocken Co Ltd 10/F Castrol Building, 3 Tedder Street, Cestrol Hers g Kang
Philipperson of Combas Line [Lad (1) 1976 kine in Fine Prec 2, 251 [Rad (1) 27 kine in Fine Prec 2, 251 [Rad (1) 27 kine in Fine Prec 2, 251 [Rad (1) 27 kine in Fine Prec 2, 251 [Rad (1) 27 kine in Fine Prec 2, 251 [Rad (1) 27 kine in Fine Prec 2, 251 [Rad (1) 27 kine in Fine Prec 2, 251 [Rad (2) 27 kine Prec 2, 251 [Rad (2)	22	Bringfald Lat. 201 Km. Hang Commercial Building, 39 Owers 's Rood East, Was Clair Hone Kern.
	2	Bridgewater & Cashas Lid. Unit G. 13ff Kaiser Erner 2, 255 Mar Yec Street, Harthon, Kowkoo.
19.706 Esp 19.706 Esp 10.706	A	Brisky Lid Res 1704, Tene Web Manager, 179-203 Hermony R.S. Wandshiel, HK.
C 11 AC East (C 10 A	52	BYAC Engineering (NEX) List 301-306 A blood Place Tower, 510 King's Read, North Point Home Kenn
Correct England Control Con	75	C.B.M. Engineering Ltd 1403 Columb 13 Year Show Circuit, See Let Youn, Statis NT
Christic Case 7204.8 Nas 7204.8 Nas CHAR-INCI Chark Said O 57 Europea Charles Case 10 Full Charles 705 Federal 705 Federal	27	Convent Engineering Lid.
CHTA-ECC Chas 3701, C Chas 3701, C S Europea EF Agyle H Char Coa EF Agyle H Char Chan F Char Coa	78	Center Countries Lid 770 at the Euro Country Sec 700 Cente Sout Board Times With MT
Chart Stat C 3/7 Europea Charter Con 1/7 Agyle H Chart Con Chart Chart Con Chart C		CHRA-IDC Hose Kong Lid Seiss 1701, Control Plan. 18 Ferbant RA. Wandhei, HK
Charles Com 17 Anyles H Charles Charles 705 Federal	*	Chas San Contraction Co. 57 Pages Rand, Kowlein S.F. Estropea Asian Back Building Room C. 749 Math. Rand, Kowlein
	=	Charter Countrivation Co. If Payrie House, 49A Argeis Sweet, Kowkons
	20	Che. Chang Courteding Co Ltd 705 Federal Beitding, 169 Leekhert Rond, Way Chei Hong Kong

4	Evence Lid 9F Golden Dragen factuarid Building, Flot R. Block 4, 187-190 Ltd Lin Fit Road, Kwai
,	Charge NT
	19A Chai Wan Industrial Centre Building, 20 Lee Chang Street, Chai Wan, Hong Kong
\$	Fits (Bit I) Fare Streetmiss Engineering Lid 1775 So Too Control Fit A. B. B. 11-15 Kinst Stood, Kwei Chang NT
٤	Fook Lee Construction Co Ltd. 50/F Fook Lee Commercial Centre, Youn Place, 33 LeetSant Read, Was Chai Hong Kong.
-	Foundation Technique Lid 8-F. Chee Her Industrial Besidens, 14 Wang Zei Rd, Kowloon Bay, Kowloon
12	Frenk & Vogeren (BK) Lid 8.7 Geometry Certe, 199-111 Outen's Road East, Von Chai Hong Keng
1.1	France Construction Co Ltd 123 Parilie Lak Tower Speed Mark L 13 Vie Hine Street, Wone Chek Hane Hose Kons
2.	From Construction Co Ltd If Wordmads Control List 1, 20 Worthands Road, Courty Bay Hong Keng
22	Freyesisch Hong Komg Lid Res (2014), COL Tower, World Trade Squere, 124 July Bus Rd, Kwes Tone, KLN
ž	Fe Hing Cour Institute Co LLd 601 Than Mare Building, 46-47 Der Vonus Road Control, Hose Kons
11	Fages (Hong Kong) Lid 22/F Honewell Casts, 183 Ocean's Road East, Wanshai, 195
F	Fuges Geotechnical Services Lad Units 6, 8-11, 10/F Worldwide Endurinal Contr., 43-41 Step Mon St., Fe Tus, Shatis, NT
82	pe Communicia Building, 343 King's Road, Hong Kong
2	Common Construction Ltd. 28.7 Devos Monte, Tribos Place 979 King i Road, Quarry Bay Mong Kong.
ī	Common Stands Ltd. 287: Devos House TaiXan Place, 979 King i Roud, Courty Ben, HK
152	Goolfach Engineering Lid. 7207 CCT Telecom Besiden: 31 No Share Street, Fo Jon Sharin NT.
a	Coldfield Building Contractors Lid. 2.6. Air Coal Curve Building 139 Knew Tone Road. Kowtoon.
=	Gektion Engineering Lid. 23 February Bekernel Centre, 24 On Kai Street, Fanjan VI
12	Chand Cartie Fire Engagement Ltd 13.1 Star Lann Labourie I Contro Block A, 35 Hoi Yean Road, Xwan Tong Kondon
7	Goodwell Electrical Contractor & Supplier Lid 5/F Rama 905, El Keni Choose (Read, Kwin Cheng MT
	Grandsone Engineering Lid. Solding, 68-66 Wing Lat Struct, Hong Kong.
=	Creaville Contractors Ltd. 23/F Styline Tever; 18 Ten Mei Road, Mong Kole Kowloom
67	Councians For Engineers & Consultants Ltd 1307 Tal. King Industrial Building, 27 Lee Cheng Street, Chai Was Hong Keng
*	G-Web Engineering LM 2103 Bright Way Tower, 33 Monghate Read Kowkoon
16	11 K. Gameral Bridding Contractors Association Led 1977 Permentils Contr., 13 Queen's Road East, HX
2.5	Nager Elector Ltd. Saig. 310. Chinachan Coldon Plaza, 77 Mody Rong, 137 Eurt KLN.
18	Hasiaca Construction Co Ltd. Unit 1, off Black B, Shatin Ind. Contr., 5-7 Year Shen Circuit, Sheim, NT
z	Contractor.
36	al Land Sarve Armes, Seco
z	Hote Engineering List 3301 News Kang Plant, 156-191 Cong mgin Road Wes, Hong Kong
16	E Comes
¥	Houg X.m.; Cameroccine (Holdings) Ltd Rm 38) - 7 East Occas Conter, 93 Granvelle Rd, Tosseshaten, KLN
\$	Hong Kang Mason (Asia) Engineering Co Ltd 1/5 Kaywer (Massins, 193-195 Tong Mi Read, Mong Kok Kareban.
001	Hong Kong Waterweier Transport Plans Memoryanium Co Lid 206 Felt Shing Commercial Besideng, 21 Chi Lek Men Shron, On Lek Town Faciling NT
101	becarg Building Construction Co Ltd
	11

<u> </u>	2 2	Cheese Fin General Constructor Co Lai. 2.101 July Trees 5 O'Blee Road Was Quic Hoop Kong.
127 Veneral Kern 2014 (1992) 128 Veneral Kern 2014 (1994) 129 Veneral Kern 2014 (1994) 120 Ve		g ting to 2 M List stone Building, 150-158 Lockbart Road,
215 Character (Control 1 Many Initia (Control	ñ	Chemin Ker Paul Chemin Construction Cal Lat 12F World Trade Square Town 13, 123 Hall Syn Rand, Kiwns Tong Kowlean.
Chief Price Control Helder (1992) And the Chief Control Helder (19	*	Character (RK) Ltd 236 Character Commercial Contra I Wise Hai Read Kondon Res Kondon
Charle Holose Equipment C Charle Charles Charl	į	China fine Co. 2404 Was Hen Industrial Building (2,40) Cut Was Fee Your Town Was M.
Control Control Milestrate & Emphasized & Little Homeson Read & Control Control Milestrate &		Chino Horbore Engineering Co (Group)
Control Comment Management & Comment of Education (1991) (1992) (Chian Courses Halling Ld. 295 China Courses Halling Ld. 295 China Courses Halling Ld.
Control of Control Berline, 2014 (1914) Contr	3	China Owners Marketinia & Boutsed Engineering
Charles and Communic Eggs (1984) 11 miles (1984) 12 miles (1985) 12 miles (1	Ę	Chies Reserves Construction Co Ltd. 1001-1 Chies Engagement Building Milledon Band Well Co. House Keep
Control that Department of Lab. So there Control the Control that Control that	5	China State Construction Engry, (Hong Kang) Lat 200: China Orman Side, 198 Handar, State State Little
95 Heary Construction Collected 96 Heary Construction Collected 197 Heary Construction Collected 198 Heary Collected Collected 198 Heary Collected Collected 199 Heart Collected Collected 199 Heary Collected Collected 199 Heary Collected Collected 199 Heart Collected Collected 199 Heart Collected Collected 199 Heart Collected Collected 199 Heart Collected Collected Collected 199 Heart Collected Collected 199 Heart Collected Collected Collected Collected 199 Heart Collected Collected Collected Collected 199 Heart Collected Collected Collected Collected Collected 199 Heart Collected Collected Collected Collected Collected 199 Heart Collected	2	Ching Hog Engineering Co. 213 New York The House Land Co. 213 New York Supplied Co. Short H. 1976 How Read The New York
Control to		Channey Construction On Util Channey Construction On Util With Hong Symmetr Institution Building, Block A & B Plane VI, 481-457 Cardle Park Road, Karwinon
Control Experience of Experience (Control March Paris House (Control March	*	Ken Construction Co Ltd by Fin Industrial Stability, 312-314 Un Class Street
15 Heap Long Sphemer Behavior Delication of Cold 45) To Low West Sphemer Behavior Delication of Cold 45) To Low West Sphemer Behavior Delication of Cold 45) To Low West Sphemer Behavior Delication of Cold 45) To Cold Behavior Delication of Low Sphemer Behavior Delication of Cold 45) To Cold Behavior Delication of Low Behavior Delication of Cold 45) To Cold Behavior Delication of Low Sphemer Behavior Delication of Cold 45) To Cold Behavior Delication of Low Sphemer Behavior Delicati	4	m Engineering Co Ltd Serio Costro, 13 Western Road, North Prine Mone
Control Science (1997) Control Science (1997) Control Science (1997) Control Science (1997) Control Science (1997) Control Science (1997) Control Science (1997) Control Science (1997) Control Science (1997) Control Science (1997) Control Science (1997	\$	in Construction & Expinorming Co (1st by King Spinorm Indonviral Boldding CZ, 481-443 Tai Nan West Breat, n
Control (Control (Con	7	Chen Yip Contraction Co Lid 197 Contra (Builder, 3 Priday Street, Hone & con-
191 Presented Control	\$	Chang Karan F.S. Engineering Co Ltd.
C Fig. 200 December of Local Engineers of Co. 11. C Fig. 200 December of Local Engineers of Co. 11. C Fig. 200 December of Local Engineers of Co. 11. C Fig. 200 December of Local Engineers of Co. 11. C Fig. 11. C Fig. 11. Co. 11. C Fig. 11.	ěž	Chang Shing Controlling Co. 15 June 1995 State Chang Shing S
Control Contro	3	Cheeg Shee Boring Engineering Co Lid. 4.9 New Worse Communic Bridges, 17: 13 Meaning Rend Kowboos.
Contract Commission in C. Land Contract Commission in Commission in Contract Commission in Commission in Contract Commission in Comm	25	CLP Person Hong Line 127 Agrees S. M.Y.
Control Espiesment Care Block A, 3-3-3, 4a Pu Vin Shore, Fo Tar Shoin NY Control Espiesment Care Block A, 3-3-3, 4a Pu Vin Shore, Fo Tar Shoin NY Control Espiesment Care Block A, 3-3-3, 4a Pu Vin Shore, Fo Tar Shoin NY Control Espiesment Care Block (Control Espiesment) Care Block (Cont	53	Concords Compression Co Ltd [60] Tei Shing Compression (Yempan) Bubbler, 500 Nather Bond, Kerebook
Checker [140] Grant Education Bry Kowiese Checker [140] Grant Education Bry Kowiese Dear [157] (Filtering Education Bry Kowiese Dear [157] (Filtering Education Bry Kowiese Dear Communication Checker Education Bry Cowiese Dark Communication Checker Education Bry Cowiese Dark Communication Checker Education Bry Cowiese Read Communication Checker Education Checker Education Checker Education Educatio	*	normag Lid a before a Courte Block A 34-14 An Pai Wen Street, Fo Too
Desire behaves and the characteristic of the	85	(Engineering) Lid ang Rood, Karoloon Bey, Karoloon
De Reit Conservation in Under State of the Conservation of the Conservation of the Conservation of Under State of the Conservation of Under State of Conservation of Conservat	ž	. La I Des Vocax Road
Design 1 (1994) 1 (19	2	Countriction Co Ltd One International Building, 340 Dags
Differed Owned Stemmers glad. Differed A. R. 197. Hong Vines Stemmers glad. Differed A. R. 197. Hong Vines Stemmers glad. Differed A. R. 197. Hong Vines Stemmers glad. Differed R. 197. Hong Vines Stemmers and Stemmers. Differed R. 197. Hong Vines Stemmers and Stemmers. Engine Dispersion of Communication o	8	11.14 4, North Point, HK
	6	Gronad Engineering Lid. k. H. 95, Hong Kang Spinater Industrial Bidg, Phare VI, 451-43) Castle Peak
	3	yest Services L.
	 -	95-97 Taxa Class Street
	[3	mt) Lid 7-23 Terr Lo Was Brand Career
	13	4
	3	recer (FIX) Lid legs Trade Con
	59	Empack (IGA) Lid of Asteria Daliting 34 Asteria Road, Tim Sta Teni Kondom
	93	E13 - Tanconarii J.d. 87 Block B Vaistone Industrial Centre, J.436 As Phi Was Street, Stean, Maria, NT

102	Han Shine Contraction Co Ltd
	23/F Loyong Court Commercial Building, Flat A, 212-220 Lockhart Road, Was Chie Hong, Kenn
<u> </u>	Hope Seng Contraction Lid 3/F Sen May Beilding Flat C, 72 Homeway Read, Wan Chair Hong Kong
7 0	Hopewell Floddin p Lid 64/F Hopewell Centre, 133 Quem i Read East, New Read
ξ	Housing Department, Development & Construction, Division Housing Authority Haddometron, 33 fol. K. wasa St. Ha Man Till, K.L.N.
90	Hain Chong Auter Building Services Ltd 6F Hain Chong Count, 107-109 Wei Vio Street, Kwen Tong Kowlean
£(F)	Hain Yish Arakesta and Ausociates Lid 1375. Chiau Unated Caute, 24 Marchis Rei, Morth Point, 155.
3 01	HAD General Engineering Services Ltd TYTE, 100, Sai Tao Wan Road, Thing Yi biland NT
601	Hartchie en Whampen 2.44 22/F Hutchie en House, 10 Haromet Road, Cantari Hong Kong
110	is Construction Lid 19 A Park Avener Tower, 5 Moreton Terracy, Casserwy Bay Hong Kong
Ē	International Nam Est Construction & Engineering Co Ltd. 13/F Goldon Hill Commercial Building 209-213 Herspery Road Was Chair Hong Kong.
[]I	Interfer S.A. 31/F Negewelf Center 133 Cheese in Read East Was Chief Hous Kong
E	Issue Raterialies [148 Haze Keng Nat Trade & Exhibition Centry.] Trademet Drive Kowloos Bay Kowloon
Ξ	For Well Construction & Engineering Co. GF Dragon Industrial Building Flat C 91 Xing Lam Street Lai Chi Kok Korekoon
\$ta	Address Control Hong Kong Ltd. 32/F Millendien City Tower 1, 33°F Keem Tong Road, Keem Tong Kowleen
•	Kader Engament Co Las 19 File C. 91 Vellageton Street, Cowal Hos. Kee
ćn	Kam King Engewering Co Ltd 25f Colidon Dagon Industrial Building, Ple B Block 3, 172-180 Tai Lie Pil Road, Navo
Pin I	Chem g Nij Vill Countraction Co 11d NAC Note Shall be contraction Co 11d NAC Note Shall be shall Country Shall S 8407 Chill Was Note Town Was NI
617	Kelly Construction Co Ltd 27 Kelly Construction Co Ltd 27 Kell Kweet Construct Building 3321 sections Road. Was Chai Hore Ken.
8	Kentech Contribution Co Ltd VF To Co San Communical Building 41-41 Combin Street Control Mone Kenn
2	Kervin Engenoring to Ltd. 3164 Johann Harr Ser Centr. 21-21 Contains Part Road Kerni Chang M.
122	Nata Engiacome Las 1801-3 Workingfold Commercial Building, 481-412 Jeffe Road, Commerci Bar Hong Kong
21	Name X or Conservation 1.14 25 Man Choose Building, 23 & 31 Forty Peac Knowless
77.1	Kim Full Construction. Co Ltd. 67.24 Effected Read, Trim May Tree Kentons. 67.3. Leader Conservate Beridens, 54.56 Effected Read, Trim May Tree Kentons.
113	Kee Heeg Baislabe g Contractor Co Grossed Floor 35-37 Thind Stroot, Sai Yeng Pas, Hong Kong
- - -	Kim Kenng Construction & Engaeoring Co Ltd. 6/F Teeg Kai Bestelling Flor 1, 144 Juffe Rend. Was Conferent Kenn
121	Kis Mag Courtedon Ce LA 4C Was De Cost, 310 A Kis P. Rosé, Hora Kissa
2	Kan Mag EAM Works Ltd 1109 Lacids Industrial Smilding, 43-47 Way, Lang Street, Trees Way NT
£21	Kin Wang Engineering Co. Lad. Book A. & B. 93; Hong Kong Spenson Industrial BMg., Plans. VI. 431-433 Carde Penk Rand. Br. 12.
90	Knight Fract Storg Lod 29.F. Office Tears, Convention Plate, No. 1 Surface Road Manchal, Hone Kone
151	Ken wall Countriction & Engineering Co 1.3d 1903 N. With Contr., 191 Jane Road, North Pope Kenn
103	Kowkosa Devicipment Co Ltd 23/F Resure Carles, 750 Nether Road, Kowkosa
133	Kowfoan-Casten Radwry Corporation West Rad Devenion # F. Circhin Plate, Sha Tan N. T.
76	K-Peark Co-Ltd 3/F Hee Fei Buckling Rooms S, 129-135 Caute Peak Road, Xoodena
135	Krueger Enjaneming (Asia) UA 2501 Hopewell Craim, 113 Quam it Road East, Wan Chai Hang Kong

- 390 -

136	Kwan Cheong Construction Ltd
	Room 504, 582-588 Conton Road, Kowlean
137	Kwan Lee Hydro-Elastria Engineering Ltd No. 23 G/F Lin Fut Building, 2 Fung Kwan Stroet, Yurn Long NT
130	Kwan On Construction Co Ltd
	3-E Yike Industrial Building, 10 Ka Yap Street Chai Wan Hong Kong
140	Kwong Kuy Construction & Engineering Ltd 2602-05 Wealth Commercial Centra, 42 Kwong We Struct, Mong Kok Keweloom
141	Less Construction Co Ltd
142	2304-6 World Trade Centra, 280 Gloucester Road, Causeway Bay Hong Kong
	Lap Kai Engineuring Co Ltd 1/F Kowloon Bay Industrial Centre, Unit 25 15 Wang Hoi Road, Kowloon Bay Kowloon
143	Law Chi Yip Construction Co Ltd
144	1305 President Content of all Centre, 603 Nathan Road, Kowleon UCL Contracting Ltd
	21/F Wyndham Plece, 40-44 Wyndham Street, Central Hong Kong
145	Lee Yu Kan Fire Protestion Ltd
146	613 Yes Tong Industrial City Block A2, 17 Ke Fet Roed, Yes Tong Kowleon Leighton Contrastory (Arie) Ltd
	39/F See Heng Kai Centre, 30 Harbour Road, Wanchai, Hong Kong
147	Lick Hang Engineering Co Ltd
148	2806 New Treasure Centre, 10 Ng Fong Street, San Po Kong Kowloon Lideli Construction Co Ltd
144	2701 GITIC Cautre, 2# Quom's Road East, Wan Chai Hong Kong
149	Lik Kai Engineering Co Ltd
LSO	11/F Grand City Plaza, 1 Sai Lee Kok Road, Touce War NT
130	Lin Fat Construction & Engineering Co Ltd 7/F, 66 Chowgshawan Royd, Kowloon
131	Lok's Engineering Ltd
	13/F Evernew Commercial Centre Flat A, 33 Piac Street, Tai Kok Taul Kowloog
152	Long Nice Co Ltd Ground Floor, 21 Cooks Street, Hung Hom Kowlman
153	Ma Shing Yip Piling & Countraction Ltd
	1 Dorset Crescant, Kawloon Tong, Kowloon
154	Madelone Construction Co Ltd
155	20/F The Hong Kong Club Building, JA Cheter Road, Central Hong Kong Management and Pleaning Sorvices (FE) Ltd
	20/F Professional Building, 19-23 Ting Lo Was Road, Causeway Bay Hong Kong
156	Martin Construction Ce Ltd
137	16/F Centre 600 Units D-F, #2 King Less Street, Lai Chi Kok Kowloon MDA Hong Kong Ltd
	22/F, 133 Wanchai Roud, Waruthii, Hong Kong
158	Moto Engineering Ltd
119	3-4F, Vulsan House, 21-23 Leighton Road, Cassaning Bay, HK Meisthardt (Hosg Kong) Ltd
	4/F Wah Ming Contro, 421 Queen's Road West, Hong Kong
160	Million Bright Construction & Engineering Co Ltd
161	17F CNT Tower Flat F, 33E Hammany Road, Was Choi Hong Kong
101	Ming Chun Construction Co Ltd 1210 Hang Ngui Jewelry Centre, 4 Hole Yuen Street Fast, Hung Hom Kowloon
142	Multi-Pressium Engansum Ltd
161	Ground Floor Lot Wan Building, 5 Luk Hop Street, See Pe Kong Kawloon
163	Mutual Construction & Engineering Co 906-7 Workingfield Commercial Building, 408-412 Juffe Road, Conservay Bay Hong Kong
164	Nem Kwong Electric Co Ltd
	IC/D Young Yo Industrial Building, 3\$1-3\$9 Sha Trui Road, Truen Wen NT
165	National Concord Engineering Ltd
166	Unit 25, 54, Chaung Fung Industrial Bidg, 23-39 Pak Tin Per Street, Tauen Wan, NT Newland Engineering Ltd
	A2, 4-F, Phase II, Hang Fung and Bldg., 2G Hox Yuen Street, Hunghorn, KLN
167	Newton Engineering Co Ltd
164	Ground Floor, 28-32 Fort Street, North Point Hong Kong Nge Loop Description Design Engineering Co
104	20/F Gold King Industrial Building Flat B, 35-41 Tai Lin Pai Road, Kwai Chung NT
169	Nin l'ang Electron le Engineering Ltd
170	1.E.F., New Vicetry House, 93 Wing Lok Street, Central, HK Nukin star Construction Co Ltd
I Au	106 Star House, J. Salisbury Road, Tsim She Tsui Kowloon
171	Northeroft Hong Kong Lid
	11/F. Great Smart Tower, 230 Wenchai Road, Wanchai, Hong Kong

206	Skyforce Engineering Ltd
207	16/F Eastern Commercial Centre, #3 Nam On Street, Shau Kei Wan Hong Kong
201	Solono Construction Co Ltd 2500 Dominion Contre, 43-59 Queen's Road East, Wan Chai Hong Kong
208	Soundwill HK Ltd
———	21/F Soundwill Plaze, 31 Rusself Street, Courseway Bay Hong Kong
209	Splendid Engineering Co 11/F Kwun Tong Industrial Centre, Plat D Phase I, Kwun Tong Road Kowloon
210	Springfield Engineering Co Ltd
	1561 Workingview Commercial Building, 21 Yie Wa Street, Causeway Bay Hong Kong
211	SRD Competing & Engineering Co., Ltd B7-B1, 6/F, Po Yip Bldg, 62-70 Texaco Rd, Teuch Wan, NT
212	Stress (FE) Ltd
	1609 Silvercord Tower 1, 30 Canton Read, Trim She Trai Kowloon
213	Sun Fook Kong Holdings Limited
214	Rm 3207-10, Great Eagle Contre, 2) Harbour Rond, Wanchui, HK San Spark Construction L44
	2F Max Trade Centre, 13 Luk Hop Street, Sun Po Kong Kowloon
215	Sualey Engineering & Construction Co Ltd
216	201 Manins House, 64 Hing Man Street, Shau Kei Wan Hong Kong Surpass Company Ltd
	Office 1101, 69 Juryon Street, Sheung Wan, Hong Kong
217	Ter Lee (Hong Kong) Construction Ca Ltd
219	1102 Hollywood Plaza, 610 Nathan Road, Mongkok Kowdoon Tei Yish Construction & Engineering Co Ltd
***	29/F New World Tower, 16-11 Queen's Road Central, Hong Kong
219	Tak Choong Construction Co Ltd
220	402 Wellington Plaza, 56-38 Wellington Street, Hong Kong Tak Hang Construction Co Ltd
1 10	(105-) 100 K. Wai, Contro, 191 Jeva Road, North Point Hong Kong
221	Talent Mechanical & Electrical Engineers
277	Unit 203, 2/F, Dominion Contre,43-59 Queen's Road West, Wanchai, Hong Kong
222	Tas Fok Engineering Co 2.F Kalek Building, 720C Nathan Road, Mong Kok Kawloon
223	Tapbe Civil Engineering Co (o/o Great Bill Ltd)
	1202 Yee Kuk ladustrial Centre, 555 Yee Kuk Street, Cheung Sha Wan Kewloon
224	Techny Construction Co Ltd 2/F Centur 600, 82 King Lens Street, Lei Chi Kok Kowloon
225	The Hong Kong and China Gas Co Ltd
	343 Java Road, North Point, HK
226	The Hongkong Electric Co Ltd Hongkong Electric Centre, 64 Konnedy Road, FIK
227	The Sun Co L44
	20/F Sun House, 90 Conneeght Road Central, Hong Kong
228 229	Fivesters contractors Tower, 32D'Aguiller St, Central, HK, Trans Sarvice Hong Kong
***	15%, Oragon Contro, 79 Warg Hong Street, Cheung Sha Wan, KLN
230	Trideat Engineering Co Ltd
	Rm 602 Eastern Harbour Centre, 28 Hoi Chalt Street, Querry Bay, HSK
231	Tong Lick Fire Engineering Co 904 Sin Wai Industrial Cantee, 29-33 Wang Hong Street, Loi Chi Kok Kowloon
232	Type Foundation Limited
	6/F., Sun Hang Kai Contre, 30 Harbour Rd, Wanchai, HK
233	Union Contractors 6.4d 2/F Liven House Unit 6, 61-63 King Yip Street, Kwan Tong Kowlocu
234	United Communications Electrical Engineering Co Ltd
	1501 Wanches Commercial Contre, 194-204 Johnston Road, Wan Chai Hong Xong
235	United Construction & Engineering Co 2/F Tak Wan Building Rosen 34-35, 12-16 Pak Kang Street, Hung Hom Kowtoon
236	Univid Engineering Ltd
	3D Yiko Industrial Building, 10 Ka Yip Street, Chai Wan Hong Kong,
237	Vibro (BK) Ltd
238	29:F New World Tower, 16-18 Queen's Road, Central Hong Kong Viewing Services Co Ltd
25*	1.F Startes Industrial Building Block C, 14 Tai You Street, San Pa Kong Kawkoon
239	Vigors Building Courstancy Limited
744	165 The Grande Building, 198 Kwea Tong Road, Kowloon, Hong Kong
240	Vikings & Ellison Ltd Room 1721, Leighton Centre, 77 Leighton Road, Cameway Bay, PK
241	Wei Let Expinering Co Ltd
	1805 Corn Yan Centre, 3 Japaier Street, North Point Hong Kong

172	On Hing Engineering Co 3/F Yor Kuk Industrial Centre Room 5, 555 Yor Kuk Street, Cheung She Wan Kowloon
173	Oxyvital Ltd
174	158 Wyndian Place, 44 Wyndian Street, Central Hong Kong
	P.D. (Contractors) Ltd 12/F New Kewtoon Pleza, 311 Tai Kok Teel Road, Kowloon
175	Persona Brinckerhoff (Asia) Lid
	23/F, AIA Tower, 163 Electric Road, North Point, HK
176	Pat Duvie (Chieu) Ltd
177	12F New Kowloon Plaza, 38 Tai Kok Tau Road, Kowloom
	Peel Y ITC Construction Group Ltd 16-F, Peel Y. Contra, 51 Heng To Road, Kwan Tong, KLN
178	Peolo-Ocean Construction Co Ltd Unit 601, K. Wah Cerebe, 191 Java Road, North Point, Hong Kong
179	Perfect Fire Protection Co
	9/F Fek Choung Factory Striking, Flat A Walnut Street, Kowloom
180	Po Sing Air-Conditioning & Engineering Co Ltd 1/F Cheenig Wei Industrial Beilding, 42 Lee Chang Street, Chai Was Hong Kong
101	Po Tak Construction Co Ltd
	3/F Flat A 3/4-378 Printer Edward Road, Kowloon
112	Professional Engineering Ltd. Room [50], Chinachem Leighton Plaza, 29 Leighton Road, Casserver Bay, 135.
183	PWL Surveyors Limited
	Room B, 17th Floor, Chenk Nong 21st Centery Plaza, 250 Hennessy Rood, Wanchai, Hong
	Kong
184	Runkine & Hill (HK) Ltd
LES	2001 Sing Pao Building, 101 King's Road, North Point Hong Kong
103	Runkine Engiseering Co Ltd 9/F Shin Fung Building, 11-53 Johnston Road, Wan Chai Hong Kong
184	Ray On Constitution Co Ltd
	2009 Fortres Tower, 250 King's Road, Hong Kong
167	Reliable (HR) Co
IIE	6-F Mai Hong Industrial Building Room A7-A1, 160 Wai Yip Street, Kwen Tong Kowlocu.
196	Rubicon Engineering Co Ltd 8:F Spectrum Tower Unit B. 53 Hung To Road, Kwun Tong Kowlean
119	Rysden Engineering Co Ltd
	11/F Manualife Tower, 169 Electric Road, North Point Hong Kong
190	Sam Cheeng Construction Co Ltd
191	Mezzanine Floor, 21 Tai Pe Street, Truen Wan NT Sam Cheena Construction Co Ltd
•	Mezzanina Floor, 21 Tei Pe Street, Teuen Was NT
192	Sang Hing Civil Contractors Co Ltd
	215A-B Central Services Building, Nan Fang Industrial City, 18 Tin Hos Road, Tuen Mun NT
193	Schonder Electric (HK) Lid
194	Rms 3104-3128, 31-F, Sun Heag Kai Contra 30 Herbour Road, Wanchei, IIK Schneider Electric (HK) Ltd
	Rms 3103-3128, 31/F, Sun Hung Kni Centre,30 Harbour Road, Wanchai, 18K
195	Senton Engineering Ltd
	Ground Floor, 46 Haven Street, Causeway Bay Hong Kong
196	Shimira HK Co Lid
	1905-1909 Ever Gein Plaza Tower One, El Container Port Road, Kwai Ching NT
197	Shimizs HK Co Ltd 1905-1909 Ever Gain Plaza Tower One, 31 Container Port Road, Kwai Cheng NT
198	Shar On Construction and Materials Ltd
	34/F, Shui On Centre, 6-8 Harbour Road, Wanchai, HK
	Shei On Construction Co. Ltd
200	12/F, New Kowlpon Plaza, 38 Tai Kok Tsui Rd, KLN
20G	Shui Wing Engineering Co Ltd 12/F Wofoo Commercial Building, 576 Nathan Road , Mong Kok Kowloon
201	Shun Hing Engineering Contracting Co., Ltd
	16/F., Shun lung Centre, \$ Shing Yiu Street, Kui Chung, NT
202	Shun Lee (Chine) Development Co Ltd
203	7/F M P Industrial Centre, Unit 9 Block B, 12 Ke Yip Street, Chai Wan Hong Kong
	Shan Yuan Construction Co Ltd 12/F China Trade Centre, 122-124 Wei Yip Street, Kwen Tong Kowloon
204	Sing Kee Co Lid
	Room 3102, Nine Queen's Road Central Hong Kong
205	Skanska interpational Civil Engineering AB
	28/F Devon House, Taikoo Place, 979 King's Road Hong Kong

242	Waking Builden Lad 29:F New World Tower, 16-18 Queen's Road Centrel, Hong Kong
243	WALTECH Pacific (Faginoring) Ltd
243	26/F Grant Smart Tower, 230 Wanchei Road, Wan Chei Hong Kong
	Wan Chang Construction Co Ltd
244	2/F Fuk On Building Flat A, 1123 Canton Road, Kowloon
	Wan Kai Geotashnical Engineering Co Ltd
243	4/5 Ngai Wong Commercial Building, 11-13 Mongkok Rand, Kowloon
746	Weng Yip Construction Co Ltd
	20/F The Hong Kong Club Building, 3A Cluter Road, Central Hong Kong
747	Wassen Construction Co Ltd
247	12/F China Trade Centre, 122-124 Wai Yip Street, Kwan Tong Kowloon
	WCWP International Ltd
248	
	11/F., Skywey House, 3 Shora Mong Rd, Tsi Kok Tsui, KLN
249	Wondow Engineering Service Co Ltd
	1402-3 Causeway Bay Contro., 15-23 Sugar Street, Causeway Bay Hong Kong
250	Wing Chacus Electrical Engineering & Contracting Co Ltd
	11-13/F United Chinese Bank Building, 13 Tri Po Road, Kowloon
251	Wing Hong Contractors Ltd
	7/F Eastern Commercial Centre, 395-399 Heratony Road, Wan Chai Hong Kong
212	Wing Song Construction Co Ltd
	702 Hung Kai Mansion, 5-8 Queen Victoria Street, Central Hong Kong,
233	Wing Taj Pilonner Ca Ltd
	19/F President Commercial Centre, 602-601 Nathan Road, Kowloos
254	Wing's Construction Co Ltd
	2001 New Trade Plaza Tower A. 6 On Ping Street, Shatin NT
255	Wong & Cheng Consulting Engineers Ltd
	13-F Bank Centre, 636 Nathun Road, KLN,
256	WSP Hong Kong Limited
	J.F. K. Wah Centre, 191 Java Road, North Point,
257	WTP (Floag Kong) Ltd
	20/F, 625 King's Road, North Point, HK
258	We Yi Construction Co Ltd
	25.F Island Beverley,
	1-5 Great George Street, Causeway Bay Hong Kong
239	Y.K. Construction Co Ltd
	9/F Man Hing Commercial Building, 79-13 Queen's Road Central, Hong Kong
260	Yes Checos Construction Engineering Ltd
	12/F Comet Commercial Building Unit C, 42A Wing Hong Street, Cheung Sha Wan Kowloon
2 6 1	You Lee Holdings Ltd
	10/F, Tower I, Enterprise Square, 9 Shoung Yest Rd, Kowloon Bay, KLN
262	Yru Lam Engineering Service Co Ltd
	11/F Hung Tet Industrial Building Flat 6, 43 Hung To Road, Kwan Tong Kowloos
263	Young's Engineering Co. Ltd
	Rm 701-4 Entern Harbour Contre, 28 Hoi Chak Street, Quarry Bay, HK
264	Yu Hain Construction Co Ltd
	7205 Arion Commercial Centre, 2-12 Queen's Road West, Hong Kong
265	Zhen Han Engineering Co Ltd
263	19/F China Harbour Building, 370-374 King's Road, North Point Hong Kong
	1207 Cama ramous contains, 570-574 King a Road, North Point Houg Road

APPENDIX I

Data of the survey on criteria to assess the performance of subcontractors

Data for questionnaire survey on performance evaluation criteria

		q.3	"				Ī			_				·			_							[.]
Reply no.	q.2_	a	_ b	С	ď.	ē	f	8	h	i	j	k	1	m	п	0	p	. 9	I.	s	;	u	v	
1	2	1.0	1.0	3.0	3.0	2.0	2.0	3.0	3.0	4.0	2.0	2.0	2.0	3.0	2.0	3.0	4.0	3.0	4,0	3.0	4.0	4.0	4.0	
_2	7	2.0	2.0	2.0	2.0	2.0	_2.0	2.0	1.0	4.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	3.0	3.0	
3	2	2.0	3.0	2.0	3.0	2.0	2.0	2.0	3.0	3.0	1.0	3.0	3.0	2.0	2.0	3.0	3.0	3.0	2.0	2.0	3.0	3.0	3.0	
4	5	1.0	1.0	1.0	1.0	2.0	2.0	1.0	2.0	4.0	2.0	3.0	3.0	2.0	3.0	3.0	4.0	4.0	2.0	2.0	3.0	3.0	3.0	 _
5	1	1.5	3.0	1.0	1.0	3,0	3.0	2.0	2.0	2.0	1.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	4.0	3.0	
6	12	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	3.0	2.0	3.0	3.0	2.0	2.0	1.0	2.0	2.0	2.0	3.0	2.0	3.0	3.0	ļ
7	22	1.5	2.0	2.0	2.0	3.0	2.0	2.0	3.0	3.0	2.0	3.0	2.0	3.0	2.0	4.0	3.0	3.0	3.0	1.0	3.0	3.0	3.0	
8	15	2.0	3.0	2.0	2.0	3.0	2.0	3.0	3.0	3.0	1.0	2.0	2.0	4.0	3.0	4.0	4.0	4.0	4.0	3.0	5.0	3.0	3.0	igwdown
9	3	2.0	2.0	3.0	3.0	2.0	2.0	2.0	1.5	2.0	2.0	3.0	3.0	3.0	1.0	4.0	4.0	4.0	3.0	2.0	2.0	4.0	4.0	
10	5	1.0	1.0	2.0	2.0	_ 1.0	1.0	3.0	3.0	2.0	2.0	2.0	3.0	4.0	2.0	1.0	2.0	1.0	2,0	3.0	2.0	3.0	3.0	
11	4	1.0	2.0	2.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	3.0	2.0	2.0	3.0	4.0	4.0	3.0	2.0	2.5	2.5	4.0	igwdot
12	20	1.0	1.0	2.0	2.0	2.0	1.0	2.0	1,0	2.5	2.0	3.0	2.0	3.0	4.0	2.0	3.0	3.0	3.0	3.0	2.0	4.0	3.0	
13	16	1.0	1.0	2.0	2.0	1.0	1.0	1.0	1.0	2.0	2.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	3.0	2.0	2.0	
14	4	1.0	2.0	2.0	2.0	2.5	2.5	2.0	1.0	2.5	3.0	3.0	1.0	2.0	1.0	3.0	2.0	3.0	2.0	3.0	3.0	4.0	4.5	 i
15	18	2.0	2.0	1.0	3.0	2.0	1.0	2.0	2.0	2,5	1.0	1.0	3.0	2.0	2.0	2.0	3.0	4.0	3.0	4.0	4.0	3.0	4.0	
16	25	2.0	2.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	4.0	3.0	2.0	2.0	2.5	2.0	
17	8	1.0	1.0	2.0	2.0	2.0	1.0	3.0	1.5	2.0	1.0	3.0	3.0	2.0	2.0	4.0	4.0	2.0	3.0	4.0	4.0	4.0	4.0 3.0	
18	3 2	2.0	2.0 1.0	3,0 1.0	1.0	2.0	2.0	3.0	2.0	2.5 3.0	2.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	3.0 1.0	3.0 2.0	4.0 2.0	2.0	3.0	-
20	6	1.0	2.0	1.5	1.0	2.0	2.5	2.0	2.0	3.0	1.0	1.0	3.0	2.0	3.0	3.0	3.0	2.0	3.0	4.0	4.0	3.0	4.0	
21	10	1.0	2.0	2.0	1.0	2.0	2.0	2.0	1.0	2.0	1.0	3.0	2.0	3.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0	3.0	3.0	
22	10	1.0	1.0	2.5	1.0	2.0	2.0	1.0	2.0	3.0	1.0	3.0	3.0	3.0	2.0	3.0	4.0	4.0	4.0	3.0	3.0	4.0	4.5	
23	18	1.0	1.0	1.0	1.5	2.0	2.0	1.0	1.0	2.0	1.5	2.0	2.0	2.0	2.0	3.0	2.5	3.0	1.5	2.5	2.0	3.0	4.0	
24	15	1.0	1.5	2.0	2.0	2.0	2.0	1.0	2.5	3.0	2.0	2.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	3.0	2.0	3.0	4.5	
25	3	2.0	2.0	1.0	2.0	2.5	2.5	2.0	1.0	2.5	1.0	2.0	3.0	3.0	1.5	2.5	3.0	3.0	2.0	3.0	2.0	2.0	4.0	
26	- 5	1.0	2.0	2.0	3.0	1.0	2.0	1.0	2.0	2.0	2.0	3.0	3.0	2.0	3.0	2.0	2.0	3.0	3.0	3.0	2.0	3.0	3.0	
27	1	2.0	3.0	3.0	3.0	2.0	2.0	3.0	3.0	3.0	2.0	3.0	2.0	3.0	3.0	3.0	3.0	2.0	3.0	2.0	3.0	4.0	5.0	
					2.0			2.0																
		-				·-			_						 -									

APPENDIX J

Data of the survey on identifying the important influencing factors for subcontracts

Summary of data of the in-depth interviews

a. Score by construction manager

	CM1	CM2	CM3
Factor	Score	Score	Score
Perceived profitability of the subcontracts	7.0	9.0	8.0
Payment to the subcontractors	7.0	9.0	7.0
Approval process	7.5	8.0	7.0
Level of coordination	6.0	8.0	8.0
Relationship among the participants	5.0	9.0	8.0
Understanding on the subcontract works	6.0	8.0	8.0
Design changes	7.0	7.5	7.0
Unrealistic subcontract duration	8.0	7.0	6.5
Response by the design team	9.0	6.5	5.5
Staff support of the subcontractors	7.0	5.0	9.0
Claims for extra works	7.0	8.5	5.0
Schedule change	8.0	7.5	5.0
Buildability of the design	8.0	7.0	5.0
Incentive scheme	6.0	8.0	6.0
Managerial ability	6.0	5.5	8.5
Acceptance of new ideas	9.0	5.0	5.0
Plant support by main contractor	8.0	6.0	5.0
Formal feedback channel	3.0	8.0	7.5
Material support by the main contractor	4.0	8.0	6.5
Treated fairly	7.5	5.0	6.0
Complexity of work	8.0	4.0	6.0
Risk sharing between main contactor &			
subcontractors	6.0	7.0	5.0
Use of new technology	8.0	6.0	3.0
Payment methods	7.0	4.0	5.0
Involvement in the design	4.0	7.5	4.0
Restrictions due to environmental factors	5.0	4.0	6.5
Technical ability	5.0	5.0	5.0
Quality of design document	6.0	5.0	3.0
Financial ability	3.0	7.0	2.0

b. Score by foreman of main contractors

-	FM1	FM2	FM3
Factor	Score	Score	Score
Perceived profitability of the subcontracts	8.0	9.0	9.0
Payment to the subcontractors	8.5	9.0	7.0
Buildability of the design	8.0	8.0	8.0
Level of coordination	7.0	8.0	8.5
Approval process	9.0	5.0	9.0
Claims for extra works	8.0	9.0	6.0
Staff support of the subcontractors	6.0	9.0	8.0
Acceptance of new ideas	8.0	8.5	6.0
Formal feedback channel	5.0	9.0	8.5
Incentive scheme	7.5	9.0	6.0
Schedule change	8.0	9.0	5.0
Design change	5.5	7.0	9.0
Treated fairly	7.0	7.5	7.0
Relationship among the participants	8.0	6.5	6.0
Response by the design team	7.0	6.0	7.0
Unrealistic subcontract duration	6.0	8.0	6.0
Involvement in the design	7.0	5.0	7.0
Understanding on the subcontract works	6.0	5.0	8.0
Managerial ability	3.0	7.0	8.0
Material support by the main contractor	5.0	7.0	6.0
Plant support by main contractor	8.0	6.0	4.0
Restrictions due to environmental factors	4.0	5.5	8.5
Risk sharing between main contractor &			
subcontractors	8.0	5.0	5.0
Technical ability	8.0	4.0	6.0
Complexity of work	6.0	6.0	5.0
Use of new technology	5.0	6.0	6.0
Financial ability	4.0	5.0	7.0
Quality of design document	3.0	4.0	8.0
Payment methods	6.0	3.0	5.0

c. Score by subcontractors

	SC1	SC2	SC3
Factor	Score	Score	Score
Payment to the subcontractors	8.0	9.0	9.0
Perceived profitability of the subcontracts	6.0	8.5	9.0
Level of coordination	7.0	8.0	8.0
Claims for extra works	8.0	7.5	7.0
Relationship among the participants	8.0	9.0	5.0
Treated fairly	8.0	7.5	6.5
Design change	6.5	6.0	9.0
Incentive scheme	6.0	7.0	8.5
Plant support by the main contractor	5.5	9.0	7.0
Schedule change	5.0	9.0	7.5
Risk sharing between main contractor &			
subcontractors	7.0	8.0	6.0
Involvement in the design	7.0	5.0	8.5
Response by the design team	7.0	5.5	8.0
Formal feedback channel	6.0	8.0	6.0
Approval process	6.5	7.5	5.5
Staff support by the main contractor	3.0	8.5	8.0
Buildability of the design	6.0	7.0	6.0
Unrealistic subcontract duration	8.0	6.0	5.0
Restrictions due to environmental factors	7.0	4.0	7.5
Understanding on the subcontract works	5.0	8.5	5.0
Managerial ability	4.0	8.0	6.0
Material support by the main contractor	5.0	6.0	7.0
Financial ability	6.0	6.5	5.0
Technical ability	5.5	4.0	8.0
Use of new technology	6.0	6.0	5.0
Complexity of work	4.0	6.0	6.0
Quality of design document	7.0	3.0	5.5
Acceptance of new ideas	5.0	2.0	5.0
Payment methods	5.0	2.0	5.0

APPENDIX K

Data of the survey on identifying critical site coordination problems

П		1	•	a.		4.0	0	4.5	5.5	4.0	4.5	6.0	7.0	ž	0,5	4.0	97	0	5	20	5.0	5	2.0	0	0	٥	6.0	0	٤.	0	٥	0	0	o.	4.5	5.0	7.0	6.5	0.9	٦
Н	-			L		Н	Η	2.0	3.5	4.5	3.5	Н	3.0	Н	\dashv	3.5	۳.	4.0 }	-	0.9	Н	3.0 6	-	Н	Н	Н	Н	3.0		3.5	\dashv	2.0 €	Н	5.0 4	3.5	5.0	3.0	2.5	2.0	\dashv
Н	٦	-		<u>a</u>	٦	Н	5.0	Н	4.5	Н	Н	Н	2.0	-	\dashv	4.5	H	4.5 1 4	-	2.5	Н	4.0	3.5	Н	Н	Н	Н	3.5	Н	3.0	\dashv	Н	5.0	Н	3.5	4.0	-	4.0	<u>.</u>	\dashv
Н		-	_	<u>.</u>	-	-	5.0 1 3	Н	Н	-	Н	Н	Н	7,0	Н	4.0	H	Н	-	3.0	Н	4.0 1 4	Н	-	Н	Н	Н	Н	Н	4,0 3	Н	4.5	Τ	6.0 4	6.0	4.0	6.0	4.5	~	\dashv
Н			-	_	-	┪	5.0 5	Н	5.0 5	Н	5.0	Н	Н	-	Н	_	Н	7.5 3	Н	8.0 3	Н	6.0 4			-	5.5 5	Н	7.0		4,5 4	Н	5.5 4	6.0 5	9 0.9	5.0	7.0 4	4.0	7.0 4	6.0 5	\dashv
Н	-	-		14		+	Н	H	Н	Н	Н	2.5	Н	ᅱ	\dashv	-	5.0	H	Н	2.5 8	-	2.0 6	Н	4 5 4	Н	Н	3.0	Н	Н		Н	3.0 5	-	Н	3.0	Н	3.0	2.5 7	9	\dashv
Н		-	_	I.	-	-	-	Н	Н	Н	Н	Н	7.0	-	Н	-	6.0	Н	Н	Н	\vdash	5.5 2	-	6.5	Н	Н	7.0 3	Н		Н	Н	7.5 3	Н	5.0 3	6.0 3	5.5	6.0	6.5	7.0 3	\dashv
Н				F	\dashv	\dashv	3.0 8	Н	Н	H	5.0 6	Н	~	-	Н	-	3.0	Н	Н	3.5 5	_	Н	Н	3.0	Н	Н	3.0 7	-	-	3.5		3.0 7	\dashv	2.5 5	2.0 6	Н	3.5 6	4.0 6	3.5 7	\dashv
Н	-	-		11	\dashv	\dashv	5.0 3	Н	Н	Н	4.5 2	6.0	\dashv	-	⊣	-	3.0	H	7	4.0 3	-	4.5 2	Н	4.0	Н	-	5.0 3	-	\vdash	\dashv	-			3.5 2	5.0 2	Н	3.5 3	5.0 4	3	┨
Н	_			F	-	\dashv	Н	Н	Н	Н	_	4.0	\dashv	\dashv		3.0 6		5.0 4	-	5.0 4	-	4.0 4	Н	4.0	Н	Н	2.0 5	Н	Н	\dashv	4.0 4	Н	-		2.0 5	Н	3.5 3	2.5 5	0	┪
Н				d.		5.0 3.	Н	Н	Н	Н	6.0	Н	5.5	\vdash	7.0	6.5 3.	7.0 4	Н	4.0	5.5	6.0 4.	8.0 4	~-	-	-	-	Н	Н	\vdash	7.0 5.	Н	Н	Н	Н	Н	Н	⊢	8.0 2	7.0 4.	\dashv
Н	Н		F	F		_	Н	Н	Н	⊢	5.0 6.	Н	Н	Н	Н		Н	⊢	┝╌	-	-	-	Н	Н	_	Н	Н	5.0 6.	Η	Н	Н	Н	0 7.0	Н	0.8 0.0	⊣	5.0 7.5	Н	Н	\dashv
Н	Н	4	_	<u>-</u>		4.0 4.0	0.2 0.	H	0 45	H	3.0 5.	3.5 6.	Н	Н	2.0 6.	5 5.0	-	3,0 5.5	0.9 0.	6.0 5.5	Н	0.7 0.	Н	3.0 4.0	Н	Н	3.0 5.0	Н		3.0 4.5	Н	59 0	3.5 3.0	Н	3.5 4.0	2.0 7.0	⊢	3.0 6.0	5.6.5	\dashv
Н	H	-	-	E.			_	H	Н	⊢	H	Н	Н	Н	Н	_	⊢	4.0 3,	4.5 5.	-	-	5.5				H	Н		-	3.0	Н	Н	H	Н	_	Н	4.0 2.	3.5 3.	0	\dashv
Н		4	_	F.			0 3.0	0.4.0	Н	⊢	4.0 4.0	Н		Н	Н	0 3.5	H	H	┝	0.5.0		-	Н	0 3.0	Н	0.5 0	Н	Н	Н	Н		5.5	0 4.5	-	5 3.0	-	4 5 4	5.0 3.		\dashv
Н			_	Н		Н	5 4.0	Н	3.5	Н	H	Н	Н	Н	Н	-	5 3.5	-	├	-		5 3.5	Н	0 6.0	Н	-	3.0	Н		0 2.5	Н	5 3.5	Н	0.4.0	0 4.5	3.0	⊢	H	0 4.5	-
Н		4	_	F		0.9	Н	5.5	0.9	0.5 0	┝		-		0.0		1 4.5	H	-	0.5	H	3.5	Н		_	-	3.0	Н	Н	5.0	5.5	5 6.5	Н	3.0	5 4.0	H	3.5	0.4.0	0.4	\dashv
Н	4	_	_	1	_	7.0	-	Н		-			5.5	-	9.0	-	0.7	-	H	0.9	-	Н	Н	Н	Н	Н	5.5	\perp	_	1.0	Н	H		0.9	Н	Н	3.7.5	Н	5 8.0	\dashv
\mathbb{H}			*	4		\dashv	5.5	Н	6.5	Η	⊢	Н	4.0	-	Н	5.5	Н	0.5	Н	9	Н	Н	Н	5.0	Н	Н	6.5	Н		4.5	Н	1.0		0.9	-	4.0	4.0	0.7	٦	-
Н	4	4	_	II	Ц	\dashv	7.5	Н	Н	Ť	0.9	Н	-	-			4.5		-	-	-	-	-	7.5	_	7.0	├ ┤	0.9	-	5.5	5.5	Н	7.5	8.5	4.5	5.0	4.5	9	5.0	4
Н	4		_	3-	_	4	-	Н	Н	Н	H	Н	6.0	-	4	_	Н	Н	Н	5.5	Н	Н	Н	Н	6.0	Н	Н	7.0	Н	4.5	Н	7.5	Н	0'9	0.9	Н	4.5	5.5	9	\dashv
Н			· -	II		Н	5.5	5.0	4.5	┝	8.5	-	5.5		Н	-	-	0.8	-		H	5.5	-	5.5	-	-	Н	6.5	-	4.5	-	5.5	-	7.5	7.0	-	7.0	0.9	9	\dashv
H			-	۲		3.0	3.0	Н	3.5	-	H	Н	3.0	3.0	3.5	2.0	3.0	H	2.0	\vdash	Н	-	Н	Н	H	Н	Н	5.0	3.0	2.0	2.5	3.0	3.5	6.0	3.0	┢	4.0	3.0	3.5	\dashv
H			4	2		5.0	0.9	7.0	8.0	H	8.5	7.0	7.5	8.0	Н	Н	7.0	H	8.0	Н	H	-	7.5	Н	H	Н	Н	Н	7.5	5.5	6.5	7.5	5.5	7.5	8.0	H	7,0		7.0	4
H			2	۳			3.0	Н	2.5	9,4	⊢	2.0	Н		Н		⊢	3.5	⊢	Н	Н	Н	3.0		H	Н	Н	Н	2.0	Н	4.0	4.5	5.0	Н	4.0	Н	⊢		2.0	4
Н			D.C	Н		2.0	2,0	3.0	3.5	3.0	3.0	2.5	4.0	Н	0.9	4.0	3.0	⊢	4.0	2.0	Н	2,5	3.0	-	2.0	3.0	Н	1 2.5	4.5	4.0	2.5	2.0	2.5	H	3.5	Н	3.0	5 4.0	4	-
	Ц	_		4	_	-			-	⊢	⊢	Н	\vdash	-	Н	-		-		-	-	-	Н	Н	Н	Н	5.5	Н	Н	Н	Н	Н	Н	4	7	7.0	~	4	Π	4
-		_	-	1	-	-	-	Н	_	⊢	⊢	Н	-	-		-		1-	⊢	-	Н	Н	Н	Н	Н	Н	7.0	Н	Н	Н	Н	Н	Н	Н	Η	₽	⊢	⊢	Н	\dashv
Н		_		۵	Н		H	Н	Н	Н	⊢	Н	\vdash	Н	Н	Н	Н	-	⊢	Н	H	⊢	Н	Н	-	Н	3.5	\vdash		_	-		Н	\vdash	-	\vdash	⊢	⊢	╌┤	1
Н		_		IP	Н	5.0	_	ш	Н	⊢	⊢	Н	Н	7.5	Н	_	Н	⊢	⊢	5.0	_	⊢	-	Н	_	Н	5.5	-	-	_	-	1.0	Н	5.0	5.5	┝	⊢	6.5	 	-
Н	Ц	4		F	\perp	\dashv	_	Н	Н	7.0	Н	Н		-	-	-	Н	Н	⊢	0.9	Н	_	Н	Н		Н	5.0	Н	_		-	Н	Н	Н	Н	5.0	┝	9.0	\vdash	\dashv
Н	Ц		_	1.	-	\dashv	_		Н	-	Н	Н	-	Н	-	_	⊢		-		-	H		-	-	_	0'9	-	-	H	-	-	-	-	-	⊢	⊢	7.5	Н	\downarrow
		-	_	-	Н		H	Н	Н	⊢	-	4.0	-	-	$\overline{}$	-	-	-	-	-	-	-	-	-	-	-	3,0	-	-		-	-	-	Н	$\overline{}$	╌	_	4.5	╌	\dashv
E S			_	=		4.0		Н	Н	⊢	⊢	Н	н	\vdash	\vdash	_	⊢	⊢	├	╌	┝	⊢	Н	Н	-	⊢	3.5	-	┝	-	-	⊢	-	-		┉	╂	!	} - 	\dashv
on prob				4		-	-	-	-	_	_	3.5	_		_	_	_	-	-	-	-	-	-	-	-	-	5.5	-	-	-	-	┝-	-		-	├-	+-	0 4.5		-
rdinati	L		_	F IP		0 7.0		_	-	-	8.0 6.0	0.9 0.		-	-	⊢	⊢	⊢		╌		-	_	_	-	-	8.5 7.5	-	-	\vdash	Н	8.0	-	\vdash	$\overline{}$	⊢	⊢	7.0 6.0	Н	\dashv
gite coo	Н		_	1P		_	0.8 0.	Н	Н	5.5 7.0	⊢	Н	Н	6.5 7.0	Н	\vdash	0.5.5	7.0 6.0	⊢	0.5	-	-	5.0 7.0	-	-	-	1	-	5 7.0	-	5.0 7.1	\vdash	-		6.5 6.5	┢	┢┈	5.5 7.	1	\dashv
critical	Н	Question 4	_	<u>-</u>		_	•			٠	1-					_	_			<u>. </u>			_		_	_	Н		Н	Η	7.5 5.	⊢	7.5 5.	Н	\vdash	7.5 5.	⊢	5.5 5.	H	\dashv
VCV ON	Н	Oues	_	H		80	7.	aci	7	7	7	9	9	8	7.	7	3	و	و	٩	9	90	7	7	8	7	1	*	9	7	7	9	7	9	9	-	~	*	٩	\dashv
Data for survey on critical site coordination problems	H	ŭ		H	_	-		L	-	Ļ	H		L		0		_~	1	-	\ \ \	9	7	er.	6	6	-	2	3	-	2	9	 -	6	0	_	-	_	*	H	\dashv
Data		Case				_	7	3	4	S	<u> </u>		8	6	10	-	Ľ	Ľ	Ľ	<u> </u>	=	_	Ĩ		~	7	~	[~	^	~	Ž	7	7	ě		Ľ	ľ	٦	38	

APPENDIX L

Data of the survey on identifying essential causes for site coordination problems

П		1	4	J		5.0	5.5	4.5	3.5	5.0	6.0	7.0	7.5	3.0	3.0	3.5	5.0	5.0	6.0	0.9	7.5	20	6.0	6.0	5.0	5.5	0.4	30	2.0	6.5	2	9.0	6.5	4.5	5.0	5.0	0.4	20	9	2
	1	1	4	-	1	20	4.0	5.0	4.5	3.5	4.0	5.0	0.9	5.5	5.0	0.9	6.5	7.0	4.0	4.5	5.0	0.9	6.5	3.5	0.9	0.9	5.5	0,0	20	9	ુ	20	4.0	5.5	5.0	6.5	3.0	6.5	5.0	- 03
H	\dagger	1	•	٥	1	09	0.9	09	6.5	2.0	2.5	30	5.5	0.5	0.1	3.5	5.0	5.5	0.0	1.5	4.5	5.0	6.5	5.5	1.0	6.5	6.0	5.5	2.0	55	0.0	6.5	5.0	0'9	5.0	1.5	-	Н	1.5	Н
H	1	1	•		1	- 0.5	6.0	7.0	7.5	5.0	6.0	7.0	3.0	1.5	_		H	H	Н	Н	Н	Н	-	Н	Н	H	Н		4	4	-	-		Н	H	Н	H	Н	5.0	\$ \$
Н		1	-	J	┨	+	_	H	5.5	H	H	H	-	Н	Η.	_	H	Н	-	Н		-	-	Н	Н	H	Н	4	4	+	3		_	Н		_	_	0.9	20	0.9
۲	1	1		-	1	-	-	-	÷	-	6.5	H	H	H	H	H	-	-	H	H	H	H	Н	H	_	-	H	-	Η	Н	2	H	H	H	H	H	2.	Н	0.9	Н
\vdash	1	1	8	ပ	1	-	-	-	H	5.9	29	7.0	1.0	0.8	H	-	-	-	_	Н	-	Н	_	-	-	L	Н	Н	-	╣	\dashv		-	H	_	-	-	5.0	Н	\exists
		1	E	-	1	5.5	0,7	0.9	0.9	3.5	5.0	0.5	0.9	0.9	7.5	8.0	0	\$ \$	6.5	20	0.9	5.0	0.9	5.5	6.5	8.0	0.9	8.0	20	2	3	7.0	6.0	6.5	5.5	3.0	1.5	4.5	3.5	\$0
ľ	1	1	-	٥	1	6.5	6.7	6.5	0.9	7.5	2.5	\$.5	6.5	\$3	4.5	6.5	10,7	0.8	0.8	7.5	7.5	7.0	8.0	7.5	7.0	7.5	3.0	9 0 9	7.5	6.0	2	8.0	5.0	6.5	5.5	7.0	5	7.5	8.0	5.5
	1	1	-	-		5.0	7.0	\$	0	3.0	2.5	2.0	3.0	4.5	0.4	5.0	3.5	\$.0	4.0	3.5	2.0	2.5	2.0	0.4	3.5	4.0	3.0	3.5	0.4	9	2	4.0	3.0	5	3.0	2.0	9	3.0	2.0	5.2
		Ì	-	ü	7	6.0	6.5	5.0	80	0.8	2.2	5.0	09	7.0	10.8	1.0	2,5	7.0	8.0	7.5	7.0	7.0	7.0	8.0	09	6.5	7.5	7.0	9 9	3	<u>-</u>	8.0	6.0	6.5	0.7	0.7	.3	8.0	8.0	2
		1	×	<u></u>	Ì	6.0	9	0.8	0	0.7	2	2.5	1 07	59	7.0	7.5	2	0.8	6.5	7.5	1.0	1 07	7.5	6.5	7.5	0.8	7.0	8.0	5.0	8.0	6.5	5.0	7,0	7.5	0.7	6.5	29	7.5	0.9	7.0
			4	١		2.0	2.5	30	2.5	5.0	0.9	4.5	3.5	7.0	7.0	5.5	50	2.5	3.0	3.5	2.0	2.5	2.0	7.0	3.5	4.0	4.5	3.0	4.0	3.0	2.5	3.0	2.0	0.4	4.5	3.0	2	2.0	7.5	3.0
			_	ı.,	1	20	9	65	5.0	5.0	4.0	5.4	3.5	5.0	6.0	7.5	59	7.5	4.0	3.0	3.5	5.0	5.0	5.0	6.5	5.0	0.2	4.0	3.0	4.0	ç	3.5	5.0	5.5	5.0	5.5	7.0	6.0	7.0	0.9
			-	ü		2.5	1 0.4	2	2.5	5.0	23	-	51	50	2.5	2.5	9	2.0	\$.0	2.	5.6	0.4	5.4	3.0	7.0	2	\$ \$	4.5	4.5	3.0	3.0	5.0	5.5	5	3.0	0.9	2	3.5	3.5	5.0
			-	-	7	4.5	3.0	0.5	35	0,4	2	5.0	3.5	\$ \$	2.5	3.0	2	2.5	3.0	3.5	2.0	3.0	1.5	0.1	3.0	3.5	2.0	3.5	3.0	0.4	4.5	3.5	1.5	3.0	2.0	2.0	3.0	3.5	3.0	0.7
			4	Ų		4.0	0,	5	4.0	5.5	0.9	6.5	0.4	3.5	3.0	3.5	20	4.5	5.0	2.0	2.5	6.0	6.5	8.0	4.5	5.0	0.8	0.0	4.5	5.5	9	3.5	0.2	4.5	0.4	3.0	3.5	4.0	ŧ\$	-
			4	-		4.0	6.0	9	ę	5.0	25	ç	\$ \$	3.5	\$0	6.5	9	9	3.5	3.5	3.0	4.5	5.0	5.0	40	3.0	3.0	4.5	5.0	0.9	\$\$	0.1	5.5	Š	9.9	3.5	=	4.5	\$0	ş.
			-	ان		5.5	5.0	ŝ	20	6.5	2	3.5	0'5 1	09	57	3.0	2	5.0	\$3	5.0	6.5	1.0	0.9	4.5	5.0	2.0	5.5	0.9	4.5	4.0	7.7	5.5	5.0	4.5	0.9	6.0	z	3.5	4.0	2.0
L			•	-		9	20	8	0.9	2.0	8	2.0	9.0	0+	\$.0	0.9	9	6.5	5.0	5.5	0.9	7.0	0.9	0.4	2.0	6.5	8.0	0.9	2,0	3.5	S	5.0	5.5	2	0.9	0.0	٥	8.0	5.5	9
			۰.	U		4.0	4.5	2	\$3	\$.5	3	o.s	4.5	ş	o T	ş	5	÷	2.0	0.5	0.9	7.0	7.0	0.5	3.5	ŝ	4.0	4.5	6.0	5.5	20	6.5	2.0	÷	\$	0.9	ļ	\$.0	5.0	9
			,	۴.		5.5	5.5	90	2.0	7.0	20	65	0.9	6.5	6.0	7.0	2.5	5.0	6.5	7.0	8.0	7.5	7.5	6.5	0.9	5.9	6.5	0.8	6.0	5.5	9	6.5	7.0	7.5	7.0	6.5	2.5	6.5	0'9	1.0
			٠	٩		2.0	5.5	9	ş	Ç	ž	9	6.5	3.5	3.5	2	9	9.9	5.0	3.5	0.4	5.0	3.5	3.0	4.0	4.0	0.9	5.5	5.0	4.5	30	0.4	5.5	0.9	5.4	0.9	23	\$0	63	4.0
			ů	۴.		5.0	0.9	25	5.0	5.5	5.9	5.9	2.0	29	7.5	7.0	22	7.0	59	2.0	7.5	8.0	6.5	0.9	29	0.5	0'9	0,	7.5	0'9	6.5	6.5	0.0	92	7.5	6.5	2	2.0	6.5	7.0
			7	U		2.0	7.5	2	9	6.5	2	2.	2.0	9	9	9	2	0	7.0	02	7.5	6.0	9	1.0	7.5	0	\$ \$	7.5	8.0	3.5	0,	09	2.0	59	0.7	2.	-	7.0	7.5	2
			-	-		7.0	80	9	2.	6.0	6.	8.0	6.5	0.9	6.5	7.0	7.0	\$ 2	6.5	7.0	7.5	5.0	9	7.0	7.0	8.0	5.5	0.9	7.5	5.0	2.5	7.0	6.5	9	6.0	7.0	5	08	80	9
L			۲	ŭ		7.0	8.0	2	8.0	6.5	07	7.5	5.0	93	2.7	2	7.0	0.7	2.	5.0	6.5	7.0	7.0	8.0	ã	7.0	8.5	200	7.0	6.0	7.0	1.5	0.8	80	6.5	5.5	2	7.5	8.0	7.0
Toblems			u	-	_	6.0	7.5	٥	59	\$3	9	ŝ	0.9	•	35	ş	3	4.0	20	59	20	0.9	0.7	3.5	\$	٥	9.0	6.5	0.9	\$ 0	09	7.0	4.5	٩	\$	\$3	2	9	6.5	7.0
rdmarles (_	٥		7.0	8.0	3.5	6	2.	0 %	9.0	0.5	9	7.0	2	2	8.0	7.5	2.0	5.5	6.5	2.0	8.0	0.8	0.5	5.5	9	7.0	6.5	8.0	7.5	0'9	1.5	6.5	7.0	~	8.0	7.5	9
f sire co-of			4	-		10	5.0	٥	6.5	7.0	0,	2.0	9	29	9	2.2	ŝ	9	2	10	8.0	9	٠	2.0	Š	9.0	7.0	7	6.5	08	5.0	7.5	0.9	2	3.8	3.6	6.5	3.0	7.0	7.5
el causes a			-	v		7.5	7.5	2	7.0	7.0	2	8.0	8.0	2	7.0	5.9	3	6.5	9	7.0	10	7.5	10	B.0	S	70	2.0	7.5	2.0	0.9	7.5	6.5	7.5	۶	80	59	2	1.0	1.5	2.5
en essenth	Ц	Question	•	-		09	2.0	2	2.5	2.5	2	2	0.9	65	6.5	0,	2	8.0	8.0	~	1.5	7.5	6.5	2.0	٥	2	8.5	0.8	7.5	1.0	9	8.0	0.8	2	80	28	2	80	8.0	7.0
Data for jurvey on essential causer of site co-ordination problems												L		L				L							L			L				L	L		L		L		Ц	
Q et eq		j				_	-	_	-	ď	_	~	-	-	2	=	=	3	=	=	16	=	=	2	=	~	77	2	7	57	π	7.7	53	ä	ñ	32	æ	ň	ž	×

APPENDIX M

SPSS regression printouts for site coordination problems analysis

SPSS regression printouts for time performance analysis	3
·	
- 403 - `	

Model		Sum of Squares	df	Mean Square	p 1	Sig.
'	Regressión Residual Total	153.398 110.789 264.187	6 108 114	25.366 1.026	24.923	.0004
2	Regression Residual Total	153.398 110,789 264,187	5 109	30.680 1.016	30.184	.000
3	Regression Residual Total	153,305 110,882 264,187	4 110 114	38.326 1.008	38.022	.000-
1	Regression Residual	152.483	3	50.828	50.507	.000d

Model		Unstandardize B		Standardized Coefficients			95% Confidenc	c Interval for R	Γ -	C- 1/	
	(Constant)		Std. Error	Beta .		Sig.	Lower Bound		7	Correlations	—
	(Constant) SCP_1 SCP_2 SCP_3 SCP_4 SCP_5 SCP_6 (Constant) SCP_1 SCP_1 SCP_2 SCP_2 SCP_3 SCP_3 SCP_4 CP_6	11.645 .229 .341 .314 .3.097E-02 1.000E-03 6.766E-02 11.647 .229 .342 .314 .3.074E-02 -6.747E-02	.500 .103 .097 .092 .104 .087 .082 .479 .102 .095 .090	-209 -315 -307 -028 -001 -061 -209 -315 -307 -028	23.287 -2.226 -3.550 -3.407 -2.98 -0.12 -826 24.331 -2.241 -3.588 -3.479 -3.02	.000 .028 .001 .001 .766 .991 .411 .000 .027 .001	10.654 432 534 497 237 171 230 10.698 431 532 493 292	Upper Found 12.636 -025151131 .175 .173 .099 12.595026153135135135137	-627 -650 -666 -560 -392 -411 -627 -656 -566	Partial - 209 - 323 - 312 - 029 - 001 - 079 - 210 - 325 - 316	- 139 22 212 019 005 005 139 223 216
() S S S S S S S S S S S S S S S S S S S	Constant) CP_1 CP_2 CP_5 CP_6 Constant) CP_1 CP_1 CP_2 CP_1 CP_1 CP_2 CP_2 CP_3	11.594 -239 -354 -315 -7.107P-02 11.384 -259 -368 -320	.080 .444 .095 .087 .090 .079 .378 .093 .086	061 219 325 308 064 237 338 313	-844 26.140 -2.507 -4.058 -3.516 -903 30.126 -2.798 -4.291 -3.581	.000 .000 .014 .000 .001 .368 .000 .006	-226 10.715 -428 -527 -493 -227 10.635 -443 -538	.091 12.472 050 181 138 .085 12.133 076 198	411 627 650 666 411 627 650	029 081 232 361 318 086	019 052 155 251 217 056

Regression

Меал	Std. Deviation	N
6.948 4.935 4.400 4.796 5.961 5.070	1.3223 1.3916 1.3989 1.4881 1.3815 1.3227	115 115 115 115 115 115
	6.948 4.935 4.400 4.796 5.961 5.070	6.948 1.3223 4.935 1.3916 4.400 1.3989 4.796 1.4881 5.961 1.3815

				TCTMIQUE				
Pearson Contration	TIME	TIME	SCP_1	SCP 2	SCP 3	SCP 4	500 -	
		1.000	627	650	666		SCP 5	SCP_6
	SCP_I	627	1.000	.545		-360	392	41
	SCP_2	650	.545		.655	.641 (374 (.44
	SCP_3	666		1.000	.583	.646	.446	.40
	SCP_4	560	.635	.583	1.000 [.547 [.446	38
	SCP.		.641	.646	.547	1.000	.474	
		392	.374	.445	.446	474		.44
12 43 4-19 A	SCP_6		448	.403	.382		1.000	.40
Sig. (1-tailed)	TIME		.000	.000		.445	400_	1.00
	SCP_I	.000			.000	.000	.000	.00
	SCP_2	.000	:1	.000	.000	.000 /	.000	.00
	SCP_3		.000		.000	.000	.000	
		.000	.000	.000	1	.000		.00
	SCP_4	.000	.000	.000	.000		.000	.00
	SCP_5	.000 (.000 /	.000		: 1	.000 }	.00.
	SCP_6		000		.000	.000		.000
	TIME	115		000	000	000	.000 (
	SCP_I		115	115	115	115	715	113
	SCP_2	115	115	115	115	115		
	0CT -2	115	115	115	115	115	115	115
	SCP_3	115	115	115			115	115
	SCP_4	115	115	115	115	115	115	115
	SCP 2	115			115	115	115	115
	SCP 6		115	115	115	115	115	
	- 1 V	<u> </u>	115	115	115 [115	115	115

Model	Variables Entered	Variables Removed	Method
13 -	\$00 1 \$00 1 \$00 1 \$00 1		Enter
2		SCP_5	Backward (criterion: Probability of F-to-remove >= .100).
3		SCP_#	Backward (criterion: Probability of F-to-remove >= .100).
1	.	SCP_6	Backward (criterion: Probability of P-to-remove

All requested variables entered.
 Dependent Variable: TIME

Model Summers

				2100	Diames y				
			Adjusted R	Fu 22			Change Statistic	——.	
Model 1	R .7621	R Square .581	Square .557	Std. Error of the Estimate 1.0128	R Square Change	P Change	d()	df2	Sig. F Change
3	.762° .762°	.581	.561 .565	1.0082	.581	24.923 .000	6	108 110	.000 .991
4		577	566	1.0040	.000	.091	!	111	.763

Model	Entered _	Removed	Method
	SCP_6, SCP_3, SCP_1, SCP_1, SCP_1,		Enter
2		scr_3	Backward (criterion: Probability of F-to-remove >= 100).
3	·	5CP_5	Backward (criterion: Probability of F-to-remove >= .100).
1		SCP_1	Backward (criterion: Probability of F-to-remove

a. All requested variables entered.

Model Summery

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig F Change
1	.900	821	.791	.8750	.821	27.432	6	36	.000
2	.905	.818	.794	.8694	002	.442	1 1	38	.510
3	.898	.806	,786	.8856	012	1.426	1	39	.128
4	8904	792		9054	.014	2.768	<u> i</u>	40	104

- a. Predictors: (Constant), SCP_6, SCP_5, SCP_2, SCP_1, SCP_1, SCP_4
- b. Predictors: (Constant), SCP_6, SCP_5, SCP_2, SCP_1, SCP_4
- c. Predictors: (Constant), SCP_6, SCP_2, SCP_1, SCP_4
- d. Predictors: (Constant), SCP_6, SCP_2, SCP_4
- e. Dependent Variable: TIME

405 -

ANOVA*

Model_		Sum of Squares	্ৰ	Mean Square	F I	Sig
7	Regression	125.314	6	21.052	27.432	.0004
	Residual	27.628	36	767	•	
	Total	153.942	42	[]		
2	Regression	125.975	5	25,195	33,332	4000
	Residual	27.967	37	.756		
_	Total	153.942	42			
3	Regression	124.141	4	31.035	39.574	.000
	Residual	29.801	38	.784		
	Total	153.942	42	! !	- 1	
4 -	Regression	121.970	3	40.657	49.593	.0004
	Residual	31,972	39	,820		
	Total .	153.942	42		- I	

- a. Predictors: (Coustant), SCP_6, SCP_5, SCP_2, SCP_3, SCP_1, SCP_4
- b. Predictors: (Constant), SCP_6, SCP_5, SCP_2, SCP_1, SCP_4
- c. Predictors: (Constant), SCP_6, SCP_2, SCP_1, SCP_4
- d. Predictors: (Constant), SCP_6, SCP_2, SCP_4
- e. Dependent Variable: TIME

	Collinearit	y Statistics
Model	Tolerance	VIP
[] (Constant)		
SCP_!	.440	2.271
SCP_2	.494	2.025
[SCP_3	.478	2.092
SCP_4	.436	2.292
SCP_5	.684	1.461
SCP_6	.714	1.400
2 (Constant)	1	
SCP_I	.442	2.262
SCP_2	.500	2.001
SCP_3	.494	2.022
\$CP_4	.452	2.212
SCP_6	.744	1345
3 (Constant)	1	
SCP_1	501	1.995
SCP_2	.594	1.584
\$CP_3	.496	2.016
SCP_6	.761	1.315
4 (Constant)	[
\$CP_1	j _530	1.886
SCP_2	.613	1.630
SCP_3	498	2.008_

a. Dependent Variable: TIME

Regression

Descriptive Statistics

	Mean	Std. Deviation	N
TIME	6,674	1.9145	43
SCP_1	4.849	1.4123	43
SCP_2	4.419	1.5884	43
ادتعا	5.035	1,4573	43
SCP_4	5.884	1.3837	43
SCP 5	4.872	1,5004 L	43
SCP_6	5,302	1.4357	43

Correlations

		TIME	SCP_I	SCP_2	SCP 3	SCP 4	SCP 5	SCP 6
Pearson Correlation	TIME	1.000	763	823	683	-,781	. 529	-648
	SCP_I	763	1.000	.692	.633	.716	.302	.566
	SCP_2	823	.692	1.000	.662	721	.465	.481
	SCP_3	£8à.	EE2	.662	1,000	516	A29	.592
	SCP_4	781	.716	.721	.516	1.000	388	.563
	SCP_5	529	.302	.465	.429	.388	1,000	.447
	SCP_6	648		.481	.592	.563	.447	1,000
Sig. (1-tailed)	TIME		.000	.000	7000	.000	.000	
	SCP_I	ا ممما		.000	.000	.000	.024	.000
	SCP_2	.000	.000		.000	.000	.001	.001
	SCP_3	.000 (.000	.000		.000	.002	.000
	SCP_4	.000	.000	.000	.000		.005	.000
	SCP_5	.000	.024	.001	.002	.005	. :	.001
	SCP_6		.000	.001	.000	,000	.001	
N	TIME	43	43	43	43	43	43	43
	SCP_1	ا ذبه ا	43	43	43	43	43	43
	SCP_2	43 أ	43	43	43	43	43 .	43
	SCP_3	أقةا	43	43	43	43	43	43
	SCP_4	43 {	43	43	43	43	43	43
	SCP_5	43	43	43	43	43	43	43
	SCP 6	l 45 (43.0	43	43	43	43	

b. Dependent Variable: TIME

	Mean	Std. Deviation	N
TIME	7.221	1.4626	34
SCP_1	4,779	1.3495	34
SCP_1	4.603	1 2600	34
SCP_3	4.662	1,3184	34
SCP_4	5.838	1,4705	34
SCP_5	5.412	1,1446	34
SCP 6	5412	2133	14

Correlations

		TIME	_ 8CB [SCP 2	_SCP_3	SCT 4	SCP_5	SCP 6
Pearson Correlation	TIME	1.000	692	724	742	-532	409	-346
	SCP_1	692	1,000	_593	.659	.569	.\$31	.161
	SCP_2	-,724	.593	1.000	.633	.655	.506 k	.415
	SCP_1	742	.639	.633	1.000	.592	.421	.228
	SCP_4	-532	369	.655	.592	1.000	.468	.368
	SCL78	-,409	\$31	.506	.421	.468	1.000	.327
	SCP_6	.346		415	218	.368	.327	1.000
Sig. (1-tailed)	TIME		.000	.000	.000	.001	.008	.023
	SCP_1	.000 }	.	.000	.000	.000	.001	.182
	SCP_2	.000	.000	. 1	.000	.000 l	.001	.007
	SCP_1	.000)	.000 1	.000		.000	.007	.097
	SCP_4	.001	.000	.000	.000	1	.003	.016
	SCP_5	.008	.00 L	001	.007	003		.030
	SCP_6	023 [182 (.003	.097	.016		
N .	TIME	34	34	34	34	34	34	34
	SCP_I	34	34	34	34	34	34	34
	SCP_2	34 أ	34	34	34	34	ું મુ	34
	SCP_3	34 \	34 }	34	34	34]	34 (34
	SCP_4	34 /	34	34	34	34 /	34	34
	SCP_5	34	34	34	34	34	- 3i l	34
	SCF 6	34	_ 34 (34	34	34 }	34	34

- 406

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Enter
2		SCP_5	Backward (criterion: Probability of F-to-remove >= ,100).
3		SCP_4	Backward (criterion: Probability of F-to-remove >= 100).
4		SCP_6	Backward (criterion: Probability of F-to-remove >= 1000

All requested variables entered.
 Dependent Variable; TIME

Model Summery

		r			Change Statistics							
Mode)	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	P Change	df]	df2	Sig. F Change			
	.5441	.712	.648	.8684	.712	11.103	61	27	000			
2	.840	.706	.654	.8608	005	.514	1	29	.480			
13	.836°	896.	.657	.8571	008	.752	l if	30	.393			
14 1	4114	401	444	4577		1			,			

Coefficients

		Unstandardize	d Coefficients	Standardizzó Coefficienta			95% Omfidenc	e Interval for B		Correlations	
Model		В	Sad. Paror	Beta		_ Sig.	Lower Bound	. Upper Bound	Zero-order	Partial	Purt
7	(Constant)	13.896	.688		20.185	.000	12.500	15.292			
	SCP_I	265	.160	196	-1.662	.105	-529	.058	-,763	267	117
	SCP_2	429	.149	-356	-2.886	.007	731	128	823	-,434	201
	\$CP_3	-9.444E-02	142	072	665	510	-383	.194	683	110	047
	SCP_4	-300	.164	-216	-1.830	.076	632	.032	4,781	- 292	129
	SCP_S	158	.108	124	-1.459	.153	-371	.062	-,729	236	103
	SCP_6	194	,132	146	-1.471	150	462_	074	-,548	- 231	104
2	(Constant)	13.794	.666		20,708	.000	12,445	15.144			
	SCP_1	293	.153	-216	-1.918	.063	603	.017	-,763	- 301	.134
	SCP_2	-466	.137	386	-3.390	.002	-,744	187	823	487	238
	SCP_4	280	.160	203	-1.752	.088	-,604	.044	-,781	- 277	123
	SCP_5	166	.107	130	-1.558	.128	-183	.050	-529	248	109
	SCP_6	223	,124_	167	-1.798	.080.	-474	028	648	283	126
3	(Constant)	13.456	.641		20.977	.000	12.158	14.755			
	SCP_1	256	.154	-,189	-1.664	.104	-367	.055	-,763	- 261	119
	SCP_2	530	.133	440	-3.974	.000	-Jt00	250	023	542	284
	SCP_4	290	.163	209	-1.779	.083	619	.040	-,781	-277	127
	<u>\$CP_6</u>	282	,120_	-211	-2.345	.024	-,525	039	-,648	· 356	167
4	(Constant)	13.375	.654		20.453	.000	12.053	14.698	i		
	SCP_2	607	.128	503	-4.735	.000	-,856	-347	823	604	-346
	SCP_4	384	.156	271	-2.45B	.019	699	068	781	- 366	179
	SCP_6			- 249	-2,800	008	573	092	648	109	201

Coefficients

		Collinearity	
Model		Tolerance	VIF
1	(Constant)		
	SCP_1	.359	2,782
	SCP_2	.327	3.057
	رَجي₃	.426	2,345
	SCP_4	.356	2,808
	SCP.	.692	1.446
	SCP_6	509	1.966
2	(Constant)		
	SCP_1	.386	2,590
	SCP 2	.378	2.646
	SCP_4	.368	2,720
	SCP_5	.701	1.426
	SCP_6	.569	1,758
3	(Constant)		
	SCP_1	.396	2.527
	SCP_2	416	2,405
	SCP_4	368	2,716
	SCP_6	.628	1,594
4	(Constant)		
	SCP_2	.471	2.121
	SCP_4	.419	2,389

5CP 6

a. Dependent Variable: TIME

Model		Tolerance	VIF
[T	(Cotstant)		
1	SCP_1	.442	2.263
ì	SCP_2	.414	2.417
1	SCP_3	.456	2.194
	SCP_4	.478	2.090
ì	SCP_5	.630	1,588
<u> </u>	SCP_6	.762	1,312
2	(Constant)		
1	SCP_!	.486	2.058
	SCP_2	.422	2.372
1	SCP_3	456	2.193
1	SCP_4	.483	2.072
	SCP_6	.788	1.269
3	(Constant)		
	SCP_1	.508	1.969
	SCP_2	.469	2.131
1	SCP_3	.475	2,105
-L.	SCP_6	.816	1.225
4	(Constant)		
1	SCP_1	.514	1.947
1	SCP_2	_545	1.835
L	_SCP_1	475	2.105

Dependent Variable: TIME

Regression

Descriptive Statistics

	Mean	Std. Deviation	
TIME	6.98750	1.227294	40
ISCPI I	5.13750	1.493522	40
SCP2	4.21250	1.381598	40
SCP3	4.68750	1,723471	40
SCP4	6.11250	1.389002	40
SCPS	4,97500	1,300641	40
SCP6	5,93750	1.378347	40_

Correlations

		TIME	SCP1	SCP2	SCP7	SCP4	SCPS	5026
earson Correlation	TIME	1.000	-313	418	-,711	-371	394	258
	SCP1	-313	1,000	457	.739	.669	.500 \	.549
	SCP2	418	.467	1.000] وند	.652	.453	.451
	SCP3	-,711	.739	.559	1,000	.618	.614	.407
	SCP4	-,371	469	.652	.618	1.000 [.722	.412
	SCP5	-394	500	.453	.614	.722	1.000	510
	SCP6	- 258	540	.451	402	412	.510	1.000
Sig. (1-tailed)	TIME		.000	.004	.000	.009	.006	.054
	SCP1	.000		.001	.000 }	.000)	.001	.000
	SCP2	.004	.001		.000	.000	.002 (.002
	SCP3	.000	.000	.000		.000	.000	.00:
	SCP4	.009	.000	.000	.000 \		.000 \	.00.
	SCP5	.006	.001	.002	.000	.000		.00
	SCP6	.054	.000		.005	.004	.000	
Ń	TIME	40 (40	40	40	40	40	4
	SCPI	40	40	40 (40	40	40	44
	SCP2	40	40	40	40	. 40	40 /	4
	SCP3	40	40	40	40 (40	40 \	4
	SCP4	40	40	40	40	40 [40	4
	SCP5	40	40	40	40 1	40	40	4
	CCT			40	40	40	46	4

	Regression	50.235	6	8,37)	11.103	,000
1	Residual	20,360	. 27	754	1	
1	Total	70,596	33	Į.	- (
2	Regression	49.848	5 1	9.970	13.454	.000
	Residual	20,748	28	.741		
1	Total	70,596	. 33 [1	
3	Regression	49.290	4	12.323	16.773	.000*
.]	Residual	21.305	29	.735		
L	Total	70,596	33		Í .	. (
4	Regression	48.753	3	16.251	22.320	.000
1	Residual	21.842	30 l	.728	- 1	
	Total	70.596	33			

- Total. 70,56 | 31 | 70,56 | 31 | 70,57

		Unstandardized Coefficients		Standardized Coefficients			95% Confidenc	Interval for B		Correlations	
Model .		B	Std. Error	Beta		_Sig.	Lower Bound	Upper Bound	Zero-orden	Pagou	Pact
Γ	(Constant)	12.299	.897		13.711	.000	10.459	14.140			
	SCP_I	-350	.169	323	-2.079	.047	696	005	692	-372	- 215
	SCP_2	421	.187	-363	-2.258	.032	804	039	724	- 399	- 233
	SCP_3	420	.170	379	-2.473	.020	769	072	-,742	430	256
	SCP_4	.117	.149	.118	.790	.436	188	.422	532 (.021.	.082
	SCP_5	.119	.166	.093	.717	.480	222	.46)	-,409	.137	.074
	SCP_6	- 155	.140		-1.103	.280	443	133	345	-,208	-114
2	(Constant)	12,542	.824		15.225	.000	10.854	14.229	[— · ·]		
	SCP_1	-314	.159	290	-1.971	.059	640	. 012	692	349	202
	SCP_2	403	.183	-347	-2.200	.036	778	028	-,724	-384	225
	SCP_3	422	-168	381	.2.510	.018	767	078	742	429	257
	SCP_4	.127	.147	.128	.867	.393	173	.428	-532	.162	.089
	SCP_6	-137	.137	-115	-,998	327	-117		-346		100
3	(Constant)	12.658	.809		15.640	.000	11.002	14.313			
	SCP_I	285	.155	263	-1.839	.076	603	.032	692	-323	188
	SCP_2	-352	.173	-303	-2.038	.051	706	.001	724	- 354	208
	SCP_3	-,393	.164	-354	-2.394	.023	729	057	742	-,406	244
	SCP_6	-5114	.134	097	855	400	-,388	.159	346	157	-,087
4-	(Constant)	12.227	.631		19.377	.000	10.939	13.516			
	SCP_I	-271	.154	250	-1.766	.088	585	.042	692	307	.179
	SCP_2	-401	.160	-351	-2.551	.016	733	081	-,724	-,422	259
	SCP_3	-394	163	-355	-2.409	.022	728	060	-742	403	- 245

Coefficients*

Model:		Support Squares 1	et	Mean Square	F	Str.
T .	Regression	30.644	6	5.107	5.998	.000*
	Rezident	28.100	33	.852		
	Total .	58,744	39		- 1	
2 -	Regression	30.597	3	6.119	7,392	4000
	Residual	28.146	34	.828	14.5	
	Total	58,744	. 39	· · · · ·		1
3	Regression	30.502	4	7.626	9,451	.000*
	Residual	28,241	35	.807		
	Total	58.744				
4	Regression	30.457	3	10,152	12,920	.000
	Residual	28.287	36	.786		
	Total	58,744	39			
5	Regression	30.135	2	15.067	19,487	.000*
	Residual	28,509	37	.773		,,,,,
	Total:	58.744	39			
6	Recression	29,700		29.700	38.859	.0007
	Residual	29,044	Ji Ji	.764		~~~
	Total	58.744			_	- 1

- a. Productors: (Constant). SCP6, SCP3, SCP2, SCP3, SCP1, SCP4
- b. Prodictors: (Constant), SCP6, SCP3, SCP2, SCP1, SCP4
- c. Predictors: (Constant), SCP6, SCP3, SCP2, SCP4
- d. Predictors: (Constant), SCP3, SCP2, SCP4
- e. Predictors: (Constant), SCP3, SCP4
- f. Predictors: (Constant), SCP3
- g. Dependent Variable: TIME

408

		Unstandardized Coefficients		Standardized Coefficients			95% Confidence	e Interval for B		Correlations	
Mode		В	Std, Error	_Beta		Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part
1	(Constant)	8.906	.787		11.311	.000	7.304	10.508			
	SCP1	-7.529E-02	.190	092	397	.694	-,46L	.310	l -513 (069	048
	SCP2	120	.161	135	745	,462	-446	.207	-418	129	- 090
	SCP3	498	.154	700	-3.227	.003	- 612	184	711	490	339
	SCP4	.191	.215	.216	.888	.381	- 247	.630	-371	.153	.107
	SCP5	-4.659E-02	.199	049	- 234	.816	452	.359	-394	041	028
	SCP6	6.226E-02	.151		413	.682	- 244	.369	-258	.072	050
2	(Constant)	8.907	,776		11.472	.000	7,329	10.485	i i		
	SCP1	5.865E-02	.173	071	- 339	737	-,411	.293	1 -513	058	040
	SCP2	-,108	.151	122	717	.478	416	.199	418	122	085
	SCP3	-314	.136	-,722	-3.792	.001	790	239	711	-545	- 450
	SCP4	.160	,166	.181	.964	342	177	.496	-371	.163	.114
	SCP6	4.624E-02	. 132	.052	,349	.729	223_	.315	-,258	.060	.041
3	(Constant)	8,922	.765		11.658	,000	7,368	10.475			
	SCP2	9.759B-02	.146	110	- 669	,508	.394	.199	-418	112	078
	SCP3	-540	in.	758	4.859	.000	766	-314"	f -711	635	570
	SCP4	.137	.150	.155	.915	366	167	.442	-371	.153	.107
	SCP6	2.859E-02	.120	.032	.238	.813	-215_	.272	258	.040	.023
4	(Constant)	9.018	.641		14.066	.000	7,718	10.318			
	SCP2	-8.984E-02	.140	101	540	<i>_</i> 526	.375	.195	418	106	074
	SCP3	536	.109	753	-4.942	.000	+.756	-316	-711	636	-572
	SCP4	.141	147	160	958	345	158_	_440	-371	158	.111
3	(Constant)	8.996	.635		14.165	.000	7,709	10.282	T -		
	SCP3	554	.104	779	-5.338	.000	-,765	-344	711	660	612
	SCP4	9.667E-02	,129	.109_	.750	458	164	.358	-371	.122	.086
6	(Сопазали)	9.361	.405		23.110	.000	8,541	10.181			
	SCP3	506	.081	-,711	-6.234	.000	671.	342	l,711		711

Model	Variables Entered	Variables Removed	Method
	SCPL SCPL SCPL SCPL SCPL SCPL		Enter
2		SCP5	Backward (criterion: Probability of F-to-remove
3		\$CP1	># .100). Backward (criterion: Probability of P-to-remove ># .100).
1		SCP6	Backward (criterion: Probability of P-to-remove >= .100).
5		SCP1	Backward (criterion: Probability of F-tn-remove >= .100).
6		SCP4	Backward (criterion: Probability of P-to-remove >a 1000

- All requested variables entered.
- b. Dependent Veriable: TIMB

					Change Statistics				
Model_	R	R Square	Adjusted R Square	Std. Brow of the Estimate	R Square Change	F Change	d(1	df2	Sia F Change
1	.722	.522	.435	.922772	522	5.998	- 61	33	.000
2	.7221	.521	.450	.909854	ا 100			35	.816
3	.7214	.519	.464	.898273	002	.115	1	36	.737
4	.7204	.518	.478	.886426	001	.057	i	37	.613
5	716	513	,487	.879324	005	.409	1 1	38	.526
6		_506	.493	.B74248	007			39	.459

- A. Predictors: (Constant), SCP6, SCP3, SCP2, SCP5, SCP1, SCP4
- b. Predictory: (Christani), SCP6, SCP3, SCP2, SCP1, SCP4
- c. Predictors: (Constant), SCP6, SCP3, SCP2, SCP4
- d. Predictors: (Constant), SCP3, SCP2, SCP4
- e. Predictora: (Constant), SCP3, SCP4
- f. Predictors: (Constant), SCP3
- 8. Dependent Variable: TIME

SPSS regression		ance analysis

- 409 - .

İ						Change Statistics				
	Mode)	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	ďΩ	df2	Sig
I	(1 ····	306	.256	.215	1.1523	.256	6.260	6	109	_
	2	.506b	256	.222	1.1471	.000	.017	1	111	
	3	.505°	.255	.228	1.1426	001	.128		112	Į.
Ų	14 1	.5014	251	231	1 1400	200	672	1	113	ı

- a. Predictors: (Constant), SCP_6, SCP_3, SCP_5, SCP_4, SCP_2, SCP_1
- b. Predictors: (Constant), SCP_6, SCP_3, SCP_5, SCP_4, SCP_2
- c. Predictors: (Constant), SCP_6, SCP_3, SCP_5, SCP_4
- d. Predictors: (Constant), SCP_6, SCP_3, SCP_4
- c. Predictors: (Constant), SCP_3, SCP_4 f. Dependent Variable: COST

ANOVA!

Model		Sum of Squares_	d(Mean Square	ř.	Sig.
	Regression	49.869	- 6	8.311	6.260	.000
	Residual	144.721	109	1.328		
	Total	194,589	. [15	l I		
2	Regression	49.846	5	9,969	7.576	.000
	Residual	144.743	110	1.316	1	
	Total	194,589	_ 115			
3	Regression	49,679	4	12,420	9.513	.000
	Residual	144,911	111	1.306	ì	
	Total	194.589	115			
4	Regression	48.802	3	16.267	12.497	.000
	Residual	145.787	112	1,302	1	
	Total	194,589	115]		
3	Regression	47.935	2	23,968	18.468	.000*
	Residual	146.654	113	1.298	· · · · I	
	Total	194,5B9	. 115	,)	

- Predictors: (Constant), SCP_6, SCP_3, SCP_5, SCP_4, SCP_2, SCP_1
- b. Predictors: (Constant), SCP_6, SCP_3, SCP_5, SCP_4, SCP_2
- c. Predictors: (Constant), SCP_6, SCP_3, SCP_5, SCP_4
- d. Predictors: (Constant), SCP_6, SCP_3, SCP_4 c. Predictors: (Constant), SCP_3, SCP_4
- f. Dependent Variable/COST

Coefficients

_		Unstandardize	d Coefficients	Standardized Coefficients	- 1		95% Confidence	e Interval for B		Contellations	
Model		В	Std, Error	Beta	. i.]	Sig.	Lower Bound	Upper Bound	2cro-order	Partia	Part
1	(Constant)	9.552	.552		17.312	.000	8.458	10.645			
	SCP_1	1.503E-02	,116	.016	.129	.897	215	.246	373	.012	.011
	SCP_2	-3.976E-02	.110	044	-362	.718	257	.178	367	035	030
	SCP_3	308	,106	358	-2.915	.004	517	099	471	269	24]
	SCP_4	.162	.119	175	-1.371	.173	- 397	.072	398	130	-,113
	SCP_5	8.373E-02	.098	.087	.854	.395	111	.278	223	.081	.071
	SCP_6	-8.670E-02	.093	-,092	.911	,354	-,271	.098	-,294	089	_,077
2	(Constant)	9,555	.549		17.408	.000	8.467	10.642			_
	SCP_2	-3.896E-02	.109	043	-357	.722	255	.177	-367	034	.025
	SCP_3	302	.096	352	-3.155	.002	492	112	471	- 288	- 259
	SCP_4	157	.110	169	-1.424	.157	375	.061	-398	135	117
	SCP_5	8.306E-02	.098	.086	852	.396	110	.276	-,223	.081	.070
	SCP_6	-8.461E-02	.091	090	<u>9</u> 26	356	- 266	096_	294	088	- 076
3	(Constant)	9.568	.545		17.546	.000	8.488	10.649			
	SCP_3	-313	.090	-365	-3.480	100.	-492	135	471	-314	-28
	SCP_4	173	.100	186	-1.722	.088	372	.026	398	161	142
	SCP_5	7.907E-02	.096	.082	.819	.414	112	.270	223	.078	.067
	5CP_6	-8.749E-02	.091	093	965	.336	- 267	.092	294	091	-079
	(Constant)	9.680	527		18.365	.000	8.636	10.725			
	SCP_3	297	880.	346	-3.387	.001	470	123	471	305	271
	SCP_4	152	.097	164	-1.568	.120	.344	.040	398	-,147	- 128
_	SCP_6	-7-225E-02	.089	077	5816	416	248	103	294	-,077	063
<u> </u>	(Constant)	9.490	A72		20.109	.000	8.555	10.425			
	SCP_3	-311	.086	363	-3.636	.000	481	+.142	471	324	-,297
	C/TE 4	120	000	190	1 200	040	250	000	200	176	155

Regression

Descriptive Statistics

	Mean	Std. Deviation	N
COST	6.947	1.3008	116
5CP_1	4.927	1.4253	116
SCP_2	4,392	1.4277	116
SCP_3	4.819	1.5157	116
SCP_4	5.935	1.4027	116
SC2-2	5,060	1,3500	116
SCP 6	5,543	1.3809	116

Correlations

		COST	SCPLI	SCP 2	SCE 3	SCP 4	_SCP_5[SC2.6
Pearson Correlation	COST	1.000	373	- 367	471	198	.223	294
	SCP_1	- 373	1.000	.570	.671	.662	.407	.468
	SCP_2	367	.570	1.000	613	659	473	423
	SCP_3	471	:671	.613	1.000	.574	.474	.412
	SCP_4	-398	.662	.659	.574	1.000	.499	.451
	SCP_5	223	.407	.473	474	499	1,000	.420
	.SCP_6	- 294	.468	.423	412	458	.420	1.000
Sig (1-railed)	COST		.000	.000	000	.000	.008	.00
-	SCP_1	.000		.000	.000	.000	.000	.000
	SCP_2	.000	.000	. l	.000 l	.000 \	.000	.00
	SCP_3	.000	.000 أ	.000		.000	.000	.000
	SCP_4	.000	.000	.000	.000		.000	.000
	SCP_S	.008	.000	.000	.000	.000		.000
	SCP_6	.005	.000	.000	.000	.000	.000	
7	COST	116 (116	116	116	116	116 }	110
	SCP_1	116	116	116	116	116	116	110
	SCP_2	116	116	116	116	116	116	110
	SCP_3	116	116	116	116	116	116	110
	SCP_4	116	116	116	116	116	116	110
	SCP_5	116	116	116	116	116	116	11
	SCP_6	116		116	116	116		

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	SCP_6, SCP_3, SCP_5, SCP_4, SCP_1, SCP_1		Enter
2		SCP_1	Backward (criterion: Probability of F-to-remove >= ,100).
3		SCP_2	Backward (criterion: Probability of F-to-remove >= .100).
4		SCP_5	Backward (criterion: Probability of F-to-temove >= .100).
5		SCP_6	Backward (criterion: Probability of F-to-remove >= .100).

- a. All requested variables entered.
- b. Dependent Variable: COST

mafysis
Ē,
Ş
ÿ
3

٨.	ΑU	requested	variables	entered.

b. Dependent Variable: COST

Model Summary

					Chance Statistics				
Model	R	R Square	Adjusted R Square	Sul. Error of the Estimate	R Square Change	F Change	्या.	df2	Sig. F Change
$\overline{}$.621*	386	.283	1.2847	.386	3.764	6 .	36	.005
2	.621	.385	.302	1.2674	.000	.011	. 1 \	38	.919
)	.6175)	.381	.316	L.2547	004	.246	1 1	39	.623
4 i	.613 ⁴	.375	.327	1.2445	-006	.369	1 #	40	.547
5	,606°	.368	.336	1.2363	003	.472	1	41	.496
[6 1	570/ 1		319	1,2524	033	2.073	1	42	.158

8. Predictors: (Constant), SCP_6, SCP_5, SCP_2, SCP_3, SCP_1, SCP_4

Removed Method

SCP_5

. SCP_6

SCP_1

. SCP_2

SCP_3

Enter

Backward (criterion: Probability

F-to-remove >= .100), Backward (criterion: Probability

F-to-remove >= .100). Backward

F-to-remove ># .100). Backward

F-to-remove >= .100). Backward

- b. Predictors: (Constant), SCP_5, SCP_2, SCP_3, SCP_1, SCP_4
- Predictors: (Constant), SCP_2, SCP_3, SCP_1, SCP_4
 Predictors: (Constant), SCP_2, SCP_3, SCP_4
- c. Predictors: (Constant), SCP_3, SCP_4
 f. Predictors: (Constant), SCP_4
- 8. Dependent Variable: COST

pinci	Olcrance	VJF .
(Constant)		
SCP_1	420	2,380
SCP_2	470	2.127
SCP_3	.451	2.215
SCP_4	418	2,394
SCP_5	.658	1.519
SCZ_6	.698	1.434
(Constant)		
SCP_2	472	2.120
SCP_1	.544	1.840
SCP_4	479	2.090
SCP_5	.660	1.515
SCP_6	.719	1.390
(Constant)		
SCP_3	.610	1.640
SCP_4	572	1.748
SCP_5	.669	1.495
SCP_6		1.379
(Constant)		
SCP_3	.642	1.557
SCP_4	.611	1.635
SCP_6	.757	1.321
(Constant)		
SCP_3	.670	1.492
SCP_4	670	. 1.492
Dependent Variable: 0	COST	

Regression

Descriptive Statistics

	Mean	Std, Deviation	N
COST	6.744	1.5173	43
SCP_I (4.849	1,4123	43
SCP_2	4.419	1.5884	43
SCP_3	5.035	1,4573	43
SCP_4	5.884	1.3837	43
SCP_5	4.872	1,5004	43
SCP 6	_ 5.302	1.4357	. 43

Correlations

		COST	SCP I	SCP_2	SCP 3	SCI_4	SCP.1	SCP 6
Pearson Correlation	0081	1.000	507	- 426	.454	-579	+.247	-,357
İ	SCP_1	507	1.000	692	.633	.716	302	.566
	SCP_2	426	.692	1.000	.662	.721	.465	.481
!	SCP_3	454	.633	.662	1.000	.516	.429	.592
ì	SCP_4	-,579	,716	.721	.516	1.000	388	[
	\$CP_5	247	.302	.465	,429	.388	1.000	.447
L	SCP_6	357	.566	481	,592			1,000
Sig. (1-tailed)	COST	[<u>-</u> -	.000	.002	.001	.000	.055	.009
ĺ	SCP_1	.000		.000	.000	.000	.024	.000
	SCP_2	.002	,000		.000	.000	.001	.001
	SCP_3	.001	.000	.000	i .	.000	ا 2002	,000
i	SCP_4	.000	.000	.000	.000	Ι .	.003	ا مصد
	SCP_5	.055	.024	.001	.002	.005	l	.001
	SCP_6	.009	.000	.001	.000	.000	.001	
И	COST	43	43	43	43	43	43	. 43
	SCP_1	[13	43	43	43	43	43	43
	SCP_2	43	43	43	43 .	43	43	43
	SCPJ	43	43	43	43	43	43	43 4
	SCP_4	43	43	43	43	43	43	43
	SCP_5	43	43	43	43	43	43	43
	SCP 6	43	43	43	49	43	43	43

	i	Collinearit	y Statistica
Model		Tolerance	VIF
Τ-	(Constant)		
	SCP_I	.159	2.782
	SCP_2	,327	3.057
'	SCP_3	426	2.345
	SCP_4	356	2,608
	SCP S	692	1,446
	SCP_6	509	1.966
2	(Constant)		
!	SCP_1	.371	2,692
	SCP_2	346	2.886
	SCP_3	.432	2,314
	SCP 4	357	2.799
	SCP_6	542_	1.843
3	(Constant)		
	SCP_1	379	2.640
•	SCP_2	.352	2.842
1	SCP_3	.500	2.000
	SCP_4	387	2.582
4	(Constant)		
l	SCP_2	.365	2.740
	SCP_3	.559	1.790
	SCP_4	.477	2.096
5	(Constant)		
	SCP_3	.734	1.362
	SCP_4	.734	_1.362
6	(Constant)		
	SCP 4	1,000_	1.000

a Dependent Variable: COST

Coefficient Correlations

Model		SCP_6	SCP_5	SCP_2	SCP 1	SCP_1	SCP 4
Conelations	SCP_6	7.000	250	.176	325	177	255
	SCP_5	250	1.000 \	236	115	180	057
1	SCP_2	.176	236	1.000	367	237	428
F	SCP_3	.325	115	367	1,000	- 263	.178
1 1	SCP_1	177	.180	237	- 263	1,000	378
	SCP_4		057	428	178	378	1.000
4-3							

Regression

Descriptive Statistics

2

	Mean	Std. Deviation	N
COST	7,335	.8762	34
SCP_1	4,779	L3495	34
SCP_2	4.603	1.2600	34
SCP_3	4.662	1.3184 (34
SCP_4	5.838	1.4705	34
SCP_5	5.412	1.1446	34
SCD 6	5422	1 7138	14

Correlations

		COST	SCT_1	SCP_2	SCP 3	SCP 4	SCP 5	SCP_6
earson Cornelation	COST	1.000	.007	368	208	-,146	101	218
	SCP_1	.007	1.000	.593 \	.659	.569	_531	.161
	SCP_2	368	.593	1.000	.633	.655	.506	41.
	SCP_3	208	.659	.633	1,000	.592	.421	.221
	SCP_4	146	369	.655	592	1.000	,468	.368
	SCP_\$.101	.531	.506	.421	.468	1,000	.32
	SCP_6	218	.161	.415	.228	368	.327	1.000
Sig. (1-tailed)	COST		.485	.016	.118	.205	.285	.10
	SCPI	485		.000	.000 1	.000	.001	.18
	SCP_2	.016	.000	1	.000	.000	.001	.00
	SCP_3	.118	.000	.000		.000	,007	.09
	SCP_4	.205	.000	.000	.000	. 1	.003	.01
	SCP_5	.285	.001	.001	.007	.003		.03
	SCP_6	.107	.182	.007	.097	016	.030	
1	7200	34	34	34	34	34	34	
	SCP_1	34	34	34	34	34	34	3
	SCP_2	34	34	34 (34	34	34	3
	SCP_3	34	34 (. ja {	34	34	34	3
	SCP_4] 34]	34	34	34	34	34	3
	2012	1 1	- ជា	นีไ	ũ	34	34	3

ANOVA

Model		Sum of Squares	. ď	Mean Square	FI	Sig.
1	Regression	37.273	- 6	6.212	3.764	1,002
	Residual	59.414	36	1.650	}	
	Total	96.686	42_	l L	1	
2	Regression	37.255	- 3	7.451	4.639	.002 ^b
	Residual	59,431	37	1.606	- }	
	Total	96.686	42	1 1		
3 .	Regression	36.860	4	9.215	5.853	.001
	Residual	59.826	38	1.574	- 1	
	Total	96.686	42	l <u> </u>		
4	Regression	36.279	3	12.093	7.807	.000
	Residual	60,407	39	1.549	1	
	Total	96.686	42_	<u> </u>		
5	Regression	35,548	2	17.774	11.629	.000
	Residual	61.138	40	1.528 (l l	
	Total	96.686	42_	<u> </u>		
6	Regression	32.380	1	32.380	20.645	.000
	Residual	64.306	41	1.568		
	Total	96.686	. 42	1 L		

- Total 9-868.5 [47]

 3 Predictors: (Constant), SCP_6, SCP_3, SCP_2, SCP_3, SCP_4, SCP_4

 b. Predictors: (Constant), SCP_6, SCP_2, SCP_3, SCP_1, SCP_4

 c. Predictors: (Constant), SCP_2, SCP_3, SCP_1, SCP_4

 c. Predictors: (Constant), SCP_3, SCP_4

 c. Predictors: (Constant), SCP_3, SCP_4

- f. Predictors: (Constant), SCP_4 g. Dependent Variable; COST

1710	

-		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidence	a interval for B		Constitions	
Model_		B	Std. Error	Beta	1	Sie.	Lower Bound	Upper Bound	Zero-order	Partial	Part
1-	(Constant)	11.013	1.010		10,909	.000	8,966	13.060			
	SCP_1	155	.234	145	-,663	.511	630	.320	-507	110	087
	SCP_2	.179	.218	.188	.822	.417	-263	.622	425	.136	.107
	SCP_3	277	.208	266	-1.330	.192	699	.146	-,454	216	174
	SCP_4	-,569	.240	-519	-2,369	.023	-1.056	082	-579	367	- 310
	SCP_\$	-1.636E-02	.159	016	103	.919	339	.306	247	017	013
	SCP_6_	9.670E-02	194	.091	.499	.620	296	.489	-357	.083	
2	(Constant)	10.983	.953		11.523	.000	9.052	12.914			
	2CL_1	151	.227	- 140	-,664	.511	611	.309	507	109	086
	SCP_2	.174	209	.182	.832	.411	250	.598	-,426	.135	,107
	SCP_3	-279	.204	268	-1.369	.179	693	.134	454	220	-,176
	SCP_4	570	.235	520	-2.412	.021	-1.049	091	-579	-369	.312
	SCP_6	9.172E-02	185	.087	496	.623	283	.466	357_	.081	.312 .064
3	(Constant)	11.071	.927		11.940	.000	9.194	12.948			į
	SCP_1	135	.223	126	-,608	.547	-586	316	507	098	078
	SCP_2	161	.205	.169	784	.438	255	577	426	.126	.100
	SCP_3	-,242	.188	233	-1,289	.205	623	.138	-454	205	-164
	SCP_4	-,538	.225	-490	-2,391	.022	993	082	-579	-362	-305
4	(Constant)	11.054	.919		12,025	.000	9.194	12.913			
	SCP_2	.137	.200	.144	.687	.496	+.267	.542	426	.109	.08 2 - 200
	SCP_3	-279	176	268	-1.583	.121	636	.077	-,454	246	- 200
_	SCP_4	597	.201	544	-2.970	,005	1.003	,190	579_	429	-,376
5	(Constant)	10.882	.879		:2.382	.000	9.106	12.659			
	SCP_3	-,220	.153	-211	-1.440	.158	-,529	.089	454	- 222	-,181
	SCP_4	- 515	.161	470	-3.201	.003	840	- 190	579_	452	402
6	(Constant)	10.478	.844		12.420	.000	8.774	12181			
	SCP_4	635		579	4.544	.000	-917	353	-: -:579_	: 579	579

		1. Unstandardize	d Coefficients	Coefficients			95% Confidence	c interval for B	!	Correlations	
Model		В	Stat Error	Beta	. 1	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part
ī —	(Constant)	8.223	.876		9.382	.000	6.425	10.021			
	SCP_I	249	.165	.384	1.514	.142	089	_587	.007	.280	.255
	SCP_2	371	.182	534	-2,038	.051	-,745	.002	36B	-365	344
	SCP_3	-,118	.166	+.178	713	.482	-,459	.222	.208	136	120
	SCP_4	6.506E-02	.145	.109	,448	.658	- 233	363	-,146	.086	.076
	SCP_5	6.683E-03	.163	.009	.041	.968	-327	.340	(0)	.008	.007
	SCP_6	-4.316E-02	137	.061	- 315	.755	325	.238	218	060	053
2	(Constant)	8.237	.797		10.331	.000	6.603	9.870			
	\$CP_≀	.251	.154	.387	1,630	.114	065	.567	.007	.294	.270
	SCP_2	-,370	.177	533	-2.090	.046	734	+.007	368	-367	-346
	SCP_3	118	.163	-,178	727	.473	-,452	.215	208	136	120
	SCP_4	6.561E-02	.142	.110	462	.548	225	356	-,146	.087	.076
	SCP_6	-4.213E-02	132	059	319	.753	-313	.229	218	060	
3	(Constant)	8.091	.643		12.575	.000	6.775	9.407			
	SCP_I	.258	.150	398	1,718	.096	- 049	.566	.007	304	.280
	SCP_2	387	.167	556	-2314	.028	728	045	368	395	37定
	SCP_3	-,117	.160	176	728	.472	445	.211	208	:34	يورر.
	SCP_4	5.72 LE-02	137_	.096	417	.680	-,224	.338	146	.077	377 119 0687
4	(Constant)	8.181	.598		13.678	.000	6.959	9,402			
	SCP_1	270	.146	.416	1.854	.074	027	.567	.007	.321	.298
	SCP_2	359	.151	516	-2.373	.024	668	050	368	-597	-38 <u>je</u>
	\$C?_3	104	.155	156	.669	509	.420	.213	-208	-,121	-105
3	(Constant)	8.096	.579	l i	13.977	.000	6.915	9277	· '	i i	.2984 .384 <u>6</u> .107
	SCP_1	.226	.128	.347	1.757	.089	036	.487	.007	.301	.280
	SCP 2	.399	.138	. 174	-2 905	.007	- 680	119	- 368	463	463

413 -

Coefficients

		Collinearity 5	tatistics
Model.		Tolerance	VTF
1	(Constant)		
	SCP_L	442	2.263
	SCP_2	.414	2.417
	SCP_3	.456	2.194
	SCP_4	478	2.090
	SCP_5	.630	1.588
	SCP_6	762	1.332
7	(Constant)		
	SCP_1	.486	2.058
	SCP_2	422	2.372
	SCP_1	456	2,193
	SCP_4	.483	2.072
	SCP_6	.788	1.269
3	(Constant)		
	SCP_t	.496	2.017
	SCP_2	460	2.176
	SCP_3	457	2.191
	SCP_4	500	2.001
4	(Constant)		
	SCP_1	.514	1,947
	SCP_2	.545	1.835
	SCP_3	415	2.105
5	(Constant)		
	SCP_1	.648	1.542
	_SCP_2		1.542

a. Dependent Variable: COST

Model	Variables Entered	Variables Removed	Method
1-	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Enter
2		SCP_5	Backward (criterion: Probability of F-to-remove >= 100).
3) \$C₽_6	Backward (criterion: Probability of F-to-remove >= .1000.
4		SCP_4	Backward (enterion: Probability of F-to-remove >= ,100).
5		ຸໝາ	Backward (criterion: Probability of F-to-remove >= 100).

- a. All requested variables entered.
- b. Dependent Variable: COST

Model Summery

					Charge Salimics					
Model	<u> </u>	R Square	Adjusted R Settare	Std. Error of the Estimate	R Square Change	f Change	₫ 11_	dΩ	Sig. P Change	
$\overline{}$	483	,233	.063	.8484	.233	1.367	61	21	.264	
12	.4830	.233	.096	.8332	.000	.002		29	.968	
3	.480°	.230	.124	.8201	003	.101	1	30	,753	
4	.4754	.226	.148	.8083	005	174	1]	31	.680	
5	463*	214	.163	.6015	-012	.447		32	.509	

- a. Predictors: (Consumt), SCP_6, SCP_1, SCP_5, SCP_4, SCP_3, SCP_2
- b. Predictors: (Constant), SCP_6, SCP_1, SCP_4, SCP_3, SCP_2
- c. Predictors: (Constant), SCP_1, SCP_4, SCP_3, SCP_2
- d. Predictors: (Constant), SCP_I, SCP_3, SCP_2
- e. Predictors: (Constant), SCP_1, SCP_2
- f. Dependent Variable: COST

ANOVA!

Model .		Sum of Squares	d[Mezn Square	. F	Sig.					
	Regression	5.903	6	.984	1.367	264					
	Residus	19.435	27	.720	\$						
	Total	25.338		ll.							
2	Regression	5.901		1.180	1.700	.167					
	Residual	19.436	28	.694							
	Total	25.338	33	1 1	ľ						
3	Regression	5.831	4	1.458	2.16?	.098					
	Residual	19.507	29	.673							
	Total	25,338	33		i						
4	Regression	5.714	3	1,905	2.912	.051					
	Residual	19,623	30	.654							
	Total	25.338	33	-	ŀ						
3	Regression	5.422	2	2.711	4.220	.024					
	Residual	19.915	31	.642	- 1						
	Total	25 220	22								

- a. Predictors: (Constant), SCP_6, SCP_1, SCP_3, SCP_4, SCP_3, SCP_2
 b. Predictors: (Constant), SCP_6, SCP_1, SCP_4, SCP_3, SCP_2
- c. Predictors: (Constant), SCP_1, SCP_4, SCP_3, SCP_2
- d. Predictors: (Constant), SCP_1, SCP_3, SCP_2
- e. Predictors: (Constant), SCP_1, SCP_2 f. Dependent Variable: COST

					Change Statistics					
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	₫(1	¢(2	Sig. F Change	
7	.630*	.397	.288	1.102023	397	3.625	6	33	.007	
2	.630	.397	309	1.085696	000	.000	1	35	.994	
3	.630*	.397	.328	1.070167	ا ممصا	.006	1	36	.939	
4	.6294	.395	.345	1.056900	002	.113	1	37	.739	
5	.628*	394	.361	1.043458	001	.065	1	38	.800	
6	.6231		.373	1.034247	005	. 332	_1.	39	.568.	

- Predictors: (Constant), SCP6, SCP3, SCP2, SCP5, SCP1, SCP4
- b. Predictors: (Constant), SCP6, SCP3, SCP2, SCP1, SCP4
- c. Predictors: (Constant), SCP6, SCP3, SCP1, SCP4
- d. Predictors: (Constant), SCP3, SCP1, SCP4
- Predictors: (Constant), SCP3, SCP4
 Predictors: (Constant), SCP3
- g. Dependent Variable: COST

- 414

ANOVA

Model		Sum of Squares	_ df	Mean Square	ř	5ig
	Regression	26.417	- 6	4.403	3.625	.007
	Residual	40,077	33	1.214		
	Total	56.494	39	1		
2	Regression	26.417	5	5.283	4.482	.003
	Residual	40.077	34	1.179	1	
	Total	66.494	19	l <u>.</u>		
3	Regression	26.410	4	6.602	5.765	.001
	Resulta)	40.084	35	1,145		
	Total	66.494	39	l	ľ	
4	Regression	26.280	3	8.760	7.842	.000
	Residual	40.213	36	1.117	,	
	Total	66.494	39	\ \ \	1	
3	Regression	26.208	2	13.104	12.035	.000
	Residual	40.286	37	1.089	}	
	Total	66.494	39			
6	Кертеннов	25.846	1	25.846	24.163	.000
	Residual	40.547	38	1.070	1	
	Total	66,494	39	_	ī	

- 4. Predictors: (Constant), SCP5, SCP3, SCP2, SCP5, SCP1, SCP4
- b. Predictors: (Constant), SCP6, SCP3, SCP2, SCP1, SCP4
- c. Predictors: (Constant), SCP6, SCP3, SCP1, SCP4
- 6 Predictors: (Constant), SCP3, SCP1, SCP4
- t. Predictors: (Constant), SCP3, SCP4
- Predictors: (Constant), SCP3
- 8. Dependent Variable: COST

R_ession

Descriptive Statistics

	Mean	Std. Deviation	N .
COST	6.86250	1.305744	40
SCP1	5.13750	1.493522	40
SCP2	4.21250	1.381598	40
SCP3	4.68750	1,723471	40
SCP4	6.11250	1.389002	40
SCP5	4.97500	1.300641	40
SCP6	5,93750	1.378347	_40

Correlations

		COST	SCPL	SCP2	SCP3	SCP4	5CP5	SCP6
Pearson Correlation	COST	1.000	421	-339 {	-621	~327	364	261
	SCPI	421	1.000 [.467	.739	.669	.500	.549
	SCP2	339	.467	1.000	.559	.652	.453	451
	SCP3	623	.739	-559	1.000	810.	.614	.402
	SCP4	327	.669	.652	618	1.000	.722	.412
	SCP5	364	.500	.453	.614	.722	1.000	.510
	SCP6	26]	.549	451	.402	.412	.510	1,000
Sig. (1-tailed)	COST		.003	.016	.000	.020	.010	.052
	SCPL	.003		.001	.000	.000	.001	.000
	SC72	.016	.001		.000	.000	.002	.002
	SCP3	.000	000	.000	- 1	.000	.000	005
	SCP4	.020	.000	.000	.000 }		.000	.00
	SCPS	.010	.001	.002	.000	.000		.000
	SCP6	.052	.000	.002	005	.004	.000	
N	COST	40	40	40	40	40	40	40
	SCP1	40	40	40	40	40	40	40
	SCP2	40	40	40 (افه	40	40	40
	SCP3	40	40	40	40	40	40	40
	SCP4	40	40	40	40	40	40	40
	SCPS	40	40	40	40	40	40	40
	\$CP6.	40	40	40 \	40	40	₩.	40

Variables Entered/Removed*

Model .	Variables Entered	Variables Removed	Method
1	SCP1, SCP1, SCP2, SCP5, SCP1, SCP4		Eater
2		SCPS	Backward (criterion: Probability of P-to-remove >= .100).
3		SCP2	Backward (criterion: Probability of F-as-remove >= 100).
	,	SCP6	Backward (criterion: Probability of F-to-remove >= .100).
	-	SCP1	Backward (crimmon: Probability of F-to-remove >= .100).
·		SCP4	Backward (criterion: Probability of F-to-remove

- a. All requested variables entered.
- b. Dependent Variable: COST

al)'sis
ą
Ş
င္ပ
æ
S

SPSS regression printouts for quality performance analysis

Regression

Descriptive Statistics

	Mexn	Std. Deviction	N
QUALITY	7,313	1.2678	115
SCP_1	4.913	1.4177	115
SCP_2	4.333	1.4163	115
SCP_3	4,787	1.4957	115
SCP_4	5,935	1.4088	115
SCP_5	5.039	1.3412	115
SCP_6	5,535	1.3776	115

Correlations

		QUALITY	. 50° [SCT.2 (SC 1	SCP 4 1	_ SC2_31	SC2 6
Pearson Correlation	QUALITY	1.000	-339	485	- 386	491	-353	-316
	SCP_1	.39	1.000	.558 (.660	.655	.399	.45
	SCP_2	-485	.558	2.000	_590 Ì	.657]	.464	.412
	SCP_3	586	.660	.590	2.000	.555	.461	.390
	SCP_4	-491	.655	.657 {	.555 \	1.000 \$.493	.454
	SCP_5	-353	.399	.464	461	.493	1.000	.411
	SCP_6	316	457			454 _	.411	_1.000
Sig. ([-tailed)	QUALLTY		.000	.000	.000	-000	.000	.00
	SCP_1	1000		.000	.000	.000	.000	.00
	SCP_2	.000	.000 (. !	ا 2000	.000	.000 \	.00
	SCP_3	.000	.000	.000		.000	.000	.00
	SCP 4	.000	.000	.000	.000	[.000	.00
	SCP_5	.000	.000	.000 أ	.000]	.000 (.000
	SCP_6	.000	.003	.000	.000	.000	.000	
N	QUALITY	115	115	115	115	115	115	. 11.
	SCP_1	115	115	115	115 Î	115	115	11:
	SCP_2	115	115	115	115	115	115	11,
	SCP_3	115)	115 1	115]	115 /	115 [115	11:
	SCP_4	115	115	115	115	115	115	11:
	SCP_5	115	115	115	113 1	115	115	11
	SCD 6	115	116	114	116	116	115	111

Variables Entered/Removed

Model	Variables Energed	Variables Removed	Method
1	\$CP_6, \$CP_1, \$CP_1, \$CP_1, \$CP_1, \$CP_1,		Enter
1		SCP_6	Backward (criterion: Probability of P-to-remove >= .100).
3		SCP_5	Backward (criterion: Probability of P-to-remove >= ,1000.
4	·	SCP_4	Backward (contrion: Probability of P-to-remove >= .100).
5		SCP_2	Backward (criterion: Probability of P-to-remove >== 100).

A. All requested variables entered.

Model Summery

[-							Change Statistic	·	
Model	R	R Square	Adjusted R Square	Std. Error of the Esturate	R Square Change	F Change	क्ष	d:7	Sig. F Change
	.636*	.405	372	1.0050	.405	[2233		BOL	.000
2	.636	.405	.377	1.0004	000 (.001	1	110	.978
3	.6364	.404	.382	.9963	.000	.087	1	111	.769
4	.6314	.399	.382	.9964	006	1.025	t	112	313
لــــــــــــــــــــــــــــــــــــــ	.620	384	373	1,0040	-,015	2.721	1	113	102

- 4. Predictors: (Constant), SCP_6, SCP_1, SCP_5, SCP_2, SCP_1, SCP_4
- b. Predictors: (Constant), SCP_3, SCP_5, SCP_2, SCP_1, SCP_4
- c. Predictors: (Constant), SCP_3, SCP_1, SCP_1, SCP_4
- d. Predictors: (Constant), SCP_3, SCP_2, SCP_1 e. Predictors: (Constant), SCP_3, SCP_1
- I. Dependent Variable: QUALITY

ANOVA

Model		Sam of Squares	ði.	Mean Square	F	Sig.
!	Regression	74.139		12.336	12.233	.000*
	Residual	109.092	LOS	1.010 \	- 1	
	Total	183,230		ll.		
2	Regression	74.138	5	14.828	14.815	.000
	Residual	109.092	109	1.001		
	Total	183,230				
	Regression	74.051	4	18,513	18.632	.000
	Residual	109.179	110	.993		
	Total	183,230		l		
4	Regression	73.034	3	24.345	24.522	.000
	Residual	110,197	111	.993	1	
	Total	183,230	114			
3	Regression	70.332	2	35.166	34.887	.000*
	Residual	112.898	112	1.008		
	Total	183,230	114	i		

- Productors: (Constant), SCP_6, SCP_3, SCP_5, SCP_2, SCP_1, SCP_4
- b. Predictions: (Constant), SCP_3, SCP_5, SCP_1, SCP_1, SCP_4
- c. Predictors: (Constant), SCP_3, SCP_2, SCP_1, SCP_4
- 4. Predictors: (Constant), SCP_3, SCP_2, SCP_1
- e. Predictors: (Constant), SCP_3, SCP_1

 I. Dependent Variable: QUALITY

6

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidence	e Interval for B	[Conclations	
Model		В	Std. Error	Beta		Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part
7	(Constant)	10.364	.485		21.792	.000	9.603	11.525			
	2CP_I	160	.101	179	-1.579	.117	-361	.041	539	150	117
1	SCP_2	-9.583E-02	.096	107	-1.000	.319	.286	.094	485	096	074
Ι.	SCP_3	- 283	.091	-334	3.093	.003	464	102	586	- 285	- 230
[SCP_4	9.360E-02	.103	104	-909	.366	298	.111	491	087	067
	SCP_3	-2.423E-02	.086	026	282	.779	195	.146	-353	027	021
Ĺ	5CP_6	-2.256E-03	180.	002	-025	.978	163		316_	003	002
Ž	(Constant)	10.559	.450		23.456	.000	9.667	T1.451			
	SCP_1	+.16L	.099	180	-1.616	.109	358	036	-539	- 153	- 119
ļ	SCP_2	-9.603E-02	095	-,107	-1.010	.315	284	.092	485	096	•.07≴⊳
	SCP_3	-,283	.091	-334	-3.108	.002	.463	102	-586	285	- 23 🚾
	SCP_4	-9.390E-02	.102	104	921	359	296	.108	491	088	- 06 6 - 02
	SCP_5	-2.471E-02	,084	026	-294	.769_	191	.142	353	028	
3	(Consum)	10.511	.418		25.147	.000	9.683	11.339	1		.11F
ŀ	SCP_t	160	.099	179	-1.617	.109	356	.036	539	- 152	_براز،
	SCP_1	-9.981E-02	.094	112	-1.064	.290	- 286	.085	485	- loi	07€
[SCP_3	- 288	.039	-340	-3.234	.002	-,464	·.111	586	- 295	23€
	SCP_4	.100	.099	-,112	-1.013	313_	.297		-,491	096	239 079 169
4	(Constant)	10.310	.368		28.022	.000	9.581	11.039	1		
1	SCP_1	199	.091	223	-2.181	.031	380	018	539	203	- 1614
i	SCP_2	-,140	.085	157	-1.549	.102	308	.028	~4R5 i	155	.120 <u>~</u> .243
ļ	SCP_3	294	.089	-346	3.304	.001	470	-,117	586	- 299	- 243**
5	(Constant)	10,151	.358		28.373	.000	9.442	10.860	l i	l [
	SCP_L	241	.088	270	-2.729	.007	416	066	-,539	250	.202
L	SCP_3	345	084	403	-1.127	.000_	-511	-100	5%	- 353	.306

b. Dependent Variable: QUALITY

Model	Entered	Removed	Method
1	SCP_6, SCP_3, SCP_3, SCP_1, SCP_4		Enter
2		SCP_1	Backward (criterion: Probability of F-to-remove
2		SCP_6	>= .100). Backward (criterion: Probability of F-to-remove
4		SCP_I	>= .100). Backward (criterion: Probability of F-to-temove >= .100).
3		SCP_5	Backward (criterion: Probability of F-to-remove >= 100).

^{4.} All requested variables entered.

Model Summary

					Change Statistics				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	FChange	đſ	df2	Sig. F Change
1	.6714	.450	.358	1.0493	.450	4.910	6	36	.001
2	.670⁴	.450	.375	1,0355	+.001	.033	1	38	.856
)	.669¢	.447	.389	1,0242	003 -	.173	ı	39	.680
4	.6584	.434	.390	1.0231	013	917	1	40	344
5	6494	421	392	1.0216	013	.884	1	. 41	.353

- a. Predjetors: (Constant), SCP_6, SCP_5, SCP_2, SCP_3, SCP_1, SCP_4
- b. Predictors: (Constant), SCP_6, SCP_5, SCP_2, SCP_1, SCP_4
- c. Predictors: (Constant), SCP_5, SCP_2, SCP_1, SCP_4
- d. Predictors: (Constant), SCP_5, SCP_2, SCP_4
- c. Predictors: (Constant), SCP_2, SCP_4 f. Dependent Variable: QUALITY

ANOVA!

Model		Sum of Squares	ď	Mean Square	F	Sig.
1	Regression	32.434	6	5.406	4910	.001
	Residual	39.636	36	1.101		
	Total	72,070	42	1		
2	Regression	32.397	- 5	6.479	6.043	.000%
	Residual	39,673	37	1.072		
	Total	72.070	42	}	1	
3	Regression	32,211	4	8.053	7,677	-000°
	Residual	39.858	38	1,049		
	Total	72,070	42			
4	Regression	31,249	3	10.416	9.952	.000d
	Residual	40.821	39	1.047		
	Total	72,070	42			
5	Regression	30.324	2	15.162	14.528	.000≥
	Residual	41,746	40	1,044		
	Total	72.070	42		1	

- a Predictors: (Constant), SCP_6, SCP_5, SCP_2, SCP_3, SCP_1, SCP_4
- b. Predictors: (Constant), SCP_6, SCP_5, SCP_2, SCP_1, SCP_4 c. Predictors: (Constant), SCP_5, SCP_2, SCP_1, SCP_4
- f. Dependent Variable: OUALITY

d.	Predictors:	(Constant),	SCP_5,	SCP_2.
¢.	Predictors:	(Constant).	SCP 2	SCP 4

	ì	
		y Statistics
odel	Tolerance	VIF.
(Constant)		
SCP_I	.428	2,334
SCP_2	481	2.077
SCP_3	474	2.111
SCP_4	.421	2.377
SCP_5	.666	1,501
SCP_6	.707	1.415
(Constant)		
SCP_I	442	2.254
SCP_2	.484	2.065
SCP_3	.474	2.111
SCP_4	.426	2,350
SCP_5	.693	1.443
(Constant)		
SCP_1	.442	2.263
SCP_2	.493	2.027
SCP_3	491	2.036
SCP_4	.446	2,240
(Constant)		
SCP_I	.520	1.923
SCP_2	.602	1.662
SCP_3	<u>.49</u> 3	2.028
(Constant)		
SCP_1	.564	1.773
SCP_3	.564	1.773

a. Dependent Variable: QUALITY

Regression

Descriptive Statistics

	Mean	Std. Deviation	_N
QUALITY	7.302	1,3099	43
SCP_I	4.849	1.4123	43
SCP_2	4,419	1.5884	43
SCP_3	5,035	1.4573	43
SCP_4	5,884	1.3837	43
SCP_5	4,872	1.5004	43
SCP_6	5,302	1.4357	43

Correlations

		QUALITY	SCP 1	SCP 2	SCP_3	SCP_4	SCP_5	SCP_6
Pearson Correlation	QUALITY	1.000	-360	-612	-458	-591	401	-,452
	SCP_1	560	1,000	.692	.633	.716	.302	.566
	SCP_2	612	.692	1.000	.662	721	.465	.481
	SCP_3	458	.633	.662	1.000	516	.429	.592
	SCP_4	591	.716	.721	.516	1,000	388	.563
	SCP_5	-,401	.302	.465	.429	.388	1.000	,447
	SCP_6	452	566_	481	.592	.563	.447	1.000
Sig. (1-tailed)	QUALITY	T	.000	.000	.001	.000	.004	.001
	SCP_I	.000		.000	.000 أ	.000	.024	.000
	SCP_2	.000	.000		,000 l	, 000 L	.001	.001
	SCP_3	100.	.000	.000		.000	.002	.000
	SCP_4	.000	.000	.000	,000		.005	.000
	SCP_5	.004	.024	.001	,002	.005		.001
	SCP_6	.001	.000	.001	.000	.000	.001	
i 	QUALITY	43	43	43	43	43 1	43	43
	SCP_1	43	43	43	43	43 (43 {	43
	SCP_2	43	43	43	43	43	43	43
	SCP_3	43	43	43	43	43	43	43
	SCP_4	43	43	43	43	43 (43	43
	SCP_5	1 43 1	43		43	43		
	SCP 6	43	43	43 43	43	43	43	43 41

b. Dependent Variable: QUALITY

Descriptive Statistics

	Mean	Std. Deviation	N
QUALITY	7,333	1.1840	34
SCP_1	4,779	1.3495	34
SCP_2	4.603	1.2600	34
SCP_3 (4.662	1.3184	34
SCP_4	\$,838	1.4705	34
SCP_5	5,412	1.1446	34
SCP 6	5.412	1.2338	14

Correlations

		QUALITY	SCP 1	SCP_2	SCP 3	SCP_4	SCP_5	SCP_6
Pearson Correlation	QUALITY	1.000	590 \	609	-,722	- 593	-,424	372
	SCP_1	590	1.000	.593	.659	.569	.531	.161
	SCP_2	609	.593	1.000	.633	.655	.506	.415
	SCP_3	.722	.659	.633	1.000	.592	.421	.228
	SCP_4	-593	.569	.655	.592	1.000 l	.468	368
	SCP_5	424	ا 33	.506	,421	.468	1.000	.327
	SCP_6	372	161		.228	.368	.327	1.000
Sig. (1-tailed)	QUALITY	T	.000	.000	.000	.000	.006	.015
	SCP_I	.000		.000	,000	.000	.001	.182
	SCP_2	000 {	.000		.000	.000	.001	.007
	SCP_3	.000	.000	.000	,	.000	.007	.097
	SCP_4	1 000	.000	.000	.000		.003	.016
	SCP_5	.006 (.001	.001	.007	.003		.030
	SCP_6	.015	.182	.007	.097	.016	.030	.030
N	QUALITY	34	34	34	34	34	34	34
	SCP_1	34	34	34	34	34	34	34
	SCP_2	34	34 [34	34	34	34	34
	SCP_3	34	34	34	34	34	34	34
	SCP_4	l 34 (34 {	34 \	34	34	34	34
	SCP_5	34 [34	34	34	34	34	34
	SCP_6	34	34	. 34	34	34	34	34

- 418

Variables Entered/Removed

Mode)	Variables Entered	Variables Removed	Method
1	SCP_6, SCP_1, SCP_3, SCP_3, SCP_2, SCP_2,		Enter
2	SCP_2	SCP_5	Backward (criterion: Probability of F-to-remove >= .100).
3		SCP_2	Backward (criterion: Probability of F-to-remove >= .100)-
4		SCP_1	Backward (criterion: Probability of F-to-remove >= ,100).
5		SCP_4	Backward (criterion: Probability of P-to-remove

a. All requested variables entered.

b. Dependent Variable: QUALITY

Coefficients

		Unstandardire	d Coefficients	Standardized Coefficients			95% Confidence	e Interval for B	i	Correlations		ĺ
Model		В	Std. Error	Beta	ι 1	Six.	Lower Bound	Upper Bound	Zero-order	Partial	Pat	ı
1	(Constant)	10.902	.823		13.222	.000	9.230	12.575				ı
	SCP_1	-153	.191	165	798	.430	-540	.235	-,560]	132	099	1
	SCP_2	237	.178	287	-1.330	.192	598	,125	612	216	164	ı
	SCP_3	3.106E-02	.170	.035 (.183	.856	-314	376	458	.030)	.023	i
	SCP_4	182	.196	192	928	.360	-580	.216	591	153	115	ı
	SCP_5	107	.130	123	827	.413	370	.156	401	137	102	ı
	SCP_6	7.081E-02		078	- 448	.657	,392	.250	-,452	-,074	055	ĺ
	(Constant)	10.936	.793		13.784	.000	9.328	12,543				l
	SCP_1	-,143	.182	155	788	436	212-	.225	-560	128	096	1
	SCP_2	225	.164	273	-1.375	.177	-357	.107	612	221	168	ı
	SCP_4	188	.190	199	589	.329	-574	,198	591	-,160	-,121	1
	SCP_5	105	.127	120	823	.416	-362	.153	40	134	100	ı
	SCP_6	-6.142E-02		067_	-4\6		-360	,238	432	068	051	ì
	(Constant)	10.874	.771		14.106	.000	9.313	12,435				
	SCP_1	165	,173	178	958	.344	-514	.184	.560	154	115	
	SCP_2	221	.161	268	+1.366	.180	48ک،	.106	-,612	216	165	l
	SCP_4	205	.184	-217	-1.115	.272	578	.167	-591	-J78 {	134	ı
	SCP_5	-121	120	138	-1.009	320	-,363	. 122	-401	151	122)
)	(Constant)	10.736	.757		14.191	.000	9.206	12.267		1		1
	SCP_2	278	.150	337	-1.852	.072	581	.026	-612	284	- 223	١.
	SCP_4	282	.165	298	-1.707	.096	617	.052	-,591	264	206	l
	SCP_5	-312	.119	128	940	.353	353	.129	401	-149	113	1
5	(Constant)	10.449	.691	l i	15.118	.000	9.052	11.846		1		
	SCP_2	319	.143	-386	-2.223	.032	608	029	612	-332	267	ł
	<u>5CP_4</u>	296_	.164	312	-1.797	080	628	.037.	.591	-,273	216	i

Coefficients*

		Collinestity Statistics				
Model		Tolerance	VIF			
7	(Constant)					
	SCP_1	359	2,782			
	SCP_2	.327	3,057			
	SCP_3	.426	2,345			
	SCP_4	.356	2,808			
	SCT_5	.692	1,446			
_	SCP_6	.509	1.966			
2	(Constant)	1				
	SCP_1	.386	2.590			
	SCP_2	.378	2.645			
	SCP_4	.368	2.720			
	\$CP_5	.701	1.426			
	SCP_6	569	1.758			
3	(Constant)					
	SCP_1	.421	. 2.377			
	SCP_2	_350	2,635			
	SCP_4	_385	2.597			
	SCP_5	.773	1,293			
4	(Constant)	1 _				
	SCP_2	.439	2.276			
•	SCP_4	476	2.101			
5	SCP_5	.778	1.286			
,	(Constant)					
	SCP_2	.480	2.085			

a. Dependent Variable; QUALITY

t		L . Collinearity	Statistics
Model		Tolerance	VIF
T	(Constant)		
	SCP_1	.442	2,263
ĺ	SCP_2	.4 4ી	2.417
	SCP_3	.456	2.194
İ	SCP_4	.478	2.090
	SCP_5	.630	1.588
	SCP_6	.762	J.312
2	(Constant)	\	
	SCP_1	.486	2.058
	SCP_2	.422	2.372
	SCP_3	.456	2.193
ļ	SCP_4	.483 (2.072
	SCP_6	.788	1.269
3	(Constant)		
	SCP_1	513	1.951
	SCP_3	.494	2.023
	SCP_4	.537	1.862
	SCP_6	.859	1.164
4	(Constant)		
!	SCP_3	.549	1.540
	SCP_4	.592	1.689
Ļ	SCP_6	865	1.157
5	(Constant)		
	SCP_3	.948	1.055
	SCP 6	. 049	1 000

a. Dependent Variable: QUALITY

Regression

Descriptive Statistics

	Mean	Sid. Deviation	N
QUALITY	7.26250	1.295888	40
SCP1	5.13750	1.493522	40
SCP2	4.21250	1.381598	40
SCP3	4.68750	1.723471	40
SCP4	6.11250	1.389002	40
SCPS	4.97500	L.300641	40
SCP6	5,93750	1.378347 [40_

Correlations

		QUALTIY	SCPI	SCP2	SCP3	SCP4	SCPS	_\$CP6
Pearson Correlation	QUALITY	1,000	486	- 265	631	309	289	145
	SCPI	-,486	1.000	.467	.739	.669	.500	.549
	SCP2	.265	.467	1.000	.559	.652	.453	.451
	SCP3	-,631	.739	.559	1.000	.618	.514	.402
	SCP4	-,309	.669	.652	.618	1.000	.722	.412
	SCP5	289	.500	.453	.614	.722	1.000	510
	SCP6	-145	.549	.451	.402	412	510	1.000
Sig. (1-tailed)	QUALITY	1	.001	.049	.000	.026	.035	.186
	SCP1	.001		100.	.000	.000	.001	.000
	SCP2	.049	.001	. !	.000	.000	.002	.002
	SCP3	l .000 l	.000	.000	٠	.000	.000	.005
	SCP4	026	.000	.000	.000		.000	.004
	SCPS	.035	.001	.002	.000	.000		.000
	SC26	,186	.000	.002	.005	.004	.000	
N	YTLIAUQ	40	40	40	40	40	40	40
	SCP1	40	40	40	40	40	40 Ì	40
	SCP2	40	40	40	40	∣ 40 Ì	40 أ	40
	SCP3	40	40	40	40	40	40	40
	SCP4	40	40	40	40	40	40	40
	SCP5	40	40	40	40	40	40	40
	SCP6	40	int	40	. 👸	40	40	AD.

					Change Statistics						
Model	R	R Square	Adjusted R Square	Sid. Error of the Estimate	R Square Change	F Change	q.r.	df2	Sig. F Change		
11	.777*	.603	-515	,8244	,603	6.845	6	27	.000		
1 2	.7770	.603	.533	.8096	,000	.000	1	29	.993		
3	.775	.600	.545	.7984	-,003	.207	1	30	.653		
4	.7674	_589	.548	.7964	012	.851	1	31	.364		
15		.567	_539	.8042	022	1.608	1	32.	215		

- Predictors: (Constant), SCP_6, SCP_1, SCP_5, SCP_4, SCP_3, SCP_2 b. Predictors: (Constant), SCP_6, SCP_1, SCP_4, SCP_3, SCP_2
- c. Predictors: (Constant), SCP_6, SCP_1, SCP_4, SCP_3
- d. Predictors: (Constant), SCP_6, SCP_4, SCP_3
- c. Predictors: (Constant), SCP_6, SCP_3
- f. Dependent Variable: QUALITY

ANOVA^f

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	27,914	6	4.652	6.845	.000
	Residual	18,350	27	.680	í	
	Total	46.265	33	i i	1	
2	Regression	27.914	5	5.583	B.519	.000
	Residual	18,350	28	.655		
	Total	45.265	33	1 1		
3	Regression	27,779	4	6.945	10.895	.000
	Residual	18,486	29	.637		
•	Total	46,265	33	l í		
4	Regression	27.237	3	9.079	14.314	-000a
	Residual	19.028	30	634	- 1	
	Total	46,265	33	}	- 1	
5	Regression	26.217	2	13.109	20.270	.000
	Residual	20.048	31	.647	ĺ	
	Total	46.265	.33	"		

- a. Predictors: (Constant), SCP_6, SCP_1, SCP_5, SCP_4, SCP_3, SCP_2
- b. Predictors: (Constant), SCP_6, SCP_1, SCP_4, SCP_3, SCP_2
- c. Predictors: (Constant), SCP_6, SCP_1, SCP_4, SCP_3
 d. Predictors: (Constant), SCP_6, SCP_4, SCP_3
- c. Predictors: (Constant), SCP_6, SCP_3
- f. Dependent Variable: QUALITY

Coefficients*

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidence	e interval for B		Correlations	
Model		B.	Std. Error	Beta	ι	Sig.	Lawer Bound	Upper Bound	Zero-order	Partia	Patt
1	(Constant)	11,676	.852		13.710	.000	9.928	13.423			
	SCP_1	~.117	.160	133	729	.472	445	.212	590	- 139	088
	SCP_2	-7.808E-02	.177	083	441	.663	-,441	.285	-,609	085	053
	SCP_3	- 423	.161	471	-2.624	.014	754	092	- 722	-,45]	- 318
	SCP_4	-9.898E-02	.141	123	702	.489 `	388	.191	593	- 134	085
	SCP_5	-1.433E-03	.158	001	009	.993	-,326	.323	-,424	- 002	001
	SCP_6	157	.133	163	-1.175	.250	-430	.117	372	- 221	142
2	(Constant)	11.673	.775		15.068	.000	10.086	13.260			
	SCP_1	117	.150	133	782	.441	424	.190	- 590	- 146	093
	SCP_2	-7.830E-02	172	083	455	.653	431	.275	-,609	085	054
	SCP_3	· 423	158	471	-2.673	.012	-,747	099	722	-,451	318
	SCP_4	-9.910E-02	138	123	718	.479	382	.184	593	- 135	085
	SCP_6	157	.129	163	-1.219	.233	420	.107	372	-,224	145
3	(Constant)	883.11	.763		15.313	.000	10.127	13.249			
	SCP_1	133	.144	151	- 922	.364	427	.162	-,590	- 169	- 108
	SCP_3	443	.150	493	-2.956	.006	750	136	722	481	347
	SCP_4	-,119	.129	- 148	- 924	.363	383	.145	593	-,169	- 108
	SCP_6	174	.122	181	-1.429	164	422	.075	372	256	168
4	(Constant)	11.532	.742		15.533	.000	10.016	13.048			
	SCP_3	511	.131	569	-3.912	.000	777	244	722	581	458
	SCP_4	155	.123	193	-1.268	215	406	.095	593	- 226	148
	SCP_6	165	.121	172	<u>-1.3</u> 63	. 183	-411	.082	372	-,241	160
5	(Constant)	11.304	.727		15,542	.000	9.820	12.787			
	SCP_3	604	.109	672	-5.535	.000	826	381	722	-,705	654
	SCP_6	210	.117	219	±1.803		448	.028	-372	- 108	-213

Analysis for SP-Quality-Str

33 39

Sum of Squares 28,403

37.089

65.494

28.361

37.133

65,494

2B.335

37.159 65,494

27,478

38.016

65,494 27,005 38,489

65.494

26.083

39,411 65,494

a. Predictors: (Constant), SCP6, SCP3, SCP2, SCP5, SCP1, SCP4 b. Predictors: (Constant), SCP6, SCP3, SCP2, SCP1, SCP4 c. Predictors: (Constant), SCP6, SCP3, SCP1, SCP4 d. Predictors: (Constant), SCP6, SCP3, SCP1 e. Predictors: (Constant), SCP6, SCP3 f. Predictors: (Constant), SCP3 g. Dependent Variable: QUALITY

Residuel

Total

Regression

Residual

Regression

Residual

Residual

Residual Total

Regression

Residual

Total Regression

Total Regression

Total

Mean Square 4.734 1.124

5.672

1.092

7.084 1.062

9.159

1.056

13.502 1.040

26.083

1.037

5.194

6.672

8.674

12.980

و100

.000°

.000d

.000*

.000/

Analysis for SP-Quality-BS

1
4
Ç.
0

		Unstandardize	d Coefficienta	Standardized Coefficients		_	95% Confidenc	t Interval for B		Correlations	
Model		B	Std. Error	Beta		Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part
	(Constant)	8.652	.905		9.564	.000	6.811	10.492			
	SCPI	157	.218	181	- 72	476	600	.286	486	- 125	094
	SCP2	3.755E-02	.184	.040	.204	. ,840	.338	.413	265	.035	.021
	SCP3	505	.177	671	-2.847	,008	866	144	631 أ	- 444	-,37:
	SCP4	.104	.248	.113	.420	.677	400	.608	309	.073	.05
	SCP5	4.532E-02	.229	.045	.198	.844	420	.511	289	.034	.02
	SCP6	.129	.173	.137	744	462	.223	.481	145	.128	.091
	(Constant)	8.651	.892		9.701	.000	6.839	10.463			
	SCP!	173 (.199 1	200	871	.390	-578	.231	486	148	117
	SCP2	2.680E-02	.174	.029	154	878	326	.380	265	.026	.020
	SCP3	.489	.156	-650	-3.137	.004	806	172	631	-474	40
	SCP4	.135	.190	.144	.701	.484	252	.521	-,309	.120	.09
	SCP6	144	.152	.154	.950	349	164	.453	-,145	.161	.12
	(Constant)	8.639	.876		9.860	.000	6.861	10.418			
	SCP1	180	.192	207	- 938	.355	569	.209	486	157	115
	SCP3	482 (.147	641	-3.284	.002	780	184	631	485	-415
	SCP4	.149	.165	.159	.898	.375	187	.484	309	.150	iji.
	SCP6		. 44	161	1.051	.300	141	.443	-,145	.175	134
	(Consiste)	9.030	.759		11.900	,000	7.491	10.569	1		
	SCP1	120	.179	138	- 669	.500	484	.244	486	111	086
	SCP3	449	.142	598	-3.169	.003	737	162	631	-,467	402
	SCP6	.161	.143		1.126	.268	129	.451	- 145	.184	.14
_	(Constant)	B,947	.743		12.041	.000	7.442	10.453			
	SCP3	-514	.103	683	-4.964	.000	723	304	631	632	626
	SCP6		.129_			.353	-,140	.384	-,145	.153	
	(Constant)	9.487	,472		20.105	.000	8.532	10.442			
	5CD1	. 475 [005	621	£ 015	~~~		1 202	ا حما	en l	4.5

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	\$CP6, \$CP3, \$CP2, \$CP5, \$CP1, \$CP4		Enter
2		\$CP5	Backward (criterion: Probability of F-to-remove >= ,100).
3		SCP2	Backward (criterion: Probability of F-to-remove >= .100).
4		SCP4	Backward (criterion: Probability of F-to-remove >= 100).
		SCP1	Backward (criterion: Probability of F-to-remove >= .100).
6		SCP6	Backward (criterion: Probability of F-to-remove >= .100).

a. All requested variables entered,

Ma Summary

							Change Statistics		
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	αti	d(2	Sig. F Change
l j	.6594	.434	.331	1.060144	.434	4.212	6	33	.003
2	.6586	.433	.350	1.045059	001	.039	il	35	.844
3]	.658°	.433	,368	1.030381	.000	.024	i l	36	.878
4	.6484	.420	371	1.027619	013	.807	il	37	.375
5	.642*	.412	381	1.019925	007	.448	i i i	38	.508
6 .	.6312		382	1.018392	014	.886	i i l	39	

Predictors: (Constant), SCP6, SCP3, SCP2, SCP5, SCP1, SCP4

b. Dependent Variable: QUALITY

b. Predictors: (Constant), SCP6, SCP3, SCP2, SCP1, SCP4 c. Predictors: (Constant), SCP6, SCP3, SCP1, SCP4

d. Predictors: (Constant), SCP6, SCP3, SCP1

c. Predictors: (Constant); SCP6, SCP3

f. Predictors: (Constant), SCP3

g. Dependent Variable: QUALITY

Tolerance

Coefficient Correlations*

Model		SCP6	SCP3	SCP2	SCPS	SCP1	SCP4
l Correlations	SCP6	1,000	292	-,376	455	-496	,333
	SCP3 ·	,292	1.000	387	453	631	.237
1	SCP2	376	387	1.000	.294 (.299	536
	SCP5	455	- 453	294	1.000	.375	626
ì	SCPI	- 496	631	.299	375	1.000	523
ſ	SCP4	333	337	. 536	. 626	523	1.000

a. Dependent Variable: QUALITY

	Unsuadadia	d Coefficients	Standardized Coefficients			250 0. 51				
ode	B	Std. Error	Beta		Sie.	95% Conference			Correlations	
(Constant)	8.838	.940	279.	9.419	.000	Lower Bound	Urper Bound	Zero-order	Partiel	Pert
SCPI	6.662E-02	225		.294		6.945	10.771			
SCP2	-1.427E-02	.192	015		.770	-394	527	-,421	.051	.040
SCP3	-335	.184		074	.941	-,404	376	-339	013 أ	010
SCP4	8.359E-02		706	-2.900	.007	910	160	523	-451	- 392
SCPS	-1.685E-03	.257	.039	.325	.747	-,440	.607	-327	.056	.044
5CP6		.231	002	007	.994	485	.482	-364	001	001
(Constant)	-4.611E-02	.180	-:049	-,256		412	.320	-,261		035
SCP1	5.858	.926	l t	9.561	.000	6.975	10,741		- 3447	-,000
SCP2	6.7228-02	.207	.077	.325	,747	-353	.487	421	.056	
	-1.387E-02	.181	015	077	.939	381	353	-339	013	.043
SCP3	-535	.162	706	-3.306	.002	-,864	-,206	623	493	010
SCP4	8.245E-02	.198	.088	.417	.679	-319	.484	.327	.071	440
\$CP6	-4.669E-02	.158	049	296	.769	-,368	274			.056
(Constant)	8.864	.910		9,740	.000	7.016	10.711	- 261	051	039
SCP1	7.060E-02	.199	.081	355	.725	-334	475	ا	!	1
SCP3	-539	.152	711	-3.537	.001	848		421	.060	.047
SCP4	7.527E-02	.172	.080	.438	.664	273	230	·.623	-513	464
SCP6	5.014E-02 [,149	053	.336	.739		.424	-327	.074	.058
(Constant)	8.709	.775		11.234	.000	-353 7.137	,253	- 261	057	044
SCP1	4.678E-02	.184	.054	.255	300		10.281	!	1	
SCP3	-538	.150	-710	-3.573	.001	326	.419	421	.042	.033
SCP4	7.086E-02	.169		419.		843	- 232	-621	-512	463
(Constant)	1,744	.754		11.603	.678	-272	,424	- 327	070	,054.
SCP3	-516	.123	681	4.118	.000	7.217	10.270	1		
SCP4	8.6146-02	.153	.094	576	.000	766	256	- 623	-367	-536
(Constant)	9.077	479	- 47	18.941		- 222	398	-327	.094	
\$073	.477	096	622	10.5-1	.000	8.107	10,047			

Confficience

		Collinear	ty Statistica
Model		Tolerance	\VIF
3	(Constant)	-	
	SCP1	.273	3.670
	SCP2	.444	2.253
	SCP1	.309	3.241
	SCP4	.244	4.101
	SCP5	.325	3.073
	SCP6	.506	1.975
2	(Constant)		
	SCP1	.317	Ì 3.153
	SCP2	.486	2,059
	SCP3	.388	2,576
	SCP4	.401	2,496
	SCP6	.638	1,567
3	(Constant)		
	SCP1	.332	3.010
	SCP3	.425	2,349
	SCP4	.516	1.938
	_SCP6	.694	1,440
4	(Constant)		
	SCPI	.350	2.629
	SCP3	.426	2,347
	SCP4	,519	1.927
5	(Constant)		
	SCP3	.619	1.616
	SCP4	.619	1.616
6	(Constant)		

s. Dependent Veriable: COST

Coefficient Correlations

				-					
	34-4-1								
	Model			<u>SCP6</u>	SCP3	SCP2	9025	979	62.54
1	l i	Correlations	SCF6	1.000	.297	-376	455	.404	- 50.17
					-472				

- 422 -

remandant for or -Ce

APPENDIX N

Neural network analysis outputs for the site coordination problems analysis

Neural network outputs of the time performance analysis

Case	Actual (A)	Network output (N)	Difference (A-1
1"	. 6	7.072700977	-1.072700977
2	1 2	7.233970165	0.766029835
73	7	7.240585804	-0.2405B5804
4	7.5	7.236544609	0.263455391
5	7	7.130554199	0.130554199
6	6	7.115562916	-1.115562916
7	6	7.058255672	-1.058255672
8	7	7.139027596	-0.139027596
9	6	7.174534321	-1.174534321
I Ø	7	7.014541626	-0.0[454]626
11	7	7.288320065	-0.288320065
12	6.5	7.071115017	-0.571115017
13	7	7.144268513	-0.144268513
14	7	7.112388134	-0.112388134
15	8	7.273878574	0.726121426
16	6	6.871355057	-0.871355057
17	10	7.661239624	2.338760376
18	6	7.194402695	-1.194402695
19	1 3	6.455701351	-3.455701351
20	8	7.276910305	0.723089695
21	5	7.157739639	-2.157739639
22	8	7.091452599	0.908547401
23	10	7.818020821	2.181979179
24	5	6.915557861	-1.915557861
25	7	7.098211288	-0.098211288
26	 	7,14976263	-0.14976263
27	3	6.519958019	-3.519958019
28	8	7.567216873	0.432783127
29	1	6.206278324	-5.206278324
30	8	7.651328087	0.348671913
31	9	7.356362343	1.643637657
32	8	7.575911045	0.424088955
33	8 ′	7.428477287	0.571522713
34	2	6.451672077	-4.451672077
35	5	7.242360592	-2.242360592
36	5	7.025746822	-2.025746822
37	1 3	7.371185303	0.628814697
38	7	7.26303339	-0.26303339
39	5	7.17764473	-2.17764473
40	9	7.397877216	1.602122784
41	7	7.48410511	-0.48410511
42	9	7.600018978	1.399981022
43	7	7,551478386	-0.551478386

Ĺ

Page	1	nf	1

90	7.5	7.252[01898	0.247898102
91	6.5	6.941350937	-0.441350937
92	7.5	7.028026104	0.471973896
93	7	7.001637459	-0.001637459
94	7	7.12637043	-0.12637043
95	7.5	7.052735806	0.447264194
96	7	7.061534882	-0.061534882
97	7	7.183102131	-0.183102131
98		7.27268219	0.72731781
99	9	7.470292568	1.529707432
100	6	6.780644894	-0.780644894
101	5	6.712666512	-1.712666512
[02	5	6.839725971	-1.839725971
103	7	7.018606663	-0.018606663
104	7	8.013103485	-1.013103485
105	7	7.357983112	-0.357983112
106	8	7.115004539	0.884995461
107	7	7.064985752	-0.064985752
108	7	7.013719082	-0.013719082
109	9	7.527917385	1.472082615
110	5	6.572478771	-1.572478771
111	7.5	7.22556448	0.27443552
112	6	6.913999081	-0.913999081
113	5	7.608352184	-2.608352184
114	8	7.459674358	0.540325642
115	3	6.26011467	-3.26011467
116	10	7.492265701	2.507734299
117	8	7.201222897	0.798777103

(

Page 2 of 3

-0.212287903
-0.112936974
-0.314058245
-0.334058245
-0.351232674
-0.401697185
-0.894050599
-0.88556242
-0.207148319
-0.114201603
-0.20714301603
-0.207135384
-0.127051334
-0.127051334
-0.127051334
-0.127051334
-0.127051334
-0.127051334
-0.127051334
-0.127051334
-0.127051334
-0.127051334
-0.127051334
-0.127051334
-0.1270513354
-0.1270513354
-0.1270513354
-0.1270513354
-0.1270513354
-0.1270513354
-0.1270513354
-0.1270513354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.127051354
-0.00137054
-0.001370574
-0.001370574
-0.001370574
-0.001370574
-0.001370574
-0.001370574
-0.001370574
-0.001370574
-0.001370574
-0.001370575
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756
-0.0014705756

7.112287903 7.112296974 7.112916974 7.31905825 7.247677326 7.20182125 7.105949402 7.11447758 7.207418919 7.2675791397 7.267591397 7.267591394 7.26767979 7.267679 7.26

46 47 48

Ć

t

7.5 7 7.5 7.5 7.5 7 7 6.5 7.5 7.5 7.5 7.5 7.5

7.5

Neural network output of SF-Time-All-final

ase	ctual (A)	Network autput (N)	
I.	6	7.128321171	-1.128321171
2	8	7.257210255	0.742789745
3	7	7.22616148	-0.22616148
4	7.5	7.269859791	0.230140209
5	7	7.196075916	-0.196075916
6	6	7.1654706	-1.1654706
7	6	7.112397671	-1.112397671
8	7	7.152992249	-0.152992249
9	6	7.164985657	-1.164985657
10	_ 7	7,102010727	-0.102010727
11	. 7	7.247974396	-0.247974396
12	6.5	7.164985657	-0.664985657
13	7	7.155106068	-0.155106068
14	7	7.156953812	-0.156953812
15	8	7.149075985	0.850924015
16	6	7.066208839	-1.066208839
17	10	7,380714893	2.619285107
LB	6	7.191250801	-1.191250801
19	3	6.86605835	-3.86605835
20	8	7.217991352	0.782008648
21	5	7.164985657	-2.164985657
22	8	7.147093773	0.852906227
23	10	7.462761879	2.537238121
24	5	7.058854103	-2.058854103
25	7	7.040301323	-0.040301323
26	7	7.1654706	-0.1654706
27	3	6,896532059	-3.896532059
28	8	7.310495853	0.689504147
29	i -	6.740533829	-5.740533829
30	8	7,339710712	0.660289288
31	9	7.196075916	1.803924084
32	8	7.351047993	0.648952007
33	8	7.352070332	0.647929668
34	2	6.902330875	4.902330875
35	5	7.164985657	-2.164985657
36	5	7.13437748	-2.13437748
37			0.710746288
			-0.238154411
			-2.164985657
			1.747686386
			-0.373883247
37 38 39 40 41	8 7 5 9 7	7.289253712 7.238154411 7.164985657 7.252313614 7.373883247	-0.238 -2.164 1.7476

Page 3 of 3

Page I of 3

130 [32](

921729299	371273743.7	L	ΕÞ
228289181.D	8,818014145	6	7.7
656922912-1-	6569279163		16
17116661549	124865688.7	6	01
ETTASSETE.S-	ELLYSGELEL	5	6€
Z99878807.0	7,706878662	L	, 8£
E089956E O-	£089956£-8		LE
-1 408094406	90++6080+'9	5	9€
TPSSP0211.5-	7,115045547	5	SE
681198821 0	7.128861189	Z	34
1013809204	9,013809204	1	56
0.595082283	8,595082283	3	21
3227528Cf.0	\$2557674	6	16
51188626171-	9,132388115	8	Óξ
72E813TTQ.O-	1,977618337	1	57
816919085'0-	826969085'8	1	82
998988880	996965556.6	-	12
28688E56# D-	58688ES6# L	L	97
161145541,1-	16111255218		SZ
Q 460162537	£9£4£16£5**	5	ÞZ
880970997.0	8.233923912	01	- 12
0.862928391	6091404E1.1	8	77
9+917+2+8-0-	9491742485	5	17
1£1599090'0	6987616567	9	50
5582901150-	3.317062855	T -	61
\$1EEE+989'D-	515551989'9	9	81
70E1-90782.1	E69506Z1+'8	10	71
659TOBEE3.0-	659708556.6	9	91
696[80250 0-	696580250'8	8 .	51
846478320,0	6.944125652	T Z	71
9016161600	9616161667		
Z80725710.0	8162+975+9	5.9	7.1
100784829,0-	1004545247	T L	
271463667,0	825596992.9	1 -	01
0.944125652	6.944125652	9	- 6
687266807'0	115100165'9	1	
2629£697.0-	5779E694'9	1 - 5	L
-1.40388226	7.40388226	9	9
-0.004591465	591651007	1 1	5
65E11199 D	6.63288641	5.7	- ,
-0.40388226	977888E07'L	4	<u> </u>
TEZ9623TLD	7.824403763		Z
££8599+LL 0-	££8599117.6	9	Ť
Difference (A-N)	Network output (N)		Case

lead-nil-mil-file Justing Mowies	Jan 1937
----------------------------------	----------

PALLIFISEZ 97581944 6	00 60 80 20 90 90 90 90 90 90 90 90 90 9
SOLLY-955'0	86 26 96 98 98 88 26 16 00 67 82 27
BBYTHOROUD	2€ 9€ 9€ 9€ €€ 2€ 1€ 0€ 67 8Z 27
\$19815501 - \$19855509 5 \[\frac{1}{27950007} \cdot \	9E SE EE ZE IE OC 6Z BZ LZ
17949500ET - 17949500ET 5 101151691'E 7	9E SE EE ZE IE OC 6Z BZ LZ
10115C6911	PE 25 25 16 00 67 67 87 47
\$2£1066£.0	25 16 00 67 82 27
689665969 0 689665969 8 9 96124P40 1 908225356 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Z£ IE Of 67 82 LZ
961/L4P4/01 P08ZZSSZ6/1 6 ESTEROROT - CSTEROROT - 8 EOPRREAD - CSTEROROT - 1 L4PSCROSS 0 - L4PSCROSS 8 3 91/L15/03 0 - 91/L5/50/8" C Z918ZOR1 0 BERRIGHT - C T918ZOR1 0 P08ZZSZ6/1 L P98ZZSP1 0 T93RZCSP1 L P98ZPF/200 9 E11SZZP6/1 S	00 67 82 47
\$6 LLPPLOT \$0822556'L 6 \$61(30000') - \$082556'L 6 \$60788672' 1 \$0378'57' 7 1 \$L275005'0 - \$L275005'S 8 \$91(15030' - 91(45500') 6 \$791(15030' - 91(45500') 6 \$791(15030' - 91(45500') 6 \$7985769' - \$7985769' L \$7985769' - \$7985769' 5	00 67 82 47
609886291 - 60981927 2 1 £19500550 - £28950558 8 916115080 - 916150681 6 6 291820810 - 8688166189 2 \$198856910 - \$19856912 L \$28886910 9 611552967 5	01 62 82 27
21/5500550	EZ LZ
912615068-0- 912615018'E (EZ LZ
1985/61.0 1085/61.7 7 1985/61.0 1085/61.7 7 1985/61.0 1085/61.7 7 1985/61.0 7 1985/61.	LT
▶198526▶1.0-	
P88PPY20.0 3E11225PQ.b 2	
	SZ
POCUBOCALLO OCCUPANTO	34
F0E9806ZE'0 969E160Z9'6 01	57
102273081.1 EE442EE18.3	22
\$859999EE'1- \$859999EE'9 5	17
955612924.0 644587878	20
8789ETTD2.0- 4489ETTD2.E E	61
E37298478.0 E37298478.8	B1
689721980.1 116572619.8 01	<i>L</i> 1
999919151'0 955586898'5 9	91
94512092F0 9ZP846E45*4 9	51
8816EE192'0 Z180998EL'9 L	71
9E6+16021'0 +90580628'9 L	EI
5,5 6.21542358 0.278457642	71
TA2020547 -0.420206547	1[
1Ep315189.0 982E87810.3 7	01
9181966880 9181966889 9	6
1207242620 979272021	1
8207£20£0- 8207£20£3 o 306370258	ī
#E866895L'0- #E866895L'9 9	9
\$269E\$\(L2.0\) 9\(L0E9SZL'9\)	Š
698607842.0 1£1095129.3 2.7	7
\$0489£121.0- \$0489£121.7 T	Ē
959E500E9.0 P1097995.5	ĭ
E45717404.0- E45717404.3 3	
e Actual (A) Network output (A) Difference (A-N)	,

Lenth-smiT-42 le lucine Arewing latus.

E to E age?

	l	1	
2T854287T.0	BEILSEVEEL	8	111
L6L6106097	£020\$606E'L	, or	116
T929297.	168680E81.3	Ε	sii
C124103345	7.245836258	8	FI1
9116556622-	9116\$\$66ZL	S	£11
LLLZ\$Z\$\$[i-	LLLESZVVI	9	211
0.31428623Z	897E17281.7	51	111
1021919161-	10719+9+6'9	S	011
£600069£9°E	£0666059£°L	6	601
L12619151 O	LIZ619HST'L	1 1	101
645266251'0	617Z66Z51'L	1 1	<i>L</i> 01
987910048.0	1.153950214	8	901
7911506670-	7921506527	l i	SOT
6800+195'0-	5800Þ195°L	L	104
710247441,0-	7(02)/1)1/	L	£01
£££8£9066*1-	££48£9066 ⁹	ς	701
106611866°1-	1066118669	S	101
ES9Z1S6101-	J.019512633	9	001
9+086+10910	t5619586E'L	6	56
CPET00EEFF.0	\$\$97.00997°L	8	26
1116LZ1ZZO	11617177L	1	16
90214591.0	90X4531.T	ī	96
£Þ£Þ105££0	LS9586191'L	51	56
6LESPE691.0-	SLESPESOT'L	1	16
781652590'0-	781657250.7	L	ES
6Z8819TLE0	1,1128321.71	57	7.6
9186552712.0-	91865771071	59	16
6900-61070	1114-01002-1		1- 14

- - - - - - **-**--

2 of 3	32eT		
98286972170-	7.132698536		S9
58695096210	\$10\$H6\$02.F	51	>8
506698610-	7138699055	1 - 12	ES
1/12864971	1/1/2864971	1	Z8
80051860.0-	8005+1860°L	- <u>-</u>	IB
POSSEPRIZIO-	7.206435204	L	08
156195886.0	69086911974	1 8	6L
769988117-0-	7,6998811974	- L	8/
17112999+7	6L8ZLEESS'L	01	LL
8\$66\$1745.0-	85665127ET	1	94
657199165	652199916'9	1	\$L
2.747180462	862818222.T	91	74
644516191'0	17218086E'L	ST	£4
186671078.5-	166671078.0	,	ζĹ
-0.307853222	7.307853222	L	14
90957025210	96E1L6L1T L	- 8	10
0.648952007	£6664015E'L	8	69
ZNTEBINZT.0	7.245836258	8	89
Z0E05611Z'0-	1711820305	Ĺ	19
892517281.0-	807E17281.7	Ĺ	99
8867222250	Z102+1++1.T	5.1	59
20102221-2.0	B6S6LLLST L	SL	19
3112892TE.0	124014854	\$L	£9
906911655.0-	9069LL650 L	2.3	7.9
0.175349712	211834871.7	L	19
5205441952.0	ZS611150Z.T	L	09
0.252551556	PANSANTAT, T	5.7	65
286120162.0	\$10\$H6\$0&T	5.7	îs
869610887.0	Z0E056112 L	5t	LS
-0.185219765	7.185219765	L	95
£8708E2A£.0	T15461921.T	56	55
\$19E1EZSZ*O*	119816257 L	ı	15
848528461.0-	8185284FL.T	L	ES
869569CBL'0	7.216304302	8	ZS
628722671.0	628152671.T	L	15
892517487.0	T215286732	8	. 05
0.866826534	99NELTEET.T	8	6>
1016116170	IOLGELGIT L	L	81
885059458.0	S1TENCST1.T	8	
\$1.1659900 O-	SLL6599TT L	T.	91>
CZ1E6H4Z1'0-	7.124493122	L	SI
8909015510-	890901221.7	i	11

Neural petwork output of SP-Time-Str-1

Case	Actual (A)	Network sutput (N)	Difference (A.N
	7	7.530685902	-0.530685902
2	1 7	7.481821537	-0.481821537
3	7	7.563849449	-0.563849449
4	8	7.538241863	0.461758137
5	7	7.552651882	-0.552651882
6	8	7.523984909	0.476015091
7	8	7.504668713	0.495331287
8	7	7.500544071	-0.500544071
9	8	7.562177181	0.437822819
10	7	7.519352436	-0.519352436
11	7	7.577716351	-0.5777 [635]
12	7.5	7,502910137	-0.002910137
13	7	7.551665306	-0.551665306
14	7.5	7.55435276	-0.05435276
15	7.5	7,505360126	-0.005360126
16	7.5	7.52184391	-0.02184391
17	1-7	7.463290215	-0.463290215
18	7	7.476213932	-0.476213932
19	6.5	7,389806747	-0.889806747
20	7.5	7.413508415	0.086491585
21	7.5	7,594108582	-0.094108582
22	7.5	7.477776527	0.022223473
23	7	7.486021996	-0.486021996
24	, , , , , , , , , , , , , , , , , , , 	7.564577103	-0.564577103
25	8	7.518128872	0.481871128
26	8	7.635647774	0.364352226
27	8	7.544880867	0.455119133
28	7	7.628566742	-0.628566742
29	4	7,311065197	-3.311065197
30	7.5	7,567502499	-0.067502499
31	10	7.591150284	2,408849716
32	1	7.163478374	-6.163478374
33	7	7.557165623	-0.557165623
34	10	7.745735645	2,254264355

Neural petwork supput of SP-Time-Str-final

Cus	Actual (A)	Network output (N)	Difference (A-N)
1	.7	7.452118874	-0.4521[8874
2	7	7.083320141	-0.083320141
3	7.	8.257650375	-1.257650375
4.	8	7,578190327	0.421809673
5	7	7,771902084	-0.771902084
6	8	7.523429871	0.476570129
7	8	7.521713257	0.478286743
	7-7-	7.477313995	-0.477313995
9	8	8.083156586	-0.083156586
10	7	7.263810158	-0.263810158
11	7	8.117383003	-1.117383003
12	7.5	7.126169205	0.373830795
13	1-7-	7.48768425	-0.48768425
14	7.5	7.907896996	-0.407896996
15	7.5	7.896987915	-0.396987915
16	7.5	7,663844109	-0.163844109
17	7	7,610957146	-0.610957146
18	7-7-	7,578190327	-0.578190327
19	6.5	6,749454021	-0.249454071
20	7.5	6.728037834	0.771962166
21	7.5	7.863270283	-0.363270283
22	7.5	7.223989487	0.276010513
23	7	7.784742832	-0.784742832
24	7	7.907896996	-0.907896996
25	8	7.841155529	0.158844471
26	8	B.723723412	-0.723723412
27_	8	7,945516586	0.054483414
28	7	8,800926208	-1.800926208
29	4	4.231323242	-0.231323242
39	7.5	8.264947891	-0.764947891
31	10	8.361326218	1.638673782
32		2.502709627	-1.502709627
33	1	8.469993591	-1.469993591
34	10	9.404905319	0.595094681

Page 1 of i

Page 1 of 1

Neural network output of SP-Time-BS-1

Case	Actual (A)	Network output (N)	Difference (A-N)
$\neg \neg$	10	8.890468597	1.109531403
1	7	8.188874245	-1.188874245
3	8	9.233642578	-1.233642578
4	7	7.381025314	-0.381025314
5	7	7.128242016	-0.128242016
6	7	7.158718109	-0.158718109
7	7	7.190574646	-0.190574646
8	7.5	7.479189873	0.020810127
9	7	7.103974342	-0.103974342
10	7	7.210937023	-0.210937023
1,1	7	7.024955273	-0.024955273
12	6	7.406431198	-1.406431198
13	7.5	6.986235619	0.513764381
14	7.5	7.527733326	-0.027733326
15	6.5	6.838950157	-0.338950157
16	7.5	7.075249672	0.424750328
17	7	6.958772659	0.041227341
18	7	7.335427284	-0.135427284
19	7.5	7.221819878	0.278180122
20	7	7,20215416	-0.202 5416
21	7	7.546744347	-0.546744347
22	8	7.910601616	0.089398384
23	9	8,38975811	0.61024189
24	6	6.348173618	-0.348173618
25	5	6.480960846	-1.480960846
26	5	6.477757454	-1.477757454
27	7	7.123325348	-0.123325348
28	7	9.112023354	-2.112023354
29	7	7.807496071	-0.807496071
30	8	7.216395378	0.783604622
31	7	7.270219803	-0.270219803
32	7	7.023287296	-0.023287296
33	9	8.098620415	0.901379585
34	5	6.122050762	-1.122050762
35	7.5	7.370039463	0.129960537
36	6	6.848405838	-0.848405838
37	- 5	8.146091461	-3.146091461
38	8	7.842186451	0.1578 3549
39	3	5,307500362	-2.307500362
40	10	8.289855957	1.710144043

Neural network autput of SP-Time-BS-final

Case	Actual (A)	Network output (N)	Difference (A-N)
1.	_ 10 _	8.157829285	1.842170715
2	7 _	8.028859138	-1.028859138
3	8	8.443934441	-0,443934441
_ 4 _	1	7.249175549	-0.249175549
5	7	6.632792473	0.367207527
6	7	6.964326382	0.035673618
7	7	7.249175549	-0.249175549
В	7.5	7.492790222	0.007209778
9	7	7.492790222	-0.492790222
10	7	7.249175549	-0.249175549
11	7	7.249175549	-0.249175549
12	6	7.70062685	-1.70062685
13	7.5	6.632792473	0.867207527
14	7.5	7.249175549	0.250824451
15	6.5	6.249751568	0.250248432
16	7.5	7.249175549	0.250824451
17	7	6.964326382	0.03567361#
T.B	7	7.492790222	-0.492790222
19	7.5	7,249175549	0.250824451
20	7	6.964326382	0.035673618
21	7	7.70062685	-0.70062685
22	В	8.157829285	-0.157829285
23	9	8.443934441	0.556065559
24	6	6.249751568	-0.249751568
25	5	5.811959267	-0.811959267
26	5	4.774831772	0.225168228
27	7	6.964326382	0.035673618
28	7	8,443934441	-1.443934441
29	7 7	7.70062685	-0.70062685
30	8	7.249175549	0.750824451
31	7	7.70062685	-0.70062685
32	7	7.249175549	-0.249175549
33	9	8.028359138	0.971±40862
34	1 5	5.811959267	-0.811959267
15	7.5	7.249175549	0.250824451
36	6	7.249175549	-L.249175549
37	- 5	7.492790222	-2.492790222
38	1 8	B.028859138	-0.025859138
39	+	3.576263905	-0.576263905
40	10	8.028859138	1.971140862

Page 1 of J

Page 1 of 3

Neural network outputs of the cost performance analysis

c	ю	c	Page

IENTI-IV-ISO % IS to antimo XIOX320 (ELIDSIA				
Difference (A-A)	Network output (N)		2573	
765626406.0	£919564.7	5.7	- -	
788697133.0	EEIOECSEL T	 	- -	
SAMARCETA O	7.338230133	1 - 1 - 1	— <u>{</u> —	
2444510	\$55507550.F	-51	- -	
1921827511	112601489	1 - <u>*</u> - †	5	
222207550.1-	\$\$\$\$\$0F\$\$0.F	 * -	- 6	
-0.257678032	1757678032		- -	
602997011'0-	60799701176	L L		
544467446'0	\$\$\$\$017707		6	
1984686+10-	1987989AE.T	1 8 1	10	
1624207601	6925267669	L -		
\$16170008.0	\$508766E6'9	- <u> </u>	21	
TTEBERENO		5.7	11	
-0.278847694	6 56463623	- L	31 FI	
0.338815212	882481199'9		51	
850599981.0	2464(21)000	\ 	91	
11260100 E-	11260148.9	1 h	21 21	
2,406422615	28ETT2E90.2		81	
0.970042229	1777 2000 7	- <u>*</u> -	61	
5402772045	5102772225		50	
696986£9'0	160610969	5	1Z	
2.000162125	5/8/58699.7		77	
-1,090197086	980791060.7	01	- FZ	
7197051911-	Z19Z0££9+'9	ş 9	150	
201222527.1-	\$91252557.9		32	
-1,958555222	222232850.2	-5	- <u>72</u>	
661201029,1	198468614.7	-6-1	- 12	
-1.727640629	6790191717		82	
98/99EZ Z	P177(9L'L		62	
607997011 0	7110266209	01	- 0€	
17492991924	17492991	-9 -	15	
140427864.1-	1,438724041		75	
698618126,0	1E1981846 F		- FE	
£91979561.5-	£92949561.7	- 55 -	\$£	
192182251.0	65817718239	- +	58	
19826865-7-	198798946.7		96	
£97848291.0-	192949561°L		- <u>2</u> E	
E92919561'0-	£97.04.02(1,7	$-\frac{\iota}{\iota}$	- 8E	
££10£28££'0-	7,338230133		36	
\$£8067017.0-) £906L01L'L			
608£0909£'0	1619666591		77	
825084048-0-	84084048.7		43	

Reurs) network output of SP-Cost-All-finel

3.3378E.06	799966666	_ B	211
\$1£29\$70E'I	9821571691	6	911
166594050'0-	166594050'S	s	511
0.245252609	166747487.7	ß	. 114
5,590751743	1,990751743	5	£11
-2,209950447	7.209950447	s	112
9201627779.0-	920162779,0	9	111
-2,031725407	6.031725407	7	011
915145784 0-	91614528474	L	601
20122980.0-	7.08655405	L	801
PESOSTEER.O	990647994.7	9	
286887297.0	7.207211018	. 8	901
94515915'0"	9451E912.T	L	102
260146199.0-	760176133.8	8	104
£121046543	7.121046543	S	EOI
222719962.5-	ZZZ£19965'\$	€	701
27.5234471,1.	275534471.3	S	101
108228822.1-	108228822.0	\$	001
150696890'0	616960166.6	8	66
5900190081-	\$9001900B'A	9	86
611069764.0-	61 10E9764.7	L	Z6_
0.022248268	751151146'9	L	96
D.842725754	7.157274246	8	56
\$\$\$££\$Z009°Q	\$\$\$99789E.T	. 8	116
\$091\$££60.0	6,902258396	L	£6
9449112010	7.097883224	S'L	7.6
11786987.0	6.61903286	L	16
912[11612]0-	7249141216	1 L	06

C 10 7 277.1			

52053	Trd		
0.723743439	195952944'9	57	68
905859165.0-	90E8S916E.T		88
297502516.0	85796 1 981'L	- <u>;</u> ;	£8
0.192545414	985#5#406.7	57	98
618666876.0-	6186658457	- I	58
81E904744'0	789£67457	_;	19
885060755.0-	1334090288	7	EB
2718245T1.0	828132428.9	i	28
Z\$EE89\$LO	95991558.9		18
16SECE6LL'O	7,22066409	8	08
9116675110	91+66751+8		64
E090199£0.0	16E68EE9F1	5't	8/
968219756-0-	7,932612896	L	LL
886691659'0-	88E6916597L		94
9£296230	*9LE0LSL*	5	52
PESTEAS3230-	7.562437534	L	ÞĹ
PE1586Z98'Z-	♦£{\$86298.£	5.	££
\$006920 1 91	6359230995	- 8	7.L
1193592562	81406407356	56	14.
-0.243110657	7.243110657	L	01_
195887062.D-	+9E88T0Q2.f	- <u>-</u> -	69
4E496\$10Z'0	7,798403263		89
819020222.0-	8190Z0SS7*L	L	19
\$64066979'0	\$02600£78.6	S'L	99
-0.510668278	8/28990107	5.9	59
Z5/07Z1Z0,0	8129248	54	199
575255720-1	559444546'9		E9
S#1186421.0-	57115647974	\$'L	79
9682C0098.0-	3,120035.7	59	Tip
L95ZEZ195'0	7.438767433		09
885980991-0-	88E080304.7	i	65
L>L709L>0	1,52395723		85
706440788.0	E60556211.7	 -	25
0.112575054	9464241851	S'L	95
S8Z/TB2T.0	\$14221127	1 8	- 22
9805282500-	7.532823086	- t	105
-0.221238136	7221238136	<u> </u>	ES
0.162822056	\$166771763.T		25
	£597Z8410.7	5°L	is
££9/28+11'0-	ERATERAIA T	32	05
1122299950			69
718666162.0-	L136661671		1 37 -
0,05694294	90720616.9		17
0.683228493	7021770212.7	8	97
901556186.0	1651105197	*	57
E91505181'0-	E9+505+81.7	 -	1 37
688 167 67 E.O.	9\$886797£7	<u> </u>	

Difference (A-N)	Network eutpat (N)		cine
0.050094604	965066137	FL.	- ī
217217933.0	2510287285	- -	- - -
5212125	\$21Z>£955°L	1-32-1	<u> </u>
9810487420	1255129814	2.7	÷
21682720.0 5847E3E28.0	6.942710876	- L	—- -
	7.176362514		
SEETITED.	921157652.7		- <u>:</u>
-0.235821724	25571724-7	L	
7018692'0	8681022.7	i	6
669+6+8+0-	9£84£484.7	- <u>2</u>	16
E6677902.D-		<u>L</u>	11
0.283178806	F6611689127	- 51	- 21
1002255830.0	9607921E6 9 961128912 L	57	- 17 -
15285288-0-	660++L1E6'9		- 31
E968ZIZ/E-0	122823877	- t	<u> </u>
TESTANOED.O	£912156967 £912156967		91
988877E41.1	9SSECTENT.T		- 81
1,741838455	\$128191948	- 52	-18
₱£9888007,0	9901116677	· \$L	61
-1 Z410650Z5	9341062032		OZ
\$90260\$#E0	5.65091420	- 1	12
72828E009.1	£61019660.8	- 01	77
169\$0879£.1-	1.397805691		EZ
011831992	5991£811'5	9	- 5 6
£6786£71'Z-	7.12398243	<u> </u>	57
7,568733692	Z69EEL890'9		92
1.344279289	1160572031	5°E	<u> </u>
61861897.7-	5.26819849		57 78
86722348	8.130347252	10	
612505251.0-	6125052517	7	0£
1.6822556699	7.682256699	9	35
997698484,1-	997598484.T	9	11
RZ+6ES1+70	879652197.2	5.2	₽ €
2.050944805	7.050944805	- 5	35
PPE1190920	7.260471344	<u></u>	90
762033852,5-	762036852.7	5	7.6
£0\$1£16£.0-	E041E19E.7	<u> </u>	86
95794084.0-	9E194984.7		-61
TT90T2018.0-	T1610270977		0)
885528856.0-	882258829.7	L	114
27050881.0	82696118.7	8	27
188987217 O			

C to 1 2265

Ventral activistic output of SP-Cost-AD-1.

#0		7.349897861	0.650102139
47		7.022705555	0.977294445
48	7.	6.847718239	0.152281761
49	7	6.932975769	0.067024231
50	Ţ. Ţ.	7.244634628	0.755365372
51	7.5	7.331230133	0.161769167
52		7.349897861	0.650102139
53	<u> </u>	6.832867622	0.167(32378
54	7	7.338230133	-0.338230133
55		6.84109211	1.15890789
56	7.5	7.013791561	0.486208439
57		6.84109211	1.15190789
5#	1	7.349897861	0.650102139
59	7	7.338230133	-0.338230[33
60		7.338230[3]	0.661769867
6!	6.5	7.195646763	-0.695646763
62	7.5	7,359870434	0.140129566
63	. 8	6.847718239	1.152211761
64	7.5	7.257678032	0.242321968
65	6.5	6.753352165	-0.253352165
66	7.5	6.747075554	0.752924442
67	7	6.932975769	0.067024231
68		7.877371788	0.122628212
69	7	7.567228794	-0.567228794
70	7	7.013791561	-0.013791561
71	9.5	7.877371784	1.722627831
72		5.220143795	2.779856205
73	5	7.962844849	-2.962844849
74	7	7.349897861	-0.349897861
75	5	4.598177433	0.401822567
76	7	7.777616024	-0.777616024
77	7	8.152407646	-1.152407646
. 78	7.5	7.609621677	-0.109621677
79		1.433349609	-0.433349609
10	8	6.932975769	1.067024231
81	- 7	6.852692127	0.147307873
87	7	6.84771\$239	0.152211761
13	7	7.022705555	-0.022705555
84		7.269100666	0.730899334
85	7	7.10104847	-0.10104847
. 86	7.5	7.022705555	0.477294445
87	7.5	7.022705555	0.477294445
88	2	7.175000668	-0.17500066B
89	7.5	6.358216286	1.141783714

	92	7.0		
		7.5	6.84109211	0.65890789
	93		6.847718239	0.152281761
	94	1	7.186151981	0.813848019
	95		6.932975769	1.067024231
	96	7	6.753352165	0.246647835
	97	7	7.4166646	0.4166646
1	98	6	7.795722485	-1.795722485
ı	99	_	8.143982887	-0.143982887
1	100	5	5.927540779	-0.927540779
	101	5	6.254493713	-1.254493713
	102	3	5.807060242	-2.807060242
	103	5	6.447718239	-1.847718239
1	104	1	1.342756271	-0.342756221
.	105	7	7,338230133	-0.334230133
	106	-	6.932975769	1.067024231
-	107		7.257678032	0.742321968
ı	108	7	6.650955677	0.349044323
- 1	t 0 9	- , -	7.609628677	-0.609628677
ı	110	4	5.813687801	-1.813687891
Ì	111	6	6,84109211	-0.64109211
١	112	3	6.650955677	1.650955677
ı	113	- 5	7.651780128	
ł	114		7.463896751	-2.651780128
1	115			0.536103249
ŀ	116	, , 	4.598177433	0.401822567
ŀ	117		7.877371768	1.122628212
L	14/		7.609628677	0.390371323

Page 2 of 3

Page 3 of 3

Neural network output of SP-Cort-Fin-1

Case	Actual (A)	Network output (N)	Difference (A-N)
	7.5	6.894293785	0.605706215
2	1 8	7.072202682	0.927797318
3	7	7.064063072	-0.064063072
4	7.5	7.089289188	0.410710812
5	7	6.820068359	0.179931641
6	1	6.895042896	1.104957104
7	6	6.772013664	-0.772013664
1	7	6.830362797	0.169637203
9	7	7.025227547	-0.025227547
10	В	6.697228432	1.302771568
! 1	7	7.258802414	-0.258802414
12	7	6.750965595	0.249034405
13	7.5	6.987137794	0.512162206
14	7	6.965638638	0.034361362
15	7	7.282152653	-0.282152653
16	7	6.51040411	0.48959589
17	8	7.891729155	0.108270645
EB :	3	6.903457165	-3.903457165
19	7.5	5.655170235	1.844629765
20	8	7.264889717	0.735110213
21	5	6.695138931	-1.695134931
22	7	6.952108383	0.047891617
23	10	8.288310051	1.711689949
24	6	6.328451157	-0.328451157
25	5	6.889430046	-1.889430046
26	5	6.896969318	-1.896969318
27	3.5	5.79879427	-2,29879427
28	9	7,708968639	1.291031361
29	3	5.098133087	-2.098133087
30	10	7,937891006	2.062108994
31	7	7.331614017	-0.331614917
32	6	7.727909565	-1.727909565
33	6	7,679206848	-1.679206848
34	5.5	5.499027252	0.000972748
35	5	7.193694115	-2.193694115
36	7	6.730933189	0.269066811
37	5	7.410847187	-2.410147187
38	7	7.233219147	-0.233219147
39		7.071125027	-0.233217177
40	7	7.321482658	-0.321482658
41	7 1	7.330795288	-0.339795Z8B
42		7.861879349	0.138120651
43	; 	7.534132004	-0.534132004
,			-4334132004

Page 1 of 1

Neural network entout of SP-Cost-Fin-final

Case	Actual (A)	Network output (N)	Difference (A-N)
	7.5	7.409505367	0.090494633
2		7.130443096	9.869556904
	7	7.130443096	-0.130443096
	7.5	7.130443096	0.369556904
5	7	6.846037388	0.153962612
6_	_ •	7.130443096	0.869556904
7	6	7.130443096	-1.130443096
8	7	6.988745689	0.011254311
9	7	7.270802498	-0.270802498
10		7.130443096	0.869556904
11	7	7.409505367	-0.409505367
12	7	6.988745689	0.011254311
<u>i3</u>	7.5	7.270802498	0.229197502
14	7	7.270802498	-0.270802498
15	7	7.546246529	-0.546246529
16	7 1	7.130443096	-0.130443096
17	8	7.546246529	0.453753471
18		6.646037388	-3.846037388
19	7.5	6.558917999	0.941082001
20		7.409505367	0.590494633
21	5	6.415174007	-1.415174007
22		7,270802498	-0.270502498
	10	7.941893101	2.058106899
24	6	6.702649117	-0.702649117
25	5	7.130443096	-2.130443096
26		6.988745689	-1.988745689
27	3.5	6 702649117	-3.202649117
28	9]	7.409505367	1.590494633
29		6.128952503	-3.128952503
30	10	7.680735588	2.319264412
31	7	7.270802498	-0.270802498
32	-6-	7.409505367	-1.409505367
	6	7.812700748	-1.812700748
34	5.5	6.128952503	-0.628952503
35	5	7.409505367	-2.409505367
36	7 7	7.130443096	-0.130443096
- 37	5	7.409505367	-2 409505367
38	7	7.409505367	-0 409505367
39	7	7.409505367	-0.409505367
40	7	7.130443096	-0.130443096
-0	7	6.846037388	0.153962612
42		7.680735588	0.319264412
43	_7 _	7.130443096	-0.130443096

Page 1 of 1

hail-rid-mod-fid to motion all grands letter!

Difference (A-M)	(V) suction from MA	Acteal (A)	Cut
\$ZZL\$Z0L5*O-	\$55782072.T	<u> </u>	
\$\$685255.0-	\$\$6 8 \$£\$\$£	L_	Z
0.332168102	8681E\$L99'L		E
277217951.0	822787072.T	3	E
\$ \$ \$ 9 LZ LOS 0-	SESPLELOS L	L	<u> </u>
9866/19:0-	9866£19°£	L	9
₱9691\$6₱°0	9£058905'L	8	$-\tau$
ESE691590'0-	ESE691515'4	5.T	-
2005721-06.0	\$6697\$51916	3	6
9000\$1050-	900110574	L	01
PE0556205-0-	+£055E565-L	L	11
+969156¥*O	9E0E8>05'L		71
\$\$6857E0.0-	5\$68\$4\$\$L	S.I	-61
9961191010	HE05555657	8_	FI
ETT (605 Q E. O	LTZ906Z09"L	8	\$1
PL099687'0-	1/1099611°L	L	91
\$10112910	556854657	-	-ti
\$227\$2070.1.	8221820121	5.9	81
271406730.0-	ZL1106L95°L	5 L	61
PIEOCOLLEO	989620211-1	8	07
-0.022430897	7522630897	SL	12
\$\$68\$4601-	5568546574	5.9	ZZ
£22906Z01'0"	LZZ906Z09'L	5L	[Z
*£055£565'0-	+£0552565.4	i i	77
0.46241045	\$5685765.7	-	52
Z165844E9 0-	Z16514765.T	L	92
ZE0051555-0-	7,555120032	i i	- iz
ZZ6644491'Z	96961ZZ£££	6	28
117023222.0	7,44349289	 -	67
7.522430897	7480EP222.7		OC.
\$¥(6ZE099'D*	ZMERZEO99.7		71

o tage? I lo tage?

Picural network output of SP-Cost-BS-fins

Difference (A-N	Network output (N)	Actual (A)	2643
TET298TTU.0-	TET208FTQ.T	1-12-	Ť
Z+SS9+61+ 0	27559761672	57	 -
\$80\$99800°D	\$80\$99\$00 I	1 1	÷
826064214.0	7,254209042	 	 -
8720054270	Z\$£667Z£\$'\$	 	
6996[1950]	162098696.6	 	
7 2 3 4 2 0 9 0 4 2	1724209047	 	 -
827203864.0	Z1Z46E102.1		÷
Z4Z96E105.0-	272496100.7	╁╌╬╌┤	
8560625720	Z.M660Z.M5Z.7	57	
8560645+Z'Q	1,254209042	57	11
\$60525035	20752883.1	1 2-1	ži
812002126.0	6.572699752	52-1	- 61
70.254209042	7.10607157	 	
6196268980	185090151.9	1 - 12 - 1	51
85606459270	7,254209042		
692611950 D	1(5098(+69	 	L
827203894.0	7,501394272	 	21
85606457470	1324209042	 	61
6986119500	165098696	 <u>; </u>	30
500722683.0-	1,689527035	1 1	12
£\$568756.1-	1515681167	 	77
80599800:0-	5805998008	- - 	17
\$5090 [ST't-	1850901519	- 	72
61/69669 0-	684596693		- 62
19000218.1-	£19003913	 	92
E\$098E#6'1-	1550985969	5	- ZZ
80599800'O-	\$ 002993083		ΤŽ
E0722988.0-	2 6 6 5 5 7 6 5 5 7 6 5 5 7 6 5 7 6 5 7 6 9 5 7 6 7 6		62
826067214.0	ZPO60ZPSZ L	1 - 1	Ō£
5962410100	1689527035		-11
2106021520	1 254209042	 	
-0.919465542	2)559)6167		11
684596691-	684596695	 	ĸ
210602152.1.	1754150601		38
Z#060Z#SZ'Z-	Z*060Z#SZ/L		9€
Z7Z496102.5-	7501394272		ŽŠ.
0.080534458	2155916164	1 1	85
*\${16606'0	929800607	- 5	66

ીબ! ગુર્ધ

	· -		
TOT219187.0	LOES 16CBE'L		н
811180E>1'0	218816958'9		_ [[
£1412£44°1-	[[+]7[+29	5	7.5
-1.159703255	8.159703255	<u> </u>	16
120270226.2-	7.355072021	5	30
0.791790009	166607807.F	<u> </u>	56
1.16841507	6P2P821E7.8	6. 1	17
206747814.0-	2064 PERTY L		u
ZE0\$28518.0-	7,812124032	4	97
0,457221508	2600775202.T	- T	52
131126161.0-	18117616171	7 1	34
6600>1127'0"	6600+1177.7	52	īζ
*00ZE9126'0"	7.471632004	5.8	tt
ET2074260.0	7.406529427	S'L	11
6622566660	101110920-F	7	30
505 E509++*0-	7.946653505	574	61
Z\$61826E1'I-	Z\$611/6£9'L	6.5	BI
187860782.0	917506214'4		41
9960111600	996011960'L	- i	91
29927921.0	JEE72028.7	i	51
9+1902512.0	P28[97487.7	<u> </u>	FI
421017451.0-	7.624740124	5L	ET
166691119'0	5000£115£7		71
-0.82728529	6ZS8ZLZ8'L	1 2	11
110128686.0-	1101Z8E8EL	7-1	01
/5800+871'0-	\$.128440857	 	- ;
50+5+6261.0-	20959656974	51	Ť
99575259'0	9E9544445.T	 -	
16010531.1-	16010581'8	1	
EET2103+0.0-	7.048012733	1 7	
6700190000	106688697.7		-
£5Z191£6Z*O-	E621-9126Z-1	┝╌╌┤	-
192992569'0	17877856174	 	ž
\$29VZLZLLO-	BEDALIETT.	┝╌┾╌┤	 -
DILICISES (V-V)	Network suiper (N)		959
CM 17 AND MILE	Tren service described	(4) (400)	

Meural astmerk surput el SP-Cost-BS-1

1,123615265	\$67486978.7	6	OÞ.
	1450541.4	- 6	38
551972.0			-BE
821777428	21292219.1		15
TEEESTTEB.1-	7 £ £ £ 8 7 7 £ 8 . D	5	96
71014E691.5.	180115691.7	5	
687387592.1-	68198(265.T	9	SE
855860229.1-	\$6280052675	*	9 E
89198+910'1-	89198191018	L	£E.
2211269210	7.1126951.72	L	71
0.207211494	905891261.1	T.	16
0.72115632	185>8872.7	1	DE
810119161 0	8E0E7869F,T		62
-0.304102898	868201105'8	8	28
9E685E820.5-	7.028358936	5	LZ
65 R50 \$6' -	4,441058159	Ε.	97
Z080+01+1'1-	E080#01#1'9	s	52
1 C 7003 4 E85 4	\$288\$£007.2	5	74
696291690'0-	8 069162369	8	٤Z
669£1906′t-	7.90613699	9	77
1220661725.0-	1220661257	L	12
-0.276177406	9014194274		ΟZ
59459950	7.4534235	- 1	61
ZZZ680>> 0	12201655°L	9	81
170413870.0-	140989540"4	· ·	21
0.045921803	L619LOVSV L	54	91
\$8E001066'0	919668600 9	70	۶l
P15864682'0	7.289494514	- -	Ħ
289028717.0	51569178279	51	EI
891+49+84 0-	891#49#86"4	1	13
825(51171,0	7 372849972	S'L	-11
572786185.0	7,118012428	5.7	01
821262812.0	\$\$£765815°Z	1	- 6
0.694031715	282896808.7		_ <u>-</u>
215150606.0-	25577220E.7		 -
556380091.0-	595980061.7	 1	
0.438699245	22/20/06/192.9	1	- 5
	469961806'A	1 8	-, -
£91508169*0			
M38137E21.0-	1911925118 174760664		- Ł
19909217.0-		5.7	- ' -
991865267.0	991865767.7	L£	
(N-A) somming	Network output (N)	(V) Jeniov	2187

Neural network outputs of the quality performance analysis

11E006771.0	989660778'1	F
115951192.0	6895915611	8
721516912.0	7.723026276	8
0.364900112	\$886605E9'L	
965++97++10	1357355404	8
>601>9>79°0-	760819129°L	L
5765855550	\$40+199+9*4	8
-0.535263062	7.535263062	i
HONSSELSS I-	+0+5557222.7	9
1855130241	IPSOFTSE,	2.2
ZYZYZPBOE.1	7.691542625	6
689191514 1	989E912E7.7	9
9651197110	POPSSEZSS'L	
2,309494495	202202099.7	01
9890400€1'\$-	3830700£1.7	7
628969982.5	1/1000011	- 61
119419884.0	1194198827	5.9
2900925002	735263062	- 39
6675587790	105 PP I SSE'L	
Z19291991'0	2192919367	- 8
889165551.1	\$12804498.7	4
£16725261	78367626.7	
9657792770		- 8
915526796.1	101525722.7	
120160650	7,602674484	6
EE 19+0165'1-	672802332.7	51
ZZLZ691LZ'0-	227293877.7 527293877.7	9
		57
2015/09880.0	7.411392689	5.7
302817822.0-	7.523584366	
	HOSBITERE,	L
+05222220-	7905925627	
	POPERETER	L
\$70\$19999.0-	5/0+199+9//	
	957247684.7	2.7
P0P555750.0-	*0*2242224	2.7
9717511520-	9277£1\$£2.7	4
954247684.0-	7.489742756	L
-0.535263062	790192565.7	<u> </u>
*0*55€Z50*0*	P0122E722.T	2.7
579715169'0-	229242169.7	
96676710000-	9667651097	4
9E6265109.D-	7.601532936	
M-A) soprateliti 201821524360	7.523.584366	L
M. A. annuali ()	Network supper (N)	(A) Isus

£ Jo Z :	o3td			
Z056ZZRZ0'0	1/41/12/0493	S'L	68	
85Z598Z85.0-	862298285.7	- 1 -1	88	
165692895-0	6919[[[]]		41	
68021ÞEZO:0-	680519625.7	5.7	98	
155717052.0	7.449282646		SB	
£1045432E.0	1868988+9.T	8	12	
1081191120	MOREEGI15.T		[9	
1661Z921S*D-	16617921574		28	
925121250	7521217823		11	
P11175106'0	988189865.T	5.8	09	
289055665-0	8106449048	6	61	
ZZE£96+80'D	8788E0219.7		81	
£96966620-	L9E9656EZ 8	8	Ш	
I 140814304	969581658'L	6	91	
850056191.5-	850056494'9		5L	
1,30848074	92615169'4	6	102	
Z18+85551'0	7,144415188		EZ.	
-2.9035139	666818606.6	,	7.4	
E10865770 B	L86199226'L	9	T/L	
678765955.1-	6+8+65955 ⁻ L	9	64	
TERSOPSPE'O	1E8209598.7	2.5	69	
EPGSIFLZEO	T20482576,T	9 _	19	
£1980#65'0-	L1980165'L	L_	19	
-1.004453182	ZB1E\$9905'L	5.9	99	
££9£665£†*0	L9E900+75-L	1	59	
6155491150	15++ZE189'L		19	
1557288550.0	1557236527	51	E9	
6211725(12.0	EZTELSETS	L	<u> </u>	
941429619'0	9L1179619'L	L	19	
E6695511+0*0	L00514155L	1	09	
BECTERES 80.0-	REETERRA.T	L	65	
115225195.0	615772527	3	85	
89621296E0	ZE0Z87203.7		LS_	
615305672.0	7.573406219	L	95	
9E9E07902.0	19E96Z06F/L	1	55	
960911/990	9609192997	L	HS	
062212702.0-	7.507312298	L	- 55	
97197580E.0	P.C. EST 169. T		75	
\$61771001.0	\$6\$7710E9.T	5°L	15	
5219215010	278628627		05	
126873274.0	9701284527	-	63	
L9L17908 0	L9L1Z908'L		1)	
125117156.0	9718853CA.T	51	40	
145971057.0-	142471057.7	L	99	
906117310.0	305017302.7	51	50	
199575679'0	199525629'4	L	11	

')

}

P168H+20+.0	980155965"	1	411
1605959011	4.183436909	. 6_	91
PEEPLLILL I-	PEEPLLLL'9	5	51
808580698'0"	808280648.5	- Z	91
99090\$ZL6'Z-	91090\$ZL6'L	5_	Ei
52555560-	2752526775.T	ι	[7]
2040604.9870	867606ZT9'L	3	11
-3.036204338	7.036204338	,	01
1.092844486	7.907158814	. 6	60
0.542547226	PLLZSPLSP'L	8	_ B0
8251965670	Z19869+05'L	B	7.0
9075àE74.0	1,52617291	8_	90
70282155CO	3,755844593	8	50
\$199\$16EE'1-	\$199\$16EC'B	ī	>0
ZS£46499† 1-	ZSEL6L99#'L	9	ΕQ
+5870E29£.	129295262.1	•	Zű
EE19601'0-	7.1836133	i	10
7.9365297	721936557	•	00
771[98]],1	£2890188'Z	6	66
88000+07.0-	\$800E407.7	L) 8
-0.124576569	69592517972	5.7	46
182523200.0	61999696976	SL	9
£19101£050	E\$£\$6596F'L	8_	\$¢
D+0272E>+.0	956LZ1955°L	8	P.0
-0.40152165	\$91758077'4	Ī	1 6
\$20\$20\$Z5.0	8161161477	8	_ Z
PP65EP08E'0-	PHESEMOREL	L	1
887879499'0-	7.667628288	L	0

Ł	۳	ì	~~

(301)	ng a ^{rq}		
	A COROCTAL COL		Er
0.057491302	801612979.7 802802549.7	 -	- 27
847289E41.0	7,856014252	1	11
687188702.0	112511264.1	╿┈┋┈ ┞	07
0.392445631	692751409'4	 	61
795795189.0-	79£78£183.7	1 7 1	86
0.234156609	196548237.7	 	LE
289572557A.O-	\$89ELSELD'L	1	95
ESZ#68999'1-	1528689997	 <u> </u>	SE
152512651-1-	452612656'9	55	14
I 184600353	1,815399647	6	- 56
\$\$0\$££156'1-	1501240S4	9 1	32
168900582.0	69+666411	3	10
1.989472389	1192750103	01	90
905905521.1-	905905527,3	2	62
2,054491043	726808299 T	01	38
212123345	1,015733242	59	LZ
-2.566272259	7.566272259	5	92
50591+86>0	7,501523495	9	57
£09\$4£44£0-	£09\$L\$LL\$E	I I	77
0.128009605	171990395	6	23
B19846674.0	Z8E1599Z5'L	3	7.7
\$96014224.0	SEOR#SLLS_T		12
886000010.1	Z1999\$689'L		30
974909145'0	>LSE65356'9	5.7	61
788880313.I-	T08880010.5	9	- 31
L12965965.0-	F.036236217	57	
\$12E09LL1.0	222396755T	5 L	91_
P+7767589'0-	PALCEC \$89.7	4	12
\$08027942.0-	\$08051675°L	 	- 11
268450172.0-	268420172.f	1 - 4 - 1	<u> (T</u>
6.510375023	E20276012.7	1-1-	
955551607.0-	9556E1407.7	1 4 1	
5996228600	SESOLL199°L	5.7	0_
\$70998101'0-	\$2099\$109'	57	
££\$\$£££9\$°0-	EESBELLINGL	┤╶ ┼╼┧	
712670269.0-	£1\$620\$6¥£	+ + -	<u></u>
257521020.0-	267258022.7	51	
215550830.0-	24899893.T	1-36-1	
Z19876559 O-	7,655924612		_ <u> </u>
£60022139.0-	1,641220093	1 - 2 - 1	
518619815'0-	\$182190127	1;- -1	 -
(N-A) energial	(i) raqino alamovi	(v) Page v	***Š

	·	1-1337003007	7-535263062
45	7.5	7.513172626	-0.013172626
46	7	7.579446316	-0.579446316
47	0.5	7.557355404	0.942644596
48	7	7.669707298	-0.669707298
49		7.489742756	0.510257244
50	1	7.623610497	0.376389503
51	7.5	7.567875345	-0.067875385
52	1	7.579446316	0.420553684
53	7	7,579446316	-0.579446316
54	7	7.635099222	-0.635099222
55	1	7.557355404	9.442644596
56	7	7,579446316	-0.579446316
57	8	7,591046333	0.408953667
58	i	7,579446316	0.420553684
59	7	7.668567181	-0.668567181
60	 	7.601532936	0.398467064
61		7.557355404	-0.557355404
62	7	7,421892641	-0.421892643
63	7.5	7.535263062	4.035263062
64	1	7.668567181	0.331432819
65		7.535263062	0.464736918
66	6.5	7.557355404	-1.057355404
67	7	7,591046333	-0.591046333
68		7.645674706	0.354325294
69	7.5	7.735163689	-0.235163619
70	6	7.646614075	-1.646614075
71	i i	7.645674706	0.354325294
72		7.254496574	-3.254496574
73		7.756183624	0.243816376
74		7.613077641	1386922359
75	/ -	7.142075062	-4.142075062
76	9	7.801243305	1.198756695
77	-i-	7.930813313	0.069186687
78		7.844408512	0.155591488
79		7.994465828	1.005534172
80	1.5	7.557355404	0.942644596
11	7	7,479302406	-0.479302406
12	7	7.467552662	-0.467552662
13	7	7.523584366	-0.523584366
84	-	7.579446316	0.420553684
65	-	7.511939526	0.418060474
86	7.5	7,557355404	-0.057355404
17	1	7,421492643	0.57#107357
11		7.601532936	-0.601512936
19	7.5	7.513172626	-0.0[3]72626
		2.913174020	4.417172020

90 7 1.62444094 -0.62464094 91 7 7.42265376 -0.42263376 92 8 7.52358456 0.47641554 93 7 7.43340916 -0.433619316 94 8 7.54578014 -0.433619316 95 8 7.54578014 0.442644596 96 7.5 7.53575540 0.442644596 97 7.5 7.53509988 -0.13509988 98 7 7.545772125 -0.667722235 99 9 7 7.797817562 1.20012438 100 4 7.35514591 -3.355144591 101 7 7.33299625 -0.332999625 102 4 7.356735350 -0.335612352 103 6 7.53505602 -1.535165062 104 7 7.55755500 -0.335612352 107 6 7.55755500 -0.565722235 108 8 7.66572235 -0.56572235 109 8 7.66572355 -0.336423552 109 8 7.56572355 -0.336423552 109 8 7.5657235 -0.597257765 109 8 7.5657235 -0.597257765 109 9 7.74562265 1.35167244 109 9 7.74562265 1.354577365 110 4 7.266730004 -3.3647350004 111 4 7.565735500 -0.44644596 112 7 7.557755400 -0.44644596 113 5 7.546614075 -0.44644596 114 7 7.545674706 -0.645674706 115 5 7.746674706 -0.645674706 116 9 7.778667722 1.2721972778 117 8 7.5511054516 -0.48895444				
92 8 7,523584366 0,476415634 93 7 7,433610916 0,433610916 94 8 7,545730114 0,433610916 95 8 7,545730114 0,433610916 96 7.5 7,535735404 0,442644596 97 7,55 7,535735404 0,442644596 98 7.5 7,535735540 0,442644596 100 4 7,5573554052 1,20012438 100 4 7,35514591 1,335144591 101 7 7,33293962 0,33293962 102 4 7,356245352 1,335144591 107 6 7,535251062 1,53516362 108 7 7,5456267181 0,331472819 109 8 7,5465167181 0,331472819 109 8 7,5456267181 0,331472819 109 9 7,74562265 1,254577365 109 9 7,74562265 1,254577365 110 4 7,264730004 3,364735004 111 4 7,557735540 0,44644596 112 7 7,557735540 0,44644596 113 5 7,546614075 1,2644596 114 7 7,557735540 0,4464596 115 5 7,546614075 2,2644596 116 9 7,7486614075 2,2644596 117 7,5577355404 0,54764596 118 7 7,545674706 0,6456474706 119 9 7,7486614075 2,2646414075 111 4 7 7,545674706 0,6456474706 115 5 7,7486674706 0,6456474706 116 9 7,7486674706 0,6456474706 117 7 7,7486674706 0,6456474706 116 9 7,7486674706 0,645674706	90	7	7.624648094	-0.624641094
93 7 7.433410916 0.433410916 0.433410916 94 8 7.345730114 0.454269285 95 8 7.557355404 0.442644596 96 7.5 7.531523062 0.035263062 97 7.5 7.633509318 0.0135263062 98 7 7.5757553062 1.020122431 100 4 7.592117562 1.200122431 100 4 7.35293625 0.05272245 100 5 7.535673062 1.3535144501 101 7 7.332939625 0.357939625 102 4 7.356123532 3.356123532 107 6 7.5356123532 3.356123532 109 6 7.54561211 0.331432219 109 7 7.930239705 0.950239705 109 8 7.664587111 0.331432219 107 8 7.534137726 0.465862274 100 8 7.557555400 0.442644596 100 9 7.745622265 1.254377365 110 4 7.264750004 3.3647350004 111 8 7.557555400 0.442644596 112 7 7.357355400 0.442644596 113 5 7.646614075 1.254377365 114 7 7.546574706 0.646546796 115 5 7.646614075 2.466614075 116 9 7.748662707 0.2176176071 117 7 7.545674706 0.646546796 118 7 7.646674706 0.64654674706 119 9 7.748662707 0.2176176071 110 1 7 7.645674706 0.64654674706	91	7	7.423205376	-0.423205376
94 8 7.54573014 0.454269185 95 8 7.557355404 0.454264596 96 7.5 7.53525404 0.45264596 97 7.5 7.63509918 -0.115099181 98 7.7 7.5 7.63509918 -0.115099181 99 7 7.5 7.63509918 -0.115099181 100 4 7.35514501 -3.355144501 101 7 7.35739502 0.337399625 102 4 7.356125352 -3.355144501 101 7 7.35739962 0.337399625 102 4 7.356125352 -3.356123352 103 6 7.3535263062 -1.533163062 104 7 7.950259705 0.393259705 105 8 7.664567111 0.331472319 106 8 7.487742756 0.51023744 107 8 7.537135700 0.442644596 109 9 7.745622615 1.254377365 110 4 7.264750004 -3.264750004 111 4 7.557355404 0.44264596 112 7 7.557355404 0.44264596 113 5 7.646614075 2.2644596 114 7 7.646614075 2.26457061 -0.46446796 115 5 7.746624070 -0.46464796 116 9 7.7486674706 -0.645674706 117 7 7.645674706 -0.645674706 116 9 7.7486674706 -0.645674706	92	1	7,523584366	0.476415634
95	93	7	7.433610916	-0,433610916
96 7.5 7.531253062 -0.015263062 97 7.5 7.531253062 -0.015263062 97 7.5 7.635099818 -0.115099818 98 7 7.567722225 -0.667722225 99 9 9 7.799117562 1.200182438 100 4 7.355144501 -3.355144501 101 7 7.332939625 -0.332939625 102 4 7.35623537 -3.356223352 107 6 7.353263062 -1.533763062 109 6 7.353263062 -1.533763062 109 7 7.950239705 -0.939239705 106 8 7.458742736 0.517257244 107 8 7.537157504 0.442644596 109 9 7.745622635 1.354377363 110 4 7.264750004 -3.264750004 111 4 7.557755404 0.442644596 112 7 7.557755404 0.442644596 113 5 7.557755404 0.442644596 114 7 7.557755404 0.5577555401 115 5 7.764614075 -2.66454075 116 7 7.64547056 -0.645674706 115 5 7.764614075 -2.66454075 116 7 7.64574706 -0.645474706 117 7 7.64574706 -0.645474706 115 5 7.7781657722 1.271977278	94		7.545730114	0.454269886
97 7.5 7.63599988 0.13599888 9.13599888 98 7 7.667722225 -6.667722225 99 9 9 7.799817962 1.200182438 100 4 7.355144501 -3.355144501 101 7 7.35299625 -6.327299625 -3.327299625 102 4 7.356245352 -3.35623352 102 4 7.356245352 -3.35623352 102 6 7.353263062 -1.533263062 -1.533263062 104 7 7.930239705 -0.590259705 105 6 7.665567181 0.331472819 106 8 7.465748716 0.351037244 107 8 7.354737726 0.465362274 107 8 7.35473726 0.465362274 109 9 7.745622635 12.54577365 110 4 7.264730004 -3.364730004 111 8 7.557355404 0.472644596 112 7 7.557355404 0.573555404 111 8 7.557355404 -0.57355404 111 7 7.557355404 -0.57355404 111 7 7.557355404 -0.57355404 111 7 7.557355404 -0.57355404 111 7 7.557355404 -0.57355404 111 7 7.557355404 -0.57355404 111 7 7.557355404 -0.57355404 111 7 7.645674706 -0.645674706 115 5 7.7486674706 -0.645674706 115 5 7.7486674706 -0.645674706 -0.645674706 115 5 7.7486674706 -0.645674706 -0	95		7.557355404	0.442644596
99 7 7.56772225 -0.66772225 99 9 7.79917562 1.200182431 100 4 7.355144501 -3.355144501 101 7 7.352939625 -0.3352344501 101 7 7.352939625 -0.33523562 102 4 7.355263062 -1.535263062 103 6 7.535263062 -1.535263062 104 7 7.930259705 -0.930259705 105 8 7.645587151 -0.33142219 106 8 7.48742756 -0.310257244 107 8 7.53735540 -0.442644596 108 8 7.557355404 -0.455862274 109 9 7.745622655 1.254377365 110 4 7.264730004 -0.3264730004 111 8 7.557355404 -0.4573536404 112 7 7.557355404 -0.557355404 113 5 7.546614075 -2.46461475 114 7 7.54574705 -0.6455474706 115 5 7.74562722 1.271307278	96	7.5	7.535263062	-0.035263062
99 9 7.79917562 1.200182431 100 4 7.355144501 -3.355144501 101 7 7.35514501 -3.355144501 102 4 7.35514501 -3.355144501 103 6 7.3592623 -9.33799625 107 6 7.353762502 -1.5335062 104 7 7.930259705 -0.390259705 105 8 7.664567111 0.3314722119 106 8 7.487142756 0.510237244 107 8 7.534137726 0.465162274 107 8 7.534137726 0.465162274 108 8 7.55755540 0.447264596 109 9 7.745622635 1.254377365 110 4 7.264750004 -3.264750004 111 4 7.557555404 -0.557355404 112 7 7.557555404 -0.557355404 113 5 7.646614075 2.264614075 114 7 7.646514075 2.264614075 115 5 7.7486674706 -0.645674706 115 5 7.7486674706 -0.645674706 115 5 7.7486674706 -0.645674706	97	7.5	7.635099888	-0.135099888
100 4 7.35514591 -3.355144591 -3.355144591 -3.355144591 -3.355144591 -3.355144591 -3.355144591 -3.355144591 -3.356125552 -3.366225552 -3.366225552 -3.366225552 -3.366225552 -3.366225552 -3.366225552 -3.36622574 -3.36	98	7	7,667722225	-0.667722225
101 7 7,352939625	99	9	7.799117562	1.200182438
102	100	_ 4	7,355144501	-3.35514450L
107 6 7,537253002 -1,535263062 104 7 7,930239705 -0,9390239705 -0,9390239705 -0,9390239705 -0,9390239705 -0,9390239705 -0,9390239705 -0,9390239705 -0,9390239705 -0,9390239705 -0,9390237244 -0,9390237244 -0,9390237244 -0,9390237244 -0,9390237244 -0,9390237244 -0,9390237244 -0,9390237244 -0,9390237344 -0,93902344 -0,93	101	7	7.332939625	-0.332939625
104 7 7,93025705 -0,930259705	102	4	7.356825352	-3.356#25352
105 1	103	6	7.535263062	-1.535263062
106	104	7	7.930259705	-0.930259705
107 \$ 7.534137725 0.4651822274 108 \$ 7.557355404 0.442644596 109 9 7.74562265 1.25477365 110 4 7.264750004 3.364750004 111 4 7.557355404 0.442644596 112 7 7.557355404 0.557355404 113 5 7.646514075 2.645614075 114 7 7.64574706 0.645674706 115 5 7.746674706 0.426474706 115 5 7.746674706 0.77467674706 116 9 7.746674705 1.721707778 117 7.746774706 1.721707778 118 7 7.746774706 1.721707778 119 7 7.746774706 1.721707778 110 9 7.746774705 1.721707778 110 9 7.746674705 1.721707778 110 9 7.746674705 1.721707778 110 9 7.746674705 1.721707778 110 9 7.746674705 1.721707778 110 9 7.746674705 1.721707778 110 9 7.746674705 1.721707778 110 9 7.746674705 1.721707778 110 9 7.746674705 1.721707778 110 9 7.746674705 1.721707778 110 9 7.746674705 1.721707778 110 9 7.746674705 1.721707778 110 9 7.746674705 1.72170778 110 9 7.746674705 1.72170778 110 9 7.746674705 1.72170778 110 9 7.746674705 1.72170778 110 9 7.746674705 1.72170778 110 9 7.746674705 1.72170778 110 9 7.746674705 1.72170778 110 9 7.746674705 1.72170778	105	-	7.668567181	0.331432819
101 8 7,557355404 0.442644596 109 9 7,745622635 1,254377365 110 4 7,264750004 -3,264750004 111 4 7,254735004 -0,472644596 112 7 7,557355404 -0,557355404 113 5 7,646614075 -2,645614075 114 7 7,645674706 -0,645674706 115 5 7,178176071 -2,178176071 116 9 7,778692722 1,211907278	106		7.489742756	0.510257244
109 9 7,745622635 1,254377365 109 4 7264750004 3,264750004 3,264750004 111 4 7,557755404 0,472644596 112 7 7,557755404 0,557755404 0,557755404 113 5 7,646614075 2,264614075 114 7 7,645674706 0,645674706 115 5 7,786574706 2,7786574706 115 5 7,786574706 2,7786574706 116 9 7,778657272 1,721107278	107		7.534137726	0.465862274
110 4 7.264750004 -3.264750004 111 8 7.557755404 0.442644596 112 7 7.557755404 0.53735404 113 5 7.646614075 -2.646614075 114 7 7.645674706 -0.645674706 115 5 7.176176071 -2.176176071 116 9 7.7716672722 1.221307278	108	1	7.557355404	0.442644596
11 3 7.557355404 0.442644596 112 7 7.557355404 -0.557355406 113 5 7.546614075 -2.646614075 -2.645614075 -2.645614075 -2.645614075 -2.645614075 -2.176176071 -2.17617	109	,	7.745622635	1.254377365
112 7 7.557355404 -0.557355404 113 5 7.646614075 -2.646614075 114 7 7.64574706 -0.643574706 115 5 7.176176071 -2.176176071 116 9 7.7718672772 1.221307278	110	4	7.264750004	3.264750004
113 5 7.646614075 -2.646614075	111	-	7.557355404	0.442644596
113 5 7.546614075 -2.646614075	112	7	7.557355404	-0.557355404
115 5 7.176176071 -2.176176071 116 9 7.778692722 1.221307278	113	5	7.646614075	
116 9 7.778692722 1.221307278	114	7	7.645674706	-0.645674706
116 9 7.778692722 1.221307278	115	5	7.176176071	-2,176176071
	116	9	7.778692722	
	117	-	7.511054516	
		•		

C

Page 2 of 3

Page 3 of 3

Neural network output of SP-Ouzilty-Fin-1

Case	Actual (A)	Network output (N)	Difference (A-N)
ı	7	6.960204124	0.039795876
2	7	7.061843395	-0.061843395
3	7	7.061216831	-0.06121681
4	7	7.044134617	-0.044134617
- 5	7.5	6,995580673	0.504419127
6	7	6.986778736	0.013221264
7	7	6.948654652	0.051345341
	7	6.989275932	0.010724068
9	7.5	7.062594414	0.437405586
10	7.5	6.910712242	0.589287758
11	7	7.126769066	-0.126769066
12	7	6.918739796	0.081260204
13	7	7.028975964	-0.028975964
14	7	7.019554615	-0.019554615
15	7	7.176615238	-0.176615231
16	1.5	6,845211506	0.654788494
17	7.5	7,447648048	0.052351952
18	6	7.018816948	-1.018816948
19	7.5	6.479848862	1.020151138
20	9	7.140770912	1.859229081
21	1 8	7.007874489	0.992125511
22	1	7.02833271	0.97166729
23	9	7.599645615	1.400354385
24	7	6.75731039	0.24268961
25	8	7.092703934	0.902296066
26		7.00246048	-2.00246048
27	6.5	6.531800747	-0.031800747
28	10	7.348123074	2.651876926
29	10-	6.239420891	-4.239420891
30	10	7.482898712	2.517101288
31	10-	7.235337734	0.764662266
32	6	7.361390114	1.361390114
33	9	7.269257069	1.730742931
34	5.5	6.434221268	-0.934221268
		7.165770054	-1.165770054
35	7		
36		6.889669895	0.110330105
	1 3	7.20291853	0.79708147
38	7	7.114358902	-0.114358902
39		7.042821884	0.957178116
49		7.202524662	0.797475338
41		7.163738751	0.836261749
42		7.405622005	0.594377995
43	1	7.227147576	0.772152424

Neural petwork output of SP-Quality-Fig-final

7 7 7 7 7 7.5	7.050559998 7.276497364 7.103831768 6.989185333 7.042359829	-0.050559998 -0.276497364 -0.103831768
7 7 7.5	7.103831768 6.989185333	-0.103831768
7 7.5 1	6.989185333	
7.5		
7	7 642359220	0.010814667
		0.457640171
	7.103831768	-0.103831768
7	6.989185333	0.010814667
7	6.929977894	0.070022106
	7.048419094	0.451510906
7.5	6.932137489	0,567862511
7	7.165252209	-0.165252209
	6.929977894	0.070022106
	7.105834484	-0.105834484
	7.048419094	-0.048489094
7	7.224644661	-0.224644661
7.5	7.103831768	0.396168232
7.5	7.339506149	0.16049315
6	6.870905876	-0.870905176
7.5	6.477226734	1.022773266
9	7.222722054	1.777277946
	6.694885731	1.305114269
ı	7.105834484	0.894165516
9	7.685794353	1.314205647
7	6.588783741	0411216259
8	7.218911171	0.781088829
5	7.044388294	-2.044388294
6.5	6.588783741	-0.088783741
10	7.222722054	2.777277946
2	6.205640316	4.205640316
10	7.569694519	2.430305481
1	7.220111367	0.779188613
6	7.337677956	-1.337677956
9	7.740068436	1,259931564
5.5	6.257144928	-0.757144928
6	7.107849121	-1.107849121
7	6.932137489	0.067862511
-	7,395069599	0.604930401
7	7,222722054	-0.222722054
i		0.892150879
		0.696168232
		0.784849167
		0.544159412
		0.896168232
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 6 6 7 7 7 8 8 8 9 9 7 7 8 8 5 6 6 9 9 7 7 8 8 6 6 9 9 7 7 8 8 7 7 8 8 8 9 9 7 7 8 8 8 9 9 7 7 8 8 8 9 9 7 7 8 8 8 9 9 7 7 8 8 8 9 9 7 7 8 8 9 9 9 7 7 8 8 9 9 9 7 7 8 8 9 9 9 9	7.5 6.9213749 7 7.16525209 7 6.92977894 7 7.16525209 7 6.92977894 7 7.105834484 7 7 7.058449094 7 7 7.226644661 7.5 7.103831768 6 6.170905376 6 6.170905376 6 6.170905376 8 6.471226734 9 7.222122054 8 6.694815731 8 7.15914484 9 7.68579435 7 6.581783741 8 7.218911171 8 7.21891171 9 7.227722054 6 6.30540315 10 7.227722054 11 7.227722054 11 7.227811367 10 7.227811367

Page Lof L

Page 1 of 1

lend-ti@rillenO-To le incine aigmine lennis

M-A) societies	(V) tagtes demand	(A) Leath(A)	NELS.
1214E1200'0	918798/66'9	1	ī
1.048408985	510165159	5L	2
-0.424017429	7.424017429		٤
PESISES!'I	991119167	5.8	-
0.002137184	918798/66'9	- 	5
0.890343189	1189596017	- i -	9
616684696.0	1899+791914		-ţ
BELDSLECCO-	BETARTET T	51	Ť
1152365150	6Z7L109ZV'L	┝╌╬╌┤	6
\$720683575	\$4561902274	<u> </u>	01
Z81Z5Z055'0-	Z\$1Z5Z065°L		11
1,100721836	991842668'9		ži
624/104290	92471095A.7	1 	- 61
1,100721836	1918/26619		- - } [
917922588.0	7ZZ077£11.4	⊢; ⊢	\$1
Z81Z5/065'0-	731039072	- 	91
EIPHAPEANO	782128921.T		£1
3E812T001.0	1919/76689		31
1189596010	118959601.7	-32	61
720705150.0	6.568792307	5'L	30
297592920	SETARTET T		iz
1,431207657	19676710579	-32-	77
0.029896736	6,470103264	5.9	17
0.100721836	1918/2668.9	├─ <u>ं</u>	-34
644196100	6/4506103		52
Z41Z5Z0(0'0-	281Z540E5'4	57.	92
TT#702508.0-	TT87025013		77
70530CEAL C	705367626.8		32
3059628190	90296(8+++	-;-	36
2629271525	2529747293	 	- 16
224015977.I	272583022.7	6-	16
265829928 0-	Z658Z9>Z8		7.5
E1>8/34/8413	7.126521587	-6	EE

Nears network output of SP-Ouslin-BS-final

1 10 1 2354

Difference (A-M)	Nemerk eutput (N)	(V) PADO	Case
795956573.0	(69099921.7		- i
820111073.1	9580851264	 	
ZEZ652E91'1	8940+Z9E(L Z+08880ZE L	6	
-0.14005928	8Z6500¢E'L	5.8	
8740021825.0-	876021866,7	L	- 9 -
8970+2955.0-	8920079657		<u> </u>
£480£9599.0	7,334329128		<u>.</u>
Z78973230	1216261667		
262627631.0	7.336240768	5 L	<u>0!</u>
262657633.0	89/01/29[['L		<u> </u>
1015117750	1,332415104	L L	21
27026621.0	82620015.7	2.7	<u>[]</u>
8940+7965'0-	1336240768	<u> </u>	<u> </u>
-0.341965199	66159610£	L	<u> </u>
7176571990	897045366.7	8	16
BTQ021SEC.O-	179021166.7		<u>L</u> t
Z48049599 0	1314329128	-	
262627E33.0	8910+£966,1	3	61_
ZZ0611191 0	\$760218EE.5	5°L	30
968585691.0	1332412104	s'L	17
E (90999 CC'0-	1,32666633	7	77
8561116497	Z+08880ZE /	6	73
6615961≯E'€-	6615961+0'4	,	54
ZE78888>E.D-	ZC18985767	· l_	ςζ
22207374E.E-	2220F0F4E,F	, ,	9Z
876021862.1-	876021362.1	9	
Z108880ZC-0-	1,320888042		87
96898519970	1,332415104	8	62_
ZEZ65/E99.0	1316240761	8	DΕ
968185499.0	1,332415104	8	ΙĔ
252657699.0	8910458E,T	8	35
1.671419144	958085825,7	6	Œ
2678386AE.E-	7.543868732	•	ÞĒ
0.663759232	89704566.1	8	5€
19701586.0-	135240761	Ĺ	9(_
82162E7EE'Z-	133432911	5	- 40
958085826-0-	95808582€1	Ĭ_	K
2.351464748	807990126.7	5	6£
1,67141914	958085851	6	01

Neural petmork output of SP-Unality-BS-1

िक । आहा

Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Principal (AP)	Michael and Principal (AP)
Michael and Michael and Principal (AP)	
Michael and Michael a	

Leader Hand of States of ST-O asker of Struck

£\$180+995'0	£48165E£4'8	6	01
19555991'0	65+49558.4	5	36
917771101.0-	917111011	. L	1(
1.314057827	LZ#72041E.8	5	25
91118119-0-	\$11[\$1>8.7	L	9€
0.273233705	1,726762295	<u> </u>	55
Z01006\$EZ'1*	20100655275	· ·	ÞĒ.
0.365991592	801800159.8	6	££
5269111210-	\$76961971 9	1	32
8p8EZ111'0-	8/852111/8	8	II.
860987*5*0	SOGEITZAZ.T	8	00
1,7551+860-	£7522 +8£.B	- 8	67
-0.94494743	1.944947243	7	82
FET184642.1-	1671-34882.5	9	LZ.
P#8E87080.1.	\$18881080.2	P	97
0.434780121	678615262.0	L	32
-0.364264488	88++92+98	,	74
5914819010	\$E\$21266 \$,8	6	53
+Z658+ZZ8'O-	7.822485924	T.	-zz
5048654610-	201892759.T	Z.T	17
1748675620-	1278952977	5.7	07
£05909980 0	1913393497	,	61
244666111.0	822090218.7	8	11
697619590'0-	69#619\$90°L		
0.20541811	68182467.7	8 9	91
\$22688082.0	5440116119		SI
E112679E8.0-	E112979E8.7	L	þ1 ·
0.249122143	7.2508778527	\$'L	El
LZPEGLEST 1-	LZ>E6LLSZ B	L	ŽĪ
E65026885'0	10167011177	_ 8	!!_ `
E99ES+\$41.0-	£99£\$†\$£ 9 £	5.7	Öl
Z\$88£8\$Z0.0	I+1191+16'1	_	6
215599582'0	7.714334488	. 8	
-0 901534334	7,601294994		L
40.204779148	811977105.7	_ L	9
0.457274437	£955ZLZ\$5'9	L	\$
£83£88914.0	718311687.7	\$ B	,
526715968.0	8/97890918	. 6	•
-0.585571289	682172282.8	3	7
885274050.0	Z19PZ\$6L6'L		
(M-A) sonstall(I	Network entpot (N)	(A) Instract	Сые

)

[३६६] ध्रा [jo] औध्

;

)

APPENDIX O

Data for establishing the relationships to explain how site coordination problems affect the performance of subcontractors

Data for survey on forecasting the performance of subcontractors

Reply no.	Nature of business	Trade	Time	Quality	Cost	SCP1	SCP2	SCP3	SCP4	SCP5	SCP6
1	sub-contractor	building services work	7.0	8,0	7.5	2.0	4.5	3.0	6.0	5.0	5.5
2	sub-contractor	building services work	8.0	9.0	8.0	1.0	1.0	1.0	2.0	3.0	3.5
3	sub-contractor	structural work	7.0	7.0	7.0	5.0	4,5	5,5	5.0	6.0	3.5
6	sub-contractor	building services work	7.0	8.5	8.0	5.0	3.0	5.0	6.5	5.5	5.5
7	sub-contractor	building services work	7.0 6.0	7.0	7.0	5,5 5,5	5.0	6.0 5.0	5.0	4.0	5.5
8	sub-contractor sub-contractor	finishing work finishing work	8.0	7.0	8.0	5.0	5.5 2.5	4.0	6.0	6.0 5.0	5.5 7.0
9	sub-contractor	structural work	7.0	7.5	7.0	5.0	5.0	6.0	5.0	6,0	4.5
10	sub-contractor	structural work	7.0	7.0	8.0	5.0	3,0	4.5	5.0	4,5	4.5
12	sub-contractor	building services work	7.0	7.0	7.0	6.0	4,0	5,5	6.0	4,0	5.5
13	sub-contractor	structural work	8.0	8.5	8.0	5.0	4.5	5,0	6,0	5.0	3.5
14	sub-contractor	structural work	7.0	7.0	7.0	3.0	5.0	5.5	6.0	3.0	3.5
15	sub-contractor	structural work	8.0	8.0	7.0	6.0	4.0	5.0_	6.5	6.0	4.5
16	sub-contractor	finishing work	7.0	7.0	7.0	5.0	4.0	4.0	6.0	5.0	5.5
17	sub-contractor	finishing work	7.5	7.0	7.5	3.0	5,0	5.0	6.0	6.0	6,0
18	sub-contractor	structural work	8.0	8.0	8.0	5,0	5.5	3.5	7.5	5.5	6.5
19	sub-contractor	finishing work	7.0	7.5	7.0	5.0	3.5	5.0	7.0	4.0	7.0
20	sub-contractor	finishing work	6.0	7.0	8.0 7.5	5.0	4.0	5.5	6.0	6.0	5.5
21	sub-contractor	structural work	7.0 6.0	7.5	6.0	5.5 6,0	5.0 5.0	4.0 5.0	6.0	5.0 5.0	4.5 5.5
23	sub-contractor	finishing work	8.0	8.0	8.0	5.0	3.5	4.5	5.0	5.5	4.5
24	sub-contractor sub-contractor	structural work building services work	7.0	7.0	7.0	5.5	5.0	5.0	6.0	5.0	6.0
25	sub-contractor	finishing work	7.0	7.0	7.0	6.0	5.0	4.0	6.5	4.0	5.5
26	sub-contractor	finishing work	6.0	7.5	7.0	5,0	5.0	5,0	5.5	4.0	5.5
27	sub-contractor	structural work	7.0	7.0	7.0	5.0	5,5	4.5	8.0	6.0	5.5
28	sub-contractor	building services work	7.5	8.0	8,0	5.0	4.0	4.5	5,5	5.5	5.0
29	sub-contractor	structural work	7.0	7.0	7,0	4.5	4.0	4.0	6.0	6,0	5,5
30	sub-contractor	structural work	7.5	8.0	8.0	5.0	5.5	5.0	7.0	6,5	5,5
31	sub-contractor	structural work	7.0	7.0	7.5	5.0	5.0	4,5	7.0	6.5	4.5
32	sub-contractor	finishing work	7.0	7.5	8.0	6.0	5.5	5,0	6.0	5.0	6.0
33	sub-contractor	finishing work	7.0	7.0	7.0	4.0	4,5	4.5	5.0	5.0	5.5
35	sub-contractor	finishing work	6.5	7.0	7.0	5.0	5.0	5.0	6.5	6,0	6.0
36	sub-contractor	structural work	7.5	8.0	8.0	4.5	4.0	5.0	7.0	5.0	5,5
37	sub-contractor	building services work	7.0	8.0	7.0	6.0	5.0	4.5	6.5	6.0	6.5
38	sub-contractor	structural work	7.5	8.0 7.5	8.0 7.5	5.0 5.0	5.0	4.5 5.0	5.0 6.0	5.0 6,0	6.0
40	sub-contractor	building services work building services work	7.0	8.0	7.5	7,0	4.0	5,0	6.0	5.0	6.0
41	sub-contractor sub-contractor	structural work	7.5	7.0	7.0	4.0	5.5	4.0	6.0	5.0	5,5
42	sub-contractor	building services work	6.0	7.0	7.0	5.0	5.0	4.0	7.0	5.0	6.0
43	sub-contractor	finishing work	7.0	7.0	7.5	5.0	4.5	5.5	5.5	5,5	5.0
44	sub-contractor	building services work	7.5	7.5	7.5	5.0	4.0	6.0	7.5	6.0	5.5
45	sub-contractor	structural work	7.0	8.0	8.0	5.0	5.0	4.0	6.0	5,0	7.5
46	sub-contractor	structural work	7.0	7.0	6.5	5.0	4.5	5.0	5.0	4.5	5,5
47	sub-contractor	building services work	7.5	7.0	7.0	4.0	4.0	5.0	6.0	5.0	5.5
48	sub-contractor	building services work	6.5	7.0	7.0	6.0	4.0	6.5	6.0	5.5	6.5
49	sub-contractor	building services work	7.5	8.0	7.5	5.5	5.5	5.0	7.0	5.0	6.0
50	sub-contractor	building services work	7.0	7,0	7.0	6.5	5.0	5.5	6.0	4.5	5.5
51	sub-contractor	structural work	6.5	7.0	7.5	7.0	5.0	5.0	4.0	5.0	4.5
52	sub-contractor	structural work	7,5	7.5	8,0	5.0	6.0	5.5	6.0	4,0	5.5
53	sub-contractor	finishing work	7.0	7.0	7.0	4.0	5.0	6.5	5.5	5.5	5,5
54	sub-contractor sub-contractor	structural work finishing work	7.5 8.0	7.0	7.5	5.5	4.5	5.0	4.5	4.0	3.5
56	sub-contractor	finishing work	6,0	7.5	7.0	6.5	4.0	6.0	6.0	4.5	8.5
57	sub-contractor	building services work	7.0	8.0	8.0	5.5	4.5	4.5	6.0	5.0	6.0
58	sub-contractor	structural work	7.5	8.0	6.5	5.0	5.0	5.5	6.5	5.0	5.5
59	sub-contractor	structural work	7.0	6.5	7.5	5,0	4.0	5.0	7.5	4.0	7.5
60	sub-contractor	structural work	7.0	7.0	7.0	4.5	4.0	5.0	6.5	6.0	5,5
62	sub-contractor	building services work	7.5	8,0	8.0	5.0	5.0	5.0	6.5	5.0	7.0
63	sub-contractor	building services work	7.0	7.5	7.0	5.0	4.0	5.5	6.5	5,0	7.0
64	sub-contractor	structural work	8.0	8,0	8.0	5.0	5.0	3.0	4.0	7.0	6.0
65	sub-contractor	building services work	7.0	7.5	7.0	4.5	5.5	4.0	5.5	5.0	6.5
67	sub-contractor	building services work	8.0	7.0	6.0	5.0	5.0	2.5	5.5	3.0	7.5
73	sub-contractor	finishing work	10,0	7.5	8.0	3.0	3.5	3.0	4.5	2.0	4.0
80	sub-contractor	finishing work	6.0	6.0 7.5	3.0 7.5	4.5 7.0	5.0 7,5	5.0 8.5	7.0 8.0	5.0 7.0	7.5
82	sub-contractor	finishing work	3.0 9.0	9.0	8,0	4.0	4.0	1.0	5.0	4,0	7.5
85 87	sub-contractor sub-contractor	building services work building services work	6.0	4.0	5.0	7.0	4.0	6.5	8.5	8.0	5.5
90	sub-contractor	building services work	5.0	7.0	5.0	7.0	5.0	7.0	6.0	5.0	8.5
97	sub-contractor	building services work	5.0	4.0	3.0	6.0	5.0	8.0	6.0	5.0	6.0
98	sub-contractor	building services work	7.0	6.0	5.0	5.0	5.0	5.5	6.0	5.5	7.0
100	sub-contractor	finishing work	8.0	9.0	8.0	4.0	4.0	5,5	5.0	5.5	4.5
101	sub-contractor	building services work	7.0	7.0	8.0	2,0	1.0	1.0	3.0	2,0	3,5

102	sub-contractor	finishing work	5.0	8.0	5.0	5.0	5.0	5.0	8.5	2,0	5.5
103	sub-contractor	finishing work	8.0	8.0	7.0	4.0	4.5	7.0	5.5	5.0	6.0
104	sub-contractor	finishing work	10.0	9.0	10.0	2.0	2.0	3.0	3.0	2.5	4.0
105	sub-contractor	finishing work	5.0	7.0	6.0	7.0	7.0	4.0	7.5	5.5	5.5
106	sub-contractor	building services work	7.0	8.0	7.0	4.0	3.0	4.0	6.0	5.0	5.5
107	sub-contractor	building services work	8.0	8.0	8.0	6.0	3.0	5.0	6.5	5.5	5.5
108	sub-contractor	structural work	8.0	7.5	7.0	3.0	3.0	4.0	4.5	5.0	5.5
109	sub-contractor	building services work	7.0	8.0	8.0	6.0	5.0	4.0	6.5	5.0	6.5
110	sub-contractor	finishing work	7.0	8.0	5.0	7.0	3.0	6.5	6.0	2.0	4.5
111	sub-contractor	finishing work	7,0	5.0	5.0	5.0	4,0	5.5	6.5	6.0	4.5
113	sub-contractor	finishing work	3,0	6,5	3.5	7.0	7.0	8.0	7.5	7.0	7.5
118	sub-contractor	finishing work	8.0	10.0	9.0	3.0	4.0	4.5	5.0	5.0	1.5
125	sub-contractor	finishing work	1,0	2,0	3.0	9.0	8.5	8.5	9.5	8.0	7.5
133	sub-contractor	building services work	7.0	8.0	7.0	5.0	5.5	5.0	8.0	6.0	6.0
135	sub-contractor	structural work	8.0	6.0	7.0	4.0	4.5	4.5	7.0	6.0	7.5
137	sub-contractor	finishing work	8.0	10.0	10.0	4.0	2.0	3.5	4.0	2.0	3.5
138	sub-contractor	finishing work	9.0	8.0	7.0	5.0	3.5	5.0	5,5	3.0	3.5
139	sub-contractor	finishing work	8.0	6.0	6.0	3.0	3.0	4.0	5.0	4.0	3.5
140	sub-contractor	structural work	7.0	8.0	9.9	5.0	2.0	3.0	4.0	4.0	3.5
142	sub-contractor	building services work	9.0	9.0	7.0	3.5	3.0	3.0	6.0	5.0	4.0
143	sub-contractor	building services work	5.0	4.0	4.0	8.0	4.0	7.0	8.0	7.0	8.5
144	sub-contractor	building services work	7.5	8.0	6.0	5.0	4.0	5.0	7.0	4.0	4.5
145	sub-contractor	building services work	6.0	7.0	5.0	5.0	6.0	5.0	8.0	8.0	6.5
146	sub-contractor	finishing work	8.0	9.0	6.0	3.0	1.0	5.0	3.5	6.5	6.5
147	sub-contractor	finishing work	2.0	5.5	5.5	6.5	8,0	8.0	9,5	6,0	8.5
148	sub-contractor	structural work	4.0	4.0	8.0	7.5	7.0	8.0	8.5	9.0	7.5
149	sub-contractor	building services work	5.0	5.0	5.0	4.0	2.0	4.5	3.0	3.0	3.0
150	sub-contractor	finishing work	5,0	6.0	5.0	5.0	5.0	5.0	5.0	2.0	5.5
152	sub-contractor	building services work	8,0	7.0	8.0	5.0	5,0	3.0	7.0	2,0	2,5
153	sub-contractor	finishing work	5.0	7.0	7.0	5.0	5.5	5.5	6.0	7,0	5.5
154	sub-contractor	structural work	7,5	8.0	5.0	4.0	5.0	2.0	5.0	5.0	5.5
156	sub-contractor	finishing work	8,0	8,0	5.0	4.0	2,5	4.5	5.0	5.0	5.5
161	sub-contractor	finishing work	7.0	7,0	7.0	4.0	4.0	5.0	5.0	5.5	5.5
166	sub-contractor	building services work	3.0	5.0	5.0	8.0	8.0	9.0	9.0	7.0	8.5
169	sub-contractor	building services work	10.0	9.0	9.0	3.0	3.0	3.0	4.0	4.5	7.0
170	sub-contractor	structural work	10.0	9.0	7.0	4.5	3.0	4.5	5.0	6.0	5.5
181	sub-contractor	finishing work	5.0	8.0	7.0	5.0	5.0	5.0	5.0	6.0	4.5
182	sub-contractor	finishing work	9,0	8.0	7.0	4.5	4.0	4.0	6.0	4.0	3.5
183	sub-contractor	structural work	1,0	3,0	5.0	8.5	8.5	9.0	9.0	7.0	7.5
186	sub-contractor	finishing work	7.0	8.0	7.0	4.5	2.0	2.0	7.0	6.0	4.5
187	sub-contractor	finishing work	9,0	8.0	8.0	3.0	3.0	4.0	4.0	4.0	3.5
188	sub-contractor	finishing work	7.0	8.0	7.0	3.0	4.0	2.0	6.0	5.5	4.5
190	sub-contractor	structural work	7.0	9.0	7.0	2.0	4,5	4.0	3.0	5.0	7.5
194	sub-contractor	structural work	10.0	8.0	7.0	1.0	2.0	2.5	2.5	3.5	4,5
197	sub-contractor	building services work	8,0	8,0	8.0	7.0	1.0	3.0	6.0	4.5	7.5
			1	1		1	1	1	1		\vdash
·			1		1	l	l ———			1	
			→		 	-		•	 	• • • • • • • • • • • • • • • • • • • •	·

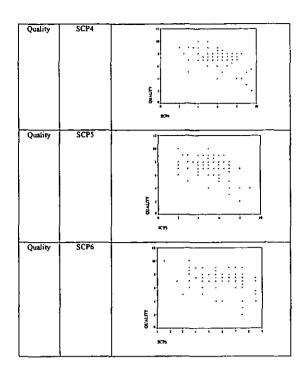
APPENDIX P

Scatterplot matrix for site coordination problems analysis

Scatterplot matrix for SP-Time-All model

Dependent	Independent	Scatterplot
variable	variable	
Time	SCPI	
		ž
Time	SCP2	Ĩ
Time	SCP3	E E E

Time	SCP4	
		F2.
Time	SCP5	
Time	SCP6	Z


Scatterplot matrix for SP-Cost-All model

D	3-4	Scatter plot
Dependent	Independent	Scatter plot
variable	variable	
Cost	SCPI	E ,
Cost	SCP2	507
Cost	SCP3	200

Cost	SCP4	117
		"1"
		4 * * : : : : : : : : : :
-	i	
ļ	•	i .
	1	B :
		SCPI
<u> </u>	CCDE	
Cost	SCP5	"
ŀ		•
- 1		1 11:5:5:5
i	1	
]
		§
		EC/5
Cost	SCP6	41
1		l
	1	
	1	1 1 11 11 11 11 11
ŀ		1
Ţ		
	İ	§ ,
		£N.

Scatterplot matrix for SP-Quality-All model

Dependent	Independent	Scatter plot
variable	variable	
Quality	SCPI	Unno 8
Quality	SCP2	Thus, and the state of the stat
Quality	SCP3	ETT)

APPENDIX Q

SPSS regression printouts for the causes to the site coordination problems analysis

SPSS regression printouts for SCP1 analysis

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
	CAUSEIZ, CAUSE2, CAUSE9, CAUSE10, CAUSEI, CAUSE3, CAUSE3, CAUSE3, CAUSE1, CAUSE1, CAUSE1, CAUSE1, CAUSE1, CAUSE1,		Exter
2		CAUSES	Backward (criterion: Probability of P-to-remove >= .100).
3		CAUSE12	Backward (criterion: Probability of F-to-remove
4		CAUSELL	>= ,100). Backward (enterion: Probability of F-to-remove
5		CAUSE3	>= .100). Backward (criterion: Probability of F-to-remove
6	.:	CAUSE9	>= ,100). Backward (criterion: Probability of P-to-remove >= ,100).

Descriptive Statistics

	Mean	Std. Deviation	N
SCP!	5.082	1.5137	193
CAUSE1	6.138	1,9939	195
CAUSE2	5.567	1.9872	195
CAUSE3	\$.644	2.0013	195
CAUSE4	5.638	2.0259	195
CAUSES	5.505	1,9955	195
CAUSES	5.123	1.9412	195
CAUSE7	5.269	2.0321	195
CAUSES	6.169	1,9277	195
AUSE9	6.292	2.1869	195
CAUSE10	5.936	1.7753	195
AUSELL	5,323	2.0137	195
AUSE12	5.621	1.9562	195

	Correlations										
		SCPI	CAUSEL	_CAUSE2	CAUSE3	_CAUSE4	CAUSES	CAUSE6	CAUSE?	CAUSES	CAUSES
Pearson Correlation	SCPI	1.000	.462	.540	.394	.486	.426	.293	.363	311	.234
	CAUSE	.462	1.000	.757	.568	.564	.541	.497	.399	466	.415
	CAUSE2	.540	.757	1.000	.636	.706	.600	.461	.420	.440	.336
	CAUSES	.394	.568	.636	1.000	.638	.583	.477	.471	.373	.367
	CAUSE4	.486	.564	.706	.638	1.000	.732	.462	.427	384	.308
	CAUSES	.426 (.548	.600	. 583	.732	1.000		318	.371	.229
	CAUSE6	.293	.497	.461	.477	.462	.568	1.000	.502	.443	.360
	CAUSE7	.363	.399	.420	471	.427	.318	_502	1.000	.566	A72
	CAUSES	.311	.466	.440	.373	.384	371	.443	366	1.000	.634
	CAUSES	.234	.415	.336	.367	.308	.229	360	.472	.634	1.000
•	CAUSE10	.297	.308	_352	.334	479	.435	-288	.275	.448	.411
	CAUSE11	.317	.361	.404	.352	.428	.323	.293	488	.646	.637
	CAUSE12	.118	.247	.130	.204	.172	157.	.288	263	408	.351
Sig. (1-tailed)	SCPI		.000	.000	.000	.000	.000	.000	.000	.000	.000ъ
	CAUSEI	.000		.000	.000	.000	.000	.000	.000	.000	2000. 2000. 2000.
	CAUSE?	.000	.000		.000	.000	.000	.000	.000	.000	.00€
	CAUSE3	.000	.000	.000	٠,	.000	.000	.000	.000	.000	.000
•	CAUSE*	.000	.000	.000	.000		.000	.000	.000	.000	5000. 100.
	CAUSE5	.000	.000	.000	.000	.000		.000	.000	.000	.00:
	CAUSEA	.000	.000	.000	.000	.000	.000		.000	.000	.000
	CAUSE?	.000	.000	.000	.000	.000	.000	.000	Ι.	.000	.000
	CAUSES .	.000	.000	.000	.000	.000	.000	.000	.000		.000
	CAUSE9	.000	.000	.000	.000	.000	.001	.000	.000	.000	_
	CAUSEIO	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	CAUSELL	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	CAUSE12	.050	.000	.03\$.002		.014	000	000_	000	.000
И	SCP1	195	195	195	195	195	195	195	195	195	195
	CAUSEI	195	195	195	195	195	195	195	195	195	195
	CAUSE2	195	195	195	195	195	195	195	195	195	195
	CAUSE3	195	195	195	195	195	195	195	195	195	195
	CAUSE4	195	195	195	195	195	195	195	195	195	195 1
	CAUSES	195	195	195	195	195	195	195	195	195	195
	CAUSE6	195	195	195	195	195	195	195	195	195	195
	CAUSE?	195	195	195	195	195	195	195	195	195	195
	CAUSES	195	195	195	195	195	195	195	195	195	195
	CAUSE9	195	195	195	195	195	195	195	195	195	195
	CAUSE10	195	195	195	195	195	195	195	195	195	195
	CALIFERIA	100				::: 1	111	***			177

5	
7	
.5	
-	
4	
_	
o'	
Ŧ	
۰	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
۸.	
'n,	
n	
-1	
_	
-	
>	
-	
~	

	I VUIII _	443.05/	174 1			
5	Régression	151.923		18.990	12.024	.000
	Residual	293.764	186	1.579		
	Total	445.687	194		l	
6	Regression	151.589	7	21.656	13.770	.000
	Residual	294.098	187	1.573	- 1	
	Total	445.687	194	į		
7	Regression	150.557	6	25.093	15.984	.000
	Residual	295.130	188	1.570		
	Total	445.687	194	ſ	1	
8	Regression	149.085	5	29.817	19.000	.000
	Residual	296.602	189	1,569	1	
	Total	445.687	194			
9	Regression	147,805	4	36.951	23.569	.000
	Residual	297.833	190	1.568	i	
	Total	445.687	194			
10	Regression	146.239	3	48.746	31.092	.000
	Residual	299.448	181	1.568	- 1	
	Total	445 697	194		I.	

- a. Predictors: (Constant). CAUSE12, CAUSE2, CAUSE9, CAUSE6, CAUSE10, CAUSE7, CAUSE3, CAUSE5, CAUSE8, CAUSE11, CAUSE1, CAUSE4
- b. Predictors: (Constant), CAUSE)2, CAUSE2, CAUSE9, CAUSE9, CAUSE10, CAUSE7, CAUSE3, CAUSE5, CAUSE11, CAUSE1, CAUSE4
- c. Predictors: (Consumt), CAUSE2, CAUSE9, CAUSE6, CAUSE10, CAUSE7, CAUSE1, CAUSE5, CAUSE11, CAUSE1, CAUSE4
- d Predictors: (Constant), CAUSE2, CAUSE9, CAUSE6, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE1, CAUSE4
- e Productors: (Constant), CAUSE2, CAUSE9, CAUSE6, CAUSE10, CAUSE7, CAUSE5, CAUSE1, CAUSE4
- f. Predictors: (Constant), CAUSE2, CAUSE6, CAUSE10, CAUSE7, CAUSE5, CAUSE1, CAUSE4
- g. Predictors: (Constant), CAUSE2, CAUSE6, CAUSE7, CAUSE3, CAUSE1, CAUSE4
 F. Predictors: (Constant), CAUSE2, CAUSE6, CAUSE7, CAUSE5, CAUSE4
- i. Predictors: (Constant), CAUSE2, CAUSE7, CAUSE5, CAUSE4
- . Predictors: (Constant), CAUSE2, CAUSE7, CAUSE4
- k. Dependent Variable: SCP1

- 445

Coefficients

		Unstandard:ze	t Coefficients	Standardized Coefficients			95% Confidence Interval for B		Correlations		_
Model .		В	Std. Error	Beta	t	Sig	Lower Round	Upper Bound	Zero-order	Partial	Part
	(Constant)	2.115	.417		5.068	.000	1.292	2.939	[
	CAUSEL	8.564E-02	076	.113	1.122	.264	065	.236	.462	.083	.0
	CAUSE2	.223	.086	.293	2.591	.010	.053	.393	.540	.189	.1
	CAUSEJ	-2.577E-02	.067	034	383	,702	159	.107	.394	028	0
	CAUSE4	7.337E-02	.081	.098	.904	.367	087	.234	.486	.067	.0
	CAUSE5	7.711E-02	.077	.102	.998	.319	075	.230	.426	.074	.0
	CAUSE6	-5.423E-02	.066	069	823	,411	184	.076	.293	061	0
	CAUSE7	.126	.062	.168	2,011	.046	.002	.249	.363	.147]	.1
	CAUSES	1.743E-02	.074	022	+.235	.814	164	.129	.311	017	0
	CAUSE9	-2.819E-02	.061	041	- 459	,647	149	.093	.234	034	0
	CAUSE10	5.084E-02	.070	.060	.730	.466	087	.188	.297	.054	.0
	CAUSEII	3.709E-02	.075	.049	.496	620	110	.185	317	.037 \	.0
	CAUSE12	-1.644E-02	.057	021	290	m	128_	.096	.110	021	0
?	(Constant)	2.105	.414		5.085	.000	1.288	2.921	Г	l i	
	CAUSE1	8.431E-02	.076	.111	1.110	.268	066	.234	.462	.082	.0
	CAUSE2	.221	.086	.290	2.587	,010	.053	.390	540	.188	.1
	CAUSES	-2.426E-02	.067	032	363	.717	156	.108	394	027	0
	CAUSE4	7.537E-02	.081	.101	.936	.351	084	.234	.486	.069 [.0
	CAUSES	7.511E-02	.077	.099	.981	.328	075	.226	.426	.072	.0
	CAUSE6	-5.529E-02	.066	- 071	. 844	.400	185	.074	.293	062	0
	CAUSET	.122	.060	.163	2.025	044	.003	.241	.363	.148	.1
	CAUSE9	-3.231E-02	.059	047	550	.583	148	.034	.234	041	0
	CAUSE10	4.983E-02	.069	.058	.719	.473	087	.187	.297	.053	.0
	CAUSELL	3.299E-02	.072	.044	.455	.650	110	.176	.317	.034	.0
	CAUSE12	1.790E-02	.056_	- 023	-318	.751	129		.118	024	0
3	(Constant)	2.067	.395	i .	5.230	.000	1.287	2.846		l 1	
	CAUSEI	8.021E-02	.075	.106	1.074	.284	067	.228	.462	.079	.0
	CAUSET	.226	.084	.297	2,700	.008	.061	.392	.540	.195	.1
	CAUSE	2.561E-02	.067	034	385	.701	157	.106	.394	028	0
	CAUSE4	7.650E-02	.080	.102	.953	.342	082	.235	.486	.070	.0.
	CAUSES	7.727E-02	.076	.102	1.016	.311	.073	.227	.426	.075	.0.
	CAUSE6	-5.913E-02	.064	076	920	.359	186	.068	.293	-068	0
	CAUSE?	.122	.060	.164	2.036	.043	.004	.241	.363	.148	.1
	CAUSE9	-3.182E-02	.059	046	-,543	.587	-,147	.034	.234	040	0
	CAUSE10	4.549E-02	.068	.053	.671	.503	088	.179	.297	.049	.0
	CAUSELL	2.636E-02	.069		381	704	- 110_	163	317	028 /	n

		CAUSE10	Criterion: Probability of F-to-remove
8	, i	CAUSEI	>= .100). Backward (criterion: Probability of F-to-remove
9	,	CAUSE6	>= .100). Backward (criterion: Probability of F-to-remove
10		CAUSES	>= .100). Backward (criterion: Probability of F-to-remove

- a. All requested variables entered.
- b. Dependent Variable: SCP1

мос шишигу

		_					hanze Statutica		
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	en .	df2	Sig. P Change
110-21	.5851	.343	.299	1.2688	.343	7.903	12	182	.000
ž	.5B5°	.342	.303	1.2656	,000	.055	1 }	184	.814
i I	.585°	.342	.306	1.2625	.000	.101	1 1	185	.751
á I	.5844	341	.309	1.2595	001	.145	1 1	186	.704
:	.584*	341	.313	1.2567	001	.171	1.1	187	.679
2	.583f	.340	.315	1.2541	001	.211	ιſ	188	.646
2	.581¢	.338	317	1.2529	- 002	.656	1.1	189	.419
<u>.</u>			.317	1.2527	003	.937	i 1	190	.334
8	.578	.335		1.2521	003	.816	i 1	191	367
9	.576) .573)	_332 _328	318 318	1.2521	003	991	; I	192	.319

- a. Prodictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE6, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE8, CAUSE11, CAUSE1, CAUSE4
- b. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE3, CAUSE6, CAUSE10, CAUSE7, CAUSE3, CAUSE5, CAUSE11, CAUSE1, CAUSE4
- c. Predictors: (Constant), CAUSE2, CAUSE9, CAUSE6, CAUSE10, CAUSE7, CAUSE3, CAUSE5, CAUSE11, CAUSE1, CAUSE4
- d Predictors (Constant), CAUSE2, CAUSE9, CAUSE6, CAUSE10, CAUSE7, CAUSE3, CAUSE5, CAUSE1, CAUSE4
- e. Predictors: (Constant), CAUSE2, CAUSE9, CAUSE6, CAUSE10, CAUSE7, CAUSE5, CAUSE1, CAUSEA
- f. Predictors: (Constant), CAUSE2, CAUSE6, CAUSE10, CAUSE7, CAUSE5, CAUSE1, CAUSE4
- 2. Predictors: (Constant), CAUSE2, CAUSE6, CAUSE7, CAUSE3, CAUSE1, CAUSE4
- Predictors: (Constant), CAUSE2, CAUSE6, CAUSE7, CAUSE5, CAUSE4
 Predictors: (Constant), CAUSE2, CAUSE6, CAUSE7, CAUSE5, CAUSE4
- i. Predictors; (Constant), CAUSE2, CAUSE7, CAUSE5, CAUSE4
- J. Predictors: (Constant), CAUSE2, CAUSE7, CAUSE4
- k. Dependent Variable: SCP1

ANOVA

Model		Sum of Squares	df	Mean Square	F.	Sig
1	Regression	152.677	12	12.723	7,903	.000
•	Residual	293.010	182	1.610	ļ	
	Total	445.687	}94		L	
2	Regression	152,588	11	13.872	8.661	.000
_	Residual	293,099	183	1.602		
	Total	445.687	[94_	!		
3	Regression	152.426	10	15.243	9.564	.000
-	Residual	293.261	184	1.594		
	Total	445 697	194	i 1	i.	

.006

.679 .330 .308 .333

.029 .677 .373

.000 .303 .007 .359 .331

.321 .645 .362 .000 .340 .006 .356 .295 .296 .034 .419

.000 .334 .007 .262 .245

.295

1.057

2.768

-414

.977 1.023

2.205 -118 -894

5.224

1.033 2.744 .919 .975

-.994 2.171 -.460 -.913 5.229

.956

2.768

.926 1.050 -1.048 2.135

.810 6.390 .968 2.751 1.126

1.166

-1.050 2.211

95% Confidence Interval for B

.066 -158 -080 -072

-.183

.013

-.125 -.067

1.271

-070

.063 -.083 -.075

-.188

.011 -.126

-.066 1.254 -.073 .065 -.082 -.068 -.190 .009 -.068

1.494

-072 .063 -065 -.059 -.190

| Lower Bound | Upper Bound | Zero-order | 1.280 | 2.832 | .068 | .225 | .462 |

.394

.103

.236 .227 .064 .242

.081 .178

2.813

Standardized Coefficients

.103

.302

-.036 .104 .102

-.079

-031 -065

.101 .294 .096

.096

-.081 .166 -.034

.091

.295

.097 .102 -.035 .156

.092 .293 .115

.113 -.085 .161

.360 .172

Unstandardized Coefficients

7.864E-02

-2.741E-02

7.812E-02

7.762E-02

-6.187E-02

.128 -2.181E-02

5.561E-02

7.643E-02 .224

7.209E-02

7.300E-02

-6.313E-02

.174 -2.384E-02

\$.666E-02

6.881E-02

7.249E-02

7.775E-02

-6.605E-02

4.749E-02

6.963E-02

8.601E-02

8.549E-02

-6.616E-02

2.162

.116

.225

2.042

.230

(Constant

CAUSEL

CAUSE2

CAUSE3

CAUSE4

CAUSES

CAUSE6

CAUSE7

CAUSE9

CAUSEIO

(Constant)

CAUSEL

CAUSE2

CAUSE4

CAUSES

CAUSE6

CAUSE7

CAUSE9

CAUSE10

(Constant)

CAUSEL

CAUSE2

CAUSE4

CAUSES

CAUSE6

CAUSE7

CAUSE 10

(Constant)

CAUSEI

CAUSE2

CAUSE4

CAUSES

CAUSE6

CAUSE4

Std. Error

.074

.083

.066 .080 .076

.064 .058 .052 .062

.391 .074 .082 .078 .075 .063 .057 .052 .062 .072

.081 .078 .074 .063 .054 .059

.338 .072

.051 .076 .073 .063

.132 - 025 .053 .061 .163 .053 .058 -.059 .129 Analysis for Ca-SCP1-AR .027 .054

.063 .165 .025 .058 .061 .058

.197 .067 .071 -.073 .157 -.034 .070 .198 .068 .077 -.076 .154 .059 .057 .164 .055 .062 .062 127 ,048 .057 .082 .085 -.076 .163 .067 .069 -.062

Conclutions

Parcial

.199

-.030

.072 .075 -.071

.160

-.031 ,066

.075

.462 .540 .486 .426 .293 .363 .234

.462 .540 .486 .426 .293 .363 .297

.540 .486 .426 .293

.003

Standardized Coefficients 95% Confidence Interval for B.

Lower Bound Urver Bound Zero-order
1.007 2892
1.138 400 540
-0.08 2233 486 750 Coefficients

554 Errer

.066
.075
.662
.054
.054
.066
.075
.066
.077
.066
.077
.066
.077
.066
.077
.066
.077
.066
.077
.066
.077
.066
.079
.067 Correlations Unstandardured Coefficients B 2.250 .269 4.055 .000 .540 .486 .426 .293 .363 .283 .078 8.206E-02 .110 .283 .205 .367 .024 .000 .000 1.272 -903 2.275 6.851 3.987 .092 -.066 .163 CAUSES 9.230E-02 .122 -.072 .165 -.051 237 .066 .230 2.837 .394 .238 -5.611E-02 -.179 .016 1.369 .133 -.062 -.065 .006 1.670 .147 .123 2.203 .540 .486 .426 .363 .278 .084 .072 .345 .263 .118 1.157 CAUSEA 8.794E-02 CAUSES 6.707E-02 .OBB .319 .199 CAUSEI (Constant) CAUSE2 2.090 7.341 4.227 ,202 2.898 .403 .255 .104 2.284 .275 .129 .103 .038 .000 .000 .046 .150 .124 .251 .119 .123 .540 .486 .363 .292 .144

Coefficients* (Constant) CAUSE2 CAUSE4 .241 .064 .075 CAUSE6 CAUSE7 -.054 (Constant) CAUSE2 .236 .069 .059

- 72
~
ч

446

Collinganty Statistics

2.793

3,530

2.186

3.261

2.862

1.970

1.942

2.462

2.174

1.842 2.730

1.485

2,777

3.501

2.166 3.225

2.828

1.961

1.810 1.997

1.835

2.581

1.467

2.697

3.380

2.157

3.219

2.806

1.894

1.809

1.764

Tolerance

.283

.457 .307

.349 .508 .515

.406 .460 .543

.366 .674

360 .286 .462 .310 .354 .510 .553 .501 .545

.387

.682

.296 .464 .311 .356 .528 .553 .501 .567

Model

(Constant

CAUSEI

CAUSE2

CAUSE3

CAUSE4

CAUSES

CAUSE6

CAUSE?

CAUSES

CAUSES

CAUSE10

CAUSE11

(Constant)

CAUSEI

CAUSE2

CAUSES

CAUSEA

CAUSES

CAUSE6

CAUSE7

CAUSE9

CAUSEIO

CAUSE

CAUSE(2

(Constant)

CAUSEI

CAUSE2

CAUSES

CAUSE4

CAUSES

CAUSE6

CAUSE7

CAUSE9 CAUSEIU

CAUSELL

		Collinearity	. Cial et es
Model		Tolerance	VIF
4	(Constant)	Totalellec	
	CAUSEI	.372	2,689
	CAUSE2	300	3.336
i	CAUSE3	466	2,146
	CAUSE4	.312	3.210
	CAUSES	.356	2.805
ŀ	CAUSE6	.535	1.870
1	CAUSE7	589	1.697
	CAUSE9	.623	1,593
	CAUSE10	,670	1.492
3	(Constant)		
	CAUSEL	.374	2.675
	CAUSE2	.309	3.233
	CAUSE4	.322	3.103
	CAUSES	.364	2.745
	CAUSES	.536	1.866
	CAUSE7	.606	1.650
į	CAUSES	.633	1.579
	CAUSE10	.671	1.490
6	(Constant)	l :	i
	CAUSEI	.393	2.541
	CAUSE2	.310	3.228
	CAUSE4	.322	3.103
	CAUSES	371	2.692
į.	CAUSE6	541	1.847
l .	CAUSE7	.663	1.508
L	CAUSEIO	.249	1.336
7	(Constant)	l	
1	CAUSEI	.394	2.541
1	CAUSE2	.310	3.227
į .	CAUSE4	.338	2.962
1	CAUSES	.378	2.647
1	CAUSE6	541	1.847

Coefficients*

-7
7
Œ.
-
•
-
2
1
0
7
-
-
F

Į.	CAUSE_I		1.000	.850	.628	.625	540	.224	.433	436	416
	CAUSE_2	.597	.850	1.000	.622	.759	.595	.164	.564	.530	.543
	CAUSE_3	.474	.628	.622	1.000	.598	.633	.211	.426	.379	.350
ļ	CAUSE_4	.597	.625	.759	.598	1.000	.785	.285	.548	.447	549
	CAUSE_5	.509	.540	.595	.633	.785	1.000	.274	.378	.389	.396
	CAUSE_6	.084	.224	.164	.211	.285	.274	1.000	.282	.234	.159
	CAUSE_7	.424	.433	.564	426	548	.378	.282	1.000	.694	.552
Į.	CAUSE_8	.308	.436	.530	.379	.447	1 389	.234	694	1.000	.784
1	CAUSE_9	.329	.416	.543	350	549	.396	.159	.552	.784	1,000
	CAUSE_10	.[4]	.253	.309	.185	.359	.327	.086	.393	.664	.694
j	CAUSE_II	.276	.341	456	.217	.400	340	.044	.524	.797	.760
	CAUSE_12	-015_	.248	.108	.092	.088	.168	.099	.110	.396_	.372
Sig. (1-tailed)	SCPI		.000	.000	.000	.000	.000	.272	.001	.011	2.001 2.000
	CAUSE_1	.000		.000	.000	.000	.000	.050	.000	.000	Ē.001
	CAUSE_2	.000	.000		.000	.000	.000	.116	.000	.000	.≝.000
	CAUSE_3	.000	.000	.000	ι.	2000	.000	.061	.001	.002	\$.004 - 000 - 001
1	CAUSE_4	.000	.000	.000	.000		.000	.017	.000	.000	<u></u> 000
	CAUSE_5	.000	.000	.000	.000	.000		.022	.002	.002	9.001
	CAUSE_6	.272	.050	.116	.061	.017	,022		.019	.043	C 123
1	CAUSE_7	.00t	.000	.000	.001	.000	.002	.019		.000	<u>7,000</u>
ļ	CAUSE_8	.011	.000	.000	.002	.000	.002	.043	.000		<u>~~</u>
1	CAUSE_9	.007	.001	.000	.004	.000	.001	.123	.000	.000	
	CAUSE_10	.153	.031	.011	.088	.004	.007	.267	.001	.000	, 5000
Į	CAUSE_11	021	.005	.000	.056	.001	.006	.375	.000	.000	-SCP1-NC
	CAUSE_12	456	.034	.217		.263	.110	.236	.212	.001	.003
N	SCPI	\$55	55	35	55	55	55	55		55	55
	CAUSE_I	55	55	55	55	55	55	55	55	55	55 55
	CAUSE_2	55	55	55	55	55	55	55	55	55	33
1	CAUSE 3	55	55	55	55	55	55	55	55	55	55 55
ļ	CAUSE_4	55	55	55	55	55 55	55 55	55	55	55	33
	CAUSE_5	3.5	55	55	55			55 55	55 55	55	\$5 55
ļ	CAUSE_6 CAUSE_7	55	55	55	55	55	35		55	55	33
		SS	55	55	55	55	55	55		55	55 55
	CAUSE_8	55	55	55	55	55	55	55	55	55	33
1	CAUSE_9	55	Š .	33	55	55	55	55	55	55	55
	CAUSE_10	55	55	55	55	\$5	55	55	55	55	55 55
1	CAUSE_II	55 55	55	55 55	55 55	55 55	55 55	55 55	55	55 55	55
<u> </u>	CAOSE 12		1		- 53						

Correlations

		CAUSE 10	CAUSE !!	CAUSE 12
Featson Correlation	SCPI	,141	.276	•.0iS
	CAUSE_1	.253	.34)	.248
	CAUSE_2	.309	.456	.108
	CAUSE_3	.185	.217	.092
	CAUSE_4	.359	.400	830.
	CAUSE_5	.327	.340	.168
	CAUSE_6	.086	.044	.099
	CAUSE_7	.393	.524	.110
	CAUSE_8	.564	.797	.396
	CAUSE_9	.694	.760	.372
	CAUSE_10	1.000	.724	.544
	CAUSE_I1	.724	1.000	.370
	CAUSE 12	.544	.370	J.000
Sig. (1-tailed)	SCPI	.153	.021	.456
	CAUSE_I	.031	.005	.034
	CAUSE_2	011	.000	.217
	CAUSE_3	.058	.056	.251
	CAUSE_4	.004	100.	.263
	CAUSE_5	.007	.006	.110
	CAUSE_6	.267	.375	.236
	CAUSE_7	.not	.000	.212
	CAUSE_8	.000	.000	.001
	CAUSE 9	.000	.000	.003
	CAUSE_10	أنييا	.000	.000
	CAUSE_II	.000		.003
N	CAUSE_12 SCPI		.003	ان
N	CAUSE	55	55	55
	CAUSE_2	55	SS	55
	CAUSE_2 CAUSE_3	55 [55 [55
	CAUSE 4	55	55	\$5
	CAUSE_5	55	55	55
	CAUSE_6	55	55	55
	CAUSE_0	55	55	55
	CAUSE_8	55	55	55
	CAUSE 9	55	55	\$5
	CAUSE_10	SS	55	55
	CAUSE_11	55	55	55
	CAUSE 12	55	55	55
	CHOSE 14			55.

Ē	
=	

	B	(Constant)		
		CAUSE2	.465	2.151
		CAUSE4	.339	2.953
		CAUSES	.382	2.619
		CAUSE6	.556	1.797
		CAUSE7	.670	1.492
- 1	9	(Constant)		
	l	CAUSE2	469	2.131
		CAUSE4	.341	2.932
	i	CAUSES	450	2.220
	1	CAUSE7	.789	1.267
	10	(Constant)		
	I	CAUSEZ	.484	2.066
	l	CAUSE4	.480	2.082
	ı	CAUSE7	.790	1.266

a. Dependent Variable: SCP1

Regression

Descriptive Statistics

	Mean	Std. Deviation	N .
SCPL	5.282	1.6380	55
CAUSE 1	5.391	2.2396	55
CAUSE_2	5.464	2.1897	55
CAUSE_3	5.400	2.2307	55
CAUSE_4	5.764	2.4092	55
CAUSE_5	5.500	2.2812	55
CAUSE_6	5.655	9.0615	55
CAUSE_7	4.600	2.4578	55
CAUSE_B	5.482	2.2770	55
CAUSE_9 \	4.809	2,1398	55
CAUSE_10	6.400	1.9940	55
CAUSE_11	4.891	2.3935	55
CAUSE_12	5.245	2.2554	55

					Chapter Statistics							
Model_	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	P Change	df)	df2	Sig. F Change			
	.7024	.493	.348	1.3231	493	3,397	12	42	.002			
2 1	.702*	,493	.363	1.3076	.000	.001	1	44	.974			
3	.701¢	.492	.377	1.2933	001	.044	1 1	45	.836			
4	.7014	492	.390	1.2792	.000	.022	i I	45	.883			
5	.6994	.489	.400	1.2684	003	.225	i l	47	.638			
6	.6981	.487	.411	1.2575	002	.198	'il	48	.659			
7	.6958	483	.419	1.2486	004	.323	i I	49 .	572			
8	.69[1	ATT	.424	1.2432	006	577	. il	50	.451			
9	.6841	.468	.425	1.2421	010	.911	l il	51	344			
10	.677 ^j -	.458	.426	1.2411	- 010	.915	l il	52	343			
لــــــــــــــــــــــــــــــــــــــ	6611	.437	.416	1.2521	021	1 929	i 1	53	.171			

- a. Predictors: (Constant), CAUSE, 12, CAUSE, 4, CAUSE, 6, CAUSE, 11, CAUSE, 2, CAUSE, 2, CAUSE, 10, CAUSE, 10, CAUSE, 5, CAUSE, 9, CAUSE, 8, CAUSE, 2
- b. Predictors: (Constant), CAUSE_12. CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_7, CAUSE_10, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_8, CAUSE_2
- d. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_2
- e. Predictors: (Constant), CAUSE_12. CAUSE_4, CAUSE_6, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_2
- f. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_7, CAUSE_1, CAUSE_5, CAUSE_2
- B. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_7, CAUSE_1, CAUSE_5
- h. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_7, CAUSE_1
- i. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_1
- J. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_1
- k. Predictors: (Constant), CAUSE_4, CAUSE_1
- 1. Dependent Variable: SCP1

ANOVA

Mode		Sum of Squares	4	Mean Square	F	Sig.
1	Regression	71.357	12	5.946	3.397	.002*
ł	Residual	73.525	42	1.751		1
	Total	144.882	54	_	_	ł l
12	Regression	71,355	LÌ	6.487	3,794	.001
ı	Residual	73.527	43	1.710		
	Total	144.882	54	L		

448

ANOVAL

Model		Sum of Squares	d(Mean Square	F	Sig
3	Regression	71.281	10	7.128	4.261	.000
	Residual	73.601	44	1.673		
	Total	144.882	54	L		
4	Regression	71.244	9	7.916	4.837	.000
	Residual	73.638	45	1.636		
	Total	144.882	. 54	1 _1_		
5	Regression	70.876	8	B.860	5.507	.000
	Residual	74.005	46	1.609		
	Total	144.882	54	1 1.		
6	Regression	70.559	7	10.080	6374	.000
	Residual	74,323	47	1.581		
	Total	144.882	54	l		
7	Regression	70.048	6	11.675	7.488	.000
	Residual	74.834	48	1.559	(
	Total	344.882	54	ll_		
8	Regression	69.148	3	13.830	8.948	.000
	Residual	75.734	49	1,546		
	Total	144.882	54			
9	Regression	67.739	4 .	16.935	10.976	.000
	Residual	77.142	50	1,543		
	Total	144.882	. 54			
10	Regression	66.127	3	22.109	14 354	.000
	Residual	78.554	51	1.540	- 1	
	Total	44.582	. 54			
11	Regression	63.357	ž	31.678	20.206	.000
	Retional	81.525	52	1.568		
	Total	144,882	54	!	!	

- * Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_9, CAUSE_2 b. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_8, CAUSE_2
- d. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_2 f. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_7, CAUSE_1, CAUSE_5, CAUSE_2
- g. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_7, CAUSE_1, CAUSE_5
- h. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_1, CAUSE_1

1 Bud and Manager CALIFE IS CASIED A CASIED & CALIED

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method.
•	CAUSE 12. CAUSE 4. CAUSE 4. CAUSE 11. CAUSE 3. CAUSE 7. CAUSE 10. CAUSE 10. CAUSE 5. CAUSE 5. CAUSE 8. CAUSE 8. CAUSE 8.		Enter
2		. CAUSE_3	Backward (criterion: Probability of F-to-remove >= .100).
3		CAUSE_9	Backward (criterion: Probability of F-to-remove
1	-	CAUSE_8	>= .100). Backward (criterion: Probability of F-to-remove
5		CAUSE_11	>a .100). Backward (criterion: Probability of F-to-remove
5		CAUSE_10	>= .100). Backward (criterion: Probability of F-to-remove

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
7		CAUSE_2	Backward (criterion: Probability of F-to-remove >= .100).
8		CAUSE_5	Backward (criterion: Probability of F-to-remove >= .100).
9	٠	CAUSE_7	Backward (criterion: Probability of P-to-remove >= .100).
10		CAUSE_6	Backward (criterion: Probability of F-to-remove >= .100).
11		CAUSE_12	Backward (criterion: Probability of F-to-remove

- a. All requested variables entered.
- b. Dependent Variable: SCP1

				_	r	I -:					
Model		<u> </u>	Std Error	Beta	11	Sig	Lower Bound	Upper Round	Zero-order	Partial	Part
5	(Constant)	2.724	.585		4.659	.000	1.549	3.899			
1	CAUSE_1	.294	.101	.402	2.918	.005	.092	.496	.595	385	.301
1	CAUSE_4	.222	.099	.326	2.236	.030	.022	.421	.597	.304	.231
1	CAUSE_6	-2.147E-02	.020	119	-1.086	283	061	.019	.084	153	112
	CAUSE_7	8.029E-02	.094	.120	.955	.344	089	.249	.424	.135	.099
	CAUSE_12	105	.078	145	-1.352	.183	262	.051	015	190	140
9	(Constant)	2.801	579		4.841	.000	1.639	3.963			
	CAUSE_I	.305	.100	.418	3.058	.004	.105	.506	.595	.397	316
	CAUSE_4	.257	.092	.378	2.790	.007	.072	.442	.597	.367	.288
l	CAUSE_6	-1.869E+02	.020	- 103	-957	.343	058	.021	.084	134	.099
	CAUSE_12	-,103	.078	- 142	-1.323	.192	- 259	.053	015	- 184	- 137
10	(Constant)	2.842	.576		4.930	.000	1.685	3.999		*	
	CAUSE_1	.301	.100	.412	3.022	.004	.102	.502	.595	.390	.31g .21d
1	CAUSE_4	.239	.090	.352	2.656	.011	.058	.420	.597	.349	27
1	CAUSE_12	108	.078	148	-1.389	.171	263	.048		- 191	142
11	(Constant)	2.398	.484		4,954	.000	1.427	3,369			
i	CAUSE_I	.267	.097	.365	2.739	.003	.071	463	.595	.355	28
<u> </u>	CAUSE_4	251	091.	.369	2.766	.003	069		.597	358	28ව
											SCP1-MC
											~
											÷
											ភ

449 -

Coefficients¹

	Collinearity	Statistica
Model	Tolerance	VIF
1 (Constant)		
CAUSE_1	.213	4.690
CAUSE_2	.150	6.668
CAUSE_3	.440	2.272
CAUSE 4	.195	5.125
CAUSE 5	.299	3,343
CAUSE 6	.783	1.277
CAUSE_7	394	2.541
CAUSE 8	.187	5.351
CAUSE_9	.257	3.897
CAUSE 10	337	2.964
CAUSE 11	.250	3,995
CAUSE 12	.568	1.761
2 (Constant)		4:/04
CAUSE 1	.226	4.41B
CAUSE 2	.150	6.664
CAUSE 4	195	5.120
CAUSE_5	343	2.916
CAUSE 6	.786	1.272
CAUSE_7	.398	2,513
CAUSE B	.190	5.274
CAUSE 9	.190	3.876
CAUSE 10	.338	2.961
CAUSE II	.262	3.820
CAUSE 12		
	571	1.752
(Constant) CAUSE 1		
	.229	4.385
CAUSE_2	.151	6.601
CAUSE_4	.216	4.631
CAUSE_5	.359	2.789
CAUSE_6	.786	1.272
CAUSE_7	402	2.486
CAUSE_8	.216	4.620
CAUSE_10	.354	2.822
CAUSE_11	.275	3.639
CAUSE 12	573	1.745

Analysis for Ca-SCP1-MC

Mode		В	Std. Error	Beta	1	Sie	Lower Bound	Upper Bound	Zero-order	- David	
	(Constant)	2.924	.739		3.956	.000	1.433	4,416	2210-01023	Pertial	Pert
1	CAUSE_1	.354	.174	.483	1.030	.049	.002	.705	.595	.299	.223
- 1	CAUSE_2 ·	121	.212	161	563	573	- 549	308	597	087	062
	CAUSE_3	-3.929E-03	.122	005	032	.974	249	.242	A74	005	
i	CAUSE_4	.187	.169	.275	1.105	.275	-154	.528	.474 597		004
- 1	CAUSE_5	9.940E-02	.144	.138	689	.495	192	.328	.509	.168	.121
- 1	CAUSE_6	-2.46SE-02	.022	136	-1.098	.279	070	.021	.084	.106	.076
i	CAUSE_7	.112	.117	.169	.963	.2/7	123	348	.424	167 .147	121
	CAUSE_8	-3.701E-02	.183	051	-202	.841	406	.332	.308		.106
ŧ	CAUSE 9	3.456E-02	.166	.045	208	.836	301	.370	.308	-031	022
	CAUSE_10	-9.508E-02	.155	-116	-612	.544	409	.370		.032	.023
- 1	CAUSE_II	5.939E-02	.150	.087	-395	.695	409		.141	094	067
- [CAUSE_12	-9.830E-02	.106	135	-928	.873	-312	.363 .115	.276 015	.06t	.043
2	(Constant)	2.920	.717	*133	4.074	.000	1.474	4.365	013	142	102
1-	CAUSE_1	.352	.167	.482	2.109	.041	.015	4.363	.595 J		15 12 12 12 12 12 12 12 12 12 12 12 12 12
	CAUSE_2	121	210	161	-\$76	.568	.544			.306	- 44
1	CAUSE_4	.187	.167	.275	1120	269	150	.302	.597	087	-095
1	CAUSE_5	9.773E-02	.133	.136	.734	.467	-5130 -5171	.524	.597	.168	.12
	CAUSE_6	2.461E-02	.022	136	-1.111	.273	069	.366	.509 .084	-111	.080
1	CAUSE_7	.112	.115	.168	976	.334	119	.020		167	हुन् हुन्हुन्हुन्हुन्हुन्हुन्हुन्हुन्हुन्हुन्
4	CAUSE_8	3.772E-02	.179	-,052	-210	.835	-400	.344	424	.147	-1423
1	CAUSE_9	3.417E-02	.164	.012	209	.836	-400	.324	.308	032	-029
	CAUSE, 10	-9 493E-02	.154	116	418	.636	405	.364	.329	.032	
	CAUSE_11	6.041E-02	.145	.088	.416	.680	-233	.215 .353	.141	094	- 095
1	CAUSE_12	-9.806E-02	.104	-135	.939	.353	309	.112	0[5	.063	102
3	(Constant)	2,902	.704		4.123	.000	1.483	4.320	-,10[3	142	102
1	CAUSE_1	.349	.165	477	2.122	.040	.017	.681	.595	.305	228
•	CAUSE_2	.117	.207	156	-364	.575	533	.300	.597		
	CAUSE_4	.198	.157	.291	1.259	.215	119			085	-261
1	CAUSE_5	9.193E-02	.129	.128	.714	.479		.515	.597	.186	.135
1	CAUSE_6	-2.457E-02	022	-136	-1.121		168	352	_509	.107	.077
1	CAUSE_7	.110	.113		970	268	069	.020	.084	-167	121
ſ	CAUSE_B	-2.452E-02	.166	.164		337	-,118	.337	.424	.145	.104
1	CAUSE_IO	-8.798E-02	.100	034	148	.883	-359	310	.308	022	016
1	CAUSE_11	6.700E-02	.140	107	593	.556	387	.211	.141	089	064
1	CAUSE 12	-9.663E-02	103	.098	.478	.635	216	.350	.276	.072	-051
_	CHUSE IZ	-9.003E-02	.193 1	133	938	.153	-304		-015	140	-101.5

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			000,000				
Model		R	Std. Error	Beta		2ie	95% Confidence		 _	Correlations	
4	(Constant)	2902	.696	200.1	4.168		Lower Bound	Upper Bound	Zero-order	Partial	Pers
	CAUSE 1	350	.163	.478	2.149	.000	1.499	4.304	1	i	
	CAUSE 2	121	.202	162	-599		.022	.677	595	305	.22
	CAUSE 4	202	.153	.297	1322	.552	528	.286	.597	089	06
	CAUSE 5	9.034E-02	.127	.126	. 1322 .711	.193	106	015	.597	.193	.14
	CAUSE 6	-2.522E-02	.021	140		.481	- 165	.346	.509	.105	.07
	CAUSE_7	.102	.098		-1.188	.241	068	.018	.084	174	12
	CAUSE_10	-9.153E-02	.145	.153	1.034	.307	-,096	.300	.424	.152	.11
	CAUSE 11	5.628E-02		111	632	_530	383	.200	.141	094	06
	CAUSE 12	-9.912E-02	.119	.082	.474	.638	183	295	.276	.070	.05
5	(Constant)			137	- 986		302	.103	.015	145	- 10
,		2.818	.668	l l	4.220	.000	1,474	4.162			
	CAUSE_1	343]	.161	.469	2,133	.038	.019	.666	.595	i 300 f	.21
		102	.196	136	518	.607	496	.293	597	076	
	CAUSE_4	.195	.151	.287	1.293	.202	109	.499	.597	.187	~~
	CAUSE_5	9.326E-02	.126	.130 {	.742	.462	- 160	.346	.509	.109	
	CAUSE_6	-2.640E-02	.021	146	1.263	.213	068	.016	.084	-183	112
	CAUSE_7	115	.094	.172	1.224	.227	074	.303	.424	.178	.22 -0.5 -0.5 -1.3 -1.2
	CAUSE_10	-5.237E-02	.118	064	-,445 (.659	- 290	.185 (.141	065	-06
	CAUSE_12	-9.708E-02	.100	134	975	.335	- 298	.103	-015	-,142	.10
	(Constant)	2.698	.605		4.457	.000	1.480	3.916			-:14
	CAUSE_1	.355	.157	.486	2.267	.028	.040	.671	.595	514	
	CAUSE_2	·110 {	.194	147	ا 862 -	372	- 499	.279	.393 .397	314	.05 .05 .13 .076
	CAUSE_4	.187	.148	.275	1.259	.214	112	.486	397	083 .181	05
	CAUSE_5	9.080E-02	.125 [.126	.729	470	- 160	341	509		174
	CAUSE_6	-2.553E-02	.021	141	-1.237	.222	.067	.016	.084	.106	JU16
	CAUSE_7	104	.090	.156	1.159	.252	077	.285	.424	178	125
_	CAUSE_12	122	.081	- 169	-1.511	.138	285	.283	015	.167	.121
	(Constant)	2.650	.595		4.452	.000	1.453	3.847	013	215	-,158
	CAUSE_1	.288	.101	.394	2.837	.007	084				
	CAUSE_4	.153	.135	.225	1.133	.263	-,118	.492	.595	.379	.294
	CAUSE_5	9.386E-02	.124	.131	.760			.424	.597	.161	.118
	CAUSE_6	-2.281E-02	.020	126	-1.145	.451	- 155	.342	.509	.109	.079
	CAUSE_7	8.911E-02	.085			.258	.063	.017	.084	163 (-119
	CAUSE_12	-114	079	.134	1.045	.301) 156	082 273	.261	.424 -015	.149	.108

SCPI CAUSE 1 CAUSE 2 CAUSE 3 CAUSE 4 CAUSE 5 CAUSE 5 CAUSE 7 CAUSE 8 CAUSE 9 CAUSE 10 CAUSE 11 CAUSE 11

Descriptive Statistics

Mean 4.927 6.129 5.368 5.581 5.350 5.261 5.171 5.500 6.444 7.162 5.615 5.511 5.755

450

Std Deviation
[.4192]
1.6945
1.7731
1.7665
1.6417
1.6976
1.7034
1.7145
1.6697
1.6646
1.5134
1.6237
1.7039

				-	Corre	lations					
Pearson Correlation	5CP1	SCPI	CAUSE I	CAUSE 2	CAUSE 3	CAUSE 4	CAUSE 5	CAUSE 6	T		
I CALSON CONTENTION	CAUSE_1	1.000	.364	.451	.300	.324	.352	.269	CAUSE 1	CAUSE 8	CAUSE 9
l	CAUSE_1	364	1.000	.662	.486	432	.520	.496	367	288	.260
ì	CAUSE_1	451	.662	1.000	.607	.561	316	.445	.329	.453	.384
	CAUSE 1	.300	.486	.607	1.000	.624	365	366	355	402	.390
		.324	.432	.561	.624	1.000	544	A72	.500	.319	.473
1	CAUSE_S	.352	.520	.516	.565	.644	1.000	.654	.420	.395	.386
	CAUSE_6 CAUSE_7	.269	.496	.445	.566	472	.654		405	446	.376
l		.362	.329	.355	.500	420	.405	1.000	.481	.417	.464
1	CAUSE_8	.288	.453	.402	.319	.395	.446	.481	1.000	.416	.331
	CAUSE_9	.250	j .384 i	.390	473	.386	376	417	.416	1.000	.478
ļ	CAUSE_10	.252	.331	.265	.394	.487	492	464	.331	.478	1.000
ì	CAUSE_11	.289	.288	.386	.406	.495		.348	.229	.339	.502
B 0 -3-	CAUSE 12	L158	199 i	112	218		.429	.356	.418	.483	.537
Sig. (1-tailed)	SCP1		.000	.000	.001	.000	.000	.278	.292	.350	.280
ľ	CAUSE_1	.000		.000	.000	.000		.002	.000	.001	250 200 200 200 200 200 200 200 200 200
	CAUSE_2	.000	.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.000	.000	.000	.000	.000	.000	004
	CAUSE_3	.001	.000	.000			.000	.000	.000	.000	.0021
	CAUSE_4	.000	.000	.000	.000	.000	.000	.000 أ	.000	.000	200
	CAUSE_S	.000	.000	.000	.000	.000	.000	.000	.000	.000	.005
	CAUSE_6	.002	.000	.000	.000			.000	.000	.000	me
	CAUSE_7	1 000.	.000	.000	.000	.000	.000		.000	.000	000 000 0005
	CAUSE_8	.00:	.000	.000	.000	.000	.000	.000	.	.000	2600
	CAUSE_9	002	.000	.000	.000	.000	.000	.000 [.000		0000
	CAUSE_10	.003 (.000	.002	000	.000	.000]	.000	.000	.000	·~~
	CAUSE_11	.001	.001	.000	.000	.000	.000 (.000- (.006	.000	200 200 200
	CAUSE_12	.045	016			.000	.000	.000	.000	.000	.000
N	SCP1	117	117	117	.009	.005	.005	001 (.001	.000	.001
	CAUSE_!	117	iii l	117		117	117	117	117	117	117
	CAUSE_2	117	117	117	117	117	117	117	117	117	117
	CAUSE_3	117	ii;	117	117	117	117	117	117	117	117
	CAUSE_4	in l	117		117	117	117	117	117	117	117
	CAUSE 5	117	117	117	117	117	117	117	117	117	117
	CAUSE_6	117	117	117	112	117	117	117	ii7 f	117	117
	CAUSE 7	117	117	117	117	117	117	117	117	117	117
	CAUSE_8	161		117	117	117	117	117	117	117	117
	CAUSE 9	117	117	117	117	117	117	127	117	117	
	CAUSE 10	117	117	117	117	117	117	117	117	117	117
	2112212	117	117	117	117	117	115	:::	***	117 [117

	- 1		
	ļ.	Collinearity	
Mode!		Tolerance	VIF.
(Constan			
CAUSE		.228	4.383
CAUSE		.155	6.458
CAUSE		.223	4,477
CAUSE		.361	2.769
CAUSE		.819	1.221
CAUSE		519	1.927
CAUSE		.364	2.748
CYUSE	.11	.375	2.664
CAUSE	12	589	1.698
5 (Constan			
CAUSE		.230	4.347
CAUSE		.162	6.190
CAUSE		.225	4.436
CAUSE		.362	2.763
CAUSE		.830	1.204
CAUSE		562	1.778
CAUSE		.540	1.852
CAUSE		.590	1.695
6 (Constar]	
CAUSE		.238	4.209
CAUSE		.163	6.131
CAUSE		.229	4.368
CAUSE		.363 .838	2.757
CAUSE		.60:	1.194 1.664
CAUSE		.876	1,064
7 (Constan			1,141
CAUSE		.559	1,789
CAUSE		274	3.654
CAUSE		363	2.752
CAUSE		.834	1.131
CAUSE		.657	1.521
CAUSE		907	1.102

	• • • • • • • • • • • • • • • • • • • •	Collinearity Statistics				
Model		Tolerance	VIF			
В	(Constant)					
	CAUSE_1	.562	1.778			
	CAUSE_4	502	1.991			
	CAUSE_6	892	1.122			
	CAUSE 7	.670	1.493			
	CAUSE_12	926	1.080			
9	(Constant)					
	CAUSE_I	571	1.752			
	CAUSE 4	581	1.721			
	CAUSE 6	.911	1.097			
_	CAUSE 12	.927	1.079			
10	(Constant)		1.4.7			
	CAUSE_1	.572	1.749			
	CAUSE_4	.605	1.654			
	CAUSE_12		1.074			
11	(Constant)					
	CAUSE_1	.609	1.641			
	CAUSE 4	609	1.641			

a. Dependent Variable; SCP1

LIPRAGE J	_ entered	L Kemoved	Method
,		CAUSE_1	Backward (enterion: Probability of F-to-remove >* ,100).
5		CAUSE_6	Backward (criterion: Probability of F-to-remove >= .100).
9		CAUSE_5	Backward (enterion: Probability of F-10-remove >= ,100).
10		CAUSE_3	Backward (criterion: Probability of F-to-remove >= ,100).
11		CAUSE_10	Backward (criterion: Probability of F-to-remove >= 1001

a. All requested variables entered.

Model Summary

1 1	_			_			Change Statistics		
Model .	_ R .	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	aft	df2	Sig. F Change
FT	.526*	.277	.194	1.2743	277	3.323	12	104	.000
12 1	.526	.277	.201	1.2682	.000	.004	1]	106	.949
] 3	.526*	.277	.209	1.2622	.000	.004	1 /	107	.952
[4]	.5264	.277	.216	1.2565	.000	.032 l	- 1	108	859
ا دا	.526°	.277	.223	1.2510	000.	.057	1 1	109	.812
[6 [.5251	.276	.229	1.2458	001	.093	i l	110	.761
17 [.5242	.274	.235	1.2414	-002	.231	- 11	111	.632
ነፀ ነ	.522	.273	.240	1.2373	002	.257	1 (112	.613
19	.5181	269	.243	1.2351	.004	.613	i I	113	A35
10	5114	261	.242	1.2358	007	1.129	11	114	.290
lul	500*	250	237	1.2397	011	1.716	il	115	

- a. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_2, CAUSE_8, CAUSE_9, CAUSE_9, CAUSE_11, CAUSE_1, CAUSE_1, CAUSE_5, CAUSE_5
- b. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_5, CAUSE_6, CAUSE_6, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- 6. Productors: (Constant), CAUSE_12. CAUSE_2, CAUSE_10, CAUSE_3, CAUSE_6, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5

 d. Productors: (Constant), CAUSE_12. CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_6, CAUSE_9, CAUSE_1, CAUSE_3, CAUSE_3

 c. Productors: (Constant), CAUSE_22. CAUSE_10, CAUSE_12, CAUSE_9, CAUSE_9, CAUSE_1, CAUSE_3.

- f. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_6, CAUSE_1, CAUSE_3, CAUSE_5
- g. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_6, CAUSE_3, CAUSE_5
- h. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_3, CAUSE_5
- i. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_3
- i Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7
- L. Predictors: (Constant), CAUSE_2, CAUSE_7
- 1. Dependent Variable: SCP1

ANOVAL

Model		Sum of Squares	df	Mean Square	_ F	Sig
[I	Regression	64.759	12	5.397	3.323	.000
1	Residual	168.873	104	1,624	1	
L _	Total	233.632				
[2	Regression	64.753	11	5,887	3.660	.000b
ļ	Rezidua)	168.880	105	1.608		
ł	Total	213 612	116		1	

Pearson Correlation	SCP1	252	.289	f .158
	CAUSE_I	.331	.288	.199
Į.	CAUSE_2	.265	.386	.112
	CAUSE_3	394	.406	.218
	CAUSE_4	487	.495	.237
ļ	CAUSE_5	.492	.429	.238
	CAUSE 6	.348	.356	.278
l	CAUSE 7	229	418	.292
ì	CAUSE 8	.339	.483	.350
Ē.	CAUSE 9	502	537	.289
ľ	CAUSE_10	1.000	506	.349
i	CAUSE_11	.506	1.000	.392
	CAUSE_12	349	392	1.000
Sig. (1-tailed)	SCP1	.003	.001	.045
	CAUSE_1	.000	.001	.016
ļ	CAUSE_2	.002	.000	.114
]	CAUSE_3	.000	.000	.009
1	CAUSE_4	.000	.000	.005
ţ	CAUSE_S	.000	.000	.005
	CAUSE_6	.000	.000	100.
	CAUSE_?	.006	.000	.001
†	CAUSE_8	.000	.000	.000
1	CAUSE_9	.000	.000	.001
	CAUSE_10		.000	.000
1	CAUSE_[]	.000		.000
	CAUSE_12	000	000	
N N	SCP1	117	117	117
	CAUSE_I	117	117	117
	CAUSE_2	117	117	117
1	CAUSE_3	117	117	117
1	CAUSE_4	117	117	117
ł	CAUSE_5	117	117	117
}	CAUSE_6	117	117	117
	CAUSE_7	117	117	117
ļ	CAUSE_8	117	117] 117
i	CAUSE_9	117	117	117
l .	CAUSE_10	[117	117	117
1	CAUSE_11	117	117	117
ı	CAUSE_12	L117.1	_ 117_	11.7

Variables Entered/Removed Variables Variables

Model	Entered	Removed	_ Method	
Į.	CAUSE_12, CAUSE_21, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_11, CAUSE_1, CAUSE_1, CAUSE_1, CAUSE_1, CAUSE_1,		Enter	
2		CAUSE_11	Backward (criterion: Probability of F-to-remove >= .100).	
3		CAUSE_8	Backward (criterion: Probability of F-to-remove >= .100).	
1		CAUSE_4	Backward (criterion: Probability of F-to-remove 1 >* .100).	
s 		CAUSE_12	Backward (criterion: Probability of F-to-remove >= .100).	
s 		CAUSE_9	Backward (criterion: Probability of F-to-remove	

t. Dependent Variable; SCP1

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients		_ -	95% Confidenc	e interval for B		Correlations	
Model .			Std, Enter	Beta		Sig_	Lower Bound	Unger Bound	Zero-onder	Partial	Pars
-	(Constant)	1.729	,648		2.667	.009	.444	3.015			
	CV02E ¹	4.391E-02	.098	.052	.447	.655	-,151	.238	.364	.043	.037
	CAUSE_5	.280	.100	.349	2.802	.006	.092	.477	.451	.261	.230
	CAUSE_3	- 106	.098	.132	-1.074	.285	301	.089	L 300 -	-,103	-880
	CAUSE_S	9.4878-02	.105	.113	.900	.370	-,114	.304	.352	.087	.074
	CAUSE_6	-6.589E-02	.102	- 079	644	.521	- 269	.137	.269	062	+.053
	CAUSE_7	.201	.083	243	2.407	.018	.035	366	362	.227	.198
	CAUSE_9	2.579E-02	.091	.030	.284	.777	-,154	.205	.260	.027	.023
	CAUSE_10	8.146E-02	.100	.087	.812	.419	-,117	.280	.252	.078	.067
	CAUSE_12	1.811E-02	.076	.022	.238	.812	-,133	.169	.158	.023	.020
	(Constant)	1.772	.621		2.854	.005		3.002			
	CAUSE_1	4.524E-02	.098	.054	.464	.644	148	.239	.364	.045	.038
	CAUSE 2	.277	.099	.347	2.804	.006	.081	.474	.451	.260	.229
	CAUSE 3	206	.098	- 132	-1.084	.281	-,301	.088	300	-,104	089
	CAUSE 5	9 4358-02	.105	113	.899	.370	-,114	.302	352	.086	.074
	CAUSE 6	-6.398E-02	.102	077	630	.530	-,265	.137	.269	061	052
	CAUSE 7	.204	.082	.247	2.502	.014	.042	366	.362	.234	.205
	CAUSE_9	2.747E-02	.090	.032	.305	.761	151	.206	.260	.029	.025
	CAUSE_10	8.669E-02	.097	.092	.889	.376	107	.280	.252	085	073
	(Constant)	1.838	.579		3.175	.002	.691	2.986			
	CAUSE_I	4.660E-02	.097	.056	.480	.632	- 146	.239	.364	.046	.039
	CAUSE_2	.281	.098	350	2.862	.005	.086	.475	.451	.264	.233
	CAUSE_3	102	.097	- 127	-1.057	. 293	.294	.089	.300	-,101	- 086
	CAUSE_5	8.970E-02	.103	.107	.868	.387	311.5	.295	.352	.083	.071
	CAUSE_6	-5,717E-02	.099	.069	580	.563	-,253	.138	.269	055	047
	CAUSE 7	.206	.081	249	2.536	.013	(,045	367	362	.236	.207
	CAUSE_10	9.806E-02	.090	105	1.093	.277	080	276	252	104	089
	(Constant)	1.919	-552		3,478	.001	.826	3.013			
	CAUSE_2	.304	.085	.379	3.572	.001	,135	.472	451	.322	.290
	CAUSE	104	.096	129	-1.075		-,295	.087	300	-,102	087
	CAUSE_5	9.455E-02	.103	.113	.922	.358	109	.298	352	.088	.075
	CAUSE_6	-4.904E-02	.097	~059	507	.613	- 241	.143	.269	048	041
	CAUSE_7	.206	.08)	.249	2.551	.012	.046	.367	.362	.236	.207
	CAUSE 10	103	089	110	1.156	.250		279	252		094

452

Coefficients

		Unstandardized Coefficients		Standardized Coefficients		_	95% Confidence Interval for B			Correlations	
Molel		B	Std. Error	Beta		Sig	Lower Board	Upper Bound	Zero-order	Partial	Part
8	(Constant)	1.891	347		3.456	.001	.807	2.976			
	CAUSE 2	.303	.085	.378	3,573	.001	.135	.471	.451	.321	.289
	CAUSE_3	123	.094	+.141	-1.203	.232	.300	.073	.300	113	097
	CAUSE_5	7.219E-02	092	.036	,783	.435	-,111	.255	.352	.074	.063
	CAUSE 7	.197	وري ا	.238	2,510	.014	.042	.353	.362	.232	.203
	CAUSE 10	.103	.089	110	1.164	.247	072	279	.252	.110	.094
9	(Constant)	1.899	.546		3,477	.001	.817	2,982			
	CAUSE 2	.320	.082	.400	3,919	.000	.158	.482	.451	.347	.317
	CAUSE_3	-9.758E-02	.092	121	-1.062	.290	230	.084	.300	-100	- 036
	CAUSE_7	.207	.078	.250	2.667	.009	.053	360	.362	.244	.216
	CAUSE 10	.128	.083	_136	1.549	124_	036	291	252	.145	.125
10	(Constant)	1.884	.546		3,447	.001	.801	2,966		(
	CAUSE 2	276	.071	.345	3,911	.000	.136	117	.451	.345	.316
	CAUSE_7	,177	.072	.214	2,448	.016	.034	.321	.362	.224	.198
	CAUSE_10	.104	080	J	1.310	193	053	.262	.252	.122	.106
11-	(Constant)	2.290	.451		5.077	.000	1.396	3.184		_ i	
	CAUSE_2	.295	.069	.369	4.250	.000	.158	.433	.451	.370	.345
	CAUSE ?	.191	.072	.231	2665	009	_049_		362	242	215

ANOVA

Model		Sum of Squares	ď	Mean Source	P	Sist
7	Regression	64.747	10	6.475	4.064	,000°
	Residual	168.886	106	1.593	i i	
	Total	233.632	_ 116	l	l l	
4	Regression	64.696	9	7,188	4,553	.000
	Residual	168,936	107	1 1,579		
	Total	233.632	116	l '' J	l l	
3	Regression	64,507	8	8,076	5,160	.000*
	Residual	169.026	108	1.565		
	Total	233,632	. 116	!		
6	Regression	64.461	7	9,209	5.933	.000
	Residual	169.172	109	1.552		
	. Total	233,632	_ 116	, ,,,,		
7	Regression	64,103	6	10.684	0.912	.0004
	Residuel	169,530	110	1341		
	Total	233,632	. 116			
8	Regression	63,707	5	12.741	8.323	.000
	Residual	169.925	ui	1,531		
	Total	233,632	116			
9	Regression.	62,769		15.692	10.286	.000
	Residual	170.863	112	1.526		
	Total_	233.632	116	'		
lo	Regression	61,047	3	20,349	13.323	.000
	Residual	172,586	113	1.527	1	
	Total	233.632	116	i	L	
11	Regression	58.426	7	29 213	19,008	.000
	Residual	175.207	114	1.537	- 1	
	Total	233,632	116	l		

- 4. Productors: (Constant), CAUSE_12, CAUSE_1, CAUSE_10, CAUSE_2, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- b. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_1, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- E. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_1, CAUSE_6, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- d. Predictors: (Consum), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_6, CAUSE_9, CAUSE_1, CAUSE_3, CAUSE_5
- c. Prodictoria (Constant), CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_6, CAUSE_9, CAUSE_1, CAUSE_3, CAUSE_5
- f. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_6, CAUSE_1, CAUSE_3, CAUSE_5
- g. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_6, CAUSE_3, CAUSE_5
- b. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_3, CAUSE_5
- i. Predictors: (Common), CAUSE_2, CAUSE_10, CAUSE_1, CAUSE_3
- j. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7
- k. Productors: (Constant), CAUSE_2, CAUSE_7
- I. Dependent Variable, SCP1

Coefficients

		Unstandardize		Standardized Coefficients	1		95% Confidence			Correlations	
Model		В	Std. Error	Beta		Sig	Lower Bound	Under Bound	Zero-order	Partial	Pert
	(Constant)	1.743	.664	- I	2.625	.010	426	3.060			
	CAUSE_1	4.438E-02	.102	.053	.433	.566	159	.248	.364	.042	.036
	CAUSE 2	.284	.106	. 354	2.684	.008	.074	.493	.451	.254	724
	CAUSE_3	102	.105	127	972	.333	311	.106	.300	095	081
	CAUSE_4	-1.991E-02	յուլ	023	-,179	.B58	240	.200	324	018	015
	CAUSE_5	.102	.314	.122	295	373	-124	327	.352	.087	.07
	CAUSE_6	-6.642E-02	.104	080	637	.525	.273	.140	.269	062	053
	CAUSE_7	.203	.088 (.245	2.293	.024	.027	378	362	,219	.191
	CAUSE 8	-6.609E-03	.094	008	070 \	944	194	.[8]	.288	-007	00
	CAUSE_9	2.531E-02	.099]	.030	.256	.799	-,171	,222	.260	.025	.02
	CAUSE_10	8.400E-02	.107	.090	.788 [.432	127	.295	.252	.077	.066
	CAUSE_11	6.519E-03 (.102	.007	.064	.949	.,197	.210	.289	.006	.00
	CAUSE_12	L.850E-02			23L_[140	177	.158	.023	01
	(Constant)	1.741	.560		2.637	.010	432	3.051			
	CAUSE_1	4.339E-02	.101	.052	.431 [.668	156	243	.364	.042	.03
	CAUSE_2	.284	.104	.355	2.733	.007	.078	.491	.451	.258	.22
	CAUSE_3	103	.105	125	-,981	.329	-310	.105	.300	- 095	08
	CAUSE_4	-1.891E-02	.109 [022	173	.863	.236	.198	.324	017	01
	CAUSE_5	.102	.113 \	.122	.903	.369	122	.326	.352	.088	.07
	CAUSE_6	-6.692E-02	.103	080 (647	.519	272	.138	.269	.063	05
	CAUSE_7	.204	.097	.246	2.350	.021	.032	.375	.362	.724	.19:
	CAUSE 8	-5.643E-03		007	061	.952	.189	.178	.288	.006	00
	CAUSE_9	2.690E-02	.095	.032	.282	.778	162	.216	.260	.028	.02
	CAUSE_10	8.539E-02	.104	.091	.822	.413	- 121	.291	.252	.080	.061
	CAUSE_12	1.944E-02	.078	.023	241	_,804	.136	.175	.158	.024	
	(Constant)	1.737	.653		2.661	.009	.443	1.030		-	
	CAUSE_1	4.239E-02	.099	.051	.428	.669	154	.239	.364	.042	.03.5
	CAUSE_2	.284	.103	355	2.751	.007	.079	.489	.451	.251	.22
	CAUSE_1	101	.102 }	126	993	323	-304	.101	.300	096	08
	CAUSE_4	-1.935E-02	.109	+.022	178	.859	.235	.196	.324	017	01
	CAUSE_5	.101	.111	.121	.907	.367	- 120	,322	.352	.089	.07
	CAUSE_6	-6.696E-02	.103	080	651 }	517	271	.137	.269	-063	05
	CAUSE 7	.202	.084	.245	2.401	.016	.035	.370	.362	.227	.19
	CAUSE_9	2.530E-02	.091	.030	.278	.782	155	.206	.260	.027	.02
	CAUSE 10	8.551E-02	ini l	AG1	477		1 177		,		

,		
•		
7		
7		
۳		
٠		
١.		
۰		
_		
2		
2		
2		
ï		

Model		Tolerance I	VIĒ
8	(Constant)		_
1	CAUSE_2	.585	1.710
Į.	CAUSE_3	477	2.096
	CAUSE_5	.539	1.856
l	CAUSE_7	.727	1.376
l	CAUSE_10	.735	1.361
9	(Constant)		
	CAUSE_2	.627	1.594
Ī	CAUSE_3	500	2,001
l .	CAUSE_7	744	1,343
1	CAUSE_10	.843	<u>L.18</u> 7
10	(Constant)	i - i	
	CAUSE_2	.838	1.193
1	CAUSE_7	.854	1.171
l	CAUSE_10	.909	L,100
11	(Constant)		
l	CAUSE_2	874	1,144
ا	CAUSE 7		1.144

a. Dependent Variable: SCP1

Regression

Descriptive Statistics

	Mean	Std. Deviation	N
SCPI	5.280	1.6525	25
CAUSE_1	6.800	2.2913	25
CAUSE_2	6.650	2.1684	25
CAUSE_3	6.600	2.2913	25
CAUSE_4	6,820	2.3313	25
CAUSE_5	6.700	2.2638	25
CAUSE 6	6,200	2.2958	25
CAUSE 7	5,680	2.0355	25
CAUSE 8	6.400	1.8428	25
CAUSE 9	5,520	2,3826	25
CAUSE 10	6,440	2.0530	25
CAUSE_II	5.320	2.5612	25
CAUSE 12	5 600	2,3629	25

Model	Tolerance	VJF
l (Constant)		
CAUSE_1	.465	2.152
CAUSE_2	.399	2.507
CAUSE_3	.406	2.456
CAUSE_4	.421	2.378
CAUSE_5	.376	2,657
CAUSE_6	.444	2,250
CAUSE_7	.610	1.639
CAUSE_8	.564	1,774
CAUSE_9	.516	1.938
CAUSE_10	.538	1.859
CAUSE_II	.502	1.991
CAUSE_12	.754	1.326
2 (Constant)		
CAUSE_1	.476	2.102
CAUSE_2	.407	2.456
CAUSE_3	406	2.451
CAUSE_4	.429	2.330
CAUSE_5	.377	2.652
CAUSE_6	.447	2.237
CAUSE_7	.629	1.591
CAUSE_8	.579	1.728
CAUSE_9	.552	1.813
CAUSE_10	.561	1.781
CAUSE_12	.781	1.281_
3 (Constant)		
CAUSE_I	.489	2.047
CAUSE_2	.410	2.439
CAUSE_3	.423	2.366
CAUSE_4	.431	2,320
CAUSE_5	.384	2.606
CAUSE_6	.447	2.237
CAUSE_7	.657	1.521
CAUSE_9	.597	1.674
CAUSE_10	J62	1.781
CALTER 12		

Coefficients

		Collinearity Statistics Tolerance VIF					
Mode		Tolerance	<u>vir</u>				
4	(Constant)						
	CAUSE_1	492	2.032				
	CAUSE_2	.435	2,300				
	CAUSE_3	.450	2.223				
	CAUSE_5	.425	2.352				
	CAUSE_6	.449	2.229				
	CAUSE_7	.665	1.503				
	CAUSE_9	.598	1.673				
	CAUSE_10	.590	1.694				
	CAUSE_12	.810	1.235				
3	(Constant)	T T					
	CAUSE_I	.494	2.025				
	CAUSE_2	.438	2.281				
	CAUSE_3	450	2.222				
	CAUSE_5	.425	2.351				
	CAUSE_6	451	2.216				
	CAUSE_7	.688	1.454				
	CAUSE_9	.601	1.663				
	CAUSE 10	.620	1.614				
6	(Constant)	T 1					
	CAUSE_I	495	2.021				
	CAUSE_2	.443	2.257				
	CAUSE_3	.458	2.184				
	CAUSE_5	.435	2.301				
	CAUSE_6	.474	2.109				
	CAUSE_7	.690	1.449				
	CAUSE_10	.726	1.378				
7	(Constant)						
	CAUSE 2	.585	1.711				
	CAUSE 3	.458	2,182				
	CAUSE 5	.439	2.279				
	CAUSE 6	489	2.047				
	2		2.0				

Analysis for Ca-SCP1-SC

CAUSE 7 CAUSE 10

2.102 2.456 2.451 2.330 2.652 2.237 1.591 1.728 1.813 1.781 1.281

2.047 2.439 2.366 2.320 2.606 2.237 1.521 1.674 1.781 1.236

Mndet	Variables Entered	Variables Removed	Method
	CAUSE_12, CAUSE_5, CAUSE_6, CAUSE_6, CAUSE_7, CAUSE_10, CAUSE_10, CAUSE_11, CAUSE_11, CAUSE_14		Enter
2	,	CAUSE_I	Backward (enterion: Probability of F-to-remove >= .100).
3		CAUSE_10	Backward (criterion: Probability of F-to-remove >= .100).
^		CAUSE_11	Backward (criterion: Probability of F-to-remove >= ,100).
5	,	CAUSE_12	Backward (enterion: Probability of P-to-remove >= .100).
6		CAUSE_7	Backward (criterion: Probability of F-to-remove >= 100).

Variables Engred/Removed

Model	Variables Entered	Variables Removed	Method
7		CAUSE_9	Backward (criterion: Probability of F-to-remove >= 1000.
8		CAUSE_6	Backward (cnterion: Probability of F-to-remove >= .(00).
,		CAUSE_4	Backward (enterion: Probability of F-so-remove >= .1000.
10	,	CAUSE_S	Backward (criterion: Probability of F-to-remove >= ,100).
11		CAUSE_3	Backward (criterion: Probability of F-to-remove >= 100).

a. All requested variables entered.

		SCPI	CAUSE I	CAUSE 2	CAUSE 3	CAUSE 4	CAUSE 5	CAUSE 6	CAUSE 7	CAUSE 8	CAUSE 9
Pearson Correlation	SCP1	1.000	.709	,755	.471	.619	371	.498	.399	.639	363
	CAUSE_1	.709	1.000	.942	_571	.835	.651	.440	316	.405	.386
	CAUSE_2	.755	.942	1.000	.597	.829	.621	.442	.294	.452	385
	CAUSE_3	A71	571	597	1.000	.746	.442	.202	472	.528	.498
	CAUSE_4	.619	.835	.829	.746	1.000	.747	.281	251	388	_389
	CAUSE_5	.371	.651	.621	.442	.747	1.000	.423	080	.210	.083
	CAUSE_6	.498	.440	,442	.202	.281	.423	1.000	.277	.510	.155
	CAUSE_7	.399	.316	.294	A72	.251	.080	.277	1.000	.530	.611
	CAUSE_8	.639	.405	.452	.528	.388	.210	-510	.530	1.000	.748
	CAUSE_9	.565	.386	.385	.498	.389	.088	.155	.611	.748	1.000
	CAUSE_10	.662	.617	.624	_500	.631	424	.414	.404	.665	.711
	CAUSE_11	.564	.452	.413	.555	.530	.165	.315	.508	.669	.736
	CAUSE_12	.44)	323	.325	.316	.221	090	396	.466		.40
Sig. (1-trajed)	SCP1		200	.000	.009	.000	.034	.006	.024	.000	.000
	CAUSE_1 .	.000		.000	.001	.000	.000	.014	.062	.022	.02
	CAUSE_2	.000	.000		.001	.000	.000	.013	.077	.012	88 88 88 88 88 88 88 88 88 88 88 88 88
	CAUSE_1	.009	.001	.001		.000	.014	.166	.009	.003	.00
	CAUSE_4	.000	.000	.000	.000		.000	.086	.113	.028	.02
	CAUSE_5	.034	.000	.000	.014	.000	,	.018	.351	.157	.33
	CAUSE_6	.006	.014	.013	.166	.086	.018	, 1	.090	.005	.22
	CAUSE_7	.024	.062	.077	.009	.113	.351	.090		.003	.00
	CAUSE 1	.000	.022	.012	.003	.028	.157	.005	.003		.002
	CAUSE_9	.002	.028	,029	.006	.027	_338	.229	.001	.000	2
	CAUSE_10	.000	1001	.000	.006	.000	.017	.020	.023	.000	.00
	CAUSE_11	.002	.012	,020	.002	.003	.216	.063	.005 [.000	.000
	CAUSE 12				.062	.144	335	.025			
N	SCPI	25	25	25	25	25	25	25	25	25	25
	CAUSE_1	25	25	25	25	25	25	25	25	25	25
	CAUSE_2	25	25	25	25	25	25	25	25	25	25
	CAUSE_3	25	25	25	25	25	25	25 {	25	25 {	25
	CAUSE_4	25	25	25	25	25	25	25	25	25	25
	CAUSE_5	25	25	25	25	25	25	25	25	25 (25
	CAUSE_6 CAUSE_7	25	25 (25	25	25	25	25	25	25	25 25 25 25 25 25 25 25 25 25 25 25 25 2
	CAUSE 8	25	25	25	25	25	25	25	25	25	25
	CAUSE_9	25	25	25	25	25	25	25	25	25	25
		25	25	25	25	25	25	25	25	25	25
	CAUSE_10	25	25	25	25	25	25	25	25	25	25
	CAUSE_11 CAUSE_12	25	25 25	25	25	25	25	25	25	25	25 25
<u>`</u>	CAUSE 12	25		25	25	25	25	25_	25_1	25	25_

Correlations

			_	
		CAUSE 10	CAUSE 11	CAUSE_12
Pearson Correlation	SCPI	.662	.364	.44]
1	CAUSE_I	.617	.452	323
	CAUSE_2	.624	.413	.325
	CAUSE 3	.500	.555	.316
	CAUSE_4	(12)	_530	.221
	CAUSE_5	.424	.165	-090
	CAUSE_6	414	315	.396
	CAUSE_7	.404	508	.466
	CAUSE_8	.665	.669	.522
	CAUSE_9	.718	.736	401
	CAUSE_10	1.000	737	.394
	CAUSE_11	.737	1.000	.731
	CAUSE 12	.394	.731	1.000
Sig. (1-tailed)	SCP1	.000	.002	.014
	CAUSE_I	.00L	.012	.058
	CAUSE_2	.000	.020	.057
	CAUSE_3	.006	.002	.062
	CAUSE_4	.000	.003	.144
	CAUSE_S	.017	.216	.335
	CAUSE_6	.020	.063	.025
	CAUSE_7	.023	.005	.009
	CAUSE_8	.000	.000	.004
	CAUSE 9	.000	.000	.023
	CAUSE_10	, ,	.000	.026
	CAUSE_11	000		.000
	CAUSE_12	.026	.000	
N	SCPI	25	25	25
	CAUSE_1	25	25	25
	CAUSE_2	25	25	25
	CAUSE_1	25	25	25
	CAUSE_4	25	25	25
	CAUSE_5	25	25	25
	CAUSE_6	25	25	25
•	CAUSE 7	25	25	25
	CAUSE_8	25	25	25
	CAUSE_9	25	25	25
	CAUSE_10	25	25	25
	CAUSE 11	1 75	, 75	1 161

b. Dependent Variable: SCP1

						Y'\$	1. LAWES DOWNS	. Upper gotted	Zero-order	L. Partal_	Part	П
14	(Lonatent)	.753	1.314		.574	.576	-2.108	3.617				1
i	CAUSE_I	-4.111E-02	.372	057	110	.914	852	.769	.709	032	017	
į.	CAUSE_2	.445	432	.590	1.031	.323	-495	1.386	.755	.285	.154	ļ
1	CAUSE_3	145	.203	- 201	713	.489	586	.297	.471	- 202	107	1
	CAUSE_4	.220	.385	.310	.570	_579	620	1.059	.619	.162	.085	!
i	CAUSE_5	-,185	.246	- 253	753	.466	720	.350	.371	212	113	ı
1	CAUSE_6	.153	.189	.212	018.	.434	- 258	_564	.498	.228	.121	1
ì	CAUSE_7	-3.860E-02	194	048	199	.846	462	.385	.399	-,057	030	1
1	CAUSE_8	.185	.280	.206	.662	.521	-424	.794	.639	.188	099	ı
1	CAUSE_9	.138	261	.198	.527	,607	431	.706	.565	.151	.079	į .
Į.	CAUSE_10	-3.342E-02	257	042	-,130	.399	594	.527	.662	037	019	ĺ
1	CAUSE_!!	4.607E-02	.318	.071	.145	.887	647	.739	.564	.042	.022	_
I	CAUSE 12	-3.155E-02	,230	045	137	.893	532	.469	41]	040	021	Analysis for
12	(Constant)	757	1.263		.599	559	-1.972	3.485				3
1	CAUSE_2	.410	.277	.543	1.477	.163	190	1.009	.755	.379	.212	٤.
	CAUSE_3	141	.192	195	733	.476	555	.273	.471	-,199	105	3
1	CAUSE_4	.216	.369	.305	.586	.568	5\$1	1.013	.619	,160	.084	9
	CAUSE	191	.230	261	828	.423	689	.307	.371	- 224	119	
1	CAUSE_6	.152	.181	.211	.838	A17	- 239	.543	.498	.226	.121	Ca-SCP1-CC
1	CAUSE_7	-4.316E-02	.183	053	- 236	.817	- 418	.351	.399	065	- 034	č
1	CAUSE_8	.192	.262	.214	.730	.478	-375	.758	.639	.198	.105	2
1	CAUSE_9	,136	.250	.196	.542	.597	- 405	.676	.565	.149	.078	Ā
1	CAUSE_10	-3.064E-02	.246	038	124	.903	563	.501	.662	034	018	Ö
	CAUSE_11	4.098E-02	.303	.064	.135	.894	613	.695	.564	.038	.019	
<u> </u>	CAUSE_12	-3.135E-02	.221	.045	-142	889	- 509	.446	441	039	020	i
13	(Constant)	,716	1.175		.609	.552	-1.805	3.236				ĺ
ſ	CAUSE_2	,400	.256	.530	1.560	.]41	150	.950	.755	.385	.216	
1	CAUSE_3	136	.181	188	750	.466	+.524	252	A71 ·	197	-104	1
i	CAUSE_4	,216	.356	.305	.608	.553	-,547	.979	.619	.160	.084	
	CAUSE_5	- 193	.222	- 264	869	.399	+.668	.283	.371	226	-121	
1	CAUSE_6	.149	.173	.207	.860	.404	222	.520	.49B	.224	.119	l
l	CAUSE_7	-4.251E-02	.176	052	242	.813	420	.335	399	064	033	
1	CAUSE_8	.189	. 25 2	.210	.749	.466	352	.729	.639	.196	.104	
i	CAUSE_9	.129	.236	.186	.547	.593	-377	.635	.565	.145	.076	i
l .	CAUSE_11	2.554E-02	.266	.040	.096	.925	-545	.597	.564	.026	.013	
-	CAUSE 12	-2.350±-02		- 034	115	910	461	414	.441	- 031	-016	J

45

Coefficients

		Unstandardize	t Coefficients	Standardized Coefficients		[95% Confidence Interval for B			. Correlations	
Model		P P	Sul Error	Beta	1	Sig	Lower Bound	Upper Bound	Zero-order	Partia	Part
4	(Constant)	. 681	1.082		630	.538	-1.625	2.987		1	
ì	CAUSE_2	.386	.201	.511	1.915	,075	044	.815	.755	.443	.257
l	CAUSE_3	- 136	.175	189	+.781	.447	509	.236	.471	198	- 105
ı	CAUSE_4	.237	.276	.334	.858	.404	351	.824	.619	,216	.115
	CAUSE_S	197	.211	- 269	933	366	646	.253	.371	- 234	125
!	CAUSE_6	153	.162	.212	.944	360	193	.498	.498	.237	.126
	CAUSE_7	-4.648E-02	.165	057	281	,782	399	.306	.399	072	038
l	CAUSE 8	187	243	.209	.770	453	331	706	.639	195	.103
ì	CAUSE 9	144	.174	_207	.824	.423	228	.515	. 565	.208	.110
l	CAUSE_12	-8.845E-03	131	013	068	947	288	_270	441	-017	009
5	(Constant)	663	1.016		.653	523	-1.490	2.817	_	.	
[CAUSE_2	.385	195	.510	1.977	.065	028	.797	755	,443	.257
l	CAUSE_3	.137	.169	190	808	.431	495	.222	171	- 198	105
	CAUSE_4	.233	.261	.328	.892	,386	320	.786	.619	.218	.116
	CAUSE_5	.190	.182	260	-1.047	וונ	-575	.195	.371	-,253	136
Ì	CAUSE_6	149	.148	.207	1.008	.328	- 165	.463	.498	244	.131
	CAUSE_7	-4.683E-02	.160	+.O58	293	.773	386	.292	.399	073	٠.038
	CAUSE_8	.185	.232	.206	.795	,438	308	.678	.639	.195	.103
	CAUSE_9	144	169	.207	.852	.407	214	.501	.565	,208	111
6	(Constant)	542	.903		.501	.556	+1.362	2.447			
•	CAUSE_2	.384	.189	.509	2.029	.058	-,015	.783	.755	441	.256
	CAUSE_3	-,1\$3	.156	212	982	340	481	.176	.471	-,232	124
Ì	CAUSE_4	.229	.253	.323	.904	.379	306	.764	.619	214	.114
	CAUSE_5	169	-162	232	-1.042	,312	-511	.173	.371	245	132
	CAUSE_6	.133	.133	.185	.997	.333	148	.414	.498	.235	.126
l	CAUSE_8	, 194	224	.217	.869	.397	278	.667	.639	.206	.110
	CAUSE 9	.124	.150	178	825	.471	193	.440		.196	.104
7	(Constant)	519	.894		.580	.569	-1.360	2.398			
	CAUSE_2	.390	.187	.516	2.030	.052	004	.784	755	440	.260
ì	CAUSE_3	-,155	.154	+.215	+1.007	.327	-,479	.169	.471	-,231	126
ľ	CAUSE_4	.263	.248	.371	1.060	.303	258	.783	.619	.242	.133
	CAUSE_S	193	.158	265	-1.222	.237	- 525	.139	.371	277	-,153
l	CAUSE_6	9.823E-02	.125	.136	.783	.444	- 165	.362	.498	,182	.098
	CAUSE 8	324	158	361	2.054	055	007	.656	639	435	257

Model	R	R Square	Adjusted K Square	the Estimate	Change	F Change	.#(I	d12	Sig. F Change	
1	.8554		463	1.2109	.732	2,725	12	712	.048	
12	.8556	.731	504	1.1640	.000	.012	1	14	.914	1
la l	.855°	.731	_539	1.1224	.000	.015	J	15	.903	l
4	.855ª		.569	- 1.0846	.000	.009	1	16	.925	
5	.B55*	.731	396	1.0504	.000	.005	1	17 :	.947	į
ا ا	854	.729	.618	1.0217	001	.086	1	18	.773	l
l 7	.848#		.625	1.0126	+.011	.680	1	19	.421	Į
ľa I	,842h		.632	1.0023	010	.614	1	20	.444	
la i	.835	.697	.637	.9963	-012	.762	1	21	393	
l io	.832		.647	.9813	006	374	i	22	.548	l
13	8251	691	.652	.9747	-010		i	23	411.	ļ

- 8. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- b. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_1, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_4
- c. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_4, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_11, CAUSE_4
- d. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_4
- 6. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_1, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_4
- f. Predictors: (Constant), CAUSE_S, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_2, CAUSE_8, CAUSE_4
- g. Predictors: (Constant), CAUSE_5, CAUSE_6, CAUSE_3, CAUSE_2, CAUSE_8, CAUSE_4
- h. Predictors: (Constant), CAUSE_5, CAUSE_3, CAUSE_2, CAUSE_6, CAUSE_4
- i. Predictors: (Constant), CAUSE_5, CAUSE_3, CAUSE_2, CAUSE_8
- J. Predictors: (Constant), CAUSE_3, CAUSE_2, CAUSE_8
- k. Predictors: (Constant), CAUSE_2, CAUSE_8
- I. Dependent Variable: SCPI

ANOVA1

Mode.		Sum of Squares	df.	Mean Square	F	Sig.
1	Regression	47,944	12	3.995	2.725	.048*
	Residual	17.596	12	1.466	- 1	
	Total	65.540	24	l		
2	Regression	47.926	11	4.357	3.216	.024*
	Residual	17.614	13	1.355	1	
•	Total	65.540	24			

ANOVA1

Model		Sum of Squares	ď	Mean Square	P_	Sig.
3	Regression	47.905	10	4,790	3.803	.012
	Residual	17.635	14	1,260	i	
	Total	65,540	24		1	
4	Regression	47.893	9	5.321	4.523	.005
	Residual	17.647	15	1.176		
	Total	65.540	24	l {	(
5	Regression	47.888	8	5,986	5.426	.002
	Residual	17.652	16	[,103		
	Total	65,540	24	ii_		
6	Regression	47.793	7	6.828	6.540	.00
	Residual	17,747	17	1,044		
	Total	65,540	. 24	l		
7	Regression	47.083	6	7.847	7.653	1000
	Residual	18.457	18	1.025		
	Total	65,540	24	i		
8	Regression	46.454	5	9.291	9.249	.000
	Residual	19,086	19	1.005	1	
	Total	65.540	24	!		
9	Regression	45.688	4	11.422	11.507	.000
	Residual	19.852	20	.993		
	Total	65,540	24	!l		
10	Regression	45.317	3	15.106	15.686	.000
	Residual	20.223	21	.963		
	Total	65.540	24			
11	Regression	44.639	2	22.320	23,494	.000
	Residual	20.901	22	.950	1	
	Total	65.540	24			

- 1. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_1 b. Predictors: (Contains), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_1, CAUSE_1, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_4
- c. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_11. CAUSE_4
- d. Prodictions: (Commant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_4
- c. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_4
- f. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_2, CAUSE_8, CAUSE_4
- g. Predictors: (Constant), CAUSE_5, CAUSE_6, CAUSE_3, CAUSE_2, CAUSE_8, CAUSE_4
- h. Productors: (Constant), CAUSE_1, CAUSE_3, CAUSE_2, CAUSE_8, CAUSE_4
- i. Predictors: (Constant), CAUSE_5, CAUSE_3, CAUSE_2, CAUSE_8
- j. Predictors: (Constant), CAUSE_3, CAUSE_2, CAUSE_8 k. Predictors: (Constant), CAUSE_2, CAUSE_8
- I. Dependent Variable: SCP1

1		
1		
n		
- 2		
U		
1		
ě		
٠		
1		
•		
t		
Ŋ		
•		
۰		
1		
1		
1		
-7		

		Unevandardize	d Coefficients	Stradurdized Coefficients	[95% Confidenc	laterval for B		Сопериона	
Model		В	Std. Error	Beta	t.	Sie	Lower Bound	Upper Bound	Zero-order	Pretial	Pat
8	(Constant)	346	.884		.618	341	-1.303	2,397			
	CAUSE_2	.437	,176	.579	2.488	.022	.069	.80 5	.755	.496	.301
	CAUSE_3	-166	,152	- 231	-1.096	.287	485	.152	471	- 244	136
	CAUSE_4	.204	.234	.288	.873	.393	+.285	.694	.619	.196	.102
	CAUSE_5	-,140		191	990	.335	-,435	.156	371	221	12
	CAUSE_8	383	.137	128	2,798	.011	.097	.670	639	540	,346
)	(Constant)	.454	.873		.520	.609	-1.367	2.274			
	CAUSE_2	531	.138	.704	3.859	.001	.244	.819	.755	.653	.473
	CAUSE_3	-8.610E-02	.120	-,119	-716	482	337	.165	.471	158	- 08
	CAUSE_5	-7.141E-02	,117	098	612	.\$48	-315	.172	371	136	07
	CAUSE_8		,134	.405	2,704	0(4	.083	643	639		33
10	(Constant)	.262	.802		.326	,747	-1.407	1.931			
	CAUSE_2	.488	,116	.647	4.193	.000	.246	.730	.755	.675	.500
	CAUSE_3	-9.797E-02	,117	-,136	.839	.411	-341	.145	,47L !	-,180	10
	CAUSE_8	.376	.131	.419	2.875	.009	104	647	.639	.531	.34
!1	(Constant)	.[77	,791		.224	.825	-1.463	1.816			
	CAUSE_2	.442	.102	د \$ک	4.338	.000	.231	.653	.755	.679	.522
	CAUSE I	336	121	375	2,777]			597	639	509	33-

456 -

Collinearity Statistics
Tolerance VIP

.252 .306 .119 .215 .354 .433 .244 .285 .512

.253 .306 .124 .272 .398 .434 .250 .255

.253 .342 .125 .323 .464 .256 .341

.254 .342 .128 .334 .516 .505 3.962 3.268 8.432 4.645 2.825 2.308 4.095 3.515 1.951

3.946 3.267 8.043 3.675 2.515 2.306 3.993 3.514

3.945 2.923 8.025 3.098 2.154 3.911 2.935

3.939 2.922 7.816 2.997 1.940 1.980

CAUSE 2 CAUSE 3 CAUSE 4 CAUSE 5 CAUSE 6 CAUSE 7 CAUSE 8 CAUSE 9 CAUSE 12

(Constant) CAUSE_2 CAUSE_3 CAUSE_4 CAUSE_5 CAUSE_6 CAUSE_7

CAUSE 8

(Constant)
CAUSE_2
CAUSE_3
CAUSE_6
CAUSE_6
CAUSE_8
CAUSE_9
(Constant)
CAUSE_2
CAUSE_3
CAUSE_4
CAUSE_4
CAUSE_5
CAUSE_6
CAUSE_6
CAUSE_6
CAUSE_6

Dependent Variable: SCP1

Coefficients*

Coefficients*

1		Collinears	v Stationics
Model		Tolerance	VII.
1	(Constant)	10111	
ł	CAUSE_1	.084	11.893
	CAUSE_2	.068	14.614
l l	CAUSE_3	.283	3,532
l	CAUSE 4	.076	13,197
	CAUSE_5	.198	5.056
	CAUSE 6	.325	3,070
	CAUSE_7	.390	2.561
	CAUSE 8	230	4.342
l	CAUSE 9	.158	6.328
ì	CAUSE 10	.219	4.569
l	CAUSE_11	.092	10.874
	CAUSE_12	.207	4.827
2	(Constant)		
	CAUSE_2	.153	6.532
	CAUSE_3	.293	3,414
	CAUSE_4	.076	13.108
	CAUSE_5	.207	4,822
i	CAUSE_6	.327	3.061
	CAUSE_7	.409	2,446
	CAUSE_8	.241	4,[4]
	CAUSE_9	.159	6,300
	CAUSE_10	.221	4.525
	CAUSE_11	.094	10.647
	CAUSE_12	.207	4.827
3	(Constant)		
	CAUSE_2	.167	6.001
	CAUSE_3	.305	3.274
[CAUSE_4	.076	[3,108
l	CAUSE_5	.208	4.798
	CAUSE_6	.332	3.009
i	CAUSE_7	.409	2,444
	CAUSE_8	.244	4,106
	CAUSE_9	.166	6.009
	CAUSE_11	.113	8,858
	CATTOR 15	***	

Analysis for Ca-SCP1-CC

s for Ca-SCP1-C

SPSS regression printouts for SCP2 analysis

Regression

SCP2 CAUSE1 CAUSE2 CAUSE3 CAUSE4

CAUSES CAUSES CAUSES CAUSES CAUSEIO CAUSEII

CAUSEI SCP2 CAUSEI CAUSEI CAUSE3 CAUSE3 CAUSE3 CAUSE5

CAUSE7 CAUSE8 CAUSE9 CAUSE10 CAUSE11 CAUSE12

SCP? CAUSEI CAUSE2

CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CAUSES
CA

Sig. (1-tailed)

	A WELL STORES	cton/vemoved.	Antisotric Description of Control											
Model	Variables Entered	Variables Removed	Method											
	CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIQ. CAUSEIQ. CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIZ. CAUSEIZ.		Enter											
2		CAUSEI	Backward (criterion: Probability of F-to-temove											
3		CAUSE6	>= .100). Backward (criterion: Probability of P-to-remove >= .100).											
4		CAUSE7	Backward (criterion: Probability of F-to-remove >= .100).											
5		CAUSES	Backward (criterion: Probability of F-to-remove >= .100).											
6		CAUSE9	Backward (criterion: Probability of F-to-remove >= 100)											

	Mean	Std. Deviation	N_
SCP2	4.727	15185	196
CAUSEI	6.138	1.9888	196
CAUSE2	5,574	1.9848	196
CAUSES	5.648	1.9971	196
CAUSE4	5.640	2,0209	196
CAUSES	5,497	1.9933	196
CAUSE6	5.128	1.9372	196
CAUSE7	5.273	2,0276	196
CAUSE8	6.171	1.9229	196
CAUSEO	6,298	2.1830	196
CAUSE10	5,939	1.7712	196
CAUSELL	5,329	2.0103	196
CAUSE12	5,617	1.9317	196

Correlations

Peuros Cérélation PCP1 1,000 1322 1,00 1352 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0			SCP2	CAUSEL	CAUSEZ	CAUSE3	CAUSE	CAUSES	CAUSE6	CAUSE7	CAUSE	CAUSE9
CAUSEI 332 1000 .736 568 554 544 477 379 466 CAUSE 432 .735 1,000 .836 .706 .595 .462 .420 .440 CAUSE 418 568 636 1,000 .638 .590 .478 .472 .374 CAUSE 465 .548 .596 .580 .730 1,000 .563 .316 .370 CAUSE 465 .548 .596 .580 .730 1,000 .563 .316 .370 CAUSE 778 .399 420 .472 .427 .316 .502 .1000 .565 CAUSE 778 .399 420 .472 .427 .316 .502 .1000 .565 CAUSE 778 .399 420 .472 .427 .316 .502 .1000 .565 CAUSE 778 .399 420 .472 .427 .316 .302 .1000 .565 CAUSE 798 .399 420 .472 .427 .316 .302 .1000 .565 CAUSE 799 .441 .337 .357 .308 .331 .334 .330 .443 .566 .1000 CAUSE 799 .441 .337 .357 .308 .326 .331 .335 .479 .433 .288 .276 .448 .462 CAUSE 11 .318 .361 .403 .333 .479 .433 .288 .276 .448 .462 CAUSE 12 .100 .527 .300 .000 .000 .000 .000 .000 .000 .00	Description	67707					CAUSE		CAUSES			209
CAUSED A12	Leaf 100 COllegeor											.414
CAUSEA CAUSEA CAUSEA CAUSES A66 A67 CAUSES A66 A68 A67 A68 A67 A68 A68 A68 A68 A68 A68 A68 A68 A68 A68												.337
CAUSE1												367
CAUSES 466 J.34 A97 A62 A78 A62 S65 1.000 S65 J.6 J.700 CAUSES J.6 J.7 J.7 J.7 J.7 J.7 J.7 J.7 J.7 J.7 J.7												308
CAUSED 314 A97 A62 A78 A62 555 1.000 507 A43 A43 CAUSED 278 399 420 A72 A72 A73 A18 502 1.000 566 1000 CAUSES 306 A66 A40 374 314 314 370 A43 566 1000 CAUSES 306 A66 A40 374 314 314 370 A43 566 1000 CAUSED 387 308 325 335 A79 A31 328 276 A48 CAUSED 387 308 325 335 A79 A31 288 276 A48 CAUSED 1318 361 A05 335 A79 A31 288 276 A48 CAUSED 100 247 179 203 172 158 277 262 A07 CAUSED 100 247 179 203 172 158 277 262 A07 CAUSED 200 000 000 000 000 000 000 000 000 00												.226
CAUSES 3.06 4.66 4.40 374 317 310 320 1.000 3.66 1.000 CAUSES 2.09 4.14 337 3.67 3.08 2.26 3.61 4.72 4.34 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.4												.361
CAUSED CA												.472
CAUSE10 237 308 337 308 337 307 308 226 341 472 424 1 CAUSE11 318 361 405 333 478 320 284 488 546 CAUSE12 100 247 179 203 1772 138 277 262 477 Sig. (1-tailed) SCP2												.634
CAUSEID 337 J08 J352 J355 A79 A31 288 276 A48 CAUSEID J318 J61 A05 J313 A78 J320 294 A88 646 CAUSEIT 100 247 179 203 177 J18 277 262 A77 J27 A77 J27 A77 J												1,000
CAUSE11 318 361 405 333 428 320 294 448 440 CAUSE12 103 247 127 223 172 158 287 222 407 Sig. (1-tailet) SCP2												.412
CAUSEI												.638
Sig. (1-tailed) SCP2												.350
CAUSE1 000 000 000 000 000 000 000 000 000 0	Sig. (Litailed)		-192									.002
CAUSE2 000 000 000 000 000 000 000 000 000 0			l moi								.000	.000
CAUSE1 000 000 000 000 000 000 000 000 000 0				000								l mo
CAUSES 000 000 000 000 000 000 000 000 000					000							.0002
CAUSES 000 000 000 000 000 000 000 000 000						l omi:		.000		.000	000	.000
CAUSES 000 000 000 000 000 000 000 000 000							onn'					2000. 2000. 2100.
CAUSES 000 000 000 000 000 000 000 000 000								.oon				.000
CAUSE1									non		000	.000E
CAUSE1										ann I		.000
CAUSE1											.000	
CAUSE11 000 000 000 000 000 000 000 000 000		CAUSEIO		.000	.000			.000	.000	.000	,000	يُ000.
CAUSE12 075 000 036 007 008 014 000 000 000 000 000 000 000 000 000									.000		.000	.000
N SCP2 196 196 196 196 196 196 196 196 196 196						.002		.014	.000		.000	.000.
CAUSE2 196 196 196 196 196 196 196 196 196 196	N	SCP2	196	196	196	196	196	196		196	196	1962 196
CAUSE3 196 196 196 196 196 196 196 196 196 196		CAUSEI	196	196	196	196	196	196	196	196	196	196™
CAUSE3 196 196 196 196 196 196 196 196 196 196		CAUSE2	196	196	Í 196	196	196	196	196	196	196	196
CAUSES 196 196 196 196 196 196 196 196 196 196		CAUSES					196	196	196	196	196	196
CAUSEB 196 196 196 196 196 196 196 196 196 196			196	196	196	196	196	196	196	196		196
CAUSER 196 196 196 196 196 196 196 196 196 196		CAUSES	196	196	196	196	196	196	196	196	196	196
CAUSER 196 196 196 196 196 196 196 196 196 196		CAUSE6	196	196	196	196	196	196	196	196	196	196
CAUSE9 196 196 196 196 196 196 196 196 196 19			196	196	196	196	196	196	196	196		196
CAUSE10 196 196 196 196 196 196 196 196 196				196	196	196	196	196	196	196		196
						196						196
				196	196	196						196
CAUSE11 196 196 196 196 196 196 196 196 196 1		CAUSELL	196	196] 196	196	196	196	196	196	196	196

	Total .	449.647	195		1	
3	Regression	145.169	8	18.146	11,145	.000°
	Residual	304.477	187	1.628	ì	
	Total	449.647	195	- 1		
6	Regression	144.084	7	20.583	12.664	.000
	Residual	305.563	188	1.625		
	Total 1	449.647	195			_
7	Regression	143.531	6	23.922	14.770	.000×
	Residual	306.116	189	1.620		
	Total	449.647	195			_
Е	Regression	141.819	5	28.364	17.507	.000
	Residual	307.828	190	1.620		
	Total	449.647	95	1		
9	Regression	140.358	4	35.090	21.669	.000
	Residual	109.239	191	1.619		
	Total	449 647	195			
10	Regression	136.858	3	45.619	28.003	.000
	Residual	312.789	192	1.629		
	Total	449.647	195			

- a. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE6, CAUSE10, CAUSE7, CAUSE3, CAUSE5, CAUSE8, CAUSE11, CAUSE1, CAUSE4
- b. Productors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE6, CAUSE10, CAUSE7, CAUSE3, CAUSE5, CAUSE5, CAUSE11, CAUSE4
- c. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE1, CAUSE3, CAUSES, CAUSE8, CAUSE11, CAUSE4
- d. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE3, CAUSE5, CAUSE8, CAUSE11, CAUSE4
- e. Predictors: (Constant), CAUSEI2, CAUSE9, CAUSE10, CAUSE3, CAUSE5, CAUSE8, CAUSE11, CAUSE4
- 1. Predictors: (Constant), CAUSE12. CAUSE10, CAUSE3, CAUSE3, CAUSE3, CAUSE11, CAUSE4
- g. Predictors: (Constant), CAUSE12, CAUSE10, CAUSE3, CAUSE3, CAUSE8, CAUSE4
- h. Predictors: (Constant), CAUSE12, CAUSE10, CAUSE3, CAUSE3, CAUSE4
- i. Predictors: (Constant), CAUSE10, CAUSE3, CAUSE5, CAUSE4
- Predictors: (Constant), CAUSE10, CAUSES, CAUSE4
- k. Dependent Variable: SCP2

. 459 -

Coefficients*

		Unstandardize		Standardized Coefficients			95% Confidenc			Correlations	
Model		B	Sid. Error	Beta	1	Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part.
7	(Constant)	1.781	424		4.204	.000	.945	2.617		į	
	CAUSE!	-6.772E-03	.077	009	+.087	.930	160	.146	.352	006	005
	CAUSE2	4.618E-02	.087	.060	_529	.597	126	.218	.432	.039	.032
ı	CAUSE	8,139E-02	.068	.107	1.192	.235	L053	216	418	830.	.072
)	CAUSE4	.122	.0\$2	.162	1.477	.141	041	.284	.505	.109	.090
i	CAUSES	.133	.078	.174	1,704	.090	021	.286	.486	.125	.104
]	CAUSE6	9.927E-03	.067	.013	.149	.882	122	.142	.314	.011	.009
l	CAUSE7	1.1198-02	.063	.015	.176	.860	114	.136	.278	.013	.011
ł	CAUSE8	4.985E-02	.075	.063	.662	.509	099	.198	.306	.049	.040
l	CAUSE9	-4.980E-02	.062	072	799	.426	- 173	.073	.209	059	- 049
1	CAUSE10	.141	.071	.165	1.996	.047	.002	.281	.337	.146	.121
	CAUSE11	5.506E-02	.076	073	.726	.469	095	205	318	.054	044
1	CAUSE12	-6.793E-02	.058	- 087	-1.180	.239	181	.046	.103	097	072
2	(Constant)	1.778	.420		4.229	.000	.948	2.607			
l	CAUSE2	4.197E-02	.073	.055	.578	.564	101	.185	.432	.043	035
[CAUSE3	8.103E-02	.068	. 107	1.192	.235	053	.215	.418	.083	.072
J	CAUSE4	.122	.082	.162	1.486	.139	040	.234	305	.109	.090
l	CAUSES	.132	.077	.173	1.711	.039	020	.284	.486	.125	.104
!	CAUSE6	9.449E-03	.066	.012	.143	.887	-,121	.140	.314	.011	.009
l	CAUSE7	1.131E-02	.063	.015	.179	.858	113	.136	.278	.013	.011
ł	CAUSE8	4.915E-02	.075	.062	.659	.511	098	.197	.306	.049	.040
1	CAUSE9	-5.092E-02	.061	073	832	.407	171	.070	.209	061	050
Į .	CAUSEIO	.142	.070	.165	2.012	.046	.003	.280	.387	.147	.122
Į .	CAUSELL	5.583E-02	.075	.074	.743	.458	092	.204	.318	.055	.045
	CAUSE12	-6.875E-02	.057	088	-1.214	.226	180	.043	.103	- 089	074
3	(Constant)	1.778	419		4.242	.000	.951	2.605	l i		
	CAUSE2	4.285E-02	.072	.056	.594	.553	099	.185	432	.044	036
l	CAUSE3	8.142E-02	.068	.107	1.202	.231	052	.215	418	.033	.073
l	CAUSE4	.121	.092	.162	1.484	.139	040	.283	505	.103	.090
	CAUSES	.136	.072	.178	1.901	.059	005	.277	.486	.138	.115
1	CAUSE7	1.395E-02	.060	.019	.231	.817	- 105	.133	.278	.017	.014
l	CAUSE8	5.014E-02	.074	.063	.673	.502	097	.197	.306	.049	.041
l	CAUSE9	-4.968E-02	.060	071	- 822	.412	169	.069	.209	060	050
	CAUSEIO .	.141	.070	.165	2.014	.045	.003	.280	.337	.146	.122
	CAUSEII ·	5.391E-02	.074	.071	.731	.456	092	.199	.318	.054	.044
L	CAUSE12	-6.723E-02	.055	.086	-1.212	. 227	- 177	.042	103	099	.073

		CAUSEII	Probability of F-to-remove >= .100).
8		CAUSE8	Backward (criterion: Probability of F-to-remove
9			>= .100).
		CAUSE12	Backward (criterion: Probability of F-to-remove >= .100).
10	,	CAUSE3	Backward (criterion: Probability of F-to-remove

- a. All requested variables entered.
- b. Dependent Variable: SCP2

∤ 'sl Summary

	ŀĪ				Change Statustics							
Model	R.	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	an T	df2	Sig. F Change			
T	.570	.324	.280	1.2884	.324	7.324	12	183	.000			
2	.570	324	.284	1.2849	.000	.008	1	185	.930			
3	.570*	.324	.288	1.2815	.000	.020	il	LB6	287			
4	.5694	.324	.291	1,2782	.000.	.054	- i I	187	.817			
5	.568°	.323	.294	1.2760	001	.355	i l	188	352			
5		.320	.295	1.2749	-,002	.667	i	189	.415			
7	.565#	.319	.298	1.2727	-,001	.340	1	190	.560			
8	.562h	.315	.297	1.2729	-,004	1.057	- i I	191	.305			
9	.5591	.312	.298	1.2725	003	.901	i I	192	344			
10	5521	304	293	1.2764	008	2,162	. i l	193				

- a. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE9, CAUSE10, CAUSE1, CAUSE1, CAUSE11, CAUSE1,
- b. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE6, CAUSE10, CAUSE7, CAUSE3, CAUSE5, CAUSE8, CAUSE11, CAUSE4
- c. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE3, CAUSE11, CAUSE4
- d. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE3, CAUSE5, CAUSE8, CAUSE11, CAUSE4
- e. Predictors: (Constant), CAUSE12, CAUSE9, CAUSE10, CAUSE3, CAUSE5, CAUSE8, CAUSE11, CAUSE4
- f. Predictors: (Constant), CAUSE12, CAUSE10, CAUSE3, CAUSES, CAUSE3, CAUSE11, CAUSE4
- g. Predictors: (Constant), CAUSE12, CAUSE10, CAUSE3, CAUSE5, CAUSE8, CAUSE4
- h. Predictors: (Constant), CAUSE12, CAUSE10, CAUSE3, CAUSE3, CAUSE4
- i. Predictors: (Constant), CAUSE10, CAUSE3, CAUSE3, CAUSE4
- j. Predictors: (Constant), CAUSE10, CAUSE5, CAUSE4
- k. Dependent Variable: SCP2

ANOVA^k

Mode		Sum of Squares	- et	Mean Square	F	Sig.
ī	Regression	145.883	12	12.157	7.324	.000*
	Residual	303.764	183	1.660		
	Total	449.647	195		Ī	
2	Regression	145.870	TI.	13.261	8.032	.000*
	Residual	303,777	184	1.651		
	Total	449.647	195	1		
3	Regression	145.836	10	14.5B4	8.880	.000°
	Residual	303.810	185	1.642		
	Total	449,647	195			

1.285

1.534

1.893

-,809 2.006

.761 -1.211

4,418 1,529 1,883

1.959 .895 +.816 1.975 817 -1.295

4.346

1.402

1.910

2.071 .643 1.940 .581 -1.296

4,315

1.424

2.035 2.015

1.028

2.262

1,572

2.090

2.103 2.535 - 949 4.661

1.470 2.150 2.131 2.351

5.280 2.894

2.494

.127 .060 .437

.420 .046 .443

.000 .128

.061 .052

372

.415 .050 .415 .197

.000

.163

.058

.040 .521 .054 .560

.000 .156

.043 .045 .305

.025

Coefficients*

.118

.038

95% Confidence Interval for B

.045 .035 .006 .085 .167 .002

1.007 -.028 -.007 -.001

075

- 167 - 000 - 084 - 179

964 035

005 007 - 086 - 002 - 095 - 179

.942 -.034 -.005 -.003 -.054

Lower Bound Upper Bound Zero-order

.215

.283 .275

.195

.070 .276 .200 .042 .2632 .221 .290 .278 .200

.203 .203 .037 2.565 .209

.291 .283 .170 .270 .175 .037

2.529 .210 .296 .277 .173 .275

Standardized Coefficients

.112 .165

.070

-070 -162

074

.127 188

.182

079

.070 .159 .079 .091

.114 .191 .191 .053 .156

.116 .200 .183 .075

.171

Standardized Coefficients

-061

.117

211 193

.264

222 164

Unstandardized Coefficients

.072

.066

.081

.07 L

.071

.060

.073

.412 .063 .075

.071

070

.060

.073 .055

.406 .062

.062 .075 .070 .065 .069 .069

.402

.062 .074 .069 .058

.065

4.283E-02

8.482E-02

5.525E-02

-4.858E-02

5.605E-02

-6.712E-02

9.630E-02

6.246E-02

-4.895E-02

5.934E-02

-7.10)E-02 1.765

8.664E-02

4.180E-02

4.003E-02

-7.099E-02 1.736

8.784E-02 .150

5.922E-02

.140

Unstandardized Coefficients

.061

.074

.069 .064

.363

061

074

.069

.349

.069

.068

9.614E-02

.154 .145

.161

1.693

158

1.844

.199

8.926E-02

.143

.138

124

(Constant

CAUSE2

CAUSE3

CAUSE4

CAUSES

CAUSES

CAUSE9

CAUSE10

CAUSE11

CAUSE12

(Conttant)

CAUSE3

CAUSE4

CAUSE5

CAUSES

CAUSE9

CAUSEIO CAUSE11 CAUSE12

(Constant)

CAUSE3

CAUSE4

CAUSES CAUSE

CAUSE10

CAUSELL

CAUSE12

(Constant)

CAUSES

CAUSE4

CAUSES

CAUSES

(Constant)

CAUSE3

CAUSE4

CAUSES

CAUSE10

CAUSE12

(Constant)

CAUSES

CAUSE

CAUSES

CAUSEIO

(Constant)

CAUSE4

CAUSES

CAUSE10

.092	
.113	
.118	
.054	 >
049	
.119	₹
.049	B
-,078	a
	1
.084	₽.
.115	S
.125	lΩ
.039	3
.117	-

.036 .077 .092 .114 .047 .049 .121 .046 .073

Correlations

Pertial

.418

.505 .486 .306

.209 .387 .318

.418 .505 .486 .306 .209 .387 :318 :103

.418

.505 486 .306 .387 .318

.418

.505 .486 .306 .387

.044 .094 .112 .137 .057

.059 .146 .056 .089

.111 .136 .142 .065 -.060 .143 .060 -.094

.102

.138 .149 .047 .140 .043 -.094

.103

.146 .145 .075 .162

.117 .035 .078

.122 .121 .062 .136

95% Confidence Interval for B Correlations Lower Bound Urner Bound Zero-order 1.059 .217 .009 .009 .036 .150 .300 .282 .505 .486 .387 .150 .151 .286 .052 .181 -.069 .103

.037 .012 .000 .977 -030 -013 -011 2.409 .209 .304 .234 .143 033 034 020 .486 .154 .152 ,022 1,155 .063 .035 .256 2.534 .387 .000 .004 334 303 257 505 486 387 .204 .177 013

	Collinearit	v Statience
Model	Tolerance	VIF
4 (Constant)	1	
CAUSE2	.411	2,432
ÇAUSE3	.482	2.073
CAUSE4	314	3,184
CAUSES	417	2,396
CAUSE8	.450	2,221
CAUSE9	.487	2.052
CAUSEIO	.555	1.800
CAUSEII	.389	2.568
CAUSE12	.719	1.391
5 (Constant)		
CAUSE3	.528	1.896
CAUSE4	.362	2,761
CAUSES	.421	2.376
CAUSES	.464	2.156
CAUSE9	.487	2.052
CAUSE10	.55B	1.793
CAUSEII	.392	2,553
CAUSE12	729	1.372
6 (Constant)	1 .	1
CAUSE3	.547	1.829
CAUSE4	.363	2.758
CAUSES	.427	2.343
CAUSES	.534	1.872
CAUSEIO	.559	1.789
CAUSE11	.438	2.282
CAUSE12	.729	1.372
7 (Constant)	i	
CAUSE	.547	1.827
CAUSE4	.372	2.686
CAUSES	.434	2.302
CAUSES	.677	1.477
CAUSE10	.627	1.594

627

1.594

Collinearity Statistics

.284 .457 .307 .353 .510 .515

.406 .459 .543 .366 .675

.459 .307 .359 .513

.515

.408 .476 .546 .371

.460 .308 .415 .563 .411 .484 .546 .383

2.785

3.520

2.186

3.261

2.833

1.961 1.942

2.462

2.177

1.841

2.732

1.482

2.450

2.178

3.255 2.787 1.948

1.942

2.448

2.101

1.833

2.695

1.443

2.432

2.175

3.243

2.412

1.775

2.435

2.065

1.831

1.391

(Constant

CAUSE1

CAUSE2

CAUSE3

CAUSE4

CAUSES

CAUSE6 CAUSE7

CAUSE8

CAUSE9

CAUSE10

CAUSELL

CAUSE12

(Constant)

CAUSE2

CAUSE3

CAUSE4

CAUSES

CAUSE6

CAUSE7

CAUSE8

CAUSE9

CAUSEIO

CAUSELL

CAUSE12

(Constant)

CAUSE2

CAUSE3

CAUSE4

CAUSES

CAUSE7

CAUSE8

CAUSE9

CAUSEIO

CAUSELL CAUSE12

460

Coefficients

.125

.126

.152

057

088

.129

.128

.141

.174 .150

.142

Model		Tolerance	VIF
.8	(Constant)		
	CAUSE3	.557	1.795
	CAUSE4	.373	2.679
	CAUSES	.437	2.288
	CAUSE10	.656	1.524
	CAUSE12	.830	1.204
9	(Constant)		
	CAUSE3	.565	1.770
i	CAUSE4	.375	2.670
1	CAUSES	.437	2.286
	CAUSE10	.755	1.324
10	(Constant)		
l	CAUSE4	.434	2,302
l	CAUSES	.458	2.182
	CAUSE10	.755	1.324
a. Dep	endent Variable:	SCP2	

461

CALADII COLICIADUS

Sig. (1-tailed)

CAUSE_1 CAUSE_2 CAUSE_3 CAUSE_4

CAUSE_5 CAUSE_6 CAUSE_7 CAUSE_8 CAUSE_9

CAUSE_10 CAUSE_11 CAUSE_12

SCP2 CAUSE_1 CAUSE_2 CAUSE_3 CAUSE_4

CAUSE_5

CAUSE_6 CAUSE_7 CAUSE_B CAUSE_9

CAUSE 10 CAUSE_11 CAUSE 12

CAUSE_1 CAUSE_2 CAUSE_3 CAUSE_4 CAUSE_5 CAUSE_6 CAUSE_7 CAUSE_8 CAUSE_9 CAUSE_10

CAUSE_I1 CAUSE 12

.508 .489 .458 .573 .585 .028 .303 .259 .315 .196 .303 .054

.508 1.000 .850 .628 .625 .540 .224 .433 .436 .416 .253 .341 .248

.000

.489 .850 1.000 .622 .759 .595 .164 .530 .543 .309 .456 .108

.000 .000 .000 .116 .000 .000 .011 .000 .217 .55 .55 .55 .55 .55 .55 .55 .55 .55

.458 .628 .622 1.000 .598 .633 .211 .426 .379 .350 .185 .217

.092 .000 .000 .000

.000

.573 .625 .759 .598 1.000 .785 .285 .548 .447 .549

.000 .000

.000

.000

.000

.585 .540 .595 .633 .785 1.000 .274 .378 .389 .396 .327 .340 .168

.000

.000

.022 .002 .002 .001 .007 .006 .110 .55 .55 .55 .55 .55 .55 .55

.028 .224 .164 .211 .285 .274 1.000 .282 .234 .159 .086 .044 .099 .419 .050 .116

.017

.022

.019 .043 .123 .267 .375 .236 .55 .55 .55 .55 .55

.303 .433 .564 .426 .548 .378 .282 1.000 .694 .552 .393 .524 .110 .012 .000 .000 .000

Correlations

		CAUSE_10	CAUSE II	CAUSE 12
Fearson Correlation	SCP2	.196	.303	054
	CAUSE_1	.253	.341	.248
	CAUSE_2	.309	.456	.108
[CAUSE_3	.185	.217	.092
	CAUSE_4	.359	.400	.088
	CAUSE_5	.327	.340	.168
ļ	CAUSE_6	.086	.044	.099
	CAUSE_7	.393	.524	.110
	CAUSE_8	.664	.797	.396
	CAUSE_9	.694	.760	.372
	CAUSE_10	1.000	.724	.544
	CAUSE_II	.724	1.000	.370
# · · · · · · · · · · · · · · · · · · ·	CAUSE_12	544	370	1.000
Sig. (1-tailed)	SCP2	.076	.012	.348
	CAUSE_1	.031	.005	.034
	CAUSE_2	.011	.000	.217
	CAUSE_3	.088	.056	.251
	CAUSE_4	.004	.001	.263
	CAUSE_5	.007	.006 [.110
	CAUSE_6	.267	.375	.236
	CAUSE_7	.001	.000	.212
	CAUSE_8	.000	.000	.001
	CAUSE_9	.000	.000	.003
	CAUSE_10		.000	.000
	CAUSE_11	.000	. 1	.003
N	CAUSE_12	.000	.003	
IN .	SCP2	55	55	55
	CAUSE_1	55	55	55
	CAUSE_2	55	55	55
	CAUSE_3	55	55	55
	CAUSE_4	55	55	55
	CAUSE_5	55	55	55
	CAUSE_6	55	55	55
	CAUSE_7	55	55	55
	CAUSE_8	55	55	55
	CAUSE_9	55	55	55
	CAUSE_10	55	\$5	55
	CAUSE_II	55	55	55
	CAUSE 12	55	. 55	55

.259 .436 .530 .379

.447 .389 .234 .694 1.000 .784 .664 .797 .396 .000 .000 .002 .000 .002 .000 .002

.000 .000 .000 .001 .55 .55 .55 .55 .55 .55 .55 .55 .55

Regression

Descriptive Statistics

	<u>M</u> ean	Std. Deviation	N
SCP2	5.118	1,5335	55
CAUSE_1	5.391	2,2396	55
CAUSE_2	5,464	2.1897	55
CAUSE_3	5.400	2.2307	55
CAUSE_4	5.764	2.4092	55
CAUSE_5	5,500	2.2812	55
CAUSE_6	5.655	9.0615	
CAUSE 7	4.600		55
CAUSE 8		2.4578	55
CAUSE_9	5.482	2.2770	55
	4.809	2.1398	55
CAUSE_10	6.400	1.9940	55
CAUSE_11	4.891	2,3935	55
CAUSE 12	5.245	2.2564	55

\neg				-	Change Statistics				
Modej	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Screame Chappe	P Change	df1	ef2	Sig. F Change
,	,729		.398	1.1898	232	3.975	12	42	.000
2	.729	.532	.412	1.1759	.000	.000	1	44	.984
3	.7294	.532	425	1.1626	.000	.014 (1 \	45	.906
4	.7284	.531	.437	1.1508	-001	.087	11	46	.770
5	.728*	.530	448	1.1388	001	.048	il	47	827
6	.727	.529	.459	1.1280	001	.110	il	48	.742
7	.7144	.310	.448	1.1388	019	1.928	i I	49	.172
8	.7024	.493	.441	1,1463	-017	1.650	il	50	205
9	.6921	479	438_	1.1500	014	1.319	i	51	256

- a Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_7, CAUSE_10, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- b Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_3, CAUSE_1, CAUSE_1, CAUSE_5, CAUSE_9, CAUSE_9.
- c. I redictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_1, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- d. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Productors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_5, CAUSE_9, CAUSE_2
- 1. Predictors: (Coestant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_5, CAUSE_2
- 8. Predictors: (Constant), CAUSE_12, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_5, CAUSE_2
- h. Predictors: (Constant), CAUSE_12, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_5
- 1 Predictors: (Constant), CAUSE_12, CAUSE_6, CAUSE_1, CAUSE_5
- J. Dependent Variable: SCP2

462

ANOVA

Mode		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	67.328	12	5.627	3.975	.000
	Residual	59.454	42	1.416	1	
	Total	126.982	. 54			
2	Regression	67.527	11	6.139	4.440	.000
	Residual	59.455	43	1383		
	Total	126.982		ii	1	
)	Regression	67.508	10	6.751	4.994	.000
	Residual	59.474	44	1.352	i i	
	Total	126.982	54	ll_		
4	Regression	67.390	9	7.488	5.654	.000
	Residual	59,592	45	1,324		
	Total	126.982	54	ll		
5	Regression	67,326	8	8.416	6.489	.000
	Residual	59.656	46	1.297		
	Total	26,982	54	ll.		
6	Regression	67.184	7	9.598	7,544	.000
	Residual	59.798	47	1.272	j	
	Total	126,982	54			
7	Regression	64.731	- 6	10.789	8.319	.000
	Residual	62.250	45	1.297		
_	Total	126,982	54	1 1		
B	Regression	62.591	- 5	12.518	9.526	.000
	Residual	64.391	49	1.314	ľ	
	Total	126.982	54	!l_		
9	Regression	60.858	4	15.215	11.505	.000
	Residual	66.124	50	1.322	Į.	
	Total	126,982	54	l		

- N. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_3, CAUSE_1, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- b. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_7, CAUSE_1, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- d. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_5, CAUSE_9, CAUSE_2
- 1. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_5, CAUSE_2
- g. Predictors: (Constant), CAUSE_12, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_5, CAUSE_2
- b. Preductors: (Constant), CAUSE_12, CAUSE_6, CAUSE_11, CAUSE_1, CAUSE_5

Variables Entered/Removed

N4+4+1	Variables	Variables	14-1-4
Mode)	CAUSE 12.	Removed	Method
1	CAUSE 1. CAUSE 6. CAUSE 11. CAUSE 3. CAUSE 1. CAUSE 10. CAUSE 5. CAUSE 9. CAUSE 9. CAUSE 2.		Enter
2		CAUSE_10	Backward (criterion: Probability of F-to-remove >=:100).
3		CAUSE_3	Backward (criterion: Probability of F-to-remove >= .100).
4		CAUSE_7	Buckward (criterion: Probability of F-to-remove >= ,100).
5		CAUSE_I	Backward (criterion: Probability of F-to-remove >= .100).
6		CAUSE_9	Backward (criterion: Probability of F-to-remove

Variables Entered/Removed®

Model	Variables Entered	Variables Removed	Method
7		CAUSE_4	Backward (criterion: Probability of F-to-remove >= .100).
2		CAUSE_2	Backward (criterion: Probability of F-to-remove >= .100)
9		CAUSE_11	Backward (criterion: Probability of P-to-remove

a. All requested variables entered. b. Dependent Variable: SCP2

											- WASHINGTON	
-	iowet -		 	SIG. EXTOR	Beta	t	Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part
	8	(Constant)	2.862	.537		5.331	.000	1.783	3.940			
- 1		CAUSE_I	.217	.036	.317	2.534	.015	.045	.389	.508	.340	.258
		CAUSE_5	.313	.085	.466	3,702	,001	.143	.483	.585	.468	377
. !		CAUSE_6	-3.536E-02	.018	- 209	-1.957	.056	- 072	.001	028	- 269	- 199
- 1		CAUSE_11	8.583E-02	.075	.134	1.148	.256	064	.236	.303	.162	.117
- 1		CAUSE_12	- 163	.075	-240	-2 165	.035	-314	012	054	295	
T	9	(Constant)	2.957	_532		3.556	.000	1.88\$	4.025	034	293	- 220
- 1		CAUSE_I	.232	.035	.339							1
		CAUSE_5				2,735	.009	.062	.403	.508	.361	.279
			.333	.083	.496	4.014	.000	.167	.500	282	.494	.410
		CAUSE_6	-3.726E-02	.018	· 220	-2.064	.044	074	001	028	280	211
L		CAUSE 12	136	.072	- 200	-1.893	054	- 280	009 [054	- 259	: 193

Analysis for Ca-SCP2-MC

Coefficients

Į		Collanearny Statustics			
	Model .	Tolerance	VIF		
ì	(Constant)				
	CAUSE_I	.213	4.690		
- 1	CAUSE_2	.150	6.668		
ł	CAUSE_3	.440	2.272		
1	CAUSE_4	.195	5.125		
Ì	CAUSE_5	.299	3.343		
ı	CAUSE_6	.783	1.277		
١	CAUSE_7	.394	2.541		
ı	CAUSE_8	.187	5.351		
1	CAUSE_9	.257	3.897		
١	CAUSE_10	.337	2.964		
١	CAUSE_II	.250	3.995		
ļ	CAUSE_12		1.761		
1	2 (Constant)				
ł	CAUSE_1	.214	4.674		
١	CAUSE_2	.151	6.626		
1	CAUSE_3	.440	2.270		
١	CAUSE_4	.197	5.074		
ł	CAUSE_5	.300	3.335		
1	CAUSE_6	,784	1.275		
1	CAUSE_7	.394	2.541		
١	CAUSE_8	.188	5.321		
I	CAUSE_9	.259	3.711		
Į	CAUSE_11	.279	3.590		
ŀ	CAUSE_12		1.509		
۱	3 (Constant)				
ı	CAUSE_!	.227	4.398		
1	CAUSE_2	.151	6.620		
1	CAUSE_4	.197	5.068		
ı	CAUSE_5	344	2.911		
1	CAUSE_6	.787	1.270		
ı	CAUSE_7	.398	2.513		
ı	CAUSE_8	.191	5.247		
ı	CAUSE_9	.271	3.694		
ı	CAUSE_I1	.294	3.399		
Ļ	CAUSE 12	. 668	1.497		

- 463 -

Analysis for Ca-SCP2-MC

_				-			77.14 COMPANY			CONTRACTOR OF THE PARTY.		_
LΜ	odel	<u> </u>	Std Error	Beta	L	Sig	Lower Bound	Upper Bound	Zero-order	Pactiet	Pest .	I
11	(Constant)	2.939	.665	1	4.422	.000	1.598	4.281				1
-	CAUSE_I	.392	.157	.573	2.506	.016	.076	.708	,508	.361	.265	i
1	CAUSE_2	+.319	.191	456	-1.672	.102	705	.066	489	250	177	!
1	CAUSE_3	1.296E-02	.109	.019	.118	.906	208	.234	.458	.018	.013	ı
1	CAUSE_4	.152	.152	.239	1.001	323	.155	.459	.573	.153	.106	١.
1	CAUSE_5	.258	.130	.383	1.985	.054	004	.519	.585	.293	210	ı
j	CAUSE_6	-4.160E-02	.020	246	-2.060	.046	082	001	028	303	217	ł
ı	CAUSE_7	2.879E-02	.105	.046	.274	.785	183	.241	.303	.042	.029	ı
1	CAUSE_8	-5.543E-02	.164	+.082	337	.738	387	.277	.259	052	036	ı
1	CAUSE_9	5.678E-02	.149	.079	.380	.706	- 245	.358	.315	.059	.040	
1	CAUSE_10	2.873E-03	.140	.004	.021	.984	-279	.285	.196	.003	.002	ļ
1	CAUSE_11	.114	.135	.178	.841	.405	- 159	.387	,303	.129	.089	ı
	CAUSE_12	- 190	.095_	- 280	-1.996	052	,382	002	- 054	294	211	12
2	(Censtant)	2.946	.581		5.074	.000	1.775	4.117				()
1	CAUSE_1	.392	.154	.573	2.538	.015	.081	.704	.508	.361	.265	Taniya0
1	CAUSE_2	- 320	.133	456	-1.699	.097	699	.060	.489	251	177	
1	CVR2E ³	1.289E-02	.108	.019	.119	.906 .	205	.231	458	.018	.012	=
1	CAUSE_4	.153	.150	.240	1.020	.314	149	.454	.573	.154	.106	1.2
1	CAUSE_5	.258	.128	.383	2.012	.051	001	.516	.585	.293	.210	5
1	CAUSE_6	-4.162E-02	.020	246	-2.087	.043	082	001	028	303	218	į ė
1	CAUSE_7	2.876E-02	.104	.046	.277	.783	181	.238	.303	.042	.029	15
1	CAUSE_8	-5.517E-02	.162	082	340	.735	- 382	.272	.259	-052	036	CEZ-MC
1	CAUSE_9	5.745E-02	.144	.080	.399	.692	233	,348	.315	.06t	.042	3
1	CAUSE_11	.115	.127	.179	.905	370	14]	.370	.303	.137	.094	
1_	CAUSE_12	- 189	.087	279	-2.173	.035	- 365	014	- 054	-315	- 227	İ
] 3	(Constant)	2.960	.562		5.266	.000	1.827	4.093				ı
ı	CAUSE_I	.397	.148	.579	2.677	.010	.098	.695	.508	.374	.276	i
1	CAUSE_2	- 319	.186	455	-1.716	.093	694	.056	.489	250	177	Ĺ
1	CAUSE_4	.152	.148	.239	1.028	.310	146	.450	.573	.153	.106	
1	CAUSE_5	.263	.118	.391	2.224	.031	.025	.502	_585	.318 [.229	1
1	CAUSE_6	-4.177E-02	.020	-247	-2.122	.039	081	002	028	305	219	ĺ
1	CAUSE_7	3.006E-02	.102	.048	.295	.770	176	.236	.303	.044	.030	1
1	CAUSE_B	-5.289E-02	.159	079	332	.741	-374	.268	.259	050	.034	
1	CAUSE_9	5.862E-02	.142	.082	.413	.682	- 228	.345	.315	.062	.043	
1	CAUSE_11	.111	.122	.174	.912	.367	-,134	.357	.303	.136	.094	Į
┖	CAUSE_12	-190	.086	- 280	-2.217	.032	363	017	- 054	- 317	-,229	

Coefficients*

		Unstandardized Coefficients		Standardized coefficients or Beta	_		OSE Confidence			C1	
Model		B Std. Error				Siz.	95% Confidence Interval for B Lower Bound Upper Bound		Correlations		Part
4	(Constant)	2.966	.536	75.10	5.336	.000	1,846	4.086	Zero-order	Partial	PAR
	CAUSE I	.394	.146	.576	2.693	.010	1.099	.689	.508	.373	.275
	CAUSE_2	-,313	.183	447	-1.712	.094	682	055	.300	-247	175
	CAUSE 4	.163	.163	.257	1.156	.254	121	.448	573		
	CAUSE_5	.257	.115	.382	2.229	.031	.025	489	585	.170 l .315 l	.118 .228
	CAUSE_6	-4.105E-02	.019	- 243	-2.124	.039	080	.002	028	-302	217
	CAUSE_8	-3.046E-02	.[38	.045	220	.827	309	.248	259	.033	-022
	CAUSE 9	5.396E-02	.140	.075	.386	.701	- 228	.335	315	.057	.039
	CAUSE_11	.110	.121	.172	.916	.364	132	.353	.303	.135	.094
	CAUSE 12	194	.084	285	2,311	.025	-,363	025	.054	-,326	-236
5	(Constant)	2.951	546	- 105	5,405	.000	1.852	4.050	1,1,1,2-4	1,320	1,230
	CAUSE 1	.395	.145	.577	2,727	.009	.103	.687	508	273	.276
	CAUSE_2	-320	.179	457	-1.793	.080	.679	.029	489	256	181
	CAUSE_4	.168	.138	.255	1.222	.228	.109	.446	573	.177	.124
	CAUSE 5	.255	.11	.379	2.242	.030	.026	.484	585	.314	.227
	CAUSE_6	-4.223E-02	.018	-250	-2.298	.026	079 i	005	-028	-321	- 232
	CAUSE 9	4.251E-02	.128	.059	331 (.742	216	.301	.315	.049	.033
	CAUSE_11	9.725E-02	.103	.152	.940	352	-111	306	303	.137	.033
	CAUSE 12	.196	.083	.289	-2.376	.022	362	.030	.054	331	240
6	(Constant)	2.955	.541		5.466	.000	1.868	4.043			1274
	CAUSE_I	.390	.143	.569	2.733	.009	.103	.676	.508	.370	.274
	CAUSE_2	311	.175	-,445	-1.781	180.	663	.040	489	251	178
	CAUSE_4	.182	.131	.285	1.388	.172	082	.445	.573	.198	.139
	CAUSE_5	.248	.111	.370)	2.239	.030	.025	.472	.585	310	.224
	CAUSE_6	-4.163E-02	.018	246	-2.298	.026	078	005	028	318	230
	CAUSE_11	.119	.080	.185	1.485	.]44	042	.280	.303	.212	.149
	CAUSE_12	- 189	.079	279		.021	-,349	030	054	- 329	239
7	(Constant)	3.004	.545		5.515	.000	1.909	4.099			
	CAUSE_1	364	.143	_532	2.552	.014	.077	.651	.508	346	.258
	CAUSE_2	.203	.158	290	·1.285	.205	521	.115	.489	.182	.130
	CAUSE_5	.345	.088	513	3.937	.000	.169	.521	_585	.494	.398
	CAUSE_6	-3.724E-02	.013	.220	-2.068	.044	073	001	028	286	209
	CAUSE_11	.126	.081	.197	1.563	.125	.036	.288	303	220	.158
	CAUSE_12	.198	_080_	- 292	-2.489	016	. 359	038	054	338	252

Regression

Descriptive Statistics

	Mean.	Std. Deviation	_N
2C.b.	4.402	1.4252	TI.
CAUSE_1	6.329	1.6945	117
CAUSE_2	5.368	1.7731	11
CAUSE_3	5.581	1,7665	117
CAUSE 4	5.350	1.6417	11
CAUSE_5	5.261	1.6976	117
CAUSE_6	5.171	1,7034	117
CAUSE_7	5,500	1,7145	217
CAUSE 8	6.444	1.6697	117
CAUSE_9	7.162	1.6646	11
CAUSE_10	5.615	1.5134	11
CAUSE_II	5.551	1.6287	11
CAUSE 12	5.765	1.7039	11

Analysis for Ca-SCP2-SC

- 464 -

Correlations

		S/TP	CAUSE	CAUSE_2	CAUSE 3	CAUSE 4	CAUSE 5	CAUSE 6	CAUSE ?	CAUSE 8	CAUSE_9
Pearson Correlation	SCP2	1.000	.252	.300	.364	.3\$4	.387	.327	.308	.345	.36
	CAUSE_1	.252	1,000	.662	.486	.432	.520	.196	.329	.453	.38
	CAUSE_2	.300	.662	1.000	.607	.561	.516	.445	.355	402	.39
	CAUSE_3	.364	.486	.607	1.000	.624	.565	566	.500	.319	.47
	CAUSE_4	.384	.432	561	.624	1.000	.544	.172	.420	.395	.38
	CAUSE_5	.387	.520	516	.565	.644	1.000	.654	.405	.446	.37
	CAUSE_6	.327	.496	.445	.566	472	.654	1.000	.481	.417	.40
	CAUSE 7	.308	,329	.355	500	.420	,405	.481	1.000	.416	.33
	CAUSE 8	.345	.453	.402	319	J95	.446	.417	416	1.000	.47
	CAUSE_9	.364	.384	.390	.473	.386	.376	.464	.331	.478	1.00
	CAUSE_10	.385	.331	,265	.394	.487	492	.348	,229	339	
	CAUSE_11	.353	.288	.386	.406	.495	.429	.356	.418	.483	.53
	CAUSE_12	.181		.112	218		238	.278			→ 28
Sig. (1-tailed)	SCP2		,003	.001	,000	.000	.000	.000	000	.000	2 .00
	CAUSE_I	.003	,	.000	.000	.000	.000	.000	.000	.000	₹.α
	CAUSE_2	.001	.000		.000	.000	.000	.000	.000	.000	₩.00
	CAUSE_3	.000	.000	.000	ì.	.000	.000	,000	.000	.000	<u>=</u> .00
	CAUSE_4	.000	.000	.000	.000	. ,	.000	,000	.000	.000	₹.00
	CAUSE_5	.000	.000	.000	.000	000	١	.000	.000	.000	<u>_</u> 0.00
	CAUSE_6	.000	.000	.000	.000	.000	.000		.000	.000	~ oc
	CAUSE_7	.000	.000	,000	.000	.000	.000	,000		.000	Ďα
	CAUSE_8	.000	.000	.000	.000	.000	.000	.000	.000		,300
	CAUSE_9	.000	.000	.000	.000	.000	.000	.000	.000	.000	000 000
	CAUSE_10	.000	.000	.002	.000	.000	.000	.000	,006	.000	
	CAUSE_11	.000	.001	.000	.000	.000	.000 .	.000	,000	.000	.00
	CAUSE_12	.025	.016	.114	.009	.005	.005	.001	,001	.000	00
N	SCP2	117	117	117	117	117	117	117	117	117	11
	CAUSE_I	117	117	117	117	117	117	117	117	117	11
	CAUSE_2	117	117	117	117	117	117	117	117	117	11
	CAUSE_3	117	117	117	117	217	117	117	117	117	t:
	CAUSE_4	117	217	117	117	117	117	117	117	117	1
	CAUSE_5	117	[17	117	117	117	117	127	117	217	!
	CAUSE_6	117	117	137	l 117	117	117	117	117	117	1.
	CAUSE_7	117	117	117	117	117	ii7 :	117	117	117	1
	CAUSE_8	117	117	117	117	117	117	117	117	117	i
		***		1 554	1 772			7.12	1.12	1 .22.1	

	Collinearin	
	Tolerance	VIF
(Constant)		
CAUSE_I	.228	4.387
CAUSE_2	.153	6.550
CAUSE_4	.212	4,725
CAUSE_5	.354	2,822
CAUSE_6	.799	1.251
CV02E_8	.247	4.046
CAUSE 9	274	3,643
CAUSE_11	294	3,397
CAUSE_12	683	1,463
(Constant)	· · · · · · · · · · · · · · · · · · ·	
CAUSE_1	.228	4,385
CAUSE 2	.157	6,364
CAUSE 4	.218	4.594
CAUSE 5	.357	2,504
CAUSE 6	866	1.155
CAUSE_9	318	3.143
CAUSE_11	.392	2,554
CAUSE_12	.692	1,445
(Constant)		
CAUSE_1	.231	4,326
CAUSE_2	.161	6.228
CAUSE_4	.237	4,215
CAUSE_5	.368	2.720
CAUSE_6	.874	1.144
CAUSE_11	.643	1.554
CAUSE_12	737_	1.358
(Constant)	i	
CAUSE_I	.235	4.255
CAUSE_2	.201	4.985
CAUSE_5	.602	1.660
CAUSE_6	.902	1.109
CAUSE_11	.646	1.547
CAUSE_12	742	1.348

Coefficients*

1		Cotlinearur	Statustics
Model_		Tolerance	VIF
8	(Constant)		
	CAUSE 1	.662	1.511
	CAUSE	.654	1.530
	CAUSE 6	903	1.101
	CAUSE 11	.760	1.325
	CAUSE 12		1.187
9	(Constant)		1,107
	CAUSE_I	.678	1.475
	CAUSE_5	683	1.465
	CAUSE_6	.916	1.092
	CAUSE 12	935	1.069

a. Dependent Variable; SCP2

Analysis for Ca-SCP2-MC

.181 .199 .112 .218 .237

.238 .278 .292 .350 .289

.349

.392

1.000 .025

£16

.114

.009

.005

.001 .001

.000 .001

.000

.000

117

217

117

117

117

117 117

117

117

.000 .000 .002 .000 .000

000

.006

000

,000,

117

117 117

117 117

117

117

117 117 117

.392 .000 .001 .000 .000 .000 .000 .000

-	 LANGUAL TO	T MICHING
ľ	CAUSE_3	Backward (enterion: Probability of F-to-remov >= .100).
8	CAUSE_5	Backward (enterion: Probability of F-to-remov >= .100),
9	CAUSE_9	Backward (enterion: Probability of F-to-remov >= .100).
10	 CAUSE_7	Backward (enterion: Probability of F-to-removi >= .100).

^{3.} All requested variables entered.

465

Model Summery

]			Adjusted R	Page 1			hange Statistics		
Model	R 	R Square	Square	Std. Error of the Estimate	R Square Change	F Change	đị	df2	Sig. F Change
); [2116	.262	.176	1.2934	.262	3.070	12	104	.001
1		.262	.184	1.2873	.000	.011	- ii l	106	
; I	.5115	.261	.191	1.2816	.000	.061	- 11	107	.915
: 1	5104	.260	.198	1.2761	001	.092	; [.806
3	.5091	.259	.204	1.2712	001	.171	: 1	108	.763
: 1	.5071	.257	.209	1.2673	002	.319	: 1	109	.680
' !	.505#	.255	.214	1.2634	-002		1	110	.573
9 [4994	.249	.215	1.2626	006	.337	1]	111	.563
9	.490	.240	.213			.859	I	112	.356
10	.478	229	308	1.2642	009	1.280	1	113	.260
a. Predicte			100	1.258) T	-012	1.704 1		114]	

- stand, CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- b. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- c. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_1, CAUSE_8, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5 d. Predictors: (Constant), CAUSE 2, CAUSE 10, CAUSE 3, CAUSE 8, CAUSE 9, CAUSE 4, CAUSE 1, CAUSE 3, CAUSE 5
- c. Predictors: (Constant), CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- 1. Productors: (Constant), CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_9, CAUSE_5, CAUSE_5
 s. Predictors: (Constant), CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_4, CAUSE_4
- h. Predictors: (Constant), CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_4
- i. Predictors: (Constant), CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_4
- j. Predictors: (Constant), CAUSE_10, CAUSE_8, CAUSE_4
- k. Dependent Variable: SCP2

ANOVA^k

Model		Sum of Squares	df	Mean Square	P I	Sig
<u> </u>	Regression Residual Total	61.637 173.983 235.620	12 104 116	5.136 1.673	3.070	.0012
2	Regression Residual Total	61.613 174.002 235.620	11 105 116	5.602 1.657	3.380	.000
J	Regression Residual Total	61.517 174.102 235.620	10 106	6.152 1.642	3.745	.000*

Variables	Entered	/Removed
-----------	---------	----------

Pearson Correlation

Sig. (1-tailed)

CAUSE_1 CAUSE_2 CAUSE_3 CAUSE_4 CAUSE_5

CAUSE_6 CAUSE_7 CAUSE_B CAUSE_9 CAUSE 10

CAUSE_11

CAUSE 12

CAUSE_1

CAUSE_2

CAUSE 3

CAUSE_4 CAUSE_5

CAUSE_6

CAUSE_7

CAUSE 8

CAUSE_9 CAUSE_10

CAUSE_11

CAUSE_12 SCP2

CAUSE_1

CAUSE 2

CAUSE 3

CAUSE, 4

CAUSE_5 CAUSE_6 CAUSE_7

CAUSE_8

CAUSE 9

CAUSE_10 CAUSE_11

Model	Variables Entered	Variables Removed	Method
	CAUSE_12, CAUSE 2, CAUSE 10, CAUSE 7, CAUSE 6, CAUSE 6, CAUSE 9, CAUSE 11, CAUSE 4, CAUSE 1, CAUSE 3, CAUSE 5		Enter
•		CAUSE_6	Backward (criterion: Probability of F-10-remove >= .100).
' i		CAUSE_11	Backward (criterion: Probability of F-m-remove >= ,100).
		CAUSE_12	Backward (critezion: Probability of F-to-remove >= .100).
	- [CAUSE_2	Backward (criterion: Probability of F-to-remove >= 100).
		CAUSE_1	Backward (criterion: Probability of F-to-remove

b. Dependent Variable: SCP2

Coefficients^a

		Unstandardize	4 Castleine	Standardized Coefficients			95% Confidence	large of for D		Correlations	
Model		R R	Skt Error	Beta		Sie	Lower Bound	Upper Bound	Zero-order	Partial	Part
4	(Constant)	.907	.544		1.407	.152	-,371	2.184			
	CAUSE_I	-6.928E-02	.100	082	.691	.491	- 268	.129	.252	- 067	-057
	CAUSE 2	4 298E-02	,104	.053	.414	.680	163	.249	.300	.040	.034
	CAUSE_1	5.631E-02	,104	.070	543	.588	. 149	.262	364	.052	.045
	CAUSE_4	6.232E-02	.110	.072	.567	572	156	.290	384	.055	.047
	CAUSE_5	8 876E-02	.103	.106	.859	.392	-,116	.294	.387	.083	.071
	CAUSE_7	7.004 E-02	.085	.084	.826	.411	098	.238	.308	.080	.069
	CAUSE_8	104	.092	.121	1.132	.260	.078	.235	345	.109	.094
	CAUSE 9	8.722E-02	.094	.102	.929	355	-,099	.273	.364	.089	.077
	CAUSE_10	.162	.102	.172	1.591	.114	-040	.364	.385	152	.132
3	(Constant)	902	.642		1,405	.163	370	2.174			
	CAUSE_1	-4.996E-02	.088	059	- 565	.573	225	.125	252	054	A 20 20 20 20 20 20 20 20 20 20 20 20 20
	CAUSE_3	6.782E-02	.099	.0\$4	.682	.497	-,129	.265	,364	.06.5	03
	CAUSE_4	7,305E-02	,106	.084	.616	.494	138	.284	.384	.066	.092.
	CAUSE_5	9.044E-02	.103	801.	,B79	.381	113	.294	,387	.084	.07.
ļ	CAUSE_7	6.832E-02	.084	.082	.810	.420	.099	.236	.308	.078	
ĺ	CAUSE_8	.106	.091	.124	1.165	.247	074	.287	.345	.111	.090
i	CAUSE_9	8.995E-02	.093	.105	.965	.337	095	.275	,364	.092	.087
	CAUSE_10	154	.100	.154	1.548	125	-013	352	385	147	25 27 27 24 26 26
6	(Constant)	.815	.621		[.312]	.192	- 416	2.046			5.
ŀ	CAUSE_3	5,632E-02	.097	.070	.580	.563	136	.249	364	.056	DAY.
!	CAUSE_4	7.272E-02	.106	.084	.685	.495	138	.283	.384	.065	
	CAUSE_5	7,753E-02	,100	.092	.775	.440	121	.276	,387	.074	.064
ļ	CAUSE_7	6.921E-02	.084	.083	.823	.412	097	.236	.305	.079	.063
1	CAUSE_8	9 417E-02	.088	.110	1.066	.289	081	.269	.345 .364	.102 .089	.088
i	CAUSE_9	8.6668-02	.093	.101	.934	.352	.097 -043	.271	385 385	.089	128
	CAUSE_10	.154	.079	164	1.554	.123	405	352	.15 3	- 141	143
7	(Constant)	.822	.619		1.329	.187		2.049	384	.089	.078
Í	CAUSE_4	9,370E-02	.099	.108	942 .927	348	103 103	.291 .283	397	.083	.076
ŀ	CAUSE_5	9.020E-02	.097	.107	1.037	.356 .302	103	.243	.308	.098	.085
1	CAUSE_7	8,326E-02	.080 .087	.100	995	.302	086	.242	.345	.094	.082
l	CAUSE_8	8.662E-02		.101	1.140		025	.278	.364	.109	.094
ı	CAUSE IQ	.101 153	.089	118 163_	1.547	.257	- 043	150	355	146	127

Coefficients*

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidence	e Interval for B		Correlations	
Model		_8	_ Std Frrot.	Beta		Sig	Lower Bosted	Uccer Bound	Zero-croez	Partia	Part
8	(Constant)	.818	,619		1.323	.169	407	2.044	_	j={	
	CAUSE_4	.135	.089	.155	1.509	.134	042	.311	.384	.142	,124
	CAUSE_7	9.304E-02	.080	.112	1.170	.245	065	.251	.308	.210 {	.096
	CAUSE_8	.102	.086	.119	1.188	.237	068	271	.345	112 !	.098
	CAUSE_9	.101	.089	.117	1.131	.260	076	.277	.364	.107	.093
	CAUSE_10	174	,097	.185	1.802	.074	:.017	365	_385	169	.148
9	(Constant)	1.045	.586		1.782	.077	+.117	2.206			
	CAUSE_4	.140	.089	.161	1.572	.119	036	.317	384	.147	.130
	CAUSE_7	.103	.079	,124	1.305	.194	053	.260	.308	.122 (,108
	CAUSE_8	.131	.082	.153	1.606	.121	031	.293	.345	.150	.132
	CAUSE_10	213	.093	.226	2.355	.020	.034	.392	_385	217]	.194
10	(Constant)	1.242	368		2.187	.031	.117	2.368			
	CAUSE_4	.174	.086	.200	2.034	.044	.003	.343	.384	.188	.14
	CAUSE_B	.163	.078	.191	2.087	.039	.008	318	345	.193	112
	CAUSE 10	210		223	2.316	.022	030	389	.385	213	191

ANOVA^b

Model		Sum of Squares	a(Mean Square	F	Šiz.
4-	Regression	61.367	- 9	6.819	4.187	.000
	Rendual	174.253	107	1.629	1	
	Total	235.620	116_	ł I.		
5	Regression	61.088		7.636	4.725	.000
	Residual	174.532	108	1.616		
	Total	235.620	116)	Ī	
6	Regression	60,571	7	8.653	5.388	.000
	Residual	175.048	109	1,606	1	
	Total	235.620	116	,	- 1	
7	Regression	60.030	6	10.005	6.268	.000
	Renduz	175,589	110	1,596		
	Total	235.620		(Ţ	
8	Regression	58.658		11,732	7.359	.000
	Revenue	176.961	111	1,594	1,22,	
	Total	235.620	116_			
9	Regression	\$6.617	4	14.154	8.856	.000
	Retidual	179.002	112	1.598		
	Total	235.620	116		ſ	
10	Regression	53,894		17.965	11,171	.000
	Residue	181.726	113	1.608		
	Total	235.620	iiá.			

Predictors: (Constant), CAUSE, 12, CAUSE, 2, CAUSE, 10, CAUSE, 7, CAUSE, 8, CAUSE, 9, CAUSE, 11, CAUSE, 4, CAUSE, 1, CAUSE, 3, CAUSE, 5, b. Predictors: (Constant), CAUSE, 12, CAUSE, 2, CAUSE, 10, CAUSE, 12, CAUSE, 12, CAUSE, 3, CAUSE, 5

c. Predictors: (Comman), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_1, CAUSE_3, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5

d. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5

e. Predictors: (Constant), CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
f. Predictors: (Constant), CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_4, CAUSE_3, CAUSE_5

g. Predictors: (Constant), CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_4, CAUSE_5

h. Predictors: (Constant), CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_4

i. Predictors: (Constant), CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_4

i. Predictors: (Constant), CAUSE_10, CAUSE_4, CAUSE_4

k. Dependent Variable; SCP2

		Unstandardized Coefficients		Standardized Coefficients				Interval for B		Correlations	
Model		В	Std Error	Beta		Sin	Letter Bound	Urger Bound	Zero-crd-z	Pertrail	Part
1	(Constant)	.964	.674		1.431	.155	-372	2.301			
	CAUSE_1	-6.536E-02	104	078	- 629	.531	- 272	.141	.252	- 062	053
	CAUSE_2	3.603E-02	.107	.045	.336	.738	177	249	300	.033	.025
	CAUSE_3	5.661E-02	.107	.070	.530	.597	-,155	.268	.364	.052	.045
	CAUSE_4	5.934E-02	.113	.068	.526	.600	164	.283	.384	.052	.044
	CAUSE_5	8.246E-02	.115	.098	.715	476	-,146	.311	J87	.070	.060
	CAUSE_6	1.132E-02	.106		.107	.915	-,198	.221	.327	.010	.009
	CAUSE_7	6.856E-02	.090	.082	.765	.446	.109	.246	.308	.075	.064
	CAUSE_8	.105	.096	.123	1.097	.275	085	.295	.345	.107	.092
	CAUSE_9	8.018E-02	.100	.094	.798	.426	129	279	364	.078	.067
	CAUSE_10	.164	.108	.174	1.514	.133	-051	.378	.385	.147	.122
	CAUSE_11	2.629E-02	.104	.030	.253	.801	- 180	.233	353	.025	.02
	CAUSE_12	-2.817E-02	.081	034	347	.729	- 189	.133	.181	034	02
2	(Constant)	.960	.670		1,434	.155	+.368	2.289			
	CAUSE_I	-6.392E-02	.103	076	- 623	.535	- 267	.140	.252	061	05
	CAUSE_2	3.545E-02	107	.044	.333	.740	- 176	.247	.300	.032	02
	CAUSE_3	5.853E-02	.105	.073	.559	.577	- 49	.266	.364	.054	.05 02 .04
	CAUSE_4	5.877E-02	.112	.068	.524	.601	-,164	.281	.384	.051	.044
	CAUSE_S	8.762E-02	.104	.104	.840	.403	-,119	.294	.387	.082	.070
	CAUSE_7	7.039E-02	.085	.085	.803	.424	- 103	.244	.308	.078	.07
	CAUSE_8	.105	.095	.123	1.104	272	084	.294	.345	.107	.096
	CAUSE_9	8.246E-02	.098	.096	,844	.400	111	.276	.364	.082	.01
	CAUSE_10	.163	.107	.173	1.517	.132	050	375	.385	.146	.127
	CAUSE_11	2.544E-02	.103	.029	.246	.806	-,179	.230	.353	.024	.021
	CAUSE_12	-2.739E-02	.080	033	340	.734	,187_]	132	.181	033	029
3	(Constant)	.955	.666		1.433	.155	366	2.276			
	CAUSE_1	-6.809E-02	.101	081	676	.501	268	.132	.252	065	056
	CAUSE_2	3.932E-02	.105	.049	.375	.709	169	.247	300	.036	-031
	CAUSE_3	5.703E-02	.104	.071	_548	.585	- 149	.263	.364	.053	.046
	CAUSE_4	6.281E-02	.110	.072	.569	.571	156	.282	.384	.055	.047
	CAUSE_5	8.801E-02	.104	.105	.848	.399	118	.294	.387	.082	.071
	CAUSE_7	7.386E-02	.086	.029	818	.193	097	.245 أ	308	.083	.072
	CAUSE_8	.109	.094	.128	1.164	.247	077	.295	345	.112	.097
	CAUSE 9	8.833E-02	.094	.103	937	.351	099	.275	.364	.091	-078
	CAUSE_10	.168	.104	.179	1613	.110	.039	175 [784	ver	140
	CATTER 15	1					-				

alysis
for Ca-SCP2-SC

_			CONTROL I
Model		Tolerance	VIE
8	(Constant)		
1	CAUSE_4	.642	1.558
1	CAUSE_7	.739	1.353
1	CAUSE_8	.674	1.484
l	CAUSE_9	.628	1.593
1	CAUSE_IO	.544	1.553
9	(Constant)		
	CAUSE_4	.544	1.553
1	CAUSE_7	.749	1.336
	CAUSE_8	.743	1.346
١.	CAUSE_10	,737	1.356
10	(Constant)	1	
	CAUSE_4	.703	1.422
	CAUSE_8	.816	1.225
L	CAUSE_10		1,156

Dependent Variable; SCP2

- 467 -

Regression

Descripcive Statistics

	Mean	Std Deviation	<u>N</u>
SCPZ	5.340	1,5594	25
CAUSE_1	6.800	2.2913	25
CAUSE_2	6.680	2.1884	25
CAUSE_3	6,600	2.2913	25
CAUSE_4	6.820	2.3313	25
CAUSE_5	6.700	2.2638	25
CAUSE_6	6.200	2.2958	25
CAUSE 7	5.69D	2,0355	25
CAUSE_8	6,400	1.8428	25
CAUSE_9	5.520	2.3326	25
CAUSE_10	6,440	2,0530	25
CAUSE II	5,320	2,5612	25
CAUSE_12	5.600	2.1629	25

Model	Tolerance	VIF
T (Constant)		
CAUSE_1	.465	2.152
CAUSE 2	.399	2,507
CAUSE_3	406	2.466
CAUSE_4	A21	2.378
CAUSE 5	.376	2.657
CAUSE_6	.444	2.250
CAUSE_7	.610	1.639
CAUSE_8	.564	1.774
CAUSE_9	.516	1.938
CAUSE_10	.538	2.859
CAUSE_11	.502	1.991
CAUSE_12		1.326
2 (Constant)		
CAUSE_1	.473	2.116
CAUSE_2	.400	2.501
CAUSE_3	.417	2.396
CAUSE_4	.422	2.372
CAUSE_5	.456	2.195
CAUSE_7	.633	1.580
CAUSE_8	.564	1.773
CAUSE_9	.540	1.851
CAUSE_10	.542	1.845
CAUSE_11	.505	1.975
CAUSE_12	.760	1.315
3 (Constant)		1
CAUSE_I	.486	2.059
CAUSE_2	.409	2.447
CAUSE_3	.419	2.388
CAUSE_4	.431	2.322
CAUSE_5	.456	2.194
CAUSE_7	.650	1.539
CAUSE_8	.579	1,728
CAUSE_9	374	1.741
CAUSE_10	.568	1.762
CAUSE_12		1.274

Coefficients^a

		Collinearity	Staustics
Model		Tolerance	VIF
4	(Constant)		
	CAUSE_I	486	2.056
	CAUSE_2	.414	2.414
	CAUSE_3	.419	2.387
	CAUSE_4	.431	2.321
	CAUSE_5	.456	2.193
	CAUSE_7	.664	1.506
	CAUSE_8	.600	1.667
	CAUSE_9	.575	1.738
	CAUSE_10	.591	1.692
5	(Constant)		
	CAUSE_1	.521	L.610
	CAUSE 3	.452	2.215
	CAUSE_4	456	2.192
	CAUSE_\$.457	2.190
	CAUSE_7	.666	1.502
	CAUSE_8	(,602)	1.560
	CAUSE_9	_578	1.729
	CAUSE_10	.611	1.636
6	(Constant)	t !	
	CAUSE_3	.471	2.122
	CAUSE_4	.456	2.192
	CAUSE_5	.480	2.082
	CAUSE_7	.666	1.502
	CAUSE_8	.637	1.571
	CAUSE_9	.580	1.723
	_CAUSE_10	.611	1.636
7	(Constant)	1 1	
	CAUSE_4	.516	1.938
	CAUSE_5	_504	1.982
	CAUSE_7	.726	1.377
	CAUSE_8	.651	1.537
	CAUSE_9	.628	1.593
	CAUSE 10	.612	1.635

Model	Variables Entered	Variables Removed	Method
	CAUSE 12. CAUSE 5. CAUSE 9. CAUSE 6. CAUSE 1. CAUSE 2. CAUSE 10. CAUSE 10. CAUSE 11. CAUSE 11. CAUSE 14.		Enter
2		CAUSE_12	Backward (enterion: Probability of P-to-remove
3		CAUSE_I	>= .100). Backward (contrion: Probability of F-to-remove >= .100).
1		CAUSE_4	Backward (criterion: Probability of F-to-remove >= .100).
5		CAUSE_11	Backward (craterion: Probability of F-to-remove >= .100).
•	,	CAUSE_6	Backward (criterion: Probability of P-to-remove >= 100)

- 468 -

Variables Entered/Removed®

Mode]	Variables Entered	Variables Removed	Method
7		CAUSE_7	Backward (criterion: Probability of P-to-remove >= 1000.
8		CAUSE_1	Backward (criterion: Probability of F-to-remove >= .100).
q		CAUSE_1	Backward (criterion: Probability of F-to-remove
10		CAUSE_9	Backward (criterion: Probability of F-to-remove
11		CAUSE_10	Backward (criterion: Probability of P-to-remove

All requested variables entered.
 Dependent Variable: SCP2

		SCP2	CAUSE I	CAUSE 2	CAUSE 3	CAUSE 4	CAUSE 5	CAUSE 6	CAUSE 7	CAUSE I	CAUSE 9
Pearson Correlation	SCP2	1.000	479	.701	AR9	.559	.434	.463	.462	.755	.633
ì	CAUSE_1	.679	1.000	.942	571	.835	.651	.440	.316	.405	.386
1	CAUSE_2	.708	.942	1.000	.597	.829	.621	.442	.294	.452	.385
	CAUSE_3	.489	.571	.597	1,000	.746	.442	202	472	.523	.498
ţ	CAUSE_4	.559	.835	.829	.746	1,000	.747	.251	.251	.388	.389
	CAUSE_5	.434	.651	.621	.412	747	1.000	,423	080	.210	.088
	CAUSE_6	.463	.440	.442	.202	.281	.423	1,000	.277	.S10	.155
1	CAUSE_7	.462		294	472	.251	080	.277	1.000	.530	.611
ì	CAUSE_8	.755	.405	.452	.528	.328	.210	.510		1.000	.748
	CAUSE_9	.635	386	.385	.498	.389	.088	.155	.611	.748	000.1
1	CAUSE_10	.573	.617	.624	.500	.631	.424		.404	.665	.718
S	CAUSE 11	_525	452	.413	.	.530	.165	315	.508	.669	.736
	CAUSE_12			.325	.316	221	090	.396	466	.522	.401
Sig. (1-tailed)	SCP2		.000	.000	.007	.002	.013	.010	.010	.000	.000
Į.	CAUSE_1	.000	Ι.	.000	.001	.000	.000	.014	.062	.022	▶ 028
	CAUSE_2	.000	.000		.001	.000	.000	.013	.077	.012	.029
ľ	CAUSE_3	.007	.001	.001		.000	.014	.156	.009	.003	. 5 .006
	CAUSE_4	.002	.000	.000	.000		.000	.086	, .113	.028	e .027
ì	CAUSE_5	.015	.000	.000	.014	.000	,	810.	.351	.157	2 238
	CAUSE_6	.010	.014	.013	.166	.086	.018	l	.090	.005	
	CAUSE_7	.010	.062	.077	.009	.113	.351	.090	:	.003	0.001
ţ	CAUSE_8	.000	.022	.DI2	.003	.021	.157	.005	.003		,
ł	CAUSE_9	.000	.028	.029	.006	.027	.338	.229	.001	.000	8
	CAUSE_I0	.001	.001	.000	.006	.000 003	.017	.020	.023 .005	.000	2.00
f	CAUSE_11	.004	.012	.020	.002		216	.063		.000	2.023
	CAUSE 12 SCP2	.019	.058	.057	062	. 144	.335	.025 25		25	25
И	CAUSE I	25 25	25 25	25 25	25 25	25 25	25	1 25	25	25	25
	CAUSE 2	25	23	25	25	25	25	25	25	25	25
ſ	CAUSE_3	25	25	25	25	25	25	1 25	1 25	25	25
	CAUSE 4	25	25	1 13	25	25	23	25	25	23	25
i	CAUSE_5	25	25	25	25	25	25	25	25	25	25 25
Ţ	CAUSE_6	25	25	25	25	25	25	1 25	25	23	25
]	CAUSE_7	25	1 25	1 25	25	25	25	1 25	1 25	ี ซึ	25
1	CAUSE 8	25	25	25	25	25	25	25	25	25	25
1	CAUSE_9	l ະ	25	25	25	25	23	25	25	25	25
j	CAUSE 10	25	25	25	25	25	25	25	25	23	25
ł	CAUSE II	25	25	25	25	25	25	📆	1 25	25	25
	CAUSE 12	25	25	25	25	25	1 25	1 5	l <u>5</u> 51	. 25_	25

Constitutes

Correlations

		CAUSE 10	CAUSE II	CAUSE 12
Pearson Correlation	SCPI	573	.525	,417
	CAUSE_!	617	452	J23
	CAUSE_2	.624	.413	.325
	CAUSE_3	500	.555	316
	CAUSE_4	.631	.530	.221
	CAUSE_S	424	.165	090
	CAUSE_6	A14	.315	.396
	CAUSE_7	404	308	.466
	CAUSE_B	.665	.669	.522
	CAUSE_9	718	736	.401
	CAUSE_10	1.000	.737	.394
	CAUSE_11	.737	1,000	.731
	CAUSE 12	.394	731	1.000
Sig. (1-tailed)	SCP2	.001	,004	.019
	CAUSE_1	.001	.012	.058
	CAUSE_2	.000	.020	.057
	CAUSE_J	.006	,002	.062
	CAUSE 4	000 1	.003	.144
	CAUSES	.017	.216	.335
	CAUSE 6	.020	.063	.025
	CAUSE_7	.023	.005	.009
	CAUSE_8	.000	.000	.004
	CAUSE_9	ا ء∞د ا	.000	.023
	CAUSE_10	l	.000	.026
	CAUSE_11	.000		.000
	CAUSE 12	026	.000	
N	SC372	25	25	25
	CAUSE_1	25	25	25
	CAUSE_2	25	25	25
	CAUSE_3	25	25	25
	CAUSE_4	25	25	25
	CAUSE_5	25	25	25
	CAUSE_6	25]	25	25
	CAUSE_7	25	25	25
	CAUSE_8	25	25	25
	CAUSE_9	25 {	25	25 25
	CAUSE_10	25 (25	25

Analysis for Ca-SCP2-CC

					7		95% Confidenc		Correlations			
Model .			Std. Error	Beta		Sig.	Lower Bound	Upper Bound	Zero-order	Partial	_Part	
1	(Constant)	5.300E-02	1.003	-	.053	.939	-2.132	2.238				
	CAUSE_1	6.64 LE-02	.284	.098	.234	.819	-552	.695	.679	.067	.02	
	CAUSE_2	.412	.329	.578	1,250	.235	306	1.130	.708	.339	.15	
	CAUSE_3	163	.155	239	-1.050	.314	500	.175	.489	- 290	12	
	CAUSE_4	146	294	219	-,497	.628	.787	.494	.559	142	06	
	CAUSE_5	.237	.187	.343	1,263	.211	172	.645	.434	.342	.15	
	CAUSE_6	-7.982E-02	.144	118	555	.529	393	.234	.463	158	06	
	CAUSE_7	9.707E-02	.148	.127	,655	.525	- 226	.420	.462	.186	.07	
	CAUSE_8	.492	.213	.581	2.305	.040	.027	.956	.755	-554	.27	
	CAUSE_9	.158	.199	.242	.795	.442	- 276	.592	.635	.224	.09	
	CAUSE_10	-300	.196	395	-1,527	.153	728	.128	.573	403	18	
	CAUSE_11	7.897E-02	.243	.130	325	,751	450	.608	.525	.093	.03	
	CAUSE_12	3.593E-04	.175	.001	.002	998	-382	.382	417	.001	00	
2	(Constant)	5.388E-02	.871		.062	.952	-1.827	1.935				
	CAUSE_1	6.641E-02	.273	.098	.243	.311	523	.656	.679	.067	.02	
	CAUSE_2	.412	.297	.578	1,389	.168	-229	1.053	.708	.360	.16	
	CAUSE_3	163	.149	239	-1.093	.294	484	.159	.489	-,290 [.02 .16 12	
	CAUSE_4	-,146	.268	219	-,547	.594	725	.432	_559	150	06	
	CAUSE_5	.236	.178	313	1325	.208	- 149	.622	.434	.345	.15	
	CAUSE_6	-7.980E-02	.138	117	- 578	.573	378	.218	.463	-,158	- 06	
	CAUSE_7	9.713E-02	.140	.127	,693	.501	206	.400	.462	.189	.08	
	CAUSE_B	.492	.202	.581	2,430	.030	.055	.929	.755	_559	.28	
	CAUSE_9	.158	.176	.242	.899	.385	222	.538	.635	.242	.10	
	CAUSE_10	-,300	.181	395	-1.658	.121	691	.091	.573	418	19	
_	CAUSE_11_	7.935E-02	.151	136	.527	.607	246_	405	525	[45]	06	
3	(Constant)	4.955E-02	,841		.059	.954	-1.754	1.853				
	CAUSE_2	.469	.175	.659	2.675	.018	.093	.845	.708	582	.30	
	CAUSE_3	169	.141	248	-1.198	.251	472	.134	489	305	13	
	CAUSE_4	141	.258	210	- 546	.594	693	.412	.559	-,144	06	
	CAUSE_5	.246	.168	.357	1.462	.166	115	.607	.434	364 (.16	
	CAUSE_6	-7.808E-02	.133	115	587	.567	-364	.207	.463	155	06	
	CAUSE_7	.104	.132	.136	.790	.443	-,179	.388	.462	.206	.08	
	CAUSE_8	.481	.191	.568	2.522	.024	.072	.890	.755	559	.28	
	CAUSE_9	.161	.169	.247	.953	.357	202	<i>_</i> 525	£35	,247	.10	
	CAUSE_10	304	.174	401	-1,751	.102	677	.063	.573	-,424	19	
	CAUSE 11	9 723E-02	142	143	614	549	- 217	192	525	362	00	

469

Coefficients*

		Unstandardize		Standardized Coefficients			95% Confidence	Interval for B		Correlations	
Model		В	Std Error	Beta		Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part
4	(Constant)	8.956E-02	.818		.110	.914	-1.653	1.832			
	CAUSE_2	.405	.126	.568	3.201	.006	.135	.674	.708	.637	.35
	CAUSE_3	.202	.124 [297	-1.624	.125	467	,063	.489	337	178
	CAUSE_5	.185	.122	.268	1.512	,151	076	.445	.434	.364	.16
	CAUSE_6	-4.847E-02	.119	071	-408	.689	301	.204	.463	105	04
	CAUSE_7	9.563E-02	.128	.125	.746	.467	178	.369	462	.189	SD.
	CAUSE_8	.495	.184	.585	2.686	.017	.102	.893	.755	.570	.29
	CAUSE_9	.180	.162	275	1.109	.235	-,166	.525	.635	.275	.12
	CAUSE_10	.314	.169	413	-1.858	.083	.674	.046	.573	432	.20
	CAUSE_[]	4.882E-02	120	080	.406	.691	208	.305	.525	101	.04
5	(Constant)	4.323E-02	.788		.055	,957	1,628	1.714			
	CAUSE_2	.398	.122	.518	3.262	.005	.139	.656	.708	.632	.34
	CAUSE_3	185	.114	272	-1.623	.124	426	.057	.489	-376	17
	CAUSE_5	.174	.116	-252	1.498	,153	-,072	.420	.434	351	.Ι. ξ Β.Ι.
	CAUSE_6	+3.982E-02	.114	059	-,350	.731	281 [.201	463	087	.01 .05 .29 .13
	CAUSE_7	9.308E-02	.125	.121	.747 [.466	-,171	.357	462	.154	.05
	CAUSE_8	495	081.	.585	2.757	.014	114 [.875	.755	.568	.29
	CAUSE_9	.196	.153	.300	1.283	.218	-,128	.\$20	.635	.303	.13
	CAUSE_10	285	149	.375	-1.908	.074	.602	.032	.573	- 431	-20
i '	(Constant)	7.834E-02	.761		.103	,919	-(.528	1.685	_		
	CAUSE_2	.392	.318	.551	3.331	,004	.144	.641	.708	.628	,34)
	CAUSE_3	170	.103	- 250	1.649	.117	388 [.048	.489	-371	, 34) .17
	CAUSE_5	.160	.106 }	.232	1.508	.150	064	.383	.434	.343	.15
	CAUSE_7	7.607E-02	.112	.099	.680 (.505	-,160	.312	.462	.153	.15 .07 .33
	CAUSE_2	458	.142	.542	3.221	.005	.158 [.759	.755	.616	.33
	CAUSE_9	222	.130 \$.339	1.706	.106	053	.497	.635	.382	.17
	CAUSE_10	295	.143	358	2.058	.055		.007	.573	443	214
	(Constant)	283	.689		.411 {	.686.	-1.164	1.730			
	CAUSE_2	.404	.125	.567	3.519	.002	,163	.645	.708	.638	.360
	CAUSE_3	-150	.097	- 220	1.539	,141	354	.055	.489	.341	.158
	CAUSE_5	.135	.098	.196	1.379	.185	.071	342	.434	309	14)
	CAUSE_8	469	.139)	354	3.366	.003	.176	.762	.755	.621	.344
	CAUSE_9	246	.124	376	1.992	.062	.013	.505	635	425	.204
	CALISE ID	200	141	102	2116	040	ST.	000	.533		201

								CALIFORNIA HERBERT			
İ	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	ď(L	48	Sig. F Change	
- 1	1	.908*	.874	.649	.9240	.824	4.696	12	12	,006	Ĺ
	2	.908	.824	.676	.8878	.000	.000	1	[4	.998	Ĺ
	3	.908°	.824	.698	.8575	00L (.059	1	15	.811	Ĺ
	4	.9054	.820	712	.8371	004	.298	l l	16	_594 :	1
	5	.904°	.818	.727	.8150	002	.165	1	17	.691	Ĺ
	6	.904	.817	.741	7937	-,001	.123	1	18	.731	Ĺ
	7	.901	.812	.749	.7817	005	.463	1	19	.505	ı
	li l	.890k	.792	.737	.2001	020	1.900	1	20	.185	1
	1 .	.880	.775	730	8101	-017	1.506	l i	21	.235	i
	7	.868	.754	.719	.8268	021	1.873	l i	22	,186	ı
	10	-603-	./34	,,,,,,	.0200	024	1.075	1 :	22	200	ı

- a. Predictors: (Continuit), CAUSE 12, CAUSE 5, CAUSE 9, CAUSE 6, CAUSE 12, CAUSE 12, CAUSE 10, CAUSE 10, CAUSE 11, CAUSE 11, CAUSE 4
- b. Predictions: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- c. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_4
- d. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_1, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11
- c. Predictors: (Contrart), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_1, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8
- 1. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8
- g. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_3, CAUSE_2, CAUSE_10, CAUSE_8
- h. Predictors: (Constant), CAUSE_9, CAUSE_1, CAUSE_2, CAUSE_10, CAUSE_8
- i. Predictors: (Constant), CAUSE 9, CAUSE 2, CAUSE 10, CAUSE 8
- i Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_8
- k. Predictors: (Constant), CAUSE_2, CAUSE_8
- L Dependent Variable: SCP2

ANOVA

Model		Sum of Squares	df .	Mean Square	TP I	Sig
+ -	Regression	48.114	12	4.009	4.696	.006
	Residual	10.246	12	.854 (Į.	
	Total	58,360	24	<u> </u>		
2	Regression	48.114	11	4.374	5.549	.002p
	Residual	10.246	13	.788		
	Total	58 360 1	24			

ANOVA

Model		Spen of Squares	df	Mean Square	F	Sig
3	Regression	48.067	61	4.207	6.538	.001
	Residual	10.293	14	.735		
	Total	58.360	24	į į	1.	
4	Regression	47.848	9	5.316	7.586	.000
	Residus!	10.512	15	.701	ľ	
	Total	58.360	24	!		
3	Regression	47,733	8	5.967	8.983	.000
	Residual	10.627	16	.564	i	
	Total	58.360	24	! ! _		
5	Regression	47.651	7	6.807	10.807	.000
	Residual	10.709	17	.630		
	Total	58,360	24	\ <u> </u>	1	
7	Regression	47.360	6	7.893	12.916	.000
	Residual	[1.000	18	.611		
	Total	58,360	24	<u>ا</u> ا_	4_	
8	Regression	46.198		9.240	14.435	.000
	Residual	12.162	19	.640		
	Total	58.360	24	·	1	
9	Regression	45.234		11.309	17.231	.000
	Residual	13.126	20	.656		
	Total	58.360	24	└ ──-		
10	Regression	44.005	3	14.668	21.459	.000
	Residual	14.355	21	.684		
	Total	58.360	24			
11	Regression	43.163	2	21.582	31.243	.000
	Rendual	15.197	22	.691	l	
	Treat	58,360	24	<u> </u>		

- 2. Predictions: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_11, CAUSE_4
- b. Productors: (Constant), CAUSE_S, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- c. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_4
- d. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11
- e. Predictore: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8
- f. Productors: (Constant), CAUSE_5, CAUSE_9, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8
- g. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_3, CAUSE_2, CAUSE_10, CAUSE_8
- h. Predictors: (Constant), CAUSE_9, CAUSE_3, CAUSE_2, CAUSE_10, CAUSE_8
- i. Predictors: (Constant), CAUSE_9, CAUSE_2, CAUSE_10, CAUSE_8
- j. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_8
- k. Predictors: (Constant), CAUSE_2, CAUSE_8

I. Dependent Variable: SCP2

Coeff	icients	

Ì		Cottinearit	y Statistics
Model_		Tolerance	УIP
4	(Constant)		
ľ	CAUSE_2	.381	2.621
ì	CAUSE_3	.359	2.785
i	CAUSE_S	.382	2.617
	CAUSE_6	.393	2.542
	CAUSE_7	.429	2.331
1	CAUSE_B	.253	3.954
	CAUSE_9	.196	5.108
ì	CAUSE_10	.243	4.116
	CAUSE II	307	3.255
3	(Constant)		
l	CAUSE_2	.389	2.573
l	CAUSE_3	.406	2.463
	CAUSE_5	.401	2,494
	CAUSE_6	.406	2.460
1	CAUSE_7	.430	2.326
	CAUSE_8	253	3.954
	CAUSE_9	.209	4.793
	CAUSE_10	.794	3.401
6	(Constant)		1
1	CAUSE_2	395	2,533
	CAUSE_3 CAUSE 5	.468	2.135
	CAUSE 7	.457 .507	2.190 1.973
!	CAUSE 8	.387	2.620
	CAUSE 9	.273	1.667
i	CAUSE 10	.304	3.291
	(Constant)	. المراد	3.291
ľ	CAUSE 2	403	2 480
l	CAUSE 3	.513	1.951
ł	CAUSE_5	.516	1.940
Ī	CAUSE 8	386	2.589
	CAUSE_9	.294	3,401
l	CAUSE 10	304	3.287

- 470 -

Coefficients

		Collingarity S	taristics
Model		Tolerance	VIF
1	(Constant)		
	CAUSE_2	.472	2.118
	CAUSE_3	.541	1.847
	CAUSE_8	.386	2,588
	CAUSE_9	.331	3.020
	CAUSE_10	332	3.016
9	(Constant)		
	CAUSE_2	.590	1.695
	CAUSE_8	398	2510
	CAUSE 9	.343	2.919
	CAUSE_10	334	2,997
10	(Constant)		
	CAUSE_2	.608 [1.644
	CAUSE_8	.556	1,799
	CAUSE_10	.427	2.344
11	(Constant)		
	CAUSE_2	,796	1.256
	CALISE 3	796	1.236

Dependent Variable: SCP2

Coefficients

		Unstandardize		Standardized Coefficients			95% Confidence	e Interval for B		Correlations	
Mode		B	Std. Error	Beta	<u>L.</u>	Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part
8-	(Constant)	.564	.673		.837	.413	846	1,975			
	CAUSE_2	465	. 109	. 652	4.277	.000	.237	.692	.708	.700 أ	.448
	CAUSE_3	119	.097	175	-1.227	.235	322	.084	489	-271	129
	CAUSE_8	.465	.143	.550	3.262	.004	.167	.763	.755	.599	342
	CAUSE 9	.189	.119	.289	1,587	.129	060	.438	.635	342	.166
	CAUSE_10	242	.138	-319	-1.755	.095	532	.047	573	373	184
9	(Constant)	.43!	.673		.640	.530	.973	1.834			
	CAUSE_2	405	.098	.568	4.116	.001	.200	.610	,708	.677	.437
	CAUSE 8	.435	.142	514	3.057	.006	.138	.731	755	564	.324
	CAUSE_9	.162	.119	.248	1.368	.186	085	.410	.635	293	.145
	CAUSE 10	229	.139	301	-1.640		-,520	,062	573	-344	-174
iō	(Constant)	247	.673		367	.717	1.153	1.647			-1117
	CAUSE 2	.382	.099	.535	3.859	1001	.176	.587	.708	.544	.418
	CAUSE 8	538	.123	.636	4.382	.000	.281	,794	.755	.691	
	CAUSE_10	140	,126	- 184	1.110	.280	401	122	.573	.235	.47 5 12 6
11	(Constant)	.183	.674		.271	.789	-1.215	1.58)			
	CAUSE_2	.328	.087	.461	3.778	.001	.148	.508	.708	.627	.41
	CAUSE B	.463	.103		4.490		249	.677	755	692	48 £

Coefficients*

Collinearity Statistics
Tolerance VIP CONSEL 1
CAUSE 1
CAUSE 2
CAUSE 3
CAUSE 3
CAUSE 3
CAUSE 3
CAUSE 3
CAUSE 3
CAUSE 3
CAUSE 10
CAUSE 10
CAUSE 10
CAUSE 10
CAUSE 12
CAUSE 12
CAUSE 12
CAUSE 2
CAUSE 2
CAUSE 3
CAUSE 3
CAUSE 3
CAUSE 3
CAUSE 4
CAUSE 4
CAUSE 10
CAUSE 10
CAUSE 10
CAUSE 10
CAUSE 10
CAUSE 10
CAUSE 10
CAUSE 10
CAUSE 10
CAUSE 10 .084* .068 .283 .076 .198 .326 .390 .230 .158 .219 .092 .207 11.893 14.514 3.532 13.197 5.056 3.070 2.561 4.342 6.328 4.369 10.874 4.827 .084 .078 .283 .084 .201 .327 .403 .236 .187 .238 .221 11.892 12.833 3.531 11.868 4.968 3.057 2.481 4.233 5.351 4.199 4.525 CAUSE 11
(Contant)
CAUSE 2
CAUSE 3
CAUSE 4
CAUSE 5
CAUSE 6
CAUSE 7
CAUSE 8
CAUSE 9
CAUSE 10 4.809 3.414 11.773 4.732 3.049 2.367 4.030 5.319 4.157 .208 .293 .085 .211 .328 .423 .248 .188 .241

Analysis for Ca-SCP2-CC

SPSS regression printouts for SCP3 analysis

C#-SCP3-AR	Tol slayles.
------------	--------------

		COURSE ON COURSE	222222222222222222222222222222222222222
			22222222222222

			×
			~ 20000000 x00000
			× × × × × × × × × × × × × × × × × × ×
			× × × × × × × × × × × × × × × × × × ×
**************************************			222282222
######################################			2008000000
28888888888888888888888888888888888888			200800000
			* 20800000
			× 000000
	1		× 00000
			00000
			0000
888888 8888 89888 88888 8888 888888 8888 888888 888 888888	<u> </u>		000
200			000
8888.88888 888.88888 88.888888 88.888888			.04
			. 6
. 8888 8888 8888 8888 8888 8888			. 0
	-	_	
			e
	-		e
000 000 000 000	_	-	. 6
166 - 1670 - 167			Sig. (1-tailed) SC
	ľ	ŀ	le e
- 12 JUN - 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	_		Q
.475 .276 .276	_		Q
20 20 20			9
Jan J70 443 564 1000	_		e
386 0001 1002 810, 1003			6
. 462 S45 1,000 S02 443			6
, 700 1000 346 Jill J70	_		ę
1,000 .750 .652 .677 .344			Q
471 472 374	_		ę
.706 .596 .452 .420 .460	_	_	e
264 S41 1972 399 466	_	_	e
10. 10. 10. 10.		-	Paul son Correlation SC
JSE7 CAUSE CAU	CAUSE CAUSES	\$Q	

Analysis for Ca-SCP3-AR

Analysis for Ca-SCP3-AR

27227277777

																					_ਜ
•	<u> </u>	•				Hodel	-		}		2					ig. (I-lado					6
					20000000000000000000000000000000000000	c 疆。	للاوازيولا		}							₽					T T T T T T T T T T T T T T T T T T T
<u> </u>	<u> </u>	<u>.</u>	<u>.</u>	<u>. </u>			- Laura		CVRSEII CVRSEII CVRSEII CVRSEII	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 E E E	CAR CAR	2 C C C	2 C C	2 G S	500	çç ទ	2	8 2 2 2 C C C	2 E E	ទីដ
PESNY	CAUSET	CAUSE I	CAUSEII	CAUSES		Vaciable:	4/7.500	- 472 -				25	8.5.6	22	C 2 5	282	= = =		200	. 2 6 9	_
74.76 # ¥	72.76F 17	1476F17	- 	2769		╂╾	į		 			50	56	5 b b i	bbb	2005	ا بدة	5 - 1	ią įu ja	يوا سايعة	ان ب
Buchvard Marrian	Jon.	.100). etward menos: obsbiley	hackward (criterion:	Contrary Probability	Ē	Method			*****		8888	88	. 88	188	888	3888	358	4.58	2 = 2	322	**
•			<u></u>				I		37373	333	* * * *	8.	888	888	888	888	\$ 8		<u> </u>	258	ž
																		.1. 5		V. T. T	
									22232	8 % 8 8	2 2 3	8	888	88	28	288	8 8	688	<u> </u>	383	- 3

	A All requested v b. Dependent Van
T	

	Variable: SCP)	
(cristrion: of full-pressure full	CAUSES	
of F-10-respond (00), m< but withte	CVOZEIS	01
(00f. ec blawjata (normina) (ilidadori)	11251142	
brawking (cristros: prindedority to svomm-of-fi	CAUSEI	
\$40887-48-7		

ITE ILE 162'1 182 10 2907 HEROI 335.63 MI 918'000 **Leaking** ££1.90 द्धा LOT I 199'00'6 *AUNA

CADS : Significant Assistance: 2CAD

i Predictora: (Constant), CAUSE2, CAUSE3, CAUSE8

L Predictors: (Confusit), CAUSE2, CAUSE3, CAUSES, CAUSE8

h. Predictors: (Constant), CAUSELL, CAUSEL, CAUSES, CAUSES, CAUSES E. Predictors: (Constant), CAUSELL CAUSEL CAUSEL, CAUSEL, CAUSEL, CAUSEL

f. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE3, CAUSE3, CAUSE3, CAUSE1, CAUSE1

e. Professor: (Comment, CAUSE) & CAUSEA CAUSEIA CAUSE), CAUSES, CAUSES, CAUSES, CAUSES, CAUSES

d. Predicent: (Constant, CAUSE) & CAUSE), CAUSEIR, CAUSE), CAUSE), CAUSE), CAUSE), CAUSE), CAUSE) C. Producer: (Common), CAUSEL, CAUSER, CAUSER, CAUSER, CAUSER, CAUSEL, CAUSEL, CAUSEL, CAUSEL, CAUSEL

A Productors: (Computed, CAUSEL). CAUSEA CAUSEA, CAUSER, CAUSER, CAUSEL, CAUSEL, CAUSEL, CAUSEL, CAUSEL, CAUSEL

F. Autocopt: Company Cyrist C. Christy, C.

		natitulat ander			}	l	ļ	Į.	Į.
जनस्य र अंद	ZIP.	120	F Chings	Senana Senana	Std. Error of	A betaubh meup2	alevo 2 A	- A	1300M
XXX	103	£1.	0+0'5	8+2"	\$196.1	661'	875	1967	
u.	5 11	j (180	000	604C,1	EDZ"	177"	4861	li
25	981	1	60¢.	100	MCC.I	902	102	267	1 6
95	(21	1	\$55°	100*	1.3339	60Z	\$45.	, 567	l i
6 P	(49)	Ł	199	, 200.	OFCE'S	l ne	346	10fe	
zs.	681	1	SOP	2007-	13319	115.	Z>T'	267	, ,
•6	180	11	£16"	H00"	9166,6	F1Z"	330	1827	
8Z.	161	1	CSTT	500-	22251	1 615	234	EESP.	1 1
α.	161	1.	1 320	sor-	CCCE.t	Z12"	122	18/19	
if.	G61:	1 4	1690	110	(64)	302	L 1111 -	69	_ 0

THE STATE (SPO)

20-3011.1 20-8061.2 29-31493.6 711, 680, 680, 680, 600, 600, 800, 600 600 600 600 600 600 600 600 972. 150.1 701. 700. 8HQ. 700. 230. 230. 900° 162 652 662 600° 600° 900° 910° 121, 605, 630, 630, 630, 630, \$10"-990"-960"-981"-190"-611'-920'-200'-122"-142"-142"-142"-1.73\$E-02 CAUSET 22. 22. 20-3051.2 CAUSES 50-31+9'6 925 865 I \$19 I TOISE OF Z11' CAUSES CPL' CYN2EZ csa.-12 6.522E-02 CAUSEI 1617 20-31989 4-1368-02 ZSO,E 700 610"-890"-290"-290"-980"-661"-911"-120"-820"-122"-\$10° \$10° \$10° €\$Z 900 \$01. 111. 750. 955 CYNSEII 590 190-980 980 980 981 981 981 980 688 \$0-392£9 250° +20° 520° 520° 101° 901° 550° 100 120 120 120 120 100 100 100 100 211. 211. \$ 652E-07 CAUSES 921 1 029 270. 251. 270. 20-3299 CYPSET 970, 970, 970, 880, 880, 880, 50-3089.2-CYPSER 20-346E-6 CVOZEN \$322E-02 185 6P (* CYNZET 9581 OÇU. 20-31-22 9-CYDZEI 256 1 220 220 850 920 920 920 120 600 601 601 650 20-3992 CV02515 670, 670, 670, 870, 870, 870, 511. 515. 237 900° 227 221 162° 657 010° 100° 900° 111° 061 -620 -20-32×.1. CAUSELL 150°-906 20-301979 CYN281D 990" 341" 961" 961" 961" 961" 961" 290 -062 1111 20-3122-1-CYN2E9 20-31006 CYDRES 711 070 291 280 (29 (0) (4716E-03 CAUSE7 \$0-3(\$0.\$c 20-3100.e CYNZET 180. 190. 170. 880. 20-3042°C CAUSE4 970 \$391 SIL CAUSES 2191 CVAZET CO-39EC 9 Tons og Storen Section of Section 1992 | 1992 | 1992 | 1992 | 1993 | 199

L. Dependent Variable: SCP3

Preticion: (Constant), CAUSE2, CAUSE3, CAUSE3

Profesors: (Constant), CAUSE2, CAUSE3, CAUSE2, CAUSE3

A Productors: (Constraint, CAUSELL, CAUSEL, CAUSEL, CAUSES, CAUSES

1. Producer: (Contact, CAUSELL, CAUSEL, CAUSEL, CAUSEL, CAUSEL, CAUSEL

I. Predictor: (Constant, CAUSELS, CAUSEL CAUSES, CAUSES, CAUSES, CAUSE)

1. Profesor: (Consess), CAUSEL CAUSEL, CAUSEL, CAUSEL, CAUSEL, CAUSEL, CAUSEL, CAUSEL

d. Prederons: (Command. CAUSEL), CAUSEL CAUSER, CAUSER, CAUSES, CAUSES, CAUSES, CAUSES

Lioquadi: (Contant) CYR2ET CYR2ET CYR2ET CYR2ET CYR2ET CYR2ET CYR2ET CYR2ET CYR2ET CYR2ET CYR2ET

A Predictor; (Commun), CAUSELL CAUSES, CAUSEL CAUSEIQ CAUSE), CAUSES, CAUSES, CAUSEL, CAUSEL, CAUSEL, CAUSEL

F. Defensor: (Construct CYN2E15' CYN2E5' CYN2E6' CYN2E19' CYN2E1' CYN2E7' CYN2E7' CYN2E7' CYN2E1' CYN2E1' CYN2E1' CYN2E1

 Regression Residual	216.00 216.00 100.29	561 241 £	162'1	ILELI	000
 Resistant Resistant IstoT	155.966 155.966 524.001	\$61 61 7	877,1 877,1	14.123	000:
 Regissation Stables R faio T	29,952 381,755 529,953	561 061 5	SEC.1	13511	000
 indicata A indicata info?	118,901 55,142 104,811	561 691 9	89+71 255.1	1586	000°
 AGIZZETRI R Intibizo R Into T	525,566 525,666 166,401	561 871 4	*LL!	072.8	6 000,
 Activities A language Language	1097EE 1097EE	181	086' L 760' E1	aset	aon
 	SCK-KED.	141			

CAUSEIO (TOSSOMI)

221' 950' 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	790°- 120°- 150°- 150°-	909' B1C' 15018-6125-1	### ##################################	DREAD 13999-1 DREAD	92.0° 92.0° 92.0° 93.0°	266'1 128'- 106'		18713 142 18713 142 180 180 180 180 180 180 180 180 180 180	201202044 201204	CYRREI (CYRREI CYREI CYREI CYRREI CYREI CYRREI CYRREI CYRREI CYRREI CYRREI CYRREI CYRREI CYRREI CYRE	्र इक्ट्रेस
550 - 550 -	920'- 920'- 930'- 930'- 931'-	909' 81C' 661' 90C' 22C' 16C' 65T' 909' 909'	HOLE	100 PT - 100	940' 941' 941' 950' 950' 950' 950' 950' 950' 950' 950	266'1 221'2 20'60'1 105' 105' 105' 105' 105' 105' 105' 1	022 260- 110 550 040- 551 651 651 651	110" 110" 110" 150" 150" 150" 150" 110" 650" 161" 650" 161" 650"	20-2557-5- 20-10-10-10-10-10-10-10-10-10-10-10-10-10	CYRREI (CYRREI CYREI CYREI CYRREI CYREI CYRREI CYRREI CYRREI CYRREI CYRREI CYRREI CYRREI CYRREI CYRE	<u>.</u>
221' 950' 5 950' 5 950' 5 250' 5 250' 6 100' 6 100' 7 100'	920 920 990 110 150 150 151 171 171	909' 811' 661' 661' 662' 662' 662' 662' 662' 6	855. 855. 855. 805. 605. 601. 601. 601. 601. 601.	100° 100° 100° 100° 100° 110° 110° 110° 110° 110° 110° 110°	920' 920' 920' 920' 930' 950' 950' 950'	266'1 266'1 106' 546' 99'1 664' 664' 664' 874'1 874'1 874'1	022 260- 110 550 040- 551 651 651 651	120' 120' 120' 130' 150' 150' 160' 160' 160' 160' 160'	291. 20.3626.9- 20.3626.9- 20.3727.9-	CYNZES CY	
(21) 950- 5	051. 051. 050. 050. 170. 180 180 180	905, 81C, 82C, 82C, 82C, 82C, 82C, 82C, 82C, 82	625. 600. 605. 605. 605. 61. 500.0 500.0	200' +22'- 59C' 1 -690'- 200'- 811'- 620'- 110'-	201. 200. 200. 201. 201. 201. 201. 201.	857.1 667 667 821.2 821.2 821.2 821.2 821.2 821.2 821.2 831.2	251, 251, 250, 710, 710, 710, 710, 710,	980' 820' 690' 120' 690' 120' 690'	911. 511. 50.345.6.2 50.345.6.3 50.345	CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES	<u> </u>
(21) 950- 5 550 95 4	051, 120,- 050,- 170,- 150,- 1	06C. 925. 195. 50E. 50E. 81C.	080, 691, 691, 691, 500,0 580,0 611, 611,	Z00" PZZ"- S9C I PSO"- Z10"- E90	201, 201, 200, 200, 200, 201, 201, 201,	266'1 29'1'5 660'1 106' 516' 99'1 661'- 199'1	000 100 100 000 000 000 000	140° 140° 150° 190° 190° 190° 140°	111. 20-3121.4 20-3121.4 20-8121.8 20-8121.8 20-8120.9 411.1 20-8121.9 411.1	CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES CYNZES	
(21)* 950*- \$ 950*- \$ \$ 950*- \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	790°- 120°- 150°- 150°-	925, 195, 506, 510, 810,	080 691, 691, 671, 580, 580, 610,	Z00" PZC- S9C" PSO - ZEO - 690 - Z8O - B11" -	216, 2000 2000 2000 2000 2000 2000 2000 20	266'1 128'- 2>1'5 660'1 106' 516' 919' 660'-	550 110 110 051	920' 920' 950' 990' 990' 990'	20-825C+ 20-	CYGES CYGES (COURS) CYGES CYGES CYGES CYGES CYGES CYGES CYGES	
(21' 950'- 590' 9 250' 5 290' 1	170, 120, 130, 141, 141,	165, 606, 810, 810,	695, 691, 471, 280, 120,	200 PSD - 200 PSD - 200 PSD - 200 PSD - 200	900 900 900 910 910	1063 2115 201 200 201 200 201 200 201	620. 780. 170. 570. 570.	990, 720, 870, 810, 810,	TO-3T2C+ TO-3T2C+ TO-3T2C- TO-3T2	CYGZES CYGZES (COMBUS) CYGZES CYGZES CYGZES CYGZES	
(21) 950- 590 590 590 590	170. 550. 120	90F 80E 22C	661. \$50.0 \$30.0 \$10.0	200 450 - 590 100 - 100 -	127. 690. 600. 570. 810.	1'063 1'060 1'060 1'060	FIR. 170 FIR. 590 051.	280, 720, 870, 870, 880,	10-8121.a · 10-8120.a 10-8100.a 115.1 10-8100.a 10-8100.a 10-8100.a 10-8100.a 10-8100.a 10-8100.a 10-8100.a 10-8100.a 10-8121.a 10	CYOZES CYOZES (COMBNO) CYOZES CYOZES CYOZES	
\$50 9 950- 5	920° 190° 191'	907' 81C' 661' 90C'	661. 451. 580. 280.	200 - 200 - 200 - 100 -	69C 69C 00C 87C, 81C,	\$60'1 \$91'5 \$96'1	170 570 550- 550-	780, 870, 870, 880,	\$0-86+0.0 \$0-8100.0 \$15.5 \$0-3626.0- \$01.	CYGES CYGES CYGES CYGES CYGES	5
(21) 950- 5	920°	907 81C	\$11, 280, 280,	RSD : SSC ! NST :-	990. 810.	290.1 3>1.6 158	02.2 260-	820, 870, 840,	6,0078-02 1,214 -6,959E-02 166	CYRREI (COMBU) CYRREI CYRREIS	
(E1' 950-	130.+ NAT.	909' 81C'	\$90,0 \$80. CCC.	\$80" \$20" \$20"	000. 840. 840.	266'1 €88'* \$21'\$	560 051.	00°), 870, 880,	7,214 -6,959E-02 -166	CYOZEI CYOZEI (CONTRU)	ş
(21"	r#1"	909	280. FCC.	100.	81C.	Z56'I	330	180	991"	CVOZES	
(2)					SHO.						
	141	109	197	100.	550	1,953	9£1°	190	l itte	CAUSE	
	rtr	08£.	515	6Z0"	OZI'	1951	901	000	011	CVIZER	
	910'-	652.	∠BO'	021	SES.	969	NSO.	590	ZO-3611 P-	CYNZER	
	160	tic	212	(M).	182	6601	110	190	20-3995.1	CAUSER	
	590	900	761	CTO-	526	068	010.	120.	2.967E-02	CYTIZEIO	
990' 3	920	661	+41	P\$O:	565	2001	110	820.	10-3900.9	CAUSEIZ	_
۰~ [۱	~~ ↓	[\$10 E	1725	377	\$21.8 540.	wi.	62 F	20-9925'L-	(Constant)	
	NO-	etc [840.	622.	\$2C.	100'Z	001.	ENO	791,	CV02E3	
	PP 1	901	m,	Z00'	190	\$681		990"	97,1	CYNZES	
	ζC1'	10+	725.	200.	020.	9071	9\$1" £91"	990'	ZO-3881-6	CAUSES	
	KO1"	016.	XX.	900'-	ESI.			190	10-5331.7	CVIZEI	
	060	TIC I	202.	\$10	912	£≥2.1 629.	001. 810.	190	ZO-2390'9	CAUSETO	
	000	20C.	261°	890	ONC.		170	LSO		CVIZEIS	
(60	MQ.	661	361.	100°1	160	186,	110	(1)	\$4728-02	(Constant)	
890-	. α.	\$1C	STITE I	907	MIS.	1001	011'-	110	10-3016.8-	CAUSE	- :
	870.• 21.	90F	OCO. UCC.	110	100.	9017	102.	£80°	271.	CYNZES	
	KU (10+	tsz.	100	aso:	(IE)	491	990	121.	CVIZED	
	921	car.	725.	210.4	(\$C	D7.1	2 ≱t'	I90° -	ur	CAUSES	
	1 01'	T.C.	212	620.	681	E64.1	Zt1	190	20-20016	TESTIVO	
	MAD	991 199	MEC	150	861	(82)	160	350	20.59FD.f	CVAZEIS	

25.5.5 040.5 640.5

69 I 69 I

6P1"1 596"1 629"1 128"1 918"1 095"5

240, 520, 520, 520, 520, 520,

Coefficients

202

140°

991, 721, 801, 180,

850. 880. 880.

87E. 880. 880. E80.

035.5 035.5 035.5 031. 031

| String | S

100°-

201.

100

161, 711,

951.

101°

CVN2E

CYNZES

CYNZES CYNZES

CYN2E3

CYN2ED CYN2ED

CAUSES CAUSES CAUSES CAUSES

087.1 912.1 811 811 828 838 CAUSER CAUSES 2.980 CAUSEZ 109'2 CYNZEI (CONITUD CYTEEIS CYTEEIS 8501 1651 8061 1661 0101 1761 0101 086, 628, 452, 818, 161, 161, CAUSEI CAUSES CYNZES CYNZEI CAUSE10 CAUSE10 CAUSE10 28C1 659'1 27C'1 151'Z 850'1 010'E 199'Z 175, 200, 212, 200, 212, 200, 212, 200, CYN2ES CYN2ES CYN2ES CAUSE3 CAUSE3 CAUSE3 CAUSE3 2921 1601 1601 2101 9612 8207 8207 2018 1097 121 149 120 125 125 126 127 139 141 CYREETO CAUSES CAUSES CAUSES CAUSES CYOZES CAUSER CYCSE Tolerande Samples

Tolerange

Tolerange

474

Court Telesco

Coefficients'

Š.	
٥	
ŝ	
7	
⋝	

8	
Ħ	
τ	
⋝	

(Constant)		
CAUSE2	.494	2.067
CAUSES	572	1.915
CAUSES	.570	1.755
CAUSED	.670	1,493
CAUSE12		1,220
(Constant)		
CAUSES	.490	2.041
CYTIZE3	.521	1.694
CAUSES	.570	1,255
_ CAUSES		1.280
(Couxtant)		
CAUSE2	.547	1.827
CAUSES	.584 .	1.712
CAUSES		1.264
Dependent Vanishing		

CAUSE_11 CAUSE_12	
- 	
47	
<u>()</u>	

CAUSE_1 CAUSE_3

CAUSE 4 CAUSE 5 CAUSE 6 CAUSE 7

CAUSE_8 CAUSE_9 CAUSE_10

CAUSE 11

CAUSE 12 SCPJ CAUSE_1 CAUSE_2

CAUSE_3

CAUSE 4

CAUSE_5 CAUSE_6 CAUSE_7 CAUSE_8 CAUSE_9

CAUSE_10 CAUSE_11 CAUSE_12 SCP1

CAUSE_1 CAUSE_2 CAUSE_3

CAUSE 4 CAUSE 5 CAUSE 6 CAUSE 7 CAUSE 8

CAUSE_9

CAUSE_10

Sig. (1-railed)

.850

1.000 .622 .759 .595 .164 .564 .530 .543 .309 .456 .108

.000

.000 .000 .116 .000

.000

.011 .000 .217 .55 .55 .55 .55 .55 .55 .55 .55 .55

55 55 55

1.000

.850 .628 .625 .540 .224 .433 .436 .416 .253 .341 .248

.000

.000 .000 .000 .000 .000 .001 .005 .034 .005 .53 .55 .55 .55 .55 .55 .55 .55 .55

.367 .437 .411 .366 .098 .380 .364 .431 .265 .333 .072

.628

.622 1.000 .598 .633

.033 .211 .426 .379 .350 .185 .217

.092 .000 .000

.000

.625

.759 .598

1.000 .785 .285 .548 .447 .549 .359 .400 .088

.001

.000

.000

.017 .000 .000

		CAUSE 10	CAUSE II	CAUSE 12
Pearson Correlation	SCP3	.265	.333	.072
	CAUSE_1	253	.341	.248
	CAUSE 2	.309	456	108
	CAUSE_3	.185	.217	.092
	CAUSE 4	.359	,400	.088
	CAUSE 5	.327	.340	.168
	CAUSE 6	.086	.044	.099
	CAUSE_7	.393	.524	.110
	CAUSE_8	.664	.797	.396
	CAUSE_9	.694	.760	.372
	CAUSE_10	1.000	.724	.544
	CAUSE_11	.724	1,000	.370
	CAUSE_12	544	370	1.000
Sig. ([-tailed)	SCP3	.025	.006	302
	CAUSE_I	.031	,005	.034
	CAUSE_2	וום	.000	217
	CAUSE_3	.088	.056	.251
	CAUSE_4	.004	.001	.263
	CAUSE_5	.007	.006	.110
	CAUSE_6	.267	.375	.236
	CAUSE_7	.002	.000	.212
	CAUSE_1	.000	.000	.001
	CAUSE_9	.000	.000	.003
	CAUSE_10		.000	.000
	CAUSE_11	.000		.003
	CAUSE_12		003	ا <u>بر</u>
Ŋ	SCP3	55	\$\$	55
	CAUSE_1	55	55	55
	CAUSE_2	55	55	55
	CAUSE_3	55	55	\$5
	CAUSE_4	55	55	55
	CAUSE_S	55	\$5	55
	CAUSE_6	55	55	55
	CAUSE_7	55	55	55
	CAUSE_8	55	S.5	55
	CAUSE_9	55	55	55
	CAUSE_10	55	55	55
	CAUSE_11	55	35	[55
	CAUSE 12		55	55

		Regression

	Mean	Std. Deviation	<u>N</u>
SCP3	5,273	1.2975	35
CAUSE_1	5.391	2.2196	55
CAUSE_2	5,464	2.1897	\$\$
CAUSE_3	5.400	2.2307	55
CAUSE_4	5.764	2.4092	55
CAUSE_5	5.500	2.2812	55
CAUSE_6	5,655	9.0615	55
CAUSE_7	4,600	2.4578	55
CAUSE_8	5,482	2.2770	55
CAUSE_9	4,809	2.1398	55
CAUSE_10	6.400	1.9940	55
CAUSE_I1	4.891	2.3935	55
CAUSE 12	5.245	2.2564	55

Descriptive Statistics

.436

530 379 .447 .389

.389 .234 .694 1.000 .784 .664 .797

.396 .003 .000

.000 .002 .000 .002 .043

.224 .164 .211 .285 .274 1.000 .282 .234 .159 .036 .044 .099 .239 .050 .116

.061 .017

.022

.540 .595 .633 .785 1.000 .274 .378 .389 .396 .327 .340 .168 .003 .000

.433 .564 .426 .548 .378 .282 1.000 .694 .552 .393 .524

.002 .000 .000

.000

.002 .019

.000

000 .001 .000 .212 .55 .55 .55 .55 .55

.416 .543 .350 .549 .396 .159

.552 .784 1.000

- b. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_2
- d. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_1, CAUSE_7, CAUSE_1, CAUSE_5, CAUSE_9, CAUSE_2
- e. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_9, CAUSE_2
- f. Predictors: (Constant), CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_9, CAUSE_2
- g. Predictors: (Constant), CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_9, CAUSE_2
- h. Predictors: (Constant), CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_9
- i. Predictors: (Constant), CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_9
- j. Predictors: (Constant), CAUSE_6, CAUSE_3, CAUSE_9
- k. Dependent Variable: SCP3

ANOVA

Model		Sum of Squares	df	Mean Square) P	Sig
1	Regression	33,945	12	2.829	2.086	.040
	Residual	\$6.964	42	1.356	1	
1	Total	90.909	54		l	
2	Regression	33.945	- 11	3.086	2.329	.0241
Į.	Residual	\$6,964	43	1.325		
	Total	90.909	54			
3	Regression	33.945	10	3.394	2.622	.0149
ļ	Residual	56.964	44	1.295		
	Total .	90,900	54			

ANOVA*

Model		Sum of Squares	dſ	Mean Square	F	Siz
4	Regression	33.875	9	3.764	2.970	400.
	Residual	57.005	45	1.267	1	
	Total	90.909	54		į.	
5	Regression	33.641	8	4.205	3.378	.004*
	Residual	57.269	46	1.245		
	Total	90,909	54	\ ''	- 1	
6	Regression	33.157	7	4,737	3.855	.002
	Residual	57.752	47	1.229		
	Total	90.909	54			
7	Regression	32.311	6	5.468	4.518	.001
	Residual	58,098 [48	1.210		
	Total	90.909	54	,-	- (
δ.	Regression	31.919	5	6.384	5.303	.001
	Residual	\$8.991	49	1.204		
	Total	90.909	54			
4)	Regression	31.414	4	7.853	5.600	.000
	Residual	59.495	50	1.190	j	
	Total	90,909	54			
10	Regression	29.872	3	9,957	8,320	.000
	Residual	61.037	51	1.197		
	Total	90,909 1	- 4			

- 8. Predictions: (Constant), CAUSE_12. CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_2
- b Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_5, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_2
- d. Productors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_5, CAUSE_9, CAUSE_2
- e. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_9, CAUSE_2
- 1. Predictors: (Constant), CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_9, CAUSE_2
- 2. Predictors: (Constant), CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_9, CAUSE_2
- h. Predictors: (Constant), CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_9
- 1. Predictors: (Constant), CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_9
- i Predictors: (Constant), CAUSE_6, CAUSE_3, CAUSE_9
- k. Dependent Variable: SCP3

K

À
2
4
G
9
ួ
Ó
_ ♀
7
-

	CAUSE 1. CAUSE 1. CAUSE 7. CAUSE 1. CAUSE 3. CAUSE 9. CAUSE 9. CAUSE 2.		Enter
2		CAUSE_I1	Backward (criterion: Probability of F-10-remove >= 100).
3	4	CAUSE_8	Backward (crittrion: Probability of F-to-remove >=:,100).
4		CAUSE_10	Backward (criterion: Probability of F-so-remove >= .100).
5		CAUSE_5	Backward (crittrion: Probability of F-to-remove >= 1000.

Backward

CAUSE_12

Variables Entered/Removed

CAUSE_12 CAUSE_4.

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
7	1	CAUSE_1	Backward (criterion: Probability of F-to-remove >= .100).
8		CAUSE_2	Backward (enterion: Probability of F-to-remove >* ,100).
9		CAUSE_4	Backward (criterion: Probability of F-to-remove >= ,100).
10		CAUSE_7	Backward (criterion: Probability of F-to-remove >= 1900.

- a. All requested variables entered.
- b. Dependent Variable: SCP3

										-WATERIAN III	
Model		LB	Sid. Error	Beta_		Sig	Lower Bound	Upper Round	Zero-order	Partial	PM.
3	(Constant)	3.223	459		7.029	.000	2.30]	4.144		_	
	CAUSE_3	.165	.084	.284	1.959	.056	004	.335	.437	.269	.225
	CAUSE_4	5,843E-02	.090	.103	.648	.520	123	.240	.411	.092	.075
	CAUSE_6	-3,825E-02	.017	- 267	-2,193	.033	073	003	- 098	- 299	- 257
	CAUSE_7	7.704E-02	.080	,146	.967	.338	083	.237	.380	.137	.111
	CAUSE_9	142	.090	234	1.582	.120	038	.322	431	220	.182
9	(Constant)	3.275	.449		7.295	.000	2.373	4.176			
	CAUSE_3	.190	.075	.327	2.542	.014	.040	.341	.437	.338	.291
	CAUSE_6	-3.666E-02	.017	- 256	-2.135	.035	071	002	- 098	- 289	244
	CAUSE_7	8.809E-02	.077	.167	1,138	.260	067	.244	.380	.159	.130
	CAUSE_9	.161	.034	265	1.909	.062	008	.330	.431		218
10	(Constant)	3.318	449		7.398	.000	2.418	4.219			
	CAUSE_3	.213	.072	.366	2,949	.005	.068	.358	.437	.382	31 5
	CAUSE_6	-3.281E-02	.017	- 229	-1,944	.057	067	.001	098	263	22
	CAUSE 9	206	.075	110	2.757	.008	036	155	431	350	316

s for Ca-SCP3-MC

477 -

Coefficients*

		Coffinerni	y Stanstica
Model		Tolerance	VIF
1	(Constant)	15,545,000	
	CAUSE_1	.213	4.690
l	CAUSE_?	.150	6.668
!	CAUSE_3	440	2,272
	CAUSE_4	.195	5.125
	CAUSE_5	.299	3.343
ĺ	CAUSE_6	.783	1.277
	CAUSE_7	.394	2.541
1	CAUSE_8	.197	5.351
	CAUSE_9	.257	3.897
	CAUSE_10	.337	2.964
	CAUSE_11	.250	3.995
	CAUSE_12	568	1.761
2	(Constant)		
	CAUSE_1	.213	4.690
	CAUSE_2	.151	6.629
	CAUSE_3	.460	2.173
	CAUSE_4	.196	5.t06
	CAUSE_5	.303	3.299
	CAUSE_6	.818.	1.223
	CAUSE_7	,394	2.541
	CAUSE_8	.225	4.453
	CAUSE_9	.271	3.695
	CAUSE_10	.375	2.664
3	CAUSE_12	571	1.751
3	(Constant)		
	CAUSE_I	.213	4.688
	CAUSE_2	.154	6.493
	CAUSE_3	.461	2.170
	CAUSE_4	.218	4.589
	CAUSE_S	.311	3.216
	CAUSE_6	.830	1.205
	CAUSE_7	.531	1.834
	CAUSE_9 CAUSE_10	.355	2.817
	CAUSE_10 CAUSE_12	.398	2.514
	LAUSE 17	579	1.727

alysis for Ca-SCP3-A

	MOOEI		<u> </u>	21d Enor	Beta		Sig.	Lower Board	Unper Bound	Zero-order	Partial	Pert
		anstant)	3.454	.651		5.308	.000	2.141	4.767		 	
		USE_1	.]04	.153	.179	.677	.502	205	413	.327	.104	.083
ľ		USE_2	193	.187	326	-1.033	.307	570	.184	367	157	-,126
		USE_3	.157	.107	.269	[1.463	.151	059	373	.437	.220	.179
1		USE_4	6.968E-02	,149	.129	.468	.642	23	370	411	.072	057
		USE_S	5.54 E-02	.127	.097	.436	.665	201	312	.366	.067	.053
		USE_6	-4.290E-02	.020	300	-2.170	.036	083	003	098	-318	- 265
		USE_7	.102	.103	.193	.991	327	106	309	.380	.151	,121
		USE_8	-3.048E-03	.161	005	019	.985	328	1 322	.364	.003	-202
- 1		USE_9	.203	,146	.335	1.388	.173	092	.498	.431	.209	.170
		USE_10	-2.816E-02	.137	043	206	838	304	.248	.265	.032	-025
		USE_11	3.678E-04	.132	.001	.003	.998	267	.267	.333	.000	2000
	CA	USE_12	-4.664E-02	.093	081	- 500	.619	-,235	141	.072	\. \.077	- ∞2
		instant)	3.454	.637		5.422	.000	2.169	4,738			
		USE_1	.104	.151	.179	.685	.497	202	.409	327	.104	.08
		USE_2	.193	.184	326	-[,048	300	-564	.178	.367	158	-125
		USE_3	.157	.104	.269	1.513	.138	+.052	.365	.437	.225	ista
		USE_4	6.965E-02	,147	.129	.474	.638	227	.366	.411	.072	,185 12 30,
		USE_5	5.545E-02	.[25]	.097	.445	.659	-,196	.307	.366	.068	
		USE_6	-4.291E-02	.019	-300	2.245	.030	081	004	098	.324	2710
		USE_7	.102	.102	.193	1.003	.321	103	307	.380	.151	.124
		USE_8	-2.865E-03	.145	005	020	.984	296	.290	.364	003	002
		USE_9	.203	.141.	.335	[.443]	.156	081	.487	.43(.215	.17 🕏
		USE_10	-2.804E-02	.128	043	219	.828	+.287	.231	265	.033	.026
		USE_12	-4.666E-02	.092	09L j	508	.614	• <u>.23</u> 2		.071	.cm l	061
1		(tractace)	3.454	.629		5.490	,000	2.186	4.722			
		USE_1	.104	.150	.179	.694	.492	198	.406	.327	.104	.083
		USE_2	194	.180	327	-1.074	.288	557	.170	.367	-,160	128
		USE_3	.157	.102	.269	1.531	,133	050	.363	.437	.225	.183
		USE_4	7.057E-02	.138	.131	.513	.611	.207	.348	.411	.077	.061
- 1		UZE_S	5.506E-02	.122	.097	.452	.653	190	.300	_366	.068	.054
		USE_6	-4.296E-02	.019	300	-2.290	.027	180.	005	.098	-,326	-273
		USE_7	.101	.086	.191	1.167	.250	073	.275	.380	.173	.139
ı		USE_9	,202	.121	.333	1.660	.104	043	,446	.431	.243	.198
		USE_10	-2.864E-02	.123	044	233	,817	. 277	.219	.265	035	028
	CA	USE_TS	-4.687E-02	090		- 520	606	- 229	135	.072	.071	062

Coefficients*

		Unstandardize	d Confficients	Standardized Coefficients			95% Confidence	e lateraul for R		Correlations	
Model .		B	Std. Error	Beta	ا با	Sig	Lower Bound	Upper Bound	Zero-order	Pertial	Pert
4	(Constant)	3.387	354		6.113	.000	2.271	4.503			
	CAUSE_I	.106	.148	.183	.718	.477	192	.404	.327	.106	.085
	CAUSE_2	.193	.178	325	-1.050	.286	ددک-	.166	.367	159	128
	CAUSE_3	.159	.101	.273	1.578	.122	-,044	.362	.437	.229	.185
	CAUSE_4	7.024E-02	.136 (.130	.516	.609	-204	.345	.411	.077	.061
	CAUSE_5	5.129E-02	.119	.090	.430	,669	189	.292	.366	.064	.051
	CAUSE_6	-4.255E-02	810.	- 297	-2.302	.026	080	005	098	.325	-,272
	CAUSE_7	9.826E-02	.085	.136	1.158	,253	.073	.269	.380	.170	.137
	CAUSE_9	.187	.104	.309	1.809	.077	021	396	.431	.260	.214
	CAUSE 12	-5.563 <u>E-0</u> 2	.081	097	686	.496	- 219	.108	.072	102	- 081
5	(Constant)	3.407	.547		6.226	.000	2.306	4.509		1 1	i
	CAUSE_I	.104	.146	.180	.712	.480	190	.399	.327	.104	.083 -,129 ,217 ,118 -,269 ,131 ,210 -,073
	CAUSE_2	.194	,177	328	-1.101	,277	550	.161	.367	160	-,129
	CAUSE_3	.174	.094	.299	1.856	.070	015	.362	.437	.264	.213
	CAUSE_4	.106	.107	.196	.987	,329	110	.322	411	.144	.118
	CAUSE_6	-4.198E-02	.018	+.293	-2.298	026	079	+.005	098	321	269
	CAUSE_7	9.372E-02	.083	.178	1.124	.267	074	.262	.380	.163	.131
	CAUSE_9	.183	.102	.302	1.794	.079	.022	.329	.431	256	.210
_	CAUSE_12	-4.922E-02	.079	+.086	623	.536	- 208	,110	.072	091	073
6	(Constant)	3.239	.473		6.854	.000	2.288	4.189			
	CAUSE_L	7.235E-02	.136	.125	-531	598	-202	.347	.327	.077	.063
	CAUSE_2	165	.169	278	975	.334	-504	.175	.367	-,141	-,113
	CAUSE_3	.176	.093	.303	1.897	.064	011	.363	437	.267	.221
	CAUSE_4	.311	.106	.205	1.041	.303	103	.324	.411	.150	.121
	CAUSE_6	-4.227E-02	.018	295	-2.330	.024	-,079	006	+.098	322	271
	CAUSE_7	9.630E-02	.083	.182	1.163	.251	070	.263	.380	.167	.135
	CAUSE_9	.156	.092	.257	1.701	.096	029	.341	.431	.241	.198
7	(Constant)	3.276	.464		7.062	.000	2.343	4.208			
	CAUSE_2	101	.117	170	859	.395	336	.135	.367	123	-,099
	CAUSE_3	.189	.089	.325	2.123	.039	.010	.368	.437	.293	.245
	CAUSE_4	.103	.105	.192	.989	327	107	.314	411	.141	.114
	CAUSE_6	-4.042E-02	.018	282	2.237	.027	076	005	098	.313	26
	CAUSE_7	9.056E-02	.08)	.172	1.112	.272	073	.254	.380	.158	,121
	CAUSE 9	.154	.091	.254	1.693	.097	029	337	.431	.237	

#11 #11

411

211

111

111 111

411

411

000.

000

320

874. 955.

0001

91) LIV

395

316

£\$\$*

113

Ltt

411

Ansiyat for Ca. S. C. S.

Z11

211

113

113

LII LII LII

LTT

*t*11

000 000 500

000

000

761

911

504 159 1000

M9'

411

411

411

211

£11 £11

113

000. 000. 000. 200.

000. 000. 000.

000

561

88E.

SEC

150

SLV.

000.1

169

195

75)

2CM CVIRE | CVIRE | CVIRE | CVIRE | CVIRE | CVIRE | CVIRE | CVIRE | CVIRE |

411

411

411

111

Lii

Lii

411

_211

000. 000.

181 181 181

995

961 E/Z

tIII

111

411

411 411

411

111

000

915

000°I

478

CVAZE 8 CVAZE 8 CVAZE 1

CAUSE 6

CAUSE_5

CYNZE*

CAUSE_1

CV02E 1

CVOSE 15

CYNZE 10 CYNZE 10 CYNZE 6 CYNZE 6

CAUSE_7 CAUSE 6 CAUSE 6

CVINZE 1

CYUSE 2

CVIZE 15 CVIZE 15 CVIZE 11

CAUSEL10

CVD2E 6

CAUSE 8

CAUSE_?

CAUSE 6 CAUSE 5 CAUSE 6

CAUSE 3

CYO2E'S

CVOSE"1 2Cb)

(Leiled) .gi2

111

411 411 411

111

III

L11 L11 L11

000, 000, 000, 000, 000, 000,

000

000

155. 885.

EST.

799

0001

ΔH

411 411

411

LII

411 411 411

000

000

000

0001

\$39.

231

111

žn

411

LTT

ΔΠ

600

000.

000

000.

000

000

000

000. 000.

812 90)

16E"

649

615

232. 332. 002.

₽Z9°

000.0

L09"

981.

Correlations

111 113

411

LII

111

411

111

000° 100° 100° 100° 100° 100° 100°

000

000

000

79Z.

611. 611. 671.

OCE.

900

(22°) 121°1 1718	568. 182.	CYNSE_4 CAUSE_6 CAUSE_7	
6191	909'	(Constant)	. 6
59Z-1	162	CVN2E_3	
660°T	016	CYPSE	
(2)FT 2)971	609	CV02E 3	
	1	(Constant)	10
£71,1	£28.	CAUSE	
6FTT "" 9 50 11	078	CV02E 0	

CYN2E 6

CYR2E_7

CYOZE R F_ESUA⊃

CYNZE 3

CAUSE_2 (Constant) CYR2E 6

CY02E_7 CVDSE_6

CYNZE 4

CAUSE_3

CAUSE 1

CYNZET

(juzyruon) CVOSE 11

CYUSE 9

CYOSE 3

CAUSE_6

CYPSE 4

C_AUSE_3

CY02ETS

CAUSE_I

CYRZE 13

CAUSE_9

CY02E_7

CYN2E 8

CYNZE 2

▶_BSUAD

CY02E'3

CV02E³3

CYNZE 1

(runnuon)

655

895 895 110

548. 022. 092.

8×£,

625.

311

97£

118.

915

625

HSI.

¥12.

102°

015

TE8.

LIE

812.

599

724 734

Tolerance

837.1

1110

2882

1921 57335

1.188

2/8/2

1.889

110.0

160"

₽LO'Z

1.823

881.1

7.897

268

9119

199°F

97 + 1

0607

2511

561'1 6\$1'\$

882.4

5'146

6819

899"#

Coefficients

Coefficient'

CYNZE 15 6829 T \$9<u>7.5</u> \$ **221** *CIS1 \$19.5 CVR2E_10 1 9949 1 103 CYN2E 6 CYNZE® 113 113 1,6697 999.9 5.500 57143 CAUSE_? LII 13034 ILUS CAUSE_6 411 411 94691 192.2 CVD2E 3 CYDSE* 11191 9,350 13865 185.2 CYRZET 411 TELL'I 896.2 CAUSE_2 εti \$1691 622.9 CYNZET 17141 209 Þ SCP1

Descriptive Statistics

Regression

		_	
,	. [CAUSE_4	Backward (criterion: Probability of F-to-remove >= ,100).
8		CAUSE_[1	Backward (enterion: Probability of F-to-remove >= ,100).
9	,	CAUSE_7	Buckward (criterion: Probability of F-to-remove >= 100).
10		CAUSE_9	Backward (criterion: Probability of F-to-remove >= .100).
H		CAUSE_12	Backward (criterion: Probability of F-to-remove >= 1001.

a. All requested variables entered.

479

- 1	ì						hange Statistics		
Model	8.	R Square	Adjusted R Square	Sid. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.4434	.197	.104	1.4332	.197	2.121	12	104	.02
1	.4430	.197	.112	1.4265	.000	.010	1	106	.92
) I	.443°	.196	.120	L4199	.000	.034	1	107	.85
	.4434	,196	.128	1.4135	.000	.037	1	108	.84
. 1	441	.195	.135	1 4080	001	.162	1	109	.61
	439	193	.141	1.4032	002	250	1	110	.6
	4372	.191	.147	1.3987	002	291	1 1	111	.5!
	434	183	.152	1,3943	002	.314	1.	112	.5
· !	.429	.184	.155	1.3918	004	. 594	1	113	.4
o i	417i l	174	.152	1.3940	010	1.351	i 1	114	.2
; }	395k	155	141	14033	- 019	2 533	, ,	115	1

Model Summary

- * Predictors (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_5, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- b. Predictors: (Constant), CAUSE 12, CAUSE 2, CAUSE 3, CAUSE 5, CAUSE 9, CAUSE 11, CAUSE 4, CAUSE 1, CAUSE 3, CAUSE 5
- c. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_3, CAUSE_5
- d. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_5
- e. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_11. CAUSE_4, CAUSE_5
- f. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_5
- g. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_11. CAUSE_5
- h. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_5
- i. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_9, CAUSE_5
- J. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_5
- k. Predictors: (Constant), CAUSE_2, CAUSE_5
- I. Dependent Variable: SCP3

ANOVA

Model		Sum of Squares	đf	Mean Square	F	Sig.
	Regression	52.291	12	4.358	2.121	.021*
1	Residual	213.632	104	2.054	Į.	
1	Total	265.923	116			
	Regression	\$2,270	11	4.752	2.335	013
1	Residual	213.653	105	2.035		
1	Total	265 921	116	1)	

.265 .394 .487 .288 .386 .406 .495 .429 .356 .418 .483 .537 .506 1.000 112 218 237 238 CAUSE_2 CAUSE_3 CAUSE_4 CAUSE_5 CAUSE_6 CAUSE_7 .278 .292 .350 .289 .349 .392 .348 .229 .339 .502 1.000 .506 .349 CAUSE_8 CAUSE 9 CAUSE_10 CAUSE_II CAUSE_I2 .012 .016 .014 392 .007 .001 Sig. (1-tailed) .006 CAUSE_I .000 CAUSE_2 CAUSE_3 CAUSE_4 .002 .000 .000 .009 .000 .000 .000 .000 .000 .005 .005 .001 .001 CAUSE_5 .000 .000 .006 .000 CAUSE_6 CAUSE_7 CAUSE_8 CAUSE_9 .000 .000 .001 CAUSE_10 CAUSE_11 .000 000 117 117 117 117 117 117 117 CAUSE_12 .000 SCP3 117 CAUSE 1 117 117 CAUSE_1 CAUSE_3 CAUSE_4 CAUSE_5 117 117 117 117 117 117 117 117 117 117 117 CAUSE_6 117 117 CAUSE_7 CAUSE_8 117 117 CAUSE_9 117 117 CAUSE_10 117 117 117 117 CAUSE_11 CAUSE_12

Analysis for Ca-SCP3-SC

Variables Entered/Removed^b

_	Variables	Variables	1
Model	Entered	Removed	Method
1	CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_6, CAUSE_6, CAUSE_11, CAUSE_11, CAUSE_1, CAUSE_3, CAUSE_3,		Enter
2		CAUSE_10	Backward (contenion: Probability of F-so-remove >= 100).
3	, !	CAUSE_1	Backward (criterion: Probability of F-to-remove >= .100).
4		CAUSE_3	Backward (criterion: Probability of F-to-remove >= .100),
\$		CAUSE_6	Backward (enterion: Probability of F-to-remove >= .100).
		CAUSE_8	Backward (criterion: Probability of F-to-remove

b. Dependent Variable, SCP3

.099

319

.688

.441

.615

.275

.451

.104

.582 .359

.487

.618

.303

.476

279 -019 -088

.591 .313 .433 .244 .515

.237

.052

.175

.395 .240

.576

95% Confidence Interval for B

-031

- 168

-119

- 269

-,114

149

.091 .302

076

.188

-.033

166

-,114

-,117

149

-.094

.294 .077

.273

.024

167

-,102 -,107 -,078 -,283

.311

-.001

-059

-.100 -.077

- 267

Lower Bound Upper Bound Zero-order

.351 .294 .361

.178 .260 .251 .317

.135 .270 2.984

.346 .294 .312 .243 .250 .299 .138

.<u>266</u>

.350 .291 .317 .248 .305 .143

.270 3.039

356

Correlations

Partial

.052

.096

-.039

.075

.049

.106

- 073

.107

.053

.088 .067 .048 .099

-.059

.163 .052 .097

075

.111

-062

.113

.184

.129

.081 112 -.053

.047

.087

-.035

.067

.044

.095

.066

.097

068

.101

-.056

102

.169

.117

.073

101

.323

.336

.273

.267

.286

.228 .210

.323 .336 .261 .286 .289

.228

351 .323

.336 .267

.289

.228 .210

.351

.336

.267 .289 .228

Standardized Coefficients

.187

.068

.136

-051

.083

.056

.124

.090

.120

.183

.069

.111

.072 .056 .113

.190

.068 .120 .080 .124

.076

.208 .147

.086

.125

-.063

1.662

539

1.001

-.402 .774

.504

1.098

-.757

2.249

1.640

352

.922 .697

.500

1.034

-.716

1.098 2.376

1.723

1.014

1.171

-.654

1.189

2.433

1.965

1,366

.854

1.181

-.561

.540

Unsundentized Coefficients

.160

.121

6.275E-02

→ 531E-02

7.305E-02

5.096E-02

.113 8.3458-02-8

9.745T-02 1.586

6.404E-02

9.905E-02

6.335E-02

5.035E-02

-7.803E-02

9 419E-02

6.234E-02

.107 7.041E-02

-7.026E-02

7.569E-02

-5.892E-02

101 1.675 .177

.131

,114

.157

CAUSE_2

CAUSE 4

CAUSE 5

CAUSE_6

CAUSE_7

CAUSE 8

CAUSE 9

CAUSE_11

CAUSE_12

(Constant) CAUSE 2

CAUSE_4

CAUSE_S

CAUSE 7

CAUSE_8

CAUSE_9

CAUSE 11

CAUSE_12

(Constant)

CAUSE 2

CAUSE_4

CAUSE 5

CAUSE_9

CAUSE_11

CAUSE_12

(Constant)

CAUSE 2

CAUSE_5

CAUSE_7

CAUSE_9

CAUSE_II

CAUSE 12

Std. Error

.096

.116

.121

.094

,101

.103

.087

.705

.095

.116

.107

.091

,101

.099 .109

.691

116

.106 .089 .097

.107

.055

.688

.090

.039

,096

		Unstandardize	d Coefficients	Standardized Coefficients	1		95% Confidence			Correlations	
Résolution I		B	Std. Error	Beta	1	Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part
Mndel 8	(Constant)	1.672	.086		2,436 (.016	312	1.031) 1	ı †	
•	CAUSE_2	.171	.089	.201	1,919	,058	006	.348	351	.179	.164
	CAUSE 5	.123	.095	.138	1,302	.196	064	.311	.336 [.123	.111
	CAUSE_7	6 705E-02	.087	.076	.771	.443	103	.239	.267	.073	.066
	CAUSE_9	9.454E-02	.090	.104	1.053	295	083	272	.289	.099	.090
	CAUSE 12	9 057E-02	082	.102	1.705	.272	-072	253	.210	.104	.094
0	(Constant)	1.767	.674		2,623	.010	.432	3.102		· .	
′	CAUSE_2	.182	.088	.213	2.071	.041	.008	.357	.351	.192	.177
	CAUSE 5	.139	.092	.155	1.501	.136	.044	.322	.336	.140	.128
	CAUSE_9	.103	.089	.114	1.162	.248	073	.279	.289	.109	.099
	CAUSE_12	.103	090	.(16	1,282	203	056	.262	210_	.120.	.109
10	(Constant)	2.143	J92		3.621	.000	.970	3.315		i	
10	CAUSE_2	.208	.085	.244	2.447	.016	.040	.377	351	224	.201
	CAUSE_5	.157	.091	177	1.729	.086	023	.338	.336	.161	.148
)			078	.140	1.592	.114	030	.279	210	.148	136
	CAUSE_12	.124		.140	5.683	.000	1,764	3,652			
11	(Constant)	2,708	477	222	2.411	.018	.037	377	.351	.220	.201
l	CAUSE_2	.207	.086	.242 211	2.100			355_	336_	193	181

ANOVA¹

Model		Sum of Squares	ď	Mean Square	Ê	Sig.
3	Regression	52,202	10	3.220	2.589	.008
	Residual	213,721	106	2.016	1	
	Total	265,923	116	l l		
7	Regression	52,128	9	5,792	2.899	.004
	Residual	213,795	107	1.998		
	Total	265,923	116			
3	Regression	51,805	8	6.476	3.266	.002
•	Residual	214.119	103	1.983		
	Total	265.923	116	\\	_ 1	
3	Regression	51,308	7	7,330	3,723	.001
	Residual	214.615	109	1.969	1	
	Total	265.923	116	1	- 1	
7	Regression	50,735	- 6	8,456	4.322	.001
	Residual	215.188	110	1.956	1	
	Total	265.923	116	l		
Ţ	Regression	50.120		10.024	5.156	.000
-	Residual	215.803	111	1,944		
	Total	265.923	116	li_		
9	Regression	48.965	- 4	12.241	6.319	.000
	Residual	216,958	112	1.937	- 1	
	Total	265.923	116	} L		
To	Regression	46,348	3	15.449	7.951	.000
	Residual	219.576	113	1.943	ı,	
	Total _	265,923	116	l		
Ti	Regression	41.426	2	20.713	10.518	.000
	Residual	224.497	114	1.969	1	
	Total	265,923	116	1 L		

- Prodictor: (Comment), CAUSE 12, CAUSE 2, CAUSE 10, CAUSE 7, CAUSE 8, CAUSE 9, CAUSE 9, CAUSE 11, CAUSE 4, CAUSE 1, CAUSE 3, CAUSE 3
- b. Predictors: (Constant), CAUSE, 12, CAUSE, 2, CAUSE, 3, CAUSE, 6, CAUSE, 9, CAUSE, 11, CAUSE, 4, CAUSE, 1, CAUSE, 3, CAUSE, 5
- C. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_3, CAUSE_5
- d Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_1, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_5
- e. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_5
- f. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_5
- g. Predictors: (Constact), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_11, CAUSE_5
- b. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_5
- i. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_9, CAUSE_5
- J. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_5
- k. Predictors: (Constant), CAUSE_2, CAUSE_5
- L Dependent Variable: SCP3

Coefficients*

		Unstandardize		Standardized Coefficients	1		95% Confidenc	e Interval for B		Correlations	
Model		В	Std. Error	Beta		Sie.	Lower Bound	Unper Bound	Zero-order	Pertrai	Part
	(Constant)	1.531	.747		2.050 (.D43	.050	3.012		- 1	
	CAUSE_1	1.954E-02	.115	.022	.170	.866	-209	.248	.306	.017	.01
	CAUSE_2	.146	.119	.171	1.226	.223	-,090	.381	.351	.119	.10
	CAUSE_3	2.140E-02	.118	.025	.181	.857	213	.256	.320	.018	.01
	CAUSE_4	5_528E-02	.125	.060	.442	.659	-,193	.303	.323	.043	.0:
	CAUSE_5	.113	.128	.127	.887	.377	-,140	367	.336	.087	.0
	CAUSE_6	-5.059E-02	.117	057	- 432	.667	283	.182	.273	042	0
	CAUSE_7	7.002E-02	.099	.079	.705	483	+.127	.267	267	.069	.0.
	CAUSE_B	5.181E-02	.106	.057	.488	.627	-,159	.262	.286	.048	.0
	CAUSE_9	.104	.111	.115	938	.350	116	.325	.289	.092	.00
	CAUSE_10	1.195E-02	.120	.012	.100 \	.921	-,226	.250	.234	.010	.0.
	CAUSE_I1	-8.223E-02	.115	088	713	.477	-311	.146	.228	070	0
	CAUSE_12	9.434E-02	.090	.106	1.049	.297	-,084	.273	210	.102	0
	(Constant)	1.543	.734		2.102	.038	880.	2.998			
	CAUSE_?	2.087E-02	.114	.023	.183	.855	-,205	.247	.306	.016 (.0 1.
	CAUSE 2	.144	.116	.168	1.235	.220	-087	374	.351	.120	. i
	CAUSE_3	2.200€-02	.118	.026	.187	.852	-,211	.255	.320	.018	.0
	CAUSE_4	5.758E-02	.122	.062	471	.639	-,185	300	.329	.046	.0 0.
	CAUSE_S	,116	.124	.130	.939	.350	129	.362	336	.091	0. g
	CAUSE_6	-5.160E-02	.116	058	-,444	.658	- 282	.179	.273	043	-0
	CAUSE_7	6.877E-02	.098	.078	.701	.485	-,126	.263	.267	.068	ã
	CAUSE_8	5.126E-02	.106	.057	.486	.628	-,158	.260	.286	.047	.0
	CAUSE_9	.107	,107	.118	1.009	.315	-,104 (.319	.289	.098	۵.
	CAUSE_11	-7.989E-02	117	-086	-711	.471	-303	.143	.228	069	0
	CAUSE_12	9.578E-02	.088		1.084	281_	079	.271	.210 (.105	.0
	(Constant)	1,573	712		2.210	.029	.162	2,985			
	CAUSE_2	. 154	.102	-160	1.504	.135	049	.356	.351	.145	.13
	CAUSE 3	2.247E-02	.117	.026	.192	.848	210	.254	320	.019	Ď.
	CAUSE_4	5.643E-02	. (22	.061	.464	.643	-,185	.297	323	.045	.õ
	CAUSE 5	.119	122	.134	.978	.330	-,123	361	.336	-095	.0.
	CAUSE_6	-4.903E-02	.115	- 055	- 427	.670	-,277	.179	.273	041	0:
	CAUSE 7	6.854E-02	098	.078	702	.484	- 125	262	.267	.068	.õ
	CAUSE 8	5.471E-02	103	.060	529	.598	.150	.250	.286	.051	.o.
	CAUSE_9	.109	.106	.120	1.027	.307	-,101	.318	.289	.099	.0
	CAUSE_11	-8 264E-02	.111	089	746	457	-,302	.137	228	.022	~
	CAUSE 12	9.699E-02	068	100			, ,				

ka da a	
a for Ca	
-SCP3	•
SC	

		_	
MODEL		Tolerance	VIF
18	(Constant)		
	CAUSE_2	.669	1.495
ţ	CAUSE_5	.649	1.540
l	CAUSE_7	.753	1.328
	CAUSE_9	.751	1.332
L	CAUSE_12	359	1.165
9	(Constant)		
	CAUSE_2	.686	1.458
i	CAUSE_5	680	1.471
1	CAUSE_9	.763	1.311
L	CAUSE_12	893 .	1.120
10	(Constant)		
ì	CAUSE_2	.734	1.362
i	CAUSE_5	.701	1.426
	CAUSE_12		1.060
11	(Constant)		
1	CAUSE_2	.734	1.362
	CAUSE 5	734	1.362

a. Dependent Variable: SCP3

- 481 -

Regression

Descriptive Statistics

	Mean	Std. Deviation	N
SCP3	5.720	1.6651	25
CAUSE_!	6.800	2.2913	25
CAUSE_2	6,630	2.)884	25
CAUSE_3	6.600	2.2913	25
CAUSE_4	6,820	2,3313	25
CAUSE_S	6.700	2.2638	25
CAUSE_6	6.200	2.2958	25
CAUSE_7	5.680	2.0355	25
CAUSE_8	6,400	1.8428	25
CAUSE 9	5.520	2,3826	25
CAUSE_10	6.440	2.0530	25
CAUSE_II	5.320	2.5612	25
CAUSE 12	5.500	2,3629	25

		Lourice	SUUSUL
Model		Tolerance	VIF
1	(Constant)		
	CAUSE_1	.465	2.152
	CAUSE_2	.399	2.507
	CAUSE_3	.406	2.466
	CAUSE_4	.421	2.378
	CAUSE_5	.376	2.657
	CAUSE_6	.444	2.250
	CAUSE_7	.610	1.639
	CAUSE_8	.564	1,774
	CAUSE_9	.516	1.938
	CAUSE_10	£38	1.859
	CAUSE_I1	.502	1.991
	CAUSE_12	.754	1.326
2	(Constant)		
	CAUSE_1	.471	2.124
	CAUSE_2	413	2.423
	CAUSE_3	.407	2.460
	CAUSE_4	.435	2.297
	CAUSE_5	.397	2.518
	CAUSE_6	.448	2.233
t	CAUSE_7	.620	1.613
	CAUSE_8	.565	1.769
	CAUSE_9	.558	1.792
	CAUSE_!1	.524	1.908
	CAUSE_12	774	1.292
3	(Constant)		
	CAUSE_2	.530	1.885
İ	CAUSE_3	.407	2.458
	CAUSE_4	.437	2.290
	CAUSE_5	.405	2.470
	CAUSE_6	.454	2.201
	CAUSE_7	.620	1.613
	CAUSE_8	-584	1.713
	CAUSE_9	.560	1.784
	CAUSE_II	.534	1.874
	CAUSE 12		1.284

Coefficients*

1		Collinearin	v Statistics
Model		Tojcrance	VIF
4	(Constant)		
1	CAUSE_2	.592	1.689
	CAUSE_4	.471	2.122
	CAUSE_5	.407	2,454
	CAUSE_6	.468	2.138
	CAUSE_7	.658	1.519
	CAUSE_8	.605	1.652
	CAUSE_9	.587	1.704
	CAUSE_II	.534	1.871
	CAUSE_12		1.283
5	(Constant)	T	
	CAUSE_2	.596	1.677
	CAUSE_4	472	2.121
	CAUSE_5	.514	1.946
	CAUSE_7	.704	₹.420
	CAUSE_8	.605	1.652
	CAUSE_9	.626	1.596
	CAUSE_II	.543	1,643
	CAUSE_12	.786	1.272
6	(Constant) CAUSE 2	606	
			1.650
	CAUSE_4 CAUSE_5	.472	2119
	CAUSE_5	_526	1.900 1.386
	CAUSE_9	.721	
	CAUSE_9	.656 554	1.524 1.806
- -	CAUSE_12	.807	1.239
l '	(Constant)		1
	CAUSE_2	.660	1.516
1	CAUSE_5	,636	1.573
	CAUSE_7	.730	1.369
	CAUSE_9	.656	1.524
ł	CAUSE_11	.576	1.737
	CAUSE 12	209	1,238

Model	Variables Entered	Variables Removed	Method
1	CAUSE 12, CAUSE 5, CAUSE 6, CAUSE 6, CAUSE 7, CAUSE 10, CAUSE 11, CAUSE 11, CAUSE 4,		Enter
2	•	CAUSE_7	Backward (enterion: Probability of F-to-remove >= .100).
3		CAUSE_3	Backward (criterion: Probability of F-to-remove >= .100).
1		CAUSE_4	Backward (criterion: Probability of F-to-remove >= .100).
5		CAUSE_6	Backward (criterion: Probability of P-to-remove >= .100).
6		CAUSE_I	Backward . (criterion: Probability of P-to-remove >= 100).

- 482 -

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
,		CAUSE_11	Itackward (criterion: Probability of F-to-remove >= .100).
8	,	CAUSE_9	Backward (enterion: Probability of F-to-remove >= ,100).
9		CAUSE_5	Backward (criterion: Probability of F-to-remove

All requested variables entered.
 Dependent Variable: SCP3

Correlations

		SCP3	CAUSE 1.	CAUSE 2	CAUSE 1	CAUSE 4	CAUSE 5	CAUSE 6	CAUSE 7	CAUSE 8	CAUSE 9
Pearson Correlation	SCP3	1.000	.353	.603	515	.491	347	.462	.433	.707	316
	CAUSE_I	.553	1.000	,942	.\$7L	.835	.651	.440	316	.405	.386
	CAUSE_2	.603	.942	1.000	.597	.829	.621	.442	.294	.452	.385
	CAUSE_3	_515	.571	.597	1.000	.746	.442	.202	.472	.528	.498
	CAUSE_4	.491	.835	.829	.746	1.000	.747	.281	.251	_388	_389
1	CAUSE_5	.347	.651	.621	.442	.747	1.000	.423	080	.210	.088
	CAUSE_6	.462	.440	.442	.202	.281	423	1.000	.277	510	.155
	CAUSE_7	.433	.316	.294	.472	.251	080	.277	1.000	.530	.611
	CAUSE_8	.707	.405	.452	.528	.388	.210	.510	.530	1.000	.748
1	CAUSE_9	.516	.386	.385	.498	.389	.083	.155	.611	.748	1.000
	CAUSE_10	.440	.617	.624	.500	.631	.424	.414	.404	.665	,71E
]	CAUSE_11	.520	.452	.413	_555	.530	.165	315	.508	.669	.736
	CAUSE_12	.595	.323	,325_	.316	.221_	090	396	.466	522	.401
Sig. (1-tailed)	SCP3		.002	.001	.004	.006	.045	.010	.015	.000	.004
Į.	CAUSE_I	.002	. '	.000	.001	.000	.000	.014	.062	.022	≥028
	CAUSE_2	.001	.000		.001	.000	.000	.013	.077	.012	2029
i	CAUSE_3	.004	,001	.001		.000	.014	.166	.009	.003	₹006 ਛ027
	CAUSE_4	.006	.000	.000	.000		.000	.086	.113	.028	E027
	CAUSE,	.045	,000	.000	.014	.000		.018	.351	.157	₩838
Į	CAUSE_6	.010	.014	.013	.166	.026	.018		.090	.005	1838 1857 188 188 188 188 188 188 188 188 188 18
	CAUSE_7	.015	,062	.077	.009	.113	.351	.090	:	.003	7001
l .	CAUSE_8	.000	.072	.012	.003	.028	.157	.005	.003	ئىد ا	<u>6</u> 000
	CAUSE_9	.004	.028	.029	.006	.027	.339	229	.001	.000	انساط
	CAUSE_10	.014	.001	,000	.006	.000	.017	.020	.023	.000	μω
l	CAUSE_!1	.004	.012	.020	.002	.003	.216	.063	.003	.000	
<u> </u>	CAUSE_12	.001	.058	.057	.062	.144	.335	,025	009	25	25
N	SCP3 CAUSE_I	25 25	25 25	25 25	25 25	25	25 25	25 25	13	25	25
	CAUSE_2	25	25	25	25	25 25	25	25	25	25	25
ļ				25	25		25		25	25	25
i	CAUSE_4	25 25	25 25	25	25	25 25	25	25 25	25	25	25
	CAUSE_5	25	25	25	25	25	25	1 25	25	25	25
ľ	CAUSE_6	25	25	25	23	25	25	25	์ซึ	25	ž
	CAUSE_7	25	25	25	25	25	25	25	25	25	25
	CAUSE 8	25	25	25	15	25	25	25	25	25	25
1	CAUSE 9	25	[<u>2</u>	25	25	25	25	25	25	25	25
]	CAUSE_10	25	25	23	25	25	25	25	25	25	25
	CAUSE_II	25	25	1 25	25	25	25	25	23	25	25
ŀ	CAUSE_12	25	25	25	25	25	25	25	25	25	. 25
	-/10-16										

Correlations

		CAUSE 10	CAUSE II	CAUSE 12
Pearson Correlation	SCP3	.440		.59\$
	CAUSE_1	.617	.452	.323
	CAUSE_2	.624	.413	.325
	CAUSE_3	.500	.555	.316
	CAUSE_4	.631	.530	221
	CAUSE_5	.424	.165	090
	CAUSE_6	.414	.315	.396
	CAUSE_?	.404	.508	466
	CAUSE_8	.665	.669	.522
	CAUSE_9	.718	.736	.401
	CAUSE_10	1.000	.737	.394
	CAUSE 11	.737	1,000	.731
	CAUSE_12	.394	.731	1.000
Sig. (1-tailed)	SCP3	.014	.004	1001
	CAUSE_1	.001	.012	.058
	CAUSE_2	ممما	.020	.057
	CAUSE_3	.006	.002	.062
	CAUSE_4	.000	.003	.144
	CAUSE_5	.017	.216	.335
	CAUSE 6	.020	.063	.025
	CAUSE_7	נים	.005	.009
	CAUSE_8	ممد ا	.000	.004
	CAUSE 9	.000	.000	.023
	CAUSE 10	l	.000	.026
	CAUSE II	.000	l .i	.000
	CAUSE_12	.026	.000	
N	SCPI	25	25	25
	CAUSE_!	25	25	25
	CAUSE_2	1 25	25	25
	CAUSE_3	25	25	25
	CAUSE_4	25	25	25 25
	CAUSE_5	1 25	25	25
	CAUSE_6	25	25	25
	CAUSE_7	25	25	25
	CAUSE_B	25	25	25
	CAUSE_9	25	25	25
	CAUSE_10	25	25	25

•						ı			L	Correlations	
Model		В	Std. Error	Reta	1	Sig	Lower Bound	Upper Bound	Zero-oroez	Partial	Part
1	(Constant)	215	1.249		.173	.566	-2.937	2.505	ī	i —	
į.	CAUSE_I	131	354	180	370	.718	901	.639	.553	106	052
	CAUSE_2	.289	.410	.379	.703	.495	605	1.183	.603	.199	.099
	CAUSE_3	-4.011E-02	.193	055	208	.839	-160	.310	515	060	029
ì	CAUSE_4	6.363E-02	.366	.089	.174	.86\$	-,734	.861	.491	.050	.025
	CAUSE_5	.262	.233	.156	1.122	.284	247	.770	.347	.308	.158
	CAUSE_6	-4.000E-02	.179	- 055	.223	.827	-431	.351	.462	064	-031
1	CAUSE_7	2.456E-02	.135	.030	.133	.896	- 378	.427	.433	.038	.019
	CAUSE_8	.426	.266	472	1.604	.135 .	153	1.005	.707	420 (.226
ì	CAUSE_9	.223	.248	.319	.898	.387	-318	.763	.516	.251	.127
	CAUSE_10	324	.245	399	-1.324	.210	857	.209	.440	-357	187
	CAUSE_11	197	.302	- 303	652	.527	856	.462	.520	185	092
<u></u>	CAUSE_12	.404	218	573	1.849	089	- 072	.880	.595	.471	.26>
2	(Constant)	169	1.152		147	.886	-2.659	2.320			3
ļ.	CAUSE_I	- 121	.332	- 166	-364	.722	839	.597	.553	100	-045
	CAUSE_2	.276	.384	.363	.719	.485	- 553	1.105	.603	.196	.045 .098
	CAUSE_3	+3.193E-02	.176	044	182	.858	-,411	.347	.515	OSO	- 0250
1	CAUSE_4	7.090E-02	.348	.099	.204	.842	631	.523	.491	.056	83 -83 -82 -22 -44
ŀ	CAUSE_5	.250	.206	.339	1.209	.248	196	.695	.347	.318	.16€
l	CAUSE_6	-3.129E-02	.160	043	- 195	.848	-378	.315	.462	054	0260
	CAUSE_8	.423	.254	.468	1.663	.120	126	.972	.707	.419	.22€
1	CAUSE_9	.237	.216	.339	1.096	.293	- 230	.704	.516	.291	149
1	CAUSE_10	324	.235	400	-1.378	.191	- 832	.184	.440	357	- 18/
i	CAUSE_11	-206	283	317	.729	.479	818	.406	.520	198	0997
	CAUSE 12	.409	.207	.580	1.978	.069	038	855	.595	481	268
13.	(Constant)	192	1.105		.174	.865	-2.563	2.179			
1	CAUSE_1	113	.318	156	٠.357	.727	796	.569	.553	095	047
i	CAUSE_2	.275	.370	.361	.742	.47	-519	1.068	.603	.194	.097
1	CAUSE_4	4 007E-02	.293	.056	.137	.893	589	.669	.491	.036	.018
	CAUSE_5	.253	.198	.344	1.276	.223	- 172	.678	.347	.323	.167
1	CAUSE_6	-3.050E-02	.155	042	197	.847	362	.301	.462	053	026
1	CAUSE_8	.411	.237	.455	1.732	.105	098	.920	.707	.420	227
1	CAUSE_9	.232	.207	.332	1.121	.231	212	.675	.516	.287	.147
1	CAUSE_10	314	.221	-,387	-1.423	.177	788	.159	.440	355	186
1	CAUSE_I1	206	.273	317	755	.463	- 792	.380	ا 200	198	099
	CAUSE 12	4577	199		7044	050	020		595		269

- 483 -

Coefficients*

		Unstandardize	d Coefficients	Standardized Coefficients			.95% Confidenc	lateral for B	_	Correlations	
Model		B	Std. Error	Beta	, I	Sie.	Lower Bound	Uoper Bound	Zero-order	Partial	Pars
4	(Constant)	164	1.049		156	.878	2.400	2.073	SELG-MOET	LEGAL	
	CAUSE 1	111	.307	-,152	-360	.724	765	543	.553	093	046
	CAUSE 2	298	317	392	.939	.724	378	.974	.603	.236	
	CAUSE_5	.269	.158	.365	1,704	.109	067	.604	.347	.403	119
	CAUSE 6	-3.906E-02	.137	.054	286	.109	·.06/ ·.331	.252	.462	074	.216 •.036
	CAUSE_8	413	229	457	1.803	.091	075	.232	.462	422	
	CAUSE_9	.225	194	322	1.159	.254	- 189	.639			.228
	CAUSE_IO	-318	.212						.516	.287	.147
	CAUSE_II			392	-1.501	.154	769	.133	.440	361	.190
		184	214	-284	860	.403	642	.273	.520	217	109
5	CAUSE_12	399	.183	.566	2.183	.045	.009	.788	.595		276
3	(Constant)	123	1.010		122	.904	-2.264	2.017	}		
	CAUSE_1	122	.295	168	413	.685	745	.504	.553	103	- 051
	CAUSE_2	.310	305	.408	1.018	.324	336	.957	.603	.247	.125.
	CAUSE_5	.257	148	.349	1.739	.101	056	.570	.347	.399	.21复
	CAUSE_8	.383	.197	.423	1.943	.070	- 035	.800	.707	.437	.125 21 21
	CAUSE_9	.243	.179 [.347	1.356 \	.194	137	.622	.515	.321	16 201 10 4
	CAUSE_10	332	.200	-409	-1.655	.117	756	.093	.440	- 382	207
	CAUSE_II	172	.204	- 265	+.844	.411	-,604	.260	.520	- 206	10€
 -	CAUSE_12	.382	.169	.543	2.259	.037	.025	.740	.595	193_	275
6	(Constant)	136	984		138	.892	-2.213	1.940		ľ	7-
	CAUSE_2	.202	.151	.265	1.337	.199	117	.520	.603	.308	.166 .20 .266
	CAUSE_5	.239	138	.325	1.735 }	.101	052	.530	347	.385	.20
	CAUSE_B	.403	.186	.446	2.169	.045	.011	.795	.707	.466	.260
	CAUSE_9	.234	.173	.335	1.350	.195	132	.599	.516	311	.162
	CAUSE_10	327	.195	403	-1.675	.112	- 738	.085	.440	-376	- 201
	CAUSE_11	185	.197	- 284	940	.360	- 599	.230	.520	222	113
	CAUSE 12	379	.164		2.309	.034		726		.489	277
7	(Constant)	.264	.885		298	.769	-1.595	2.122			
	CAUSE_2	.248	.142	.326	1.742	.099	051	547	.603	380	.208
	CAUSE_5	.200	.131	.271	1.525	.145	075	.475	.347	338	.182
	CAUSE_8	.429	.183	.475	2,344	.031	.044	.814	.707	.484	280
	CAUSE_9	.154	.151	.220	1.023	.320	-,162	470	.516	.234	122
	CAUSE_10	406	.175	- 500	-2.312	.033	774	037	.440	-479	- 276
	CAUSE_12	.264	109	375	2.418	.026	. 035	493	595	495	289

							CIRDITO SURVI					
	Mode)	R	R Square_	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	4t3	Sig. F Change		
	<u> </u>	.872*	.761	.522	1.1508	.761	3.187	12	12	.028	i	
	2	.872b	.761	.558	1.1065	.000	.018	1	J4	.896	i	
i	3	.872€	.760	.589	1.0676	001	.033	1	15	.858	i	
] 4	.8724	.760	-616	1.0321	.000	.019	1	16	.893	ĺ	
	5	.8715	.759	.638	1.0020	001	.082	1	17	,779	i	
	6	.869f	.756	.656	.9773	003	.171	1	18	.685	i	
	7	.862¢	.743	.658	.9741	013	.884	1	19	360	į	
	8	.853ª	,728	.657	.9753	015	1,047	1 1	20	320	Ĺ	
	ا ها	940	706	641	0907	ໂ ດາາ ໄ	1.502	1 1	21	222	i	

- 2 Productors: (Constant), CAUSE 12, CAUSE 5, CAUSE 9, CAUSE 6, CAUSE 3, CAUSE 7, CAUSE 2, CAUSE 10, CAUSE 8, CAUSE 11, CAUSE 1, CAUSE 4
- b. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_1, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- c. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- 4. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_2, CAUSE_10, CAUSE_6, CAUSE_11, CAUSE_1
- e. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1
- f. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11
- g. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_2, CAUSE_10, CAUSE_8
- h. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_2, CAUSE_10, CAUSE_8
 i. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_8
- i Dependent Variable: SCP3

٨	40	٧	٨

Model		Sum of Squares	_d[Mean Square	_ F	Sig
	Regression	50,648	12	4.221	3.187	.028
	Residual	15.892	12	1.324	ì	
	Tetal	66.540	24	!!		
2	Regression	50.624	11	4.602	3.759	.013
	Residual	15.916	13	1.224	1	
	Total	66.540	24	ļ l		
3	Regression	50.584	10	5.058	4.438	.006
	Residual	15.956	l4	1.140	Į.	
	Total	66,540	24	i i	J	
4	Regression	50,562	9	5.618	5.274	.002
	Residual	15,978	15	1.063	ľ	
	Total	66,540	24		Į.	
5	Regression	50.476	8	6.309	6.284	.001
	Residual	16.064	16	1.004	- 1	
	Total	66.540	24			
6	Regression	50.304	7	7.186	7.524	
	Residua	16.236	17	.955		
	Total	66,540	24	1 " 1	1	
7	Regression	49,460	- 6	8.243	8.687	.000
	Residual	17.080	18	.949		
	Total	66.540	24			
8	Regression	48.466	. 5	9.693	10.190	.000
	Residual	18,074	19	.951	i i	
	Total	66.540	24			<u>:</u>
9	Regression	46.951	4	11.738	11.984	.000
	Residual	19.589	20	.979	1	
	Total	66,540	24	1	- 1	

- a. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_7, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_14, CAUSE_4
- b. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- c. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- d. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1
- e. Predictors: (Constant), CAUSE 12, CAUSE 5, CAUSE 9, CAUSE 2, CAUSE 10, CAUSE 8, CAUSE 11, CAUSE 1
- f. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11
- g. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_2, CAUSE_10, CAUSE_8
- h. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_2, CAUSE_10, CAUSE_8
- i. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_8

 j. Dependent Variable: SCP3

Coefficients

Collinearity Statistics
Tolerance VIF

10.863

2.866

2.222

4.012

4.822

4.259

6.797 4.194

10.942

10.653

2.670 3.147

4.341

4.043

6.516

3.792

2.743

2.448

2.946 4.280 4.030

6.366 3.783

2,454

2,220

2.881 3.254

3.283 1.684

Tolerance

092

.149 .450

.249

207

.235

.091

.094

375 318

.230

.153

365

.409 139 234

.248 .157

408

Collinearity Statistics

.502 478

416

604

.603 .478 .426

VIF

2.450 1.991

2.091

2.406

1.654

1.658 2.091

2.345 1.393

(Constant)

CAUSE_

CAUSE_2

CAUSE_S

CAUSE_6

CAUSE_8

CAUSE_9

CAUSE_10

CAUSE 11

CAUSE_12 (Constant) CAUSE_I

CAUSE 2

CAUSE 5

CAUSE_8 CAUSE_9

CAUSE_10

CAUSE_11

CAUSE 12

(Constant) CAUSE_2

CAUSE_5

CAUSE_8

CAUSE_9 CAUSE_10

CAUSE_11

CAUSE_12 (Constant) CAUSE_1

CAUSE_S

CAUSE_8

CAUSE 10 CAUSE 12

484

(Constant)

CAUSE_2

CAUSE_S

CAUSE_8

CAUSE_10

CAUSE_12

(Constant)

CAUSE_2

CAUSE_8

CAUSE_10

CAUSE 12

a. Dependent Variable: SCP3

Model

.222 .003 .051

,033

.007 .007 .003

1.782

1.262 3.375 -2.080

2,300 .863 2,994

3.323 -1.876 1.932

95% Confidence Interval for B

Lower Board | Urber Bound | Zero-order

-1.631 | 2.073 |

.103 .200 .628

.022

-.991

.108

.196

- 597

-552 -416 -854

.002

.032

Standardized Coefficients

Beta

.213 .584 .386 .354

.468

.583 -349 -277

Unstandardized Coefficients

.221 .254

157

527 -313

249

.700 .356 .527 -.283

Collinearity Statistics
Tolerance VIF

11.893

14.614

1.532

13.197

5.056

3.070 2.561 4.342 6.328 4.569

10.874

4.827 11.357

13.825

3.172 12.903 4.280

2.660 4.300

5.194

4.569

10.315

4.675

11.183

13.619

9.841 4.243

2.658 4.027

5.110

4.325 10.315

Tolerance

.068

233

.198

.326 .390 .230 .158 .219

.092

.072 .315 .078 .234 .376 .233

.193

.219 .097

072

.102 .236 .376 .248 .196 .231

CAUSE_I

CAUSE_3

CAUSE_4

CAUSE_S

CAUSE_6

CAUSE_7

CAUSE_8

CAUSE_9

CAUSE 10

CAUSE_11

CAUSE_12

CAUSE_I

CAUSE_1

CAUSE 3

CAUSE 4 CAUSE_S CAUSE_6

CAUSE 8 CAUSE 9

CAUSE_10

CAUSE_11

CAUSE 12

(Constant) CAUSE_1

CAUSE_2

CAUSE_4

CAUSE_5 CAUSE_6

CAUSE_8 CAUSE_9

CAUSE_II

CAUSE 2

CAUSE 5

CAUSE_8

CAUSE 10

CAUSE 12

(Coestant)

CAUSE_2

CAUSE_8

CAUSE_10

Std. Error

.885 .142

.124

.156 .150 .108

.811 .119

.159

.151

.278 .612 .431 .467	.151 .404 -249 _275
.556 .596 .387	363 ,400 -228 234
	ABA

Pet

.213

Correlations

Partial

378

.603 .347 .707 .440

595

.603 .707 .440 .595

Analy (early	
Ž.	
ę	
Ç	
Ş	

Jy Ste	
ę	
£	
á	
ų,	

뀵	
-	
9	
Ò	
•	
2	
ч	
ųΣ	

ũ.	
Ş	
Ģ	
ŝ	
ř	

Ş	
ů	
ŝ	
7	

-
\sim
-
- *
-4
ų.
- 2

Ŕ
7
Š

Q
۲,
8

Š

g	

S

	ç

		۰	

Coefficients

SPSS regression printouts for SCP4 analysis

Corre	

		CATIONIA	Carionia	CALIFERA
Pearson Correlation	SCP4	CAUSE10	CAUSELL .345	CAUSE12
FEMALES CONTESSAOR	CAUSE	.203	354	.190
	CAUSE2		397	.139
	CAUSE3	.351		
	CAUSE4	.334	.356	.189
	CAUSES	.478	.431	.159
	CAUSES CAUSES	.432	324	.144
		.287	.288	.294
	CAUSE7	.276	.487	.261
	CAUSES	.448	.644	.405
	CAUSE9	.412	.636	.348
	CAUSE10	1.000	.582	.393
	CAUSELL	.582	1,000	.457
	CAUSE12		457	1.000
Sig. (1-tailed)	SCP4	.000	.000	.004
	CAUSEL	.000	.000	.000
	CAUSE2	.000	.000	.025
	CAUSE3	900	.000	.004
	CAUSE4	.000	.000	.013
	CAUSES	.000	.000	.022
	CAUSE6	.000	.000	.000
	CAUSE7	.000	.000	.000
1	CAUSEB	.000	.000	.000.
	CAUSE9	.000	.000	.000
	CAUSE10		.000	.000
	CAUSELL	.000		.000
l	CAUSE12	.000_	.000	
N	SCP4	197	197	197
	CAUSEI	197	197	197
	CAUSE2	197	197	197
	CAUSE3	197	197	197
	CAUSE4	197	197	197
	CAUSES	197	197	197
	CAUSE6	197	197	197
	CAUSE7	197	197	197
	CAUSES	197	197	197
	CAUSE9	197	197	197
	CAUSE10	197	197	197
	CAUSEII	197	197	197
	CAUSE12			197

Variables Entered/Removed

rations Electorically and									
Model	Variables Entered	Variables Removed	Method						
	CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE6, CAUSE7, CAUSE3, CAUSE8, CAUSE8, CAUSE11, CAUSE11, CAUSE4	,	Enter						
2		CAUSE4	Backward (criterion: Probability of F-to-remove >= .100).						
3	,	CAUSEI	Backward (criterion: Probability of F-to-remove >= ,100).						
		CAUSE8	Backward (criterion: Probability of F-to-remove >= .100).						
5	· I	CAUSEIO	Backward (criterion: Probability of F-to-remove >= 100).						
6		CAUSE12	Backward (criterion: Probability of F-to-remove >= 100).						

Descriptive Statistics

	Mean	Std. Deviation	N
SCP4	5.719	1.5069	197
CAUSE!	6.127	1.9895	197
CAUSE2	5.561	1.9882	197
CAUSE3	5.660	1.9990	197
CAUSE4	5.652	2.0227	197
CAUSES	5.510	1.9961	197
CAUSE6	5.117	1.9382	197
CAUSE?	5.272	2.0225	197
CAUSE8	6.170	1.9180	197
CAUSE9	6.297	2,1776	197
CAUSEIO	5.939	1.7667	197
CAUSELL	5.338	2.0087	197
CAUSE12_	5.599	1.9637	197

					Corre	lations					
		SCP4	CAUSEL	CAUSE2	CAUSE3	CAUSEA	CAUSES	CAUSE6	CAUSE7	CAUSES	CAUSE9
Pearson Correlation	SCP4	1.000	.291	.309	.319	.3]4	.283	.213 1	.358	330	.350
	CAUSE	.291	1.000	.758	.558	.554	.537	.500	.399	.465	.414
	CAUSE2	.309	.758	1.000	.624	.693	583	.466	.419	.439	.337
	CAUSE3	.339	.558	.624	1.000	.641	.583	.468 .	.469	.372	365
	CAUSE4	.314	.554	.693	.641	1.000	.732	.453	.425	.383	.306
!	CAUSES	.283	.537	.583	.583	.732	1.000	.554	.314	368	.225
	CAUSE6	.213	.500	.466	.468	.453	.554	1.000	501	.442	.361
i	CAUSE7	.358	.399	.419	.469	.425	.314	.501	1.000	.566	.472
	CAUSE8 1	330	.465	.439	.372	.383	.368	.442	.566	1.000	.634
	CAUSE9	.350	.414	.337	.365	.306	.225	.361	.472	.634	1.000
	CAUSE10	.265	.307	.351	.334	.478	.432	.287	.276	.448	.412
	CAUSE!!	.345	354	.397	356	.431	.324	.288	.487 .	.544	.636
l .	CAUSE12	.190	.254	.139	.189	.159	.144	.294	.261	.405	≥348 ≥000
Sig. (1-tailed)	SCP4		.000	.000	.000	.000	.000	.001	.000	.000	2000
	CAUSEI	.000	,	.000	,000	.000	.000	.000	.000	.000	-3000 2000
!	CAUSE2	.000	.000		,000	.000	.000	.000	,000	.000	2000
\	CAUSE3	.000	.000	.000		.000	i 000.	.000	.000	.000	200 2001 2001 2000 2000 4000
	CAUSE4	.000	.000	.000	.000		.000	.000	.000 [.000	- 2000
	CAUSE5	.000	.000	.000	.000	.000	1	.000	.000	.000	<u>=</u> 001
	CAUSE6	100.	.000	.000	.000	.000	.000	انب	.000	.000. 000.	2000
1	CAUSE7	.000	.000	.000	.000	.000	.000	.000	ا نید	.000	300
	CAUSE8	.000	.000	.000	.000	.000	.000	.000	.000	.000	
ł	CAUSE9	.000	.000	.000	.000	.000	.001	.000	.000		\$ 5000
	CAUSE10	.000	.000	.000	,000	.000	.000	.000	.000	.000	.000
\	CAUSE11	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	CAUSE12	.004		.025	.004	.013	.022	000			197
N	SCP4	197	197	197	197	197	197	197	197	197	197
	CAUSEI	197	197	197	197	197	197	197	197	197	197
}	CAUSEZ	197	197	197	197	197	197	197	197	197	197
i	CAUSE3	197	197	197	197	197	197	197		197	197
i	CAUSE4	197	197	197	197	197	197	197	197		
	CAUSE5	197	197	197	197	197	197	197	197	197	197 197
1	CAUSE6	197	197	197	197	197	197	197			197
	CAUSE7	[197	197	197	197	197	197	197	197	197 197	197
1	CAUSES	197	197	197	197	197	197	197	197 197	197	197
	CAUSE9	197	197	197	197	197	197	197	197 I	197	197
1	CAUSEIO	197	197	197	197	197	197	197	1 197	141	197

4	Regression	97.550	9 (10.839	5.832	.000
	Residual	347.530	187	1.858		
	Total	445.031	196	""		
5	Regression	97.369	- 6	12.171	6.581	.000*
	Residual	347.711	188	1.850		
	Total	445.081	196	1		
5	Regression	96.675	7	13.811	7.492	.000
	Residual	348.406	189	1.843	i	
	Total	445.081	196			
,	Regression	96.033	6	16,006	8.712	.000
	Residual	349.047	190]	1.837)	
	Total	445.081	196		1	
3	Regression	94.276	5	18.855	10.266	.000
	Residual	350.805	191	1.837		
	Total	445.081	196			
,	Regression	90.933	4	22.733	12.325	.000
	Residual	354.147	192	1.845	- 1	
	Total	445.081	196			
IÓ.	Regression	87.491	3	29.164	15.740	.000
	Residual	357.589	193	1.853		
	Total	445,081	196			

- * Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE9, CAUSE6, CAUSE7, CAUSE3, CAUSE5, CAUSE9, CAUSE11, CAUSE4, CAUSE4
- b. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE6, CAUSE7, CAUSE3, CAUSE8, CAUSE8, CAUSE11, CAUSE1
- c. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE3, CAUSE10, CAUSE6, CAUSE3, CAUSE3, CAUSE5, CAUSE5, CAUSE11
- d. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE6, CAUSE7, CAUSE3, CAUSES, CAUSE11
- c. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE6, CAUSE7, CAUSE3, CAUSE5, CAUSE11
- f. Predictors: (Constant), CAUSE2, CAUSE9, CAUSE6, CAUSE7, CAUSE3, CAUSE5, CAUSE11
- B. Predictors; (Constant), CAUSE9, CAUSE6, CAUSE7, CAUSE3, CAUSE5, CAUSE11
- h Predictors: (Constant), CAUSE9, CAUSE6, CAUSE7, CAUSE3, CAUSE5
- i. Predictors: (Constant), CAUSE9, CAUSE7, CAUSE3, CAUSE5
- J. Predictors: (Constant), CAUSE9, CAUSE7, CAUSE5
- k. Dependent Variable: SCP4

487

Coefficients*

		Unsundardize	d Confficients	Standardized Coefficients			95% Confidenc	- Louisel (no D		Comelations	
Model		B B	Sid, Error	Beta	\ .	Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part
I VIOLES	(Constant)	3.022	.451	Deta	6.706	JOU	2.133	3.911	Zero-order	Fartial	rut_
-	CAUSEI	5.056E-03	.083	.007	.061	.951	158	.168	.291	.005	.004
	CAUSE2	4.145E-02	091	.055	A55	.650	138	.221	.309	.034	.030
	CAUSE3	7.881E-02	.072	.105	1,091	277	-064	221	.339	.090	.071
ļ	CAUSE4	1.839E-03	.038	002	021	.983	- 175	.171	.314	002	-001
Ì	CAUSES	9.485E-02	.083	.126	1,146	.253	068	.258	.283	094	.075
	CAUSE6	-9.336E-02	.071	- 120	-1,317	189	-233	.046	213	097	086
	CAUSE7	. 138	.068	.185	2.038	.043	.004	.271	.358	.149	.133
	CAUSE8	4.899E-03	.080	.006	.061	.951	153	163	.330	.004	.004
	CAUSE9	.110	.066	.159	1,656	099	021	,241	.350	.121	.108
Ì	CAUSEIO	2.332E-02	.075	.027	.310	.757	125	.172	.265	.023	020-
	CAUSELL	1.660E-02	.080	.049	.456	.649	122	.195	.345	034	.030=
	CAUSE12	3.051E-02	.061	.040	.504	.615	039	.150	.190	.037	.020 ₃ .030= .033
2	(Constant)	3.022	.449		6.724	.000	2.135	3,909			.004 .031
	CAUSEL	5.133E-03	.082	.007	.062	950	157	167	.291	.005	.004≟
	CAUSE2	4.034E-02	.086	.054	.474	.636	129	.211	.309	.035	.0315
	CAUSE3	7.852E-02	.071	.104	1.110	.268	061	.218	.339	.081	.072
	CAUSES	9.407E-02	.074	.125	1.277	.203	051	.239	.283	.093	.083
	CAUSE6	9.327E-02	.071	120	-1.322	.188	232	.046	.213	097	.072 .083 086
	CAUSE7	.138	.067	.185	2.062	.041	.006	.269	.358	.₹50 أ	
	CAUSES	5.072E-03	.080	.006	.064	.949	152	.162	.330	.005	.108
	CAUSE9	.110	.066	.159	1.561	.098	021	.241	.350	.121	.1085
	CAUSEID	2.303E-02	.074	.027	.312	.756	123	.169	.265	.023	.020
	CAUSEII	3.644E-02	.080	.049	.457	.648	121	.194	.345	.034	.030
	CAUSE12	3.057E-02	060_	.040	.507	613	069		190	037	033
3	(Constant)	3.025	.446		6.786	.000	2.145	3.904			
	CAUSE2	4.396E-02	.070	.058	.628	.531	094	.182	.309	.046	.041
	CAUSE3	7.875E-02	.070	.104	1.118	.265	060	.218	.339	.082	.072
	CAUSES	9.462B-02	.073	.125	1.297	.196	049	.238	.283	.095	.084
ł	CAUSE6	-9 289E-02	.070	119	·1.325	.187	231	.045	.213	097	056
ĺ	CAUSE7	.138	.067	.185	2.067	.040	.006	.269	.358	.150	.134
ļ	CAUSES	\$.469E-03	.079	.007	.069	.945	151	.162	.330	.005	.004
)	CAUSE9	111	.065	.160	1.708	.089	017	.239	.350	.124	.111
ĺ	CAUSE10	2.268E-02	.073	.027	.309	.758	122	.168	.265	.023	.020
	CAUSELL	3.583E-02	.079	.048	.454	.650	120	.191	.345	.033	.029
L	CAUSE12	3.121E-02	.059	041	526	.600	- 1186	148	190	039	_034

		100.00
,	CAUSE2	Backward (criterion: Probability of F-to-remove >= .100).
8	CAUSEII	Backward (criterion: Probability of F-to-remove >= .100).
9	CAUSE6	Backward (criterion: Probability of F-to-remove >= .100).
10	CAUSE3	Backward (criterion: Probability of F-to-remove

- All requested variables entered
- b. Dependent Variable: SCP4

Model Summary

l	Į			, ,	Change Statistics				
Model	R_	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
	.468	.219	,168	1.3743	.219	4.305	12	184	.00
2	.468 ^b	,219	.173	1.3706	.000	.000	1	186	.98
3	468°	.219	.177	1.3669	.000	.004	1	187	.95
4 5	.468 ^d	219	.182	1.3632	.000.	.005	i I	188	.94
;	468°	.219	.186	1,3600	.000	.098		189	.75
, [.466 ^f	217	.188	1.3577	002	.375	i l	190	.54
1	465	.216	.191	1,3554	001	.348	1	191	.55
3 I	.460h	.212	.191	1.3552	004	.957	1 1	192	.32
	452 ⁱ	204	.188	1.3581	008	1.820	i 1	193	.17
ıa l	443	197	184	1 3612	- 008	1.866	; [194	

- 4 Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE6, CAUSE7, CAUSE3, CAUSE3, CAUSE8, CAUSE11, CAUSE11, CAUSE4
- b. Prodictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE6, CAUSE7, CAUSE3, CAUSE5, CAUSE8, CAUSE11, CAUSE1
- c. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE6, CAUSE7, CAUSE3, CAUSE5, CAUSE8, CAUSE11
- d. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE6, CAUSE7, CAUSE3, CAUSE5, CAUSE11
- c. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE6, CAUSE7, CAUSE3, CAUSE5, CAUSE11
- f. Predictors: (Constant), CAUSE2, CAUSE9, CAUSE6, CAUSE7, CAUSE3, CAUSE5. CAUSE11
- g. Predictors: (Constant), CAUSE9, CAUSE6, CAUSE7, CAUSE3, CAUSE5, CAUSE11
- h. Predictors: (Constant), CAUSE9, CAUSE6, CAUSE7, CAUSE3, CAUSE5
- i. Predictors: (Constant), CAUSE9, CAUSE7, CAUSE3, CAUSES
- j. Predictors: (Constant), CAUSE9, CAUSE7, CAUSES
- k. Dependent Varjable: SCP4

ANOVA¹

Model		Sum of Squares	df	Mean Square	El	Siz
T	Regression	97.567	12	8.131	4.305	.0004
	Residual	347.513	184	1.889	Į.	
	Total	445.081	196	ļ ļ	- 1	
2	Regression	97.567		8.970	4.722	.0000
	Residual	347.514	185	1.878		
	Total	445.081	196			
3	Regression	97.559	10	9.756	5.222	-000°
	Residual	347.521	186	1.868	1	
	Total	445.001	104	1		

-		Collineant	v Statistica
Model		Tolerance	VIF
Tervici	(Constant)	FAILTHING	-11
-	CAUSEI	.357	2.801
	CAUSE2	.294	3.403
	CAUSES	.462	2.163
	CAUSE4	.307	3.258
	CAUSES	.353	1.833
	CAUSE6	311	1.958
	CAUSE7	.515	1.942
	CAUSES	407	2.159
	CAUSES	.460	2.176
	CAUSEIO	345	1.836
	CAUSEII	313	2,700
	CAUSE12	.601	1.469
7	(Constant)		1,407
•	CAUSE1	.358	2.796
	CAUSE2	.327	3.058
	CAUSE3	.480	2.085
	CAUSES	443	2.256
	CAUSE6	.513	1.950
	CAUSE?	.526	1.901
	CAUSES	411	2,433
	CAUSE9	.460	2.175
	CAUSEIO	363	1,778
	CAUSELL	.374	2,674
	CAUSE12	.682	1.466
	(Constant)		
	CAUSE2	.493	2.030
	CAUSES	.481	2.079
	CAUSES	.450	2.223
	CAUSE6	.517	1.936
	CAUSE7	.526	1.900
	CAUSE8	.414	2.418
	CAUSE9	.477	2.098
	CAUSEIO	.366	1.767
	CAUSELI	.380	2.634

- 488 -

Coefficients*

,			
		Cothnearin	Statistics
Model		Tolerance	VIF
4	(Constant)		
	CAUSE2	.500	1.998
	CAUSE3	.487	2.053
	CAUSES	.453	2.206
	CAUSE6	.520	1.924
	CAUSE7	.561	1.782
	CAUSE9	.527	1.897
	CAUSEIO	.567	1.765
	CAUSELL	.400	2.501
	CAUSE12	.714	1.401
5	(Constant)		
	CAUSE2	.501	1.998
	CAUSE3	.487	2.053
	CAUSES	.487	2.055
	CAUSE6	.521	1.921
	CAUSE7	.565	1.770
	CAUSE9	.530	1.637
	CAUSELL	.452	2.213
	CAUSE12		1.351
5	(Constant)	[l	
	CAUSE2	.506	1.974
	CAUSE3	.488	2.049
	CAUSES	.489	2.043
	CAUSE6	.547	1.827
	CAUSE?	.566	1.767
	CAUSE9	.531	1.885
-	CAUSEII	.513	1.950
7	(Constant)		
	CAUSE3	.553	1.808
	CAUSE5	.527	1.897
	CAUSE6	.551	1.815
	CAUSE7	_569 [1.758
	CAUSE9	.531	1.884
	CAUSELL		1.920

		Unstandardize	4 CMinimus	Standardized Coefficients	Ϊ				· ·		
Model		B B	Sid, Error	Beta	1 .	Sig.	95% Confidence Lower Bound	Upper Bound	Zero-order	Conclutions Partial	
4	(Constant)	3.029	.441	7,12	6.862	.000	2.138	3.899	Zrio-Oluci	FIRTUAL	Put
1	CAUSE2	4.455E-02	.069	.059	.544	521	.092	.181	309	.047	.042
	CAUSES	7.821E-02	.070	.104	1.121	.264	059	.216	339	082	972
	CAUSES	9.507E-02	.072	.126	1312	.191	048	.238	.283	.096	أكفأ
	CAUSE6	-9.251E-02	.070	-119	-1,328	.186	230	.045	.213	097	086
ľ	CAUSE7	.139	.064	.186	2.157	.032	.012	265	.358	.156	.139
l	CAUSES	.112	.062	.162	1.824	.070	.009	234	.350	.132	.118
1	CAUSE10	2.286E-02	.073	.027	.312	.755	122	J67	.265	.023	.020
	CAUSEII	3.705E-02	.077	.049	.483	.629	124	188	345	.035	.031
	CAUSE12	3.173E-01	.059	.041		.589	084	.148	190	.039	اكتقا
5	(Constant)	3.070	420		7,314	.000	2.242	3,898			
1	CAUSE2	4.499E-02	.069	.059	.652	315	091	.181	.309	.047	_nd⊊l
	CAUSE	7.830£-02	.070	.104	1.124	.262	059	.216	.339	.082	.072
1	CAUSES	.101	.070	.134	1.447	.149	- 037	.239	.283	.105	.093
1	CAUSE6	-9.329E-02	.069	120	-1.343	.181	230	.044	.213	.097	087
1	CAUSE7	.137	.064	.184	2.144	.033	.011	.263	.358	.154	.1385∤
ľ	CAUSE9	.114	.061	.164	1.855	.065	007	.235	.350	.134	.120
	CAUSEIL	4.517E-02	.072	.060	.628	.531	097	.187	.345	.046	.0407
6	CAUSE12	3 522E 02	057	.046	.613	51	.078	149	190	.045	.04 p. 1 .07 p. 1 .09 p. 1 .136 p. 1 .120 p. 1 .040 p
٥	(Constant) CAUSE2	3.171 4.043E-02	.385		8.231	000	2.411	1.931			3
	CAUSES			.053	.590	.556	095	.176	.309	.043	.03.4 .07.4
l	CAUSES	8.007E-02 9.773E-02	.069	.106	1.153	.250	057	.217	.339	.084	.07 ()
ì	CAUSE6	-8.386E-02	.068	.129	1.407	.161	039	.235	283	.102	.091
Ī	CAUSE7	-8.3302-02	.064	108 .182	-1.240	.217 .035	217	.050	.213	-,090	080
	CAUSES	.133	.061	.166	2.125 1.880	.062	.010 006	.261	.358	.153	.137
	CAUSEII	6037E-02	.067	.030	.895	.372		.236	.350	.136	.121
7	(Constant)	3.197		.030	8.365	.000	-073 1443	.193	.345	.065	.058
1	CAUSES	9.412E-02	.065	.125	1,445	.150	034	3.951 .223	_339		
	CAUSES	109	.067	.144	1,627	.105	.023	.240	.283	.104	.093
	CAUSE6	-8.05BE-02	.067	101	1.198	.233	-213	.052	213	.117	.105
	CAUSET	.138	.063	.185	2.175	.031	.213	.263	.358	.156	.140
	CAUSE9	.115	.061	.167	1.889	.060	005	.236	350	.136	.121
L	CAUSELL	6.532E-02	067	.097	978	329		.250	345	071	.063

Coefficients

Mode!		Unstandardize B	d Coefficients Sut Error	Standardized Coefficients			95% Confidenc			Crare lations	
1	(Constant)	1.237		Bets		Sig	Lower Bound	Urreer Bound	Zero-order	Purtial	Part
-	CAUSES	9.351E-02	.380		8.520	.000	2.488	3.986			1,743
	CAUSES		.065	.124	1.436	.153	035	.222	.339	ا دەد.	.092
	CAUSE6	.122	.065	.162	1.876	.062	006	.251	.283	.135	.121
		8.985E-02	.067	116	-1.349	.179	- 221	.042	.213	097	
	CAUSE7	.154	.061	.207	2.511	.013	.033	275	.358	.179	087
	CAUSES	.147	052	212	2.841	.005	.045		350		.161
9	(Constant)	3.188	.379		8.412	.000	2.441	3,936		.201	
	CAUSE3	8.903E-02	.065	.118	1.366	.174	040	.218	370	}	
	CAUSES	8.709E-02	.060	.115	1.454	.148	-031		.339	-098	.085
	CAUSE?	.125	.058	.172	2,196	.029	.013	.205	.233	.104	.094
	CAUSE9	.138	.051	200	2.687	.023		.244	.358	.157	.141
10	(Constant)	3.271	.375		8,720	.000	2.531	. 240	350	190	.173
	CAUSES	.129	.052	.171	2,507	.013		4.010			ŧ
	CAUSE?	151	.056	.202	2.684	.008	.028	.231	.283	.178	.162
	CAUSE9		051		2.939	004	.040	.262	.358	.190	.171
					7.9.19			250	350	207	

sis for Ca-SCP4-AR

Joseph Carolina A. Maria

≖
_
4
w
Δ.
=
-
×
7
a
Ω.
7
(n
ř.
-4
~
•
=
-

CAUS CAUS CAUS CAUS CAUS CAUS	SE_2 .374 SE_3 .503 SE_4 .352 SE_5 .457 SE_6 .067	309 1,000 .850 .628 .625 .540	.374 .850 1.000 .622 .759	.503 .628 .622 1.000	352 625 759	.457 .540	.067 .224	.377 .433	.324 .436	.348 .416
CAUS CAUS CAUS CAUS CAUS CAUS	SE_2 .374 SE_3 .503 SE_4 .352 SE_5 .457 SE_6 .067	.850 .628 .625	1.000	.622			.224	.433	436	416
CAUS CAUS CAUS CAUS CAUS CAUS	SE_3 .503 SE_4 .352 SE_5 .457 SE_6 .067	.628 .625	.622		.759					
CAUS CAUS CAUS CAUS	SE_4 352 SE_5 457 SE_6 .067	.625		1.000		.595	.164	.564	30ء ا	543
CAUS CAUS CAUS	SE_5 .457 SE_6 .067		.759		.598	.633	.211	.426	.379	.350
CAUS CAUS	SE_6 .067	.540		.598	1,000	.785	.285	.548	447	549
CAUS			595	.633	.785	1.000	.274	.378	.389	396
		.224	.164	.211	.285	.274	1.000	282	.234	.159
		433	.564	.426	.548	.378	.282	1,000	.694	352
CAUS		.436	.530	379	447	389	234	.594	1,000	.784
CAUS		.416	.543	.350	549	.396	.159	.552	.784	1.000
CAUS	SE_10 .248	.253	.309	.185	359	.327	.086	.193	.664	.694
CAUS	E_11 .235	341	456	.217	400	.340	.044	524	.797	,760
CAUS		.248	.108	092	.088	,168	.099		396	_ 🚖 ,372 .
Sig. (1-lailed) SCP4		.011	.002	.000	.004	.000	.313	.002	008	₩.005
CAUS		1 .	.000	.000	.000	.000	.050	.000	.000	2005 2005 2005 2005 2005 2005 2005 2005
CAUS		.000] .	.000	.000	.000	.116	.000	.000	
CAUS		.000	000 ا	{ .	.000	.000	.061	.001	.002	₹.004
CAUS		.000	.000	.000		.000	.017	.000	.000	
CAUS		.000	.000	.000	.000		.022	.002	.002	.001 ∮
CAUS		.050	.116	.061	.017	.022		.019	.043	€123 Q000
CAUS		.000	\ .000	.001	.000	.002	.019		.000	i ∺o∞i
CAUS		.000	.000	.002	.000	.002	.043	.000		1 1±.000 i
CAUS		.001	.000	.004	.000	.001	.123	.000	.000	7
CAUS		.031	.011	.088	,004	.007	.267	.001	.000	
CAUS		.005	.000	056	,001	.006	.375	000	.000	,000
CAUS			.217	251	.263	.110	236	.212		
N SCP4		- 55	55	55	55	55	55	55	55 1	55
CAUS		55	55	55	55	55	55	55	55	55]
CAUS		55	} 55	55	55	55	55	55	55 1	55 \
CAUS		55	55	55	55	33	55	55	55	55 [
CAUS) 55	55	55	55	55	55	55	55	55
CAUS		55	55	SS	55	55	55	55	55	55
CAUS		\$5	55	55	55	55	55	55 1	55	55 [
CAUS		55	55	55	55	55	55	55	55	55
CAUS		55	55	55	55	55	55	55	55	55 }
CAUS		\$ 55	55	55	55	55	55	55	55	55
ÇAUS		} 55	55	55	55	55	55	\$5	55	55
CAUS		55	55	55	55	55	55	55	55	55
CAUS	E 12 55	1 55	55_		55		55	55	55	

- 489 -

Correlations

		CAUSE 10	CAUSE II	CAUSE_12
Pearson Correlation	\$CP4	.248	.285	006
	CAUSE_I	,253	.34]	.248
	CAUSE_2	309	.456	.108
	CAUSE_3	.185	.217	.092
	CAUSE_4	.359	.400	.088
	CAUSE_5	.327	.340	.168
	CAUSE_6	.086	.044	.099
	CAUSE_7	.393	524	.110
	CAUSE_8	.664	.797	.396
	CAUSE_9	.694	.760	.372
	CAUSE_10	1.000	,724	.544
	CAUSE 11	.724	1.000	370
	CAUSE_12	. ,544	370	1.000
Sig. (1-tailed)	SCP4	.034	.017	.481
	CAUSE_1	.031	.005	.034
	CAUSE_2	.011	.000	.217
	CAUSE_3	.089	.056	.251
	CAUSE_4	.004	.00:	.263
	CAUSE	.007	.006	.110
	CAUSE 6	.267	.375	.236
	CAUSE_7	001	} 2000	.212
	CAUSE_	.000	.000	.001
	CAUSE_9	.000	.000	.003
	CAUSE_10	! .	.000	.000
	CAUSE_II	.000	! .	.003
	CAUSE_12	000	.003	
N	SCP4	55	55	55
	CAUSE_1	55	55	55
	CAUSE_2	55	[55	(55
	CAUSE_3	55	J 55	55
	CAUSE 4	55	\$5	55
	CAUSE_5	55	1 55	55
	CAUSE_6	55	55	55
	CAUSE_7	55	55	55
	CAUSE 8	55	55	} 55
	CAUSE 9	55	1 55	55
	CAUSE 10	55	35	55
	CAUSE II	55	35	55

			Comments	200000
1	Model		Tolerance	VJF
- 1	8	(Constant)		
	l	CAUSE3	.553	1.808
		CAUSE5	.552	1.812
	Į.	CAUSE6	.562	1.778
		CAUSE7	.609	1.642
	ļ.	CAUSE9		1,354
	9	(Constant)	i — —	
	1	CAUSE3	.555	1.803
	ľ	CAUSES	.658	1.520
	i i	CAUSE7	.674	1.485
		CAUSE9		<u>[.332</u>
	10	(Constant)		
	l	CAUSE5	.894	1.118
		CAUSE?	.732	1.367
	l	CAUSE9		1,293

a. Dependent Variable: SCP4

Regression

Descriptive Statistics

	Mean	Std. Deviation	N _
SCP4	5.456	1.6110	55
CAUSE_1	5.391	2,2396	55
CAUSE_2	5.464	2.1897	55 (
CAUSE_3	5.400	2.2307	55
CAUSE_4	5.764	2.4092	55
CAUSE_5	5.500	2.2812	55
CAUSE_6	5.655	9.0615	55
CAUSE_7	4,600	2.4578	55
CAUSE_8	5,482	2.2770	55
CAUSE_9	4.809	2.1398	55 .
CAUSE_10	6,400	1,9940	55 \
CAUSE_II	4.891	2.3935	55
CAUSE 12	5 245	2.2564	55 أ

- 1							Change Statustics		
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	an	df2	Sig. F Change
¦ I	.623*	389	.214	1.4232	.389	2.225	12	42	.023
: 1	.623	.359	.232	1.4118	.000	.013	11	4	.909
: 1	.623	.388	.249	1.3961	.000	.028	- 1	45	
1 1	.6234	.388	.265	1.3809	.000	.018	- 11	46	.867
, ,	.619*	.383	.276	13709	005	.347	;		.894
5	.613!	.176	.283	1.3640	007	.525	: 1	47	-559
' 1	.6094	370	292	1,3559	006	.323	: 1	48	.472
3	.594h	.352	.286	1.3609	018			49	.515
9	.5711	.326	.272	1.3748	027	1.368	!	50	.248
10	.553i	.306	265	1.3811		2.024	1	51	.161
ı I	,536k	.287	259		020	1.466	1	52	.232
2	5031			1.3864	019	1.404	1	53	.241
			239	1,4055	034	2.467	1	54	122

- 4. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- b. Productors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_11, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- d. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_6 e. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_6
- 1. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_3, CAUSE_7, CAUSE_5, CAUSE_9, CAUSE_8
- 8. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_3, CAUSE_7, CAUSE_5, CAUSE_9
- h Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_3, CAUSE_5
- i. Predictors: (Constant), CAUSE_4, CAUSE_3, CAUSE_5, CAUSE_9
- J. Predictors: (Constant), CAUSE_3, CAUSE_9.
- k. Predictors: (Constant), CAUSE_3, CAUSE_9
- 1 Predictors: (Constant), CAUSE_3
- m. Dependent Variable: SCP4

ANOVA**

Mode!	Sum of Squares	ď	Mean Square	F	Sig.
l Regression Residual Total	54,481 85,674 140,155	12 47 54	4.540 2.040	2.226	.028*

ANOVA®

Model	- N	Sum of Squares	df	Mean Square	F	Sig
2	Regression	54,455	- 11	4.950	2.484	.016
	Residual	85.701	43	1.993		
	Total	140,155	54	!	- 1	
3	Regression	54.398	10_	5.440	2.791	.009
	Residual	85.757	44	1,949	4/1	.007
	Total	140.155	54			
4	Regression	54.363	9	6.040	3.168	.005
	Residual	85.792	45	1,906	5.305	.002
	Total	140.155	54			
3	Regression	53,702	8	6.713	3.572	.0031
	Residual	86.453	46	1.879		.003
	Total	140.155	54		- 1	
6	Regression	52.716	7	7.531	4,048	.002
	Residual	87,439	47	1.860	1.040	.002
	Total	140.155	34	1		
,	Regression	51.914	6	8,652	4,707	.0014
	Residual	88.242	48	1.838	~., 4 ,]	.001*
	Total	140,155	. , ,		í	
-	Regression	49.400	5	9.880	5.334	.001
	Residual	90.756	49	1.852	7.7.7	301-
	Total	140.155	54		ĺ	
,	Regression	45.650	4	11.413	6.038	.000
	Residual	94.505	50	1.890	0.050	1000
	Total	140.155 (54		- 1	
Q	Regression	42.879	3	14.293	7.494	.000
	Residual	97.276	51 [1.907	7,777	.000
	_Total	140.155	54	.,,,,		
1	Regression	40.200	2	20,100	10.457	.000ž
	Residual	99.955	52	1.922	10.457	.000
	Total	140.155	34	4.744	- 1	
2	Regression	35.459		35,459	17.950	.000
	Residual	104 697	53	1.975	17.550	.000
	Total	TANTISS	- 22	1.51.5	- 1	

- a. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_13, CAUSE_7, CAUSE_11, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_2
- b. Predictors: (Constant), CAUSE 12, CAUSE 4, CAUSE 6, CAUSE 1, CAUSE 7, CAUSE 1, CAUSE 10, CAUSE 5, CAUSE 9, CAUSE 8, CAUSE 2
- c. Predictors: (Constant), CAUSE 12, CAUSE 4, CAUSE 6, CAUSE 3, CAUSE 7, CAUSE 10, CAUSE 5, CAUSE 9, CAUSE 8, CAUSE 8

Variables Entered/Removed

	Variables	Variables	T
Model	Entered	Removed	Method
	CAUSE 12. CAUSE 4. CAUSE 5. CAUSE 11. CAUSE 11. CAUSE 1. CAUSE 1. CAUSE 1. CAUSE 5. CAUSE 5. CAUSE 5. CAUSE 5. CAUSE 6. CAUSE 7. CAUSE 7.		Easer
2		CAUSE_11	Backward (criterion: Probability of P-to-remove >= .100).
3	٠	CAUSE_1	Backward (criterion: Probability of F-to-remove >= .100).
1		CAUSE_2	Backward (criterion: Probability of F-to-remove >= .100).
5		CAUSE_6	Backward (criterion: Probability of F-to-remove >= .100).
6		CAUSE_10	Backward (criterion: Probability of P-to-remove

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
, –		CAUSE_8	Backward (criterion: Probability of F-to-remove >= .(00).
8		CAUSE_7	Backward (criterion: Probability of F-to-remove
9		CAUSE_12	>=.100). Backward (cnterion: Probability of F-to-remove >=.100).
10		CAUSE_4	Backward (criterion: Probability of F-to-remove >= .100),
'		CAUSE_5	Backward (criterion: Probability of E-to-remove
2		CAUSE_9	>= 100). Backward (criterion: Probability of F-to-remove

- a. All requested variables entered.
- b. Dependent Variable: SCP4

						1	YO W. Contridence		L	Correlations	
CHESTEL		<u> </u>	Std. Error	Beta	, t	Sig	Lower Bound	Urver Bound	Zero-erder	Partial	Part
4	(Constant)	3.057	.753		4.058	.000	1,539	4,574			
1	CAUSE_3	.250	.115	.346	2.165	.036	,017	.482	.503	.307	.253
ł	CAUSE_4	283	.156	423	-1.816	.076	-,597	.031	.352	- 261	212
ļ.	CAUSE_5	.313	.149	.443	2.100	.041	.013	.613	.457	.299	.245
ľ	CAUSE_6	-1.313E-02	.022	-,074	589	.559	058	.032	.067	-087	069
ł	CAUSE_1	.169	.121	.258	1.392	.171	075	.413	.377	.203	.162
	CAUSE_8	125	.171	176	729	.469	469	.220	.324	108	085
ł	CAUSE_9	.207	.168	.276	1.238	.222	130	.545	.348	.181	.144
Ī	CAUSE_10	9.894E-02	.152	.122	.651	.518	207	.405	.248	.097	.076
<u></u>	CAUSE_[2	131	.103	-,184	-1.269	.211	-,340	.077	.006	- 186	148
5	(Constant)	3.076	,747		4.116	.000	1,572	4.580			29 -29 -29 24
ì	CAUSE_3	.252	.115	.348	2.197	.033	.021	.482	.503	308	.2
ľ	CAUSE_4	291		435	-1.884	.066	60≀	.020	.352	-,258	.2
ì	CAUSE_5	.306	.148	.434	2.076	.043	.009	.603	457	293	.24
ľ	CAUSE_7	:161	,120	.246	1.346	.185	080	.402	.377	.195	.152
i i	CAUSE_8	134	,169	189	+.791	.433	474	,207	.324	-,116	.092
ł	CAUSE_9	.214	,166	.284	1.288	.204	120	.548	.348	.197	.155 .057 .146
ì	CAUSE_10	.109	,150	.134	.724	.472	193	.410	248	.106	.086
L	CAUSE_12	137_	.102	-192	-1.342	186	343	.069	_006	- 194	150
6	(Constant)	3.319	-665		4.991	.000	1.981	4.655			24 <u>4</u> -21
1	CAUSE_3	.237	.112	J29 1	2.114	.040	.012	.453	.503	.295	.249
ĺ	CAUSE_4	289	.153	432	-1.884	.066	598	.020	352	- 265	-217
	CAUSE_5	.317	.146	.449	2.168	.035	.023	.611	.457	.302	.250
1	CAUSE_7	821.	.119	.242	1.331	.190	081	.398	377	.191	.153
1	CAUSE_8	108	,164	-,153	657	.515	439	.223	.324	095	.076
1	CAUSE_9	.253	.156	.337	1.623		-,06!	567	.348	230 (.187
	CAUSE_12	-,[10_	,094	154	-1.16)	.251	-,299	.080	.006	167	-134
7	(Constant)	3.277	.658		4.981	.000	1.954	4,600			
J	CAUSE_3	.233 .	.111.	.323	2.092	.042	,009	.457	.503	.289	.240
1	CAUSE_4	253	,147	-393	-1.784	.081	559	.033	.352	- 249	204
1	CAUSE_5	.300 (.143	.424	2.097	.04)	.012	.587	457	.290	.240
1	CAUSE_7	.115	.098	.175	1.169	.248	0\$3	.313	.377	.166	.134
l	CAUSE_9	.189	.121	.251	1.565	.124	054	.432	.348	.220	.179
	CAUSE 12	- 124			.) 159	180	- 307	059		193	-156

Coefficients*

		Unstandardize	d Coefficients	Standardized Coefficients		95% Conf		e Interval for B		Correlations	
Model		. в	Sid From	Reta	ι [Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part
8	(Constant)	3,340	846		5.075 j	.000	2.018	4.663			
	CAUSE_3	.257	.110	.355 (2.334	.024	.036	.478	503	.316	.26
	CAUSE_4	-,219	.]4]	328	-1.532	.132	506	.068	.352	214	176
	CAUSE_5	.279	.142	.395	1,958	.056	007	565	A57	.269	.225
	CAUSE_9	.238		.316 }	2.087	.042	.009	.466	.348	286	.240
	CAUSE_12	- 130	.091	t82	-1.423	-161	314	054	006		- 16
9	(Constant)	2.891	583		4.956	.000	1,719	4.063			
	CAUSE_3	.261	.111	.362	2.354	.023	.038	.484	503	.316	.273
	CAUSE_4	-,170 [.140	254	-1.211	.232	-451	.112	.352	169	143
	CAUSE_S	.238	.141	.336	1.688	890.	045	.520	457	.232	.196
	CAUSE_9	.172	.105	228	1.633	.109	039	.382	.348	.225	
10	(Constant)	2,874	.586		4.906	.000	1.698	4.050			
	CAUSE_3	239	.110	.331	2,171	.035	.018	.459	.503	.291	.25
	CAUSE_5	.130	.110	.184	1.185	.241	090	.350	457	.164	.130
	CAUSE_9	.120	.097	.160	1.246	.218	.074	.314	.348	172	148
11	(Constant)	3,052	.368		5.369	.000	1.911	4,192			
	CAUSE_3	.314	090	.434	3.474	.001	.132	.495	.503	.434	.40
	CAUSE_9	.148	.094	.196	1,371	.122	041	.337	348	213	184
12	(Constant)	3.495	.500		6.985	.000	2.491	4.498			202
_	CAUSE 3	. 363		503	4.237			535	501		509

j. Predictors: (Constant), CAUSE_3, CAUSE_3, CAUSE_9 k. Predictors: (Constant), CAUSE_3, CAUSE_9 l. Predictors: (Constant), CAUSE_3

m. Dependent Variable: SCP4

Coefficients

						Coefficients					
		Unstandardizes	Coefficients	Standardized Coefficients			95% Confidence			Correlations	
Mode)		В	Std. Error	Beta		Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part
T	(Constant)	3.050	.798		3.822	.000	1.439	4,660			\
	CAUSE_I	-3.147E-02	.188	-,044	167	.868	411	.348	.309	-,026	020
	CAUSE_2	4.617E-02	.229	.063	.201	.841	416	.509	.374	.031	.024
	CAUSE_3	.254	.131	351	1.931	.060	017	.519	.503	.286	.233
	CAUSE_4	295 (.183	-,441	-1.613	.114	663	.074	.352	242	195
	CAUSE_5	.312	.156	.442	2.005	.051	002	.627	.457	,296	.242
	CAUSE_6	-1.140E-02	.024	064	470	.641	-,060	.038	.067	072	-057
	CAUSE_7	.166	.126	253	1317	.195	088	420	.377	199	.159
	CAUSE_8	139	.197	-,196	704	.485	537	.259	,324	108	085
	CAUSE_9	.198 [.179	264	1.107	.275	-,[63	.560	.348	.(63	.134
	CAUSE_10	9.425E-02	.168	.117	.562	.577	-,244	.433	.248	.026	06-
	CAUSE_II	1.860E-02	.162	.028	.115	.909	-,309	346	.285	810.	.0 <u>0</u>
í	CAUSE_12	124		174	-1.085	284	- 355	.107	.006	165	45
2	(Constant)	3.037	.781	,	3.887	.000	1.462	4.613	'	' . [<u> </u>
	CAUSE_1	-3.130E-02	.186	044	168	,867	406	.343	.309	026	.02 5 .02 5 .234
	CAUSE_2	4.817E-02	.226	.065	213	.832	407	.504	.374	.033	.025
	CAUSE_3	250	.127	.347	1.973	.055	006	.506	.503	.288	.274
	CAUSE_4	2%	.180	-,443	-1.642	.108	- 659	.067	.352	.243	1967
ŀ	CAUSE_5	314	.153	.445	2.055	.046	.006	.623	457	.299	.2414
	CAUSE_6	-1.198E-02	.023	067	-511	.612	059	.035	.067	-,078	.06.
	CAUSE_7) .166 <u>(</u>	.125	.254	1,334	,189	085	.417	.377	,199	.15
	CAUSE_8	130	.178	-,183	729	.470	489	.229	.324	110	.081
}	CAUSE_9	.203	.173	.270	1.177	.246	-,145	.551	.348	.177	.240
	CAUSE_10	.100	.157	.124	638	.527	217	.418	.248	.097	.076
1	CAUSE_12		113	175	-1.130	.273	352	.102	.006	- (67	(32
3	(Constant)	3.039			3.934	.000	1.482	4,596			
i .	CAUSE_2	2.037E-02	.153	.028	.134	.894	- 287	.328	.374	,020 \	.016
	CAUSE_3	.245	.122	340	2.014	.050	,000	.491	.503	.291	.238
ſ	CAUSE 4	294	,178	440	-1.654	.105	653	.064	.352	-242	195
l	CAUSE 5	ا 215 ا	.151	.446	2.081	.043	.010	.620	.457	.299	.245
1	CAUSE 6	-1.263E-02	.023	071	-353	_583	059	.033	.067	083	065
l	CAUSE ?	.168	.123	. 256	1.365	.179	080	.415	.377	.202	.161
}	CAUSE_8	129	.176	183	734	.467	484	.226	.324	110	087
l	CAUSE 9	.206	.170	.274	1.214	.231	-,136	.548	.348	180	.143]
ł	CAUSE 10	1 .102	.155	,126	.657	.515	211	.415	248	098	.077 {
l	CAUSE 12	132	.105	184	-1.257_	215	. 342	.079	.006	186	48

Analysis for Ca-SCP4-MC

1
4
9
Ü
1

(Constant)
CAUSE 3
CAUSE 4
CAUSE 5
CAUSE 9
CAUSE 12
(COnstant)
CAUSE 4
CAUSE 5
CAUSE 9

(Constant)
(CAUSE_3
(CAUSE_5
(CAUSE_9
(COnstant)
(CAUSE_3
(CAUSE_3
(CAUSE_3
(CAUSE_5
(CONSTANT)
(CAUSE_3
(CAUSE_3)

a. Dependent Variable; SCP4

Regression

Descriptive Statistics

Collinearity Statustics
Tolerance VIF

1.754 3.458 3.073 1.730 1.241

1.752 3.253 2.947 1.443

1.703 1.771 1.209 1.140 1.140

.570 .289 .325 .578

.571 .307 .339 .693

.587 .565 827

1.000

Coefficients

	Mean	Sid, Deviation	N
SCP4	5,949	1,4041	
CAUSE_1	6.329	1.6945	117
CAUSE_2	5.368	1,7731	117
CAUSE_3	5,581	1.7665	117
CAUSE_4	5,350	1.6417	117
CAUSE_5	5,261	1.6976	117
CAUSE_6	5.171	1.7034	117
CAUSE_7	5,500	1,7145	117
CAUSE_8	6,444	1.6697	127
CAUSE_9	7,162	1.6646	117
CAUSE_10	5,615	1,5134	117
CAUSE_II	5.551	1.6287	[17
CAUSE_12	5.765	1.7039	117_

	Collinearit	u Statistics
/lode!	Tolerance	VIF
(Constant)	TOICITANCE	
CALISE 1	.213	4,690
CAUSE 2	150	6.668
CAUSE 3	.440	2,272
CAUSE 4	195	5.125
CAUSE 5	.299	3.343
CAUSE 6	.783	1.277
CAUSE 7	394	2,541
CAUSE 8	.187	5.351
CAUSE 9	.257	3.897
CAUSE 10	317	2.964
CAUSE II	250	3,995
CAUSE 12	.568	1,761
(Constant)		
CAUSE	213	4,690
CAUSE_2	151	6,629
CAUSE_3	460	2.173
CAUSE_4	.196	5.106
CAUSE_5	303	3.299
CAUSE_6	.818.	1.223
CAUSE_7	394	2.541
CAUSE_B	.225	4.453
CAUSE_9	.271	3.695
CAUSE_10	.375	2.564
CAUSE_12	.571	1.751
(Constant)	1	l . '
CAUSE_2	.323	3.093
CAUSE_3	489	2.043
CAUSE_4	.197	5.088
CAUSE_5	.303	3.298
CAUSE_6	.841	1.189
CAUSE_7	396	2.527
CAUSE_8	.225	4 451
CAUSE_9	.273	3.657
CAUSE_10	377	2.655
CAUSE 12	647	

Coefficients

		0.5	*
		Collineant	
Model		Tolerance	VIF
14	(Constant)	1	li
	CAUSE_3	-533	1.877
	CAUSE_4	.250	3.995
1	CAUSE_5	.305	3.276
ł	CAUSE_6	,864	1.157
	CAUSE_7	.397	2.516
1	CAUSE_B	.233	4.291
į.	CAUSE_9	.274	3.644
	CAUSE_10	.385	2.5%
Ì	_CAUSE_12	.548	1.544
3	(Constant)	I	
į	CAUSE_3	533	1.876
1	CAUSE_4	.252	3.968
l	CAUSE_5	.307	3.257
Į.	CAUSE_?	.402	2.486
	CAUSE_8	.235	4.257
	CAUSE_9	.276	3.628
Į.	CAUSE_10	.390	2,565
	CAUSE_17		1.529
6	(Constant)		
i .	CAUSE_3	.550	1.520
	CAUSE_4	.252	3.967
	CAUSE_5	,310	3.226
l	CAUSE_7	.403	2,484
Ī	CAUSE_8	.246	4.070
1	CAUSE_9	.309	3.238
-	CAUSE_12	.760	1316
1	(Constitut)		
ľ	CAUSE_3	.551	1.813
ł	CAUSE_4	.271	3.696
i	CAUSE_5	.320	3.122
Ī	CAUSE_7	283	1.715
1	CAUSE_9	310	1,962
	CAUSE 12	203	1.245

Model	Variables Entered	Variables Removed	Method
		CAUSE_I	Backward (criterion: Probability of F-to-remove >= .100).
8		CAUSE_12	Backward (criterion: Probability of F-to-remove >= ,100).
9		CAUSE_3	Backward (criterion: Probability of F-to-remove >= .100).
10		CAUSE_2	Backward (criterion: Probability of F-to-remove
11		CAUSE_10	>= .100). Backward (criterion: Probability of F-to-remove >= (50)

a. All requested variables entered.

Αns	
ysi.	
9	
្ជិ	
Sc	
4	
č	

CAUSE_2 308 .662 1.000 607 561 516 445 355 402 CAUSE_3 226 486 .607 1.000 .524 565 566 500 319 CAUSE_4 367 432 561 624 1.000 5.64 472 420 395	.390 .473 .386 .376
CAUSE 4 367 432 561 624 1.000 644 472 420 395	386
	376
CAUSE_5 .313 .520 .516 .565 .644 1.000 .654 .405 .446	
CAUSE 6 275 496 445 566 472 654 L000 481 417	.464
CAUSE_7 352 329 355 500 420 405 481 1.000 416	.331
CAUSE 8 250 453 402 319 395 446 417 416 1.000 C	.478
CAUSH_9 196 .384 .390 .473 .386 .376 .464 .331 .478	1.000
CAUSE_10 296 .331 265 .394 .487 .492 .348 .229 .339	.502
CAUSE_11 286 288 386 406 495 429 356 418 483	537
CAUSE 12 224 199 112 218 237 238 278 292 350	.289
Sig. (1-tailed) SCP4010 .000 .001 .000 .000 .001 .000 .001 .000 .003	A.017 .000 ¥.000
CAUSE_1 0.00 000 000 000 000 000 000 000 000 0	₹.000
CAUSE 2 .000 .000 .000 .000 .000 .000 .000 .	₹.000
CAUSE_3 .001 .000 .000 . 000000 .000 .000	Ē.000
CAUSE_4 000 000 000 000 000 000 000 000 000 0	≅.000
} .000 000 } .000 000 .000 000 .000 000 .000 .000 .000	7000
CAUSE_6 001 000 000 000 000 000 000 000 000 00	Q.000
CAUSE_7 , .000 , .000 .000 .000 .000 .000 .000 .000	8000
CAUSE 8 000 000 000 000 000 000 000 000 000	₽000
CAUSE 9 217 2000 2000 2000 2000 2000 2000 2000 2000 2000	Ī.,
CAUSE_10 .001 .000 .002 .000 .000 .000 .000 .000 .000 .000	ر پرس پرس
CAUSE_II	7,000
CAUSE 12 008 016 114 009 005 001 001 000 00 N SCP4 117 117 117 117 117 117 117 117 117 11	.001
	117
	117
	117
	117
	117
	117
	117
	117
	117
	117
	117
CAUSE 11 117 117 117 117 117 117 117 117 117	117

Correlations

		CAUSE 10	CAUSE 11	CAUSE_12
Pearson Correlation	SCP4	.296	.286	.224
	CAUSE_I	331	.288	.199
	CAUSE_2	.265	.386	
	CAUSE 3	.394	.406	.218
	CAUSE_4	.487	495	237
	CAUSE 5	.492	.429	.238
	CAUSE_6	.348	.356	.278
	CAUSE_7	229	418	.292
	CAUSE_8	.339	.483	.350
	CAUSE_9	.502	.537	.289
	CAUSE_10	1.000	.506	349
	CAUSE_11	.506	1.000	.392
	CAUSE_12	349	.392	1,000 }
Sig. (1-tailed)	SCP4	.001	.001	.003
	CAUSE_!	.000	.001	.016
	CAUSE_2	.002	.000	114
	CAUSE_3	.000	.000	.009 [
	CAUSE_4	.000	.000	[200.
	CAUSE_5	.000	.000	.00s
	CAUSE_6	.000	.000	.001 (
	CAUSE_7	.006	.000	.00 ⊾
	CAUSE_8	.000	.000	.000
	CAUSE_9	.000	.000	.001
	CAUSE_10	:	.000	.000
	CAUSE_11	.000	:	, .coo
	CAUSE 12	000	000	
N	SCP4	117	117	117
	CAUSE_I	117	117	[117]
	CAUSE_2	117	117	117
	CAUSE_3	117	117	117
	CAUSE_4	117	117	117
	CAUSE_S	117	117	[117]
	CAUSE_6	117	117	117
	CAUSE_7	117	117	LL7
	CAUSE_B	117	117	117
	CAUSE_9	117	117	117
	CAUSE_10	117	117	117 }
	CAUSE_II	117	117	117
	CAUSE 12	L117_	117_	

Analysis for Ca-SCP4-SC

b. Dependent Variable: SCP4

Coefficients*

		Unstandardize	Canthairm	Standardized Coefficients			95% Confidenc	- Samural for B		Correlations	
Mode)		h h	Std. Error	Beta)	Siz.	Lower Bound	Upper Bound	Zero-ordez	Partial	Piet
11000.1	(Constant)	3.139	.681		4,541	.000	1.809	4.509	D-10 0107	12.9-	
	CAUSE_1	-7.816E-02	105	094	.,744	.458	- 286	.130	.214	073	064
	CAUSE 2	.166	.108	209	1,529	.129	-,049	380	.308	.148	,132
	CAUSE_3	-7.503E-02	108	094	.596	.488	.289	.139	.276	068	060
	CAUSE_4	.128	,114	.149	1,121	.265	- 098	.354	.367	.109	.097
	CAUSE_5	1.003E-02			.086	.932	-,221	.241	.313	.008	.007
1	CAUSE_6	3,650E-02	.107	,044	342	.733	175	.248	.275	.033	.030
	CAUSE_7	.184	.091	.224	2,026	.045	.004	J63	.352	.195	.175
	CAUSE_B	1.119E-02	.097	.013	.116	.908	-,181	.203	250	.011	.010
	CAUSE_9	-6.339E-02	.101	075	-,625		254	.138	,196	061	054
	CAUSE_10	.157	.109	.169	1,434	.155	060	.373	,296	.139	.124
	CAUSE_11	-1.388E-03	.105	002	.013	.989	- 210	.207	.286	001	00≯
	CAUSE_12	6.778E-02	.062	.082	,527	410	.095		,224	031	.07.2
2	(Constant)	3.159	.677		4.667	.000	1.817	4.502			. 069 13.6
	CAUSE_1	-7.795E-02	.103	094	-,755	.452	- 283	.127	.214	073	06₽
	CAUSE_2	.165	.107	.209	1.550	.124	-,046	.377	.308	.150	.135
l	CAUSE_3	-7,497E-02	.107	094	-,699	.486	287	.138	.276	068	060
	CAUSE_4	.127	.112	.149	1.136	.259	095	.350	.367	.110	.09
	CAUSE_5	9.959E-03	116	.012	.086	.932	220	.240	,313	.008	.300.
	CAUSE_6	3.661E-02	.106	.044	,345	.730	-,174	.247	.275	,034	.030 .17% .01 0 2
	CAUSE_7	183	.089	.224	2.065	.041	.007	.359	.352	.198	1762
	CAUSE_8	1.098E-02	.095	.013	,116	.908	-,177	.199	.250	.011	.0192
	CAUSE_9	6.373E-02	.098	-076	-,653	-515	-257	.130	.196 .296	064 .J42	056 .126
	CAUSE_10	.156	.106	.168	1.459 .843	.145 .401	.055 091	.227	.224	.012	.072
	(Constant)	6.758E-02		082	4,688	.000	1.822	4,493	:525.	2002	
,	CAUSE 1	-7.705E-02	103	093	-,754	.453	- 280	.126	214	073	064
1	CAUSE_2	.1.1052-02	.106	209	1.585	.121	.044	376	303	.150	.134
	CAUSE 3	7.441E-02	106	094	699	.486	286	.137	276	068	060
i	CAUSE_4	.130	.107	.152	1,224	.224	-031	. 342	.367		.105
1	CAUSE_6	4 039E-02	.096	.049	.421	.675	150	.231	275	.041	.036
	CAUSE_7	.183	.088	224	2.073	.041	000	.358	352	.197	.177
l	CAUSE_8	1.206E-02	.094	.014	.129	.898	. 174	.198	.250	.012	oii (
l	CAUSE 9	6.504E-02	.096	077	618	.499	255	.125	.196	066	058
l	CAUSE_10	129	.03	.171	1.543	.126	045	.362	.296	.148	.132
l	CAUSE 12	6.72IE-02	.080	.082	.844	401			.224	032	.072

Coefficients*

		Unstandardize		Standardized Coefficients			95% Confidenc	e interval for B		Correlations	
Model		l B	Std. Ertor	Beta	<u> </u>	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part
4	(Constant)	3.168	.666		4.758	.000	1.848	4.488			
	CAUSE_1	-7.471E-02	.100	090	-,746	.457	273	.124	.214	072	06
	CAUSE_2	.167	.105	.211	1591	.114	041	.375	308	.152	i.is
	CAUSE_3	-7.702E-02	.104	097	740	.461	283	.129	.276	07	06.
	CAUSE_4	.132	.105	.834	1.252	.213	077	341	.367	.120	.10
	CAUSE_6	4.124E-02	.095	.050	.133	.666	148	.230	.275	.042	20. ا
	CAUSE_7	186	.086	.227	2.158	.033	.015	.356	.352	.204	.18-
	CAUSE_9	-6.182E-02	.092	073	670	.504	245	.121	.196	065	051
	CAUSE_10	.159	.102	.171	1.552	.124	044	.361	.296	.148	,132
	CAUSE_12	6.908E-02	.078			378_	086	224	.224	.085	.07
5	(Constant)	3.149	.662		4.758	.000	1.837	4.461			
	CAUSE_1	-6.513E-02	.097	079	669	.505	- 258	.128	.214	064	.03
	CAUSE_2	.166	.105	.209	1.583	.116	542	.373	.308	ا ادا،	.13
	CAUSE_3	6.763E-02	101	085	667	.506	269	.133	.276	064	-,05
	CAUSE_4	.136	.105	.159	1.298	.197	072	.343	.367	.124	-,0\$ -,0\$ -,0\$ -,114
	CAUSE_7	.193	.084	.236	2,310	.023	.027	.359	_352	.217	19:
	CAUSE_9	-5.486E-02	.090	065	607	.545	- 234	.124	.196	058	.05
	CAUSE_I0	.159	.102	.171	1.557	.122	043	361	.296	.148	.133
	CAUSE_12	7.159B-02	.077	087	.,924	358_	- 082	. 225	.224	.089	.07
6	(Constant)	3.023	.676	_	4.826	.000	1.781	4.265			
	CAUSE_1	6.890E-02	.097	083	-312	.478	261	.123	.214	068	.19 -05 .13 .06 .060
	CAUSE_2	159	,104	.201	1.534	.128	046	.365	308	.145	.136
	CAUSE_3	-7.843E-02	.100	099	788	.432	276	.119	.276	075	.067
	CAUSE_4	.140	.104	.163	1.341	.183 -	067	346	367	.127	,113
	CAUSE_7	189	.083	.231	2.272	.025	.024	.354	.352	.213	.192
	CAUSE_10] .138	,096	.148	1.440	.153	052	.327	.296	.137	,122
	CAUSE_12	6.698E-02	.077	.081	871		085	.219_	.224		.074
7	(Constant)	2.907	.603		4.817	.000	1.711	4.103			
	CAUSE_2	.121	.088	.152	1.366	.175	054	.296	.308	.129	,115
	CAUSE_3	-8.235E-02	.099	104	831	.408	279	.114	.276	.079	- 070
	CAUSE_4	.142	.104	.166	1.370	.173	063	.348	.367	.130	.116
	CAUSE_7	185	.083	.226	2.235	.027	.021	.349	.352	.208	,189
	CAUSE_ID	.127	.094	.137	1.350	.180	060	.314	.296	.128	.124
	CAUSE 12	6.252E-02	076	075	. B19	.415	059		.724	1779	069

Model Summery

l	l.						hanes Statistics		
Model_	_R	R Square	Adjusted R Square	Sad. Error of the Estymate	R Square Change	E Change	eft.	df2	Sig. P Change
1	.474*	.224	.135	1.3061	.224	2.505	12	104	.006
2	.474	.224	.143	1.2999	.000	.000	1	106	.989.
3	.473°	.224	.151	1.2938	.000	.007	1	107	.932
4 1	4734	.224	.159	1.2878	.000	.017	1 [108	.898
5 l	.472*	223	.165	1.2830	001	.187	1.1	109	.666
6 1	.4691	,220	.170	1.2792	003	.368	ı	110	.545
i i	.4651	.216	.174	1,2764	004	.506	1	111	.478
ġ	.4604	212	.176	1.2745	005	.669	1	112	. 415
ā \	.455	207	178	1.2727	005	.682	1	113	.41
ío	,445i	198	177	1.2738	008	1.196	1	114	.27
ii. I	4274	182	.163	1,2810	:016	2.296	1	115	13:

- a. Productors: (Constant), CAUSE_12, CAUSE_12, CAUSE_10, CAUSE_17, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- b. Prodictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- c. Prodictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_1, CAUSE_8, CAUSE_9, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_1 d. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_1, CAUSE_6, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3
- e. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3
- f. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_4, CAUSE_1, CAUSE_3
- g. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_4, CAUSE_3
- h. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_4, CAUSE_3
- i. Predictors: (Constant), CAUSE_1, CAUSE_10, CAUSE_7, CAUSE_4
- j Predictors: (Constant), CAUSE_10, CAUSE_7, CAUSE_4
- k. Predictors: (Constant), CAUSE_7, CAUSE_4
- L Dependent Variable: SCP4

ANOVA¹

Mode		Sum of Squares	đť	Mean Square	F	Sie.
Ī	Regression	51.276	12	4.273	2,505	.006
	Residual	177.417	104	1.706		
	Total	228.692	116	\\.		i
2	Regression	\$1.275	11	4.661	2.759	.004
	Residual	177.417	105	1.690		
	Total	228,692	116	· l .		

ANOVA1

Model		Sum of Squares	df	Mean Square	F	Siz
3	Regression	51.263	10	5.126	3.063	.002
	Residual	177.429	106	1.674	1	
_	Total	_228.692	116			
4	Regression	51.235	9	5.693	3,433	.001
	Residual	177.457	107	1.658		
	Total	228,692	116	! <u>_</u>		
3	Regression	50.925	8	6.366	3,867	.000
	Residual	177.768	108	1.646	1	
	Total	228.692	116	l		
6	Regression	50.319	7	7.188	4.393	.000
	Residual	178,373	109	1.636		
	Total	228.692	116	i l	l	
7	Regression	49.491	6	8.248	5.063	.000
	Residual	179.202	110	1.629		
	Total _	228.692	116	<u> </u>		
8	Regression	48.401	· - s	9.680	5,960	.000
	Residual	180.291	211	1.624		
	Total	228.692	116	!i.	1	
9	Regression	47.293	4	13.823	7.300	.000
	Residual	181,400	112	1.620	ľ	
	Total	_228.692	. 116	<u> </u>		
10	Regression	45.355	3	15.118	9,318	000
	Residual	183,337	113	1.622	J	
	Total	228.692	116	l		
11	Regression	41.630	2	20.815	12.685	.000
	Residual	187.062	114	1.641	ì	
	Total	228.692	116	1 . 1.	1	

- Predictors: (Consum), CAUSE_12, CAUSE_2 CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_3
- b. Predictors: (Constant), CAUSE 12, CAUSE 2, CAUSE 10, CAUSE 1, CAUSE 8, CAUSE 6, CAUSE 9, CAUSE 4, CAUSE 1, CAUSE 3, CAUSE 5
- c. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_1, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3
- d. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_6, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3
- c. Predictors: (Constitut), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3
- f. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_4, CAUSE_1, CAUSE_3 8. Predictors: (Constant), CAUSE 12, CAUSE 2, CAUSE 10, CAUSE 7, CAUSE 4, CAUSE 3
- h. Predictors: (Constant), CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_4, CAUSE_3

i. Predictors: (Constant). CAUSE 2. CAUSE 10 CAUSE 7 CAUSE 4

	LPIVE:		1 10jerance	VIF
	4	(Constant)		
	l	CAUSE_I	.496	2.015
	Į.	CAUSE_2	.412	2.427
	i	CAUSE_3	.423	2,363
		CAUSE_4	.478	2.093
	l	CAUSE_6	. 543	1.843
	l	CAUSE_7	.658	1.521
		CAUSE_9	507	1.648
	l	CAUSE_10	.597	1.675
	l	CAUSE_12	.810	1.235
	5	(Constant)		
	l	CAUSE_I	.522	1.916
)	CAUSE_2	.413	2,424
		CAUSE_3	.442	2.260
	i	CAUSE_4	.481	2.078
	ì	CAUSE_7	.688	1.453
	i .	CAUSE_9	.626	1.598
	i	CAUSE_10	.597	1.675
	L	_CAUSE_17	8l4	_1.228
	5	(Constant)		
	l	CAUSE_1	.524	1.908
	1	CAUSE_2	.417	2.399
		CAUSE_3	.457	2,191
	ſ	CAUSE_4	.483	2 071
	,	CAUSE_7	.694	1.442
	j .	CAUSE_10	.675	1.482
		CAUSE_12	.822	1.216
	7	(Constant)		
	!	CAUSE_2	.572	1.748
	l	CAUSE_3	458	2.184
	i i	CAUSE_4	.434	2.068
	l	CAUSE_7	.697	1.435
ı	ĺ	CAUSE 10	.691	1.447

- 495

Coefficients*

		Collinearity S	tatistics
Model		Tolerance	VJF
В.	(Constant)		
	CAUSE_2	574	1.742
	CAUSE_3	.458	2.184
	CAUSE_4	484	2.067
!	CAUSE_7	.730	1.370
	CAUSE_10	746	1.340
Ÿ.	(Constant)		
	CAUSE_2	.668	1497
	CAUSE_4	528	1.895
	CAUSE_7	.802	1.247
	CAUSE_10	762	1.312
10	(Constant)		
	CAUSE_4	.662	1.509
	CAUSE_7	.823	1.216
	CAUSE_10	.762	1.312
11	(Constant)		
	CAUSE_4	.823	1.215
	CAUSE 7	823	1.215

a. Dependent Variable; SCP4

101 C= 000 C 1 C 000

Analysis for Ca-SCP4-St

			THE REAL PROPERTY.								
Mode.		_ Р	Std. Error	Beta		57g.	Lower Bound	Upper Bound	Zero-order	Partia	Pect
8	(Constant)	3.080	.564		5,460	.000	1.962	4,198	[
	CAUSE_2	.116	.088	.147	1.322	.189	058	.291	_308	.125	.111
	CAUSE_3	-8.177E-02	.099	103	.825	401	278	,114	.276	078	070
	CAUSE_4	.144	101	.168	1.391	.167	051	349	.367	.131	.117
	CAUSE_7	.200	180.	244	2.470	.015	.039	.360	.352	.228	.208
1	CAUSE_10	,148	_,091		1.636	.105	-,03)		296	153	138
9	(Constant)	3.073	.563		5,457	.000	1.957	4.189			
	CAUSE_2	8.920E-02	.082	.113	1.094	.276	072	.251	.308	.103	.092
	CAUSE_4	.119	.099	.140	1.205	.231	077	.316	367	.113	.101
	CAUSE_7	.180	.077	.219	2.333	.021	.027	.332	.352	.215	196
	CAUSE_10	.137_	.089	.148 (1,534	.128	040	314	.296	. 143	129
10	(Constant)	3.226	546		5.906	.000	2144	4.308			
	CAUSE_4	.168	.089	.197	1.901	.060	007	,344	.367	.176	162
	CAUSE 7	.193	.076	.236	2.537	.013	L 042	344	352	.232	.213
	CAUSE_10	136	.089	.146	1.515	.133	-,042	.313	.296		.21 -7 12 4
11	(Constant)	3.650	472		7,742	.000	2.716	4.584	_		20 20 218
	CAUSE_4	.223	.080	266	2,849	.005	.069	.386	.367	.258	24
ł .	CAUSE_7	. 197	_076		2.571	011		345	352	234	2182
											SC.
											7
											Š
											C

Coefficients

Analysis for Ca-SCP4-SC

		Collinearit	y Statistics
Model		Tolerance	VIF
1	(Constant)		
	CAUSE_1	.465	2.152
	CAUSE_2	.399	2.507
	CAUSE_3	,406	2.466
	CAUSE_4	.421	2.378
	CAUSE_5	.376	2.657
	CAUSE_6	,444	2.250
	CAUSE_7	.610	1.639
	CAUSE_8	.564	1.774
	CAUSE_9	.516	1.938 (
	CAUSE_10	.538	1.859
	CAUSE_!1	.502	1.991
	CAUSE_12	754	1.326
2	(Constant)	[1 1
	CAUSE_I	.476	2.102
	CAUSE_2	407	2.456
	CAUSE_3	,406	2.461
	CAUSE_4	.429	2.330
	CAUSE_5	.377	2.652
	CAUSE_6	A47	2 237
	CAUSE_7	.629	1.591
	CAUSE_8	.579	1.728
	CAUSE_9	.552	1.813
	CAUSE_10	.561	1.781
	CAUSE_12	.781	1.281
3	(Constant)		(.]
	CAUSE_1	.481	2.080
	CAUSE_2	.409	2.448
	CAUSE_3	.408	2.452
	CAUSE_4	,472	2.120
	CAUSE_6	,540	1.851
	CAUSE_7	.629	1.590
	CAUSE_8	.589	1.698
	CAUSE_9	_565	1.769
	CAUSE_10	.597	1.675
	CAUSE 12		L

è
ব্ৰ
Ħ
3
Ç
Š
7

		CAUSE 10		CAUSE 12						Descriptive	Statistics	
Pearson Correlation	SCP4	366	.584	.420								
1	CAUSE_1	.617	.452	.323						Mean	Std Deviation	2
	CAUSE_2	.624	.413	.325					SCP4	5.220	1.5817	25
	CAUSE_3	.500	.555	.316					CAUSE_1	6.800	2.2913	25
	CAUSE_4	.631	.530	.221					CAUSE_2	6.680	2.1884	25
	CAUSE_5	.424	.165	090					CAUSE_3	6.600	2.2913	25
	CAUSE_6	.414	.315	.396					CAUSE_4	6.820	2.3313	25
	CAUSE_7	.404	.508	.466					CAUSE_5	6.700	2.2638	25
	CAUSE_8	.665	.669	.522					CAUSE_6	6.200	2.2958	25
	CAUSE_9	.718	.736	.401					CAUSE_7	5.680	2.0355	25 25
	CAUSE_10	1.000	.737	.394					CAUSE_8	6.400	1.8428	25
	CAUSE_11	.737	1.000	.731				'	CAUSE_9	5.520	2.3826	25
	CAUSE_12	394	.731	1.000					CAUSE_10	6.440	2.0530	25
Sig. (I-tailed)	SCP4	.002	.001	.018			>		CAUSE_11	5.320	2,5612	25
•	CAUSE_I	.001	012	.058			Ė		CAUSE 12	5,600	2.3629	25
	CAUSE_2	.000	.020	.057			বঁ					
	CAUSE_3	.006	.002	.062			₹.			•		
	CAUSE_4	.000	.003	.144			8					
	CAUSE_5	.017	.216	.335 .025			1					
	CAUSE_6 CAUSE_7	.020 .023	.063 .005	.023			្ឋា					
f	CAUSE_8	.000	.000	.004			స్ట					
1	CAUSE_9	2000	.000	.023			Č					
	CAUSE_10	***	.000	.025			<u> </u>					
1	CAUSE_11	.000		.000			Ď					
	CAUSE_12	026	.000	ا ا			C					
N	SCP4	25	25	25								

Regression

496 -

CAUSE 12
SCP4
CAUSE 2
CAUSE 3
CAUSE 4
CAUSE 6
CAUSE 6
CAUSE 7
CAUSE 8
CAUSE 9
CAUSE 10
CAUSE 11
CAUSE 12

_				
Į	Model	Varjables Entered	Variables Removed	Method
		CAUSE 12, CAUSE 5, CAUSE 6, CAUSE 7, CAUSE 7, CAUSE 10, CAUSE 11, CAUSE 11, CAUSE 11, CAUSE 11, CAUSE 11,		Emer
	2		CAUSE_10	Backward (criterion: Probability of F-to-remove >m.100).
	3		CAUSE_12	Backward (criterion: Probability of F-to-remove >#,100).
	4	, , ,	CAUSE_3	Backward (criterion: Probability of F-to-remove >= .100).
	5	. :	CAUSE_11	Backward (criterion: Probability of F-to-remove >= .100).
	6		CAUSE_8	Backward (criterion: Probability of F-10-remove

Variables Entered/Removed

,			

				•	Correl	ationa	^	•			
		SCP4	CAUSE 1	_CAUSE_2	CAUSE 3	CAUSE 4	CAUSE_5	CAUSE 6	CAUSE 7	CAUSE 8	CAUS
Pearson Correlation	SCIM	1.000	.507	.470	.382	.452	.130	.343	.314	376	\Box
	CAUSE_1	.507	1.000	.942	.571	.835	.651	.440	.316	.405	1
	CAUSE_2	470	.942	1.000	.597	.829	.621	.442	.294	.452	
	CAUSE_3	.382	571	597	1.000	.746	.442	.202	.472	_528	l
	CAUSE_4	.452	.83\$.829	.746	1.000	.747	.281	.25L	.388	1
	CAUSE_5	.130	.651	.621	.442	.747	1.000	.423	080	.210	l
	CAUSE_6	.343	,440	.442	.202	.281	.423	1.000	.277	.510	ŀ
	CAUSE_7	.314	.316	.294	.472	.251	080	.277	1.000	_530	
	CAUSE_8	.576	.405	.452	.528	.388	.210	210	_530	1,000	l
	CAUSE_9	.582	.386	.385	.498	.389	.088	.1\$\$.611	.748	I
	CAUSE_10	.566	.617	.624	.500	.631	.424	.414	.404	.665	Į.
	CAUSE_11	.584	.452	.413	.355	.530	.165	315] _≤08 ˈ	.669	1
	CAUSE_12	420	.323	,325	.316	.221	-,090	.396	455	522	— -
Sig. ((-tailed)	SCP4		.005	.009	.030	.012	.263	.047	.063	.001	۱ >
	CAUSE_I	.005		.000	.001	.000	.000	.014	.062	.022	Analyso
	CAUSE_2	.009	.000		.001	.000	.000	.013	.077	.012	5
	CAUSE_3	.030	.001	.001		.000	.014	.166	.009	.003] 6
	CAUSE_4	.012	.000	.000	.000	!	.000	.086	.113	.028	\
	CAUSE_5	.268	.000	.000	.014	.000		.018	.351	.157	1 5
	CAUSE_6	.047	.014	.013	.166	.036	.018		.090	.005	
	CAUSE_7	.063	.062	.077	.009	.113	.351	.090		.003	l ē
	CAUSE_8	.001	.022	.012	.003	.028	.157	.005	.003		
	CAUSE_9	.001	.028	.029	.006	.027	.338	.229	.001	.000	1 7
	CAUSE_10	.002	.001	.000	.006	.000	.017	.020	.023	.000	l
	CAUSE_11	.001	.012	.020	.002	.003	.216	.063	.005	.000	1 6
	CAUSE_12_	.018	.058	.057	.062	.144	335	.025	.009	.004	<u> </u>
N	SCP4	25	25	25	25	25	হ	25	25	25	l
	CAUSE_I	25	25	25	25	25	25	25	25	25	l
	CAUSE_2	25	25	25	25	25	25	25	25	25	1
	CAUSE_3	25	25	25	25	25	25	25	25	25	į
	CAUSE_4	25	25	25	25	25	25	25	25	25	i
	CAUSE_5	25	25	25	25	25	25	25	25	25	1
	CAUSE_6	25	25	25	25	25	25	25	25	25	ł
	CAUSE_7	25	25	25	25	25	25	25	25	25	1
	CAUSE_B	25	25	25	25	25	25	25	25	25	l
	CAUSE_9	25	25	25	25	25	25	25	25	25	l
	CAUSE_10	25	25	25	25	25	25	25	25	25	1
	CAUSE_11	25	25	25	25	25	25	25	25	25	1

	Total	60.040	24	11	Į	
2	Regression	37.805	11	3,437	2.009	.116 ^b
	Residual	22.235	13	1.710		
	Total	60,040	24		- 1	
3	Regression	37.796	10	3.780	2.379	.067
	Residual	22.244	14	1.589		
	Total	60.040	24			
4	Regression	37.713	9 (4.190	2.815	.0374
	Residual	22,327	ls	1.483		
	Total	60.040	24]		1	
5	Regression	37.281	- 8	4.660	3.276	.021°
	Residual	22.759	16	1.422		
	Total	60.040	24		l l	
6	Regression	36.790	7	5.256	3.843	.011
	Residual	23.250	17	1.368		
	Total	60.040 (24	ļ		
7	Regression	35.401	6	5.900	4.310	.007¢
	Residual	24.639	18	1.369		
	Total	60.040	_24		- 1	
1	Regression	34,452	5	6.890	5.116	.0044
	Residual	25.583	(9]	1.347		
	Total	60.040	24			
9	Regression	30.829	4	7.707	5.277	.003
	Residual	29.211	20 \	1.461	- 1	
	Total	60.040	_24		!	

- 4. Predictors: (Constant), CAUSE_12. CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1. CAUSE_4
- b. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- c. Productors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- d. Predictors: (Constant), CAUSE_S, CAUSE_9, CAUSE_6, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- e. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_1, CAUSE_4
- f. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_7, CAUSE_2, CAUSE_1, CAUSE_4
- e. Prodictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_7, CAUSE_1, CAUSE_4
- h. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_7, CAUSE_4
- i. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_4
- j. Dependent Variable: SCP4

497

Coefficients*

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc			Correlations	
Model		В	Std. Error	Beta	t	Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part
	(Constant)	2.721	1,477		1.842	.090	-,497	5.939			
	CAUSE_I	.515	.418	.746	1.231	.242	396	1.426	.507	.335	.216
	CAUSE_2	483	.485	669	996	.339	-1.541	.574	.470	276	175
Į.	CAUSE_3	-4 696E-02	.228	068	206	.840	543	.450	.382	059	036
	CAUSE_4	.571	.433	.842	1.319	.212	372	1.514	.452	.356	232
	CAUSE_5	556	.276	796	-2.015	.067	-1.157	.045	.130	503	-,354
	CAUSE_6	.276	.212	.400	1.300	.218	186	.738	343	.351	228
	CAUSE_7	-312	.218	402	-L430	.178	7E\$.164	.314	382	251
1	CAUSE_8	.186	.314	.217	.591	.565	-,499	.870	.576	.163	.104
Ī	CAUSE_9	.319	.293	.481	1.089	298	320	.959	_S82	.300	.191
ŀ	CAUSE_10	\$.688E-03	.289	.007	.020	.985	625	.636	.566	.006	.003
Į.	CAUSE_II	-,124	.358	201	- 347	.735	-903	.655	.584	-,100	061
	CAUSE_12	1.860E-02	.258	.028	.072	.944	544		.420	.021	012
2	(Constant)	2.729	1.370		1.991	.068	-232	5.689			.21% -18%
	CAUSE_I	.514	.400	.745	1.285	.221	-,350	1.378	.507	.336	.21%
1	CAUSE_2	481	.450	665	-1.069	.305	-1.453	.491	.470	284	- 18(5
l	CAUSE_3	-4.793E-02	.214	069	- 224	.826	-510	.414	.382	062	035
ĺ	CAUSE_4	.\$71	.416	.842	1.373	.193	327	1.470	.452	.356	935 335 335 336 336 336 336
	CAUSE_5	556	.264	-,795	-2.104	.055	-1.126	.015	,130	504	مِوْدَد
\	CAUSE_6	.276	.202	.401	1.368	.194	- 160	.712	.343	.355	.23(2
	CAUSE_7	-312	.210	402	-1.488	.160	766	.141	.314	382	251-
	CAUSE_8	.186	.301	.217	.618	.547	464	.837	576	.169	.10 47 .191
i	CAUSE_9	.321	.275	.483	1.166	.264	273	.915	.582	.308	.197
ŀ	CAUSE_11	+.121	.312	196	388	.704	796	.554	.584	107	065
	CAUSE_12	1.715E-02	.238	.026	.072	.944	497	.531	.420	.020	012
3	(Constant)	2.766	1.220		2.267	.040	.149	5.384			
	CAUSE_I	-515	.385	.745	1.335	.203	312	1.341	.\$07	.336	.217
\	CAUSE_2	471	.414	652	-1.138	274	-1,360	.417	.470	291	185
l	CAUSE_3	-4,717E-02	.206	+.068	- 229	.822	489	.394	.382	061	037
ŀ	CAUSE_4	.561	.378	.827	1.485	.160	250	1.372	,452	369 [.242
l	CAUSE_5	559	.251	800	-2.226	.043	-1.097	020	.130	511	362
l	CAUSE_6	.277	.194	.401	1.422	.177	140	.694	.343	.355	.231
Į	CAUSE_7	~310	.199	398	-1.558	.142	736	.117	.314	384	253
l	CAUSE_8	.189	.287	.221	.660	.520	427	.805	.576	.174	.107
l	CAUSE_9	.311	.231	.468	1.344	.200	185	.807	.582	.338	.219
L	CAUSE 1)	104	202	- 169	-516	. 614	.538	329	584	- 137	084

	CAUSE_2	(criterion: Probability of F-to-remove >= ,100).
8	CAUSE_I	Backward (criterion: Probability of F-to-remove >= 100).
9	CAUSE_7	Backward (criterion: Probability of F-to-remove

- a. All requested variables entered.
- b. Dependent Variable: SCP4

Mc - Summery

							Change Statistics		
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	FChange	df1	d(2	Sig. F Change
7	,7941	.630	259	1.3612	.630	1,700	12	12	,185
2	.7946	.630	.316	1.3078	.000	.000	1 /	14	.985
3 (.7935	.630	365	1.2605	.000	.005	11	15	,944
4	.7934	.628	.405	1.2200	001	.053	1	16	.822
5	.7884	.621	.431	1.1927	007	.290	i	17	.598
6	.7831	.613	.453	1.1695	008	345	i	18	.565
7	.7681	.590	.453	1.1700	023	1.015	1	19	.328
8	.758	.574	.462	1.1505	016	.694	1 1	20	.416
9	.717	.513	.416	1,2085	060	2,690	- 11	21	.117

- * Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_14
- b. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- c. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- 4. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_11, CAUSE_1. CAUSE_4
- c. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_1, CAUSE_4
- f. Prodictors: (Coastant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_7, CAUSE_2, CAUSE_1, CAUSE_4
- g. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_7, CAUSE_1, CAUSE_4
- h. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_7, CAUSE_4
- i. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_4
- i Dependent Variable; SCP4

		Collinearit	· Crasi-
Model		Tolerance	VIF
1	(Constant)	13/241/	<u> </u>
	CAUSE_1	.084	11.893
	CAUSE_2	.068	14.614
	CAUSE_3	.283	3.532
	CAUSE_4	.076	13.197
	CAUSE_S	.198	5.056
	CAUSE_6	.326	3.070
	CAUSE_7	390	2.561
	CAUSE_8	.230	4.342
	CAUSE_9	.158	6.328
	CAUSE_10	.219	4.569
	CAUSE_II	.092	10.874
	CAUSE_12	.207	4.827
2	(Constant)		
	CAUSE_1	.085	11,779
	CAUSE_2	.073	13.607
	CAUSE_3	.297	3.367
	CAUSE_4	.076	13.196
	CAUSE_5	.199	5.016
	CAUSE_6	.332	3.013
	CAUSE_7	.390	2.561
	CAUSE_8	.231	4.322
	CAUSE_9	.166	6.022
	CAUSE_11	.111	8.977
	CAUSE_12	.225	4,435
3	(Constant)		
	CAUSE_1	.085	11.773
	CAUSE_2	.081	12.410
	CAUSE_3	.298	3.359
	CAUSE_4	.085	11.732
	CAUSE_5	.205	4.879
	CAUSE_6 CAUSE 7	.332	3.011
	CAUSE_8	.405	2.471
	CAUSE 9	.236	4.231
	CAUSE_11	.218	4.591
	CAUSE II	.247.	4.051

- 498 -

Coefficients*

		,	•
		Collinearit	y Statistics
Model		Tolerance	_ VIF
4	(Constant)		<u> </u>
	CAUSE_1	.087	11.453
	CAUSE_2	.083	12,372
	CAUSE_4	.104	9.606
	CAUSE_S	.205	4.878
	CAUSE_6	.343	2.919
	CAUSE_7	.459	2.179
	CAUSE_B	.255	3.918
	CAUSE_9	.221	4.530
	CAUSE_11	.247	4.049
5	(Constant)		
	CAUSE_1	.091	11.026
	CAUSE_2	.095	10.489
	CAUSE_4	.161	6.205
	CAUSE_5	.267	3.741
	CAUSE_6	.404	2.473
	CAUSE_7	.474	2.110
	CAUSE_8	.260	3.848
	CAUSE_9	.282	3.547
6	(Constant)		
	CAUSE_1	.097	10.261
	CAUSE_2	.100	10.031
	CAUSE_4	.163	6.136
	CAUSE_5	.268	3.727
	CAUSE_6	.574	1,743
	CAUSE_7	.474	2110
	CAUSE_9	.555	1.802
7	(Constant)		
	CAUSE_L	.252	3.968
	CAUSE_4	.179	5.572
	CAUSE_5	.279	3,590
	CAUSE_6	.603	1.659
	CAUSE_7	.483	2.069
	CAUSE 9	.556	1.797

901

1		l		Standardured	i		•				
I		Unstandardize		Coefficients	ł	ľ	95% Confidence		L	Correlations	
Model		B	Sed, Error	Beta	<u> </u>	Siz.	Lower Bound	Upper Bound	Zero-order	Partial	Pert
•	(Constant)	2.776	1.181		2.351	.033	.239	5.292			
1	CAUSE_1	.529	.368	.767	1.439	.171	255	1.313	.507	.348	.227
1	CAUSE_2	476	.400	659	-1.190	.252	-1.330	.377	.170	.294	187
1	CAUSE_4	.524	.331	.773	1.584	.134	181	1.230	.452	.378	.249
1	CAUSE_5	560	.243	80)	-2.304	.036	-1.078	042	.130	-511	-363
ı	CAUSE_6	.284	.185	.413	1.534	.146	121	_679	.343	368	.242
ı	CAUSE_7	- 325	.181	419	-1.801	.092	-,710	.060	314	-,422	284
ı	CAUSE_8	.172	.265	.200	.641	.531	-,399	.742	.576	.163	.101
ı	CAUSE_9	.317	.222	.478	1.426	.174	157	.791	.582	.345	.224
	CAUSE_11	-, 105	.196	- 171	539	.\$98	.522	,312	584	138	085
5	(Constant)	2.790	1.154		2.418	.028	.344	5.236	1		
ı	CAUSE_1	.491	.353	.711	1.391	.183	257	1.239	_507	.329	.214
ı	CAUSE_2	392	.360	543	-1.039	.292	-1.156	.371	.470	263	.214 16 5
i	CAUSE_4	.418	.260	.616	1.608	.127	133	.970	.452	.373	.24 🖹
1	CAUSE_5	497	.208	711	2,387	.030	937	056	.130	-513	-36%
]	CAUSE_6	.245	.167	.356	1.471	.161	-,108	.599	.343	.345	.226
1	CAUSE_7	308	.174	396	-1.773	.095	676	.060	.314	.405	A SALES
ļ	CAUSE_8	.152	.259	.177	.587	.565	397	.702	576	.145	.090
<u> </u>	CAUSE_9	.261	.192		1.358		147	.669	582	.321	209
6	(Constant)	3.011	1.069		2.817	.012	.756	5.267			.191-2 -152 -25-0 -37-1
l	CAUSE_1 CAUSE_2	436	.334	.632	1.307	.209	258	1.140	.507	.302	.197
l		-348	.345	482	-1.008	.328	-1.077	.381	.470	237	152
f	CAUSE_4	434	254	.640	1.713	.105	-,101	.970	.452	.384	.25Q
l	CAUSE_S	504	.204	721	-2.475	.024	933	074	.130	515	-374 1
1	CAUSE_6	299	.137	.433	2.175	.044	.009	.588	.343	.467	.328]
1	CAUSE_7 CAUSE_9	308	.170	397	-1.809	.088	.668	.051	.314	402	273
7	(Constant)	341	135.		2.532	.021	.057	.624	.582	.523	382
ľ	CAUSE	2.832 .173	1.055		2.685	.015	.616	5.047			
1	CAUSE_4		242	.251	.833	.416	- 263	.609	.507	.193	.125
I	CAUSE_5	357		.526	1.476	.157	151	.865	.452	.329	.223
I	CAUSE_6	-,464	.200	665	-2.323	.032	584	044	.130	480	-351
ı	CAUSE_7	.268	.134	.389	2.002	.061	013	_550	.343	.427	.302
ĺ	CAUSE 9	- 284 133	.169	-,366 .502	-1.684	.109	639	.070	.314	369	-254
	אליסניסנים.	. 153		.007. [2,482	023	.051	616	582	.505	375

Coefficients*

	Unstandardized Coefficients		Standardized Coefficients			95% Confidence Interval for B		Correlations			
Model		B	Std. Error	Beta		Sig.	Lower Bound	Upper Bound	Zero-order	Parcial	Part
B .	(Constant)	2.626	1.046	T	2.701	.014	.636	5.013			
	CAUSE_4	.484	.186	.713	2.599	.018	.094	.874	.452	J12	389
	CAUSE_5	463	.198	663	2,337	.031	878	048	.130	-,472	-350
	CAUSE_6	.304	.126	.441	2.415	.026	.040	.567	.343	.485	362
	CAUSE_7	-274	167	352	-1.640	.117	623	.076	314	352	246
	CAUSE 9	.338	.133	.510	2,542	.020	.060	.617	382	504	.381
9 .	(Constant)	2.084	.982		2.122	.047	.035	4,132			.,,,,,
	CAUSE_4	.389	.184	.573 }	2.111	.048	.005	.773	.452	.427	.329
	CAUSE_S	- 326	.187	467	-1.742	.097	-,717	.064	.130	363	-272
	CAUSE 6	.224	.121	.325	1.852	.079	028	.476	343	383	.289
	CAUSE 9	.232	.!21		1.917	.070	020	485	582	.394	. 299

Analysis for Ca-SCP4-CC

sis for Ca-SCP4-0

Model		Dierance	VIF
8	(Constant)		
	CAUSE_4	.298	3.357
	CAUSE_5	.279	3.590
	CAUSE_6	.672	1.489
	CAUSE_7	.486	2.058
	CAUSE_9	.558	1.794
9	(Constant)		
	CAUSE_4	.330	3.032
	CAUSE_5	.339	2.95L
	CAUSE_6	.791 (1.264
	CAUSE_9		1.368

a. Dependent Variable: SCP4

4	
9	
Ō	
- 1	

SPSS regression printouts for SCP5 analysis

	Cutator		-	
	CAUSE2	.351	.397	.139
	CAUSES	.334	.356	189
	CAUSE4	.478	.431	.159
	CAUSES	.432	.324	.144
	CAUSES	.237	.288	.294
	CAUSE7	.276	.487	.261
	CAUSES	.448	.644	.405
	CAUSE9	.412	.636	.348
	CAUSE10	1.000	_582	.393
	CAUSEII	582	1.000	.457
	CAUSE12	.393	.457	1.000
Sig. (1-tailed)	SCPS	.000	.000	.033
	CAUSEI	l .000 l	.000	.000
	CAUSE2	000.	.000	.025
	CAUSE3	.000	.000	.004
	CAUSE4	.000	.000	.013
	CAUSES] 000.	.000	.022
	CAUSES	.000	.000	.000
	CAUSE7	.000	.000	.000
	CAUSE	.000)	.000	.000
	CAUSES	.000.	.000	.000
	CAUSE10		.000	.000
	CAUSE11	.000		.000
	CAUSE12	.000	.000	
N	SCP5	197	197	197
	CAUSEI	197	197	197
	CAUSE2	197	197	197
	CAUSE3	197	197	197
	CAUSE4	197	197	197
	CAUSES	197	197	197
	CAUSE6	197	197	197
	CAUSE7	197	197	197
	CAUSES	197	197	197
	CAUSE9	197	197	197
	CAUSEIO	197	197	197
	CAUSEII	197	197	197
	CAUSEIZ	197	197	197

SCPS
CAUSE1
CAUSE2
CAUSE3
CAUSE4
CAUSE5
CAUSE5
CAUSE6
CAUSE6
CAUSE6
CAUSE7
CAUSE8
CAUSE9
CAUSE10
CAUSE11
CAUSE12 Meen 5.201 6.127 5.561 5.660 5.652 5.510 5.117 5.272 6.170 6.297 5.939 5.338 5.599 Std. Devistion
1.5107
1.9895
1.9882
1.9990
2.0227
1.9961
1.9382
2.0225
1.9180
2.1776
1.7667
2.0087

- 501 -

		Variables En	tered/Removed	
	Model	Variables Entered	Variables Removed	Method
	1	CAUSE12 CAUSE2. CAUSE9. CAUSE10. CAUSE3. CAUSE3. CAUSE3. CAUSE3. CAUSE3. CAUSE11. CAUSE1. CAUSE1. CAUSE1.		Enter
	2		CAUSE4	Backward (criterion: Probability of F-to-remove >= ,100).
	3	. [CAUSE6	Backward (criterion: Probability of P-to-remove >= .100).
	4		CAUSEI	Backward (criterion: Probability of F-to-remove >= .100).
	5		CAUSE9	Backward (criterion: Probability of F-to-remove >= .100).
	6	-	CAUSE	Backward (criterion: Probability of P-to-remove
L.				>== 1001

	SCPS CAUSE1 CAUSE2 CAUSE3 CAUSE4 CAUSE5 CAUSE5 CAUSE6 CAUSE6 CAUSE7 CAUSE8 CAUSE8 CAUSE8 CAUSE8 CAUSE9 CAUSE10 CAUSE11	\$CP5 1,000 .208 .241 .338 .372 .360 .335 .271 .278 .379	CAUSEI 238 1,000 .758 .558 .554 .537 .500 .399 .465 .414	241 .758 1.000 .624 .693 .583 .466 .419	338 558 .624 1.000 .641 .583 .468	323 354 693 641 1,000	. CAUSES .322 .537 .583 .583 .732	260 .500 .466 .468 .453	CAUSE7 .335 .399 .419 .469 .425	271 465 439 372 383	278 414 337 365 306
	CAUSE1 CAUSE2 CAUSE3 CAUSE4 CAUSE5 CAUSE6 CAUSE6 CAUSE7 CAUSE8 CAUSE8 CAUSE9 CAUSE10 CAUSE11	.238 .241 .338 .323 .322 .260 .335 .271 .278	1.000 .758 .558 .554 .537 .500 .399	.758 1.000 .624 .693 .583 .466 .419	338 558 .624 1.000 .641 .583	.323 .354 .693 .641 1,000 .732	.322 .537 .583 .583 .732	.250 .500 .466 .468 .453	.335 .399 .419 .469 .425	271 465 439 372 383	.278 .414 .337 .365
	CAUSE2 CAUSE3 CAUSE4 CAUSE5 CAUSE5 CAUSE6 CAUSE7 CAUSE8 CAUSE9 CAUSE9 CAUSE10 CAUSE11	.241 .338 .323 .322 .260 .335 .271 .278	.758 .558 .554 .537 .500 .399 .465	1.000 .624 .693 .583 .466 .419	.624 1.000 .641 .583 .468	.693 .641 1.000 .732	.537 .583 .583 .732	.500 .466 .468 .453	.399 .419 .469 .425	.465 .439 .372 .383	.414 .337 .365
	CAUSE3 CAUSE4 CAUSE5 CAUSE6 CAUSE7 CAUSE8 CAUSE8 CAUSE9 CAUSE10 CAUSE11	.338 .323 .322 .260 .335 .271 .278	.558 .554 .537 .500 .399 .465	.624 .693 .583 .466 .419	.624 1.000 .641 .583 .468	.693 .641 1.000 .732	.583 .583 .732	.466 .468 .453	.419 .469 .425	.439 .372 .383	.337 .365
000000000000000000000000000000000000000	CAUSE4 CAUSE5 CAUSE6 CAUSE7 CAUSE8 CAUSE9 CAUSE10 CAUSE11	.323 .322 .260 .335 .271 .278	.554 .537 .500 .399 .465	.693 .583 .466 .419	1.000 .641 .583 .468	.641 1.000 .732	.583 .732	.468 .453	.469 .425	.372 .383	.365
0 0 0	CAUSES CAUSES CAUSES CAUSES CAUSES CAUSES CAUSES CAUSES CAUSES	.322 .260 .335 .271 .278	.537 .500 .399 .465	.693 .583 .466 .419	.641 .583 .468	1.000 .732	.732	.453	.425	.383	
0 0 0	CAUSE6 CAUSE7 CAUSE8 CAUSE9 CAUSE10 CAUSE11	.260 .335 .271 .278	.537 .500 .399 .465	.583 .466 .419	.583 .468	.732					.306
d G	CAUSE7 CAUSE8 CAUSE9 CAUSE10 CAUSE11	.335 .271 .278	,500 ,399 ,465	.466 .419	.468						
o o	CAUSES CAUSES CAUSES CAUSES	.271 .278	.399 .465	.419		.453	.554	.554	.314	.368	.225
C	CAUSE9 CAUSE10 CAUSE11	.278	.465		469	425	.334 314	1.000	.501	.442	.361
	CAUSE10 CAUSE11				.372	383	368	.501	1.000	.566	A72
C	CAUSE11			.337	.365	.306		.442	.566	1.000	.634
			307	.351	.334	.500	.225	.361	.472	.634	1.000
C		.332	.354	.397	.356		.432	.287	.276	.448	.412
	CAUSE12	.132	.254	.139	.189	.431	.324	.288	.487	.544	.636
	SCP5		.000	000	.000	.159	.144	.294	261	.405	.348
Ċ	CAUSEL	.000		.000	.000	.000	.000	.000	.000	.000	.000
	CAUSE2	.000	.000	.000	.000	.000	.000	.000	.000	.000	200
	CAUSE3	.000	.000	- mi	.000	.000	.000	.000	.000	ا 200	≱eo Ebo
	CAUSE4	.000	.000	.000		000	1000	.000	.000	.000 1	\$00 \$00
	CAUSES	.000		.000	.000	,	.000	.000	.000	.000	200
	CAUSE6	.000	.000	.000	.000	000	. [.000	.000	.000	
	CAUSE7	.000	.000	.000	.000 }	.000 }	.000		.000 }	.000	fin l
	CAUSES	.000	.000	.000	.000	.000	.000	.000		.000	5% [
	AUSE9	.000	.000	.000	.000	.000	.000	.000	.000		200
	AUSEIO	.000		.000	.000 [.000	.001	.000	.000	.000	ര്വ
	AUSEII	.000	.000	.000	.000	.000	.000	.000	.000	.000	28.1
	AUSE12	.033		.000	.000	.000	.000	.000	.000	.000	- Fon I
	CPS T	197	.000	025	.004		.022	000	.000	.000	######################################
	AUSE	197	197	197	197	197	197	197	197	197	197
	AUSE2		197	197	197	197	197	197	197	197	197
	AUSE3	197	197	197	197	197	197	197	197	197	197
	AUSE4	197	197	197	197	197	197	197	197	197	197
		197	197	197	197	197	197	197	197	197	197
	AUSE5	197	197	197	197	197	197	197	197	197	
	AUSE5	197	197	197	197	197	197	197	197	197	197
	AUSE7	197	197	197	197	197	197	197	197		197
	AUSE8	197	197	197	197	197	197	197	197	197	197
	AUSE9	197	197	197	197	197	197	197		197	197
	AUSE10	197	197	197	197	197	197		197	197	197
	AUSEII	197	197	197	197	197	197	197	197	197	197
CA	AUSE12	197	197	197	197	197	197	197 197	197	197	197 197

Model_		Sum of Squares	d (Mean Square	F	Snt
4	Regression	106.633	9	11.848	6.503	.000
	Residual	340.697	187	1.822	- 1	
	Total	447.330	196]		
3	Regression	106.145	B	13.268	7.311	.000
	Residual	1 241.185	188	1.815	- 1	
	Total	447.330	196	[[į.	
6	Regression	105,820	7	15.117	8.365	.000
	Residual	341,510	189	1.807		
	Total	447.330	196	\	}	
7	Regression	104.035	6	17.339	9396	.000
	Residual	343.295	190	1,807	-	
	Total	447,330	196]		
8	Regression	102.493	5	20,499	11354	,000
	Residual	344.837	191	i 1.805	1	
	Total	447.330	196		. !	_
à ·	Regression	100.458	4	25.134	13.901	.000
	Residual	346.872	192	1.807		
 -	Total	447,330	196	li.	1	
10	Regression	98.442		32.814	18.152	
	Residual	348.838	193	1.508		
	Tota!	447,330	196	l l		

- a. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE6, CAUSE7, CAUSE3, CAUSE5, CAUSE8, CAUSE11, CAUSE1, CAUSE4
- b. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE5, CAUSE3, CAUSE3, CAUSE5, CAUSE5, CAUSE11, CAUSE1
- c. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE8, CAUSE11, CAUSE)
- d. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE8, CAUSE11
- c. Predictors: (Constant), CAUSE 12, CAUSE2, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE8, CAUSE11
- i. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE10, CAUSE7, CAUSE3, CAUSE5, CAUSE11
- g. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE10, CAUSE7, CAUSE3, CAUSES
- h. Predictors: (Constant), CAUSE2, CAUSE10, CAUSE7, CAUSE3, CAUSES
- i. Predictors: (Constant), CAUSEIO, CAUSE7, CAUSE3, CAUSES
- j Predictors: (Constant), CAUSE10, CAUSE7, CAUSE3
- k. Dependent Variable: SCP5

502

Coefficients*

	-	Unstandardize	d Coefficients	Standardized Coefficients			95% Confidence	e Interval for B		Correlations	
Model		В	Std. Error	Ben	ι	Sie	Lower Bound	Upper Bound	Zero-order	Partial	Part
	(Constant)	2.536	.446		5.687	.000	1.657	3.416			Ī
1	CAUSEI	2.549E-02	.082	.004	.312	.755	136	.187	.238	.023	.020
1	CAUSE2	-9.293E-02	.090	- 122	-1.031	.304	271	.085	.241	076	066
l	CAUSES	.112	.071	.148	1.561	.120	029	.253	.338	.114	.100
1	CAUSE4	-1 259E-02	.087	017	145	.885	184	.158	323	011	009
	CAUSES	B.956E-02	.082	.118	1.093	.276	072	.251	.322	.080	.070
	CAUSE6	1.468E-02	.070	.019	.209	.834	-,124	.153	.260	.015	.013
1	CAUSE7	.140	.967	.187	2.086	.038	.008	.272	.335	.152	.134
]	CAUSES	-4.895E-02	.079	062	-616	.538	206	.108	.271	045	040
1	CAUSE9	2.656E-02	.0%6	.038	.404	.687	- 103	.156	.278	.030	.026
1	CAUSE10	216	.075	.252	2.895	,004	.069	.363	.379	.209	.186
1	CAUSE11	7,403E-02	.079	.098	.932	.353	083	.231	.332	.069	.060
	CAUSE12	-6.824E-02	060_	-089	1.138	.25?	187	050	.132	084	. 073
2	(Constant)	2.537	.445		5.703	.000	1.659	3.414		T	T
1	CAUSEI	2.602E-02	.081	.034	.320	.750	- 135	.187	.238	.023	.020
1	CAUSE?	-9.710E-02	.085	128	-1.139	.256	265	.071	.241	083	073
í	CAUSE3	.110	.070	.145	1.567	.119	028	.248	.338	.114	.100 .074
l	CAUSES	8.420E-02	.073	.01	1.155	250	060	.228	.322	.085	
ì	CAUSE6	1.532E-02	.070	.020	.220	.826	122	.153	.260	.016	.014
1	CAUSE7	.138	.066	.185	2.092	.038	.008	.269	.335	.152	.134
]	CAUSE8	-4 777E 02	.079	061	-,606	.545	- 203	.108	.271	045	039
١	CAUSE9	2.675E-02	.066	.039	.408	.684	103	.156	.278	.030	.026
1	CAUSEIO	.214	.073	.250	2.924	,004	.070	.358	.379	.210	.188
i	CAUSELL	7.290E-02	.079	.097	.924	.357	083	.229	.332	.068	.059
i	CAUSE12	-6.782E-02	.060	. 088	-1.135		- 186	.050	.132	0\$3	073
3	(Constant)	2.536	,444		5.716	.000	1.661	3.411			
1	CAUSEL	2.755E-02	981	.036	340	.734	132	.187	.238	.025	.022
]	CAUSE2	-9 660E-02	.085	127	-1.137	.257	264	.071	.241	083	073
	CAUSE3	110	.070	.145	1.573	.317	029	.248	.338	.115	.101
1	CAUSE5	8.992E-02	.068	.119	1.324	.187	044	.224	.322	.097	.035
1	CAUSE7	.142	.063	.191	2.260	.025	.018	.267	.335	.163	.145
1	CAUSES	-4.653E-02	.078	059	593	.554	201	.108	.271	043	038
	CAUSE9	2.844E-02	.065	.041	.437	.662	100	.157	.278	.032	.028
1	CAUSE10	.213	.073	.249	2.926	.004	.069	.357	.379	.210	.137
1	CAUSELL	6.964E-02	.077	.093	.901	.369	083	.222	.332	.066	.058
	CAUSE12	.6.528E.02	nse	.085	.1117	266	. 191	050	333	. 092	071

Variables Entered/Resource

Model	Variables Entered	Variables Removed	Method
1		CAUSELI	Backward (criterion: Probability of F-to-remove >= ,100).
8	. i	CAUSE12	Backward (criterion: Probability of F-to-remove >= .100).
9		CAUSE2	Backward (criterion: Probability of P-to-remove ># .100).
10		CAUSES	Backward (criterion: Probability of F-so-remove >= 100).

- a. All requested variables extered
- b. Dependent Variable: SCP5

M " Summery

	,						hones Statistics		
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	eri	412	Sig. P Change
1	.489	239	.190	1.3601	.239	4.819	12	184	.00
2	489	.239	.194	1.3565	.000	021	1.1	186	.83
3	.489	.239	.198	1.3530	.000	.048	1	187	.82
4	.488d	.238	.202	1.3498	.000	.116	i 1	188	,7:
5	487*	237	.205	1,3472	001	268	- 11	189	.60
6	486	.237	.208	1,3442	001	.179	i l	190	.63
7	482*	.233	.208	1,3442	004	.988	1	191	.32
8	4791	.229	.209	1.3437	003	.853	1 t	192	زق. ا
9	.474	225	.208	1,3441	005	1.127	i 1	193	.25
10	4691	.220	208	13445	005	i.i16	i I	194	2

- a. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE6, CAUSE7, CAUSE3, CAUSE8, CAUSE8, CAUSE11, CAUSE1, CAUSE4
- b. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE6, CAUSE7, CAUSE3, CAUSE5, CAUSE8, CAUSE11, CAUSE1
- c. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE1, CAUSE3, CAUSE8, CAUSE8, CAUSE11, CAUSE1
- d. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE7, CAUSE3, CAUSE5, CAUSE8, CAUSE11
- e. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE10, CAUSE7, CAUSE3, CAUSE8, CAUSE11
- f. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE10, CAUSE), CAUSE3, CAUSE11
- E. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE10, CAUSE7, CAUSE3, CAUSE3
- h. Productors: (Constant), CAUSE2, CAUSE10, CAUSE7, CAUSE3, CAUSE5
- i. Predictors: (Constant), CAUSEIO, CAUSE7, CAUSE3, CAUSE5
- i. Predictors: (Constant), CAUSE10, CAUSE7, CAUSE3
- k. Dependent Variable: SCPS

ANOVA

Mode)		Sem of Squares	ď	Mean Square	F	Sig
\vdash	Regression	106,973	!2	8.914	4.819	.000
	Residual	340.357	164	1.850		
	Total	447,330	196	(L		
<u></u>	Regression	106.934	11	9.721	5,283	.000
	Residual	340,396	185	1.840		
	Total	447,330	196	""		
3	Regression	106.845	10	10.684	5.837	.000
	Desidual	240 405	104	1 071		

	_		
Η	(Courtett)		
!	CAUSEI	.357	2.801
l	CAUSE2	.294	3,403
Į.	CAUSE3	.462	2.163
	CAUSE4	.307	3.258
l	CAUSES	353	2.833
1	CAUSE6	511	1.958
	CAUSE7	.\$15	1.942
Į.	CAUSES	.407	2.459
1	CAUSE9	.460	2.176
1	CAUSE10		1.836
ļ	CAUSE11	.370	2.700
1	CAUSE12	.68)	1,469
2	(Constant)		
i	CAUSE1	.358	2.796
1	CAUSE2	.327	3.058
1	CAUSES	.480	2.085
1	CAUSES	.443	2.256
1	CAUSES	513	1.950
1	CAUSE7	.526	[.90]
ì	CAUSE8	.411	2.433
1	CAUSE9	.460	2.175
1	CAUSEIO	563	1,778
1	CAUSEII	.374	2.674
<u> </u>	CAUSE12	692	1.466
[3	(Constant)	\	•
1	CAUSE	.360	2.775
	CAUSE2	.327	3.0\$6
1	CAUSE3	.480	2.084
í .	CAUSES	.508	1.967
1	CAUSE7	.575	1.740
1	CAUSES	.413	2.421
1	CAUSE9	.465	2.145
1	CAUSE10	.563	1.776
1	CV02E11	.388	2.580
1.	CAUSE12		14!1

- 503 -

Coefficients

		2.0	
		Collinearity Tolerance	VIF
Model	(Constant)	Colerance	
[*	CAUSE2	.497	2.012
l	CAUSEI	481	2.078
i	CAUSES	.901	1.915
	CAUSE3	.322 .575	1.740
l	CAUSES	416	2,403
ì	CAUSES	486	2.059
1	CAUSEIO	.567	1.765
	CAUSEII	.396	2,528
	CAUSE12	735	1.361
3	(Constant)	/33	1:301
١,	CAUSE2	.497	2.011
)	CAUSE1	493	2.030
1	CAUSES	.533	1.875
i	CAUSE7		1.730
1	CAUSES	.465	2.150
	CAUSEIO	.568	1.760
	CAUSEII	.308	2.288
	CAUSE11	735	1.361
6	(Constant)		1.301
U	CAUSE2	.506	1.975
	CAUSES	495	2.021
	CAUSES	.537	1.861
Į.	CAUSE7	.648	1.543
	CAUSEIO	.570	1.755
i	CAUSELL	.497	2011
1	CAUSE11	.754	1.326
	(Constant)		1.320
i '	CAUSE2	.517	1.933
\	CAUSE3	.495	2.021
l	CAUSES		1.858
l	CAUSE?	.538	1.536
1	CAUSEI	.722	
l		.690	L449 L230
	CAUSE12	.813	230

SIS FOR CA-SCES-A

Analysis for Ca-SCP5-AR

(Opt)		JILL PATE	peu			DAMES DOUGHT	Open poets	CALCAR.		
(Constant)	2.552	.440		3,797	.000	1.684	3.420			
ÇAUSE2	-7.969E-02	.069	105	-1,159	.248	215	.056	.241	084	074
CAUSES	in in	.070	.147	1.598	.112	026	.248	.338	.116	.102
CAUSE5	9.366E-02	.067	.124	1 401	.163	038	.226	.322	.102	.089
CAUSE?	.142	.063	.191	2 264	.025	.018	.266	.335	.163	.144
CAUSES	-4.422E-02	.078	056	-367	.571	198	.109	.271	041	036
CAUSE9	3.288E-02	.064	.047	.517	.605	092	.158	.278	800.	cm.
CAUSEID	.211	.072	247	2,915	.00+	.068	.354	.379	.208	.185
CAUSELL	6.590E-02	.076	.083	.864	.389	025	.216	.332	.063	.055
CAUSE12	-6.153E-02	.057	- 080	-1,074	.284	175	.051	.132	078	069
(Constant)	2,587	.434		5,957	.000	1.730	3,443			
CAUSE2	-8.021E-02	.069	106	-1.169	.244	216	.055	.241	085	074
CAUSE3	J17	.069	.154	1,701	.091	019	.252	.338	.123	.1065 .0865 .1477
CAUSES	8.865E-02	.066	.117	1,343	.181	042	.219	.322	.097	.086
CAUSE7	.145	.063	.194	2,315	.022	.021	.268	.335	.166	.147
CAUSES	-3.113E-02	.074	040	- 23	.673	- 176	.214	.27	031	027
CAUSE10	.213	.072	.249	2,952	.004	271	.356	.379	.210	.1882
CAUSE	7.805E-02	.072	.104	1.077	283	065	.221	.332	.078	.069
CAUSE12	-6.130E-02	.057	080	-1.072	285	-,174	051_	132	078	068
(Constant)	2,553	.426		5,993	.000	1.713	3.393			.1853 .069 .069 .069 .100 .1100 .1477
CAUSE2	-8.413E-02	.068	111	-1,240	217	218	.050	.241	090	079∰
CAUSE3	.119	.068	.157	1.735	.084	016	.253	338	.i25	.110
CAUSES	8.623E-02	.066	.114	1,314	.190	-,043	.216	.322	.095	.084
CAUSE7	.136	.059	.182	2,109	.022	.020	.252	_335	.166	
CAUSE10	.212	.072	.247	2,940	.004	.070	.354	.379	.209	,187
CAUSELL	6.738E-02	.068	.090	.994	.322	066	.201	.332	.072	.063
CAUSE12	-6.515E-02	.056	085	-1.157	.249	176	.046	.132	-,084	074
(Constant)	2.518	.424		5,931	.000	1.680	3.355			
CAUSE2	-7.431E-02	.067	098	-[,107	270	207	.058	.241	080	070
CAUSE3	.118	.068	.156	1,722	.087	017	.252	.338	.124	.109
CAUSES	8.349E-02	.066	l sio	1,273	.204	046	.213	.322	.092	.081
CAUSE7	.155	.056	.207	2.774	.006	.045	.265	_335	.197	.176
CAUSE10	.241	.065	.282	3,691	.000	.112	.371	.379	.259	.235
CAUSE12	-5 008E-02	.054	065	-924	357	157_	.057		067	- 059
			_							

Coefficients

		Unstandardized Coefficients		Standardized Coefficients	ĺ		95% Confidence Interval for B		Correlations		
Model.		B -	Std. Error	Beta		Sig.	Lower Bound	Upper Bound	Zero-order	Pertial	Pro
8	(Constant)	2.387	.400		5.965	.000	1.598	3.177			
	CAUSE2	-7.117E-02	.067	094	-1.062	.290	.203	.061	.241	-077	-067
	CAUSE3	.114	.068	.152	1.680	.095	020	.249	.338	.121	.107
	CAUSES	8.715E-02	.065	.115	1.332	.184	042	.216	.322	.096	.085
	CAUSE?	.146	.055	.196	2.658	.009	.038	,255 i	.335	. 189	.169
	CAUSE 10	220	.061	.258	_3.596	.000	.100	.341	.379	.252	_275
9	(Constant)	2,335	397		5.877	.000	1.551	3.118			
	CAUSE3	8.882E-02	.064	.118	1.393	.165	- 037	,215	.338	.100 \	.089
	CAUSES	6.577E-02	.062	.087	1.056	.292	-,057	.189	.322	.076	.067
	CAUSE7	.137	.054	.183 [2.517	.013	.030	.244	.335	.179	.160
	CAUSE10	.216	.061	.252	3.524	.001	.095	336	.379	.246	,224
10	(Constant)	2,394	.393		6.087	.000	1.619	3.170			
	CAUSE3	121	.056	.160 (2,158	.032	.010	,231	.338	.153	.1375
	CAUSE7	.137	.054	.184	2.529	.012	.030	,245	.335	.179	.137 .161 257
	CAUSE 10	235	.051	.275	4.038	.000	.120	350	.379_	279 [_	257

in the for Ca-SCPS-AR

~	 4.	_

	Correlations .										
		SCPS	CAUSE I	CAUSE 2	CAUSE_3	CAUSE 4	CAUSE 5	CAUSE 6	CAUSE 7	CAUSE B	CAUSE 9
Pearson Correlation	SCP5	1.000	.125	.179		.234	.284	.061	278	243	-258
	CAUSE_1	.125	1.000	.850	.628	.625	.540	,224	.433	.436	.416
	CAUSE_2	.179	,850	1.000	.622	.759	.595	.164	.564	.S30	543
	CAUSE_3	.331	.628	.622	1.000	.598	.633	.211	.426	379	.350
	CAUSE_4	.234	.625	.759	.598	1.000	.785	.285	.548	.447	549
	CAUSE_5	.284	.540	.595	.633	.785	1.000	.274	378	.389	396
	CAUSE_6	.061	.224	.164	.211	.285	.274	1,000	.282	.234	.159
	CAUSE_7	.278	.433	.564	.426	548	.378	282	1.000	.694	.552
	CAUSE_8	.243	,436	.530	.379	.447	.389	234	.694	1.000	.784
	CAUSE_9	.258	416	.543	.350	.549	.396	.159	.552	.784	1.000
	CAUSE_ID	J19	.253	.309	.185	359	327	.086	.393	.564	.694
	CAUSE_11	.220	.341	.456	.217	.400	.340	.044	524	.797	.760
	CAUSE_12	071	.248	.108	.092	.088	168	.099	.110	.396	.372
Sig. (1-tailed)	\$CP3		,182	.096	.007	.043	.018	330	.020	.037	>.029 .001
	CAUSE_1	.182		.000	.000	.000	.000	.050	.000	.000	100.5
	CAUSE_2	.096	.000		.000	.000	.000	.116	.000	.000	(₹.000
	CAUSE_3	.007	.000	.000		.000	.000	.061	.001	.002] ≣.004
	CAUSE_4	.043	.000	.000	.000	Ι.	.000	.017	.000	.000	5.000 5.000
	CAUSE_S	.018	.000	.000	.000	.000		.022	.002	.002	₹.001
	CAUSE_6	.330	.050	-116	061	.017	.022		.019	.043	€,000
	CAUSE_7	.020	.000	.000	100.	.000	.002	.019		.000	J_000
	CAUSE_8	.037	,000	.000	.002	.000	.002	.043	.000		
	CAUSE_9	.029	.001	.000	.004	,000	.001	.123	.000	.000	ነ ጄ.
	CAUSE_10	.009	.031	.011	830.	.004	.007	.267	.001	.000	2000 2000
	CAUSE_I1	.053	.005	.000	.056	.001	.006	.375	.000	.000	5∞
	CAUSE_12	.303	034	.217	.251	.263	.110	236	212	.00)	.003
N	SCP3	55	55	55	5.5	55	55	55	55	55	55
	CAUSE_I	\$5	\$5	55	55	55	55	55	55	55	55
	CAUSE_2	55	55	55	55	\$3	55	55	55	55	55
	CAUSE_1 CAUSE_4	55	55 55	55	55 55	55 55	55	55 55	55 55	55 55	55
	CAUSE_5	55 55	33 55	55 55	55		35	33 55			55
	CAUSE 6		55			55	55		55	55	55
	CAUSE 7	55 55	33 55	55 55) 55 55	55 55	SS SS	55 55	55 55	55 55	55 55
	CAUSE_8	33 33	33 55	33	55	55	55	33 35	55 55	55	
	CAUSE 9	55	55	33 55	55) 33 55	55	33 55	55	55	55
	CAUSE 10		55	33	33	1 55	55	33 55	55	55	55
	CAUSE_III	55 55	25 55	33	55	55	55 ;	33 55	55 55	55	55 55
	CAUSE 12	55	33	55	33	\$5	33	33	33	55	72
	- CUANG 15-										······

Model		Tolcrance	VIF
8	(Constant)		
	CAUSE2	.519	1.928
	CAUSES	496	2.016
	CAUSES	.540	1.831
	CAUSE7	,743	1.346
ļ	CAUSE10	.785	1.274
9	(Constant)		
	CAUSES	.567	1.762
	CAUSES	.597	1.675
	CAUSET	.764	1.309
1 .	CAUSEIO	.789_	1.267
10	(Constant)		ļ —
l	CAUSE	.735	1.361
	CAUSE7	,764	1.309
	CAUSEIO	870	1.149
a. Dep	endent Variable:	SCPS	

Conficients

- 504 -

Cos	ne)	tica

		CAUSE 10	CAUSE 11	CAUSE 12
Pearson Correlation	SCPS	.319	.220	011
i	CAUSE_L	.253	.341	.248
	CAUSE 2	309	.456	.108
	CAUSE_3	.185	.217	.092
	CAUSE_4	.359	.400	.088
	CAUSE_5	327	340	,168
1	CAUSE_6	.086	.044	.099
	CAUSE_7	.393	.524	.110
	CAUSE_8	.664	.797	.396
ì	CAUSE_9	.694	.760	.372
	CAUSE_10	1.000	.724	544
ŀ	CAUSE_II	.724	1.000	.370
l	CAUSE_12		.370	1,000
Sig. (1-tailed)	SCP3	.009	.053	.303
J	CAUSE_I	.031	.005	.034
\	CAUSE_2	.0ti	.000	217
	CAUSE_3	.088	.056	.251
ŀ	CAUSE_4	.004	.001	263
Į.	CAUSE_5	.007	.006	110
1	CAUSE_6	.267	.375	.216
	CAUSE_?	.00L	.000	.212
Į.	CAUSE_B	.000	.000	.001
	CAUSE_9	.000	.000	.003
ſ	CAUSE_10		.000	.000
	CAUSE_II	.000		.003
	CAUSE_12	.000	.003	
N.	SCP5	55	55	55
l .	CAUSE_I	55	55	55
1	CAUSE_2	55	55	55
	CAUSE_3	33	55	55
	CAUSE_4	55	55	55
)	CAUSE_5	55) 55	55
1	CAUSE_6	55	55	55
1	CAUSE_7	55	\$5	55
i	CAUSE_8	35	55	55
i	CAUSE_9	55	55	55 55
1	CAUSE 10	- 45	55	55

Regression

Aualysis for Ca-SCP5-MC

	Mean.	Std. Devision	_ N
SCFS	5.409	1.7054	55
CAUSE_1	5.391	2.2396	55
CAUSE 2	5,464	2.1897	55
CAUSE 3	5.400	2.2307	55
CAUSE_4	5.764	2.4092	5.5
CAUSE_5	5.500	2.2812	55
CAUSE_6	5.655	9.0615	55
CAUSE_7	4.600	2,4578	55
CAUSE_8	5.482	2.2770	55
CAUSE 9	4.809	2,1398	55
CAUSE 10	6.400	1.9940	55
CAUSE_11	4.891	2.3935	55
CAUSE 12_	5,245	2.2554	55

Descriptive Statistics

			•	1	Change Statistics				
Mnde)		R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	dfl	df2	Sig. F Change
11	.5491	.302	.102	1.6160	302	1.511	12	42	.158
12 j	.5498]	.302	.123	1.5971	.000	.000	1	44	.996
3	.5494	.301	.142	1.5792	.000	.021		45	.884
4	.5488	.300	.160	1,5630	001	080	. 1	46	.779
5	.5464	.298	.176	1,5481	002	.128	1	47	.722
6	.5431	.295	.190	1,5350	003	.204	1	48	.653
7	.537¤	.288	.199	1,5264	007	.466		49	498
le (.532*	.284	.210	1,5154	004	.292	1	50	.592
9	.527	.278	.220	1,5059	.006	.378	i 1	Si	541
[10]	511	.261	.218	1 5082	017	1.158	i I	52	_287

- * Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_3, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- b. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_3, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_11, CAUSE_1, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- d. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_8, CAUSE_2
- 1. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_2
- g. Predictors: (Constant), CAUSE_12, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_2
- h. Predictors: (Constant), CAUSE_12, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_2
- i. Predictors: (Constant), CAUSE_12, CAUSE_3, CAUSE_10, CAUSE_2
- i. Predictors: (Constant), CAUSE_12, CAUSE_3, CAUSE_10
- k. Dependent Variable: SCP5

ANOVAK

Model		Sum of Squares	df	Mean Square	F.	Sig.
1	Regression	47.363	12	3.947	1.511	.158*
	Residual	109.682	42	2.611	- 1	
	Total	157,045	54]	F	
2	Regression	47.363	11	4.306	1.688	.t09b
	Residual	109.682	43	2.551		
i	Total	157.045	54	1 1		
3	Regression	47.308	10	4.731	1.897	.071°
	Residual	109,737	44	2.494	l	
ı	Total	157.045	54] [ļ	

505 -

ANOVA^k

Model		Sum of Squares	ď	Mean Square	F	Sig.
4	Regression	47,109	9	5,234	2.143	.0459
	Residual	109.937	45	2.443		
	Total .	157,045	54	\ \ \	{	
5	Regression	46,795	8	5.849	2,441	.027
	Residual	110.250	46	2.397		
	Total	157.045	54	· •	Ļ	
6	Regression	46.305	7	6.615	2.808	,016 ⁶
	Residual	110.740	47	2.356		
	Total	157.045	54	1		
7	Regression	45.207	6	7.534	3.234	.009
	Residual	111.839	48	2.330		
	Total	157.045	54	1	- 1	
8	Regression	44,527	5	8,905	3.878	.005
	Residual	112.518	49	2.296		
_	Total	1,57,045	54		_ [_	
-	Regression	43.659	4	10.915	4.813	.002
	Residual	113.386	50	2.268		
	Total	157.045	54	l i		
ió	Regression	41.033	3	13.678	6.013	.001
	Residual	116.012	51	2.275	ļ	
	Total	157,045	54			

- a. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_9, CAUSE_9, CAUSE_8, CAUSE_2
- b. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_9, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_11, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- d. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_8, CAUSE_2
- f. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_3, CAUSE_2, CAUSE_10, CAUSE_5, CAUSE_2
- g. Predictors: (Constant), CAUSE_12, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5. CAUSE_2
- in Predictors: (Constant), CAUSE_12, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_2
- i. Predictors: (Constant), CAUSE_12, CAUSE_3, CAUSE_10, CAUSE_2
- j. Predictors: (Constant), CAUSE_12, CAUSE_3, CAUSE_10
- k. Dependent Variable; SCP5

Analysis for Ca-SCP5-MC

		NOMO TELL	INICATOR
	CAUSE 12, CAUSE 4, CAUSE 6, CAUSE 11, CAUSE 7, CAUSE 1, CAUSE 10, CAUSE 9, CAUSE 8, CAUSE 8,	- 1	Enter
2	.	CAUSE_I	Backward (criterion: Probability of P-to-remove >= .100).
3		CAUSE_6	Backward (criterion: Probability of F-to-remove >= .100).
4		CAUSE_11	Backward (oriterion: Probability of F-to-remove >= 100).
5		CAUSE	Backward (criterion: Probability of F-to-remove >= ,100).
6		CAUSE_8	Backward (criterion: Probability of F-to-remove >= 1001

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
,		CAUSE_4	Backward (criterion: Probability of F-to-remove >= .100).
8	-	CAUSE_5	Backward (criterion: Probability of F-to-remove >= .100).
9		CAUSE_7	Backward (criterion: Probability of F-to-remove >= .100).
10		CAUSE_2	Backward (criterion: Probability of F-to-remove >= ,100).

- a. All requested variables entered.
- b. Dependent Variable: SCP5

Analysis for Ca-SCFS-MC

Analysis for Ca-SCPS-MC

Coefficients*

		Unstandardized Coefficients		Standardized Coefficients			95% Confidence	Interval for B	Correlations		
Model		_B	Std. Errot	Beta		Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part
8	(Constant)	3.304	.817		4.044	.000	1.662	4,946			
	CAUSE, 2	.163	.134	-209	-L.219	.229	432	.106	.179	172	147
	CAUSE_3	.280	.119	.366	2.351	.023	.041	.520	.331	.318	.284
	CAUSE_7	6.603E-02	.107	.095	.615	.541	150	.282	.278	880.	.074
	CAUSE_10	.399	.135	.466	2.945	.005	.127	.671	.319	.388	356
	CAUSE_12	262	.110	346	-2.378	.021	483	041_	071	- 322	288
9	(Constant)	3.277	.811		4.042	.000	1.649	4.906			
	CAUSE_2	-,133	,[24	171	-1.076	.287	382	.116	.179	150	129
	CAUSE_3	290	.117	.379	2.466	.017	.054	.525	.331	.329	.296
	CAUSE 10	424	.128	.495	3.300	.002	.166	.682	.319	.423	.397
	CAUSE 12	- 270	.109	-357	-2.484	.016	488	052_	071	- 331	. 298
10	(Constant)	3,136	.801		3.914	.000	1.528	4.745			.275
	CAUSE 3	213	.094	.279	2.276	.027	.025	.401	331	.304	.27
	CAUSE_10	388	,124	.454	3.123	.003	.139	.638	.319	.401	.373
	CAUSE 12	- 260	.108	344	-2.396		-,477	042	071	318	.28

for Ca-SCP5-MC

- 506;-

Coefficients*

14-4-1	Collinearit	y Statistics VIF
Model (Constant)	Tolerance	VIF
CAUSE_1	.213	4.690
CAUSE_2	.150	6,668
CAUSE_3	.130	2.272
CAUSE_4	.195	5.125
CAUSE_5		3.343
CAUSE_6	.299	
CAUSE_7	.783	1.277
	.394	
CAUSE_8	.187	5.351
CAUSE_9	.257	3.897
CAUSE_10		2.964
CAUSE_I		3.995
CAUSE_12	.568_	1.761
2 (Constant)	1	
CAUSE_2	.319	3.138
CAUSE_3	467	2.141
CAUSE_4	.196	5.107
CAUSE_5	.299	1.342
CAUSE_6	.804	1.243
CAUSE_7	.396	2.527
CAUSE_8	.187	5.349
CAUSE_9	.259	3.857
CAUSE_IC		2.954
CAUSE_11		3.994
CAUSE_12		1,554
J (Constant)	1)
CAUSE_2	.325	3.0B1
CAUSE_3	.467	2.140
CAUSE_4	.199	5.019
CAUSE_5	.301	3.318
CAUSE_?	.401	2.492
CAUSE_8	.194	5.155
CAUSE_9	.259	3.857
CAUSE_IC		2.945
CAUSE_I	.262	3.820
CATIES 15		

Coefficient

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidence			Correlations	
(odel		В	Std. Error	Beta	\	Sig.	Lower Bound	Upper Bound	Zero-order	Pertial	Purt
	(Constant)	3.237	.903	_	3.585	,001	1.415	5.059			
	CAUSE_1	-1.051E-03	.213	001	005	.996	430	.428	.125	001	-,
	CAUSE_2	-,114	.259	- 146	43B	.664	637	.410	.179	067	
	CAUSE_3	.239	.149	.313	1.611	.115	060	.539	331	.241	
	CAUSE_4	162	.207	- 229	-785	.437	. 579	.255	.234	- 120	
	CAUSE_5	,161	.176	.216	.916	.365	194	.517	.284	140	
	CAUSE 6	-3.887E-03	.027	-021	-,142	.888	059	.051	.061	022	
	CAUSE, 7	.125	.143	.180	.875	.386	163	.413	.278	.134	
	CAUSE_8	-8.128E-02	.223	109	364	.718	532	.370	.243	056	
	CAUSE_9	8.083E-02	203	.101	.398	.692	-329	490	. 258	.061	
	CAUSE, 10	428	.190	.500	2.252	.030	.044	.811	.319	.328	
	CAUSE_11	-5.518E-02	.184	077	300	.765	426	.315	.220	046	
	CAUSE_12	269	.129	- 356	-2.080	.044	.530	008	+.071	306	
_	(Constant)	3,237	.892		3.628	.001	1.437	5.036			
	CAUSE 2	115	.176	147	651	.518	469	.240	179	099	
	CAUSE_3	239	.143	313	1.679	.100	048	.527	.331	.248	
	CAUSE_4	- 162	204	- 229	795	.431	.573	249	.234	120	
	CAUSE_5	.162	.174	.216	.927	.359	190	.\$13	.284	.140	
	CAUSE_6	-3.909E-03	.027	021	146	.884	058	.050	.061	022	
	CAUSE_7	,125	.141	.180	.888	.379	159	.408	.278	.134	
	CAUSE 8	-8.125E-02	.221	- 108	368	.715	-,526	.364	.243 أ	056	
	CAUSE 9	8.094E-02	.199	.102	.406	.687	-321	.483	.258	.062	
	CAUSE_10	428	.187	.500	2.283	.027	.050	.806	.319	.329	
	CAUSE_11	-5.519E-02	,181	077	301	.763	.421	.311	.220	046	
	CAUSE 12	- 269	.120	356	-2.242	.030	511_	027	071	324	
_	(Constant)	3.242	.881		3.578	.001	1.466	5.019	i .		
	CAUSE_2	-111	.172	143	645	.523	458	.236	. 179	097	
	CAUSE 3	.240	.141	.314	1.702	.096	-,044	.524	.331	.248	
	CAUSE_4	166	.200	-235	831	.411	569	.237	.234	+.124	
	CAUSE_5	.159	.172	.213	.929	.358	-,186	.505	.284	.139	
	CAUSE_7	.122	.138	.177	.B87	.380	156	.401	.278	.133	
	CAUSE_8	-8.739E-02	.214	-117	408	.685	519	.344	243	061	
	CAUSE_9	8.106E-02	.197	.102	.411	.683	-,316	.479	.258	.062	
	CAUSE_10	.429	.185	.502	2.320	.025	.036	.802	.319	.330	
	CAUSE_11	-4.965E-02	.175	070	- 283	.779	403	304	220	-,043	
	CAUSE_12	271	.118	-358	-2.287	027	.500	032	07 ∟.	326	

Coefficients

		Unstandardized Coefficients		Standardized Coefficients			95% Confidence			Correlations	
Mode!		В	Std. Error	Beta		Sig,	Lower Bound	. Uppet Bound	Zero-order	Partin)	
4	(Constant)	3.275	.865		3.787	.000	1.534	3.017			
	CAUSE_2	118	.169	152	703	.486	458	.221	.179	.104	088
	CAUSE_3	.248	.136	.325	1.822	.075	026	.523	.331	.262	.227
	CAUSE_4	161	.197	-227	817	.418	+.\$\$8	.236	.234	l21	-10:
	CAUSE_5	.155	.169	.207	.915	365	186	495	,284	.135	.114
	CAUSE_7	.123	.137	.177	.901	.372	152	.398	.278	.133	.112
	CAUSE_8	-,111	.196	148	-,566	.574	505	. 283	.243	084	07
	CAUSE_9	6.802E-02	.190	.085	.358	.722	-,314	.450	.258	.053	.043
	CAUSE_10	.412	.172	.481	2.388	.021	.064	.759	.319	.335	.298
	CAUSE_12_	267	.117	354	-2.294	027	- 502		071	324	286
5	(Constant)	3 223	344		3.817	.000	1.524	4.923	1		
	CAUSE_2	114	.167	147	686	496	449	.221	.179	101	081
	CAUSE_3	.248	.135	.325	J.840	.072	-,023	.520	.331	.262	.22
	CAUSE_4	139	.186	196	-,749	.457	-513	.234	234	-110	09
	CAUSE_5	.142	.154	.190	.268	.390	188	.472	, .284	.127	.10
	CAUSE_7	.118	.134	.169	.874	.386	153	.388	.278	.128	.102
	CAUSE_B	7.639E-02	.169	102	452	.653	417	.264	.243	.066 j	05
	CAUSE_10	.432	.161	505	2.686	.010	.108	.756	.319	.368	33
	CAUSE_12	267			-2.311	.025	-,499	034	071	-,323	28
6	(Constant)	3.278	.829		3.956	.000	1.611	4.945		!	08 09 10 10 03 22 10 22 06
	CAUSE_2	+.132	.160	170	825	.413	455	.190	179	120	10
	CAUSE_3	.246	.134	.321	1.838	.072	-,023	.515	. 331	.259	.22
	CAUSE_4	123	.181	174	683	.498	-,487	.240	.234	099	086
	CAUSE_5	.136	.162	.182	.842	.404	189	.462	1 ,284	.122	.103
	CAUSE_7	8.407E-02	.111	.121	.756	.454	140	.308	.278	.110	.093
	CAUSE_10	.398	.140	.465	2.832	.007	.115	.680	,319	.382	.34
	CAUSE_12	275		364	-2,434	.019	502	048	.071	-,335	291
7	(Constant)	3.282	.824		3.983	.000	1,625	4.939	li		
	CAUSE_2	-,184	.140	237	-1.313	.195	-,456	.098	,179	-\186 .	160
	CAUSE_3	.249	.133	.326	1.878	.067	018	517	331	.262	.22
	CAUSE_5	6.897E-02	.128	.092	.540	.592	188	.326	.284	.078	.060
	CAUSE_7	6.853E-02	.108	.099	.633	.530	149	286	.278	.091	.077
	CAUSE_10	.386	.139	.451 1	2,785	.008	.107	.664	.319	.373	.33

Ş	
5	
ρ	
ŝ	
Ÿ	
ā	

Analysis for Ca-SCP5-MC

	Mean	Std. Deviation	N
SCPS	5.064	1,3448	117
CAUSE_I	6.329	1.6945	117
CAUSE_2	5.368	1.7731	117
CAUSE_3	5.5B1	1.7665	117
CAUSE_4	5.350	1.6417	117
CAUSE_5	5.261	1.6976	117
CAUSE_6	5.171	1.7034	117
CAUSE_7	5,500	1.7145	117
CAUSE_8	6.444	1.6697	117
CAUSE_9	7.162	1.6646	117
CAUSE_10	5.615	1,5134	117
CAUSE_11	5.551	1.6287	117
CAUSE_12	5.765	1.7039	117

- 507 -

Model		Tolerance	L VE
14	(Constant)		
1	CAUSE_2	.332	3.010
1	CAUSE_3	.490	2.042
1	CAUSE_4	.201	4.977
	CAUSE_5	.304	3.285
1	CAUSE_7	.401	2.492
ì	CAUSE_8	.228	4.390
	CAUSE_9	.274	3.646
ł	CAUSE_10	.383	2.610
<u></u>	CAUSE_12	.654	_1.529
3	(Constant)	I	
1	CAUSE_2	.334	2.995
1	CAUSE_3	.490	2.042
1	CAUSE_4	.222	4.502
1	CAUSE_5	.318	3.148
i	CAUSE_7	.407	2.460
ļ.	CAUSE_8	.300	3.336
1	CAUSE_10	.431	2,319
18	CAUSE_12	.654	1.529
١٥	(Constant)	_ !	
1	CAUSE_2	.354	2.824
1	CAUSE_3	491	2.038
l	CAUSE_4	.230	4.345
1	CAUSE_S	320	3.129
l	CAUSE_7	.584	1.713
i	CAUSE_10	.557	1.795
 , - -	(Constant)	.671	1.490
l'			
1	CAUSE_2 CAUSE_3	.457	2.188
l		.491	2.035
í	CAUSE_5 CAUSE 7	.508	1.967
l	CAUSE 10	.609	1.641
i	CAUSE 10	365	1.763

Correlations

		SCP5	CAUSE_1	CAUSE 2	CAUSE 3	CAUSE_4	CAUSE_5	CAUSE 6	CAUSE 7	CAUSE 4	CAUSE 9
Pearson Correlation	SCF5	1.000	.264	197	.402	.371	.439	.400	.475	.283	.404
	CAUSE_I	.264	1.000	.662	.486	A32	.520	.496	.329	.453	.384
	CAUSE_2	.197	.662	1.000	.507	.561	.516	.445	.355	.402	.390
	CAUSE_3	.402	455	.607	1.000	.624	.565	.566	.500	.319	.473
	CAUSE_4	.371	.432	.561	.624	000.1	.644	.472	.420	395	.386
	CAUSE_5	.439	.520	.516	.565	.644	1.000	.654	.405	.446	.376
	CAUSE_6	.400	.496	.44\$.566	.472	.654	1.000	.481	.417	.464
	CAUSE_7	.475	_329	.355	.500	.420	.405	.481	1.000	416	.331
	CAUSE_8	.283	.453	.402	.319	.395	.446	A17	.4 16	1,000	.478
	CAUSE_9	.404	,384	.390	.473	.386	.376	.464	.331	.478	1.000
	CAUSE_10	.311	.331	.265	.394	.487	.492	.348	.229	.339	-502
	CAUSE_II	_332	.288	.386	.406	.495	.429	.356	.4[8	.483	.537
	CAUSE_12	.167	.199	.112		.237	238	.278	.292	350	
Sig. (7-tailed)	SCP5] " ¬	.002	.017	.000	.000	.000	.000	.000	.001	≥000
	CAUSE_1	.002		.000	.000	.000	.000	.000	.000	.000	2.000
	CAUSE_2	.017	.000		.000	.000	.000	.000	.000	.000	₹.000
	CAUSE_3	.000	.000	.000		.000	.000	.000	.000	.000	2:000
	CAUSE_4	.000	.000	.000	.600		.000	.000	.000	.000	9.000 9.000
	CAUSE_5	.000	.000	.000	.000	.000		.000	.000	.000	₹.000
	CAUSE_6	.000	.000	.000	.000	.000	.000		.000	.000	₽ 000
	CAUSE_7	.000	.000	.000	.000	.000	.000	.000		.000	200 200 3
	CAUSE_8	.001	.000	.000	.000	.000	.000	.000	.000		. ⊡‱
	CAUSE_9	.000	.000	.000	.000	.000	.000	,000	.000	.000	ر.
	CAUSE_10	.000	.000	.002	.000	.000	.000	.000	.006	.000	±2000
	CAUSE_II	.000	.001	.000	.000	.000	.000	.000	.000	.000	€000
	CAUSE_12	036	.016	.114	.009	. 005	.005	.001	.001	.000	.001
N	SCPS	117	117	117	117	117	117	117	117	117	117
	CAUSE_1	117	117	117	137	127	117	117	117	117	117
	CAUSE_2	117	117	117	117	117	117	117	117	117	117
	CAUSE_3	117	117	117	117	117	117	117	117	117	117
	CAUSE_4	117	117	117	[17	117	117	117	117	117	117
	CAUSE_5	117	117	117	117	117	117	117	117	117	117
	CAUSE_6	117	117	117	117	117	117	117	117	117	117
	CAUSE_7	117	117	117	117	117	117	117	117	117	117
	CAUSE_8	117	117	117	117	117	117	117	117	117	117
	CAUSE_9	117	117	117	117	117	117	117	117	117	117
	CAUSE_10	117	117	117	117	117	117	117	117	117	117
	CAUSE_I1	117	117	117	127	117	117	117	117	117	117
	CAUSE_12		_117	117	117_		117_	117	117	. 117.	117

Coefficients*

		Collinearity Standard					
Model		Tolerance	VIF				
8	(Constant)						
	CAUSE_2	496	2.017				
	CAUSE_3	,602	1.662				
	CAUSE_7	610	1.633				
	CAUSE_10	.583	1.715				
	CAUSE_12	.689	_1.451				
9	(Constant)	-					
	CAUSE_2	.570	1.754				
	CAUSE 3	.612	1.634				
	CAUSE_ID	.640	1.562				
	CAUSE_12	.699	1.431				
10	(Constant)						
	CAUSE_3	.966	1.036				
	CAUSE 10	.686	1.458				
	CAUSE 12	704	1.420				

a. Dependent Variable: SCPS

Model	Variables Entered	Variables Removed	Method
7		CAUSE_4	Backward (enterion: Probability of F-to-remove >= ,100),
8		CAUSE_12	Backward (criterion: Probability of F-to-remove >= .100).
9	•	CAUSE	Backward (enterion: Probability of F-to-remove

a. All requested variables entered.

b. Dependent Variable: SCP5

- 508:-

M. Summaryi

	1				Change Straistics				
Model		R Squate	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1.—	508*	,370	.297	1.1272	.370	5.092	12	IŌ4	.000
2	.503*	.370	.304	1.1218	.000]	.000	ı	106	.999
3	.608*	.370	311	1.1165	.000	.000	1	107	.990
4 }	.6084	.370	.317	1.1314	.000)	.033]	1	108	.855
5	.607*	.369	.322	1.1071	001	.165	1	109	.685.
6	.6061	.368	.327	1,1030	001	.193	2	110	.661
7	.605#	,366	_331	1.0995	002 [301	1	121	.584
8	.602 ^h	.362	.334	1.0976	-,004)	.617	1	112	.434
Ģ	597	356	333	1.0980	006	1.083	_ 1	113	

Productors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_5, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_1, CAUSE_1, CAUSE_3, CAUSE_5

b. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_5, CAUSE_8, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5

c. Predictors: (Constant), CAUSE_12, CAUSE_2. CAUSE_7, CAUSE_8. CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5

d. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5

c. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5

1. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_4, CAUSE_3, CAUSE_5

s. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_3, CAUSE_5

h. Predictors: (Constant), CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_1, CAUSE_5

i. Predictors: (Constant), CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_5

3 Dependent Variable; SCP5

Courelations

·				
B # 1.	- POWE	CAUSE 10	CAUSE 11	CAUSE 12
Pearson Correlation	SCP5	311	.332	.167
	CAUSE 1	.331	.288	.199
	CAUSE_2	265	.386	.112
	CAUSE_3	.394	.406	.218
	CAUSE_4	.487	.495	.237
	CAUSE_S	.492	.429	.218
	CAUSE_6	.348	.356	.278
	CAUSE_7	229	.418	.292
	CAUSE_8	-339	.483	.350
	CAUSE_9	.502	.537	.239
	CAUSE_10	1.000	.506	349
	CAUSE_II	.506	1.000	.392
Sig. (1-tailed)	CAUSE_12 SCP5	349	.392	1.000
712' (1-191160)	CAUSE_I	.000	.000	.036 .016
	CAUSE_1 CAUSE 2	.002	.000	.010
	CAUSE_2	.002	.000	.009
	CAUSE 4	.000	.000	003
	CAUSE 5	.000	.000	003
	CAUSE 6	.000	.000	100.
	CAUSE 7	.006	.000	.001
	CAUSE B	.000	.000	000
ľ	CAUSE 9	.000	000	.001
	CAUSE_10	1 ~~.	000	1 .000
	CAUSE_11	.000		.000
	CAUSE_12	000		ŧ.
N	SCP5	117	117	117
	CAUSE_I	117	117	117
Į.	CAUSE_2	117	117	117
	CAUSE_3	117	117	117
	CAUSE_4	117	117	117
	CAUSE_S	117	117	117
	CAUSE_6	117	117	117
}	CAUSE_7	117	117	117
	CAUSE_B	117	117	11.7
i	CAUSE_9	117	107	117
	CAUSE_10	117	117	117
1	CAUSE_II	117	117	117
L	CAUSE 12	117	117	117

Variables Entered/Removed*

Modei	Variables Entered	Variables Removed	Mirthod
	CAUSE_12, CAUSE_2, CAUSE_0, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_1, CAUSE_1, CAUSE_1, CAUSE_1, CAUSE_3, CAUSE_3,		Enter
2 	. !	CAUSE_6	Backward (criterion: Probability of F-to-remove >= .100).
3		CAUSE_10	Backward (criterion: Probability of F-to-remove >= ,100).
		CAUSE_11	Backward (criterion: Probability of F-to-remove >= .100).
s 		CAUSE_8	Backward (criterion: Probability of F-to-remove >= .100).
5		CAUSE_1	Backward (criterion: Probability of F-10-remove >= 100).

for Ca-SCP

1.15.2.1			e sometill	: Locitioents	J	1	losa oe.	•	1		
Model	(Constant)	В.	Std. Error	Beta	1 .	Sig	Lower Books	Linterval for B	 	Correlations	
- []	CAUSE_1	1.745	570		3.058	.003		Upper Board	Zern-order	Partial	Part
		4.344E-02	.087	.055	.498	.519	.614	2.876	ł	, —	
- 1	CAUSE_2	- 191	.090	251	2.120	.036	129	.216	.264	.048	.038
ı	CAUSE_3	6.843E-02	.090	.090	.758	.450	-369	012	.197	201	163
1	CAUSE_4	5.623E-02	.093	.069	.603	.548	-110	.247	.402	.073	.058
	CAUSE_5	202	.088	.255	2.300	.023	129	.241	.371	.058	.046
1	CAUSE_7	253	.074	.323	3.415	.001	.028	.376	.439	.217	.176
- 1	CAUSE_8	-3.302E-02	.081	140.	-,407	.685	.106	.400	475	.313	262
1	CAUSE_9	.200	.077	.248	2.597		194	.128	.283	039	031
	CAUSE_12	_5.069E-02	067		+.757	.011	.047	.353	.404	.244	199
15	(Constant)	1.717	.564		3.043	.451	- 183	092			058
	CAUSE_1	3.765E-02	.086	.047	.440	.003	.599	2.836			
1	CAUSE_2	194	.089	256	-2,173	.561	- 132	.207	.264	.042	n t e l
	CAUSE_3	7.573E-02	.088	.099		.032	371	017	.197	- 205	(2)
	CAUSE_4	5 3 86E-02	.093	.066	.860	392 (099	.250	402	052	-165 -165 -165
4	CAUSE_S	.197	.087	.248	.581 2.273	.562	130	.238	371	.056	0
1	CAUSE_7	.247	.072	315	3.422	.025	.025	.363	.439	214	173
	CAUSE_9	.192	.073	.237		.001	.104	.390	.475	.313	76
<u> </u>	CAUSE_12	_5.582E-02	066	- 071	2.602 852	110.	.046	.337	.404	.243	66 126 239 250 250 250 250 250 250 250 250 250 250
6	(Constant)	1.778	545				186		.167	082	.000
ì	CAUSE_2	175	.078	- 231	3.262	.001	.698	2.858			- 1.00.00 P
	CAUSE_)	7.645E-02	.088	100	-2.249	.027	329	021 [.197	211	2750
	CAUSE_4	5.050E-02	.092	.062	.87t .549	-386	- 097	.250	402	.083	000
1	CAUSE_5	.205	.084	259	2,449	584	132	.233	371	.052	.042
	CAUSE_7	.248	.072	316	3,448	.016	.039	372	.439 {	.228	.187
ſ	CAUSE_9	.194	.071	.241	2,671	.001	105	.390	.475	.314	.263
	CAUSE_12	-5,327E-02	.065	068		.009	.050	.339	.404	.248	203
7	(Constant)	1.804	.541	- ·.uce	819	.414	182	076	167 \	078	062
ľ	CAUSE_2	166	.076	-219	3.334	.001	.732	2.877			
1	CAUSE_3	8.862E-02	.085	.116	-2.190	.031	317	016	.197	204	166
1	CAUSE_5	223	.077	.281	1.047 2.882	297	079	.256)	.402	.099	.079
]	CAUSE_7	250	.071	.319	3.507	.005	.070	.376	.439	.265	.219
1	CAUSE_9	.196	.073	.242		100.	.109	.392	475	.317	266
L	CAUSE 12	.5.079E-02			2.696	.008	.052	.339	.404	249	205
	-			- 104	- 786	434	179		167	- 075	203

Coefficients!

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidence	e Interval for R		Contributions	
Model		B	Std Error	Beta	1	Sig	Lower Bound	Urrer Bound			
ă.	(Constant)	1.635	306		3.272	.001			Zero-order	Partial	Part
	CAUSE_2	161	.075	212	-2,128		.652	2.657		1 7	
	CAUSE 3	8.794E-02				.036	-310	011	.197	198	16
	CAUSE_5		.084	.116	1.041	.300	079	.255	.402	.098	.07
		.216	.077	.273	2.819	.006	.064	.369	.439		
	CAUSE_7	.240	.070	306	3,427	.001	.101			258	.21
	CAUSE_9	.185		229	2.598			.379	.475	.309	.26
9	(Constant)	1.542	.506			011_	044			239	19
	CAUSE, 2	:131			3.247	.002	.640	2.645			
	CAUSE S		.070	173	-1.874	.064	270	.003	.197	-,174	140
		.238	.074	.300	3.210	.002	.091	,384			
	CAUSE_7	.261	.067	.332	3.873 (000			439	.290 [.243
	CAUSE 9		069	249	2.906		.127	.394	.475	.344	.29
					43.0	004	064		.404		2

1	KEKLEMOU	11.033	17	0.470	3.092	.000
	Rendual	132.134	104	1.271	ſ	
I	Total	209.769	116			
2	Regression	77.635	21	7.058	5.608	.000
ı	Residual	132.134	105	1.258		
1	Total	209.769	116		1	
3	Regression	77.635	10.	7.763	6.228	.000
	Residual	132,134	106	1.247	1	
1	Total	209.769	116			
4	Regression	77.593	9	8.621	6.979	.000
1	Residual	132.176	107	1.235	ļ	
ì	Total	209.769	116		- 1	_
5	Regression	77.389	8	9.674	7.892	.000
1	Residual	132.380	108	1.226		
	Total	209.769	116	1	ļ	_
6	Regression	77.152	7	11.022	9.059	.000
1	Residual	132.617	109	1.217		
1	Total	209.769	116			
7	Regression	76.786	5	12.798	10.586	.000
1	Residual	132.983	110	1.209		
ļ.	Total	209.769	116			
8	Regression	76.040	5	15.208	12.623	.000
1	Residual	133.729	111	1.205		
1	Total	209.769	116			
9	Regression	74.735	4	18.684	15.497	.000
I	Residual	135.035	112	1.206		

Total 299.369 116 a. Predictors: (Constant), CAUSE_12, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidence	inerval for 8		Correlations	
Model		B	Std Error	Beta	ı t	Sig	Lower Bound	Upper Board	Zero-ordez	Partial	Part
Į.	(Constant)	1.743	.587		2.968	.004	.578	2.908			
	CAUSE_I	4.571E-02	.091	.058	504	.615	-,134	.225	.261	.049	.03
	CAUSE_2	- 192	.093	254	-2.059	.042	378	007	.197	198 (16
	CAUSE_3	6.927E-02	.093	.091	.745	.458	115	.254	.402	.073	.05
	CAUSE_4	5,260E-02	.098	.064	535	.594	142	.248	.371	.052	.04
	CAUSE_5	.201	.100	.253	1.997	.048	.001	.400	.439	.192	.15
	CAUSE_6	-1.054E-04	.092	.000	-001	.999	+.LE3	.183	.400	.000]	.oc
	CAUSE_7	.252	.078	.321 -	3219	.002	.097	407	.475	301	.25
	CAUSE_8	-3.527E-02	.083	044	-422	.674	201	.130	.283	041	03
	CAUSE_9	.195	.088	.242	2232	.023	.022	.369	404	214	.17
	CAUSE_10	1.143E-03	.094	.001	.012	.990	186	.188	.311	.001	.00
	CAUSE_11	1.575E-02	.091	.019	.174	.862	164	.196	.332	.017	.0.
	CAUSE_12	-5.356E-02	.071	068	757		194	.087	.167	074	05
	(Constant)	1.743	.584		2.987	.004	.586	2.901			
	CAUSE_I	4.570E-02	.089	.058	311	.610	132	.223	.264	.050	.0 1
	CAUSE 2	-,192	.093	254	-2,071	.041	-377	008	.197	. 198]	16
	CAUSE_3	6.925E-02	.091	.091	.759	.450	112	.250	.402	.074	.02
	CAUSE_4	5.261E-02	.098	.064	538	.591	141	.246	.371	.052	.04
	CAUSE_5	201	.091	.253	2.208	.029	.020	.381	.439	.211	.1
	CAUSE_7	.252	.076	J21	3.295	.001	.100	.403	.475	.306	.2;
	CAUSE_8	-3.527E-02	.083	- D44 -	- 425	.672	-200	.129	.283	041	.11 .21 -00 .11
	CAUSE_9	.195	.085	.242	2.295	.024	.027	.364	.404	.219	.17
	CAUSE_10	1.153E-03	.093	.001	.012	.990	184	.186	311	.001	LOT
	CAUSE_11	1.576E-02	.090	.019	.175	.861	163	.194	.332	.017	.0.
	CAUSE 12	-5,357E-02	.070	068	764	.446	193	.085	.167	074	05
	(Constant)	1.745	.573		3.044	.003	.608	2.881			
	CAUSE_I	4.581E-02	.088	.058	.518	.606	+.130	.221	.264	.050	.04
	CAUSE_2	193	.091	254	-2.118	.037	373	012	.197	201	16
	CAUSE_3	6,929E-02	.091	.091	.763	.447	111	.249	.402	.074	.01
	CAUSE_4	5.2848-02	.095	.065	353	.582	+.136	.242	.371	.054	۵
	CAUSE_5	201	.088	.254	2.273	.025	.026	.376	.439	.216	.17
	CAUSE_7	.251	.075	.321	3,344	.001	.102	400	.475	.309	.2
	CAUSE_B	-3.532E-02	.083	044	428	.670	199	.128	.283	042	0
	CAUSE_9	.196	.082	.242	2,393	.018	.034	.358	.404	.226	.10
	CAUSE_II	1.600E-02	.088	.019	.183	.855	157	.189	332	.018	.0
	CAUSE 12	-5.344E-02	069	- 068	775	440	.190	083	.157	075	06

b. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5

c. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5

d. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
e. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5

f. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_4, CAUSE_3, CAUSE_5

E. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_3, CAUSE_5

h. Predictors: (Constant), CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_1, CAUSE_5

i. Predictors: (Constant), CAUSE_2, CAUSE_7, CAUSE_9, CAUSE_5

³ Dependent Variable: SCP5

Ź	
Ę0	
Š	
ũ	
7	

		Collineanty Statistics				
Model _		Tolerance	<u> </u>			
8 —	(Constant)	T				
	CAUSE_2	.580	1.724			
	CAUSE_3	.466	2.145			
	CAUSE 5	.612	1.635			
	CAUSE 7	,720	1.389			
	CAUSE 9	.742	1,347			
, 	(Constant)	11				
	CAUSE 2	.675	1,481			
	CAUSE 5] 82A. [1.520			
	CAUSE_7	.783	1.278			
	CAUSE 9	782	1.279			

Coefficients

a. Dependent Variable: SCPS

- 510 -

Regression

Descriptive Statistics

	Mean	Std. Deviation	N
SCP5	5.380	1,7694	25
CAUSE 1	6.800	2.2913	25 [
CAUSE_2	6.680	2.1884	25
CAUSE_3	6.600	2.2913	25
CAUSE.	6.820	2,3313	25]
CAUSE 5	6.700	2.2638	25
CAUSE_6	6.200	2.2958	25
CAUSE.7	5.680	2.0355	25
CAUSE 8	6.400	1.8428	25
CAUSE_9	5,520	2.3826	25
CAUSE_10	6 440	2.0530	25
CAUSE_II	5,320	2,5612	25
CAUSE IZ.	5,600	2.3529	25

	Collinearit	y Statistics
ode	Tolerance	VII
(Constant)		
CAUSE_1	.465	2,152
CAUSE_2	.399	2.507
CAUSE_3	.406	2,466
CAUSE_4	.42]	2,378
CAUSE_S	.376	2.657
CAUSE 6	444	2 250
CAUSE 7	.610	1.639
CAUSE 8	364	1,774
CAUSE 9	.516	1.938
CAUSE_10	.538	1.859
CAUSE 11	.502	1.991
. CAUSE_12	.754	1,326
(Constant)		
CAUSE_1	473	2116
CAUSE_2	.400	2.501
CAUSE_3	.417	2,396
CAUSE_4	422	2.372
CAUSE_5	455	2,195
CAUSE_7	.633	1.580
CAUSE_8	_164	1.773
CAUSE_9	.540	1,851
CAUSE_10	.542	1.845
CAUSE_11	.505	1.979
CAUSE_12		1315
(Constant)		
CAUSE_I	.478	2.093
CAUSE_2	.4[3	2.420
CAUSE_3	418	2.393
CAUSE_4	.437	2.287
CAUSE_5	.477	2,095
CAUSE_7	.647	1.546
CAUSE_8	.566	1,768
CAUSE_9	.580	1,723
CAUSE_11	.529	1.890
CAUSE_12	772.	1,294

Coefficients

		Collinearit	Statistics v
Model		Tolerance	VIF
1-10-01	(Constant)	10/2/244	
	CAUSE I	.483	2,048
	CAUSE 2	.419	2,389
	CAUSE 3	.419	2,385
	CAUSE 4	.454	2 200
1	CAUSE_5	.479	2.087
	CAUSE_7	.659	1.518
	CAUSE_8	.579	1.727
	CAUSE_9	.645	1.549
l	CAUSE 12	818	1.223
3	(Constant)		
	CAUSE_1	.502	1.993
	CAUSE_2	422	2.370
	CAUSE_3	.436	2.292
	CAUSE_4	456	2.192
l	CAUSE_5	.490	2.042
	CAUSE_7	.692	1.446
ĺ	CAUSE_9	.707	1.415
	CAUSE_12	848	1,180
8	(Constant) CAUSE 2		
		.551	1.813
	CAUSE_3	436	2.291
	CAUSE_4	.459	2.177
	CAUSE_5 CAUSE 7	517	1.933
	CAUSE 9	.692	1.44\$ 401
	CAUSE 12	.714 .854	1.170
	(Constant)		1.170
'	CAUSE 2	.575	1,740
	CAUSE 3	466	2.145
}	CAUSE_5	.605	1.654
	CAUSE 7	696	1.438
l	CAUSE 9	.715	1.399
	CAUSE 12	859	1.155

ļ	CAUSE 5. CAUSE 9, CAUSE 6. CAUSE 1. CAUSE 7. CAUSE 10, CAUSE 10, CAUSE 11, CAUSE 11, CAUSE 14		Enter
2		CAUSE_4	Backward (cnterion: Probability of F-to-remove >= 100).
3	: -	CAUSE_10	Backward (cnterion: Probability of F-to-remove >= ,100).
4	.	CAUSE_12	Backward (criterion: Probability of F-to-remove >= .100).
5		CAUSE_8	Backward (enterion: Probability of F-to-remove
6		CAUSE_2	>= ,100). Backward (crittrion: Probability of F-to-remove >= 100).

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
)		CAUSE_6	Backward (enterion: Probability of F-to-remove >= .100).
8		CAUSE_9	Backward (criterion: Probability of F-to-remove >= 100.

- s. All requested variables entered.
- b. Dependent Variable: SCP5

Model Summary

ĺ				}	l		Change Statistics		
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	en .	df2	Sig. F.Change
1	.919	.844	.689	.9872	.844	3.425	12	12	.003
2 į	.9194	.844	.712	.9503	001	.046	1 1	14	.834
3	.918°	.843	.731	.9181	001	.068	- 11	15	.799
4	9164	.838	.741	.9004	005	.425	i I	16	525
5	914°	.835	.752	.8809	003	.315	i I	17	.583
ó l	,908f	.824	.752	.8816	011	1.026	i l	18	.326
7	.8934	.798	.730	.9187	026	2.548	i 1	19	.129
8	877h	769	208	9557	.020	2 560	- 11	20	112

- a. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_2, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- b. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_1, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1
- c. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_11, CAUSE_1
- d. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_11, CAUSE_1
 e. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_3, CAUSE_2, CAUSE_11, CAUSE_11
- 1. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_11, CAUSE_J
- g. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_3, CAUSE_7, CAUSE_11, CAUSE_1 h Predictors: (Constant), CAUSE_5, CAUSE_3, CAUSE_7, CAUSE_11, CAUSE_1
- i. Dependent Variable: SCP5

	CAUSE_2											
		.474	.942	1.000	.597	.829	.621	.442	.294	A52	385	ĺ
	CAUSE_3	.193	571	.597	1.000	.746	.442	.202	472	.528	.498	
	CAUSE_4	.356	.835	.829	.746	1.000	.747	.281	.251	.388	389	
	CAUSE_5	.050	.651	.621	.442	.747	1.000	.423	080	.210	880.	П
	CAUSE_6	.334	440	.442	.202	.281	.423	1.000	.277	510	.155	
	CAUSE_7	.232	.316	.294	.472	.251	080	.277	1.000	530	.611	.
	CAUSE_8	517	.405	.452	.528	.368	.210	<i>5</i> 10	_530	1.000	.748	
	CAUSE_9	.569	.386	.385	.498	.389	830.	.155	.611	.748	1.000	
i	CAUSE_10	.617	.617	.624	.500	43 L	.424	.414	.404	.665	.718	П
	CAUSE_I1	.675	452	.413	.555	_530	.165	.315	501	.569	.736	.
	CAUSE_12	.536	. 323	325	316		090	396	.466_	.522		. 1
Sig. (1-tailed)	SCPS		.002	.008	.177	.011	.405	.051	.132	.004	.002	
	CAUSE_1	.002		.000	.001	.000	.000	.014	.062	.022	` ≥.028 `	. ì
	CAUSE_2	.008	.000		.001	.000	.000	.013	.077	.012	<u>=</u> 029	
i '	CAUSE_3	,177	.001	.001		.000	.014	.166	.009	.003	Analysis	
	CAUSE_4	.041	.000	.000	.000		.000	.086	.113	.028	a~, ₀₂₇	
	CAUSE_5	,405	.000	.000	.014	.000		.018	.351	.157	5'338	, l
	CAUSE_6	.051	.014	.013	.166	.086	810.	,	.090	.005	2000 2001	- 1
	CAUSE_7	.132	.062	,077	.009	.113	.351	.090		.003	[100.1∳	
	CAUSE_8	.004	.022	.012	.003	.028	.157	.005	.003		∑ 000	
	CAUSE_9	.002	.028	.029	.006	.027	.338	.229	.001	.000	g	
	CAUSE_10	,001	.001	.000	.006	.000	.017	.020	.023	.000	i Y^.000 1	- 1
	CAUSE_II	.000	.012	.020	.002	.003	.216	.063	.005	.000	ට ₀₀₀	
	CAUSE_12	.003	.058	.057	.062	.144	.335	.025	.009	.004	2023	- 1
N	SCP5	25	25	25	25	25	25	25	25	25	25	-
l	CAUSE_1	25	25	25	25	25	25	25	25	25	25	
,	CAUSE_2	25	25	25	25	25	25	25	25	25	25	
	CAUSE_3	25	25	25	25	25	25	25	25	25 25	25 25 25	
!	CAUSE_4	25	25	25	25	25 (25	25	25	25	25	
	CAUSE_5	25	25	· 25	25	25	25	25	25	25	25	
	CAUSE_6	25 (25	25	. 25	. 25	25	25	25	25	25	
	CAUSE_7	25	25	25	25	25	25	25	25	25	25	
	CAUSE_8	25	25	25	25	25	25 {	25	25	25	25	
	CAUSE_9	25	25	25	25	25	25	25	25	25]	25	
	CAUSE_10	25	25	25	25	25	25	25	25	25 [_ 25 [
	CAUSE_11	25	25	25	25	25	25	25	25 25	25 25	25 25 25 25	
L	CAUSE 12	25	25	25	25	25 i	25	25	25	25	25	

		CAUSE_10	CAUSE_IL	CAUSE_12
Pearson Correlation	2CP2	.617	.675	
	CAUSE_1	.617	.452	.323
	CAUSE_2	.624	.413	.325
	CAUSE_3	.500	.555	.316
	CAUSE 4	.631	.530	.221
	CAUSE 5	424	.165	090
	CAUSE 6	.414	315	396
	CAUSE 7	.404	.508	.466
	CAUSE_8	.665	.669	522
	CAUSE 9	.718	.736	.401
	CAUSE 10	1.000	.737	.394
	CAUSE 11	.737	1,000	.731
	CAUSE 12	394	731	1.000
Sig. (1-tailed)	SCPS	.001	.000	.003
D.G. (*	CAUSE 1	.001	.012	.058
	CAUSE 2	.000	.020	.057
	CAUSE 3	.006	.002	.062
	CAUSE_4	.000	.003] .144
	CAUSE 5	.017	.216	.335
	CAUSE 6	.020	.063	.025
	CAUSE 7	.023	.005	.009
	CAUSE_8	.000	.000	.004
	CAUSE_9	.000	.000	.023
	CAUSE 10		.000	.025
	CAUSE 11	.000	1 .	.000
	CAUSE_12	.026	.000	
N	SCP5	25	25	25
-	CAUSE_1	25	[25] 25
	CAUSE_2	25	25	25
	CAUSE_3	25	25	25
	CAUSE 4	25	1 25	25
	CAUSE 5	25	25	j 25
	CAUSE 6	25	25	25 25 25
	CAUSE 7	25 25	25	25
	CAUSE 8	25	25	1 23
	CAUSE 9	25 25	1 25	25 25 25
Į.	CAUSE_10	25	25	25
	CAUSE_11	25	1 25	25

Coefficients*

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidence	e Interval for B		Correlations	
Model		В	Std. Error	Beta		Sig	Lower Bound	Urper Board	Zero-order	Percet	Part
4	(Constant)	3.617	.870		4.150	.001	1.764	5.47L			
	CAUSE_1	.862	274	1.116	3.142	.007	.277	1,447	.549	.630	.326
	CAUSE_2	- 297	.275	368	-1.080	.297	-,883	.289	.474	- 269	112
	CAUSE_3	183	.133	237	-1.376	.189	467	.100	.193	335	143
	CAUSE_5	453	.136	580	-3,344	.004	-,743	164	.050	.654	.347
	CAUSE_6	.144	.127	.186	1.129	.277	127	.415	334	.280	.117
	CAUSE_7	402	.141	.462	-2.842	.012	703	100	.232	592	295
	CAUSE_8	1 .04	.204	.119	.561	.583	.320	549	517	.143	.058
	CAUSE_9	222	.163	.298	1.363	.193	125	568	-569	.332	.142
	CAUSE_11	.295	.123	.427	2.407	.029	.034	.556	.675	.528	.250
5	(Constant)	3,780	802		1,715	.000	2.081	5.480			
	CAUSE_I	.826	.261	1.069	3.165	.006	.273	1,379	.549	.620	.123
	CAUSE 2	268	264	331	-1.013	.326	827	.292	.474	246	.10
	CAUSE_3	-,164	.126	213	-1.305	.210	432	.103	.193	310	.10 !1
	CAUSE_S	- 460	.132	589	-3,481	.003	-,740	180	.050	656	•35₩
	CAUSE_6	.184	.103	.238	1.788	.093	034	.402	.334	408	18 5 301
	CAUSE_7	- 108	.138	.470	-2.965	.009	.700	-,116	.232	- 595	30 1
	CAUSE_9	.276	,128	371	2,151	1.047	.004	.547	.569	.474	.219
	CAUSE_11	300		435	2.511	,023	.047	.554	.675	.532	.219 .25
6	(Constant)	3.680	,796		4.622	.000	2.000	5.360			C 45 24 34 34 34 34 34 34 34 34 34 34 34 34 34
	CAUSE_1	.594	.125	,769	4.765	.000	.331	.856	.549	.756	.483
	CAUSE_3	205	.120	265	-1.711	.105	457	.048	.193	383	-17
	CAUSE_5	440	.131	-564	-3.366	.004	717	-,164	.050	632	-,342
	CAUSE_6	.160	.100	.207	1.596)	.129	051	.371	.334	.361	.162
	CAUSE_7	-381	.135	438	-2.817	.012	666	096	.232	-564	256
	CAUSE_9	.251	.126	.338	1,995	.062	014	.517	.569	436	.203
	CAUSE_II	.329	.116	.476	2.832	.011	.034	574	.675	.566	
7	(Constant)	3.890	.818		4.753	.000	2.170	5.609	l .	ĺ	
	CAUSE_1	.614	.129	.795	4.758	.000	.343	.886	.549	.746	.504
	CAUSE_3	261	.119	- 139	2.195	.042	-512	011	.193	459	- 233
	CAUSE_5	-,360	.126	461	-2.861	.010	- 625	096	.050	-559	- 303
	CAUSE_7	∙.301	.131	-346	-2.301	.034	576	026	.232	- 477	244
	CAUSE_9	.204	.125	.275	1.600	.127	064	.472	.569	353	.170
	CAUSE_11_	392	.116	.553	3,297	.004	.139	.626	.675	.614	349

Coefficients*

Model	Unstandardize B	d Coefficients	Standardized Coefficients Beta		Sig.	95% Confidence Lower Bound	Interval for B Urper Bound	Zero-order	Correlations	
cause i	3.973 .620	.850		4.676	.000	2.195	5.752		Partie)	Part
CAUSE_3	253	.134 .124	.803 .328	4.621 -2.045	.000 .055	.339 12ء	.901 .006	.549 .193	.727 -425	.509 225
CAUSE_5 CAUSE_7	363 - 229	.131 .128	465 - 263	-2.773 -1.790	.012	637	089	.0.50	537	306
CAUSE 11	.487	.123	.705	4.882	.000	.496 278	.039	.232 675	380 746	. 197 518

Model		Sum of Squares	ď	Mean Square	F	Sie.
1	Regression	63.445	12	5.287	5.425	.003
	Residual	11.695	12	.975		
	Total	75,[40	24	""	- 1	
2	Regression	63.400	11	5,764	6,382	100.
	Residual	11,740	13	.903	V.202	.041
	Total	75.140	24	[""]		
3	Regression	63.339	10	6.334	7.514	.000
	Residual	11.801	14	.843	/	.000
	Total	75,140	24		i	
4	Regression	62,980	9	6,998	8.632	.000
	Residual	12,160	15	.811	u.u,,	.000
	Total	75,140	24			
3.	Regression	62.725	- 8	7.841	10.105	.000°
	Residual	12,415	16 أ	.776		.000
	Total	75,140	24		T I	
6	Regression	61,929	7	B.847	11.384	.000
	Residus)	13.211	17 /	777	11254	.000
	Total	75.140	24		l l	
, —	Regression	59.948	6	9,991	11.839	.0004
	Residual	15.192	18	.844		2007-
	Total	75,140	24		ľ	
1	Regression	57.783		11.558	12.655	.000 ^h
	Residual	17.352	19	.913		.000
	Total	75,140	24	.,,,	- 1	

- Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_14

 b. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_12, CAUSE_10, CAUSE_11, CAUSE_11, CAUSE_11

 cause_11, CAUSE_12

 cause_13, CAUSE_12

 cause_13, CAUSE_13

 cause_13, CAUSE_13

 cause_14

 cause_15, Cause_16, Cause_16, Cause_16, Cause_16, Cause_17, Cause_17, Cause_18, Cause_18, Cause_18, Cause_19, Cause_1
- E. Predictors: (Constant), CAUSE_1, CAUSE_5, CAUSE_9, CAUSE_5, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_2, CAUSE_11, CAUSE_1

 4. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_8, CAUSE_11, CAUSE_11

 4. Predictors: (Constant), CAUSE_13, CAUSE_9, CAUSE_6, CAUSE_13, CAUSE_7, CAUSE_12, CAUSE_13, CAUSE_11, CAUSE_11

 4. Predictors: (Constant), CAUSE_13, CAUSE_9, CAUSE_6, CAUSE_13, CAUSE_7, CAUSE_12, CAUSE_14, CAUSE_15

 4. Predictors: (Constant), CAUSE_14, CAUSE_15

 4. Predictors: (Constant), CAUSE_15

 4. Predictors: (Constant), CAUSE_16, CAUSE_16

 4. Predictors: (Constant), CAUSE_17

 4. Predictors: (Constant), CAUSE_18

 4. Predictors: (Constant), CAUSE_19
- e. Predictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_1, CAUSE_7, CAUSE_2, CAUSE_11, CAUSE_1
- f. Prodictors: (Constant), CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_11, CAUSE_1
- s. Predictors: (Constant), CAUSE_S, CAUSE_9, CAUSE_3, CAUSE_7, CAUSE_11, CAUSE_1
- b. Predictors: (Constant), CAUSE_5, CAUSE_1, CAUSE_7, CAUSE_11, CAUSE_1 i. Dependent Variable: SCP5

				. •		Coefficients	ė	. - .			
Model		Unstandardize		Standardized Coefficients			95% Confidenc	a laterval for B		Correlations	
1	(Constant)	3,773	Std. Error	Beta		Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part
	CAUSE 1		1.071		3.522	.004	1.439	6.107		177	
	CAUSE 2	.863	.303	1.117	2.845	.015	.202	1.524	549	.635	.324
	CAUSE_3	315	352	394	904	.384	-1.085	.449	.474	-253	100
	CAUSE_4	198	.165	256	-1.198	.254	-558	.162	.193	-327	130
		6.735E-02	.314	.089	.214	.834	617	752	356	.062	.02
	CAUSE_5	527	.200	674	-2.631	.022	963	- 091	.050	-605	
	CAUSE_6	.165	.154	.214	[1.075	.304	170	300	.334	.296	-30
	CAUSE_7	392	.158	452	-2.477	.029	738	047	232	-382	.12
	CAUSE_B	.137	.228	.[43	.502	.558	359	.634	517		28.
	CAUSE_9	.173	.213	.232	.811	.433	291	.636		.171	.069
	CAUSE_10	5.230E-02	.210	.061	.249	.807	405 i		.569	.228	.097
	CAUSE_11	.321	.259	.465	1.238	.239		.509	.617	.072	.021
	CAUSE_12	-7.644E-02	.187	-,102	-408	.690	244	.886	.675	.336	.14)
	(Constant)	3.787	1.029	-1102	3.680	.003	435	332	.536	-117	04
	CAUSE_1	.868	.291	1.124	2983		1.564	6.010		1	1
	CAUSE_2	- 287	.309	355	931	.011	.239	1.497	.549	.638	-0.00 322 -1.02 -1.13 -347 -1.28 -0.65 -0.89 -0.20 -1.81
	CAUSE 3	184	.145	238		.369	954	.379	474	250	109
	CAUSE 5	503	.161		1.264	.228	497	.130	.193	-331	-,13
	CAUSE 6	.153	.138	644	3.127	.008	850	156	.050	-655	. 347
	CAUSE_7			.199	t.113 [.286	-,144	.451	.334	.295	121
	CAUSE 1	387	.151	-446	2,569	.023	-,713	062	.232	580	- 285
	CAUSE 9	.134	.219	.140	.614	.550	- 339	.608	317	.168	062
		.159	.195	.214	.813 [.431	263	.580	369	220	App.
	CAUSE_10	5.262E-02	.202	.061	.261	.799	-384	.489	.617	.072	200
	CAUSE_11	.350	.212	.507	1.650	.123 [109	.809	.675	.416	1029
	CAUSE_12	-8.920E-02	_,[7]	139	522	.611	459	.280	536		.181
	(Constant)	3.857	.960		4.018	.001	1.798	5,916	230	-143	-,057
	CAUSE_I	.861	.280	1.115	3.076	.008	261		549		
	CAUSE_2	-,264	.285	- 326	925	371	- 875	1,461		.635	.326
	CAUSE_3	- 192	.136	-249	4,411	.180	485	.348	.474	.240	+.098
	CAUSE_5	- 498	.154	638	3.227	.006		.100	.193	353	~149
	CAUSE 6	.158	.132	.205	1,203		- 829	167	.050	653	-342
	CAUSE 7	-388	.146	.446		.249	- 124	.441	.334	.306	.127
	CAUSE_8	.138	.211		-2.661	.019	.700	075	232	580	282
	CAUSE_9	.170	.184	.144	.655	.523	314	.591	.517	.173	.069
	CAUSE_11	.170		.229	.928	369	- 223	364	.569	.241	.098
	CAUSE 12	-103	.178	547	2.119	.052	.005	.760	.675	493	.224
	SHOWE I	-,103	157	<u>137_</u>	- 652		440	235		172	.069

T X	(Constant)		
ľ	CAUSE_I	402	2.486
1	CAUSE_3	.473	2.114
1	CAUSE_5	.433	2.308
1	CAUSE 7	_563 E	1.776
ı	CAUSE II	583	1.714

Dependent Variable: SCP5

	CAUSE_1	.084	11.89
	CAUSE_2	.068	14.61
	CAUSE_3	.283	3.53
	CAUSE_4	.076	13.19
	CAUSE_3	.198	5.056
	CAUSE_6	.326	3.070
	CAUSE_7	.390	2.56
	CAUSE_8	.230	4,342
	CAUSE_9	.158	6.328
	CAUSE_10	.219	4,569
	CAUSE_11	.092	10.874
	CAUSE_12	207	4.827
	? (Constant)		
	CAUSE_1	.085	11.812
	CAUSE_2	.083	12.114
	CAUSE_3	340	2.941
	CAUSE_5	.284	3.523
	CAUSE_6	.377	2.654
	CAUSE_7	399	2.504
	CAUSE_8	.231	4.329
	CAUSE_9	.174	5,747
	CAUSE_10	.219	4.569
	CAUSE_11	.127	7.868
	CAUSE_12	230	4341
	3 (Constant)		
	CAUSE_1	.08.5	11,700
	CAUSE_2	.090	11.085
	CAUSE_3	.360	2.781
	CAUSE_5	.287	3.479
	CAUSE_6	.385]	2.600
	CAUSE_7	.399	2.504
	CAUSE_8	.232	4.309
	CAUSE_9	.184	5.446
	CAUSE_II	.168	5.936
1	CAUSE_I2	254	3.943

١		Collinearit	
Model	(Constant)	Tolerance	VIP .
Ι'	CAUSE 1	.085	11.699
	CAUSE 2	.003	10.726
ĺ	CAUSE 1	364	2.750
	CAUSE 5		2.750
ì	CAUSE_5	358	
	CAUSE 7	3%	2,524
l		.408	2.450
l	CAUSE_8	.239	4.178
	CAUSE_9	.225	4,445
_	CAUSE_11	.343	2.917
. 5	(Constant)		
	CAUSE_1	.090	11.059
	CAUSE_2	.097	10.331
	CAUSE_3	388	2.579
1	CAUSE_S	.361	2.769
	CAUSE_6	.580	1.723
	CAUSE_7	A11	2.432
ì	CAUSE_9 CAUSE_11	347	2.884
6	(Constant)	.345	2.900
٥	CAUSE I	.398	2.516
	CAUSE 3	.398 .431	2.322
	CAUSE 5	369	2.710
	CAUSE 6	.613	1.632
1	CAUSE 7		
		.428	2.335
ľ	CAUSE_9	.359	2.782
7-	CAUSE_11	.366	2.735
l '	(Constant) CAUSE 1	أسا	2 450
l		.402	2.488
Į	CAUSE_3	472	2.118
	CAUSE_S	.433	2.309
1	CAUSE_7	.496	2.018
	CAUSE_9	.380	2.629
	CAUSE_II	399	2,509

	Meas	Std. Deviation	N
SCP6	5,462	1.491	197
CAUSE1 \	6.127	1.9895	197
CAUSE2	5.561	1.9882	197
CAUSE3	5.660	1,9990	197
CAUSE4	5.652	2.0227	197
CAUSES	5.510	1.9961	197
CAUSE6	5.117	1.9382	197
CAUSE7	5.272	2.0225	197
CAUSE8	6.170	1.9180	197
CAUSE9	6.297	2.1776	197
CAUSEIO]	5.939	1.7667	197
CAUSEII	5.338	2.0087	197
CAUSE12	5.599	1.9637	. 197

Variables Entered/Removed*

Mode)	Variables Entered	Variables Removed	Method _
	CAUSE12, CAUSE3, CAUSE3, CAUSE10, CAUSE6, CAUSE3, CAUSE3, CAUSE3, CAUSE11, CAUSE11, CAUSE4		Enter
2	CAUGEV	CAUSE6	Backward (criterion: Probability of F-to-remove >= .100).
3		CAUSE9	Backward (criterion: Probability of F-to-remove >= 100).
• 		CAUSEI	Backward (criterion: Probability of F-to-remove >= ,100).
5		CAUSE10	Backward (cnterion: Probability of F-to-remove >= ,100).
6		CAUSE8	Backward (criterion: Probability of F-to-remove

/315 101 C4-5C1 0-2

					Corre	elations		•			
		SCP6	CAUSEI .	CAUSE2	CAUSE1	CAUSE	CAUSE5	CAUSE6	CAUSE7	CAUSES	CAUSE9
Pearson Correlation	SCP6	1.000	299	.299	.348	.244	.252	.266	.384	.272	.276
	CAUSE1	.299	1.000	.758	.558	.554	.\$37	_500	.399	.465	[Al4 [
	CAUSE2	299	.758	1,000 \	.624	.693	.583	.466	419	439	337
	CAUSE3	.348	.558	.624	1.000	.641	.583	.468	.469	.372	.365
Ï	CAUSE4	.244	.554	.693	.641	1.000	.732	.453	.425	.383	.306
	CAUSES	.252	.537	.583	583 {	.732	1.000	.554	314	.36B	.225
	CAUSE6	.266	.500	.466	.468	.453	.554	1.000	<i>-5</i> 01	.442	361
	CAUSE7	.384	.399	419	.469	.425	314	.501	1.000	.566	.472
	CAUSE8	.272	.465	.439 [.372	.383	.368	442	566	1.000	.634
	CAUSE9	.276	.414	337	.365	.306	.225	.361	.472	.634	1.000
	CAUSE10	.231	.307	.351	334	.478	.432	.287	.276	.448	A12
	CAUSE11	.293	.354	.397 {	{ .356	.431	324	.288	.487	.644	.636
i	CAUSE12	.209	.254	.139	.189	159	.144	.294		.405	348
Sig. (]-tailed)	\$CP6		.000	.000	.000	.000	.000	.000		.000	₹000
f	CAUSE	.000		.000	,000 [.000	.000	.000	.000	.000	₹000
	CAUSE2	.000	.000	1	(000.	.000	.000	.000	.000	.000	₩ 2000
	CAUSES	.000	.000	[000.]]	.000	.000	.000	.000	.000	5000
	CAUSE4	.000	.000	.000	.000]		,000	.000	.000	.000.	5000 L
	CAUSES	.000	.000	.000	.000	(000 (.000	.000	000.	200 201 200 200 200 200 200
	CAUSE6	.000	.000	.000	.000	000	.000	(.000	.000	9000
	CAUSE7	.000	.000	.000	,000	.000	.000	.000	}	.000 (29 00 [
l	CAUSES	.000	.000	.000 \	.000 1	.000	.000	000	.000		` #200
f	CAUSE9	.000	.000	.000	000	.000	.001	.000	.000	.000	£.:1
	CAUSE10	.001	.000	.000	.000	.000	.000	.000	.000	,000	2000
J	CAUSELL	.000	.000	.000	.000 (.000	.000	.000	.000	.000	
<u> </u>	CAUSE12	.002	.000	.025	.004	.013	022	000	.000	.000	000
N	SCP6	197	197	197	197	197	197	197	197	197	197
	CAUSEL	197 (197	197	197	197	197	197	197	197	197
Ì	CAUSE2	197	197	197	197	197	197	197	197	197	197
	CAUSE3	197	197	197	197	197	197	197	197	197	197
	CAUSE4	197	197	197	197	197	197	197	197	197	197
}	CAUSES	197	197	197	197	197	197	197	197	197	197
	CAUSE6	197	197	197	197	197	197	197	197	197	197
	CAUSE7	197	197	197	197	197	197	197	197	197	197
1	CAUSE8	197	197	197	197	197	197	197	197	197	197
ļ	CAUSE9	197	197	197	197	197	197	197	197	197	197
	CAUSE 10	197	197	197	197	197	197	197	197	197	197
Į.	CAUSE11	197	197	197	197 \	197	197	197	197	197	197
L	CAUSE12	197	197_1	197	197	197	197	197	197	197	

Model		Sum of Squares	ď	Mean Square	F.	Sig
7	Regression	92.353	10	9.235	5.002	.000
	Residual	343.429	186	1.846		
	Total	435,782	. 196	! '		
4	Regression	91.694	9	10.158	5.537	.000
	Residual	344.083	187	1.840	1	
	Total	435.782	196			
3	Regression	90.850	1	11,356	6.190	.000
	Rendual	344,932	881	1.835	- '	
	Total	435.782	196	\		
6	Regression	90.113	7	12.873	7.039	.000
	Residual	345,669	189	1.829		
	Total	435.782	196	"""	ſ	
7	Regression	88.653	6	14.775	E.087	.000
	Residual	347.129	190	1.527		
	Total	435.782	196		ľ	
8	Regression	87.062	5	17.4)2	9537	.000
	Residual	348.720	191	1,826	_	
	Total	435,782	196	} }	,	
9	Regression	85.737	4	21,434	11.757	.000
	Residual	350.045	192	1.823		
	Total	435.782	196		J	
10	Regression	84.157	3	28.052	15,397	.000
	Residual	351.625	193	1.822		
	Total	435.782	196			
11	Regression	79.939	2	39.970	21,791	.000
	Residual	355.843	194	1.834		
	Total	435,782	196		,	

- a. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE6, CAUSE7, CAUSE3, CAUSE3, CAUSE8, CAUSE11, CAUSE1, CAUSE4
- b. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE3, CAUSE11, CAUSE1, CAUSE4
- c. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE8, CAUSE11, CAUSE1, CAUSE4
- d. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE8, CAUSE11, CAUSE4
- e. Productors: (Constant), CAUSE12, CAUSE2, CAUSE3, CAUSE3, CAUSE3, CAUSE3, CAUSE4
- f. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE7, CAUSE3, CAUSE5, CAUSE11, CAUSE4
- g. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE7, CAUSE1, CAUSE5, CAUSE4
- h. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE1, CAUSE4
- 1. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE7, CAUSE3
-). Predictors: (Constant), CAUSE12, CAUSE7, CAUSE3
- 1. Predictors: (Constant), CAUSE7, CAUSE3
- 1. Dependent Variable: SCP6

6

Coefficients*

		Unsundardize		Standardized Coefficients		-	95% Centidenc			Correlations	
Mode!		В	Std. Error	Beta	}	Sig	Lower Bound	Upper Bound	Zero-order	Partial	Part
1	(Constant)	2.911	.448		6301	.000	2.027	3.794			
	CAUSE	4.187E-02	.082	.056	510	.610	120	.204	.299	.038	.03
	CAUSE2	5.008E-02	.090	.080	.664	.508	118	.239	.299	.049	.04
	CAUSE	.122	.072	.164	1.707	089	-019	.264	.348	. 125	.11
	CAUSE4	- 126	.087	170	-1.443	.151	297	.046	.244	- 106	09-
	CAUSES	7,369E-02	.082	.099	.896	371	089	.236	.252	.066	.05
	CAUSE6	-1.544E-02	.070	020	219	.827	154	.123	.266	016	01
	CAUSE7	.196	.067	.265	2,910	.004 :	.063	.328	.384	.210	.19
	CAUSES	-6.703E-02	.080	086	841	402	.224	.090	.272	062	05
	CAUSE9	3.091E-02	.066	.045	.468	.640	099	.161	.276	.034	.03
	CAUSEID	4.994E-02	.075	.059	.668	.505	098	.198	.231	.049	.04
	CAUSEII	4.565E-02	.080	.061	.572	_568	-112	.203	.293	.042	.03
	CAUSE12	5.329E-02	.060	.070	.885	.377	065	.172	209	.065	.03 .05
2	(Constant)	2,911	.447		6.520	.000	2.030	3.792			.03:
	CAUSEI	4.039E-02	.082	.054	.495	621	120	.201	299	.036	.03
	CAUSE2	5.919E-02	.090	.079	.657	.512	119	.237	299	.048	.04
	CAUSE3	.122	.072	.164	1.707	.090	019	.263	.348	.125	.11
	CAUSE4	124	.087	169	-1,435	.153	295	.047	244	.105	.04 .11 09
	CAUSES	6.743E-02	.077	.090	.877	.382	084	.219	.252	.064	.05 .19
	CAUSE7	.191	.064	.259	2.987	003	.065	317	.384	.214	.19
	CAUSE8	-6.816E-02	.079	- 088	-,859	392	225	.088	.272	-063	.05
	CAUSE9	2.926E-02	.065	.043	.447	.655	100	.158	276	.033	.030
	CAUSE10	5.026E-02	.075	.060	.674	.501	097	.197	.231	.049	.04
	ÇAUSE11	4.880E-02	.078	.066	.624	.534	106	.203	.293	.046	.04
	CAUSE12	5.078E-02	.059	.067	.862	.390	066		209	.063	,056
3	(Constant)	2.937	.442		6.645	.000	2.065	3.809			
	CAUSEL	4.764E-02	.080	.064	597	.551	110	.205	.299	.044	.03
	CAUSE2	5,461E-02	.089	.073	.611	342	-,122	.231	.299	.045	.041
	CAUSE3	.127	.071	.170	1.792	.075	013	.266	.348	.130	.117
	CAUSE4	.125	.086	170	-1.451	.148	296	.045	.244	106	094
	CAUSES	6.259E-02	076	.084	.824	.4H	- 087	.212	.252	.060	.054
	CAUSE7	.193	.064	.262	3.038	.003	.068	.319	.384	.217	.193
	CAUSEB	-5.771E-02	.076	074	763	.447	.207	.092	.272	056	050
	CAUSEIO	5.264E-02	.074	.062	,709	479	-094	.199	231	.052	.040
	CAUSELL	6.027E-02	.074	.081	.817	.415	085	.206	293	.060	.052
	CAUSE12	4 994E-02	019	966	849	393	066	155	209	062	.055

Variables Entered/Removed

	Variables	Veriables	T
Model	Entered	Removed	Method
7		CAUSEII	Backward (criterion: Probability of F-to-remove >= .100).
8		CAUSES	Backward (triterion: Probability of F-to-remove >e .100).
9		CAUSE4	Backward (criterion: Probability of F-to-remove >= .100).
10		CAUSE2	Backward (criterion: Probability of P-to-remove >= .100).
t1		CAUSE12	Backward (criterion: Probability of P-to-remove

- a. All requested variables entered.
- b. Dependent Variable: SCP6

à I Summery

	1	1		i			hange Statistics		
}4odel	Rİ	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	FChange	d(1		Sig P Change
Гヿ	.451*	.213	.[62	1.3653	.213	4,149	12	184	.000
2	461	.213	.166	1.3618	.000	.048	1	186	.827
:	.460° (.212	.170	1.3588	001	.200	il	187	دنه
4	4594	.210	.172	1.3565	-002	357	il	188	.551
5	.4574	.208	.175	1.3545	+.002	.459	i [189	.499
€	4551	.207	.177	1,3524	.002	402	i l	190	527
7	4514	.203	.178	13517	.003	.798	i 1	191	.375
8	.4472	.200	.179	1.3512	004	.871	i }	192	.35
9]	.4441	.197	.180	1.3502	.003	725	i l	193	39
10	.439	.193	.181	1,3498	.004	.867	i I	194	35
11	.4262	.183	175		010	2.315	- 11	195	.13

- * Predictors: (Constant), CAUSE12, CAUSE2, CAUSE3, CAUSE3, CAUSE3, CAUSE3, CAUSE3, CAUSE3, CAUSE11, CAUSE1, CAUSE4
- b. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE9, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE8, CAUSE11, CAUSE1, CAUSE4
- E. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE8, CAUSE11, CAUSE1, CAUSE4
- d. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE10, CAUSE7, CAUSE3, CAUSE3, CAUSE3, CAUSE11, CAUSE4
- * Predictors: (Constant), CAUSE12, CAUSE2, CAUSE3, CAUSE3, CAUSE3, CAUSE3, CAUSE31, CAUSE4
- 5 Predictors: (Constant), CAUSE12, CAUSE2, CAUSE3, CAUSE3, CAUSE11, CAUSE4
- 3. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE7, CAUSE3, CAUSE4
- h. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE7, CAUSE3, CAUSE4
- i. Predictors: (Constant), CAUSE12, CAUSE2, CAUSE7, CAUSE3
- :- Predictors: (Constant), CAUSE12, CAUSE1, CAUSE3
- L. Predictors: (Constant), CAUSE7, CAUSE3
- 1 Dependent Variable; SCP6

Model		Sum of Squares	ď	Mean Square	F _ 1	Sig.
Ţ	Regression	92.813	12	7,734	4.149	000
	Residual	342.969	184	1.864		
	Total	435.782	196		- 1	
2	Regression	92.724	21	8,429	4,545	.000
	Residual	343.058	185	1.854	1	
	Tarret	1 437.000				

ANOVAL

[MODE]		Tolerance	_VIF.
1	(Constant)		
	CAUSEI	.357	2.801
1	CAUSE2	.294	3,403
1	CAUSE3	.462	2,163
Į.	CAUSE4	307	3.258
	CAUSES	353	2.833
	CAUSE6	.511	1.958
	CAUSE7	.515	1.942
1	CAUSE8	.407	2,459
1	CAUSE9	460	2,176
)	CAUSEIO	345	1.836
1	CAUSELL	.370	2,700
1	CAUSE12	.691	1.469
2	(Constant)		
	CAUSEL	.359	2.782
1	CAUSE2	.294	3,396
1	CAUSE3	.463	2,162
Į.	CAUSE4	308	3,245
Ī	CAUSES	.401	2,491
1	CAUSE7	.565	1,770
1	CAUSES	.408	2.449
	CAUSE9	.466	2,147
	CAUSE10	.545	1.835
	CAUSEII .	.383	2.612
<u> </u>	CAUSE12		1.416
3	(Constant)		
	CAUSEI	.374	2.672
1	CAUSE2	.298	3.352
1	CAUSE3	.472	2119
1	CAUSE4	.308	3.243
1	CAUSES	.410	2.442
1	CAUSE7	.568	1.759
1	CAUSE8	.447	2.236
	CAUSEIO	.548	1.826
1	CAUSEII	.429	2,332
L	CAUSE12		1.415

- 517 -

Coefficients*

		Colbnearity	Statistics
Model		Tolerance	VIF
4	(Constant)		
	CAUSE2	.436	2.294
	CAUSE3	476	2,100
1	CAUSE4	.309	3.232
	CAUSES	.418	2.392
	CAUSE?	569	1.759
	CAUSES	.457	2.187
	CAUSEIO	.549	1.820
	CAUSELL	.431	2.318
	CAUSE12	731	1.368
3	(Consumt)		
	CAUSE2	.437	2.287
	CAUSE3	.476	2.099
	CAUSE4	.320	3.125
	CAUSES	.426	2.346
	CAUSE7	.577	1.732
	CAUSE8	.460	2.174
	CAUSE11	.489	2.046
	CAUSE12_	759	1,318
6	(Constant)		
	CAUSE2	.450	2.223
	CAUSE3	.477	2.096
	CAUSE4	.325	3.081
	CAUSE5	.436	2.294
	CAUSE?	.650	1.539
	CAUSEII	.587	1.703
	CAUSE12	.780	1.282
7	(Constant)		
	CAUSE2	.455	2.198
	CAUSE3	.478	2.092
	CAUSE4	.333	3.005
	CAUSES	.436	2.294
	CAUSE7	.712	1.404
	CAUSE12	.925	1.081

Analysis for Ca-SCP6-AR

		Unstandardize		COCHECTOR			yor Continent	G TOLLY VEHICLES		COTTENSIONS	
Model		В	Std, Error	Beta		S E	Lower Bound	Urper Bound	Zero-order	Partial	Piert
4	(Constant)	2.972	437		6.797	1000	2.109	3.834			
	CAUSE2	8.462E-02	.074	.113	1.246	.253	061	.230	.299	.084	.074
	CAUSES	.131	.070	.175	1.859	.065	008	.269	.348	.135	.121
	CAUSE4	128	.086	174	-1.490	.138	298	.042	.244	108	097
	CAUSES	6.907E-02	.075	.092	.920	.359	079	.217	.252	.067	.060
	CAUSE7	.194	.064	.263	3.055	.003	.069	.319	.384	.218	.199
	CAUSE8	-5.099E-02	.075	066	683	.496	- 198	.096	.272	050	044
	CAUSE10	5.012E-02	.074	.059	.677	.499	096	.196	.231	.049	.044
	CAUSEII	5.692E-02	.073	.077	.775	A39	088	.202	.293	.057	.050
	CAUSE12	5.635E-02	058	074	977	330_	057	170	.209	071	.063
5	(Constant)	3.062	.416	,	7.363	.000	2.242	3.883			
	CAUSE2	8,194E-02	.074	109	1.113	.267	063	.227	.299	.081	.0727 .1202 -0905
	CAUSE3	.130	.070	.174	1.850	.066	009	.268	.348	.134	.120
	CAUSE4	118	.085	-,160	-1.392	.166	284	,049	.244	-101	-090₫
	CAUSES	7.612E-02	.074	.102	1.025	.307	070	.223	.252	.075	.067121
	CAUSE7	.189	.063	.256	2.999	.003	.065	.313	.384	.214	.195 2 -041
	CAUSE8	4.714E-02	.074	061	634	.527	-,194	.100	.272	-046	-0417
	CAUSETT	7.396E-02	.069	.100	1.073	.284	062	.210	.293	.078	.070
	CAUSE12	6.379E-02	057	.084	L128	.26)	-048	175		.082	_0734
6	(Constant)	3.006	.406		7.409	.000	2.206	3.806			- 4
	CAUSE2	7.4[2E-02	.072	.099	1.023	.307	069	.217	.299	.074	.066 ∰
	CAUSE	.132	.070	.176	1.880	.062	006	.270	.348	.136	.122
	CAUSE4	111	.084	151	-1.328	.186	277	.054	.244	096	086₹
	CAUSES	6.910E-02	.073	.093	.943	.347	075	.214	.252	.068	.061
	CAUSE7	175	,059	.238	2961	.003	.059	.292	.384	.211	.192
	CAUSELL	5.607E-02	.063	.076	.894	.373	068	.180	.293	.065	.058
	CAUSE12	5.783E-02	056	076		_300	052	. 168	209	.075	.067
7	(Constant)	3.026	.405		7,474	.000	2.723	3.825			
	CAUSE2	8.090E-02	.072	.108	1.124	.263	-1 00	.223	.299	.08)	.073
	CAUSE3	.129	.070	.173 [1.848	.066	009	267	.348	.133	.120
	CAUSE4	-9.959E-02	.083	135	+1.204	.230	- 263	.064	.244	087	078
	CAUSES	6.836E-02	.073	.092	.933	352	076	.213	.252	.068	.060
	CAUSE7	.191	.057	.259	3.380	.001	.080	.303	.384	.238	.219
	CAUSE12	7.751E-02	051	102	_1.516	131_	023	178_			.099

Coefficients*

		Unstandardized Coefficients		Standardized Coefficients	_		95% Confidence	Interval for B	Correlations		
Model		В	Std. Erros	Beta }	1	Sig	Lower Bound	Upper Bound	Zero-order	Pertiet	Part
8	(Contrast)	3.092	399		7.755	.000	2.305	3.878			
	CAUSE2	8.751E-02	.072	.117	1.222	.223	054	.229	299	.032	.075
	CAUSE3	.141	.069	.190	2.063	.040	.006	.277	.348	.148	.134
	CAUSE4	-6.104E-02	.072	.083	+.852	.395	202	.080.	.244	062	055
	CAUSE7	.187	.036	.254	3.319	.001	.076	298	.384	.234 {	.21
	CAUSE12	7.897E-02	05; }	.104	1,546	124	022	,180		411	100
9	(Constant)	3.046	.395		7.716	.000	2.268	3,825			
	CAUSE2	5.877E-02	.063	.078	.931	.353	066	.183	.299	.067	.060
	CAUSE3	.122	.065	.164	1.889	.060	005	.250	.348	.135	.122
	CAUSE?	.182 أ	.056	.247	3.251	.001	.072	.293	384	.228	210
	CAUSE12	7.806E-02	.051 1	.103	1.530	.128	023	.179	209	.110	099
10	(Constant)	3.144	.380		8.265	.000	2.394	3.895			
	CAUSE3	.154	.055	.207	2.817	.005	.046	.262	348	.199	.182
	CAUSE7	.192	.055	.260	3,479	.001	.083	.300	.384	.243	.225
	CAUSE12	7.763E-02	.051	.102	1.522	.130	-023	.178	.209	.109	.098
I 1	(Constant)	3.454	322		10.714	.000	2.818	4.090			
	CAUSES	.161	.055	.216	2.935	.004	.053	.269	.348	.206	.190
	CAUSE7	.208	054	282	3.846	000	.101	315	. 384	266	249

SCP6-AR

Analysis for Ca-SCP6-AR

Correlations

		SCP6	CAUSE	CAUSE 2	CAUSE 3	CAUSE_4	CAUSE_5	CAUSE 6	CAUSE 7	CAUSE 8	CAUSE 9
Pearson Correlation	SCF6	1.000	.282	.217	.419	.199	319	.016	,244	.223	.180
	CAUSE_I	.282	1.000	.850	.628	.625	.540	.224	.433	436	.416
	CAUSE_2	.217	.850	1.000	.622	.759	.595	.164	_564	.530	.\$43
	CAUSE_1	.419	.628	.622	1.000	.598	.633	211	.426	.379	350
	CAUSE_4	.199	.625	.759	.598	1.000	.785	.285	.548	.447	.549
	CAUSE_5	.319	.540	.595	.633	.785	1.000	.274	378	.389	.396
	CAUSE_6	.016		.164	.211	.285	.274	1.000	.282	.234	.159
	CAUSE_7	.244	.433	.564	426	.548	.378	.282	1.000	.694	.552
	CAUSE_8	.223	.436	.530	.379	.447	.389	.234	.694	1.000	.784
	CAUSE_9	.180	.4 6	.543	.350	.549	.396	.159	.552	.784	1.000
	CAUSE_10	,207	253	.309	.185	.359	.327	.086	.393	.664	.694
	CAUSE_11	.174	341	456	.217	.400	.340	.044	.524	.797	760
	CAUSE_12_	.135	,245	108_	092_	.088	_168	.099	.110	3%_	.760 372
Sig. (1-tailed)	SCP6		.019	.056	.001	.072	.009	.453	.036	.051	35 001 001 001
	CAUSE_I	.019	Ι,	.000	.000	.000	.000	.050	.000	.000	100,2
	CAUSE_2	.056	.000		.000	.000	.000	.116	.000	.000	2000
	CAUSE_3	.001	.000	.000		.000	.000	.061	001	.002	₹.004
	CAUSE_4	.072	.000	.000	.000		.000	.017	.000	.000	O000
	CAUSE_5	.009	.000	.000	.000	.000		.022	.002	.002	9 ,001
	CAUSE_6	.4\$3	.050	.116	.061	.017	.022		.019	.043	C 23
	CAUSE_7	.036	.000	.000	.001	.000	.002	.019		.000	1 000
	CAUSE_8	.051	.000	.000	.002	.000 (.002	.043	.000	. '	7,000
	CAUSE_9	.094	.001	.000	.004	.000	.001	.123	.000	.000	£000 1€000
	CAUSE_10	.065	.031	.011	.088	.004	.007	.267	.001	.000	, ;000
	CAUSE_11 .	.102	.005	.000	.056	.001	.006	.375	.000	.000	.000
	CAUSE_12	162_	034	.217	251	.263		236	212	.001	.003
N	SCP6	33	55	55	55	55	55	55	55	55	55
	CAUSE_1	\$5	55	55	55] <u>55</u>	\$5	55	55	55	55
	CAUSE_2	55	55	55	55	\$5	55	55	55	55	55 .
	CAUSE_3	55	55	55	55	55	55	55	SS	55	55
	CAUSE_4	55) 55	55	\$5	55	55	55	55	55	55
	CAUSE_5	55	55	55	22	55	55	55	55	55	55 -
	CAUSE_6	55	55	55	55	55	55	55	55	55	55
	CAUSE_7	55	55	55	55	55	\$5	55	55	55	\$5
	CAUSE_8	55	55	55	55	55 .	55	55	55	55	55
	CAUSE_9	55	55	55	55	55	55	55	55	55	55
	CAUSE_10	55	55	55	55	35	55	55	55	55	55
	CAUSE_11	55	55	55	55	55	55	55	55	55	55 55
	CAUSE 12	55		55	55	55				55_	55_

1		Collinearin	r Staturtics
Model_		Tolerance	VIF
T	(Cosstant)		i — —
	CAUSE2	.459	2.177
	CAUSE3	.496	2.017
1	CAUSE4	.443	2.256
1	CAUSE7	.717	1.395
,l	CAUSE12		1.080
9	(Constant)		
	CAUSE2	.590	1.694
1	CAUSES	.556] [.799
	CAUSE7	.724	1.380
	CAUSE12	.926	3.080
10	(Constant)		
1	CAUSES	.175	1.290
1	CAUSE7	.749	1.335
	CAUSE15	926	_1.080
11	(Constant)		<u></u>
1	CAUSES	.780	1.282
	CAUSE7		1.282
a. De	endent Variable:	SCP6	

- 518 -

Correlations

		CAUSE 10	CAUSE 11	CAUSE 12
Pearson Correlation	SCP6	.207	.174	.135
	CAUSE_I	253	341.	.248
	CAUSE_2	.309	.456	.108
	CAUSE_3	.185	.217	.092
	CAUSE_4	.359	. 400	.088
	CAUSE_S	.327	.340	.168
	CAUSE 6	.086	.044	.099
	CAUSE_7	.393	524	.110
	CAUSE_8	.664	.797	.396
	CAUSE_9	.694	.760	.372
	CAUSE_10	1.000	.724	.544
	CAUSE_11	.724	1.000	370
	CAUSE_12	544	,370	1.000
Sig. (1-tailed)	SCP6	.063	.102	.162
	CAUSE_I	.031	.005	.034
	CAUSE_2	.011	.000	.217
	CAUSE_3	.088	.056	.251
	CAUSE_4	.004	.001	.263
	CAUSE_5	.007	.006	.110
	CAUSE_6	.267	.375	.236
	CAUSE_7	.001	.000	.212
	CAUSE_8	.000	.000	.001
	CAUSE_9	.000	.000	.003
	CAUSE_10	· :	.000	.000
	CAUSE_11	.000		.003
	CAUSE_12	.000	.003	
14	SCP6	55	55	55
	CAUSE_1	55	55	55
	CAUSE_2	55	55	55
	CAUSE_3	55	55	55
	CAUSE_4	55	55	55
	CAUSE_5	55	55	55
	CAUSE_6	5.5	55	55
	CAUSE_7	\$5	55	. 55
	CAUSE_8	55	55	55
	CAUSE_9	55	55	55
	CALIER ID		- "	

CE	C2210T	

Descriptive Statistics

	Мезя	Std. Devision	N
30%	5,247	.6403	- 55
CAUSE_1 [- 5.391	2,2396	55
CAUSE_2	5,464	2.1897	55
CAUSE_3	5,400	2.2307	55
CAUSE_4	5.764	2.4092	55
CAUSE_5	5.500	2.2812	55
CAUSE_6	5,655	9.0615	55
CAUSE_7	4.600	2.4578	55
CAUSE_8	5,482	2.2770	55
CAUSE 9	4,809	2.1398	55
CAUSE_10	6.400	1.9940	55
CAUSE_II [4.891	2.3935	55
CAUSE 12	5.245	2.2554	

		j	1	1 1			Change Statistics		
Model	- R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	<u>ජ</u> 1	eП	Sig. F Change
1	.5094	.259	.047	1.6011	.259	1.223	12	42	.300
2	.509*	.259	.069	1.5824	.000	.000	1	44	.998
3	.509*	.259	.091	1,5643	.000	.002	1.1	45	.964
4]	.509#	.259	110	1.5472	.000	.017	1	46	.897
5 1	.507*	.257	.127	1.5324	002	.125	1 [47	.725
	496t	246	.134	1,5266	010	.648	1	48	.425
7 Ì	.4824	.232	,136	1.5248	-,014	.882	1	49	.352
s	.4672	.218	.138	1.5228	.D14 i	374	1 (so	.355
9 1	.451	.204	,140	1.5211	-,014	.687	1	51	.351
10	ن436.	.190	.143	1.5189	014	.855	1	52	.359
11	.4251	.181	,149	1,5128	009	.582	1.1	53	.449
12	4191	.176	160	1.5033	005	137	1.1	54	564

- a. Productors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- b. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_5, CAUSE_1, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_8, CAUSE_2
- d. Predictors (Constant), CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_2
- 1. Predictors: (Constant), CAUSE_4. CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_5, CAUSE_2
- g. Predictors: (Constant), CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_5, CAUSE_2
- h. Predictors: (Constant), CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_2
- i. Predictors: (Constant), CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_2
- i. Predictors: (Constant), CAUSE_3, CAUSE_7, CAUSE_2
- k. Predictors: (Constant), CAUSE_3, CAUSE_7
- 1- Predictors: (Constant), CAUSE_3
- m. Dependent Variable; SCP6

ANOVA#

	T				
Model	Sum of Squares	ot .	Mem Square		SIR
I Regression	37.627	12	3.136	1.223	.300*
Residual	107.670	42	2.564		
Total	45.000		١	1	1

519 -

ANOVA®

Model		Sum of Squares	df	Mean Square	. F	Sig
2	Regression	37.627	11	3.421	1,366	.224
	Residual	107,670	43	2.504	1	
	Total	145.297	54_	[l		
3 —	Regression	37.622	10	3,762	1.537	.159
	Residual	107.675	44	2,447	- 1	
	Total	145.297	. 54			
4	Regression	37.581		4,176	1.744	107
	Residual	107,716	45	2.394	1	
	Total	145.297	54_	L		
5	Regression	37.281		4,660	1.985	.070
	Residual	103,016	46	2,348		
	Total	145.297	54			
6	Regression	35.759	7	5,108	2.197	.052
	Residual	109.538	47	2.331	1	
	Total	145,297	54		i	
7	Regression	33.703	6	5.617	2.416	.040
	Residual	111.594	48	2.325		
	Total	145.297	54	l l.		
8	Regression	31.671	- 5	6.334	2.732	.030
	Residual	113.626	49	2,319	1	
	Total	145.297	. 54			
9	Regression	29.614	4	7,403	3.200	.020
	Residua)	115.684	50	2,314	1	
	Total	145.297	54			
10	Regression	27.634	3	9.211	3.993	.012
	Residual	117.663	51	2,307	- 1	
	Total	145.297	54			
11	Regression	26.291	2	13.146	5.744	.006
	Residual	119.006	52	2.289		
	Total	145.297	54			
12	Regression	25.521	1	25.521	11.293	.001
	Residual	119.776	53	2,260		
	Total _	_ 145.297	14		- 1	

- * Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_11, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- b. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_9, CAUSE_8, CAUSE_2
- c. Predictors: (Constant), CAUSE_12, CAUSE_4, CAUSE_5, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_5, CAUSE_8, CAUSE_2
- d. Predictors: (Constant), CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_8, CAUSE_2
- e. Predictors: (Constant), CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_10, CAUSE_5, CAUSE_2
- f. Predictors: (Constant), CAUSE_4, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_5, CAUSE_2
- E. Predictors: (Constant), CAUSE_4, CAUSE_3, CAUSE_1, CAUSE_1, CAUSE_5, CAUSE_2.

Model	Entered	Removed	Method _
1 -	CAUSE 12, CAUSE 4, CAUSE 6, CAUSE 3, CAUSE 7, CAUSE 10, CAUSE 5, CAUSE 9, CAUSE 9, CAUSE 7, CAUSE 7,		Enter
2	 	CAUSE_11	Backward (criterion: Probability of F-to-remove >= .100).
3		CAUSE_9	Backward (criterion: Probability of F-to-remove >= ,100).
4		CAUSE_12	Backward (criterion: Probability of F-to-remove ># .100).
15		CAUSE_8	Backward (constrion: Probability of F-to-remove >= .100).
6		CAUSE_10	Backward (enterion: Probability of F-to-remove >= 100).

Variables Entered/Removed

lodel	Variables Entered	Variables Removed	Method
		CAUSE_4	Backward (onterion: Probability of F-to-remove >= :100).
		CAUSE_3	Backward (enterion: Probability of F-to-remove >=:100).
		CAUSE_6	Backward (miterion: Probability of F-to-remove >= 100).
0		CAUSE_1	Backward (enterion: Probability of F-to-remove >= .100).
l		CAUSE_2	Backward (criterion: Probability of F-to-remove >= .100).
2		CAUSE_7	Backward (criterion: Probability of F-to-remove >= 100)

- a. All requested variables entered.
- Dependent Variable: SCP6

ADALYSIS FOR CASSCA OFFICE

hysis for Ca-SCP6-N

Coefficients*

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	e Interval for B		Correlations	
Model		В	Std. Error	Beta		Sig	Lawer Bound	Upper Bound	Zero-ordez	Part:a1	Part
4	(Constant)	2.948	.829		3.555	.001	1.278	4.618			
	CAUSE_I	.175	.190	.239	.920	.362	- 208	.559	.282	.136	.118
l	CAUSE_2	204	.239	- 272	851	.399	585	.278	.217	+.125	109
ľ	CAUSE_3	.272	.139	.370	1.959	.056	008	.552	419	.280	.251
	CAUSE_4	+,191	.187	281	-1.023	.312	- 568	.186	.199	151	131
[CAUSE_5	.194	.164	.270	1.185	.242	-,136	524	.319	.174	.152
i	CAUSE_6	-2.175E-02	.026	120	848	.401	073	.030	.016	125	.109
Į	CAUSE_7	146	.134	219	1.087	.283	125	.417	244	.160	.140
ł	CAUSE_8	-5.947E-02	.168	083	354	.725	398	.279	.223	053	+.045
<u>.</u>	CAUSE_10		,149	354	.850	400	-,173	427	.207	.126	109
3	(Constant)	2.982	.816		3.654	.001	1.339	4.624		·	.112 .127 .246
[CAUSE_I	.177	.189	.242	.939	.353	203		.282	.137	.112
l	CAUSE_2	- 220	.232	294	-950	347	.687	247	.217	- 139	13.
	CAUSE_3	.270	.137	.367	1.962	.056	007	545	.419	.278	.246
	CAUSE_4	-,177	.181	259	977	.333	.540	.187	.199	143	- 126
	CAUSE_5	.189	.162	.263	1.171	.248	136	514	.319	.170	.14雲
l	CAUSE_6	-2.287E-02	.025	.126	-,907	.369	074	.028	.016	133	.111.7
ĺ	CAUSE_7	.122	.114	.182	1.065	.293	108	.352	.244	.155	.135
	CAUSE_10	9 488E-02		.115	.805	.425	-142	,332	.207	.118	125 145 115 110 110 110 112 112 112 112 112 112 112
6	(Constant)	3,390	.636	1	5.327	.000	2.110	4.671			ب
	CAUSE_1	.184	.881,	.251	.980	.332	194	.562	.282	.142	.12
}	CAUSE_2	224	.231	299	971	.337	- 689	.240	.217	140	.127
ĺ	CAUSE_3	.255	.136	.347	1.579	.066	018	.528	.419	_264	.235
ì	CAUSE_4	- 169	.081	249	939	352	-530	_193	.199	136	-119
1	CAUSE_S	209	.159	.290	131:	.196	[12	529	.319	.188	.166
4	CAUSE_6	-2.445E-02	.025	-,135	976	.334	075	.026	.016	141	124
	CAUSE_7	148	.109	.221	1.349	.184	073	.368	.244	.193	
17	(Constant)	3.385	.636		5.325	.000	2.107	4.663	200		
ነ	CAUSE_I	207	.186	.283	1.116	.270	156	_581	.282	.159	.[4]
l	CAUSE_2	317	.208	424	-1.522	.135	-737	.102	.217	215	.191
l	CAUSE_3	258	.135	.351	1,905	.063	014	530	.419 .319	.265 .134	.241 .118
1	CAUSE_5	.119	.127	.163	.935	.355	-,137	.374		- 157	139
[CAUSE_6	-2.732E-02	.025	-,151	-1.100	.277	077		.016	169	·.139 1151
	_CAUSE_7	.128	107	191	1.191	1 239	-083	.343		1. 109	

- 520 -

Coefficients*

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidens	c Interval for B		Correlations	
Model		I. B	Std. Error	Beta		Six	Lower Bound	Upper Found	Zero-order	Partial	Part
8	(Constant)	3.538	.613		3.769	.000	2306	477			
	CAUSE_1	.198	.185	.271	1.070	290	174	571	.282	.151	.13
	CAUSE_2	- 269	.202	-359	-1.334	.188	674	.136	.217 [187	16
	CAUSE_3	.309	.124	420	2.492	.016	.060	.558	419	.335	.31
	CAUSE_6	-2,2948-02	.024	127	942	.351	072	.026	.016	133	11
	CAUSE_7	.124	.107	.186	1.163	.250	09)	.339	.244	.164	.14
9	(Constant)	3.557	.612		5,809	.000	2.327	4.787			
	CAUSE_1	.169	.182	.230	.925	_159	198	_535	.282	.130	.117
	CAUSE_2	238	.199	-318	-1.197	.237	637	.161	.217	167	15
	CAUSE 3	.300	.123	.408	2.432	.019	.052	.548	.419	325	.30
	CAUSE_7		.104	.150	.965	.339	- 108	.308_	.244_	135 .	
10	(Constant)	3.624	.607		5.968	000	2.405	4.843		*****	- 09
	CAUSE_2	101	.133	135	763	,449	+368	.166	.217	-106	09
	CAUSE_3	329	.119	448	2.765	.008	.090	369	419	.361	.34
	CAUSE 7	8.676E-02	103	.130	846	401	- 119	.293	244	.118	.10
11	(Constant)	3.472	.571		6.076	.000	2.325	4.619			
	CAUSE_3	283	.102	385	2.775	.008	.078	488	.419	.359	.34
	CAUSE 7	5.371E-02	.093	.080	.580	.564	- 132_	239	244	.090	.07
12	(Constant)	3.583	.535	12.00	6.695	.000	2510	4.656	-	-	
	CAUSE 3	308		419	3.369	.001	124	492	.419	410	.A1

ANOVA®

- h. Predictors: (Constant), CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_2
 i. Predictors: (Constant), CAUSE_3, CAUSE_7, CAUSE_1, CAUSE_2
 i. Predictors: (Constant), CAUSE_3, CAUSE_7, CAUSE_2

- k. Predictors: (Constant), CAUSE_3, CAUSE_7
- 1 Predictors: (Constant), CAUSE_3
- m. Dependent Variable: SCP6

		Unstandardize		Standardized Coefficients	1		95% Confidence			Correlations		
Mode		В	Std Error	Beta		Siz	Lower Bound	Upper Bound	Zero-order	Partial	Part	
1	(Constant)	2.975	.895		3.325	.002	1.170	4.780				
	CAUSE_I	.195	.211	.253	.879	.384	240	.610	.282	.134	.11	
	CAUSE_2	212	.257	254	827	.413	731	306	.217	- 127	11	
	CAUSE_3	.271	.[47	368	1.839	.073	026	568	.419	.273	.24	
	CAUSE_4	- 197	.205	- 289	-,961	.342	610	.217	.199	147	12	
	CAUSE_5	.197	.175	.274	1.130	.265	155	.550	.319	.172	.15	
	CAUSE_6	-2.161E-02	.027	119	-795	.431	076	.033	.016	- 122	- 10	
	CAUSE_7	.145	.14]	.217	1.023	.312	- 142	.430	244	.156	.13	
	CAUSE_8	-5.993E-02	.221	083	.271	.788	-,507	387	.223	.042	.0	
	CAUSE 9	8.838E-03	.201	.012	.044	.965	.397	.414	.180	.007	- A	
	CAUSE_10	.133	881.	.162	.708	.483	247	513	207	.109	.04	
	CAUSE II	-4.658E-04	.182	001	003	.998	-368	.367	.174	.000	.oc	
	CAUSE_12	-1.655E-02	128	023	129	.898	275	.242	135	- 020	.01 .03 -01	
2	(Constant)	2.975	.876		3,398	.001	209	4,741				
	CAUSE_I	.185	.209	.253	.890	.378	235	.605	.282	.134	.11 11 .21	
	CAUSE_2	212	.253	284	839	.406	723	.298	.217	127	1	
	CAUSE 3	271	.142	.368	1.904	.064	-016	.358	.419	279	.2	
	CAUSE_4	- 197	202	- 289	.974	.336	.604	.211	.199	-147	-,13	
	CAUSE_5	.197	.171	.274	1.151	.256	148	.543	.319	.173	.1:	
	CAUSE_6	-2.160E-02	.026	119	.822	.416	075	.031	.016	-,124	10	
	CAUSE_7	.145	.140	.217	1.035	.307	- 137	.426	244	.156	.13	
	CAUSE_8	-6.016E-02	.200	084	301	.764	463	342	.223	046	-,0-	
	CAUSE	8.722E-03	.193	.011	.045	.964	381	399	.180	.007	.00	
	CAUSE_10	.133	.176	.162	.754	.455	222	.488	.207	.114	.09	
	CAUSE_12	-1.653E-\$1	126	023				238		020	0	
3	(Constant)	2.969	.853		3.479	1001	1.249	4.688				
	CAUSE_1	.184	.205	.252	.900	.373	- 228	597	.282	.134	.11	
	CAUSE_2	211	.249	- 252	849	.400	- 712	.290	.217	127	11	
	CAUSE_3	.271	.141	.369	1.927	.060	012 {	.554	419	.279	.25	
	CAUSE_4	-,194	.190	.285	-1.019	.314	.577	.189	.199	- 152	<1 :	
	CAUSE_5	.196	.166	.272	1.179	.245	-,139	-530	.319	.175	.15	
	CAUSE_6	-2.164E-02	.026	- 120	834	.409	-074	.031	.016	-,125	-10	
	CAUSE 7	.144	.137	215	1.048	.300	133	420	244	.156	.12	
	CAUSE 8	-5.578E-02	.172	077	-324	.748	403	.291	.223	049	04	
	CAUSE_10	.135	.165	.165	.819	.417	- 198	.469	207	.123	.10	
	CAUSE 12	-1.622E-02	.125	- 072	.130	907	1 141	116	1 102	اممم	-	

•
3
7
Ξ.
•
-
•
~
\sim
-
7
ĆA.
ñ
<u>u</u>
•
-

		Collinearity	Statistics
Mode!		Tolerance	YIF
9	(Constant)		
	CAUSE_I	249	4.010
	CAUSE_2	.220	4.543
	CAUSE_3	.562	1,779
	CAUSE_6	882	1.134
_	CAUSE_7	621	1.610
q	(Constant)		
	CAUSE_1	.257	3.894
	CAUSE_2	.226	4.422
	CAUSE_3	.565	1.769
	CAUSE_7	.660	1.516
10	(Constant)	1	
	CAUSE_2	.504	1.985
	CAUSE 3	.605	1.653
	CAUSE_7	.673	1.487
11	(Constant)		
	CAUSE_3	.819	1.221
	CAUSE_7	.B19	1.221
12	(Constant)	1	
	CAUSE 3	1,000 [1,000

a. Dependent Variable: SCP6

. 521

Regression

Descriptive Statistics

	Mean	Std. Deviation	N N
SCP6	5.551	1,3778	117
CAUSE_1	6.329	1.6945	117
CAUSE_2	5.368	1,7731	117
CAUSE_3	5.581	1.7665	117
CAUSE_4	5.350	1.6417	117
CAUSE_S	5.261	1,6976	117
CAUSE_6	5.171	1,7034	117
CAUSE_7	5.500	1,7145	117
CAUSE_8	6.444	6697	117
CAUSE_9	7.162	1.6646	117
CAUSE_10	5.615	1,5134	117
CAUSE_11	5.551	1,6287	117
CAUSE 12	5.765	1 2039	117

		Collinearit	y Statistics
Model		Tolerance	VIF
	(Constant)		
1 (CAUSE_1	.213	4.690
1	CAUSE_2	.150	6.668
	CAUSE_3	.440	2.272
	CAUSE_4	.195	5.125
	CAUSE_5	.299	3.343
	CAUSE_6	.783	1.277
	CAUSE_7	.394	2.541
	CAUSE_8	.187	5.351
1 '	CAUSE_9	.257	3.897
	CAUSE_10	.337	2.964
	CAUSE_11	.250	3.995
	CAUSE_12	.568	1.761
	(Constant)	1	
	CAUSE_I	.213	4.690
	CAUSE_2	.151	6.629
	CAUSE_3	.460	2.173
	CAUSE_4	.196	5.106
	CAUSE_S	.303	3.299
	CAUSE_6	.818	1.223
	CAUSE_7	.394	2.541
	CAUSE_8	.225	4.453
	CAUSE_9	.271	3.695
	CAUSE_10	.375	2.664
	CAUSE_12	571	1,751
	(Constant)		
	CAUSE_1 CAUSE 2	.215	4.541
	CAUSE 3	.153 .461	6.541 2.171
	CAUSE 4	216	4.630
	CAUSE_5	.216	4.630 3.165
	CAUSE 6	.819	1.221
	CAUSE_7	.399	2,509
	CAUSE 8	.295	3.394
	CAUSE 10	.417	2,400
	CAUSE 12	573	1.745

Coefficients*

		Collinearit	
Model_		Tolerance	VIF
4	(Constant)		
	CAUSE_1	.244	4.104
	CAUSE_2	.162	6.180
	CAUSE_3	.462	2.165
	CAUSE_4	.218	4.586
	CAUSE_5	.318	3.145
	CAUSE_6	.820	1.220
	CAUSE_7	.406	2.465
	CAUSE_8	.303	3.302
	CAUSE_10	503	1.989
5	(Constant)		
	CAUSE_1	.244	4.101
	CAUSE_2	.169	5.933
	CAUSE_3	.463	2.159
	CAUSE_4	.230	4.355
	CAUSE_5	.320	3.122
	CAUSE_6	.833	1.201
	CAUSE_7	.550	1.817
	CAUSE_10	.788	1.270
6	(Constant)	١	
	CAUSE_I	.244	4.093
	CAUSE_2	.169	5.931
	CAUSE_3	.47]	2.121
	CAUSE_4	.230	4343
	CAUSE_5	.328	3.052
	CAUSE_6	.638	1.194
	CAUSE 7	597	1.675
7	(Constant)		; l
	CAUSE_!	.249	4,021
	CAUSE_2	.207	4.841
	CAUSE_3	.472	2.120
	CAUSE_5	514	1.947
	CAUSE_6	.850	1.176
	CAUSE 7	620	1.612

Analysis for Ca-SCP6-MC

Model	Variables Entered	Variables Removed	Method
1	CAUSE 12. CAUSE 2. CAUSE 10. CAUSE 7. CAUSE 8. CAUSE 9. CAUSE 11. CAUSE 4. CAUSE 1. CAUSE 1. CAUSE 3.	Neille vy S	Enter
2	CAUSE_5°	CAUSE_II	Backward (criterion: Probability of F-to-remove >= .100).
3		CAUSE_4	Backward (criterion: Probability of F-to-remove >a ,100).
+		CAUSE_1	Backward (criterion: Probability of P-to-remove >= ,100).
5		CAUSE_5	Backward (cnierion: Probability of P-to-remove >=:(00).
6		CAUSE_3	Backward (criterion: Probability of F-to-remove >= .100).

1 522 Variables Entered/Removed*

Model	Variables Entered	Variables Removed	Method
,		CAUSE_9	Backward (enterion: Probability of F-to-remove >= ,(00).
8		CAUSE_10	Backward (criterion: Probability of F-to-cernove ># ,100).
9		CAUSE_12	Backward (criterion: Probability of F-to-remove >= ,100).
: 10 		CAUSE_6	Backward (criterion: Probability of F-to-remove >= ,100).
11		CAUSE_9	Backward (enterion: Probability of F-to-remove >= .100).

a. All requested variables entered.

Correlations

		\$CP6	CAUSE L	CAUSE 2	CAUSE 1	CAUSE 4	CAUSE 5	CAUSE 6	CAUSE 7	CAUSE 8	CAUSE
Pearson Correlation	\$CP6	1.000	.238	.320	.304	281	264	.241	.487	.212	3
	CAUSE_1	.238	1.000	.662	.485	.432	.520	.496	.329	.453	.3:
	CAUSE_2	.326	.662	1.000	.607	561	-516	,445	.355	.402	3!
	CAUSE_3	.304 ′	.486	.607	1.000	.624	.563	.366	.500	319	A.
	CAUSE_4	.281	.432	.561	.624	1.000	.544	,472	.420	.395	<u>:</u> (
	CAUSE_5	.264	.520	516	.565	.644	1.000	.654	.405	.446	. 3
	CAUSE_6	.241	.496	.445	.566	.472	654	1.000	.481	.417	4
	CAUSE_7	.487	.329	.355	.500	.420	405	.48[1.000	.416	.3
	CAUSE_8	.212	.453	.402	.319	.395	446	.417	.416	000.1	4
	CAUSE 9	306	.384	.390	.473	.386	376	.464	.331	.478	1.0
	CAUSE_10	.223	.331	.265	394	.487	492	348	.229	-339	S
	CAUSE_11	280	.288	.386	.406	495	429	.356	.418	.483	5:
	CAUSE 12	.099	.199		.218	237		218	.292	350	2
Sig. (1-tailed)	SCP6		.005	.000	.000	.001	.002	.004	.000	.01	.0
	CAUSE_1	.003		.000	.000	.000	000	.000	.000	.000	- 0
	CAUSE 2	.000	.000		.000	.000	.000	.000	.000	.000	≥α
	CAUSE_3	.000	.000	.000		.000	.000	.000	.000	.000	5.0
	CAUSE_4	.001	.000	.000	.000		.000	200	.000	.000	i iin
	CAUSE_5	.002	.000	.000	.000	.000		.000	000	.000	50
	CAUSE_6	1001	.000	.000	.000	.000	.000		.000	.000	4.0
	CAUSE 7	.000	.000	.000	.000	.000	.000	.000		.000	Ω0
	CAUSE_8	.011	.000	.000	.000	.000	.000	.000	.000	_	20
	CAUSE_9	.000	.000	.000	.000	.000	.000	.000	.000		. 8
	CAUSE_10	.008	.000	.002	.000	.000	.000	.000	.006	.000	Ģ _a
	CAUSE_11	.001	.001	.000	.000	.000	.000	.000	.000	.000	. Z.o.
	CAUSE 12	145	.016	114	009	.005	.005	.001		000	<u>~~</u>
N	SCP6	117	117	117	117	117	117	117	117	117	- 11
	CAUSE_1	117	117	117	117	117	117	117	117	117	11
	CAUSE_2	117	117	117	117	117	117	117	117	117	11
	CAUSE_3	117	117	117	117	117	117	117	117	117	11
	CAUSE_4	117	117	117	117	117	117	117	117	117	
	CAUSE_5	117	[117	117	117	117	117	117	117	117	11
	CAUSE_6	117] 117	117	117	117	117	117	117	117	11
	CAUSE_7	117	117	117	117	117	117	117	117	117	11
	CAUSE_8	117	117	117	117	117	117	117	117	117	11
	CAUSE_9	117	117	117	117	117	117	127	117	117]	12
	CAUSE_10	117	117	117	117	117	117	;17	117	117	11
	CAUSE_I1	117	117	117	117	117	117	127	117	117	11
	CAUSE_12	117_	<u> </u>	117_	117_	112_		117		117_1	- 11

Correlations

		CAUSE_IO	CAUSE_II	CAUSE 12
Pearson Correlation	SCP6	223	280	.099
(00.00	CAUSE_1	.331	.288	.199
	CAUSE_2	.265	.386	.112 }
	CAUSE_3	394	.406	.218
	CAUSE_4	.487	.495	237
	CAUSE_5	492	.429	.238
	CAUSE_6	.348	.356	.278
	CAUSE_7	.229	.418	.292
	CAUSE_8	.339	.483	.350
Y	CAUSE_9	.502	_537	.289
	CAUSE_10	1,000	_506	349
1	CAUSE_11	-506	1.000	.192
	CAUSE_12_	.349	.392	1.000
Sig (1-tailed)	SCP6	.008	.001	,145
	CAUSE_I	.000	.001	.016
1	CAUSE_2	.002	.000	114
	CAUSE_3	.000	.000	.005
ł	CAUSE_4	.000	.000] .005
	CAUSE_2	.000	.000	1 3001
ļ	CAUSE_6	.000	.000	1 ,001
	CAUSE_7	.006	.000	ا ‱ ا
į.	CAUSE_8	.000	.000	001
	CAUSE_9	.000	.000	000
Į.	CAUSE_10	.000	}	1 000
	CAUSE_11 CAUSE_12	.000	.000	1
N	SCP6	117	117	117
1 ^N	CAUSE_1	117	117	1 117 (
,	CAUSE_2	117	117	117
ľ	CAUSE 3	117	117	117 [
1	CAUSE 4	117	117	117 [
	CAUSE 5	117	117	117
1	CAUSE 6	1 117	1 117	117
i	CAUSE 7	117	117	117
l	CAUSE_B	117	117	117
i	CAUSE_9	117	117	1 127
l	CAUSE_10	117	117	117
1	CATION 11	1	,	•

Analysis for Ca-SCP6-SC

b. Dependent Variable: SCP6

1		I Unstandardize	d Coefficients	Coefficients			95% Confidence	e Interval for B	1	Correlations	
Model		В	Std. Error	Beta	t i	Sig	Lower Bound	Upper Bound	Zerro-order	Partia]	Pari
<u> </u>	(Constant)	2.693	.636		4.236	.000	1.432	3,954			
	CAUSE_1	-1.182E-02	.098	015	121	.904	-206	.183	.238	-012	010
i i	CAUSE_2	.]44	.101	.186	1.427	.157	056	345	320	.139	.117
Į.	CAUSE_3	-5.938E-02	.101	076	590	.557	- 259	.140	.304	OSB	048
1	CAUSE_4	-7.748E-03	.106	009	073	.942	- 219	.203	.281	007	006
	CAUSE_5	3.859E-02	.109	.048	.355	.723	177	.254	.264	.035	.029
1	CAUSE_6	-7.976E-02	.100	099	800	.426	278	.118	.241	078	066
1	CAUSE_7	.385	.085	.480	4.557	.000	.218	.553	.487	.408	.375
l	CAUSE_8	-7.719E-02	.090	094	254	395	-,256	.102	.212	083	070
ì	CAUSE_9	.141	.095	.170	1.490	.139	047	.329	.306	.145	.122
	CAUSE_10	7.740E-02	.102	.085	.759	.450	- 125	.280	.223	.074	.062
	CAUSE_II	6.127E,-04	.098	.001	.006	.995	-,194	.195	.280	.001	.001
	CAUSE_12.	-5.733E-02	.077	.071	749	.455	209	.094	.099	073	62≥
2	(Constant)	2.693	.632		4.259	.000	1.439	3.947		1.7	
1	CAUSE_!	-1.191E-02	.096	015	-,123	.902	203	.179	.238	012	-029 11 6 1
1	CAUSE_2	.144	.100	.186	1.450	.150	053	.342	.320	.140	.11€
	CAUSE_3	-5.941E-02	.100	076	593	.554	258	.139	.304	058	OIS
	CAUSE_4	-7.654E-03	.105	009	073	.942	215	.200	.281	007	.005
]	CAUSE_5	3.863E-02	.103	.048	357	.722	- 176	.253	.264	.035	.02 િ
l .	CAUSE_6	-7.980E-02	.099	099	806	.422	276	.116	.241	078	36C 37F
1	CAUSE_7	.386	.083	.480	4.649	.000	.221	.550	.487	.413	.33₽
	CAUSE_8	-7.710E-02	.089	093	869	.387	253	.099	.212	084	.076
	CAUSE_9	.141	.091	.171	1.549	.124	-,040	.322	.306	.149	1230 060
	CAUSE_10	7.753E-02	.099	.085	.780	.437	.120	.275	.223	.076	.06₽
<u>L.</u>	CAUSE_12	-5.724E-02		071	765		205	.09)	.099	074	063
13	(Constant)	2.691	.628		4.282	.000	1.445	3.936			
i i	CAUSE_1	-1.124E-02	.096	014	+.118	.907	201	.178	.238	011	010
	CAUSE_2	.143	.096	.184	1.480	.142	-,049	.334	.320	.142	.120
1	CAUSE_3	-6.125E-02	.096	079	636	.526	252	.130	.304	062	-052
!	CAUSE_5	3.625E-02	.103	.045	.353	.725	167	.240	.264	.034	.029
ì	CAUSE_6	-7.938E-02	.098	098	807	.421	-274	.116	.24]	078	066
I	CAUSE_7	.385	.082	.479	4.684	.000	.222	.548	.487	.414	.381
I	CAUSE_8	-7.752E-02	.083	094	880	.381	252	.097	.212	085	072
1	CAUSE_9	.142	.091	.171	1.561	.121	038	.321	.306	.150	.127
ì	CAUSE_10	7.593E-02	.096	.083	.787	.433	115	.267	.223	.076	.064
l	CAUSE 12	-5 735E-02	.07.5		- 770.		- 205			075	063

523

Coefficients

				Standardized							
		Unstandardize		Coefficients	' I		95% Confidence	c Interval for B		Correlations	
Model		В	Std. Error	Beta		Sie	Lower Bound	Upper Bound	Zero-order	Partial	Part
4	(Constant)	2.675	.612		4.372	.000	1.462	3.889		i	
	CAUSE_2	.138	.085	.177	1.615	.109	031	.306	.320	.154	.131
	CAUSE_3	-6.124E-02	.096	079	63B	.525	- 251	.129	.304	062	052
	CAUSE_S	3.533E-02	.102	.044	,347	.729	167	.237	.264	.034	.023
l	CAUSE_6	-B.311E-02	.097	100	838	.404	273	.111	.241	031	069
	CAUSE_7	.385	.082	.479	4.713	.000	.223	547	.457	.415	.382
i	CAUSE_8	-7.915E-02	.037	096	913	.363	251	.093	.212	098	074
l	CAUSE_9	.142	.090	.171	1.569	.120	037	.320	.306	.150	.127
i	CAUSE_10	7.515E-02	.096	.033	.784	.435	115	.265	.223	.076	.064
	CAUSE_12	-5.757E-02	.074	-1071		.439	- 205	. 089	.099	.075	063
3	(Constant)	2.676	.509	i I	4.390	.000	1.468	3.884			
	CAUSE_2	.143	.083	.184	1.723	.088	022	.308	.320	.164	.139
l	CAUSE_3	-5.632E-02	.094	072	596	_552	244	.131	.304	057	042
l	CAUSE_6	-6.650E-02	.087	082	766	.445	239	.106	.241	074	06
l	CAUSE_7	.386	.081	.480	4.736	.000	.224	.547	487	.415	35
l	CAUSE_B	-7.393E-02	.085	090]	870	.386	242	.095	.212	083	-00 -06 3-2 -07
l	CAUSE_9	.136	.088	.164	1.538	.127	039	.311	.306	.146	.12 5 .071 .006
l	CAUSE_10	8.646E-02	.090	.095 {	.964	.337	091	.254	.223	.092	.07至
	CAUSE_12	5.882E-02	.074	073	.798	,427	- 205	.087		077	-004
6	(Constant)	2.678	.608		4.407	.000	1.474	3.882			.13 <u>0</u> -07 4
1	CAUSE_2	.121	.074	.156	1.632	.106	026	.269	.320	.154	-134
İ	CAUSE_6	-7.981E-02	.084	099	955	.342	- 246	.086	.241	- 091	-,074
	CAUSE_7	.372	.078	.463	4.773	.000	.218	.527	.487	.416	.38\$r 069
	CAUSE_8	-6.545E-02	.084	079	783	.435	231	.100	.212	075	.063,
	CAUSE_9	.128	.087	.154	1.468	.145	045	.300	.306	.139	.118
l	CAUSE_10	7.753E-02	.088	.085	.879	.381	- 1097	.252	.223	.084	.071
	CAUSE_12	-5.914E-02	.074	073	,B04	.423	205	.087	.099	077	065
7	(Constant)	2.598	.598	,	4.345	.000	1.413	3.783			
	CAUSE_2	.110	.073	.142	1.513	.133	034	.255	.320	.143	.122
	CAUSE_6	-8.482E-02	.083	105	-1.019	.310	250	.080	.241	-,097	082
	CAUSE_7	.361	.077	.449	4.717	.000	.209	ا 13 ا	487	.410	J79 \
ì	CAUSE_9	.112	.085	.135	1.324	.188	056	.279	.306 .	.125	.106
l	CAUSE_10	7.452E-02	.088	.082	.847	.399	100	.249	.223	.081	.063
	CAUSE 12	-7 019E-02	.072	087	- 974	332	213	.073		. 092	- 078

						Charge Statistics					
1	Mode)	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	an an	413	Sig. F Change	
	!	.545*	.297	.216	1.2198	.297	3.665	12	104	.000	
	2	.5456	.297	.224	1.2140	.000	.000	1 1	106	.995	
	3	.545*	297	231	1.2083	.000	.005	i i1	107	.942	
	4	.545°	.297	.238	1.2027	.000	.014	1	108	.907	
- 1	5	544*	.296	.244	1.1978	001	.120	1 1	109	.729	
	6	.542f	.294	.249	1.1943	002	.355	1 !	110	.552	
	7	.539	.290	.251	1.1922	004	.614	l if	111	.435	
	В	.5341	.285	.253	1.1906	005	.718	. 1	112	.399	
	9	.530	.281	.256	1.1887	004	.642	1 1	113	.425	
	10	.524	.274	.255	1.1892	007	1.090	1	114	.299	
	11	512k	. 262	249	1.1940	012		' i l	115	.169	

- * Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_5, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- b. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_9, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3
- c. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_1, CAUSE_3, CAUSE_5
- d. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_1, CAUSE_5
- c. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_1, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_3
- f. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9
- 8. Predictions: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_6, CAUSE_9
- h. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_6, CAUSE_9
- i. Predictors: (Constant), CAUSE_2, CAUSE_7, CAUSE_6, CAUSE_9
- J Predictors: (Constant), CAUSE_2, CAUSE_1, CAUSE_9
- k. Predictors: (Constant), CAUSE_2, CAUSE_7
- Dependent Variable: SCP6

ANOVA

Model		Sum of Squares	d(Mean Square	ř	Sig
1	Regression	65,442	12	5.453	3.665	.000
	Residual	154.750	104	1.488		
	Total	220.192	116			
2	Regression	65.442	11	5.949	4.037	.000h
	Residual	154.751	105	1.474	1	
	Total	770 192	316			

ANOVA

Model		Sum of Squares	qt.	Mean Square	_ F	Sig.
3	Regression	65.434	10	6.543	4,482	.D000
	Residual	154.758	106	1.460	- 1	
	Total	220.192	116	[]		
4	Regression	65.414	9	7.268	5.025	.000
	Residual	154,779	107	1,447		
	Total	220.192	116	, , ,	- 1	
5	Regression	65.240	8	8.155	5.684	.000°
	Retidual	154,953	108	1.435	1	
	Total	220.192	116	"	ı	
6	Regression	64.730	7	9.247	6.483	.000
	Residual	155,462	109	1,426]	
	Total	220.192	116		· · · · · · · · · · · · · · · · · · ·	
7	Regression	63.854	6	10.642	7.488	.000
	Residual	156.338	110	1.421		
	Total	220.192	116			
8	Regression	62.835	5	12.567	8.865	.000 ^h
	Residual	157.358	111	1.418	١.	
	Total	220.192	116		- 1	
9	Regression	61.925	4	15.481	10.955	.000
	Residual	158.268	112	1.413		
	Total	220.192	116		!	
10	Regression	60.384	3	20.128	14 233	.000
	Residual	159.808	113	1.4[4]	ì	
_	Total	220.192	116	l I.		
11	Regression	57.671	2	28.836	20.227	.000×
	Residual	162,521	114	1.425	- 1	
	Total	220,192	116			

- a. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_11, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- b. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_4, CAUSE_1, CAUSE_3, CAUSE_5
- c. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_1, CAUSE_3, CAUSE_5
- d. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_3, CAUSE_5
- c. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9, CAUSE_3
- 1. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_8, CAUSE_6, CAUSE_9
- 8. Predictors: (Constant), CAUSE_12, CAUSE_2, CAUSE_10, CAUSE_7, CAUSE_6, CAUSE_9
- h. Predictors: (Constituti), CAUSE_12, CAUSE_2, CAUSE_7, CAUSE_6, CAUSE_9
- i. Predictors: (Constant), CAUSE_2, CAUSE_7, CAUSE_6, CAUSE_9
- i Predictors: (Constant), CAUSE_2, CAUSE_1, CAUSE_9
- k. Predictors: (Constant), CAUSE_2, CAUSE_7 1. Dependent Variable: SCP6

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	e Interval for D		Abat.	·
Mode)		B	Std. Error	Beta	l t	Sig.	Lower Bound	Upper Bound	Zero-order	Correlations	
E	(Constant)	2.706	.583		4,640	.000	1,550	3.862	2210-01007	Partial	Pixt
	CAUSE_2	.114	.073	.147	1,569	.119	030	.258			
	CAUSE_6	-7 825E 02	.083	097	.946	.346	242		320	.147	.12
	CAUSE_7	.359	.076	447	4.702	.000		.086	.241	089	-,076
	CAUSE 9	.138	.079	.166	1.748		.208	.510	.487	.408	371
	CAUSE 12	-5.608E-02	.070	069		.083	018	.294	.306	.164	.140
9	(Constant)	2,536	542	009	- 801	.425	.195	.083	099 /	076	064
	CAUSE 2	.119			4.676	.000	1.461	3.611			
	CAUSE_6		.072	.153	1.648	.102	024	.262	.320	.154	.132
	CAUSE_7	-8.571E-02	.082	106	-1.044	.299	248	.077	.241	098	084
		.348	.075	.433	4.640	.000	.200	.497	.487	.402	372
10	CAUSE 9	.126	.077	.152	1.632	.105	027	.279	306	.152	.131
ΙŲ	(Constant)	2.510	.542		4.631	.000	1.436	3.584			
	CAUSE_2	.100	.070	.129	1.432	.155	- 038	239	320	.133	110
	CAUSE_7	.322	.071	.400	4.553	.000	.182	.462	.487	.133	.11
	CAUSE_9	.102	.074	.124	1,385	.169	-,044	.249			.36 .17
H	(Constant)	2.962	.434		6.817	.000	2.101	3.823	306	.129	
	CAUSE_2	.130	.067	.168	1.947	.054	002		200	ا ا	
	CAUSE_7	344	.069	.428	4.968			.263	.320	.179	.15 5
					7.700 1				.487		40[1
									•		7

Coefficients*

Standardized Coefficients

Collinearity Statistics
Tolerance VIF (Constant) CAUSE_2 .736 .615 .713 1.359 CAUSE_6 CAUSE_7 CAUSE_9 CAUSE_12 1.626 1.403 ЛÌ 1.406 .859 1.164 (Constant) CAUSE_2 .741 .623 .736 .735 1.349 1.605 1.359 1.360 CAUSE_6 CAUSE_7 CAUSE_9 (Constant) CAUSE_2 CAUSE_7 CAUSE_9 .790 .830 .806 1.265 1.204 1.241 (Constant) CAUSE_2 .874 1.144 1.144 CAUSE 7

Collinearity Statistics
Folerance VIF

1.828 2.303 2.398

2.179 1.576 1.678 1.809 1.687 1.280

2.253

1.767 1.576 1.628 1.750 1.491 1.277

1.415 1.650 1.453

1.582 1.709 1.450

1.277

1.364 1.640 1.640 1.615 1.615 1.447 1.230

Tolerance

.434

.417

.459 .635 .596 .553 .593 .781

.569 .444

.566 .635 .614 .571 .671

.707

.606 .688 .632 .585 .690 .783

.733 .610 .712 .619 .691 _813

CAUSE_2

CAUSE_3

CAUSE_5

CAUSE_6

CAUSE_7 CAUSE_B CAUSE_9 CAUSE_10 CAUSE_12 (Constant)

CAUSE_2 CAUSE_3 CAUSE_6

CAUSE_7 CAUSE_8 CAUSE_9 CAUSE_10 CAUSE_12 (Constant) CAUSE_2

CAUSE_6 CAUSE_7 CAUSE_8

CAUSE_9 CAUSE_10 CAUSE_12

(Constant) CAUSE_2 CAUSE_6

CAUSE_7 CAUSE_9 CAUSE_10 CAUSE 12

524 -

Dependent Variable: SCP6

Coefficients*

_			
		Collinear	ity Statistics
Model		Tolerance	VIP
i i	(Constant)		T
	CAUSE_1	.465	2.152
	CAUSE_2	.399	2.507
	CAUSE_3	.406	2,466
	CAUSE_4	.421	2.378
!	CAUSE_S	.376	2.657
	CAUSE_6	.444	2.250
	CAUSE_7	.610	1.639
	CAUSE_8	.564	1.774
	CAUSE_9	.516	1.938
	CAUSE_10	.538	1.859
	CAUSE_11	.502	1,991
	CAUSE_12	,754	1.326
5 .	(Constant)		
	CAUSE_I	.476	2.102
	CAUSE_2	.407	2.456
	CAUSE_3	.406	2.461
	CAUSE_4	.429	2.330
	CAUSE_5	.377	2.652
	CAUSE_6	.447	2.237
	CAUSE_7	.629	1.591
	CAUSE_8	.579	1.728
	CAUSE_9	.552	1.813
	CAUSE_10	.561	1.781
	CAUSE 12		1.281
3	(Constant)		_
	CAUSE_1	.480	2.083
	CAUSE_2	.430	2.325
	CAUSE_3	.434	2.303
	CAUSE_5	.415	2.412
	CAUSE_6	.449	2.230
	CAUSE_7	.634	1.578
	CAUSE_8	.581	1.721
	CAUSE_9	.553	1.809
	CAUSE_10	.590	1.695
	CAUSE_12		1.281

Analysis for Ca-SCP6-SC

ı	÷Vα3⊑";	.617	452	1 .32
Ĺ	CAUSE_2	.624	.413	.32
Ĭ	CAUSE_3	.500	.555	.31
Į	CAUSE_4	.631	.530	.22
	CAUSE_5	.424	,165	09
J	CAUSE_6	.414	315	.39
ľ	CAUSE_7	L 404	.508	.46
1	CAUSE_8	665	.669	.52
1	CAUSE_9	.718	736	.40
;	CAUSE_10	1,000	.737	39
ì	CAUSE_11	.737	1,000	.73
L	CAUSE_12	394	731	1.00
Sig. (1-tailed)	SCP6	D12	.003	.00
ì	CAUSE_1	.001	.012	.05
ł	CAUSE_2	.000	.020	.03
l	CAUSE_3	.006	.002	.06
ነ	CAUSE_4	.000	.003	.14
	CAUSE_5	.017	.216	.33
í	CAUSE_6	.020	.063	.02
!	CAUSE_7	.023	.005	.00
	CAUSE_B	.000	.000	.00
ı	CAUSE_9	.000	.000	.02
ļ	CAUSE_10		.000	.02
	CAUSE_11	.000		.00
<u> </u>	CAUSE_12	.026	.000	
И	SCP6	25	25	2
1	CAUSE_1	25	25	2
]	CAUSE_2	25	25	2 2 2
[CAUSE_3	25 25	25	2
1	CAUSE_4	25	25	
1	CAUSE_5	25	25	2
	CAUSE_6	[25	25	
ì	CAUSE_7	25	25	2
ŀ	CAUSE_8	25	25	2
l	CAUSE_9	25	25	2
\	CAUSE_10	25	25	2
1	CAUSE_11	25 25	25	2
	CAUSE 12	25	25	2

1 52 Variables Rot

Variables Entered/Removed											
Model	Variables Entered	Variables Removed	Method								
	CAUSE 12. CAUSE 5. CAUSE 9. CAUSE 6. CAUSE 7. CAUSE 10. CAUSE 10. CAUSE 11. CAUSE 11. CAUSE 14.		Enter								
2		CAUSE_9	Backward (enterion: Probability of F-to-remove >= .100).								
3		CAUSE_2	Backward (criterion: Probability of F-to-remove >= .100).								
4		CAUSE_4	Backward (criterion: Probability of F-to-remove >= .100).								
5		CAUSE_11	Backward (enterion: Probability of F-to-remove >= .100).								
6		CAUSE_10	Backward (criterion: Probability of F-to-remove >= 1001								

| Std. Deviation | 1,6576 | 2,2913 | 2,1884 | 2,2913 | 2,2013 | 2,2013 | 2,2015 | 2, Mcan, 5.520 6.800 6.680 6.600 6.520 6.700 6.200 5.680 6.400 5.520 6.440 5.320 5.600 SCP6
CAUSE !
CAUSE 2
CAUSE 3
CAUSE 4
CAUSE 5
CAUSE 6
CAUSE 7
CAUSE 9
CAUSE 10
CAUSE 11
CAUSE 12

					Correl	20005					
		SCP6	CAUSE 1.	CAUSE_2	CAUSE 3	CAUSE 4	CAUSE 5	CAUSE 6	CAUSE_7	CAUSE 8	CAUSE 9
Pearson Correlation	SCP6	1.000	,454	.459	.340	.331	.131	510	.358	.533	-364
	CAUSE_I	.454	1.000	.942	.571	.835	.651	.440	.316	.405	.386
	CAUSE_2	459	.942	1.000	597	.829	621	.442	.294	.452	385
	CAUSE_3	.340	.571	.597	1,000	.746	.442	.202	.472	.528	.498
	CAUSE_4	.331	.835	.829	,746	1.000	.747	.281	.251	.388	.389
	CAUSE_5	.131	.651	.621	.442	,747	1.000	.423	080	.210	.088
	CAUSE_6	.510	.440	.442	.202	.281	.423	1.000	.277	.510	.155
	CAUSE_7	.358	.316	.294	,472	.251	080	.277	1.000	.530	.611
	CAUSE 8	.533	.405	.452	528	.388	.210	.510	ا 30	1.000	.748
	CAUSE 9	.364	.386	.385	.498	.389	.088	.155	.611	.748	1.000
	CAUSE 10	.448	.617	.624	.500	.631	.424	.414	.404	.665	.718
	CAUSE_11	535	.452	.413	.5\$5	L 530	.165	.315	_508	.669	.736
	CAUSE 12	.637	.323	325	.316		·.090	.396_	.466	.522	401
Sig. (1-tailed)	SC16		.011	.011	.048	.053	.256	.005	.039	.003	≥037
	CAUSE 1	.011		.000	.001	.000	.000	.014	.062	,022	₹.028
	CAUSE_2	.011	,000	} .	1001	.000	.000	.013	.077	.012	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	CAUSE 3	.048	100.	.001	١.	.000	.014	-166	.009	.003	E-1006
	CAUSE_4	.053	.000	.000	.000		.000	.086	.113	.028	(=,027
	CAUSE_5	.266	.000	.000	.014	.000		.018	. 35t i	.157	3.338
	CAUSE 6	.005	014	.013	.166	.086	.018		.090	.005	₽229
	CAUSE_7	.039	.062	.077	.009	.113	.351	.090		.003	[₹001
	CAUSE_8	.003	.022	.012	.003	.028	.157	.005	.003	l) <u>j</u>
	CAUSE_9	.037	.028	.029	`.006	.027	.338	.229	.001	.000	P
	CAUSE_10	.012	.001	.000	.006	.000	.017	.020	.023	.000	ბ‱
	CAUSE_11	.003	.012	.020	.002	.003	216	.063	.005	.000	J (2000
	CAUSE_12	.000	.058	057_	.062	.144	.335	.025	.009	.004	.023
N	SCP6	25	25	25	25	25	25	25	25	25 25	25
	CAUSE_1	25	25	[25	[25	(25	25	25	25		
	CAUSE_2	25	25	25	25	25	25	25	25	25 25	25
	CAUSE_3	25	25	25	25	25	25	25	25		25
	CAUSE_4	25	25	25	25	25	25	25	25	25	
	CAUSE_5	25	25) 25) 25	j 25	25	25	25	25	25
	CAUSE_6	25	25	25	25	25	25	25	25	25	25
	CAUSE_7	25	25	25	25	25	25	25	25	25	25
	CAUSE_8	25	25	25	25	25	25	25	25	25	2.
	CAUSE_9	25	25	25	25	25	25	25	25	25	2.
	CAUSE 10	25	25	25	25	25	25	25	25	25	25
	CAUSE_11	25	25	25	\ 25	25	25	25	25	25	25
	CAUSE 12	25	25	25	25	25	_ 25	25	25	25.	12

Model .		Surp of Squares	_ \$t	Mean Square	<u> </u>	Str.
, 	Regression	35.998	10	3.600	1439	.1939
	Residual	30.742	14	2.196		
	Total	66.740	24_			
4	Regression	35.978	9	3.998	1.949	122
	Residual	30,762	15	2.051		
	Total	66.740	24			
5	Regression	35.967		4,496	2.338	.071
	Residual	30.773	16	1,923		
	Total	66,740	24	i		
6	Regression	35,949	7	5,136	2.835	.037
	Residual	30.791	17	1.811		
	Total:	66,740	24			
7	Regression	35.835	6	5,972	3,478	.018
	Residual	30.905	18	1,717		
	Total	56.740	24]	t	
8	Regression	35,563	- 5	7,113	4335	.003
	Residual	31,177	19	1.641		
	Total	66.740	24	l (_ 1	
9	Regression	35.101	4	8.775	5.547	.004
	Residual	31.639	20	1.582		
	Total	66,740	24	<u> </u>		
10	Regression	34.321	3	11.440	7.411	.001
	Residual	32.419	21	1.544		
	Total	66,240	24	<u> </u>		
11	Regression	32.337	2	16.169	10.340	.001
	Residual	34.403	22	1.564		
	[pla	66,740	24	<u> </u>	1.	

a. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_1, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4

b. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4

c. Predictors: (Constant), CAUSE_12, CAUSE_15, CAUSE_16, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_8, CAUSE_11. CAUSE_1. CAUSE_4
d. Predictors: (Constant), CAUSE_17, CAUSE_18, CAUSE_18, CAUSE_19, CAUSE_19, CAUSE_11, CAUSE_11, CAUSE_11
d. CAUSE_11, CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_11
d. CAUSE_

e. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_8, CAUSE_1

1. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_6, CAUSE_3, CAUSE_1, CAUSE_6, CAUSE_1

g. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_6, CAUSE_7, CAUSE_8, CAUSE_1

h Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_6, CAUSE_R, CAUSE_1

i. Predictors: (Constant), CAUSE_12, CAUSE_6, CAUSE_B, CAUSE_I

j. Predictors: (Constant), CAUSE_12, CAUSE_6, CAUSE_1

k. Predictors: (Constant), CAUSE_12, CAUSE_6

1. Dependent Variable: SCP6

- 526

Coefficient

		Unsundardize	d Coefficients	Standardized Coefficients	ľ		95% Confidence	a Internal for B		Correlations	
Model		B	Std. Error	Beta	1 , !	Sig	Lower Bound	Upper Bound	Zero-order	Paruel	Рап
	onstant)	1.687	1.737		.97	.351	2.097	3.471	-		
	AUSE_1	.187	.492	.257	180	.711	885	1.258	.454	.109]	.01
	AUSE_Z	-1.232E-02	.571	016	022	.983	+I.256	1.231	.459	006	0
C	AUSE_3	4.026E-02	.268	.055	.150	.683	-544	.624	340	.043	Ō
	AUSE_4	4.284E-02	او0≿ ا	.060	.084	.934	-1.066	1.152	331	.024	.£
	الكان	-,163	.324	222	503	.624	870	.544	.131	144	٠.٥
	AUSE_6	.192	.249	.264	.770	.456	351	.735	310	217	j
C/	AUSE_7	8.643E-02	.257	-,105	336	742	646	.473	.358	.097	٠.
C/	AUSE 8	.139	.369	.154	.376	.713	666	.944	.533	.108	
CA	AUSE 9	-2.784E-03	.345	-,004	008	994	-,754	749	364	-002	0
CA	USE_IO	3.462E-02	340	.043	.102	921	707	776	.448	.029	1
C/	NUSE_11	-3.147E-02	.421	048	075	.942	-,948	.885	.535	022	-,7
C/	NUSE_12	277	.304	.393	.913	379	385	939	637	.255	
(C	onstant)	1.687	1.569		1.011	.330	-1.918	5.291			.i. .i.
	AUSE_!	.186	.471	.256	396	.699	-832	1.205	,454	.109	J
Ç/	NUSE_2	-1.303E-02	.542	017	024	.981	-1.183	1.157	. 459	-007	• 3
	USE_3	4.031E-02	.257	.055	.157	.878	-316	.596	.340	.043	
	USE_4	4.408E-02	.466	.062	.095	.926	-,963	1.051	,331	.026	1
	AUSE_5	-,164	.311	222	-527	.607	-835	.508	. 131	145	
	VUSE_6	.193	.212	.256	910 أ	.379	265	.651	.510	.245	
	AUSE_7	-8.731E-02	.224	-,107	-391	.702	570	.396	358	- 108	
CA	AUSE_8	.138	.302	.152	.455	657	-315	.790	.533	.125	1
C/	AUSE_IO	3.402E-02	.319	.042	.107	.917	655	.723	448	.030	,
CA	USE_11	-3.306E-02	357	051	093	.928	804	738	335	026	1
C/	USE_12	278	.268		1.037	319	301	.858	637	.276	
	onstant)	1.691	1.597		1.059	.308	1.734	5.117			
C/	NUSE_1	,178	.293	.244	.608	353	450	.805	.454	.160	.1
CA	NUSE_3	3.976E-02	.247	055	.161	.874	490	.570	.340)	.043	Ĭ.
	AUSE_4	3.97(E-02	484	.056	096	.925	848	.927	.331	.026	.0
CA	USE_5	162	.289	219	-360	.584	781	.457	.131	148	-,
	USE_6	192	203	.265	.945	.360	244	.628	.510	.245	
	USE.7	-8.630E-02	.212	-,105	408	.690	-540	.368	.358	-108	٠.(
CA	USE_8	.136	.281	.150	.482	.637	467	.738	_533 (.129	ı
ÇA	VUSE_10	3.166E-02	.292	.039	.103	.915	595	.659	.448	.029	ã
C/	AUSE_II	-2.864E-02	295	-,044	097	924	661	.603	535	026	0
	1100 13									10-7	-

Verlables Baterral/Removes

Model	Variables Entered	Variables Removed	Method
7		CAUSE_3	Backward (triterion: Probability of F-to-remove >= .100).
8		CAUSE_7	Backward (criterion: Probability of F-to-remove >= .100).
9		CAUSE_S	Backward (criterion: Probability of F-to-remove >= .100).
10		CAUSE_8	Backward (criterion: Probability of F-to-remove >= .100).
11		CAUSE_1	Backward (Criterion: Probability of P-to-remove

All respected variables entered.

٠.	
	_

}	R	R Square	i)	Change Statistics					
Mode)			Adjusted R Square	Std. Error of the Estimate	R Square Change	F Charge	_ea _	472	Sie E Change	
1	734	339	.079	1.6005	.539	1.171	12	- 12	.394	
2	734	.539	.150	1.5377	.000	.000	11	14	.994	
3	.734	.539	.210	1.4818	.000	.00 L	1 (15		
4 \	734	539	.263	1.4321	.000	.009	1	16	.925	
5 1	734*	.539	.308	1,3868	.000	.005	2 1	17	.943	
6	.7341	.539	349	1.3458	.000	.009 (ιţ	18	.924	
, l	.733	_537	.383	1,3103	002	.063	1.1	19	.804	
i l	.7304	533	.410	1.2810	004	.158	1	20	.696	
ا و	.725	.526	.431	1.2578	007	282	- 11	21	.60	
้อ ไ	117	514	.445	1.2425	012	493	1 [22	.491	
	404	485	438	1 2505	- 030	1.285	i	23	270	

- A. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_9, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_2, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- b. Predictors: (Constago), CAUSE 12, CAUSE 5, CAUSE 6, CAUSE 3, CAUSE 7, CAUSE 2, CAUSE 10, CAUSE 8, CAUSE 11, CAUSE 11, CAUSE 14
- c. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1, CAUSE_4
- d. Presistors: (Constant), CAUSE_12, CAUSE_5, CAUSE_6, CAUSE_7, CAUSE_7, CAUSE_10, CAUSE_8, CAUSE_11, CAUSE_1
- e. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_6, CAUSE_3, CAUSE_7, CAUSE_10, CAUSE_8, CAUSE_1
- f. Prodictions (Constant), CAUSE 12, CAUSE 5, CAUSE 6, CAUSE 3, CAUSE 7, CAUSE 8, CAUSE 1
- 8. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_6, CAUSE_7, CAUSE_8, CAUSE_1
- b. Predictors: (Constant), CAUSE_12, CAUSE_5, CAUSE_6, CAUSE_8, CAUSE_1
- i. Predictors: (Constant), CAUSE_12, CAUSE_6, CAUSE_8, CAUSE_1
- i Predictors: (Constant), CAUSE_12, CAUSE_6, CAUSE_1
- k. Predictors: (Constant), CAUSE_12, CAUSE_6
- Dependent Variable: SCP6

ANOVA¹

Model		Som of Squares	đ(Mean Square	F	Sig.
τ	Regression	36.000	IŽ.	3.000	7.171	394
	Residual	30,740	12	2.562		
	Total	66,740	24) l		
2	Regression	16.000	11	3.273	1.384	.285
	Residual	30,740	13	2.365	Į.	
	Total	1 ((2.0)	**	1 1		

b. Dependent Variable: SCP6

	Tolerance	VIF_
(Constant)		
CAUSE_1	.084	11.893
CAUSE_2	.068	14.614
CAUSE_3	.283	3.532
CAUSE_4	.076	13.197
CAUSE_5	.198	5.056
CAUSE_6	.326	3.070
CAUSE_7	.390	2.561
CAUSE_8	.230	4.342
CAUSE_9	.158	6,328
CAUSE_1D	219	4.569
CAUSE_I1	.092	10.874
CAUSE_12	207	4.827
2 (Constant)		
CAUSE_I	.084	11.839
CAUSE_2	.070	14.263
CAUSE_3	.283	3.529
CAUSE_4	.083	11.984
CAUSE_5	.199	5.021
CAUSE_6	416	2.401
CAUSE_7	.476	2,102
CAUSE_8	.318	3.148
CAUSE_10	,230	4.348
CAUSE_I1	.118	8.474
CAUSE_12	.245	4.08
3 (Constant)	i —	
CAUSE_1	.204	4.910
CAUSE_3	296	3.501
CAUSE_4	.098	10.166
CAUSE_5	,214	4.665
CAUSE_6	.420	2.381
CAUSE_7	493	2.029
CAUSE_8	.341	2.932
CAUSE_10	.254	3.936
CAUSE_II	161	6.226
CAUSE 12	. 272	. 3.670

Coefficients*

1		Collinearit	y Statistics
Model		Tolerance	VIF
4	(Constant)		
ł	CAUSE_1	.325	3.072
	CAUSE_3	.389	2,572
	CAUSE_5	.288	3.468
Į.	CAUSE_6	449	2.228
	CAUSE_7	.494	2.023
[CAUSE_8	.353	2.833
Į.	CAUSE_10	255	3,920
]	CAUSE_11	.179	5.575
<u> </u>	CAUSE_12		3.620
3	(Constant)		
ı	CAUSE_I	.340	2,943
]	CAUSE_3	.40	2.431
ļ .	CAUSE_S	.292	3.430
1	CAUSE_6	.478	2.092
1	CAUSE_7	496	2.016
1	CAUSE_8	356	2,806
1	CAUSE_10	.400	2.501
I	CAUSE 12	.514	1,945
6	(Constant)	1	
1	CAUSE_I	.374	2.675
1	CAUSE_3	.414	2.413
1	CAUSE_5	.300	3.328
1	CAUSE_6	.485	2.062
1	CAUSE_7	.500	1,999
	CAUSE_0	.463	2.160
_	CAUSE 12	.518	1.932
l '	(Constant)		
l	CAUSE_I	.381	2.623
i	CAUSE_S	.361	2.774
ľ	CAUSE_6	.577	1.733
	CAUSE_7	.582	1.719
1	CAUSE_8	.516	1.939
<u> </u>	CAUSE 12	531	1.834

- 527 -

Analysis for Ca-SCP6-CC

Analysis for Ca-SCP6-CC

Model		B	Std, Error	Beta		_Sig	Lower Bound	Upper Bound	Zero-order	Partial	Pwt
1	(Constant)	1,695	1.543		1.098	.289	-1.594	4,984			
Į	CAUSE_1	.195	.224	268	.872	.397	282	.672	.454	.220	.153
	CAUSE_3	5.197E-02	.205	.071	.254	.803	.384	.488	.340	.065	.045
	CAUSE_5	148	.240	200	-,614	.549	660	.365	.131	156	.108 [
	CAUSE_6	.187	.190	.258	.986	.340	218	_592 '	310	.247	.173
)	CAUSE_7	-8.739E-02	.204	107	-,428	.675	-523	.348	.358	110	075
ŀ	CAUSE_8	.131	.267	.]44	.489	.632	- 438	.700	333	.125	.086
1	CAUSE_10	3.344E-02	.282	.041	.119	907	567	.634	448	.031	.02)
ì	CAUSE_11	-1.950E-02	.269	030	072	.943	594	.555	.\$35	019	-,013
1	CAUSE_12	,273	235	388	1.162	263	228	775	,637_	.287	204_
3	(Constant)	1.743	1.346		1.296	213	-1.109	4.596			
i i	CAUSE 1	.198	.212	.272	.936	.363	251	.648	.454	.228	.150 .115 .182 .076 .002
	CAUSE_3	4.850E-02	.193	.067	.252	.804	-,360	.457	.340	.063	245
ĺ	CAUSE_5	149	.232	203	645	.528	.640	.342	.131	159	11
1	CAUSE_6	.191	.178	.263	1.070	.300	187	.569	.510	.258	189
ľ	CAUSE_7	-8.825E-02	.197	108	-,447	.661	507	.330	.358	-JH	07
	CAUSE_8	,129	.257	.142	.500	.624	417	.674	ا 333	[24	.062 (
l	CAUSE_10	2.117E-02	.218	.026	.097	.924	44]	.483	.448	.024	.01@1
<u> </u>	CAUSE_12	.262	.167	371	1.567	,137	092	.616		.365	26.80 26.80
6	(Constant)	1.741	1.305	- 1	1,333	.200	-1.014	4.495			<u> </u>
l	CAUSE_1	.205	.196	-281	1.043	.312	209	.618	.454	.245	.17द्व
!	CAUSE_3	4.689E-02	.186	.064	.252	.804	-346	.440	.340	.061	.04)[.]
	CAUSE_5	1.146	.221	198	657	.520	613	.322	.131	157	.1015
	CAUSE_6	.189	.172	.250	1.099	287	-,174	.551	750	.257	.[6]
1	CAUSE_7	-8.645E-02	.191	106	-453	.656	489	.316	.358	109	075
ĺ	CAUSE_8	,141	.219	.156	.642	.529	•.321	.603	_533	.154	.106
	CAUSE_12	.263	.162	373	1.629		- 078	.604	.637	367	
17—	(Constant)	1.707	1.265		1.350	.194	949	4.364			
ĺ	CAUSE_I	.211	.189	.290	1.118	.278	•.IB6	.609	.454	.255	.179
l	CAUSE_5	-,123	.197	167	624	.540	536	.291	.131	-146	-,100
i i	CAUSE_6	.171	.153	.236	1.118	.278	151	.494	510	.255	.179
ľ	CAUSE_7	-6.849E-02	.172	084	-398	.696	430	.293	.35B	093	-,064
I	CAUSE_8	.158	.202	.175	.784	.443	256	.583	.533	.182	.126
	CAUSE_12			382_	1,735		057	596	.637	379	278

Coefficients

		Unstanderdized Coefficients		Standardized Coefficients		95% Confidence Interval for B			Correlations		
Model		В	Std. Error	Beta		Sig	Lower Bound	Upper Board	Zero-order	Partial	Pest
8	(Constant)	[337	1.163		1322	.202	898	3.972	- I	1	
	CAUSE_1	.183	.175	.258	1.070	.298	179	.554	.454	.238	.161
	CAUSE 5	-9.582E-02	.181	130	-531	.602	-,474	.282	.[31	-,121	083
	CAUSE 6	.168	.150	.231	1.121	276	145	.481	510 }	.249 }	.170
	CAUSE 8	.128	.183	.142	.701	.492	255	.512	.533	.159	.110
	CAUSE_12	.266	152	.376	1.752	.096	-,052	583	637	.373	.27
9	(Constant)	1.282	1.040		1.233	.232	887	3,452	1		
•	CAUSE I	.126	.129	.173	.977	.340	+.143	.395	,454	.213	.150
	CAUSE 6	.140	.137	.192	1.017	,321	147	.427	510	.222	.15
	CAUSE 8	.126	.180	.140	.702	.49t	249	.502	.533	.155	.108
	CAUSE_12	305	.130	.432	2.344	.030	.034	.576	.637	.464	.36
10	(Constant)	1.598	926		1,725	.099	328	3.525			
10	CAUSE_I	.142	.125	.195	1.134	270	119	.403	.454	.240	.177
	CAUSE 6	.170	.129	234	1.322	.200	098	.438	510	.277	.20;
	CAUSE_12	.339	.119	.481	2.855	.009_	.092	586_	.637	529	.17: .20; .43
П	(Constant)	2,103	.818		2.572	.017	.407	3.799			
••	CAUSE 6	223	.121	.307	1.840	.079	028	474	_510)	.365	.28
	CAUSE_12	264	118	515	1.092		120 _	608	637 1	550 L	

ZJa-SCR6-CC

Coefficients

Collinearity Statistics
Tolerance VIP (Constant)
CAUSE, 1
CAUSE, 6
CAUSE, 6
CAUSE, 6
CAUSE, 12
(Constant)
CAUSE, 1
CAUSE, 6
CAUSE, 12
(Constant)
CAUSE, 1
CAUSE, 6
CAUSE, 12
(Constant)
CAUSE, 1
CAUSE, 1
CAUSE, 1
CAUSE, 1
CAUSE, 1
CAUSE, 1
CAUSE, 6
CAUSE, 12
(Constant)
CAUSE, 6
CAUSE, 12 .424 .409 .579 .599 .533 2.360 2.444 1.726 1.670 1.876 1.324 1.512 1.669 1.431 .756 .662 .599 .699 .780 .735 .816 1.282 1.361 1.226 .844 .841 1.185 1.185 a. Dependent Variable: SCP6

APPENDIX R

Neural network analysis outputs for the causes to the site coordination problems analysis

Neural network output of Ca-SCP1-AR-final

Case	Actual (A)	Network output (N)	Difference (A-N)
1_	4.5	4.07691431	0.42308569
2	3	3.828403711	-0.828403711
3	3.5	4.381679058	-0.881679058
4	5	4.468717098	0.531282902
5	6	3.828403711	2.171596289
6	8	5.849462986	2.150537014
7	8.5	6.717654705	1.782345295
8	5.5	4.88835001	0.61164999
9	6	6.59949255	-0.59949255
10	4	5,432518959	-1.432518959
11	6	5.275869846	0.724130154
12	7	4.3800807	2.6199193
13	3	3.828403711	-0.828403711
14	4	3.660653591	0.339346409
15	4.5	3.454020739	1.045979261
16	4.5	4.347862244	0.152137756
17	6	6.625629902	-0.625629902
18	4	4.034658432	-0.034658432
19	4	3.783781767	0.216218233
20	7	3.660653591	3.339346409
21	8	7.868601799	0.131398201
22	2	4.014099121	-2.014099121
23	6	5.603452682	0.396547318
24	4.5	4,300260544	0.199739456
25	5.5	5.727348804	-0.227348804
26	5.5	4.759337425	0.740662575
27	5.5	3.930811167	1.569188833
28	6	5.80358839	0.19641161
29	5.5	6.242172241	-0.742172241
30	4.5	4.534541607	-0.034541607
31	4	3.868234634	0.131765366
32	5.5	4.865708351	0.634291649
33	8	7.019786358	0.980213642
34	7	6.211081505	0.788918495
35	5.5	6.232952595	-0.732952595
36	3	4.564575672	-1.564575672
37	7	6.153251171	0.846748829
38	' 5	5.881575108	0.881575108
39	10	6.35013628	3.64986372
40	5.5	6.138149261	-0.638149261
41	6	6.281237602	-0.281237602

Page t of S

86	5	5.567474365	-0.567474365
87	6	5.665632248	0.334367752
88	6	5.762895107	0.237104893
89	5	5.147759914	-0.147759914
90	6	5.269696236	0.730303764
91	4	5.695134163	-1.695134163
92	5	5.332587242	-0.332587242
93	5	5.025410175	-0.025410175
94	4	5.354754448	-1.354754448
95	5.5	5.251217365	0.248782635
96	6.5	5.92114687	0.57885313
97		4.575924397	-1.575924397
98	3		
99	4.5	4.498464108	0.001535892 1.299055099
		5.700944901	
100	- 4	6.567374229	-2.567374229
101		5.24929285	-0.24929285
102	4	4.714236259	-0.714236259
103	2	4.226775646	-2.226775646
104	7	5.371834755	1.628165245
105	7	4.836798191	2.163201809
106	5	4.203698158	0.796301842
107	7	5.363753319	1.636246681
108	3	3.453892946	-0.453892946
109	9	<u>5</u> .666967869	3.333032131
110	4	4.564575672	- <u>0.56457</u> 5672
111	5	3.788686275	1.211313725
112	3	4.339149475	-1.339149475
113	3	4.640492439	-1.640492439
114	6.5	5.272386074	1.227613926
115	5	4.436934948	0.563065052
116	5	5.020186901	-0.020186901
117	4	4.907984734	-0.907984734
118	4	3.98063302	0.01936698
119	5	4.666623592	0.333376408
120	4.5	4.791265488	-0.291265488
121	4.5	4.285047054	0.214952946
122	3	4.742293353	-1.742293358
123	3	4.453016281	-1.453016281
124	5	5.762395107	-0.762895107
125	5	5.720389366	-0.720389366
126	5	5.526572704	-0.526572704
127	5	4.959992886	0.040007114
128	3	4.85826683	-1.85826683
129	6	5.425867031	0.574132919

6.5 6.750239849 -0.250239849 -0.88468504 43 5.88468504 0.658405304 44 6.5 5.841594696 45 4.002323151 -1.002323151 46 6 5.084234715 0.915765285 47 6 5.084234715 0.915765285 48 5.75360775 -1.75360775 49 4.551624298 -0.551624298 50 5.42246151 0.57753849 51 4 5.066853523 -1.066853523 52 3 3.473022699 -0.473022699 53 54 7.650784969 -0.650784969 -1.943635464 4.943635464 55 5.42246151 -2.42246151 56 6.822966576 -0.822966576 6 57 7.650784969 -0.650784969 58 5.932788372 -1.932788372 59 3.681824446 -2.681824446 -1.407808304 60 5 6.407808304 3.791001797 -0.791001797 61 3 62 0.237104893 5.762895107 6 4.641020775 -1.641020775 63 64 6.567374229 -1.567374229 5.127837181 7.06997776 5.023880005 65 6.5 1.372162819 66 -0.06997776 67 68 0.976119995 6 5.5 5.603452682 -0.103452682 4.5 5,559782505 -1.059782505 69 70 6.567374229 0.432625771 71 4 4.911297798 -0.911297798 72 4 5.066853523 -1.066853523 73 6 5.016934395 0.983065605 74 7.830144882 8 0.169855118 75 6.652713299 -0.152713299 6.5 76 7.5 6.516901016 0.983098984 77 6.5 6.841931343 -0.341931343 78 5.644864082 -1.644864082 6.686009884 -1.686009884 79 -0.943635464 4,943635464 80 4 81 4.464291573 1.035708427 5.5 82 5.762895107 -0.762895107 5,620375156 -0.620375156 84 5.238035202 -2.238035202 -0.251217365 85 5.251217365

ť

ť

Page 2 of 5

130	5	5.332587242	-0.332587242
131	5.5	5.251217365	0.248782635
132	5	4.926557064	0.073442936
133	5	5.762895107	-0.762895107
134	4.5	5.144394398	-0.644394398
135	5	5.033098698	-0.033098698
136	5	5.508043289	-0.508043289
137	4.5	5.371834755	-0.871834755
138	5	4.943635464	0.056364536
139	4	5.145452023	-1.145452023
140	5	5,352808952	-0.352808952
141	5	5.302939892	-0.302939892
142	7	5,992907047	1.007092953
143	5	5.050529957	-0.050529957
144	4	5,56563282	-1,56563282
145	5	6.041603088	-1.041603088
146	5	5,414660931	-0.414660931
147	4.5	5,430523372	-0.930523872
148	5	5,547374725	-0.547374725
149	3	3.858296156	-0.858296156
150	4	6.058650017	-2.058650017
151	5	4,490427494	0.509572506
152	7.5	4,759337425	2,740662575
153	4	4,666800022	-0.666300022
154	4.5	5,463713646	-0.963713646
155	8.5_	4,121291161	4.378708839
156	2	4,852812767	-2.852812767
157	1	3,660653591	-2.660653591
158	2	3.775623798	-1,775623798
159	1	4.213211536	-3.213211536
160	5	5.649042606	-0.649042606
161	5.5	5.642882347	-0.142882347
162	6	5.827336311	0.172663689
163	5.5	5,422783375	0.077216625
164	5	4.921658516	0.078341484
165	6	5.56563282	0.43436718
166	5	5,644864052	-0.644864082
167	7	5.762363911	1,237636089
168	5	5,559782505	-0.559782505
169	5	5,354754448	-0.354754448
170	4	5.776724815	-1.776724815
171	6	5,476445198	0.523554802
172	5.5	5.637670994	-0.137670994
173	6.5	6.004254818	0.495745182
1/3	[0.3	0.WHZ.H018	1 0.432143162

- 531 -

1

174	5.5	5.476445198	0.013664000
175	5		0.023554802
		5.285458565	-0.285458565
176	5	5.628871441	-0.628871441
177	4.5	5.531198025	-1.031198025
178	5	5.372784615	-0.372784615
179	4	4.322140694	-0.322140694
I 80	7	6.509223938	0.490776062
181	7	4.997348309	2.002651691
182	6	5.221764565	0.778235435
183	5	5.42246151	-0.42246151
L 84	2	3.472475767	-1.472475767
185	4	5.016934395	-1.016934395
186	6	5.228559971	0.771440029
187	6	5.481532574	0.518467426
188	5	6.254105091	-1.254105091
189	3.5	3.635151625	-0.135151625
190	80	6.35013628	1.64986372
191	5	4.305543423	0.694456577
192	5	5.084234715	-0.084234715
193	4	3.807290316	0.192709684
194	5	3.807290316	1.192709684
195	8	6.232952595	1.767047405
196	3	4.917127609	-1.917127609
197	7	4.464291573	2.535708427

Page 5 of 5

42	6.5	6.682763577	-0.182763577
43	5	5.986295223	-0.986295223
44	6.5	6.524164677	-0.024164677
45	3	3.973739147	-0.973739147
46	6	5.209518433	0.790481567
47	6	5.481466293	0.518533707
48	4	5.650520802	-1.650520802
49	44	4.497632027	-0.497632027
50	6	5.483691216	0.516308784
51	4	5.135707855	-1.135707855
52	3	3.764050961	-0.764050961
53	7	7.003359318	-0.003359318
54	3	4.771690369	-1.771690369
55	3	5.445531368	-2.445531368
56	66	6.910124302	-0.910124302
57	7	7.975348473	-0.975348473
58	4	5.748865604	-1.748865604
59	1	3.445415497	-2.445415497
60	5	6.224830151	-1.224830151
61	3	3.20675683	-0.2 <u>06</u> 75683
62	6	5.798559189	0.201440811
63	3	4.604965687	-1.604965687
64	5	6.625731945	-1.625731945
65	6.5	5.038610458	1.461389542
66	7	7.441948891	-0.441948891
67	6	5.626206398	0.373793602
68	5.5	5.945224762	-0.445224762
69	4.5	5.962449551	-1.462449551
70	7	6.61332798	0.38667202
. 71	4	4.898539066	-0.898539066
72	4	4.631759167	-0.631759167
73	6	5.052081108	0.947918892
74	8	7.22050333	0.77949667
75	6.5	6.61604023	-0.11604023
76	7.5	5.960336208	1.539663792
77	6.5	6.733515739	-0.233515739
78	4	5.711940289	-1.711940289
79	5	7.001634598	-2.001634598
80	4	4.786885738	-0.786885738
81	5.5	4.569930077	0.930069923
82	5	5.516786575	-0.516786575
83	5	5.658553123	-0.658553123
84	3	5.325266361	-2.325266361
85	5	5.037067413	-0.037067413

Neural network output of Ca-SCP1-AR-1

Case			
	Actual (A)	Network output (N)	Difference (A-N)
1	4.5	3.834539413	0.665460587
2	3	3.6019754 <u>41</u>	-0.601975441
3	3.5	4.239492416	-0.739492416
4	5	4.534487724	0.465512276
5	6	4.008879662	1.991120338
6	8	6.441146851	1.558853149
7	8.5	6.788043976	1.711956024
8	5.5	5.364781857	0.135218143
9	6	6.652636528	-0.652636528
10	4	5.23118782	1.23118782
11	6	5.1452775	0.8547225
12	7	5.423746109	1.576253891
13	3	3.486235857	-0.486235857
14	4	3.610060692	0.389939308
15	4.5	3.206361055	1.293638945
16	4.5	4.521072865	-0.021072865
17	6	6.602045059	-0.602045059
18	4	3.901880741	0.098119259
19	4	3.59445262	0.40554738
20	7	3.768090963	3.231909037
21	8	7.677997589	0.322002411
22	2	4.644546509	-2.644546509
23	6	5.90747261	0.09252739
24	4.5	3.606713533	0.893286467
25	5.5	5.710269451	-0.210269451
26	5.5	4.911800385	0.588199615
27	5.5	3.814383984	1.685616016
28	6	5.725121975	0.274878025
29	5.5	6.386885643	-0.886885643
30	4.5	4.417686939	0.082313061
31	4	3.640757561	0.359242439
32	5.5	5.112279415	0.387720585
33	8_	7.037583351	0.962416649
34	7	6.373610973	0.626389027
35	5.5	6.260994434	-0.760994434
36	3	4.812043667	-1.812043667
37 :	7	6.881937981	0.118062019
38	S	6.161071777	-1.161071777
39	10	6.584045887	3,415954113
40	\$. \$	6.295330048	-0.795330048
41	6	6.456028461	-0.456028461

Page 1 of 5

86	5	5.558041096	-0.558041096
87	6	5.687648296	0.312351704
88	6	5.936135769	0.063864231
89	5	5.25139761	-0.25139761
90	6	5.335121155	0.664878845
91	4	6.259588718	-2.259588718
92	5	5.41920805	-0.41920805
93	5	4.771522045	0.228477955
94	4	5.335576534	-1.335576534
95	5.5	5.034899235	0.465100765
96	6.5	5.762748718	0.737251282
97	3	_5.020241261	-2.020241261
98	4.5	4.423054695	0.076945305
99.	7	5.702142715	1.297857285
100	4	6.78163726	-2.78168726
101	5	5.011079311	-0.01 1079311
102	4	4.661090851	-0.661090851
103	2	3.569127321	-1.569127321
104	7	5.584769249	1.415230751
105	7	5.26566267	1.73433733
106	5	4.646937847	0.353062153
107	7	5.362696648	1.637303352
108	3	4.298987389	-1.298987389
109	9	5.822114944	3.177885056
110	4	4.472941399	-0.472941399
111	5	3.802003384	1.197996616
112	3	3.884445906	-0.884445906
113	3	4.145517826	-1.145517826
114	6.5	5.238687515	1.261312485
115	5	4.903161049	0.096838951
116	5	4.992769241	0.007230759
117	4	4.871521473	-0.871521473
118	4	3.629784346	0.370215654
119	5	4.835861683	0.164138317
120	4.5	4.534532275	-0.034332275
121	4.5	4.287097454	0.212902546
122	3	4.669136524	-1.669136524
123	3	4.8282547	-1.8282547
124	5	5.865481377	-0.865481377
125	5	6.101934433	-1.101934433
126	5	5.406337738	-0.406337738
127	5	5.13445425	-0.13445425
128	3	4.102403164	-1.102403164
129	6	5.509902954	0.490097046

- 532 -

130	5	5.111120224	-0.111120224
131	5.5	5.168012142	0.331987858
132	5	5.182499886	-0.182499886
133	5	5.920605659	-0.920605659
134	4.5	5.254962921	-0.754962921
135	S	5.065310955	-0.065310955
136	5	5.314482689	-0.314482689
137	4.5	5.54521656	-1.04521656
138	5	5.315047264	-0.315047264
139	4	5.487260818	-1.487260818
140	5	5.497627258	-0.497627258
141	5	5.018959522	-0.018959522
142	7	6.270445824	0.729554176
143	5	5.186611652	-0.186611652
144	4	5.630034447	-1.630034447
145	5	5.897065163	-0.897065163
146	5	5.477042198	-0.477042198
147	4.5	5.385046959	-0.885046959
148	5	5.487203121	-0.487203121
149	3	3.787641525	-0.787641525
150	4	6.190672874	-2.190672874
151	5	4.778308392	0.221691608
152	7.5	4.884274483	2.615725517
153	4	4.000555992	-0.000555992
154	4.5	5.318244934	-0.818244934
155	8.5	4,527324677	3.972675323
156	2	4.803845882	-2.803845882
157	l l	3.87485218	-2.87485218
158	2	3.652634144	-1.652634144
159	1	3.863803625	-2.863803625
160	5	6.022220612	-1.022220612
161	5.5	5.604941845	-0.104941845
162	6	5.785904408	0.214095592
163	5.5	5.576463699	-0.076463699
164	. 5	5.091519356	-0.091519356
165	_6	5.751199722	0.248800278
166	5	5.4516716	-0.4516716
167	7	6.246901035	0.753098965
168	5	5.639733315	-0.639733315
169	5	5.26864481	0.26864481
170	4	5.48692894	-1.48692894
171	6	5.850766182	0.149233818
172	5.5	5.86694622	-0.36694622
173	6.5	6.070007324	0.429992676

Page 4 of 5	Page	5 of 5

Neural network output of Ca-SCP1-SC-final

Case	Actual (A)	Network output (N)	Difference (A-N)
1	5.5	4.149231911	1.350768089
2	5	5.117958546	-0.117958546
3	5	5.019765854	-0.019765854
4	3	4.548175812	-1.548175812
5	_5	4.727169514	0.272830486
6	5	4.991176605	0.008823395
7	6	4.890583038	1.109416962
8	6	5.117958546	0.882041454
9	5	4.616878033	0.383121967
10	. 6	4.715612411	1.284387589
11	4	5.179959297	-1.179959297
12	5	4.715612411	0.284387589
13	5	4.684858322	0.315141678
14	4	4.684858322	-0.684858322
15	5.5	4.727169514	0.772830486
16	6.5	4.794406414	1.705593586
17	3	4.123225689	-1.123225689
18	4.5	4.224894524	0.275105476
19	7	4.788444996	2.211555004
20	4	5.42690897	-1.42690897
21	5	4.860840797	0.139159203
22	4	4.366512775	-0.366512775
23	2	3.970868826	-1.970868826
24	7	4.919921398	2.080078602
25	7	4.4414258	2.5585742
26	. 5	4.012584209	0.987415791
27	7	4.890583038	2.109416962
28	3	3.126245022	-0.126245022
29	9	5.012719154	3.987280846
30	4	4.157355785	-0.157355785
31	5	3.4915061	1.5084939
32	3	4.081338406	-1.081338406
33	3	4.216189384	-1.216189384
34	6.5	4.812144756	1.687855244
35	5	4.012584209	0.987415791
36	5	4.548175812	0.451824188
37	4	4.51101017	-0.51101017
38	4	3.713862181	0.286137819
39	5	4.081338406	0.918661594
40	4.5	4.224894524	0.275105476
41	4.5	3.929257393	0.570742607
		3.767631373	9.510142001

42	3	4.366512775	-1.366512775
43	3	4.073521137	-1.073521137
44	5	5.117958546	-0.117958546
45			
46		4.955613613	0.044386387
46	5	5.117958546	-0.117958546
		4.408768177	0.591231823
48	3	4.157355785	-1.157355785
49	6	4.788444996	1.211555004
50	5	4.715612411	0.284387589
51	5.5	4,727169514	0.772830486
52	5	4.50579977	0.49420023
53	5	5.117958546	-0.117958546
54	4.5	4.51101017	-0.01101017
55	5	4.516086102	0.483913898
56	5	4.788444996	0.211555004
57	4.5	4.919921398	-0.419921398
58	5	4.4414258	0.5585742
59	4	4.648142338	-0.648142338
60	5	4.788444996	0.211555004
61	5	4.991176605	0.008823395
62	7	5.090141773	1.909858227
63	5	4.752079487	0.247920513
64	4	4.854602337	-0.854602337
65	5	5.152756214	-0.152756214
66	5	4.884108067	0.115891933
67	4.5	4.548175812	-0.048175312
68	5	4.984373569	0.015626431
69	3	3,488942146	-0.488942146
70	4	5.309114933	-1.309114933
71	5		
72		4.233265877	0.766734123
73	7.5	4.4414258	3.0585742
74	4	4.295971394	-0.295971394
	4.5	4.848179817	-0.348179817
75	8.5	3.783847332	4.716152668
76	2	4.50579977	-2.50579977
77	1	3.345570087	-2.345570087
78	2	3.418465614	-1.418465614
79	1	3.860003948	-2.860003948
80	5_	4.932741165	0.067258835
81	5.5	5.187401772	0.312598228
82	6	4.991176605	1.008823395
83	5.5	4.919921398	0.580078602
84	<u> </u>	4.366512775	0.633487225
85	6	4.854602337	1.145397663

5.26313591 5.401152134 5.76592207 5.699860573

6.024675369

4.004262924

6.566257 5.525979042 5.129974842 5.407452106

3.014759302

5.116139889 5.246771336

5.472651482

6.130567551

3.173277617

6.640258789

4.242139816

4.840325832

3.43144536 3.454949379 6.531142235 4.787133217

4.809681416

0.23686409 -0.401152134 -0.76592207

-1.199860573

-1.024675369

-0.004262924

0.433743 1.474020958

0.870025158 -0.407452106

-1.014759302

-1.116139889 0.753228664

0.527348518

-1.130567551

0.326722383 1.359741211 0.757860184

0.159674168

0.56855464

1.545050621 1.468857765 -1.787133217 2.190318584

174 175 176

177

178

179

180

181

182

183 184

185

186 187

188

189

190 191

192 193

194 195

196

197

ί

Ű

5 4.5

5

6

5 3.5

8

- 533 -

Page 1 of 3

86	_5	4.991176605	0.008823395
87	7	5.214428425	1.785571575
88	5	4.75799799	0.24200201
89	_5	4.684858322	0.315141678
90	_4	4.926440239	-0.926440239
91	_6	4.818506718	1.181493282
92	5.5	5.090141773	0.409858227
93	6.5	4.926440239	1.573559761
94	_5.5	4.818506718	0.681493282
95	_5	4.782301903	0.217698097
96	_ 5	5.117958546	-0.117958546
97	4.5	4.860840797	-0.360840797
98	5	4.860840797	0.139159203
99	4	4.005282402	-0.005282402
100	7	5.376556396	1.623443604
101	_ 7	4.653739452	2.346260548
102	6	4.450920582	1.549079418
103	_5	4.727169514	0.272830486
104	_2	3.20046401	-1.20046401
105	4	4.642403126	-0.642403126
106	6	4.653739452	1.346260548
107	. 6	4.919921398	1.080078602
108	_5	5.309114933	-0.309114933
109	3.5	3.345570087	0.154429913
110	8	5.42690897	2.57309103
[11]	5	3.929257393	1.070742607
112	_ 5	4.4414258	0.5585742
113	4	3.567345858	0.432654142
114	5	3.567345858	1.432654142
115	8	5.241008759	2.758991241
116	3	4.548175812	-1.548175812
117	_7	4.149231911	2.850768089

Page 3 of 3

42	3	4.261273861	-1.261273861
43	3	3.992155552	-0.992155552
_44	5	5.257711887	-0.257711887
45	_ 5	5.075682163	-0.075682163
46	5	5.090843678	-0.090843678
47	5	4.470458031	0.529541969
48	3	3.61349938	-0.61349988
49	6	4.956889153	1.043110847
50	5	4.498444557	0.501555443
51	5.5	4.673595905	0.826404095
.52	5	4.466954231	0.533045769
53	5	5.221735477	-0.221735477
54	4.5	4.445707321	0.054292679
	5	4.545145988	0.454854012
56	5	4.644574642	0.355425358
57	4.5	4.933734417	-0.433734417
58	5	4.54402256	0.45597744
59	4	4.70004034	-0.70004034
60	5	4.780043125	0.219956875
61	_ 5	4.778876781	0.221123219
62	7_7	5.20919323	1.79080677
63	5	4.810224056	0.189775944
_64	4	4.894505024	-0.894505024
65	_5	5.200512409	-0.200512409
66	_5	4.935984135	0.064015865
67	4.5	4.43443[553	0.065568447
68	5	4.949698448	0.050301552
69	3	3.061730385	-0.061730385
70	4	5.630025864	-1.630025864
71	5	4.383594036	0.616405964
72	7.5	4.467776299	3.032223701
73	4	3.693557978	0.306442022
74	4.5	4.584660053	-0.084660053
75	8.5	3.572829485	4.927170515
76	2	4.411577225	-2.411577225
77	11	3.313678503	-2.313678503
78	2	3.014253855	_1.014253855
79	1	3.200802326	-2.200802326
80	5	4.880195618	0.119804382
81	5.5	5.099908829	0.400091171
82	6	4.950122833	1.049877167
83	5.5	5.076031685	0.423968315
84	5	4.341298103	0.658701897
85	6	4.950258732	1.049741268

Neural network output of Ca-SCP1-SC-1

	,		
Case	Actual (A)	Network output (N)	Difference (A-N)
<u></u>	5.5	3.917281628	1.582718372
2	5	5.022014141	-0.022014141
3	.5	5.021278858	-0.021278858
44	3	4.570822239	-1.570822239
5	5	4.57212162	0.42787838
6	55	4.910902023	0.089097977
7	6	4.82679274	1.17320776
8	-6 -	5.19 5596695	0.804403305
9	5	4.441923141	0.558076859
10	6	4_559606075	1.440393925
11	4	5.047578812	-1.047578812
12	5	4.667279243	0.332720757
13	5	4.427899361	0.572100639
14	4	4.745349884	-0.745349884
15	5.5	4.443550587	1.056449413
16	6.5	4.885596275	1.614403725
17	3	4.01456213	-1.01456213
18	4.5	3.867930174	0.632069826
19	7	4.958799362	2.041200638
20	4	5.829636574	-1.829636574
21_	5	4.667276382	0.332723618
22	4	4.09939146	-0.09939146
23	2	3.303741217	-1.303741217
24	7	4.841669559	2.158330441
25	7	4.2008214	2.7991786
26	5	3.897466183	1.102533817
27	7	4.938503265	2.061496735
28	3	2.973790169	0.026209831
29	9	5.238014698	3.761985302
30	4	3.728948832	0.271051168
31	. 5	3.053287029	1.946712971
32	3	3.557204008	-0.557204008
33	3	3.462746382	-0.462746382
34	6.5	4.605958462	1.894041538
35	5	3.967979193	1.032020807
36	5	4.454782486	0.545217514
37	4	4.475345612	-0.475345612
38	4	3.025846958	0.974153042
39	5	4.227778435	0.772221565
40	4.5	3.874097109	0.625902891
41	4.5	3.770399094	0.729600906

Page 1 of 3

			··
<u>8</u> 6	5	4.880356312	0.119643688
87	7	5.469101906	1.530898094
88	. 5	4.805494785	0.194505215
89	5	4.567625046	0.432374954
90	_4	5.05655098	-1.05655098
91	6	5.061890602	0.938109398
92	5.5	5.276704311	0.223295689
93	6.5	5.076957226	1.423042774
94	5.5	4.670499802	0.829500198
95	. 5	4.61810112	0.38189888
96		5.236358643	-0.236358643
97	4.5	4.917748928	-0.417748928
98	. 5	5.27491188	-0.27491188
99	4	3.652132273	0.347867727
100	7	5.237965107	1.762034893
101	7	4.243434429	2.756565571
102	6	4.642915249	1.357084751
103	5	4.796919823	0.203080177
101	2	2.394713402	-0.394713402
105	4	4.801609993	-0.801609993
106	6	4.741246223	1.258753777
107	6	4.934619904	1.065380096
108	5	5.49013567	-0.49013567
109	3.5	2.759728193	0.740271807
110	8	5,534020424	2.465979576
111	5	3.742187023	1,257812977
112	5	4.237840652	0.762159348
113	4	2.922842264	1.077157736
114	5	3.030380964	1.969619036
115	1 8	5.507766724	2.492233276
116	3	4.302959442	-1.302959442
117	· 3	3.932018995	3.067981005
117	ı <u> </u>	3.732018993	1 2.001981003

- 534 -

Neural network output of Ca-SCP1-MC-final

Ventar network ontbut at Careching-timal			
Case	Actual (A)	Network output (N)	Difference (A-N)
_ 1	4.5	4.464281082	0.035718918
2	3	4.401668072	-1.401668072
3	3.5	4.931308746	-1.431308746
4	<u> </u>	5.22587204	-0.22587204
-5	6	4.994033813	1.005966187
6	8	6.590456963	1.409543037
7	8.5	7.076079845	1.423920155
8	5.5	5.962384224	-0.462384224
9	6	6.742831707	-0.742831707
10	4	5.455254555	-1.455254555
11	6	6.311785698	-0.311785698
12	7	5.340929031	1.659070969
13	3	4.401668072	-1.401668072
14	4	4,339142323	-0.339142323
15	4.5	3.87812233	0.62187767
16	4.5	5.920304775	-1.420304775
17	6	7.408416748	-1.408416748
18	4	4.697896481	-0.697896481
19	4	3.87812233	0.12187767
20	7	4.635026932	2.364973068
21	8	7.253638268	0.746361732
22	2	4.635026932	-2.635026932
23	6	6.769248486	-0.769248486
24	4.5	4.107466698	0.392533302
25	5.5	5.620316982	-0.120316982
26	5.5	5.22587204	0.27412796
27	5.5	4.424205303	1.075794697
28	6	6.119744301	-0.119744301
29	5.5	6.959119797	-1.459119797
30	4.5	4.931308746	-0.431308746
31	4	4.931308746	-0.931308746
32	5.5	4.994033813	0.505966187
33	8	7.300761223	0.699238777
34	7	6.83914566	0.16085434
35	5.5	6.64471674	-1.14471674
36	3.3	5.455254555	-2.455254555
37	7	6.698253632	0.301746368
38	5	5.558980942	
39	10	6.443275928	-0.558980942 3.556724072
40	5.5	6.64471674	-1.14471674
40	6	6.235263348	-0.235263348

	Page	1	of	2
--	------	---	----	---

Neural network output of Ca-SCP1-MC-1

Actual (A)		
	Network output (N)	Difference (A-N)
4.5	4.773617744	-0.273617744
3	4,58317852	-1.58317852
3.5	5.085490227	-1.585490227
5	5.194595814	-0.194595814
_ 6	5.030376911	0.969623089
8	6.464046955	1.535953045
8.5	6.538719654	1.961280346
5.5	5.654652119	-0.154652119
6	6.447291851	-0.447291851
4	5.549125195	-1.549125195
6	5.844924927	0.155075073
7	5.468904018	1.531095982
3	4.792307377	-1.792307377
4	4.704149246	-0.704149246
4.5	4.425019741	0.074980259
4.5	5.775793552	-1.275793552
6	6.573404312	-0.573404312
4	4.932305399	-0.932808399
4	4.460197926	-0.460197926
7	4.686625004	2.313374996
8	6.806356907	1.193643093
2	4.696218014	-2.696218014
6	6.03098917	-0.03098917
4.5	4.976108074	-0.476108074
5.5	6.01082468	-0.51082468
5.5	5.022091866	0.477908134
5.5	4.993169308	0.506830692
6	6.053659916	-0.053659916
5.5	6.460316181	-0.960316181
4.5	5.395450115	-0.895450115
4		-1.452426434
		0.236907005
		1.423721313
		0.334707737
		-1.014471531
		-2.317122936
		0.73160696
		-1.06883049
		3.77378273
		-0.720292568
		-0.406611483
	3 3.5 5 6 8 8.5 5.5 6 4 6 7 3 3 4 4.5 4.5 6 4 7 8 8 2 6 4 7 8 8 5 5 6 6 6 7 7 3 4 4 5 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 4.58317852 3.5 5.085490227 5 5.194595814 6 5.030376911 8 6.464046955 8.5 6.538719654 5.5 5.654652119 6 6.447291851 4 5.549125195 6 5.84924927 7 5.468904018 3 4.792307377 4 4.704149246 4.5 4.792307377 4 4.704149246 4.5 4.792307377 2 4.685625004 8 6.603636907 2 4.6965218014 6 6.03098917 4.5 4.976108074 5.5 5.02091866 5.5 5.02091866 5.5 5.02091866 5.5 5.5 6.01082468 5.5 5.5 6.01082468 5.5 5.5 6.056369916 5.5 6.66389304 5.5 5.5 5.263092995 8 6.576278687 7 6.665392263 5.5 6.514471531 3 5.317122936 7 6.665392263 5 6.06883049 10 6.22621727 5.5 6.02623689

42	6.5	7.076079845	-0.576079845
43	5	5.681252956	-0.681252956
44	6.5	6.698253632	-0.198253632
45	3	5.269024849	-2.269024849
46	6	5.620316982	0.379683018
47	6	6.443275928	-0.443275928
48	4	6.235263348	-2.235263348
49	4	5.577692986	-1.577692986
50	6	6.498519897	-0.498519897
51	4	4.931308746	-0.931308746
52	3	3.87812233	-0.87812233
53	7	7.670966148	-0.670966148
54	3	5.393483162	-2.393483162
55	3	5.681252956	-2.681252956

Page 2 of 2

42	65	6.563976288	-0.063976288
	6.5		
43	5	6.232317448	-1.232317448
44	6.5	5.716614246	0.783385754
45	3	5.384508133	2.384508133
46	6	5.931331635	0.068668365
47	6	5.768014431	0.231985569
48	4	5.954479218	-1.954479218
49	4	5.613107 <u>68</u> 1	-1.61 <u>3</u> 107681
50	6	5.940789223	0.059210777
51	4	5.527078629	·1.527078629
52	3	4.477903843	-1.477903843
53	7	6.532481194	0.467518806
54	3	5.664883137	-2.664883137
55	3	5.778846741	-2.778846741

- 535 -

Neural network output of Ca-SCP1-CC-final

Case	Actual (A)	Network output (N)	Difference (A-N)
1	6	5.935964584	0.064035416
	ï	6.223902702	0.776097298
3	4	5.379684925	-1.379684925
4	1	4.171934128	-3.171934128
5	5	5.987324238	-0.987324238
6_	3	3.929526091	-0.929526091
7_	6	5.784950256	0.215049744
8	3	4.713801861	-1.713801861
9	- 5	6.061558723	-1.061558723
10	6.5	5.183104038	1.316895962
11	7	6.179848671	0.820151329
12	6	5.70613718	0.29386282
13	5.5	5.067548752	0.432451248
14	4.5	5.009153366	-0.509153366
15	7	6.345228672	0.654771328
16	4	5.436724186	-1.436724186
17	4	5.268569946	-1.268569946
18	6	5.464209557	0.535790443
19	8	6.622394562	1.377605438
20	6.5	5.987324238	0.512675762
21	7.5	6.2763381	1.2236619
22	6.5	6.034450531	0.465549469
23	4	5.626158237	-1.626158237
24	5	6.134487629	-1.134487629
25	4	5.183104038	-1.183104038

Neural network output of Ca-SCP1-CC-1

Case	Actual (A)	Network output (N)	Difference (A-N)
i	6	5.550621986	0.449378014
	7	5.604353905	1.395646095
3	4	5.513953209	-1,513953209
4	1 '	5.453352451	-4,453352451
5	5	5.587263107	-0.587263107
6	3	5.42206049	-2,42206049
7	6	5.599052906	0.400947094
8	3 - 1	5.598065853-	-2.598065853
9	5	5.594827652	-0.594827652
10	6.5	5,500203609	0.999796391
11	7	5.594642162	1,405357838
12	6	5.436061859	0.563938141
13	5.5	5.513371944	-0.013371944
14	4.5	5.471082687	-0.971082687
15	7	5.604401588	1.395598412
16	4	5.520974636	-1.520974636
17	4	5.492034435	-1.492034435
18	6	5.622940063	0.377059937
19	8	5.667084217	2.332915783
20	6.5	5.565607071	0.934392929
21	7.5	5.682452679	1.817547321
22	6.5	5.605175018	0.894824982
23	4	5.519219398	-1.519219398
24	5	5.614183426	-0.614183426
25	4	5.572461605	-1.572461605

ς.

Page 1 of 1

Page 1 of 1

Neural network outputs of the SCP2 analysis

Neural network output of Ca-SCP2-AR-final

Case	Actual (A)	Network output (N)	Difference (A-N)
	5	3.321290016	1.678709984
2	3.5	3.343508482	0.156491518
3	4	3.650762081	0.349237919
4	5.5	3.935154676	1.564845324
- 5	6.5	3.992750168	2.507249832
6	8.5	5.13615799	3.36384201
7	5	4.688570499	0.311429501
8	6	4.199240685	1.800759315
9	7.5	4.833525658	2.666474342
10	4.5	3.895442486	0.604557514
Ξ,	6	4.412961483	1.587038517
12	_ 7	4.172646523	2.827353477
13	3.5	3,454605103	0.045394897
14	4.5	3.799328566	0.700671434
15	5	3.630405426	1.369594574
16	5	4.19514513	0.80485487
17	6.5	4.572299004	1.927700996
18	3.5	3.454605103	0.045394897
19	4	3.383439779	0.616560221
20	7	3.626183033	3.373816967
21	9	5.281079769	3.718920231
22	3	3.996146441	-0.996146441
23	5.5	5.019539833	0.480460167
24	3	3.430232525	-0.430232525
25	5	5.022633553	-0.022633553
26	3	3.650762081	-0.650762081
27	4.5	4.238213539	0.261786461
28	6	4.761283875	1.238716125
29	4	5.010736942	-1.010736942
30	3	4.04576683	-1.04576683
31	5	4.204527855	0.795472145
32	3	3.862568378	-0.862568378
33	8	4.982834816	3.017165184
34	6	5.060078621	0.939921379
35	6	4.942162037	1.057837963
36	4.5	4.043342113	0.456657887
37	7	4.637080669	2.362919331
38	5	4.743901253	0.256098747
39	66	4.365437508	1.634562492
40	5	4.680609703	0.319390297
41	6.5	4.510234356	1.989765644

Page 1 of 5

86	4	4.399474144	-0.399474144
87	5	4.448898792	0.551101208
88	5	4.368355751	0.631644249
89	5	4.451793671	0.548206329
90	5.5	4.420734406	1.079265594
91	4.5	4.006233692	0.493766308
92	5	4.472771168	0.527228832
93	4,5	3.737574816	0.762425184
94	5	4.660612583	0.339387417
95	4.5	3.871006966	0.628993034
96	4	4.657433987	-0.657433987
97	3.5	4.104011536	-0.604011536
98	5	3.677535057	1.322464943
99	7.5	4.721071243	2.778928757
100	4	4.942162037	-0.942162037
101	5	3.570498943	1.429501057
102	4.5	3.970914841	0.529085159
103	2	3.400041819	-1.400041819
104	7	4.067890644	2,932109356
105	3	3.784265757	-0.784265757
106	4	3.407841921	0.592158079
107	7	4.34682703	2.65317297
108	4	4.32691288	-0.32691288
109	8.5	4.832571983	3.667428017
110	2	4.006233692	-2.006233692
III	3.5	3.628364325	-0.128364325
112	3	3.652981758	-0.652981758
113	1	3.062819719	-2.062819719
114	8	4.231098175	3,768901825
115	5	4.067890644	0.932109356
116	5.5	4.206798077	1.293201923
117	2.5	4.067890644	-1.567890644
118	4	3,367720604	0.632279396
119	5	4.741305828	0.258694172
120	4	4.22019577	-0.22019577
121	2	3,53933835	-1.53933835
122	3	3.93275857	-0.93275857
	4	4.240629673	-0.240629673
123	4.5		0.270283222
124		4.229716778	
125	5	4.578949928	0.421050072
126	3	4.131168642	-1.131168842
127	4.5	4.611031123	-0.111081123
128	5 [4.196297169	0.803702831

5.114487171 1.885512829 43 4.696820259 0.303179741 44 4.370956421 0.629043579 -0.519539833 0.179025173 45 4.5 5.019539833 46 4.820974827 47 4.741305828 1.258694172 6 48 4.427621841 0.572378159 49 4.065945625 0.934054375 50 4.386000156 -2.386000156 51 4.131168842 -0.13)168842 52 3.58097744 -0.58097744 4.918095112 53 2.081904888 54 4 4.23558712 -0.23558712 55 3 4.3441782 -1.3441782 5.021599293 0.978400707 57 5.174467564 1.825532436 58 4.5 2.5 4.464875698 0.035124302 59 3.566006899 -1.066006899 5.117863178 3.017516375 5.5 60 0.382136822 61 2 -1.017516375 62 4.302165985 2.697834015 3.5 5.5 63 4.784079552 -1.284079552 64 4.958385468 0.541614532 65 4.238213539 -0.238213539 1.86384201 66 67 5.13615799 6.5 4.478431702 2.021568298 68 0.136340618 4.863659382 69 3.5 4.572626114 -1.072626114 70 8 4,5 5.019539833 2.980460167 71 4.155805111 0.344194889 1.300294876 72 3.699705124 73 3.935154676 3.064845324 5.338404655 2.661595345 75 4.229728699 1.770271301 6 76 5.016161919 -0.016161919 77 4.761283875 0.238716125 78 4.5 4.534393311 -0.034393311 4.882505417 4.475718498 1.117494583 0.524281502 79 6 80 81 5.5 3.630405426 1.869594574 82 2.5 4.338346958 -1.83<u>8</u>346958 83 4.314282417 -0.314282417 84 4.596345901 0.403654099 4.232428074 -0.732428074

ť

Page 2 of 5

130	5.5	4.172}84944	1.327815056
131	5	4.177770138	0.822229862
132	3.5	4.315653324	-0.815653324
133	5.5	4.314282417	1.185717583
134	4	4.526012897	-0.526012897
135	5.5	4.423555851	1.076444149
136	5	4.28121233	0.71878767
137	4_	4.147222996	-0.147222996
138	4	4.475718498	-0.475718498
139	5.5	4.451793671	1.048206329
140	5	4.368355751	0.631644249
141	4.5	3.875738382	0.624261618
142	5	4.643157482	0.356842518
143	6	4.090756893	1.909243107
144	5	4.555377483	0.444622517
145	5	4.514182568	0.485817432
146	4	4.277772903	-0.277772903
147	4	4.534552574	-0.534552574
148	5	4.326343536	0.673656464
149	3	3.475635052	-0.475635052
150	4.5	4.58191824	-0.08191824
151	2	3.912535667	+1.912535667
152	7	4.604282379	2.395717621
153	5	4.0004282	0.9995718
154	3	4.328766823	-1.328766823
155	B.5	3.799328566	4.700671434
156	4.5	3.824135303	0.675864697
157	2	3.935154676	-1.935154676
158	4.5	3.889650583	0.610349417
159	1	3.735213041	-2.735213041
160	3	4.315653324	-1.315653324
161	5	3.53933835	1.46066165
162	4	4.445898792	-0.448898792
163	5	4.559659004	0.440340996
164	4	4.608158588	-0.608158588
165	5	4.578949928	0.421050072
166	5	4.193230152	0.806769848
167	4	4.286872864	-0.286872864
168	5	4.555377483	0.444622517
169	4	4.472771168	-0.472771168
170	 -	4,514182568	-0.514182568
171	4	4.804415703	-0.804415703
172	5.5	4.329056263	1.170943737
173	5	4.697922707	0.302077293

- 538 -

Neural	network	outout	of Ca-	SCP2«	AR-

Case	Actual (A)	Network output (N)	Difference (A-N)
	5	3.876683474	1.123316526
2	3.5	3.760709286	-0.260709286
3	4	3.9678123	0.0321877
4	5.5	4.03409481	1.46590519
5	6.5	3.82435894	2.67564106
6	8.5	4.507126808	3.992873192
7	5_	4.496229649	0.503770351
8	6	4.136411667	1.863588333
9	7.5	4.672330379	2.827669621
10	4.5	4.293633461	0.206366539
11	6	4,3943367	1.6056633
12	7	4.139686108	2.860313892
13	3.5	3.799674988	0.299674988
14	4.5	3,865029573	0.634970427
15	5	3.659567595	1.340432405
16	5	4.077286243	0.922713757
17	6.5	4.56004858	1.93995142
18	3.5	3.87443018	-0.37443018
19	4	3.630314827	0.369685173
20	7	3.75984621	3.24015379
21	9	4.719362736	4.280637264
22	3	3.819633961	-0.819633961
23	5.5	4,492673874	1.007326126
24	3	3.89063549	-0.89063549
25	5	4,4097035	0.5902915
26	3	3.933763266	-0.933763266
27	4.5	3.911054134	0.588945866
28	6	4.41014719	1.58985281
29	4	4,639895916	-0.639895916
30	3_	4.117100239	-1.117100239
31	5	4.097548962	0.902451038
32	3	3.947583914	-0.947583914
33	8	4,711641312	3.288358688
34	6	4.71680975	1.28319025
35	6	4.636891842	1.363108158
36	4.5	4.012868881	0.487131119
37	7	4.492428303	2.507571697
38	5	4,453339577	0.546660423
39	6	4.552334785	1.447665215
40	5	4,550035954	0.449964046
41	6.5	4.596738338	1.903261662

Page 1 of 5

Page	5 of	5
------	------	---

174 175 176

177

178 179

180

181

182

183 184

185 186

187

188 189

190

191

192

193

194 195 196

197

5.5

5.5

3

4

6

4,472771168

4.065233707 4.250455379 4.368355751

4.454457283

3.848849297

4.196297169

3.588184357 4.259971619 4.284147739 3.017516375

4.131168842

4.302165985

4.175075054

4.764481068 3.454605103

4.578949928

4.0004282

4.514182568 3.234873295

3.234873295 4.919514179 3.970914841

3.605705976

0.027228832

0.934766293 -0.250455379 1.131644249 0.545542717

0.151150703

-0.196297169

1.411815643

0.740028381 0.715852261

-2.017516375

-1.131168842 -1.302165985

0.824924946

0.735518932 -0.454605103 -0.578949928

-0.0004282

1.485817432

-1.234873295

1.765126705 3.080485821 -0.970914841

-2.605705976

(

42	7	4.65335083	2.34664917
43	5	4.399458885	0.600541115
44	5	4.289422035	0.710577965
45	4.5	3.951385021	0.548614979
46	5	4.32204628	0.67795372
47	6	4 20927	1.79073
48	5	4.268004894	0.731995106
49	5	4.08813858	0.91186142
50	2	4.288188934	-2.288188934
51	4	4.137106895	0.137106895
52	3	3.549838543	-0.549838543
53	7	4.604429722	2.395570278
54	4	4.221418381	-0.221418381
55	3	4.270308495	1.270308495
56	6	4.674385548	1.325614452
57	7	4.692965508	2.307034492
.58	4.5	4,347748756	0.152251244
59	2.5	3.798424959	1.298424959
60	5.5	4.582507133	0.917492867
61	2	3.627970457	-1.627970457
62	7	4.487101078	2.512898922
63	3.5	4.344355583	-0.844355583
64	5.5	4.666371346	0.833628654
65	4	4.245215893	-0.245215893
66	7	4.775977612	2.224022388
67	6.5	4.338568211	2.161431789
68	5	4.389532566	0.610467434
69	3.5	4.40516901	-0.90516901
70	8	4.666835308	3.333164692
71	4.5	4.3320117	0.1679883
72	5	4.256317139	0.743682861
73	7	4.295329571	2.704670429
74	8	4,83577776	3.16422224
75	6	4.403878689	1.596121311
76	5	4.526873112	0.473126888
77	5	4,679665565	0.320334435
78	4.5	4.34799099	0.15200901
79	6	4.70732832	1.29267168
80	5	4.328512192	0.671487808
81	5.5	4.203557491	1:296442509
82	2.5	4.487573147	-1.987573147
83	4	4.497833252	-0.497833252
84	5	4.398020267	0.601979733
85	3.5	4.426970005	-0.926970005

86	4_	4.499021053	-0.499021053
87	5	4.438917637	0.561082363
88	5	4,51322031	0.48677969
89	5	4.400136948	0.599863052
90_	5.5	4.467130661	1.032869339
91	4.5	4.50932312	-0.00932312
92	5	4.398512363	0.601487637
93	4.5	4.267726898	0.232273102
94	5	4.457604885	0.542395115
95	4.5	4.3459692	0.1540308
96	4	4.515854359	-0.515854359
97	3.5	3.948563337	-0.448563337
98	5	4,191148758	0.808851242
99	7,5	4.485352993	3.014647007
100	4	4.738297939	-0.738297939
101	5	3.976947546	1.023052454
102	4.5	4.248158455	0.251841545
103	2	4.093539238	-2.093539238
104	7	4.288310528	2.711689472
105	3	4.083687782	-1.083687782
106	4	4.093415737	-0.093415737
107	7	4,44425106	2.55574894
108	4	4.004533291	-0.004533291
109	8.5	4.561662197	3.938337803
110	2	4.20963335	-2.20963335
111	3.5	3.745630026	-0.245630026
112	3	4.054831505	-1.054831505
113		3.965351343	-2.965351343
114	8	4.416258512	3.583741188
115	5	4.030554295	0.969445705
116	5.5	4.317948341	1.182051659
117	2.5	4.082798004	-1.582798004
118	4	3.892411232	0.107588768
119	5	4.332148552	0.667851448
120	4	4,393195629	0.393195629
121	2	3,800183303	1.800185303
122	3	4.180497646	1.180497646
123	4	4.134836674	-0.134836674
124	4.5	4.134830074	0.030408859
125	5		
126	3	4.562331676	0.437668324
		4.445332527	1.445332527
127	4.5	4.365334579	0.134615421
128	5	4.394147396	0.605852604
129	<u> </u>	4.458117485	-0.458117485

- 539 -

_ _		 _	,
130	5.5	4.379634857	1.120365143
131	5	4.44140625	0.55859375
132	3.5	4.402943611	-0.902943611
133	5.5	4.4850173	1.0149827
134	4	4.385038853	-0.385038853
135	5.5	4.371397018	1.128602982
136	5	4.46268034	0.53731966
137	4	4.509841919	-0.509841919
138	4	4.357115269	-0.357115269
139	5.5	4.40980196	1.09019804
140	5	4,48256731	0.51743269
141	4.5	4,399076939	0.100923061
142	5	4,558922768	0.441077232
143	6	4.32778883	1.67221117
144	5	4.503302574	0.496697426
145	5	4,470114708	0.529885292
146	4	4.311314583	-0.311314583
147	4	4.500330925	-0.500330925
148	5	4,47878933	0.52121067
149	3	3.810942888	-0.810942838
150	4.5	4,588596344	-0.088596344
151	2	4,165231705	-2.165231705
152	7	4,432901382	2.567098618
153	5	4.25608778	0.74391222
154	3	4.391747475	-1.391747475
155	8.5	3.919684172	4.580315828
156	4.5	4.087164402	0.412835598
157	2	3.949093819	-1.949093819
158	4.5	3.903130531	0.596869469
159	1	4.113666534	-3.113666534
160	3	4,471689701	-1.471689701
161	5	4,370924473	0.629075527
162	4	4.533969879	-0.533969879
163	.5	4,383038521	0.616961479
164	4	4.321953773	-0.321953773
165	5	4.508850574	0.491149426
166	5	4.389158726	0.610841274
167	4	4.525638103	-0.525638103
168	5	4.456212997	0.543787003
169	4	4.420072079	-0.420072079
170	4	4.374187946	-0.374187946
171	4	4.539958	-0.539958
172	5.5	4.519639969	0.980360031
173	5	4.475421906	0.524578094

174 4.5 4.467597961 0.032402039 175 5 4.402391434 0.597608566 176 4 4.451865673 -0.451865673 177 5.5 4.511536598 0.988463402 178 5 4.386698723 0.613301277 179 4 4.101391315 -0.101391315 180 4 4.487140179 -0.487140179 181 5 4.32268858 0.67731142 182 5 4.346656799 0.653343201 183 5 4.457356453 0.542643547 184 1 3.647927284 -2.647927284 185 3 4233489513 -1.23489513 186 3 4.294149876 -1.294149876 187 5 4.38677454 0.61322546 188 5.5 4.628465652 0.871534348 189 3 3.85126848 -0.861126848 190 4 4.743555069 -0.743555069 191 4				
176 4 4.451865673 -0.451865673 177 5.5 4.511536598 0.988463402 178 5 4.386698723 0.613301277 179 4 4.101391315 -0.101391315 180 4 4.487140179 -0.487140179 181 5 4.32268858 0.67731142 182 5 4.346550799 0.653343201 183 5 4.457356453 0.542643547 184 1 3.647927284 -2.647927284 185 3 4.233489513 -1.233489513 186 3 4.294149876 -1.294149876 187 5 4.38671454 0.61322546 188 5.5 4.628465652 0.871534348 189 3 3.85126848 -0.861126848 190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 <td>174</td> <td>4.5</td> <td>4.467597961</td> <td>0.032402039</td>	174	4.5	4.467597961	0.032402039
177 5.5 4.511536598 0.988463402 178 5 4.386698723 0.613301277 179 4 4.101391315 -0.101391315 180 4 4.87140179 -0.487140179 181 5 4.32268858 0.67731142 182 5 4.346656799 0.653343201 183 5 4.457356453 0.542643547 184 1 3.647927284 -2.647927284 185 3 4.23449876 -1.294149876 186 3 4.294149876 -1.294149876 187 5 4.38677454 0.61322546 183 5.5 4.628465657 0.871534348 189 3 3.85126848 -0.865126848 190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5	175	5	4.402391434	0.597608566
178 5 4.385698723 0.613301277 179 4 4.101391315 -0.101391315 180 4 4.487140179 -0.487140179 181 5 4.32268858 0.67731142 182 5 4.346656799 0.653343201 183 5 4.87356453 0.542643547 184 1 -3.647927284 -2.647927284 185 3 4.294149876 -1.294149376 187 5 4.38677454 0.61322546 188 5.5 4.628465652 0.871534348 189 3 3.865126848 -0.865126848 190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.211060047 195 8 4.660535812 3.339464188	176	4	4.451865673	-0.451865673
179 4 4.101391315 -0.101391315 180 4 4.487140179 -0.487140179 181 5 4.32268858 0.67731142 182 5 4.346556799 0.653343201 183 5 4.457356453 0.542643547 184 1 3.647927284 -2.647927284 185 3 4.233489513 -1.233489513 186 3 4.294149876 -1.294149876 187 5 4.38677454 0.61322546 188 5.5 4.628465652 0.871334348 189 3 3.865126848 -0.865126848 190 4 4.743555069 -0.733555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424705 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.211060047 195 8 4.660535812 3.339464188	177	5.5	4.511536598	0.988463402
180 4 4.487140179 -0.487140179 181 5 4.32268858 0.67731142 182 5 4.346656799 0.653343201 183 5 4.457356453 0.542643547 184 1 3.647927284 -2.647927284 185 3 4.233489513 -1.233489513 186 3 4.294149876 -1.294149876 187 5 4.32677454 0.61322546 188 5.5 4.628465652 0.871534348 189 3 3.85126848 -0.86126848 190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.21060047 195 8 4.660535812 3.339464188	_178 _	5	4.386698723	0.613301277
181 \$ 4,32268858 0.67731142 182 \$ 4,34656799 0.653343201 183 \$ 4,457356453 0.542643547 184 1 3.647977284 -2.647927284 185 3 4233489513 -1.23489513 186 3 4.294149876 -1.294149876 187 \$ 438677454 0.61322546 188 \$.5 4.628465652 0.871534348 189 3 3.85126848 -0.865126848 190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.21060047 195 8 4.660535812 3.339464188	179	4	4.101391315	-0.101391315
182 5 4.346656799 0.653343201 183 5 4.457356453 0.542643547 184 1 -3.647927284 -2.647927284 185 3 4.23489513 -1.23489513 186 3 4.294149876 -1.294149876 187 5 4.38677454 0.61322546 188 5.5 4.628465652 0.871334348 189 3 3.865126848 -0.865126848 190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.211660047 195 8 4.660535812 3.339464188	180	4	4.487140179	-0.487140179
183 5 4.57356453 0.542643547 184 1 3.647927284 -2.647927284 185 3 4.23489513 -1.233489513 186 3 4.294149876 -1.294149876 187 5 4.38677454 0.61322546 188 5.5 4.628465652 0.871534348 189 3 3.865126848 -0.865126848 190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424705 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.211060047 195 8 4.660535812 3.339464188	181	5	4.32268858	0.67731142
184 1 -3.647927284 -2.647927284 185 3 4.233489513 -1.233489513 186 3 4.294149876 -1.294149876 187 5 4.38677454 0.61322546 188 5.5 4.628465652 0.871534348 189 3 3.865126848 -0.865126848 190 4 4.743555069 -0.743555069 191 4 4.033605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.211660047 195 8 4.660535812 3.339464188	182	5	4.346656799	0.653343201
185 3 4 233489513 -1 233489513 186 3 4 294149876 -1 294149876 187 5 4 38677454 0.61322546 188 5.5 4 628465652 0.871534348 189 3 3 855126848 -0.865126848 190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.80345101 194 5 3.788939953 1.21060047 195 8 4.660535812 3.339464188	_183	5	4.457356453	0.542643547
186 3 4.294149876 -1.294149876 187 5 4.38677454 0.61322546 188 5.5 4.628465652 0.871534348 189 3 3.85126848 -0.865126848 190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.211660047 195 8 4.660535812 3.339464188	_184		_ 3.647927284	2.647927284
186 3 4.294149876 -1.294149876 187 5 4.38677454 0.61322546 188 5.5 4.628465652 0.871534348 189 3 3.85126848 -0.865126848 190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.211660047 195 8 4.660535812 3.339464188	_ i85	3	4.233489513	-1.233489513
188 5,5 4.628465652 0.871534348 189 3 3.865126848 -0.865126848 190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5 3.788339953 1.211060047 195 8 4.660535812 3.339464188	186		4.294149876	-1.294149876
189 3 3.865126848 -0.865126848 190 4 4.743555069 -0.743555069 191 4 4.033605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.211660047 195 8 4.660535812 3.339464188	187	5	4.38677454	0.61322546
190 4 4.743555069 -0.743555069 191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424705 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.211060047 195 8 4.660535812 3.339464188	188	5.5	4.628465652	0.871534348
191 4 4.053605556 -0.053605556 192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.211060047 195 8 4.660535812 3.339464188	_189	3	3.865126848	-0.865126848
192 6 4.385575294 1.614424706 193 2 3.803445101 -1.803445101 194 5 3.788939953 1.211060047 195 8 4.660535812 3.339464188	_190	4	4.743555069	-0.743555069
193 2 3,803445101 -1,803445101 194 5 3,788939953 1,211060047 195 8 4,660535812 3,339464188	191	4	4.053605556	-0.053605556
194 5 3.788939953 1.211060047 195 8 4.660535812 3.339464188	192	6	4.385575294	1.614424706
195 8 4.660535812 3.339464188	193	2	3,803445101	-1.803445101
	194	5	3.788939953	1.211060047
105 1 2 105570010 105570010	195	8	4.660535812	3.339464188
196 1 3 1 4.266 <u>7</u> 60349 1 -1.266 <u>76034</u> 9 1	196	3_	4.266760349	-1.266760349
197 1 3.970560789 -2.970560789	197		3.970560789	-2.970560789

Page 4 of 5

Page 5 of 5

Neural network output of Ca-SCP2-SC-final

Case	Actual (A)	Network output (N)	Difference (A-N)
	5.5	4.238517761	1.261482239
2	2.5	4.273983955	-1.773983955
3	4	4,480284691	-0.480284691
4	. 5	4.472913742	0.527086258
5	3.5	4.276747227	-0.776747227
6	4	4.3519454	-0.3519454
7	5	4.481908321	0.518091679
- 8	5	4.436159134	0.563840866
9	_5	4,418087006	0.581912994
10	5.5	4.367674351	1.132325649
11	4,5	4,313454[5]	0.186545849
12	5	4.343603611	0.656396389
13	4.5	4.279364109	0.220635891
14	5	4.481908321	0.518091679
15	4.5	4.272476673	0.227523327
16	4	4.501047611	-0.501047611
17	3.5	4,219478607	-0.719478607
18	5	4.158247471	0.841752529
19	7.5	4.488006115	3.011993885
20	4	4.613388062	-0.613388062
21	5	4.187272072	0.812727928
22	4.5	4.241574764	0.258425236
23	2	4,205605507	-2.205605507
24	7	4.367410183	2.632589817
25	3	4.129641533	-1.129641533
26	4	4.099364758	-0.099364758
27	7	4.330623627	2.669376373
28	4	4.362523556	-0.362523556
29	8.5	4.542758942	3.957241058
30	2	4.222308636	-2.222308636
31	3.5	4.049536228	-0.549536228
32	3	4.115957737	-1.115957737
33	1	3.894042253	-2.894042253
34	8	4.477004528	3,522995472
35	5	4.276747227	0.723252773
36	5.5	4.370416164	1.129583836
37	2.5	4.137821674	-1.637821674
38	4	4.013707161	-0.013707161
			0.648574829
			
$ \cdot$			
39 40 41	5 4 2	4.351425 <u>1</u> 71 4.398042679 4.206220627	0.6485748 -0.3980420 -2.2062200

42	3	4.349178314	-1.349178314
43	4	4.333285809	-0.333285809
44	4.5	4.364832401	0.135167599
45	5	4.499623775	0.500376225
46	3	4.241679668	-1.241679668
47	4.5	4.327796936	0.172203064
48	5	4.335246563	0.664753437
49	4	4.394270897	-0.394270897
50	5.5	4.316788673	1.183211327
51	5	4.276747227	0.723252773
52	3.5	4.415212631	-0.915212631
53	5.5	4.458283901	1.041716099
54	4	4,477697849	-0.477697849
55	5.5	4.32516861	1.17483139
56	5	4.451324463	0.548675537
57	4	4.249592304	-0.249592304
58	4	4.436159134	-0.436159134
59	5.5	4.418087006	1.081912994
60	5	4.391547203	0.608452797
61	4.5	4.23176334	0.26823616
62	5	4,442442417	0.557557583
63	6	4.230317795	1.769182205
64	5	4.437599182	0.562400818
65	5	4.402037144	0.597962856
66	4	4.453535557	-0.453535557
67	4	4.4396348	-0.4396348
68	5	4.378211021	0.621788979
69	3	4.085589886	-1.085589886
70	4.5	4.391547203	0.108452797
71	2	4.335784435	-2.335784435
72	7_	4.346667767	2.653332233
73	5_	4.151508803	0.848491192
74	3	4.216763496	-1.216763496
75	8.5	4.241679668	4.258320332
76	4.5	4.214541435	0.285458565
77	2	4.306400299	-2.306400299
78	4.5	4.198117733	0.301882267
79		4.276747227	-3.276747227
80	3	4.459531784	-1.459531784
81	5	4.297757149	0.702242851
82	4	4.547429562	-0.547429562
83	5	4,397048473	0.602951527
84	4	4.370252609	-0.370252609
85	5	4.477697849	0.522302151
- 6.7		1.411071047	0.362,04131

- 540 -

1.

Neural network output of Ca-SCP2-CC-final

Case	Actual (A)	Network output (N)	Difference (A-N)
_ 1	6	5.71349287	0.28650713
_ 2	7	5.796800137	1.203199863
3	4.5	5.556740284	-1.056740284
4	2.5	5.239964008	-2.739964008
5	5.5	5.731204033	0.231204033
6	2	5.177359581	-3.177359581
7	7	5.674499512	1.325500488
8	3.5	5.38909626	-1.88909626
9	5.5	5.754004955	-0.254004955
10	4	5.510095119	-1.510095119
	7	5.786825657	1.213174343
12	6.5	5.651201725	0.848798275
13	5	5.47323513	-0.47323513
14	3.5	5.454713345	-1.954713345
. 15	8	5.84371233	2.15628767
16	4.5	5.581914902	-1.081914902
17	5	5.534150124	-0.534150124
18	7	5.594297409	1.405702591
19	8	5.928441525	2.071558475
20	6	5.731204033	0.268795967
21	5	5.821516991	-0.821516991
22	5	5.741539955	-0.741539955
23	4.5	5.627771854	-1.127771854
24	6	5.776659966	0.223340034
25	5	5.510095119	-0.510095119

Neural network output of Ca-SCP2-CC-1

Case	Actual (A)	Network output (N)	Difference (A-N)
_ l	6	5.712975979	0.287024021
_2	7	5.761324883	1.238675117
3	4.5	5.678721428	-1.178721428
4	2.5	5.628976822	-3.128976822
5	5.5	5.746278763	-0.246278763
6	2	5.600618839	-3.600618839
7	7	5.759531498	1.240468502
8	3.5	5.766597271	-2.266597271
9	5.5	5.752684593	-0.252684593
10	4	5.67000103	-1.67000103
- 11	7_	5.752336502	1.247663498
12	6.5	5.599414825	0.900585175
13	5	5.674375534	-0.674375534
14	3.5	5.636272907	-2.136272907
15	8	5.76296854	2.23703146
16	4.5	5.68996048	-1.18996048
17	55	5.666946888	-0.666946888
18	7	5.792816639	1.207183361
19	8	5.820088387	2.179911613
20	6	5.728962898	0.271037102
21	5	5.836587906	-0.836587906
22	5	5.763689041	-0.763689041
23	4.5	5.681760311	-1.181760311
24	6	5.777042866	0.222957134
25	5	5.739675999	-0.739675999

Page 1 of 1

Page 1 of 1

86	5	4.382396221	0.617603779
<u>8</u> 7	4	4.389797211	0.389797211
88	5	4.459814548	0.540185452
89	4	4.343603611	-0.343603611
90	4	4.356949806	-0.356949806
91	4	4.472913742	-0.472913742
02		4.735055005	1.164044176

			
86	5	4.382396221	0.617603779
<u>8</u> 7	4	4.389797211	0.389797211
88	5	4.459814548	0.540185452
89	4	4.343603611	-0.343603611
90	4	4.356949806	-0.356949806
91	4	4.472913742	-0.472913742
92	5.5	4.335755825	1.164244175
93	5	4.557600498	0.442399502
94	4.5	4.477697849	0.022302151
95	5	4.409593105	0.590406895
96	4	4.407461643	-0.407461643
97	5.5	4.436[59]34	1.063840866
98	5	4.238838196	0.761161804
99	4	4.233507156	-0.233507156
100	4	4.289818764	-0.289818764
101	5	4.151313782	0.848686218
102	5	4.391547203	0.608452797
103	5	4.409593105	0.590406895
104	1	3.857331753	-2.857331753
105	3	4.423178196	-1.423178196
106	3	4.404839516	-1.404839516
107	5	4.319620132	0.680379868
108	5.5	4.415264606	1.084735394
109	3	3.994204998	-0.994204998
110	4	4.521420956	-0.521420956
111	4	4.335755825	-0.335755825
112	6	4.490812778	1.509187222
1.13	2	3.949643373	-1.949643373
114	5	3.997008562	1.002991438
115	- 8	4.638717651	3.361282349
116	3	4.218546391	-1.218546391
117	1	4.079906464	-3.079906464

Page 3 of 3

	,	,	,
42	3	4.261273861	-1.261273861
43	3	3.992155552	-0.992155552
44	5	5.257711887	-0.257711887
45	5	5.075682163	-0.075682163
46	5	5.090843678	-0.090843678
47	5	4.470458031	0.529541969
48	3	3.61349988	-0.61349988
49	6	4.956889153	1.043110847
50	5	4.498444557	0.501555443
51	5.5	4.673595905	0.826404095
52	5	4.466954231	0.533045769
53	5	5.221735477	-0.221735477
54	4.5	4.445707321	0.054292679
55	5	4.545145988	0.454854012
56	5	4.644574642	0.355425358
57	4.5	4.933734417	-0.433734417
58	5	4.54402256	0.45597744
59	4	4.70004034	-0.70004034
60	5	4.780043125	0.219956875
61	5	4.778876781	0.221123219
62	77	5.20919323	1.79080677
63	5	4.810224056	0.189775944
64	4	4.894505024	-0.894505024
65	5	5.200512409	-0.200512409
66	- 5	4.935984135	0.064015865
67	4.5	4.434431553	0.065568447
68	5	4.949698448	0.050301552
69	3	3.061730385	0.061730385
70	4	5.630025864	-1.630025864
71	5	4.383594036	0.616405964
72	7.5	4.467776299	3.032223701
73	4	3.693557978	0.306442022
74	4.5	4.584660053	-0.084660053
75	8.5	3.572829485	4.927170515
76	2	4.411577225	-2.411577225
77	1	3.313678503	-2.313678503
78	2	3.014253855	-1.014253855
79	ī	3.200802326	-2.200802326
80	5	4.880195618	0.119804382
81	5.5	5.099908829	0.400091171
82	6	4.950122833	1.049877167
83	5.5	5.076031685	0.423968315
84	5	4.341298103	0.658701897
85	- 6	4.950258732	1.049741268
97		4.730233132	1.043(4)208

Neural network output of Ca-SCP2-SC-1

Case	Actual (A)	Network output (N)	Difference (A-N)
1	5.5	3.917281628	1.582718372
2	5	5.022014141	-0.022014141
3	5	5.021278858	-0.021278858
4	3 _	4.570822239	-1.570822239
5	5	4.57212162	0.42787838
6	5	4.910902023	0.089097977
7_	6	4.82679224	1.17320776
8	6	-5.195596695	- 0.804403305
9	5	4.441923141	0.558076859
_10	6	4.559606075	1.440393925
-11	4	5.047578812	-1.047578812
12	5	4.667279243	0.332720757
13	5	4.427899361	0.572100639
14	4	4.745349884	-0.745349884
15	5.5	4.443550587	1.056449413
16	6.5	4.885596275	1.614403725
17	3	4.01456213	-1.01456213
18	4.5	3.867930174	0.632069826
19	7	4.958799362	2.041200638
20	4	5.829636574	-1.829636574
21	5	4.667276382	0.332723618
22	4	4.09939146	-0.09939146
23	2	3.303741217	-L303741217
24	7	4.841669559	2.158330441
25	7	4.2008214	2.7991786
26	5	3.897466183	1.102533817
27	7	4.938503265	2.061496735
28	3	2.973790169	0.026209831
29	9	5.238014698	3.761985302
30	4	3,728948832	0.271051168
31	5	3.053287029	1.946712971
32	3	3.557204008	-0.557204008
33	3	3.462746382	-0.462746382
34	6.5	4.605958462	1.894041538
35	5	3.967979193	1.032020807
_36	5	4.454782486	0.545217514
37	4	4.475345612	-0.475345612
38	- 4	3.025846958	0.974153042
39	5	4.227778435	0.772221565
40	4.5	3.874097109	0.625902891
41	4.5	3.770399094	0.729600906

Page 1 of 3

86	5	4.880356312	0.119643688
87	7	5.469101906	1.530898094
88	5	4.805494785	0.194505215
89	5	4.567625046	0.432374954
90	4	5.05655098	-1.05655098
91	6	5.061890602	0.938109398
92	_ 5.5	5.276704311	0.223295689
93	6.5	5.076957226	1.423042774
94	5.5	4.670499802	0.829500198
95	. 5	4.61810112	0.38189888
96	5	5.236358643	-0.236358643
97	4,5	4.917748928	-0.417748928
98	5	5.27491188	-0.27491188
99	4	3.652132273	0.347867727
100	7	5.237965107	1.762034893
101	7	4.243434429	2.756565571
102	6	4.642915249	1.357084751
103	5	4.796919823	0.203080177
104	2	2.394713402	-0.394713402
105	4	4.801609993	-0.801609993
106	6	4.741246223	1.258753777
107	6	4.934619904	1.065380096
108	5	5.49013567	-0.49013567
109	3.5	2.759728193	0.740271807
110	8	5.534020424	2.465979576
111	S	3.742187023	1.257812977
112	5	4.237840652	0.762159348
113	4	2.922842264	1.077157736
114	5	3.030380964	1.969619036
115	8	5.507766724	2.492233276
116	3	4.302959442	-1.302959442
117	$-\frac{1}{1}$	3.932018995	3.067981005

Neural network output of Ca-SCP2-MC-final

Case	Actual (A)	Network output (N)	Difference (A-N)
		4.293058395	0.706941605
2	3.5	4.341364384	-0.841364384
3	4	4.66576767	-0.66576767
4	5.5	4.88390398	0.61609602
5	6.5	5.303518295	1,196481705
6	8.5	9.221738815	-0.721738815
7	5	6.530391693	-1.530391693
-8	6	6.02233839	-0.02233839
	7.5	6.504724503	0.995275497
10	4.5	5.182524681	-0.682524681
11	6	6.217688084	-0.217688084
12	7	7.511956692	-0.511956692
13	3.5	4.494027615	-0.994027615
14	4.5	4.511539936	-0.011539936
15	5	4,779440403	0.220559597
16	5	5.901299953	-0.901299953
17	6.5	6.574862003	-0.074862003
18	3.5	4.494453907	-0.994453907
19	4	3.837106466	0.162893534
20	7	4.311426163	2.688573837
21	9	7.611145496	1.388854504
22	3	4.445394039	-1.445394039
23	5.5	6.081647873	-0.581647873
24	3	4.420683384	-1.420683384
25	5	5.923782825	-0.923782825
26	3	4,427091599	1.427091599
27	4.5	4.842337132	-0.342337132
28	6	5.41597414	0.58402586
29	4	6.367607117	-2.367607117
30	3	4.989655972	-1.989655972
31	<u> </u>	5.427398205	-0.427398205
32	1-3	3,514756918	-0.514756918
33	1 8	8.599168777	-0.599168777
34	6	6.743541718	-0.743541718
35	6	6.191482067	-0.191482067
36	4.5	4.933865547	-0.433865547
37	7	6.783011913	0.216988087
38	5	6.331875801	-1.331875801
39	6	5.383623123	0.616376877
40	1 5	6.293119907	-1.293119907
41	6.5	5,346396923	1.153603077

Page 1 of 2

Neural network output of Ca-SCP2-MC-1

5 3.5	4.491574764	0.508425236
3.5		
	4.169234753	-0.669234753
4	4.123645306	-0.123645306
5.5	4.63032341	0.86967659
6.5	5.969498634	0.530501366
8.5	9.492678642	-0.992678642
_5	5.663510323	<u>-0.663510323</u>
6	5.772244453	0.227755547
7.5	7.446295738	0.053704262
4.5	4.787216187	-0.287216187_
6	5.921733856	0.078266144
7	7.047059059	-0.047059059
3.5	4.585804462	-1.085804462
4.5	4.190251827	0.309748173
5	5.938800812	-0.938800812
5	5.607142925	-0.607142925
6.5	6.715775013	-0.215775013
3.5	4.402433395	-0.902433395
_4	3.976962805	0.023037195
7	4.05804348	2.94195652
9	9.192745209	-0.192745209
3	4.117562771	-1.117562771
5.5	5.795461178	-0.295461178
3	3.453380346	-0.453380346
5	5.95975399	-0.95975399
3	3.592434168	-0.592434168
4.5	4.696132183	-0.196132183
6	5.042081833	0.957918167
4	5.911933899	-1.911933899
3	4.590631485	-1.590631485
		-1.022047043
		-0.971999645
		-0.167107582
		-0.897839546
		-0.298901081
		0.124492168
		-0.639278412
		-0.502245903
		0.849844456
		-1.160236835
		0.913469315
	8.5 5 6 7.5 4.5 6 7 3.5 4.5 5 5 6.5 3.5 4 7 9 3 5.5 3 4 7 9 3 5 6 6 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	8.5 9.492678642 5 5.663510323 6 5.772244453 7.5 7.446295738 4.5 4.787216187 6 5.921733856 7 7.047059059 3.5 4.885804462 4.5 4.190251827 5 5.938800512 5 5.607142925 6.5 6.715775013 3.5 4.402433395 4 3.976962805 7 4.05804348 9 9.192745209 3 4.117562771 5.5 5.795461178 3 3.453380346 5 5.595975399 3 3.592434168 4.5 4.696132183 6 5.042081833 4 5.911933899 3 4.590631485 5 6.022047043 3 3.971999645 8 8.167107532 6 6.8987839546 6 6.8987839546 6 6.898891081 4.5 4.375507832 7 7.639278412 5 5.502245903 6 5.150155544 5 5.502245903

42	7	6.832728386	0.167271614
43	-5	5.081877708	-0.081877708
44	5	7,050038815	-2.050038815
45	4.5	5.3391819	-0.8391819
46	5	5.308277607	-0.308277607
47	6	6.424276829	-0.424276829
48	5	4.83198452	0.16801548
49	5	4.842782974	0.157217026
50	2	5.653926373	-3.653926373
51	4	4.594177246	-0.594177246
52	3	3.750021458	-0.750021458
53	7	7.435573578	-0.435573578
54	4	4.797694683	-0.797694683
55	3	5.062400818	-2.062400818

Page 2 of 2

42	7	6.582741737	0.417258263
43	5	5.494076252	-0.494076252
44	5	5.807442665	-0.807442665
45	4.5	4.829954147	-0.329954147
46	5	5.361980438	-0.361980438
47	6	6.36964798	-0.36964798
48	5	5.041052818	-0.041052818
49	5	4.592137814	0.407862186
50	2	5.130429268	-3.130429268
51	4	3.963189602	0.036810398
52	3	4.016609669	-1.016609669
53	7.	7.071434975	-0.071434975
54	4	4.342784882	-0.342784882
55	3	5.40277338	-2.40277338

Neural network output of Ca-SCP3-AR-final

Case	Actual (A)	Network output (N)	Difference (A-N)
	3	3.81485343	-0.81485343
_ 2	5	3.699543715	1.300456285
3	5.5	4.040014267	1.459985733
_ 4	4.5	4.088050365	0.411949635
- 5	4_	3.871392965	0.128607035
_ 6	1	5.311870098	1.688129902
7	6	5.991714001	0.008285999
- 8	6	4.537544727	1.462455273
9	5	5.369289875	-0.369289875
10	4	4.256575108	-0.256575108
11	6.5	4.734554291	1.765445709
12	5.5	4.401826859	1.098173141
13	5	3.915664673	1.084335327
14	6	3.725972891	2.274027109
15	6	3.659484148	2.340515852
16	5	5,585894585	-0.585894585
17	7	6.186297894	0.813702106
18	3	4.140994072	-1.140994072
19	4.5	3.720898628	0.779101372
20	5	3.720898628	1.279101372
21	В	6.120841503	1.879158497
22	4	3.601592541	0.398407459
23	5	4,536879063	0.463120937
24	5	4.099514961	0.900485039
25	5	4.939558983	0.060441017
26	4	3,978849649	0.021150351
27	3	3.812706232	-0.812706232
28	3	4.741550922	-1.741550922
29	4	5.581946373	-1.581946373
30	5,5	4.298002243	1.201997757
31	6	4,442418575	1,557581425
32	7	4.122135639	2.877864361
33	5.5	5.924065113	-0.424065113
34	7	6.271979809	0.728020191
35	6.5	6.043489933	0.456510067
36	4	4.256575108	-0.256575108
_ 37	7,5	5.375813961	2.124186039
38	6.5	5,34083128	1.15916872
39	7	5.776157856	1.223842144
40	6	5.160810471	0.839189529
41	6	6.53268528	-0.53268528

Page 1 of 5

86	5.5	5.34083128	0.15916872
87	5	5.367000103	-0.367000103
88	4	4.874116421	-0.874116421
89	5	5.290803909	-0.290803909
90	5	4.829566956	0.170433044
91	4.5	5.454627991	-0.954627991
92	5	4,718342304	0.281657696
93	5.5	4.956459045	0.543540955
94	6.5	5.031598091	1.468401909
95	5	5.082491398	-0.08249139B
96	6	5.160810471	0.839189529
97	$\frac{1}{3}$	4.177425861	-1.177425861
98	5	4.019111156	0.980888844
99	8.5	4.950672626	3.549327374
100	5.5	6.304572105	-0.804572105
101	5	4.687601566	0.312398434
102	7	4.216891289	2.783108711
103	- 3	4.227656364	-1.227656364
104	4	4.883871555	-0.883871555
105	6.5	3.892792702	2.607207298
106	5.5	3.925203562	1.574796438
107	8	5,233521461	2.766478539
108	4,5	3.727224583	0.772775412
109	8.5	5,466965199	3,033034801
110	3.5	4.453053951	-0.953053951
111	5	3.720898628	1.279101372
112	4	4.386463165	-0.386463165
113	5	3.937256098	1.062743902
114	E B	4.889025688	3.110974312
115	5	3,973008633	1.026991367
116	5.5	4.850611687	0.649388313
117	4.5	4.401826859	0.098173141
118	5	3.701145887	1.298854113
119	5	4,323121548	0.676878452
120	4	4.694719315	-0.694719315
121	1 -	3,757728338	-1.757728338
122	4	4,570936203	-0.570936203
123	2	3.796394587	-1.796394587
124	5.5	5,048788548	0.451211452
125	6	5.189712048	0.810287952
126	4.5	5.298926353	-0.798926353
120	5	4.618849754	0.381150246
127	5.5	5.035065651	0.464934349
			0.471793652
129	. 5	4.528206348	1.4/1/93032

	·		
42	5.5	6.03843689	-0.53843689
43	7	5.781611443	1.218388557
44	5	4.442775249	0.557224751
45	5	3.943367243	1.056632757
46	6.5	4.635532379	1.864467621
47	6.5	4.122135639	2.377864361
48	5	5.1510005	-0.1510005
49	5.5	5.112071991	0.387928009
50	2	4.961997032	-2.961997032
51	5	4.48377037	0.51622963
52	3.5	3.637806654	-0.137806654
53	6	5.727898121	0.272101879
54	4	4,557278633	-0.557278633
55	45	4.799178123	-0.299178123
56	5	6.054597855	-1.054597855
57	8	6.692628384	1.307371616
58	5	4.823564053	0.176435947
59	4	3.804075003	0.195924997
60	4.5	5.876656532	-1.376656532
61	2	3.720898628	-1.720898628
62	5.5	5.392802238	0.107197762
63	3	4.666034698	-1.666034698
64	6.5	5.978699684	0.521300316
65	5	4.453053951	0.546946049
66	5.5	6.127039909	-0.627039909
67	5	3.973364115	1.026635885
68	4.5	4.442903996	0.057096004
69	6	4.449197292	1.550802708
70	9	6.149982929	2.850017071
71	5	4.821354389	0.178645611
72	6	4.692042828	1.307957172
73	8	5.065613747	2.934386253
74	9	7.348791122	1.651208878
75	6	5.626060009	0.373939991
76	7	6.304572105	0.695427895
77	5.5	5.924065113	-0.424065113
78	5	5.009606838	-0.009606838
79	7	6.348368168	0.651631832
80	6	4.635532379	1.364467621
8!	5	4.323122501	0.676877499
82	4	5.190159798	-1.190159798
83	4	_5.655924797	-1,655924797
84	5	4.956459045	0.043540955
85	5	5.227742672	-0.227742672

Page 2 of 5

130	3.5	4.538237572	-1.038237572
131	4	5.34083128	-1.34083128
132	4,5	4.694719315	-0.194719315
133	4.5	5.427273273	-0.927273273
134	4	4.894271851	-0.894271851
135	5	4.815841675	0.184158325
136	4.5	5.107406139	-0.607406139
137	5	4.815841675	0.184158325
138	4.5	4.894271851	-0.394271851
139	4	4.463396072	-0.463396072
140	4	4.741550922	-0.741550922
141	5	5.483046055	-0.483046055
142	5	5.601831436	-0.601831436
143	5.5	4.924136639	0.575863361
144	4	5.093914509	-1.093914509
145	5.5	5.335381985	0.164618015
146	5	4.922144413	0.077855587
147	- 5	4.685269833	0.314730167
148	3	5.171217442	-2.171217442
149	4	3.537397861	0.462602139
150	4,5	5.626060009	-1.126060009
151	3_	4.671955585	-1.671955585
152	8	5.18221283	2.81778717
153	2	4.915299416	-2.915299416
154	4.5	4.304265499	0.195734501
155	9	3.852980614	5.147019386
156	4	4.081027031	-0.081027031
157	2.5	3.935578823	-1.435578823
158	3	3.721570253	-0.721570253
159	1	4.155478954	-3.155478954
160	5	5.519970894	-0.519970894
161	6	5.325562	0.674438
162	5.5	6.043489933	-0.543489933
163	5	4.950672626	0.049327374
164	4.5	4.555024147	-0.055024147
165	4.5	5.223301411	-0.723301411
166	-5	5.193733215	-0.193733215
167	5	5.064817905	-0.064817905
168	4	5.280471802	-1.280471802
169	6	4.902072906	1.097927094
170	5	4.880188465	0.119811535
171	6.5	4.850611687	1.649388313
172	5	5.043635368	-0.043635368
112		3.04-202-2-00	10.0-30/233300

- 545 -

174	16	6.246014600	7
	4.5	5.346216679	0.846216679
175	5	4.683012009	0.316987991
176	5.5	5.454627991	0.045372009
177	_4	5.214551449	-1.214551449
178	2.5	4.593417645	-2.093417645
179	1	3.93646884	-2.93646884
180	6.5	5.501419544	0.998580456
181	_7	4.815841675	2.184158325
182	8	4.939558983	3.060441017
183	5.5	5.333374023	0.166625977
184	١	3.637080669	-2.637080669
185	- 4	4.426136494	-0.426136494
186	5	4.741550922	0.258449078
187	4	5.022048473	-1.022048473
188	5	5.932445526	-0.932445526
189	3	3.622735023	-0.622735023
190	7	6.572113037	0.427886963
191	5	3.935578823	1.064421177
192	5	4.894271851	0.105728149
193	4.5	3.699543715	0.800456285
194	3	3.701145887	-0.701145887
195	9	6.043489933	2.956510067
196	3	4.487223625	-1.487223625
197	3	3.701145887	-0.701145887

Page 5 of 5

42	5.5	6.092271805	-0.592271805
43	7	8.865308762	-1.865308762
44	5	5.770199299	-0.770199299
45	5	4.751446724	_0.248553276
46	6.5	7.003913403	-0.503913403
47	6.5	4.686542511	1.813457489
48	5	5.210384369	-0.210384369
49	5.5	4.572566986	0.927433014
50_	_ 2	4.317096233	-2.317096233
51	5	5.059056282	-0.059056282
52	3.5	2.913959026	0.586040974
53	6	5.222606182	0.777393818
54	4	4.234520912	-0.234520912
55	4.5	4.343842506	0.156157494
56	5	5.753542423	<u>-0.75</u> 3542423
57	8	7.50564003	0.49435997
58	5	4.302632332	0.697367668
59	_4	4.368326187	-0.368326187
60	4.5	5.01598835	-0.51598835
61	2	3.425409555	-1.425409555
62	5.5	5.442577362	0.057422638
63	3	3.144622326	-0.144622326
64	6.5	6.163099766	0.336900234
65	5	4.173744202	0.826255798
66	5.5	6.144073486	-0.644073486
67	5	4.855964184	0.144035816
68	4.5	4.419892788	0.080107212
69	6	4.712516308	1.287483692
70	9	7.316061497	1.683938503
71	5	4.594480038	0.405519962
72	6	5.27502346	0.72497654
73	8	6.263721466	1.736278534
74	9	8.435612679	0.564387321
75	6	6.33655262	-0.33655262
76	7	8.062016487	-1.062016487
77	5.5	5.026726723	0.473273277
78	5	_4.483241081	0.516758919
79	. 7	6.710769176	0.289230824
80	6	4.521503925	_1.478496075
81	5	4.364799023	0.635200977
82	.4	4.600482464	-0.600482464
83	4	5.172102451	-1.172102451
84	5	5.185681343	-0.185681343
85	5	4.610660553	0.389339447

Neural network output of Ca-SCP3-AR-1

Case	Actual (A)	Network output (N)	Difference (A-N)
1	3	2.408972263	0.591027737
2	5	3.648751736	1.351248264
3	5.5	_3.893423796	1.606576204
4	4.5	4.042811871	0.457188129
5	4	3.343150139	0.656849861
6	7	6.397488594	0.602511406
7	6	5.626853466	0.373146534
8	6	<u>-5.158049107</u>	0.841950893
9	5	4.317740917	0.682259083
10_	4	3.973896503	0.026103497
11	6.5	5.420863152	1.079136848
12	5.5	6.157964706	-0.657964706
13	5	3.19016695	1.80983305
14	6	3.889614105	2.110385895
15	6	3.951760769	2.048239231
16	5	4.50334692	0.49665308
17	7	6.059905529	0.940094471
18	3	4.689979076	-1.689979076
19	4.5	4.013197422	0.486802578
20	5	4.377824306	0.622175694
21	8	7.712209225	0.287790775
22	4	4.387117386	-0.387117386
23	5	5.083650589	-0.083650589
24	5	3.089476824	1.910523176
25	5	4.760396957	0.239603043
26	4	4.570244312	-0.570244312
27	3	3.282308102	-0.282308102
28	3	4.955511093	-1.955511093
29	4	5.377923965	-1.377923965
30	5.5	4.115558624	1.384441376
31	6	5.155492306	0.844507694
32	7	6.302705765	0.697294235
33	5.5	5,492996216	0.007003784
34	7	6.878097057	0.121902943
35	6.5	6.379113197	0.120886803
36	4	4.643969059	-0.643969059_
37	7.5	6.033338547	1.466661453
38	6.5	5.897772789	0.602227211
39	7	5.297712803	1.702287197
40	6	4.860608578	1.139391422
41	6	7.05059576	-1.05059576

Page 1 of 5

86	5.5	4.543418407	0.956581593
87	5	5.125565529	-0.125565529
88	4	4.366947174	-0.366947174
89	5	5.161177635	-0.161177635
90	5	4.595143795	0.404856205
91	4.5	5.914098263	-1.414098263
92	5	4.735952854	0.264047146
93	5.5	4.440937042	1.059062958
94	6.5	_ 5.568456173	0.931543827
95	5	4.710763931	0.289236069
96	6	5.166054249	0.833945751
97	3	3.92453599	-0.92453599
98	5_	4.67694664	0.32305336
99	8.5	5.762838364	2.737161636
100	5.5	6.749717712	-1.249717712
101	5	4.201146126	0.798853874
102	7	4.744496822	2.255503178
103	<u>3</u>	3.473675251	-0.473675251
104	4_	4.808172226	-0.808172226
105	6.5	4.940090179	1.559909821
106	5.5	4.122469902	1.377530098
107	8	4.867003441	3,132996559
108	4.5	5.393424988	-0.893424988
109	8.5	8.0906353	0.4093647
110	3.5	4.522895813	-1.022895813
111	5	4.440364838	0.559635162
112	4	4.367560863	-0.367560863
113	5	4.082349777	0.917650223
114	8	4.715153217	3.284846783
115	5	4.00761652	0.99238348
116	5.5	4.383069038	1.116930962
117	4.5	4.27726078	0.22273922
[18	5	4.116919041	0.883080959
119	5	5.304513454	-0.304513454
120	4	4.615249157	0.615249157
121	2	2.433938026	-0.433938026
122	4	4.38125658	-0.38125658
123	2	4.982047081	-2.982047081
124	5.5	4.824409485	0.675590515
125	6	5.168203831	0.831796169
126	4.5	4.361301899	0.138698101
127	5	4,448416233	0.551583767
128	5.5	4.423000336	1.076999664
129	5	4.341962337	0.658037663

- 546 -

Page 2 of 5 Page 3 of 5

		7.4	
130	3.5	4.464857101	-0.964857101
131	4	4.80880022	-0.80880022
132	4.5	4.909213066	-0.409213066
133	4.5	4.962009907	-0.462009907
134	4	4.669752598	0.669752598
135	5	4.550446987	0.449553013
136	4.5	4.760869026	-0.260869026
137	5	4.453427315	0.546572685
138	4.5	4.714885235	-0.214885235
139	4	4.363442421	-0.363442421
140	4	4.460866451	-0.460866451
141	. 5	4.822751522	0.177248478
142	5	5.430745602	-0.430745602
143	5.5	4.707532406	0.792467594
144	4	4.88284111	-0.88284111
145	5.5	4.621973515	0.878026485
146	5	5.761818886	-0.761818886
147	5	4.707924366	0.292075634
148	3	4.967991829	-1.967991829
149	4	3.067247152	0.932752848
150	4.5	4.704160213	-0.204160213
151	3	4.116308689	-1.116308689
152	8	5.12122345	2.87877655
153	2	4.155851364	-2.155851364
154	4,5	4.415020943	0.084979057
155	9	6.080271721	2.919728279
156	4	4.982090473	-0.982090473
157	2.5	2.605751514	- <u>0.10</u> 5751514
158	3	3.313406944	-0.313406944
159	1	3.457891226	-2.457891226
160	5	4.978632927	0.021367073
161	6	4.269350052	1.730649948
162	5.5	5.546138763	-0.046138763
163	5	4.993078709	0.006921291
164	4.5	4.905632973	-0.405632973
165	4.5	5.237102032	-0.737102032
166	5	4.796435833	0.203564167
167	5	4.780758381	0.219241619
168	4	5.3173666	-1.3173666
169	6	4.726514816	1.273485184
170	5	4.916108131	0.083891869
171	6.5	4.972427845	1.527572155
172	5	4.482156277	0.517843723
173	5.5	5.508740902	- <u>0.</u> 008740902

		_	
174	. 4.5	4.611562252	-0.111562252
175	5	4.616611958	0.383388042
176	5.5	4.970313549	0.529686451
177	4	4.811536312	-0.811536312
178	2.5	4.637277603	-2.137277603
179	1	2.336385489	-1.336385489
180	6.5	5.363250256	1.136749744
181	7	5.487773895	1.512226105
182	. 8	4.827795029	3.172204971
183	5.5	4.91915226	0.58084774
184	1	3.268201351	-2.268201351
185 _	4	4.54745245	-0.54745245
186	5	4.71242094	0.28757906
187	4	5.181856155	-1.181856155
188	5	5.086976051	-0.086976051
189	3	2,12297821	0.87702179
190	7	5.807072163	1.192927837
191	5	3.034526825	1.965473175
192	5	4.659682751	0.340317249
193	4.5	3.407237053	1.092762947
194	3	2.466796398	0.533203602
195	9	6,808396816	2.191603184
196	3	4,335789204	-1.335789204
197	3	4,331441402	-1.331441402

Page 4 of 5

Page 5 of 5

Neural network output of Ca-SCP3-SC-final

Case	Actual (A)	Network output (N)	Difference (A-N)
<u> l </u>	5	4.156024933	0.843975067
2	4	5.167985916	-1.167985916
3	4	4.952153206	-0.952153206
4	5	4.869663239	0.130336761
5	5	5.167985916	-0.167985916
6	5.5	5.098738194	0.401261806
7	5	4.879868984	0.120131016
8	4	5.098738194	-1.098738194
9_	5	4.869663239	0.130336761
10	_5	4.79119873	0.20880127
11	4.5	5.098738194	-0.598738194
12	5	4.79119873	0.20880127
13	5.5	4.41789484	1.08210516
14	6.5	5.013465405	1.486534595
15	5	4.811790943	0.188209057
16	6	5.098738194	0.901261806
17	3	4.41789484	-1.41789484
18	5	4.478997231	0.521002769
19	8.5	5.088860989	3.411139011
20	5.5	5.507008553	-0.007008553
21	5	4.433907509	0.566092491
22	7	4.478997231	2.521002769
23	3	4.082349777	-1.082349777
24	4	4.80152607	-0.80152607
25	6.5	4.489682674	2.010317326
26	5.5	4.177843094	1.322156906
27	8	5.023478985	2.976521015
28	4.5	4.291436195	0.208563805
29	8.5	5.083895206	3.416104794
30	3.5	4.79119873	-1.29119873
31	5	3.826970339	1.173029661
32	4	4.323997021	-0.323997021
33	5	3.667304277	1.332695723
34	-	4.711767197	3.288232803
35	5	4.641970158	0.358029842
36	5.5	4.722206593	0.777793407
37	4.5	4.641970158	-0.141970153
			1.00257206
38 39	5 5	3.99742794	
		4.780816078	0.219183922
40	4	4.631426811	-0.631426811
4!		3.667304277	-1.667304277

42	4	4.166944981	-0.166944981
43	2	4,302308083	-2.302308083
44	5.5	5.028459072	0.471540928
45	6	5.163109779	0.836890221
46	4.5	4.957182884	-0.457182884
47	5	5.083895206	-0.083895206
48	5.5	4.641970158	0.858029842
49	5	5.088860989	-0.088860989
50	3.5	4.489682674	-0.989682674
51	4	5.098738194	-1.098738194
52	4.5	4.631426811	-0.[3142681]
53	4.5	5.028459072	-0.528459072
54	4	4.864536762	-0.864536762
55	5	5.088860989	-0.088860989
56	4.5	4.80152607	-0.30152607
57	5	5.018481255	-0.018481255
58	4.5	4.936962128	-0.436962128
59	4	4.79119873	-0.79119873
60	4	4.947106838	-0.947106838
61	5	5,098738194	-0.098738194
62	5	5.4387784	-0.4387784
63	5.5	4.869663239	0.630336761
64	4	4.947106838	-0.947106838
65	5.5	5.172842503	0.327157497
66	5	4.571472645	0.428527355
67	5	4.869663239	0.130336761
68	3	4.947106838	-1.947106838
69	4	3.656323195	0.343676805
70	4.5	5.507008553	-1.007008553
71	3	4.65246439	-L.65246439
72	8	5.216760635	2.783239365
73	2	4.323997021	-2.323997021
74	4.5	4,936962128	-0.436962128
75	9	3.667304277	5.332695723
76	4	4.166944981	-0.166944981
77	2.5	3.986442089	-1.486442089
78	3	3,826970339	-0.826970339
79	1	3.837976217	-2.837976217
80	5	5.245758057	-0.245758057
81	6	4.673279285	1.326720715
82	5.5	4.957182884	0.542817116
83	5	5.158213139	-0.158213139
84	4.5	4.706528664	-0.138213139
85	4.5	5.088860989	-0.588860989
0,	4.3	J.V00000V989	40.56500365

- 547 -

Page 1 of 3 Page 2 of 3

86	5	4.811790943	0.188209057
87	5	5.308025837	-0.308025837
88	4	5.023478985	1.023478985
89	6	4.869663239	_1.130336761
90	5	5.098738194	-0.098738194
91	6.5	5.153297901	1.346702099
92	5	5.308025837	-0.308025837
93	5.5	5.098738194	0.401261806
94	4.5	4.869663239	-0.369663239
95	5	4.489682674	0.510317326
96	5.5	5.028459072	0.471540928
97	4	5.098738194	-1.098738194
98	2.5	5.236174583	-2.736174583
99	1	4.156024933	-3.156024933
100	6.5	5.255250931	1.244749069
101	7	4.65246439	2.34753561
102	8	4.957182884	3.042817116
103	5.5	5.098738194	0.401261806
104	1	3.508089542	-2.508089542
105	4	4.478997231	-0.478997231
106	5	4.80152607	0.19847393
107	4	4.80152607	-0.80152607
108	5	5.507008553	-0.507008553
109	3	3.826970339	-0.826970339
110	7	5.37863636	1.62136364
111	5	3.986442089	1.013557911
112	5	4.79119873	0.20880127
113	4.5	3.837976217	0.662023783
114	3	3.837976217	-0.837976217
115	9	5.236174583	3.763825417
116	3	4.722206593	-1.722206593
117	3	3.99742794	-0.99742794

Page 3 of 3

_			
42	4	4.574167252	-0.574167252
43	2	4.129445076	-2.129445076
44	5.5	5.031158447	0.468841553
45	6	5.102806091	0.897193909
46	4.5	5.183236122	-0.683236122
47	5	4.62672472	0.37327528
48	5.5	4.791236877	0.708763123
49	5	5.040421009	-0.040421009
50	3.5	4.778286934	-1.278286934
51	4	5.117500782	-1.117500782
52	4.5	4.906980991	-0.406980991
53	4.5	5.179430008	-0.679430008
54	4	4.860957623	-0.860957623
55	5	4.721354008	0.278645992
56	4.5	4.992391586	-0.492391586
57	5	4.887850285	0.112149715
58	4.5	4.998405933	-0.498405933
59	4	4.798052311	-0.798052311
60	4	5.080847263	-1.080847263
61	5	4.943109989	0.056890011
62	5	5.244701862	-0.244701862
63	5.5	4.822061062	0.677938938
64	4	5.264206886	-1.264206886
65	5.5	5.298259735	0.201740265
66	5	4.825160503	0.174839497
67	5	4.840237617	0.159762383
68	3	5.16459322	-2.16459322
69	4	3.153486967	0.846513033
70	4.5	5.551700115	-1.051700115
71	3	4.418226719	-1.418226719
72	8	5.224045277	2.775954723
73	2	4.576372623	-2.576372623
74	4.5	4.695077896	-0.195077896
75		3.847058773	5.152941227
76	9 -	4.196965218	-0.196965218
77			
	2.5	4.206229687	-1.706229687
78	3	3.558134317	-0.558134317
79	1	3.762354374	-2.762354374
80	5	4.650914192	0.349085808
81	6	4.670958012	1.329041958
82	5.5	5.445854664	0.054145336
83	5	4.860761642	0.139238358
84	4.5	4.910570145	-0.410570145
85	4.5	5.179276943	-0.679276943

Neural network output of Ca-SCP3-SC-1

Case	Actual (A)		Difference (A-N)
<u>l</u>	5	4.328832626	0.671167374
22	4	5.329625607	-1.329625607
3	4	5.307975769	-1.307975769
4	5	4.970715046	0.029284954
5	5	4.872251987	0.127748013
6	5.5	5.046033382	0.453966618
7	5	5.240664482	-0.240664482
8	4	4.980110168	
9	5	4.697273731	0.302726269
10	5	4.946176052	0.053823948
11	4.5	5.170548439	-0.670548439
12	5	4.926225185	0.073774815
13	5.5	4.729602337	0.770397663
[4	6.5	5.009590626	1.490409374
15	5	4.698011875	0.301988125
16	6	5.170447826	0.829552174
ĬĨ	3	3.761240959	-0.761240959
-18	5	3.996541739	1.003458261
19	8.5	5.076414108	3.423585892
20	5.5	5.867573261	-0.367573261
21	5	4.56306839	0.43693161
22	7	4.522056103	2.477943897
23	3	3.886403561	-0.886403561
24	4	4.841125965	-0.841125965
25	6.5	3,966646671	2.533353329
26	5.5	3.830610514	1.669389486
27	В	5.168522358	2.831477642
28	4,5	4.146341324	0.353658676
29	8.5	5.482074261	3.017925739
30	3.5	4.215174198	-0.715174198
31	5	3,437301159	1.562698841
32	4	4.199183941	-0.199183941
33	5	3.563229799	1.436770201
34	8	4.824305534	3.175694466
35	5	3.87583518	1.12416482
36	5.5	4.648494244	0.851505756
37	4.5	4.573099136	-0.073099136
38	5	3,23510766	1.76489234
39	5	4.705509663	0.294490337
40	4	4.891911983	-0.891911983
41	2	3.642163515	-1.642163515

Page 1 of 3

86	5	4.790659428	0.209340572
87	5	4.925002098	0.074997902
88	4	5.003987789	-1.003987789
89	6 -	4.984265327	1.015734673
90	5	5.01412487	-0.01412487
91	6.5	5.307106495	1.192893505
92	5	4.839503288	0.160496712
93	5.5	5.289427757	0.210572243
94	4.5	5.046753883	-0.546753883
95	5	4.772870064	0.227129936
96	5.5	5.113760948	0.386239052
97	4	4.96394968	-0.96394968
98	2.5	5.072290897	-2.572290897
99	_	3.671313763	-2.671313763
100	6.5	5.168349743	1.331650257
101	7	4.555456161	2.444543839
102	8	5.122549534	2.877450466
103	5.5	5.134168625	0.365831375
104		2.611963749	-1.611963749
105	4	4.661714077	-0.661714077
106	5	4.805136681	0.194863319
107	4	4.860991001	-0.860991001
108	_ 5	5.618516922	-0.618516922
109	3	3.025059462	-0.025059462
110	7	5.7147789	1.2852211
[H	5	3.942656517	1.057343483
112	5	4.685135841	0.314864159
113	4.5	3.050779581	1.449220419
114	3	3.010075092	-0.010075092
115	9	5.631507874	3.368492126
116	3	4.42184639	-1.42184639
117	3	3.762219906	-0.762219906

Neural network output of Ca-SCP3-MC-final

Case	Actual (A)	Network output (N)	Difference (A-N)
	3	5.169679642	-2.169679642
2	5	4.678852081	0.321147919
3	5.5	5,12833643	0.37166357
4	4,5	5.069547653	-0.569547653
5	4	5.055580139	-1.055580139
6	7 .	7.456942558	-0.456942558
7	6	6.349377155	-0.349377155
8	6	5.753267288	0.246732712
9	5	5,555145741	-0.555145741
10	4	4.732582092	-0.732582092
11	6.5	5.57516861	0.92483139
12	5.5	5,557366848	-0.057366848
13	5	5.152535915	-0.152535915
14	6	5.35677433	0.64322567
15	6	4.818558216	1.181441784
16	5	6.556116581	-1.556116581
17	7	7.037482262	-0.037482262
18	3	5,351644993	-2.351644993
19	4.5	5.121603489	-0.621603489
20	5	4.807114124	0.192885876
21	1 8	6.834561825	1.165438175
22	4	4,744282722	-0.744282722
23	5	5.558862209	-0.558862209
24	5	5.30785656	-0.30785656
25	5	5,15463686	-0.15463686
26	1 4	4.631206036	-0.631206036
27	3	5,507087231	-2.507087231
28	1-3	5.34860754	-2.34860754
29	1 4	5.765348911	-1.765348911
30	5.5	5.590360165	-0.090360165
31	6	6.161810875	-0.090300103
32	7	5.976561069	1.023438931
33	+	5.90405798	
34	5.5	7.060392857	-0.40405798 -0.060392857
35	+- <u>-</u>		
36	6.5	6.810961246 5.536175251	-0.310961246 -1.536175251
37	7.5	5.948648453	1.551351547
38	6.5	6.501117706	-0.001117706
40	1-7-	6.313911438	0.686088562
	6	5.57041502	0.42958498
41	6	7.2213521	-1.2213521

Page 1 of 2

Neural network output of Ca-SCP3-MC-1

Case	Actual (A)	Network output (N)	Difference (A-N)
1	3	4.801446438	-1.801446438
2	5	4.458590508	0.541409492
3	5.5	5.084562778	0.415437222
4	4.5	4.94229269	-0.44229269
5	4	5.031860828	-1.031860828
6	7	7.028741837	-0.028741837
7	6	6.471922874	-0.471922874
8	6	5 662673473	0.337326527
9	5	6.05767107	-1.05767107
10	4	5.085643291	-1.085643291
11	6.5	5.459332943	1.040667057
12	5.5	5.540979385	-0.040979385
13	5	4.906471252	0.093528748
I4	6	4.858219147	1.141780853
15	6	4.60884285	1.39115715
16	5	5.832116127	-0.832116127
17	7	6.594049454	0.405950546
81	3	5.018727303	-2.018727303
19	4.5	4.725746632	-0.225746632
20	5	4,531447887	0.468552113
21	8	6.852762222	1.147237778
22	4	4.557111263	-0.557111263
23	5	5.649094582	-0.649094582
24	5	5.114989281	-0.114989281
25	5	5.637613297	-0.637613297
26	4	4.646736145	-0.646736145
27	3	5.340496063	-2.340496063
28	- 1 3	5.774681568	-2,774681568
29	1 4	6.053649426	-2.053649426
- 27 -	5.5	5.455468178	0.044531822
31	6	5.575733185	0.424266815
32	1 7	5.584438901	1.415561199
33	5.5	6.109226227	-0.609226227
	1 7	6.839438915	0.160561085
34	6.5	6.562421799	-0.062421799
35	- 0.3 -		-1.411777496
36		5.411777496	
37	7.5	6.284277439	1.215722561
38	6.5	6.398846149	0.101153251
39	7	6.21668911	0.78331089
40	6	5.912778378	0.087221622
41	6	6.608784676	-0.608784676

42	5.5	6.291018963	-0.791018963
43	7	6.834561825	0.165438175
44_	5	5,105004787	-0.105004787
45_	5	5.536175251	-0.536175251
46	6.5	6.444657326	0.055342674
47	6.5	5.386374474	1.113625526
48	5	5.948648453	-0.948648453
49	5.5	5.712132454	-0.212132454
50	2	6.053985596	-4.053985596
51	5	5.71130991	-0.71130991
52	3.5	4.775494576	-1.275494576
53	6	6.563185692	-0.563185692
54	4	6.201059818	-2.201059818
55	4.5	6.088547707	-1.588547707

Page 2 of 2

42	5.5	6,380013943	-0.880013943
43	7	6.478112698	0.521887302
44	5	5.194410324	-0.194410324
45	5	5.70709753	-0.70709753
46	6.5	6.108580112	0.391419888
47	6.5	5.71627903	0.78372097
48	5	5.790477753	-0.790477753
49	5.5	5.323859215	0.176140785
50	2	5.792524338	-3.792524338
51	5	5.656672001	-0.656672001
52	3.5	4.499864578	-0.999864578
53	6	6.253128052	-0.253128052
54	4	5.907909393	-1.907909393
55	4.5	5.876730919	-1.376730919

- 549 -

THE THE THE PROPERTY OF THE PR

			_
Case	Actual (A)	Network output (N)	Difference (A-N)
1	5 .	5.733769894	-0.733769894
2	8	6.042209625	1.957790375
3	5	5.702223301	-0.702223301
4	4	4.709185123	-0.709185123
5	4.5	6.316431999	1,816431999
6	2	4.67982769	-2.679827 69
7	5.5	6.017012596	-0.517012596
8	3	5.151432514	-2.151432514
9	_ 6.5	6.263014317	0.236985683
10	5	5.568341732	-0.568341732
!1	5.5	6.030770779	-0.53 077077 9
12	5	5.670891285	-0.670891285
13	4.5	5.553237915	-1.053237915
14	6	5.297353745	0.702646255
15	9	6.503873825	2.496126175
16	5	5.636946678	-0.636946678
17	6	5.410057545	0.589942455
18	8	6.008711815	1.991288185
19	9	6.756093979	2.243906021
20	6	6.200129986	-0.200129986
21	7	6.579986095	0.420013905
22	5.5	6.014787197	-0.514787197
23	5	5.960962772	-0.960962772
24	7	5.964780331	1.035219669
25	6	5.570474148	0.429525852

Case	Actual (A)	Network output (N)	Difference (A-N)
1_	5	5.519373417	-0.519373417
-2	8	6.198174	1.801826
3	5	5.531716824	-0.531716824
4	4	3.322005749	0.677994251
5	4.5	6.357288837	-1.857288837
. 6	2	3.137819767	-1.137819767
7	5.5	6.288928986	-0.788928986
8	3	5.079883099	-2.079883099
9	6.5	6.444246769	0.055753231
10	5	4.835865498	0.164134502
11	5.5	6.179928303	-0.679928303
12	5	4.718912601	0.281087399
13	4.5	5.334686756	-0.834686756
14	6	4.959083557	1.040916443
15	9	6.708417416	2.291582584
16	5	5.19475174	-0.19475174
17	6	4.907470226	1.092529774
18	8	6.111553669	1.888446331
19	9	7.301620007	1.698379993
20	6	6.031924248	-0.031924248
21	7	6.927867889	0.072132111
22	5.5	6.274784088	-0.774784088
23	5	5.553359985	-0.553359985
24	7	6.100313663	0.899686337
25	6	5.348135948	0.651864052

Page 1 of 1

Page 1 of 1

Neural network outputs of the SCP4 analysis

Neural network output of Ca-SCP4-AR-final

Case	Actual (A)	Network output (N)	Difference (A-N)
	2	2.488104343	-0.488104343
2	3_	2.15960741	0.84039259
3	4	3.143908501	0.856091499
4	4	3.632353306	0.367646694
5	3	4.118792057	-1.118792057
6	9	6.984706879	2.015293121
7	9	5.74878931	3.25121069
8	6	4.500607967	1.499392033
_ 9	8.5	7.048196793	1.451803207
10	5	5.359220028	-0.359220028
11	7	5.207282066	1.792717934
12	4.5	5.557957172	-1.057957172
13	3	2.683953524	0.316046476
14	4	2.46758604	1.53241396
15	2	3.15807724	-1.15807724
16	2	4.563107967	-2.563107967
17	9	4.834342003	4.165657997
18	3	2.683953524	0.316046476
19	2	1.92607224	0.07392776
20	4	2.235422611	1.764577389
21	10	7.262577057	2.737422943
22	4	3.140810251	0.859189749
23	8	6.629525661	1.370474339
24	3	2.835280418	0.164719582
25	7	6.787238598	0.212761402
26	4	3.231189728	0.768810272
2.7	5	4.085457802	0.914542198
28	8	6.262061596	1.737938404
29	9	7.113912582	1.886087418
30	4	4.74930191	-0.74930191
31	4	5.799556255	-1.799556255
32	3	3.381513119	-0.381513119
33	9	6.854436398	2.145563602
34	9	7.648539543	1.351460457
35	8	7.105352402	0.894647598
36	5	3.546093702	1.453906298
37	7	6.210813999	0.789186001
38	8	6.194466591	1.805533409
39	7	5.556892395	1.443107605
40	8	6.262061596	1.737938404
41	6	5.91496706	0.08503294

Page 1 of 5

86	5.5	5.771096706	-0.271096706
87	7	5.175984383	1.824015617
88	6	5.933374405	0.066625595
89	6	5.469659328	0.530340672
90	6.5	5.933374405	0.566625595
91	5	5.956369877	-0.956369877
92	7	5.856661797	1.143338203
93	4	4.093692303	-0.093692303
94	7	6.327543259	0.672456741
95	5	4.112119675	0.887880325
96	8	5.541676521	2.458323479
97	5	2.806135178	2.193864822
98	3	4.834342003	-1.834342003
99	8	6,255384922	1.744615078
100	8	7.195770741	0.804229259
101	4	2.683442354	1.316557646
102	4.5	5.134749889	-0.634749889
103	2.5	3.483277559	-0.983277559
104	5	5.141571045	-0.141571045
105	5	4.03103447	0.96896553
106	2	2.745864368	-0.745864868
107	5	5.848015785	-0.848015785
108	3	5.207282066	-2.207282066
109	7	7.094339848	-0.094339848
110	5	4.850152969	0.149847031
111	3	3.015316248	-0.015316248
112	3	3.98277688	-0.98277688
113	2	3.517830849	-1.517830849
114	5.5	6.151842594	-0.651842594
115	5	3.955093384	1.044906616
116	5.5	4.960500717	0.539499283
117	5	4.730553627	0.269446373
118	3 -	3.015316248	-0.015316248
119	7	6.0160532	0.9839468
120	7	5,526332378	1.473667622
121		3.086788177	0.913211823
122	5	4.093692303	0.906307697
123	4	5.933374405	
124			-1.933374405
125	-67	5.742810249	0.257189751
		6.420695305	0.579304695
126	4	5.547626019	-1.547626019
127	6	6.0507617	-0.0507617
128	7	4.607368469	2.392631531
129	6.5	6.363134384	0.136865616

42	9	6.877275467	2.122724533
43	_6	6.166265488	-0.166265488
44	_7	5.080974579	1.919025421
45	- 8	5.639582634	2.360417366
46	7	6.09991169	0.90008831
47	7	5.871323109	1.128676891
48	6	4.614834309	1.385165691
49	3	4.312118053	-1.312!18053
50	6	4.529005051	1.470994949
51	4	5.265957355	-1.265957355
52	. 2	1.973590255	0.026409745
53	10	5.621686935	4,378313065
54	6	4.333589554	1.666410446
55	6	4.700042725	1.299957275
56	9	6.648736	2,351264
57	10	6.960356712	3.039643288
58	7.5	5.836023808	1.663976192
59	3	3.029385328	-0.029385328
60	8	7.084946156	0.915053844
61	1	1.854302168	-0.854302168
62	6	5.428450108	0.571549892
63	8	6.455603123	1.544396877
64	8	6.657582283	1,342417717
65	5	5.183261871	-0.183261871
66	9	7.207570076	1.792429924
67	5	5.720127106	-0.720127106
68	8	6.383704662	1.616295338
69	7	6.409743786	0.590256214
70	8	7.105352402	0.894647598
71	4	5.613817692	-1.613817692
72	4	4.929923534	-0.929923534
73	4	5.156398296	-1.156398296
74	10	7.507909775	2.492090225
75	- 8	4.123702526	3.876297474
76	9	5.541676044	3,458323956
77	8	6.477600098	1.522399902
78	6	5.533521175	0.466478825
79	9	6.704837799	2.295162201
80	6	5.948732376	0.051267624
81	2	4.68157053	-2.68157053
82	6	6.192888737	-0.192888737
83	6	5.742810249	0.257189751
84	7	5.526332378	1.473667622
85	5	5,594216824	-0.594216824

Page 2 of 5

5 5.5 6 7 5.5	5.397255421 5.971280098 5.664797783	-0.397255421 -0.471280098
67		-0.471280098
7	5.664797783	
		0.335202217
C.E.	5.822060108	1.177939892
	5.864414215	-0.364414215
_ 7	5.257761002	1.742238998
5	6.265663147	-1.265663147
6	5.986986637	0.013013363
6 .	5.833404064	0.166595936
6	5.80970335	0.19029665
3	5.732202053	-2.732202053
7	6.670900345	0.329099655
3	5.833404064	-2.833404064
7	5.909925461	1.090074539
_ 7	5.755705833	1.244294167
_6	4.924904823	1.075095177
88	5.605669975	2.394330025
6	6.106519222	-0.106519222
_ 2	3.506933928	-1.506933928
6	6.9096632	-0.9096632
_3	3.798869371	-0.798869371
_4	7.078801632	-3.07B801632
_ 5	4.486838818	0.513161182
_ 7	6.413068295	0.586931705
_4	3.292523623	0.707476377
4	4.314507008	-0.314507008
. 4	3.884223461	0.115776539
. 5	3.076326132	1.923673868
5	2.914675713	2.085324287
5.5	5.151386261	0.348613739
4	3.508366585	0.491633415
7	5.257761002	1.742235998
5.5	6.543822289	-1.043822289
7	5.922282219	1.077717781
7	6.349671364	0.650328636
6		1.402998924
		-1.44249963B
		1.473667622
		1.306978703
		1.370176315
		0.026588917
		1.327543259
		2,370176315
	6 6 6 3 7 3 7 7 7 6 6 8 6 2 6 3 4 5 7 7 4 4 4 4 5 5 5 5 5 5 5 5 5 7 7 7 7	6 5.833404064 6 5.80970335 3 5.732202053 7 6.670900345 3 5.833404064 7 5.909925461 7 5.755705833 6 4.924904823 8 5.605669975 6 6.106519222 2 3.506933928 6 6.9096632 3 3.792869371 4 7.0738901632 5 4.486838818 7 6.413068295 4 3.292523623 4 4.314507008 4 3.884223461 5 3.076326132 5 2.914675713 5 5.5151336261 4 3.508366585 7 5.525761602 5 6.543822289 7 6.5439671364 6 4.597001076 5 6.442499638 7 5.526392378 7 5.6930321297 7 5.693031297 7 5.6973411083 5 6.327543259

- 552 -

Page 3 of 5 Page 4 of 5

			
174	7	6.008881092	0.991118908
175	6	4.924904823	1.075095177
176	5	5.664797783	-0. <u>664797</u> 783
177	6	5.605669975	0.394330025
178	5	6.136930466	-1.136930466
179	4	4,290660381	-0.290660381
180	7	5,009717941	1.990282059
181	4	4.290660381	-0.290660381
182	6	4.514038086	1.485961914
183	. 6	5.397255421	0.602744579
184	. 1	1.578328133	-0.578328133
185	4	5.675061703	-1.675061703
186	6	4.960500717	1.039499283
187	6	5,38820219	0.61179781
188	7	6.9096632	0.0903368
189	3	2.970795631	0.029204369
190	7	6.691168785	0.308831215
191	5	4.511800289	0.488199711
192	7	5.526332378	1,473667622
193	2	2.350667477	-0.350667477
194	2	2.350667477	-0.350667477
195	8	6.691168785	1,308831215
196	4.5	4.876588345	-0.376588345
197	2	4,008132458	-2.008132458

Page 5 of 5

43 44 45 46 47 48 49 50 51 52 53	9 6 7 8 7 7 6 3 6	8.018166065 6.567749023 6.963712692 7.715932369 5.887620449 7.728320122 5.432368755 4.952997684	0.981833935 -0.567749023 0.036287308 0.284067631 1.112379551 -0.728320122 0.567631245
45 46 47 48 49 50 51 52	8 7 7 6 3 6	7.715932369 5.887620449 7.728320122 5.432368755 4.952997684	0.284067631 1.112379551 -0.728320122
46 47 48 49 50 51 52	7 7 6 3 6	7.715932369 5.887620449 7.728320122 5.432368755 4.952997684	0.284067631 1.112379551 -0.728320122
47 48 49 50 51 52	7 6 3 6	7.728320122 5.432368755 4.952997684	-0.728320122
48 49 50 51 52	6 3 6	5.432368755 4.952997684	
49 50 51 52	3 6	4.952997684	0.567631245
50 51 52	6		
51 52			-1.952997684
52	4	5.244026661	0.755973339
	-	5.115374565	-1.115374565
53	2	4.059049606	-2.059049606
	10	8.97615242	1.02384758
54	6	5.64586544	0.35413456
55	6	5.775204182	0.224795818
56	9	7.626089573	1.373910427
57	10	8.627042294	1.372957706
58	7.5	4.843493462	2.656506538
59	3	4.574891567	-1.574891567
60	8	7.733854771	0.266145229
61	1	2.951357603	-1.951357603
62	6	6,259697437	-0.259697437
63	8	6.16117239	1.83882761
64	8	6.433905602	1.566094398
65	5	5.624804974	-0.624804974
66	9	8.289372444	0.710627556
67	_5	3.676509857	1.323490143
68	8	7.811020851	0.188979149
69	7	7.133015156	-0.133015156
70	8	6.526623249	1.473376751
71	4	5.650923252	-1.650923252
72	4	4.908976078	-0.908976078
73	4	5.35052824	-1.35052824
74	10	8.697814465	1.302185535
75	8	7.132069588	0.867930412
76	9	8.689215183	0.310784817
77	88	6.484510422	1.515489578
78	6	7.557957649	-1.557957649
79	9	8.449860096	0.550139904
80	6	5.858806133	0.141193867
81	2	4.961288452	-2.961288457
82	6	6.476975918	-0.476975918
83	6	6.237617493	-0.23761749
84	7	5.903934956	1.096065044

Neural network output of Ca-SCP4-AR-1

Case Actual (A) Network output (N)		Difference (A-N)	
1	2	2.329360485	-0.329360485
2	3	3.967605829	-0.967605829
. 3	4	4.660852432	-0.660852432
4	4	4.615161419	-0.615161419
5	3	4.616951466	-1.616951466
6	9	8.579371452	0.420628548
7	9.	8.804923534	0.195076466
8	6	5.246086121	0.753913879
9	8.5	7.874646187	0.625353813
10	5.	4.655293465	0.344706535
11	7	9.896929741	-2.896929741
12	4.5	5.456876278	-0.956876278
13	3	4.489160538	-1.489160538
14	4	4.223106361	-0.223106861
15	2	3.313777447	-1.313777447
16	2	2.465226173	-0.465226173
17	9	8.893649101	0.106350899
18	3	4.585238457	-1.585238457
19	2	4.648387432	-2.648387432
20	4	3.861584902	0.138415098
21	10	9.31573391	0.68426609
22	4	4.100912094	-0.100912094
23	8.	8.153902531	-0.153902531
24	3	4.049757004	-1.049757004
25	7	5.023276329	1.976723671
26	4	4.497732162	-0.497732162
27	5	5.145868301	-0.145868301
28	8	5.552003384	2.447996616
29	9	8.1337924	0.8662076
30	4	5.456968784	-1.456968784
31	4	5.631089687	-1.631089687
32	3	4.100451469	-1.100451469
33	9	8.566944599	0.433055401
34	9	7.881279469	1.118720531
35	8	7.637458324	0.362541676
36	5	5.178966045	-0.178966045
37	7	6.421062946	0.578937054
38	8	6.27687788	1.72312212
39	7	6.379367828	0.620632172
40	8	7.752322674	0.247677326
4]	6	6.316992283	-0.316992283

(

Page 1 of 5

86	5.5	6.037264824	-0.537264824
87	7	6.180941582	0.819058418
88	6	6.059157372	-0.059157372
89	6	5.711173058	0.288826942
90	6.5	6.125759125	0.374240875
91	5	6.218644619	1.218644619
92	7	6.125669479	0.874330521
93	44	5.234479427	-1.234479427
94	7	6.277083874	0.722916126
95	5	_5.440400124	-0.440400124
96	8	5.970770359	2.029229641
97	5	4.862761021	0.137238979
98	3	5.283582687	-2.283582687
99	8	6.076000214	1.923999786
100	8	6.773476601	1.226523399
101	4	6.752809525	-2.752809525
102	4.5	5.874427319	-1.374427319
103	2.5	3.926029205	-1.426029205
104	Ş	6.064295292	-1.064295292
105	5	5.347568989	-0.347568989
106	2	2.919985294	-0.919985294
107	5	6.260540962	-1.260540962
108	3.	4.305344105	-1.305344105
109	7	6.77183342	0.22816658
110	5	_5.379214764	-0.379214764
111	3	3.899765491	-0.899765491
112	3	4.195999622	-1.195999622
113	2	4.456410885	-2.456410885
114	5.5	5.14977026	0.35022974
115	5	4.66348362	0.33651638
116	5.5	5.83324194	-0.33324194
117	5	5.321102142	-0.321102142
118	3	4.631363869	-1.631363869
119	7	6.897473335	0.102526665
120	7	6.896674633	0.103325367
121	4	4.817281246	-0.817281246
122	5	5.793899059	-0.793899059
123	4	4.912213326	-0.912213326
124	6	6.367350[0]	-0.367350101
125	7	6.30927372	0.69072628
126	4	_ 5.03150177	-1.03150177
127	6	5.661562443	0.338437557
128	7		0.572359085
128	6.5	6.427640915	+- <u></u>
129	0,3	6.057017803	0.442982197

- 553 -

130				
132 5.5				
133	131	5	6.011824131	-1.011824131
134	132_	5.5		
135 5.5 5.947341442	133_	6	6.254056454	-0.254056454
136	134	.7	6.993757725	0.006242275
137 5 5.217858791 -0.217858791 138 6 5.946644306 0.053355694 139 6 5.874258518 0.125741482 140 6 6.046937943 -0.046937943 -0.046937943 141 3 4.465653896 -1.4656553896 -1.465653896 -1.465653896 -1.465653896 -1.465653896 -1.465653896 -1.46	135	5.5	5.947341442	-0.447341442
138	136	7	7.017940998	-0.017940998
139 6 5.874258518 0.125741432 140 6 6.046937943 -0.046937943 141 3 4.465653896 -1.465653896 142 7 6.33966732 0.66033268 143 3 4.114925861 -1.114925861 144 7 6.258206367 0.741793633 145 7 6.143045902 0.856954098 146 6 6.272431374 0.272431374 147 8 7.920110226 0.079889774 148 6 6.381011486 0.381011486 149 2 2.853432655 0.853432655 150 6 6.518023968 0.518023968 151 3 3.255613804 0.255613804 152 4 4.304696083 0.304696083 153 5 4.619112492 0.380637508 154 7 7.90589664 0.905896664 155 4 4.28763866 0.428763866 156 4 5.023873806 1.023873806 157 4 4.21873386 0.218873386 158 5 5.150232792 0.150232792 159 5 3.183134556 1.816865444 160 5.5 5.48026228 0.01973772 161 4 4.956140995 0.956140995 162 7 7.148925781 0.148925781 163 5 7 7.290182114 0.290182114 166 6 6 6 6 6 6 6 6 169 7 7.025052547 0.025052547 160 7 7.09503667 0.02908366 170 7 7.130770206 0.130770206 171 7 7.295049667 0.295049667 172 5 5.236763 0.236763	137	5	5.217858791	-0.217858791
140 6 6.046937943 -0.046937943 141 3 4.465653896 -1.465653896 142 7 6.3966732 0.66033268 143 3 4.114925861 -1.114925861 144 7 6.258206367 0.741793633 145 7 6.143045902 0.856954098 146 6 6.272431374 -0.272431374 147 8 7.920110226 0.079889774 148 6 6.381011486 -0.381011486 149 2 2.853432655 -0.853432655 150 6 6.518023968 -0.518023968 151 3 3.255613804 -0.255613804 152 4 4.304696083 -0.518023968 153 5 4.619112492 0.380637503 154 7 7.90589664 -0.905895664 155 4 4.428763866 -0.428763866 156 4 5.023873806 -1.023873806 156 4 4.213873386 -0.213873386 158 5 5.150237792 -0.150237792 159 5 3.183134556 1.816865444 160 5.5 5.48026228 0.019737772 161 4 4.956140995 -0.9561409995 162 7 7.148925781 -0.148925781 163 5.5 5.165224075 0.334775925 164 7 7.025052547 -0.025052547 165 7 7.290182114 -0.290182141 166 6 6 8.2908341 -0.820982141 167 5 7.290182114 -0.290182141 168 7 7.072505551 -0.017760551 169 7 7.085013666 -0.42307020551 169 7 7.085013666 -0.085013866 170 7 7.139770206 -0.1937020551 169 7 7.085013666 -0.2950130567 170 7 7.139770206 -0.1937020567 171 7 7.295049667 -0.295049667	138	6	5.946644306	0.053355694
140 6 6.046937943 -0.046937943 141 3 4.465631896 -1.465653896 142 7 6.33966732 0.66033268 143 3 4.114925861 -1.114925861 144 7 6.258206367 0.741793633 145 7 6.143045902 0.856954098 146 6 6.272431374 -0.272431374 147 8 7.920110226 0.079889774 148 6 6.381011486 -0.381011486 149 2 2.853432655 -0.853432655 150 6 6.5.18023968 -0.518023968 151 3 3.255613804 -0.255613604 152 4 4.304696083 -0.304696083 153 5 4.619112492 0.380837508 154 7 7.905896664 -0.905896664 154 7 7.905896664 -0.905896664 155 4 4.213873386 -0.213873386 157 4<	139	6	5,874258518	0.125741482
142 7 6.33966732 0.66033268 143 3 4.114925861 -1.114925861 144 7 6.258206367 0.741793633 145 7 6.143045902 0.856954098 146 6 6.272431374 0.272431374 147 8 7.920110226 0.079889774 148 6 6.381011486 0.381011486 149 2 2.853432655 0.853432655 150 6 6.518023968 0.518023968 151 3 3.255613804 0.255613804 152 4 4.304696033 0.304696083 153 5 4.619112492 0.380337508 153 5 4.619112492 0.380337508 154 7 7.905896664 0.9058956664 155 4 4.423763866 0.4228763866 156 4 5.023873806 1.023873806 157 4 4.213873386 0.1023873806 157 4 4.213873386 0.1023873806 157 4 4.213873386 0.1023873806 157 4 4.213873386 0.1023873806 157 4 4.213873386 0.1023873806 158 5 5.15023792 0.150232792 159 5 3.183134556 1.816865444 160 5.5 5.48026228 0.01973772 161 4 4.956140995 0.9956140995 162 7 7.148925781 0.148925781 163 5.5 5.155224075 0.334775925 164 7 7.025052547 0.025052547 165 7 7.290182114 0.290182114 166 6 6.8208341 0.829034114 167 5 5.290654659 0.290654659 168 7 7.085013666 0.01370702066 170 7 7.130770206 0.1307702066 1.170 7 7.29504667 0.295046667	140	6	6.046937943	-0.046937943
143 3 4.114925861 -1.114925861 144 7 6.258206367 0.741793633 145 7 6.143045902 0.856954098 146 6 6.772431374 0.272431374 147 8 7.920110226 0.079889774 148 6 6.381011486 -0.381011486 149 2 2.853432655 -0.853432655 150 6 6.518023968 -0.518023968 151 3 3.255613804 -0.255613804 152 4 4.304696083 -0.304696083 153 5 4.619112492 0.380637508 154 7 7.905896664 -0.905896663 155 4 4.428763866 -0.428763866 155 4 4.428763866 -0.428763866 155 4 4.213873386 -0.213873386 157 4 4.213873386 -0.213873386 157 4 4.213873386 -0.213873386 158 5		3	4.465653896	-1.465653896
143 3 4.114925861 -1.114925861 144 7 6.258206367 0.741793633 145 7 6.143045902 0.856954098 146 6 6.272431374 0.272431374 147 8 7.92010226 0.079889774 148 6 6.381011486 -0.381011486 149 2 2.853432655 -0.853432655 150 6 6.518023968 -0.518023968 151 3 3.25613804 -0.255613604 152 4 4.304696083 -0.304696083 153 5 4.619112492 0.380637508 154 7 7.905896664 -0.905895664 155 4 4.423673866 -0.428763866 156 4 5.023873806 -1.023873806 157 4 4.213873386 -0.213873386 158 5 5.150232792 -0.15023792 159 5 3.183134556 1.816565444 160 5.5 </td <td></td> <td>7</td> <td>6.33966732</td> <td>0.66033268</td>		7	6.33966732	0.66033268
144 7 6.258206367 0.741793633 145 7 6.143045902 0.856954098 146 6 6.272431374 0.272431374 147 8 7.92010226 0.079889774 148 6 6.381011486 0.381011486 149 2 2.853432655 -0.853432655 150 6 6.518023968 -0.518023968 151 3 3.255613804 -0.255613604 152 4 4.304696083 -0.304696083 153 5 4.619112492 0.380837508 154 7 7.905896664 -0.905896664 154 7 7.905896664 -0.905896664 155 4 4.21873386 -0.213873386 155 4 4.213873386 -0.213873386 157 4 4.213873386 -0.213873386 158 5 5.150232792 -0.150232792 159 5 3.183134556 1.816865444 160 5.5 </td <td></td> <td></td> <td>4.114925861</td> <td>-1.114925861</td>			4.114925861	-1.114925861
145 7 6.143045902 0.856954098 146 6 6.272431374 -0.272431374 147 8 7.920110226 0.079889774 148 6 6.381011486 -0.381011496 149 2 2.853432655 -0.853432655 150 6 6.518023968 -0.518023968 151 3 3.255613804 -0.255613804 152 4 4.304696083 -0.304696083 153 5 4.619112492 0.380637508 154 7 7.905896664 -0.905896664 155 4 4.428763866 -0.428763866 156 4 5.023873806 -1.023873806 157 4 4.213873386 -0.213873386 158 5 5.150237792 -0.150232792 159 5 3.183134556 1.816865444 160 5.5 5.48026228 0.01973772 161 4 4.956140995 -0.956140999 162 7				0.741793633
146 6 6.272431374 -0.272431374 147 8 7.920110226 0.079889774 148 6 6.381011486 -0.381011486 149 2 2.853432655 -0.853432655 150 6 6.518023968 -0.518023968 151 3 3.255613804 -0.255613804 152 4 4.304696083 -0.304696083 153 5 4.619112492 0.380337508 154 7 7.905896664 -0.905896664 155 4 4.428763866 -0.428763866 156 4 5.023873806 -1.023873806 157 4 4.213873386 -0.213873386 157 4 4.213873386 -0.213873386 157 4 4.213873386 -0.18373386 158 5 1,50023792 -0.150232792 159 5 3.183134556 1.816865444 160 5.5 5.48026228 0.0197772 161 4 </td <td></td> <td>7</td> <td></td> <td>0.856954098</td>		7		0.856954098
147 8 7.920110226 0.079889774 148 6 6.381011486 -0.381011486 149 2 2.853432655 -0.853432655 150 6 6.518023968 -0.518023968 151 3 3.255613804 -0.255613804 152 4 4.304696033 -0.304696083 153 5 4.619112492 0.380837508 154 7 7.905896664 -0.905896664 4 4.928763866 -0.428763866 -0.428763866 156 4 5.023873806 -1.023873806 157 4 4.213873386 -0.213873386 158 5 5.150232792 -0.15023792 159 5 3.183134556 1.816865444 160 5.5 5.48076228 0.01973772 161 4 4.956140995 -0.956140995 162 7 7.148925781 -0.148925781 163 5.5 5.1552224075 0.334775925 164				-0.272431374
148 6 6.381011486 -0.381011486 149 2 2.853432655 -0.853432655 150 6 6.518023968 -0.518023968 151 3 3.255613804 -0.255613804 152 4 4.304696083 -0.304696083 153 5 4.619112492 0.380837508 154 7 7.905896664 -0.905896664 155 4 4.423763866 -0.428763866 156 4 5.023873806 -1.023873806 157 4 4.213873386 -0.213873386 158 5 5.150232792 -0.150232792 159 5 3.183134556 1.816865444 160 5.5 5.48026228 0.01973772 161 4 4.95614995 -0.956140995 162 7 7.148925781 -0.148925781 163 5.5 5.150224075 0.334775925 164 7 7.025052547 -0.025052547 165 <td< td=""><td></td><td></td><td></td><td>0.079889774</td></td<>				0.079889774
149 2 2.853432655 -0.853432655 150 6 6.518023968 -0.518023968 151 3 3.25613804 -0.255613804 152 4 4.304696083 -0.304696083 153 5 4.619112492 0.380637503 154 7 7.905896664 -0.905896664 155 4 4.428763866 -0.428763866 156 4 5.023873806 -1.023873806 157 4 4.213873386 -0.2138733386 158 5 5.150232792 -0.150232792 159 5 3.183134556 1.816865444 160 5.5 5.48026228 0.01973772 161 4 4.956140995 -0.956140995 162 7 7.148925781 -0.148925781 163 5.5 5.165224075 0.334775925 164 7 7.025052547 -0.025052547 165 7 7.290182114 -0.290182114 166 <t< td=""><td></td><td></td><td></td><td>-0.381011486</td></t<>				-0.381011486
150			2.853432655	-0.853432655
151 3 3.255613804 -0.255613804 152 4 4.304696083 -0.304696083 153 5 4.619112492 -0.380837508 153 5 4.619112492 -0.380837508 154 7 7.905896664 -0.905896664 -0.905896664 -0.905896664 -0.905896664 -0.905896664 -0.905896664 -0.905896664 -0.905896664 -0.905896664 -0.905896664 -0.905896664 -0.905896664 -0.905896664 -0.9058973866 -0.905873806 -0.918733806 -0.918733806 -0.918733806 -0.918733806 -0.918733806 -0.918733806 -0.918733806 -0.9187337386 -0.9187337386 -0.9187337386 -0.918733772 -0.91873386 -0.91873386 -0.91873386 -0.91873386 -0.91873386 -0.91873386 -0.91873386 -0.91873386 -0.91873386 -0.91873386 -0.91873386 -0.91873386 -0.91873386 -0.91873386 -0.918733866 -0.9187333866 -0.918733866 -0.91873333866 -0.918733333866 -0.91873333866 -0.918733333866 -0.91873333866 -0.918733333866 -0.91873333386 -0.91873333386 -0.9187333386				-0.518023968
152 4 4,304696083 -0.304696083 153 5 4,619112492 0.380637508 154 7 7.905896664 -0.905896664 155 4 4,428763866 0.428763866 156 4 5.023873806 -1.023873806 157 4 4,213873386 -0.213873386 158 5 5.150232792 -0.150232792 159 5 3,183134556 1,816865444 160 5.5 5,48026228 0.01973772 161 4 4,956140995 -0.956140995 162 7 7,148925781 -0.148925781 163 5.5 5,150224075 0.334775925 164 7 7,025052547 -0.025052547 165 7 7,290182114 -0.82098341 166 6 6.82098341 -0.82098341 167 5 5.290654659 -0.990654659 168 7 7,08501366 -0.085013866 170 7 </td <td></td> <td></td> <td>3.255613804</td> <td>-0.255613804</td>			3.255613804	-0.255613804
153 5 4.619112492 0.380637508 154 7 7.90589664 -0.905896664 155 4 4.428763866 -0.428763866 156 4 5.023873806 -1.023873806 157 4 4.213873386 -0.213873386 158 5 5.150232792 -0.150232792 159 5 3.183134556 1.816865444 160 5.5 5.48026228 0.01973772 161 4 4.956140995 -0.956140995 162 7 7.148925781 -0.148925781 163 5.5 5.165224075 0.334775925 164 7 7.025052547 -0.025052547 165 7 7.290182114 -0.290182114 166 6 6.820982141 -0.820982341 167 5 5.290654659 -0.290654659 168 7 7.017260551 -0.017260551 169 7 7.03501366 -0.085013866 170				-0.304696083
154 7 7.905896664 -0.905896664 155 4 4.428763866 -0.428763866 156 4 5.023873806 -0.2138733386 157 4 4.213873386 -0.2138733386 158 5 5.150232792 -0.150232792 159 5 3.183134566 1.816865444 160 5.5 5.48026728 0.01973772 161 4 4.956140995 -0.956140995 162 7 7.148925781 -0.148925781 163 5.5 5.165224075 0.334775925 164 7 7.025052547 -0.025052547 165 7 7.290182114 -0.290182114 166 6 6.82098341 -0.82098341 167 5 5.290654659 -0.290654659 168 7 7.017260551 -0.017260551 169 7 7.08501366 -0.085013866 170 7 7.130770206 -0.130770206 170 <t< td=""><td></td><td></td><td>4.619112492</td><td>0.380837508</td></t<>			4.619112492	0.380837508
155. 4 4.428763866 -0.428763866 156. 4 5.023873806 -1.023873806 157. 4 4.213873386 -0.213873386 158. 5.150232792 -0.150232792 159. 5 3.183134556 1.816865444 160. 5.5 5.48026228 -0.01973772 161. 4 4.956140995 -0.956140995 162. 7 7.148925781 -0.148925781 163. 5.5 5.165224075 0.334775925 164. 7 7.025052547 -0.025052547 165. 7 7.290182114 -0.290182114 166. 6 6.82098341 -0.82098341 167. 5 5.290654659 -0.290654659 168. 7 7.017260551 -0.017260551 169. 7 7.085013866 -0.085013866 170. 7 7.130770206 -0.130770206 171. 7 7.295049667 -0.295049667 172. <td< td=""><td>,</td><td>7</td><td>7.905896664</td><td>-0.905896664</td></td<>	,	7	7.905896664	-0.905896664
156			4,428763866	-0.428763866
157 4 4.213873386 -0.213873386 158 5 5.150232792 -0.150232792 159 5 3.183134556 1.816865444 160 5.5 5.48026228 0.01973772 161 4 4.956140995 -0.956140995 162 7 7.148925781 -0.148925781 163 5.5 5.165224075 0.334775925 164 7 7.025052547 -0.025052547 165 7 7.290182114 -0.290182114 166 6 6.82098341 -0.82098341 167 5 5.290654659 -0.290654659 168 7 7.017260551 -0.017260551 169 7 7.085013866 -0.085013866 -0.085013866 170 7 7.130770206 -0.13070206 -0.13070206 171 7 7.295049667 -0.295049667 -0.295049667 172 5 5.236763 -0.236763		4	5,023873806	-1.023873806
158 5 5.150232792 -0.150232792 159 5 3.183134556 1.816865444 160 5.5 5.48026228 0.01973772 161 4 4.956140995 -0.956140995 162 7 7.148925781 -0.148925781 163 5.5 5.165224075 0.334775925 164 7 7.025052547 -0.025052547 165 7 7.290182114 -0.290182114 166 6 6.82098341 -0.82098341 167 5 5.290654659 -0.290654659 168 7 7.017260551 -0.017260551 169 7 7.08501366 -0.085013866 170 7 7.130770206 -0.13070206 170 7 7.299049667 -0.295049667 172 5 5.236763 -0.236763		4	4,213873386	-0.213873386
159 5 3.183134556 1.816865444 160 5.5 5.48026228 0.01973772 161 4 4.956140995 -0.956140995 162 7 7.148925781 -0.148925781 163 5.5 5.165224075 0.334775925 164 7 7.025052547 -0.025052547 165 7 7.290182114 -0.290182114 166 6 6.82098341 -0.82098341 167 5 5.290654659 -0.290654659 168 7 7.017260551 -0.017260551 169 7 7.085013866 -0.085013866 170 7 7.130770206 -0.130770206 171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763		5	5.150232792	-0.150232792
160 5.5 5.48026228 0.01973772 161 4 4.956140995 -0.956140995 162 7 7.148925781 -0.148925781 163 5.5 5.165224075 0.334775925 164 7 7.025052547 -0.025052547 165 7 7.290182114 -0.290182114 166 6 6.8208341 -0.82093341 167 5 5.290654659 -0.920654659 168 7 7.017260551 -0.017260551 169 7 7.085013666 -0.083013866 170 7 7.130770206 -0.130770206 171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763		5	3.183134556	1.816865444
161 4 4,956140995 -0.956140995 162 7 7,148925781 -0.148925781 163 5.5 5,165224075 0.334775925 164 7 7,025952547 -0.025952547 165 7 7,290182114 -0.290182114 166 6 6.82098341 -0.82098341 167 5 5.290654659 -0.290654659 168 7 7,017260551 -0.017260551 169 7 7,085013866 -0.085013866 170 7 7,130770206 -0.130770206 171 7 7,295049667 -0.295049667 172 5 5,236763 -0.236763		5.5	5,48026228	0.01973772
162 7 7.148925781 -0.148925781 163 5.5 5.165224075 0.334775925 164 7 7.025052547 -0.025052547 165 7 7.290182114 -0.290182114 166 6 6.82098341 -0.82098341 167 5 5.290654659 -0.290654659 168 7 7.017260551 -0.017260551 169 7 7.085013866 -0.085013866 170 7 7.130770206 -0.13070206 171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763		4	4.956140995	-0.956140995
163 5.5 5.165224075 0.334775925 164 7 7.025052547 -0.025052547 165 7 7.290182114 -0.290182114 166 6 6.82098341 -0.82098341 167 5 5.290654659 -0.290654659 168 7 7.017260551 -0.017260551 169 7 7.08501366 -0.085013866 170 7 7.130770206 -0.13070206 171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763		7	7.148925781	-0.148925781
164 7 7.025052547 -0.025052547 165 7 7.290182114 -0.290182114 166 6 6.82098341 -0.82098341 167 5 5.290654659 -0.290654659 168 7 7.017260551 -0.017260551 169 7 7.085013866 -0.083013866 170 7 7.130770206 -0.130770206 171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763		5.5	5.165224075	0.334775925
165 7 7.290182114 -0.290182114 166 6 6.82098341 -0.82098341 167 5 5.290654659 -0.290654659 168 7 7.017260551 -0.017260551 169 7 7.085013866 -0.085013866 170 7 7.130770206 -0.130770206 171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763			7.025052547	-0.025052547
166 6 6.82098341 -0.82098341 167 5 5.290654659 -0.290654659 168 7 7.017260551 -0.017760551 169 7 7.085013866 -0.085013866 -0.085013866 170 7 7.130770206 -0.130770206 -130770206 171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763		7	7.290182114	-0.290182114
167 5 5.290654659 -0.290654659 168 7 7.017260551 -0.017260551 169 7 7.085013866 -0.085013863 170 7 7.130770206 -0.130770206 171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763		6	6.82098341	-0.82098341
168 7 7.017260551 -0.017260551 169 7 7.085013866 -0.085013866 170 7 7.130770206 -0.130770206 171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763		5	5.290654659	-0.290654659
169 7 7.085013866 -0.085013866 170 7 7.130770206 -0.130770206 171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763		7	7.017260551	-0.017260551
170 7 7.130770206 -0.130770206 171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763			7.085013866	-0.085013866
171 7 7.295049667 -0.295049667 172 5 5.236763 -0.236763		7	7.130770206	-0.130770206
172		7	7,295049667	-0.295049667
	172	5	5.236763	-0.236763
		8	7.099528313	0.900471687

Dane	A	nf	٩

<u>Neural</u>	network	output	of Ca-	SCP4-S	C-final
---------------	---------	--------	--------	--------	---------

	1	[n. ". :an]	n:ee
Case	Actual (A)		Difference (A-N)
!	5	4.881914616	0.118085384
2	_6	6.049001694	-0.049001694
3	6	6.049001694	-0.049001694
4	6	5,885736942	0.114263058
5	7	5,200054169	1.799945831
6	6	5,729009628	0.270990372
	6	6.085855007	-0.085855007
8	6.5	6.049001694	0.450998306
9	5.5	5.747867107	-0.247867107
. 10	6	6.166490078	-0.166490078
- 11	_5	5.911092758	<u>-0.911092758</u>
12	6.5	6.282650948	0.217349052
13	5.5	5.366095543	0.133904457
14	5.5	6.085855007	-0.585855007
15	4.5	5.200054169	<u>-0.700054169</u>
16_	_6	6.021696568	-0.021696568
17_	4.5	4.7919631	-0.2919631
18	7	4.920544147	2.079455853
19	8	6.317889214	1.682110786
20	5	6.697998047	-1.697998047
21	8.5	5.162168026	3.337831974
22	5.5	5.487415791	0.012584209
23	3	4,600137711	-1.600137711
24	7.5	5.810758114	1.689241886
25	6	5.404618263	0.595381737
26	6.5	4.093462467	2.406537533
27	7.5	5.608454227	_1.891545773
28	5	4,32141304	0.67858696
29	9.5	6,57010746	2.92989254
30	4	4.995569706	-0.995569706
31	5.5	4.518829823	0.981170177
32	5	4.718774796	0.281225204
33	3.5	5.286015937	-1.786015987
34	9.5	6.2269907	3.2730093
35	5	4.7919631	0.2080369
36	6	5.525664806	0.474335194
37	5	5,506676674	-0.506676674
38	5	4.518829823	0.481170177
39	5	5.683046341	-0.683046341
40	6	5.885736942	0.114263058
			
41	7	5.366095543	1.633904457

174	7	6.192700863	0.807299137
175	6	5.899285793	0.100714207
176	5	5.248065472	0.248065472
177	6	5.995157719	_0.004842281
178	5	5.328946114	-0.328946114
179	_ 4	5.14930439	-1.14930439
180		6.103969097	0.896030903
181	4	5.185345173	-1.185345173
182	6	5.533980846	0.466019154
183	6	5.973358154	_0.026641846
184	1	2.346706629	-1.346706629
185	4	5.343857765	-1.343857765
186	6	5.944374084	0.055625916
187	6	6.234769821	-0.234769821
188	7	6.63206768	0.36793232
189	3	4.644745827	-1.644745827
190	7	6.630834103	0.369165897
191	5	5.745554447	-0.745554447
192	7	5.866823673	1.133176327
193	2	2.441495895	-0.441495895
194	2	2.259683609	-0.259683609
195	8	7.560185432	0.439814568
196	4.5	5.652994156	-1.152994156
107		3.460845047	1.460245047

Page 5 of 5

	,		,
42	4	5.608454227	-1.608454227
43	6	5.569420338	0.430579662
44	5	6.049001694	-1.049001694
45	5	6.184713364	-1.184713364
46	5	5.569420338	-0.569420338
47	6	5,442111492	0.557888508
48	6	5.478574276	0.521425724
49	6.5	5.967899799	0.532100201
50	7.5	6.282650948	1.217349052
- 51	6	5.200054169	0.799945831
52	5	5.930363178	0.930363178
53	8	6.049001694	1.950998306
54	6	5.986165524	0.013834476
55	7	5.321125984	1.678874016
56	7 7	6.085855007	0.914144993
57	_7_	5.810758114	1.189241886
58	5	5.646330357	-0.646330357
59	6	5.949298859	0.050701141
60	6	5.84888792	0.15111208
61	5	5.123393536	-0.123393536
62	4	6.085855007	-2.085855007
63	6	5,224983692	0.775016308
64	6.5	6.184713364	0.315286636
65	6.5	6.184713364	0.315286636
66	7.5	6.14790535	1,35209465
67	6.5	6.121317863	0.378682137
68	4	6.14790535	-2.14790535
69	4.5	4.581611633	-0.081611633
70	7	6.049001694	0.950998306
71	4	4.32141304	-0.32141304
72	8.5	5,162168026	3.337831974
73	5	.5.506676674	-0.506676674
74	5	6.475426674	-1.475426674
75	9	5,162168026	3.837831974
76	1-3-	5.569420338	-2.569420338
77	 -		
78	2.5	4.554661751	-2.054661751
79	6	4.893607616	1.106392384
	2	5,200054169	-3.200054169
80	6.5	5.321125984	1.178874016
81	1 5	5,366095543	-0.366095543
82	6	6.085855007	-0.085855007
83	6	5.930363178	0.069636822
84	5.5	6.085855007	-0.585855007
85	6.5	6.184713364	0.315286636

- 554 -

86	6	5.84888792	0.15111208
87	6	5.810758114	0.189241886
88	7	5.885736942	1.114263058
89	7.5	6.085855007	1.414144993
90	6	5,986165524	0.013834476
91	6	6.282650948	-0.282650948
92	7	5.608454227	1.391545773
93	6	6.220077991	-0.220077991
94	6	6.282650948	-0.282650948
95	6.5	6.14790535	0.35209465
96	6.5	5.810758114	0.689241886
97	5.5	5.646330357	-0.146330357
98	5.5	5.404618263	0.095381737
99	5	5.162168026	-0.162168026
100	8.5	6.085855007	2.414144993
101	6	5.162168026	0.837831974
102	6	5.031945229	0.968054771
103	6	5.442111492	0.557888508
104	3	3.688600779	-0.688600779
105	6	5.771352768	0.228647232
106	6.5	5.646330357	0.853669643
107	6.5	6.049001694	0.450998306
108	8	6.282650948	1.717349052
109	6	4.32141304	1.67858696
110	8	6.475426674	1.524573326
111	7	5.608454227	1.391545773
112	8	5.885736942	2.114263058
113	3 _	4.093462467	-1.093462467
114	7	4.093462467	2.906537533
115	9	6.697998047	2.302001953
116	4	5.283386707	-1.283386707
117	6	4.881914616	1.118085384

Page 3 of 3

42	4	4.840117931	-0.840117931
43	6	6.487887859	-0.487887859
44	5	5.479138851	-0.479138851
45	5	5.758367062	-0.758367062
46	5	5.876824856	-0.876824856
47	6	5.928080082	0.071919918
48	6	5.321301937	0.678698063
49	6.5	6.173138618	0.326861382
50	7.5	5.623722553	1.876277447
5i	6	5.606987	0.393013
52	5	5.20160532	0.20160532
53	8	6.027808666	1.972191334
54	6	5.778914452	0.221085548
55	7	5.541257 <u>38</u> 1	1.458742619
56	7	5.728373528	1.271626472
57	7	5.828091145	1.171908855
58	5	4.998124599	0.001875401
59	6	5.852823257	0.147176743
60	6	5.952536106	0.047463894
61	5	5.267450809	-0.267450809
62	4	6.026135921	-2.026135921
63	6	5.22792387	0.77207613
64	6.5	6.023812771	0.476187229
65	6.5	6.695438862	-0.195438862
66	7.5	6.795302391	0.704697609
67	6.5	5.890704632	0.609295368
68	4	5.690238953	-1.690238953
69	4.5	4.343680382	0.156319618
70	7	6.075080872	0.924919128
71	4	4.478846934	-0.478848934
72	8.5	5.611961842	2.888038158
73	5	4.946193695	0.053806305
74	5	6.342589378	1,342589378
75	9	6.054432392	2.945567608
76	3	6.009494781	-3.009494781
77	2.5	3.912931681	-1.412931681
78	6	4.28549242	1.71450758
79	2	4.94686079	-2.94686079
80	6.5	6.087568283	0.412431717
81	5	5.006548405	-0.006548405
82	6	6.203160763	0.203160763
83	6	6.622014523	-0.622014523
84	5.5	5.45600605	0.04399395
85	6.5	5.829824924	0.670175076

Neural network output of Ca-SCP4-SC-1

(IVIII) THE VEIL TO BE MYA, I. M. M.				
Case	Actual (A)	Network output (N)	Difference (A-N)	
1	5	4.200195789	0.799804211	
2	6	6.116859436	-0.116859436	
3	6	5.910745621	0.089254379	
4	6	5.853145123	0.146854877	
5	7	5.82469368	1.17530632	
6	6	6.213494778	-0.213494778	
7	6	6.11964798	-0.11964798	
8	6.5	6.353060722	0.146939278	
9	5.5	5.910958767	-0.410958767	
10	6	5.80470705	0.19529295	
11	5	5.339220047	-0.339220047	
12	6.5	5.757874012	0.742125988	
13	5.5	4.97481823	0.52518177	
14	5.5	6.045719147	-0.545719147	
15	4.5	5.353477478	-0.853477478	
16	6	6.003597736	-0.003597736	
17	4.5	5.092432976	-0.592432976	
18	7	4.83076334	2.16923666	
19	8	6.454772472	1.545227528	
20	5	6.494926929	-1.494926929	
21	8.5	7.077336788	1.422663212	
22	5.5	4.964180946	0.535819054	
23	3	4.241347313	-1.241347313	
24	7.5	6.307730675	1.192269325	
25	6	4.985853195	1.014146805	
26	6.5	5.762878418	0.737121582	
27	7.5	5.722827911	1.777172089	
28	5	4.823225021	0.176774979	
29	9.5	7.140414238	2.359585762	
30	4	4.978141308	-0.978141308	
31	5.5	5.01766777	0.48233223	
32	5	4.501819611	0.498180389	
33	3.5	3.486933231	0.013066769	
34	9.5	7.635632038	1.864367962	
35	5	4.746405602	0.253594398	
36	6	5.224290848	0.775709152	
37	5	6.089345932	-1.089345932	
38	5	4.173507214	0.826492786	
39	5	5,545084	-0.545084	
40	6	5.096722603	0.903277397	
41	7	7.002831936	-0.002831936	

Page 1 of 3

	(050+140+0	0.05044.040
		-0.250414848
		0.274647236
		1.224339485
		1.551675797
		-0.416548729
	5.942444801	0.057555199
	6.011196613	0.988803387
6	6.320301056	-0.320301056
6	5.96545887	0.03454113
6.5	5.457099915	_1.042900085
6.5	5.93386507	0.56613493
5.5	5.82339716	-0.32339716
5.5	6.09837389	-0.59837389
5	4.534500599	0.465499401
8.5	6.257371426	2.242628574
6	5.17663908	0.82336092
6	4.94277668	1.05722332
6	5.303988934	0.696011066
3	3.742608547	-0.742608547
6	5.891200542	0.108799458
6.5	5.709132195	0.790867805
6.5	5.287733555	1.212266445
8	6.62303979	1.37691021
6	4.302240849	1.697759151
8	6.234594345	1.765405655
7	5.562702179	1.437297821
8	6.544224739	1.455775261
3	4.07165575	-1.07165575
7	3.835992813	3.164007187
9	6.815719128	2.184280872
4	5.357357502	-1.357357502
6		0.98966217
	6.5 6.5 5.5 5.5 5.5 6 6 6 6 6 6.5 6.5 6.	6 5.725352764 7 5.775660515 7.5 5.948324203 6 6.416548729 6 5.942444801 7 6.011196613 6 6.320301056 6 5.96545887 6.5 5.457099915 6.5 5.93386507 5.5 5.82339716 5.5 5.82339716 5.5 6.09837389 8.5 6.257371426 6 5.17663908 6 4.94277668 6 5.303988934 3 3.742608547 6 5.891200542 6 5.891200542 6 5.5287733555 8 6.62308979 6 4.302240849 8 6.234594345 7 5.562702179 8 6.544224739 3 4.07165575 7 3.835992813 9 6.815719128

€.

Neural network output of Ca-SCP4-MC-final

Case Actual (A) Network output (N) Difference			
1	3	4.843324661	-1.843324661
<u>-</u> -	4.5	4.843324661	-0.343324661
- 3	4	5.708823204	-1.708823204
4	4	5.491205692	-1.491205692
5	5	5.484311104	-0.484311104
6 .	8	7.307295799	0.692704201
7	7.5	7.307816029	0.192183971
	6	6.384130478	-0.384130478
- 9 -	7	6.864737988	0.135262012
10	-		
	5,5	6.095880032	-2.095880032
11		6.578455448	-1.078455448
12	8	6.444816113	1.555183887
13	4.5	5.700275898	-1.200275898
14	5	5.28374958	-0.28374958
15	6	5.287168026	0.712831974
16	6	6.75996685	-0.75996685
17	5	7.398074627	-2.398074627
18	. 3	6.079842567	-3.079842567
19	6	5.280798435	0.719201565
20	4.5	5.277100086	-0.777100086
21	8.5	6.628952503	1.871047497
22	4	4.423919201	-0.423919201
23	5	5.262077808	-0.262077808
24	5	6.062343597	-1.062343597
25	6	6.062343597	-0.062343597
26	4	5.280793435	-1.280798435
27	3	5.28374958	-2.28374958
28	2	6.002466679	-4.002466679
29	6	6.759489059	-0.759489059
30	7	6.043522358	0.956477642
31_	8	6.75996685	1.24003315
32	8	5.2727108	2.7272892
33	6	6.958398067	-0.958893067
34	5.599999905	7.018696785	-1.41869688
35	7	6.801616192	0.198383808
36	3	6.079842567	-3.079842567
37	8	6.062343597	1.937656403
38	8	6.927027225	1.072972775
39	8.5	6.370909214	2.129090786
40	5.5	6.397017002	-0.897017002
41	. 5	6.921321869	-1.921321869

Page	1	of	2
------	---	----	---

Neural network output of Ca-SCP4-MC-1

Case	Actual (A)	Network output (N)	Difference (A-N)
1	3	4.929166794	-1.929166794
2	4.5	4.564277649	-0.064277649
3	4	5.591201305	-1.591201305
4	4	5.249625206	-1.249625206
5	5	5.759150028	-0.759150028
6	8	8.192468643	-0.192468643
7	7.5	7.232344151	0.267655849
8	6	6.306148052	-0.306148052
9	7	6.890551567	0.109448433
10	4	5.843067646	•1.843067646
11	5.5	5.962369919	-0.462369919
12	8	6.761953831	1.238046169
13	4.5	5.436964989	-0.936964989
14	5	4.830434799	0.169565201
15	_6	5.49682158	0.50317812
16	6	6.722304321	-0.722304821
17	5	7.092537471	-2.092587471
18	3	5.634226322	-2.634226322
19	_6	5.023612499	0.976387501
20	4.5	4.401329041	0.093670959
21	8.5	7.445468426	1.054531574
22	4	4.371197701	-0.371197701
23	5	5.433848381	-0.433848381
24	5	5.611367226	-0.611367226
25	6	6.501496315	-0.501496315
26	4	4.904632568	-0.904632568
27	3	5.810241699	-2.810241699
28	2	6.062864304	-4.062864304
29	6	6.536683083	-0.536683083
30	7	6.062192917	0.937807083
31	8	6.445889473	1.554110527
32	8	5.791454315	2.208545635
33	6	6.788526053	-0.783526058
34	5.5	7.515337944	-1.915338039
35	7	7.141430378	-0.141430378
36	3	6.042441368	-3.042441368
37	8	6.851457596	1.148542404
38	8	7.456347191	0.543152809
39	8.5	6.544419765	1.955580235
40	5.5	6.407969952	-0.907969952
_ 70	5	7.274104595	-2.274104595

42	7	6.594153881	0.405846119
43	7.5	6.55841589	0.94158411
44	4	5.66764307	-1.66764307
45	5	5.980501175	0.980501175
46	5	6.315086365	-1.315086365
47	5	5.2727108	-0.2727108
48	4.5	5.980501175	-1.480501175
49	5	6.973053455	-1.973053455
50	5	6.662645817	1.662645817
51	4.5	5.626675129	1.126675129
52	3	4.863348484	-1.863348484
53	5.5	6.55841589	-1.05841589
54	4.5	6.062343597	-1.562343597
55	5	5,679581165	0.679581165

Page 2 of 2

42	7	6.807105064	0.192894936
43	7.5	7.120580196	0.379419804
44	4	5.376525879	-1.376525879
45	5	6.342371464	-1.342371464
46	5	6.6035676	-1.6035676
47	5	5.994636059	-0.994636059
48	4.5	5.92793417	-1.42793417
49	5	6.171479702	-1.171479702
50	5	6.346206188	-1.346206188
51	4.5	6.012540817	-1.512540817
52	3	4.524118423	-1.524118423
53	5.5	6.226133823	-0.726133823
54	4.5	6.228896141	-1.728896141
55	5	6.108973503	-1.108973503

Neural network output of Ca-SCP4-CC-final

Case	Actual (A)	Network output (N)	Difference (A-N)
1	4.5	5.639801502	-1.139801502
2	5.5	4.948858261	0.551141739
3	2	4,880293369	-2.880293369
4	3	3.194853306	-0.194853306
5	3	5.924983978	-2.924983978
6	3	3.077159882	-0.077159882
7	6	6.646051884	-0.646051884
. 8	4.5	4.996899605	-0.496899605
. 9	7	6.823843479	0.176156521
10	. 4	5.214157581	-1.214157581
11	4	6.338440418	-2.338440418
12	5	5.196330547	-0.196330547
13	5	5.258576393	-0.258576393
14	6	4.901535034	1.098464966
15	6.5	6.732214928	-0.232214928
_ 16	5.5	5.173639774	0.326360226
17	4	4.77318716	-0.77318716
18	5	6.349871635	-1.349871635
19	7.5	7.219009399	0.280990601
20	7.5	5.796394825	1,703605175
_21	8.5	7.030557632	1.469442368
22	6	6.584896088	-0.584896088
23	5.5	5.31626749	0.18373251
24	6	5.946862221	0.053137779_
25	6	5,471812725	0,528187275

Neural network output of Ca-SCP4-CC-1

Case	Actual (A)	Network output (N)	Difference (A-N)
1	4.5	5.298017979	-0.798017979
2	5.5	5.837565422	-0.337565422
3	2	5,115665913	-3.115665913
4	3	3.695935488	-0.695935488
5	3	6.064277649	-3.064277649
6	3	3.514869452	-0.514869452
7	6	6.161038876	-0.161038876
8	4.5	5.263629913	-0.763629913
9	7	6.286403179	0.713596821
10	4	4.896383762	-0.896383762
11	4	6.052452087	-2.052452087
!2	5	5.021503925	-0.021503925
13	5	5.37235117	-0.37235117
14	6	4.718130589	1.281869411
15	6.5	6.465947151	0.034052849
16	5.5	5.196667671	0.303332329
17	4	4.485198498	-0.485198498
18	5	5.892011166	-0.892011166
19	7.5	6.912434578	0.587565422
20	7.5	5.680021286	1.819978714
21	8.5	6.821319103	1.678680897
22	6	6.060144901	-0.060144901
23	5.5	5.49241066	0.00758934
24	6	5.79440403	0.20559597
25	6	5.348950863	0.651049137

Page 1 of 1

Page 1 of 1

Neural network output of Ca-SCP5-AR-final

Cuse	Actual (A)	Network output (N)	Difference (A-N)
	4	3,883317232	0.116682768
2	3	3.608486176	-0.608486176
3	7	4.356617928	2.643382072
4	4	4.534963608	-0.534963608
5	5	4.380910397	0.619089603
6	9	5.802152157	3.197847843
7	5	5.673326492	-0.673326492
В	6.5	4.285657883	2.214342117
9	8	5.841859341	2.158140659
10	5.5	5.036540031	0.463459969
T.	5	4.344974041	0.655025959
12	4	4.088341236	-0.088341236
13	4	3.848726988	0.[51273012
14	8	4.516973972	3.483026028
15	6	4.123886108	1.876113892
16	5	5.391525745	-0.391525745
17	4	5.556392193	-1.556392193
18	3.5	3.96872139	-0.46872139
19	3	4.475488663	-1.475488663
20	5	4.123886108	0.876113892
21	5	6.435512543	-1.435512543
22	3	4.626627922	·1.626627922
23	3	5.343964577	-2.343964577
24	3.5	4.628357887	-1,128357887
25	4.5	5.561865807	-1.061865807
26	2.5	4.391717434	-1.891717434
27	6	4.516973972	1,483026028
28	6	5.485108852	0.514891148
29	6	5.813514233	0.186485767
30	8	5.011895657	2.988104343
31	4.5	4.521395683	-0.021395683
32	9	5.486248016	3,513751984
33	7	5.344861984	1.655138016
34	5	6.150869846	-1.150869846
35	دَ6	6.093269348	0.406730652
36	5,5	4.711647511	0.788352489
37	8	5.929596424	2.070403576
38	9	5.05238533	3.94761467
39	5.5	5.552746773	-0.052746773
40	3	5.412762165	-2,412762165
41	- 5	6.372673035	-1.372673035

Page I of 5

			•
86	6	5.61084938	0.38915062
87	5	5.558475494	-0.558475494
88	4	5.19280529	-1.19280529
89	4	5.594177246	-1.594177246
90	5	5.519546986	-0.519546986
91	5	4,984442711	0.015557289
92	6	5.519546986	0.480453014
93	5.5	5.140110016	0.359889984
94	5.5	5,505530834	-0.005530834
95	4	4.592983723	-0.592983723
96	4.5	5.237712383	-0.737712383
97	2	4.828250408	-2.828250408
98	5	4.194642067	0.805357933
99	7	5,361544609	1.638455391
100	5.5	6.093269348	-0.593269348
101	2	4.821483135	-2.821483135
102	5	4.8181777	0.1818223
103	2.5	4.159412384	-1.659412384
104	5.5	5.118574619	0.381425381
105	2_	4.074320316	-2.074320316
106	6	4.003258705	1.996741295
107	7	5.61084938	1.38915062
108	5	4.71104908	0.28895092
109	8	6.235096455	1.764903545
110	2	4.123970032	-2.123970032
[11]	3	4,279120445	-1.279120445
112	1 4	4.592983723	-0.592983723
113	6.5	4.501383781	1.998616219
114	6	5.335474491	0.664525509
115	2	4.003258705	-2.003258705
116	7	5.12481451	1.87518549
117	5	5.010531425	-0.010531425
118	5.5	3.566370964	1.933629036
119	6	5.34910965	0.65089035
120	4	4.550821781	-0.550821781
121	6	4.54554987	1.45445013
122	1 4	5.270048141	-1.270048141
123	5.5	5,265852451	0.234147549
124	6	5.17446804	0.82553196
125	6	5.286985397	0.713014603
126	45	5.797283173	-1.297283173
127 128 129	3 6	5.165014744 4.673555374 5.288293839	-0.165014744 -1.673555374 0.711706161

42	7.5	6.033353329	1,466646671
43_	77	6.316821098	0.683178902
44	4	3.947610378	0.052389622
45	5.5	5.132087231	0.367912769
46	6	5.667525291	0.332474709
47	6	5.159789085	0.840210915
48	5	5.238694191	-0.238694191
49	8	5.579809666	2,420190334
50	6	5.367114067	0.632885933
51	5.5	5.376525879	0.123474121
52	4	4.242489815	-0.242489815
53	5	5.036843777	-0.036843777
54	3	5.19907093	-2.19907093
55	5	4,937942982	0.062057018
56	4	5.541027069	-1.541027069
57	6	5.275250435	0.724749565
58	3	4.894987106	-1.894987106
59	2	3.573892355	-1.573892355
60	4.5	6.002081871	-1.502081871
61	4.5	3.8838346	0.6161654
62	7.5	5.608128548	1.891871452
63	4	5.344861984	-1.344861984
64	7	6.330274582	0.669725418
65	3	5.485108852	-2.485108852
66	5 .	5.834802151	-0.834802151
67	7	3.958670855	3.041329145
68	7	5.19907093	1.80092907
69	4	4.628357887	-0.628357887
70	6.5	6.159629345	0.340370655
71	5	5.270048141	-0.270048141
72	4	4.660646439	-0.660646439
73	5.5	5.657186985	-0.157186985
74	7.5	6.505153656	0.994846344
75	8	5.960450649	2.039549351
76	9	5.601754665	3.398245335
77	6	5.797283173	0,202716827
78	6	5.629757404	0,370242596
79	3.5	5.590459347	-2.090459347
80	5	5.12481451	-0.12481451
81	6	4.971049786	1.028950214
82	5	5.393010616	-0.393010616
83	5	5.519546986	-0.519546986
84	6	5.454812527	0,545187473
85	_4_	4.901219368	-0.901219368

Page 2 of 5

130	5.5		
		5.229874611	0.270125389
131	5	4.957989216	0.042010784
_132	55	5.412762165	0.087237835
133	6	5.412762165	0.587237835
134	6	5.197731972	0.802268028
135	6.5	4.977298737	1.522701263
136	6.5	5.084216118	1.415783882
137	. 5	5.043239594	-0.043239594
138	5	5.12481451	-0.12481451
139	5	5.360019684	-0.360019684
140	5	5.159024715	-0.159024715
141	4.5	5.008349419	-0.508349419
142	5	5.287762642	-0.287762642
143	4	5.539069653	-1.539069653
144	6.5	5.627399921	0.872600079
145	5	5.539069653	-0.539069653
146	4	5.7469244	-1.7469244
147	6	4.974234581	1.025765419
148	7	5.499908924	1.500091076
149	5	4.292965412	0.707034588
150	6	5.519546986	0.480453014
151	4	4.635509014	-0.635509014
152	9	5.61342001	3.38657999
153	5	5.536753178	-0.536753178
154	6	4.888302803	1.111697197
155	7	5.086413383	1.913586617
156	5	5.19280529	-0.19280529
157	3.5	4.44055891	-0.94055891
158	5	4.30011034	0.69988966
159	3	4.670152664	-1.670152664
160	5.5	4.862678051	0.637321949
161	4	4.779956341	-0.779956341
162	4	5.662641525	-1.662641525
163	5	5.591492653	-0.591492653
164	5.5	5.558475494	-0.058475494
165	6	5.395956039	0.604043961
166	_6	5.415688038	0.584311962
167	5	5.005391598	-0.005391598
168	5	5.418471813	-0.418471813
169	6	5.432729721	0.567270279
170	5	5.289976597	-0.289976597
171	5.5	5.679186344	-0.179186344
172	5	5.065458775	-0.065458775
173	4.5	5.524905682	·1.024905632

- 559 -

Neural network output of Ca-SCPS-	AR-1
-----------------------------------	------

Case	Actual (A)	Network output (N)	Difference (A-N)	
	4	4.20275116	-0.20275116	
2	3	3.771971941	-0.771971941	
3	7	4.318815708	2.681184292	
4	4	4.515898228	-0.515898228	
5	5	4.295009613	0.704990387	
6	9	5.860796452	3.139203548	
7	5	5.478452682	-0.478452682	
. 8	6.5	4.522909641	1.977090359	
9	8	5.860816956	2.139183044	
10	5.5 -	4.909369946	0.590630054	
11	_5	4.823698044	0.176301956	
12	4	4.374090672	-0.374090672	
13	4	3.898709774	0.101290226	
14	8	4.291454792	3.708545208	
15	6	3.732161999	2.267838001	
16	5	4.986691475	0.013308525	
17	4	5.628269672	-1.628269672	
18	3.5	3.899403811	-0.399403811	
19	3	3.867673874	-0.867673874	
20	5	3.970874548	1.029125452	
21	5	6.347896099	-1.347896099	
22	3	4.283184052	-1.283184052	
23	3	5.702528	-2.702528	
24	3.5	4.381186008	-0.881186008	
25	4.5	5.568983078	-1.068983078	
26	2.5	4.102318287	-1.602318287	
27	6	4.490510941	1,509489059	
28	6	5.574934006	0.425065994	
29	6	5.887657166	0.112342834	
30	. 8	4.918720722	3.081279278	
31	4.5	4.555276871	-0.055276871	
32	9	5.028688431	3.971311569	
33	7	5.698071957	1.301928043	
34	5	6.242365837	-1.242365837	
35	6.5	6.089894772	0.410105228	
36	5.5	4.427102566	1.072897434	
37	8	5.904933453	2.095066547	
38	9	5,269206047	3.730793953	
39	5.5	5,67919445	-0.17919445	
40	_3 _	5.597737312	2.597737312	
41	5	6.134404659	-1.134404659	

Page 1 of 5

Page	5	of	5
------	---	----	---

5.57209444 5.19148922 5.555684566

5.068582535

5.19907093

4.646400452

5.008349419

4.354955673

4.559099674

4.786443233 3.454446554 5.517700672 5.105918884 5.339160442

5.896537304 3.608486176

5.858889103

4.951515675 5.217774868

3.608486176

3.608486176

6.252599239

4.725224495

4.815098763

-0.57209444

-0.19148922 -0.555684566 -0.068582535 -2.19907093 -0.646400452

2.991650581 0.645044327

0.440900326 0.713556767

-1.454446554 -0.517700672 0.394081116

-0.339160442

0.103462696

1.391513824

1.141110897 -0.951515675 2.782225132 -0.608486176 -1.608486176

0.747400761

-0.225224495

-0.315098763

174 175

176 177

178

179

180

181

182

183

184

185 186 187

188

189

190

191

192

193 194

195

196

197

<u>5</u> 5.5

2 - 5 5.5

4

8

7

4.5

42	7.5	6.062660694	1.437339306
43	7	6.018100262	0.981899738
44	4	4.417437553	-0.417437553
45	5.5	4.681268215	0.818731785
46	6	5.617005825	0.382994175
47	6	5.224337101	0.775662899
48	5	5.282970428	-0.282970428
49	8	4.702073574	3.297926426
50	6	5.099096775	0.900903225
51	5.5	5.214406013	0.285593987
52	4	3.903279543	0.096720457
53	5	5.45442152	-0.45442152
54	3	5.267653465	-2.267653465
55	5	5.263054848	-0.263054848
56	4	5.53190136	-1.53190136
57	6	5.631113529	0.368886471
58	_3	5.098278522	-2.098278522
59	2	3.721976042	1.721976042
60	4.5	5.862470627	-1.362470627
61	4.5	3.630708456	0.869291544
62	7.5	5.71606636	1.78393364
63	4	5.509507179	-1.509507179
64	7	6.159638882	0.840361118
65	3	5.205156326	-2.205156326
66	5	6.027702808	1.027702808
67	7	4.667624474	2.332375526
68	7	5.359237194	1.640762806
69	4	4.885313988	-0.885313988
70	6.5	6.218971252	0.281028748
71	5	5,246912956	-0.246912956
72	4	4.727776527	-0.727776527
73	5.5	5.553879261	-0.053879261
74	7.5	6.505639076	0.994360924
75	(g	5.707734585	2.292265415
76	9	5.812737942	3.187262058
77	6	5.908856869	0.091143131
78	6	5.422319889	0.577680111
79	3.5	5.820822239	-2.320822239
80	5	5.251600266	-0.251600266
18	6	5.093053341	0.906946659
82	5	5.446406364	-0.446406364
			
83	5 -	5.672900677	-0.672900677
84	6	5.513690948	0.486309052
85	44	5.284871578	1.284871578

86	6	5.592472553	0.407527447
87	5_	5.492331505	-0.492331505
88	4	5.518326759	-1.518326759
89	4	5.5453372	-1.5453372
90	5	5.567053318	-0.567053318
91	5	5.355968952	0.355968952
92	6	5.504001617	0.495998383
_93	5.5	5.187736988	0.312263012
94	5.5	5.721952438	-0.221952438
95	4	5.011542797	-1.011542797
96	4.5	5.59565115	-1.09565115
97		4.480909348	-2.480909348
98	5	4.685492516	0.314507484
99	7	5.710062981	1.289937019
001	5.5	6.247828007	-0.747828007
101	2	4.463564873	-2.463564873
102	5	4.96461153	0.03538847
103	2.5	4.526166439	-2.026166439
104	5.5	5.109885216	0.390114784
105	2	4.404471874	-2.404471874
106	6	4.449957371	1.550042629
107	7	5.589778423	1.410221577
108	5	4.502625465	0.497374535
109	8	6.16585207	1.83414793
110	2	4.66263485	-2.66263485
111	3	4.029026985	1.029026985
112	4	4.549226284	-0.549226284
113	6.5	4.336977005	2.163022995
114	6	5.531951427	0.468048573
115	2	4.43370533	-2.43370533
116	7	5.315876484	1.684123516
117	5	4.800816059	0.199183941
118	5.5	3.942367077	1.557632923
119	6	5.486519337	0.513480663
120	4	5.192860126	-1.192860126
121	6	4.503551483	1.496448517
122	4	5.251390934	-1.251390934
123	5.5	5.221452236	0.278547764
124	6	5,573564529	0.426435471
125	6	5.732514381	0.267485619
126	4,5	5.550102921	1.080102921
127	5	5.369926929	-0.369926929
		5.171588421	-2.171588421
128	3		0.463357449
129	6	5.536642551	1 0.403237449

- 560 -

130	5.5	5.394994736	0.105005264
131	5	5.318733692	-0.318733692
132	5.5_	5.545006275	-0.045006275
133	6	5,611245155	0.388754845
134	6	5.43524456	0.56475544
135	6.5	5.338322163	1.161677837
136	6.5	5,495386124	1.004613876
137	5	5,539385796	-0.539385796
138	5	5,352468491	-0.352468491
139	5	5.465771198	-0.465771198
140	5	5,424429417	-0.424429417
141	4.5	5,258389473	-0.758389473
142	5	5.666109085	-0.666109085
143	4	5,435089588	-1.435089588
144	6.5	5.672158718	0.827841282
145	5	5.513376236	-0.513376236
146	4	5,569345951	-1.569345951
147	6	5,488323689	0.511676311
148	7	5.641883373	1.358116627
149	5	4,34969759	0.65030241
150	6	5.753661633	0.246338367
15!	4	4.951035023	-0.951035023
152	9	5.535870552	3.464129448
153	5	5.194498062	-0.194498062
154	6	5.172713757	0.827286243
155	7	4.869754314	2.130245686
156	5	5.107230186	-0.107230186
157	3.5	4.725539207	-1.225539207
158	5	4.329235554	0.670764446
159	3	4.784959316	-1.784959316
160	5.5	5,33180809	0.16819191
161	4	5.229773998	-1.229773998
162	4	5.717526913	-1.717526913
163	5	5.581368446	-0.581368446
164	5.5	5.403674126	0.096325874
165	6	5.687711239	0.312288761
166	6	5.460346222	0.539653778
167	5	5.587179661	-0.587179661
168	5	5.593662262	-0.593662262
169	6	5.484466076	0.515533924
170	5	5.434510708	-0.434510708
171	5.5	5.785997868	-0.285997868
172	5	5.610911846	-0.610911846
173	4.5	5.636238575	-1.136238575

Page	4	of	5

Neural network output of Ca-SCP5-SC-final	Į
---	---

Case	Actual (A)	Network output (N)	Difference (A-N)
11	6	4.830671787	1.169328213
2	5	5.204325676	-0.204325676
3	5	5.170952797	-0.170952797
4_	6	4.789486885	1,210513115
5	4	4.639390945	-0.639390945
6	6	4.994745255	1.005254745
7	55	4.774907112	0.225092888
88	4_	5.120163918	-1.120163918
9	4	4.632253647	-0.632253647
10	5_	5.178367615	-0.178367615
	5	5.090886116	-0.1988090.0-
12	6	5.057298183	0.942701817
13	5.5	4.579993725	0.920006275
14	5.5	5.265907764	0.234092236
15	4	4.127882957	-0.127882957
16	4.5	4.834655762	-0.334655762
17	2	3.153914213	-1.153914213
18	5	4.469265461	0.530734539
19	7	5.133287907	1.866712093
20	5.5	5.818184376	<u>-0.318184376</u>
21	2	3.543162107	-1.543162107
22	. 5	4.788464069	0.211535931
23	2.5	3.995404005	-1.495404005
24	5.5	4.599127769	0.900872231
25_	2	3.929410219	-1.929410219
26	6	3.764067173	2.235932827
27	7	5.130213737	1.869786263
28	5	4.141891956	0.858108044
29	8	5.939265251	2.060734749
30	2	4.031160355	-2.031160355
31	3	3.45672965	-0.45672965
32	4	4.029296875	-0.029296875
33	6.5_	4.251531124	2.248468876
34	6	5,346338272	0.653661728
35	2	3.524446249	-1.524446249
36	7	4.614202976	2.385797024
37	5_	4.208367348	0.791632652
38	5.5	3.42482996	2.07517004
39	6	5.05877924	0.94122076
40	4	4.B34354401	-0.834354401
41	6	3.860463858	2.139536142

0.721231937 0.399703026 0.619132996 0.538900852 -2.318590164 0.869519234 2.762599934 5.721231937 5.399703026 5.619132996 5.538900852 174 175 176 177 178 5.318590164 179 4.869519234 180 5.237400055 4.8188591 5.128045082 5.380552769 3.466628551 5.477133274 181 182 0.1811409 -0.128045082 183 184 5.5 0.119447231 -1.466628551 -0.477133274 0.217677116 -0.541558266 185 186 5.282322884 5.541558266 5.914647579 5.5 187 188 0.085352421 189 4.023962498 0.976037502 0.918586731 -1.048773766 2.517490387 -0.825558662 190 6.081413269 191 4 5.048773766 5.482509613 3.825558662 192 8 193 194 3.960865021 -1.960865021 195 6.172883987 0.827116013 196 197 4.5 4.5 -0.494153976 -0.138517857 4.994153976

4.638517857

Page 5 of 5

42	4	4.626333237	-0.626333237
43	5.5	5.260906696	0.239093304
44	6	5.156341553	0.843658447
45	6	5.328447819	0.671552181
46	4.5	5.191526413	-0.691526413
47	5	4,735136986	0.264863014
48	3	4.369701385	-1.369701385
49	6	5.310091019	0.689908981
50	5.5	4.960371017	0.539628983
51	5	4.677278519	0.322721481
52	5.5	5.265501022	0.234498978
53	6	5.035096169	0.964903831
54	6	4.861567974	1.138432026
55	6.5	4.757884502	1.742115498
56	6.5	4.914402485	1.585597515
57	5	5.350670815	-0.350670815
58	5	4.853448391	0.146551609
59	5	5.086141586	-0.086141586
60	5	5.084961891	-0.084961891
61	4.5	4.933254719	-0.433254719
62	5	5.136788368	-0.136788368
63	4	5.071614265	-1.071614265
64	_ 6.5	5.177202702	1.322797298
65	_ 5 _	4.887761593	0.112238407
66_	4	4.916265011	-0.916265011
67	6	4.912862301	1.087137699
68	7	5.358906746	1.641093254
69	5	4,042044163	0.957955837
70	6	5.422580173	0.577119827
71	4	3.962992907	0.037007093
72_	9	5.424385071	3.575614929
73	5	4.580217838	0.419782162
74_	_ 6_	5.166479588	0.833520412
75	7_7_	4.316666603	2.683333397
76	5_	4.817358971	0.182641029
77_	3.5	4.216746807	-0.716746807
78	5	3.619688511	1.380311489
79	3	3.830789804	-0.830789804
80	_ 5.5_	4.260121346	1.239878654
81	4	4.320625782	-0.320625782
82	4	4.884094238	-0.884094238
83	5	5.159692287	-0.159692287
84	5.5	4.985146999	0.514853001
85	6	5.225036689	0.774913311

- 561 -

80	L 0_	<u> 4.582712173</u>	1.417287827
87	5	5.273078918	-0.273078918
88	5	4.758877754	0.241122246
89	6	4.916745663	1.083254337
90	5	4.838650227	0.161349773
91	5.5	5.603643894	-0.103643894
92	5	5.209044933	-0.209044933
93	4.5	4.838650227	-0.338650227
94	. 5	5.282571793	-0.282571793
95	5	4.931313038	0.068686962
96	5	5.035096169	-0.035096169
97	5	4.867814541	0.132185459
98	3	5.039013386	-2.039013386
99	4	4.386434078	-0.386434078
100	8	4.437408924	3.562591076
101	5	4.291226387	0.708773613
102	5	4.302408218	0.697591782
103	Ş.5	4.677278519	0.822721481
104	2	2.673924446	-0.673924446
105	5	5.340228081	-0.340228081
106	5.5	4.598598957	0.901401043
107	5	4.97950983	0.02049017
108	6	5.422880173	0.577119827
109	5	3.522551537	1.477448463
110	_ 7	5_553678989	1.4463210!1
111	4	4.610293865	-0.610293865
112	8	4.804583073	3.195416927
113	3	3.184915304	-0.184915304
114	2	3.184915304	-1.184915304
115	7	5.580893517	1.419106483
116	4.5	4.486483574	0.013516426
117	4.5	4.530310154	-0.030310154

Page 3 of 3

42	4	4.42987442	-0.42987442
43	5.5	4.804178238	0.695821762
44	6	4.785024643	1.214975357
45	6	4.945388317	1.054611683
46	4.5	5.006318092	-0.506318092
47	5	4.837792873	0.162207127
48	3	4.714132786	-1.714132786
49	6	4.907553196	1.092446804
50	5.5	4.785221577	0.714778423
51	5	4.688712597	0.311287403
52	5.5	5.061363697	0.438636303
53	6	4.84153223	1.15846777
54	6	4.726952553	1.273047447
. 55	6.5	4.679430008	1.820569992
56	6.5	4.758674145	1.741325855
57	5	5.049943447	-0.049943447
58	5	4.610812664	0.389187336
_59	5	4.814057827	0.185942173
60	5	4.769730091	0.230269909
61	4.5	4.64109087	-0.14109087
62	5	4.991508007	0.008491993
63	. 4	4.986457825	0.986457825
64	6.5	5.080597401	1.419402599
65	5	4.771728039	0.228271961
66	4	4.724309444	-0.724309444
67	6	4.771337509	1.228662491
68	7	5.05679512	1.94320488
69	5	3.749704123	1.250295877
70	6	5.16687727	0.83312273
71	4	3.838949203	0.161050797
72	9	5.060267925	3.939732075
73	5	4.78657198	0.21342802
74	6	4.810394764	1.189605236
75	7	4.185681343	2.814318657
76	5	4.382114887	0.617885113
77	3.5	3.905329466	-0.405329466
78	5	3.367400169	1.632599831
79	3	4.155571938	-1.155571938
80	5.5	4.359050751	1,140949249
81	4	4.14956665	-0.14956665
82	4	4.940515995	-0.940515995
83	5	5.019604683	-0.019604683
84	5.5	4.824786186	0.675213814
85	6	5.0S0610752	
		1 3.050010132	0.919359248

Neural network output of Ca-SCP5-SC-1

	1 4 2 2 40		r
Case	Actual (A)	Network output (N)	Difference (A-N)
1	6	4.599568844	1.400431156
2	5	4.914608479	0.085391521
3	5	4.962560654	0.037439346
4	6	4.79030323	1,20969677
5	4	4.711667538	-0.711667538
66	6	4.957193375	1.042806625
7	5	4.600352287	0.399647713
88	44	4.756361485	-0.756361485
9	4	5.030779839	-1.030779839
10	5	5.088148594	-0.088148594
11	5	4.587900639	0.412099361
12	6	4.986793041	1.013206959
13	5.5	4.44597E165	1.054021835
14	5.5	5.13167572	0.36832428
15	4	4.182919979	-0.182919979
16	4.5	4.719093323	-0.219093323
17	2	3.109833241	-1.109833241
18	5	3.969475031	1.030524969
19	7	5.157205105	1.842794895
20	5.5	5.635300636	-0.135300636
21	2	3.099486351	-1.099486351
22	5	4.304578781	0.695421219
23	2.5	3.809803009	-1,309803009
24	5.5	4.216625214	1.283374786
25	2	3.367747307	-1.367747307
26	6	3.075922728	2,924077272
27	7	5.001966476	1.998033524
28	5	4.021764278	0.978235722
29	8	5.785505295	2.214494705
30	2	3,90878582	-1.90878582
31	3	3.271890402	-0.271890402
32	4	3.895803213	0.104196787
33	6.5	3.688583136	2.811416864
34	6	5.073826313	0.926173687
35	2	3.235605478	-1.235605478
36	7	4.528705597	2.471294403
37	5	4.216789246	0.783210754
38	5.5	3.070665836	2.429334164
39	6	4.89879179	1.10120821
40	4	4.722627163	-0.722627163
41	6	3.610707521	2.389292479
41		J.610/0/5ZI	2.389292419

Page 1 of 3

86	6	4.657505512	1.342494488
87	5	4.785607815	0.214392185
88	5	4.833030224	0.166969776
89	6	5.014428139	0.985571861
90	5	4.667894363	0.332105637
91	5.5	5.188812733	0.311187267
92	5	4.902489662	0.097510338
93	4.5	4.679214954	-0.179214954
94	5	5.071951866	-0.071951866
95	5	4.670684338	0.329315662
96	5	4.926774979	0.073225021
97	5	4.743722439	0.256277561
98	3	4.299394131	-1.299394131
	4	4.084578037	-0.084578037
100	8	4.294781208	3.705218792
101	5	3.870475292	1.129524708
102	5	4.046643734	0.953356266
103	5.5	4.61339426	0.88660574
104	2	2.505736113	-0.505736113
105	5	4.669846058	0.330153942
106	5.5	4.361291885	1.138708115
107	5	4.910848141	0.089151859
108	6	5.468690872	0.531309128
109	5	3.120172739	1.879827261
110	7	5.557892799	1,442107201
111	4	4.370162487	-0.370162487
112	8 _	4.871265888	3.128734112
113	3	2.818281174	0.181718826
114	2	3.063263655	-1.063263655
115	7	5.535227299	1.464772701
116	4.5	4.336047173	0.163952827
117	4.5	4.004358768	0.495641232

Neural network output of Ca-SCP5-MC-final

Case	Actual (A)	Network output (N)	Difference (A-N)
1	4	4.468611717	-0.468611717
2	3	3.618456364	-0.618456364
3	7	6.218318939	0.781681061
4	4	5.943423271	-1.943423271
5	5	5,620333195	-0.620333195
6	9	9,253884315	-0.253884315
7	5	5.740502357	-0.740502357
8	6.5	5.325647354	1.174352646
<u>-</u> -	8	6.591571808	1.408428192
10	5.5	5,769502163	-0.269502163
11	5	5.894089222	-0.894089222
12	4	6.075323105	-2.075323105
13	4	4.557923794	-0.557923794
14	8	6.35986805	1.64013195
15	6	6.664480209	-0.664480209
16	5	7.139769077	-2.139769077
17	4	5.743396759	-1.743396759
18	3.5	4.933390617	-1.433390617
19	3	5.413017273	-2.413017273
20	5	4.369540215	0.630459785
21	5	6.373180866	-1.373180866
22	3	4.818964958	-1.818964958
23	3	6.004365444	-3.004365444
24	3.5	5.175266266	-1.675266266
25	4.5	6.903563023	-2.403563023
26	2.5	3,969522715	-1.469522715
27	6	6.35986805	-0.35986805
28	6	6.321005821	-0.321005821
29	6	6.299683094	-0.299683094
30	8	6.018040657	1.981959343
31	4.5	5.847546101	-1.347546101
32	9	6,525853157	2.474146843
33	7	6,032907486	0.967092514
34	5	6.6812253	-1.6812253
35	6.5	6.849781036	-0.349781036
36	5.5	6.648697376	-1.148697376
37	8_	6.753036976	1.246963024
38	9	8,748638153	0.251361847
39	5.5	6.105668545	-0.605668545
40	3_	6.208331585	-3.208331585
41	5	5.970596313	-0.970596313

Page 1 of 2

Neural network output of Ca-SCP5-MC-1

Case	Actual (A)	Network output (N)	Difference (A-N)
i	4	4.660066128	-0.660066128
2	3	4.189005375	-1.189005375
3	. 7	5.528775215	1.471224785
4	4	5.486486435	-1.486486435
5	5	5.577905178	-0.577905178
6	9	8.121845245	0.878154755
7	5	6.545320034	-1.545320034
8	6.5	5.404934883	1.095065117
. 9	8	6.906840801	1.093159199
10	5.5	5.784650803	-0.284650803
	5	5.531784534	-0.531784534
12	4	6.157649994	-2.157649994
13	4	4.957103252	-0.957103252
14	8	5.915514946	2.084485054
15	6	6.08489275	-0.08489275
16	5	6.759308815	-1.759308815
17	4	6.547121525	-2.547121525
18	3.5	5.295053482	-1.795053482
19	3	5.634002686	-2.634002686
20	5	4.462880611	0.537119389
21	5	7,42684269	-2.42684269
22	3	5.27770853	-2.27770853
23	3	5.732208729	-2.732208729
24	3.5	5.539869785	-2.039869785
25	4.5	7.044517517	-2.544517517
26	2.5	4.745695591	-2.245695591
27	6	6.243102551	-0.243102551
28	6	5.934206963	0.065793037
29	6	6.673302174	-0.673302174
30	8	6.236120224	1.763879776
31	4.5	5.731194019	-1.231194019
32	9	6.272672653	2.727327347
33	7	6.410549164	0.589450836
34	5	7.197339535	-2.197339535
35	6.5	7.06265831	-0.56265831
36	5.5	6.314448833	-0.814448833
37	8	7.009604931	0.990395069
38	9	7.461497784	1.538502216
39	5.5	6.452082634	-0.952082634
		6.354830742	
40	3 5		-3.354830742
41	<u>1 - </u>	7.724775314	<u>-2.724775314</u>

42	7.5	6.72787 1895	0.772128105
43	7	7.006338596	-0.006338596
44	4	3.882545948	0.117454052
45	5.5	6.933311939	-1.433311939
46	6	6.875732422	-0.875732422
47	6	6.042445183	-0.042445183
48	5	6.630047798	-1.630047798
49	. 8	7.002258778	0.997741222
50	6	6.258455276	-0.258455276
51	5.5	5.391798019	0.108201981
52	4	4.354969978	-0.354969978
53	5	6.600273132	-1.600273132
54	3	6.52060461	-3.52060461
55	5	6.264762402	-1.264762402

Page 2 of 2

42	7.5	6.952165604	0.547834396
43	7	7.296!28273	-0.296128273
44	4	4.400048256	-0.400048256
45	5.5	6.893091202	-1.393091202
46	6	6.856526852	-0.856526852
47	6	5.950594492	0.049005508
48	5	5.640315533	-0.640315533
49	. 8 _	6.725421429	1.274578571
50	6	6.556621552	-0.556621552
51	5.5	5.949450983	-0.449460983
52	4	4.715411704	-0.715441704
53	5	5.348000526	-0.348000526
54	3 _	6.3995 2768	-3.399512768
55	5	5.894001961	-0.894001961

INCREASE DESIRED OF CA-SCPS-CC-final

Case	Actual (A)	Network output (N)	Difference (A-N)
1	4	3.658196688	0,341803312
<u></u>	6	6.153332233	-0.153332233
	3	6.163723469	-3.163723469
4	2	3.608688831	-1.608688831
5	4,5	5,594216824	-1.094216824
6	4.5	4.554410458	-0.054410458
7	7.5	7,790585518	-0.290585518
8	4	4.422040939	-0.422040939
· 9·	7	6.767796516	0.232203484
10	3	4.039776802	-1.039776802
11	5	5.646402836	-0.646402836
12	7	6.3435812	0.6564188
13	7	6.922998905	0.077001095
14_	_ 4	4.69761467	-0.69761467
15	6.5	7.146074295	-0.646074295
16	5	4.859660625	0.140339375
17	4	3.404330015	0.595669985
18	5.5	5.134931087	0.365068913
19	7.5	7.612319946	-0.112319946
20	_ 8	7.729074955	0.270925045
21	9	8.707238197	0.292761803
22	6	5.963841438	0.036158562
23	_ 6	6.481381416	-0,481381416
24	3.5	4.648459911	-1.148459911
25	5	4.18939352	0.81060648

Case	Actual (A)	Network output (N)	_Difference (A-N
_ i	4	4.582691669	-0.582691669
2	6	5.567082405	0.432917595
3	3	5.192287922	-2.192287922
4	2	3.536665201	-1.536665201
5	4.5	6.212464333	-1.712464333
6	4.5	3.564433813	0.935566187
7	7.5	6.580803394	0.919196606
8	4	4.799911022	-0.799911022
9	7	6.495284557	0.504715443
10	3	4.780209064	-1.780209064
11	5	5.890748501	-0.890748501
12	7	5.367067814	1.632932186
13	7	5.560394287	1.439605713
14	4	4.497733593	-0.497733593
15	6.5	6.843229294	-0.343229294
16	5	5.102008343	-0.102008343
17	4	4.087873936	-0.087873936
81	5.5	6.167410851	-0.667410851
19	7.5	7.291079998	0.208920002
20	8	5.985927105	2.014072895
21	9	7.43984127	1.56015873
22	6	6.087954998	-0.087954998
23	6	5.736886978	0.263113022
24	3.5	5.370550156	-1.870550156
25	5	5.267891884	-0.267891884

Page 1 of 1

Page 1 of 1

Neural network outputs of the SCP6 analysis

A DOMESTIC OF THE PROPERTY OF THE PARTY OF T			
Case	Actual (A)	Network output (N)	Difference (A-N)
1	4.5	4.306078911	0.193921089
2	4.5	4.198280334	0.301719666
3	4	4.969820023	-0.969820023
4	_6	4.668626785	1.331373215
5	5.5	4.451771736	1.048228264
. 6	7.5	5.998907566	1.501092434
7	8	6.442265034	1.557734966
8	4	4.875757694	-0.875757694
	6	6.543076515	-0.543076515
10	5	6.16977644	-1.16977644
11	6	4.960294724	1.039705276
12	6	4.875757694	1.124242306
13	4	4,53656292	-0.53656292
14	4	4.367092133	-0.367092133
15	8	4.367092133	3.632907867
16	1 4	5.105134487	-1.105134487
17	4.5	6.153850555	-1.553850651
18	4	4.706262589	-0.706262589
19	2.5	4.583754539	-2.083754539
20	3	4.367092133	-1.367092133
21	6.5	6.470224857	0.029775143
22	4	4.245154858	-0.245154858
23	4	5.016462326	-1.016462326
24	3	5.351706505	-2.351706505
25	3	5.351706505	-2.351706505
26	3	5.016462326	-2.016462326
27	7	4,367092133	2.632907867
28	4	5.769201756	-1.769201756
29	5	6.259870052	·1.259870052
30	9	5.351706505	3.648293495
31	6	5.212431908	0.787568092
32	3	5,230806351	-2,230806351
33	5.5	5.840910912	-0.340910912
34	7	6.755832195	0.244167805
35	5	6.429937363	-1.429937363
36	4	4.922908783	-0.922908783
37	6.5	6.16977644	0.33022356
38	4	5.553393364	-1.553393364
39	7	6.127890587	0.872109413
40	4.5	5.928761005	-1.428761005
41	6	6.614975929	0.614975929

Page 1 of 5

		, . <u> </u>	
86	5.5	5.964133739	-0.464133739
87	5.5	5.885086536	-0.385086536
88	5.5	5,607075691	-0.107075691
89	5.5	5.942266941	-0.442266941
90	6	6.085437775	-0.085437775
91	5.5	6.106733322	-0.606733322
92	6	6.085437775	-0.085437775
93	5	5.805333614	-0.805333614
94	5.5	5.805333614	-0.305333614
95	3.5	5.305622101	-1.805622101
96	8.5	5.411677361	3.088322639
97	4	4.53656292	-0.53656292
98	4.5	5.016462326	-0.516462326
99	7.5	5.724915028	1.775084972
100	4.5	6.429937363	-1.929937363
101	5.5	5.351706505	0.148293495
102	6	5.480074406	0.519925594
103	4	4.969820023	-0.969820023
104	5.5	5.769201756	-0.269201756
105	4.5	4.84729147	-0.34729147
106	4.5	4.198280334	0.301719666
107	7.5	5.964133739	1.535866261
108	1.5	4.367092133	-2.867092133
109	7.5	6.523223877	0.976776123
110	3.5	4.922908783	-1.422908783
111	3.5	4.583754539	-1.083754539
112	3.5	5.305622101	-1.805622101
113	6.5	5.971914768	0.528085232
114	8.5	6.07148695	2.42851305
115	5.5	4.198280334	1.301719666
116	5.5	5.516971588	-0.016971588
117	5.5	5.621413708	-0.121413708
118	5.5	4.414169312	1.085830688
119	4.5	5.305622101	-0.805622101
120	3.5	5.516971588	-2.016971588
121	4.5	5.230806351	-0.730806351
122	3.5	5.724915028	2.224915028
123	45	5,442723274	-0.942723274
124	35	5.849322319	-2.349322319
125	45	5.747118473	-1.247115473
126	45	6.236948822	1.738948822
127	3.5	5.305622101	-1.805622101
128	3.5	5.425218105	-1.925218105
	45	5.480074406	
129	1 43	<u></u>	-0.980074406

42	0	6.085437775	0.085437775
43	8	6.280646324	1.719353676
44	3	4.53656292	-1.53656292
45	4.5	4.706262589	0.206262589
46	5	5.516971588	-0.516971588
47	6	5.016462326	0.983537674
48	6	5.138332844	0.861667156
49	9	5.796254158	3.203745842
50	7	5.471288681	1.528711319
. 51	6	5.607075691	0.392924309
52	6	3.983979225	2.016020775
53	7	5.259188652	1.740811348
54	3	5.351706505	-2.351706505
55	4	4.969820023	-0.969820023
56	4	5.998907566	-1.998907566
57	7	5.751139164	1.248860836
58	4	5.724915028	-1.724915028
59	2	4.151370525	-2.151370525
60	5	6.042438507	-1.042438507
61	4.5	4.583754539	-0.083754539
62	5	6.085437775	-1.085437775
63	3	5.840910912	-2.840910912
64	. B	6.429937363	1.570062637
65	5.5	5.769201756	-0.269201756
_ 66	5	6.042438507	-1.042438507
67	5	3.864328861	1.135671139
68	6	5.351706505	0.648293495
69	5	5.351706505	-0.351706505
70	7	6.280646324	0.719353676
<u>7</u> 1	4	5.724915028	-1.724915028
72	8	5.928761005	2.071238995
73	_ 6	6.280646324	-0.280646324
74	8	6.717294216	1.282705784
75	6	6.470224857	-0.470224857
76	9	5.425218105	3.574781895
77_	6	6.238948822	-0.238948822
78	5	5.724915028	-0.724915028
79	4	6.196678162	-2.196678162
80	6	5.516971588	0.483028412
81	5.5	5.562242031	-0.062242031
82	7	6.162605762	0.837394238
83	5.5	6.085437775	-0.585437775
84	6	5.598846436	0.401153564
85	7	5.471288681	1.528711319

Page 2 of 5

4.5		
	5.553393364	-1.053393364
4.5	5.928761005	-1.428761005
5.5	5.928761005	-0.428761005
5.5	5.621413708	-0.121413708
5.5	5.305622101	0.194377899
4.5	5.724915028	-1.224915028
5.5	5.928761005	-0.428761005
6	5.516971588	0.483028412
5.5	5.584714413	-0.084714413
7.5	5.562242031	1.937757969
5.5	5.885086536	-0.385086536
4,5	5.885086536	-1.385086536
5.5	5,985871315	-0.485871315
4.5	5.985871315	-1.485871315
5.5	5.985871315	-0.485871315
7.5	6.028951645	1.471048355
5.5	5.434576035	0.065423965
6	6.183717728	-0.183717728
5.5	4.739112377	0.760887623
7.5	6.085437775	1.414562225
3.5	4.53656292	-1.03656292
7.5		1.659089088
5.5		-0.751391411
5.5		-0.471914768
7.5		2.315261841
7.5		1.892924309
		-0.03656292
		1.02464056
		-1.638332844
		0.361667156
		-0.062242031
		-0.542438507
		0.071238995
		-0.885086536
		0.593012333
		0.194666386
		0.392924309
		0.319842815
_		-0.464133739
		-0.464133739 -0.121413702
		0.571238995
		0.437757969 -0.20259285
	5.5 4.5 5.5 6 6 5.5 7.5 5.5 4.5 5.5 7.5 5.5 6 6 5.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 5.5 7.5 7	5.5

- 566 -

174	6	6.162605762	-0.162605762
175	7	5.871128559	1.128871441
176	7	6,007478237	0.992521763
177	6.5	5.434576035	1.065423965
178	7.5	5.351706505	2.148293495
179	_ 7.5	5.100738049	2.399261951
180	5.5	5.885086536	0.385086536
181	8.5	5,516971588	2.983028412
182	6	4,706262589	1.293737411
183	7	5.305622101	1.694377899
184	3.5	3.983979225	-0.483979225
185	5.5	5.812998772	-0.312998772
186	5.5	5.351706505	0.148293495
187	6.5	6.085437775	0.414562225
188	6	6.38904047	-0.38904047
189	4	4.198280334	-0.198280334
190	8.5	6.575546741	1.924453259
191	4.5	5.397414684	-0.897414684
192	6.5	5.516971588	0.983028412
193	3	4.198280334	-1.198280334
194	2.5	4.198280334	-1.698280334
195	8.5	6.429937363	2.070062637
196	_ 7_	5.351706505	1.648293495
197	7.5	5.062808514	2.437191486

Page 5 of 5

42	6	6.22846508	0.22846508
43	8	6.423984051	1.576015949
44_	3	4.671747684	-1.671747684
45	4.5	4.7973032	-0.2973032
46	5	5.772046566	-0.772046566
47	6	5.541448116	0.458551884
48	6	5.574182987	0.425817013
49	9	5.675010204	3.324989796
50	7	5,479111195	1.520888805
51	6	5.746246815	0.253753185
52	6	4.208890915	1.791109085
53	7	5,576311588	1.423688412
54	3	5.176941872	-2.176941872
55	4	5.188232422	-1.188232422
56	4	5.484572411	-1.484572411
57	7	5.799681187	_1.200318813
58	4	5,582487106	<u>-1.582487106</u>
59	2	3.764299631	-1.764299631
60	5	6.294351578	-1.294351578
61	4.5	4.017769814	0.482230186
62	55	6.162023067	-1.162023067
63	3	5.459245205	-2.459245205
64	8	6.518671989	1.481328011
65	5.5	5.403317928	0.096682072
66	5	6.075192928	-1.075192928
67	5	4.472151279	0.527848721
68	6	5,637250423	0.362749577
69	5	5.288415909	-0.288415909
70	7	6.556863785	0.443136215
71	4_	5.597507477	-1.597507477
72	8	5.220757008	2.779242992
73	6	6.08438158	-0.08438158
74	8	6,978192806	1.021807194
75	6	6.109896183	-0.109896183
76	9 (5.914970398	3.085029602
77	6	6.138565063	-0.138565063
78	5	5.811590195	-0.811590195
79	4	5.859335423	-1.859335423
80	6	5.37686491	0.62313509
81	5,5	5.851472855	0.351472855
82	7	5.936253548	1.063746452
83	5.5	6.016055107	-0.516055107
84	6	5.712195873	0.287804127
85	7	5.549408913	1.450591087

Neural network output of Ca-SCP6-AR-1

Case	Actual (A)	Network output (N)	Difference (A-N)
1	4,5	4.300419331	0.199580669
2	4.5	3.823040724	0.676959276
3	4	4.408288956	-0.408288956
4	6	_4.685441017	1.314558983
5	5.5	4.79535532	0.70464468
6	7.5	5.848967075	1.651032925
7.	_ 8	5.870149612	2.129850388
. 8	. 4	_4.765090942	-0.765090942
9	. 6	6.044806957	-0.044806957
10	5	5.287006378	-0.287006378
11	6	4.766125679	1.233874321
12	6	4.645731449	1,354268551
13	4	4.083620548	-0.083620548
14	4	4.123384953	-0.123384953
15	8	4.013971806	3.986028194
16	4	5.933008194	-1.933008194
17	4.5	5.761193275	-1.161193371
18	4	4.152868748	-0.152868748
19	2.5	4.208220005	-1.708220005
20	3	4,130596161	-1.130596161
21	6.5	6,560083389	-0.060083389
22	4	4.480668068	-0.480668068
23	4	5.817979813	-1.817979813
24	3	4.606517315	-1.606517315
25	3	5,501578331	-2.501578331
26	3	4.555263042	-1.555263042
27	7	4.371844769	2.628155231
28	4	5.703711987	-1.7037 1987
29	5	6.09135294	-1.09135294
30	9	5.218193531	3.781806469
31	6	5.293649197	0.706350803
32	3	5.545851231	-2.545851231
33	5.5	5.785219193	-0.285219193
34	7	6.594368458	0.405631542
35	5	6.44716835	-1.44716835
36	4	4.592618942	-0.592618942
37	6.5	6.133038998	0.366961002
38	4	4.897147179	-0.897147179
39	77	5.788167477	1.211832523
40	4.5	5.656322002	-1.156322002
41	6	6.417779922	-0.417779922

Page 1 of 5

86	5.5	6.0066140	0.2000140
		5.8866148	-0.3866148
87	5.5	5,690579414	-0.190579414
88	5.5	5.739757061	-0.239757061
89	5.5	5.84778738	-0.34778738
90	6	5.937962055	0.062037945
91	5.5	5.826426983	-0.326426983
92	6	5.973653793	0.026346207
93	5	5.647062778	-0.647062778
94	5.5	5.827757359	-0.327757359
95	3.5	5.240186691	-1.740186691
96	8.5	5.544685364	2,955314636
97	4	4.530228138	-0.530228138
98	4.5	5.013713837	-0.513713837
99	7.5	5.943425655	1.556574345
100	4.5	6.624456406	-2.124456406
101	5.5	4.907027245	0.592972755
102	66	5.388950348	0.611049652
103	4	4.680505276	-0.680505276
104	5.5	5,606009007	-0.106009007
105	4.5	4.682349682	-0.182349682
106	4.5	4.684898853	-0.184898853
107	7.5	6.101053715	1.398946285
108	1.5	5.176421165	-3.676421165
109	7.5	6.575380802	0.924619198
110	3.5	4.706562996	-1.206562996
111	3.5	4,497899532	-0.997899532
112	3.5	5.013697147	-1.513697147
113	6.5	5,119896889	1.380103111
114	8.5	5.826770782	2.673229218
115	5.5	4.501543045	0.998456955
116	5.5	5.509137154	-0.009137154
117	5.5	5.727334023	-0.227334023
118	5.5	3.998616457	1.501383543
119	4.5	5.679905891	-1.179905891
120	3.5		
121	4.5	5.381821632	-1.881821632
	3.5	5.179152966	-0.679152966
122		5.672589302	-2.172589302
123	4.5	5.61154747	-1.11154747
124	3.5	5.895195484	-2.395195484
125	4.5	5.784856796	-1.284856796
126	4.5	6.216425896	-1.716425896
127	3.5	5.67037487	-2.17037487
128	3.5	5.131954193	-1.631954193
129	4.5_	5.781619072	-1.281619072

- 567 -

	<u> </u>	L COLIVIANIE	U.87U98217
131	4.5	5.79946661	-1.29946661
132	4.5	6.073426723	-1.573426723
133	5.5	5.999829292	-0.499829292
134	5.5	5.555531025	-0.055531025
135	5.5	5.55977869	-0.05977869
136	4.5	5.547075272	-1.047075272
137	5.5	6.068941116	-0.568941116
138	6	5.796792984	0.203207016
139	5.5	5.817842007	-0.317842007
140	7.5	5.768335342	1.731664658
141	5.5	5.720306873	-0.220306873
142	4.5	5.887402534	-1.387402534
143	5.5	6.293452263	-0.793452263
144	4.5	6.06170702	-1.56170702
145	5.5	5.876533508	-0.376533508
146	7.5	5.884211063	1.615788937
147	5.5	5.394461632	0.105538368
148	6	6.009545803	-0.009545803
149	5.5	4,728578568	0.771421432
150	7.5	6.401609421	1.098390579
151	3.5	5.324211597	-1.824211597
152	7.5	6.067016602	1.432983398
153	5.5	5.60488224	-0.10488224
154	5.5	5.538592815	-0.038592815
155	7.5	5.241387844	
155 156 157 158 159 160 161 162 163 164 165 166 167 168 168 169 170 171 172	7.5 4.5 5.5 3.5 5.5 5.5 5.5 6 6 6 6 6 5.5 5.5 6 6	3.241387844 5.509016514 5.095947742 4.336791992 4.766560778 5.287016392 5.521439552 5.963246346 6.0377841 5.99090195 5.60835886 5.918985844 5.760562897 5.878268719 5.652830601 6.176362514 5.850587368 5.9104627037	2.258612156 1.990983486 1.990983486 1.990983742 1.163208008 1.266560078 0.212983608 0.021439552 -0.463246346 -0.9377841 0.852649212 0.500909805 0.39164114 0.081014156 0.239437103 -0.378268719 -0.152830601 0.323637486 0.149412632 -0.204627037

Page 4 of 5

Neural network output of Ca-SCP6-SC-final

Actual (A)	Network output (N)	Difference (A-N)
5.5	4.88605547	0.61394453
7	5.706278801	1.293721199
5.5	5.648963451	-0.148963451
6	4.889467716	1.110532284
7	4.756204128	2.243795872
5.5	5.405426502	0.094573498
5.5	5.343963146	0.156036854
5.5	5.706278801	-0.206278801
5.5	5.055494308	0.444505692
6	5.470549583	0.529450417
5.5	5.850073338	-0.350073338
6	5.470549583	0.529450417
5	5.217967033	-0.217967033
5.5	5.217967033	0.282032967
3.5	4.756204128	-1.256204128
8.5	4.923774719	3.576225281
4	3.841747046	0.158252954
4.5	4.683058739	-0.183058739
7.5	5.281471252	2.218528748
4.5	6.092021942	-1.592021942
5.5	5.088047981	0.411952019
6	5.021594048	0.978405952
4	4.261275291	-0.261275291
5.5	5.590565205	-0.090565205
4.5	4.821490288	-0.321490288
4,5	3.767994165	0.732005835
7.5	5.343963146	2.156036854
1.5	3.176386595	-1.676386595
7.5	5.968149662	1.531850338
3.5	4.124851227	-0.624851227
3.5	3.681025267	-0.181025267
3.5	4.33390379	-0.83390379
6.5	5.410105228	1.089894772
		2.641192913
		1.732005835
		0.610532284
		0.51081419
 		1.670057058
		0.16609621
		-1.183058739
4.5	4.083038739	-0.247114658
	5.5 7 5.5 6 7 5.5 5.5 5.5 6 5.5 5.5 6 5 5.5 6 5 5.5 6 5 5.5 6 5 5.5 6 6 5 5.5 6 6 5 5.5 6 6 5 5.5 6 6 6 6 6 6 6 6 6 6 6 6 6	5.5 4.88605547 7 5.706278801 5.5 5.648963451 6 4.889467716 7 4.756204128 5.5 5.405426502 5.5 5.405426502 5.5 5.706278801 5.5 5.706278801 5.5 5.706278801 5.5 5.706278801 5.5 5.706278801 5.5 5.5055494308 6 5.470549583 5.5 5.850073338 6 5.470549583 5 5.217967033 3.5 4.756204128 8.5 4.923774719 4 3.841747046 4.5 4.683058739 7.5 5.281471252 4.5 6.092021942 5.5 5.088047981 6 5.021594048 4 4.261275291 5.5 5.088047981 6 5.021594048 4 4.261275291 5.5 5.590565205 4.5 4.821490288 4.5 3.767994165 7.5 5.343963146 1.5 3.176386595 7.5 5.968149662 3.5 4.124851227 3.5 3.681025267 3.5 4.83390379 6.5 5.410105228 8.5 5.815807087 5.5 4.889467716 5.5 4.889467716 5.5 4.88918381 5.5 3.829942942 4.5 4.33390379 6.5 4.683058739

174	6	5.726492882	0.273507118
175	7	5.725013733	1.274986267
176	7	6.14814806	0.85185194
177	6.5	5.681059361	0.818940639
178	7.5	5.893834591	1.606165409
179	7.5	4.901706696	2.598293304
180	5.5	5.437847614	0.062152386
181	8.5	5.180537224	3.319462776
182	6	5.360934734	0.639065266
183	7	5.680834293	_1.319165707
184	3,5	3.585958242	-0.085958242
185	5.5	5.952732086	-0.452732086
186	5.5	5.511509895	-0.011509895
187	6.5	5.996291637	0.503708363
188	6	6.445712566	-0.445712566
189	4	3.958456993	0.041543007
190	8.5	6.539503098	1.960496902
191	4.5	5.317292213	-0.817292213
192	6.5	5.358235359	1.141764641
193	3	3.893324375	-0.893324375
194	2.5	4.108557701	-1.608557701
195	8.5	6.495882511	2.004117489
196	7	5.302098751	1.697901249
197	7.5	5.22799921	2.27200079

Page 5 of 5

42	3.5	5.021594048	-1.521594048
43	4.5	5.085731506	-0.585731506
44	3.5	5.706278801	-2.206278801
45	4.5	5.498596191	-0.998596191
46	4.5	5.706278801	-1.206278801
47	3.5	4.548218727	-1.048218727
48	3.5	4.124851227	-0.624851227
49	4.5	5.281471252	-0.781471252
50	6.5	5.470549583	1.029450417
51	4.5	4.756204128	-0.256204128
52	4.5	5.346315861	-0.846315861
53	5.5	5.706278801	-0.206278801
54	5.5	4,98918581	0.51081419
55	5.5	4.618308067	0.881691933
56	4.5	5.281471252	-0.781471252
57	5.5	5.590565205	-0.090565205
58	6	4.821490288	1.178509712
59	5.5	5.314016819	0.185983181
60	7.5	5.281471252	2.218528748
61	5.5	5.405426502	0.094573498
62	4.5	5.465847015	-0.965847015
63	5.5	5.376583099	0.123416901
64	4.5	5.438114643	-0.938114643
65	5.5	5.616368294	-0.116368294
66	7.5	5.681284904	1.818715096
67	5.5	4.889467716	0.610532284
68	6	5.738641262	0.261358738
69	5.5	4.071662426	1.428337574
70	7.5	5.817647934	1.682352066
71	3.5	3.915245533	-0.415245533
72	7.5	4.821490288	2.678509712
73	5.5	4.853871822	0.646128178
74	5.5	5.770711899	-0.270711899
75	7.5	4.397420883	3.102579117
76	7.5	5.346315861	2.153684139
77	4.5	3,323651552	1.176348448
78	5.5	3.50176096	1.99823904
79	3.5	4.188138485	-0.688138485
80	5.5	4.890807629	0.609192371
81	5.5	5,525212288	-0.025212288
82	5.5	5,405426502	0.094573498
83	6	5.590565205	0.409434795
84	5	5.021594048	-0.021594048
85	6.5	5.438114643	1.061885357
		1,,2.17017	

- 568 -

			
86	6	5.405426502	<u>0.594573498</u>
87	6	5.762508392	0.237491608
88	6	5.022776604	0.977223396
89	5.5	5.217967033	0.282032967
90	5.5	5.248692513	0.251307487
91	6.5	5.531090736	0.968909264
92	6	5.465847015	0.534152985
93	5.5	5.248692513	0.251307487
94	6	5.531090736	0.468909264
95	7	5.622840405	1.377159595
96	7	5.706278801	1.293721199
97	6.5	5.088047981	1.411952019
98	7.5	5.088047981	2.411952019
99	7.5	4.541584969	2.958415031
100	5.5	5.640744686	-0.140744686
101	8.5	4.956573486	3.543426514
102	6	4.061242104	1.938757896
103	7	4.756204128	2.243795872
104	3.5	2.973315239	0.526684761
105	5.5	5.654828548	-0.154828548
106	5.5	4.956573486	0.543426514
107	6.5	5.590565205	0.909434795
108	6	5.817647934	0.182352066
109	4	3.323651552	0.676348448
110	8.5	6.092021942	2.407978058
111	4.5	4.747114658	-0.247114658
112	6.5	4.821490288	1.678509712
113	3	3.471686602	-0.471686602
114	2.5	3.471686602	-0.971686602
115	8.5	5.989302635	2.510697365
116	7	4.889467716	2.110532284
117	7.5	4.88605547	2.61394453

Page 3 of 3

42 3.5 5.212779045 -1.712779045 43 4.5 5.622095108 -1.122095108 44 3.5 5.391791344 -1.891791344 45 4.5 5.355059943 -0.855505943 46 4.5 5.75523138 -1.25523138 47 3.5 4.428596973 -0.928596973 48 3.5 3.67872262 -0.17872262 49 4.5 5.366745949 -0.866745945 50 6.5 5.333700657 1.166299343 51 4.5 4.479115486 0.020884514 52 4.5 5.193097591 -0.63097591 53 5.5 5.365057945 0.134942055 54 5.5 4.871675014 0.628324986 55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 -0.56324195 57 5.5 5.235172272 0.264827728 58 6 4.694525719 1.305474281 59	3 3
44 3.5 5.391791344 -1.891791344 45 4.5 5.355505943 -0.855505943 46 4.5 5.75523138 -1.2552138 47 3.5 4.48596973 -0.928596973 48 3.5 3.67872262 -0.17872262 49 4.5 5.366745949 -0.866745949 50 6.5 5.333700657 -1.166299343 51 4.5 4.479115486 0.020884514 52 4.5 5.193097591 -0.693097591 53 5.5 5.365057945 0.134942055 54 5.5 4.871675014 0.628324986 55 5.5 5.6818717 0.871381283 56 4.5 5.063241959 0.563241959 57 5.5 5.235172272 0.264827728 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.25838274 60 7.5 5.119769096 2.38023900 61 5	3
45 4.5 5.355505943 -0.855505943 46 4.5 5.75523138 +1.25523138 47 3.5 4.428596973 -0.928596973 48 3.5 3.67872262 -0.17872262 49 4.5 5.366745949 -0.866745949 50 6.5 5.333700657 1.166299343 51 4.5 4.479115486 0.02088514 52 4.5 5.193097591 -0.693097591 53 5.5 5.365057945 0.134942055 54 5.5 4.871675014 0.628324986 55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 -0.563241959 57 5.5 5.235172272 0.264827728 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.25838274 60 7.5 5.119769096 2.38023090 61 5.5 5.135966301 0.364033692	3
46 4.5 5.75523138 -1.25523138 47 3.5 4.428596973 -0.928596973 48 3.5 3.67872262 -0.17872262 49 4.5 5.366745949 -0.866745949 50 6.5 5.333700657 1.166299343 51 4.5 4.479115486 0.02084514 52 4.5 5.193097591 -0.69309759 53 5.5 5.365057945 0.134942055 54 5.5 4.71675014 0.628324986 55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 -0.563241959 57 5.5 5.235172272 0.264827725 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.258383274 60 7.5 5.119769096 2.38023090 61 5.5 5.135966301 0.364033695	3
47 3.5 4.428596973 -0.928596973 48 3.5 3.67872262 -0.17872262 49 4.5 5.366745949 -0.866745945 50 6.5 5.333700657 1.166299343 51 4.5 4.479115486 0.020884514 52 4.5 5.193097591 -0.693097591 53 5.5 5.365057945 0.134942055 54 5.5 4.871675014 0.628324986 55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 -0.563241959 57 5.5 5.235172272 0.264827725 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.258383274 60 7.5 5.119769096 2.38023930 61 5.5 5.135966301 0.364033695	3
48 3.5 3.67872262 -0.17872262 49 4.5 5.366745949 -0.866745949 50 6.5 5.333700657 1.16629343 51 4.5 4.479115486 0.02084514 52 4.5 5.193097591 -0.693097591 53 5.5 5.365057945 0.134942055 54 5.5 4.871675014 0.628324986 55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 0.56324195 57 5.5 5.235172272 0.264827728 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.25838274 60 7.5 5.119769096 2.38023900 61 5.5 5.135966301 0.364033692)
49 4.5 5.366745949 -0.866745949 50 6.5 5.333700657 1.166299343 51 4.5 4.479115486 0.02088514 52 4.5 5.193907591 -0.693097591 53 5.5 5.365057945 0.134942055 54 5.5 4.871675014 0.628324986 55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 -0.563241959 57 5.5 5.235172272 0.264827728 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.25838274 60 7.5 5.119769096 2.38023090 61 5.5 5.135966301 0.364033692)
50 6.5 5.33700657 1.166299343 51 4.5 4.479115486 0.020884514 52 4.5 5.193097591 -0.693097591 53 5.5 5.365057945 0.134942055 54 5.5 4.871675014 0.628324986 55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 -0.563241959 57 5.5 5.235172272 0.264827722 58 6 4.694525719 1.3054732 59 5.5 5.241616726 0.258383274 60 7.5 5.119769096 2.38023990- 61 5.5 5.135966301 0.364033692	
51 4.5 4.479115486 0.020884514 52 4.5 5.193097591 -0.693097591 53 5.5 5.365057945 0.134942055 54 5.5 4.871675014 0.628324985 55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 -0.563241959 57 5.5 5.235172272 0.264827725 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.258383274 60 7.5 5.119769096 2.38023930 61 5.5 5.135966301 0.364033695	
52 4.5 5.193097591 -0.693097591 53 5.5 5.365057945 0.134942055 54 5.5 4.871675014 0.628324986 55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 -0.563241959 57 5.5 5.235172272 0.264827728 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.25838274 60 7.5 5.119769096 2.38023900 61 5.5 5.135966301 0.364033692	
53 5.5 5.365057945 0.134947055 54 5.5 4.871675014 0.628324986 55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 -0.563241959 57 5.5 5.235172272 0.264827728 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.25838274 60 7.5 5.119769096 2.38023090 61 5.5 5.135966301 0.364033692	
54 5.5 4.871675014 0.628324986 55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 -0.56324195 57 5.5 5.235172272 0.26482772 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.28833274 60 7.5 5.119769096 2.380230904 61 5.5 5.135966301 0.364033695	<u>l</u>
55 5.5 4.628618717 0.871381283 56 4.5 5.063241959 -0.563241959 57 5.5 5.235172272 0.264827728 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.28833274 60 7.5 5.119769096 2.38023990 61 5.5 5.135966301 0.364033695	,
56 4.5 5.063241959 -0.563241959 57 5.5 5.235172272 0.264827725 58 6 4.694525719 1.30547281 59 5.5 5.241616726 0.258383274 60 7.5 5.119769096 2.38023930 61 5.5 5.135966301 0.364033695	<u> </u>
57 5.5 5.235172272 0.264827726 58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.258383274 60 7.5 5.119769096 2.380230904 61 5.5 5.135966301 0.364033695	
58 6 4.694525719 1.305474281 59 5.5 5.241616726 0.258383274 60 7.5 5.119769096 2.380230904 61 5.5 5.135966301 0.364033695)
59 5.5 5.241616726 0.258383274 60 7.5 5.119769096 2.380230904 61 5.5 5.135966301 0.364033695	ļ
60 7.5 5.119769096 2.380230904 61 5.5 5.135966301 0.364033695	
61 5.5 5.135966301 0.364033695	
	ļ
62 4.5 5.097745895 -0.59774589	<u>}</u>
	5
63 5.5 5.168014526 0.331985474	1
64 4.5 5.34134388 -0.84134388	<u> </u>
65 5.5 5.29162693 0.20837307	
<u>66</u> 7.5 5.700824261 1.799175739	
67 5.5 4.847343922 0.652656078	3
68 6 5.545715809 0.454284191	
69 5.5 4.298461437 1.20153856	3
70 7.5 5.448654175 2.051345825	5
71 3.5 3.751399279 -0.25139927	9
72 7.5 5.283380032 2.21661996	8
73 5.5 5.030276299 0.46972370	<u></u>
74 5.5 5.107845783 0.392154 <u>21</u> 1	7
75 7.5 5.092267513 2.40773248	7
76 7.5 5.861118793 1.63888120	7
77 4.5 3.577464104 0.922535896	5
78 5.5 3.677685499 1.82231450	1
79 3.5 3.572258472 -0.07225847	2
80 5.5 4.386758327 1.11324167	3
81 5.5 5.086729527 - 0.41327047	3
82 5.5 5.255489349 0.24451065	
83 6 5.32442379 0.67557621	
84 5 5.108456135 -0.10845613	1
85 6.5 5.188941479 1.31105852	1

Neural network output of Ca-SCP6-SC-1

Case	Actual (A)	Network output (N)	Difference (A-N)
1_	5.5	4.526489735	0.973510265
2	7	5.388717651	1.611282349
3	5.5	5.447441101	0.052558899
4	6	4.934658527	1.065341473
5	7	4.439573765	2.560426235
6	5.5	5.344190121	0.155809879
7	5.5	5.309361458	0.190638542
8	5.5	5.375924587	0.124075413
9.	5.5	4.643341541	0.856658459
10	6	5.287659645	0.712340355
11	5.5	5.323181629	0.176818371
12	6	5.215004444	0.784995556
13	5	5.085192204	-0.085192204
14	5.5	5.267193794	0.232806206
15	3.5	4.109930515	-0.609930515
16	8.5	5.024749279	3.475250721
17	4	3.87342906	0.12657094
18	4.5	4,390668392	0.109331608
19	7.5	5.023965836	2,476034164
20	4.5	5.823897839	-1.323897839
21	5.5	4,998896122	0.501103878
22	6	4,996541023	1.003458977
23	4	3.638157368	0.361842632
24	5.5	5.109887123	0.390112877
25	4,5	4.379007816	0.120992184
26	4.5	4.182980061	0.317019939
27	7.5	5.389424324	2.110575676
28	1.5	1.057773232	0.442226768
29	7.5	5.888758183	1.611241817
30	3.5	3.492130041	0.007869959
31	3.5	3.024457693	0.475542307
32	3.5	3.878464222	-0.378464222
33	6.5	5.909137726	0.590862274
34	8.5	5.423387527	3.076612473
35	5.5	3.171175718	2.328824282
36	5.5	4.884606361	0.615393639
37	5.5	4.084019184	1.415980816
38	5.5	3.329003334	2.170996666
39	4.5	4,985221386	-0.485221386
40	3.5	4,134530067	-0.634530067
41	4,5	4.272272587	0.227727413

Page 1 of 3

86	6	5.206936359	0.793063641
87	6	5.351566315	0.648433685
88	6	4.963418007	1.036581993
89	5.5	4.928256512	0.571743488
90	5.5	5.153478146	0.346521854
91	6.5	5.584251404	0.915748596
92	6	5.250835896	0.749164104
93	5.5	5.244967937	0.255032063
94	6	5.460033417	0.539966583
95	7	5,300003052	1.699996948
96	7	5.406564236	1.593435764
97	6.5	4.958761215	1.541238785
98	7.5	5.441537857	2.058462143
99	7.5_	5.015445232	2.484554 <u>768</u>
100	5.5	4.995789528	0.504210472
101	8.5	4.577632904	3.922367096
102	6	4.231751442	1.768248558
103	7	4.501758099	2.498241901
104	3.5	2.112093925	1.387906 <u>075</u>
105	5.5	5.96251297	-0.46251297
106	5.5	4.980652332	0.519347668
107	6.5	5.246413231	1.253586769
108	6	5.47854805	0.52145195
109	4	3.708982229	0.291017771
110	8.5	5.626436234	2.873563766
111	4.5	4.990377903	-0.490377903
112	6.5	4.807944298	1.692055702
113	3	3.397340059	-0.397340059
114	2.5	2.752962351	-0.252962351
115	8.5	5.836455822	2.663544178
116	7	4.561285973	2.438714027
117	7.5	5.509898663	1.990101337

- 569 -

	(den) by help	AND AND AND AND AND AND AND AND AND AND	o-tarc-timal
Case	Actual (A)	Network output (N)	Difference (A-N)
	4.5	4.695405483	-0.195405483
2	4.5	4.695405483	-0.195405483
3	4	5.152900219	-1.152900219
4	6	5.030598164	0.969401836
5_	5.5	5.030598164	0.469401836
6	7.5	6.612455368	0.887544632
7	8	6.928440094	1.071559906
8	4	5.69254303	-1.69254303
9	- 6	6.14162302	-0.14162302
10	5	5.413034916	-0.413034916
11	6	5.838742733	0.161257267
12	6	5.69254303	0.30745697
13	4	5.152900219	-1.152900219
14	4	4.913588524	0.913588524
15	8	4.913588524	3.086411476
16	4	6.29708147	-2.29708147
17	4.5	6.928440094	-2.328440189
18	4	5.413034916	-1.413034916
19	2.5	4.913588524	-2.413588524
20	3	4.913588524	-1.913588524
21	6.5	5.988626003	0.511373997
22	4	4.497782707	-0.497782707
23	4	4.913588524	-0.913588524
24	3	5.413034916	-2.413034916
25	3	5.413034916	-2.413034916
26	3	4.913588524	-1.913588524
27	7	4.913588524	2.086411476
28	4	5.413034916	-1.413034916
29	5	6.14162302	-1.14162302
30	9	5.413034916	3,586965084
31	6	6.29708147	-0.29708147
32	3	4.913588524	-1.913588524
33	5.5	6.29708147	-0.79708147
34	7	6.612455368	0.387544632
35	5	6.29708147	-1.29708147
36	4	5.413034916	-1.413034916
37	6.5	5.413034916	1.086965084
38	4	6.14162302	-2.14162302
39	7	5.69254303	1.30745697
40	4.5	5.69254303	-1.19254303
41	6	6.29708147	-0.29708147

(

(

Neural network output of Ca-SCP6-MC-1

	Actual (A)	Naturali autori OD	D:# (4.10
Case 1	4.5	Network output (N) 4.398139477	Difference (A-N)
2	4.5		0.101860523
		4.058204174	0.441795826
3	4	4.951342583	-0.951342583
4	6	5.265898705	0.734101295
5	5.5	6.326113224	-0.826113224
6	7.5	6.797885418	0.702114582
7	8	6.67805481	1.32194519
8	4	5.68655014	-1.68655014
9	6	6.467405319	-0.467405319
10	5	5.697419167	-0.697419167
11	6	5.68517065	0.31482935
12	6	6.25561142	-0.25561142
13	4	4.909896851	-0.909896851
14	4	4.650824547	-0.650824547
15	8	5.739133358	2.260866642
16	4	7.329878807	-3.329878807
17	4.5	6.506084919	-1.906085014
18	4	5.125533581	-1.125533581
19	2.5	4.829849243	-2.329849243
20	3	4.798352718	-1.798352718
21	6.5	5.994053841	0.505946159
22	4 _	4.662554264	-0.662554264
23	4	5.710925102	-1.710925102
24	3	4.976635933	-1.976635933
25	3	5.721735001	-2.721735001
26	3	4.740227222	-1.740227222
27	7	4.862075329	2.137924671
28	4	5.605093002	-1.605093002
29	5	6.591016769	-1.591016769
30	9	5.927323818	3.072676182
31	6	6.987300873	-0.987300873
32	3	5.413977623	-2.413977623
33	5.5	6.362308502	-0.862308502
34	7	6.890682697	0.109317303
35	5	6.555625439	1.555625439
36	4	5.509035587	-1.509035537
37	6.5	6.193920135	0.306079865
38	4	5.216259956	-1.216259956
39	7	5.38255024	1.61744976
	4.5		-1.415582657
40		5.915582657	
41	6	6.307777405	0.307777405

42	6	5.988626003	0.011373997
43	8	5.988626003	2.011373997
44	3	5.152900219	-2.152900219
45	4.5	5.413034916	-0.913034916
46	5	5.69254303	-0.69254303
47	6	4.913588524	1.086411476
48	6	5.413034916	0.586965084
49	9	6.612455368	2.387544632
50	7	5.988626003	1.011373997
51	6	5.152900219	0.847099781
52	6	4.695405483	1.304594517
53	7	5.988626003	1.011373997
54	3	5.413034916	-2.413034916
55	4	5.152900219	-1.152900219

Page 2 of 2

42	6	6.251922607	-0.251922607
43	8	6.132656574	1.867343426
44	3	5.044786453	-2.044786453
45	4,5	6.183454037	-1.683454037
46	5	5.977715492	-0.977715492
47	_ 6	6.049937248	-0.049937248
48	6	5.416454792	0.583545208
49	9	7.61265564	1.38734436
50	7	6.441523075	0.558476925
51	6	5.611413479	0.388586521
52	6	4.949215889	1.050784111
. 53	_ 7	5.530787945	1.469212055
54	3	5.16710186	-2.16710186
55	4	4.796158791	-0.796158791
	3		

Neural network output of Ca-SCP6-CC-final

Case	Actual (A)	Network output (N)	Difference (A-N)
1	4	4.553350449	-0.553350449
2	7	6.471146584	0.528853416
3	4	4.984083176	-0.984083176
4	2	3.176413536	-1.176413536
5	5	5.649323463	-0.649323463
6	4.5	4,608968258	-0.108968258
7	5	6.972485542	-1.972485542
8	3	2.563963413	0.436036587
9	8_	6.853254795	1.146745205
10	5.5	5.538061142	-0.038061142
1)	. 5	4.197401047	0.802598953
12	5_	5,294016361	-0.294016361
13	6	6.131203175	-0.1312031 <u>75</u>
14	5	6.332873821	-1.332873821
15	7	7.198670864	-0.198670864
16	4_	5.538061142	-1.538061142
17	8	6.853254795	1.146745205
18	6	5.904179573	0.095820427
19	8	8.611840248	-0.611840248
20	6	6.219276428	-0.219276428
21	9	8.992718697	0.007281303
22	6	6.065700054	-0.065700054
23	5	5.585037708	-0,585037708
24	4	5.435614586	-1.435614586
25	6	5.938158035	0.061841965

Page 1 of !

Neural network output of Ca-SCP6-OC-1

Case	Actual (A)	Network output (N)	Difference (A-N)
1	4	5.291267395	-1.291267395
2	7	5.604213715	1.395786285
3	4	6.381459236	-2.381459236
4	2	3.760285378	-1.760285378
5	5	6.605204105	-1.605204105
6	4.5	4.050289154	0.449710846
7	5	6.901521206	-1.901521206
8	3	4.350641727	-1.350641727
9	8	6.561705112	1.438294888
10	5.5	5.116605282	0.383394718
11	5	5.531777859	-0.531777859
12	5	5.204781055	-0.204781055
13	6	5.372631073	0.627368927
14	5	5.387399197	-0.387399197
15	7	7.097082138	-0.097082138
16	4	5.335483551	-1.335483551
17	8	5.872729778	2.127270222
18	6	6.907340527	-0.907340527
19	8	7.752534389	0.247465611
20	6	6.277563095	-0.277563095
21	9	7.835216045	1.164783955
22	_6	6.241569519	-0.241569519
23 _	_ 5	5.960596085	-0.960596085
24	4	5.577412605	-1.577412605
25	- 6	5.543209553	0.456790447

Page 1 of 1

APPENDIX S

Data for establishing the relationships to explain the contribution of the causes to site coordination problems

Data for survey on contribution of causes to site coordination problems

Reply no.	Role	SCP1	SCP2	SCP3	SCP4	SCP5	SCP6	Causel	Cause2	Cause3	Cause4	Cause5	Cause6	Cause7	Cause8	Cause9	Cause 10	Cause11	Cause12
1	subcontractor	2.0	4,5	3.0	6.0	5.0	5.5	4.0	2.0	3.0	5.0	3.0	2.0	2.5	4.0	5.5	5.5	3.0	4.0
2	subcontractor	1.0	1,0	1.0	2.0	3.0	3.5	5,0	3.0	5.0	5.0	2.0	6.5	4.0	6.0	6.5	5.0	4.5	4.0
3	subcontractor	5.0	4.5	5.5	5.0	6.0	3.5	7.0	7,0	5.5	6.0	5.5	5.0	7.0	7.0	8.5	5.0	7.5	6.0
4	subcontractor	5.0	3.0	5.0	6.5	5.5	5.5	8.0	8,0	5.0	5.5	6.0	6.5	4.0	9.0	5.5	6.0	6.0	3.0
5	main contractor	4.5	5.0	3.0	3.0	4.0	4.5	4.0	4,0	2,0	2.0	2.0	3.0	2.5	5.0	5.0	4.0	5.5	3.0
6	subcontractor	5.5	5.0	6,0	5.0	4.0	5.5	8.0	8.0	5.0	4.0	2.0	5.0	6,0	8.0	8,5	4.0	7.0	5.5
7	subcontractor	5.5	5.5	5,0	5.0	6.0	5,5	8.0	3.0	5.0	2.0	4.0	6.5	6.0	8.0	8.5	5.0	5.5	7.0
- 8	subcontractor	5,0	2.5	4.0	6.0	5,0	7,0	6,0	7.0	7.5	6.0	6.5	6,5	7.0	5.0	7.5	5.0	4,0	7.0
9	subcontractor	5.0	5.0	6.0	5.0	6.0	4.5	7.0	6,5	5.5	7.0	7.0	5.0	6.5	8.5	8.5	6.0	6.5	4.0
10	subcontractor	5.0	3.0	4.5	5.0	4,5	4.5	7.0	7.0	8.0	4,0	5,0	7,0	7.0	5,0	9.5	7.0	5.0	6.0
11	main contractor	3.0	3.5	5.0	4,5	3.0	4.5	3,0	3.0	2.0	3.0	2.0	3.0	2.0	3.0	2.0	3.0	3.0	3,0
12	subcontractor	6.0	4.0	5.5	6.0	4.0	5.5	8.0	7.0	8,0	7.0	5.0	6.0	6.0	9.0	8,5	7,0	5.5	7.0
13	subcontractor	5.0	4.5	5.0	6.0	5.0	3.5	7.0	5.5	6.0	6.0	7.5	7.0	4.0	5,0	6.5	7.0	7.0	5.0
14	subcontractor	3.0	5.0	5.5	6.0	3,0	3.5	5.0	5.0	8.0	7.0	5.0	7.0	3.0	6,0	8.5	4.0	5.0	6.0
15	subcontractor	6.0	4.0	5.0	6.5	6.0	4.5	6.0	6.0	4,5	6.5	7.0	7.0	6.0	6.0	9.0	7.0	5.5	7.0
16	subcontractor	5.0	4.0	4.0	6.0	5.0	5.5	7.0	6.5	7.0	6.0	5.5	5.5	7.0	9.0	8.5	6.0	6.0	7.0
17	subcontractor	3.0	5.0	5.0	6,0	6.0	6.0	7,0	5.5	6.5	7.0	6.0	5.5	5.0	7.0	7.5	7.5	6.0	6.0
18	subcontractor	5.0	5.5	3.5	7.5	5.5	6.5	6.0	5.0	6.0	7.0	4.0	6.0	7.0	5.0	8.5	5.0	5.5	6.0
19	subcontractor	5.0	3.5	5.0	7.0	4.0	7,0	6.0	7.0	7.0	5.0	6.5	7,0	4.0	6,0	7.5	5,0	6.0	5,5
20	subcontractor	5.0	4.0	5.5	6,0	6.0	5.5	7.0	7.0	7.5	5.5	6.0	7.0	6.0	6.0	8.0	7,0	5.0	4.0
21	subcontractor	5.5	5.0	4.0	6,0	5.0	4.5	8.0	7.0	7.5	5.0	6.0	6.5	4.0	6.0	8.5	5.0	6.0	7.0
22	subcontractor	6.0	5.0	5.0	6.0	5.0	5.5	7.0	6.5	7,0	7.0	5.0	4.5	6.0	7.5	7.5	7.0	4.0	6.0
23	subcontractor	5,0	3.5	4.5	5.0	5.5	4.5	8.0	4.0	6.0	5.5	6.0	6.5	7.0	8.0	8.0	6.0	6.0	7.0
24	subcontractor	5.5	5.0	5.0	6.0	5.0	6.0	6.0	6.0	6.0	5.5	7,5	6.0	7.0	7.0	5,5	7.0	7.5	6.0
25	subcontractor	6.0	5.0	4.0	6.5	4.0	5.5	7.5	7.0	4.0	6.0	6.0	7,5	7.0	8.0	7.5	6.0	5.0	6.0
26	subcontractor	5.0	5.0	5.0	5.5	4,0	5.5	7.5	5.5	8.0	6,0	6.0	7.0	5.5	7.0	5.5	7.0	7.0	4.0
27	subcontractor	5,0	5.5	4.5	8.0	6.0	5.5	8.0	7.0	6.0	6.0	5,5	6.0	7.0	8.5	7.5	6.0	6.5	7.0
28	subcontractor	5.0	4.0	4.5	5,5	5,5	5.0	7.0	4.0	7.0	7.0	6.5	4.5	6.0	5.0	6.5	7.0	5.0	6.0
29	subcontractor	4.5	4.0	40	6.0	6.0	5.5	6.0	5.0	6.0	7.0	6.5	4.5	5.5	8.0	6.5	6.0	6.0	5.5
30	subcontractor	5.0	5.5	5.0	7.0	6.5	5.5	6.0	6.0	6.0	5.5	7.0	5.5	4.0	6.0	7.5	6.0	7.0	5.0
31	subcontractor	5.0	5.0	4.5	7.0	6.5	4.5	6.0	6.0	6,0	7.0	5.0	5.5	6,0	8,0	8.5	5,0	6.0	6.0
32	subcontractor	6.0	5,5	5.0	6.0	5.0	6.0	7.5	5.0	7,0	6,5	6.0	7,0	7,0	6.0	7.5	6,0	5.0	5,0
33	subcontractor	4.0	4,5	4,5	5.0	5.0	5.5	8.0	7.0	6.5	5.0	6.0	4.5	7.5	8,0	6.5	3.0	4.0	5.0
34	main contractor	3.5	4.0	5,5	4.0	7.0	4.0	4.0	4.0	4.0	4.0	3.0	3.0	4.0	4.0	2.5	4.0	3.0	2.0
35	subcontractor	5.0	5.0	5.0	6.5	6.0	6.0	7.5	5.0	7.0	7.0	6.0	6.0	7.0	5.0	6.5	6.0	6.0	6.0
36	subcontractor	4.5	4.0	5.0	7.0	5.0	5.5	8.5	6.0	6.0	5.0	6.5	7.0	7.0	6.0	8,5	4.0	7.0	5.0
37	subcontractor	6.0	5.0	4.5	6.5	6.0	6.5	7.5	6.0	6.5	7.0	7,0	6.0	6,5	8.0	7.5	6.0	7.0	6.5
38	subcontractor	5.0	4.0	4.5	5.0	5.0	6.0	8.0	5.0	6.0	6.0	7.0	4.0	5.0	8.0	6.5	6.0	6.0	7.0
39	subcontractor	5.0	5.0	5.0	6.0	6.0	6.0	6,0	7.0	6.5	6.0	4.0	6.0	6.0	6,5	7.5	6,5	6.5	5,0
40	subcontractor	7.0	4.0	5.0	6.0	5.0	6.0	8.0	7.5	4.0	5.0	7.0	6.0	7.0	8.5	7.5	5.0	7.5	5.0
41		4.0	5.5	4.0	6.0	5.0	5.5	8.0	5.0	4.5	6.0	6,0	7.0	6.5	7.0	7.5	7.0	5.0	6.0
42	subcontractor	5.0	5.0	4.0	7.0	5.0	6.0	7.5	6.5	7.0	7.0	6.0	5.5	5.0	7.0	7.5	7.0	7.0	5.0
43	subcontractor	5.0	4,5	5.5	5.5	5,5	5.0	6.0	5.5	6.5	4,0	3,0	5,0	6.0	7.0	8.5	5.0	5.5	7.0
44	subcontractor	5.0	4,0	6.0	7.5	6.0	5,5	7.0	5.5	7.5	7.0	6.0	7.0	6.0	5.0	7.0	6.0	6,0	6,5
45	subcontractor	5.0	5.0	4.0	6.0	5.0	7,5	8.0	6.0	5.0	6.0	6.0	7.5	6.0	7.0	8.5	6,0	4.0	7,0
46	subcontractor	5.0	4.5	5.0	5,0	4.5	5.5	5.0	7.0	7.0	3.0	6.0	5.5	6.0	7.5	7.5	4.0	5.0	5,5
47	subcontractor	4.0	4.0	5.0	6.0	5.0	5.5	5.0	7.0	6.0	7.0	6.0	5.0	5.5	5.0	7.5	6.5	7.0	7.0
48	subcontractor	6.0	4.0	6.5	6.0	5.5	6.5	8.0	5.5	6.0	7.0	8.0	6.0	7.0	7.0	8.5	7.5	5.5	6.0
49	subcontractor	5,5	5.5	5.0	7.0	5.0	6.0	7.0	7.5	5.0	5.0	7.0	6,5	6.0	7.0	8.5	5.5	8.0	4.0
50	subcontractor	6.5	5.0	5.5	+	4.5	5.5	7.0	7.0	6,5	8.0	6.0	4.0	5.5	8.0	7.5	7.5		
1 30	subcontractor	į 0,3	3.0	1	6.0	1 4.3	1 3.3	1/.0	1 7.0	1 0,5	L 6.0	1 0.0	1 4.0	3.3	0.0	1.3	1.3	6.0	6.0

104

105

2.0

7.0

subcontractor

2.0

70

3.0

4.0

3.0

2.5

4.0

4.0

7.0

3.5

6.0

4.0

2.5

3.0

5.0

4.0

8.0

6.5

3.0

3.0

5.0

157	main contractor	8.0	8.0	5.5	6.0	7.0	5.5	9.0	9.0	8.0	9.0	9.0	8.0	5.0	6.0	5.0	6.0	5.0	4,0
158	main contractor	7.0	6.0	7.0	5.6	5.0	7.0	7.0	6.0	9.0	9.0	9.0	7.0	9.0	10.0	8.0	7.0	7.0	8.0
159	main contractor	5.5	6.0	6.5	7.0	6.5	5.0	7.0	7.0	8.0	8.0	8.0	7.0	8.0	9.0	8.0	8.0	7.0	8.0
160	main contractor	3.0	4.5	4.0	3,0	5.5	4.0	5.0	5.0	5,0	5.0	4.0	2.0	3.0	3,0	3.0	6.0	2.0	3.0
161	subcontractor	4.0	4.0	5.0	5.0	5.5	5.5	3.0	3.0	2.0	3.0	3.0	3.0	3.0	4.0	3.5	2.0	2.0	3.0
162	main contractor	7.0	7.0	7.5	8.0	8.0	6.5	8.0	7.0	5.0	7.0	6.0	4.0	9.0	9.5	6.0	8.0	8.0	4.0
163	main contractor	5.0	5.0	6.5	8.0	9.0	4.0	3.0	7.0	7.5	8.0	8.0	2.5	4.0	6.0	5.0	5.5	3.0	1.0
164	consultant/property developer	5.0	6.0	7.0	6.0	3.5	4.0	8.0	8.0	9.0	9.0	8.0	5.0	6.0	8.0	7.0	6.0	4.0	4.0
165	main contractor	10,0	6.0	7.0	8.5	5.5	7.0	7,0	8.0	6,0	7.0	5.0	5,0	8.0	9,0	7.0	6,0	5.0	5.0
166	subcontractor	8.0	8.0	9.0	9.0	7.0	8.5	9.0	7.0	8.0	8.0	7.0	7.0	8.0	9.0	8.5	9.0	7.0	6,0
167	main contractor	5.5	5.0	6,0	5.5	3.0	4.5	7.0	7.0	6.0	8.0	7.0	7.0	7.0	7.0	5.0	6.0	5.0	4.0
168	main contractor	6.0	6.5	6.0	5.0	5.0	6.0	7.0	8.0	8.0	6.0	5.0	6.0	9,0	10.0	9.0	9.0	7.0	5.0
169	subcontractor	3.0	3.0	3.0	4.0	4.5	7.0	5,5	5.5	5.0	4.5	5.0	6.0	5.0	5,5	6.5	4.5	5.0	5.5
170	subcontractor	4.5	3.0	4.5	5.0	6.0	5.5	5.0	5.0	5.0	7.0	7.0	7.0	8.0	4.0	4.5	3.0	4.0	6.0
171	main contractor	6,5	7.0	5.5	7,0	7.5	6.0	8.0	8.0	7.0	9.0	8.0	7.0	7.0	9.0	7.0	9.0	7.0	7.0
172	consultant/property developer	4.0	5.0	6.0	6.0	5.0	6.0	4.0	5.0	6,0	6.0	7.0	6.0	5.0	6.0	6.0	6,0_	5.0	5.0
173	consultant/property developer	5.0	5,5	6.5	7.0	7.0	8.0	9.0	8,0	8.0	8.0	7.0	8.0	8,0	7.5	8,0	9.5	7.0	6.0
174	consultant/property developer	6,5	4.0	5.0	4,0	3,0	5.5	4.0	5.0	5.0	5.0	5.0	6,0	7.0	6.0	5.0	7.0	4.0	4.0
175	consultant/property developer	6.0	7.0	5.5	6.0	7.5	5.0	8.0	7.0	7.0	6.0	5.0	8.0	7.0	7.0	8.0	6.5	8.0	7.0
176	main contractor	5.0	5.0_	7,0	7.5	7.0	8.0	5.0	7.0	7.0	6.0	6,0	5.0	8.0	9,0	8.0	10.0	10.0	8,0
177	main contractor	6.5	5.0	5.0	4.0	4.0	3.0	8.0	8.0	4.0	7.0	7.0	4.0	2.0	2.0	3,0	3.5	1.0	6.0
178	main contractor	3.0	4.5	5.0	5,0	5,5	4.5	2,0	2.0	5.0	8.0	8.0	2.0	2.0	3.5	3.0	9.0	3.0	8.0
179	main contractor	6.0	5.0	6.5	5,0	6.0	5.0	4.0	5.0	6,0	7.0	7.0	6.0	5.0	6.0	8.0	9.0	8.0	7.0
180	main contractor	6.0	6.0	6,5	5.0	6.0	6.0	7.0	5.0	3.0	7.0	7.0	3.0	5.0	6.0	5.0	8.0	7.0	7.0
181	subcontractor	5.0	5,0	5,0	5.0	6.0	4.5	6.0	4.0	6.0	7.0	7.0	5.0	4.0	4.0	9.5	8.0	7.0	5.0
182	subcontractor	4.5	4.0	4.0	6.0	4.0	3.5	6.0	4.0	6.0	7.0	6.0	6.0	5.0	8.0	7.5	3.0	5.0	8.0
183	subcontractor	8.5	8.5	9.0	9.0	7.0	7.5	3.0	2.0	4.0	4.0	2.0	4.0	5.0	5.0	8.5	7.0	7.0	8.0
184	main_contractor	4.0	5.0	5.0	4.5	5.0	6.0	7.0	8.0	5.0	6.0	5.0	4.0	4.0	7.0	6.0	8.0	8.0	8.0
185	main contractor	4.0	5.0	5.5	5.0	8.0	9.0	7.0	5.0	9.0	3.0	5.0	7.0	4.0	5.0	2.5	7.5	1.0	9.0
186	subcontractor	4.5	2.0	2.0	7.0	6.0	4.5	5.0	2.0	3.0	4.0	2.0	1.0	6.0	6.0	3.5	4.0	8.0	9.0
187	subcontractor	3.0	3.0	4.0	4.0	4.0	3.5	6.0	4.0	6.0	5.0	3.0	3.0	6.0	7.0	8.5	6,0	7.0	7.0
188	subcontractor	3.0	4.0	2.0	6.0	5.5	4.5	3.0	2.0	3.0	4.0	6,0	6.0	7.0	7.0	7.5	7.0	6.0	7.0
189	main contractor	6.0	2.0	2.0	5.0	6.0	7.0	8,0	7.0	7.0	6.0	5.0	5.0	4.0	4.0	5.0	7.5	4.0	5.0
190	subcontractor	2.0	4.5	4.0	3.0	5.0	7.5	3.0	4.0	4.0	4.0	3.0	4.0	7.0	5.0	8.5	6.0	7.0	7.0
191	main contractor	4.0	4.0	5.0	4.5	5.5	6:0	4.0	5.0	4.0	4.0	5.0	4.0	7.0	8.0	6.0	7.0	7.0	9.0
192	main contractor	3.0	3.0	3,5	3.0	4.0	6.0	2.0	2.0	2,0	2.0	2.0	2.0	1.0	6.0	2.0	7.0	6.0	8.0
193	main contractor	7.0	7.0	6.0	5.5	5.0	7.0	10.0	10.0	7.0	10.0	7.0	5.0	3.0	5.0	7.0	6.5	5.0	8.0
194	subcontractor	1,0	2.0	2.5	2.5	3.5	4,5	4.0	2.0	4,0	4.0	4.0	2.0	2.0	7.0	9.5	6,0	7.0	10.0
195	main contractor	3.0	4.0	4.0	4.5	3.0	3.0	4.0	5.0	5.0	6.0	4.0	4.0	5.0	7.0	7.0	7.0	7.0	4.0
196	main contractor	3.0	3.0	4.5	5.0	5.0	4,0	5.0	7.0	4.0	6.0	5.0	3.0	4.0	7.5	7.0	7.0	8.0	5.0
197	subcontractor	7,0	1.0	3.0	6,0	4.5	7.5	4.0	3.0	2.0	2.0	3.0	6.0	6.0	4.0	7.5	6.0	4,0	7.0

APPENDIX T

Scatterplot matrix for site coordination problems analysis

Scatterplot matrix for Ca-SCPI-AR model

Caues1	Caues2	Caues3
1	•	
Caues4	Caues5	Canes6
Caues?	Cauesā	Caues9
Caues10	Cauesil	Caues 12

Scatterplot matrix for Ca-SCP2-AR model

	et matrix for Ca-SCP2-AR m	
Caues1	Caues2	Caues3
Caues4	Caues5	Canes6
	1	
Caues7	Caues8	Caues9
·		-
Caues10	Caues I	Caues 12

Scatterplot matrix for Ca-SCP3-AR model

Caues I	Caues 2	Caues3
5		
Caues4	Caues5	Caues6
,		
Caues7	Caues8	Caues9
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Caues 10	Caues 11	Caues 12

Scatterplot matrix for Ca-SCP4-AR model

Scatter pro	it matrix for Ca-SCP4-AR mo	oc:
Cauest	Caues2	Caues3
Caues4	Caues5	Cauesó
Caues7	Caues8	Caues9
	5	
Caues10	Caues 1 [Caues 12
-		

Scatterplot matrix for Ca-SCPS-AR model

Caues1	Caues2	Caues3
Caues4	Caues5	Caues6
6		
Caues7	Caues8	Caues9
5		_
5		l .1l

Scatterplot matrix for Ca-SCP6-AR model

Caues 1	Caues2	Caues3
6	8	
Caues4	Caues5	Caues6
Caues7	Caues8	Caues9
	5	
	1] :

