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ABSTRACT 

This research was carried out to prove the hypothesis that 

existing low rise reinforced concrete framed structures in 

Cyprus are inadequate to sustain the probable seismic loads 

likely to occur in the next few years and that strengthening 

techniques can be identified that if carried out would reduce 

the likelihood of catastrophic collapse. 

The objective was to include in this thesis, presented in the 

form of a manual of seismic design and practice, all the 

necessary information for a Cypriot Civil Engineer, to 

understand and face the problem. 

In chapter 2 the Cyprus seismic risk is assessed going through 

historic documents and geological facts. The background theory 

is included in chapter 3. As the vast majority of buildings 

in Cyprus are of reinforced concrete framed constructions, it 

is mainly on this type that the background information· 

focuses. Chapter 4 reviews the existing building practice both 

before and after 1984 when designers became aware of the 

seismic problems. Strengthening and repairing techniques, 

appropriate to the existing stock, are identified in chapter 

5. 

Using the information in all the above chapters two case 

studies are presented in chapter 6. A house built in 1984 and 

a house built in 1991 are analysed under seismic loads and 

generally assessed to identify deficient areas. Having done 

that, then specific solutions are suggested accompanied by a 

cost analysis. 



Chapter 7 sums up the results of this research and it 

concludes that, indeed the existing structures are seismically 

inadequate and that strengthening measures, though expensive, 

should be taken to reduce the risk of a catastrophe. 
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EARTHQUAKE RESISTANT BUILDING 

I N C Y P R U S. 

1. INTRODUCTION TO THE PROBLEM 

The last major earthquake in Cyprus occurred in 1953. According 

to seismologists, a new major earthquake should be expected 

soon. 54 , 65 It is unknown whether it will occur tomorrow or in 

ten years, but it would be very strange if did not occur within 

the next twenty years. 

The frequent seismic activity during recent years, although 

weak, created a lot of worries and doubts about the strength of 

the buildings in Cyprus. A lot was written in the newspapers 

about the dangers due to the expected earthquake and the threat 

to the existing buildings. Headlines like, 'Most of the houses 

will collapsel' and 'All the houses are unsuitable for a seismic 

areal,56 created panic among the people. 

The problem in Cyprus is indeed serious, as it is concluded by 

studying the existing historical evidence and examining the 

common building practice. Nevertheless, panicking is not 

exactly the right way of facing the problem. 

The objective was to include in this thesis all the information 

necessary for a Cypriot Civil Engineer to enable him to face this 

emerging problem. A good background basis is required if a good 

appreciation of the situation is to be achieved. It should be 

established what constitutes good design practice in seismic 

areas. As the vast majority of buildings in Cyprus are of 

reinforced concrete framed construction, it is on this type that 

the thesis will concentrate. 



A sound knowledge of the background theory should be accompanied 

with a knowledge of the existing practice in Cyprus, the problems 

and generally to be familiar with the whole attitude of people. 

with these, the main target will be to minimize the effects of an 

earthquake. One thing to be done is to build new buildings in 

accordance with a seismic code. A seismic code for Cyprus now 

exists, however, the worries about the existing structures 

remain. There is another extremely important area to be 

investigated, namely to examine the existing structures and to 

strengthen them if necessary. 

It should be made clear that designing from the beginning or 

strengthening afterwards 

will be no damage to 

a building does not guarantee that there 

it in the event of an earthquake. 

Compliance with a seismic code is intended to make the structure 

earthquake-resistant not earthquake-proof. 

In the following chapters the sources of information were mainly 

American, British and Greek pUblications and a short course on 

earthquake-resistant design, organised by the Cyprus Joint Group 

of Civil and Mechanical Engineers. It must be mentioned, 

however, that for somebody who wants to study a certain 

scientific or engineering topic, Cyprus with its poor sources of 

information, is not the ideal place. There is a great demand by 

the Cypriot engineers for a clear-simple set of instructions for 

designing and strengthening earthquake-resistant structures., 

Background theory is, however, equally necessary. 

The problem is therefore the threat of a major earthquake. The 

solution starts by understanding the problem and finishes by 

taking measures. 

-2-



2. CYPRUS SEISMIC RISK 

2.1 INTRODUCTION 

Earthquake resistant building implies an increase in the cost and 

that will only be accepted if a good reason exists. constructing 

earthquake resistant buildings is a must for countries with a 

high seismic risk. The first chapter will review the existing 

evidence, although limited, 50 that an assessment of the seismic 

risk rating of Cyprus will be possible. 

The seismicity of Cyprus will be assessed with respect to 

historic events and to the geology of the island. 

2.2 SEISMICITY OF CYPRUS 

Usually prior to a strong earthquake, a number of weak 

earthquakes are noted. During the last two years 10 such 

earthquakes were noted by the seismographs in Cyprus. These 

earthquakes,although not exceeding 4.6 on the Richter scale, 

did created some panic among the Cypriots. The seismologists 

were alerted and made it clear that Cyprus should expect a strong 

earthquake (6 to 6.5 on the Richer scale - see Appendix I for 

general information on Earthquakes) quite soon according to 

probabilities. On the other hand the Cyprus Association of Civil 

Engineers and Architects started warning45 , 56 that the buildings, 

in Cyprus were not earthquake-resistant and asked the Government 

to legislate a stricter control on the building industry. 

Cyprus lies in the second largest seismic zone of the Earth. D. 

Dowrick in his boo0 'Earthquake Resistant Design For Engineers 

and Architects' - Table 5.4, includes Cyprus in the countries 

with a high seismic risk rating. 

Ninety million years ago the whole area around Cyprus was the 

bottom of an ocean known as the Tithis Sea. Igneous rocks were 

-3-
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deposited at the bottom of the sea. At that time, however, two of 

the major plates at the surface of the Earth, the Eurasian and 

the African, collided forcing a part of the sea to emerge; 

Mount Troodos emerged first (see figure 62 2.1). The Eurasian 

plate continued moving towards Africa forcing the African plate, 

which was also moving towards Europe, to sink. Due to these 

movements a lot of seismic action occurred. The emergence of the 

area continued and 15 million years ago a tiny island appeared 

near to Troodos. That was Mount ,Pentadaktylos. The whole of 

Cyprus emerged 1.5 million.years ago and the emergence of Cyprus 

continues even today since the two plates are still moving. 62 

Cyprus therefore lies along the boundary of the two plates. A 

seismicity map21 for the Earth shown in figure 2.2 and a map59 

showing the major plates in figure .2.3, demonstrates that 

seismicity is concentrated along plate boundaries. A fact that 

spells danger to Cyprus. The seismic action recently observed in 

the territory is mainly affecting the southern and south-eastern 

coasts of Cyprus (see map38 in figure i.4). 

2.3 HISTORIC EVENTS54, 57, 65, 33 

In the history of Cyprus quite a lot of destructive earthquakes 

are reported. Kourion, like other ancient coastal cities of the 

island, was ruined by the severe earthquakes of the late 4th 

century A.D. Nicosia, the capital of Cyprus, although in the 

centre of the island, also met a number of strong earthquakes. 

Such earthquakes were reported in 1222 A.D., in 1267 and in 1303, 

damaging important churches. No information exists about other 

buildings or even human life losses, religion being very 

important at 

noteworthy. In 

Nicosia'. It 

that time and only the churches were considered 

1481 the reports talk about an 'almost destroyed 

is believed that the same earthquake struck the 

island of Rhodes. More destructive earthquakes were reported in 

the years 1491, 1546, 1575, 1718, where many human life losses 

are mentioned, and in 1900. The last earthquake that shook Cyprus 

was on the lOth of September 1953 with an intensity of 9 degrees 

on the Modified Mercalli scale (described as 'ruinous' see 
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Appendix I). The town of Paphos was mostly affected. Sixty-three 

people were killed and more than two hundred were injured; 

whereas some villages, near Paphos, were completely destroyed 

(see phot065 2.1). Prior to that strong earthquake a number of 

weak shocks were noted. Unfortunately the sources of information 

are historical books . which are not interested in the behaviour of 

the buildings during an earthquake. Little documentation exists 

on the character of the above earthquakes, ~evertheless the 

evidence on the high seismic rate is there. 

According to information collected by Cypriot seismologists 

there is a probability of 63% for a strong earthquake every 

thirty years approximately. It is believed that thirty-nine years 

of energy has after the last strong earthquake 

been accumulated, so that 

earthquake is now raised to 70%. 

2.4 GEOLOGY OF CYPRUS59- 63 

quite an amount 

the probability for a strong 

In 1953 the damage caused in the district of Paphos was mostly 

due to the clayey soil of the area. The geology of a· territory is 

very important since it influences the dynamic response of a 

structure to the earthquakes. 

Cyprus, although small in size, has a big variety of rocks (shown 

in figure 2.5). The island is considered to be quite mountainous. 

All three main types of rocks (Igneous, Sedimentary and 

Metamorphic) can be found: 

Igneous: These are found mostly on Mount Troodos. They 

are those first depositions formed from magma 90 

million years ago at the bottom of the Tithis Sea 

as it was mentioned earlier. The igneous rocks are 

mostly pillow lavas, serpentities, 

dounites, berlite. Around gabrro,diabase 

in the form of mUltiple veins. Diabase 

resistance to erosion and degradation. 

-9-
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Proto 2.1 . Ruins at the village of Stroumbi in PaFhos after the 
earthquake of Septanber 1953 where 63 people were killed and about 
200 were ingured. The earthquake damaged many houses in 90 villages 
in the district of PaEflOs . 
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Sedimentary: They are found on Mount Pentadactyl os in the 

district of Nicosia and Limassol and almost 

everywhere in Cyprus with the exception of Mount 

Troodos. The Sedimentary rocks are the most 

important for shallow excavations and thus building 

foundations. They are relatively modern depositions 

covering most of the solid rocks. The main examples 

of this type are limestones, asbestoliths, 

dolomites, fanglomerates and clay and aeolian 

(windburn) alluvium recently formed (made of clay, 

sand and gravel). 

Metamorphic: These are mostly found on Mountain Pentadactyl os 

and in the district of Paphos. Marble originated 

from limestone, schist are the main rocks of this 

type. 

The rocks and the mediterranean climate are the main factors 

influencing the soil types in Cyprus. The main soils in Cyprus 

are the following: 

'Kafkalla': Hard limestone found everywhere apart from Troodos 

and in the district of Famagusta. Areas where 

'Kafkalla' is present are traditionally 

considered to be good for foundations. Excavations 

are difficult due to the hardness of soil. Usually 

shallow foundations of about 1.5 metres depth are 

adequate in such areas. 

Terra Rozza: Red coloured soils created on limestone rocks or on 

Kafkalla. 

Red-soils: Found on the hills around Mountain Troodos and in 

the central plains. They contain clay and they show 

volume changes with seasonal changes. 

-12-



Limestone soils: 

Stiff clays: 

White 

gravel 

coloured soils 

content and 

consisting of a high 

negligible organic 

material. Lime is usually 70% of the volume. 

The soils are found in the vil~ages of 

Limassol and Paphos. 

Found mostly in the district of Nicosia. They 

show some variation in their strength with 

seasonal changes. Foundations need to go to 

such depth so that these seasonal changes do 

not affect them. 

Aeolian (windborn): These are unstable sea sand depositions mixed 

with clay covering 1% of Cyprus. They are 

mostly around the coasts and also in the 

plains near to Famagusta. According to clay 

or sand content they create problems 

sometimes to the foundations of buildings. 

2.4.1 Influence of soil conditions on building behaviour and 

problematic soils in Cyprus 

Similar structures located near each other but standing on 

different soil will behave in a different way during the same 

earthquake. This conclusion was practically proved by the 

Tanankai earthquake of 1974 in Japan. 6 The degree of damage was 

higher for buildings erected on clay than those erected on sand 

and rock. The dynamic characteristics of soil layers overlying 

bedrock are of great importance. Stiff soils have smaller periods 

and soft soils have longer periods of natural vibrations. It may 

happen that the frequency of the vibration of the bedrock is 

similar to the frequence of the overlying soil. If it is, then 

resonance is possible, which will magnify the intensity of 

vibration of the overlying soil. Resonance is also possible 

between the structure and the soil (see chapter 3). 

-13-



Japanese seismologists concluded that the intensity of 

earthquakes increases with increasing degree of soil saturation. 

During the earthquake in Chile in 1960 the main reason for 

structural collapses was 

Niigata during the 

the instability of saturated clay. In 

earthquake in 1964, big differential 

settlements occurred due to saturated sandy soil. Some of the 

buildings were tilted and overturned. The earthquake of Caracas 

in 1967 showed that flexible buildings founded on alluvial soils 

will be badly damaged whereas stiff buildings standing on the 

same soil were very lightly damaged. 35 Nevertheless, exactly the 

opposite results were observed for buildings founded on solid 

rock; the stiff buildings suffered greater damages. More recently 

(1985) in Mexico 12 City the soft soil (mostly clay) overlying the 

bedrock was the reason for the magnified intensity of the 

earthquake. The Tacubaya Clay which is found in the first 20 -

30 metres of the strata profile in Mexico City is an extremely 

compressible clay with high plasticity. The low damping ratio and 

the low stiffness led to upward propagation of shear waves from 

the bedrock. 

It looks therefore that two different types of soil can create 

serious problems to buildings: Soft clay and saturated sand. 

Generally in saturated granular soils shaken over a period the 

pore-water-pressure increases and the soil strength drops 

sharply. The soil behaves like a liquid, a phenomenon called 

liquefaction. 31 

Such problematic soils are found in two different coastal areas. 

Soft clay can be met in the district of Paphos and was the main 

reason48 for the damage in 1953. Saturated sand is found in the 

town of Larnaka, very near to the present main airport of Cyprus. 

Unfortunately both areas lie on the southern coasts where most of 

the seismic action has been observed. Buildings constructed on the 

aeolian soils performed well until now since they are stiff 

structures (usual case in Cyprus). 

-14-



2.5 MEASURES AGAINST EARTHQUAKES 

Having in mind the above factors Civil Engineers in Cyprus, 

quite rightly suggested a number of precautionary measures: 55 

a. People should be correctly informed and prepared to face an 

earthquake and its consequences. 

b. Groups of technicians should be formed and trained so that 

they are prepared to proceed immediately in repairing and 

strengthening dangerously damaged buildings after an 

earthquake. Materials should be already stored, ready for 

this purpose. 

c. Important services like hospitals should be safeguarded. 

d. A seismic code should be prepared and established by law. At 

the same time seminars should be organised for Civil Engineers 

and Architects on the aseismic design of structures. 

Since 1985 Civil Engineers have been trying to employ some 

earthquake-resistant design ideas. In 1989 the Association of the 

Civil Engineers and Architects were asked by the Government to 

prepare a seismic code for Cyprus. The committee appointed for 

this purpose presented in 1991 a draft of the code and managed to 

pass it on to the government of Cyprus. Finally, on July 1, 1992 

a new law was imposed making the use of the seismic code 

compulsory for all the buildings. 

2.6 CONCLUSIONS 

There is little doubt that seismic risk is high enough in Cyprus 

to warrant serious measure being taken. The historic events 

presented in this chapter and the geological facts strengthen 

this view. 

Among other measures suggested the most important perhaps is the 

creation of a seismic code for buildings in Cyprus, which in 

combination with a good knowledge of earthquake-resistant design 

practice will enable Cypriots not only to build earthquake

resistant buildings but also to strengthen existing 

buildings. The next chapter will deal therefore with the main 

requirements for seismic design. 

-15-



3. DESIGN OF EARTHQUAKE-RESISTANT BUILDINGS 

3.1 INTRODUCTION 

The objective of this thesis is to examine methods of 

strengthening existing buildings in Cyprus to resist seismic 

loading. As most buildings in Cyprus in recent years have been of 

reinforced framed construction, it is on this type of 

construction" that the thesis will concentrate. In chapter 2 the 

review of the seismic risk in Cyprus has shown that there is a 

63% probability that a strong earthquake will occur every thirty 

years. The need for seismic design in buildings is clear. Before 

building practice in Cyprus is examined, it is necessary to 

establish what constitutes good 

subjected to earthquakes. This 

design practice 

chapter reviews 

in 

the 

areas 

main 

requirements for seismic design of buildings as established by 

several seismic codes, mainly the European and some American 

ones. 

The general background theory presented here can be found in a 

number of standard texts such as references 1, 3, 4, 5, 6 and 13. 

3.2 EARTHQUAKE AND THE AIMS OF THE ASEISMIC DESIGN 

All existing structures stand on soil, 

provide a permanent support for them. Since 

loads are transmitted to the ground, 

strong, stable and reliable. Under normal 

which is supposed to 

all the structural 

it must be adequately 

conditions the soil 

takes all loads coming from the structure. During an earthquake, 

however, the situation is reversed: 

Seismic loads are induced by the 

movement of the soil. Hence the soil is not stable and thus the 

support of the whole structure is unstable as well. 

The only reliable information about seismic loads known to us are 

that they are predominantly horizontal and have dynamic 

character. Vertical seismic loads can only be significant in 

-16-



areas very near to the epicentre of the earthquake. The amount of 

energy released, the direction of the movement, the frequency and 

the duration of the vibration are not known to us. The response of 

a structure to an earthquake depends on a number of different 

conditions such as the period of vibration (T), damping (~), 

"ductility, and of course the soil type. The design of earthquake

resistant buildings is therefore not a simple task to treat 

with confidence. 

It is essential, however, that structures constructed in a 

seismic zone must be able to withstand a sudden ground movement. 

The direction of this attack may be arbitrary and it is not 

possible to orientate the structure in accordance with the 

direction of seismic action. In spite of complexity and 

uncertainty of seismic loads some structures have sustained even 

the most extensive earthquakes. The long term accumulation of 

previous experience helped to work out 

measures that may reduce the disastrous 

These measures constitute the aseismic 

some useful protective 

effects of earthquakes. 

design which aims to 

provide the structure with some properties that will enable it to 

resist earthquakes as much as possible. The targets are, first to 

save human lives and then to reduce damage to buildings. The 

properties required are sometimes contradicting each other. A 

structure has to be stiff enough and at the same time it has to 

be flexible as well. A balance is needed between the two. 

3.3 FLEXIBILITY, STIFFNESS AND DUCTILITY 

Stiffness is needed in a structure so th"at displacements are 

acceptable. In this way interaction between structure, cladding, 

partitions and equipment can be controlled. Nevertheless a very 

stiff structure is not desired due to brittle failure. Problems 

in avoiding re sonance of the structure with the period of the 

site may also appear. For short period sites, like rocky sites, 

more flexible and taller buildings being long period structures 

are appropriate. On soft soils, short period structures (i.e. 

stiff and low buildings) should be designed. 

-17-



A stiff reinforced concrete structure (a common case in Cyprus) 

has another advantageincompariso:ttoa flexible structure. It is 

easier to reinforce it using shear walls; something useful in the 

case of strengthening an existing structure. 

A very important property desired is ductility. Ductility is the 

ability of a structure to distort repeatedly without collapse. In 

other words it is the ability of structural element to undergo a 

considerable amount of plastic deformation before failing. This 

is essential to enable the structure to absorb as much energy as 

possible, generated by the earthquake, and thus to increase the 

resistance of the structure. In addition a ductile failure will 

give time to people to escape. 

A measure of ductility is given by 

Curvature at ultimate capacity 
= ------------------------------------

ay Curvature at first yield of tension steel 

Now, 

= and 

where all symbols are explained in figure 3.1 

Therefore, 

au E • d( 1-n)Es cu 
= 

ay Xu • fy 

Having in mind that, 

b Pv·fyv E; • = 0.0035 + 0.2 +( ) 2 cu 
lc 138 

As • fy 
Xu = 

0.68 fcub 

where fyv is the shear links yield stress 

Pv is a value according to the dimensions of the links given 

-18-
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Then we can conclude that ductility increases by: 

a. increasing the yield stress of the links, fyv 

b. increasing the amount of transverse reinforcement, Asv 

c. decreasing steel yield stress, fy 

d. decreasing tension steel content, As 

e. increasing concrete compressive strength, fcu 

f. increasing the width of the section. 

In figure 3.23 the effects of increasing the amount of transverse 

reinforcement on the stress-strain relationship are shown. 

In figure 3.335 the effects of decreasing the yield strength are 

also shown. 

3.4 METHODS OF ANALYSIS 

Several methods are employed worldwide for seismic analysis. 

These methods may be divided into two categories: 

a. the equivalent static force analysis 

b. the dynamic analysis 

The majority of buildings are designed in accordance with the 

first method of analysis. In this method the seismic loads are 

visualised as static loads applied at the centres of lumped masses 

and causing the same maximum displacements which may be 

experienced when structures vibrate during an earthquake. Hence, 

the real dynamic loads are conventionally sUbstituted by 

'equivalent static loads'. The determination of seismic loads is 

carried out with respect to the dynamic nature of the 

earthquakes. The dynamic characteristics of structures are used 

while determining the seismic loads and while analysing the 

behaviour of the structural members. 

only employed for regular The simplified method, however, can be 

structures having a height of less than 80 

the European Code2 (C.E.B.) and a 
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vibrations shorter than two seconds. The limitation of the 

building height is influenced by experience and common sense and 

is not yet scientifically proved. In other codes these limits may 

differ. Buildings are generally treated as regular ones if they 

comply with the following requirements: 

a. A building should have an approximately symmetrical plan 

configuration with respect to two orthogonal axes. 

b. Masses, rigidity, and flexibility should be uniformly 

distributed across the plan and over the height of the 

building. 

c. At any storey level the eccentricity between the centres of 

mass and rigidity should be very small(~eep~ 29). 

If structures do not comply with the above requirement or if they 

are exceptionally important (hospitals, airports, etc.) then 

dynamic methods should be used. The dynamic methods of analysis 

are based on the analysis of the differential equations of the 

building motions. The acceleration of the soil during an 

earthquake, measured by instruments are used for determining the 

seismic forces. Dynamic analysis is more accurate but difficult 

to employ. It requires powerful computers and expensive software. 

and therefore is only used for major buildings. 

3.5 FUNDAMENTAL ASEISMIC PLANNING 

Decisions made at the conceptual stage are sometimes difficult to 

modify later. Care should be therefore taken at the early stages 

to avoid difficult situations. The behaviour of an irregular 

building can not be predicted with a required accuracy. Even 

sophisticated mathematical models 4 failed to provide reliable 

information about the response of irregular structures to seismic 

loads. 

Excessive deformations may be experienced due to difference in 

rigidity along the height of the building. This may be also 

observed when there is a considerable change of plan dimensions 

or in cases when buildings have 'flexible' and 'rigid' storeys. 
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Before getting into real analysis some important factors should 

be considered. 

3.5.1 Materials 

The choice of the materials should be such as to enable the 

structure to achieve the desirable levels of ductility, stiffness 

and flexibility. Generally the materials to be used should have 

the following properties: 

a. High strength to weight ratio. Light but strong 

materials are needed. Since increasing the natural 

frequency of the structure is something we want to 

achieve, to avoid resonance, then from 

w= ~ 
It is clear that the higher is the value K (stiffness) 

and lower the value m (mass) then the better it is. 

b. High deformability. Plastic deformation of structural 

c. 

d. 

e. 

elements are desirable for energy absorption and to 

avoid brittle failure. 

Low degradation in strength and stiffness under the 

repeated loading. 

High uniformity. This is to prevent separation of 

structural elements. 

Reasonable cost. 

The larger the structure the more important the above properties 

are. The suitability of the commonest structural materials is 

shown in Table 3.1. 4 Of course the order of suitability can not 

really be fixed as it will depend on the local avail.ability of 

materials, the type of structure and the skill of the local 

labour in using them. 
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TYPE OF STRUCTURAL MATERIALS IN APPROXIHATE 

BUILDING ORDER OF SUITABILITY 

High-rise 1 • Steel 
2. In situ reinforced concrete 

l1edium-rise 1 • Steel 

2. In situ reinforced concrete 

3. Precast concrete 

4. Prestressed concrete 

- 5. Reinforced masonry 

Low-rise 1 • Timber 
2. In situ reinforced concrete 
3. Steel 

4. Prestressed concrete 
5. Reinforced masonry 

TABLE 3.1 Suitability of Structural l.faterials 



Obviously steel is an excellent material for earthquake-

resistance since it can have all the necessary properties except 

for one: It is very expensive. Hence it is not usually used for 

low or medium-rise buildings. 

The most 

combination 

can perform 

popular earthquake-resistant material, or 

of materials I. is 

relatively well and 

insitu reinforced concrete 

is less expensive. 

rather 

which 

to steel, however, and some codes limit 

to six storeys. Steel reinforcement 

its use to 

It is inferior 

buildings up 

can improve greatly the 

properties of concrete in a number of ways: 

a. It provide·s stability 

b. It increases shear strength 

c. It confines concrete and provides ductility 

d. It improves joint· rigidity 

An upper limit, however, should be imposed both on the 

reinforcement ratio and the yield strength of the steel. This is 

to reduce possibility of brittle failure as it was explained 

earlier in this chapter (see figure 3.3). An under-reinforced 

structure is still the target. 

Timber is another excellent material for earthquake-resistant 

structures. It is perhaps the only one which can best satisfy all 

the desired properties. Nevertheless there is an indirect 

problem: Its low fire-resistance. Many cases7 ,16 were reported of 

structures made of timber that after standing an earthquake they 

failed because of fire due to failing electric devices. 

Precast (reinforced or prestressed) concrete are considered to be 

poor for earthquake-resistant structures and should be avoided. 

Their main drawback is that they lack uniformity and are not 

monolithic. 
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3.5.1.1 Masonry 

It is stressed by most of the design codes that unreinforced 

masonry is unsuitable in seismic areas. The bricks are brittle 

and have a large stiffness. Failure is normally due to shear 

rather than instability, and the shear cracks expected are as 

shown in figure 3.4 (a)5. 

Reinforcement is therefore essential. Especially horizontal 

reinforcement is very important for all structural members 

subjected to 

reinforcement 

masonry, steel 

Hollow bricks 

3.5) • 

shear 

is shown 

bars are 

may be 

failure. The effectiveness of the 

in figure 3.4 (b) • To reinforce the 
used both vertically and horizontally. 

used or a double wall is used (see figure 

• 

Of greater importance to the Cypriot Engineers is the use of 

infill masonry walls. The full implications of frame-infill 

masonry design are complex. As illustrated in figure 3.6, the 

interaction between a frame and infill masonry created 

problems. 4, 6 The principal effects of infill walls on the 

overall seismic response of a structural frame are: 

a. To increase the stiffness and hence increase the 

effective lateral force (base shear) 

b. To increase the overall energy absorption capacity of 

the building. 

c. To alter the shear distribution throughout the 

structure. 

As the infill is made of a brittle material, the response of the 

whole building will be greatly influenced by the damage sustained 

by the infill and stiffness-degradation characteristics. The wall 

will act as a diagonal compression strut, stiffening for some 

time the frame. When this strut fails suddenly (a brittle failure 

should be expected), it can cause a sudden failure to the frame 

too. 
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Horizontal sliding can also occur causing failure of the panel. 

Once the panel has sheared (sliding) the effect of the diagonal 

compression strut is lost. 

Infill walls show larger ductility than isolated walls. 3 

Additionally, as it was mentioned, the strength 

dissipation capacity of the frame is increased 

and the energy

by the infill 

walls since they are acting as shear walls, up to a certain point 

of course. Thus a frame with a reinforced infill panel will 

remain effective against earthquakes despite the problems 

described above. 

3.5.2 Building configuration 

World-wide experience has shown that the architectural 

engineering of buildings is an extremely important factor in 

resisting seismic loads. The structural response of a building 

heavily depends on its arrangements in both plan and elevation. 

General principles of architectural planning are presented in a 

form of empirical recommendations. A general concept for small to 

medium-size buildings in seismic areas is to have a clearly 

defined simple plan and elevation. Buildings should preferably 

have rectangular or circular plan configuration, symmetrical with 

respect to at least two orthogonal axes. The distribution of 

masses and rigidity should be uniform and symmetrical both in 

plan and elevation. The centres of mass and rigidity at each 

floor level should coincide. The location of the centre of mass, 

Cm may be determined by, 

where xm 

Z Qu • Xu 
= 

Z Qu 

is the distance to the centre of mass from a certain 
point in the x-direction 

are the gravitational loads concentrated at specified 
points. 

is the distance to the loads from a certain point. 

(see figure 3.7 for more clarification) 
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The location of the centre of rigidity, Cr may be determined by, 

where xr 

= 

is the distance to the centre of rigidity in the 
x-direction 

is the flexural stiffness of member 1 and at the 
level m (relative stiffness will be used). 

is the distance of member 1. 

The s~e,pr~ce~ur~ should be followed for Ym and Yr in the 

y-direction. Since it is almost impossible for the two centres to 

coincide perfectly some eccentricity is expected. The 

eccentricities, e ox (x-direction) and e oy (y-direction) are 

limited by the European Code as follows: 

where 

= and = 

where is the torsional stiffness (Kt = GJ) 

Kx is the flexural stiffness in the x-direction. 

If these limits are exceeded then the structure is an irregular 

one and dynamic analysis is necessary. On the other hand, if the 

eccentricities are within the limits then almost all the codes 
f~e~ 

suggest a minimum eccentricity so that torsionallare still taken 

into account. 

The length to width ratio of buildings should be less than 2. In 

this way the effects of torsional motion will be small and 
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additional displacements due to torsion will not considerably 

influence the level of stresses. 

Corners of buildings create specific problems. Re-entering 

corners should not exceed 25 per cent of the building external 

dimensions. Shapes of the form of L, H, T, or Y should be 

avoided, because they introduce complexities into the analysis. 

Points of stress concentration are created and it was observed 

that such buildings were often damaged in earthquakes. 

There are two alternative possibilities to tackle the problem if 

such shapes cannot be avoided: Either structural division of 

buildings into simple parts by means of aseismic joints, or by 

strengthening of some structural members using shear walls (see 

figure 3.8). 

Aseismic joints divide long or irregular buildings over their 

whole height, leaving a gap of width greater than the sum of the 

possible displacements of the two adjacent blocks during an 

earthquake. This gap is essential to prevent the so-called 

'hammering effect': collision between the two separated parts. 

According to USA codes l displacement of structures should not 

exceed 0.5% of the floor height and therefore gap width, A is 
given as: 

A = 0.005 hl + 0.005 h2 + 2 (cm) 

where hl and h2 are the height of floors in blocks land 2 

respectively in centimetres. 

The USSR cod~5suggests a different formula for the gap width: 

h 
A = 3 cm + ( --- • 2 

5 

where h is the increment of height above the first 5 metres. 

The minimum width allowed is 3 centimetres. 
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Generally seismic joints should be provided in the following 

cases: 

a. Buildings with complex shape in plan. 

b. Buildings with large dimensions in plan, length or 

width. The length of each block should not exceed 60 

meters (see figure 3.9). 

c. When there is a difference between heights of adjacent 

parts of a building exceeding 5 metres. 

d. When different parts of a building have floors located 

at different levels. 

e. When foundations are located on non homogeneous soil 

having different strain and strength capacities under 

different parts of the building. 

The vertical dimensions of the building should be also carefully 

designed, as to provide uniformity, continuity and 

proportionality. Drastic changes should be avoided as shown in 

figure 3.10. The height of the building is sometimes limited. 

Some codes prefer restricting height to width ratio. It is 

commonly accepted that buildings having a height to width ratio 

less than 4 may be classified as relatively rigid, with adequate 

proportionality preventing overturning moment effects. 

Sudden changes should also be avoided in the vertical 

distribution of stiffness and strength. Soft stories (a common. 

case in Cyprusl) tend to collapse because of concentration of 

plastic deformation. This may cause the entire building to 

collapse. 

Care is also needed in the horizontal distribution of stiffness 

and strength. Short columns (which are very stiff) should be 

avoided. Especially the combined use of short 

columns creates differential problems. 

and 

Note 

long-slender 

here, that 

non-structural members like masonry walls and parapets can alter 

the properties of a column. Such members should be separated from 

the columns leaving a gap in between. 
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To complete this topic some additional recommendations are given 
in figure 3.112 ,3,4,5,6,13,38 

3.6 LOAD COMBINATION 

All structures to be constructed in seismic regions should be 

analysed twice. First for the normal load combination and 

for the seismic load combination. After the analysis of 

cases, the most unfavourable stress-strain conditions should 

then 

both 

be 

considered as the design criterion for the detailing of the 

structural members. 

To analyse the action of seismic loads a 

of external loads should be adopted. 

particular combination 

It will include all 

permanent and reduced variable and all seismic loads. Dead and 

permanent live loads are usually taken with their characteristic 

values (i.e. safety factors are equal to 1.0). The variable live 

loads, whose duration of application is long enough for the 

probability to occur simultaneously with seismic action, are 

included in the load combination reduced by a factor ~. Factor ~ 

varies from country to country. 

Generally load combination including seismic loads apparently 

vary in the different codes. A brief reference is made here to 

some·of them. 

CEB (European model code): 

where Sd 

S 

G 

is the seismic load combination 

is a soil factor 

is the nominal value of all permanent loads 

P is the prestressing force (for prestressed concrete 

structures) 

E is the design value of the seismic loads given as 

equal to G + ~PLQL~ 
QL~ are the fractile values of all the variable loads. 
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The Greek Code35 : 

Sd = 1.0 G + 1.75 E + 1.0 ~Q 

where E = Cd (G + ~Q), Cd being a seismic coefficient 

The Indian Code35 : 

Sd = S (1.4 G + 1.4 E + 1.4 ~Q) 

where E = Cd (1.35 G + ~Q) 

The U.S.S.R. Code24 : 

Sd = 0.9 + 1.0 E + E~Q 

where E = G + 1:~Q 

Note that in this expression G and Q are design values and not 

characteristic. ~ is given as equal to 0.8 for long-term live 

loads and equal to 0.5 for short-term. 

The U.S.A. Code (ATC-3)5: 

Sd = 1.2 D + 1.0 L + 1.0 S + 1.0 E 

or Sd = 0.8 D + 1.0 E 

where D is the dead load 

L is the live load 

S is the snow load 

and the ACI CodeS 

Sd = 0.75 (1.4D+ 1.7 L + 1.87 E) 

or Sd = 0.90 D + 1.43 E 
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The design loads for a structure will vary from code to code. Not 

only because the seismic codes use different load combinations 

but also because the same variables are given different values 

from country to country. Of course nobody can say which code is 

more accurate. Each country (each area) should follow its own 

seismic code since each country has its own particularities. 

3.7 THE EOUIVALENT STATIC FORCE ANALYSIS 

When the equivalent static analysis is adopted, the design value 

of horizontal seismic force, which is to be applied at each floor 

level, is usually defined as follows: 

where 

3.7.1 

is the design seismic coefficient 

is the distributed lateral force at floor i 

is the total weight of floor i determined with the 

load combination factors given for seismic 

analysis. 

The seismic coefficient. Cd 

The seismic coefficient, Cd' depends on five main factors: 

a. seismicity of the region being considered 

b. response of building to vibrations 

c. soil conditions 

d. occupancy importance of the building 

e. ductility level desired. 

The CEB code recommends a comprehensive equation for determining 

the seismic coefficient, 

1 
Cd = I • A • S • a • 

K 

where: 
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I: The importance factor depending on the class of the building. 

The class of a building depends on the use, on its content 

and on the class of the importance of its function. Up to 

five classes my exist, in some codes, with class I being the 

most important and class V being insignificant for seismic 

design. Values vary from 0.5 to 1.5. 

A: The relative value of the maximum soil acceleration, given by 
Ycmax 

A = 
g 

The seismic codes assign a different value for each seismic 

zone according to the intensity of the earthquakes expected. 

Values vary from 0.01 to 0.4. 

S: The soil conditions factor. Usually three soil types are 

considered: Rock, stiff soils and soft soils. Values vary 

from 1 to 2. 

a: The special amplification factor, depending on the frequency 

of the motion, and the natural period of vibration of the 

building considered. Different codes give different 

expressions for determining factor a. 

a 
(USA: a = 3~' where a = 1.20, 1.44, 1.80 for soil types 

a 
I, II and Ill, USSR: a = , where a = 1.00, 1.10 and 1.5. 

T 

The maximum value of a should not exceed 2.5. 

K: The behaviour factor according to the ductility level 

desired. Usually three levels are considered, I being for the 

less important classes of buildings and class III for the 

very important ones. Values vary from 2.0 to 5.0. 

Other codes recommend similar expressions for calculating the 

seismic coefficient. The same factors are taken into account. 
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Nevertheless they sometimes give different results. Most of the 

codes of the American countries give the following formula: 

where 

Cd = Z • I • K • C • S 

Z is the zoning factor (corresponding to a in the CEB 

formula) 

I is again the importance factor 

1 
K is the behaviour factor (corresponding to in 

K 
the CEB formula) 

1 
C given as ---~ 

15 

S is the soil conditions factor. 

A comparison of the different methods for calculating, Cd' 
J 

specified by codes of several countries is shown in Table 3.2 

(reproduced from Wakabayashi M.3 'Design of earthquake-resistant 

buildings' with the addition of the method suggested by C.E.B.). 

3.7.2 The distribution factor, Yi 

According to CEB the distribution factor, Yi standing for the 

i-th floor is given as, 

It is believed, however, that this expression will not be 

accurate enough for buildings with more than five floors. Some 

codes 13 suggest that for buildings with more than five floors, 

85% of the lateral seismic force should be distributed according 

to the above formula and 15% of the force should be included as a 

concentrated force at the top of the building. 
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Countries Cs = ZII;CS 

Tlnd 

codes . Z I K G S 

C"ln1.d:'l A I K S F 
v. -

0.02-0.08 1.0-1.3 0.7-3.0 0.5/T~=1 1.0-1.5 

Chile C 

1 O'.a-l.2 0.8-1.2 0.101'r/(T'+T1-1 

Ghinn. a C a/a max mu 
0.2<;0 .2/'r-O. 7/'r!:-1 0.23-0.90 0.25-0.50 

norm.'1.ny ao a ~ K 
\'feat 0.025-0.10 0.5-1.0 0.528/TO•3=1.0 1.0-1.4 

In1in ·0 I C B 
0.01-0.03 1.0-1.5 0.2-1.0 1.0-1.5 

Italy B ~ < 
0.01 (8-2) 1.0,1.2 0.362/'1'% =1 1.0,1.3 

Japmi CoZ I D Ht 
0,2 1 1 1 for T<'£ 

0.7-.1 .0 1 0,25-0.55 1-0.2(T/T
3
-1), for Ts!:fJ: 2T. 

1.0 0.25-0.55 
1 6'r /T . s for 2T30: 

Hew C I 5'1 
Zealand 1,0-1.6 0.8-2.5 0.8-1.2 

Romania Ks ~ B 
0,07-0.32 0,15-0.35 0.75"3/T ~2.0 

United Z I K c SClot .0) 
St9.tes UDC I+T/T.-O.5(T/T.), 

3/16-1.0 1.0-1.15 0.67-2.5 1/15T~~.12 for 'UT ~1 .0 • 1.2+0.6T/T.-0.3(T/ • for TIT. 1.0 

ITC-3 Au I/R 1.2/T :v, S 
0.05-0.40 0.125-0.8 1.0-1.5 

U.S.S,R K B = llTi c 
0.025-0.10 0.5-2.0 0.3-3.0 0.5-2.0 

Yuzosh.vi. K • Ko " -'p Kd 

0.025-0,10 0.75-2.0 1,0-2.0 0.5/T-o.81T 
CEB A I 1/'\ a S 

0.4 1.0 1/38 2.5 1.5 

It Is assumed th~t Z (or A) Is m~ximum, I=1, reinforcei concrete moment resisting frame, 
hard <;roun~ ani T = 0,5 S 

TABLE 3.2 Calculation of the Seismic Coefficient usin~ Codes of Several Countrios 

J!!x:a:nples 

of 

Cs Rem~ks 

0.04 FS ,; 1.0 

Irs=O·20-0.90 

0.11 

0.07 

0.06 

0.10 3=2 

0.20 

0.30 

. 
1.2 

0,08 

0.09 ps!O.14 
) , 

0,11 

0.10 

0.10 

0,43 



Even more accurately this expression is given20 as follows: 

h· k • W· 
~ ~ 

Yi = 

where K = 1 for buildings with T < 0.55 secs. 

K = 2 for buildings with T < 2.55 secs. 

Interpolation should be used for values of T between the above 

limits. 

Newmark & Hall18 (1982) suggest a useful method for checking 

whether the lateral force distribution is in agreement with the 

structure as designed: 

1. Calculate lateral forces, fi 

2. Select member sizes 

3. 

4. 

Calculate lateral 

Recalculate 

equation. 

displacements, 

replacing hik x' ~ in the above 

5. If the two values calculated for fi differ more than 30% 

then dynamic analysis is needed. 

3.8 DYNAMIC ANALYSIS 

The total lateral force, Fn (or base shear) is calculated taking 

into account the vibrational modes. There exist as many 

vibrational modes as the number of storeys. So the base shear for 

the nth mode (storey) is given by: 

where 

~ = 
Ap 

Ag 

is the acceleration of gravity 

Ap is the peak response acceleration, 

the 'ordinate corresponding to the nth natural 

period of the pseudo-acceleration response spectrum 

and damping ratio' as quoted from Wakabayaski M. 

'Design of Earthquake-Resistant Buildings'. 
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b can be obtained from the 

example of a design spectrum 

3.12. 3 

design spectrum. An 

is given in figure 

Wn is given by, 

(Zwi • ~in)2 

where wi is the weight lumped at the i-th level and 

~LV the displacement at the i-th level produced by 

the nth vibrational mode. 

For most cases only the first mode (fundamental) need to be 

considered. This is known as the simplified dynamic analysis and 

is only allowed for regular buildings. 

Response spectra, developed specifically for a given site are 

sometimes used for determining lateral forces. The curves of a 

response spectrum are presented on a 'four-way log plot' as shown 

in figure 3.13. 4 Damping factors are also taken into account 

when constructing the graph. Damping is induced not only by 

structural members but mostly by architectural and non-structural 

features like interior partitions or window walls. 

The lateral force can be distributed to each floor, i, by the 

following expression: 

Z(w' .~. ) 
~ ~n 

For reasons that will be explained later, Dynamic Analysis is not 

necessary for buildings in Cyprus and therefore only a brief 

reference was attempted here. The aid of computers is 

to proceed into employing a dynamic analysis method, 

for a multi-mode one. 
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3.B.1 Periods of natural vibrations of buildings 

The period of natural vibration (T) of a building is needed not 

only for dynamic analysis but is usually also required for the 

equivalent static analysis. The fundamental period is not just a 

design information required. It is essential to make sure that 

the fundamental frequency does not lie within the range at which 

resonance is likely. If the frequency of the forcing vibration 

becomes equal to the natural frequency of the structure resonance 

will occur and very high deflections and stresses are possible. 

In such cases, damping is of great importance because it can 

reduce the maximum response at resonance. Damping, that is loss 

of energy due to internal thermodynamic or fictional effects, may 

be provided by energy-absorbent finishes or partitions. 

Every building has its own periods of natural vibrations, 

depending on several factors but mostly on the stiffness of the 

structure, the magnitude and the structural system and its 

dimensions. The first mode (fundamental) of vibration is the most 

important. To calculate the fundamental period accurately is not 

a simple task. Most of the seismic codes,35 however, based on 

experimental results suggest simplified expressions for determining 

the period, T, like: 

T1 = 0.09 H / B (France, Iran, Poland) 

where H is the height and B the width of the building. 

T1 = 0.1 N (New Zealand, Canada) 

where N is the number of storeys. 

Tl = N/12 (European Code - CEB) 

3.9 DIMENSIONING AND DETAILING OF REINFORCED CONCRETE 

To achieve the desired level of ductility, reinforced 

concrete should be properly designed and dimensioned. The 

development of plastic hinges in columns should be avoided, since 
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a column mechanism will create the total collapse of the 

building. The location of the hinges should be shifted, by proper 

detailing, towards the mid-span of beams. Generally beams should 

be designed to have lower rigidity and lower strength capacity 

than columns, using for example a different grade of concrete 

mix. 

3.9.1 Dimensioninq of beams and columns 

Dimensioning involves consideration of geometrical constraints 

for beams and columns. Different seismic codes recommend similar 

constraints. Some general comments can be make looking at these 

codes: 

Beams: width is constrained in respect to the depth of the beam 

and to the width of the column. It is usually limited to 

a minimum value of 200 millimetres. As it was seen 

previously, 

width of the 

ductility is improved 

beam, up to the point of 

by increasing the 

course that the 

beam is still a 'light but strong element'. 

columns: Again width is constrained in respect to the depth of 

the column. 

ductility 

It is also constrained in 

level desired. A minimum 

respect 

value 

to 

of 

the 

250 

millimeters is sometimes given. Obviously increasing the 

dimension of the columns will not only improve ductility 

but it will also decrease the shear stresses as shown 

by, 

v 
v = 

bd 

The minimum values of width given for both beams and columns are 

based on observations and not on any theory. 

Detailing of both beams and columns according to some codes (CEB, 

ACI, ARC) is shown in figures 3.14, 3.15 and 3.16. Some 

additional, very important, information will be given here: 
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Hinge zone: The plastic hinge zone is a critical zone 

where additional reinforcement is needed. The 

plastic hinge itself is shifted away from the 

column preventing its collapse. Within the 

hinge zone no splices of steel reinforcement 

is allowed. 

Beam-column joint: The joints should not fail before failure of 

the members framing into joints. In 

prevent brittle failure of the 

capacity should be 

order to 

joint its 

25% higher ultimate bearing 

than that of the members. Figure 3.17 shows 

the forces acting on a joint. The most common 

mechanisms of failure are: 

a. shear with the joint 

b. anchorage failure of longitudinal bars 

c. bond failure in longitudinal bars passing 

through the joint 

Resistance to failure is applied by a compressive strut formed in 

the concrete (figure 3.17 c). This strut can be strengthened by 

steel reinforcement. Properly designed reinforcement will 

increase the rigidity of the joint thus preventing cracking 

tangentially to the failure plane. Therefore the longitudinal 

bars coming both from the column and the beams should continue 

across the joint. The transverse reinforcement (links) of the 

column must also continue through the joint. 

Transverse reinforcement: The purpose of the transverse 

reinforcement are: 

a. to provide shear resistance 

b. to confine concrete in order to increase its ductility 

as shown in figure 3.1835 

c. to restrain laterally the longitudinal bars subjected to 

severe plastic deformations and buckling 

d. to improve bond between steel and concrete. 
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The transverse reinforcement should be denser at the critical 

regions and their spacing is specified by the seismic codes, 

according to ductility level. 

3.10 SHEAR WALLS 

A shear wall is an essential element in tall reinforced concrete 

structures and a valuable element for other structures. In a 

frame system a shear wall resists lateral seismic force while the 

structure behaves elastically. The combination of a frame system 

with shear walls has two main advantages: First it is more 

economic than using a frame system on its own. And second the 

combined system is more ductile38 (see figure 3.19). Ductility of 

course also depends on the steel reinforcement ratio given as: 

0.0025 < P < 0.04 

0.0017 < P < 0.04 

for mild steel 

for. high yield steel 

Reinforcement is usually provided in the form of a grid and it is 

needed in both faces of the wall. The reinforcement ratio 

requirements should be satisfied by both horizontal and vertical 

reinforcement. The two edges of the wall are considered to be 

critical since strain is maximum there. At a distance, Lc from 

the edge therefore extra reinforcement is needed according to 

seismic codes. The critical length, Lc is given by EC8 as: 

or 

where bw is the thickness of the wall 

where Lw is the length of the wall 

Openings in a shear wall should preferably be avoided, otherwise 

additional strengthening is needed around the openings, since a 

smaller length of the wall will have to resist the same amount of 

strain. It is recommendable in such cases to use diagonal 

reinforcement. Diagonal reinforcement (figure 3.20) can provide 

larger shear strength, larger ductility and it can slow down 

degradation. 4 
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3.11 FOUNDATION 

Horizontal shear is imported to the building by the movement of 

the supporting ground. Although shear failure between foundation 

and ground is uncommon, some measures are recommended for 

improving resistance against earthquakes. 

The supporting soil should be solid and rigid and 

under the whole base of the building. Two types 

create problems: 

homogeneous 

of soil may 

a Dry sands, because of great possibilities for excession 

settlement. As a result of the shaking the sand will be 

consolidated. 

b. saturated sand, because of the danger of liquefaction. A 

sharp drop in shear strength will occur when the soil is 

shaken over a period of time. 

If of course there is no chance of avoiding such conditions then 

the properties of the soil may be improved by a number of methods 

like vibro-compaction, drainage increasing the grain structure 

stability .31 

However, even bedrock can create problems. It can modify seismic 

excitation. It is recommended that tall structures built on rock 

should be flexible to avoid resonance. For the same reason 

low-rise structures built on soft clay should be stiff as it was 

explained earlier in this chapter (3.3). 

Provision of ductility in the foundations is unusual. It is good 

practice to tie 

the bottom of 

avoided. 

together the individual pads using tie-beams at 

the foundations. Stepped foundations should be 
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3.12 NON-STRUCTURAL ELEMENTS 

A large part of the damage by earthquakes is non-structural. 

Failure of non-structural elements, like windows, ceilings, 

mechanical equipment, parapets can destroy humansafety systems 

blocking evacuation routes. They represent usually 70% of the 

value of a building. 

Nevertheless few codes take them into account and little basic 

research has been done. They are, however, equally important with 

the structural members to the maintenance of the integrity of the 

structure. 

For Equivalent Static Force acting at the centre of gravity of an 

architectural element was determined by the Uniform Building Code 

(U.S.A.) as: 

where z is the zoning coefficient 

is the importance of the building 

is the seismic coefficient given Table 3.3 (a)6 

is the weight of the element 

The building Seismic Safety Council (USA) suggests an alternative 

approach: 

Fp =Av Cc p Wp 

where Av is the ground acceleration 

Cc is a seismic coefficient given in Table 3.3 (b)6 

p is a performance criterion factor (values from 0.5 

to 1.5) 

Some more practical measures are also recommended by these two 

codes: 
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PART OF BUILDING DIRECTION OF FORCE C 
P 

Non-structural walls Normal to plane 0.3 
Chimneys Any direction 0.8 

Parapets Normal to plane 0.8 

Appendages Any direction 0.8 

Tanks connected to Any direction 0.3 
a building 
Suspended ceilings Any direction 0.3 

TABLE 3.3 (a) The seismic coefficient, Cp 

ARCHITECTURAL COMPONENTS C c 

EXcerior non-load-bearing walls 0.9 

Wall attachements 3.0 

Veneers 3.0 
Roofing units 0.6 

Stairs 1.5 
Elevators 1.5 
Corridors 0.9 
Partitions 0.9 
Ceilings 0.9 
Architectlt,ral equipment mounted 0.9 
on walls or floors 

El~trical, Fire, Lighting systems 2.0 

TABLE 3.3 (b) The seismic coefficient, Cc 



a. All non-structural members 

anchored. 

should be adequately 

b. Mechanical equipment should be preferably located at the 

lower floor. 

c. Non-structural infill panels should be strong enough and 

flexible to absorb deformation. These panels should be 

separated from the structure especially when flexible 

frames exist. The gap between the frame and the panel 

should be at least 40 mm. This of course will create 

problem with sound and fire-resistance, although special 

materials can be used to fill the gap. 

d. Ducts for services should not be tied to the 

non-structural partitions. 

e. Brittle finishes should be avoided or specially detailed 

since it is difficult to avoid them. Heavy finishes like 

marble or stones should be limited. 

f. A grid should be used at the windows to hold the glass. 

Non-structural elements, although not extremely important, 

sometimes can affect indirectly or even directly the earthquake 

resistance of a building. They can also put in danger the safety 

of human lives thus preventing us from achieving the most 

important aim of the aseismic design: to save lives. It is 

therefore essential to give more attention to the non-structural 

elements and more research should be done in this area. 

3.13 CONCLUSION 

In this chapter a review of the main requirements for the seismic 

design of buildings has been presented. A number of important 

parameters have been established: 

a. The need for ductility to allow large deformation to 

occur and absorb energy. 

b. Buildings should be regular with their centres of mass 

and rigidity being close enough, to avoid complication 

in analysis and torsional problems. 
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c. stiffness should be distributed in all stories equally 

whereas 'soft stories' should be eliminated. 

d. Beams should be designed to fail before columns to 

create a failure mechanism that will not lead to a total 

collapse of the building (as far as possible). 

e. Beam-column joints should be adequately reinforced and 

strengthened zones should be provided in adjacent beams 

and columns to shift plastic hinge formation far enough 

away from the joint. 

f. Shear walls greatly improve the earthquake resistance of 

buildings. 

g. Non-structural elements should also be designed to 

resist seismic loads. 

Having established the major points required for good performance 

under seismic loads, it is now possible to examine any building 

practice to see how that matches the requirements for 

earthquake-resistant design. 
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4. BUILDING PRACTICE IN CYPRUS 

4.1 INTRODUCTION 

In the previous 

established and 

chapters the seismic risk for Cyprus has been 

structures to 

a summary of good design techniques 

withstand seismic loading has been given. In 

in Cyprus building practice 

for 

this 

is chapter a review of established 

given. Prior to 1984 little 

design but after that date new 

attention 

design 

was given 

rules were 

to aseismic 

gradually 

introduced. In 1987 the Cyprus Association of Civil Engineers 

published recommendations to improve seismic design and in 1991 a 

(new) draft code for seismic design was published. 

4.2 BUILDING IN CYPRUS UNTIL 1984 

During the last forty years or so, almost hundred per cent of the 

buildings in Cyprus have been constructed·in reinforced concrete. 

Concrete has replaced the old traditional materials used, namely 

the adobe block reinforced with hay for the walls and the timber 

and tiles for the roofs. Everywhere in Cyprus now, reinforced

concrete framed structures are erected. The infill panels between 

the framework are made of brickwork. 

It is quite useful to mention something about the Cypriot 

attitude when building their houses. The appearance of the house 

not only from outside but inside as well, is the leading factor 

influencing its architecture. For the owners (clients), 

aesthetics are much more important than anything else. Usually the 

bigger room in the house is the 'sala' the guests' room. It is 

the' show room of the house with the best possible furniture and 

decoration. Although the 'sala' covers usually a large area, no 

columns should appear in the middle of the room. It is also very 

common in Cyprus to see an 'open' ground floor (see photo 4.1) 

where the house is actually raised from the ground and built on 

columns. Generally the effort to make an interesting-looking 
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Pboto 4.1. An "open" grOl.md floor 
a comnon case in Cyprus . 
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house led to buildings of irregular shapes, with non-uniform 

stiffness and flexibility. This is considered as a very bad 

practice when considering earthquake-resistant structures, as it 

was explained in chapter 3. 

Until 1984 there was a lot of confusion in the rules governing 

the design of the structures and even today there is still not an 

official code of practice, uniformly applied in the whole of 

Cyprus. Since there was not a university, the Cypriot Civil 

Engineers are graduates of Greek, English and American 

universities and also of some eastern European ones. Therefore 

the designers were employing methods recommended by the codes of 

these countries to produce their static analysis and design the 

structures. This fact created a non-uniformity in the building 

industry and it was difficult to control or check the design. 

Additionally site-supervision by a professional Engineer was not 

forced by law and this led to structures being constructed 

differently from the design specified. 

4.3 QUALITY OF WORKMANSHIP, MATERIALS AND DESIGN 

In Cyprus, education is considered to 

although there are no universities 

be very 

yet, ten 

important, and 

thousand Cypriot 

students are travelling every year to other countries to study at 

universities. Some more are studying at the local colleges and 

institutes. The majority of young people - and not only the elite 

seek to acquire a higher standard of education. This has 

obviously created a problem to the building industry. Where the 

old-experienced skillful craftsmen are becoming extinct. The new 

craftsmen, being a selection of second class, cannot really reach 

the high standards of the old craftsmen. As a result the quality 

of workmanship is lowered and professional supervision is 

therefore becoming more necessary. 

until 1980 or so, concrete was prepared by labourers at the site 

using a small mixer. Now, ready-mixed concrete is used. The 

concrete is prepared according to standards (which are similar to 

British standards). Concrete of Grade 20 (1:2:4) was usually used 
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for slabs and beams and Grade 25 (1:1 1/2:3) for columns. Floor 

slabs, they are generally constructed with a thickness of around 

150 to 200 mm (in agreement with British standards). 

This thickness is considered to be considerable and the slab is 

heavy as far as earthquakes-resistant buildings are concerned. 

The reinforcement used consists of steel S 400 (yield strength = 
400 MPa). 

until 1984 no aseismic measures were taken. The common practice 

in fixing the reinforcing bars was in some cases very 

unfavourable to aseismic measures. It was not only the common 

practice, where these problem arose, as the detailing drawings 

made by the designer often specified bad aseismic details. Some 

examples of bad practice (as far as aseismic design is concerned) 

can be given here: 

Foundations-Stub-Columns 

The individual pad bases were not tied together as is generally 

recognised in aseismic design. Additionally a particularly bad 

practice,was employed by some contractors to economise on the 

concrete in the foundations. They did not fill the pads up to the 

level of the bottoms of the ground beams and thereby created the 

so-called stub-columns. These stub-columns (see figure 4.1) were 

not taken into account in the analysis or design and created a 

very undesirable 'stiff-storey' contrary to the need to maintain 

an even stiffness distribution between the stories as explained 

in chapter 3. 

Joints 

Until 1984 the only reinforcement of the joints were the main 

longitudinal bars of the columns. No links were passing through 

the columns and of course no extra reinforcement was included. No 

critical zones were identified around the joints. So plastic 

hinges were likely to form at the joints leading to catastrophic 

collapse mechanism under seismic loading. 
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Walls 

The walls, 

made of clay 

now, are everywhere made of bricks. The bricks are 

and are manufactured in the local factories. 58 They 

exclusively have dimensions of 100 X 200 X 300 mm, with either 

circular or squared holes (see photo 4.2). There is not much 

difference between the two types, structurally. According to 

CYPRUS STANDARDS19: 1983 the crushing strength of these bricks 

should not be less than 1 N/mm2 • Unreinforced masonry walls 

should be avoided for earthquake-resistant buildings. The 

ductility of a masonry wall can be 

with steel. However no reinforcement 

improved 

at all 

by reinforcing 

is employed 

it 

in 

Cyprus even today. The thickness of the external walls is 

usually 200 mm and that of the internal walls 100 mm. Bad 

practice is also observed when building the top layers of bricks 

as shown in photo 4.3 Such walls are not uniform and their 

behaviour during an earthquake is unpredictable. Concrete shear 

walls were very rarely employed. The only case where some sort 

of shear walls were used, was when constructing the core of the 

lift in multistorey buildings. 

4.4 BUILDING IN CYPRUS SINCE 1984 

In 1987 the Cyprus Association of Civil Engineers and Architects· 

published a booklet called 'Measures For Protection From 

Earthquakes'. It was a set of recommendations to Civil 

to help them improve the earthquake resistance 

structures. The publication of this booklet came as a 

Engineers 

of their 

demand by. 

many Engineers who had already started applying some ideas since 

1984. This set of recommendations was far from being a code, 

nevertheless, it was a first step towards designing earthquake

resistant structures. However civil Engineers had to refer to 

codes of other countries for the design, but the booklet was 

setting a number of conditions to be satisfied. 

According to the recommendations using a recognised method 

(seismic code) a seismic analysis should be produced. Structures 

lower than 3.5 metres and not longer than 6 metres needed not to 

be analysed for seismic forces, as long as shear walls were 
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Photo 4 . 2 . Typical clay bricks used in Cyprus. 

Photo 4.3. Bad practice seen on the top layer of bricks. 



constructed in the framed structure. Generally the booklet gave a 

lot of emphasis to the construction of shear walls. A very 

interesting formula was also given as a means for determining the 

length shear walls needed. This formula has not been encountered 

in other literature: 

WaIl > 
5500 

where WaIl = section modulus of the shear wall in m3 

H = Total height of the building in m 

F = Area of each floor in m2 

As 
= seismic acceleration = 

g 

To prove the above expression it is assumed that for a building 

of total height, H and floor to floor height equal to 3 metres, 

mass of each floor = 1000 F (Kg) (= 10 KN/m2 ) 

lateral force per floor = 1000 Fe9 (Kg) 

then, 

1000°Feg 
force per metre height = (N/m) 

3 

moment M = 
2 

1000 oFeoH2o g 
= 

6 

Assuming that, 

o = 85 X 104 x g N/m2 
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Moment M 
and wan = = 

stress 0 

1000°Fe:oH2o g 
= 

6 X 85 X 104 X g 

H2Fe: 
= m3 

5100 

which is very near to the suggested formula. 

Now, Wall = for a wall (= for a core) with a length of d 
6 12 

metres and a width of b metres. Therefore using. 

= 
6 5500 

and assuming that the width of the wall is 200 mm (minimum width 

according to the conditions and most common case in Cyprus), then 

the length of the shear wall can be calculated. Note here that 

the minimum length recommended is 1.2 metres. 

As far as the seismic acceleration, A is concerned, it was given 

as, 

Zone I 

Zone II 

Zone III 

A = negligible 

A = 0.06 g (cm/sec2) 

A = 0.10 g (cm/sec2 ) 

The three zones are shown in a Map in figure 4.2 which is also 

included in the booklet. 

Otherwise the booklet (consisted of 7 pages) is dominated by 

instructions on constructing shear walls. 

Following the publication of the booklet a number of seminars and 

short courses were organised informing engineers on how to 

produce an aseismic design and asking them to start designing and 

constructing earthquake-resistant structures. 
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Even without a Law forcing them to do it, Cypriot engineers have 

since 1984 started applying the new 'ideas' bringing a number of 

changes. These, 

one side, and 

of course went as far as their own knowledge, on 

building tradition on the other, allowed them to 

go. 

4.5 RESULTS 

growing 

mostly 

still 

The changes brought into building as a result of the 

awareness for the need for aseismic design, were 

structural. Architecturally rather irregular shapes are 

produced and existing practice was only partially improved. 

Masonry is still not reinforced, whereas the so-called 'stub 

columns' are limited but still re-appear sometimes, (see photo 

4.4 (a) and (b)) especially in sites where no professional 

supervision exist. The absence of a law forcing professional 

supervision has created many problems allowing bad practice to 

continue. However, a new law has now been imposed which makes 

supervision compulsory. 

Most of the changes have been observed in the construction of the 

frame. First the size of columns and beams was generally 

increased which has caused a lot of argument and disagreement 

with Architects. Civil Engineers wanted the columns to have a 

minimum width of 250 mm, in accordance with the recommendations 

given by several seismic codes. The Architects did not like the 

idea because it created architectural problems. The clay bricks 

used in Cyprus can match in walls of either 100 mm or 200 mm 

width since they have dimensions of 100 x 200 x 300. Therefore 

they did not want either the columns or the beams to create any 

projections and they 

difference if the width 

supported the principle that 

is 200 or 250 mm as long 

aseismically reinforced with steel. 
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?lDto 4 .4. (b) . Stub-Columns are thus 
:reated . The construction of ground 
JealllS will follON as shown in figure 4 . 1 . 

Photo 4 . 4 (a) . Columns filled 
with concrete up to the surface 
of the ground . 



Nevertheless, although 

width of the column will 

it cannot be proved, an increase in the 

increase the ductility and the shear 

strength of the concrete preventing it collapsing in a brit le way 

as it was explained in chapter 3. At the moment both columns and 

beams have an increased depth whereas the width is usually kept 

to 200 mm. 
\ 

Shear walls are now well. introduced (see photo 4.5) and 

especially at the corners of the building (photo 4.6). The 

problem is that they are sometimes not positioned correctly. It 

is not enough to introduce the right amount (length) of shear 

walls but some experience is needed to position them in a way 

that they will serve their aims. Sometimes they are positioned in 
such a way that they create torsional problems since the centre 

of rigidity and the centre of mass are well apart. 

Seismic joints are sometimes employed especially in buildings 

with a large plan area or a non-symmetrical shape in plan. 

Where most of the improvement was made, however, was in the steel 

reinforcement detailing (see photo 4.7 and 4.8). The methods 

employed for detailing the concrete varies from building to 

building, according to which seismic code is followed. Generally 

it can be said that there is an increased amount of steel 

reinforcement mainly in the columns and the beams. Critical zones 

are now detailed with care in most of the cases. The links 

spacing is denser and extra longitudinal bars are added. The 

shear links are continuing throughout the column-beam joints. 

Finally the length of the splices is increased to 40 - to 50 ~, 

where I is the diameter of the bar with the larger diameter. This 

increase is rather a lot since a 30 0 splice would be adequate 

according to most of the seismic codes. Once more site 

supervision 

steel-fixers 

considering 

is 

to 

the 

'exaggerations I , 

necessary due to the 

follow instructions 

changes and the 
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Photo 4.5 . Internal shear wall for earthquake resistance. 

Photo 4.6 . Corner shear walls. Note 
however that in this case the sheer wall 
does not continue into the fOl.mdations 
le:lving the ground floor unprotected. 



Photos 4.7 & 4.8. Steel reinforcement 
in colUtlllS is neM denser and the 

diagonal links added. 



There is, however, still a lot to be done. For example the 

splices are still occurring in the critical zones. Some of the 

most common cases of bad practice as far as earthquake-resistance 

is concerned are shown in figure 4.3. 

4.6 A SEISMIC CODE FOR CYPRUS 

Together with 

recommended, 

appointed to 

the decision to apply the aseismic measures 

a committee consisted of Civil Engineers was 

work out a seismic code for Cyprus. The draft37 of 

the Code was ready in 1989 and after a lot of discussion it was 

handed in to the government in 1991. In July 1992 the Code was 

officially accepted and became a law. Extracts from the official 

Code are presented in Appendix 11 translated into English. 

The committee undertaking this task faced some serious problems 

making things really difficult for them. There was no possibility 

of direct investigation, .and therefore they had to use as a basis 

other codes and works by engineers in other countries. There was 

no adequate information about the seismology of Cyprus. The 

Seismology Centre of Cyprus, however, helped them a lot giving 

them as much information as possible. Finally, there was no 

financial assistance and the whole work was done voluntarily. 

The model code of CEB (Euro-International Committee for Concrete) 

bulletin 0' information - was used as the base for the code for 

Cyprus. The effort of the committee was to follow the code CEB as 

closely as possible. The main idea is that two separate analysis 

should be produced: First the normal static analysis and then 

the seismic force analysis. The main difference between the two 

analysis is the load combination taken into consideration. The 

seismic load combination is given by the draft of the Code for 

Cyprus as, 

= S (G + E + ~Q) 
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where S is a soil factor given in the code according to 

soil characteristics 

G is the gravitational loads (nominal value) 

E is the seismic load 

Q is the imposed loads 

is a factor given 

part of the 

in the code according to 

structure which shows 

the 

what 

percentage of the imposed load should be taken 

into account. Values of ~ given, by Cyprus code 

are different from the typical ones given by 

CEB. 

Comparing the above expression with the expression given by the 

code of CEB (chapter 3) it can be seen that prestressed concrete 

is not covered by the Cyprus code since such structures are very 

rare. 

The concept of the ductility levels is introduced. In Cyprus 

structures are now categorised as a ductility level I (DLI -

ordinary structure 

deformation will 

without seismic design, where limited plastic 

develop). Ductility level III is still out of 

the scope as far as Cyprus is concerned. 

Another concept introduced is that of the reliability. Buildings 

are classified according to their importance to one of the 

reliability levels. CEB is classifying all buildings to two 

levels only. According to the draft of the Cyprus Code five 

reliability levels exist (see Appendix clause 3.2). Thus a 

more accurate differentiation is made. The five classes are as 

follows: 

Class I: Buildings where collapse may have catastrophic 

consequences (nuclear stations etc), buildings with 

more than 15 floors. 

This class does not apply to Cyprus since such buildings do not 

exist. 

-79-



Class 11: 

Class Ill: 

Class IV: 

Class V: 

Buildings with large number of occupants 

halls, etc.) or important communal 

(hospitals, schools, airports, etc.). 

(cinemas, 

buildings 

Multistory buildings, houses, restaurants and other 

buildings not included in classes 11 and Ill; 

Auxiliary buildings and farms. 

Temporary structures where collapse will not create 

any danger to people. 

For this class no seismic analysis is necessary. 

Two other things must be pointed out: First the seismic code for 

Cyprus limits the height of a 'regular' building to 50 metres, 

instead of 80 metres given by CEB and other codes. The vast 

majority of the buildings in Cyprus do not exceed this height 

anyway. The height of a building is also restricted by other 

authorities like the Town Planning Authority. 

Secondly, the seismic acceleration symbolised now by the code as· 

Amax is increased to the following values: 

Zone I, 11, III Amax = 0.075g cm/sec2 

Zone IV: 

Zone V: 

The increase was 

information seismic 

0.15 g cm/sec2 ) 

Amax = 0.10 g cm/sec2 

Amax = 0.15 g cm/sec2 

found necessary since from the existing 

acceleration has reached such values (i.e. 

in the past. As it is obvious Cyprus is now 

divided into five seismic zones instead of three for more 

accuracy. Zones I, 11 and III correspond actually to grade 7 in 

the Modified Merchali Scale, whereas Zone V to grade 8. The five 

zones are also shown in the Map in figure 4.2 with red letters. 
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A word of criticism, perhaps, is that the code (and the same 

applies to the CEB code) does not include anything about the 

masonry walls. other codes - the Japanese for example and some 

American ones - ask for reinforced masonry walls considering 

unreinforced walls as totally unacceptable for seismic areas. 

4.7 CONCLUSION 

From the brief review of building practice presented in this 

chapter it can be seen that in recent years major steps have been 

made towards making seismic design an integral part of the 

structural design process. This should ensure that all structures 

built should be better equipped to resist the expected seismic 

load. However it has been established that in the forty years 

prior to 1984 a substantial stock of reinforced concrete framed 

buildin~have been constructed that are potentially very poorly 

equipped to withstand seismic shock. They are often buildings of 

irregular shape, often contain soft stories, invariably rely on 

unreinforced masonry and often include non designed stub columns. 

All of these attributes have been identified as potential areas 

of failure under seismic load in chapter 3. This means that if an 

earthquake occurred in the near future the majority of buildings 

have a high risk of suffering major damage with the consequent 

loss of life that this implies. 

It is therefore important that as the need for seismic design has 

been accepted then the existing building stock should ideally be 

brought up to the same standard. To do this for all buildings 

would of course be prohibitively expensive, nevertheless 

consideration should be given to strengthening those that are of 

major importance (eg hospitals). In chapter 5 a review of 

possible strengthening techniques is given. 
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5. STRENGTHENING OF EXISTING BUILDINGS AND REPAIR OF EARTHQUAKE 
"D~GE 

5.1 INTRODUCTION 

It is safe to say that all the buildings designed without a 

seismic code need strengthening. And in Cyprus all the existing 

buildings at present are either designed without a seismic code 

or designed using a code of another country which perhaps is not 

suitable for Cyprus. 

Following a review of the structural design and an inspection of 

the building we should be able to determine whether a building 

should be strengthened and to what extent. The result of the ideal 

earthquake strengthening procedure is a building that has the 

same earthquake resistance as a new building. Practice, however, 

shows that this is never possible and there is nothing better 

than designing a structure properly from the beginning. 

strengthening procedures may be very expensive sometimes. A 

compromise is therefore sought so that it will not be too great a 

hardship on the property owner and not too great against the 

earthquake resistance and safety of the people. 

Earthquake strengthening of existing buildings 

which much research is being done at present 

published. Some methods are suggested in this 

mostly on earthquake damage results and on 

is a topic on 

but not so much 

chapter, based 

ideas given by 

engineers investigating this topic. Having no means of testing 

their effectiveness, these methods could be considered as a list 

of ideas for further research. 

Similar methods to those for strengthening may be employed for 

repairing the damages after an earthquake. Additionally, methods 

for repairing cracks and effecting patch repairs are 

These methods may be useful for concrete repairs not 

suggested. 

only after 

an earthquake but also before, so that no weak points are left 

to the seismic resistance of the structure. 
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In the following pages 'Seismic Code' refers to the Cyprus 

Code66 • 

5.2 STRENGTHENING OF REINFORCED CONCRETE ELEMENTS 

Perhaps the most important topic for~~ypriot Engineers to know is 
concre.""", 

how to strengthen a reinforced\frame. This includes increasing 

either the stiffness of the structure or the ductility or both. 

In considering stiffness an engineer should have in mind the 

comments made in chapter 3 about stiffness and flexibility. 

It was explained in chapter 3 that ductility is a very important 

property for earthquake resistance. Reinforced concrete elements 

shall become more ductile by, 

a. arranging additional shear reinforcement 

b. using high yield shear reinforcement 

c. enlarging the sectional areas 

d. using high strength concrete (high compressive strength) 

e. employing special methods which have been shown to 

improve ductility 

On the other hand care should be taken so that the increase of 

the main reinforcement remains within the acceptable limits as 

imposed by the seismic code. The upper bound of the reinforcement 

ratio ensures a sufficient curvature ductility (Clause C 5.1.2) 

and that the element is not over reinforced. Even so, any 

increase to the longitudinal reinforcement will decrease 

ductility. Special attention during strengthening should be 

drawn on the joints and the critical zones for reasons already 

explained in chapter 3. 

5.2.1 The use of polymers in concrete repair and 

strengthening23 ,36 

Over the past 30 years polymers have been used in a range of 

applications in the repair of structures. The increasing demand 

for the polymer systems was due to their unique properties and 

the savings in money and time. 
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When talking about polymers in concrete repair we are usually 

referring to two types of materials: 

a. Polymers used to modify cementitious systems 

b. Reactive thermosetting resins - epoxy. 

a. Polymers used to modify cementitious systems: 

These are polymers added to cementitious mortars and renders to 

help overcome many of the problems of using unmodified mortars as 

repair and strengthening materials. They are normally supplied as 

milky white dispersions (latex) in water. The latex acts in 

several ways; water-reducing plasticizer, improving workability, 

lowering shrinkage improving bond between old and new concrete. 

It also reduces permeability and increases resistance to some 

chemicals. Although using the latexes have proved to give very 

satisfactory results, there is still the possibility of an 

unsuccessful 

quality. To 

cementitious 

were recently 

mortar due 

eliminate 

to 

such 

mixing errors or sand and cement 

problems, factory pre-blended 

only the addition of clean water mixes requiring 

employed. Polymer modified cementitious mortars are 

successful for repairs with minimum thickness of 12 mm, according 

to the producers. 

b. Reactive thermosetting resins 

These include mainly epoxy, but also polyester resins and acrylic 

resin systems. Epoxy resins can be formulated to produce high 

strength materials with excellent adhesion, and resistance to a 

wide range of chemicals. Both epoxy and polyester resins are 

classed as thermosetting materials because when cured the 

molecular chains are locked permanently together and do not melt 

or flow when heated but become more rubbery, and gradually lose 

strength. They are generally supplied as two components: resin 

and hardener. Epoxy resin mortars can be applied to a minimum 

thickness of 5 mm. It is, however, not suggested to use for more 

than 30 mm in a single layer. Although epoxy mortars are stronger 

than polymer modified cementitious mortars their high cost makes 

them less popular. 
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EPOXY POLYMER NORNAL 

Resiri, grout modified cementitious 

mortar, cementitious grout ,mortar-
concrete system concrete 

Compressive strength, N/mm : 55-110 20-80 20-70 

Flexural strength, N/mm' 25-50 6-15 2-5 

Tensile strength, N/mm' 9-20 2-8 1.5-3.5 
-

Elongation at break,% 0-15 0-5 0 

Linear coefficient of 
thermal expansion 25-30 8-20 7-12 
per ·C x 10-6 

TABLE 5.1 COMPARISON OF PRODUCTS USED IN CONCRETE REPAIRS 



A comparison of normal products to polymers used for repairing 

and strengthening are shown in Table 5.1. 

5.2.2. Beams and columns 

All the action planned should be in accordance with the seismic 

code, and they should follow a proper investigation and analysis 

of the structure using seismic loads. 

A possible procedure for strengthening a beam is suggested below: 

a. 

b. 

The slabs adjacent 

supported. Propping 

safety reasons. 

to the beams should be first properly 

is necessary both for structural and 

The concrete 

reinforcement 

cover should 

is found. The 

be removed until 

whole surface 

the existing 

should be 

roughened. The existing steel may need special treatment in 

case of corrosion. This will include cleaning thoroughly the 

steel by sandblasting or wire-brushing and applying a coat of 

epoxy paint for protection. However, if excessive steel has 

been corroded away, the reinforcement must be reinstated. 

c. The additional reinforcement may be then placed. Two 

different methods are suggested here: In figure 5.1 (a) 

pieces of steel bar are welded to the existing bars. The new 

reinforcement is tied on the welded pieces and thus on the 

old reinforcement. Then new open links are placed tied on the 

slab bottom reinforcement should be partially uncovered. This 

method, however has some drawbacks. Welding may affect the 

yield strength and the open links will not provide the best 

possible confinement. 

In figure 5.1 (b) the second method is shown. Boreholes are 

drilled just under the slab making possible the use of closed 

links. The boreholes must be filled with special epoxy grout 

for high strength anchoring. Since the links are closed the 

longitudinal reinforcement bars need not to be welded. 
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d. A bonding agent (either epoxy or a pre-blended polymer 

cementitious mix) is then necessary to bond new to old 

concrete. It is applied immediately to the prepared concrete 

surface which must have been thoroughly dampened. Using a 

brush the agent is applied both to the concrete and the 

reinforcement. 

e. The formwork may be then fixed in such a way to facilitate 

application of concrete. It must be stressed here that the 

bonding agent should be still tacky when the new concrete 

is placed. Therefore the formwork should be fixed in place 

within 1 hour maximum (in hot weather the agent will dry 

quickly). 

f. Concrete may be then placed. According to the consistency of 

the mix the necessary 

cementitious mixes 

formwork should be constructed. Polymer 

or normal concrete with suitable 

admixtures can be used. A mix with specially selected 

lightweight fillers is used directly without any formwork. 

watertight formwork is necessary in case of a pourable mix 

(see photo 5.1). Such mixes are again polymer modified 

cementiuious requiring simply the addition of clean water to 

produce a high strength flowing concrete. Some special 

flowing grouts do not need a bonding agent since they have 

bonding properties. This will give more time for the erection 

of formwork. In case of normal concrete being used then the 

formwork is needed on the soffit of the beam. The admixtures 

used should be able to improve compressive strength, provide 

adhesion for better bond to the old concrete and reduce 

shrinkage (and shrinkage cracking). 

The result of the above steps should be a homogeneous element, 

having composite action, giving the desired level of ductility. 

Supposing that a beam was found adequately reinforced and 

dimensioned but the critical zones need to be strengthened then 
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Photo 5.1. Pourable mix used I 
\ 

for strengthening a colum. 

Photos 5.2 & 5 . 3 . Partial Strengthening of a 
i::>earn-coll.1!lU1 joint . 



I 
Photos 5.4 & 5.5. Strengthening of 
colunms by additional reinforcerent 
and enlargement. 



only a partial strengthening is necessary as shown in photo 5.2 

and 5.3. This will lower the costs but it may affect aesthetics. 

The procedure for strengthening a column is very similar (see 

photo 5.4 and 5.5). 

a. Adjacent beams should be propped 

b. The preparation of the existing concrete and reinforcement 

should be done in the same was as for the beams. It should 

include removal of concrete cover, treatment of steel and 

roughening of the surface. 

c. The new links can be placed without a problem and the 

longitudinal reinforcement need not to be welded on the old 

one (see figure 5.2). 

d. Bonding agent is applied on wetted surface. 

e. The forms in the case of columns should have an opening on 

the top so that pourable concrete may be placed. Polymers may 

be used again to form cementitious mixes either pourable or 

trowellable. A slurry can be placed by a trowel or even by 

hand without formwork. The material used should be of course 

especially selected for vertical surfaces. 

The columns should be strengthened continuously from the 

foundations to the roof penetrating all the floors. In this way 

the column will be homogeneous and uniformly strengthened whereas 

the column-beam joints are strengthened too. 

Steel elements4 can be used for increasing the ductility. A 

brittle column is surrounded by steel plates bonded by epoxy 

resin based adhesive with tensile and flexural strength (see 

figure 5.3 a). The metal plates on the column surfaces, however, 

may not be easily accepted on aesthetic grounds. A similar method 

is to use a welded metal sheet attached to the existing column 
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and then covered by a bonding agent followed by a polymer mix. 

Hence the metal will not be visible, whereas some enlargement of 

the column is possible. Another method is to place steel angles 

at the corners of the column connected by the plates (see figure 

5.3 b). A strong bonding is needed in all three methods so that 

composite action is achieved. 

5.2.3 Shear Walls 

Reinforced concrete walls already serving as shear walls may need 

strengthening for two reasons: Either their dimensions are not 

suitable or their reinforcement is inadequate. 

In chapter 3 the following expression was given: 

> 
6 5500 

This expression although not included in the seismic 

most useful for checking the dimensions of the wall. 

follows for more clarification: 

Assume, a 2-storey building of total he~9ht., H = 6 m 

area of each floor, F = 300 m2 

the building is in Limassol (zone V, e = 0.20) 

and the width of the wall, b = 0.20 m 

The above are typical values for Cyprus. 

> 
6 5500 

5500 b 

• > 11.78 
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Assuming that two walls were constructed in each direction then, 

d 2 > 
11.78 

2 

d > 2.43 m 

with three walls in each direction, 

d 2 > 
11.78 

3 

d > 1.98 m 

Hence the length of the existing wall can be checked. 

If the length of the wall is not adequate then lengthening is a 

possible way of strengthening the existing wall. This might 

involve demolition of brickwork adjacent to the shear wall, so 

that its replacement by reinforced concrete is possible. 

In such cases two things are very important: First the bonding of 

the new concrete to the existing one must be strong to ensure 

composite action. And then the reinforcement of .the new part must 

be tied on the existing one. The enlargement of the wall will 

follow a similar procedure with that of a column. Sufficient 

preparation of the surface is essential. To ensure that the bond 

will not form the weak point, concrete surfaces should be sound, 

properly prepared and wetted (necessary for hydration of the 

cement). A bonding agent should be applied and then the 

appropriate formwork can be constructed. 

Not only the length but also the width may not be adequate. 

Thickening, therefore, may be necessary to strengthen an existing 

wall. The section modulas, wan, and thus the moment resistance of 

a wall is increasing by lengthening and thickening the wall, 

since, 
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Wan = 
6 

(as given in chapter 3). 

The seismic code limits the minimum thickness of a shear wall to 

150 millimeters. (Clause 5.4.1) 

To thicken an existing shear wall a layer of reinforced concrete 

is added to either one or both surfaces. Similar methods to those 

for beams and columns are appropriate to walls too. Pourable or 

trowellable concrete may be used whereas a bonding agent is 

necessary. Guniting6 may be employed for the construction of the 

additional layer. Gunite is pneumatically applied concrete. There 

are two methods of application, one known as gunite and the other 

as shotcrete. Shotcrete is a wet concrete mix pumped through a 

hose to a nozzle at the point of application. Using compressed 

air the concrete is directed against the surface. Gunite on the 

other hand is applied in the same way but dry, water being 

injected near the nozzle forming a spray. The amount of water can 

be adjusted during the application. 

The advantages of gunite in compare to normal concrete are: 

a. The increased bonding strength 

b. The ability to be placed without formwork 

Additional thickness may be also necessary when additional 

reinforcement is needed. This additional reinforcement should be 

of course in accordance 

form of a grid covering 

areas (see figure 5.4). 

millimeters 26 behind 

with the seismic code, and it may be in 

the whole surface or only at the critical 

The concrete should be cut back to 15 

existing reinforcement steel. This will 

enable us to tie the new reinforcement onto the old and it will 

give additional mechanical bonding as well. It must be stressed 

here that the strengthening will be more effective if it is 

applied continuously from the foundations to the roof. 
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Nevertheless, this is not always possible. However, the 

reinforcement should be bonded into floor and adjacent columns 

(if any), as it is necessary to provide adequate structural 

connection between the wall and the structure. Anchoring of the 

bars can be done using special epoxy grouts. 26 Holes, of 4 8 

mm diameter larger than the steel bar diameter, are drilled. The 

depth of the hole is limited to 100 mm by the product producers. 

The grout is then pumped into the back of the hole using the 

correct gun. The grout is left just short of the face of the 

concrete and then the bar is inserted. A high strength anchoring 

can be obtained assuming that the concrete was sound, the hole 

was properly prepared (dry and free from dust) and curing 

followed. 

5.2.4 Foundations 

It is obvious that strengthening of existing structures involves 

enlargement of beams, columns and shear walls, which means extra 

weight in ·.the frame and thus the foundations. It may be found 

therefore that strengthening of foundations may be required for a 

number of reasons: 

a. Extra weight due to enlargement of sections as it is 
already mentioned. 

b. Inadequate dimensions of the foundation itself after 

being analysed using the seismic loads. 

c. Inadequate amount of steel reinforcement 

d. To 'cure' the problem of stub-columns arbitrary 

constructed without being properly designed. 

The following calculations will enable us to see the implications 

of altering the dimensions of a foundation: 

Assume a foundation pad of width b, length 1, and effective depth 

d. The maximum. pressure of the foundation on soil, p is given as 

N 6M 1 
P = + when e < 

bl b12 6 

-98-



2N 1 
p = when e > 

1 6 
3b ( - e) 

2 

where N is the vertical load 

M is the moment 
M 

e is the eccentricity usually taken 
N 

The maximum pressure must not exceed the permissible bearing 

pressure for the soil as given by BS 8004 (see Table 5.2). 

From Bs 8110, the shear stress v is given as, 

V 
v = 

bd 

which must be less than 0.8 fcu or 5 N/mm2 (whichever is smaller) 

It is therefore clear that by any reasonable 

dimensions of the pad (since that will increase 

result would be positive for our purposes. 

increase to 

self weight) 

the 

the 

That is, if strengthening procedures result in extra weight being 

transferred to the foundations then by enlarging the pad the 

problem will be solved. Similarly in the case of inadequate 

dimensions or steel reinforcement or in the case of Stub-columns 

again enlargement will not create any problems. Especially in the 

case of a stub-column the height of the pad can be increased so 

that the top reaches the bottom of the ground-beams. The stub

column will thus disappear. 

The strengthening of existing foundation is 

has been done in Cyprus, however, although 

expensive. Recently a number of buildings in 
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CATEx::ORY TYPE OF ROCK/SOIL ALLOWABLE BEARING VALUE 
KN/m' 

., 

ROCKS - Strong igneous and 
greesic rock in sound 
conditions 10000 

- Strong limestone and 
sandstone 4000 

- Schist and Slate 3000 

- Stong shale, mudstone 
and sil tsone 2000 

NON-COHESIVE - Dense gravel with 
SOILS (or ~ithout) sand > 600 

. - Hedium dense gravel with 
(or without) sand 200-600 

- Loose gravel with (or 
without) sand <200 

- Compact sand > 300 

- Hedium dense sand 100-300 

- Loose sand < 100 

COHESIVE = very stiff and hard clay 300-600 
SOILS - stiff clay 150-300 

- Firm clay 75-150 

- Soft clay and silt . <75 

- very soft clays and silts NOT APPLICABLE 

PEAT, ORANGE 
SOILS,HADE NOT APPLICABLE 
GROUND, FILL 

T'lble 5.2 Allowable. bearing values under static loading as given by BS 8004 



due to the clayey soils to dry out- as a result of the 

construction of the sewage system. The 

system let the existing pits empty and thus 

drying out • The clay shrinks when it 

construction of the 

the wet clay started 

drys and this led to 

considerable settlements with consequential cracking. The methods 

used for the strengthening of such foundations varied a lot. 

Usually quite an amount of digging was necessary. Foundation pads 

were sometimes enlarged (photo 5.6). When strip foundations 

existed digging was progressing under the foundations and 

reinforcement was inserted. The most convenient method seen, 

.however was as shown in figure 5.5. 

constructed on top of the existing 

A totally new foundation was 

one. There is no bonding 

between the two and their reinforcement is completely separated. 

It does, however, serve its aims which is to provide the 

structure with larger foundation pads. Strip foundations or 

tie-beams were also constructed. Tie-beams are recommended (see 

chapter 3). Assuming there is enough depth this method looks to 

be most suitable. And in most of the cases there is enough depth 

since the typical depth for foundations in Cyprus is 1.50 metres 

under the surface of the ground. 

5.3 INTRODUCTION OF REINFORCED CONCRETE WALLS 

In order to increase the strength of a building, shear walls can 

be constructed. Such additional shear walls must be very 

carefully designed. The effects on the structures must be 

considered. First they will increase the' dead load on the 

structure. Then they may create torsional problems if not 

positioned properly. Finally they will increase stiffness which 

as it was explained in Chapter 3 may not be desired. 

On the other hand for the majority of buildings in Cyprus 

increased stiffness is desired. Torsional problems created by 

the irregular plans and by non-uniform distribution of masses and 

stiffnesses may be solved by careful design and positioning of 

additional shear walls. Generally a shear wall can increase the 

lateral load resistance capacity of a structure. Once more the 

formula, 
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Wan > 
5500 

is very useful when designing a shear wall. It should be used 

together with the directions given in Chapter 3 and the Seismic 

Code. 

A shear wall may be constructed by reinforced concrete, 

reinforced brickwork, gypsum boards or plywood. More appropriate 

to the reinforced concrete-framed buildings of Cyprus is 

reinforced concrete, because they are quite stiff laterally and 

they will match with the stiff frames. Hence cracking will be 

prevented. 

Wing walls can be constructed or walls from column to column as 

shown in figure 5.6 (a) and (b). In either case the connection 

with the existing columns must be effective. A bonding agent 

(epoxy) must be used for joining new to old concrete. The steel 

reinforcement of the wall must be anchored on the columns using 

the method suggested earlier. Strengthening must 

continuously from foundations to the roof so that the 

weight is taken by the strengthened foundations. 

should penetrate all floors for better connection. 

be done 

additional 

The walls 

In order to 

be continuous vertically they can be placed just off the column 

centre lines missing the floor and roof beams. The existing floor 

reinforcement should pass through the new walls. 

External shear walls in the form of concrete buttresses are also 

suitable 

building. 

for strengthening, when space is available outside the 

They have however, to be aesthetically acceptable. 

5.4 STRENGTHENING OF BRICKWORK 

As it was stressed in the previous chapters unreinforced 

brickwalls are not suitable in regions subject to earthquakes. 

They are, however, widely used in Cyprus and this fact will 
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possibly present Cypriot engineers with a real problem during an 

earthquake. The type of the brickwork (see chapter 4) employed 

nowadays in Cyprus has never been tested by an earthquake. 

Failure in masonry is 

instability and sliding. 

usually 

As it was 

due to shear, 

explained in 

but also due to 

chapter 3 the 

interaction between a frame and 

problems. stiffness is increased 

infill masonry creates complex 

but only up to a point. A 

brittle failure should be expected. So before strengthening a 

brickwall a decision is to be taken as to the function of the 

wall: Is it going to act as a non-structural partition or as a 

structural shear wall? 

Assuming that a non-structural wall is desired. 

essential to 

The problem is 

separate the wall from the 

the width of the gap that 

frame (see 

should be 

Then it is 

figure 

left. 

5.7). 
Some 

American codes suggest 50 mm. Displacements of the frame may be 

calculated of course. This gap must be filled with an insulating 

material like polystyrene or styrofoam. Styrofoam can accept 

rendering successfully. The failure expected in a non-structural 

brickwall is due to instability. Therefore the strengthening 

actions taken should prevent the wall from falling out. A fine 

wire mesh may be added on both sides of the wall. The existing 

finishes should be first removed and the surface roughened. The 

mesh must be riveted to the adjacent columns, beams or slabs. 

Then rendering follows with a mortar strengthened by a suitable 

admixture to give some plasticity. Fine synthetic fibres may be 

added into the render for the same reason. 

When the brickwall is required to act as a shear wall the 

strengthening procedure must include proper analysis and 

consideration of torsional problems. Strengthening can be 

achieved by enlarging the section of the wall by thickening (as 

it was explained earlier for reinforced concrete walls) and by 

additional reinforcement for ductility. The existing finishes and 

some plaster must be removed and the surface roughened. Steel 

reinforcement on both sides preferably, in the form of a grid 
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should be placed, anchored on the 

slab. The anchoring can be done 

adjacent columns, beams and 

by drilling and grouting as it 

was explained earlier in this chapter. The concrete can be placed 

using the appropriate formwork. Pourable grouts are necessary if 

the wall is not to be thickened a lot. In this case the formwork 

should be watertight. The most cost effective method, however, 

is guniting 6. Gunite is normally applied to 40 mm thick and well 

compacted material can be achieved. Layers of up to 200 mm have 

been applied ~ using lightweight materials. A skilled operative 

is needed to ensure that there is a good compact ion behind the 

reinforcement grid. A more sophisticated method for strengthening 

a brickwall follows: 

The gunite reinforcement on the wall consists of a continuous 

layer 70 to 100 mm thick and vertical ribs cut into the wall 

every 2 or 3 metres. The ribs are reinforced with vertical bars 

and ties, like small columns, whereas the layer is reinforced by 

a grid (see figure 5.8). In case of a continuous strengthening 

the vertical ribs should be continuous from the foundations to 

the roof penetrating all slabs. The portion of the rib that 

passes through the slabs will not be gunited of course. Pourable 

concrete should be used for this. Such problems would be avoided 

if guniting was done on the external surface of the walls. 

If, however, there is no access to the outer face of the wall or 

if the wall to be strengthened is an interior one, then wall 

guniting must be done from inside the building. 

5.4.1 Improvement of openings 

Most of the damage in the walls whether brickwork or concrete, is 

usually concentrated around openings, either made of brickwork or 

concrete. The Seismic Code following closely the European Code 

is recommending additional reinforcement around openings (Cl 

5.4.1) in reinforced concrete walls, so that the strength of the 

missing portion, that is the opening, is compensated. 

Nevertheless no directions are given for openings in brickwalls 

which is the most common case in Cyprus. 
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Obviously openings in brickwalls serving as shear walls or not 

separated from the frame, must be treated with additional 

measures. Two actions can be taken; first to make the opening as 

small as possible and second to reinforce it with steel. A large 

opening will give some flexibility to our methods of 

strengthening. A reinforced zone around the opening made of steel 

reinforcement and concrete may be constructed with aid of the 

appropriate formwork (see figure 5.9). Pourable concrete or 

lightweight mortars should be used. A polymer modified 

cementitious mix should be used to ensure better bonding between 

bricks and concrete and eliminate shrinkage and cracks. This 

procedure, however, may prove to be very expensive since the cost 

for constructing the reinforced zones around the openings will be 

added to the cost for replacing windows and shutters due to the 

new dimensions. 

When no alteration of the dimensions of the openings is possible 

then some demolition is necessary. It will be rather impossible, 

however, to demolish part of the soffit of the opening. In this 

case prefabricated steel lintels must be used (see figure 5.10). 

This means that the top part of the reinforced zone will not be 

in accordance with the Seismic Code, although the steel lintel 

will improve the opening. During the whole work the soffit must 

be well propped. The problem of the soffit will be presented only 

to some cases. Usually the top part of the openings stops at a 

beam of the above floor. 

It will be perhaps too great a hardship on the owner to proceed 

to such strengthening. The above ideas, however, may be useful 

when a whole brickwall is strengthened and an opening exists. 

5.5 PREVENTION OF NON-STRUCTURAL DAMAGE AND OTHER HAZARD 

Although not much research has been done on 

non-structural damage, it is now very obvious 

can create serious problems. 
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The first danger can come from all equipment or decorative 

includes light fixtures It elements hung from the ceiling. 

sometimes huge and heavy ones 

and pipes for services. All these 

they cannot swing. 

heating units, air conditioners 

items should be braced so that 

Equipment that is not fastened properly to the floor again create 

problems during an earthquake due to dynamic amplification 

increasing the forces applied. Such things are the boilers, 

furnaces, air conditioning units and especially water tanks. This 

equipment before anchoring securely to the floor or the walls 

should if possible, be isolated using vibration isolation 

supports. Grouts can be used to strengthen the base of heavy 

equipment and for fixing bolts. Such grouts are based on 

specially selected portland cements graded aggregated and 

admixtures. 

Finishes that are of bad quality or heavy may separate and fall 

during an earthquake. 

for decoration should 

Items like granite, marble or stone used 

be removed and replaced by lighter 

material, or 

cement-based or 

strengthened. 

re-fixed using a strong adhesive, either 

organic-based. Other finishes can be repaired and 

Non-structural walls may be separated from the frame, especially 

in the case of a partial wall attached to a column, creating a 

critical situation (Seismic Code Cl 5.2.3.1). 

A gap should be created at the two sides 

The gap being 40 - 50 millimetres can be 

and the 

filled 

top of the wall. 

with a proper 

isolating material for sound and heat as it was mentioned earlier 

in this chapter. 

5.6 USE OF TIMBER 

In figure 5.11 a foundation (a) and a wall (b) are shown dated 

about 2000 B.C. They are both reinforced with a wooden framework. 

Such constructions were found in Asia Minor and in the Greek 
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island of Crete. 34 In Crete wooden frameworks were especially 

used in multistorey buildings like the palaces of Minoas at 

Knossos. Archaeological excavations gave evidence of more or less 

complete houses preserved under many metres of soil after 

earthquakes destroyed whole cities. These houses had wooden

framed walls and foundations. 

It is believed, although not proved, that this wooden framework 

was an aseismic technique employed by the ancient Greeks. 

Timber, like steel, is in itself an excellent material for 

earthquake resistance. It is strong enough in both flexure and 

shear. Plywood shear walls have already been mentioned as a means 

of earthquake resistance, not appropriate, however, to the 

reinforced concrete structures. Using the ancient technique as an 

example, wooden frameworks could perhaps increase the strength of 

unreinforced masonry walls. 

The damping coefficient of a 

increase by the use of wood. A 

surfaces of walls and floor 

absorber. 

wall, or 

sheet of 

any other element, can 

wood applied on the 

slabs can serve as a vibration 

It appears that timber can solve some earthquake problems 

relating to strengthening. It is surely an area for much more 

investigation. 

5.7 REPAIR OF EARTHQUAKE DAMAGE 

The immediate 

building to 

restoration 

strengthening. 

actions after an earthquake will aim at restoring a 

a reasonably safe and functionable condition. The 

should be followed by earthquake-resistant 

It will take time, of course until people -

authorities, owner, engineers - are in a position to proceed with 

the strengthening methods, after a major earthquake and its 

consequences. Repairing of the earthquake damage is therefore an 
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important task 

immediately. 

and it should be properly designed and performed 

It has been proven 

building damaged by 

in 

an 

original condition, easier 

This assumes of course, 

practice that a reinforced concrete 

earthquake can be restored, to its 

than any other types of buildings. 

that the 'building has not collapsed or 

tilted or overturned. Damage in reinforced concrete buildings is 

usually in the form of cracks, structural or non-structural. 

Excessive cracki~may lead to deterioration of concrete. 

Concrete repair methods are given in Appendix IV as a general 

guide. 



The above methods have been applied 

already in Cyprus for general repair works, although not widely 

yet. Polymer modified cementitious material and epoxy resins and 

mortar are available, either imported from United Kingdom, United 

States of America, Germany and Italy or even manufactured 

locally. Up to now the results of the concrete repair works were 

good, although it is still very early for conclusions to be 

drawn. There is an increasing demand for such works especially in 

the coastal area of Cyprus. 

It must be emphasized once more that when bonding to concrete it 

is the surface strength of the concrete which plays the vital 

part. It is often possible to have a concrete which on the basis 

of compressive strength is satisfactory but which has a very low 

surface strength and is unacceptable. 

The proper surface preparation is therefore essential. 

5.8 CONCLUSIONS 

Earthquake-resistant strengthening methods and concrete repair 

methods for repairing earthquake damage were included in this 

chapter. Some methods were specified step by step. These methods 

are feasible and the materials to be used are available on the 

Cyprus market. Some other methods or rather suggestions, were 

mentioned more generally and they need further investigation. 

Concrete repair and strengthening has 

development of polymers and their use for 

been aided by the 

modifying cementitious 

mortars. Cementitious and epoxy mortars are mostly used for such 

jobs rather than normal concrete due to their properties with 

which they can offer: 

a. good bonding of old to new concrete 

b. elimination of on-site mixing errors since they can be 

factory pre-blended products 
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c. no problems of quality, availability and grading of local 

cements and aggregates 

d. high strengths 

e. reduced shrinkage and shrinkage cracking 

f. high performance even when used in a flowing condition 

g. penetrating properties, essential for filling cracks and 

voids 

h. easy application 

Nevertheless, no matter, how good a material is, it will not 

operate successfully unless the repair area is carefully 

prepared. Additionally the right material should be used for each 

particular case. 

In this chapter it has been shown that a number of techniques 

exist that permit the strengthening of existing buildings to 

resist seismic loads and for effective repairs to be carried out 

on structures damages by earthquakes. The cost of strengthening 

works need to be investigated to convince building owners of the 

cost-effectiveness of carrying out strengthening works. The costs 

involved will be considered in the next chapter where two case 

studies are presented. 
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6. CASE STUDIES 

6.1 INTRODUCTION 

In this chapter two cases will be studied. These two cases were 

selected in such a way to represent the houses built before and 

after 1984. It is important to assess the quality and the 

earthquake resistance of a building constructed prior to 1984 

when no aseismic measures were taken. It is equally important to 

assess the earthquake resistance of a building constructed after 

1984 when basic concepts of the aseismic design were known. 

Having assessed the quality of the construction, then 

strengthening steps will be suggested, if necessary. The costs 

involved will be estimated by analysis. 

The design of both structures was checked as far as the normal 

loads are concerned and it was found adequate. 

6.2 A HOUSE BUILT IN 1984 

6.2.1 Description 

A house designed and built in Nicosia during 1983-84 is the first 

case to be examined. Until 1984 the concept of earthquake 

resistance was still unknown and no measures were taken during 

the design stage or later. The house following the fashion of 

those years is raised from the ground being built on columns. It 

is a reinforced concrete framed structure with infi11 brickwalls. 

A similar house to be built will cost nowadays around 60,000 
pounds (Cyprus pounds). 

Drawings of the building are shown in figures 6.1 (a),(b),(c), 

(d). To assess the resistance of the building to earthquakes the 

suggested code for Cyprus (given in Appendix 11) and the 

instructions given in chapter 4 were followed. A ductility level 
11 was assumed. 
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6.2.2 Assessment of the building's earthquake resistance 

structural analysis of the building should be done first using 

the seismic loading. Such an analysis is nowadays done easily 

with the aid of a computer programme. However some analysis by 

hand of selected elements follows. It is to be assumed of course, 

that during the stage of assessing the earthquake resistance a 

complete analysis was employed, as suggested by the seismic code. 

After 

of the 

analysis 

building 

the structure, an assessment of the architecture 

should be done. All the characteristics of the 

house including non-structural elements should be examined. 
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6.2.3 Comments 

Following the analysis using seismic loading and the other 

observations mentioned above, a number of points may be brought 

up: 

Stiffness Variations 

a. The 'open' ground floor being very flexible creates a big 

stiffness difference between the ground floor and the first 

floor. The stiffness variation along the height of the 

building is such that the structure may be classified as 

irregular. 

Ductility Requirements 

b. The yield stress of the shear links is 250 

steel is used. A higher yield stress 

ductility. High yield steel should be used. 

N/mm2 since mild 

would increase 

c. The transverse reinforcement, which is increasing ductility, 

is generally enough, as it would be explained later under 

Detailing. However, no critical zones are recognised and 

.there is still the danger of a plastic hinge to be formed at 

the column-beam joints. 

d. The use of mild steel as main reinforcement is good as far as 

ductility is concerned as it was shown in figure 3.3 (chapter 

3 ) • 

e. The concrete compressive strength, fcu used, 20 

beams and 25 N/mm2 for columns is adequate 

level 11. It must be stressed, however, that C 

was used at the stub-columns and not C 25. 

Masonry 

N/mm2 for 

for ductility 

20 concrete 

f. Double walls are used in some cases (250 mm) or single walls 

of 200 mm and 100 mm. The infill walls are not separated in 

any way from the frame. During an earthquake they may act as 

shear walls and there is the possibility of torsion problems 
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since all the double walls are mostly concentrated in the 

northern side of the house. 

g. No reinforcement appears on the walls. 

Building Configuration 

h. The plan of the house and the arrangement of the columns are 

very symmetrical which is ideal for earthquake resistance. 

There are some doubts about positioning of walls due to their 

thickness variation as already mentioned. 

i. The elevation is also simple without setbacks. The soft 

ground 

building 

floor however, may 

due to concentration 

cause total collapse 

of plastic deformation. 

j. The presence of stub-columns createsa lot of doubts. 

Shear Walls 

of the 

k. No shear walls (assuming that the infill walls were 

considered as non-structural) were employed. 

Using, 

= 
6 5500 

where b = 0.15 m 

H = 7.00 m 

F = 150 m2 

e = 0.15 

Therefore, 

d 2 = 8.02 
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Assuming four walls in each direction, 

8.02 

4 

= 1.45 m 

Detailing (clause 5.1 Cyprus Code) 

1. Beams 

Geometrical constraints: The width being 250 mm is adequate. 

Adequate are also the ratios b/h and l/h. 

Longitudinal reinforcement: The results of the analysis show 

some problems with the amount of the reinforcement as shown 

in figure 6.2. More serious are the problem of inadequate 

reinforcement at column K 9 (all floors) and the ground 

beams. 

Minimum bar diameter is.specified as 2 Y12 whereas 2 YI0 are 

used.' Transverse reinforcement: No critical zones are 

distinguished. The spacing should be in the critical zones 

maximum 145 mm (80). Generally the transverse reinforcement 

is fixed at a spacing of 150 mm. Although this is roughly 

adequate the beam-column joint is not strengthened in 

relation to the beam and the plastic hinge is not shifted. 

The joint should be stronger than the beam. Splicing is done 

within the critical zones. 

m. Columns 

Geometrical Constraints: Minimum dimension requirements (250 

mm) and the ratio lib are in accordance with the code. 

Longitudinal reinforcement: The results of the analysis show 

some problems with the amount of steel reinforcement used. 

(A comparison is 

of reinforcement 

of column K 8 on 

shown in figure 6.2). Generally the amount 

is by 

all 
4% less than required (with exception 

floors). Transverse reinforcement: 

Again critical zones are not recognised. Generally the 

spacing of the links is satisfactory. 

Splicing is done within the critical zones. 
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6.2.4 Strengthening 

Although no strengthening methods can provide the building with 

100 per cent earthquake resistance the following measures will 

improve it considerably. 

a. Elimination of the stub-columns (and thus the ground 

beams as well) by constructing new foundation pads on 

top of the old ones. 

b. Construction of shear walls to stiffen the ground floor 

and to strengthen the first floor. 

c. Strengthening of columns K 6 and K 9 and their joints on 

both floors. 

d. Strengthening of the brickwall on the north side of the 

house. 

The above methods have been already discussed in chapter 5 and 

certain methods were suggested. Further specifications are given 

below: 

6.2.4.1 Construction of foundation pads on top of the existing 

~ (see drawing 6.3 a) 

Existing pads are already adequate to hold additional weight· 

due to strengthening procedures (shear walls, enlarged 

columns, beams and brickwalls). Therefore minimum possible 

reinforcement is necessary. Use Y12.250 for both directions. 

Starters for new shear walls and strengthened columns should 

be left, tied well on the foundations. 

6.2.4.2 Introduction of shear walls 

Four walls in each direction are to be constructed as shown 

in figure 6.3 (b). Thickness of walls will be 150 mm and 

length 1.50 metres minimum. 

Steel reinforcement according to code Y12!200 horizontal and 

vertical. vertical bars should continue through slabs whereas 

the horizontal ones should be anchored (every second will be 

enough) on the columns. 
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concrete mix to be used (should achieve 30 

consists of: 

Cement 325 Kg 

Sand 850 kg 

10 mm Aggregates 720 kg 

Water 130 ltrs 

Polymer Latex 65 ltrs (Yields 1 cubic metre) 

Internal faces should be fair-face whereas external should be 

rough. No rendering or painting is necessary at the ground 

floor. 

6.2.4.3 Columns and Joints K 6. K 9 

New dimensions: 

Columns K6, K9: 

Beams, adjacent to K 6, K 9: 

32 x 58 

32 x 65 

Strengthening and enlargement will be done along the whole 

length of the columns from foundation to the roof. For the 

beams only the critical zones, i.e. 1.30 metres from the face 

of the columns will be strengthened. 

Additional steel reinforcement: 

Columns: 4 Y12 (corners) 

Y10/150 - 300 for links 

Beams (critical zone only): 

Top 2 Y12 

Bottom· 

Middle 

2 Y12 

2 Y10 

Concrete mix should be pourable (achieving 30 N/mm2 ) and 

consists of: 

Polymer grout 

Aggregates 5 mm 

Water 

25 Kg 

20 kg 

5 ltrs (yields 25 ltrs) 

Internal faces should be fair-face whereas at the ground 

floor all faces should be rough. 
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6.2.4.4 Strengthening of brickwalls 

New thickness 150 mm (therefore 50 mm extra are necessary) 

The 50 mm layer should be produced by guniting using special 

grout. A cementitious bonding agent should be applied first. 

A reinforcing grid Y8/200 should be fixed. It must be tied on 

both the top beam and floor-slab. 

A complete cost analysis follows: 

The total cost of 11,681 Cyprus pound is considered to be quite 

high. It will, however, improve greatly the earthquake resistance 

of the building, and it will pay back. The total cost could be 

decreased by leaving out several 'improving factors' like the 

polypropylene fibres and employing less anchoring using the 

expensive epoxy grout. Needless to say that earthquake resistance 

decreases with cost as well ••• 
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.COS.T ... ANALYSIS 

Page 1 of Z 

No. Itan description thlt Quantity Rate 
Am::lUnt 

. 
. . . . . . .. · .. £ c • 

A FOll'IDATIONS 

A1: Remove existing concrete floor 150 mm 
... 
, ;:1,.; 

thick only on top of foundations pads 
· , ·m 35 20.- . '/700 

A2 Remove existing backfill 
· , 55 20.- 1100 ·m 

A3 Steel reinforcement - High yield steel 

bars to BS 4449: 
Y12/250 . f! kg 300 0.40 120 

A4 Place concrete of grade C 25 up to the 
level of the bottom of the existing . 

. ground floors 
· , ·m 44 35.- 1540 

A5 Backfill 400 mm thick 
· , ·m 15 8.- 120 

A6 Re-construct concrete floor 150 mm 
thick (including a steel grid Y8/20 #) m' 35 12.- 420 

. 

B SHEAR ~IALLS 

B1 Remove plaster, cut back to reinforce- · m' 38 8.- 304 

ment and roughen sidys of both columns 

and beams- affe"ted. ·m 
, 

17 15.- 255 

B3 ! Drill through beams for steel bars to 

pass ·m 24 '12.- 288 

B4 Steel reinforcement - High yield steel 

bars to BS 4449: 
Y12/200 JI 1. kg 1700 0.40 .680 

B5 Drill columns 100 mm deep at 400 mm 

intervals and anchor horizontal bars 

using an epoxy grout. cm' 2880 0.40 1152 

B6 Erect watertight for~Nork 'letter box·'· . 
type. 

fair - face m' 57 6.- 342 

rough - face m' 58 3.5C 203 

B7 Place concrete (as specified) m' 10 150.- 1500 

B8 Repair damages 200 

B9 Render external faces adding poly-

propylene fibres in the mortar m' 30 6.- 180 

1--\310 Paint internal affected areas m' 57 5.- 285 
, . . . . .'. .', . .'.'. ,", ,", .. " .. '. ,". :'.' . . . .. ", . . . . ... 
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page.2._of ~ 

Arrount 
No. Item description UUt Quantity Rate 

C STRENGTHENING OF COLUMNS K6,K9 AND JOINTS-

Cl Remove pl~ster, cut back to reinforcement 
and roughen affected beams and columns 

C2 

C3 

Demolish brickwork 
Drill through slabs for column bars to 

pass 

- , -m 
- , 
·m 

m' 

C4 Drill through beams for neH lin.1{s to pass . m 
C5 .. Steel reinforcement on columns: 

Y12 
Yl0 

C6 Steel reinforcement on beams 
Y12 

Yl0 
C7 Erect -watertight fornn.ork - letterbox 

type 
fair - face : 

rough - face 
C8 Place pourable concrete (as specified) 

C9· Repair damage 

Cl0 Paint affected areas 

D - STRENGTHENING OF BRICKWALL 

D1 Remove plaster - finishes 
D2· Cut back to beam reinforcement on 

top floor and-first floor 
D3 Fix steel reinforcement - grid 

D4 

D4 
D5 
D6 

Y8 
Use bonding agent (cementitous) 1 kg/m' 
Guniting with special grout 50 mm thick 

Render affected areas 
Paint 

. 

....... ' ............. ,', ....... :,', ," ... . 

kg 
kg 

kg 
kg 

: rn' 
m' 

. m' 

. m' 

m' 

m 

kg 
m' 
m' 
m' 

m' 

32 
2 

0.5 

19 

72 

140 

72 

245 

22 

22 

1 

16 

21 

8 

90 
21 
21 

21 
21 

15.-

8.-

40.--
14.-

0'.4C 

0.4C 

6.-
3.5C 

400.-

6.-

10.-

0.4( 

8. 

40. 

4· 
5. 

E 

480 

16 

20 
266 

29 
56 

29 
98 

132 

77 
400 
150 
80 

126 

80 

36 
168 

840 

84 
105 

. - 11681-

c. 



6.3 A HOUSE BUILT IN 1991 

6.3.1 Introduction 

The second case is one of a building designed in 1990 and built 

in 1991. It is a two-storey house in the area of Dassoupolis in 

Nicosia. It is considered to be a 'luxury' house costing about 

80,000 pounds (Cyprus pounds). 

It is a reinforced concrete structure with infill masonry walls. 

The owner of the house had actually asked for an earthquake

resistant building and it would be therefore interesting to study 

this case. 

Once more the suggested seismic code for Cyprus (Appendix II) and 

the information given in chapter 4 were used for the assessment 

of the earthquake resistance of the building. A ductility level 

II was assumed. Drawings of the building are shown in figures 6.4 

(a),(b),(c),)d),(e),(f) and (g). 

6.3.2 Assessment of the building's earthquake resistance 

In the following pages some structural elements were selected for 

analysis using the seismic loads according to the code. The' 

analysis is done by hand and it is to be assumed that prior to 

any diagnosis a complete analysis of the whole structure is made 

using a computer programme. 

Following the analysis the assessment will proceed by examining 

the architecture of the building and all its characteristics. 

6.3.3 COMMENTS 

Having analysed the structure and examining the whole building, 

the following points may be brought up: 

Ductility Requirements 

a. Mild steel is used for shear links (fy = 250 N/mro2 ). A higher 

yield steel should be used. 
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b. The transverse reinforcement, increasing ductility, is not 

adequate in some beams. Critical zones are treated correctly 

in most of the beams but they are not recognised in the 

columns. 

c. The co.ncrete compressive strength, 20 N/mm2 for the beams and 

25 N/mm2 for the columns is adequate for ductility level II. 

d. Some beams and columns having widths 250 mm instead of 200 mm 

will achieve higher ductility. 

Masonry - Openings 

e. The infill walls, in most of the cases 200 mm thick have no 

reinforcement and are not separated from the frame. 

f. A characteristic of the house is the number and the size of 

openings being large. Assuming that the walls may act as 

shear walls during an earthquake, then small lengths of the 

wall will have to resist the amount of strain that the whole 

wall should resist. 

Building 

g. The 

Configuration 

plan may be considered as irregular: In both floors 

re-entrant corners are exceeding the limit of 25%. As shown 

in the drawings at the ground floor the width of the corner 

is 43% of the width of the house and the length is 27% of the 

length of the house. At the first floor the two sides of the 

corner have dimensions of 49% and 29% of the external 

building dimensions. 

h. The centre of mass and the centre of rigidity were found to 

be 2.6 metres apart in the ground floor and 2.9 apart in the 

top floor. 

e. The elevation of the building also 

irregularities. Setbacks at the top floor are 

20% of the plan dimensions of the ground floor. 
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Shear Walls 

j. Only three columns have a length of more than 1.20 metres and 

can be considered as shear walls. They are not enough, 

however, and are badly positioned. 

Using, 

bd2 H2Pe 
= 

6 5500 

where b = 0.20 m 

H = 6 m 

P = 282 m 

e = 0.15 

Then, d2 = 8.31 

Assuming four walls in each direction, 

8.31 
= 

4 

= 1.50 m 

Non-Structural Elements 

k. The large openings already mentioned give large areas of 

glass. 

1. Heavy finishes (marble) were used on some external walls 

and on the chimney. 

Detailing (clause 5.1 - Cyprus Code) 

m. Beams: 

Geometrical constraints: Minimum acceptable width was used. 

The ration blh and llh are generally satisfied with the 

exception of beams ~6(2), ~13(2), ~17, ~5(1), ~5(2). 

Longitudinal reinforcement: A comparison between the results 

obtained by seismic analysis and the existing amount of 
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reinforcement used in shown in figure 6.5 and 6.6. 

Generally the right amount of reinforcement was used. Some 

problems appear in beam ~6(2), which should be treated as 

critical along its entire length. Serious problems appear in 

beam ~15(2) at the supports (columns K1? and K13). 

Transverse reinforcement: Generally adequate. 

Splicing is done within the critical zone 

n. columns: 

Geometrical constraints: The width of most of the columns 

being 200 mm instead of 250 mm is not in accordance with the 

seismic code and deprives the structure of a better ductility 

level. Ratio lIb is satisfied. 

Longitudinal reinforcement: Generally in accordance with the 

code. Transverse reinforcement: No critical zones are treated 

according to the code. 

Splicing is done within the critical zones. 

6.3.4 STRENGTHENING 

This case presents us with great difficulties due to its 

irregular configuration. Methods for improving the earthquake 

resistance are obstructed by the large rooms, the lack of walls. 

and the non-continuity of the structural elements from the ground 

floor to the first floor. Nevertheless the following measures may 

increase the earthquake resistance. 

a. Construction of shear walls, positioned in such a way to 

mollify the possible torsional effects during an earthquake. 

b. Strengthening of beam ~15(2) and adjacent columns and beams. 

c. Removal of heavy finishes at points where human safety is 

affected. 

The measures above are discussed in chapter 5. Further to the 

methods suggested the following specifications are given: 
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6.3.4.1 Introducting of shear walls 

Introduction of four reinforced concrete walls in each 

direction. 200 mm thick and 1.50 metres long. positioning as 

shown in figure 6.7 (a) and (b). Some extra walls were added 

to bring the centres of mass and rotation closer. 

Steel reinforcement minimum possible (within limits according 

to the code) since existing reinforcement is already adequate 

to hold the additional weight due to the strengthening 

procedures. Use Y12/200 vertically and horizontally. The 

reinforcement should be continuous from the foundation to the 

roof-slab. The horizontal bars (every second) should be 

anchored on the columns using an epoxy grout. 

Concrete mix to be used (achieving 30 - 35 N/mm2 ): 

Cement 

Sand 

10 mm Aggregates 

Water 

Polymer Latex 

325 kg 

850 kg 

720 kg 

130 ltrs 

65 ltrs (Yields 1 cubic metre) 

All faces should be rough to accept rendering. 

6.3.4.2 Strengthening of beam ~15(2) (see figure 6.8) 

Necessary to strengthen ~15(1) and columns K17, K13 and 

especially the joints. 

New dimensions: 

Beams: 32 x 60 

Column K13: 32 x 80 

Column K17: 32 x 60 

By increasing the dimension .already some of the problems are 

solved. 
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Additional reinforcement required: 

Beams: Top: 2 Yl2 

Bottom: 2 Yl2 

Links: YlO/IS0 - 300 

At support K17: 2 YI2 

At support K13: 2 YI4 (on top) 

Columns: 4 Yl2 

YIO/IS0 - 300 for links 

Concrete mix should be pourable achieving 30 N/mm2 : 

Polymer grout 

5 mm Aggregates 

Water 

25 kg 

20 kg 

5 ltrs (yield 25 ltrs) 

All faces should be rough and able to accept rendering. 

6.3.4.3 Removal of heavy finishes 

Heavy finishes consist of marble and natural stone. They 

should be removed from the entrance and the staircases. 

Note that due to the previous measures introduction of 

shear walls - most of the heavy finishes at the staircases 

will be removed. 

Render should be strengthened by an admixture - polymer latex 

- for better adhesion. 

A complete cost analysis of the suggested measures follows: 

The total cost of £7,374 Cyprus pounds is within acceptable 

limits. It is stressed, however, that despite the above measures, 

the aseismic behaviour of the building is still unpredictable. 

Such 'irregular' houses should be avoided. 
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.COS.T .. ANALYS.IS 

No. Itan description Thlit Quantity Rate 
ArnJlU1t . 

. . . · . £ c. 

A SHEAR IfALlS 

A1 Demolish part of brickwork to be replaced 

by concrete : m
2 27 8.- 202 

A2 Cut back to reinforcemnt, roughen edges 

of columns and beams sides in contact 
~/i th nelo/ walls : m2 10 15.- 150 

A3 Drill through beams and ground beams for 

steel bars to pass ·m 16 15.- 210 

A4 Steel reinforcement - High yield steel 

bars to BS 1.449: 
Y12/200 # kg 5/.0 0.4C 216 

A 5 Drill columns 100 mm deep at 400 mm 
intervals and anchor horizontal bars .. 
using an epoxy anchor grout ~m' ·4800 P.4C 1920 

A6 Erect watertight form{ork - 'letter box' 

type - rogh face : m2 58 3.5C 203 

A7 Place concrete (as specified · m' 6 150.- 900 
A8 Repair damages 300 
A9 Render all affected ar~as adding 

propylene fibres in the mortar · m' 58 6.- 348 
1\10 Paint : m' 60 5.- 300 

B STRENGTHENING OF BEA)'! A 15(2) 
B1 Remove plaster, cut back to reinforcement 

of beams 1;15(2), 1;15(1) and columns m' 36 12.- 432 
K13,K17 

B2 Drill through beams for new links to pass m 9.5 13.- 114 
B3 Drill through slabs and ground floor for 

column reinforcement to pass m' 1.0 30-.- 30 

B4 Steel reinforcement (columns and beams) -
High yield steel bars to BS 4449: 

Y12 kg 90 0.4 36 
Y14 kg 5 0.4 2. 

Y10 kg 100 0.4 40 
. . . . ... ' ,", ....... , ........ . . . ... . ... 



,C .0 S .T. _ A N A L.Y S ,I S 

--- --

N:>. Itan description Ulit Quantity 
Arrount 

Rate . 
. . . . . . E c • 

B5 Erect watertight fro~,ork, rough-face ~·.m2 38 3.5 133.' 

B6 Place concrete (as specified) : m
3 2 400.- 800 

Frl Repair damages 200 

B8 Render with propylene fibres added to 

the mortar : rn' 38 6.- 228 

B9 Paint affected areas : rn' 38 5.- 190 

C REt10VE HEAVY FINISHES 

C1 Remove finishes {marble - natural stone} : rn 2 18 1 Si;.,- 270 

C2 Render \-lith mortar reinforced by latex : rn' 12 5.- 60 

C3 Paint . 2 .m 12 5.- 60 

: 

7,374 
. 

; 

I 

. , ....... - ...... . . . . . . ' ,. ' . ..... . .', . . .... ' , 



6.4 Conclusions 
In this chapter two cases were deliberately selected and 
assessed as far as their earthquake resistance is concerned. 
The first case, a house built in 1984, was adequately designed 
to resist normal loads but no aseismic design was employed, 
since the concept of such design was not known at the time. 

The second case, a house built in 1991, was again adequately 
designed for normal loads and some aseismic ideas were 
employed, since the owner asked for an aseismic design. In 
1991, however, a seismic code did not exist. 

The procedure involved was demonstrated: 
a. Analysis under seismic loads 
b. Design of the reinforcement and comparison with the 

existing reinforcement 
c. Inspection of the architectural layout 
d. Identification of deficient areas 
e. Design of specific solutions 
f. Analysis of the cost of the strengthening measures 

Having analyzed the structures and assessed the architecture 
of each building, it was found that both buildings have a 
number of deficiencies, which makes them inadequate for 
seismic load. 

The 1984 house has the greater number of problems, whereas the 
1991 house still has serious layout problems. In both cases 
the column design appears to indicate that only the minimum 
area of steel (1%) is required and that the existing design 
is adequate. The main problem areas appear to be in the beam 
hogging steel at the column connections. 

Though the 1984 house has more problems, it has more chances 
to be strengthened adequately and to be brought into an almost 
aseismic structure, thanks to its symmetrical plan. In 
comparison with the 1991 house, it seems impossible to reach 
such a stage and the suggested strengthening steps will only 
improve partially the resistance of the structure, due to the 
irregular layout • 

• 
The estimated strengthening cost were, 

Case 1 (1984) CP 11,681 on house valued at 60,000 
Case 2 (1991) CP 7,374 on house valued at 80,000 



These are relatively high figures (10-15% of the capital 
cost), and it will be rather difficult to convince the owners 
to proceed. Nevertheless they are within reasonable limits and 
if~strong campaign is organised, more and more people will 
realise the necessity of the strengthening works. Hopefully, 
they will not have to be persuaded by a destructive 
earthquake. 

* The.two cases studied demonstrate that the main problem with the 

existing structures is not so much the steel reinforcement content 

although the lower limit seems to govern. More important is that 

they do not comply with some of the rules of the aseismic design 

included in the seismic code, mainly: 

I 

a. 

b. 

c. 

No special detailing of the joints. 

Incorrect positioning of shear walls creating torsional 

problems. 

Non-desirable stiffness variations due to soft-storeys and 

stub columns. 

d. Non-symmetrical plans and elevations. 



7. CONCLUSIONS 

The objectives of this thesis, presented in a form of a manual 
of seismic design practice, were to show 
strengthening existing buildings in Cyprus 
engineers with the necessary information so 
proceed with the necessary measures 
strengthening. 

the need for 
and to supply 
that they can 
required for 

Going through the existing historic documents and the 
geological facts, it was demonstrated (in chapter 2) that the 
seismic risk is high. Although there has been no recent major 
seismic event,Cyprus has been shaken many times in the past 
by destructive earthquakes. The creation of the island itself 
was actually due to seismic activity. Most of the seismic 
activity is concentrated on the southern coasts where, 
unfortunately, problematic soils exist such as soft clay and 
saturated sand. 

Before going into the detailed methodology for strengthening 
existing structures a good knowledge of the main requirements 
for the seismic design of reinforced concrete building is 
necessary. In chapter 3 the priciples of good aseismic design 
were presented and a number of desirable design features were 
identified: 

a. The need for ductility to allow large deformations 
occur and absorb energy. 

b. Buildings should be regular with their centres of 
mass and rigidity being close enough. 

c. Stiffness should be distributed uniformly whereas 
"soft stories" should be avoided. 

d. Beams should be designed to fail before columns to 
prevent total collapse of the building. 

e. Beam-column joints should be adequately reinforced 
and strengthened zones should be provided in 
adjacent beams and columns to shift plastic hinge 
formation far enough away from the joint. 

f. Shear walls greatly improve the earthquake 
resistance of buildings but must be positioned 
correctly. 



g. Non-structural elements should be designed to 
resist seismic loads. 

Having established the required design features, chapter 4 
reviews building practice and identifies deficiencies with 
regard to seismic resistance. A substantial stock of 
reinforced concrete building is of irregular shape, standing 
on soft stories, invariably rely on un reinforced masonry and 
often include the unacceptable stub-columns. In many cases the 
absence of professional supervision allowed bad workmanship 
to assist. 

Relating the requirement of good aseismic design, (chapter 3) 
with building practice (chapter 4) enables areas to be 
identified where strengthening of existing buildings is 
required. The development of polymers and their use for 
modifying cementitious or epoxy mortars have enhanced 
considerably the possibilities of strengthening reinforced 
concrete structures. These special materials have properties 
that render them ideal for concrete repairs and strengthening. 

Strengthening techniques include: 

a. Strengthening of reinforced concrete elements by 
improving ductility. 

b. Strengthening of critical zones around a beam
column joint. 

c. Improving existing shear walls or introducing new 
ones carefully positioned. 

d. Eliminating the stub-columns by enlarging existing 
foundations. 

e. Strengthening of unreinforced brickwork. 
f. Improvement of large openings. 
g. Prevention of non-structural damage. 

A number of the same techniques may be used to repair damage 
after an earthquake. It is vital that any damaged structures 
are properly repaired otherwise they will be especially 
vulnerable to subsequent seismic events. 

Chapter 5 identified strengthening techniques that could be 
I , h" -the b", app ~ed to t e ex~st~ng stock. As one of 0 Ject~ves of th~s 

thesis was to provide Cypriot engineers with a manual on 
strengthening of existing buildings to resist seismic loading 



then it is neccesary to demonstrate how to assess existing 
structures. Chapter 6 presents two case studies. The first was 
selected being constructed prior to 1984 when the concept of 
earthquake resistance was not known. The second case is of a 
house built recently when basic provisions 
design were applied~ These case studies 
procedure involved: 

a. Analysis unaer seismic loads. 

of the aseismic 
demonstrate the 

b. Design of the reinforcement and comparison with the 
existing reinforcement. 

c. Inspection of the architectural layout. 
d. Identification of deficient areas. 
e. Design of specific solutions. 
f. Analysis of the cost of the strengthening measures. 

Following the above procedure, it was found that both 
buildings have number of deficiencies, no matter if built 

prior to 1984 or after. Therefore. all structures. designed without 
folladng the. new seismic code should be assessed as far as 
their earthquake resistance is concerned. The case studies 

. also demonstrated the importance of symmetrical layout. 
Strengthening is greatly aided by the symmetry of the 
structure and therefore the result is of a higher standard. 

The improvement of a structure's earthquake resistance and its 
strengthening is feasible. The suggested methods and the 
materials are already available on the Cyprus market. Costs 
in the order of 10-15% of the capital cost of the building 
involved are within reasonable limits. However it is still not 
easy to persuade the owners that such work is essentia1. 
Ironically, it appears that only a destructive earthquake will 
achieve this. 

Nevertheless the Cypriot Engineers should continue their 
efforts persuading others that the existing structures are 
~nadequate to sustain the probable seismic load likely to 
occur in the next few years. Strengthening techniques can be 
identified that if carried out would reduce the likelihood of 
catastrophic collapse. 



APPENDIX I General information about earthquakes21 ,35,54,65 

The entire surface of the Earth is composed of a series 

and undeformable plates. Seven major plates cover most 

of rigid 

of the 

Earth's surface (as shown in figure 2.3 in chapter 2), namely the 

Pacific Plate, the North and South American Plate, the Nazca, the 

African Plate, t~e Indian Plate and the Eurasian Plate. Many 

other smaller plates exist in addition to the major ones. The 

plates are continuously in motion, and sometimes collide with 

each other along a destructive plate margin. Due to these 

collisions island arcs, such as Cyprus may be form on the 

surface. More than that, the collision creates excessive stresses 

built up. Rocks suddenly fail and move and thus energy is 

released. This energy shakes the ground making it to 'quake' and 

this phenomenon is called an earthquake. 

The centre of the cause of the earthquake is called the focus and 

it lies usually somewhere along the boundary of the two plates 

colliding. The position vertically above on the Earth's surface 

is called the epicentre. 

To describe an earthquake two different terms are used: magnitude 

and intensity. 

INTENSITY: 

It is a 

locality. 

intensity, 

This scale 

measure of the amplitude of ground vibration at one 

Although there are several scales measuring the 

the most common one is the Modified Mercalli Scale. 

is actually used to assess the results or the 

damages in a certain area. It measures from 1 to 12 (in Latin 

numbers) and each number corresponds to a certain degree of 

damages observed during the earthquake as shown in Table 7.1 The 

advantage of such a descriptional scale is that even past 

earthquakes can be assessed. 



SCALE DESCRIPTION MAXIMU/1 RICHTER 

ACCELERATION SCALE OF 

OF SOIL HAGNITUDE 

(mm· Is') (H) 
(APPROXIHATELY) 

I Felt only by instruments 10 2 

II Felt by a fe~1 people at rest 10 
3 

III Sli&ht. Rattling of ~dows 25 

IV Generally perceptible, 
Rocking of things in tall 50 4 
buildings 

V Rather strong. Shaking of 

hanging items. Trembling 100 

of furniture 5 -
VI Strong. Cracking of plaster 250 

Small damages 

VII Very strong. Considerable 
damages especially to poor 500 6 
construction 

VIII Destructive. MUch damage 1000 
to normal buildings -
partial collapse. Over_ 

turning of tanks, monuments 
and chimneys. : 

IX Ruinous. Ground cracked 2500 7 
X Disastrous. Host of the 5000 

buildings collapse. 
8 

XI Fe" structures left 7500 
standing. Flooding 

XII Catastrophic - Total -"9800 9 
destruction 

TABLE 7.1 The Hodified Hercalli Scale of earthquake intensity 



MAGNITUDE: 

It is a quantative measure of the size of an earthquake, that is, 

the energy generated at its focus. It is measured directly by 

instruments. The Richter Magnitude Scale is commonly used nowadays 

measuring from 0 to 9. An earthquake is considered to be a strong 

one if its magnitude is greater than 5 - 5.5 on the Richter 

Scale. Such earthquakes can be recorded on seismographs over the 

entire Earth. The results of an earthquake of a certain degree on 

the Richter Scale will vary from place to place according to the 

distance from the focus and the geology. 

The two terms cannot be easily compared. Nevertheless, a rough 

comparison between the Modified Mercalli Scale and the Richter 

Scale can be made as also shown in Table 7.1. 

The difference from one degree on the Richter Scale to the next 

one is enormous. This fact will become more clear looking at 

Table 7.254 where magnitude and energy released by some 

earthquakes are shown. 

The seismic activity around the Earth is 

twenty earthquakes of magnitudes 

every dayl More 

over 

frequent. On average 

than 4 degrees on the 

Richter scale 

Table 7.354 • 

occur statistical data are shown in 
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PLACE OF EARTHQUAKE HAGNITUDE ENERGY RELEASED RELATIVE 
H ERG ENERGY 

Agadir 1960 5.75 1020 1 

Orleamdl 1951} 6.75 3x1021 30 

l1essina 1908 7.50 4.5x1022 450 

San Francisco 1906 8.20 5x1023 5000 

Tokyo 1923 8.30 6.9x1023 - 6900 
I 

Assam 1950 8.60 2x1024 20000 

Lisbon 1755 -9.00 7.9x1024 79000 

TABLE 7.2 Hagnitude and energy released 

" 

".:" .. 



TYPE OF l'::A.RTHQUAKE HAGNlTUDE AVERAGE 
(M) ANNUAL NUHBER 

Catastrophic of global scale > 8 1-2 

Hajor regional 7-8 15-20 

Hajor local 6-7 100-150 
-

Hedium 5-6 750-1000 

11i.nor local 4-5 5000-7000 

TABLE 7.3 Average annual number of earthquakes according 
to their magnitude 



APPENDIX 11: EXTRACTS FROM THE CYPRUS SEISMIC CODE FOR 
REINFORCED CONCRETE STRUCTURES 

3. CRITERIA OF CALCULATIONS 

3.1 DEFINITION 

The criteria of the calculations consist of a set of procedures to be foll~ 
in order to satisfy the general requirements in chapter 2. These procedures 
include: 

a. Study of the limit state of the structural behaviour and the 
control of this state. 

b. Design of the structural elements according to the provisions 
of this Code. 

c. The adapt ion of qual i ty control procedures duri ng construction. 

3.1.1 Collapse mechanism 

The provisions of this code have been developed on the ,choice that stuctures 
should resist earthquake actions by means of a staol~ non linear, energy 
dissipating mechanism of response. This aim will be achieved by following 
the dimensioning rules of the various elements given in chapter 4. 

3.1.3 Strength and Ductility 

The critical regions, i.e. regions where most of the energy dissipation is 
expected, must be' provided by a suitable balance of strength and ductility, 
to ensure safety and serviceability of the structure. Specific analytical 
provisions which take into account the influence of accumulative damage and 
degrading of mechanical properties are given in chapters 4 and 5. 

3.1.4 Limit deformations 

The amplifude of the ,structure's: deformation under the seismic forces must 
be limited in accordance with clause 4.4.6.4 • 

3.1.5 Global Ductility 

The use of appropriate materials (chapter 4.1) as well as of detailing 
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3.2 RELIABILITY DIFFERENTIATION 

Target reliabilities sha'll be established on the basis of the consequences 
of failure, cosidering both aspects of safety and serviceability. 
Consequences of failure in which momentary and non momentary losses are 
included, depend principally on the use given to buildings. on their c~s, 
and on the importance of their functions. 
Five different to reliability levels are recognised for the structures. 
According to their importance, the structures shall be classified as follOds: 

Class I: 

Class II: 

Bui ldlngs where collapse'may have catastrophic consequences -
like nuclear stations, stores of inflammable of toxic material, 
dams - or buildings with more than 15 floors or very important , 
buildings. 

Buildings with likely large number of occupants - cinemas, 
theatres, halls etc - or important communal indurstrial buildings 
with expensive equipment. 

Class Ill: Houses, multistory buildings, restaurants, hotels and other 
buildings not included in classes I and 11. 

Class IV: 

Class V: 

Auxiliary buildings and farms. 

Temporary structures where collapse will not create any danger 
to people. 
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The different reliability levels proper ,to each class shall be obtained 
by amplifying the design action with a factor 1. called 'importance faciDr' 
given in table 3.2 

Table 3.2: CLASS 
I 

1I: 

III 
IV 
V 

FAcTOR I 
not covered by'this code 

1.5 

1.0 

0.5 
seismic analysis not necessary 

In addition or in alternative of the use of the factor I. checking of specific 
limit-states relevant to damage or loss of function can be required for 
certain types of buildings. 

3.3 DUCTILITY LEVELS 

The structural systems covered by this Code can be designed to possess 
different 'ductility' levels according to the following classification: 

Ductility level I (DL I): This level is defined as that proper to strucUrres 
proportioned in accordance to the usual code of reinforced 
concrete. with the few additional requierements included in 
:chapter 5. 

Ductility level 11 (DL 11): For this level specific aseismic requirements 
should be adapted. to enable the structure to reach non-elastic 
limits of behaviour. under repeated reversed loading. avoiding 
brittle 'failure. 

Duct ility level III (DL 1II): For this level specific procedures should be 
adapted for estimating design loads and dimensions and the 
detailing of the elements to ensure the development of selected 
stable mechanisms able to dissipate Significant amount of 
energy. 

The greater the ductility level adapted in a structure the lower is the 
seismic action to be considered in the deSign. This is given and numerically 
by:-, the 'behaviour factor' K. (chapter 4.1.3) 
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4.1.3 STRUCUTRE BEHAVIOUR FACOTRS 

The values of the behaviour factor K, defining the intensity of the design 
action (ch. 6.4.4) as a fuction of the structural type and of the selected 
ductility level, are given in Table 4.1.3 

Table 4.1.3 STRUCTURAL 
- SYSTEM 
frame 

wall and combined 

DL I 

2 

>2 

DUCTI LI TV LEVEL 
DL I! DL 11 I 

3.5 5 

3 4 

The values of K in table 4.1.3 for wall and combined structures apply if at 
least 50% of the lateral force in both directions is resisted by coupled 
walls. If this condition is not satisfied the K values shall be reduced by 
a factor of 0.7 • 
Ductility level I is permitted only for Class Ill, IV, V structures in areas 
of moderate seismicity. Class 11 structures to be built in high seismicity 
areas shall be preferably designed for DL Ill. If appropriate, and for more 
safety, K values relative to DL 11 could also be used in this case. 

4.1.4 Design Load Combination 

The fundamental combination of load effects to be used for all the limit-states 
verifications is: 

Sd = S(G + E + ~Q) 

where: 
G. includes all the permanent load at their nominal value. 
E: the design seismic action as defined in ch. 6.4.4 
Q: includes all the imposed load at their nominal value whose duration of 

application Is long enough for the probability of their joint occurred 
with earthquake action· being not negligible. 

~: factor defining the fraction of the imposed loads to be included in the 
seismic analysis calculations. Values for factor ~ are given in table 4.1.4 
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Table 4.1.4 TYPE OF STRUCTURE 
Roofs 
Houses, Multistory builings 
Public halls, Hospitals, Schools 
Stores, Factories, 
Water tanks 

FACTOR ~ 
0.00 
0.25 
0,50 
0.75 
1.00 

The evaluation of the seismic action shall be based on all the gravity loads 
appearing in formula 4.1.4 

4.2 STRUCTURAL ANALYSIS 

4.2.1 Suggested methods of structural analysis shall be different for 
'buildings which, according to the definition given in this chapter" 
are classified as 'regular' or irregular' 

Regular buildings can be designed according to the simplified method of 
analysis (indicated as equivalent static analysis) described 'in ch. 4.2.4, 
provided their height does not exceed 50 m and the fundamental period is 
shorter than 2 ~ec. 
If these conditions are not satisfied or if the building is of irregular 
type, the dynamic method in ch. 4.2.5 shall be applied. 
A building shall be classified as regular when the following conditions, 
regarding both plan and vertical configuration are satisfied. 

4.2.1.1 Plan configuration 

The building has an approximately symmetrical plan configuration with respect 
to at least two orthogonal directions along which the earthquake resisting 
elements are oriented. When re-entrant corners are present, they do notexceed 
25 percent of the building external dimensions. 

A A 

8 B A4 
BM 
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4.2.4 EQUIVALENT STATIC ANALYSIS 

The 'equivalent static analysis' can be adopted for buildings classified as 
'regular' according to 4.2.1, provided their height does not exceed 50 m, 
and the fundamental period is not greater than 2 secs. The limits given are 
in recognition of the importance of higher modes of vibration for long-peroid 
(generally taller) structures. 

4.2.4.1 Horizontal Design Forces 

The design lateral force to be applied at each floor level, in the direction 
being analyzed, shall be given by, 

where: 
Cd: deSign seismic coefficient, equal in value to the design response 

spectrum, as given in Ch. 6.4.4. 
Vi; distribution factor, depending on the height of the floor measured 

from the building. 

W.: total gravity load at floor i. I . 

The fundamental period of the building, which is required for the evaluation 
of Cd' shall be calculated using the elastic properties of the structure 
by means of ordinary methods of mechanics. taking into account all the 
elements which can contribute to the building stiffness. 
For frame structures an approximawexpression of the fundamental period. 
based on analytical and experimental results, is: 

T = N/12 
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where: 
N is the number of storeys. 

In many cases, a sufficiently accurate estimate of the period can be obtained 
with reference to an 'equivalent' uniform cantilever, whose period is given 
by the expression: 

T = 1.8 (1 ~ /2 

where: 
m is the building mass per unit length 
h is the heigt of the building from the foundation level. 
E I is the flexural stiffness of the 'equivalent' cantilever. 

In case the period is not calculate, Cd shall be taken as: 

.. 1 a -
K 

The distribution factor ¥i is given by the expression: 

[ W
i 

yi=hitw.h. 
1 1 

where: 
hi is the height of floor from the foundation level. 
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5. DETAILING, EXECUTION, USE 

When no explicit distinction is made, the provIsions in this chapter apply 
to both DL II and DL III structures. Provisions applicable to DL I structures 
are always explicit 

5.1 Elements 

5.1.1 Geometrical Constraints 

DL 11 and DL III structures 
Unless special proofs for exemption are given, the following dimensional 
limitations shall be satisfied: 

a. To ensure efficient transfer of moment from beam to column, the 
width of beam shall notbe less than 200 mm or more than the width 
of the supporting column, plus length on each side of the beam not 
exceeding ~ of the depth of the column. 

<-, , , 

L 

h} I I 
I L , 

-" , 

b ... 

b. To avoid any possible danger of transverse instability in the non 
linear range of response, the ratio b/h shall not be less than 4. 

c. Behaviour of frame components having l/h ratio less than 4 is 
is substantially different from the overallbehaviour of slender 
components. So the ratio l/h shall not be less than 4. (This does 
not apply to coupling beams·in wall structures Cl 4.4.3.3) 

d.! The eccentricity of any beam relative to the columns into which it 
frames as measured by the distance between the geometrical centrelines 
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of the ,two member, shall not exceed ~ bc' 

-r-Ew tmur------ r---1--t-e~~f4 L ---- ------- ------- -l--' 

5.1.2 Longitudinal Reinforcement 

DL 11 and DL iii structures 

a. At any section of the member the tensile reinforcement ratio for 
the top or the bottom reinforcement shall not be less than: 

(fyk in MPa) (5.1.2.1) 

'and :to 'ensure a sufficient ducti I ity shall not be greater than: 

(fyk in MPa) (5.1.2.2) 

with Pmin and Pmax referred to the gross concrete area Ag• 

b:' At least two 12 mm bars shall be provided both top and bottom 
throughout the length of the members. 

c. To ensure adequate ductility at potential plastic hinges and to 
provide a reasonable strength for the reverse action, the 
compression reinforcement ratio P shall not be less than one 
half of the tension reinforcement ratio at the same section 

p I. 0_5 

d_ At least one quarter of the larger of the reinforcement required 
at either end of the member shall be continued throughout its 
length_ 

e. In T and L beams built integrally with slabs, the effective 
reinforcement to be considered near column faces in addition 
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to all longitudinal bars placed within the web width of the beam 
shall be as follows: 
I. At Interior columns when a transverse beam of similiar dimensions 

frames Into the column, all reinfo~cement within that part of 
the slab which extends a distance 4 times the slab thickness 
from each side of the columns. 

11. At interior columns where no transverse beam exists, all 
reinforcement within that part of the slab which extends a 
distance of 2.5 times the thickness of the slab from each 
side of the column. 

Ill. At exterior columns where transverse beam of similar dimensions 
frames into the columns and where the beam reinforcement is to 
be anchored all reinforcement within that part of the slab v.I1ich 
extends a distance of twice the slab thickness form each side 
of the columns. 

'IV. At exterior columns where no transverse beam exists, all 
reinforcement within the width of the column. 

In all cases at least 75% of the reinforcement in each face providirng the 
required flexural capacity, must pass through or be anchored in the column 
core. 
DL I structures 

Only clause 5.1.2 (a) needs to be satisfied. 

5.1.3 Minimum Transverse Reinforcement 

Transverse reinforcement as specified in this section shall be provided· 
unless larger amount is required to resist shear (Sec. 4.4.1.4). The 
purposes of transverse reinfD~cement are: 

a. to confine the concrete in order to increase its ultimatedefonnation 
and to increase bond strength 

b. to restrain laterally the longitudinal bars so to prevent them frcm 
buckling 

c. to provide shear resistance.' 

Portions of the beams to be considered as 'critical' regions are: 
a. Twice the member depth, measured from the face of the supporting 

column, or beam, towards midspan at both ends of the beam. 
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b. Twice the member, depth on both sides of a section where yielding 
may occur 

c. Wherever compression reinforcement is required. 

DL 11 structures 

In the critical regions as defined above, stirrup-ties of not less than 
8 mm diameter shall be provided, with maximum spacings not exceeding the 
smaller of 
a. h/4 

b. 8 ~l ( ~l: diameter of the longitudinal bars) 
c. 24 ~h (~h: diameter of the stirrup-ties bars) 
d. 200 mm 
The first stirrup-tie shall be located not more distant than 50 mm form the 
face of the column. 
At least one out of every two separate longitudinal bars included in the 
web width'Jof the beam should be restrained by a 900 bend of a stirrup-tie. 

DL III structures 

In the critical regions as defined above stirrup-ties of not less than 8 mrr .. 
diameter shall be provided, with maximum spacings not exceeding the smaller 
of: 
a. h/4 

b. 6 ~l 
c. 150 mm 
The minimum area of one leg of the transverse reinforcement shall be: 

S 
100 

to prevent buckling of longutudinal bars subjected to severe reverse plastic 
deformations 

LAb = sum of the areas of longitudinal bars at the section considered 
to be restrained by the transverse leg 

fyk '= yield strength of longitudinal bar 
fykt= yield strength of stirrups 
S ;,-spacing of the sti rrups in mm 
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The first stirrup-tie shall be located not more distant tllan 50 mm from 
the face of the supporting member. 
At least one out of every two separate longitudinal bars included in the 
web width of the beam should be restrained by a 900 bend of a stirrup-tie. 

5.2 Elements Subject To Bending And Axial Force (Nd > 0.1 A f d) - g-c-
The purpose of the provisions in this clause, is to provide columns with 
a sufficient reserve of ductility which might prove essential should some 
deviation occur from the expected structure's response. 
Observations of damages produced by earthquakes frequently show that corner 
columns are more vulnerable than interior ones, due to unanticipated torsional 
effects. 
It is therefore recommended that corner columns be subjected to particular 
care on detailing, or even be made somewhat stronger than required by 
analysis. 

5.2.1 Gemetrical Constaints 

DL 11 structures 
a. The mir1i.mum cross-section dimension shall not be 'less than 250 mm 
b. The ratio Llb shall not exceed 25 

DL III structures 
a. The minimum cross-section dimension shall not be less than 300 mm 
b. The ratio Llb shall not exceed the values of 

- 16 for columns having moments of opposite sign at the two 
extremities 

- 10 for centilever columns. 

5.2.2 Longitudinal Reinforcement 

The reinforcement ratio shall not be less than 1.0% nor greater than 6% 
including the region of lap splices. 
For S 400 steel, the reinforcement ratio outside the splices shall not be 
greater than 4%. 

When the section is confined for architectural purposes, the minimum 
reinforcement ratio may be reduced. Reinforcement calculated as less than 
0.5% may be doubled. However, in no case should the reinforcement be less 
than 0':·5%. 



The bars shall not be spaced further aoart between centres than 250 mm for 
DL II structures or 200 mm for DL III structures. 
DL I structur:es 
The provisions above must be satisfied also by DL I structures. 

5.2.3 Transverse Reinforcement 

A basic amount of reinforcement shall be provided all over the height of 
the columns, while special reinforcement shall be placed in the column 
critical regions, defined in the following Cl. 5.2.3.1. 
The amount of reinforcement required by the present clause shall be provided 
unless a larger amount is required to resist shear according to Cl 4.4.1.4 

5.2.3.1 Column Critical Regions 

a. For usual cases, critical regions are considered to be the regions 
at each end of a column above and below connections over a length 
from the faces of the connection of not less than the larger of: 
- the longer column c~Dss-section dimension 
- one-sjxth of the clear height of the column 
- 450 mm 

b. When a masonry infill wall is in contact with one or both of the 
two opposite sides of a column, over the whole height or part of 
it, the entire column height shall be considered as a critical 
region. 

c. In case of columns with part of their height restrained due to a 
connection with a wall, the free part of the column shall be 
considered as a critical region. 

Critical column regions require greater amount of closely spaced, well 
anchored transverse reinforcement than the remainder of the column, in 
order to provide confinement to concrete (hence adequate curvature ductility), 
lateral support for the longitudinal bars, and shear resistance. 

5.2.3.2 DL II structures 
Critical region 

SpeCial transverse reinforcement having a minimum diameter of 8 mm in the 
form of spiral or hoop reinforcement shall be provided. 
Cross-ties to restrain longitudinal bars not directly held by hoops shall 
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not exceed the lesser of: 
a. eight times the minimum diameter of the longitudinal bars 
b. half the least cross-sectional dimension of the section 
c. 200 mm 

The tranverse·reinforcement in the amount specified above shall be conti~ 
throughout the length of the beam-column joint. 

DUCTILITV LEVEL 11 • 
critical region, lc= max (h, L/6, 450 mm) 

t 
critical region, Sh = min(8 '" l,b/2, 200.mro 

Spacing 

Elsewhere, Sh = min(12"'I,b, 300 mm) 

Non-critical regions 
The minimum transverse reinforcement in non-critical regions shall be in 
accordance with the Code for Concrete. 

5.2.3.3 DL III Structures 
Critical regions 

The volumetric ratio of transverse reinforcement (spiral of hoops) shall 
not be less than the greater of 

f 
Ps = Al -~ (5.2.3.3.1) 

'yk 

or ~ ( A 
c 

-1 (5.2.3.3.2) 

where Ag = gross sectional area 
Ac = confined area of concrete 

and the values of Al and A2 are given in the following table. 

-206-



0.,10 0.20 0.39 0.40 0.50 

0.05 0.06 0.07 0.08 0.09 

0.18 0.22 0.26 0.30 0.34 

The volumetric ratio is the ratio of volume of spiral or hoop reinforc~t 

to total volume of concrete core (out-to-out of bars) within spacing 

sh. 

The volumetric ratio: Ps for rectangular sections is defined as: 

(5.2.3.3.3) 

where ASh is the total area of hoop bars and supplementary cross ties in 
each of the principal directions of the cross section, Sh is the spacing 
and the h' is the distance between centres of outer bars. 
1. The minimum diameter of spiral or hoops shall be 8 mm 
2. The maximum spacing between spirals of hoops shall not exceed the 

smaller of: 
a. six times the minimum diameter of the longitudinal bars 
b. one fourt~ of the smallest lateral dimension of the section 
c. 150 mm 

DUCTILITY LEVEL III 

le 
critical region, 1 = max (h, c 1/6, 450 mm) 

L 
critical region Sh = min(6~I,b/4,150 mm) 

rl-l--~l 
Spacing 

el sewhere, Sh = min(8~1 ,b/2,200 mm) 
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3. Each longitudinal reinforcing bar of bundle of bars shall be laterally 
d supported by the corner of a hoop, at least 135 or by additional cross 

ties, except for: 
a. bars of bundles of bars which lie between two bars supported by 

the same hoop where the distance between them does not exceed 
exceed 200 mm beween centres. 

b. inner layers of bars with concrete core centred more than 75 mm 
from the inner face of hoops 

Sinv'. hoop plul two slIppl,,,,.nfor,. crolS 5in9" hoop piu 'wo lupP'emen1or)' ero .. 
I." benl around longitudinal bon tit .. befit IIro",nd hoop 

d) 

laJJl H~p' 

Two on,loppin9 hoops- p.,f.rred detail T .. o O'I.,loopinO hoops-not pr,f'Hld'o d 

Th, .. outloPPIftO hoops four o",rloppi"'l hoops 

4. The yield force of the hoop bar or the additional tie shall be at 
least one-sixteenth of the yield force of the bars, it is to restrain 
including the contribution from the bars exempted under 3 (a) above. 

5. Each end of an additional tie shall engage either a longitudinal bar 
or the peripheral hoop besides a longitudinal bar with a bend of at least 
1350 and an extension beyond the bend of at least 10 tie bar diameters. 
Additional ties and legs of hoops shall not spaced transversely more than 
either 200 mm or one-quarter of the column section dimension perpendicular 
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6. SEISMIC ACTION 

6.1 Regional Seismicity 

The seismic activity in Cyprus is described by the seismic map of Cyprus 
(figure 6.1); 

m 

:r 

For design purposes the most suitable parameter is the maximum value for 
the soil accleleration, Amax 

6.2 Seismic Zones 

For the purposes of this Code, Cyprus is divided into five zones according 
to the seismic intensities expected. For each zone, the design values for 
the maximum soil acceleration.Amax ' are given in Table 6,2. 

Table 6.2 Zone 

I, 1I: III 

IV 
V 
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6.3 Characteristics of Seismic Actions 

The seismic actions are a result of soil vibrations transformed to the 
structures during the earthquakes. 
For the purposes of this Code the ground motions are described by: 

a. the maximum soil acceleration A max 
b. the response spectrum for horizontal motion for stiff soils. 
c. the response spectrum for vertical motion reduced to 2/3 of 

the respective response spectrum for the horizontal motion. 

In regions where the geological evidence shows the possibility of 'short 
type' vibrations (where the response spectrum is not satisfactory) or 
where there is a large scale and deep soil layerinq, the expected characteristics 
of the ground motion must be analysed more rigorously. 

6.4 Design Seismic Action 

The design seismic action is defined as the force, which when used in 
combination with other dead of imposed load to design structlJresaccording 
to these provisions and the provisions of the Code for Concrete satisfies 
the general requirements shown in Ch. 2, in relation to the determined 
safety level. 

6.4.1 Elastic Response Spectrum 

For the purposes of this Code, the shape of the 'standard' (rocky or:' 
stiff-stable soils) response spectrum is given in figure 6.4.1 • The 
spectrum is for 5% structural damping. 
Different shapes for spectral strengtheniog may be adopted according to 
specific site records and/or geopi]sical evidence. 

"'~---

2 
for T<T,. 

t 

I 2 7(5eC~ 



a = 2.5 S = 1.0 

When there is no information 

T2 = 0.40 

6.4.2 Site characteristics 

When there is no detailed knowledge on the local soil conditions. procedure 
followed shall be as recommended in Clauses 6.4.2.1/2/3. 

6.4.2.1 Soil classes 

The soil classes are defined as below: 
SOIL S 1: Roc~ of any characteristic, either schistolithic or crystalline, 
or stiff soil where the depth of its layer is less than 60 ml and the soil 
ove rlying the rock is stable deposits of sand, gravel or stiff clay. 
SOIL S 2: deep, cohesionless or stiff clayly soils where the depth of the 
soil is more than 60 m and the soil overlying the rock is stable deposits 
of sand, gravel or stiff clay. 
SOIL S 3: soft to medium stiff clayly and sandy soils characterised by 
10 m or more of soft to medium stiff clay with or without intervening 
layers of sand or other cohesionless soils. 
In places where the soil characteristics are not known to classify the 
soil or where the soil is not matching with any of the three classes, class 
S 2 shall be used. 
Additional in-sit~ or laboratory tests should be performed to check 
conditions where there is a possibility of: 

a. dynamic instability and liquefaction of sand 
b. significant settlement 
c. rock falls 
d. faults 

It is recommended to avoid such sites, if possible. 

6.4.2.2 Site factor S 

The site factor, S is employed to take in account the soil conditions of 
the site. Its values are given in the Table 6.4.2.2 
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Soil class S 1 S 2 S 3 

Site factor, S 1.0 1.2 1.5 

Table 6.4.2.2 

6.4.3 Elastic Site Response Spectra 

The elastic response spectra is shown in 'figure 6.4.3. 

s. 
s. 
S, 

12 I. Z T(sec) 

If there is.no specific infomation for the site, T2, Q and S may be taken 
as given in Cl 6.4.1. 

Spectra for vertical vibrations may be defined quite accurately multiplying 
the coordinates of the spectra for horizontal vibrations by 2/3. 

6.4.4 Design Response Spectra 

The coordinates of the deSign response spectrum are given multiplying the 
coordinates of the site response spectrum by factor: 

R = 1i 
Q as 

1 
I·-K,A max 
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where: 
I : 

- K: 
- A max 

Importance factor given in Oh. 3.2 
Behaviour factor given in Table 4.1.3 
Maximum soil acceleration for the considered seismic zone 
given in Table 6.2 
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! APPENDIX IV CONCRETE REPAIR METHODS 

5.7.1 Hair cracks « 0.3 mm)25 

A sealer of low viscosity and penetrating properties is required 

to seal hair cracks. Special polymer sealers can be used which 

offer flexibility and bond strength. Fine hair cracks are best 

treated by isolating the areas with dams formed from putty or 

mastic. If there are no obvious cracks best results will be 

achieved by drilling holes through the surface taking care to 

remove the dust created and forming little wells around the holes 

L- to ease application. 

5.7.2 Cracks (0.3 mm - 2 mm)26 

Narrow cracks are repaired by crack injection. Where all exits 

from the cracks can be found and sealed, the standard low 

viscosity epoxy resin may be used. Where this is not feasible a 

thixotropic grade should be used, which will not pour away 

uselessly, out of the back of crack. The procedure for the 

injection system is (see figure 5.12): 

a. The crack must be thoroughly clean and dry. 

b. Using a sealer the copper injection nipples are bonded on to 

the crack taking care that entry into the crack through the 

nipples is not blocked. Then all external entries into the 

crack must be sealed, so that the resin will not drain away. 

The spacing of the nipples should be 200 - 250 mm. 
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5.12 Crack repairing by injection resins 
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c. The resin is then injected using an applicator gun. The 

injection starts form the lowest nipple (when vertical crack) 

or from the one extremity to the other (for horizontal 

cracks). Injecting continues until resin begins to exude from 

the next nipple. 

d. The first nipple is then sealed and the injection proceeds in 

the same way from the next nipple until the whole crack is 

filled. 

e. The nipples are knocked off and a sealer is used to make good 

their points. This must be done after 24 hours. 

Cyclic loading tests of injected epoxy 

were operated in the united States. 6 
repaired concrete beams 

The repaired beams showed 

excellent energy absorption and resisted numerous application of 

cyclic loads. They prove to be stronger than uncracked normal 

beams I 

5.7.3 Cracks (2 mm - 6 mm) 

Where cracks are wider, epoxy systems become rather unsuitable 

due to the high cos~ and their chemical properties (exothermic 

heat build up). A non-shrink cement based grout is more 

appropriate for such cracks and more economical. The procedure is 
very similar· to the previous method. The grout is injected in the 

same way using an applicator gun. When complete filling has taken 

place it should be left to harden at least 48 hours. Then the 

nipples are removed and the holes are sealed. 

Where extensive cracking has taken place, then the recommended 

repair method is the removal of the loosened sections and 

repairing as in the cases of spalled and damaged concrete which 

follow. 

5.7.4 Small spalled areas - Cover replacement less than 12 mm 

Repair to small spalled areas of concrete where replaceable cover 

is less than 12 mm must be done with epoxy mortars. According to 

. , .' ~ . 
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the producers no cementitious material can be used with a layer 

less than 12 mm (8 mm was given by a German company) .25 The 

minimum depth of repair would be 3 mm since anything less than 

that could be made up with a high-build surface coating. 

The procedure for repairing26 ,28 such concrete surfaces is as 

follows: 

a. Cut out and scabble off unsound concrete leaving a minimum 

depth of 3 mm. If reinforcement is exposed, concrete should 

be cut back behind by at least 15 mm. 

b. The surface must be then thoroughly cleaned and wetted. 

c. One coat of an epoxy bonding agent is applied to the concrete 

(and the steel) so a tacky layer is -formed prior to the 

application of the mortar. 

d. While the bonding agent is still tacky an epoxy mortar is 

placed using a trowel. The material must be pressed firmly 

into position. 

5.7.5 Spalled areas - Cover replacement more than 12 mm (see 

figure 5.13) 

The use of a polymer modified cementitious based system is more 

suitable for larger repairs mainly for economy. The result of the 

method will be comparable to the epoxy based system. The 

compressive strength achieved by a polymer cementitious mortar 

will be lower than that obtained by epoxy mortar. Nevertheless it 

will be more than enough for our purposes (according to producers 

a standard polymer cementitious mortar can achieve a compressive 

strength of 45 N/mm2 ). 

The procedure is the same as for small spalled areas with the 

epoxy materials replaced by cementitious mortar. The maximum 

thickness of repair specified by the producers should not be 

exceeded. If the repair depth is greater than the one allowed 

then more than one layers of mortar should be applied. Each time 

.'; 
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a bonding agent should be used. special lightweight mortars exist 

which make work easier for vertical surfaces and soffits. Such 

mortars can achieve compressive strengths for 30 N/mm2 , which is 

sufficient for most applications. 

5.7.6 Large area repairs 

Large scale repairs to large volumes of damaged concrete can be 

done using any cementitious 

effectively and economically 

grout. A high-strength gout, 

mortars. It 

however, with 

even in its 

obtain sufficient compressive strengths (up 

can be done more 

the use of a pourable 

flowing form, will 

to 50 N/mm2 ). 

The method to be followed is specified below: 

a. Remove all loose concrete and cut back around edge of .. repair 

to give minimum depth of 12 mm. If steel" reinforcem~"nt' is 

exposed, concrete should be cut back behind .. by approxi!Rately 

20 mm. 

b. Steel reinforcement should be clean from any loose material. 

Bars that have suffered severe damage must be replaced. 

c. Formwork of the 'letter box' type should be prepared. All 

forms require to be ~atertight. One section of the formwork 

remain open and should be able to be fixed quickly. 

d. A bonding aid is then applied to the existing concrete and 

steel reinforcement. 

e. While surface is still tacky the remaining section of the 

formwork should be fixed and then a pourable grout may be 

poured into void through the 'letter box' opening. 

f." Curing methods are equally 

cementitious mortars. 

important like for all 

These specifications are supplied as general suggestions for 

different areas. Further specific directions should be sought. 
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