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Abstract 1 

Crash frequency prediction models have been an important subject of safety research 2 

that unveils a relationship between crash occurrences and their influencing factors. 3 

Recently, the hourly-based refined-scale crash frequency analysis becomes attractive 4 

since it holds the benefits of introducing time-varying explanatory information (e.g. 5 

traffic volume and operating speed). However, crash frequency data with short time 6 

intervals possess the analytical issues of excessive zeros and unobserved heterogeneity. 7 

In this study, a marginalized random effects hurdle negative binomial (MREHNB) 8 

model was developed in which the hurdle modelling structure handles the excessive 9 

zeros issue and site-specific random effect terms capture the factors associated with 10 

unobserved heterogeneity. Moreover, the marginalized inference approach was first 11 

introduced here to obtain the marginal mean inference for the overall population rather 12 

than subject-specific estimations. Empirical analyses were conducted based on data 13 

from the Shanghai urban expressway system, and the MREHNB model was compared 14 

with the HNB (hurdle negative binomial) and the REHNB (random effects hurdle 15 

negative binomial) model. In terms of model goodness-of-fits, REHNB and MREHNB 16 

model showed substantial improvement compared to the HNB model while there was 17 

no distinct difference between the REHNB and MREHNB models. However, as for the 18 

estimated parameters, the MREHNB model provided better inference precisions. 19 

Furthermore, the MREHNB model provided interesting findings for the crash 20 

contributing factors, for example, higher ratios of local vehicles within the volume 21 

would enhance the probability of crash occurrence; and a non-linear relationship was 22 

concluded between traffic volume and crash frequency with the moderate level of 23 

volume held the highest crash occurrence probability. Finally, in-depth analyses about 24 

the modeling results and the model technique were discussed.  25 

 26 

Keywords: Marginalized model; Site-specific random effects term; Hurdle negative 27 

binomial model; Excessive zeros; Unobserved heterogeneity 28 

 29 

 30 

1 Introduction 31 

Traffic crashes result in significant casualties and economic losses. According to the 32 

World Health Organization (WHO), 1.25 million people die each year from road traffic 33 

crashes and their associated cost is equal to around 3% Gross Domestic Product (GDP) 34 

worldwide (Organization, 2015). In order to improve traffic safety, tremendous efforts 35 

have been devoted to identify the crash contributing factors by formulating crash 36 

frequency prediction models.  37 

 38 

The crash frequency analyses were conducted based upon aggregated crash data and 39 

the majority studies aggregate data over long time intervals such as monthly (Wan et 40 

al., 2010) and yearly-based (Abdel-Aty and Radwan, 2000). During the crash frequency 41 

data preparation procedures, the explanatory variables are also required to be 42 
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aggregated. For instance, traffic volume was combined as AADT (Annual Average 1 

Daily Traffic) (Aguero-Valverde and Jovanis, 2008) and monthly or even yearly 2 

averaged speed was used to represent the operational conditions (Ma et al., 2008). 3 

However, the time-varying features, such as weather conditions (e.g. rainfall, snowfall, 4 

fog) (Ahmed et al., 2014) and operational statuses (e.g. traffic volume, vehicle 5 

occupancy, traffic speed) (Imprialou et al., 2016) have high influences on crash 6 

occurrence (Lord and Mannering, 2010). In addition, the highly aggregated crash 7 

frequency analysis may lead to the loss of potentially important time-varying 8 

explanatory information (e.g. Lord and Mannering 2010; Washington et al. 2010). 9 

 10 

Recently, as high quality traffic sensing data with smaller time intervals have become 11 

much more affluent and conveniently obtainable, the refined-scale crash frequency 12 

analyses, mostly based on hourly or daily time intervals, have been emerging (Usman 13 

et al. 2010). Researchers argued that the analysis based on the small time intervals is 14 

capable of revealing the impact of time-varying variables on crashes and providing in-15 

depth understanding of the relationships between the explanatory variables and the 16 

crash occurrence (Lord and Mannering, 2010). Taking traffic operational status into 17 

account as an example, through obtaining the volume and speed information prior to 18 

crash occurrence, studies could analyze the traffic conditions at the time of a crash 19 

occurring and reveal the high-risk crash-prone traffic conditions. In addition, the 20 

concluded results from the refined-scale crash frequency analyses would benefit the 21 

design of Active Traffic Management (AMT) control strategies, such as traffic police 22 

force patrol routes scheduling at hourly intervals (Kuo et al., 2013).  23 

 24 

However, there are several critical issues that need to be addressed when analyzing the 25 

crash frequency data with short time intervals. First, due to the rare event and 26 

randomness feature of crash occurrence, the refined-scale datasets contain excessive 27 

zero counts. For example, Chen et al. (2016) revealed that 97% of the crashes occurred 28 

in a mountainous highway in Colorado exhibit zero counts with a daily aggregation unit. 29 

Traditional crash count analysis models, such as Poisson and negative binomial models, 30 

have limited capabilities in dealing with excessive zeros (Dong et al., 2014); where the 31 

zero-inflated models have then widely been employed to handle excessive zeros 32 

(Carson and Mannering, 2001; Qin et al., 2005). The zero-inflated count model assumes 33 

the extra zero counts are arising from two states: a true-zero state where the roadway 34 

segments are inherently safe (i.e. no crash would happen on this roadway segment all 35 

the time); and a non-zero state, where no crash occurs in the observation periods 36 

(Shankar et al., 1997). However, intrinsically safe roadway segments are unlikely to 37 

exist in reality, for example, although the geometry design of the roadway segment is 38 

nearly perfect, crashes would happen due to the unsafe behavior of a drunken driver. 39 

This makes the fundamental assumption of the zero-inflated count model logically 40 

fallacious (Lord et al., 2005, 2007). Thus, the hurdle model, also named as two-part 41 

model, is employed as an alternative approach to adjust excessive zeros in the dataset 42 

(Ma et al., 2016) which assumes the roadway segments with zero crash observation are 43 

only safe over the study period, not inherently.  44 
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Moreover, the refined-scale crash frequency data exhibits a typical panel data structure, 1 

which holds repeated observations at roadway segment level. This suggests that there 2 

are potential spatio-temporal correlations between the observations, which is due to the 3 

unobserved heterogeneity (i.e. spatial correlation as a result of context specific factors, 4 

such as pavement surface conditions and driver population characteristics, are difficult 5 

to observe and incorporate into a model) and the observed homogeneity (i.e. serial 6 

correlation resulting from the crashes observed over time on the same segment). Such 7 

correlations would violate the disturbance independence assumption and may result in 8 

erroneous parameter estimates (Washington et al., 2010). Inappropriate treatment of 9 

unobserved heterogeneity would result in biased parameter estimates and incorrect 10 

inferences (Mannering and Bhat, 2014). To deal with the unobserved heterogeneity 11 

issue, a random effects model, which allows for a site-specific disturbance term (in 12 

addition to an overall disturbance term) to account for random disturbances specific to 13 

each roadway segment were introduced (Mannering et al., 2016).  14 

 15 

However, the estimated parameters obtained from the random effects model are subject-16 

specific interpretations. To be more specific, the parameters are conditioned on the 17 

random effects related to individuals within the estimated cluster (Diggle, 2002). The 18 

obtained influencing factors on crash occurrence could only fit for the specific roadway 19 

segments within the sample data, while the more critical marginal mean inference for 20 

the overall population cannot be identified (Su et al., 2015). That is to say, they may 21 

fail improving the predictive capability for the population due to the poor generalization. 22 

In addition, from the model application perspectives, such limitation would impede 23 

model transferring to other sites where population-averaged inference approach (e.g. 24 

marginalized inference models) is expected rather than the cluster-specific approach.  25 

 26 

In this study, a marginalized random effects hurdle negative binomial (MREHNB) 27 

modeling approach was proposed to solve the above-mentioned issues. Within the 28 

model structure, the hurdle modelling framework was used to deal with the excessive 29 

zero issue, while site-specific random effects terms were further introduced to capture 30 

the unobserved heterogeneity for each roadway segment. Furthermore, a marginalized 31 

inference technique was employed to obtain the population-averaged interpretations for 32 

the estimated parameters. The empirical analyses were conducted based on data from 33 

the Shanghai urban expressway system. The proposed MREHNB model was then 34 

compared with the hurdle negative binomial (HNB) model and the random effects 35 

hurdle negative binomial (REHNB) model. 36 

 37 

The rest of the paper is organized as follows: the second section discusses relevant 38 

studies that handling excessive zeros, the unobserved heterogeneity, and the subject-39 

specific interpretation issue. The next section provides a detailed description of the data 40 

preparation, which are followed by the description of the methodologies employed. 41 

Then, the fifth section presents the modeling results, and finally, the conclusions and 42 

discussions of the work are presented.  43 

 44 
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2 Literature review 1 

Hurdle negative binomial model 2 

In the literature, zero-inflated Poisson and zero-inflated negative binomial models have 3 

been widely adopted to deal with the excessive zeros in crash frequency analyses (Lee 4 

and Mannering, 2002; Chin and Quddus, 2003). They have been proved to provide a 5 

statistically superior fit to the data in a wide variety of fields (Malyshkina and 6 

Mannering, 2009). However, the zero-generating assumptions required by zero-inflated 7 

models assumes the existence of inherently safe roadway, were inferred to be logical 8 

fallacious (Lord et al., 2005, 2007). Recently, hurdle models have been employed as an 9 

alternative analysis approach (Ma et al., 2016). Being a two-part model, the first part 10 

of the hurdle model is used to resolve whether the count value is zero or positive; given 11 

the value is positive, and then the second part is applied with a truncated count 12 

distribution (Cragg, 1971). It is argued that using a ‘hurdle’ to decide the existence of 13 

the zero record is more realistic for the crash frequency analysis (Kassahun et al., 2014). 14 

Son et al. (2011) utilized a hurdle model to identify the hazardous locations and their 15 

contributing factors. Hosseinpour et al. (2013) developed a hurdle model to examine 16 

the effects of various roadway characteristics for the pedestrian-vehicle crashes. Chen 17 

et al. (2016) applied a hurdle model to investigate the influence of weather on the traffic 18 

safety in real-time. The results showed that the hurdle model outperformed the 19 

traditional count models to handle the excessive zeros, and was identified as the best 20 

model according to the goodness-of-fit measures.  21 

 22 

Marginalized random effects model 23 

In order to address the unobserved heterogeneity issue, random effects models have 24 

been introduced. Chin and Quddus (2003) utilized a random effects negative binomial 25 

model to consider the site-specific effects when examined traffic crash occurrence at 26 

signalized intersections. Chen et al. (2016) applied a site-specific random effects model 27 

to investigate the short-term impact of driving characteristics on crash occurrence. 28 

Anarkooli et al. (2017) adopted a random effects model to investigate factors affecting 29 

the injury severity of single-vehicle rollover crashes. The concluded results have 30 

highlighted the superiority of random effects model for enhancing the model goodness-31 

of-fits (Chin and Quddus, 2003). However, the estimations for the random effects 32 

models are conditional-based (i.e. individual-specific) interpretations, and cannot 33 

provide a marginal mean (or referred to as a population-averaged interpretation (Iddi, 34 

2013)).  35 

 36 

Heagerty (2004) first proposed the marginalized random effects model (MREM) to 37 

address the individual-specific issue brought by random effects terms. The marginal 38 

means are modeled directly and the random effects are still remained accounting for the 39 

unobserved heterogeneity (Lee et al., 2011). It was concluded that the regression 40 

coefficients for MREM models do not depend on random effects. To be specific, the 41 

offered inferences are not only for the specific individuals within development clusters, 42 

but also for the individuals not being considered within the clusters (Pavlou et al., 43 
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2015a). Moreover, they are less likely to have biases when the random effects model 1 

misspecification occurs (Heagerty, 2004). It was, for example, concluded by Lee et al. 2 

(2011) and Su et al. (2015) through the simulation studies, that the coefficient 3 

interpretations obtained from the marginal models were closer to the true estimates. The 4 

benefits of MREMs have been validated and utilized in medical (Su et al., 2015) and 5 

public health studies (Long et al., 2015). However, to the best of the authors’ knowledge, 6 

it has not been applied to traffic crash frequency analysis.  7 

 8 

To conclude, in this study, the hurdle modeling structure has been adopted to account 9 

for excessive zero observations and the site-specific random effects were introduced to 10 

handle the unobserved heterogeneity issue. Furthermore, for the first time, the 11 

marginalized inference technique was introduced to obtain the population-averaged 12 

interpretations for the estimated parameters.  13 

 14 

 15 

3 Data Preparation  16 

In this study, empirical data from the Shanghai urban expressway system were utilized. 17 

More specifically, four major expressways, which are Inner ring elevated road, Middle 18 

ring elevated road, North-South elevated road, and Yan’an elevated road have been 19 

analyzed, given their high quality crash and traffic sensing data. The location and 20 

occurrence information for crashes are recorded based on the full coverage of traffic 21 

surveillance system. Moreover, the expressway network was equipped with the license 22 

plate recognition (LPR) system that has an average spacing of 1 km. In addition, due to 23 

the peak hour travel restriction policy for non-local vehicles, and the network’s large 24 

spatial scale, the traffic flow characteristics (including traffic composition, operating 25 

speed, and volume) varies from hour to hour. 26 

 27 

Three datasets were employed to form the crash frequency analysis data: (1) crash data; 28 

(2) roadway segment geometric data; and (3) License plate recognition (LPR) data. The 29 

study period was set to October 2012, considering the data availability from different 30 

sources.  31 

 32 

Crash frequency variable 33 

For crash data, Fig. 1 shows the hourly based temporal distribution of crash frequency 34 

on the Shanghai urban expressway system. It demonstrates that there are limited crashes 35 

reported during 23:00 to 06:00. Non-reporting event over the night period could be 36 

included (Amoros et al., 2006), and this may produce biased estimates (Mannering and 37 

Bhat, 2014). Thus, the time period of the final dataset was set from 06:00 to 23:00, 38 

where a similar time data processing approach utilized in Mo et al.’s (2017). 39 

 40 
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 1 
Fig. 1. Hourly distribution of crash counts.  2 

 3 

A total of 1,659 crashes occurred on the targeted road segments during October 2012. 4 

The crash observations were further aggregated into hourly crash frequency data by 191 5 

roadway segments, which were split using on-ramps and off-ramps as dividing points 6 

(Yu et al., 2017). After the data aggregation procedure, crash frequency per hour holds 7 

the mean of 0.0176 and the standard deviation of 0.1666, where the 98.63% of the 8 

observations possess zero crash count.  9 

 10 

The spatio-temporal distribution of crashes for the roadway segments over the analysis 11 

time periods is shown in Fig. 2. 12 

 13 

Fig. 2. Crash frequency distribution. 14 

It is noticeable that the distribution has a certain spatial agglomeration effect over some 15 

roadway segments and some time periods. Although the crash frequency has excess 16 

zeros, the non-zero records are fitted with count data model. 17 

 18 
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Independent variables 1 

Three groups of variables were selected as independent variables in the models: (1) 2 

geometric characteristics; (2) traffic operational statuses and (3) temporal features. 3 

Among these, the traffic operational statuses are time varying while the geometric 4 

characteristics comprise local specific variables.  5 

 6 

For each roadway segment, geometric characteristics data were obtained from on-line 7 

street-view map, given there are no detailed design files available. The summary 8 

statistics for geometric variables are shown in Table 1, with the ramp combination types 9 

indicated in Fig. 3. In final analysis models, geometric variables will be retained 10 

according to their statistical significance. Categorical variables (such as Ramp Type) 11 

and their potential category combinations between the variables will be explored and 12 

the combination with respect to the fit based on the likelihood ratio test (LRT) will be 13 

retained. 14 

 15 

Table 1 Summary statistics of roadway geometric characteristics. 16 

Variable Description Summary Statistics 

Length Roadway section length Mean: 789 (m) 

Std.Dev.: 534 

Ramp Type Ramp combination type: 

1. Off-ramp and On-ramp 

2. Off-ramp and Off-ramp 

3. On-ramp and Off-ramp 

4. On-ramp and On-ramp 

 

1: 36 

2: 65 

3: 22 

4: 70 

DMS If there is DMS (Dynamic Message Sign) 

within the roadway section: 

1. Has DMS 

0. No DMS 

 

1: 58 

0: 135 

Curve If it is a curve section: 

1. Curve section 

0. Straight section 

 

1: 93 

0: 100 

Speed Limit Sign If there is speed limit sign within the roadway 

section: 

1. Has speed limit sign 

0. No speed limit sign 

 

 

1: 66 

0: 127 

Transition Length The transition length to the total length of a 

roadway section 

Mean: 182 (m) 

Std.Dev.: 175 

Speed Limit Value The level of speed limit value:  

1. 50m/h or 60km/h 

2. 80km/h 

 

1: 80 

2: 113 

Main Lane The level of lane numbers for main road: 

1. Has 2 lanes 

2. Has 3 lanes 

3. Has 4 lanes and above 

 

1: 62 

2: 84 

3: 47 
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Access Lane 1 The level of lane numbers for the up-access 

road: 

1. Has 1 lane 

2. Has 2 lanes and above 

 

1: 26 

2: 167 

Access Lane 2 The level of lane numbers for the down-access 

road: 

1. Has 1 lane 

2. Has 2 lanes and above 

 

 

1: 27 

2: 166 

 1 

 2 
Fig. 3. Ramp type illustration.  3 

 4 

 5 

In addition, for the traffic operational status, LPR data were collected from 268 6 

detectors installed along the expressway network. The LPR system recorded each 7 

specific vehicle’s information when it passes through the detector. Table 2 lists the 8 

recorded parameters and their descriptions. Before analyzing, the raw LPR data were 9 

processed to remove the missing observation, failure recognitions, error identifications, 10 

and other abnormal values.  11 

 12 

Table 2 Descriptions of LPR data.  13 

Parameters Descriptions 

TIME Time when a vehicle passes through the detector section 

TRANSECT ID ID number of detector sections 

LANE NO Number of lanes of the segment on which a vehicle is traveling 

VEHICLE ID License plate number of vehicles 

COLOR License plate color of vehicles: 

01-yellow: large vehicle 

02-blue: light vehicle 

06-black: foreign enterprise or embassy vehicle 

25-white: special vehicle 

VEHICLE REGION Region of vehicles 

SPEED Vehicle speed: km/h 

 14 

After the data cleaning process, traffic volumes for each time interval at each roadway 15 

segments were obtained and the average traveling speeds were calculated. Based on the 16 

VEHICLE ID variable in LPR data, the ratio of vehicles with Shanghai license plate 17 
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were calculated. It is noteworthy to state that since no prior assumption is considered 1 

about the functional relationships between traffic operational parameters and crash 2 

frequency for the Shanghai urban expressway system, different functional forms were 3 

tested for the traffic volume and speed variables. This includes both continuous and 4 

categorical forms. In the final models, only the significant variables and the best 5 

functional forms were kept.  6 

 7 

Besides, temporal feature variables were also obtained. Several temporal variables were 8 

modelled and only the significant variables were retained. They are unique time-of-day 9 

periods: morning, afternoon and evening. 10 

 11 

Table 3 shows the summary statistics for the traffic operational and temporal feature 12 

variables.  13 

Table 3 Description of traffic operational and temporal feature characteristics. 14 

Variable Description Summary Statistics 

Volume The level of volume during each time interval 

on specific roadway section: 

1. If section volume is less than 2500 

2. If section volume is between 2500 and 5000 

3. If section volume is more than 5000 

 

 

1: 19602 

2: 60069 

3: 15685 

ShanghaiVehicleRatio Ratio of vehicles with Shanghai license plate Mean: 0.182 

s.d.: 0.280  

Workday 

 

If it is on workday or not: 

1. Workday  

0. Holiday or weekend 

 

1: 54118 

0: 41238 

Period The time period of the day: 

1. Morning: 6:00 to 12:00 

2. Afternoon: 12:00 to 18:00 

3. Evening: 18:00 to 23:00 

 

1: 33665 

2: 33672 

3: 28019 

 15 

4 Methodology 16 

In this study, three models were employed for the empirical crash frequency analyses. 17 

HNB model was firstly utilized as the baseline model, and then it was extended to 18 

include site-specific random effects terms for the binary and count part of hurdle 19 

structure respectively. Moreover, the MREHNB model was introduced to obtain the 20 

population-averaged interpretation for the model.  21 

 22 

Random effects hurdle negative binomial model  23 

For REHNB model, let 𝑌𝑖𝑡  represents the crash frequency with its observed value 𝑦𝑖𝑡 24 

for roadway segment i at time interval t. Within the Hurdle model structure, the first 25 

part models only the zero state using a Bernoulli model with probability 𝜋𝑖𝑡 through a 26 

logit link function; the second part handles non-zero counts, which are assumed to 27 
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follow a truncated-at-zero probability mass function, in this case, a truncated Random 1 

Effects Negative Binomial model (Molenberghs et al., 2010). Thus, the specification is 2 

as follows:  3 

𝑝(𝑌𝑖𝑡 = 𝑦𝑖𝑡|𝒃𝒊, 𝝃, 𝜃𝑖𝑡 , 𝜙, 𝜋𝑖𝑡
𝑐  ) = {

𝜋𝑖𝑡
𝑐                     if 𝑦𝑖𝑡 = 0 

(1 − 𝜋𝑖𝑡
𝑐 )

𝑓𝑖(𝑦𝑖𝑡|𝜆𝑖𝑡
𝑐 ,𝜃𝑖𝑡)

1−𝑓𝑖(0|𝜆𝑖𝑡
𝑐 ,𝜃𝑖𝑡)

     if 𝑦𝑖𝑡 > 0
        (1) 4 

where 𝜋𝑖𝑡
𝑐 = Φ(∆𝑖𝑡1 + 𝑏𝑖1) , 𝜆𝑖𝑡

𝑐 = 𝜃𝑖𝑡𝑒𝑥𝑝(∆𝑖𝑡2 + 𝑏𝑖2) , 𝜆𝑖𝑡 = 𝜃𝑖𝑡𝜅𝑖𝑡 . ∆𝑖𝑡1  and ∆𝑖𝑡2 5 

are connector functions of the zero part and the positive count part. logit (𝜋𝑖𝑡) =6 

𝒙1𝑖𝑡
𝑇 𝜸 + 𝑏𝑖1, ln(𝜆𝑖𝑡) = ln(𝜃𝑖𝑡) + 𝒙2𝑖𝑡

𝑇 𝝃 + 𝑏𝑖2.  7 

 8 

𝒙1𝑖𝑡
𝑇  is the regressor vector for the fixed parameter 𝜸 in the binary part in the form of:  9 

𝒙𝑖𝑡1
𝑇 = 𝛾1𝑅𝑎𝑚𝑝𝑇𝑦𝑝𝑒2 + 𝛾2𝑅𝑎𝑚𝑝𝑇𝑦𝑝𝑒3 + 𝛾3𝑅𝑎𝑚𝑝𝑇𝑦𝑝𝑒4 + 𝛾4𝐷𝑀𝑆 + 𝛾5𝑆𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡𝑆𝑖𝑔𝑛 + 𝛾6𝑊𝑜𝑟𝑘𝑑𝑎𝑦 +10 

𝛾7𝑀𝑜𝑟𝑛𝑖𝑛𝑔 + 𝛾8𝐴𝑓𝑡𝑒𝑟𝑛𝑜𝑜𝑛 + 𝛾9𝑉𝑜𝑙𝑢𝑚𝑒2 + 𝛾10𝑉𝑜𝑙𝑢𝑚𝑒3 + 𝛾11𝑆ℎ𝑎𝑛𝑔ℎ𝑎𝑖𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑅𝑎𝑡𝑖𝑜            (2) 11 

and 𝒙2𝑖𝑡
𝑇  is for the fixed parameter 𝝃 in the count part: 12 

𝒙𝑖𝑡2
𝑇 = 𝜉1𝑅𝑎𝑚𝑝𝑇𝑦𝑝𝑒2 + 𝜉2𝑅𝑎𝑚𝑝𝑇𝑦𝑝𝑒3 + 𝜉3𝑅𝑎𝑚𝑝𝑇𝑦𝑝𝑒4 + 𝜉4𝐶𝑢𝑟𝑣𝑒 + 𝜉5𝑙𝑜𝑔𝐿𝑒𝑛𝑔𝑡ℎ + 𝜉6𝑊𝑜𝑟𝑘𝑑𝑎𝑦    (3) 13 

 14 

𝑏𝑖1  and 𝑏𝑖2  are the site-specific random intercepts for the binary and count part 15 

respectively. They are unobserved random effects of roadway segment i, which is 16 

constant within each roadway segment and different across roadway segments. In 17 

additional, the site-specific random effects are assumed to be independent to each other, 18 

and follow normal distribution with mean zero and variance 𝝈𝒃
𝟐. Thus, they obey the 19 

distribution: 20 

𝒃𝒊 = (𝑏𝑖1, 𝑏𝑖2)𝑇~𝑁(𝟎, 𝝈𝒃
𝟐)                                              (4) 21 

𝝈𝒃
𝟐 = (

𝜎𝑏1
2 0

0 𝜎𝑏2
2 )                                                     (5) 22 

 23 

𝜃𝑖𝑡 is the over-dispersion parameter for the negative binomial model, and 24 

𝜃𝑖𝑡 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼, 1/𝛼), with the constraint of 𝛽 = 1/𝛼. The over-dispersion effect in 25 

the analysis data was tested in advance through the LRT (likelihood ratio test). The 26 

results indicated the over-dispersion feature and the negative binomial counterpart other 27 

than Poisson counterpart was adopted. 28 

 29 

Vuong test (1989) is often used to justify the appropriateness of zero-inflated count data 30 

model (a zero-inflated model or a hurdle model) over standard count model (a Poisson 31 

model or a negative binomial model). Here it is used to compare HNB and NB model. 32 

In this test, a statistic 𝑚𝑖𝑡 is firstly computed: 33 

𝑚𝑖𝑡 = ln (
𝑓1(𝑦𝑖𝑡|𝑋𝑖𝑡)

𝑓2(𝑦𝑖𝑡|𝑋𝑖𝑡)
)                                                  (6) 34 

where 𝑓1(𝑦𝑖𝑡|𝑋𝑖𝑡)  is the probability density function of the HNB model and 35 

𝑓2(𝑦𝑖𝑡|𝑋𝑖𝑡) is the probability density function of the NB model.  36 

 37 

The Vuong’s statistic is tested as: 38 
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𝑉 =
𝑚̅√𝑁

𝑆𝑚
                                                           (7) 1 

where 𝑚̅ and 𝑆𝑚 are the mean and the standard deviation of 𝑚𝑖𝑡, 𝑁 is the sample 2 

size. If V > 1.96 it favors the HNB model while V < −1.96 it favors the NB model but 3 

otherwise neither model is preferred. In this study, a pscl package in R was utilized to 4 

conduct Vuong’s test. The test results (as shown in Table 4) indicated that hurdle model 5 

is preferred with Vuong z-statistic of 7.  6 

 7 

Table 4 Vuong test results for HNB and NB models. 8 

 Vuong z-statistic H_A p-value 

Raw 7.0084 Model1>Model2 <0.0001 

AIC-corrected 6.3968 Model1>Model2 <0.0001 

BIC-corrected 3.5024 Model1>Model2 0.0002 

 9 

Marginal random effects hurdle negative binomial model 10 

The marginal specification is 11 

𝑝(𝑌𝑖𝑡 = 𝑦𝑖𝑡  ) = {
𝜋𝑖𝑡

𝑚                   if 𝑦𝑖𝑡 = 0 

(1 − 𝜋𝑖𝑡
𝑚)

𝑓𝑖(𝑦𝑖𝑡|𝜆𝑖𝑡
𝑚)

1−𝑓𝑖(0|𝜆𝑖𝑡
𝑚)

     if 𝑦𝑖𝑡 > 0
                      (8) 12 

where logit (𝜋𝑖𝑡
𝑚 ) = 𝒙𝑖𝑡1

𝑇 𝜸𝒎  and ln (𝜆𝑖𝑡
𝑚 ) = 𝒙𝑖𝑡2

𝑇 𝝃𝒎 , with known regressors 𝒙𝑖𝑡1 13 

and 𝒙𝑖𝑡2 and a vector of zero-inflation coefficients 𝜸 and 𝝃. Specifying a logit link 14 

for the marginal model and a probit link for the conditional model leads to 15 

computational advantages from the probit-normal relationship, with the marginal 16 

parameters still having the odds-ratio interpretation. Hence, the connector functions are 17 

as follows (Kassahun et al., 2014). For the logit,  18 

∆𝑖𝑡1𝑙= √1 +
1

2
√1 + 𝜎𝑏1

2 Φ−1[expit(𝒙𝑖𝑡1
𝑇 𝜸𝒎)]                              (9) 19 

With expit(𝒙𝑖𝑡1
𝑇 𝜸𝒎) = ∫ Φ(∆𝑖𝑡1 + 𝑏𝑖1)𝑓(𝑏𝑖1)𝑑𝑏𝑖1                         (10) 20 

 21 

The connector function for the positive counts part is as follows:  22 

∆𝑖𝑡2= 𝑙𝑛𝐸(𝜃𝑖𝑡) + 𝒙2𝑖𝑡
𝑇 𝝃𝒎 −

1

2
√1 + 𝜎𝑏2

2                                   (11) 23 

 24 

Estimation 25 

The likelihood function for REHNB and MREHNB model is given by the following:  26 

𝐿(𝜉, 𝛾, 𝐷, 𝜙) = ∏ ∫ ∏ 𝜋𝑖𝑡
𝑐 (𝒃𝒊)

𝐼(𝑦𝑖𝑡=0){1 − 𝜋𝑖𝑡
𝑐 (𝒃𝒊)𝑓𝑖(𝒃𝒊)}1−𝐼(𝑦𝑖𝑡=0)𝜙(𝒃𝒊|𝑫)𝑑𝒃𝒊

𝑛𝑖

𝑡=1

𝑁

𝑖=1

 27 

 (12) 28 

𝑓𝑖(𝒃𝒊) = (
𝛼 + 𝑦𝑖𝑡 − 1

𝛼 − 1
) (

𝛽

1+𝜅𝑖𝑡
𝑐 𝛽

)
𝑦𝑖𝑡

(
1

1+𝜅𝑖𝑡
𝑐 𝛽

)
𝛼

𝜅𝑖𝑡
𝑐𝑦𝑖𝑡                        (13) 29 

Where 𝜙(𝒃𝒊|𝑫) is the zero-mean normal density with variance-covariance matrix 𝑫.  30 

 31 

The application of numerical techniques to obtain the maximum likelihood estimates 32 
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was proposed using the adaptive Gauss-Hermite quadrature in the SAS procedure 1 

NLMIXED  (Wolfinger, 2007).  2 

 3 

Model Goodness-of-fit 4 

For the model goodness-of-fit comparisons, Akaike Information Criteria (AIC) was 5 

adopted. The AIC is defined as:  6 

𝐴𝐼𝐶 = −2𝑙 + 2𝑝                                                    (14) 7 

where l is log-likelihood and p is the number of parameters. The smaller AIC value 8 

indicates a better fitted model.  9 

 10 

 11 

5 Modeling Results 12 

The final results for HNB, REHNB and MREHNB models are shown in Table 5. 13 

Statistically significant variables were grouped into three classes: roadway geometry 14 

characteristics, temporal features and traffic operational statuses. In general, the 15 

significant variables are consistent in terms of signs for their estimated parameters 16 

among the three models. For brevity, the following section introduces the modeling 17 

results of MREHNB model and discusses the similarities and differences between the 18 

three models.  19 

 20 

Marginalized Random Effects Hurdle Negative Binomial Model 21 

 22 

Binary part  23 

The binary part of the MREHNB model has identified the influencing factors for the 24 

possibility of having crashes within the observation period, where a positive regression 25 

coefficient implies an increase in the probability of crash occurring. 26 

 27 

Roadway geometry characteristics 28 

Three roadway geometry characteristics variables are found to be significant: Ramp 29 

Type, DMS and Speed Limit Sign. As stated earlier, the Ramp Type variable was tested 30 

using two mechanisms: (1) a categorical variable with four ramp type categories (i.e. 31 

Ramp Type 1, Ramp Type 2, Ramp Type 3 and Ramp Type 4 where Ramp Type 1 is the 32 

reference category), and (2) a dummy variable (e.g. whether the segment is Ramp Type 33 

1 or others).  34 

 35 

Since there are two modeling parts (i.e. the binary part and the count part) in a single 36 

model and two mechanisms for the Ramp Type variable (i.e. dummy and categorical), 37 

there are a total of four pairwise combinations between the parts and the variables. The 38 

combinations are (1) Combination 1: using the dummy variable in the binary part and 39 

the count part; (2) Combination 2: using the dummy variable in the binary part and the 40 

categorical variable in the count part; (3) Combination 3: using the categorical variable 41 

in the binary part and the dummy variable in the count part; and (4) Combination 4: 42 

using the categorical variables in the binary part and the count part.  43 
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 1 

Firstly, the HNB model was estimated for each of the four combinations and the 2 

Likelihood Ratio Test (LRT) was utilized to obtain the combination that provided the 3 

best fit. It was found that Combination 3 (i.e. using the categorical variable in the binary 4 

part and the dummy variable in the count part) provided the best goodness-of-fit for the 5 

data. The same combination was also provided the best fit for the other two models (i.e. 6 

REHNB and MREHNB).  7 

 8 

Therefore, Ramp Type variable used Ramp Type 1 as reference while Ramp Type 2, 3 9 

and 4 are all statistically significant with positive coefficients. And Ramp Type 3 holds 10 

the largest estimated coefficient, which indicates that the off-on ramp type combination 11 

(Ramp Type 1) is relatively safer than the other ramp types and sections with the on-off 12 

ramp type combination (Ramp Type 3) are the most hazardous one.  13 

 14 

In addition, DMS variable is significant with a positive coefficient, which indicates that 15 

segments with DMS are more likely to incur crashes. The DMS (Dynamic Message 16 

Sign) on Shanghai urban expressway system provides traffic flow operational 17 

information for the following roadway segments. The positive estimated coefficients 18 

may indicate that the DMS have brought too much information for the drivers passing 19 

by. The potential distractions or the additional work load to the drivers could increase 20 

the probability of crash occurrence. Similarly, estimated parameter for Speed Limit 21 

Sign variable is positive. It implies that the segments with speed limit signs have larger 22 

probability of crash occurrence. 23 

 24 

Temporal features 25 

For temporal features, Workday and Period variables are found to be significant. The 26 

estimated coefficient for Workday variable is negative, indicating that workdays are 27 

less likely to have crashes as opposed to weekdays and holidays. In terms of temporal 28 

periods, Evening Period is chosen as the reference category, Morning Period and 29 

Afternoon Period variables both have positive signs, which indicate that crashes are 30 

more likely to occur during morning and afternoon periods.  31 

 32 

Traffic operational statuses 33 

With respect to traffic operational statuses, Volume variable is discretized to three levels: 34 

Volume 1 (less than 2500), Volume 2 (between 2500 and 5000) and Volume 3 (more 35 

than 5000). Using Volume 1 as the reference category, the estimated parameter for 36 

Volume 2 are found to be significantly positive while Volume 3 holds a negative 37 

coefficient. It implies that crashes are much more possible to be observed for a 38 

moderate-level volume (Volume 2), rather than a low-level volume (Volume 1) or a 39 

high-level volume (Volume 3). Moreover, the proportion of vehicles with a Shanghai 40 

license plate is found to be significant with a negative sign. This can be concluded as 41 

that roadway segments with a higher composition of local vehicles are expected to have 42 

a lower possibility of crash occurrence. 43 

 44 
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Count part  1 

The count part of the MREHNB model reveals the influencing factors for the crash 2 

frequency, where positive regression coefficients indicate the increasing number of 3 

crash occurrence. 4 

 5 

Roadway geometry characteristics 6 

For roadway geometry characteristics, Ramp Type, Log Length and Curve variables are 7 

found to be statistically significant. The binary Ramp Type variable exhibits the 8 

statistically significant result with a positive sign, indicating that the off-on ramp type 9 

(Ramp Type 1) holds lower crash frequency compared to the other types of ramps. The 10 

results are consistent with previous studies (e.g. Yu et al., 2017). In addition, Log 11 

Length variable has a positive coefficient, which indicates that the number of crashes 12 

would increase along with the length of roadway segment. Similar modeling results 13 

have found in Chen et al.’s (2016). Furthermore, the estimated parameter for Curve 14 

variable holds a positive sign, indicating that the existence of curve would increase the 15 

number of crashes.  16 

 17 

Temporal features 18 

In regard to temporal features, only Workday variable was found to be significant with 19 

a negative sign. It indicates that fewer crashes would incur on workdays compared to 20 

weekends and holidays. Period variables are significant in the binary part while not in 21 

the count part, it indicates that the period variables have contribution to the likelihood 22 

of crash occurrence other than the number of crash frequency. 23 

 24 

Model Comparison 25 

From the aspect of model goodness-of-fits, the AIC values have reduced substantially 26 

for REHNB and MREHNB model compared to the HNB model. It indicates that 27 

REHNB and MREHNB model provide better fit relative to the HNB model. In addition, 28 

the standard deviation of random effects for binary part (𝜎𝑏1
) and count part (𝜎𝑏2

) are 29 

highly significant in both the REHNB model and the MREHNB model. It indicates that 30 

the proposed site-specific random effects model worked well on capturing unobserved 31 

heterogeneity among roadway segments.  32 

 33 

Comparing REHNB model and its counterpart MREHNB, some estimates for binary 34 

part seem to differ as a result of marginalization, while the estimates corresponding to 35 

the count part appear similar. This follows from the nature of the connector function  36 

(Kassahun et al., 2014).  37 

 38 

With respect to the binary part of the REHNB and MREHNB models, non-negligible 39 

differences in the estimated parameters are found. For example, estimated parameters 40 

for Speed Limit Sign, Time Period of the Day, Shanghai Vehicle Proportion 41 

(highlighted in bold in the Table 5) reduced in the MREHNB model compared to the 42 

REHNB model. It can be explained that the marginalization diminished differences in 43 

the binary part of the models (Kassahun et al., 2014). In regard to the count part between 44 
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the REHNB and MREHNB models, the estimated parameters appear similar. The 1 

phenomenon reflects in the variation of random effects parameter 𝜎𝑏1
 (for the count 2 

part) and 𝜎𝑏2
 (for the binary part). Between REHNB model and its marginal 3 

counterpart MREHNB model, the random effects variation changed substantially for 4 

the binary part while it remained similar for the count part. Generally, the marginal 5 

model leads to estimates that are relatively superior in precision, and suggests similar 6 

inferences for all covariates. 7 

 8 
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Table 5 Modeling results for HNB model, REHNB model and MREHNB model. 1 

 HNB REHNB MREHNB 

Variable Estimate S.D. p value Estimate S.D. p value Estimate S.D. p value 

Binary part          

Intercept -7.9459 0.1477 <0.0001 -8.1836 0.1974 <0.0001 -7.9724 0.1998 <0.0001 

Roadway geometry characteristics          

Ramp Type 2 0.8462 0.0953 <0.0001 0.7765 0.2146 0.0004 0.7784 0.2092 0.0003 

Ramp Type 3 1.0126 0.1034 <0.0001 0.9695 0.2489 0.0001 0.9650 0.2379 <0.0001 

Ramp Type 4 0.7729 0.1000 <0.0001 0.7494 0.2281 0.0012 0.7307 0.2200 0.0011 

DMS 0.3510 0.0717 <0.0001 0.4009 0.1936 0.0389 0.4123 0.1807 0.0236 

Speed Limit Sign 0.2157 0.0600 0.0003 0.3234 0.1575 0.0415 0.2736 0.1486 0.0672 

Temporal features          

Workday -2.7907 0.1053 <0.0001 -2.7730 0.1059 <0.0001 -2.7703 0.1079 <0.0001 

Morning Period 0.5159 0.0780 <0.0001 0.5391 0.0787 <0.0001 0.5409 0.0786 <0.0001 

Afternoon Period 0.6391 0.0786 <0.0001 0.7310 0.0802 <0.0001 0.7240 0.0802 <0.0001 

Traffic operational statuses          

Volume 2 0.3003 0.0738 <0.0001 0.1386 0.0803 0.0860 0.1369 0.0800 0.0885 

Volume 3 -0.6148 0.1289 <0.0001 -1.0536 0.1446 <0.0001 -1.0798 0.1488 <0.0001 

Shanghai Vehicle Proportion 0.9743 0.0933 <0.0001 1.1067 0.2535 <0.0001 1.0624 0.2415 <0.0001 

Count part          

Intercept -5.4641 1.1476 <0.0001 -5.2010 1.1564 <0.0001 -5.2099 1.1624 <0.0001 

Roadway geometry characteristics          

Ramp Type 0.6476 0.2108 0.0021 0.5825 0.2266 0.0109 0.5902 0.2276 0.0103 

Curve 0.2748 0.1336 0.0397 0.2537 0.1594 0.1131 0.2539 0.1598 0.1139 

Log Length 0.3029 0.1292 0.0190 0.3370 0.1526 0.0284 0.3369 0.1531 0.0289 

Temporal features          

Workday -1.0433 0.3472 0.0027 -0.9854 0.3391 0.0041 -0.9903 0.3404 0.0041 

α 0.4792 0.3802 0.2076 1.4169 0.9010 0.1175 1.3319 0.8403 0.1146 

𝜎𝑏1
    0.4363 0.0889 <0.0001 0.2179 0.0446 <0.0001 

𝜎𝑏2
    0.8396 0.0660 <0.0001 0.2452 0.0184 <0.0001 
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-2log-likelihood 13482 13105 13101 

AIC 13519 13145 13141 

1 
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6 Discussions and Conclusions 1 

The refined-scale crash frequency analysis models have been widely applied to explore 2 

the relationships between time-varying contributing factors and crash occurrence. 3 

However, due to the small time intervals of the crash counts, issues such as 4 

preponderant zero counts, unobserved heterogeneities raised. Ignoring these issues 5 

would lead to biased parameter estimations and incorrect inferences. In this study, a 6 

MREHNB model was applied to deal with the abovementioned issues. At the same time, 7 

the proposed approach is targeted at the poor generalization issue for the random effects 8 

models. Empirical analyses were conducted based on data from the Shanghai urban 9 

expressway system. The proposed MREHNB model were further compared with 10 

traditional used HNB model and REHNB model.  11 

 12 

From the modeling results, it can be seen that the significant variables are consistent 13 

among the three developed models. With respect to the model goodness-of-fits, the 14 

REHNB model provides much better fit compared to the HNB model; which further 15 

confirms the site-specific random effects terms effectively incorporate the unobserved 16 

heterogeneity. However, slightly better fit was observed between the REHNB and 17 

MREHNB models; this finding is consistent with several previous studies (Griswold 18 

and Zeger, 2004; Su et al., 2015). As for the estimated parameters, the values varied 19 

substantially when the HNB model was extended to the REHNB model. As the 20 

MREHNB model was employed, some estimates for binary part seem to differ as a 21 

result of marginalization, while the estimates corresponding to the count part appear 22 

similar. Moreover, the marginal model leads to estimates that are relatively superior in 23 

precision, and suggests similar inferences for all covariates. 24 

 25 

As for the crash occurrence influencing factors, in this study, the characteristics of 26 

roadway users were extracted and transferred as the proportion of local and non-local 27 

drivers as explanatory variables. The modeling results indicated that higher ratio of 28 

vehicles with Shanghai local license plate would increase the probability of crash 29 

occurrence. It is illustrated that the local drivers may drive much more recklessly 30 

relative to the non-local driver. 31 

 32 

In addition, different from some previous studies, this study identified a non-linear 33 

relationship between traffic volume and crash frequency. Table 6 shows the studies that 34 

analyzed relationship between volume and crash frequency. In the previous studies, 35 

high traffic flow (e.g. AADT) was found to increase the risk of crashes (Abdel-Aty and 36 

Radwan, 2000). While some studies had identified low traffic volume to be a significant 37 

crash precursor (e.g. Garber and Ehrhart, 2000). The inconclusive impact was partially 38 

resulted from the highly aggregated data (Imprialou et al., 2016). In this study, similarly, 39 

a continuous form of volume variable was adopted first, but it was not statistically 40 

significant. Therefore, further explorations of the impact of traffic volumes on crash 41 

frequency had been conducted. In Fig. 4, the high columns of crashes were clustered at 42 

a moderate-level of traffic volume. Then, discretized traffic volume variables were used 43 
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and included in the final model. The modeling results verifies the conjecture, that a 1 

moderate level of volume will increase the crash occurrence likelihood.  2 

Table 6 Literature that analyzed relationship between volume and crash frequency.  3 

Authors & year Volume information 

assembled in the analysis 

Key finding on the relationship 

between volume and crash 

frequency 

Abdel-Aty and Radwan, 

2000 

Annual average daily traffic 

(AADT) 

An increase in AADT per lane has a 

positive impact on the likelihood of 

accidents 

Garber and Ehrhart, 2000 - low traffic volume to be a significant 

crash precursor 

Garber and Subramanyan, 

2001 

Vehicle occupancy ratio 

(real-time) 

non-linear relationship 

Elvik et al., 2004 Odds ratio of change in 

volume 

lower flows increase the crash 

occurrence 

Chang, 2005 

 

Average daily traffic (ADT) higher flows increase the crash 

likelihood  

 4 

 5 

Fig. 4. Stratification histogram of crashes and volume.  6 

 7 

Apart from the in-depth analysis of crash contributing factors, to the best of our 8 

knowledge, this study is the first to introduce MREHNB model to traffic safety research 9 

area. Retaining the advantage of REHNB for capturing the unobserved heterogeneity, 10 

MREHNB model could transform the conditional effects of estimated coefficients into 11 
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the marginal ones. Through revealing the population-averaged interpretation, the more 1 

accurate estimation could be provided for road segments not only within but also 2 

outside one of the clusters in developed model (Pavlou et al., 2015a). Moreover, this 3 

study applied a marginalized random effects model (MREM) which integrates over the 4 

estimated distribution of random effects (Kassahun et al., 2014). However, there are 5 

several other marginalized approaches that would obtain the marginal means, such as 6 

‘RE-approx’ (scaling the estimated conditional coefficients using approximation of 7 

Zeger) and GEE (fitted by GEE with exchangeable correlation) (Pavlou et al., 2015a). 8 

Therefore, future studies could try to compare the different marginalized approaches 9 

and further unveil the benefits of marginal inference techniques.  10 

 11 

Finally, the analyzed results could shed lights on the traffic safety management. Firstly, 12 

as crashes are clustered at a moderate-level of traffic volume (2500-5000 veh/h), active 13 

traffic safety management such as variable message signs should be implemented based 14 

on the degree of traffic volume by giving drivers a warning of potentially hazardous 15 

traffic conditions. In addition, police force could be assigned more efficiently according 16 

to proportion of local/non-local vehicles on different roadway segment. Roadway 17 

segments with larger proportion of Shanghai vehicles have higher crash risk, where 18 

more police force could supply the effort on supervision and control.  19 

 20 
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 40 

Highlights 41 

 Utilized marginalized random effects hurdle negative binomial (MREHNB) model 42 

to address the issue of excessive zeros, unobserved heterogeneity, and subject-43 

specific of interpretation for hourly-based crash frequency analyses.  44 
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 Compared MREHNB model with hurdle negative binomial (HNB) and random 1 

effects hurdle negative binomial (REHNB) model.  2 

 Conducted an empirical analysis with license plate recognition (LPR) data.  3 

 REHNB and MREHNB model showed substantial model goodness-of-fit 4 

improvement compared to the HNB model.  5 

 Identified nonlinear relationship between volume and crash frequency and 6 

moderate level of volume held the highest crash occurrence likelihood.  7 
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