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Abstract: 10 

Analysis of lane change is important for microsimulation and safety improvement, and can 11 
also provide reference for advanced driver assistance systems (ADAS) and connected and 12 
autonomous vehicles (CAVs). Yet little research has comprehensively explored lane changing, 13 
particularly in China, a site of current CAV testing. This study developed an automatic 14 
extraction algorithm to retrieve 5,339 lane change events from the Shanghai Naturalistic 15 
Driving Study, and used the data to examine the core lane change components: gap acceptance, 16 
duration, and impact on the following vehicle (FV). Multilevel mixed-effects linear models 17 
were employed to develop relationships between gap acceptance and duration and the 18 
influencing factors; impact was then assessed using speed change rate, brake timestamping, 19 
and time-to-collision (TTC). Key results showed that 1) gap acceptance varied by roadway 20 
type and motivation, and lead and lag gaps were significantly affected by environmental 21 
variables, vehicle type, and kinematic parameters; 2) duration varied from 0.7 s to 16.1 s, 22 
significantly affected by variables similar to gap acceptance, but notably, not by motivation; 3) 23 
as many as 1 in 5 Chinese FV drivers responded to lane changes with acceleration exceeding 24 
10%; 4) nearly half of FVs braked when they perceived a vehicle’s lane-change intention, and 25 
90% braked before TTC reached 4.7 s; 5) in over 70% of lane changes, the minimum TTC 26 
occurred between the initiation and cross-lane points. In addition to advancing the international 27 
development of lane-change theory, one of this study’s important applications is that CAVs 28 
can be designed to brake during a safer TTC phase.  29 
 30 
Keywords: Lane change behavior; Naturalistic driving study; Gap acceptance; Duration model; Lane 31 
change impact; ADAS and CAVs 32 
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1. Introduction 1 
Roadway lane changes are common maneuvers, but they have substantial impact on traffic 2 

flow. Previous studies have shown that lane changing tends to cause negative shockwaves 3 
(Cassidy and Bertini, 1999), and particularly risky lane changes may lead to severe traffic 4 
collisions. Unsafe and improper lane changes have been reported to account for 4.9% of all 5 
traffic crashes in China in 2015 (Traffic Management Bureau of the Public Security Ministry, 6 
2016). Analyzing lane change behavior is therefore important for several applications, such as 7 
roadway capacity modeling and safety studies (Toledo et al., 2003), but also has other benefits. 8 
Since the emergence of traffic and driving simulation tools for transportation system analysis, 9 
interest in lane change behavior has increased, as realistic representations of complex real-10 
world phenomena is fundamental to traffic microsimulation (Park et al, 2015). Lane change 11 
also plays an important role in the development of advanced driver assistance systems (ADAS) 12 
and connected and autonomous vehicles (CAVs) (Zhou and Peng, 2015; Cao et al, 2017). With 13 
accurate and robust lane change decision-making, planning, and controlling systems, ADAS 14 
and CAVs can make progress toward achieving global optimization objectives such as 15 
improving traffic safety, promoting fuel economy, easing urban traffic congestion and 16 
optimizing the use of roadways (Man, 2007). 17 

A driver goes through several stages during a lane change: decision-making, preparation, 18 
execution and interaction with surrounding vehicles (Nie et al, 2017). Existing lane-change 19 
studies roughly fall into two categories of analysis: (i) lane change decision-making (i.e., how 20 
a driver reaches the lane change decision when facing a specific scenario) and execution 21 
processes (including duration), and (ii) lane change impact on surrounding vehicles (e.g., how 22 
drivers of following vehicles respond to lane changes) (Zheng, 2014). Most studies, however, 23 
focus only on either the decision-making and execution processes or on lane change impact, so 24 
a comprehensive understanding of the full lane change process and its implications remains, 25 
for the most part, elusive. As both of these categories, each of which influences the other, are 26 
critical for theoretical modeling and application, this study aims to provide an overall 27 
perspective on lane change behavior by examining its three core components: gap acceptance, 28 
duration and impact on the following vehicle (Zheng, 2014).  29 

Another objective of this study is to offer insight into lane change behavior, specifically in 30 
China. While it is well known that China’s traffic systems have developed rapidly during recent 31 
years, few studies of driving behavior have analyzed lane change maneuvers in China due to 32 
limited data collection methods. Therefore, most simulation models are based on research from 33 
developed nations, where the cultural environment, including driving style, vehicle type, and 34 
traffic regulations, may differ from developing countries (Lindgren et al, 2008). Chinese 35 
drivers face, for example, a challenging driving environment of omnipresent pedestrians, 36 
electric bikes, bicycles, aggressive drivers, and, indeed, frequent lane changes, which are 37 
performed nearly three times more often than in the U.S. (Wang and Li, 2016). In addition, 38 
some ADAS and CAV functions may not be suitable in China, as their algorithms and strategies 39 
are calibrated and tested using data from other developed nations. This is not only a problem 40 
for Chinese traffic safety. The increased CAV testing in China makes accounting for these 41 
differences essential to more effective and robust advanced traffic technologies.  42 

To address these needs, real-world driving data were collected in the Naturalistic Driving 43 
Study conducted in Shanghai (SH-NDS) from December 2012 to December 2015. During the 44 
study period, 60 licensed drivers travelled approximately 161,055 km (Wang et al, 2019; Zhu 45 
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et al, 2018). Using the NDS’s significant quantity of Chinese driving data, this study 1 
comprehensively explores lane change behavior to contribute to the international development 2 
of lane change theory and its various applications, including traffic simulation, ADAS, and 3 
CAV. 4 
 5 
2. Literature review 6 
2.1 Gap acceptance 7 

Gipps (1986) considered necessity, desirability and safety in the first lane change model in 8 
1986. Since the 1990s, researchers have modeled lane changing used for traffic 9 
microsimulation software; but in all models, gap acceptance is a crucial element in the decision-10 
making process. Drivers considering a lane change decide whether to accept an available gap, 11 
i.e., they assess whether the longitudinal gaps between their own vehicle and the vehicles in 12 
the target lane are sufficient. The target gap is separated into the lead gap, the longitudinal 13 
distance between the lead vehicle (LV) in the target lane and lane changing vehicle (LCV); and 14 
the lag gap, the distance between the following vehicle (FV) and the LCV (Toledo et al., 2003). 15 
In this study, distance is defined in terms of time rather than space. Time gaps are a function of 16 
spatial distance gaps and the follower’s speed: because the LCV is concerned with having 17 
sufficient time, which is influenced by current speed that can vary, time gaps are more 18 
generalizable representations (Bham, 2009). 19 

Lane changes can be classified into mandatory (MLC) or discretionary (DLC) motivations 20 
(Yang and Koutsopoulos, 1996), which, generally speaking, differ regarding gap acceptance 21 
(Toledo et al., 2003; Choudhury and Farheen, 2005). MLC is motivated by the driver needing 22 
to leave the current lane, e.g., to enter the correct lane for a turn, to enter or exit a limited-23 
access freeway, or to avoid a work zone or other obstacle. DLC is motivated by the wish to 24 
improve conditions, such as moving from behind a slower vehicle in order to maintain a desired 25 
speed. Studies show that gap acceptance depends on several additional factors, e.g., spatio-26 
temporal positions, relative speed, and acceleration of surrounding vehicles (Toledo et al., 27 
2003; Bham, 2009; Choudhury and Farheen, 2005), most of which are directly linked to the 28 
current traffic condition (Singh and Li, 2012).  29 
 30 
2.2 Lane change duration 31 

Duration measures the length of the lane change execution stage, which starts when the 32 
LCV initiates its intention to change lane by a movement toward the target lane, and ends when 33 
LCV has stabilized itself in the target lane. Duration has significant effect on simulation outputs. 34 
For example, the LCV adjusts acceleration according to its perception of the needed duration; 35 
the FV, also, adjusts acceleration when it notices the initiation of the LCV. Consequently, the 36 
acceleration of the LCV and FV may, in turn, affect duration (Toledo and Zohar, 2007). In 37 
application, CAVs can learn to perform lane changes in a human-like manner by controlling 38 
the duration, and they can respond more effectively to lane change behavior of human-driven 39 
vehicles (Bascunana, 1995). 40 

Lane change duration research has found values ranging from 1-16 s (Hanowski, 2000; 41 
Salvucci and Liu, 2002; Moridpour et al, 2010), but few studies have fully examined the 42 
influencing variables. Despite duration’s wide value range and its significance in lane change, 43 
most existing microsimulation tools neglect it; rather, lane change behavior is generally 44 
considered as an almost instantaneous event or given a constant time period (Toledo and Zohar, 45 
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2007). Nonetheless, most duration studies have been based on driving simulator data. While 1 
simulator research is useful for many objectives, this shortcoming may distort the realism of 2 
the simulated driving experience and the fidelity of the data collected (Singh and Li, 2012; 3 
Toledo and Zohar, 2007).  4 
 5 
2.3 Impact of lane changes 6 

A lane change event inevitably impacts the FV. Ahmed et al. (1996) developed a forced 7 
merging model and found that in congested traffic where gaps meeting the minimum acceptable 8 
length are scarce, drivers change lanes either through the FV’s courtesy yielding or through 9 
forcing the FV to slow down. Lane changing also impacts traffic flow. An abrupt lane change 10 
that results in the FV’s hard braking or excessive acceleration contributes not only to emissions 11 
and wasted fuel but also to traffic waves, or stop-and-go oscillations (Sultan et al, 2002). 12 
Oscillations are problematic because they trigger a drop in road capacity and increase the risk 13 
of rear-end crashes (Coifman et al, 2005). Mauch and Cassidy (2002) found that oscillations 14 
tended to form near freeway interchanges, sites of frequent lane changing. These maneuvers 15 
have been considered to enlarge the capacity drop phenomenon (Srivastava and Geroliminis, 16 
2013). Yet, despite the effect of lane change impact on traffic safety, its analysis has received 17 
less attention than lane change decision-making and execution.  18 
 19 
3. Data preparation 20 
3.1 Shanghai naturalistic driving study 21 

Naturalistic driving research offers a complementary approach to existing methods (Regan 22 
et al, 2012). It is more controlled than field research, and its data is more representative of real 23 
traffic conditions in relation to simulator data. The data used in this study were collected in the 24 
Shanghai Naturalistic Driving Study (SH-NDS) jointly conducted by Tongji University, 25 
General Motors (GM), and the Virginia Tech Transportation Institute (VTTI). Five GM light 26 
vehicles equipped with SHRP2 NextGen Data Acquisition Systems (DAS) were used to collect 27 
real-world driving data. The DAS includes an interface box to collect vehicle Controller Area 28 
Network (CAN) data, an accelerometer for longitudinal and lateral acceleration, a radar system 29 
that measures range and range rate to the lead vehicle (LV) and vehicles in the adjacent lanes, 30 
a light meter, a temperature/humidity sensor, a GPS sensor for location, and four synchronized 31 
cameras which can be used to validate the sensor-based findings (Wang et al, 2019).  32 
 33 
3.2 Lane change events extraction 34 

This study focuses on lane changes conducted by LCVs in the lanes adjacent to the DAS-35 
equipped NDS vehicles. That is, the NDS vehicle functions as the FV, providing the perspective 36 
of the FV when another vehicle changes lane into the gap in front. Based on the fundamental 37 
information (e.g., position, velocity and acceleration) of the LCV recorded by the NDS 38 
vehicle’s radar, lane change gap acceptance, duration, and FV responses (e.g., braking, speed 39 
variation and other maneuvers) can be examined. A typical lane change scenario is illustrated 40 
in Fig. 1.  41 
 42 
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 1 

Fig. 1. Radar target’s (LCV) position and motion in a typical lane change scenario. 2 
 3 

As shown in Fig. 2, a vehicle directly in front of the NDS vehicle in the target lane is 4 
designated as T0. If the NDS’s radar picks up a change in an adjacent vehicle’s position in 5 
relation to the T0 position, the vehicle is recorded as intending to execute a lane change. In Fig. 6 
2, the blue car far from the FV was initially T0, and then the white car moved into the NDS’s 7 
lane: the white LCV is the new T0. The middle panel shows the lateral and longitudinal ranges 8 
of the vehicles in front of the FV, and the rightmost panel shows the Y-Range to vehicle T0 vs. 9 
time. 10 
 11 

 12 
Fig. 2 Change in radar target T0.  13 

 14 
An automatic extraction algorithm was developed to obtain lane change events, and the 15 

results were then manually validated by observing the videos from the forward roadway camera. 16 
To develop the automatic algorithm, an empirical analysis was conducted to identify threshold 17 
values for detecting lane change events from the NDS data. As part of the analysis, 500 random 18 
lane change events from 100 trips (5 lane change events for each trip) were manually observed 19 
to have a deep understanding of the distribution of some important variables, and extraction 20 
criteria were derived based on the thresholds of the several relevant variables. 21 

For each of the abovementioned lane change events, we manually recorded the timestamps 22 
for the initiation, cross-lane maneuver and stabilization. All variables of the LCV at the specific 23 
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timestamp were extracted from the SH-NDS database. We calculated the 10th  percentile 1 
minimum lateral distance between the LCV and the FV (i.e., the Y-Range in Fig. 1, in an 2 
ascending order) of all these events at the initiation point to better determine the threshold. The 3 
results showed that the minimum of the 10th percentile value was 2.19 m. That is the Y-Range 4 
should not be less than 2.2 m before the LCV initiates its movement. Similarly, the 90th  5 
percentile maximum Y-Range (in a descending order) of all these events at the stabilization 6 
point was found to be 1.22 m. It can be concluded that when the LCV stabilizes in the target 7 
lane, the lateral distance between the LCV and the FV (i.e., Y-Range) should not be more than 8 
1.2 m. This means that the two thresholds represent the two different stages of a lane change 9 
event. 10 

A lane change event should meet all the four following criteria simultaneously: 11 
 12 
Criterion 1: Y-Range (lateral distance) is more than 2.2 m, to show the LCV is in the adjacent 13 
lane and intend to initiate its movement toward the FV lane; Y-Range is less than 1.2 m to 14 
ensure the LCV is stable in the target lane. Together, these criteria guarantee the LCV changes 15 
its lane. 16 
Criterion 2: Maximum lateral acceleration of FV is less than 0.07 g, and lane offset is less 17 
than 1.0 m. These criteria guarantee the FV does not move in a lateral direction. 18 
Criterion 3: The critical condition is that the X-Range (longitudinal distance from LCV to FV) 19 
should not be so large that the lane change has no effect on the FV. Based on the 500 20 
observations and existing research (Bham, 2009; Herman and Weiss, 1961), this study defined 21 
the maximum X-Range as 75 m to be appropriate to determine a pair of vehicles to be 22 
interacting. 23 
Criterion 4: The speed of both FV and LCV should be more than 1 m/s. This criterion ensures 24 
that the two vehicles are always in motion. 25 
 26 

The flowchart for the lane change event extraction algorithm is shown in Fig. 3. 27 
 28 
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Fig. 3 Automatic extraction algorithm. 2 
 3 

Fig. 4 illustrates the critical time points (A, B, and C) utilized in the DAS lane change data 4 
extraction process (Wang et al, 2019). At the onset of the lane change, the LCV’s Y-Range (its 5 
lateral distance in relation to the FV) is about 3.5 m, as the LCV is still in its own lane but has 6 
just initiated movement. The initiation point (A in Fig. 4) is defined as the first peak (i.e. the 7 
local maximum) of the Y-Range determined by a built-in function findpeaks of MATLAB, 8 
which is the nearest point to 3.75 m, i.e., Y-Range is approximately equal to the common lane 9 
width in China when the LCV initiates its movement. When the LCV’s Y-Range has decreased 10 
to less than the distance between the lane edge and the FV, it can be assumed that the LCV has 11 
crossed its lane. This is the cross-lane point (B in Fig. 4). At roughly 1.5 s from the cross-lane 12 
position, the LCV becomes T0. The Y-Range at this point, marked by the red vertical line, is 13 
small and approaching zero. The first zero value of Y-Range after the LCV becomes T0 is 14 
defined as the end of the lane change, or stabilization (C in Fig. 4). From this point, it is 15 
considered that the LCV has completely stabilized its movement within the target lane. The 16 
lane change duration is defined as the time required for the LCV to travel from A to C, making 17 
the duration in Fig. 4 approximately 5.5 s. 18 
 19 
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 1 
Fig. 4 Y-Range time points of lane change sequence: initiate, cross-lane and stabilize. 2 

 3 
This study used 2,000 trips to extract lane change events from the SH-NDS database. The 4 

proposed automatic extraction algorithm was first employed to detect potential lane change 5 
events. The algorithm detected 6,672 such events from the 2,000 trips (about 600 hours of total 6 
trip duration). For each of the events, the corresponding video clips were manually observed 7 
to confirm whether these are actual lane change events. Results show that 1,333 events detected 8 
by the algorithm are not real lane change events (i.e. about a 20% false alarm rate). However, 9 
this study has only employed the remaining 5,339 lane change events for further analyses. 10 
Therefore, the false alarm rate did not influence the analysis. 11 

In addition, we identified the reasons of this high false alarm rate as follows:  12 
 FV moves laterally but its lateral acceleration is too small. Meanwhile, many arterials and 13 

local roads contain no line marks or the lane lines are very unclear. In both conditions, 14 
Criterion 2 of the algorithm becomes invalid. That is: the FV moves in a lateral direction 15 
but the algorithm erroneously identifies a lane change maneuver of the LCV. 16 

 If there is a road curve or when the FV makes a turn. If the FV passes the road curve or 17 
makes a turn, the Y-Range and the lane offset restrictions become incorrect. That means 18 
that road curve or the FV’s drift may mislead Criterion 1 and Criterion 2. 19 

 Lateral distance is small. In some cases, the LCV fails to enter the target lane but lateral 20 
distance between the LCV and the CV is less than 1.2 m. Criterion 1 detects it as a lane 21 
change by mistake thus leads to false positive. 22 
Nevertheless, the algorithm was extremely useful in identifying the video clips containing 23 

potential lane change events. If the algorithm was not employed, then we had to manually 24 
check all video clips from 2,000 trips resulting in a total duration of 600 hours which would 25 
have been difficult to accomplish. With the algorithm, we had to only go through about 28 26 
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hours of videos (6,672 × 15 s = 27.8 hours) resulting in a significant saving with respect to 1 
time. 2 
 3 
3.3 Data description 4 

In this study, the fundamental data (e.g., position, velocity and acceleration) of lane change 5 
vehicles, lead vehicles and following vehicles were recorded by the NDS vehicles’ (i.e., FV) 6 
radar and saved as CSV files. Other important information of lane change events, including 7 
roadway type, weather and light conditions, lane change motivation, turn signal usage and LCV 8 
and LV types, was identified by observing the forward-facing camera during the validation 9 
process. 10 

The 5,339 lane change events occurred on three road types with different speed limits: 11 
2,686 occurred on expressways with a speed limit range of 60 km/h to 80 km/h, 1,511 on 12 
freeways with speed limits ranging from 80 km/h to 120 km/h and the remaining 1,142 13 
occurred on other roads that include arterials and local roads with speed limits ranging from 30 14 
km/h to 80 km/h. Since the speed limits, roadway configurations and road complexity are quite 15 
different from each other, three separate analyses of gap acceptance, duration and impact of 16 
lane changes were conducted. 17 

Lane change motivations were determined by watching the relevant video for each event. 18 
Following Yang and Koutsopoulos (1996), lane change motivations were classified as either 19 
mandatory or discretionary. Mandatory lane changes have three primary motivations: the first 20 
motivation is approaching an intersection in situations where the vehicle must change lanes to 21 
be in the correct lane to turn; the next motivation is entering or exiting a limited-access roadway, 22 
and the last motivation is avoiding a work zone or other obstacle. Motivations for discretionary 23 
lane changes include avoiding traveling behind a slow lead vehicle and changing to a fast or 24 
slow lane to maintain a desired speed. Lane changes without any clear motivation were 25 
considered discretionary in this study. 26 

Based on the above description, a sample is a lane-changing event and then group them 27 
into roadway functional classifications and lane-changing motivation. Meanwhile, lead and lag 28 
gaps, duration and the following vehicles’ response for each lane change event can be obtained 29 
by analyzing the SH-NDS data. 30 
 31 
4. Analysis of lane change gap acceptance 32 

Gap acceptance is the most essential determiner for drivers deciding whether to perform a 33 
lane change (Choudhury and Farheen, 2005). This section presents a descriptive analysis of 34 
lead and lag gaps, as well as a linear mixed-effects model aiming to discover the multiple 35 
variables that can affect gap acceptance. 36 
 37 
4.1 Analysis of lead and lag gaps 38 

Drivers assess the risk when they intend to execute lane changes. The risk factors to the 39 
LCV with respect to the intended LV and to the intended FV with respect to the LCV should 40 
be compared to an acceptable risk factor for every lane change. It is assumed that risk varies 41 
by time, e.g., the moment when complete entrance of the rear end of LCV to the target lane or 42 
the front end of LCV entering the target lane. Therefore, there is a need to do a sensitivity test 43 
to expound the potential difference. 44 

To compare the results of lead and lag gaps for different lane change instances, time gaps 45 

Mohammed Quddus
Does not make sense. Re-write



 

10 

in lane change initiation point and cross-lane point were calculated to analyze the deviation. 1 
The results show that the cumulative distribution of lead and lag gaps by road type or by 2 
motivation (i.e., mandatory or discretionary) at the initiation point is almost the same as that at 3 
the cross-lane point, which indicates that the time gaps are insignificantly different before the 4 
LCV enters the target lane completely. 5 

Based on the above analysis, this study assumes that LCV drivers accept the gap when 6 
they start to move into the target lane, i.e., the initiation point. Lead gap and lag gap refer 7 
specifically to the time taken to traverse the longitudinal distance between the LCV and LV 8 
and between LCV and FV once LCV initiates its lateral movement. A descriptive analysis of 9 
lead and lag gaps on different roads and for different motivations was conducted to ascertain 10 
the features of gap acceptance. 11 
 12 
Table 1 13 
Descriptive statistics of lead and lag gap. 14 

Statistics Gaps 
Road Type Motivation 

Arterials and 
Local Roads Expressways Freeways MLC DLC 

Sample Size Lead 758 2,056 1,018 781 3,051 
Lag 1,142 2,686 1,511 1,093 4,246 

Min (unit: s) Lead 0.16 0.14 0.13 0.13 0.14 
Lag 0.18 0.15 0.14 0.14 0.15 

Max (s) Lead 5.98 5.98 5.96 5.98 5.96 
Lag 5.79 5.75 5.56 5.79 5.75 

Mean (s) Lead 1.83 1.48 1.42 1.76 1.47 
Lag 1.80 1.37 1.26 1.78 1.34 

Median (s) Lead 1.60 1.25 1.18 1.50 1.25 
Lag 1.56 1.18 1.08 1.56 1.15 

Std. Dev (s) Lead 1.15 0.97 0.93 1.16 0.96 
Lag 1.04 0.84 0.97 1.03 0.84 

 15 
As shown in Table 1, the mean and median values of lead and lag gap on arterials and local 16 

roads are larger than those on expressways and freeways, while the differences between 17 
expressways and freeways are not significant (p-value = 0.156). For all road types, the lead 18 
gap’s mean and median values, as well as its maximum values, are comparatively greater than 19 
those of the lag gap. These results indicate that LCV drivers tend to maintain a larger space 20 
behind the LV, while they are more accepting of smaller headways when interacting with the 21 
FV. A possible explanation is that because LCV drivers depend on mirrors to determine the lag 22 
gap, their perception of that gap may not be as reliable as it is for the lead gap. 23 

It is evident that drivers need a larger time gap to execute an MLC, as the mean and median 24 
values associated with MLC are higher than those of DLC (significant difference, p-value = 25 
0.041). This difference suggests that drivers are more cautious when they perform an MLC. 26 
The result is consistent with Zhang and Kovvali (2007) who found that MLC maneuvers 27 
require larger gaps than DLC maneuvers. Since an MLC means that drivers are forced to insert 28 
their vehicles into the target lane, they must make adjustments in order to create a sufficient 29 
space. In contrast, a DLC depends on the driver’s more spontaneous desire to drive at faster 30 
speeds, which may lead to more rapid maneuvers. Additionally, FV drivers often reduce their 31 
acceleration to ensure that a free gap of sufficient length is created during the next few seconds 32 
in MLC. However, in DLC, FV drivers may not provide courtesy as LCV drivers just want to 33 
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pursue for higher speed or space. A combination of the larger longitudinal distance and the 1 
slower FV, therefore, contribute to shorter time gaps in MLC than in DLC. 2 

The cumulative percentage curves of lead and lag gap are shown in Fig. 5. Similar to the 3 
descriptive statistics presented in Table 1, lead and lag gap both have a lower percentage of 4 
risky small gaps (time gaps ≤  3 s) on arterials and local roads than on expressways and 5 
freeways. Since the operational environment of arterials and local roads is complex with its 6 
numerous bus stops, high signal density and unexpected pedestrians in the outermost lane, 7 
drivers travelling these roads tend to perform lane changes with a larger safety margin. 8 
Additionally, the lower speed limit makes lane changes less urgent. DLC occupies a dominant 9 
position in smaller gaps, which is consistent with the analysis above. 10 

 11 
Fig. 5 Lead and lag gap cumulative percentage: (a), (b) by road type; (c), (d) by motivation. 12 

 13 
4.2 Multi-level model for lead and lag gaps 14 

The aim is to develop a statistical model for identifying factors affecting lead or lag gaps. 15 
Data on lane change events are hierarchical, as shown in Fig. 6. For instance, lead gaps are 16 
nested within lane change motivations (MLC and DLC) and lane change motivations are 17 
further nested within road type. Moreover, lead gaps under MLC may have some similarities 18 
i.e., within-cluster correlation. On the other hand, there might be variation between lead gaps 19 
from different lane change motivations and/or different road types, i.e., between-cluster 20 
variation. Therefore, a statistical model is needed to jointly control both within- and between-21 
cluster variations (Deligianni et al, 2017). 22 
 23 
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 1 
Fig. 6 Multi-level model for lane change events (lead gap example). 2 

 3 
A multilevel mixed-effects linear regression model fills this need. Specifically, a three-4 

level random-intercept and random-coefficient model is most suitable for lane change gap 5 
acceptance because it allows the dependent variable of gap acceptance to have different 6 
characteristics for the same roadway and within the same motivation. Additionally, the model 7 
examines the variation of gap acceptance characteristics on different roadways, and the 8 
variation of MLC or DLC on the same roadway. A three-level random-effects linear regression 9 
model (STATA Reference Manual, 2013) can be developed for a single explanatory variable (x) 10 
as: 11 
 12 
Lane change - event-level (level-1): 13 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖                               (1) 14 
 15 
Lane change - motivation-level (level-2):  16 
𝛽𝛽0𝑖𝑖𝑖𝑖 = 𝛿𝛿00𝑖𝑖 + 𝑢𝑢0𝑖𝑖𝑖𝑖;    𝛽𝛽1𝑖𝑖𝑖𝑖 = 𝛿𝛿10𝑖𝑖 + 𝑢𝑢1𝑖𝑖𝑖𝑖                       (2) 17 
 18 
Lane change - roadway-level (level-3):  19 
𝛿𝛿00𝑖𝑖 = 𝛾𝛾000 + 𝜗𝜗00𝑖𝑖;    𝛿𝛿10𝑖𝑖 = 𝛾𝛾100 + 𝜗𝜗10𝑖𝑖                      (3) 20 
 21 
The composite equation can be expressed as: 22 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛾𝛾000 + �𝛾𝛾100 + 𝑢𝑢1𝑖𝑖𝑖𝑖 + 𝜗𝜗10𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜗𝜗00𝑖𝑖 + 𝑢𝑢1𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖                       (4) 23 
 24 

In which 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is the gap acceptance for event 𝑖𝑖, motivation 𝑗𝑗 and roadway 𝑘𝑘,  𝛾𝛾000 is 25 
the final model intercept, 𝑢𝑢0𝑖𝑖𝑖𝑖 is the random level-1 intercept, 𝜗𝜗00𝑖𝑖 is the level-2 random 26 
intercept, 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  is the level-1 residual, 𝛾𝛾100  is the fixed slope coefficient for explanatory 27 
variable x, 𝑢𝑢1𝑖𝑖𝑖𝑖 is the random level-2 slope coefficient for x, and 𝜗𝜗10𝑖𝑖 is the random level-3 28 
slope coefficient for x. All random components are assumed to follow a normal distribution 29 
with a mean of zero and a constant standard deviation. Eq. (4) represents a three-level random-30 
effects linear regression model for a single explanatory vehicle but can be extended for multiple 31 
explanatory variables. 32 

The independent variables used in gap acceptance are listed in Table 2. These explanatory 33 
variables for lane change behavior can be classified into some common groups based on 34 
previous studies: 35 
 Neighborhood variables - The surroundings of LCV  strongly affect the behavior. Most 36 

importantly, the presence of other vehicles in the target lane and their actions directly 37 
influence LCV drivers’ decisions. Gap acceptance decision-making depends on the speed 38 
of the LCV with respect to the vehicles surrounding it. Therefore, both LCV-to-LV and 39 
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LCV-to-FV relative speed and vehicles’ acceleration (i.e., LCV, LV and FV acceleration) 1 
were extracted to capture gap acceptance decision-making process (Toledo et al., 2003; 2 
Hill and Elefteriadou, 2013; Hou et al., 2015; Lee et al., 2016). 3 

 Environmental variables - Weather and light conditions may strongly affect the lane change 4 
behavior and gap acceptance (Chen et al., 2018; Dissanayake et al., 2002). Roadway 5 
pavement condition (i.e., dry or wet) depends on weather and has a significant impact on 6 
the performance of vehicle dynamics. In addition, drivers’ reaction time in bad weather 7 
may be longer leading to larger gaps. Similar to weather condition, drivers are prone to be 8 
influenced by lighting conditions. Another important environmental variable is traffic 9 
safety. Previous studies have shown that traffic flow oscillations are often accompanied by 10 
lane change maneuvers. More specifically, lane change frequency and gap acceptance vary 11 
with different traffic density (Singh and Li, 2012; Cooper et al., 2007). 12 

 Vehicle type- Despite their smaller proportion of vehicular traffic, heavy vehicles are 13 
known for their important impacts on traffic flow (Al-Kaisy et al., 2002). Heavy vehicles 14 
may impose some physical and psychological effects on surrounding traffic due to their 15 
physical (e.g., length and weight) and operational (e.g., acceleration, deceleration, and 16 
maneuverability) characteristics (Al-Kaisy and Jung, 2004). Therefore, LCV type was 17 
observed and used as a key factor in gap acceptance model. 18 

 19 
Parameters of all components were estimated using Stata® 13 (STATA Reference Manual, 20 

2013). As shown in Table 2, the three-level mixed-effects linear regression model provides a 21 
good fit to the data for lead and lag gaps. All variables listed in Table 2 are significant at the 22 
95% confidence level (p-value < 0.05 is significant).  23 

Traffic density was identified through observing the forward roadway camera video 24 
recording, and verified by the averaged travel speed of FV. In this study, the low-density state 25 
is defined as a large inter-vehicle spacing with less than three vehicles traveling in front of 26 
NDS vehicle while  traffic moves more than two-thirds of the speed limit. The medium-27 
density state is defined as a condition when travelling speed is one to two-thirds of the speed 28 
limit with three to five vehicles in front of NDS vehicle, and high density is indicated by slow 29 
speeds (i.e. less than one-third of the speed limit) with more than five vehicles in proximity. 30 

The variable high traffic density (crowded traffic with slow travel speed) shows a positive 31 
coefficient, indicating that lead gaps increased in high density traffic. The heavy traffic 32 
encourages drivers be more cautious, as improper lane change timing will increase the risk of 33 
crashes. This result is consistent with Bham (2009), who investigated the gap acceptance 34 
behavior in lane-changing situation on freeways using the Next Generation Simulation 35 
(NGSIM) data. In the NGSIM project, cameras were used to record video images of vehicles 36 
on a road from the top of the tall buildings and yields trajectory datasets which were used to 37 
analyze driving behavior. In Bham (2009), gaps of mandatory lane changes are larger for 38 
congested conditions compared to uncongested conditions. 39 

Bad weather (e.g., rainy) and poor light conditions (e.g., nighttime) led to larger lead gaps, 40 
and also to larger lag gaps. LCV drivers need more time in these conditions to adjust the 41 
vehicle’s movement and react to urgent situations. The LCV type in the lead-gap model 42 
significantly affects lead gaps. Presence of heavy vehicles as lane change vehicles tend to 43 
increase accepted lead gaps for both MLC and DLC maneuvers, which can be attributed to 44 
drivers’ abundance of caution because of heavy vehicles’ length, size, weight and limitations 45 
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in their maneuverability (Kayvan et al., 2011). This finding is the same as the result in Zhang 1 
and Kovvali (2007), who conducted a detailed analysis of lane change gap-acceptance based 2 
on the NGSIM data. 3 
 4 
Table 2 5 
Three-level mixed-effects linear regression models for lead and lag gap acceptance. 6 

Dependent variable Lead Gap Lag Gap 

Fixed effect Coefficient t-stat Pr > |t| Coefficient t-stat Pr > |t| 
Traffic density:       

High 0.3625 7.34 < 0.001 0.4502 11.86 < 0.001 
Medium 0.1217 2.72 0.007 0.0630 1.83 0.067 

Low (Reference)       
Weather condition:       

Rainy 0.1087 1.94 0.053 0.1183 2.71 0.007 
Sunny (Reference)       

Light condition:       
Nighttime 0.1925 4.84 < 0.001 0.0805 2.60 0.009 

Daytime (Reference)       
LCV type:       

Heavy vehicle 0.3219 3.55 < 0.001 - - - 
Light vehicle (Reference)       

LCV acceleration 0.1222 5.99 < 0.001 -0.0731 -4.60 < 0.001 
(Relative speed)2 

(𝑉𝑉𝐿𝐿𝐿𝐿 − 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿)2 0.0060 4.53 < 0.001 0.0021 1.90 0.057 

LV acceleration -0.0609 -3.60 < 0.001 - - - 
(Relative speed)2 

(𝑉𝑉𝐹𝐹𝐿𝐿 − 𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿)2 0.0137 7.72 < 0.001 0.0041 2.94 0.003 

FV acceleration -0.0504 -2.29 0.022 0.0428 2.52 0.012 
Intercept 1.2858 11.94 < 0.001 1.3207 11.35 < 0.001 
Random effect parameters Estimate   Estimate   
Variance of LC type 
Reference: MLC 3.62e-08   9.35e-06   

Variance of road type 
Reference: Arterials and Local 
Roads 

0.2387   0.2718   

Variance of Residual 1.0415   0.8935   
LR test vs. linear regression χ2 = 136.47, Prob >χ2= 0.0000 χ2 = 315.91, Prob >χ2 = 0.0000 
Statistics       
Number of observations 3735   4473   
Number of groups 6   6   
Log-likelihood -5461.1686   -5854.9650   

 7 
Both the square of the relative speed (unit: m2/s2) and acceleration (unit: m/s2) affected 8 

the gap acceptance. LCV acceleration had different effect on lead gaps and lag gaps, i.e., the 9 
faster the LCV, the larger lead gap and smaller lag gap it needs. The results of the lead gap 10 
model show that acceptable lead gaps increased with the increase in the square of LCV-to-LV 11 
relative speed, and decreased with the increase in LV acceleration. This can be understood as 12 
LCV drivers preferring to accept a larger gap when the LV accelerates in order to create a 13 
suitable space between the two vehicles. This result is consistent with Gurupackiam and Jr’s 14 
(2002) research, which found that in non-recurrent congestion, drivers, on the average, 15 
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accepted smaller gaps. An increase in LCV-to-FV relative speed and an increase in FV 1 
acceleration, however, reduced the lead gap. A possible reason is that faster relative speed of 2 
the FV increases the risk of rear-end crash, which may encourage the LCV driver to accept a 3 
smaller lead gap. 4 

Results of the lag model show that LV acceleration have no significant effect. In contrast 5 
to lead model in Table 2, a slower LV and a faster FV pressure the LCV driver to accept a larger 6 
lag gap. One reasonable explanation is that LCV drivers attempt to increase the size of the gap 7 
when noticing the LV is slowing down and the FV is closing in on them, as they have less 8 
perception of the rear space. 9 
 10 
4.3 Discussion on gap acceptance 11 
 Generally speaking, the drivers of lane-changing vehicles do not reject gaps that are larger 12 
than the accepted gaps, which is known as consistent behavior (Bham, 2009). However, drivers, 13 
sometimes, reject an accepted gap due to various reasons: (i)  avoiding collisions between the 14 
LV and the FV in the target lane, (ii) occurring an emergency situation inside the vehicle, (iii) 15 
failing to reach the intended destination, (iv) distracted driving. A minimum acceptable gap 16 
from a population, however, cannot be considered a critical gap as “it would only represent the 17 
gap acceptance behavior of an aggressive driver and would not represent the minimum 18 
acceptable gap of the driver population” (Bham, 2009). The rejected gaps, therefore, may or 19 
may not be less than the accepted gaps. 20 

This study develops a lane change gap-acceptance model based on the observed gaps (i.e., 21 
the time gaps when LCV drivers began to move into the target lane) instead of the minimum 22 
acceptable gaps. The reasons for this are briefly explained below: 23 
 First, either for mandatory lane changes or discretionary lane changes, LCV drivers’ 24 
unobserved lane change intentions cannot be inferred from observed behaviors, i.e., from the 25 
perspective of the FV, all we can utilize are the data from the radar system and the forward-26 
facing roadway camera. In fact, the real intentions of LCV drivers can only be approached by 27 
using specific instruments, including in-vehicle cameras, eye tracker, electroencephalograph, 28 
etc. For instance, in Olsen et al. (2002), the lane change initiation point was identified using a 29 
criterion that “driver returns gaze to the forward view after looking in mirrors or looking 30 
directly toward the side or rear”. According to some previous studies (Salvucci et al., 2007; 31 
Toledo and Zohar, 2007), it is appropriate to define lane change initiation as the vehicle starts 32 
moving toward another lane and continues, without reversal, through to the target lane. 33 
 Secondly, as for mandatory lane changes, the minimum acceptable gaps depend on various 34 
factors. For example, the distance to the exit location on freeways affect drivers’ lane change 35 
decision-making process. In addition, traffic density in the intersection areas cannot be ignored 36 
when drivers perform lane changes on arterials and local roads. This study combines all lane 37 
changes related to mandatory maneuvers as MLC. The minimum acceptable gaps, therefore, 38 
are hard to extract for each MLC event for different scenarios. 39 
 As for discretionary lane changes, we attempted to extract time gaps data five to ten 40 
seconds prior to a lane change, during which may include the maximum rejected gaps, or 41 
minimum acceptable gaps (Bham, 2009). However, a large amount of inconsistent gap 42 
acceptance behavior was observed in DLC events, i.e., drivers accepted shorter gaps rather than 43 
subsequent safer gaps. Additionally, considering the limited traffic resources, drivers executing 44 
a DLC were more aggressive with significant acceleration behavior to seek a better driving 45 
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environment, which caused the DLC acceptable gap was always lower than the critical gap. 1 
This can also attribute to the shorter gap acceptance in a DLC, which, in fact, has been 2 
discussed in the above section. 3 

To understand the drivers’ lane change decision-making mechanism, this study also 4 
attempted to examine LCV turn signal activation. According to the authors’ knowledge, turn 5 
signal could be used to locate a lane change as an auxiliary criterion. However, due to the fact 6 
that only half of Chinese drivers use a turn signal when performing lane changes in this study, 7 
we cannot offer insight into lane changes by analyzing turn signal usage. In addition, Olsen et 8 
al. (2002) pointed out that turn signal activation cannot be relied upon as the initiation point of 9 
a lane change since it is not present in all lane changes and does not always represent the 10 
initiation point of the maneuver. 11 

Considering the difficulty in extracting the minimum acceptable gaps from the SH-NDS 12 
database, we decide to use the time gaps in the defined initiation point (i.e., point A in Fig. 4 ) 13 
as the minimum acceptable gaps for each lane change event. Although the values may not be 14 
very precise, the initial lateral movement of LCV indicates that the necessity, desirability and 15 
safety of lane changes at that moment have met the needs of LCV drivers and they can 16 
approximately capture the meaning of gap acceptance (Toledo et al., 2003).  17 
 18 
5. Lane change duration 19 

Duration is one of the most important parameters for research in lane change maneuvers. 20 
In the 5,339 events studied, the duration varies from 0.7 s to 16.1 s with the mean of 3.81 s and 21 
the standard deviation of 2.03 s. Like gap acceptance, there are many variables that affect the 22 
duration of a lane change. As with gap acceptance, a three-level mixed-effects linear regression 23 
model was developed to explore the variables affecting lane change duration, and the same set 24 
of explanatory variables was employed. However, because initial results showed there was no 25 
significant relationship between lane change duration and motivation (p-value = 0.432), 26 
motivation-level was removed in the duration model. The resulting two-level model, which 27 
only considers roadway-level, is presented in Table 3.  28 
 29 
Table 3 30 
Two-level mixed-effects linear regression models for lane change duration on different road types. 31 

Dependent variable Lane Change Duration 

Fixed effect Coefficient t-stat Pr > |t| 
Traffic density:    

High 0.2822 3.93 < 0.001 
Medium - - - 

Low (Reference)    
Weather condition:    

Rainy 0.0088 0.08 0.934 
Sunny (Reference)    

Light condition:    
Nighttime 0.1152 1.53 0.127 

Daytime (Reference)    
LCV type:    

Heavy vehicle -0.0667 -0.39 0.697 
Light vehicle (Reference)    

LCV acceleration -0.0767 -1.95 0.051 
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Lead gap 0.0295 0.96 0.336 
Relative speed (𝑽𝑽𝑳𝑳𝑽𝑽 − 𝑽𝑽𝑳𝑳𝑳𝑳𝑽𝑽) -0.0325 -2.04 0.042 
LV acceleration 0.0286 0.89 0.373 
Lag gap -0.3075 -8.23 < 0.001 
Relative speed (𝑽𝑽𝑭𝑭𝑽𝑽 − 𝑽𝑽𝑳𝑳𝑳𝑳𝑽𝑽) 0.1744 10.11 < 0.001 
FV acceleration 0.1191 2.80 0.005 
Intercept 4.2641 43.79 < 0.001 
Random effect parameters    
Variance of LC type 
Reference: MLC Insignificant   

Variance of road type 
Reference: Arterials and Local Roads 0.0971   

Variance of Residual 1.9639   
LR test vs. linear regression χ2 = 2.60, Prob > χ2 = 0.0535 
Statistics    
Number of observations 3735   
Number of groups 3   
Log-likelihood -7821.3207   

 1 
As shown in Table 3, roadway type has a significant impact on lane change duration. 2 

Results also show that duration is increased by high traffic density and nighttime conditions. It 3 
can be easily understood that congested traffic flow and poor lighting make lane changing a 4 
more difficult maneuver, as the conditions require needs more time for drivers to prepare, 5 
execute and stabilize. Relative speed to FV and LV have different effects on duration, i.e., the 6 
faster the LV, the less time the LCV driver needs to complete the lane change; while a faster 7 
FV makes the duration longer. It is reasonable that when approaching the LV, or when the FV 8 
is closing, the driver of the LCV completes a lane change maneuver in a short time in order to 9 
guarantee safety. FV acceleration has the same effect on duration as LCV-to-FV relative speed, 10 
but increases in LCV acceleration and lag gap reduce lane change duration, which indicates 11 
that an LCV with speed and space advantage needs less time for execution. The other variables, 12 
however, of weather, LCV type, LV acceleration, and lead gap, are insignificant in the two-13 
level model. 14 

The above results are consistent with the study of Toledo and Zohar (2007). Their lane 15 
change duration model shows that duration increases when traffic density is higher since it 16 
becomes more difficult and riskier to undertake the lane-changing action. Similarly, Kayvan et 17 
al. (2011) used NGSIM data to model lane change and came to the same conclusion. The lane 18 
change duration is longer when LCV-to-FV relative speed increases and LCV-to-LV relative 19 
speed decreases. Toledo and Zohar (2007) concluded that in order to make duration model be 20 
more useful, additional models need to be developed that describe the behavior of the LCV and 21 
the response of other vehicles around it during the lane change (e.g., in terms of speed and 22 
acceleration). This is exactly one of the reasons that lane change impact and the interaction 23 
between LCV and FV are analyzed in next section. 24 
 25 
6. Lane change impact on the following vehicle 26 
6.1 Following vehicle speed change response 27 

By manually analyzing 1,000 lane change events, it was found that LCV drivers often 28 
completed lane changes by forcing the FV to slow down. This most common response is shown 29 
in Fig. 6(a), where FV speed decreases from the point when the LCV initiates a lane change 30 
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until it stabilizes in the target lane. In contrast, however, a certain number of FV drivers 1 
maintain their current speed (see Fig. 6(b)) or even accelerate in response to the LCV, 2 
seemingly out of discourtesy or intolerance (see Fig. 6(c)). 3 
 4 

 5 
Fig. 6 Possible FV responses: deceleration, stabilization, acceleration. 6 

 7 
Speed change rate is introduced as a practical indicator of the FV driver’s response, which 8 

is defined in Eq. (5): 9 

𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒 𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒 =  𝑣𝑣𝑆𝑆−𝑣𝑣𝐼𝐼
𝑣𝑣𝐼𝐼

 × 100%                                       (5) 10 

Where, 𝑣𝑣𝐼𝐼 and 𝑣𝑣𝑆𝑆 refer to the speed of the FV at the moments when the LCV initiates 11 
and stabilizes, respectively. Rates of speed change higher than 20% (absolute value) define 12 
abrupt deceleration or acceleration, and only these abrupt, or unstable, change rates are 13 
indicative of an adverse impact on the FV. To capture lane change impact more precisely, this 14 
study only considers those events with a speed change rate higher than 5%, as they could 15 
directly affect the maneuvers of FV. Consequently, 3,101 of the 5,339 lane change events were 16 
used to analyze the acceleration and deceleration behaviors of the FV.  17 

In most of the 3,101 events, lane changes have limited influence on the FV, which can be 18 
confirmed by the larger proportion of small speed change rates (-10%, -5%) toward the centers 19 
of Fig. 7(a) and 7(b); but, like the LCV, the FV responds to different variables. As shown in the 20 
far ends of Fig. 7(a), FVs accelerate and decelerate more abruptly on arterials and local roads 21 
than on expressways or freeways, which can likely be attributed to arterials and local roads 22 
having more interrupted traffic flow and more challenging interactions with buses, bicycles, 23 
pedestrians and other road users. As can be seen at the far ends of Fig. 7(b), mandatory lane 24 
changing triggers more unstable reactions from the FV than does discretionary lane changing. 25 
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As MLC always implies necessity, these LCV drivers may pay less attention to the rear space, 1 
leading to more urgent interactions with the FV.  2 

It is to a certain degree surprising that some FV drivers accelerate when the LCV executes 3 
a lane change. It may be that the space between the FV and LCV is perceived by the FV as 4 
sufficient, and the FV determines that acceleration will not lead to serious consequences. In 5 
some cases, however, the FV appears to accelerate in an attempt to close the gap between itself 6 
and the LCV in order to prevent the lane change, but fails. Video analysis shows that as many 7 
as 20% of FVs respond with an acceleration rate of more than 10%. This percentage, 8 
significantly higher than the percentage for U.S. drivers, substantiates results from other studies 9 
that find Chinese drivers to be more aggressive (Wang et al, 2016).  10 
 11 

 12 

 13 
Fig. 7 Speed change rate of following vehicles on different road types and for different motivations. 14 

 15 
6.2 Following vehicle braking response 16 
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The impact of lane change on the FV can also be analyzed through FV drivers’ braking 1 
response. The DAS in NDS vehicles records the braking timestamp for the brake pedal position 2 
variable. As shown in Fig. 8, among all 5,339 events, 44.0% of FV drivers brake when the LCV 3 
initiates its movement but before it crosses the lane line, while only 14.1% brake after the LCV 4 
crosses into the target lane, and 41.9% do not brake at all. The FV’s braking response is 5 
consistent with its relatively small speed change, and supports the observation that a substantial 6 
number of lane changes have little impact on the FV. That 44.0% of drivers brake between the 7 
LCV initiation and cross-lane point offers insight into improving ADAS. For example, most 8 
forward collision warning (FCW) systems alert a driver to perform maneuvers to avoid a 9 
collision with the closest vehicle directly ahead. This study demonstrates, however, the value 10 
of improving FCW functions to perceive vehicles, such as an LCV, in adjacent lanes that may 11 
negatively impact the FV’s safety (Dou et al, 2016). 12 

Time-to-collision (TTC) calculates the urgency of lane change. It is the time it would take 13 
for vehicles to collide if the following vehicle does not make an adjustment maneuver, i.e., 14 
TTC equals the longitudinal range (X-Range in NDS data) between the LCV and the FV divided 15 
by their relative speed. Results show that more than 70% of lane change events’ minimum TTC 16 
occurred between LCV initiation and the cross-lane point (yellow phase in Fig. 8). That is, in 17 
most braking-required events, the FV driver maintains a safe distance by braking before the 18 
LCV inserts into its lane. This evidence of human drivers’ ability to predict danger and adopt 19 
safe, suitable, and timely strategies suggests that ADAS and CAVs can learn a similar response 20 
(Casner et al, 2016). For example, a Level 3 (Society of Automotive Engineers (SAE) levels) 21 
autonomous vehicle should be able to make appropriate decisions and maintain steady control 22 
of the vehicle when it recognizes the surrounding vehicles’ intentions. 23 
 24 

 25 
Fig. 8 Braking, minimum TTC and urgency of lane changes. 26 

Note: Yellow = initiation to cross-lane; green = cross-lane to stabilization. 27 
 28 

Following Olsen et al. (2002), this study calculated TTC for all braking events and 29 
classified lane change urgency on a 4-point rating scale (measured by TTC, in second). As 30 
shown in Table 4, most FV drivers brake at an urgency of 1, consistent with the observation 31 
that FV drivers tend to be cautious when perceiving the CV’s intention, while only 5.3% of 32 
drivers waited until TTC was less than 3 s. According to the statistical result, the 95th percentile 33 
is 2.8 s and the 90th percentile is 4.7 s, TTC < 4.7 s therefore may be an appropriate reference 34 
value for ADAS. A warning to brake with a threshold set below 4.7 s is potentially dangerous, 35 
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as some drivers cannot respond in time, whereas many drivers will ignore a warning set more 1 
than 4.7 s (e.g., 6 s). With a warning set at 4.7 s, a braking maneuver could be executed more 2 
easily and safely. Our results are similar to the findings of Chen et al. (2015). Their study 3 
showed that the frequency and TTC in lane change events varied by different urgency. 4 
Meanwhile, Chen et al. (2015) also emphasized that the warning threshold for FCW systems 5 
needs to adapt to current vehicle speed and various urgency. 6 
 7 
Table 4 8 
Braking at different urgency of cut-ins. 9 

Urgency Scale TTC Range Severity Braking Percentage 
1 TTC > 5.5s Non-urgent 83.5% 
2 3s < TTC < 5.5s Urgent 11.2% 
3 1s < TTC < 3s Forced 5.2% 
4 TTC < 1s Critical / Near Crash 0.1% 

 10 
7. Summary and conclusion 11 

This study is one of the first to examine drivers’ lane change behavior comprehensively, 12 
that is, with a focus on the three core components of gap acceptance, duration and impact on 13 
the following vehicle. An innovative automatic extraction algorithm was developed to obtain 14 
lane change events from the Shanghai Naturalistic Driving Study database. All 5,339 events 15 
were used to identify the variables influencing lane change decision-making, execution, and 16 
interactions with other vehicles in combination, in an endeavor to provide a new perspective 17 
on the entirety of the lane change process.  18 

The first important component of lane change behavior is gap acceptance, which is crucial 19 
to understanding a driver’s decision to change lanes. As descriptive statistics confirmed that 20 
driver decision is influenced by motivation (Toledo et al., 2003; Choudhury and Farheen, 2005) 21 
and road type, two three-level mixed-effects linear models were developed to analyze lead and 22 
lag gap. The developed models demonstrated that traffic density, weather, light conditions, 23 
vehicle type, relative speed and acceleration all had significant effects on lane change decision-24 
making.  25 

Duration is another crucial component of the execution phase of lane change, and the 26 
current practice of omitting of lane-change duration from microsimulation tools may have a 27 
significant effect on simulation outputs. Simulations generally consider duration as near-28 
instantaneous or assign it a constant value, yet the duration of lane change has considerable 29 
range. As the wide range is due to the variety of possible lane-change scenarios, identifying the 30 
variables is essential. However, unlike lead and lag gap, duration is not significantly influenced 31 
by motivations, but is significantly influenced by traffic density, light conditions, lag gap, 32 
relative speed, and acceleration of the following vehicle as well as the lane-changing vehicle.  33 

To better understand lane change impact on the following vehicle, speed change rate, 34 
braking timestamp, and time-to-collision (TTC) were used to measure the FV response. 35 
Although results demonstrated that the majority of lane changes have limited impact, the 36 
percentages of abrupt deceleration and acceleration are not insignificant, and can affect the 37 
larger traffic flow as well as the FV. Additionally, the observation that 20% of Chinese drivers 38 
appear to accelerate specifically to prevent cut-in suggests an aggressive driving style, noted 39 
in other studies (Wang et al, 2016), that is cause for concern. 40 
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Applications of this study, of course, extend beyond China. Influencing variables for other 1 
populations might be compared with this study’s results, for example, but a primary application 2 
is in providing references for microsimulation software. Results from our models with real road 3 
data suggest that simulated gap acceptance and duration thresholds should be set according to 4 
a variety of conditions. For example, road type and motivation parameters can be used to 5 
simulate various lane change trajectories in different scenarios. This study’s results are also 6 
useful in the ongoing development of ADAS and CAVs. The fact that 44.0% of FV drivers 7 
brake when the LCV initiates its movement indicates that ADAS must consider movement of 8 
vehicles in adjacent lanes as well as the driver’s own lane. Additionally, CAV controlling can 9 
incorporate findings from this study to become more human-like and comfortable. Since in 10 
over 70% of lane change events, the minimum time-to-collision is shown to occur between 11 
initiation and the cross-lane point, CAVs can be designed to brake during that safer phase. 12 
Further, the advent of CAV testing in China makes it necessary to consider Chinese lane 13 
changing behavior. 14 

Since the lane changing process is complex, any future study should expand to address 15 
other variables, such as roadway geometry (i.e., horizontal curvature), the influence of driver 16 
psychology on driving styles, and vehicle performance capabilities. Additionally, this study has 17 
some limitations that include a passive relatively approach was taken to analyze lane change 18 
process, which may not fully capture driver behavior mechanism to some extent. Nevertheless, 19 
this paper extends the exploration and development of lane change theory, methodology, and 20 
application, and can provide a valuable reference for further research. 21 
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