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Abstract— Searchable Encryption is an emerging 
cryptographic technique that enables searching capabilities over 
the encrypted data on the cloud. In this paper, a novel searchable 
encryption scheme for the client-server architecture has been 
presented. The scheme exploits the properties of modular inverse 
to generate a probabilistic trapdoor which facilitates the searching 
over the secure inverted index table. We propose 
indistinguishability that is achieved by using the property of a 
probabilistic trapdoor. We design and implement a proof of 
concept prototype and test our scheme onto a real dataset of files.
We analyze the performance of our scheme against our claim of 
the scheme being light weight. The security analysis yields that our 
scheme assures higher level of security as compared to other 
existing schemes. 

Index Terms— Searchable Encryption, Modular Inverse, 
Extended Euclidean Algorithm, Indistinguishability, Privacy 
Preservation, Inverted Index, Database as a Service (DaaS). 

I. INTRODUCTION

LOUD is an environment that provides the utility of on
demand resource sharing and data access to the clients and 

their devices remotely. Apart from the core categories of cloud 
services i.e. SaaS, PaaS, IaaS, nowadays, Database as a Service 
(DaaS) enables people to store their files on the cloud. This 
DaaS helps in achieving availability of the documents but there 
are some interrelated concerns associated to DaaS that are 
security, trust, expectations, regulations and performance issues 
[1]. The concerns above are interdependent and should be 
addressed simultaneously. Encryption is probably the best 
solution that comes to one’s mind while talking about security. 
However, in the context of DaaS, searching over the encrypted 
text or Searchable Encryption (SE) is a difficult and resource 
consuming task. 

This requires a SE scheme to be developed that would 
facilitate performing textual searches over encrypted data. Such 
a scheme would help maintain privacy of the outsourced 
documents while enabling the search over the encrypted 
documents. There are three main challenges associated with SE 
as discussed in [2] i.e. (1) efficiency, (2) security and (3) query 
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expressiveness. These three terms can be assumed to be the 
vertices of a triangle and an idealistic SE scheme should be 
developed in such a way that it transforms the triangle into an 
equilateral triangle. In other words, a balance needs to be 
maintained between the faced challenges while designing a SE 
scheme. 

National Security Agency (NSA) has highlighted the 
concerns related to security in the cloud and has proposed the 
use of homomorphic encryption [3]. Homomorphic encryption 
enables to perform operations on encrypted data. Though 
homomorphic encryption has revolutionized the field of 
cryptography, there are still major concerns related to 
performance. In [4] the authors have conducted a survey and 
comparison of different homomorphic and non-homomorphic 
SE schemes. Their result yields that non-homomorphic SE 
schemes out-perform homomorphic SE schemes in terms of 
efficiency. 

Till now the use of SE has been explored in connection with 
E-mail servers [5] to conduct searches on confidential emails.
In the healthcare domain [6][7] SE has been researched as an
effective method of providing keyword search on patients
health records. SE could have a profound impact on areas
related to telecom, e-commerce, warfare, big data analysis and
cloud storage.

In this paper we present a novel lightweight ranked SE 
scheme. We develop and implement a proof of concept 
prototype and test it on a database containing more than 
100,000 documents. To validate our scheme in a practical real 
life scenario we have implemented and tested in a telecom 
environment. We use the Switchboard-1 speech database [8] 
that is a corpus of spontaneous conversations which addresses 
the growing need for large multi-speaker databases of telephone 
speech. The corpus contains 2430 conversations averaging 6 
minutes in length; in other words, over 240 hours of recorded 
speech, and about 3 million words of text, spoken by over 500 
speakers of both genders from every major dialect of American 
English. This database consists of 120,000 distinct keywords. 
Hence, we prove that our scheme can perform efficient 
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keyword search on telephone speech. Furthermore, our scheme 
can be equally helpful for performing SE in the aforementioned 
domains. 

Random Oracle Model (ROM) is based on the basic 
assumption that the cryptographic primitives are replaced with 
idealized versions. We prove the security of our scheme in the 
standard model that only limits the adversary by the resources 
available i.e. time and computational resources. 

A. Our Contributions
Following contributions to the field of SE have been made in 

this work: 
Our foremost contribution is that we enumerate the
properties of a “secure” ranked SE scheme by formally
defining keyword-trapdoor indistinguishability and
trapdoor-index table indistinguishability.
We design and present a novel Ranked based Searchable
Encryption scheme that is completely based on a
probabilistic encryption algorithm to address the passive
attacks.
We design and implement a proof of concept prototype
and test our scheme onto a real dataset of files containing
120,000 keywords and more than 100,000 documents to
analyze the performance of our scheme.

B. Organization
Section II presents the literature review in which existing SE

schemes are discussed. Section III discusses Ranked Searchable 
Encryption Scheme (RSE) model by formally defining our 
construction. In Section IV, we revisit the security definitions 
related to searchable encryption and propose new definitions 
for our proposed ranked searchable encryption scheme. Finally, 
in Section V, we present our ranked searchable encryption 
scheme followed by a security analysis. In Section VI, we 
perform a comparative analysis of the existing scheme against 
our scheme in terms of complexity. We also develop a proof of 
concept prototype and test our scheme onto a live dataset of 
documents by analyzing the computational time. The 
computational time along with the storage overhead is analyzed 
in Section VI. The conclusions along with the future work are 
drawn towards the end of the paper, in Section VII. 

II. LITERATURE REVIEW

A state of the art searchable encryption scheme must maintain
a balance between security, efficiency and query effectiveness.
Previous researches fail to maintain this balance thus resulting 
in a system that lacks adaptability. In this section we discuss 
some significant schemes. 

Wang et al. in [9][10] for the first time introduce the concept 
of ranked keyword searching over encrypted data. The authors 
have proposed two schemes for single keyword search over 
encrypted text. Their scheme was an extension of [11] and they 
added secure ranking to it. Both the schemes facilitate the server 
to perform ranked keyword searching on user’s behalf. In both 
the schemes, the user will generate the same trapdoor while 
searching for a particular file. Therefore, the schemes lack in 
providing indistinguishability. There is an advantage of their 
later scheme as it helps in providing dynamic inverted index i.e. 

whenever a new file is added to the server the re-ranking is not 
to be done but this comes at an increased computational cost
which will be discussed in section VI. Furthermore, the later 
scheme helps to keep the ranking score encrypted that will help 
to avoid leakage of occurrence of a particular keyword to the 
server. However, in [12] the authors have launched a successful 
differential attack on the aforementioned scheme. The authors 
have demonstrated that the scheme still leaks the relevance 
scores to the adversary from which the encrypted keywords can 
be inferred by using the estimated distributions. Therefore, their 
scheme lacks in providing resistance against distinguishability 
attacks and hence leaks information. 

Kamara et al. in [13] have proposed a dynamic searchable 
symmetric encryption scheme. Their work can be termed as an 
extension of their previous scheme that they had proposed in 
[11]. Their scheme facilitates the adding, deletion or 
modification of a document. The change is brought to the server 
at run time and comes with minimal modification and 
recompilation of the inverted index. For the deletion of the file 
they use an additional data structure that contains the pointers 
to the file being deleted. For the modification they use 
homomorphic encryption to encrypt the pointer so that based on 
the homomorphic encryption properties the server can get to
modify the file. Though this can be termed as a breakthrough in 
the field of searchable encryption, there is a drawback of this 
scheme i.e. the generated trapdoor is deterministic and the same 
trapdoor is generated for the same word every time hence it 
cannot resist distinguishability attacks. Furthermore, they have 
also analyzed that their scheme leaks even more information as 
compared to the previous scheme hence this scheme cannot be 
termed as an ultimate solution. 

Wang et al. in [14] have proposed a range search scheme on 
encrypted spatial data. Their scheme i.e. Geometric Range 
Searchable Encryption (GRSE) supports searchable symmetric 
encryption by mapping the datasets to a set of points lying 
within a geometric shape. Their design is indeed remarkable as 
it is not dependent upon a particular geometric shape and 
supports Axis-parallel Rectangles, Circles, Non-axis-parallel 
Rectangles and triangles. However, in this scheme all the data 
records within a dataset will be returned as the result and the 
user may have to download every file containing that particular 
keyword hence it will result in extra network traffic. 
Furthermore, with the increase in the outsourced data, the size 
of the bloom filter is increased that will result in the slowing 
down of the searching. They have also proposed an extension 
of their probabilistic GRSE by using trees to increase the 
efficiency of searching. However, as we have mentioned 
earlier, this searching comes with a tradeoff of privacy as the 
tree may reveal the path pattern. So this scheme does not 
provide the desired level of security and privacy and reveals too 
much information. 

Tang in [15] has proposed a symmetric searchable multiparty 
encryption scheme (MPSE) that is an extension of [16]. In their 
scheme they introduce a ‘Follow’ algorithm that allocates a 
token to the writer to be distributed among the readers (user) of 
the index table. This token authorizes the reader to perform the 
search on the index table. This scheme facilitates the dynamic 
users but does not allow dynamic databases. The authors 
assume that there is a secure channel between the user and cloud 
server to transmit the trapdoors. Although, the secure channel 
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hides the leakage of the trapdoor during transmission, the 
trapdoor is based on one-way hash function due to which the 
server itself can learn the access pattern and the keyword being 
searched for since the same trapdoor is generated for the same 
keyword. In other words the trapdoor is distinguishable. Their 
scheme uses forward index i.e. an index for each file due to 
which the ranking cannot be done. 

III. RANKED SEARCHABLE ENCRYPTION MODEL

We consider a single writer/single reader (S/S) architecture 
and use the client-server infrastructure by visualizing a scenario 
in which there are two parties, Alice (Client) and a Cloud Server 
(CS). Alice intends to upload all her documents D

 to the CS to enable remote access. CS performs
the searching of relevant documents on behalf of Alice. In the 
scheme it is assumed that the CS is a trusted but curious server. 
Being trusted means that CS acts in a known and designated 
manner but CS is also willing and curious to get hold of full or 
partial information about the documents uploaded and held 
within it.

Alice identifies a set of keywords W  
from the set of documents D and generates a relevance score
based on the frequency of occurrence of the keywords within
the set of documents D. These relevance scores help in
performing ranked searching. Ranked searching facilitates the 
search by giving user the liberty to select the most relevant 
documents from a collection by identifying the frequency of 
occurrence of a keyword within a set of documents. Ranked 
searching is mainly used for single keyword search because the 
server may find several documents satisfying the query 
whereas, in complex queries, the server might be able to 
identify just a few number of documents in response to the 
search query. Therefore, ranked searching is not effective in 
multi-keyword or expressive queries. 

Equation 1 in [17] has been presented that is commonly used 
for the relevance frequency generation and is widely used by 
researchers for designing ranked based SE schemes. For 
example in [10][9] authors have used the equation 1 for the 
ranking in searchable encryption  

(1) 
where  denotes the keyword to be searched;  denotes the 

document;  denotes length of the document obtained by 
counting the words appeared in the document ;  denotes
number of times a word  appears within a particular 
document ;  denotes the number of documents in the
dataset that contain the word  and  denotes the total number 
of documents in the dataset. 

Now Alice generates an index table  (see Section V for more 
details) and outsources the index table  along with the 
encrypted documents D to the CS.

If Alice wants to search for a document containing a specific 
keyword, she simply generates a probabilistic trapdoor T and 
sends it to CS. CS uses the trapdoor T to search the index table 
 and returns a set of relevant documents in a ranked order. 

Figure 1 shows the flow of events of the RSE scheme where a 
client is interacting with the CS. It can be seen that mainly all 

the tasks are performed on the client’s side, whereas, the 
searching is done at the CS. 

Fig. 1. The flow of events of proposed RSE scheme. 

In order to highlight the advantage of indeterministic/ 
probabilistic trapdoors, we revisit the definition of probabilistic 
encryption also termed as randomized encryption [18]. 
Probabilistic Encryption: A probabilistic encryption system is 
a quadruple , where  is the message space,  is 
the key space,  is the ciphertext space and  represents a 
relation  such that: 

for each key  and each ciphertext , there is
at most one  such that .
For each message  and each key  there is
at least one ciphertext  such that .

The encryption process works as follows: 
A bit sequence  is chosen randomly. The value 

 would be computed, where  is a deterministic 
function such that  and 

.

If the trapdoors are based on probabilistic encryption, then 
the resulting trapdoors will also be probabilistic. The 
probabilistic trapdoors are indistinguishable and resist 
distinguishability attacks. We explain this with the help of a 
scenario highlighting passive attacks. 

A. Scenario related to a Passive Attack
Probabilistic trapdoors mean that for the same keyword being

searched twice, a unique search token (trapdoor) may be 
generated every time. One may appreciate the advantage of 
having a probabilistic trapdoor by considering an Adversary , 
capable of launching a passive attack. A passive attack over the 
network enables the adversary to monitor, read and capture data 
exchanges. Suppose the adversary is able to sniff the 
transmitted trapdoor and uncover the keyword from it, in such 
a case if the trapdoor is not probabilistic, this will reveal all the 
future searches to the adversary and over a longer period of time 
the adversary  may uncover the entire set of keywords. On 
the contrary, if the trapdoors are probabilistic then even if the 
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adversary is able to uncover the keyword from the trapdoor, it 
may be effective only for that particular trapdoor and the 
adversary may not be able to predict the future trapdoors. 
Section IV and Section V-G explains the advantages of using 
the probabilistic trapdoors and how the existing schemes may 
be unsecure against a passive adversary. 

We now formally define our proposed Ranked Searchable 
Encryption scheme (RSE) that facilitates the search over 
encrypted documents in ranked order. The following definition 
presents the algorithms and the phases that our scheme 
comprises of: 

Definition (Ranked Searchable Encryption Scheme (RSE)) A
RSE comprises of five polynomial time algorithms

such that: 

is a probabilistic key generation
algorithm run by the client. The algorithm takes a security 
parameter λ as the input and returns a master key K, a
session key  and a prime number .

is a deterministic algorithm run by 
the client to generate an index table . The algorithm takes 
a master key K and a collection of documents D to be
outsourced to the CS as input. The algorithm returns a 
secure index . 

 Build_Trap( , ,num): is a probabilistic algorithm
run by the client. The algorithm requires the master key 

, a session key , keyword w and the number (num) of
documents D required as the input. The algorithm returns 
a trapdoor .

Search_Outcome( ): is a deterministic algorithm
run by the CS. The algorithm takes the session key ,
index table  and the trapdoor  as the input and
returns X, a set of desired document identifiers encrypted 

 containing the keyword  in ranked order.

Dec : is a deterministic algorithm run by the client.
The algorithm takes client’s master key and encrypted set 
of document identifiers to decrypt and
recover the document id’s. 

Correctness: A RSE scheme is correct if for the security 
parameter λ, the master key  and the session key  generated
by KeyGen , for ( ) output by , the
search using the trapdoor  always returns the correct set of
encrypted document identifiers in ranked order.

A RSE scheme is correct if the following are true: 

If  then the following should hold with an
overwhelming probability
Search_Outcome

If  then the following should hold with an
overwhelming probability
Search_Outcome

Soundness: A RSE scheme is sound if for the security 
parameter λ, the master key  and the session key  generated
by KeyGen , for ( ) output by , the

search using the trapdoor  always returns sound results i.e. the
result should not contain any false positives.

A RSE scheme is sound if the following are true: 

If  then the following should hold with an
overwhelming probability

Search_Outcome( )=1

If  then the following should hold with an
overwhelming probability

Search_Outcome( )=0

IV. SECURITY DEFINITIONS FOR RANKED SEARCHABLE
ENCRYPTION (RSE) 

In the context of searchable encryption, security is studied 
about privacy preservation of the data outsourced to the 

[19][20].

A. Existing Security Definitions
The problem of searching over encrypted data has received

attention for more than a decade now. Back in 2000, Song et al.
in [21] were the first to come up with a practical way of 
searching symmetrically over encrypted data. Till then there 
was no formal definition regarding security for SE. Since 2000 
several definitions and constructions related to SE have been 
presented. In 2003, Goh [22] for the first time came up with the 
security definitions of SE called Semantic Security Against 
Adaptive Chosen Keyword Attack (IND-CKA). In the same 
paper, the author proposed a SE scheme that met his proposed 
definition. There were some assumptions related to the 
definitions i.e. the number of keywords (size of the documents) 
within the document should be same in order to achieve 
indistinguishability and if the index is indistinguishable the 
trapdoors need not to be kept secure. Since their definitions 
were focused towards secure indices and not probabilistic 
trapdoors, their definitions could not be generalized. 

In [20] authors came up with an extension of IND-CKA that 
aimed to counter the assumption of same size documents. They 
supported their definition by presenting a secure index 
construction called z-index which was based on bloom filters. 
As highlighted in [11] that the definition was not secure and 
would be fulfilled by any insecure searchable encryption 
scheme. Later Goh introduced extended definitions IND1/2-
CKA and now the documents did not need to be of the same 
size, and the trapdoor was again not kept secure. Curtmola et
al. in [11][19] claimed that all the previous definitions did not
provide adequate security and proposed two new definitions 
Adaptive/Non-Adaptive Indistinguishability Security for SSE. 
Both of the newly proposed definitions have their weaknesses 
and don’t provide adequate level of indistinguishability. We 
discuss the limitation of their slightly stronger definition i.e. 
Adaptive Indistinguishability below. 

B. Limitations of previous definitions
As mentioned earlier, Curtmola’s definitions are widely

accepted and used. They introduce four terms in [19][23] 
incurred as a result of a search query i.e. History, Access 
Pattern, Search Pattern and Trace. The history defines a tuple 
containing the document collection and the keywords. Access 
patterns represents the outcome, i.e. the documents contain a 
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particular keyword. The Search pattern tells if the same 
keyword is being searched every time. The trace of a history 
consists of the exact information that we are willing to leak 
about a history after the search has been performed. Their 
security definition is defined as nothing is leaked beyond the 
access pattern and the search pattern while the Trapdoor is 
deterministic. Their definition of Indistinguishability refers to 
the indistinguishable index table generated based on pseudo-
random functions. 

We remark that Curtmola’s work clearly provides the desired 
level of security when the trapdoor is deterministic but their 
SSE-2 lacks in maintaining privacy associated to the trapdoor 
and hence it is prone to distinguishability attacks. Their 
construction (SSE-2) generates the same trapdoor 
(deterministic) every time the same keyword is queried. As a 
result the search pattern discloses which trapdoors correspond 
to the same underlying keywords resulting in privacy concerns 
(cf Section 4.2 of [19]). The deterministic trapdoor reveals the 
corresponding history tuple “prior” to the search.

Hence, we term their definitions a primary “Baseline” for any 
SE scheme but improved definitions are required for enhancing 
the security and highlighting the advantage of a probabilistic 
trapdoor under those improved definitions. 

Therefore, based on the improved security definitions a 
secure construction is required that primarily provides 
indistinguishable index table and ensures trapdoor 
indistinguishability that results in the increase in the security 
and privacy of the entire system. 

Now, we can formally state the privacy concerns associated 
to RSE. So an RSE scheme is privacy preserving if it has the 
following attributes: 

The trapdoor should not reveal any information about the
keyword (unencrypted) that is being queried and should
maintain the privacy of search.
The trapdoor should be probabilistic and should not
disclose the corresponding underlying encrypted
keywords or document identifiers “prior” to the search.
The outcome of the trapdoor should not uncover any
information about the encrypted document that is returned
as a result of the query to the user.

C. Security Definitions for Proposed RSE
We now revisit the existing definitions of SE that will be

utilized to prove the security of our proposed scheme. We 
propose new definitions for indistinguishability in the terms of 
ranked searchable encryption. An ideal searchable encryption 
scheme should fulfill all these definitions to ensure privacy. In 
Section V(G), we prove that our scheme complies with the 
following definitions. 
1) Definition 1 : Non-Adaptive Indistinguishability for
Searchable Encryption
Non-Adaptive means that the adversary  cannot make queries 
based on the outcome of the previous query [11][19]. Therefore, 
searchable scheme preserves security in the sense of non-
adaptive indistinguishability if for any two non-adaptively 
constructed histories (documents & keywords) with equal 
length and trace (documents length, search pattern and 
outcome) no adversary can distinguish between the view 
(encrypted documents, trapdoors & Index) of one history from 

the view of the other in polynomial time with non-negligible 
probability over . 
2) Definition 2 : Adaptive Indistinguishability for
Searchable Encryption
Adaptive means that the adversary  can make queries based 
on the outcome of the previous query [11][19]. Therefore, 
searchable scheme preserves security in the sense of adaptive 
indistinguishability if for any two adaptively constructed 
histories (documents & keywords) with equal length and trace 
(documents length, search pattern and outcome) no adversary 
can distinguish between the view (encrypted documents, 
trapdoors & Index) of one history from the view of the other in 
polynomial time with non-negligible probability over . 
3) Keyword-Trapdoor Indistinguishability for Ranked 
Searchable Encryption Scheme

Keyword-Trapdoor Indistinguishability refers to the act of 
performing search over encrypted text in such a way that the 
redundancy in the statistics of the (plain text) keywords should 
be dissipated into the associated trapdoor. Therefore, for the 
same keyword appearing twice the trapdoor should not be 
distinguishable even if the history (keyword, trapdoor) is 
generated adaptively. To guess the keyword or the document’s 
content the attacker has to intercept a tremendous amount of 
data to uncover the underlying plaintext in polynomial time. 

The challenger begins by generating an index table against a 
data collection D. The adversary selects a keyword  and sends
it to the challenger. The challenger generates a trapdoor and 
sends it back to the adversary. This continues until the 
adversary has submitted polynomial-many keywords. Now the 
challenger tosses a fair coin , the adversary has to submit two 
keywords  to the challenger and receives a trapdoor
corresponding to the keyword . The adversary has to guess
and output the bit . 

Definition 3 (Keyword-Trapdoor Indistinguishability). Let
RSE=(KeyGen, Build_Index, Build_Trap, Search_Outcome, 
Dec) be a Ranked Searchable Encryption scheme over a 
dictionary W,  be the security parameter, D be the set of
documents and be such that 
and consider the following probabilistic experiment

:

(

;

otherwise
where  is a string that represents and captures  state. We
say that the keyword-trapdoor indistinguishability holds if for 
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all polynomial-size adversaries  such that
, 

,
where probability is over the choice of . 
We explain this by designing a game in the standard model. 

Game 1: Let RSE be a Searchable Encryption scheme . 
Suppose that there are at most  keywords 

and  documents  where
 (set of natural numbers) associated to an index table. 

The game is played between an adversary  and a challenger 
. The game is divided into three phases as follows: 
Phase 1: The adversary  sends a keyword to the challenger 

. The challenger  returns a trapdoor to . This continues 
between the adversary  and the challenger  for a while. 

Challenge Phase: The adversary  selects two keywords 
 and send them to the challenger . The selection

of the keywords can be done as follows: 
a)  intends to search for unique keywords such that

;
The challenger  in response tosses a fair coin  and 
generates two trapdoors corresponding to the values of b i.e. 

such that . 
After the challenge has been completed, Phase 1 is run again. 
We allow the adversary to search for the same keywords again 
if interested. 

Outcome Phase:  is given the generated Trapdoors 
. will now have to guess and output  and

if  then the adversary wins. In other words the adversary
 has to output trapdoor T corresponding to to the

challenger  in polynomial time. If the adversary  correctly 
guessed the trapdoor corresponding to the keyword then it has 
won otherwise RSE provides keyword-trapdoor 
indistinguishability and the challenger  wins. 

Therefore the probability that the adversary  wins is 
which is according to the definition stated above. 
4) Trapdoor-Index Indistinguishability for Ranked Searchable
Encryption
Trapdoor-Index indistinguishability relates to the complexity
offered by a Searchable Encryption  scheme. The
keyword, trapdoor and index table should be complex and
involved in such a manner that trapdoor should not reveal the
corresponding index table entries prior to the search and should
not be distinguishable. Therefore, for the same keyword
appearing twice the trapdoor should not be distinguishable even
if the history (keyword, trapdoor, index) is generated
adaptively. Furthermore, change of one bit/character of the
keyword should completely change the Trapdoor and Index
Table or vice versa.

The challenger begins by generating index table against a 
data collection D. The challenger sends the set of keywords W,
the trapdoors generated for all the keywords W along with the
associated index table entries  to the adversary while 
maintaining the order in which they occur. Now the challenger 
tosses a fair coin , the adversary has to submit two keywords 

 to the challenger and receives a trapdoor
corresponding to the keyword . The adversary has to now
decide the corresponding index value and is challenged to 
output the bit . 
Definition 4 (Trapdoor-Index Indistinguishability). Let
RSE=(KeyGen, Build_Index, Build_Trap, Search_Outcome, 
Dec) be a Ranked Searchable Encryption scheme over a 
dictionary W,  be the security parameter, D be the set of
documents and be such that and
consider the following probabilistic experiment

:

(

otherwise
where  is a string that represents and captures  state. We
say that the trapdoor-index indistinguishability holds if for all 
polynomial-size adversaries  such that 

, 

,
where probability is over the choice of . 
We explain this by designing a game in the standard model. 

Game 2: Let RSE be a Searchable Encryption  scheme. 
Suppose that there are at most  keywords 

and  documents  where
 (set of natural numbers) associated to an index table. 

The game is played between an adversary  and a Challenger 
. The game is divided into three phases as follows: 
Phase 1: The challenger  generates an index table 

corresponding to the set of documents. The challenger 
generates and sends the trapdoors for all keywords  , the index 
table entries corresponding to the trapdoor and the keywords to 
the adversary . 

Challenge Phase: The adversary  is allowed to select two 
keywords  and send them to the challenger . The
selection of the keywords can be done as follows: 

a)  intends to search for unique keywords such that
;

The challenger  in response tosses a fair coin  and 
generates two trapdoors corresponding to the values of  i.e. 

such that . 
After the challenge has been completed, the adversary  is 
given access to the previously generated history that was sent 
in Phase 1. 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Outcome Phase:  is given the generated Trapdoors 
. Adversary  will now have to guess and return the 

index entry corresponding to the Trapdoors and 
 in polynomial time. The adversary wins if the guess

is correct otherwise RSE provides trapdoor-index table 
indistinguishability, and the challenger  wins. 

Therefore, the probability that the adversary  wins is 
which is in line with the above stated definition. 
Corollary 1: Keyword-Trapdoor Indistinguishability and 
Trapdoor-Index table Indistinguishability results in a Privacy 
Preserving Ranked Searchable Encryption Scheme. 

: Let RSE=(KeyGen, Build_Index, Build_Trap, 
Search_Outcome, Dec) be a Ranked Searchable Encryption 
scheme. We make the following claim that leads to the proof of 
this theorem. 

 If RSE is Keyword-Trapdoor Indistinguishable, then it 
is Trapdoor-Index Indistinguishable. 
Firstly, we assume that there exists a polynomial-size adversary 

 that succeeds in an experiment  with
non-negligible probability over , then there exists a 
polynomial size adversary  and a polynomial size 
distinguisher  that distinguishes between the output of the 
experiment  with non-negligible
probability over . 

Let adversary  sample ; computes 
. The distinguisher  is given access to a history

consisting of trapdoors and corresponding keywords. The 
adversary proceeds as follows: 

1. It parses  where
; 

2. It computes 
3. It outputs 1 if , and 0 otherwise.

Since  are polynomial size adversary, hence,  and  are
also polynomial size adversaries. Now, we have to guess the 
probability of ’s success.  will output 1 if and only if 

 succeeds in correctly guessing . It is to be
noted that the Build_Trap phase is dependent upon trusted 
atomic primitives and uses a probabilistic encryption 
algorithm therefore the outcome is independent of .
Therefore,  will guess  with the probability atmost 
which is according to the Definitions . Therefore, our initial
assumption of such an adversary who can succeed in the 
experiment  with a non-negligible
probability over  is wrong. Hence the distinguisher  that 
distinguishes between the output of the experiment 

 with non-negligible probability over
 does not exist and it is according to our Definition .

Hence our claim (stated above) is correct. 
Now, we prove that an RSE is “Privacy Preserving”. As 
discussed earlier, the entire scheme is dependent upon a 
probabilistic trapdoor and provides Keyword-Trapdoor and 
Trapdoor-Index indistinguishability. According to definition 

, since a probabilistic trapdoor maps to an index location
while maintaining privacy, the privacy of the corresponding 

document identifiers is also preserved. Due to the probabilistic 
trapdoor, the indistinguishability and privacy between the 
entities involved in the RSE is maintained on the whole that 
results in privacy preservation. 

V. PROPOSED RANKED SEARCHABLE ENCRYPTION (RSE)
FRAMEWORK

As discussed in Section III, our RSE scheme comprises of five 
phases. We now present and discuss each of the phases. (Table 
I shows the notations/abbreviations used in our scheme). 

TABLE I
NOTATIONS AND ABBREVIATIONS

– Represents a Cloud Server.

− Denotes a set of all possible documents to be outsourced to the 
cloud. That is .

− Denotes a set of unique Keywords extracted from such that
.

− Denotes total number of identified distinct keywords.

− Denotes the size of a particular document, obtained by 
counting the words appeared in the document .

− Denotes the relevance frequencies of the keywords among 
the documents .

– Denotes the masked .

− Denotes a prime number of the size (security parameter) +1.

− Denotes the set of unique identifiers for each .

− Denotes the secure inverted Index table stored on CS and 
provides ranked keyword searching.

− Represents the unique trapdoors generated to identify
documents containing word .

− Denotes a probabilistic encryption algorithm such as AES-
CBC.

− Denotes the decryption algorithm corresponding to .

− Represents that contains the content of the variable .

– Represents a keyed one-way hash function.
– Represents the master key.
– Represents the session key.

CSPRNG – Cryptographically Secure Pseudo Random Number 
Generator.

A. KeyGen Phase
The KeyGen algorithm helps the client to generate the keys. 
The algorithm takes as input a security parameter λ. The client 
generates a master key ; where, , a session key ;
where,  and a prime number . The master key  is
kept secret with the client whereas the session key  is shared
with the server prior to the Build_Index phase. 

Phase 1: KeyGen

a) Input: A security parameter λ.
b) KeyGen: Generate keys ,

c) Output: Master key and session key 
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B. Build_Index Phase
The client generates an index table  represented by a

dynamic array . The client uses a cryptographic Hash function 

The keyed Hash function  uses the master key  to generate 
Hash of the keywords. The array  holds three attributes. The 
first row of the array consists of values that are generated by 
calculating the inverse of the Hash of keywords. The first 
column consists of the encrypted document identifiers 

 of all the outsourced documents. Whereas, the
remaining entries of the array are the relevance frequencies of 
the keywords  among the documents . The relevance 
frequencies are calculated according to equation (1). Each 
column represents the relevance frequencies associated to a 
particular keyword . We multiply each column (excluding the 
first row and first column of the array ) with a random number 
obtained from a CSPRNG, represented by . This 
way the relevance frequencies are masked while maintaining 
proportion between the relevance scores of the keyword 
occurring in different documents. This helps to prevent 
frequency analysis attack and disclosure of document size while 
maintaining correct ranking of documents. 

Phase 2: Build_Index

a) Input: A set of documents and a master key , a
Hash functions .

b) Initialization:
Initialize dynamic 2D Array .
Scan and build , a set of unique and distinct
keywords occurring in .
Initialize Prime number of the size bits.

c) Build Index :
for :
− let
− Compute and store it in ;
− Compute ,store it in ;
− Calculate the for each occurring in

using equation (1) and store the value
at the respective locations within ;

for 
− for 

o

d) Output: Index table

C. Build_Trap Phase
The client generates a trapdoor to search for documents

containing a particular keyword. The client using the master 
key  generates the hash H(.) of the keyword, represented by 

. Again with a probabilistic symmetric encryption algorithm, 
encrypts the keyword, represented by . Now c is computed by 
multiplying  with . The client uses a cryptographic keyed 
Hash function 

The keyed Hash function  uses the master key  to generate 
, the hash of the keyword and uses session key  to generate

, the . The trapdoor consists of  and the desired
number of documents represented by .  

The trapdoor is transmitted to the CS. 

Phase 3: Build_Trap

a) Input: The master key , the session key , a
keyword , a Hash functions , desired
number of documents .

b) Trapdoor Generation:
let  
let  
let
let  .
Set Trapdoor .

c) Output: Transmit to CS.

D. Search_Outcome Phase
CS now undertakes the search based on the received

trapdoor. The server has  and . The CS tries to find an 
entry for which the following condition holds true 

. On a positive hit, the CS returns client the
encrypted document identifiers in ranked order based on the 
documents having the highest relevant frequencies. The total 
number of documents returned will be equal to . 

Phase 4: Search_Outcome

a) Input: A trapdoor transmitted by the client, a
session key , a Hash functions (same as
Build_trap phase) and the index table .

b) Initialization:
Dynamic Array .

c) Searching:
for :
− if :

o for :
find highest RF, return 

;
− ;

d) Output: X; //set of encrypted document identifiers
stored in ranked order.

E. Dec Phase
The client after receiving the ranked encrypted document 
identifiers, decrypts them to uncover the document identifiers 
containing the searched keyword. 

Phase 5: Dec
a) Input: The master key , A set of encrypted

document identifiers stored in ranked order
b) Decryption:

for :
− ;

c) Output: Documents identifiers 

Remark 1: The index table  needs to be regenerated whenever 
the database is modified but this can be avoided if we remove 
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ranking because the re-ranking is to be done whenever a 
modification is made to the outsourced database. 
Remark 2: By multiplying the relevance score with random 
numbers, we mask the actual frequency of the keywords and 
avoid the frequency analysis attack while performing effective 
and efficient ranked searching. This also helps to prevent the 
disclosure of the size of the documents and maintaining 
privacy. To further enhance the security of the index, one may 
also use Order Preserving Hashing (OPH). 

F. Analysis of the proposed RSE scheme
We now prove that our proposed RSE scheme provides 
correctness and soundness (defined in Section III).  

Let represent the output of the KeyGen phase,
where, the master key is and the session key

. Given , it is straight forward to verify
that the following are true: 

Given , the following
equality holds with a probability 1:

Given , and ,
the following inequality holds with an overwhelming 
probability: 

In fact, this inequality can hold only if 
which is having a negligible probability. 
This leads to the conclusion that a unique trapdoor is mapped 

to a distinct keyword. Since the index table contains encrypted 
file identifiers  for every document that maps to
the keywords, therefore, as a result, the value of 
Search_Outcome phase corresponds to the value outlined in the 
correctness and soundness definitions mentioned in Section III. 
Therefore, the proposed RSE scheme is correct and sound. 

G. Security Analysis
All of the previously known searchable encryption 
constructions leak some information because they were based 
on deterministic trapdoor [13][23]. In [24] authors have studied 
the access pattern disclosure of the previously known 
searchable encryption schemes that were based on deterministic 
trapdoors. Our proposed scheme is based on a probabilistic 
trapdoor. So before mapping our scheme against the security 
definitions stated in Section IV, we would like to formally 
highlight any information that our scheme leaks. We analyze 
any possible leakage of information significant or insignificant, 
encrypted or unencrypted based on a set of assumptions. We 
analyze all the artifact that are obtained from the five 
polynomial time algorithms explained previously i.e. index 
table , trapdoor  and the outcome of a search. While defining
the leakage we assume that the attack is launched by an 
adversary  in a standard model so we do not restrict the 
adversary by replacing our scheme with any weak construction. 

The leakage focuses on the information that is revealed within 
polynomial time. Our security analysis yields the following 
results: 

1) Leakage 
Description: The leakage  is associated to the index
table .
Assumption: We assume that  is revealed to all the
stakeholders i.e. the client, Cloud Server and the
adversary .
Definition: The Leakage  is defined as:

2) Leakage 
Description: The leakage  is associated to the
Trapdoor  generated for a particular keyword  to be
searched.
Assumption: We assume that  is generated by the
client and revealed to all the stakeholders i.e. Cloud
Server and the adversary .
Definition: The Leakage  is defined as:

3) Leakage 
Description: The leakage  is associated to search
outcome (SO) of the Trapdoor generated for a particular
keyword .
Assumption: The search outcome is revealed to all the
stakeholders i.e. the client, Cloud Server and the
adversary .
Definition: The Leakage  is defined as:

where OC is the outcome. 
Discussion on Leakage:

As the trapdoor is based on a probabilistic encryption 
algorithm and a keyed hash function therefore we can say that 
the leakage associated to trapdoor is meaningless and we do not 
need to consider it. In other words, suppose if an adversary is 
accidently given access to the trapdoor oracle then all the future 
searches are still secure. We explain this with the help of the 
leakage profile of the scheme presented in [23]. Their scheme 
gives away the Search pattern and Access pattern (cf Section 2 
[23]). Search pattern identifies whether the same keyword is 
being searched again. Since our proposed scheme is based on 
probabilistic trapdoors, we are able to avoid the leakage 
associated to the search pattern. However, similar to the 
Kamara’s scheme [23], our scheme also leaks the access 
pattern.  

As mentioned earlier, the relevance frequency can be masked 
using a random number or made highly secure by using Order-
Preserving Hashing. However, both of the techniques may 
reveal the presence or absence of an unknown keyword within 
a document. Although this leakage does not affect the property 
of trapdoor unlinkability and indistinguishability, this is the 
only leakage related to the relevance frequencies. 
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Therefore, it is evident that  and  lead to the security and
privacy concern but we will prove that these leakage do not 
reveal any information related to the data outsourced. Another 
point to be noted here is that these leakages and assumptions 
are interrelated and interdependent hence to maintain security 
all the assumptions should be strictly met. 

Lemma 1. The Ranked Searchable Encryption Scheme (RSE) 
presented above is “secure” as it is -secure and
according to Definition , where  is associated
with the index table  and leaks the encrypted file identifiers, 
masked relevance frequencies, inverse of hash of keyword.
Whereas,  leaks a,b and the number of required documents
and  leaks the outcome of a trapdoor and the encrypted file
identifiers. 

Proof Sketch. The security of our proposed scheme is 
dependent upon trusted atomic primitives therefore we claim 
that our scheme adds to the security of these primitives and does 
not weaken the security provided by the atomic primitives. We 
refer to the algorithm explained in Section V. The 
phase generates two keys . The 
phase generates an index table 
corresponding to the set of documents. The 
Build_Trap(K, ,w,num) generates a trapdoor
corresponding to the keyword  to be searched and 
Search_Outcome( ) represents the outcome of the
search. In order to prove that our scheme satisfies this lemma, 
we first prove that our scheme satisfies the security definitions 

. Since our scheme uses indeterminisitic/
probabilistic encryption for the trapdoor generation the 
generated trapdoor  is also indeterministic and unique for the 
same keyword searched twice. It is hard for an adversary to map 
the trapdoor to the keyword or form a relationship between the 
keyword, trapdoor and index table prior to the search. This also 
holds true for an adversary maintaining a history of the search 
and outcome. Hence it satisfies the security definitions of 

.
Now we need to prove the security of our scheme against the 

leakages  and . We argue that the leakages  and
 are meaningless and do not affect our scheme. It can be seen

that the three leakages are either encrypted, masked or Hashed 
values. Based on the assumption of the master key  being 
secret, the Hash cannot be regenerated by an adversary. To be 
more precise, the Hash is hard to invert given the image of an 
input. Furthermore, we use a probabilistic encryption algorithm 
for the encryption due to which no meaningful information can 
be obtained in polynomial time. Therefore, the trapdoor leads 
to the integer factorization problem which is a hard problem 

Therefore our scheme is -secure against
adaptive/non-adaptive indistinguishability attacks and provides
Keyword-Trapdoor Indistinguishability & Trapdoor-Index 
table indistinguishability. 

Lemma 2. The Ranked Searchable Encryption Scheme (RSE) 
presented above is “Privacy Preserving” as it is -
secure and according to Definition , where  is
associated with the index table  and leaks the encrypted file 
identifiers, masked relevance frequencies, inverse of hash of 
keyword. Whereas,  leaks a,b and the number of required
documents and  leaks the outcome of a trapdoor and the
encrypted file identifiers. 

Proof Sketch. We extend the proof of Lemma 1 to establish 
proof of this lemma. We have already proved that our scheme 
is -secure since the trapdoor of the proposed scheme
is generated based on probabilistic encryption therefore our 
scheme satisfies the definitions . Since the trapdoor T is
indistinguishable over the keyword W and the index table ,
therefore there is an equal probability that the generated 
trapdoor T may be generated for any keyword  and may be
mapped to any index table entry. Therefore, the outcome (prior 
to the search) will be completely indistinguishable. Hence the 
proposed RSE scheme is privacy preserving. 

VI. PERFORMANCE EVALUATION

A. Algorithmic Analysis
The algorithmic analysis is based on the complexity analysis

of the target schemes. We analyze the algorithm of each scheme 
and perform the complexity analysis. This analysis is based on 
upper bound analysis of the set of keywords ( ) and set of 
documents ( ). In the asymptotic analysis the complexities of 
a set of keywords ( ) is denoted by , whereas the complexity 
of the set of documents ( ) is denoted by . The complexity for 
Hashing is denoted by  and the encryption is denoted by . As 
discussed previously, each scheme mainly comprises of 5 
phases i.e. KeyGen, Build_Index, Build_Trap Search_Outcome 
and Dec phase. KeyGen and Dec phases are fairly identical to 
the other existing schemes. This is why we skip the comparative 
analysis of these phases and move onto the Build_Index phase. 
We extend the analysis of the remaining phases for all the 
schemes. We perform the analysis of our scheme while 
considering ranking and no-ranking. This way the readers can 
easily relate and evaluate the efficiency of our scheme 
compared to other schemes under discussion. 

From the complexity analysis of our scheme, it is evident 
that the Build_Index phase requires  where 
represents the total number of keywords and  is the total 
number of documents in the dataset. The Build_Trap phase is 
bound by , where  represents the complexity of 
computing a Hash and  represents the complexity of 
computing encryption. The Search_Outcome phase is bound by 

. We would like to highlight that if we remove the 
ranking functionality from our scheme then the efficiency of the 
Build_Index Phase increases to . Whereas, the efficiency 
of Search_Outcome phase can be increased to . 

Table 2 shows the algorithmic comparative analysis of the 
schemes. From the table it is evident that our scheme is efficient 
as compared to the other schemes. 

Scheme
Complexity 

Build_Index Phase Build_Trap 
Phase

Search_Outcome 
Phase

ERSE[9]  

DSE[13]  

GRSE[14]  

MPSE[15]  

Our work    

TABLE II
ALGORITHMIC ANALYSIS
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We graphically represent the complexities of the schemes 
by analyzing their phases separately. In order to plot the graphs 
onto a two-dimensional plane we propose that the number of 
keywords are equal to the number of documents i.e. . We 
also suppose that the Hashing and the encryption takes a unit 
time. Our work is represented by (I) and (II), where (I) is for 
ranked searching and (II) is for unranked searching. We do the 
complexity analysis of our scheme by comparing it with the 
ranked and unranked schemes separately. 

Figure 2 shows the Build_Index phase of the ranked 
schemes. It can be seen that the complexity of our proposed 
RSE scheme and existing ranked scheme increases with the 
increase in the number of documents. Even though our protocol 
also shows an exponential growth, it is more efficient and 
outperforms the other existing scheme. 

Fig. 2.  Complexity analysis of Build_Index phase in ranked schemes. 

On considering our scheme without ranking, it exhibits an 
exponential growth but is more efficient as compared to 
existing schemes. Figure 3, graphically represents the 
complexity of the unranked schemes. From the graph it is 
evident that with the increase in the number of documents, there 
is an increase in the required number of operations. 

Fig. 3.  Complexity analysis of Build_Index phase in unranked schemes. 

The complexity of the Build_Trap phase isn’t effected by 
ranking or un-ranking. Therefore, Figure 4 represents a 
collective graph of the Build_Trap phase of ranked and 
unranked schemes. It can be seen that all the schemes show a 
linear growth but our proposed scheme outperforms other 
schemes in terms of complexity by maintaining the same 
efficiency even with the increase in the number of keywords 
being searched. 

Fig. 4.  Complexity analysis of Build_Trap phase. 

Figure 5 illustrates a graph generated for the 
Search_Outcome phase of the RSE schemes. It can be seen that 
our proposed scheme and the existing ranked schemes are 
showing an exponential growth by depicting the same 
complexity. 

Fig. 5.  Complexity analysis of Search_Outcome phase in ranked schemes. 

When we compare our unranked scheme with the similar 
existing unranked schemes then our scheme performs much 
better and faster. Our unranked scheme shows a linear growth 
in terms of the complexity. Figure 6 shows a complexity 
analysis of the Search_Outcome phase of the unranked 
schemes.  

Fig. 6. Complexity analysis of Search_Outcome phase in unranked schemes. 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The overall complexity analysis of our scheme against 
existing schemes yields that our scheme dominates the existing 
schemes in terms of efficiency and can be termed a lightweight 
scheme. 

B. Computational Analysis

a) Dataset Description
The Switchboard-1 Telephone Speech Corpus 

(LDC97S62)[25] was originally collected by Texas Instruments 
in 1990-1, under DARPA sponsorship. The first release of the 
corpus was published by NIST and distributed by the LDC in 
1992-3. The Switchboard-1 speech database [8] is a corpus of 
spontaneous conversations which addresses the growing need 
for large multi-speaker databases of telephone bandwidth 
speech. The corpus contains 2430 conversations averaging 6 
minutes in length; in other words, over 240 hours of recorded 
speech, and about 3 million words of text, spoken by over 500 
speakers of both genders from every major dialect of American 
English. The dataset comprises of 120,000 distinct keywords 
and 115,998 documents. A time-aligned word for word 
transcription accompanies each recording. As such it 
constitutes a realistic dataset of telephone speech, and for this 
reason the Switchboard-1 transcriptions were used to illustrate 
the functionality of the searchable encryption presented in this 
paper. 

b) Implementation Details
To demonstrate the feasibility of our RSE scheme, we have 

implemented our algorithms in Java and present the results in 
the form of graphs using MATLAB2016. The implementation 
helps us analyze the time that each phase of the algorithm takes 
while gradually scaling the input (documents or keywords). In 
order to highlight the cost of encryptions we have implemented 
the testbed such that the client and server side implementation 
is done on the same machine. Hence, the analysis does not take 
the cost incurred while transferring the documents, index tables 
or trapdoor over the network, to the CS, into account. 

The implementation uses all the algorithms presented in 
Section V. We achieve confidentiality by implementing 128-bit 
AES-CBC and the keyed cryptographic hash function used is 
SHA-128. The dataset used is of the size 2.6GB and it contains 
115,998 documents in total. The workstation used for the 
demonstration runs on an Intel Core i5 CPU running at 
3.00GHz with 8GB of RAM. 

c) Computation Overhead
To determine the performance of our RSE scheme, we 

analyze the performance of each individual phases that have 
been discussed throughout the paper. Since KeyGen and Dec 
phase are fairly identical to that of other schemes we therefore 
skip the performance analysis of these phases and shift our 
focus onto the remaining phases starting from the Build_Index 
phase. 

1) Build_Index Phase
The Build_Index Phase comprises of index generation. After 

the index table is generated it is transmitted to the CS. We 
analyze the computation time for the index table generation by 
running the code on a total of 120,000 distinct keywords 
identified and extracted from a dataset of 100,000 documents. 

The index table is generated by the client and transmitted to 
the server. Our scheme facilitates both ranked and un-ranked 
searches depending upon the required functionality and area of 
application. As mentioned in Section V, our scheme provides 
ranking that comes with an increase in the number of 
computations needed resulting in an increase in the 
computational time. Therefore, we execute ranked and un-
ranked index generation seperately. 

Figure 7 shows a graphical representation for the 
computational time of the Index generation (ranked vs 
unranked) in minutes (min). The solid line represents the time 
required for the ranked index generation. We execute this phase 
for a total of 100,000 documents, starting from 10,000 
documents and gradually scaling the number of documents to 
100,000. For 10,000 documents, the ranked index generation 
takes a total of approximately 1.3 minutes and that increases to 
16.23 minutes for 100,000 documents depicting a linear growth. 

The dotted line represents the computational time for the 
unranked index generation. For 10,000 documents the index 
generation takes only 0.43 minutes that gradually increases to 
5.75 minutes over 100,000 documents.  

Fig. 7. Computational time for Index Generation. 

2) Build_Trap Phase
As discussed earlier, the trapdoor acts as a search query and 

is generated by the client for a particular keyword. The 
generated trapdoor is transmitted to the server and it facilitates 
the search of the relevant documents. The trapdoor generation 
is not effected by the ranked or unranked searching so the 
computational time remains the same. The Build_Trap phase is 
executed for the keyword “about” and the trapdoor generation 
takes a constant time of mere 0.016 seconds. 

3) Search_Outcome Phase
Once the encrypted documents along with the index table are 

uploaded onto the CS and the trapdoor has been generated and 
transmitted to the CS, the next step is the searching of the 
relevant documents. Figure 8, represents the graph generated on 
executing the Search_Outcome phase against the trapdoor 
generated for the keyword “about”. The searching takes a total 
of mere 3.42 seconds against 100,000 documents and shows a 
linear growth. The outcome of the search is ranked. The labels 
on the nodes represent the number of documents that are 
returned against the trapdoor, containing the searched keyword. 
For example, out of the total 100,000 documents in the dataset, 
98,144 documents contain the keyword “about”.
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Fig. 8. Computational time for searching for the keyword “about”.

d) Storage Overhead
We now study the storage overhead for our scheme. We 

evaluate the storage overhead in two parts: the client and the 
Cloud Server (CS). 

As discussed in Section V, the client stores a master key , a 
session key  and a prime number . Having the security
parameter , the prime number  is of the size  bits. 
Whereas, the keys  and  are of the size 128 bit. Having 

 bits (obtained from the output of the Hash), we get 
bits. So the client stores  bytes. So, the 

client requires 52.125 bytes in terms of storage overhead. 
Referring to the CS, the CS preserves the encrypted 

documents and the secure index table. The storage of the 
encrypted documents can be represented as , where 
represents the total number of documents and  is the
average size of the documents. For the secure index the storage 
overhead is  bytes, where  represents the total number 
of keywords and  is the total number of documents. So the 
total storage overhead at the CS would be .
In order to compare our storage overhead with similar existing 
schemes, we refer readers to [26] that discusses the storage 
overhead of existing ranked SE schemes. It may be observed 
that our scheme also outperforms existing schemes in terms of 
storage overhead. 

VII. CONCLUSION AND FUTURE WORK

In this paper, we have readdressed the problem of supporting 
keyword search on encrypted data outsourced to the cloud. We 
make several contributions to this domain by presenting a novel 
ranked based searchable encryption scheme. Our construction 
exploits the properties of modulo prime to generate a 
probabilistic trapdoor. The greatest challenge in searchable 
encryption is to maintain a balance between security, efficiency 
and query expressiveness.  
In order to perform the security analysis of our scheme, we
revisit the existing definitions for searchable encryption and 
introduce the concept of indistinguishability. We prove the 
security of our scheme by giving formal proofs to the new 
definitions and designing games in the standard model. From 
the security analysis of our construction it is realized that the 
scheme provides greater security under these proposed 
definitions as compared to previous schemes. In order to prove 

the efficiency of our scheme, we perform an asymptotic 
analysis of existing schemes against our scheme. The results 
yield that our scheme is lightweight and outperforms existing 
schemes. 
We design and implement a proof of concept prototype and 
successfully test our scheme onto a real dataset of files. The 
analysis of the result yields that our scheme shows a linear 
growth with the increase in the input. Based on the results we 
can term our scheme to be extremely lightweight. 
In our future work, we will extend our proposed scheme to 
support multi-keyword searching to further support query 
expressiveness and deploy it to a multi-client architecture. 
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