
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

A new secure and lightweight searchable encryption scheme over encryptedA new secure and lightweight searchable encryption scheme over encrypted
cloud datacloud data

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1109/TETC.2017.2737789

PUBLISHER

© IEEE

VERSION

AM (Accepted Manuscript)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Tahir, Shahzaib, Sushmita Ruj, Rahul Rahulamathavan, Muttukrishnan Rajarajan, and Cornelius Glackin.
2019. “A New Secure and Lightweight Searchable Encryption Scheme over Encrypted Cloud Data”. figshare.
https://hdl.handle.net/2134/26122.

https://lboro.figshare.com/
https://doi.org/10.1109/TETC.2017.2737789

Abstract— Searchable Encryption is an emerging
cryptographic technique that enables searching capabilities over
the encrypted data on the cloud. In this paper, a novel searchable
encryption scheme for the client-server architecture has been
presented. The scheme exploits the properties of modular inverse
to generate a probabilistic trapdoor which facilitates the searching
over the secure inverted index table. We propose
indistinguishability that is achieved by using the property of a
probabilistic trapdoor. We design and implement a proof of
concept prototype and test our scheme onto a real dataset of files.
We analyze the performance of our scheme against our claim of
the scheme being light weight. The security analysis yields that our
scheme assures higher level of security as compared to other
existing schemes.

Index Terms— Searchable Encryption, Modular Inverse,
Extended Euclidean Algorithm, Indistinguishability, Privacy
Preservation, Inverted Index, Database as a Service (DaaS).

I. INTRODUCTION

LOUD is an environment that provides the utility of on
demand resource sharing and data access to the clients and

their devices remotely. Apart from the core categories of cloud
services i.e. SaaS, PaaS, IaaS, nowadays, Database as a Service
(DaaS) enables people to store their files on the cloud. This
DaaS helps in achieving availability of the documents but there
are some interrelated concerns associated to DaaS that are
security, trust, expectations, regulations and performance issues
[1]. The concerns above are interdependent and should be
addressed simultaneously. Encryption is probably the best
solution that comes to one’s mind while talking about security.
However, in the context of DaaS, searching over the encrypted
text or Searchable Encryption (SE) is a difficult and resource
consuming task.

This requires a SE scheme to be developed that would
facilitate performing textual searches over encrypted data. Such
a scheme would help maintain privacy of the outsourced
documents while enabling the search over the encrypted
documents. There are three main challenges associated with SE
as discussed in [2] i.e. (1) efficiency, (2) security and (3) query

S. Tahir is with the Information Security Group, School of Mathematics,
Computer Science and Engineering, City, University of London, UK, EC1V
0HB, on leave from the National University of Sciences and Technology
(NUST), Islamabad, Pakistan (e-mail: shahzaib.tahir@city.ac.uk;
shahzaib.tahir@mcs.edu.pk).

S. Ruj is with Indian Statistical Institute, 203 B.T. Road, Kolkata 700108,
India. (e-mail: sush@isical.ac.in).

expressiveness. These three terms can be assumed to be the
vertices of a triangle and an idealistic SE scheme should be
developed in such a way that it transforms the triangle into an
equilateral triangle. In other words, a balance needs to be
maintained between the faced challenges while designing a SE
scheme.

National Security Agency (NSA) has highlighted the
concerns related to security in the cloud and has proposed the
use of homomorphic encryption [3]. Homomorphic encryption
enables to perform operations on encrypted data. Though
homomorphic encryption has revolutionized the field of
cryptography, there are still major concerns related to
performance. In [4] the authors have conducted a survey and
comparison of different homomorphic and non-homomorphic
SE schemes. Their result yields that non-homomorphic SE
schemes out-perform homomorphic SE schemes in terms of
efficiency.

Till now the use of SE has been explored in connection with
E-mail servers [5] to conduct searches on confidential emails.
In the healthcare domain [6][7] SE has been researched as an
effective method of providing keyword search on patients
health records. SE could have a profound impact on areas
related to telecom, e-commerce, warfare, big data analysis and
cloud storage.

In this paper we present a novel lightweight ranked SE
scheme. We develop and implement a proof of concept
prototype and test it on a database containing more than
100,000 documents. To validate our scheme in a practical real
life scenario we have implemented and tested in a telecom
environment. We use the Switchboard-1 speech database [8]
that is a corpus of spontaneous conversations which addresses
the growing need for large multi-speaker databases of telephone
speech. The corpus contains 2430 conversations averaging 6
minutes in length; in other words, over 240 hours of recorded
speech, and about 3 million words of text, spoken by over 500
speakers of both genders from every major dialect of American
English. This database consists of 120,000 distinct keywords.
Hence, we prove that our scheme can perform efficient

Y. Rahulamathavan is with the Loughborough University Epinal Way,
Loughborough, Leicestershire LE11 3TU, UK. (email: y.rahulamathavan@
lboro.ac.uk)

M. Rajarajan is with the Information Security Group, School of
Mathematics, Computer Science and Engineering, City, University of London,
UK, EC1V 0HB, (email: r.muttukrishnan@city.ac.uk)

C. Glackin is with the Intelligent Voice Limited, St Clare House, 30-33
Minories, London, EC3N 1BP, (email: neil.glackin@intelligentvoice.com)

C

A New Secure and Lightweight Searchable
Encryption Scheme over Encrypted Cloud Data

Shahzaib Tahir, Sushmita Ruj, Senior Member, IEEE, Yogachandran Rahulamathavan, Member,
IEEE, Muttukrishnan Rajarajan, Senior Member, IEEE, Cornelius Glackin

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

keyword search on telephone speech. Furthermore, our scheme
can be equally helpful for performing SE in the aforementioned
domains.

Random Oracle Model (ROM) is based on the basic
assumption that the cryptographic primitives are replaced with
idealized versions. We prove the security of our scheme in the
standard model that only limits the adversary by the resources
available i.e. time and computational resources.

A. Our Contributions
Following contributions to the field of SE have been made in

this work:
Our foremost contribution is that we enumerate the
properties of a “secure” ranked SE scheme by formally
defining keyword-trapdoor indistinguishability and
trapdoor-index table indistinguishability.
We design and present a novel Ranked based Searchable
Encryption scheme that is completely based on a
probabilistic encryption algorithm to address the passive
attacks.
We design and implement a proof of concept prototype
and test our scheme onto a real dataset of files containing
120,000 keywords and more than 100,000 documents to
analyze the performance of our scheme.

B. Organization
Section II presents the literature review in which existing SE

schemes are discussed. Section III discusses Ranked Searchable
Encryption Scheme (RSE) model by formally defining our
construction. In Section IV, we revisit the security definitions
related to searchable encryption and propose new definitions
for our proposed ranked searchable encryption scheme. Finally,
in Section V, we present our ranked searchable encryption
scheme followed by a security analysis. In Section VI, we
perform a comparative analysis of the existing scheme against
our scheme in terms of complexity. We also develop a proof of
concept prototype and test our scheme onto a live dataset of
documents by analyzing the computational time. The
computational time along with the storage overhead is analyzed
in Section VI. The conclusions along with the future work are
drawn towards the end of the paper, in Section VII.

II. LITERATURE REVIEW

A state of the art searchable encryption scheme must maintain
a balance between security, efficiency and query effectiveness.
Previous researches fail to maintain this balance thus resulting
in a system that lacks adaptability. In this section we discuss
some significant schemes.

Wang et al. in [9][10] for the first time introduce the concept
of ranked keyword searching over encrypted data. The authors
have proposed two schemes for single keyword search over
encrypted text. Their scheme was an extension of [11] and they
added secure ranking to it. Both the schemes facilitate the server
to perform ranked keyword searching on user’s behalf. In both
the schemes, the user will generate the same trapdoor while
searching for a particular file. Therefore, the schemes lack in
providing indistinguishability. There is an advantage of their
later scheme as it helps in providing dynamic inverted index i.e.

whenever a new file is added to the server the re-ranking is not
to be done but this comes at an increased computational cost
which will be discussed in section VI. Furthermore, the later
scheme helps to keep the ranking score encrypted that will help
to avoid leakage of occurrence of a particular keyword to the
server. However, in [12] the authors have launched a successful
differential attack on the aforementioned scheme. The authors
have demonstrated that the scheme still leaks the relevance
scores to the adversary from which the encrypted keywords can
be inferred by using the estimated distributions. Therefore, their
scheme lacks in providing resistance against distinguishability
attacks and hence leaks information.

Kamara et al. in [13] have proposed a dynamic searchable
symmetric encryption scheme. Their work can be termed as an
extension of their previous scheme that they had proposed in
[11]. Their scheme facilitates the adding, deletion or
modification of a document. The change is brought to the server
at run time and comes with minimal modification and
recompilation of the inverted index. For the deletion of the file
they use an additional data structure that contains the pointers
to the file being deleted. For the modification they use
homomorphic encryption to encrypt the pointer so that based on
the homomorphic encryption properties the server can get to
modify the file. Though this can be termed as a breakthrough in
the field of searchable encryption, there is a drawback of this
scheme i.e. the generated trapdoor is deterministic and the same
trapdoor is generated for the same word every time hence it
cannot resist distinguishability attacks. Furthermore, they have
also analyzed that their scheme leaks even more information as
compared to the previous scheme hence this scheme cannot be
termed as an ultimate solution.

Wang et al. in [14] have proposed a range search scheme on
encrypted spatial data. Their scheme i.e. Geometric Range
Searchable Encryption (GRSE) supports searchable symmetric
encryption by mapping the datasets to a set of points lying
within a geometric shape. Their design is indeed remarkable as
it is not dependent upon a particular geometric shape and
supports Axis-parallel Rectangles, Circles, Non-axis-parallel
Rectangles and triangles. However, in this scheme all the data
records within a dataset will be returned as the result and the
user may have to download every file containing that particular
keyword hence it will result in extra network traffic.
Furthermore, with the increase in the outsourced data, the size
of the bloom filter is increased that will result in the slowing
down of the searching. They have also proposed an extension
of their probabilistic GRSE by using trees to increase the
efficiency of searching. However, as we have mentioned
earlier, this searching comes with a tradeoff of privacy as the
tree may reveal the path pattern. So this scheme does not
provide the desired level of security and privacy and reveals too
much information.

Tang in [15] has proposed a symmetric searchable multiparty
encryption scheme (MPSE) that is an extension of [16]. In their
scheme they introduce a ‘Follow’ algorithm that allocates a
token to the writer to be distributed among the readers (user) of
the index table. This token authorizes the reader to perform the
search on the index table. This scheme facilitates the dynamic
users but does not allow dynamic databases. The authors
assume that there is a secure channel between the user and cloud
server to transmit the trapdoors. Although, the secure channel

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

hides the leakage of the trapdoor during transmission, the
trapdoor is based on one-way hash function due to which the
server itself can learn the access pattern and the keyword being
searched for since the same trapdoor is generated for the same
keyword. In other words the trapdoor is distinguishable. Their
scheme uses forward index i.e. an index for each file due to
which the ranking cannot be done.

III. RANKED SEARCHABLE ENCRYPTION MODEL

We consider a single writer/single reader (S/S) architecture
and use the client-server infrastructure by visualizing a scenario
in which there are two parties, Alice (Client) and a Cloud Server
(CS). Alice intends to upload all her documents D

 to the CS to enable remote access. CS performs
the searching of relevant documents on behalf of Alice. In the
scheme it is assumed that the CS is a trusted but curious server.
Being trusted means that CS acts in a known and designated
manner but CS is also willing and curious to get hold of full or
partial information about the documents uploaded and held
within it.

Alice identifies a set of keywords W
from the set of documents D and generates a relevance score
based on the frequency of occurrence of the keywords within
the set of documents D. These relevance scores help in
performing ranked searching. Ranked searching facilitates the
search by giving user the liberty to select the most relevant
documents from a collection by identifying the frequency of
occurrence of a keyword within a set of documents. Ranked
searching is mainly used for single keyword search because the
server may find several documents satisfying the query
whereas, in complex queries, the server might be able to
identify just a few number of documents in response to the
search query. Therefore, ranked searching is not effective in
multi-keyword or expressive queries.

Equation 1 in [17] has been presented that is commonly used
for the relevance frequency generation and is widely used by
researchers for designing ranked based SE schemes. For
example in [10][9] authors have used the equation 1 for the
ranking in searchable encryption

(1)
where denotes the keyword to be searched; denotes the

document; denotes length of the document obtained by
counting the words appeared in the document ; denotes
number of times a word appears within a particular
document ; denotes the number of documents in the
dataset that contain the word and denotes the total number
of documents in the dataset.

Now Alice generates an index table (see Section V for more
details) and outsources the index table along with the
encrypted documents D to the CS.

If Alice wants to search for a document containing a specific
keyword, she simply generates a probabilistic trapdoor T and
sends it to CS. CS uses the trapdoor T to search the index table
 and returns a set of relevant documents in a ranked order.

Figure 1 shows the flow of events of the RSE scheme where a
client is interacting with the CS. It can be seen that mainly all

the tasks are performed on the client’s side, whereas, the
searching is done at the CS.

Fig. 1. The flow of events of proposed RSE scheme.

In order to highlight the advantage of indeterministic/
probabilistic trapdoors, we revisit the definition of probabilistic
encryption also termed as randomized encryption [18].
Probabilistic Encryption: A probabilistic encryption system is
a quadruple , where is the message space, is
the key space, is the ciphertext space and represents a
relation such that:

for each key and each ciphertext , there is
at most one such that .
For each message and each key there is
at least one ciphertext such that .

The encryption process works as follows:
A bit sequence is chosen randomly. The value

 would be computed, where is a deterministic
function such that and

.

If the trapdoors are based on probabilistic encryption, then
the resulting trapdoors will also be probabilistic. The
probabilistic trapdoors are indistinguishable and resist
distinguishability attacks. We explain this with the help of a
scenario highlighting passive attacks.

A. Scenario related to a Passive Attack
Probabilistic trapdoors mean that for the same keyword being

searched twice, a unique search token (trapdoor) may be
generated every time. One may appreciate the advantage of
having a probabilistic trapdoor by considering an Adversary ,
capable of launching a passive attack. A passive attack over the
network enables the adversary to monitor, read and capture data
exchanges. Suppose the adversary is able to sniff the
transmitted trapdoor and uncover the keyword from it, in such
a case if the trapdoor is not probabilistic, this will reveal all the
future searches to the adversary and over a longer period of time
the adversary may uncover the entire set of keywords. On
the contrary, if the trapdoors are probabilistic then even if the

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

adversary is able to uncover the keyword from the trapdoor, it
may be effective only for that particular trapdoor and the
adversary may not be able to predict the future trapdoors.
Section IV and Section V-G explains the advantages of using
the probabilistic trapdoors and how the existing schemes may
be unsecure against a passive adversary.

We now formally define our proposed Ranked Searchable
Encryption scheme (RSE) that facilitates the search over
encrypted documents in ranked order. The following definition
presents the algorithms and the phases that our scheme
comprises of:

Definition (Ranked Searchable Encryption Scheme (RSE)) A
RSE comprises of five polynomial time algorithms

such that:

is a probabilistic key generation
algorithm run by the client. The algorithm takes a security
parameter λ as the input and returns a master key K, a
session key and a prime number .

is a deterministic algorithm run by
the client to generate an index table . The algorithm takes
a master key K and a collection of documents D to be
outsourced to the CS as input. The algorithm returns a
secure index .

 Build_Trap(, ,num): is a probabilistic algorithm
run by the client. The algorithm requires the master key

, a session key , keyword w and the number (num) of
documents D required as the input. The algorithm returns
a trapdoor .

Search_Outcome(): is a deterministic algorithm
run by the CS. The algorithm takes the session key ,
index table and the trapdoor as the input and
returns X, a set of desired document identifiers encrypted

 containing the keyword in ranked order.

Dec : is a deterministic algorithm run by the client.
The algorithm takes client’s master key and encrypted set
of document identifiers to decrypt and
recover the document id’s.

Correctness: A RSE scheme is correct if for the security
parameter λ, the master key and the session key generated
by KeyGen , for () output by , the
search using the trapdoor always returns the correct set of
encrypted document identifiers in ranked order.

A RSE scheme is correct if the following are true:

If then the following should hold with an
overwhelming probability
Search_Outcome

If then the following should hold with an
overwhelming probability
Search_Outcome

Soundness: A RSE scheme is sound if for the security
parameter λ, the master key and the session key generated
by KeyGen , for () output by , the

search using the trapdoor always returns sound results i.e. the
result should not contain any false positives.

A RSE scheme is sound if the following are true:

If then the following should hold with an
overwhelming probability

Search_Outcome()=1

If then the following should hold with an
overwhelming probability

Search_Outcome()=0

IV. SECURITY DEFINITIONS FOR RANKED SEARCHABLE
ENCRYPTION (RSE)

In the context of searchable encryption, security is studied
about privacy preservation of the data outsourced to the

[19][20].

A. Existing Security Definitions
The problem of searching over encrypted data has received

attention for more than a decade now. Back in 2000, Song et al.
in [21] were the first to come up with a practical way of
searching symmetrically over encrypted data. Till then there
was no formal definition regarding security for SE. Since 2000
several definitions and constructions related to SE have been
presented. In 2003, Goh [22] for the first time came up with the
security definitions of SE called Semantic Security Against
Adaptive Chosen Keyword Attack (IND-CKA). In the same
paper, the author proposed a SE scheme that met his proposed
definition. There were some assumptions related to the
definitions i.e. the number of keywords (size of the documents)
within the document should be same in order to achieve
indistinguishability and if the index is indistinguishable the
trapdoors need not to be kept secure. Since their definitions
were focused towards secure indices and not probabilistic
trapdoors, their definitions could not be generalized.

In [20] authors came up with an extension of IND-CKA that
aimed to counter the assumption of same size documents. They
supported their definition by presenting a secure index
construction called z-index which was based on bloom filters.
As highlighted in [11] that the definition was not secure and
would be fulfilled by any insecure searchable encryption
scheme. Later Goh introduced extended definitions IND1/2-
CKA and now the documents did not need to be of the same
size, and the trapdoor was again not kept secure. Curtmola et
al. in [11][19] claimed that all the previous definitions did not
provide adequate security and proposed two new definitions
Adaptive/Non-Adaptive Indistinguishability Security for SSE.
Both of the newly proposed definitions have their weaknesses
and don’t provide adequate level of indistinguishability. We
discuss the limitation of their slightly stronger definition i.e.
Adaptive Indistinguishability below.

B. Limitations of previous definitions
As mentioned earlier, Curtmola’s definitions are widely

accepted and used. They introduce four terms in [19][23]
incurred as a result of a search query i.e. History, Access
Pattern, Search Pattern and Trace. The history defines a tuple
containing the document collection and the keywords. Access
patterns represents the outcome, i.e. the documents contain a

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

particular keyword. The Search pattern tells if the same
keyword is being searched every time. The trace of a history
consists of the exact information that we are willing to leak
about a history after the search has been performed. Their
security definition is defined as nothing is leaked beyond the
access pattern and the search pattern while the Trapdoor is
deterministic. Their definition of Indistinguishability refers to
the indistinguishable index table generated based on pseudo-
random functions.

We remark that Curtmola’s work clearly provides the desired
level of security when the trapdoor is deterministic but their
SSE-2 lacks in maintaining privacy associated to the trapdoor
and hence it is prone to distinguishability attacks. Their
construction (SSE-2) generates the same trapdoor
(deterministic) every time the same keyword is queried. As a
result the search pattern discloses which trapdoors correspond
to the same underlying keywords resulting in privacy concerns
(cf Section 4.2 of [19]). The deterministic trapdoor reveals the
corresponding history tuple “prior” to the search.

Hence, we term their definitions a primary “Baseline” for any
SE scheme but improved definitions are required for enhancing
the security and highlighting the advantage of a probabilistic
trapdoor under those improved definitions.

Therefore, based on the improved security definitions a
secure construction is required that primarily provides
indistinguishable index table and ensures trapdoor
indistinguishability that results in the increase in the security
and privacy of the entire system.

Now, we can formally state the privacy concerns associated
to RSE. So an RSE scheme is privacy preserving if it has the
following attributes:

The trapdoor should not reveal any information about the
keyword (unencrypted) that is being queried and should
maintain the privacy of search.
The trapdoor should be probabilistic and should not
disclose the corresponding underlying encrypted
keywords or document identifiers “prior” to the search.
The outcome of the trapdoor should not uncover any
information about the encrypted document that is returned
as a result of the query to the user.

C. Security Definitions for Proposed RSE
We now revisit the existing definitions of SE that will be

utilized to prove the security of our proposed scheme. We
propose new definitions for indistinguishability in the terms of
ranked searchable encryption. An ideal searchable encryption
scheme should fulfill all these definitions to ensure privacy. In
Section V(G), we prove that our scheme complies with the
following definitions.
1) Definition 1 : Non-Adaptive Indistinguishability for
Searchable Encryption
Non-Adaptive means that the adversary cannot make queries
based on the outcome of the previous query [11][19]. Therefore,
searchable scheme preserves security in the sense of non-
adaptive indistinguishability if for any two non-adaptively
constructed histories (documents & keywords) with equal
length and trace (documents length, search pattern and
outcome) no adversary can distinguish between the view
(encrypted documents, trapdoors & Index) of one history from

the view of the other in polynomial time with non-negligible
probability over .
2) Definition 2 : Adaptive Indistinguishability for
Searchable Encryption
Adaptive means that the adversary can make queries based
on the outcome of the previous query [11][19]. Therefore,
searchable scheme preserves security in the sense of adaptive
indistinguishability if for any two adaptively constructed
histories (documents & keywords) with equal length and trace
(documents length, search pattern and outcome) no adversary
can distinguish between the view (encrypted documents,
trapdoors & Index) of one history from the view of the other in
polynomial time with non-negligible probability over .
3) Keyword-Trapdoor Indistinguishability for Ranked
Searchable Encryption Scheme

Keyword-Trapdoor Indistinguishability refers to the act of
performing search over encrypted text in such a way that the
redundancy in the statistics of the (plain text) keywords should
be dissipated into the associated trapdoor. Therefore, for the
same keyword appearing twice the trapdoor should not be
distinguishable even if the history (keyword, trapdoor) is
generated adaptively. To guess the keyword or the document’s
content the attacker has to intercept a tremendous amount of
data to uncover the underlying plaintext in polynomial time.

The challenger begins by generating an index table against a
data collection D. The adversary selects a keyword and sends
it to the challenger. The challenger generates a trapdoor and
sends it back to the adversary. This continues until the
adversary has submitted polynomial-many keywords. Now the
challenger tosses a fair coin , the adversary has to submit two
keywords to the challenger and receives a trapdoor
corresponding to the keyword . The adversary has to guess
and output the bit .

Definition 3 (Keyword-Trapdoor Indistinguishability). Let
RSE=(KeyGen, Build_Index, Build_Trap, Search_Outcome,
Dec) be a Ranked Searchable Encryption scheme over a
dictionary W, be the security parameter, D be the set of
documents and be such that
and consider the following probabilistic experiment

:

(

;

otherwise
where is a string that represents and captures state. We
say that the keyword-trapdoor indistinguishability holds if for

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

all polynomial-size adversaries such that
,

,
where probability is over the choice of .
We explain this by designing a game in the standard model.

Game 1: Let RSE be a Searchable Encryption scheme .
Suppose that there are at most keywords

and documents where
 (set of natural numbers) associated to an index table.

The game is played between an adversary and a challenger
. The game is divided into three phases as follows:
Phase 1: The adversary sends a keyword to the challenger

. The challenger returns a trapdoor to . This continues
between the adversary and the challenger for a while.

Challenge Phase: The adversary selects two keywords
 and send them to the challenger . The selection

of the keywords can be done as follows:
a) intends to search for unique keywords such that

;
The challenger in response tosses a fair coin and
generates two trapdoors corresponding to the values of b i.e.

such that .
After the challenge has been completed, Phase 1 is run again.
We allow the adversary to search for the same keywords again
if interested.

Outcome Phase: is given the generated Trapdoors
. will now have to guess and output and

if then the adversary wins. In other words the adversary
 has to output trapdoor T corresponding to to the

challenger in polynomial time. If the adversary correctly
guessed the trapdoor corresponding to the keyword then it has
won otherwise RSE provides keyword-trapdoor
indistinguishability and the challenger wins.

Therefore the probability that the adversary wins is
which is according to the definition stated above.
4) Trapdoor-Index Indistinguishability for Ranked Searchable
Encryption
Trapdoor-Index indistinguishability relates to the complexity
offered by a Searchable Encryption scheme. The
keyword, trapdoor and index table should be complex and
involved in such a manner that trapdoor should not reveal the
corresponding index table entries prior to the search and should
not be distinguishable. Therefore, for the same keyword
appearing twice the trapdoor should not be distinguishable even
if the history (keyword, trapdoor, index) is generated
adaptively. Furthermore, change of one bit/character of the
keyword should completely change the Trapdoor and Index
Table or vice versa.

The challenger begins by generating index table against a
data collection D. The challenger sends the set of keywords W,
the trapdoors generated for all the keywords W along with the
associated index table entries to the adversary while
maintaining the order in which they occur. Now the challenger
tosses a fair coin , the adversary has to submit two keywords

 to the challenger and receives a trapdoor
corresponding to the keyword . The adversary has to now
decide the corresponding index value and is challenged to
output the bit .
Definition 4 (Trapdoor-Index Indistinguishability). Let
RSE=(KeyGen, Build_Index, Build_Trap, Search_Outcome,
Dec) be a Ranked Searchable Encryption scheme over a
dictionary W, be the security parameter, D be the set of
documents and be such that and
consider the following probabilistic experiment

:

(

otherwise
where is a string that represents and captures state. We
say that the trapdoor-index indistinguishability holds if for all
polynomial-size adversaries such that

,

,
where probability is over the choice of .
We explain this by designing a game in the standard model.

Game 2: Let RSE be a Searchable Encryption scheme.
Suppose that there are at most keywords

and documents where
 (set of natural numbers) associated to an index table.

The game is played between an adversary and a Challenger
. The game is divided into three phases as follows:
Phase 1: The challenger generates an index table

corresponding to the set of documents. The challenger
generates and sends the trapdoors for all keywords , the index
table entries corresponding to the trapdoor and the keywords to
the adversary .

Challenge Phase: The adversary is allowed to select two
keywords and send them to the challenger . The
selection of the keywords can be done as follows:

a) intends to search for unique keywords such that
;

The challenger in response tosses a fair coin and
generates two trapdoors corresponding to the values of i.e.

such that .
After the challenge has been completed, the adversary is
given access to the previously generated history that was sent
in Phase 1.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Outcome Phase: is given the generated Trapdoors
. Adversary will now have to guess and return the

index entry corresponding to the Trapdoors and
 in polynomial time. The adversary wins if the guess

is correct otherwise RSE provides trapdoor-index table
indistinguishability, and the challenger wins.

Therefore, the probability that the adversary wins is
which is in line with the above stated definition.
Corollary 1: Keyword-Trapdoor Indistinguishability and
Trapdoor-Index table Indistinguishability results in a Privacy
Preserving Ranked Searchable Encryption Scheme.

: Let RSE=(KeyGen, Build_Index, Build_Trap,
Search_Outcome, Dec) be a Ranked Searchable Encryption
scheme. We make the following claim that leads to the proof of
this theorem.

 If RSE is Keyword-Trapdoor Indistinguishable, then it
is Trapdoor-Index Indistinguishable.
Firstly, we assume that there exists a polynomial-size adversary

 that succeeds in an experiment with
non-negligible probability over , then there exists a
polynomial size adversary and a polynomial size
distinguisher that distinguishes between the output of the
experiment with non-negligible
probability over .

Let adversary sample ; computes
. The distinguisher is given access to a history

consisting of trapdoors and corresponding keywords. The
adversary proceeds as follows:

1. It parses where
;

2. It computes
3. It outputs 1 if , and 0 otherwise.

Since are polynomial size adversary, hence, and are
also polynomial size adversaries. Now, we have to guess the
probability of ’s success. will output 1 if and only if

 succeeds in correctly guessing . It is to be
noted that the Build_Trap phase is dependent upon trusted
atomic primitives and uses a probabilistic encryption
algorithm therefore the outcome is independent of .
Therefore, will guess with the probability atmost
which is according to the Definitions . Therefore, our initial
assumption of such an adversary who can succeed in the
experiment with a non-negligible
probability over is wrong. Hence the distinguisher that
distinguishes between the output of the experiment

 with non-negligible probability over
 does not exist and it is according to our Definition .

Hence our claim (stated above) is correct.
Now, we prove that an RSE is “Privacy Preserving”. As
discussed earlier, the entire scheme is dependent upon a
probabilistic trapdoor and provides Keyword-Trapdoor and
Trapdoor-Index indistinguishability. According to definition

, since a probabilistic trapdoor maps to an index location
while maintaining privacy, the privacy of the corresponding

document identifiers is also preserved. Due to the probabilistic
trapdoor, the indistinguishability and privacy between the
entities involved in the RSE is maintained on the whole that
results in privacy preservation.

V. PROPOSED RANKED SEARCHABLE ENCRYPTION (RSE)
FRAMEWORK

As discussed in Section III, our RSE scheme comprises of five
phases. We now present and discuss each of the phases. (Table
I shows the notations/abbreviations used in our scheme).

TABLE I
NOTATIONS AND ABBREVIATIONS

– Represents a Cloud Server.

− Denotes a set of all possible documents to be outsourced to the
cloud. That is .

− Denotes a set of unique Keywords extracted from such that
.

− Denotes total number of identified distinct keywords.

− Denotes the size of a particular document, obtained by
counting the words appeared in the document .

− Denotes the relevance frequencies of the keywords among
the documents .

– Denotes the masked .

− Denotes a prime number of the size (security parameter) +1.

− Denotes the set of unique identifiers for each .

− Denotes the secure inverted Index table stored on CS and
provides ranked keyword searching.

− Represents the unique trapdoors generated to identify
documents containing word .

− Denotes a probabilistic encryption algorithm such as AES-
CBC.

− Denotes the decryption algorithm corresponding to .

− Represents that contains the content of the variable .

– Represents a keyed one-way hash function.
– Represents the master key.
– Represents the session key.

CSPRNG – Cryptographically Secure Pseudo Random Number
Generator.

A. KeyGen Phase
The KeyGen algorithm helps the client to generate the keys.
The algorithm takes as input a security parameter λ. The client
generates a master key ; where, , a session key ;
where, and a prime number . The master key is
kept secret with the client whereas the session key is shared
with the server prior to the Build_Index phase.

Phase 1: KeyGen

a) Input: A security parameter λ.
b) KeyGen: Generate keys ,

c) Output: Master key and session key

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

B. Build_Index Phase
The client generates an index table represented by a

dynamic array . The client uses a cryptographic Hash function

The keyed Hash function uses the master key to generate
Hash of the keywords. The array holds three attributes. The
first row of the array consists of values that are generated by
calculating the inverse of the Hash of keywords. The first
column consists of the encrypted document identifiers

 of all the outsourced documents. Whereas, the
remaining entries of the array are the relevance frequencies of
the keywords among the documents . The relevance
frequencies are calculated according to equation (1). Each
column represents the relevance frequencies associated to a
particular keyword . We multiply each column (excluding the
first row and first column of the array) with a random number
obtained from a CSPRNG, represented by . This
way the relevance frequencies are masked while maintaining
proportion between the relevance scores of the keyword
occurring in different documents. This helps to prevent
frequency analysis attack and disclosure of document size while
maintaining correct ranking of documents.

Phase 2: Build_Index

a) Input: A set of documents and a master key , a
Hash functions .

b) Initialization:
Initialize dynamic 2D Array .
Scan and build , a set of unique and distinct
keywords occurring in .
Initialize Prime number of the size bits.

c) Build Index :
for :
− let
− Compute and store it in ;
− Compute ,store it in ;
− Calculate the for each occurring in

using equation (1) and store the value
at the respective locations within ;

for
− for

o

d) Output: Index table

C. Build_Trap Phase
The client generates a trapdoor to search for documents

containing a particular keyword. The client using the master
key generates the hash H(.) of the keyword, represented by

. Again with a probabilistic symmetric encryption algorithm,
encrypts the keyword, represented by . Now c is computed by
multiplying with . The client uses a cryptographic keyed
Hash function

The keyed Hash function uses the master key to generate
, the hash of the keyword and uses session key to generate

, the . The trapdoor consists of and the desired
number of documents represented by .

The trapdoor is transmitted to the CS.

Phase 3: Build_Trap

a) Input: The master key , the session key , a
keyword , a Hash functions , desired
number of documents .

b) Trapdoor Generation:
let
let
let
let .
Set Trapdoor .

c) Output: Transmit to CS.

D. Search_Outcome Phase
CS now undertakes the search based on the received

trapdoor. The server has and . The CS tries to find an
entry for which the following condition holds true

. On a positive hit, the CS returns client the
encrypted document identifiers in ranked order based on the
documents having the highest relevant frequencies. The total
number of documents returned will be equal to .

Phase 4: Search_Outcome

a) Input: A trapdoor transmitted by the client, a
session key , a Hash functions (same as
Build_trap phase) and the index table .

b) Initialization:
Dynamic Array .

c) Searching:
for :
− if :

o for :
find highest RF, return

;
− ;

d) Output: X; //set of encrypted document identifiers
stored in ranked order.

E. Dec Phase
The client after receiving the ranked encrypted document
identifiers, decrypts them to uncover the document identifiers
containing the searched keyword.

Phase 5: Dec
a) Input: The master key , A set of encrypted

document identifiers stored in ranked order
b) Decryption:

for :
− ;

c) Output: Documents identifiers

Remark 1: The index table needs to be regenerated whenever
the database is modified but this can be avoided if we remove

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ranking because the re-ranking is to be done whenever a
modification is made to the outsourced database.
Remark 2: By multiplying the relevance score with random
numbers, we mask the actual frequency of the keywords and
avoid the frequency analysis attack while performing effective
and efficient ranked searching. This also helps to prevent the
disclosure of the size of the documents and maintaining
privacy. To further enhance the security of the index, one may
also use Order Preserving Hashing (OPH).

F. Analysis of the proposed RSE scheme
We now prove that our proposed RSE scheme provides
correctness and soundness (defined in Section III).

Let represent the output of the KeyGen phase,
where, the master key is and the session key

. Given , it is straight forward to verify
that the following are true:

Given , the following
equality holds with a probability 1:

Given , and ,
the following inequality holds with an overwhelming
probability:

In fact, this inequality can hold only if
which is having a negligible probability.
This leads to the conclusion that a unique trapdoor is mapped

to a distinct keyword. Since the index table contains encrypted
file identifiers for every document that maps to
the keywords, therefore, as a result, the value of
Search_Outcome phase corresponds to the value outlined in the
correctness and soundness definitions mentioned in Section III.
Therefore, the proposed RSE scheme is correct and sound.

G. Security Analysis
All of the previously known searchable encryption
constructions leak some information because they were based
on deterministic trapdoor [13][23]. In [24] authors have studied
the access pattern disclosure of the previously known
searchable encryption schemes that were based on deterministic
trapdoors. Our proposed scheme is based on a probabilistic
trapdoor. So before mapping our scheme against the security
definitions stated in Section IV, we would like to formally
highlight any information that our scheme leaks. We analyze
any possible leakage of information significant or insignificant,
encrypted or unencrypted based on a set of assumptions. We
analyze all the artifact that are obtained from the five
polynomial time algorithms explained previously i.e. index
table , trapdoor and the outcome of a search. While defining
the leakage we assume that the attack is launched by an
adversary in a standard model so we do not restrict the
adversary by replacing our scheme with any weak construction.

The leakage focuses on the information that is revealed within
polynomial time. Our security analysis yields the following
results:

1) Leakage
Description: The leakage is associated to the index
table .
Assumption: We assume that is revealed to all the
stakeholders i.e. the client, Cloud Server and the
adversary .
Definition: The Leakage is defined as:

2) Leakage
Description: The leakage is associated to the
Trapdoor generated for a particular keyword to be
searched.
Assumption: We assume that is generated by the
client and revealed to all the stakeholders i.e. Cloud
Server and the adversary .
Definition: The Leakage is defined as:

3) Leakage
Description: The leakage is associated to search
outcome (SO) of the Trapdoor generated for a particular
keyword .
Assumption: The search outcome is revealed to all the
stakeholders i.e. the client, Cloud Server and the
adversary .
Definition: The Leakage is defined as:

where OC is the outcome.
Discussion on Leakage:

As the trapdoor is based on a probabilistic encryption
algorithm and a keyed hash function therefore we can say that
the leakage associated to trapdoor is meaningless and we do not
need to consider it. In other words, suppose if an adversary is
accidently given access to the trapdoor oracle then all the future
searches are still secure. We explain this with the help of the
leakage profile of the scheme presented in [23]. Their scheme
gives away the Search pattern and Access pattern (cf Section 2
[23]). Search pattern identifies whether the same keyword is
being searched again. Since our proposed scheme is based on
probabilistic trapdoors, we are able to avoid the leakage
associated to the search pattern. However, similar to the
Kamara’s scheme [23], our scheme also leaks the access
pattern.

As mentioned earlier, the relevance frequency can be masked
using a random number or made highly secure by using Order-
Preserving Hashing. However, both of the techniques may
reveal the presence or absence of an unknown keyword within
a document. Although this leakage does not affect the property
of trapdoor unlinkability and indistinguishability, this is the
only leakage related to the relevance frequencies.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Therefore, it is evident that and lead to the security and
privacy concern but we will prove that these leakage do not
reveal any information related to the data outsourced. Another
point to be noted here is that these leakages and assumptions
are interrelated and interdependent hence to maintain security
all the assumptions should be strictly met.

Lemma 1. The Ranked Searchable Encryption Scheme (RSE)
presented above is “secure” as it is -secure and
according to Definition , where is associated
with the index table and leaks the encrypted file identifiers,
masked relevance frequencies, inverse of hash of keyword.
Whereas, leaks a,b and the number of required documents
and leaks the outcome of a trapdoor and the encrypted file
identifiers.

Proof Sketch. The security of our proposed scheme is
dependent upon trusted atomic primitives therefore we claim
that our scheme adds to the security of these primitives and does
not weaken the security provided by the atomic primitives. We
refer to the algorithm explained in Section V. The
phase generates two keys . The
phase generates an index table
corresponding to the set of documents. The
Build_Trap(K, ,w,num) generates a trapdoor
corresponding to the keyword to be searched and
Search_Outcome() represents the outcome of the
search. In order to prove that our scheme satisfies this lemma,
we first prove that our scheme satisfies the security definitions

. Since our scheme uses indeterminisitic/
probabilistic encryption for the trapdoor generation the
generated trapdoor is also indeterministic and unique for the
same keyword searched twice. It is hard for an adversary to map
the trapdoor to the keyword or form a relationship between the
keyword, trapdoor and index table prior to the search. This also
holds true for an adversary maintaining a history of the search
and outcome. Hence it satisfies the security definitions of

.
Now we need to prove the security of our scheme against the

leakages and . We argue that the leakages and
 are meaningless and do not affect our scheme. It can be seen

that the three leakages are either encrypted, masked or Hashed
values. Based on the assumption of the master key being
secret, the Hash cannot be regenerated by an adversary. To be
more precise, the Hash is hard to invert given the image of an
input. Furthermore, we use a probabilistic encryption algorithm
for the encryption due to which no meaningful information can
be obtained in polynomial time. Therefore, the trapdoor leads
to the integer factorization problem which is a hard problem

Therefore our scheme is -secure against
adaptive/non-adaptive indistinguishability attacks and provides
Keyword-Trapdoor Indistinguishability & Trapdoor-Index
table indistinguishability.

Lemma 2. The Ranked Searchable Encryption Scheme (RSE)
presented above is “Privacy Preserving” as it is -
secure and according to Definition , where is
associated with the index table and leaks the encrypted file
identifiers, masked relevance frequencies, inverse of hash of
keyword. Whereas, leaks a,b and the number of required
documents and leaks the outcome of a trapdoor and the
encrypted file identifiers.

Proof Sketch. We extend the proof of Lemma 1 to establish
proof of this lemma. We have already proved that our scheme
is -secure since the trapdoor of the proposed scheme
is generated based on probabilistic encryption therefore our
scheme satisfies the definitions . Since the trapdoor T is
indistinguishable over the keyword W and the index table ,
therefore there is an equal probability that the generated
trapdoor T may be generated for any keyword and may be
mapped to any index table entry. Therefore, the outcome (prior
to the search) will be completely indistinguishable. Hence the
proposed RSE scheme is privacy preserving.

VI. PERFORMANCE EVALUATION

A. Algorithmic Analysis
The algorithmic analysis is based on the complexity analysis

of the target schemes. We analyze the algorithm of each scheme
and perform the complexity analysis. This analysis is based on
upper bound analysis of the set of keywords () and set of
documents (). In the asymptotic analysis the complexities of
a set of keywords () is denoted by , whereas the complexity
of the set of documents () is denoted by . The complexity for
Hashing is denoted by and the encryption is denoted by . As
discussed previously, each scheme mainly comprises of 5
phases i.e. KeyGen, Build_Index, Build_Trap Search_Outcome
and Dec phase. KeyGen and Dec phases are fairly identical to
the other existing schemes. This is why we skip the comparative
analysis of these phases and move onto the Build_Index phase.
We extend the analysis of the remaining phases for all the
schemes. We perform the analysis of our scheme while
considering ranking and no-ranking. This way the readers can
easily relate and evaluate the efficiency of our scheme
compared to other schemes under discussion.

From the complexity analysis of our scheme, it is evident
that the Build_Index phase requires where
represents the total number of keywords and is the total
number of documents in the dataset. The Build_Trap phase is
bound by , where represents the complexity of
computing a Hash and represents the complexity of
computing encryption. The Search_Outcome phase is bound by

. We would like to highlight that if we remove the
ranking functionality from our scheme then the efficiency of the
Build_Index Phase increases to . Whereas, the efficiency
of Search_Outcome phase can be increased to .

Table 2 shows the algorithmic comparative analysis of the
schemes. From the table it is evident that our scheme is efficient
as compared to the other schemes.

Scheme
Complexity

Build_Index Phase Build_Trap
Phase

Search_Outcome
Phase

ERSE[9]

DSE[13]

GRSE[14]

MPSE[15]

Our work

TABLE II
ALGORITHMIC ANALYSIS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

We graphically represent the complexities of the schemes
by analyzing their phases separately. In order to plot the graphs
onto a two-dimensional plane we propose that the number of
keywords are equal to the number of documents i.e. . We
also suppose that the Hashing and the encryption takes a unit
time. Our work is represented by (I) and (II), where (I) is for
ranked searching and (II) is for unranked searching. We do the
complexity analysis of our scheme by comparing it with the
ranked and unranked schemes separately.

Figure 2 shows the Build_Index phase of the ranked
schemes. It can be seen that the complexity of our proposed
RSE scheme and existing ranked scheme increases with the
increase in the number of documents. Even though our protocol
also shows an exponential growth, it is more efficient and
outperforms the other existing scheme.

Fig. 2. Complexity analysis of Build_Index phase in ranked schemes.

On considering our scheme without ranking, it exhibits an
exponential growth but is more efficient as compared to
existing schemes. Figure 3, graphically represents the
complexity of the unranked schemes. From the graph it is
evident that with the increase in the number of documents, there
is an increase in the required number of operations.

Fig. 3. Complexity analysis of Build_Index phase in unranked schemes.

The complexity of the Build_Trap phase isn’t effected by
ranking or un-ranking. Therefore, Figure 4 represents a
collective graph of the Build_Trap phase of ranked and
unranked schemes. It can be seen that all the schemes show a
linear growth but our proposed scheme outperforms other
schemes in terms of complexity by maintaining the same
efficiency even with the increase in the number of keywords
being searched.

Fig. 4. Complexity analysis of Build_Trap phase.

Figure 5 illustrates a graph generated for the
Search_Outcome phase of the RSE schemes. It can be seen that
our proposed scheme and the existing ranked schemes are
showing an exponential growth by depicting the same
complexity.

Fig. 5. Complexity analysis of Search_Outcome phase in ranked schemes.

When we compare our unranked scheme with the similar
existing unranked schemes then our scheme performs much
better and faster. Our unranked scheme shows a linear growth
in terms of the complexity. Figure 6 shows a complexity
analysis of the Search_Outcome phase of the unranked
schemes.

Fig. 6. Complexity analysis of Search_Outcome phase in unranked schemes.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The overall complexity analysis of our scheme against
existing schemes yields that our scheme dominates the existing
schemes in terms of efficiency and can be termed a lightweight
scheme.

B. Computational Analysis

a) Dataset Description
The Switchboard-1 Telephone Speech Corpus

(LDC97S62)[25] was originally collected by Texas Instruments
in 1990-1, under DARPA sponsorship. The first release of the
corpus was published by NIST and distributed by the LDC in
1992-3. The Switchboard-1 speech database [8] is a corpus of
spontaneous conversations which addresses the growing need
for large multi-speaker databases of telephone bandwidth
speech. The corpus contains 2430 conversations averaging 6
minutes in length; in other words, over 240 hours of recorded
speech, and about 3 million words of text, spoken by over 500
speakers of both genders from every major dialect of American
English. The dataset comprises of 120,000 distinct keywords
and 115,998 documents. A time-aligned word for word
transcription accompanies each recording. As such it
constitutes a realistic dataset of telephone speech, and for this
reason the Switchboard-1 transcriptions were used to illustrate
the functionality of the searchable encryption presented in this
paper.

b) Implementation Details
To demonstrate the feasibility of our RSE scheme, we have

implemented our algorithms in Java and present the results in
the form of graphs using MATLAB2016. The implementation
helps us analyze the time that each phase of the algorithm takes
while gradually scaling the input (documents or keywords). In
order to highlight the cost of encryptions we have implemented
the testbed such that the client and server side implementation
is done on the same machine. Hence, the analysis does not take
the cost incurred while transferring the documents, index tables
or trapdoor over the network, to the CS, into account.

The implementation uses all the algorithms presented in
Section V. We achieve confidentiality by implementing 128-bit
AES-CBC and the keyed cryptographic hash function used is
SHA-128. The dataset used is of the size 2.6GB and it contains
115,998 documents in total. The workstation used for the
demonstration runs on an Intel Core i5 CPU running at
3.00GHz with 8GB of RAM.

c) Computation Overhead
To determine the performance of our RSE scheme, we

analyze the performance of each individual phases that have
been discussed throughout the paper. Since KeyGen and Dec
phase are fairly identical to that of other schemes we therefore
skip the performance analysis of these phases and shift our
focus onto the remaining phases starting from the Build_Index
phase.

1) Build_Index Phase
The Build_Index Phase comprises of index generation. After

the index table is generated it is transmitted to the CS. We
analyze the computation time for the index table generation by
running the code on a total of 120,000 distinct keywords
identified and extracted from a dataset of 100,000 documents.

The index table is generated by the client and transmitted to
the server. Our scheme facilitates both ranked and un-ranked
searches depending upon the required functionality and area of
application. As mentioned in Section V, our scheme provides
ranking that comes with an increase in the number of
computations needed resulting in an increase in the
computational time. Therefore, we execute ranked and un-
ranked index generation seperately.

Figure 7 shows a graphical representation for the
computational time of the Index generation (ranked vs
unranked) in minutes (min). The solid line represents the time
required for the ranked index generation. We execute this phase
for a total of 100,000 documents, starting from 10,000
documents and gradually scaling the number of documents to
100,000. For 10,000 documents, the ranked index generation
takes a total of approximately 1.3 minutes and that increases to
16.23 minutes for 100,000 documents depicting a linear growth.

The dotted line represents the computational time for the
unranked index generation. For 10,000 documents the index
generation takes only 0.43 minutes that gradually increases to
5.75 minutes over 100,000 documents.

Fig. 7. Computational time for Index Generation.

2) Build_Trap Phase
As discussed earlier, the trapdoor acts as a search query and

is generated by the client for a particular keyword. The
generated trapdoor is transmitted to the server and it facilitates
the search of the relevant documents. The trapdoor generation
is not effected by the ranked or unranked searching so the
computational time remains the same. The Build_Trap phase is
executed for the keyword “about” and the trapdoor generation
takes a constant time of mere 0.016 seconds.

3) Search_Outcome Phase
Once the encrypted documents along with the index table are

uploaded onto the CS and the trapdoor has been generated and
transmitted to the CS, the next step is the searching of the
relevant documents. Figure 8, represents the graph generated on
executing the Search_Outcome phase against the trapdoor
generated for the keyword “about”. The searching takes a total
of mere 3.42 seconds against 100,000 documents and shows a
linear growth. The outcome of the search is ranked. The labels
on the nodes represent the number of documents that are
returned against the trapdoor, containing the searched keyword.
For example, out of the total 100,000 documents in the dataset,
98,144 documents contain the keyword “about”.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Fig. 8. Computational time for searching for the keyword “about”.

d) Storage Overhead
We now study the storage overhead for our scheme. We

evaluate the storage overhead in two parts: the client and the
Cloud Server (CS).

As discussed in Section V, the client stores a master key , a
session key and a prime number . Having the security
parameter , the prime number is of the size bits.
Whereas, the keys and are of the size 128 bit. Having

 bits (obtained from the output of the Hash), we get
bits. So the client stores bytes. So, the

client requires 52.125 bytes in terms of storage overhead.
Referring to the CS, the CS preserves the encrypted

documents and the secure index table. The storage of the
encrypted documents can be represented as , where
represents the total number of documents and is the
average size of the documents. For the secure index the storage
overhead is bytes, where represents the total number
of keywords and is the total number of documents. So the
total storage overhead at the CS would be .
In order to compare our storage overhead with similar existing
schemes, we refer readers to [26] that discusses the storage
overhead of existing ranked SE schemes. It may be observed
that our scheme also outperforms existing schemes in terms of
storage overhead.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have readdressed the problem of supporting
keyword search on encrypted data outsourced to the cloud. We
make several contributions to this domain by presenting a novel
ranked based searchable encryption scheme. Our construction
exploits the properties of modulo prime to generate a
probabilistic trapdoor. The greatest challenge in searchable
encryption is to maintain a balance between security, efficiency
and query expressiveness.
In order to perform the security analysis of our scheme, we
revisit the existing definitions for searchable encryption and
introduce the concept of indistinguishability. We prove the
security of our scheme by giving formal proofs to the new
definitions and designing games in the standard model. From
the security analysis of our construction it is realized that the
scheme provides greater security under these proposed
definitions as compared to previous schemes. In order to prove

the efficiency of our scheme, we perform an asymptotic
analysis of existing schemes against our scheme. The results
yield that our scheme is lightweight and outperforms existing
schemes.
We design and implement a proof of concept prototype and
successfully test our scheme onto a real dataset of files. The
analysis of the result yields that our scheme shows a linear
growth with the increase in the input. Based on the results we
can term our scheme to be extremely lightweight.
In our future work, we will extend our proposed scheme to
support multi-keyword searching to further support query
expressiveness and deploy it to a multi-client architecture.

ACKNOWLEDGEMENTS

We thank Intelligent Voice UK for providing the datasets to
carry out the evaluation. We appreciate their useful comments
and suggestions during the implementation of this work.

REFERENCES

[1] J. Weis and J. Alves-Foss, “Securing Database as a Service: Issues
and Compromises,” IEEE Secur. Priv., vol. 9, no. 6, pp. 49–55, 2011.

[2] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A Survey of Provably
Secure Searchable Encryption,” ACM Comput. Surv., vol. 47, no. 2,
pp. 1–51, 2014.

[3] Research Directorate Staff, “Securing the cloud with homomorphic
encryption,” Next Wave, vol. 20, no. 3, pp. 1–4, 2014.

[4] B. T. Prasanna and C. B. Akki, “A Comparative Study of
Homomorphic and Searchable Encryption Schemes for Cloud
Computing,” Int. J. Adv. Stud. Comput. Sci. Eng. IJASCSE, vol. 4, no.
5, 2015.

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
Key Encryption with Keyword Search,” Eurocrypt, pp. 506–522,
2004.

[6] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik, “Privacy
preserving error resilient dna searching through oblivious automata,”
in Proceedings of the 14th ACM conference on Computer and
communications security - CCS ’07, 2007, p. 519.

[7] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and W. Jonker,
“Computationally efficient searchable symmetric encryption,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 6358 LNCS, pp. 87–100, 2010.

[8] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “SWITCHBOARD:
telephone speech corpus for research and development,” in
[Proceedings] ICASSP-92: 1992 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1992, pp. 517–520 vol.1.

[9] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and efficient
ranked keyword search over outsourced cloud data,” IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 8, pp. 1467–1479, 2012.

[10] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” Proc. - Int. Conf. Distrib. Comput.
Syst., pp. 253–262, 2010.

[11] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption,” Proc. 13th ACM Conf. Comput. Commun.
Secur. - CCS ’06, p. 79, 2006.

[12] K. Li, W. Zhang, C. Yang, and N. Yu, “Security Analysis on One-to-
Many Order Preserving Encryption-Based Cloud Data Search,” IEEE
Trans. Inf. Forensics Secur., vol. 10, no. 9, pp. 1918–1926, 2015.

[13] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” 2012 ACM Conf. Comput. Commun. Secur.,
pp. 965–976, 2012.

[14] B. Wang, S. Member, M. Li, and H. Wang, “Geometric Range Search
on Encrypted Spatial Data,” IEEE Trans. Inf. Forensics Secur., vol.
11, no. 4, pp. 704–719, 2016.

[15] Q. Tang, “Nothing is for free: Security in searching shared and
encrypted data,” IEEE Trans. Inf. Forensics Secur., vol. 9, no. 11, pp.
1943–1952, 2014.

[16] R. Popa and N. Zeldovich, “Multi-key searchable encryption,” pp. 1–
18, 2013.

[17] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes.

Page 35 of 36

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Compressing and Indexing Documents and Images. 1999.
[18] R. Rivest and A. Sherman, “Randomized Encryption Techniques,” in

CRYPTO 82, Plenum Press, 1983, pp. 1–20.
[19] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable

symmetric encryption: Improved definitions and efficient
constructions,” J. Comput. Secur., vol. 19, no. 5, pp. 895–934, 2011.

[20] Y. C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” Appl. Cryptogr. Netw. Secur.
Proc., vol. 3531, pp. 442–455, 2005.

[21] D. Wagner and A. Perrig, “Practical techniques for searches on
encrypted data,” Proceeding 2000 IEEE Symp. Secur. Privacy. S&P
2000, pp. 44–55, 2000.

[22] E.-J. Goh, “Secure Indexes,” An early version this Pap. first Appear.
Cryptol. ePrint Arch. Oct. 7th, pp. 1–18, 2003.

[23] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7859 LNCS,
pp. 258–274, 2013.

[24] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern
disclosure on searchable encryption: Ramification, attack and
mitigation,” Ndss, vol. 20, pp. 1–15, 2012.

[25] J. Godfrey and E. Holliman, “Switchboard-1 Release 2 - Linguistic
Data Consortium.” [Online]. Available:
https://catalog.ldc.upenn.edu/LDC97S62. [Accessed: 31-Aug-2016].

[26] H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. S. Shen,
“Enabling Fine-Grained Multi-Keyword Search Supporting
Classified Sub-Dictionaries over Encrypted Cloud Data,” IEEE
Trans. Dependable Secur. Comput., vol. 13, no. 3, pp. 312–325,
2016.

S. Tahir received his B.E. degree in
software engineering from Bahria
University, Islamabad, Pakistan, in 2013.
In 2015, he received his MS degree in
information security from National
University of Sciences and Technology
(NUST), Islamabad, Pakistan. He is
currently pursuing Ph.D. degree in
information engineering at City,

University of London, UK.
From June, 2015 to present, he is Lecturer in the Department of
Information Security, NUST, Islamabad, Pakistan and has been
awarded a scholarship by NUST for pursuing his Ph.D. at City,
University of London. He is currently also a Research Assistant
at City, University of London. His research interest include
applied cryptography and cloud security.

S. Ruj received her B.E. degree in
computer science from Bengal
Engineering and Science University,
Shibpur, India and Masters and Ph.D. in
computer science from Indian Statistical
Institute. She was an Erasmus Mundus
Post-Doctoral Fellow at Lund University,
Sweden and Post-Doctoral Fellow at
University of Ottawa, Canada. She is

currently an Assistant Professor at Indian Statistical Institute,
Indore, India. Prior to this, she was an Assistant Professor at
IIT, Indore. She was a visiting researcher at INRIA, France,
University of Wollongong, Australia, Kyushu University,
Japan. KDDI labs, Japan and Microsoft Research Labs, India.
Her research interests are in applied cryptography, security,
combinatorics and complex network analysis. She works
actively in mobile ad hoc networks, vehicular networks, cloud
security, security in smart grids. She has served as program co-
chair of IEEE ICCC (P&S Track), IEEE ICDCS, IEEE ICC, etc
and served on many TPCs. She won best papers awards at

ISPA'07 and IEEE PIMRC'11. Sushmita is a Senior Member of
IEEE.

Y. Rahulamathavan received the B.Sc.
degree (first-class honors) in electronic
and telecommunication engineering from
the University of Moratuwa, Sri Lanka, in
2008 and a Ph.D. degree in signal
processing from Loughborough
University, the UK in 2011. From April
2008 to September 2008, he was an

Engineer at Sri Lanka Telecom, Sri Lanka and from November
2011 to March 2012, he was a Research Assistant with the
Advanced Signal Processing Group, School of Electronic,
Electrical and Systems Engineering, Loughborough University,
UK. He has worked as a Research Fellow with the Information
Security Group, School of Engineering and Mathematical
Sciences, City University London, UK. Moreover, Dr.
Rahulamathavan received a scholarship from Loughborough
University to pursue his Ph.D. degree. He is currently working
as a Faculty with Loughborough University, UK. His research
interests include signal processing, machine learning and
information security and privacy. http://www.drrahul.uk/

M. Rajarajan is Professor of Security
Engineering at the City, University of
London, UK. He obtained his Ph.D. from
City University London in 2001. His
research expertise are in the areas of
mobile security, intrusion detection and
privacy techniques. He has chaired several
international conferences in the area of

information security and involved in the editorial boards of
several security and network journals. He is also a visiting
fellow at the British Telecommunications (BT) UK and is
currently actively engaged in the UK Governments Identity
Assurance programme (Verify UK). He is a Senior Member of
IEEE, Member of ACM and Advisory board member of the
Institute of Information Security Professionals UK.

C. Glackin graduated from the University
of Ulster, School of Computing &
Intelligent Systems with an MSc in
Computing & Intelligent Systems in 2004.
Cornelius completed PhD concerning
Spiking Neural Network research at the
University of Ulster in 2009. After six
years post-doctoral research experience

working at the University of Ulster and the University of
Hertfordshire, he then moved to industry.
Cornelius is currently employed as a Research Scientist at
Intelligent Voice Ltd working on machine learning approaches
to signal processing, language modelling and speech
recognition. Cornelius’ other research interests include: kernel
machines, information theory, and robotics.

Page 36 of 36Transactions on Emerging Topics in Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

