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ABSTRACT 

The responses of gas exchange processes in two varieties of the 

field bean Vicia faba (CV. Aquadulce Claudia and Dylan) to a range of 

sulphur dioxide concentrations (0 - 600 ppb) were measured under optimum 

conditions of light and temperature (500 I'E m-' s-', 20·C). This was 

carried out in an open gas exchange system, built to monitor both SO. 

treated and control plants simultaneously, and permit measurements of 

stomatal resistance, transpiration rates, dark respiration rates, net 

photosynthetic rates and sUlphur dioxide fluxes to the plant to be made. 

Varietal differences in the sensitivity of Vicla faba to SO. 

were observed which were related, in part, to differences in pollutant 

uptake. However, when SO. fluxes to each variety were equal, net 

photosynthetic inhibition was significantly greater in Aquadulce plants 

indicating their photosynthetic mechanism to be more sensitive to SO •• 

The responses of both varieties of Vicia faba to SO. were shown 

to be modified by added environmental stress such as low light and cold 

temperature. The duration of the cold (lO'C) treatment prior to fumigation 

with SO. was found to be an important factor governing the extent of the 

change in pollutant sensitivity of the plant. 

Respiratory rates, SO. fluxes, stomatal responses and resistances 

to gaseous exchange were also altered in responses to added environmental 

stress which could explain some of the observed differences in 

photosynthetic inhibition: However, the environmentally stressed plants were 

less responsive to the actual amount of SO. entering the plant, indicating 

a fundamental change in the operation of some internal mechanism. 

Examination of the components of the resistance pathway discerned an 

added internal resistance to SO. uptake which was largely negative under 

optimum environmental conditions, thus facilitating -SO. uptake, but which 

was altered significantly follOWing periods of added environmental stress. 

Significant varietal differences in total chlorophyll, protein and 

carbohydrate contents and Hill reaction activity of isolated chloroplast 

suspensions were observed; such varietal differences persisted following 

exposure to sulphur dioxide andlor environmental stress. 

In this study, differential sensitivity to SO. between plants of 

the varieties Aquadulce and Dylan appeared to result from a combination of 

avoidance and tolerance mechanisms depending on 502 concentrations and 

prevailing environmental conditions. 
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LIST OF SYJIIJOLS 

C gas concentration at leaf surface. 

C. gas concentration inside leaf. 

C"H.O - water content of the air entering the chamber system 

recorded as dew point temperature. 

C.H.O - water vapour content of air leaving the chamber 

recorded as dew point temperature. 

ea ambient water vapour pressure in millibars calculated from 

[eo - ev] .;. 2. 

ec water vapour pressure in millibars of air entering 

chamber. 

eo water vapour pressure in millibars of air leaving chamber. 

e. water vapour pressure in millibars inside the leaf 

assuming saturation at leaf temperature, TL' 

E evaporation rate of water vapour through the stomata. 

FR the air flow rate through the chamber. 

g. stomatal conductance, the reciprocal of stomatal 

resistance. 

LA I eaf area. 

PPcaLc - calculated SO. flux from analogy to water vapour 

diffusion, the ratio of atmospheric SO. concentration to 

gas phase resistance to SO •• 

PF~"a. - measured flux determined from mass balance calculations, 

the rate of uptake of SO. per unit leaf area. 

Pmax 

Pnet 

Bd 

r i ni; 

r ... 

gross photosynthetic rate. 

net photosynthetic rate. 

dark respiration rate. 

aerodynamic resistance. 

cuticular resistance. 

internal resistance. 

mesophyll resistance 

residual resistance (or internal or mesophyll resistance>. 

stomatal resistance. 
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rt the total resistance to gas exchange which is composed of 

the sum of the aerodynamic, stomatal and residual 

(mesophyll> resistances. 

So 

Ss or 

T 

Xo 

the SO, concentration of the air entering the exposure 

chamber, ppb. 

the concentration of SO, in the air leaving the chamber. 

the amount of SO, adsorbed onto the walls of the chamber. 

transpiration rate (equal to evaporation rate, E>. 

temperature of ambient air ie. chamber temperature. 

I eat temperature. 

water vapour concentration outside leaf (ie. in chamber> 

in g cm-', calculated from ea (T.> .;. T •• 

Xi water vapour concentration inside leaf in g cm-', assuming 

saturation at leaf temperature, TL , calculated from 

e. (T,> .;. T,. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

Plant pollution research over the past two decades has been 

directed towards determining pollutant induced effects on agricultural 

crops and forests. As well as defining effects on growth and yield, it has 

been recognised that a study of biochemical and physiological responses to 

pollutants, is vital in order to understand the mechanisms of pollutant 

action. Many of these studies have been laboratory based and have of 

necessity, concentrated on pollutant effects in plants exposed under non

stressful environmental conditions to identify mechanisms of pollutant 

action and have used short-term exposure to pollutants. However, there are 

inherent difficulties in extrapolating such data to determine plant 

responses in the field where environmental parameters are constantly 

fluctuating. Field exposures and the use of open top chambers have enabled 

plant responses to long-term pollutant exposures to be studied under 

natural environmental conditions. Such studies, particularly in the UK, have 

examined perennial crops or annuals that are grown during the autumn, 

winter and early spring when environmental conditions are suboptimal. This 

has led to the growing recognition that, in the field, the effects of air 

pollutants are modified by suboptimal environmental conditions. The converse 

has also been seen to occur, in that exposure to pollutants may predispose 

plants to injury from environmental stresses such as winter injury and 

drought. Because, the significance of such interactions have only recently 

been highlighted, very little is known at present regarding the nature of 

environmental/pollutant interaction on economically important species and 

the mechanisms contributing to such interaction. 

This, study was undertaken in the laboratory to determine the 

influence of low light and low temperature stresses (typical winter 

conditions) on plant responses to sulphur dioxide and to identify possible 

mechanisms of action and interaction. Sulphur dioxide was chosen because it 

is a ubiquitous atmospheric pollutant which is produced during the 

combustion of sulphur-containing fossil fuels and the smelting of sulphur

containing ores. Natural SO. emission can result from the oxidation of 

hydrogen sulphide rn.S), carbon disulphide (CS.) and carbonyl sulphide (COS) 

emitted from soils, plants and the oceans although the relative 
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Introduction Chapter 1 

contribution of natural emissions are small in comparison to anthropogenic 

emissions which are the dominant SO. source in the atmosphere of Europe 

and the Industrialised areas of North America (Unsworth, Crawford, Gregson 

& Rowlatt, 1965). 

SO. may be deposited directly onto surfaces in its gaseous form 

ie. dry deposition, the rates of which depend on concentration, atmospheric 

mixing and surface affinity for SO. (Unsworth et aI., 1965). 

Apart from the effects of its dry deposition, SO. is also a primary 

constituent of acid rain since atmospheric SO. can be incorporated into 

rain drops or snow flakes. Alternatively, wind blown cloud or fog droplets 

can be captured by vegetation via 'occult deposition' whereby the drops are 

too small to be adequately captured by conventional rain gauges (TERG, 

1986). Rates of transfer and transformation of sulphur from gas-phase SO. 

to liquid drops and particles are relatively slow and, generally, the longer 

the gaseous pollutant is retained in the atmosphere the greater the chance 

of chemical reaction and its subsequent wet deposition. Thus close to SO. 

emission sources, dry deposition is greatest whilst wet deposition is of 

greater significance in areas remote from sources. Dry deposition is 

thought to remove over 50% of the SO. emitted annually over the UK, the 

remainder is oxidised to sulphate and removed in precipitation;" the 

atmospheric residence time for sulphur is thought to be about five days 

(Garland, 1978). 

Sulphur dioxide pollution has a long history in the UK, 

particularly in London where levels were seen to rise progressively during 

the 1700s with the increased burning of coal (Laxen & Thompson, 1967). 

Several thousand premature deaths were attributable to the infamous London 

smog of 1952 and as a result of public outcry, the Clean Air Act was 

introduced in 1956. Prior to 1956, concentrations of SO. in the UK were 

high enough to cause visible injury to plants. Since this time there has 

been a marked decrease in smoke emissions and a consequent decline in SO. 

concentrations, although this is partly due to improved dispersal with the 

building of 'tall stacks' (Roberts, Bell, Horseman & Colvill, 1963). The Clean 

Air Act had little immediate impact on SO. levels which increased steadily 

until 196t165. At this time, annual mean sulphur dioxide levels generally lay 

between 300 and 400 ~g m-' (112-150 ppb). Annual mean concentrations are 

now well below 40 ~g m-' <15 ppb) even in highly· industrialised regions 

(Laxen & Thompson, 1967). 
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I ntroducti on Chapter 1 

However, the general tendency to express SO. concentrations in 

terms of annual means does not reflect the marked seasonal, diurnal and 

even hourly differences in concentration which may occur. Typically SO. 

concentrations are greater in winter due to greater consumption of lossil 

fuels predominantly for heating. Consideration of Laxen & Thompson's data 

for the highest daily SO. concentrations in the London area show records 

of daily winter peaks of around 1500-2000 ~g m-' (560-750 ppb) up to 

1964/65. These levels have declined steadily in the last few years and the 

highest daily winter peaks during 1984/85 were around 200-250 ~g m-s (75-

94 ppb) (Laxen & Thompson, ,1987>. However, SO. continues to be a problem 

and there were numerous reports in the National Press during the winter of 

1988 of 'killer smogs' in London. SO. levels of 670 ~g m-' (250 ppb) were 

recorded in London during November 1988 concomitant with particularly 

thick fog. Such short periods of large concentrations of gaseous pollutants, 

'episodes', are known to occur if there are nearby sources of primary 

pollutants and the weather favours the buildup of secondary pollutants 

(TERG, 1988). 

Researchers at University of Nottingham, School of Agriculture 

at Sutton Bon}fington have monitored ambient sulphur dioxide concentrations 

at this rural site over the last few years and determined current ambient 

annual means to be around 40 ~g m-' <15 ppb) (Baker, Fullwood & Colls, 

1987). However, daily means of up to 80 ~g m-' (30 ppb) have been recorded 

and hourly means in excess of 240 ~g m-' (90 ppb) are not infrequent 

(Geissler pers. comm.). Such episodic increases in SO. concentration at 

Sutton Bon;{ington may be attributed to the presence of three coal-powered 

electriCity generating plants in the immediate vicinity. 

The concentration of sulphur dioxide above which it is inJurious 

to plants has been the subject of much debate. As is outlined in chapter 3, 

until the 1970's it was widely considered that SO. did not damage plants 

at concentrations below that which induced visible inJury symptoms such as 

necrotic lesions and chlorosis. A threshold concentration of 300 ppb (800 

~g m-') was not considered to be detrimental to plant life (Katz, 1949). 

However, in recent years there has been irrefutable evidence that low 

ambient levels of SO. may aflect physiological processes without visible 

injury being seen to occur. Short-term exposures to concentrations as low 

as 35 ppb (93 ~g m- S ) have been shown to inhibit net photosynthetic rates 

<Black & Unsworth, 1979b). A review 01 reported SO. effects in the absence 
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Introduction Chapter 1 

of visible inJury is given in §3.1. 

As described above, episodic increases in SO. to levels far and 

above normal ambient concentrations are not uncommon. Such episodes may 

have very important effects on vegetation but it is difficult to predict 

the effects ot such episodes on the growth and yield ot plants overall. The 

experimental design used in this study was intended to simulate such short 

episodes in that SO. exposure periods were for only , h. It was important 

to determine if the observed SO. effects.were readily reversible or were 

permanent thus having potentially important consequences on plant yield. 

The field bean, ~ faba was chosen tor this study because it 

is a commonly grown agricultural crop. It is also easily grown in artificial 

conditions and its rapid growth ensured a readily available supply of 

material for experimentation. Because there is a wealth of information in 

current literature to suggest that intra- and inter-specific differences 

exist in pollutant responses, two cultivars of Vicia taba, Dylan and 

Aquadulce Claudia were chosen for study. By using these two cultivars, it 

.was hoped to assess whether the existence of intra-specific differential 

sensitivity to pollutants was maintained under conditions of environmental 

stress. 

In order to identify the modifying influence of environmental 

stresses on plant pollutant responses it was first necessary to determine 

the responses of both varieties of Vicia faba to sulphur dioxide under 

optimum environmental conditions to provide a base of data for comparison 

purposes. Similarly if possible mechanisms of environmental/pollutant stress 

interaction were to be elucidated it was necessary to determine plant 

responses to both low temperature and low light stress alone. Thus the 

effects of a range of sulphur dioxide concentrations on the gaseous 

exchange mechanisms of both Dylan and Aquadulce plants under optimum 

environmental conditions are detailed in chapter 3. Chapter' details the 

effects of low light and low temperature on gas exchange mechanisms and 

the resulting responses to SO •• Chapter 5 details analyses of plant pigments 

and metabolites which were undertaken to identify factors contributing to 

environmental/pollutant induced changes in photosynthetic rates in both 

varieties. 

Plant resistance to pollutant stress may be the result of stress 

avoidance, stress tolerance or a combination ot both factors. Similarly, the 
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Introduction Chapter 1 

imposition of environmental stress may modify the absorption of pollutants 

into the leaf or, alternatively, modify the response of the plant to 

absorbed pollutant. Thus particular attention was paid to actual pollutant 

fluxes to the plant and the relationship between actual flux and the degree 

of plant response under optimum environmental conditions and following the 

imposition of environmental stress. 

Exposure to pollution is usually defined in terms of ambient 

concentrations or 'ambient dose', the product of concentration and time 

<Unsworth, 1982). Such studies assume that the pollutant dose to which the 

plant is exposed <le. ambient dose) is a direct quantitative measure of the 

dose that causes a physiological response <Taylor, McLaughlin " Shriner, 

1982) and that actual pollutant flux <uptake) is proportional to ambient 

concentration. However, it is now widely recognised that a proportional 

relationship between ambient and effective pollutant dose does not always 

exist <Taylor, McLaughlin " Shriner, 1982; Unsworth, 1982). The effective 

pollutant dose is a function of the rate at which pollutant/derivative 

molecules "arrive at perturbation sites within the leaf interior. This rate 

is controlled primarily by the conductivity of the gas-to-liquid pathway 

which is known to be vary with prevailing environmental conditions and 

plant genotype <Taylor II !!l., 1982). Gas-phase resistance, principally at 

the stomata is thought to be the predominant factor limiting the diffusion 

of most pollutant gases, including S02 <ego Mansfield & MaJernik, 1970; 

Winner & Mooney, 1980b; Black, 1985). The importance of leaf resistances in 

controlling pollutant flux are discussed in greater detail in chapter 3. The 

importance of the effects of environmental stress factors on gas-phase 

resistances are considered in detail in chapter 4. 

Flux has also been shown to be related to the solubility of the 

gaseous pollutant in water thus reflecting the importance of pollutant 

movement into and through a water-dominated cell environment. This is 

particularly true of sulphur dioxide which is a highly soluble and reactive 

gas and fluxes have been shown to be underestimated when estimates are 

based on the product of leaf conductance and ambient concentration <Taylor, 

McLaughlin, Shriner " Selvidge, 1983). Thus the importance of relating plant 

responses to actual uptake has become very clear in recent years (Runeckles, 

1974; Cowling, Lockyer, Chapman " Koziol, 1981; Roberts, 1980. The relative 

sensitivities of plant species can be more accurately determined in terms of 
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Introduction Chapter 1 

threshold concentrations and dose-response relationships. However, such 

thresholds can not be absolute values since they will change dramatically 

according to the prevailing environmental conditions (Bell, 1965). 

l.1hen SO. enters the leaf, predominantly via the stomatal pores, 

it dissolves in the water surrounding the cells of the substomatal cavity. 

In solution, SO. establishes the following equilibria: 

SO. + H.O ~ H.SO. 

(Malhotra & Hocking, 1976). 

H.SO. 1I HT + HSO.

HSO. - ~ H+ + SO.'-

The sulphite (50,'-) and bisulphite (HSO.-) ions and any dissolved SO. 

which has not reacted with water are then available for transport andlor 

diffusion across the membranes of the surrounding epidermal and mesophyll 

cells into the cytoplasm where their accumulation can interfere with normal 

plant metabolic processes. The relative quantities of sulphite and bisulphite 

ions are dependent on pH so that although it is impossible to measure the 

concentration of these ions within the cell, a knowledge of cell pH allows 

some sensible deductions to be made. Since the pH of the plasma is around 

6'8, approximately 70% of dissolved SO" occurs as bisulphite (Ziegler,1975). 

Similarly, the pH of the aqueous stromal phase of chloroplasts Is pH 6 -9 

and sulphite ions are the major product of SO. dissolution, thus many in 

vitro studies of SO. at likely sites of action have been carried out using 

sulphite (l.1ellburn, 1967). A review of some of the observed subcellular 

effects of dissolved SO. is given in chapter 5. 

Sulphite and bisulphite ions are both much more toxic than 

sulphate ions and their detoxification can involve oxidation to sulphate 

which is then incorporated into normal plant metabolism (TERG, 1966). 

Oxidation of sulphite to sulphate in plant cells is thought to occur by 

both enzymic and non-enzymic mechanisms. The enzyme sulphite oxidase is 

located in mitochondria and is thought to play an important part in 

detoxification mechanisms. Sulphite has also been shown to be oxidised in 

the light in a reaction induced by the electron transport system (Malhotra 

& Khan, 1984,). An alternative detoxification mechanism is the reduction of 

sulphite to sulphide and the emission of H.S is thought to be a mechanism 

that confers resistance to SO. pollution (Tingey & Olszyk, 1965). 

Experiments using ··SO. have shown that SO. adsorbed by plant 
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Introduction Chapter 1 

leaves does not remain fixed at the site of ahsorption hut has a 

suhstantial degree of mohility (Ziegler, 1975; Garsed & Read, 1977) and is 

translocated from leaves to roots, from old leaves to young leaves and from 

roots to the surrounding medium (Malhotra & Khan, 1984-). SO. fumigations 

result in an accumulation of sulphur containing products such as SH

containing amino acids, in the plant which suggests that 502 can he 

utilised hy plants in the reductive sulphur cycle (Ziegler, 1975). Such 

activity may he of henefit to plants in conditions where soil sulphur 

supplies are limited., 

The high degree of mohility of 502 products within the leaf 

results in their interaction with several hiochemical processes. SO. may 

react with any number of metaholites along its course of migration through 

the cell and as a consequence numerous reaction sites may he involved. Thus 

elucidation of the exact mechanism of 502 action in inhihiting net 

photosynthetic rates and reducing growth and yield is very difficult. 

Further complications arise from the action of environmental stresses such 

as low light and low temperature on plants since environmental stress 

factors can influence numerous hiochemical processes and different reaction 

sites may he preferentially affected. Since hoth pollutant and environmental 

stresses have such wide ranging effects individually, elucidation of 

mechanisms of their interaction is likely to he highly prohlematic and he 

further complicated hy intra- and inter-specific variahility in response 

and the fact that gaseous pollutants seldom occur alone hut rather in 

mixtures. However, such studies must he undertaken if an understanding of 

plant responses to amhient pollutants in the field is to he gained. 
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CHAPTER TW 

EXPERINENTAL PROCEDURE 

2.1 EXPOSURE SYSTEM DESIGN 

2.1.1 Chamber Design 

Initial work involved the building of two exposure chambers, one 

for use as a control for the treatment of plants with 'clean' air and one 

for use as a pollutant chamber in which plants were treated with air 

containing sulphur dioxide. The chambers had to be reasonably airtight and 

allow light of sufficient quality and quantity to pass through for maximum 

plant photosynthetic activity to occur. The chambers were constructed from 

perspex <polymethyl methacrylate) cylinders 32 cm in height and a radius 

of 13 cm. Two perspex sheets were glued to the ends of each cylinder using 

'Tensol' cement No.12 <dichloromethane mixture) rendering the seals air 

tight. Perspex was used as it does not significantly alter the quaUty of 

light passing through it. The cylindrical shape reduced the 'dead space' 

volume characteristic of the more conventional cuboid chamber design and 

thus ensured more efficient mixing of the air flowing through the chambers 

<Fig. 2.1 & Plate 2.1). The chamber size enabled a maximum of two air 

changes per minute to be achieved and was sufficient to accommodate one 

shoot of Vicia faba at the four pairs of leaves stage. These 

characteristics permitted immediate measurement of plant responses via 

measurement of the inlet and outlet air composition. 

A hole was cut into the bottom of each chamber 8 cm in diameter 

and sealed with a rubber bung. A small hole was drilled in the centre of 

each bung and the bungs cut into half, the holes were lined with closed 

cell sponge allowing the two halves to be fitted around the base of the 

stem of the plant thus sealing the shoot in the chamber. This technique 

differed from that of Black & Unsworth <1979a) who placed the whole plant 

in the chambers with the pots and roots contained in polythene bags to 

prevent water loss and gas exchange between the soil and the plant roots 

and the chamber air. However, this was found to result in plant stress, 

possibly resulting from root over-heating if plants were kept in the 
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Schematic of Plant Exposure Chamber. 

A = Air inlets 
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Plate 2. 1. 
Plant Exposure Chamber 

Page 10 



Exper i mental Chapter 2 

chambers for long periods. Stressed plants have been shown to produce 

ethylene <Abeles & Rubinstein, 1964) which may have a significant effect on 

the nature of plant responses to sulphur dioxide. These problems of root 

over-heating were overcome in this study since only the plant shoot was 

placed in the chamber allowing the plant to be watered normally and to 

remain unstressed for periods longer than four days. 

2.1.2 Air Supply 

2.1. 2.1 Chamber 

Five perspex tubes 3 cm in length and 0 '4 cm in diameter were 

fitted into the sides of each chamber, three at the top and two near the 

bottom . The top three tubes were the air inlet pipes, the split flow 

encouraged good circulation and mixing of the air within the chamber, the 

lower two tubes were the air outlets. Having three air inlets and only two 

air outlets induced a slight positive pressure within the chamber thus 

minimising the possibility of air leakage into the chamber. The air inlet 

and outlets were positioned on opposite sides of the chamber. Sulphur 

dioxide is heavier than air and so the positioning of the air inlets and 

outlets in this manner, in conjunction with the internal fans, aided a 

uniform concentration of S02 within the chamber (§2.1.2.0. 

2.1.2.2 Gas Exchange System 

An open system of ventilation was used, which, unlike a closed 

system, involved no recycling of the air passing through the chambers. In 

an open system an air stream of known composition is passed through the 

chamber at a measured constant flow rate. As there is no recycling, the 

system does not have to be completely leak proof or require a leak free 

chamber. In addition, since the air flow circuit is arranged so that air is 

pushed rather than drawn through the chamber, slight leakage is 

unimportant. The open system allowed continuous recording of small rapid 

fluctuations and changes in plant photosynthetic rate with considerable 

accuracy (Sestak, Catsky & Jarvis, 1971). 

This has a number of advantages over a closed system. Firstly, in 

a closed system the chamber, tubing, pump and gas analyser must be 

completely air tight and this is not always easy to achieve. Secondly, in a 

closed system one gas analyser is required for each chamber which was 
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financially impracticable in this case. Finally, in a closed system, the 

concentration of gases such as H20 and CO2 change, either depleting or 

rising to concentrations that have significant physiological effects on the 

plant independent of the pollutant treatment. Thus closed systems may only 

be used accurately over small and very slow changes in carbon dioxide 

concentration (Sestak, Catsky '" Jarvis, 1971). 

Figure 2.2 and Plate 2.2 show the layout of experimental system 

used in this study. Air was drawn In by an air pump through a polythene 

tube fixed above the roof outside the laboratory and passed through a 

sealed 230 litre (fifty gallon) mixing tank to dampen fluctuations in gas 

concentration in the ambient air . An activated charcoal filter was 

incorporated into the air inlet line to remove the majority of sulphur 

dioxide from the air entering the system. After the air had passed through 

the pump the lines were split into two to supply both chambers. The air 

supply line to the control chamber (no SO.) was connected to a second 

activated charcoal filter to ensure that SO. supplied to the pollutant 

chamber was not drawn back through the sample lines and into the control 

chamber. The supply line to the pollutant chamber was connected to a glass 

mixing vessel to allow SO. to be introduced in to the system. The air was 

then pushed through two flow meters in parallel for each (,hamber to 

achieve flow rates ot up to 8 J min-' through the chambers. 

Samples of the air supplied to both chambers were drawn off 

before the flow meters and passed through a dew point hygrometer and a 

carbon dioxide analyser for analysis of H20 and CO. concentrations. All 

Joints were rendered air tight by the use of silicon rubber resin 

(Silicoset, Fisons U.K.). Samples of air from the outlet lines from the 

chambers were drawn off and passed to the carbon dioxide analyser and the 

dew point hygrometer and excess air was vented outside by passing the 

outlet lines through the lab ora tory window. 

2.1.2.3 Humidity Control 

The humidity of the incoming air varied from day to day 

depending on the weather (Relative Humidity, RH, ranged from 10 to 80%) 

but it was possible to adjust the humidity within limits. The humidity 

could be increased by means of connecting the air inlet line to a water 

bottle placed in a water bath set at 20 'C, the air being drawn over the 

water in the bottle and thereby increasing the water vapour concentration. 
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Fi gure 2.2 
Schematic of the Open Gas Analysis System Used in This Study. 
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The humidity of the incoming air was decreased by passing the air inlet 

line through a cold water bath (,'C) and incorporating a collecting bottle 

to trap the condensation so formed. Using this system the relative 

humidity could be maintained between 50-70%. 

2.1. 2. 4, Fans 

In order to ensure adequate mixing of the gases within each 

chamber a small electric fan was fitted into the sides of both chambers 

directly below the air inlet tubes. The fans were powered by a small motor 

fixed to the outside chamber wall connected to a power pack. Fan speed 

could be altered by reducing or increasing the voltage from the power 

packs. The fans were also necessary to lower leaf boundary layer resistance 

of the plants within the chamber. A model of copper wire and green 

blotting paper leaves was used to measure aerodynamic resistances with 

.varying fan speeds and air flow rates. It was necessary for the boundary 

layer resistances (r.) to be small in comparison to resistances within the 

leaf as high r. values have been shown to reduce rates of net 

photosynthesis (Pnet) and transpiration (E) and thus affect the rate of 

pollutant uptake by the plant (Black & Unsworth, 1979a). 

The aerodynamic resistance in the control chamber was 0·32 s 

cm-' whilst that of the pollutant chamber was 0'6 s cm-'. This discrepancy 

in values was a function of the VOltage available from both power packs set 

at minimum levels and both values were considered to be low enough not to 

influence gas exchange between the plants and the atmosphere. 

2.1.2.5 SulFhur Dioxide SUFFly 

Sulphur dioxide was supplied to the pollutant chamber from a 

cylinder <100 vpm in nitrogen) through teflon tubing to a flow meter and 

entered the air inlet supply to the chamber via a small glass mixing bottle. 

Teflon was used as it has been shown to have a negligible uptake of SO. 

(Garland, from Black & Unsworth, 1979a). Concentrations of SO. from 0 to 

1000 ppb could be achieved in the chamber. The concentration of SO. in the 

air entering and leaving the chamber was monitored by drawing off samples 

of the air directly before entering and immediately after leaving the 

chamber through tellon tubing connected to the SO. analyser, which was in 

turn connected to a chart recorder. The teflon tubes of the air inlet and 

outlet were connected to the SO. analyser via an air tight valve (Whitey, 
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SS 4,lXS 2 with Swagelock fittings) facilitating the switching of the air 

supply to the SO. analyser to monitor either SO. entering or leaving the 

chamber. The concentration of SO. entering the chamber was controlled by 

two needle valves at the top and bottom of the flow meter. 

2.1.3 Lights 

The light source was a 400 IV metal hallde lamp suspended from a 

framework above the chambers, the light quality from the lamp closely 

resembling that of natural sunlight (Gaastra, 1959). Maximum Irradiance 

within the chambers at plant height was 500 liE m-' s-' and was sufficient 

for light saturation of photosynthesis In the species used. The framework 

supporting the light was covered with sheets of aluminium fOil to minimise 

light scattering and to concentrate the light on the chambers. The light 

intensity could be reduced by the use of neutral filters) such as muslin, 

placed over the top of the chambers. 

2.1.4 Temperature 

2.1.4.1 Measu em n 

The temperatu e within both chambers was measured by means of 

copper/constantan thermocouples (AIVG '35). The thermocouples were placed 

inside each chamber through a small hole drilled In the chamber tops and 

were shielded by aluminium foil to prevent the heating effect of direct 

radiation. Leaf temperature was monitored using copper/constant an 

thermocouples (AIVG ,30) which were Inserted under the lower epidermis of 

one of the leaves on each plant. 

The four thermocouples were connected to adJacent Inputs. In the 

back of an electronic thermometer (Comark, Type 1625) which allowed the 

temperature In degrees celsius to be read directly for each thermocouple by 

means of an In-built selector unit. 

2.1.4.2 Temperature Regulation 

The metal hallde lamp used as a light source was found to result 

In a rise in chamber temperature. In order to prevent the plants becoming 

heat stressed·during the exposure period, a perspex water bath was built 

into the framework directly under the light source. The water acted as an 
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infra-red filter and reduced the amount of radiant heat trom the metal 

hallde lamp reaching the chambers. The water bath was connected to the 

mains water supply to give a continuous flow of water through the bath 

during the experimental period. An electric fan was fitted to the framework 

between the water bath and the tops of the exposure chambers to further 

reduce the amount of heat reaching the chambers. 

Chamber temperature was 23 ± 3'C throughout the year; leaf 

temperature was never more than I'C above that of the chamber thus 

indicating that the plants were not heat stressed. 

2.2 GAS ANALYSIS 

2.2.1 Water Vapour Content (Humidity> 

Water loss from plant leaves within the exposure chamber alters 

the water vapour content of the air as it passes through the chamber. This 

change in water vapour content can be used to calculate the rate ot 

transpiration and stomatal resistance ie. the degree to which the stomata 

are open. The equations used in this calculation are presented in §2.3. The 

humidity ot the air entering and leaving both the control and the 

pollutant chamber was monitored using a dew point hygrometer (General 

Eastern System 1100DP). The readings from the dew point hygrometer were 

converted to water vapour pressure in milUbars with the Use of tables. 

Polythene tubes leading from the air inlets and outlets of both 

chambers were connected to the dew point sensor and the air flow through 

the sensor was switched from one sample to another by means of clamps. The 

clamps enabled an optimum flow rate of 0·5 - 1 • min-' to be directed over 

the dew pOint sensor. 

It was necessary to sheath the polythene tubes leading to the 

sensor with insulating foam to prevent condensation forming in the pipes, 

leading to spurious readings. 

The transpiration rate and stomatal resistance were calculated 

using the difference in water vapour pressure of the air entering and 

leaving the chambers with knowledge of the aerodynamic resistance, leaf & 

chamber temperature, leaf area and the rate of flow of air through the 

chamber (§2.3). 
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2.2.2 Carbon Dioxide 

The difference In carbon dioxide concentration of the air 

entering and leaving both chambers was needed for calculation of net 

photosynthetic and dark respiration rates. This was measured using an 

infra-red gas analyser (ADC 225 Mk3) set in the differential mode. The air 

sample lines were connected to the analyser via a gas sampler unit (ADC 

WAI61). The CO; analyser was in turn connected to a chart recorder which 

had been calibrated previously. 

The chart recorder was calibrated by taking repeated readings 

from the analyser scale and marking the distance moved by the pen on the 

chart recorder. A regression equation relating changes in carbon dioxide 

concentration (ppm) to distance moved by the pen from a central zero was 

calculated (r = 0'997, P < 0'001>. Thus changes in carbon dioKlde 

concentration could be calculated via measurements from the chart recorder 

trace. The system could be left in operation overnight allowing 

measurements of dark respiration rates to be made. 

The analyser was calibrated every week using span gas from a 

cylinder (300 ppm CO. in air). When set in the absolute mode, the analyser 

gave the absolute concentration of CO. in the sample air from 0 to 500 ppm. 

However, for the experiments in this study, the analyser was used in the 

differential mode giving the difference in ppm CO. between the reference 

air and the samples supplied over a range of +25 to -25 ppm. 

The CO2 concentration of the ambient air entering the control 

chamber was used as the reference supply to set the analyser to zero when 

in the differential mode. The CO. concentration of the ambient air varied 

throughout the day and also from day to day about a mean value of 330 ppm 

(:I: 20 ppm). These fluctuations were unimportant when the analyser was 

operating in the differential mode as only the difference in concentration 

of CO. between the incoming and outgoing air flow was being measured, 

enabling the calculation of net photosynthetic and respiratory rates. 

When SO. is added to the air line to the pollutant chamber the 

CO. concentration of the air is reduced relative to that of the control. It 

was therefore necessary to monitor the difference in CO. concentration of 

the two air inlet supplies to the chambers when SO. was in use. 

The gas sampler unit had the capacity to compare six samples to 

a reference supply) switching trom one to another every five minutes. It was 
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only necessary to use three sample inlets in this study. The air inlet to 

the control chamber was used as the reference supply and was compared in 

turn with the air inlet to the pollutant chamber, the air outlet from the 

control chamber and the air outlet from the pollutant chamber. 

In five minute cycles, the sampler switched the air supply to the 

CO. analyser allowing the comparison of each of the three samples, in turn, 

to the reference supply and gave the CO. depletion in ppm. The analyser was 

connected to a chart recorder and left running for the duration ot the 

plant exposure period (up to three days). 

Net photosynthetic <Pnet) and dark respiration rates (Rd) were 

calculated with knowledge of change in CO. concentration, leaf and chamber 

temperature, leaf area and the rate of flow of air through the chambers. 

The equations used in the calculation of Pnet and Rd are presented in §2.3. 

The flow rate of air through the chambers was regulated to 

ensure that depletion of CO. from the air passing through the chamber was 

never more than 25 ppm as this was beyond the range of the analyser and, 

more importantly, a greater depletion of CO. could lead to alteration in 

plant responses to SO •• As significant changes in CO. concentration have 

been shown to alter photosynthetic rate and leaf resistances to gas 

exchange, the responses of the plants to low C02 conc'entrations rather than 

SO. would be observed. The importance of CO. concentration and leaf 

resistances to gas exchange when conSidering plant pollutant responses are 

discussed in §3.7. 

2.2.3 Sulphur Dioxide 

Sulphur dioxide concentrations were measured using a Jleloy Labs. 

SA 285E sulphur dioxide analyser. To measure sulphur dioxide tluxes to the 

plant it was necessary to monitor the concentration ot SO. in both the air 

entering and leaving the pollutant chamber. This was done initially without 

the plant in the chamber to calculate the amount of SO. adsorbed on to the 

walls of the perspex chamber at varying incoming SO. concentrations. The 

data obtained trom this experiment are shown in Figure 2.3. Regression 

analysis of the data shows a quadratic relationship between ambient SO. 

concentrations and chamber adsorption, r = 0·942 (p < 0'001>. This plot was 

used to determine the degree of adsorption of SO. onto the chamber walls 

for each experiment performed. 
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Figure 2.3. 
The Relationship Between Sulphur Dioxide Concentration in the Exposure 
Chamber and SO. Adsorption onto Chamber Walls (r = 0'94-2, P < 0'001>. 
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The flux of SO. to the plant could then be calculated with 

knowledge of the SO. content of the air entering and leaving the chamber, 

the amount of SO. adsorbed onto the chamber walls, leaf area and flow rate 

through the chamber. The equations used in the calculation of SO. fluxes to 

the plant are presented in §2.3. 

The sulphur dioxide concentrations of the air entering and 

leaving the pollutant chamber were measured as described ·in §2.1.2.5. The 

SO. analyser was connected to a chart recorder in order to record SO. 

concentrations throughout the duration of the exposure period. The system 

was run predominantly with the analyser measuring the SO. concentration of 

the air leaving the chamber and Was switched manually every thirty minutes 

to monitor the sulphur dioxide concentration in the incoming air for five 

minute periods. It may be assumed that, in a well mixed chamber, the SO. 

concentration of the air surrounding the plant is approximately that of 

the air leaving the chamber. This concentration was maintained close to 

the predetermined level throughout the duration of each exposure period. 

The SO. analyser was calibrated regularly using sulphur 

hexafluoride which is not readily absorbed onto the surface of the chamber 

or the teflon tublilg. The fine flow meter controlling the pollutant entry 

into the air supply to chamber 2 was first calibrated using a burette and 

a· soap bubble to give accurate measurement of flow rate in cm' min-'. The 

concentration of sulphur. hexafluoride in the span cylinder was known <100 

vpm in nitrogen) and with knowledge of the air flow rate into into the 

chamber and the flow rate of sulphur hexafluoride into the system, the 

actual concentration in the chamber was calculated. This value was then 

compared with the reading on the analyser and the meter adJusted where 

necessary. The analyser was first set to zero using air passed through a 

fresh charcoal filter then the concentration of sUlphur hexafluoride was 

varied from 10 to 700 ppb and the meter reading on the analyser checked 

for each gas concentration. 

The experimental protocols for plant material and growth 

conditions for each environmental regime are presented in §3.3 and §{.3. 
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2.3 CALCULATION OF GAS EXCHANGE PARAMETERS 

2.3.1 Evaporation Rate (Transpiration Rate) 

The evaporation rate, E, of water vapour through the stomata in 

the leaf was calculated from the following equations: 

FR x AC 
E = (2.1 ) 

LA 

where, FR is the flow rate through the chamher, LA is leaf area and AC is 

the change in the water vapour content of the air entering and leaving 

the chamber. 

To calculate E in the appropriate units of g H.O m-' h-', 

the following measurements are required: 

(1) C"H.O, water content of the air entering the chamber system. 

This is recorded as dew point" temperature and converted to 

millibars (mh) hy referring to saturation vapour pressure 

over water tables, (e,,) 

(11) C.H.O. water vapour content of air leaving the chamber, also 

converted to millihars, (e 0 ) 

(111) Ta. temperature of ambient air ie. chamber temperature 

measured in ·C and converted to Kelvin by adding 273'3 

(iv) TL. leaf temperature, converted to Kelvin 

(v) FR, Flow rate of air through system, measured in I min-' 

(v1) LA, leaf area measured in cm' 

Evaporation rate (g H.O m-' h-') is then expressed as: 

E = 
T. 

x 217 x 10-. x FR x 10000 x 3600 x 1000 

60 x LA 

The conversion factors involved are: 

(1) multiplication hy 217 x 10-. converts millihars to g cm-'. 

(11) multiplication hy 1000 converts litres to cm'. 

(2.2 ) 
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(111) )( 10,000 converts from cm-' to m-a. 

(iv) )( 3600 converts from seconds to hours. 

A shorter version of equation 2.2 can be achieved as follows: 

Since 

therefore, 

E = 

217 )( 10-0 )( 10,000 x 3600 = 7812 

)( FR x 1000 )( 7812 

T. 60 )( LA 

Evaporation rate, E '" transpiration rate, T. 

2.3.2 Calculation or Stomatal Resistance. rs 

The passage of water vapour transfer from the leaf is 

proportional to the resistances encountered such that: 

E = 

Chapter 2 

(2.3 ) 

(2 • .0 

where rt is the total resistance to water vapour transfer and rt is 

composed of the sum of the aerodynamic and stomatal resistances to water 

vapour transport (r. + r.). AC is the difference between the water vapour 

concentration (wvc) inside the leaf, assuming saturation at leaf 

temperature (Xi), and the water vapour concentration outside the leaf (X.). 

ea (T.) )( 217 )( 10-' 
X. = 

T. 

where ea is the ambient water vapour content in the chamber air in 

millibars calculated from 

2 

and T. is the ambient temperature in Kelvin. 

(2.5 ) 
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The water vapour concentration inside the leaf, Xi, is 

calculated from: 

" 217" 10-6 

Xi = 

Chapter 2 

(2.6 ) 

where e. is the water vapour content inside the leaf assuming saturation 

at leaf temperature, TL' 

Xi - X. is then the concentration gradient of water vapour in g cm-' 

between the saturated leaf interior and the chamber air. 

If, 

Xi - X. 
E = (2.7) 

rt 

then, 
Xi X. 

rt = (2.8 ) 
E 

Both E and Xi - X. are known and if E is expressed in g cm-' s-' and 

both Xi and X. are expressed in g cm-', then the total resistance to gas 

transfer, rt, (equation 2.8) is expressed in s cm-'. 

For water vapour, total leaf resistance to transfer through the 

stomata is equal to the sum of the aerodynamic resistance, ra. and the 

stomatal resistance, r •. 

The aerodynamic resistance, ra, is calculated using model leaves 

of green blotting paper which have no internal resistance to water vapour 

transfer. Hence, r. can be calculated from: 

(2.9) 

The stomatal conductance is the reciprocal of resistance such that, 

= 1 I r. (2.10) 

the units for stomatal conductance, g .. being cm s-'. 
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2.3.3 Calculation ot Net Photosynthetic Rate, Pnet 

Net Photosynthetic rate, Pnet, is calculated as follows: 

FR x ,,"CO. 
Pnet = (2.11 ) 

LA 

where, FR is the flow rate of air through the chamber (J min-'), LA is the 

leaf area (cm') and~O. is the difference in the carbon dioxide 

concentration of the air entering and leaving the chamber (ppm). 

In order to express Pnet in the appropriate units of g CO. m-' 

h-', equation 2.11 becomes: 

,,"CO. x 0·00183 x 60 x 1/1000 x FR 
Pnet = 

LA x 1110000. 

The conversion factors employed are: 

(1) ppm CO. x 0 ·00 183 gives g 

(11) minutes to hours, x 60. 

(i11) cm-' to m-', x 1110000. 

(lv) lltres to m-', >c 1/1000. 

Equation 2.12 may be shortened to: 

-. m • 

6CO. (ppm) >c 1.83 x 60 >c FR (J min-') 

LA (cm') >c 100 

(2.12) 

2.3.~ Calculation ot Sulphur Dioxide Fluxes to the Plant 

Sulphur dioxide fluxes to the plant were assessed in two ways. 

Firstly, flux was determined from mass balance calculations giving the rate 

01 uptake of SUlphur dioxide per unit leaf area, this value for flux being 

termed, measured flux, PF ...... 
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dSO. x FR 
Thus, Pfracas = (2.a) 

LA 

where, FR is the flow rate of air through the chamber 0 min-'), LA is 

leaf area (cm') and ASO. is the change in gas concentration of the air 

entering and leaving the chamber, corrected for adsorption onto the 

chamber surface (ppb). 

dSO. = Si - So - S.or 

where, Si is the SO, concentration of the air entering the chamber 

measured in ppb, So is the concentration of SO. in the air leaving the 

chamber and S •• r is the amount of SO, adsorbed onto the walls of the 

chamber, this latter value being pre-determined. 

To convert from ppb to I1g m-s , SO. concentration is multiplied by 

2 ·86. Thus, 

dSO, (I-'g m- S ) x FRO min-') x 1160 x 111000 
(2.15) 

LA (cm ') x 10-' 

Conversion factors employed convert from minutes to seconds, litres to cubic 

metres and cm' to m'. 

The fluK measured this way comprises both deposition of SO, onto 

the leaf surface and into the leaf. If the former deposition is large this 

method will significantly over estimate the amount of pollutant entering 

the plant. 

Secondly, sulphur diodde tlUK may be calculated by analogy to 

water vapour diffusion and is defined as the ratio of the atmospheric 

sulphur dioKide concentration to gas phase resistance to SO,. This value 

for fluK is termed, calculated fluK, P'caLe FluK is given as: 

C Co 
PFeaLe = (2.16) 

r. + rs + ri 
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where, C is the sulphur dioxide concentration at the leaf surface «(1g m-'), 

Co is the sulphur dioxide concentration inside the leaf (Ilg m-'), r A 

aerodynamic resistance to SO. transfer (s m-'), r. is the stomatal 

resistance to SO. transfer and rt is the internal leaf resistance to SO. 

uptake. 

It is assumed in equation 2.16 that sulphur dioxide is rapidly 

oxidised to sulphite on the wa11s of the substomatal cavity by dissolving 

in the surface water present on the ce11 wa11s. This sulphite is thought to 

be converted to sulphate at the same rate at which it was formed. 

Therefore Co and rt are assumed to be negligible (Unsworth, Biscoe & Black, 

1976 ). 

Both r. and r. have previously been determined for water vapour 

transfer and corrections for differing molecular diffusivities of the gases 

through the stomatal pore must be made to determine r.SO. and r.SO •. 

Resistances are inversely proportional to molecular diffusion coeftic ients 

such that: 

r.SO. = 1·57 r.H.O 

and r.SO. = 1·98 r.H.O 

(Unsworth et al., 1976). 

Therefore equation 2.16 becomes: 

C 
PrCAL' = (2.17) 

(r.H.O x 157) + (r.H.O x 198) 

where r. and r. are measured in s cm-' and C is the concentration of SO. 

perceived by the plant «(1g m-'). 

Surface deposition of SO. is- not a factor considered in the 

estimation of PrCAL', only flux into the stomatal cavity is measured and 

flux is regarded as being proportional to water loss through the same 

aperture. This measure of flux, idea11y, requires the substomatal cavity to 

be a perfect sink for SO. and the assumption that the presence of SO. does 

not influence the stomatal mechanism (Fowler, 1985). It also assumes 

insignificant SO. transport via cuticular pathways. 
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2.3.5 Computer Calculation o~ Gas Exchange Parameters 

Calculation of all the parameters outlined in this section was 

simplified by the use of a specially adapted computer programme which 

enabled these calculations to be performed directly and speedily. The 

programme is presented in the Appendix. 

2.4 STATISTICAL ANALYSES OF DATA 

All linear regressions and correlations were performed on the BBC 

microcomputer using 'MICROTAB' statistics package. All polynomial 

regressions were performed using 'AMSTAT3' on the Amstrad 6256 PCW. 

Multivariate Analysis of Variance was performed on the Honeywell Multics 

System using 'GENSTAT'. Analysis of covariance tests were performed using 

the data obtained from 'MICROTAB' and 'AMSTAT3' and all significance levels 

were obtained from statistical tables (Murdoch & Barnes. 1974). 
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CHAPTER THREE 

3.1 INTRODUCTION 

The effects of sulphur dioxide on plants were first reported in 

the late nineteenth century and there is, therefore, a great deal of 

existing literature which has often been reviewed. Hany researchers have 

concentrated on visible injury symptoms such as leaf necrosis and agree 

that these occur at high pollution concentrations (Ting & Dugger, 1968; 

Bell & Clough, 19'73; Tingey, Fites & Wickl1ff, 1973; O'Connor, Parbery & 

Strauss, 1974; Hurray, Howell & Wilton, 1975; Crittenden & Read, 1978; 

Sanders & Reinert, 1982a,b). However, there have been many conflicting 

reports over the years with regard to the validity of the theory of hidden 

or non-visible injury to plants from sulphur dioxide which was proposed 

initially by Sorauer & Ramann in 1899 and Wislicenus in 1901. Wislicenus 

held the opinion that SO. in the absence ot visible symptoms caused an 

inhibition ot the assimilatory processes ot plants and poisoned other 

cellular functions, these physiological effects forming the basis of hidden 

injury. He further suggested that " ... if One accepts that hidden inJury does 

occur then its presence must be acknowledged wherever atmospheric 

pollutants can be detected ••• ". 

However, Haslehoff & Lindau (1903) concluded that there was no 

need for the term "invisible inJury" as even anatomical changes not visible 

to the naked eye could be detected under the microscope. These workers 

suggested that it was not possible to extrapolate from cellular effects to 

growth reduction as growth reduction must be determined by actual 

measurements ie. depression in net photosynthetic rate due to pollutants 

can not be taken as an indication that yield reductions will result. 

In later years the strongest opponents of the theory of hidden 

injury were Katz and Thomas. Thomas (194,3, 1951 & 1956) extended the study 

of hidden injury, from data On growth and yield, to cover the effects on 

photosynthesis under low SO, fumigations and concluded that where there 

was no visible damage, there was no hidden injury. This result was verified 

by Katz (1949) and his co-workers (Katz !l1 al., 1939 a,b) in studies that 

included measurements of carbohydrate and protein levels. When no invisible 

injury was detected Katz stated " ... it is hoped that the 'invisible injury' 
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theory has now been disposed of once and for all time and will not be 

resurrected again in problems involving SUlphur dioxide damage to plant 

life". This statement has proved to be somewhat premature in the Ught of 

current research studies. Katz suggested a threshold concentration of less 

than 300 ppb SO. with continuous exposure as not being detrimental to 

plant life, whereas Thomas suggested a threshold of less than 450 ppb for 

4 h dally fumigation. 

McCune, Weinstein, Maclean & Jacobsen in 1967 reviewed the 

current literature concerning plant injury in response to gaseous pollution 

and concluded also that the term 'hidden· injury' should be abandoned. 

Therefore, from the early 1950's to the 1970's very little 

research was carried out on sulphur dioxide effects on crops and forest 

species. This was due largely to the work of Thomas and of Katz and the 

generally accepted perceptions that the effects of SO. were understood 

<Heck, Heagle & Shriner, 1966). However, Bleasdale published work in 1952 

(a,b) showing that low concentrations of SO. (100 ppb for 192 days) caused 

a reduction in the dry matter production of Lolium perenne CV. Aberystwyth 

S23 in relation to unpolluted plants. No visible signs of damage were 

detected but this work received little attention untll the early 1970's when 

the data were republished (Bleasdale, 1973). 

Since then more work has been done to examine the effects of low 

concentrations of air pollutants on plants in the absence of visible injury, 

on growth and yield effects and mOre specifically, the effects on gas 

eXChange mechanisms (eg. Ziegler, 1973, 1975; Ashenden & Mansfield, 1976; 

Bell, 1960; Tingey & Reinert, 1975; Suwannapinunt & Kozlowski, 1960; 

Buckenham, Parry & Whittingham, 1962) and there is now deemed to be 

irrefutable evidence for the existence of 'invisible .Injury' in plants. 

The definition of direct effects of SO. on gaseous exchange 

mechanisms was made possible with the development in 1933 of new infra-red 

gas analysers <IRGA's) which could continuously, automatically and directly 

measure CO. concentrations. IRGA's ·were used initially to measure the 

respiratory and photosynthetic rates of unpolluted plants grown under field 

conditions (Thomas & HllI, 1937; Egle & Ernst, 1949; Thomas, 1951 & 1956; 

Sestak, Catsky & Jarvis, 1971) but in the 1970's their use was extended to 

monitor the direct action of air pollutants on CO. exchange on plants. This 
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was an important advance as carbon dioxide fixation proved to be a process 

of primary importance fn pollution studies. This process) which is known to 

provide 90 - 95% of plant dry weight (Zelitch, 1975), was regarded as one 

of the initial sites of action of gaseous pollutants on plant metabolism, 

and inhibition of photosynthetic rate was thought to be one of the prime 

explanations of SO.-induced reductions in plant growth (Ziegler, 1973). 

However, more recent studies have recognised that pollutant interference 

with assimilate partitioning and transport may be of equal importance in 

determining pollutant induced reductions in plant growth (eg. Noyes, 1980; 

Freer-Smith, 1965; Pell, Pearson '" Vinten-Johansen, 1966; Marie '" Ormrod, 

1968). Interference with assimilate distribution can result in reduced 

export to plant roots, leading to a decrease in root:shoot ratio thus 

having severe effects where water supplies are limited. Similarly, reduced 

export of assimilates to developing fruits would contribute to decreased 

fruit and seed yield <TERG, 1966). 

Numerous reports have been made as to the effects of sulphur 

dioxide on net photosynthesis, respiration, transpiration and growth and 

yield in plants. There have been several comprehensive reviews published 

(Mudd, 1975; HIUlgren, 1976; Heath, 1960; Black, 1962; Heck et aI., 1966). 

However, despite these advances, it is still difficult to define 

the exact effect of sulphur dioxide on photosynthetic activity in plants as 

there is a wide range of conflicting data in the literature. It has been 

shown several factors, including environmental parameters are important in 

governing photosynthetic response to SO. (Ashenden '" Mansfield, 1977; 

Matsuoka, 1976; Davies, 1960; Jones '" Mansfield, 1962). More especially, 

research over the last four years has highlighted the significance of the 

interaction between environmental parameters and plant pollutant responses 

(CEC/COST, 1966; TERG, 1966) and this topic will be dealt with more fully in 

the following Chapter (§4-.1). 

In addition, different experimental protocols have been used to 

study the effects of SO, on photosynthesis on a wide range of plant species 

and the results obtained are very variable and may arise from the range of 

sulphur dioxide concentrations used, the differing lengths of the 

fumigation periods and the different plant species. Table 3.1 gives a brief 

summary of selected studies on photosynthetic responses to sulphur dioxide. 

Generally, photosynthesis was inhibited in all plants at the SO, 
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TABLE 3.1 
Tbe EFFects of Sulphur DIoxIde on Net PhotosynthetIc Rates 

Test Plant 

Vicla faba L. 
CV. Dylan 

Glycine max. 

Diplacus 
aurantiacus 

Heteromeles 
arbuUrolia 

Phaseolus 
vulraris 

Glyc ine !MX.. 

Glyc ine max. 

Phaseolus 
vulraris 

Phaseolus 
vulraris 

Pinus 
sylvestris 

Pinus 
sylvestris 

Exposure 
Characteristics 

0,35,87.5,175, 
320,500 to 700 ppb 
upto 3 days. 

117,300,786 ppb 
24- x ~'5 h 

96 ppb 
8 h 
1710 ppb 
8 h 

0·1 ppm 
1·0 ppm 
3·0 ppm 

0·25 ppm 
0'50 ppm 
0'75 ppm 

0" ppm 
2 h 

2·9 ppm 
2 h 

15-1170 Ilg m-' 
3 x ~ h 
5 d a week 
for ~-5 weeks 

2·0 ppm 
18 h 

0·7 ppm, 5 h 
1·33 ppm, 3 h 
1'6~ ppm, 3 h 

Degree ot 
Inhibition 

upto ~O% 
(dark resp. 
enhanced). 

high,53% 
medium, 17% 
low, -18% 

73% 

~O% 

0% 
13% 
73% 

-18 to -28% 
17-23% 
17-23% 

70% 

75% 

25-70% when 
SO. above 
250 Ilg m-' 

Inhibition or 
Pnet 31 photo
respiration 
(dark resp. 
enhanced). 

25% 
30% 
35% 

Reference 

Black to 
Unsworth 
1979b 

Muller 
Miller 31 
Sprugel 
1979 

Winner 
Mooney 
1980a,b 

Noyes 
1980 

Takemoto 
31 Noble 
1982 

Carlson 
1983b 

Teh 31 
Swanson 
1982 

Saxe 
1983a 

Lorenc
pluclnska 
1983a,b 

HIUlgren 
31 

Gezelius 
1982 
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Test Plant 

Oryza 
sativa 

Glycine max. 

Vicia ~ 

Pinus 
sylvestris 

(6 clones) 

~ mays 
Sor~hum 

yul~are. 
Amaranthus 
tricolor 

Oryza sativa 
Avena sativa 
Helianthus 

annus 

Lycopersicon 
esculentum 

Pleurozium 
scheberi 

Hylocomium 
splendens 

PtUium 
crista
castrensis 

Exposure 
characteristics 

0·5 ppm 
5 h per day 
21 days 

0·2 - 1·0 ppm 

Flux: 0·1 - 2·0 
JIg m-a S-I 

1·0 ppm 
6 h per day 
3 days 
3 tolerant 
3 suscept ible 

0·1 - 1·0 ppm 
5 - 6 h 

10-20 ppm 
30 mins 
(successively) 
0-10 ppm 
15 mins 
(successively) 

0·7, 2·7, 7 
& 9·2 ppm 

16 mins 

(3 feather mosses) 

Sphagnum 
spp. 

0·05 - 0·1 mM 
bisulphite sol. 

O. and S02 mixt. 
50 - 300 ppb O. 
:I: 40 ppb S02 

Degree of Reference 
Inhibition 

None. But Hatsuoka 
yield was 1976 
reduced. 

10 - 60% Carlson 
196380 

up to 40% Black 
1962 

Lorenc-
pluciiiska 
1962 

39-43% 
57-70% 
(dark resp. enhanced in 
sensitive clones 

20-30% at 
1·0 ppm only 

" 
" 

60% at 0·2 ppm 
90% at 1·0 ppm 
100% at 0·4 ppm 

20% only at 
20 ppm! 

60% only at 
10 ppm 

Inhibition. 
(no effect on 
dark resp.) 

50% in Pnet but 
enhancement in 
I.C fixation. 

6 - 82% 
dependent on 
O. conc. 

only). 

Katase, 
UshiJima 
& Tazaki 
1963 

Yamauchi 
Choi & 
Yamada 
1983 

Winner & 
Bewley 
1963 

Fergusen 
& Lee 
1979 

Black, 
Ormrod & 
Unsworth 
1982 
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concentrations used. However, several workers have reported a temporary 

enhancement in net photosynthetic rate (Pnet) at low SO. concentrations 

(Black" Unsworth, 1979b; Winner & Mooney, 1980c). From the table, it can be 

seen that the sulphur dioxide concentrations used ranged from 0·035 ppm to 

20 ppm and fumigation periods varied from 18 minutes to 3 weeks. It can be 

seen that species differ in their sensitivity to SO., the magnitude and 

threshold of photosynthetic responses to SO. being extremely variable 

<Black, 1982), ranging from 100% inhibition in Helianthus annus at 0·4 ppm 

within 3 h (Katase et al., 1983) to no observed response in Oryza sativa 

after 21 days at 0·5 ppm (Matsuoka, 1978). 

One of the reasons for variability in reported response to SO. is 

that most of the published dose/response studies have been performed in 

specially designed plant growth chambers equipped for controlling and 

monitoring SO •• The design of these chambers has been very variable, some 

having poor ventilation rates and velocity of air movement across the leaf 

surface (Mansfield, 1983). The importance of air movement across the leaf 

surface in r.elation to pollutant uptake cannot be over-stated. The boundary 

layer resistance r. must be overcome before a pollutant gas can enter the 

leaf. In the field, this resistance is usually very low in comparison with 

other leaf resistances and does not play a large part in governing entry of 

the pollutant into the plant. However, many fumigation chambers have air 

flow systems that do not provide the necessary wind speed over the leaf 

surface and as a result have high boundary layer resistances. Dose/response 

relationships determined under these conditions show threshold tolerances 

ot SO. to be much higher than may be expected (Mansfield, 1983). The 

influence of boundary layer resistance on the entry of SO. into the plant 

is discussed in more detail later in this chapter (§3.7.n. This may be one 

of the reasons that Katz (1949) was unable to detect any invisible inJury 

in either barley or alfalfa in response to SO •• Katz selected field plots and 

covered the field plots with a cabinet for SO. fumigations. As no aid to 

air circulation is mentioned, it is doubtful that the boundary layer 

resistance was low enough to facilitate any SO. uptake by the plants, the 

cabinets being an effective wind break, stopping the flow of air across 

leaf surfaces. 

Another factor relating to variability in published dose/response 

data is the manner in which pollutant exposure concentration is defined 

(Koziol, 1980). The concentration of SO. in the air entering a fumigation 
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chamber may not be assumed to be that of the air surrounding the leaf 

surface. Allowances must be made for gas deposition onto the chamber and 

leaf surfaces and for the entry of gas into the plant. It is now more usual 

to assume that, in chambers with efficient air flow rates and mixing, the 

SO. concentration of the gas leaving the chamber is that at the leaf 

surface ie. the actual concentration perceived by the plant. Much of the 

information in the literature does not make clear how the pollution 

concentrations referred to are defined. 

It is well documented that environmental factors such as light, 

humidity and temperature influence plant metabolism in the absence of air 

pollution (Gaastra, 1959; Brun & Cooper, 1967; Hofstra & Hesketh, 1969a,b & 

1975; Hofstra, 1972; Dowuton & Hawker, 1975; Zelitch, 1975; Sharkey & 

Raschke, 1981; Graham & Patterson, 1982; Oquist, 1983). It may be assumed 

that plant responses to sulphur dioxide will also be affected by these 

environmental parameters as components of the resistance pathway to gas 

exchange will be altered. The influence of Changes in the resistance 

pathway components on gas exchange are discussed in §3.7. Much of the 

published data does not give the required information detailing the 

conditions under which the pollution fumigations were performed. The 

interactions of these environmental factors on pollutant response are 

discussed fully in Chapter 4-. It is apparent that any data relating plant 

responses to gas pollutant concentration must be analysed very carefully 

with the growing knowledge that a wide variety of factors can modify 

plant responses to pollutants. 

The mechanisms of SO. action on plant metabolic processes have 

b~en investigated by many workers but there is still conflicting 

information as to how essential processes are affected. However, there has 

been general agreement that the effects of SO. are more damaging when the 

stomata are open (Juhren. Noble & Went, 1957; MaJernik & Mansfield, 1970, 

1971>, suggesting that the stomata are the chief means of entry of S02 to 

the interior of the leaf. The behaviour of the stomata, is then, of great 

importance in determining the sensitivity of plants to sulphur dioxide as 

the diffusive resistance of the stomata is one of the major factors 

controlling gas exchange between the leaves and the atmosphere. Any 

changes in stomatal resistance as a result of S02 exposure may indirectly 

affect plant growth by changing fluxes of carbon dioxide and water vapour 
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ie. photosynthesis and transpiration (Biscoe, Unsworth & Pinckney, 1973). 

Since the early 1970's there have been many studies of the effect 

of sulphur dioxide on stomatal aperture, resistance (or conductance) and 

transpiration rates. Table 3.2 gives a brief summary of selected studies on 

stomatal response to S02' It can be seen that stomatal effects induced by 

S02 vary in both magnitude and direction. Enhanced stomatal openi~g or 

closing may occur depending on the species examined, the S02 concentration, 

the length of the exposure period and the prevailing environmental 

conditions (Black, 1982). The maJority of workers tlnd enhanced stomatal 

closure or increases in stomatal resistance and transpiration rates at high 

S02 concentrations but stomatal responses at lower gas concentrations are 

not usually examined (eg. Omasa et M., 1985). Those workers who examined 

stomatal responses at low S02 concentrations found either no response 

(Temple et al., 1985) or enhancement of stomatal opening (MaJernik & 

Mansfield, 1970, 1971; Biscoe II al., 1973; Black & Black, 1979a,b). Furakawa 

et al. (1980a) studied the effects of short S02 fumigations on 29 plant 

species including 25 herbaceous and , woody species and found significant 

inter-specific differences in changes in transpiration rates due to S02' 

There is still a considerable degree of controversy about whether 

the effects of S02 on stomatal action are temporary or permanent (Black, 

1982). 'There are many conflicting reports in the literature, some workers 

have found the observed stomatal responses to be reversible immediately 

following the removal or the pollutant (Unsworth, Biscoe & Pinckney, 1972) 

or a return to pre-fumigation levels after several days or hours (MaJernik 

& Mansfield, 1970 and 1971). During long term fumigations at low S02 

concentrations, recovery to pre-fumigation levels has been observed by some 

authors, during the exposure period (Bell, Rutter & Relton, 1979; Winner & 

Mooney, 1980c). 

The effects of SUlphur dioxide on transpiration and stomatal 

conductance have been reviewed several times, Ziegler (1975), Hallgren 

(1978), Heath (1980) and Black (1982) give comprehensive reviews on the 

then current Uterature. All researchers agree that environmental factors 

such as humidity (Black & Unsworth, 1980) or carbon dioxide concentration 

(Carlson, 19830.) have a profound effect on stomatal responses to pollutants, 

and the prevalent environmental conditions must be considered when 

comparing responses to S02 observed by different workers. 

While it is now recognised that variation in plant response may 
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TABLE 3.2 
The E~~ects o~ Sulphur DIoxIde on Sto.atal ResIstance 

Test Plant 

Y!llJA faba 
CV. Windsor 
Harlington 

Vicia faba 
CV. Great 
Green 
Longpod 

Vicia faba 
CV.Dylan 

Vicia faba 
CV. Dylan 

Vitis 
labrusca 

Arachis 
hypog'ea 

Lycopersicon 
esculentum 

Raphanus 
sativus 

Spinacia 
oleracea 

Perllla 
frutescens 

Acer 
saccharinum 

Roblnia 
pseudoacacia 

Exposure' 
Characteristics 

0'25 - 1·0 ppm 
continuous 

0'25 - 1'0 ppm 
continuous 

25 - 500 ppb 

17'5 - 175 ppb 
2 h 

175 ppb 
2 h 

0'5 ppm SO. 
0·5 ppm O. 
0'5 ppm SO. + 
0·5 ppm O. 

2·0 ppm 
2 h 

11 

11 

11 

11 

0'75 ppm 
2 - 16 h 

11 

Response 

Stomatal opening, 
Recovery after 6 h 
but not 3 d. 

Stomatal opening 
early in photoperiod 
at 0·25. At l'Oppm, 
stimulation of opening 
continues into dark 
period. 

Stomatal opening, r. 
down by 20%. Minimum 
response at 25 ppb. 
E up by 23% 

Stomatal opening, r. 
down 20-25%. 
<Destruction of 
epidermal cells.) 

r. down 20% 

r. up 30% 
r. up 190% 
r. up. 

10 - 50% reduction 
in E within 20 mins. 

n .. 

gradual decline in E. 

n 11 

E declined only' 
after 70 mins. 

Increase in E, the 
extent of increase 
lessening with length 
of exposure period. 

Reference 

MaJernik & 
Mansfield 
1970 

MaJernik & 
Mansfield 
1971 

Biscoe, 
Unsworth & 
Pinckney 
1973 

Black & 
Black 
1979a 

Black & 
Black 
1979b 

Rosen, 
Musselman 
& Kender 
1978 

Kondo & 
Sugahar'a 
1978 

Suwanna
pinunt & 
Kozlowski 
1980 
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Test Plant 

Vicia faba 
Raphanus 
sativus 

Phaseolus 
vulgaris 

Nicotinia 
tabacum 

Pisum 
sativum 

Populus 
tremuloides 

(5 clones 
2 sensitive 
3 tolerant) 

Pisum 
sativum 

Phaseolus 
vulgaris 

Hel1anthus 
annus 

Vicia faba CV. 
Exhibition 
Long Pod 

Phaseolus 
vulgaris 

4- cultivars 
(2 sensitive 
2 resistant) 

Introduction 

ExpoSUl'e 
Characteristics 

17 - 350 ppb 
35 ppb 

.. 
.. .. 

0-1'6ppm 
2 h or 6 h 

0·2 I 0·5 ppm 
6 h 

0·2 I 0.5 pplll 
3 h 
0·2 I 0.5 ppm 
2 d 

0·5 1111 
0'25 
0'15 

1-' ,lh 
2 h 
3·34- h 

3 times per week 
tor 2 weeks then 
5 times a week 
for 2 weeks. 

1·5 ppm 
1 h 

SO, solutions 
in citrate 
bufter. 
10-' 0 - 10.-' M 
>10- 0 M 

134- :I: 10 pphm 
Ozone 
1 h 

Response 

g. down 20 - 30% 
g. increased, 
regardless of vpd. 

11 .. 

g. increased 'at low vpd 
but g. decreased at high 
vpd. 

Stomatal closure. 
Degree ot closure 
same up to 1·4- ppm. 
Above this, 6h more 
closure than for 2h. 

0'2 ppm decreased g. 
in 2 sensitive clones 
only. 0·5 ppm g. down, 
all 5 clones. 

no effect. 

decrease in g. 

g. down 39% 
g. down slightly 
no effect 

decrease in r. within 
10 min. Stomata closed 
completely after 4-5min 
Re-open after Ih. 

r. decrease 
r. increase 

stomatal opening 
stomatal closure 

Chapter 3 

Reterence 

Black '" 
Unsworth 
1960 

Olszyk '" 
Tibbitts 
1961a,b 

Kimmerer '" 
Kozlowski 
1981 

Rao 
et al. 
1963 

Temple, 

Fa '" 
Taylor 
1965 

Omasa 
et al. 
1965 

Taylor, 
Reid '" 
Pharis 
1961 

Butler 

'" Tibbitts 
1979b,c 
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arise from environmental parameters, differing SO. concentrations or 

lengths of exposure period, it is becoming increasingly obvious, from recent 

literature, that differences in response to SO. also occur within species, in 

different clones or varieties of certain plants. This intra-specific 

variation in response to SO. has not been extensively studied by many 

researchers, although, Reinert, Heggestad " Heck (1982) compiled a 

comprehensive summary of cultivar screening results up to 1980. Much more 

work seems to have been done on the relative susceptibility of plant 

cultivars to ozone rather than SO. but, if such variation occurs in 

response to 0., it is reasonable to assume that cultivars will vary in their 

response to SO •• 

O'Connor, ·Parberry " Strauss (1974) examined the relative 

susceptibility to acute SO. injury of seedlings of 131 Australian tree and 

shrub species widely used in urban plantings. a range of SO. concentrations 

from 0·3 to 3·0 ppm were used for exposure periods of 0'5 to 6 h. These 

workers developed a sensitivity scale from 0 (unaffected by SO.) to 6 

(sensitive to 502 ) based on fumigation times, SO. concentration and % leaf 

tissue destroyed by SO •• A wide range of sensitivities to SO. was found 

within the species examined and differences in sensitivity between seeds of 

the same variety, from different districts, were found. Murray, Howell and 

Wilton (1975) examined seventeen cultivars of Poa pratensis for sensitivity 

to ozone and sUlphur dioxide and found that cultivars differed 

significantly in sensitivity to both phytotoxicants. However, the range of 

sensitivity to SO. was not as great as for 0 •• 

The evolution of pollutant tolerance has been shown to result in 

differential sensitivity to pollutants (Wilson " Bell, 1985). In a recent 

study Gould " Mansfield (1989) examined the relative sensitivities of three 

cultivars of winter wheat (Triticum aestivum L.) to SO. and NO. mixtures; 

results showed the modern cultivar, Avalon to be significantly more tolerant 

to pollutants than two old cultivars, Little Joss and Holdfast which were 

introduced early in this century. These authors postulated that the 

mechanisms behind this differenti~l sensitivity may be attributed to 

differing physical characteristics but are now exploring possible 

physiological mechanisms. 

There have been a wide range of plant species studied for 

differential sensitivity to ozone and 'sulphur dioxide mixtures (eg. 

Furakawa et al., 1980a). Both Beckerson, Hofstra " Wukash (1979) and Butler 
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& Tihhitts (1979a,h,c) screened Phaseolus vulgaris using up to 33 cultivars. 

Sanders & Reinert screened 8 cultivars of Azalea (1982a) for sensitivity to 

NO., SO. and 0 .. in combination or singly. A number of tree species have 

heen studied, Populus spp. (Kimmerer & Kozlowski, 1981; Furakawa et al., 

1983), Pinus spp. (Lorenc-plucinska, 1982 & 1983a,h; Kress, Skelly & 

Hinckleman, 1982a; Kress, & Skelly, 1982). Differential sensitivity in 

populations of Lolium perenne L. have heen widely investigated hy a number 

of workers (Crittenden & Read, 1978 & 1979; Ayazloo & Bell, Ui81; Ayazloo, 

Garsed & Bell, 1982; Ashmore, Bell & Godzik, 1984; Koziol, Shelvey, Lockyer & 

Whatley, 1986). 

All workers have demonstrated intra-specific variahility in 

pollutant response, although, the proposed mechanisms of this variahility 

are unclear. Klein et li. (1978) determined that differential SO. uptake was 

partly responsihle for variation in pollutant response, hut hiochemical 

mechanisms must he involved. Kondo & Sugahara (1978) also determined that 

less SO. was ahsorhed hy resistant plants than sensitive plants and 

correlated low pollutant uptake with highest ahscisic acid (ABA> content. 

Ecological responses of plant types to SO. have heen addressed in several 

studies. Winner & Mooney <1980c) studied two ecologically matched Atriplex 

species and related greater sensitivity in the C. species to higher 

stomatal conductance (in part due to SO. stimulation) and to a more 

sensitive photosynthetic mechanism as compared to that of the C4 species. 

Levitt (1972) and Taylor (1978) suggested that resistance to pollutant 

stress is a consequence ot two general mechanisms (1) pollution stress 

avoidance and (11) pollutant stress tolerance. Plant species are known to 

adapt to SO. stress (Horseman & Wellhurn, 1977; Horseman, Roherts & 

Bradshaw, 1978, 1979; Ayazloo & Bell, 1981>. From morphological and 

physiological studies Ayazloo et li. (1982) suggested that acute differences 

in injury may he primarily due to to avoidance (stomatal control>, whereas 

differences In response to chronic injury may have a hiochemical mechanism. 

Heck, Heagle & Shrlner (1988) give a comprehensive update ot the genetic 

factors affecting plant responses to air pollutants. Furakawa et al. (1980a) 

also attrlhuted the degree of follar Injury in 29 plant species to the 

amount of SO. taken up hy the plant, sensitive plants having greater SO. 

flux. 

More recently, Alscher, Bower & Zipfel <1987> examined the hasis 

for different sensitivities of two cultivars of pea to SO •• These authors 
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found more sulphite to accumulate in the leaves of the sensitive than in 

those of the insensitive cultivar and identified the relative abilities to 

detoxify exogenous sulphite as one of the causes of differential 

sensitivity; however, differential responses of photosynthetic enzymes to 

SO, were also observed. Kore importantly, these authors concluded that the 

ability to detoxify SO,-induced increases in hydrogen peroxide was a 

contributor to differential sensitivity to metabolic stresses such as SO •• 

To understand the responses of plants to air pollution, and to 

compare results from different experimental systems, it is necessary to 

define the actual pollutant exposure that the plants receive. Kuch of the 

work carried out in observ~ng plant responses to pollution have been 

related to ambient gas concentration and time (Unsworth, 1982). Recently 

many more researchers have concentrated on the actual amount of pollutant 

taken up by the plant and related this to observed inJury. Unsworth (1982) 

reviewed the various designs of exposure systems for air pollution research 

showing how systems may be analysed to predict pollutant uptake and 

carbon dioxide exchange in plants. Taylor, KcLaughlin & Shriner (1982) 

described the relationships between ambient sUlphur dioxide concentrations 

and actual flux to the leaf and found that a proportional relationship did 

not exist between ambient SO, and effective pollutant dose. When SO. effects 

on net photosynthesis, dark respiration and other biochemical mechanisms 

are observed, it is as a direct result of sUlphur dioxide entering the leaf, 

ie. the actual flux. Obviously, the amount of pollutant entering the plant is 

of prime importance because if flux is not proportional to ambient SO. then 

observed plant responses can not readily be expressed as a function of 

pollutant concentration when the true relationship will not be seen. 

Gas phase resistance, principally at the stomata is thought to 

be the predominant factor limiting the diffusion of most pollutant gases, 

including SO, (Mansfield & KaJernik, 1970; Winner 81 Kooney, 1980b). The 

importance of diffusive resistances in gas exchange between the leaf and 

the surrounding air have been determined by many workers, Gaastra (1959) 

and Sestak II li. (1971) give deta~led accounts of such leaf resistances. 

The flux of SO. into the leaf can be measured from resistance analogues 

using Ohm's Law, relating SO. transfer to that for CO. and H20 (Unsworth, 

Biscoe 81 Black, 1976; Black 81 Unsworlh, 1979a,c; Taylor 81 Tingey, 1983; 

Schut, 1985). Sulphur dioxide flux to the plant may also be determined from 

mass balance equations where SO. flux is measured per unit leaf area of 
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plant tissue (Unsworth, 1982). The importance of leaf resistances and 

pollutant flux in relation to ambient S02 concentration are discussed in 

§3.7 and §3.9. 

It can be seen that the nature of plant responses to SO. are 

very complex. Several factors must be considered when interpreting results 

of plant responses as a function of ambient sulphur dioxide concentration 

including the prevailing environmental conditions and air flow across the 

leaf surface. Most importantly, actual pollutant flux into the leaves and the 

relationship between flux and ambient SO. must be considered if comparisons 

are to be made within or between species. 

3.2 AIMS 

The aim of this section of the experimental work was to 

establish the effects of sulphur dioxide on the gaseous· metabolism of two 

varieties of Vicia faba. 

The responses under optimum environmental conditions were 

required as a basis for comparison with pollutant responses of plants 

subJect to additional environmental stress. 

The influence ot a range of sUlphur dioxide concentrations on net 

photosynthesis, transpiration, stomatal resistance, dark respiration and 

pollutant fluxes to the plant for both varieties was determined. 

Evidence tor varietal differences in pollutant response was also 

investigated. 
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3.3 EXPERIMENTAL PROTOCOL 

3.3.1 Plant Material 

Seeds of Vicia laba L. CV. Dylan and Aquadulce Claudia were grown 

in plastic growth bags (10 cm diameter and 10 cm high) containing potting 

compost (John Innes No.2). Seeds of the variety Dylan were planted three to 

a pot whllst the much larger seeds of the variety Aquadulce were planted 

two to a pot. 

The plants were placed in a Fisons environmental growth cabinet 

set 'at a constant temperature of 22 ·C. The photoperiod was 16 h l1ght and 

8 h dark and the photon flux density was 210 ~E m-I S-I. The relative 

humidity was 70 ± 5%. 

When the plants had developed three fully expanded leaf pairs, 

usually 10-17 days after germination, two pots of the same variety were 

removed from the growth cabinet. The plants in each pot were compared and 

two plants of simllar size and development were selected for fumigation 

experiments, the other plants in the pot being discarded. 

Leaf area was measured and the plants placed in the experimental 

chambers described in chapter 2, One being the control plant subject to 

charcoal filtered air and the other being the treated plant. 

3.3.2 Exposure ChaDher Parameters 

The photoperiod 101' the experimental chambers was 14- h l1ght 

and 10 h dark. Chamber temperature was 23 ± 3 ·C. Leal temperature was never 

more than l'C above chamber temperature indicating the plants were not 

heat stressed. Photon flux density in both chambers during the l1ght 

period was 500 ~E'm-' S-I and was sufficient for light saturation of 

photosynthesis in the species used. Relative humidity was measured each 

time the chambers were in use and was controlled to maintain RH between 50 

and 75%. It was necessary to contr_ol relative humidity as it is well 

documented that stomata respond to changes in humidity (eg. Keidner & 
Kanstield, 1968; Kansfield & KaJernik, 1970; Black & Unsworth, 1980) and as 

a consequence, alter rates of carbon dioxide exchange. It was necessary to 

minimise the effects on the plants due to changes in humidity so that 

these effects would not be confused with the action of SUlphur dioxide on 
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gas exchange mechanisms. 

The air flow through the chambers was closely monitored and 

gave between 60 and 100 air changes per hour in both chambers. Small 

electric fans, fitted inside the chambers, aided efficient mixing and air 

circulation and ensured boundary layer resistances were maintained below 

0'65 s cm-' for both chambers. 

The plants were left in the chambers for 24- h to acclimatise. 

During this time the difference in carbon dioxide content of the air 

entering and leaving both chambers was monitored regularly (for a five 

minute period every fifteen minutes) in order to enable rates of net 

photosynthesis and dark respiration to be calculated. Air flow rates, leaf 

temperature, chamber temperature and water vapour concentrations of the 

air entering and leaving both chambers were measured every thirty minutes. 

These data were used to calculate relative humidity, transpiration rate and 

stomatal resistance. 

3.3.3 Pollutant Application 

After the 24- h acclimatisation period SUlphur dioxide was 

introduced into the fumigation chamber for four hours from a span gas 

cylinder of 100 vpm SO. in nitrogen. The gas was controlled by means of two 

needle flow valves connected to a flow meter and was added directly in to 

the air supply for chamber 2 via a small mixing bottle. Chamber 1 was the 

unpolluted chamber and the air inlet supply was passed through two 

activated charcoal filters before reaching the plant. The sulphur dioxide 

concentrations used ranged from 90 - 620 ppb and the exposure period in 

all cases was 4- hours. 

The sulphur dioxide concentration of the air entering and 

leaving the treatment chamber was monitored continuously over the four 

hour exposure period using a Meloy SA 285E SO. analyser connected to a 

chart recorder. The flux of SO. to the plant was calculated using a 

previously established correction f~ctor allowing for adsorption of SO. onto 

the chamber walls during the exposure period (§2.2.3). 

At the end of four hours SO. exposure the gas was switched off 

and the plants left for a further 24- h to permit recovery to be monitored. 

After the recovery period the plants were removed from the chambers and 

the leaf area again measured. 
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3.3.~ Data Collation 

The data gathered over the three day experimental period were 

analysed and used to calculate rates of net photosynthesis, dark 

respiration and transpiration. Stomatal resistances and pollutant flux into 

the plant were also calculated. The percent inhibition of net photosynthesis 

and changes in stomatal resistance in the treated plant could then be 

calculated in relation to the control plant. 

Plants of both Dylan and Aquadulce Claudia were exposed to a 

range of sulphur dioxide concentrations from 0 - 620 ppb and dose/response 

relationships for both varieties were established. 
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RESULTS 

3.~ NET PHOTOSYNTHESIS 

3.~.1 Time-Response Data 

Two examples of the time-response data for net photosynthesis in 

two varieties of Vicia faba exposed to either 'clean' air or air containing 

sUlphur dioxide are shown in Figures 3.1 & 3.2. Experiments were performed, 

on plants of both varieties, over a range of sulphur dioxide concentrations 

from 92 to 620 ppb, each experiment being run with a concomitant control 

supplied with charcoal filtered air. It was necessary to run control plants 

parallel to those treated with S02 due to natural and diurnal variation in 

photosynthetic and dark respiration rates throughout the experimental 

period. 

Figure 3.1 shows the typical data for plants of the variety Dylan 

exposed to 500 ppb (1t30 ~g m-sI for tour hours. At the onset of 

fumigation it can be seen that the rate of net photosynthesis '<Pnet) 

decreased immediately but this was followed by an increase in Pnet 15 

minutes later. This brief increase was followed by a rapid decline in Pnet 

which continued for the duration of the S02 exposure and resulted in an 

inhibition in net photosynthesis of tt% in relation to the control plant. 

However, when the S02 treatment ceased, recovery of the treated 

plant was rapid, this beginning within 30 minutes and continuing until the 

end of the light period. Full recovery had occurred by the start of the 

next photoperiod when Pnet Was not significantly different from that of 

the control plant. 

It can be seen that during the dark period following S02 

exposure, the respiratory rate of the treated plant· was more than double 

that of the control plant. This increase in dark respiration reduced 

steadily in the early hours of the morning and by 0600 h the dark 

respiration rate of the treated pl~nt had returned to pre-fumigation rates. 

This response at 500 ppb for Dylan plants was typical of the 

responses observed at all S02 concentrations above t50 ppb. Below t50 ppb 

the responses to S02 followed similar trends to those already described but 

the magnitude of response was lessened. These data are presented in §3.t.2. 
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Figure 3.1. 
Typical time-response data for Vioia faba CV. Dylan showing rates of net 
photosynthesis and dark respiration (g CO. m-' h-') in two plants, one 
control (0) and one exposed to 500 ppb SO. for' h (.). 
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Figure 3.2. 
Typical time-response data for Vicia faba CV. Aquadulce Claudia showing 
rates of net photosynthesis and dark respiration (g CO. m-' h-') in two 
plants, one control (0) and one exposed to ~OO ppb SO. for ~ h (.). 
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The responses of dark respiration to SO., in Dylan plants, were 

similar irrespective ot the sulphur dioxide concentration supplied. Dark 

respiration responses of both varieties are discussed in 63.5. 

Figure 3.2 shows the time-responses of Aquadulce Claudia plants 

to '00 ppb (11" ~g m-S ) SO. for four hours. It can be seen that the rate 

ot net photosynthesis (Pnet) declined sharply following the onset of 

fumigation. One hour after the start of the fumigation period the rate of 

decline in Pnet slowed and at the end of the four hour treatment, net 

photosynthetic rate in the plant had been reduced by 51% in relation to 

the control plant. 

Recovery began soon after the_end of the treatment but the plant 

had not reached pre-fumigation rates 2' h after the SO. exposure ceased. 

The response described here was typical for all plants exposed to 

SO. concentrations above '00 ppb, the extent of the photosynthetic 

inhibition showing a positive linear correlation with SO. concentration. At 

550 ppb, the inhibition of Pnet was 77% in relation to the control plant. 

At all treatments above '00 ppb, the fumigated plants had not reached 

pre-fumlgation levels for Pnet up to 2' h after treatment. The data for 

photosynthetic responses to a range of sUlphur dioxide concentrations are 

presented in 63.'.2. 

In all cases, exposure to sulphur dioxide, had no observable 

effect on the rates of dark respiration in Aquadulce Claudia plants. These 

difference in dark respiration responses between the varieties are 

discussed more fully in 63.5. 

3.4.2 Response o~ Net Photosynthesis to a Range o~ Sulphur 

Dioxide Concentrations. 

Both varieties of Vicia faba were subJected to a range of sulphur 

dioxide concentrations, from 0 to 620 ppb, in the manner previously 

described. Figures 3.1 & 3.2 showed examples of plant responses to SO. with 

time. The data from these experime!lts were collated enabling 

concentration/response relationships to be plotted for % change in net 

photosynthetic rate of the polluted plants in relation to control plants 

monitored simultaneously. It was necessary to calculate changes in net 

photosynthesis in relation to the control plants because of the natural and 

diurnal variation in net photosynthesis (Pnet) in the absence of sulphur 
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dioxide. Percent inhibition in Pnet was calculated by measuring the 

photosynthetic rates of both the control and the treated plants 

immediately prior to SO, fumigation (Co,p.), and following the 4- h exposure 

period (Cc,Pc )' 

too 

Figures 3.3 and 3.4- show percent inhibition of net photosynthesis 

against ambient sulphur dioxide concentrations for both Dylan and 

Aquadulce Claudia plants. Regression analysis of the data for both· 

varieties showed that a polynomial regression gave a closer correlation 

than a straightforward linear regression. For Dylan plants (Fig. 3.3) the 

correlation was 0·8969 (r' = 80'4-5%, P < 0'001), the linear correlation 

having an r' value of 74-'4-5% for a total of twenty five individual 

experiments. For Aquadulce Claudia plants <Fig. 3.') the correlation was 

0·7763 (r' = 60'27%, P < 0·001> the linear correlation having an r' value of 

55'5% for a total of twenty individual experiments. The regression lines are 

shown in the .figures. 

In order to test for significant differences between the 

varieties in response to sulphur dioxide an analysis of covariance using 

pooled regression was performed. A variance ratio was calculated for both 

varieties individually and for the pooled data. This analysis gave an F 

value of 2'4-0 but the significant value (cx = 0'05, DF t,U) is 4-·08 showing 

the calculated F value not to be statistically significant. There is, 

therefore, no significant difference, overall, between the two varieties in 

their photosynthetic responses to a range of SO, concentrations. 

It can be seen that inhibition of photosynthesis was 

proportional to the supplied SO, concentration for both varieties. 

However, 

at concentrations above 4-00 ppb t~ere was a marked increase in inhibition. 

This suggested that there was a threshold concentration of sulphur dioxide 

above which photosynthetic activity was even more severely limited. The 

precise threshold concentration was unclear, appearing to be between '00 

and 500 ppb in both varieties. A more detailed conclusion concerning 

threshold values may be drawn when sulphur dioxide fluxes into the plant 
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Figure 3.3 
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Figure 3.3. 
Percent Inhibition ot Net Photosynthesis (in relation to control plants) in 
Vicia taba CV. Dylan in Response to a Range ot Sulphur Dioxide 
Concentrations (ppb). 
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90,-----------------------------------~ 

80 

70 

60 

50 

40 

30 

20 

• 
10 • 

• 

• 
• 

• 

• 

r. = 0.7763 
p <·0.001 

O+---~~------------------~ • It 

• 

• 
-10 -t-----r-----.------.------,,-----,------.-------l 

o 100 200 300 400 500 600 700 

Sulphur Dioxide Concentr:ation (ppb) 

Chapter 3 

Figure 3.<l. 
The Degree of Inhibition of Net Photosynthesis (in relation to control 
plants) in Vicia faba CV. Aquadulce Claudia in Response to a Range of 
Sulphur Dioxide Concentrations (ppb). 

Page 52 



Results Chapter 3 

are examined. Pollutant fluxes in relation to sulphur dioxid., concentration 

are described in §3.9. 

Whilst no si~nificant differences in photosynthetic response to 

sulphur dioxide response between the varieties were proven statistically 

when the data were examined as a whole, it was apparent from the fi~res 

that differences in response did occur at the extremes of the pollutant 

range. At concentrations of 90 - 100 ppb, Aquadulce plants (Fig. 3." 

showed an overall enhancement in net photosynthesis in response to SO., up 

to 6% above the control plants. Dylan plants, at these concentrations 

showed an inhibition in net photosynthetic rate between 8 and 17%. 

Aquadulce plants also appeared to exhibit ~eater photosynthetic inhibition 

at concentrations above 450 ppb when the re~ession lines were compared. 

The fact that a pooled regression analysis showed no significant 

differences between the varieties may be attributed to the amount of 

scatter within the data. In particular, the variability in the observed 

responses of Aquadulce Claudia plants to SO. concentrations between 200 -

500 ppb. A measure of the standard deviation (S.D.) about the regression 

lines for each variety giving a value of 5'96 for Dylan and 13·92 for 

Aquadulce Claudia plants. This relatively large S.D. for plants of the 

variety Aquadulce Claudia presented some difficulty in allowing comparison 

of the data obtained for both varieties. The difference in observed plant 

responses for any given SO. application was not unusual and may have been 

due to natural physiological variation between plants of the same variety. 

3.5 DARK RESPIRATION 

Dark respiration rates, in the two varieties of Vicia fJY!J1.. used 

in this study, were monitored for both control and treated plants 

throughout the dark periods prior to and following· sulphur dioxide 

exposure. Measurements of carbon dioxide enrichment of the air flowing 

through each plant chamber were taken automatically every fifteen minutes, 

enabling rates of dark respiration. to be calculated as described in §2.3. A 

mean rate was then calculated for each plant for each dark period, from a 

total of between 20 and 30 data pOints, and the data tabulated. 

There was an amount of natural variation in the dark respiration 

rates of plants within each variety in the absence of SUlphur dioxide 

treatment, values ranging from 0'02 to 0·40 g CO. m-I h-'. This variation 
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Figure 3.5 
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Figure 3.5. 
Rates of Dark Respiration (g CO. m-' h-') in Plants of Vioia faba CV. 
Dylan Prior to and Following Exposure to Sulphur Dioxide (0 - 600 ppb: 4- h). 
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between the varieties was increased by exposure to a range ot sulphur 

dioxide concentrations. Figure 3.~ gives a plot of dark respiration rates 

for both treated and control plants during the two dark periods prior to 

and following SO. treatment, for plants of the variety Dylan. The extent of 

the natural variability is clearly shown. It can be seen that dark 

respiration rates appeared to increase following SUlphur dioxide fumigation 

and that the magnitude of the response was independent of the applied SO. 

concentration. Due to the lack of fit of any of the four plots to a 

straight line, regression analysis was not considered to be a satisfactory 

method for data analysis. 

In order to differentiate between natural variation and pollutant 

responses, the data were analysed using pooled and twosample 't' tests; the 

pooled 't' tests being used for data of similar variance and the twosample 

't' test being applied to data with dissimilar variance. 

It was possible that the length of time in the exposure chambers 

could affect dark respiration rates if the plants were at all chamber 

stressed in the absence of SO •• To determine if this was so, comparisons of 

the rates of dark respiration in the control plants on the first and second 

nights in the chambers were made. Differences between the varieties were 

also examined. 

The mean rates of dark respiration tor each plant were tabulated 

into four groups, the control plants during each dark period and the 

treated plants before and after SO. exposure. The 't' tests were then 

performed between all four groups of data, the results for the analyses 

being shown in Tables 3.3 - 3.6. 

Table 3.3 shows the results for plants of the variety Dylan. 

Comparison of the dark respiration rates of the control plants during the 

first and second nights in the chamber produced a 't' value of 0·5~0. The 

tabulated 't' value is 4'015 (DF = 16, a = 0·001) showing there to be no 

significant difference in dark respiration rates due to chamber conditions. 

Dark respiration rates between the control and the treated plants prior to 

SO. were also compared and no sig~ificant differences found, the calculated 

't' value being 1'518 and the significant 't' value being 3'646 (DF = 35, a = 
0·001). 

However, when the dark respiration rates of the treated plants 

were compared before and after the SO. treatments, the 't' value obtained 

was -4,219 (Table 3.3), the 't' value from the statistical tables was -3,646 
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TABLE 3.3 
Rates ot dark respiration (g CO. m-I h-') in Vicia faba CV. Dylan plants. 
The data for control plants and SO. treated plants are shown for the first 
and second nights of the experimental period. 't' test results are also 
shown. 

Mean 
Variance 
Maximum 
Minimum 

t = 

tabulated t = 
significance 

t .. 
tabulated t = 

Control 
day 1 day 2 

0·156 
0'004-
0·241 
o· 021 

0·580 

o· 14-0 
0·003 
0·200 
O' 074-

ns 

a = 0'001 df = 16 

Polluted 
day 1 day 2 

0·131 
0·002 
0·191 
O· 028 , 

-4-'219 

0·224-
0·007 
0·34-0 
O· 126 

sig 

-3'64-6 to 3·M6 

a = 0·001 df = 30 

Cl,Pl .. 1·518 df" 35 not significant 
3·64-6 a = 0·001 

TABLE 3.4-
Rates ot dark respiration in Vicia faba CV. Aquadulce Claudia plants. The 
data for control plants and SO. treated plants are shown for the first and 
second nights of the experimental period. 't' test results are also shown. 

Mean 
Variance 
Maximum 
Minimum 

t = 

tabulated t .. 

significance 

t .. 
tabulated t = 

Control 
day 1 day 2 

0·259 
0·007 
0·396 
O' 154-

1·129 

0·225 
0·003 
0·337 
0·143 

ns 

a = 0·001 df = 26 

Polluted 
day 1 day 2 

O· 265 
0'011 
0·4-68 
0·126 

0·821 

0·236 
0·006 
0'410 
0·128 

-3'707 to 3'707 

a = 0'001 df = 26 

Cl,Pl = -0'187 df = 34- not significant 
3·64-6 a" 0'001 
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TABLE 3.5 
Comparison of rates of dark respiration <g CO 2 m- 2 h-') in both varieties 
of Vicia faba on the first night of the experimental period, prior to SO. 
exposure. Pt' test results are also shown.] 

Dylan Aquadulce 

Mean 0-156 0·259 
Variance 0-004- 0-007 
Maximum 0-24-1 0-396 
Minimum 0·021 0-154-

calculated t = -4--071 

tabulated t .. -3- 64-6 

significance IX .. 0-001 df .. 30 

TABLE 3.6 
Comparison of rates of dark respiration in both varieties ot Vicia faba on 
the second night of the experimental period, following SO. exposure_ Pt' 
test results are also shown.] 

Dylan Aquadulce 

Mean 0-224- 0-236 
Variance 0-007 0-006 
Maximum 0·340 0-410 
Minimum 0- 126 0-126 

calculated t = -0-353 

tabul ated t = -3-650 

significance not significant 
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(DF • 30, cc = 0·001> showing the data to be significantly different. When 

the means of each group were examined, the mean rate of dark respiration 

in Dylan plants prior to SO. exposure was 0'131 g CO 2 m- 2 h-', following 

SO. treatment the mean rate was 0'22~, showing dark respiration rate to be 

almost doubled in response to 502 , 

Table 3.~ gives the results for dark respiration rates in plants 

of the variety Aquadulce Claudia. Comparison of all the data for both 

control and treated plants before and after 502 treatment, showed no 

significant changes in dark respiration rate either in response to SO. or 

in response to chamber conditions, all the calculated 't' values being less 

than the tabulated values. 

Tables 3.5 & 3.6 show the results obtained when dark respiration 

rates between the varieties were compared prior to and following 502 

treatment. It can be seen from Table 3.5 that, prior to SO. treatment, dark 

respiration rates between the varieties were significantly different. The 

mean respiration rate for Dylan being 0·156 and 0·259 g CO2 m-' h-' for 

Aquadulce Claudia plants, showing the unpolluted dark respiration rate in 

Aquadulce to be nearly twice the rate observed in Dylan plants. 

After exposure to sUlphur dioxide, comparison of the data for 

each variety showed no significant difference in the dark respiration 

rates (Table 3.6) between the varieties. 

In conclusion, plants of Vicia l!!h CV. Dylan exhibited increased 

rates of dark respiration in response to sUlphur dioxide, irrespective of 

the concentration of pollutant supplled. the rates increasing to nearly 

twice prefumigation levels. Aquadulce Claudia plants showed no apparent 

dark respiration response to sulphur dioxide, however, the natural 

(unpolluted) rate of dark respiration in Aquadulce plants was significantly 

higher than that observed in the variety Dylan. 

It must be noted that any changes in dark respiration rate 

would be reflected by changes in net photosynthetic rate although gross 

photosynthetic rate would remain unaltered. 
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3.6 STOMATAL RESISTANCE 

3.6.1 Time-Response Data 

Figures 3.6 and 3.7 show examples of typical time responses of 

both varieties of Vicia ~ to either 'clean' air or air containing sulphur 

dioxide. 

In Fig. 3.6 it can be see.n that stomatal resistance (r.> in Dylan 

increased in response to a sulphur dioxide treatment of 600 ppb (1716 ~g 

m-' > for four hours. For the first hour following the onset of fumigation 

the stomatal resistance decreased in relation to the control plant. However, 

there was a steady increase in r. for the following three hours of the 

fumigation period. There was a great deal of natural variation in stomatal 

resistance throughout the photoperiod even in the absence of SO., thus, all 

changes in r. were expressed as percentage change in relation to the 

control plant (Fig. 3.8 >. At the end of the exposure period stomatal 

resistance in the treated plant had risen by 73% in relation to the control 

plant. 

Recovery was rapid, beginning in the first hour following 

fumigation and had reached pre-fumigation levels by the following morning. 

The stomatal responses of Dylan plants to a range of SUlphur 

dioxide concentrations from 92 - 620 ppb are described in §3.6.2. The 

responses were variable (Fig. 3.8> and increases in stomatal resistance in 

response to SO, appeared to occur at concentrations above 450 ppb. Below 

this concentration stomatal responses differed, proving to be negative or 

positive in direction, 9 out of 12 plants showing a decrease in stomatal 

resistance in response to sulphur dioxide. 

Figure 3.7 shows an example of the time response data for 

stomatal resistance in Aquadulce Claudia plants to either 'clean' air or air 

containing 500 ppb sulphur dioxide (1430 ~g m-' >. There was no observable 

effect of SO, on stomatal resistance for the first two and a half hours of 

the four hour fumigation period in relation to the control plant. Again, 

there was a significant amount of natural variation in r. without the SO, 

treatment, the control plant also showing a sllght increase in r. over the 

four hour fumigation period. 

The stomatal responses of Aquadulce Claudia plants to a range of 

sulphur dioxide concentrations are shown in Figure 3.9. At concentrations 
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,; 

Figure 3.6. 
Typical Time Response Data for Vicia faba cv. Dylan showing stomatal 
resistance (s cm-') in two plants, one control (0 unpolluted) and one 
exposed to 600 ppb SO. for 4 h (e). 
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Figure 3.7. 
Typical Time Response Data tor Vicia taba CV. Aquadulce Claudia showing 
stomatal resistance (s cm-') in two plants, one control (0 unpolluted) and 
one exposed to 500 ppb S02 tor 4, h (.). 
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above 200 ppb SO., 10 out of 11 plants showed an increase in r. in response 

to SO. up to 35% above the control plants at the higher SO. exposures. 

Analysis of the data from all the experiments showed there to 

be large degree of natural variation in the stomatal resistances measured, 

between the varieties and with or without sulphur dioxide treatment 

throughout the experimental period. This variability may be due in part to 

differences in the environmental conditions at the time of each experiment 

and to differences in plant age. The plants used in each experiment were of 

uniform size but the ages of the plants may differ between 2-3 weeks 

following germination. As mentioned previously, it was not possible, with 

the apparatus used, to control precisely the temperature and humidity on 

any given day. It was possible only to maintain these parameters within 

certain boundaries of 50 - 75% humidity and 23 ± 3'C temperature. This 

caused problems in data analysis and comparison and it would not be 

correct to state that differences in r. between the varieties in the 

absence of SO. are absolute. However, because the control plants were 

carefully monitored under the same conditions as the treated plants, it was 

possible to compare SO, responses in stomatal resistance between the 

varieties. 

The small increase in r. in Aquadulce Claudia plants in response 

to SO. contrasts sharply with the responses of Dylan plants at this 

concentration and above. Dylan plants showed an increase of 85% in relation 

to the control at 600 ppb. 

Comparison of all the data for stomatal response in both Dylan 

and Aquadulce Claudia plants (Figs. 3.8 & 3.9) showed that, in general, 

Dylan plants were more responsive to higher SO, concentrations than 

Aquadulce Claudia plants. The pattern of stomatal response was similar for 

both varieties but it appeared that the magnitude of response was greater 

in plants of the variety Dylan. 

The data also showed that, whereas Dylan plants responded to SO, 

within the first hour of fumigation, Aquadulce plants were slower to 

respond, especially at the higher SO. concentrations above '00 ppb. These 

differences in stomatal responses to SO. between the varieties are discussed 

fully in the following section. 
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3.6.2 Responses or Stomatal Resistance to SOz 

As stated above, there was a great deal of natural and diurnal 

variation in stomatal resistance (r.) in plants in the absence of SO •• As a 

result of this natural variation, changes in stomatal resistance due to 

sulphur dioxide could not be expressed in terms of absolute values. In order 

to allow meaningful comparison of the data for each variety over a range 

of sulphur dioxide concentrations, ch~nges in stomatal resistance due to 

SO., were expressed as per cent change in relation to the control plants 

monitored simultaneously. The changes in r. due to SO. were calculated from: . 

%change r. = [r.p. - r.p,,] - [r.c. - r.c,,] x 100 

r. control 

where, r.p. and r.c. are the stomatal resistances of the polluted and 

control plants prior to pollutant fumigation and r.p" and r. c" are the 

stomatal resistances following SO. fumigation • 

. Using this calculation, a positive value indicated decreased 

stomatal resistance in polluted plants in relation to the control plants ie. 

stomatal opening, and a negative value indicated increased stomatal 

resistance ie. stomatal closure in polluted plants in relation to control 

plants •. 

The dose/response relationships between changes in stomatal 

resistance, r., and applied sulphur dioxide concentration for Vicia taba CV. 

Dylan and Aquadulce Claudia are shown in Figures 3.6 and 3.9. The 

regression lines through the data suggest that the magnitude and 

direction of observed stomatal responses were prop~rtional to applied 

sulphur dioxide concentration. 

Plants of the variety Dylan (Fig.3.6) exhibited a variable 

response to sulphur dioxide concentrations between 92 and 400 ppb. Nine out 

of thirteen plants showed enhanced stomatal opening in response to SO. up 

to 50% in relation to the control plants. The remainder showed enhanced 

stomatal closure at these concentrations, between 5 and 18% above the 

control plants. The overall response appeared to be enhanced stomatal 

opening in response to SO. concentrations up to 400 ppb, the largest degree 

of opening occurring at 200 ppb. At concentrations above 400 ppb SO. r. in 

Dylan plants was increased significantly being up to 65% 

Page 63 



(J) 
() 
t: 
0 -en 
'iii 
(J) 
~ 

0 -0 
E 
0 
Vi 
.!: 

(J) 

Ol 
t: 
0 
~ 
U 

~ 

Results 

Figure 3.8 

60~----------------------------------~ 

• 
40 

20 • • 
• •• 

0 

• • • 
-20 • • 
-40 • 

-60 

• 
-80 • 
-IOO~~--~--~-----T----~----~----~--~ 

o lOO 200 300 400 500 600 
Sulphur Dioxide Concentration (ppb) 

700 

Chapter 3 

Figure 3.8. 
Degree of Changes in Stomatal Resistance in Vlcia faba CV. Dylan in 
Response to a Range of Sulphur Dioxide Concentrations [positive values 
indicate stomatal opening, negative values indicate stomatal closurel. 
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Figure 3.9. 
Degree of Changes In Stomatal Resistance In V.faba CV. Aquadulce Claudla In 
Response to a Range of Sulphur Dioxide Concentrations [positive values 
indicate stomatal opening, negative values Indicate stomatal closure]. 
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greater than the control plants. 

Again, there was evidence for a threshold concentration above 

which stomatal closure was induced by exposure to SO •• A classical 

regression line could be fitted to the data, giving an r value of 0·5751 

which, according to tables, was significant at the 99·0% level. However, it 

was immediately apparent from a visual Inspection of the data, that there 

was a distinct lack of fit of the data to the regression line produced. The 

regression, although Significant, did not correctly explain the obse,:ved 

responses in r. to SO •• This perhaps demonstrated the point that regression 

analyses are not always the best way to interpret plant pollution responses. 

Using the regression Une, the threshold concentration, above which SO. 

Induces stomatal closure, was 270 ppb but visual examination put the 

threshold more accurately between iOO - 450 ppb. At concentrations above 

this, enhanced stomatal closure occurred in all plants tested. 

Figure 3.9 shows the dose response relationship for plants of the 

variety Aquadulce Claudia. A regression line through the data gave a much 

closer correlation than that obtained for Dylan plants. In this case r = 

0'7577 and was significant at the 99·9% level. Again a threshold 

concentration was indicated above which S02 induced stomatal closure. The 

regression line showed this to be 160 ppb; ten out ot 11 plants exhibited 

stomatal closure at S02 concentrations above this value. The greatest 

concentrations resulting in the greatest stomatal closure of 3'% above that 

ot the control plant. At concentrations below 160 ppb there was an 

indication that r. decreased In response to SO. up to 6% below the control 

plants. 

Comparison of the data for both varieties suggested that the 

magnitude of stomatal response to SO. Was much greater in Dylan plants 

than in Aquadulce Claudia. Responses in Aquadulce plants ranged from 6 to 

-3'% whilst for Dylan responses ranged from 51 to ~851'. over the same range 

of sulphur dioxide concentrations. 

From the data presented In this section, it was clear that for 

both varieties, the relationship between stomatal response and ambient 

sulphur dioxide concentration was not straightforward. It was hoped that 

an examination of actual pollutant flux to the plant and the components of 

the resistance pathway to gas transfer would give a clearer picture of the 

nature of changes in resistance in response to S02' These are discussed in 

§3.7. 
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3.7 INFLUENCE OF LEAF RESISTANCES ON GAS EXCHANGE. 

3.7.1 Resistance Pathways 

It has been shown that sulphur dioxide altered the rates of net 

photosynthesis (Pnet) in the two varieties of Vicia faba studied. However, 

both varieties also exhibited changes in stomatal resistance (r.) in 

'response to SO. exposure. It was therefore necessary to determine whether 

the observed effects of SO. on net photosynthesis were due solely to 

changes in this resistance, or resulted from a direct action of SO. on the 

photosynthetic process itself. Photosynthetic rates may be influenced by 

changes in any of the components of the resistance pathway to carbon 

dioxide transfer and changes in these resistances may also influence SO. 

flux into the plant thus altering photosynthetic responses to the pollutant. 

In order to understand the effect of sulphur dioxide on net 

photosynthesis it was necessary to examine the pathway of carbon dioxide 

transfer from the atmosphere into the leaf. 

Resistance analogues are commonly used to describe gas exchange 

between plants and the atmosphere, the flux of a gas being regarded as 

driven by a potential difference using an analogy to Ohm's law. In this 

case the potential difference is that of the gas concentration which is 

limited by certain resistances to its flow (Gaastra, 1959; Sestak et al., 

1971; Biscoe et al., 1973; Unsworth, Biscoe & Black, 1976). Flux is given as: 

Flux = potential difference (gas concentration) (3.1) 

resistance 

The ease with which carbon dioxide moves into a leaf (in the process of 

photosynthesis) is important in determining the photosynthetic rate and in 

determining the photosynthetic response to environmental factors. The 

resistances encountered by molecules of carbon dioxide in moving into the 

leaf, from the source in ambient air to the sink at the carboxylation sites 

in the chloroplasts, may be used to describe quantitatively specific 

physiological responses to the environment which may limit the rate at 

which photosynthesis proceeds (Sestak et al., 1971>. Humidity, CO2 

concentration, irradiation and air pollutants are some of the environmental 

factors that may affect photosynthesis. 
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The transfer pathway can be divided into a number of discrete 

segments characterised by position or transfer mechanism (eg. turbulent 

diffusion, free molecular diffusion or mass transfer>. Several segments of 

the resistance pathway are common to water vapour transfer and carbon 

dioxide and sulphur dioxide transfer. Namely, aerodynamic resistance (ra>, 

stomatal resistance (r.> and cuticular resistance (re>. However water vapour 

is not considered to experience the added internal resistance to gas 

transfer (rlnt> present for CO. and SO •• Since resistances to water vapour 

transfer (rH,O> are relatively easily determined, these can be used to derive 

certain of the resistances to CO. (rCo,> and SO. (rSO.>. 

For a pathway in which transfer is by free molecular diffusion, 

the relationship between rH,O and rCO. is the ratio of the relative 

molecular diffusion coefficients whereby: 

reo, a rH,O DH,O I DCO, (3.2 > 

and D is the effective molecular diffusivity of water or carbon dioxide in 

air (Sestalt et Al., 1971 >. 

Considerable uncertainty exists as to the precise values of DH,O 

and DCO, and the nature of their temperature dependence (Lee & Willte, 195t; 

de Vries & Krueger, 1967; Sestalt rl. Al., 1971 >. Values of DH,O I DCO, range 

from 1·5 to 2 '9, the maJority of the values being around 1'8 (Sestalt, 1971 >. 

However, Fuller, Schettier & Giddings 0966> gave a value of DH.O I DCO, 

equal to 1'65 which is independent of temperature and pressure. 

The resistances encountered in gas exchange between the 

atmosphere and the leaf are shown in Figures 3.10a and 3.10b Firstly, there 

is the aerodynamic resistance (rA>, then the stomatal resistance (r.> in 

parallel with the cuticular resistance (re>, followed by an internal 

resistance (rlnt> to gas transfer. "Each of these resistances 

is discussed individually. 

3.7.1.1 Boundary Layer Resistance. r. 

The velocity of air movement about a plant increases with 

distance away from the leaf surface from zero at the leaf-air interface 

until it is indistinguishable from the bulk air movement around the leaf. 

The leaf boundary layer thus consists of a thin layer of air, close to the 

surface of the leaf, in which movement ot the air is by lamlnar flow, and a 
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transition region to fully turbulent conditions in the ambient air (Sutton, 

1953; Sestak et al., 1971>. The thickness of the boundary layer is defined 

as the effective thickness across which a uniform concentration gradient, 

equal to that at the leaf-air interface, would have to exist to give the 

same total drop in concentration (Slatyer, 1967). 

In the field, the boundary layer resistance, r., is a function of 

windspeed, leaf dimension and anatomy and as such is not under 

physiological control. In leaf chambers, r. is also a function of chamber 

design and air flow rates and movement must be sufficient to simulate field 

conditions and efficient mixing of the air surrounding the plant. 

The boundary layer resistance is in series with other resistances 

which are under physiological control. It is therefore, important that in 

plant chamber studies of the physiological response to environmental 

conditions, r. should be maintained small in relation to other leaf 

resistances. If r. is too large in comparison with the other resistances in 

the transfer chain, it will become the dominant resistance in determining 

rates of photosynthesis, transpiration and pollutant uptake. 

In the experimental system used for this study. the air was well 

mixed by an internal fan, and r. for CO2 transfer was between 63 and 100 s 

m-lover the range of experiments performed. However, r. was constant 

throughout the duration of each individual experiment, r. changing only 

when the internal fans were renewed. The aerodynamic resistance should not 

be altered by S02 treatment unless leaf surface features have been changed 

ie. suffered damage due to excessively high pollution concentrations. 

Typical values for r. in the field range from 10 - 30 s m-I for carbon 

dioxide transfer in exposed leaves and windy conditions, although r. may be 

much higher in still conditions. In leaf chamber experiments, in which the 

air is well stirred, typical values of the boundary layer resistance to 

carbon dioxide transfer range from 50 - 200 s m-I· (Holmgren, Jarvis & 

Jarvis, 1965). The difference between r. values in the field and in plant 

chambers may be attributed to there being a greater degree of turbulence 

occurring under natural conditions than is attained in leaf chambers 

(Sestak et al., 1971). 

The boundary layer resistance for water vapour transfer was 

determined by measuring the evaporation of water from a model leaf of 

green blotting paper, in which there are no additional resistances, under 

Page 70 



Results Chapter 3 

the same environmental conditions in the chamber system used for Vicia. 

The boundary layer resistance was then calculated from:-

r. = Xi - X. 
E 

where E = evaporation rate 

Xi = water vapour concentration at the leaf surface. 

and X. = water vapour concentration in the chamber. 

The boundary layer resistance to carbon dioxide transfer was 

then calculated from:-

(3.3) 

(3.4- ) 

In the boundary layer, gas transfer is not due solely to free molecular 

diffusion but grades from molecular diffusion through a transition region 

to fully turbulent diffusion (Sestak et Al., 1971). As a result of this, 

equation 3.2 is inaccurate for r., applying only to free molecular diffusion, 

and equation 3.5 has been shown to be more accurately applied to this 

resistance. The relationship between molecular diffusivity coefficients for 

the aerodynamic resistance is: 

(Thom, 1968). 

,3.7.1.2 Cuticular Resistance. re 

, (DH20)a./~ 
DCO •. 

, 

(3.5 ) 

The pathway of carbon dioxide transfer through the cuticle is 

thought to consist of a short distance in the gas phase followed by a 

relatively long, high resistance pathway in the liquid phase (Sestak et aI., 

1971). 'The liquid phase is long because, apart from the guard cells, 

epidermal cells do not contain chloroplasts and C~2 molecules must travel at 

least one cell width before entering the cell in which they will be 

assimilated. The cuticular resistanc,e is large in comparison with the 

parallel stomatal resistance (Fig.3.10b) and is usually ignored when 

resistances to gas transfer are being calculated. Holmgren, Jarvis & Jarvis 

(1965) found cuticular resistances ranging from 10' to 10' s m-' and 
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concluded that this pathway of CO2 transfer could be discounted. However, 

there is some evidence for the dependence of r. on temperature and 

irradiance (Holmg-ren et al., 1965). This interpretation of cuticular 

resistance for carbon dioxide transfer may not apply to gaseous pollutants 

and must be treated cautiously when determining leaf resistances to 

pollutant uptake. Indeed, Lendzian (1964) suggested that the cuticle is 

much more permeable to S02 and O. than to CO2 or H20. Lendzian studied the 

membrane solubility of S02 and found S02 to be much more soluble in the 

cuticle (x 666) than in water for Citrus spp. and concluded that S02 

permeated the cuticle via the lipophilic phase. 

3.7.1.3 Stomatal resistance. r. 

The passage of carbon dioxide and water vapour through the 

stomata is generally considered to be by free molecular diffusion. As such, 

stomatal resistances are inversely proportional to molecular diffusion 

coefficients. Again, 

(3.6) 

the ratio of DH20 I DC02 taken as being 1·65 (Unsworth et ru.; 1976). 

Stomatal resistance to water vapour transfer may be determined 

in a number of ways, but in this experimental procedure r. was determined 

by measurements of transpiration rate, ambient and leaf temperatures and 

the water vapour concentration of the air entering and leaving the plant 

chamber. 

E = Xi - X. (3.7> 
r. + r. 

where E = Evaporation rate 

Xi = water vapour concentration in the stomatal cavity 

X. = water vapour concentration in the chamber 

and r. is measured as described earlier (Unsworth et al., 1976). 

Therefore: r. = Xi - X. (3.6) 
E 
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The stomatal resistance depends on many environmental and 

physiological properties including temperature, irradiance, CO. concentration 

and water vapour deficit <Heath, 191>9; Meldner " Mansfield, 1968; Raschke, 

1975). stomatal resistance also responds to many pollutant gases (eg. 

MaJernik & Mansfield, 1970 '" 1971; Biscoe II al., 1973; Black'" Black, 

1979a,b; Black" Unsworth, 1979a,b,c; Olszyk " Tibbitts, 1981a,b; Rao II lU., 

1983; Omasa lllU., 1985). Under optimal environmental conditions of light 

and humidity minimum values of r. range from 60 to 200 s m-' depending on 

species. 

3.7.1.4 Internal <or Residual) Resistance. rr 

The walls of the substomatal cavity are usually assumed to be 

saturated with water, hence ra, r. and re are the only resistances to water 

vapour transfer and there is no extra resistance to H20 transfer (rin~, 

Figure 3.10b) (Unsworth et al., 1976). However, carbon dioxide passes into 

solution at the liquid-air interface on the surface of the mesophyll cell 

walls and has a further pathway for liquid phase transfer to carboxylation 

sites in the chloroplasts of the mesophyll cells. 

The internal (residual) resistance is comprised ot a number of 

separate components relating to carbon dioxide absorption and diffusion 

and mass transfer. Strictly speaking, it is incorrect to express this 

internal resistance as a diffusion resistance but this is normally done to 

allow comparison with other resistances in the transfer pathway (Sestak et 

lU., 1971). The length of the pathway is variable and is under physiological 

control, it is frequently kept short by the arrangement of the chloroplasts 

around the periphery of the mesophyll cell. However, chloroplasts may 

realign themselves depending on irradiance. 

Although this internal resistance may be split into a number of 

components, it is difficult to assess each component individually, and this 

added resistance to carbon dioxide transfer is usually taken as a whole 

and termed residual (rr) or internal (rin~) or mesophyll (r.) resistance 

(Unsworth et lU., 1976: Carlson, 1983a). 

3.7.1.5 Influence of Resistances on Photosynthetic Rates 

Unsworth, Biscoe " Black (1976) illustrated the relative 

importance of ra, r. and rr in determining gas exchange. Assuming the 

stomata are open, if ra increases then photosynthetic rate always 
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decreases. In the experiments performed in this study with Vicia faba, r. 

was constant throughout the experimental period and as such, did not 

influence changes in net photosynthetic rate. Unsworth and his co-workers 

described an hypothetical situation whereby stomatal resistance was 

decreased by 20% in response to air pollution, if the residual resistance 

was unchanged, there should have been a corresponding increase in 

photosynthetic rate or only 6%. However, experimental evidence suggests 

that photosynthesis may decrease in response to SUlphur dioxide (eg. Black 

& Unsworth, 1979b; Muller, Miller & Sprugel, 1979; Winner & Mooney, 1980 

a,b,c; Noyes, 1980; Heath, 1980; Takemoto & Noble, 1982; Saxe, 1983a; Katase, 

UshiJima & Tazaki, 1983). This decrease in photosynthesis in response to 

sulphur dioxide would require an increase in resistance to carbon dioxide 

transfer that would outweigh decreases in stomatal resistance. Umiworth II 

al. suggest that photosynthetic rate is governed predominantly by changes 

in residual rather than stomatal resistances. Experimental data collected in 

this study for both varieties of Vicia ~, have been analysed to show 

whether this is the case. 

The residual resistance to carbon dioxide transfer can be 

calculated from: 

Pmax = • - 0 

rs + r. + rr 
(3.9 ) 

where Pmax is the gross photosynthetic rate (net photosynthesis plus 

respiration), • is the carbon dioxide concentration of the air in the 

chamber (g m-'), ra is aerodynamic (boundary) resistance to CO2 (s m-'), r. 

is the stomatal resistance to CO 2 and rr is the residual resistance to 

carbon dioxide transfer (s m-'). 

In equation 3.9 the carbon dioxide concentration at the 

carboxylation site is assumed to be zero by definition (Sestak, 1971), 

cutlcular resistance is infinitely large and light intensity is not limiting. 

From this: 

• - rs - r. (3.10) 
Pmax 

Pmax (g CO2 m-2 s-') and. are known and r. and r. can be determined from 

analogy to water vapour transfer as described earlier. 
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The extent ot the influence of changes in stomatal resistance on 

'changes in photosynthesis can be calculated using equation 3.9, assuming rr 

to be unchanged, and using the new r. following exposure to the pollutant. 

A value tor Pmax is obtained and may be compared to the actual value of 

Pmax observed following tumigation with sulphur dioxide. 

The validity of the above statements can be shown by working 

through an actual example. Vicia faba CV. Aquadulce Claudia was exposed to 

500 ppb SO. in the manner previously described. After the four hour 

fumigation period net photosynthesis had been inhibited by 77% and. 

stomatal resistance increased by 35% in relation to the control·plant. 

Fifteen minutes prior to the onset of SO. fumigation raCO. = 139·0 s m-', 

r.CO ... 14,8'7 s m-', Pmax .. 3·22 g CO. m-' h-' and. = 0.5622 g m-so Using 

equation 3.10: 

0'5622 

3'22 .. 3600 

= 342'7 s m-·. 

139 - 148·7 

Immediately following SO. fumigation r • .. 139, r ... 168'3, ... 0·5883 and rr 

= 3<1,2'7. From equation 3.9 the expected Pmax would be:-

Pmax = 0·5883 

139 + 168·3 + 34,2·7 

.. 3'25 g CO. m-' h-'. 

" 3600 

However, the actual gross photosynthetic rate following SO. fumigation was 

0'9 g CO. m-' h-', therefore the residual resistance, rr, must have changed. 

The actual rr following exposure to SO. can be calculated from equation 

3.10, using the actual Pmax, 

rr = 0'5883 - 139 - 168.3 

0·9 .. 3600 

= 204,5·9 s m-·. 

These results are summarised in the following table:-
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r. r. rr Pmax 
('I m-') (g CO. m-a h-' ) 

Rates 
Before SO. 139 U9 34-3 3·22 
Expected if only 
r. changes 139 168 34-3 3·25 

Actual 139 168 204-6 0·90 

The expected Pmax following SO. fumigation is higher than that prior to 

SO. fumigation because • had changed during the course of the experiment. 

The carbon dioxide concentration in the chamber, before SO., was lowered 

due to depletion by normal photosynthetic activity. When Pmax decreased in 

response to SO., the depletion of CO. in the chamber was reduced. As a 

result .. was higher following SO. fumigation and as a consequence the 

expected Pmax was raised. This, however, does not hold true for all SO. 

fumigations and data are presented in §3.7.2 to show that at low SO. 

concentrations, r. dominates plant responses in Dylan plants. 

3.7.2 The Importance o~ the Residual Resistance (rr): 

In~luence on Rates o~ Photosynthesis 

The example outUned in §3.7.1.5 showed how changes in stomatal 

resistance are not fully responsible for changes in gross photosynthesis 

occurring in response to SUlphur dioxide fumigation. It was shown in the 

example that in, order to achieve the observed rate of photosynthetic 

activity following SO. exposure, the residual resistance increased from 34-3 

to 204-6 'I m-'. This increase in rr indicates that SUlphur dioxide has 

substantially altered one or more of the components of this segment of the 

gas transfer pathway. 

The resistance data obtained for both varieties of Vicia faba 

are shown in Figures 3.11 and 3.12. Figure 3.11a and 3.11c show the data 

for Dylan and Aquadulce Claudia plants prior to sulphur dioxide fumigation. 

Total leaf resistance minus the component for aerodynamic resistance and 

measured stomatal resistances have been plotted together against SO. 

concentration. The difference between the two plots of rt - r. and r. is 

the residual resistance rr' Figures 3.11b and 3.11d show the two 

resistances, measured for both varieties, at the end of the four hour 
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Leaf Resistances to Carbon Dioxide Transfer in V.faba CV. Dylan prior to 
(3.lla) and following (3.llb) Sulphur Dioxide Exposure. [Total leaf 
resistance minus the component for aerodynamic resistance (.: rt - r.) have 
been plotted together with stomatal resistance (0: r.)]. 
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Figure 3.11c 
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Figures 3.110 3. 11d. 
Leaf Resistances to Carbon Dioxide Transfer in V.faba CV. Aquadulce Claudia 
prior to (3.11c) and following (3.1 td) Sulphur Dioxide Exposure. [Total leaf 
resistance minus the component for aerodynamic resistance (,: rt - ra) have 
been plotted together with stomatal resistance (0: r.)]. 
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fumigation period plotted against supplied SO. concentration. 

It can be seen that Aquadulce Claudia plants showed an increase 

in rr in response to SO. fumigations between 100 and 500 ppb, 12 out of 13 

plants showing substantial increases.in rr of between 70 and 500 s m-' 

greater than measured rr prior to SO. fumigation. At 550 ppb, rr increased 

markedly by -1703 s m-' above prefumigation values. However, at 99 ppb the 

rr following SO. fumigation was relatively unchanged from that measured 

prior to pollutant exposure. In addition there was little difference between 

the observed and the estimated rates of gross photosynthesis following 

treatment with this concentration of sulphur dioxide <Table 3.7>. 

The responses in Dylan plants were a little more variable. Eight 

out of 11 plants showed significant increases in rr in response to SO. 

fumigations below 500 ppb, between 20 and ~OO s m-' above prefumigation 

values. At concentrations between 500 and 600 ppb the residual resistance 

in Dylan was increased by 800 - 1600 s m-' above pretumigation values. At 

concentrations below 295 ppb rr increased only slightly in response to SO. 

and at 290 ppb, rr actually decreased trom 788 to 7~8 s m-'. At these SO. 

concentrations the observed changes in gross photosynthesis can be 

attributed largely to changes in stomatal resistance in response to SO •• 

The observed and the estimated values for gross photosynthesis being 

similar <Table 3.8). 

For both varieties, it was found that changes in photosynthetic 

rate in response to low concentrations of sulphur dioxide may be due, in 

part, to changes in 1' •• However, the observed changes in Pmax , induced by 

higher concentrations of SO., appeared to be due largely to Changes in the 

residual resistance to carbon dioxide transfer. Figures 3.12a and 3.12b show 

the observed gross photosynthetic rate following SO. fumigation, plotted 

against the same resistances given in Figure 3.11 ie. rt - r. and 1' .. for 

both Dylan and Aquadulce Claudia plants. It can be seen that for plants of 

both varieties there was a good correlation between total leaf resistance 

<minus aerodynamic resistance) and observed gross photosynthetic rates 

following SO. treatment. However, stomatal resistance was variable in both 

varieties and there was no significant relationship observed between rates 

of gross photosynthesis and stomatal resistances following SO. exposure. 

The variability in the resistance data for Dylan plants following 

SO. fumigation, may also be explained in part, by changes in dark 

respiration rates induced by sulphur dioxide. At SO. concentrations below 
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TABLE 3. 7 
Changes in the residual resistance to carbon dioxide transfer and 
differences in Observed and Estimated rates or gross photosynthesis (Pmax) 
in response to a range of sulphur dioxide concentrations for Vicia faba CV. 
Aquadulce Claudia. [The percentage change in stomatal resistance and net 
photosynthetic rates are also shown.] 

[SO.] % change Pmax Residual resistance 
Pnet rs Observed Estimated Before SO. After 

(ppb) (g CO. m-' h-') (s m-') 

99 -1,3 3·6 2'34- 2·32 729·4- 721·9 
128 -13'9 6·2 1'73 2·07 599·9 802·5 
200 16·8 .. 2'3 2·09 2·23 504-·4- 567'8 
215 11·1 16'3 2· 10 2·75 4,02'6 660'3 
283 9·1 -5'7 2'34- 2·31 4-98·9 4-86·4-
302 5·2 -10,8 2'51 2·85 256·5 354-'4-
320 -6,5 9·5 2·4,9 3·01 332·0 4,73·5 
350 26·6 -20,3 1·51 1· 72 4,93·9 664-'6 
4-00 35·6 -3'3 2·08 2'65 -111,3 98'7 
4-00 4,2' 9 -17'6 1·70 2'99 257'7 791·5 
422 10·7 17·9 2'07 2'35 515'7 631'4-
500 32·8 -34-,0 1'97 ~. 4-8 584-'6 24-7'5 
500 31·7 -15,6 1'73 2'4-3 64-7·6 992·2 
550 77'2 -34-,9 0·90 3·25 34,2'6 204-5'9 

TABLE 3.8 
Changes in the residual resistance to carbon dioxide transfer and 
differences in Observed and Estimated rates of gross photosynthesis (Pmax) 
in response to a range of sulphur dioxide concentrations for Vicia faba CV. 
Dylan. [The percentage change in stomatal resistance and net photosynthetic 
rates are also shown.] 

[SO.] % change Pmax Residual resistance 
Pnet rs Observed Estimated Before SO. After 

(ppb) (g CO2 m-' h-') (s m-') 

92 6·7 -.16' 5 1· 97 1· 99 818'9 829'4-
210 15'6 -4-·6 1·78 1'79 863'9 874-'1 
290 15' 9 7·6 2'09 2·01 788'9 748· 8 
295 19·2 8·7 1-69 2'17 838·1 1109- 3 
380 18·6 11 -2 I- 65 1'26 835-8 4-52-0 
390 18-7 12- 5 1 -86 2-63 562-7 886'0 
4-00 31· 4- 13·0 I- 53 2·16 621'1 1024,-7 
4-60 30-5 -4-0-3 2-10 2-01 718-4- 699-5 
510 32·2 -23-7 0-81 2-26 840-8 2521-7 
600 4-7-1 -67-7 I- 4,7 2·18 704--5 1596-0 
600 4,6-1 -4,1-0 1 - 4-6 2'29 H8-9 1202'5 
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Figure 3.120 
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Figures 3.12a 3.12b 
Observed Gross Photosynthetic Rates (Pmax) Following SO. Fumigation in 
Both Varieties of Vicia faba CV. Dylan (3.12a) and Aquadulce Claudia (3.12b) 
plotted against Leaf Resistances r~ - r. (e) and r. (0). [The figures show 
the dependence of Pmax on changes in r~ - raJ. 
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295 ppb, there were no significant changes in residual resistance observed 

in response to SO. and observed and estimated rates of gross 

. photosynthesis did not differ appreciably. However, it was shown in §3.4-

that net photosynthesis was inhibited between 6 and 19%· in relation to the 

control plants at these SO. concentrations. It was also shown that rates of 

dark respiration were increased in response to SO., to almost double the 

prefumigation rate, irrespective of the S02 concentration supplied (§3.5). It 

would appear that the measured net photosynthetic inhibition in Dylan 

plants, at these SO. concentrations, may be due to both changes in stomatal 

resistance and increased dark respiration rates, rather than solely to 

changes in the residual resistance arising from a direct effect of sUlphur 

dioxide on the photosynthetic mechanism. 

3.7.3 The Influence of Stomatal Resistance. rs. on Net 

Photosynthesis 

As was described in §3.7.1, changes in stomatal resistance in 

response to sulphur dioxide will alter the rate of carbon dioxide transfer 

through the stomatal pore, and as such, will have an effect on net 

photosynthetic rates. The influence of Changes in leaf resistances, due to 

sulphur dioxide, on gross photosynthesis have been described in §3.7.2. 

The relationships between measured changes in stomatal 

resistance, in the two varieties of Vicia faba used in this study, and the 

degree of inhibition of net photosynthesis due to sulphur dioxide are 

shown in Figures 3.13 and 3.14-. 

The stomatal and photosynthetic responses of plants of the 

variety Dylan are shown in Figure 3.13. The variability shown in the data 

emphasises the point that changes in stomatal resistance may not fully 

account for the accompanying changes in net photosynthetic rate due to 

sulphur dioxide exposure. From the figure it can be seen that 

photosynthetic inhibition of up to 31% in relation to the control plant 

occurred in conJunction with either increased or decreased stomatal 

resistance in response to SO. fumigation. Only four out of twelve plants 

showed stomatal closure in response to SO. when photosynthetic inhibition 

up to 31% had occurred. However, regression analysis of the data gave a 

correlation coefficient of -0,701 which is sign..1ficant at the 99·0% level 

(the regression line is shown in the figure) and for the highest 
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Figure 3.13. 
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To Show the Relationship Between Measured Changes in Stomatal Resistance 
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measurement of stomatal closure due to SO. there was a corresponding high 

degree,of photosynthetic inhibition. When stomatal resistance increased by 

85% in response to SO., net photosynthesis was inhibited by 50% in relation 

to the control plant. 

Figure 3.14 shows the data. for plants of the variety Aquadulce 

Claudia. It can be seen that there was a good correlation between changes 

in stomatal resistance in response to SUlphur dioxide and the extent of 

photosynthetic inhibition. Linear regreSSion gave a correlation coefficient 

of -0'783 which is significant at the 99'9% level. It would appear that 

increases in stomatal resistance in response to SO. (negative values on the 

figure) are accompanied by inhibition of net photosynthetic rates, the 

highest increases in r. (-35%) being followed by highest measured 

photosynthetic inhibition (77%). It can also be seen from the figure that 

when stomatal resistance decreased in response to sulphur dioxide <positive 

values on the figure) there was an accompanying enhancement of net 

photosynthetic rates up to 13% above that of the control plants. 

One might expect that if stomatal resistance decreased, there 

would be a corresponding increase in the observed rate of net 

photosynthesis <see equation 3.9, §3.7.1) especially as these changes 

occurred at low sulphur dioxide concentrations. This response was observed 

in Aquadulce Claudia plants but not in Dylan; when stomatal resistance in 

plants of the variety Dylandecreased by 50% there was an accompanying 

inhibition of net photosynthesis of 14%. This apparent anomaly has been 

shown to be due in part to the increases in respiration rate in Djlan in 

response to sulphur dioxide which were not seen to occur in Aquadulce 

Claudia plants. 

Comparison of the data for'both varieties suggested that plants 

of the variety Dylan exhibited greater stomatal sensitivity to sulphur 

dioxide than plants of the variety Aquadulce Claudia since the magnitude 

and direction of the stomatal response was much greater in Dylan plants. 

This stomatal sensitivity was not closely correlated to the degree of 

photosynthetic inhibition observed in Dylan plants at low SO. 

concentrations. However, there was a close correlation, in Dylan plants, 

between Changes in stomatal resistance and changes in Pnet at highest 

degrees of photosynthetic inhibition ( )32%). There was a closer 

relationship, in Aquadulce Claudia plants, between changes in stomatal 

resistance and the ensuing changes in net photosynthesis. However, both 
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varieties exhibited enhanced stomatal closure at the higher SO. 

concentrations which corresponded with maximum measured photosynthetic 

inhibition. 

In conclusion, examination of the relationship between changes in 

stomatal resistance and the degree of photosynthetic inhibition occurring 

in response to SO., concurred with the results given in §3.7.2. Although 

changes in stomatal resistance were seen to account, in part, for changes 

in net photosynthetic rates in response to SO., the major controlling 

factor appeared to be SO. induced changes in the residual resistance, rro to 

CO. transfer and, tor Dylan plants, concomitant changes in dark respiration 

rates. 

3. 8 GAS EXCHANGE MECHANISMS AND POLLUTANT FLUX 

3.8.1 Net photosynthesis 

The results presented so far have all related plant responses to 

the concentration of sulphur dioxide in the air surrounding the leaf. 

However, it is well reported that the concentration of sulphur dioxide 

experienced by the plant is only one of several factors that determine the 

actual flux to the leaf (Unsworth, Biscoe & Black, 1976; Mclaughlin & Taylor, 

1961; Garsed, 1965; Fowler, 1965; McLaughlin & Taylor, 1965). In short, 

pollutant flux to the leaf is governed by several resistances, as described 

in §3.7.1, the aerodynamic resistance, cuticular resistance, stomatal 

resistance and an added internal (residual> resistance. It is also known 

that environmental factors such as light, temperature, humidity and carbon 

dioxide concentration may alter the magnitude of stomatal resistance and 

thus alter the pollutant flux to the plant at any given sulphur dioxide 

concentration. Surface water on the leaf also influences pollutant flux to 

the plant (Garsed, 1965). The presence of water on the leaf surface lowers 

the surface resistance to sulphur dioxide deposition, the gas dissolving in 

the water and it is possible that flux into the plant, through the leaf 

surface, in this dissolved form may occur (Hocking '& Hocking, 1977). 

Any injury sustained by plants exposed to sulphur dioxide is a 

direct result of the pollutant entering the leaf and affecting plant 
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physiological and biochemical mechanisms. Therefore, relating observed 

injury to ambient SUlphur dioxide( concentrations may not be wholly 

accurate. Taylor, McLaughlin & Shriner (1962) gave the term "effective 

pollutant dose" to describe the quantity of sulphur dioxide available to 

affect the physiology of the plant. The effective dose of SUlphur dioxide is 

defined as the cumUlative amount of SO, 'absorbed per unit leaf area during 

the exposure period and it is a more reliable criterion for evaluating 

threshold concentrations for physiological and yield effects OlcLaughlin & 

Taylor, 1965). For short exposures to sulphur dioxide, as used in this study, 

a measure or total internal flux is a reasonable estimate of effective 

pollutant dose (Garsed, 1985). In addition, relating responses to pollutant 

flux rather than dose, removes the influence of different resistances to gas 

transfer and allows for more accurate comparisons of results from different 

experimental systems (Black &. Unsworth, 1979c). 

It has been described in chapter 2 how sulphur dioxide fluxes to 

the plant may be assessed in two ways. Firstly, they may be estimated 

indirectly by analogy to water vapour transfer, where flux is calculated 

from a knowledge of the magnitude of the limiting resistances to gas 

transfer. In this case, aerodynamiC and stomatal resistances to water 

vapour transfer, these values are corrected for differing diffusivity 

coefficients and the assumption being made that there is no internal 

resistance to SO, uptake. This flux is termed 'caleulated flux', PrcALc. 

Secondly, SUlphur dioxide flux to the plant may be determined directly from 

mass balance calculations. The flux determined in this way is termed 

'measured flux', P.us . Sulphur dioxide fluxes are measured in I'g m-' s-'. 

Figures 3.15 and 3.16 show inhibition 01 net photosynthetic rate, 

Pnet, plotted as a lunction of calculated and measured pollutant flux for 

plants of the variety Dylan. It is immediately apparent that there are 

differences in the relationships between the observed effects on net 

photosynthetic rate and the two measures of flux. There was a 99'0% 

correlation between calculated flux and the degree of photosynthetic 

inhibition (Figure 3.16); the highest flux (7 I'g m-I s-') resulting in the 

highest degree of photosynthetic inhibition in treated plants in relation 

to control plants. The regression line is shown in the figure. However, when 

measured flux was plotted against photosynthetie inhibition (Figure 3.15), 

there was a curvilinear relationship for SO. fluxes up to 3 I'g m- 2 s-, but 

above this flux value the data were variable. When the data were analysed 
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there was no significant correlation between Pf •••• and the resulting 

degree of photosynthetic inhibition, again demonstrating that it is not 

always correct to force a straight line relationship between two variables. 

The relationship between the observed responses of net 

photosynthesis and pollutant flux in plants of the variety Aquadulce 

Claudia differ markedly when compared with those for Dylan plants. Figure 

3.17 shows photosynthetic inhibition plotted against measured sUlphur 

dioxide flux, regression analysis gave a correlation coerticient of 0'720 

which was significant at the 99·0% level. There was a 90% correlation 

between calculated pollutant flux and inhibition of net photosynthesis in 

Aquadulce Claudia plants (Figure 3.18). However; the regression fit and most 

of the data were on a line virtually parallel to the y axis. McLaughl1n & 

Taylor (1985) assumed the regression line intercept of the x axis to be the 

threshold pollutant concentration, above which, injury to the plant occurs. 

It this is so then the threshold calculated flux for Aquadulce Claudia would 

be 1·5 I1g m-' s-, but it can be seen from the figure that photosynthetic 

inhibition between 16 and 36% occurred when the calculated flux values were 

between 1'1 and 1'3 I1g m-' S-1. The degree of photosynthetic inhibition in 

Aquadulce Claudia plants did not appear to be closely correlated to the 

calculated amount of SO. entering the leaf given that calculated fluxes 

between 1 and 3 I1g m-I s-, produced measured photosynthetic inhibition 

between -20 and 70% in relation to the control plants. However, it may be 

that there was a narrow 'sensitivity' threshold in Aquadulce in operation. 

Comparing the responses of the two varieties, Aquadulce Claudia 

plants showed a close correlation between measured sulphur dioxide flux and 

the degree of photosynthetic inhibition, whereas in Dylan plants, there was 

no apparent relationship between measured flux and the resulting degree of 

photosynthetic inhibition when measured flux exceeded 3 I1g m-I s-'. Below 

this flux measurement photosynthetic inhibition was related to measured 

pollutant flux in a curvilinear fashion. The threshold measured flux in 

Aquadulce Claudia plants was 1·8 I1g m-I s-', for Dylan it appeared to be 

0·3 I1g m-I S-1. 

Figure 3.16 shows photosynthetic inhibition in relation to 

calculated flux for Aquadulce Claudia plants and the eqUivalent regress ion 

line for plants of the variety Dylan. It can be seen that for a given 

photosynthetic response above 10% inhibition, the calculated pollutant flux 
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into Dylan was more than double that for Aquadulce Claudia. A calculated 

flux of 6·3 I'g m-' S-I resulted in a 50% inhibition in net photosynthetic 

rate in Dylan plants, whereas a calculated flux of only 2·6 I'g m-' S-I 

induced the same degree of response in Aquadulce Claudia plants. However, 

Aquadulce Claudia plants appeared to have a higher natural photosynthetic 

rate in the absence of SO. than those of Dylan, thus a 50% reduction in 

Pnet in Aquadulce plants was, in absolute terms, a greater ettect than the 

50% reduction in Pnet in Dylan plants occurring at a much higher flux. The 

threshold values for calculated pollutant flux (trom the regression fits) 

were 1·5 I'g m-' s-I for Aquadulce Claudia and 0·8 I'g m-' S-I for Dylan 

plants. 

These data for calculated pollutant fluxes would seem to imply 

that Aquadulce Claudia plants had a higher tolerance to sulphur dioxide 

than Dylan, given the higher threshold concentration. However, once the 

threshold concentration had been exceeded, Aquadulce plants were much more 

sensitive to sulphur dioxide flux than Dylan, photosynthetic inhibition 

increasing sharply with increasing pollutant flux. Aquadulce Claudia plants 

also exhibited enhancement of photosynthetic activity at low pollutant 

fluxes «1·7 I'g m-' S-I measured flux, <1 I'g m-' S-I calculated flux), in 

contrast to Dylan where fluxes below 1 I'g m-' S-I induced photosynthetic 

inhibition of 6 - 17%. 

This explanation of these data does not give a complete picture 

in describing the variation in the pollutant responses of Aquadulce Claudia 

and Dylan plants. When the data for measured pollutant flux were compared 

between the varieties, Aquadulce plants, again, had a higher threshold flux 

of 1·8 I'g m-' S-I as opposed to 0·3 I'g m-' S-I for Dylan. For measured 

fluxes between 0·3 and 1·8 Dylan plants appeared to be more sensitive to 

pollutant flux than Aquadulce Claudia plants, showing up to 20% 

photosynthetic inhibition in comparison to the enhancement of Pnet 

occurring in Aquadulce plants at these pollutant fluxes. 

Before threshold tolerances to sulphur dioxide pollution can be 

fully defined, other factors must be taken into account. An important 

factor to be considered when comparing responses to pollutant flux is the 

relationship between ambient sulphur dioxide concentration and pollutant 

flux to the plant. This is discussed in §3.9. 

It was discussed earlier in this section how the entry of SUlphur 

dioxide into the leaf is governed by the same resistances described in 
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§3.7.1 for carbon dioxide transfer. Stomatal resistance plays a large part, 

initially, in governing SO. fluxes and importance of this is discussed in 

the following section. 

3.8.2 Stomatal Resistance and Pollutant Flux 

The relationship between stomatal resistance and pollutant flux 

into the plant is complex, and a 'teed forward/feed back' mechanism 

operates whereby, when SO. is first present, its ,entry into the plant is 

governed by the stomatal resistance. However, once inside the leaf, SO. 

induces Changes in this resistance which in turn alter the rate of SO. 

entry into the leaf. This interaction must be considered when changes in 

stomatal resistance in response to pollutants are examined. 

Changes in stomatal resistance in Vicia faba, as per cent 

difference from that of the control plants in response to ambient sulphur 

dioxide concentration, have been described previously in §3.6.2. It was seen 

that there was a good correlation between stomatal response and ambient 

sulphur dioxide concentration for Aquadulce plants in comparison to the 

data for Dylan. Although the linear regression calculated for Dylan was 

significant at the 99·0% level, visual examination of the data showed the 

straight line produced to be an inaccurate representation of the data 

obtained. At applied sulphur dioxide concentrations up to '00 ppb the 

stomatal response in Dylan plants was variable and it was difficult to 

define clearly the relationship between sulphur diOXide concentration and 

the resulting changes in stomatal resistance. Over half the data exhibited 

a decrease in r. in response to SO. below '00 ppb, the remainder showing 

increases in r •. At higher SO. concentrations there were significant 

increases in stomatal resistance suggesting a critical or 'threshold' 

concentration above which enhanced stomatal closure will occur. 

A clearer picture was obtained when changes in stomatal 

resistance as a function of pollutant flux were examined. Taylor et a!. 

(1982) stated that the pollutant dose to which a plant is exposed <le. 

ambient concentration) is not a direct quantitative measure of the dose 

that causes a physiological response <le. effective dose), the effective dose 

being a function of the rate at which pollutant molecules arrive within the 

cells inside the leaf. This rate is controlled primarily by the leaf 

resistances to gas transfer previously outlined. These workers suggested 

Page 92 



Results Chapter 3 

that only a portion of the actual pollutant present in the air reaches the 

leaf interior and induces a response. Stomatal resistance plays a large part 

in governing pollutant flux to the plant thus the relationships between 

changes in stomatal resistance and pollutant flux are important. 

Figures 3.19 and 3.20 show changes in stomatal resistance for 

plants of the variety Dylan plotted as a function of calculated and 

measured pollutant fluxes. Regression analysis gave a 99·0% correlation 

between changes in stomatal resistance and both measurements of flux. In 

both cases there appeared to be a critical value for flux beyond which 

stomatal closure occurred. The threshold value for calculated flux, taken 

from the regression line, was 2·3 Ilg m-' s-' (Figure 3.19) but visual 

examination of the data showed that the regression line did not accurately 

explain the relationship. The threshold flux, was more accurately, 3 Ilg m-' 

s-', below this value there were decreases in stomatal resistance in 

response to sulphur dioxide flux, the magnitude of the response being 

unrelated to flux. Between 3 and 4- Ilg m-' s-', there were marked increases 

in stomatal resistance in relation to control plants, up to an 84-% increase 

when calculated flux was 3·9 I'g m-' s-'. 

When the data for measured flux were examined (Figure 3.20), 

there was a similar trend to that for calculated flux and stomatal 

response, the data fitted more closely to the regression line and the 

threshold value, beyond which stomatal closure occurs, was 4- Ilg m-' s-'. 

The increases in stomatal resistance beyond this threshold concentration 

were more gradual than those observed for calculated flux. 

When the stomatal responses of plants of the variety Aquadulce 

Claudia were plotted as a function ot ambient sulphur dioxide concentration 

(Figure 3.9), it was found that there was a good straight line correlation 

(99·9%) relating changes in r. to applied sulphur dioxide concentration, 92% 

of plants exhibiting increases in r. above 200 ppb SO •• Figures 3.21 and 

3.22 show stomatal responses in Aquadulce in relation to pollutant flux. 

There appeared to be no significant correlation between calculated sulphur 

dioxide flux and observed stomatal responses. For flux values between 1·0 

and 3·8 Ilg m-' s-', 70r. of plants exhibited increases in stomatal 

resistance in response to SO. flux, the degree of change in r. being 

unrelated to flux; 30% of plants exhibited decreases in stomatal resistance 

over the same range of calculated flux values. 

The data for measured flux (Figure 3.22) followed the same trends 
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Changes in Stomatal Resistance in Plants of the Variety Dylan. Plotted as a 
Function of Calculated (3.19) and Measured (3.20) SUlphur Dioxide Fluxes to 
the Plant (Ilg m- 2 s-'). 
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Chapter 3 

Changes in Stomatal Resistance in Plants of the Variety Aquadulce Claudia. 
Plotted as a Function of Calculated (3.21> and Measured (3.22) Sulphur 
Dioxide_ Fluxes to the Plant (Ilg m- 2 s-'). The regress-ion line obtained 
for. plants of the variety Dylan is also shown. ( _____ ). 
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observed when stomatal responses were plotted against ambient SO. 

concentrations. There was a 98% correlation between measured flux and 

observed changes in stomatal resistance in Aquadulce Claudia plants. The 

threshold concentration, above which stomatal closure was induced, was 1·8 

Ilg m-' s-', when taken from the regression line. However, decreases in 

stomatal resistance were observed at measured flux values up to 3·2 Ilg m-' -. s . 

SO •. 

At flux values above 3'2, stomatal resistance increased in response to 

At flux values below 3'2, the stomatal response was variable, half the 

data showing decreases in r. up to 11%, the other half of the data showing 

increases in r. between 6 and 36% in relation to control plants. 

Comparison of the stomatal responses of both varieties in 

relation to pollutant flux revealed significant varietal differences. Firstly, 

look ing at changes in r. in relation to calculated pollutant flux. In plants 

of the variety Dylan flux values below 3 Ilg m-' s-' induced stomatal 

opening ie. stomatal resistance decreased by up to 51% in relation to 

control plants, whereas, Aquadulce Claudia plants exhibited Changes in r. 

ranging from -35% to 11% over the same range of calculated flux values; the 

maJority of the data showing increases in r. in response to SO. flux. 

Aquadulce plants, unlike Dylan, did not appear to have a clear threshold 

value for calculated flux beyond which stomatal closure was induced. 

Secondly, comparison of changes in stomatal resistance as a 

function ot measured flux showed similar trends for both Aquadulce Claudia 

and Dylan plants. Figure 3.22 gave the data for Aquadulce with the 

equivalent regression line for Dylan also shown. It was seen that, tor a 

given stomatal response, the flux to Dylan plants was greater than that to 

Aquadulce Claudia plants. Both varieties showed evidence of a threshold flux 

. beyond which stomatal closure occurred. In Dylan plants this value of 

measured flux was '("1 Ilg m-' s-', in Aquadulce the critical value was 3'2 

Ilg m-z s-·. 

It must be noted that the threshold values for pollutant' flux in 

both varieties were the point at which a switch in stomatal response 

occurred, from opening to closure and were not the concentrations needed to 

initiate a stomatal response. This must be remembered when defining 

var ietal differences in stomatal response to pollutant flux. The threshold 

values for both measurements of pollutant flux were higher in Dylan than in 

Aquadulce Claudia plants. Below these critical flux values, the magnitude of 
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stomatal opening in response to SO. was greater in Dylan plants. Once the 

critical flux had been exceeded, Dylan plants exhibited a greater degree of 

stomatal closure than that observed in Aquadulce plants. 

These differences in response to pollutant flux and the differing 

threshold values between the varieties may be explained, in part, if flux is 

examined in relation to ambient sulphur dioxide concentrations for each 

variety. Also, the dissimilarities between the varieties in measured 

pollutant flux and calculated flux have been highlighted by the differing 

relationships, in each variety, between stomatal responses and net 

photosynthetic responses and both measurements of pollutant flux. The 

relationships between both measures of flux and ambient SO. concentrations 

and the disparities in their estimation are described in §3.9. in order to 

determine which of these flux assessments is the more accurate. 

3.9 POLLUTANT FLUXES & AMBIENT SOz CONCENTRATION 

It has been described in chapter 2 and §3.8.1 how SUlphur dioxide 

fluxes to the plant may be assessed in two ways, either from mass balance 

calculations giving measured flux, Pr ..... or from analogy to water vapour 

transfer, giving calculated flux, Proal'. 

Evidence from the literature suggests that exposure time, for 

short fumigation periods, does not have a pronounced or significant effect 

on pollutant flux to the plant <Taylor & Tingey, 1983). Examination of the 

data for both varieties of Y.!s..i.ll faba showed little difference in measured 

flux over the four hour fumigation period. However at highest SO. 

concentrations, above .tOO ppb, the calculated flux altered in accordance 

with changes in stomatal resistance induced by the pollutant. Therefore, all 

flux values used in these analyses have been taken three and a half hours 

after the onset of the four hour sulphur dioxide exposure period as 

stomatal changes occurred shortly after the start of the SO. exposure. In 

this way, differences in calculated and measured fluxes occurring early in 

the exposure period were discounted. 

The relationships between pollutant fluxes to the plant and 

ambient sulphur dioxide concentrations, for both varieties of Vicia faba, 

are shown in Figures 3.23 to 3.26. Figures 3.23 and 3.2' show measured and 

calculated pollutant fluxes for plants of the variety Dylan. Total leaf flux 
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ranged from 0·~6 to 6'16 l'g m-' s-'. Regression analyses gave a correlation 

coefticient of 0·663 for measured sulphur dioxide flux and 0·762 for 

calculated flux and showed a good linear relationship between ambient 

sulphur dioxide concentration and pollutant flux, both correlation 

coefficients being significant at the 99'0% level. 

Figures 3.25 and 3.26 show measured and calculated pollutant 

fluxes for the variety Aquadulce Claudia plotted against ambient sulphur 

dioxide concentration. Total leaf flux ranged from 0·36 to 6'~3 l'g m-' s-' 

over the range of sulphur dioxide concentrations supplied. Regression 

analyses gave good linear correlations of 0·732 (p < 0·001) for measured 

flux, and 0'7~0 for calculated pollutant flux (p < 0'01). 

Analysis of covariance between both measures of flux, for both 

varieties, showed there to be significant differences between measured and 

calculated flux. For Aquadulce Claudia plants, the calculated F value was 

5·09~ (cc = 0·025) and for Dylan F = ~'27 (cc = 0·05). In both varieties, 

measured sulphur dioxide flux was significantly higher than calculated flux 

for a given ambient sulphur dioxide concentration. When both measures ·of 

flux were compared between the varieties, again using analysis of 

covariance, Aquadulce Claudia was found to have significantly lower 

pollutant flux, at a given ambient SO. concentration, than that to the 

variety Dylan when ambient sulphur dioxide concentrations exceed 100 ppb. 

The calculated F value for calculated flux was 6'915 (cc = 0·025) and ~'605 

(cc = 0·05) for measured flux. This difference in flux may be explained by 

the fact that Aquadulce Claudia appeared to have higher stomatal 

resistances to sulphur dioxide transfer than Dylan when r.SO. was 

calculated by analogy to water vapour transfer (Figures 3.29a and 3.30a). 

It was seen from the data given in Figures 3.23 to 3.26 that, in 

both varieties, the calculated sulphur dioxide flux into the plant was less 

than the measured flux. Figures 3.27 and 3.26 show calculated flux plotted 

against measured flux for both Dylan and Aquadulce Claudia. It may have 

been expected that both estimations of flux would give similar results. 

However, analysis of covariance showed· that in both varieties, measured 

flux was significantly higher than calculated flux when flux measurements 

exceed 1'5 l'g m-' s-'. 

The amount of sulphur dioxide deposited on the leaf surface 

during fumigation must be considered when estimates of measured flux are 
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Chapter 3 

Figures 3.23 and 3.2~. 
Measured (3.23) and Calculated (3.24) Pollutant Fluxes (l1g m-' S-I) to Vlcla 
raba CV. Dylan in Relation to Ambient Sulphur Dioxide Concentrations <ppb). 
[ The linear regression lines are also shown]. 
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Chapter 3 

Measured (3.25) and Calculated (3.26) Pollutant Fluxes (1'8 m-' s-') to Vicia 
faba CV. Aquadulce Claudia in Relation to Ambient Sulphur Dioxide 
Concentrations (ppb). [ The regression lines are also shown). 
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Chapter 3 

9 

.9 

Measured Sulphur Dioxide Fluxes (I'g m-' s-') Plotted Against Calculated 
Fluxes for V.faba CV. Dylan (3.27) and Aquadulce Claudia (3.28). [The 
expected relationship between both measures of flux, allowing for surface 
deposition, is also shown in the figures (-----) to highlight the actual 
differences observed between both estimates of SO. fluxl. 
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made. Adsorption on to the leaf surface and cuticular diffusion can 

represent between 10 and ~Or. of the total flux dependin~ on conditions and 

plant species <Black & Unsworth, 1979c; Taylor & Tin~ey, 1961 & 1983; 

Taylor, Mclaughlin, Shriner & Selvid~e, 1963). Black & Unsworth calculated 

surface deposition in Vicia faba to be 10% of the total flux for measured 

flux values up to 2·5 I1g m-' 5-'. These data were extrapolated for the two 

varieties of Vicia used in this study. Therefore one might expect measured 

flux values to be slightly higher than calculated fluxes since assessin~ 

pollutant flux from analogy to water vapour transfer does not involve 

surface deposition. Figures 3.27 and 3.26 show the expected relationship 

between measured and calculated pollutant fluxes. Allowing for surface 

deposition, p, ..... Should be proportionally higher than P'OALo. It can be 

seen that the observed differences in p, ..... and PrOaLo, for both varieties, 

cannot be due solely to surface deposition. This was corroborated by the 

fact that at low flux values (below 2 I1g m-' 5-') the calculated flux was 

higher than the measured flux. 

In order to expl~in these observed differences between measured 

and calculated flux, stomatal resistance to pollutant flux must be examined. 

Stomatal resistance to sulphur dioxide can, as with flux, be calculated in 

two ways. Firstly from analogy to water vapour transfer where r.SO. = 1·96 

r.H.O, allowin~ for diftering molecular diffusivities between the two ~ases. 

This value was used to derive calculated pollutant flux. Secondly, stomatal 

resistance to SUlphur dioxide transfer may be calculated usin~ an analo~ue 

modelling approach, independent of water vapour transfer, whereby 

resistance is calculated from the concentration gradient of sulphur dioxide 

between the interior and the exterior of the leaf and the measured 

pollutant flux via mass balance (Taylor & Tingey, 1963). The second value 

for stomatal resistance is termed r.SO.'. If flux is given as: 

Flux = C. - Cl (3.11 ) 
rt 

then, 

rt = C. Cl (3.12 ) 
Flux 
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where r. = total leaf resistance to sulphur dioxide transfer (ra + r. + r.), 

Co is the sulphur dioxide concentration outside the leaf (!1g m-'), Ci is the 

sulphur dioxide concentration in the leaf interior and Flux is p, ..... (Ilg 

m-' s-'). 

The concentration of sulphur dioxide in the leaf interior, Ch is 

very difficult to measure. 50 me researchers have assumed Ci to be close to 

zero (Black & Unsworth, 1979aj Winner & Mooney, 1960a,b,c) as sulphur 

dioxide dissolves in the water surrounding the cells in the sUbstomatal 

cavity. Black & Unsworth considered Ci to be negligible at low ambient 

sulphur dioxide concentrations. Other workers have tried to measure Ci by 

using the equation given above (3.11), when all other parameters were 

known. Both Taylor & Tingey (1963) and Winner et lU. (1965) calculated 

negative values for Ci. However, for these analyses, Ci was assumed to be 

effectively zero. The residual resistance, r .. was, by definition, also 

assumed to be effectively zero In comparison to r. and r. (Black & 

Unsworth, 1979c). Therefore, from equation 3.12: 

C. (3.13 ) 
Pr ..... 

The aerodynamic resistance to sulphur dioxide transfer (r.50.) is calculated 

from that obtained for water vapour transfer, allowing for differing 

molecular diffusivlt1es where, r.50. = 1·57r.H20 (s cm-'). 

Gaastra (1959) used this technique to investigate factors 

controlling carbon dioxide assimilation. Taylor & Tingey suggest that any 

differences In the two estimates of stomatal resistance to SUlphur dioxide 

transfer are evidence for a non-stomatal, residual resistance (r.502 ) to the 

diffusion of SUlphur dioxide into the leaf interior. 

(3.14 ) 

Taylor & Tingey found this residual resistance to be always negative in 

their own study of Geranium carolinlanum and in their interpretation of 

data from other workers. 

This method was used on the data collected for Aquadulce Claudia 

and Dylan plants and the results are shown in Tables 3.9 & 3.10. The 

maJority of the data showed r.502 ' to be less than r.502 and the resulting 
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TABLE 3.9 
Summary of Residual (r.SO.) and Stomatal Resistances (r.SO., calculated from 
water vapour transfer and r.SO,' using analogue modelling) to Sulphur 
Dioxide Transfer as Related to Ambient Sulphur Dioxide Concentrations and 
Pollutant Flux in Vicia ~ CV. Aquadulce Claudia. 

[so.] 
(ppb) 

99 

128 

215 

283 

305 

320 

350 

4-22 

500 

500 

550 

P'Jlqas PeaLe 
(Ilg m-' s-') 

0·87 1·99 

1- 76 0-76 2-79 

3·32 

1- 70 1- 86 

3·16 1- 61 3·37 

2-29 1- 94, 

1-21 

2-65 

3·02 1- 73 

3·12 6- 11 1-39 

3-87 2-02 

TABLE 3.10 

2·31 1· 83 

-2·75 

o·u -2·09 

3·82 O·u 

0·72 -2·64-

0·78 -1· 15 

0·27 -5·96 

3·61 0·58 

3·79 - -3· 54-

2·24-

0·4-0 -1· 61 

Summary of Residual and Stomatal Resistances to SO. Transfer in Vicla faba 
CV. Dylan. 

[so.] 
(ppb) 

92 

210 

285 

300 

390 

UO 

4-60 

510 

Pr.... Pr •• L. 
(Ilg m-' 5-') 

0·69 

7·32 2· 16 

2·15 3-06 

2-17 2-93 

8·18 

5·09 3·08 

7·32 

7·12 5-74-

r.SO. r.SO.' 
(s cm-') (s cm-') 

I-59 2·89 1· 29 

0·97 -0-24- -1-20 

1- 72 2-86 1- 13 

1-98 3·01 1·03 

2·U -o-u -2-85 

1-99 0·4-9 -1- 4-9 

1·28 -0-01 -1- 29 

0-97 0·4-7 -0-4-9 
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residual resistance to be negative. The existence of an additional 

resistance to sulphur dioxide transfer which has a negative value would 

explain the differences observed between measured and calculated pollutant 

tluxes. Given that calculated flux is derived from: 

PPCALC = C - Co (3.15) 

(see chapter 2), where rr is usually assumed to be negligible in comparison 

with the other leaf resistances. If this negative residual resistance is 

ignored when calculating pollutant flux then the values of P'eaLe obtained 

would be low. in comparison to those for measured pollutant flux. 

Figures 3.29 and 3.30 show r,SO. from water vapour transfer, 

r,SO.' from p, ••• , and rrSO. for both varieties of Vicla faba plotted 

against measured pollutant flux. Although there was a certain amount of 

scatter, these data indicated the existence of an additional, residual 

resistance to sulphur dioxide transfer. Taylor & Tingey suggested that the 

calculated residual resistance in Geranium carolinianum was always negative 

irrespective of the SUlphur dioxide concentration supplied. These workers 

used the data from Black & Unsworth (1979b) to calculate residual 

resistances to sulphur dioxide transfer in Vicia faba and found these 

resistances to range from -0,3 to -5'0 s cm-', From the figures, it can be 

seen that residual resistances in Dylan Were positive tor measured flux 

values less than 3 Ilg m-' s-', above this flux value the calculated residual 

resistances to sulphur dioxide transfer were negative. In Aquadulce Claudia 

plants, the data were a little more variable but followed the same pattern 

observed in Dylan ie. residual resistances were negative at measured flux 

values above 3·2 Ilg m-' s-'. H!!llgren and co-workers (1982a), in a study of 

Pinus sylvestris, reported a residual resistance to SO. flux that varied in 

both magnitude and direction. 

In using equation 3.U to estimate rrSO., the SO. concentration 

in the leaf interior, Ch was assumed to be zero. Although Black & Unsworth 

(1979b) concluded that Cl was zero in ~ faba at low SO. concentrations, 

it may be that at higher SO. concentrations, Cl is greater than zero. The 

effect of this in Vicia faba would be to make rrSO. more negative since the 

concentration gradient of SO. used in equations 3.12 and 3.13 would be 

reduced. 
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Figure 3.29a 
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Stomatal and Residual Leat Resistances <s cm-') to Sulphur Dioxide Flux in 
Vicia !ru!J!.. CV. Dylan, plotted as a function ot Measured Pollutant Flux (l'-8' 
m-I S-I). [3.29a & 3.29b show stomatal resistance, r.SO., as calculated from 
that for water vapour transfer and r.SO.'. as derived from mass balance 
calculations: 3.29c shows residual resistance. rrSO •• to SO. uptakel. 
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Figure 3,30a 
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Chapter 3 

Stomatal and Residual Leaf Resistances (s cm-') to Sulphur Dioxide Flux in 
Vicia hll&. CV. Aquadulce Claudia, plotted as a function of Measured 
Pollutant Flux (1-'8' m-' s-'). [3,30a & 3.30b show stomatal resistance, r,SO •• 
as calculated from that for water vapour transfer and r,SO.'. as derived 

. trom mass balance calculations: 3.30c shows residual resistance. r.SO •• to 
SO. uptake]. 

Page 107 



Results Chapter 3 

The implications of this additional negative resistance to 

sulphur dioxide flux are open to debate. Because diffusive resistance is 

proportional to pathlength (Meidner. & Mansfield, 1966), Taylor & Tingey 

suggested that, for sulphur dioxide, the mean ditfusive path length in the 

gas phase is less than that for effluxing water vapour. This proposal is 

the reverse of that for carbon dioxide in that CO. is thought to have a 

longer path length for diffusion than H.O due to its passage into the 

mesophyll cells. These authors suggested that the shorter pathlength of SO. 

is due to the high solubility of the gas in water and its unique chemical 

reactivity in solution, and postulated that the predominant site for SO. 

deposition in the leaf interior is the substomatal chamber and not the 

mesophyll tissue. This idea of a shorter pathlength of ditfusion for SO. is 

disputed by Winner et a1. (1965) because the average pathlength of water 

vapour efflux is considered to be extremely short. 

The ditferences between measured and calculated pollutant flux 

have been shown to be due to incorrect assumptions of rr when calculated 

pollutant flux is estimated. When stoma tal res istances to sulphur d iox ide 

were calculated trom analogy to water vapour transfer, Aquadulce plants 

were found to have higher resistances to sUlphur dioxide flux than Dylan 

plants (Figs. 3.29a & 3.30a) and the relationship between flux and stomatal 

resistance was variable. However, when stomatal resistance was calculated 

from the concentration gradient between the interior and the exterior of 

the leaf <Figs. 3.29b & 3.30b), there was a much closer correlation between 

measured pollutant flux and stomatal resistance'to SO. flux, resistances 

appear'ing to be much lower at higher SO. fluxes in both varieties. There 

were no apparent differences in stomatal resistances to pollutant flux 

between the varieties when resistance was calculated in this way as 

opposed to the resistances obtained from analogy water vapour transfer. 
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3.10 CONCLUSIONS A DISCUSSION 

3.10.1 Net Photosynthesis and Aabient 802 

Whilst plants of the variety Dylan have been studied on many 

occasions by Black " co-workers <Black " Black, 1979a,b; Black " Unsworth, 

1979a,b,c, 1980; Black, Ormrod " Unsworth, 1982), little evidence has been 

found in the literature concerning intra-specific variation in pollutant 

response in Vicia ~. The results in this study provide evidence for a 

number of differences in response to SO. occurring between the two 

varieties Dylan and Aquadulce Claudia. 

That sulphur dioxide induces photosynthetic inhibition in plants 

is undisputed. As outlined in the introduction to this chapter, numerous 

reports have shown inhibition in Pnet in response to SO •• The extent of the , 
inhibition shown in Figures 3.1 and 3.2 for both varieties of Vicia ~ 

was typical of that observed for all SO. fumigations above 400 ppb. Plants 

of the variety Dylan exhibited full recovery to pre-fumigation rates within 

15 h of the end of the fumigation period. However, Aquadulce Claudia plants 

did not show full recovery within 24 h following SO. fumigations above "00 

ppb. 

The responses of both varieties to a range of SUlphur dioxide 

concentrations were shown in Figures 3.3 and 3.". A polynomial regression 

.. _ .fit .. dl;monstrated close correlations between ambient SO. concentration and 

observed photosynthetic response. However. Black" Unsworth <l979b), 

working with Vicia ~ CV. Dylan found a curvilinear relationship between 

depression of photosynthetic rates and SO. concentration opposed to that 

obtained for Dylan plants in this study. Figure 3.31 gives a comparison of 

the data from this study with that from Black & Unsworth. The differences 

in observed photosynthetic responses to SUlphur dioxide in Dylan plants 

between the two studies may be attributed to a combination of factors 

including differences in exposure system design and differing environmental 

parameters at the time of the exposure leading to differing leaf 

resistances <Unsworth, 1982; Mansfield, 1983). The observed ditferences in 

photosynthetic response may also be due to the differing lengths of the 

SUlphur dioxide exposure periods, being two hours for Black" Unsworth and 

" h in this stUdy. 
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Figure 3.31 
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Figure 3.31. 
Comparison of the data obtained in this study (.) and that or Black & 
Unsworth (1979b) (D) to show variation in the degree of net photosynthetic 
inhibition in Vicia faba CV. Dylan in response to a range of sulphur 
dioxide concentrations (ppb). 
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Black" Unsworth (1979b) working with Vicia faba. and Winner" 

Mooney <1980c) working with Atriplex spp. reported a temporary enhancement 

of photosynthetic activity early in the exposure period and Takemoto " 

Noble (1982). working with Glycine !!!AK •• found 250 ppb SO, for 2 h to cause 

an enhancement in Pnet throughout the exposure period. This enhancement of 

photosynthetic rate was observed in plants of the variety Aquadulce Claudia 

when SO. concentrations were below 110 ppb (Fig. 3 .... ). but was not observed 

in the Dylan plants. Aquadulce plants also exhibited greater photosynthetic 

inhibition than was observed in Dylan plants at higher SO. concentrations 

(above ... 50 ppb). 

Although no studies have been performed exclusively to examine 

intra-specific variation in pollutant response in Vicia faba. it is 

interesting to note that Darrall (1986) reviewed the lowest SO, 

concentrations reported to inhibit photosynthesis in a number of plant 

species. Darrall examined two varieties of llia lA.!!A. CV. 'Three Fold White' 

and 'Blaze' and stated the minimum SO. concentration to inhibit Pnet in 

both varieties was 300 ppb for 2 h. Black " Unsworth (1979b) observed 15% 

inhibition in Dylan after 35 ppb for 2 h and in this study both Dylan and 

Aquadulce Claudia plants responded to SO. fumigations below 100 ppb for "'h. 

The wide disparity in the lowest SO, concentration to initiate a 

photosynthetic response in ~ lA.!!A. between these data and that of 

Darrall cannot easily be explained. 

It is now accepted that. in general. photosynthetic inhibition is 

more severe in cultivars with higher rates of photosynthesis <TERG. 1988); 

however. in this study Aquadulce Claudia plants were shown to have 

significantly higher 'natural' photosynthetic rates than plants of the 

variety Dylan and it was also shown that at SO, concentrations below 100 

ppb, Aquadulce plants showed photosynthetic enhancement whilst 

photosynthetic rates in Dylan plants were' inhibited. As stated in the 

introduction to this chapter there are a number of proposed mechanisms for 

differential sensitivity within species, differential pollutant uptake 

playing a large part (eg. Klein et al., 1978); this being discussed in more 

detail later in this section. Varying capacity to detoxify hydrogen 

peroxide (H,O,) accumulated as a result of SO. fumigation has been proposed 

as another factor contributing to differential sensitivity (Alscher et al., 

1987). Tanaka et al. (1982a,b) reported that H,O, accumulated in chloroplasts 

during SO, fumigation and suggested that photosynthetic inhibition in SO. 
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fumigated plants was caused by H.O •• In their study of the different 

sensitivities of two pea cultivars to SO., Alscher tt al. reported differing 

abilities to detoxify H.O. and suggested that the difference between 

cultivars in the degree of photosynthetic inhibition reflected the relative 

resistance to SO. of the respective H.O. detoxification systems. 

Black (1982) suggests that enhanced rates of photosynthesis can 

often be attributed to increases in stomatal conductance or to depressed 

rates of photorespiration. It may be assumed that depression of 

photosynthetic rates may be due to decreases in stomatal conductance 

and/or changes in respiration rates in response to SO •• However, when the 

stomatal responses to SO. of the two varieties used in this study are 

examined, it. can be seen that the substantial reductions in Pnet observed 

cannot result entirely from changes in these factors. 

3.10.2 Dark Respiration and Aabient SO, 

The dark respiration (Rd) responses of both varieties were 

outlined in 63.5. Aquadulce Claudla plants showed no respiratory response to 

sulphur dioxide but were found to have double the dark respiration rate of 

Dylan in the absence of pollutant. In contrast, Dylan plants exhibited 

increases in dark respiration that were large and independent of the SO. 

concentration supplied. These observed responses in Dylan plants agree well 

with the results of Black & Unsworth (1979b) where dark respiration rates 

were effectively doubled in response to sulphur· dioxide. It is of interest to 

note that if this increase in dark respiration is assumed to continue in 

the light period during SO. exposure then the observed inhibition in net 

photosynthesis at low sulphur dioxide concentrations may be due entirely to 

increases in Rd. This would explain the fact that photosynthetic inhibition 

is seen to occur at these low sulphur dioxide fumigation levels when 

stomatal resistance has decreased in response to the pollutant. 

3.10.3 Stomatal Responses to Aablent SO, 

Typical examples of stomatal responses to high sulphur dioxide 

concentrations, throughout one photoperiod, were shown in Figures 3.6 and , 
3.7. it was seen that stomatal resistance increased in response to SO.; the 

magnitude of response being much greater in Dylan than in Aquadulce 
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Claudia plants. Figure 3.6 portrayed changes in stomatal resistance in Dylan 

plants during a four hour fumigation period with .600 ppb SO. and it can be 

seen, from comparison with the control plant, that enhanced stomatal 

opening occurred during the first 30 minutes of the exposure period 

followed by a rapid and steady increase in r. throughout the remainder of 

the fumigation period. These data contrast with that presented by MaJernik 

& Mansfield <1970 & 1971) who observed enhanced stomatal opening in lli!A 

faba CV. Windsor Harlington during SO. fumigations from 0'25 too~ ppm. 

Enhanced stomatal conductance, following the onset of fumigation, was not 

observed in Aquadulce Claudia plants at 500 ppb SO. (Figure 3.7> and 

although an overall increase in r. occurred after a tour hour fumigation 

period, the increase in r. was only detectable during the 4-th hour of the 

fumigation period. 

The stomatal responses of both varieties of lli!A ~ to a 

. range of sulphur dioxide concentrations were shown in Figures 3.8 and 3.9. 

Variability in stomatal response in Dylan plants at concentrations up to 

4-00 ppb SO. was shown, the predominant response being enhanced stomatal 

opening. Both varieties exhibited stomatal closure at SO. concentrations 

above 4-00 ppb, the magnitude of response being much greater in Dylan 

plants. These results contrast with those obtained by Biscoe, Unsworth & 

Pinckney (1972) who polluted Vicia ~ CV. Great Green Longpod with SO. 

concentrations between 35 and 500 ppb for 0'5 - 12 hours, and found 

decreases in r. at all .SO. concentrations for all exposure periods. In all 

reported studies with Vicia ~ enhanced stomatal opening has been shown 

in response to a wide range of sulphur dioxide concentrations (Table 3.2). 

The variabUity in observed stomatal responses in Dylan plants, to 

SO. concentrations below 4-00 ppb, may be due to a number of factors. 

Stomata are extremely sensitive to the environment in the absence of aerial 

pollution and virtually any change in one of the major components such as 

light, temperature, humidity or gaseous composition of the atmosphere, 

results in a change in stomatal aperture. The switch in stomatal response 

from opening at lower SO. levels to closure at higher SO. levels, in Vicia 

~ may be due to the mechanism of action of SO. on the stomata. A 

number of theories have been proposed to explain stomatal responses to SO •• 

El1tiey & Ormrod (1979) found significant changes in leaf water potential in 

Vicia faba at high SO. concentrations. This is important because stomatal 

aperture is determined by the turgor of the guard cells and the 
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surrounding epidermal cells thus any change in the turgor of the cells in 

response to SO. will alter the aperture of the stomatal pore. Black & Black 

(1979a,b) used light microscopy to investigate SO. effects on Vicia faba 

and found that enhanced stomatal opening was associated with extensive 

destruction of the adjacent epidermal cells rather than any action of SO. 

on the guard cells themselves. However, at higher SO. concentrations, where 

stomatal closure' was observed, the response was found to be associated with 

cellular disorganisation and reduced guard cell viability. Changes in carbon 

dioxide concentration in the substomatal cavity, as SO. depresses 

photosynthesis, have been proposed as inducing a stomatal response (Koziol 

& Jor.dan, 1978) but, as Black (1982) comments, this hypothesis is 

unsatisfactory in explaining enhanced stomatal opening at low sulphur 

dioxide concentrations where photosynthetic inhibition also occurs. 

Stomatal responses to SO. have also been linked to leaf abscisic acid 

. content (Kondo & Sugahara, 1978 as described in §3.1) and ethylene 

production (Bressan et Al., 1979). 

It is evident from the data presented in Figures 3.8 and 3.9 

that, unlike photosynthetic inhibition, the relationship between stomatal 

response and ambient sulphur dioxide concentrations below 400 ppb is weak, 

the correlation between the two variables being relatively low compared to 

the correlations obtained for photosynthetic activity and SO •• It is 

perhaps important to remember that the actual flux to the plant is, in all 

likelihood, a more accurate indication of the relationship between plant 

damage and sulphur dioxide fumigations. The importance of internal sulphur 

dioxide flux to Y!!llA faba in relation to ambient sulphur dioxide 

concentration and observed plant responses is discussed later in' this 

section. 

3.10.~ Lea' Resistances to CO2 • H2 0 and 502 Trans'er 

In §3.7.1 the pathways for the transfer of gases into and out of 

the leaf were discussed and the important resistances to gas exchange were 

detailed. Because of the variability in both stomatal and net 

photosynthetic response to SO. in both varieties, the leaf resistances 

before and after SUlphur dioxide fumigation were partitioned. The influences 

of SO. were studied on each resistance in turn in an attempt to 

distinguish between stomatal and non-stomatal effects of SO. on 
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photosynthetic rate. The data tor both Aquadulce Claudia and Dylan plants 

demonstrated that SO. had an effect on Pnet that could not be accounted 

tor by chan5es in stomatal resistance alone. Several workers have tried to 

distin5uish between stomatal and non-stomatal effects of SO. (Black & 
Unsworth, 1979b; Furakawa 111 lY.., 1980a,b; Winner & Mooney, 1980b,c; and 

Carlson, 1983b) and sU55ested that increased internal leaf resistances were 

responsible for a lar5e portion of pollutant induced increases in total 

resistance to carbon dioxide eXChange. Fi5Ures 3.10 and 3.11 showed that 

chan5es in stomatal resistance were not fully responsible for chan5es in 

net photosynthesis. When the data in Tables 3.7 and 3.8 were examined it 

was seen that the estimated ~oss photosynthetic rate (Pmax), assumin5 

only r. had chan5ed, was 5reater than the observed ~oss photosynthetic 

rate at hi5her SO. concentrations. This indicates that increases in other 

non-stomatal resistances in the carbon dioxide transfer chain had occurred. 

The residual resistance to carbon dioxide transfer increased in 

both varieties of Vicia faba in response to SO •• In Aquadulce Claudia 

plants, the residual resistance increased by 70 - 500 s m-I above pre

tumi5ation values in the maJority of plants exposed to SO.~eater than 

100 ppb • A5ain, in Dylan plants, the response was a Uttle more variable, rr 

increasin5 when SO. exceeded 290 ppb. This increase in rr correlates well 

with data obtained by Carlson <1983a,b) workin5 with Glycine max. where rr 

increased with increasin5 SO. concentrations from 0'2 - l·Oppm. This 

increase in rr in response to SO. was much more pronounced between 

concentrations of 0·' and 0·5 ppm, sU55estin5 the passin5 of a threshold 

concentration, above which, SO. has a pronounced effect on carbon dioxide 

metabolism. This lar5e increase in rr around 500 ppb SO. was observed in 

both varieties of Vicia faba. 

Differences between cultivars of the same species in pollutant 

induced chan5es in residual and stomatal resistances were also found by 

Furakawa 111 al. (1983, 198'a) in three poplar species exposed to ozone. 

These workers found photosynthetic inhibition in one variety to be 

attributed solely to increases in mesophyll diffusive resistance, whilst in 

the other two varieties, stomatal closure was also a factor inducin5 the 

reduction of net photosynthetic rates. 

In short, in Aquadulce Claudia plants, chan5es in rates of ~oss 

photosynthesis at all SO. concentrations appear to be due in part to 

chan5es in stomatal resistance but the predominant influencin5 factor on 
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CO. exchange was the residual resistance, r .. which increased in response 

to SO •. Dylan plants however, had a sUghtly different response, 

photosynthetic responses were attributed in part, to changes in the 

stomatal resistance and the residual resistance to carbon dioxide transfer, 

but the effects on CO. exchange were moderated by changes in dark 

respiration rates in response to SO. exposure. At low SO. concentrations, 

changes in gross photosynthesis in Dylan plants, appeared to be due 

entirely to changes in stomatal resistance. However, net photosynthetic rate 

was seen to be depressed by SO. at low concentrations because dark 

respiration was stimulated. Carlson <1983 a,b) attributed significant 

inhibition in Pnet in Glycine max. to increases in rr and, to a lesser 

extent, increases in r. in response to SO. but no dark respiration response 

was detected • 

. 3.10.5 Stomatal Resistance and Photosynthesis 

Figures 3.13 and 3.14 showed the extent of photosynthetic 

inhibition in Vicia taba as a function of changes in stomatal resistance. 

For Dylan plants, photosynthetic inhibition was correlated with both 

enhanced stomatal opening and stomatal closure, this being explained by the 

reasons given above. Aquadulce Claudia plants, however, showed that when 

Pnet was enhanced by low SO. fumigations, it was as a result of enhanced 

stomatal opening, photosynthetic inhibition being associated with stomatal 

closure. These were results one would expect given that there was no 

stimulation of dark respiration in Aquadulce Claudia plants. In Dylan 

plants, small increases in Pnet, at low SO. concentrations due to enhanced 

stomatal opening may be negated by the doubling in the dark respiration 

rate. 

3.10.6 Sulphur Dioxide Flux 

The importance of relating plant responses to SO. to flux rather 

than ambient sulphur dioxide concentration has been discussed in §3.8.1. 

Whilst significant intra-specific differences in SO. response in Vicia faba 

have been determined with respect to ambient sulphur dioxide concentration, 

there is evidence in the literature to suggest that differential 

sensitivities of plants to SO. arise from different rates of pollutant 
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uptake from similar ambient SO. concentrations (Klein et al., 1978; Taylor, 

1978; Butler'" Tibbetts, 1979c; Winner" Mooney, 1980a; Kimmerer '" 

Kozlowski, 1981>. Thus the observed differences in response between Dylan 

and Aquadulce Claudia plants may arise from differences in pollutant uptake 

or, If the amount of SO. entering the plant is the same, from different 

sites/modes of action of SO. on the metabolic processes within each variety. 

In §3.8, observed Changes in net photosynthesis and stomatal resistance for 

each variety, were examined in relation to the actual pollutant flux to the 

plant. Figures 3.15 to 3.18 showed photosynthetic inhibition as a function 

of both measured and calculated pollutant flux. The threshold values for 

measured flux, above which photosynthetic inhibition was seen to occur, 

were 0·3 (1g SO. m-' s-' in plants of the variety Dylan and 1'8 (1g SO. m-I 

s-' in Aquadulce Claudia plants. When calculated flux is considered, again, 

Aquadulce plants had a higher threshold flux of 1·5 (1g m-I s-' compared to 

. the 0·8 (1g m-I s-' found for Dylan plants. The data from calculated flux 

suggested that Aquadulce plants had a higher tolerance to SO. than Dylan, 

as indicated by a higher threshold concentration. However, once this 

threshold flux had been exceeded, Aquadulce plants were much more sensitive 

to SO. than those of the variety Dylan, Dylan plants exhibiting half the 

degree of photosynthetic inhibition found in Aquadulce for the same degree 

of flux. Similar results were observed by Winner'" Mooney <1980a) when 

sulphur dioxide flux was plotted against photosynthetic inhibition in 

Diplacus aurantiacus and Heteromeles arbutifolia. Photosynthesis in 

D.aurantiacus was more sensitive than that of H.arbutifoUa for a given 

sulphur dioxide flux but D.aurantiaclls was seen to have lower rates of SO. 

absorption for a given ambient sulphur dioxide concentration. However, 

using the same two species, Winner " Mooney (1908b) state that 

D.aurantiacus has a higher absorption rate for SO. than H.arbutlfolia at 

any given SO. concentration. When SO. flux exceeded 5 (1g cm-· , 

D.aurantiacus showed more than double the depression in photosynthetic 

rate observed in H.arbutifolia. 

There was a contradiction in relative sensitivities when measured 

flux was examined in Dylan and Aquadulce Claudia plants. Although 

Aquadulce plants had a higher threshold flux value, when the threshold 

value had been exceeded, Dylan plants appeared to be more sensitive to SO. 

than Aquadulce and showed up to 20% inhibition for flux values between 0·3 

and 1·8 (1g m-' s-' whereas enhancement of Pnet was observed in Aquadulce 
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plants at these flux values. 

Winner &: Hooney (1980a) suggested that the responses of stomata 

during SO. exposure may have been one of the factors contributing to 

variation in SO. sensitivities between plants. Figures 3.19 to 3.22 showed 

the stomatal responses of lliJA ~ plotted as a function of pollutant 

flux. For both varieties, there was a good linear correlation between 

measured flux and observed stomatal responses. In Dylan plants, flux values 

below 4- I1g m-' S-1 were associated with stomatal opening, when SO. flux 

exceeded this value stomatal closure was seen to occur. In Aquadulce Claudia 

plants, the threshold concentration, where the switch from stomatal opening 

to closure occurred, was approximately 3·2 I1g m-' S-1. Winner &: Mooney 

<t980a,b) correlated pollutant flux with stomatal closure in both 

D.aurantiacus and H.arbutlfolia, stomatal conductance decreasing with 

increasing SO. flux. Similarly, Carlson (1983b) associated increasing 

. pollutant flux in Glycine max. with increasing stomatal res istance. In 

another study, using five clones of Populus tremuloides. Kimmerer &: 

KozlowBki <1981> associated stomatal closure with increasing pollutant flux, 

the extent of the stomatal closure observed at any given flux being 

dependent on the variety. 

As stomatal conductance determines gas-phase sUlphur dioxide 

flux into the substomatal cavity, many studies have focused upon 

differences in gas-phase conductance as the primary mechanism causing 

differences in plant responses to SO •• Most workers assumed that stomatal 

conductance to water vapour was proportional to internal SO. tlux. In a 

number of Bpecies, differences in Btomatal conductance account for 

differences in pollutant sensitivity (Bonte et al., 1977; Amundsen &: 

Weinstein, 1981). However, in other species, different plant responses to SO. 

were not clearly associated with differences in stomatal conductance 

(Ayazloo, GarBed &: Bell, 1962). In Vicia faba, Dylan and Aquadulce plants 

Bhowed different relationships between changes in Btomatal conductance and 

sulphur dioxide flux. When measured sulphur dioxide flux was 1 I1g m-' S-1 

Aquadulce plants exhibited enhanced stomatal opening of only 7%, whereas 

Dylan plants exhibited a 30% enhancement in stomatal opening. It was 

apparent that stomatal resistance/conductance were not the only factors 

determining pollutant flux in Vicia faba. 

The observed differences between the varieties may be explained 

if the relative flux to each variety is examined in relation to am1>ient 
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sulphur dioxide concentration and total leaf resistance to pollutant ,flux. 

Figures 3.23 to 3.26 demonstrated that, for both measures of flux, Aquadulce 

Claudia plants had significantly less flux into the leaves of the plant than 

Dylan plants at any given SO. concentration above 100 ppb. When stomatal 

resistance to sulphur dioxide flux was calculated from analogy to water 

vapour transfer, Aquadulce plants Were found to have significantly higher 

resistance to flux during SO. fumigations than was observed in Dylan 

plants. 

In both varieties, measured flux (from mass balance calculations) 

to the plant was significantly higher than calculated flux (from analogy to 

water vapour transfer). It might be expected that both determinations of 

flux would give similar results, and Carlson <t983b) found a t:l 

correspondence between calculated and measured flux to Glycine ~. To 

ascertain which of the flux values was more accurate, stomatal resistances 

, to pollutant flux were examined. Firstly, stomatal resistance to SO., r.SO., 

was calculated from analogy to water vapour transfer and this value was 

used to derive calculated pollutant flux. Alternatively, stomatal resistance 

to SO., transfer, r.SO.', was calculated from SO. data using analogue 

modelling techniques (Taylor & Tingey, 1983). When both measurements of 

resistance were compared, the estimates of r.SO.' from the SO. data were 

consistently different to the simUltaneous estimates of r.SO. derived from 

analogy to water vapour transfer. Taylor & Tingey postulated that these 

differences were indicative of a residual resistance to SO. transfer, 

suggesting that the diffusive pathways for SO. and H.O are not completely 

synonymous. In Geranium carolinianum. the resulting residual resistance was 

always negative, indicating that SO. has a shorter diffusive pathway than 

H.O. However, the results for Dylan and Aquadulce Claudia showed the 

residual resistance to be positive at low SUlphur dioxide flux values and 

negative when flux values exceeded a certain threshold value. For Dylan 

plants, this value was 2 Jlg m-' s-', for Aquadulce it was 3 Jlg m-' s-· 

(Figures 3.29a, 3.30a). These data show that measured pollutant flux is more 

accurate assessment of true SO. flux than calculated flux. Water vapour has 

no added resistance to transfer so that when calculated flux is determined 

from analogy to water vapour transfer incorrect assumptions of r, are made, 

r, to SO. being assumed to be effectively zero. 

The existence of a residual resistance to sulphur dioxide 

transfer, positive or negative in direction, influencing SO. flux is of 
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importance in explaining differences in observed plant responses to SO •. The 

influence of residual factors have not been considered in most studies (eg. 

Winner & Hooney, 1980a. Kimmerer & Kozlowski, 1981. Carlson, 1983a), 

although the existence of a residual resistance to pollutant transfer has 

been suggested by many authors (Hlillgren, 1978. Black & Unsworth, 1979b. 

Heath, 1980). Where residual factors have been considered, the data are 

stlll conflictlng, some studies suggestlng that pollutant flux is less than 

may be expected from stomatal conductance measurements (Taylor & Tingey, 

1982 [ozone]. Hlillgren et al., 1982a). Other studies suggest that SO. flux is 

higher than that expected from gas-phase conductance values (Klein II al., 

1978. Taylor & Tingey, 1983). 

The data for Aquadulce Claudia and Dylan plants suggested that 

at low SO. concentratlons, when rr is positlve, less flux occurred than may 

have been expected from stomatal resistance measurements, r. decreasing in 

. response to SO •• It appeared that a switch occurred at higher SO. 

concentrations, the residual resistance became negative and as a result, 

flux was greater than expected given the observed increases in stomatal 

resistance in response to SO •. These data correlated well with the data 

relatlng ambient SUlphur dioxide concentratlon to pollutant flux. For both 

varietles, flu~ was shown to be proportlonal to SO. concentratlon, highest 

flux values being recorded at higher SO. concentrations. However, because 

stomatal closure has been shown to occur at high SO. concentrations, one 

might expect lower flux values. Taylor, McLaughl1n & Shriner (1982) showed 

that for Phaseo1us vulgaris the ratio of SO. flux to concentration 

decreased several fold as SO. concentration increased from 0·2 ppm to 0·8 

ppm. This was not seen to occur in either variety of Vicia ~, even 

though stomatal resistance decreased at higher SO. concentrations. The 

ratio of flux to ambient SO. does not decrease in Vicia faba at higher SO. 

concentrations because the residual resistance to SO. transfer becomes 

increasingly negative with increasing SO. and thus facilitates SO. uptake. 

Having said that SUlphur dioxide flux to Aquadu1ce plants was 

significantly less than to Dylan, and Aquadu1ce plants had significantly 

higher stomatal resistance to SO. transfer for a given ambient SO. 

concentration, it must also be noted that when flux values were equal in 

each variety, Aquadu1ce plants exhibited significantly greater depression of 

net photosynthetlc rates. This implied that the photosynthetlc mechanism 

in Aquadu1ce C1audia plants was more sensitive to sulphur dioxide than 
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Dylan although the threshold flux was higher in Aquadulce Claudia. Klein et 

al. (1978) found similar trends when they compared the relative 

sensitivities of Pisum sativum and Zea ~ to sulphur dioxide. ~ 

sativum accumulated more inorganic sUlphur than Zea mays under identical 

fumigation conditions, consequently Pisum Was said to be more sensitive to 

SO. than ZM. mays. However, Klein associated the greater uptake in Pisum to 

be due not only to a lower diffusive resistance but to a greater 'internal 

sink' for SO. uptake. These authors were not able to determine if this 

'sink' was based mainly on phYSical, chemical or physiological parameters. 

Differential sensitivities in plants to sUlphur dioxide can 

therefore be. due to avoidance mechanisms, involving high diffusive 

resistances andlor a low internal sink, or to SO. tolerance. Experiments 

have been performed on differentially sensitive plants which take up 

comparable amounts of SO. under identical fumigation conditions. These data 

indicated that the mechanisms of resistance must be concerned with 

physiological processes within plant tissues (Klein II M., 1978). 

In this study, differential sensitivity to SO. between Aquadulce 

and Dylan plants appeared to be due to a combination of avoidance and 

tolerance depending on SO. concentration. 

The table below gives representative examples of both varieties 

of Vicia faba in their response to low and high SUlphur dioxide 

concentrations. 

Summary or Responses or Bo~h Varle~les of Viola Faba ~o SOz. 

Change in 
External Flux Photosyntheti c Stomatal residual 
SO. Conc <p.g m-' s-, ) Inhibition resistance resistance 
(ppb) (%) (%) r., to SO. 

Pr .... Pf"~' (s cm-') 
VARIETY 

AQUA 128 1· 76 0'76 -13,9 6· 1 -2,75 

DYLAN 92 0·68 l' 03 6·7 -16,' 1·29 

AQUA 550 6·'3 3·87 77·1 -3"9 -1,61 

DYLAN 510 7·12 5·74- 32·2 -'0'2 -0·'9 
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CHAPTER FOUR 

4.1 INTRODUCTION 

In Chapter 3 the effects of sulphur dioxide on the gaseous 

exchange mechanisms of two varieties of Vicia faba were defined under 

optimum environmental conditions of light and temperature. However, 

environmental conditions are seldom 'ideal' or constant in the field. As is 

described below environmental conditions affect plant physiological 

processes· and modify the absorption of pollutant into the leaf thus 

indirectly influencing plant pollutant responses. Secondly, prevailing 

environmental conditions may influence plant sensitivity to absorbed 

pollutants thus exerting a direct effect. Conversely, pollutant induced 

physiological changes may influence the plants sensitivity to adverse 

environmental conditions and as is outlined below, there is growing 

evidence in recent literature to SUbstantiate such interactions. 

Investigations into environmental/pollutant interactions are of paramount 

importance to the UK and other countries with temperate climates as most 

economically important crops are grown during autumn, winter & spring 

months when adverse environmental conditions such as low light and 

temperature prevail and most gaseous pollutant concentrations are at their 

highest. Thus, this section of the stUdy deals with the modification of 

plant pollutant responses by added environmental stress prior to and during 

pollutant exposure. 

In order to understand the combined effects of environmental 

stress and sulphur dioxide fumigations, it is first necessary to define the 

effects of such environmental stress on plants in the absence of air 

pollutants. There is much evidence in the literature documenting the effects 

of such environmental stresses on plant physiological processes. 

4.1.1 The E~~ects o~ Low Light Intensities on Net 

PhotosynthesiS 

Owing to the fundamental role of photosynthesis in plant 

metabolism, light is considered one of the most important environmental 

factors as solar radiation not only supplies the energy for plant 

metabolism but also plays an important regulatory role in the life of a 
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plant, Influencing plant temperature, growth and development. Photosynthetic 

activity is influenced by three properties of light; spectral quality, 

Intensity and duration <Fitter & Hay, 1981>. 

Light intensity markedly affects the rate of oxygen evolution or 

carbon dioxide uptake in photosynthesis. A generalised plot of light 

.intensity (irradiance) against photosynthesis (as measured by CO. 

exchange) is shown in Figure 4a. There is a linear relationship over a 

considerable range up to a saturating light intensity, at which point, 

other factors such as CO. concentration become rate limiting. It can be 

seen from the figure that reducing light intensity below saturating point 

has a profound effect on photosynthetic rate. At lowest light intensities, 

gross photosynthetic rate, Pmax (net photosynthesis + respiration), becomes 

less than the rate of respiration and net photosynthesis becomes negative. 

The point at which the rates of the two processes Just balance is the 

. compensation point. 

A maJor problem for plants subJect to low light intensities is 

that of maintaining a positive carbon balance and there are three ways of 

achieving this. Firstly, under low light intensities there is a reduction in 

respiratory rates, therefore, the compensation point is lowered. However, 

reduced respiration rates also result in much slower growth rates. 

Chippindale (1932) observed much reduced growth rates in Festuca pratensis 

under low light intensities but normal growth was resumed when the stress 

was removed. A similar case was reported by Cross (1975) for Rhododendron 

ponticum seedlings. Secondly, plants grown under low light intensity have 

been shown to have increased leaf area providing a greater surface for 

light adsorption, while severe shade stress has been shown to cause only 

slight changes in the ratio of leaf weight to plant weight (LWR) ego in 

Impatiens parviflora (Evans, 1972) and in Veronica montana (Fitter & 

Ashmore, 1974). However, significant changes in specific leaf area, SLA, the 

ratio of leaf area to leaf weight, hav~ been found in response to low light 

stress. Newton (1963) showed the SLA of Cucumis sativa to be inversely 

proportional to total radiation and Evans & Hughes (1961) showed a 

threefold increase in SLA for Impatlens parvlflora when grown in 7% full 

sunlight. The increased SLA observed under low light stress implies 

important anatomical changes in internal leaf structure (Fig. 4b). In 

general, under low light stress, leaves are larger and thinner than those of 

plants grown under higher light intensities. The palisade tissue is poorly 
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Figure 4-a. 
Representative photosynthetic response curve showing the compensation 
point, the light intensity at which net CO. exchange is zero, as the point 
at which gross photosynthesis equals respiration (from: Fitter & Hay, 
1961>, 

Sun leaf cuticle Shade leaf 
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Figure 4-h. 
Cross-sections of sun and shade leaves of silver maple (Acer Saccharinum>, 
[From Wilson & Loomis, 1967] 
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developed and often reduced to one cell thickness, there is less mesophyll 

tissue and intercellular spaces are large; also the cuticle is much thinner 

(Jackson, 1967 [deciduous trees]; Wilson & Loomis, 1967 [Acer saccharinum]; 

Hiesey, Nobs & B,llirkman, 1971 [Mimulus spp.]). 

These changes in leaf morphology under low light stress have 

been found to affect CO2 diffusion. The internal (mesophyll> resistance to 

CO2 transfer is reduced by increased pore space in the mesophyll tissue 

(Holmgren, 1968). This effect has been demonstrated in the field by Fekete, 

Szu,lk6-Lacza & Horvath (1973). who found a high correlation between 

photosynthetic rate and mesophyll chamber size and the ratio of 

intercellular spaces to assimilating cells, whereas there was little 

correlation between photosynthetic rate and stomatal number. 

The third strategy adopted by the plant to maintain a positive 

carbon balance under low light stress is an increase in photosynthetic 

activity per unit light energy and leaf· area. It has been described above 

that, under low light intensities, leaves have higher CO2 diffusion rates 

and therefore have improved access to substrate. Shaded leaves have also 

been shown to have enhanced chlorophyll concentrations per unit weight 

(Shirley, 1929) which confer increased light gathering capacity. Plants 

grown under low light intensities also exhibit increased activity of the 

photosynthetic apparatus ie. the initial slope of the ratelintensity curve 

shown in Figure 'a is increased. 

4.1.2 In~luence o~ Low Light Intensities on stomata 

Although morphological and photosynthetic changes have been 

shown to occur in plants in response to low light stress, the influence of 

this stress on stomatal movement is unclear. It is well documented that 

light is the stimulus for stomatal opening during the day, however, 

stomatal movement is also dependent on the CO2 concentration inside the 

leaf. In leaves, well provided with water, an increase in light intensity 

causes stomatal opening (Gaastra, 1959). However Heath & Russell <195') 

found that an increase in ambient carbon dioxide concentration induces 

stomatal closure. Evidence exists for both the direct stomatal response to 

light (Meidner & Mansfield, 1965, Mansfield & Meidner, 1966; Wong, Cowan & 

Farquhar, 1978, 1979; Mansfield, Travis & Jarvis, 1981; Sharkey & Raschke, 

1981) and the indirect one which is mediated by changes in the 
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intercellular CO. concentration (Raschke, 1975; Raschke, Haneburth & 

Farquhar, 1976; Sharkey & Raschke, 1961). 

Sharkey & Raschke examined five plant species and determined 

the stomatal response to light to be mainly a direct response to light and, 

to a small extent only, a response to changes in intercellular CO. 

concentration. However, under low light intensities, the stomata of Zea ~ 

responded primarily to the depletion of CO. from the intercellular spaces 

which was, in turn, caused by changes in the assimilation rate of CO •• 

Stomata of all five species responded to light even when net CO. exchange 

was reduced to zero through the application of cyanizine, an inhibitor of 

photosynthetic electron transport. The findings of Sharkey & Raschke 

<1961> concur with the work of Gaastra (959) who reported that, in high 

light, stomata of turnip were less sensitive to CO. than in low light. 

Under high light intensities, in the field, stomata open rather 

slowly during the early hours of sunlight before reaching a steady state 

maximum which is maintained during the greater part of the day. However, 

at low light intensities, stomatal opening is sluggish and produces a low 

steady state opening (Martin, Donkin & Stevens, 1963). 

The minimum amount of light necessary to induce stomatal opening 

varies between species but Virgin (1956) showed an opening response in 

etiolated wheat seedlings at 0'01% full sunlight 00 lux). The most reliable 

work has been performed on cereals because they do not exhibit night 

opening of their stomata, and the stomata of wheat have been shown to 

open at a light intensity of 900 lux ie. 1 - 2% full sunlight (Heath & 

Russell, 1954). 

Thus it has been shown that reduced light intensities have 

profound effects on rates of photosynthesis and respiration. Low light 

stress may also lead to severe morphological and anatomical alterations in 

leaf structure and may influence stomatal resistance both directly and 

indirectly via changes in intercellular CO. concentrations. 

4.1.3 Errects or Low Temperature on Net Photosynthesis 

Plants are unable to maintain their cells and tissues at a 

constant optimum temperature and, as a result, their leaves, stems and roots 

are normally within a few degrees of the temperature of the surrounding 

air or soil. Because of this, the growth and metabolism of plants are 
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severely affected by changes in environmental temperature. 

The primary effect of cool1ng plants below their optimum 

temperature is a reduction in rates of growth and metabolic processes due 

to a slowing down of enzyme controlled reactlons (Fitter & Hay, 1981>. 

Although there is a reductlon in the rate of metabolic processes, chilling 

stress does not always result in visible injury symptoms. Levitt (1972) 

suggested that, in most cases, plants do not suffer chilling injury until 

the temperature drops below 10'C, however, there are many exceptlons mainly 

in tropical or subtropical species, for example both rice and sugar cane 

suffer chilling injury at 15"<:. 

In general, chilling stress takes place at low, non-freezing 

temperatures. (10 - 12 ·C). Chilling disrupts the entlre physiology of 

sensitive plants and a number of mechanisms have been proposed to account 

for the effects. The major factor contributlng to chilling injury is a 

. change in membrane permeability. Cell membranes, in chilling sensitlve 

plants, undergo a physical phase transitlon from normal flexible liquid 

crystal to a solid gel structure thus bringing about a contraction of the 

membrane components resulting in the formation of holes and increased 

membrane permeability (Lyons, 1973). This phase transition may increase the 

activation energy of membrane bound enzymes leading to interference with 

metabolic processes. Such changes lead to changes in both photosynthetic 

and respiratory rates (Levitt, 1972). At low temperatures, photosynthesis 

has a very high actlvatlon energy and, therefore, decreases more rapidly 

than respiratlon (Selwyn, 1966). As a result, chilling sensitlve plants may 

be below the compensation point at low temperatures and starvation may 

result. Translocatlon has also been shown to be inhibited by low 

temperatures (Geiger, 1969) resulting in starvation of non

photosynthesizing plant parts. 

The length of the exposure period to chllling stress is very 

important; exposure must often be prolonged (several weeks) before visible 

injury occurs but some species have been shown to be damaged by very brief 

exposures to 10'C (Sutcliffe, 1977). The tlme spent under chilling stress 

before visible injury occurs is very much dependent on individual plant 

species. 

Of importance also, is that, in some species, chllling stress 

effects have been shown to be reversible. In seedlings of Zea mays visible 

injury symptoms occur within 36 h of exposure to 3 'C, but upon transfer to 
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21'C the leaves return to normal and injury symptoms disappear within 72 h 

(Sutcliffe, 1977). 

Thus the severity of the effects of chilling temperatures on 

plants can be seen to depend on the sensitivity of the plant species used 

and the duration of the exposure period. 

The effects of periods of cold stress on gaseous exchange, 

processes in plants, in the absence of visible injury, have been reported. 

There is considerable evidence in the literature indicating that 

photosynthetic rate is reduced by exposure to low, non-freezing 

temperatures (Hesketh, 1968; Taylor & Rowley, 1971; Austin & MacLean, 1972; 

BJorkman, 1981>. Oquist (1983) presented a review of current literature of 

, both reversible and irreversible photosynthetic responses to low 

temperatures and the underlying physiological and biochemical mechanisms. 

Many workers have concluded that stomatal closure is the primary cause of 

,chilling impairment of net photosynthesis (eg. Drake & Salisbury, 1972; 

Crookston, O'Toole, Lee, Ozbun & Wallace, 197 ~) due to the good correlat ions 

observed between decreases in Pnet and decreases in stomatal conductance in 

response to cold stress. However, recent results do not support this 

hypothesis and Martin, Ort & Boyer (1981) showed that photosynthetic 

inhibition in tomatoes, following chilling in darkness, could be attributed 

predominantly to impairment of chloroplast function although stomatal 

conductance was seen to decrease Blightly. 

It has also been shown that the most severe reduction in 

photosynthesis is brought about by chilling streBs in strong light (Taylor 

& Rowley, 1971, Linderman, 1979, Powles, Berry & BJllrkman, 1980). It appears 

that chilling stress may result not only in a decrease in carbon dioxide 

uptake, but also photosynthetic impairment caused by photo-inhibition or 

photo-oxidation (Rowley & Taylor, 1972, Powles et li., 1980) and changes in 

chloroplast ultra-structure (Taylor & Craig, 1971>. 

That exposure to cold temperatures for short periods may severely 

disrupt photosynthetic processes was shown by Crookston et al. (197~). 

These workers showed that Phaseolus vulgaris plants exposed to 5'C for one 

night exhibited severe reductions in photosynthesis the following day. 

Photosynthetic reductions were accompanied by a parallel drop in 

transpiration, a rise in both stomatal and mesophyll resistances to CO2 

uptake and a decrease in leaf water potential. Crookston et aI, concluded 

that photosynthetic reduction following exposure to cold was due to 
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changes in stomatal resistance brought on by temporary water stress. 

Several other workers have also shown reductions in net photosynthesis 

when plants are subjected to cold temperatures prior to measurement 

(Hesketh, 1966; Austin & Maclean, 1972; Drake & Salisbury, 1972). These 

reductions In Pnet were found to be reversible In most cases, Phaseolus 

vul&aris exhibiting a recovery to one third that of control plants 5 h 

after exposure (Austin & MacLean, 1972). 

Musser, Thomas & Kramer (1983) exposed 16 - 17 day old plants of 

Glycine max. to 1 week at 10'C and then returned the. plants to 25·C. Both 

net CO. uptake rate and stomatal conductance decreased and large changes 

in leaf water potential were observed. Most measured processes returned to 

the levels of the control plants two days after the end of the cold period, 

however, substantial changes were observed in vegetative morphology between 

control and treated plants when the plants had reached 90 days of age. 

4-.1.4- Stomatal Responses to Cold Temperatures 

The reductions in photosynthetic rate described above have been 

attributed, in part, to changes in stomatal resistance (eg. Crookston et M., 

1974). However, a number of contrasting results have been obtained In 

investigations of the responses of stomatal aperture to low temperatures. 

This may arise from the fact that temperature may affect guard cell 

metabolism directly or indirectly through effects On the plant water 

balance and on the water vapour pressure difference between the leaf 

interior and ambient air (Oqulst, 1983). Decreases in temperature usually 

result in decreased stomatal conductance (Drake & Salisbury, 1972; Crookston 

et al., 1974-). 

Stomatal aperture Is also influenced by temperature_induced 

changes in Intercellular CO. concentration. Stomatal closure has been shown 

to occur in response to increases In Internal CO. concentration resulting 

from reductions in Pnet at low temperatures (Drake & Raschke, 1974-; 

Raschke, 1975; HlHlgren, Sundbom & Strand, 1982b). 

Changes in stomatal resistance in response to environmental 

stresses such as low light and temperature may significantly influence 

pollutant uptake by plants and thus alter observed pollutant responses. This 

is one of several hypotheses, as outlined below, that have been proposed to 

explain environmental modifielHion of plant pollutant responses. However, 
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few workers have tried to separate out direct as opposed to indirect 

interaction effects and exact mechanisms have not yet been elucidated. 

4.1.5 Environmental stress and Pollutant Interactions 

Environmental stresses such as low light and cold temperature 

treatments have been shown to markedly influence gaseous exchange 

processes in plants in the absence of air pollutants. Both stresses have 

been shown to result in decreased rates of photosynthesis and stomatal 

conductance. Sulphur dioxide, at optimum environmental conditions, has also 

been shown to markedly influence net photosynthetic rates and stomatal 

conductance . (Chapter 3). It may be expected that combinations of both 

environmental and pollution stress would have an additive or even 

synergistic effect on plants given the profound changes observed in 

. response to either stress alone. 

Heck et al. <1965 & 1986) published reviews concerning the 

interactions of environmental factors on plant pollutant sensitivity. Heck, 

Heagle & Shriner (1986) suggested that plants are generally more sensitive 

·to SO. as light intensity, wind speed, temperature and humidity increase. 

However, although there have been a great many studies concerning SUlphur 

dioxide and plants until recently, comparatively few workers had studied 

the combined effects of both environmental and pollutant stress or the 

modification of plant pollutant responses by added environmental stress. In 

the last four years there has been an increased awareness of the , 

implications of enVironmental/pollutant interactions on plant growth and 

yield and much more research has been concentrated on trying to identify 

the nature and causes of such actions. This has lead to the publication of 

a number of comprehensive reviews detailing current advances involving 

interactions between air pollutants and several environmental factors 

(eEC/COST Workshop, 1986; TERG, 1988; Environmental Pollution Special Issue, 

1988). However, much more work is needed before definitive responses and 

mechanisms are elucidated. 

In the studies performed, reported results are conflicting, some 

authors have found pollutant responses to be lessened in response to low 

light or temperatures craniyama, 1972; Heck & Dunning, 1978a,b; Rist & 

Davis, 1979). Other researchers have found plant pollutant responses to be 

increased by exposure to low light or cold temperatures prior to or during 
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pollutant fumigation (Juhren, Noble & Went, 1957; Davies, 1960; Miller & 

Davis, 1961a,b; Jones & Mansfield, 1962; Freer-Smith, 1965; Mansfield & Jones, 

1965; Mansfield, Davies & Whitmore, 1966). 

These conflicting reports may arise from a number of factors 

including plant species and the range ot temperatures or light intensities 

used. More importantly, the length of the exposure period to environmental 

stress and the timing.of the exposure in relation to pollutant exposure is 

critical in determining the interactive response. 

oi.l.5.1Light Intensity and Pollutant Response 

As stated above, a major theory that has been proposed to 

explain light induced modification of plant pollutant responses is that 

light may influence stomatal behaviour and thus pollutant uptake by the 

plant. However, as described below, data from the literature are conflicting 

. and more recent hypotheses suggest light induced modification of pollution 

responses may be attributed to respiratory, carbon fixation and allocation 

processes (TERG, 1966). Experiments on the influence of light intensity on 

plant pollutant susceptibility have shown that a positive correlation exists 

between injury and increasing light intensity, up to 36,000 Lux, during 

pollutant exposure (Guderian, 1977). This has been found to be true with SO, 

(Setterstrom & Zimmermann, 1939) and with various components of 

photochemical smog (Juhren II al., 1957; Heck, Dunning & Hindawi, 1965). 

Heck et al. (1965) found foliar injury in pinto beans in response to ozone 

increased as light intensity increased up to the maximum available ie. full 

sunlight. Both Juhren et al. and Heck et a1. proposed the existence of a 

'threshold' light intensity, below which, no pollutant injury occurs. Both 

groups correlated this with stomatal closure occurring at very low light 

intensities. Juhren and co-workers also postulated that small changes in 

light intensity should not affect the amount of pollutant damage because 

reductions in stomatal aperture due to low light stress should not 

necessarily lead to decreased diffusion. These workers suggested that the 

principles of diffusion of gases through small apertures allows for maximum 

diffusion of gases even when the stomata are not fully open. This theory 

may well be supported by the results obtained by Heagle & Letchworth 

(1982). These workers exposed four cultivars of Glycine ~ to ozone either 

in full sunlight or with 6% or 12% reduction in light intensity. No 

significant differences in ozone sensitivity were observed between all light 
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treatments. 

In direct contrast to the results described above, several workers 

have found pollutant sensitivity to be significantly enhanced under reduced 

light intensities. Menser, Heggestad, street & Jeffrey (1963) examined the 

effects of ozone on Nicotinia tabacum plants grown under high or low light 

conditions. These workers found low light treated plants to be far more 

sensitive to ozone in that a greater degree of visible necrosis was 

observed. Ting & Dugger (1968) examined the effects of. ozone on cotton 

plants. Two week old plants were transferred to a range of lower light 

intensities for 1 week prior to ozone fumigation. An inverse correlation 

between light Intensity and ozone sensitivity was found when measured as % 

leaf damage.· Neither Menser et a!. nor Ting & Dugger found any correlation 

between increased ozone sensitivity under low light intensities and changes 

in stomatal resistance. Both groups measured higher resistances at lower 

. light intensities even though more injury had occurre·d. 

It can be seen that light modification of plant pollutant 

responses cannot be explained by purely short term changes in sto~atal 

aperture and reduced pollutant flux. The stomata are assumed to govern 

pollutant entry into the leaf the and the cuticular pathway is often 

overlooked. However, Lendzian <1984,) has shown the cuticle to be much more 

permeable to SO., O. and NO. than H.O or CO.; sulphur dioxide was shown to 

be nearly 700 times more soluble in the cuticle than water and Lendzian 

concluded that S02 permeated the cuticle via the lipophilic phase. Thus 

stomatal closure in response to light may not preclude pollutant entry into 

the plant. In §4,.1.1 it was described how low light stress alters leaf 

morphology, leaves being larger and thinner and, mOre importantly the 

cuticle is much thinner thus pollutant uptake via the cuticular pathway 

may be of greater significance when plants are grown under low light 

intensities. 

Both Davies (980) and Jones & Mansfield (1982) found SUlphur 

·dioxide sensitivity in Phleum l'ratense to be enhanced at low light 

intensities. Mean relative growth rates of leaf area were significantly 

lowered in response to 0·12 ppm S02 under low light stress. Jones & 

Mansfield suggested that increases in SLA at low light intensities may 

cause increases in S02 uptake per unit leaf dry weight, and this, in 

conjunction with a lack of energy for repair and detoxification mechanisms, 

would result in more visible injury being observed. 
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It can be seen that relatively few workers have correlated 

changes in pollutant sensitivity with light intensity despite the fact "that 

low light conditions are common, especially in Britain during autumn and 

winter. There appears to be little data available for 'invisible' injury 

symptoms such as changes in net photosynthetic responses or dark 

respiration responses to pollutants under low light stress. Most workers 

have concentrated on visible injury symptoms or changes in dry matter 

accumulation and reported data are conflicting. However, Mansfield & Jones 

(1985) in continuation of their earlier work on Phleum pratense (Jones & 

Mansfield, 1982) studied the photosynthetic and respiratory characteristics 

and pollutant uptake of plants grown under high or low light intensities 

in an effort" to identify the cause of enhanced SO,-induced r"eductions in 

leaf dry weight under low light intensities. Important differences were 

observed in the light response curves of plants grown in the two 

"photoenvironments. Plants grown in the high light environment showed no 

significant SO, response above the compensation point but below this, a 

stimulation in dark respiration in the polluted plants was evident. In 

contrast, plants grown under low light intensities showed no respiratory 

stimulation below the light compensation point but SO,-induced 

photosynthetic inhibition was seen to increase with increasing light 

intensity. Analyses of pollutant flux showed flux to be 501. higher to plants 

grown under high light intenSity thus the smaller effect of SO, on these 

plants could not be attributed to lower pollutant dose. These data correlate, 

in part, with the earlier observations of Black & Unsworth <1979b) of the 

light response curves of Vicia faba CV. Dylan. Black & Unsworth observed 

respiratory stimulation in response to SO, below the light compensation 

point, this increase being independent ot SO, concentration. However, these 

authors found increasing SO,-induced photosynthetic inhibition with 

increasing light intensity up to saturation point; also inhibition increased 

with increasing SO, concentration. Mansfield & Jones (1985) attributed 

differences between their data and that of Black & Unsworth to the length 

of the SO, exposure period (3 d for Vicia faba and 26 d for Phleum 

pratense) and suggested that the longer exposure period had allowed tor 

metabolic adjustments tor repair or detoxification. Differences in species 

studied would also have contributed to differences in data. Both Black & 
Unsworth and Mansfleld & Jones suggested that the data were compatible 

with the view that SO, competes with CO, for binding sites in RuBP 
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carboxylase since responses were readily reversible. Manstield & Jones 

suggested that, under high light intensities, net photosynthesis is 

maintained in polluted plants at the cost of increased respiratory activity 

which must reduce the amount of carbohydrate available tor use elsewhere 

in the plant. The increase in pollutant sensitivity under low light 

conditions was a result ot not enough carbohydrate being available to 

support additional respiration thus repair processes did not take place and 

photo~ynthesis continued to be inhibited by SO •. 

It is clear that much more work is required to identify the 

mechanisms behind low light stress and pollutant interaction. Of 

significance also is that low light conditions commonly occur in winter 

when temperatures are also limiting thus the interaction of a combination 

of limiting environmental factors and plant pollutant responses requires 

investigation. 

~.1.5.2 Chilling Temperatures and Pollutant Response 

As stated previously, several studies have been made of the 

effects of temperature on responses of plants to pollutants, but few have 

separated the influence of temperature during fumigation episodes from that 

of temperature before or after exposure to the pollutant. Norby & Kozlowski 

<1981a) suggest that temperature during exposure is likely to aflect plant 

responses to SO. primarily by affecting stomatal aperture and hence 

pollutant uptake whereas effects of temperature before or after exposure 

are more likely to be mediated through changes in plant metabolism. 

Theretore the timing of added temperature stress in relation to pollutant 

fumigation must be considered when results are compared. 

One of the first papers concerning the importance of exposure 

temperature was that of Swain (1923) who concluded that plants were less 

sensitive to S02 at exposure temperatures of 5·C or less. Similarly, 

Setterstrom & Zimmermann (1939) exposed alfalfa and buckwheat to S02 at 

temperatures of ,·C or between 18 and .to·C. These workers found both 

species to be less sensitive to SO. at ~·C and equally sensitive at all 

temperatures between 18 and 'O·C. 

However, in 1965, Heck, Dunning & Hindawi exposed both pinto 

beans and tobacco plants to ozone at a range of exposure temperatures from 

18 to 35·C. Results showed an inverse correlation between sensitivity to 

ozone and exposure temperature and this was the first report of this 
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nature. Rist & Davis (1979) also investigated the effect ot exposure 

temperature and subjected plants ot Phaseolus vulgaris to sulphur dioxide 

at either 13, 21 or 32·C atter plants had been grown at 23 ·C. T.hese workers 

found greater visible injury due to SO. to occur at highest exposure 

temperatures and correlated this with increased stomatal conductance 

leading to increased pollutalll. uptake. In contrast, Miller & Davis (1981a) 

elCposed Phaseolus to ozone andlor SO. at either 15, 2t or 32·C and found 

visible injury to be increased by exposure temperatures ot either 15 or 

32 ·C. The lesser degree of injury observed at 2t·C was not correlated with 

decreases· in stomatal conductance. In a further paper Miller & Davis (1981b) 

examined changes in stomatal conductance in Phaseolus over the same 

pollutant concentrations and range of exposure temperatures. Stomatal 

conductance was found to increase with increasing temperature therefore 

the enhanced pollutant effect at 15·C could not be explained by changes in 

stomatal conductance. 

When the effects of temperature regimes prior to pollutant 

exposure are considered, results are again conflicting. Hull & Went (1952) 

subjected a variety ot crop plants to periods of 1 to 6 days at either 30, 

17 or 3·C prior to exposure to ozonated hexane at 26·C. These workers found 

injury to be directly related to increased temperature; also less injury was 

observed when plants had been subjected to eight days at lower 

temperatures; 

Similarly, Menser et al. (1963) used two different growth 

temperatures (25 and 20·C) for tovrvarieties ot tobacco. Plants were 

maintained at thesatwo temperatures for two weeks prior to exposure to 

ozone. The plants grown under cool conditions were less sensitive to ozone 

and showed significant growth variations ie. smaller, darker green leaves. 

In a second experiment these workers determined the effects of a It h 

period at either 25 or 5·C prior to ozone fumigations and found there to be 

much less ozone injury after the cold temperature pre-treatment. Heck et !!J.. 

(1965) concluded that low temperatures during growth for one or more days 

prior to pollutant exposure are effective in reducing plant sensitivity. In 

later work, Heck & Dunning examined the responses of Avena sativa to SO. 

(1978a) and Phaseolus vulgaris to 0, <1978b) following a range of 

temperature pre-treatments. Plants were subject to periods of 10 to 30 days 

at temperatures between 18 and 30·C. In all cases, plants were more 

sensitive to pollutant at higher temperatures. These authors again 
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concluded, that in episodic pollutant exposures, cool periods during growth 

w111 favour plant resistance to pollutants, even if the cold periods are 

fairly short in duration. 

In contrast to other reports on pollutant sensitivity following 

cool temperature pre-treatments Ormrod, Adedipe & Hofstra (1973) 

investigated the etfects of ozone on Raphanus sativus. Plants were grown 

at either 20 or 30·C daytime temperatures and were exposed to ozone at 

25·C. When plants Were harvested, the authors reported greater dry weight 

reductions due to ozone at the lower temperature. However, these experiments 

were also· combined with investigations into the influence of phosphorus 

and nitrogen nutrition so that all plants were subject to either high or 

low nitrogen treatments in conjunction with growth temperature and ozone 

treatments. As a result, temperature effects may have been influenced by the 

nutritional status of the plant. 

It would appear that available data regarding the effects ot 

. temperature on plant pollutant responses are conflicting. Several reports 

show that exposure to low temperature, prior to pollutant fumigation, 

reduces plant sensitivity to the pollutant. In contrast, low temperatures 

during pollutant fumigation may enhance or inhibit plant pollutant 

responses and appears to be dependent on the plant species and pollutant 

used although mechanisms are not well understood. 

There has been far less work directed toward investigating the 

effects ot post-fumigation temperatures on plant pollutant responses. To a 

large degree, temperature effects during exposure· appear to be mediated 

through changes in stomatal aperture, whereas effects of temperature 

following pollutant exposure are more likely to be related to effects on 

metabolism (Norby & Kozlowski, 1961b). In their study in 1952, Hull & Went 

not only investigated the effects of pre-fumigation temperature but also 

post-tumigation temperature on the degree of injury to several crop plants 

from artificial smog. These authors found a positive correlation between 

the degree ot injury observed and post-fumigation temperature: however, the 

eftects were much less than those observed for pre-fumigation temperatures. 

More recently, Norby & Kozlowski <1961a,b) have examined the effects of 

post-tumigation temperature on the sulphur dioxide responses of several 

woody plant species. Plants were grown and subjected to SO. at 25'C and 

were then transferred to 32, 22 or 12·C for 4- to 6 weeks. These workers 

found that post-fumigation temperature had little effect on the amount ot 
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injury to leaf tissue hut did influence SO. effects on relative growth rates 

<RGR). At higher temperatures, RGR was highest and the reduction in RGR 

due to SO. was greatest. However, for ~ resinosa seedllngs (1961b) 

subJect to the same SO. and temperature treatments, there was no effect of 

temperature on the reduction of RGR hy SO. but at 12'C SO. had a 

significantly greater effect on root growth. 

It is apparent that results from short-term laboratory 

experiments involving changes in temperature before, during and after 

pollutant fumigations cannot in reality, be extrapolated to reflect plant 

responses' at environmental conditions in the field; although such studies 

do serve to show the existence of temperature/pollutant interactions 

influencing plant growth. There is now a growing body of evidence to 

suggest that plants are more sensitive to pollution under winter conditions 

in comparison to SUmmer conditions and that this enhanced sensitivity is 

. correlated to slow growth in winter conditions (Bell, Rutter, Relton, 1979; 

Jones & Mansfield, 1962; Whitmore & Mansfield, 1963; Mansfield, Davies, 

Whitmore, 1986); although the mechanisms behind this enhanced pollutant 

sensitivity in winter have not been elucidated. 

4.1.B Low Temperature Effects on Gaseous Metabolism 

All the reports cited above, concerning the eUects of 

temperature before, during or after pollutant fumigations suggest caution 

in generalising about temperature effects on plant sensitivity to air 

pollution. Most studies have concentrated on visible injury symptoms or 

reductions in growth rates or plant dry matter accumulation. Therefore, 

there are very few reports concerning temperature effects on pollutant 

responses of the actual gaseous exchange mechanism including net 

photosynthesis and respiration and on the pathways of pollutant uptake. 

This is of importance since one explanation for variable temperature

dependent responses to air pollution stress is that a difference exists in 

pollutant flux to the tollage so that levels of toxic pollutant derivatives 

that accumulate at sensitive metabolic sites in the leaf interior differ 

among treatments (Taylor, Selvidge & Crumhly, 1985). Differences in SO, flux 

have been shown to be stomatally controlled (Rist & Davis, 1979) but Taylor 

et at. (1985) suggest that changes in stomatal conductance may explain 

only part of the differences in pollutant flux if temperature has a 
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significant effect on the conductivity of the diffusive media (gas and 

liquid phases) or the kinetic energy of SO, molecules. 

One of the few studies of temperature effects on photosynthesis 

was reported by Taniyama (1972) who studied the mechanism of injury of 

crops exposed to SO, and the influence of environmental parameters on this 

process. Taniyama found increases in dark respiration in response to SO, to 

be depressed by low temperature <to·C). SO,-induced photosynthetic 

inhibition was also reduced at 10 ·C. These responses were correlated with 

decreased stomatal conductance at lower temperatures. 

Taylor et al. (1985) determined the effects of exposure 

temperatures (from 21 - 35'C) on the gaseous exchange mechanisms of plants 

exposed to S02' More specifically. these workers investigated the factors 

governing pollutant flux. Plants were grown under optimum environmental 

conditions and subject to different temperatures 16 h prior to pollutant 

. fumigation. Measurements of transpiration. net photosynthesis and S02 flux 

were made at hourly intervals. In the three plant species used. S02 flux was 

highest at 35·C. This higher flux did not necessarily result in greater 

physiological responses in all species ie. greater photosynthetic inhibition 

or changes in transpiration rate. Increased flux was not always associated 

with higher stomatal conductance to water vapour. A direct effect of 

temperature on the rate of S02 diffusion was suggested as another 

explanation of increased flux. Guderian <t977) offered an explanation for 

the fact that increased pollutant flux may not always result in increased 

injury in proposing temperature to have a direct influence on the effects 

of pollutants adsorbed by mesophyll cells. 

It can be seen that there is a lack of understanding of the 

modifying influences of environmental stresses on plant pollutant responses. 

Although many reports exist concerning changes in visible injury symptoms. 

the mechanisms of action of such stresses are poorly understood. 

Examinations of gas exchange processes directly. in combination with 

environmental and pollutant stress are needed to elucidate the site and 

nature of the mechanisms involved in such interactions. 

4.1.7 Pollutant Effects on Plant Responses to Winter Stress 

The effects of adverse environmental conditions in modifying 

plant pollutant responses have been outlined above but there is now also 
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growing evidence to suggest that pollutant exposure can modify the 

sensitivity of plants to adverse environmental conditions such as drought 

(Wright, Lucas, Cottam & Mansfield, 1986) or winter stress (eg. Davison & 

Bailey, 1982; Davison & Barnes, 1986; Barnes et aI., 1988). The recent TERG 

report (1988) gives a comprehensive review of current data which indicate 

that pollutant exposure reduces resistance to winter stress. Fumigation 

with sulphur dioxide has been shown to predispose plants to freezing inJury 

(Keller, 1978; Davison & Bailey, 1982; Baker, Unsworth & Greenwood, 1982). 

Davison & Barnes (1986) showed that freezing resistance in Lolium perenne 

was reduced by exposure to 94 ppb S02 for only two weeks during the 

hardening phase of the experiment and that one of the effects of S02 was 

to increase potassium leakage. Greater electrolyte leakage in response to 

S02, rendering the inability to regulate membrane permeability, was proposed 

by Feiler (1981; in Davison & Barnes, 1986) as a maJor factor contributing 

, to enhanced frost sensitivity. 

Although both S02 and N02 have been shown to reduce sensitivity 
:. 

to winter stress, ozone has proved to be of increasing concern as it~now 

considered to play a central role in forest decline. The widespread die-back 

of conifers and some hard woods in Europe and USA has been the subJect of 

much discussion and has attracted much media attention. Die-back has 

coincided' with drought years and harsh winters and it has been suggested 

that forest decline is a mUltiple-stress related syndrome and that air 

pollutants (particularly ozone) and physical stresses such as drought and 

frost are the main contributors. It is not proposed to provide a detailed 

review of current literature here as a number of recent publications serve 

this purpose adequately (Davison & Barnes, 1986; TERG, 1988; Barnes et aI., 

1988). However, it is clear that pollutant/Winter stress interactions may 

have profound implications, not only for forest growth but for agricultural 

crops and that much more information regarding such interactions is 

required. 
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4-.2 AIMS 

The aims of this section of the experimental work were to 

determine the modifying influenc~s of environmental stress on the 

photosynthetic, respiratory and stomatal responses of two varieties of 

Vicia faba CV, Dylan and Aquadulce Claudia to a range of sulphur dioxide 

. fumigations. The effects of reduced light intensity or periods of 2' h, 72 

h or 1 week of chilling temperatures prior to pollutant fumigation were 

studied. 

Varietal differences in pollutant responses following added 

environmental stress were investigated as differences had been found to 

occur under optimum environmental conditions. 

The effects of both environmental and pollutant stress on 

pollutant flux and resistances to gaseous transfer were also studied. 

The processes examined in turn are: 

(1) net photosynthesiS 

(ii) dark respiration 

(111) stomatal resistance 

(iv) resistance to CO. transfer 

(v) pollutant flux 

(vi) resistance to pollutant transfer. 
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.... 3 EXPERIMENTAL PROTOCOL 

.... 3.1 Low Light stress 

Seeds of both varieties were planted in the manner described In 

§3.3.l. However, low light stress commenced Immediately after sowing and 

thus the seed pots were placed in the bottom of an environmental growth 

cabinet set at a constant temperature of 22·C. The photoperiod was l~ h 

lIght/lO h dark and relative humidity was 70 :t 5%. Light Intensity 

reachlng·the pots was further reduced by shading with a neutral filter of 

muslin netting. Quantum flux density was measured with a LI-Cor Quantum 

Radiometer (Model LI-185B) and was 100 ~E m- 2 S-I (60 W m-2 ) at plant 

height. 

When the plants had developed three fully expanded leaf pairs, 

. two plants were selected for sulphur dioxide fumigation experiments as 

described in §3.3.1. The photoperiod in the exposure system was again 14- h 

lIghtllO h dark and chamber temperature was 23 :t 3·C. Both the control and 

the pollutant chamber were shielded with muslin netting to give a quantum 

flux density of 100 ~E m- 2 S-I throughout the duration of the experimental 

period • 

.... 3.2 Cold Temperature Stress 

Seedlings of Vlcia faba CV. Dylan and Aquadulce Claudia were 

grown to the three leaf pair stage under optimum environmental conditions 

of light and temperature in the manner described in chapter 3, §3.3.1. 

Before transfer to the exposure system plants were transferred to a second 

growth cabinet maintained at a constant temperature of 10·C with a 

quantum flux density of 300 ~E m-2 S-I <120 W m- 2 ), the photoperiod being 

16 h light and 6 h dark and relative humidity 70 :t 5%. Plants were 

subJected to periods of 2' h, 72 h or 1 week at the chilling temperature 

and were then transferred to the experimental system for pollutant 

fumigation. Sulphur dioxide fumigations were carried out under optimum 

conditions of light and temperature. 
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For both low light-stressed and cold-stressed plants experiments 

were carried out as described in §3.3.3. For low light stressed plants 

environmental conditions in the exposure system were as described above 

(§~.3.1). For low temperature stressed plant environmental conditions in the 

exposure system were as described in §3.3.2. 

Plants were left for 2~ h to acclimatise prior to pollutant 

fumigation and were monitored for a further 2' h after the end of the SO. 

exposure period to permit recovery to be measured. 

Page J4.2 



RESULTS 

~.~ NET PHOTOSYNTHESIS (Pnet) 

~.~.1 Time-Responses to 802 and Environmental Stress 

The photosynthetie responses of both varieties of Vieia faba to 

a range of sulphur dioxide eoneentrations under optimum environmental 

eonditions were deseribed in §3.4. This seetion of the work deseribes the 

photosynthetie responses of both varieties to' S02 following additional pre

treatments of environmental stress. Examples of time-response data under 

optimum environmental eonditions were given in §3.4.t. Similar patterns of 

response to S02 were also observed in plants which had been pre-treated 

with environmental stress prior to exposure: Time course data for pre-

. treated plants, therefore, have not been included. However, it must be noted 

that when plants were grown and exposed to S02 under low light 

intensities, the natural rate of Pnet in, the absence of S02, was half that 

observed under 'ideal' environmental conditions. No significant differences 

in photosynthetic rate were observed follOWing 24 h at 10·C but after 72 h 

of low temperature stress Pnet was reduced by approximately 101. in relation 

to unstressed plants and after 1 week periods of cold stress Pnet was 

reduced by approximately 201.. 

~.~.2 Responses to S02 and Low Light Stress 

Figures 4.1 and 4.2 show percent inhibition of net photosynthesis 

(Pnet) against ambient sulphur dioxide concentration for both Dylan and 

Aquadulce Claudia plants under low light intensities. Changes in net 

photosynthetic rate were calculated in relation to the control plants in 

the manner described in §3.4.2. Regression analysis of the data for both 

varieties gave polynomial correlation coefficients of 0·7901 (p <0·02) for 

Dylan (Fig. 4.1> and 0'961 <p <0·001) for Aquadulce Claudia plants <Fig. 4.2>. 

The regression lines for the data obtained under optimum environmental 

conditions are also shown in the figures. Analysis of covariance showed 

that, in Dylan plants, photosynthetic inhibition due to S02 under conditions 

of low light intensity was significantly different from that observed at 

high light intensities, the F value being 23-08 (0: = 0'001), there being 
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% Change in Net Photosynthetic Rates in Response to Sulphur Dioxide 
Fumigation Under Low Light Intensity (SO W m-I) for Two Varieties of Vicia 
faba. Dylan (Fig. 4.1> and Aquadulce Claudia (Fig. 4.2). [The regression lines 
for the data obtained under optimum light conditions (-----) are also 
shown in the figuresl. 
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much less inhibition in low light when ambient SO. concentrations exceeded 

200 ppb. However, in Aquadulce Claudia plants, there were no significant 

differences in photosynthetic response to SO. under high light or low light 

regimes. Analysis of covariance also showed there to be significantly less 

photosynthetic inhibition in Dylanplants under low light intensities than 

for plants of the variety Aquadulce Claudia under, the same conditions (F = 
10'61, " = 0·025). 

At optimum conditions of light and temperature both varieties 

exhibited marked increases in the extent of photosynthetic inhibition when 

ambient SO. concentrations exceeded 4-00 ppb, providing evidence for a 

threshold concentration, above which Pnet is even more severely limited.' 

Whilst this still appeared to hold true for Dylan plants under low light 

conditions, the reverse was seen to occur in Aquadulce Claudia plants; no 

such threshold was observed at low light intensities and a plateau for 

. maximum degree of photosynthetic inhibition occurred when ambient SO. 

concentrations exceeded 500 ppb. 

The data for both varieties therefore, suggest that additional 

environmental stress may have had a significant effect on plant responses 

to sulphur dioxide, particularly at high SO. concentrations ie. above 4-00 

ppb. At lower S02 levels the effect of added low light stress appear .. to 

depend on the variety of Vicia plants: Responses of Aquadulce Claudia 

plants to SO. concentrations below 4-00 ppb remained unchanged from those 

observed under optimum light conditions whilst the responses of Dylan 

plants were significantly lessened. 

~.~.3 Pnet: Responses to S02 and Low Temperature Stress 

Plants of both varieties were also subjected to treatments at 

10'C for varying periods prior to exposure to SO •. The photosynthetic 

responses to SO. following either 24- h, 72 h or 1 week at 10 'C, for both 

varieties of VIc1a faba are shown In Figures 4-.3 - 4-.8. 

Photosynthetic responses to SO. In plants of the variety Dylan 

were found to be significantly less for all SO. concentrations following a 

24- h pre-treatment at 10'C than those observed under 'ideal' environmental 

conditions (Fig. 4-.3). Enhancement of net photosynthetic rates In response 

to low SO. concentrations were observed in the cold-stressed Dylan plants 

and this had not been seen to occur in non cold-stressed plants. Regression 

Page 145 



c 
.2 
:5 :.c 
.£ 

~ 
.r:; 
1: 
>-
'" -§ 
il: 
"0 z 

. t-..~ 

Results 

Figure 4.3 

60 

50 • 

40 

30 

20 

10 

o+---~----------------------------I 

• • 
-10-1-------,--------,-------.,.--------; 

o 200 400 600 800 
Sulphur Dioxide Concentration (ppb) 

Figure 4.4 

80,--------------------------------, 

60 

• 
40 

• 
20 

• 

• 

, 
, 

:/' 
,/" . 

• . \ 
• 

-20-1-------,------...,.-----,------; 
o 200 ,(00 600 800 

Figs 4.3 & 4.4 Sulphur Dioxide Concentration (ppb) 

Chapter 4 

% Change in Net Photosynthetic Rates in Response to Sulphur Dioxide 
Fumigation for Two Varieties of Vicia faba, Dy1an (Fig. 4.3) and Aquadulce 
C1audia (Fig. 4.4) subjected to a pre-treatment of 24, h at IO·C. [The 
regression lines for the data obtained in the absence ot any cold pre
treatment are also shown in the figures (------)]. 
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analysis of the data gave a linear correlation coefficient of 0·7973 (p 

<0·001> and analysis of covariance gave an F value of 7·64-S (cc = 0·001>. The 

regression line for non cold-stressed plants is also shown in the figure. 

Conversely, the photosynthetic responses of Aquadulce Cla\1dia 

plants to SO, following a period of 24 h at 10'C were not found to be 

significantly different from those observed in non cold-stressed plants for 

the range of sulphur dioxide concentrations used (Fig. 4-.4-). Regression 

analysis gave a polynomial correlation coefficient of 0·5389 (p < 0·01) and 

analysis of covariance gave an F value of 1·73 (not significant). However, 

the stimulation in Pnet in response to " 100 ppb SO, observed in non cold

stressed plants was not seen to occur in plants subjected to 24- h at 10'C 

prior to SO,fumigations and photosynthetic inhibition in response to SO, 

concentrations below 200 ppb was greater in cold-stressed plants in 

comparison to non-environmentally stressed plants. 

When the data for both varieties following a 24 h pre-treatment 

at 10'C were compared, there was found to be no significant difference in 

the degree of photosynthetic inhibition observed in response to SO, 

treatments, analysis of covariance giving an F value of 0 ·34S. This 

contrasts to the data presented in chapter 3 were, in the absence of cold 

temperature stress, varietal differences in response were noted. 

In cold-stressed Dylan plants, photosynthetic inhibition was not 

significantly enhanced when SO, concentrations exceed 400 ppb, thus there 

was no evidence of a tolerance threshold concentration above which net 

photosynthetic rates were even more severely limited. The existence of a 

threshold concentration was demonstrated in §3.4 and was seen to occur in 

,both varieties of Vicia faba in the absence of additional environmental 

stress. The threshold was still evident in Aquadulce Claudia plants 

following a period of 24 h at 10·C. 

Varietal differences in photosynthetic response to SO, were also 

observed following pre-treatments of 72 h at 10 ·C. The responses of both 

varieties to SO, following a period of 72 h at 10'C are shown in Figures 

4-.5 and 4-.S. In both varieties, the degree of SO,-induced photosynthetic 

inhibition was lessened when plants had been subjected to cold stress prior 

to SO, fumigation; again, this difference was noticeablely greater at 

higher 502 concentrations ie. above 300 ppb. For Dylan plants (Fig.4-.5), 

regression analysis gave a linear regression coefficient of 0·595 (p <0·01). 

Analysis of covariance gave an F value of 13·81 (cc = 0·001> showing there 
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Figure 4.5 
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% Change in Net Photosynthetic Rates in Response to Sulphur Dioxide 
Fumigation for Two Varieties of Vicia faba. Dylan <Fig. 4-.5) and Aquadulce 
Claudia <Fig. 4-.6) subject to a pre-treatment of 72 h at 10 ·C. [The 
regression lines for the data obtained in the absence of any cold pre
treatment are also shown in the figures <----:-)]. 
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to be a significant difference between the photosynthetic" responses of 

plants with no chilling pre-treatment and those subject to 72 h at 10'C 

prior to SO, fumigation, although from the Figure, it can be seen that at 

low SO, concentrations ie. 100 ppb, no significant differences were apparent 

and no enhancement in Pnet was observed. Again, there was no increase in 

response when SO, exceeded 4-00 ppb. 

For plants of the variety Aquadulce Claudia (Fig. 4-.6), regression 

analysiS gave a polynomial regression coefticient of 0·4-973 (p < 0'02), and 

it can be seen from the figure that, when SO, concentration exceeds 300 

ppb, there is a very marked difference in response between unstressed and 

pre-stressed plants. Analysis of covariance gave an F value of 17 ·62 (a = 

0'00t) showing there to be much less photosynthetic inhibition in pre

stressed plants. However, it can also be seen from the Figure that lessening 

in degree of SOl-induced photosynthetic inhibition occurring at higher SO, 

concentrations, was not apparent at lower SO, concentrations ie. below 300 

ppb and the enhancement ot Pnet at SO, concentrations below 100 ppb was 

still observed. 

Of special interest here is a comparison of the data tor both 

varieties following 72 h at 10·C. Analysis of covariance gave an F value of 

6·30 (a = 0·001) and showed there to be significant differences in response 

to SO. between the varieties. The majority of Aquadulce Claudia plants, 

after showing little modification in SO, response under low light 

conditions or following a period of 24- h at 10'C, exhibited significantly 

less SO.-induced photosynthetic inhibition than Dylan plants at all SO, 

concentrations. Also, as was observed in Aquadulce Claudia plants under low 

light intensities, there was a maximum degree of photosynthetic inhibition 

occurring "at 4-00 ppb; further increases in SO, concentration did not 

increase the extent of Pnet inhibition and in some plants, inhibition was 

less than at lower SO. concentrations. 

The last environmental regime studied was the effects of a 1 

week cold pre-treatment on the photosynthetic responses of both varieties 

of Vicia faba to sUlphur dioxide. Figures 4-.7 and 4-.6 show inhibition of 

Pnet plotted against SO. concentration for both varieties. Again, plant 

responses are modified by the cold treatment. Regression analysis of the 

data for Dylan plants (Fig. 4-.7) gave a polynomial correlation coefticient of 

0·4-72 (p <0'05). Analysis of covariance gave an F value of 12'97 (a = 0·001) 

showing there to be significantly less photosynthetic inhibition 
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% Change in Net Photosynthetic Rates in Response to Sulphur Dioxide 
Fumigation far Two Varieties of Vioia faba. Dylan (Fig. '.7) and Aquadulce 
Claudia (Fig. '.8) subject to a pre-treatment of 1 week at 10 ·C. [The 
regression lines for the data obtained in the absence of any oold pre
treatment are also shown in the figures (-----)]. 
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after a treatment at 10·C. These differences were again, most marked at 

higher SO. concentrations; however, it can be seen from the Figure that at 

lowest SO. concentrations, there was also significantly less photosynthetic 

inhibition in cold-stressed plants in response to SO. and a small 

enhancement of net photosynthetic rate was observed. 

Examination of the data for Aquadulce plants (Fig. 4-.6) also 

showed there to be significantly less photosynthetic inhibition in response 

to SO. following a one week pre-treatment at 10·C. Regression analysis of 

the data obtained gave a polynomial correlation coefficient of 0'('32 (p < 
0·05) and analysis of covariance gave an F value of 20'59 (IX = 0'001> 

showing the data to be significantly different to that obtained under 

"ideal" environmental conditions. However, these differences were, again, 

more readily apparent when SO. concentrations exceeded 250 ppb. 

As observed in the 72 h pre-treatment, analysis of covariance of 

. the data for bo~h varieties following I week at 10'C, showed Aquadulce 

Claudia plants to exhibit significantly less SO.-induced photosynthetic 

inhibition than Dylan plants, the F value being 3·62 (IX = 0·01>. However, it 

can be seen from the figures that there was no varietal difference in 

response to SO. concentrations around lOO ppb. 

Comparison of the data within the varieties for all cold 

treatments showed there to be significantly less SO.-induced photosynthetic 

inhibition following periods of 72 h or I week at 10'C in relation to the 

data for 24- h cold. There was no significant difference in either variety, 

in the degree of SO.-induced photosynthetic inhibition observed following 

the 72 h or I week cold pre-treatments. A summary of the analysiS of 

covariance results for each variety for all pre-treatments is given in Table 

4.1. 

The data obtained for both varieties following a range of added . 

environmental stresses prior to SO. fumigation produced a number of 

interesting points. Firstly, plants of the variety Dylan were responsive to 

all added stresses, photosynthetic inhibition due to SO. being significantly 

reduced following cold temperature or low light pre-treatments; although 

these responses were most marked at SO. concentrations above lOO ppb. 

However, Aquadulce Claudia plants showed no significant difference in 

response to SO. under optimum environmental conditions or low light 

intensities or following 2(. h at 10 'C; although following the 2(. h cold pre

treatment, no enhancement in Pnet was observed in response to lOO ppb SO. 
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TABLE 4-.1 
Summary or Analysis or Covariance Results Comparing Environmental Pre
conditioning Effects on Net Photosynthetic Responses to SO, in two 
Varieties of Vicia faba CV. Dylan and Aquadulce Claudia. 

Analysis of Covariance 
F value Significance 

Dylan Optimum Environmental 
v Dyl an low light 
v Dylan 24- h cold 
v Dylan 72 h cold 
v Dylan 1 week cold 

conditions 
23·06 

7·64-
13· 61 
12·97 

(X = 
0·001 
0·001 
0·001 
0·001 

(%Pnet inhibition less than that observed under optimum 
environmental conditions in almost all cases.) 

·Aquadulee Optimum Environmental 
v Aquadulce low light 
v Aquadulce 24- h cold 
v Aquadulce 72 h cold 
v Aquadulce 1 week cold 

Conditions 
0·72 
1· 73 

17·62 
20·59 

ns 
ns 
0·001 
0·001 

(%Pnet inhibition less than that observed under optimum 
conditions in the majority of plants. ) 

Dyhn Low Light 
v Aquadul ce low light 7·15 0·025 

(%Pnet inhibition less in Dylan) 

Dyhn 24- h Cold 
v Aquadulce 24 h cold 0·35 ns 

Dyhn 72 h Cold 
v· Aquadulce 72 h cold 6·30 O· 001 

(l'.Pnet inhibition less in Aquadulce. ) 

Dylan 1 Week Cold 
v Aquadulce 1 week cold 3·62 0·01 

(%Pnet inhibition 1 ess in Aquadulce. ) 
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TABLE #. 1 (continued) 

Analysis of covariance 
F value Significance 

et = 
Dylan 24, h Cold 

v Dylan 72 h cold 
v Dylan 1 week cold 

2-83 0-05 
2-77 0-05 

<%Pnet inhibition less in 72 hand 1 week_) 

Dylan 72 .h Cold 
v Dylan 1 week cold 

Aquadulce 24, h Cold 
v Aquadulce 72 h cold 
v Aquadulce 1 week cold 

0-18 ns 

0-001 
0-001 

<%Pnet inhibition less in 72 hand 1 week_) 

Aquadulce 72 h Cold 
v Aquadulce 1 week cold 0-087 ns 
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suggesting that the cold pre-treatment enhanced the sensitivity of 

Aquadulce Claudia plants to low SO. concentrations. In contrast, a period of 

24 h at low temperatures prior to SO. fumigation was shown to 

significantly reduce the sensitivity of Dylan plants to low SO. 

concentrations. However, there was significantly less SO.-induced inhibition 

in net photosynthetic rates in Aquadulce plants after longer periods of 

chilling in comparison to Dylan plants. Following either 72 h or 1 week at 

10·C, the majority of Aquadulce plants exhibited significantly less 

photosynthetic inhibition than was observed in Dylan plants under the same 

conditions. Again, the exception being at SO. concentrations below 100 ppb 

when no varietal difference in response was observed in plants previously 

subjected to. 1 week cold temperature stress 

Secondly both varieties, under optimum environmental conditions, 

showed there to be a tolerance threshold to SO. around 400 ppb, beyond 

. which Pnet was even more severely limited. This 'threshold' was not the 

dividing line between no or some response.to SO. but was ,the point at 

which the relationship between SO. concentration and observed 

photosynthetic inhibition was significantly altered, the degree of 

inhibition being much more serious. At low light intensities and following 

72 h or I week at 10·C, Aquadulce plants did not show this enhancement in 

response, indeed, a plateau was r.eached between 300 - 400 ppb above which, 

the degree of inhibition in Pnet declined. In Dylan plants, at low light 

intensities, this threshold was still in evidence, but following 24 h or 72 

h cold the response became linear and after 1 week at 10·C Dylan plants 

exhibited a maximum degree of inhibition in Pnet at 400 ppb; above this 

concentration Pnet inhibition declined. 

Thirdly, in Dylan plants, photosynthetic inhibition was less than 

that observed under optimum environmental conditions for all pre-treatments 

and all SO. concentrations. Aquadulce Claudia plants however, demonstrated 

less photosynthetic inhibition only when SO. concentrations exceeded 250 

ppb. 

Lastly, it was observed, in both varieties, that the data 

obtained were increasingly scattered with increasing length of cold pre

treatment. Although the regression lines shown in the figures were 

significant to the levels stated above, the standard deviation of the data 

about the regression lines increased. The causes of this variability in the 

data may be due to the mechanisms involved in the interactions between 
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environmental ·and pollutant stress effects on net photosynthetic rates. It 

was hoped that such variability may be explained when the effects of added 

environmental stresses on other plant parameters were examined. 

4-.5 DARK RESPIRATION (Bd) 

In §3.!5 it was shown that dark respiration rates, (Bd), in plants 

ot the variety Dylan were enhanced by exposure to sulphur dioxide, whereas 

there was no influence of SO. on dark respiration rates in plants of the 

variety Aquadulce Claudia. However, natural rates of Bd in Aquadulce plants 

were significantly higher than those measured for Dylan in the absence of 

. SO •• Changes· in dark respiration rate in response to SO., if they persist 

during the light periods, are important when determining the influences of 

SO. on carbon assimilation rates because net photosynthesis is the net 

. result of maximum photosynthesis (Pmax) minus respiration rates. 

In this section, the influences of added environmental stresses 

on dark respiration rates and the modification of SO. responses by these 

added stresses are discussed. Because of the natural variability in the 

data obtained and also because increases in Bd in Dylan plants were found 

to be independent ot the SO. concentration used, regression analyses ot the 

data obtained were not appropriate. Therefore, as for the data obtained 

under 'ideal' conditions, the data presented in this section were analysed 

using 't' tests. 

Table 4.2 shows the results for both varieties of Vicia faba in 

response to SO. under low light intensities or following periods of either 

201- h, 72 h or 1 week at 10'C prior to SO. fumigation. Cl and PI are 

measurements of dark respiration rates in the dark period prior to SO. 

fumigation for control (Cl) and plants that were to be SO. treated <Pl). C2 

and P2 are measurements of Bd in control and treated plants during the 

dark period following SO. fumigation which had occurred in the intervening 

light period. Table 4,.3 gives a comparison of the dark respiration data 

from the environmental pre-treatments with that obtained for each variety 

under optimum environmental conditions; comparison of the data for each 

variety is also shown. 

When respiratory data prior to SO. fumigation were examined, no 

significant differences could be observed between the respiration rates of 
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TABLE 1-.2 
Analysis of data, Using 't' tests for dark respiration rates (Rd, g CO. m-a 
h-'), in two varieties of !!2.!A faba CV: Dylan Bc Aquadulce Claudia in 
response to SO. and a range of added environmental stresses. £High Light = 
saturating l1ght intensity of 150 W m-' and optimum temperature 23 t 3·C: 
Low Light = light intenSity of 60. W m-' and optimum temperature: 24- h, 72 
hand 1 week = high light conditions plus a pre-treatment at 10'C prior to 
SO. fumigation]. 
Cl and P1 are the control and polluted plants prior to SO. exposure. C2 and 
P2 are the control and treated plants on the second night of the 
experimental period, following SO. exposure. 

Variety Bc 
Treatment Mean Maximum Minimum Variance 

Dylan Low Light 

Cl 
C2 
P1 
P2 
C2 I P2 

o· 126 
0·121 
0·086 
0·082 

Aquadulce Low Light 

Cl 
C2 
P1 
P2 
C2 I P2 

0·197 
0·174 
0·161 
0·136 

Dylan 24- h .Cold 

Cl 
C2 
P1 
P2 
C2 I P2 

o· 182 
0·117 
0·175 
0'141 

0·197 
0'210 
0·127 
0'105 

0·348 
0'287 
0·293 
0'207 

0'241 
0·165 
0·242 
O· 162 

0·058 
0'060 
0'04-7 
0·04-7 

0·064-
0'036 
0·04-9 
0·038 

0·107 
0·051 
0·097 
0·109 

0'003 
0'004-
0·001 
0'001 

0·011 
0'008 
0·011 
0·004-

0·002 
0·001 
0·001 
0'001 

't' (la 

0·152 ns 

0·283 ns 

1·599 0'10 

0'437 ns 

0·987 ns 

0·948 ns 

3·717 0·001 

2·707 0·01 

1·500 0·05 

To allow comparison the data presented in §3.5 showing the mean values of 
Rd obtained for each variety under optimum environmental conditions are 
given below: 

Before SO. (Pt) 
After SO. (P2) 

Mean 
0·131 
0·224 

DYLAN 

Variance 
0'002 
0'007 

AQUADULCE CLAUDIA 

Mean 
0·265 
0.236 

Variance 
0.011 
0·006 
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TABLE 4-.2 (continued) 

Variety & 
Treatment Mean Maximum Minimum Variance ' t' cc • 

Aquadulce U h Cold 

Cl 0-252 0-372 0-28~ 0-003 0-550 ns 
C2 0-2U 0-355 0-171 0-003 
PI 0-274 0-462 0-193 0-003 0-820 ns 
P2 0-259 0-354 0-190 0-002 
C2 I P2 0-745 ns 

Dylan 72 h Cold 

Cl 0-181 0-309 0-090 0-003 2-093 0-025 
C2 0-130 0-181 0-082 0-002 
PI 0-173 0-265 0-072 0-003 1-889 0-05 
P2 0-132 0-201 0-081 0-001 
C2 I P2 0-097 ns 

Aquadulce 72 h Cold 

Cl 0-305 o-~n 0-153 0-006 0-571 ns 
C2 0-283 0-43~ 0- 159 0-01 
PI 0-298 0-390 0-232 0-003 1- 712 0-10 
P2 0-259 0-326 0-186 0-002 
C2 I P2 0-562 ns 

Dylan 1 Week Cold 

Cl 0-183 0-307 0-128 0-003 0-699 ns 
C2 0- 16~ 0-211 0-090 0-002 
PI 0-180 0-3~6 0-097 O-OO~ 0-960 ns 
P2 0-155 0-200 0- 106 0-002 
C2 I P2 0-362 ns 

Aquadulce 1 Week Cold 

Cl 0-281 0-~76 0-11~ 0-009 1-251 ns 
C2 0-231 0-371 0- 135 0-008 
PI 0-278 0-~37 0-a6 0-005 1- ~72 0- 10 
P2 0-232 0-359 0- 139 0-006 
C2 I P2 -0-02~ ns 
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plants in the control chamber (ct) and plants in the treatment chamber 

<1't). This was true for the whole range of environmental treatments used • 

.... 5. 1 Bd: Responses to SOz and Low Light Stress 

Under low Ught intensities, examination of the data for both 

varieties showed there to be no significant differences in dark respiration 

rates of the control plants on the first (Ct) and second (C2) nights of the 

experimental period showing the plants not to be stressed as a result of 

being in the exposure chambers. However, following SO. fumigation (P2), dark 

respiration rates were found to be significantly lowered in plants of the 

variety Dylan whereas there was no influence of SO. on the dark respiration 

rates of Aquadulce plants. Significant varietal differences in dark 

respiration rates were found both before and after SO. fumigation (Table 

.4-.3). Plants of the variety Aquadulce Claudia were found to have 

significantly higher dark respiration rates than plants ot the variety 

Dylan during the dark period prior to SO. fumigation (ct,Pt). This 

difference was even more obvious following SO. fumigations (C2,P2) when 

rates of dark respiration were reduced in Dylan plants but were unchanged 

in Aquadulce plants (Table 4-.2). 

Table 4-.3 also shows the results obtained when dark respiration 

.data from plants grown under low light intensity are compared with data 

obtained from plants grown under high light intensity. In Dylan plants, 

dark respiration rates prior to and following SO. treatments were 

significantly lowered when plants were grown under low light intensities. 

Rather than the enhancement in Rd seen under high light conditions, 

exposure to SO. under low light conditions appeared to further reduce Rd. 

Dark respiration rates in Aquadulce plants were also significantly lower 

under low Ught conditions and as was observed under high light 

conditions, SO. had no significant effect on Rd • 

.... 5. 2 Bd: Responses to SOz and Low Temperature Stress 

Following a pre-treatment of 24- h at to'C, there was again no 

observable effect of SO. on dark respiration rates of Aquadulce Claudia 

plants. There were no significant differences in Rd either in control or 

treated plants or during each dark period (Table 4-.2). Similarly, there was 
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TABLE 4-.3 
Results of 't' test analyses of dark respiration data of two varieties of 
Vieia ~ CV. Dylan & Aquadulce Claudia in response to SO. and a range of 
environmental conditions. [High Light = saturating light intensity 150 W 
m-I and optimum temperature 23 :I: 3 ·C: Low Light .. light intensity 60 W m-' 
and optimum temperature: 2( h. 72 11. and 1 week .. high light conditions 
plus a pre-treatment at 10·C prior to SO. fumigation). Cl and PI are the 
control and polluted· plants prior to SO. exposure. C2 and P2 are the control 
and treated plants on the second night of the experimental period. 
following SO. exposure. 

Variety & 
Treatment Cl I Cl C2 I C2 PI I PI 

level o~ sJsnJ~Jcauce. a = 

Dylan High Light 

v DY Low light . 1·605 
0·10 

v DY 2( 11. cold -1·3(5 
0·10 

v DY 72 11. cold -1·113 
us 

v DY 1 week -1·2(9 
us 

Aquadulce High Light 

v AQ Low light 1·389 
0·10 

v AQ 2( 11. cold 0·30( 
us 

v AQ 72 11. cold -1·636 
0·10 

v AQ 1 week -0·729 

Dylan v Aquadulce 

Low light 

U 11. cold 

72 11. cold 

1 week 

us 

-1·826 
0·10 

-(·177 
0·0005 

-(·9(0 
0·0005 

-3·682 
0·001 

0·603 
us 

0·855 
us 

0·393 
us 

-0· 77( 
us 

1·305 
us 

-0·667 
us 

-1· 377 
0·10 

-0· 165 
us 

-1·320 
us 

-6·083 
0·0005 

-3·8(7 
0·005 

-1·719 
0·05 

3·392 
0·005 

-3·282 
0·05 

-2·671 
0·01 

-2·7U 
0·01 

1·773 
0·05 

-0·319 
us 

-1· 198 
us 

-0·(57 
us 

-2·320 
0·025 

-6·336 
0·0005 

-6·853 
0·0005 

-(·125 
0·0005 

P2 I P2 

5·25( 
0·0005 
3·097 
0·01 
3·10( 
0·005 
2·268 
0·025 

3·016 
0·005 

-0·85( 
us 

-0·758 
us 

0·128 
us 

-2·1(5 
0·05 

-8·227 
0·0005 

-5·395 
0·0005 

-2·(86 
0·025 
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no observable effect of the 2~ h cold temperature pre-treatments on dark 

respiration rates in Aquadulce Claudia plants there being no significant 

dltferences between all the dark respiration data obtained following 2~ h 

cold and the data obtained under 'ideal' conditions (Table ~.3). 

However, dark respiration rates in Dylan plants were altered in 

response to both SO, and the cold pre-treatment in comparison with the 

data obtained under optimum environmental conditions (Tables ~.2 and ~.3). 

Dark respiration rates were significantly higher on the first night of the 

experimental period as a result of the cold temperature pre-treatment 

(Cl,P1>; this proved to be a temporary enhancement as dark respiration 

rates had decreased in both the control and SO,-treated plants by the 

second night of the experimental period. However, the SO. polluted plants 

did not show the full extent of the recovery from cold stress exhibited by 

the control plants during the exposure period and 't' tests showed the dark 

'respiration rates of the polluted Dylan plants on the second night to be 

significantly higher than that of the control plants. This decline in Bd 

after the first dark period resulted in there being no significant 

difference between non cold~treated and cold treated plants during the 

second dark period, in the absence of SO •• However, because SO. induced an 

enhancement in Bd under 'ideal' conditions and this was not observed 

following the 2~ h cold pre-treatment, there were signU'icant differences 

between cold stressed and unstressed plants following SO. fumigations; 

unstressed plants having higher dark respiration rates. 

When the results for each variety following 2~ h at 10'C were 

compared, Aquadulce Claudia plants again had significantly higher dark 

respiration rates than Dylan plants in both control and treated plants 

thr~ughout the experimental period. 

The results for both varieties following a period of 72 h at 10'C 

showed that the cold temperature stress induced increases in dark 

respiration rate (Table ~.2). Comparison of the data obtained during the 

first dark period (Cl,Pl) with that obtained for non cold-stressed plants 

showed these increases in Bd to be significant (Table ~.3). In Dylan plants, 

as observed following the 2~ h cold period, the enhancement in Bd proved to 

be temporary and respiration rates were lower on the second night of the 

exposure period in both SO. treated and control plants. However, unlike the 

effects of the 2~ h cold treatment, there was no significant effect of SO. 

on dark respiration rates in Dylan plants subjected to 72 h at 10'C prior 
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to SO. fumigation. 

Conversely, in Aquadulce Claudia plants the significant increases 

in dark respiration observed during the first dark period were seen to 

persist in control plants throughout the experimental period. However, SO. 

fumigation resulted in a depression in dark respiration rates in Aquadulce 

plants so that during the second dark period there was no significant 

difference in Rd between non cold-stressed SO. treated plants and those 

subjected to 72 h at 10'C prior to SO. fumigation. 

Comparison of the data for both varieties following the 72 h 

cold pre-treatment showed, again, that Aquadulce Claudia plants had 

significantly higher dark respiration rates than those of Dylan in both 

control and treated plants throughout the experimental period. 

As for the 24 hand 72 h cold temperature treatments, following 

a period of 1 week at 10'C prior to SO. fumigations, the nature of changes 

, in dark respiration rates were found to differ. In Dylan plants, dark 

respiration rates were again enhanced in response to cold stress as shown 

by comparison of the data obtained during the first dark period (Cl,Pl) 

with that for non cold-stressed plants <Table 4.3). This enhancement again 

declined throughout the exposure period indicating recovery from cold 

stress. However, the decreases in Rd observed during the second dark period 

(C2,P2) were not as pronounced as those observed following 24 h or 72 h 

cold pre-treatments suggesting that the plants were slower to recover from 

the prolonged cold treatment. As observed following the 72 h cold 

treatment, there was no significant effect of SO. on dark respiration rates 

of Dylan plants previously subjected to a 1 week cold temperature treatment 

(Tables 4.2 and 4.3). 

In Aquadulce Claudia plants exposure to 10'C for 1 week did not 

result in enhanced rates of dark respiration, there being no significant 

differences in dark respiration rates during the first dark period (Cl,Pt) 

in comparison to 'rates observed in non cold-stressed plants (Table 4.3). 

This suggested that the increase in Rd following the 72 h cold treatment 

was temporary and that Aquadulce plants had the ability to recover during 

the 1 week cold temperature exposure. There was no significant effect of 

SO. fumigations on dark respiration rates of Aquadulce plantS previously 

subjected to a 1 week cold temperature treatment. Aquadulce plants, again, 

were found to have significantly higher dark respiration rates than Dylan 

plants. 
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In conclusion, for all environmental regimes, Aquadulce Claudia 

plants had significantly higher dark respiration rates than those of the 

variety Dylan. 

Low light intensities induced lower dark respiration rates in 

both varieties in comparison to the data obtained under high light 

conditions. There was no response to SO. in Aquadulce plants under low 

light conditions but, in Dylan plants, dark respiration rates were further 

reduced by SO. fumigations. 

Periods of time spent at 10·C induced increased dark respiration 

rates in plants of the variety Dylan but some recovery occurred as this 

increase in Rd declined throughout the exposure period and approached the 

rates observed under 'ideal' conditions for control plants by the second 

night of the exposure period. However, the rate of decline in this increased 

Rd appeared to be dependent on the length of the cold pre-treatment; 

. comparison of the data for Cl and C2 presented in Table 4-.2 showing that 

plants subject to 24- h cold were qUicker to recover than plants subjected 

to 72 h or 1 week cold respectively. Although SO. did not induce the 

increases in dark respiration rates, observed under optimum environmental 

conditions, in Dylan plants following cold pre-treatments, after 24- h cold, 

the decline in Rd during the second dark period was inhibited in response 

to SO •• This did not occur following 72 h or 1 week cold pre-treatments. 

Dark respiration rates in Aquadulce plants were increased only in 

response to a cold pre-treatment of 72 h and showed no response to the 24-

h or 1 week cold temperature pre-treatments. However, it may be assumed 

that dark respiration rates in Aquadulce plants were enhanced during the 1 

week cold period, as shown by the data for the 72 h cold treatments, but 

the plants have the ability to recover dark respiration rates during 

prolonged cold temperature stress. Sulphur dioxide did not influence dark 

respiration rates following 24- h or 1 week at 10'C in Aquadulce Claudia 

plants. However, following a period of 72 h at 10 ·C, Rd was significantly 

reduced in Aquadulce plants in resp'onse to SO •• 

4-.6 STOMATAL RESISTANCE (rs) 

The stomatal responses, of both varieties of Vicia faba, to a 

range of sUlphur dioxide concentrations under optimum environmental 

conditions were described in 63.6. Examination of the time-response data 
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for each variety, under optimum conditions, showed there to be a great deal 

of natural and diurnal variation in stomatal resistance in the absence of 

SO •• This variation was also seen to occur following pre-treatments of cold 

temperature and under low light intensities. Because of this variation, 

changes in stomatal resistance in response to SO. have been expressed as 

percentage change in relation to control plants, rather than as absolute 

values (§3.6.2). 

All time-response data have not been displayed due to the amount 

ot data collected. However, the generalisation can be made that stomatal 

resistances prior to SO. fumigation were found to be slightly higher in 

plants pre~treated with environmental stress compared with more optimum 

conditions. in addition, as with photosynthesis, stomatal responses to SO. 

were modified in plants subJected to prior environmental stress. 

4.6.1 rs: Responses to 802 and Low Light Stress 

Figures t.9 and t.10 show ohanges in stomatal resistanoe of 

Dylan and Aquadulce Claudia plants in response to a range of sulphur 

dioxide concentrations, under low light intensities. The regreSSion lines for 

the data for 'high light' are also shown in the figures. Under high light 

oonditions, Dylan plants exhibited a threshold oonoentration of tOO ppb 

representing a switoh in stomatal response from opening to closure; below 

tOO ppb the dominant response was enhanoed stomatal opening whereas, 

enhanoed stomatal olosure ooourred at all SO. treatments above this 

conoentration. When the stomatal responses to SO. of Dylan plants, under 

low light intensities were examined (Fig. t.9) it was seen that there was a 

distinct contrast between responses of plants to SO. in both environmental 

regimes. Under low light conditions, stomatal responses were reversed, the 

greatest degree of stomatal closure occurred at low SO. concentrations and 

enhanced stomatal" opening occurred in response to higher SO. levels. Again, 

there was evidenoe of a threshold oonoentration around toO ppb, but under 

low light intensities, this represented a switoh in plant response from 

stomatal olosure to opening. RegreSSion analysis of the data gave a linear 

oorrelation ooefficient of 0'85 (p < 0'01>. The magnitude of stomatal 

responses to SO. was reduced under low light intensities, ranging from -tt% 

to 35%, whereas, under high light conditions stomatal responses ranged 

from -85% to 51%. 
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Changes in stomatal resistance in two varieties ot Vicia taba. Dylan (Fig. 
t.9) and Aquadulce Claudia (Fig. t.tO) in response to a range ot sulphur 
dioxide concentrations under conditions ot low light intensity. [The 
regreSSion lines tor the data obtained under 'high light' conditions are 
also shown in the Figures to allow comparison (----- H. 
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Figure 4,.10 shows the data for stomatal responses in Aquadulce 

plants obtained under low light intensities and the regression line 

obtained for Aquadulce Claudia plants under 'high light' conditions. In 

'high light' conditions there was a close correlation between stomatal 

responses and ambient SO. concentration (p < 0'01) but when the data for 

low light were analysed there was no significant correlation between these 

two parameters, the regression coefficient being -0·24,6. The threshold 

concentration under 'high light' conditions, above which stomatal closure 

occurred was 180 ppb. Under low light conditions, stomatal closure occurred 

at all SO. concentrations above 300 ppb. The magnitude of the stomatal 

responses of Aquadulce plants to SO. appeared to be similar under both 

environments:! regimes. 

The reversal of the stomatal responses to SO. in Dylan plants 

when plants were grown under low light intensities resulted in there being 

. statistically significant differences in comparison to the data obtained 

for plants grown under high light conditions. 

~.6.2 rs: Responses to SO. and Low Temperature Stress 

Figures 4.11 and 4..12 show the stomatal responses to 502 of Dylan 

and Aquadulce plants following a period of 24 h at 10'C prior to SO. 

fumigation (the regression lines for the data obtained for plants grown 

under optimum temperature conditions ie. 23 i 3'C and not subJected to cold 

stress, are also shown). Regression analyses, for both varieties, showed no 

significant correlations between ambient SUlphur dioxide concentration and 

per cent change in stomatal resistance, the correlation coefficients being 

. -0 ·388 for Dylan plants and 0 '085 for Aquadulce plants. Unlike the trends 

observed in the absence of cold temperature stress, there was no apparent 

relationship between changes in stomatal resistance and ambient sulphur 

dioxide concentration for plants of either variety. Thus SO.-induced 

changes in stomatal resistance appeared to be independent of SO. 

concentration. In Aquadulce plants (Fig. 4..12), the data for plants subJected 

to the 24, h cold pre-treatment were much more scattered than that 

obtained under optimum temperature conditions, 3 out of 10 plants exhibited 

enhanced stomatal opening in response to SO. concentrations below 500 ppb; 

the remaining plants showed increased stomatal closure. The degree of 

stomatal opening in Aquadulce plants was much greater than that observed 
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Figure 4.11 
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Changes in stomatal resistance in two varieties of Vlcla faba, Dylan (Fig. 
4.11) and Aquadulce Claudia (Fig. 4.12) in response to a range of SO. 
concentrations followlng a cold temperature pre-treatment of 24- h at lO·C. 
[The regresslon lines for the data obtained under optimum temperature 
conditions are also shown in the figures to allow comparison (----- n. 
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under optimum temperature conditions, ranging from 24% to 31% above 

control plants at SO. concentrations between 200 and 400 ppb. In the 

absence of cold stress the maximum degree of enhanced stomatal opening 

found in Aquadulce plants was 9% at SOt concentrations below 300 ppb. 

There was no evidence, in Dylan plants <Figure 4.11), of the 

threshold concentration at 400 ppb, found in non cold-stressed plants, 

which represents the switch from enhanced stomatal opening to enhanced 

stomatal closure. Similarly, the clear threshold, observed under optimum 

temperature conditions was not observed in Aquadulce Claudia plants 

following a pre";treatment of 24h at 10'C <Figure 4.12). 

Figures 4.13 and 4.14 show the stomatal responses of Dylan and 

Aquadulce Claudia plants to SO. following a pre-treatment of 72 h at 10'C 

<the regression lines obtained from the data for non cold-stressed plants 

are also shown). Again, in Dylan plants <Fig. 4.13), there was no 

. significant correlation between ambient sulphur dioxide concentrations and 

the degree of change in stomatal resistance, the calculated correlation 

coefficient being 0·037. There was, also, no evidence of a threshold 

concentration, representing a switch from stomatal opening to enhanced 

closure, and unlike the responses observed under optimum temperature 

conditions, the maJority of Dylan plants eXhibited enhanced stomatal 

closure in response to SO., even at concentrations below 300 ppb. 

There was a closer relationship between the stomatal responses of 

Aquadulce Claudia plants <Fig. 4.14-> and ambient SO. concentrations 

following a 72 h cold pre-treatment. Regression analysiS gave a linear 

correlation coefficient of 0 '680 <p < 0'05) and showed that stomatal 

resistance increased at low SO. concentrations and decreased at SO. 

concentrations above 400 ppb. This was a reversal of the responses of 

Aquadulce plants not subjected to cold temperature pre-treatments as can be 

seen from comparison of the regression lines in figure 4.14. The magnitude 

of stomatal response to SO. was increased in Aquadulce plants following a 

period of 72 h at 10·C. Responses ranged from -66% to 33%, whilst under 

optimum temperature conditions responses ranged from -34% to 9% In 

relation to control plants. 

The stomatal responses of both varieties of Vicla faba to SO. 

following a cold temperature pre-treatment of 1 week at 10'C are shown in 

figures 4.15 and 4.16 (the regression lines obtained from the data for non 

cold-stressed plants are also shown). Unlike the data obtained for plants 

Page 167 



3D 

20 

.. 
" 

10 

c ,g 
.!!! 0 
III e 
JI -10 0 
E 
.£ 
II! -20" 
.!' .. 
0> 
c -30 0 
J: 
U 
~ -40' 

-50' 

-60 
0' 

40' 

30 

20· .. 
u 

10· c ,g 
.!!! 
III 0 e 
JI 

-10' 0 
E 
.£ 
II! -20' 
.!' .. 
0> -30 
c 
0 
J: 
U -40' 
~ 

-so 

-60' 

-7() 
0' 

Results 

Figure 4.13 

• 

• 

• 

lOO' 200' 30'0' 400' 50"0' eaD 
Sulphur dioxide concentration (ppp) 

• 

Figure 4.14 

• 
• 

• 

10'0' 20"0' 30'0' 40'0' SOD 60"0' 

Sulphur dioxide concentration (PPb.) 

Chapter 4-

70'0' 

70'0' 

Figures ~.13 and ~.1~ 
Changes in stomatal resistance in two varieties of Vicia faba. Dylan (Fig. 
4-.13) and Aquadulce Claudia (Fig. 4-.14-) in response to a range or so. 
concentrations following a cold temperature pre-treatment of 72 h at 10 ·C. 
[The regression lines for the data obtained under optimum temperature 
conditions are also shown in the figures to allow comparison (-----)]. 
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Chapter 4-

Changes in stomatal resistance in two varieties of Vioia faba, Dylan (Fig. 
4-.15) and Aquadulce Claudia (Fig. '.16) in response to a range of SO. 
concentrations following a cold temperature pre-treatment of I week at 
IO·C. [The regression lines for the data obtained under optimum temperature 
conditions are also shown in the figures to allow comparison (----- )]. 
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in the absence of cold stress, there was no significant correlation between 

ambient sulphur dioxide concentrations and the degree of stomatal response 

in either variety following the 1 week cold pre-treatments. In Dylan plants 

<Fig. 4,.15), the calculated correlation coefficient was 0·133 (ns). However, 

all plants exhibited stomatal closure at all SO. concentrations used (95 to 

520 ppb). The magnitude of stomatal response in Dylan plants was much less 

following 1 week cold, ranging from -26% to -4,% whereas in the absence of 

cold stress stomatal responses ranged from -65% to 51% in relation to 

control plants. 

The responses of plants of the variety Aquadulce Claudia to SO. 

produced a correlation coefficient of 0·163 (ns). However, visual inspection 

of the data. (Figure 4,.16), in relation to that obtained under optimum 

temperature conditions, showed there to be significant differences in 

response. Stomatal resistance increased at all SO. concentrations used and 

. the majority of the data showed that increases in stomatal resistance were 

proportional to the SO. concentration supplied. Increases in r. were much 

greater than those observed under optimum temperature conditions for the 

same SO. concentrations, ranging from -16% at 99 ppb to -62% at 4,90 ppb. 

Under optimum temperature conditions stomatal responses were 4,% at 99 ppb 

and -34,% at 4,90 ppb. 

In conclusion, the stomatal responses of both varieties to SO. 

were influenced by added environmental stress. The magnitude of changes in 

resistance appeared to decrease in response to increasing lengths of time 

spent at 10'C for plants of the variety Dylan. However, the magnitude of 

stomatal response in Aquadulce Claudia plants was increased with increasing 

length of cold pre-treatments. The threshold response exhibited by both 

varieties in the absence of cold stress, at which stomatal response 

switched from enhanced opening to closure, was not evident when plants 

have been pre-stressed with cold temperatures; following periods of 1 week 

cold prior to S02 fumigation no enhancement in stomatal opening in 

response to SO. treatments was observed in plants of either variety. 

In both varieties, the relationship between ambient sulphur 

dioxide concentration and changes in stomatal resistance became much more 

variable in response to added environmental stress. It was hoped that 

analyses of actual SO. fluxes to the plants, would give a clearer indication 

of relationships between changes in stomatal resistance in response to SO. 

following added environmental stress, because, as was shown in the previous 
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chapter, ambient.SO. concentrations were not found to be an entirely 

accurate·representation of actual SO. dosage to plants. Changes in stomatal 

resistances as a function of pollutant flux are described in §4-.8. 

~.7 RESISTANCE FACTORS INFLUENCING NET PHOTOSYNTHESIS 

In §3.7.2 the influence of Changes in residual resistance to CO. 

transfer due to SO. exposure was discussed. It was shown that the maJor 

factor governing SO.-induced changes in photosynthetic rate was changes 

in the residual· resistance. to CO. transfer, rrCO., a lesser part was played 

by changes in stomatal resistances, r.CO •. Also, for plants of the variety 

Dylan, increases in respiration rates due to SO. contributed to changes in 

net photosynthetic rate in response to the pollutant. 

~.7.1 rrCOz & rsCOz : E~~ects o~ SOz & Low Light Stress 

When the resistances to CO. transfer were examined following low 

light stress <Tables 4,.4, and 4,.5) both varieties showed much higher 

residual resistances to CO. diffusion, before SO. treatment in comparison to 

the resistance data obtained under high light intensities <Tables 3.7 and 

3.8, previous chapter). Absolute values of rrCO. in Dylan plants <Table 4,.4-) 

in the absence of SO., under optimal environmental conditions ranged from 

·4,4,8 - 864- s m-' but under low light intensities values ranged from 1374, -

2120 s m-'. Similarly, in Aquadulce Claudia plants <Table 4-.5) rrCO. values 

under high light intensities in the absence of SO., ranged from -111 - 729 

s m-' but under low light stress values range from 1018 s m-' to 1870 s 

m-'. Stomatal resistances to CO. transfer in the absence of SO. were also 

raised in response to low light stress. In Dylan plants, under high light 

conditions values for r.CO. ranged from 20 - 270 s m-' but under low light 

intens ities values ranged from 300- 550 s m-'. In Aquadulce Claudia plants 

stomatal resistances are effectively doubled in response to low light stress, 

increasing from 100 - 4-00 s m-' to 200 - 600 s m-'. 

Gross photosynthetic rates, Pmax, were found to be significantly 

reduced when plants had been grown under low light intensities when rates 

of Pmax prior to SO. fumigation of both varieties were compared for both 

light regimes. Under high light conditions, values of Pmax were found to 

range from 1'26 to 3·25 g CO. m-' h-', whereas under low light conditions 
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TABLE 4-.4-

~ ~ CV. Dy1an. stomatal (r.) and Residual (rr) Resistance Data for 
CO. Transfer Before and After Exposure to SO. Under Low Light Intensities. 
Per cent SO.-induced inhihition in net photosynthetic rates and stomatal 
resistance in relation to control plants are also shown. 

[SO.] % change rr (s m-I) % change r. (s m-I) 
(pph) in Pnet Before After in r. Before After 

SO. SO. SO. SO. 

160 12·3 1374-·2 1567·1 -26'3 4-60'3 254-·1 

200 -2,9 1616'3 1625'3 -44·5 301·9 367'7 

255 16·9 1686'6 1611' 4 -21,1 334-'9 417'4-

390 6·1 1728'6 1960'6 13.7 523'1 460'3 

400 11·6 2119' 4 2701'1 -6'4 554.4 516.4 

600 26'2 174-0·5 2743·5 34-'7 514'6 56·1 

610 25'4- 1767·5 2373' 1 2.2 26'4- 116·6 

TABLE 4-.5 

Vicia ~ CV. Aquadulce Claudia. Stomatal (r.) and Residual (rr) Resistance 
Data for CO. Transfer Before and After Exposure to SO. Under Low Light 
Intensities. Per cent SO.-induced inhihition in net photosynthetic rates 
-and stomatal resistance in relation to control plants are also shown. 

[ SO,] % change rr (s m-I) % change r. (s m-I) 
(pph) in Pnet Before After in r. Before After 

SO, SO, SO. SO, 

220 6' 1 1689'2 1427·8 -26,8 528·3 600'6 

270 17'3 17"8," 1772'3 +3·3 592·3 892'6 

285 20·2 1018·8 169"'0 +18·5 755'7 379·5 

360 22'1 1870'6 2038·8 -22,9 374'5 4-76·8 

440 30·1 1560·6 2130·0 -8'2 191' " 336·6 

510 "0·3 U61·7 2231·9 -19'7 "85' 1 503·2 

615 34-·4- 1644·7 2039·2 -16'2 810· 1 811'8 
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values for Pmax ranged from 0·63 to 1·05 g CO. m-' h-·. As shown in 

chapter 3, gross photosynthesis can be calculated from: 

Pmax = t - 0 

ra + r, + rr 

where r. is he aerodynamic resistance to CO. transfer, r. the stomatal 

resistance, rr is the residual resistance and t is the ambient carbon 

dioxide concentration. The relative contributions of changes in stomatal 

and residual resistance to CO. transfer in causing the observed reduction 

in Pmax in response to low light stress can be analysed. If photosynthetic 

rates are reduced between two thirds and one half that of unstressed 

plants the amount of inhibition caused by changes in both the stomatal 

and residual resistances under low light stress can be calculated as the 

, aerodynamic resistance is unchanged. 

For example: 

Two plants of the variety Dylan were grown under low or high 

light intensities prior to exposure to ~OO ppb SO •. Under high light 

intensities Pmax, prior to SO. treatment, was 2·06 g' CO. m-' h-', r. was 

161 s m-', r. was 23~ s m-', rr was 621 s m-i and t was 0'5610 g m-so 

Under low lig,ht intensities Pmax, prior to SO., was 0·75 g CO. 

m-' h-', r. was 161 s m-', r. was 55~ s m-', rr was 2119 s m-i and t was 

0·59.74g m-so It can be seen that Pmax was reduced by 6'% from 2'06 to 

0·75 g CO. m-' h-' in response to low light stress. 

It r. is assumed to be unchanged by low light stress, Pmax would 

be calculated from: 

Pmax = 0'5974, 

161 + 23~ + 2119 

= 2,3'6 x 10-' (x 3600) 

= 0·6U g CO. m-' h-' 

x 3600 

showing Pmax to still be reduced by 59% in comparison with the unstressed 

plant. 

However, if rr is assumed to be unchanged by low light stress 

then Pmax becomes: 
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Pmax .. 0·5974- x 3600 

161 + 554- + 621 

= 4-·36 x 10-0 (x 3600) 

= 1·576 g CO. m-I h-' 

showing Pmax to be reduced by 24-% in comparison to the unstressed plant. 

In order to confirm the above results, Pmax can be calculated 

with the assumption that neither r. nor rr were influenced by low light 

stress. Pmax would then be: 

Pmax .. 0·5974- x 3600 

161 + 234- + 621 

From the example given above it can be estimated that 10% of 

the observed changes in Pmax were due to changes in the stomatal 

resistance under low light stress but 90% of the change in Pmax was due to 

increases in the residual resistance to CO. transfer. These results are 

summarised in the follo,:"ing table:-

High Light 

Low Light 

Low Light if 

unchanged. 

Low Light if 

unchanged 

ra r. rr Pmax 

(s m-') (g CO. m-' 

161 234- 621 2·06 

161 554- 2119 0'75 

r. 

161 234- 2119 0·64-

rr 

161 554, 621 1· 56 

Total % reduction in Pmax is 64,% 

10% of this is due to r. 

90% of this is. due to rr 

h-I) 

Having determined the major factor influencing reductions in 

photosynthetic rate due to low light stress, the effects of sulphur dioxide 
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fumigations must be considered. In plants of the variety Aquadulce Claudia, 

there was no significant difference in the degree ot SO.-induced 

photosynthetic inhibition under high or low light conditions (§4.4). 

However, photosynthetic inhibition in response to SO. was significantly 

reduced in plants ot the variety Dylan under low light intensities. 

For the Dylan plants cited in the above example, following 

exposure to 400 ppb SO., net photosynthesis was inhibited by 31% under 

high light ,intensities and by only 11% under low light conditions. Values 

for r" r. and Pmax before and after SO. fumigation, for both light 

treatments, are summarised below:-

High Light Low Light '(Units) 

r. before SO. 234 554 s m- t 

after 199 516 

, rr before SO. 621 2119 s m- t 

after 1025 2701 

Pmax before SO. 2'06 0'75 g CO. m-' h-' 

after 1·52 0'63 

In both cases" stomatal resistance to CO. transfer decreased slightly over 

the SO. fumigation peri~d: therefore it might be concluded that differences 

in photosynthetic inhibition were due to changes in the residual resistance 

to CO. transfer which increased markedly in both cases. 

However, in chapter 3 it was shown that, in Dylan plants, dark 

respiration rates, Rd, were enhanced in response to SO. under optimum 

environmental conditions. Thus if Pmax = Pnet + Rd, then increases in Rd 

will result in decreased rates ,of net photosynthesis. In §4.5 it was shown 

that dark respiration rates were reduced in both varieties of Vlcia faba in 

response to low light stress; also, in Dylan plants, SO. exposure resulted in 

a further reduction in Rd. 

Therefore, it may be that reductions in SO.-induced net 

photosynthetic inhibition in Dylan plants under low light intensities could 

be accounted for by these changes in dark respiration rates. The relative 

rates of Pmax, Pnet and Rd before and after SO. fumigations under low and 

high light intensities, for the two Dylan plants considered in the above 

example, are summarised in the following table: 

Page 175 



Results Cha~ 

High Light Low Light 

Rd before SO. O· 15 0·11 <g CO. m-' h-') 

after 0·21 0·07 

Pnet before SO. 1· 91 0·6~ <g CO. m-' h-') 

after l' 31 0·56 

Pmax before SO. 2·06 0'75 <g CO. m-' h-') 

after 1·52 0'63 

Reduction in Pnet 0·60 0·06 

= 31'~% 12·5% 

Reduction in Pmax 0'5~ 0·12 

= 26·2% 22' 21. 

Examination of the data in the above table confirms that there are marked 

differences in the degree of net photosynthetic inhibition in response to 

. 4,00 ppb SO. for each light treatment. However, 11 dark respiration rates 

are assumed to persist in the light, examination of the data for gross 

photosynthesis shows the difference in the degree of photosynthetic 

inhibition between the light treatments to be much reduced. 

The data presented above considered Just one example and all 

data must be examined before generalisations concerning the influence of 

changes in dark respir~tion rates can be made. Table 4,.6 shows relative 

.percentage inhibltion of gross and net photosynthetic rates for Dylan 

plants under high and low light intensities over a range of sulphur dioxide 

concentrations. It can be seen that under high light intensities, Pmax is 

less inhibited, on a percent baSis, than Pnet in response to SO. and under 

low light intensities Pmax is inhibited more than Pnet. These data show 

differences in dark respiration rates in response to SO. to be an important 

factor determining the degree of net photosynthetic inhibition in Dylan 

plants due to SO. fumigations, especially under low light intensities. 

However, the data presented in Table 4,.6 also show that there 

was still less photosynthetic inhibltion in Dylan plants under low light 

intensities in response to SO. even when dark respiration rates have been 

taken into consideration. This may be explained if the data for both 

stomatal and residual resistances are examined. Values for both resistances 

before and after SO. fumigations under low light intensities were presented 

in Tables ~.4, and 4,.5. For plants ot the variety Dylan <Table ~.4,) it can be 

seen that when SO. exceeded 390 ppb the greatest inhibitions in Pnet were 
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TABLE 4-.6 

Percent change ·in comparison to control plants of rates of gross 
photosynthesis <Pmax) and net photosynthesis <Pnet) in Vlcla faba CV. 
Dylan plants grown and exposed to sulphur dioxide (~ h) under low or high 
Ught Intens.ttles. 

High Light Low Light 

SO. Conc. Pnet (%) Pmax Pnet (%) Pmax 
(ppb) 

180 1·3 -2·9 -a·3 0 

255 2·9 3·6 -6·3 -~·3 

295 6'~ ~·2 3·7 1· 1 

390 17'6 a·3 6·3 6·8 

~oo 31' ~ 26·2 12·5 22·2 

600 ~5·9 36·6 20·9 26·2 

610 ~6'1 ~0·6 18·~ 19·5 
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observed, but in most cases r. decreased in response to S02 and rr was 

significantly increased. It was shown in §t.6 that, under low light 

intensities, stomatal responses in Dylan plants were reversed, stomatal 

closure in response to S02 decreasing with increasing S02 concentration. At' 

lower SO, concentrations <below 390 ppb) r. increased and rr changed only 

slightly. 

It may be concluded that, in Dylan plants grown under low light 

intensities, at lower SO, concentrations changes in stomatal resistance in 

conjunction with changes in rates of respiration, determined the degree of 

photosynthetic inhibition observed in response to S02' However, at higher 

S02 concentrations, rrCO, was significantly increased, therefore 

photosynthetic inhibition was a result of changes in rr and dark 

respiration rates due to SO, exposure, r. exerting little influence. 

In Aquadulce Claudia plants, SO. had no effect on rates of dark 

respiration at either low or high light intensities and there were no 

significant differences in the degree of photosynthetic inhibition due to 

SO, at either light intensity. In Aquadulce plants, both stomatal and 

residual resistances were doubled in response to low light stress in the 

absence of S02' It may be concluded that as for high light intensit1es, 

photosynthetic inhibition in Aquadulce plants occurred due to increases in 

rr when SO. exceeds 285 ppb (Table t.5). Below this concentration, changes 

in Pnet appeared to be a result of increased stomatal resistance to CO. 

transfer in response to SO. fumigations. 

~.7.2 rrC02 & r S C02: Errects or 502 & Low Temperature Stress 

4.7.2.1 24 h Cold 

When the resistances to CO. transfer in Aquadulce and Dylan 

plants were examined following a period of 2t h at 10'C prior to S02 

fumigations the marked Changes noted following low light stress were not 

observed, although the data were much more variable in comparison to 

that obtained under optimum environmental conditions. The data for 

stomatal and residual resistances to CO. transfer before and after S02 

fumigations are presented in Tables t.7 and t.6. Absolute values for residual 

resistances to CO. transfer in Dylan plants, under optimum conditions in 

the absence of SO., ranged from U6 to 86t s m-' (mean" 730; SD .. 129) 

and following 2t h cold ranged from -83 to 1070 s m-' (mean. !lt3; SD .. 
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TABLE 4.7 
Vlcla faba CV. Dylan. Stomatal (r.) and Residual (r.) Resistance Data for 
CO. Transfer Before and After Exposure to SO. Following a 2~ h Pre-
treatment at 10·C. Per cent SO.-induced inhibition in net photosynthetic 
rates and stomatal resistance in relation to control plants are also shown. 

[SO.] % change r. (s m-I) % change r. (s m-I) 

(ppb) in Pnet Before After in r. Before After 
SO. SO. SO. SO. 

101 3·3 533·~ 6H·9 -13'2 143·5 100'6 

108 14·9 -83'7 4,69·3 22' 1 902'5 ~69'1 

160 0·6 330·1 399·1 14·6 818·~ 782·1 

285 13·6 826·8 961·5 -15,3 371' 2 34,8·1 

3~0 14·4 -72,4, 559·0 -15'~ 788'7 351'4, 

395 19·5 825·5 991' 3 11·5 29'7 4,7·8 

~20 36·3 1070· 1 1709'8 6·1 20~'6 21' 1 

4,65 18·5 90~'~ 5~8'1 -75'0 62'7 4,96·6 

480 ~9·3 554·6 1193· 1 -3,6 H5·5 503·2 

TABLE 4.8 
As for Table 4.7. Vicia taba CV. Aquadulce Claudia. 

[ SO.] % change r. (s m-I) % change r. (s m-I) 
(ppb) in Pnet Before After in r. Before After 

SO. SO. SO. SO. 

101 5·2 760·9 709·8 -8,6 52·8 69'3 

110 8·2 ~29·3 129·4, -27,6 4,71·9 4,88'~ 

200 6·9 536·6 602·7 31'6 201·3 179'9 

210 5·8 515'2 4,73·8 -8·9 235'9 316·8 

255 2·5 11'5 -378,7 27·5 767·2 1255·8 

270 -5·6 U5·5 709·3 -16,7 371·2 204,· 6 

278 5·5 359·1 255'0 -21,5 ~93'3 615'~ 

285 ~5'1 122' ~ 561· 7 -7,4, 526'3 653'4, 

398 11·3 104,3'2 993·7 24,'2 60·6 4,1' 2 

560 55·9 191' 2 696·5 -14·8 565·7 760· ~ 
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392). Similarly, in Aquadulce, rr for unstressed plants ranged from -111 to· 

729 s m-I (mean = 4,32; SD = 203) and following a 24, h cold treatment 

ranged from 11 to 1043 s m-I (mean = 44,1; SD = 288). Thus, cold stress had 

no significant effect on rr prior to SO. exposure even though the 

variability in the data was increased in response to added cold stress as 

can be seen from the increased standard deviations (SD). 

However, stomatal resistances to CO. transfer were influenced by 

the imposition of cold stress. In Dylan plants, under optimum conditions, 

values for r.CO. ranged from 20 to 270 s m-' but after the 24, h cold pre

treatment ranged from 29 to 902 s m-I. In Aquadulce Claudia plants values 

for r.CO. in the absence of SO. or cold, ranged from 100 to 400 s m-I but 

following cold stress ranged from 52 to 767 s m-I. The majority of plants 

showed increased stomatal resistance in response to cold stress when 

compared with resistance data for unstressed plants; the increases being 

higher for plants of the variety Dylan. 

Cold periods for 24, h were found to have no significant effect 

on gross photosynthetic rates prior to SO. fumigations when the gross 

photosynthetic rates were compared. with the data for non cold-stressed 

plants. However in §4,.5, it was shown that dark respiration rates in the 

variety Dylan were enhanced in response to the 24, h cold period, dark 

respiration in Aquadulce plants being unaffected. This increase in Rd rate 

in Dylan plants resulted in slight reductions in net photosynthetic rates 

even though gross photosynthetic rates appeared to be unaffected. However, 

these enhanced rates of Rd were shown to decline to pre-treatment rates 

within 24, h of the end of the cold pre-treatment (M.5). 

Having defined the effects of cold temperatures for a period of 

24 h on leaf resistances in the absence of SO., the effects ot cold stress 

on responses to SO. were examined. In Aquadulce plants there were no 

significant differences in the degree of SO.-induced net photosynthetic 

inhibition in cold-treated and non cold-treated plants. However, 

photosynthetic inhibition in response to SO. was lessened in plants of the 

variety Dylan as a result of the 24 h cold exposures. Unlike the responses 

observed under low light intensities, changes in dark respiration rates 

could not account tor the observed reductions in SO. induced photosynthetic 

inhibition in Dylan plants. 

The lessening of the degree of SO.-induced net photosynthetic 

inhibition due in Dylan plants following 24 h at cold temperatures may be 
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explained if the data for both stomatal and residual resistances following 

SO. exposure are examined <Table ,..;7). Stomatal resistance to CO. transfer 

in Dylan plants decreased in response to SO. concentrations up to '20 ppb 

and above this concentration r. was seen to increase. At the same time, the 

residual resistance to CO. transfer was, in most cases, increased in 

response to SO. fumigations. However, these increases in rr were not as 

great as those observed in non cold treated plants exposed to SO •• 

It may be concluded that in Dylan plants subJect to U h of cold 

stress prior to pollutant exposure, reduced net photosynthetic inhibition 

was a result of decreased stomatal resistances and smaller increases in 

residual resistances to CO. transfer in response to SO •• Another 

contributing factor was that exposure to SO. did not induce enhanced dark 

respiration rates in Dylan plants following the cold pre-treatment whereas 

increased respiration rates in Dylan plants under optimum environmental 

conditions were a contributing factor to reductions in net photosynthetic 

rates in response to SO. exposure. 

Whilst no significant differences in photosynthetic or 

respiratory responses to SO. were observed in Aquadulce plants when the 

results for 2", h cold stressed and non cold stressed plants were compared, 

analysis of the resistance data for CO. transfer showed some significant 

changes due to cold stress. Under optimum environmental conditions, when 

SO. exceeded 285 ppb, residual resistances to CO. Were increased in 

Aquadulce plants, the increase being very large when SO. concentrations 

exceeded 500 ppb. However, following the imposition of cold stress there 

were no large increases in rrCO. in response to SO. fumigations and when 

SO. concentrations were below 285 ppb rr was seen to decline in response to 

502 , At the same time, when rr declined, stomatal resistance was seen to 

increase so that the resulting photosynthetic inhibition was due to a 

combination of changes in both r.CO. and rrCO •• 

When per cent changes in stomatal resistance were plotted 

against ambient sulphur dioxide concentrations <Figure '.13), the magnitude 

of the stomatal closure response in Aquadulce plants was seen to increase 

following the imposition of cold stress. Together with the data presented 

in this section, this implied that changes in stomatal resistance In 

response to SO. played a larger part in determining changes In net 

photosynthetic rates in Aquadulce plants after a 24 h cold treatment. 

It must be noted that In three plants of Aquadulce subJect to 2", 
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h cold stress, photosynthetic inhibition due to SO. was significantly 

reduced (Table 4.8). This occurred in the plants subjected to 200, 270 and 

398 ppb SO. and in all cases stomatal resistance was significantly reduced 

by SO. and residual resistances altered only slightly. These responses were 

also evident when % change in r, was related to SO. concentration (Fig. 

4.13) as these three plants were the only ones in which stomatal opening 

was seen to occur in Aquadulce after 201- h cold pre-treatment. 

01-.7.2.2 72 h Cold 

The resistances to CO. exchange in Dylan and Aquadulce plants 

before and after SO. fumigations are presented in Tables 4.9 and 0\..10. Both 

residual and stomatal resistances were very variable following the 72 h 

cold treatment in the absence of SO. and the data spanned a wide range of 

values when compared with data for non cold-stressed plants. In Dylan 

plants (Table 4.9) residual resistances to CO. eXChange, before pollutant 

exposure, ranged from -38 to 1281 s m-' (mean = 589; SD = U6) as compared 

to 01-01-6 to 6601- s m-' (mean = 730; SD = 129) without cold stress and 

stomatal resistances ranged from 135 to 892 s m-I as opposed to 20 to 270 

s m-' measured under optimum environmental conditions. The data obtained 

for Aquadulce Claudia plants showed similar variations in stomatal 

resistances to CO. after the 72 h cold treatments, ranging from 69 to 1570 

s m-I as opposed to 100 to 01-00 s m-I for optimum environmental conditions. 

Residual resistances to CO. exchange in Aquadulce did not differ greatly 

from the values obtained before the imposition of cold stress, values ranged 

from -384, to 604, s m-I (mean = U 1; SD = U 1) after 72 h at 10'C and were 

-111 to 729 s m-I (mean = 01-32; SD = 203) in optimum conditions, although, 

as for 201- h cold data, the variance was substantially increased. 

As a result of these changes in leaf resistances to CO. in cold

stressed Dylan plants the majority of plants tested exhibited reductions in 

rates of gross photosynthesis in response to cold stress. Estimated rates 

of Pmax were lower than those observed under optimum conditions. 

Reductions in Pmax were also observed in Aquadulce plants in response to 

cold stress but the reductions in Pmax in both varieties were small in 

comparison with those observed in response to low light stress. 

As observed in plants subject to 24, h at 10'C, dark respiration 

rates were enhanced in Dylan plants in response to cold temperatures and 

these increases in Rd declined gradually at the end of the cold treatment. 
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TABLE 4-.9 

Vlcla faba CV. Dylan. stomatal (r.) and Residual (rr) Resistance Data for 
CO. Transfer Before and After Exposure to SO. Following' a 72 h Pre-
treatment at 10·C. Per cent SO.-Induced chang'e in net photosynthetic rates 
and stomatal resistance in relation to control plants are also shown. 

[ SO.] % change rr (s m-') % change r. (s m-' ) 
(ppb) In Pnet Before After in r. Before After 

SO. SO. SO. SO. 

97 3'6 666·9 230'7 -9,1 262' 1 166·9 

119 11'2 120' 4 -73,4 -1' 6 621'7 1032·9 

230 2·6 639·6 737·9 -2,7 306·9 354'7 

310 26·4 1261·2 1706·7 -27' 1 176·5 133·6 

385 28·9 63·3 -204,8 -15·9 892'6 1176· 4 

460 30·2 890·3 1308·9 -51·2 181· 1 310· 2· 

469 8·8 -36'1 379'0 24·3 747·4 351' 4 

520 3',5 873·7 1345'8 -9,3 135·3 94·1 

TABLE 4-.10 

Vicla faba CV. Aquadulce Claudla. Stomatal (r.) and Residual (rr) Resistance 
Data for CO. Transfer Before and After Exposure to SO. Following' a 72 h 
Pre-treatment at 10·C. Per cent SO.-Induced chang'e in net photosynthetic 
rates and stomatal resistance in relation to control plants are also shown. 

[ SO.] % change rr (s m-') % change r. (s m-' ) 
(ppb) Pnet Before After in r. Before After 

SO. SO. SO. SO. 

101 4-·9 -38"3 -2783'4 -66,9 1570'8 3910'5 

198 15· 6 747'7 732·1 -6·9 109·5 257" 

272 13·9 532·2 593'2 -12,5 381'1 308·2 

285 13' 1 804·0 940·9 -18,9 122·7 77'5 

372 '·9 510·0 557·5 16· 1 207·9 212·8 

'55 22·8 -19,8 215·8 32·6 815'1 859'6 

505 20·3 691'4 910'6 -17,5 89·9 43·8 
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Unlike the results for 24 h cold, dark respiration rates were also enhanced 

in Aquadulce Claudia plants in response to 72 h of cold temperatures and 

these enhanced rates persisted for more than 48 h after the end of the 

cold treatment. 

In both varieties the net result of decreases in Pmax and 

increases in Bd were reductions in net photosynthetic rates in response to 

cold temperatures in the absence of sulphur dioxide. The average reduction 

in Pnet due to cold stress was calculated at 20% when compared with non 

cold-stressed plants on the first day of the experimental period. However, 

plants were exposed to sulphur dioxide on the second day of the 

experimental period by which time measured rates were approaching the 

levels for unstressed plants. 

Both Dylan and Aquadulce plants showed decreases in the extent 

of SO,-induced net photosynthetic inhibition following periods of 72 h ,at 

10 ·C. In Dylan plants, inhibition was much less than that Observed under 

optimum environmental conditions when SO, concentrations exceeded 200 ppb. 

Reduced inhibition in Aquadulce plants was significant only when ambient 

SO, concentrations exceeded 300 ppb. These reductions in inhibition could 

not be attributed to changes in dark respiration rates as SO. had no 

effect on rates of Bd in Dylan plants after cold treatments. Exposure to SO. 

caused reductions in Bd in Aquadulce plants but because respiration rates 

had been enhanced by the cold pre-treatments there were no significant 

differences in rates of dark respiration between cold-stressed and non cold

stressed plants following SO. fumigations. 

In Dylan plants, both stomatal and residual resistances to CO. 

showed very variable responses to SO. concentrations up to 385 ppb and 

photosynthetic inhibition was associated with either decreases or increases 

in the stomatal and residual resistances to CO. transfer. At higher SO. 

concentrations residual resistances to CO. increased in Dylan plants in 

response to SO, but these increases were not as great as those observed in 

the absence of cold stress. At the same time stomatal resistances to CO. 

were seen to decrease in response to SO •• It would appear that SO,-induced 

net photosynthetic inhibition in Dylan plants following the 72 h cold pre

treatments was a result of changes in both rr and 1'. and at higher 

concentrations, reduced inhibition arose from much smaller increases in rr 

in comparison with non cold-stressed plants. The degree of net 

photosynthetic inhibition in Dylan plants was also reduced because SO. did 
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not cause enhanced rates of dark respiration after the cold pre-treatments. 

Reduction in the degree of net photosynthetic inhibition caused 

by SO. following 72 h cold pre-treatments in Aquadulce Claudia plants 

appeared to be due solely to smaller increases in r,CO. due to SO. than were 

observed under optimum environmental conditions. Changes in stomatal 

resistance were very small in cold-stressed Aquadulce plants in response to 

SO, concentrations above 200 ppb and could not account for the marked 

differences in percent net photosynthetic inhibition in response to SO, 

occurring between cold-stressed and non cold-stressed plants. 

{.7.2.3 1 Week Cold 

The CO. resistance data for periods of 1 week cold stress prior 

to SO, fumigations for both Dylan and Aquadulce Claudia plants are 

presented in Tables '.11 and 4.12. The imposition of cold stress for 1 week 

lead to reductions in rates of gross and net photosynthesis in both 

varieties of Vicia faba. In Dylan plants, reductions in Pnet were due in 

part to increases in dark respiration rates in response to cold stress but 

this did not occur in Aquadulce plants. When plants were first transferred 

to the exposure system Pnet was found to be reduced by an average of 20% 

when rates for both varieties were compared with non cold stressed plants. 

However 2{ h later, immediately before SO, treatments Pnet was down an 

average of only 10% in both varieties as plants recovered. 

In both varieties, before SO. fumigations, residual resistances to 

carbon dioxide eXChange following a 1 week cold pre-treatment were not 

significantly higher than those measured for non cold stressed plants and 

were in some cases much lower, particularly for Dylan plants. Residual 

resistances in Dylan ranged from -'8{ to 815 s m-' (mean = 305; SD = '01) 

and were 448 to 864 s m-' under optimum conditions (mean = 730; SD = 129). 

In Aquadulce plants residual resistances to CO, transfer ranged from 96 to 

782 s m-' (mean = '70; SD = 219) after the 1 week cold pre-treatment and 

were -111 to 729 s m-' (mean = 432; SD = 203) without cold stress. 

Therefore reductions in photosynthetic rates due to cold stress did not 

result from increases in residual resistances to CO, exchange. 

However, stomatal resistances to CO, transfer were found to be 

significantly higher in both varieties after cold stress. Stomatal 

resistances in Dylan plants ranged from 257 to 1928 s m-' as opposed to 27 

to 270 s m-' in the absence of cold stress and values for Aquadulce plants 
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TABLE 4.11 
Vicia faba CV. Dylan. Stomatal (r,) and Residual (r,) Resistance Data for 
CO. Transfer Before and After Exposure to SO, Following a 1 week Pre-
treatment at 10·C. Per cent SOl-induced change in net photosynthetic rates 
and stomatal resistance in relation to control plants are also shown. 

[ SO,1 % change r, (s m-' ) % change r, (s m-' ) 
(ppb) in Pnet >Before After in r, Before After 

SO, SO, SO. SO. 

90 10' 1 670·7 060'9 -2oi'oi 257'oi 320-2 

105 9-9 130-2 oi32 - 1 -oi-2 617-1 3U-O 

190 12' 2 -69-3 29-3 -7-8 92oi-0 910-8 

190 17,6 -4-64-'6 -031·9 -28,1 1928'6 1902·4-

288 17'0 815· 6 > 336·9 -9,6 316'6 1064-· 1 

368 38, 1 H2·7 969' 1 -23,1 oi30'6 168-3 

4-70 10' 1 000'6 761,1 -14'9 04-9'4- 371,2 

020 36·7 4-01'1 1011'0 -19'2 304.· 7 193·0 

TABLE 1..12 
Vicia faba CV. Aquadulce Claudia. Stomatal (r,) and Residual (r,) Resistance 
Data tor CO. Transfer Before and After Exposure to SO. Following a 1 week 
Pre-treatment at 10·C. Per cent SO.-induced change in net photosynthetic 
rates and stomatal resistance in relation to control plants are also shown. 

[ SO,1 % change r, (s m-' ) % change r. (9 m-' ) 
(ppb) in Pnet Before After in r, Before After 

SO. SO. SO. SO. 

99 14-- 1 96·6 4.67-1 -10·9 992·6 719·4-

205 13·3 397·9 632·3 -26·9 921· 7 84-8'9 

208 -4-·1 713·9 523·6 -29·2 69·1 114-'0 

262 5·9 763·7 937·7 -43,4- 234--6 291· 4-

360 24.·6 573·4- 706-7 -53,6 41·2 26·1 

4.60 2·5 4-31·4- 062,6 -11.4- 64.0·2 714·5 

4.90 5·3 217'2 -367·9 -61,2 505·9 1154-·6 

4-92 9·6 557·6 993·5 -9,1 610· 1 696-3 
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ranged from 4-1 to 992 s m-' after 1 week cold but were between 100 and 

4-00 s m-' under optimum conditions. It would appear that cold temperature 

stress induced reductions in net photosynthetic rates via increased 

stomatal resistances to CO. exchange and in plants of the variety Dylan, 

increase~ rates of dark respiration. 

When stomatal resistances to CO. transfer, following SO. 

treatments, were compared between cold-stressed and non cold-stressed 

plants resistances were again found to be much higher in the plants 

subject to the 1 week cold pre-treatments. Values for r. in cold-stressed 

Dylan plants following a range of SO. treatments ranged from 168 to 1902 s 

m-' (a to 633 s m-' under optimum conditions) and in cold-stressed plants 

of Aquadulce Claudia r. values ranged from 28 to 1154- s m-' (39 to 520 s 

m-' without added cold stress). It may be expected that such high r. 

values would lead to greater photosynthetic inhibition in cold stressed 

plants however, this was not seen to oCCur. As was shown in §4-.4-, both 

varieties exhibited a reduction in net photosynthetic responses to SO. 

following the 1 week cold pre-treatment, this difference being most marked 

when SO. concentrations exceeded 200 ppb. 

It can be seen in Table 4-.11 that in the majority of plants of 

the variety Dylan, stomatal resistance decreased over the 4- h SO. 

fumigation period. ExamInation of the residual resistances to CO. exchange 

following SO. exposure in Dylan plants showed these resistances to be much 

lower than those for plants exposed to SO. under optimum environmental 

conditions; rr ranged from -532 to 1011 s m-' in cold-stressed plants (4-32 

to 2521 s m-' without cold stress). Similarly, residual resistances in 

Aquadulce plants (Table 4-.12) following SO. exposure were much lower than 

under optimum environmental conditions ranging from -308 to 993 s m-' (98 

to 204-5 s m-' without added cold stress). 

From the data presented in Tables 4-.11 and 4-.12 it may be 

concluded that reductions in photosynthetic response to SO. in both 

varieties of Vicla faba following cold temperature stress for 1 week were 

due predominantly to much smaller changes in the residual reslstances to 

CO2 exchange than were observed under optimum environmental conditions and 

were also due in part, to decreases in stomatal reslstances to CO2 in 

response to SUlphur dioxide fumigations. 
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4.7.3 Relationship Between Changes in Stomatal Resistance 

and Net Photosynthesis. 

Under optimum environmental conditions there were found to be. 

significant linear correlations (p < 0'01) when S02-induced changes in net 

photosynthetic rates were plotted against S02-induced changes in stomatal 

resistance for both varieties of Vicia, although there was a degree of 

scatter in the data showing changes in Pnet to be not solely due to 

changes in r •• In general, highest measures of stomatal closure were 

correlated with greatest measured photosynthetic inhibition (§3.7.3); also 

in Aquadulce Claudia plants decreases in r. were associated with enhanced 

photosynthetic rates in response to S02' Under optimum environmental 

conditions Dylan plants appeared to exhibit greater stomatal sensitivity to 

S02 because observed stomatal responses in Dylan plants were of greater 

magnitude and direction than those of Aquadulce plants (§3.6). 

However, when plants were subjected to added environmental 

stresses such as low light intensities or periods of cold temperature stress 

prior to SO. fumigation significant changes in the relationship between % 

change in r. and % change in Pnet were found in both varieties. Unlike the 

responses observed under optimum environmental conditions, there were no 

significant correlations found between % Change in r. and % change in Pnet 

for either variety in any of the added environmental stress regimes. The 

regression data are summarised in Table 4.13 and the data are presented in 

Figures 4.17 to 4.20, the regression lines obtained for the data obtained 

under optimum environmental conditions being also shown in the figures. 

When plants were grown and subJecte·d to S02 under low light 

intensities there appeared to be no significant difference in the data 

obtained for Aquadulce Claudia plants in comparison with the data obtained 

under high light conditions (Fig. 4.17b), although the data were much more 

variable following low light stress. However, the data for Dylan plants 

under low light conditions showed an inverse relationship in comparison 

with the data for high light conditions (Fig. 4.17a), the highest degree of 

photosynthetic inhibition being associated with enhanced stomatal opening. 

These data concur with the trend observed when % change in r. was plotted 

against SO, concentration (ppb) (Figure 4.9) where stomatal opening was 

seen to occur in Dylan plants at highest SO. concentrations. 

Following cold pre-treatments of 24 h, 72 h or 1 week prior to 
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TABLE #.13 

Summary of regression analyses to show the relationships between SO.
induced changes in stomatal resistance and changes in net photosynthetic 
rates in two varieties of Vicia faba CV. Dylan & Aquadulce Claudia exposed 
to a range of sulphur dioxide concentrations following a range of 
environmental pre-treatments. 

Variety & 
Environmental 
Pre-treatment 

No environmental 

Dylan 
Aquadulce 

Low Light 

Dylan 
Aquadulce 

24- h Cold 

Dylan 
Aquadulce 

72 h Cold 

Dylan 
Aquadulce 

1 Week Cold 

Dylan 
Aquadulce 

stress 

Correlation Significance 
Co-efficient 

-0'761 p < 0·001 
-0,701 p < 0'01 

0'6~7 ns 
-0,076 ns 

-0,029 ns 
-0· 164- ns 

-0,534- ns 
0'4-24- ns 

-0'365 ns 
-0'210 ns 
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Figure 4.170 
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Figure 4.17b 
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Figures 4.17a and 4. 17b. 
Changes in photosynthetic Inhibition (Pnet) in response to SO. as related 
to corresponding changes In stomatal resistance (r.) for two varieties of 
Vicla faba, Dylan (4-.17a) and Aquadulce Claudia (4-.17b) under conditions of 
low light intensity. [The regression lines tor the data obtained under high 
light conditions are also shown in the figures (-----)]. 
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so. fumigations (Figs. '.18a, '.19a & '.20a), the data for Dylan plants 

showed no significant differences from the data obtained for plants under 

optimum environmental conditions, although the increased variability of the 

data following the cold stress pre-treatments resulted in there being no 

significant linear correlations between changes in r. and Pnet. When the 

data presented in Figures '.16a, 4.19a and '.20a for Dylan plants were 

compared there was evidence of a 'shift' in the relationship between 

changes in r. and changes in Pnet in response to SO., this 'shift' 

progressing with increased duration of cold temperature stress. Following 

the 24 hcold treatment changes in Pnet were related to stomatal opening 

in almost half the treated plants (Fig. 4.18a), after the 72 h cold 

treatment only one plant exhibited stomatal opening correlated to Pnet 

inhibition (Fig. 4.19a) and finally, following the 1 week cold treatment 

none of the SO.-treated Dylan plants exhibited stomatal opening in 

connection with SO.-induced photosynthetic inhibition (Fig. 4.20a). This 

'shift' in the responses of Dylan plants appeared to be related to a 

reduction in the magnitude and direction of stomatal responses to SO. with 

increasing duration of cold temperature stress. 

In Aquadulce plants following periods of 24 h at lO·C there was 

no apparent relationship between changes in stomatal resistance in 

response to SO. and changes in net photosynthetic rates (Figs. '.16b) 

although the maJority of data showed enhanced stomatal closure to be 

correlated with net photosynthetic depression. However, following 72 hand 

1 week at 10·C prior to SO. exposure,the data obtained were increasingly 

significantly different from that obtained in the absence of cold pre

treatment (Figs. '.19b, '.20b). The magnitude of stomatal response was much 

greater than that observed under opti~um environmental conditions and this 

was correlated with much smaller measures of net photosynthetic inhibition 

tor both cold stress regimes. As for Dylan plants (Fig. '.20a), following the 

1 week cold pre-treatments all changes in net photosynthetic rate were 

associated with stomatal closure in response to SO. (Fig. 4.20b). 

In §3.7.3 it was concluded that changes in stomatal resistance 

contributed significantly to reductions in net photosynthetic rates in 

response to SO. in both varieties of llik ~. However, when the data 

following environmental pre-treatments were considered there were no 
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Figures ~.18a and ~.18b. 
Changes In photosynthetic Inhibition (Pnet') In response to SO. as related 
to corresponding changes In stomatal resistance (r.) for two varieties of 
Vicla faba, Dylan (4.16a) and Aquadulce Claudla (4.16b) tollowlng a cold 
temperature pre-treatment for 24 h prior to SO. tumlgatlon. [The regression 
lines for the data obtained under optimum temperature conditions are also 
shown In the t igures (------)J. 
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Figure 4.190 
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Figures ~.19a and ~.19b. 
Changes in photosynthetic inhibition (Pnet) In response to SO. as related 
to corresponding changes in stomatal resistance (r.) for two varieties of 

, Vlcia faba, Dylan (oI..19a) and Aquadulce Claudla (o\-,19b) following a cold 
temperature pre-treatment for 72 h prior to SO. fumigation. (The regression 
lines for the data obtained under optimum temperature conditions are also 
shown in the figures (----- )1. 
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Figure 4.20a 
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Figure 4020b 
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Figures 4.20a and 4.20b. 
Changes in photosynthetio inhibition (Pnet) in response to SO. as related 
to corresponding changes in stomatal resistance (r.) for two varieties of 
Vioia ~. Dylan (".20a) and Aquadulce Claudia (4.20b) following a cold 
temperature pre-treatment for 1 week prior to SO. fumigation. [The 
regression lines for the data obtained under optimum temperature conditions 
are also shown in the figures (----- )]. 
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significant correlations between changes in r. and changes in Pnet and it 

may be concluded that changes in net photosynthetic rates in response to 

SO. and environmental stress occurred in a seemingly independent manner of 

changes in r. and therefore, some other factor was exerting an influence. 

From the data presented in §4.7.1 changes in Pnet appeared to be due, 

predominantly, to changes in the residual resistance to CO. exchange. 

~.6 POLLUTANT FLUXES & AMBIENT 502 CONCENTRATION 

The relationships between sulphur dioxide flux and ambient SO. 

for both varieties of Vicia faba under optimum environmental conditions 

were described in §3.9. In both cases, pollutant fluxes were proportional to 

applied SO. concentrations and estimates of measured pollutant flux were 

consistently higher that estimates of calculated pollutant flux. 

Under optimum environmental conditions estimates of pollutant 

flux from analogy to water vapour transfer (P, .... > were found to differ 

from estimates of pollutant flux from mass balance calculations (P'acas>. 

This difference between the two measures of flux was found to be due to 

incorrect assumptions about the magnitude of the residual resistance to SO. 

transfer when estimating flux. However, it could not be assumed that 

similar conclusions could be drawn for plants subjected to periods of 

environmental stress and, as a result, both measures of flux were still 

assessed in this section of the work. 

The relationships between pollutant fluxes to the plant and 

ambient sulphur dioxide concentration following a range of environmental 

pre-treatments are shown in Figures 4.21 to 4.26; where appropriate the 

regression lines obtained for the data are shown in the figures. The 

regression lines for the data obtained under optimum environmental 

conditions are also shown in the figures. All data obtained for each 

environmental regime were compared with that obtained in the absence of 

environmental stress for each variety using the analysis of covariance test. 

A summary of the results obtained from the analyses are shown in Table 

4.14. 
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TABLE 4-. 14-
Summary of Analysis of Covariance Tests Comparing Regression Analyses of 
both Measured (from mass balance calculations> and Calculated (from analogy 
to water vapour transfer> Pollutant Flux versus Ambient sulphur Dioxide 
Concentration in two Varieties of Vicia faba CV. Dylan and Aquadulce 
Claudia under Optimum Environmental Conditions with Data Obtained 
Following Added Environmental Stress. 

Analysis of Covariance 
Measured Flux F value Significance 

Dylan "High. Light/Optimum Temperature" 
v Dyl an low 1 ight 2'502 
v Dylan 24 h cold 0·936 
v Dylan 72 h cold 0'887 
v Dylan 1 week cold 10·437 

Aquadul ce "High Light/Optimum Temperature" 
v Aquadul ce low light O· 968 
v Aquadul ce 24 h col d 1· 795 
v Aquadulce 72 h. cold 4'347 
v Aquadul ce 1 week col d 11' 877 

Calculated Flux 

Dylan "High. Light/Optimum Temperature" 
v Dylan low light 
v Dylan 24 h cold 
v Dylan 72 h cold 
v Dylan 1 week cold 

1·956 
0·563 
0'150 
1·035 

Aquadul ce "High. Light/Optimum Temperature" 
v Aquadul ce low li ght 5· 980 
v Aquadulce 24 h cold 0·290 
v Aquadul ce 72 h col d 7· 158 
v Aquadulce 1 week cold 0'046 

oc = 

ns 
ns 
ns 
0·01 

ns 
ns 
0·05 
0·01 

ns 
ns 
ns 
ns 

0·025 
ns 
0·025 
ns 
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~.8.1 PFcaLc & Pr.cas v 502 : Low Light Conditions 

The data presented in Figures ~.21a and ~.21b show both measured 

and calculated pollutant fluxes to plants of the variety Dylan under low 

light intensities. For measured flux (Fig. ~.21a) linear regression gave an 

r value ot 0 ·223 which was not significant, however, regression analysis of 

the data tor calculated flux (Fig. 4.21b) produced an r value of 0 ·904 (p < 
0·001>. Although the data were scattered there appeared to be no 

significant difference in the degree of flux to the plant under high or low 

light conditions. This was confirmed when the the F values obtained from a 

statistical analysis of the data were not significant for either measure of 

flux (Table ~.14). 

Figures 4.22a and 4.22b show the data obtained for plants of the 

variety Aquadulce Claudia under low light conditions. As for Dylan plants 

subject to low light stress, regression analysis did not produce a 

significant correlation between measured pollutant flux and ambient SO, 

concentrations (r = -0'112) (Fig. 4.22a) and analysis of covariance also 

showed there to be no significant differences in measured flux to Aquadulce 

plants under high or low light intensities crab. 4.14). However, regression 

analysis showed there to be a significant correlation between calculated 

pollutant flux values and ambient SO, concentrations (r = 0·715; p < 0'005) 

(Fig. 4.22b) and estimates of calculated SO, flux were found to be 

significantly lower than those obtained under high light intensity (F = 

5'980, '" = 0·025 £Tab. 4.14]). 

~.8.2 PFcaLc & PF.cas v 802 : Low Temperature Treatments 

Figures ~.23 and 4.24 show the data obtained for both Dylan and 

Aquadulce plants following cold pre-treatments of 24 h at 10'C prior to SO. 

fumigation under optimum environmental conditions. Again no significant 

differences in either measure of pollutant flux were found when results were 

compared with data for non cold-stressed plants. Regression analyses gave 

significant correlations for both varieties when measured pollutant flux 

was plotted against ambient SO. concentrations. For Dylan plants (Fig. 

4.23a) the calculated correlation coefficient for the regression line shown 

in the figure, following 24 h cold stress treatments was 0·908 (p < 0·001>. 

For Aquadulce plants (Fig. 4.24a) the correlation coefficient was 0 ·794 (p < 
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Figures ~.21a & ~.21b. 
Measured and calculated pollutant fluKes (I'g m-z s-') to Vicia faba plants 
of the variety Dylan as related to ambient sulphur dioKide concentrations 
<ppb) under conditions of low light intensity. [The regression lines 
obtained for plants under high light conditions are also shown in the 
figures (----- )]. 
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Figures 4.22a & 4.22b. 
Measured and calculated pollutant fluxes (I'g m-' s-') to Vicia faha plants 
of the variety Aquadulce Claudia as related to ambient sulphur dioxide 
concentrations (pph) under conditions of low light intensity. [The 
regression lines ohtained for plants under high light conditions are also 
shown in the figures (----'" )]. 

Page 199 



Results 

Figure 4.23q 
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Figures 4.23& & 4.23b. 
Measured and calculated pollutant fluxes (l1g m-' S-I) to Vlcia faba plants 
of the variety Dylan as related to ambient SUlphur dioxide concentrations 
(ppb) following cold temperature pre-treatments of 24 h prior to SO. 
fumigation. [The regression lines obtained for non cold-stressed plants are 
also shown in the figures (-----)]. 
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Figures ~.2~a & ~.24b. 
Measured and calculated pollutant flUKes (I-'g m-' S-I) to Vicia laba plants 
of the variety Aquadulce Claudia as related to ambient sulphur dioxide 
concentrations (ppb) following cold temperature pre-treatments of 2" h 
prior to SO. fumigation. [The regression lines obtained for non cold
stressed plants are also shown in the figures (-----)]. 
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0'001). The regression lines for both sets of data for plants subject to 24, 

h cold stress were very similar to those obtained under optimum 

env ironmental conditions. When calculated pollutant fluxes were plotted 

against ambient SO. for plants of both varieties subject to 24, h cold 

stress (Figs. 4,.23b & 4,.24,b) no significant correlations were found due to 

increased variability of the data obtained. For Dylan plants <Fig. 4,.23b) r 

= 0·507 and for Aquadulce plants <Fig. 4,.24,b) r = 0'371, neither value being 

statistically significant. However, analysis of covariance (Tab. 4,.14,) showed 

calculated pollutant flux in relation to ambient sulphur dioxide 

concentrations to be unchanged by the 24, h cold pre-treatments. 

The data obtained for both varieties following periods of 72 h 

cold stress prior to SO. treatments are shown in Figures 4,.25 and 4,.26. For 

Dylan plants <Fig. 4,.25) both measured and calculated pollutant fluxes were 

significantly correlated to ambient SO. concentration and as can be seen in 

the figures, the regression lines obtained Were very close to those obtained 

for data obtained in the absence of the cold pre-treatments: For measured 

flux r = 0'736 (p < 0·001) and for calculated flux r = 0·702 (p < 0'001>. 

Analysis of covariance again showed SO. flux to Dylan plants to be

unaffected by the imposition of 72 h cold temperature stress prior to S02 

fumigations. However, it can be seen in Figure 4,.26, that following periods 

of 72 h at 10'C pollutant fluxes to Aquadulce Claudia plants were influenced 

by the cold pre-treatments. Measured SO. flux (Fig. 4,.26a) was significantly 

reduced following a 72 h cold pre-treatment and regression analysis gave a 

correlation coefficient of 0·795 (p < 0·001>. Analysis of covariance showed 

the data for cold-stressed plants to be significantly different to that 

obtained under optimum temperature conditions (Tab. 4,.14,). In contrast, 

calculated pollutant flux to Aquadulce plants (Fig. 4,.26b) appeared to be 

increased when ambient SO. concentrations exceed 200 ppb. Analysis of 

covariance produced a significant F value when compared with the data for 

unstressed plants, however, this value was treated with caution because of 

the high degree of scatter in the data obtained in the 72-h treatments (r 

= 0'668, ns). 

When pollutant fluxes were determined following a 1. week pre

treatment at 10'C prior to SO. fumigations, the results for both varieties 

differed markedly from those obtained in the absence of added 

environmental stress. In both Dylan and Aquadulce plants measured flux 

values were consistently less than the values obtained in the absence of 
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Figures 4.25a & 4.25b. 
Measured ~nd calculated pollutant flUKes <fig m- 2 s-') to Vicia faba plants 
ot the variety Dylan as related to ambient sulphur dioKide concentrations 
(ppb) following cold temperature pre-treatments for 72 h prior to SO. 
fumigation. [The regression lines obtained tor non cold-stressed plants are 
also shown in the figures (----- )]. 
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Measured and calculated pollutant fluxes (p.g m-' s-') to Vicia faba plants 
01 the variety Aquadulce Claudia as related to ambient sulphur dioxide 
concentrations (ppb) following cold temperature pre-treatments for 72 h 
prior to SO, fumigation. [The regression lines obtained for nOn cold
stressed plants are also shown in the figures (-----». 

Page 204 



Results Chapter 4 

cold stress when ambient SO. concentrations exceeded 100 ppb for 4 h (Fig. 

4.27a, 4.28a). Significant correlations were produced from regression 

analysis of the data for measured flux for both varietiesj for Dylan plants 

r = 0·891 and for Aquadulce plants r = 0·636, both values being significant 

at the 99·9% level. The calculated F values from analysis of covariance for 

both varieties were also significant (Table 4.14). 

When calculated pollutant fluxes were considered the data for 

Dylan plants showed there to be significantly less flux in comparison with 

that to non cold-stressed plants, at S02 concentrations below 300 ppb (Fig. 

4.27b) as can be seen from the data shown in the figure. The correlation_ 

coefficient for cold-stressed plants was 0·666 (p < 0·001>. However, analysis 

of covariance did not produce a significant F value showing there to be no 

significant differences in the fluxes to cold-stressed and non cold-stressed 

plants. The data for obtained for Aquadulce plants were very variable (Fig. 

4.26b), regression analysis gave an r value of 0·169 which was not 

significant and analysis of covariance did not reveal any significant 

differences in calculated pollutant fluxes to Aquadulce plants between 

plants subject to cold temperature pre-treatments and non cold-stressed 

plants. 

Under optimum environmental conditions there were good linear 

correlations between both measures of flux and ambient S02 concentrations 

for both varieties. However, it can be seen from the figures presented above 

that environmental stress influenced the relationships between flux and 

ambient S02 concentration in plants of both varieties such that increased 

variability in data occurred. This was especially true in calculated flux 

data for Aquadulce Claudia plants when no significant linear correlations 

were found following periods of cold temperature stress. 

4.8.3 Di££erences Between Measured and Calculated Flux 

It was stated above that under optimum environmental conditions, 

values for measured pollutant flux were consistently greater than values for 

calculated flux in both varieties indicating the existence of a residual 

resistance to SO. uptake which was underestimated in estimations of 

calculated pollutant flux. However, comparisons of both measures of flux for 

each variety following added environmental stresses showed that this 

difference occurred only under low light intensities. Periods of cold stress 
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Figure 4.270 
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Measured and calculated pollutant fluxes (I'g m-' S-I) to Vicia faba plants 
of the variety Dylan as related to ambient sulphur dioxide concentrations 
<ppb) following cold temperature pre-treatments for 1 week prior to SO. 
fumigation. (The regression lines obtained for non cold-stressed plants are 
also shown in the figures (----- )]. 
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prior to SO. fumigation, [The regression lines obtained for non cold
stressed plants are also shown in the figures (-----)]. 
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for 2' h, 72 h or 1 week prior to SO. fumigation resulted in there being no 

significant difference between measured and calculated pollutant fluxes in 

either variety indicating that added environmental stress had influenced 

the residual resistance to pollutant transfer. The effects of added 

environmental stress on resistance to pollutant uptake are considered below 

in §'.8.'. The results obtained for the analysis of covariance tests 

comparing both measured and calculated pollutant fluxes to plants of both 

varieties following added environmental stress are summarised in Table '.15. 

The data 'for plants of the variety Aquadulce Claudia following cold pre

treatments for 72 h could not be analysed in this way because residual 

variation <calculated from mean sum of square values) was too great. 

4.8.4 Varietal Differences in Pollutant Flux 

When both measures of SO. flux were compared between the 

varieties under optimum conditions Aquadulce plants were found to have 

significantly less flux than plants of the variety Dylan for any given 

ambient SO. concentration above 100 ppb. In order to test whether this also 

occurred in pre-stressed plants flux to both varieties following periods of 

environmental stress were compared using analysis of covariance and the 

results obtained are summarised in Table '.16. 

Under low light intensities there were no significant differences 

in measured SO. flux to either variety and calculated pollutant fluxes were 

only less in Aquadulce Claudia than in Dylan plants when ambient, SO. 

concentrations exceeded 250 ppb. 

Following periods of 2' h or 72 h at 10'C prior to SO. 

fumigations, measured sulphur dioxide flux to plants of the variety Dylan 

was still significantly higher than that to Aquadulce Claudia plants when 

ambient SO. concentrations exceeded 100 ppb. After 2' h at 10'C neither 

variety exhibited changes in flux in response to the cold pre-treatment. 

However, flux to Aquadulce plants was significantly reduced following 

periods-of 72 h at 10'C and because this did not occur in the variety 

Dylan. differences in measured flux between the varieties were amplified. In 

contrast, there were no significant differences in calculated flux to either 

variety following periods of ,2' h or 72 h at 10'C but this may be a result 

of the high degree of variability in the data obtained. 

It can be seen from Table '.16 that there were no significant 
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TABLE 1-.15 
Summary of Analysis of Covariance Tests Comparing Measured and Calculated 
Pollutant Flux to two Varieties of Vicia faba Following Added Environmental 
Stress. 

Analysis of Covariance 
Measured Flux F value Significance 
v Calculated Flux IX = 

Dylan low light 7'16 0·025 
Aquadulce low light 7'63 0'025 

Dylan 24 h cold 0'45 ns 
Aquadulce 24 h cold 0·50 ns 

Dylan 72 h cold 0'17 ns 
Aquadulce 72 h cold 

Dylan 1 week cold 3·62 ns 
Aquadulce 1 week cold 0'59 ns 

TABLE 1-.16 
Summary of Analysis of Covariance Tests for Varietal Differences in either 
Measured or Calculated Pollutant flux Following Added Environmental Stress. 

Measured Flux 

Dylan v Aquadulce 

low light 
24 h cold 
72 h cold 
1 week cold 

Cal cuI ated FI ux 

Dylan v Aquadulce 

low light 
24 h cold 
72 h cold 
1 week cold 

Analysis of Covariance 
F value Significance 

3'56 
4'55 
5·29 
2·02 

16·22 
0'04 
1· 17 
0·66 

IX = 

ns 
0·05 
0'05 
ns 

0'01 
ns 
ns 
ns 
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differences between measured and calculated pollutant fluxes to either 

variety following a 1 week cold pre-treatment prior to SO. fumigatlons. 

Measured SO. flux was reduced in both varieties in response to the cold 

pre-treatment and the similarity in flux measurements was a result of the 

degree of change being greater in plants of the variety Dylan. Again the 

data for Aquadulce Claudia plants for calculated flux were very variable and 

therefore the conclusion that there were no significant differences in 

calculated flux between the varieties cannot be made with confidence. 

4.8.5 Stomatal and Residual Resistances to 802 Transrer 

Following Environmental Stress 

Although in §~.8.3 it was shown that no significant differences 

between measured and calculated pollutant fluxes were found in either 

variety following periods of cold stress. Differences were found to occur 

when stomatal and residual resistances to SO. transfer were considered. It 

was described in §3.9 how stomatal resistances to SO. uptake were 

calculated in two ways .. either from analogy to water vapour transfer 

(r.SO.) or from mass balance calculations giving a theoretical value of 

stomatal resistance (r,SO.'). The difference in the two estimates of r. 

being indicative of a non-stomatal, residual resistance to SO. transfer· 

(rrSO.) where: 

r.SOi 

and rsSO.' is actually a measure of rsSO. + rrSO. or total leaf resistance 

to SO. transfer (r.SO.) minus the aerodynamic resistance component (r.SO.), 

so that: 

or 

In. these experiments aerodynamic resistances remained unchanged thus 

changes in total leaf resistance to SO. could be inferred from changes in 

r.SO.' • 

The methods described in §3.9 were used on the data obtained for 

both varieties following periods of added environmental stress and the 
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results are summarised in Tables 4.17 to 4.24 and significant data are 

presented in Figures 4.29 to 4.36. 

4.6.5.1 Low Li~ht Stress. 

Under optimum environmental conditions, the residual resistance 

to 502 transfer became increasingly negative with increasing SO. 

concentration and increasing pollutant flux in both varieties of Vicia. This 

resulted in greater SO. uptake by the plant than was indicated from 
• measures of stomatal resistance (Figures 3.29 and 3.30). 

In plants of the variety Dylan stomatal resistance to SO., as 

calculated from analogy to water vapour transfer (r.SO.), showed no 

significant correlation with ambient SO. concentration or measured 

pollutant flux under optimum environmental conditions. As a result, it was 

concluded that actual flux was determined predominantly by the residual 

resistance to pollutant uptake, rrSO •. However, under low light conditions 

r.SO. was found to decrease with increasing sulphur dioxide concentration 

(Figure 4.29a). In contrast rrSO, was found to become less negative as SO. 

concentration increased (Figure 4.29b). These results are presented in Table 

4.17. It would appear that Changes in both stomatal and residual 

resistances together govern flux to Dylan plants under low light 

intensities. 

This difference in response between high and low light treated 

plants was not shown when the theoretical measure of stomatal resistance 

to SO, transfer, r.SO.· was plotted as a function of measured flux (Figure 

4.30) or ambient SO. concentration. The plot obtained was the same as that 

obtained under high light intensities ie. resistance to SO. decreased as 

flux/SO. concentration increased; also, as stated previously, no significant 

differences were observed between high and low light treated plants for 

measured pollutant flux at any 502 concentration supplied. This is of 

importance because r.SO.· is the sum of r.SO, and rrSO •. If r.SOz· alone was 

considered no significant differences in resistances governing SO, entry 

between low light-stressed and non-stressed plants would be detected. 

However it was shown above that both stomatal and residual resistances to 

SO. transfer were altered by the imposition of low light stress. 

From the results presented here it may be concluded that 

although actual flux values were not altered in response to low light stress 

in Dylan plants, resistance factors governing the entry of SO. into the 
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TABLE 4-.17 
Summary of Residual (rrSO.) and Stomatal Resistances (r.SO .. from analogy 
to water vapour transfer and r.SO.' from mass balance calculations) to SO. 
Transfer in ~ faba CV. Dylan Under Low Light Intensities. Measured 
pollutant flux (from mass balance calculations) and Calculated flux (from 
analogy to water vapour transfer) are also shown. 

[so.] PF.eas PFcaLc r.SO. r.SO.' rr SO• 

(ppb) (l1g m-' s-') (s cm-') (s cm-') (s cm-') 

160 4-. H 1· 01 3·05 0·79 -3·84, 

200 1·59 0·65 4-·65 1· 54, -3· 11 

255 4,·16 1· 13 4-·39 -0·29 -4-·66 

390 1·66 1·4-7 5·52 3·95 -1· 56 

4-00 4-·42 1·36 6·19 0·55 -5·64-

600 2·57 6·32 0·67 4-·63 3·96 

610 5·27 5·03 1· 42 1·27 -0· 15 

TABLE 4-.18 
Summary of Residual (rrSO.) and Stomatal Resistances (r.SO •• from analogy 
to water vapour transfer and r.SO.' from mass balance calculations) to SO. 
Transfer in Vicia faba CV. Aquadulce Claudia Under Low Light Intensities. 
Measured pollutant flux (from mass balance calculations) and Calculated flux 
(from analogy to water vapour transfer) are also shown. 

[SO.] PfraQIs PfcaLc r.SO. r.SO.' rrSO. 

(ppb) (l1g m-' s-' ) (s cm-') (s cm-') (s cm-') 

220 1·26 0·69 7·21 2·67 -4,·33 

270 3·61 0·65 10·72 0·57 -10·15 

265 2·26 1·23 4,·55 1·56 -2·96 

360 1·90 1· 54- 5·72 3·36 -2·34, 

4-40 2·93 2·07 4,·04, 2·25 -1·76 

510 1·65 1· 91 6·04, 6·31 0·27 

615 1· 96 1·4,9 9·74, 6·64, -2·69 
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Figure 4.29a 
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Figures 4.29 and 4.30. 
Stomatal and Residual Resistances to SO. transfer in Dylan plants under low 
light conditions in relation to ambient SO. concentrations/measured 
pollutant flux. 4-.29a shows stomatal resistance as derived from data for 
water vapour transfer. 4-.29b shows residual resistance to SO. transfer and 
4..30 shows theoretical values for stomatal resistance to SO. transfer as 
calculated from mass balance calculations. 
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plant were influenced by the added environmental stress. In short, under 

high light intensities flux is governed largely by residual resistance to 

SO. transfer but under low light conditions stomatal and residual 

resistances are both important. 

In Aquadulce Claudia plants subject to low light stress there 

were no significant differences in the influence of residual or stomatal 

resistances on SO. transfer in comparison with data from high light 

conditions. However stomatal resistances to SO. transfer as estimated from 

resistance to water vapour transfer, under low light conditions appeared to 

be higher than under high light intensities whilst the residual resistance 

appeared unchanged (Table 4.18). This resulted in the theoretical stomatal 

resistance, r.SO.', being raised in response to low light stress and this 

may account for the lower flux values observed at highest SO. 

concentrations that were presented earlier (§4.8.1). 

4.8.5.2 24 h Cold Stress 

When plants of the variety Dylan were subjected to cold 

temperature stress for 24 h prior to SO. fumigations both stomatal and 

residual resistances to SO. transfer were found to be very variable (Table 

4.19) and a greater range of values was obtained in comparison with 

resistances measured in non cold-stressed plants. Stomatal resistance 

(r.SO.) ranged from 0·2 to 9·4 s cm-' after the cold pre-treatment but was 

1 to 2·4 s cm-' under optimum conditions. Similarly, residual resistances to 

SO. transfer ranged from 1'8 to -4'6 s cm-' after the 24 h pre-treatment 

and from 1·3 to -2,9 in the absence of cold stress. 

No significant relationships were found between either of the 

two resistances and increasing SO. concentration or pollutant flux following 

the 24 h cold pre-treatments, the data are presented in Table 4.19. However, 

when both resistances are summed ie. to give the theoretical values for 

r.SO.', and plotted against SO. or flux (Fig. 4.31) then the relationship 

between flux and resistance was unchanged. r.SO.' declined with Increasing 

SO. concentration in the same manner as described for non cold-stressed 

plants (Fig. 3.29b) although values were higher in the cold treated plants 

(Fig .... 31>. 

In plants of Aquadulce Claudia subject to 24 h cold stress prior 

to SO. fumigation differences in both stomatal and residual resistances to 

SO. transfer (Table ... 20) due to cold stress were similar to those described 
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TABLE 4-.19 
Summary of Residual (r.SO.) and Stomatal Resistances (roSO .. from analogy 
to water vapour transfer and roSO,' from mass balance calculations) to SO. 
Transfer in Vicia faba CV. Dylan Following Cold Temperature Pre-treatments 
for 24- h. Measured pollutant flux (from mass balance calculations) and 
Calculated flux (from analogy to water vapour transfer) are also shown. 

[SO.] P,,.qas Pro .. o roSO. roSO.' r.SO. 
(ppb) (!1g m-I s-' ) (s cm-') (s cm-') (s cm-') 

101 0·77 1· 34- 1·21 2·81 1'60 

108 0·4-6 o· 4-3 6·22 5·77 -0,4-5 

160 0·79 0·" 9·36 4-·78 - .. ·58 

285 3·60 1·59 4-·18 1·32 -2,85 

34-0 3·02 1· 88 4-·22 2·28 -1' 94-

395 3·4-2 7·4-5 0·57 2·36 1·78 

4-20 4-. 11 10'05 0·25 1·98 1'73 

4-65 3·69 1·93 5·96 2·68 -3'29 

4-80 5·63 1·92 6·0 .. I· 4-5 -"'59 

TABLE 4-.20 
Summary of Residual and Stomatal Resistances to SO. Transfer in Vicia faba 
CV. Aquadulce Claudia Following a Cold Temperature Pre-treatment for 24-h. 

[SO.] P'Mcas Pro .. o roSO. roSO.' r.SO. 
(ppb) (!1g m-' s-' ) (s cm-') (s cm-') (s cm-') 

101 0·42 1·63 0·83 5·93 5'10 

110 0·39 0·4-6 5·86 7· 12 1·26 

200 1· 58 1·85 2·16 2·68 0·52 

210 1· 01 1·27 3·80 5·01 1· 21 

255 1· 08 0·4-6 !4-·4-6 5·80 -8·65 

270 3· 4-3 2·75 2'45 1· 31 -1,14 

278 3·15 o· 95 . 7·38 1·58 -5·80 

285 1· 92 0·93 7'84- 3·29 -"'55 

398 1·67 7·89 0·50 5·87 5·37 

560 5·65 1·55 9·36 1·89 -7,65 
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Figure 4.31 Figure 4.32 
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Figures -'.31 to -'.3-'. 
Stomatal resistance to SO. transfer (as derived from mass balance 
calculations) in relation to measured pollutant flux for two varieties of 
Vicia faba CV. Dylan & Aquadulce Claudia subject to cold temperature stress 
for 24 h or 72 h prior to SO. fumigation. 
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above for the variety Dylan. Stomatal resistance, r.SO. was found to be very 

variable and larger values were obtained in comparison with non cold

stressed plants. Similarly, a much larger range of values for rrSO. was 

found (5·3 to -6·S s cm-') after the 24- h cold treatment, resistance values 

ranging from 2·2 to -5·6 s cm-' in the absence of cold stress. Values of 

r.SO.' (equal to the sum of the stomatal and residual resistance to SO. 

transfer) when plotted against measured flux (Figure 4-.32) followed the 

same trend observed in non cold-stressed plants ie. resistance decreased 

with increasing flux/SO. concentration. However, values were higher than 

those observed under optimum environmental conditions. 

Measured pollutant flux to plants of both varieties following 24-

h cold temperature pre-treatments h~s been shown not to be significantly 

different from that to non cold-stressed plants (§4-.6.l>, however, from the 

results presented above it can be seen that both stomatal and residual 

resistances to SO. transfer were altered as a result of the cold temperature 

stress. 

4-.8.5.3 72 h Cold Stress 

Following pre-treatments of 72 h at IO·C resistances to pollutant 

flux in plants of the variety Dylan were again found to be influenced by 

the imposition of cold stress (Table 4-.21). Stomatal resistances to SO. 

transfer (r.SO.) were very variable but were mostly much greater than 

resistances in unstressed plants. Residual resistances to SO. transfer were 

also variable but were largely negative with increasing SO. conc~ntration 

and flux, values again being much greater than those for unstressed plants. 

However, although changes in both resistances occurred in response to cold 

stress, values of r.SO.' were not significantly different from those 

obtained for Dylan under optimum environmental conditions <Figure 4-.33). 

These data concur with results presented in §4-.6.1 which showed pollutant 

fluxes to Dylan plants to be unaltered in response to 72. h cold temperature 

pre-treatments. 

In the variety Aquadulce Claudia cold periods of 72 h prior to 

SO, fumigation also influenced both stomatal and residual resistances to 

SO. uptake. Both resistances showed no correlation with increasing SO, 

concentration or pollutant flux (Table 4-.22) and when ambient SO, 

concentration was 101 ppb both resistances were extremely large. However, 

these variations in resistance were negated when the sum of the two 
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TABLE 4-.21 
Summary of Residual (r,SO.) and Stomatal Resistances (r,S02. from analogy 
to water vapour transfer and r,SO,' from mass balance ca~culations) to SO, 
Transfer in Vicia faba CV. Dylan Following Cold Temperature Pre-treatments 
for 72 h. Measured pollutant flux (from mass balance calculations) and 
Calculated flux (from analogy to water vapour transfer) are also shown. 

[502] PFlaeas PreAle r,S02 r,SO,' r,SO, 
(ppb) (118" m- 2 s-') (s cm-') (s cm-') (s cm-') 

97 0·63 0·94- 2·00 3·4-6 1·4-6 

119 0·69 0·26 12·39 3·99 -8·39 

230 2·54- 1·26 4·25 1·64- -2·61 

310 2·27 3· 47 1· 61 2·96 1·36 

385 5·67 0·73 14·12 0·99 -13· 12 

460 2·85 2·82 3·72 3·67 -0·04 

4-69 4·20 2·60 4·22 2·25 -1·96 

520 7·62 7·18 1· 13 1· 01 -0·12 

TABLE 4-.22 
As for Table 4.21. Summary of Residual and Stomatal Resistances to 502 
Transfer in Vicia faba CV. Aquadulce Claudia Following a Cold Temperature 
Pre-treatment for 72 h. 

[502] Pr ,.ea. PreaLe r,SO, r,S02 ' r,SO, 
(ppb) (l1g m-' s-') (8 cm-') (s cm-') (8 cm-') 

101 0·68 0·06 4-6·93 3·31 -43·62 

198 2· 13 1·41 3·08 1·72 -1·36 

272 1· 69 1· 67 3·69 3·66 -0·04 

285 2·61 4-·35 0·94 2· 18 1·25 

372 1·59 3·04- 2·55 5·72 3·17 

4-55 3·81 1·15 10·31 2·47 -7·84 

505 2·02 10·39 0·4-8 6·22 5·77 
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resistances was plotted (as 1'.50.' ) against measured flux. Resistance to SO. 

uptake, as under optimum conditions, decreased with increasing flux <Figure 

(.34,) and values were significantly higher than those obtained in the 

absence of added environmental stress. This correlated well with the 

reductions in SO, flux in Aquadulce after 72h at 10'C described earlier in 

this section. 

4,.8.5.4, 1 Week Cold 

A 1 week period of cold temperature prior to SO. fumigations was 

seen to have marked effects on measured plant responses. Resistance data 

for SO. uptake in plants of the variety Dylan are shown in Table 4-.23. It 

can be seen .that stomatal resistances to SO. transfer were increased in 

response to the cold pre-treatment particularly at the lower range of SO. 

concentrations used. Residual resistances to SO. transfer were also altered 

in response to cold stress and were largely negative at low SO. 

concentrations (Figure (.35). These changes in both resistances resulted in 

changes in the theoretical values of 1'.50.' and the relationship between 

r.SO.' and measured flux (Figure (.36). Unlike the trends observed in all 

other environmental treatments, this resistance did not decrease with 

increasing SO, concentration or flux and was very variable. Values of 1'.50. 

plus rrSO. ie. r.SO.' were more than double those observed in non cold

stressed plants and were correlated with the reductions in measured flux to 

Dylan described earlier in section §4-.B.1 (Figure 4-.27a). 

Stomatal and residual resistances to SO, uptake in Aq~adulce 

plants were not as severely affected by the 1 week cold pre-treatments as 

were those of Dylan plants. Stomatal resistances to SO. uptake as derived 

from resistance to water vapour transfer, were increased in comparison with 

those for unstressed plants and appeared to increase with increasing SO. 

flux (Figure (.37>. The data for residual resistance to SO. transfer in 

Aquadulce plants following 1 week at 10'C were variable in relation to SO. 

concentration or flux but values were larger than those for unstressed 

plants (Table 4-.24->. The net results of these changes in resistance, were 

changes in the relationship between 1'.50.' and measured flux. In all other 

environmental treatments 1'.50,' was seen to decrease in response to 

increasing flux or SO, concentration but after 1 week at 10'C prior to 

pollutant fumigation this resistance appeared to increase with increasing 

SO. flux (Figure 4-.38) and values were much higher than those for 
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TABLE 4..Z3 
Summary of Residual (rrSO.) and Stomatal Resistances (r,SO •• from analogy 
to water vapour transfer and r,SO.' from mass balance calculations> to SO. 
Transfer in Vicia faba CV. Dylan Following Cold Temperature Pre-treatments 
for 1 Week. Measured pollutant flux (from mass balance calculations> and 
Calculated flux (from analogy to water vapour transfer) are also shown. 

[SO.] Pr •• as ProHo r,SO, r,SO.' rr SO• 
(ppb) (p.g m-' s-' ) (s cm-') (s cm-') (s cm-') 

90 0-80 0·54 3-85 2-26 -I-57 

105 0-51 0-59 4- 10 4-97 0-66 

190 1- 01 0-46 10-94 4-42 -6-55 

195 1-09 0-23 22-63 5-09 -17-7 

268 0-95 0-59 12-87 7-70 -5-16 

368 1- 72 3-54 2-03 5-18 3- 15 

470 3-15 2-52 4-45 3-33 -1- 12 

520 1-95 4-54 2-33 6-69 4-.36 

TABLE 4.. Z4. 
As for Table 4_23_ Summary of Residual and Stomatal Resistances to SO. 
Transfer in Vicia faba CV~ Aquadulce Claudia Following a Cold Temperature 
Pre-treatment for 1 Week_ 

[SO.] Pr.ea, PFOaLo r,SO. r,SO.' rrSO. 
(ppb) (p.g m-' s-') (s cm-') (s cm-') (s cm-') 

99 1- 08 0-29 8-63 1-68 -6-95 

205 1-99 0-53 10-19 2-01 -8- 18 

206 1- 08 2·57 1-37 4-58 3-21 

282 2-27 1-82 3-49 2-61 -0-.86 

360 1-66 6- 46 0·34- 5-60 5-26 

465 1-66 1-39 6-79 6-21 -2-35 

490 3-61 1- 01 13-66 2-73 -11-12 

492 1-66 1- 51 6-35 7-41 -0-93 
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Figure 4.35 Figure 4.36 

6 C"o 
8 ...... • ... 4 • I 

E • E 7 
u 2 u • 

.!!!, • .!!!,6 0 

• • CD .. -2 u 5 • • • u c c -4 0 • 0 • - 4 - -6 • "' • !!! 'iij • "' -8 E 3-.. 
"- -la 
Ci Ci 2 • -12- -:::J 0 
:s! -14 E 
"' -16- 0 .. -'" Vl 0 -18 , , , I 

0 100 200 300 400 500 600 0123456 

Sulphur dioxide concentration (pp ) Measured Flux (\-Ig m"ts·l) 

Figures ~.35 & ~.36 
Residual and Stomatal Resistances (from mass balance calculations) to SO. 
transfer in Vicia faba CV. Dylan subject to 1 week of cold temperature 
stress prior to SO, fumigation. 
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unstressed plants. This correlated well with the data presented earlier 

showing both measured and calculated flux to be reduced in Aquadulce 

plants following 1 week at 10·C (Figure 4.28). 

In conclusion it would appear that although environmental 

stresses such as low light intensities and periods of 24 h or 72 h at 10·C 

prior to SO. fumigations did not influence sulphur dioxide fluxes to Vicia 
OI.~ 

faba ~directly, the individual components of the resistance pathway 

governing pollutant entry into the plant were substantially affected by 

added environmental stress. Both stomatal and residual resistances to SO. 

transfer were increased in magnitude by the imposition of added 

environmental stress. However, since the magnitude of these changes was 

virtually equal but opposite in direction, total leaf resistance to SO. 

remained unchanged. 

In contrast, periods of 1 week at cold temperatures prior to SO. 

fumigations induced changes in both stomatal and residual reslstances to 

SO. transfer in both varieties of Vlcla which resulted in increased total 

leaf resistance to SO. transfer and reduced SO. flux. 

4..9 GAS EXCHANGE MECHANISMS IN RELATION TO POLLUTANT FLUX 

4..9.1 Net Photosynthesis 

In §3.8 the importance of relating pollutant responses to actual 

flux rather than ambient SO. concentrations was shown. Both measured and 

calculated pollutant fluxes were shown to be proportional to ambient sulphur 

dioxide concentrations for both varieties of Vicia under optimum 

environmental conditions (§3.9); however, this did not invariably occur 

following periods of added environmental stress (§4.8). 

Figures 4.39 to 4.48 show % changes in net photosynthesis as 

related to sulphur dioxide fluxes to both varieties of Vicia faba subjected 

to added environmental stress. Only the data which were significantly 

different to the responses measured under optimum environmental conditions 

are shown. 

4.9.1.1 Dylan Plants 

Under optimum environmental conditions inhibition of net 

photosynthesis in Dylan plants was not significantly correlated with 
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measured pollutant flux although there was a good curvilinear relationship 

for S02 fluxes up to 3 I'g m-2 s-' (Figure 3.15). However, photosynthetic 

responses were found to be significantly correlated with calculated 

pollutant flux to Dylan plants (Figure 3.16). 

With the addition of low light stress, the relationship between 

net photosynthetic inhibition and measured SO. flux was altered in Dylan 

plants such that less photosynthetic inhibition was seen for the same 

range of flux measurements (Figure 4.39). The regression line obtained from 

statistical analysis of the data (r = 0'697, P < 0'05) is also shown in the 

figure together· with the relationship between flux and photosynthetic 

inhibition for Dylan plants under high light intensities for measured flux 

values up to 3 I'g m-' s-'. The data presented in Figure 4.21 showed there 

to be no significant difference in flux to Dylan plants under high or low 

light intensities. Therefore the reduced inhibition in net photosynthesis in 

response to S02 under low light intensities did not arise from reductions 

in flux and may be assumed to be the result of a reduction in sensitivity 

to the pollutant. 

Following cold stress pre-treatments for 24 hand 72 h 

significant linear correlations were found in Dylan plants between measured 

pollutant fluxes and the degree of photosynthetic inhibition, the 

correlation coefficient, r, was 0'670 (p < 0·001) after 24 h (Figure 4.40) 

and was 0·601 (p < 0·01) after 72 h (Figure 4.41>. As for low light stress, 

the reductions in photosynthetic inhibition in Dylan plants due to SO. 

after cold temperature pre-treatments of 24 h or 72 h were not ~ result of 

reduced fluxes to the plant as no significant differences in SO. flux to 

cold-stressed and non cold-stressed plants were found (§4.6). Lessening of 

net photosynthetic inhibition in response to SO. appeared to be due to 

reduced sensitivity to the amount of pollutant entering the plant ie. plants 

appeared to be more tolerant of S02 after the cold temperature pre

treatments. After 24 h at 10'C prior to S02 fumigation photosynthetic 

responses to SO, in Dylan plants were shown to be reduced at all SO, 

concentrations (Figure 4.3) and this was also shown when photosynthetic 

responses were plotted against measured flux (Figure 4.40). 

After a cold treatment of 72 h photosynthetic responses were 

shown to be reduced when ambient SO, concentrations exceeded 200 ppb 

(Figure 4.5) and again this was reflected in the flux data as differences 

in the degree of photosynthetic response were only significant when 
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Sulphur dioxide-induced changes in net photosynthetic rates in relation to 
measured pollutant flux (!'g m-' S-I) in Vicia faba CV. Dylan. Figure 4-.39 
shows the responses under low light intensities and Figure 4-.4.0 gives the 
responses following cold temperature stress for a period of 24- h prior to 
pollutant fumigation. [The relationship between measured flux up to 3 !,g 
m-' s-' and % changes in Pnet in Don cold-stressed Dylan plants is also 
shown (----- )J. 
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measured flux exceeded 1·5 I1g m-' s-' (Figure 4.U) 

Examination of the data for % net photosynthetic inhibition as 

related to measured pollutant flux to Dylan plants following a 1 week cold 

pre-treatment showed there to be significant differences in comparison 

with the previous cold treatments. After 1 week at 10'C prior to SO. 

fumigations, photosynthetic inhibition in Dylan plants was shown to be 

significantly reduced only when SO. concentrations exceeded 300 ppb (Figure 

4.7). However, when responses were plotted against measured pollutant flux 

(Figure 4.42) the same relationship as that for plants under optimum 

environmental conditions (Fig. 3.15) was seen although maximum values for 

measured SO. flux were much reduced to 3·2 I1g m-' s-' in cold-stressed 

plants when.the highest value for measured flux under optimum conditions 

was 8·1 I1g m-' s-'. It would appear that the reductions in photosynthetic 

inhibition in Dylan plants in response to SO. following a 1 week cold pre

treatment were not due to reduced pollutant sensitivity but arose from 

reductions in pollutant flux to the plant. 

When the net photosynthetic responses of Dylan plants were 

considered in relation to calculated pollutant flux for low light stress and 

for 24 h or 72 h cold pre-treatments the same relationships as were 

observed for measured pollutant flux as described above, occurred ie. the 

range of flux values were unchanged indicating that the observed 

reductions in net photosynthetic inhibition arose from reduced pollutant 

sensitivity. 

However, when data for Dylan plants following 1 week c.old 

temperature pre-treatments were examined it was found that as for measured 

flux, the range of calculated values flux was reduced although ambient SO. 

concentrations were as for optimum environmental conditions. The maximum 

flux under optimum conditions was 7·7 I1g m-' s-' and following cold stress 

was 4·6 I1g m-' s-'. However, a greater photosynthetic response was 

observed in comparison with unstressed plants for all measures of flux. 

These data are shown in Figure 4..43, regression analysis of the data for 

cold-stressed plants produced a correlation coefficient of 0'678 (p < 0·001) 

and the regression line obtained for plants in the absence of added cold 

temperature stress are also shown. 

It can be seen that, particularly at lower fluxes, Dylan plants 

were far more sensitive to SO. flux following 1 week periods of low 

temperature stress than under optimum temperature conditions. Reduced 
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Chapter 4 

SO,-induced inhibition in net photosynthetic rates ot Dylan plants as 
related to pollutant flux. Fig. 4.41 shows data in relation to measured 
pollutant flux tor plants subjected to 72 h ot cold temperature stress prior 
to SO, tumigation. Figs. 4.42 & 4.43 show data tor plants subject to 1 week 
cold stress in relation to measured and calculated pollutant flux 
respectively.( (-----) relationship tor non cold-stressed plants]. 
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inhibition in Pnet following 1 week at 10'C in plants of the variety Dylan 

appeared to result from much reduced fluxes to the plant, and plants being 

far more sensitive to 502 than was observed in the absence of environmental 

stress. 

4.9.1.2 Aqyadulce Claudia Plants 

When the degree of net photosynthetic inhibition in Aquadulce 

Claudia plants was plotted against pollutant fluxes for each of the 

environmental pre-treatments studied, significant differences in response in 

comparison to unstressed plants were observed. The data for % inhibition in 

Pnet in Aquadulce plants in relation to measured pollutant flux under low 

light conditions are shown in Figure 4.44. The regression lines obtained 

for data under optimum environmental conditions are shown in all the 

figures presented. There was no significant linear correlation obtained 

between photosynthetic inhibition and measured flux in Aquadulce under low 

light conditions but it can be seen in the figure that the maJority of 

data obtained lie to the left of the regression line for unstressed plants 

indicating greater photosynthetic inhibition for each flux measurement. 

This was also seen to occur when responses were plotted against calculated 

pollutant flux (Figure 4.45). All the data and the regression line obtained 

(r = 0'830, P < 0'01> again lie to the left of the regression line for plants 

under high light intensities showing there to be greater photosynthetic 

inhibition for each flux value. This is very important because as described 

earlier (§4.4), S02-induced net photosynthetic inhibition of Aquadulce 

plants was not found to be influenced by low light stress when data were 

expressed in relation to ambient 502 concentrations. However, calculated flux 

as related to ambient 502' concentrations were significantly reduced under 

low light intensities. Thus the data for both measures of flux <Figs. 4.44 & 

4.45) suggested that following the imposition of low light stress, the 

photosynthetic mechanism of Aquadulce plants was tar more sensitive to 

actual 502 entering the plant. However, this enhanced sensitivity was 

masked when results were expressed in relation to ambient 502 

concentrations (§4.4) because for any given ambient SO. concentration 

pollutant flux to plants grown under low light intensities was reduced. 

Following cold pre-treatments of 24 h there were no significant 

differences in photosynthetic responses of Aquadulce plants to ambient SO. 

concentrations between cold-stressed and non cold-stressed plants (Figure 
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Figure 4.44 
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Figures ~.4~ and 4.~5. 
Sulphur dioxide induced changes in net photosynthetic rates in relation to 
both measured pollutant flux (JIg m-2 S-1) (Fig.4.U) and calculated 
pollutant flux (Fig.4.45) in Vicia faba plants of the variety Aquadulce 
Claudia under low light intensities. [The relationship between flux and % 
changes in Pnet in Aquadulce plants under high light conditions are also 
shown (----- )1. 
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4.4). However when responses were plotted against measured pollutant flux 

<Fig. 4.46) it can be seen that for flux values between 0·2 and 3 !lg m-' 

s-' photosynthetic responses were greater than those observed in the 

absence of environmental stress. These data again suggest that the 

imposition of added environmental stress enhanced the sensitivity of the 

photosynthetic mechanism in Aquadulce plants to SO. entering the leaf. 

However, unlike the data obtained under low light intensities, the results 

presented in U.6.1 did not show that pollutant flux in relation to ambient 

SO. concentration was reduced in response to a 24 h cold temperature 

period. Thus the fact that no significant differences were observed between 

non cold-stressed and 24 h cold-stressed plants in §4.4 cannot be explained 

by the fact that this enhanced pollutant sensitivity was masked when 

results were expressed in relation to ambient SO. concentration because of 

reduced pollutant flux. It may be that the increased variability in data 

following cold temperature treatments did not allow reductions in flux to be 

detected, this being supported by the fact that stomatal resistance to SO. 

uptake in Aquadulce plants was shown to be increased following the 24 h 

cold treatment (§4.8.4). 

In direct contrast to the above, when SO. fluxes exceeded 3 !lg 

m-' s-· photosynthetic responses appeared to be much less than those 

observed in non cold-stressed plants suggesting reduced pollutant 

sensitivity to higher flux levels. 

After 72 h cold treatment prior to SO. fumigations, 

photosynthetic inhibition of Aquadulce plants in response to SO •. was seen 

to be much reduced when ambient SO. concentrations exceeded 300 ppb 

<Figure 4.6). When responses were plotted as a function of measured 

pollutant flux (Figure 4.47), as observed in the 24 h cold treatments, 

photosynthetic responses were much lower than those for unstressed plants 

when flux exceeded 2 !lg m-' s-·. However, when measured flux was below 2 

!lg m-' s-' photosynthetic responses were seen to be greater than those of 

unstressed plants. It would appear that in Aquadulce Claudia plants, at SO. 

concentrations up to 300 ppb, photosynthetic responses were similar in both 

cold-stressed and non cold-stressed plants but this was a result of both 

reduced pollutant flux to the plant and increased pollutant sensitivity. The 

reductions in photosynthetic inhibition at SO. concentrations above 300 ppb 

after the imposition of cold stress appeared to arise from both reductions 

in actual flux and reduced plant sensitivity to SO •. 
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Figures 4.46 to 4.48. 
Sulphur dioxide induced changes in net photosynthetic rates in relation to 
measured pollutant flux <I'g m-' S-I) in Vicia faba plants of the variety 
Aquadulce Claudia subject to cold temperature stress for periods of either 
2~ h <Fig. ~.46). 72 h <Fig. '.n) or 1 week <Fig. 4.~8) prior to SO. 
fumigation. [The relationship between flux and % changes in Pnet in non 
cold-stressed Aquadulce plants are also shown (----- )]. 
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In Aquadulce Claudia plants subjected to 1 week at 10'C prior to 

SO. fumigations, photosynthetic inhibition in response to SO. was seen to 

be reduced when ambient SO. concentrations exceeded 250 ppb <Figure 4-.6). 

When photosynthetic responses were plotted as a function of measured 

pollutant flux there was no significant linear correlation obtained <Figure 

4-.4-6) but the data for pollutant flux below 2 p.g m-' s-' showed a much 

greater photosynthetic response than was observed in the absence of added 

environmental stress indicating plant pollutant sensitivity to be increased. 

In contrast, as observed in the previous cold treatments, when measured 

flux values exceeded 2 p.g m-' s-' photosynthetic responses were less than 

those observed under optimum environmental conditions. When ambient SO. 

concentrations exceeded 250 ppb measured pollutant flux to Aquadulce plants 

was shown to be significantly reduced <Fig. 4-.26a). Therefore the reductions 

in photosynthetic inhibition observed at higher pollutant concentrations, 

following 1 week periods of cold temperature stress may be assumed to 

result from both reduced pollutant flux and reduced plant sensitivity. 

In §3.6 the idea of threshold SO. flux values was introduced, this 

being the level of pollutant flux at which photosynthetic inhibition was 

first seen to occur. Aquadulce plants were seen to have a higher threshold 

flux value for both measured and calculated pollutant fluxes and when 

measured flux values were considered, Dylan plants were found to be more 

sensitive to increasing SO. flux below 2 p.g m-' s-' ie. substantially more 

photosynthetic inhibition was observed in Dylan plants than Aquadulce 

plants for measured fluxes between 0·3 and 2 p.g m-' s-'. However, when 

calculated pollutant fluxes were considered Aquadulce plants were found to 

be more sensitive to SO. when the threshold flux had been exceeded 

although the threshold flux was greater for Aquadulce plants. 

In Dylan plants, following periods of added environmental stress, 

the threshold measured SO. flux was unchanged but this value was only 0·3 

p.g m-' s-' in the absence of added environmental stress. However, for all 

environmental pre-treatments the threshold value for calculated pollutant 

flux is decreased from 0·6 p.g m-' s-' to 0·2 p.g m-' s-' 

In Aquadulce Claudia plants, the imposition of environmental 

stress resulted in substantial reductions in the threshold values for both 

measures of flux. Under optimum conditions the threshold measured flux, 

above which photosynthetic inhibition was seen to occur in Aquadulce 

plants was 1·6 p.g m-' s-'; enhancement in Pnet was seen to occur at flux 
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values below this. Under low light conditions the threshold flux was 

reduced to 1·2 I1g m-' s-' and no enhancement in photosynthetic rate was 

observed at lower flux measurements. For all the cold pre-treatments this 

threshold value was reduced to 0·25 I1g m-' s-'. Similarly, the threshold 

value for calculated pollutant flux was reduced from 1·5 to O'S I1g m-' s-' 

by the imposition of low light stress and was 0'15 I1g m-' s-, after cold 

pre-treatments. 

It would appear from the data presented in this section, that 

periods of environmental stress prior to SO. fumigations resulted in 

increased plant· pollutant sensitivity to low sulphur dioxide fluxes, 

particularly that of Aquadulce Claudia plants, However, reductions in 

pollutant flux to the plants in relation to ambient SO. concentrations and 

reduced plant sensitivity to higher flux values combined, resulted in 

decreased photosynthetic responses to sUlphur dioxide treatments after 

periods of added environmental stress. 

4.9.2 Stomatal Resistance (r.) 

The relationships between changes in r. in response to SO. and 

both measured and calculated pollutant flux were described in §3.6.2 for 

both varieties of Vicia. Significant correlations were found for both 

varieties for measured flux and for calculated flux in Dylan plants. In 

both varieties there was found to be a critical flux value beyond which 

stomatal closure occurred, this threshold flux was the point at which 

stomatal responses to SO. switched from enhanced opening to enhanced 

stomatal closure. For Dylan plants the threshold value for measured flux was 

4 I1g m-' s-' and for calculated pollutant flux the threshold value was 3 I1g 

m-' s-'. For Aquadulce Claudia plants measured flux threshold was 1·6 I1g 

m-' s-', however, there was no significant correlation between calculated 

pollutant flux and changes in stomatal resistance in Aquadulce plants in 

response to SO •. When calculated SO. fluxes were between 1 and 3·6 I1g m-' 

s-' 70% of plants exhibited stomatal closure. 

Following the imposition of added environmental stress the 

relationships between changes in r. and pollutant flux were substantially 

altered. There were no correlations between changes in r. and either 

measure of flux in both Aquadulce Claudia and Dylan plants subjected to low 

light stress or 24 h or 72 h of cold temperature stress prior to pollutant 
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fumigation. Similarly, there were no significant relationships between 

calculated or measured pollutant flux and observed stomatal responses in 

Dylan plants following a period of 1 week at 10'C prior to SO. fumigations. 

For all the data obtained the one significant relationship between changes 

in r. and pollutant flux was that to Aquadulce Claudia plants following 1 

week ot cold temperature stress. These data are shown in Figures 4-.4-9 and 

4-.50. It can be seen that stomatal closure resulted from all SO. treatments. 

For measured flux <Fig. 4-.4-9) stomatal closure was seen to increase with 

increasing pollutant flux. If the data are compared with that obtained in 

the absence of added environmental stress <Figures 3.21 & 3.22) it can be 

seen that the relationships between stomatal response and both measures of 

flux are similar but threshold values have been reduced and the magnitude 

of stomatal responses are much greater in the plants subject to cold 

temperature stress. 

It would appear that the 'feed forward/feed back' system that 

operates in the absence of environmental stress, whereby r. governs the 

entry of SO. into the plant but is then altered by the presence of SO. 

inside the plant, did not occur following environmental stress. In Dylan 

plants changes in r. seemingly became independent of pollutant flux 

following the imposition of added environmental stress. There was no 

evidence in any of the environmental treatments to suggest a threshold flux 

above which enhanced stomatal closure occurs. In Aquadulce Claudia plants 

subject to low light stress or 24- h or 72 h of cold temperature stress 

prior to pollutant fumigation there was also no evidence of the threshold 

pollutant fluxes, above which enhanced stomatal closure occurred, which were 

observed under optimum environmental conditions. However, following a 1 

week cold pre-treatment, these threshold pollutant flux values did occur but 

were much reduced so that any flux value above 0·1 f1g m-' s-' resulted in 

stomatal closure <Figs. 4-.4-9 & 4-.50). 

The implications of these data for changes in r. suggested that 

the imposition of environmental stress removed a degree of stomatal control 

over pollutant entry into the plant. Changes in stomatal resistance were 

seen to occur independently of pollutant concentration and it may be 

concluded that the added environmental stress prior to pollutant fumigation 

had profound effects on that part of the stomatal control mechanism that 

is sensitive to sulphur dioxide pollution. 
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Figures 4.49 and 4.50. 
Sulphur dioxide induced changes in stomatal resistance of Vicia faba CV. 
Aquadulce plants. subjected to 1 week or cold temperature stress prior to 
pollutant fumigation. in relation to both measured (4.49) and calculated 
(4.50) pollutant flux. [(-----) regression line obtained for non cold-stressed 
plants]. 
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~.10 CONCLUSIONS & DISCUSSION 

~.10.1 Environmental Factors Inrluencing Net Photosynthetic 

Rates. 

4-.10.1.1 Low Li~ht Stress 

When plants of hoth varieties of Vicia faha were grown under low 

light intensities (60 W m-2 ) net photosynthetic rates were, as expected, 

found to he much reduced. The mean value for Pnet was 0·9 g CO2 m-' s-' in 

comparison to the mean value of 2·0 g CO. m-' s-' found in plants grown 

under high light conditions <150 W m-·). These results correlated well with 

the widely a.ccepted, and much puhlished, view of the influence of light 

intensity on Pnet as presented in the introduction to this chapter and the 

generalised plot of the relationship given in figure 4-a. 

Plants of hoth varieties also showed visihle signs of low light 

stress, heing much smaller and 'weaker' than plants of comparahle age grown 

.under higher light intensities. Low light stressed plants were also much 

more 'pale' in colour, indicating a reduction in total leaf chlorophyll 

content. 

~.10.1.2 Cold Temperature Stress 

The duration of the chilling period which is required to injure a 

plant has heen shown to he dependent on hoth species and temperature 

(Taylor & Rowley, 1971; Graham & Patterson, 1982). Similarly, the ,extent of 

injury increases with the degree of chilling ego Jlinchin & Simon (1973) 

found cucumber leaves survived 1 week at 10·C hut showed injury after 3 d 

-at 8·C and at 5"C within a few hours. Given this variahility in plant 

responses to low temperatures it was not surprising to find that the 

imposition of low temperature stress <le. 10·C) for periods of 24- h prior to 

SO. fumigation did not appear influence net photosynthetic rates in either 

Dylan or Aquadulce Claudia plants. However, periods of 72 h or 1 week at 

10·C were shown to inhihit net photosynthetic rates in plants of hoth 

varieties hy up to 20%; hut photosynthetic rates in plants suhJected to 72 

h cold treatments were found to recover on return to optimum temperatures 

during the 24- h period prior to SO. fumigation. The mean value for Pnetfor 

plants suhJected to 1 week at 10·C was found to he 1·6 :I: 0.2 g CO. m-2 h-·. 

However, rates were found to increase during the 3 d experimental period 
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when plants were returned to optimum temperatures although recovery to 

rates comparable to non cold-stressed plants was not seen to occur in the 

majority of plants. Similarly, Taylor & Rowley (1971) monitored 

photosynthetic rates of three plant species at 25'C following various 

periods at 10'C and found recovery to be dependent on species but most 

plants had not recovered to pre-stress rates up to 3 d after exposure. 

4.10.2 Interaction ot Environmental and Pollutant Stress on 

Rates ot Net Photosynthesis 

The influence of sulphur dioxide on net photosynthetic rates of 

both varieties of V.faba was discussed in chapter 3 and it can be seen 

from the results presented in this chapter (§4.4) that the effects of SO. 

were moderated by added environmental stress. 

4.10.2.1 Low Light Intensities 

It was shown in §4.4 that the degree of net photosynthetic 

inhibition (%Pnet) in response to a range_ of SO. concentrations, in Dylan 

plants was significantly reduced when plants were grown under low light 

intensities as opposed to high light conditions. Significant varietal 

differences were also found to occu~ as analysis of covariance showed 

Aquadulce plants to exhibit no significant difference in SO. response under 

high or low light conditions. Similarly, analysis of covariance showed Dylan 

plants to exhibit significantly less photosynthetic inhibition t~an 

Aquadulce plants when exposed to SO. under low light conditions. However it 

was shown that under high light conditions, there was a 'threshold' SO. 

concentration ($ 400 ppb) in both varieties, above which photosynthetic 

rates were even more severely limited. When plants of both varieties were 

exposed to SO. under low light conditions this 'threshold' was still 

apparent for Dylan plants but did not OCcur in Aquadulce plants where a 

'plateau' was reached such that increasing SO. concentrations above 400 ppb 

did not increase the extent of net photosynthetic inhibition. 

It is of importance to note that at lower SO. concentrations 

(below 250 ppb) in Dylan plants, although % inhibition of Pnet is the same 

in both low light and high light treated plants, in absolute terms net 

photosynthetic depression is much less. This is because net photosynthetic 

rates are much reduced in response to the imposition of low light stress 
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and results for SO.-induced inhibition are expressed as per cent change in 

comparison to control plants. Therefore, a 10% change in Pnet under high 

light intensities would be equal to a reduction in Pnet of a 0·2 g co. m-' 

h-', whereas a 10% change in Pnet under low light conditions would be 

equal to a reduction of $ 0'1g CO. m-' h-' in absolute terms. This also 

held true for Aquadulce plants especially at higher sulphur dioxide 

concentrations ()400 ppb) where in absolute terms, there was much less 

depression of net photosynthetic rates when plants are exposed to SO. 

under low light intensities. 

These- results add to the contention amongst current published 

results which were outlined in the introduction to this chapter (§4.1.5.1> 

where light .intensity has been shown to both decrease and increase plant 

sensitivity to pollutants, although relatively few workers have examined the 

effects of pollutant/environmental stress interactions on 'invisible injury' 

symptoms such as Pnet depression. However, Kropff (1987) examined the 

effects of short fumigations (2 h) of SO. (400 !1g m-') on the 

photosynthetic light response curves of individual leaves of Vicia faba cv. 
Minica and found the CO.-assimilation light-response curve to be 

significantly affected by SO. fumigations. Examination of the data 

presented in Kropff's paper showed much less Pnet inhibition due to SO. at 

lower light intensities. The effects of SO. on the photosynthetic light

response curve of individual leaves was very similar to that found for whole 

plants of Vicia faba CV. Dylan by Black & Unsworth <1979b). These authors 

found that at low light intensities (SO IV m-') there was significantly less 

SO.-induced Pnet inhibition than was observed at 150 IV m-' but at small 

irradiances Black & Unsworth found inhibition of Pnet to be independent of 

SO, concentration. Both Kropff and Black & Unsworth examined the light 

response curves of plants grown under high light intensities. However, 

Mansfield & Jones (1985) compared the light response curves of Phleum 

pratense grown under low or high light intensities. In contrast to both 

Black & Unsworth and Kroptf, these authors found no significant SO. 

response above the light compensation point in plants grown under high 

light intensities but in plants grown under low light intensities SO.

induced net photosynthetic inhibition was seen to increase with increasing 

light intensity. This enhanced sensitivity could not be attributed to 

increased pollutant flux and Mansfield & Jones proposed that enhanced 

sensitivity to SO. under low light intensities may result from low. 
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photosynthetic rates, a reduced store of carbohydrate and thus a reduction 

in repair capacity. S02-induced respiratory stimulation was observed in 

plants under high light conditions but not under low light conditions thus 

these authors suggested that higher mitochondrial activity may be 

necessary for repair or detoxification mechanisms but these can operate 

only when given sufficient respiratory substrate. However, as is discussed 

later in this section (§4,.10.3), this hypothesis does not serve to explain 

the observed effects on Vicia faba cv. Dylan and Aquadulce examined in this 

study. 

Another of the main theories concerning the influence of light 

intensity on plant pollutant susceptibility is that a positive correlation 

exists between injury and increasing light intensity (Guderian, 1977; 

Halbwachs, 1984), and that this increase in inJury is related to decreasing 

stomatal resistance with increasing light intensity thus leading to 

increased pollutant uptake. However, this was not found to explain the 

changes in net photosynthetic sensitivity to 502 under low light conditions 

in the plants examined in this study, as will be discussed later in this 

section when changes in stomatal resistance and pollutant flux are 

considered. 

Re inert, Heggestad & Heck (1982) suggested that environmental 

factors influence the overall sensitivity of plants to air pollutants but 

generally do not alter the relative sensitivity of cultivars. However, the 

results for Dylan & Aquadulce plants in this study do not appear to agree 

with this theory. Under optimum environmental conditions, at hig~est 502 

concentrations ()500 ppb), Aquadulce plants were found to exhibit greater 

photosynthetic sensitivity to SO. than Dylan plants; however, under low 

light intensities the relative sensitivitie'l were reversed. These changes in 

relative sensitivity are also seen to occur when the results for the 

imposition of cold temperature stress are examined, as will be discussed 

later in this chapter. 

4.10.2.2 Low Temperature Stress 

As net photosynthetic rates were unchanged by the imposition of 

24, h of cold stress alone, changes in the degree of S02-induced Pnet 

inhibition could be directly compared between non cold- and 24, h cold

stressed plants. The relatively short cold stress period prior to 502 

fumigation was seen to alter the photosynthetic responses to 502 in plants 
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of the variety Dylan but not in Aquadulce plants (Figs. ~.3 & ".4). Dylan 

plants previously subjected to 24 h cold stress showed much less Pnet 

inhibition at all SO. concentrations used, in comparison to non cold

stressed plants. Following the 2~ h cold temperature period the relationship 

between % change in Pnet and SO. concentration was seen to become linear 

and not polynomial as was observed under optimum environmental conditions 

(Fig. 3.t> where highest SO. concentrations lead to almost complete Pnet 

inhibition. In cold treated Dylan plants, there was a progressive increase 

in the degree of photosynthetic inhibition with increasing SO. 

concentration and enhanced rates of Pnet were observed at low SO. 

concentrations which did not occur in non cold-stressed plants. 

Conversely, although 2~ h at 10'C did not significantly alter the 

photosynthetic responses to SO. of Aquadulce plantsJthere were a number of 

important factors to consider. Following the cold temperature treatment, no 

enhancement in Pnet was seen at lowest S02 concentrations although this 

had been shown to occur In non cold-stressed plants. At SO. concentrations 

between 100 and ~80 ppb, 1~ out of 19 plants exhibited reductions in Pnet 

of below 15% in comparison to control plants and although there was still 

seen to be a marked increase In Pnet inhibition at SO. concentrations above 

500 ppb, this was not seen to occur In all plants. It may be that a 'switch' 

occurs at a certain point because some plants show small inhibitions in 

Pnet in response to S02 and others show a much greater degree of 

inhibition. This may perhaps best be explained using the analogy, .... the 

straw that broke the camels back ..... The photosynthetic mechanism in 

Aquadulce plants appears to be finely balanced, there is a broad tolerance 

band to SO. exposure in Aquadulce plants where very little photosynthetic 

response is observed in response to a range of SO. concentrations up to 500 

ppb but there is a point where the balance tips and Pnet inhibition is 

very severe. This was also seen to occur to a lesser degree in non cold

stressed plants and it is thought that the addition of cold temperature 

stress exacerbated the problem. This 'tipping of the balance' may be related 

to actual pollutant flux and enhanced pollutant sensitivity rather than to 

ambient S02 concentrations and this will be considered later in this 

section. 

Analysis of covariance tests showed there to be no significant 

varietal differences in photosynthetic responses to SO. in plants previously 

subjected to 24- h at 10'C when results were analysed as a whole but it is 
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apparent from the results described above that significant differences do 

occur. 

The results presented in figures 4-.5 and 4-.6 showed that the 

increasing length of the cold period prior to SO. fumigation lead to 

further changes in net photosynthetic responses to SO. for both varieties 

of Vicia faba. The data became increasingly more variable with increasing 

length of the cold period. 

For Dylan plants exposure to 72 h cold did not alter the degree 

of photosynthetic response to SO. concentrations below 100 ppb. At higher 

SO. levels analysis of covariance showed there to be less photosynthetic 

inhibition in response to SO. in cold-stressed plants but it could be seen 

from figure 4-.5 that, especially at SO. levels above 4-00ppb, the responses 

were variable. Following the 72 h cold stress the degree of photosynthetic 

inhibition ranged from 6 to 357. in response to SO. concentrations between 

4-50 and 500 ppb but for the same SO. range, inhibition in non cold

stressed plants ranged from 30 to 507.. It would appear that the imposition 

of 72 h of cold temperature stress produced. for the first time. evidence 

for the fine balance point in photosynthetic response. representing 

enhanced pollutant sensitivity. in Dylan plants that was described above 

for Aquadulce plants. 

In Aquadulce plants there were no significant differences in net 

photosynthetic responses to SO. concentrations up to 250 ppb between cold

stressed and non cold-stressed plants. However. at higher SO. 

concentrations there was significantly less photosynthetic inhibition in 

cold-stressed plants. For non cold-stressed plants SO. treatments between 

4-00 and 500 ppb resulted in changes in net photosynthetic rates of between 

6 and 507. in relation to control plants but in plants subject to the 72 h 

cold treatments values where -5 to 22% over the same range of SO. 

concentrations. It can be seen from figure 4-.6 that the variation in 

response described above for 24- h cold-stressed plants was still seen to 

occur in plants subject to 72 h cold temperature stress. 

The effects of a 1 week cold temperature period prior to SO. 

fumigation also resulted in the modification of net photosynthetic 

responses to SO. and. as could be seen from the data presented in figures 

4-.7 and 4-.6 and Table 4-.1; these modifications were very similar to those 

described for the 72 h cold treatments and were most marked when SO. 

concentrations exceeded 4-00 ppb. 
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It is difficult to discuss environmental modification of net 

photosynthetic responses to S02 in relation to other published work because 

as previously stated, most workers have concentrated on visible inJury 
-

symptoms and although there are a number of papers concerning cold 

temperature modification of plant pollutant response, the timing and 

duration of the cold stress periods invariably differ and there have been 

few studies made of the effects of cold temperature stress prior to S02 

exposure. However, as stated earlier there is now a growing body of 

evidence to suggest that plants are more sensitive to pollutants under 

winter conditions of low light and low temperature and that this enhanced 

sensitivity is correlated to slow growth in winter conditions (see TERG, 

1988). In contrast, a number of authors have concluded that plants are more 

resistant to S02 at lower temperatures (Menser et al., 1963; Heck & Dunning, 

1978; Rist & Davis, 1979; Norby & Kozlowski, 1981b; Shanklin & Kozlowski, 

198' and Taylor, Selvidge & Crumbly, 1985); although Heck et al. (1965) 

found an inverse relationship between exposure temperature and sensitivity. 

A popular proposed theory for a reduction in plant sensitivity is that of 

reduced S02 flux following low temperature preconditioning (Shanklin & 

Kozlowski, 1984,). These authors also showed that preconditioning 

environmental regimes greatly modified plant responses to a given dosage of 

S02. The mechanism behind these modifications is thought to be induced 

stomatal closure as a result of low temperatures thus decreasing uptake of 

the pollutant, this in turn may be related to the temperature 

characteristics of enzymes involved in stomatal control (Rogers et al., 

1979). Rist & Davis (1979) suggested that the influence of temperature on 

the rate of oxidation of sulphite ions to sulphate within the leaves, 

together with reduced S02 adsorption could explain temperature mediated 

differences in sensitivity. Taylor et al. (1985) also found increased S02 

flux at higher exposure temperatures and concluded that the effects of 

temperature and air pollution stress are species specific as the three plant 

species used in their study responded to added low temperature stress in no 

comparable manner. However, these authors were not convinced that reduced 

S02 flux was entirely related to changes in stomatal conductance and, 

again, proposed the presence of the non-stomatal residual factor 

influencing S02 flux which was affected by the imposition of added 

temperature stress. Taylor et al. also concluded that although plants took 

up more S02 at higher temperatures, the increase did not necessarily result 
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in greater physiological responses in all species and suggested that plant 

responses were 'uncoupled' from SO. flux, this being related to species 

specific characteristics of plant temperature tolerance limits. 

In this study, SO.-induced photosynthetic inhibition was not 

seen to be enhanced by the imposition of low temperature or low light 

stress. Environmental modifications in the responses of Vicia faba to SO. 

were seen to be cultivar specific and stomatal and respiratory responses 

were considered along with SO. fluxes, as are discussed below, to try to 

identify the nature of this environmental modification. 

~.10.3 Interaction of Environmental & Pollutant Stress on 

Rates of Dark Respiration 

4.10.3.1 Low Li~ht Stress 

The results presented in M.5. showed dark respiration rates (Rd) 

in plants of both varieties of Vicia faba to be significantly reduced when 

plants were grown under low light intensities in comparison to data 

obtained for plants under high light conditions; this being a typical and 

much reported plant response (Fitter & Hay, 1961>. 

Under high light conditions, sUlphur dioxide was found to 

enhance dark respiration rates in plants of the variety Dylan but to have 

no effect on Rd of Aquadulce plants. However, under low light conditions 

the influence of 50 2 on Rd of Dylan plants was found to be altered such 

that exposure to SO, resulted in further reductions in dark respiration 

rates. Varietal differences were again found as SO, fumigations under low 

light intensities did not induce changes in dark respiration rates of 

Aquadulce plants, and, as for the data obtained under high light conditions 

Aquadulce plants were still found to have significantly higher Rd values 

than Dylan plants. 

4.10.3.2 Low Temperature Stress 

Enhanced rates of dark respiration were observed in Dylan plants 

in response to all cold pre-treatments ie. 2~ h, 72 hand 1 week but this 

respiratory stimulation was found to decline during the 3 day experimental 

period when plants were returned to 22·C. However, the rate of decline in Rd 

to pre-stress rates in Dylan plants was found to be dependent on and 

inversely proportional to the length of the cold pre-treatment. Conversely, 
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Aquadulce plants exhibited enhanced dark respiration rates only in plants 

subjected to 72 h cold stress periods, no response being observed in plants 

subject to either 24- h or 1 week at 10 ·C. This enhancement in Rd was found 

to persist throughout the experimental period. 

The effects of S02 on Rd were again found to modified by the 
, 

imposition of environmental stress. No respiratory stimulation was observed 

in Dylan plants previously subjected to cold temperature stress although the 

rate of decline in Rd described above was found to be slowed in Dylan 

plants subjected to 24 h cold stress. However, for the first time, sulphur 

dioxide fumigations were found to influence rates of Rd in Aquadulce 

plants. No effects of SO. or cold stress were seen in Aquadulce plants 

subjected to 24 h or 1 week at 10'C prior to SO. fumigation but SO. 

exposure was found to decrease the enhanced rates of Rd observed in 

Aquadulce plants in response to the 72 h cold pre-treatments. These 

increases in rates of dark respiration in response to chilling stress are 

again typical of responses reported in current literature (Levitt, 1980). 

Levitt proposed these increases in Rd to be evidence of the onset of 

chilling injury in sensitive plants but as these responses have been shown 

to be reversible in Vicia faba it may be assumed that these plants are 

relatively chilling resistant, at least for short chilling stress periods. 

For Dylan plants, enhanced respiratory rates could explain in 

part, the decreased rates of Pnet observed in plants subjected to 1 week 

cold stress but the same decreases in Pnet were observed in Aquadulce 

plants also subject to 1 week cold stress which did not show enhanced 

rates of dark respiration. 

Black (1984) outlined the importance of relating pollutant

induced changes in respiration to the photosynthetic performance of the 

plant. When photosynthetic rates are high, a small change in respiratory 

rate would not have a significant effect on the carbon balance of the 

plant. However, when environmental conditions such as light and temperature 

are limiting for photosynthesis a Change in respiration rates could alter 

the carbon balance of the plant significantly and negative rates of carbon 

fixation could result. Both Davies (1980) and Jones & Mansfield (1982) have 

reported that plants exposed to pollutants under low light conditions 

showed greater reductions than for plants exposed under high light 

conditions. However these authors studied the grass Phleum pratense and it 

may be concluded that these ef£ects are dependent on species as the reverse 
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was tound to occur in the two varieties ot Vicia taba used in this study. 

As described above, Manstield & Jones (1985) suggested that higher 

mitochondrial activity ie. enhanced respiratory rates may be necessary tor 

repair or detoxification mechanisms in S02 polluted plants, but these can 

only operate when given sufficient respiratory substrate. The observed 

resistance of photosynthesis to S02 when there is substrate for additional 

respiration in high light intensity plants and the inhIbItory effect of SO. 

with no detectable effect on respiration In low light intensity plants, 

supported this Interpretation. However, It can be seen from the data 

presented in this chapter that these effects were not observed In the two 

varieties of Vicia faba used in this study. Exposure to SO. under low light 

intensities reduced the photosynthetic sensitivity to SO. of Dylan plants 

when dark respiration rates were seen to be reduced in response to SO •. 

This reduced sensitivity was not correlated to reduced SO. flux (§4.9.1.1). 

Under high light conditions, dark respiration rates of-Dylan plants were 

enhanced on exposure to SO. and greater photosynthetic inhibition was 

observed in comparison to low light conditions. Conversely, enhanced 

photosynthetic sensitivity to SO. of Aquadulce plants under low light 

intensities was seen (§4.9.1.2) although no SO.-induced changes in dark 

respiration rates were observed. Aquadulce plants were more sensitive to SO. 

than Dylan plants under low or high light intensities and dark respiration 

rates were consistently higher in Aquadulce plants than Dylan plants under 

both light regimes thus precluding the suggestion that enhanced 

respiratory rates are indicative of the operation of repair or 

detoxification mechanisms. The discrepancy in these results and those of 

Mansfield & Jones may be due to several factors including differences in 

species used and the length of the SO. exposure period. 

The modification of SO. effects on Rd by added environmental 

stress in Dylan plants are important in explaining changes in SO.-induced 

net photosynthetic inhibition. Under low light intensities, the significant 

decrease in SO.-induced photosynthetic inhibition in comparison to the 

effects observed under high light intensities can be correlated with 

further decreases in Rd in response to S02 under low light conditions 

whereas enhanced rates of Rd were observed In response to SO. under high 

light conditions. Similarly, the absence of S02-induced enhancement of Rd 

in Dylan plants subjected to low temperature stress prior to SO. fumigation 

can in part, account for the reductions in the degree of Pnet inhibition in 
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comparison to that observed for non cold-stressed plants. However. the 

modification of net photosynthetic responses to 502 in environmentally 

stressed Aquadulce plants can not be attributed to changes in 502 effects 

on dark respiration rates. 

4.10.4 Stomatal Responses to Combined Environmental and 

Pollutant Stress 

4.10.4,.1 Environmental Stress 

The stomatal responses of both varieties of Vicia faba to 

combined environmental and pollutant stress were described in §4.6 and 

§4.7.1 and stomatal resistances of both varieties Were found to be 

influenced by the imposition of environmental stress alone. When plants were 

grown under low light intensities stomatal resistance was effectively 

doubled in both Dylan & Aquadulce plants in comparison to that of plants 

grown under high light conditions. These increases in r. may be'due to a 

direct response to reduced light intensity (Jarvis & Morison. 1961> or 

increased internal CO2 concentrations resulting from reduced rates of net 

photosynthesis at low light intensities or increased r. may result from a 

combination of both factors. Under high light intensities the stomatal 

sensitivity to CO2 is considered to be too small to contribute substantially 

to the total stomatal response and light intensity is then the major 

controlling factor determining stomatal resistance. resistance decreasing 

with increasing light intensity. (Sharkey & Raschke. 1961>. Howeyer. these 

authors concluded that at low light intensities. the intercellular CO2 

concentration was the major controlling factor in determining r •. This 

problem will be discussed further when resistances to CO2 transfer are 

considered. 

Periods of cold temperature stress were also seen to alter 

stomatal resistances in comparison to non-stressed plants in both varieties 

of Vicia faba. Resistances were found. to be much more variable in plants 

subjected to cold temperature stress but in general. stomatal resistances 

were substantially increased in response to all three cold temperature 

treatments ie. in the absence of cold stress values for r. ranged from 20 to 

400 s m-' in both varieties but following the 1 week cold treatments r. 

values ranged from 26 to 1926 s m-'. This effect of low temperature on 

stomatal resistance is widely reported in the literature eg. Crookston et 
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al., 1974-; Sutcliffe, 1977; Jarvis & Morison, 1981; Badger et al., 1982 and 

Oquist, 1983. Crookston et al. <1970 attributed increased stomatal 

resistance in Phaseolus vulgaris exposed to 5"C for 1 night to temporary 

water stress as a result of the low temperature stress. 

The increases in r. in response to environmental stress may 

contribute to the observed decreases in net photosynthetic rates but as 

stated earlier, decreased rates of Pnet result in increased intercellular CO. 

concentrations, Ch which induce enhanced stomatal closure and it is unclear 

which event occurs first. Oquist in 1983 reviewed the then current 

literature conce"rning the stomatal control of CO. uptake at low 

temperatures and concluded that apart from a few examples in which root 

chilling decreased water uptake leading to stomatal closure (eg. Crookston 

et "al., 1974,), there were no clear examples of temperature-induced stomatal 

closure being the primary cause of low temperature inhibition of 

photosynthesis although this was frequently assumed. However, there are a 

number of reports which observed increased internal CO. concentration as 

net photosynthetic rates are reduced by low temperature stress and this 

increase in Ci may cause the stomata to close (Drake & Raschke, 1974-; 

Raschke, 1975; Hlillgren et al., 1982b). Musser et al. in 1983 studied the 
~ 

effects~chilllng on Glycine max. L. CV. Ransom and observed decreased 

stomatal conductance when plants had been subJected to 1 week at 5 ·c, 
recovery was observed within two days of rewarming. Net photosynthetic 

rates were also shown to decline over the cold stress period but this 

occurred more slowly than the observed decreases in stomatal con~uctance 

and these authors concluded that there was some other limitation to Pnet 

in addition to greater stomatal resistance which developed over the 

chilling period. 

4-.10.4-.2 Modified Stomatal Responses to SO. 

(8) Low Light 

The results presented in §4-.6 showed that stomatal responses to 

SO. were altered as a result of added low light stress and that these 

effects were most marked in plants of the variety Dylan where stomatal 

responses were the reverse of those observed under high light conditions. 

Enhanced stomatal closure was seen to occur at low SO. concentrations and 

SO. concentrations above 4,00 ppb induced enhanced stomatal opening. There 

was still evidence of the threshold SO. concentration of 4-00 ppb 
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representing a switch from stomatal opening to closure but under low light 

stress conditions, this threshold represented the switch from enhanced 

closure to enhanced opening. In plants of the variety Aquadulce Claudia, 

unlike the relationship observed under high light conditions, there was 

found to be no significant correlation between stomatal response and 

ambient SO. concentrations under low light conditions although enhanced 

stomatal closure did occur at all SO. concentrations above 300 ppb. 

It might be expected that enhanced stomatal opening at high SO. 

concentrations would lead to greater pollutant uptake and as a consequence, 

greater injury ie. more photosynthetic inhibition. However, although the 

data obtained for Dylan plants showed a positive relationship between 

changes in stomatal resistance and the degree of net photosynthetic 

inhibition in response to SO. <Fig. 4-.17a), there was no correlation between 

these two factors in plants of the variety Aquadulce Claudia in low light 

conditions <Fig. 4-.17b). Both Juhren et a!. (1957) and Heck et a!. (1965) 

studied the effects of low light intensities on plant pollutant responses 

and concluded that injury was reduced as a consequence of high stomatal 

resistances under low light conditions. However, Heck et a!. also suggested 

that the stomata are only a pathway for entrance to the pollutant and were 

not the primary mechanism controllIng injury. Henser et lll. (1963),' in a 

study of the response to ozone of Nicotinia tabacum L. plants pre

conditioned by light and temperature, found no evidence to implicate 

stomatal behaviour as a cause of differences in ozone sensitivity amongst 

varieties and pre-conditioning schemes; no correlation was found. between 

transpiration rates and the degree of plant injury. In contradiction to the 

earlier published data, Ting & Dugger (1968) found an inverse correlation 

between light intensity and ozone injury in cotton plants but there was 

also an inverse correlation between light intensity and stomatal resistance. 

Therefore, these authors concluded that there was no possibility that 

stomatal opening influenced leaf sensitivity to ozone in cotton plants. 

(b) Low Temperature stress 

Exposure to cold temperature stress for 24- h prior to SO. 

fumigation was shown to significantly alter the stomatal responses of both 

varieties of V.faba to SO. <Figs. 4-.11 & 4-.12). Unlike the responses observed 

in non cold-stressed plants, there was no significant correlation between 

ambient SO. concentration and the resultIng change in stomatal resistance 
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in either Dylan or Aquadulce plants. Similarly, there was no clear evidence 

of the 'threshold' concentration of SO. above which stomatal responses 

switched from enhanced opening to enhanced closure. Increasing the length 

of the cold temperature pre-treatment appeared to exacerbate changes in 

stomatal responses to SO. in comparison to non cold-stressed plants. 

Following the 72 h cold pre-treatments, unlike the responses observed under I 

optimum conditions, the maJority of Dylan plants exhibited enhanced ·1 

stomatal closure in response to SO., even at concentrations below 300 ppb. 

Conversely, following the 72 h cold stress periods, Aquadulce plants showed 

a reversal in stomatal response such that low SO. concentrations induced 

stomatal closure whilst higher SO. concentrations induced enhanced stomatal 

opening. One of the most significant effects of cold temperature stress was 

that a period of 1 week at 10·C prior to SO. fumigation was seen to result 

in enhanced stomatal closure in response to all SO.~'rg-~y plant. 

Varietal differences in cold-stress/pollutant responses were 

highlighted markedly when these data were examined and significant 

changes in stomatal sensitivity to SO. were apparent in both varieties. 

Increasing the length of the cold period was seen to result in a marked 

decrease in the magnitude of stomatal response to S02 in Dylan plants, 

whereas in Aquadulce plants, the magnitude of stomatal response was seen 

to increase with increasing length of the cold stress periods (§~.6). Thus 

the imposition of cold stress enhanced the sensitivity to S02 of the 

stomata of Aquadulce plants but reduced the stomatal sensitivity to SO. in 

Dylan plants. No evidence of a threshold S02 concentration, marking a 

switch in stomatal response, was found in either variety following the 

.imposition of cold temperature stress. 

The changes in stomatal resistance in response to S02 described 

above may be expected to significantly alter net photosynthetic rates in 

both varieties of V.faba given the correlation between increased stomatal 

resistance and increased inhibition in Pnet observed in non cold-stressed 

plants (§3.7.3). However, the data presented in §~.7.2 showed there to be no 

significant correlation between changes in stomatal resistance and the 

extent of SO.-induced photosynthetic inhibition in either Dylan or 

Aquadulce plants subjected. to cold temperature stress prior to SO. 

fumigation. Thus, it was concluded that changes in Pnet in response to S02 

and environmental stress occurred seemingly independently of changes in 

stomatal resistance and some other factor was exerting an influence. 
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Heck, Dunning & Hindawi in 1965 were one of the first groups to 

question the hypothesis that environmental effects on the sensitivity of 

plants to various phytotoxic pollutants must be mediated through stomatal 

control. These authors found plant sensitivity to O. to be reduced when 

growth temperature was lowered for one to several days prior to exposure 

but found no correlation with changes in stomatal conductance. As a 

consequence Heck et al. suggested the existence of a bioch'emical control of 

plant pollutant sensitivity apart from that controlling the stomatal 

apparatus. In a similar stUdy with Avena sativa, Heck & Dunning <1978a) 

found sensitivity to SO, to be reduced when growth temperatures were 

lowered for a given period of time and concluded this to be a physiological 

rather than a stomatal response. Rist & Davis (1979) found there to be less 

foliar injury to Phaseolus vulgaris plants at 13'C and 21'C as opposed to 

32'C and attributed this in part, to reduced stomatal resistance at higher 

temperatures leading to increased pollutant uptake; however SO,-induced 

stomatal closure was not entirely co-incident with visible injury. Increases 

in leaf sulphur content were found to be the same at both 21 and 32'C and 

increases in stomatal conductance at high temperatures were found to be 

related to increased VPD and not to significant increases in stomatal 

aperture. Therefore these authors concluded that increased sensitivity at 

32'C was more likely caused by a delay in stomatal closure in response to 

SO. at higher temperatures. In another study of the influence of 

temperature and stomatal conductance on pollutant induced foliar injury in 

Phaseolus vulgariS, Miller & Davis (1981b) found the stomatal conductance 

rate during O. exposure to be un-related to the severity of ozone injury 

over a range of exposure temperatures. Conductance was seen to increase 

with increasing temperature but more injury was observed at 15'C and 32'C 

than at 24'C thus indicating that physiological factors other than 

decreased pollutant uptake were responsible for decreased foliar injury at 

lower temperatures. More recently, Taylor, Selvidge & Crumbly (1985> examined 

temperature effects on plant pollutant responses and, as outlined earlier in 

this discussion (§4.10.2.2 >, although SO, flux was seen to increase, with 

increasing temperature, this did not necessarily result in greater 

physiological responses. These authors suggested that changes in stomatal 

conductance to water vapour might not effect an equivalent change in SO. 

flux, thus necessitating the presence of a non-stomatal or residual factor 

influencing SO, flux. 
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Thus, if stomatal resistance is not the major controlling factor 

in determining the modification of plant pollutant responses by added 

environmental stress and some other factor is exerting an influence, the 

next step was to try to elucidate the nature of this other contributing 

factor. Under optimum environmental conditions, the importance of changes 

. in the residual resistance to CO. exchange in governing the responses of 

both varieties of Vicia faba to SO. was discussed. It may be that 

significant changes occur in response to added environmental stress which 

determine changes in plant pollutant response, therefore leaf resistances 

were examined in plants subject to both environmental and pollutant stress. 

<1-.10.5 Environmental & Pollutant Effects on Leaf Resistances 

to Carhon Dioxide Transfer 

4.10.5.1 Environmental Effccts 

From the data presented in §4.7.1 it was found that low light 

stress induced large increases in the residual resistance to CO. transfer in 

both varieties of Vicia faba. The reductions in photosynthetic rate 

observed in response to low light stress could be attributed to increases in 

both stomatal and residual resistances to CO. transfer. In Dylan plants, 10% 

of the reduction was found to be due to increases in r. and 90% due to 

increases in rr, and for Aquadulce plants photosynthetic depression was 

associated with the combined effects of increases in both resistances 

rather than rr being the dominant influencing factor. 

The imposition of cold temperature stress was seen to result in 

much increased variability in measured residual resistances to CO. transfer 

in plants of both varieties. Following the 24 hand 72 h cold treatments, 

although resistances were variable they were not found to be significantly 

different from rr values for non cold-stressed plants. Gross photosynthetic 

rates were unaffected by the cold pre-treatments but net photosynthetic 

rates were reduced as a result of enhanced dark respiration rates although 

recovery to pre cold. stress rates was seen to occur within 24 h of the end 

of the cold periods. However, following the 1 week cold pre-treatments, when 

net photosynthetic rates were found to be reduced by up to 20%, residual 

resistances were unchanged in Aquadulce plants. In Dylan plants, residual 

resistances were not significantly higher than those of non cold-stressed 

plants and were, in some plants much lower. It was concluded that reduced 
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photosynthetic rates in response to 1 week at 10'C occurred as a result of 

increases in the stomatal resistance to CO. transfer and, in Dylan plants, 

increased rates of dark respiration. 

4.10.5.2 Interaction of Environmental & Pollutant Stress 

Under optimum environmental conditions, SO.-induced net 

photosynthetic inhibition in Dylan plants was seen to result from changes 

in stomatal resistance and rates of dark respiration; increases in the 

residual resistance to CO. transfer contributed to photosynthetic reduction 

only at highest SO. concentrations ie. above 400 ppb. However, increased 

residual resistances in response to SO. were seen to be the major factor 

governing decreased photosynthetic rates in Aquadulce plants (§3.10). 

Following the imposition of environmental stress these varietal differences 

were still seen to occur. When Dylan plants were exposed to 502 under low 

light intensities the reductions in net photosynthetic inhibition were 

attributed to the same controlling factors (§4.7.1.1). At low 502 

concentrations (below .. 00 ppb) changes in rs and Rd determined the degree 

of net photosynthetic inhibition in Dylan plants under both low and high 

light conditions, changes in rr exerting little influence. In this case, 

reductions in photosynthetic inhibition under low light conditions arose 

from a combination of reduced respiratory rates and a reversal in stomatal 

response which was decreased stomatal resistance to CO 2 in response to SO. 

fumigations. At higher SO. concentrations the degree of photosynthetic 

inhibition in response to SO. was determined by increases in the. residual 

resistance to CO. transfer, these increases being much less in plants 

subject to low light stress as opposed to plants treated in high light 

conditions. Similarly, in Aquadulce plants exposed to SO. under low light 

conditions, changes in the residual resistance to CO. transfer were still 

found to govern photosynthetic response. 

In plants subjected to cold temperature stress prior to 502 

fumigations significant differences in S02-induced changes in resistances 

to CO2 transfer were found. In Dylan plants, previously subjected to either 

24 h or 72 h at 10'C, reduced photosynthetic inhibition was found to result 

from a combination of decreased stomatal resistances and much smaller 

increases in the residual resistance to CO2 transfer; at the same time;. 502 

was not seen to enhance rates of dark respiration in cold-stressed Dylan 

plants. Of significance here· is that although 24 h cold temperature stress 
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did not alter the degree of net photosynthetic inhibition in response to 

502 in Aquadulce Claudia plants when compared to non cold-stressed plants, 

analysis of the resistance data to CO2 transfer showed some significant 

differences between the environmental regimes. As previously stated, under 

optimum environmental conditions changes in rr were the predominant factor 

governing photosynthetic responses to S02; however, in plants subjected to 

2' h at chilling temperatures there were no large increases in rr when 

photosynthetic inhibition occurred and, at lower S02 concentrations (below 

285 ppb), rr was seen to decrease with a concomitant increase in rs. As the 

magnitude of stomatal response to S02 was seen to increase in cold-stressed 

Aquadulce plants, it was concluded that changes in stomatal resistance 

played a much larger part in determining photosynthetic response to 502 in 

2' h cold-stressed Aquadulce plants in comparison to non cold-stressed 

plants. This increase in the stomatal control of Pnet in Aquadulce plants 

was not seen to occur in plants subjected to 72 h at 10·C prior to S02 

fumigation when reduced photosynthetic inhibition in comparison to non 

cold-stressed plants was seen. Reductions in the degree of Pnet inhibition 

were found to result from much smaller changes in the residual resistance 

to CO2 transfer in cold-stressed plants, changes in rs were very small in 

cold-stressed plants and could not have accounted for the marked difference 

in photosynthetic inhibition in comparison to non cold-stressed plants. 

The imposition of a 1 .week cold temperature period was seen to 

result in much greater stomatal resistances in plants of both varieties of 

Vicia faba in comparison to non cold-stressed plants; at the same time the 

degree of SO,-induced net photosynthetic inhibition was seen to be much 

reduced. Comparison of the data for residual resistances to CO2 transfer 

following SO, fumigations between cold-stressed and non cold-stressed 

plants revealed there to be significantly lower rr values in cold-stressed 

plants of both varieties and it may be concluded that reduced 

photosynthetic inhibition occurred as a result of these much reduced 

changed in rr and in Dylan·plants, decreased stomatal resistance in 

response to S02 fumigations. 

It can be seen from the results discussed above that the relative 

contributions of· stomatal and residual (or mesophyll) resistances to 

photosynthetic inhibition differ according to variety, SO, concentration 

and environmental regime. A number of recent studies have tried to separate 

S02-induced effects on photosynthesis into stomatal and non-stomatal 
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components and a number of authors have concluded that non-stomatal 

factors (le. an increase in mesophyU resistance) appear to be primarily 

responsible for reductions in photosynthesis (Barton, McLaughlin & 

McConathy, 1980; Winner & Mooney, 1980b; Kropff, 1987). Indeed, Kropff (1987) 

analysed the role of stomatal,resistances in the observed reduction of the 

rate of CO2 uptake in Vicia faba CV. Minica and suggested that SO. induces 

an increase in rr which results in lowered Pnet rates; the stomata closing 

later as a result of a feedback loop between internal CO2 concentration, net 

photosynthesis and stomatal resistance. This author concluded that 

stomatal behaviour was not influenced by SUlphur dioxide and further 

analysed the results of Carlson's (1983a,b) data to support this conclusion. 

However, Mansfield & Freer-Smith (1981 & 1984) discussed the contradictory 

results of many authors concerning stomatal responses to pollutants and 

concluded that apart from at high S02 fumigations, changes in mesophyll 

resistance were not solely responsible for determining photosynthetic 

inhibition. These authors examined the responses of silver birch to S02 and 

concluded that the main effect of S02 was on the stomatal component with 

little influence on internal leaf reslstances and demonstrated also that 

stomatal control of S02 uptake is of major significance in silver birch. The 

data obtained in this study do not support the conclusions of Kropff, 

especially that for Dylan plants where stomatal resistances in conjunction 

with dark respiration rates were found to be the major contributing 

factors to photosynthetic inhibition at S02 concentrations below tOO ppb. 

Although the data for Aquadulce plants under optimum environmen~al 

conditions appear to concur with Kropff's results in that changes in rr 

determine net photosynthetic inhibition, it was shown that stomatal 

resistance becomes increasingly more important in determining S02-induced 

photosynthetic inhibition in Aquadulce plants subjected to environmental 

stress. 

The significance of direct stomatal responses to S02 rather than 

effects mediated through changes in internal carbon dioxide concentration 

may be important in plant pollutant avoidance. This is because sulphur, 

dioxide flux is closely correlated with the stomatal resistance to water 

vapour diffusion (Mansfield & Freer-smith, 1984) and the responses of 

stomata to S02 may be of importance in determining pollutant dose. 

Pollutant flux to both varieties of Viela faba and leaf resistances to this 

flux were discussed in chapter 3 for plants exposed to S02 under optimum 
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environmental conditions. The effects of added environmental stress are 

discussed below. 

'.10.6 Influence of Environmental stress on Pollutant Flux 

as Related to Ambient SOz Concentrations 

Under optimum environmental conditions pollutant fluxes as 

estimated from both- analogy to water vapour transfer (PrOaLo) and from 

mass balance calculations (Pr.c •• ) were found to be directly proportional to 

ambient S02 concentration. Also, Pr ..... was found to be greater than Pro.l .. 

this difference being attributed to incorrect assumptions of the magnitude 

of the residual or internal resistance to SO. uptake. When plants were 

subjected to either cold temperature or low light stress, the relationship 

between flux and ambient S02 concentrations were in some cases, found to be 

altered (§'.8.1); Under low light conditions, measured pollutant flux to 

plants of-the variety Dylan was not seen to be significantly different from 

the data obtained under high light intensities although no regression line 

could be fitted through the data. However, calculated pollutant flux was 

found to be less in Dylan plants subjected to low light stress when ambient 

S02 concentrations were below 400 ppb and calculated pollutant flux was less 

to Aquadulce plants at all S02 concentrations. These data correlate well 

with the data for stomatal resistance which was shown to be markedly 

increased in response to low light stress in both varieties. At S02 

concentrations above 400 ppb, stomatal resistance was found to decrease in 

response to'S02 in Dylan plants and this correlates with high values for 

Pro.lo shown- in figure 4.21b. Pr .. ca. was also found to be much reduced in 

Aquadulce plants in response to low light stress and this result was 

surprising because stomatal resistance is not a factor used in the 

estimation of this measure of flux. Changes in Pr ..... in response to low 

temperature stress may be expected given that there would be a direct 

physical effect of temperature on S02 diffusion through a change in the 

conductivity of the diffusive media (gas and liquid phase) (Taylor et al., 

1965) but it is unlikely that rates of diffusion could be directly affected 

by low light intensities.- This point will be considered further when 

residual resistances to S02 transfer are discussed. 

The effects of low temperature on the relation between pollutant 

fluxes and ambient SO. concentrations were found to depend very much on 

Page 254 



Discussion Chapter 4. 

the length of the cold treatment period. The imposition of cold temperature 

stress for 24 h prior to SO. fumigation was not seen to alter the 

relationship between PF ..... and ambient SO. in comparison to non cold

stressed plants nor did analysis of covariance show estimates of Pre.Le to 

be significantly different. However no significant correlation between PrcaLe 

and ambient SO, concentrations were found for either variety following the 

24 h cold periods and one would assume this to be related to the 

increasing variability in stomatal resistance d'ata with increasing length 

of the cold stress periods as described earlier. 

Varietal differences were observed in the effects of the 72 h 

cold temperature treatments on the relation between ambient SO. 

concentrations and pollutant flux. In Dylan plants, both measures of flux 

were significantly correlated to ambient SO, concentrations and the data 

were not significantly different from those obtained under optimum 

environmental conditions. However, measured pollutant fluxes to Aquadulce 

plants were shown to be mucll reduced in the cold ,treated plants on 

comparison with data for non cold-stressed plants. In contrast, calculated 

pollutant fluxes to cold stressed Aquadulce plants were found to be much 

increased in comparison to non cold-stressed plants, when SO, 

concentrations exceeded 200 ppb. This apparent anomaly can be correlated to 

the reversal in stomatal responses to SO, of Aquadulce plants subject to 72 

h cold temperature stress prior to SO, treatment as described earlier 

(§4.10.4.2.[bl). 

The imposition of 1 week of cold temperature stress pr,ior to SO. 

fumigation resulted much reduced flux values to both varieties of Vicia 

faba when Pr ..... in relation to ambient SO, concentrations was considered 

(Figs. 4.27a & 4..28a). However, calculated pollutant fluxes were not found to 

be statistically significantly different between cold-stressed and non cold

stressed plants of either variety. It may have been expected that 

estimations of Prca Le would be reduced in plants subject to 1 week cold 

stress as enhanced stomatal closure had been seen to result from all SO, 

treatments. However, as this was not seen to occur it may be concluded that 

stomatal resistance was not the major controlling factor determining 

pollutant entry into cold-stressed plants. This point is discussed further 

below when residual resistances to SO, transfer are considered. 
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4.10.7 Inrluence or Environmental Factors on Lear 

Resistances to Sulphur Dioxide Flux 

4.10.7.1 Low Li~ht Stress 

Chapter 4 

The results presented in §4.8 showed that, for plants of the 

variety Dylan, there was no significant difference in pollutant fluxes to 

the plants under high or low light conditions. However, when the 

components of the resistance pathway for SO. uptake were analysed 

individually (§4.8.4.1) it was shown that the imposition of low light stress 

reversed the relationship between both the stomatal and residual 

resistances to SO. and ambient SO. concentrations observed under high 

light conditions. It was thus concluded that although actual fluxes were 

not altered in response to low light stress in Dylan plants, resistance 

factors governing SO. entry were affected. As a result, pollutant fluxes 

were governed equally by both stomatal and residual resistances in low 

light stressed plants whereas under optimum conditions, fluxes were seen to 

be governed largely by residual resistances to SO. transfer. 

Varietal differences were significant under low light intensities. 

In contrast to Dylan plants, in plants of the variety Aquadulce Claudia 

there were no apparent effects of added stress on residual resistances to 

SO. transfer although stomatal resistances were found to be higher than 

those observed under high light conditions. This resulted in the reduced 

flux to Aquadulce plants observed under low light conditions. 

4.10.7.2 Low Temperature Stress 

One of the most unexpected aspects of considering pollutant 

fluxes to plants following the imposition of low temperature stress was the 

absence of differences between estimates of measured and calculated 

pollutant fluxes. In chapter 3 the significance of the disparities in both 

measures of flux was shown to provide evidence for the residual resistance 

to SO. transfer which under optimum environmental conditions, was shown to 

be increasingly negative with increasing SO. concentration thereby 

producing higher flux values than would be expected from measures· of 

stomatal resistance alone. However, analysis of the resistance data for 

pollutant uptake in cold-stressed plants produced some interesting and 

surprising results (§'.8.'). A residual resistance to SO. uptake was still 

very much in evidence in cold-stressed plants even though both estimates of 
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flux were not significantly different. 

All three cold treatments resulted in much increased variability 

in both stomatal and residual resistances to SO. uptake. Plants subjected to 

a 24 h cold treatment showed increased stomatal resistance in response to 

cold temperature stress but these changes appeared to be matched by 

reduced resIdual resIstances (these beIng increasingly negative with 

. increasing SO. concentration), the net result being that pollutant flux was 

unaffected by the imposition of cold stress. These changes in resistance to 

pollutant flux were also seen to occur in Dylan plants subjected to 7Z h 

cold treatments. However, although similar changes in both residual and 

stomatal resistance were observed in Aquadulce plants subjected to 72 h 

cold treatments the significant reductions In flux described earlier were 

found to be attributed to smaller reductions in residual resistances to SO. 

transfer when stomatal resistances were increased. 

The results presented in §4.6.4.4 showed that the imposition of a 

period of 1 week of cold temperature stress had marked effects on 

resistance to sulphur dioxide flux in both varieties of VicIa faba. However, 

significant varietal differences were found to occur. For plants of the 

variety Dylan, stomatal resistance to SUlphur dioxide transfer was increased 

in response to cold stress but these increases were most marked at lower 

SO. concentrations ie. below 300 ppb. Concomitantly, residual resistances to 

SO. flux were largely negative at low SO. concentrations (the reverse of the 

responses observed in the absence of cold stress) and the net result of 

these Changes were the reductions in· flux as described earlier. In plants of 

the variety Aquadulce Claudia, stomatal resistances to SO. transfer were 

also increased in response to cold stress but unlike for Dylan plants, were 

also seen to increase with increasing SO. concentration. Residual 

. .resistances were very variable but were greater than those observed in the 

absence of cold stress; again, these changes resulted in much reduced flux. 

'.10.8 Gas Exchange Mechanisms and Pollutant Fluxes 

Following Environmental Stress 

There is little information in current literature regarding the 

influence of environmental stress on pollutant fluxes to plants, however a 

number of points have been considered. Jones & Mansfield (1962) stated that 

the imposition of low light stress, resulting in an increase in leaf area 
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per unit leaf weight to achieve more light capture, lead to a greater 

uptake of SO. per unit dry weight. As detoxification requires metabolism 

and metabolic capacity is related to dry weight then variations in SO. 

uptake would likely lead to variability in the threshold atmospheric SO. 

concentration required for injury. The results presented in §~.9.1 would 

appear to uphold this theory as .threshold levels· of flux inducing net 

photosynthetic inhibition were much reduced as a result of all 

environmental··pre-treatments. Taylor et a!. (985) found SO. flux to increase 

with increasing. temperature although the mechanism behind this 

relationship was not resolved. In earlier studies both Rist & Davis (1979) 

and Horby & Kozlowski <1981a,b) found flux to increase with increasing 

temperature when ambient S02 concentrations were unchanged and correlated 

this to increased stomatal conductance to H20 vapour. However, Taylor et al. 

pointed to the differences between H20 transfer and S02 uptake (McLaughlin 

& Taylor, 1981) indicating that changes in stomatal conductance to H20 

vapour might not. effect similar Changes in S02 flux, thus re-introducing 

the existence of residual factors influencing S02 flux. The importance of 

this residual resistance in determining flux to both varieties of Vicia 

faba has been underlined by the results discussed above. Taylor suggested 

that· one factor that could influence flux independently.of stomatal 

·conductance would be a direct effect of temperature on S02 diffusion 

through a change in either the kinetic· energy of S02 molecules or the 

conductivity of the diffusive media (gas and liquid phases). However, it is 

unlikely that this could have effected the reductions in SO. flux· observed 

in this study as cold temperature stress was applied prior to S02 

fumigation, pollutant exposure occurring more than 24, h after the plants 

had been returned to. optimum temperatures (23 t 3·C). 

Taylor et al. also reported that increased flux with increas ing 

temperature did not always.result in greater physiological responses in all 

species. These authors suggested that this uncoupling of S02 flux and plant 

response could be related to species specific characteristics of their 

temperature tolerance limits. The results presented in this study would seem 

to indicate that not only species specific but cultivar specific 

characteristics· are of importance in determining the effects of 

environmental stress on plant pollutant responses. In chapter 3 (§3.10) the 

idea of differential sensitivity to S02 being related·to avoidance or 

tolerance mechanisms was introduced. Aquadulce plants were found to be more 
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sensitive to sulphur dioxide than Dylan plants although there was 

significantly less ,flux to Aquadulce plants when ambient SO. concentrations 

were similar, thus this variety relied mOre on avoidance mechanisms whereas 

Dylan plants appeared to show more tolerance to SO •. The imposition of 

either low light or cold temperature stress was found to significantly alter 

the relative sensitivities of both varieties to SO. (§4-.9). Under low light 

conditions SO. flux as related to ambient SO. ,concentration,'to Dylan plants 

was unaltered in comparison to high light conditions but net 

photosynthetic Inhibition was found to be markedly reduced, this was 

attributed to a reduction in pollutant sensitivity. Conversely, flux to 

Aquadulce Claudia plants was seen to be much reduced in response to low 

light stress although percent net photosynthetic inhibition was the same 

as for plants under high light conditions suggesting that the 

photosynthetic mechanism in Aquadulce plants was far more sensitive to SO. 

under low light conditions; but this was masked by reductions in SO. flux. 

The effects of low temperature stress were very much dependent 

on the length of the cold treatment. For plants of the variety Dylan 

exposure to periods of either H h or 72 h did not alter pollutant flux and 

much reduced net photosynthetic inhibition was attributed once again, to 

reduced plant sensitivity to the pollutant ie. increased pollutant tolerance. 

Flux was not found to be reduced to Aquadulce plants following pe'riods of 

24- h at'lO·C, nor were net photosynthetic responses to SO. found to be 

significantly different from those of non cold-stressed plants; however, 

plants were found to be more sensitive to low SO. flux values and', 

surprisingly, less sensitive to highest flux values (§4-.9.1>. In Aquadulce 

plants subjected to either 72 h or, 1 week cold temperature stress prior to 

SO. fumigation, reduced photosynthetic inhibition was found to result from 

both reduced flux and a reduced sensitivity to 50 2 , However, reduced SO.

induced photosynthetic inhibition in Dylan plants subject to 1 week cold 

stress was found to be a result of reduced flux and not a reduction in 

plant pollutant sensitivity. 

It may be concluded that generalisations as to the mechanisms 

employed by plants to combat the combined effects of environmental and 

pollutant stress cannot be made. In the two varieties of Vicia used in this 

study both were seen to respond differently, Dylan plants appeared to rely 

on increased pollutant tolerance mechanisms to combat the effects of added 

environmental stress, although this may be thought to be a short-term 
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solution as reduced pollutant sensitivity did not occur following the longer 

periods of exposure to cold temperature stress. Conversely, Aquadulce plants 

were seen to depend on avoidance mechanisms to deal with combined 

environmental/pollutant stress, again a short-term measure as reduced 

pollutant sensitivity was observed in plants subjected to longer cold stress 

periods. Of importance here is the influence of added environmental stress 

on the stomatal control over pollutant entry into the plant. Under optimum 

environmental conditions avoidance mechanisms were related to high 

diffusive resistances. However, the avoidance mechanisms described above 

can not be directly related to changes in stomatal conductance to SO, as 

changes in stomatal resistance were seen to occur independently of 

pollutant concentration in plants subject to environmental stress indicating 

a profound effect of environmental stress on that part of the stomatal 

mechanism sensitive to SO •• 

Thus it may also be concluded that the environmental 

modification of the responses of both varieties of Vicia faba to SO, 

observed ,in this study are not explained purely by changes in stomatal 

aperture. Other physiological and metabolic factors must contribute to the 

observed stress interaction. Possible contributing mechanisms are considered 

in the following chapter. 

However, the nature of the interactions of environmental and 

pollutant stress effects observed in this chapter have been shown to be 

'very complex. Net photosynthetic and dark respiration rates together with 

changes in stomatal resistance, resistances to CO, and SO, trans~er and 

pollutant flux have all been shown to be influenced by added environmental 

stress. This complexity being compounded by marked varietal differences in 

response. Thus it was decided to concentrate on one environmental stress 

only when possible mechanisms were considered. Low temperature stress was 

selected because it was hoped that the increasing length of the cold period 

would provide data regarding the progression of cold temperature stress 

interaction with sUlphur dioxide fumigations and would make the 

identification of possible mechanisms a little easier. Nevertheless, the 

action of low light stress in modifying plant pollutant responses is 

certainly worthy of further study. Investigations as to the interactions of 
'~"f'O"Se" 

both low light and cold temperature stress in modifying plant pollutant. are 

also necessary as these stresses commonly occur together in the field in 

winter. 
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5.1 INTRODUCTION 

In chapters 3 and 4 the effects of both sulphur dioxide and 

added environmental stress on the gaseous exchange processes of two 

varieties of Vicia faba were determined in an effort to gain insight into 

the modifying influences of environmental stresses on plant pollutant 

responses. It was shown (§4.1) that although a number of studies have been 

reported, the majority of these were concerned with the assessment of 

visible injury symptoms and that the mechanisms of such actions are poorly 

understood. Having defined the modifying effects of low temperature and low 

light stresses on the responses of Vicia faba to 502 and determining that 

interactions could not be explained purely by stomatal factors, the next 

logical step was to try to determine the site and nature of the mechanisms 

involved in such interactions by investigating some of the physiological 

and metabolic effects of SO. and environmental stress, separately and/or in 

combination. However, as stated in the previous chapter, the nature of the 

observed interactions of environmental and pollutant stress effects were 

found to be very complex: this complexity being compounded by marked 

varietal differences in response. Thus it was decided to concentrate on one 

environmental stress only when possible mechanisms were considered. Low 

temperature stress was selected because it was hoped that the increasing 

length of the cold period would provide data regarding the pros:ession of 

cold temperature stress interaction modifying responses to SO. and would 

aid the identification of possible mechanisms. 

The effects of environmental stress on plant metabolic processes 

have been well documented; however, until the 1970's little research into the 

physiological effects of sulphur dioxide on plants had been undertaken. At 

this time, rapidly increasing interest and activity in environmental 

research lead to important advances on our knowledge of the metabolic 

effects of SO. and a number of reviews being published (Ziegler, 1973, 1975; 

Malhotra & Hocking, 1976; Horst'l'lf)(\ & Wellburn, 1976; Hlillgren, 1978; Heath, 

1980). Since this time research interest in enzymic and metabolic effects of 

SO. on plants has continued. However, the combined effects of environmental 

and pollutant stresses have not been widely studied to date. Some of the 

reported metabolic effects of both environmental and pollutant stress 
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individually are outlined briefly below and provide a starting point for the 

elucidation of interactive effects. 

5.1.1 Physiological and Metabolic Ettects ot Low Temperature 

Stress 

Lowering temperature induces reduced net photosynthetic rates, 

reduced respiration and may induce some visible injury symptoms such as 

wilting due to changes in plant water relations, and chlorosis as described 

in the introduction to the previous chapter. In normal air, the 

photosynthetic rate is dependent on the intracellular CO2 concentration and, 

as the stomata control the resistance to diffusive transfer of CO2 and thus 

affect the intracellular CO2 concentration of photosynthesising leaves, 

stomata may exert a strong influence on both the rate and temperature 

dependence of photosynthesis. However, the numerous reports on the 

responses of stomata to temperature provide widely conflicting data. Some 

reports show stomata to open with increasing temperature (eg. Hofstra & 

Hesketh, 1969b; Drake & Salisbury, 1972; Crookston et aI., 1974-), others 

indicate stomatal closure with increasing temperature (eg. Heath & Meidner, 

1957; Downes, 1970), whilst there are many reports indicating maximum 

stomatal aperture at intermediate temperatures (Raschke, 1970, Neilson & 

Jarvis, 1975; Llisch, 1977). These conflicting data arise because it is now 

widely recognised that the stomatal response to temperature is strongly 

influenced by other interacting factors, particularly internal pl,,:nt water 

status (Berry & BJ1Srkman, 1960; Oquist, 1963). It is clear from the reports 

cited above and a number of studies where measurements of stomatal 

conductance have accompanied determinations of the temperature response of 

photosynthesis (eg. BJ1Srkman & Mooney, 1975; Pearcy, 1977; Slatyer, 1977; 

Bauer, 1976; BJ1Srkman & Badger, 1979) that temperature-induced differences 

in photosynthetic rates can not be explained solely by stomatal responses; 

therefore some other mechanism must be considered, particularly a direct 

effect on the photosynthetic mechanism. 

In very simplistic terms, photosynthesis involves a light reaction 

and a dark reaction; the light reactions involve the trapping of radiant 

energy by the plant pigments which is transformed by photophosphorylation 

into chemical energy in the form of ATP and NADPH2 • These are essential 

components of the dark reactions of photosynthesis which involve reduetive 
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CO. fixation. The two important photophosphorylation processes involved in 

the light reaction ,!f photosynthesis are (1) cyclic photophosphorylation in 

which light energy is converted in to ATP energy but no NADPH. Is 

generated and (ii) non-cyclic photophosphorylation involving the photOlysis 

of water and resulting in the production of both ATP and NADPH •• The dark 

reaction of photosynthesis involves the reduction of carbon dioxide via the 

Calvin Cycle to produce carbohydrate. One of the first and most important 

Calvin Cycle reactions is the carboxylation of ribulose-l,5-bisphosphate 

(RuBP) to form 3-phosphoglyceric acid (PGA). This reaction is catalysed by 

the enzyme RuBP carboxylase thus making this one of the key 

photosynthetic enzymes. 

It is unlikely that the rates of the purely photochemical steps 

of photosynthesis are affected by temperature unless this induces 

structural changes which interfere with the organization of pigments and 

reaction centres (Oquist, 1983). The enzymatic steps of the electron 

transport chain in the chloroplast thylakoids, the coupling to 

photophosphorylation, the enzymes in the carbon reduction cycle in the 

stroma and the transport mechanisms of photosynthetic products from the 

chloroplast have all been shown to be affected by temperature. Low 

temperature stress leads to an irreversible or slowly reversible loss of 

photosynthetic activity which is usually preceded by a period of fully 

reversible inhibition (Berry & Bjorkman, 1980). These changes might be 

predicted to result from changes in the activity of enzymes which become 

rate limiting at low temperatures, a theory which has received c~>nsiderable 

support. Pearcy, (1977) correlated temperature-induced changes in 

photosynthetic activity in Atril'lex lentiform is with changes in the 

activity of ribulose bis-phosphate carboxylase (RuBPCase). Similarly, 

BJorkman & Badger (1977) found that on measurement of 14 enzymes of 

photosynthetic metabolism, total leaf dry matter, chlorophyll and protein 

per unit leaf area, only the activity of RuBPCase differed in proportion to 

differences in photosynthetic capacity of Atril'lex sabulosa and Tidestromia 

oblonS'ifolia. However, these studies were of C. plants and for C. plants 

temperature-induced changes in photosynthetic activity were not shown to 

correlate exactly to RuBPCase activity. Alternatively, several authors have 

correlated the activity of the chloroplast fructose-l,6-bisphosphate 

phosphatase (Fro-P. phosphatase) with differences in Pnet at suboptimal 

temperatures (Portis, Chan, Mosbach & Heldt, 1977; BJorkman & Badger, 1979; 
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BJiirkman, Badger & Armond, 1980). These authors considered the reaction 

catalysed by Fru-P. phosphatase to be one of the key steps for regulation 

of the photosynthetic carbon reduction pathway and hypothesised that 

changes In the level of this enzyme are necessary to maintain effective 

control of this pathway as temperature. Is changed. 

Some authors have reported a low-temperature Induced reduction 

of the activation energy (Ea) for reaction steps in photosynthesis. Both 

Albrecht (1972) and Muhkin & Gins (197') found a lower temperature optimum 

for the ferricyanidc-Hill reaction in low temperature stressed plants but 

these changes did not parallel temperature effects on photosynthesis. 

Results are conflicting and appear to depend on species and on whether 

plants are chilling sensitive or resistant. Feher & Devay (1975) studied the 

temperature dependence of the activation energy of the DCPIP-Hill reaction 

in chloroplasts of frost-resistant and frost-sensitive wheat cultivars and 

found only the chloroplasts of the resistant cultivar to exhibit much 

reduced activation energy when temperature was lowered. However, Thomas, 

Stoddart & Potter (1980) were not able to show any significant differences 

in E. of the DCPIP-Hill reaction between spring and winter oats acclimated 

to 20·C or 5"C. The significance of changes in E. in relation to low

temperature dependence of net photosynthesis has not been evaluated. 

The length of the exposure period to cold stress has been shown 

to be important as low temperature damage is the result of cumulative and 

often indirect effects of temperature over time. Exposure to chilling 

periods <le. 0 to 10"C) for a short time has often not been shown to be 

damaging (Berry & BJiirkman, 1980). Chlorophyll synthesis has been shown to 

be severely impaired at low temperatures (eg. McWilliam & Naylor, 1967; 

Slack, Roughan & Bassett, 197'; Smillie, Crltchley, Bain & Nott, 1978) and 

Slack et al. <197') proposed there to be a failure to synthesize 'chloroplast 

ribosomes at chilling temperatures. 

Taylor & Rowley (1971> noted a stimulation of the severity of low 

temperature injury by exposure at high light intensity; this photo

Inhibition was attributed to the damaging effects of light absorption in 

excess of that which can be used for normal photochemical reactions. Since 

a reduction in temperature caused a general decline in the rate of the dark 

reactions of photosynthesis, the light required to saturate this capacity 

falls as temperature decreases and the threshold of sensitivity to 

photoinhibition increases. In a series of follow up papers Taylor & Craig 
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<1971>, Taylor, Jesper & Chrlsteller (1972) and Taylor, Slack & McPherson 

(197') tound this sensitisation to become especially acute in species which 

have other low temperature-induced restrictions on their photosynthetic 

capacity. These authors found low temperature/high light stress to alter 

chloroplast ultrastructure and to affect both photosynthetic enzymes and 

products. 

Total soluble leaf protein, carbohydrate and chlorophyll content 

have also shown to be influenced by low temperature stress (Levitt, .1980). 

Musser et al. (1983) detected reduced chlorophyll content in chilled soybean 

leaves but these reductions could not be correlated exactly to concomitant 

reductions in net photosynthetic rates. Badger et al. (1982) found leaf 

chlorophyll content to increase in response to low temperature stress but no 

alteration in soluble leaf protein content. However, several authors have 

noted increased soluble leaf protein in response to chilling stress (ref. 

Levitt, 1980) and Levitt has suggested this as a mechanism of chilling 

stress tolerance since increased amounts of protein may compensate for 

lowered enzyme activity. However, Graham & Patterson (1982) suggested that 

this general increase in soluble proteins at low temperatures could result 

trom temperature-induced reductions in both protein synthesis and 

degradation but with rates of synthesis being less affected than protein 

degradation. This would lead to a greater pool of soluble protein in the 

tissue even though synthesis was actually being reduced by the imposition 

of low temperature stress. These authors also noted that sugars frequently 

accumulate in plants when they are chilled, more especially if th~ 

temperature to which they are exposed is not low enough to kill them. 

Hilliard & West <1970: see Levitt, 1980) proposed the inhibition of starch 

translocation out of the chloroplasts by low night temperature to account 

for decreased photosynthesis and growth. However, although Crookston et al. 

(197') found increased leaf carbohydrate content in response to cold stress 

in Phaseolus vulgaris as a result of reduced translocation, this was not 

tound to inhibit net photosynthesis. 

Structural changes in response to chilling stress have been 

observed by a number of authors, these Changes include increased leaf 

thickness, mesophyll cell size and reductions in the number of stomata (see 

Graham & Patterson, 1982). Characteristic crimping and reduced intra

thylakoid space has been noted in barley grown at 2·C or 5·C (Smillie et 

al., 1978) and Levitt (1980) attributed reduced net photosynthesis to the 
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damage and/or inactivation of chloroplast thylakoids in response to low 

temperature stress. In addition, increased membrane permeability ha.s been 

shown in response to cold stress and is thought to be due to changes in 

the physical state of membranes leading to an increased leakage of cell 

electrolytes (see: Lyons, 1973; Markhart et aI., 1980; Levitt, 1980; Paull, 

1981 and Graham & Patterson, 1982). 

It can be seen that cold temperature stress alone induces many 

physiological and metabolic changes in plants. Cold effects have been 

described briefly here but there a number of comprehensive reviews 

detailing plants responses to low temperatures ego Levitt, 1980; Berry & 

BJlirkman, 1980; BJlirkman, 1981; Graham & Patterson, 1982 and Oquist, 1983. 

5.1.2 Physiological and Metabolic Effects of Sulphur Dioxide 

As stated earlier in this section, there is a wealth of 

information in current literature concerning the effects of SUlphur dioxide 

on plant metabolism and is is not intended to consider these metabolic 

effects in detail here. Comprehensive reviews provide a guide to the data 

available lZiegler. 1973. 1975; Mudd. 1975; Malhotra & Hocking, 1976; 

Hlillgren, 1978; Heath, 1980; Black, 1982; Reinert, 1984-; Malhotra & Khan, 

1984-; Treshow (Ed.), 1964-; Koziol & Whatley (Eds.), 1964-; Winner, Mooney & 

Goldstein (Eds.), 1985; Wellburn, 1962, 1987; TERG,1986) but a brief 

introduction to major effects is given below. 

It is well known that cellular and biochemical effects .of sulphur 

dioxide (and other gaseous pollutants) are determined not only by their 

atmospheric concentration but by their solubilities in water and their 

reactivities within plants. (Last, Fowler & Freer-Smith, 1985). Sulphur 

dioxide is extremely soluble in water, establishing equilibria with its 

dissociation products, bisulphite <HSO.-) and sulphite (SO,'-) ions. Sulphite. 

ions may be oxidised to sulphate (SO.'-) and metabolised by the sulphate 

reduction pathway (Ziegler, 1975). Damage due to SO, is thought to occur 

when large accumulations of the intermediate. oxidation products accumulate 

in tissues ie. when their rates of production exceed the ability of plants 

to incorporate sulphur by the sulphate reduction pathway (Last et aI., 

1965). 

Photosynthesis within chloroplasts is considered to be one of the 

initial and maJor process affected by the products of SO, in solution 
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(Ziegler, 1975; Hlillgren, 1978). Because the pH of the aqueous stromal phase 

of chloroplasts is pH 8 - 9, sulphite ions are the major product and as a 

result, many in vitro studies of 502 at likely sites of action have been 

carried ,out using sulphite (Wellburn, 1987). However, these methods of using 

isoiated chloroplasts, membranes or enzyme systems are seldom comparable 

with true physiological conditions and are often combined with the use of 

unrealistically high 502 concentrations thus providing results which bear: 

no relationship to the 'subtle' responses that occur within the cell (Black, 

1982). Nevertheless, use of these techniques in conjunction with low 

pollutant concentrations can (and have) provided useful insights into a 

number of 502 effects on the individual components of the photosynthetic 

mechanism. 

Ribulose bisphosphate (RuBP) carboxylase, which effects the first 

step in CO2 fixation in the C, pathway of photosynthesis, is an enzyme 

associated with the chloroplast membrane and most studies on the effects 

of pollutants have concentrated on this major enzyme concerned with 

carboxylation. Ziegler (1972) observed that 50,2- inhibited RuBP carboxylase 

in Spinacea oleracea chloroplasts. The kinetics of sulphite inhibition 

indicated competition between bicarbonate (HCO,-) and 50,2- at the CO 2 

binding sites of the enzyme suggesting that the concentration of CO 2 (or 

bicarbonate ions) at the site of carboxylation influences the degree of 

sulphite-induced inhibition. A similar type of competitive inhibition by 

sulphite ions in respect to bicarbonate ions has been observed with 

isolated preparations of RuBP carboxylase from a lichen, Pseudeve!nia 

furfuracea (Ziegler, 1977). However, at higher 502 concentrations this 

inhibition was non competitive and Black (1982) suggested that such a 

mechanism would explain the rapid inhibition of photosynthesis on 502 

exposure, the concentration-dependence of the magnitude of the response 

and the rapid recovery of pretreatment.photosynthetic rates on removal of 

the pollutant. In contrast, Gezelius & Hlillgren (1980) showed the 50,2-

inhibition of RuBP carboxylase from ~ sylvestris and Spinacia oleracea 

to be non competitive with respect to HCO,- and the nature of the 

inhibition was not affected by the presence of sulphite ions during the 

activation. Alternatively, both Miszalski (1983) and Khan & Malhotra (1982) 

found a competitive type of inhibition by 50,2-, Such discrepancies may 

arise from the differing experimental techniques used in chloroplast and 

enzyme extraction or may result from different plant species being used, in 
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any event, the question of whether the action of SO. on photosynthesis is 

by competitive inhibition has not been completely resolved. However, new 

data from Parry & Gutteridge (1963) showed that sulphite has a variable 

effect on the affinity of RuBP carboxylase to CO. and their data suggested 

that the potential effects of SO. on this enzyme may have been seriously 

under-estimated given the progressive inactivation at very low 

concentrations (1 mM 50.'-). 

In addition to influencing the carboxylation reactions, SO. has 

been shown to affect photosynthesis by attacking photosynthetic electron 

transport and photophosphorylation reactions (Malhotra & Khan, 1964); 

however there is again controversy in the literature as to the nature of 

502 effects. Malhotra (1976) isolated chloroplasts from needles of Pinus 

contorta and, using various concentrations of aqueous 502) showed that at a 

low concentration (50 ppm) 502 stimulated Hill reaction activity but this 

activity was completely inhibited at high concentrations (500 - 1000 ppm). 

A decrease in Hill reaction activity was accompanied by swelling and 

disintegration of chloroplast membranes and such alterations in the 

membranes could cause disorganisation of the two photosystems. Shimazaki & 

Sugahara (1980a) studied in detail the effects of gaseous 502 on 

chloroplast photosystems of Spinacea oleracea and found fumigation with 

SO, at 1 and 2 ppm for 1 hour produced no effect on Hill reaction activity; 

however there was rapid inhibition at longer exposures. These authors 

·investigated the site of 502 attack in the electron transport systems by 

studying both photosystems. Electron transport of both the whole. chain and 

Photosystem 11 was inhibited to the same magnitude by 502 but electron 

flow from reduced DCIP to NADP under uncoupled conditions was not inhibited 

suggesting that the site of SO, action was associated with Photosystem 11 

and not Photosystem I. A similar effect was observed in photosystems of 

Lactuca sativa (Shimazaki & Sugahara, 1960b). These results differed from 

those reported in earlier studies using solutions of 50,2-. Asada, Kitoh, 

Deura & Kasai (1965) observed inhibition of both cyclic and non-cyclic 

photophosphorylation but no overall effect on electron flow and Libera et 

al. (1973) found aqueous SO, to stimulate non-cycliC electron transfer. 

Silvius et a!. (1975) also found that treatment of isolated chloroplasts 

with solutions of 50,2-, HSO.- and 502 to inhibit both cyclic and non-cycliC 

photophosphorylations. 

In addition to damaging effects on plant metabolism, 502 has 
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been shown to have marked effects on plant composition and plant structure. 

Several changes in the amount of plant constituents have been noted. 

Chlorophyll and other plant pigments are necessary in harnessing light, 

energy by Photosystems I and 11 thus any effect of S02 on these pigments 

could greatly influence the photosynthetic ability of plants (Malhotra & 

Khan, 196~). Rao & LeBlanc (1965) found that destruction of chlorophyll 

occurred in lichens following exposure to high concentrations of SO. (5 

ppm; 2~ h) and chlorophyll molecules were degraded to phaeophytin and 

magnesium ions. Malhotra (1977) showed chlorophyll degradation in Pinus 

contorta needles treated with aqueous SO. and Malhotra & Khan (1980 found 

fumigation with low levels of gaseous 502 to cause a gradual decline in 

chlorophyll content in Evernia mesomorl'ha which was accompanied by a 

decrease in photosynthesis. Similarly, Hlillgren & Gezelius (1982) found 

chlorophyll concentration to decrease in response to increasing SO. 

concentrations in Pinus sylvestris seedlings. Shimazaki et al. (1980) 

proposed that 502 fumigation of leaves increased the formation of 

superoxide radicals (02-) in chloroplasts that in turn destroys chlorophylls 

and it was suggested that SO. destroys chlorophyll mainly by free-radical 

oxidation. However, Black (1982) noted that although prolonged exposures to 

low concentrations of SO. have been shown to result in inJury at the 

molecular level by affecting enzymes such as chlorophyllase, increased 

activity of this enzyme which converts chlorophylls to chlorophyll ides by 

'removal of the phytol group has been shown (Malhotra, 1977), these effects 

are too slow and insufficient to account for substantial reductions in 

photosynthesis. Moreover, short term fumigations with SO., as used in this 

study, induce photosynthetic inhibition within minutes of the onset of 

exposure and it is unlikely that chlorophyll degradation would contribute 

to this initial photosynthetic decline. 

Ziegler (1975) reported that as a consequence of SO. uptake, 

sulphate and SUlphur containing amino acids increase during fumigation. 

However, reports on changes in the amount of protein or amino acids are 

conflicting; some authors reporting an increase in total amino acids (eg. 

Malhotra & Sarkar, 1979) and others a decrease (eg. Cowling & Bristow, 

1979). Malhotra & Khan (198~) showed 502 to decrease the soluble 

cytoplasmiC and chloroplast protein of pine-needles, and that this decrease 

was higher in th~ chloroplast than in the soluble cytoplasmic fraction. 

Similarly, Rabe & Kreeb (1979) studied a number of plant species and found 
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total soluble protein content to decrease in response to SO. and Murray 

(1984) also found a decrease in soluble leaf protein in response to SO. in 

Lolium perenne and Trifolium subterraneum. However, both Beckerson & 

Hofstra (1979) and Murray (1985) reported no changes in soluble leaf 

protein in response to SO •. In contrast, Horsm~n & Wellburn (1977), Sardi 

(1981) and Saxe (1983b) reported increased soluble leaf protein in response 

to SO •. Rabe & Kreeb (1979) suggested that decreased soluble protein 

content was a result of both reduced synthesis and increased decomposition 

to amino acids; this would concur with the results of Godzik & Linskens 

(1974) and Sax'; <1983b) who found total concentration of free amino acids 

to increase on exposure to SO •. More recently, Rowland, Borland & Lea (1989) 

reviewed the. topic of changes in amino acids and proteins in response to 

air pollutants and concluded that much more detailed investigations in to 

the effects of pollutants are needed as observations solely on changes in 

leaf content fail to answer many fundamental questions, specifically whether 

these changes indicate damage to a usually balanced metabolism or are . 
indicating a plants response to mitigate any potential damage. 

As with soluble protein content, reported data concerning 

changes in carbohydrate content in response to SUlphur dioxide are 

incomplete. It is generally accepted that plants exposed to SO. exhibit 

increasing amount of soluble sugars (Khan & Malhotra, 1977; Koziol & 

Jordan, 1978; Koziol & Cowling, 1980; Saxe, 1983b). However, high SO. 

concentrations may lead to decreased carbohydrate levels which can be 

correlated with decreased photosynthesis and visible injury symp~oms 

(Koziol & Jordan, 1978). These authors suggested that this evidence of a 

correlation between leaf carbohydrate levels and pollutant damage required 

further investigation both for obtaining an understanding of functional 

changes in response to SO. exposure, and for prOViding information 

concerning the possible mechanisms of pollutant-metabolism Interactions. 

However, little specific attention has been paid to elucidating pollutant 

effects on carbohydrate metabolism although many authors measure 

carbohydrate content as part of investigations into other pollutant effects. 

Saxe (1983b) measured carbohydrate content of Phaseolus vulgariS plants 

exposed to varying SO. concentrations because· carbohydrates are important 

indicators of energy status and growth potential of plants and found 

similar results to Koziol & Jordan le. high SO. concentrations resulted in 

reduced carbohydrate levels. These decreases were not accompanied by 
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increased dark respiration and Saxe concluded that SO. inhibited 

carbohydrate production. 

Chapter 5 

Attention has recently been focused on changes in assimilate 

distribution and transport in response to pollutants. Several studies have 

demonstrated pollutant effects on the allocation of dry matter in plants 

<ego Jones & Mansfield, 1982; Mansfield &: Jones, 1985; Mansfield et al., 1986; 

Wright et al., 1986). These authors found root growth to be reduced whilst 

shoot growth was stimulated in response to SO. and SO./NO. mixtures; this 

increase in leaf area compensating for reductions in net assimilation rates. 

Thus allocation-of photosynthates between shoots and roots had been 

changed. Proportionally more of newly fixed carbon was found to be retained 

in the shoot and used for leaf expansion at the expense of root 

development. Whilst this may not appear to be damaging in itself, 

reductions in root development may have severe implications to the plant if 

water is limiting and may render the plant more susceptible to drought 

conditions <Wright et al., 1986). Some evidence suggests that the primary 

effect may be on the translocation process itself ego on phloem loading. Teh 

&: Swanson (1977) found translocation in Phaseolus vul~aris to be more 

sensitive to SO. than photosynthesis and similar results were found by 

Noyes (1980). Noyes found that labelled '·CO. was fixed by leaves and 

accumulated near or in minor veins suggesting that phloem loading or axial 

transport in sieve tubes was inhibited by SO •. More recently, Marie &: 

Ormrod (1988) have examined the effects of air pollutants on dry matter 

partitioning in developing two brassica species, rutabaga and cabbage. 

These authors found leaf tissue of both species to become less hydrated on 

exposure to SO. and/or 0, whilst leaves of cabbage became more dense which 

suggested a reduction in carbohydrate export from the cabbage leaves. 

Cabbage plants seemed to allocate less dry matter to fibrous roots in 

comparison to rutabaga in response to 0,. These authors also demonstrated 

some similarity between patterns of reducing sugar allocation and dry 

weight partitioning. 

Reduced transport of carbohydrate to developing fruits has also 

been reported which may affect fruit and seed yield (TERG, 1988). Both 

ozone and SUlphur dioxide have been shown to reduce the percentage of dry 

matter of potato tubers (Pell, Pearson &: Vinten-Johansen, 1988). These 

authors also observed SO. to influence sucrose content of tubers whilst 

ozone reduced the fructose and glucose content but had no effect on SUCrose 
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content. Pell et al. suggested that, since sucrose is the precursor to starch 

that comprises 60 to 80% of the dry matter in the tuber and dry weight 

was found to be reduced by exposure to 0 .. it was possible that with 

diminished photosynthate available, the partitioning of sucrose to starch 

was reduced in order to maintain a relatively stable pool of sucrose. 

In addition to changes in metabolites a number of structural and 

ultrastructural changes In response to SO. have been reported (see: Ziegler, 

1975; Black, 1982; Wellburn, 1987). Black & Black (1979a) have observed 

chloroplast swelling in the guard cells of stomata in plants exposed to SO. 

and prolonged exposure to SO. has been found to result in cellular 

plasmolysis and mesophyll collapse (Ziegler, 1972). Mansfield, Davies & 

Whitmore (1986) noted structural changes in leaves of Phleum pratense in 

response to a mixture of SO. and NO.: Leaf thickness was increased in 

polluted plants and this was found to be due to individual mesophyll cells 

becoming much larger and less tightly packed than those of control plants. 

Changes in chloroplast ultrastructure may be caused by swelling of the 

lumen within the chloroplast thylakoids (Wellburn, 1987>; this being 

reversible at low SO. concentrations. A number of authors have proposed 

disruption of cellular membranes ie. changes in structure and permeability 

(see Black, 1982); such changes may result in alterations of a number of 

biochemical processes within the cell as many enzymes are associated with 

cell membranes. 

From the brief review of existing data given above, it can be 

seen that both cold temperature and pollutant stress individuall>: result in 

many biochemical and physiological changes within plants. It would appear 

from the data outlined above that the sites of action of each stress are 

similar, although resulting effects may differ. It is surprising therefore, 

that relatively little work has been done to elucidate the combined effects 

of environmental and pollutant stress on the major plant metabolic 

processes given current advances in experimental techniques. A number of 

studies are currently being undertaken to identify the relative 

contributions of pollutants and adverse environmental conditions to forest 

decline (see TERG, 1988) but it is clear that many more detailed 

investigations are necessary to provide much needed insight into the 

mechanisms of combined pollutant/environmental stresses on plants. 
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5.2 AIMS 

The aim of this section of the experimental work was to provide 

indications as to how and at what site cold stress and pollutant 

interactions determined the responses outlined in chapters 3 and 4. 

specifically the effects on net photosynthetic rates in Vicia faba plants. 

Figure 5a gives a schematic of the photosynthetic mechanism (adapted from 

Whittingham, 1977) and shows the stages at which the data presented in 

this chapter are relevant. Firstly, measurement of chlorophyll content gives 

an indication of the energy trapping capability of the plant, light 

absorption being the first step in the photosynthetic process. Secondly, by 

monitoring Hill Reaction activity it was possible to gain an indication of 

the plants ability to transfer the light energy absorbed by chlorophyll 

molecules leading to the formation of ATP and NADPH, ie. non cyclic

photophosphorylation. Both ATP and NADPH, are the driving force for the 

Calvin cycle ie. photosynthetic carbon reduction. 

The first step and one of the most important reactions in the 

Calvin cycle is the carboxylation of ribulose-l,5-bisphosphate (RuBP) to 

form a-phosphoglyceraldehyde (PGA). The enzyme responsible for this 

incorporation of CO, is ribulose-l,5-bisphosphate carboxylase (RuBP 

carboxylase) and this enzyme is by far the largest component of leaf 

protein and can account for up to 60% of the soluble protein in Cs leaves 

(Khan & Malhotra, 1982). Thus, although it was not possible to measure RuBP 

carboxylase activity directly, a measure of total soluble leaf protein gave a 

good indication of the plants capacity to incorporate CO, in to the Calvin 

cycle. 

Lastly, the overall product of the photosynthetic mechanism is 

the formation of carbohydrates, the majority of which are re-incorporated 

into the carbon reduction cycle. However, one in every six molecules of 

carbohydrate produced is fed into the metabolic pool, sucrose being the 

most abundant product of photosynthesis within leaves. Therefore, 

measurement of leaf carbohydrate content was a measure of the end products 

of photosynthesis and an indicator of photosynthetic efficiency. 

The effects of both cold and pollutant stress alone and in 

combination on each of the above parameters are examined in turn in this 

chapter. 
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5.3. EXPERIMENTAL PROTOCOL 

5.3.1 Determination or Chlorophyll Content in Leaves or 

Vicia raba 

Chlorophyll determinations were made of the flrst three fully 

expanded leaf pairs from cold temperature stressed and non-stressed plants 

of both varieties of Vicla faba. Plants Were subject to a cold treatment of 

0, 24 h, 72 h or 1 week at 10·C prior to a 4 h fumigation with either 0, 

lOO, 300 or 500· ppb SUlphur dioxide. Leaf chlorophyll was extracted within 

one hour of the end of the SO. fumigation period. 

5.3.1.1 Chlorophyll Extraction 

The leaves were weighed and the leaf area measured. The leaves 

where then chopped into fine pieces and placed in a cold mortar which had 

been previously kept on ice. A little silver sand was added along with 6 ml 

80% cold acetone. The material was thoroughly and quickly ground to a fine 

paste and filtered through Whatman No.l filter paper into a cold centrifuge 

tube. The mortar was washed with a little more 60% acetone to give a final 

volume of 10 ml. The extract was then centrifuged for two minutes at 2000 

rpm using a bench centrifuge and the resulting supernatant decanted into a 

cold clean test-tube. 

The supernatant was diluted 1 : 5 with 60% acetone and the 

absorbance of the solution measured against an 60% acetone blank. The 

absorbance of the chlorophyll extract.was measured from 350 - 750 nm using 

a dual wavelength. scanning spectrophotometer connected to a chart 

recorder. The absorbance peaks at 663 and 645 nm were also measured. 

5.3.1.2 Chlorophyll Estimation 

The absorbance values at 663 and 645 nm (A663; A645) were fitted 

into McKinney/Arnon equations to give chlorophyll a, chlorophyll band 

total chlorophyll content in mg per litre chlorophyll extract where: 

(Arnon, 1949) 

ChI a = 12 ·72 (A663) - 2 '56 (A645) 

ChI b = 22·67 (A645) - 4·67 (A663) 

Chla+b = 6 ·05 (A663) + 20 ·29 (A645) 
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Chlorophyll content was then expressed as mg ChI g-' leaf tissue 

(fresh weight) and mg ChI cm-' leaf area. 

5.3.2 Hill Reaction Activity in Isolated Chloroplasts 

The Hill Reaction activity was measured in chloroplasts isolated 

from both cold stressed and non-stressed plants of both varieties of Vicia 

faba. Plants were subject to 0, 24, h, 72 h or 1 week at 10'C prior to 

fumigation with either 100 or 500 ppb SO •• For each experiment for each 

cold regime, plants subject to a cold pre-treatment only were used as 

control. Chloroplasts were extracted from plants within one hour of the end 

of the SO. treatments. 

Hill reaction activity was measured using the dye DCPIP (2,6-

dichloro phenol indo-phenol) as an artificial hydrogen acceptor. DCPIP is 

blue when oxidised but is colourless when reduced, therefore the rate of 

Hill reaction activity could be determined from measurements of the 

decrease in absorption of the reaction medium with respect to time. 

5.3.2.1 Chloroplast Extraction 

Chloroplasts were isolated from the plants following the method 

of Nakatani & Barber (1977). The extraction medium consisted of: 

0·33 M Sorbitol 

0'2 mM Magnesium chloride 

20 mM MES (2 (N-morpholino) ethane sulpho~ic acid) 

brought to pH 6·5 with Tris (hydroxymethyl> aminomethane. Chloroplasts 

were resuspended in a cation free medium of 0·33 M Sorbitol brought to pH 

7·5 with Tris base (0'5 mM). 

A known fresh weight ($ 3·5 g) and area of leaf material was 

taken and placed in a Waring blender and homogenised for 20 seconds with 

10 ml ice cold extraction medium. The extract was then filtered through ten 

layers of muslin, the first two layers being separated by cotton wool. 

The filtrate was then centrifuged at 2200 g <17000 rpm) for 30 s 

using a refrigerated centrifuge. The supernatant was discarded along with 

most of the soft pellet. The remaining pellet was resuspended in 5 ml cation 

free medium and centrifuged again at 2200 g for 20 S; the total time 

including braking being less than 90 s. 

The supernatant was again discarded and the remaining pellet 
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resuspended carefully in 5 ml of the resuspension medium. The suspension 

was kept cold throughout the extraction process and was stored on ice 

prior to determination of Hill reaction activity. 

5.3.2.2 Chlorophyll Content of Chloroplast Suspension 

It was necessary to determine the chlorophyll content of the 

chloroplast suspension as Hill reaction activity was expressed as rate per 

mg ChI. The procedure followed was that of Plummer (1978). One ml of 

chloroplast suspension was added to 10 ml cold 80% acetone in water and 

shaken. The extract was flItered through Whatman No.1 flIter paper into a 

cold 25 ml volumetric flask. The test-tube was rinsed twice with 5 ml 

aliquots of 80% acetone and the filter paper washed. Finally the chlorophyll 

solution was made up to 25 ml with 80% acetone. The absorbance of the 

chlorophyll solution was read at 6<l5 and 663 nm against an 80% acetone 

blank using a dual wavelength spectrophotometer. Total chlorophyll was 

calculated from: 

Chla+b (mg '-') = 8 ·05 (A663) + 20 '29 (A645) 

(Arnon, 19<19). 

5.3.2.3 Hill Reaction Activity 

A reaction medium of phosphate buffer (0'03 )I) pH 6'5 containing 

0·01 )I potassium chloride was prepared. The chloroplast suspension was 

diluted with the reaction medium to give a chlorophyll concentra~ion of 

approximately 5 mg mr'. The spectrophotometer was set to zero using a 

blank containing 9 ml reaction medium with the addition of 1 ml 

chloroplast solution. 

The reaction tube contained 5 ml reaction medium, , ml DCPIP 

solution and 1 ml chloroplast suspension. This amount of DCPIP gave an 

initial absorbance of 0·8 units, the absorbance being read at 520 nm. The 

absorbance of the reaction tube was measured immediately following the 

addition of the chloroplast suspension. The test tube was then illuminated 

using a standard projection lamp giving a saturating light intensity (5 

'00 flE m-2 s-') allowing maximum photosynthetic activity of the 

chloroplasts. The reduction of the dye was followed by reading the 

absorbance of the extract against the blank at 60 s intervals for periods 

up to 30 min. 
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A plot of absorbance v time was produced and the rate of 

reaction calculated from this. The reaction rate was expressed in three 

ways: 

i) absorbance units (au) per minute per mg Chlorophyll 

11) au min-' g-' leaf tissue (fresh weight) 

11i) au min-' cm-2 leaf area. 

Four replicates of each treatment were performed for both varieties of 

Vicia faba. 

5.3.3 Determination of Total Soluble Leaf Protein 

The total soluble leaf protein content (giving a measure of RuBP 

carboxylase content) of cold stressed and non-stressed plants of both 

varieties of Vicia faba was determined following the method of LOwry 

(Lowry, Rosebrough, Farr & Randall, 1951>. Plants were subject to either 0, 

24 h, 72 h or 1 week at 10'C prior to fumigation with 500 ppb sulphur 

dioxide. Control plants were subjected to the cold treatment but were not 

fumigated with 502 , 

5.3.3.1 Principle 

Lowry's method of protein determination is a colorimetric 

technique, protein reacts with the Folin-Ciocalteu reagent to give a blue 

coloured complex. The colour so formed is due to the reaction of the 

alkaline copper with the protein and the reduction of phosphomo~ybdate by 

tyrosine and tryptophan present in the protein. The intensity of colour is 

dependent on the amount of these aromatic amino acids present and thus 

varies for different proteins. 

5.3.3.2 Calibration Curve 

It was necessary to produce a standard curve to relate protein 

content to absorbance readings. 

REAGENTS: 

I. 50 ml sodium carbonate solution (20g 1-' J in 0·1 M NaOH): 1 ml 

copper sulphate solution (5 g r' in 10 g 1-' sodium/potassium tartrate). 

n. Folln-Ciocalteu Reagent (sodium tungstate and sodium 

molybdate in phosphoric and hydrochloric acid), standard reagent obtained 

from Fisons U.K. Ltd. 
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A series of test tubes were prepared containing 0 - 250 ~g 

casein in distilled water taken from a stock solution of 250 ~g casein. 

Three ml of reagent I were added to each tube and the solution was shaken 

then left to stand for fifteen minutes, 0·3 ml of reagent 11 was then added, 

the tubes shaken again, and left for a further 45 min for the colour to 

develop. The absorbance of the solutions was then read at 600 nm against a 

blank containing deionised water in place of protein solution. 

A curve of absorbance versus protein content was plotted and 

used in the calculation of the protein content of the leaf extracts. This 

experiment was repeated three times to ensure the accuracy of the resulting 

calibration curve (Figure 5.1). 

5.3.3.3 Protein Content of Leaves 

EXTRACTION MEDIUM: 0·15 M Tris-HCI buffer (pH 7·5) 

O·OIM EDTA (pH 7·5) 

0·01 M KCI 

0·001 M MgCl2 

10 mM dithiothreitol 

The midribs were removed from the plant leaves and then 1 g of 

leaf material was weighed out and the leaf area determined. The leaf 

material was placed in a Waring blender that had been previously stored on 

ice and the material was homogenised for 30 s with 10 ml ice cold 

extraction medium. The extract was filtered through four layers of 

cheesecloth and centrifuged for five minutes at 5000 g. The clear extract 

was stored on ice. 0·05 ml and 0·1 ml aliquots of extract were placed into 

clean cold test tubes using micropipettes and the solution made up to 10 ml 

with deionised water. One ml units of the protein solutions were then taken 

and the protein content determined as described in the preparation of the 

calibration curve. 

Six determinations were made for each plant. Protein content was 

expressed as mg g-' leaf tissue (fresh weight) and mg cm-2 leaf area. 
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Figure 5.1 
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Figure 5.1. 
Standard Curve for Protein Content <Jlg ml-'): obtained using Lowry's method 
of protein determination on standard solutions of casein. 
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5.3.~ Determination or Carbohydrate Content 

The carbohydrate content (products of photosynthetic activity) 

of both varieties of Vicia faba was determined using the phenol method of 

Dubois, Gilles, HamUton, Rebers & Smith (1956). The phenol method is a 

colorimetric determination of sugars, methylated sugars and polysaccharides 

and is highly sensitive. The colour produced is very stable and the assay 

is largely unaffected by the presence of proteins. Plants were subjected to 

either 0, 2 .. h, 72 h or 1 week at 10'C prior to fumigation with 100 ppb 

sulphur dioxide- for .. h. Control plants were subjected to cold treatments 

only but were not exposed to SO •. 

5.3.4.1 Calibration Curve 

The following reagents, both Analytical Reagent grade, were used. 

I. 5% (w/v) solution Phenol in water 

11. Conc. Sulphuric Acid (sp.gr.1·8 .. ) 

In order to generate a standard curve a stock solution of 1000 

I'g ml-' glucose in distilled water was dUuted to give 100 I'g ml-'. A series 

of thick walled test tubes were then prepared containing a 1 ml sample of 

o to 100 I'g ml-' glucose solution. One ml of 5% phenol solution was added 

to each tube and the tubes well shaken. Five ml of concentrated sulphuric 

acid were then added to each tube from a fast flowing pipette with care 

being taken to direct the acid stream onto the surface of the liquid whilst 

the tube was being gently shaken to effect fast and complete mixing. The 

tubes were then allowed to stand for 10 minutes, shaken and placed in a 

water bath set at 25'C for a further 20 min before readings were taken. 

The absorbance of the solutions was then read at .. 88 nm against a blank 

of acid, phenol and deionised water. A curve of absorbance v carbohydrate 

content was plotted and used in the calculation of the carbohydrate 

content of the leaf extracts (Figure 5.2). 

5.3.4.2 Carbohydrate Content of Leaves 

Chloroplasts were extracted using the method of Nakatani & 

Barber as described in §5.3.2.1. Using a micropipette, 0·1 ml of chloroplast 

extract was added to a test tube containing 9·9 ml deionised water and the 

Page 281 



Exper I mental Chapter 5 

Figure 5.2 
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Figure 5.2. 
Standard Curve for Carbohydrate Content (~g ml-'): obtained using the 
method of Dubo is et a1. on standard glucose solutions. 
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tube was well shaken. One ml of this solution was then taken and the 

carbohydrate content determined as described above with reference to the 

calibration curve. Four determinations were made for each plant and 

carbohydrate content was expressed as mg g-' and mg cm- 2 • 

5.3.5 Isolated Chloroplasts and Oxygen Electrode Studies 

It was intended to examine the effects of bisulphite solutions on 

the photosynthetic rates of chloroplasts isolated from cold-stressed and 

non cold-stressed plants by monitoring CO 2-dependent oxygen evolution under 

illumination using a Clark type oxygen electrode. However, despite the use 

of varying extraction, resuspenslon and reaction media together with a 

number of different isolation techniques, all attempts to obtain Vicia 

chloroplasts that would evolve oxygen were unsuccessful. The methods used 

were those of: Jensen & Bassham, 1966; Cockburn, Walker & Baldry, 1968; 

Nakatani & Barber, 1977: Edwards, Robinson, Tyler & Walker, 1978; Leegood & 

Walker, 1978; PlesnH!ar & Kalezii!, 1980; Shimazaki & Sugahara, 1980b; 

Ballantyne .& Glover, 1981; de Kok, Thompson & Kulper, 1983. 

It was thought that the inability to evolve oxygen may have 

been the result of a low percentage of chloroplast Intactness since optimum 

rates of CO2-dependent O2 evolution are found In preparations with a high 

degree of structural intactness (Nakatani & Barber, 1977). However, 

ferrlcyanide assay of the preparations (LIlley, Fitzgerald, Rientis & Walker, 

1975) showed Intactness above 50%, which should have been enough to 

produce some chloroplast activity In the illuminated electrode. Isolation of 

chloroplasts from spinach or lettuce leaves using the above mentioned 

techniques resulted in good rates of oxygen evolution. Similarly, algal 

suspensions (Chlorella spp.) and the freshwater macrophyte. Keratophyllum 

happily evolved oxygen when suspended In a variety of the extraction media. 

Therefore the apparent failure of Vicia to produce results was baffling. It 

was found, on enquiry, that other researchers had experienced the same 

problems with Vicia (R.C. Leegood pers. comm.). Researchers at Lancaster 

University have also experienced difficulties with Vlcia faba In their use 

of isolated plastids to Investigate pollutant effects on plant enzymes (A.R. 

Wellburn pers. comm.). Although attempts were unsuccessful, It was felt that 

some mention must be made of the difficulties encountered which may be of 

aid to other researchers. 
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5. (. CHANGES IN LEAF AREA AND THICKNESS IN RESPONSE TO COLD 

TEMPERATURE STRESS 

The results presented In Chapter , showed that the responses of 

plant gaseous exchange mechanisms to sulphur dioxide were modified in 

response to added environmental stress such as cold temperature pre

treatments. In addition, cold stress alone was found to induce significant 

morphological and anatomical changes In the leaves of both varieties of 

Vlcla faba. In a small number of plants of both varieties subjected to 1 

week at 10 'C, visible injury symptoms appeared upon rewarming. Plants 

appeared perfectly healthy on removal from the cold temperature growth 

cabinet, however, within 2' h of being placed in the exposure chambers at 

optimum temperatures (23 :!: 3'C), black necrotic lesions were evident at the 

leaf margins as shown in Plate 5.1. As outlined in the previous chapter, 

secondary water-stress is known to occur In response to chilling stress and 

the visible injury symptoms observed in Vicia faba were characteristic of 

water stress. It must be emphasised that this damage occurred prior to SO. 

exposure and was observed in a small number of plants only; the majority of 

plants of both varieties being apparently undamaged by the 1 week cold 

temperature treatments. 

However, plants of both Dylan and Aquadulce Claudia subjected to 

1 week cold stress prior to sulphur dioxide fumigation were vlsi~ly 

different from non cold-stressed plants in that the leaves appeared to be 

smaller and thicker following the cold treatments. In order to determine If 

this was so, the ratio of leaf fresh weight to leaf area (LW/LA) was 

calculated for both varieties for cold-stressed and non cold-stressed 

plants. At the same time, measurements of leaf thickness were made using a 

micrometer screw gauge. The leaf weights and leaf areas of 21 plants of 

each variety were determined for both temperature regimes giving a total 

of 64, data points. The leaf weight was divided by leaf area and the ratios 

obtained were analysed using 't' tests. The results of this analysis are 

presented in Table 5.1 and from the table It can be seen that there were 

significant varietal differences In the ratio of leaf area to leaf weight In 

the absence of cold stress: Leaves of the variety Aquadulce Claudia were 

found to have significantly more weight per unit leaf area than leaves of 
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Plate 5.1 
Visible injury symptoms in Vicia faba CV. Dylan exposed to 1 week at IO·C. 
Damage did not appear during the cold treatment but appeared 2~ h after 
the onset of rewarming and was not seen to occur in the majority of 
plants. Such injury was also observed in a small number of plants of the 
variety Aquadulce Claudia. 
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Table 5.1. 
Analysis of data for the ratio of leaf weight to leat area for two 
varieties of Vicia faba and the effects of a 1 week cold temperature 
treatment_ 

Mean Val ue LW I LA Variance 
(g cm-' xl00) 

Aquadulce (no cold) 2-63 0-0837 

Dylan (no cold) 2-20 0-04,69 

Aquadulce (cold) 2-90 0- 1259 

Dyl an (col d) 2-51 0-0293 

't' Test Results 

, t' = DF = significance 

Aquadulce ·(no cold) 
v Dylan 5-4,6 4,0 P < 0-001 

v Aquadulce (cold) 2-68 4,0 P < 0-01 

Dylan (no cold) 
v Dylan (cold) 5-04, 4,0 P < 0-001 

Aquadulce (cold) 
v Dyl an (cold) 4,-59 4,0 P < 0- 001 • 

Page 286 

I -

I 

I 
, 



, 
Results Chapter 5 

the variety Dylan suggesting that Aquadulce leaves were thicker. The mean 

value for Aquadulce plants was 0·026 g cm-' and that for Dylan plants was 

0'022 g cm-z (t = 5'4-57, P < 0'001>. 

The imposition of cold stress was seen to result in increased 

leaf weight per unit leaf area in both varieties of Vicia. For Dylan plants 

the mean value for LW/LA following the 1 week cold treatment rose to 0'025 

g cm-' and, when compared with the data for non cold-stressed plants, 

produced a significant t value of 5·04-2 (p < 0·001>. For Aquadulce plants, 

mean values for LA/LW rose to 0 '029 g cm- Z (t = 2 '665, P < 0'01>. Plants of 

the variety Aquadulce were still found to have significantly higher values 

for LW/LA than Dylan plants when both had been subJect to cold temperature 

stress (t = 4-'951, P < 0'001>. 

These results were confirmed when actual measurements of leaf 

thickness were compared between the varieties with and without cold stress. 

A total of 14-4- measurements were made for each variety for each cold 

treatment giving a total of 576 data points. A summary of the 't' test 

analysis is shown in Table. 5.2. As was implied from the results presented 

above, plants of the variety Aquadulce Were found to have significantly 

thicker leaves than plants of the variety Dylan in both treated and non 

treated plants. Cold temperature stress again was shown to result in 

significant increases in the leaf thicknesses of both varieties. 

These differences in leaf thickness and in the ratio of leaf 

weight to leaf area are important to the results discussed later in this 

chapter. Results for chlorophyll, protein and carbohydrate conten:t may be 

expressed per unit leaf weight or per unit leaf area. However, in the light 

of the results presented above it was thought that significant differences 

may be overlooked when expressing results in one way only; for this reason, 

the data presented in subsequent sections are presented both per unit leaf 

weight and per unit leaf area. 

5.5 Cm.OROPHYLL CONTENT OF WHOLE LEAVES 

The experimental design consisted of four cold treatments (0, 24-

h, 72 h & 1 week) in combination with four SO. treatments (0, lOO, 300 & 

500 ppb) for two varieties of Vicia faba. Three determ.inations of 

chlorophyll content were made for each treatment. This produced a three 
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Table 5.2. 
Analysis of data tor leaf thicknesses of two varieties of Vicia faba and 
the effects of a 1 week cold temperature (10'C) treatment. 

Mean Value Variance 
(nun) 

Aquadulce (no cold) 0·-i0 0·0121 

Dylan (no' cold) 0·37 0·0025 

Aquadulce (cold) 0·-i8 0·0036 

Dyl an (col d) 0·-i5 0·0032 

• t· Test Resul ts 

, t' = DF = significance 

Aquadulce (no cold) 
v Dylan ( 11 ) 3·2-i3 286 P < 0·002 

v Aquadulce (cold) 8· 10-i 286 P < 0·001 

Dylan (no cold) 
v Dylan . (cold) 13·070 286 P < 0·001 

Aquadulce (cold) 
v Dylan (cold) 5· U2 286 P < 0·001 
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factor factorial design with two levels in the first factor (variety), four 

levels in the second factor (sulphur dioxide) and four levels in the. third 

factor (cold treatments) giving a total of 144 data points. The data 

obtained were analysed using Multivariate Analysis of Variance on the 

Honeywell Multics mainframe computer system using the programme 'GENSTAT' 

(GENSTAT V Mark 4.C3 ® 1980 Lawes Agricultural Trust £Rothampstead 

Experimental station]). 

The analysis was performed on the data obtained for chlorophyll 

a per unit leaf weight and per unit leaf area, chlorophyll b per unit leaf 

weight and per unit leaf area and for total chlorophyll per unit leaf 

weight and per unit leaf area. However, no significant differences were 

detected in the influences of either cold or SO, on chlorophyll a and b 

content individually nor in the ratio of chlorophyll a to chlorophyll band 

as a result data for total chlorophyll only are presented here. The results 

for both chlorophyll content per gram fresh weight and per cm' leaf area 

are presented because changes in the ratio of leaf weight to leaf area were 

observed in response to cold stress (§5.4>. The summaries of the output from 

the ANOVA programme including F values and levels of significance are 

presented in Tables 5.3 and 5.4. and it can be seen that the results 

obtained varied depending on the units used. Therefore data are discussed 

separately below, initially on a fresh weight basis and, secondly, on a leaf 

area basis. 

5.5.1 Chlorophyll per Unit Leaf Weight 

Table 5.3 shows the analysis of variance for chlorophyll content 

per gram fresh leaf weight. It can be seen that there were significant 

varietal differences in chlorophyll content and that both cold and pollutant 

stress influenced chlorophyll content both singly and in combination. , 
Figures 5.3 and 5.4 show mean values for chlorophyll content plotted 

against sulphur dioxide concentration for both Dylan and Aquadulce plants 

for each cold treatment, the standard errors of the mean (SEM) are also 

shown in the figures. It can be seen from these figures that plants of the 

variety Dylan had a significantly higher chlorophyll content than those of 

the variety Aquadulce Claudia in the absence of either cold or pollutant 

stress. 

The imposition of cold stress alone resulted in reductions in 
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TABLE 5.3 

Summary of Multivariate Analysis of Variance of Data for Chlorophyll 
Content of Two Varieties of Vlcia faba Subject to both Environmental and 
Pollutant Stress where Chlorophyll Content is Expressed per Unit Leaf Fresh 
Weight. 

Source of Variation DF SS MS VR Sig. 

Variety 1 0·197 O· 197 4·75 0·05 
Cold 3 7·023 2·341 56·" 0·001 
Sulphur Dioxide 3 1·14-1 0·380 9· 17 0·001 
Variety * cold 3 0·175 0·058 1· 40 ns 
Variety * S02 3 0·377 0·125 3·03 0·05 
Cold * S02 9 1·842 0·204 4·94 0·001 
Variety * cold • S02 9 2·905 0·322 7·78 0·001 
RESIDUAL 112 4·645 0·041 
TOTAL 143 18·309 0·128 

Grand Mean = 0·87 
Total No. Observations = 1" 

TABLE 5.4-

As for Table 5.3 but Data is Summary of Multivariate Analysis of Chlorophyll 
a + b Content per Unit Leaf Area. 

(x 10' ) 
Source of Variation DF SS MS VR Slg. 

Variety 1 0·042 0·042 2·51 ns 
Cold 3 3·184 1·061 62·58 0·001 
Sulphur Dioxide 3 0·571 0·190 11·23 0·001 
Variety * col d 3 0·065 0·021 1·29 ns 
Variety * S02 3 0·136 0·045 2·67 ns 
Cold. S02 9 0·662 0·073 4·34 0·001 
Variety * cold. S02 9 1·200 O· 133 7·86 0·001 
RESIDUAL 112 1·899 0·016 
TOTAL 143 7·762 0·054 

Grand Mean = 0·023 
Total No. Observations = 1" 
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Figure 5.3 
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Figure 5.3. 
Chlorophyll a + b content (mg g-' fresh weight) in Vicia faba plants of 
the variety Dylan subJect to either 0, 24 h, 72 h or 1 week at 10'C prior 
to exposure to either 0, lOO, 300 or 500 ppb SO. for 4 h. 
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Chlorophyll a + b content (mg g-' fresh weight) in Vicia taba plants of 
the variety Aquadulce Claudia subjected to either 0, 24- h, 72 h or 1 week 
at 10·C prior to exposure to either 0, lOO, 300 or 500 ppb SO. for 4- h. 
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chlorophyll content in both varieties of Vicia. the reduction appearing to 

be most severe in Dylan plants (Fig. 5.3). For plants of the variety Dylan, 

cold periods of 72 h or 1 week resulted in a similar reduction in 

chlorophyll content, this being greater than the reductions due to 24 h at 

10'C prior to SO. fumigations. For Aquadulce Claudia plants (Fig. 5.4> 

reductions in chlorophyll content were similar in response to both the 24 h 

and 72 h cold treatments but much less chlorophyll was found to be present 

in plants subject to 1 week of cold stress. 

Sulphur-dioxide fumigations were found to have significant 

effects on the chlorophyll content of both varieties in the absence of cold 

stress. For Dylan plants (Fig. 5.3), lOO ppb for four hours had no 

significant effect on chlorophyll content per unit fresh weight but 

concentrations of 300 ppb resulted in significant increases in chlorophyll 

content whilst 500 ppb SO. resulted in significant decreases in chlorophyll 

content (Fig. 5.3). In plants of Aquadulce Claudia (Fig. 5.4), SUlphur dioxide 

concentrations of 300 ppb had no significant effect on chlorophyll content, 

however, both lOO and 500 ppb SO. resulted in significant increases in 

chlorophyll content in the absence of cold stress. 

From Table 5.3 it can be seen that significant interactions 

between cold and pollutant stress occurred in influencing chlorophyll 

content and that significant varietal differences in chlorophyll content in 

response to both cold and/or pollutant were observed. 

In Dylan plants, the effects of cold treatments prior to SO. 

fumigations were to modify the effects of SO. (Fig. 5.3). The increases in 

chlorophyll content in response to 300 ppb SO. were not seen to occur when 

.plants had been subject to cold temperature stress prior to SO. fumigation. 

Similarly, the significant decreases in chlorophyll content observed in 

response to 500 ppb SO. under optimum environmental conditions were not 

seen to occur following periods of cold stress. After periods of 24 h or 72 

h cold stress chlorophyll content was significantly increased upon exposure 

.to 500 ppb but periods of I week cold stress result~d in no significant 

changes in chlorophyll content in response to 500 ppb SO •• 

The effects of sulphur dioxide on chlorophyll content in 

Aquadulce Claudia plants were also altered as a result of cold temperature 

pre-treatments (Fig. 5.4). The increases in chlorophyll content observed in 

response to lOO ppb SO. were also observed following cold pre-treatments of 

24 hi however, the extent of the increase due to SO. was reduced in the 
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cold-stressed plants. This increase in response to 100 ppb SO, was not Seen 

to occur after cold stress periods of 72 h or 1 week. Although 300 ppb SO. 

had no significant effect on chlorophyll content in Aquadulce plants in the 

absence of cold stress, periods of 24 h cold. temperature stress resulted in 

significant increases in chlorophyll content in response to 300 ppb SO •• 

There were no significant effects of 300 ppb SO, on chlorophyll content in 

Aquadulce plants following 72 h or 1 week cold temperature pre-treatments. 

Similarly, the marked increase in chlorophyll content in response to 500 ppb 

SO. observed in the absence of cold stress was not seen to occur following 

cold stress pre-treatments of either 72 h or 1 week prior to SO. 

fumigations. 

5.5.2 Chlorophyll per Unit Leaf Area 

The data for chlorophyll content expressed per unit leaf area are 

shown in Figures 5.5 and 5.6 for Dylan and Aquadulce Claudia plants 

respectively and the multivariate analysis of variance was summarised in 

Table 5.4. Changes in chlorophyll content in response to cold and/or SO. 

showed significant differences from the data described above for 

chlorophyll content per gram fresh weight. 

Firstly, no significant varietal differences in chlorophyll 

content were found in the absence of either cold or pollutant stress 

although these were seen to occur when chlorophyll content was expressed 

per unit leaf weight. The imposition of cold stress alone was still seen to 

result in reductions in chlorophyll content in both varieties of Vicia faba 

and the data followed the same patterns described above. 

The effects of sulphur dioxide on chlorophyll content per unit 

leaf area varied from the responses described above. In Dylan plants, the 
• 

reduction in chlorophyll content per gram in response to 500 ppb SO., 

without added cold stress, was not found to be significant when results 

were expressed per cm' leaf area <Fig. 5.5). Similarly, the increases in 

chlorophyll content in response to 500 ppb SO. following 24 h cold stress 

described above were not significant when results were calculated per unit 

leaf area. However, this increase was still seen to occur in response to 500 

ppb in Dylan plants subJect to 72 h cold stress. 

When results for the variety Dylan were expressed per unit leaf 

weight there were significant differences in the chlorophyll content of 
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Figure 5.5. 
Chlorophyll a + b content (mg cm-' leaf area) in Vicia faba plants of the 
variety Dylan subject to a range of cold temperature treatments, prior to 
exposure to either 0, lOO, 300 or 500 ppb SO. for 4 h. 
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Figure 5.6 
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Figure 5.6. 
Chlorophyll a + b content (mg cm-' leaf area) in Vicia taba plants of the 
variety Aquadulce Claudia subject to a range of cold temperature treatments, 
prior to exposure to either 0, lOO, 300 or 500 ppb SO. for 4 h. 
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plants subjected to 72 h or 1 week cold stress for all sulphur dioxide 

fumigations; however, these differences were not observed when chlorophyll 

content was expressed per unit leaf area with the exception of the ~OO ppb 

SO. treatment. 

When the results for Aquadulce Claudia plants were expressed per 

unit leaf area (Fig. 5.6), the data followed the same· trends as described 

previously for chlorophyll content per g fresh weight with the exception of 

a significant increase in chlorophyll content in response to 100 ppb SO. 

following a 1 week cold pre-treatment. 

The results for chlorophyll content of whole leaves of both 

varieties of Vicla faba are summarised iit Table 5.5. 

5.6 HILL REACTION ACTIVITY 

The experimental design consisted of four cold treatments (0, 24 

h, 72 h & 1 week) in combination with sulphur dioxide ·treatments or 

control treatments (no SO.) for both Varieties of Vicia faba. Each 

treatment was replicated four times and two determinations of Hill reaction 

activity were made for each treatment. This series of experiments was run 

twice, firstly using 500 ppb SO. and secondly using 100 ppb SO. in the 

design described above (hereafter experimental design will be referred to 

as the 500 or 100 series for ease of identification). The data were 

analysed using the 'Genstat' programme for multivariate analysis ot 

variance, the analyses being performed on data for: 

(l) chlorophyll content per unit leaf weight 

(ll ) chl orophyll content per unit leaf area 

(Ul) Hill reaction activity per unit chlorophyll 

(iv) Hill reaction activity per unit leaf weight and 

(v) Hill reaction activity per unit leaf area. 

The data for both the 100 and 500 series were not combined as 

significant differences were found In the Hill reaction activity of control 

plants (no cold, no S02) from both experimental sets. These differences were 

thought to be due to the use of a fresh stock of the buffer MES in the 

extraction medium for isolated chloroplasts for the second experimental set 
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Table 5.5 
A summary of combined cold temperature (10'C; 0, 24- h, 72 h or 1 week) and 
sulphur dioxide (4- h; 0, lOO, 300 or 500 ppb) stress effects on total leaf 
chlorophyll content of two varieties of Vicia faba when results are 
expressed per unit leaf weight and per unit leaf area. 

(i) mg ChI a + b g-I lea~ tissue (~resh weight) 

No stress 

SO. 

Cold 

SO. x Cold 

No stress 

SO. 

Cold 

SO. 'f Cold 

DYLAN 

Higher than AQ 

No change at 100 ppb. 
Increase due to 300 ppb. 
Decrease due to 500 ppb. 

Decrease at all cold 
periods, greatest at 
72 h & 1 week. 

No effect of 100 or 300 
ppb on cold decrease. 
500 ppb increases Chl. 
content after 24- hand 
72 h cold. 

AQUADULCE CLAUDIA 

Increase at 100 & 
500 ppb. 
No effect at 300. 

Decrease at all cold 
periods, greatest at 1 
week. 

24- h same as no cold 
No effect of SO. 
after 72 h or 1 week. 

<i i) mg ChI a + b cm-z 1 eat' area 

DYLAN AQUADULCE CLAUDIA 

No significant varietal differences. 

Increase at 300 ppb. 
No effects of 100 & 
500 ppb. 

Decrease at all cold 
periods, most at 72 h 
& 1 week. 

Increase at 100 ppb 
after 24- h cold. 
No increase at 300 ppb 
for any cold period. 
Increase after 500 ppb 
and 72 h cold. 

Increase at 100 & 
500 ppb. No change 
at 300 ppb. 

Decrease at all cold 
periods, most at 1 
week. 

24- h, increase at 100 
& 500. 
72 h, decrease at 100. 
1 week, increase at 
100 ppb only. 
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(lOO series), although the experimental procedure was unchanged. As a 

result of this, it was not thought advisable to pool the data obtained and 

each experimental set is considered separately although trends in the 

influence of cold and pollutant stress are compared. 

5.6.1 Chlorophyll Content or Isolated Chloroplast Suspension 

It was necessary to determine the chlorophyll content of the 

chloroplast suspension to enable Hill reaction activity to be expressed per 

unit chlorophyll. Chlorophyll content was again determined both per unit 

leaf weight and per unit leaf area for the reasons outlined in §5.4-. 

5.6.1.1 Chlorophyll per unit leaf weight 

Table 5.6 shows a summary of the analysis of variance of 

chlorophyll content per gram leaf tissue for both the 500 and the 100 

series. It can be seen that there are significant differences between both 

sets of results and the results presented in Table 5.3 for chlorophyll 

content of whole leaves (the levels of significance from Table 5.3 are re

presented in Table 5.6 for ease of comparison). However, a significant 

amount of chlorophyll was lost due to the nature of the chloroplast 

extraction procedure and it was not considered appropriate to compare 

results for isolated chloroplasts with that for whole plants. 

It can be seen from Table 5.6 that there were differences in the 

analysis of variance results for each experimental run, varietal differences 

are seen to be significant in the 100 series but not in the 500 series. 

Similarly, significant effects due to cold alone are seen in the results for 

the 500 series but not the 100 series. These anomalies can be explained 

more fully when mean values of chlorophyll content are examined. The 

chlorophyll data per unit leaf weight for both Dylan and Aquadulce Claudia 

for the 500 series are presented in Figures 5.7 and 5.8, the data for the 

100· series being presented in Figures 5.9 and 5.10. 

From Figures 5.7 and 5.8 it can be seen that plants of the 

variety Dylan had a significantly higher chlorophyll content per gram leaf 

weight than plants of the variety Aquadulce Claudia in the absence of 

either cold or pollutant stress. The imposition of cold stress alone resulted 

in significant reductions in the chlorophyll content in Dylan plants (Fig. 

5.7), the greatest reduction occurring in response to the 1 week cold 

Page 299 



Results Chapter 5 

TABLE 5.6 

Summary of Multivariate Analysis of Variance of Data for Chlorophyll 
Content of Isolated Chloroplast Suspensions of Two Varieties of Vlcia faba -
subject to a range of cold temperature treatments prior to exposure to 
either 0, 100 or 500 ppb sulphur dioxide (4 h): where chlorophyll content is 
expressed per unit Leaf Fresh Weight (mg g-') (A summary of data for 
chlorophyll content of whole plants is also shown for comparison). 

500 ppb SO. 100 ppb SO. Whole 
Leaf 

F ex = F ex = (ex = ) 

Variety 0'869 ns 15'090 0·001 0'05 

SO. 0·000 ns 0·935 ns 0'001 

Cold 15· 188 0·001 0'411 ns 0'001 

Variety • SO. 0·003 ns 0·561 ns 0'05 

Variety • Cold 16·350 0·001 2'335 ns ns 

SO •• Cold 2·991 0·05 2·356 ns 0'001 

Variety • SO. • Cold 2·247 ns 3·030 0'05 0'001 

(ns: not significant) 
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Figures 5.7 and 5.6. 
Chlorophyll content of isolated chloroplast suspensions (mg g-' leaf fresh 
weight) of two varieties of Vicia faba subjected to a range of cold 
temperature treatments prior to exposure to 0 or 500 S02 ppb for 4 h. 
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treatment. These reductions in chlorophyll content due to cold were not seen 

to occur in plants of the variety Aquadulce <Fig.- 5.8); indeed, increases in 

chlorophyll content occurred in response to both the 2' h and the 72 h 

cold treatments. 

The effects of a , h fumigation with 500 ppb SO. in the absence 

of cold stress did not significantly alter chlorophyll content in Dylan 

plants; however, significant increases in chlorophyll content were observed 

in plants of Aquadulce Claudia in response to the SO. treatment. 

The imposition of cold stress prior to sUlphur dioxide fumigation 

did not result in Changes in the effects of SO. on chlorophyll content in 

plants of the variety Dylan <Fig. 5.7); sUlphur dioxide exposure was not 

seen to significantly alter chlorophyll content in any plants subject to 

cold pre-treatments. However, cold pre-treatments were seen to alter the 

effects of SO. on the chlorophyll content of plants of Aquadulce Claudia 

<Fig. 5.8). The significant increase in chlorophyll content, observed in 

response to SO. in the absence of cold stress, did not occur following any 

of the cold pre-treatments. In plants of Aquadulce subject to 2' h at 10'C 

prior to fumigation with 500 ppb SO., chlorophyll content was significantly 

decreased in response to the sulphur dioxide treatment although there was 

no significant Change in chlorophyll content due to SO. in plants subject 

to a 1 week period of cold stress. 

The data for both varieties for the 100 ppb SO. series are 

presented in Figures 5.9 and 5.10. It can be seen from the figures that, in 

the absence of either cold or pollutant stress, there were no significant 

varietal differences observed in chlorophyll content calculated per gram 

leaf tissue. The imposition ot cold stress alone resulted in decreased 

chlorophyll content in plants of the variety Dylan thus re-affirming the 

results obtained in the 500 series. However, plants of the variety Aquadulce 

Claudia also exhibited reductions in chlorophyll content; these changes not 

being observed in the 500 series. Exposure to 100 ppb SO. without cold pre

treatments was seen to result in reductions in chlorophyll content in both 

varieties of V.faba, the greatest reduction being observed in Dylan plants 

<Fig. 5.9). For Aquadulce plants, the reduction in chlorophyll content due to 

SO. was also seen to occur following cold pre-treatments of either 72 h or 

1 week but the extent of this reduction was lessened <Fig. 5.10). SO. was 

not seen to influence chlorophyll content in Aquadulce plants after a 2' h 

cold pre-treatment. In plants of the variety Dylan, cold periods of 2' h or 
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weight) of two varieties of Vlcia faha suhJected to a range of cold 
temperature treatments prior to exposure to 0 or 100 pph SO. tor 4 h. 
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72 h prior 'to 502 fumigations resulted in there being an increase in 

chlorophyll content per gram leaf tissue in response to 100 ppb 502 • There 

were no significant effects of 100 ppb 502 on chlorophyll content in Dylan 

plants subject to 1 week cold pre-treatments. 

5.6.1.2 Chlorophyll content per unit leaf area 

When the chlorophyll content of isolated chloroplast suspensions 

from both varieties of Vicia were calculated per unit leaf area there were 

a number of significant differences in the effects of cold andlor 50 2 in 

comparison with the data for chlorophyll content per unit leaf weight 

(§5.6.1.1). These differences were more readily apparent when mean values for 

chlorophyll content were considered as opposed to the analysis of variance 

data. Table 5.7 is a summary of the multivariate analysis of variance data 

for chlorophyll per unit leaf area. 

It can be seen from comparison of Tables 5.6 and 5.7 that the 

data for the 100 series produced the same results for both calculations of 

chlorophyll content. However, in the 500 series when results were expressed 

per unit leaf weight, no significant differences in chlorophyll content were 

observed arising from variety alone but when the results were expressed per 

unit leaf area, this factor was found to be significant. 

The mean values for chlorophyll content of isolated chloroplast 

suspensions per cm2 leaf area for the 500 series of experiments are 

depicted in Figures 5.11 and 5.12. Results for plants of the variety Dylan 

are presented in Figure 5.11 and upon comparison with Figure 5.7 it can be 

seen that the effects of 500 ppb 502 on plants not subject to cold stress 

were significant. SUlphur dioxide was seen to significantly reduce 

chlorophyll content per unit leaf area in Dylan plants, this reduction 

occurring in both non cold-stressed and 24 h cold-stressed plants but not 

after the longer cold treatments; exposure to 500 ppb 50 2 after a 1 week 

cold treatment was seen to result in a significant increase in chlorophyll 

content per unit leaf area. Sulphur dioxide effects were not significant at 

any of the cold treatments when results were expressed per unit leaf weight 

(Fig.5.7). 

The data for chlorophyll content of Aquadulce Claudia plants per 

unit leaf area for the 500 series, are presented in Figure 5.12 and upon 

comparison with Figure 5.6 it can be seen that there were no significant 

differences in the effects of SO. andlor cold when chlorophyll content was 
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TABLE 5.7 

Summary of Multivariate Analysis of Variance of Data for Chlorophyll 
Content of Isolated Chloroplast Suspensions of Two Varieties of Vicia faba -
subject to a range of cold temperature treatments prior to exposure to 
either 0, 100 or 500 ppb sulphur dioxide (4-h): where chlorophyll content is 
expressed per unit Leaf Area (A summary of data for chlorophyll content of 
whole plants is also shown for comparison). 

500 ppb SO. 100 ppb SO. Whole 
Leaf 

F Gt = F Gt = (Gt = ) 

Variety 5'509 0·025 4-1· 170 0'001 ns 

SO. 0·067 ns 0·212 ns 0·001 

Cold 6·083 0·01 0'190 ns 0·001 

Variety • SO. 0·009 ns 0·006 ns ns 

Variety • Cold 9·34-5 0·001 0·790 ns ns 

SO •• Cold 3·322 0'05 1·837 ns 0'001 

Variety • SO. • Cold 1·683 ns 3'661 0·01 0·001 
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of two varieties of Vicia faba subjected to a range of cold temperature 
treatments prior to exposure to 0 or 500 ppb for 4 h. 
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calculated per unit leaf weight or area; changes in chlorophyll content due 

to either stress being the same as those described in §5.S.1.1. 

The results for chlorophyll content per unit leaf area of isolated 

chloroplast suspensions from plants of the 100 series are presented in 

Figures 5.13 and 5.14. There were no significant differences in the nature 

of changes in chlorophyll content in plants of the variety Dylan for the 

100 series when results were expressed per unit leaf weight (Fig. 5.9) or 

per unit leaf area (Fig. 5.13). Changes due to cold and/or SO. being 

described in §5.S.1.1. Figure 5.14 shows the data for the variety Aquadulce 

and upon comparison with Figure 5.10 significant differences are observed. 

The reduction in chlorophyll content due to SO. alone. in the absence of· 

cold stress. was not seen to occur when results were expressed per unit leaf 

area although reductions due to cold stress alone were still noted. Sulphur 

dioxide fumigations did not alter the. chlorophyll content in Aquadulce 

plants subject to either 24- h or 72 h cold temperature stress. however. the 

decrease due to SO. following a 1 week cold pre-treatment observed per unit 

leaf weight was enhanced when results were expressed per unit leaf area. 

The results presented in this section can be summarised as 

follows: 

(I) The imposition of cold temperature stress alone resulted in 

decreases in chlorophyll content of both varieties of Vicia faba. However. 

these decreases appeared to be significantly greater in plants of the 

variety Dylan. 

(H) Exposure to 500 ppb sulphur dioxide in the absence of cold 

stress resulted in decreased chlorophyll content in Dylan plants but 

chlorophyll content was increased in response to 500 ppb SO. in plants of 

the variety Aquadulce Claudia. 

(iii) Exposure to 100 ppb SO. in the absence of cold stress 

induced a reduction in the chlorophyll of both varieties. the reduction 

being greatest in plants of the variety Dylan. 

(iv) The imposition of cold temperature stress prior to SO. 

fumigations resulted in ·changes in the effects of SO. on chlorophyll 

content of both varieties. SO. fumigatlons of 500 ppb did not alter 

. chlorophyll content in Dylan plants previously subjected to 24- h or 72 h 
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cold stress; however, exposure to 100 ppb 502 resulted in increases in 

chlorophyll content. In, Dylan plants subject to 1 week cold stress 500 ppb 

502 induced small increases in chlorophyll content; exposure to 100 ppb did 

not result in any changes in chlorophyll content. 

In plants of Aquadulce Claudia, exposure to 100 ppb 502 did not 

alter chlorophyll content after 24 hand 72 h cold temperature treatments 

but after the 1 week treatments small decreases in chlorophyll content were 

observed. However, 500 ppb 502 decreased chlorophyll content in plants 

subject to 24 h or 72 h cold stress prior to 502 fumigation and did not 

affect plants subject to 1 week cold stress. 

5.6.2 Hill Reaction Activity Per Unit Chlorophyll 

The significance of the effects of variety, cold and sulphur 

dioxide on rates of Hill Reaction activity are shown in Table 5.8 in a 

summary of the GENSTAT multivariate analysis of variance for both the 100 

and 500 experimental series. 

TABLE 5.B. 
Summary of Multivariate Analysis of Variance of Data for Hill Reaction 
Activity per Unit Chlorophyll of Isolated Chloroplast Suspensions of Two 
Varieties of Vicia faba - subject to a range of cold temperature treatments 
prior to exposure to either 0, 100 or 500 ppb sulphur dioxide (4 h). 

500 ppb 502 100 ppb 502 

F IX = F IX = 

Variety 6·633 0·025 1"454 ns 

502 0'225 ns 0,782 ns 

Cold 1'257 ns 4·952 0·01 

Variety '* 502 0'006 ns 2'182 ns 

Variety '* Cold 2'669 ns 5·204 0'01 

502 • Cold 2·963 0·05 2·796 0·05 

Variety '* 502 '* Cold 3'089 0'05 O' 141 ns 
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It can be seen from the table that there were a number of 

significant differences in the results obtained for the two sets of 

experiments. Varietal differences in reaction rate were seen to occur in the 

500 series but were not significant in the 100 series. However, cold stress 

alone was not a significant influencing factor in the 500 series but was 

found to be. important in the 100 series. Although SO. alone was not seen to 

be a significant variable, in both experimental sets interactions between 

cold and SO. had significant effects on Hill reaction activity. These 

anomalies can be discussed in relation to the mean values for the Hill 

reaction activity of both varieties in each of the experimental runs. 

Figures 5.15 - 5.16 present the data obtained for both varieties for Hnl 

reaction activity per unit chlorophyll in both the 100 and 500 series. 

5.6.2.1 500 Series 

The data for Dylan plants exposed to 0 or 500 ppb SO. are shown 

in Figure 5.15 and that for Aquadulce plants in Figure 5.17. It can be seen 

that in the absence of either cold or pollutant stress the variety 

Aquadulce had a far greater reaction activity per unit chlorophyll than 

plants of the variety Dylan. 

The imposition of cold stress alone resulted in significant 

increases in Hill reaction activity in plants of the variety Dylan subject 

to 72 h or 1 week cold stress; the reaction rate being more than doubled in 

response to the I week cold treatments. In Aquadulce plants the reverse was 

seen to occur, Hill reaction activity being reduced in response to cold 

stress and the slowest rates being measured in plants subject to the 72 h 

and I week cold treatments. 

The response of both varieties to SO. in the absence of cold 

stress were, again, significantly different. In Dylan plants 500 ppb SO. did 

not substantially alter reaction rates but in plants of Aquadulce Claudia 

reaction rates were seen to be reduced by two thirds. 

Cold temperature pre-treatments were seen to significantly alter 

the effects of sulphur dioxide on Hnl reaction rates in both varieties of 

YiJUA. In Dylan plants subject to 72 h at 10·C prior to SO. fumigation, SO. 

induced a large increase in activity but following the 1 week cold 

treatments, SO. was seen to halve the reaction rate so that plants subject 

to both 500 ppb SO. and 1 week cold stress did not have significantly 

different reaction rates to those of un-stressed plants.· In plants of 
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Aquadulce Claudia, the cold pre-treatments halted the marked decreases in 

activity due to SO. which were seen to occur in non cold-stressed plants. 

At all cold treatments, SO. was seen to enhance Hill reaction activity, the 

decreases in activity due to cold alone being virtually negated following 

SO. exposure. 

5.6.2.2 100 Series 

The data for Hill reaction activity of isolated chloroplasts of 

both varieties for the 100 series are shown in Figures 5.16 and 5.18., Upon 

comparison with Figures 5.15 and 5.17 it can be seen that the results 

differed from those from the 500 series. Aquadulce plants were still seen to 

have significantly greater reaction rates than Dylan plants in the absence 

of either cold or pollutant stress but these differences were much less 

marked than those observed in the 500 series. For Dylan plants <Fig. 5.16) 

the increases in activity due to longer cold stress periods alone were not 

as marked as those observed in the 500 series although trends were the 

same. The effect of 100 ppb SO. in the absence of cold stress, was to reduce 

Hill reaction rates in Dylan plants although 500 ppb was not seen to 

influence activity. This decrease in activity due to 100 ppb SO. was also 

seen to occur after the 72 h cold pre-treatments however, in Dylan plants 

subject to 1 week cold stress prior to SO. fumigation, the imposition of SO. 

lead ,to a marked increase in Hill reaction activity per unit chlorophyll. 

The data for plants of Aquadulce Claudia for Hill reaction 

activity per unit chlorophyll for the 100 series are shown in Figure 5.18. 

The imposition of cold stress alone was not seen to influence rates of 

activity in the shorter cold treatments; however, rates were significantly 

reduced in plants subject to 1 week cold stress. Exposure to 100 ppb SO. 

lead to decreased activity in the absence of cold stress although this 

decrease was not as great as that observed in response to 500 ppb SO. 

(Fig. 5.17). Cold temperature pre-treatments prior to SO. fumigation resulted 

in a lessening in the inhibitory effect of SO.; SO. had no observable 

significant effect on Hill reaction activity follOWing all cold pre

treatments. 

Whilst the above section has discussed Changes in Hill reaction 

activity per unit chlorophyll, it was shown earlier (§5.5) that the 

chlorophyll content of both varieties of Vicia faba was markedly influenced 
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by the imposition of either cold or pollutant stress. For this reason, rates 

of Hill reaction activity were also ·expressed per unit leaf weight and per 

unit leaf area. 

5.6.3 Hill reaction activity per Unit Lea' Fresh Weight 

5.6.3.1 500 ppb SO. Series 

The data for Dylan and, Aquadulce Claudia plants for the 500 

series are shown in Figures 5.19 and 5.21. Prior to the imposition of either 

cold or pollutant stress significant varietal differences in reaction rate 

were observed in both experimental series, chloroplasts extracted from 

plants of the variety Aquadulce Claudia having significantly greater 

reaction rates than those from the variety Dylan. 

For isolated chloroplasts from the variety Dylan (Fig. 5.19) the 

imposition of cold stress alone was seen to reduce Hill reaction activity, 

the reduction being inversely proportional to the length of the cold 

treatment. Exposure to 500 ppb SO. in the absence of cold stress led to 

increased activity in Dylan plants,. however, following cold treatments the 

effects of SO. were significantly altered. There was no effect of SO. 

following the 24 h cold pre-treatments and cold temperature pre-treatments 

of 72 h resulted in there being greatly enhanced rates of activity in 

response to the SO. treatments. Conversely, the imposition of cold 

temperature stress for 1 week prior to SO. fumigation resulted in severe 

reductions in Hill reaction activity in Dylan chloroplasts in response to 

the SO. treatments. 

For the variety Aquadulce Claudia (Fig. 5.21> the imposition of 

cold stress alone was seen to alter. reaction rates, the nature of the 

change depending on the length of the cold stress periods. After 24 h at 

10·C Hill reaction activity was enhanced, there was no change in activity 

in response to the 72 h cold treatments and 1 week cold periods resulted in 

large reductions in Hill reaction activity of Aquadulce chloroplasts. The 

imposition of 500 ppb SO. for 4 h in the absence ot cold stress resulted in 

severe reductions in activity to one-third the rate ot unstressed plants. 

However, cold temperature stress prior to SO. exposure was seen to inhibit 

the effects of SO. on Hill reaction activity. There were no changes in 

reaction rates in response to SO. following the 24 h cold pre-treatments 
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and S02 was seen to enhance Hill reaction activity in plants subject to 

either 72 h or 1 week at 10'C prior to S02 fumigation. 

5.6.3.2 100 ppb S02 Series 

As for the data presented in §5.6.2 the data for the 100 ppb S02 

series differed from that for the 500 series and chloroplasts from plants 

of the variety Aquadulce were not seen to have slightly higher rates of 

activity than those for the variety Dylan. The data for chloroplasts 

extracted from plants of the variety Dylan are shown in Figure 5.20 and it 

can be seen that the imposition of 100'ppb S02 in the absence of cold 

stress resulted in much reduced rates of Hill reaction activity. Cold 

temperature stress alone was seen to reduce activity only in the 2~ h 

treatments. there being no significant change in activity in response to 

the 72 h cold treatments or the 1 week cold treatments. 

The imposition of cold stress resulted in changes in the 

subsequent effects of S02 such that no decreases in activity due to S02 

exposure were observed in any plant subjected to cold temperature stress 

prior to S02 fumigation. S02 was seen to enhance Hill reaction activity of 

isolated chloroplasts of Dylan plants following the 24 hand 1 week cold 

treatments and had no observable effect on Dylan plants subject to the 72 

h cold pre-treatments. 

The data for chloroplasts isolated from plants of the variety 

Aquadulce Claudia are presented in Figure 5.22 and it can be seen that cold 

temperature stress alone resulted in decreased rates of Hill reaction 

activity per unit leaf area. Similarly. the effect of 100 ppb 502 in the 

absence of cold stress was to inhibit Hill reaction activity. However. the 

effects of 502 were seen to alter when plants had been previously subject to 

cold temperature stress such that there were no observable effects of 502 

on Hill reaction activity of chloroplasts of plants subject to either 24 h 

or or 72 h or 1 week at 10'C prior to 502 fumigations. 

5.6.~ Hill Reaction Activity per Unit Lear Area 

The data for Hill reaction activity of isolated chloroplast 

suspensions per unit leaf area of both varieties of Vicia faba are shown in 

Figures 5.23 to 5.26 for both the 100 ppb and the 500 ppb S02 experimental 

series. In the absence of either cold or pollutant stress chloroplasts 
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extracted from plants of the variety Aquadulce were still seen to have 

significantly higher reaction rates than those taken from plants of the 

variety Dylan. 

5.6.4.1 500 FFb SO. Series 

The data for Dylan plants are shown in Figure 5.23 and it can be 

seen that when results are expressed per unit leaf area SO. did not alter 

Hill reaction rates in the absence of cold stress. Similarly. the imposition 

of either 72 h or 1 week periods of cold stress alone did not alter 

reaction rates in Dylan plants; however. a cold stress period of only 2' h 

resulted in severe reductions in HUI reaction activity. Sulphur dioxide did 

not further reduce activity following the 2' h cold pre-treatments but 

after the longer cold periods the effects of SO. were significantly altered. 

In Dylan plants subject to 72 h at 10'C prior to SO. fumigations there were 

marked increases in activity in response to the pollutant. Conversely. in 

plants subJect to 1 week at 10'C sulphur dioxide was seen to significantly 

reduce Hill reaction activity of the isolated chloroplast suspensions. 

The data for Aquadulce plants are shown in Figure 5.25 and it 

can be seen that in the absence of cold stress SO. severely inhibited Hill 

reaction activity. Cold stress alone was seen to result in significant 

changes in activity but the nature of these changes was dependent on the 

length of the cold treatment. Exposure to cold temperature stress for 2' h 

resulted in enhanced Hill reaction activity in Aquadulce Claudia plants, 

there being no change in response to the 72 h cold treatments and a 

marked reduction in activity occurring in response to the 1 week cold 

treatments. Again. cold temperature pre-treatments influenced the effects of 

the SO. treatments such that there was no change in activity in response 

to SO. following a 2' h cold pre-treatment and there were SUbstantial 

enhancements in activity in response to SO. fumigations following either 72 

h or I week cold stress periods. 

5.6.4.2 100 FFb SO. Series 

The data for Dylan plants are shown in Figure 5.2'. unlike the 
\ 

response to 500 ppb SO. shown in Figure 5.23. the imposition of 100 ppb SO. 

resulted in inhibitions in Hill reaction activity in the absence of cold 

stress. However. the reductions in rates of activity in response to 2' h 

cold temperature stress observed in the 500 series. were still seen to occur 
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in the 100 series, there being no observable effects of either 72 h or 1 

week cold stress periods on reaction rates. Cold temperature stress again 

altered the sensitivity of plants to SO, such that there were no 

significant changes in Hill reaction activity in response to SO. following 

the 24 hand 1 week cold treatments, although SO. was still seen to inhibit 

activity in plants subject to 72 h cold pre-treatments. 

The data for plants of the variety Aquadulce are presented in 

Figure 5.26, as for the 500 series SO, was still seen to severely inhibit 

reaction rates in the absence of cold stress. The effects of cold stress 

alone·were only significant in the 24 h treatments which resulted in a 

small decrease in activity, there being no significant changes in activity 

in response to either 72 h or 1 week cold stress periods. As for the 500 

series, cold·temperature pre-treatments were seen to alter the effects of 

subsequent SO. treatments such that no inhibition due to SO, was seen to 

occur in cold-stressed plants and SO. enhanced Hill reaction activity in 

Aquadulce plants previously subject to 24 h or 1 week at 10·C. 

5.7 LEAF PROTEIN CONTENT 

The experimental design consisted of four cold treatments (0, 24 

h, 72 h & 1 week) in combination with two sulphur dioxide treatments (0 & 

500 ppb) for both varieties of Vicia faba. Each treatment was duplicated 

and six determinations of protein content were made for each treatment 

giving a total of 192 data points. The data was analysed using both 

Multivariate Analysis of Variance using the 'GENSTAT' programme described 

in §5.5 for chlorophyll content and two sample 't' tests. The analysis was 

performed on data for both protein content per unit leaf weight and per 

unit leaf area and the data discussed separately below. 

5.7.1 Protein Content per Unit Leaf Fresh Weight 

The summaries of the output from the ANOVA programme are shown 

in Tables 5.9 and 5.10. Table 5.9 shows the analysis of variance for protein 

content per gram leaf tissue. It can be seen that there were significant 

varietal differences in protein content and that both cold and pollutant 

stress resulted in changes in leaf protein content both singly and in 
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TABLE 5.9 

Summary of Multivariate Analysis ot Variance of Data for Protein Content of 
Two Varieties of Vicia faba Subject ·to both Low Temperature (10'C: 0, 2' h, 
72 h or 1 week) and/or Sulphur dioxide (4. h: 0, 500 ppb) Stress where 
Protein Content is Expressed per Unit Leaf Fresh Weight (mg g-'). 

Source of Variation DF SS VR Sig. 

Sulphur dioxide 1 2815'6 2815'6 3·856 0·05 
Variety 1 '650·1 4.650· 1 6'642 0·01 
Cold 3 1724.7'3 574.9·1 7·873 0'001 
SO. • variety 1 911·6 911·8 1'249 ns 
SO •• cold 3 964.2·9 3261·0 4.·4.93 0·001 
Variety. cold 3 11675'4. 3891·6 5'329 0·001 
SO •• Variety. cold 3 354.'3 116'1 0'162 ns 
RESIDUAL 172 (4.) 125604.' 3 730·3 
TOTAL 167 173301'8 926·7 

Grand Mean = 111' 1 
Total No. Observations = 192 
Missing Values = 4. 

TABLE 5.10 

As for Table 5.9 but Data is Summary of Multivariate Analysis of Protein 
Content per Unit Leaf Area (mg cm- Z ). 

Source of Variation DF SS MS VR Sig. 

Sulphur dioxide 1 1·926 1·926 4.·687 0'05 
Variety 1 13-558 13'556 32'987 0·001 
Cold 3 15·982 5-327 12·961 0·001 
SO. • variety 1 1'276 1·276 3·107 ns 

. SO •• cold 3 6·093 2'031 4.'942 0·01 
Variety. cold 3 4.·942 1-64.7 4.·006 0'01 
SO. • Variety • cold 3 1· 4.35 0·4.76 1- 164. ns 
RESIDUAL 172 (4.) 70·694. O· 4.11 
TOTAL 167 115'913 0-619 

Grand Mean = 2·54. 
Total No. Observations = 192 
Missing Values = 4. 
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combination. However, a combination of all three factors of variety, cold 

and sUlphur dioxide did not show significant interactions. These results 

are explained more fully when plots of protein content against the length 

of the cold pre-treatment for both-SO. stressed and unpolluted plants are 

examined. These are presented in Figures 5.27 to 5.30. 

Figures 5.27 and 5.28 show the data for both Dylan and Aquadulce 

Claudia plants for protein content per gram leal tissue. Each data point is 

a mean of twelve values and the standard errors of the mean (SEM) are also 

shown in the figures. It can be seen that in the absence of either cold or 

pollutant stress, plants of the variety Dylan had a significantly higher 

protein content than plants of the variety Aquadulce Claudia; the mean 

value for Dylan was 96·7 mg g-' and 86·0 mg g-' for Aquadulce plants. A 

twosample 't' test gave a value of 2 ·083 which was significant at the 97·5% 

level. 

The effect of a four hour fumigation with 500 ppb 502 in the 

absence of added cold stress, was to markedly increase the total soluble 

protein content in the leaves of plants of both varieties of Vicia up to 

123·2 mg. g-' in Dylan and 112·2 mg g-' in Aquadulce Claudia plants. Again, 

protein content was significantly higher in Dylan plants than in Aquadulce 

Claudia (t = 1'663, P < 0 '05 ). 

The imposition of cold stress in the absence of sulphur dioxide 

fumigations resulted in changes in protein content in both Dylan and 

Aquadulce Claudia plants. In plants of the variety Dylan (Fig. 5.27) a period 

of 24, h at 10'C resulted in small but significant reductions in total 

soluble protein content. However, a period of 72 h cold stress resulted in a 

marked increase in protein content from a mean value of 96'7 mg g-' to 

115'6 mg g-', this representing an increase of almost 20%. Periods of 1 

week at 10'C did not result in any significant changes in soluble protein 

content in Dylan plants although the variance of the data increased 

markedly as can be seen in Figure 5.27. 

Varietal differences were found to be most marked when Changes 

in protein content due to cold stress alone were considered. Unlike the 

responses described above for Dylan plants, the effects of cold stress on 

plants of the variety Aquadulce (Fig. 5.28) were to induce significant 

increases in total soluble leaf protein content. The extent of this increase 

was independent of the length of the cold period; for all three cold 

treatments there was an increase in protein content between .. 2·5 and .... ·2%. 
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Total soluble protein content of leaves of two varieties of Vicia faba, Dylan 
(Fig.5.27) and Aquadulce Claudia <Fig.5.28) exposed to 802 (0, 500 ppb:4 h) 
and/or a range of cold temperature (lO'C) pre-treatments. Results are 
expressed per unit leaf fresh weight .. (mg protein g-') [each point is a 
mean of twelve values and standard errors of the means are also shown]. 
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These changes in protein content in response to cold stress in 

both varieties resulted in Aquadulce Claudia plants having significantly 

higher leaf protein content than the variety Dylan following periods of 24 

hand 1 week at 10'C (t = 3·176. P < 0·005 for 24 hand t = 1-583. P < 0·01 

for 1 week). After the 72 h cold treatment there were no significant 

differences in protein content between the varieties. 

The imposition of cold temperature stress prior to sulphur 

dioxide fumigation resulted in changes in the effects of SO. on protein 

content in both varieties of Vlcia. In the variety Dylan (Pig. 5.27) ,the 

marked Increase In total soluble protein content in response to 500 ppb SO. 

observed in the absence of cold stress was not seen to occur following 24 h 

or 1 week cold temperature stress prior to SO. fumigation. SO. did not' 

affect protein content in Dylan plants previously subjected to 24 h 'or I 

week treatments. A significant increase in protein content due to SO. was 

observed In Dylan plants subject to 72 h cold stress prior to SO. 

fumigatlons. This was an Increase of 17% in comparison with the 27% 

increase observed In the absence of cold stress. However. because the 72 h 

cold treatment also increased leaf protein content in the absence of SO •• 

the total increase In protein content after both SO. and 72 h cold stress 

was 40% rising from 96·7 DIg g-' to 135·5 mg g-' (mean values), 

In plants of the variety Aquadulce Claudia (Pig. 5.28) the marked 

increase in protein content due to SO. in the absence of cold stress was 

not seen to occur following periods ~f cold stress prior to SO. fumigations. 

Sulphur dioxide had no significant effect on protein content following cold 

stress periods of 24 h or 72 h. However. SO. fUJlligation resulted in 

reductions In leaf protein content In plants previously subjected to 1 week 

'cold temperature stress. although cold stress alone increased leaf protein 

content such that the combined effect of both SO. and 1 week cold still 

resulted in a significantly higher protein content than was observed in 

the absence of either stress. The mean protein content of un-stressed 

plants was 8S'1 mg g-' and was 105'8 mg g-' following both the 1 week 

cold pre-:treatment and 500 ppb SO •• 

In the absence of either stress Dylan plants were shown to have 

significantly higher total soluble protein per gram leaf tissue than 

Aquadulce plants. However. the Influence of cold temperature stress on the 

etfects of sulphur dioxide resulted in the variety Aquadulce Claudia having 
" 

a significantly higher leaf protein content than Dylan plants following a 
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2~ h cold pre-treatment in combination with a ~ h fumigation with 500 ppb 

SO, (t = 3·208, P < 0·005 ). There were no significant differences between 

the varieties in protein content following 72 h or 1 week cold stress and 

sulphur dioxide fumigations. 

5.7.2 Protein Content per Unit Lear Area 

When protein content was calculated per cm' leaf area 

multivariate analysis of variance produced the same trends (Table 5.10) as 

were found for protein per gram leaf fresh weight <Table 5.9). Figures 5.29 

and 5.30 show this measure of protein content for each cold pre-treatment 

for both varieties of Vicia. It can be seen that responses to cold 

temperature stress of Aquadulce Claudia plants (Fig. 5.30) were the same as 

described above (§5.7.1) ie. an increase in protein content in response to 

cold stress. However, in plants of the variety Dylan, the reduction in 

protein content observed per gram fresh weight following the 2~ h cold 

pre-treatment was not found to be significant when results were analysed 

for protein content per cm' leaf area (Fig. 5.29). There was also a 

significant increase in leaf protein content in Dylan plants in response to 

the 1 week cold pre-treatment although this increase was not found to be 

significant when results were expressed per unit leaf weight. 

Responses to sulphur dioxide in plants of the variety Dylan were 

unchanged when results were expressed per unit leaf weight or leaf area 

but the decrease in protein content in Aquadulce Claudia plants in response 

to SO. after the 1 week cold pre-treatment was not found to be significant 

when results were expressed per unit leaf area. 

An important point is that varietal differences in protein 

content in the absence of either cold or pollutant stress are not seen to 

occur when results are expressed per unit leaf area although Dylan plants 

were shown to have a greater leaf protein content than Aquadulce plants 

when results were expressed per unit leaf weight. However, plants of the 

variety Aquadulce were found to have significantly higher total leaf soluble 

protein content than Dylan plants after all cold pre-treatments. These 

varietal differences were not seen to occur following SUlphur dioxide 

fumlgations in plants previously subjected to the 72 hand 1 week cold 

treatments. 
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Figures 5.29 and 5.30. 
Total soluble protein content of leaves of two varieties ot Vicia taba, Dylan 
(Fig. 5.27) and Aquadulce Claudia (Fig. 5.28) exposed to SO, (0, 500 ppb:4, h) 
and/or a range of low temperature (10 'C) pre-treatments. Results are 
expressed per unit leaf area (mg protein cm- 2 ) [each point is a mean of 
twelve values and standard errors of the means are also shownl. 

Page 324, 



Results Chapter 5 

In short, both SUlphur dioxide and cold stress influenced total 

soluble leaf protein content in both varieties of Vicia but the effects of 

sulphur dioxide were reduced by the. imposition of cold stress prior to SO, 

fumigation. The interactive effects of both cold and SO, were dependent on 

variety as both varieties responded differently to the combined stresses. 

5.8 CARBOHYDRATE CONTENT 

The experimental design consisted of four cold treatments (0, 24 

h, 72 h or 1 week at 10'C) in combination with two sulphur dioxide 

treatments (0 or 100 ppb S02: 4 h) for both varieties of Vicla faba. Each 

treatment was duplicated and four replicate determinatlons of carbohydrate 

content were made for each treatment giving a total of 126 data points. 

The summaries of the 'GENSTAT' multlvarlate analysis of variance are shown 

in Tables 5.11 and 5.12 for data for carbohydrate content per unit leaf 

weight and per unit leaf area. It can be seen from the tables that all 

three factors - variety, cold and SUlphur dioxide - resulted in significant 

changes in the carbohydrate content of isolated chloroplast suspensions 

both singly and in combination. 

5.6.1 Carbohydrate Content per Unit Leaf Weight 

The mean values for carbohydrate content per gram leaf weight 

are shown in Figures 5.31 and 5.32 for chloroplasts Isolated from Dylan and 

Aquadulce Claudia plants; the standard errors of the mean are also shown. 

It can be seen from the figures that in the absence of either cold or 

pollutant stress, plants of the variety Dylan had a significantly higher 

carbohydrate content than plants of the variety Aquadulce, the mean value 

for Dylan being 12'5 mg g-' and 3'7 mg g-' for Aquadulce Claudia plants. A 

two sample t test gave a t value of 2-569 which was significant at the 95% 

level. 

The effects of a four hour fumigation with 100 ppb sulphur 

dioxide in the absence of added cold stress, were to reduce carbohydrate 

contents in both varieties of Vicia faba (t = 2-263, P < 0'025 for Dylan 

plants; t = 4'555 , P < 0-001 for Aquadulce plants). Dylan plants exhibited a 

greater reduction than plants of Aquadulce, the mean values after SO, 
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TABLE 5.11 

Summary of Multivarlate Analysis of Variance of Data for Carbohydrate 
Content of Two Varieties of Vicia faba Subject to both Low Temperature 
(10'C: 0, 24 h, 72 h or 1 week) and/or SO. (0, 100 ppb: 4- h) where 
Carbohydrate Content of Isolated Chloroplast Suspensions is Expressed per 
Unit Leaf Fresh Weight (mg g-' )_ 

Source of Variation DF SS MS VR Sig_ 

Sulphur dioxide 1 63-4-8 63-"8 6- 02" 0-025 
Variety 1 79-32 79-32 7-528 0-01 
Cold 3 U6-19 138- 73 13-166 0-001 
SO. * variety 1 65-74- 65-74- 6-239 0-025 
SO. * cold 3 156-03 52-01 4--936 0-01 
Variety * col d 3 334--26 111-"2 10-574- 0-001 
SO. " Variety " cold 3 113-22 37-74- 3-582 0-025 
RESIDUAL 112 1180- 18 10-74-
TOTAL 127 2.t08-4-2 18-96 

Grand Mean = 5-79 
Total No_ Observations = 128 

TABLE 5.12 

As for Table 5_11 but Data is Summary of Multivariate Analysis 
of Carbohydrate Content per Unit Leaf Area (mg cm-')_ 

Source of Variation DF SS MS VR Sig_ 

Sulphur dioxide 1 0-036 0-035 6-588 0-05 
Variety 1 0-009 0-009 1- 834- ns 
Cold 3 0-365 0- 122 22-352 0-001 
SO. * variety, 1 0-026 0-026 4--781 0-05 
SO. " cold 3 0-064- 0-021 3-913 0-025 
Variety * cold 3 0-H2 0-04-7 8-719 0-001 
SO. * Variety * cold 3 0-065 0-021 3-962 0-025 
RESIDUAL 112 0-610 0-005 
TOTAL 127 1- 319 0-010 

Grand Mean = O-H 
Total No_ Observations = 128 
Missing Values = 4-
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Figures 5.31 and 5.32. 
Carbohydrate content of isolated ohloroplast extracts of two varieties of 
Vioia faba, Dylan (Fig. 5.31) and Aquadulce Claudia (Fig. 5.32) exposed to 
502 (0, 100 ppb: 4 h) and/or a range of low temperature (lO'C) pre
treatments. Results are expressed per unit leaf weight (mg g-' ) [each point 
is a mean of eight values: standard errors of the means are also shown]. 
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fumisation beins 4-·7 ms S-· for Dylan and 2·6 ms S-· ,for Aquadulce. These 

figures represented a 60% reduction in Dylan plants and a 30% reduction in 

Aquadulce Claudia plants. However, carbohydrate content was still 

sisnificantly hisher in Dylan than in Aquadulce Claudia plants (t = 4-·4-34-, 

P < 0·002). 

The imposition ot cold stress in the absence ot SO. fumisations 

resulted in sisniticant chanses in the carbohydrate contents of both Dylan 

and Aquadulce plants. However, both varieties were seen to respond 

differently to the cold temperature stress. In Dylan plants (FiS. 5.31> cold 

periods of 24- hand 72 h led to sisnificant reductions in carbohydrate 

content (t = 2·873 for 24. hand t = 2·4.15 for 72 h, P < 0·05), although 

periods of 1 week at 10·C did not result in any significant changes in 

carbohydrate content in Dylan plants. In plants ot Aquadulce Claudia (FiS. 

5.32) the imposition ot 24. h cold stress did not result in significant 

chanses in carbohydrate content, however, both 72 hand 1 week at 10·C 

resulted in significant increases in carbohydrate content (t = 2·660, P < 
0·05 tor 72 hand t = 8·559, P < 0·001 for 1 week). 

These changes in carbohydrate content in response to cold stress 

resulted in plants of Aquadulce Claudia havins a significantly higher 

carbohydrate content than plants of the variety Dylan followins periods of 

cold stress of 24. hand 72 h (t = 2 ·14.1, P < 0·05 tor 24. h; t = 1·983, P < 
0·10 for 72 h). Following the 1 week cold pre-treatments the relationship 

between the varieties was that observed without cold temperature stress ie. 

Aquadulce plants were seen to have sisnificantly less carbohydrate per sram 

leaf tissue than plants of the variety Dylan (t = 2 ·773, P < 0 ·05). 

The cold temperature pre-treatments were found to influence the 

effects of sulphur dioxide on carbohydrate content in both varieties of 

.vicia. In Dylan plants the decrease in carbohydrate content due to SO, 

observed in the absence of cold stress was not seen to occur follow ins 

periods of 24 h or 72 h at 10·C prior to SO. fumigations. A small but 

significant increase in carbohydrate content was observed in response to 

SO, for the plants subject to 24 h cold stress (t = 1·522, P < 0·10). Sulphur 

dioxide was still seen to reduce carbohydrate content in plants subJect to 

1 week cold stress (t = 2·01, P < 0·05) although this reduction of 35% was 

significantly less than that observed in the absence of cold stress (60%). 

In plants of the variety Aquadulce Claudia the decreases in carbohydrate 

content in response to SO, without -cold pre-treatments were not seen to 

Page 328 



.Resul ts Chapter 5 

occur in plants subject to 24 h cold stress prior to SO. fumigations. 

Sulphur dioxide exposure increased ·the carbohydrate content of the 24 h 

cold-stressed plants from a mean value of 4·1 mg g-' to 6·1 mg g-' (t = 

2'488, P < 0·05). In plants subject to 72 h cold stress, sulphur dioxide was 

still seen to significantly reduce carbohydrate contents in Aquadulce (t = 

1.951 , P < 0.05); however, because carbohydrate content was increased in 

response to the 72 h cold stress alone, values for plants subject to both 72 

h cold and 100 ppb SO. were not significantly different to those for un

stressed plants. As for the 24 h cold pre-treatment, exposure to SO. after a 

1 week cold pre-treatment lead to increased carbohydrate contents in 

Aquadulce (t = 2'016, P < 0'05). 

In the absence of either cold or pollutant stress Dylan plants 

were shown to have significantly higher carbohydrate contents per gram 

leaf fresh weight than Aquadulce plants. However, the influence of both cold 

temperature and pollutant stress resulted in the variety Aquadulce Claudia 

having significantly higher carbohydrate content than Dylan plants after 

the 24 h cold and 100 ppb SO. treatment (t = 3.792, P < 0.01). There were 

no significant differences in the carbohydrate contents of either variety 

following both 72 hand 1 week cold treatments with 100 ppb SO •• 

5.8.2 Carbohydrate Content per Unit Leaf Area 

When carbohydrate content was calculated per cm' leaf area, 

multivariate analysis produced similar results (Table 5.12) to those 

obtained for carbohydrate content per gram leat weight (Table 5.11); 

however, varietal differences were not found to be significant when results 

were calculated per cm> leat area. When the mean data for each treatment 

were examined it 'was seen that all the varietal differences described above 

still occurred when data were expressed per unit leaf area. Figures 5.33 and 

5.34 show this measure of carbohydrate content for all cold treatments, 

with or without SO., for both varieties of Vicia. It can be seen from the 

figures that in the absence of either stress, isolated chloroplasts from 

Dylan plants still had significantly more carbohydrate per cm> leaf area 

than Aquadulce plants (t = 2'322, P < 0'05). The responses of both varieties 

to either cold or pollutant stress alone were not significantly different to 

the responses described above for carbohydrate content per unit leaf 

weight. The only significant difference in the data for carbohydrate 
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Figures 5.33 and 5.34. 
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Carbohydrate content of isolated chloroplast extracts of two varieties of 
YkiA. faba, Dylan (Fig. 5.33) and Aquadulce Claudia (Fig. 5.34.) exposed to 
SO, (0, 100 ppb: 4. h) and/or a range of low temperature (lO'C) pre
treatments. Results are expressed per unit leaf area (mg cm-') [each point 
is a mean of eight values: standard errors of the means are also shownl. 
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content per unit leaf weight and per unit leaf area is that for Aquadulce 

Claudia plants subject to 1 week cold stress. When data were expressed per 

unit leaf weight a significant increase in carbohydrate content due to SO. 

was observed; however, when results were expressed per unit leaf area there , 
were no significant differences in carbohydrate content of polluted or 

control plants subject to 1 week cold stress. 

It can be seen from the results described above that both cold 

and pollutant stress affect carbohydrate contents of chloroplasts isolated 

from both varieties of Vicia. Sulphur dioxide reduced carbohydrate content 

in both Dylan and Aquadulce but varietal dIfferences in response to cold 

stress were observed. The combination of both cold and pollutant stress also 

resulted in varietal differences in carbohydrate content. 

Page 331 



5.9 CONCLUSIONS & DISCUSSION 

As stated earlier, the aims of this section of the experimental 

work were to gain information as to the site and mechanisms of interaction 

of both low temperature and pollutant stress influencing photosynthetic 

rates in the two varieties of Vicia faba studied. Firstly, chlorophyll 

content was measured to give an indication of the plants ability to trap 

light energy. Measurement of Hill reaction activity gave an indication of 

the ability to transfer light energy to the chemical energy necessary to 

drive photosynthetic carbon reduction. An indication of the plant's 

capacity to incorporate CO. in the Calvin cycle was possible through 

measurement of total soluble leaf protein, the large part of which is RuBP 

carboxylase, the enzyme which effects the first step in CO. fixation in C. 

photosynthesis. Finally, chloroplast carbohydrate concentration provided a 

measure of photosynthetic efficiency, being a meaSUre of the end products 

of photosynthesis. The effects of both cold and pollutant stress alone and 

in combination on each of the above parameters are discussed in tUrn below. 

All of the above reactions take place within the chloroplasts of 

plant leaves. It is considered that photosystem I is located towards the 

outer surface of the chloroplast thylakoids and photosystem 11 towards the 

inner surface; whilst RuBP carboxylase is thought to occur on the outer 

surface of the thylakoid membrane (Whittingham, 1977). Thus, it is apparent 

that apart from purely biochemical effects of cold and pollutant stresses on 

the photosynthetic mechanism, any stress induced structural or 

morphological changes could influence photosynthetic rates. Indeed, 

morphological changes in response to cold temperature stress were observed 

in both varieties of Vicia faba used in this study and are outlined below. 

Several authors have observed structural changes in response to cold stress 

<ego Graham & Patterson, 1982). However, more importantly, changes in 

chloroplast ultrastructure have been observed <ego Taylor & Craig, 1971>; 

these changes include chloroplast swelling and unravelling of the thylakoid 

system whilst the thylakoid intraspaces dilate markedly. Similarly, sulphur 

dioxide has been shown to alter chloroplast ultrastructure and to cause 

swelling of the chloroplasts and thylakoid membranes <ego Wellburn, MaJernik 

& Wellburn, 1972; Black & Black, 1979a,b). Such physical changes must be 

borne in mind when conSidering the effects of pollutant and cold stress. 
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5.9.1 Morphological Changes in Response to Cold Stress 

The data presented in §5.( showed how the imposition of a one 

week period of low temperature <to·C> stress resulted in significant 

morphological changes in the leaves of both varieties ot Vicia faba. 

Measurement of leaf area and leaf weight ot both cold-stressed and non 

cold-stressed plants ascertained that cold treated leaves had increased leaf 

weight per unit leaf area implying that leaves were thicker in cold treated 

plants. This was confirmed when measurements of leaf thickness were made. 

However, comparison of both sets of data produced some interesting 

differences. In the absence of cold stress, leaves from plants of the variety 

Aquadulce Claudia were found to be significantly thicker than leaves from 

plants of the variety Dylan; analysis of the data showing the thickness of 

Aquadulce leaves to be, on average, 8'8% greater than those of Dylan leaves. 

However, analysiS of the data tor ratio of leaf weight to leaf area showed 

Aquadulce leaves to have 20% more leaf weight to leaf area than Dylan 

plants. 

These data suggest differences in leaf densities between 

varieties. The reliability of these data is obviously open to question 

because leaf fresh weight was measured. and not dry weight, therefore these 

anomalies could merely be due to differences in leaf water content. But 

differences in leaf densities could well be due to differences in leaf 

structure between the varieties ie. a greater density of cells in the leaves 

ot Aquadulce plants or a greater amount of photosynthetic maChinery per 

unit leaf area. Either of these structural differences would have 

significant consequences on internal resistances to CO, and SO. transfer as 

if leaves are more dense ie. cells are more tightly packed, it would be 

expected that there would be a greater resistance to SO. uptake. Indeed, 

this would explain in part, the data presented in chapter 3 which showed 

.. SO. flux to Aquadulce leaves to be significantly less than that to Dylan 

leaves. However, it may be supposed that any increase in the amount of 

photosynthetic maChinery would result not only in significant increases in 

the ratio of leaf fresh weight but also increases in the. amount of soluble 

leaf protein (mainly enzymes of carbon metabolism> or chlorophyll content 

(Badger et al., 1982 >; but, as discussed below, this was not seen to occur in 

Aquadulce plants in comparison to Dylan plants. 

The imposition of cold temperature stress did not alter this 
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difference between the varieties. Following the 1 week cold treatment leaves 

of Aquadulce plants were found to be 7·8% thicker than Dylan leaves but 

there was 16% more leaf weight per unit leaf area in Aquadulce plants. 

However, the effects of cold stress were to increase mean leaf thickness by 

22·3% and 21·1% in Dylan and Aquadulce plants respectively but the ratio of 

leat weight to leaf area was increased by mean values of only 14·1% and 

11·0% respectively suggesting a reduction in leaf density due to the 

imposition of cold stress. It may be that these differences are due to 

changes in plant water relations as the development of secondary water 

stress is a characteristic of low temperature stress (Levitt, 1980) but no 

visible signs of wilting or loss of turgor was apparent in either Dylan or 

Aquadulce plants subject to 1 week cold stress. Similarly, Musser d 

al. (1983) stUdied the short and long term effects of a period of 1 week at 

10·C on soybean plants. When plants were harvested 65 days after the end 

of the cold treatment there was a significant increase. in the ratio of leaf 

dry weight to leaf area in comparison to non cold-stressed plants. These 

authors also found cold stress to have no significant effect on leaf 

emergence but leaf elongation rate was much reduced. Cell enlargement 

depends on biochemical factors controlling cell wall extensibility and 

deposition of wall components, and physical factors controlling actual 

expansion. Musser et al. also found that sufficient turgor for enlargement 

was maintained in chilled plants and thus they concluded that low 

temperature inhibited the biochemical factors governing leaf enlargement. 

The increases in leaf thickness in response to cold stress 

observed in this study are typical of structural changes occurring during 

cold acclimation in chilling resistant plants (Crookston et al., 1970\.; Levitt, 

1980; Graham & Patterson, 1982). Graham & Patters on also described 

increases in mesophyll cell size in response to cold stress and increases in 

specific leaf dry weight have been attributed to an accumUlation of starch 

grains within the leaves of cold stress plants as a result of decreased 

translocation (Crookston d al., 1970\.). 

Although, in this study, cold stress did not result in obvious 

wilting or loss of turgor at the end of the 1 week cold period, the 

appearance of visible inJury symptoms within 24 h of plants being returned 

to warmer temperatures was noted (Plate 5.1). These necrotic lesions at the 

leaf margin are consistent with symptoms of water stress which have often 

been ·found to appear in response to cold stress and it was apparent that 
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the plants had been water stressed at some time during the cold treatment. 

These data are consistent with the results of Musser et a1. (1963) as 

described above, these authors observing no wilting or loss of turgor in 

soybean plants at the end of a 1 week cold temperature period although 

wilting was observed during the first afternoon following the initiation of 

chilling, this proving to be temporary. Crookston et a1. (1974) also observed 

signs of wilting in Phaseolus vulg:aris plants exposed to 5·C overnight but 

as for Vicia, these decreases in water potential and obvious signs of 

wilting were not apparent at the end of the cold temperature treatment but 

occurred on rewarming. 

Secondary water stress as a result of chilling temperatures is 

thought to be due to changes in root permeability thus plant roots can not 

absorb water sufficiently rapidly at chilling temperatures to keep up with 

transpirational loss even though this is also decreased (Levitt, 1960). The 

development of injury symptoms in Vicia ~ observed in this study, may 

therefore be due to increased transpiration as stomatal resistance was 

decreased on rewarming. It is reasonable to suppose that on transfer to the 

exposure chamber, leaf temperature was increased almost immediately but 

root temperature would increase much more slOWly. This temperature 

differential between the leaves and roots would exacerbate the development 

of water stress symptoms. 

The development of water stress and changes in leaf water 

potential in response to chilling temperatures further complicate the 

elucidation of pollutant/temperature interactions since water stress has 

been shown to alter plant pollutant responses. The resulting reduction in 

leaf turgor may have resulted in changes in stomatal behaviour and thus 

have aUected pollutant uptake. Water stress may have also altered leaf 

cellular components leading to further changes in plant pollutant responses 

(see TERG, 1966). However, as for other environmental stresses, there is 

still insufficient information available to provide a full understanding of 

how water stress may modify plant pollutant responses or, indeed, vice 

versa. It is clear that water stress development must not be overlooked 

when the mechanisms behind pollutant/low temperature stress interaction 

are being considered since all parameters investigated in this study may be 

influenced by changes in plant water relations. 
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5.9.2 Chlorophyll Content 

Significant varietal differences in the chlorophyll content of 

whole leaves were observed in the absence of either cold or pollutant 

stress. The data in §5.5.1 showed that plants of the variety Dylan had 

significantly greater chlorophyll content per unit leaf weight than plants 

of the variety Aquadulce Claudia. However. when results were expressed per 

unit leaf area no significant varietal differences in chlorophyll content 

were observed. As described above. these data do not support the theory 

that the greater density of each Aquadulce leaf was a result of increased 

photosynthetic capacity per unit leaf area. 

This difference in the data for chlorophyll content per unit leaf 

weight and per unit leaf area may well result from the location of the 

chlorophyll containing chloroplasts within the leaf. It is well documented 

that in the dorsi-ventral leaves characteristic of dicotyledons such as 

beans. the maJority of chloroplasts are to be found in the palisade cells 

directly below the upper epidermis of the leaf. the inner spongy mesophyll 

cells containing fewer chloroplasts. Figure 5a" shows a schematic of a 

transverse section of such a leaf and the implications of the greater leaf 

thickness and density found to occur in Aquadulce plants in comparison to 

Dylan plants. It can be seen that one unit of leaf weight from an Aquadulce 

leaf incorporates significantly less laminar area than one unit of leaf 

weight from Dylan plants; thus less chlorophyll containing tissue is 

contained in 1 g of Aquadulce leaf tissue in comparison to 1 g of Dylan 

tissue. However. the same amount of chlorophyll containing tissue would be 

present per unit leaf area. 

Similarly. the data presented in chapter 3 showed that Aquadulce 

plants had significantly greater natural photosynthetic rates than plants 

of the variety Dylan prior to the imposition of sulphur dioxide stress. The 

data for chlorophyll content showed that this higher photosynthetic rate 

was not due to increased chlorophyll content ie. energy trapping facility. 

However. it is well known that a large part of the chlorophyll in a 

photochemical system is not reactive. much of it existing as absorbing or 

receptor molecules all of which are interconnected in a unit through which 

energy is readily transferred from one molecule to another (Whittingham. 

1977). Ultimately. this energy finds its way to a specific molecule which is 

a reactive form and constitutes a reaction centre. It is thought that less 
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than 1% of the total pigment is concerned with this reaction centre and 

that several hundred molecules of chlorophyll are organised together into a 

single group, maximum photosynthetic yield being of the crder of one 

molecule of oxygen for every two thousand molecules of chlorophyll. Thus a 

lower total leaf chlorophyll content may not necessarily be reflected by a 

lower photosynthetic rate under optimum environmental conditions. 

The effects of a range of sulphur dioxide concentraticns on the 

chlorophyll content of whole leaves of both varieties of Vicia faba under 

optimum environmental conditions were described in §5.5. It may have been 

expected that fumigations of such short duration (~ h) would have little 

influence on leaf chlorophyll content but, as the data presented in Figures 

. 5.3 to 5.6 showed, not only. were significant changes in chlorophyll content 

observed but significant varietal differences in response to SO. were also 

detected. The imposition of 100 ppb SO. for ~ h did not induce changes in 

the chlorophyll content of leaves of Dylan plants but was seen to induce 

significant increases in the chlorophyll content of Aquadulce leaves. 

Although there did not appear to be a direct link between chlorophyll 

content and photosynthetic rate in all cases, these changes correlate to 

the data presented in chapter 3 which showed net photosynthetic rates in 

Dylan plants to decrease by up to 10% in response to 100·ppb SO. but the 

same concentration of SO. resulted in enhanced net photosynthetic rates in 

Aquadulce plants. 

Both varieties also showed significant differences in their 

response to ~ h fumigations with 300 and 500 ppb .50 •• There was no 

apparent effect of 300 ppb SO. on the chlorophyll content of Aquadulce 

leaves but a significant increase in the chlorophyll content of Dylan leaves 

subject to the same treatment. Similarly, exposure to 500 ppb SO. resulted 

in an increase in the chlorophyll content of Aquadulce leaves but induced a 

significant decrease in the chlorophyll content of Dylan leaves. These 

changes do not correlate with changes in net photosynthetic rates as 

described in chapter 3 where increasingly severe photosynthetic impairment 

was seen to occur in both varieties in response to increased sulphur 

dioxide concentrations. It may be concluded that the effective mode of SO. 

induced impairment of net photosynthetic rates was not solely that of 

chlorophyll destruction resulting in reduced energy trapping facility. 

A review of the available data for SO. effects on leaf chlorophyll 

content showed that many authors have observed reductions in chlorophyll 
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content in response to 50 2 , However, the majority of data appeared to 

reflect changes in response to long-term fumigations and not short 50 2 

episodes. A number of authors have concluded that chlorophyll a is much 

more sensitive to 502 than chlorophyll b. Rao & LeBlanc (1965) found SO. to 

induce the degradation of chlorophyll a to phaeophytin; this was thought 

to be the result of reduced pH thus chlorophyll degradation was explained 

by acidification. Malhotra (1977) also observed chlorophyll a to be more 

sensitive to aqueous 502 than chlorophyll b. The concentration of 

phaeophytln a was relatively unaffected by low 50 2 concentrations but was 

seen to increase with increasing 50 2 concentration. Whilst phaeophytin b 

was absent, chlorophyllide b content increased slightly. However, Malhotra 

found that the SO. effects on pigment breakdown were not a function of 

acidification but were a specific effect since the Use of HCl to reduce pH 

to that of 500 ppm aqueous 502 resulted in only 5% degradation but 500 ppm 

aqueous 502 resulted in 50% chlorophyll degradation. Malhotra suggested 

that low SO, concentrations effected degradation by means of increased 

chlorophyllase activity since phaeophytin a formation was low at low SO, 

concentrations. The preferential sensitivity of chlorophyll a to SO. in 

comparison to chlorophyll b was also observed by Rabe & Kreeb (1979) and 

Shimazaki et al. (1960a,b). In contrast, other researchers have concluded 

that whilst chlorophyll content Is decreased In response to SO.. It is the 

result of a more general degradation rather than a differential sensitivity 

of chlorophyll a and chlorophyll b to acidification of cell contents due to 

SO, fumigation (Horseman & Wellburn, 1975; Bell, Rutter & Relton, 1979; 

Suwannapinunt & Kozlowskl, 1960; Pratt, Kromroy & Krupa, 1983; Saxe, 1983b; 

Norby, Richter & Luxmoore, 1965). No significant differences In SO,-Indu·ced 

changes in chlorophyll a and chlorophyll b were observed. in the two 

varieties of Vlcla faba used In this study. H!illgren & Gezelius (1962) did 

not observe differences in.Chl alb ratios in Pinus sylvestris In response to 

SO., nor was chlorophyll concentration different at the end than at the 

start of the SO, fumigation: but chlorophyll concentration was reduced in 

comparison to control plants and these authors suggested that SO, effects 

were on de novo synthesis rather than on degradation of chlorophyll. 

As observed in this study, many of the authors cited above have 

correlated reduced chlorophyll contents with reduced photosynthetic 

activity or plant yield but it Is generally agreed that the SO. effect on 

chlorophyll destruction Is not the primary cause of photosynthetic 
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inhibit,ion. Bell et a!. (1979) suggested that chlorophyll degradation or 

inhibition of synthesis by SO. is probably a secondary manifestation of 

injury. which is not directly associated with reductions in plant 8Towth. 

Very few reports of increased chlorophyll concentration in 

response to SO .. as observed in this study. were found in the literature. 

However, Beckerson & Hofstra (1979) exposed Phaseolus vulgaris to 0'15 ppm 

SO. for 5 d and observed a marked increase in both chlorophyll 11 and 

chlorophyll b content within the first 6 h of fumigation; there being no 

difference in ChI II/b ratio. Zeleilakova & Polek (1982) examined the long

term effects of ambient SO. concentrations on the chlorophyll content of 

apricot leaves and found significant increases in both chlorophyll a and 

chlorophyll b in comparison to control plants. Of particular interest is 

that these authors found SO.-induced pigment increases to be most marked 

during the autumn months in comparison to summer months thus implying an 

environmental interaction with pollutant effects. 

It was also .shown in §5.5 that the imposition of a period of low 

temperature stress in the absence of S0., induced Changes in leaf 

chlorophyll content in both varieties of Vicia faba; the nature of change 

depending both on variety and on the length of the cold period. For.Dylan 

plants, low temperature stress resulted in marked reductions in leaf 

chlorophyll content, decreases being greatest in the 72 hand 1 week cold 

treatments. Aquadulce plants also exhihited marked reductions in chlorophyll 

content in response to cold stress, decreases being similar for the 24 and 

72 h cold treatments but more severe as a result of the 1 week cold 

treatments. As outlined in the introduction to this chapter reductIon in 

chlorophyll content is a typical response to chilling stress effected both 

by degradation and reduced synthesis (Berry & Bj6rkman. 1980; LevItt. 

1980). Levitt noted that chilling injury has been explained by the 

accumulation of cell toxins due to disturbances in the normal balance of 

biochemical processes. More specifically, chilling temperatures have been 

shown to result in inhibited aerobic respiration thus allowing anaerobic 

respiration to proceed resulting in the formation of toxic intermediates 

such as acetaldehyde and ethanol which contribute to chilling injury. Such 

inhibition of aerobic respiration would lead to an increase in a higher 

than normal oxygen content in the tissues and Levitt suggested that this 

O. would be available to oxidases other than the cytochrome system normally 

metabolizing O. in an aerobically respiring unstressed plant. Peroxides 
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would be amongst the products formed by some of the oxidases which may 

contribute to chlorophyll degradation. Photo-oxidation may also inhibit 

chlorophyll synthesis at chilling temperatures. 

The results obtained in this study showed that low temperature 

stress prior to pollutant fumigation resulted in significant alterations in 

the responses of both varieties of Vicia faba to 50,. The significant 

increase in chlorophyll content in Dylan leaves in response to 300 ppb SO. 

was not observed when plants had been previously subJected to low 

temperature stress. Nor did 500 ppb SO, result in reduced chlorophyll 

content in cold-stressed Dylan plants, in fact, chlorophyll content was 

increased in response to 500 ppb SO. in plants previously subJected to 2' or 

72 h at 10 ·C. It would appear that prior exposure to low temperatures 

reduced the sensitivity. of Dylan plants to SO. such that the effects of 500 

. ppb following cold temperature stress were similar to the effects of 300 ppb 

SO. under optimum environmental conditions. Although increased chloroihyll 

content in response to SO, has been reported in the literature (see above), 

no explanation of possible mechanisms was offered. The results presented 

here showing significant increases in chlorophyll content suggest that SO, 

has a marked effect on chlorophyll ·synthesis, particularly low 

concentrations. In contrast, higher SO. concentrations in the absence of 

cold temperature stress lead to chlorophyll degradation. However, relatively 

little SOl-induced chlorophyll degradation was observed in plants of either 

variety that had been previously subJected to cold temperature periods of 

2' h or 72 h and no degradation was observed in plants of either variety 

that had been previously subJected to 1 week at 10'C prior to SO. 

fumigatioll. One possible mechanism could be that longer periods at low 

temperatures inhibited the activity of enzymes, such as chlorophyllase, 

responsible for the breakdown of chlorophyll to chlorophyll ides or 

phaeophyt.ins. It is also possible that the effects of chilling stress in 

reducing chlorophyll synthesis were moderated by SO. exposure such that 

the application of SO. stimulated synthesis in cold-stressed plants. 

Some differences in the data obtained from determinations of the 

chlorophyll content of isolated chloroplast suspensions were observed in 

comparison to that for whole leaves although certain trends identified 

above were still apparent. Reductions in chlorophyll content in response to 

cold stress were observed and no SOl-induced chlorophyll degradation was 

observed in plants previously subJected to 1 week cold periOds. Due to the 

Page 3U 



Discussion Chapter 5 

nature of the chloroplast extraction procedure in which substantial amounts 

of chlorophyll were lost, chlorophyll determinations from whole leaves were 

thought to be a more reliable indicator of pollutant and/or cold stress 

effects 

5.9.3 Hill Reaction Activity 

It was described in §5.3.5 how numerous attempts failed to 

provide isolated chloroplasts that would evolve oxygen upon illumination in 

oxygen electrode experiments even when suitable electron acceptors (eg. 

ferricyanide) were present. Therefore, it was surprising that healthy Hill 

reaction rates were obtained in isolated chloroplast suspensions of both 

varieties in the absence of either cold or pollutant stress since it is the 

photolysis of water in the Hill reaction that produces oxygen. It would 

appear that the photoreduction of DCPIP via the electron flow from water 

was able to occur in chloroplast suspensions but no reasonable explanation 

for the absence of concomitant oxygen evolution could be established. It 

may have been that respiratory activity was enhanced as a consequence of 

the extraction procedures since decreases in oxygen content were observed 

in the oxygen electrode experiments in the dark; this would be or even more 

significance if there had been a high presence of mitochondria in the 

plant extracts. This consumption of oxygen was seen to continue when 

chloroplasts were illuminated and this may suggest enhanced 

photorespiration was occurring in chloroplasts in preference to 

photosynthesis. Photorespiration is known to be favoured by low CO2 

concentrations, high light intensity and temperatures whereas , 
photosynthesis is favoured by high CO2 concentrations and moderate light 

and temperature (Walker, 1979). However, temperature in the oxygen electrode 

was carefully controlled by means of continually circulating water in the 

Jacket surrounding the cell, supplied from a water bath set at 22 ·C. Also, 

the addition of bicarbonate solution to the electrode cell should have 

ensured sufficient CO2 for photosynthesis to take place. 

As for chlorophyll content, significant varietal differences in 

Hill reaction activity were observed in the absence of either cold or 

pollutant stress. Chloroplasts isolated from Aquadulce Claudia plants had 

significantly greater Hill reaction rates per unit chlorophyll than those 

isolated trom Dylan plants. This was interesting because Aquadulce plants 
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had been found to have a lower leaf chlorophyll content than Dylan plants. 

Thus it would appear that reduced energy trapping facility in Aquadulce 

plants was compensated for by an increased ability per unit chlorophyll to 

transfer light energy to chemical energy •. This increased efficiency ie. 

greater activity in Aquadulce plants may have contributed to the greater 

photosynthetic rates observed in chapter 3 in Aquadulce plants in 

comparison to Dylan plants. 

Varietal differences were also observed in changes in Hill 

reaction activity in response to either 500 or 100 ppb SO •• Reaction rates 

in Dylan chloroplasts were unaffected by the imposition of 500 ppb SO. but 

were slightly decreased in response to 100 ppb SO •• In contrast, reaction 

rates in Aquadulce chloroplasts were severely reduced in response to 500 

ppb SO. and were also substantially reduced in response to 100 ppb SO •• The 

marked reduction in activity observed in isolated Aquadulce chloroplasts in 

response to 500 ppb SO. correlate w.ell with the data presented in Chapter 3 

showing net photosynthetic activity to be markedly inhibited by such high 

sulphur dioxide concentrations. Conversely, the reduction in activity in 

Aquadulce plants in response to 100 ppb SO. do not correlate with the 

enhancement in net photosynthetic rates observed earlier. Similarly, the 

absence of any effect of 500 ppb SO. on Hill reaction activity in isolated 

Dylan chloroplasts could not be associated with the substantial 

photosynthetic inhibition observed in Dylan plants in response to high SO. 

levels. Thus it would appear· that SUlphur dioxide effects on electron 

transport in Vicia faba are not the principle mechanism effecting net 

photosynthetic inhibition. 

The results for Vicia did not show any stimulation in Hill 

reaction activity at low SO. concentrations as has been shown by several 

authors (eg. Libera et al., 1973; Malhotra, 1976). However, these authors 

used sulphite solutions on isolated chloroplasts and not gaseous SO •• Thus 

differences in observed response may arise because in the use of sulphite 

solutions immediate responses are measured whereas in the use of gaseous' 

SO. (as used for this study) it is post-fumigation responses that are being 

monitored. The use of sulphite solutions has also provided results which 

show no overall effect on Hill reaction activity (Asada et !!l., 1965) and 

inhibition of activity especially at high sulphite concentrations (Silvius 

et aI., 1975; Malhotra, 1976). Both non-cyclic photophosphorylation and 

cyclic photophosphorylation were found to be inhibited by the application 

Page 3-i3 



Discussion Chapter 5 

of sulphite solutions (Asada et al., 1965; Libera et al., 1973; Silvius et al., 

1975). Studies of Hill reaction activity of chloroplasts isolated from 50,

fumigated plants have shown electron transport from H,O to DCPIP to be 

inhibited by SO, (Shimazaki & Sugahara, 1980a,b; Miszalski, 1983). 

Shimazaki & Sugahara concluded that SO, fumigation under illumination 

inhibited the activity of Photosystem 11 and non-cyclic 

photophosphorylation but not Photosystem 1 and cyclic photophosphorylation. 

Malhotra & Khan <1984-) found the differences between the in vivo effects 

of SO, on both photoelectron transport and phosphorylations and the in 

vitro effects of sulphite solutionsditficult to reconcile. These authors 

suggested that the effects observed in vitro were the effects of free 

radicals and sulphate ions formed from the photooxidation of sulphite since 

sulphate ions have been shown to irreversibly inhibit both cyclic and non

cyclic photophosphorylations. As' stated above, such discrepancies may arise 

from the time delay in extracting isolated chloroplasts from fumigated 

plants where post-fumigation responses are then monitored as opposed to 

the immediate effects of SO, observed through the Use of sUlphite solutions. 

However, such discrepancies could also arise from several factors including 

SO. concentrations used, length of the exposure period and, of course, 

prevailing environmental conditions. Of importance also is the plant species 

studied and, as has been shown in this study, the cultivar. 

The reported effects of SO. (or sulphite) on photosynthetic 

electron transport as described above have been proposed as a major site of 

SO.-induced photosynthetic inhibition since the electron transport system, 

which supplies ATP and NADPH.for the CO.-fixation system, has been shown 

to limit the whole process of photosynthesis under light limited conditions 

(Shimazaki & Sugahara; 1980a); but these authors did not preclude the 

possible contribution of other SO. effects such as inactivation of Calvin 

cycle enzymes in causing photosynthetic inhibition. However, Barakhtenova & 

Nikolaevskii (1983) studied the effects of SO. on the photochemical 

activity and photophosphorylation of C. and C. plants and concluded that 

the most important cause of SO.-mediated inhibition of photosynthesis in 

plants is the inhibition of photophosphorylation and primarily non-cyclic 

photophosphorylation. These authors found low SO. concentrations to 

increase Hill reaction activity in all species and attributed enhanced 

photosynthetic rates to this activation of Photosystem H. Similarly, 

photosynthetic inhibition at high SO, concentrations was attributed to 
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direct inhibition of photochemical activity. As stated above, in this study 

photosynthetic inhibition in Vicia·could not be attributed solely to SO. 

effects on electron transport but were more likely to be the result of a 

combination of a wide variety of factors. 

The imposition of low temperature stress alone was seen to alter 

Hill reaction rates in both varieties of Vicia faba and, again, the nature 

of the change was dependent on both variety and the length of the cold 

period. Short periods at 10·C· (fe. 24- h) did not induce changes in reaction 

rates of Aquadulce plants. However, the activity of Aquadulce chloroplasts 

was seen to be decreased by exposure to low temperatures for 72 h or 1 

week. Conversely, the Hill reaction rate per unit chlorophyll of Dylan plants 

was seen to be enhanced by cold temperature periods of 72 h or 1 week 

whereas exposure to 10'C for 24- h reduced Hill reaction activity in Dylan 

plants. 

In his review of the reported effects of low temperature on the 

mechanisms of photosynthesis Oquist (1983) suggested· inhibition of 

photosynthetic electron transport as a primary target for chill

inactivation of photosynthesis. More specifically, low temperature effects on 

Photosystem 11 activity in preference to Photosystem I activity have been 

identified by a number of authors as contributing to photosynthetic 

inhibition (eg. Margulies, 1972; Smillie & Nott, 1979; Martin et al., 1981> 

although the extent of the inhibition was dependent- on species, age of 

leaves and the nature and duration of the chilling temperature regime 

(Oquist, 1983). Low temperature inhibition of PS II has been associated 

with the oxygen evolving side or at the reaction centre of PS 11 in 

chilling sensitive plants and inhibition at this site has been used to 

classify a large number of plants according to their chilling sensitivity 

(Smillie, 1979). Whilst no data appeared to show enhanced activity in 

response to chilling temperatures, Garber (1977) did not find chilling 

stress to influence electron transport in isolated cucumber chloroplasts. It 

may be that the differences in low temperature-induced changes in Hill 

reaction activity in the two cultivars of Vicia faba studied here arise 

from their differences in their relative sensitivities to chilling stress. 

The preferential sensitivity of Photosystem II to chilling stress has 

marked implications for pollutant/environmental stress interaction since it 

was shown above that Photosystem 11 is also far more sensitive to S02 than 

Photosystem I. 
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Low temperature stress prior to SO. fumigation was seen to result 

in significant changes in response. to SO. in both varieties. The severe 

reduction in Hill reaction rate per unit chlorophyll in Aquadulce plants in 

response to 500 ppb SO. was not seen to occur when plants had been 

previously exposed to low temperatures, indeed, the reverse was seen to 

occur and sulphur dioxide stimulated activity in all cold-stressed plants. 

Similarly, the reduced activity observed in Aquadulce pla·nts in response to 

100 ppb SO. did not occur when plants had been cold-stressed and this 

concentration of SO. did not then induce any changes in reaction rates in 

Aquadulce chloroplasts. The imposition of low temperature appeared to 

sensitize the Hill reaction activity of Dylan plants to SO •• In non cold

stressed plants or in plants subjected to 24 h at 10·C, 500 ppb SO. was not 

seen to influence reaction rates. However, following 72 h cold treatments 

SO.-induced increases in activity were observed. Conversely, periods of 1 

week at 10·C resulted in SO.-induced decreases in activity but since cold 

alone had resulted in increased activity, the combined SO./cold stress 

resulted in reaction rates that were not significantly different from 

control plants. This is of significance since if determinations of activity 

had been made only from plants subjected to both stresses and not also 

from· plants subjected to each stress individually it may have been 

concluded that there was no cold or pollutant effect on Hill reaction 

activity. Cold temperature stress was also seen to moderate the effects of 

100 ppb SO. on the reaction rates of Dylan chloroplasts such that the small 

decrease observed in the absence of cold stress did not occur in plants 

subjected to 1 week cold stress but rather activity was stimulated. 

Although these data for HUl reaction activity could not be 

correlated exactly with the observed low temperature-induced changes in net 

photosynthetic inhibition in response to SO. it is interesting to note that 

the data do concur with the conclusions presented in the previous chapter. 

In chapter .. it was concluded that reduced pollutant sensitivity following 

cold stress periods was not the result of reduced pollutant sensitivity in 

plants of the variety Dylan, but rather reduced flux. The data for Hill 

reaction suggest enhanced sensitivity of Dylan plants to SO. following cold 

temperature stress. It was also concluded in chapter .. that reduced 

photosynthetic inhibition in Aquadulce plants was the result of both 

reduced pollutant sensitivity .and reduced flux. The data for HUl reaction 

activity also reflect reduced pollutant sensitivity of Aquadulce plants 
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following cold temperature stress. Thus it would appear that one of the 

mechanisms behind reduced pollutant sensitivity following cold temperature 

stress was the prevention of SO.-induced inhibition of photosynthetic 

electron transport. However, this mechanism was observed only in plants of 

the variety Aquadulce Claudia and not Dylan. 

5.9.~ Protein Content 

As for chlorophyll content and Hill reaction activity, the data 

for total soluble leaf protein showed significant varietal differences in 

the absence of either cold or pollutant stress as the protein content of 

Dylan plants was found to be significantly greater than that of Aquadulce 

plants. This was a surprising result in view of the data presented in 

chapter 3 which showed Aquadulce plants to have significantly higher 

natural photosynthetic rates than Dylan plants. Since a large proportion of 

soluble protein in leaves is RuBP carboxylase, the enzyme responsible for 

carbon dioxide fixation, it may have been expected that a higher protein 

content would have been found in Aquadulce leaves rather than Dylan leaves. 

Thus it is unlikely that higher photosynthetic rates can be attributed to 

greater RuBPcase content in Aquadulce leaves; however these data do not 

preclude the possibility that differences .in RuBPcase activity contribute to 

enhanced photosynthetic rates. 

Exposure to 500 ppb SO. for t h induced significant increases in 

total soluble leaf protein content in both varieties of Vicia faba. However, 

comparison of these data with that from other studies is complicated by 

the fact that reported data are conflicting. In many investigations SO.

induced decreases in total protein content have been reported <ego Godzik & 

Linskens, 197t; lager & Klein, 1977; Hallgren & GezeIius, 1962; Murray, 196t; 

Malhotra & Khan, 196"; such changes have been attributed to both 

decreases in the rate of protein synthesis and/or increases in the rate of 

·protein degradation. Increases in free amino acid content have been 

proposed to result from such protein degradation <Godzik & Linskens, 1974; 

Cowllng & Bristow, 1979). However Rowland et a!. (1969) noted that such 

increases in amino acid concentration can reflect a number of processes 

including increased nitrate assimilation or a decrease in transport out of 

the leaf and may not neces~arily reflect protein degradation. Other 

researchers have not found SO. to alter total soluble protein content <ego 
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HorsmOI'l &: Wellburn, 1975; Beckerson &: Hofstra, 1979; Rabe & Kreeb ,1979; 

Tschanz, Landolt, Bleuler &: Brunold,- 1986). There are also a number of 

reports which show pollutant induced increases in total soluble leaf protein 

content (eg. Horsman & Wellburn, 1977; Beckerson & Hofstra, 1979 [ozone]; 

Sardi, 1981; Saxe, 1983b). Sardi (1981> suggested that SO,-induced increases 

in protein content result from stimulation of the synthesis of amino acids 

containing sulphur. The amino acids cysteine and methionine have been 

reported to contain approximately 90% of the total sulphur in most plants 

and almost all of these amino acids are found in protein (Rowland, 1I0rland 

&: Lea, 1989). Several authors have found increased content of these amino 

acids in plants exposed to SO, (eg. Ziegler, 1975; Malhotra &: Sarkar, 1979), 

In contrast, Pierre & Queiroz (1981) did not find 502 to alter concentration 

of sulphur-containing amino acids in Phaseolus vulgaris but noted a rapid 

increase in enzyme capacity as a primary response to subnecrotic SO, 

fumigation; These authors suggested that such an increase in the metabolic 

potentiality. in response to the onset of low levels of SO, afforded a 

temporarily increased capacity of resisting pollution by a faster 

metabolisation of 50,. In the introduction to this chapter it was reported 

that Levitt (1980) suggested increased protein synthesis in response to 

chilling stress may aid chilling stress tolerance by compensating for 

reduced enzyme activity. Since SO, has generally been reported to inhibit 

RuBPcase activity in plants (ref: Miszalski & Ziegler, 1980; Hlillgren &: 

Gezelius, 1982) and RuBPcase. is the major component of total soluble leaf 

protein, the observed increase in protein content in ~ faba in response 

to SO, may result from increased synthesis to counteract reduced enzyme 

activity. Support for this idea may come from reports that several enzymes 

involved in amino acid metabolism have been shown to be influenced by SO, 

fumigations (ref. Malhotra &: Khan, 1984,). It is clear that the marked 50,

induced net photosynthetic inhibition observed in both Dylan and Aquadulce 

plants in response to 500 ppb SO, was unlikely to be a result of reduced 

RuBPcase content given the observed increases in protein. However, it is 

possible that reduced enzyme activity contributed to photosynthetic 

inhibition and because of this, protein synthesis Was stimulated as a 

mechanism of reducing SO, phytotoxicity. 

The imposition of cold stress alone resulted in changes in 

protein content that were seen to be dependent on both variety and length 

of cold temperature period. Soluble leaf protein content was increased in all 
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plants of the variety Aquadulce Claudia subJected to cold stress, the 

increase being independent of the length of the cold period. However, in 

Dylan plants, 2 .. h at 10·C decreased leaf protein content, 72 h at 10'C 

resulted in, increased protein content and 1 week cold temperature periods 

did not appear to influence the protein content of Dylan plants. The 

increased protein content of Aquadulce leaves agrees with reported cold 

temperature effects showing a general increase in soluble proteins at low 

temperatures (Levitt, 1980; Graham & Patterson, 1982). As stated above such 

increases may be a compensatory mechanism for reduced enzyme activity to 

minimise cold temperature-induced photosynthetic inhibition. However the 

low temperature induced decrease in protein content in Dylan plants 

subJected to 2 .. h cold stress do not concur with the reported effects cited 

above. Graham & Patterson (1982) suggested that increased total soluble 

leaf protein could result from low temperature effects on both protein 

degradation and synthesis but with rates of synthesis being less affected 

than rates of degradation resulting in a greater pool of soluble protein in 

the tissue. It may be that, in Dylan plants, the first response to the onset 

of low temperature stress is enhanced protein degradation and that 

enhanced protein synthesis occurs in response to this enhanced degradation 

when low temperature stress continues. This would explain the loss of 

protein observed in Dylan plants subJected to only 2.. h cold stress and the 

increase after 72 h cold temperature stress. If low temperature stress 

perSists then rate of degradation equals rate of synthesis and no apparent 

change in protein content in relation to unstressed plants is observed as 

was seen to occur in response to the 1 week cold temperature treatments. 

L~vitt (1980) noted that protein breakdown at low temperatures without an 

equally rapid resynthesis has been suggested as a cause of inJury although 

experimental evidence was insufficient to prove a chilling-induced protein 

breakdown. However, he also noted that on the basis of respiratory upset 

(as described earlier in reference to chlorophyll content) it would be 

expected that any decrease in the aerobic phase of respiration must result 

in decreased oxidative phosphorylation. This would decrease the supply of 

ATP and, therefore, the rate of protein synthesis resulting in a net protein 

breakdown. It is of interest to note the reduced Hill reaction activity in 

chloroplasts of Dylan plants in response to 2 .. h chilling stress described 

above. This reduced electron transport concomitant with reduced solUble 

protein content lends credence to the above hypothesis and emphasises the 
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wide disparity in response between the two varieties of Vicia studied. 

Once again, cold temperature stress was found to modify plant 

responses to SO. such that no significant increase in protein content in 

response to SO. was observed in previously cold-stressed Aquadulce plants. 

Nor was an SO.-induced soluble protein content increase observed in Dylan 

plants previously exposed to 2' h or 1 week cold treatments although this 

increase was still present in plants subJected to 72 h cold temperature 

periods. The interaction between cold temperature and pollutant stress in 

determining· chang.es in total leaf soluble protein are not readily explicable. 

The absence of SO.-induced protein increases in cold-stressed plants may be 

the result of the reduced pollutant flux to both varieties observed in 

chapter ,. If protein increases are due to the metabolism of SO. into 

sulphur containing amino acids as a detoxification mechanism then reduced 

flux following low temperature stress could minimise the need for 

detoxification: hence the absence of an increase in protein content. 

However, this does not explain reduced photosynthetic inhibition in 

response to SO. in cold-stressed plants. It is clear that stimulation of 

protein synthesis by. exposure to SO. in the absence of cold stress did not 

·prevent marked photosynthetic inhibition. Similarly, although SO. did not 

alter the protein content in plants previously subJected to 1 week cold 

stress, photosynthetic inhibition was seen to occur, albeit less severe than 

in the absence of cold stress. These differences in photosynthetic 

inhibition may be related to the energy supply and requirements of the 

plant. It may be that ATP production is insufficient to provide both the 

energy requirements for enhanced protein synthesis and photosynthetic 

carbon fixation. This would mean that in non cold-stressed plants the 

energy requirements of protein synthesis are met at the expense of the 

energy requirements of photosynthesis thus contributing to net 

photosynthetic inhibition. The absence of enhanced protein synthesis in 

cold-stressed plants may therefore contribute to observed lessening of SO.

induced net photosynthetic inhibition since there is no added energy 

reqUirement for protein synthesis and more energy is available to drive 

photosynthetic carbon dioxide fixation. 
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5.9.5 Carbohydrate Content 

Analysis of leaf carbohydrate content gave an indication of 

photosynthetic efficiency..slltce carbohydrates are the products of 

photosynthetic activity. However, since changes in carbohydrate content not 

only reflect changes in production but may reflect changes in assimilate 

transport into and out of the leaf in response to cold and/or pollutant 

stress (M inch in & Gould, 1986), care must be taken in interpretation of 

data. The extent of the differences between the two cultivars of Vicia faba 

studied here were once again reflected in marked varietal differences in 

carbohydrate content. Unstressed plants of the variety Dylan were found to 

have a significantly higher leaf carbohydrate content than plants of the 

variety Aquadulce Claudia. These differences do not reflect relative 

photosynthetic rates since Aquadulce plants were shown earlier to have 

significantly higher natural net photosynthetic rates than Dylan plants. 

Therefore, the lower carbohydrate content of Aquadulce leaves is not an 

indicator of lower photosynthetic rates. The difference in carbohydrate 

content suggests differences in the rate of translocation of photosynthate 

out of the chloroplasts between the varieties. Indeed, a slower rate of 

translocation in Dylan leaves may account for the slightly lower net 

photosynthetic rate in comparison to Aquadulce plants since accumulation of 

carbohydrate in leaves has been shown to inhibit photosynthesis by feed

back inhibition (Levitt, 1980). 

The results presented in this chapter showed that the relatively 

low concentration of sulphur dioxide used (100 ppb) had significant effects 

on the carbohydrate content of both Dylan and Aquadulce plants. The 

imposition of SO, was seen to reduce the carbohydrate content of both 

varieties by 30% in Aquadulce leaves and 60% in Dylan leaves. The large 

decrease in Dylan leaves can be correlated to the observed enhancement of 

dark respiration rates ie. an increase in consumption of carbohydrate as 

respiratory substrate. However, since no changes in dark respiration rate 

of Aquadulce plants were found it might be assumed that reduced 

carbohydrate content reflected decreased production and that this was also 

a factor contributing to the large carbohydrate reduction in Dylan plants. 

These data for Dylan plants agree, in part, with the findings of Koziol & 

Jordan (1978) in their study of Phaseolus vulgaris when decreased 

carbohydrate content was correlated with both net photosynthetic 
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depression and increased dark respiration in response to SO •• However, these 

decreases occurred at high SO. concentration (above 1·53 ppm) and at lower 

concentrations these authors found enhanced carbohydrate content in 

response to SO •• These authors interpreted these findings in terms of 

functional changes in the energy budget of the plant whereby the energy 

requirements for repair or replacement of damages tissue in response to SO. 

are met by keeping the products of photosynthesis within the leaves or by 

translocating sugars from storage in the stems or roots to the leaves. The 

use of this energy in repair or replacement processes would be reflected in 

increased respiration. Although enhanced respiration was found in Dylan 

plants, which may have been due to repair processes, no increase in 

carbohydrate content was observed in plants of either variety in response 

to low SO. concentration. As stated above, the absence of respiratory 

stimulation in Aquadulce plants together with reduced carbohydrate content 

suggested reduced carbohydrate production. However, since photosynthetic 

enhancement was observed in Aquadulce plants in response to 100 ppb SO. 

the observed reductions in carbohydrate content may arise from increased 

translocation out of the chloroplast in response to SO. or reduced 

photosynthetic efficiency whereby carbon· dioxide is being fixed but not 

necessarily resulting in carbohydrate formation. The findings of Lorenc

plucinska (1983b) in her study of the effects of SO. on the dynamics of I·C 

incorporation .into photosynthates in Scots pine, lend support to reduced 

photosynthetic efficiency. SO, was found to inhibit I.C incorporation into 

the products of·the C. pathway of carbon reduction but there was an 

increase in activity of ~-carboxylation pathway products resulting from SO, 

effects on secondary metabolic pathways. Lorenc-plucinska concluded that 

SO. fumigations resulted in the carbon flow during photosynthesis being 

directed to ~-carboxylation with a restriction of Calvin pathway of carbon 

reduction. 

There are relatively few other reports concerning .changes in 

carbohydrate content in response to S02 but it has generally been accepted 

that low S02 concentrations result· in increased leaf carbohydrate content 

(Khan & Malhotra, 1977; Koziol & Cowling, 1980; Saxe, 1983b; Made & Ormrod, 

1986). Many studies have observed pollutant-induced alterations in the 

pattern of photosynthate allocation in plants whereby photosynthates are 

retained in leaves and shoots rather than being translocated to roots or 

fruits (eg. Shimizu, Furakawa & Totsuka, 1960; Jones & Mansfield, 1982; 
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McLaughlin & McConathy, 1983; Freer-Smith, 1985; Murray, 1985; Lorenc

plucinska, 1986; Mansfield et al., 1986; Wright et al., 1986; Marie & Ormrod, 

1988). Such_ changes in resource allocation have been associated with a 

necessity to provide the energy for repair processes to be carried out. 

Of particular interest is that the carbohydrate content of leaves 

has been implicated in determining plant pollutant sensitivity. As early as 

1962, Dugger, Taylor, Cardiff & Thompson found a relationship between leaf 

carbohydrate content and the sensitivity of pinto beans to ozone: these 

authors found ozone damage to occur only when carbohydrate content was 

between 1 and 4- mg g-' fresh weight; young plants not susceptible to ozone 

contained high sugar levels. Dugger et al. (1966 see Koziol & Jordan, 1978) 

also observed that the ozone-sensitive variety of tobacco, Bel-W3, had much 

higher levels of soluble sugars in leaves than did the O,-resistant, Bel-B. 

The issue was also raised by Koziol & Jordan (1978) but little further work 

seems to have been undertaken to clarify earlier observations. The results 

obtained in this study of Vicia seem to concur with the findings of Dugger 

et al. since Dylan leaves had significantly higher carbohydrate content 

than Aquadulce plants and Dylan plants were found to be more sensitive to 

low SO. concentrations. Dylan plants exhibited photosynthetic inhibition in 

response to 100 ppb SO. whereas photosynthetic stimulation was observed in 

Aquadulce plants. 

Low temperature stress alone was found to influence leaf 

carbohydrate content although the nature of the change depended on both 

the length of the cold period and plant cultivar. Exposure to 10'C for 24- h 

or 72 h resulted in marked decreases in carbohydrate content in Dylan 

leaves whereas the longer cold period of 1 week was not seen to influence 

leaf carbohydrate content. In contrast, Aquadulce leaves were unaffected by 

the 24- h cold period but carbohydrate content was seen to increase in 

response to both the 72 h and the 1 week cold treatments. The increase in 

carbohydrate content in Aquadulce leaves in response to cold stress is 

typical of reported chilling stress responses and is likely to be due to 

decreased translocation of photosynthates out of the leaf (Crookston et al., 

1974-; Levitt, 1980). The decreases in carbohydrate- content in Dylan plants 

in response to 24- hand 72 h cold temperature stress do not concur with 

data available in current literature. These decreases may result from the 

enhanced rates of dark respiration observed in cold-stressed plants when 

translocation of photosynthates out of the leaf is unaffected by cold 
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temperature; however, dark respiration rates were also found to increase in 

response to the 1 week cold treatments when carbohydrate content was 

unaffected. It may be that-Dylan plants are able to acclimate to low 

temperature stress during longer exposure periods but it is more likely 

that the levels of carbohydrate in Dylan leaves exposed to 1 week cold 

stress result from both reduced translocation and increased dark 

respiration such that the net result is not significantly different from 

that of non cold-stressed plants. It is of interest to note that in 

Aquadulce plants-exposed to 72 h cold, dark respiration rates were enhanced 

in comparison to non cold-stressed plants but respiration rates were 

unaffected by the 1 week cold periods suggesting Aquadulce plants were able 

to acclimate to reduced temperature. These differences in rates of Rd in 

Aquadulce were not paralleled by differences in leaf carbohydrate content 

between the two cold treatments where increased carbohydrate content was 

observed. Reduced translocation and the associated accumulation of 

carbohydrate within the leaf have been proposed to cause the decreased 

photosynthetic rates observed in response to cold stress. However, most 

reports of this nature concern C. species and Crookston et al. (197~) 

observed that in C. plants carbohydrate accumulation has little or no 

influence on photosynthesis or subsequent growth. As decreased 

photosynthetic rates in Viciafaba in response to cold stress were found in 

this study to occur concomitant with both decreased (Dylan) and increased 

(Aquadulce) leaf carbohydrate content, it may be concluded that net 

photosynthetic inhibition was not a result of feed-back inhibition in 

response to low temperature stress. 

The effects of 100 ppb S02 on leaf carbohydrate content were 

found to be modified when plants had been previously exposed to low 

temperature stress. The large decreases observed in Dylan plants were not 

seen to occur when plants had been pre-stressed by 2~ h or 72 h at 10'C 

and although S02-induced decreases were observed in the 1 week cold

stressed plants, these decreases were not as marked as those observed in 

the absence of cold stress. -Similarly, S02 did not reduce the leaf 

carbohydrate content in Aquadulce plants previously subjected to low 

temperature stress although decreases in non cold-stressed plants had been 

observed. It would appear that low temperature conditions had reduced the 

sensitivity of plants to S02 and, for Dylan plants, these data would concur 

with-observations of net photosynthetic inhibition in response to 100 ppb 
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S02 which was also found to be le~sened in cold-stressed plants. However, 

the imposition of cold stress was also seen to" alter dark respiration 

responses to S02 such that no enhancement was observed. Therefore reduced 

photosynthetic inhibition and" the ~bsence of. further decreases in 
.~ 

carbohydrate content in Dylan plants in response to S02.result from the 

absence of increased carbohydrate consumption via respiratory stimulation 

in cold-stressed plants. In contrast, the absence of S02-induced decreases 

in carbohydrate content of cold-stressed Aquadulce leaves cannot be related 

to changes in dark respiration response since S02 did not induce increased 

respiration in either cold-stressed or non cold-stressed plants. Nor did the 

imposition of cold temperature stress alter net photosynthetic responses to 

100 ppb S02 in Aquadulce plants so that the implied reduced sensitivity to 

S02 from carbohydrate data was not supported by reduced net photosynthetic 

sensitivity to low S02 concentrations. It may be concluded that the absence 

of decreased carbohydrate content in response to SO. in cold-stressed 

Aquadulce plants resulted from reduced translocation of photosynthates 

since the effects of S02 on dark respiration and net photosynthetic rates 

were not found to differ in cold-stressed and non cold-stressed plants. 

The apparent lower sensitivity of Aquadulce plants to low SO. 

concentrations in comparison to Dylan plants may arise from differences in 

carbohydrate content a~ stated above. However, for all environmental regimes 

Aquadulce plants were shown to have significantly higher rates of dark 

respiration than Dylan plants. Since detoxification and repair capacity 

have been associated with increased respiratory activity (Mansfield & 
Jones, 1985), it may well be that the naturally higher respiratory rates of 

Aquadulce plants confer reduced sensitivity to low pollutant concentrations 

via increased ability to carry out repair and detoxification mechanisms. 

Although there are apparently no specific reports in current literature 

regarding environmental/pollutant interaction on carbohydrate 

concentration, several reports, mostly from the Lancaster research group, 

have shown that environmental conditions prior to and during pollutant 

exposure may predispose plants to pollutant stress via modification of the 

amount of metabolic intermediates necessary fo(' repair processes (Davies, 

1980; Jones & Mansfield, 1982; Freer-Smith, 1985; Mansfield & Jones, 1985; 

Mansfield et aI., 1986). These authors have proposed enhanced pollutant 

sensitivity under conditions of slow growth (fe. low light/temperature or 

short photoperiod) to result from low photosynthetic rates, a reduced store 
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of carbohydrates for respiratory substrate and thus a reduction in repair 

capacity; although alterations in assimilate transport and resource 

allocation via investment in photosynthetic material at the expense of root 

growth may compensate for impaired photosynthetic capacity. The result for 

Vicia faba obtained in this study do not support these observations; . 

however since the results from Lancaster reflect long-term SO. fumigations 

and not the short exposure periods used in this study and since different 

species were studied, it is not surprising that data are not comparable. 

The most outstanding feature of the data presented in this 

chapter was the marked varietal differences occurring in all parameters 

studied in the absence of either cold or pollutant stress. Therefore varietal 

differences in pollutant sensitivity before and after cold temperature 

stress were not surprising. Differences in stomatal and residual resistances 

leading to differences in pollutant flux have already been shown to 

contribute to differential sensitivity and the results presented in this 

chapter have shown that other physiological and metabolic factors 

contribute to varying pollutant sensitivity between cultivars. For example, 

the greater sensitivity of Dylan plants to low SO. concentrations in 

comparison to Aquadulce plants can be linked to decreased chlorophyll 

content, reduced Hill reaction activity and decreased leaf carbohydrate 

content together with enhanced rates of dark respiration. 

The imposition of cold temperature stress was found to alter 

pollutant sensitivity such that SO.-induced chlorophyll degradation did not 

occur in previously cold-stressed plants nor were marked SO.-induced' 

decreases in carbohydrate content observed. Similarly, enhanced protein 

synthesis in response to SO. did not occur in cold-stressed plants. All 

these factors contributed to reduced photosynthetic inhibition in response 

to SO. in cold-stressed plants. In contrast, the imposition of low 

temperature stress was seen to enhance the sensitivity of the Hill reaction 

of Dylan plants to SO. whilst pollutant sensitivity was reduced in Aquadulce 

plants. 
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GENERAL CONCLUSIONS 

Much attention has been given to the elucidation of the 

mechanisms of pollutant action on plants to enable the prediction of the 

effects of a known_ amount of pollutant on crop yield. However, of the 

extensive research undertaken, many of the data are conflicting. 

Differences in species studied are known to contribute to differences in 

experimental data-. However, reported data -for single species -have also been 

conflicting. Certain of the discrepancies between the results of different 

experiments are now known to arise from the unique characteristics of the 

wide variety of exposure systems used. Such systems can range from 

laboratory based cuvettes or plant chambers to open-top chambers and other 

field exposure systems (Unsworth, 1982). As has been discussed earlier, a 

common oversight in many early stUdies was the failure to realise the 

significance of adequate air flow across plant leaves in determining actual 

pollutant flux into the plant. Similarly, environmental P!lrameters of 

exposure systems were often poorly defined. However, what has become 

apparent from such diverse studies, is the significance of the prevailing 

environmental conditions in determining plant responses to pollutants. 

Differences in data from experimental fumigations have been shown to arise 

from differences between environmental factors within-the ranges actually 

encountered in the field. Such differences are of importance because they 

may reflect possible responses of plants in the outside environment

(Mansfield & Jones, 1985). 

Field exposures and the use of open-top chambers have enabled 

the ef-fects of long-term pollutant exposures to be studied in environmental 

conditions which are very close to ambient. In recent years, such 

experimental designs have shown the effects of air pollutants to be 

modified by suboptimal environmental conditions such as low light 

intensities and low temperatures commonly occurring in winter. There is 

evidence to suggest that environmental conditions which result in slow 

growth can result in enhanced sensitivity to pollutants (eg. Bell, Rutter & 

Relton, 1979; Davies, 1980; Mansfield & Jones, 1985). However, the mechanisms 

contributing to such environmental/pollutant interactions are as yet, poorly 

understood. 
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Therefore, this study was undertaken to quantify the effects of 

suboptimal environmental conditions on plant responses to sulphur dioxide. 

Because the study was laboratory based, it was possible to minimise 

variability in exposure system parameters such as air-flow rates, 

temperature, humidity, light intensity and photoperiod and pollutant 

concentration all of which are known to influence plant responses and to 

contribute to the variability in published response data. In this way, the 

impact of the imposition of low light stress and low temperature stress 

could be defined. Comparison of the data obtained with that for the effects 

of a range of SO. concentrations under optimum environmental conditions 

provided an insight into possible interactive mechanisms leading towards a 

greater understanding of plant responses to pollutants in the field. 

There are many reports in the literature of int~a-specific plant 

responses to pollutants. Thus two cultivars of Viciafaba were studied to 

determine the extent of intra-specific variability and also to determine it 

the relative sensitivities of each cultivar to SO. were influenced by the 

imposition of environmental stress. 

The data obtained in this study have served to highlight the 

complexity of the mechanisms of SO. action on plants even when 

environmental conditions are optimal and therefore, not limiting. Events are 

further complicated when environmental conditions are suboptimal since a 

number of different factors are affected which result in changes in the 

observed effects of SO. on net photosynthetic rates. It has been shown that 

the imposition of low light intensities or low temperatures limit 

photosynthetic rates. Since SO. has also been shown to inhibit 

photosynthesis, it may have been expected that combinations of both 

environmental and pollutant stresses would have had even more severe 

consequences. However, this was not found to occur in the two cultivars of 

Vicia faba examined. The main conclusions derived from this study are 

outlined below. The implications of these data in. relation to current 

knowledge of air pollution effects on plants in the field are then 

discussed. 

The first and most obvious conclusion to be drawn from the data 

obtained in this study was that marked varietal differences occur between 

the two cultivars of Vicia faba examined. These varietal differences were 

also expressed in differences in pollutant sensitivity and response to 

environmental stresses such as low light and low temperature. Not 
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surprisingly, differential sensitivity to combined environmental/pollutant 

stresses was also prevalent. The varietal differences observed in the 

absence of either pollutant or environmental stress were as follows: 

• Aquadulce plants had significantly higher rates of net· 

photosynthesis (Pnet) and dark respiration (Rd) than Dylan plants. 

• These differences in Pnet and Rd were found to be associated 

with a higher stomatal resistance but a smaller mesophyll resistance to H20 

and CO2 transfer in Aquadulce plants. 

• Leaves of Aquadulce Claudia plants were found to be 

significantly thicker and of greater density than leaves of Dylan plants. 

Such differences may have significant consequences for gaseous transfer 

and may have contributed to the observed differences in internal resistance 

to CO. transfer between varieties. 

• Biochemical analYSis determined Aquadulce plants to have 

significantly lower chlorophyll, protein and carbohydrate content per unit 

leaf fresh weight in comparison to Dylan plants, all of which would suggest 

a reduced photosynthetic capacity. However determinations of Hill reaction 

activity showed Aquadulce plants to have significantly higher rates per 

unit chlorophyll than Dylan plants. Thus reduced energy trapping facility 

in Aquadulce plants was compensated for by increased ability to transfer 

light energy to chemical energy and this greater efficiency in electron 

transport contributed to the greater photosynthetic rates observed in 

Aquadulce plants. 

6.1 Varietal Dif'f'erences in Response to 502 Alone 

Measurement of the effects of a range of SUlphur dioxide 

concentrations (0 - 600 ppb: 4 h) on both cultivars of Vicia faba 

determined that net photosynthetic rates in both varieties were inhibited 

by SO. and inhibition increased with increasing SO. concentration. 

Differential pollutant sensitivity was found to depend on pollutant 

concentration such that at·low SOi concentrations (~ 100 ppb) Aquadulce 

plants exhibited enhancement in photosynthetic rates that were not 

observed in Dylan plants and Aquadulce plants were considered to be less 

sensitive to SO •. However at high Sp. concentrations 0 300 ppb) Aquadulce 

plants were considered to be more sensitive to SO. than Dylan plants since 

greater SO.-induced photosynthetic inhibition was observed. Full recovery to 
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pre-fumigation rates was observed in Dylan plants within 15 h of the end 

of the SO. fumigation period but much slower recovery rates were found in 

Aquadulce Claudia plants. Examination of a number of leaf parameters to 

determine the mechanisms behind this differential sensitivity led., to the 

following conclusions being drawn: 

• Dylan plants were found to exhibit SO.-induced increases in 

dark respiration rates that were large and independent of the SO. 

concentration supplied whilst no SO. effects on Rd in Aquadulce plants were 

observed. Such increases in Rd contributed to the net photosynthetic 

inhibition in Dylan plants. 

• Stomatal resistances (r.) to H.O transfer of both varieties 

were found to be altered In response to SO. fumigatlons and the magnitude 

of stomatal response was found to much greater In Dylan plants than 

Aquadulce plants. High SO. concentrations induced enhanced stomatal closure 

in both varieties. However, variable responses to concentrations below 4,00 

, ppb were observed although, in general enhanced stomatal opening was seen 

to occur. SO.-induced changes in stomatal resistance to CO. transfer alone 

could not account for the observed SO. effects on net photosynthetic rates. 

• The residual (mesophylD resistance (rr) to CO. transfer was 

found to be altered in response to SO. with high SO. concentrations 

inducing a large increase in rr In both varieties of Vicia ~. SO.

induced changes in net photosynthetic rates in Aquadulce plants were 

attributed, in part to changes in stomatal resistance but changes in rr 

were considered to be the predominant factor influencing CO. exchange. In 

Dylan plants, net photosynthetic inhibition was attributed equally to 

changes in r. and rr although at low SO. concentrations changes in gross 

photosynthetic rates could be attributed entirely to changes in r •• The 

effects on CO. exchange were moderated by SO.-induced effects on dark 

respiration and at low SO. concentrations, net photosynthetic inhibition in 

Dylan plants resulted from enhanced respiratory activity. 

• Differences in pollutant uptake have often been proposed as a 

mechanism contributing to differences in relative pollutant sensitivities In 

plants. Examination of pollutant flux to both varieties in relation to 

ambient SO. concentrations'showed these differences to occur in Vicia faba. 

There was significantly less SO. flux into Aquadulce leaves in comparison to 

Dylan leaves for any given ambient SO. concentration and Aquadulce plants 

were found to have significantly higher stomatal resistances to SO. 
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transfer. However, since varietal differences in the eKtent of Pnet 

inhibition were observed when flUKes were equal it may be concluded that 

apart from differences in pollutant flux, differential sensitivity must arise 

from different sites/modes of action of S02 on the metabolic processes 

within each variety. Threshold values for SO. flux, above which 

photosynthetic inhibition was seen to occur differed between varieties such 

that threshold fluK values for Aquadulce plants were more than double those 

obtained for Dylan plants. These values for threshold fluK eKplain, in part, 

the lower sensitivity of Aquadulce plants in comparison to Dylan plants at 

S02 concentrations below.300 ppb SO •• However, once the threshold flux had 

been eKceeded, these relative sensitivities were reversed and Aquadulce 

plants showed significantly greater net photosynthetic inhibition than 

Dylan plants for any given flux value. This reversal in relative 

sensitivities eKplains, in part the greater inhibition of net photosynthetic 

rates·in Aquadulce plants at SO. concentrations above 300 ppb in 

comparison to Dylan plants • 

• Analysis of data for stomatal resistance to SO. uptake showed 

flUK to be only partly correlated to stomatal conductance. These data lead 

to the conclusion that stomatal resistance was not the only factor 

determining pollutant flux to both varieties. Less flux than would be 

eKpected from r. data was observed at low S02 concentrations «( 300 ppb) 

when enhanced stomatal opening occurred whilst significantly greater flUK 

was observed .at higher SO. concentrations when enhanced stomatal closure 

was observed. Comparison of resistance data from mass balance calculations 

and from analogy to water vapour transfer showed discrepancies which were 

attributed to a significant residual resistance to SO. uptake which became 

increasingly negative with increasing pollutant concentration. EKplanations 

for this residual resistance include incorrect assumptions of leaf surface 

deposition and significant cuticular transport of S02; a shorter diffusive 

pathway for SO. in comparison to that for effluKing H20 molecules has also 

been proposed. However, these factors would not eKplain the lower fluK into 

leaves than would be eKpected from r. measurements when ambient S02 was ( 

300 ppb. Pollutant flUK decreased after the first hour of the 4 h 

fumigation period and then stabilised, the initial higher fluK measurements 

were attributed to surface deposition hence fluK measurements after 3~ h of 

S02 fumigation were used for resistance analyses when a steady state 

situation in the eKposure chamber was achieved. Thus, in this study, leaf 
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surface deposition was discounted as contributing to higher flux values 

than would be expected from stomatal resistance data. Possible contributing 

mechanisms behind this residual resistance are outlined later in this 

section. 

• It was concluded that pollutant flux to both varieties of Vicla 

faba was governed by both residual and stomatal resistances to SO. 

transfer but residual resistances had the greatest influence. Since residual 

resistances were similar in magnitude in both varieties, lower flux to 

Aquadulce plants in comparison to ,Dylan plants was attributed to 

significantly greater stomatal resistances to SO. uptake .. Thus differential 

sensitivity hetween Dylan and Aquadulce plants could be attributed, in part, 

·to differences in pollutant uptake and avoidance mechanisms. However, 

differential sensitivity must also arise from SO. effects on metabolic 

processes and differing pollutant tolerance since greater photosynthetic 

inhibition was observed in Aquadulce plants. when flux measurements were 

equal. 

Biochemical analyses determined there to he significant varietal 

differences' in the effects of SO. on leaf pigments and metabolites· and 

electron transport capacity . 

• Low SO. concentrations ($ 100 ppb) did not alter the 

chlorophyll content of Dylan leaves but was seen to increase total 

chlorophyll content in Aquadulce leaves suggesting enhanced chlorophyll 

synthesis which correlated with the photosynthetic enhancement observed in 

Aquadulce plants at low SO. levels. However, exposure to 300 ppb SO. did not 

alter chlorophyll content of Aquadulce leaves but induced significant 

increases in Dylan leaves. Exposure to 500 ppb SO. resulted in a significant 

decrease in chlorophyll content in Dylan plants but chlorophyll synthesis 

was stimulated in Aquadulce plants. Because these Changes did not correlate 

with the increasing photosynthetic impairment observed in both varieties 

in response to increasing SO. concentration, it was concluded that the 

effective mode of SO. action was not solely that of chlorophyll destruction 

resulting in. reduced energy trapping facility. No evidence was found to 

suggest that chlorophyll a was more sensitive to SO. than chlorophyll b 

and chlorophyllalb ratios were not influenced. by SO. fumigations . 

• Varietal differences in the effects of SO. on Hill reaction 

activity of isolated chloroplasts were also found to occur. Rates in 
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Aquadulce plants were found to be significantly more inhibited by exposure 

to either 100 or 500 ppb SO. In comparison to Dylan plants which showed 

little inhibition at low SO, and no inhibition at high SO. levels. It may be 

concluded that differential sensitivities of Aquadulce and Dylan plants in 

the degree of SO,-Induced photosynthetic inhibition were due In part to 

differential sensitivities of the photosynthetic electron transport systems 

which supply ATP and NADPH. for the CO,-fixation system • 

• Measurement of total soluble leaf protein provided an 

indication as to CO,-fixatlon capability since a large proportion of soluble 

protein is RuBP carboxylase; although total protein content measurements 

did not provide information regarding enzyme activity. Exposure to 500 ppb 

SO, for 4 h induced large increases in protein content. Since marked net 

photosynthetic Inhibition occurred in both varieties at this high SO. 

concentration and RuBPcase has been shown by many workers to be inhibited 

by SO .. it was concluded that enhanced protein synthesis may have occurred 

as a compensatory mechanism for reduced enzyme activity. Also, SO. may 

have induced enhanced synthesis of sulphur containing amino-acids, almost 

all of whIch are found in proteins • 

• Determinations of total leaf carbohydrate content gave 

indications of photosynthetic efficiency since carbohydrates are the 

products of photosynthetic activity. Sulphur dioxide was seen to reduce the 

carbohydrate content of both varieties but the reduction was greater in 

Dylan plants. The larger decrease in Dylan plants was though to result from 

the increases in dark respiration rates in response to SO. since 

carbohydrates provide respiratory substrates. As net photosynthetic 

inhibition occurred in Dylan plants in response to 100 ppb SO., decreased 

carbohydrate content was thought to result from decreased production. 

However, since exposure to 100 ppb SO. was seen to enhance photosynthetic 

activity in Aquadulce plants but carbohydrate content was reduced, it was 

concluded that decreased carbohydrate content arose, not from decreased 

production but from SO, effects on translocation of carbohydrates out of 

the chloroplasts. Alternatively, reduced photosynthetic efficiency may have 

contributed to the observed decrease in carbohydrate content of Aquadulce 

leaves whereby CO. is fixed but is not incorporated into carbohydrate 

production but rather is incorporated into secondary metabolic pathways. 
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It is possible that an explanation of a residual resistance to 

SO. uptake, which inhibits pollutant flux at low concentrations and 

facilitates pollutant uptake at higher concentrations, lies with internal 

detoxification mechanisms and the:incorporation of the products of SO. 

solubility into. plant metabolites or arises from purely phys ical 

characteristics of SO. diffusivity. Sulphur dioxide is known to dissolve in 

the surface water of the substomatal cavity to form sulphite and bisulphite 

ions. Since the major active site of SO. action is within the chloroplast, 

then these ions must be transported across several membranes to reach 

sites of action within the chloroplasts. Transport of these ions away from 

the deposition site maintains a concentration gradient allowing further 

dissolution of SO •• The residual resistance may, therefore arise from purely 

physical factors relating to the solubility of SO. in water and the surface 

area for deposition available within the substomatal cavity and the rate of 

diffusion away from the deposition site. Membrane permeability to SO, 

products must therefore provide an extra resistance to diffusion and 

transport which may serve to explain the positive residual resistance noted 

at low SO, concentrations. In contrast, damage to internal membranes has 

often been observed in plants exposed to SO. and at high SO. 

concentrations loss of membrane integrity may allow greater diffusion of 

soluble SO. products into the chloroplasts thus faCilitating pollutant 

uptake. Such disruptions in cell membrane structure would contribute to the 

severe photosynthetic inhibition observed at high SO. concentrations. 

Alternatively, apart from purely physical aspects, a residual resistance to 

SO. uptake may be related to biocheinical factors. If, as has been reported, 

sulphite ions directly compete with bicarbonate ions for binding sites on 

the enzyme RuBP carboxylase, it is possible that high concentrations of SO. 

render more sulphite ions that bind to the enzyme. Little is known 

regarding the fate of sulphite ions bound to this enzyme and it has yet to 

be proved whether sulphite is further metabolised in this way. However, if 

this 'binding' is permanent, this will maintain a concentration gradient 

thus facilitating SO. flux and at the same time, rendering the enzyme less 

able to incorporate CO. thus contributing to photosynth.etic inhibition. 

This enzyme deactivation may then stimulate protein synthesis as a 

compensatory mechanism. The data obtained in this study, showing enhanced 

protein synthesis in response to SO. would support this theory. The 

apparent positive residual resistance at low SO. concentrations may result 
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from too few sulphite ions being present to effectively compete with 

bicarbonate ions for binding sites·on the enzyme. 

6.2 Responses to Environmental stress Alone 

When Vicia faba plants Were grown under low light intensities it 

was found that: 

• Net photosynthetic rates were much reduced in both varieties 

to rates less than half those observed under optimum environmental 

conditions. 

I Dark respiration rates were also much lower in plants of both 

varieties grown under low light intensities. 

I Reduced photosynthetic activity could be correlated with an 

effective doubling in stomatal resistance to H20 and CO .. transfer in low 

light stressed plants but changes in stomatal resistance accounted for only 

10% of photosynthetic inhibition in Dylan plants. 

I Changes in residual resistance to CO2 transfer were found to 

account for 90% of the reduction in photosynthetic rates in Dylan plants.' 

For Aquadulce plants photosynthetic depression under low light intensities 

was correlated equally with changes in stomatal and residual resistances to 

CO2 transfer. 

I Plants of both varieties showed visible signs of low light 

stress and were much smaller and 'weaker' than plants of comparable age 

grown under high light conditions. Leaves were very pale in colour 

indicating a marked reduction in total leaf chlorophyll content which would 

have contributed to depressed photosynthetic rates. 

The effects of low temperature stress on both Dylan and 

Aquadulce plants were dependent on the length of the cold period such that: 

I Periods of 24 h at 10'C did not influence net photosynthetic 

rates in either variety; however, 1.2 h or 1 week cold temperature periods 

resulted in a 201. depression in net photosynthetic rates in comparison to 

non cold-stressed plants. Recovery to pre-stress rates occurred more quickly 

in the 72 h cold treated plants than in plants exposed for 1 week. 

I Varietal differences in dark respiration responses to cold 

stress were observed. Dark respiration rates were enhanced in Dylan .plants 
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in response' to all cold treatments. This respiratory stimulation declined 

upon·rewarming but the rate of recovery was found to be dependent on and 

inversely proportional to the length of the cold treatment. In contrast, 

respiratory stimulation was not observed in Aquadulce plants exposed to 24 

h or 1 week of cold temperature stress. Enhanced respiratory activity 

occurred in response to the 72 h cold treatments and was seen to persist 

up to 3 ·d after rewarming. Such respiratory stimulation contributed to the 

depression of net photosynthetic rates observed in both varieties but was 

not the sole cause of Pnet inhibition. 

• Cold temperature stress resulted in much increased variability 

in data for stomatal resistance to CO2 transfer but, in general, stomatal 

resistance was substantially increased in cold-stressed plants. 

• Residual resistances to CO 2 transfer were also found to be 

variable following cold temperature stress but were not found to be 

significantly higher. than values obtained for non cold-stressed plants and 

in some cases . were much lower. It was concluded that low temperature

induced net photosynthetic depression largely resulted from increased 

stomatal resistance to CO 2 transfer and, in Dylan plants, respiratory 

stimulation. 

• Changes in leaf structure were observed in both varieties in 

response to the 1 week cold treatments which resulted in increased leaf 

thickness but a reduction in leaf density in cold-stressed plants. This 

apparent reduction in leaf density, together with the development of injury 

symptoms in some plants which were characteristic of water stress 

symptoms, suggested that low temperature stress had influenced plant water 

relations. The development of secondary water stress is typical of reported 

responses to low temperature and must be considered to have contributed 

greatly to the noted increases in stomatal resistance. 

Cold temperature-induced changes in plant pigments and 

metabolites were also found which may have contributed to changes in 

photosynthetic rates. 

• Chlorophyll content was significantly reduced in both Dylan 

and Aquadulce plants in response to low temperatures, the lowest chlorophyll 

content being found in the longer cold treatments. Reduced chlorophyll 

content was attributed both to degradation and reduced synthesis but it 

was not thought likely that changes in chlorophyll content alone had 
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effected net photosynthetic depression • 

• Marked varietal differences in cold temperature-induced 

changes in Hill reaction activity were noted which were dependent on the 

length of the cold treatment period. Rates of Hill reaction per unit 

chlorophyll of chloroplasts isolated from Aquadulce plants were not 

influenced by exposure to 10'C for 24. h periods but were significantly 

reduced in response to both the 72 hand 1 week cold treatments. In 

contrast, 72 h of cold temperature stress induced significant increases in 

the rate of Hill reaction activity in isolated Dylan chloroplasts but 

periods of 24. h or 1 week inhibited activity. Although reduced Hill 

reaction activity could have contributed to depressed photosynthetic rates 

in both varieties in the long-term, as indicated by data from 1 week cold 

periods, the effects of cold temperature on electron transport do not serve 

to explain the effects of shorter cold stress periods. 

• Total soluble leaf protein content was also altered in response 

to low temperature stress but, again, changes were dependent on both 

variety and the length of the cold treatment period. Protein content was 

increased in all cold temperature-stressed Aquadulce plants, these increases 

being seemingly independent of the length of the cold period. However, in 

Dylan plants, 24. h cold resulted in decreased protein content, 72 h cold 

resulted in increased protein content and 1 week cold did not influence 

total soluble leaf protein content in Dylan plants. It was apparent that low 

temperature stress influenced rates of protein synthesis in both varieties 

of Vicia faba. Enhanced protein synthesis is consistent with reports in 

current literature which suggest increases in protein content to be a 

compensatory mechanism to counteract reduced enzyme activity occurring in 

response to low temperature stress and the data showing net photosynthetic 

inhibition in response to both the 72 hand 1 week cold periods would 

correlate with this hypothesis. However, although this mechanism may have 

occurred in plants subjected to longer periods of low temperature stress, it 

did not serve to explain the reduced protein content,of Dylan plants 

exposed to only 24. h of low temperature stress. Since low temperature stress 

has been reported to influence both protein synthesis and degradation it 

was thought that the initial response of Dylan plants to the imposition of 

low temperature stress was enhanced protein degradation and that enhanced 

protein synthesis occurred some time after the onset of degradation when 

cold stress continued. As low temperatures persisted it was thought that 
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rates ot synthesis and degradation stabilised and became equal such that 

no apparent change in leaf protein. content was observed. It may be assumed 

that any enhanced protein degradation occurring in Aquadulce plants was 

outweighed by enhanced rates of synthesis occurring in response to cold 

stress and that the initial lag in the onset of enhanced synthesis 

occurring in Dylan plants did not occur in Aquadulce plants. Since the 

degradation of protein in Dylan plants in response to 24 h ot cold 

temperature stress Was not accompanied by any observable decline in net 

photosynthetic rates it may be possible that net photosynthetic inhibition 

occurring in response to low temperature stress results from .increased 

energy consumption tor protein synthesis occurring at the expense ot the 

energy requirements of photosynthesis. 

• Low temperature stress alone was also found to influence total 

leaf carbohydrate content but responses were again seen to be cultivar 

specific. Reduced carbohydrate content was observed in Dylan plants 

following the 24 h or 72 h cold treatments but the 1 week cold treatment 

had no apparent effect. Conversely, the carbohydrate content of Aquadulce 

chloroplasts was unchanged upon exposure to 24 h of low temperatures but 

was significantly increased in plants subjected to the 72 hand 1 week 

treatments. A general increase in carbohydrate content, as observed in 

Aquadulce plants, was consistent with reports in the literature of 

decreased translocation of photosynthates out of the leaf in response to 

cold stress; hence, the reduced carbohydrate content in Dylan plants was 

surprising. Such decreases may have resulted from the observed low 

temperature-induced respiratory stimulation. It was thought that the 

absence of any apparent effect of the 1 week cold treatments on 

carbohydrate content of Dylan plants was a product of both reduced 

translocation and respiratory stimulation. It was concluded that feed-back 

inhibition was not operating since low temperature-induced net 

photosynthetic depression was associated with both decreased and increased 

leaf carbohydrate content in Vicia faba. 

6.3 .Responses to Combined Environmental/Pollutant stress 

The imposition of either low light or low temperature stress 

prior to pollutant fumigation was found to moderate the responses of both 

varieties of Vicia taba to sulphur dioxide. When plants were grown under 
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low light intensities the degree of SO.-induced net photosynthetic 

inhibition as compared to plants grown under high light intensities, was 

reduced. This lessening in inhibition was most marked in plants of the 

variety Dylan such that significantly less inhibition 'was observed in 

comparison to Aquadulce plants at all SO. concentrations below 400 ppb. 

Examination of several leaf parameters to determine the mechanisms behind 

this reduced photosynthetic sensitivity showed that: 

• Dark respiration rates in Dylan plants grown under low light 

intensities were lessened in response to SO.; this occurred independently of 

SO. concentration. This response was the reverse of that found in Dylan 

plants grown under high light intensities and contributed significantly to 

the lessening in the observed degree of SO.-induced net photosynthetic 

inhibition. The greater photosynthetic sensitivity of low light-stressed 

Aquadulce plants in comparison to Dylan plants was attributed, in part, to 

SO. having no effect on dark respiration rates of Aquadulce plants. 

• Stomatal responses to SO. were significantly altered as a 

consequence of plants having been grown under low light intensities. This 

modification .was most marked in Dylan plants where stomatal responses were 

the reverse of those seen in high light grown plants and increasing SO. 

concentration resulted in decreasing stomatal resistances to H.O and CO. 

transfer. This reversal in response contributed to the lessening of SO.

induced net photosynthetic inhibition in low light-grown Dylan plants in 

comparison to high light-grown plants. This reyersal in stomatal response 

also contributed to the lesser sensitivity of Dylan plants in comparison to 

Aquadulce plants since; as for high light-grown plants, stomatal 

resistances were still seen to increase in response to SO. in low light

grown Aquadulce plants. 

• Under low light intenslties, residual resistances (rr) to CO. 

transfer were still found to increase markedly in both varieties at higher 

SO. concentrations and to contribute largely to SO.-induced net 

photosynthetic inhibition. However, increases in rr in both varieties were 

found to be less than occurred under high light conditions and this 

contributed, in part, to the lessening in SO.-induced inhibition of net 

photosynthetic rates particularly at higher 502 concentrations. However, it 

was concluded that the reduced sensitivity to SO. of low light-grown Dylan 

plants in comparison to high light-grown plants was largely attributable 

to decreases in dark respiration rates and, particularly at low SO. 
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concentrations, changes in stomatal resistance. 

• The imposition of low light stress led to differences in the 

relationship between pollutant flux and ambient SOl concentrations. 

Although flux to Dylan plants was not determined to be significantly 

different to that for high light-grown plants, increased variability in 

data obtained was observed, this being attributed to the effects of low 

light stress in increasing stomatal resistance. Thus reduced net 

photosynthetic inhibition in Dylan plants could not be attributed to 

reduced flux. In contrast, the effect of added low light stress on Aquadulce 

plants was to significantly reduce pollutant flux in comparison to that to 

high light-grown plants. This reduction in flux was thought to account for 

the lessening of SOl-induced inhibition of net photosynthetic rates in low 

light-stressed Aquadulce plants in comparison to high light-grown plants.· 

• Although fluxes to Dylan plants were not found to be 

significantly different when plants were grown under high or low light 

intensities, the relationship between ambient SOl concentration and residual 

and stomatal resistances to SO. flux was found to be reversed. Under low 

light intensities rrSO. became less negative as SO. concentration increased 

whilst stomatal resistance decreased. It was concluded that pollutant flux 

to Dylan plants was governed equally by stomatal and residual resistances 

whereas, under optimum environmental conditions fluxes were seen to be 

largely governed by residual resistances to pollutant transfer. Varietal 

differences were significant since low light stress was not seen to alter 

residual resistances to SO. transfer in Aquadulce plants. However, stomatal 

resistances were higher than those observed in high light conditions 

which resulted in the reduced flux to Aquadulce plants under low light 

conditions. 

• The imposition of low light stress was also seen to alter the 

relative sensitivities of each variety of Vicia faba to sulphur dioxide. For 

Dylan plants, reductions in SO.-induced net photosynthetic inhibition under 

low light intensities did not arise from reductions in flux and less 

inhibition was seen for the same range of flux measurements in comparison 

to that for high light intensities. It was concluded that low light stress 

had reduced the sensitivity of Dylan plants to sulphur dioxide and 

increased plant tolerance. Conversely, reductions in SO.-induced net 

photosynthetic inhibition in low light-stressed Aquadulce plants were 

correlated with reduced pollutant flux and greater net photosynthetic 
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inhibition was observed for any given measure of flux in comparison to 

that for high light-grown plants. Similarly, the threshold flux value, above 

which net photosynthetic inhibition was seen to occur was substantially 

lowered under low light conditions." It was concluded that low light stress 

had increased the sensitivity of Aquadulce plants to SO. but injury was 

reduced via avoidance mechanisms since flux irito the plants was reduced 

under low light conditions. 

The imposition of periods of low temperature stress prior to SO. 

fumigation was also seen to alter plant pollutant responses. The degree of 

SO.-induced net photosynthetic inhibition was found to be dependent on 

both variety and the length of the cold pre-treatment (lO'C: 24-, 72 h or 1 

week). Exposure to 10'C for only 24- h was seen to reduce the degree of 50.

induced net photosynthetic inhibition occurring in Dylan plants when data 

were compared with those for non cold-stressed plants and enhanced rates 

were observed at low SO. concentrations which had not been observed in non 

cold-stressed plants. Conversely, although a 24- h cold period did not 

significantly alter the responses of Aquadulce plants to SO., the data were 

increasingly variable and no photosynthetic enhancement was observed 

although this was seen to occur at low SO. concentrations in non cold

stressed plants. SO.-induced net photosynthetic inhibition was also much 

reduced in Dylan plants previously subjected to either 72 h or 1 week of 

low temperature prior to SO. fumigation. This reduction occurred at all SO. 

concentrations used. In contrast, exposure to 72 h or 1 week at 10·C 

reduced SO.-induced net photosynthetic inhibition of Aquadulce plants only 

when ambient SO. concentrations exceeded 250 ppb. At lower concentrations 

there did not appear to be any significant differences in the 

photosynthetic responses of cold-stressed or non cold-stressed Aquadulce 

plants. These low temperature modifications in net photosynthetic responses 

to SO. were associated with: 

• Low temperature stress resulted in changes in the dark 

respiratory responses of Dylan plants to SO. such that no SO.-induced 

respiratory stimulation was observed in cold-stressed Dylan plants although 

this had occurred in non cold-stressed plants. However, low temperature 

stress alone had already induced respiratory stimulation in Dylan plants. 

The absence of enhanced dark respiration rates could explain, in part, the 

lessening of SO.-induced net photosynthetic inhibition in low temperature-
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stressed Dylan plants. However, modification of net photosynthetic responses 

to SO. in low temperature-stressed-Aquadulce plants could not be attributed 

to changes in SO. effects on dark respiration rates • 

• Low temperature stress significantly altered the stomatal 

responses of both varieties to SO. such that, unlike for non cold-stressed 

plants, there was little apparent correlation between ambient SO. 

concentration and % change in stomatal resistance and no obvious threshold 

concentration, indicating a switch in stomatal response from enhanced 

opening to enhanced closure. Varietal differences were highlighted since 

low temperature stress was seen to markedly reduce the magnitude of 

stomatal response to SO. in Dylan plants whereas the magnitude of stomatal 

response was markedly increased in Aquadulce plants. Of significance also 

is that following exposure to I week at 10'C enhanced stomatal closure in 

response to SO. was observed in all plants of both varieties at all SO. 

concentrations. Such changes in stomatal response to SO. may have been 

expected to profoundly alter net photosynthetic responses to SO. in cold

stressed plants. Remarkably, however, little correlation b'etween SO.-induced 

net photosynthetic inhibition and changes in stomatal resistance was found 

and 'it Was concluded that, in plants subJected to longer periods of cold 

stress, Changes in Pnet in response to SO. occur seemingly independently of 

changes in r. suggesting low temperature stress has a profound effect on 

that part of the stomatal mechanism sensitive to SO •• However, some degree 

of stomatal control in determining net photosynthetic rates was still 

observed in plants subJ~cted to shorter cold stress periods • 

• Since stomatal resistance was not the maJor controlling factor 

determining environmental modification of photosynthetic responses to SO., 

other factors must have been exerting a controlling influence. Examination 

of residual resistances (r.> to carbon dioxide transfer showed that the 

marked SO.-induced increases in r. seen to occur in non cold-stressed 

plants were not as apparent in cold-stressed plants of either variety. 50.

induced changes in r. were found to be dependent on the length of the cold 

pre-treatment. and variety. In Dylan plants subJected to 24- h at 10'C much 

smaller SO.-induced increases in r. occurred in relation to those observed 

in non cold-stressed plants which contributed Significantly to the 

lessening in SO.-induced net photosynthetic inhibition. Interestingly, 

although there were no apparent significant differences between the degree 

of SO.-induced net photosynthetic inhibition in Aquadulce plants subJected 
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to 2' h at 10·C and that of non cold-stressed plants, analysis of 

resistance data showed significant" changes to have occurred. In contrast 

to non cold-stressed plants there were no large increases in rrCO, in 

response to SO. in cold-stressed Aquadulce plants and at SO, concentrations 

below 285 ppb rrCO, was found to decrease; these decreases in rr were 

concomitant with increases in stomatal resistance and it was concluded 

that stomatal resistances played a larger role in determining the degree of 

SO,-induced net photosynthetic inhibition in Aquadulce plants subjected to 

24 h of low temperature stress~ In plants of both varieties subjected to 

longer periods of cold temperature stress reductions in SO,-induced net 

photosynthetic inhibition were associated with much lower residual" 

resistances to CO, transfer in comparison to those of non cold-stressed 

plants. 

• Low temperature stress was also seen to alter the relationship 

between pollutant flux and ambient sulphur dioxide concentrations as the 

responses observed became increasingly variable with increasing length of 

the cold pre-treatments. This increased variability was attributed to low 

temperature effects on stomatal resistance outlined above. Surprisingly, 

unlike the relationship observed in non cold-stressed plants, no significant 

differences between measured and calculated pollutant fluxes were found in 

cold-stressed plants which may have suggested the absence of a residual 

resistance to SO, transfer. The correlation between flux and ambient SO. 

concentration was not significantly altered by the imposition of 2' h of 

low temperature stress in either variety, nor were the any significant 

differences in flux to plants of the variety Dylan following the 72 h cold 

treatments. However flux was significantly reduced in Aquadulce plants 

subjected to the 72 h cold treatments and following the I week cold 

treatments SO. flux into leaves of both varieties was significantly reduced 

in comparison to that to non cold-stressed plants. These reductions in flux 

could account for the lessening of SO.-induced net photosynthetic 

inhibition in cold-stressed plants of the variety Aquadulce Claudia and 

Dylan plants exposed to the I week cold pre-treatments. However, reduced 

photosynthetic inhibition in Dylan plants exposed to 2' h or 72 h of low 

temperature stress prior to SO. fumigation could not be attributed to 

reductions in pollutant flux • 

• Despite the absence of significant differences between 

pollutant flux as derived from mass balance calculations and flux as derived 
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from analogy to water vapour transfer, analysis of the resistance data 

for pollutant uptake in cold-stressed plants showed & residual resistance to 

SO. uptake to still be evident. However, all three cold treatments resulted 

in much increased variability in both residual and stomatal resistances to 

pollutant uptake. Despite flux being apparently unaltered following the 2' h 

cold treatments, it was found that the increased stomatal resistance 

occurring in response to the cold treatments was matched by residual 

resistances to SO. uptake being increasingly negative. Following the 1 week 

cold treatments when flux to both varieties was significantly reduced 

significant varietal differences in residual and stomatal resistance to SO. 

uptake were observed. In Dylan plants residual resistances were seen to be 

largely negative at SO. concentrations below 300 ppb (the converse of that 

occurring in non cold-stressed plants) when stomatal resistance was seen to 

increase. In Aquadulce plants both stomatal and residual resistances 

increased with increasing SO. concentration thus resulting in much reduced 

flux. 

• Low temperature stress influenced the relative sensitivities of 

both Dylan and Aquadulce plants to SO •. Lower SO.-induced inhibition of net 

photosynthesis in Dylan plants exposed to either 2' h or 72 h of low 

temperature stress was attributed to increased pollutant tolerance since 

fluxes were unchanged. Conversely, following the 1 week cold treatments, the 

lessening in response to SO. fumigations in Dylan plants was a product of 

reduced flux and increased sensitivity to SO. was found to have occurred. 

The lessening in responses to SO. of Aquadulce plants exposed to either 72 

h or 1 week of low temperature stress was the result of both reduced flux 

and reduced pollutant sensitivity ie. a combination of avoidance and 

tolerance mechanisms. 

The observations of increased pollutant tolerance indicated that 

low temperature stress had uncoupled the relationship between pollutant flux 

and plant response and suggested that the mechanisms of stress interaction 

arose not only from changes in resistance to gas exchange but from other 

biochemical or physiological factors. Low temperature stress Was seen to 

result in modification of SO. effects on leaf pigments, electron transport 

and metabol1tes as follows: 

• The imposition of low temperature stress was found to reduce 

the sensitivity of Dylan plants to SO. when changes in chlorophyll content 

were considered. SO.-induced reductions in chlorophyll content were not 
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observed in cold-stressed plants although they had been present in non 

cold-stressed plants indicating that prior exposure to low temperature 

stress lessened SO. effects on chlorophyll degradation. SO. was seen to 

result in a stimulation of chlorophyll synthesis in non cold-stressed 

Aquadulce plants but this was not seen to occur in cold-stressed plants. 

Such changes in chlorophyll content did not serve to explain low 

temperature-induced changes in photosynthetic response to SO •• 

• Varietal differences were again apparent when rates of Hill 

reaction activity were considered. The marked sensitivity of Hill reaction 

rates of Aquadulce plants to SO. in the absence of cold-stress was not 

observed in cold-stressed plants and rather than inhibition, exposure to 

500 ppb SO. was found to stimulate activity in cold-stressed Aquadulce 

plants. Conversely, exposure to low temperature stress appeared to sensitize 

the Hill reaction activity of Dylan plants to SO., These data correlate with 

the low temperature-induced changes relative sensitivities to SO. described 

above. It was concluded that one of the mechanisms contributing to reduced 

pollutant sensitivity following cold temperature stress in Aquadulce plants 

.was the prevention of SO,-induced inhibition of photosynthetic electron 

transport • 

• Analysis of total soluble leaf protein content showed that low 

temperature stress prevented the marked SO.-induced increases in protein 

content observed in non cold-stressed plants. Considered in terms of the 

energy budget of the plant, this absence of stimulation in protein 

synthesis was thought to contribute to reduced pollutant sensitivity by 

removing the added energy reqUirements for enhanced protein synthesis 

resulting in more energy being available to drive photosynthetic carbon 

fixation; this was thought to occur in Aquadulce plants particularly. Cold 

stress alone was seen to inhibit Hill reaction activity and it may be 

assumed that as a consequence, ATP formation was also inhibited by low 

temperature stress. If ATP production is limited then its utilisation in 

protein synthesis would probably result in not enough energy being 

available to drive photosynthetic carbon fixation. The preferential 

utilisation of ATP in driving CO.-fixation rather than protein synthesis 

would be of benefit to the plant in the short-term. However, if as is 

suggested, enhanced protein synthesis is a compensatory mechanism for SO,

induced inhibition of enzyme activity, then the absence of enhanced protein 

synthesis may be detrimental to the plant in the long-term. 
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• Analysis of leaf carbohydrate content showed that low 

temperature stress prevented the SO,-induced reductions in carbohydrate 

content observed in non cold-stressed plants. For Dylan plants, this was 

thought to be the result of the absence of increased respiratory 

consumption via respiratory stimulation since SO. did not increase 

respiration rates in cold-stressed Dylan plants and this had been observed 

in non cold-stressed plants. However, since SO. did not provoke a 

respiratory response in Aquadulce plants then the absence of respiratory 

stimulation could not explain the absence of SO.-induced decreases in 

carbohydrate content. Under optimum environmental conditions it was 

thought that SO.-induced reduced carbohydrate content of Aquadulce leaves 

was the result of enhanced translocation of photosynthates out of the leaf. 

Thus the imposition of low temperature stress was thought to prevent this 

enhanced translocation and since carbohydrate content was seen to increase 

it was thought that SO. inhibited carbOhydrate translocation in cold

stressed Aquadulce plants. The SO.-induced decrease in carbohydrate content 

of Aquadulce plants subjected to 72 h cold-stress was thought to be the 

result of the observed_respiratory stimUlation in these plants. 

6. 4- OVERVIEW 

Given the range of responses to either environmental or pollutant 

stress alone, as summarised above, it was not surprising to find that prior 

exposure to environmental stress modified the responses of both varieties 

of Vicla faba to SUlphur dioxide and that significant varietal differences 

were observed. What was surprising was that contrary to most reports, 

environmental stress appeared to reduce plant pollutant responses. However, 

this did not necessarily mean reduced sensitivity since lessening in 

photosynthetic inhibition was in some cases the result of reduced pollutant 

flux. Plant responses to combined environmental/pollutant stress were, 

therefore, the result of a combination of both avoidance and tolerance 

mechanisms. Differential sensitivity of the two cultivars of Vicia faba, 

Dylan and Aquadulce Claudia Was found to result from both differential SO. 

uptake and different tolerances to actual pollutant uptake. The mechanisms 

employed by each variety to counteract the presence of SO. were found to be 

dependent on prevailing environmental conditions. 
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Since this study dealt with laboratory based relatively short 

environmental stress and pollutant .fumigation periods these data are not 

readily comparable with that obtained~r~g-term field fumigation 

experiments. Also, low light and low temperature stress were investigated 

separately whereas these conditions usually occur together in winter 

conditions in the field. However, these data do serve to emphasise the 

influence of prevailing environmental conditions in determining plant 

pollutant responses and it is by investigations of each stress individually 

that insight into interactive mechanisms can be gained. Possible 

interactive mechanisms are discussed below which also provided some 

explanation for the discrepancies between data for long-term and short

term exposure experiments. 

In the search for the identification of a mechanism giving an 

indication of plant pollutant sensitivity, the data obtained from this study 

would preclude the use of analysis of pollutant effects on plant pigments 

and metabolites as reliable indicators of sensitivity. The effects of sulphur 

dioxide with or without low temperature stress were found to be the result 

of a combination of a number of subtle effects rather than a specific 

effect on any single parameter and net photosynthetic inhibition could not 

be correlated exactly with changes in chlorophyll, protein or carbohydrate 

content or changes in Hill reaction activity. Therefore, changes in net 

photosynthetic rates are considered to be a significant indicator of plant 

pollutant sensitivity. However, such responses must be related to actual 

pollutant fluxes rather than ambient pollutant concentrations since 

differential sensitivity as related to ambient concentrations has been 

shown to be correlated, in part, with difterences in pollutant uptake. 

However, careful consideration must be given to the manner in 

which pollutant fluxes are calculated. Gas phase resistance, principally at 

the stomata is commonly thought to be the predominant factor limiting the 

diffusion of 502 and it is often assumed that stomatal resistances to 

pollutant uptake are proportional to stomatal resistances for water vapour 

efflux, allowing for differing molecular diffusivities. However, the data 

from this study have confirmed the existence of a residual resistance to 

502 uptake which, when environmental conditions are not limiting, appeared 

to be the predominant factor governing SO, uptake by both Aquadulce and 

Dylan leaves since flux was only partly correlated with stomatal resistance. 
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Thus the resistance pathways for water vapour transfer and pollutant 

uptake are not completely synonymous. Of significance is that the 

imposition of either low light or low temperature stress prior to pollutant 

exposure alters the relative contributions of both the stomatal and residual 

resistances to 50 2 uptake. 

Under low light conditions, for Dylan plants, stomatal and 

residual resistances were equally important in governing pollutant flux; 

although, in comparison to high light-grown plants, changes in both 

resistances with increasing 502 concentration were reversed such that flux 

was apparently unchanged. Conversely, the residual resistance to 502 uptake 

was unchanged in low-light grown Aquadulce plants whilst stomatal 

resistance was increased thus flux was reduced. Short periods of low 

temperature stress alone increased stomatal resistances to 502 uptake but 

these were concomitant with residual resistances being increasingly 

negative, thus flux was unchanged. However, longer periods of cold 

temperature stress induced changes in both stomatal and residual 

resistances to 50 2 uptake such that flux to both varieties was 

significantly reduced. Again, residual resistances to 502 transfer in _Dylan 

plants, in relation to increasing 502 concentration, were the reverse of 

those observed in non cold-stressed plants ie. they were largely negative at 

low 502 concentrations. 

Such chang~s in the relative contributions of both the residual 

and stomatal resistances to pollutant flux when environmental conditions 

are limiting may have possible long-term consequences in plant pollutant 

responses. If, as for the stomatal resistance, the residual resistance is a 

purely physical resistance related to 502 diffusivity, then changes in the 

relative proportions of each which do not result in changes in flux, will 

not have significant effects on the overall plant response to the pollutant. 

However, if as suggested earlier, the residual resistance arises from 

internal detoxification mechanisms or the incorporation of the products of 

502 solubility into plant metabolites, then a large decrease in this 

resistance (le. rr- becoming -largely negative) must indicate a significant 

change in plant metabolism. This can more easily be explained if we 

consider an hypothetical example of resistances in differing environmental 

regimes: 
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Firstly. 

(i) Optimum environmental conditions: stomatal resistance = 5 s cm-' 

residual resistance = -3 s cm-' 

Therefore. 

Secondly. 

net resistance to SO. = 2 s cm-' 

(ii) Low Light or 1 week cold: stomatal resistance = 10 s cm-' 

residual resistance = -6 s cm-' 

net resistance to SO. uptake = 2 s cm-'. Again. 

In both instances. net resistance to SO. uptake is the same and flux is 

unchanged. However. the residual resistance to SO. uptake may be related to 

the detoxification of sulphite ions. possibly their oxidation to sulphate. In 

this case. in suboptimal environmental conditions when the residual 

res istance is seen to largely decrease. these data would lead to the 

conclusion that rates of detoxification had been enhanced. The observation 

of reduced net photosynthetic inhibition in response to high SO. 

concentrations when environmental conditions were limiting would lend 

credence to this conclusion. 

Alternatively. if as outlined earlier. the site of the residual 

resistance is the incorporation of sulphite ions onto the binding sites on 

the enzyme RuBP carboxylase. then these data would suggest that under low 

light conditions or following low temperature stress. the rate of sulphite 

incorporation was increased. This hypothesis can be correlated to the 

observed low temperature-induced increases in total soluble leaf protein 

content since a large proportion of soluble protein is the enzyme RuBP 

carboxylase. Thus. following low temperature stress. there is an increase in 

the amount of this enzyme resulting in an increase in the number of 

binding sites available for reaction with sulphite ions which would 

correlate with large decreases in observed residual resistances to SO. 

uptake. Such action would inevitably lead to enhanced pollutant sensitivity 

since fewer bicarbonate ions would be able to bind with the enzyme 

resulting in enhanced net· photosynthetic inhibition. Interestingly. the 

data for both Dylan and Aquadulce plants subj~cted to 1 week cold 

temperature stress showed enhanced pollutant sensitivity to low SO. 

concentrations when residual resistances were largely negative. The 

observed reduction in the degree of SO.-induced net photosynthetic 

inhibition. as related to ambient SO. concentration. in such plants was 
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attributed to reduced pollutant flux related to low temperature-induced 

increased stomatal resistance. It w.ould be of interest to determine what 

effect low light stress has on the total· soluble protein content of Vicia 

faba CV. Dylan since reductions inSO,-induced net photosynthetic 

inhibition were found to be the result of reduced sensitivity to the 

pollutant and not reduced flux. There is evidence in the literature to 

suggest that. the synthesis of RuBP carboxylase within the chloroplast is 

strongly light dependent (Fitter & Hay, 1981). Assuming there is such a 

reduced synthesis of the enzyme under low light intensities in Vicia faba, 

this would provide a plausible explanation for reduced sensitivity to high 

SO, concentrations in Dylan plants in comparison to high light-grown 

plants. 

The idea of of pollutant sensitivity being related to 

carbohydrate content was introduced by Dugger et al. (1962) in their study 

of ozone damage to pinto beans. The results obtained in this study also 

indicate that carbohydrate content of leaves prior to pollutant exposure is 

implicated in the differential sensitivity to SO, in cultivars of Vicia faba. 

In the absence of either cold or low light stress, Dylan plants were found 

to be more· sensitive to low SO, concentrations than plants of the variety 

Aquadulce Claudia. Analysis of leaf carbohydrate content showed Dylan 

leaves to contain almost three times the carbohydrate content of Aquadulce 

leaves. Of significance is that exposure to either 24, h or 72 h of low 

temperature stress was seen to reduce the carbohydrate content of Dylan 

leaves. In such cold-stressed Dylan plants, SO,-induced net photosynthetic 

inhibition was found to be lessened in relation to non cold-stressed plants. 

This reduced response was not found to result from reduced flux but from 

reduced sensitivity to the pollutant. Similarly, 1 week cold stress did not 

reduce the carbohydrate content of Dylan leaves although a reduced 

photosynthetic response to the pollutant was observed, this was found to 

result from reduced pollutant flux and not reduced pollutant sensitivity. 

Cold temperature stress was not seen to reduce the carbohydrate 

content of Aquadulce leaves· and no reduced sensitivity to low SO. 

concentrations was observed in Aquadulce plants. Indeed, exposure to either 

72 h or 1 week cold temperature stress was seen to increase the 

carbohydrate content in Aquadulce plants when increased photosynthetic 

sensitivity to low SO, concentrations was noted. However, since reduced 

sensitivity to SO. concentrations above 300 ppb was observed in Aquadulce 
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plants previously subjected to the 1 week cold treatments., it must be 

concluded that at high SO. concentrations some other mechanism is acting 

to confer this reduced sensitivity. Nevertheless. it would appear that the 

modification of plant responses to:SO. by low temperature stress could be 

related to low temperature-induced changes in carbohydrate content. Thus it 

is apparent that further investig~tions into the link between carbohydrate 

content and sensitivity to SO. are merited. 

Modification of plant responses to SO. by the imposition of low 

light or low temperature stress was also found to be related to significant 

effects on stomatal control of gas exchange. In the absence of 

environmental stress there were found to be relatively good correlations 

between SO.-induced changes in ,net photosynthetic rates and SO.-induced 
\ changes in stomatal resistance. Similarly. there were good correlations 

between changes in stomatal resistance and actual pollutant flux. These 

data indicate that the stomata play a significant part in governing both 

CO. exchange and SO. uptake although the major controlling factors for the 

exchange of both gases was found to be the residual resistances. However. 

when plants were grown under low light conditions or were subjected to low 

temperature stress prior to pollutant fumigation. no correlation between 

SO.-induced changes in net photosynthetic rates and changes in stomatal 

resistances were found. Similarly. there was very little correlation between 

SO.-induced changes in stomatal resistance and pollutant flux. The 

implication of these data is that the imposition of environmental stress 

had removed a degree of stomatal control over pollutant entry and CO. 

exchange. Since changes in stomatal resistance seemed to occur 

independently of pollutant flux or concentration it may be concluded that 

environmental stress had had a profound effect on that part of the 

stomatal control mechanism sensitive to S02' The observed reductions in flux 

in some plants were due to increased stomatal resistance resulting from the 

environmental stress and not the pollutant exposure. 

In chapter 4- (§4.10.5) the significance of direct stomatal 

responses to SO. rather than effects mediated solely through changes in 

internal carbon dioxide concentration were discussed. Several authors 

dispute the existence of a direct effect of SO. on stomata; however, it was 

concluded that, under optimum environmental conditions, there was a direct 

stomatal response to S02 in Vicia faba and that the stomata exert some 
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control over pollutant uptake. The observation that the residual resistance 

to CO. is a major controlling factor for gas exchange indicated that the 

stomata were also responding to changes in the intracellular CO. 

concentration. However, it would appear that following environmental stress, 

stomatal control is diminished. Although SO. elicited a direct stomatal 

response in low light-grown Dylan plants, the effects were small in 

comparison to that for high light-grown plants. The imposition of low 

temperature stress apparently resulted in loss of a direct stomatal response 

to SO. given the responses outlined above. It is thought that increased 

stomatal resistance resulting from exposure to SO. in plants subjected to 

longer periods of cold temperature stress was a secondary response to 

pollutant fumigation, possibly arising from changes in the intracellular CO. 

concentration as net photosynthetic rates were inhibited. 

It was also shown that the magnitude of stomatal responses to 

SO. was much reduced in Dylan plants following the longer cold temperature 

pre-treatments but that the magnitude of stomatal responses to SO. was 

much increased in cold-stressed Aquadulce plants. These data would suggest 

that the reduction in independent stomatal control in cold temperature

stressed Aquadulce plants was accompanied by an increase in the sensitivity 

of the stomata to CO •. 

The loss of a direct stomatal response to SO. following 

environmental stress could have severe consequences for the yield and 

growth of plants in the field since the stomata are important in pollutant 

avoidance. Mansfield & Freer-Smith 0984-) pointed out that a true pollutant 

avoidance mechanism would involve stomatal closure in avoidance of stress 

in the mesophyll rather than as an event secondary to that stress. Thus 

stomatal closure which occurs as a result of inhibitory action of a 

pollutant on photosynthesis in the mesophyll cannot be looked upon as a 

desirable way of avoiding stress due to the pollutant. In Vicia faba it can 

be seen that, when environmental conditions are not limiting, the stomata 

respond to SO. directly thus acting as a true avoidance mechanism. However, 

following environmental stress, it would appear that this true avoidance 

mechanism is lost and stomata are reacting to SO. effects on the mesophyll. 

The effects of environmental stress on the residual resistance to SO. 

uptake, as outlined above, indicating a greater mesophyll effect, would 

support this theory. An increase in the effects of SO. in the mesophyll 

could go someway towards explaining the discrepancies in the observed 
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modification of pollutant responses by environmental stresses between 

short-term laboratory based experiments and long-term field tumigations. 

This theory would suggest that suboptimal environmental 

conditions result in enhanced pollutant sensitivity ie. a greater inhibitory 

response when flux is unchanged which would concur with the observations 

of the Lancaster University group in their long-term experiments. However, 

since the results obtained in this study show Vicia faba to be less 

responsive to SO. following environmental stress, it is obvious that other 

mechanisms are acting to confer apparent reduced sensitivity. The data 

from this study show that apart from reduced pollutant flux when 

environmental conditions are suboptimal, reduced sensitivity may be linked 

to leaf carbohydrate content as discussed above. 

The range of sulphur dioxide concentrations used in this study 

were in excess of ambient atmospheric concentrations based on annual. 

monthJy or daily means. However, when hourly means are considered, it is 

still not uncommon to find ambient SO. concentrations to exceed 200 ppb for 

short periods of time especially close to point sources (see Chapter 1). The 

experiments performed in this study were designed to reflect such shor~ 

episodic fumigations and the higher concentrations were used to identify 

marked varietal differences and possible mechanisms of SO. action. The use 

of very high SO. concentrations in laboratory based experiments has often 

been Justified as necessary to determine the physiological mechanisms of 

SO. on plants; the assumption is that the mode of SO. action is the same 

regardless of concentration. However, the data obtained in this study have 

shown this original premise not to hold true since plant responses to 100 

ppb and 500 ppb were often the reVerse of each other suggesting different 

modes of action depending on pollutant concentration. Thus high SO. 

concentrations can not be reflecting the mechanisms of SO. action at low 

ambient concentrations as found in the field. 

Although, mean ambient SO. concentrations are low, as is 

described earlier, it is well documented that the SO. concentrations in 

ambient air are constantly fluctuating. Thus it is difficult to extrapolate 

from responses to constant levels of SO. observed in controlled experiments 

to predict responses to ambient SO. levels in the field even though the 

mean concentrations are very similar. It is possible that the observed 

pollutant ertects in field exposures are arising from acute effects of 
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occasional short-term peaks. There is relatively little information 

regarding the effects of fluctuating SO. concentrations on plants. However, 

recent data from the Imperial College Research group at Silwood Park 

suggests that for long-term SO. inJury, the over-riding parameter is the 

overall mean and not episodic high SO. peaks (Bell, 1985). A recent report 

from Ashmore, Bell & Mimmack (1988) showed that plant responses are not 

significantly influenced by episodic SO. exposure and confirmed the earlier 

experimental results of Garsed & Rutter (1984-, in Ashmore et al., 1988). 

These data would suggest that results from fumigation experiments can be 

extrapolated to field conditions although it would still be particularly 

difficult to extrapolate from short experimental exposures to season-long 

responses. 

However, it is recognised that if fumigation results are to be 

usable for predictive modelling of crop loss· in the field then pollution 

exposure must be described in terms of foliar flux density and not ambient 

concentration. Total dose (mean concentration x duration) is often used to 

describe plant exposure over a growing season but this method assumes a 

proportional relationship between ambient pollutant concentration and flux 

to the plant. Similarly, this approach assumes there to be a strong general 

relationship between flux into the leaf and the amount of inJury or yield 

loss. The data from this study have shown that such correlations do occur 

when environmental conditions are not limiting but there are significant 

interactive effects of environmental factors. These interactive effects 

include low temperature effects on stomatal and residual resistances which 

determine flux and changes in the relationship between flux and plant 

response. Total dose also ignores the importance of peak concentrations 

which, as has been shown in this study, are likely to have a significant 

impact on plant productivity. It has been shown that the effects of 4- h 

SO. fumigations are often. severe and, particularly for Aquadulce plants at 

high concentrations, are not readily reversible. 

This type of study is designed to investigate interactive 

mechanisms of environmental and pollutant effects on plants, where 

. environmental and pollutant variables can be carefully controlled, and not 

to develop predictive models for crop loss assessment. It would be very 

difficult to extrapolate the data obtained in this study, involving the 

monitoring of the effects of short SO. fumigations together with the 
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interactive effects of short-term low temperature exposures in depressing 

net photosynthetic rates, to predict long-term consequences on plant yield 

under field conditions. It has yet to proved whether there is a 

proportional correlation between depressed photosynthetic rates as a result 

of pollutant fumigation and ultimate reductions in yield since the 

relationship between carbon dioxide uptake and eventual yield is not direct. 

The situation is further complicated by the certain knowledge that both 

SO. and temperature influence photosynthate allocation and assimilate 

distribution, a point highlighted by significant changes in leaf 

carbohydrate content in these short experiments. 

In the field, effects on yield over a growing season would depend 

on how often these episodic high pollutant peaks occur, remembering that 

such responses to pollutant peaks would be set against a background of low 

ambient SO. concentrations since SO. is present continually. Reduced yield 

has been shown to occur in plants exposed to 43 ~g m-' SO. for 173 days in 

winter (Bell, Rutter & Relton, 1979), thus it can be assumed that the 

continuous presence of low ambient SO. concentrations is stressful to plants 

under certain environmental conditions. It is highly probable that continual 

exposure to low ambient SO. concentrations would result in modification in 

response to short-term high SO. concentrations. Also, SO. seldom, if ever, 

occurs alone and ambient air is usually a cocktail of low pollutant 

concentrations, particularly ozone and nitrosel\ oxides which have both been 

shown to influence plant growth and yield. 

Another difficulty in extrapolating these data to field 

conditions is that environmental variables are constantly fluctuating and, 

in winter, temperatures will be belowl0'C for periods of weeks not days. 

Low light intensities, low humidity and high CO. levels also typify winter 

conditions, all of which influence leaf diffusive resistances thus 

influencing pollutant flux and CO. exchange. 

It is clear that if dose-response relationships are to be clearly 

defined, leading to the accurate prediction of yield losses then several 

research approaches must be undertaken together. Chamberless field-based 

studies can provide information as to crop loss over a single, or several 

growing seasons. However, such studies can provide little information 

regarding mechanisms of pollutant action or environmental modification 

since there is little control over levels of pollutants; also such experiments 
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are not readily replicated since environmental conditions and ambient 

pollutant levels are constantly fluctuating. Secondly, field-based open-top 

chambers can be used where a wide range of treatments can be imposed and 

the effects of air filtration can 'be well defined. However, the presence of 

the chamber may result in changes in the climate surrounding the plants in 

comparison to field conditions. Such modifications include reduced air-flow 

over leaves which may alter pollutant flux characteristics. Air 

temperatures, especially in winter, may be higher than in the open field 

and even a small difference of 1 or 2'C may affect crop responses to air 

pollutants <Roberts, 1984). Both these approaches can provide data 

regarding dose-response relationships and effects on yield but results are 

confounded with the effects of environmental factors and as such, are not 

readily replicable. It is also very difficult in such field-based studies to 

define the pollutant dose over the growing season which, as described 

earlier, is often expressed in terms of total dose and relies heavily on 

ambient pollution concentrations. Thirdly, laboratory based chambered 

systems can be used where plants can be exposed to a wide range of 

pollutant treatments and environmental treatments and other variables can 

be well controlled. Because environmental and pollutant exposure 

characteristics can be well controlled, such experiments can easily be 

replicated and' can provide information regarding mechanisms of pollutant 

action and how plant pollutant responses are modified by prevailing 

environmental conditions. Another advantage of such controlled experiments 

is that actual pollutant uptake by the plant can be accurately determined 

and plant responses quantified in terms of pollutant flux. 

A knowledge of interactive mechanisms can resolve some of the 

difficulties in interpreting data from field-fumigation studies and explain 

discrepancies in data between, studies. The data from all research 

approaches together will bring us closer to being able to predict possible 

crop loss in a given area with correlation to environmental factors. 

As described above this study has highlighted several factors 

which contribute to environmental ,modification of plant pollutant responses 

and has gone'someway to explaining,the wide range of responses to 

pollutants observed in the field. 

It is clear that the direction of future research must be towards 

elucidation of the effects of both low light/short photoperiod and low 
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temperature conditions together in moderating plant pollutant responses. 

The converse also applies in that exposure to pollutants may alter plant 

responses to environmental stresses and may predispose the plant to injury, 

thus this area also requires careful investigation. The use of unrealistic 

high 502 concentrations should be avoided in an attempt to approximate 

field conditions if precise mechanisms of pollutant action are to be 

elucidated. Of importance also is that 502 seldom occurs alone and the 

interactive effects of other gaseous pollutants must be considered. Given 

the marked cultivar specific responses to combined environmental/pollutant 

stresses observed in this study, it is evident that generalisations as to 

the mechanisms of pollutant effects on plants can not be made. Separate 

investigations of economically important species must be undertaken to 

provide a database of information which is of use to agriculturalists in 

identifying sensitive or tolerant strains and achieving maximum 

productivity. 
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APPENDIX 

Computer Calculation or Gas Exchange Parameters 

The computer programme presented below was originally devised 

by V.J. Black & D. Ormrod (pers. comm.) and was adapted for use on a BBC 

Master microcomputer by Mr P. Geissler. The programme enabled the 

computation of all the gas exchange parameters defined in §2.3 both 

directly and quickly. The units required for input of 'data into the 

programme are:-

(1) Ct. water vapour content of air entering chamber as dew 
point temperature in ·C. 

(i1> Co, water vapour content of air leaving chamber as dew 
point temperature in ·C. 

(iii) CiCO, CO2 uptake in ppm (difference between CO2 

concentration in incoming air and CO2 concentration in 
outgoing air). 

(iv) Tamb, chamber temperature in ·C. 

(v) TL, leaf temperature in ·C. 

(v1> LA, leaf area, cm2 • 

(vii ) FR, flow rate, J min-·. 

(vii 1> r .. aerodynamic resistance, s cm-I. 

(ix) Sin, 502 concentration of incoming air, ppb. 

(x) Sout, 502 concentration of air leaving chamber, ppb. 

(xi) Ss orb, 502 concentration adsorbed onto chamber walls, 
ppb. 

PROGllANJIE 

5 REM ... COPYRIGHT G. A. HUNT & P. GEISSLER 1989'" 

10 tTVO, 1 

20 MODEO 

30 VDU5 

to PRINT'TAB(20)"GAS EXCHANGE PARAMETERS" 

50 PRINTTAB(20)"=== ==================" 

60 REM •••••••••••••••••••••••••• INPUTS 

70 INPUT' "DATE? "D$;: VDUll: INPUTTAB(25)"Title? "T$ 

80 PRINT"" Ci (H"; : VDU25 , 0,0; -12; : PRINT" 2"; : VDU25, 0, 0; 12; : INPUT" 0 ) = "Ci 

90 PRINT"Co(H";:VDU25,O,O;-12;:PRINT"2";:VDU25,O,O; 12:INPUT"0) = "Co 



100 PRINT'''CiCo(CO''j:VDU25,O,Oj-12j:PRINT''2''j:VDU25,O,OjI2j:INPUT") = 
"CiCo 

110 PRINT'''Ambient Temperature 
(T" j : VDU25 , 0, OJ -12j : PRINT" Amb" j : VDU25 , 0, OJ 12j : INPUT") = "Tamb 

120 PRINT'''Leaf Temperature (T"j:VDU25,O,Oj-12j:PRINT"L"j:VDU25,O,OjI2j 
: INPUT") = "TL 

130 INPUT' "Flow Rate (FR) = "FR 

140 INPUT' "Leaf Area (LA) = "LA 

150 PRINT'''Aerodynamic Resistance 
(r" j : VDU25 , 0, OJ -12j : PRINT" a" j : VDU25, 0, OJ 12j : INPUT" ) = "ra 

160 PRINT'TAB(5)"Do you want SO";:VDU25,O,;-12j:PRINT"2"j:VDU25,O,Oj 12j 
: PRINT"n uxes, 1 uv? (Y/N) "j 

170 Ans$=GET$: IF Ans$="Y" or Ans$="y" F%=I: PRINT" Yes" ELSE Fr.=O: PRINT"No" 
: GOT0210 

180 PRINT"'SO" j : VDU25, 0, OJ -12j : PRINT" 2" j : VDU25, 0, OJ 12j : INPUT" in = "Sin 

190 PRINT' "SO" j : VDU25, 0, OJ -12; : PRINT" 2" j : VDU25 , 0, j 12j : INPUT" out = "Sout 

200 PRINT'''SO''j:VDU25,O,Oj-12j:PRINT''2''j:VDU25,O,jI2j:INPUT''chamber 
sorption = "Ssorb 

210 REM •••••••• f ••••••••••• f ••••••• f ••• f CALCULATIONS 

220 Ci=FNmb(Ci):Co=FNmb(Co) 

230 Tamb=Tamb+273.2: TLk=TL+273.2 

240 Cav=(Ci+Co)/2 

250 E=«Co-Ci)/Tamb)'«FRfl000)/(LA'60» 

260 EH20=E*7812 

270 eSTL=FNmb(TL) 

280 Xo=eSTL/TLk 

290 Xi=CavITamb 

300 rtH20=(Xo-Xi)/E 

310 rs=rtH20-ra 

320 Gs=lIrs 

330 vpd=eSTL-Cav 

340 IF F%=O GOTO 380 

350 flux=«Sin-Sout-Ssorp).FR'2.86)/(LA'6) 

360 rtS02=«Sout'2.66/flux)-(ra'157»/100 

370 GtS02=1/rtS02 

360 Pnet=(CiCo'FRf60fl.63)/(LA'100) 

390 REM f ••• f.f ••••• f ••••••••••••• f.f..... PRINT OUT 

t-OO @%=&20310 

410 PRINT'TAB<l5)"Do you want to print the results "j 

t-20 IF Fr.=1 PRINT"too ? (Y/N)"ELSE PRINT"then ? (Y/N)" 

t-30 Ans$=GET$: IF Ans$="y" OR Ans$="Y" P%=1 ELSE P%=O 
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44-0 CLS 

~50 IF P%:1 VDU2 

~60 VDUl,27, 1,87,1, I, 1,27,I,71:PRINT'DSTAB(20);TS:VDUl,27,I,67,I,O,27 
, 1,72 

no PRINT""Transpiration Rate (EH";:VDU25,O,O;-12; 1,27,1,63,1,1: 
PRINT" 2"; : VDU25 , 0, 0; 12; 1,27, 1 ~ 84-: PRINT"O) "; TAB (4-0); EH20; "gm"; : 
VDU25,O,O; 12; 1,27,I,83,I,O:PRINT"-2"; :VDU25,O,O;-12; 1,27,1,8~: 
PRINT"hr";:VDU25,O,O; 12; 1,27,1,83,1,0 

4-80 PRINT"-I";:VDU25,O,O;-12; 1,27, 1,84 

490 PRINT""Stomatal resistance (rs) ";TAB(40);rs;" s cm";:VDU25,O,O; 12; 
1,27,I,83,I,O:PRINT"-I; :VDU25,O,O;-12; 1,27,1,84-

500 PRINT" "Stomatal conductance (lIrs) "; TAB(40); GS;" CM S";: VDU25 , 0, 0; 
12; 1,27,I,83,I,O:PRINT "-I";:VDU25,O,O;-12; 1,27,1,64 

510 PRINT' "'Vapour Pressure Deficit (vpd) ";TAB(40);VPD; " mb " 

520 IF F1~0 GOTO 590 

530 PRINT'''SO''; :VDU25,O,O;-12; 1,27,I,63,I,I:PRINT"2";:VDU25,O,O; 12; 1,27, 
I, 6~: PRINT" flux "; TABH-O); flux;" ug m";: VDU25 , 0, 0; 12; I, 27, 1,83, 1,0: 
PRINT"-2";:VDU25,O,O;-12; 1,27,I,84:PRINT"S";:VDU25,O,O; 12; 1,27,1, 
83, 1,0: PRINT"-I"; 

540 VDU25,O,O;-12; 1,27,1,84 

550 PRINT' '''SO'';:VDU25,O,O;-12; 1,27,I,83,I,I:PRINT"2";:VDU25,O"O; 12; I, 
27,I,6~:PRINT" resistance ";TAB(40);rtS02;" s cm";:VDU25,O,O; 12;1,27, 
1,83,I,O:PRINT"-I"-;:VDU25,O,O;-12; 1,27,1,84-

560 PRINT""SO";:VDU25,O,O;-12;I,27,I,83, 1,I:PRINT"2";:VDU25,O,O;12;I, 
27,I,8~:PRINT" / H";:VDU25,O,O;-12; 1,27,I,63,I,I:PRINT"2"; :VDU25,O, 
; 12; 1,27, I, 8~: PRINT" 0 resistance"; TAB (40); rs.l. 98;" s cm";: VDU25, 0, 0; 
12; 1,27,I,83,I,O:PRINT"-I; 

570 VDU25,O,O;-12; 1,27,1,8~ 

560 PRINT" "SO"; : VDU25, 0, 0; -12; 1,27, 1,83, I, I: PRINT"2"; : VDU25 , 0, 0; 12; I, 
27,I,8~:PRINT" conductance";TAB(40);GtS02;" cm s";:VDU25,O,O; 
12; 1,27,I,83,I,O:PRINT"-I"; :VDU25,O,O;-12; 1,27,1,8~ 

590 PRINT" "Net Photosynthesis (Pnet) "TAB(40);Pnet;" gm"; : VDU25,O, 0; 12; 
1,27, I, 63, 1,0: PRINT"-2"; : VDU25, 0, 0; -12; 1,27, 1,84: PRINT" hr"; : VDU25, 
0,0; 12; 1,27,1,83,1,0 

600 PRINT"-I"; :VDU25,O,O;-12; 1,27,1,84,1,13 

610 IF P1~1 VDU3 

620 PRINT'" TAB(10)"PRESS BREAK TO CONTINUE" 

625 .KEYI0 OLDIIMCLSIIMRUNIIM 

630 END 

640 DEF FNmb<X) :REM ••• CONVERTS DEW POINT TO MILLIBARS ••• 

650 :6. 1078fEXP(17. 2694f(X/(X+238. 3») 
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