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Abstract 

This paper evaluates whether Circulation Types Catalogues (CTCs) can 
inform on the occurrence of floods in Europe, and if the same few Circulation 
types (CTs) are systematically associated with floods.  Two local indicators 
were used measuring if a CT occurs more frequently than usual prior/during a 
flood and if the persistence of a CT is followed by a flood.  A measure of the 
spatial coherence of CT was used to compare the relative performance of 
CTCs.  Antecedent conditions and time-lag of catchments were accounted for 
in calculating the indicators on a range of durations up to 10 days preceding a 
flood. 

Relationships between flood occurrence on 488 river basins and CTCs were 
explored using 64 catalogues developed within COST733 Action, all defined 
from automatic algorithms using ERA-40 mslp patterns.  Results showed that 
at the river basin scale, some CTs have significant positive frequency 
anomalies with flood occurrence, and persistence of the same CT has strong 
relationships with floods.  At the scale of Europe, the same CTs showed the 
strongest links with flood occurrence.  The number of classes of CTCs is of 
lesser importance than the algorithm used, and depending whether global 
frequency or persistence of CT were analysed, could give contrasting results.  
Results obtained from an objective Grosswetterlagen classification were 
consistent with previous research but performance was lower than other 
automatic algorithms (e.g. WLKC and TPCAC).  Results showed seasonal 
variation, possibly due to differences in flood generation mechanisms in 
different regions and seasonal CT frequency. 
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1. Introduction/ Background 

Global and regional atmospheric processes are very variable in time and 
space, in particular in mid-latitude ocean-margins regions such as Europe, 
and the resulting weather usually described as ‘chaotic’ as it is constantly 
changing, sometimes from hour to hour, and at other times from day to day 
(Lutgens and Tarbuck, 2007).  However, some main features have been 
observed near Europe, two of the most famous being a high pressure centre 
(anticyclone) generally near the Azores Islands, and a low pressure centre 
(depression) over Iceland.  The strength and the exact position of these 
centres have an effect on the direction and speed of the wind, the rise of 
humid air, and where and when humid air reaches the western coast of 
Europe and falls as precipitation.  The North Atlantic Oscillation index is a 
measure of the change in strength of these two centres, and has been shown 
to be linked to some of the variations in temperature and precipitation in 
Europe, but do not explain all the observed variability.  Alternatively, recurrent 
weather patterns around specific dates have been observed and used as 
basis for long-range weather forecasting (O'Hare et al., 2005). 

Circulation type classifications (CTCs, also sometimes referred to as weather 
types classification) have been developed to summarise and characterise the 
daily variability of the climate in a number of atmospheric circulation patterns 
which occur most frequently.  These patterns, also called circulation types 
(CTs) aim to discriminate typical atmospheric phenomenon observed within a 
region, and have become useful tools for describing and analysing climate 
conditions and corresponding weather.  Subjective classifications have 
developed through recognition of the recurrence of the atmospheric circulation 
in certain modes (El-Kadi and Smithson, 1992).  The Lamb catalogue (the 
manual original catalogue extends from 1861-1997) (Lamb, 1972) is a 
classification scheme designed for the British Isles which has bee used to 
study hydroclimatology relationships (see review by El-Kadi and Smithson, 
1992).  The Grosswetterlaggen classification characterises European weather 
types is another well known subjective classification with a manual catalogue 
dating back from 1881 (Hess and Brezowsky, 1977).  With the increase of 
computing facilities and the availability of digital atmospheric data such as re-
analyses, a range of automatic classification algorithms have been developed 
and many circulation types catalogues are now available. 

The study of the relationships between the atmospheric circulation and the 
surface environment shows great potential for basic and applied research 
(Yarnal, 1993). An example is the analogue weather forecasting, where past 
synoptic patterns and accompanying weather are matched to current synoptic 
patterns and forecasts are made according to these past weather (O'Hare et 
al., 2005) and such techniques are used routinely operationally (Obled et al., 
2002).  A more recent application of CTCs is the verification of the 
performance of General Circulation Models (also called Global Climate 
Models GCMs; e.g. (Anagnostopoulou et al., 2009; Goodess and Palutikof, 
1998), the analysis of possible changes in atmospheric circulation, and the 
downscaling of GCM outputs (Wilby, 1997), using automatic Circulation 
classification procedures.  Comparisons of historical CTCs (obtained from 
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observed pressure fields), GCM-derived CTCs representative of current and 
future climates help identifying systematic biases in GCM climatology trends 
and possible future changes. 

Links between CTCs and some specific weather-related events have been 
investigated for many years, for example with cyclone tracks (e.g. Bartholy et 
al., 2006), flood events (Duckstein et al., 1993) or drought states (Fowler and 
Kilsby, 2002).  In Europe, specific CTs have been shown to be linked to 
wet/dry periods.  For example, the Cyclonic Lamb weather types are 
described by ‘rainy, unsettled conditions, often accompanied by gales and 
thunderstorms.  May represent rapid passage of depressions across the 
country [UK], or to the persistence of a single deep depression’ (O'Hare et al., 
2005).  When extended to the full catalogue, such empirical relationships can 
be used to build weather generators conditioned according to CTs (e.g. 
Fowler et al., 2005; Schubert, 1994; Wilby, 1995).   

Direct links between weather type and extreme floods are, however, rarely 
investigated at a large spatial scale.  The occurrence of extreme floods has 
always been a peril to human society.  Some of the most devastating floods 
have actually resulted from synchronic flooding over large regions and major 
rivers, such as for example the catastrophic floods along the Danube and 
Elbe rivers in summer 2002; central Europe was also under important flooding 
in summer 2005 and in June 2009, all with devastating consequences.  The 
cost (both monetary and human) associated with such events is enormous: 
for example, the annual average flood damage in Europe in the last few 
decades is about €4 Billion per year (Barredo, 2007) and, between 1998-2004 
alone, Europe experienced more than 100 major floods resulting in some 700 
fatalities.  The environment impact is rarely quantified in terms of economic 
cost, but can be huge.  Other indirect impacts include high psychological 
damage, and high level of emergency responses sometimes requiring 
international co-operation and the assistance of army forces, transportation 
disruption and reconstruction time, which makes flooding some of the most 
traumatic natural disasters.  Understanding the atmospheric conditions which 
trigger such large-scale events would help in to improve preparedness, and 
have potential to limit damages and to mitigate impacts in enabling better 
flood-risk assessment and anticipation.  This paper aims to fill this research 
gap, and is a first step towards evaluating whether some large-scale 
circulation patterns systematically show a strong link with flood occurrence 
across Europe.  It systematically assesses a number of automatic 
classifications to identify if some show clear discrimination power for flood 
events.  If such relationships can be identified, they could be used as proxy 
for evaluating flood risks using atmospheric observation, but also, could be 
used to assess current General Circulation Models and their ability to 
reproduce flood-generating atmospheric patterns. 

2. Aim and objectives 

Many algorithms can be used to characterise synoptic patterns, each resulting 
in different key atmospheric circulation patterns.  The European Cooperation 
in Science and Technology (COST) Action 733 entitled ‘Harmonisation and 
Applications of Weather Type Classifications for European regions’ was 
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initiated to compare different classification methods and to evaluate whether 
some algorithm systematically outperforms others which can be 
recommended.  Within the action, the different methods are tested for their 
reliability robustness and their ability to discriminate spatial and temporal 
climate variation in Europe (such as rainfall and temperature), but also if they 
could prove useful for various applications ranging to the ability to discriminate 
large scale atmospheric dipoles such as the North Atlantic Oscillation, to local 
characteristics such as the level of air pollution, to links with resulting events 
such as wild fires.  The paper focuses on exploring links between CTs and 
flood events in a pan-European study. 

Specifically, the paper aims to investigate three specific questions: 

• Does a circulation type CT occur more frequently during/before a flood 
event than usual? 

• Is the persistence of a CT followed by a flood event? 

• Does the same CT show the strongest links with flooding in all Europe?  
In other words, is a CT linked to flooding at the European scale? 

Following (Duckstein et al., 1993), indicators are calculated to quantify the 
frequency anomalies and conditional probabilities linked to the persistence of 
CT preceding a flood event.  A new spatial indicator evaluating the spatial 
coherence of the strongest links across Europe is also developed and applied 
to a range of CTCs developed within COST733, allowing a quick comparison 
of skills of 64 catalogues.  The evaluation is done for the whole year and by 
seasons (3-month) to identify if different seasonal flood-generating 
mechanisms can be identified using CTCs. 

Several studies have found no upward trend in the occurrence of extreme 
floods in Europe in the last century (Barredo, 2007), and no significant long-
term trends have been identified in the majority of the objective catalogues 
used in this study (Cahynová, 2009).  It was hence considered that this study 
would not implicitly look for possible trends in the methodology for assessing 
relationships between flood and CTs.  If some CTCs emerge to be potential 
candidates to discriminate flood occurrence in Europe, the relationships 
identified will be thoroughly evaluated, in particular for any possible trends.  
This is however out of the purpose of this paper, and trends will not be further 
discussed. 

Data and methodology are detailed in the next section, and the results 
presented in section 4, first illustrated for the subjective classification 
OGWLSLP, then comparing the results obtained for the whole set of CTCs.  
The paper finishes with a short discussion and conclusion. 

3. Data and methodology 

3.1. Data 

The study was conducted on 488 river basins across Europe (Figure 1) with 
good quality data and longest possible records with limited missing periods.  
The selection of the river basins insured a good geographical spread and 
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includes a range of catchment areas.  Daily river flow data was obtained from 
the Global Runoff Data Centre 
(http://grdc.bafg.de/servlet/is/Entry.987.Display/), the European Water Archive 
(http://ewa.bafg.de/), the UK National River Flow Archive 
(http://www.ceh.ac.uk/data/nrfa/index.html) and the French Banque Hydro 
(http://www.hydro.eaufrance.fr/).   

 

Figure 1 – place holder grey print 

 

The links between flood and CT were evaluated using a set of 64 CTCs 
defined over Europe.  All of these were developed and made available 
through the European COST 733 action (Philip et al., 2009; Tveito and 
Pasquini, 2005).  The set contains 63 automatic CTCs calculated from daily 
circulation fields (mostly sea level pressure) over a standard domain (for 
Europe the 30N - 76N and 37W - 56E) and for the periods 1957-2002.  The 
circulation fields are from the ECMWF reanalysis (ERA40, Uppala et al., 
2005) for all the automatic classifications.  This set uses 18 independent 
classification methods, including methods based on Thresholds, Principal 
Component Analysis, Leader algorithms and Optimization algorithms, but 
applied with different type numbers (closest to 9, 18 and 27 classes).  
Additionally one subjective CTC was also considered, the automatic version 
of the Hess-Brezowsky Grosswetterlagen (Gerstengarbe and Werner, 1999) 
developed within COST733 (OGWLSLP, without time filters forcing a 
minimum persistence of CT of 3 days, (James, 2007).  For complete 
description, summary table with acronyms and technical references, see 
Philip et al. (2009).  

3.2. Methods 

Unlike rainfall events which are point measurements in time and space, flood 
flows at a river gauge are a consequence of rainfall events occurring within 
the whole river basin and during a certain period prior to the measurement.  
This time-lag between a flood-producing rainfall occurrence and the flood 
occurrence itself is dependant on the river basin conditions, including the 
state of the soil (is it already saturated or is it very dry?) and the catchment 
characteristics.  This time-lag influence and the antecedent conditions are 
accounted for in considering CT occurrence for up to 10 days before a flood 
event. 

Flood is generally associated with inundations, where the level of a river is 
higher than the main river bank and the stream overflows outside the main 
river channel to flood the major river channel.  Such events are usually 
considered to be associated have a probability of occurrence of 0.5, in other 
word they are usually expected to occur once every two years.  However, 
most flow series are expressed into discharge, and the moment when the 
river bursts its bank is rarely mentioned along river flow time series.  Instead, 
hydrologists define flood events as the largest recorded discharges, either 
during a fixed period of time (generally the year: annual maxima) or during the 
whole period of record (peak-over-threshold).  Regardless of the sampling 
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methodology used to select floods events, floods in a river basin have a very 
low frequency of occurrence (typically less of 1%), and associated sample are 
short compared to daily CTs series (which for the smallest have an 
occurrence of at least 3 %).  This means that any study aiming to find 
statistically significant links between will be confronted to the fact that any CT 
will occur much more frequently than flood events, even for CTCs with a large 
number of classes.  The consequence is that even if some reliable 
relationships are found between the occurrence of a CT and that of a flood, 
this relationship will not be one sided, i.e. it is not because this CT occurs that 
a flood will occur.   

Local statistical significance of the relationships can be evaluated, but it is 
difficult to assess if they any found links are not a consequence of specific 
samples of events but truly are representative of physical processes, due to 
the relatively small samples on which the relationships are established.  High 
variability can be observed when looking at relationships between local 
climate series and CTCs, due for example to variations both among the 
individual classifications, and to individual data series.  One suggestion to 
overcome this is to use a comparative approach (Cahynová, 2009).  Another 
empirical technique used to increase the sample size is by pooling information 
from different sources.  For example, the Flood Estimation Handbook 
suggests to pull together raingauge information in order to estimate very rare 
events (Faulkner, 1999).  Similar concept is also used for flood frequency 
analysis using the index flood method, where flood frequency curves are 
defined regionally (Hosking and R.Wallis, 1997; Kjeldsen and Jones, 2007).  
Here, the aim is to evaluate whether some CTs are representative of the 
atmospheric processes leading to large-scale flooding in Europe as opposed 
to characterising local floods, which could results to small-scale, localised 
processes difficult to characterise by European CTCs.  In particular, the 
question is to explore if some CTs occur more often during flood-rich periods 
than usual, and if yes, if it is generally the same CT that show positive 
frequency anomalies during these periods.   

Here, a flood event is defined from a partial-duration-series, or peak-over-
threshold method (Naden, 1993), where the largest n floods are selected, n 
being proportional to the length of the daily flow series.  Here, the criterion is 
of POT3, i.e. n=3*Y where Y is the number of years of data.  The 
independence criterions defined by Bayliss and Jones (1993) were applied, 
with a lag time of 5 days. 

The methodology follows that developed by Duckstein et al. (1993) and uses 
similar notation, but applied to 488 catchments over Europe (Figure 1Error! 
Reference source not found.).  Two indicators are calculated that evaluate 
the links between a CT and the occurrence of a flood event at a site.  They 
are also used to evaluate the spatial coherence in the relationships.  In order 
to incorporate the time-lag in the river basins, the indicators are calculated for 
a set of N* days preceding the flood.  Because of the range of river basin 
geology, soil type and sizes in our sample, it is not possible to define a priori 
N* which will lead to the strongest relationship.  Instead, the indicators are 
calculated for a period of up to 10 days up to the flood.  Because some 
catchments have a concentration time of less than 1 day, the day of the flood 
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is also considered in the study, i.e. 10 days up to the flood refers to the day of 
the flood and the 9 preceding days.   

3.2.1 Is a circulation type occurring more frequently during a flood event 
than usual? 

The indicator PI1 (in %) calculates the difference between the frequency of 
occurrence of a circulation type CTi during a flood event to that for any day, in 
percent:  

)1
)i(n
)i(n

(*100)i(1PI
2

1 −=  i=1,…,C 

with n1(i) the relative number of days with pattern CTi in N* days up to the 
flood, and n2(i) is the relative number of days with pattern CTi, and C is the 
number of classes of CTC.  Estimation can be done looking at the entire 
series (PI1year) or just concentrate on specific seasons (PI1season).  It is a 
modified version of Duckstein et al. (1993) and of the effectiveness correlation 
of Cony et al. (2008): if PI1(i) is positive (negative), the pattern occurs more 
(less) frequently before/during a flood than it does normally (i.e. CTi does 
(does not) contribute much to the flood).  For example, PI1 = -100% when CTi 
has never occurred during/before an observed flood, while PI1=800% 
indicates that the CTi occurred 8 times more often during/before the flood 
than any other period.  The statistical significance of the frequency anomaly 
for the entire classification (all classes considered together) is evaluated 
through the χ2 statistics with, as null hypothesis, ‘the frequency of a weather 
type during floods is the same as for any day’. 

3.2.2 Is the persistence of a circulation type followed by a flood event? 

The indicator PI2 measures the conditional probability of finding at last k days 
out of N* with CTi, given that a flood occurred on day zero: 

*)Nk0,dayskforiCT(pr)i(2PI ≤≤≥==   i=1,…,C 

This indicator measures the persistence of CTi associated with a flood event, 
important factor in the river basins antecedent conditions: a high PI2 indicates 
that CTi has generally been observed for several days before flood events.  
This conditional probability is compared with the binomial probability of at 
least k days out of N* of CTi using historical frequencies of occurrence. 

3.2.3 Does the same CT show the strongest links with flood in all 
Europe? 

Local evaluations of PIs for a CTC can be discussed at the European level by 
mapping PI(i) at the river basins outlets.  While useful to evaluate single CTC, 
this soon becomes fastidious for a large number of CTCs (in this paper, the 
64 studied CTCs correspond to 1159 CTs).  Moreover, spatial evaluation is 
necessary to assess how well CTCs can describe large-scale flooding. 

A spatial indicator, RPI (for Regional PI) is defined which evaluates the spatial 
coherence of the local relationships: 
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B

)r,i(Score
)i(RPI

B

1r
PI∑

==   i=1,…,C 

with ScorePI(i,r) the score obtained by CTi for river basin r, B the total number 
of river basins, and C the number of classes of CTC.  The scores are given 
according to the ranked PI(i,r) standardised by the number of classes to allow 
comparison of relative performances of CTCs of different number of classes: 
ScorePI(i,r)= 1/C for the lowest PI(i) of r, and ScorePI(i,r)= C/C = 1 for the 
highest PI(i) of r.  For each CTi, there is one RPI per PI, i.e. for each N* and k 
combination for both PI1 and PI2.   

Two RPIs are of particular interest.  The maximum RPI measures the spatial 
coherence of the CTi with the strongest relationship with flood events: 
RPI(i) = 1 indicates that CTi has systematically the strongest relationship with 
floods for all 488 river basins, and hence, there is a strong spatial coherence 
in the flood-generating mechanism described by CTi.  Lower RPIs reflect 
lower spatial coherence for the flood-generating CTi. 

The minimum RPI informs on the spatial coherence of the ‘flood-poor’ CTs: a 
value of 1/C indicates that the same CTi has systematically the weakest 
relationship with floods in all 488 river basins, and could be an indicator of 
potential absence of flood across Europe.  Higher values show a weaker 
spatial coherence in the flood-poor CTi. 

4. Results 

Due to the very large number of tested CTs, an example of application of the 
methodology is illustrated only for the OGWLSLP, the automatic version of the 
well-known Hess-Brezowksy Grosswetterlagen classification without imposed 
persistence developed for Western Europe (James, 2007). 

4.1. Is a circulation type occurring more frequently during a flood event 
than usual? 

Figure 2 (top) shows PI1year obtained with the circulation types OGWLSLP-
CT2 and OGWLSLP-CT28, associated with high PI1year for the majority of 
river basins.  CT2 corresponds to the cyclonic westerly type (Wz), one of the 
four sub-types of the major type ‘westerly circulation’.  OGWLSLP-CT2 occurs 
8.2% of the year, and is characterised by a dipole with low pressures over 
north Atlantic (West of Island) and high pressures over the Azores (Figure 3).  
It is known to be associated with flooding in north-west Europe and western 
Alps both during winter and summer, and was found to be amongst the CT 
triggering winter floods in Germany by (Petrow et al., 2009).  OGWLSLP-
CT28 corresponds to the British Islands low (TB), part of the Meridional 
Group.  It is associated with a low pressure centre located over the British 
Isles extending to southern Europe and Central Europe, and is generally 
associated with winter flooding over western to southern Europe (British Isles, 
W Iberia, France, S Alps, Italy, W Balkans) and summer flooding over France, 
the British Isles and W-C Europe, and occurs on average 3.2% of the year. 
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Contrastingly, PI1year is negative (i.e. CTi never occurred the same day as a 
flood) or non-significant (i.e no statistically significant relationships between 
CTi and flood occurrence) for the majority of river basins of Europe (Figure 2, 
bottom) for OGWLSLP-CT9, the Central High CT (HM); and OGWLSLP-C18, 
the anticyclonic North-Easterly (NEa), the latter generally associated with no 
flooding risks in the winter, and some flooding in Eastern European in the 
summer.  This is consistent with river basins with some positive significant 
PI1SON found in the eastern part of Europe for OGWLSLP-C18. 

 

Figure 2 place holder grey print 

Figure 3 place holder grey print 

4.2. Is the persistence of a circulation type followed by a flood event? 

Persistence of a CT has been identified as a major factor in flood events 
occurrence by Petrow et al. (2009) and Jacobeit et al. (2006), for example, 
who analysed CP occurrence respectively up to 3 and 7 days before flooding.  
Here, persistence is assessed using PI2 for up to 10 days before a flood 
event.  Figure 4 shows the European distribution of PI2year for OGWLSLP-CT2 
for a 7-day period: while the conditional probability of OGWLSLP-CT2 
occurring once within 7 days prior and during the flood is significant for over 
80% of the considered river basins (i), it is significant for more than 90% of the 
rivers for a 4-days persistence (ii), and remains significant for about half of the 
rivers for a 6-days persistence (iii).  There is no geographical pattern in the 
location of the river basins for which PI2year is significant.  This would suggest 
that OGWLSLP-CT2 describes an atmospheric pattern likely to generate 
flooding in any part of Europe, and potentially, synchronous floods.  This is 
consistent with empirical observations of flood occurrence during western 
cyclonic patterns throughout Europe, and with conclusions of (Petrow et al., 
2009) for flooding in Germany. 

 

Figure 4 place holder grey print 

4.3. Does the same CT show the strongest links with flood in all 
Europe? 

RPIs were calculated for all 64 CTCs and results for selected indicators are 
reported here: Figure 5 shows RPI(PI1year) for four durations (1, 2, 4 and 10 
days); Figure 6 shows RPI(PI2year) for two periods prior to a flood and two 
persistence durations each (2 days persistence within 4 days 4lag-2pers; 4 
days persistence within 4 days 4lag-4pers; 4 days persistence within 10 days 
10lag-4pers; 7 days persistence within 10 days 10lag-7pers); Figure 5c and 
Figure 6c shows seasonal RPIs.  Maximum / minimum RPIs are ordered so 
that the CTC in the top of the diagrams has the largest spatial coherence.  Bar 
sizes are proportional to RPI, and bar colours symbolise the number of 
classes of the CTC: ≈27 (red – dark grey), ≈18 (orange - grey), ≈9 types 
(yellow – light grey), other type numbers (grey), and manual classifications 
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(blue).  The CT associated with the plotted RPI (maximum or minimum) is 
given with the CTC acronym. 

4.3.1 Spatial coherence for PI1 

Annual evaluation 

When calculated over the whole year, five CTCs have a maximum 
RPI(PI1year) equal to 1, indicating that for these catalogues, the same CT 
systematically leads to the largest PI1year for all river basins (Figure 5a).  
These CTCs belong to two classification algorithms: the Objektive 
Wetterlagenklassifikation WLKC (Ditmann et al., 1995; and Bissolli and 
Dittmann; 2003; from Philip et al., 2009) for 9, 18 and 27 classes; and the 
Principal Component Analysis in t-mode TPCAC (Huth, 2000; from Philip et 
al., 2009) for 9 and 27 classes.  The leader algorithm with optimized patterns 
technique PETISCOC (Petisco, 2005; from Philip et al., 2009) also shows 
high spatial coherence for 9 and 18 classes, but does not achieve the 
maximum score.  At the bottom of the diagram (i.e. classifications for which 
the highest PI1year across Europe are not associated with the same CT) are 
found the Litynski advection method LITADVE (see Philip et al. (2009) for 
details) and the Kirchhofer algorithm KHC (Kirchoffer, 1974; from Philip et al., 
2009). 

Except for the WLKC and TPCAC, greater spatial coherence is achieved with 
classifications with fewer classes (around nine: yellow – light grey), but 
classifications with 18 or 27 classes have comparable performances.  The 
subjective OGWSLPC is not amongst the CTCs displaying the greatest spatial 
coherence in their flood-generating CT (best score of 18th highest RPI(PI1) 
obtained for a 10-day period). 

Generally, for a given CTC, the same CT is associated with the highest PI1 
for all considered durations, especially for high RPI: this would suggest that 
the flood-generating CTs identified with this methodology are associated with 
rain, and when they remain over Europe for several days, generate more 
flooding than any other CTs would do. 

 

Figure 5a, place holder grey print] 

 

The minimum RPIs can inform whether some CTs rarely occur before/during 
a flood event, i.e. they are generally associated with negative/non significant 
PI1.  Figure 5b shows minimum RPI(PI1year) for all CTCs and corresponding 
CT when unique (CTX when the minimum RPI is associated with several 
CTs).  The CTCs are ordered so that the CTCs with the highest spatial 
coherence (i.e. the smallest minimum RPI(PI1year)) are on top.   

No CTC show the highest possible spatial coherence (minimum RPI between 
1/40=0.025 and 1/7=0.14 depending on the number of classes) for any 
considered time window.  The Objektive Wetterlagenklassifikation WLKC 
remains the most spatial coherent CTC (top of diagram) regardless the 
number of classes for all four durations.  This would suggest an ability to 
discriminate flood-generating from non flood-generating atmospheric patterns.  

Page 10 of 28

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 11 

The spatial coherence of non-flood generating patterns is, however, not as 
high as that for flood-generating CTi, with a minimum greater than 0.3 from 
the 5th ‘best’ CTC.  This could be due to the high number of non-flood days: 
more than 99% of the days are non-flood, frequency never reached for any 
CT, hence several CTi are likely to be associated with low PI.  Note that CTCs 
with 27 classes (red – dark grey) are generally associated with the smallest 
minimum RPI (i.e. better spatial coherence), while CTCs with 9 classes 
(yellow – light grey) show little spatial coherence.  This is in contrast with the 
top CTCs for flood-CT being generally with greater coherence for smaller 
number of classes. 

[Figure 5b; place holder, grey print] 

Seasonal evaluation 

Despite few CTCs generated seasonally (see Philip et al., 2009 for 
information on COST-733 CTCs database), it is still possible to evaluate 
possible links between flood and CT by season.  Difference in results could 
highlight that different flood-generating mechanisms exist for different season 
(e.g. frontal or convective) and might also have different frequency of 
occurrence depending on the season.  The maximum (Figure 5c) 
RPI(PI1season(4)) was calculated for all four 3-month seasons of winter (DJF; i), 
spring (MAM; ii), summer (JJA; iii) and autumn (SON, iv).  There is a strong 
variation in RPIs with the season, with a maximum RPI(PI1) of 1 obtained for 
17 CTCs in summer, but only for three CTCs in winter.  This might partly 
reflect that fewer summer flood events are observed in our sample (16.4% of 
POT3 are in summer, against 34.4% in winter and 30.3% in spring).  This 
could also could reflect the difference in flood-generating mechanism between 
summer and winter, where summer flooding is generally caused by short-
term, localised extreme rainfall generally poorly described by large-scale 
atmospheric patterns such as those described by the European-scale 
classification tested.  However, RPI does not inform on how high local PIs are, 
and if relationships are stronger in particular season.  This could be explored 
in detail for selected CTCs. 

For all seasons, TPCAC (except autumn) and WLKC (except summer) score 
highest for any number of classes.  EZ850C is also found amongst the top 
CTCs for winter and summer, but perform less well in spring and autumn.  No 
real effect in the number of classes can be seen, except maybe for summer 
where CTCs with large number of classes (red – dark grey) achieve the 
highest scores.   

[Figure 5c, place holder, grey print] 

4.3.2 Spatial coherence for PI2 

Annual evaluation 

RPI(PI2year) reaches the maximum of 1 only for two CTCs (Figure 6a), and 
WLKC remains one of the best performing algorithms with 3 catalogues 
amongst the top 5.  Interestingly, WLKC09-CT1 has the highest RPI(PI2year) 
for all four duration/persistence tested, while WLKC09-CT4 has the maximum 
RPI(PI1year).  For shorter persistence (Figure 6a (i) and (iii)), the OGWSLPC-
CT2 is associated with a high spatial coherence (RPI(PI2year,10lag-4pers) of 0.94), 
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but this spatial coherence is reduced for longer persistence (Figure 6a (ii) and 
(iv): RPI(PI2year,4lag-4pers) = 0.76 for OGWSLPC-CT2).  This result from the 
algorithm used to derive OGWSLPC which does not force its CTs to remain 
persistent for at least 3 days.  Another objective version of the 
Grosswetterlagen, the threshold-based Grosswetter-types prototype 
classification GWTC (Philip et al., 2009), achieves high RPI(PI2year) and 
outperforms the 29-classes OGWSLPC for longer persistence indicators 
regardless the number of classes (Figure 6a (ii) and (iv)).  There is generally 
no significant effect of the number of classes, and the same CTis are often 
associated with the highest RPI(PI2year) for all considered duration.   

Figure 6a place holder, grey print 

By contrast with RPI(PI1year), WLKC is not associated with low minimum 
RPI(PI2year) (Figure 6b), but other algorithms have CTis with systematic 
low/non significant links with flood events across Europe for both 4lag-2pers 
and 10lag-4pers (short persistence test): TPCAC, EZ850C and PETISCOC 
(for any class number), with the lowest RPI(PI2year) associated with 
TPCAC09-CT9 (0.12) for 4lag-2pers.  For a longer persistence, the spatial 
coherence reduces (the smallest RPI(PI2year) is 0.23 for TPCAC09-CT9 for 
4lag-4pers) and there is no consistency with CTCs with lowest RPI(PI2year) for 
shorter persistence.  The subjective OGWLSPLC only shows higher spatial 
coherence (minimum RPI(PI2year,4lag-2pers=0.25) for a 2-day persistence 
within a 4 day window. 

Results suggest that different CTis have few or no links with flood event 
occurrence.  As already mentioned, this could partly be due to the difference 
between the frequency of flood events (less than 1% if the time for the POT3 
samples considered) and the frequency of any CT (of at least few %): there is 
a large chance for any CT not to have occurred within or before a flood day, 
and thus, several CT could be show low PI1 and PI2 values for any river 
basins.  These results, however, should not be interpreted necessarily as the 
lack of CTi linked to dry periods in the tested CTCs.  This should be 
considered by a specific analysis aimed at investigating links between drought 
occurrence and CTs.  This was not the purpose of this paper and will not be 
discussed further. 

[Figure 6b place holder; grey print] 

Seasonal evaluation 

The seasonal variation of the maximum RPI(PI2season) is more noticeable in 
the distribution of the top-scoring CTC rather than the score themselves: 
regardless of the season, only very few CTC-CTi achieve a maximum RPI of 
1, but different classification show the greatest spatial coherence for different 
seasons.  Generally, CTCs with fewer classes (9 classes, yellow – light grey) 
have higher RPI(PI2season), which is very different from the RPI(PI2year) 
(compare Figure 6c with Figure 6b(iv)) or the seasonal RPI(PI1season).   

[Figure 6c place holder grey print] 
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5. Discussion and conclusion 

Synoptic climatology aims to characterise simply the chaotic nature of 
atmospheric processes, by describing the main characteristics of large-scale 
atmospheric circulation in a set of well defined patterns.  One of the most 
common ways to characterise these circulation patterns is by analysing the 
spatial patterns of one or more climate variables, for example the mean sea 
level pressure.  By finding the circulation patterns reproducing most of the 
observed variability in the field, catalogues of circulation types (CTCs) are 
established that could be used to categorise any spatial pattern of the same 
variables. 

One of the uses of such catalogues is to discriminate climatic features so that 
the analogy of observed climate field with a known circulation pattern (usually 
called circulation type) can inform on other possible phenomenon found to be 
associated with them.   

This paper evaluates whether CTCs can inform on the occurrence or non 
occurrence of floods in Europe, and if the same few Circulation types (CTs) 
are systematically associated with flood events.  Two local indicators were 
used to quantify these relationships, that measure if a CT occurs more 
frequently than usual prior/during a flood event, and if the persistence of a 
particular CT is generally followed by a flood event.  A measure of the spatial 
coherence of the CT with highest local indicators was also calculated, helping 
comparing the relative performance of a number of CTCs.  Antecedent 
conditions and the time-lag of the catchments were accounted for in 
calculating the indicators on a range of durations up to 10 days leading to a 
flood. 

Relationships between flood occurrence on 488 river basins and CTCs were 
explored using a set of 64 catalogues developed in the framework of the 
COST Action 733, all defined from automatic algorithms using ERA-40 mslp 
patterns.  Results showed that at the river basin scale, some circulation 
patterns had significant positive frequency anomalies with flood occurrence, 
i.e. they occurred more frequently before and during a flood than in any other 
period.  The persistence of the same CT was also found to have strong 
relationships with flood events, with some CT occurring more frequently 
several days before and during a flood than expected by chance alone.  At the 
scale of Europe, the same conclusions could be made, with the same CTis 
showing the strongest links with flood occurrence throughout Europe.  The 
number of classes used to define the catalogues was found to be of lesser 
importance that the algorithm used, and depending whether global frequency 
or persistence of CT were analysed, could give contrasting results.  The 
results obtained from the automatic version of the Grosswetterlagen 
classification (OGWSLPC) were found in line with previous research made 
using the subjective catalogues.  Comparison of all 64 CTCs showed that 
OGWSLPC did not contain the most spatial coherent CT in terms if flood 
relationships than others, and that persistence of its CT was not a good 
indicator of flooding.  By contrast, other algorithms such as used to derive the 
WLKC and TPCAC were found to generally outperform any other 
classification, with strong frequency anomalies and persistence for up to 10 
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days before/during a flood.  Spatial coherence in the CT showing the 
strongest links with flood occurrence was seen to be very variable seasonally.  
This is likely to be due to the differences in flood generation mechanism in 
different regions, as well as different in CT occurrence throughout the year. 

Flooding is one natural disaster which can occur at a large scale and have 
devastating consequences both in terms of material and human impacts.  The 
results of this exploratory analysis proved there is potential to use 
atmospheric field patterns, and in particular, mean sea level pressure, as a 
tool to define proxy indicator for flood risk occurrence.  However, further 
research is needed, in particular to assess the level of significance of the 
relationships for the most promising algorithms.  If proven reliable, the same 
automatic and objective algorithms could be used to evaluate the ability of 
current Global Circulation Models to reproduce flood-generating atmospheric 
patterns, and to identify any potential bias and systematic failures.  This would 
allow improving current climate modelling, both for medium range and long 
tern climate predictions.  With such evaluation and improvement, there is 
potential for CTC to be used as tool to assess potential future changes in 
flood risk in Europe, and the risk of large-scale flooding as triggered by the set 
of atmospheric conditions. 

Further research is also needed to understand why some algorithms seem to 
systematically fail to show strong relationships between flood occurrence and 
CT occurrence, and if results are linked to some lack of discrimination of 
climate variable such as rainfall and extreme rainfall.  One possibility is that 
the pressure patterns they discriminate are not associated with particular 
rainfall totals over Europe.  Some CTCs have showed difficulty to reproduce 
the historical frequency of some pressure dipoles such as the North Atlantic 
Oscillation (Monika’s paper), known to be sometimes associated with 
wetter/dryer than usual years.   

Comparison of results with associations with other climate-related events 
such as drought occurrence, air quality, or forest-fire will also help understand 
if some algorithms have systematic discriminatory powers over others, or if 
they are more appropriate to be used for certain applications than others.  
This is one of the objectives of COST733, part if which this research was 
undertaken. 
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Figure captions: 
 
 
Figure 1.  Location of outlets of river basins considered in the study and 
distribution of the river basin areas (in km2) 

Figure 2. Example results for PI1year for OGWLSLP-CT2 and CT28 (top) and 
PI1September-November (bottom) for OGWLSLP-CT9 and CT18; Size of 
dots proportional to PI1; black (grey) dots show significant (non 
significant/negative) results 

Figure 3. Composite map of pressure patterns (lines) and associated 
precipitation total (blue shades, in mm) of OGWLSLP-CT2 (i) and OGWLSLP-
CT28 (ii) for winter (Dec-Mar) and OGWLSLP-CT9 (iii) and OGWLSLP-CT18 
(iv) for autumn (Sep-Nov)(from COST733). 

Figure 4. Example results for PI2year for OGWLSLP-CT2 for the 7days 
leading to a flood and a persistence of (i) 1 day ; (ii) 4 days; (iii) 6 days; 
symbols as in Figure 2 

Figure 5a. Maximum RPI(PI1year) for all CTCs for (i) 1day; (ii) 2 days; (iii) 4 
days; (iv) 10 days.  Bar size shows RPI for a given CTC-CTi.  Bar colours 
distinguish classifications with ≈27 (red – dark grey), ≈18 (orange - grey), ≈9 
types (yellow – light grey), other type numbers (grey), and subjective 
classifications (blue) 

Figure 5b. Minimum RPI(PI1year) for all CTCs for (i) 1day; (ii) 2 days; (iii) 4 
days; (iv) 10 days.  Key as in Figure 5a 

Figure 5c. Maximum RPI(PI1) for all CTCs for 4days up to a flood in (i) winter; 
(ii) spring; (iii) summer; (iv) autumn.  Key as in Figure 5a 

Figure 6a. Maximum RPI(PI2year) for all CTCs for (i) 2 days persistence 
within 4days (4lag-2pers); (ii) 4days persistence within 4 days (4lag-4pers); 
(iii) 4 days persistence within 10 days (10lag-4pers); (iv) 7days persistence 
within 10 days (10lag-7days).  Key as in Figure 5a 

Figure 6b. Minimum RPI(PI2year) for (i) 2 days persistence within 4days 
(4lag-2pers); (ii) 4days persistence within 4 days (4lag-4pers); (iii) 4 days 
persistence within 10 days (10lag-4pers); (iv) 7days persistence within 10 
days (10lag-7days).  Key as in Figure 5a  

Figure 6. Maximum RPI(PI2) for all CTCs for a 7-day persistence within 10 
days up to a flood in (i) winter; (ii) spring; (iii) summer; (iv) autumn.  Key as in 
Figure 5a 
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