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Recent trends in U.S. flood risk
Louise J. Slater1 and Gabriele Villarini1

1IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, Iowa, USA

Abstract Flooding is projected to become more frequent as warming temperatures amplify the
atmosphere’s water holding capacity and increase the occurrence of extreme precipitation events.
However, there is still little evidence of regional changes in flood risk across the USA. Here we present a novel
approach assessing the trends in inundation frequency above the National Weather Service’s four flood level
categories in 2042 catchments. Results reveal stark regional patterns of changing flood risk that are broadly
consistent above the four flood categories. We show that these patterns are dependent on the overall
wetness and potential water storage, with fundamental implications for water resources management,
agriculture, insurance, navigation, ecology, and populations living in flood-affected areas. Our findings may
assist in a better communication of changing flood patterns to a wider audience compared with the more
traditional approach of stating trends in terms of discharge magnitudes and frequencies.

1. Introduction

In water year 2016 alone (1 October 2015 to 30 September 2016), the United States witnessed major floods
spanningMissouri, the South and Midwest, Texas, Oklahoma, West Virginia, Maryland, and Louisiana. Many of
these floods were catastrophic, reaching unprecedented flood levels (Figure 1), and affecting hundreds of
thousands of people. Such flood-related disasters are of global concern with the increasing concentration
of population in urban settlements [Jha et al., 2012] and the heightened exposure of assets to flood damage.
In the USA, the cost of flooding is extensive, with total insured values in the National Flood Insurance program
reaching almost $1.28 trillion for the period of 2001–2012 [Kousky and Michel-Kerjan, 2015].

The National Weather Service (NWS) uses four categories to communicate the severity of water surface ele-
vation: action (requiring mitigation action in preparation for more substantial flooding), minor (with mini-
mal or no property damage, but possibly some public threat), moderate (with some inundation of
structures and roads and evacuations of people and/or property transfer to higher ground), and major
(with extensive inundation, significant evacuations, or property transfer) [NOAA National Weather Service,
2012]. These categories are numeric thresholds that are determined at each gauging site (Figure 1) to
monitor and forecast flood risk. We define the risk as the interaction of the flood hazard (probability)
and the vulnerability [e.g., Merz et al., 2012] based on the four NWS flood categories. Thus, we use historical
gage height (i.e., stage) records from the U.S. Geological Survey (USGS) to understand how the local flood
risk is changing over time: in the case of Louisiana, the frequency of flood days has been progressively
increasing above action, minor, and moderate flood categories (Figure 1a), while in South Carolina it has
actually been decreasing (Figure 1b).

Changes in the frequency of flooding may occur through a combination of factors, including shifts in
atmospheric conditions (e.g., magnitude, type, seasonality, and phase of precipitation), snowmelt patterns,
antecedent soil moisture, land use and land cover (e.g., urbanization and agriculture), and anthropogenic
modifications of the water cycle (e.g., management, extractions, dams, and diversions). Flood trends are
typically investigated using discharge as a proxy for flood magnitudes [Milly et al., 2002, 2005; Vogel
et al., 2011; Hirsch and Ryberg, 2012; Mallakpour and Villarini, 2015; Slater et al., 2015; Archfield et al.,
2016]. However, classic trend-detection approaches using annual flow maxima [e.g., Mallakpour and
Villarini, 2015] or regional flow averages [e.g., Archfield et al., 2016] may actually conceal any changes in
small or local flood events. Additionally, any changes in a river channel’s capacity (i.e., the depth, width,
and roughness) may significantly alter the frequency of local flooding above set flood levels (even in
the absence of any changes in discharge) [Slater et al., 2015], so trends in flood frequency that are
measured using discharge and gage height time series can be markedly different [Slater, 2016], especially
in locations that have experienced major changes in channel capacity due to urbanization/regulation [e.g.,
Stover and Montgomery, 2001].
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Here we specifically use only the most recently obtained NWS flood categories (and not changing flood
levels) to investigate how the frequency of flooding is changing at those given levels over time, irrespective
of any changes in the capacity of the river channel [Slater et al., 2015; Slater, 2016]. By tying gage height with
the NWS flood categories (GHaction, GHminor, GHmoderate, or GHmajor) it becomes possible to investigate the
practical impacts of changes in precipitation on flooding at the local scale, across the continental USA.
Further, corrected stage measurements are inherently more precise for this purpose than the discharge
estimates that are obtained from the stage-discharge rating relationships [Carter and Davidian, 1968],
particularly during high flows.

2. Materials and Methods
2.1. Gage Height Data

We listed all of the USGS stream gages [United States Geological Survey, 2015] for which NWS flood
categories were documented and downloaded all available daily gage height data (1985–2015) from
the National Water Information System (NWIS-web). When little or no data were available online, we
contacted the USGS Water Science Centers and received provisional gage height data (Table S1 in the
supporting information) in instantaneous form (15 to 60min increments), with the caveat that they
might contain erroneous values. The majority of these sites are streams, with some lakes, reservoirs,
and tidally influenced sites, and a mix of regulated and unregulated sites. We obtained gage descriptions
from online USGS Water Year Reports to detect any changes in the gage location or datum, and thus
discard any data preceding a change in gage location (Table S2), and/or correct any changes in datum

Figure 1. Trends in flood frequency above action, minor, moderate, and major flood levels. (top row) Comite River near Comite, Louisiana (USGS site 07378000).
(bottom row) Black River at Kingstree, South Carolina (02136000). (a and c) Time series of mean daily gage height (GH, in feet), with the four NWS flood levels
(GHaction, GHminor, GHmoderate, and GHmajor) indicated as horizontal color lines. (b and d) Trends in the number of days per water year where gage height exceeded
the four flood levels. For illustrative purposes, the time series shown here include water year 2016 and incomplete years (<330 days). The color lines in Figures 1b and
1d represent the rate of occurrence parameter based on Poisson regression (section 2).
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by shifting the time series prior to the date of the change. Any apparent shifts in gage height minima or
in the gage height-discharge relationship were investigated as potential changes in datum or
gage/measurement location. Any extreme, visibly erroneous minima and maxima were removed, and
sites with data judged unreliable were discarded (Table S2). In many states, electronic gage height
records have only been stored since 2000/2001. Therefore, we carried out sensitivity tests with a mini-
mum of 14, 15, 20, and 25 complete (300+ daily measurements) water years and find similar patterns
irrespective of record length (Figure S1 in the supporting information). Water year 1985 was chosen
as the starting date because only a minority of gage height records extend before then (Figure S2).
While these records may seem short in comparison with some discharge records, our aim is not to
discuss or detect any long-term climate-related changes in flooding but to show how rapidly the local
flood risk can change above NWS categories.

2.2. Trends in Flood Frequency

To assess flood frequency, we follow a peak over threshold approach and compute the number of days per
water year in which the mean daily gage height exceeded or equaled the GHaction, GHminor, GHmoderate, or
GHmajor thresholds. At each site, trends in these quantities are detected using a Poisson regression model
because the data are discrete and bounded at zero (Figure 1b). Trends are considered significant at the 5%
level; however, sensitivity tests performed for p ≤ 0.10, p ≤ 0.01, and p< 0.001 reveal very similar spatial pat-
terns (Figure S3). In many locations, the NWS flood thresholds are exceeded only a few times over the entire
record, so sensitivity analyses were also performed to determine if the results changed based on the number
of years with events exceeding threshold levels. The results were very similar for all tests (Figure S4), so a mini-
mum of 3 years of nonzero events (above a given threshold) was required before fitting a trend (Figure 2).
Additionally, not all sites have all four flood categories, and this may affect the spatial patterns of trends
(Figures 2, S1, and S3–S5).

For comparison with trends in the number of annual days above flood categories, we also calculate trends in
the frequency of flood events above each NWS category. The contributing drainage area A (in logarithmically
transformed mi2), available from the USGS site inventory for 99% of our sites, is used as a proxy for the num-
ber of days required to produce a peak flow in the basin (hereafter referred to as “n-day window”), following
an approach similar to Lang et al. [1999] (n-day window< 5 days + log(A)). We use log(A) following United
States Water Resources Council [1981] to allow longer recession times in larger basins. The trend in the number
of independent annual flood events (separated by at least one n-day window) is also computed using Poisson
regression (Figure S5).

2.3. Precipitation Data

We use precipitation data to assess whether changes in flood risk are related to rainfall extremes or long-
term wetness over the study period. Total daily precipitation data at ~4 km resolution were obtained from
the PRISM Climate Group [2015] and averaged over the contributing basin boundaries from USGS
Streamgage NHDPlus Version 1 Basins 2006. Time series were computed for 88% of sites (i.e., those
located in the conterminous USA and with NHDPlus basin boundaries) and tailored to fit the same daily
timespan as the gage height data. Pmax is the annual maximum precipitation occurring in an n-day win-
dow for each site (we use n-day = log(A) because precipitation is computed at the basin scale). To find
Pmax, the time series is split into n-day overlapping windows (beginning on each day of the year), in which
the total precipitation is aggregated; the window with the largest precipitation total is retained for each
year. Pannual reflects total precipitation in each water year. The nonparametric Mann-Kendall test [Mann,
1945] is used to identify monotonic temporal trends in Pmax and Pannual based on the Kendall rank corre-
lation (accounting for any ties in the data) [McLeod, 2011]. The association between precipitation and the
frequency of exceedance of flood stage at each site is quantified by fitting a Poisson regression model
between the annual time series of Pannual (predictor) and that of GHminor (discrete response variable) if
thresholds are exceeded at least 3 times in the entire annual time series (see sensitivity tests for excee-
dance in Figure S4).

2.4. Gravity Recovery and Climate Experiment Satellite Data

NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites have beenmeasuring Earth’s gravity field
anomalies since 2002, providing information on both event flow (precipitation-driven) and base flow (stored
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in soils and groundwater). Thus, although GRACE time series are still relatively limited, the data may prove
valuable for predicting the exceedance of NWS flood levels. We use the GRACE global monthly mass concen-
tration blocks (mascons) version RL05m from the Jet Propulsions Laboratory, which have improved signal
recovery in comparison with other processing methods (such as the spherical harmonic approach). The data
were downloaded from https://podaac.jpl.nasa.gov/dataset/TELLUS_GRACE_MASCON_GRID_RL05_V1 and
are described online at http://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/. These are 3° mascons
[Watkins et al., 2015] gridded to a 0.5° grid; they have not been smoothed and thus are “blocky” in appear-
ance. In Figure 2 we plot the linear trend using all available data (2002–2015), converted to cm/yr. For
Figure 3, we compute the time series of basin-averaged GRACE data and extract the mean values in each
water year (GRACEannual), requiring a minimum of 10 monthly values in each water year because of data
incompleteness. For Figure 4, we require a minimum of nine complete water years to measure the strength
of the association between GHminor and GRACEannual using Poisson regression.

2.5. Time-Varying Predictors of Flood Occurrence

To model the occurrence of individual flood events exceeding GHminor as a function of antecedent
wetness and precipitation, we use Cox regression [Cox, 1972]. Cox regression can be used to model

Figure 2. Trends in flood frequency in number of annual days above (a) action, (b) minor, (c) moderate, and (d) major flood NWS categories computed using Poisson
regression, alongside trends in GRACE liquid water equivalent thickness in cm/yr (2002–2015). Alaska, Hawaii, and Puerto Rico are shown beneath the continental
USA, not to scale. The red circles indicate increasing trends, the blue decreasing trends, and the gray represent sites with insufficient peaks above threshold to
compute a trend. The dark symbols indicate significant trends (p-value ≤ 0.05); the pale symbols indicate nonsignificant trends (p-value> 0.05). Sensitivity analyses
with other p-values and time series lengths are provided in the supporting information. The circles indicate published data from NWIS-web, and the squares indicate
provisional data.
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Figure 3. Trends in precipitation and water storage. Maps indicate trends computed using the Mann-Kendall test in
basin-averaged (a) Pmax, (b) Pannual, and (c) GRACEannual (water years). The colors and symbology are the same as in
Figure 2. Alaska, Hawaii, and Puerto Rico are not included because of the unavailability of the precipitation data for those
locations.
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Cox processes, which are a generalization of Poisson processes. While in a Poisson process all the events
are considered independent, Cox processes are clustered, so bursts of activity alternate with more quiet
periods. For more information and details about Cox processes and regression with time-dependent
predictors, consult Cox [1972], Karr [1983], Smith and Karr [1983], Villarini et al. [2013a], and Section S1
in the supporting information. Here we consider two covariates: short-term precipitation prior to a flood
event (Pevent) and long-term precipitation (Pannual, the sum of all precipitation occurring in the 365 days
preceding Pevent). To compute Pevent, we first loop through all GHminor flood events and calculate the
mean number of days that gage height stayed above flood stage before the flood peak (ndays, rounded
up to the nearest whole integer). Pevent is the sum of all precipitation occurring in a window of ndays
plus 10 days preceding the flood event (different window sizes were tested, and we chose the largest
value to best distinguish Pevent from Pannual; see Figures S6–S8). Pannual is representative of the overall
wetness of the watershed.

Thus, at the resulting 2042 locations (949 published, 1093 provisional) we investigate (i) how the frequency of
floods is evolving above the NWS’s four flood categories (Figures 1 and 2), (ii) how basin-averaged
precipitation and water storage are changing at the same stream gages (Figure 3), and (iii) the factors affect-
ing the trends in flood risk as well as the relationship between gage height and precipitation/antecedent
basin wetness (Figure 4).

Figure 4. Variables displaying a relationship with trends in flood risk. Predictors from the GAGES-II dataset [Falcone et al., 2010] are shown on the x axis: (a, f,
and k) drainage area (km2); (b, g, and l) elevation (mASL); (c, h, and m) developed land within 100m of the river (%); (d, i, and n) class, i.e., whether the site is in a
“reference” watershed (with least-disturbed hydrologic conditions) or not; and (e, j, and o) mean annual basin averaged precipitation (mm). Across all panels, the
hollow circles indicate the estimated fraction, the intervals represent the 5th and 95th sampling uncertainties, and the numbers refer to the number of sites. The
magenta and orange colors indicate the fraction of sites with a significant relationship (at the 5% level) between Pannual or GRACEannual and the number of
days/events above GHminor (Figures 4a–4j). Pannual is summed for each water year in Figures 4a–4j and computed prior to each event in Figures 4k–4o for the
Cox modeling. The green colors indicate flood frequency trends computed using the number of flood days (first row) and number of flood events (second row)
above GHminor every year. Fraction of sites where Pevent (blue) and Pannual (magenta) are significant predictors of GHminor flood events using Cox regression
(Figures 4k–4o). The numerical x axis variables were binned at approximately the 25th and 75th percentiles of the distributions.

Geophysical Research Letters 10.1002/2016GL071199

SLATER AND VILLARINI RECENT TRENDS IN U.S. FLOOD RISK 6



3. Results and Conclusions
3.1. Spatial Patterns of Trends in Flood Risk

Trends in the frequency of flooding above the four NWS flood thresholds computed using Poisson regression
reveal a stark contrast between increases in flood risk around the upper Midwest/Great Lakes region and
decreases on the Gulf Coastal Plain, the southeastern United States, and California (Figure 2). Broadly speak-
ing, these patterns are similar to the changes in liquid water equivalent measured by NASA’s GRACE mission
(GRACEannual, used here as a proxy for overall basin wetness); two-thirds of GHminor and GRACEannual trends
exhibit the same sign (Figure S9). This cooccurrence of positive/negative trends in flooding and basin water
storage suggests that progressive changes in basin wetness arising from combined climatic and anthropo-
genic influences precondition the local flood potential [see Reager et al., 2014]. Localized increases in flooding
in the Gulf of Mexico, near New Orleans, and selected locations in Florida are also visibly in agreement with
GRACE. Flood trends in the western half of the conterminous USA, Alaska, and Puerto Rico show mixed pat-
terns of increases and decreases, while California stands out with almost uniform decreases in flood fre-
quency (Figure 2).

The regional patterns of increasing and decreasing flood risk are broadly similar for all four flood categories
but become less similar as the difference between flood levels increases (83% of GHaction and GHminor trends
have the same sign, 73% of GHaction/GHmoderate, and 66% of GHaction/GHmajor). For example, a site may have a
significant increasing trend in GHaction, but a nonsignificant decreasing trend in GHmajor (see the southern-
most sites in Florida). As the moderate and major flood categories are exceeded less frequently than action
and minor levels, significant changes are detected at fewer sites (Figure 2), and longer records may be
required before trends become significant. We also find a similar spatial distribution of increases versus
decreases in flood risk, whether trends are computed using the number of independent annual flood events
or with the number of flood days (Figures 2 and S5), and results are consistent across the published and the
provisional gage height records (Figure 2). While there may be local differences in river systems that have
experienced anthropogenic modifications, the changes in flood frequency that are measured using gage
height are largely consistent with previously observed increases in the frequency and magnitude of stream-
flow across the Midwest [Mallakpour and Villarini, 2015; Slater et al., 2015], the North, and North-East [Milly
et al., 2005; Collins, 2009; Slater et al., 2015], as well as decreases in runoff and flood magnitude in the West
and Southwest [Milly et al., 2005; Hirsch and Ryberg, 2012] and coastal southeastern regions [Hirsch and
Ryberg, 2012] of the United States.

3.2. The Relationship Between Changing Precipitation, Basin Wetness, and Flood Risk

Can these trends in flood risk be related to short-term changes in precipitation? While extreme flooding is
mostly driven by very heavy rainfall [e.g., Groisman et al., 2001], flood flows often have multiple drivers
[Ivancic and Shaw, 2015; Stephens et al., 2015; Berghuijs et al., 2016]; thus, we investigate the relationship
between precipitation and stage, and the variables that may modulate it. Using daily precipitation data
[PRISMClimate Group, 2015] averaged over each of the contributing basins for the same time periods as the daily
gage height data, we computed trends in Pmax (the maximum annual precipitation occurring in an n-day flood-
inducingmoving window; see section 2) and Pannual (the total annual precipitation) using theMann-Kendall test.
Spatial trends in Pannual and Pmax are analogous to longer-term increases in extreme precipitation that have
been measured over Central/Midwest/East [Janssen et al., 2014; Villarini et al., 2013b; Mallakpour and Villarini,
2015], Northeast, and Great Lakes [DeGaetano, 2009; Horton et al., 2014] regions, pointing to a generally heigh-
tened frequency of high-intensity precipitation days and events [Groisman et al., 2005, 2012; Guilbert et al.,
2015]. Decreasing trends are more prominent in the southeastern coastal states of Texas, the Carolinas, and
Georgia, and especially over California, where severe water shortages [Diffenbaugh et al., 2015] have resulted
in the most severe drought that the U.S. West Coast has seen in centuries (Figures 3a and 3b).

While spatial precipitation trends broadly reflect changing patterns of flood risk, even more notable are the
changes in basin-averaged water storage (Figure 3c). Using the same methods as for precipitation, but with
shorter time series, we find that increases/decreases in GRACEannual are spatially consistent with Pmax and
Pannual and the distribution of trends in the frequency of flooding (Figures 2, 3, and S9). To quantify this asso-
ciation between basin wetness and flooding, Poisson regression models were fit between the yearly time ser-
ies of total days exceeding minor flood stage (GHminor) and those of Pannual and GRACEannual at each site
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(Figures 4a–4j). The fraction of sites where GHminor flood events are significantly related to Pannual is greater
than with GRACEannual due to longer time series. However, the measured relationships between each of the
predictors (Pannual and GRACEannual) and GHminor are remarkably similar (Figures 4a–4j) and suggest that
broad shifts in basin wetness that occur at the land surface and subsurface over annual time scales (due to
climate and human activity) are an important driver of flooding.

If the strength of the relationship between basin wetness (as measured by Pannual/GRACEannual) and GHminor

(or P-GH coupling) is indeed due to the influence of water storage within the catchment, then we would
expect it to be affected by the physical properties that control water retention [Ivancic and Shaw, 2015;
Stephens et al., 2015]. Significant P-GH coupling increases markedly in large and low-lying catchments, where
there is better integration of flow paths reaching the channel (Figures 4a, 4b, 4f, and 4g). Locally, P-GH
coupling is muted by the presence of impervious land surfaces which disconnect the channel from its
floodplain (Figures 4c and 4h); however, at the catchment scale, anthropogenic alterations to water storage,
which modify/sustain specific flow pathways, appear to have amplified the climate signal in river flows in
comparison with less-modified sites (Figures 4d, 4i, and 4n) (as in Vogel et al. [2011]). Last, we find that the
strongest P-GH coupling occurs when climates are neither too wet nor too dry (Figures 4e, 4j, and 4o).

To further assess the dependence of flooding on basin wetness, we modeled the occurrence of individual
GHminor flood events as a function of the precipitation occurring immediately before the flood (Pevent) and
of the annual wetness (Pannual) using Cox regression (Figures 4k–4o) [e.g., Villarini et al., 2013a]. While
Pevent tends to be a significant predictor more than half of the time, and across all types of sites, Pannual is also
an important predictor, especially in large or dry catchments with unurbanized riparian areas (Figures 4, S7,
and S8). In other terms, locations with greater potential water storage are more sensitive to year-to-year fluc-
tuations in basin wetness, and it is to be expected that the inclusion of the Pannual predictor will substantially
improve the prediction of flooding in these locations.

In sum, in a warming world where changes in the spatial and temporal distributions of precipitation and
large-scale climate indices are affecting the magnitude and frequency of high flows [Groisman et al., 2001;
Karl et al., 2009;Mallakpour and Villarini, 2015, 2016], our findings reveal that there are actually strong regional
patterns of changing flood risk which can be assessed and communicated from a practical standpoint in
terms of the local threat to people and assets. These regional patterns are preconditioned by overall basin
wetness, especially in low-lying areas with notable water storage. Thus, any projections of changes in flood
risk above the action, minor, moderate, and major flood categories based on the observed amplification of
precipitation extremes should most certainly take into account the short-term, concomitant changes in basin
wetness resulting from broad-scale shifts in climate and water management.
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