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Abstract  

 

Hydrological classification systems seek to provide information about the dominant processes 

in the catchment to enable information to be transferred between catchments. Currently there 

is no widely agreed-upon system for classifying river catchments. This paper develops a 

novel approach to classifying catchments based on the temporal dependence structure of daily 

mean river flow time series, applied to 116 near natural “Benchmark” catchments in the UK. 

The classification system is validated using 49 independent catchments. Temporal 

dependence in river flow data is driven by the flow pathways, connectivity and storage within 

the catchment, and can thus be used to assess the influence catchment characteristics have on 

moderating the precipitation-to-flow relationship. Semi-variograms were computed for the 

116 Benchmark catchments to provide a robust and efficient way of characterising temporal 

dependence. Cluster analysis was performed on the semi-variograms, resulting in four 

distinct clusters. The influence of a wide range of catchment characteristics on the semi-

variogram shape was investigated, including: elevation, land cover, physiographic 

characteristics, soil type and geology. Geology, depth to gleyed layer in soils, slope of the 

catchment and the percentage of arable land were significantly different between the clusters. 

These characteristics drive the temporal dependence structure by influencing the rate at which 

water moves through the catchment and / or the storage in the catchment. Quadratic 

discriminant analysis was used to show that a model with five catchment characteristics is 

able to predict the temporal dependence structure for un-gauged catchments. This method 

could form the basis for future regionalisation strategies, as a way of transferring information 

on the precipitation-to-flow relationship between gauged and un-gauged catchments.  

 

Keywords: clustering; variogram; temporal dependence; autocorrelation; regionalisation; 

discriminant analysis. 

 

Introduction  

Hydrology has yet to achieve a widely agreed-upon system which classifies catchments based 

on the movement and storage of water within the catchment (Wagener et al., 2007; Ley et al., 

2011). Even though internal complexity will remain within each class as every catchment is 

unique (Beven, 2000), a broad classification process should be possible. This is based on the 

general assumption that some level of organisation and therefore predictability in catchment 

‘function’ (i.e. the translation of catchment input into river flow) exists (Dooge, 1986; 

Bloschl et al., 2013). A broad classification process should cluster together similar 
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catchments, thus limiting the variability within classes and maximising the variability 

between them. The between-catchment similarities may be a result of natural self 

organisation or the co-evolution of climate, soils, vegetation and topography (Sivapalan, 

2006). 

Classification is a means to identify the dominant processes and mechanisms operating in a 

given catchment type, as well as the most important controls on water fluxes and pathways 

(McDonnell and Woods, 2004). Identifying the dominant processes which transform 

precipitation into runoff will enhance understanding about the similarity or dissimilarity 

between catchments (Gottschalk, 1985). Being able to classify catchments has a range of 

benefits (Grigg, 1965; 1967): 

1) To give names to things (enable grouping as seen in other disciplines). 

2) To permit transfer of information (from gauged to un-gauged catchments as 

well as enabling comparison between studies in different catchments). 

3) To permit development of generalisations (improve knowledge about the 

drivers behind the precipitation to flow relationship). 

As the impacts of a non-stationary climate are becoming of greater concern (Wagener et 

al., 2010), Sawicz et al. (2011) added a fourth: 

4) To provide a first order environmental change impact assessment (identify the 

impacts from land use/cover and climate change). 

Hydrological science has developed descriptive classifications describing catchments in 

terms of, e.g. land cover (forested, urban, arable, etc); climate (humid, arid, semi-arid, etc); 

flow pathways (fast, slow); storage (groundwater dominated, surface water catchments); etc 

(Wagener et al., 2007). These groupings do not provide a comprehensive classification 

system as they do not enable understanding about the partitioning of water nor the importance 

of different water stores (McDonnell and Woods, 2004). A further drawback with the 

aforementioned groupings is that no information is provided about the impact of the 

interaction between different descriptors. Previous classification studies have either focused 

on physical catchment characteristics (e.g. Acreman and Sinclair (1986) and Burn and 

Boorman (1993)) or on indicators derived from specific aspects of the flow record (e.g. 

floods - Robson and Reed (1999); low flows and flow duration curves -Holmes et al. (2005); 

seasonally averaged flows - Laizé and Hannah (2010); long term average annual regimes and 

long term annual flow average - Bower et al. (2004)). Bower et al. (2004) differentiated 

between first and second order controls (precipitation and catchment characteristics 

respectively) on flow. Ali et al. (2012) and Ley et al. (2011) showed a lack of correlation 

between flow-derived indicators and catchment characteristics. The difference is likely to be 

caused by the catchment characteristics not adequately capturing the climatic effects (first-

order control of flow). 

Temporal dependence represents the similarity between the river flow on a given day and 

river flow on the preceding days. As temporal dependence is likely to be driven by catchment 
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characteristics (Szolgayova et al., 2013), classification based on the temporal dependence has 

some key advantages: 1) Raw flow data can be used, rather than having to calculate 

indicators from discharge data (e.g. annual or seasonal averages, minimum or maximum 

flows). 2) The method can handle missing data. 3) The classification is based on catchment 

function (i.e. the degree to which catchment characteristics filter rainfall into runoff) and not 

a specific part of the flow regime. This confers significant benefits for advancing our 

understanding of the drivers behind the precipitation-to-flow relationship in a much more 

generalised way (benefit 3, above) rather than for a specific process (e.g. flooding or low 

flows). 

Szolgayova et al. (2013) suggested that catchment properties can influence the temporal 

dependence of river flow. Such properties are likely to include those governing the 

predominant catchment second-order controls (i.e. catchment characteristics which modify 

the precipitation to flow relationship, Bower et al,. 2004). These will influence: partitioning 

between vertical and lateral pathways (e.g. interception, overland flow, infiltration and 

percolation); connectivity of the drainage network and hydraulic gradients (Buttle, 2006) and 

storage (e.g. soil moisture storage, lakes and storage in the saturated zone (Black, 1997)) .  

This paper will develop a new catchment classification system based on the temporal 

dependence of river flow; an integration of water input, storage and flow pathways within the 

catchment. A hydrological classification method becomes more powerful if catchments can 

be classified without the use of river flow data; enabling un-gauged catchments to be 

classified and hence allowing data transfer between gauged and un-gauged catchments. 

Therefore, the second part of this paper will demonstrate how un-gauged catchments could be 

clustered into the same classification using their catchment characteristics thereby facilitating 

data transfer (benefit 2).  

The methodology used in this paper is designed to capture differences in the precipitation to 

channel-flow relationship (benefit 3). This novel approach of assessing the temporal 

dependence in a catchment based on semi-variograms, created using daily river flow data, 

will be applied to a range of catchments throughout the UK. The term semi-variogram refers 

to the semi-variance calculated from the data without fitting model (also known as the 

experimental or empirical variogram) (Chandler and Scott, 2011).    

Data 

Catchment selection  

A sample of catchments was needed to represent the population of UK catchments in terms of 

spatial location and catchment characteristics. The choice of catchments selected was 

constrained: 1) To remove the influence of weather, the time series is averaged over a long 

time period. Therefore, only catchments with a record length of 30 years or more with less 

than 5 % missing data were considered. 2) As controls from climate and land use change 

through time (Wagener et al., 2007), a common time period (1970 to 2010) was used to 

enable comparisons between catchments. 3) Artificial influences on river flows (such as 

reservoirs or sewage discharges) could affect the dependence structure of the data series, so 
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near-natural UK Benchmark catchments, with only modest net impacts from artificial 

influences were chosen (Bradford and Marsh, 2003). 4) Nested catchments with similar flow 

regimes were removed.  

Any study using observed hydrometric data faces an inevitable degree of uncertainty due to 

limitations with the measurement techniques (MacMillan et al. 2013). The amount of 

uncertainty will depend on the gauging station to a great degree. In this study, the impacts of 

data error was minimised insofar as possible through judicious selection of catchments. One 

of the criteria Bradford and Marsh, (2003) used to develop the benchmark network was 

hydrometric performance, with the gauging stations in the network generally producing good 

quality data. Furthermore, the data used in this study has undergone validation by the NRFA 

as outlined in Dixon et al, (2012) and demonstrated by Muchan and Dixon (2013) to have 

few data quality issues. 

The locations of the 116 catchments are displayed in Figure 1 provide a good coverage of UK 

catchment types with varying catchment characteristics (Table 1). However, catchments in 

the South East are smaller, as artificial influences are more pervasive in this densely 

populated region. In addition a further 49 catchments were selected for validation purposes 

(Figure 1). These were selected using the approach outlined above, except the requirement to 

be a benchmark catchment was removed; instead they were screened for artificial influences 

using the metadata records from the National River Flow Archive (NRFA).  The hydrometric 

data were collected by the measuring authorities (Environment Agency in England, Natural 

Resources Wales in Wales, Scottish Environment Protection Agency in Scotland, and the 

Rivers Agency in Northern Ireland) and stored on the NRFA 

(http://www.ceh.ac.uk/data/nrfa/). Daily rainfall data for each catchment were also calculated 

from 1km by 1km gridded rainfall data using the method outlined in Keller et al. (2006). 

Catchment characteristics  

In order to investigate the drivers behind the different shapes of semi-variogram, several 

catchment characteristics were analysed, grouped into categories: elevation(e), land cover(Lc), 

physiographic and hydrological descriptors from the FEH(FEH) (Flood Estimation Handbook, 

the UK’s principal methodology for flood estimation at un-gauged sites; (Robson and Reed, 

1999), geology(g), storage(St) and soils classification(s) (Table 1). 

Five elevation characteristics were considered to assess how topography varies between the 

clusters, all derived from the Integrated Hydrological Digital Terrain Model (Morris and 

Flavin, 1990), as published in the UK Hydrometric Register (Marsh and Hannaford, 2008). 

Land cover was derived from the Land Cover Map 2000 (Fuller et al., 2002), grouped into 

four categories from the 26 LCM2000 subclasses, to ensure the representation in the 116 

catchments and preservation of the four major land covers. Nine characteristics from the FEH 

were included, incorporating the important characteristics of the catchment and excluding 

discharge features (e.g. return periods). Four different Hydrology Of Soils Types (HOST) 

(Boorman et al., 1995) soil types based on the depth to gleyed layer (reduced from 29 HOST 

classes) and seven different hydrologically important rock types calculated from the 1:625 

http://www.ceh.ac.uk/data/nrfa/
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000 scale digital hydrogeological map of the UK were identified. As with land cover these 

categories were defined to capture the main hydrological differences whilst being represented 

throughout the 116 catchments. In addition to the HOST soil classes, BFIHOST and BFI are 

included as indicators of catchment storage.  Base flow index is not a catchment 

characteristic per se as it is calculated from the flow data. However, it is frequently used as an 

indication of storage and is included here to compliment the BFIHOST values, which are BFI 

values predicted from HOST classes.  

Method 

An overview of the methods used in this paper is provided here, before more detail is 

provided in the following sections. Firstly, the daily flow data are transformed to make them 

suitable for (semi-)variogram analysis. Secondly, a semi-variogram is created for each 

catchment. Thirdly, the variogram for all sites are categorised into groups using cluster 

analysis. Finally the influence catchment characteristics have on the temporal dependence of 

each of these clusters is analysed in two ways: firstly through box plots, to investigate the 

distribution of catchment characteristics for each cluster; and secondly by using quadratic 

discriminate analysis (QDA) to independently predict membership of the clusters using 

catchment characteristics rather than the semi-variogram.  

River flow data transformation  

To calculate a semi-variogram the data should first be transformed into a normally 

distributed, deseasonalised time series (Skøien et al., 2003). Therefore a number of 

transformation steps were implemented, each one using the data from the previous, starting 

with raw daily discharge data: 

 1) As some hydrological time series had periods of no data and all sites had a good analogue 

station the time series were in-filled to improve the fit of the periodic function used for 

deseasonalisation (step 3). Infilling was carried out using the equipercentile linking method 

(Hughes and Smakhtin, 1996) where the flows from one gauging station are linked to another 

through percentile ranks. Harvey et al. (2012) showed that the equipercentile method 

outperforms other methods such as scaling factors for infilling mean daily river flow data. 

 2) Logarithms were taken, to create a near normal distribution. Zero values were replaced by 

0.001 m3s-1.  

3) Seasonality was removed (to avoid exaggerating the temporal dependence) using Fourier 

representation; a periodic function was fitted to the data using a sum of sine and cosine 

waves, at frequencies which are integer multiples of the annual cycle. For each catchment the 

number of covariates was set to six to enable a good fit to the data (more covariates increases 

the flexibility of the function, enabling a better fit to the data). While it is acknowledged that 

using six covariates might over fit the model, this is deemed appropriate to model the 

seasonal effects (and not to extrapolate). Akaike Information Criterion (AIC), a relative 

goodness of fit measure, was used to select the best parameters for the periodic function.  The 

effect of seasonality was removed by deducting the magnitude and dividing by standard 
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deviation caused by seasonality (both calculated from the periodic function) for each day in a 

year. Although infilling the data enhanced the ability to fit a periodic function to the data and 

improved the removal of seasonality, the in-filled data were considered less accurate than 

measured data, so were removed after the seasonality had been taken out.  

4) The flow data for each catchment were standardised by deducting the mean and dividing 

by the standard deviation of the time series; standardising enables comparison of catchments 

with different magnitudes of flow.  

Semi-variograms  

The temporal dependence structure can be represented by a one dimensional temporally 

averaged (semi-)variogram (see Chandler and Scott (2011) or Webster and Oliver (2007) for 

detailed background about the (semi-)variogram). A semi-variogram has several components 

(displayed in Figure 2): Throughout this paper the “sill” is defined as the semi-variance 

where the gradient of the (semi-)variogram is zero. A zero gradient indicates the limit of 

temporal dependence and is an indicator for the total amount of variance in the time series. 

The “range” is the time it takes to reach the zero gradient. If the lag time between water 

landing in the catchment and reaching the gauging station is small and the catchment has 

little storage then the resulting semi-variogram would be expected to have a short range.  

For second-order stationary processes the (semi-)variogram and autocorrelation graph are 

symmetrical. However, (semi-)variograms are defined for a wider class of processes and 

therefore enable temporal dependence to be analysed even if there is missing data or a trend. 

The nugget, which is the y intercept on the modelled semi-variogram, represents a 

combination of measurement error and sub daily variability. The partial-sill is the range 

minus the nugget and shows the temporally dependent component. A semi-variogram was 

calculated for each catchment using the average squared difference between all pairs of 

values which are separated by the corresponding time lag (Equation 1): 

𝑣(ℎ) =
1

2(𝐍−𝐡)
∑ [(𝑌(𝑡𝑖+ℎ) − 𝑌(𝑡𝑖))2]𝐍−𝐡

𝑖=1  

Where h is the lag time, Y(ti) is the value of the transformed data at time ti and (N-h) is the 

number of pairs with time lag h. A maximum lag distance over which to calculate the semi-

variogram was defined to enable the clustering to capture differences in the temporal 

dependence structure.  

In order to quantify the differences between the mean values in each cluster, variogram 

models were fitted to the average semi-variogram for each cluster (see below for details of 

clustering). These were fitted using the variofit function from the geoR package in the R 

statistical software. Ten different model shapes (Matern, exponential, gaussian, spherical, 

circular, cubic, wave, powered.exponential, Cauchy and gneiting) were fitted to the semi-

variogram using the Cressie method (Cressie, 1985). The Matern shape produced the fit 

results for each cluster average. 

Clustering 

(Equation 1) 
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Catchments were clustered using a Euclidean squared distance matrix, calculated using the 

whole of the semi-variogram to maximise the information going into the clustering algorithm 

(Wagener et al., 2007). There are many clustering methods available, with none universally 

outperforming the others (Hannah et al., 2005). Hierarchical clustering was undertaken using 

seven methods (Ward, single, complete, average, McQuitty, median and centroid), resulting 

in dendrograms, agglomeration schedules and maps. These were used to assess the spread of 

catchments across the clusters (i.e. how many catchments there are within each cluster) and 

physical explanation of clusters. Ward’s method gave the best results for clustering based on 

the semi-variogram shape, with relatively well defined evenly sized clusters. Ward’s method 

has been found to be robust for clustering catchments in terms of hydrological response in a 

wide range of other studies (e.g. Laizé and Hannah (2010); Köplin et al. (2012) and Bower et 

al. (2004)). Agglomerative clustering based on Ward’s minimum variance method was 

applied to the distance matrix. The algorithm starts with n clusters (i.e. the number of 

catchments), at each step the joining of every cluster pair is considered and the two clusters 

which results in the minimum increase in the sum of squared differences are combined. The 

final number of clusters is subjective, based on assessing the structure of the dendrogram and 

changes in gradient of the agglomeration. 

Quadratic discriminant analysis (QDA) 

Discriminant analysis was used to determine which catchment characteristics can be used to 

attribute a catchment to a cluster. The analysis identifies whether the mean of the catchment 

characteristic differs between clusters. Once the variables (characteristics) have been selected 

discriminant analysis creates an equation with the aim of minimising the possibility of 

misclassifying catchments. The equation will be in the form: 

𝐷 = 𝑣1𝑋1 +  𝑣2𝑋2 +   𝑣3𝑋3 +  … + 𝑣𝑛𝑋𝑛 +  C        (Equation 2) 

Where D is the discriminant function; v is the coefficient for the variable; X is the 

transformed value for the variable; C is a constant and n is the number of variables. The v’s 

are selected to maximise the difference between clusters. There is one less discriminant 

equation than the number of clusters. Each equation explains as much of the between-cluster 

variability as possible with the first equation explaining the most. Quadratic discriminant 

analysis was used (as opposed to linear discriminant analysis) because it allows a different 

covariance matrix for each cluster, increasing the model’s flexibility. This is deemed 

acceptable due to the number of catchments being investigated. 

To meet the assumptions associated with discriminant analysis, the catchment characteristics 

were transformed to be normally distributed. The Shapiro-Wilks value was used to select the 

best transformation. In addition, to avoid making prior assumptions about the characteristics 

which best discriminated between the different clusters, a backwards stepwise variable 

selection was used. A matrix containing total variance and covariance and matrix containing 

pooled within-group variance and covariance were compared using a multivariate F test. This 

indicates the extent to which a variable makes a unique contribution to the prediction of 

cluster membership. The F value was used to select the variables to be removed at each step. 
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Further to this, to avoid redundant variables, characteristics which were highly correlated (> 

0.8 or <-0.8 spearman’s rank) were removed.  

Finally, the 49 independent catchments were used in a separate ‘validation’ analysis to 

evaluate the discriminant expressions fitted to the 116 original catchments. In order to 

determine whether the validation catchments were successfully clustered from their 

catchment characteristics, the validation catchments were fitted into the clusters derived from 

the 116 benchmark catchments. The validation catchments were placed into the cluster for 

which the semi-variogram was closest to the mean semi-variogram of the cluster.  

Results 

Clustering  

Four clusters were selected because analysis of the agglomeration showed that the benefit of 

increasing the number of clusters to more than four was small. Analysis of the semi-

variograms showed that 87 % (101 catchments) had a range of ~ 90 days or less, and the 

maximum lag was set to 90 days to maximise the difference of the catchments with semi-

variogram ranges of less than 90 days. It is acknowledged that differences between the 

remaining 13 % (15 catchments) which have a range much greater than 90 days are unlikely 

to be identified during the clustering process.  

Distinction between clusters 

The clustering analysis (Figure 3 and Figure 4), gave 32 catchments in cluster 1, 34 

catchments in cluster 2, 35 catchments in cluster 3 and 15 catchments in cluster 4. There is a 

spatial difference between clusters one and two which are predominantly in the north and 

west and clusters three and four which are predominantly in the midlands and south east.  

The difference in the temporal dependence structure between the clusters is illustrated in 

Figure 4 and Table 2, with increases in range, and decreases in the sill and nugget from 

clusters one to four. An increasing range indicates less short term (less than 90 days) 

variability in the daily mean river flow, while a decreasing sill is caused by less temporally 

autocorrelated variability throughout the 30 year record. Figure 4 also shows that the clusters 

are reasonably well defined; there is overlap between all four clusters for the short time lags 

due to similarity in the temporal dependence of the first few days. At longer lags (after ~ 30 

days) there is only overlap between clusters 1 and 2 due to the different shapes of the semi-

variograms and no overlap at the 95 % confidence interval.  

In order to investigate how much rainfall influenced the temporal dependence of river flow, 

the same method of temporal dependence analysis was applied to catchment averaged daily 

precipitation from 1980 to 2008 for all catchments. Results showed no significant difference 

(at the 95 % confidence interval) in the temporal dependence of rainfall between catchments 

in different clusters (Figure 5). Compared with discharge, the temporal dependence is much 

shorter in rainfall, only lasting around 10 days.  

Catchment characteristics differentiating between the clusters  
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Initially, box plots were used to investigate the possible catchment characteristics driving the 

differences between the four identified clusters. All the characteristics in Table 1 are shown 

except for the percentage of urban land cover, FARL and elevation 90 which were removed 

because the majority of the catchments had little or no urban area or FARL, and elevation 90 

was almost identical to elevation max. The characteristics that differ most between all four 

clusters are shown in Figure 6. Figure 7 identifies characteristics which distinguish between 

two or more clusters. Whilst Figure 8 shows characteristics for which the median does not 

change between clusters. BFIHOST represents the distribution of BFI between clusters 

(Figure 6) agreeing with Marachel and Holman (2005) who showed that BFIHOST is a 

robust way to calculate BFI, low flow statistics and the percentage of runoff. As BFI is not a 

catchment characteristic (being calculated from flow data) and is removed from subsequent 

analysis.   

Figure 9 shows the correlation between all the characteristics which differentiate between 

clusters (Figures 7 and 8). The physical catchment characteristics in Table 1 are not 

independent from each other, as shown in Figure 9 by scatter plots and (Spearman’s rank) 

correlation. The correlation between different catchment characteristics highlights the 

influence elevation (elevation max and elevation 90) has on the value of PROPWET, 

DPSBAR, percentage of peat soils and percentage of arable land, all of which have 

correlations greater than |0.7|. Characteristics describing the pathway and storage are also 

highly (> 0.7) correlated (e.g. BFI HOST and the percentage of highly productive fractured 

rock).   

Quadratic discriminant analysis  

Due to the statistical distribution of: peat soils, PROPWET, and all the rock descriptors 

(figure 9), a transformation to a normal distribution was not possible and these were excluded 

from the discriminant analysis. In addition elevation characteristics were highly correlated (> 

0.8 or <-0.8 spearman’s rank; Spearman 1904) with one another and drainage path slope. 

Highly correlated variables invalidate the assumption of independence. Therefore, elevation 

10, elevation 50, elevation 90 and elevation max (elevation characteristics with the lowest F 

values) were also removed from the discriminant analysis. Further to this, BFIHOST and no 

gleying soils were also highly correlated; the percentage of no gleying soils correctly 

clustered slightly more catchments, therefore BFIHOST was also omitted. The 

transformations applied to the characteristics included in the QDA are shown in Table 3.  

For each variable combination a set of three equations (in the format of equation 2) which 

maximise the difference between clusters were created. For every combination of variables, 

equations 2i and 2ii explained between 85 and 88 % and 7 to 10 % of the between-cluster 

variability respectively with information added by each equation significant at the 99.9 % 

confidence interval. The third equation (2iii) explained the remaining (2 % to 5%), with a 

significance of between 94 and 99 %. The resulting values from equations 2i to 2iii were used 

to cluster the catchments based on the probability of the catchment being in each of the four 

clusters (Table 4). 
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The more catchment characteristics there are in the model, the higher the percentage of 

correctly classified benchmark catchments (89.7 % with 12 characteristics and 54.3 % with 1 

characteristic). In addition, Table 4 identifies that the percentage of arable land discriminates 

best between the clusters. A relatively accurate model can be made using only a few variables 

(arable land, depth to gleying in soils and altitude).  

Validation  

The 49 validation catchments were clustered based on the distance of their semi-variogram to 

the centre of the already generated clusters (Figure 4), this resulted in 14 from cluster 1, 12 

from cluster 2, 14 from cluster 3 and 9 from cluster 4. To test the quadratic discriminant 

models these were then clustered using their catchment characteristics and the same equations 

generated for the 116 catchments, the percentage clustered correctly is shown in Table 4. 

The validation of the discriminant analysis on the 49 independent catchments (Table 4) 

shows that models with fewer explanatory variables are more robust.  Although a model 

using 12 catchment characteristics correctly classified 104 out of 116 benchmark catchments, 

the percentage of correctly clustered validation catchments (Table 4) highlighted that models 

with a lot of parameters were over-fitted to the data. Based on the percentage of catchments 

correctly classified in both the benchmark and validation catchments (in models with less 

than 6 variables), Model 5 (Table 5) is deemed to have the best performance as both the 

benchmark and validation catchments are clustered well.   

The values are calculated for each catchment by multiplying the adjusted values for the 

catchment characteristics (i.e. the values obtained after transforming the data as outlined in 

Table 3 which correspond to the X’s in equation 2) by the coefficient (i.e. the v’s in equation 

2) e.g. for model 5 (eq1):  

D = ((arable(X1) * 1.12(V1)) + (no gley(X2) * 0.25(V2)) + (gleyed 40-100(X3) * -0.44(V3)) + 

(gleyed<40 (x4)*-0.37 (V4) + (DPS (X5) * -0.60(V5)) 

Although Model 5 does not classify all the catchments correctly, all but one of the 

misclassified catchments is predicted to be in an adjacent cluster (Table 6). If a catchment is 

predicted to be in a higher numbered cluster than the actual cluster, the catchment 

characteristics indicate larger storage and / or faster response than is indicated by the 

discharge. Catchments predicted to be less than their actual class demonstrate the opposite. 

The above results (Table 4) highlighted that arable is the catchment characteristics which best 

discriminates between the temporal dependence-based clusters for the 116 benchmark 

catchments. However, unlike the rest of the characteristics, land cover is dynamic and will 

change through time, thereby potentially leading to a change in the cluster allocation. In order 

to investigate this issue the discriminant analysis was redone without land cover 

characteristics (Table 7), which showed a deterioration of less than 2% for the model with 5 

variables.  

Discussion 
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This paper identified four distinct clusters of catchment based on the temporal dependence 

structure of 116 catchments throughout the UK. The mapping of these clusters (Figure 3) 

highlighted a spatial pattern between clusters 1 and 2 against clusters 3 and 4. This spatial 

pattern is indicative of a broad NW – SE gradient in several inter-related variables in the UK 

(e.g. precipitation, temperature, elevation, soil type, land use and to a certain extent rock 

type) as found in previous clustering (Bower et al., 2004). The temporal dependence of 

rainfall (Figure 5) showed no difference between the clusters, indicating that precipitation is 

not influencing the river flow dependence structure. The homogeneity of the rainfall 

dependence structure is caused by the high temporal variability (Chang et al., 1984) and lack 

of precipitation attenuation features (i.e. characteristics which influence lag time). 

The characteristics which differentiated best between the clusters (benefit 3) were those that 

drive (or are highly correlated with characteristics which drive) the precipitation-to-flow 

relationship; by influencing either the pathway from precipitation to discharge and / or the 

amount of storage in a catchment (Ali et al., 2012). Values describing the highest parts of the 

catchment (i.e. elevation 50 and above) have bigger variations between the clusters than 

lowland elevation values (Figure 7). Topography controls the strength of the forces acting on 

surface and groundwater flows as well as influencing the evolution of soils and vegetation 

(Bloschl et al., 2013) which in turn alter the macropores in the soil, hence the travel time of 

the water through the catchment. This is seen with the higher elevations being correlated with 

drainage path slope, PROPWET and the percentage of peat soils (Figure 9) which all 

influence infiltration and hence lag time. PROPWET and peat soils provide information 

about how waterlogged the soil is and hence drive the partitioning of water between surface 

and subsurface flow paths as well as the depth to which water can percolate before horizontal 

flow occurs. High elevation and low infiltration will result in water travelling via a fast 

pathway where less attenuation of the precipitation will occur, hence, the variability in the 

river flow will be greater (higher maximum semi-variance) and the range shorter (e.g. cluster 

1 in Figure 4 and Table 2). This is consistent with Ley et al. (2011) who highlighted a 

relationship between flow characteristics and the steepness and infiltration capacity of the 

catchment. Laizé and Hannah (2010) also identified that upland catchments were more 

impermeable and thus had a stronger relationship with the regional climate drivers than 

lowland permeable catchments.  

BFIHOST and the percentage of no gleying soils are highly correlated (>=0.79, Figure 9) and 

are an indication of infiltration and storage. No gleying soils do not become waterlogged and 

hence water can percolate through the soil, and BFIHOST is an indication of storage and is 

correlated (>0.7) with highly productive fractured rock. Sawicz et al. (2011) also showed that 

the precipitation to discharge relationship is influenced by soil characteristics. High 

infiltration and storage (exhibited in cluster 4) results in semi-variograms with a long range 

due to the attenuation resulting from the slow transformation from precipitation to discharge.  

Figure 6 shows that BFIHOST differentiates cluster 4 from the other clusters. However, there 

is considerable overlap between clusters 1 to 3. BFIHOST does not adequately capture the 

differences between catchments with fast precipitation to flow relationships (Dunn and Lilly, 

2001) as other characteristics (e.g. topography) have a larger influence.  
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The final characteristic in Figure 6 is the percentage of arable land. Although Ragab and 

Cooper (1993) show that arable land has a significantly lower hydraulic conductivity value 

than grassland; the difference is unlikely to be seen at catchment scale. It is likely that the 

differences in the percentage of arable between the clusters is caused by the negative 

correlation (<-0.7) with high elevations, PROPWET and to a lesser extent peat soils which 

have a large affect on infiltration (Masicek et al., 2012). This agrees with Yadav et al. (2007) 

who identified that land cover (woodland and grassland) characterises some of the river flow 

response. Grassland does not differentiate between the clusters as well as arable, likely to be 

because of the lower correlation with characteristics which drive changes in temporal 

dependence. 

The distribution of high and low productivity fractured rocks between the clusters (Figure 7) 

show that the majority of catchments in cluster 4 have a larger percentage of highly 

productive fractured rock (predominantly Chalk); River flow in catchments in cluster 4 thus 

has a greater contribution from groundwater than in the other three clusters, that will have the 

effect of moderating higher frequency variability in precipitation and is consistent with the 

relatively large range and small semi-variance exhibited in catchments in cluster four (Figure 

4 and Table 2). The converse is seen in the box plot for catchments underlain by low 

productivity fractured rock where cluster 1 has a larger median value. For catchments in this 

cluster there will be negligible groundwater to river flow, and river flows will be 

characterised by much shorter temporal dependence (Figure 4 and Table 2). These 

observations are consistent with the findings of Bloomfield and Marchant (2013) who 

showed that differences in temporal dependence in groundwater are correlated with hydraulic 

diffusivity (the product of transmissivity and storage).  The similarity between the box plots 

for BFIHOST (Figure 9) and that for the highly productive fractured aquifer type is also 

consistent with the above conceptualisation of controls on surface water flows and the results 

of Bloomfield et al. (2009) who demonstrated the correlation between aquifer type and BFI 

for 44 sub-catchments in the Thames, UK. The percentage of grassland in each catchment 

also differentiates between the clusters.  

The intergranular aquifer types do not show the same variations between clusters as the 

fractured rocks (Figure 8). This could be caused by three reasons: 1) the catchments are 

mainly situated on fractured rock hence do not adequately represent the impact of 

intergranular aquifer types. 2) The seven classes of rock used are too simplistic and do not 

capture the difference in sub-surface processes occurring in different catchments. 3) The 

velocity of the water through the consolidated intergranular aquifers is relatively low (Gehlin 

and Hellström, 2003) and not captured in the timescales being investigated for gauged flow in 

this paper. Area, longest drainage path and drainage path length showed no significant 

difference between the clusters due to the flow data being standardised. Woodland also does 

not distinguish between the clusters and is not correlated with any of the driving 

characteristics (Figure 6). Therefore these characteristics are not expected to influence the 

shape of a semi-variogram (Figure 4).  

The inter-quartile ranges of all the catchment characteristics in Figure 6 overlap; suggesting 

that no single catchment characteristic fully describes the temporal dependence structure, 
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which underlines the importance of a multivariate approach. As such, quadratic discriminant 

analysis was used to investigate how accurately the catchment characteristics could be used 

to cluster the catchments into the clusters derived from the semi-variograms. Assessing new 

(validation) catchments, based on the catchment characteristics provided an indication of how 

accurately these models could be applied to un-gauged catchments (benefit 2). Model 5 was 

deemed to be the best model and successfully clustered most of benchmark and validation 

catchments. All but one of the misclassified catchments were predicted to be in an adjacent 

cluster (Table 6), this could be caused by overlap between the clusters (Figure 4). 

As previously discussed arable land is not likely to be the driver behind the different 

dependence structures exhibited by the catchments. Arable is highly correlated with high 

elevation (-0.73) and peat soils (-0.66) which drive PROPWET (-0.8 correlation with arable) 

and is correlated with F-high (0.6) which indicates a large amount of storage in rocks which 

also have pathways which enable relatively quick flow. Therefore, arable land (in the UK) is 

characterising low, well drained land (particularly separating clusters 1 and 2 from 3 and 4). 

The percentage of no gleying soil is the second best characteristic at differentiating between 

the clusters and is highly correlated (0.88) with BFIHOST indicating that it is representing 

the storage in the catchment, particularly separating cluster 4 from the rest. Other key 

catchment characteristics included soil type and slope which describe the residuals left after 

the percentage of arable land and the percentage of no gleying soils have been used to 

discriminate between the clusters and mainly help to discriminate between clusters 1 to 3. 

Models which excluded land use characteristics were developed (as arable is not temporally 

stable). Except for models 4 and 5 there was a large decrease between the percentage of 

correctly clustered catchments for both the validation and benchmark data sets (Tables 4 and 

7). In the models, arable land was replaced with drainage path slope (the variable used in the 

discriminant analysis which is most correlated with arable). However, drainage path slope is 

less correlated with BFIHOST than arable, indicating that storage is not as well characterised.  

Conclusion 

This study has developed a novel technique to classify catchments into clusters based on the 

temporal dependence structure of daily flow data using semi-variograms. The clusters were 

then investigated in the context of identifying the catchment characteristics which moderate 

the precipitation to flow relationship implicit in the semi-variogram structure. Semi-

variograms have the advantage over other techniques for indexing dependence of being able 

to handle missing data and being calculated from raw data, rather than having to calculate 

indicators from the discharge data (e.g. annual or seasonal averages, minimum / maximum 

flows). Therefore, this technique could be applied to any set of catchments for which daily 

flow data are available, including sites with incomplete data coverage. The results show that 

clustering the catchments based on the semi-variogram is an effective way to obtain separate 

groups of catchments based on their catchment function and not a specific aspect of the flow 

regime; this method could provide a useful basis for future catchment typologies.  
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Four clusters best represented the range of temporal dependence structures found in the UK. 

Catchments with characteristics indicative of fast flow paths and low storage (i.e. upland 

catchments) resulted in semi-variograms with a large gradient, levelling off after a few 

weeks. In contrast, catchments with characteristics which enable water to infiltrate deep into 

the soil / rock have a small gradient and do not level off within 90 days (benefit 3, improving 

knowledge about drivers). The key catchment characteristics able to discriminate between 

catchments with different controls on the precipitation to flow relationship (pathways and 

storage) were found to be: percentage of arable land, depth to gleyed layer in soils, slope, 

PROPWET, BFI, percentage of highly productive fractured rock and elevation. It is likely 

that arable land is not a driver behind the different clusters per se, but a surrogate for a 

combination of other characteristics (elevation, PROPWET and peat soils) which drive 

infiltration and hence the precipitation to flow relationship.  

This paper also demonstrated that using a combination of catchment characteristics enables 

un-gauged catchments to be classified into clusters; consequently the shape of the (semi-

)variogram can be estimated. The preferred model (Model 5) with 5 variables (arable land, 

depth to gleyed layer (x3) and drainage path slope) correctly clustered 70.7-72.4 % and 69.4-

71.4 % of the benchmark and validation catchments, respectively, depending on whether land 

cover parameters were excluded. This study found the amount of arable land in a catchment 

to be a useful characteristic for distinguishing between the clusters. However, as arable land 

is not temporally stable, values from different time periods could provide different results.  

This method is valuable for transferring information about the precipitation to flow 

relationship from gauged to un-gauged catchments (benefit 2). This could be expanded upon 

in future work to enable predictions of regime characteristics at un-gauged sites to be made. 

In addition, ongoing work by the authors assessing will use this temporal dependence 

approach to assess the impact catchment characteristics have on moderating the non-

stationary of hydrological regimes (benefit 4); catchment properties will likely have major 

influence on the response of river flow regimes to climate variability (e.g. Laizé and Hannah 

(2010)) and future anthropogenic climate change (Prudhomme et al., 2013). 
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Tables and figure captions: 

Figure 1. Location of the 116 benchmark catchments (black) and the 49 validation 

catchments (grey) used in this study.  

Figure 2. Range and sill for a theoretical semi-variogram. 

Figure 3. Location of the catchments in the four clusters.  

Figure 4. Semi-variograms from daily river flow for the four identified clusters with the 95 % 

confidence intervals (dark shaded area) and the upper and lower bounds of each cluster (light 

shaded area).  

Figure 5. Semi-variograms from daily precipitation data for the four identified clusters with 

the mean of each cluster (line) and the 95 % confidence intervals (shaded area).  

Figure 6. Box plots of characteristics which differ between all four clusters. Thick black line 

is the median value. Box shows the inter-quartile range. Black whiskers represent 1.5 times 

the inter-quartile range. Blue and red lines show the upper and lower 90 % confidence 

intervals respectively and the circles show outliers. 

Figure 7. box plots of characteristics which differ between two or three clusters, as in Figure 

6.  

Figure 8. box plots of characteristics which do not differ between clusters, as in Figure 6.  
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Figure 9. Correlations between the different catchment characteristics shown as scatter plots 

with locally weighted smoothed red line and histograms showing the distribution of the 

catchment characteristics. Correlation values are calculated using Spearman’s rank ranging 

from negative one to positive one.  

Table 1: summary of the catchment characteristics investigated.  

 

Catchment 

characteristic 

Abbreviati

on 

Units Description Min Max Mean Media

n 

Altitude(e) N/A m Altitude of the gauging 

station to the nearest datum* 

(derived using IHDTM**). 

3 356 60 35 

Elevation 10(e) Elv-10 m Height above datum* below 

which 10% of the catchment 

lies (derived using 

IHDTM**).  

9 408 114 92 

Elevation 50(e) Elv-50 m As above but for 50% 20 604 198 164 

Elevation 90(e) Elv-90 m As above but for 90% 52 889 316 279 

Elevation max(e) Elv-M m As above but for the 

maximum value 

68 1309 484 470 

Woodland(Lc) Wood % Amount of the catchment 

covered by woodland. 

Calculated from CEH land 

cover maps 2000. This is an 

aggregation of: broad-leaved / 

mixed woodland and 

coniferous woodland.  

0 49 12 10 

Arable(Lc) N/A % As above but using an 

aggregation of: arable cereals, 

arable horticulture and arable 

non-rotational.  

0 86 23 12 

Grassland(Lc) Grass % As above but using an 

aggregation of: improved 

grassland, neutral grassland, 

set-aside grassland, bracken, 

calcareous grassland, acid 

grassland and fen, marsh and 

swamp.  

6 96 47 45 

Urban(Lc) N/A % As above but using an 

aggregation of: suburban, 

urban and inland bare ground.  

0 40 2 1 

Area(FEH) N/A Km2 Area of the catchment 

calculated using the CEH’s 

Digital Terrain Model 

(IHDTM**) 

3.07 1500 227.6

1 

108.5 

Drainage path 

slope(FEH) 

DPS m 

Km-1 

Mean drainage path slope 

calculated from the mean of 

all inter-nodal slopes (derived 

using IHDTM**). 

12 309 100 91 
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PROPWET(FEH) P-WET % Proportion of the time soils 

are wet (defined as a soil 

moisture deficit of less than 

6mm). 

23 83 48 46 

Flood plain 

extent(FEH)  

FPext Ratio Proportion of the floodplain 

which would be covered by 

the 1 in 100 year flood event.  

0.008

8 

0.226

3 

0.064

3 

0.0517 

Longest 

drainage 

path(FEH) 

LDP Km Longest drainage path from a 

catchment node to the defined 

outlet.   

4.01 116.0

9 

33.49 27.76 

Drainage path 

length(FEH) 

DPL Km Mean drainage path length 

from the distances between 

all nodes and the catchment 

outlet.   

2.04 60.39 17.78 14.96 

FARL(FEH) N/A Ratio Flood attenuation attributed 

to reservoirs and lakes.  

0.664 1.000 0.979 0.992 

BFIHOST(St) BFI-H ratio Area-weighted base flow 

index derived using the 

Hydrology Of Soil Types 

(HOST) classification.  

0.24 0.95 0.5 0.48 

BFI(St) N/A ratio Calculated from mean daily 

flow data using the method 

outlined in Gustard et al. 

(1992) 

0.16 0.96 0.5 0.48 

HOST  no 

gleying(s)   

S-no % Percentage of the catchment 

made up of classes: 1 to 8, 16 

and 17.  

0 98 34 29 

HOST gleyed 

between 40 and 

100cm(s) 

S-deep % Percentage of the catchment 

made up of classes: 13 and 18 

to 23 

0 99 19 13 

HOST gleyed 

within 40cm(s) 

S-shal % Percentage of the catchment 

made up of classes: 

9,10,14,24 and 25.  

0 93 22 15 

HOST peat(s) peat % Percentage of the catchment 

made up of classes: 11,12,15 

and 26 to 29.  

0 90 24 11 

Fracture High(g) F-High % Percentage of the catchment 

underlain by highly 

productive fractured rocks.  

0 100 13 0 

Fracture 

Medium(g) 

F-Med % Percentage of the catchment 

underlain by moderately 

productive fractured rocks. 

0 100 23 0 

Fracture Low(g) F-Low % Percentage of the catchment 

underlain by low productivity 

fractured rocks. 

0 100 45 31 

Intergranular 

High(g)   

I-High % Percentage of the catchment 

underlain by highly 

productive intergranular 

rocks. 

0 42 2 0 
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Intergranular 

Medium(g) 

I-Med % Percentage of the catchment 

underlain by as moderately 

productive intergranular 

rocks. 

0 71 5 0 

Intergranular 

Low(g) 

I_Low % Percentage of the catchment 

underlain by low productivity 

intergranular rocks. 

0 11 0 0 

No Groundwater 

(g) 

No-G % Percentage of the catchment 

underlain by rocks classed as 

having essentially no 

groundwater.  

0 100 11 0 

 

* Datum refers to Ordnance datum or, in Northern Ireland, Malin Head Datum.  

** IHDTM refers to the Integrated Hydrological Digital Terrain Model (Morris and Flavin, 1990). 

 

 

 

 

 

 

 

Table 2. Characteristics of the variogram models fitted to the mean of each cluster.  

 

 

 

 

 

Table 3. Transformations applied to each catchment characteristics in order to create a normal 

distribution.  

Cluster 

number 

Nugget Partial sill 

 

Range (days) 

1 0.0186 0.67 29 

2 0.0099 0.54 40 

3 0.0088 0.48 45 

4 0.0075 0.32 172 
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Table 4. Different discriminant models and the percentage of catchments which were 

correctly classified by using the catchment characteristics. Shaded cells show the catchment 

characteristics included in the model.  

Characteristic Transformation 

Elev 10 √𝑥
5

 

Woodland √𝑥
3

 

Arable √𝑥
3

 

Grassland √𝑥
3

 

Area ln(𝑥) 

DPS √𝑥
3

 

FPext ln(𝑥) 

LDP ln(𝑥) 

DPL √𝑥
5

 

No Gleying soils √𝑥
2

 

Gleying 40-100cm √𝑥
3

 

Gleying <40cm √𝑥
3
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Table 5. Variables and associated coefficients used in Model 5 to classify the catchments 

based on their catchment characteristics.  

 Arable No 

gleying 

Gleyed 40 

-100cm 

Gleyed 

<40 

DPS 

Model 5 (eq1) 1.12 0.25 -0.44 -0.37 -0.60 

Model 5 (eq2) 0.09 -0.19 0.83 0.51 0.05 

Model 5 (eq3) -0.91 0.51 0.46 1.02 -0.29 

 

Table 6. Confusion matrix showing benchmark and validation (in brackets) catchments in 

each cluster after clustering using the catchment characteristics in model 5.  

 

 

 

 

 

 

Table 7, Discriminant models and the percentage of catchments which were correctly 

classified, Shaded cells show the catchment characteristics which were included in the model. 

6 75.9 63.2             

5 72.4 71.4             

4 70.7 71.4             

3 68.1 73.4             

2 67.2 75.5             

1 54.3 55.1             

  Actual class 

P
re

d
ic

te
d

 

cl
a
ss

  

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Cluster 1 27 (11) 10 (2) 0 (0) 0 (0) 

Cluster 2 6 (3) 23 (6) 4 (3) 0 (0) 

Cluster 3 1 (0) 8 (6) 19 (10) 0 (0) 

Cluster 4 0 (0) 0 (0) 1 (1) 15 (9) 

 % correctly 

clustered 

79 (79) 55 (50) 76 (71 ) 100 (100) 
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N
o
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le
y
ed

 s
o
il

 

D
P

S
 

9 79.3 20.6          

8 80.1 20.6          

7 78.4 55.1          

6 76.7 55.1          

5 70.7 69.4          

4 69.8 69.4          

3 66.4 63.2          

2 66.4 67.3          

1 38.7 40.8          


