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Abstract:  12 

The ecological effects of interacting stressors within lotic ecosystems have been widely 13 

acknowledged. In particular, the ecological effects of elevated fine sediment inputs and phosphate 14 

have been identified as key factors influencing faunal community structure and composition. 15 

However, while knowledge regarding adult and larval life stage responses to environmental stressors 16 

has grown, there has been very limited research on their eggs. In this study, the eggs of the mayfly 17 

Serratella ignita (Ephemerellidae: Ephemeroptera) were collected and incubated in laboratory 18 

aquaria to hatching under differing concentrations of inert suspended sediment (SS) and 19 

orthophosphate (OP), individually and in combination. Results indicate that SS and OP have greater 20 

effects on egg hatching in combination than when either were considered in isolation. SS displayed a 21 

greater effect on egg survival than OP in isolation or when OP was added to elevated SS treatments. 22 

Egg mortality in control treatments was around 6% compared to 45% in treatments with 25 mg l-1 SS 23 

and 52% in 0.3 mg l-1 OP treatments. Even relatively modest levels of each stressor (10 mg l-1 SS; 0.1 24 

mg l-1 OP), below national legal thresholds, had significant effects on egg survival to hatching. The 25 

results support calls for legal levels of SS to be reassessed and suggest that more research is required 26 

to assess the impacts of pollution on invertebrate egg development given their different sensitivity 27 

and exposure pathways compared to other life stages.  28 

Capsule: This study is the first to demonstrate that the survival of mayfly eggs to hatching is 29 

significantly reduced by low levels of widespread environmental pollutants in rivers. 30 

 31 

32 
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1. Introduction 33 

Freshwater organisms are currently subjected by multiple, simultaneous and interacting pressures, 34 

due to the co-occurrence of effects associated with climate and land-use change (Tockner et al. 35 

2010; Mantyka-Pringle et al. 2014; Jackson et al. 2016; Sebater et al. 2016). A meta-analysis of 36 

research from marine ecosystems has shown that the effect of multiple stressors on aquatic 37 

organisms are complex and most frequently synergistic or additive, with the effects being greater or 38 

equal when stressors are combined (Przeslawski et al. 2015). In contrast, a recent meta-analysis of 39 

freshwater ecosystems reported that the majority of interactions were antagonistic, with effects 40 

lower than expected for individual stressors (Jackson et al. 2016); although there has been less 41 

research on lotic systems. The uncertainty surrounding the ecological response to multiple, co-42 

occurring stressors can lead to unexpected ecological responses (Christensen et al., 2006; 43 

Lindenmayer et al., 2010; Dehedin et al., 2013). For example, Piggott et al. (2012) identified that the 44 

negative impacts of fine sediment on invertebrate and algal diversity were greater when water 45 

temperature was increased. Holmstrup et al. (2010) reviewed the impacts of multiple stressors on 46 

individual organisms, rather than the entire community, and reported that the majority of studies 47 

(including temperature, desiccation and chemicals) resulted in synergistic effects. 48 

Aquatic communities are adapted to hydrological regime variability and associated fluxes of solutes 49 

and fine sediment (organic and inorganic) derived from the catchment. Lotic ecosystems require 50 

sediment inputs to maintain habitat heterogeneity and facilitate nutrient fluxes, but excessive 51 

loadings can have negative effects on river ecosystem functioning (Wood and Armitage, 1997; Jones 52 

et al. 2012). The US Environmental Protection Agency identified fine sediment deposition as the 53 

number one source of stream impairment and habitat degradation nationwide (USEPA, 2000; Evans-54 

White et al. 2013). Fine sediment may degrade aquatic faunal communities and directly affect 55 

individual organisms due to burial, scour or abrasion of soft tissues, clogging of respiration structures 56 

(gills of invertebrates and fish), as well as reducing habitat quality and increased emigration from 57 

degraded habitats (e.g. Billota and Brazier, 2008; Béjar et al. 2017). In addition, fine sediments can 58 

reduce habitat availability by covering coarser sediments, filling interstices and modifying 59 

biogeochemical conditions by reducing dissolved oxygen concentrations whilst leading to elevation 60 

of the concentrations of pollutants within the substrate (Kemp et al., 2011; Jones et al., 2012; 61 

Descloux et al. 2014; Mathers et al. 2017). The majority of research centred on fine sediment 62 

deposition on aquatic organisms has focused on invertebrate larval community composition or adult 63 

life stages (Roy et. al., 2003; Extence et. al., 2013; Bona et al. 2016). For example, the detrimental 64 

effects of fine sediment on freshwater mussel population has been examined in detail given that 65 

many species are national or internationally endangered and have important functional roles in 66 
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rivers (Denic & Geist, 2015; Lummer et al. 2016). However, with the exception of salmonid fish (e.g. 67 

Grieg et al. 2005; Jensen et al. 2009; Sternecker & Geist 2010; Chapman et al. 2014), few studies 68 

have considered the effects of enhanced fine sediment loading on the egg / embryonic life stages of 69 

aquatic fauna. 70 

The effects of elevated phosphorus concentrations on aquatic environments, particularly the 71 

proliferation of nuisance phytoplankton and both epiphytic and benthic algae has been widely 72 

documented (Mainstone and Parr, 2002; Evans-White et al. 2013; Azevedo et al. 2015) and 73 

represents a significant threat to water quality and environmental integrity, internationally (Nijboer 74 

and Verdonschot, 2004; Smith and Schindler, 2009; Javie et al. 2015). It is well established that 75 

nutrient enrichment (eutrophication) has resulted in the reduction of macroinvertebrate community 76 

richness through the extirpation of sensitive taxa, particularly within the insect orders 77 

Ephemeroptera, Plecoptera and Trichoptera (Ortiz and Puig, 2007; Friberg et. al. 2010; Bini et al. 78 

2014). Orthophosphate (OP) or ‘soluble reactive phosphorus’ is bioavailable to freshwater organisms 79 

and the exceedance of the OP standard has been identified as the single largest cause of water 80 

bodies not achieving ‘good ecological status’ in the UK, under the European Union Water Framework 81 

Directive (WFD) (Environment Agency 2012). Phosphorous concentrations have increased in many 82 

regions, often linked to human and animal waste; for example, concentrations of Total Dissolved 83 

Phosphorous increased by 2000% between 1970 and 2000 in northern Chinese Rivers (Strokal et al. 84 

2016). Phosphorous can be particularly problematic because ecological recovery does not 85 

necessarily follow a reduction of concentrations in the environment due to lag times in ecological 86 

responses, complex indirect impacts of elevated phosphorous on aquatic communities, and the 87 

effects of associated stressors (Javie et al. 2013). In addition, phosphorous can be bound to sediment 88 

and remobilised at a later date when phosphorous inputs into the system may be negligible (Meng 89 

et al. 2014; Wood et al. 2015; Emelko et al. 2016). Internationally, elevated nutrient and sediment 90 

loads are a management priority and are acknowledged to be the primary contributing factor to over 91 

40% of US waters being in poor biological condition (Evans-White et al. 2013).  92 

Some pollutants may have potentially greater effects on early life stages of aquatic biota as they are 93 

typically the least mobile and therefore the most vulnerable to disturbance events (Clements and 94 

Newman, 2002; Przeslawski et al. 2015). Despite a substantial literature on fish eggs and 95 

sedimentation (e.g. see Kemp et al. 2011), relationships between aquatic invertebrates (e.g. Denic 96 

and Geist, 2015) and especially their egg survival and environmental stressors are almost completely 97 

lacking (but see Gleason et al. 2003; Kefford et al. 2010). Therefore, this study focuses on the effects 98 

of increasing suspended sediment (SS) and OP concentrations individually and in combination on the 99 

survival and hatching success of the eggs of a widespread and ecologically important aquatic insect 100 
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larvae, Seratella ignita (Ephemerellidae: Ephmeroptera) under experimental conditions. This was 101 

achieved by investigating whether: 102 

1. elevated SS concentration impaired egg survival and hatching. 103 

2. elevated OP concentration impaired egg survival and hatching. 104 

3. higher concentrations of SS and/or OP had greater effects on egg survival and hatching than 105 

lower concentrations. 106 

4. SS and OP in combination effect hatching / survival to a greater degree than in isolation. 107 

 108 

2. Methodology: 109 

2.1. Target Organism 110 

The Blue-Winged Olive Mayfly (Serratella ignita (Poda, 1761): Ephemeroptera: Ephemerellidae) is 111 

one of the most common Ephemeroptera species in the British Isles and is present across most of 112 

Europe, including the Mediterranean region. Typically nymphs are found in unpolluted, fast flowing 113 

systems, emerging between June and September, with nymphs present in the river from March to 114 

September (Elliot & Humpesch, 2010; Macadam and Bennett, 2010), although this varies depending 115 

on thermal regime and flow permanence (Lopez-Rodriguez et al. 2009). Their life cycle typically 116 

includes a long overwintering period in the egg stage. Females of S. ignita produce a ball of eggs 117 

attached to the posterior underside of the abdomen. The animal descends to the water surface, 118 

releasing the egg mass which sinks and becomes anchored to the substrate via fibrous attachments 119 

(Gaino & Bongiovanni, 1992). S. ignita is ecologically important because of its widespread 120 

distribution and high abundance, which makes it significant for supporting fisheries. However, 121 

numbers have declined in a number of UK rivers over the past 20 years, particularly chalk streams 122 

(Bennett & Gilchrist, 2010). S. ignita larvae are known to be sensitive to fine sediment loading and 123 

OP concentration, with investigations linking losses of S. ignita to enhanced fine sediment loading 124 

effects in European rivers (Everall, 2010; Larsen et. al., 2011; Minutoli et al. 2013).   125 

 126 

2.2. Experimental Set-Up and Overview 127 

Experiments were undertaken in experimental, laboratory chambers (Figure 1). A total of 24 128 

chambers were run in parallel for the duration of the experimental period, each representing a 129 

different treatment. Each experimental chamber housed 3 glass laboratory slides, which acted as a 130 

substrate for S. ignita eggs. Each slide contained approximately 30 egg masses which were left to 131 
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develop on the slides for 8 months under either control or experimental treatment conditions. The 132 

experimental chambers consisted of plastic funnels with a slide mount lodged above the outflow. 133 

The 3 glass slides were held vertically at 45 degrees and in parallel in the slide mount and remained 134 

submerged for the duration of the experiment in the 20 mm diameter circular container. 135 

The water used in experiments was aerated and had pre-determined concentrations of OP and SS. It 136 

was held in 25 l reservoirs, elevated above the experimental chamber and allowed to flow through 137 

the system under gravity from a tap, which limited the flow rate to 0.65 ml min-1. Water drained 138 

through the experimental chamber and out through a pipe to a drain (Figure 1).  139 

 140 

2.3. Serratella ignita egg collection and laboratory acclimation 141 

Hundreds of swarming gravid adult Serratella ignita were collected from above the water surface of 142 

the River Manifold in Staffordshire, UK (53°09’49.15’’N; 001°51’35.70’’W) in August 2015. Adult S. 143 

ignita were carefully transferred in ventilated plastic aquaria (40 x 25 cm) fitted with temporary 144 

cardboard floors to the laboratory where they were placed on top of white plastic trays (38 x 22 x 5 145 

cm). Each tray bottom was lined with 36 sterilised glass slides and covered by 2 cm of aerated water 146 

from the sample site. The temporary cardboard floors of the adult mayfly aquaria were removed 147 

allowing gravid female S. ignita to access the river water surface in the glass slide lined trays to lay 148 

their eggs.   149 

Over 24 hours, the gravid female S. ignita laid their egg masses on to the water surface whereupon 150 

they sank and became attached to the glass slides lining the trays. Spent S. ignita spinners and body 151 

parts (Supplementary Material A) were carefully removed from the egg slides using sterilised steel 152 

forceps, paying attention not to disturb the deposited egg masses. The egg mass covered slides were 153 

left in situ for another 24 hours to allow egg mass adhesion to the glass slides after which they were 154 

transferred to slide holders in the treatment chambers (Supplementary Material B) using sterilised 155 

forceps. Prior to transfer, each slide had the number of egg masses per slide recorded in indelible ink 156 

on the slide. All 24 experimental chambers had been running for 20 days with a discharge flow of 157 

0.65 ml min-1 of carbon-limestone filtered tap water prior to slide introduction.  158 

All of the egg mass slides were left to acclimate in flow through chambers supplied with de-159 

chlorinated, filtered tap water for a further 24 hours prior to the commencement of experiments 160 

with treatment exposures. The acclimation and treatment bioassays were subject to ambient 161 

outdoor air temperatures, humidity and light regime during the experimental period between 162 

August 2015 and March 2016.  163 
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 164 

2.4. Bioassay design and egg monitoring  165 

A summary of the bioassay treatments used in the experiment are presented in Table 1. Every 166 

month of the bioassay the 3 slides in each treatment were placed under a microscope for a few 167 

minutes in a wet mount containing the appropriate bioassay test solution for observation. The slides 168 

were examined for any egg mass loss, egg mass emergence, and secondary biological growth e.g. 169 

fungal hyphomycae. Egg mass emergence was considered when approximately >90% of the viable 170 

eggs in the mass had hatched. Egg mass loss was considered to have occurred if a similar proportion 171 

of the individual eggs within the mass had died or if the egg mass had fallen from the slide, 172 

identification of which was aided by marks left on the slide by displaced egg masses (Supplementary 173 

material C). Secondary fungal hyphomycae growth was clearly identifiable under a microscope. In 174 

subsequent analysis, the status of egg masses was aggregated across the 3 slides. 175 

After 3 months the slides in each treatment were carefully checked monthly for individual egg 176 

mortalities, within egg masses. It was not possible to count every egg within all egg masses. Instead, 177 

an egg mass was randomly selected from each of the 3 slides in each experimental chamber and the 178 

state of 200 eggs were counted under a microscope. Eggs were recorded as being either healthy or 179 

dead, where dead eggs were readily identified because they turned an opaque white, as reported 180 

previously by Yeo and Dechoretz (1973). Any egg mass chosen for egg mortality observation had an 181 

indelible dot placed on the reverse side of the slide so that it was not chosen again for observation. 182 

In subsequent analysis, egg mortality was aggregated across the 3 slides in each experimental 183 

chamber, giving a total sample of 600 individual eggs for each treatment.   184 

 185 

2.5. Chemical dosing and testing 186 

The base and experimental control water during the acclimation and bioassay testing period was tap 187 

water run at 0.65 ml min-1 through filters housing a mix ratio of 5:1 6 mm limestone chippings: 188 

granular activated carbon to reduce background levels of OP in tap water and remove any trace 189 

impurities. Test compounds were made up from the base water with the required dose additions of 190 

Sigma Aldrich 1000 mg l-1 Orthophosphate and 1000 mg l-1 Total Suspended Solids (inert silica 191 

particles, diameter 5 – 100 μm) calibration standards.   192 

Water temperature in experimental test chambers was recorded daily in the control and once a 193 

month in other treatments. Daily water temperature mirrored ambient air temperature 194 
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(Supplementary material D). Dissolved oxygen and pH were also recorded once a month across all 195 

the treatments. Water samples were taken from all of the bioassay test chambers once a month 196 

across the 8 month experimental period using an overflow valve fitted into the treatment rigs 197 

(Figure 1). All samples for chemical analysis were sent to the UKAS Accredited National Laboratory 198 

Service for monthly analyses of Total Nitrogen, Ammoniacal Nitrogen, Nitrite, Alkalinity (to pH 4.5 as 199 

CaCO3), Orthophosphate, pH, Suspended Solids (at 105 oC), Boron, Calcium, Iron, Lithium, 200 

Magnesium, Manganese, Sodium, Water hardness (Total as CaCO3), Arsenic, Selenium, Cadmium, 201 

Copper, Lead, Mercury, Nickel and Zinc (Supplementary material E). The test treatments were also 202 

tested monthly for respective actual dosed SS and OP levels.  203 

Mean physical-chemical properties for each of the bioassay chambers from 8 monthly samples 204 

across the study period are presented in Table 2. Individual monthly measurements of physical-205 

chemical conditions are presented in Supplementary material D and clearly indicate that background 206 

water quality was stable with low level of trace chemicals in the control and test diluent water 207 

during the tests (Supplementary material E). With the exception of the test variables, there were no 208 

significant differences found between diluent physical-chemical conditions in the bioassays across 209 

the 8 month experiment (p < 0.01; ANOVA). The measured concentrations of SS and OP in water 210 

samples also display good spatial and temporal stability with the dosed concentration. In control 211 

experiments, OP concentrations were ~0.04 mg l-1 despite ~96-98% phosphate removal from the 212 

baseline diluent tap water, similar to the performance of phosphorous removal of other workers 213 

using this type of filter (e.g. Hussain et. al., 2011). 214 

 215 

2.6. Statistical analysis  216 

A regression modelling approach was used to examine the impact of concentration gradients of OP 217 

and SS on egg mortality. The number of dead eggs recorded over time, from a sub-sample of 600 218 

eggs, was recorded for different concentrations and combinations of OP or SS. Regression models 219 

were developed for the association between the total number of dead eggs and the concentration of 220 

OP and/or SS for different exposure periods. In addition, regression models were developed for the 221 

association between the percentage of egg masses that emerged at the end of the experiment and 222 

OP and SS concentrations, and combinations to examine additive effects.  223 

 224 

3. Results: 225 
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3.1. Egg mortality within bioassays 226 

The number of dead eggs recorded within egg masses increased as the concentration of OP and SS 227 

increased above control levels. Egg mortality in control experiments were consistent between 228 

treatments and remained low, averaging 5.8% of sampled eggs across all treatments and ranging 229 

from 27 to 42 eggs out of 600. As concentration of SS and OP increased, there were substantial 230 

increases in egg mortality, representing a 972% increase under the highest OP levels and 1261% 231 

increase under the highest SS concentration over control levels. Mortality increased exponentially 232 

with SS and OP concentration when dosed individually (Figure 2a; b), with significant regression 233 

models developed between OP or SS concentration and mortality after 71 days of exposure (SS p < 234 

0.01, R2 = 0.88; OP p < 0.01, R2 = 0.99). After 183 days of exposure, exponential relationships 235 

between OP or SS concentration remained significant (p < 0.01 in both cases) with high explanatory 236 

power (98% of variance in both cases) (Table 3).  237 

When SS and OP were dosed in combination, mortality increased over equivalent concentrations in 238 

isolation (Figure 2c; d). The increase in egg mortality when 0.07 mg l-1 OP was added was small, but 239 

consistent and the relationship remained exponential. In contrast, the addition of 10 mg l-1 of SS to 240 

OP concentrations resulted in a marked increase in mortality and a change in the relationship 241 

between egg mortality and OP concentration from exponential to linear (Table 3).  242 

In control runs and low doses of SS and OP (<5 mg l-1 and < 0.1 mg l-1, respectively), egg mortality did 243 

not increase over time, but remained around 6% of sampled eggs (Figure 3a; b). Although mortality 244 

increased when SS was elevated to above 10 mg l-1, egg mortality did not increase substantially over 245 

time, only increasing by about 10% of the sampled eggs over the duration of experiments (10 mg l-1 246 

10% to 20%; 15 mg l-1 19% to 29%). When SS was above 20 mg l-1, mortality increased through time 247 

linearly, from 45% to 80% of sampled eggs in the case of the highest dose (Figure 3a). For OP, 248 

mortality consistently increased through time for all treatments except the control; however this 249 

was limited to less than 6% for all treatments, except the highest two concentrations (Figure 3b). 250 

Similar patterns were observed when OP and SS were dosed in combination, with egg mortality 251 

increasing through time with the rate of mortality increasing as dosage increased. When SS was 252 

added to OP treatments, egg mortality increased faster and to a higher percentage of sampled eggs 253 

in comparison to when OP was added to SS treatments (Figure 3c, d). 254 

 255 

3.2. Egg mass emergence in bioassays 256 
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The number of egg masses that emerged decreased exponentially as concentration of OP or SS 257 

increased (OP R2 = 0.998; SS R2 = 0.963; p < 0.01 in both cases). OP effects were discernible from 258 

control treatments at 0.1 mg l-1 and from SS controls at 10 mg l-1 (Figure 4a, b). The emergence of 259 

egg masses exposed to OP declined substantially when 10 mg l-1 of suspended sediment was added 260 

to treatments, supporting the findings of individual egg counts (Figure 4a). An exponential 261 

relationship between egg emergence and OP persisted with the addition of SS (p < 0.01; R2 = 0.998) 262 

but with greater egg mass emergence at concentrations of OP 0.1 mg l-1 and above. In contrast, 263 

when 0.07 mg l-1 of OP was added to SS treatments, there was no clear difference between egg mass 264 

emergence with and without OP (Figure 4b).  265 

The 3 separate slides within each treatment indicated very high consistency in results observed. The 266 

largest difference in egg mass emergence between the 3 slides within each treatment was 27% for 267 

those subjected to 0.3 mg l-1 OP plus 10 mg l-1 SS (Figure 5).  268 

 269 

4. Discussion: 270 

4.1. Effects of multiple stressors 271 

When low levels of SS were added to OP treatments, the mortality rate of eggs increased markedly, 272 

indicating that SS and OP had a greater impact on S. ignita when combined than when present 273 

individually. However, when low levels of OP were added to SS treatments, there was no discernible 274 

effect on mortality rates above SS in isolation, suggesting SS had a greater effect on egg and egg 275 

mass survival than OP.  276 

Studies focusing on multiple stressors have consistently reported fine sediment to be a more 277 

pervasive stressor to the abundance of individual invertebrate species (Wagenhoff et. al., 2011) and 278 

invertebrate communities (Piggot et al. 2015; ; Elbrecht et al. 2016) than enhanced nutrient 279 

concentrations, indicating that priority should be given to minimising fine sediment over nutrient 280 

inputs. However, contrasting results have been found in some cases where chemical composition of 281 

fine sediment was more important than sediment quantity in controlling invertebrate community 282 

composition (von Bertrub et al., 2013). For example, Andersen et al. (2006) found uncontaminated 283 

sediments had no effect on the survival of several invertebrate species (Hyalella Azteca [amphipoda; 284 

Hyalellidae]; Procloeon sp. [Ephemeroptera; Baetidae]; Chironomus dilutes [Diptera; Chironomidae]). 285 

In the current experiments, suspended sediment was inert silica particles, clearly demonstrating that 286 

it is the deposition of sediment, rather than associated chemicals, that effected S. ignita egg 287 
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development. A potential explanation for the difference between studies is that the species 288 

examined by Andersen et al. (2006) were characteristic of slow flowing lowland streams or marginal 289 

habitats dominated by macrophytes, where fine sediment concentrations and accumulations were 290 

naturally high. This contrasts with S. ignita, which is typical of moderate flowing streams with coarse 291 

substrates and where SS concentration is likely to be much lower than lowland reaches. As such, S. 292 

ignita is adapted to environments with naturally lower concentrations of fines and as a result fine 293 

sediment potentially acts as a stressor at lower concentrations than for many species adapted to 294 

slow flowing habitats (Elliot and Humpesch, 2010). Consequently, it is likely that the relative 295 

significance of SS and associated contaminates will depend on the receptor species and their 296 

association with specific habitats.  297 

Each female S. ignita produces many eggs and as a result the effect of the elevated egg mortality on 298 

the viability of populations is difficult to assess. For example, it is possible that if hatching success 299 

was high in rivers, density dependent processes may result in many early instar larvae perishing, 300 

reducing the population level effects of egg mortality due to anthropogenic stressors. Therefore the 301 

results here do not necessary imply population level impacts. In addition, S. ignita is a common 302 

species in the UK and Europe and often occurs in high abundance. However, S. ignita larvae have 303 

been shown to be highly sensitive to sedimentation and their presence is used in national biological 304 

metrics to indicate reduced fine sediment pressure (Extence et al. 2011). In addition, the proportion 305 

of individuals commonly surviving through to reproduction is not known and there is both anecdotal 306 

and documented evidence that the abundance of S. ignita has declined over the past 20 years in 307 

some English rivers (Bennett & Gilchrist, 2010).  308 

 309 

4.2. The effect of suspended sediment on eggs 310 

The results of this study indicate that the egg stage of Serratella ignita is susceptible to sustained 311 

high levels of SS concentration during their 8 month developmental period. Concentration 312 

dependent mortality of S. ignita eggs was evident at annual mean equivalent concentrations of 10 - 313 

25 mg l-1 but levels of fine sediment < 10 mg l-1 displayed no markedly higher egg mortality than the 314 

control treatments. The cause of egg mortality is hypothesised to be reduced oxygen transfer due to 315 

sediment coating egg surfaces. Additionally, the build-up of fine sediment over time caused some of 316 

the egg masses to be dislodged from the slides after 6 months of exposure in the 20 and 25 mg l-1 317 

treatments. These egg masses were eroded and lost within the dosing rig sumps and, therefore, it is 318 
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not clear if the individual eggs were still viable; however, in watercourses dislodgement exposing egg 319 

masses to scour damage, burial and predation would be highly disadvantageous.  320 

Other experiments examining the effect of fine sediment covering on invertebrate eggs have 321 

reported reduced survival and hatching for Chironomus cloacalis (Diptera; Chironomidae), Physa 322 

acuta (Gastropod; Physidae) and Gyraulus tasmanica (Gastropod; Planorbidae) (Kefford et al. (2010). 323 

In control treatments without fine sediment, 100% of viable eggs of all three species hatched, but 324 

this was reduced when buried with clay (kaolin) or sand; although, the direct effects of suspended 325 

sediment were limited. Similarly, Gleason et al. (2003) found that burial to 0.5 cm caused a 99.7% 326 

reduction in the emergence of invertebrate eggs from wetlands. The impact of SS on invertebrates is 327 

complex because of associated contaminates; for example, the source of sediment has been shown 328 

to be important for salmonid embryo development, primarily because the organic matter content of 329 

sediment consumes oxygen as it degrades, potentially reducing oxygen availability to developing 330 

embryos (Sear et al. 2014). In addition, the influence of other stressors confound ecological 331 

response; for example, Doretto et al. (2017) found that high availability of coarse particulate organic 332 

matter mitigated the negative effects of fine sediment, which clogged interstitial spaces in artificial 333 

substrates in the Po River, Italy.  334 

 335 

Fish eggs are negatively effected by fine sediment (Kemp et al. 2011).  Much of the research on fish 336 

embryo development and fine sediment has focused on the clogging of interstitial spaces in 337 

salmonid fish redds and associated reduction of interstitial flow volume and velocity (Jensen et al. 338 

2009; Chapman et al. 2014). However, deposition of clay particles directly onto salmon (Salma salar) 339 

eggs has been shown to reduce oxygen exchange across the egg membrane and increase mortality 340 

(Greig et al. 2005). This mechanism is also hypothesised to be responsible for mayfly egg mortality in 341 

these experiments. Research has also demonstrate that salmonid fish egg development can be 342 

effected by sedimentation by the prevention of the expulsion of metabolic wastes from the egg 343 

chorion (Chapman 1988; Bennett et al. 2003). Concentrations of nitrates and ammonia may 344 

significantly affect salmonid egg development (e.g. Sternecker et al. 2013) and Reynolds & Guillaume 345 

(1998) found phosphate concentrations of 0.5 mg l-1 resulted in earlier emergence of European 346 

Bitterling (Rhodeus sericeus) embryos from eggs deposited within the gills of freshwater mussels. 347 

However, little research has investigated the link between elevated phosphorous concentration and 348 

fish embryo development.  349 

 350 

4.3. Phosphorous effects on egg development 351 
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Mortality of S. ignita eggs was evident at annual mean equivalent concentrations of 0.1 - 0.3 mg l-1 352 

OP but levels of biologically available phosphorous < 0.1 mg l-1 resulted in no higher egg mortality 353 

than in control treatments. The cause of egg mortality in the highest dose of 0.3 mg l-1 appeared to 354 

be related to the growth of aquatic fungal filaments smothering the egg masses after 1 month of 355 

exposure. The adhesive, mucous coating of mayfly eggs has been postulated to protect the egg from 356 

bacterial and fungal attack (Gaino et. al., 2009), although any protection appeared to have been lost 357 

as a result of elevated OP stimulating microbial growth, resulting from the high availability of 358 

phosphorous. From light microscopy examination of fungal smothered eggs both undetermined 359 

aquatic hyphomycete species and Fusarium aquaeductum were identified coating the egg surfaces.  360 

Aquatic hyphomycetes growing on fish eggs have been found to be pathogenic (Wedekend et. al., 361 

2010) and Fusarium species have been documented parasitizing eggs of the Penaeid prawn 362 

Marsupenaeus japonicus (Momoyama, 1987).    363 

 364 

Egg mortality in treatments with lower OP levels, where there was no evidence of fungal growth, 365 

suggested other direct impacts of elevated biologically available phosphorous levels. Chronic 366 

exposure to sub-lethal concentrations of phosphates have been reported to have negative effects on 367 

early stages of aquatic fauna; for example, abnormal embryonic development in sea urchin 368 

(Lytechinus variegatus) (Bottger and McClintock, 2002). In addition, the cells of more complex 369 

organisms have also shown impaired gene expression (Rutherford et. al., 2006) and cell membrane 370 

scrambling (Voelkl et. al., 2014) with increasing extracellular phosphate concentrations. Therefore, it 371 

is hypothesised that egg mortality in the range of continuous OP exposures of 0.1 – 0.2 mg l-1 may 372 

have been due to direct physiological and genotoxic impacts. 373 

4.4. Concentrations of OP and SS in rivers  374 

The ability of an organism to survive exposure to a stressor is dependent upon the concentration of 375 

the parameter and duration of exposure (Tabak and Gibbs, 1991; Zhao and Newman, 2006; Cope et 376 

al. 2008). The total duration of exposure to a concentration of suspended solids is acknowledged to 377 

be a key variable determining its effect on aquatic biota (Billota and Brazier, 2008). For example, 378 

Maturana et al. (2014) found that continuous, chronic exposure of sediment had a greater 379 

detrimental impact on salmonid embryos than instantaneous pulses of sediment. The exposure 380 

conditions here were not directly comparable to natural conditions within a river, where pulsed and 381 

intermittent exposure of organisms to sediments and nutrients are common (Alabaster and Lloyd, 382 

1980; Davies and Bothwell, 2012; Outram et al. 2014). However, SS and OP levels used in these 383 
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experiments represent relatively modest concentrations for many English rivers, typically below 384 

WFD specified thresholds.  385 

The Environment Agency (EA), the statutory environmental regulator in England, recorded 32549 386 

spot measurements of OP across England in 2015 and 22% of those were above 0.3 mg l-1, the 387 

highest concentration used in these experiments. Monthly spot measures were made at 1812 388 

locations across England in 2015, where at least 9 measurements were made throughout the year. 389 

Of these sites, 22% had annual average values higher than 0.3 mg l-1 and over half had average 390 

concentrations above 0.1 mg l-1, the lowest concentration used in these experiments with a 391 

statistical effect on egg survival. 26% of sites had OP levels above 0.1 mg l-1 in every measurement 392 

made throughout the year (Table 4). These results are consistent with the work of Worrell et al. 393 

(2016) who calculated that annual average OP concentrations have declined from 0.19 to 0.1 mg l-1 394 

between 1974 and 2012 in England, Wales and Scotland, based on routine monitoring data. 395 

Therefore, whilst concentrations of OP are declining across Europe (Bouraoui and Grizzetti, 2011), in 396 

many streams concentrations remain above those found to exert an effect in the experiments 397 

reported in this study. Fewer sites were sampled for suspended sediment but of the 129 sites with 9 398 

or more measurements in 2015, 9% had average values higher than 25 mg l-1 and 39% had values 399 

over 10 mg l-1, found to effect egg hatching in these experiments (Table 4). OP legal levels are 400 

dependent on site specific characteristics and physio-chemical conditions but it is clear that low- to- 401 

moderately elevated levels can have direct effects on insect egg development, which may be 402 

accelerated at higher concentrations by fungal growth. In addition, elevated OP in rivers alters 403 

primary production leading to important indirect implications for dissolved oxygen concentrations 404 

and water temperature because excessive plant and algae growth can shade the water column, 405 

which may also impact insect egg development (Humpesch 1980; Elliot, 1987; Pritchard et al. 1996; 406 

Bennett 2007; Rotvit and Jacobsen, 2013).  407 

The current experimental findings support the growing concern that the annual mean SS guideline 408 

standard of 25 mg l-1 in the UK is not sufficient (WWF, 2007). This is supported by other studies that 409 

have identified effects of fine sediment on invertebrate survival at levels ≥ 8 mg l-1 in Canadian 410 

freshwaters (Rosenberg and Wiens, 1978; Quinn et. al., 1982). In these experiments, egg masses 411 

were lost because of sediment coverage and the weight of deposited sediment dislodging them, 412 

although it is not clear whether dislodgement occurred during or after egg health had deteriorated, 413 

potentially reducing their adhesive properties. In rivers, this would probably result in the burial 414 

and/or damage of eggs. The coating of eggs with sediment has implications for oxygen transfer 415 

which will be partly controlled by the extent of sediment coverage on the egg surface, as well as the 416 
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particle size and shape. These parameters will be at least partially dependent on the flow velocity 417 

and sediment properties and are likely to be less well correlated to suspended sediment 418 

concentrations. Therefore, the results support the assertion of Bilotta and Brazier (2008) and Kefford 419 

et al. (2010) that standards should move away from turbidity or suspended sediment concentrations 420 

to focus on settlement rates and sediment properties. Similarly, the source of sediment could have 421 

different effects on egg mortality because of its ability to harbour other pollutants, including 422 

phosphorous.  423 

  424 

4.5. Management implications 425 

Previous research on the larval and adult stage of invertebrates indicates that elevated SS and OP 426 

are pervasive issues in river management (Friberg et. al. 2010; Jones et al. 2012; Bini et al. 2014; 427 

Mathers et al. 2017). Internationally, OP concentrations remain high and rising in many river 428 

systems, in particular due to agricultural intensification and population increases coupled with the 429 

direct discharge of untreated human waste (Tysman et al. 2013; Strokal et al. 2016; Yan et al. 2016). 430 

Despite reductions in both SS and OP concentrations in river systems across Europe and North 431 

America, many rivers still show clear signs of negative impact (Javie et al. 2015; Blaas and Kroeze, 432 

2016). This is likely to be partly related to the indirect impacts of OP and SS, their interaction with 433 

other stressors, lags in ecological response, and remobilisation of OP bound to sediments long after 434 

inputs into the river system have been reduced (Jarvie et al. 2012). However, the results presented 435 

here suggest that relatively low levels of both SS and OP can negatively affect invertebrate egg 436 

development. Therefore, it is possible that by focusing on the larval and adult stage of invertebrate 437 

development, important information is being missed about the tolerance of species during what is 438 

potentially their most vulnerable developmental stage. More information is needed on the effect of 439 

stressors on egg development as impaired hatching could have significant implications for 440 

invertebrate populations at lower pollutant concentrations than those observed to effect larval and 441 

adult stages of the same species.  442 

 443 

5. Conclusions: 444 

The effects of environmental pollutants on the eggs of aquatic invertebrates are not well understood 445 

despite the fact that eggs are potentially the most vulnerable life stage of many invertebrates. 446 

Relatively modest levels of SS and OP have highly significant detrimental effects on the mortality of 447 
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S. ignita eggs, with potentially significant implications for populations of mayfly. Fine sediment was 448 

the more pervasive stressor, increasing mortality of eggs exposed to OP enrichment, whereas 449 

elevated OP levels did not significantly increase mortality in comparison to those exposed only to 450 

fine sediment. The direct mechanism for the detrimental effects on eggs is likely to be complex but 451 

suspended sediment settled onto eggs, coating them and under high dosage (> 0.2 mg l-1) resulting 452 

in dislodgement. High OP levels (> 0.2 mg l-1) fuelled the growth of hyphomycete, which negatively 453 

affected eggs. The mechanism by which lower levels of OP (0.1 – 0.2 mg l-1) negatively impacted 454 

eggs, in the absence of hyphomycete growth, is not known. Current legal limits of SS and OP in the 455 

European Union are above those found to have an effect in the experiments reported in the study 456 

and suggests management needs to focus on elevated SS levels. Although levels are dropping across 457 

Europe – substantially in the case of OP – the results of these experiments support growing concern 458 

about current guidelines relating to SS and associated organic contaminants and the need for more 459 

stringent regulation. 460 
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Table 1: Experimental designs for bioassays. 711 

Chemical treatment 
 

Nominal chemical concentration mg/l 

Fine suspended solids (SS)  0 5 10 15 20 25 
Orthophosphate (OP) 0 0.05 0.07 0.1 0.2 0.3 

0.07 mg l-1 OP + SS 0 5 10 15 20 25 
10 mg l-1 SS + OP 0 0.05 0.07 0.1 0.2 0.3 

 712 

 713 

714 
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Table 2: Mean physical-chemical properties for each bioassay. 715 

Parameter Mean water quality ± s.d. (n = 10) 
Nominal SS concentration (mg l-1) 0 5 10 15 20 25 
Actual SS concentration (mg l-1) <3 5.2 ± 0.2 10.0 ± 0.1 14.9 ± 0.2 20.0 ± 0.2 24.7 ± 0.6 

Water temperature (oC) 13.4 ± 4.9 13.4 ± 4.9 13.5 ±4.9 13.4 ± 5.0 13.3 ± 5.0 13.3 ± 4.9 
Dissolved oxygen (mg l-1) 10.5 ± 0.4 10.3 ± 0.4 10.3 ±0.4 10.3 ± 0.4 10.2 ±0 .2 10.3 ± 0.4 

pH 8.0 ± 0.1 8.0 ± 0.1 8.0 ± 0.1 7.9 ± 0.3 7.9 ± 0.1 7.9 ± 0.1 
       

Nominal OP concentration (mg l-1) 0 0.05 0.07 0.1 0.2 0.3 
Actual OP concentration (mg l-1) 0.04 ± 

0.01 
0.05 ± 0.01 0.07 ± 0.02 0.11 ± 0.01 0.20 ± 0.01 0.30 ± 

0.01 
Water temperature (oC) 13.4 ± 5.1 13.1 ± 4.9 13.0 ± 5.0 13.0 ± 4.9 12.9 ± 5.0 12.8 ± 5.0 
Dissolved oxygen (mg l-1) 10.5 ± 0.4 10.2 ± 0.3 10.2 ± 0.3 10.3 ± 0.3 10.2 ± 0.3 10.3 ± 0.4 

pH 7.9 ± 0.1 7.9 ± 0.1 7.9 ± 0.1 7.8 ± 0.3 7.8 ± 0.1 7.8 ± 0.1 
       

Nominal SS concentration (mg l-1) 0 5 10 15 20 25 
Actual SS concentration (mg l-1) <3 5.2 ± 0.4 10.0 ± 0.1 15.0 ± 0.1 20.1 ± 0.2 25.0 ± 0.2 

Nominal OP concentration (mg l-1) 0.07 0.07 0.07 0.07 0.07 0.07 
Actual OP concentration (mg l-1) 0.04 ± 

0.01 
0.08 ± 0.01 0.07 ± 0.01 0.07 ± 0.004 0.07 ±0 .003 0.07 ± 

0.01 
Water temperature (oC) 13.7 ±5.2 13.6 ± 4.7 13.6 ± 4.5 13.3 ± 4.9 13.0 ± 4.7 12.9 ± 4.8 
Dissolved oxygen (mg l-1) 10.4 ±0.4 10.0 ± 0.5 10.2 ± 0.3 10.2 ± 0.3 10.2 ± 0.4 10.0 ± 0.3 

pH 8.0 ± 0.1 8.1 ± 0.1 8.0 ± 0.1 8.0 ± 0.3 8.0 ± 0.1 8.2 ± 0.2 
       

Nominal OP concentration (mg l-1) 0 0.05 0.07 0.1 0.2 0.3 
Actual OP concentration (mg l-1) 0.04 ± 

0.01 
0.05 ± 
0.004 

0.07 ± 
0.004 

0.10 ± 0.01 0.21 ± 0.01 0.31 ± 
0.01 

Nominal SS concentration (mg l-1) 10 10 10 10 10 10 
Actual SS concentration (mg l-1) <3 9.9 ± 0.5 10.0 ± 0.2 10.2 ± 0.3 9.9 ± 0.3 10.0 ± 0.1 

Water temperature (oC) 13.3 ± 4.6 13.3 ± 4.7 13.4 ± 5.2 13.4 ± 4.7 13.1 ± 5.0 13.0 ± 4.9 
Dissolved oxygen (mg l-1) 10.2 ± 0.4 10.7 ±0.4 11.0 ± 0.6 10.3 ±0.5 10.1 ± 0.4 10.1 ± 0.3 

pH 8.0 ± 0.1 8.1 ± 0.1 8.0 ± 0.2 7.9 ± 0.3 8.3 ± 0.2 8.3 ± 0.3 
       

 716 

  717 



27 
 

Table 3: Regression equations and significance values for OP and/or SS concentration against egg 718 
mortality. Note relationships are all exponential with the exception of OP + SS, where the strongest 719 
relationship was linear. All regressions are significant (p < 0.01). 720 

Treatment Time (days) Equation R2 

OP 72 25.495e5.265x 0.88 

121 29.162e7.225x 0.98 

183 29.324e8.189x 0.98 

SS 72 22.817e0.099x 0.99 

121 25.832e0.115x 0.97 

183 27.70e0.120x 0.98 

OP + SS 72 781.39x + 5.8258 0.98 

121 921.45x + 35.319 0.92 

183 1155.2x + 51.769 0.93 

SS + OP 72 22.446e0.095x 0.96 

121 27.646e0.113x 0.98 

183 36.937e0.111x 0.98 

 721 
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Table 4: Analysis of national routine spot measures of OP and SS made by the Environment Agency 723 
in 2015 for WFD compliance across England. 724 

 Count Average 
(mg l-1) 

Percentage of sites where the average is 

> 0.3 mg l-1 > 0.1 mg l-1 > 25 mg l-1 > 10 mg l-1 

All sites OP 32549 0.27 21.8 51.6   

All sites SS 2029 16.6   9.2 31.6 

 Count Average 

(mg l-1) 

Percentage of sites where every measurement is 

> 0.3 mg l-1 > 0.1 mg l-1 < 0.1 mg l-1 < 0.3 mg l-1 

Sites > 9 
samples OP 1812 0.30 22.2 52.9 21.8 52.7 

  Count Average 

(mg l-1) 

Percentage of sites where every measurement is 

> 25 mg l-1 > 10 mg l-1 < 10 mg l-1 < 25 mg l-1 

Sites > 9 
samples SS 129 12.7 9.4 39.0 49.6 10.9 

 725 
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Figure 1: Schematic of S. ignita egg dosing rigs for controls and treatments. A reservoir with 727 
experiment solution is held above a funnel, within which 3 slides containing S. ignita eggs are held in 728 
a slide holder. A perforated ring of tubing on the base of the reservoir ensured complete mixing and 729 
aeration of experimental water.  730 

 731 

 732 

  733 
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Figure 2: Regressions of the mortality of S.ignita eggs after 72 days exposure (open circles) and 183 734 
days exposure (filled circles) against (a) SS, (b) OP), (c) SS in addition to 0.07 mg l-1 OP, and (d) OP in 735 
addition to 10 mg l-1 SS.  736 

737 
  738 
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Figure 3: Mortality of S. ignita eggs through time under differing concentrations of (a) SS; (b) OP; (c) 739 
SS plus 0.07 mg l-1 OP, and; (d) OP plus 10 mg l-1 SS. 740 

 741 

 742 

 743 
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Figure 4: Percentage of S.ignita egg masses surviving to emergence under different concentrations 745 
of (a) OP in isolation (open circles) and in combination with 10 mg l-1 of SS (closed circles) and (b) SS 746 
in isolation (open circles) and in combination with 0.07 mg l-1 of OP. Note, at 0.3 mg l-1 OP plus 10 mg 747 
l-1 SS, fungal growth prevented the majority of egg masses from emerging and prevented an accurate 748 
count of egg mass emergence.  749 

 750 

 751 
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Figure 5: Percentage of S.ignita egg masses surviving to emergence under different concentrations 753 
of (a) OP (b) SS for each of the 3 slides in each treatment indicated separately. 754 

  755 
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SUPPLEMENTARY MATERIAL A: 757 

Image of spent Serratella ignita with eggs deposited on glass slides at the bottom of the tray. 758 

 759 

 760 

761 
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SUPPLEMENTARY MATERIAL B: 762 

Image of dosing funnel chamber containing glass slides with deposited egg masses. 763 

 764 
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SUPPLEMENTARY MATERIAL C: 766 

Image of displaced or ‘ghost’ S.ignita egg masses. 767 

 768 
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SUPPLEMENTARY MATERIAL D: 770 

Mean physical-chemical properties for control and diluent carbon-limestone filtered tap water. 771 

Parameter Unit Sample date (n = 8) 
29/8/15 26/9/15 31/10/15 28/11/15 19/12/15 30/1/16 19/2/16 26/3/16 

Nitrogen: Total as 
N 

mg l-1 0.5 0.525 0.435 0.44 0.535 0.501 0.702 0.563 

Alkalinity to pH 
4.5 as CaCO3 

mg l-1 117 122 129 139 144 154 150 161 

Ammoniacal 
Nitrogen as N 

mg l-1 <0.030 <0.030 <0.030 <0.0300 <0.0300 <0.0300 <0.0300 <0.0300 

Nitrite as N mg l-1 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 
Orthophosphate 

as P 
mg l-1 0.044 0.045 0.027 0.033 0.03 0.036 0.04 0.029 

pH  7.97 8.03 7.92 7.99 8.07 8.07 8.14 8.27 
Suspended Solids 

at 105o C 
mg l-1 <3 <3 <3 <3 <3 <3 <3 <3 

Boron μg l-1 <100 <100 <100 <100 <100 <100 <100 <100 
Calcium mg l-1 49.2 58.1 49 58 59.3 61.9 66.9 65.1 

Iron μg l-1 34.9 49.9 45.2 37.6 39.9 32.8 40.9 34.7 
Lithium μg l-1 <100 <100 <100 <100 <100 <100 <100 <100 

Magnesium mg l-1 2.55 3.46 5.02 3.05 3.91 3.32 3.37 3.86 
Manganese μg l-1 <10 <10 <10 <10 <10 <10 <10 <10 

Sodium mg l-1 8.19 9.1 8.65 8.17 8.28 8.4 8.34 8.35 
Mercury μg l-1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Hardness : Total 
as CaCO3 

mg l-1 136 159 143 157 164 168 181 178 

          
Arsenic  μg l-1 1 - - - - - - 1 

Selenium  μg l-1 1 - - - - - - 1 
Cadmium μg l-1 0.1 - - - - - - 0.2 

Copper μg l-1 0.5 - - - - - - 0.115 
Lead μg l-1 0.61 - - - - - - 0.5 

Nickel μg l-1 1.97 - - - - - - 0.4 

 772 

 773 
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SUPPLEMENTARY MATERIAL E:  776 

Water temperature in a control S. ignita egg chamber. 777 

 778 


