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Abstract 24 

We investigate the genesis and propagation of thermal ‘shockwaves’ using one of the densest 25 

arrays of paired air-water thermistors in the UK. Three onset mechanisms were detected in 26 

the River Dove driven by: solar radiation under stable flow and clear skies; rapid cooling by 27 

snowmelt; or runoff from intense summer rainfall. Largest absolute temperature changes 28 

were solar driven, but greatest rates of change (+3 degC in 15 minutes) were triggered by 29 

summer storms. These shockwaves travel downstream at lower velocities than hydropeaks. 30 

Climate models project more extreme rainfall so thermopeaks could exert greater influence 31 

on freshwater taxa in the future. 32 

Key words: Water temperature; solar radiation; summer rainstorm; thermopeak; River Dove 33 

 34 

Introduction 35 

River temperature (Tw) is a fundamental determinant of water quality, chemical rates, 36 

biological processes, and organism behaviour (Webb et al., 2008). As such, there is concern 37 

that rising Tw and changing patterns of river flow under anthropogenic climate change could 38 

adversely impact freshwaters (Caissie, 2006; Orr et al., 2014). Hence, there are calls for 39 

active management of surface/groundwater flows and riparian vegetation to safeguard cool 40 

refugia and vulnerable species (Hansen et al., 2003). At the same time it is recognised that 41 

such interventions should be founded on process-understanding obtained through field 42 

observation and modelling (Wilby et al., 2010). 43 

Field studies of the energy fluxes controlling Tw show that approximately 70% of heat input 44 

originates from solar radiation, with the remainder provided mainly by friction of water with 45 

the river bed and banks, and sensible heat transfer from the atmosphere (Webb et al., 2008). 46 

Air temperature (Ta) is widely used as a surrogate for solar radiation in empirical models for 47 

predicting Tw variations over time-scales of days to months (Johnson et al., 2014). The most 48 

significant heat outputs are radiation, evaporation, bed conduction and sensible heat transfer 49 

across the water-air interface. Local factors such as landscape shading, river orientation and 50 

vegetation cover affect receipts of solar radiation; groundwater fed streams may have 51 

increased longwave, latent and sensible heat losses (in winter); channel morphology, river 52 

flow and artificial structures influence heat advection from upstream. Global mean annual Tw 53 
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is approximately 14 degC but there are large regional variations. Maximum Tw can reach 35 54 

degC in equatorial, arid and warm temperate climate zones, however, mean Tw varies 55 

between 4 degC and 27 degC in polar and equatorial regions respectively (Punzet et al., 56 

2012). 57 

We deploy a high resolution thermistor array to investigate rapid Tw variations linked to 58 

weather conditions. We favour these instruments because of their low cost and accuracy 59 

which enable detailed sampling of Tw in space and time. Alternatives such as airborne 60 

remote sensing can yield high quality information on spatial patterns of surface Tw but only 61 

for snapshots in time and where the river is not obscured (Torgersen et al., 2001). Conversely, 62 

site-specific monitoring of heat budget components provides detail on temporal variations in 63 

Tw but is less feasible for large numbers of locations (Webb et al., 2008). Fibre optic 64 

methods offer high spatial and temporal resolution but only over distances of up to several 65 

kilometres (Krause et al., 2013).  66 

Here, we focus on acute as opposed to chronic Tw changes because of their potential for 67 

sudden onset and significant ecosystem impacts (Beaulieu et al., 2013; Bruno et al., 2013; 68 

McHenry and Long, 1995). Rapid Tw increases (thermopeaks) have been reported under a 69 

range of artificial conditions including thermal discharges from power stations (Langford and 70 

Aston, 1972); warm water releases in winter (Dickson et al., 2012; Webb, 1995) and cool 71 

water in late spring/summer (Zolezzi et al., 2011) from hydropower reservoirs; as well as 72 

warm runoff from summer storms over paved surfaces (Herb et al., 2008; Sabouri et al., 73 

2013).  74 

Natural causes of rapid Tw reductions have also been documented. For example, Smith and 75 

Lavis (1975) describe decreases in Tw associated with individual rainfall and snowmelt 76 

events. Maybeck (2004) also recounts how a summer thunderstorm released sufficient cool 77 

water into the Pemigewasset River, New Hampshire for Tw to fall by 7 degC within six hours. 78 

Similarly, Gammons et al. (2005) note a modest Tw reduction associated with a hail storm in 79 

Butte Montana, US and Lange and Haensler (2012) observed significant drops in Tw when 80 

post-drought storm runoff was dominated by event water in the Black Forest, Germany. 81 

Conversely, Langan et al. (2001) assert that the thermal impact of storm events is seasonally 82 

dependent and can yield Tw increases when heat is advected from riparian wetlands. Subehi 83 

et al. (2010) show the importance of hillslope gradient and water table depth in determining 84 

the hydrological pathway (i.e., relative mix of surface/sub-surface runoff) and hence Tw 85 
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response to rainfall in small forested catchments. Brown and Hannah (2007) found that short-86 

duration low-intensity storms falling onto an alpine catchment can occasionally produce Tw 87 

increases of up to 2.3 degC. 88 

From the above synopsis it is evident that meteorological controls of river temperature 89 

responses are mediated by antecedent river flow and catchment conditions (such as soil 90 

temperature and moisture content), type of land cover, topography, contributions from 91 

groundwater, attributes of the generating event, and so forth. The purpose of this study is to 92 

use a high-resolution thermistor array to 1) establish a typology of rapid, sub-daily Tw 93 

changes; and 2) present empirical evidence of the magnitude of Tw change, rate of 94 

downstream propagation and dispersion of these short-lived phenomena. The ultimate aim of 95 

the research is to improve understanding of the drivers and raise awareness of the potential 96 

significance of thermal ‘shockwaves’ for temperate river ecosystems. 97 

 98 

Study area, data and methods 99 

The study catchment and field experiments are described by Wilby et al. (2012), Johnson et 100 

al. (2014) and online at http://www.luten.org.uk. The Loughborough University TEmperature 101 

Network (LUTEN) comprises 36 sites with synchronised Tw and Ta measurements in the 102 

rivers Dove and Manifold of the English Peak District (Figure 1). Pasture is the main land-103 

use in both catchments and elevations range from 150 to 450 m. This study employs a sub-set 104 

of the data collected in the Dove catchment (sites D1 to D23) which is fed largely by 105 

groundwater seepage plus flows from non-thermal and semi-thermal springs along the margin 106 

of the Limestone outcrop (Edmunds, 1971). These sources discharge at relatively constant 107 

temperatures year-round thereby lowering ambient Tw in summer but increasing Tw in 108 

winter (Johnson et al., 2014). Parts of the headwaters and lowest reaches of the Dove are in 109 

deep landscape shade, whereas middle sections are most exposed to direct solar radiation. 110 

Two Gemini Tinytag Aquatic 2 thermistors record maximum, mean and minimum 111 

temperatures every 15-minutes at each site: one on the river bed measuring Tw; the other at 112 

about 2 m above the water surface measuring Ta. Tinytag sensors have a quoted accuracy of 113 

0.2 degC which we checked under field and laboratory conditions (Johnson and Wilby, 2013). 114 

To avoid heating by direct solar radiation sensors were fixed in deep shade. Data reported 115 

here are for three years March 2011 to February 2014. 116 

http://www.luten.org.uk/home
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Fifteen-minute river flow data were acquired from two gauges kept by the Environment 117 

Agency (EA). The Hollinsclough (HC) gauge is in the upper Dove and has a drainage area of 118 

8 km2; the Izaak Walton (IW) gauge is downstream and represents a catchment of 83 km2 119 

(Figure 1). According to the National River Flow Archive both river flow records are defined 120 

as ‘natural to within 10% at the 95th percentile’ (although for HC river flow estimates >0.8 121 

m3s-1 are based on rating tables and should be treated with caution). Note also that there are 122 

more than 100 shallow weirs and occasional sub-surface field drains in the lower reaches of 123 

the Dove (between D17 and D24).  124 

Daily precipitation totals were acquired from UK Met Office stations at Buxton (53°15’N, 125 

1°55’ W) and Ashbourne (53°1’N, 1°44’ W). These lie ~10 km to the north of the source and 126 

south of Dovedale (D24) respectively. Hourly precipitation data were obtained from stations 127 

at Coton-in-the-Elms (52°44’N, 1°38’ W), Keele (53°0’N, 2°16’ W), Leek (53°8’N, 1°59’ W) 128 

and Hollinsclough (53°12’N, 1°54’ W) within the headwaters of the Dove. 129 

We objectively identified thermopeaks using the rate of change (ROC) of Tw over one hour 130 

at site D10 (Figure 1). We did not discriminate between rising or falling limbs but only take 131 

note of the most extreme value (whether positive or negative) each day. We then ranked all 132 

days and extracted the 12 largest absolute ROC along with antecedent precipitation total, air 133 

temperature (at D10) and concurrent river flow in each case. Site D10 was chosen because of 134 

its central location within the catchment (above the Limestone gorge) and because the record 135 

is 97% complete. Moreover, the Tw series at D10 is most highly correlated (average r=0.98) 136 

with all other sites in the Dove, so is regarded to be representative. 137 

Finally, we estimate thermal and flood (or hydrodynamic) wave velocities with the 138 

expectation that they are asynchronous. This is because the thermal peak behaves as a passive 139 

tracer and is advected downstream at the velocity of water molecules depending on river flow 140 

depth and channel roughness. This advective heat transport is further influenced by local heat 141 

exchange with the stream bed, hyporheic exchange or storage within in-stream 'dead-zones' 142 

(Evans et al. 1998, Neilson et al. 2010, Westhoff et al. 2010; 2011). Meanwhile, the flood 143 

wave travels more quickly than water molecules with the velocity depending on free surface 144 

width, volume and depth of flow relative to pre-event conditions (Toffolon et al., 2010).  145 

If the thermal wave was triggered by a storm, event initiation was assumed to be the time of 146 

peak rainfall intensity measured at Hollinsclough (the closest gauge). Downstream variations 147 

in thermal wave velocity were then determined using distance between sites and time of 148 
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arrival of peak Tw. Velocities for hydrodynamic waves were estimated using the known 149 

distance between HC and IW (27.9 km) and the difference in time of arrival of the 150 

hydrograph peak at each gauge to the nearest 15 minutes.  151 

 152 

Results 153 

Our three year monitoring period included several notable hydrological events. For example, 154 

spring 2011 had the most severe and widespread April snow storm since 1981. Violent 155 

storms in late June and early July 2012 brought flash flooding across numerous locations in 156 

England and Wales (Almond, 2013; Clark and Webb, 2013). These episodes also contributed 157 

to the wettest April to July in nearly 250 years and brought an abrupt end to one of the most 158 

significant prolonged droughts in a century (Kendon et al., 2013; Parry et al., 2013). The first 159 

week of May 2013 was notable for the amount of bright sunshine which reached 14 hours on 160 

some days. Winter 2013/14 was confirmed as the wettest since 1766 in the England and 161 

Wales precipitation series, with more than 130% average rainfall locally in the Peak District 162 

(Met Office, 2014). 163 

Figure 2 shows the ROC trace for site D10 in 2012/13. This series is strongly correlated 164 

(r=0.9) with ROC data up and downstream (sites D6 and D16 respectively). ROC values 165 

seldom exceed ±1 degC/hour so events with rapid Tw change clearly stand out (as in the case 166 

of 4 April 2012, 28 June 2012, 5 July 2012 and 27 January 2013). Across the three years of 167 

data, the 12 largest ROC scores all exceeded ±0.8 degC/hour at D10 (Table 1). Overall, the 168 

most extreme ROC (15 minute) for any site was +3 degC recorded at site D1 between 2030 169 

UTC and 2045 UTC on 5 July 2012. 170 

Three types of event were distinguished by inspection of the full data set (Table 1). Overall, 171 

the most rapid positive Tw changes were preceded by intense rainfall (IR); the two most 172 

extreme negative ROCs were linked to heavy snowfall and/or melt (SM). The remaining 173 

events occurred on days with zero precipitation, stable or falling river flow, and large diel Ta 174 

ranges (typically > 17 degC). These events were all preceded by nocturnal cooling then by 175 

intense solar heating (SH) under clear sky conditions. The most extreme ROC (per hour) at 176 

D10 for each category of event was +2.8 degC for IR, -1.3 degC for SM, and +1.2 degC for 177 

SH (Table 1). 178 
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Figure 3 shows examples of the downstream propagation of thermal waves generated by 179 

these three mechanisms. Under intense SH events, Tw increases most rapidly between mid-180 

morning and mid-afternoon at upstream sites. The thermal wave is modified by heat 181 

exchanges between atmosphere and river as it advects downstream, typically arriving at sites 182 

above the spring line (D16) between 1700 UTC and 2000 UTC (Figure 3a). The magnitude of 183 

the diel Tw range depends on the volume of flow (i.e., thermal inertia of the water body), 184 

strength of solar shortwave radiation, net longwave radiation, convection, and evaporation 185 

heat fluxes (Evans et al., 1998). The damped response of Tw between D16 and D23 shows 186 

that groundwater inputs reduce the diel range even when there is strong radiant forcing 187 

upstream. 188 

Under SM events (such as 4 April 2012) relatively cold water enters the drainage network 189 

either directly as precipitation or indirectly as melt-water from ablating snow cover. The 190 

thermal sag drifts downstream such that absolute Tw minima experienced at downstream 191 

sites occur hours after detection in the headwaters (Figure 3b). Again, the markedly different 192 

Tw behaviour at D23 compared with upstream reflects the input of relatively warm 193 

groundwater. The thermal constancy of spring sources is evidenced by the similarity of the 194 

signal for D23 under SH and SM forcing (Figures 3a and 3b).  195 

The most dramatic thermal response occurs after IR events (Figures 3c and 3d). The exact 196 

shape of the thermopeak depends on the attributes of the generating storm (duration, 197 

maximum intensity, and direction of travel relative to the main channel orientation). The 198 

thermal wave on 28 June 2012 (Figure 3c) was initiated by an intense storm with maximum 199 

precipitation rate >13 mm/hour at Hollinsclough (Figure 4a). The hydrograph response at the 200 

upstream gauge was subdued compared with downstream reflecting the SW to NE passage of 201 

the frontal system and zone of maximum rainfall intensity which was located to the south. 202 

The peak rainfall intensity on 5-6 July 2012 was lower (~9 mm/hour) than on 28 June 2012 203 

(Figure 4a and 4b) but a greater total fell onto ground that was already saturated (as indicated 204 

by the higher initial river flows in Table 1). Storm onset was marked by a rapid drop in Ta 205 

and near immediate rise in river flow at the HC gauge (Figure 3d). Coincident thermal peaks 206 

at D1 and D16 may indicate earlier arrival of a local rainstorm at the downstream site. An 207 

alternative explanation is that runoff from paved surfaces in the hamlet of Mill Dale added 208 

warm water to the river between D16 and D20. The spring site (D23) exhibited a damped but 209 

earlier than expected thermal response to both IR events. This was attributed to a sub-surface 210 
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field drain that discharges from the west-facing escarpment into the river between sites D22 211 

and D23. 212 

Consistent with theory, hydrodynamic wave velocities were higher than thermal wave 213 

velocities as indicated by shorter travel times to fixed sites (Figure 5). Non-linear time-214 

distance relationships show that the thermal wave is decelerating. The most rapid 215 

hydrodynamic wave followed high intensity rainfall over the whole catchment (28 June 2012) 216 

whereas the most rapid thermal wave trailed lower intensity rainfall but relatively high totals 217 

in the headwaters (5-6 July 2012). Hence, depending on the spatial-temporal dynamics of the 218 

storm, the estimated travel time of the hydrodynamic wave between HC and IW varied 219 

between 270 and 435 minutes (equivalent to 1.1 - 1.7 ms-1) compared with 619 to 951 220 

minutes (or 0.5 - 0.8 ms-1) for the thermal wave.  221 

The travel time analysis indicates that following IR events stream biota are exposed first to 222 

rising river flow then second to a thermal shock. The separation time between the two waves 223 

increases with distance from source. Under the most extreme case (28 June 2012) the 224 

estimated time interval between arrival of the hydrodynamic and thermal waves at IW 225 

was >11 hours. Furthermore, at sites above the spring zone, the duration of the event (as 226 

indicated by the time for Tw to return to pre-event values) increases downstream due to 227 

turbulent diffusion and shear flow dispersion. For example, the thermal wave on 28 June 228 

2012 increased Tw for 645 minutes at site D1 and 855 minutes at D10.  229 

The following section considers the wider implications of these findings including the 230 

potential significance of thermal waves for freshwater taxa. 231 

 232 

Discussion 233 

Based on data from LUTEN we have detected three mechanisms that can generate rapid 234 

responses in river temperatures. These are heating by solar radiation under clear skies and 235 

low flow conditions; cooling by direct snowfall and/or melt-water runoff; or heating by 236 

runoff produced by intense summer storms. Heating by solar radiation typically yields 237 

maximum Tw at downstream sites just after sunset (Figure 3a). However, a noteworthy 238 

feature of IR events is that abrupt changes and maximum Tw can occur during the night, at 239 

times when Tw would otherwise be dominated by net radiant losses (Evans et al., 1998). 240 
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Moreover, IR events generate the most rapid sub-daily Tw changes: up to +3 degC in 15 241 

minutes for the most extreme case (D1 on 5 July 2012).  242 

These observations arise from a small sample of events that were identified objectively via 243 

ROC values. In general, IR events are expected to be most severe when Ta > Tw, there has 244 

been strong solar heating of the land surface, the storm is intense, and initial river flow is low 245 

(Herb et al., 2008). The three most extreme IR events all occurred during a two week period 246 

of remarkable transition from drought to flooding (Parry et al., 2013). However, additional 247 

thermal waves emerge when the ROC threshold is relaxed to a threshold of ±0.5 degC/hour. 248 

For example, following >60 mm rainfall at Buxton on 27 July 2013, a ROC of +0.6 249 

degC/hour was recorded. Another event on 18 July 2011 was triggered by >65 mm rainfall at 250 

Leek which led to an abrupt increase in river flow and was marked by the arrival of warmer 251 

water from upstream of D23. This diluted the signature of cooler spring water and caused Tw 252 

to change +1.6 degC between 0400 UTC and 0415 UTC at D23 (Figure 6).   253 

Primary and secondary IR events in the Dove are generally associated with daily rainfall 254 

totals >20 mm at Buxton. Analysis of records since year 1961 suggests that rainfall totals of 255 

this magnitude or more occur between zero to four times per summer (June to August). 256 

However, variations in the features of individual thermal waves are explained by several 257 

other factors operating in the Dove.  258 

First, abrupt heating or cooling is superimposed on diel and annual Tw regimes which are 259 

governed by seasonal variations in solar heating and river flow (Webb and Walling, 1985). 260 

Second, thermal wave propagation and longitudinal dispersion are affected by the extent of 261 

pre-heating and ponding behind the weirs between D16 and D23. Third, absence of 262 

tributaries limit scope for mixing of thermally contrasting water in the upper Dove, but this is 263 

not the case where field drains and springs feed into the lower reaches. Evidence of distinct 264 

thermopeaks in the main stem of the dendritic network of the river Manifold (not shown) 265 

implies that the influence of surface runoff from tributaries may not be significant in these 266 

small catchments.  267 

We venture that IR events may be generating thermal waves in other natural headwaters in 268 

the UK. For the Dove, the thermal wave amplitude was greatest ~10 km from source, 269 

dissipating thereafter even before encountering cooler groundwater. Hence, we speculate that 270 

catchments with areas <100 km2 and flashy hydrological regimes might be particularly 271 

vulnerable (but scope for testing this hypothesis elsewhere is constrained by data availability). 272 
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Other factors such as channel gradient, roughness, pool-riffle sequencing, connectivity to 273 

floodplain, and artificial structures influence the local velocity of the thermal wave and 274 

thereby space-time variations in heat budget. Land cover and soil moisture conditions 275 

determine the fraction of solar energy partitioned into sensible heating of the surface prior to 276 

storm onset. For instance, streams draining urbanised catchments are known to exhibit 277 

thermo-peaking after strong solar heating and heavy rainfall (Herb et al., 2008; Sabouri et al., 278 

2013). Conversely, larger catchments have greater scope for turbulent diffusion and shear 279 

flow dispersion with distance downstream. There may also be tributaries and groundwater 280 

units which mix thermally contrasting water into the main channel flow. 281 

Abrupt changes in Tw are known to trigger a range of sub-lethal, biological responses. For 282 

example, benthic invertebrates exhibit species- and season-dependent avoidance strategies 283 

under carefully controlled laboratory conditions (Carolli et al., 2012). Moreover, because of 284 

synergistic effects, asynchronous hydro- and thermo-peaks cause greater density of 285 

invertebrate movement than hydro- or thermo-peaks alone (Bruno et al., 2013). Due to 286 

increasing separation time between the two peaks with distance downstream a spatial 287 

signature in invertebrate response is expected. Tw is also an important behavioural cue for 288 

the timing of feeding in juvenile Atlantic salmon (Salmo salar) which occurs preferentially at 289 

night when Tw falls below 10 degC (Fraser et al. 1993). Hence, arrival of a thermal wave 290 

during hours of darkness may be particularly significant for nocturnal creatures (Wilby et al., 291 

2014).  292 

Climate model projections show increased likelihood of extreme rainfall linked to higher 293 

atmospheric temperatures and vapour content (Trenberth, 2011). On the other hand, a 294 

scenario of higher Ta implies that the frequency of snowfall in the UK could diminish. Under 295 

these conditions, occurrence of IR events would be expected to increase, whereas SM events 296 

could become rarer. However, the future magnitude and frequency of thermal waves also 297 

depends on the antecendent conditions of the receiving water course. Climate model outlooks 298 

for the UK are ambiguous for winter, but there is greater consensus that river flows could 299 

decrease in summer (Prudhomme et al., 2012). A hotter, drier summer climate, with lower 300 

flow volumes, would pre-dispose rivers to more frequent SH and IR events. One high 301 

resolution (1.5 km) climate model experiment suggests that the frequency of very heavy 302 

rainfall episodes in summer could nearly quadruple by 2100 (Kendon et al., 2014). 303 

 304 
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Conclusions  305 

We have evidence of the genesis and propagation of thermal waves in a ‘natural’ headwater 306 

river. Three onset conditions were identified: bright sunshine, heavy snowfall/melt, or intense 307 

summer rainfall. These phenomena matter because they potentially affect water quality and 308 

produce sub-lethal behavioural responses in biota. Our results also demonstrate that thermal 309 

waves can occur under meteorological conditions other than strong solar radiation. One 310 

implication of this finding is that increased riparian shade is not a complete panacea for 311 

warming rivers because it would afford little protection against storm generated Tw changes.  312 

Further research is needed to determine whether abrupt Tw increases are occurring in other 313 

catchments and the extent to which these phenomena are mediated by regional climate and 314 

land surface properties. It is also unclear which taxa might be most sensitive to thermal waves 315 

and the extent to which any trends in timing, magnitude and frequency of these events might 316 

be detectable as changes in ecosystem structure and function. Some have begun to explore 317 

such questions under laboratory conditions to mimic thermo-peaking below dams, but this 318 

work is largely restricted to invertebrate behaviour. Whereas conventional (monthly, day-319 

time) spot-sampling of Tw may be barely sufficient for tracking environmental change over 320 

decadal time-scales, this is clearly insufficient for discerning biologically relevant thermal 321 

cues at storm-event scales. 322 
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Table 1 Properties of 12 events with most rapid changes in Tw at site D10 between March 2011 and February 2014 447 

Variable Sites 1/5/11 4/5/11 4/4/12 6/5/12 28/6/12 5-6/7/12 10/7/12 27/1/13 1/5/13 2/5/13 6/5/13 7/5/13 
Ptot (mm) Buxton 0 0 8.4 0 4.7 11.7 17.3 0 0 0 0 0 
Ptot (mm) HC 0 0 18.8 0 17.2 30.6 13.6 6.6 0 0 0 0 
Ptot (mm) Ashbourne 0 0 11.4 0 16.8 18.2 5.4 0.6 0 0 0 0 
Q0 (m3/s) HC 0.071 0.070 0.093 0.178 0.278 0.351 0.330 0.958† 0.079 0.076 0.072 0.069 
Q0 (m3/s) IW 0.767 0.752 0.979 2.040 2.780 3.080 3.280 2.260 1.150 1.140 1.080 1.060 
ΔQ (m3/s) HC -0.001 -0.001 +0.028 0 +0.205 +11.35† +5.09† +2.63† 0 -0.002 -0.003 -0.001 
ΔQ (m3/s) IW -0.007 0 +0.421 0 +1.980 +7.12 +3.23 +9.44 -0.010 -0.020 -0.030 -0.020 
Ta range (°C) D10 11.3 18.3 2.4 17.6 11.1 14.0 4.5 5.3 17.5 19.7 22.2 20.2 
Max ΔTw (°C/hr) D10 +1.0 +1.0 -1.0 +0.9 +2.8 +2.4 +1.2 -1.3 +1.1 +1.1 +1.1 +1.2 
ROC rank D10 10 9 11 12 1 2 4 3 7 6 8 5 
Max ΔTw (°C/hr)  

(various) 
+1.9 

(D20) 
+2.0 

(D20) 
-1.1 
(D6) 

+1.0 
(D6) 

+3.2 
(D11) 

+2.4 
(D10) 

+1.6 
(D1) 

-1.3 
(D10) 

+1.5 
(D6)* 

+1.2 
(D6)* 

+1.2 
(D6)* 

+1.3 
(D6)* 

 D23 +0.8 +0.8 -0.5 +0.8 +2.0 +1.2 +0.9 -0.8 +0.7 +0.7 +0.7 +0.7 
Event type All SH SH SM SH IR IR IR SM SH SH SH SH 

Key: Ptot (precipitation total); Q0 (pre-event discharge); ΔQ (change between pre-event and peak discharge); Ta range (diel air temperature range); Max 448 
ΔTw (maximum rate of change of water temperature per hour); ROC (rate of change); SH (solar heating); SM (snowmelt or snowfall); IR (intense rainfall); 449 
* D6 was the most upstream site after flood damage in summer/winter 2012/13; † Values outside the range used to calibrate the gauge. 450 
  451 



Figure 1 LUTEN monitoring sites (red circles), EA gauging stations (black circles), 452 

Limestone outcrop (grey shading), sandstone and mudstones areas (unshaded). D10 is the 453 

reference site used to detect rapid changes in Tw across the network as a whole. Source: 454 

Wilby et al. (2014). 455 

 456 
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Figure 2 Example ROC series for site D10 during March 2012 to February 2013. 457 

 458 

 459 

  460 
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Figure 3 Example thermal waves produced by a) solar heating (4 May 2011), b) snow fall (4 461 
April 2012), c) intense rainfall (28 June 2012) d) (5-6 July 2012). A 12 degC range is used 462 
for Tw, and 20 degC range for Ta. Accompanying hydrographs and air temperatures are also 463 
shown. The river flow gauges are Hollinsclough (HC) and Izaak Walton (IW). 464 
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Figure 4 Hourly rainfall records associated with the three IR events shown in Table 1. 467 

a) 28 June 2012 468 

 469 

b) 5-6 July 2012 470 

 471 

c) 10 July 2012 472 

 473 
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Figure 5 Times to thermo (red dots) and hydropeak (blue dots) following three intense 474 
rainfall (IR) events. Note that there are less data for July 2012 because sites D15 and D17 475 
were washed out by high flows in the previous month. 476 
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Figure 6 Detailed analysis of the IR thermal event of 17-19 July 2011 479 
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