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ABSTRACT 40 

The stability of many sand dunes and their interdunes is dependent on 41 
vegetation and surface crust cover.  When this cover is removed, the sand 42 
can be activated and fine sediments deflated making the dunefields into 43 
sources of dust.  This paper reports the impact of devegetation by wildfire on 44 
an interdune in the Simpson Desert, Australia.  The fire occurred in 2001 and 45 
six years after the event pronounced differences between a pair of burnt and 46 
unburnt sites was clearly discernible. The variables examined included 47 
vegetation assemblage, cyanobacteria abundance and sediment aggregation, 48 
particle-size distribution and colour; but whether they apply to all such 49 
situations is uncertain. Rate of recovery has been slow and the differences 50 
are likely to have been sustained by a combination of negative feedback 51 
processes and climate.  52 
 53 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 58 

Until recently, global dunefields have not been recognized as 59 

significant dust sources because they have a low fines (<100 µm) content, 60 

and often have a vegetation cover which stabilises the surface and reduces 61 

aeolian activity by increasing surface roughness; reducing near surface wind 62 

velocities and promoting sediment deposition (Wiggs et al., 1994; Hesse and 63 

Simpson, 2006).  In addition, biological soil crusts can play an important role 64 

in dune stabilization (Belnap, 2001) through physical binding of sediment with 65 

their filaments or via the excretion of polysaccharides which act as a glue 66 

(McKenna Neuman et al., 1996).  Such crusts are often capable of surviving 67 

drought conditions, continuing to stabilize dune surfaces (Eldridge, 2001) 68 

even when vascular plant cover declines.  69 

 70 

Dust emissions from semi-stabilized dune areas can however be 71 

significant if they are reactivated by climate change or vegetation removal due 72 

to fire or grazing pressure – for example, Bullard et al. (2008), and McGowan 73 

and Clark (2008) have documented dust storms in Australia where the 74 

sediment source can clearly be traced to firescars in dunefields. The 75 

associated decrease in surface roughness and threshold wind velocity 76 

increases potential wind erosion (Wiggs et al., 1994) and saltating grains 77 

promote the entrainment of any fines in the dune sediment (resident fines).  78 

Saltation activity can also generate new dust-sized particles by abrasion 79 

and/or the removal of clay coatings on the grain surfaces (Bullard and White, 80 

2005; Crouvi et al., 2008) but these will rapidly be removed.  Dune 81 

geomorphology can also be modified following devegetation, for example the 82 

dune may become taller and steeper, be reworked into smaller dunes, or 83 

become reoriented to reflect a wider range of wind speeds (Tsoar and Møller, 84 

1986; Hesse and Simpson, 2006).  85 

 86 

This paper focuses on the impact of fire on interdune ecology and 87 

sedimentology.  It is unclear how rapidly vegetation and crust cover can re-88 

establish in a dunefield once devegetated by fire, but the effects are known to 89 

last from one or two years to over ten years (Eldridge, 2001; Wiggs, 2006).  90 

Rate of recovery is likely to be determined by a combination of burn severity, 91 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soil type and climate, as it is in most environments, but in dunefields aeolian 92 

activity and position on the dune (erosional, depositional or stable locations) 93 

are also important (Lesica and Cooper, 1999). Once a sand surface has been 94 

reactivated, it becomes hostile to vegetation and crust redevelopment 95 

because many species have a low tolerance for mobile surfaces (Kadmon 96 

and Leschner, 1995) and deflation of the fine fraction will significantly reduce 97 

the moisture-holding capacity of the soil.  In addition, the impact of dune 98 

topography on airflow and sediment transport means that dune crests are 99 

usually less stable than interdunes, so the latter will support more rapid 100 

ecological recovery. This idea is supported by Wiggs (2006) who found that 101 

vegetation renewal in interdunes was twice as rapid as those in crestal 102 

regions.   103 

 104 

This difference in aeolian activity with position means that dune crests 105 

typically contain less fine material, whilst interdunes contain more, and hence 106 

interdunes may be more important dust sources immediately post-fire.  For 107 

example, in the southwest Kalahari dunefield, the proportion of dust-sized 108 

particles in interdunes can be up to 7 % whilst dune crests only contain 1-3 % 109 

fines (Livingstone et al., 1999). Dust production by abrasion and coating 110 

removal will continue while the surface is active, and long-term retention of 111 

dust particles in the dune surface layers is only likely to take place once 112 

vegetation cover has re-stabilised the surface.  In comparison to an unburnt 113 

dune, therefore, a dune recently devegetated by fire would be expected to 114 

have less vegetation and biological crust cover, potentially a different 115 

vegetation structure given that annuals and perennials recolonise at different 116 

rates, and to contain less fine sediment having lost dust-sized material 117 

through deflation. These feedback processes are summarized in Figure 1 and 118 

mean that although dune activation occurs rapidly post-fire, re-stabilization 119 

through recovery of both ecology and sedimentology may be a much longer 120 

processes.  Fire can also have an impact on sediment colour, causing 121 

particles to redden by dehydrating the hydrated iron oxides in dune sand grain 122 

coatings (Jacobberger-Jellison, 1994).   123 

 124 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Despite these expected physical changes there is a notable paucity of 125 

literature exploring the effects that fire has on interactions among dune 126 

ecology, sedimentology and geomorphology.  Dunefield responses to 127 

vegetation change stimulated by climate change have been studied and 128 

modeled (Hugenholtz and Wolfe, 2005; Bullard et al., 1997), but responses to 129 

the impacts of fire are typically limited to the post fire response of vegetation 130 

(Winkworth, 1967; Letnic, 2003) or sediment mass collected downwind of 131 

burnt areas (Whicker et al., 2002; Sankey et al., 2009) and most field studies 132 

take place within two years of the event. 133 

 134 

This short communication reports the results of a field study to quantify 135 

the ecological and sediment characteristics of an unburnt and burnt site in the 136 

Simpson Desert, Australia, six years post-fire, to explore whether any of the 137 

expected differences persist.  The dunefield is dominated by partially-138 

vegetated linear dunes and natural fires typically occur following dry electrical 139 

storms in the austral summer (Griffin et al., 1983). Wildfires are common 140 

throughout central Australia wherever the spinifex grass community exists, 141 

with Winkworth (1967) suggesting that at any one time 80% of the dune field 142 

vegetation communities within the Northern Territory are rejuvenating 143 

following fires or in a degenerative state due to lack of moisture.  Fire return 144 

interval varies, but can be as short as 3-10 years (Kimber, 1983).  Fires in the 145 

arid zone are more common and more widespread in years following above-146 

average rainfall which increases vegetation fuel loadings; conversely, drought 147 

periods tend to be associated with less frequency and smaller fires (Turner et 148 

al., 2008).  149 

 150 

Fires leave clear ‘scar’ marks that are visible on satellite imagery and 151 

aerial photographs (Figure 2).  The site chosen (25°18’23’’ S, 137°56’2’’ E) 152 

covers an area of 2807 km2 and is known to have burnt prior to 1984 with the 153 

most recent fire affecting the area in 2001.  Fieldwork was conducted in May 154 

2007 – six years after the last burn.  Given the importance of interdunes as 155 

relatively stable environments and stores of dust-sized material, sampling 156 

focused on two randomly assigned 40 m long west-east oriented transects 157 

across the same south-north oriented interdune (Figure 2).  The northern-158 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most was located entirely within the area burnt in 2001; the transect 1.3 km to 159 

the south was located within an area that satellite imagery indicates has not 160 

burnt since at least 1984. Due to the proximity of the transects, it was 161 

assumed that the two locations had common vegetation and sediment 162 

characteristics before the fire and experience the same climate conditions. 163 

Soils comprise deep and infertile red siliceous sands. 164 

 165 
In the field, vascular plants and cyanobacteria percent cover were 166 

calculated using a 1 m2 quadrat placed at 5 metre intervals (n=9 at each site). 167 

Any vascular plants present were identified and recorded as either annual or 168 

perennial.  Surface soil samples (0-20 mm depth) were taken at the same 169 

intervals and indicators of aeolian activity were noted (aeolian sand ripples, 170 

slipfaces).  In the laboratory, cyanobacteria abundance was estimated 171 

through in-vitro incubation and light microscopy. For this, the soil samples 172 

were kept in an incubation chamber, hydrated with deionised water for 3 days, 173 

exposed to 12 hour light and kept at 20 oC. Searching for cyanobacteria 174 

filaments occurred across seven fields of view (@ 100x magnification) for 3 175 

minutes each, and presence/absence of filaments was recorded. Soil organic 176 

carbon content was determined using loss-on-ignition. Polysaccharide content 177 

was extracted from the soil according to Chaplin and Kennedy (1986) and 178 

measured as per Lowe and Carter (1993).  Sediments were sieved at 0.85 179 

mm to determine percent dry aggregation (Leys et al., 1998).  High resolution 180 

particle-size analysis was conducted and deconstructed to individual sediment 181 

populations following the methods of Leys et al. (2005).  Sediment colour can 182 

be indicative of grain history and processes operating on the particles, 183 

however it can also be affected by fire as thermally-induced reddening takes 184 

place at temperatures from 250°C to 400°C (Jacobberger-Jellison, 1994).  185 

Sediment redness was quantified using a GER 3700 Spectrometer to 186 

ascertain any differences between the sites.  187 

 188 

After 6 years there are still differences between the unburnt and burnt 189 

sites, with respect to vascular plants and cyanobacterial crust cover (Table 1). 190 

Vascular plants at the burnt site comprised mostly annual species such as 191 

Sclerolaena sp. (copperburrs) and Ptilotus sp. (longtails), with Triodia 192 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basedowii (spinifex) the only observed perennial.  At the unburnt site annuals 193 

included Sclerolaena sp, Eragrostis basedowii (neat lovegrass) and Portulaca 194 

oleracea (pigface) and perennials comprised Triodia basedowii, Artistida 195 

cortorta (tall kerosene grass), Eragrostis eriopoda (woolybutt) and Abutilon 196 

otocarpum (desert chinese lantern). No cyanobacterial crust was visible at the 197 

burnt site, however laboratory study revealed that some cyanobacterial cells 198 

were present.  199 

 200 

The sites also had different sediment properties.  The unburnt site 201 

contained a high proportion of aggregated sediment (21 %).  Aggregates are 202 

a product of soil formation processes and are easily broken down during 203 

saltation, which is probably why there are fewer at the burnt site.  Analysis of 204 

the soil particle-size distributions highlights common populations (modes at 62 205 

µm and 100 µm) at both sites, but the presence of a third finer population (16 206 

µm) in the unburnt site likely reflects the importance of vegetation in trapping 207 

fine particles (Danin and Ganor, 1997). Any such fine sediments will have 208 

been deflated from the burnt site.  The sediments at the burnt site were found 209 

to be redder than those at the unburnt site.  Under conditions of enhanced 210 

aeolian activity, the clay coatings present on grains in this part of the Simpson 211 

dunefield would be expected to be removed by aeolian abrasion, reducing the 212 

sediment redness (Bullard and White, 2005), however the fire would be 213 

expected to enhance the sediment redness.  At this interdune site, it must be 214 

assumed the fire-induced reddening exceeded any reduction in red colour 215 

caused by aeolian abrasion. 216 

 217 

Fire has had a marked effect on the dune ecology and sedimentology 218 

and all the expected differences between the burnt and unburnt sites at this 219 

one location and one sampling time are clearly discernible six years after the 220 

event. Much vegetation in the desert dunefields of Australia is adapted to fire 221 

and has developed survival strategies such as fire ephemerals, post-fire 222 

resprouting or obligate seeding (Winkworth, 1967; Wright and Clarke, 2007).  223 

These plants include the Triodia species (spinifex) which is common in much 224 

of arid Australia, including the north Simpson dunefield.  Spinifex grassland 225 

fuels large-scale fires but quickly regenerates post-fire (Letnic, 2003; Griffin et 226 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al., 1983) and was the only perennial observed at the burnt site. Just as fire 227 

frequency is dependent on rainfall, so too is post-fire recovery of both 228 

vegetation and cyanobacterial crusts.  Although the timescale for vascular 229 

plants recovery varies depending on the overall assemblage and degree of 230 

adaptation to fire, many studies have highlighted that climate also plays an 231 

important role (Whicker et al., 2006). 232 

 233 

For the burnt site examined here, it is likely that ecological recovery 234 

rate has been slow due to a series of low rainfall years.  Total rainfall at the 235 

Birdsville meteorological station, southeast of the study site, was below the 236 

long term average (164.9 mm yr-1) for 5 out of the 6 years between the fire 237 

and these field observations (BoM, 2009). Although episodic rainfall facilitates 238 

short-lived annual plant growth it also creates moisture competition between 239 

annual and perennial seed germination, restricting regrowth to rapid 240 

germinating species. Following a major fire in central Australia, it has been 241 

proposed 630 mm of cumulative rainfall is required for sufficient fuel to 242 

develop and reburn (Griffin et al., 1983). Biocrusts can respond rapidly to 243 

relatively low rainfall events but they too require follow-up rain for strong 244 

growth (Belnap, 2001). 245 

 246 

As suggested in Figure 1, however, it is not just the biological 247 

characteristics of dunes that change post-fire, and rainfall is not the only 248 

variable controlling recovery.  Enhanced aeolian activity will also slow the rate 249 

of recolonisation by cyanobacteria and vegetation (Hesse and Simpson, 250 

2006), but even if crusts can start to develop, their resistance to wind erosion 251 

is strongly dependent on a lack of surface disturbance (Belnap and Gillette, 252 

1997).  Total annual dust concentration observed at Birdsville suggests higher 253 

than average aeolian activity over this time period.  Sedimentological 254 

evidence, such as lower fines content and lack of particle aggregation, 255 

support the idea of sustained aeolian activity at the burnt site.  As an active 256 

surface prevents the retention or storage of fine material, this may explain 257 

why Bullard et al. (2008) found that most dust source locations within the 258 

Simpson dunefield were unique; i.e. once an area within a firescar had been a 259 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dust source, within the three years of their study, it was not recorded as a dust 260 

source again. 261 

 262 

Existing research points in different directions with regard to the impact 263 

of fire on ecological patchiness in arid areas.  For example, Ravi et al. (2007) 264 

suggest that fire can promote vegetation homogeneity by the evening out of 265 

resources, whereas Lesica and Cooper (1999) suggest that surface 266 

instabilities will lead to a heterogeneous distribution of flora and fauna.  Where 267 

the landscape is dominated by sand dunes, the dune geomorphology and 268 

sedimentology can also clearly be affected both directly and indirectly by fire. 269 

These affects will be at a smaller spatial scale than the area affected by 270 

climate change; most fires in the Australian deserts affect an area of < 100 271 

km2 (Turner et al., 2008), most in southern Africa affect < 10 km2 (Korontzi et 272 

al., 2003), but in both regions, very extensive fires can occasionally occur. 273 

Models of landscape-scale biogeomorphic response to climate change 274 

demonstrate that dune activation occurs rapidly whereas stabilization is a 275 

much longer process (Hugenholtz and Wolfe, 2005).  This pattern will also be 276 

observed following fire where the initial perturbation to the biogeomorphic 277 

system will be rapid, and, due to negative feedback between aeolian activity 278 

and ecological recovery, the return to a semi-stable or stabilized state will take 279 

significantly longer.  Such feedback may lead to patchy variation in dunefield 280 

morphology, dunefield ecology and also the presence of vegetated and 281 

unvegetated dunefields under the same climatic conditions. 282 

 283 

 284 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Table 1 Ecological and sedimentological characteristics of an unburnt 433 

and burnt interdune.  The t values of significant results are highlighted in bold 434 

*, t<0.01;  **, t<0.001; ***, t<0.0001. 435 

 436 

 Variable Unburnt site n=9 Burnt site n=9  
  Mean Standard 

error 
Mean Standard 

error 
T values 

Loss on ignition % 1.057 0.083 0.432 0.015 -7.43*** 

Vegetation cover % 37 5.8 5 1.2 -5.28*** 
No. annual species 4 _ 5 _ _ 

No. perennial species 5 _ 1 _ _ 

Cyanobacterial crust 

cover % 

53 6.3 0.7 _ -8.55*** 

Polysaccharide 

concentration (ppm) 

11.05 2.60 1.24 1.05 -3.50** 

E
co

lo
gi

ca
l i

nd
ic

at
or

s 

Total filament (cell) 

counts 

401.1 98.3 70.2 10.6 -3.55** 

Aggregates > 850 µm % 21 1.58 0.1 0.06 -12.9*** 

Disaggregated sediment 

mode 100 µm % vol. 

83 _ 88 _ _ 

Disaggregated sediment 

mode 62 µm % vol. 

13 _ 12 _ _ 

S
ed

im
en

t i
nd

ic
at

or
s 

in
di

ca
to

rs
 

Disaggregated sediment 

mode 16 µm % vol. 

4 _ 0 _ _ 

 437 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 442 

Figure 1 Feedback model to illustrate processes leading to post-fire 443 

increased dune activity and destabilization. 444 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 449 

 450 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Figure 2 True colour Landsat 7 ETM images from a) prior to the burn; b) 453 

the first image available after the burn and c) the same month 454 

that the fieldwork was undertaken. Inset map shows the area of 455 

the image, and the white cross marks the site of the fieldsite. 456 

Photographs of the fieldsite showing d) aeolian sand ripples 457 

between sparse vegetation in the burnt interdune; e) well-458 

vegetated unburnt interdune. 459 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