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Abstract 

A systematic palaeohydrological investigation has been carried out on the floodplain 

gravels of the Middle Trent Valley at Barrow-upon-Trent. Consideration has been 

given to the relationship between floodplain stratigraphy and river morphology using 

sedimentological lithofacies analysis. Previous research has suggested that the 

floodplain deposits represent two distinct depositional processes which should be 

regarded as separate units, namely the 'Holme Pierrepont Sand and Gravel', and the 

'Hemington Terrace' deposits. 

Six distinct lithofacies types have been identified and interpreted in terms of origin 

and position in the riverine tract. Three gravelly (A, B, C), two sandy (D, E) and one 

fine grained (F) lithofacies have been distinguished as representing deposition by a 

braided river system. Lithofacies A, Band C are proposed as the deposits of 

horizontal gravel sheets and midchannel bars; Lithofacies D and E as downstream and 

lateral accretion elements, and Lithofacies F , as overbank fines (the presence of a 

large organic palaeochannel within the classification of Lithofacies F provides a 

radiometric date of 13060± 90 CAL yr BP). 

The deposits, interpreted as best-fitting with the shallow gravel braided river ( Scot! 

type) model of Miall (1996) are suggested to have formed as a result of the outwash 

from the retreating Late Glacial (Devensian) Ice Sheet situated, at its maximum 

extent, to the west of the River Dove - River Trent confluence. The transition from a 

high-energy proglacial braid-stream environment during Late Devensian times 

through reduced energy conditions, interspersed with flood events during the 
. .: . - _ .' .....; -'l.lt. ~.'~ I. 

Flandrian, and finally, to the low-energy natu~e ·of the current sinuous channel is 

suggested to be more complex than ~reviousl¥ th~~~ht: 
, .. ' ',. . . ,', '''' ~ ... '. .'-' 
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1.1 Introduction 

Covering an area of 10435 square kilometres and draining much of the Midlands of 

England, the Trent River Basin (Fig.l) is one of the major contemporary river systems 

in the U.K. The Pleistocene deposits of the Middle Trent have been well documented 

(Straw & Clayton, 1979; Jones & Charsley, 1985; Brandon & Sumbler, 1988; 

Brandon, 1997) and, although there is no universal agreement on the precise nature 

and timing of events, the general glacial history of the area is in little doubt. The 

original mantle of Pleistocene deposits, underlain in most part by Triassic sediments, 

particularly Mercia Mudstone (Fig.2) has been dissected by subsequent erosion during 

Late Quaternary and Recent times. The products ofthis erosion are partly preserved in 

the terrace gravels and alluvial deposits lying in the main valleys. The solid and drift 

geology of the Middle Trent is provided with reference to figure 3. 

The floodplain deposits of the River Trent, previously regarded as the 'floodplain 

terrace', have been differentiated into an upper and lower terrace. The lower 'Holme 

Pierrepont Sand and Gravel' (after Charsley et ai, 1990) is regarded as Late 

Devensian in age whilst the upper 'Hemington Terrace' deposits (after Brandon, 

1997) are interpreted as having been accreted during 'possible Late Glacial times into 

the Late Flandrian' (Brandon, 1997). 

Much of the previous work on the floodplain deposits of the River Trent has focused 

on the nature of the sediments testifying to the overall environmental and climatic 

regime at the time of aggradation. Latest research (Brandon, 1997) has suggested a 

cold-climate braided system (Holme Pierrepont Sand and Gravel) followed by a 

meandering planform during a warmer period (Hemington Gravel). 

This research will consider more closely the palaeohydrological relationship between 

floodplain stratigraphy and river morphology, with particular regard to sedimentary 

facies analysis. Floodplain sediments are examined with a view to the identification of 

distinct lithofacies and the interpretation of these lithofacies in terms of origin and 

position in the riverine tract. Environmental conclusions are drawn based on this 

information. 
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A systematic palaeohydrological investigation was lUldertaken on the floodplain 

deposits at Barrow-upon-Trent, the site of an ongoing sand and gravel operation 

(Lafarge Minerals Ltd.). lbe findings of this investigation are presented in this report. 

1.2 Previous Research on British River Systems 

1.2.1 Context 

To fully lUlderstand the relevance of previous research to this study it is necessary to 

outline the general climatic and environmental conditions that prevailed during the Late 

Pleistocene. 

The Quaternary period, or Pleistocene began approximately 1.8 million years before 

present (BP) and is conventially subdivided into colder Glacial and warmer Interglacial 

stages. These stages are further divided into relatively short-lived Stadial (cold) and 

Interstadial (warm) episodes. These episodes are extremely important since they are 

associated with ice readvancementlretreat and have a marked effect on depositional 

regimes (see below). In Britain it is widely accepted that the last cold stage, the 

Devensian (Weichselian in Northern Europe), is divided into a Lateglacial (or 

Windermere) Interstadial and a Loch Lomond Stadial (Younger Dryas in Northern 

Europe). The end of the Loch Lomond Stadial, at approximately 10000 "C years BP, 

marked the close of the Devensian and the return to the warmer conditions of the 

Flandrian (Holocene in Europe). 

The maximum expansion of Devensian ice occurred during the latter part of the cold 

stage between 26000BP- I3000BP (Dimlington Stadial) and although ice sheets covered 

much of northern England, the Trent Basin was largely unglaciated (Fig.!). Previous 

glacial sediments originally deposited over large areas of the Trent Basin are now fOlUld 

as a dissected and eroded mantle largely occupying higher grolUld and thought to be 

Anglian in age (over 430000BP). Withdrawal of the Late Devensian ice sheets would of 

course led to an increase in meltwater to head streams and promoted massive 

3 
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sediment supply into the valley basin. Of course the depositional environment was 

very much more complex than outlined here. The Younger Dryas (11000 - 10000 BP) 

for example, illustrates the complexity of change that can occur within a relatively 

short period of time. This period was characterised by glacial readvancement which 

had a marked effect on the erosional/depositional regime, and consequently, channel 

stability. 

Readvancement would very likely have led to a reduction in meltwater, however, it is 

probable that the Trent was subject to major channel instability as a result of periods 

of high, short-lived discharges caused by seasonal snowmelt. The change from 

erosion to depostion is related to the relative magnitudes of the peak discharges and 

the available sediment supplied to the channel from adjacent hillsides (Rose et aI, 

1980). An added complication arises when a system, such as the Trent, is subject to 

periglacial activity (as was the case during the Younger Dryas) leading to different 

depositional mechanisms (i.e. hillslope gelifluction) and additional discharge sources 

(i.e. spring and summer melt of seasonally frozen ground). 

1.2.2 Research 

A significant part of this research concerns the sedimentological features of the 

floodplain terrace gravels of the Middle Trent. Other aspects of palaeohydrology 

equally as important, include palaeoclimatology, basin analysis, geomorphology and 

geochronology. 

Research relevant to this palaeohydrological investigation involve that which 

examines river basins and terraces thought to have experienced similar depositional 

processes. Many of these studies are based on historical examples, however modern

day analogies are available and include research carried out in Arctic, Canadian and 

European river systems (Bryant, 1983; Cant and Walker, 1978; Yamskkikh, 

1994,1996). 

Palaeohydrological and associated studies have been qarried out on a number of 

British rivers. Popular areas for investigation include the Severn, Avon and Thames 

Basins, although the deposits of the rivers Soar, Nene, Ouse and Gipping amongst 

others, have also been subject to scrutiny (Brown, 1994; Rose et ai, 1980). 

6 



The largest British river basin, the Severn, has been subject to a great deal of research. 

Brown (1991) has studied the Late Glacial and Flandrian development of the Severn, 

suggesting that the change from a high-energy braided system to a Iow energy 

anastomosing-meandering system could be interpreted at a scalar level. This suggests 

that the river system is a function of the changes brought on by different magnitude 

events such as a major climatic change at one level {'first order changes') or single 

flood episodes ('fourth order changes') at another. Similarly, Rose et al (1980) have 

looked at the form and development ofthe channel of the River Gipping over the past 

13,000 years and concluded that from a relatively stable condition in the early and 

middle parts of the Windermere Interstadial (Coope and Pennington, 1977) the river 

became unstable in the later part of the Interstadial and whole of Younger Dryas, and 

then stabilized again through the Flandrian. This interpretation, derived from 

geomorphological (i.e. incised channels), sedimentological and palaeoenvironmental 

(i.e. macroscopic plant remains, coleoptera, mollusca) evidence suggests that the 

instability is attributed to high, short-lived discharges caused by seasonal snow melt 

during this time. The floodplain evolution of the River Nene during this Lateglacial

Flandrian period has also been studied. Brown (1994) has suggested that the evolution 

of the Nene is fundamentally similar to that of the River Soar and has proposed a 

model that may be suitably applicable to other temperate lowland rivers. Whilst 

recognising that there are local variations (such as basin size and geology) the model 

suggests that many lowland rivers experience the braided - active meandering - stable 

anastomosing - sinuous change during this climatically active period 

The terrace deposits of a number of British rivers have been investigated. Dawson and 

Gardiner (1987) give a review of the terrace deposits of the Severn with particular 

regard to palaeohydrological modelling, whilst Sumbler (1995) has proposed a 

correlation between the terraces of the upper Thames with the River Thame on the 

basis of long profiles. This has in turn suggested a two-phase Anglian glaciation for 

the region. 

Sedimentological and facies analysis has been carried out on many river terraces. 

Research by Maddy et al (1994) has reappraised the Middle Pleistocene fluvial 

deposits of the River Avon and looked at their significance for the Wolston glacial 
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sequence. The sedimentological study identifies lithofacies types and, combined with 

environmental and climatic information gathered from organic fills, suggests that the 

sequence is much more complex than previously thought. 

Many palaeohydrological studies examine the sedimentological properties of terrace 

deposits (such as maximum clast size) in combination with channel dimensions and 

morphology. Dury et al (1983), studying the Severn, placed particular emphasis on 

the reconstruction of palaeo-discharge based on former channel dimensions. Maizels 

and Aitken (1991) examined deglaciation in upland areas ofN.E. Scotland and, whilst 

recognising the limitations of palaeodischarge methodologies, agreed that valley 

terrace systems contain' significant evidence of the nature of hydrological changes 

occurring within these catchments during, and since, deglaciation'. 

The environment and processes which led to the development of ancient terrace 

deposits are clearly very different to those now operating in the U.K. Comparison 

with modem day analogies allow us to better understand this depositional 

environment. The floodplain gravels of the River Nene were studied extensively by 

Castleden in 1976. Using modem day analogies from the Arctic, Castleden proposed 

that the composition, morphology, stratigraphy and age of gravel flooring the Nene 

Valley provided evidence of ancient river behaviour very different than that at 

present. He suggested that the Middle Devensian River Nene was certainly braided 

and carried a coarse and 'excessive' load which led to aggradation of the floodplain 

deposits. The adaption to the meandering habit in a large single channel occurred 

during Flandrian times. Analogy with Arctic river systems has also been attempted for 

a number of other British river systems (Bryant, 1983). 

Many other smaller river systems have been studied over recent years. These studies 

have looked at specific but ultimately overlapping aspects of palaeohydrology 

including sedimentation (River Tywi; Smith, 1989), palaeoflow (Kennet Valley; 

Cheetham, 1976), stratigraphy (Upper Axe Valley; Macklin, 1988), valley floor 

development (River Swale; Taylor and MackIin, 1997) . and climatic reconstruction 

(Wye Valley; Hey, 1991). 
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1.3 Middle Trent Valley 

The Pleistocene deposits of the Middle Trent Basin have been the subject of much 

discussion by various writers. 

An account provided by R.M. Deeley in 1886 gives descriptions of the 'Interglacial 

river' terrace gravels and presents a basic summary of the Pleistocene successsion in 

the Trent basin. Swinnerton (1937) differentiates the terrace deposits into two, namely 

the 'Flood-plain' Terrace and the Beeston Terrace (equating with the Second Terrace 

of the Pocock (1929)). Later added to these was the Hilton Terrace as proposed by 

Clayton (1953). Posnansky (1958) suggested that the deposits, recognised as the 

'Floodplain Terrace', were certainly post-Eastern Glaciation and, although Rice 

(1968) said that 'no general agreement on their (the terraces of the Trent) 

interpretation has emerged', it is now widely accepted that the 'Floodplain' deposits 

of the Middle Trent are a Devensian, or later phenomena. 

Previously referred to by many authors as the 'Floodplain Terrace' (after Swinnerton, 

1937) and then the 'Floodplain Sand and Gravel' (Brandon and Sumbler, 1988) the 

floodplain Sands and Gravels of the Middle Trent are now differentiated into two 

distinct horizons, each representing different depositional processes (Table I). The 

underlying 'Holme Pierrepont Sand and Gravel' (after Charsley et aI, 1990) is said to 

form the bulk of the deposits across the floodplain and consists of sediments reworked 

from earlier depositional events. The deposits of the 'Hemington Terrace' (after 

Brandon, 1997) are thought to represent a post-glacial phase and consist of sediments 

reworked from the underlying Holme Pierrepont Sand and Gravel. 

In contrast to many earlier authors, Brandon, (1997) has distinguished between the 

terrace features per se and the deposits that comprise the terrace. Accordingly, this 

form of classification will be followed in the coming chapters. 

9 



Quaternary Approx. Age Conditions Terrace 
Stage (commencement) 

Alluvium 
Flandrian Warm 

IOk Hemington Terrace 

Younger Ilk 
Dryas Holme Pierrepont Sand and 

26k Gravel 

65k 
Cold 

Devensian 

80k Beeston Sand and Gravel 
115k 

Ipswichian l28k Warm 
Eggington Common Sand and 

195k Gravel 
Wolstonian Cold (Lower Hilton Terrace Depositsl 

240k 
Etwall Sand and Gravel 

297k (Upper Hilton Terrace Deposits) 

Table I 

1.4 Objectives 

This contribution aims to describe and interpret the floodplain deposits of the Middle 

Trent using palaeohydrological techniques, particularly sedimentological and facies 

analysis, and provide a review of the environmental conditions that prevailed at the 

time of aggradation. The discussion will consider the following: 

• During the adaptation of the Trent Basin from an ice marginal system to an 

interglacial regime, how and when did the change occur from a braided to a 

meandering reach? 

• What is the relationship between floodplain stratigraphy and river morphology? Can 

the deposits of the Lateglacial-Flandrian I braided-meandering systems be confidently 

distinguished? 

10 



• If, as suggested, there was reworking of Lateglacial sediments during Flandrian 

times is it possible to determine exactly when this happened and what pre-empted 

this? 

• How does the nature of the sediments at Barrow-upon-Trent compare with other 

reaches of the River Trent? 

• How relevant is the Trent basin to established depositional models? 

11 



2. Methodology 

2.1 Understanding River Channel Changes 

2.1.1 Palaeohydrological Overview 

The evolution of the fluvial environment is largely a function of the interactions 

between water discharge and sediment transport conditions. These fluvial processes 

are continuously changing through time with the influence of climatic and other 

variations. The changing rates and character of fluvial activity inevitably leads to 

changes in morphology and sedimentology of the river system. 

The science of 'Palaeohydrology' has been defined by a number of authors since the 

1950's (Leopold and Miller, 1954; Schumm, 1965; Gregory and Walling, 1973; 

Cheetham, 1976; Dury, 1977). The most widely quoted definition, provided by 

Schumm (1977) and amended by Gregory (1983), is that 'Palaeohydrology can be 

defined as the science of the waters of the earth, their composition, distribution and 

movement on ancient landscapes from the occurrence of the first rainfall to the 

beginning of continuous hydrological records'. The major aim of fluvial 

palaeohydrology lies in achieving the reconstruction of former river systems based on 

the reconstruction of the conditions and processes that operated in such environments. 

The reconstruction of the palaeohydrological cycle is achieved by utilising a wide 

range of techniques and approaches that reconcile data from a number of different 

scales (Gregory, 1983). The purpose of this section is to give a brief review of the 

methodologies available for palaeohydrological reconstruction. A number of 

techniques have been deliberately omitted from this review because, whilst they are 

recognised as very important tools in environmental reconstruction, they are not 

immediately relevant to this research. These include sea level analysis, 

palaeopedology, thermoluminescence and magnetic studies. 

As an interdisciplinary field, palaeohydrology has fou~dations in geomorphology, 

palaeohydraulics, palaeoclimatology, and palaeoecology and archaeology. 

Geomorphological methods aim to distinguish channels, floodplains and terraces, and 

estimate palaeodischarge. The division into braiding, meandering and transitional 

12 



rivers is based on the detailed characteristics of channel parameters: width (w) depth 

(d) length of meander (I) river gradient (s) and sinuosity. Formulae and equations 

involving those parameters (Leopold et ai, 1964. Dury, 1977a; Schumm,1977) can be 

used for the reconstruction of the palaeohydrologic regime (StarkeI, 1983). 

Differences in sedimentary textures, bed forms and facies types reflect changes in 

hydraulic conditions, particularly in velocity, bed shear stress and stream power 

(Gregory and Maizels, 1991). Gregory and Maizels have defined these sedimentary 

parameters within a 'hierarchical scalar structure'.This ranges from individual clastic 

particles at a single point or cross-section of the palaeochannel, through to aggregates 

of particles as bedforms and bars, described stratigraphically in terms of their 

lithofacies characteristics and, at a larger scale where the intrinsic processes, channel 

pattern and sedimentology of a river system can be defined in terms of a particular 

facies model. The palaeohydraulic significance of fluvial sediments therefore varies 

depending on the scalar level at which the sediments are considered. Smaller scale 

features are widely used as a means of interpreting the flow hydraulics whilst larger 

scale features can indicate former fluvial conditions and long term changes in both 

fluvial activity and depositional history. 

The prediction of former fluvial discharge is a primary goal ofpalaeohydrology since 

it influences the formation of a particular channel pattern (Leopold and Wolman, 

1957) the hydraulic geometry and the accumulation of sediments. Most methods of 

palaeoflow determination are based on direct analogies either with hydraulic relations 

between sediment and flow parameters in present day rivers or flumes, or with 

geomorphic relations between channel morphology, channel sediments and discharge 

measures observed in present day rivers (Maizels, 1983). The development of these 

two approaches has produced a large number of possible methods for palaeovelocity 

and palaeodischarge determination. Theoretically, it is possible to determine past 

river discharge on the basis of its effects, firstly through analysis of deposits of 

former streams (e.g. Dawson and Gardiner, 1987) and secondly through analysis of 

preserved morphological effects caused by a given discharge (e.g. Maizels and 

Aitken, 1991). Unfortunately, the relationships betweenthe deposits, structures and 

statistical parameters are so complex and ambiguous that they cannot be expressed in 

any current quantitative models. None of the methods of palaeovelocity or 

palaeodischarge analysis (e.g. Manning, Chezy, Darcy-Weisbach equations) provide 
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particularly accurate results due to the difficulties in determining former channel 

conditions and because of the procedural assumptions which have to be introduced 

during the calculations. However, they may at least indicate the order of magnitude of 

palaeoflows. 

The climatic regime, in particular air temperature, evapotranspiration, precipitation 

and their annual variability, is one of the main parameters causing change in the 

fluvial system. Intimately related with these climatic variables is vegetation (cover 

and type) which has a significant effect on runoff characteristics, sediment yield and 

erosivity of the channel banks. Temperature change can be deduced from 

palaeobotanical information and coleopteran remains, together with the presence of 

periglacial phenomena (i.e. ice wedge casts) during colder cycles. Such features have 

been recognised by Brown (I992) who suggests that the Devensian and Holocene 

sediments of the River Trent are only distinguished at one location by the presence of 

ice wedge pseudo morphs truncated by medieval gravels. 

The presence of organic remains are also extremely important for age correlation, and 

radiocarbon dating probably remains the most commonly applied geochronological 

tool in fluvial palaeohydrology (Baker, 1991). The value of the radiocarbon method 

stems from both its accuracy and the wide range of materials that can be analysed, 

including charcoal, wood, fine grained organic detritus (twigs and seeds) organic rich 

palaeosols and peaty deposits. The delicate nature of these deposits, however, allows 

that they only develop in sites protected from channel erosion for a sufficient period. 

One of the most important controls on channel adjustment during the Flandrian must 

be that of human impact. Our understanding of this impact on the hydrological 

landscape is mainly deduced from archaeological evidence (e.g. Knight and Howard, 

1994). Human activity may be classed as direct or indirect, and either way, these 

effects may have a catastrophic consequence for the fluvial regime. There is no doubt 

that the impact of human activity is more important in Holocene times than earlier. 

Deforestation and cultivation of soils have a direct effect on runoff rates and sediment 

load variation, as do the modifications of drainage networks (Starkel,199 la). 
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2.1.2 River Terraces 

Representing abandoned floodplains, River terraces form a fundamental part of the 

fluvial system. They may occur as corresponding sets on both sides of the valley, 

termed 'paired' terraces, or as a single matchless terrace on either side of the valley. 

Paired (or 'cyclic') terraces form as a result of rapid incision whilst unpaired (or 'non

cyclic') terraces are formed as a consequence of lateral channel migration and erosion 

such as experienced in a slower meandering reach (Schumm, 1977). 

River terraces can develop by direct incision into bedrock, or more commonly, from 

episodes of aggradation and incision of unconsolidated alluvial sediments. The 

destruction and reworking of alluvial deposits by subsequent fluvial activity leads to 

older terraces being only preserved in fragments, usually at higher levels. 

The development of terraces by either river incision or aggradation may result from a 

number of factors. These include changes in climate, sea level (base level) and 

tectonism, and the effects of glaciation and human activity. A model of fluvial terrace 

formation has been recently proposed by Bridgland (1984) and revised by Bridg1and 

and Alien (1995). The model considers the development of the terraces of the Thames 

and suggests a multi-phase cycle of aggradation and incision activated initially by 

climate set against a background of localised isostatic adjustment. Incision, controlled 

by eutectic changes, under cold climatic conditions is superceded by aggradation as 

erosion is exceeded by sediment supply. A phase of reduced deposition, under 

temperate conditions, is then followed by renewed incision and aggradation as climate 

deteriorates. As discharge exceeds sediment supply, incision again becomes the 

predominant activity. 

The importance of river terraces lies in their inherent ability to provide valuable evidence 

of former fluvial conditions. The sedimentoIogy of terrace deposits provides essential 

information with which to reconstruct palaeochannel morphology and dynamics, and 

further increases our understanding of the processes )hat operate in the fluvial 

environment. River terraces also represent a reference level in a river system and give a 

relative chronology which can be related to other palaeohydrological events and 
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provide a correlation between sequences in different areas. If terrace deposits contain 

relict organic material then radiocarbon dating is possible, in addition to the 

inferences that can be made as to the former climatic and hydrological conditions. In 

Britain the terrace deposits of the Thames, the Severn and the Trent have been 

designated into glacial/stadial and interglacial/interstadial stages partly on the basis of 

organic remains. (eg Bridgland, 1994; Gibbard, 1994). 

2.2 River channel changes on the Middle Trent 

Palaeohydrological reconstruction relies on evidence from a number of sources 

including aerial photography, ground surveys (topographic, geological and 

geomorphological), strati graphical and sedimentological analysis, and age 

determination. The purpose of the section following is to briefly explain the relevant 

methodologies that were used in this research. 

2.2.1 Regional context 

Providing an accurate picture of the prevailing Late Glacial and Flandrian conditions 

of the Middle Trent necessitates that palaeohydrological evidence is considered over 

the full reach. The approach taken in this research is typical of a number of 

palaeohydrological studies on British and continental rivers (e.g. Lower Severn basin 

- Brown, 1983; Rivers Twymyn, Dee and Teme - Lewin, 1983; Esk, Dee and Don 

valleys - Maizels and Aitken, 1991; Rivers Nene and Soar - Brown, 1994). 

Valley floor morphology has been determined from the interpretation of aerial 

photographs and the comparative analysis of Ordnance survey maps (1: I 0000 and 

1:25000). Palaeochannel scars, representing previous courses or incursions of the 

Trent, were identified by means of aerial photographs (Fig A) whilst floodpJain 

delineation (Fig.5) and topographical variation was established from the combined 

photographic and map information. 
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To fully understand the geomorphological and sub-surface structure it was necessary 

to examine borehole evidence along the valley. Stratigraphical correlation from 

boreholes and hand augering is a technique that has proven invaluable in 

palaeohydrological investigations of lowland river valleys (e.g. Severn valley -

Brown,1983; River Soar - Bradley and Brown, 1992). Apart from studying working 

gravel pits, the examination of existing borehole/trial pit evidence provides a wealth 

of information that would otherwise not be available. 

Many thousands of boreholes have been drilled on the floodplain between the 

confluence of the River Trent with the Rivers Dove and Derwent over the last 50 

years. They have been drilled for a multitude of reasons including mineral 

exploration, hydrological evaluation (including natural water and sewage), civil 

engineering schemes and stratigraphical correlation. The majority of these records are 

held by the British Geological Society under the general agreement (and to protect 

economic investment) that they are not released to the public without the prior 

permission of the company or government agency concerned, or until a period of 25 

years has elapsed. Despite the problem of accessibility, the borehole records reveal 

many important features upon the surface and subsurface geomorphology of the River 

Trent floodplain. Before concentrating on these geomorphological features, it is worth 

briefly considering the relative usefulness of the borehole data. 

The borehole logs provide valuable information on Ordnance Datum (0.0.) levels and 

enable morphological features to be identified on the floodplain, in addition to 

reflecting the long profile of the river. Essential information is provided on the 

geology of the deposits, their depths and whether any special features exist within the 

deposits. It should be acknowledged, however, that various agencies are used to 

record different boreholes, some of which describe and class the deposits differently. 

This causes a problem in interpretation and correlation between boreholes since only 

the written log remains and inevitably this leads to 'sifting out' of data. Most 

boreholes are drilled with reference to particular schemes, i.e. motorway link, mineral 

extraction, ground water levels, and are therefore logged. appropriate to that scheme. 

On many occasions this does not provide all the relevant information for correlation 

between cores, i.e. a certain project may only be interested in the thickness of 

'overburden' above bedrock and not the division of units. The uneven spatial 
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distribution of boreholes also means that many boreholes are often superfluous to 

requirement whilst in other areas a scarcity of information exists. Additionally, 

borehole distribution is purely a reflection of a particular drilling scheme (i.e. gravel 

pit, road link, etc) and the available floodplain area. This may explain why a 

predominance of borehole information exists on the northern floodplain of the River 

Trent (greater floodplain area). 

2.2.2 Local context: Barrow-uron-Trent site 

Detailed investigations of single sites provide valuable information locally and, by 

inference, valuable data for regional analysis. The main study site at Barrow-upon

Trent (Fig.4) covers an area of over 75 hectares on the northern bank of the River 

Trent at one of the floodplains widest points (2km). The site is bounded to the south 

by the contemporary channel of the Trent and at its furthest point is 1.25km away. 

Over 150 boreholes have been drilled at Barrow-upon-Trent over a number of years. 

This large database, together with the regular distribution of the boreholes provides 

extremely useful information on the subsurface geology of the deposits. A 

comprehensive topographical map complements the borehole data and provides 

additional information on geomorphological features. A total of 38 boreholes were 

drilled at the Barrow-upon-Trent study site in 1986 (refer to Fig.9) in order to assess 

the future economic viability for sand and gravel production. These boreholes were 

relatively evenly distributed across the site and detailed the basic geological structure 

of the site. Reference was also made to other features such as the presence of cobbles, 

coal/charcoal fragments and organic deposits. Recording the height of distinct 

geological units within each borehole allowed a three-dimensional image to be created 

of that unit across the site. This highlights any geological and geomorphological 

variation in an easily viewed format. A similar approach, looking at fine alluvial 

sediments, has been used previously on the River Nene (Needham and Macklin, 

1992). 

The images created were of a relatively simplistic nature and it was considered that 

the GIS IDRlSI package was most appropriate. The particular application used was 

INTERPOL, a data entry module that interpolates a full surface from point data. The 
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interpolation relies on data input as vector format, which in this case meant that 'X' 

and 'Y' co-ordinates represent the location of the borehole on the grid and the 'Z' co

ordinate was the Ordnance Datum height of the particular geological unit. The profiles 

that were generated are discussed in the results section. 

It is important that study sites contain the required full sedimentary sequence in order 

to assess changing conditions over time. The presence of laterally extensive working 

quarry faces at Barrow-upon-Trent facilitated this. Sedimentological study included 

detailed logging of the lithographical units, taking account of thickness, colour, 

grainsize and structural variation and the relationships of particular units with others. 

Thirteen locations (refer to Fig.10) were chosen for detailed study. The locations 

provided accessible, exposed sections selected mainly on the basis that they illustrated 

particular lithofacies types and showed the vertical relationships of the lithofacies 

with each other. Studying laterally extensive faces allowed any lateral variation in 

sedimentology to be recorded and highlighted the overall relationships between 

lithofacies types and sedimentary sequence (eg. such as matrix-supported orange 

gravel overlying clast-supported pink gravel). Other locations were selected because 

they contained palaeoenvironmental data or recorded the presence of special 

sedimentary features, ego clay drapes. 

Eight detailed sedimentary logs were carried out along three major quarry faces, with 

field sketching and photographic documentation providing additional support. 

Palaeocurrent analysis was employed where possible, data being largely obtained from 

the measurement of cross-stratified sand sets (5 locations) and pebble imbrication (I 

location). In-situ bulk samples of the various lithological units were taken for further 

facies analysis, the laboratory tests including particle size, cIast composition and shape, 

and relative palaeodischarge estimation. Fifteen samples, selected from recognisable 

lithofacies types, were taken for coarse grainsize analysis (i.e. greater than silt grade). 

The samples were dried, weighed and screened through sieves ranging from -5phi 

(32mm) to +5phi (0.032mm) and the results plotted as standard grading curves. 

Additionally, seven samples were selected from the maJor palaeochannel deposit at 

location I for fine grading analysis (clay/silt/sand content) Samples were taken at IOcm 

intervals from the upper surface of the channel to its base and submitted for grainsize 

analysis by sedimentation (Pipette method, B.S.1377, Part 2). This was carried out 
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primarily to distinguish sediment grading throughout the palaeochannel and to give an 

indication of relative deposition. The method involved mixing approximately 25 

grams of sediment with a water and Calgon solution (antiflocculent) and then passing 

through a 4phi sieve to separate off the sand fraction. The silt and clay fraction was 

further mixed with water and made up to 1000mls. By pipetting off 25mls of 

sediment-water mix at varying time intervals, and taking into account the Calgon 

percentage, it was possible to calculate the clay and silt fraction of the sample 

(applying Stokes Law). Organic carbon analysis was also carried out on the fine

grained channel sediment samples in order to establish whether conditions became 

more or less anaerobic over time. The samples were boiled in hydrochloric acid to 

remove any carbon due to carbonates and then washed with distilled water. The 

resultant sediments were then tested for carbon using a Leco carbon and sulphur 

analyser, the results considered to represent organic carbon content. The presence of 

the organic fill deposits also allowed palaoenvironmental reconstruction and dating 

(both particular and relative) oflithological units. Approximately 10 grams of sample 

from the 10 - 20cm interval (from top) of the palaeochannel was submitted for 

radiometric dating to 'Beta Analytic' in the USA. The sample, taken by Malcolm 

Greenwood of Loughborough University Department of Geography, was analysed 

using the conventional beta-counting method rather than the AMS (Accelerator Mass 

Spectrometry) system, which is widely acknowledged to give a greater reading 

sensitivity (Ramsey, 1999). For the purpose of this research, and given that the 

samples may have been subject to 'hard water effect' (i.e. dissolved carbonates) and 

the presence of extraneous carbon from coal, the conventional method provides a 

valuable reference level. 
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3. Stratigraphical Correlation of Borehole Data 

3.1 Stratigraphy of the study area based on regional boreholc data 

The spatial distribution of the boreholes dictated where the geological sections could 

be drawn. The sections, are of greater value where they cross the River Trent and 

reveal the floodplain to both the north and the south. 

In all, three major transects were drawn (refer to FigA) each of which will be dealt 

with in detail later. The first transect (A l-A2) covers a distance of approximately 

IOkm, following a SW-NE trend, crossing the River Trent lkm to the east of Stanton 

by Bridge and proceeding to cross the floodplain of the River Trent and River 

Derwent before crossing the Derwent lkm to the north of Ambaston. Section BI-B2 

crosses the River Trent 1.5km downstream of section A-A I across a relatively narrow 

stretch of floodplain approximately lkm NNE of Kings Newton. This section trends 

SSE-NNW and covers a stretch of only 400m. The final transect, CI-C2, lies a further 

5.5km downstream, approaching the Trent-Derwent confluence. This section covers a 

distance of 6.5km across the floodplain, trending ESE-WNW and crossing the Trent 

approximately lkm to the south west of Cavendish Bridge. The borehole data from 

which the three transects were constructed is presented in appendix 1. 

It is clear, from the location of the 3 transects that there is a predominance of bore hole 

information in the lower reaches of the Middle Trent floodplain, i.e. more towards the 

River Derwent than the River Dove. 

In addition to the information gained from the three major transects, there are also 

particular areas of the floodplain which, although having limited borehole data, do 

provide information on special features (such as deep channels or the presence of 

organics). 
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Of particular interest to this research is the borehole data relating to the main study 

site at Barrow-upon-Trent. This obviously requires special attention and will be 

considered later. 

3.1.1 Section AI-A2 

Section AI-A2 (Fig.6a,b,c) is the longest of the transects, following a line which 

crosses the floodplains of both the Trent and the Derwent. This provides a useful 

comparison between the relatively restricted floodplain of the Trent near Stanton-by

Bridge and the extensive floodplain of the River Derwent as it approaches its 

confluence with the River Trent. 

The River Trent to the east of Stanton-by-Bridge is bounded to the south by a very 

narrow floodplain width. A rise from the floodplain level of 36m O.D. to 43.5m O.D. 

over a distance of less than 40m clearly illustrates this boundary. The total floodplain 

width of the Trent at this location is approximately 1.5km and merges to the north into 

a hinterland comprising of Boulder Clay overlying Mercia Mudstone. Moving in a 

north easterly direction, the level drops from 57.54m O.D. at its highest Till capped 

peak back to the Derwent floodplain at around 36m O.D. The relatively wide 

flood plain area (- 4.5m) close to the confluence of the Derwent with the Trent then 

rises more gently to the north into Mercia Mudstone bedrock. 

There is tremendous variation in the thickness of overbank fines and gravel sediments 

even in proximal boreholes. This variation illustrates the complexity of the depositional 

regime. The irregular nature of bedrock levels, whilst perhaps a reflection of zones of 

weakness and competence within the strata, may indicate channel incision. 

Topsoil thickness remains relatively constant over the floodplain (approx. O.3-0.5m), 

however, alluvium cover, whilst generally between 1-2m thick, (occasionally up to 

3m) in many places is absent altogether. Similarly gravel thickness varies enormously. 

The borehole information reveals a marked difference between the floodplain deposits 

of the River Trent and the River Derwent along this Iin~ of section. The sand and 

gravel thicknesses on the extensive Derwent floodplain tend to be in the region 2-4m 
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(occasionally thicker in some channels) whilst the thicknesses over the floodplain area 

of the Trent around Stanton-by-Bridge are typically in the region of 3-6m. This 

might be expected considering the relatively restricted floodplain at this point. In 

places, on both floodplains, there is distinct incision into the bedrock below. 

The section also indicates the presence of higher elevated gravel horizons particularly 

noticeable flanking the Derwent flood plain. On the northern flank it appears that two 

distinct gravel elevations, or terraces, are present, one starting at a level of 36.5m 

0.0. above bedrock and the higher starting at approximately 41.5m 0.0. above 

bedrock. On the southern flank only the lower terrace seems present. It is not clear 

from the boreholes, however, if there is a morphological distinction between the 

gravel terraces. 

Occasionally the presence of clays and organic deposits is noted towards the top of 

the gravel particularly ·recorded in proximity to the existing channel of the River Trent 

around Stanton-by-Bridge. These deposits are upto 2m thick in places and are a clear 

indication of much reduced activity in the river system at the time of deposition. 

3.1.2 Section 81-82 

Section B I-B2 (Fig.7) follows a line of boreholes which were drilled sometime ago 

for a potential motorway crossing. The section covers a distance of approximately 

400m, crossing the River Trent Ikm to the NNE of Kings Newton. At this point the 

Trent floodplain is at its narrowest at less than 1 km across. North of the River Trent 

the floodplain is only 180m wide before being sharply bounded by a higher gravel 

terrace overlying Mercia Mudstone. From a floodplain elevation of approximately 

34m 0.0. at this point, there is a sharp rise of over 5.5m within a distance of 30m or 

so. 

There is a clear difference in floodplain elevation to the north and south of the river. 

To the north the floodplain rises from an elevation of.34.6m 0.0. to 35.6m 0.0. 

within 35m of the river before dropping back again just as quickly and then gently 

reducing to a level of33.9m 0.0. before the floodplain boundary. South of the river 

the floodplain occupies a constant elevation of 35. 7m 0.0 .. 
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Fine-grained alluvial deposits show greater development to the south of the River 

Trent - thicknesses of 2.Sm seem common - whilst to the north the alluvium appears 

wedge-shaped, starting from less than 2m furthest away from the river and becoming 

non-existent, 20-40m before the ri ver banle 

Gravel thicknesses south of the river are also constant at a level of approximately 

3.Sm. There is a distinct increase in thickness proximal to the existing river channel 

as would perhaps be expected, however, it is interesting that the maximum depth of 

sand and gravel (approx. 6.Sm) is not directly beneath the existing channel but is 

skewed slightly to the north. This may indicate possible channel migration over time. 

3.1.3 Section Cl-C2 

Section C I-C2 (Fig.8) covers a distance of over 6km, almost all of which is across the 

Trent floodplain. The transect trends ESE-WNW from north of Lockington to north of 

Alston-upon-Trent and crosses the River Trent approximately 2.5km upstream of its 

confluence with the River Derwent. A number of features are worth comment, 

particularly regarding the enormous variation in floodplain elevation and thickness of 

deposits. 

Apart from the irregular nature of the floodplain surface to the south and east of the 

River Trent, the general elevation of this floodplain area is much lower than to the 

north and west of the river, and much lower than is seen in either of the other 

transects. Along the line of section the mean elevation to the north and west is 

approximately 30.0m 0.0. proximal to the river, however after a distance of Ikm this 

rises to around 34m 0.0. To the east, mean elevation is approximately 30.Sm 0.0. 

for at least 3.Skm. This may be evidence of the reduction in the long profile of the 

River Trent, however it seems clear from the borehole data that this reduction is 

sudden and not gradual as might be expected. 

Alluvium thickness, although highly variable, is generally.between I -2m. Occasionally 

this increases to 3m whilst in other areas is virtually non-existent. Similarly the gravel 

horizon varies between O.8m (BH221) and 8.3m (BH148). It is interesting that the 
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lowest gravel depths lie immediately beneath the existing river channel of the Trent. 

This is in direct contrast to the information from sections A and B. The greatest 

gravel depths can be found flanking the existing channel on both sides of the Trent at 

a distance of approximately I.Skm. How significant this may be is not clear. As the 

section progresses westwards it is again possible to identify a higher gravel terrace 

moving into a clay/till deposit. 

3.1.4 Other Features of borehole data 

In addition to the information gained from the three major sections crossing the River 

Trent, there are also other features present and logged in other boreholes that warrant 

special mention: 

a) Deep channels/pockets 

In locations where borehole information is spatially distributed over an area, rather 

than in a linear fashion, it may be possible to identify features that exist on a three

dimensional scale. This is especially apparent in the main study area, but also seems 

to be the case on the floodplain north of the river around Willington power station. A 

number of bore holes suggest relatively deep gravel deposits (6-7m) rising gradually to 

shallower levels on both sides. The boreholes also suggest the presence of isolated 

deep gravel pockets within the floodplain. These features may represent braided-river 

scour holes 

b) Cobbles 

The presence of large cobbles seem to be associated with increased gravel depths. A 

number of boreholes record the presence of large stones or cobbles towards the base, 

especially in the deeper gravels. The presence of these larger stones are important 

and prove invaluable (e.g. Maizels, 1991) when it comes to reconstructing the 

hydraulic regime at the time of deposition i.e. greater size equals greater stream 

power. 
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c) Organic silts/clays 

A number of boreholes record the existence of dark organic silts, clays or peats within 

the strata. In some cases the presence of these deposits is recorded very close to the 

existing river channel (as in section A-AI) whilst in other boreholes they are more 

distaI. These deposits are also found at various depths within the sequence, whether it 

being the top, the base or within the sands and gravels. The presence of these deposits 

is important since they represent periods of relative inactivity (low energy) in the river 

system. This is in addition to any information that might be provided from the 

organic content of the material Le. coleopteran remains, macro/microfossil data. 

d) Molluscs 

Very occasionally, reference is made in the borehole logs to the presence of mollusc 

shells within the strata - one such borehole lies approximately I km north of the 

existing Trent channel and 500m east of Twyford. Because of their fragile nature 

these tend to be associated with the presence of fine-grained deposits (silts/clays etc). 

Unfortunately, very little information is often provided regarding the type of shell 

found, although the presence of molluscs themselves do reveal valuable information 

about the alluvial regime. 

3.2 Summary of regional borehole data 

The analysis of the borehole evidence has clearly provided valuable information on 

the floodplain of the Trent between its confluences with the River Dove and River 

Derwent. 

There is tremendous variation in alluvial and gravel thicknesses, even in very close 

proximities, and the presence of deep channels and pockets within the strata 

emphasize the enormous variability that exists, and has existed within the river 

system. The presence of glacial deposits, organics, molluscs and extreme grainsize 

variation and grading (Le. coarsening to cobbles at base) add to this 

palaeohydrological variation. 
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Consistently low alluvial thicknesses on wide floodplain areas is somewhat 

unexpected and there does not seem to be any direct correlation between alluvium 

cover and gravel thickness. Nor does any clear relationship exist between thicknesses 

of various strata and proximity to the existing river channel. It is perhaps generally the 

case that gravel thickness does increase towards the river but often this increased 

thickness is not directly under the contemporary channel but skewed to one side, 

perhaps indicative of channel migration. 

3.3 Statigraphy of Barrow-upon-Trent based on borehole data 

Analysis of aerial photographs reveal the presence of possible palaeochannels cutting 

through the southern half of the site (refer to Fig.4). Unfortunately, the topographical 

data does not provide evidence of increased or decreased elevations matching any 

such channel development although this is not particularly unusual. There are areas 

of raised elevation within the site, however these 'islands' seem to be fairly random in 

nature. Floodplain elevation shows a distinct decrease in a downstream direction from 

approximately 39m O.D. to just over 37m O.D. eastwards as would be expected from 

long profile. 

The alluvium cover over the site is relatively thin given the area of open floodplain. 

Thickness of alluvium range between O.1m - 1.9m, increasing towards the existing 

river channel. Gravel thicknesses, when compared with other areas of the Trent 

floodplain, tend to be consistently high over the whole site and show a marked 

increase in the southern section. Thickness of 6m+ are not uncommon. Even deeper 

gravel channels and pockets can be identified running through the site, and the highest 

recorded gravel depths of 11.5m are present in the south western corner close to the 

existing river channel. 

Other features, such as the presence of large stones, coal/charcoal fragments and 

organic silts are recorded in boreholes throughout the site. 
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3.3.1 Three-Dimensional Profiles 

Four profiles were generated, these representing the current surface level across the 

site, the topsoil/alluvium interface, the alluvium/gravel boundary and the bedrock 

contour. These images can be seen with reference to figure 9. The image created for 

each unit shows a degree of vertical exaggeration in order to illustrate and exacerbate 

any variation present within the strata and highlight the presence of high/low points 

and channel alignment. 

The profiles should be considered in conjunction with each other to be of most value 

though it is clear even from a cursory glance that a distinct alignment exists in all the 

deposits showing an approximate South West - North East trend. This is interesting 

when a comparison is made with earlier aerial photographical analysis which clearly 

shows palaeochannel scarslhaloes progressing across the southern half of the site in a 

very similar orientation. Each profile is considered briefly below. 

1. Surface Topography 

The profiles indicate a fairly variable surface topography with noticeable high points 

in the central area of the site and, most markedly in the far northwestern corner. A 

distinct 'channel' alignment exists in a SW - NE trend which is particularly 

pronounced in the southern section. 

2. Topsoil/Alluvium Interface 

This interface is almost a mirror-image of the surface topography which is more or 

less to be expected given that topsoil thickness is approximately O.3m across the site 

and shows very little variation. 

3. Gravel Surface 

The upper gravel surface is distinctly different to the surface and alluvium profiles 

and, whilst still showing depressional linear features, these are now much more 

pronounced. 
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There is a greater preponderance of high points in the sands and gravels towards the 

southern half of the site. Comparatively lower contours are found at the southwestern 

edge of the site and this, when compared with the alluvium surface profile, indicates 

greater thicknesses of alluvium in this vicinity. 

4. Bedrock Contour 

The bedrock contour is the least variable of all of the profiles although some channel 

alignment is clearly visible. The most noticeable feature of this contour is the marked 

low point or 'pocket' at the southwestern edge. When compared with the upper gravel 

contour this indicates a much increased thickness in the sands and gravels at this 

point. Channel development seems almost exclusively restricted to the southern half 

of the site. 

Whilst borehole analysis is an. extremely valuable tool, it can only provide a 

somewhat limited picture in palaeohydrological reconstruction. For a more complete 

investigation it is necessary to examine the deposits at first hand. 

35 



4. Field Investigation 

The field investigation at Barrow-upon-Trent was carried out at the Redland (since 

'Lafarge') Aggregates sand and gravel pit (G.R. SK32NW 344284) and focused on the 

working aggregate faces as quarrying operations progressed. Figure 10 illustrates the 

position of these faces over a period of time and gives the location ofthe sedimentary logs 

referred to later. Representative sections were drawn where appropriate allowing the 

recognition and analysis of sedimentary facies and their change (vertical and lateral) over 

distance. Although the textural and structural monotony of many gravel deposits make the 

recognition and correlation of bounding surfaces more difficult (re: Smith, 1990) the 

sedimentary units referred to are laterally extensive both locally and over the site as a 

whole. 

Typically, the stratigraphy at Barrow-upon-Trent consists of medium to coarse-grained 

sand and gravel deposits, overlying Mercia Mudstone bedrock. These coarser sediments 

often contain minor sub-horizontal planar sand horizons and occasional sand lenses that 

exhibit cross-bedding (allowing palaeocurrent determination). 

The presence of organic deposits is noted at a number of localities and the discovery of a 

substantial organic palaeochannel (location 1, Grid Ref:34394,28264) is of particular 

relevance on both a palaeoenvironmental and dating perspective. This will be discussed in 

a separate section to follow. 

Alluvial sand and gravel depths are typically in the range 3.0-4.0m although depths of 

upto S.4m (and as thin as 2.0m) have been recorded. The terrace deposits are overlain by 

approximately 1.0-I.Sm of c1ayey/silty alluvium containing occasional coarser fragments. 

Classification of the deposits into particular terrace formations i.e. 'Hemington Terrace 

deposits', 'Holme Pierrepont Sand and Gravel' is attempted in chapter 6 and will be 

discussed as relevant. 
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Lithologically the gravels are dominated by quartz and quartzites, and minor components 

that include sandstone/siltstone, resistant acid and basic igneous lithologies, cherts, flints 

and limestones. Table 2 details the clast composition of the pebble grade from different 

levels in the gravel substrate (low, medium, high). The majority of the clasts are well 

rounded, well shaped (34.3% equantlspherical, 31.4% oblate/discoidal, 25.7% 

prolate/roller, 8.6% triaxiallbladed; based on Zingg,1935) smooth textured and generally 

testifY to the development of considerable maturity within the deposits. The association of 

clast compositions (particularly the dominant types) suggest that the gravels are most 

likely derived, in the main, from upstream Bunter deposits (refer to Fig. 2). Fonning part 

of the Sherwood Sandstone Group the Triassic 'Bunter' pebble beds consist of well 

-rounded, conglomeritic quartzites with some carboniferous limestones, cherts and 

igneous lithologies. It is always dangerous to make assumptions on clast inheritance or 

provenance, particularly in a glacial outwash/alluvial context which involves the continual 

reworking of deposits, however it is proposed that the gravel sediments are most likely 

from this source. The ultimate origin, or provenance, of the lithologies is a separate issue 

altogether since the Bunter deposits are themselves a result ofthe simultaneous deposition 

of sands and gravels from a previous inheritance (Steel and Thompson, 1983). 

Quartz Quartzite Sandstonel rron~ Chcrt Flint Limc- Chalk Acid Basic Blackened Clust 
Siltstone stone stone Igneous Igneous Quartz Count 

High 
Level 33.3 38.3 14.0 0 1.6 2.1 0 0 3.7 6.6 0.4 243 

Gravels 

Mcdim 
Level 32.0 39.3 11.1 0 2.5 0.8 0.4 0.8 5.3 7.0 0.8 244 

Gravels 

Low 
Level 26.4 39.1 14.1 0.4 2.5 l.l 2.1 2.5 4.6 4.9 2.1 284 

Gravels 

Table 2 Lithological Analysis (%) 

Six major lithofacies are distinguished (A-F), each representing a distinct location in the 

depositional environment. Sub-facies have not been so fonnally designated but an 

important range of variation does exist. An outline description of the lithofacies and their 

relative frequency is presented in Table 3. 
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Lithofacies Outline Description Relative 
Frequency 

Clast-supported, medium-coarse grade gravel 
A with medium coarse interstitial sand (<20%). 

Gravels are largely poorly sorted and are V.common 
massive or exhibit crudely sub-horizontal 

bedding. 
Moderate-well sorted, clast-supported gravel. 

B Largely medium-fine grade gravel with 
medium-coarse interstitial sand (20-30%). Common 

Crude sub-horizontal bedding mayor may not 
be apparent. 

Matrix-supported. unsorted medium-fine 
C grade gravel with medium-coarse interstitial Less common 

sand (>30%). No observable structures or 
bedding. 

Horizontally bedded medium-coarse grade 
D sand, laminated to massive. Facies thickness Common 

usually less than 30cm. 

E Cross-bedded sand (Planar), medium-coarse Less common 
grade. Facies thickness usually less than 

30cm. 

Clays and silts, mainly organic, occ1ll1'ing as 
F thin drape deposits or distinct palaeochannels. Uncommon 

Rootlets and desiccation cracks common 

Table 3 Lithofacies 
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4.1.1 Lithofacics A (Plate 1) 

This is the most common type of Iithofacies at Barrow-upon-Trent and is comparable to 

facies GcmlGh as proposed by Miall (facies classification, 1978c). The deposits are clast 

supported and typically consist of medium-coarse grade gravels with a medium-coarse 

interstitial sand content of less than 20% (Fig. I I , Appendix II). The clast framework 

suggests that the major gravel deposition occurred prior to the influx of the finer (sand

silt) matrix. The gravels are poorly sorted and exhibit massive or basic sub-horizontal 

bedding, perhaps indicative of successive bar core sedimentation. The gravel is 

polymodal, clasts are well rounded and show no marked orientation. Individual gravel 

clasts are typically in the range 2-3cm although clast sizes up to 7cm diameter (0) are 

common and clasts in excess of 20cm0 are recorded in several logs. The lithofacies may 

also contain basallag deposits (as recorded at location 1) where larger cIast sizes (up to 

20cm0) are common. Relative palaeodischarge estimates based on clast size will feature 

later in the chapter, however, it is clear that overall sediment grading suggests high energy 

fluvial conditions at the time of aggradation. 

Units generally occur as horizons less than I m thick and have a lateral extent of over 

lOOm in some cases. Contact with other lithofacies tends to be highly variable and ranges 

from distinctly sharp (particularly with sand-silt horizons) to gradational boundaries which 

mayor may not be undulating. The nature of the contact between lithofacies is clearly 

indicative of differing erosional regimes which will be discussed later. 

4.1.2 Lithofacics B (Plate 1) 

Lithofacies B is a moderate to well sorted, clast-supported gravel which can be described 

as showing a greater degree of 'organisation' (after Steel and Thompson, 1983) than 

Lithofacies A. Deposits consist largely of medium grade gravels with a medium-coarse 

interstitial sand content of between 20-30% (Fig.! I, Appendix II). Clast size is typicaiIy in 

the 1-2cm0 range (with occasional larger pebbles up to 8cm0)and there may be a further 

distinction into different common gradings i.e. groups averaging 2cm0, Icm0, O.5cm0, 

etc. Occasionally the clast matrix is absent, perhaps indicating the winnowing of fines 
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Plate I 
'A' - Lilhofacies A, clas l-supporlcd gravel (poorly sorted) 

' B' - Lilhofacies B, clasl-supporled gravel (mode rately sorled) 
(hammer measures 30cm) 
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Plalc 2 
'A ' Litho i"ac ies . malrix.-supporleu gravel 

(face is 1111 high) 



duri ng di scharge decrease, and c las ts tend to be we ll - rounded , occas ionall y showi ng 

alignment (allowing fo r possible palaeoc urrent determ ination) . 

As with Lithoracies A, crude sub-horizonta l stratifi ca ti on mayor may not be apparen t 

a lthough the indi vidua l units do not appear as latera ll y extensive as the fo rmer. Unit 

thi ckness is typica lly less than I m and ho ri zo ns tend to a lternate with units from 

Lithofac ies A in many sequences , occas ionally forming the on ly lithofac ies present. 

Contact with other fac ies is vari able except w ith Li thofacies A when the contact is almost 

a lways gradati onal. It seems likely that the more organised depos its of Li tho racies B were 

fonned at times o f more continuous flow than the ' di sorganised' former. 

4.1.3 L ithofac ics C (p llIte 2) 

Lithofac ies C is a disorganised mat ri x-s uppo rted deposit wh ich is less common than 

Lithofac ies A or B. Grad ing is that of an unsorted, medium-fin e grave l with medium

coarse inters titi a l sand content in excess of 30% (Fig. I I, Appendix 1I). C lasts are sub

rounded and usually small (less than l cm 0) but may include some larger pebbles upto 

8cm in diameter. No observable c last ori entation, structures or bedd ing is apparent and 

individual units rare ly approach substanti al vertica l o r lateral extent (th ickness < I m). 

Occllrring more usua lly at the top of a sedimentary sequence, Lithofacies C cOITUnonly has 

a gradational contact with other gravel li thofac ies ty pes. 

The nature of Lithofac ies C wo uld certain ly suggest that deposit ion of the sediments 

occurred both rap id ly and simultaneously (Steel and Thompson, 1983). 

4.1.4 Lithofac ies D (P la te 3) 

Lithofacies D is a hor izontal, or sub-hori zonta l, bedded sand facies that may appear 

laminated or massive. The sand is largely medium g ra ined and may contain sma ll , 

included peb ble or coa ly fragments along bedding planes. The unit may take the form of a 

thin lense, measuring between 3cm and 30cm in th ickness and upto 10m in lateral extent, 

or may appear as a very thin (usually less than 5cm) sheet-like feature many metres across. 

This lithofacies tends to have a very sharp contact with other horizons although the 
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Plate 6 
, ' - Lithofacies F (deposit is 0.5111 thick) 

'[ ' - Sand lenses at base of deposit 
'2' - Orange (iron) stained band 

'3' - Lithofacies B 



Plate 7 
'A ' - Li lhofacies F. clay banding 



J, 

Plate 8 
'A ' - Clay inyol utlons 

' 1' - Orange medi um sand wi th pebble InclUSions 
'2 ' - Lithofac les B, smal l clam 



(orga nic) and contain small occ luded pcbblcs . Intcrbedding or grad ing of fin e and coarse 

(upto medium sand) sedil1lents may occur (P la te 6) and the deposits may a lso contain shell 

fragment and root lets. Desicca ti on cracks can also be present. 

Lithofacies F may occur as th in lenses o r drapes a few millimetres to a few centimetres 

thi ck (Pla te 7) and have a late ra l ex tent of over 20m (locat ion 3) . Contact with other 

lit hol"acies is usua lly di stinctl y sharp and may show s igns of post depos iti ona l peri glae ial 

di s turbance (Plate 8). -j hc depos it a lso occurs podlike or indeed as di stinc t pa laeochannels 

(Plate 9) con taining organic debri s. At loca ti on I such a pa laeochannel was present and 

thi s provided va luab le information on the depositional envi ronment and dating of the 

depos its. Thi s is di scussed in a separate section to follow. 

4 .2 Organic Palacocha nn el (Pla te 9) 

At location ! (refer to Fig. ! 0) thc prcscnce of a large palaeochannel was recorded. 

The fo llowing section examines the s tratigraphy and sedimento logy of the depos it and 

g ives specia l reference to th e conta ined organic dcbri s that provid c age and 

envirorunental information. 

4.2.1 Stra tigraphv a nd Sedimentology 

The pa laeochannel was located at an exposed section (Grid Reference 3439 2826) 

sandwiched between grave l horizons. Much of the ri ght hand side of thc channel was 

obscured by a gravel bund , however, the overal l dimensions were c learly 

recognisable. Measuring 2 1.6 metres ac ross with a maximum thickness of 0.75 metres 

the chan nel was con fi gured in the fo rm of a sha llow dish with a sharp sub-horizontal 

upper boundary. The palaeochanne l occupied an e levation withi n the grave ls of 

36.98m O.D. at the upper surface mid-po int . To the north-west of thi s charll1e l at 

another exposed section (Grid Reference 34325, 283 11 ) a smaller di sh-shaped organ ic 

deposit was recorded at an e levation of 36.87m O.D. (upper surface mid-point) and 

measuring 6.0m x 0.5m. Information provided by excavation personnel suggested that 

thi s was part of the same depos it on the oppos ite qua rry face i. e. the deposit was 

followed during the excavation of the void. 
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'J' '.., 

Plate 9 
'A' - Lithofacies F, organic palaeochannel 

(note orange stained layer at base of deposit) 



At the maximum thickness, the palaeochannel consisted of a black/dark brown clay 
\ 

and silt infill with sandy lenses or bands contained within. These bands, appearing 

pale grey or brown in colour, were concentrated towards the base of the channel (refer 

to Plate 8). Occasional pebbles and small shell fragments were present within the 

infill. The maximum clast size encountered was 8cm in diameter although the vast 

majority were less than 1.5cm in diameter. The base of the palaeochanncl was distinct 

though slightly undulating in places and approximately 3 metres of pinkish gravels lay 

bcneath. At the very top of these clast supported gravels and immediately underlying 

the palaeochannel, the gravels were stained orange over a 6cm interval following (he 

curvature of the channel. The palaeochannel was overlain directly by 0.7m of clast 

supported (orange) gravels and then 1.0m of matrix-supported gravels (increasingly 

sandier towards the top) and 1.3m of alluvium. The sub-horizontal contact between 

the upper surface ofthe palaeochannel and the gravels was distinctly sharp and level. 

4.2.2 Grainsize Analysis and Carbon Content 

Fine-grained sediment and carbon analysis was carried out on the palaeochannel over 

10cm intervals, as detailed in the methodology, the results of which can be seen with 

reference to Table 4. 

Sample Sample % Clay % Silt % > Silt % Organic 
Interval Weight Carbon Contcnt 

(from top) (grams) 
O-IOcm 16.4271 14.38 53.40 32.22 2.28 
10-20cm 18.0135 2.74 60.49 36.77 2.28 
20-30cm 17.8222 5.04 50.32 44.64 2.21 
30-40cm 18.3533 5.31 38.69 56.01 1.73 
40-50cm 18.3365 0.93 50.61 48.46 2.10 
50- 60cm 18.8032 0.56 59.20 40.24 1.65 
60-70cm 18.8549 0.92 43.47 55.61 1.65 

Table 4 Sediment Analysis for Organic Palaeochannel 

A number of observations are worth comment: 

• Increasing clay content towards the top of the channel - clay content shows a 

marked increase above the 40-50cm horizon and reaches a maximum of 14.38% at 
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the top of the palaeochannel. This variation inriicates a progressive decreasc in 

depositional energy over time, perhaps representing increased abandol1!1lent from 

the main channel or a decrease in energy of the overall riverine system. 

Fluctuations that do exist, such as in the IO-20cm horizon (clay content drops to 

2.74%), reflect normal fluctuations in flow that exist in such an environment. 

• Fluctuating silt and sand content - silt content throughout the channel depth is 

variable and bears little relationship with clay content. Sand content is also 

variable although a distinct decrease in the top 20cm of the channel is apparent. 

The highest sand concentration occurs in the middle of the channel (30-40cm = 

56.01 %) and suggests a relative increase in depositional energy at that point 

(perhaps a small-scale overbank flood?). 

• Upward increase in organic carbon content - organic carbon content is clearly 

higher in the top 30cm of the palaeochannel than elsewhere. The higher 

concentration above 30-40cm horizon suggests that, overall, the conditions were 

more anaerobic in this depositional period. This conclusion is supported by the 

inherent faunal assemblage (refer to section 4.2.3). 

4.2.3 Dating and Correlation 

Samples taken from the organic palaeochannel, as part of research carried out by Mr. 

Malcolm Greenwood, revealed the presence of macro fossils which could be used for 

age and envirol1!1lental correlation. The Caddis/faunal assemblage indicated a distinct 

change in envirol1!1lental conditions over the depth of the palaeochannel. From the 

base of the channel to a height of 30cm the assemblage represented a more riverine 

system whilst above this level the assemblage pointed to a more ponded envirol1!1lent 

(re. Malcolm Greenwood). This information supports the interpretations made from 

carbon and grading analysis. 

Plant macro fossils (i.e. stems, leaves etc.) sampled from the 10-20cm interval (from 

top) were submitted for radiometric dating using the conventional beta-counting 

method. The results indicated a radiocarbon age of 13060 ±90 (CAL yr BP) for the 

sediments. Although this information relates only to one point of deposition in the 
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palaeochannel it is nonetheless valuable. As well as providing a definitive age, it 

provides a relative dating for the underlying/overlying deposits i.e. gravels below the 

palaeochannel are at least older than \3060 BP and gravels above arc younger than 

this date. This proves an important point in the interpretation of the deposits and is 

discussed later. 

4.3 Palacocurrcnts and Palacohydraulics 

4.3.1 Palacocurrents 

Palaeocurrent directions, taken from forset dips (Lithofacies E) at five locations 

(locations 2, 3, 8, 10, 12 - refer to Fig. 10) and pebble long-axis orientation at one 

location (location 2) are compared. Two distinct alignment patterns emerge. At 

locations 2, 3 and 8 forset dip directions are 112°, 114° and 106° respectively with 

angles of repose at approximately 21 0 (Table 5, Appendix III). Pebble imbrication, 

recorded in the form of a rose diagram (Fig. 12, Appendix Ill) also suggests a mean 

palaeocurrent direction of between 105° and 120°. Although pebble imbrication can 

often be a function of 'rolling' along the stream bed the readings, supported by those 

from forset dips, do suggest alignment parrallel to flow direction. At locations 10 and 

12 measurement from planar cross-bedding suggests a mean palaeocurrent direction 

of approximately 80°. The reason for this variation may become clear when the 

mechanisms of deposition are considered. It is well established that a wide dispersion 

of palaeocurrents is typical of meandering stream deposits whilst lower dispersions 

are typical of less sinuous streams (e.g. Kelling, 1968; Thompson, 1970). The 

individual bedforms which migrate in river channels and which give rise to cross

bedding are extremely complex in their behaviour (Collinson, 1978). Cross-bedding 

directions most commonly relate to different patterns of bar movement rather than 

channel type (Smith, 1972; Collinson, 1978) and palaeocurrents should therefore be 

considered with regard to the type of sedimentary structure and their position in the 

channel sequence. With this in context it should be noted that locations 10 and 12, 

recording palaeocurrent directions of 79° and 80° respectively, are further south than 
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Location Dip Direction 
2 21 0 1120 

.~ 3 21 0 1140 .... 
8 22° 1060 

10 200 79° 
12 200 800 

Table 5 Palaeocurrent data ti'Olll 
planar-crossbed 

fCl'set dips (Lilhofacies El 

W 

N 

S 

Fig.12 PalaeocLlrrent data from pebble 
orientation (long axis) 

E 

/' 



locations 2, 3 and 8 and are within 15 metres of each other in the sedimentary 

sequence.Locations 2, 3 and 8, recording palaeoflows to 112°, 114° and 106° 

respectively, are relatively spread-out over the site and may suggest a more reliable 

picture of overall palaeoflow direction. It should be noted that the deposits from 

which all the palaeocurrent data is obtained show no relationship with regard to height 

in the sedimentary sequence. The planar cross-bed and pebble alignment horizons 

vary from the base of the gravels (location 2) to the top (location 3) perhaps 

suggesting that the overall flow direction remained relatively constant throughout 

aggradation of the deposits. As a point of comparison, and discussed later, Brandon 

(1997) recorded a palaeocurrent direction of 140° in the base of the gravels at the 

same site (G.R. 3444 2835). 

4.3.2 Palacohydraulics 

The methods used in palaeodischarge reconstruction are fraught with difficulties 

(refer to section 2.1.1) and rely on the input of data regarding former channel 

dimensions, such as channel width and gradient, and the measurement of mean and 

maximum particle size. Complications can also arise in glacial systems which are 

subject to the sporadic release of vast quantities of stored water (known as glacier 

outburst floods, or 'J6kulhlaup's) leading to a marked change in fluvial dynamics. 

Channel slope was calculated at 0.00076, using the contemporary floodplain surface 

gradient as an approximation. Average and maximum clast size was recorded for each 

lithofacies type. Lithofacies A recorded maximum clasts upto 20cm in diameter, 

sometimes present as a basal lag, whilst gravel lithofacies Band C recorded 

maximum clast size upto 8cm in diameter. Unfortunately, as is common for many 

coarse gravel rivers, especially braided rivers (e.g. MiaU, 1977) channel width could 

not be established. This is because distinct channel banks are often absent in the 

complex (and mobile) bar and channel system of a braided reach. 

It is theoretically possible to determine shear stress and probable flow depths using 

clast size and gradient data. However, given that the range of error in calculating 

palaeoflow is substantial, even when many of the variables are known (i.e. methods 
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used by Maizels, 1991, suggest errors of between -80 and +350%), it seems clear that 
\ 

any proposed estimates using these methods would be subject to criticism. 

Additionally, it should be emphasised that floodplain deposits, such as those of the 

Trent, represent deposition over a considerable period and it is perhaps oversimplistic 

to regard localised sediments within the alluvial sequence as representative of the 

overall hydraulic conditions. 

To illustrate the inhercnt complexity of deposition within a system, such as that which 

prevailed within the Trent Basin, it is possible to consider the issue of catastrophic 

burst events. These flood events are triggered by a number of mechanisms although 

the most common glacier outburst floods occur as a result of the sudden drainage of 

an ice-dammed lake situated behind, or below the ice dam (glacier/ice-sheet). 

Commonly, as in the case of the Trent (refer to section 6.1.1) ice damming may lead 

to temporary diversion of a river course until the ice dam is breached, usually as a 

result of ice retreat. Apart from the major glacial readvancement that occurred during 

the Younger Dryas (Benn and Evans, 1998) the retreat of the Devensian ice sheet 

across Cheshire and Shropshire, for example, is suggested to have been complex 

'involving halts and perhaps minor readvances' (Jones and Keen, 1993). It is 

probable, therefore, that the Trent Basin experienced a number of glacier burst 

episodes which are represented, and preserved with the deposits. 

Accepting the above, it may be possible to reconstruct palaeodischarge using ancient 

and modern analogies, although as Miall (1996) points out there is a 'gross lack of 

data'. Research carried out by Maizels and Aitken on Lateglacial deposits of 

Northeast Scotland provided palaeoflow estimates for a number of catchments. The 

valley floor width and c1ast size data for the North Esk palaeochannel system is 

comparable with the data from this research and suggests outwash plains with peak 

flows of 18,000m's·'. The mean gradient, however, is substantially higher (0.0037) 

than for the Trent which suggests that this analogy is perhaps less relevant than the 

clast size data initially indicates. Dawson and Gardiner (1987) studied the terraces of 

the Lower Severn using a analogue approach which relied on a number of 

assumptions. Their palaeoflow estimates for the Lower Severn during the Late 

Devensian varied between a mean discharge of 202 - 1502m's"and a maximum of 

between 20 IS - I 4992m's". Based on channel widths of between 62m and 173m, 
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channel velocity was calculated between a range of 1.8ms-' and 2.5ms·' with flow 

dcpths of 1.05m - 2.5m. It may be appropriate from a palaeohydraulic perspective to 

compare the Main Terrace deposits of the Lower Severn with the deposits at Barrow

upon-Trcnt. Channel gradient is of the same order of magnitude (0.00063 for the 

Severn, 0.00076 for the Trent) and the sedimentology of the terraces (i.e. Lithofacies 

types) arc similar. Using this analogy may suggest channel depths ranging from 

1.05m - 1.3m and velocity at 1.8 - 2.1ms·'. 

It should be re-emphasised however that any absolute measure of palaeodischarge 

should be taken as purely indicative. It may be more valuable to consider 

palaeohydraulic reconstruction by using a relative approach and clearly the inherent 

sedimentology of the floodplain gravels (i.e. clast size, structure, lithofacies type) at 

Barrow-upon-Trent suggests a high powered depositional environment very different 

to the contemporary system. 

4.4 Other Sedimentological Features 

A number of sedimentological features were observed at Barrow-upon-Trent which 

merit special attention. In particular, the presence of clay drape structures, iron and 

manganese staining and overall sediment colour indicate that the deposits were 

subject to post-depositional alteration. 

4.4.1 Clay Drapes (Plate 8) 

At location 6, the presence of a clay drape structure was recorded. Measuring 

approximately 3cm in thickness with a lateral extent of 13m, the structure consisted of 

a sub-horizontal irregular base with uneven tongue-like protrusions into the overlying 

sedimcnts. Immediately underlying the structure, and moulding to the basal surface, a 

17cm orange-stained, medium grade sand horizon was present. Immediately above the 

clay drape the sediments consisted of matrix-supported gravels. The base of the clay 

structure fluctuated between 12 - 32cm of the gravel top surface. 

The injection of tongues of finer sediments (clays, silts) into overlying sands and 

gravels is well documented (Sekyra, 1961; French, 1976). Termed 'involutions', these 

60 



are among some of the most widespread features thought indicative of Pleistocene 
"-

frost action. The presence of periglacial involutions do not, however, necessarily 

suggest the fonner existence of permafrost, but only that seasonally frozen ground 

developed (French, 1976). 

4.4.2 Iron Staining (Plate 10) 

The feature recorded as iron staining in this section refers to the more localised 

orange-stained horizons occurring as distinct shallow bands within the sediments. 

Although a function of the same dcpositional processes, the overall colouration of the 

deposits are discussed separately (section 4.4.4). 

Orange stained bands are recorded at most of the locations studied. Varying from pale 

to vivid orange in colour, the stained horizons are commonly sub-horizontal, usually 

following a particular lithofacies unit. Individual stained horizons show a restricted 

vertical thickness, usually less than 1 Dcm, but may have a lateral extent of many tens 

of metres. A common feature of these iron stained bands is that they usually mark an 

interface between different lithofacies types. 

The main influence on the colour of sediments is the level of the water table and 

ground water movement. The presence of orange-stained horizons suggests iron 

oxidation as a result of lower saturation levels and exposure. Caution must be taken, 

however, when drawing environmental conclusions from colour since oxidation state 

is commonly set during early diagenesis rather than at the time of deposition (Miall, 

1996). 

4.4.3 Manganese Staining (Plate 10) 

The black discolouration of sediments caused by manganese staining can be seen with 

reference to plate 1 D. Whilst not as widespread a feature in the deposits as iron 

staining, it is commonly associated with the latter and forms thin sub-horizontal 

banding (usually less than 1 Dcm thick). The manganese staining, or coating of grains 

61 



· A' - Iron-staining 
'B' - Manganese-staining (band is 3-5cm lhick) 

'1 ' - Lirhofacies B 



Plate 11 
'A' - Orange colouration of Li thofacies B 

'B' - Pink colouration of Lithofacies A and B 
' [' - Lithofacies D with clay banding (Lithofacies F) at base 



in some cases (forming small manganese nodules usually less than 2mm in diameter) 

forms as a result of the precipitation of manganese ions from streams and rivers. The 

precipitation of the manganese ions is a function of both reduction and oxidation in 

depositional, and diagenic, waters (Lceder, 1982). 

4.4.4 Sediment Colouration (Plate 11) 

A distinct feature of the sand and gravel deposits at Barrow-upon-Trent is that, in 

many places (locations 1,3,4,5, 6, 7, 8) the deposits are clearly distinguishable on 

the basis of colour. In the majority of instances there is a clear sub-horizontal 

boundary between overlying, predominantly orange, gravels and underlying, 

predominantly pink, deposits. This division occurs at varying levels in the 

sedimentary sequence and there does not appear to be a simple relationship between 

lithofacies type and colour. 

Differences in sediment colouration have been well documented along the Trent 

valley. Brown (1996) suggested that the only way of distinguishing between 

Devensian and earlier deposits at Hemington was by colour ('the red iron staining of 

the Devensian gravels is replaced by yellow-brown staining in the Medieval gravel'). 

More recently, Brandon (1997) suggested that the Late Glacial - late Flandrian 

Hemington Gravel had lost 'the pinkish hue imparted by the Holme Pierrepont Sand 

and Gravels primary Triassic component and is generally more brown to pale 

orange-brown due to oxidation'. 
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5. Interpretation of Lithofacies 
\. 

5.1 Braided River Interpretation 

The floodplain gravels of the Trent are recognised as representing deposition in a 

braided system. The dominance of gravcllithofacies indicate deposition by a coarse 

bedload river. Although meandering rivers can carry a gravelly bed load (I3luck, 

1971; Gustavson, 1978; lackson 1978) it is suggested that the lithofacies and 

1ithofacies assemblages mainly represent the deposits of braided streams. Meandering 

stream deposits are present - the very nature of the contemporary River Trent suggests 

that there must be, and must have been, meandering deposition - and a combination of 

braided and meandering sediments are also interpreted. 

Collinson (1978) suggested that in order to ascertain channel type consideration 

should be given coarse/finer member ratio, shape of sediment bodies, palaeocurrent 

evidence, internal organisation of grainsize and sedimentary structures, and the 

overall palaeogeographic and palaeoc1imatic setting of the sediments. The following 

considerations support a braided river interpretaion for the deposits: 

i. Coarse/fine member ratio 

Coarse gravel deposits predominate the study area and there are a lack of fine sand

silt-clay sediments. Sediment grading therefore suggests high energy fluvial 

conditions at the time of aggradation. 

ii. The shape of the sediment bodies 

The majority of individual sand and gravellithofacies are sub-horizontal or massive, 

and relatively thin (less than 1m). The sediment bodies are likely to be sheet or bar

like with very low depth to width ratios. 

iii. Palaeocurrent evidence 

Palaeocurrent evidence, although showing two distinct alignment patterns (105-120° 

and 80°) shows low variance and indicates relatively unimodal transpOli. 
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iv. The internal organisation of grain size and sedimentary stmctures 

The absence of clear epsilon cross-bedding in the gravels, and the lack of evidence 

that associated fine sediments were transported obliquely to the gravels, suggests that 

point-bar deposition was largely absent (re. Ori, 1982). The dominance of 

'framework' (after Rust, 1978) gravels, represented by Lithofacies A and B, is 

characteristic of braided streams and suggests that major gravel deposition occurred 

prior to the influx of the finer matrix. Greater organisation in Lithofacies B (than 

Lithofacies A) suggests more continuous flow conditions whilst occasional fining

upwards units are interpreted as medial bars growing under waning flow conditions 

rather than as point bars. Matrix-supported gravels (Lithofacies C) indicate rapid and 

simultaneous deposition possibly as a result of a flood event and the alternation of 

clast- and matrix-supported lithofacies suggests discharge variation. These features, 

similar to those recorded by Steel and Thompson (1983) on Triassic braided system 

deposits, suggest 'medial or mid-channel braid bars dominated the rive~ system'. 

v. The general palaeogeographic and palaeoclimatic setting of the deposits 

Previous research (Clayton,1953; Posnansky, 1958; Rice, 1968; Brandon and 

Sumbler, 1988; Brandon, 1997) has already recognised that the floodplain deposits of 

the Trent are a Devensian, or later, phenomenon and therefore ideal conditions for the 

development of a braided system. 

5.2 Braiding - Causes and Characteristics 

'Braiding' in a river system has been defined by a number of authors. Rust (1972) 

suggested that braided rivers consist of two or more channels divided by bars or 

islands, with one channel usually being dominant, 'although there may be several 

principle channels'. More recently, Knighton (1998) has provided a definition which 

is useful; 'Braided rivers consist of flow separated by bars within a defined channel, 

bars which may be inundated at higher discharges to give the appearance pf a single 

channel close to a bankful. The degree of bar development can vary considerably, 

both horizontally and vertically, with, at one extreme, occasional, low-amplitude bars 

and, at the other, intense bar formation almost to the level of the surrounding 

flood plain' . If bars do develop into stable islands then the term anabranehing is used. 

Braided rivers are characterised by low depth/width ratios, possibly exceeding 300, 

(Miall, 1977) steep slopes and low sinuosities. Braided streams deposits are usually 
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Classirical-ion or river Ly'pcs 

Type Morphology Sinuosity Load type Eedloae! per· Wie!th! Erosive behaviour Depositional 
cent (of total depth behaviour 
loae! ) raLio 

Meandering single channels > 1.3 5\1 spcnsion <11 ,;:,10 channel incision, point·b:1r 
or meander formatiol1 
mixee! load widenin!;! 

Eraided two or more < 1.3 hedload >11 >10 ch~nncl widening: channC'.I· 
:>- channels wilh ng~rncl:\t.ion I .... 

bars and small mid·chanllel 
islnnds bar ronnnlion 

Straight single channel wilh < 1.5 suspension, <11 <·10 minor channel .c;idc-chnlllld 
pools and riffles, mixed or widcnill(:! and bor rorm::ttion 
meandering: thalweg he(Hoad incision 

Anastomosing lwo or morc channels >2.0 sllspension < 3 <10 slow mt'nnder slow I);ll\k 
\Vi th large, stable i~bllcls load widening accrcLioll 

------------.---

Table G Classification of river types (after Miall, 1977) 
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coarser than those of o,iher river types and show a dominance of gravel and/or sand. 
" 

There are exceptions, such as the contemporary Amite River in Louisiana, which has 

typical braided river deposits and bed forms in a largely meandering setting. Table 6, 

adapted from Miall (1977), provides a simple classification of river types based on 

sinuosity, load, width/depth ratio and erosive/depositional behaviour. 

Channel pattern, classified by Schumm (1981, 1985) as having 14 distinct types 

(Fig.13) depends on a combination of hydraulic and sedimentary factors some of 

which have already been referred to. Rivers alternate between meandering and 

braided conditions depending on at least nine variables as identified by Leopold and 

Wolman (1957). These include slope, depth, width, discharge amount and variability, 

sediment load, velocity and roughness of stream bed. 

Although braiding is not systematic of overloading, the availability of large amounts 

of sediment is a necessary requirement. In addition the load should be of a certain 

calibre. As stated by Leopold and Wolman (1957) 'braiding is developed by sorting as 

the stream leaves behind those sizes ofload which it is incompetent to handle .. .if the 

stream is competent to move all sizes comprising the load but is unable to move the 

total quantity provided to it, then aggradation may take place without braiding'. 

Deposition of the coarser bed load initiates mid-channel bar formation and as the bar 

develops, flow is diverted towards the channel banks thus providing the mechanism 

for bank erosion which results in the development of wide, shallow channels (Fig. 14). 

Bank erodibility is an important factor in channel development. If no erosion occurs, 

channels remain straight, and whilst a meandering channel requires localised bank 

erosion, braiding involves extensive bank retreat (Knighton, 1998). Mackin (1956) 

attributed a meandering-braided-meandering sequence along the Wood River, Idaho 

to changes in bank resistance as the river passes through a corresponding sequence of 

forest-prairie-forest environment. Rapid discharge fluctuations, often associated with 

high sediment supply, are especially relevant in pro glacial areas. Whilst it is accepted 

that braiding can develop under steady flow conditions (re: Leopold and Wolman, 

1957; Hong and Davies, 1979), fluctuations in discharge contribute to bank erosion 

and irregular bed-load movement which lead to bar formation. 
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Research by Leopold and Wolman (1957) suggests that braided and meandering 

streams can be distinguished on the basis of an empirical relationship between 

discharge and slope, S=0.013Qb-O.44 ,where'S' is slope and 'Qb' is bankful discharge 

(rn's·'). For a given discharge braided streams should occur on slopes steeper than 

given by the equation and meandering streams on gentler gradients. The degree of 

braiding has been shown to increase as slope increases (Chang, 1979b), however, it 

may be that it is the increase in stream power associated with higher gradients that is 

the governing factor since braiding can persist at lower slopes in large rivers (Leopold 

and Wolman, 1957). 

Figures 15-18 illustrate some basic relationships between channel pattern and 

hydraulic sedimentary variables, however, it should be accepted that straight

meandering-braiding types are a function of a combination of these factors. Knighton 

(1998) suggests this sequence should be regarded as the association of the increase in 

stream power (from either an increasing discharge on a fixed slope or an increasing 

slope and fixed discharge, or a combination), an increasing width:depth ratio 

(associated with increasing bank erodibility and increasing bed-load transport) and an 

increasing bed-load (amount and calibre). 

5.3 Morphology of Braided Rivers 

Several distinct levels are recognisable in many braided channels ranging from the 

deepest and most active channels to elevated, abandoned areas (Kessler & Cooper, 

1970). 

Numerous terms have been used to describe bars in braided rivers. An older 

classification by Miall (1977) of bar types (Fig.19) has now been replaced by a 

simplified version which relates directly to depositional processes. Hein and Walker 

(1977) have indicated that certain bar types are members of evolutionary sequences 

and that the morphology of a particular bar type may be very ephemeral. 
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5.3.1 Horizontally stratified gravel sheets 

Previously termed longitudinal bars (after Rust, 1972) these deposits are the simplest 

of the channel forms and are formed by clast-by-clast accretion over an obstruction or 

a channel lag deposit. During high water and sediment discharges these sheets grow 

upward and downstream by the addition of gravel clasts. Horizontally stratified gravel 

sheets are now regarded as channel 'mesoforms' and are amalgamated into 

'macroforms' (bars) in several ways (Miall, 1996). The sheets, reaching 

approximately I m in height, may show evidence of upward-fining as a result of 

reduced water levels over the sediments and are also shown to fine downstream (Fig. 

20). Bar types associated with this macroform can either be mid-channel or attached. 

5.3.2 Midchannel bars 

Midchannel or medial bars are lozenge-shaped in plan, elongated parallel to flow 

direction and are bounded by active channels. Gravel bars are most commonly of this 

type (N.D.Smith, 1974; Boothroyd & Ashley, 1975) and are the classical braid-bars of 

Leopold and Wolman (refer to Fig. 14). Waning flow/reduction in competency or a 

channel obstrution results in the deposition of the coarsest bedload as a small, 

submerged bar over which the flow forms a rime. Finer particles become trapped in 

the interstices of the initial deposit enabling growth (MialI, 1977). Bar length may 

reach several hundred metres with the coarsest sediments concentrated along the 

central bar axis (Boothroyd & Ashley, 1975). The internal structure of the bars is 

massive or crude sub-horizontal bedding (N.D. Smith, 1970) possibly indicating 

transportation in planar sheets (refer to section 5.3.1) under very high flow conditions 

(Rust, 1972). Variations in gravel sheet growth may result in, what have previously 

been refered to as, linguoid and transverse bars. Typical of sandy braided rivers these 

bars are suggested to form in relatively deep channels that are confined by narrow 

banks (Rust, 1975; S.A. Smith, 1990). Such conditions are not typical of an aggraded 

braiding environment but they may occur in fan-head trenches (McGowen and Groat, 

1971). Linguoid bars are characteristically lobate (re~er to Fig. 19) with upper 

surfaces dipping gently upstream towards the preceeding bar and sinuous, avalanche

slope terminations facing downstream (MialI, 1977). Commonly occurring in trains 

showing an out-of-phase relationship, linguoid bars vary in width, up to 150m, length, 
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upto 300m and have a typical height of between O.Sm and 1.0m. Internally the main 

structure of linguoid bars is planar tabular cross-bedding representing avalanche-slope 

pro gradation. Transverse bars are genetically similar to linguoid bars except that they 

have straighter crests (N.D. Smith, 1972). Identification in the geological record 

would prove difficult, possibly only from detailed palaeocurrent data, and their 

recognition in modem streams tends to be arbitrary (Miall, 1977). 

5.3.3 Attached bars 

Bank-attached bars are termed 'point' or 'lateral' bars depending on their shape and 

position in the channel. 'Alternate' bars develop as a result of turbulence in an 

initially straight channel and evolve into point bars (Miall, 1996). Point and lateral 

bars are genetically similar, forming in areas of relatively low fluvial energy such as 

the inside of meanders where the main flow is diverted to the opposite, outside bank. 

Most typical of meandering streams, point bars can also occur in braided 

environments (such as the Kicking Horse River - N.D. Smith, 1974 and some Scottish 

rivers - Bluck, 1976). Developing by lateral growth, point and lateral bars may be of a 

much greater magnitude than midchannel bars (Collinson, 1970 illustrated a lateral 

bar covering over 6km in the Tana River) and tend to form in braided rivers by the 

coalescence of smaller bedforms, such as dunes and transverse bars (Miall, 1977). 

Miall (1996) recognises that the 'internal geometry and lithofacies composition of LA 

(point and lateral bars) is highly variable and depends on channel geometry and 

sediment load, but the presence of lateral accretion is the common theme'. Internal 

structures are complex and may include planar tabular cross-bedding (of linguoid bar 

origin), trough cross-bedding (of dune or scour origin), various types of ripple marks, 

coarse-grained lag deposits and fine grained drapes and fills. The term 'compound 

bar' has previously been used for these structural elements. 

5.3.4 Modifications of bar form 

Modification of bar form can occur as a result of both increase and decrease in flow 

regime. These modifications are best summarised by Bristow and Best (1993) 'where 

bars exist for periods of time in excess of a single flood event they will experience a 

complex history of erosional and depositional modifications related to changes in 
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stage. At higher flow stages when the largest volumes of sediment are transported, the 
\ 

channels are often scoured, bars may be reduced in height or in some cases 

completely eroded. However, during falling stage maximum deposition occurs as 

discharge and flow competence are reduced. Channel beds aggrade, the high stage 

bedforms may be modified and new bars may be formed or enlarged as sediment is 

deposited. As discharge continues to fall, bars may become emergent and dissected by 

low stage channels. Additionally, the nature of the falling limb recession ...... will be 

important not only in the reworking of higher stage sediments, but also in the 

deposition and spatial distribution of the finer grained sediments (silts and clays) ... ' 

5.4 Lithofacies Interpretation 

Lithofacies classification is currently the standard method for the interpretation of 

sedimentary deposits. Miall (1977) provided a review of the braided river 

environment and suggested that there was a consistency in the lithofacies assemblages 

that occurred in both modern and ancient sand and gravel sequences. Miall proposed a 

practical lithofacies classification that could be used for the recognition of all fluvial 

deposits. The classification has been expanded (Miall, 1978c) and modified and is 

currently the 'standard field methodology for the examination of fluvial deposits' 

(Miall, 1996). 

A total of nine architectural elements are recognised in the fluvial system (from MiaIl, 

1996). These are: channels (CH), gravel bars and bedforms (GB), sandy bed forms 

(SB), downstream-accretion macro forms (DA), lateral-accretion macroforrns (LA), 

scour hollows (HO), sediment gravity flows (SG), laminated sand sheets (LS) and 

over bank fines (FF). Inherent within each of these architectural elements are principal 

facies assemblages which can be interpreted in terms of their 'hydrodynamic origin 

and position within the braided-river tract'. 

The six lithofacies identified in this research are comparable with a number of 

lithofacies types as described by Miall (1996) and are interpreted as representing 

particular architectural components. 
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5.4.1 Gravel Bars and Bedforms (GB> - Lithofacies A, B, C 

Horizontal gravel sheets and midchannel bars, as previously described, develop as a 

result of c1ast accretion, growing laterally and vertically in the river channel. The 

bedforms are of low amplitude and may appear massive in section because of obscure 

bedding contacts (S.A.Smith, 1990, suggests that the 'textural and structural 

monotony of conglomerates may make recognition and correlation of bounding 

surfaces more difficult'). Where bedding is defined it is usually sub-horizontal, as 

recognised in lithofacies A and B. The coarseness and structure of these deposits 

testifY to high water discharge and relatively high sediment concentration in the flows 

and indicate that accumulation occurred in areas of Iow relief. Lithofacies B, showing 

a greater degree of organisation than Iithofacies A, suggests that formation occurred at 

times of more continuous flow. The c1ast framework of lithofacies A and B suggests 

that major gravel deposition occurred prior to the finer matrix influx. Occasionally, 

the c1ast matrix is absent, indicating the winnowing of fines during discharge 

decrease, or alternatively, perhaps, increased reworking of earlier sediments. Grading 

within lithofacies A and B may suggest that the deposits represent part of a fining 

upward or downstream sequence within the bar. The inherent variability and 

relationship of lithofacies A and B can be explained in terms of their position on the 

midchannel bar and the amount of modification that resulted during grainsize 

seggregation, and variations in flow stage. Steel and Thompson (1983) suggested that 

where disorganised beds (Lithofacies A in this research) occur in thin sequences, it is 

likely that they are of bar-head origin, largely during high-flow stage. The more 

organised beds (lithofacies B in this research) are likely to have accumulated at lower 

levels on the bar (e.g. bar margins or tail) where exposure to more prolonged 

reworking and winnowing produced a cIast supported 'armour'. 

The structure and content of deposits that resemble Lithofacies C have previously 

been ascribed as representing debris flow deposition (re: Miall, 1996, facies Gmm). 

Debris flow deposits are characterised by usually massive, unstructured, matrix

supported cIasts suspended in a matrix of sand, silt and m~d. The formation of debris

flow deposits has been described and interpreted by A.M.Johnson (1971). Johnson 

explains that debris flow 'is a process by means of which granular solids, sometimes 

mixed with relatively minor amounts of entrained water and air, move readily on Iow 
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slopes'. The movement of these flows is likened to that of large waves moving 

steadily through channels with superimposed smaller, and more rapid, waves riding 

on top. Whilst recognising that the deposits of Lithofacies C are indeed of a similar 

nature to those of debris flow deposition, it is suggested here that this interpretation is 

probably not valid. It has already been suggested that debris flows operate on 

relatively gentle gradients, however, it is also true that most flows are as a result of 

the accumulation of sediments from higher and steeper slopes (such as valley sides or 

canyons, e.g. Titus Canyon and Wrightwood, California - A.M.Johnson, 1971). 

Moreover, most debris flows are relatively proximal deposits (i.e. restricted range) 

and contain high clay/silt/sand content. Lithofacies C contains a higher sand content 

(30%) than other gravel lithofacies but suffers from a distinct lack of clay and silt 

grade sediments (refer to Fig.! 1) that would be expected from debris flow deposition. 

Although it is possible that some fines may have gone into suspension, or been 

winnowed out, the overriding fact that the research area occupies a relatively flat tract 

in a lowland valley suggests that debris-flow was not a major depositional factor. 

Debris flows can occur as a result glacial outwash, althiugh it is suggested here that 

Lithofacies C more likely represents (debris) flood events. Dawson and Gardiner 

(1987) have recognised that disorganised matrix-rich gravels may occur as the 

'surface of complex bars or on lateral within-channel bends'. More likely, however, 

Steel and Thompson (1983) suggest that matrix supported conglomerates in the 

'Bunter' Pebble Beds are as a result of simultaneous deposition of sand and cobbles in 

a 'flow in which there was high sediment concentration and rapid deposition', such as 

a debris flood. It should also be acknowledged that Carling (1990) has used fluvial 

modeling experiments to show that different textural variation, such as clast and 

matrix support in gravels, are part of the same depositional process. If nothing else, 

the research by Dawson and Gardiner, Steel and Thompson, and Cariing, 

demonstrates that matrix-supported assemblages, such as lithofacies C, are complex 

and may represent a number of different depositional mechanisms. As a point of 

comparison, Brandon (1997) has interpreted the matrix-supported gravels of the 

Holme Pierrepont Sand and Gravel as a 'braid plain distal sandur deposit' (therefore 

characteristic of rapid aggradation) from the 'Devensian ice front situated above 

Burton-upon-Trent' . 
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5.4.2 Sandy Bedforms (Sm, Downstream Accretion mAl 

and Lateral Accretion (LA) - Lithofacies D, E 

Miall (1996) has made the distinction between predominantly 'aggradational' sandy 

bed forms and predominantly 'accretional' deposits ('DA' and 'LA') on the basis of 

accumulative style and geometry. For the purpose of this research Lithofacies D and 

Lithofacies E are regarded as sandy bed forms, which inherently represent the products 

of downstream, lateral or vertical, accretion, or a combination. 

Accepting that downstream and lateral accretion elements are very common in 

braided environments, Miall (1996) recognises that most sandy lithofacies develop as 

a result of both vertical aggradation and lateral accretion. The difference between 

downstream and lateral accretion is fairly self-explanatory (Le. accretion in the 

direction of flow or more perpendicular to flow, respectively) and there are various 

methods of determining these styles (re: Miall, 1996). Since there is a distinct 

gradational relationship between 'DA' and 'LA' sedimentation, it is very difficult to 

identify these depositional processes in the field. The designation 'DNLA' is used is 

when this so. Lithofacies D (horizontally-laminated sand) equates with Lithofacies 

'Sh' of Miall (1977) and develops as a result of one of two conditions. Most 

commonly, this occurs during flood stage when plane-bed conditions develop at 

critical flow and the channel floor becomes a traction carpet, with virtually continuous 

particle flow parallel to water movement (Harms and Fahnestock, 1965). 

Miall (1996) suggests that, for this condition to develop, water depths are usually 

between 0.25 and O.5m, with velocities in the order of Ims-_. Plane bed conditions 

also develop at lower velocities at shallower depths, and in coarse sands at low flow 

speeds (-OAms-.J, although the latter condition is rarely preserved (Miall, 1996). 

The interpretation of Lithofacies D as representing plane-bed flood conditions is 

distinctly different to that suggested for the second sand lithofacies. Consisting as 

solitary or grouped planar cross-beds, Lithofacies E OC?UfS as distinct small lenses 

within gravellithofacies. The occurrence and form of these units suggests relatively 

restricted ripple and dune development, with the angle of cross-bedding (18-22°) 

representing avalanche deposition on forsets. Comparable with lithofacies Sp of Miall 
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(1977), these features are a dominant component of linguoid and transverse bars and 

are interpreted as such. Variations in the basic form ofLithofacies E can be attributed 

to different flow conditions i.e. forsets flatten out as separation eddies decrease (re: 

Miall, 1997). 

5.4.3 Overbank Fines (FF) - Lithofacies F 

Lithofacies F can be regarded as comprising distinct sub-facies (refer to section 4.1.6). 

Each sub-facies represent similar low-energy conditions of formation in different 

depositional areas of the floodplain. Occurring as thin clay bands, 'pods' or distinct 

palaeochannels, these sediments commonly show grading features, illustrating 

fluctuations in discharge, and tend to be associated with lithofacies D (horizonatlly 

bedded sand). The sub-facies comprising Lithofacies F are interpreted as the deposits 

of overbank or waning floods, and abandoned channels and pools. Overbank areas in 

braided rivers are usually small, in comparison with overall channel magnitude, and 

this, in combination with the shifting nature of channels (causing erosion), explains 

why deposits of this type are less evident in fluvial sediments than other lithofacies 

types. Flood deposition of fine sediments in inter-channel areas ('from suspension or 

weak traction currents', Miall, 1996) will tend to result in the deposits having 

interlaminations of clay, silt and fine sand occurring along an undulating bedding 

plane. Very often the deposits of major depositional episodes are separated by fines 

deposited by waning floods, but in many cases 'these are scarce owing to their 

removal by subsequent scour or to an inherent lack of fines in the sediment supply' 

(Collinson, 1978). If deposition is in 'standing pools of water during low stage 

channel abandonment' then the lower surface of the clay drape will correspond to the 

shape of the underlying bedform (Miall, 1977). An extension of this depositional 

regime produces channel fill sequences in abandoned areas, such as recorded at 

Barrow-upon-Trent (this research, section 4.2). 

5.5 Lithofacies occurrence 

The lithofacies have been identified as representing braided river deposition. It has 

already been acknowledged that meandering streams are able to carry coarse 

bed loads, and many of the elements and deposits found in braided tracts, such as 
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downstream, lateral and vertical accretion elements, are also common to meandering 

reaches. The causes and characteristics of both braiding and meandering patterns have 

also been alluded to (section 5.2). Many braided versus meandering classifications 

have been attempted (Cant and Walker, 1979; Miall, 1977) although it is now clear 

that these classifications may be oversimplistic (re: Jackson, 1978; Miall, 1996) and 

that successions of braided and meandering deposits may look very similar. An added 

complication arises when a system (such as the Trent) comprises of both braided and 

meandering deposits deposited in different time frames, or at varying downstream 

positions along the same riverine tract. In these cases, and without the aid of other 

data (such as palaeocurrent information) it may be impossible to confidently 

distinguish between these deposits. 

One method of distinguishing between braided and meandering streams is to look at 

the relative abundance of lithofacies types. Table 7 (adapted from Miall, 1977) 

illustrates some simple lithofacies abundance comparisons between braided and 

meandering rivers for the lithofacies recognised in this research (A - F). 

Lithofacies Occurrence Braided Rivers Meandering Rivers 
A Rare to common (generally as a 
B thin lag deposit) 
C Common 
D Common 
E Generally rare 
F Rare to common Common 

Channel- Fill Sequences Rarely> 3m Commonly> 3m 

Table 7 Lithofacies abundance in braided and meandering streams 
(adapted from Miall, 1977) 

The recognition of proximal and distal lithofacies assemblages can also aid in the 

differentiation of different fluvial systems. Although there are no absolute indicators 

that can be used to estimate proximity to source in braided streams, there are several 

parameters such as grainsize (mean or maximum), stream power and bar form, that 

can be used to provide a relative estimation between proximal and distant deposits. 

Certain lithofacies types are inherently related to these parameters and it is possible to 

give a relative distinction based on lithofacies distribution, i.e. more proximal deposits 

are represented by coarse-grained Lithofacies A, Band C, whilst more distal deposits 
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are represented by finer grained facies, and a subsequent lack of Lithofacies A, Band 

C. A step further is to suggest that meandering streams, in which Lithofacies D, E 

and F are common, are more likely to appear at more distal sites. 

Lithofacies abundance and proximal-distal relationships are clearly very helpful in 

distinguishing between braided and meandering types, however, it must be 

emphasised that the distinction of channel pattern in the geological record relies on a 

combination of evidence. Correspondingly, the evidence provided in this research, 

apart from the considerations presented in section 5.1, is based on interpretations 

made on the nature, assemblage and association of lithofacies present. 

5.6 Lithofacies Models 

Historically, braided river deposits have generally been thought as 'somewhat random 

in depositional character and lacking recognisable cyclicity' (Miall, 1996). Since 1973 

(e.g. Miall, 1973; Cant and Walker, 1976) however, this has been demonstrated not to 

be the case. A useful tool in the identification of braided river environments is based 

on the vertical and lateral profiles of the component lithofacies. A number of 

depositional models have been proposed towards this aim (Picard and High, 1974; 

Miall, 1977; Cant and Walker, 1978). Perhaps one of the best known models is that 

for the south Saskatchewan River (Cant and Walker, 1978) which provides a pictorial 

synthesis of the geomorphological elements of a sandy braided river with that of 

bedfonns, internal structure and stratification sequence. In 1977, Miall presented four 

empirical facies models based on the descriptions of ancient deposits but named 'after 

a modem river which appears to typify the interpreted depositional environment'. The 

'ScoU' type model represented deposition in a shallow gravel braided river in which 

Lithofacies 'Gm' (equating with Lithofacies A and B in this research) is dominant. 

Deep gravel braided rivers are typified by the 'Donjek' model whilst the 'Platte' and 

'Bijou Creek' types represent sand-dominated environments. Subsequently, Miall 

(1985) reviewed these models, adding a further 8 examples, and in the light of 

additional research, has now expanded these to include I? different fluvial lithofacies 

assemblages (Miall, 1996). The models are classified into gravel-dominated and sand

dominated fluvial 'styles' depending on lithofacies content. Fig.21 illustrates the six 

major gravellithofacies models identified by Miall. 
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For interpretation purposes, Lithofacies A and B in this research, are identified as 

Lithofacies 'Gh' in the coding of MiaIl. Lithofacies C, as previously discussed 

(section 5.4.1), whilst resembling the deposits of Lithofacies 'Gmm', has not been 

defined as representing the same fluvial processes. Lithofacies D and E identify with 

codes 'Sh' and 'Sp' respectively, whilst Lithofacies F is represented by the codes with 

the prefix 'F'. Clearly, it is not possible to identically match a particular fluvial model 

with a lithofacies sequence in nature, however, it is possible to recognise the model 

that produces the 'best fit' with the recorded lithofacies and assemblages. 

Correspondingly, the lithofacies and assemblages recognised in this research can 

clearly be identified with the shallow gravel-bed braided model (Fig.21), the 

definition of which Miall (1996) describes as 'proximal gravel bed rivers .. .in which 

sediment-gravity flows are rare to absent, consist of a shifting network of unstable, 

low-sinuosity channels in which a variety of gravel bedforms is deposited. Channel 

depths on the order of lm are typical. Channel margins are rarely identifiable in 

outcrop. Element GB predominates and consists of tabular bodies with numerous 

minor internal erosion surfaces, and varying assemblages of gravel traction-current 

deposits .... channels may be abandoned at low stage, in which case, thin lenses and 

wedges of sand may be deposited comprising element SB ... Typically, element SB 

comprises about 5% of most fluvial successions formed in these type of rivers' 
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6. Discussion 

At the start of this research a number of objectives were identified (section 1.4). The 

following section provides a synthesis of the findings of this research and attempts to 

answer the questions posed. 

6.1 Middle Trent Valley. 

6.1.1 Late Glacial Context 

The general Late Glacial history of the Trent Valley is in little doubt. At its maximum 

extent the Late Devensian ice sheet lay to the east of Sheffield and west of Derby at 

Burton-upon-Trent (refer to Fig. 1 ). The ice sheet, which left much of the Trent Basin 

uncovered, is thought to have originated in western Scotland and the Lake District, 

and then entered the Irish Sea (Shotton, 1977c). Other ice masses were also 

developing from Ireland and North Wales at this time and this led to deviation of the 

Scottish-Lake District ice down the Cheshire plain (Jones and Keen, 1993). The 

retreat of the ice sheet across Cheshire and Shropshire is suggested to have been a 

'complex process, involving halts and perhaps minor readvances' (Jones and Keen, 

1993) and more significant movements during the Younger Dryas (refer to 

section1.2.1). The maximum expansion of Devensian Ice occurred during the latter 

part of the cold stage, between 26000BP - 13000BP (Dimlington Stadial), when ice 

blocked the Humber Estuary and created a proglaciallglacier-darnmed 'Lake Humber' 

(Fig.22), diverting the Trent through the Lincoln Gap (central East Anglia). It has 

been suggested (Straw, 1963a) that an earlier Devensian 'Lake Humber l' also formed 

as a result of ice blockage but this is not widely accepted. Incision, following the re

opening of the Humber Gap, eventually restored the Trent to its present course. 

6.1.2 Deposits 

Brandon (1997) has interpreted the Holme Pierrepont Sand and Gravel (refer to 

section 1.3) as a 'braid plain distal sandur deposit from the Late Devensian ice front 

situated above Burton-upon-Trent in the Trent Valley and near Uttoxeter in the Dove 

Valley'. The description of these deposits is as pink, poorly sorted, matrix-supported, 
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trough-crossbedded gravels with numerous sub-horizontal erosion surfaces. Typically, 

these deposits are recorded as 8m thick (ranging up to 10m). Overlying the Holme 

Pierrepont Sand and Gravels, Brandon (1997) records Hemington Gravel Deposits 

(refer to section 1.3). These brown clast-supported planar cross-bedded ('cryptically' 

bedded or apparently massive at Barrow-upon-Trent) gravels are suggested to be 

reworked Holme Pierrepont Sand and Gravel deposits. Laterally 'accreted at channel 

point bars by successive meanderings of the Trent from possible Late Glacial to Late 

Flandrian times' these gravels are said to be distinguishable from the underlying 

sediment on the basis of colour and maturity (and the presence of truncated ice wedge 

casts, when found). Accepting that the 'depositional history of the Hemington Gravel 

is probably very complex', Brandon suggests that the age of this deposit varies across 

outcrops. 

This research has looked at the floodplain deposits of the Trent very differently to 

other research carried out along the Trent Valley (e.g. Brandon, 1997; Lillie & 

Grattan, 1995; Brandon & Sumbler, 1988). Examining the deposits by way of 

lithofacies analysis, this research has identified the likely sedimentological 

mechanisms responsible for the deposition of the sands and gravels. This research has 

identified six distinct lithofacies types, which, together with their associations, are 

likely to represent deposition in a braided river environment. It is acknowledged that 

the floodplain gravels do feature elements of meandering deposition (refer to section 

5.5) however, for the reasons presented earlier in this research (sections 5.1, 5.5, 5.6) 

the deposits are regarded predominantly as braided in origin. 

Attention has been brought to the internal structure and framework of the floodplain 

deposits. It has been suggested that the Devensian Holme Pierrepont Sand and Gravel 

is typically matrix-supported whilst the later Hemington deposits are clast-supported 

and is 'a more mature deposit which is considerably less sandy than the older gravel' 

(Brandon, 1997). This research suggests that there is no simple relationship between 

clast- and matrix-supported framework, and stratigraphical sequence. Clearly the 

question of 'clast or matrix support' in gravels can be fai~ly subjective, however, this 

research has identified many instances where clast- and matrix-supported gravels are 

interdigitated in a sequence and commonly where matrix-supported gravels lie above 

clast-supported gravels at the very top of a section. Other research has identified the 
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presence of planar and trough cross-bedding in gravel sequences along the Trent 

(Brandon, 1997; Lillie & Grattan, 1995). Gravel thicknesses were relatively restricted 

at Barrow-upon-Trent (3-4m) and this hampered recognition of large scale 

relationships within and between lithofacies. This research, however, suggests that 

the majority of gravel sediments are sub-horizontal, representing deposition by gravel 

sheets and midchannel bars, which would be expected from braided river deposition. 

Palaeocurrent evidence taken from different height intervals in the sedimentary 

sequence at Barrow-upon-Trent (refer to section 4.3.1) also suggests relatively 

unimodal flow (and therefore typical of braided tracts) during aggradation of the 

deposits. It is suggested that changes in palaeoflow have occurred since original 

deposition. Evidence from the alignment of 'bedrock channels' (refer to section 3.3.1) 

suggests scour occurred in a southwest-northeast trend whilst palaeocurrent evidence 

suggests palaeoflow at 80· and \05-120· at different site locations. Brandon records 

palaeocurrents of 140· whilst the palaeochannel alignment (refer to section 4.2.1) also 

records a direction of approximately 120·. The presence of palaeoscars in the southern 

half of the site, however, suggest a meandering planforrn and a palaeoflow towards 

60· in more recent deposits. Clearly there has been some variability throughout 

depositional history. 

Differentiation between Late Glacial and Flandrian deposits has been attempted on the 

basis of colour at various sites along the Trent Valley (Brown, 1996; Brandon, 1997). 

The distinction is made between predominantly pink ('red iron staining' -Brown, 

1994; 'pinkish hue ... from the primary Triassic component' - Brandon, 1997) 

Devensian gravels and the more orange-brown (from oxidation) colouration of 

Flandrian deposits. This distinction of colour (refer to section 4.4.4) can be made at 

Barrow-upon-Trent, however, it is not clear that the direct assumption can be made as 

to the age of sedimentation. The palaeochannel identified by this research suggests 

that at one location the underlying (pinkish) gravels are older than 13060 ± 90 (CAL 

yr BP) and the overlying (orange) gravels are at least younger than 13060 ± 90 (CAL 

yr BP). Clearly at this location it is possible to make inferences on colour and 

stratigraphy, however, this is not always the case e.g. Dev~nsian and Medieval gravels 

at Hemington (Brown, 1992) are only distinguished by the presence of ice wedge 

pseudomorphs. 
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6.2 Questions Answered? 

The objectives identified at the start of this research considered the adaptation of the 

Trent basin from an ice marginal system to an interglacial regime: 

• Clearly the relationship between floodplain stratigraphy and river morphology has 

been established. The floodplain gravels are identified as representing mainly 

deposition by proglacial outwash braided streams towards the end of the Late 

Glacial (from the retreating ice front situated to the west of Burton-upon-Trent). 

Six major lithofacies are recognised at Barrow-upon-Trent and have been 

interpreted in terms of their origin and position with the braided system. 

Lithologically, the gravels consist mainly of quartzites, quartz and other durable 

lithologies (refer to Table 2) and are most likely to represent reworked 'Bunter' 

pebble deposits (now 'Cannock Chase formation') which are widespread to the 

west and south-west of Derby (refer to Fig. 2, section 4.). Subsequently, a 

reduction in sediment and flow conditions associated with the retreating ice sheet 

and the return to an interglacial environment during the Flandrian, led to more 

favourable conditions for the development of a meandering system. 

• It is possible to distinguish braided and meandering systems on the basis of 

lithofacies analysis. Complications, however, do arise because certain Iithofacies 

assemblages are common to both braided and meandering rivers, and many river 

systems such as the Trent, comprise both braided and meandering deposits. The 

Trent is well documented for its large floods and frequent channel changes and is, 

in this respect, atypical of British lowland rivers (Brown, 1996). Flood events, 

such as those recorded at Hemington (represented by Medieval gravels) can 

deposit unusually coarse deposits within a meandering setting. Apart from the 

presence of truncated ice wedge casts, and sediment colour, these deposits may 

well have been interpreted as a Devensian phenomena. Without the aid of 

additional information, therefore, such as dating information and palaeocurrent 

data, it is unlikely that any conclusion can be drawn with the utmost confidence. 

• Similarly it is possible to distinguish between ~ate Glacial and Flandrian 

sediments. Again, colouration of deposits and sediment maturity have been used 

(Brown, 1996; Brandon, 1997), however, unless this subjective evidence is 

supported with information from dating, (or relative information from truncated 
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ice wedge pseudomorphs) then any interpretation must be made tentatively. The 

presence of cryoturbated structures at Barrow-upon-Trent (section 4.4.1) suggests 

periglacial activity, however, they may purely be the result of more isolated 

seasonally frozen ground conditions. 

It is possible to compare the sediments at Barrow-upon-Trent with other reaches 

of the River Trent. Fieldwork at Barrow-upon-Trent records gravel thicknesses of 

between 2.0-S.4m (typically 3.0-4.0m). Evidence from borehole data suggests 

increased gravel thicknesses, up to 11.Sm (usuaIly 6m+) present near the 

contemporary channel of the Trent and a corresponding increase in overbank fines 

thickness towards the contemporary channel. Evidence from regional borehole 

data, and previous research carried out along the Trent Valley by various authors 

(Brandon, 1997; LiIIie and Grattan, 1995; Knight and Howard, 1994; Brandon and 

Sumbler, 1988) has supported the variability and provenance of the floodplain 

deposits. Surprisingly, whilst gravel thicknesses increase towards the confluence 

of the River Trent with the River Dove and River Derwent, this increase is not as 

marked as one might perhaps expect at the intersection of two major streams. In 

many places gravel deposits cut into the underlying bedrock but show no 

relationship with regard to proximity of the contemporary channel. Where this 

occurs, it is suggested that channel migration has contributed. 

• The deposits at Barrow-upon-Trent are interpreted as representing deposition by a 

shallow gravel braided river, the 'Scott' type model of Miall (1996). The 

investigations of river terrace deposits rely on the proposition of sequence 

stratigraphy and are therefore regarded as 'models' of terrace formation. Dawson 

and Gardiner (1987) reviewed the terraces of the River Severn and provided a 

summary which is equally applicable to the Trent and many other River Basins: 'it 

is thus unlikely that a simple model of terrace aggradation can be generaIly 

applicable, and clearly some assessment of the local depositional environment is 

necessary prior to using the existence of a terrace for a stratigraphic or 

palaeohydrological interpretation'. 

This contribution has considered the palaeohydrological relationship between 

floodplain stratigraphy and river morphology, and has in some way fulfilled, or 

partially fulfilled, the objectives originaIly presented. This research has also 
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established that River systems are more complex than many authors recognise and 

further research needs to be an ongoing theme. 
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APPENDIX I nOREHOLE DATA 

LOCATION REFERENCE BOREHOLE DATA 
STEETLEY GEOLOGICAL AK I -AK27 (BH'S 1-27) 

THREE DIMENSIONAL SERVICES DEPT- ATKINS GW I - GW I I (BH'S 28 - 38) 
PROFILES & GOODWINS LAND 

BORE HOLE SITES 
(SEE NOTE 1) 

SK22NE BH'S 1-191 
SK32NW BH's I -189 
SK32NE BH's I - 282 

MIDDLE TRENT SK42NW BH's I - 241 
SK42NE BH's 1-426 
SK43SE BH's I - 161 
SK43SW BH's I - 301 

SK32NE progressing BH's 86, 14, 15, 88, 89,17,91,92, 
SW-NE 93,94,18,19,103,105 107,109 

BH's 51, 52, 53, 54, 55, 56, 57, 58, 
TRANSECT AI -A2 then SK435W progressing 60,61,69,74,77,80,81,82,91, 

SW-NE 97,98,103,107,108, \09, 1I0, 
111,113, II6, 117, 118, 119,120, 

121,122,123,124,128 
TRANSECT B I - B2 SK32NE progressing N - S BH's 52, 53, 54, 55, 56, 57, 58, 59, 

60,61,62,63 
SK42NE progressing BH's 424, 426, 419,386,379,378, 

SE-NW 414,377,412,299,298,297,296, 
250295,293,291290,286,273 

TRANSECT Cl - C2 then SK42NW progressing BH's 237, 257,194,168,193,221, 
SE-NW 215,214,191,190,212,21 I, 208, 

203, 200, 197 
then SK43SW progressing BH's 148,228,227,146,145,223, 

SE-NW 144,222,143,286 

• Note I - Borehole data provided by Mr. C. Camberbach, Redland Aggregates Lld (now Lafarge 
Aggregates Lld), Bradgate House, Groby, Leicester, LE6 OF A. 

• All other information provided by the Records Dept., British Geological Survey, Keyworth, Notts, 
NN12 5GG. Please note that borehole locations are recorded as point data on I: 10,000 scale 
Ordnance Survey maps and numbered (e.g. I to 24 I) with reference to specific sheet numbers e.g. 
'SK42NW'. Grid References are provided on the individual borehole records, which can be 
accessed by prior arrangement with the British Geological Survey at the above address. 
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APPENDIX" - PARTICLE SIZE DATA 

SAMPLE LITHOFACIES SEDIMENT GRADING 
LOCATION (PERCENT RETAINED) 
Location 1 Lithofacies B -61iF0%; -51iF0%; -4<>=21.4%; -30-34%; -20-14.[%; 

-10=5.4%; 00=4.2%; +10=9.1%; +20=9.5%; +30=1.6%; +40=0.3%; +50=0.4% 
Location 1 Lithofacies C -6<>=0%; -50-15.8%; -40-30.8%; -3<>=21.6%; -20-8.7%; 

-10=4.2%; 00=3.0%; +1<>=5.9%; +20=7.1%; +30=2.4%; +40=0.5%; +50=0.5% 
Location 2 Lithofacies A -60-[2.5%; -50-18.3%; -4<>=23.8%; -30-11.7%; 

-20=8.7%; -10=5.3%; 0<>=3.0%; +10=7.8%; +20=8.1%; +30=0.6%; +40=0.1 %; 
+S0=O% 

Location 2 Lithofacies D -60=0%; -50=0%; -40-0%; ·3,,-0%; -2~O. I %; 
-[0=1.4%; 00=2.9%; +1<>=24.2%; +20=69.9%; +30=1.2%· +40=0.2%· +So=O.I% 

Location 3 Lithofacies A -60=3.6%; -50=22.1 %; -40=23.4%; -30=17.7%; -2a=9.0%; 
-1a=3.7"/o; 0a=2.4%; +1a=14.6%; +20=2.7%; +3<>=0.4%; +40=02%; +S0=0% 

Location 3 Lithofacies C -6<>=0%; -S0-0%; -40-22.3%; -30-30.6%; -2<>=14.3%; 
-10=2.8%; 0<>=1.6%; +1<>=7.0%; +20=19.6%; +3a=1.4%; +4a=0.2%; +S<>=O.I% 

Location 3 Lithofacies E -60-0%; -50-0%; -40=0%; -30-0.1 %; -2£1-0.3%; 
-10=0.S%; 00=1.6%; +1..=30.1 %; +20=64.4%; +3<>=2.4%; +4a=0.3%; +S0=0.2% 

Location 4 Lithofacies A -60-0%; -Sa=20.5%; -4<>=36.4%; -30=18.6%; -2<>=5.2%; 
-10=1.9%; Oa=I.S%· +1.,---4.9%· +20=9.9%; +30=0.8%; +40=0.1%· +5..=0.1% 

Location 4 Lithofacies A -60-22.9%; -S0-37.4%; -40-11.3%; -30-10.0%; -2<>=5.1 %; 
-10=2.4%; 00=1.8%; +10=4.7%; +20=3.3%; +3a=0.7%; +4a=0.2%; +5,,=0.2% 

Location 4 Lithofacies B -60=4.9%; -5<>=7.7%; -4<>=27.0%; -30-22.4%; -2<>=10.5%; 
-10=4.5%; 00=2.9%; +10=17.8%; +2..=1.9%; +30=0.2%; +4a=0.1%; +S0=0.1 % 

Location 5 Lithofacies A -6a=0%; -S0-34.0%; -40=20.1 %; -30-15.1 %; -2<>=8.1 %; 
-10=3.8%; 00=2.6%; +10=14.7%; +20=1.0%; +30=0.4%; +40=0.2%· +S0=0.1% 

Location S Lithofacies B -60-0%; -S0-6.1 %; -4a=34.1 %; -30=23.2%; -2<>=11.0%; 
-10=4.5%; 00=2.5%; +10=9.7%; +20=7.7%; +30=0.6%; +40=0.3%; +50=0.2% 

Location 7 Lithofacies A -60-8.8%; -50-38.7%; -40-18.2%; -30= 13.1 %; 
-20=5.6%; -10=2.5%; 0<>=1.6%; +1..=5.3%; +20=5.2%; +30=0.8%; +4<>=0.1%; 

+50=0.1% 
Location 7 Lithofacies B -6<>=0%; -5.,..8.3%; -4a=24.7%; -30-22.0%; -20-12.0%; 

-10=5.0%; 00=2.8%; +1,,=14.4%; +20=9.4%; +30=0.9%; +4a=0.3%; +S<>=0.2% 
Location 7 Lithofacies C -6a=0%; -5,,-4.0%; -40=22.3%; -3<>=27.2%; -20-12.5%; 

-1 .,---4.7"10; 00=2.9%; + 10=17.7%; +20=7.6%; +30=0.7%; +4<>=0.3%; +S<>=O.1 % 
Location 8 Lithofacies C -60=0%; -50=14.7%; -40=10.5%; -30=15.6%; -20=10.0%; 

-10=7.7%; 0a=5.8%; +1a=16.2%; +20=16.5%; +3<>=1.9%; +4a=0.5%· +5<>=0.5% 
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APPENDIX 111- PALAEOCURRENT DATA 

SITE TYPE OF DATA PALAEOCURRENT 
LOCATION (DIP & DIRECTION) 

231102'; 151026'; 07/136'; 24/107'; 15/130'; 191087'; 
Location 2 Pebble Imbrication 311116'; 23/094'; 241162'; 15/112'; 13/110';181122'; 

(Long Axis Alignment) 181184'; 24/094'; 16/117'; 18/123'; 12/112'; 20/072'; 
291115'; 26/126'; 181168'; 14/057'; 19/115'; 22/111'; 

17/110' 
Location 2 Forset Dips 211112'; 221110'; 2111 14' 
Location 3 Forset Dips 211114' 
Location 8 Forset Dips 22/106' 
Location 10 Forset Dips 19/076'; 211077'; 211082'; 20/080'; 18/080' 
Location 12 Forset Dips 211083'; 19/078'; 19/082'; 21/077'; 20/078' 
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