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Abstract 

Management of large, transboundary river systems can be politically and strategically 

problematic. Accurate flow forecasting based on public domain data offers the potential 

for improved resource allocation and infrastructure management. This study 

investigates the scope for reservoir inflow forecasting in data sparse regions using 

public domain information. Four strategically important headwater reservoirs in Central 

Asia are used to pilot forecasting methodologies (Toktogul, Andijan and Kayrakkum in 

Kyrgyzstan and Nurek in Tajikistan). Two approaches are developed. First, statistical 

forecasting of monthly inflow is undertaken using relationships with satellite precipitation 

estimates as well as reanalysis precipitation and temperature products. Second, mean 

summer inflows to reservoirs are conditioned on the tercile of preceding winter large 

scale climate modes (El Niño Southern Oscillation, North Atlantic Oscillation, or Indian 

Ocean Dipole). The transferability of both approaches is evaluated through 

implementation to a basin in Morocco. A methodology for operationalising seasonal 

forecasts of inflows to Nurek reservoir in Tajikistan is also presented.  

 

The statistical models outperformed the long-term average mean monthly inflows into 

Toktogul and Andijan reservoirs at lead times of 1-4 months using operationally 

available predictors. Stratifying models to forecast monthly inflows for only summer 

months (April-September) improved skill over long term average mean monthly inflows. 

Individual months Niño 3.4 during October-January were significantly (p < 0.01) 

correlated to following mean summer inflows Toktogul, Andijan and Nurek reservoirs 

during the period 1941-1980. Significant differences (p < 0.01) occurred in summer 

inflows into all reservoirs following opposing phases of winter Niño 3.4 during the period 

1941-1980. Over the period 1941-2016 (1993-1999 missing), there exists only a 22% 

chance of positive summer inflow anomalies into Nurek reservoir following November-

December La Niña conditions. Cross validated model skill assessed using the Heidke 

Hit Proportion outperforms chance, with a hit rate of 51-59% depending upon the period 

of record used. This climate mode forecasting approach could be extended to natural 

hazards (e.g. avalanches and mudflows) or to facilitate regional electricity hedging 

(between neighbouring countries experiencing reduced/increased demand). Further 

research is needed to evaluate the potential for forecasting winter energy demand, 

potentially reducing the impact of winter energy crises across the region.  
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1 Introduction 

Over two thirds of the Tajik population suffer from electricity shortages each winter 

(World Bank, 2013a). Supply shortages result in electricity rationing every year in 

Tajikistan (Radio Free Europe, 2016) and increasingly in Kyrgyzstan too (World Bank, 

2015). With 70% of Tajikistan’s electricity generated by Nurek reservoir (Asian 

Infrastructure Investment Bank, 2017) and more than 90% of Kyrgyzstan’s electricity 

from the Naryn cascade (including Toktogul reservoir) (World Bank, 2008), winter 

energy crises are directly linked to reservoir management. Consequently, reservoir 

operations are inextricably linked to economic development (World Bank, 2013b), 

regional stability (International Crisis Group, 2014) and public health (World Bank, 

2013b; Kalybekova, 2014). The energy crisis was particularly acute during winter 

2007/8 when water levels in reservoirs were critically low, resulting in extreme rationing 

of electricity. Less than 20% of Tajikistan’s hospitals and health clinics had access to 

electricity, resulting in at least 200 infants dying (Unicef, 2008; Laldjebaev, 2010). The 

real impact was likely much worse, but figures are difficult to obtain (Antelava, 2008). 

Climate change is expected to exacerbate water stresses in the region, but improved 

management of water and energy resources has the potential to offset such pressures 

(Siegfried et al., 2012; Sorg et al., 2012; Sorg et al., 2013).  

 

1.1 Purpose of seasonal forecasting 

The long-term safety and efficient operation of reservoirs are vulnerable to hydrological 

uncertainty. Forecasting expected inflows can reduce vulnerabilities by facilitating 

improved decision making through increased knowledge about future water availability. 

For example, drawdown of reservoir levels can be undertaken if high inflow volumes are 

expected. Long-lead time river flow forecasts can facilitate more efficient reservoir 

management, with potential annual economic increases of $153 million demonstrated 

for the Columbia River in the Pacific Northwest of America (Hamlet et al., 2002; Maurer 

and Lettenmaier, 2003). An integrated management strategy involving multiple interests 

(e.g. hydropower generation and irrigation) for trans-national river basins could help to 

reduce tensions surrounding the water-energy nexus of Central Asia (CA). Such a 

strategy would require improved monitoring systems and integrated flow forecasting 
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(Clausen et al., 2014). It should be noted, however, that a skilful seasonal forecast does 

not necessarily improve reservoir management (Yao and Georgakakos, 2001). For 

improvements to be realised, reservoir managers must be able to interpret and 

implement forecast information effectively. Insufficient human and institutional 

capabilities can hinder forecasts being integrated into decision making protocols, a 

known issue for probabilistic forecasting techniques (Crochemore et al., 2016).  

 

1.2 Challenges of seasonal forecasting in data sparse regions 

Seasonal forecasting of reservoir inflows begins with knowledge of regional hydro-

climate controls (EMCWF, 2017). This must be acquired via monitoring of the 

environment before forecasting can commence. The amount of information available 

varies dramatically between regions. At one extreme, some countries have access to 

real time information about precipitation, river flow and snow cover (e.g. Norway1); 

whilst others have to rely on manually recorded observations from antiquated hardware 

(e.g. Kyrgyzstan; World Bank, 2012). Precipitation is the most important atmospheric 

input for hydrological models, therefore accurate precipitation measurements are vital 

for reliable flow prediction (Su et al., 2008). In many areas (including the mountainous 

regions of CA), accurate, real-time, ground-based precipitation observations are scant 

or non-existent (Artan et al., 2007). Trans-national river basins have additional issues 

surrounding data sharing, further hindering operational flow forecasting (Hossain et al, 

2007). However, the viability of seasonal forecasting is ultimately dependent upon 

potential predictability, for example from large scale climate modes, which vary in time 

and space. These limitations, as well as a lack of technical capital in some areas, mean 

that operational seasonal flow forecasting is a non-trivial task in data sparse regions.   

 

1.3 Opportunities to develop seasonal forecasting 

Traditional river flow forecasting techniques rely on accurate ground based 

measurement of precipitation from gauging stations – a requirement that is often difficult 

to meet (Artan et al., 2007). However, recent advances in precipitation estimation (from 

satellites and re-analysis products for example) can provide area-based information, a 

                                            
1 https://www.nve.no/hydrologi/hydrologiske-data/ 
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distinct advantage over a porous ground-based network. Several products are also 

available in near real-time, allowing operational flow forecasts to be produced, 

bypassing the relatively long time it can take to collect and process manually obtained, 

land-based precipitation data (Collischonn and Pante, 2011). Products can also provide 

catchment to regional scale coverage of precipitation, combatting issues surrounding 

data sharing, important for downstream areas within trans-national river basins 

(Balthrop and Hossain, 2010). Such advantages have attracted attention in recent years 

from researchers and national agencies alike, with operational flood forecasting models 

based on such products now in use at both global (e.g. Global Flood Awareness 

System2) and basin scales (e.g. Fan et al., 2016).  

 

Large scale climate modes such as the El Niño Southern Oscillation (ENSO) are known 

to influence regional precipitation and discharge (Redmond and Koch, 1991; Chiew et 

al., 1998; Cayan et al. 1999; Dai and Wigley, 2000; Chiew and McMahon, 2002; 

Emerton et al., 2017). Such relationships, when of sufficient stationarity and practical 

significance, can be leveraged for seasonal forecasting (Hamlet and Lettenmaier, 

1999). Climate mode-streamflow relationships are currently used within operational 

hydrologic forecasting systems such as BC Hydro (Sene, 2016) and the US Department 

for Agricultures Natural Resources Conservation Service3. Forecasts have been 

produced via linear and non-linear relationships between climate modes and streamflow 

(Barlow and Tippet, 2008) and mode-based weighting systems (Werner et al., 2004). 

Statistical forecasting techniques based on remote climate modes offer significant 

potential for regions with sparse ground-based monitoring networks, like in CA. Indices 

of climate modes are available in near real-time, allowing forecasts to be produced 

before observational data has been collected. Furthermore, where climate modes are 

related to winter snowpack accumulation, forecast outlooks of summer melt flows can 

be produced at relatively long lead times (>4 months) (Hamlet and Lettenmaier, 1999).  

 

 

 

                                            
2 http://globalfloods.jrc.ec.europa.eu/ 
3 https://www.wcc.nrcs.usda.gov/wsf/ 
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1.4 Research aim and objectives 

The overall aim of this research is to: 

• Develop hydrometric data streams and model structures to facilitate reservoir 

inflow forecasting in data sparse regions using public domain predictors. 

 

The six associated objectives of this research are to: 

1) Collate public domain hydro-climatic information for selected river basins and 

major reservoirs in Central Asia as well as selected climate mode indices; 

2) Assess the accuracy of selected information sources via comparison with 

observed data; 

3) Evaluate the effect of varying predictor lead times, locations and averaging 

periods on forecasts of reservoir inflows in Central Asia; 

4) Build and evaluate statistical models using operationally available predictors 

to forecast reservoir inflows at lead times of 1-4 months; 

5) Explore the potential for forecasting reservoir inflows by conditioning mean 

summer discharge on prior winter mode(s) of climate variation; 

6) Evaluate the transferability of statistical and climate mode based models 

outside the hydro-climate of Central Asia by implementing them in a test 

catchment in Morocco. 

 

1.5 Thesis structure 

Figure 1.1 provides an overview of the steps taken to address the above aim and 

objectives. The next chapter sets out the context and need for the research. This 

includes an overview of previous research upon which this thesis builds and discusses 

available public domain information sources for CA. Chapter 3 introduces the study area 

and reservoirs used to pilot seasonal forecasting approaches, including information on 

installed capacities and relative source contributions from ice, snow and liquid 

precipitation to inflows. The chapter closes with an evaluation of gridded precipitation 

and temperature products via comparison with observed data. The two seasonal 

reservoir inflow forecasting methodologies are then described in Chapter 4. First, a 

statistical forecasting approach is developed using near real-time gridded precipitation 

and temperature products. Second, a climate mode based approach is devised that 
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conditions summer reservoir inflows on prior climate mode index phases. The results of 

both approaches are described in Chapter 5. Chapter 6 then discusses the results, 

comparing both approaches with previous research. Physical mechanisms are put 

forward to explain the statistical results, drawing on understanding of the regional hydro-

climatology. The transferability of the approaches outside of CA is assessed, giving 

insight to the drivers of predictability in both CA and North Africa. The scope for 

operationalising the most promising seasonal forecasting approach is then considered. 

A review of barriers to implementation is undertaken, before a prototype step-by-step 

methodology for implementing the forecasts in CA is presented. Finally, Chapter 7 

summarises the main contributions of the research to knowledge and proposes several 

opportunities for further research.  

 

 
Figure 1.1: Proposed workflow to address the aim and objectives of the 
thesis 
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2 Literature Review 

First, the hydro-political context of Central Asia is provided, stressing the importance of 

the water-energy nexus on the politics of the region. A summary of the hydro-climate of 

the region is then provided, giving insight into potential sources of reservoir inflow 

predictability. Public domain information sources are then identified, before detail is 

provided on selected products. Relevant research is reviewed regarding seasonal 

discharge forecasting in the region, placing the study within the context of the current 

body of literature. A summary of key themes concludes the chapter. The purpose of this 

Chapter is to situate the region, associated public domain information sources and 

research objectives within the broader literature.  

 

2.1 A brief history of water management 

CA (Figure 2.1) is defined herein as the five ‘Stans’ of the former Soviet Union: 

Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan and Turkmenistan. Water has been 

managed in the region for thousands of years. In the interests of brevity, a focus is 

given to the last century. However, this must be set within the historical context of water 

management in the region. The Amu Darya once flowed directly into the Caspian Sea, 

until during the early Holocene the river turned Northwards creating the ‘Great Aral 

Sea’. This was associated with the greater discharges of both the Amu and Syr Darya 

caused by the warmer and wetter conditions during the Lavlakansky pluvial period (from 

about 9000 BP) (Kvasov and Mamedov, 1991). The higher lake levels meant water 

once more discharge from the Aral to the Caspian Seas, until the drier climate around 

3500 BP meant this connection ceased. However, even during this period, human 

influence is thought to have had a major impact on this cessation (Kvasov, 1959). 

Human influence is not new in the region, with the Horezm population known to have 

controlled the flow of the Amu Darya from around the 5th century BC (Tolstov, 1962). 

Overall, the Aral Sea should be viewed as geologically young, and its shallow nature 

means it has long been susceptible to minor changes in the regions climate as well as 

human influence (Boomer et al., 2000; Austin et al., 2007). 

 

Following the 1917 Bolshevik revolution, CA became a single administrative unit under 

Soviet control. In the 1920s, five Republics were created in such a way as to maintain 
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the requirement of a strong centralising influence from Moscow (Breu and Hurni, 2003). 

CA received substantial economic and social benefits during the Soviet rule, including 

subsidies for energy, food and infrastructure. Large scale irrigation was significantly 

extended throughout lowland CA. Uzbekistan became the cotton basket of Soviet Union 

and saw irrigated lands increase from ~1.3 million hectares in the 1900s to ~8.5 million 

hectares currently (Abdullaev and Rakhmatullaev, 2013; Conrad et al., 2016). To this 

end, several reservoirs were built in the headwaters of the Syr and Amu Darya Rivers to 

regulate river flows (Wegerich, 2008). Figure 2.2 shows the major dams and all cities 

located within the study region. A Moscow controlled, unified water-energy system was 

established. Water from reservoirs was released primarily for irrigation of downstream 

areas during the summer, and only during peak power demand was water released for 

hydropower generation. In return, upstream Republics received energy in the form of 

coal and gas during the winter. This system worked well as both energy and water were 

managed centrally by Moscow (Sehring and Diebold, 2012). The dissolution of the 

Soviet Union in 1991 brought independence to the five Republics, as well as an end to 

Soviet subsidies (Breu and Hurni, 2003).  

 

 
Figure 2.1 Geopolitical features of Central Asia 
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Figure 2.2: Location of Dams and cities within the study region 

 

Since independence CA has witnessed radical political changes. Kyrgyzstan is currently 

the only democratic state following a coup in 2010 which saw the displacement of 

thousands of Uzbeks (Harding, 2010). The economic situation of Kyrgyzstan and 

Tajikistan has improved in recent years but is characterised by poverty with 

dependence on external support, especially in the marginal mountainous areas (World 

Bank, 2013b). Both the political and economic situation has been aggravated by 

decaying infrastructure, poor governance and a lack of regional cooperation. On top of 

these challenges, the region also faces a range of geophysical and meteorological 

hazards. Earthquakes, avalanches and landslides are common in the Tien Shan and 

Pamir mountains, with average annual fatalities from natural disasters typically more 

than 400 people in Tajikistan alone (UNDP, 2012). The primary natural hazard in the 

region is fluvial flooding, stemming from hydrological variability but also poor dam 

management, such as flooding of the Arnasay depression due to increased winter 

release from Toktogul (UNDP, 2012).  
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Controversy surrounds the management of CA’s rivers due to the competing water use 

demands of upstream and downstream nations. Upstream nations wish to release water 

for hydropower generation during the winter whereas downstream nations require water 

for irrigation during summer. Post-independence, energy prices rose dramatically 

causing upstream nations to act increasingly in their own interests, releasing more 

water for power generation during winter (Sovaskul et al., 2003). It should be noted that 

scarcity of water is generally not an issue; rather it is the geographic, seasonal and 

inter-annual variability of river flow that is problematic (Kraak, 2012). Discussions to 

improve the situation are set within wider political policies regarding the nation building 

following the collapse of the Soviet Union (Cruz-Del Rosario, 2009). Current plans to 

develop new headwater hydropower reservoirs (Kambarata on the Syr Darya, Rogun on 

the Amu Darya) are closely linked with wider issues regarding legitimacy of political 

elites and national identity (Menga, 2015). A as well as strengthening regional 

cooperation, upgrading hydrometeorological networks is crucial for progress, requiring 

significant investment (UNDP, 2012). Efforts are currently being made to enhance the 

hydro-meteorological networks in Kyrgyzstan and Tajikistan, but it will take time to build 

long term accurate records (Schöne et al., 2013; World Bank, 2017). Freely available, 

public domain information, such as satellite precipitation estimates, could provide 

information in the near term and be used alongside observational data to provide a 

more detailed picture of CA hydro-climate. 

 

2.2 Regional hydro-climatology 

From the perspective of water resource prediction and management, an understanding 

of the influence of regional atmospheric circulation patterns on CA climate and the key 

processes underlying this influence are crucial for accurate seasonal forecasting of river 

flow. Aizen et al. (1995) identified four key atmospheric circulation patterns that affect 

CA climate. These were later refined by Inagamova et al. (2002) and Schiemann et al. 

(2008), and are summarised in Figure 2.3. 
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Figure 2.3 Schematic of key atmospheric circulation patterns affecting 
the climate of Central Asia (adapted from Schiemann et al., 2008) 

 

The mountains of the Hindu-Kush, Pamirs and the Karakoram form a barrier to the 

intrusion of air masses from the South (Schiemann et al., 2007). How effectively this de-

couples the climate of CA from the sub-continental climate and the associated monsoon 

summer precipitation has been of interest over recent decades (Aizen et al., 1995; 

Webster et al., 1998; Inagamova et al., 2002; Aizen et al., 2009; Pohl et al., 2015). 

Schiemann et al. (2007) found no spill-over of precipitation into CA during strong Indian 

Summer Monsoons (ISM). A positive temperature signal was, however, found during 

strong ISM, particularly across the Amu Darya basin. Schiemann et al. (2007) 

hypothesised that increased runoff in the Amu Darya found during ISM was caused by 

the temperature anomaly rather than increased precipitation. However, Arushev et al. 

(1977) concluded that air masses from the ISM penetrate through the Broghol pass into 

the southern Pamirs, resulting in increased cloudiness and snowfall during summer 

causing a lowering of the firn line. Other literature suggests that increased precipitation 

over the southern Pamirs occurs in June and July during strong ISM, but no evidence is 

provided to support this view (Aizen et al., 2009; Pohl et al., 2015). Further research is 
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required to confirm the influence of ISM on precipitation within CA, and particularly how 

far north its effects penetrate. Furthermore, the link between ISM and summer runoff in 

the Amu Darya requires further exploration to determine the level of stationarity and 

underlying physical mechanisms (temperature/melt or precipitation driven).  

 

In general, the precipitation regime of CA reflects the boundary between temperate and 

subtropical climate zones (Aizen et al., 2001). The spatial variation of precipitation 

within CA is determined by extreme continentality and topography (Schiemann et al., 

2008). According to the Global Precipitation Climatology Centre (GPCC) gridded gauge-

based precipitation archive, the lowest precipitation totals (<20mm per month) occur 

over the Turanian plains in the north-west of CA as well as the Taklamakan desert in 

the east (Figure 2.4). Generally, a significant increase in precipitation is observed on 

western and south-western slopes that are exposed to the inflow of moist air masses 

from the west (>50mm per month according to GPCC) (Figure 2.4). An example of 

which are the western slopes of the Pamir Mountains located in western Tajikistan. 

Conversely, interior lee areas such as the Central Tien Shan and the eastern Pamirs 

receive much less precipitation (<20mm per month, Figure 2.4). The influence of 

topography and elevation is paramount in understanding the precipitation distribution at 

local scales (Schiemann et al., 2008). For example, the topography of the Fergana 

valley is such that westerly air masses converge at its entrance, enhancing precipitation 

there but resulting in a pronounced minimum within the interior (Schiemann et al., 

2008).  
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Figure 2.4: Elevation model of Central Asia (top plate) and GPCC 
average monthly precipitation (mm) for years 1981-2010 (bottom plate). 
Boxes correspond to the same areas as Figure 2.5. 

 

A strong annual regime is observed in the precipitation of CA. Table 2.1 shows that 

precipitation in CA can be understood by considering the evolution of the jet streams’ 

location throughout the year (Aizen et al., 1995; Chanysheva et al., 1995; Bothe et al., 

2012). The annual regime varies spatially within CA, and is more pronounced over the 

mountainous areas compared with the lowlands (Aizen et al., 1996; Schiemann et al., 

2008). Figure 2.5 depicts the variation in annual precipitation regime across CA for six 

selected regions, an important factor that should be considered alongside inter-annual 

variability.  Relatively little information is available on the spatial-temporal  
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Table 2.1 Typical precipitation regime of Central Asia (adapted from 
Schimann et al., 2008) 

Months Precipitation observed 

June, July, August Strong heating of the land surface causes a thermal low to form, 

resulting in clear, dry conditions over both mountainous and the 

plains. Periodic intrusions of cooler air masses from the north, 

north west or west result in continued dry conditions over the 

plains but precipitation via thunderstorms over the mountains. The 

jet stream is situated north of CA.  

September Thermal lows rarely form. Dry and clear conditions generally 

remain due to the southern periphery of the Siberian high being 

located over CA. 

October, November, 

December 

The jet stream moves to the south of CA during October. The 

cyclonic circulation is activated resulting in less stable weather 

conditions. To the south of the jet stream, south westerly cyclones 

carry moist air masses from the east of the Mediterranean to CA. 

Cyclonic activity continues until mid-January. 

January, February The jet stream moves further south until it is located over Iran, 

Afghanistan and Pakistan. Southerly cyclones only reach southern 

areas of CA. The northern half of CA is strongly under the 

influence of the Siberian high causing calm and clear weather to 

dominate. 

March The jet stream moves north to the southern periphery of CA. 

Wintery conditions remain in Kazakhstan and Siberia. In the South 

of CA a short subtropical spring begins in Iran and Afghanistan. 

These factors cause a temperature gradient around the jet 

stream, strengthening cyclonic activity.  

Late March, April Typically months with the highest amount of precipitation, usually 

falling in showers and thunderstorms. The jet stream moves north 

across CA. 

May Cyclonic activity weakens, causing a reduction in precipitation. 
 

 

regimes of snow/rain in CA, with some studies using simple algorithms to predict 

whether precipitation will fall as snow or rain (Aizen et al., 1995). However, a reduction 

in the snowfall to precipitation ratio (i.e. decreasing snowfall relative to precipitation) has 
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occurred over the western Tien Shan Mountains of China between 1961-2010 (Guo and 

Li, 2015). Altitudes of 1500-2500m have seen the greatest reduction in snowfall to 

precipitation ratio, with trends less clear outside of this range.  

 

 
Figure 2.5: Precipitation regime across Central Asia. Bar charts show 
average monthly precipitation across each of the six areas using GPCC 
precipitation for the years 1970-2010. Error bars show interquartile range. 

 

The temperature regime of CA is strongly continental, with hot summers and cold 

winters (Aizen et al., 1996). Very little literature is available on the variation of 

temperature regime spatially within CA, yet research has been undertaken on the effect 

of the Indian Summer Monsoon (ISM) on temperature in South Eastern CA. Schiemann 

et al. (2007) found that during years of strong ISM the mountainous areas to the north 

and north-west of the sub-continent displayed increased surface temperatures. This 

was attributed to the propagation of Rossby wave trains excited by latent heat release 

during monsoon rains (Schiemann et al., 2007).  

 

The Aral Sea basin is mainly fed by the Syr Darya and Amu Darya Rivers (Figure 2.1). 

Their headwater regions are located in the high mountains of the Tien Shan and Pamir 

ranges (Figure 2.3). The hydrographs of both rivers are dominated by the meltwater 

component, with summer flow dependent upon releases from stores of winter snow and 

glacial ablation (Schiemann et al., 2007; Savoskul and Smakhtin, 2013). The Amu 

Darya has a greater contribution of glacier melt compared to the Syr Darya (with 23% 
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and 9% respectively). Both the Amu (45%) and Syr (70%) Darya are heavily reliant on 

seasonal snowmelt for their annual flow (Savoskul and Smakhtin, 2013).  

 

CA has been described as an area of unambiguous warming, with most rapid air 

temperature rises observed since the 1970s (Seigfried et al., 2012; Sorg et al., 2012). 

Winter temperature increases are reported to be greater than in summer over Tajikistan 

and Kyrgyzstan (Bolch, 2007; Wilby et al., 2011a; Kreigel et al., 2013; Unger-Shayesteh 

et al., 2013). Observed changes in precipitation are less coherent than those of 

temperature. Studies have found no significant trend in precipitation anomalies since 

the 1950s across CA (Bolch, 2007; Kutazov and Shahgedanova, 2009; Unger-

Shayesteh et al., 2013). It is also unclear if any changes in seasonal cycle have 

occurred. Greater precipitation during winter (Aizen et al., 1997; Zhang et al., 2009) has 

been found for the Tien Shan during the last 50 years. 

 

Detection of trends is hampered by lack of surface data in the post-Soviet period. Using 

the KNMI Climate Explorer4 tool an overview of temperature and precipitation changes 

for the region was undertaken. The KNMI tool uses the GISTEMP5 surface temperature 

estimate, which interpolates meteorological station data primarily from NOAA GHCN v3 

dataset onto a global 2° grid. Precipitation data is provided by the ERA-20C re-

analysis6, a gridded dataset of ~125km2 spatial resolution. It should be noted that the 

significant reduction in meteorological stations post 1991 will likely impact both 

products. Figure 2.6 and Figure 2.7 show an increase in annual temperature for all 

countries from the 1970s and interestingly shows a pause in annual temperature rise 

from ~2000 onwards.  

 

Summer temperatures in Tajikistan and Uzbekistan have continued to rise during this 

period, but mean winter temperatures have fallen by over 0.5°C. This trend has not 

been reported elsewhere, and must be treated with caution due to the large inter-annual 

variability and uncertainty in GISTEMP (Figure 2.6). Overall, annual precipitation totals 

are similar in 2010 compared with 1900 (Figure 2.7).   

                                            
4 https://climexp.knmi.nl/ 
5 https://data.giss.nasa.gov/gistemp/ 
6 https://www.ecmwf.int/en/research/climate-reanalysis/era-20c 
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Figure 2.6: Annual, summer and winter half year mean temperature 
anomalies (GISTEMP) and % precipitation anomalies (ERA-20C re-
analysis) relative to 1961-1990 for Tajikistan. The 10 year running mean is 
shown in red. (Source: KNMI Climate Explorer) 
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Figure 2.7: As for Figure 2.6 except for a comparison of the 10 year 
running means of Tajikistan, Kyrgyzstan and Uzbekistan 
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However, cycles of relatively high and low precipitation have occurred. This is 

particularly clear during summer, where a ~20 year cycle is present since 1930 of 

positive followed by negative anomalies. Winter precipitation also shows variation 

through time, with a noticeable dry period for all countries in the late 1970’s.  

 

Several studies have projected increases in temperature across CA of ~2°C by the 

2050s and ~4-5°C by 2100 (Wilby et al., 2011a; Sorg et al., 2012; IPCC, 2013; Kure et 

al., 2013; Lutz et al., 2013). Large uncertainty surrounds future changes in precipitation, 

including which areas could receive more or less precipitation and the timing of this 

precipitation, yet any changes that do occur are expected to be modest (IPCC, 2013; 

Kure et al., 2013, Lutz et al., 2013; Sommer et al., 2013). Increased winter precipitation 

of ~17% is expected by the 2050s (Wilby et al., 2011a; Kure et al., 2013). Despite the 

possibility of more winter precipitation across CA, Kure et al. (2013) projected 

decreasing snowfall due to higher temperatures. These intra-annual variations in 

precipitation, as well as glacier melt, could have significant effects on future snow 

accumulation and discharge regimes. 

 

An important and currently debated research question is when the ‘tipping point’ of flows 

will occur, when increasing glacier melt will begin to decrease due to glacier shrinkage 

(Sorg et al., 2014a). In the northern Tien Shan it is expected that peak flows could be 

achieved either in the 2020s or that flows will gradually decrease from present (Sorg et 

al., 2014b; Gan et al., 2015). However, Kure et al. (2013) project the tipping point to 

occur between 2060 and 2080 for the Vakhsh River in the Pamirs. Research 

consistently shows a seasonal shift in peak flows to earlier in the year (Hagg et al., 

2013; Kure et al., 2013; Sorg et al., 2014b), estimated to be between 30-60 days for the 

Syr Darya by 2050 (Siegfried et al., 2012). This shift is attributed to earlier onset of 

snow and glacier melt driven by increased temperature (Kure et al., 2013).  

 

2.3 Public domain hydro-climatic information 

Sources of public domain hydro-climatic information include land-based observations, 

re-analysis and modelled products as well as satellite estimates. Each product is 

associated with strengths and weaknesses, meaning that no single product is best for 

all applications. Preliminary considerations when choosing a product include spatial and 
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temporal resolution and domain, latency and ease of procurement. Inventories of 

precipitation products for CA are provided in Table 2.2 and Table 2.3. 

 

2.3.1 Estimated precipitation products 
Rain gauge data have several benefits. Relatively long records (from early the 1900s) 

are available for many regions, and advances in automatic weather station technology 

allow data to be retrieved in real-time. However, in low capacity areas such as Tajikistan 

and Kyrgyzstan gauges are generally monitored manually, meaning delays in data 

retrieval and an increased potential for human error (Wilby et al., 2017).  

 

Known problems with gauge measured precipitation include gauge under catch, 

particularly during snowfall and questions surround gauge representativeness due to 

the tiny measured area (Sevruk et al., 2009). The point source nature of gauged 

precipitation means several gauges may be required to estimate the precipitation 

distribution of a catchment. The number of gauges will depend upon catchment 

topography, precipitation regime and area of the basin. Often, gauges are located close 

to towns or villages, resulting in an under-representation of information for high-

elevation, headwater catchments (Sene, 2016). This conflicts with the importance of 

mountainous regions as ‘water towers’ for downstream regions (Immerzeel et al., 2010). 

Furthermore, many regions of the globe have sparse coverage of gauges (e.g. there are 

only 8 WMO meteorological stations in Kyrgyzstan7). Due to these constraints, gridded 

gauge derived products have been used for hydrological applications (e.g. Fekete et al., 

2003; Yatagai et al., 2012).  

 

Gridded precipitation products have the advantage of being area based in nature, 

providing a more complete picture of precipitation over a catchment. However, the 

interpolation and averaging procedures involved in the conversion adds uncertainty to 

the final product (McMillan et al., 2012). Satellite-based precipitation estimates began in 

the 1970s. They can be broadly separated into satellite only and satellite/gauge merged 

products. Often, products will combine information from several satellite based 

instruments to improve spatial and temporal coverage and quality (Sene, 2016). 

                                            
7 https://www.wmo.int/cpdb/kyrgyzstan 
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Table 2.2: Gauge derived precipitation products for Central Asia 

Name Link Temporal 
Coverage 

Temporal 
resolution 

Spatial 
resolution 

Latency Notes 

Global Precipitation 

Climatology Centre 

(GPCC) 

http://www.esrl.noaa.g

ov/psd/data/gridded/d

ata.gpcc.html 

2003- 

present for 

first guess 

Monthly 0.5° / 1° / 

2.5° 

5 days for 

first guess 
• First guess product available 

in near real time but uses a 
limited number of stations 
(number unknown) 

• Monitoring product latency 2 
months and full data product 
updated irregularly 

Asian Precipitation- 

Highly-Resolved 

Observational Data 

Integration Towards 

Evaluation of water 

resources 

(APHRODITE) 

http://www.chikyu.ac.j

p/precip/english/ 

~1951-2007 

(multiple 

versions) 

Daily 0.25° / 0.5° N/A • Temporal variation in number 
of precipitation inputs used 

• Low density of observation 
data in some areas (including 
Central Asia) 

 

CPC Unified Gauge-

based Analysis of 

Global Daily 

Precipitation 

https://www.esrl.noaa.

gov/psd/data/gridded/

data.cpc.globalprecip.

html 

1979-

present 

Daily 0.5° 1 day • Quality varies with station 
density 

• Daily end time varies by 
country effecting 
accumulation 

CRU TS 3.22 https://crudata.uea.ac.

uk/cru/data/hrg/cru_ts

_3.22/ 

1901-2013 Monthly 0.5° N/A • Computes a range of 
variables 

• Uses substantially fewer 
variables than GPCC 

Daily Observational https://data.noaa.gov/ Varies. Daily Gauge 1 day • Detailed dataset with 
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Data: Global 

Summary of the Day 

dataset/global-

surface-summary-of-

the-day-gsod 

1937-

present 

For Naryn 

And Tien 

Shan 

information on precipitation, 
temperature, visibility and 
wind speed. 

• Large proportion of missing 
values, especially for 
precipitation 

• Low confidence in data 
quality 

Former USSR data 

archive 

http://cdiac.ornl.gov/n

dps/ndp040.html 

~1925-1989 Daily Gauge N/A • Unknown data quality 
• Good coverage of CA up until 

mid-1980’s 
Central Asia water 

Info 

http://www.cawater-

info.net/bd/index_e.ht

m 

1980-

present 

Unknown Gauge N/A • Requires formal request for 
data 

• Range of hydro-
meteorological data available 

• Not available as of 
25/05/2017 
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Table 2.3: Satellite-gauge merged precipitation products for Central Asia 

Name Link Temporal 
Coverage 

Temporal 
resolution 

Spatial 
resolution 

Latency Notes 

NOAA CMORPH ftp://ftp.cpc.ncep.no

aa.gov/precip/CMO

RPH_V1.0 

1998-

Present 

Daily  0.25°  Irregular 

updates 

• Recently extended to 
cover full TRMM/GPM 
period 

• Little information regarding 
update frequency, but not 
thought to be real-time.  

PERSIANN-CDR http://chrs.web.uci.e

du/research/satellite

_precipitation/activiti

es00.html 

1997-

Present 

3 or 6 

hourly 

0.25° 3 months • Multiple data inputs  
• Consistent with GPCP 

monthly estimates 
• Relies heavily on Infrared 

data 

CPC Merged 

Analysis of 

Precipitation 

(CMAP) 

http://www.cpc.ncep

.noaa.gov/products/

global_precip/html/w

page.cmap.html 

1979-

Present 

Monthly 

 

2.5° 1 month • Long data period 
• Input data vary in space 

and time 
• Generally greater 

uncertainty with increasing 
latitude 

Tropical Rainfall 

Measurement 

Mission (TRMM) 

http://trmm.gsfc.nas

a.gov/ 

1997-

Present 

(expected 

end date 

2018) 

3 hourly, 

Daily and 

Monthly 

0.25°, 0.5° 

and 1° 

2 months • Possible problems since 
July 2014 due to fuel 
shortage resulting in a 
change in orbit height 

• Ended data collection on 
15 April 2015 
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Global Precipitation 

Measurement 

(GPM) 

http://www.nasa.gov

/mission_pages/GP

M/main/#.VFJI_Pms

V8E 

IMERG 

data from 

Dec 2014 

3 hourly, 

Daily and 

Monthly 

0.25°, 0.5° 

and 1° 

2 months • Extension of Integrated 
Multi-satellitE Retrievals 
for GPM (IMERG) back to 
the TRMM era planned to 
happen in late 2017 

• Real time since 2015 
currently available 

GPCP version 2.2 

Satellite-Gaug 

ftp://precip.gsfc.nas

a.gov/pub/gpcp-

v2.2/doc/V2.2_doc.p

df 

1979-2011 Monthly 2.5° 2 months • Provides estimates of 
uncertainty (random errors 
only) 

CAMS-OPI http://www.cpc.ncep

.noaa.gov/products/

global_precip/html/w

page.cams_opi.html 

1979-

present 

Monthly 2.5° 5 days • Merges Climate Anomaly 
Monitoring system (CAMS) 
with Outgoing longwave 
radiation (infra-red) 
Precipitation Index (OPI) 

• Infra-red techniques suffer 
from significant regional and 
time dependent biases 
(merged products adjust 
infra-red inputs using 
microwave data) 
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Satellites do not measure precipitation directly, but infer values from a variety of sensors 

including microwave, radar and infra-red (Huffman et al., 2007). The area based nature 

of products suits hydrological applications, and recent increases in temporal and spatial 

resolution (30 minutes, 0.1° for Global Precipitation Measurement, GPM) make satellite 

estimates a valuable source of information in data scarce regions. Satellite only 

estimates are often available in near real-time (latency of ~3 hours to 1 day), but 

provide less accurate estimates than satellite-gauge combined products (latency ~2 

months) (Vila et al., 2009). Some products are also limited to ~55° N/S of the equator 

(e.g. TRMM and PERSIANN). Those which do provide data at higher latitudes are 

known to have increased inaccuracies outside the tropics (Ebert et al., 2007). The short 

record length also limits their usability, with satellite based microwave and radar 

information typically only available from ~2000 onwards. Consideration should also be 

made for satellite lifespan and planned future missions. If an operational forecast 

system is reliant on a satellite product, failure or interruption of that data stream may by 

critical to the forecast systems performance. Generally, satellite estimates perform 

better when precipitation regimes tend towards deep convection, meaning they are 

more accurate during summer and at lower latitudes (Ebert et al., 2007; Huffman et al., 

2010).  

 

Re-analysis precipitation is a combination of model and measurement, using 

observations to constrain the dynamical model that optimises between complete spatial 

coverage and accuracy (Betts et al., 2006). This allows global coverage over long time 

periods with no data gaps. However, areas of poor quality and quantity of observational 

data may see reduction in accuracy. Furthermore, observational inputs to the re-

analysis are not consistent over time. In addition to observations, model assumptions 

and parameters also lead to uncertainties in the final product (Bosilovich et al., 2008; 

Lorenz and Kunstmann, 2012).  

 

This PhD uses Tropical Rainfall Measuring Mission (TRMM) precipitation estimates and 

the NCEP/NCAR re-analysis 1 gridded precipitation. These products were chosen due 

to: short latency, ease of procurement, and proven skill at discharge forecasting in CA 

(Dixon and Wilby, 2016; Barlow and Tippett, 2008). It should be noted that these are 

used as a proof of concept, and other precipitation products may by more suitable in 
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other regions and/or time periods. A more detailed review of each precipitation product, 

associated quality and prior use in CA is provided below. 

 

2.3.1.1 Tropical Rainfall Measuring Mission satellite precipitation 
TRMM is a joint mission between the National Aeronautics and Space Administration 

(NASA) and the Japan Aerospace Exploration Agency (JAXA), launched in 1997 

(NASA, 2011). TRMM Multi Satellite Precipitation Analysis (TMPA) is a merged satellite 

product (based on multiple satellite inputs), available in both real-time (satellite only) 

and as a satellite-gauge combined product. TMPA 3B43 (V7) (henceforth referred to as 

TRMM) is used here as a ‘research grade’ product (latency ~2 months) and TMPA 

3B42 (V7) real-time (henceforth referred to as TRMM RT) as an operationally applicable 

product (latency~2 days). The TRMM satellite itself ran out of fuel and burned up in 

June 2015, but the TMPA precipitation products are still produced using the remaining 

satellites in the constellation. GPM satellite has replaced TRMM, and produces an 

equivalent TMPA product entitled Integrated Multi satellitE Retrievals for GPM (IMERG). 

IMERG data is, however, only available post 2014. A long term dataset (2000-present) 

combining the two products is planned for release in 2018, but TMPA is currently the 

most up to date long term product produced by NASA/JAXA.  

 

TMPA is constructed in three or four stages, depending on whether gauge-correction 

occurs (NASA, 2011). First, microwave precipitation estimates are calibrated and 

combined; second, infrared precipitation estimates are created with the aid of the 

calibrated microwave precipitation estimates; third, microwave and infrared estimates 

are combined; and fourth (for gauge adjusted products), rain gauge data are 

incorporated into the final estimate. Microwave precipitation estimates are collected by 

multiple satellites (TRMM, DMSP, Aqua and NOAA) which cover the area between 

50°N and 50°S. Infrared data are collected by the TRMM satellite and provide high 

temporal and spatial coverage. Rain gauge data used in TRMM are obtained from the 

Global Precipitation Climatology Centre (GPCC) and the Climate Assessment and 

Monitoring System (CAMS) (Huffman et al. 2007, Huffman and Bolvin 2013). Gauge-

correction is undertaken for TRMM by first summing original three-hour values by 

calendar month. Second, monthly precipitation gauge analysis is used to create a large-

scale bias adjustment to the satellite estimates. Last, monthly gauge-adjusted satellite 
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estimates are combined directly with gauge precipitation via inverse error variance 

weighting to create the final product (Huffman and Bolvin, 2013). 

 

The error associated with TRMM estimates is somewhat unclear, and has been 

described as one of the most urgent matters to address if further development of the 

product is to occur (Scheel et al., 2011). One such uncertainty stems from the 3 hour 

discrete sampling interval of TRMM resulting in the entire 3 hours being filled by the 

measured value. This approach assumes that the random error associated with the 

sampling interval will even out somewhat over the observation period, but it may have 

significant impacts over short time scales (Scheel et al., 2011; Condom et al., 2011). 

Furthermore, the changing availability of microwave sensors during TRMM’s lifetime 

influences the resulting product, with gaps persisting in spatial coverage even when all 

four microwave sensors are available due to limited swath size (Huffman et al., 2007).  

 

Assessing the quality of the TRMM is not straightforward due to several hindrances. 

Porous, unevenly distributed monitoring networks often result in relatively few gauge 

stations to ‘ground truth’ satellite data with (Ebert et al., 2007). There is no universally 

accepted approach to assess quality (Hossain and Huffman, 2008). If multiple gauge 

values are available for a single TRMM cell, averaging is often used. This results in a 

reduction in extreme values and can lead to relatively higher TRMM values (Scheel et 

al., 2011). Furthermore, it is impossible to track exactly which gauge stations are used 

in the TRMM gauge calibration procedure, meaning full independency of the validation 

dataset cannot be assured. However, calibration with gauge data in areas of low station 

density, such as Central Asia, can be considered quite approximate (Scheel et al., 

2011).  

 

The relief of mountainous areas is known to effect microwave signals, hampering 

TRMM estimation (Matzler and Standley, 2000; Scheel et al., 2011). Infrared data has 

uncertainties due to omission of the distance between cloud top and land surface, so 

does not account for evaporation losses below the cloud top (Petty, 2001). Furthermore, 

inadequacies of snowfall detection result in an assigned rate being applied for all areas 

(0.1mm hr-1 for TRMM) (Huffman and Bolvin, 2017). In regions with frequent snowfall, 

such as high mountain areas, erroneous conclusions may be drawn if TRMM 
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precipitation estimates are applied directly without calibration (Gabremichael, et al., 

2010). 

 

Several studies have now evaluated TRMM products across CA. TRMM 

underestimated precipitation in mountainous areas and during heavy precipitation 

events, possibly due to difficulties in detecting shallow, orographic rainfall (Adler et al. 

2003). Aspect was found to be an important factor, with south facing slopes having 

higher accuracy and correlation compared with north facing slopes. However, there is 

low confidence in this finding because of limited data for south facing slopes (Ji and 

Chen, 2012). Low correlations have also been found near large lakes (e.g., Issyk Kul 

and Toktogul), likely due to contamination of the microwave signal by water bodies and 

mountains within the sensor footprint (Karaseva et al., 2012; Guo et al., 2015). 

Strongest correlations were found in the high plateaus, including for the Naryn gauge 

(Karaseva et al., 2012). 

 

Gauge-corrected TRMM data show significantly less bias than the real-time version 

(128%-29%) and increased correlation coefficients from 0.58-0.74 when compared to 

APHRODITE precipitation (Guo et al., 2015). TRMM has been shown to perform better 

during the winter compared to summer months, yet TRMM RT exhibits opposing skill 

(Guo et al., 2015; Dixon and Wilby, 2016). This could be due to issues of snowfall 

detection from the satellite sensors which is corrected during gauge adjustment 

(Gabremichael, et al., 2010; Hu et al., 2016). Correlations between TRMM and gauge 

observations have been shown to reduce at elevations above 2000m during winter in 

the Chinese Tien Shan (Zhao et al., 2015). This again suggests issues with snowfall 

detection by TRMM, the gauges used, or both.  The 0.25° and 0.5° versions of TRMM 

perform comparably, yet monthly estimates are much better than daily at the Naryn 

meteorological station in Kyrgyzstan (with correlation coefficients improving from 0.25-

0.93) (Dixon and Wilby, 2016). TRMM can also capture the typical above average 

seasonal precipitation anomalies over south-west CA, performing well compared to 

other satellite products (Rana et al., 2017). TRMM over-estimated precipitation at Naryn 

during July, august and September (Dixon and Wilby, 2016). Overestimation was 

attributed to local heavy precipitation events under southerly monsoon airflows passing 

through a TRMM cell but not being measured by the gauge.  
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2.3.1.2 NCEP/NCAR re-analysis 1 precipitation 
Re-analysis systems use a climate model that is constrained by observations 

incorporated via data assimilation routines (Bosilovich et al., 2008). Whilst outputs are 

generally guided by observations, dynamical model uncertainties lead to uncertainty in 

the resultant products. This system allows information to be provided for extended 

periods of time with complete spatial and temporal coverage – a significant advantage 

for hydro-climatological studies (Betts et al., 2006).  

 

NCEP/NCAR re-analysis 1 (henceforth referred to as NCEP) is produced in three 

stages. Data is first collected and prepared (including quality controlled), then 

assimilated using the model and finally distributed to users (Kalney et al., 1996). NCEP 

uses a frozen global data assimilation system as of 1995. All available observations are 

used at any given time, meaning the data are the most accurate they can be but 

changes in the observing system will impact the re-analysis output. Variables in the re-

analysis are classified according to the amount that they are constrained by 

observations. Temperature is partially determined by both the model and observations 

(type B) whilst precipitation is completely determined by the model (type C) (although all 

variables are subject to the constraint of the assimilation of other variables) (Kistler et 

al., 2001). Both type B and especially C variables should be used with caution. 

However, comparison with observations and climatologies suggest they can provide 

useful information (Kalney et al., 1997). Even when model estimates are biased, the 

inter-annual variability of type C fields tends to correlate well with independent 

observations (Kistler et al., 2001). The antiquated data assimilation system, as well as 

the relatively coarse spatial resolution (2.5°) are the main limitations of the system 

compared with more recent re-analysis (such as ERA-Interim) (Climate Data Guide, 

2017). However, the real-time nature (latency ~1 day) of the system presents a distinct 

advantage over all other available re-analysis products for operational users (Climate 

Data Guide, 2017).  

 

NCEP captures the large-scale spatial distribution of precipitation across CA at an 

annual timescale (Barlow and Tippett, 2008; Schiemann et al., 2008; Zhou et al., 2017). 

It was shown to reproduce the transition from an almost uniform seasonal cycle in the 

north-west to the strongly pronounced seasonality in the southern, mountainous 

regions. NCEP is known to under-estimate mean annual temperature (by ~ 1°C) 
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compared with gridded observations across the Pamir (Zhou et al., 2017). Zhou et al. 

(2017) also note that over the Pamir Mountains NCEP over-estimates the annual 

regime of both precipitation and temperature by around 100%. Barlow and Tippett 

(2008) found regional scale climate variability is well represented by NCEP during the 

cold season. Furthermore, inter-annual variability of precipitation was better reproduced 

during winter and spring over the mountainous regions than over the Turanian plains 

(Schiemann et al., 2008). This is of importance as winter/spring precipitation has 

potential as a predictor of summer flows in the major rivers of CA (Schӓr et al., 2004). 

NCEP compares favourably with ERA-40 reanalysis and the Climate High Resolution 

Model (CRHM) derived precipitation when compared to observations over the Tien 

Shan and Pamir mountains (Schiemann et al., 2008). However, small scale (<40km) 

topographically induced precipitation is not well represented by NCEP compared with 

CHRM, likely due to NCEP’s coarse spatial resolution (Schiemann et al., 2008) as well 

as the small number of stations typically included in data assimilation systems for CA 

(Unger-Shayesteh et al., 2013).  

 

2.3.2 Teleconnection indices 
Large scale ocean atmosphere circulation patterns, such as El Niño Southern 

Oscillation (ENSO) and the North Atlantic Oscillation (NAO), are warming/cooling 

patterns in the oceans which affect atmospheric circulation and weather patterns around 

the world. The NAO consists of a north-south dipole of pressure anomalies between the 

central North Atlantic (centred over the Azores) and Iceland in the North. NAO indices 

describe relative changes in pressure between these two regions. A positive (negative) 

NAO index represents lower (higher) pressure in the high latitudes and above (below) 

normal pressure over the central North Atlantic. Positive NAO phases result in stronger 

westerly winds bringing increased (reduced) winter precipitation to northern (southern) 

Europe (Hurrell, 1995). NAO varies considerably at both intra- and inter-annual 

timescales, although several months with either positive or negative NAO is also 

common.  

 

ENSO refers to fluctuating Sea Surface Temperatures (SSTs) in the equatorial Pacific 

Ocean. El Niño (La Niña) has warmer (cooler) than average SSTs across the central 

and eastern equatorial Pacific. The cycle between El Niño / La Niña usually occurs 
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every 3-7 years. Several indices are available to define ENSO conditions based on SST 

anomalies. The multiple indices (1, 2, 3, 3.4 and 4) represent SSTs in different regions 

(from east to west) across the eastern and central equatorial Pacific.  

 

Large scale climate modes have long been known to influence hydrological variables 

such as regional precipitation and discharge (Redmond and Koch, 1991; Chiew et al., 

1998; Cayan et al. 1999; Dai and Wigley, 2000; Chiew and McMahon, 2002; Werner et 

al., 2004; Emerton et al., 2017). Such relationships, when of practical significance and 

sufficient stationarity, can be leveraged for seasonal forecasting (Hamlet and 

Lettenmaier, 1999, Kennedy et al., 2009). Climate mode-streamflow relationships have 

been used widely for hydrologic forecasting and are currently used within operational 

forecasting systems, such as BC Hydro (Sene, 2014) and the US Department for 

Agricultures Natural Resources Conservation Service8. Forecasting techniques based 

on remote climate modes have significant potential for regions with sparse ground-

based monitoring networks, as is the case for much of CA. However, recent research 

has highlighted the complex nature of ENSO-river flow relationships, being spatially 

variable, impacted by phase strength (Lyon and Barnston, 2005), interactions with other 

climate drivers (Emerton et al., 2017) and in their nature (linear/parabolic) (Fleming and 

Dahlke, 2014). It is important to note that, due to these factors, even in areas with 

strong relationships it is possible that opposite anomalies to those expected from a 

particular mode of variability can occur.  

 

CA has received relatively little attention regarding possible links between hydrological 

variables and large scale climate drivers. This lack of research may reflect the 

complexity of the hydro-climatology of the region and relative remoteness from major 

modes of climate variability (Mariotti, 2007). However, a growing number of studies 

have begun to establish links between the hydro-climate of CA and NAO and ENSO. 

Both significant (Aizen et al., 2001) and insignificant (Syed et al., 2006; Huang et al., 

2013; Barlow and Hoell, 2015) concurrent negative correlations have been found 

between NAO and CA precipitation during winter. Correlation strengths vary spatially, 

although are generally weaker across Kyrgyzstan (r = 0.15) than Tajikistan (r = -0.30) 

for the years 1951-2000 (Syed et al., 2006). A link between positive NAO and drought in 

                                            
8 https://www.wcc.nrcs.usda.gov/wsf/ 
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south west CA has been suggested by Barlow and Hoell (2015). Negative correlations 

have also been found between NAO and mean December-March precipitation and 

streamflow across the Middle East by Cullen and deMenocal (2000) and Cullen et al., 

(2002).  

 

More information is available regarding ENSO's relationship with CA precipitation, 

showing positive concurrent winter precipitation anomalies during El Niño (Dai and 

Wigley, 2000; Syed et al., 2006; Mariotti, 2007, Yin et al., 2014; Hoell et al., 2017; Rana 

et al., 2017). Relatively strong correlations have been found during autumn (r = 0.50) 

and spring (r = 0.40) during the period 1948-2000 (Mariotti, 2007). A link between 

drought in south west CA and concurrent La Niña has also been reported (Barlow et al., 

2002; Hoerling and Kumar, 2003; Hoell et al., 2014). More recent work shows increased 

likelihood of abnormally high flows during El Niño across CA (Emerton et al., 2017). An 

increasing influence on ENSO on winter precipitation has been recorded for northern 

India as well as a decreasing influence of NAO in recent decades (Yadav et al., 2009). 

On the other hand, positive temperature anomalies in the southern Pamirs coincide with 

strong ISM (Schiemann et al., 2007). It is possible that a strong ISM dampens the effect 

of ENSO on precipitation across CA, as shown for western India and Pakistan (Ashok et 

al., 2004).  

 

2.4 Seasonal flow forecasting 

Seasonal flow forecasting is used to provide estimates of future flow conditions typically 

at monthly to seasonal granularity. The time interval between issuing the forecast and 

the beginning of the period of the forecast is called the lead time (WMO, 2000). Lead 

times encompassed within seasonal forecasting are not clearly defined, but are classed 

here as between 1-12 months (Sene, 2016). The premise of seasonal forecasting is that 

more informed decisions can be made if knowledge of future climate conditions can be 

provided (e.g. drawdown of reservoir levels before a flooding event). Forecast skill 

originates from several sources, including persistence in initial hydrologic conditions, 

simple rainfall-runoff relationships, long-range meteorological forecasts and lagged 

relationships with large scale modes of climate variability (such as the NAO).  
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2.4.1 Seasonal forecasting approaches 
Seasonal forecasting models can be split into two main groups: statistical and 

dynamical. Dynamical models represent the physical features of a system and have at 

their core a set of mathematical equations describing the interactions of the earth’s 

energy and moisture states (Mantua et al., 2008). The main advantage of dynamical 

models is that the influence of a model variable on another variable is guided by the 

laws of physics. Hence, the model is expected to function under conditions outside 

those used in the calibration procedure. Their use is hindered, however, by their high 

computational and data input demands, potentially requiring the approximation of 

parameters such that their realism and therefore performance is compromised (Mantua 

et al., 2008). However, dynamical forecasts of climate are provided operationally by 

several centres (e.g. European Centre for Medium-range Weather Forecasts 

(ECMWF)9, International Research Institute for Climate and Society10, Global Flood 

Awareness System (GloFAS11)).  

 

Statistical models can be sub divided into analogue and empirical methods. Analogue 

approaches look for patterns in historical flow records that are similar to those occurring 

today and use this to forecast. The underlying assumption is that river flows observed 

previously that are similar to the recent past will provide valuable information on what 

flows could occur in the near future. The main source of uncertainty is the initial 

conditions of the system. Empirical methods such as regression-based techniques (e.g. 

Archer and Fowler, 2008) relate observations of the variable to be predicted (e.g. river 

discharge) to observations of one or more other variables (e.g. seasonal snowpack or 

precipitation totals). They are often preferred due to their computational ease relative to 

dynamical models and in many cases can provide comparable results (Mantua et al., 

2008; Schepen and Wang, 2015). However, statistical models require long 

homogeneous records to calibrate and verify predictor-predictand relationships (Wood 

and Lettenmaier, 2006). Statistical models may also assume the climate is stationary, 

not accounting for anthropogenic impacts or global warming (Hamlet and Lettenmaier, 

1999). Furthermore, their lack of physical process representation might compromise 

                                            
9 https://www.ecmwf.int/en/forecasts 
10 http://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/ 
11 http://globalfloods.jrc.ec.europa.eu/ 
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their ability to forecast events outside the range of the calibration dataset (Mantua et al., 

2008). 

 

Ensemble Streamflow Prediction (ESP) is a widely used technique for seasonal river 

flow forecasting (particularly in the Pacific NW of America) (e.g. Wood and Lettenmaier, 

2006). Ensemble forecasts produce a set of equally-likely outlooks for the future that 

can be based on historical climate (similar to analogue techniques) or long term 

forecasts of climate (using dynamical techniques such as numerical weather prediction). 

This meteorological information is then used to force a hydrologic (or land surface) 

model. This versatile approach can enable a greater understanding of the initial 

condition and parameter uncertainty surrounding a forecast compared to deterministic 

methods, with the aim of facilitating more informed decision making (Cloke and 

Pappenberger, 2009). A major limiting factor currently is the ability of practitioners to 

make improved decisions from probabilistic ESP forecasts. This is due to a lack of 

practitioner ‘know-how’, particularly when interpreting uncertainty bounds provided 

within probabilistic forecasts as well as differing attitudes to risk, uncertainty and error 

between academics and end users (Demeritt et al., 2007; Cloke and Pappenberger, 

2009). Furthermore, instigating change within organisations from their current, well 

understood, tried and tested methodology to a new system is extremely difficult 

(Demeritt et al., 2010). The more complex and large the shift in practice, the more 

difficult this becomes (Ludwig, 2009).  

 

With the increase in computing power a shift has been made towards continental and 

global scale seasonal forecasting systems (Alfieri et al., 2013). These have potential to 

provide forecasts where there are currently none available or in transboundary basins 

where floods originate upstream. However, such forecasting systems have coarse 

resolutions and are designed to perform optimally over large areas. Conversely, basin 

scale seasonal forecasting allows models to be optimised for individual basins. Small 

scale nuances can be captured such as hydrologically important areas which could be a 

focus for enhanced ground based monitoring (Dixon and Wilby, 2016). Basin scale 

forecasts can also be tuned to fit specific decision makers’ requirements, providing 

outputs in the required format at suitable lead times and level of detail/complexity. This 

is known to be vital in the successful integration of forecasts into decision making 

protocols (Demeritt et al., 2010). No single model is perfectly suited to all applications. 
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Therefore, model selection should be made accounting for the aims of the study, the 

available data quantity and quality whilst always keeping in mind the intended 

application.  

 

2.4.2 Hydrological model performance assessment 
To evaluate the relative skill of each model across varying lead times it is necessary to 

assess their performance. This provides information on the relative merits of each 

model and their ability to seasonally forecast discharge accurately. Krause et al. (2005) 

asserts that performance assessment provides: (1) quantitative indicators of model skill 

at reproducing watershed behaviour, (2) means of evaluating improvements in a given 

modelling system and (3) mechanisms for comparison of results obtained from different 

models. It should be noted that this section does not assess forecast value, but instead 

performance (i.e. to identify relative strengths and weaknesses of the model). Initial 

performance assessment should be carried out subjectively via a visual inspection of 

the modelled and observed time series. This allows the modeller to evaluate the model 

for systematic (under-/over-prediction) and dynamic (timing, rising limb, low flows) 

errors (Dawson et al., 2007). To achieve objective assessment, however, mathematical 

estimates of error using evaluation metrics should be undertaken (Krause et al., 2005).  

 

A metric can be defined as a “system of parameters, or methods of quantitative 

assessment, for something that is to be measured” (Dawson et al., 2007, p.1035). 

Individual error metrics used in hydrology may not always provide a comprehensive 

assessment of model performance for a specific application, and is therefore of limited 

use (Teegavarapu and Elshorbagy, 2005). Metrics used in isolation can under-/over-

estimate model performance. To combat this, use of multiple error metrics suitable to 

the intended model application is recommended (Krause et al., 2005; Gupta et al., 

2008; Fowler et al., 2012). Dawson et al. (2007) grouped error metrics into three 

categories: (1) statistical parameters of observed and modelled time series attributes 

(e.g. maximum, minimum, mean); (2) statistical parameters of the residual error 

between observed and modelled time series and; (3) dimensionless coefficients that 

contrast model performance with accepted norms or recognised standards (e.g. Nash-

Sutcliffe coefficient). Definitions, along with known strengths and weaknesses of 

frequently used metrics for evaluating hydrological models, are provided within Dawson 
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et al. (2007). When choosing metrics the nature of the predictand 

(continuous/categorical/probability distribution) and forecast attributes to be measured 

(bias/accuracy/skill) should be considered (Wilson, 2004).  

 

When seasonal forecasting we generally wish to know how the model will perform in 

practice, rather than how it performs using the training dataset. In particular, we wish to 

avoid overfitting a model to a training dataset, meaning performance is tailored to using 

only this dataset. Cross validation can be used to address this issue. The simplest form 

of cross validation withholds a section of data during training to be used for testing of 

model performance. However, particularly when using a statistical model, a long data 

series is required for the predictor-predictand relationship to be fully captured. 

Furthermore, the estimate of model performance could be misleading if an ‘unfortunate’ 

period of data is used for testing. Therefore, leaving out a period of data during training 

to allow for testing is undesired. A k-fold cross validation addresses this issue by 

splitting the data into k-subsets, and performing the withholding method k-times (Figure 

2.8). This allows the model to be tested on the full period of available data. The more 

folds used, the greater the computational demand. Generally, the larger the available 

data set the fewer number of folds are required to achieve an accurate estimate of 

model performance (Kohavi, 1995).  

 

         
         
         
         
         
         
         
         
         
          
  

Data used to train model 
 

Data used to test model 
 Figure 2.8: Conceptual figure of 9-fold cross validation procedure 

 

2.5 Operational hydrological forecasting in Central Asia 

Previous research into discharge simulation for rivers in CA has been undertaken for 

several purposes including climate change assessment, improved process 

understanding, seasonal forecasting and natural resources management. Several 
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studies have assessed future water resources under various climate change scenarios 

and adaptation strategies (e.g. Siegfried et al., 2011 and Ismaiylov et al., 2007). Due to 

the differing aims of these studies, scant information is provided regarding hydrological 

model performance and inputs used are not available in real time.  

 

Information about operational seasonal forecasting practices in CA is seldom published. 

However, it is known that some national hydro-meteorological agencies in the region 

produce forecasts of April-September discharge each month from January until June 

(Apel et al., 2017). Empirical methods are used to relate precipitation, temperature and 

snow water equivalent to seasonal discharge, which is sometimes only available in 

analogue form as look-up tables or graphs. For example, the Automated Information 

System of Hydrological Forecasts (AISHF) model is used in Uzbekistan (Agaltseva et 

al., 1997). AISHF is an empirical model using observed meteorological data as well as 

modelled snowpack and glacier melt to provide operational forecasts using specialist 

software allowing interactive analysis. The forecast was reported to meet the 

information needs of the users, however, it is unclear at what lead time satisfactory 

forecasts were produced as this information was not provided (Agaltseva et al., 1997).  

 

Wilby et al. (2011a) used several models to estimate annual inflow to the Kayrakkum 

and Nurek reservoirs on the Syr and Amu Darya respectively. They used a Water 

Balance Model (WBM), the Snowmelt Runoff Model (SRM) and a nonlinear multiple 

regression model. Model inputs included observed meteorological station precipitation 

and temperature, as well as remotely sensed snow covered areas. Model performance 

was found to be better for Kayrakkum than Nurek, likely due to upstream reservoirs 

smoothing climate related variability (Wilby et al., 2011a). Temperature was 

successfully used as a proxy for snow and glacier melt in both basins (Wilby et al., 

2011b). Following years with higher than average temperature, inflows to Nurek were 

generally lower. This was attributed to higher evaporative losses and less carry-over of 

snow and ice between years (Wilby et al., 2011b). This relationship has been reported 

elsewhere, and has the potential to contain useful information for seasonal forecasting 

(Schär et al., 2004; Archer and Fowler, 2008). Pereira-Cardenal et al. (2011) utilised 

TRMM precipitation estimates along with radar altimetry of Toktogul reservoir water 

levels as a proxy for discharge to attempt to improve real time forecasting. Comparable 

results were found between modelled inflows and satellite altimetry. However, no 
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observed data were used to evaluate the model. Recently, synthetic runoff estimates 

have been derived from gridded discharge by routing land surface/meteorological model 

outputs (Zaitchik et al., 2010; Khouakhi, 2017). Although in early stages of 

development, such techniques have potential for discharge estimation in areas lacking 

hydro-meteorological monitoring.  

 

Some studies have focused on seasonal forecasting of river flows in Central Asia. For 

instance, Baumgartner et al. (2000) used meteorological forecasts as inputs to SRM. 

Promising results were obtained for forecasting summer flows (r2 = 0.74-0.97), but little 

information is provided regarding model inputs or lead times used to obtain these 

results. Satellite snow cover data were reportedly utilised by Yakovlev (2005) to forecast 

flows of the Panj River, Tajikistan. Although availability of cloud free imagery is critical 

for accurate flow forecasts, little information is provided regarding model performance 

(referenced within Gafurov, 2010).  

 

Schär et al. (2004) used December-April re-analysis precipitation to forecast May-

September withdrawal adjusted flows in both the Syr and Amu Darya rivers. Re-analysis 

precipitation performed well compared with rain gauge values, due to the more 

complete spatial coverage by the re-analysis compared with the sparse network of land-

based stations. Forecasts performed better for the Syr Darya (r = 0.92) compared to the 

Amu Darya. Poor performance may have been caused by lower quality re-analysis 

precipitation over the Amu Darya basin and/or lower quality withdrawal corrected runoff 

figures. Successful forecasts of summer inflows to the Mangla Dam, Pakistan, from 

previous winter observed precipitation and temperature were obtained using a 

parsimonious liner regression model (Archer and Fowler, 2008). Although outside of 

CA, a similar hydrological regime (dominated by summer snow and glacier melt) is 

observed. Winter precipitation was found to be a useful predictor of following spring and 

summer inflows, giving promise to similar methodologies in CA.  

 

Dixon and Wilby (2016) developed a parsimonious multiple linear regression model to 

forecast inflows to Toktogul Reservoir on the Syr Darya. Inputs included TRMM as well 

as observed precipitation and temperature and antecedent flows. Hindcast skill was 

superior to the mean monthly flow for lead times up to three months. Over 80% of the 

variance in monthly inflows is explained with three-month lead, and up to 65% for 
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summer half-year average. The findings of Schär et al. (2004) and Dixon and Wilby 

(2016) give promise for seasonal forecasting but neither study used solely operational 

precipitation data, meaning that forecasts could not be made in real-time. This is of 

critical importance if forecasts are to be used to support reservoir operation. 

 

Apel et al. (2017) used operationally available data (previous winter observed 

precipitation, temperature and discharge as well as remotely sensed snow cover) to 

forecast April-September discharge in 13 basins in CA for the period 2000-2015 (note 

that data used is not publicly available). Using automatic predictor selection and multiple 

linear regression R2 values of >0.7 were achieved at a lead time of two months 

(February), rising to 0.86-0.96 for zero lead forecasts (issued April 1st). However, results 

were based on a very limited number of observations (just 16) with no adjustment for 

sample size. Furthermore, the statistical significance of results was not provided. The 

authors attributed their high skill scores to the separation of precipitation (winter 

maximum) and runoff (spring/summer maximum) regimes.  

 

Further potentially operational seasonal forecasting systems have been developed for 

the region. For example, Tippett et al. (2005) forecast December-March precipitation 

from October Pacific SSTs. Significant lagged correlations between SST and 

precipitation were found across Tajikistan (r = 0.40) and western Kyrgyzstan (r = 0.35) 

during the period 1999-2003. Gerlitz et al. (2016) used NCEP re-analysis alongside 

SST to forecast winter and spring precipitation in CA. Correlations of r ~ 0.5 were found 

between forecast and observed winter-spring precipitation across northern CA at lead 

time 1.5 months. Correlations were generally stronger for northern CA compared with 

southern CA. Wet and dry years were well represented by the model, but the variability 

of precipitation rates was under-estimated. When lead time increases to 4.5 months 

correlations weaken to r ~ 0.2 in northern CA and less in southern CA. Barlow and 

Tippett (2008) forecast summer (April-August) river flows from winter Pacific SSTs and 

winter NCEP re-analysis precipitation for the years 1950-1985. They report modest 

cross validated correlation (r ~ 0.4) skill between observed and forecast flows in the 

Vakhsh at Garm. Typically, stations in mountainous regions had the weakest cross 

validated correlations (r < 0.4). Flow volume was found to be unrelated to model skill. 

These studies confirm that summer inflows (refill period) to headwater reservoirs can be 

forecast from winter precipitation/snow accumulation, albeit with varying degrees of 
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accuracy. Furthermore, relationships between climate modes and winter precipitation in 

CA gives hope for extended lead time forecasting of summer inflows. 

 

2.6 Summary 

This chapter has provided a brief overview of the hydro-politics and hydro-climatology of 

CA. Key sources of public domain hydroclimatic information and previous flow 

forecasting studies have been evaluated. It is clear that an improved operational 

seasonal reservoir inflow forecasting system could benefit the region, with hydro-power 

and water supply companies as well as farmers being foremost beneficiaries. Due to 

limited surface observations and significant obstacles to data procurement, near real-

time precipitation estimates from satellite and re-analysis sources offer appealing 

substitutes for ground-based precipitation measurements. Significant concurrent 

positive correlations have been reported for ENSO and winter precipitation that are 

particularly strong in autumn and spring. Furthermore, significant lagged correlations 

have been found between October Pacific SSTs and December-March precipitation, 

suggesting longer range predictability of winter precipitation. Previous research has 

shown the possibility of forecasting summer inflows in CA from previous winter 

precipitation. This suggests that there may be potential for forecasting summer inflows 

to significant reservoirs using previous winter precipitation and SSTs. 

 

Although dynamical forecasting offers some advantages over statistical techniques, the 

former have significant data requirements, computer power and are costly to implement. 

Furthermore, at the time periods and lead times of interest recent research has 

demonstrated that statistical techniques can provide operationally useful skill in the 

region. This study will apply statistical techniques to forecast inflows to several 

headwater reservoirs using operationally available predictors. Information on specific 

study sites as well as the data products used in the research is provided in the following 

chapter. 
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3 Study areas and data 

Before seasonal forecasting can commence, an understanding of the target basin(s) 

context should be established. Appropriate data must then be accrued to facilitate 

accurate seasonal forecasting. This chapter introduces the reservoirs and their 

respective basins and identifies the available information to support operational 

seasonal forecasting of their inflows. Detail is provided regarding reservoir locations and 

the hydro-climatological context of each site in section 3.2. Section 3 summarises the 

ground based observational data used. Selection of remotely sensed information is 

reviewed in section 3.3 before identification and selection of modes of climate variability 

and their respective indices is given in section 3.4. An evaluation of remotely sensed 

(TRMM and TRMM RT estimated precipitation) and re-analysis (NCEP precipitation and 

temperature) products via comparison with observed data is then provided before a 

review of data selected concludes the chapter.  

 

3.1 Meta information 

3.1.1 Reservoir sites 
Four reservoirs and their respective headwater basins are used in this study: Toktogul, 

Andijan Kayrakkum and Nurek (Figure 3.1). The first three reservoirs are located on 

tributaries of, or on the main stem of, the Syr Darya River. Toktogul and Andijan are 

located upstream of the inflow to Kayrakkum. Nurek is positioned on the Vakhsh River, 

a tributary of the Amu Darya. Both the Syr and Amu Darya rivers ultimately flow into the 

Aral Sea. Toktogul, Andijan and Nurek dams were chosen due to their headwater 

location and relatively large size compared to other reservoirs in the region. The 

operation of these reservoirs is therefore critical in determining power generation and 

flow downstream. Kayrakkum reservoir was selected due to its size and importance in 

providing irrigation to downstream areas. Differences in average elevation, contribution 

of snow and/or glacier melt and climatic conditions will also provide insight into the 

performance of the seasonal forecasting models under various conditions. A summary 

of each basin’s characteristics is provided in Table 3.1. 
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Figure 3.1: Location of study sites, rivers and meteorological stations 

 

Table 3.1: Summary of river basin charectaristics 

 Toktogul Andijan Kayrakkum Nurek 

Year of commissioning 1974 1974-84 1956-59 1971-79 
Installed capacity (MW)  1200 190 126 3015 
Annual mean power generation (MWh) 4,400 172 690 11,400 
Meteorological station Naryn Uzgen Uzgen Sari-Tash 
Meteorological station elevation (m) 2039 1014 1014 3155 
Average annual precipitation (mm) 315 732 732 420 
Basin area above inflow gauge (km2) 47,052 12,348 124,276 31,059 
Average annual inflow (m3 s-1) 445 133 656 662 
Wettest month May April April May 
Peak flow month June June December July 
% of annual precipitation occurring 
between April and September 

68 
 

41 41 63 

% of annual flow occurring between 
April and September 

77 77 36 83 

Annual inflow as a % of annual met 
station precipitation (TRMM basin 
average precipitation) 

36 
(24) 

47 
(65) 

24 
(23) 

160 
(142) 
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Toktogul 

Toktogul reservoir (Figure 3.2 and Figure 3.3) is located on the Naryn River in the 

central Tien Shan mountain range of Kyrgyzstan. The Naryn is fed by a major tributary 

below Song Kol Lake which runs during the melt season (April-September) (Dixon and 

Wilby, 2016). Construction of Toktogul began in 1960 and was commissioned in 1974. 

The reservoir is operated for both hydropower generation and irrigation. The power 

station has an installed capacity of 1200 MW and a mean annual production of 4400 

MWh (CAWaterInfo, 2017a).  

 

Land cover is mainly grass and shrub, with pastoral farming on the mountain sides. The 

main meteorological station of the basin is located at Naryn, although a higher elevation 

station (Tien Shan) is present yet only limited precipitation data could be procured. 

Naryn is the largest town in the basin, with a population of around 35,000 people. 

Kambarata II dam lies upstream of Toktogul. Construction of Kambarata II began in the 

1980s, but was abandoned shortly after and only recommenced in the late 2000s 

(Hydro World, 2010). The dam was created by an artificial mass movement in 

December 2009, before being commissioned in 2012, and has a height of 60m 

(Havenith et al., 2015). The subsequent filling of the dam is likely to have impacted 

inflows to Toktogul post 2009, however the extent of effect is unknown. Further dams 

are planned upstream, but currently have not secured the required funding (Michel, 

2016). If built, the Kambarata I dam would surpass Toktogul as the largest installed 

capacity for hydropower production in Kyrgyzstan (World Bank, 2010). 

 

Andijan 

Andijan reservoir (Figure 3.4 and Figure 3.5) is located on the Kara Darya in an area 

known as the Fergana Range, within the central Tien Shan Mountains. The dam lies 

within Uzbekistan, although the reservoir extends into neighbouring Kyrgyzstan. 

Construction began in 1969 and was commissioned in 1974. A second plant below the 

original was commissioned in 2010. The reservoir is operated for both hydropower 

generation and irrigation. The power station has an installed capacity of 190 MW and a 

mean annual production of 172 MWh (CAWaterInfo, 2017a). The headwaters are lower 

in elevation compared to those of the Toktogul basin reaching a maximum of 3,800m 

above sea level. The city of Andijan is the largest population centre in the region with 
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over 300,000 residents, but is located below the dam. Several towns are located around 

the reservoir, the largest being Uzgen at around 50,000 people. No known 

impoundments are located above the reservoir.  

 

 
Figure 3.2: Toktogul dam, Kyrgyzstan12 

 

                                            
12 https://en.wikipedia.org/wiki/Toktogul_Dam 
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Figure 3.3: Satellite image of Toktogul reservoir (Google Earth) 

 

 
Figure 3.4: Andijan Dam, Uzbekistan13 

 

                                            
13 http://test4.ocean.washington.edu/file/Andizhan+Dam 
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Figure 3.5: Satellite image of Andijan reservoir (Google Earth) 

 

Kayrakkum 

Kayrakkum reservoir (Figure 3.6 and Figure 3.7) is located on the Syr Darya River, and 

receives inflow from the above two basins. The reservoir is located within Tajikistan, but 

the upstream area includes Kyrgyzstan and Uzbekistan. Construction began in 1952 

and was commissioned in 1956. The reservoir is operated for hydropower generation, 

irrigation, recreation, fish breeding and water supply. The power station has an installed 

capacity of 126 MW and a mean annual production of 690 MWh (CAWaterInfo, 2017b). 

The reservoir is located at the lower end of the Fergana valley, one of the most 

productive regions for cotton growing in Uzbekistan and nearly solely irrigation fed. This 

has resulted in the region being one of the most populous in Central Asia having around 

20% of the region’s population in less than 5% of the land area. Agriculture is the 

dominant land use in this region, much irrigated from the Syr Darya, with crops including 

cotton and grain. The reservoir inflow regime is dominated by the regulated discharges 

from the Naryn cascade (consisting of five hydropower plants below Toktogul reservoir) 

and Andijan as well as withdrawals for irrigation. It is expected that the highly regulated 

flows, evidenced by the opposing inflow regime compared with the other reservoirs, will 

not be predicable using the methodology used herein (Figure 3.8). However, the 

reservoir was included in the study to assess the ability of the model to forecast heavily 
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regulated reservoir inflows. Figure 3.1 shows the large area below Toktogul and Andijan 

reservoirs which contributes to runoff. It is plausible that some predictability can be 

derived from this area as well as outflows from Toktogul and Andijan reservoirs.  

 

 
Figure 3.6: Kayrakkum hydropower plant (Michael Friedhoff) 
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Figure 3.7: Satellite image of Kayrakkum reservoir (Google Earth) 

 

 
Figure 3.8: Average monthly inflow (left) and monthly inflow as a % of annual 
discharge (right) into the four study reservoirs for years 2001-2010 

 

Nurek 

Nurek reservoir (Figure 3.9 and Figure 3.10) is located on the Vakhsh River in the Pamir 

Mountains of Tajikistan. The headwaters of the Vakhsh rise to an altitude of more than 

7,400m. Glacier melt provides a greater percentage of annual discharge compared with 

the other study basins, reflected in the annual inflow regimes (Figure 3.8) (Savoskul and 
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Smakhtin, 2013). An estimated 26% of annual runoff derives from glacier melt 

(Kemmerikh et al., 1972). Construction began in 1961 and the plant was commissioned 

in 1971. The reservoir is operated for hydropower generation and irrigation. The power 

station has an installed capacity of 3015 MW and a mean annual production of 11400 

MWh (CAWaterInfo, 2017b). Nurek supplies over 70% of Tajikistan’s total power 

demand (Hydro World, 2017). No large towns are located within the basin, with Sary 

Tash being an administrative centre but having less than 2000 residents. Upstream of 

Nurek is the site of the Rogun Dam which was partially constructed during the 1970s 

and re-started at the end of 2016 (Hydroworld, 2016). It is unknown whether Rogun’s 

construction has affected the inflow regime of Nurek, but filling of Rogun could begin as 

early as 2018. 

  

There is generally little information about the source contributions to mean discharge 

into each of the reservoirs (Unger-Shayesteh et al., 2013). Kemmerikh (1972) estimated 

the relative contributions of seasonal snowmelt, groundwater, glacier melt and rain to 

both the Naryn and Vakhsh Rivers (Table 3.2). Note that Kemmerikh’s (1972) definition 

of the Naryn basin differs from this study, only comprising the headwater region.  
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Figure 3.9: Nurek dam, Tajikistan (Robert Wilby) 

 

 
Figure 3.10: Satellite image of Nurek reservoir (Google Earth) 

 

Therefore, it would be expected that a greater proportion of glacial melt would be found 

for this stretch of river compared to the basin definition used here. Savoskul and 
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Smakhtin (2013) estimated relative contribution to discharge of glacier melt, snow melt, 

groundwater and rain for the Syr and Amu Darya rivers. They report greater glacial melt 

contributions for the Amu Darya compared to the Syr Darya (25% and 9% respectively) 

but the opposite for snow melt (45% and 70% respectively) during the period 1960-

1990. These findings as well as the annual inflow regimes shown in Figure 3.8 and 

elevation of each basin suggest a greater proportion of glacier derived discharge into 

Nurek than Toktogul, and Toktogul compared with Andijan. 

 

Table 3.2: Estimated contributions to mean annual discharge by snow 
melt, groundwater, glacier melt and rainfall sources. Adapted from 
Kemmerikh (1972) 

Basin Basin area 

(km2) 

Snow melt 

(%) 

Groundwater 

(%) 

Glacier melt 

(%) 

Rain (%) 

Naryn* 10,500 32 31 32 5 

Vakhsh** 31,200 37 37 26 - 
 

 

3.2 Ground based information 

Using statistical methods for seasonal discharge forecasting requires high quality 

observational time series that are homogeneous. However, collection of such 

observational data in CA is hindered by several issues (Unger-Shayesteh et al., 2013). 

Hydro-climatological data sets at daily or sub-daily resolution are not readily available to 

international researchers and most long term records are located in the foothills or 

plains of CA. Furthermore, the network of observational stations was severely degraded 

after the break down of the Soviet Union in 1991 and several stations have known 

Inhomogeneities due to station relocation, urbanisation and changes in measurement 

techniques (Unger-Shayesteh et al., 2013). These factors cause procurement of hydro-

climatic data to be challenging, particularly for recent decades. This has resulted in the 

meteorological data sourced for this study having varying timespans and temporal 

resolutions.  

 

                                            
* Note that Kemmerikh’s (1972) definition of the Naryn basin equates to the eastern 20% (furthest 
upstream) of the area used in this study.  
** The author believes that rain does contribute towards discharge into Nurek. This table was 
incorporated as it is one of the few studies to provide contributions for the headwater of the Vakhsh. 
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There are several sources of bias likely to be present in hydro-meteorological data used 

in this study (Wilby et al., 2017). For example, site selection can introduce bias by being 

located close to population centres at generally low elevations, bringing into question 

the representativeness of a station and the potential for an urban heat island effect 

(Jones et al., 2008). The condition and calibration of discharge measurement stations is 

also a concern for the data used here. Discharge is likely measured via stage at 

locations of highly mobile channel cross sections, meaning the stage-discharge 

relationship used will quickly become outdated (Unger-Shayesteh et al., 2013). 

Precipitation data obtained from rain gauges are known to have issues related to 

gauge-under catch caused by wind, a particular problem during the winter.  

 

Both meteorological and hydrological stations in CA have predominantly been operated 

manually, requiring an observer to record readings. Data collected in this way are 

subject to observer measurement biases, for example tending towards labelled/large 

tick marks on measurement devices or observations not being made during 

weekends/holidays (Daly et al., 2007). Bias could be introduced during post-processing 

of data, especially when not obtained first hand. Meta data is useful here, for example in 

helping to understand if filling of gaps has been undertaken and how this was done. 

This is of particular importance in a region such as CA, where most data can only be 

obtained through third parties, such as the CA WaterInfo portal14. Due to the possibility 

of biases being present in the data, quality assurance should be undertaken prior to 

analysis and data quality should be considered when interpreting results. 

 

Observed daily precipitation and temperature data were obtained for Naryn (1948-

2005), Uzgen (1980-2005) and Sari-Tash (1948-2005) meteorological stations (Figure 

1) from the Central Asian Database (CAD)15. In the final stages of the PhD, 

precipitation, temperature and snow depth data were obtained for Lyakhsh and Garm 

meteorological stations in Tajikistan for the period 2000-2016 from the Tajik Hydromet 

(the state hydro-meteorological agency). All meteorological data were inspected visually 

to identify any obvious erroneous measurements or observer bias. Double mass plots 

were also used between neighbouring stations to identify any step changes indicative of 

                                            
14 http://www.cawater-info.net/data_ca 
15 http://www.webpages.uidaho.edu/cae/data/ 
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station relocation. Table 3.3 provides examples of errors identified when quality 

assuring meteorological data and actions taken as a result. As far as the author is 

aware, no inhomogeneities are present in the procured meteorological station data 

(Unger-Shayesteh et al., 2013).  

 

Table 3.3: Examples of errors identified in meteorological data during 
quality assurance process and actions taken to rectify 

Data type Date Problem Action taken 
Max temp 12/03/2003 Keystroke error- missing/extra or wrong number 4.3 
Max temp Jun-04 Value given on 31st June Ignored 
Max temp 30/06/2013 Blank cell - 
Max temp 29/02/2016 Leap year missing 29th Feb - 
Max temp 30/09/2005 Missing value symbol not used- cell assigned zero - 
Max temp 26/03/2012 Keystroke error- missing/extra or wrong number 7.1 

Mean temp 08/01/2007 Mean outside of range- unsure of reason - 
Min temp 28/05/2012 Keystroke error incorrect decimal place 9.9 

Temp 28/08/2001 Transposed min and max temperature Transposed 
Precip 2012 Does '*' mean 0 or missing data Assigned 0 
Precip 2013-16 Blank cells- missing or 0? Assigned 0 
Precip 27/03/2007 Large value duplicates previous day No action 

 

 

After the breakup of the Soviet Union the river gauging network declined resulting in the 

discontinuation of many records (Unger-Shayesteh, 2013). Inhomogeneities were also 

introduced due to a reduction in gauge maintenance and re-calibration, particularly in 

headwater catchments. Additionally, procuring recent discharge time series is difficult 

for headwater reservoirs, as such information is strategically and politically sensitive. 

Sensitivities stem from the possibility of reservoir inflows and outflows being used by 

riparian nations to leverage decision making (surrounding the timing of water 

release/storage).  This results in nations typically withholding such information.  

 

Nonetheless, observed mean monthly inflow, storage and outflow were obtained from 

CAWaterInfo14 for the years 2001-2010 for Toktogul, Andijan, Kayrakkum and Nurek 

reservoirs. Historic discharge records were obtained from the Global Runoff Data 

Centre (GRDC)16 for the years 1941-1980 for discharges above Toktogul, Andijan and 

Nurek reservoirs. Missing data (<1%) in the GRDC time series, were filled using the 

mean monthly value. It is not clear if the same gauge stations were used for the earlier 

and later records for Toktogul and Andijan, and are known to be different for Nurek. In 

                                            
16 http://www.bafg.de/GRDC/EN/Home/homepage_node.html 
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any case, sedimentation and a lack of maintenance of gauges will likely have introduced 

inhomogeneities between the two data series, potentially reducing comparability. In the 

final stages of the research, discharge data were obtained for Nurek inflows for the 

period 1949-2016 (1958-1976 and 1994-1999 missing) from the Tajik Hydromet. 

 

3.3 Gridded products 

Despite an extensive search, the only public domain operationally available station-

based meteorological data for CA were daily summaries from the National Climatic Data 

Center17 and the Global Surface Summary of the Day18. For the stations examined, the 

data were not of sufficient quality for forecasting due to the large percentage of missing 

values. National hydro-meteorological agencies as well as hydropower companies are 

known to have access to such data (Apel et al., 2017), but this is not released publicly. 

Furthermore, the extent to which such data are shared between nations is unclear. 

Therefore, operational discharge forecasting by entities outside of these 

organisations/beyond national boundaries must depend of other sources of information. 

Several gridded precipitation and temperature (Table 2.2 and Table 2.3) products are 

available for CA, but many are not updated in near real-time (i.e. they have latency >1 

week). Such constraints, of being publicly available at operationally useable latencies, 

severely limit the choice of products.  

 

Recently gridded runoff estimates have been derived from routing land 

surface/meteorological model outputs (Zaitchik et al., 2010; Emerton et al., 2017). 

Although in early stages of development, such techniques have potential for discharge 

estimation in data sparse areas such as CA. Khouakhi (2017) undertook a preliminary 

evaluation of simulated discharge entering Nurek reservoir following the method of 

Zaitchik et al. (2010). Two land surface models were used to route the gridded runoff: 

the Variable Infiltration Capacity and Community Land Model. Inspection of the 

synthetic discharge data indicate both the timing and magnitude of summer discharges 

compare poorly with observed data, particularly post-2000 (Figure 3.11). The reason for 

the unrealistically low synthetic discharge values post-2000 is unclear, but possibly a 

result of the precipitation inputs. While such synthetic discharge data has significant 
                                            
17 https://www.ncdc.noaa.gov/ 
18 https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod 
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potential in data sparse regions, the poor quality at present led to it not being used in 

thesis.  

 

 
Figure 3.11: Comparison of synthetic discharge series derived from 
gridded runoff with observed discharge (synthetic discharge supplied 
by Khouakhi, 2017).  

 

3.3.1 Satellite precipitation estimates 
Two types of TRMM precipitation estimates were used, allowing a comparison between 

the ‘research grade’ product and the real-time ‘operational’ product. All TRMM products 

were downloaded from the TOVAS19 website. The research grade product used is the 

TRMM Multi Satellite Precipitation Analysis (TMPA) 3B43 (V7) (henceforth referred to 

as TRMM) monthly precipitation estimates at 0.5° resolution obtained for the period 

1998-2010. This product blends information from satellite microwave, radar and infrared 

instruments from multiple satellites with ground based observations to produce the 

highest grade product with a latency of 2-3 months (Huffman et al., 2010). 

 

The real-time product is TMPA 3B42 RT (V7) (henceforth referred to as TRMM RT) 

daily estimates at a 0.5° resolution obtained for the period 2000-2010. This product is 

available in near real-time (latency of around 2 days), achieved by not including ground 

based observation correction but instead a climatological correction varying by month 

                                            
19 https://disc2.nascom.nasa.gov/tovas/ 
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and location (Huffman et al., 2010; Huffman et al., 2017). TRMM RT was aggregated to 

a monthly time step to align with other data sources. Both products incorporate 

information from multiple satellites to produce a best estimate of precipitation.  

 

Although the TRMM satellite itself no longer exists, the TRMM product is still produced 

by incorporating information from other satellites within the TRMM constellation. In the 

near future it is expected that GPM derived IMERG (the newer version of TRMM) will be 

available from 1998 onwards, but at present is only available from 2014 onwards. 

Hence, TRMM is currently the longest running product provided by NASA’s precipitation 

measurement missions. A research grade and operational product were chosen to allow 

comparison of seasonal discharge forecasts derived from each product. Previous 

research has shown promising seasonal discharge forecasts using the research grade 

TRMM product (Dixon and Wilby, 2016). This research aimed to assess whether similar 

results could be achieved using a potentially operational system.  

 

3.3.2 Re-analysis products 
Currently the only operationally available (latency ~2 days) re-analysis product for the 

region is NCEP/NCAR re-analysis 1 (henceforth referred to as NCEP). The product is 

also available for a longer time period than TRMM (1948-present), enabling application 

alongside more widely available historic discharge time series. Therefore, this product 

was used in the study. Although it is known that NCEP struggles to represent small 

scale (<50km2) precipitation variations, it does benefit from the denser observational 

networks in Europe and the Middle East (the main source of moisture to CA) 

(Schiemann et al., 2008; Unger-Shayesteh et al., 2013). Daily precipitation and 

temperature data were downloaded at 2.5° resolution for the period 1948-2010 from the 

SDSM data portal20. Data were then aggregated to a monthly time step.  

 

3.4 Large scale climate drivers 

The NAO, ENSO and Indian Ocean Dipole (IOD) are evaluated with respect to the 

regional hydro-climatology in this study. These modes of atmospheric variability were 

chosen based on previous studies (cited in Chapter 2) as well as on a preliminary 
                                            
20 http://co-public.lboro.ac.uk/cocwd/SDSM/data.html 
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analysis of global SSTs in relation to the discharge time series. The Principal 

Component (PC) based NAO21 index was preferred to station-based NAO indices 

because the former provides a more complete characterisation of hemispheric 

circulation patterns (Hurrell and NCAR Staff, 2016). The Nino 3.422 SST based index 

was selected as the region was strongly correlated with CA discharge time series and is 

also the ENSO index of choice by forecasters (Barnston et al., 1997). The Hadley 

Centre Sea Ice and Sea Surface Temperature derived Nino 3.4 index was used as it 

covers the time period required for the study. It should be noted that this index does not 

wholly describe ENSO, and may exclude the effect of the western Pacific ‘warm pool’ 

identified by Barlow et al. (2002) as important for the ENSO-CA link. The Dipole Mode 

Index (DMI) describes the IOD, and the SST-based DMI index used here is provided by 

the KNMI Climate Explorer23 tool based on data obtained from the Japan Agency for 

Marine-earth Science and TECnology24. All indices were downloaded at a monthly 

resolution for the period 1940-2016.  

 

3.5 Evaluation of gridded data products 

To evaluate to relative qualities of the gridded precipitation and temperature products 

used in the study, comparisons were made with observed data. In each case, the 

coincident TRMM (0.5°) or NCEP (2.5°) cell overlaying the gauge was used. Time-

series were plotted at each gauge site allowing a visual inspection of the data, 

highlighting any periods where products deviated from observed values. Monthly, 

seasonal and annual precipitation totals were compared to assess any seasonal/annual 

over/under estimations. Correlation analysis allowed the strength of relationships 

between gridded and observed precipitation and temperature to be assessed. These 

procedures, along with previous literature identified in section 2.3.1, provide a deeper 

understanding of the gridded precipitation and temperature products relative quality. 

This was of particular importance when assessing the performance of regression based 

seasonal forecasting models, as particular problems with input variables may help 

explain issues with the final models. 

 
                                            
21 https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based 
22 https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni 
23 https://climexp.knmi.nl/ 
24 http://www.jamstec.go.jp/e/ 
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TRMM RT (available from March 2000 onwards) overestimates gauge precipitation for 

every year in the record (Figure 3.12). At Naryn, TRMM RT overestimates annual gauge 

precipitation by 283% on average, compared with 2% and 19% overestimations by 

TRMM and NCEP respectively. TRMM RT performs better at Uzgen than Naryn and 

Sari-Tash, overestimating average annual precipitation by 44%, with an average 

overestimation of 12% for the years 2003-05. Overestimation by TRMM RT is not 

consistent throughout the year (Figure 3.12). In particular, May and October seem to be 

problematic months, with overestimation exceeding 170% for all basins. This could be 

due to uncertainty in the estimation of snowfall from satellites during these months or 

the fact that increased precipitation occurs during these months (Gebremichael et al., 

2010; Yong et al., 2012). The good agreement between TRMM and gauge precipitation, 

therefore, appears to be achieved via gauge-correction of the data, rather than satellite 

skill. NCEP performs much more favourably than TRMM RT, but still struggles to 

capture the annual regime. For example, underestimating April (-41%) whilst 

overestimating August (181%) observed precipitation at Naryn. On average, TRMM 

performs best of all products evaluated when compared with gauge observed 

precipitation for both annual regime and annual totals.   

 

Another potential cause of satellite overestimation suggested by Dixon and Wilby (2016) 

was local heavy precipitation events under southerly monsoon airflows. This was 

reasoned because of the timing of overestimation by TRMM at Naryn (July, August, 

September). TRMM RT consistently over-predicts during these months for all three sites 

(Figure 3.12). This adds weight to the argument that high intensity local precipitation 

events may be missed by the gauge point measurement but detected by the 0.5° 

TRMM cell (Bowman, 2005; Bothe et al., 2012).  

 

Although NCEP data have been used extensively for climate studies, few seem to have 

used the product in Central Asia. It has been suggested this is because of the spatial 

resolution being too coarse to capture the detailed topographic influence on climatic 

conditions in the region (Schiemann et al., 2008; Hu et al., 2016). At Naryn, NCEP 

overestimates precipitation during July and especially August (Figure 3.12). The 

relatively large cell size of NCEP could be capturing locally heavy precipitation events 

under southerly monsoon airflows that the gauge does not detect. For Sari-Tash, an 

underestimation during summer, and a marked overestimation during winter is present 
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compared to observed precipitation.  This may be a result of the stations close proximity 

to the Alay Mountains to the west (rising to over 3,800m within 1km). Such fine scale 

topographic variation cannot be accounted for by NCEP due to the coarse (2.5°) spatial 

resolution of the re-analysis products. 

 

Monthly TRMM precipitation estimates are strongly correlated with gauge 

measurements both at Naryn (r = 0.97) and Andijan (r = 0.92), but less so for Sari-Tash 

(r = 0.63) (Figure 3.13 and Table 3.4). NCEP precipitation displays consistently stronger 

correlation than TRMM RT for all basins. All three products show relatively strong 

correlations at Andijan compared with the Sari-Tash gauge. TRMM RT shows severe 

overestimation (exceeding 450%) at all three basins. These biases typically occur in 

either April-June or September-November – the periods of precipitation maxima at all 

three sites. It is possible that the overestimation is a caused by precipitation falling as 

both snow and rain during this period as well as the large precipitation totals. Satellite 

precipitation estimates are known to perform poorly during snowfall, and TRMM RT is 

therefore attributed a constant precipitation rate (Gabremichael, et al., 2010; Huffman 

and Bolvin, 2017). However, if the precipitation phase is changeable, it is possible that 

the constant rate is being applied inconsistently during some snowfalls resulting in 

spurious values. The TRMM product does not suffer from these large overestimation 

issues, likely rectified during the gauge adjustment process. 

 

NCEP temperature shows consistently strong correlations to measured temperature for 

all stations investigated (r ≥0.9) (not shown). At Naryn, and to a lesser extent Sari-Tash, 

a summer/winter break point in the relationship between station and NCEP temperature 

is evident (Figure 3.14). The cause of this deviation is unclear, with minimal information 

available on meterological station location and site conditions. It is plausable that local 

summer temperatures at the station could be depressed by proximity to vegetation or 

the river, yet no photographs of meteorological stations could be found to corroborate 

either. As the effect is seen at both Naryn and Sari-Tash, the problem could derive from 

the NCEP re-analysis. The different albedo’s during winter and summer due to snow 

cover at the meteorological stations could plausably cause different relationships 

between NCEP and local temperature during summer and winter.   
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Figure 3.12: Annual precipitation totals (left) and monthly mean 
precipitation (right) for Naryn (upper), Uzgen (centre) and Sari-Tash 
(lower) at gauge locations for the years 1998-2005 (2000-2005 for TRMM 
RT). See Figure 3.1 for gauge locations 
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Figure 3.13: Monthly gauge observed precipitation plotted against coincident cell monthly gridded precipitation for 
the period 03/2000-12/2005. Dashed line shows 1:1 relationship. 

0
25

0
50

0

0 250 500

G
au

ge
 p

re
ci

pi
ta

tio
n 

(m
m

) 

TRMM precipitation (mm) 

0
25

0
50

0

0 250 500

G
au

ge
 p

re
ci

pi
ta

tio
n 

(m
m

) 

TRMM_RT precipitation (mm) 

0
25

0
50

0

0 250 500

G
au

ge
 p

re
ci

pi
ta

tio
n 

(m
m

) 

NCEP precipitation (mm) 

0
25

0
50

0

0 250 500

G
au

ge
 p

re
ci

pi
ta

tio
n 

(m
m

) 

TRMM precipitation (mm) 

0
25

0
50

0

0 250 500
G

au
ge

 p
re

ci
pi

ta
tio

n 
(m

m
) 

TRMM_RT precipitation (mm) 

0
25

0
50

0

0 250 500

G
au

ge
 p

re
ci

pi
ta

tio
n 

(m
m

) 

NCEP precipitation (mm) 

0
25

0
50

0

0 250 500

G
au

ge
 p

re
ci

pi
ta

tio
n 

(m
m

) 

TRMM precipitation (mm) 

0
25

0
50

0

0 250 500

G
au

ge
 p

re
ci

pi
ta

tio
n 

(m
m

) 

TRMM_RT precipitation (mm) 

0
25

0
50

0

0 250 500

G
au

ge
 p

re
ci

pi
ta

tio
n 

(m
m

) 

NCEP precipitation (mm) 



61 
 

Table 3.4: Spearman rank correlation coefficients between monthly 
precipitation estimates (from TRMM, TRMM RT, and NCEP) and monthly 
gauge observed precipitation at meteorological stations. Values in bold 
are significant at p = 0.05. 

 TRMM TRMM_RT NCEP 

Naryn 0.97 0.35 0.50 

Uzgen 0.92 0.45 0.82 

Sari-Tash 0.63 0.21 0.32 
 

 

 
Figure 3.14: Observed monthly temperature at Naryn plotted against the 
coincident cell NCEP re-analysis temperature for the years 1948-2000. 

 

Despite this, the high correlation at all stations suggests NCEP can capture the annual 

regime of temperature sufficiently well, which in combination with its short latency (~2 

days) allows it to be used in place of station temperature when forecasting reservoir 

inflows. 

 

3.6 Summary 

The data procured for the study were chosen in accord with previous seasonal 

forecasting efforts in the region (section 2.5). In order to address the overall aim and 
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objectives of this research it is paramount that suitable data are collated. Key qualities 

for operational forecasting of discharge are near real-time, and in this instance, public 

domain accessibility. Whilst hydro-meteorological agencies in the region have near real-

time access to observational networks, public domain information could provide several 

benefits. For example, improved spatial coverage of climate monitoring and avoiding 

issues associated with data sharing between riparian states. With this potential in mind, 

undertaking an exploratory study of the use of public domain datasets is justified.  

 

Meteorological station precipitation and temperature data have been procured in each 

of the four study basins, allowing quality assessment of gridded products. Observed 

discharge data, required for model building and validation, have also been obtained for 

the four study basins. It is clear from the analysis presented in Section 3.5 that the 

gridded products to be used for seasonal discharge forecasting do not always align well 

with observed values of precipitation and temperature at monthly resolution. Monthly 

TRMM RT overestimates precipitation, particularly during spring and autumn, whilst also 

showing weakest correlation with observed precipitation. However, all three monthly 

precipitation products (at Naryn and Uzgen) and temperature (all stations) show 

significant correlations with monthly observed data. Such results provide promise that 

these products can be used for seasonal discharge forecasting in the region.  

 

Sourcing high quality hydro-climatological data can be challenging in CA and a 

significant obstacle to research. The observed hydrological and meteorological data 

collated here derive from several sources which, along with lack of maintenance, 

observer bias and data entry issues, could introduce error into observed time-series. In 

data sparse regions where hydro-climatological information may be a politically and 

economically sensitive issue, it is necessary to be creative about the use of 

unconventional data types and estimates of surface observations. Table 3.5 provides an 

overview of all the data sets used in the following research. The next chapter outlines 

the methodological approaches to address the aim and objectives of the thesis using 

the information presented in this chapter. Model choice is justified following which a 

description of the development, calibration and validation of the statistical and climate 

mode base forecasting approaches id provided.  
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Table 3.5: Summary of data used in the study 

Parameter Data set Temporal 
coverage 

Temporal 
resolution 

Spatial 
resolution 

Source 

Precipitation 

and 

Temperature 

Central Asian 

Database 

(1930-

1980) - 

2005 

Daily/ 

Monthly 

Station 

observed 

Central Asian 

Database15 

Precipitation, 

Temperature 

and Snow 

height 

Tajikistan 

hydro-

meteorological 

agency 

2000-2016 

(1958-76 

and 1994-

99 missing) 

Daily Station 

observed 

Tajikistan 

hydro-

meteorological 

agency 

Discharge CA Water Info 2001-2010 Decadal/ 

Monthly 

Station 

observed 

CA Water 

Info14 

Discharge GRDC 1941-80 Monthly Station 

observed 
GRDC16 

Discharge Tajikistan 

hydro-

meteorological 

agency 

1949-2016 Daily Station 

observed 

Tajikistan 

hydro-

meteorological 

agency 

Discharge Synthetic 

discharge  

1979-2016 Daily N/A Khouakhi, 

2017 

Precipitation TRMM TMPA 

3B43 (V7) 

1998-2017 Monthly 0.5° TRMM 

TOVAS19 

Precipitation TRMM TMPA 

3B42 Real 

Time (V7) 

2000-2017 Daily 0.5° TRMM 

TOVAS19 

Precipitation 

and 

Temperature 

NCEP/NCAR 

re-analysis 1 

1948-2017 Daily 2.5° SDSM 

download 

portal20 

North Atlantic 

Oscillation 

Hurrell PC 

NAO Index 

1899-2017 Monthly N/A Climate Data 

Guide21 

El Niño 

Southern 

Oscillation  

Niño 3.4 1870-2017 Monthly N/A Climate Data 

Guide22 

Indian Ocean 

Dipole 

Dipole Mode 

Index 

1870-2017 Monthly N/A KNMI Climate 

Explorer23 
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4 Methodologies 

The previous chapter introduced the study sites and data used in the research.  

What follows is a description of the methodological approaches used to address the 

objectives of the study. Seasonal forecasting model choice is first justified; following 

which the development and validation of the statistical model is outlined. A second 

approach to seasonal forecasting is then described, using modes of climate variability to 

condition mean summer discharge. The chapter concludes with a summary of the main 

strengths and weaknesses of the methodologies adopted. 

 

4.1 Model choice 

Section 2.4.1 reviewed available seasonal forecasting model types, including 

dynamical, analogue and empirical approaches. The large data demand and computing 

power of dynamical models reduce their usability in data sparse, low capacity regions. 

Conceptual water balance models have been used in the region for climate change 

assessment (e.g. Wilby et al., 2011a), but these require meteorological data outlooks to 

enable seasonal discharge forecasting. The large data requirements, difficulty with 

calibration (especially in regions unknown to the modeller) as well as lack of 

transparency in model structure resulted in dynamical/conceptual approaches being 

deemed unsuitable. The minimal data requirements and relatively strong autocorrelation 

of the discharge data make an auto-regressive approach (such as ARIMA) more 

appealing. However, previous literature and current forecasting practices of Tajik 

Hydromet (regression of winter precipitation to forecast mean summer discharge) 

suggest that winter precipitation conveys skill to forecast following summer discharge 

(Schar et al., 2004; Barlow and Tippett, 2008; Dixon and Wilby, 2016; Apel et al., 2017). 

This skill would be ignored by a simple lag-1 auto-regressive model, thus such an 

approach was unsuitable.  

 

A preliminary study was undertaken to evaluate an Artificial Neural Network (ANN) 

approach. An ANN model was piloted by Dawson (pers. comm.) to forecast inflows to 

Toktogul reservoir allowing comparison with Dixon and Wilby (2016). Results showed 

that similar skill levels could be achieved by the ANN model compared with a multiple 
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linear regression approach. However, ANN’s are non-transparent black-box models 

resulting in internal weights being difficult to interpret (Abrahart et al. (2012). This, along 

with increased computing demand compared with multiple linear regression meant the 

approach was not preferred.  

 

After reviewing available modelling options, ordinary least squares multiple linear 

regression was considered to be the most suitable approach for this study. Regression 

was chosen because the technique is: 

• Transparent 
o Allowing ease of input data and operator error tracking 

• Tractable 
o Given the data and skill capital of the region 

• Transferable 
o The technique is already recognised and applied by practitioners easing 

application across CA 

However, regression is not without weaknesses since a long enough calibration data 

period is required to capture catchment characteristics (Magar and Jothiprakash, 2011). 

It is also, in theory, unsuitable to be applied to other catchments without re-calibration 

(Wagener et al., 2004). Despite these issues, the advantages of regression as well as 

its previous successful implementation in nearby regions (e.g. Archer and Fowler, 2008; 

Dixon and Wilby, 2016) were such that it was considered most appropriate.  

 

4.2 Statistical forecasting model development 

4.2.1 Predictor selection 
For every cell in each basin concurrent and lagged (0-3 months) TRMM and TRMM RT 

precipitation as well as NCEP precipitation and temperature were correlated with 

reservoir inflows. Correlations were assessed via the non-parametric Spearman’s rank-

order correlation, therefore not requiring predictors to be normally distributed.  This was 

undertaken to identify the cell(s) and area(s) of each basin and lag interval that 

potentially yield greatest predictability of inflows. Then, following Dixon and Wilby 

(2016), simple linear regression relationships were explored between runoff in the 

summer melt season (April-September) as a function of individual predictors in the 

preceding winter (October-March). This split-year approach has been applied to other 

runoff records in Central Asia and informs the preliminary selection of candidate 
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predictor variables for sub-seasonal forecast models (e.g., Schär et al., 2004; Pal et al., 

2013). Following this, predictor variables were correlated with discharge during the 

period October 2001 to December 2010 at moving average periods 1-6 months and lag 

intervals 0-4 months for each basin. This allowed an assessment of suitability of 

candidate predictors for inclusion in multiple linear regression models. Available monthly 

variables were lagged and time averaged TRMM, TRMM RT and NCEP precipitation as 

well as NCEP temperature at both individual cell (identified in step 1 of predictor 

selection) and basin average spatial scales. Furthermore, antecedent flow and a 

dummy variable for month were used to capture the average annual cycle (Table 4.1). 

Individual TRMM and NCEP cells were used to allow contributing area(s) with greatest 

potential predictability to be captured within the models. Dummy variable regression 

weights are equal to the flow anomaly with respect to a reference month, in this case 

December.   

 

4.2.2 Model construction and calibration 
Regression modelling proceeded as in Dixon and Wilby (2016), first building the model 

with a small set of statistically significant predictors before model skill was assessed via 

a k-fold (k = 9) cross validation. One change to the method was an extension of the lead 

times assessed from 1-3 to 1-4 months. Two types of model were created: ‘research’ 

grade and an ‘operational’ version (Table 4.2). Research grade models include all 

available predictors, whereas operational versions used only those predictors that would 

be available in (near) real-time. This allowed assessment of the potential of Dixon and 

Wilby’s (2016) method to be implemented operationally.  

 

Regressions were undertaken by first including the monthly dummy variable, then 

running a stepwise selection procedure with all other predictors. This process involved 

variables being added one at a time beginning with the predictor with the lowest 

probability of F (prob(F)). The prob(F) is the probability that the null hypothesis (i.e. that 

a predictors regression coefficient is 0) is true. A predictor is only retained by the model 

if it complies with the set value of prob(F) (F-to-enter). After each step, any predictors 

already in the regression equation with a prob(F) larger than the set value (F-to-remove) 

are removed. The stepwise procedure terminates when no more predictors are eligible 

for inclusion or exclusion in the regression equation. Very little information could be 
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found to guide the selection of F-to-enter/remove values. Relatively stringent 

parameters of F-to-enter = 0.01 and F-to-remove = 0.05 were selected to reduce the 

likelihood of over-fitting the model to the training dataset (Wilks, 2011). This ensured all 

predictors in the final regression models had a prob(F) < 0.05. Following termination of 

the stepwise procedure the sequence of variables entered/removed was reviewed to 

ensure the variables included/excluded made sense physically and that the greatest 

adjusted R2 was achieved by the final model. Several assumptions are associated with 

linear multiple regression, including predictors having a linear relationship to the 

predictand as well as independence, normality and homoscedasticity of the errors 

(Wilks, 2011). The performance of regression models with respect to these assumptions 

is assessed in section 4.2.4. 

 

Stratified models were created for forecasting discharge for only summer months (April-

September). This stratification procedure was used due to the strong seasonality of 

discharge and is comparable to the approach adopted in basins with similar regimes 

(e.g. Archer and Fowler, 2008; Barlow and Tippett, 2008). These summer stratification 

models were only produced as operational versions, i.e. only including predictors that 

would be available in near real-time. Combinations of predictor variable, moving 

average period and lag interval were evaluated to forecast only summer monthly 

inflows. The same stepwise-regression procedure was used as for the research grade 

models. A summary of the models and their respective inputs and target periods is 

provided in Table 4.2. 
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Table 4.1: Independent variables used in regression models (note: 
Andijan and Toktogul outflow were only used for Kayrakkum inflow 
modelling) 

Notation Description 

TRMM_Avt,n 0.5° TRMM upstream catchment area average precipitation estimate 

TRMM_Opt,n 0.5° TRMM optimum cell precipitation estimate 

TRMMRT_Avt,n 0.5° TRMM real-time upstream catchment area average precipitation 

estimate 

TRMMRT_Opt,n 0.5° TRMM real-time optimum cell precipitation estimate 

NCEPP_Avt,n 2.5° NCEP re-analysis upstream catchment area average precipitation 

estimate 

NCEPP_Opt,n 2.5° NCEP re-analysis optimum cell precipitation estimate 

NCEPT_Avt,n 2.5° NCEP re-analysis upstream catchment area average temperature 

estimate 

NCEPT_Opt,n 2.5° NCEP re-analysis optimum cell temperature estimate 

Qt,n Antecedent discharge measured at reservoir inflow 

ANDt,n Observed outflow from Andijan reservoir 

TOKt,n Observed outflow from Toktogul reservoir 

t Variable lag interval (t months) 

n Variable averaging period (n previous months) 

M Dummy variable for calendar month 
 

 

Table 4.2: Summary of models constructed 

Model type Available inputs Forecast target period 

Research 

All variables in Table 4.1 All months for the period 

October 2001-December 

2010 

Operational 

All variables in Table 4.1 

excluding TRMM_Avt,n and 

TRMM_Opt,n 

All months for the period 

October 2001-December 

2010 

Summer-only 

All variables in Table 4.1 

excluding TRMM_Avt,n and 

TRMM_Opt,n 

Months April-September 

for the period April 2002-

September 2010 
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4.2.3 Model validation 
Regression model skill was assessed using a leave one out k-fold cross-validation by 

which monthly discharge for individual years was predicted using models built on all 

other years of data. For instance, flows for the year January 2010-December 2010 

would be predicted by a model calibrated on data for October 2001-December 2009. 

Year-by-year a full series of predicted flows was built enabling validation against data 

not used in model calibration. Available reservoir inflow records permitted cross-

validation of 9 year-long segments of data (the first segment being 15 months long), 

each with their own regression parameter sets. This provides a more stringent test of 

model skill than measures of calibration fit to the whole data. Note that, however, an 

operational version of the model would be fit to the selected predictor set using the 

entire record then recalibrated periodically as more data become available. 

 

The skill of all model predictions was benchmarked with against the Zero Order 

Forecast (ZOF). This is the amount of explained variance that can be obtained from the 

simplest possible model – in this case the long-term monthly mean flow. The long term 

mean monthly flow was chosen rather than a persistence forecast (i.e. the current 

months discharge will be next months) due to it harbouring greater skill and so being a 

more stringent benchmark. For comparability, identical blocks of data were used for 

estimating the long-term mean as those entered into the nine cross-validated regression 

models. Summer only models were benchmarked against the ZOF as well as summer 

months extracted from the full-year forecasts to assess any improvements yielded by 

summer stratification relative to the full year operational models.  

 

The HydroTest tool of Dawson et al. (2007) was used to derive five metrics of model 

forecast skill: the amount of explained variance (R2); Root Mean Squared Error (RMSE); 

Akaike Information Criteria (AIC); Nash-Sutcliffe Coefficient (NSC); and the Mean 

Absolute Relative Error (MARE). A review of each skill metric is provided in Table 4.3. 

These were chosen accounting for the aim of the study (scientific, i.e. evaluating 

strengths and weaknesses of models), the nature of the predictand (continuous) as well 

as the attributes of the forecast to be verified (bias: correspondence between mean 

forecast and mean observation; accuracy: average correspondence between individual 

pairs of observations and forecasts and skill: accuracy of forecasts relative to accuracy 

of forecast benchmark) (Wilson, 2004). These metrics allow forecasts to be evaluated 
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for low (MARE) as well as high (RMSE) flows, accounting for model complexity and 

calibration period (AIC)  and the fit of the forecast to the regression line (R2 and NSC). 

 

Table 4.3: Relative strengths and weaknesses of selected skill metrics.  

Skill 
Metric 

Definition Strengths Weaknesses 

R2 

Squared ratio of the 
combined dispersion of 
two series to the total 
dispersion of the 
observed and modelled 
Series. 

Describes the proportion 
of the total statistical 
variance in the observed 
dataset that can be 
explained by the model. 

Insensitive to additive 
and proportional 
differences. 
Oversensitive 
to outliers and thus 
biased towards a 
consideration of extreme 
events. 

RMSE 

The level of overall 
agreement in real units 
between the observed 
and modelled datasets. 

Sensitive to forecasting 
errors that occur at 
higher magnitudes.   

Insensitive to forecasting 
errors at lower 
magnitudes. Sensitive to 
an occasional large 
error.  

AIC 

RMSE adjusted 
according to the number 
of free parameters and 
data points. 

Attempts to account for 
model complexities. 
Attempts to find the 
minimal model that best 
explains the dataset, 
discouraging overfitting. 

Does not use real units. 
Same issues as RMSE. 

NSC 

One minus the ratio of 
sum square error to the 
statistical variance of the 
observed dataset about 
the mean of the 
observed dataset. 

Sensitive to differences 
in the observed and 
modelled means and 
variances (unlike R2). 

Similar weaknesses as 
R2, being insensitive to 
additive and proportional 
differences and 
oversensitive to outliers. 

MARE 
Mean of the absolute 
error made relative to the 
observed record. 

Sensitive to forecasting 
errors that occur at lower 
magnitudes. 

Insensitive to larger 
errors typically occurring 
at high magnitudes. 

 

 

4.2.4 Assumptions of regression 
Multiple linear regression analysis depends on several assumptions. The compliance of 

regression models created within section 6.1 with these assumptions was tested using 

the methods and acceptance criteria provided in Table 4.4. Both visual inspections and 

statistical metrics were used to assess model compliance. Several models were tested 
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for a range of lead times at each reservoir. For brevity, representative models were 

chosen to demonstrate the overall compliance of models used (Table 4.5).  

 

Stratified models comply with assumptions better than full year models, with linear 

relationships between dependent and independent predictors. For full year models, not 

all predictors were linearly correlated to inflows. To assess the impact of this non-

compliance on Toktogul inflow forecasts at a one month lead, the model was re-

calculated after transforming both the dependant variable (Toktogul inflows) and the 

other independent variable (antecedent flow) using the natural logarithm (as used in 

previous studies, e.g. Svensson et al., 2015; Mendoza et al., 2017). This resulted in an 

improved R2
adj (not cross validated) of 0.94 compared with 0.89 before transforming the 

data. Applying the transformation results in linear relationships between all dependent 

and independent variables, residuals being normally distributed and improved 

homoscedasticity of residuals. If the statistical forecasting approach were to be 

operationalised, such a transformation should be applied to ensure the model conforms 

to key assumptions and optimal performance is achieved using the predictors available. 

The violation of assumptions shown here highlights the dangers of using a stepwise 

regression procedure, with the risk of it becoming a ‘black box’ model. Due to this, 

expert judgement should always make the final decision regarding predictor variables 

and assumption compliance should always be evaluated.  

 



72 
 

Table 4.4: Multiple linear regression assumptions and criteria used to 
assess model compliance. 

Assumption 
Assessment 

technique 
Acceptance criteria 

Linearity between the 

dependant and independent 

variables (both individually 

and collectively) 

Scatterplot Visual inspection 

No multicollinearity of 

independent variables 

Variance Inflation 

Factor (VIF) 
VIF <10 

Normal distribution of 

residuals 
Shapiro-Wilk test p-value greater than 0.05 

Homoscedasticity through 

time 

Scatterplot of 

residuals against time 
Visual inspection 

Homoscedasticity through 

predicted flow values 
Breusch-Pagan test p-value greater than 0.05 

No autocorrelation present 

in residuals 

Durbin-Watson 

statistic 
Test statistic between 1.5 and 2.5 

 

 

Table 4.5: Selected models compliance with multiplelinear regression 
assumptions outlined in Error! Reference source not found.. 

Assumption Toktogul Q1 full year Toktogul Q1 stratified 

Linearity  
Q = PASS 

NCEP T = FAIL 
Combination = PASS 

 

NCEP_P_Op = PASS 
NCEP_P_Av = PASS 
TRMMRT_Op = PASS 
Combination = PASS 

No multicollinearity  Q = PASS 
NCEP T = FAIL 

NCEP_P_Op = PASS 
NCEP_P_Av = FAIL 

TRMMRT_Op = PASS 

Normal distribution of residuals FAIL PASS 

Homoscedasticity through time PASS PASS 

Homoscedasticity through 

predicted flow values PASS PASS 

No autocorrelation present in 

residuals PASS PASS 
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4.3 Climate mode based seasonal forecasting 

4.3.1 Correlation analysis 
The climate mode seasonal forecasting approach followed the methodology presented 

in Dixon and Wilby (under revision). First, climate modes were selected based on 

previously recorded relationships with CA precipitation and/or river flow as well as a 

preliminary global analysis to identify ocean basins (using SST’s) with potential 

predictability of inflows to Toktogul, Andijan and Nurek reservoirs. Kayrakkum reservoir 

inflows were not forecast in this way. This was due to discharge being determined by 

upstream river regulation rather than snow and glacier melt. The ESRL correlation tool25 

was used to correlate monthly NAO, Niño 3.4 and DMI indices with NCEP re-analysis 

precipitation and temperature across CA for each month during the period 1950-2014, 

over lagged intervals (index leading) 0 to 3 months. Individual monthly, bi-monthly and 

winter mean climate mode indices were then correlated with following mean summer 

inflows into Toktogul, Andijan and Nurek reservoirs. Summer flows were selected as 

these contribute 77% to 83% of mean annual inflow. Two periods were used, 1941-80 

and 2001-2010 to assess the stationarity of correlations. 

 

4.3.2 Composite forecasting 
Average summer inflows were pooled conditional on the tercile (i.e. <33%, 33-66%, 

>66%) of prior winter mean indices. The period 1941-1980 was used to minimize 

possible non-homogeneity due to discharge data and/or anthropogenic climate change 

in the region. This tercile approach enables evaluation of equal size samples of summer 

flow conditional on prior index (negative, neutral or positive). Statistical significance of 

differences between pooled samples was assessed using two tests. First, the Kruskal-

Wallis (KW) test assesses the whether the ranked values of multiple distributions derive 

from populations with the same distribution. The test determines if at least two groups of 

conditioned flows are significantly different, but does not state which specific groups. 

Second, the Kolmogorov-Smirnov (KS) test assesses whether two independent 

samples have been drawn from the same population/from identical populations. The 

test produces a D statistic which is a measure of the maximum difference between two 

cumulative distributions. Both tests do not make assumptions regarding the distribution 

                                            
25 https://www.esrl.noaa.gov/psd/data/correlation/ 
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of data. Box-and-whisker plots were used to show expected flows following 

negative/neutral/positive index phases. Concurrent summer air temperature terciles 

were also used (as a proxy for snowmelt contributions) to further condition summer 

inflows pooled by winter index. 

 

Further analysis focused on Nurek inflows as these showed greatest potential for 

conditioning on prior climate mode indices and concurrent temperature. The stationarity 

of the Niño 3.4-Nurek inflow relationship was assessed followed by an example of how 

a forecast based on this relationship could be issued. The procurement of Additional 

long term, up to date discharge data for Nurek allowed stationarity to be assessed by 

undertaking composite analysis for the period 1981-2016 (1993-1999 missing) as well 

as 1941-1980. Up-to-date discharge data was procured for Komsomolabad 

(downstream of Garm) allowing a ‘blended’ long term time series (1941-2016 (1993-

1999 missing) to be constructed. This blended series was constructed for 

Komsomolabad by regressing mean summer (April-September) flows against mean 

summer Garm flows using overlapping periods of data (1949-1957, 1977-85, 1988 and 

1990). The regression model explained 68% of the variance in mean summer flow at 

Komsomolabad. Mean summer flows were used to build the regression equation 

instead of monthly flows to limit autocorrelation of errors (r=0.34, insignificant at p=0.1). 

The flow data used to build the model was also stationary over the period used. The 

final blended flow series was created using observed values where possible, filling any 

gaps in the series with predicted values from the regression model. No data was 

available from either gauge for the period 1993-1999. The same procedure was applied 

to build a long-term dataset for Sari-Tash temperature using its relationship with 

Lyakhsh allowing sensitivity testing of inflows conditioned on concurrent temperature.  

 

Using October-March average index, a forecast cannot be issued before early April. 

After discussion at a workshop attended by local stakeholders, including members of 

Tajik Hydromet and Barqi Tojik, it was apparent an early outlook forecast (in addition to 

Tajik Hydromet’s April issued forecast) was desired. Therefore, average summer inflows 

to Nurek were conditioned on mean November-December Niño 3.4, allowing a forecast 

to be issued in January. November-December Niño 3.4 was used due to its strong 

correlation with mean summer inflows during both 1941-1980 and 2001-2010. 

Forecasts are presented using likelihood tables, giving the likelihood (%) of flows falling 
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between various anomaly ranges. Forecast skill for both issue times was assessed via 

the Heidke Hit Proportion (HHP), defined as the proportion of forecast cases in which 

the forecast category assigned the highest probability is later observed (International 

Research Institute, 2013). A score of 0.33 would be expected by chance alone; 

therefore, a greater value indicates additional skill is provided by the model. The time 

series was split in half, allowing cross validated HHP scores to be calculated for 1941-

1974 and 1975-2016. Sensitivity testing of inflows conditioned on prior Niño 3.4 and 

temperature was undertaken by varying the flow anomaly baseline, the period used to 

derive tercile boundaries and the met station used to derive temperature.  

 

4.4 Transferability of methodologies  

To assess the transferability of the methodologies piloted in the study, both regression 

and climate mode based forecasting techniques were implemented on the Ouergha 

River, in the headwaters of the Sebou basin, Morocco (Figure 4.1). The M’Jara gauge is 

located 5km downstream of the subsequently built Al Wahda dam and reservoir, the 

largest in Morocco (commissioned in 1997, transferability will be tested for the period 

1952-89). The location of the gauge at a now significant headwater reservoir, used for 

flood control, irrigation and hydropower production, means accurate seasonal 

forecasting could help reduce drought impacts as well as prevent over-topping as seen 

during 2009-2010 (Abdelbasset et al., 2015). Therefore, although data are only 

available pre-dam building, the basin was thought suitable for assessing the 

transferability of approaches.  

 

The hydro-climate of the area is very different to that of CA. Both precipitation and 

discharge peak during January-December and are virtually nil during July-August. The 

basin is also located close to the coast inland from the Atlantic at a lower elevation 

(maximum of 2440m) than the CA basins. The basin area above the gauging stations is 

~6000km2.  Generally, precipitation falls as rain, but snow is known to fall over the 

mountainous region in the north-east of the catchment. Such a contrasting climate will 

provide a stern test of the approaches  
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Figure 4.1: Location of M’Jara basin within Morocco 

 

Monthly discharge data was procured at M’Jara for the period 1952-1989 from GRDC16, 

with missing values (<3%) being filled with monthly means. For regression modelling, 

monthly NCEP precipitation and temperature (basin average and optimal cell) are used 

as predictors along with previous discharge. The testing period is prior to TRMM 

satellite precipitation availability, therefore it could not be used. The same regression 

modelling procedure was used as in CA, however only operational models (predictors 

available in near real-time) were constructed, calibrated and validated (k-fold validation 

excluding 5 years at a time) for lead times 1-3 months. No seasonal stratification was 

applied.  

 
Figure 4.2: Mean discharge regime of the Ouergha River at M’Jara for the 
years 1952-1989. 

 

0

50

100

150

200

250

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M
ea

n 
m

on
th

ly
 d

is
ch

ar
ge

 (m
3 s

-1
) 



77 
 

Hurrell (1995) (principal component) NAO and HadISST derived Niño 3.4 were selected 

as potential climate modes to be used for conditioning discharge. Climate mode-based 

forecasting was undertaken as before, first correlating precipitation and temperature 

with NAO and Niño 3.4 before conditioning discharge according to prior index phase. 

Two target discharge periods were investigated: December-January mean for dam 

safety; and February-April mean for reservoir filling. Potential management actions with 

sufficient lead time forecasts might include reservoir drawdown to reduce potential of 

overtopping or reduced winter release for hydropower generation if low inflows are 

expected during February-April.  

 

4.5 Overview of approach 

An overview of the methodological approach used in the study is provided in Figure 4.3. 

Observed hydro-climatic data are difficult to procure for CA, which has led to much 

information being gathered third hand. This cannot be avoided in a region in which 

hydro-climatic data are so politically sensitive, however quality assessment has been 

undertaken and data integrity should be kept in mind when drawing conclusions.  

 

The relative merits of modelling approaches were outlined in section 4.1. Using a 

multiple linear regression approach requires several assumptions to be met and the 

extent to which models used here comply with these was evaluated in section 4.2.4. 

Regression models will be validated using a leave one out k-fold cross validation (for 

CA models, leave five years out for Morocco). It is known that data occurring after a 

forecast is issued can unfairly advantage a model when using a leave one out cross 

validation compared to real time application (Robertson, 2016). However, with such a 

short record length (10 years) omitting several years of data trailing each validation 

period would leave too little data on which to calibrate the model. Therefore, the 

potential increased skill of cross validated models compared to real world application 

should be acknowledged when evaluating model performance. The monthly mean 

discharge was used as a measure of ZOF rather than a persistence forecast. This was 

chosen as mean monthly discharge provided a more stringent test with which to 

benchmark model skill. The ZOF is the simplest possible model, so provides a useful 

test of the value-added by more sophisticated approaches. 
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Monthly precipitation and temperature series were correlated with concurrent and 

preceding monthly climate mode index values. This single month approach was utilised 

as it allowed greatest resolution of climate mode index skill to be depicted. A bi-monthly 

approach was also evaluated and whilst slightly stronger correlations were found, there 

was less precision about which exact periods provide greatest skill. Boundaries for 

conditioning of discharge by prior index phase were set using 0.33 and 0.66 percentiles, 

rather than prescribing fixed boundaries for negative/neutral/positive phases. This 

allows roughly even numbers of discharge seasons for each phase but does mean 

events could be classed as positive/negative during relatively weak events. 

Furthermore, even sized terciles can result in large variations of event strength within 

each phase.  
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Figure 4.3: Conceptual diagram of methodological approach 

 

4.6 Summary 

This chapter has described the methodologies used to address the aim and objectives 

of the study. Justification was provided for the use of multiple linear regression. It is 

acknowledged that other approaches could have been applied, but regression was 
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judged most suitable due to it being transparent, tractable and transferable. Detail has 

been provided regarding both regression and climate mode-based forecasting 

approaches. Information regarding the M’Jara basin in Morocco, the chosen site for 

testing transferability of approaches, helped contextualise the site and drew comparison 

with CA. Section 4.5 offered a review of the methodologies, discussing associated 

strengths and weaknesses. The following chapter will present the results of analyses 

executed using the above outlined techniques.   
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5 Results 

The results of the thesis are presented in this chapter produced using the 

methodologies introduced in Chapter 4. First, potential for seasonal forecasting inflows 

to four headwater reservoirs in Central Asia is assessed. Forecasting was undertaken at 

a monthly time-step for the period 2001-2010 using a statistical (regression) model for 

lead times 1-4 months. Results are presented in three stages through predictor 

selection, model construction and calibration, then validation. Second, forecasts are 

piloted for mean summer flow using climate modes as predictors. Summer inflows to 

Toktogul, Andijan and Nurek reservoirs for the period 1941-80 were conditioned on prior 

winter Niño 3.4, NAO and DMI phases (negative/neutral/positive) to assess each 

index’s discriminative power. A method to operationalise the approach is then piloted for 

Nurek reservoir. The transferability of both approaches is subsequently assessed via 

application to a river basin in Morocco. The chapter concludes with a summary of 

headline findings.  

 

5.1 Statistical forecasting model development 

5.1.1 Predictor selection 
The amount of variance in monthly inflows explained by overlaying cells of TRMM 

(Figure 5.1) and TRMM RT (Figure 5.2) precipitation as well as NCEP precipitation 

(Figure 5.3) and temperature (Figure Apx 1) for lead times 0-4 months were explored, 

extending Dixon and Wilby’s (2016) analyses. Correlations were tested via Spearman’s 

rho, with significant values taken at p = 0.05. Due to the autocorrelated nature of the 

inflow data, the ‘effective sample size’ was adjusted downwards following Wilks (2011). 

Critical rho values for each basin, accounting for autocorrelation, can be found in Table 

5.1. This was undertaken as a preliminary analysis to explore predictor potential, with all 

months utilised to maximise the small sample size. It should be noted, however, that 

these correlation surfaces incorporate different hydrological conditions throughout the 

year. This means winter snowpack accumulation, summer ablation period and 

groundwater dominated flows during winter are mixed in this preliminary analysis. 

 

Inflows to Toktogul and Andijan showed similar correlation patterns with TRMM and 

TRMM RT precipitation products at all lead times (Figure 5.1, Figure 5.2 and Figure 
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5.3). Cells with greatest explained variance at zero lead include central and eastern 

areas of each basin, over the Tien Shan Mountains. As the lag interval increased, the 

zone of greatest predictability migrated towards the north-west. In contrast to TRMM 

and TRMM RT, NCEP precipitation provided greatest predictability of inflows to Andijan 

at a three-month lead. NCEP precipitation is increasingly positively correlated with 

Andijan inflows as lead time increases, contrasting the relationships of TRMM and 

TRMM RT (Figure 5.3).  
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Figure 5.1: Monthly observed inflow into Toktogul, Andijan, Kayrakkum 
and Nurek reservoirs correlated with monthly TRMM estimated 
precipitation for the years 2001-2010 for concurrent (left) and precipitation 
leading (right) discharge by 1, 2, and 3 months. Note that a 4 month lead 
was also undertaken but not shown for brevity.  
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Kayrakkum exhibited the opposite relationship to both Toktogul and Andijan. At zero 

lead, significant negative correlations were observed over the mountainous cells in the 

east. The transition from negative to positive correlation pattern occurred at the location 

of Toktogul reservoir. TRMM and NCEP precipitation products were negatively 

correlated with Nurek inflows concurrently, transitioning to positive correlations with 

increasing lead times. TRMM RT showed an opposing relationship, with greater 

negative correlations occurring at a three-month lead.  

 

Although similar patterns of correlation were found, TRMM RT explained consistently 

less variation in inflows than TRMM for all basins, with fewer cells exhibiting statistically 

significant correlations at each lead time. NCEP showed comparable correlations at 

each lead time for each basin as TRMM, with similar areas of each basin significant at 

each lead (with the exception of Andijan). The different spatial resolution of products is 

evident in Figure 5.1, Figure 5.2 and Figure 5.3 (0.5° for TMMM/TRMM RT and 2.5° for 

NCEP). Due to these differences, comparisons of explained variance across products 

should be interpreted with care. For example, the relatively coarse resolution of NCEP 

could mean that sub-grid scale areas, with local strong correlations are being missed. 

 

Table 5.1: Critical values of significance for each basin using their 
effective sample size having adjusted for autocorrelation (originally 120 
observations). 

Basin 
Autocorrelation 

coefficient 
Effective sample 

size 
Critical rho 
(p = 0.05) 

Toktogul 0.74 18 0.47 

Andijan 0.75 17 0.49 

Kayrakkum 0.74 18 0.47 
Nurek 0.80 14 0.54 
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Figure 5.2: As for Figure 5.1 but with TRMM RT estimated precipitation. 
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Figure 5.3: As for Figure 5.1 but with NCEP derived precipitation. 

 

Inflows to Toktogul during the summer half-year (April-September mean, n = 9) were 

significantly related to winter TRMM precipitation averaged across the basin and winter 

TRMM and NCEP precipitation over the most sensitive sub-basin cell (Table 5.2). 

Winter NCEP basin average and optimal cell precipitation were significantly related to 

Andijan summer inflow. TRMM basin average and optimal cell, along with winter TRMM 

RT optimal cell precipitation, were weakly related to summer Andijan inflows (but were 

statistically insignificant predictors at p = 0.05). Only TRMM optimal cell was 

significantly related to summer inflows to Kayrakkum. All sources of winter precipitation 

tested across the Nurek catchment provided no statistically significant skill for 

forecasting summer inflows during the fit period. 
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Table 5.2: Statistical estimates of the intercepts (α) and parameters (β) 
of simple linear regression models, along with the amount of explained 
variance (R2), standard error (SE) of the mean summer (April-
September) runoff estimate (m3s-1) and model significance level (p). All 
predictors are for the mean winter half-year (October-March), both for 
the basin average (_Av) and optimal cell identified from correlation 
surface plots (_Op) above. Values in bold significant at p = 0.05. 
 

 Predictor α (m3s-1) β R2 (%) SE (m3s-1) p value 

To
kt

og
ul

 

TRMM_Av 124 3.20 46 118 0.04 
TRMM_Op 299 4.35 49 115 0.04 

TRMMRT_Av 557 0.32 5 157 0.57 

TRMMRT_Op 621 0.17 2 159 0.69 

NCEPP_Av 227 2.32 26 138 0.16 

NCEPP_Op 327 6.34 48 116 0.04 

A
nd

ija
n 

TRMM_Av -62 1.13 38 81 0.08 

TRMM_Op 10 1.34 42 78 0.06 

TRMMRT_Av 104 0.21 10 97 0.42 

TRMMRT_Op -114 0.87 33 84 0.10 

NCEPP_Av -206 1.57 50 72 0.03 
NCEPP_Op -206 1.27 56 68 0.02 

K
ay

ra
kk

um
 

TRMM_Av -132 2.75 33 161 0.10 

TRMM_Op 138 6.05 45 146 0.05 

TRMMRT_Av 173 0.69 18 178 0.25 
TRMMRT_Op 392 0.25 3 193 0.64 

NCEPP_Av -165 1.89 16 180 0.29 

NCEPP_Op -39 0.67 11 185 0.38 

N
ur

ek
 

TRMM_Av 840 1.07 19 95 0.24 

TRMM_Op 882 0.57 20 95 0.23 

TRMMRT_Av 1094 0.05 0 105 0.87 

TRMMRT_Op 1145 -0.06 0 105 0.86 

NCEPP_Av 814 0.72 10 101 0.42 

NCEPP_Op 1361 -0.58 10 100 0.42 

 

The correlation between inflow and all candidate predictors (Table 4.1) for each basin 

was assessed by systematically varying lead time (t + 0 to t + 4) and averaging period 

(1-6 months) (Figure 5.4, Figure Apx 2, Figure Apx 3, Figure Apx 4).  
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Figure 5.4: Correlation (r) of inflows to Toktogul with basin average and 
optimal cell predictors (leading by 0-4 months) averaged over 1-6 
months. Accounting for autocorrelation at p = 0.05, rcrit = 0.47.  
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Each precipitation and temperature product yields two potential predictors, one a basin 

average (of all cells overlapping the drainage area) and the optimal predictor cell (with 

greatest explained variance at each lag interval identified from correlation surfaces in 

Figure 5.1, Figure 5.2, Figure 5.3 and Figure Apx 1). This procedure allowed the 

averaging period with greatest explained variance in inflows to be identified for each 

lead time. For example, when forecasting Toktogul discharge at lead time one month 

(red bars in Figure 5.4) using TRMM basin average, an averaging period of two months 

yields greatest predictability (r = 0.83). Predictors in general transitioned from a positive 

to negative correlation as lead interval and averaging period increase.  

 

As the lead time and averaging period increase, correlations become negative for most 

predictors (Figure 5.4). This is perhaps most marked when correlating inflows with 

NCEP temperature, where strong negative correlations occur for lead times of 3-4 

months at averaging periods of 4-6 months. This is likely caused by annual temperature 

and reservoir inflow regimes being in anti-phase, with the strong correlation driven by 

the opposing annual regimes rather than a direct influence.  This suggests that 

correlations built using de-trended data may have better reflected the physical 

mechanisms of runoff generation in the catchment. Interestingly, correlations between 

NCEP optimal cell precipitation and Toktogul inflows at a three/four-month lead time are 

stronger than at lead time two months (Figure 5.4). This caused by the location of the 

optimal NCEP cell precipitation changing between the one/two and three/four month 

lead time as the area of greatest predictability migrates westward (Figure 5.3). 

 

5.1.2 Model construction and calibration 
Once the averaging period with greatest explained variance in inflows was identified for 

each lead time, stepwise linear regression was performed to achieve the most 

parsimonious forecasting models. This procedure reduced the risk of over-fitting models 

to the calibration period. The final sets of predictor variables included in each 

forecasting model at each lead time are shown in Table 5.3.  

 

Antecedent discharge is only included in models for Toktogul at lead time one month, 

highlighting the limited autocorrelation in flows for the reservoir inflows studied. 

Relatively long averaging periods are used for precipitation predictors at lead times 3-4 
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months for Toktogul. This is attributed to the model attempting to include winter snow 

accumulation to forecast summer melt driven inflows. Whilst this could work well during 

summer, it forces winter flows to be predicted from summer precipitation, a mechanism 

that does not make physical sense. This problem occurs at all reservoirs. No gauge 

adjusted precipitation product is selected for research models at Andijan. This could be 

explained by the gauge adjustment procedure being better over the Toktogul basin. 

Inspection of the network of gauges used by TRMM26 shows that none are available 

within TRMM cells overlapping the Andijan basin, compared with 5 for the Toktogul 

basin during 2000-2010.  

 

Outflows from Toktogul and Andijan were selected for both Kayrakkum models at lead 

time one month, stressing the importance of water management for forecasting 

Kayrakkum inflows. It might be expected that model skill at longer lead times is 

suppressed without this information. The few predictors added to Nurek models may be 

caused by high level of skill provided by the ZOF. Furthermore, the reliance of 

operational models at lead times one and three on NCEP precipitation is a cause for 

concern given the poor relationship between this product and observed precipitation at 

Sari-Tash.  

 

5.1.3 Model validation 
Given the limited amount of inflow data, a k-fold (9 folds used) cross-validation 

technique was used to benchmark the predictive skill of regression models to the Zero 

Order Forecast (ZOF) over forecast horizons of t + 1 to t + 4 months (Q1-Q4). Two 

model types were tested: (1) ‘research grade’ models (similar to those built in Dixon and 

Wilby, 2016) based on historic observations with typical latency 2-3- months; and (2) 

‘operational’ models which only use products available in real time (latency ~2 days). 

Cross validated model metrics are provided in Table 5.4 for both research and 

operational models. 

 

Research models were superior to ZOF at lead times of Q1-Q4 for all performance 

metrics except MARE at Q3 when forecasting Toktogul inflows. This relative 

improvement in skill can be seen in Figure 5.5, for example during the summers of 2008 
                                            
26The GPCC visualizer enables inspection of sites used in TRMM: http://kunden.dwd.de/GPCC/Visualizer 
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and 2009. For Kayrakkum, research models outperformed the ZOF at all lead times for 

all performance metrics. When forecasting Andijan inflows, the ZOF was out-performed 

at all lead times for all metrics except MARE, for which the ZOF was not surpassed at 

any lead time. This performance is clear during the summer months, but does not reflect 

the poor skill during winter, where negative inflows were forecast during some years 

(Figure 5.6). A full set of hydrographs are provided in Appendix A. 
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Table 5.3: Predictors used in both the operational and research grade 
multiple regression models for each basin at each lead time (1-4 
months) (n = 111). Notations can be found in Table 4.1. 

  Q1 Q2 Q3 Q4 

To
kt

og
ul

 

Operational 

M M M M 

Q1,1  NCEP_P_Op3,4 NCEP_P_Op4,3 

NCEP_T_Op1,1    

Research 

M M M M 

Q1,1 TRMM_Av2,1 NCEP_P_Op3,4 NCEP_P_Op4,3 

TRMM_Av1,2  TRMM_Av3,1 TRMM_Av4,6 

   NCEP_T_Av4,4 

A
nd

ija
n 

Operational 

M M M M 

NCEP_P_Av1,5 NCEP_P_Av2,3 NCEP_P_Av3,2 NCEP_P_Av4,1 

TRMM_RT_Op1,4    

Research 

M M M M 

NCEP_P_Av1,5 NCEP_P_Av2,3 NCEP_P_Av3,2 NCEP_P_Av4,1 

TRMM_RT_Op1,4    

K
ay

ra
kk

um
 

Operational 

M M M M 

And1,1 And2,1 NCEP_P_Op3,4 TRMM_RT_Av4,6 

Tok1,1  TRMM_RT_Av3,6  

Research 

M M M M 

And1,1 TRMM_Av2,4 NCEP_P_Op3,4 TRMM_RT_Av4,6 

Tok1,1  TRMM_RT_Av3,6  

TRMM_Av1,5    

N
ur

ek
 Operational 

M M M M 

NCEP_P_Av1,6  NCEP_P_Op3,4  

NCEP_P_Op1,6    

Research 
M M M M 

TRMM_Av1,6 TRMM_Av2,5 NCEP_P_Op3,4  
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Table 5.4: Cross validated model metrics for ZOF, Q1, Q2, Q3 and Q4 
research and operational models (ZOF used if no predictors added to 
model during stepwise procedure) (n = 111). Research grade models 
take as input all products including observation adjusted (e.g. TRMM 
3B43, latency of 2-3 months), whereas operational models are 
composed only of products that would be available to operators in near 
real-time (latency of ~2 days). Values in bold signify the most promising 
model for each lead time.  

 
 Research models Operational models 

Metric ZOF Q1 Q2 Q3 Q4 ZOF Q1 Q2 Q3 Q4 

To
kt

og
ul

 

R2 0.794 0.871 0.817 0.846 0.823 0.794 0.874 ZOF 0.840 0.822 

NSE 0.794 0.871 0.816 0.845 0.822 0.794 0.873 ZOF 0.840 0.822 

AIC 580 558 575 568 577 580 557 ZOF 568 574 

RMSE 152 120 144 132 141 152 119 ZOF 134 142 

MARE 20.1 16.6 23.7 26.6 19.8 20.1 18.8 ZOF 26.1 19.6 

A
nd

ija
n 

R2 0.555 0.666 0.664 0.654 0.611 0.555 0.666 0.664 0.654 0.611 

NSE 0.550 0.662 0.661 0.651 0.607 0.550 0.662 0.661 0.651 0.607 

AIC 519 507 505 507 514 519 507 505 507 514 

RMSE 88 76 76 78 82 88 76 76 78 82 

MARE 39.8 55.3 54.1 51.6 47.1 39.8 55.3 54.1 51.6 47.1 

K
ay

ra
kk

um
 

R2 0.400 0.584 0.427 0.432 0.429 0.400 0.563 0.450 0.432 0.429 

NSE 0.391 0.577 0.414 0.412 0.416 0.391 0.556 0.443 0.412 0.416 

AIC 624 610 624 626 624 624 611 621 626 624 

RMSE 227 189 223 223 223 227 194 217 223 223 

MARE 33.6 26.3 31.8 32.0 31.8 33.6 26.9 31.6 32.0 31.8 

N
ur

ek
 

R2 0.943 0.943 0.943 0.945 ZOF 0.943 0.939 ZOF 0.945 ZOF 

NSE 0.943 0.943 0.942 0.945 ZOF 0.943 0.939 ZOF 0.945 ZOF 

AIC 559 562 562 559 ZOF 559 568 ZOF 559 ZOF 

RMSE 127 127 128 124 ZOF 127 132 ZOF 124 ZOF 

MARE 14.2 14.6 14.7 15.4 ZOF 14.2 16.1 ZOF 15.4 ZOF 
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Figure 5.5: Selected cross validated inflow forecasts for Toktogul, at 
lead time one (Q1) and three (Q3) months, for operational and research 
grade models. 
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Figure 5.6: Selected cross validated inflow forecasts for Andijan, with 
lead time one (Q1) and two (Q2) months, for the operational and 
research grade models. Note that both research grade and operational 
models were built using same predictors. 

 

The challenging standard set by the ZOF for Nurek results in fewer models able to 

outperform ZOF (Table 5.4). No research model was able to outperform the ZOF at Q1, 

Q2 and Q4. However, at Q3 the model outperformed the ZOF for all metrics other than 

MARE. 

 

The performance of operational models (using predictors available in real-time) varies 

by basin. The best performing models at each lead time for Andijan used only real-time 

predictors, meaning results are identical to the research models (Table 5.4). A similar 

situation occurs when forecasting Kayrakkum inflows, with Q3 and Q4 models identical 

to the research-grade models whilst Q1 and Q2 models outperformed the ZOF for all 

performance metrics used (note that Toktogul and Andijan outflows were included in Q1 

and Q2 models). The operational models were able to outperform ZOF for Toktogul for 

all metrics (except MARE at Q3) for lead times Q1, Q3 and Q4. At Q2, no additional 

predictors were added to the model during the stepwise regression process. 
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Operational models struggled to attain the same performance as the ZOF for Nurek, 

with no additional predictors added beyond the dummy variable for month at Q2 and 

Q4. However, the operational model did outperform ZOF at Q3 for all metrics except 

MARE.  

 

Stratifying models to forecast only summer (Apr-Sep) discharge (using individual 

months, n = 58), both Toktogul and Andijan outperform the ZOF at all lead times for all 

metrics used, with the exception of MARE at Q4 (Table 5.5). Similar to the full year 

investigation, the ZOF of Nurek inflows performs well according to all metrics used, with 

only modest improvements in skill possible for a few lead times. For Toktogul and 

Andijan at Q1 and Q2, stratifying models lead to improvements in all metrics with the 

exception of MARE. An examination of the cross validated hydrographs show stratified 

models result in generally smaller residuals for both Andijan (Q1) and Toktogul (Q1 and 

Q2) (Figure 5.7 and Figure 5.8). However, at Q3 stratified models are generally out-

performed by their full year equivalents (Figure 5.8). Similar performance metrics are 

obtained for both full year and stratified models at Q4 (Table 5.5). 

 

 

 
Figure 5.7: Cross validated operational inflow forecast residuals for 
Andijan with lead time one month (Q1). Full year models forecast all 12 
months, whereas stratified models forecast only summer inflows (April-
September), using ZOF as winter flows. 
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Table 5.5 Cross validated stratified model metrics for ZOF, Q1, Q2, Q3 and 
Q4 models for summer months only (April-September) when using full year 
models (n = 111) versus summer only models (n = 58) (ZOF denotes no 
predictors added to model during stepwise procedure). Values in bold 
signify highest performing model for each lead time. 

  Full year Summer only 
 Metric ZOF Q1 Q2 Q3 Q4 ZOF Q1 Q2 Q3 Q4 

To
kt

og
ul

 

R2 0.581 0.757 ZOF 0.720 0.640 0.581 0.802 0.773 0.635 0.649 

NSE 0.578 0.756 ZOF 0.720 0.638 0.578 0.801 0.772 0.633 0.643 

AIC 310 289 ZOF 291 298 310 285 287 298 301 

RMSE 214 162 ZOF 174 198 214 147 157 199 197 

MARE 23.4 16.8 ZOF 19.8 21.7 23.4 19.7 19.9 22.0 27.2 

A
nd

ija
n 

R2 0.360 0.602 0.569 0.544 0.461 0.360 0.772 0.678 0.447 0.484 

NSE 0.350 0.602 0.569 0.543 0.457 0.350 0.771 0.675 0.439 0.469 

AIC 270 260 261 262 267 270 246 255 268 268 

RMSE 123 96 100 103 112 123 73 87 114 111 

MARE 56.6 46.5 53.9 53.9 58.4 56.6 42.6 54.7 49.7 49.0 

N
ur

ek
 

R2 0.812 0.797 ZOF 0.821 ZOF 0.812 ZOF ZOF 0.818 ZOF 

NSE 0.812 0.796 ZOF 0.820 ZOF 0.812 ZOF ZOF 0.817 ZOF 

AIC 289 295 ZOF 290 ZOF 289 ZOF ZOF 290 ZOF 

RMSE 175 183 ZOF 171 ZOF 175 ZOF ZOF 173 ZOF 

MARE 13.6 14.4 ZOF 13.3 ZOF 13.6 ZOF ZOF 13.6 ZOF 
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Figure 5.8: Cross validated operational inflow forecast residuals for 
Toktogul with lead times one (Q1), two (Q2) and three (Q3) months. Full 
year models forecast all 12 months, whereas stratified models forecast 
only summer inflows (April-September), using ZOF as winter flows. 
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5.2 Climate mode based seasonal forecasting 

5.2.1 Correlation analysis 
Climate modes were selected based on possible relationships to CA precipitation/river 

flow in previous research, as well as correlating reservoir inflows with global SST’s. 

From this, monthly NAO, Niño 3.4 and DMI indices were selected as predictors of CA 

reservoir inflows. Monthly indices were correlated with NCEP re-analysis precipitation 

and temperature across CA for each month during the period 1950-2014, over lead 

times (index leading) 0 to 3 months. 

 

The NAO was weakly correlated with concurrent NCEP re-analysis precipitation across 

CA throughout the year over lead times of 1 to 3 months (Figure Apx 20). Only April 

precipitation across southern Tajikistan showed significant (p<0.05) negative 

correlations with NAO over lead times of 1-3 months. Niño 3.4 showed positive 

correlations with CA precipitation that were strongest during winter (Figure 5.9). Both 

January and March showed significant concurrent and lagged positive correlations 

(r>0.25) south-east of the Aral Sea. Significant positive correlations (r>0.25) were also 

present across western Tajikistan and Uzbekistan during October, with stronger 

correlations (r~0.35) over Iran and north-western Afghanistan. DMI had only 

insignificant correlations with precipitation over CA (not shown). 

 

Weak negative correlations (r~0.4, p<0.05) existed between NAO and air temperature 

across southern CA during January (concurrent only), February (lead 0-1 month) and 

March (0-2 months) (Figure Apx 21). These correlations were strongest across 

Tajikistan and northern Afghanistan, but also over parts of Kyrgyzstan. November and 

December temperature was negatively correlated (r~-0.30, p<0.05) with NAO over 

north-eastern Iran. Niño 3.4 showed positive correlations (r~0.3, p<0.05) with January 

and February precipitation over eastern Kyrgyzstan and north-west China at lead times 

1-3 months, with insignificant positive correlations across Tajikistan at all lead times 

(Figure 5.10). Stronger, significant negative correlations (r~-0.4, p<0.01) were present 

over northern Kyrgyzstan and Kazakhstan during May at lead times 1-3 months. July-

September had insignificant negative correlations between Niño 3.4 and re-analysis 

temperature.
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  No lead Lead 1 Lead 2 Lead 3 

January 
    

February 
    

March 
    

April 
    

May 
    

June 
    

July 
    

August 
    

September 
    

October 
    

November 
    

December 
    

 
Figure 5.9: Monthly Niño 3.4 correlated with monthly NCEP precipitation 
rate for the years 1950-2014 at lead times 0-3 months (left column shows 
target precipitation month, with index month varied to account for lead 
time). Yellow/dark blue areas are significant at p=0.05, orange/pink are 
significant at p=0.01. (Dixon and Wilby, under revision) 
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Figure 5.10: As in Figure 5.9 but for NCEP temperatures. (Dixon and 
Wilby, under revision) 

  



101 
 

Individual winter (October-March) monthly, bi-monthly and half year mean indices were 

then correlated with mean summer inflows to Toktogul, Andijan and Nurek. The non-

parametric Spearman Rank correlation was used to test associations over the periods 

1941-1980 and 2001-2010. January and January-February mean NAO were negatively 

correlated (r~-0.25, p<0.05) with summer inflows to all reservoirs during the period 

1941-80 (Table 5.6). December NAO was negatively correlated (r ~-0.70, p<0.05) with 

summer inflows to Toktogul and Andijan during 2001-2010. Winter Niño 3.4 showed 

strong positive correlations to following summer inflows for all reservoirs over both 

periods tested. Nino 3.4 was positively correlated (r~0.45, p < 0.01) with summer 

inflows to Toktogul and Andijan for all months except February and March during the 

period 1941-80. Positive correlations (r ~0.50, p < 0.01) were observed for all Niño 3.4 

variations with summer inflows at Nurek for the years 1941-1980. Fewer significant 

correlations were seen during the years 2001-2010, yet correlations remain relatively 

strong for all months at all reservoirs (r ~0.55, insignificant). Only March DMI showed 

significant correlations to following summer inflows into Nurek during either period 

(Table 5.6). 
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Table 5.6: Spearman rank correlation for individual months and period 
mean indices versus following April-September inflow anomalies (red= p 
< 0.05, red= p < 0.01). Tok= Toktogul, And= Andijan, Nur= Nurek. (Dixon 
and Wilby, under revision) 

  Oct Nov Dec Jan Feb Mar Oct-
Nov 

Nov-
Dec 

Dec-
Jan 

Jan-
Feb 

Feb-
Mar 

Oct-
Mar 

NAO 
1941-

80 

Tok 0.23 -0.07 -0.10 -0.36 -0.18 -0.07 0.10 -0.11 -0.34 -0.38 -0.14 -0.21 
And 0.12 0.00 -0.10 0.46 0.00 -0.03 0.08 -0.08 -0.41 -0.33 -0.01 -0.16 

Nur -0.07 0.17 0.06 -0.36 -0.16 0.08 0.11 0.11 -0.24 -0.38 -0.08 -0.15 

NAO 
2001-

10 

Tok -0.08 0.26 -0.69 -0.47 -0.12 0.12 -0.04 -0.60 -0.61 -0.16 -0.02 -0.35 

And -0.01 0.19 -0.71 -0.50 -0.02 0.07 0.02 -0.62 -0.64 -0.13 -0.01 -0.32 

Nur -0.44 0.72 -0.26 0.12 -0.45 -0.04 -0.24 -0.10 -0.03 -0.05 -0.26 -0.13 
Niño 
3.4 

1941-
80 

Tok 0.51 0.52 0.48 0.44 0.43 0.34 0.53 0.48 0.47 0.46 0.43 0.49 

And 0.47 0.52 0.45 0.42 0.39 0.31 0.50 0.46 0.44 0.42 0.39 0.46 

Nur 0.70 0.69 0.67 0.66 0.62 0.52 0.71 0.68 0.69 0.67 0.62 0.68 
Niño 
3.4 

2001-
10 

Tok 0.50 0.61 0.59 0.54 0.65 0.77 0.56 0.59 0.55 0.58 0.77 0.59 

And 0.42 0.53 0.50 0.45 0.59 0.72 0.48 0.50 0.47 0.50 0.72 0.50 

Nur 0.55 0.60 0.65 0.55 0.54 0.60 0.58 0.65 0.62 0.58 0.60 0.65 

DMI 
1941-

80 

Tok 0.24 0.19 -0.01 0.03 -0.09 -0.11 0.24 0.13 0.09 -0.03 -0.07 0.15 

And 0.11 0.05 0.08 0.12 0.00 0.04 0.10 0.09 0.21 0.08 0.04 0.17 

Nur 0.28 0.09 -0.06 -0.16 -0.29 -0.32 0.22 0.03 -0.14 -0.25 -0.28 -0.07 

DMI 
2001-

10 

Tok -0.37 -0.05 0.38 -0.06 0.10 0.05 -0.20 0.24 0.24 0.12 0.10 0.21 

And -0.39 -0.08 0.31 -0.07 0.04 0.03 -0.22 0.18 0.20 0.07 0.06 0.15 

Nur -0.36 -0.02 0.33 0.29 -0.27 0.02 -0.26 0.15 0.35 0.07 -0.07 0.02 
 

 

5.2.2 Composite forecasting 
Average summer inflows were pooled conditional on the tercile (i.e. <33%, 33-66%, 

>66%) of prior winter indices. This enabled evaluation of equal size samples of mean 

summer inflows conditional on prior climate mode index (negative, neutral or positive). 

Concurrent observed summer (April-September) temperature was also used to 

condition summer inflows (cool, average or warm; boundaries provided in Figure 5.11). 

 

The largest difference in summer discharge occurred following opposing Niño 3.4 

phases (Figure 5.11). Nurek showed most potential for conditioning by prior indices, 

with increased (decreased) inflows following El Niño (La Niña) (+15%/-11%) and during 

warm (cold) summers (+7%/-5%) relative to 1941-1980 baseline respectively. 
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 Niño 3.4 (-0.48, 0.16) NAO (-0.54, 0.10) DMI (-0.01, 0.11) Temperature 
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Figure 5.11: Exceedance probabilities of April-September flow anomalies according to previous October-March index 
phase (in final column concurrent Apr-Sep temperture used to condition flow) for the period 1941-1980 (0.33 and 0.66 
tercile boundaries shown in header).  
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KS tests showed significant (p < 0.01) differences between distributions of inflows to all 

three reservoirs following El Niño compared with La Niña winters, as well as for inflows 

to Nurek during cold / warm summers (Table 5.7). The most significant (p < 0.01) 

differences were for summer inflows to Nurek following winter La Niña / El Niño or 

winter neutral / El Niño conditions. KW tests corroborate these findings with significant 

differences in summer flows following differing phases of winter Niño 3.4 for all 

reservoirs (p < 0.01); with Nurek showing the greatest difference (Table 5.8). 

 

Table 5.7: Kolmogorov-Smirnov D-statistic based on paired exceedance 
probability distributions in Figure 5.11 (red= p < 0.05, red= p < 0.01). 
(Dixon and Wilby, under revision) 

 
  Niño 3.4 NAO DMI Temperature 

To
kt

og
ul

 Negative - Neutral 0.39 0.23 0.39 0.31 

Neutral - Positive 0.56 0.28 0.28 0.34 

Negative - Positive 0.62 0.33 0.21 0.34 

An
di

ja
n Negative - Neutral 0.31 0.31 0.54 0.31 

Neutral - Positive 0.48 0.42 0.35 0.24 

Negative - Positive 0.70 0.27 0.35 0.24 

N
ur

ek
 Negative - Neutral 0.31 0.23 0.23 0.31 

Neutral - Positive 0.85 0.42 0.36 0.41 

Negative - Positive 0.85 0.40 0.28 0.57 
 

 

Table 5.8: Kruskal-Wallis H-statistic based on exceedance probability 
distributions in Figure 5.11 (red= p < 0.05, red= p < 0.01). (Dixon and 
Wilby, under revision) 

 Niño 3.4 NAO DMI Temp 

Toktogul 9.9 2.0 2.6 2.3 

Andijan 10.2 3.7 4.7 0.8 

Nurek 20.9 2.7 1.0 4.9 
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Toktogul Andijan Nurek 

   

Figure 5.12: Summer (April-September) discharge anomalies stratified by preceding October-March Niño 3.4 phase 
and concurrent air temperature (cold/average/warm) for the period 1941-80. (Dixon and Wilby, under revision) 
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Focusing on the most promising results from the previous analysis, average summer 

inflows were evaluated using previous winter Niño 3.4 phase and concurrent 

temperature anomalies (cold/average/warm) (Figure 5.12). Nurek had higher (lower) 

than average inflows following El Niño (La Niña) winters, and higher (lower) in warm 

(cool) summers. Both Toktogul and Andijan exhibit the same pattern, albeit weaker, 

following each Niño 3.4 phase. However, these reservoirs experienced lower (higher) 

summer inflows under concurrent warm (cool) conditions. 

 

The stationarity of the Niño 3.4-Nurek inflow relationship was examined using a 

reconstructed discharge record created for Komsomolabad (based on a seasonal 

regression with flows gauged at the upstream station of Garm, as described in section 

4.3.2). Nurek summer inflows were again conditioned on prior winter Niño 3.4 phase for 

the period 1981-2016 (years 1993-1999 missing) to assess stationarity with respect to 

the 1941-1980 data. As before, the period 1981-2016 has increased (decreased) 

inflows following El Niño (La Niña) (+4%/-7%) (Figure 5.13). However, differences are 

not statistically significant according to the Kolmogorov-Smirnov and Kruskal-Wallis 

tests (Table 5.9 and Table 5.10). Using the full discharge series (1941-2016 with 1993-

1999 missing), both tests showed significant differences (p<0.01) in Nurek inflows 

following La Niña/El Niño. 

 

1941-1980 1981-2016 
(1993-1999 missing) 

1941-2016 
(1993-1999 missing) 

   
Figure 5.13: Exceedance probabilities of April-September flow 
anomalies (m3s-1) into Nurek according to previous October-March Niño 
3.4 phase for differing time periods (tercile based on period 1941-80). 
(Dixon and Wilby, under revision) 
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Table 5.9: Kolmogorov-Smirnov D-statistic based on paired exceedance 
probability distributions for Nurek shown in Figure 5.13 (red= p < 0.05, 
red= p < 0.01). (Dixon and Wilby, under revision) 

 1941-1980 
1981-2016 
(1993-1999 

missing) 

1941-2016 
(1993-1999 

missing) 
Negative - Neutral 0.39 0.29 0.30 

Neutral - Positive 0.71 0.42 0.57 

Negative - Positive 0.79 0.42 0.61 
 

 

Table 5.10: Kruskal-Wallis H-statistic based on exceedance probability 
distributions for Nurek shown in Figure 5.13 (red= p < 0.05, red= p < 
0.01). (Dixon and Wilby, under revision) 

 1941-1980 
1981-2016 
(1993-1999 

missing) 

1941-2016 
(1993-1999 

missing) 
H-Statistic 19.4 4.9 22.8 

 

 

As these forecasts used October-March Niño 3.4, the earliest a forecast could be issued 

would be April after March Niño 3.4 information becomes available. After consultation 

with the operators of Nurek, it became clear that a forecast capable of being issued in 

January as well as April was desired. Therefore, the method was developed to use 

November-December Niño 3.4 to forecast following summer (April-September) inflows 

to Nurek, allowing an ‘early outlook’ forecast to be issued in January. Similar differences 

were seen between summer inflows conditioned on prior November-December and 

October-March Niño 3.4 (Table 5.11 and Table 5.12). According to KS tests, differences 

in summer inflows following contrasting phases of Niño 3.4 were greater during 1941-80 

when conditioned on November-December Niño 3.4, but less for both 1981-2016 and 

1941-2016 periods. Both forecast issue times provide the same level of skill (according 

to the HHP) when tested on the period 1975-2016 (1993-1999 missing), but November-

December outperforms October-March when tested on the period 1941-1974 (0.59 

compared to 0.53 respectively) (Table 5.13).  

 

An operational forecast can also be provided for decision makers using a likelihood 

lookup table (Table 5.14). Using this format, following La Niña conditions during 

October-March, summer inflow anomalies will most likely range between -199 and -100 

m3s-1 (with a likelihood of 33%). Following neutral conditions, summer inflows will most 
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likely fall between 0 to -99 m3s-1 (with a likelihood of 53%) and between +1 to +100  

m3s-1 following El Niño (with 35% likelihood). Furthermore, the likelihood of more 

extreme conditions can be forecast using Table 5.14. For example, following El Niño 

conditions during October-March there would be 12% likelihood of inflow anomalies 

exceeding 200 m3s-1 (bottom right of Table 5.14). Using both October-March and 

November-December Niño 3.4 gives similar results, with the greatest likelihood of flows 

occurring within the same range following each phase (with the exception of equal 

likelihood of both -99 to -100 m3s-1 and -99 to 0 m3s-1 following La Niña conditions 

during November-December).  

 

Table 5.11: As for Table 5.9 but using November-December Niño 3.4 to 
condition April-September Nurek inflow anomalies. (Dixon and Wilby, 
under revision) 

 1941-1980 
1981-2016 
(1993-1999 

missing) 

1941-2016 
(1993-1999 

missing) 
Negative - Neutral 0.39 0.17 0.27 

Neutral - Positive 0.70 0.37 0.55 

Negative - Positive 0.85 0.39 0.59 
 

 

Table 5.12: As for Table 5.10 but using November-December Niño 3.4 to 
condition April-september nurek inflow anomalies. (Dixon and Wilby, 
under revision) 

 1941-1980 
1981-2016 
(1993-1999 

missing) 

1941-2016 
(1993-1999 

missing) 
H-Statistic 20.9 3.4 20.9 

 

 

Table 5.13: Heidke Hit Proportion skill scores for mean April-September 
Nurek inflow anomalies conditioned on preceding November-December 
and October-March Niño 3.4. (Dixon and Wilby, under revision) 

Calibration period Validation period 
November-
December   
Niño 3.4 

October-   
March Niño 3.4 

1941-1974 1975-2016  
(1993-1999 missing) 0.51 0.51 

1975-2016  
(1993-1999 missing) 1941-1974 0.59 0.53 
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Table 5.14: Likelihood (%) of mean April-September Nurek inflow 
anomalies (m3s-1) depending on prior October-March and November-
December Niño 3.4 phase for the period 1941-2016 (1993-1999 missing) 
(all Niño 3.4 terciles are based on the period 1941-1980). (Dixon and 
Wilby, under revision) 

 
November-December           

Niño 3.4 index 
October-March                       
Niño 3.4 index 

Inflow 
anomaly 
(m3s-1) 

La Niña Neutral El Niño La Niña Neutral El Niño 

≤ -200 9% 5% 0% 13% 0% 0% 

-199 to -100 35% 16% 4% 33% 16% 4% 

-99 to 0 35% 42% 26% 29% 53% 23% 

1 to 100 22% 21% 33% 25% 16% 35% 

101 to 200 0% 11% 26% 0% 11% 27% 

> 200 0% 5% 11% 0% 5% 12% 
 

 

 

Whilst significant differences were present between inflows during cool/warm summers 

during the period 1941-1980, this relationship does not hold for the periods 1981-2016 

or 1941-2016 (not shown). Furthermore, the effect of concurrent temperature (even 

during 1941-1980) was sensitive to the choice of station used. Figure 5.14 shows the 

significant differences (p < 0.01) in summer inflows to Nurek following warm/cool 

summers measured at Sari-Tash (3100m) do not hold when using the Lyakhsh (2000m) 

meteorological station (utilising a blended temperature record of observed and predicted 

temperature obtained by regressing against Garm as described in section 4.3.2). The 

sensitivity of the Nurek-Niño 3.4 relationship was also assessed in terms of the period 

used to derive Niño 3.4 tercile boundaries. When terciles were based on the period 

1982-2010, stronger/weaker Niño 3.4 index values were required to be classed as El 

Niño/La Niña than when using 1941-1980. This caused a greater number of seasons to 

be classed as neutral resulting in greater discrimination between summer flows when 

terciles were based on 1982-2010 (Figure 5.15). No matter which period was used to 

base tercile boundaries, differences in summer inflows following neutral-positive and 

negative-positive Niño 3.4 phases were significant (p < 0.01) according to KS tests.  
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Sari-Tash Lyakhsh 

  
Figure 5.14: Exceedance probabilities of April-September flow 
anomalies into Nurek according to concurrent temperature for the 
period 1941-1980 (flow anamolies and terciles relative to 1941-1980 
baseline). (Dixon and Wilby, under revision) 

 

 
Figure 5.15: Exceedance probabilities of April-September flow 
anomalies into Nurek (using blended discharge record) according to 
November-December Niño 3.4 phase for the period 1941-2016 (1993-
1999 missing) using terciles based on period 1941-1980 and 1982-2010 
(flow anamolies relative to 1941-1980 baseline). (Dixon and Wilby, under 
revision) 

 

5.3 Transferability of methodologies 

The transferability of both approaches was assessed by implementation to the M’Jara 

catchment in Morocco. This allows an assessment of the capabilities of each approach 

outside the region of Central Asia. 
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5.3.1 Statistical forecasting model 
The amount of explained variance in monthly inflows explained by overlaying cells of 

NCEP precipitation and temperature at lead times 0-3 months are shown in Figure 5.16. 

NCEP derived precipitation was significantly correlated with M’Jara flow at lead times 0-

2 months. The area of greatest predictability was across the west and north-west of the 

basin, with r >0.6 (p < 0.01) at lead time one month. NCEP temperature showed strong 

positive correlations with M’Jara flow at all lead times examined (Figure 5.16). The 

region of strongest correlation migrated from north-west to south-east as lead time 

increases. Predictors were systematically varied by lead time (t + 0 to t + 3) and 

averaging period (1-6 months) to identify averaging periods which provided greatest 

predictive power at each lead time (Figure  5.17). For lead times one and two months 

the strongest correlation was achieved with an averaging period of only 1 month for all 

predictors. At a lead time of three months, strongest correlations occurred with an 

averaging period of 6 months. 

 

Figure 5.16: Monthly NCEP precipitation and temperature correlated with 
observed monthly discharge at M’Jara (lagged by 0-3 months) for the 
period 1952-89 (n = 456). At p = 0.05, rcrit = 0.20. 
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Figure 5.17: Spearman’s rank correlation of monthly discharge at 
M’Jara (lagged by 0-3 months) with NCEP predictors averaged over 1-6 
months for the period 1952-1989. At p = 0.05, accounting for 
autocorrelation rcrit = 0.20. 

 

Using the averaging period with greatest explained variance of M’Jara flow for each 

lead time, stepwise linear regression was performed to achieve the most parsimonious 

forecasting models. The final sets of predictor variables included in each forecasting 

model at each lead time are shown in Table 5.15. Only at a lead time of one month (Q1) 

were predictor variables added to the model beyond the dummy variable for month. 

Figure 5.18 shows the marginal improvement in forecast skill achieved by the model 

compared with the ZOF. The model was able to slightly reduce large errors, for example 

during years 1969, 1970 and 1977. Both the model and ZOF were not able to capture 

the large flow during January 1970, then over predicted flows the following month. This 

mismatch of peaks by the model was seen several times throughout the record, for 

example in December 1968 and December 1963. These timing errors during large 

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No
Lead
Lead 1

Lead 2

Lead 3

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No
Lead

Lead 1

Lead 2

Lead 3

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No
Lead
Lead 1

Lead 2

Lead 3

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No
Lead
Lead 1

Lead 2

Lead 3



113 
 

events are reflected in the low R2 and NSE scores, suggesting that high flows are poorly 

forecast by both the ZOF and the model.  

 

Table 5.15: Predictors used in multiple regression models at lead times 
1-3 months. Predictor notations can be found in Table 4.1. 

Lead time Predictors 

ZOF M 

Q1 M, Flow lag1,1, NCEP_P_Op1,1 

Q2 M 

Q3 M 
 

 

 
Figure 5.18: Cross validated flow forecast residuals at M’Jara for lead time 
one month (Q1). 

 

Table 5.16: Cross validated model metrics for ZOF, Q1, Q2 and Q3 
models (ZOF used if no predictors added to model during stepwise 
procedure) (n = 456). 

Metric Lead time 

 ZOF Q1 Q2 Q3 

R2 0.22 0.30 ZOF ZOF 

NSE 0.22 0.30 ZOF ZOF 

AIC 2282 2261 ZOF ZOF 

RMSE 142 134 ZOF ZOF 

MARE 8.1 6.6 ZOF ZOF 
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5.3.2 Climate mode based approach 
Correlations between NAO/Niño 3.4 and precipitation across northern Morocco were 

investigated at lead times 0-3 months (index leading). Figure 5.19 shows NAO is 

significantly negatively correlated with concurrent precipitation across north western 

Morocco during winter. Correlation strength reduced rapidly with distance inland, 

typically from r > -0.6 at the coast to r < -0.3 close to the border with Algeria. The strong 

negative correlation became weak as soon as any lead time is introduced. Niño 3.4 was 

significantly positively correlated to precipitation during July-October at all lead times 

(Figure Apx 22). Significant negative correlations occurred between Niño 3.4 and 

precipitation during March-April, but correlation strength reduces quickly from the coast 

inland. Only November NAO was significantly negatively correlated (p < 0.05) with 

December-January mean flow at M’Jara (Table 5.17). Both December and January 

individual (p < 0.05) and bi-monthly mean (p < 0.01) NAO were significantly negatively 

correlated with February-March mean flow at M’Jara. Niño 3.4 was not significantly 

correlated with either December-January or February-March mean flow at any lead 

times investigated (not shown).  

 

The two target flow periods (December-January and February-April mean) were 

conditioned on prior NAO phase. Only NAO was used for conditioning due to Niño 3.4 

being weakly correlated with flow at M’Jara. Lead times for conditioning were shorter 

than for CA, using the bi-monthly mean for the two months prior to the target period. 

This reflected the quickly diminishing relationship between NAO and precipitation/flow, 

as depicted in Figure 5.19 and Table 5.17. Whilst negative flow anomalies during both 

target flow periods occurred following any NAO phase, large positive anomalies were 

more likely to occur following negative phases (Figure 5.20). Only two small positive 

February-April flow anomalies occurred following positive NAO during December-

January. No significant differences were found between conditioned flows using either 

KS or KW tests for December-January. Significant differences were present between 

February-April mean flows at M’Jara conditioned on prior December-January NAO 

according to the KW test (p < 0.05) (not shown). KS tests showed significant differences 

between flows following negative-neutral (p < 0.05) and negative-positive (p < 0.01) 

NAO (Table 5.18). Table 5.19 shows there is a 38% likelihood of February-April mean 

flow anomalies exceeding +200 m3s-1 following negative NAO, compared with 0% 

following neutral or positive NAO.  



115 
 

Figure 5.19: Monthly NAO correlated with monthly NCEP precipitation 
rate for the period 1952-1989 at lead times 0-3 months (left column 
shows target precipitation month, with index month varied to account 
for lead time).  Purple/Yellow areas and greater are significant at p=0.05. 
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Table 5.17: Spearman rank correlation for individual and bi-monthly 
NAO versus following December-January and February-April flow 
anomalies at M’Jara for the period 1952-1989 (red= p < 0.05, red= p < 
0.01).  

Target flow 
months Index month(s) 

 Sep Oct Nov Sep-Oct Oct-Nov 

December-
January -0.26 0.14 -0.35 0.07 -0.07 

 Nov Dec Jan Nov-Dec Dec-Jan 
February-

April -0.07 -0.41 -0.36 -0.30 -0.46 
 

 
December-January mean flow     

conditioned on October-November NAO 
February-April mean flow conditioned        

on December-January NAO 

  
Figure 5.20: Exceedance probabilities of flow anomalies (m3s-1) at 
M’Jara according to previous NAO phase for the period 1952-1989. 

 

Table 5.18: Kolmogorov-Smirnov D-statistic based on paired 
exceedance probability distributions shown in Figure 5.20 (red= p < 
0.05, red= p < 0.01). 

 December-
January 

February-
April 

Negative - Neutral 0.42 0.54 

Neutral - Positive 0.35 0.43 

Negative - Positive 0.31 0.62 
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Table 5.19: Likelihood (%) of mean February-April flow anomalies at 
M’Jara (m3s-1) depending on prior December-January NAO phase for the 
period 1952-1989. 

 December-January NAO phase 

Inflow anomaly (m3s-1) Negative Neutral Positive 

≤ -100 8% 33% 38% 

-99 to 0 31% 17% 46% 

1 to 100 8% 42% 15% 

101 to 200 15% 8% 0% 

> 200 38% 0% 0% 
 

 

5.4 Summary 

The overall aim of this research is to develop data streams and model structures that 

facilitate reservoir inflow forecasting in data sparse regions using public domain 

predictors. This chapter has presented both approaches used to achieve this aim, 

including predictor selection, followed by the construction, calibration and validation of 

statistical models. Both approaches have also been implemented for a basin in Morocco 

to allow assessment of approach transferability.  

 

TRMM precipitation estimates consistently explain more variance in CA reservoir 

inflows than TRMM RT. NCEP precipitation correlates with flow at strengths comparable 

to TRMM across lead times 0-3 months. However, the coarse resolution of NCEP 

precipitation (2.5°) could mean that fine scale variations in correlation strength may be 

lost. The effect of introducing an averaging period of 0-6 months was evaluated for 

basin average and optimal cell precipitation and temperature predictors. These 

procedures identified the locations and averaging periods of predictors yielding greatest 

explained variance in inflows to each reservoir at lead times 1-4 months. Models were 

then built using all available significant predictors (research grade) and significant 

predictors available in near real-time (operational). Overall, both research grade and 

operational models were able to outperform the ZOF for Toktogul, Andijan and 

Kayrakkum for all lead times using most skill metrics. Stratifying models to forecast only 

summer inflows resulted in greater skill at lead times 1, 2 and 4 months for Toktogul and 

Andijan.  
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Niño 3.4 was positively correlated with winter precipitation across Tajikistan and 

Kyrgyzstan. Significant correlations (p < 0.05) occurred during October and March at 

lead times 0-3 months for the period 1950-2014. Summer inflows to Toktogul, Andijan 

(p < 0.05) and Nurek (p < 0.01) were significantly correlated with all prior winter months 

Niño 3.4 during the period 1941-1980. Furthermore, significant differences (p < 0.01) 

were present between summer inflows to all three reservoirs conditioned on prior 

October-March Niño 3.4, as well as Nurek inflows conditioned on concurrent 

temperature for the same period. However, no significant differences were present 

amongst inflows to Nurek when replicating the method using the period 1981-2016. 

Using the November-December mean Niño 3.4 allows a forecast to be issued in 

January, and has similar discriminatory power compared to using October-March mean 

Niño 3.4. Likelihood (%) tables provide a method of displaying the uncertainty in 

forecasts to operators/decision makers. 

 

The transferability of approaches was then assessed, first using the statistical approach. 

NCEP precipitation and temperature were significantly correlated to M’Jara flow at lead 

times 0-2 months. Models were again built using optimal cell and basin average 

predictors at averaging periods yielding greatest predictability at lead times 0-3 months. 

Only at a lead time of one month were any variables included in the regression models 

in addition to the dummy variable for month. Evaluation of model residuals showed a 

number of very large errors, generally under-estimating large flows followed by over-

estimating the following months flow.  

 

NAO was significantly correlated with concurrent northern Morocco precipitation from 

September through to May. Correlation strength reduces distinctly as soon as one-

month lead time is introduced, as well as with distance inland. Two forecast target 

periods were used, December-January and February-April means. December-January 

NAO was significantly correlated (p < 0.01) with February-April flow at M’Jara. 

Significant differences (p < 0.01) were also present between February-April mean flow 

following negative/positive phases of December-January NAO. The next chapter 

discusses the results presented here, allowing an evaluation of findings in relation to 

prior literature as well as offering physical interpretations for the statistical relationships 

identified. 
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6 Discussion 

The previous chapter presented the results of thesis, produced using the methodologies 

presented in Chapter 4. Two forecasting approaches were implemented, a statistical 

regression-based method and climate mode-based forecast. Both approaches were 

then assessed for their transferability via implementation for the M’Jara catchment in 

Morocco. The headline findings from the chapter include that inflows to Toktogul and 

Andijan reservoirs were better forecast than Kayrakkum and Nurek inflows using the 

statistical forecasting approach. Improvements in skill were achieved for Toktogul and 

Andijan by stratifying models to forecast inflows during only summer months (April-

September). Significant differences (p < 0.01) were present in mean summer inflows to 

Toktogul, Andijan and Nurek reservoirs following opposing phases of winter Niño 3.4 

during the years 1941-1980. Winter Niño 3.4 showed greatest discriminatory power for 

summer inflows to Nurek reservoir. Significant differences did not hold however for the 

period 1981-2016 (1993-1999 missing). Using the November-December mean Niño 3.4 

allows a forecast of Nurek inflows to be issued in January, whilst showing greater skill 

according to HHP in forecasting summer inflows than October-March mean Niño 3.4. 

The statistical forecasting approach had little skill (NSE of 0.30 at one-month lead time) 

at forecasting flows at M’Jara. The climate mode-based approach showed greater 

potential for transferability to Morocco, with statistically significant differences between 

February-April flows following opposing phases of December-January NAO.  

 

This chapter will contextualise the findings, drawing comparisons within each 

forecasting approach regarding relative performance for each reservoir and providing 

physical insights to explain statistical findings. Results will also be discussed in relation 

to prior literature, with a focus on any contrasting conclusions. The statistical forecasting 

approach will be discussed first, before the climate mode-based approach. A physical 

mechanism is also presented that could explain how ENSO affects CA streamflow. The 

transferability of both modelling approaches is then assessed, using the M’Jara 

catchment in Morocco as a test basin. Furthermore, the potential for operationalising a 

seasonal reservoir inflow forecast for Nurek reservoir in CA will be evaluated. The 

strengths and weaknesses of both forecasting approaches to CA reservoir inflows as 

well as their transferability to the M’Jara basin in Morocco are evaluated. Finally, the 
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operational potential of the climate mode-based approach is discussed, providing scope 

for the forecasting of other predictors from ENSO.   

 

6.1 Statistical forecasting models 

The statistical forecasting approach used regression-based models to relate 

precipitation and temperature products to reservoir inflows. First, correlations between 

precipitation/temperature products and inflows were evaluated, enabling the 

identification of cells/areas of greatest potential predictability of inflows at lead times 0-4 

months. Multiple linear regression models were then built using a stepwise procedure, 

with the basin average and highest performing (optimal) cell at each lead time available 

for selection. Two types of model were created: ‘research’ grade and an ‘operational’ 

version (Table 4.2). Research grade models included all available predictors, whereas 

operational versions used only those predictors that would be available in (near) real-

time. The operational and research grade model skill at forecasting Toktogul inflows are 

first evaluated in relation to the findings of Dixon and Wilby (2016). The relative 

performance of operational and research grade statistical models at each reservoir will 

then be discussed. This allows an interpretation of statistical findings using the physical 

understanding provided in section 3.1.1 to extract the drivers of predictability. 

Operational models were then stratified to forecast only summer inflows, the period of 

peak natural inflows. Finally, the compliance of models with the assumptions of 

regression is assessed. 

 

6.1.1 Predictor selection 
Dixon and Wilby (2016) found a downstream migration of the strongest correlations with 

increasing lead time from the high Tien Shan Mountains in the East to lower elevation 

areas in the west of the Toktogul basin, Kyrgyzstan. All precipitation products show this 

downstream migration for Toktogul inflows, as does TRMM in the Andijan basin (Figure 

5.1, Figure 5.2 and Figure 5.3). This behaviour is attributed to variations in the annual 

precipitation regime across the catchment (Figure 6.1). The high Tien Shan Mountains 

in the east of the catchment receives maximum precipitation in July compared with 

April/May in the west (according to TRMM). Nurek shows negative correlations 

transition to positive as the lead time increases from 0-4 months when using TRMM and 
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NCEP precipitation. This is likely a result of phase differences in the precipitation and 

flow regimes of the basin, with precipitation peaking during March/April/May and flow in 

July. Kayrakkum has a clear spatial transition from positive to negative correlations in 

the lowlands/headwaters of the basin concurrently. This is caused by considerable 

regulation of flow above Kayrakkum, with the transition of correlations occurring at the 

site of Toktogul reservoir (Savoskul et al., 2003; Lutz et al., 2013).  

 

 
Figure 6.1: Precipitation regime differences in the east and west of the 
Toktogul basin according to TRMM precipitation for the years 1998-2014. 

 

Schӓr et al. (2004) assumed a linear relationship between December-April accumulated 

precipitation (re-analysis and observed) and May-September river flows in both the Syr 

and Amu Darya rivers. Significant predictions of summer inflow to Toktogul were 

achieved using both TRMM basin average and optimal cell winter precipitation as well 

as NCEP optimal cell precipitation (Table 5.2). Summer inflows to Andijan are also 

significantly related to previous winter NCEP basin average and optimal cell 

precipitation. Whilst significant, the present correlations were weaker than those 

achieved by Schӓr et al. (2004) for the Syr Darya. This could be due to differences in 

precipitation data, period of record (Schӓr used 1979-1993) and/or that different flow 

gauging stations were used with only the headwater regions of the Syr Darya used in 

this study. Schӓr et al. (2004) found that winter precipitation had a stronger relationship 
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to summer flow in the Syr Darya compared with the Amu Darya, aligning well with the 

results obtained here. Possible explanations are the relatively poor accuracy of 

precipitation products over the Nurek basin found by Schӓr et al. (2004) and shown in 

Table 3.4, as well as the greater proportion of glacier derived inflows to Nurek 

compared with the Syr Darya (Savoskul and Smakhtin, 2013 and Figure 3.8).  

 

6.1.2 Operational potential of the Dixon and Wilby (2016) methodology 
Use of a stepwise procedure with statistically derived input and output values differs 

from that applied by Dixon and Wilby (2016). Their predictors were manually entered 

into the model until no further improvement in model skill was achieved via further 

predictors (by reliance on expert opinion). The F-in and F-out statistics used in this 

thesis result in the selection of parsimonious models. Parsimony is valued because of 

the reduced likelihood of 'over-fitting' the model to the training set, resulting in better 

performance when used as a forecasting tool (Wilks, 2011). Cross validated skill metrics 

achieved here using research grade models are comparable to those in Dixon and 

Wilby (2016) for a lead time of one month. At lead time two months, Dixon and Wilby’s 

(2016) model outperforms the model presented here, likely due to antecedent discharge 

being an additional predictor. At lead time three months, the research model presented 

here outperforms Dixon and Wilby’s (2016) using all skill metrics. It seems the addition 

of NCEP optimal cell precipitation (r = 0.83) provides this extra skill, allowing more 

skilled forecasts at increased lead times. Temperature was only included at the longest 

lead time of four months. This supports the assumption that the monthly dummy 

variable captures most of the seasonal snow and ice melt regime, with limited extra 

predictability of inter-annual variability in flows by temperature (Dixon and Wilby, 2016). 

 

The use of TRMM precipitation (latency 2-3 months) by Dixon and Wilby (2016) limits 

the operational potential of their seasonal forecasting models. In this thesis, both 

research grade and operationally viable models were produced allowing comparison. At 

lead times one, three and four months both research grade and operational models 

perform comparably for Toktogul with only minor differences in skill metrics. Both 

models perform poorly at a two-month lead time compared with Dixon and Wilby (2016), 

but the operational model cannot outperform the ZOF unlike the research grade model.  
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The limited predictability of Toktogul inflows at a lead time of two months seems to 

occur due to the location of the optimal NCEP cell precipitation changing between the 

one/two and three/four month lead time as the area of greatest predictability migrates 

westward (Figure 5.3). This change of optimal cell location results in correlations 

between NCEP optimal cell and Toktogul inflows at a three/four-month lead time being 

stronger than at lead time two months (Figure 5.4). This, as well as NCEP optimal cell 

correlations remaining strong as averaging period increases for lead times three/four 

months, results in greater model skill at lead times of three/four months compared to 

two months. However, were the system operationalised, all predictors available at the 

time of forecast issue (i.e. those from three and four-month lead times as well as two 

months) would also be eligible for inclusion in the model. Therefore, at a two-month lead 

model skill would be at least as good as models produced at lead times three and four 

months. Overall, the use of NCEP precipitation and temperature products compared 

with TRMM precipitation estimates does not result in a significant reduction in model 

skill. As such, the method of Dixon and Wilby (2016) shows potential for operational 

implementation. 

 

Model performance can be examined by visual inspection of the forecasted 

hydrographs benchmarked against both observed inflows and the long-term average 

(ZOF). At a one-month lead time, both the research and the operational models perform 

similarly for Toktogul (Figure 5.5). Whilst both model types outperform the ZOF over the 

record period, in some years the ZOF is more closely aligned with observed peak 

summer inflows, for example during summer 2009. This could be caused by the model’s 

reliance on antecedent discharge rather than accounting for prior winter precipitation 

accumulation. Often model improvement over ZOF is marginal with large errors in 

forecasted annual peak inflow still occurring, as in 2007 and 2010 for example. Again, 

not fully accounting for winter snow accumulation could be causing this. At a three-

month lead time, the poor performance of modelled inflows to Toktogul during winter is 

clear (Figure 5.5). During the winter months, ZOF consistently outperforms both 

research grade and operational models. The latter models cannot discriminate between 

precipitation falling as snow (and therefore being stored) and rain (which is available 

immediately for flow generation). Hence, inclusion of TRMM and NCEP precipitation 

actually reduces model performance for low flows during winter. For unregulated flows, 

it could be argued that performance during the winter is not as important as during 
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summer because >75% of annual average inflow occurs during April-September for 

Toktogul, Andijan and Nurek. A case could be made for forecasting only summer 

inflows, presuming winter low flows to be equal to the long-term average. Such a 

stratified model may allow greater summer predictability to be drawn from the 

relationship because it is not being weakened by the inclusion of ambiguous winter 

precipitation.   

 

6.1.3 Transferability within Central Asia 
Dixon and Wilby (2016) investigated the potential for forecasting inflows to Toktogul 

reservoir. However, there are other large reservoirs in Central Asia for which seasonal 

forecasts could be beneficial. Therefore, the approach was extended to three other 

reservoirs in the region: Andijan, Kayrakkum and Nurek. As before, TRMM estimated 

precipitation and NCEP precipitation and temperature products were available as inputs 

into the stepwise regression procedure. Each reservoir differs in terms of the timing and 

volume of inflows, as well as the relative contributions of ice and snowmelt. These 

differences were used to deepen understanding of model performance.  

 

The operational and research grade models had the same predictors for Andijan (Table 

5.3). Unlike Toktogul, gauge adjusted TRMM was not included at any lead time for 

forecasting inflows to Andijan. This could be explained by the gauge adjustment 

procedure being better over the Toktogul basin. Inspection of the network of gauges 

used by TRMM27 shows that none are available within TRMM cells overlapping the 

Andijan basin, compared with 5 for the Toktogul basin during 2000-2010. Both models 

outperform the ZOF at all lead times for all metrics except MARE for Andijan (Table 

5.4). This can be seen in the forecasted hydrographs, with modelled inflows being 

generally closer to observed values than the ZOF, clearly seen during peak flows in 

summer 2003 and 2008 (Figure 5.6). However, the low summer peak during summer 

2007 was forecast poorly at all lead times. It is possible that the dummy variable for 

month is dominating the precipitation input, reducing the variance of the forecast 

compared with observed inflows. This could also help to explain the under-prediction of 

summer 2010 inflows.  

 
                                            
27The GPCC visualizer enables inspection of sites used in TRMM: http://kunden.dwd.de/GPCC/Visualizer 
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An artefact of the regression model is that negative inflows are forecast into Andijan 

during winter at all lead times during the period 2001-2010. Similarly to Toktogul, it 

seems that the long term average actually performs better than the model for the low 

flow periods. The model seems to be tailored to perform better during the summer 

months, as the precipitation input uses a long averaging period to best capture winter 

snowpack accumulation (Table 5.3). A side-effect of this is that winter flows are 

predicted from summer precipitation, a mechanism that does not make physical sense.  

This adds weight to the argument that the statistical model should not be used to 

forecast year-round flows. These negative values have been kept in the plotted 

hydrographs for transparency, even though they are clearly not possible. It should be 

noted, however, that these negative flows would have to be addressed if the model was 

used for operational forecasting. Possibilities include the use of ZOF whenever a 

negative inflow is forecast, replacing negative values with zero or fitting the model to 

forecast only winter flows.  

 

Both operational and research grade models also outperform the ZOF when forecasting 

Kayrakkum inflows using all metrics at all lead times, except AIC after a one-month lead 

(Table 5.4). Of note is the large reduction in performance of both models when lead 

times extend beyond one month. Whilst Andijan outflows were still included in the 

operational model at lead time two months, it is likely that most release from upstream 

reservoirs has either already entered Kayrakkum, has been stored in subsequent 

reservoirs or has been used for irrigation by this point. The reliance on Toktogul and 

Andijan outflows for prediction skill at Kayrakkum is shown during the subdued inflows 

of 2008/9 and the variable inflows during 2010, which are not well depicted by either 

model after a lead time of one month (not shown). However, no model forecasts the 

large inflow during June 2003. From closer inspection of outflows from Toktogul and 

Andijan there appears to be no anomalous outflows. Therefore, it is surmised that the 

inflow is due to erroneous data or a large release from one of the reservoirs below 

Toktogul on the 'Naryn cascade' (e.g. Uch-Kurgansk), but no information on this is 

available. These results suggest that the management of water above Kayrakkum is the 

main driver of this reservoir’s inflow regime, rather than flows from unregulated sub-

catchments. Therefore, accurate forecasts of Kayrakkum inflows requires detailed 

information on upstream water management (e.g. irrigation schedules and reservoir 

operation rules), rather than precipitation and temperature alone.  
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The ZOF proves to be a strong benchmark for forecasting inflows to Nurek reservoir, 

with a Nash-Sutcliffe efficiency of 0.93 (Table 5.4). Only at lead time three months can 

models outperform the ZOF, even though additional predictors were added to the model 

at lead times one and two months. The additional skill at lead time three months is 

provided by the optimal NCEP precipitation cell averaged over four months, which is 

located in the eastern headwaters of the basin. This lead time, averaging period and 

location combination likely allows winter snowpack accumulation to be used to forecast 

summer inflows. Overall, the ZOF performs to such a high standard that inclusion of 

other predictors in the models results in only minor variations in modelled inflow. The 

weaker performance of models for Nurek (in southern CA/Pamirs) compared with 

Toktogul and Andijan (northern CA/Tien Shan) is consistent with the findings of Schӓr et 

al. (2004). The comparatively weak skill of Amu Darya seasonal flow forecasts 

compared with those for the Syr Darya was explained by less accurate precipitation 

products and lower quality natural discharge estimates by Schӓr et al. (2004). It is 

plausible that less accurate precipitation products contribute to the reduced skill 

presented here as both TRMM RT and NCEP monthly precipitation are not significantly 

correlated with observed precipitation at Sari-Tash (Table 3.4).  

 

6.1.4 Stratified models 
Due to the clear differences in the key drivers of flow between summer and winter, 

models were stratified to forecast inflows during summer only (April-September), 

accepting the long-term monthly mean as winter inflows. This aimed to both reduce the 

problems of forecasting winter flows, as well as improve forecast skill during the 

important summer months. Due to upstream regulation rather than natural processes 

dominating the inflow regime to Kayrakkum, no further model development was 

undertaken for this reservoir.  

 

For both Toktogul and Andijan reservoirs stratified models outperform full year models 

at lead times one, two and four months for all metrics except MARE (Table 5.5). As 

MARE is sensitive to errors occurring at low discharges, it is not of significant 

importance for forecasting summer peak inflows. Conversely, the other four metrics are 

sensitive to errors occurring at higher magnitude discharges (see section 4.2.3), 
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arguably more important for CA as a large proportion of flow occurs during the summer 

peak. At a lead time of three months, summer only models for Toktogul and Andijan 

include NCEP precipitation lagged by three months with no averaging period. Full year 

models on the other hand include the same NCEP precipitation but averaged over four 

(Toktogul) and two (Andijan) months. It is known that winter precipitation is a skilful 

predictor of summer inflows in the Syr Darya (Schӓr et al., 2004; Table 5.2). This extra 

information regarding winter precipitation (and by inference snowpack accumulation) is, 

therefore, the likely reason that full year models outperform summer only models at lead 

time three months. Summer only models at lead times one and two months for both 

Toktogul and Andijan utilise a relatively long averaging period for their precipitation input 

(between 3-6 months), providing skill from the previous winter’s accumulated 

precipitation. The ZOF for both Toktogul and Andijan is weaker using only summer 

months, as would be expected and summer only models outperform the ZOF at all lead 

times for all metrics except MARE.  

 

The large residuals in forecasted inflows to Andijan during the summers of 2007 and 

2010 are reduced by around half when using stratified compared with full year models 

(Figure 5.7). However, negative inflows are still forecast by stratified models at lead 

times one, two and four months for September. As inflows to Andijan are snow- rather 

than ice-melt dominated (Savoskul and Smakhtin, 2013), summer inflows are moisture 

limited rather than energy (temperature) limited. It is likely that with higher mean air 

temperatures, snow melt occurs earlier in the year (Sorg et al., 2012; Siegfried et al., 

2012). In such circumstances, stratified models could be built for a shorter or earlier 

period of the year, possibly leading to improvements in model skill for the important 

summer peak. At lead times one and two months, stratified models generally forecast 

the summer inflows to Toktogul more accurately (smaller residuals) than full year 

models (Figure 5.8). However, as shown by the skill metrics, full year models 

outperform stratified models for a lead time of three months. Stratifying models did not 

improve forecasts of Nurek inflows, with additional predictors (on top of the monthly 

dummy variable) only included at lead time three months. The ZOF continued to be a 

strong benchmark when forecasting only summer inflows with a NSE of 0.81. It is 

possible that either the poor accuracy of precipitation products over the region (Schӓr et 

al., 2004) (Table 3.4) and/or the greater relative importance of glacier melt (Savoskul 
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and Smakhtin, 2013) reduce precipitation products skill for forecasting summer inflows 

at this site.  

 

The significant positive correlations between mean winter precipitation (TRMM and 

NCEP derived) and mean summer runoff found for both Toktogul and Andijan basins 

are of comparable strength to similar forecasting attempts in the region (Schӓr et al., 

2004; Archer and Fowler, 2008; Barlow and Tippett, 2008). Previous studies have 

generally forecasted mean summer discharge, meaning comparisons are less easily 

drawn with the monthly time step used in this study. However, the inability of both full 

year and stratified models to improve on the ZOF for Nurek inflows aligns closely with 

the findings of Schӓr et al. (2004) and Barlow and Tippett (2008) for the Vakhsh and 

nearby Murgab Rivers respectively. Comparable R2 values are found using stratified 

models compared with the findings of Schӓr et al. (2004) (R2 = 0.85) at a lead of one 

month for Toktogul (R2
adj = 0.80) and Andijan (R2

adj = 0.77) reservoirs. However, 

stratified model skill cannot compete with the mean summer flow forecast skill of Apel et 

al (2017) at any lead time or Schӓr et al. (2004) at a lead time longer than one month. 

Archer and Fowler (2008) found better model performance for April-June than April-

September mean discharge for the River Jhelum, Pakistan. A similar shortening the 

target period may be beneficial in CA, focusing the forecast on the months during which 

snowmelt dominates the flow regime.  

 

6.2 Climate mode based seasonal forecasting 

6.2.1 Correlation analysis 
Correlation analysis between NAO, Niño 3.4 and DMI with CA precipitation and 

temperature was undertaken. Previous studies have shown weak concurrent negative 

correlations between NAO and precipitation over parts of CA (Aizen et al., 2001, Syed 

et al., 2006). Results presented here generally agree with earlier research, showing 

insignificant negative correlations between NAO and precipitation over the same areas. 

Positive correlations were found between Niño 3.4 and CA precipitation confirming 

previous findings. The association is strongest during the winter half-year, consistent 

with Dai and Wigley (2001) who report positive annual precipitation anomalies of up to 

50 mm over CA during El Niño phases. Syed et al. (2006) and Mariotti (2007) showed 

the strongest correlations occur during autumn and spring. October, November, 
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December and March have areas of significant positive correlations across parts of 

central and western Tajikistan (Figure 5.9). However, the statistically significant positive 

correlations found by Mariotti (2007) for south-east Kyrgyzstan did not emerge from this 

analysis. Only an insignificant positive correlation was detected over north-east 

Kyrgyzstan during winter months. 

 

Significant negative correlations found here between NAO and January and February 

temperature across Tajikistan are stronger than those described by Syed et al. (2006) 

and Hurrell (1997). This could reflect methodological differences, as Syed et al. (2006) 

used a composite of temperature, rather than correlation analysis. Furthermore, the 

four-month period used by both studies could be masking the significant values found 

here during January and February only. El Niño typically results in positive winter 

temperature anomalies in CA (Hurrell, 1997; Syed et al. 2010), a finding corroborated 

by the significant positive correlations found during January-February across 

Kyrgyzstan (Figure 5.10). No previous studies have reported the strong, significant 

negative correlation during May across northern Kyrgyzstan and Kazakhstan. In 

mountainous northern Kyrgyzstan, May is often the wettest month. Hence, temperature 

anomalies during this period are important in determining whether precipitation falls in 

liquid or frozen form at higher elevations.  

 

The non-parametric Spearman’s Rank correlation was used to test associations 

between mean summer (Apr-Sep) inflows and preceding winter NAO, Niño 3.4 or DMI 

over the periods 1941-1980 and 2001-2010. Significant (p < 0.05) negative correlations 

between January-February NAO and following summer inflows to all three reservoirs 

during 1941-1980 is consistent with the modest negative correlations between NAO and 

precipitation during January-March across some parts of CA (Table 5.6). The result 

suggests that there could be a negative association between NAO and winter rainfall/ 

snow accumulation, leading to an indirect link between winter NAO and summer inflows. 

 

Highly significant (p < 0.01) positive correlations between Nurek summer inflows and 

previous winter Niño 3.4 during 1941-1980 align closely with the positive correlations 

between winter precipitation and Niño 3.4 across Tajikistan (Table 5.6 and Figure 5.9). 

This suggests that Niño 3.4 has power to discriminate winter precipitation 

accumulations and thence summer inflows. Weaker, but still significant (p < 0.01) 
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correlations between winter Niño 3.4 and following summer inflows to Andijan and 

Toktogul again fits with the positive, though insignificant, correlations with precipitation 

over north eastern Kyrgyzstan during several winter months (Figure 5.9). Positive, but 

insignificant, correlations persist during the years 2001-2010 between winter Niño 3.4 

and following summer inflows to all three reservoirs. 

 

Overall, significant correlations between selected winter months Niño 3.4 and NAO to 

following summer reservoir inflows suggest potential predictability. In particular, 

forecasting Nurek summer inflows from winter Niño 3.4 appears most feasible (Table 

5.6). Moreover, by using Niño 3.4 in November-December, it would be possible to issue 

an early outlook of summer inflows – well before the end of the winter snowpack 

accumulation period (October-March). Even so, these results must still be interpreted 

with care because of the large number of statistical tests performed and likelihood of 

Type I errors (i.e. false correlations). Given an error rate p = 0.05, approximately 4 

significant results could have occurred by chance alone when correlating Niño 3.4 to 

following summer inflows. However, with 44 significant associations between Niño 3.4 

and summer inflows actually detected the link is robust. 

 

6.2.2 Composite forecasting 
Composite analysis of data in the years 1941-1980 supports the findings of the 

correlation tests, with Niño 3.4 emerging as the most promising variable for predicting 

inflows, especially for Nurek (Figure 5.11). Differences of up to ±11% occur in summer 

inflows to Andijan following contrasting NAO phases, but differences were not 

statistically significant for any reservoir (Table 5.7 and Table 5.8). Inflows after positive 

NAO show greater differences with neutral conditions compared with negative NAO. 

The below average summer flows after positive NAO phases found here is consistent 

with Aizen et al. (2001) and the prior correlation analysis. Negative correlation between 

NAO and winter precipitation, as reported by Aizen et al. (2001) and Syed et al. (2006), 

would translate into less snowpack thence lower summer reservoir inflows as shown in 

Table 5.6.  

 

Typically, El Niño conditions during winter are followed by higher summer inflows to all 

three reservoirs. The summer inflow anomaly for Nurek reservoir after a winter El Niño 
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can be as much as +37%. Figure 5.11 as well as Table 5.7 and Table 5.8 suggest a 

southwest to northeast gradient in the influence of Niño 3.4 index phase on discharge. 

Previous research suggests that the link between Pacific SSTs and CA rainfall 

anomalies is not direct, but via intervening atmospheric circulations over the Arabian 

Sea and Middle East (Mariotti, 2007; Barlow and Tippett, 2008). The gradient in 

predictability seen here could reflect depth of moisture penetration from the southwest. 

The Pamirs hinder moisture from reaching the Tien Shan, thereby reducing the 

connection between El Niño and precipitation in northwest CA (see section 6.2.5).   

 

The influence of concurrent air temperature on summer inflows varies by reservoir. It 

might be expected that higher temperatures would be associated with greater meltwater 

and therefore, increased summer inflows, as seen for Nurek (Figure 5.12). However, the 

opposite occurs for Toktogul and Andijan reservoirs following neutral of El Niño 

conditions, with above average temperatures associated with below average inflows. 

Similar results were found by Archer and Fowler (2008) for the Indus basin, attributed to 

higher evaporative losses (Singh and Bengtsson, 2005). This is a plausible cause for 

both Toktogul and Andijan, as Nurek has a greater proportion of glacier-derived flow 

into Nurek compared with Toktogul and Andijan (Savoskul and Smakhtin, 2013). If all 

winter snow accumulation melts each year regardless of the temperature anomaly, 

summer runoff will be moisture rather than energy (temperature) limited. Research 

suggests that winter precipitation totals are a useful predictor of summer flow, 

particularly for the Syr Darya, giving weight to this hypothesis (Schӓr et al., 2004; Dixon 

and Wilby, 2016). 

 

6.2.3 Stationarity of seasonal forecasting relationship at Nurek 
Reconstruction of the discharge record at Komsomolabad (using a linear relationship 

with upstream flows at Garm, see section 4.3.2) allowed assessment of the stationarity 

of the Niño 3.4-Nurek inflow relationship during the years 1941-2016 (1993-1999 

missing). The period 1981-2016 again showed increased (decreased) inflows to Nurek 

following El Niño (La Niña) conditions during October-March (Figure 5.13), but 

differences were statistically insignificant. This differs from the particularly strong 

association between ENSO and CA precipitation during 1980-2006 reported by Mariotti 

(2007). It is possible that missing data in this study (1993-1999) partly accounts for the 
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discrepancy. In particular, the very strong El Niño of 1997-1998 could not be included in 

the analysis because of missing data yet, according to CA-Water Info28, coincided with 

greatest inflow to Nurek during the period 1981-2016. Moreover, it is conceivable that 

higher mean air temperatures in the latter period (Figure 2.6) have favoured 

proportionately greater contributions of glacier melt to total summer inflows, thereby 

weakening the apparent link to between Niño 3.4 and winter snowpack.  

 

The statistically insignificant discriminatory power of Niño 3.4 during the later period 

could be related to the weakening of the ENSO-Indian Monsoon relationship in recent 

decades (Kumar et al., 1999 and Krishnaswamy et al., 2015). The weakening of the 

ENSO-Indian Monsoon relationship has been attributed to a warmer climate and a 

strengthening of IOD-Indian Monsoon relationship (Kumar et al., 1999 and Ashok et al., 

2001). It is possible that the link between ENSO and CA is, like ENSO and the Indian 

Monsoon, becoming weaker and/or that it is being modulated by other climate modes 

such as the IOD. However, the strong, significant (p < 0.01), differences over the full 

record (1941-2016, 1993-1999 missing) and the physical mechanism provided give 

confidence in ENSO having discriminatory power in Nurek inflows.  

 

Using November-December Niño 3.4 to forecast following summer inflows allows an 

early outlook forecast to be produced in January, before a second forecast could be 

issued in April based on October-March Niño 3.4. November- December Niño 3.4 

shows greater discriminative power during the period 1941-1980, but less so during 

1981-2016 and 1941-2016 as a whole. This pattern is replicated by the relative skill of 

each model for different validation periods, with November-December Niño 3.4 showing 

greater skill than October-March using the validation period 1941-1974 (Table 5.13). 

However, using the validation period 1974-2016 (1993-1999 missing) both forecasts 

yield equal skill according to the HHP (score of 0.51). It might be expected that the later 

information available from October-March Niño 3.4 would provide improved skill relative 

to November-December Niño 3.4. However, the HHP skill scores do not match this 

expectation. This could be explained by the strong relationship during November-

December being diluted across October-March, therefore reducing forecast skill.  

                                            
28 http://www.cawater-info.net/amudarya/index_e.htm  
Figure entitled “Dynamics of inflow to the reservoir during the growing and non-growing seasons” 
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6.2.4 Sensitivity testing 
Significant differences (p < 0.01) were present between inflows to Nurek during warm 

versus cool summers when using Sari-Tash observed temperature during the period 

1941-1980 (Table 5.7). However, when using Lyakhsh temperature to condition summer 

inflows no significant differences were present (Figure 5.14). It is possible that Sari-

Tash, being at an elevation of 3155 m compared to Lyakhsh at 2100 m, is more 

representative of temperatures at higher altitudes where most snow and ice melt 

originates. Furthermore, even when using Sari-Tash observed summer temperature no 

significant differences occur in inflows for the period 1981-2016 (1993-1999) missing. 

Such sensitivity reduces confidence in the ability of temperature to discriminate summer 

inflows to Nurek reservoir.  

  

The sensitivity of Nurek summer inflows (conditioned on prior November-December 

Niño 3.4) to the period used to define tercile boundaries was also assessed. Inflows 

following La Niña/El Niño show little sensitivity to tercile definition period (Figure 5.15). 

Inflows following neutral conditions are not as stable, with greater discriminatory power 

shown when using the period 1982-2010 to define tercile boundaries. Using the period 

1982-2010, a season must exhibit a greater Niño 3.4 anomaly to be classed as La 

Niña/El Niño (-0.60/+0.62) compared with the period 1941-1980 (-0.46/+0.14). The 

change in discriminatory power, therefore, seems to be a result of the proportionately 

stronger La Niña/El Niño events in recent decades. This raises the boundary definition 

for La Niña/El Niño thereby only capturing relatively strong events from the earlier 

period, and hence improving discrimination.  

 

6.2.5 Proposed physical mechanism 
Confidence in statistical inference is strengthened when plausible physical explanations 

are offered (McGregor, 2017). Syed et al. (2006) suggested a direct influence of the 

warm ENSO phase on CA precipitation. However, later research proposes that an 

atmospheric moisture flux enters CA via the southwest, circulating clockwise around a 

large high pressure anomaly (Figure 6.2A) (Mariotti, 2007). In this model, moisture is 

advected across the Middle East mainly from the Arabian Sea. During December-

January-February the moisture flux moves southwards, resulting in westerly transport of 
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moisture around 20°N and is only connected to CA via a secondary southerly flux 

(Mariotti, 2007).  This mechanism has since been corroborated by several studies for 

both CA and adjacent regions (Barlow and tippet, 2008; Yadav et al., 2010; Cannon et 

al., 2017). Further evidence for a south-westerly moisture flux into CA during El Niño is 

provided by Figure 6.2B and Figure 6.2C which show positive correlations between 

Niño 3.4 and GPCP precipitation across the Middle East south west of CA. Negative 

correlations are clearly seen during September-November over the high pressure 

anomaly in the Indian Ocean (Figure 6.2B), with positive correlations pivoting clockwise 

around this high pressure anomaly. Whilst not as clear during March-May, positive 

correlations again occur north of the Gulf of Aden and strengthen over south-west CA 

(Figure 6.2C). This mechanism neatly explains the spatial and temporal variation in 

correlations presented here between Niño 3.4, precipitation and discharge. 
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Figure 6.2: Model of enhanced moisture flux to Central Asia under El 
Niño conditions during September to November and March to May (Plate 
A, adapted from Mariotti, 2007).  Linear correlation coefficient between 
Niño 3.4 and GPCP precipitation for the period 1979-2015 during 
September-November (Plate B) and March-May (Plate C). 
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6.3 Transferability of methodologies 

6.3.1 Statistical forecasting model 
NCEP precipitation shows significant positive correlations with M’Jara flow during the 

period 1952-1989 (Figure 5.16). Correlations are still significant for lead times up to 

three months. Strong, significant negative correlations between NCEP temperature and 

flow are likely due to them being in anti-phase. At lead times 1-3 months, averaging 

either precipitation or temperature reduces correlation strength (Figure 5.17). These 

contrast with findings for CA, likely due to the precipitation driven flow regime at M’Jara 

compared with the snow/ice melt driven regimes of CA.  

 

Only at a lead time of one month were predictor variables added to the model beyond 

the dummy variable for month using the stepwise procedure. Again, this highlights the 

precipitation driven regime, lacking the snow accumulation which provided predictability 

at lead times of several months for CA reservoirs. Furthermore, Figure 5.18 shows 

modelled flows lag observed flows by one month resulting in a positive residual 

following a large negative residual. This is likely explained by the inclusion of 

antecedent flow in the regression model. This suggests that in flashy catchments, such 

as M’Jara, a time-step of less than (lag) one month is required to better capture 

observed flows. Whilst improved skill metrics are achieved by the model compared to 

ZOF at one-month lead time, the model cannot be described as functional with NSE 

0.30. These results suggest that the statistical forecasting model approach is more 

reliant upon on slowly varying catchment properties such as the amount of snowpack or 

soil moisture status. Furthermore, the model may perform better in large basins 

(>10,000 km2), with more damped flow regimes compared with smaller (M’Jara basin is 

6,000km2), precipitation dominated, flashier catchments.  

 

6.3.2 Climate mode-based approach 
The significant (p < 0.01) negative concurrent correlations found here between NAO 

and winter precipitation across northwest Morocco align closely with previous literature 

(Marshall et al., 2001). However, Marchane et al. (2016) report significant correlations at 

lead time one month for December, January and February in contrast to Figure 5.19. 

This discrepancy could be explained by the different time periods used (1952-1989 here 

compared with 1993-2012 by Marchane et al. 2016). Significant correlations between 
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Niño 3.4 and CA winter precipitation persisted to lead time three months. NAO has a 

more direct effect on Moroccan precipitation compared with the remote links between 

climate modes and CA precipitation (Hurrell et al., 2003). This direct link between NAO 

and precipitation in Morocco will likely reduce the lead time at which a skilful forecast 

can be made compared with CA. This is confirmed by Table 5.17, with significant 

correlations between NAO and M’Jara flow occurring only during the two months prior to 

the target flow period.  

 

Of the two target flow periods, February-April mean shows greatest potential for 

conditioning. Significant differences were found between February-April flows following 

negative versus neutral and negative versus positive NAO during December-January 

Table 5.18. Figure 5.19 shows that large flow anomalies at M’Jara (>200 m3s-1) have a 

38% likelihood following negative NAO, compared with 0% following neutral or positive 

NAO phases. Perhaps of greater utility to reservoir managers is that following positive 

NAO there is only a 15% likelihood of a positive flow anomaly and 38% chance of a 

negative anomaly in the band <100m3s-1. With this information action could be taken to 

conserve water in the reservoir reducing the impact if a large negative inflow anomaly 

occurs.  

 

Compared with Niño 3.4 forecasts of Nurek inflows, significant differences in M’Jara 

flows can only be achieved by a forecast issued with zero lead time. Furthermore, 

according to KS tests, differences between exceedance probabilities are smaller for 

February-April M’Jara flows compared with summer inflows to Nurek (D-statistic of 0.62 

compared with 0.85). Table 5.14 also shows the generally normal distribution of Nurek 

inflow anomalies following different Niño 3.4 phases, compared with the bi-modal 

distribution of M’Jara flows following negative NAO. This spread of possible flows at 

M’Jara of <100 to >200 m3s-1 further reduces the utility of a forecast, as no flow 

anomaly category can be ruled out. Despite these limitations, a forecast of February-

April mean flow at M’Jara could be of value for decision makers, particularly following 

positive NAO phases.  

 

Overall, both approaches show greater potential for implementation in CA than in 

Morocco. The relationship between winter precipitation accumulation and summer 

reservoir inflows in CA (Schӓr et al., 2004 and Table 5.2) enables predictability at longer 
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lead times than for the study catchment in Morocco. Furthermore, the smaller, flashier 

catchment and hydrological regime of M’Jara lends itself to predictability at lead times of 

days rather than months. For flow forecasts at such lead times products such as the 

GLObal Flood Awareness System29 could be used. 

 

6.4 Operationalising a seasonal forecasting approach 

Despite much effort, there still exists a gap between state-of-the-art research and the 

operational practices of seasonal hydrological forecasting (Pegano et al., 2014). This 

section will first review some of the barriers to operational implementation of seasonal 

forecasts in CA before assessing the potential for implementing the climate mode-based 

approach presented in the thesis. This approach was selected for operationalisation 

after consultation with reservoir operators in which it was clear this approach presented 

several benefits. Forecasts of mean summer inflows are the current standard in region, 

therefore continuing with this approach may improve the likelihood of forecast uptake. 

Furthermore, the longer lead time possible using the climate mode approach was 

desired to complement Tajik Hydromet’s current regression-based forecast issued each 

April. Importantly, the approach is also relatively quick and straightforward to produce 

operationally.   

 

One such issue between research and operational seasonal forecasting is perceived 

forecast value. Skill is a necessary ingredient in perceived forecast value, yet more 

forecast skill by itself does not imply more forecast value (Feldman and Ingram, 2009). 

Murphy (1993) stated that forecasts possess no intrinsic value, but instead acquire 

value through their capability to influence the decision making of forecast users 

(Thornes and Stephenson, 2001). Therefore, an increase in skill may not necessarily 

result in increased value if the forecast does not bring about improved decision making 

(e.g. due to lack of capacity in forecast interpretation, contractual obligation, economic 

concerns etc.) (Rayner et al., 2005; Crochemore et al., 2016). Still, the majority of 

seasonal flow forecasting literature focusses effort on improving the skill of outlooks, 

with relatively little attention given to the issues surrounding communication of forecasts 

(Demeritt et al., 2010).  

                                            
29 http://globalfloods.jrc.ec.europa.eu/ 
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Investments in seasonal forecasting have often resulted in improved forecast services 

(e.g. more frequent updates). However, it is much less clear how, or if, these translate 

into improved water management decisions (Chiew et al., 2003; Werner et al., 2013). 

Hartmann et al. (2002) argued that forecasts should be evaluated for their “skill” at 

communicating their information content in ways that can be correctly interpreted both 

easily and reliably. Werner et al. (2013) found that only rarely have improved forecasts 

translated into greater forecast utilization by water management agencies. A possible 

reason for the focus on improving skill and reliability of seasonal forecasts as opposed 

to ease of communication and improved decision making is the difficulty in assessing 

these factors. Whilst skill can be measured via multiple, readily calculated metrics (e.g. 

Nash-Sutcliffe efficiency, Brier´s probability score), quantifying the communicability of a 

forecast is a more complex prospect. 

 

Several institutional factors have been found to affect the use of novel forecasting 

techniques by decision makers. Rayner et al. (2005) assert that conservatism and 

complexity are the principal factors constraining the uptake of new forecasting 

approaches. The risk-averse system in which many institutions work results in 

managers relying on traditional methods to avoid the risk of public criticism (or worse) 

for using a new and unproven system if a wrong decision is made (Lemos, 2008). A 

need to adhere to industry standard procedures, such as government regulations 

regarding dam release for flood-control functions, can further reduce the role forecasts 

play in decision making (Georgakakos et al., 2005; Rayner et al., 2005). It is also 

important for decision makers within the organisation to understand and trust the 

forecast. This is a particular issue for probabilistic forecasts because some hydrologists 

and managers are not used to working with probabilities (Ludwig, 2009; Kirchhoff et al., 

2013).  

 

Mantua et al. (2008) identified a number of common characteristics of useful forecasts. 

Interactions between scientists and forecast users should be ‘end-to-end’ (i.e. utilising 

boundary organisations to translate and mediate between the producers and consumers 

of forecasts). A stable funding platform is critical to forecast uptake, as users must be 

confident that the program will continue to provide the required forecasts. In reality, 

most operational practice operates in a relatively ad-hoc nature with small adjustments 
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to forecast practices made when opportunities arise with the exception of larger/longer 

term projects (e.g. ECMWF, IRI, GLOFAS). Whilst procedures do exist, there is 

generally a lack of formal procedures across agencies for certifying/operationalising a 

new model/procedure (Mantua et al., 2008). This lack of structure results in the diverse 

forecasting approaches observed today, with no consistent agreement on the ‘best’ 

methods of how to validate forecast skill and, arguably more importantly, forecast value. 

 

The climate mode forecasting approach was first developed before being presented to 

reservoir operators. After feedback on the required lead times and preferred 

presentation method, the approach was refined to the final form shown in Appendix B. 

Another approach would be to co-develop a seasonal forecasting system with suppliers 

and users of the outlook. Such an approach would have beyond the scope of the thesis. 

Furthermore, in data sparse situations like Tajikistan a pragmatic approach is required 

that is based on simple lookup tables and step by step procedures. Despite the relative 

simplicity of the approach developed, it is founded on sound exploratory analysis and 

physical reasoning. Due to these factors, the practical approach taken was deemed 

most likely for uptake by reservoir operators, hopefully resulting in improved decision 

making.   

 

The forecast can be presented using a likelihood table, as in Table 5.14. This technique 

neatly presents the most likely summer inflow anomalies following La Niña/neutral/El 

Niño conditions during the previous winter. In addition, the table can be used to forecast 

the likelihood of more extreme conditions, conveying the spread of inflow anomalies 

following a particular phase. This forecasting approach gives some information 

regarding the uncertainty of the outlook, but inflows outside of these ranges could still 

occur. This could be caused by non-stationarity in the Niño 3.4-Nurek inflow relationship 

or because the relationship is not fully explained by the period of record used to define 

the association. After consultation with reservoir operatives, a forecast issued in 

January was deemed to complement existing forecast issued by Tajik Hydromet in April 

(using linear regression to relate winter observed precipitation to following summer 

inflows). Advanced technical notes provide more detailed information regarding the 

methodology and scientific judgements made throughout the model building process, in 

order to make the procedure as transparent as possible. 
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Despite the relative simplicity and pragmatism of this approach there are still a number 

of limitations. First, a judgement must be made by decision makers about what 

constitutes practical as opposed to statistical skill. For instance an HHP of 51-59% 

exceeds chance (33%) but whether this level of skill is useful partly depends on the 

appetite for risk of failure by the user. Second, flexible operating rules are a prerequisite 

of improved reservoir management linked to seasonal forecasts. Following consultation 

with reservoir operators in Tajikistan, it became apparent that this might not be the 

case. Operators seemingly had little flexibility in adjusting ‘business as usual’ operating 

procedure to utilise a seasonal forecast. Third, the forecast depends upon timely 

publication of the Niño 3.4 index. This reliance on a third party (in this instance the 

National Oceanic and Atmospheric Administration (NOAA)) could cause problems, as 

delays in index publication as well as decisions regarding funding, methodological 

changes or even termination of index publication is beyond the decision maker’s control.  

 

Forecast value is also partly determined by the active capacity of the reservoir – in the 

case of Nurek, this is just 4 km3 of 10.5 km3 total storage capacity. The active storage is 

fully utilised during all winters then replenished during most summers, with the reservoir 

regularly spilling most summers. In this case, the value of a forecast is drastically 

reduced if the reservoir is currently used at capacity every year, leaving no room for 

extra winter energy production during an El Niño winter. However, with the Central Asia 

South Asia Electricity Transmission and Trade Project30 (CASA-1000) expected to be 

completed in 2018, a potential 1300 megawatts could be exported to Pakistan during 

summer months. This would increase demand on summer reservoir levels, meaning 

forecasts of summer inflows will still be beneficial to reservoir operation. Additionally, 

power production from the Rogun hydropower project is expected to begin in 2018. 

Seasonal forecasts could help plan reservoir filling and operations once commissioned. 

For example, if the winter prior to filling is La Niña, a more conservative approach could 

be taken to ensure downstream summer irrigation requirements can still be met.  

 

The climate mode-based forecasting approach is not limited to only forecasting 

reservoir inflows. It is plausible that the approach could have skill at forecasting natural 

hazards (e.g. avalanches and mudflows) and be used to facilitate improved 

                                            
30 http://projects.worldbank.org/P145054?lang=en 
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transboundary water management (e.g. agree release strategies for certain severity 

forecasts). Possibly the greatest opportunity for development is forecasting of winter 

energy demand. Figure 5.10 shows significant (p < 0.05) correlations between Niño 3.4 

and January/February temperatures across Tajikistan and Kyrgyzstan. Such a forecast 

could allow stockpiling of energy reserves (e.g. coal), planned imports of electricity 

(through CASA 1000) and even prepare emergency humanitarian relief in the event of a 

cold winter.  

 

6.5 Summary 

This chapter has contextualised the results of the thesis, discussing the findings in 

relation to the wider literature and within the thesis as a whole. First, results from the 

statistical forecasting approach were evaluated. Both research and operationally viable 

models were able to outperform the ZOF for Toktogul, Andijan and Kayrakkum reservoir 

inflows at lead times of one to four months (according to R2
adj, NSE and RMSE skill 

metrics). Furthermore, stratifying models to forecast monthly inflows for only summer 

months (April-September) provides greater skill improvements over ZOF for lead times 

one, two and four months for Toktogul and Andijan. Stratified models incorporated 

NCEP precipitation with no averaging period at lead time three months, in contrast to 

full year models. Therefore, the improved skill of full year models is likely due to winter 

precipitation being better represented, a factor known to be important in forecasting 

summer inflows (Schӓr et al., 2004; Dixon and Wilby, 2016). All model types struggled 

to improve beyond the skill of the ZOF for Nurek inflows at all lead times investigated. It 

is possible that the relatively poor performance of precipitation predictors (Schiemann et 

al., 2008 and Table 3.4) as well as the increased influence of glacier melt reduce the 

forecast skill for Nurek reservoir (Savoskul and Smakhtin, 2013).  

 

Of the climate modes investigated, Niño 3.4 showed the greatest potential for 

conditioning following summer inflows to Toktogul, Andijan and Nurek reservoirs. 

According to both KS and KW tests, significant (p < 0.01) differences occur in summer 

inflows following opposing phases of winter Niño 3.4 during the period 1941-1980. 

However, significant differences in Niño 3.4 conditioned Nurek inflows did not hold when 

using the period 1981-2016 (1993-1999 missing). It is conceivable that higher mean air 

temperatures in the latter period (Figure 2.6) have favoured proportionately greater 
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contributions from glacier (rather than winter snowpack) melt to total summer inflows, 

thereby weakening the apparent link to winter snowpack. Additionally, concurrent 

temperature showed potential for further conditioning inflows to Nurek reservoir (p < 

0.01 for the period 1941-80). However, the temperature-inflow relationship did not hold 

when using Lyakhsh meteorological station rather than Sari-Tash. The higher elevation 

of Sari-Tash could be providing a better proxy for snowmelt. Nurek reservoir operatives 

would value an early outlook issued each January. Using November-December Niño 

3.4 allows this and provides greater skill than October-March Niño 3.4 at forecasting 

following summer inflows to Nurek according to HHP. This increased skill derives from 

Niño 3.4 strength peaking during November-December, whereas using October-March 

Niño 3.4 dilutes the relationship. A physical mechanism was proposed for the statistical 

relationship, involving moisture being advected across the Middle East mainly from the 

Arabian Sea during El Niño conditions resulting in increased winter precipitation in CA.  

 

The transferability of both forecasting approaches was then assessed via 

implementation for the M’Jara catchment, Morocco. NCEP precipitation was significantly 

(p < 0.01) positively correlated with monthly flow at M’Jara at lead times of up to two 

months for the period 1952-1989. However, predictors (in addition to monthly dummy) 

were only included in the model at lead time one month. Furthermore, although 

improving skill relative to the ZOF at one-month lead, the poor NSE of 0.30 is such that 

it cannot be deemed a functional model. The model struggles to depict the timing of 

peak flows, lagging observed flows by one month – likely the result of antecedent flow 

driving model skill. Overall, the difference in hydrological regime results in the approach 

performing poorly for the M’Jara catchment. Skill of CA inflows is driven by the 

relationship between winter snowpack accumulation and summer runoff. The flashier 

hydrology at M’Jara along with the minimal winter snow storage means skill is much 

reduced using this approach for the M’Jara catchment. Clearly, this assessment is 

based on only a single catchment, therefore more thorough investigation is required to 

test the wider validity of this assertion.  

 

Significant differences (p < 0.01) were present between February-April inflows following 

opposing phases of December-January NAO for the period 1952-1989. For example, 

there is a 38% likelihood of February-April flows exceeding 200m3s-1 following negative 

December-January NAO, compared with 0% following negative or neutral conditions. 
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However, seasonal forecasting skill is only provided by NAO with zero lead time (i.e. 

February-April forecast issued in February), limiting the forecasts value. Again, the 

difference in hydrological regime as well as direct impact of NAO compared to the more 

remote influence of ENSO on CA inflows reduces the potential in Morocco compared 

with CA.  

 

After consultation with reservoir operators in Tajikistan it was clear that an early outlook 

forecast of mean summer reservoir inflows to Nurek issued in January would 

complement their current forecast which is provided by Tajik Hydromet each April. 

Using November-December Niño 3.4 allows a forecast of following summer inflows to 

be issued in January with a success rate of 51-59% depending on period of record 

(assessed via HHP). Further consultation is needed to establish whether this level of 

statistical skill is of practical significance for operational decision making, and/or the 

extent to which forecast value is limited by inflexible operating rules. The skill of the 

existing system operated by Tajik Hydromet should also be assessed using HHP, 

allowing comparison between approaches. Furthermore, Nurek’s hydropower potential 

is fully used every winter and water is spilled nearly every summer, severely limiting the 

utility of a forecast to manage winter energy shortages. However, forecasts could be 

used to improve dam safety during large inflows and for scheduling maintenance, or 

Rogun filling. Furthermore, the approach presented here could be expanded to forecast 

natural hazards (e.g. avalanches and mudflows) and help facilitate improved 

transboundary water management (e.g. by negotiating different operating rules 

depending on the seasonal outlook). 

 

The final Chapter begins with a review of the thesis, identifying the key findings of each 

section of the thesis. The major findings of the thesis are then summarised, beginning 

with the collation and quality assessment of public domain hydro-climatic information. 

The two forecasting approaches are then reviewed, discussing circumstances in which 

the models perform well/poorly as well as suggesting avenues for further research 

which could lead to improvements in model performance. Transferability of approaches 

is then reviewed using the M’Jara catchment in Morocco. The Chapter concludes with 

suggestions for extending the climate mode approach, for example to forecasting winter 

energy demand. 
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7 Conclusions and further research 

This thesis developed information streams and model structures to facilitate reservoir 

inflow forecasting in data sparse regions using public domain predictors. Chapter 1 set 

out the motivations for the study. Winter electricity rationing regularly occurs in both 

Kyrgyzstan and Tajikistan with serious consequences for human well-being. As most 

electricity is produced by Toktogul and Nurek reservoirs respectively, the energy crises 

are directly linked to management of these critical facilities. Previous research was then 

reviewed in Chapter 2. This highlighted the fragmentary hydro-climatological gauge 

network in the region, making near real-time satellite and re-analysis products 

appealing. Chapter 3 introduced the reservoir sites, before collating and selecting public 

domain hydro-climatic data to address the aim and objectives of the thesis.  

 

The methodologies used in the thesis were described in Chapter 4. A regression 

approach was adopted as it is transparent, tractable and transferable. The climate 

mode-based forecasting approach used 0.33 and 0.66 index percentiles to condition 

inflows, selected to allow a roughly equal number of seasons in each category.  Chapter 

5 showed that, overall, both research grade and operational models were able to 

outperform the ZOF for Toktogul, Andijan and Kayrakkum for all lead times using most 

skill metrics. Stratifying models to forecast only summer inflows further improved skill at 

lead times 1, 2 and 4 months for Toktogul and Andijan reservoirs. Significant differences 

(p < 0.01) were present between summer inflows to all three reservoirs conditioned on 

prior October-March Niño 3.4, as well as for Nurek inflows conditioned on concurrent 

temperature for the years 1941-1980. Both approaches showed greater skill at longer 

lead times for CA than for the test site in North Africa.  

 

These results were then discussed with respect to prior literature in Chapter 6. Of the 

climate modes assessed, Niño 3.4 showed greatest power at discriminating summer 

reservoir inflows in CA. This is consistent with latest understanding of the atmospheric 

processes involved, by which a moisture flux from the Arabian Sea moves clockwise 

around a block of high pressure centred over the Indian Ocean (Mariotti, 2007). This 

final Chapter summarises the major findings of the thesis and offers suggestions for 

further research.  
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7.1 Headline findings 

• Both TRMM and NCEP precipitation products are significantly correlated with 

monthly observed values at Naryn and Uzgen (Syr Darya basin/Tien Shan) but 

not at Sari-Tash (Amu Darya basin/Pamirs). 

• Near real-time TRMM overestimates precipitation several fold during both 

autumn and spring, attributed to issues in defining precipitation phase. 

• Statistical models perform better at forecasting inflows in the Tien Shan (Naryn 

and Andijan) than the Pamir (Nurek).  

• Stratifying models to forecast only summer inflows improved model skill relative 

to the Zero Order Forecast. 

• Significant correlations (p < 0.01) were present between most winter monthly and 

bi-monthly Niño 3.4 with following summer mean inflows to Toktogul, Andijan and 

Nurek during the years 1941-1980. 

• According to both Kolmogorov-Smirnov and Kruskal-Wallis tests, significant (p < 

0.01) differences occur in summer inflows to all three reservoirs following 

opposing phases of winter Niño 3.4 during the period 1941-1980. 

• Significant differences for Nurek inflows did not hold, however, when assessed 

the period 1981-2016 (1993-1999 missing). 

• Using November-December Niño 3.4 allowed an early outlook forecast whilst 

providing greater skill than October-March Niño 3.4 at forecasting following 

summer inflows to Nurek according to the Heidke Hit Proportion (51-59% 

depending on period of record). 

• A physical mechanism for the statistical relationships was proposed (based on 

Mariotti, 2007) in which moisture is advected across the Middle East mainly from 

the Arabian Sea during El Niño conditions. 

 

7.2 Further avenues for research 

• The cause(s) of recent weakening of the Niño 3.4-Nurek inflow relationship could 

be explored via perturbing Ocean temperatures within climate model experiments 

and examining the response of winter precipitation across CA. 

• Procurement of recent inflow data to Toktogul and Andijan reservoirs would allow 

the stationarity of Niño 3.4-CA inflow relationship to be evaluated more 
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thoroughly, and should be a priority to assess whether the weakening 

relationship at Nurek is representative of the wider region. 

• A key research question within the region is whether ‘peak water’ (or the tipping 

point) has yet been reached. An observation-based study of water balance 

components including the relative contribution of glacier melt to river flows is, 

therefore, a key research priority (Unger-Shayesteh et al., 2013). This would no 

doubt require significant endeavour, with sustained funding as well as 

cooperation amongst government agencies and between nation states. 

• The ability of other regional climate drivers (such as the Indian monsoon) to 

further condition summer inflows should be explored, potentially reducing the 

inflow range of seasonal forecasts. 

• Expansion of the climate mode approach to forecast winter energy demand 

should be explored. This could be used to stock pile other energy supplies (e.g. 

coal) and/or pre-prepare aid agencies to help reduce the impact of the all to 

frequent winter energy crises. 

 

7.3 Final remarks 

The approaches presented in this thesis are low cost, require relatively limited technical 

or computing capacity, and can be applied to remotely sensed products – all 

considerations in data sparse, low capacity regions. The climate mode forecasting 

approach shows great potential for operationalisation in CA. Despite the limited data 

and technical capacity there is need for scientific rigour in the hunt for robust, stationary 

predictability. This must be matched with pragmatism about how such relationships and 

forecasting tools might be operationalised. The research has been translated into easily 

interpreted look up tables alongside step-by-step guidance notes, enabling uptake by 

reservoir operators.  
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Figure Apx 1: Monthly observed inflow into Toktogul, Andijan, Kayrakkum 
and Nurek reservoirs correlated with monthly NCEP derived teperature for 
the years 2001-2010 for concurrent (left) and precipitation leading (right) 
discharge by 1, 2, and 3 months. Note that a 4 month lead was also 
undertaken but not shown for brevity. 
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Figure Apx 2: Correlation (r) of gauged inflows to Andijan with lagged 
predictors averaged over 1-6 months. Accounting for autocorrelation at p 
= 0.05, rcrit = 0.49. 
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Figure Apx 3: Correlation (r) of gauged inflows to Kayrakkum with lagged 
predictors averaged over 1-6 months. Accounting for autocorrelation at p 
= 0.05, rcrit = 0.47. 
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Figure Apx 4: Correlation (r) of gauged inflows to Nurek with lagged 
predictors averaged over 1-6 months. Accounting for autocorrelation at p 
= 0.05, rcrit = 0.54. 

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No Lag

LAG 1

LAG 2

LAG 3

LAG 4

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No Lag

LAG 1

LAG 2

LAG 3

LAG 4

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No Lag

LAG 1

LAG 2

LAG 3

LAG 4

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No Lag

LAG 1

LAG 2

LAG 3

LAG 4

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No Lag

LAG 1

LAG 2

LAG 3

LAG 4

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No Lag

LAG 1

LAG 2

LAG 3

LAG 4

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No Lag

LAG 1

LAG 2

LAG 3

LAG 4

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

Co
rr

el
at

io
n 

(r
) 

Averaging period (months) 

No Lag

LAG 1

LAG 2

LAG 3

LAG 4



173 
 

 

 

 

 
Figure Apx 5: Cross validated research model inflow forecasts for 
Toktogul with lead time one (Q1), two (Q2), three (Q3) and four (Q4) 
months compared to the ZOF (long term monthly mean discharge). 
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Figure Apx 6: Cross validated research model inflow forecasts for 
Toktogul with lead time one (Q1), two (Q2), three (Q3) and four (Q4) 
months compared to the ZOF (long term monthly mean discharge). 
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Figure Apx 7: Cross validated research model inflow forecasts for Andijan 
with lead time one (Q1), two (Q2), three (Q3) and four (Q4) months 
compared to the ZOF (long term monthly mean discharge). 
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Figure Apx 8: Cross validated operational model inflow forecasts for 
Andijan with lead time one (Q1), two (Q2), three (Q3) and four (Q4) months 
compared to the ZOF (long term monthly mean discharge). 
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Figure Apx 9:Cross validated research model inflow forecasts for 
Kayrakkum with lead time one (Q1), two (Q2), three (Q3) and four (Q4) 
months compared to the ZOF (long term monthly mean discharge). 
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Figure Apx 10: Cross validated operational model inflow forecasts for 
Kayrakkum with lead time one (Q1), two (Q2), three (Q3) and four (Q4) 
months compared to the ZOF (long term monthly mean discharge). 

 

0
200
400
600
800

1000
1200
1400
1600

Oct-01 Oct-02 Oct-03 Oct-04 Oct-05 Oct-06 Oct-07 Oct-08 Oct-09 Oct-10

In
flo

w
 (m

3 /
s)

 
Q1 Operational 

Observed
Modelled
ZOF

0

200

400

600

800

1000

1200

1400

1600

Oct-01 Oct-02 Oct-03 Oct-04 Oct-05 Oct-06 Oct-07 Oct-08 Oct-09 Oct-10

In
flo

w
 (m

3 /
s)

 

Q2 Operational Observed

Modelled

ZOF

0
200
400
600
800

1000
1200
1400
1600

Oct-01 Oct-02 Oct-03 Oct-04 Oct-05 Oct-06 Oct-07 Oct-08 Oct-09 Oct-10

In
flo

w
 (m

3 /
s)

 

Q3 Operational  
Observed
Modelled
ZOF

0

200

400

600

800

1000

1200

1400

1600

Oct-01 Oct-02 Oct-03 Oct-04 Oct-05 Oct-06 Oct-07 Oct-08 Oct-09 Oct-10

In
flo

w
 (m

3 /
s)

 

Q4 Operational  
Observed
Modelled
ZOF



179 
 

 
Figure Apx 11: Cross validated research model inflow forecasts for Nurek 
with lead time one (Q1), two (Q2), three (Q3) and four (Q4) months 
compared to the ZOF (long term monthly mean discharge). 
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Figure Apx 12: Cross validated operational model inflow forecasts for 
Nurek with lead time one (Q1), two (Q2), three (Q3) and four (Q4) months 
compared to the ZOF (long term monthly mean discharge). 
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Figure Apx 13: Correlation (r) of gauged inflows to Toktogul (months 
April-September only) with lagged predictors averaged over 1-6 months 
for the years 2002-2010. 
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Figure Apx 14: Correlation (r) of gauged inflows to Andijan (months April-
September only) with lagged predictors averaged over 1-6 months for the 
years 2002-2010. 
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Figure Apx 15: Correlation (r) of gauged inflows to Nurek (months April-
September only) with lagged predictors averaged over 1-6 months for the 
years 2002-2010. 
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Figure Apx 16: Predictors used stratified multiple regression models for 
each basin at each lead time (1-4 months) (n = 54). Notations can be found 
in Table 4.1. 
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Figure Apx 17: Cross validated operational inflow forecast residuals for 
Toktogul with lead time one-four months. Full year models forecast all 12 
months, whereas stratified models forecast only summer inflows (April-
September), using ZOF as winter flows. 
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Figure Apx 18: Cross validated operational inflow forecast residuals for 
Andijan with lead time one-four months. Full year models forecast all 12 
months, whereas stratified models forecast only summer inflows (April-
September), using ZOF as winter flows. 

 

 

-400

-200

0

200

400

Oct-01 Oct-02 Oct-03 Oct-04 Oct-05 Oct-06 Oct-07 Oct-08 Oct-09 Oct-10

In
flo

w
 re

si
du

al
s 

(m
3 s

-1
) Q1 Observed

Full Year
Stratified

-400

-200

0

200

400

Oct-01 Oct-02 Oct-03 Oct-04 Oct-05 Oct-06 Oct-07 Oct-08 Oct-09 Oct-10

In
flo

w
 re

si
du

al
s 

(m
3 s

-1
) Q2 

Observed
Full Year

-400

-200

0

200

400

Oct-01 Oct-02 Oct-03 Oct-04 Oct-05 Oct-06 Oct-07 Oct-08 Oct-09 Oct-10

In
flo

w
 re

si
du

al
s 

(m
3 s

-1
) Q3 

Observed
Full Year
Stratified

-400

-200

0

200

400

Oct-01 Oct-02 Oct-03 Oct-04 Oct-05 Oct-06 Oct-07 Oct-08 Oct-09 Oct-10

In
flo

w
 re

si
du

al
s 

(m
3 s

-1
) 

Q4 
Observed
Full Year
Stratified



187 
 

 
Figure Apx 19: Cross validated operational inflow forecast residuals for 
Nurek with lead time one-four months. Full year models forecast all 12 
months, whereas stratified models forecast only summer inflows (April-
September), using ZOF as winter flows.
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Figure Apx 20: Monthly NAO (PC) correlated with monthly NCEP 
precipitation rate for the years 1950-2014 at lead times 0-3 months (left 
column shows target precipitation month, with index month varied to 
account for lead time). Yellow/dark blue areas are significant at p=0.05, 
orange/pink are significant at p=0.01.  
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Figure Apx 21: Monthly NAO (PC) correlated with monthly NCEP 
temperature for the years 1950-2014 at lead times 0-3 months (left column 
shows target precipitation month, with index month varied to account for 
lead time). Yellow/dark blue areas are significant at p=0.05, orange/pink 
are significant at p=0.01. 
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Figure Apx 22: Monthly Niño 3.4 correlated with monthly NCEP 
precipitation rate over Morocco for the period 1952-1989 at lead times 0-3 
months (left column shows target precipitation month, with index month 
varied to account for lead time). Purple/Yellow areas and greater are 
significant at p=0.05. 
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Appendix B - Step-by-step guide to seasonal forecasting of 

inflows for Nurek reservoir (Wilby and Dixon, 2017). 

 

Technical Annex to Workshop Report 
Seasonal forecasts of inflows for Nurek reservoir 
This Technical Annex provides some background information then step-by-step 

guidance on how to produce a seasonal forecast of mean summer inflows anomalies to 

Nurek. The statistical model is described by Dixon and Wilby (2017). 

Winter mean sea surface temperature (SST) anomalies in the Nino3.4 region of the 

Pacific Ocean are used to predict the likelihood of summer mean inflow anomalies for 

Nurek (Figure A1a). When Pacific Ocean SSTs are relatively warm, there is an El Niño 

phase. This tends to be followed by warmer and wetter winters over Tajikistan. The 

greater snowpack volume then favours higher than average meltwater flows in the 

following vegetative season (April to September). Conversely, when Pacific Ocean 

SSTs are relatively cold, there is a La Niña phase. In this case, winters in Tajikistan 

tend to colder and drier than average conditions, leading to relatively low snowpack 

volumes then depressed meltwater flows in the following summer. 

Figure A1. Summer inflow anomalies (m3s-1) to Nurek (at Komsomolabad) linked to the Nino3.4 index in 

(a) November-December or (b) October-March, further explained by summer air temperature anomalies 

at Sari-Tash (c,d) for the period 1941-2016. Lines within the box-and-whisker plots show the median; 

boxes show the interquartile range (IQR); T-bars are 1.5 x IQR; and points are outliers. 

(a) 

 

(b) 

 
(c) (d) 
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Inflow during the vegetative period also depends on whether the summer in the Vakhsh 

has relatively cold, average or warm air temperatures. Overall, the lowest mean 

summer inflows tend to occur after a winter La Niña followed by a cooler than average 

summer in Tajikistan (Figures A1c and A1d). On the other hand, the highest mean 

summer inflows tend to occur after a winter El Niño followed by a warmer than average 

summer. However, the box-and-whisker plots show that there is considerable variation 

in forecasted flows even within these contrasting phases. 

Figures A1a and A1b compare expected summer inflow anomalies based on Pacific 

Ocean SST anomalies (given by the Nino3.4 index) averaged over November-

December and October-March respectively. This shows that differences between the 

three Nino3.4 phases actually become less marked when the longer (i.e. October-

March, Figure A1b) averaging period is used. In other words, there is no benefit in 

waiting until SSTs at the end of March are known. This means that the best seasonal 

forecast of inflows for the vegetative season can be provided by late January/early 

February each year, just after the time when the Nino3.4 signal is often strongest. 

Table A1 shows the likelihood of different summer inflow anomalies after the three 

Pacific Ocean phases. Following La Niña or Neutral conditions, it is most likely that 

summer inflows anomalies will be between 0 to -99 m3s-1 (with a likelihood of 32% for 

La Niña, and 41% for Neutral conditions). Following El Niño conditions, summer inflow 

anomalies will most likely fall between +1 to +100 m3s-1 (with 39% likelihood). 
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Table A1. Likelihood (%) of mean summer (April-September) Nurek inflow anomalies (m3s-1) at 

Komsomolabad depending on previous NOVEMBER-DECEMBER Nino 3.4 phase for the period 1941-2016 

(1993-1999 data are missing). Nino3.4 categories are based on 1982-2010 terciles. 

 
 November-December Nino3.4 index 

Inflow anomaly (m3s-1) 
at Komsomolabad 

Category  
of inflow 
anomaly 

La Niña  
(Nino3.4          
<-0.60°C) 

Neutral  
(Nino3.4 in 

range               
-0.60°C to 
+0.62°C) 

El Niño 
(Nino3.4 

>+0.62°C) 

below -200 
Below normal 

10% 0% 0% 

-199 to -100 29% 15% 0% 

-99 to 0 
Near normal 

32% 41% 14% 

+1 to +100 24% 22% 39% 

+101 to +200 
Above normal 

5% 15% 33% 

above +200 0% 7% 14% 
 

 

Table A1 can also be used to forecast the likelihood of more extreme conditions. For 

example, following La Niña there is 10% likelihood that summer inflows are more than 

200 m3s-1 below average (Table A1, top row). Even after El Niño conditions there is 

14% likelihood that inflows could be 0 to -99 m3s-1 below average (Table A1, third row). 

Table A2 gives a sense of the uncertainty in inflow forecasts between different phases 

of the winter Nino3.4 index and within warm to cold summers over the Vakhsh basin. 

Depending on the winter SST anomaly, expected summer inflow anomalies could 

range between -276 m3s-1 (La Niña, lower bound) and +277 m3s-1 (El Niño, upper 

bound). During a warm summer in the Vakhsh, inflow anomalies could vary between -

164 m3s-1 to +277 m3s-1 (Table A2, top row); in a cold summer the range is -276 m3s-1 

to +238 m3s-1 (Table A2, bottom row).  
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Table A2. Mean summer (April-September) inflow anomaly (m3s-1) for Nurek depending on previous 

NOVEMBER-DECEMBER Nino 3.4 SST anomaly in the Pacific and following APRIL-SEPTEMBER air 

temperature anomalies in the upper Vakhsh basin (Sari-Kash station in Kyrgyzstan) during the period 

1941-2016. Nino3.4 terciles were based on the period 1982-2010. The data are the same as in Figure 

A1a and A1c. 

Summer air 
temperature anomaly at 
Sari Tash (in the upper 

Vakhsh basin) 

November-December Nino3.4 index31 

La Nina 
(Nino3.4 <-0.60°C) 

Neutral 
(Nino3.4 in range            -

0.60°C to +0.62°C) 

El Nino 
(Nino3.4 >+0.62°C) 

Above normal -164 to +105 m3s-1 -91 to +223 m3s-1 -4 to +277 m3s-1 

Normal -165 to +77 m3s-1 -187 to +204 m3s-1 -68 to +219 m3s-1 

Below normal -276 to +8 m3s-1 -153 to +178 m3s-1 +6 to +238 m3s-1 

 

Table A2 captures the uncertainty due to the relatively small number of recorded 

events in each category, as well as the influence of summer air temperatures in 

Tajikistan and other unrepresented factors that affect summer inflow forecasts (such as 

data errors, or local climate conditions). 

Note that a baseline period 1982-2010 was used to derive the bounding values 

(terciles) of the three categories of Nino3.4 index and air temperature in both Tables A1 

and A2. This baseline period is the same as the International Research Institute (IRI) 

seasonal climate forecasts, thereby enabling use of their temperature outlooks to 

establish whether the summer temperature is likely to be below normal, normal, or 

above normal (see Step 6 below). 

 

  

                                            
31 Tabulated values and terciles were based on HadISST Nino3.4. To convert Nino3.4 from OISSTv2 into HadISST apply the 
correction: HadISST = (OISSTv2)*0.93 
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10-step application of the model. The worked example is shown in italics. 
Forecasts can be issued at TWO times, first in January then in April each year: 

Seasonal flow forecast issued in late January/early February 

Step 1: Access Nino3.4 SST anomalies from the US Climate Prediction Center: 

http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices.  

An example of the data format for OISSTv2 is shown in Figure A2 for the period 

January 1982 to June 1984. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A2. An extract of monthly 

OISSTv2 Nino indices for the period 

January 1982 to June 1984. Data for 

November-December 1983 are 

highlighted. Source: US Climate 

Prediction Center. 

 

Step 2: Calculate the mean Nino3.4 anomaly for November (‘MON’ 11) and December 

(‘MON’ 12) using data in the last column of Figure A2 (‘ANOM’).  

For example, in 1983 the mean Nino3.4 anomaly was -1.03 °C (that is -1.07 °C in 

November plus -0.98 °C in December, divided by 2). In this case, because the mean 

anomaly was -1.03 °C, there were cooler than average SSTs in the Nino3.4 region of 

the Pacific Ocean. 

http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices
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Step 3: Compare the November-December mean Nino3.4 index from Step 2 with the 

tercile boundary values shown at the top of each column in Table A1.  

In the example of 1983, -1.07 °C is less than -0.60 °C, so the winter falls into the La 

Niña category – the central Pacific Ocean is cooler than average. 

Step 4: Based on the Nino3.4 phase established in Step 3, refer to the appropriate 

column and rows of inflow anomalies in Table A1 to derive the likelihood of above, near 

normal or below normal inflows. 

For the case of 1983, with winter La Niña conditions, in summer 1984 the likelihood 

of: (a) below normal inflows would have been 39% (i.e. 10% + 29% from Table A1); 

(b) near normal inflows would have been 56% (i.e. 32% + 24% from Table A1); and 

(c) above normal inflows would have been 5% (i.e. 5% + 0% from Table A1). 

Step 5: Issue the January forecast of expected summer inflows to decision-makers. Be 

clear that a seasonal forecast can never be 100% certain about the expected inflow 

anomaly, so the outlook should only be used to inform (not dictate) any operational 

decisions or contingency measures.  

The observed mean inflow in summer 1984 was actually above normal which, as 

noted above, only had 5% likelihood. 

 

Seasonal forecast update in April 
Step 6: Refer to the International Research Institute (IRI) summer temperature forecast 

for the Middle East region issued in April:  

http://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/.  

Select the ‘Region’ as ‘Middle East’; ‘Type’ as ‘Temp’; ‘Issue Year’ as the current year; 

‘Issue Month’ as ‘April and ‘Leads’ as ‘JJA’ (June/ July/ August) (Figure A3).  
Figure A3. Drop down menus for IRI seasonal climate forecast issued in April. Source: IRI. 

 
A map of forecasted temperatures like that shown in Figure A4 is produced. 

http://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/
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Note down the most likely summer (June / July / August) temperature conditions for the 

Vakhsh basin above Nurek, i.e. ‘Below Normal’, ‘Normal’ or ‘Above Normal’. 

For this example, let us assume that the IRI temperature forecast for the Vakhsh 

basin above Nurek in summer 1984 was “Above Normal” – as shown in Figure A4. 

(We have made this assumption for illustrative purposes because IRI temperature 

forecasts are not available as far back as 1984).  

 

 
 

 
Figure A4. An example IRI 

seasonal forecast for the Middle 

East showing expected air 

temperature anomalies for 

Tajikistan. The three forecast 

categories (i.e. Below Normal, 

Normal, and Above Normal) each 

have 33% likelihood due to chance 

alone. The example forecast 

shows that the most likely category 

for Tajikistan on this occasion was 

‘Above Normal’. For this example 

forecast, in the eastern half of the 

country there is 50% likelihood of 

Above Normal temperatures (i.e. 

greater than the 33% expected by 

chance). 

Step 7: Refer to Table A2 which gives the range of inflow anomalies depending on both 

the Nino3.4 SST anomaly and expected summer air temperature anomaly for 

Tajikistan. Use the output from Step 3 (i.e. the mean Nino3.4 anomaly) with Step 6 (i.e. 

the IRI temperature forecast for the Vakhsh basin) to select the correct cell in Table A2.  

As noted before, the winter of 1983/84 falls into the La Niña category, because the 

Nino3.4 SST anomaly of -1.03 °C is less than -0.60 °C (see the tercile boundary 

values at the top of each column in either Table A1 or A2).  

Using Table A2, the range of expected mean summer inflow anomalies following La 

Niña conditions in November-December, with forecasted “Above Normal” summer 

temperatures for the Vakhsh basin lies between -164 m3s-1 and +105 m3s-1 (Table 
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A2, La Niña-Above Normal temperature). 

Step 8: Compare the expected range of inflows derived from Step 7 with the summer 

mean inflow forecast produced by Tajik Hydromet (which is also issued in early April). 

Their forecast is based on a regression relationship between winter half-year (October-

March) total precipitation in the upper Vakhsh basin and the following summer half-year 

(April-September) discharge entering Nurek. 

Step 9: Issue a consensus outlook of summer mean inflows to Nurek based on all 

available information (i.e. the output of Step 7 alongside the Tajik Hydromet seasonal 

inflow forecast, Step 8, and any snowpack survey data).  

Step 10: After the summer, compare both forecasts with the observed flow. Update the 

archive of forecasted and observed flows then publish skill metrics (such as the Heidke 

Hit Proportion, see #1 below) for both forecast techniques. 
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Advanced technical notes 
1. The statistical model presented in this Technical Annex has a forecast success rate 

of 51-59% depending on the period of record. This measure (the Heidke Hit 
Proportion) describes the frequency with which the correct inflow anomaly category 
is predicted (i.e. below average, average, or above average). A forecast skill of 33% 
would be expected by chance alone. Decision-makers must judge whether this 
level of significant statistical skill (i.e. 51-59%) has practical significance. 

2. The summer mean inflow anomalies in Tables A1 and A2 are sensitive to five 
factors: (1) the period of discharge data available to compute anomalies (here 
1941-2016, with 1993-1999 missing); (2) the baseline period used to calculate the 
inflow anomalies (here 1982-2010); (3) the baseline period used to calculate the 
Nino3.4 tercile boundaries (here 1982-2010); (4) the baseline period used to 
calculate summer mean air temperature tercile boundaries (here 1982-2010); (5) 
the temperature record used to represent the Vakhsh basin (here Sari-Tash). 

3. Observed inflow data were available for two stations on the River Vakhsh: Garm 
(1941-1986, 1988 and 1990) and Komsomolabad (1949-1957, 1977-1992, 2000-
2016). A blended summer mean inflow series was created for Komsomolabad by 
regressing against flows at Garm using overlapping periods of record (1949-1957 
and 1977-1990) (Figure A4). The model was tested for biases due to non-
stationarity and autocorrelation. Inflow anomalies were derived with respect to the 
mean summer inflow of the blended series during the period 1982-2010. 

 

 

 

 

 

 

 

 

Figure A4. Observed and blended 
inflows for Komsomolabad 1941-2016 
(1993-1999 missing). The regression 
model explains 68% of observed 
variation in summer mean flow at 
Komsomolabad. 

 

4. The Nino3.4 data used to construct Tables A1 to A2 came from the HadISST 
archive which extends back to the 1880s. Unfortunately, the update time for the 
publicly available data is too long to be useful for seasonal flow forecasting in 
Tajikistan. Hence, the OISSTv2 Nino3.4 index of the Climate Prediction Center is 
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recommended. This is updated every month. Although HadISST and OISSTv2 are 
very similar, for absolute accuracy the latter can be converted to HadISST Nino3.4 
using a correction factor 0.93 (see footnote #1). This only makes a difference if the 
OISSTv2 value is close to a Nino3.4 phase boundary (Table A1). 

5. Mean summer air temperatures for Sari-Tash were used, rather than Lyakhsh. The 
former station is at higher elevation and, therefore, better represents the snowpack 
melt conditions in the headwaters of the Vakhsh basin. 

6. The uncertainty range for summer inflow anomalies in Tables A1 and A2 partly 
reflects carryover or depletion of snowpack between successive winters. For 
instance, larger than average melt in one summer could mean that the initial 
snowpack store in the following winter starts from a low volume. Even if average 
amounts of winter precipitation occurs, the likelihood of higher than average 
summer flows in the next year is reduced. A late March snowpack survey could be 
a more reliable guide than temperature for determining whether the expected 
summer flow will be at the high or low end of the ranges in Table A2. 

7. Use of recent discharge data alongside records from the 1940s and 1950s includes 
any long-term climate change such as increased contributions to inflows from 
glacier melt and/or extended melt seasons outside the assumed vegetative season 
(e.g. now potentially spanning March to October). These factors could introduce 
non-stationarities into the model such that summer inflow anomalies for the present 
are underestimated when earlier data reflecting cooler ambient conditions are 
included. This possibility warrants further research into the influence of discharge 
data period on the expected range of inflow anomalies. 

8. In view of point #3 – and the incremental lengthening of the available discharge 
record with each passing year – values in the look-up tables should be periodically 
reviewed and refreshed. Ideally, this would not happen annually, to avoid confusion, 
but every 5-10 years depending on the pace of hydroclimatic change and 
occurrence of any notable extreme events in the region. 

9. The statistical model described in this Technical Annex could be further developed 
and modified to forecast: (a) winter air temperatures/ heating degree days (to 
predict winter energy demand); (b) spring geohazard risk from avalanches, rockfalls, 
landslides, flash floods and mudflows (to predict likelihood of damage to 
infrastructure); (c) summer 10 day maximum inflows (to predict reservoir spilling 
volumes). This assumes data are available to calibrate the models and that 
statistically significant, as well as practically significant links can be established with 
dominant climate modes (e.g. El Niño Southern Oscillation [ENSO], North Atlantic 
Oscillation [NAO], Pacific Decadal Oscillation [PDO] or Indian Ocean Dipole [IOD]). 

10. More generally, a deeper understanding of regional variations in hydroclimatic 
responses to climate modes could help to identify possible hedging of 
transboundary water and electricity exports/imports. For instance, electricity trading 
agreements might be structured such that Tajikistan can export more energy 
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following El Niño phases (when reservoir water levels are expected to be higher) to 
neighbours that might be experiencing lower energy production. Conversely, during 
La Niña, more electricity might be generated by neighbouring countries and 
imported to Tajikistan to bolster winter supplies. 

 
Reference 
Dixon, S.G. and Wilby, R.L. 2017. Potential for seasonal forecasting of reservoir inflows 

in Central Asia. Environmental Research Letters, under revision. 
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