
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Setting objective tests in mathematics using QM perceptionSetting objective tests in mathematics using QM perception

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Loughborough University

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Greenhow, Martin, and Mundeep Gill. 2019. “Setting Objective Tests in Mathematics Using QM Perception”.
figshare. https://hdl.handle.net/2134/1947.

https://lboro.figshare.com/

SETTING OBJECTIVE TESTS IN
MATHEMATICS USING QM

PERCEPTION

Martin Greenhow and Mundeep Gill

Setting objective tests in mathematics using
QM Perception

Martin Greenhow and Mundeep Gill,
Department of Mathematical Sciences,

Brunel University,
Uxbridge, UB8 3PH

Abstract

We here describe technical issues in setting objective tests in various areas of
mathematics using Question Mark Perception’s QML language and format
files, coupled with MathML mathematics mark-up and the Scalable Vector
Graphics (SVG) syntax for producing diagrams. The plain text MathML and
SVG coding can replace graphics files commonly used to display equations
and diagrams in CAA packages and web pages, and have the overwhelming
advantage that random parameters can be dropped into the interpreted plain
text at runtime, thereby producing many millions of realisations of the
underlying question style.

Introduction

This paper updates previous reports of Nichols & Greenhow (2002) and
Nichols, Gill & Greenhow (2003) on the development of online objective
questions for mathematics formative and diagnostic testing using Question Mark
Perception. The most significant enhancements for questions involving
mathematics and diagrams is likely to be the replacement of graphics by plain
text coding of MathML for equations and SVG for diagrams. As well as being
easily editable, the syntax incorporates random parameters thereby making all
elements of the question and feedback fully dynamic. It is worth remarking that
much of the work we have done is independent of Perception, or indeed of
any CAA package, being standard html/Javascript that can be incorporated
into any web page, for example, a page of teaching material with ever
changing examples.

For CAA, one needs, from the outset, a clear specification of what skills are
assumed and which skill is being tested. This can be different for algebraically
equivalent questions, for example, the tested skill completing the square is in
some ways easier if all the coefficients of the quadratic are positive. This
would result in a question style, to be realised at runtime with only positive
coefficients, and other question styles where this condition is relaxed in
different ways (with the assumed skill that students can handle negative
numbers). Having specified a question style, the author then needs to decide
on question type: multi-choice, multi-response, numerical input etc. We have

developed these to include random parameters, which require that distracters
are generated at runtime using algebraic expressions or algorithms that would
arise if the student applies sensible, but incorrect, rules of their own. These
mal-rules can be identified by analysis of past exam papers, CAA answer files
and students’ and teachers’ experiences. A good deal of work will therefore be
needed to identify and assign metadata to such mal-rules.

New question types such as hot line (typically the student is asked to identify
where an error lies in a fully-worked solution) or responsive numerical input
also rely on mal-rules. A responsive numerical input question looks the same
as a numerical input question, except that mal-rule-generated input is
detected and an appropriate message given, e.g. “You have forgotten the
minus sign when differentiating cos(ax) “ (here a could be a number in the
actual question realisation). Multi-stage question types that allow for partial
credit have also been developed.

A strong feature of our question styles is the feedback to students (we
imagine the questions being used mainly in diagnostic and formative tests).
Typically, the feedback for an incorrect answer comprises: the correct answer;
the general theory and the actual example asked of the student with fully-
worked solutions done in parallel and possibly including an SVG diagram; any
“target of opportunity” that will teach the (hopefully) engaged and interested
student, such as alternative solution methods or tips (“You could have
simplified the log terms first by …”); and finally the question setter’s
interpretation of why the student went wrong (based on the mal-rule that
generated his/her choice).

Many of the question styles call external (Javascript) functions; these divide
into two types; those that return the value(s) of some mathematical operation,
e.g. multiplication of two polynomials, and those that return the MathML string
needed to display the mathematics, e.g. a matrix. Interesting examples of the
first include recursive programming, whilst the second incorporates a higher
level of abstraction whereby the degree of the polynomial or size of the matrix
is used to loop round, each pass concatenating the next bit of the string. Many
of the display problems, such as uncancelled fractions, and expressions such
as a + bx realising as 2 + -3x etc, are also resolved at this stage. As stated
above, much of this functionality is exportable to other CAA systems.

We illustrate these ideas by presenting a series of examples from the existing
database of questions developed as our contribution to the FDTL4 PPLATO
consortium.

Example 1

The general appearance of the screen shows a typical multi-choice question.
Note that the user has the option of changing the font sizes and colours in all
questions; this might help certain types of dyslexic students and those with
partial sight (further accessibility functionality using cookies is planned). The
randomised coefficients of the quadratic are used, in conjunction with various
mal-rules, to give the four distracters shown here; in this realisation, the
correct answer is “None of these”. This will happen randomly, with an author-
prescribed probability, and is considered an important option to lessen the
tendency for students to attempt to eliminate all answers bar one, or to do the
question backwards.

Typical feedback is shown above, where the general theory is illuminated by
inputting the random parameter in the parallel worked example. The actual
response of the student is assumed to follow from the mal-rule referred to in
the last sentence of the feedback.

Example 2

The following question is under development (the distracters are
meaningless), and is not intended for direct use with students: it is included
here to show a new methodology for question setting. The question is written
in a very general way whereby random length polynomials (themselves with
random, possibly fractional, coefficients) are displayed and multiplied together
(the correct answer is shown) by calling the external Javascript functions to
carry out the mathematics and display. In an actual question style, the lengths
of the polynomials may not be random so that an author would be certain that
the question tests e.g. multiplication of a quadratic by a cubic (simply by
inserting the lines n=2; m=3; into the code). Writing general questions, and
then restricted them, is a highly-efficient way of authoring a large number of
related question styles.

The following function (held in a Perception format file) is used to generate the
MathML display string of a polynomial of degree n whose coefficients are held
in the coeffs array:

function displaypolynomial(x,coeffs,n) {
var n

if(coeffs[0] > 0){terms = "<mn>" + coeffs[0] + "</mn>"}else{if(coeffs[0] < 0){terms = "<mo>-
</mo>" + "<mn>" + Math.abs(coeffs[0]) + "</mn>"}else{terms = ""}};

 for (i = 1; i <= n; i++)
 {if (coeffs [i] >= 0)
 {sign = "<mo>+</mo>";
}
else
 {sign = "<mo>-</mo>";

}

if(i == 1){di = "";}else{di = i};
coeff = Math.abs(coeffs[i]);
if(terms == "" & coeffs [i] >= 0){sign = ""};

 if(coeff != 1){term = sign +
"<mn>"+coeff+"</mn><msup><mi>"+x+"</mi><mn>"+di+"</mn></msup>"}else{term = sign +
"<msup><mi>"+x+"</mi><mn>"+di+"</mn></msup>"};

 if (coeffs [i] != 0) {terms = terms + term;}
}
 return ("<mrow>" + terms + "</mrow>");
}

The for loop successively concatenates the required MathML string to be
returned to the question for display. Various if statements suppress terms with
zero coefficient and avoid returning strings that would display e.g. 2+-4x1.

Example 3

The following is a numerical input question (with zero tolerance in this case so
an exact answer is required) for testing Pascal’s triangle; the coefficients, the
name of the variable (c in this case) and the power are randomised.

An incorrect response produces extensive feedback, part of which is shown
below. There is a balance to be struck here, of course. Students may not
engage with, or even read, feedback if it is too long, but may not understand if
too many of the steps are omitted. An alternative, sometimes used for steps or
general theory/formulae, is to use pop-up boxes allowing the student to see
the details if they wish.

The above feedback uses string concatenation to display the triangle to the
required size. Building tables in this way is also useful for statistics where data
tables of random length are required and for truth tables with an arbitrary
number of propositions and logical connectives. Another example might be to
illustrate an algorithm, as follows:

Example 4

The following example shows the considerable power of randomisation and
MathML string concatenation. Two random sized (conformable) matrices with
elements [-9,9] are displayed together with their (function calculated) product

with two randomly chosen element positions overwritten with x and y. This
question style would produce roughly 10100 question realisations, although
much of this variation is irrelevant to the actual question as stated here.

Typically matrix manipulation requires several functions that can call each
other; the following determinant demonstrates this (matrix size and minor are
called functions) and the idea of recursive coding where the function calls
itself:

function determinant(Rmtrix) {
var number=0;
var i;
var Nrow;
var size = new Array();
size = MatrixSize(Rmtrix);
Nrow = size[0];

var number;

if(Nrow == 1){number=Rmtrix[1][1]}else{for(i=1 ; i<=Nrow ; i++)number +=
Rmtrix[1][i]*Math.pow(-1,(i+1))*determinant(dominor(Rmtrix,1,i))};

return number;
}

Example 5

Sequential questions allow for partial credit whereby incorrect inputs from the
first part(s) of the question can be carried through in the marking to see if the
methods for calculation of the latter parts are correct (even through the actual
input is incorrect). For example:

The following question also has randomised word pairs (bicycle/home;
train/station etc) and realistic velocities and accelerations for the mode of
transport chosen:

and demonstrates the use of Scalable Vector Graphics (SVG), in feedback in
this case. The required speed time graph is realised with the correct aspect
and labels.

Example 6

The following example illustrates a HotLine question. There is a lot of coding
behind this question where the MathML for any number of scenarios is coded
and one is chosen at random for presentation. Thus the mistake can occur in
any (or no) line, and any line can have any one of several mistakes. Once a
mistake has been made, the rest of the display is consistent with this mistake.
Obviously each scenario has its own feedback. Finally the name (Lottie in this
case) is selected from a list of either male or female names with the correct
ethnic mix for 16-25 year olds in the UK taken from the last census data.

Conclusion

The open code nature of Question Mark Perception means that its
functionality can be considerably extended both in the question QML coding
and in the provision of Javascript functions that are available to all questions.
Given that one generates typically thousands or even millions of realisations
for each question style, the trade-off between ease of use of the standard
Perception question wizard and functionality presented here seems, at least
for objective questions with significant mathematics, to be heavily in favour of
the present approach. It is hoped to export these ideas and much of the
coding to other subject areas and other CAA systems.

References

1. Nichols D & Greenhow M (2002) “Using Question Mark Perception v3 for
testing mathematics” MSOR Connections Volume 2, Number 3: Aug.

 Available on http://ltsn.mathstore.ac.uk/newsletter/vol2.shtml#no3
2. Nichols D, Gill M & Greenhow M (2003) “Pedagogic issues in setting

online questions” MSOR Connections Volume 3, Number 4: Nov.
Available on http://ltsn.mathstore.ac.uk/newsletter/vol4.shtml#no4

