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Development of a lightweight library 
catalogue 
Jason Cooper describes how a lightweight temporary library catalogue system was constructed 
when Loughborough University opened their second campus in London. 

In 2014 Loughborough University launched Loughborough University London, a 
postgraduate campus located in London. Until this point Loughborough University's Library 
[1] had been single site, so there were a number of factors to take into account to decide on 
the best way cater for the second site, including: 

● Size - the London campus library was significantly smaller than the Loughborough 
campus library 

● Shared online resources - the majority of online Library resources were accessible to 
users at either campus 

● Complexity of switching the Library Management System (LMS) to a multi-site 
configuration - Moving the LMS from a single-site configuration to a multi-site 
configuration would require a lot of time and resources 

● Upcoming replacement of LMS - The Library’s LMS (Ex Libris’s Aleph [2]) had 
recently been reviewed and a project was being prepared to tender for a replacement 

After weighing up the factors, it was decided that the best time to move to a multi-site setup 
of the LMS would be as part of the upcoming replacement of the LMS. Most of the Library 
services would work at an acceptable level of service by placing London campus specific 
resources in their own collection, the main exception being the Library’s Resource Discovery 
Service (Primo [3]). 

Adapting the Library's existing instance of Primo to have a second interface for the London 
campus would have required extensive configuration changes, which could have impacted 
severely on Loughborough students. It was decided that while access to Primo would be 
available to patrons based at the London campus for activities like checking and renewing 
current loans, it would also be beneficial to provide them with a lightweight online catalogue 
for finding London based and online resources (Databases, E-Journals, etc). 

Catalogue requirements 
The following were drawn up as the key requirements of the system: 

● It should allow the user to search for items either physically located at the London 
campus or available as an e-books collection 



● It should list the results of a search with the core details of the items, but allow the 
user to click on an item to get a popup with more details 

● Both the search results and the popup should include thumbnail images of the items 

● It should have a form that can be used by the London campus users to request items 
from the larger Loughborough campus library 

● It should provide access to a number of key Library websites 

● It should work on multiple types of devices, from the smaller smart-phone size 
screens all the way up to the large screen sizes available on desktop PCs 

● It should be able to detect that it's running on a dedicated OPAC machine and 
disable functionality to suit 

Design decisions 
The team responsible for developing the system would traditionally have used a relational 
database (usually MySQL [4]), but a quick design of a schema showed that not only would 
the schema required be complex, but that it would also require complex SQL queries for 
searching items. It was decided that instead of using a relational database engine that the 
system would be built upon a Document Store NoSQL database engine [5], as this was what 
the relational database schema being designed was effectively turning into. 

The NoSQL database engine chosen was MongoDB [6], which uses a Document Store 
model and has full text indexes that can cover multiple fields and a natural search syntax, 
that would vastly simplify the searching routines. While the team had played with MongoDB 
in the past this would be their first real project using it. 

The next decision the development team made was how to structure the web interface part 
of the system. The two choices available were 

● Server side page generation (e.g. CGI scripts) 

● Client side AJAX style, where a JavaScript front-end makes requests to a back-end 
API 

The decision to use a Client side AJAX style structure was chosen as this would reduce the 
load on the server and also provide a more fluid interface to the user. The development team 
had successfully used this structure in a number of projects [7, 8, 9] and found it to be very 
comfortable to work with. 

The two options available to the development team to tackle the requirement that it should 
work on a range of devices from smart-phones to desktops were: 

● Device detection 

● Responsive web design 



The team chose to use responsive web design [10] as it was felt to be easier to maintain 
going forward due to it separating the display logic from the application logic. 

Development 

Schema structure 
Designing the initial schema for the MongoDB database turned out to be very simple 
requiring a single collection for items to which indexes were applied on the following fields: 

● System number 

● Title 

● ISBN 

● ISSN 

● Author 

● Collection 

In addition to those indexes, a text index was applied that covered the title and author fields. 

Harvesting items from the LMS 
Having designed the initial schema the next step was to develop the script that would update 
the MongoDB collection from the LMS. After investigating both Aleph's REST API [11] and 
X-Server [12] it was decided that the REST API was simpler to use and returned the results 
faster. Unfortunately neither the REST API or X-Server provided an easy way to extract all 
items in a specific collection. As the development team already have a lot of experience with 
Aleph's underlying database it was decided that the simplest way to proceed would be to 
create an API, in the form of a CGI script, which given a collection code would return all the 
system numbers of items in those collections. 

A script was then developed that, for each collection to be harvested, calls the custom API to 
retrieve the system numbers of items in that collection. Then for each system number it calls 
the LMS's REST API to pull back the full item's metadata, which it would create a document 
object from and “upsert” it into the MongoDB item collection. An upsert in MongoDB is where 
you specify the document should replace an existing one if it matches a field or expression 
(in our case the item's system number), if the specified field or expression doesn't match any 
existing items then it will be added. 

The harvesting script was scheduled to run each night to update the items collection in the 
MongoDB database. 



Creating the search API 
Once the harvesting of item records from the LMS was complete, attention was turned to 
developing an API that the front-end would use to find relevant items. The API was 
developed in Perl[13] and consists of two stages: 

1. Parsing the search query to produce a suitable MongoDB query filter 

2. Using the query filter to extract the suitable results from the database 

Producing the MongoDB query filter 
In Perl a MongoDB query filter is a hash reference with nested hash and array references. 
An example of a query filter produced for a search for "track" in the E-Book collection 
(collection code EB) would be: 

{ 
    '$and' => [ 
        { 'collection' => 'EB' }, 
        { 
            '$text' => { 
                '$search' => 'track', 
                '$language' => 'en' 
            }, 
        }, 
    ], 
} 
 
The keys starting with a `$` are query operators, so the `$and` in the example states that 
we're looking for items that have a collection of 'EB' and that match our `$text` search. 

The `$text` operator specifies a text search against the collection's text index. In the example 
we're using the `$search` and `$language` parameters, where the `$search` parameter is the 
search terms being looked for and `$language` is used to control the stopwords and 
stemming properties of the search. 

In addition to the `$search` and `$language` parameters the `$text` operator can also take 
the `$caseSensitive` and `$diacriticSensitive` parameters, where `$caseSensitive` indicates 
whether the search should be case sensitive and `$diacriticSensitive` indicates whether the 
search should consider characters with diacritical marks as being the same as their 
non-marked counterpart. 

Constructing a suitable query filter in the API is quite simple as the only two values that differ 
between searches are the collection value and the `$search` value. 



Developing the front-end. 
Once the search API was complete development of the front-end could start. The design 
was kept simple and the page was split into three parts, a header, a footer and a list of 
results (Figure 1 shows a screenshot of the final front-end design). 

 

Figure 1: Final front end design 

The header 
The header contains the following 

● a logo 

● search options 

○ which category to search 

○ the search box that the user can enter their search terms into 

○ the search button, which initiates a search 



● a help button that shows a popup box containing help on using the system including 
detailing the more advanced search terms available. 

● links to the following additional Library resources: 

○ Library website 

○ Reading Lists (LORLS [14]) 

○ E-Journals A-Z (SFX [15]) 

○ Item Request form 

○ Library Account (a deep link into Primo) 

● a dropdown list that lets users order their results by relevance, title, order or date 

The results list 
Once the user has done a search the results list contains all the results found. For each 
result the following metadata is displayed: 

● Title 

● Author 

● Date 

● ISBN 

● Imprint 

● Shelf Mark 

● Notes 

● URL (rendered as an active link to the resource) 

Where available a thumbnail of the item's cover from Google Books [16] is displayed 
alongside its metadata. The thumbnail is linked to the item's entry on Google Books. 

The footer 
The footer simply contains a mailto link that users can use to email the Library. 

Responsive web design 
The responsive nature of the front-end interface is handled via the CSS [17] stylesheet using 
`@media` rules. Each `@media` rule used is tied to the width of the screen, so as the screen 
width drops below certain widths how elements are displayed changes. The actual changes 
required to keep the system usable on smaller screens are: 



● below a width of 880 pixels the logo in the header is hidden 

● below a width of 600 pixels some font sizes and padding are reduced to make the 
most use of the limited screen space 

● below a width of 520 pixels the font sizes in the header are reduced again and the 
size of the search box and related options are altered to fit better on a smaller screen 
(Figure 2 shows an example of the screen at this width) 

 

Figure 2: Example of screen at 520 pixels wide. 

Detecting when running in a dedicated Catalogue PC and 
disabling specific options. 
The final feature needed to meet the initial requirements was that it should be able to detect 
when it was running on a dedicated catalogue machine and disable certain features. As the 
Library control the dedicated catalogue machines they are able to set its browser's 
useragent string to specific value. When the front-end javaScript detects that the page is 



being viewed in a browser using this useragent string it makes two changes to the Document 
Object Model [18]. 

● it removes the target attribute for the reading list menu entry (which means it will load 
the reading list in the same window) 

● it adds a class of onOPAC to the pages body tag 

All other changes required are handled by the page's CSS, specifically: 

● all links in the header that would open in a new window are hidden 

● the mailto link in the footer is hidden 

● all links in results list are disabled by setting their `pointer-events` property to `none` 

Going live 
The lightweight library catalogue went live at the same time that the London campus opened 
and required very little maintenance. The system met the majority of the expectations of 
students and staff. The only significant feature missing was the ability to display the current 
availability of print items in the London campus library. 

Phase 2 
After the system had been in use by the London campus library for a year it had become 
apparent that the project to tender for a replacement LMS was going to take longer than 
originally thought, so it was decided to extend the lightweight catalogue by adding two new 
features: 

● a new collection of career resources 

● displaying current availability of items 

Adding a new collection 
Adding a new collection was really a couple of minor changes. The first was to extend the 
Custom API on the LMS to include the system numbers of new items in its results. The 
second was to add the new collection to the front-end by adding another `option` element to 
the `select` element of the search form. 

Displaying current availability of items 
Adding the current availability of items in the result list was a bit more indepth than adding 
the new collection. The back-end would require a new API adding for retrieving the current 



availability of items and the front-end would need extending to make use of the new 
availability API and display the item availability alongside their entry in the search results. 

The new backend API developed takes a list of system numbers and then for each one call 
the LMS's REST API to pull back a list of all the items for that system number along with 
their collection, loan type (e.g. week loan, month loan) and current availability status. Items 
statuses that weren't in a suitable collection for the London Campus were discarded. This left 
only relevant items from which the total number of items and the total number of available 
items could be calculated for each loan type. 

The extension of the front-end to make use of the new API required additional code to be 
added to the javaScript routine which displayed the results list. As each result is displayed 
this new code checks to see if the result is from a collection that it should show the current 
availability status for (i.e. not the E-Books collection) and if so then it adds an empty field to 
be populated with the item’s availability later, it also adds the results system number to an 
array. 

Once all results have been displayed, the populate availability function is called with the 
array of system numbers. If the array has contents then the array is concatenated together 
and used to make an AJAX call to the back-end's availability API and then uses the 
response to populate the empty fields added earlier with the current availability information 
for each result. 

Conclusion 
The lightweight online catalogue has been in active use by the London Campus since it 
opened in 2014. During this period there have been very few bugs reported, all of which 
have been minor. 

Even though it was the first time the team had used MongoDB in a production service they 
found that using a NoSQL document store at the heart of the back-end reduced the 
development times for this style of system and simplifying the logic required in the search 
API. 

The team also found that the use of `@media` rules to provide a responsive site helped keep 
the layout logic separate from the content being displayed. 
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