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Abstract 

This thesis revisits the issue of business cycle synchronisation in the euro area by 
utilising time-series models that may overcome some of the drawbacks in the existing 
literature. Two major contributions are made to the existing literature of evaluating 
cycle synchronisation. 

First, instead of identifying turning points from individual macroeconomic time­
series, as carried out in most studies, this thesis obtains turning points from multivariate 
infonuation. It is hoped that including more variables containing business cycle 
infonuation in the dating process may produce more accurate turning points and, in turn, 
improve the accuracy of measuring cycle correlation. In doing so, both parametric and 
non-parametric business cycle dating procedures are used. These include the quarterly 
Bry-Boschan (BBQ) algorithm, a single dynamic factor model and the Markov­
switching dynamic factor model. 

Second, unlike the traditional approach that measures growth cycle synchronisation 
in the euro area by calculating pairwise cycle correlations, this thesis analyses the 
degree of growth cycle comovement within a multivariate setting by using a V AR 
model with cointegration. The advantages of this approach are two-fold. Firstly, it does 
not require prior filtering or decomposition of data. Secondly, as it is based on a V AR, 
dynamic interactions between the variables can be modelled. The common trends and 
cycles in the output of seven major euro area countries are investigated. A number of 
hypotheses on various types of commonlcodependent cycles among the seven national 
GDP series are tested using canonical correlation-based tests, GMM and likelihood ratio 
statistics. The number of commonlcodependent cycles indicates the level of growth 
cycle synchronisation. The multivariate Beveridge-Nelson (BN) decomposition with 
common trend and cycle restrictions imposed are then utilised to provide a detailed 
investigation ofthe trend and cyclical movements in the output series. 

Overall, the results obtained from measuring business cycle and growth cycle 
synchronisation in the euro area contradict the Optimum Currency Area (OCA) criterion 
that members of a monetary union should share a high degree of cycle synchronisation. 
Furthermore, variations in economic perfonnance are observed across the euro area, 
which may lead to diverging monetary policy requirements, and may consequently 
reduce the appropriateness of having a common monetary policy. 

Parts of the thesis also focuses on the euro area wide economy by looking at three 
issues concerning the aggregate euro area output gap using the multivariate unobserved 
components model. The reliability of the different output gap measures obtained from 
various unobserved components models is assess according to three criteria: the size of 
subsequent revisions to the data, the unbiasedness of the filtered estimates, and inflation 
forecasting. Results show that the models with the damped slope output trend imposed 
provide the best fit to the data and give relatively reliable output gap estimates. These 
models are then used to analyse the degree of business cycle moderation and the impact 
that changes in real interest rates have on output and inflation. 

JEL classification: C32; C52; E32, E52. 

Keywords: Synchronisation; Turning points; Markov-switching; Common factor; 
Common cycle; Codependent cycle; The output gap; Unobserved components; State­
space model; Augmented Kahnan filter. 
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Introduction 

Economic and monetary union (EMU) in Europe has resulted in an increase in research 

into business cycle synchronisation at both the national and regional level. It has been 

argued by Optimum Currency Area (OCA) theory that a high degree of business cycle 

synchronisation between member states is crucial for the smooth functioning of the 

EMU. As the EMU permanently removes national monetary and exchange 

independence and constrains the use of national fiscal policy, as set out in the Stability 

and Growth Pact (SGP), a common monetary policy acts to stabilise output fluctuations 

and inflation rates in the euro area as a whole. Highly synchronised national business 

cycles will facilitate the implementation of monetary policy, as the stance and timing of 

a common policy can be clearly defined. However, de-synchronisation will complicate 

the operation of the EMU, as countries in different phases of their business cycle have 

different monetary requirements. Business cycle synchronisation is not static and 

instead is evolving over time. As such, the endogenous OCA theory argues that the 

EMU may by itself spur the emergence of a common euro area business cycle due to 

economic and financial integration and more coordinated policies. However, the 

"Krugman hypothesis" holds the opposite view that the EMU will lead to cross-country 

specialisation and therefore less synchronisation. 

Since evaluating business cycle synchronisation is mainly an empirical issue, a large 

number of studies have been undertaken to measure the degree of business cycle 

synchronisation in the euro area. These studies can be broadly divided into two groups, 

according to whether the aim is to evaluate the synchronisation of classical cycles or 

b'fowth cycles. Considerably more studies focus on growth cycles than classical cycles. 

This is, in part, because when growth cycles are separated from trend growth they are 

stationary series, and most measures of synchronisation require stationary series as 

inputs. However, disagreement remains over how the trend should be identified and 

estimated. A range of parametric and non-parametric approaches, such as various 

structural time-series models and the Hodrick-Prescott (HP) and band-pass filters, are 

extensively applied to macroeconomic variables to obtain their trend and cyclical 

components. However, the estimated cyclical components vary depending on the 
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decomposition methodologies used (Canova, 1998). TIlis may, in turn, give mixed 

results when measuring cycle correlations. The second group of studies avoid trend and 

cycle decomposition and define classical cycles in terms of turning points of the original 

data series. Two fundamentally different approaches, the Markov-switching model and 

variants of the Bry and Boschan (1971) algorithm, are widely used in the literature to 

date turning points. The pros and cons of these approaches are discussed in Harding 

and Pagan (2003) and Hamilton (2003). In addition, the use of different measures of 

synchronisation contributes to the mixed results on cycle correlation. Different cycle 

measures are used to indicate the degree of business cycle synchronisation, including 

the bivariate correlation coefficient (Artis and Zhang, 1997, 1999), an aggregated 

correlation coefficient (Camacho et al., 2006), a dispersion measure proposed by Artis, 

MarceIlino and Proeitti (2004a), the various concordance indices in Harding and Pagan 

(2002), and so on. Furthermore, in addition to the different methodologies used to 

identify business cycles and various measures of synchronisation, the choice of 

economic variables can also have a significant impact on the conclusions drawn when 

measuring cycle synchronisation. The literature survey presented in Chapter 1 

concludes that there is no consensus on whether business cycle synchronisation in the 

euro area has reached a level where a common monetary policy can benefit all member 

states. There is also no consensus on whether fixed exchange rates or the introduction 

of the euro have had an effect on increasing cycle synchronisation. 

This thesis revisits the issue of business cycle synchronisation in the euro area by 

bringing time-series models that may overcome some of the drawbacks in the existing 

literature of evaluating cycle synchronisation. Two major contributions are made to the 

existing literature of evaluating cycle synchronisation. First, most studies, including 

Harding and Pagan (2002), Gamier (2003) and Artis, Marcellino and Proietti (2004a), 

measure classical cycle synchronisation using turning points identified from individual 

macroeconomic series, such as industrial production and real GDP. However, analysing 

univariate economic variables is not optimal for dating business cycle turning points. 

This is not only because there is no variable that can well represent aggregate economic 

activity, but also because the comovement of many economic variables throughout the 

cycle cannot be analysed in a univariate framework. Therefore, Chapters 2 and 3 

employ the alternative dynamic factor (DF) models, proposed by Stock and Watson 

(1989, 1991, 1993) and Diebold and Rudebusch (1996), to construct a composite index 
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that is a weighted average of a number of coincident macroeconomic variables. It is 

hoped that including more relevant variables may produce more accurate turning points 

and, in turn, improve the accuracy of measuring cycle correlation. 

Second, most studies of growth cycle synchronisation in the euro area have calculated 

the correlation between each pair of estimated cycles. Univariate trend-cycle 

decomposition methodologies, such as the HP and band-pass filters, are extensively 

used to extract cycles from industrial production, real GDP or expenditure categories of 

GDP. These filters are known to produce spurious cycles for non-stationary data and, 

as such, the results are sensitive to the decomposition methodology used (Canova, 1988; 

Cogley and Nason, 1995; Murray 2003; Doom, 2006). To overcome this issue, Chapter 

4 evaluates the degree of growth cycle synchronisation using a multivariate framework 

which does not require prior filtering or decomposition of the GDP series. The common 

trends and cycles in the GDP series of seven major EMU countries are investigated. A 

number of hypotheses on various types of common cycles and codependent cycles are 

tested using canonical correlation-based tests, Generalised method of moments (GMM) 

and likelihood ratio statistics (Vahid and Engle, 1993, 1997; Hecq et al. 2000, 2006; 

Schleicher, 2007). The number of common and codependent cycles between countries 

provides an indication of the level of growth cycle synchronisation. Furthermore, 

Chapter 4 employs the multivariate Beveridge-Nelson decomposition with common 

trend and cycle restrictions proposed by Proietti (1997) and Hecq et al. (2000) to 

decompose the seven GDP series into their trend and cyclical components 

simultaneously. The advantages of this decomposition are two-fold. Firstly, dynamic 

interactions between the variables can be modelled, as the technique is based on a V AR. 

Secondly, if common feature restrictions are imposed correctly, tlle estimation 

efficiency and forecasting ability of a model will improve. Comparing out-of-sample 

forecasting perfonnance across different models suggests that more parsimonious 

models, with additional common cycle restrictions imposed, outperform the less 

restricted model, with only common trend restrictions imposed, by producing smaller 

forecast errors. 

The outline of the thesis is as follows. Chapter I first reviews the methodologies used 

to date classical cycles and to identify trends and cycles in macroeconomic variables, as 

these are the foundations for any business cycle related analysis. Various measures of 
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synchronisation are then discussed, rangmg from simple correlation coefficients to 

complex model-based approaches. Finally, Chapter I takes stock of the existing 

literature on evaluating business cycle and growth cycle synchronisation between 

previous members of the Exchange Rate Mechanism (ERM) and members of the EMU. 

The main objective of Chapter I is to identify avenues of research that have not been 

sufficiently explored in the existing literature. 

The empirical analysis of this thesis begins in Chapter 2 and ends in Chapter 5. 

Chapters 2, 3 and 4 evaluate the synchronisation of classical cycles and growth cycles 

among EMU member states. Chapter 5 focuses on the euro area economy as a whole by 

analysing three aspects ofthe aggregate euro area output gap. 

In particular, Chapter 2 evaluates the degree of business cycle synchronisation between 

the aggregate euro area and its member countries from the 1970s to the 2000s. Three 

non-EMU countries (the UK, the US and Canada) are also included in the analysis so as 

to benchmark the changes of synchronisation that have occurred in the euro area. 

Instead of using individual economic variables to represent aggregate economic activity, 

Stock and Watson's (1989, 1991, 1993) single DF model is applied to four quarterly 

coincident macroeconomic variables, including real GDP, industrial production and 

unemployment, to estimate a composite index. Business cycle turning points of this 

index can then be identified using Harding and Pagan's (2000, 2001, 2002) BBQ 

algorithm. The concordance of turning points and the similarity of business cycle 

phases are used to measure the degree of synchronisation. Overall, Chapter 2 does not 

find a common tendency for euro area members to become either more or less 

synchronised over time. Furthermore, variations in economic performance observed 

across the euro area may lead to diverging monetary policy requirements and, 

consequently, reduce the appropriateness of having a common monetary policy for all 

members. 

Chapter 3 employs Diebold and Rudebusch's (1996) Markov-switching dynamic factor 

(MSDF) model, based on Kim's (1994) approximate maximum likelihood estimation, to 

date business cycle turning points for the same countries that were analysed in Chapter 

2. The MSDF model combines Stock and Watson's single DF model and Hamilton'S 

(1989) univariate Markov-switching model, and can thus incorporate two stylised facts 

4 
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of the business cycle; the comovement of economic variables throughout the cycle and 

the asymmetry between business cycle phases. Compared to the dating procedure used 

in Chapter 3, the MSDF model produces a composite index as well as smoothed regime 

probabilities to indicate business cycle tuming points. This model has been extensively 

applied to US data (Kim and Yoo, 1995; Chauvet, 1998; Kim and Nelson, 1999c), but 

less often applied to the euro area countries. l The results obtained in Chapter 3 indicate 

that the MSDF model is more successful in distinguishing different regimes for larger 

economics (i.e., Germany, France and the US) whose business cycle phases were of 

roughly constant magnitudes over the sample periods analysed. However, Belgium, 

Italy and the Netherlands show greater volatility during the 1970s and early 1980s than 

in more recent years. MSDF models which lack a mechanism to account for business 

cycle moderation fail to produce reasonable parameter estimates and smoothed regime 

probabilities for these countries. Therefore, structural breaks are introduced to the 

intercepts of the MSDF model to reduce the impact that large recessionary and 

expansionary phases have on the model's parameter estimates. 

Chapter 4 investigates growth cycle synchronisation in seven major euro area countries, 

Austria, Belgium, France, Germany, Italy, the Netherlands and Spain, during the period 

1980Ql to 2007Q3. Two univariate structural time-series models, the Beveridge­

Nelson (1981) decomposition and Harvey and Trimbur's (2003) unobserved component 

model, are first used to identify the trend and cyclical components for each GDP series. 

The two approaches yield starkly different results. This confirms the argument in 

Canova (1998) that the use of different trend-cycle decomposition methodologies may 

influence the results obtained. The main focus of Chapter 4 is to evaluate 

synchronisation using a multivariate approach that identifies the number of common 

trends and cycles in the seven national GDP series. The number of common trends, as 

detennined by ]ohansen's (1995) cointegration test, constrains the maximum number of 

common and codependent cycles in the seven GDP series. Adhering to these 

constraints, the presence of three types of common cycles (i.e., strong, weak and mixed 

forms) and codependent cycles are examined. The multivariate EN decomposition with 

common trend and common cycle restrictions imposed is then used to analyse the trend 

I Chauvet and Yu (2006) proposed a MSDF model with a filter thal minimises the occurrence of false 
turning points. They applied this modified MSDF to both the aggregate measures of G7 and OEeD 
countries and individual G7 countries including Gemlany, France and Italy. 
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and cyclical movements in the GDP series. The relative importance of pennanent and 

transitory shocks to the variance of total output is assessed using the forecast error 

variance decomposition proposed by Issler and Vahid (2001). The results indicate that, 

in the short-term, the majority of the output variance can be attributed to cyclical 

fluctuations rather than the trend components. Over longer time periods it is the trend 

components of output that explain the majority of output fluctuations. 

Chapter 5 analyses the output gap for the EMU as a whole by looking at the reliability 

of output gap estimates, the degree of business cycle moderation and the effectiveness 

of monetary policy transmission through the interest rate channel. The output gap, as a 

proxy of excess demand, is widely used but is notoriously difficult to measure as it is a 

latent variable. Estimates of the output gap can vary significantly depending on the 

decomposition methodology used. Therefore, it is important to set up criteria to judge 

which model provides the most reliable output gap estimate. Chapter 5 compares the 

reliability of various output gap estimates obtained from multivariate unobserved 

components models that incorporate output decomposition with other economic 

variables carrying relevant business cycle information, such as the inflation rate and the 

unemployment rate. A bivariate model of output and inflation and a trivariate model of 

output, inflation and unemployment are estimated. Both models are imposed with four 

alternative output trend specifications: damped slope (DS), local linear trend (LLT), 

random walk (RW) and the Hodrick-Prescott (HP) trend. Estimates of the output gap 

are assessed against three criteria; the size of subsequent revisions to the data, the 

unbiasedness of the filtered estimates, and inflation forecasting. The results show that 

the bivariate model of output and inflation outperforms the univariate model of output 

decomposition. However, including the unemployment rate in the analysis does not 

significantly improve output gap estimates according to the three criteria used. 

Different specifications of output trend can have a significant impact on both a model's 

goodness of fit and the reliability of its output gap estimates. The bivariate and 

trivariate models with the DS output trend imposed provide the best fit to the data and 

give relatively reliable output gap estimates. However, models with the HP restrictions 

imposed are strongly rejected due to strong auto correlation in the residuals. The 

bivariate and trivariate models with the DS output trend imposed are found to be the 

most appropriate specifications in the analysis. These models are then used to 
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investigate business cycle moderation and the effectiveness of the interest rate charmel 

for the euro area. 

Finally, the Epilogue concludes this thesis, drawing together the research from the 

substantive chapters. Further research prospects are also illustrated. This thesis mainly 

aims to improve the existing literature on evaluating euro area cycle synchronisation by 

applying time-series models that may overcome some of the drawbacks in the existing 

literature. The responsiveness of the output gap and inflation rates to changes in real 

interest rates are also assessed for the euro area wide economy by using the most 

appropriate unobserved components models in the analysis. 
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Chapter 1 - A Survey of the Literature 

1.1 Introduction 

The optimality and sustainability of EMU has been frequently challenged by both 

academics and policymakers. Since monetary integration permanently removed 

national monetary independence, member states are unable to use monetary policy to 

protect themselves from asymmetric shocks. Given the rigidities observed in most 

European labour markets, a greater use of national fiscal policy is required to 

compensate for this lack of national monetary instruments. However, within EMU, the 

use of fiscal policies is also constrained by the Stability and Growth Pact (SGPi. As 

such, there remains a concern as to whether a common monetary policy can stabilise 

output fluctuations and inflation rates for the euro area as a whole. 

Optimal Currency Area (OCA) theory is frequently used to provide a theoretical 

foundation for analysing the suitability of a currency union formed by a group of 

sovereign countries who forego monetary and exchange rate independence. The theory 

of OeA, which was established by Mundell (1961), McKinnon (1963) and Kenen 

(1969), defines conditions and properties under which a currency union can operate 

smoothly. One key criterion highlighted in the OCA theory is that member countries 

should share a high degree of business cycle synchronisation to ensure that a common 

monetary policy can stabilise area wide economic fluctuations and inflation.} Divergent 

business cycles across members of a monetary union will lead to different monetary 

requirements. For example, a country in the downward phase of its business cycle 

would require an expansionary monetary policy to stimulate economic growth, whereas 

a country in the upward phase of its cycle would prefer tighter monetary policy to 

2 The SGP was adopted in 1997 and requires that national government budget deficits are not higher than 
3% ofGDP and that national govermnent debt should be lower than 60% ofGDP. 
3 Other criteria proposed in the OCA theory include labour mobility (Mundell, 1961). economic openness 
(McKinnon, 1963), industrial diversification (Kenen, 1969), price and wage flexibility (Fleming, 1971, 
Corden, 1972), inflation rate similarity (Haberler, 1970; Fleming, 1971; Ishiyama, 1975) and fiscal and 
political integration (Raberler, 1970; Mintz, 1970; Tower and Willett, 1976; Cukierman et aI., 1992). It is 
widely accepted that if countries share these properties, their output fluctuations and inflation rates can be 
stabilised through those mechanisms, instead of via national monetary and exchange rate adjustments. 
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prevent the risk of increasing inflation. The establishment of EMU has further 

stimulated the debate surrounding endogenous OCA theory, which states that operating 

in a monetary union helps member countries eventually become optimal members of 

that monetary union even if they were not before (Frankel and Rose, 1998). If this 

theory is true, we would expect EMU by itself will generate a greater degree of business 

cycle synchronisation in member countries. 

Many articles have been written on the issue of whether business cycles in the euro area 

have become more synchronised, as argued by endogenous OCA theory. Theoretical 

arguments in this field remain between endogenous OCA theory (the European 

Commission, 1990; Frankel and Rose, 1998) and the "Krugman hypothesis" (Krugman 

and Venables, 1993). The former suggests that the operation of monetary union should 

generate synchronised cycle comovements between members due to greater trade 

intensity and financial market integration. However, the latter argues that cycle 

divergence might occur as the result of further economic integration. This is based on 

trade theory and economies of scale and agglomeration effects. As further integration 

may induce greater specialisation, sector-specific shocks may eventually become 

region-specific shocks, causing diverging business cycles in the European countries. 

Given different theoretical viewpoints, various empirical analyses have been undertaken 

to measure the degree of business cycle synchronisation in the euro area, but no 

consensus has been reached. Differences in the results can be attributed to the use of 

various macroeconomic variables over different sample periods and different 

methodologies to identifY business cycles and measure cycle synchronisation. It is 

worth noting that another strand of empirical studies attempts to identifY the potential 

determinants of cyclical convergence. Many factors have been suggested that may 

drive business cycle synchronisation. These include international trade, financial 

market integration, exchange rate regimes, teclmology spillovers, and economic 

structures. However, it is fair to say that no agreement has yet been reached on this 

issue either. 

As the main focus of this thesis is to provide business cycle measures and to evaluate 

the degree of cycle synchronisation in the euro area, this chapter provides a review of 

the literature on dating classical cycle turning points and modelling trends and cycles in 
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macroeconomic time-series. This is essential since, before any empirical analysis of 

business cycles can take place, economists need to define both what is meant by the 

tenn 'business cycle' and how business cycle infonnation can be identified from 

historical data. Studies measuring euro area business cycle synchronisation are also 

surveyed in this chapter. 

The remainder of this chapter is organised as follows. Section 1.2 discusses two broad 

definitions of business cycles. Models used to identify business cycle turning points are 

reviewed in Section 1.3. Section 1.4 outlines the main trend and cycle decomposition 

methodologies for growth cycle studies. Section 1.5 discusses measures of 

synchronisation. The main findings in the literature of business cycle and growth cycle 

synchronisation in the euro area are summarised in section 1.6. Section 1.7 concludes. 

1.2 Classical business cycles and growth cycles 

A distinction has to be made between (classical) business cycles and growth (deviation) 

cycles. The empirical analysis of business cycles has a long intellectual history. The 

conventional tec1mique used to identify business cycles was developed by researchers at 

the National Bureau of Economic Research (NBER) (Mitchell, 1927; Bums and 

Mitchell, 1938; Bums and Mitchell, 1946). In the influential study by Bums and 

Mitchell (1946), the following definition of the business cycle is proposed: 

A cycle consists of expansions occurring at about the same time in many economic 

activities followed by similarly general recessions, contractions, and revivals which 

merge into the expansion phase of the next business cycle; This sequence of changes is 

recurrent but not periodic; in duration business cycles valTfrom more than one year to 

ten or twelve years; They are not divisible into shorter cycles of similar character with 

amplitudes approximating their own (Burns and Mitchell, 1946, P. 3). 

This definition explains what constitutes a business eycle and the duration of a cycle. 

However, questions remain over how to identify business cycle turning points from 

historical data, how to quantify the co-movement of a specific time-series with the 

aggregate business cycle fluctuations, and what are the most appropriate economic 
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variables to use in identifying the business cycle. Given the definition quoted above, 

the NBER business cycle dating committee produced a set of statistical measures, 

known as specific cycles and reference cycles, to identify the US business cycle turning 

points from movements in output, income, employment and trade volumes. The periods 

of expansions and recessions can be highlighted once turning points are identified. A 

peak indicates the end of an expansion and the beginning of a recession, and vice versa 

for a trough. Recessions are the periods of absolute declines in output and other 

measures of economic activity. Recessions are characterised with the so-called 'three 

Ds" which denotes that a recession should be sufficiently long (duration), involve a 

substantial decline in economic activity (depth), and be spread widely across the 

economy (diffusion). However, the NBER business cycle dating approach is often 

criticised due to its lack of theoretical foundation (Koopmans, 1947). 

Unlike the conventional business cycle definition outlined above, more recent studies 

have analysed fluctuations in economic time-series around their long-run trend growth. 

Deviations from the long-run trend are defined as the growth cycle (the output gap). In 

this context, expansions and recessions are periods of increasing and decreasing growth 

(Zarnowitz, 1985). Compared to business cycle phases, where the average recession is 

considerably shorter than expansions due to underlying trend growth, growth 

expansions and recessions have approximately the same duration. The growth cycle is 

usually considered to be an indicator of inflationary pressures. As central banks' main 

objective is to keep inflation stable, knowing the ~,'rowth cycle provides them with 

important information on the build-up of inflationary pressures in the economy. 

In contrast to the 'measurement without theory' statistical methods used to analyse the 

business cycle, growth cycle studies are directly derived from business cycle theories. 

The debate as to whether fluctuations in macroeconomic time-series are dominated by 

short-term cyclical fluctuations or long-term trend growth has profound methodological 

implications. Both traditional Keynesian and Monetarist theories hold the view that 

fluctuations in output are driven by demand shocks, and are temporary deviations from 

potential output growth. This view is the foundation for traditional trend-cycle 

decomposition methodologies, which use linear or polynomial deterministic regression 

equations to eliminate the trend component in a series. However, the use of a linear 

time trend is challenged by Klein and Kosobud (1961), as it seems implausible that 
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economic growth can be well approximated by a constant deterministic trend given the 

presence of structural changes, varying rates of production factor accumulation and 

technical innovations. It is therefore reasonable to consider breaks in the trend or even 

period-by-period random or stochastic trends. The presence of trend variability is 

supported by Granger (1966), who shows that the typical spectral shape of a 

macroeconomic series is monotonically decreasing, implying that fluctuations in a 

series are dominated by very low frequency components (the trend component), rather 

than business cycle frequency components. Furthennore, Beveridge and Nelson (1981) 

and Nelson and Plosser (1982) initiated the debate on whether macroeconomic time­

series are trend-stationary (TS) or difference-stationary (DS). Beveridge and Nelson 

(1981) propose a trend-cycle decomposition methodology by assuming that the 

decomposed series is generated by a DS process. Nelson and Plosser (1982) employ the 

Dickey-Fuller (1979) test to examine whether a set of US macroeconomic time-series 

are indeed TS or DS, and find the evidence favours the latter. This study was followed 

by Campbell and Mankiw (I 987a, b) and Stock and Watson (1988a), who all support 

the view that output is best modelled as a DS process. The presence of stochastic trends 

confirms the finding of Granger (1966) that fluctuations in macroeconomic time-series 

are mainly attributed to fluctuations of the long-term trend. More importantly, this 

result supports the Real Business Cycle (RBC) theory over traditional Keynesian and 

Monetarist theories, as the transitory (monetary) shocks aTe considered to be less 

important in determining the movement of the series than permanent shocks. However, 

not all researchers are convinced by the stochastic trend view of macroeconomic 

dynamics. Rudebusch (1992) and DeJong and Whiteman (1991), who re-examine this 

issue by applying alternative techniques to the Nelson and Plosser data set, conclude 

that the failure to reject the null hypothesis of DS against the alternative of TS is due to 

the low power of the conventional intef,rration tests.4 In addition, Perron (1989) shows 

that the DS hypothesis may be rejected if the trend is modelled as a nonlinear function 

of time, where shifts in the deterministic trend are caused by infrequent permanent 

shocks. 

4 Rudebusch (1992) calculates small-sample distributions for various unit root test statistics and concludes 
that the unit root tests often fail to distinguish between DS and TS. This finding is consistent with 
DeJong and Whiteman (1991), who adopt a Bayesian perspective to identify the priors needed for the DS 
and TS representations and find that for most macroeconomic series the TS hypothesis is general1y 
supported. 
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Controversy also remains over whether the trend and cycle components are correlated. 

Separation of trend and cycle components is only justifiable if one can clearly 

distinguish between the factors determining long-run growth and those determining 

cyclical fluctuations. The RBC theory attempts to remove the dichotomy between trend 

and cycle, as it suggests that long-run economic growth and short-run cyclical 

fluctuations are accounted for by the same productivity shock. On the other hand, the 

trend-cycle dichotomy is supported by most Keynesian and rational expectation models. 

For example, sophisticated Keynesian macroeconomic models, such as the Fair model 

(Fair, 1994), incorporate a production function to model output trend growth. In 

addition, rational expectations with misperception models, such as Lucas (1973) and 

Okun (1980), have monetary impulses that move output temporarily away from the 

potential trend growth. In these models, aggregate demand shocks are thought to 

temporarily drive the economy from its natural growth rate, while this natural growth 

rate is determined by the capital stock, the labour force and technology in long-run 

equilibrium. 

Given the controversy that remains over the major business cycle theories, various trend 

and cycle decomposition methodologies have been proposed, in which the trend 

components are modelled in either a stochastic or detenninistic manner, and are either 

correlated or uncorrelated with the cycle. In the next section, the major methodologies 

used to identify business cycle turning points are reviewed. Section 1.4 then surveys 

the main techniques used in growth cycle studies. 

1.3 Dating business cycle turning points 

Both parametric and non-parametric methods of dating classical business cycles have 

been proposed in the literature. The most commonly used parametric method is the 

Markov-switching (MS) model popularised by the seminal work of Hamilton (1989, 

1990). The non-parametric approach often refers to the Bry and Boschan (BB) (1971) 

dating algorithm and its quarterly extension developed by Harding and Pagan (2000, 

2001, 2002), known as the BBQ algorithm. A comparison of these two methods has 

been made by Harding and Pagan (2003) and Hamilton (2003). 
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1.3.1 The regime switching models 

In an influential article, Hamilton (1989) developed a Markov-based, regime-switching 

method to model time-series subject to abrupt, non-linear regime changes. He applied a 

two-regime Markov-switching model to US quarterly real GNP growth over the period 

of 1953-1984. Real GNP growth is modelled as an AR (4) process: 

(~r; -jJ',)=~i(~r;oi -jJ,J+~2(t.r;02 -jJ"J+"'+~4(t.r;04 -1'"J+e" (1.1) 

jJ, = I'D (1- SJ + jJi SI' , 

where e, - NID(0,(],2). The idea behind regime-switching is to allow the mean growth 

rate, 1', , to take on different values depending on the latent state variable (denoted as , 

S,). The likelihood of switching from one regime to the other is determined by the 

transition probabilities: 

Pr(S, = IIS,ol = 1) = p, Pr(S, = 0IS,ol = 1) = 1- p, 

Pr(S, = 0IS,ol = 0) = q, Pr(S, = IIS'ol = 0) = 1- q . 

For each regime, the probability rule which govems the likelihood of various 

observations is the nonnal density function, with different mean growth rates for 

recessions and expanSIOns. The normal density function of t.r; based on past 

information is given by 

Therefore, the log likelihood function is 

T 

1nL = L In(r(t.r; IVI,o" SI' S,ol' S,02' S,o.1' S,04 )). 
'=1 
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Maximum likelihood estimation (MLE) provides the parameter estimates 

{,uo,,up 0", p, q} . The MLE parameter estimate of a particular regime mean is the 

sample mean of the series corresponding to the periods when the series was in that 

regime. The parameter estimates of the transition probabilities are given by frequency 

counts of the pattern of known regime switches. The parameter estimates obtained in 

Hamilton (1989) characterise the business cycle in two ways. Firstly, the mean growth 

rate appears negative in recessions and positive in expansions. Secondly, transition 

probabilities indicate that the average duration of recessions is much shorter than 

expansions. More importantly, he obtains a time-series of recession probabilities. This 

provides a quarterly chronology of US business cycles which successfully replicates the 

NBER official business cycle dates over 1953-1984. Furthem10re, in order to avoid the 

singularity problem5 which may occur in the unrestricted MLE used in Hamilton (1989), 

Hamilton (1991) proposed a quasi-Bayesian MLE approach, in which the likelihood 

function incorporates a priori infonnation about the unknown means and variances6
• 

Despite the initial success of Hamilton's (1989) model in identifying US business cycle 

turning points over 1953-1984, it is widely accepted that this model often fails to 

provide reasonable parameter estimates and regime probabilities when an extended 

sample period or different datasets are used. Therefore, there have been a large number 

of subsequent extensions and refinements to this model. Modifications have been made 

to Hamilton's model by introducing structural breaks in the model's parameters, by 

bringing in regime-dependent volatilities, intercepts or AR parameters, and by including 

additional regimes to model business cycle dynamics. 7 In addition, since Hamilton 

(1989) did not examine the statistical significance of his model, Hansen (1992) tests the 

null hypothesis of a linear AR(4) against the alternative of Hamilton's MS model using 

standardised likelihood-ratio (LR) test statistics, and fails to reject the null hypothesis. 

5 This problem occurs when a small subset of sample observations appears to be tightly clustered together. 
Umestricted MLE results in this cluster being interpreted as constituting drawings from one lloITIlal 
distribution with very small variance and the rest of sample as coming from a second nonnal distribution 
with a much larger variance. 
G Prior means and variances were set to be the sample means and variances of the negative growth rate 
observations for regime I and positive grmvth rate observations for regime 2. 
7 Another strand of papers relaxes the assumption of fixed transition probabilities by modelling with time­
varying or duration dependent transition probabilities: for example, Diebold et aT. (1999), Filardo (1994), 
Filardo and Gordon (1998), Lahiri and Wang (1994), Durland and McCurdy (1994) and Layton and 
Smith (2007). 
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However, he finds strong evidence that a simple switching model fits the data better 

than both the AR( 4) and Hamilton's model. 8 

In order to account for the significant moderation of US business cycles observed 

during recent decades, Kim and Nelson (1999a) introduce a one-time break in the mean 

growth rates and the residual variance of Hamilton's model. The means and variances 

are thus specified as 

(1.2) 

2 (D)' D 2 2 2 0"/ = 1- / 0"0 + /0"" 0"0 > 0", • 

where D, is the one-time parameter which shifts from zero to unity at an unknown date 

T. The likelihood of D, switching from zero to unity is governed by the transition 

probabilities: 

Pr(D, = OIDH = 0) = q(){l' Pr(D, = IIDH = 0) = 1- qOD' 

Pr(D, = IIDH = 1) = 1, Pr(D, = 0IDt_, = 1) = O. 

Under the null hypotheses that l1~o = 11:, = 0 and ag = a~, this model collapses to 

Hamilton's model. Four competing models are constructed to examine various null and 

alternative hypotheses: 

I. Hamilton's model with no structural break ll1~o = 11:, = O,O"g = a~ j; 

2. A model with a structural break in the mean growth rates [11~o * /4', * O,ag = er,']; 

3. A model with a structural break in the variance lu;o = 11:, = 0, a~ * er,' j; 
4. A model with structural breaks in both mean growth rates and the variance 

lu~o * 11:, * 0, erg * O"~ J. 

8 The simple switching model allows for the intercept and the second AR parameter to randomly shift 
between two values. Therefore there is no persistence in the states and the sum of the transition 
probabilities p and q is restricted to one. 
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A Bayesian model selection procedure is employed to compare the above models. A 

comparison of the marginal likelihoods obtained using Gibbs sampling suggests that 

Hamilton's model is clearly dominated by the other three. This indicates that the 

moderation of US business cycles comes from two sources of stabilisation: a narrowing 

gap between the mean growth rates and a decline in the volatility of real output growth. 

MiJls and Wang (2003a) apply the Kim and Nelson (1999a) model to other G7 countries. 

As with the US, a decline in output growth volatility is observed among other G7 

countries. Narrowing growth differentials between recessionary and expansionary 

regimes are found in five of the seven countries, with the UK and Gennany being the 

exceptions. 

Additional phases in business cycle dynamics have also been introduced to the 

Hamilton model, including the three-regime model used in Sichel (1994), Boldin (1996) 

and Clements and Krolzig (1998), and the 'bounce back' model proposed by Kim et al. 

(2005). Boldin (1996) examines the robustness of Hamilton's model by applying a 

three-rel,rime model to a revised version of Hamilton's data and also to an extended 

sample period. Three local maxima in the likelihood function are found when the 

revised data are used. One set of parameters, corresponding to a local maximum, is 

almost identical to the coefficients reported by Hamilton (1989). However, the other 

two local maxima fail to provide reasonable parameter estimates. Moreover, there is no 

longer a local maximum which can reproduce Hamilton's parameter estimates when the 

extended sample period is used. More positive results are obtained when a three-regime 

MS model is applied to capture recessions, post recession rapid-recoveries and 

moderate growth periods. A single local maximum is found, which is robust across 

different sample periods. The NBER official dates are also captured fairly well by the 

smoothed recession probabilities obtained in the three-regime model. As with Boldin 

(1996), Clements and Krolzig (1998) also adapt Hamilton's model to different sample 

periods of US GNP and fail to obtain adequate results. However, by applying a three­

regime MS model with a regime-dependent intercept rather than mean growth rate, they 

obtain a business cycle chronology which corresponds closely to the NB ER official 

dates. 
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Unlike Boldin (1996) and elements and Krolzig (1998), Kim et al. (2005) assume that 

the post-recession recovery is strongly correlated with the length and severity of the 

preceding recession. They therefore propose a 'bounce-back' model as follows: 

(1.3) 

where Po is the underlying growth rate. If SI = 1 and Po + p, < 0 , the economy is in a 

m 

recessionary regime. When}, > 0, the summation term LSI-j measures the 'bounce­
)=,1 

back' effect, suggesting that the growth rate will be above Po for the first m periods of 

an expansion. The summation term increases each period up to the length of the 

preceding recession and peaks after the recession ends. It then diminishes as the 

expansion persists until it reaches zero. Applying this model, they find a large 'bounce­

back' effect in the US recovery phase, and this effect is robust to allowing for a one­

time break in business cycle volatility in the mid-1980s or to relating the size of the 

'bounce-back' effect to the depth of the previous recession. 

The assumption made in Kim et al. (2005) is consistent with the 'Plucking model' 

proposed by Friedman (1964,1993), in the sense that each recession is assumed to be of 

the same amplitude as the succeeding expansion. In a plucking model, output cannot 

exceed a ceiling level but is plucked downwards by recessionary shocks at irregular 

intervals. The severity of recessions varies over time, but output always returns to the 

ceiling level. Based on Friedman's plucking model, Kim and Nelson (1999b) propose 

an unobserved-component model, in which output, 1;, can be decomposed into a 

stochastic trend component, '1'1' and a cyclical component, Cl' which has both plucking 

and asymmetric features. The stochastic trend is modelled as a local linear trend, with a 

regime-dependent variance on the level disturbance: 

'( = g/-l + Tt _1 +Vt , V, - NID(O,aJ~.sl)' 

g, =g,-l +w/' w(,..., NID(O,a:,), 

18 

(l.4) 



The cycle component is given by 

(1.5) 

Innovations to the cycle are assumed to be a mixture of two types of shock: a usual 

symmetric shock u, and a discrete asymmetric shock,7/: s , that is dependent upon S,. , 

O",;.s, is the regime-dependent variance of the cycle disturbance. If O",:.s, = 0 and 

7/: s < 0, this implies the presence of a ceiling level for output, as suggested in , 

Friedman's plucking model. Thus, when S, = 1 the aggregate demand shocks 'pluck' 

output downward away from the ceiling level. Kim and Nelson find that the US real 

GDP data can be well characterised by the plucking model. However, this model is less. 

successful when output data for other G7 members is used. Mills and Wang (2002) 

show that, although negative asymmetric shocks influence the cyclical fluctuations, the 

presence of a ceiling level is only found in the UK, France and Italy. 

Sinclair (2008) modifies Kim and Nelson's plucking model by allowing for the 

correlation between the innovations of the trend and cycle components. As such, the 

negative correlation between a symmetric transitory shock and the permanent 

innovations is revealed and the symmetric transitory shock can be interpreted primarily 

as the adjustment to pennanent shocks. Moreover, the trend component appears more 

variable than in Kim and Nelson's 'plucking' model with zero-correlation between the 

trend and cycle innovations. This suggests that US real GDP may experience more 

pennanent fluctuations than previously explained by the conventional 'plucking' model. 

There may be different types of recessions with different underlying causes, rather than 

only asymmetric transitory shocks. As such, the smoothed probabilities of asymmetric 

transitory shocks fail to identify the recessions which occurred during the 1970s, as 

supply shocks played a major part in these recessions. 
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1.3.2 The Bry and Boschan method and its quarterly applications 

Unlike the MS models discussed above, Bry and Boschan (1971) developed a non­

parametric algorithm which successfully replicates the NBER reference dates regardless 

of the sample periods used. Due to its reliability, the BB algoritlun has been used by the 

Centre for International Business Cycle Research (CIBCR) to identify business cycle 

chronologies for the US and eleven other countries. The BB algoritlun operates in three 

steps. Firstly, major cycle movements in a time-series are identified. Secondly, 

neighbourhoods of peaks and troughs are established. Finally, the peaks and troughs are 

determined by narrowing the search to these neighbourhoods. Three constraints are 

imposed in the third step when identifying the final tnrning points. Firstly, a full cycle 

should have a minimum duration of 15 months in order to separate it from any seasonal 

movements. Secondly, no phase can be less than 5 months in duration. Thirdly, no 

turning point is declared within 6 months of the beginning or end of the series. The 

third restriction could be a potential problem for the BB algorithm, as it may talce some 

time to recognise phase changes that have already occurred. As highlighted by the 

CIBCR researchers, it can take as long as 12 months to identify a turning point when 

using the BB algorithm. Adhering to these constraints, turning points are identified and 

refined sequentially using three different filters with a decreasing degree of smoothness; 

a centred, unweighted, 12-month moving average is first used, then a Spencer filter (i.e., 

a centred, weighted moving average), then finally a short-span moving average. At 

each step, potential peaks and troughs are identified as the highest and lowest values 

within a window width containing the previous five and the next five months. The 

turning points in the original series are finally determined within neighbourhoods of 

peaks and troughs obtained from the short-span moving average. If these dates satisfy 

the duration constraints, they are recognised as the final peaks and troughs for the series. 

Harding and Pagan (2000, 200 I, 2002) adapt the BB algorithm to quarterly data, where 

a peak (trough) occurring at time t is the maximum (minimum) value within 

t ± 2 quarters. The resulting algorithm is known as the BBQ algorithm. The censoring 

rules are also adjusted to allow the minimum duration of a phase to be two quarters and 

a complete cycle to last at least 5 quarters. 
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It is worth noting one related technique proposed by Artis, Marcellino and Proietti 

(2004a). This methodology extends the BBQ algorithm, using the theory of Markov 

chains, to implement the minimum duration constraints and to enforce the alternation of 

peaks and troughs. The minimum duration of a full cycle detennines the order of the 

Markov chain, whereas the minimum duration of a phase indicates the number of 

possible states. Applying this method to the euro area aggregate macroeconomic time­

series, they obtain turning points which mimic those in Harding and Pagan (2001). 

1.3.3 Measuring business cycles using multivariate information 

It should be noted that both the parametric and non-parametric methods discussed above 

are based on a univariate framework. This means that the comovement among 

individual economic variables throughout the business cycle cannot be modelled. In the 

analysis of Bums and Mitchell (1946), the historical concordance of hundreds of series, 

including income, interest rates and prices, were investigated. The choice of which 

economic time-series should be used for business cycle dating is not straightforward. 

The standard measure is real GDP. However, this variable is unsuitable for gaining a 

timely and accurate insight into the current state of the economy due to its lagged 

pUblication and frequent revisions. Industrial production is also frequently used in the 

literature, but represents less than 20% of total output in the euro area. Rather than 

looking for a particular economic time-series to represent aggregate economic activity, 

an alternative approach is to construct the underlying common fluctuations among 

several time-series. The dynamic factor (DF) models follow this line of thinking. 

These models have long been used in cross-sectional analysis, and their generalisation 

to dynamic environments is set out in Sargent and Sims (1977), Geweke (1977), and 

Watson and Engle (1983). More recent examples include Forni et al. (2000, 2001), 

Stock and Watson (2002a, 2002b, 2005), Reichlin et al. (2006, 2007) and Jungbacker 

and Koopman (2008). The most prominent example is the single common factor model, 

proposed by Stock and Watson (1989, 1991, 1993) to estimate composite coincident 

and leading indices. They assume that one common dynamic factor drives the 

comovement of several economic time-series, and reflects the state of the overall 

economy. This model is applied in Chapter 2 to obtain composite indices for euro area 

countries. It is worth noting that, as the series used by Stock and Watson were not 
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cointegrated, their model was therefore estimated in first-differences. However, the null 

hypothesis of no cointegration is rejected for several of the countries analysed in 

Chapter 2. Therefore, a two-step procedure is used where the error correction tenn is 

estimated independently using a vector error correction model (VECM) and t11en 

included in the subsequent model estimation. It is also possible to set up this model 

with variables in levels. The unknown parameters in the model can be estimated by 

maximmn likelihood using an augmented Kalman filter initiated with a diffuse prior 

(De long, 1989, 1991). 

In a slight variation of Stock and Watson's (1989, 1991, 1993) DF model, Diebold and 

Rudebusch (1996) propose the Markov-switching dynamic-factor (MSDF) model. This 

model incorporates nonlinear dynamics into the common factor extraction by 

combining the DF model with Hamilton's model. The MSDF model reflects two 

stylised features of the business cycle put forward by Bums and MitcheIl (1946): the 

comovement among individual economic series through the cycle, and the asymmetry 

of business cycle phases. Kim and Yoo (1995), Chauvet (1998) and Kim and Nelson 

(1999c) all successfully implemented the MSDF using IGm's (1994) approximate MLE 

that combines the Kalman filter and Hamilton's filter, along with appropriate 

approximations.9 To avoid these approximations, Kim and Nelson (2001) propose an 

alternative solution by using Gibbs sampling. The MSDF model has been applied by 

Chauvet (1998), IGm and Yoo (1995), Kim and Nelson (l999c, 2001), and Mills and 

Wang (2003b) to construct the coincident economic indicator and business cycle turning 

points for the US and the UK. Chapter 3 appJies this method to the euro area countries. 

It perfonns fairly well in identifying business cycle turning points for large economies, 

such as Gennany and France, where recessions and expansions are of roughly constant 

amplitude over the entire sample. However, it was less satisfactory at dating business 

cycles for countries, such as Belgium and the Netherlands, whose recessions were 

deeper during the 1970s and 1980s than in recent decades. Therefore, structural breaks 

are introduced into the model's parameters to improve parameter estimates and 

smoothed regime probabilities. 

9 Detailed discussions ofKirn's (1994) filtering algorithm are presented in Appendix A3. 
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Another important extension to the univariate Hamilton model is the Markov-switching 

vector autoregression (MS-VAR) proposed by Krolzig (1997a, 1997b). This model is 

designed to detect common business cycle turning points among multivariate time­

series without constructing any composite indices. In the general case, a MS-VAR of 

order p with M regimes, MS (M) -V AR (p), can be expressed as follows: 

p 

~y, = ,u(S,)+ 2>,(SJ~y,-, HJS,), B,(S,) - NID(0,2)S,)), (1.6) 
1==1 

where ~Y, is an N x 1 vector of the observed variables; ,u is an N x 1 vector of 

intercept terms; A, is an N x N matrix of the autoregressive coefficients at lag i; and 

B, is an N x 1 vector of disturbance tenns. In this specification, both the intercepts, 

autoregressive parameters and disturbances are conditional on the unobserved state 

variable S, = 1,2, ... M. Krolzig (1997b) also considers the case where time-series are 

cointegrated. Therefore, a Markov-switching vector error correction model (MS­

VECM) is proposed: 

p-l 

~Y, = ,u(S,) + ID,~Y,_, + ilY,_p H,(S,), B,(S,)- NID(O, I(sJ), (1.7) 
i==! 

whereD, = -( I" - ~Aj)' TI = I" - ~Ai = A(1) = -a/3T, /3 is the r x N cointegrating 

matrix and a is the Nx r corresponding loading matrix. To estimate the above model, 

Krolzig proposes a two-step procedure. In the first stage, Johansen's (1995) maximum 

likelihood procedure is used to detennine the cointegrating rank and to estimate the 

cointegrating matrix, /3. In the second stage, conditional on the estimated /3 , the 

remaining parameters of the MS-VECM are obtained using the EM algorithm. 

Harding and Pagan (2006) develop a non-parametric procedure to replicate the NBER 

reference cycle by using the four time-series most frequently used by NBER researchers, 

non-farm employment, industrial production, trade sales and disposable income, over 

the period of 1951MI-2002MI2. The BB algorithm is used to identify specific turning 

points from each series. Prior to constructing the reference cycle using these specific 
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turning points, they propose heteroscedasticity and autocorrelation consistent tests to 

examine whether there exists a common cycle in the four series. Given the presence of 

a common cycle, a three-step non-parametric algorithm is then applied to consolidate 

specific turning points into a set of common turning points. 

In the first step, the distances in months from time t to the closest peak (trough) in each 

series are found, denoted DPit (DTit). This gives a vector of dimension four. The 

median of the elements in this vector is then found, denoted DP' (DJ;). In the second 

step, the potential common peaks (troughs) are picked out as local minima in DP' 

(DJ;) with a window-width of .5 centred at time t: 

(1.8) 

As such, M P (M T) is a vector containing the central dates of the cluster of peaks 

(troughs). Once the central dates are located, whether a. specific peak belongs to a 

particular central date m; or 111; is defined in the third step: 

where CVn;) represents the cluster of peaks centred at m;. d defines the maximum 

width of a cluster and is usually set to be 24 for monthly data and 8 for quarterly data. 

Clusters of troughs can be defined in a similar way. This algorithm can be considered 

to be a formalisation of the procedures used by the NB ER. By applying this algorithm, 

Harding and Pagan (2006) produce a chronology very similar to the NBER reference 

cycle. 

1.4 Modelling trends and cycles in macroeconomic time-series 

This section discusses the main statistical techniques used to identify trends and cycles 

in macroeconomic time-series. As controversy remains over whether macroeconomic 

time-series are more appropriately represented as DS or TS processes, and whether 

there is interaction between trend growth and cyclical fluctuations, a wide variety of 
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decomposition methods have been proposed, based on different assumptions about the 

variability and exogeneity of the trend. Depending on the methodology used, the 

resulting cyclical components may differ significantly in terms of cycle duration, 

amplitude and spectrum shape. Such sensitivity has been discussed by Canova (1998). 

1.4.1 Structural model-based trend and cycle decompositions 

This section begins with two model-based, univariate decomposition methodologies that 

produce starkly different results: the Beveridge-Nelson (BN) (1981) decomposition and 

the Unobserved-component (UC) models introduced by Clark (1989), Harvey and 

Jaeger (1993) and Harvey and Trimbur (2003). The BN decomposition typically yields 

a volatile trend and a small, noisy, cycle. In contrast, the UC models usually produce a 

smooth trend component and a highly persistent cycle. 

The BN decomposition provides a measure of trend and cycle for an integrated time­

series. It shows that any ARIMA (p,l, q) process can be decomposed into the sum of a 

random walk plus a drift and a stationary component. Consider the Wold (1938) 

representation of a stationary first-differenced series L'>y, =;3 + A(L )s, = ;3 + i: AjLj s, , 
j=O 

where ;3 is the long-run mean of the {~y,} process and s, are uncorrelated innovations 

with zero mean and variance er 2
• The BN trend component is defined as the infinite 

forecast of the time-series {y,) less the deterministic drift: 

(1.1 0) 

where Y'+kl' is the k -step ahead linear predictor of Y'+k based on information at time t. 

The cycle component of {y,} is the difference between the trend and the value of y,: 

(1.11) 

The trend and cycle components can alternatively be given by 
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,u, = (I-Lt'.B +/l(!XI-Lt' c" 

c, = (I-Lt'[/l(L)-/l(I))c,. 

(1.12) 

(1.13) 

Thus the innovations of the BN trend and cycle are perfectly correlated. The trend 

component can also be expressed as ,u, = /l((l))y,. This is a one-sided trend estimator 
), L 

in the sense that only current and past observations are used in its construction. Proietti 

and Harvey (2000) further propose a two-sided BN estimator, ,u'IT = /l(~')~(~ 'V" by 

incorporating future observations. 

Compared with the BN decomposition, where y, is only decomposed into its trend and 

cycle components, the VC model allows for additional components to be separated from 

y,. A univariate VC model may be written as 

(1.14) 

where 1, is the seasonal component, v, is a first-order autoregressive component and 

c, is the irregular term. The stochastic trend component is given by 

11, = f.1,-, + p,_, + 1]" 17, - NID(O, O"~ ), (1.15) 

p, = p,_, +~" ~, - NID(O, u: ), 
where ,u, is the level of the trend and /3, is the slope of the trend. The slope parameter 

p, allows the trend to change smoothly, but in the special case where er~ = 0 the trend 

reduces to a random walk with a drift, which is consistent with the BN trend. A variety 

of trend specifications can be obtained by imposing restrictions on the variance 

, 2 d ' parameters er;, u" an er~. These are presented in the following table reported in 

Koopman et al. (2006). 
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Table 1.1 Some special level and trend specifications 

level G' 
& 

G' 
" constant term * 0 

local level (ll) * * 
random walk (RW) 0 * 

G' 
, 

G: Trend & G" , 
deterministic * 0 0 
II with fixed slope * * 0 
RW with fixed drift 0 * 0 
local linear (llT) * * * 
smooth trend • 0 • 
second differencing 0 0 * 
Hodrick-Prescott * 0 111600G; 

Note: • indicates any positive value. 

With regard to the cycle, Clark (1989) specifies a stationary cyclical component as a 

finite autoregression. A trigonometric specification of the cyclical component is 

introduced by Harvey and Jaeger (1993), which is given by 

(1.16) 

where k, and k; are two mutually uncorrelated white noise disturbances with zero 

mean and common variance G;. The parameter p is known as the damping factor 

with 0 < p 51; Ac is the frequency in the range 0 < Ac :;; 7r. The stochastic cycle 

becomes a first-order autoregressive process if Ac is 0 or 7r . 

A higher order cycle is introduced by Harvey and Trimbur (2003), where an i - th order 

stochastic cycle is specified as 

sin Ac ][C1.t_l] [k,] , + , and 
cos A, C1.t_l 0 

(1.17) 

sin ),c ][CU_1] [CH.'] . ,. + , for I = 2, ... n 
COSA, C U _1 0 
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The value of i detennines the smoothness of the cycle. When i = 6 , this model-based 

filter has a similar gain function to Baxter and King's (1999) filter, while in the case of 

i = 1, the generalised cycle reduces to Harvey and Jaeger's (1993) trigonometric 

specification. 

A seasonal component is introduced by Harvey and Jaeger (1993) to avoid the 

potentially distorting effects of seasonal adjustment procedures. It can be modelled as 

[</2) 

the trigonometric fonn r, = I r j., ' where rj., is given by 
j=! 

Sin-t][r.,_,] [m.,] [1 l ~. + ~. , j = 1, ... s / 2 , 
cos j rj.,-l mj., 

where Aj = 27if / s is the frequency, and m, and m; are both NID(O, er;). 

(1.18) 

It is worth noting that, in contrast to the BN decomposition, in which the innovations to 

the trend and cycle are perfectly correlated, the disturbances in the UC model that drive 

the unobserved components are mutually independent. Morley et al. (2003) 

demonstrate that, once the orthogonal restriction imposed on the trend and cyclical 

components in Clark's (1989) UC model is relaxed, it gives the same trend-cycle 

decomposition as the BN decomposition. 

1.4.2 Filters 

This subsection reviews three widely applied linear filters, by Hodrick and Prescott (HP) 

(1997), Baxter and King (BK) (1999) and Christiano and Pitzgerald (CP) (2003), that 

are based on the theory of spectral analysis. As defined by Bums and Mitchell (1946), 

the conventional definition of the business cycle considers fluctuations in the series 

associated with periodicities within the business cycle duration of 6 to 32 quarters. This 

corresponds to a business cycle frequency range of m" =2n/6 to m" =2nI32. An 

ideal band-pass filter, which gives a frequency response of unity in the band 

m" ::; lOll::; (0" and zero elsewhere, is a useful tool for extracting the business cycle 

frequency components. It can be constructed as the difference between two ideal low-
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pass filters with cut-off frequencies Ill" and llIe,. The impulse response coefficients of 

an ideal band-pass filter are given by 

(1.19) 

In practice, an approximation of this ideal filter is needed as the filter requires an 

infinite-order moving average that, in turn, requires a filtered series of infinite length. 

The BK and CF filters are based on the same ideal band-pass filter, but their 

approximation methods differ in two ways. Firstly, the BK filter assumes that the 

filtered time-series are independent and identically distributed, while the CF filter 

presumes that they follow a random walk. Secondly, the BK filter assumes symmetric 

weights whereas the CF filter does not. These two differences in assumptions lead to 

divergent cyclical components. The CF filter puts more weight on lower frequencies, 

whilst the BK filter places equal weight on all business cycle frequency components. 

As a consequence, the CF filter can produce more accurate low frequency business 

cyc1e components than the BK filter, whi1e the BK filter estimates the ideal filter more 

accurately for shorter business cycle frequencies. In addition, the trend component in 

the filtered series is automatically removed by the BK filter as it assumes symmetric 

weights. However, the CF filter does not make this assumption and so the trend must 

be removed before applying this filter. Moreover, the assumption of symmetric weights 

results in a loss of observations at the beginning and end of the filtered series when the 

BK filter is used. Therefore, if the focus of the research is on cycles towards the end of 

the sample, it is advisable to employ the CF filter. 

Unlike the above filters, the HP filter was designed to minimise fluctuations in the 

cyclical component, subject to a penalty for variation in the second-difference of the 

trend component: 

min{p, L ± {(y, - p,)2 + A[(u", - p,)- (u, - P,-Jl' }. (1.20) 
1=1 

where J, is a Lagrangean multiplier that controls the smoothness of the trend. The 

higher the value of A, the smoother the trend. In the limit, as A approaches infinity, 

p, becomes a linear trend, while if }. tends to zero, the trend is equivalent to the 
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original data series. Although many early studies fixed }'Q at 1,600 for quarterly data, 

the optimal values for }'Q lie between 1,000-1,050. For monthly and annual data, Mills 

(2003c) recommends 80,000 < AM <160,000 and 5 < AA < 10, respectively. 

The finite sample HP trend extraction filter, PT = (AF + IT t' YT' is given by the first­

order conditions of equation (1.20), where YT is the (T x I) vector of the original series, 

and F is a Toeplitz matrix with diagonal band [1,-4,6,-4,1], initial and end conditions 

Fll = Frr = 1, F" = FT-I.T-' = 5 and F.., = F2l = FT.T_, = FT_I.T = -2, and zeros elsewhere. 

As with an ideal high-pass filter, the transfer function of the HP cycle filter, 

cT = (AF + IT Y' AFYr, is zero at zero frequency and approaches unity at iT radians. 

However, since the transfer function increases gradually, a large proportion of low 

frequency components pass through the filter. This phenomenon is pronounced when a 

filtered series is integrated. This issue is discussed in more detail by Cogley and Nason 

(1995). 

Harvey and Jaeger (1993) show how the HP trend filter may be rationalised as the 

optimal estimator of the trend component in a UC model, Y, = P, + c, + ~, , where P, is 

specified as a local linear trend with restrictions A = a; / a: ' a~ = 0 and c, = 0 

imposed. 

1.4.3 Multivariate extensions of structural models 

It is often the case that we wish to model trends and cycles of a group of time-series. 

For example, King et al. (1991) examine the implication of neoclassical growth theory 

by looking at whether US consumption, investment and output share a common 

stochastic trend. Mills and Harvey (2005) further analyse common trends, 

commonlcodependent cycles and common non-linearities in output, consumption and 

investment for the G7 countries. In addition, Vahid and Engle (1993) and Carlino and 

Sill (2001) investigate the existence of common trends and cycles among per capita 

incomes of US regions. Barillas and Schleicher (2005) further extend the multivariate 

analysis to Canadian sectoral output data. Furthennore, Riinstler (2002) and Camba-

30 



Mendez and Rodriguez-Palenzuela (2001) find that multivariate VC models which 

incorporate output and other cyclical indicators, such as the inflation rate, capacity 

utilisation and factor inputs, can produce more reliable output gap estimates. Therefore, 

the univariate structural models and linear filtering discussed above are often extended 

to multivariate settings. The focus of this subsection is to outline the multivariate 

structural models, as these types of models are applied in the subsequent empirical 

chapters. In particular, Chapter 4 employs the multivariate BN decomposition, with 

common factor restrictions imposed, to provide a detailed insight into the trend and 

cyclical movements in the GDP series of the major euro members. Chapter 5 then 

utilises the multivariate VC model which combines statistical decomposition with 

macroeconomic relations to estimate various output gap measures for the aggregate euro 

area. 

For the multivariate BN decomposition, common factor restrictions include both long­

run restrictions imposed by the presence of common trends (Engle and Granger 1987, 

Stock and Watson, 1988b), and short-run restrictions imposed by common cycles 

(Vahid and Engle, 1993). The model is the Wold representation of a vector of 

differenced time-series. However, in practice, empirical studies are based on finite 

order V AR representations. Chapter 4 outlines a number of test statistics proposed by 

Vahid and Engle (1993, 1997), Hecq et al. (2000, 2006) and Schleicher (2007) to 

determine the number of common and codependent cycles among a set of stationary 

time-series. Chapter 4 also presents the multivariate BN decomposition proposed by 

Proietti (1997) and Hecq et al. (2000), which takes into account common trend and 

cycle restrictions. 

A straightforward muItivariate extension to the univariate VC model is the seemingly 

unrelated time-series equations (SVTSE) model (Harvey, 1989). It has a similar form to 

the univariate version, except that ~ is an N x 1 vector of observations, depending on 

unobserved components that are also vectors. Consider the case where Y, can be 

decomposed into vectors of trends, cycles and irregular tenns as follows 

~ = p, + VI, +6'" 6', - [O,zr.l, 

p, = P,_I + PH + 77, ,77, -lo, Z'I j, 
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(1.23) 

[If:] = {p[ co.sA, sinA']®l,}[V/'._I]+[k:], 
If, - sm A, cosA, 1f,_1 k, 

(1.24) 

E(k,kn=Ekk;T)=Lk , and E(k,k;T)=O (1.25) 

Since all components and disturbances are N x I vectors, the variances Le' L", L; and 

Lk become N x N diagonal matrices. Strong restrictions are imposed so that the cycle 

components of different variables are assumed to have the same damping factor p and 

frequency A,. This implies that these cycles have the same properties, such as common 

autocovariance functions and spectra. 

If N variables in 1; are cointegrated, having r cointegrating vectors, there exist N - r 

common trends. These common trends may arise through common levels, common 

slopes or both. To allow comparisons with the multivariate BN decomposition with 

common trend and cycle restrictions imposed, the slope parameter is fixed so that 

L; = 0 and fJ, = fJ'-1 = 7J. In this case, !l, = (3 pit, + !la' where it, is a vector of N - r 

common trends, !lo has zero for its first N -r elements while its last r elements are 

unconstrained constants, and (3 p is an (N x (N - r)) factor loading matrix. The model 

then becomes 

1; = (3 pit, +!lo +V/, +S" s, - [O):el, 

it, = it'-I + fj + il" ill -[0, DJ 

(1.26) 

(1.27) 

Similarly, the existence of common cycles implies that If, = (3 v,VI" where VI, is the 

((N - s)x 1) vector of common cycles and (3 v' is the (N x (N - s)) factor loading matrix 

such that L,t' = (3 v,Dv,(3;. Therefore, a model with common levels and cycles imposed 

can be written as 
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[
If I ] {[ COSA, _. = p . 
W, -SJnA, 

sinA,] }[Y/,_,] [kl] o I" _. + _, . 
COSA, W,_, k, 

(1.29) 

(1.30) 

(1.31 ) 

To ensure the factor loading matrices e" and e v. are identifiable, they are restricted to 

lower triangular matrices, and the variance matrices Dry and Dv. are set to be diagonal 

to ensure that common factors are uncorrelated. The low triangularity restrictions 

imposed on e" and e v. are merely for estimation purposes. Once the model 

parameters are estimated, the common trends and cycles can then be premultiplied by 

any orthogonal matrix. This allows the transfonned common factors to be more easily 

interpreted. 

More sophisticated multivariate extensions of the UC model are used in Chapter 5 to 

estimate the unobserved features of the euro area economy. These multivariate UC 

models typically combine output decomposition with potentially useful infonnation 

about the supply side of the economy and the macroeconomic relations containing 

business cycle infonnation, such as the Phillips curve and Okun's law. The advantages 

of the multivariate UC model are two-fold. Firstly, its flexibility outperfonns any other 

decomposition model, including those listed above. Applying this model reveals not 

only the unobserved quantities of an economy, such as the output gap, core inflation and 

the natural rate of unemployment, but also allows for the rich dynamic interactions 

which occur between the unobserved and observed quantities to be modelled in specific 

ways according to the objectives of the research. This is demonstrated by the bivariate 

and trivariate specifications used in Chapter 5. Secondly, this model is preferable to the 

purely statistical decomposition methodologies as it can provide more reliable output 

gap measures (Camba-Mendez and Rodriguez-Palenzuela, 2001; Riinstler, 2002). 

Chapter 5 provides a short literature review of this type of multivariate UC model. 
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1.5 Measuring business cycle synchronisation 

Once business cycle or growth cycle measures for members of a currency union are 

obtained, synchronisation of these cyclical components can be evaluated using certain 

statistical measures. The correlation coefficient is frequently used in the literature to 

measure contemporaneous and lead/lag correlations for each pair of cycles (Artis and 

Zhang 1997, 1999; Agresti and Mojon, 2001; Darvas and Szapary, 2004). More 

sophisticated measures of correlation have also been developed, such as the 

concordance index of Harding and Pagan (2002), the dispersion measure of Artis, 

Marcellino and Proietti (2004a), and multivariate UC models with dynamic converging 

mechanisms proposed in Luginbuhl and Koopman (2004) and Koopman and Azevedo 

(2008). 

The index of concordance proposed by Harding and Pagan (2002) measures the fraction 

of time which two series spend in the same business cycle phase. This index for 

countries i and j can be constructed as follows 

T 

Iij = r' I {SjtSij+(l- S;/)(I- Si')) (1.32) 
t",1 

where S;, and Sij are binary variables obtained from regime classification with unity 

denoting expansions and zero indicating recessions. Under the assumption that Sf/ and 

Sij are independent, the estimate of the expected value of the concordance index is 

E(I) = 1 + 2S, S. - S ; - S Ij . I . I Subtracting this from I i; gives the mean corrected 

concordance index: 

(1.33) 

Artis, Marcellino and Proietti (2004a) propose a test statistic based on a standardised 

concordance index. I; is divided by a consistent estimate of its standard error under the 

null hypothesis of independence, which is the square root of 
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(1.34) 

where p, (r) is the lag T sample auto co variance of Sit and I is the truncation parameter. 

Harding and Pagan (2002) also propose a linear ref,>Tession approach to test the 

independence of a national business cycle, Sit' from the reference cycle, Sj,' This 

regression equation is given by 

(1.35) 

The Newey-West estimator of the standard error is used to obtain the heteroscedasticity 

and autocorrelation consistent (HAC) t-statistic for the null hypothesis that f3 = o. 

Unlike vanous concordance indices which compute bilateral correlations in fixed 

sample periods, the dispersion measure proposed by Artis, Marcellino and Proietti 

(2004a) can provide a measure of synchronisation within a group of binary series at 

each point of time. This dispersion measure is constructed using the diffusion index. 

This index measures how diffuse business cycle fluctuations are across a group of 

binary series on a 0-1 continuous scale. Ifthere are N binary series, the diffusion index 

is given by 

N N 

D,::= LWiSi" t=l, ... ,T, LWj =1. (1.36) 
i=l i",l 

The dispersion measure can then be computed as D, (I - D, ). It has a maximum value 

of 0.25 when D, = 0.5, and a minimum value of zero when all series are in the same 

phase of their business cycles. A measure is also proposed to evaluate the dispersion 

within a group of growth cycles using the following weighted variance of the individual 

cycles, Vl it , from the average cycle, 1jI,: 2:\"', t "",(Vl it - VI,)2 , W, = I.~w, Wit . 
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In addition to analysing bilateral correlations, Camacho et al. (2006) compute the 

combined correlation of several bilateral correlation coefficients. The Fisher 

transfonnation of an individual bilateral correlation coefficient, 

~, ; tanh -1 (1',); 0.5(in(1 + 1', )-In(l- r, )), is used to calculate the combined correlation 

of N bilateral coefficients as follows: 

(1.37) 

where T, denotes the size of sample i. The aggregate correlation coefficient can then 

be recovered from ~ as 1'; tanh(~). 

Based on frequency domain analysis, Croux et al. (200 1) propose a measure known as 

dynamic correlation to evaluate synchronisation of two time-series across different 

frequencies. The dynamic correlation of two series XI and YI within the business cycle 

frequency band is specified as 

(1.38) 

where N denotes the business cycle frequency band. The spectrum of X and Y are 

denoted as SJi) and Sr(A), and the cross spectrum between X and y is SXY (}r). 

en.(A); real(Sx,(A)) is the co spectrum between x and y. For infinite time-series this 

measure is identical to the static correlation between two band-pass filtered series. 

However, for finite economic time-series this equality does not hold as both the band­

pass filter and the dynamic correlation are estimated imperfectly. Croux et al. (2001) 

also construct a measure of cohesion based on the weighted average of dynamic 

correlations, which provides a summary measure of comovement within a group of 

variables. The cohesion within the business cycle frequency band A+ is given by 

"" ww.p (A+) } (A+)= ~i;Oj I .I xixi 

COl).' 2: ' w.w. 
r;t) I } 

(1.39) 
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where W;' i = 1,2, ... N, are the positive weights associated with the variables x;, 

i = 1,2, ... N. Croux et al. calculate the cohesion of the output series for the US and the 

euro area, and conclude that the fonner is higher than the latter across all frequencies. 

Rather than computing statistical indices, recent research, including Camacho and 

Perez-Quiros (2006), Luginbuhl and Koopman (2004) and Koopman and Azevedo 

(2008), proposes model-based approaches to evaluate the degree of synchronisation. 

Camacho and Perez-Quiros (2006), for example, use bivariate MS models to investigate 

the unobserved states of two business cycles. There are two extreme cases of business 

cycle correlation, where two business cycles are completely independent (two 

independent Markov processes are hidden in the bivariate model), or where they are 

perfectly synchronised (only one Markov process for both variables). As the actual 

correlation observed between two cycles will lie somewhere between these two 

extremes, Camacho and Perez-Quiros model the data generating process as a linear 

combination of these two extreme situations. The distance between each pair of cycles 

is then measured as the distance from the case of perfect correlation. Furthennore, they 

simulate 100 pairs of output growth series with perfectly synchronised business cycles 

and lOO pairs with completely independent cycles. The BBQ algorithm and the 

univariate MS model are applied to these simulated series to identify turning points. 

Bilateral correlations among these 200 pairs of cycles are then evaluated using the 

concordance index. In addition, they compute their measure of business cycle distance. 

Camacho and Perez-Quiros conclude that the bivariate MS model outperfonns the 

conventional univariate approaches used by Harding and Pagan (2002) and Guha and 

Banetji (1998), as the univariate approaches often find a low level of synchronisation, 

especially where two business cycles are perfectly synchronised. 

Luginbuhl and Koopman (2004) use the standard SUTSE model, outlined in equations 

(1.21)-(1.31), imposed with time-varying rank-reduction mechanisms, to analyse the 

convergence of per capita GDP between five euro area countries. They define 

convergence as a reduction in the ranks of covariance matrices associated with the 

disturbance vectors driving trends, cycles and volatilities. The trend and cycle 

components are driven by the variance matrices, 2:" and 2:" which can be decomposed 

and 2:'1' = El "D" El ~ using Cholesky decompositions. If 
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of the cycle disturbance vector can be specified as L k = CRC , where C is a diagonal 

matrix of standard deviations and R contains contemporaneous correlations: 

I Pk.2.1 Pk,N.1 

Pk.2.1 I Pk,N,2 
R= (J .43) 

Pk,N.1 Pk,N.2 I 

Similar logit functions are also imposed on PU,j to capture changes in the relationships 

between cycles,lO These may have two distinct periods: in the first period cycles are 

correlated, IPk,i,j I < I, whereas in the second period the cycles are perfectly correlated, 

Pk" =1. ".1 • .1 

1.6 Business cycle and growth cycle synchronisation in the euro 

area 

Various studies have examined the synchronisation of cyclical indicators aross the euro 

area countries. These studies can broadly be divided into two groups according to 

whether they analyse growth cycle or business cycle synchronisation, A large number 

of studies have focused on growth cycles because cyclical fluctuations separated from 

trend growth are usually stationary, and most statistical analyses of synchronisation 

require stationary series as inputs, In addition, since classical business cycles occur 

much less frequently than growth cycles, analysing the latter will provide more 

infonnation on the comovement of cyclical fluctuations, 

Artis and Zhang (J 997) is an example of the type of growth cycle synchronisation 

analysis that has been undertaken, The HP filter is used to obtain the cyclical 

components of industrial production indices for the ERM countries, By computing 

contemporaneous correlation coefficients between Gennany and the other ERM 

member countries both before and after the introduction of ERM, they show that growth 

10 Pk.i,j =±lI-(I-b)xexp(sk.i,J.,)(I+exp(skJ,j,,)}-IJ, sk.i,j,1 =Sk,i,j x (t-rk,;,j}The coefficient 

b ensure that the correlation, P1d,j' is between h and one. 
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cycles in the ERM countries become more synchronised with Gennany in the post­

ERM period. This suggests that fixed exchange rate regimes may have a positive 

impact on growth cycle synchronisation. 

In contrast to Artis and Zhang (1997), Inklaar and de Haan (2001) do not find a clear 

connection between exchange rate regimes and growth cycle synchronization. They 

apply the HP filter to an updated sample period. Unlike Artis and Zhang (1997), who 

split the whole sample period into two sub samples, Inklaar and de Haan evaluate 

changes in growth cycle correlations over four snb-samples (1960:1-1971:3, 1971:4-

1979:4, 1979:4-1987:9 and 1987:10-1997:12), as they believe that exchange rate 

stability is not unifonn across each of these periods. They find that there is an increase 

in cycle correlation (with the German cycle) in 1971-1979, but this was reversed in 

1979-1987. This finding contradicts the assertion that fixed exchange rate regimes 

increase the degree of growth cycle synchronisation. 

MassmmID and Mitchell (2004) seek to resolve this dispute by using a series of rolling 

windows, rather than just two or four windows of fixed width as utilised by Artis and 

Zhang (1997) and Inklaar and de Haan (2001). In addition, Massmann and Mitchell use 

a number of univariate trend-cycle decomposition methodologies, including the BN 

decomposition, the UC model, and the BK and HP filters, to identify growth cycle 

measures from industrial production indices for 12 euro area countries from 1960Ml to 

2001M8. The BB algorithm is also used to identify classical business cycle turning 

points in the monthly industrial production indices. The minimum duration of a phase 

and of a full cycle are restricted to be at least 6 and 15 months, respectively. Rather 

than focusing on individual bilateral correlation coefficients, Massmann and Mitchell 

construct the mean and variance of all bilateral correlation coefficients between the 12 

countries for each rolling window. Cycle convergence is defined to be when the 

estimated mean correlation coefficients tend towards unity and the variances tend 

towards zero over time. Although they confirm Canova's (1998) conclusion that the 

cycles identified vary significantly depending on the methodology used, these 

differences do not transl~te to the measures of cycle convergence, as they find periods 

of common convergence and divergence. The mean correlation coefficient appears to 

follow an upward trend until the mid-1970s, when this process is reversed and the mean 

falls to zero in the mid to late 1980s. This is consistent with Inklaar and de Haan's 
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(2001) finding that the !,'fowth cycle correlations of EU countries (with the Gennan 

cycle) are higher in 1971-1979 than 1979-1987. There is also evidence of increasing 

cycle convergence in the run-up to EMU, as the mean coefficients increase and the 

variances fall over this period. This finding is confirmed by Angeloni and Dedola 

(1999), who also conclude that, in the pre-EMU period from 1993Q1 to 1997Q1, 

bilateral correlation coefficients between Germany and other ERM countries increased 

across all growth cycle fluctuations in prices as well as in real economic perfonnance, 

such as real GDP and industrial production indices. This may suggest that monetary 

integration contributes to greater growth cycle synchronisation between member 

countries. This finding is supported by Darvas and Szapary (2004) but rejected by 

Camacho et al. (2006). 

Some studies classify euro area countries into core and peripheral groups. The core 

members generally refer to Gennany, France, Italy, Belgium, the Netherlands and 

Austria. The first five countries were the original founding members of the EU and the 

sixth, Austria, had a fixed exchange rate with the Deutsche Mark from the 1960s. 

Compared to the core members, the peripheral countries (Finland, Ireland, Portugal, 

Spain and Greece) joined the EU much later, and hence joined the common market at a 

later date. It is generaIly found that the core euro area countries exhibit a higher degree 

of growth cycle synchronisation with the euro area as a whole compared to those in the 

peripheral group. This may suggest that monetary integration has had some influence 

on national growth cycles, and thus explains the weaker linkages found for the 

'latecomers'. However, the high correlation between the core group and the euro area 

as a whole may simply reflect the large weights assigned to the core countries when 

constructing aggregate euro area data series. Agresti and Mojon (2001) is a typical 

example of the core-periphery literature. They compare the contemporary and lead/lag 

correlation coefficients of 10 euro area growth cycles with the ag!,'fegate euro area cycle. 

The BK filter is used to identify cyclical fluctuations in real GDP, consumption, 

investment and short-term interest rates for individual countries and the aggregate euro 

area. They conclude that large and core countries exhibit a greater degree of growth 

cycle synchronisation with the euro area than do peripheral countries. Darvas and 

Szapary's (2004) findings are broadly consistent with Agresti and Mojon (2001). In 

order to check the robustness of their results, Darvas and Szapary use the HP and BK 

filters to identify the cyclical fluctuations in real GDP and its components for 10 euro 
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area countries and the aggregate euro area. The evolution of cycle correlations between 

individual countries and the euro area cycle is evaluated using five measures (cycle 

correlation, leads/lags, volatility, persistence of the cycle and a measure of impulse­

response) across four non-overlapping five-year subsamples between 1983-2002. In 

addition to concluding that the core countries on average share a greater degree of 

synchronisation than the peripheral countries with the euro area cycle, they also find 

that synchronisation has significantly increased during the last two sUbsample periods, 

1993-1997 and 1998-2002. 

Darvas and Szapary (2004), Artis, Marcellino and Proietti (2004b) and Camacho et al. 

(2006) further analyse synchronisation between eight Central and Eastern European 

countries (CEECs)11 and the euro area. Darvas and Szapary (2004) conclude that, apart 

from Hungary, Poland and Slovenia, synchronisation between the other CEECs and the 

euro area remains low. Rather than using static measures of cycle correlation as in 

Darvas and Szapary (2004), Artis, Marcellino and Proietti (2004b) compute bilateral 

dynamic correlations between band-pass filtered industrial production indices of eight 

CEECs with the major euro area countries. They again observe that, with the 

exceptions of Hungary, Poland and Slovenia, the other countries are diverging from the 

eUrD area. Furthermore, they identify an even lower level of growth cycle 

synchronisation between the euro area and the CEECs compared to the previous 

accession countries at the time when they were about to participate in the EU Y This 

finding may raise concerns as to the appropriateness of most CEEC countries adopting 

the euro in the near future. Camacho et al. (2006) consider tlrree different measures of 

cycle comovements that have been proposed in the recent literature. These include the 

correlations of the V AR forecast errors (den Haan, 2000), dynamic correlation defined 

by Croux et al. (2001), and the linear regression approach proposed in Harding and 

Pagan (2002). In addition to analysing pairwise correlations across countries, Camacho 

et al. (2006) study the comovements both within and between the eum area and the 

CEECs. To do so, bilateral correlation coefficients are aggregated using the approach 

given in equation (1.37). Despite the heterogeneity of these measures, the paper 

11 The eight CEECs include Estonia, Czech Republic, Hungary, Latvia, Lithuania. Poland, Slovak 
Republic and Slovenia. 
12 They compute dynamic correlation estimates between the earlier accession countries, including Ireland~ 
the Vj(. Greece. Spain, Portugal. Austria. Finland and Sweden. and a set of ED member countries 
(Germany, Italy and France). 
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concludes that synchronisation among euro area members is much higher than between 

the euro area and the CEECs. However, unlike Darvas and Szapary (2004) and 

Massmann and Mitchell (2004), Camacho et al. conclude that the establishment of the 

EMU has not significantly increased synchronisation across the euro area, and that the 

synchronisation among member countries emerged prior to the introduction of the euro. 

This is because the aggregate correlation within the euro area is higher during 1962-

1975 than the period of 1990-2003. 

Other studies compare growth cycle synchronisation within the euro area with 

synchronisation in the US. Since the US regions and states operate in a fixed exchange 

rate system, the experience of the US may indicate whether fixed exchange rates 

produce more synchronised growth cycles. Wynne and Koo (2000) compare growth 

cycle correlations between EU countries with correlations between 12 Federal Reserve 

districts in the US. The growth cycle fluctuations in real GDP, employment and prices 

are recovered using the BK filter. The pairwise correlation coefficients and the 

associated standard errors obtained using GMM estimates are used to assess the degree 

of growth cycle synchronisation within the EU and the US. They identify a 

significantly greater degree of cycle correlation within the US Federal Reserve districts 

than between European countries. They conclude that, if EMU member countries stay 

inside the EMU for a very long time, their cyclical fluctuations may become more 

synchronised like the US regions. This view is also supported by Croux et al. (2001), 

who compare the level of cohesion among 51 US states, 8 US regions, 17 European 

countries and I I EMU members. As expected, they find that the US regions have the 

highest degree of cohesion at all frequencies, followed by US states, EMU members and 

European countries. The difference in cohesion is large between Europe and the US at 

business cycle frequencies, but is much smaller at lower frequencies. 

Recent examples, including Luginbuhl and Koopman (2004) and Koopman and 

Azevedo (2008), apply multivariate UC models with time-varying mechanisms to 

account for gradual changes in cycle correlations. These models have an advantage 

over conventional approaches in that they automatically capture the changes in cycle 

correlation, thus avoiding the need to arbitrarily split the sample period into several 

subsamples. However, a major drawback of these models is that changes in cycle 

correlation can only be revealed to increase or decrease. As a consequence, these 
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models cannot show periods of cycle convergence and divergence across a gIVen 

sample period, as in Inklaar and de Haan (2001) and Massmann and MitcheIl (2004). 

By applying the multivariate UC model imposed with time-varying rank-reduction 

mechanisms, Luginbuhl and Koopman (2004) find that both slope and cycle 

components in per capita GDP of five European countries began converging after the 

introduction of the ERM. In particular, the cyclical components of the GDP series for 

Italy, the Netherlands, and Spain converged to the German and French cycles at the 

beginning of the 1990s. Koopman and Azevedo (2008) further extend the multivariate 

UC model to incorporate time-varying phase shifts and time-varying cycle relations. 

The bivariate specification is used to analyse growth cycle comovements between euro 

area countries and the aggregate euro area. In addition to finding a high degree of 

growth cycle synchronisation for France and Germany with the euro area across the 

sample period, the Italian and Spanish growth cycles are also found to become more 

synchronised with the euro area over time. Italy displays a more synchronised growth 

cycle with the euro area from 1980 onwards, which may suggest that the formation of 

the ERM had a positive impact on raising growth cycle synchronisation. An increase in 

cycle correlation of Spain with the euro area occurred in the 1990s, and roughly 

coincided with the introduction of the Common Market in 1993. 

In short, studies analysing growth cycle synchronisation, as outlined above, have 

obtained very mixed results. Artis and Zhang (1997) and Darvas and Szapary (2004) 

find evidence of greater growth cycle synchronisation after countries joined a currency 

arrangement or a monetary union. However, others, including Camacho et al. (2006), 

do not. Instead of studying comovernent of growth cycles, another strand of research 

evaluates the concordance of business cycle turnings points identified using the MS 

model-based approaches or variants of the BB algorithm. 

Artis, Krolzig and Toro (2004), for example, investigate whether there exists a common 

European business cycle using industrial production indices for nine EU countries from 

1970 to 1996. With the exception of Germany, three-regime MS models are applied to 

the other countries analysed instead of the two-regime model as proposed in Hamilton 

(1989). Therefore, this approach distinguishes between three regimes: recessions, 

moderate growth and fast growth periods, rather than just expansions and recessions. 

Synchronisation is evaluated using pairwise correlation coefficients between the 
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smoothed recession probabilities and Pearson contingency coefficients between binary 

variables over the entire sample period. Since both indices indicate a reasonable level 

of business cycle synchronisation, they conclude that business cycles in the nine EU 

countries may be driven by a common underlying factor. Therefore, the MS-V AR 

approach proposed by Krolzig (l997a, 1997b) is employed to identify common regime 

shifts among the nine industrial production indices. As a result, common recessions are 

identified during 1974-1975, 1979-1982 and 1990-1992, which roughly coincide with 

the two oil price shocks and the ERM crisis. Furthermore, based on the estimated MS­

V AR model, they analyse the impulse response of each industrial production index to a 

shift in regimes. They find that the industrial production indices of France, Gennany, 

the Netherlands, Belgium and the UK respond in a similar manner, in terms of timing 

and magnitude, when the common regime shifts from moderate growth to recession. 

They also observe that Spain, Portugal and France react the most strongly when the 

regimes shift to fast growth periods. As with Artis, Krolzig and Toro (2004), Altavilla 

(2004) also uses the univariate MS model, but with two regimes, to date business cycle 

turning points in real GDP series for five euro area members, the aggregate euro area 

and the US between 1980 and 2001. The comovement of each national business cycle 

with the reference cycles, the euro area or the US cycle, is studied by computing the 

concordance index and correlation coefficient over two sUbsamples: the pre-Maastricht 

period (1980-1991) and the post-Maastricht period (1992-2002). They find a moderate 

increase in business cycle synchronisation between member countries and the aggregate 

euro area over these two periods. A three-regime MS-VAR model with regime­

dependent intercept and heteroscedasticity is fitted to the real GDP series of the five 

euro area members to detect common turning points among these series. Three 

common recessions are identified during 1980, 1992 and 2001. 

In contrast to Artis, Krolzig and Toro (2004) and Altavilla (2004), who rely on business 

cycle indicators obtained from individual series using the univariate MS approach, 

Camacho and Perez-Quiros (2006) analyse business cycle s)~lchronisation of the G7 

countries, based on the bivariate MS model. They use the parameter estimate of the 

distance from the full dependence case to indicate the degree of divergence between 

each pair of business cycles. Their results suggest that three euro area cOillltries, 

Germany, France and Italy, share more synchronised business cycle dynamics with each 
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other but nonsynchronised cycles with English speaking countries (the UK, the US and 

Canada). 

Harding and Pagan (2001), Gamier (2003) and Artis, Marcellino and Proietti (2004a) 

apply modified versions of the BB algorithm to identify business cycle turning points. 

Harding and Pagan (2001) use the quarterly BB algorithm to obtain turning points in the 

real GDP series for six euro area countries and the aggregate euro area. Various 

concordance indices are computed to indicate synchronisation between national 

business cycles and the aggregate euro area. They conclude that synchronisation 

between euro area business cycles remains low. Gamier (2003) compares four variants 

of the BB algorithm to date turning points in industrial production indices for a large 

number of countries, including 12 euro area members, three EU but non-EMU countries 

(Denmark, Sweden and the UK), and two non-EU countries (the US and Japan) over the 

period of 1962-2001. Pearson correlation coefficients and mean corrected concordance 

indices of each business cycle with German and US reference cycles are computed over 

two subsamples, pre-EMU and post-EMU. Although mixed results are obtained when 

measuring synchronisation between individual euro area cycles and the German cycle, 

both measures indicate that euro area business cycles are increasingly independent of 

the US cycle. l3 Last but not least, Artis, Marcellino and Proietti (2004a) extend the 

BBQ algorithm using the theory of Markov chains to date turning points in the 

industrial production indices for 12 euro area countries. The degree of business cycle 

synchronisation is evaluated using a dispersion measure. They conclude that there is no 

clear tendency for either convergence or divergence. 

In general, studies which assess both growth cycle and business cycle synchronisation 

conclude that synchronisation is found to be weaker in business cycles than growth 

cycles. These include Artis, Marcellino and Proietti (2004a), Altavilla (2004) and 

Harding and Pagan (2002). 

13 Pearson coefficient~ indicate that, on average, synchronisation between individual euro area cycles and 
the German cycle has declined, while mean corrected concordance indices suggest the opposite. 
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1.7 Conclusions 

This chapter illustrates some of the controversies and difficulties incurred when trying 

to identify business cycle infonnation from historical data. It provides a literature 

review of dating classical business cycle turning points and extracting trends and cycles 

from macroeconomic time-series. Furthennore, various measures of synchronisation 

are discussed, ranging from simple correlation-coefficient to complicated model-based 

approaches. The existing literature on evaluating the synchronisation of classical cycles 

and growth cycles in the euro area is reviewed. There is stilI no consensus on whether 

fixed exchanges rate regimes or monetary union have resulted m increased cycle 

synchronisation. The thesis aims to provide a fresh look at business cycle 

synchronisation in the euro area by introducing time-series models that may overcome 

some of the problems in the literature. In the subsequent empirical chapters, the 

synchronisation of classical business cycles is evaluated using turning points identified 

using multivariate infonnation, rather than just from individual economic variables as 

used in most previous studies (i.e., Harding and Pagan, 2002; Gamier, 2003; Artis, 

Marcellino and Proietti, 2004a). In addition, a multivariate approach is used to analyse 

growth cycle synchronisation for seven major euro area countries. One benefit of this 

approach is that it does not require prior filtering or decomposition of the GDP series 

and, in turn, avoids the sensitivity problem encountered by using different 

decomposition methodologies. Instead of analysing individual EMU member states, 

Chapter 5 focuses on the euro area economy as a whole by assessing three issues 

concerning the aggregate euro area output gap using multivariate unobserved 

component models. The impact that changes in real interest rates have on the output 

gap and inflation rates is evaluated using the most appropriate models as suggested by 

the criteria used in the analysis. 
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Chapter 2 - Evaluating the Synchronisation of Euro 

Area Business Cycles: An Application of 

N onparametric Business Cycle Dating Methodology 

2.1 Introduction 

Chapter 1 surveyed a llumber of empirical studies that evaluate the degree of classical 

business cycle synchronisation by comparing the concordance of turning points. 

Among recent examples, Beine et al. (2003) and Artis, Krolzig and Toro (2005) find a 

high degree of synchronisation among business cycles of euro area members. However, 

Harding and Pagan (2001) and Altavilla (2004) conclude that the level of business cycle 

synchronisation remains relatively low compared to growth cycle synchronisation. 

Moreover, Camacho et al. (2006) conclude that the introduction of the euro has not 

significantly increased synchronisation across the euro area, and that the 

synchronisation among member countries occurred prior to the fonnation of EMU. 

Another strand of the literature, which includes Camacho et al. (2008), Artis, 

Marceilino and Proietti (2005) and Krolzig and Toro (2005), evaluates synchronisation 

by examining the similarities and differences of business cycle characteristics. The 

average business cycle duration, amplitude and shape are compared across countries 

and notable differences are found. Camacho et al. (2008) also analyse the evolution of 

business cycle characteristics over two subsamples (1962-1989 and 1990-2004). They 

find that variances in business cycle characteristics increase over time. 

To date, much of the empirical literature, including that mentioned above, has measured 

business cycle synchronisation using cycles identified from individual macroeconomic 

time-series, such as industrial production and real GDP. However, only analysing 

univariate time series may not be optimal for dating business cycles. First, although 

real GDP is the broadest output variable, it is less cyclical and subject to more frequent 

revisions than other macroeconomic indicators. In contrast, industrial production 
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appears more volatile than GDP but represents less than 20% of the total output of the 

euro area. More importantly, a large number of studies in dating classical business 

cycles, including Bums and Mitchell (1946), Stock and Watson (1989, 1991, 1993, 

1999) and Hamilton (2003), have highlighted the comovement of many macroeconomic 

variables as being a key feature of a business cycle. This feature cannot be analysed by 

looking at individual variables as previous studies have done. 

It is also believed that the accuracy of business cycle identification improves when more 

variables are included in the cycle dating analysis. However, there are no fixed rules as 

to which economic variables should be used, how many should be included, and what 

data frequency should be considered for the analysis. The NBER business cycle dating 

committee dates US business cycle turning points by using four monthly variables; real 

income, industrial production, volume of sales and employment. These variables are 

known as coincident macroeconomic variables, as they share a common cycle with the 

unobserved state of the economy. Data limitations mean that such analysis cannot be 

replicated for the euro area. Instead, a committee founded by the Centre for Economic 

Policy Research (CEPR) suggests analysing a number of quarterly coincident 

macroeconomic variables, such as real GDP, industrial production, gross fixed capital 

formation and employment, to date business cycles for the aggregate euro area and for 

individual member states. 

The main objective of this chapter is to evaluate classical cycle synchronisation using 

turning points identified from multivariate information. To do this, Stock and Watson's 

(1989, 1991, 1993) single dynamic factor (DF) model is employed to estimate a 

composite index of a number of coincident macroeconomic variables. Harding and 

Pagan's (2000, 2001, 2002) quarterly extension of the Bry and Boschan (1971) 

procedure, the BBQ algorithm, is then used to identify turning points in this index. The 

two-step business cycle dating strategy used in this chapter is discussed in Harding and 

Pagan (2001), who defined this approach as locating turning points in an aggregated 

index. 

The rest of this chapter is organised as follows. Section 2.2 presents the BBQ algorithm 

and Stock and Watson's DF model. The properties of the data, along with a modified 

DF model incorporating error con'ection tenns, are discussed in section 2.3. In section 
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2.4, the business cycle turning points for the aggregate euro area and individual 

countries are reported. The concordance of turning points and the similarities of cycle 

characteristics are evaluated in sections 2.5 and 2.6, respectively. Finally, section 2.7 

concludes. 

2.2 Locating turning points in the composite index using the BBQ 

algorithm 

The business cycle dating strategy utilised in this study involves two steps. First, the 

single DF model is used to estimate a composite index which is a weighted average of 

four coincident macroeconomic variables. Turning points of this index are then 

identified using the BBQ algorithm. By applying the BBQ algorithm a peak (trough) at 

time t is defined as the maximum (minimum) value during the period from t - k to 

t + k , where k = 2 for quarterly data. This algorithm is expressed in the following two 

equations, 

(2.1) 

(2.2) 

where Yt is the composite index. A recession is declared if Y t declines for two 

consecutive quarters. Recessions and expansions can be highlighted once turning points 

are located. A recession starts from one quarter after a peak to the following trough, 

whilst an expansion is the period from one quarter after a trough to the subsequent peak. 

Stock and Watson's single DF model assumes the existence of an underlying common 

dynamic factor, which drives the comovements of individual coincident economic 

variables. As the variables used by Stock and Watson were integrated of order one, but 

not cointegrated, their model is estimated in first differences. I The growth rate of each 

variable consists of a common factor and an idiosyncratic component: 

I The four coincident variables used by Stock and Watson (1989,1991, 1993) are industrial production, 
real personal income less transfer payments, real manufacturing and trade sales and employee hours in 
non-agricultural establishments. 
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L'.Y" = D, + y,(L)L'.C, +c", i = 1,2, ... ,4, (2.3) 

where L'.C, detennines the comovement of different economic variables and is 

orthogonal to D, + c", which capture the idiosyncratic fluctuations of each variable. 

Yi(L) is a polynomial in the lag operator, L, and contains the parameter estimates of 

current and lagged values of L'.C" which reflect the sensitivity of each variable to the 

common factor. As employment data may slightly lag the common factor rather than 

being an exact coincident variable, r,(L) is set to be r l (L) = YID + rilL + ... + r"L' when 

employment growth is the dependent variable, otherwise it is set as r,(L) = riO' The 

data generating structures of L'.C, and e" are modelled as stationary autoregressive 

processes: 

Vf,(L)e" = C,,' cII - NID(O,O',2). 

(2.4) 

(2.5) 

This model is completed by assuming that the innovations, ci/ and vt ' are mutually and 

serially uncorrelated. Stock and Watson estimated the above model using first­

differenced variables, standardised to have zero mean and unit variance. An advantage 

of using demeaned variables is to solve the over identification problem by removing 

two components, Dj and (5, from the model estimation. Therefore, equations (2.3)-(2.5) 

become 

L'.Y't = rl (L )L'.ct + ej " i = 1,2, ... ,4, 

rf;(L)L'.c, =v" v, - NJD(O,a,;), 

Vf,(L)e" = sit ,s" - NID(O,a,'), 

(2.6) 

(2.7) 

(2.8) 

with L'.ct = L'.Ct - (5. To implement the Kalman filter (KF)2, equations (2.6)-(2.8) are 

recast in state-space representation as 

L'.Yt = Hf3" (2.9) 

2 The Kalman filter is discussed in Appendix B2. 
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5 

13, = FP,51 + 8" 8, - NID(O,Q). (2.10) 

Equations (2.9) and (2.10) are the measurement and transition equations of the state­

space model, respectively. L'.y, == [L'.YIl' L'.Y21' L'.y)"L'.y 4,l T is the vector containing four 

the current and lagged values of the common factor and innovation terms. The time­

invariant matrices F, Hand Q, contain the hyperparameters: 

1, 12 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 

1, 
0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 
12 H= F= 0 0 0 0 V"I' ~/12 0 0 
13 0 0 0 0 0 0 0 

0 0 1 0 
0 0 0 0 1 0 0 0 

140 141 142 143 

0 0 0 0 0 0 V"41 ~/42 

0 0 0 0 0 0 1 0 

a' , 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

and Q= 0 0 0 0 
, 

0 0 0 a E 

I 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 a' 4 0 

0 0 0 0 0 0 0 0 

MLE is used to estimate the model's hyperparameters: \0f' V"" 11 , a l }, based on the 

prediction error decomposition. Given the MLE parameter estimates, the unobserved 

vector Pt is calculated, with the first element being L'.c,. 
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2.2.1 Calculating the mean growth rate g 

Since the BBQ algorithm identifies turning points as the local maxima and minima in 

the level of economic activity, the level of the common factor needs to be found from 

the first differences: 

where J is the estimated mean growth rate of IlC, given by 

,5 = E[/lC'I'] = E[W(L)/lY, ] 

= W(1)E(IlY,) 

= W(l)/lY. 

(2.11 ) 

(2.12) 

W(1) can be computed by iterating the KF as follows (where K, denotes the Kalman 

gain) 

13'1' = 13'1'-1 + K, (Ily, - Hp'I'_I) 

= FPt-ll'_1 + K,lly, - K,HFpt-llt-l 

= (l-K,H)Fpt-ll'_1 +K,/lyo 

(2.13) 

As t approaches infinity, K, approaches the steady-state Kalman gain, K. If K, is 

plotted for t = 1,2, ... ,T, it becomes apparent that K, converges to a steady-state value 

reasonably fast. Once the steady state is reached, the equalities K, = K and 

P'I' = pt-ll'-I are found. Thus, equation (2.13) can be rewritten as 

(2.14) 

W (I) is the first row of (I - (I - KH)Fr 1 K , where K = KT is obtained from the last 

iteration. Given the value of W(l), !5 can easily be calculated. By setting the initial 
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value of C,I, (i.e., COlD) to be zero, the time series of C,I, is obtained. The scale of C,I, 

only reflects the speed of a country's economic growth during the studied period, rather 

than the size of the economy. 

2.3 The properties of the data and modified models 

Five coincident macroeconomic variables: real GDP, industrial production (IP), gross 

fixed capital formation (GFCF), retail trade (Sales) and civilian employment, are 

collected for the aggregate euro area and the following member states: Germany, France, 

Italy, Austria, Belgium, the Netherlands, Spain and Finland.3 In the literature, these 

countries are usually divided into two groups: the core (Germany, France, Italy, Austria, 

Belgium and the Netherlands) and peripheral countries (Spain and Finland), based on 

their exchange rate behaviour against the Deutsche Mark (DM) in the past. Three non­

EMU countries (the UK, the US and Canada) are also included in the analysis to 

benchmark the degree of cycle synchronisation which has occurred in the euro area. All 

series are seasonally adjusted, quarterly observations and expressed in logarithms (times 

100). Real GDP and GFCF are taken from the OEeD Quarterly National Accounts 

database. IP and Sales are taken from the OECD Main Economic Indicators database. 

Employment data for most countries are taken from the OEeD Labour Force Statistics.4 

Four of the five variables mentioned above are chosen to estimate the composite index 

for each country analysed. Although there are no set rules specifying which variables 

should be used, real GDP and employment data are preferred. The former is the 

broadest measure of output and the latter can provide an indication of labour market 

flexibility, which is an important criterion when judging the optimality of a monetary 

union. The time series of all the logged variables used are plotted in Figure A2.l in 

Appendix A2. Pronounced outliers are observed in some of the series. To reduce the 

degree of non-normality in the residuals detected by the Jarque-Bera test, dummy 

variables are used for the affected time periods. 

3 The sales data are not available for the aggregate euro area and Spain. 
4 Employment data for France, Belgium and the Netherlands are taken from Datastream, with the series 
codes of FROCFEMPO, BGOCFETNO and NLOCFETNO, respectively. The aggregate euro area 
employment data is taken from the AWM database constructed at the ECB by Fagan et al. (2001) and 
updated using Datastream. data code EMEMPTOTO. 
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To examine whether the model outlined above is appropriate for the data used in this 

chapter, the Augmented Dickey-Fuller (ADF) (Dickey and Fuller, 1979) and Johansen's 

(1995) cointegration tests are conducted, with the test statistics reported in Tables A2.1 

and A2.2 in Appendix A2. The ADF tests are unable to reject the null hypotl1esis of a 

unit root in the levels of the variables but reject the null when first differences are used.s 

However, fue lohansen cointegration tests indicate the presence of one cointegrating 

vector among the four variables used for the aggregate euro area, France, Belgium, Italy, 

the UK, the US and Canada, and two for fue Netherlands and Spain. Therefore, the 

measurement equation is modified as follows: 

(2.15) 

where ECMI_1 is a vector of error correction terms and A is a matrix of corresponding 

adjustment parameters. A two-step estimation procedure is proposed. In the first stage, 

ECMH is estimated independently from the VECM. In fue second stage, conditional 

on the ECMI_1 , the remaining parameters are obtained. 

2.4 Empirical results 

The common factor for each country analysed is estimated using the DF factor model 

outlined above. The parameter estimates are reported in Tables 2.1-2.12. The time path 

of CIII , along with recessions identified using the BBQ algorithm, are plotted in Panels 

1-12 of Figure 2.1.6 These results will be discussed over the next a few sections, 

divided up by core, peripheral and non-EMU countries. 

S The ADF tests with a constant and a linear time trend included indicate that the IP data for the aggregate 
euro area, the Netherlands and Canada, and the GDP data for Belgium and US may be trend stationary. 
(, The common factor grO\vth rate for each country analysed is plotted in Figure A2.2, Appendix J\2. 
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2.4.1 The aggregate euro area and core EMU countries 

The aggregate euro area. The four coincident macroeconomic variables used to 

estimate the unobserved common factor for the aggregate euro area are real GDP, 

GFCF, IP and employment during the period 1975Q3-2006Q4. As one cointegrating 

vector is identified by the trace and eigenvalue statistics, the modified OF model 

including one error correction tenn is used, with the parameter estimates reported in 

Table 2.1. The common factor for the aggregate euro area is modelled as an AR(2) 

process. The value of ~I + ~2 = 0.58 indicates the persistency of this common factor. 

Positive estimates of y, suggest that all four variables follow pro-cyclical patterns with 

respect to the common factor. The size of y, detennines the response of individual 

variables to the common factor fluctuations. YI is the largest followed by Y 2' Yl and 

Y40' This indicates that real GDP responds the most to the common factor fluctuations, 

while employment responds the least. The fact that Y 41 is statistically significant also 

suggests that employment lags the common factor. Unlike the other idiosyncratic terms, 

the idiosyncratic fluctuations of employment follows an AR(4) process. This may also 

imply slow adjustment in the euro area labour market. A significantly positive 

adjustment parameter, all' in the IP equation confinns the presence of a long-run 

relationship among the variables. The mean growth rate of the common factor, r5, is 

estimated to be 1.03 and is equivalent to a trend growth of 4.1 per cent per mmum. 

The time series of Ctll for the aggregate euro area is plotted in Panel I of Figure 2.1. 

The BBQ algorithm identifies three recessions over the period: 1980Q2-1981Ql, 

1982Q2-1982Q4 and 1992Q2-1993Q2. Although these are not all consistent with the 

cycle dates produced by the CEPR business cycle dating committee7
, the fact that no 

recessions are detected during the 2000s is in line with the committee's findings. 

7 The three recessions identified by the committee since 1970 are 1974Q3-1974Ql, 1980QI-1982Q3, and 
1992QI-1993Q3. 
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Table 2.1: Parameter estimates for OF model for the euro area 

Common Factor 

rP] 0.247 (0.111)* 

rP, 0.336 (0.108)** 

Idiosyncratic Components 

~GDP 7] II'll 11'" all (J"' 
] 

0.794** -0.058 -0.001 0.102 0.187** 

(0.080) (0.200) (0.006) (0.148) (0.055) 

~GFCF 7, '1
1

" 
'1/22 a" (J"' , 

0.664** -0.346** 0.023 -0.083 0.280** 

(0.072) (0.129) (0.124) (0.126) (0.054) 

~IP 73 11'3] If/32 all (J"' 3 
0.647** 0.132 0.273* 0.299* 0.389** 

(0.086) (0.158) (0.125) (0.160) (0.070) 

~EMP 740 74] 742 743 '1/41 '1/" 11'44 a]4 (J"' 4 
0.234 ** 0.237** 0.071 0.086 0.144 0.112 0.342** -0.169 0.310** 

(0.061) (0.062) (0.064) (0.063) (0.094) (0.093) (0.102) (0.141) (0.043) 

long run growth rate: 0 = 1.029 
Error correction term 

GDP,.]; 18.598 - 0.932x GFCF,_] + 2.726x IP,.j- 0.163X EMP,.] 
(0.211) (0.273) (0.329) 

log-likelihood: -588.894 

Diagnostics Q(4) Jarque-Bera 

~GDP 6.390 4.338 

~GFCF 5.048 4.650 

~IP 8.529 26.622** 

~EMP 6.525 9.747** 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for the euro area were estimated using data from 1975Q3-2006Q4. logarithms of variables 
were used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

~ GDP: 0.0054, 0.0047; ~ GFCF: 0.0056, 0.014; ~ IP: 0.0043, 0.0098; ~ EMP: 0.0014, 0.0028. 

Germany. Unlike the aggregate euro area, no cointegration was found among the four 

variables used for Germany. Therefore, the DF model is simply specified in first 

differences. As a break in the employment data is observed in 1980Ql, a corresponding 

dummy variable is included in the employment equation to reduce the degree of non­

normality in the residuals detected by the Jarque-Bera test. In contrast to the data 

generating structure of the common factor obtained for the aggregate euro area, the 

German common factor follows a white noise process with both rP, and rP, being small 

and insignificant, as illustrated in Table 2.2. As suggested by the parameter estimates of 

7" and in line with the findings for the aggregate euro area, employment is the least 
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responsive, among the four variables analysed, to movements in the common factor for 

Gennany. It also lags the common factor fluctuations, with Y41' Y42 and Y43 being 

positive and significant. These results partly reflect the comparative rigidity of the 

Gennan labour market. In addition, the idiosyncratic fluctuations of real GDP, GFCF 

and employment all follow AR( 4) data generating structures. The estimated mean 

growth rate appears to be rather low, only around 1.3 per cent per annum. This is 

largely due to the slow growth in Gennan employment. 8 

In total, six recessions (i.e. 1973Q2-1975Q2, 1977Q2-1977Q3, 1980Q2-1982Q4, 

1992Q2-1993Q2, 1995Q3-1996Ql and 2001Q2-2003Q2) are found over the sample, as 

shown in Panel 2 of Figure 2.1. The recessions which occurred in the 2000s appear 

shallow compared to previous downturns, reflecting the increased moderation of the 

Gennan business cycle. 

France. One cointegration vector was found among the four variables used for France. 

Therefore the modified model is used with one error correction tenn included in the 

system equations. The adjustment parameters all and a 12 , in Table 2.3, are significant. 

This confinns a long-run relationship among the four variables. The value of 

1/11 + 1/12 = 0.77 indicates that the common factor is more persistent for France than for 

the aggregate euro area. Pro-cyclical patterns between individual variables and the 

common factor are also revealed by the positive estimates of y,. As with the aggregate 

euro area and Gennany, employment again exhibits the smallest response to changes in 

the common factor and also lags the common factor fluctuations. This probably stems 

from the relative rigidity of French labour markets and the historically strong labour 

u1110ns. 

The time path of C'I" and the three recessions: 1980Q2-1981Ql, 1982Q3-1984Q2 and 

1992Q2-1993Q4, are plotted in Panel 3 of Figure 2.1. It can be seen that, although no 

recessions are detected during the 2000s, the French economy has slowed down after a 

period of comparatively strong economic growth at the end of 1990s. The estimated 

long-run growth rate for the French common factor is about 4 per cent per annum. 

8 The quarterly mean growth rate of German employment is 0.05 percentage points. compared to 0.14 
percentage points for the aggregate euro area. 
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Table 2.2: Parameter estimates for DF model for Germany 

Common Factor 

~1 0.073 (0.110) 

~2 0.158 (0.112) 

Idiosyncratic Components 

~GDP 11 VI" Vl12 Vl14 
(J'2 

1 

0.811 ** -0.034 -0.109 0.634** 0.167** 

(0.081) (0.146) (0.104) (0.113) (0.065) 

~GFCF 1, Vl2J VI" VI'4 (J" 2 

0.609** -0.254* -0.016 0.207* 0.473** 

(0.086) (0.097) (0.012) (0.102) (0.071) 

~IP 13 Vl31 V/32 
(J'2 

3 

0.738** 0.002 0.020 0.427** 

(0.086) (0.118) (0.129) (0.087) 

~EMP 140 141 142 143 D80q1 Vl4J Vl42 VI'4 
(J'2 

4 

0.208** 0.268** 0.168* 0.118* 5.648** 0.094 -0.077 0.253* 0.435** 
(0.066) (0.064) (0.063) (0.065) (0.685) (0.092) (0.092) (0.091) (0.056) 

Long run growth rate: ,5 = 0.374 

Log-likelihood: -642.009 

Diagnostics Q(4) Jarque-Bera 
~GDP 2.072 5.831 

~GFCF 5.002 4.448 

~IP 4.863 4.980 

~EMP 5.543 66.704** 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%.The parameter 
estimates for Germany were estimated using data from 197001-200404. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

~ GDP: 0.0056, 0.0098; ~ GFCF: 0.0038, 0.0278; ~ IP: 0.0037, 0.0157; ~ EMP: 0.0005, 0.0051. 

Italy. One cointegration relationship was identified by the Iohansen cointegration test 

among the four variables analysed for Italy. The presence of this long-run relationship 

is further confirmed by the significant adjustment parameters a" and a13 • A dummy 

variable is included to catch the sudden drop in employment during 1992Ql, with the 

parameter estimate of this dummy found to be negative and significant. The Italian 

common factor follows an AR(2) process, but ~2 has a negative sign. Although the 

Italian employment exhibits contemporaneous movements with the common factor, the 

value of 140 appears to be rather low. As the long-run growth rate is estimated to be 

0.72, this is equivalent to 2.9 per cent per annual. 
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Compared to the other countries analysed, the Italian economy appears to be very 

unstable with nine recessions identified over the sample period: 1974Q4-1975Q2, 

1977Q2-1977Q3, 1982Q2-1983Q2, 1984Q4-1985Ql, 1992Q2-1993Q4, 1996Q2-

1996Q4, 200IQ2-200IQ4, 2003QI-2003Q2 and 2004Q4-2005QI. 

Table 2.3: Parameter estimates for OF model for France 

Common Factor 

rp] 0.419(0.138)** 

rp, 0.349(0.125)** 

Idiosyncratic Components 

c,GDP Y] Wll V/ l2 all 
, 

cr ] 

0.640** -0.008 0.000 0.359* 0.378** 

(0.073) (0.145) (0.001) (0.140) (0.075) 

C, IP y, W21 Vf22 all (1" , 
0.685** 0.023 0.161 0.669** 0.278** 

(0.080) (0.189) (0.163) (0.162) (0.073) 

c,Sales Y3 W3] Vf32 aB (1" 
3 

0.229** -0.294** 0.015 0.007 0.808** 

(0.067) (0.093) (0.095) (0.095) (0.105) 

c,EMP Y40 Y4] Y4' Y43 W 4] V/4, a]4 (1'2 
4 

0.361 ** 0.066 0.104 0.136* 0.247* 0.207* 0.037 0.290** 
(0.069) (0.096) (0.077) (0.070) (0.112) (0.106) (0.177) (0.044) 

Long run growth rate: 0 ; 0.982 
Error correction term 

GDP,_] ; 32.360 + 2.324 X IP,_] + 0.667 x Sales,_] -3.152 X EMP,_] 
(0.188) (0.294) (0.679) 

Log-likelihood: -568.881 

Diagnostics Q(4) Jarque-Bera 

C,GDP 3.719 3.764 

C,IP 4.278 4.035 

C,5ales 0.856 12.576*' 

C,EMP 3.164 1.837 

Notes: Standard errors are in parentheses. *' denotes significance at 1% and' at 5%. The parameter 
estimates for France were estimated using data from 1975Q4-2006Q4. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

C, GDP: 0.0053, 0.0044; C,IP: 0.0035, 0.0115; C, Sales: 0.0037, 0.0104; C, EMP: 0.0013, 0.0026. 
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Table 2.4: Parameter estimates for DF model for Italy 

rf, 0.719 (O.128)" 

rf, -0.129 (O.046)" 

t.GDP y, 

0.697** 

(O.076) 

t. GFCF y, 
0.403** 

(O.069) 

t. IP Y3 
0.540** 

(O.058) 

t. EMP Y40 Y41 Y42 
0.160' 0.046 -0.074 
(O.089) (O.ll9) (O.123) 

Long run growth rate: ,,= 0.725 

Error correction term 

Common Factor 

Idiosyncratic Components 

IJI" 
-0.097 

(O.190) 

VI 21 

-0.052 

(O.088) 

1f131 

-0.471 ** 
(O.ll8) 

Y43 D92q4 '1141 

0.093 -4.171 ** -0.076 

(O.097) (O.797) (O.091) 

GDP,_, = 2.645 + 0.091 x GFCF,_, + 1.142 x IP,_, + 0.521 X EMP,_, 

1fI11 

-0.002 

(O.009) 

1(122 

0.007 

(O.088) 

1fI32 

0.002 

(O.10?) 

1// 42 If 43 

-0.212* 0.229** 
(O.086) (O.086) 

, 
a" cr , 
0.267' 0.184** 

(O.133) (O.066) , 
a 12 0'; 
0.001 0.714** 

(O.101) (O.089) 

all 0-' 
3 

0.355** 0.319** 

(O.llO) (O.063) 

a 14 0-' 
4 

-0.148 0.665** 
(O.114) (O.080) 

___________ JO.1Q5) (O.086) (Q}43L ______ . --_._------
Log-likelihood: -683.465 

Diagnostics 
t.GDP 
t. GFCF 
t. IP 
t.EMP 

Q(4) 
0.722 

4.797 

8.904 

0.703 

Jarque-Bera 
3.921 

5.315 

27.577** 

8.419* 

Notes: Standard errors are in parentheses .•• denotes significance at 1% and' at 5%. The parameter 
estimates for Italy were estimated using data from 1970Ql-2006Q4. logarithms of variables were used, 
each variable was standardised to growth rates with mean zero and unit variance prior to estimation. 

The sample means and standard deviations for the growth rates of the original series are: t. GDP: 

0.0056,0.0079; t. GFCF: 0.0042, 0.0181; t.IP: 0.0043, 0.0223; t. EMP: 0.0012, 0.0064. 

Austria. Upon plotting the four time series used for Austria, it became apparent that 

there were large breaks in the real GDP, GFCF and employment data series. 

Consequently dummy variables were inserted in the quarters when these breaks 

occurred. It is also worth noting that real GDP and GFCF appear significantly smoother 

from 1988 onwards due to different methodologies being used to deseasonalise these 

series pre-1988 and post-1988. As with Gennany, both the trace and eigenvalue 

statistics cannot reject the null that the four variables used for Austria are not 

cointegrated. As such, the DF model is specified in first differences. One striking 

result observed in Table 2.5 is that 740 appears negative and insignificant, while 7'41 is 

positive and significant. This suggests that, although the one-period lagged Austrian 

employment variable is pro-cyclical to the common factor, its contemporaneous 
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movement is found to be anti-cyclical. This may reflect the shortcomings of centralised 

wage bargaining in Austria, which is aimed at long run equity objectives and job 

preservation at the expense of greater labour market rigidity. The annual growth rate of 

the Austrian common factor is estimated to be 3.2 per cent. 

The time path of Ctlt is plotted in Panel 5 of Figure 2.1. Five recessions are highlighted 

during 1974Q2-1975Q2, 1980Q2-1982Q4, 1984QI-1984Q2, 1992Q3-1992Q4 and 

2001Q2- 2002Q4. 

Table 2.5: Parameter estimates for OF model for Austria 

Common Factor 

ifJ, 0.274 (0.136)* 

ifJ, 0.234 (0.136)* 

Idiosyncratic Components 

t.GDP 1, 
0.573** 

(0.078) 

t. GFCF 1, 
0.476** 

(0.067) 

t.IP 13 

t.EMP 

0.498** 

(0.089) 

140 
-0.031 
(0.086) 

141 
0.316** 

(0.095) 

142 143 
-0.157 0.082 
(0.100) (0.090) 

long run growth rate: <5 =0.808 

log-likelihood: -615.155 

Diagnostics Q{4} 
t.GDP 1.827 

t.GFCF 5.193 

t.IP 1.603 

t.EMP 2.964 

D78ql Wll 
-6.095** -0.106 

(0.759) (0.162) 

D78ql D03ql W21 
-6.993** 3.819** -0.022 

(0.649) (0.586) (0.133) 

V/31 

-0.007 

(0.096) 

D82ql D04ql V/41 

4.593** -3.921** -0.119 
(0.779) (0.771) (0.096) 

Jarque-Sera 
9.336* 

7.588* 

1.883 

27.36** 

W12 
-0.003 

(0.009) 

VI 22 

0.098 

(0.136) 

W32 
0.192* 

(0.094) 

W4' 
0.174 
(0.093) 

cr' , 
0.308** 

(0.071) 

cri 
0.252** 

(0.053) , 
cr-

3 

0.656** 

(0.096) , 
cr-

4 

0.571 ** 

(0.078) 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for Austria were estimated using data from 1970Ql-2006Q4. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

t. GDP: 0.0058, 0.0087; t. GFCF: 0.0085, 0.0155; t.IP: 0.0050, 0.0221; t. EMP: 0.0019, 0.0077. 
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The Netherlands. The trace statistic indicates one cointegrating vector among the four 

variables used for the Netherlands, while the eigenvalue statistic suggests two. As the 

two error correction terms estimated from the VECM appear stationary, they are both 

included in the DF model. The inference provided by the eigenvalue statistic is 

supported by the significant adjustment parameters, a 12 , aJ)' a" and a 23 • The Dutch 

common factor is the most persistent among the countries analysed with 11 + 1, = 0.915. 

One striking feature observed in the Dutch results is that the r; are small but !fIIJ' !fI21 

and !fI41 are large. This may imply that the four variables analysed exhibit less 

comovement but more individual fluctuations. 

As revealed in Panel 6 of Figure 2.1, the growth of the Dutch common factor was 

steady after the severe recession which occurred in the early 19805. This strong 

performance was boosted by the wide-ranging structural and regulatory reforms 

undertaken in the 1980s and by the fast growth in foreign trade. Four complete 

recessionary periods are identified in 1974Q4-1975Q3, 1980Q2-1983Q2, 1992Q3-

1993Q2 and 2002QI-2004Ql. The recession triggered by the ERM crisis in the early 

1990s was short lived. However, the Dutch economy struggled during 2002 and 2003, 

due to rising labour costs and weak domestic demand. A sustained recession is 

identified during this period, reflecting the breakdown in the country's previously 

strong economic performance. The estimated long-run growth for the Netherlands is 

around 6.5 per cent per annum. It is significantly higher than the euro area average. 

Belgium. One error correction tenn is included in the DF model for Belgium, with the 

adjustment parameter, aJ) , found to be significant. The estimated common factor also 

appears very persistent with I/J, + 1, = 0.86. Unlike most of the countries analysed 

above, the Belgian employment data appears more responsive to the common factor, 

with r40 being the largest among all the estimated r;. Six recessions are identified for 

the Belgian economy during 1974Q4-1975Q3, 1977QI-1977Q2, 1980Q2-1983Q2, 

1991QI-1991Q3, 1992Q3-1993Q4 and 2001Q2-2002QI. The estimated mean growth 

rate for the Belgian common factor is around 4.8 per cent per annum. 
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Table 2.6: Parameter estimates for OF model for Netherlands 

rp, 1.417 (O.123)" 

rp, -0.502 (O.087)" 

LlGDP y, 
0.103** 

(O.032) 

LlSales y, 
0.079** 

(0.024) 

LlIP Y3 

0.091 ** 
(0.034) 

LlEMP Y40 

0.073 
(0.058) 

Y 4l 

0.056 
(0.072) 

142 

0.019 
(0.079) 

Long run growth rate: 0 = 1.638 

Error correction terms 

Common Factor 

Idiosyncratic Components 

D79ql \lfll 

-3.797** -0.301 ** 
(O.878) (O.098) 

D78ql D94ql \If" 
2.614"'* -4,695** -0.307* '" 

(O.815) (O.776) (0.095) 

\If]] 

-0.131 

(0.100) 

Y 43 D96ql \lf4l 

0.141'" -1.703** 0.775** 

(0.056) (0.188) (0.281) 

1f/12 all a" 
-0.023 -0.506 -0.681 

(0.015) (0.548) (0.558) 

1f/ 22 all all 

-0.024 -1.171'" -1.330* 

(0.015) (0.505) (0.510) 

1J132 a 13 a 23 

-0.004 2.176** 1.830** 

(0.007) (0.675) (O.672) 

1j142 a 14 a 24 

-0.150 0.366 0.425 
(0.109) (O.337) (0.422) 

, 
er , 
0.663** 

(0.082) 

ag 
0.635** 

(0.076) , 
er 3 

0.747** 

(0.091) , 
er 4 

0.041 ** 
(0.009) 

GDP,_, = -8.524 - 3.444 x lP,_, + 4.156 X EMP,_, Sales,., = 63.86 + 24.946 x lP,.,-19.337 x EMP,_, 

(0.708) (0.629) 

Log-likelihood: -560.705 

Diagnostics Q(4) 
LlGDP 4.756 

f:..Sales 4.568 

LlIP 4.092 

LlEMP 2.037 

(3.871) (3.442) 

Jarque-Bera 
34.106** 

17.841** 

1.072 

11.294** 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and'" at 5%. The parameter 
estimates for the Netherlands were estimated using data from 1970Ql-2006Q4. Logarithms of variables 
were used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

~ GDP: 0.0064, 0.0121; ~ Sales: 0.0018, 0.0192; LiIP: 0.0041, 0.0181; ~ EMP: 0.0029, 0.0063. 
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Table 2.7: Parameter estimates for OF model for Belgium 

Common Factor 

91 1.255 (0.101)** 

92 -0.393 (0.155)* 

Idiosyncratic Components 

~GDP 11 D80q1 Wll W12 W14 all er 2 
1 

0.253** 4.467** 0.035 0.023 -0.224* 0.262 0.525** 

(0.083) (0.743) (0.155) (0.102) (0.103) (0.143) (0.093) 

~GFCF 12 W21 W'2 a 12 er' 2 

0.222** -0.079 0.114 0.038 0.720** 

(0.047) (0.089) (0.086) (0.109) (0.088) 

~IP 13 W3l W32 aD er 2 
3 

0.295** -0.200 -0.010 0.583** 0.518** 

(0.047) (0.143) (0.014) (0.132) (0.085) 

~EMP 140 141 142 143 W4l W42 a 14 er 2 
4 

0.306** 0.075 -0.123* 0.132** 1.066** -0.284** -0.041 0.067* 
(0.057) (0.062) (0.068) (0.047) (0.151) (0.080) (0.052) (0.039) 

Long run growth rate: <5 = 1.207 

Error correction term 
GDP

t
_l = 15.805 - 0.220 X GFCF

t
_t + 1.477 X IP

t
_l -1.499 X EMP

t
_1 

(0.080) (0.080) (0.312) 

Log-likelihood: -604.932 

Diagnostics Q(4) Jarque-Bera 
~GDP 15.277* 4.113 

~GFCF 4.021 6.012 

~IP 1.606 14.502** 

~EMP 3.287 4.364 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for Belgium were estimated using data from 1970Ql-2006Q4. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

~ GDP: 0.0059, 0.0074; ~ GFCF: 0.0044, 0.0209; ~ IP: 0.0044; 0.0209; ~ EMP: 0.0009, 0.0027. 

2.4.2 The Periphery EMU Countries: Spain and Finland 

Spain. The trace statistic indicates the existence of two cointegrating vectors, whilst the 

eigenvalue statistic suggests that there is only one. As with the Netherlands, two 

cointegrating vectors are included in the DF model for Spain. The significance of all 

confinns the presence of the first long-run relationship among three of the four variables 

used for Spain. The parameter estimate of a" becomes significant when a 24 is 

restricted to zero, suggesting a second long-run relationship. The Spanish common 
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factor is also persistent with 1/>1 + 1/>, = 0.88. Employment is again the least responsive 

and lags the common fluctuations. In total five recessions are found for Spain: 1974Q4-

1976Ql, 1978Q2-1979Q2, 1980Q2-1981 Q4, 1983Q3-I 984Q2 and 1992Q2-1993Q4. 

No recessions are identified from 1994Ql onwards, which may be a consequence of the 

funding received from the European Region Development Fund and the strong growth 

observed in the construction sector. In contrast to Gennany and the Netherlands, who 

both suffered from recessions and sluggish growth in recent years, Spanish economic 

growth has accelerated. The estimated mean growth rate for Spain is 4.75 per cent per 

annum over the period studied. 

Finland. As no cointegration is found among the four variables used for Finland; the 

DF model is thus specified in first differences. The Finnish common factor follows an 

AR(2) process with both (A and rP, positive and significant. Unsurprisingly, Finnish 

employment lags behind the common factor fluctuations, with Y.o being insignificant, 

and Y41 and Y4J being positive and significant. To some extent, this reflects the 

rigidities present in the Finnish labour market, stemming from the generous 

unemployment benefits and high employment protection provided. Five recessions are 

identified, during 1975Q2-1975Q4, 1977Ql-1977Q2, 1980Q4-198IQl, 1990Q3-

1993Q2 and 2001 Q2-2001 Q3. The most severe recession was observed during the 

early 1990s, triggered by the collapse of exports to the Soviet Union and later 

exacerbated by the ERM crisis. The annual growth rate of the Finnish common factor is 

estimated to be 3.3 per cent. 
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Table 2.8: Parameter estimates for the OF model for Spain 
Common Factor 

t/J, 0.397 (0.133)** 

t/J, 0.441 (0.1301** 
Idiosyncratic Components 

6GDP r, !jI11 1.f12 '1114 a" a" (J"2 
I 

0.467** -0.460** -0.107 -0.200* -0.168 0.405 0.382""" 

(0.060) (0.120) (0.116) (0.088) (0.260) (0.262) (0.064) 

6GFCF r2 1f121 !f! 22 ((12 ((22 (J"' 
2 

0.586** 0.168 0.022 0.228 -0.084 0.262"" 
(0.072) (0.172) (0.162) (0.33S) (0.349) (0.067) 

61P r, I.f ~J If' ~2 aD a2~ 0-; 
0.431** -0.256** 0.195* 0.972** -0.498* 0,550** 

(0.06S) (0.101) (0.099) (0.314) (0.234) (0.078) 

6EMP Y40 r .. Y42 Y43 D76ql D76q3 !!,,, lJI42 a" a" (J"2 
4 

0.185** 0.147** 0.090 0.050 2.789** 3.664** 0.254** 0.219* -0.214 0.166** 
(0.048) (O.OSS) (0.OS2) (O.OSl) (0.412) (0.419) (0.100) (0.094) (0.173) (0.023) 

Long run growth rate: 0 = 1.180 

Error correction terms 
GDP,_j = 6.403+ 2.0S4x 1 Pt-! - O.121x EMP,.j GFCFj _] = -1.157+ 3.098 x IPt.1 - 0.027 x EMPt_J 

(0.167) (0.179) (0.473) (0.S07) 

Log·likelihood: -S39.934 

Diagnostics Q(4) Jarque-Bera 
6GDP 0.164 20.741 on 

Cl GFCF 1.638 34.936*'" 
b,p 3.033 14.456** 

LlEMP 1.386 12.524** 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The adjustment 

parameter a23 becomes significant when a24 is restricted to be zero. The parameter estimates for 

Spain were estimated using data from 1972Q3-2006Q4. Logarithms of variables were used, each 
variable was standardised to growth rates with mean zero and unit variance prior to estimation. The 

sample means and standard deviations for the growth rates of the original series are: fl GDP: 0.0069, 

0.0074; fl GFCF: 0.0069, 0.0074; fliP: 0.0049,0.0172; fl EMP: 0.0035, 0.0082. 
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Table Z.9: Parameter estimates for OF model for Finland 

Common Factor 

rp, 0.333(0.137)" 

rp, 0.349(0.128)" 

Idiosyncratic Components 

AGDP YI 

0.573" 

(0.150) 

ASales y, 

0.453" 

(0.123) 

AlP Y3 

0.414*' 

(0.121) 

A EMP Y40 Y41 Y42 

0.025 0.333" 0.098 
(0.097) (0.085) (0.149) 

Long run growth rate: (5 ~ 0.827 

Log-likelihood: -665.342 

Diagnostics Q(4) 
AGOP 11.126* 

A Sales 10.702' 

AlP 4.317 

AEMP 1.447 

Y 43 D76q1 

0.325*' 5.234*' 
(0.075) (0.737) 

V/Il \//12 

-0.622" -0.097' 

(0.144) (0.045) 

W21 VI" 
-0.002 -0.087 

(0.005) (0.094) 

Vl3' Vl32 

-0.170 0.109 

(0.091) (0.094) 

Vl41 VI" 
-0.096 -0.242 
(0.139) (0.252) 

Jarque-Bera 
17.706" 

19.807*' 

17.197*' 

1.033 

(}"2 
I 

0.316' 

(0.130) 

0"2 
2 

0.655*' 

(0.102) 
(}"2 

3 

0.698** 

(0.106) 
0"2 

4 

0.280* 
(0.119) 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for Finland were estimated using data from 1970Ql-2006Q4. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations far the growth rates of the original series are: 

A GDP: 0.0069, 0.0121; A Sales: 0.0054, 0.0184; AlP: 0.0093, 0.0215; A EMP: 0.0011, 0.0081. 

2.4.3 The non-EMU countries: the UK, the US and Canada 

United Kingdom. The four variables used for the UK are also cointegrated. Therefore, 

one error correction tenn is included in the DF model. A long-run relationship is 

confinned by the significant adjustment parameter, a14 • Dummy variables are included 

in the GDP and IP equations to remove the pronounced outliers caused by the frequent 

industrial strikes during the 1970s. A dummy is also used to capture the break in the 

employment series during 2002Q3. Analysing the values of y, presented in Table 2.10 

reveals that employment is again the least responsive and lags the estimated UK 

common factor. This runs contrary to the general view that the UK has a more flexible 

labour market than France and Gemlany. However, this finding can be explained in 
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part by the fact that the labour market deregulation, which only commenced in the early 

1980s, will not be fully reflected when estimating the sample average. Overall, four 

recessions are identified during, 1973Q3-1974Q1, 1974Q4-1975Q3, 1979Q3-1981Q1 

and 1990Q3-1991Q3. It can be seen from Panel 10 of Figure 2.1 that, in contrast to the 

core EMU countries presented above, the UK economy has perfonned consistently well 

since the mid-1990s. The mean growth rate for the UK is estimated to be 2.5 per cent 

per annum, which is relatively low compared to the other non-EMU countries analysed. 

United States. Instead of using the monthly data analysed by the NBER business cycle 

dating committee, four quarterly variables are used for the US to ensure consistency 

with the other countries analysed. One cointegration relationship is found among these 

variables, so that one error correction term is included in the DF model. The adjustment 

parameter, a 12 , is found to be significant, which confirms the presence of a long-run 

relationship among the four variables used. Although the US employment series lags 

the common factor fluctuations, the value of r 40 is larger than the corresponding values 

for the other countries analysed, perhaps reflecting the greater flexibility of the 

deregulated US labour market. The five recessions identified, 1974QI-1975QI, 

1980Q2-1980Q3, 198IQ4-1982Q4, 1990Q3-1991Q1 and 200IQI-200IQ3, replicate 

the cycle dates pronounced by the NBER business cycle dating committee9
• The mean 

growth rate of the US common factor is computed to be 4.6 per cent per annum. 

9 Five peaks announced by the committee are November 1973. January 1980, July 1981. July 1990 and 
March 2001; five troughs are March 1975. July 1980. November 1982. March 1991 and November 2001. 

69 



3 '7 

Table 2.10; Parameter estimates for OF model for the UK 

Common Factor 

Ij;, 0.207 (0.122) 

Ij;, 0.170 (0.124) 

Idiosyncratic Components 

L', GDP 11 D73q1 D79q2 WII WI' 
0.688" 3.501" 1,498' -0.386' -0.037 

(0.073) (0.581) (0.641) (0.154) (0.030) 

L', GFCF 1, VI'I W" 
0.322" -0.157 -0.006 

(0.089) (0.098) (0.008) 

L',IP 13 D72q1 D72q2 D74q1 D74q2 V/3, VI" 
0.621 *' -2.443** 2,485" -2.347** 3.887** 0.464 " -0.054 

(0.064) (0.517) (0.535) (0.547) (0.532) (0.164) (0.038) 

L',EMP 140 1,1 Y42 143 D02q3 VI'I V'42 
0.203*' 0.168** 0.194** 0.092 -4.949** 0.339** 0.055 
(0.057) (0.063) (0.066) (0.064) (0.559) (0.098) (0.099) 

long run growth rate; ;; = 0.615 

Error correction term 

GDP'_I = 35.186+ 1.056 X GFCF,_, + 0.674 X IP'_I - 2.824 X EMP'_I' 
(0.123) (0.156) (0.450) 

log-likelihood; -584.199 

Diagnostics Q(4) 
L',G~ 7~5 

L', GFCF 

L',IP 
L',EMP 

3.968 

3.289 

0.855 

Jarque-Bera 
32.807** 

3.977 

9.306** 

3.417 

all 

-0.066 

(0.129) 

ai, 

-0.015 

(0.100) 

a l3 

-0.006 

(0.126) 

ai, 

-0.229' 
(0.107) 

, 
cr I 
0.168" 

(0.057) 

0"; 
0.886** 

(0.110) 
, 

(r 3 
0.145** 

(0.049) 

(J'2 , 
0.328" 
(0.043) 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and' at 5%. The parameter 
estimates for the UK were estimated using data from 197001-200501. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

L', GDP: 0.0057, 0.0096; L', GFCF: 0.0064, 0.0272; !lIP: 0.0028,0.0186; L', EMP: 0.0011,0.0054. 
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Table 2.11: Parameter estimates for OF model for the US 

Common Factor 

~I 0.654 (0.103)** 

~2 -0.107 (0.034)** 

Idiosyncratic Components 

t.GOP 11 D78q2 Ifll Ifl' all 
(]"2 I 

0.666** 2.042** -0.510** -0.065 -0.028 0.168** 
(0.061) (0.578) (0.155) (0.040) (0.106) (0.047) 

t. Sales 1, D74q4 D80q2 !f/2J If" a l2 
(]"' 

2 

0.410** -2.149* -1.960* -0.196* -0.010 0.185* 0.475** 
(0.058) (0.760) (0.750) (0.095) (0.009) (0.081) (0.060) 

t.JP 13 D74q4 D75q1 D80q2 1f31 1f32 a 13 
(]"2 

3 

0.574** -1.680** -3.170** -1.185* 0.294* 0.085 -0.155 0.185** 
(0.058) (0.531) (0.544) (O.540) (0.125) (0.120) (0.105) (0.035) 

t.EMP 140 141 142 143 1f41 1f4' a l4 
(]"' 

4 

0.429** 0.163* 0.042 0.126* 0.082 -0.002 -0.207 0.389* 
(0.068) (0.076) (0.078) (0.064) (0.101) (0.004) (0.125) (0.052) 

Long run growth rate: 0 = 1.160 
Error correction term 

GDP'.I = 0.004 + 0.545 x Sales '-I - 0.097 X IP'.I + 0.322 X EMP'.I 
(0.071) (0.072) (0.197) 

Log-likelihood: -598.771 
Diagnostics Q(4) Jarque-Bera 
t.GDP 0.053 10.908** 
t. Sales 1.198 2.322 
t.IP 2.975 14.547* 
t.EMP 4.194 7.429 
Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for the US were estimated using data from 1970Ql-2006Q4. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

t. GDP: 0.0078, 0.0082; t. Sales: 0.0054, 0.0148; t.IP: 0.0069, 0.0149; t. EMP: 0.0043, 0.0048. 

Canada. One cointegrating vector is also detennined by the Johansen cointegration test 

for Canada. The adjushnent parameters, ai, and a IJ , appear significant, again 

confinuing the presence of a long-TUn relation among the four variables used for Canada. 

As with the US, the Canadian labour market exhibits a certain degree of flexibility, with 

the value of 140 found to be larger than the corresponding values for the EMU countries. 

As plotted in Panel 12 of Figure 2.1, four recessions are identified, during 1974Q4-

1975Q1, 1981Q3-1982Q4, 1990Q2-1991QI and 2001QI-2001Q3. These dates are 

closely correlated with the US business cycle turning points, illustrating the close 
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economic link between the two countries. Finally, the annual growth rate for Canada is 

estimated to be 4.9 per cent. 

Table 2.12: Parameter estimates for OF model for Canada 

Common Factor 

~I 0.799 (0.109)** 

~, -0.160 (0.044)** 

Idiosyncratic Components 

ilGOP YI WI! W12 all er' I 
0.581 ** -0.303** -0.023 -0.085 0.273** 

(0.063) (0.116) (0.018) (0.112) (0.050) 

il Sales Y, D81Ql VI'I W" a l2 er' 2 

0.297** 4.793** -0.215* 0.126 0.179* 0.539** 

(0.051) (0.758) (0.092) (0.091) (0.079) (0.067) 

illP Y3 W31 W32 a 13 er' 3 
0.586** 0.188 0.095 0.214* 0.272** 

(0.063) (0.115) (0.105) (0.117) (0.049) 

ilEMP Y40 Y41 Y4' Y43 W41 W4' a l4 er' 4 
0.365** 0.266** -0.075 -0.035 0.133 0.039 -0.205 0.341 ** 
(0.075) (0.093) (0.091) (0.072) (0.108) (0.106) (0.137) (0.048) 

Long run growth rate: (5 = 1.241 

Error correction term 
GDP'_I = 4.586 + 0.261x Sales'_1 + 0.399X lP'_1 + 0.632x EMP'_I 

(0.045) (0.046) (0.047) 

Log-likelihood: -628.861 

Diagnostics Q(4) Jarque-Bera 
ilGDP 7.842 6.601 * 
il Sales 0.472 0.148 

illP 4.947 2.141 

ilEMP 9.500 25.465** 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for Canada were estimated using data from 1970Ql-2006Q4. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

il GDP: 0.0077, 0.0081; il Sales: 0.0079, 0.0168; !'lIP: 0.0064, 0.0168;!'l EMP: 0.0050, 0.0058. 
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Figure 2.1: Composite indices and recessions 
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2.5 Evaluating the coincidence of business cycle turning points 

Having identified business cycle turning points for each country, the binary variable, S" 

can be constructed to indicate the states of an economy, with unity denoting expansions 

and zero indicating recessions. The pairwise cycle correlation can then be evaluated 

using the correlation coefficient and the various concordance indices proposed in 

Harding and Pagan (2002). 

2.5.1 Multidimensional mapping of business cycle distance 

The correlation coefficient is the most commonly used index to measure the 

coincidence between two variables. In this subsection, the correlation coefficients 

between binary variables are calculated and reported in Table 2.13. However, given the 

number of countries in this analysis, it is difficult to interpret all the infonnation simply 

by observing the individual bilateral correlations presented in Table 2.13. Therefore, a 

multidimensional mapping technique, Sammon mapping (Sammon, 1969), is employed 

to reveal a geometrical picture of the interdependencies among the business cycles. 1O 

Countries that have non-synchronised business cycles are plotted far away from each 

other in the picture. Applying this approach produces a two-dimensional map for 66 

pairs of business cycle distances among 12 countries by minimising the following error 

function, which is often referred to as Sammon 's stress. 

(2.16) 

where N = 66 and dij is the business cycle distance between countries i and j, 

obtained by subtracting the pairwise correlation coefficient from one. dij is the 

approximate distance between their projections on the map, given by the following 

equation: 

10 A function package for h1atlab is used to conduct this procedure. 
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(2.17) 

As K = 2, z; and Zj are the two-dimensional projection of countries i and j, and Z;k 

and Z jk are the two dimensions of each country. 

Maps of business cycle distances are shown in Panels 1-3 of Figure 2.2 over the whole 

sample and two subsamples with midpoint of 1991Ql. It is important to emphasise that 

the units denoted on the axes of the Sammon maps are, in themselves, meaningless, and 

the orientation of the picture is arbitrary; the only thing that matters is the distances 

between objects in the map (Kruskal and Wish, 1977). Therefore, the only aim of using 

Sammon mapping is to graphically illustrate the level of business cycle synchronisation 

between different groups of countries. It is also important to keep in mind that, when 

looking at a map that has non-zero stress, the distances among objects imperfectly 

represent the relations given by the data, and the greater the stress, the larger the 

distortion. It can be seen from Panel 1 of Figure 2.2 that, over the whole sample, the 

core EMU countries exhibit a higher degree of synchronisation within themselves and 

with respect to the euro area aggregate, compared to those in the peripheral and non­

EMU groups. This is particularly true for Germany, Austria, Belgium and the 

Netherlands who appear close to each other and the aggregate euro area. This is partly 

because Austria and the Netherlands previously fixed their exchange rates against the 

Deutsche Mark (DM) and their economies were highly integrated with Germany. 

The above relations can also be illustrated numerically by calculating the mean 

correlation of several pairwise correlations. The mean correlation for the core EMU 

countries with respect to the aggregate euro area is 0.52, compared to the corresponding 

values of 0.41 and 0.24 for the periphery and non-EMU countries. In addition, a even 

higher mean correlation of 0.57 is found within the cluster of four core EMU countries 

mentioned above. It is also worth noting that the highest correlation is between the US 

and Canada, followed by the correlation between Germany and Austria, reflecting the 

close economic links between these two pairs of countries. 
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Figure 2.2: Multidimensional mapping of business cycle distance 
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The changes in business cycle correlations over time are also analysed by evaluating the 

cycle correlations of two subsamples: pre-1991QI and post-199lQI. The reason for 

choosing 1991QI as the breakpoint is because a number of important events happened 

around this time, including German reunification in October 1990, the ERM crisis in 

1992-1993, and the adoption of the Maastricht treaty in November 1993. These events 

are all expected to have had significant influences on the cycle correlations between the 

countries analysed. A closer look at Panels 2 and 3 of Figure 2.2 reveals a few striking 

features. First, the tight cluster of four core EMU countries composed of Germany, 

Austria, Belgium and the Netherlands, who all had close distances to the euro area in 

the first subsample, deviated from the aggregate euro area and each other in the second 

subsample. However, the other two core members, France and Italy, who only had 

moderate correlation with the aggregate euro area, have shown an increase in 

synchronisation with the latter. Second, a catching-up process of business cycle 

convergence is also observed between the two periphery countries, Spain and Finland, 

and the aggregate euro area over time. Third, a picture of diverging non-EMU business 

cycles from the euro area as a whole can clearly be observed. This is also broadly in 

line with Gamier (2003), who found that euro area business cycles are increasingly 

independent of the US cycle. Finally, two pairs of perfectly synchronised binary 

variables are found between France and Spain, and the US and Canada, in the second 

subsample. 

The above changes in cycle correlations, revealed in the maps, are again confirmed by 

the mean correlations of different groups (i.e., the core, periphery and non-EMU 

countries) with respect to the aggregate euro area. The mean correlation between the 

four core EMU members with the euro area almost halved over the two subsamples, 

with the mean correlation reducing from 0.67 to 0.37. In contrast, the mean correlation 

between the two periphery countries and the euro area aggregate increased dramatically 

from 0.25 to 0.72. A moderate increase in synchronisation is also found between the 

French and Italian business cycles and the aggregate euro area, with their mean 

correlation rising from 0.40 to 0.67. Finally, the mean correlation between non-EMU 

countries and the aggregate euro area decline sharply from 0.35 to -0.08, implying anti­

cyclical correlations between the aggregate euro area and these countries in the second 

subsample. 
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Table 2.13: Correlation Coefficients 

Whole Sample Period 
EMU GER FRA ITA AUS BEL NETH SPA FIN UK US 

EMU 

GER 0.59 
FRA 0.57 0.30 
ITA 0.39 0042 0.39 
AUS 0045 0.67 0.39 0.23 
BEL 0.60 0.50 0.52 0.48 0.59 
NETH 0.51 0048 0.44 0.27 0.62 0.54 
SPA 0.37 0.23 0.64 0.16 0.37 0043 0.37 
FIN 0.45 0.20 0.27 0.23 0.14 0.49 0.16 0.27 
UK 0.19 0.20 0.16 -0.05 0.16 0.33 0.14 0.19 0.35 
US 0.34 0041 0.15 0.18 0.51 0.40 0.22 0.06 0.14 0.34 
CANA 0.18 0.28 0.00 0.23 0041 0042 0.22 0.04 0.18 0.20 0.76 

Pre-1991Ql 
EMU GER FRA ITA AUS BEL NETH SPA FIN UK US CANA 

EMU 0.79 0.40 0.40 0.58 0.72 0.58 0.09 0041 0.27 0.52 0.27 

GER 0044 0.34 0.37 0.73 0.64 0.47 0.23 0.12 0.39 0.6 0041 

FRA 0.83 0.30 0.26 0.55 0048 0.55 0.43 0.11 0.26 0.26 0.02 

.... ITA 0.50 0.47 0.60 0.26 0.51 0.35 -0.06 0.06 0.05 0.27 0.34 
Ci AUS 0.20 0.61 0.13 0.26 0.67 0.74 0.45 0.07 0.23 0.61 0047 .... 
'" BEL 0.42 0.32 0.56 0.49 0.45 0.75 0.35 0.35 0.31 0.44 0046 

'" .... NETH 0.42 0.50 0.30 0.21 0.45 0.20 0.41 0.18 0.23 0.36 0.39 , ... 
V> SPA 0.83 0.30 1.00 0.60 0.13 0.56 0.30 0.2 0.22 0.05 0.05 0 

Co FIN 0.60 0.27 0.46 0.34 0.25 0.64 0.13 0.46 0.41 0.03 0.08 

UK -0.07 -0.17 -0.09 -0.15 -0.10 0.43 -0.13 -0.09 0046 0.35 0.17 
US -0.09 0.09 -0.10 0.13 0.26 0.34 -0.15 -0.10 0.36 0.24 0.68 

CANA -0.09 0.09 -0.10 0.13 0.26 0.34 -0.15 -0.10 0.36 0.24 1.00 ------ ---

78 



2.5.2 The concordance and mean corrected concordance indices 

The index of concordance (IC) proposed by Harding and Pagan (2002) is utilised in this 

section to measure the length in quarters that two business cycles spend in the same 

phase. Let Sit and Sjl denote the binary variables for countries i and j. The IC can 

be calculated as follows, where T is the sample size 

T 

Iu =r-1
I{SjlS,I+(1-Sjl)(1-S,,)} (2.18) 
1=1 

The value of Iu equals one when two binary variables are perfectly pro-cyclical. I;; 

equals zero when two binary variables are exactly counter-cyclical. The relation 

between the IC and the correlation coefficient can be seen by rewriting equation (2.18) 

as 

(2.19) 

where B'i denotes the estimated covariance and Pij is the estimated correlation 

coefficient between Sit and Sil. When 11; is one, the corresponding value of the 

correlation coefficient is one, and when 11; equals zero, the correlation coefficient is -1. 

A problem occurs when the value of the correlation coefficient equals zero, which 

results in equation (2.19) becoming 

In this case, even if two binary variables are independent of each other, I ij may be a 

high value simply because a large fraction of time is spent in expansions. Therefore, 
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Harding and Pagan (2002) further proposed a mean con'ected index of concordance 

(MCIC) to cross-check the values of 1 ij . The MCIC is given by 

(2.21 ) 

T T 

where S; '" T-'l: Sit , and Sf '" T-'l: Sf" If I;; is negative, this indicates a counter-
1=1 1=1 

cyclical relationship between the two binary series, Sit and Si" However, the value of 

1; is harder to interpret than Iij, as the maximum value of 11; varies across each pair of 

binary variables compared to I i/, which has a definite maximum value of one. 

The upper panel of Table 2.14 reports the values of Iij and 1; calculated using the 

whole sample. The values of Iij suggest that the aggregate euro area is more in synch 

with Finland and US than countries such as Germany and the Netherlands. This 

contradicts what we have observed in Panel I of Figure 2.2. To cross-check the results, 

1; for each pair of binary variables is computed, and the results are more in line with 

those provided by correlation coefficients in the previous subsection. The mean I; 
between the core EMU countries and the aggregate euro area is 0.15, compared to the 

corresponding values of 0.11 and 0.05 for the peripheral and non-EMU countries, 

respectively. Furthermore, an average 1,;' of 0.21 is found among the four highly 

synchronised core EMU business cycles. 

The values of Iil and 1;; calculated using the two sUbsamples are presented in the mid 
, , 

and lower panels of Table 2.14. Upon comparing these values, changes in cycle 

correlations over time are again observed across countries. Both 1 ij and 11; suggest that 

French, Spanish and Finnish business cycles became more synchronised with the 

aggregate euro area in the second subsample. However, the cluster of the four core 

EMU countries all deviated from the euro area as a whole. Moreover, the 

desynchronisation process between the non-EMU countries and the euro area, shown in 

Panels 2 and 3 of Figure 2.2, is only revealed when comparing values of I;; across two 
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subsamples. The corresponding values of I'l provide a different story and this reflects 

exactly the problem with Iif when a large fraction of time is spent in expansions, as for 

the non-EMU countries and the aggregate eum area less recessions are identified in the 

second than the first subsample. 

EMU 
GER 
FRA 
ITA 
AUS 
BEL 
NETH 
SPA 
FIN 
UK 
US 
CANA 

EMU 
GER 
FRA 
ITA 
AUS 
BEL 
NETH 
SPA 
FIN 
UK 

Table 2.14: IC (Upper Triangle) and MCIC (Lower Triangle) 

Whole Sample Period 

EMU GER FRA ITA AUS BEL NETH SPA FIN UK US CANA 
0.84 0.89 0.82 0.85 0.87 0.85 0.83 0.87 0.82 0.86 0.83 

0.19 0.75 0.77 0.86 0.80 0.79 0.69 0.70 0.71 0.77 0.74 
0.14 0.10 0.81 0.83 0.85 0.83 0.90 0.81 0.80 0.81 0.77 
0.11 0.16 0.11 0.75 0.83 0.74 0.72 0.77 0.69 0.77 0.79 
0.12 0.26 0.11 0.08 0.86 0.87 0.79 0.75 0.75 0.86 0.84 
0.17 0.20 0.16 0.16 0.20 0.83 0.80 0.83 0.79 0.82 0.83 
0.14 
0.10 
0.11 
0.04 
0.07 
0.04 

0.19 0.13 
0.09 0.18 
0.Q7 0.07 
0.06 0.04 
0.13 0.03 
0.08 0.00 

0.09 0.21 0.19 0.78 0.74 0.72 0.75 0.76 
0.08 0.75 0.72 0.73 0.06 0.12 0.15 0.13 

0.Q7 0.05 0.15 0.05 
-0.01 0.05 0.10 0.04 
0.05 0.14 0.11 0.06 
0.06 0.10 0.11 0.06 

Pre-1991Q1 

0.02 
0.05 
0.02 
0.02 

0.83 0.79 0.81 
0.09 0.85 0.82 
0.03 0.08 0.95 
0.04 0.04 0.15 

EMU GER FRA ITA AUS BEL NETH SPA FIN UK US CANA 
0.93 0.80 0.82 0.86 0.89 0.86 0.66 0.84 0.79 0.86 0.79 

0.27 0.78 0.78 0.89 0.86 0.79 0.67 0.70 0.78 0.85 0.79 
0.13 0.11 0.78 0.85 0.82 0.85 0.78 0.77 0.78 0.78 0.72 
0.12 0.12 om 0.75 0.84 0.76 0.60 0.77 0.73 0.80 0.84 
0.19 0.29 0.18 0.08 0.87 0.90 0.77 0.70 0.72 0.86 0.82 
0.25 0.24 0.16 0.15 0.26 0.90 0.73 0.79 0.76 0.81 0.83 
0.19 0.19 0.18 0.11 0.27 0.29 0.76 0.75 0.71 0.76 0.78 
0.03 
0.10 
0.08 

0.10 
0.04 
0.14 

0.15 
0.03 
0.07 

-0.02 0.18 0.14 0.16 
0.10 0.05 
0.10 0.08 

0.70 0.69 0.63 
0.83 0.75 

0.64 
0.79 
0.76 

0.01 0.02 
0.01 0.08 

0.06 
0.08 0.11 0.80 

US 0.15 0.20 0.07 0.07 0.21 0.14 0.12 0.02 0.01 0.10 0.91 
CANA 0.08 0.12 0.01 0.08 0.15 0.13 0.12 

EMU 
GER 
FRA 
ITA 
AUS 
BEL 
NETH 
SPA 
FIN 

UK 
US 
CANA 

EMU GER FRA ITA 
0.75 0.97 0.81 

0.12 0.71 0.77 
0.14 0.09 0.84 
0.11 0.20 0.16 
0.04 0.21 0.03 0.08 
0.09 0.13 0.14 0.17 
0.09 0.20 0.08 0.08 
0.14 0.09 0.19 0.16 
0.13 0.10 0.12 0.12 
-0.01 -0.04 -0.01 -0.03 
-0.01 0.02 -0.01 0.03 
-0.01 0.02 -0.01 0.03 

Post-1991Q1 

AUS BEL NETH 
0.84 0.84 0.84 
0.82 0.71 0.79 
0.81 0.88 0.81 
0.75 0.81 0.72 

0.84 0.84 
0.13 0.75 
0.13 om 
0.03 0.14 0.08 
0.07 0.21 0.05 
-0.02 0.08 -0.02 
0.04 0.07 -0.03 
0.04 0.07 -0.03 

81 

0.02 0.02 0.05 0.18 

SPA FIN UK US CANA 
0.97 0.89 0.86 0.86 0.86 
0.71 0.70 0.61 0.66 0.66 
1.00 0.86 0.82 0.83 0.83 
0.84 0.77 0.65 0.73 0.73 
0.81 0.80 0.79 0.86 0.86 
0.88 0.89 0.82 0.83 0.83 
0.81 0.73 0.72 0.73 0.73 

0.86 0.82 0.83 0.83 
0.12 0.84 0.84 0.84 
-0.01 0.08 0.91 0.91 
-0.01 0.07 0.03 1.00 
-0.01 0.07 0.Q2 0.12 



2.5.3 Binary Variables as Regressand and Regressor 

According to Harding and Pagan (2002), the null hypothesis that an individual business 

cycle, Su, is independent of a reference cycle, Sjl' can be tested using the following 

regression equation: 

(2.22) 

f3 indicates the relationship between Sjl and Su' S jl is independent from Su if f3 is 

insignificantly different from zero. The Newey-West estimators of the standard errors 

are used to obtain the heteroscedasticity and autocorrelation consistent (HAC) t­

statistics for the null hypothesis that f3 = O. 

Table 2.15: Test for synchronisation: whole sample period 

EMU GER FRA us 
EMU 0.308 

(0.188) 
GER 0.456*' 0.249 0.299' 

(0.143) (0.138) (0.111) 
FRA 0.529*' 0.362' 0.125 

(0.179) (0.186) (0.118) 
ITA 0.321* 0.475" 0.341* 0.146 

(0.136) (0.130) (0.163) (0.098) 
AUS 0.393* 0.766** 0.366' 0.435*' 

(0.160) (0.082) (0.154) (0.129) 
BEL 0.478*' 0.546** 0.448'* 0.321'* 

(0.118) (0.114) (0.147) (0.101) 
NETH 0.419** 0.497" 0.390* 0.167 

(0.153) (0.137) (0.158) (0.110) 
SPA 0.319 0.260 0.585** 0.049 

(0.171) (0.162) (0.165) (0.084) 
FIN 0.431 * 0.251 0.276 0.128 

(0.190) (0.172) (0.184) (0.146) 
UK 0.215 0.264 0.190 0.336** 

(0.219) (0.173) (0.222) (0.107) 

US 0.219 0.549** 0.173 
(0.205) (0.146) (0.157) 

CANA 0.195 0.412' 0.001 0.828** 
(0.959) (0.196) (0.125) (0.077) 

Notes: Independence of individual business cycles is tested against four reference cycles, the EMU, 
German, French and the US business cycles. Standard errors are in parentheses. ** denotes 
significance at 1% and * at 5%. 

82 



Business cycle correlations for individual countries, Sit' with respect to the aggregate 

euro area, Gennany, France and the US are investigated, with their binary variables 

used as the dependent variable, Si" Table 2. I 5 reports the estimates of fJ obtained 

over the whole sample. As shown in column 2 of Table 2. I 5, the core EMU countries 

all exhibit cycle correlation with the aggregate euro area, with fJ being statistically 

significant in all cases. In contrast, no business cycle synchronisation is shown between 

non-EMU countries and the aggregate euro area. As suggested by the estimates of fJ 

reported in columns 3 and 4, both the Gennan and French business cycles appear 

correlated with the other core EMU countries. Moreover, business cycle comovements 

are also identified between France and Spain, and Gennany and two non-EMU 

countries (the US and Canada). Finally, the Canadian cycle appears highly 

synchronised with the US cycle, with the estimated fJ being the largest among all 

parameter estimates. 

Table 2 16' Test for Synchronisation' Pre-1991Ql and Post-1991Ql . 
EMU GER FRA US EMU GER FRA us 

Pre-1991Ql Post-1991Ql 

EMU - - - 0.479* - - - -0.068 
- - - (0.210) - - - (0.046) 

GER 0.746** - 0.334 0.511** 0.263 - 0.209 0.051 
(0.150) - (0.199) (0.143) (0.178) - (0.171) (0.081) 

FRA 0.386 0.354 - 0.229 0.714** 0.429 - -0.070 
(0.234) (0.228) - (0.163) (0.061) (0.233) - (0.047) 

ITA 0.428* 0.461* 0.288 0.284 0.294* 0.488* 0.412* 0.075 
(0.196) (0.180) (0.234) (0.154) (0.016) (0.190) (0.203) (0.094) 

AUS 0.546** 0.776** 0.530** 0.555** 0.168 0.787** 0.131 0.186 
(0.182) (0.119) (0.194) (0.153) (0.182) (0.079) (0.187) (0.160) 

BEL 0.642** 0.675** 0.444* 0.392** 0.288 0.360 0.442 0.211 
(0.138) (0.123) (0.190) (0.137) (0.190) (0.206) (0.235) (0.123) 

NETH 0.546** 0.468** 0.530* 0.304** 0.288 0.560** 0.249 -0.078 
(0.164) (0.176) (0.205) (0.140) (0.218) (0.191) (0.210) (0.053) 

SPA 0.075 0.225 0.378 0.040 0.714** 0.429 1.000** -0.070 
(0.202) (0.187) (0.195) (0.118) (0.061) (0.233) (0.000) (0.047) 

FIN 0.319 0.172 0.148 0.040 0.417 0.311 0.378 0.231 
(0.175) (0.171) (0.260) (0.211) (0.226) (0.250) (0.219) (0.160) 

UK 0.296 0.440** 0.288 0.328* -0.093 -0.358** -0.130 0.278 
(0.246) (0.157) (0.249) (0.125) (0.068) (0.106) (0.083) (0.184) 

US 0.560* 0.706** 0.288 - 0.181 0.173 -0.117 -
(0.199) (0.137) (0.197) - (0.140) (0.222) (0.075) -

CANA 0.295 0.527* 0.026 0.746*' -0.083 0.173 -0.117 1.000** 
(0.253) (0.218) (0.178) (0.106) (0.062) (0.222) (0.075) (0.000) 
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The estimates of fJ obtained using the two sub samples are reported in Table 2.16. As 

with the above findings, synchronisation between French and Spanish cycles and the 

aggregate euro area increased remarkably, with the null of fJ = 0 strongly rejected in 

the second subsample. On the other hand, the four core EMU business cycles are found 

to move out of sync with the aggregate euro area, with their estimates of f3 becoming 

insignificant. Finally, business cycle divergence between the US and the euro area is 

also observed by comparing the estimates of f3 reported in the last column of the left 

and right panel of Table 2.16. 

2.6 Average Cycle Characteristics 

The four key business cyclical characteristics; length, amplitude, steepness and welfare 

gains, proposed by Harding and Pagan (2000), are analysed in this section. The 

similarity of these characteristics across euro area business cycles is relevant in 

determining the effectiveness of common monetary policies. For example, if cycle 

steepness differs between members, a common monetary policy cannot meet the 

requirements of countries with deep cycles and those with mild cycles. Harding and 

Pagan use a triangle approximation to describe a business cycle phase, in which the 

height of the triangle is the amplitude and the base is the duration of the cycle. This is 

illustrated for a stylised recessionary phase in the diagram below. Knowledge of the 

height and base enables one to compute the area of the triangle to approximate the 

cumulated losses (gains) in one particular recession or expansion. 

Duration A,.,.-____ _ 

Actual 
Path 
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Instead of analysing the characteristics of one particular recessionary or expansionary 

phase, this section measures the average business cycle characteristics over the whole 

sample and the two subsample periods. The first feature considered is the average 

duration of recessions (expansions), which measures the total time spent in recessions 

(expansions) over the number of troughs (peaks), 

T T 

IS, I (1- S,) 
D 1-\ 

TP = T-1 d D ~'~=1 ______ _ 
an PT = T-1 (2.23) 

I (1- S'+1 )S, I (1- S, )S'+1 
1=1 1=1 

where PT (TP) denotes the phase from peak (trough) to trough (peak). 

The second feature measures the average amplitude of recessions (expansions) as: 

T 

IS,!£, 
AMP .. ~~'=~'------

TP = T-l 

I (1- S'+1 )S, 
1",1 

T 

I (1- S, )f:.C, 

and AMPrr = -';';";',-------­
I (1- S, )S'+1 
1=1 

where /';C, is the common factor growth rate calculated in the DF model. 

(2.24) 

The steepness of business cycle phases is the third feature considered. It is expressed as 

the ratio of the amplitude to the duration: 

T 

STEEP
T
? = AMPT? 

IS,f:.C, 
''''] (2.25) T DTP IS, 

I=J 

T 

STEEP
PT 

= AMPpT 

I (1- S, )f:.C, 
and ,=, 

r 
DPT IO-S,) 

1=1 
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This statistic describes the amount of welfare that is lost (gained) in each quarter spent 

in recessions (expansions). It also measures the speed at which an economy falls into 

and emerges from a recession. This figure tends to be big when a large portion of 

output loss (gain) occurs during a short period of time. 

The cumulative movement of recessions (expansions), which measures the overall 

welfare loss (gain) during recessions (expansions), is the last feature analysed in this 

section. It is calculated as follows 

CM; = O.S(AMP; * D;), i = TP, PT (2.26) 

The results for the four cyclical characteristics outlined above are reported in Table 2.17 

for the whole sample period. One of the stylised features of business cycles is revealed 

by comparing columns 2 and 3, with expansions being much longer than recessions in 

all the countries analysed. Significantly asymmetric business cycle phases are observed 

in the three non-EMU countries, with expansions lasting over six times longer than 

recessions. On the other hand, expansions are found to be relatively short in Germany 

and Italy, with recessions occurring much more frequently than in the other countries 

studied. Among the countries analysed, France experienced the longest average 

expansionary phase of 35 quarters, while the longest average recessionary phase 

occurred in the Netherlands, lasting for 7.2 quarters. 

The asymmetric nature of business cycles is also observed in columns 4 and 5, with the 

amplitude of expansions being significantly larger than those for recessions. Again, the 

three non-EMU countries stand out, with their average expansionary amplitude being 

eight times larger than their recessionary amplitude. In contrast, the corresponding 

values for the peripheral and COfe EMU countries afe six times and five times larger, 

respectively. Large business cycle amplitude is observed in the Dutch results. This 

reflects the severity of the recession which occurred during the early 1980s and the fast 

economic growth thereafter. In addition, large expansionary amplitudes are also 

observed in the French and Canadian business cycles, whilst the German cycle exhibits 

the smal1est expansionary amplitude. 
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The steepness of expansions and recessions is reported in columns 6 and 7. Once more, 

both the steepest recessionary and expansionary phases are found in the Netherlands. In 

contrast, the German business cycle had the mildest expansionary phase. In general, the 

non-EMU countries and small EMU countries had steeper recessionary and 

expansionary phases than the other countries. To some extent, such volatility is caused 

by the more deregulated labour and product markets in these countries. 

The cumulative movements of expansions and recessions are reported in the last two 

columns of Table 2.17. For all countries, the welfare gains achieved in expansions 

appear to be considerably higher than the losses suffered from recessions. On average, 

the non-EMU countries had the largest gains during the expansionary phase and the 

smallest losses in recessions. Again, the Dutch business cycle experienced the largest 

welfare gain and loss out of all the countries analysed, while the Gennan business cycle 

shows the smallest welfare gain during expansions. 
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Table 2.17: Average Business Cycle Features 

Duration (quarters) Amplitude (%) Steepness (%) Cumulated {%) 
Expansion Recession Expansion Recession Expansion Recession Expansion Recession 

EMU 26.00 4.00 33.22 -2.33 1.28 -0.58 431.92 -4.67 
GER 14.00 6.83 9.13 -3.49 0.65 -0.51 63.90 -11.93 
FRA 35.00 6.33 49.18 -4.09 1.41 -0.65 860.73 -12.95 

AUS 18.00 5.40 21.28 -2.41 1.18 -0.45 191.55 -6.51 
BEL 18.67 5.33 36.94 -8.49 1.98 -1.59 344.80 -22.63 
ITA 12.78 3.22 14.25 -2.65 1.12 -0.82 91.05 -4.27 

NETH 27.00 7.20 84.80 -18.94 3.14 -2.63 1144.74 -68.19 

SPA 21.00 5.80 36.34 -5.17 1.73 -0.89 381.52 -15.00 
FIN 23.60 4.20 27.23 -4.36 1.15 -1.04 321.31 -9.16 
UK 29.75 4.75 24.97 -4.96 0.84 -1.04 371.37 -11.77 

US 25.20 3.60 36.57 -3.78 1.45 -1.05 460.78 -6.80 
(ANA 32.50 3.75 49.64 -4.83 1.53 -1.29 806.64 -9.06 

Core 20.91 5.72 35.93 -6.68 1.58 -1.11 449.46 -21.08 

Periphery 22.30 5.00 31.79 -4.77 1.44 -0.97 351.42 -12.08 

Non 29.15 4.03 37.06 -4.52 1.27 -1.13 546.26 -9.21 

Note: Core, Periphery and Non denote the mean of the cyclical characteristics for the core, peripheral 
and non- EMU countries. 

As with the changes in cycle concordance, the evolutions in business cycle similarities 

and differences are also evaluated to examine the validity of the endogenous OCA 

theory. Table 2.18 reports the business cycle characteristics for the two subsamples: 

pre-1991QI and post-1991Ql. The standard deviations of business cycle characteristics 

are calculated across all the EMU countries. These figures suggest that mixed progress 

has been made towards cyclical synchronisation. Differences in the recessionary phase 

appear to diminish, while variations in the expansionary phase increase. This, again, 

reveals the unbalanced economic growth which has occurred across EMU members. 

Germany and Italy have been characterised by short and mild expansions, while French, 

Spanish and Finnish expansionary phases appear longer lasting. with larger amplitudes 

and greater welfare gains. 

Comparing the mean statistics of all cyclical characteristics over the two subsamples 

shows that differences in business cycle characteristics among the core, periphery and 

non-EMU countries become more distinctive over time. On average, both recessions 

and expansions in the core EMU countries exhibit shorter durations and smaller 

amplitudes during the second subsample. The two periphery countries, particularly 

Spain, achieved remarkable welfare gains during their sustained expansions. Finally, 

the non-EMU countries also experienced long lasting expansions with moderate welfare 

gains and little losses suffered in recessions. 
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Table 2.18: Evolution of Business Cycle Features 

Duration (quarters) 

Expansion 

EMU 22.50 
GER 20.33 
FRA 24.00 
AUS 17.67 
BEL 15.25 
ITA 17.00 
NETH 28.50 
SPA 12.00 
FIN 16.50 
STD. 5.24 
UK 16.25 
US 16.50 
CANA 23.33 

Core 20.46 
Periphery 14.25 
Non 18.69 

EMU 59.00 
GER 9.25 
FRA 57.00 
AUS 27.50 
BEL 25.50 
ITA 9.40 
NETH 25.50 
5PA 57.00 
FIN 52.00 
STD. 19.92 

UK 54.00 
US 60.00 
CANA 60.00 
Core 25.69 
Periphery 54.50 
Non 5S.00 

Recession 

3.67 
7.33 
6.00 
6.00 
6.33 
3.00 
7.67 
5.50 
3.00 

1.76 

5.33 
4.67 
5.50 

6.06 
4.25 
5.17 

5.00 
6.33 
7.00 
4.50 
4.33 
3.40 
6.50 
7.00 
6.00 
1.37 
3.00 
2.00 
2.00 

5.34 
6.50 
2.33 

Amplitude (%) Steepness (%) 

Expansion 

32.55 
15.58 
33.69 
25.65 
32.20 
21.82 
95.31 
18.17 
18.44 

26.18 

15.38 
26.70 
40.94 
37.38 
18.31 
27.67 

67.80 
4.29 
80.18 
25.37 
46.42 
8.19 
74.28 
108.98 
63.12 

37.02 

38.33 
76.04 
75.75 

39.79 
86.05 
63.37 

Recession Expansion 

Pre-1991Q1 
-2.42 1.45 
·11.66 0.77 
·3.70 1.40 
·8.79 1.45 
·39.63 2.11 
·12.50 1.28 
·86.55 3.34 
-14.51 1.51 
-8.13 1.12 

27.83 0.79 

·18.08 0.95 
·16.24 1.62 
-15.91 1.75 
-27.14 1.73 
·11.32 1.32 
-16.74 1.44 
Post-1991Ql 

-6.91 1.15 
·9.29 0.46 
-8.56 1.41 
-3.27 0.92 
-11.30 1.82 
-11.34 0.87 
-8.16 2.91 
-11.36 1.91 
-13.69 1.21 
3.14 0.77 

-1.75 0.71 
-2.6S 1.27 
-3.42 1.26 

·S.65 1.40 
·12.53 1.56 
·2.61 1.08 

Recession 

·0.66 
·1.59 
·0.62 
·1.47 
·6.26 
·4.17 
·11.29 
·2.64 
-2.71 

3.49 

-3.39 
-3.48 
-2.89 

-4.23 
·2.68 
-3.25 

-1.38 
·1.47 
-1.22 
-0.73 
-2.61 
-3.34 
·1.26 
-1.62 
-2.28 
0.86 

·0.58 
-1.33 
·1.71 

·1.77 
-1.95 
·1.21 

Cumulated (%) 

Expansion 

366.19 
158.43 
404.23 
226.60 
245.53 
185.50 
1358.19 
109.04 
152.14 
415.13 
125.00 
220.28 
477.58 
429.75 
130.59 
274.29 

2000.03 
19.83 
2285.19 
348.86 
591.92 
38.51 
947.08 
3106.01 
1641.03 
1124.83 

1034.83 
2281.34 
2272.59 

705.23 
2373.52 
1862.92 

Recession 

·4.43 
·42.75 
·11.11 
·26.38 
·125.48 
·18.75 
·331.77 
·39.90 
·12.19 

109.74 

·48.22 
-37.90 
·43.76 
·92.71 
·26.05 
·43.29 

-17.28 
·29.42 
·29.97 
·7.35 
-24.48 
·19.28 
-26.53 
-39.76 
·41.06 
10.87 

-2.62 
·2.65 
-3.42 
·22.84 
-40.41 
·2.90 

Note: STD. denotes the standard deviation of the cyclical characteristics for the EMU countries. 
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2.7 Conclusions 

This chapter identifies business cycle turning points for both the aggregate euro area 

and individual countries. Instead of just analysing GDP series, a composite index of 

four multivariate coincident macroeconomic variables is derived using the DF model. 

The BBQ algorithm is then applied to identify possible business cycle turning points in 

this index, with a binary variable constructed to indicate the periods of recession and 

expansion. 

Two criteria are used to evaluate the degree of business cycle synchronisation: the 

concordance of business cycle turning points and similarity of business cycle 

characteristics. Overall, the core EMU countries share more synchronised business 

cycles with the aggregate euro area than with the peripheral and non-EMU countries. 

However, it is worth noting that the high cycle correlations with some countries may 

reflect the large weights they are assigned when constructing the aggregate euro area 

data. The evolution of business cycle correlations over time is also analysed by 

breaking the sample period into two subsamples, with the midpoint being 1991 Q I. The 

business cycles between the EMU countries and the three non-EMU countries are found 

to be unsynchronised. This is in line with the results obtained in Stock and Watson 

(2003), Camacho and Perez-Quiros (2006) and Gamier (2003). However, no further 

business cycle convergence is observed between the aggregate euro area and four of the 

core EMU countries: German, Austria, Belgium and the Netherlands. This could be due 

to the recessions experienced by these economies during the early 2000s which were not 

observed in the euro area as a whole. Over the same period, France and the two 

peripheral countries, Spain and Finland, show a significant increase in business cycle 

comovements with the aggregate euro area, and have experienced robust growth during 

recent years. 

Finally, this chapter investigated four, sample averaged, cyclical characteristics 

concerning cycle duration, amplitude, steepness and welfare gains. These results 

suggest that there exist significant differences in the business cycle phases among the 

EMU countries, and that the differences across expansionary phases have increased 

over time. This, again, confirms the unbalanced economic performance observed across 
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the euro area. The short and mild expansions observed in Germany and Italy led to 

sluggish economic growth. However, the steep and long lasting Spanish expansionary 

phase brought huge welfare gains to the Spanish economy. 

Overall, the results obtained in this chapter contradict the argument proposed in the 

endogenous OCA theory that operating a monetary union will increase the degree of 

business cycle synchronisation in terms of both concordance and similarity. 

Furthermore, variations in economic performance observed across the euro area will 

lead to diverging monetary policy requirements and, consequently, will reduce the 

appropriateness of having a common monetary policy for all members. 
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Appendix A2 
Figure A2.1 Coincident macroeconomic time series 

Pan<tll 1: The aggregate euro I;lree 

GOP '" 
GFCF 

1(;,0 

15.9 

'" 
'" 14.2 
15,7 

'" 14.0 

15.4 

'" 1L-"c,C,-C,7"C,C--,C,700c:---::"C,7,-C,~;:;:::-c,c,c,,~ . 010 13.6 L,c,c,O,-O,,",O,-C,",ooC;:--,c~c·.;---;;,_;;;:;:--c~;;;C,~·" 

" 
'P 04 11.76 

Panel 3: France 

14.4 
GOP 

H' 

'" 
14.1 

'" 
'" 
'" ~-c=-oc.,--::=-",:---:::~--:=J . 010 

1980 1985 1990) 1995 2000 200S 

,., 

1016 

1012 

10,00 

'" 

Employment '" 

'" 
.004 

.000 

_ 004 

_.008 

'P 

1981) 100S 1990 1995 2000 2005 

Employment .0'00 

i1li\ 

i',llNvl \,~I 
0075 

0050 

0025 

_ 0025 

_.0050 
1980 1!1R5 H190 19".15 2000 2005 

14.6 

14,4 

'" 
14.0 

". 

Panel 2: Germany 

04 13.2 

13.0 

" 
01 12.B 

00 12.6 

·,01 
12,4 

-.02 

GFCF 

13.6 _.0312.2_ _10 
1970 1975 1980 1985 1990 1995 2000 2005 11.170 1975 1960 1965 1900 1995 2000 2005 

" 'P 06 10.56 Employment 

.04 10.52 

Penel 4: Italy 

14.4 
GOP 04 12.(; 

GFCF 

, ,03 

'" 

¥\i,~~~(\VV\:f:;, 
." 

12.1;> 

'" 
'" 

12.2 
13.6 

'" Lc,c,O,,~O,oo""o--:,cooO,;--O,,"oo:C-c,c,c,,;--c,ooo""--:'"ooC,~ _.03 12.0 L_,~"c,-,-ooo--,~oo-,-,-wro--'C,~,,-,-,-.oor,--,~oo-ls -06 

" 
,p 

12 10.05 
Employme ... t 

_.01 

3,8 -089,80 '--O,,~,~,--,-,,",70--,,7,,=,--:,700=,--:,=oo=,--:,==O-O--,=oo7,J _,04 
1975 1980 1985 1990 1995 2000 2005 

92 



12.6 
GOP 04 110 

10.8 

'" 
lOA 

GFCF 

--, , ,~ ,.: 

0' 

00 

-.05 

_,15 

11.6 ".00 10,2 ·,20 
1975 1000 1985 1990 '1995 :lOOO ?005 1975 19$0 1965 1900 1995 2000 2005 

'P 06 e 3 
Employment 

P",nel 7: Belgium 

GDP Q,j 11,2 GFCF 
128 

1Vl 0:;0, 11,0 

'" 
122 

12.0 

11,9 

" 
'P 1008-"0 co, 

075 a 36 
00< 

0508,32 

025 B 28 000 

OM 8 24 
-,004 

_ 0:;>.58.20 

·,0500.10 

14.0 

'" 
". 
'" 
13,2 

13.0 

'" 

93 

GDP 

Sales 

GOP 

, h::,1 ,i ,,! 

Panel 6: The Nelherlands 

Panel 8: Spaln 

04 12,8 

03 126 

'" " 
'" 
'" 

·,01 "6 

'P 

Employment 

GFCF 

·,02 

·.0>1 

·,06 

Vt.'/iJi~!::T',;r--'lN\\'---- : 
·,02 11 A l,~,,",'-C,O,,=-,o--',oo:S''''''~'~'''-",ooO:::,-:,=ooo=-:,=oo=,J ·.08 1975 1980 lOOS 1990 1995 2000 200!'i 

'P .08 '69 
Employment 



Panel 9: Finland Panel 10: The UK 

GD? 08 50 
Sales 

12.2 
14-4 

GD? (3FCF 
08 4,8 

'" 
14.0 

13,8 

'" 
'" Lc==--::=--:=-:=-___ =:-~. ·.04 

1975 1900 1905 1900 1995 2000 2005 

I? 12 10.30 
Emp(OYlnef'lt 

:,t\jV:!~iJ: :: 
," 

" L_,c,=,,:-=,~=, =-c,o~=,:-~,,.,=-:,=,,,=, ;-="=OO:;'-C20,=,,~ -15 7 55 L_,_,_"--,-~--,-oo-,--,_-,--,-w-,--"-,oo-,-,,,,,-"J _.0:3 

Panel 11' The US Panel 12: Canada 

GD? 04 4.13 
Stile!'! 

'" '" 
GO? Sales .12 tJ,j 5.0 

138 

'" 

! , .04 

"\\:'\-rti/i\Vii/\;Vi " 
15,0 1975 1980 1913'> 191'() 1995 2000 7.(lI)5 

·.06 

Note: levels of data are plotted in solid lines (left axis), and the corresponding first differenced data are plotted in dashed lines (right axis), 

94 



Figure A2.2 Growth rates of common factors, /:;c, 
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Table AZ.l: Coincident Macroeconomic Variables 

Augmented Dickey·Fuller 
Sample ------------- --------------,--- ----_._--

Variables 
Level First- differeneed periods 

Constant Constant+trend Constant ----_.,-------- ----_._----- - - - ---,---------_._--
EMU 197503- GDP -0.334 -2.314 -5.747** 

200604 (0.915) (0.423) (0.000) 
GFCF 0.266 -3.237 ~S.341 ** 

(0.976) (0.082) (0.000) 
IP -0.064 -3.543' -5,011 ** 

(0.950) (0.039) (0.000) 

EMP 0.158 -1.854 -2.652' 
(0.969) (0.672) (0.056) 

GER 197001- GDP -2.297 -1.970 -11.952" 
200404 (0.175) (0.612) (0.000) 

GFCF -1.012 -2.630 -14.361 '* 
(0.748) (0.268) (0.000) 

IP -0.764 -3.078 -9.552" 
(0.826) (0.116) (0.000) 

EMP -0.934 -3.409 -8.564" 
(0.775) (0.054) (0.000) 

FRA 197504- GDP -1.416 -2.964 -6.005" 
200604 (0.573) (0.147) (0.000) 

SALES 2.111 -0.235 -13.722" 
(1.000) (0.992) (0.000) 

IP 0.086 -2.095 -2.991 * 
(0.964) (0.543) (0.039) 

EMP -0.786 -2.626 -5.322" 
(0.819) (0.270) (0.000) 

ITA 197001- GDP -2.081 -2.097 -6.985" 
200604 (0.253) (0.543) (0.000) 

GFCF -0.244 -2.114 -10.711 
(0.929) (0.533) (0.000) 

IP -1.778 -2.869 ,11.190** 

(0.390) (0.176) (0.000) 
EMP 0.569 -1.453 -5.002" 

(0.988) (0.841) (0.000) 
AUS 197301- GDP -1.264 -2.486 -11.862" 

200604 (0.645) (0.3 35) (0.000) 
GFCF -0.469 -2.273 -13.136" 

(0.892) (0.445) (0.000) 
IP 1.644 -0.834 ~5.745** 

(1.000) (0.959) (0.000) 
EMP 0.189 -2.279 -14.500" 

(0.971) (0.442) (0.000) 
NETH 1970Q1- GDP -0.723 -1.972 ~15.5S6** 

2006Q4 (0.837) (0.611) (0.000) 

SALES -1.327 -1.485 -13.993" 
(0.616) (0.831) (0.000) 

IP 0.134 -4.146** -3.895" 
(0.967) (0.007) (0.003) 

EMP -0.723 -1.972 -15.556" 
(0.837) (0.611) (0.000) 

Note: ** denotes significance at 1 % and * at 5%. 
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Table Al.1: Coincident Macroeconomic Variables (Continued) 

---_.---- -.-- .. ------------.~-------,------------.----------
BEL 1970Ql- GDP -1.304 4.004' -8A18* , 

2006Q4 {0.627} {0.011} 10.000) 
GFCF -0.228 -1.904 -5.983** 

(0.931) 10.647) (0.000) 
IP -0.662 -3.260 -12.368** 

(0.852) (0.077) (O.OOO) 
EMP 0.546 -1.523 -3.451 * 

(0.988) (0.817) (0.011) 
SPA 1972Q3- GDP 1.178 -1.953 -4.016* * 

2006Q4 (0.998) {0.621} (0.002) 
GFCF 0.771 -2.224 -4.200** 

10.993) (0.4 72) (0.001) 
IP -0.554 -3.261 -6.276** 

(0.876) (0.077) (O.OOO) 
EMP 0.574 -1.162 -2.512 

(0.989) 10.913) (0.115) 
FIN 1970Ql- GDP -0.152 -2.376 -4.475** 

2006Q4 (0.940) (0.391) (0.000) 

SALES 0.050 -1.313 -13.318" 
(0.961) (0.881) (0.000) 

IP -0.178 -2.331 -14.098 ** 
(0.937) (0.414) (0.000) 

EMP -2.109 -2.157 -3.990* , 

{0.242} (0.510) (0.002) 
UK 1970Ql- GDP -2.081 -2.097 -6.985* * 

200SQl (0.253) (0.543) (O.OOO) 

GFCF -0.244 -2.114 -10.711 ** 
(0.929) (0.5 33) 10.000) 

IP -1.778 -2.869 -11.190 ** 
10.390) (0.176) (O.OOO) 

EMP 0.569 -1.453 -5.002* * 
(0.988) (0.841) (O.OOO) 

US 1970Ql- GDP -0.651 -3.863' ~9.423* '" 
2006Q4 (0.854) (0.016) (0.000) 

SALES -0.261 -1.669 -11.140** 
(0.927) (0.760) (0.000) 

IP -0.954 -3.175 -6.834*' 
(0.768) (0.094) (0.000) 

EMP -1.744 -2.5 53 -6.547' * 
(0A07) (0.303) (0.000) 

CAN 1970Ql- GDP -1.228 -2.824 -8.164** 
2006Q4 (0.661) (0.191) (0.000) 

SALES -0.070 -1.786 -12.835 ** 
(0.950) (0.707) (0.000) 

IP -1.561 -3.865' -6.283* * 

(0.500) (0.016) (0.000) 
EMP -1.824 -2.711 -6.197* '" 

(0.368) (0.234) (O.OOO) 

Note: ** denotes significance at 1 % and * at 5%. 
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Table A2.2: Cointegrating Test (Johansen 1995) 
Country Null r=O ,.,;1 ,.,;2 1',;3 

EMU Max-Eigen 32.845"'* 15.539 3.744 1.713 
stat. (0.010) (0.253) (0.885) (0.191) 

Trace stat. 53.841 ' 20.996 5.457 1.713 

(0.012) (0.358) (0.759) (0.191) 

GER Max-Eigen 19.375 16.242 6.599 1.769 
stat. (0.386) (0.211) (0.538) (0.183) 
Trace stat. 43.986 24.611 8.369 1.769 

(0.110) (0.176) (0.427) (0.183) 
FRA Max-Eigen 32.981 ** 19.400 4.060 0.668 

stat. (0.009) (0.086) (0.853) (0.414) 
Trace stat. 57.109** 24.128 4.728 0.668 

(0.005) (0.195) (0.837) (0.414) 
ITA Max-Eigen 30.894' 17.256 6.086 1.216 

stat. (0.018) (0.160) (0.602) (0.270) 
Trace stat. 55.451 ** 24.557 7.302 1.216 

(0.008) (0.178) (0.543) (0.270) 
AUS Max-Eigen 47.570' 21.236 6.601 2.451 

stat. (0.053) (0.343) (0.624) (0.117) 
Trace stat. 26.334 14.635 4.150 2.451 

(0.072) (0.315) (0.843) (0.117) 
NETH Max-Eigen 40.326"'* 24.666' 3.779 0.459 

stat. (0.001) (0.015) (0.882) (0.498) 
Trace stat. 69.229** 28.904 4.238 0.459 

(0.000) (0.063) (0.883) (0.498) 
BEL Max-Eigen 37.478** 16.043 6.209 0.245 

stat. (0.002) (0.222) (0.587) (0.621) 

Trace stat. 59.974** 22.497 6.454 0.245 

(0.002) (0.272) (0.642) (0.621) 
5PA Max-Eigen 36.238** 20.022 10.543 0.111 

stat. (0.003) (0.071) (0.179) (0.740) 

Trace stat. 66.913** 30.675' lD.653 0.111 

(0.000) (0.040) (0.234) (0.740) 
FIN Max-Eigen 39.248 19.510 6.131 1.178 

stat. (0.251) (0.457) (0.680) (0.278) 

Trace stat. 19.738 13.379 4.953 1.178 
(0.360) (0.418) (0.748) (0.278) 

UK Max-Eigen 32.804** 13.730 7.851 2.519 
stat. (O.OlD) (0.388) (0.394) (0.113) 

Trace stat. 56.903** 24.099 lD.370 2.519 
(0.006) (0.196) (0.253) (0.113) 

US Max-Eigen 27.489* 16.928 5.713 0.772 
stat. (0.051) (0.176) (0.650) (0.380) 

Trace stat. 50.903' 23.4l3 6.485 0.772 
(0.025) (0.226) (0.638) (0.380) 

CAN Max-Eigen 44,115** lD.240 5.621 0.359 
stat. (0.000) (0.722) (0.662) (0.549) 
Trace stat. 60.335** 16.220 5.980 0.359 

(0.002) (0.697) (0.698) (0.549) 

Note: the default option in EViews is used in the above Johansen tests in which an intercept is included in 
both the cointegration equation and the differenced form of the V AR. ** denotes significance at 1 % and 
* at 5%. 
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Appendix 82: Kalman filter 

The measurement and transition equations utilised in this chapter are 

The filtering recursive equations are as follows, 

P =FP FT +0 
Ilt-1 (-111-1 - , 

fJ - fJ - P HT ,-J tit - 111-1 11[-1 J 111-1 1711(-1 , 

The smoothing process for the vector fJ, contains two equations: 

(B2.l) 

(B2.2) 

(B2.3) 

(B2.4) 

where Air and Pr1r are the initial values of the smoothing. They are obtained from the 

last iteration of the basic filter. 
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Chapter 3 - Parametric Business Cycle Dating 

Procedure: The Markov-switching dynamic factor 

model 

3.1 Introduction 

The seminal research of Burns and Mitchell (1946) has highlighted two dominant 

features of business cycles: comovement among economic variables and asymmetry 

between expansions and recessions. Following the non-parametric business cycle 

dating strategy outlined in the previous chapter, the comovements among variables can 

be modelled using the DF model, in which multivariate infonnation is used to derive a 

composite index representing aggregate economic activity. However, this methodology 

cannot incorporate business cycle asymmetries as the estimated index has the same data 

generating process during recessions and expansions. 

Hamilton (1989) utilises the Markov-switching (MS) model to capture the asymmetry 

between business cycle phases. This model allows the mean of an auto regression of US 

real GNP growth to switch between low-growth and high-growth states by following a 

first-order Markov process. On applying this model, Hamilton successfully replicates 

the NBER reference dates over the period 1953-1984. However, the model fails to 

identify the more recent US recessions when an extended sample period is used, 

primarily because of the business cycle moderation observed during recent decades. 

One-time breaks in both the mean growth rates and residual variances have therefore 

been allowed in the Hamilton model to overcome this problem (Kim and Nelson, 

1999a). Mills and Wang (2003a) apply this modified model to the G7 countries, and 

find evidence of moderated business cycles across all member countries. In addition, 

Hansen (1992) extended the Hamilton model to allow for regime switching in the 

auto regressive parameters and residual variance. Furthennore, additional phases have 

been introduced into business cycle dynamics to capture periods of fast economic 

growth, such as the three-regime MS model used in Sichel (1994), Boldin (1996) and 
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Clements and Krolzig (1998), and the "bounce back" model proposed by Kim et al. 

(2005). It should be noted that the models summarised above are based on a univariate 

framework, so that the comovements of many macroeconomic variables through the 

cycle cannot be modelled. Another important extension to the Hamilton model is the 

Markov-switching Vector Autoregression (MS-VAR) proposed by Krolzig (1997a; 

1997b). This model is designed to detect common business cycle turning points in 

multivariate time-series. A number of studies, including Krolzig (1997a), Krolzig and 

Toro (2005) and Artis, Krolzig and Toro (2004), have applied this model to the national 

GDP and IP series of OECD and EMU countries to identify common business cycles 

across countries. Krolzig (1997b) further proposes a Markov-switching vector error 

correction model (MS-VECM) when the time-series analysed are cointegrated. Krolzig 

(2001) applies a three-regime MS-VECM to detect the common regime shifts in the 

mean growth rates of US employment and output over the period 1960-1997, as the two 

series were found to have long-run dynamics when a time trend is included. In addition, 

Krolzig et al. (2002) employ this model to analyse the UK labour market using output, 

employment, labour supply and real earnings, which are characterised as having two 

cointegrating vectors. The MS-VECM is also applied to disaggregated UK industrial 

production data by Krolzig and Sensier (2000) to investigate the common cycle shared 

by six major manufacturing sectors. 

Finally, the Markov-Switching Dynamic-Factor (MSDF) model, first proposed in 

Diebold and Rudebusch (1996), was applied by Chauvet (1998), Kim and Yoo (1995), 

Kim and Nelson (1999c, 2001) and Mills and Wang (2003b) to US and UK data. This 

model applies the Hanlilton model to a multivariate setting by combining the DF model 

with the MS framework. Unlike the MS-V AR model, the MSDF model derives not 

only common business cycle turning points, but also a composite coincident index 

representing aggregate economic activity. 

One of the objectives of this chapter is to compare the cycle dates produced by the 

MSDF model with those obtained in the previous chapter. I Differences in results are 

expected as the two approaches are based on fundamentally different mechanisms. 

Recessions identified using the BBQ algorithm are based on the rule that recessions are 

I The pros and cons of both the MS models and the BBQ algorithm have been debated in a series of 
papers, including Harding and Pagan (2002) and Hamilton (2003). 
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defined to be the absolute fall in the level of economic activity in two consecutive 

quarters. However, there are shortcomings with this rule. For example, if Economy A 

grows by 2% in the first quarter but then declines by 0.5% in each of the following two 

quarters, it is deemed to be in recession. However, if Economy B contracts by 2% in 

the first quarter, increases by 0.5% in the second quarter, and then falls by 2% in the 

third quarter no recession is identified, even though Economy B is weaker than 

Economy A. This example illustrates that the severity of an economic downturn should 

also be considered when defining a recession.2 The MSDF model seems better suited to 

this task. Instead of using the "two-quarter" rule, it makes inferences on the unobserved 

regimes of an economy using the smoothed regime probabilities. If a downturn appears 

to be deep, the smoothed recession probabilities will be close to unity. Likewise, if a 

decline is shallow, the smoothed recession probabilities are close to zero. A recession is 

declared only if the smoothed recession probabilities are above 0.5. Therefore, the 

depth of recessions can be revealed using the MSDF model. 

The rest of the chapter is organised as follows. Section 3.2 presents the baseline MSDF 

model. Modifications of the baseline model are discussed in section 3.3. Section 3.4 

describes the parameter estimates and cycle dates obtained using the MSDF model. 

Cycle synchronisation is evaluated using pairwise correlations of both binary variables 

and smoothed recession probabilities in section 3.5. Finally, section 3.6 concludes. 

3.2 Baseline model specification 

Kim and Nelson's (1999c, 2001) MSDF model with a two-state MS mean is specified 

as follows 

IjJ(L)(tJ.C, -/ls, -0)=11" v, -NID(O,CT,;), 

Wi(L)e i, = sit, Si' - NID(0,CTi
2
), 

f1s, = f1o(J -S,)+ /lIS" S, = {O,J}. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

2 This is consistent with the business cycle dating approach used by the NBER, who define a recession as 
a significant decline in economic activity spread across the economy lasting more than a few months, 
rather than two consecutive quarters of decline in real GDP. 
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As with Stock and Watson's (1989, 1991, 1993) DF model, the growth of each 

macroeconomic variable, Li1';, , consists of two stochastic components: a linear 

combination of the current and lagged values of the common factor, y,CL)LiC" and an 

individual component, D, + e". In a slight variation of the DF model, the common 

factor is modelled as a nonlinear AR process with MS deviations from its constant long­

run growth rate, <5. The value of fl s depends on whether the economy is in a recession , 

CS, = 0) or an expansion CS, = I). 110 + <5 and III + <5 represent the mean growth rates 

during recessions and expansions, respectively, with Jlo < ° < Ill' Transitions between 

regimes are controlled by four constant transition probabilities: 

Pr[S, =OIS,_1 =O]=Poo, Pr[S, = liSt-! =O]=I-poo, 

Pr[S, = IIS'_I = 1] = Pll' Pr[S, = OISt-! = I] = 1-PII' 

The logged variables in first differences are standardised to have zero mean and unit 

variance. This allows equations (3.1) and (3.2) to be replaced by 

~(L)(Lic, -lis) = V" v, - NID(O, 0";) 

(3.5) 

(3.6) 

where Lic, = LiC, - <5. By recasting equations (3.3), (3.4) (3.5) and (3.6) into state­

space representation, Kim's (1994) approximate MLEJ can be applied to estimate the 

hyperparameters: {~" VI" y" eT, ' Poo' PII' Jlo, JlI }. The state-space representation of the 

above model is given by 

Liy, = HP" 

13, =M"LlS, + Fp,_, +E:"G,-NID(O,Q). 

(3.7) 

(3.8) 

3 Kim's (1994) filtering and smoothing algorithms, together with the approximate MLE, are discussed in 
Appendix A3. 
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Equations (3.7) and (3.8) are the measurement and transition equations, respectively. 

The vectors t.y, and fi" and the time-invariant matrices Hand F , are specified as the 

corresponding components in the DF model. M,(L)S, = [~(L)S"O,O ... ol contains the 

regime-switching mean for the common factor. The equation 

~(L)S, = fls, - ~1fls,_, - ~2fls'_2 brings the current and two lagged two-state MS 

variables (i.e., S,' S'_1 and S'_2) into the state-space form. Therefore, a total of 23 

states should be included at each stage of the KF iteration (Kim, 1994).4 As with Kim 

and Yoo (1995), Chauvet (1995) and Kim and Nelson (1999c, 2001), this chapter 

assumes that the intercept of the common factor, rather than the mean of the common 

factor, is MS. Therefore, equation (3.6) is modified as 

(3.9) 

Only S, is included in the state-space representation, thus reducing the number of states 

to 22 at each iteration. 

As discussed in Chapter 2, Section 2.2.1, the mean growth rate of the linear common 

factor is calculated as ,\' = W(l)t.Y, where W(l) is the first row of (1 -(1 -KH)Fr1K. 

K is the steady-state Kalman gain. In the MSDF model, K is calculated as the 

weighted average over 22 Kfil, i,j = 1,2, at the last iteration.5 

3.3 Modifications to the baseline model 

The two-regime baseline model presented above is first considered for all countries in 

the analysis. However, given the properties of the data analysed, three modifications 

have been made to the baseline model. First, as discussed in section 2.3, Johansen 

cointegration tests reject the null of no cointegration among the four variables used for 

the aggregate euro area, France, ltaly, Belgium, the Netherlands, Spain and the three 

non-EMU countries. Therefore, the measurement equation (3.7) should be modified as 

4 Kim (1994) suggests that when current and r lagged M state MS variables are included in a state­

space form, at least M 1'+1 states should be included at each stage of the KF iteration. 
5 Please see Appendix A3 for details. 
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L'.y, = Hj3, + A X ECM'_1 , (3.10) 

where ECM, contains the error correction tenus which are estimated independently 

using the VECM. A is a matrix containing the corresponding adjustment parameters. 

Second, the fluctuations of the French common factor are observed to have three phases 

rather than two: recessions, moderate-growth and high-growth periods. As with Sichel 

(1994), Boldin (1996) and Clements and Krolzig (1998), who all include an additional 

regime in the Hamilton model to capture the phases of rapid recovery in the US 

business cycle dynamics, this chapter modifies the data generating process of the French 

common factor to have a three-regime intercept. Equation (3.4) becomes 

(3.11) 

The transition probabilities for France are modified accordingly: 

) 

Pi! = Pr[S, = jlSt-l = i], LPi! = I, (3.12) 
j:! 

Finally, structural breaks are introduced into the MS intercept for Italy, the Netherlands, 

Belgium and Spain. This is because the baseline model fails to provide reasonable 

parameter estimates for these countries, and thus fails to produce satisfactory inferences 

on the probabilities of recessions or expansions. One potential reason is that the 

baseline model assumes that intercepts during recessions and expansions are constant 

over the entire sample. As the magnitude of the recessions for these four countries 

appear to vary significantly, this assumption may not be valid. The recessions during 

the early 1970s and mid-1980s in Italy, Belgium and the Netherlands were notably 

deeper than the more recent recessions, while the ERM recession in Spain during the 

early 1990s appears to be more pronounced than the other downturns. The presence of 

severe recessions over the sample period results in the recession intercept being 

significantly negative. As such, the smoothed recession probabilities only capture the 

pronounced turndowns but neglect the others. A solution to this problem is to introduce 

dummy variables into the intercepts to reduce the impact that large recessions and 
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expansions have on the model's parameter estimates.6 Therefore, (3.4) is extended as 

follows 

(3.13) 

POt = Po + PooD" , Poo < 0 (3.14) 

(3.15) 

where D" and D2t are dummy variables. In order to define these dummy variables 

accurately, Bai and Perron's (2003) multiple structural break test is used to detect the 

significant changes in the common factor growth rates, estimated using the DF model, 

for the above four countries.? The standard likelihood ratio test is then used to cross­

check the presence of these structural breaks. 

3.4 Empirical results for the Markov-switching dynamic factor model 

Having established the state-space representation of equations (3.3), (3.4) (3.5) and 

(3.9), the filtering and smoothing algorithms, proposed in Kim (1994), can be used to 

obtain the hyperparameters of the MSDF model, and to calculate the smoothed 

inferences on the unobserved states of the economy. For consistency, the data set used 

in Chapter 2 is also used in Chapter 3. The MLE of models' hyperparameters for the 

countries analysed are reported in Tables 3.1-3.12. Apart from the parameter estimates 

associated with the common factor, the parameters of the idiosyncratic components in 

the MSDF model are broadly consistent with the corresponding values in the DF model. 

Therefore, the analysis of this chapter focuses on the MS parameters of the common 

factor. The MS common factors, along with the smoothed recession probabilities, are 

plotted in Panels 1-12 of Figure 3.1.8 

6 We have also tried a more complex solution to the above problem by introducing another latent state 
into the intercepts of the MSDF model. This is more in line with Kim and Nelson (I999a) and Mills and 
Wang (2003a) than the solution presented in the main text. However, the results are unsatisfactory as 
adding an additional latent state causes problems for Kim's (1994) approximate MLE. More discussions 
are included in Appendix E3. 
7 The identified break dates and confident intervals are reported in Appendix C3. 
s GroMh rate of the MS common factor for each country analysed is plotted in Figure B3.1, Appendix B3. 
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3.4.1 The Aggregate Euro Area and Core EMU Economies 

The Aggregate Euro Area. The parameter estimates of the MSDF model for the 

aggregate euro area are reported in Table 3.1. Both rp, and rp, are insignificant, 

suggesting that the common factor is generated by a random walk with a MS drift. 

Since the long run growth of the common factor, is, is estimated to be 1.097, the mean 

growth rate switches between Uo + is = -0.175 and u, + is = 1.598, with the transition 

probabilities associated with these two regimes being Poo = 0.821 and PH = 0.933. 

These estimates imply that recessions (regime 0) have a duration of (1- Poo t! = 5.6 

quarters, while expansions (regime I) have a duration of (1- p" t! = 14.9 quarters. 

The findings that luo I > lu!1 and PO~ < p,! support the asymmetric feature of business 

cycle phases, with recessions being steeper and shorter than expansions. 

The estimated MS common factor and the smoothed recession probabilities are plotted 

in Panel I of Figure 3.1. The smoothed probabilities can be considered as the optimal 

inference of the regime at time t using the full sample information If,; Pr(S, = jlv/,) .9 

The time path of the smoothed recession probabilities is used to date the business cycle 

turning points. As defined by Hamilton (1989), in the case of two regimes, an 

observation is classified into regime 0 when Pr(S, = Ollf,) > 0.5, and classified into 

regime 1 when Pr(S, = Olw T) < 0.5. Based on this rule, three recessions can be 

identified, during 1980Q2-1982Q4, 1992Q2-1993Q3 and 200IQ2-2003Q2. Although 

the first two recessions are consistent with the cycle dates produced by the CEPR, no 

recessions are reported by the committee in the early 2000s. A few brief downturns are 

also identified by the MSDF model during the mid-1980s. This perhaps reflects the 

frequent realignments of the EMS central exchange rate in this period. 

C) See Appendix A3.3 for more discussion on the smoothed regime probabilities. 
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Table 3.1: Parameter estimates of MSDF model for the euro area 

~] 
0.074 
(0.184) 

~2 
-0.001 
(0.007) 

Uo 
-1.272* 
(0.541) 

Common Factor 

U] Poo 
0.501 * 0.821 ** 
(0.264) (0.123) 

Idiosyncratic Components 

t.GDP Y] Wll W12 
0.684** -0.141 -0.005 
(0.097) (0.247) (0.018) 

t. GFCF Yl W21 V/12 
0.563** -0.378* -0.036 
(0.083) (0.137) (0.026) 

t.IP YJ V/31 W12 
0.581" 0.081 -0.002 
(0.095) (0.135) (0.006) 

t.EMP Y40 Y4] Y42 Y43 W4] If/ 42 V/44 

0.198" 0.186*' 0.053 0.067 0.166 0.134 0.333*' 
(0.058) (0.058) (0.054) (0.056) (0.092) (0.092) (0.100) 

Long run growth rate: 0 = 1.097 
Error correction term 

GDP,.] = 18.598 - 0.932 x GFCF,.] + 2.726 X IP,.] -0.163 X EMPt .] 

(0.211) (0.273) (0.329) 
Log-likelihood: -592.248 
Diagnostics Q(4) Jarque-Bera 

t.GDP 3.654 2.857 

t.GFCF 3.691 4.847 

t.IP 8.588 16.508** 

t.EMP 5.121 18.103** 

Pll 
0.933** 
(0.060) 

all 0'2 
] 

0.033 0.175* 
(0.136) (0.080) 

all 0'2 
2 

-0.144 0.293*' 
(0.115) (0.054) 

aB 0'2 
3 

0.134 0.398" 
(0.137) (0.064) 

a 14 
0'2 

4 

-0.219' 0.319** 
(0.112) (0.039) 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for the euro area were estimated using data from 1975Q3-2006Q4. Logarithms of variables 
were used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

t. GDP: 0.0054, 0.0047; t. GFCF: 0.0056, 0.014; t.IP: 0.0043, 0.0098; t. EMP: 0.0014, 0.0028. 

Germany. As with the aggregate euro area, the data generating process of the German 

common factor follows a random walk with a MS drift. As reported in Table 3.2, both 

~, and ~2 are insignificant. Compared to the aggregate euro area, the average 

recessionary phase in Germany is much deeper whilst the average expansionary phase 

appears to be much milder. Mean growth rates in Germany during recessions and 

expansions are U o + 0 = -0.758 and u, + 0 = 0.847, respectively. The transition 

probabilities associated with the two regImes are POD = 0.816 and 

PII = 0.914, suggesting an average duration of the recessionary phase of 
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(1- Poot '= 5.4 quarters and an average duration of the expansIOnary phase of 

(1- p" t' '= 11.6 quarters. 

The smoothed recession probabilities, plotted in Panel 2 of Figure 3.1, highlight five 

recessions, during I 973Q3-1975Q2, 1980Q2-1982Q4, 1992Q2-1993Q2, 1995Q3-

1996Ql and 2001Q2-2003Q2. These cycle dates correspond closely with those 

produced by the BBQ algorithm in Chapter 2. 

Table 3.2: Parameter estimates of MSDF model for Germany 

rp, 
-0.155 
(0.139) 

'" GDP 

'" GFCF 

'" IP 

"'EMP 

rp, 
-0.006 
(0.010) 

y, 
0.674 ** 

(0.114) 

y, 
0.510** 

(0.097) 

Y3 
0.624** 

(0.100) 

Y40 Y4' 

Common Factor 

Uo U, Poo 
-1.108* 0.497* 0.816** 
(0.523) (0.286) (0.123) 

Idiosyncratic Components 

V/ll V/12 

-0.016 -0.096 

(0.140) (0.100) 

V/21 V/22 

-0.266** -0.018 

(0.098) (0.013) 

V/31 W32 
0.004 0.016 

(0.119) (0.130) 

Y43 D80ql W41 W" 
0.171 ** 0.227** 0.145* 

(0.061) (0.060) (0.055) 

Long run growth rate: 0 '= 0.350 

0.104* 

(0.055) 

5.633** 

(0.685) 

0.088 -0.083 

(0.091) (0.091) 

Log-likelihood: -641.807 

Diagnostics Q(4) Jarque-Bera 

'" GDP 1.125 23.155*' 

'" GFCF 4.492 1.567 

'" IP 
2.122 5.914 

"'EMP 2.410 64.179** 

Pll 
0.914** 
(0.065) 

(7' , 
0.633** 0.183* 

(0.110) (0.080) 

V/'4 
0.212' 

(0.102) 

W44 
0.250* 

(0.090) 

(7' , 
0.468** 

(0.053) 

(7' 
) 

0.413** 

(0.069) 

(7' 
4 

0.431 ** 

(0.042) 

Notes: The parameter estimates for Germany were estimated using data from 1970Ql-2004Q4. 
Logarithms of variables were used, each variable was standardised to growth rates with mean zero and 
unit variance prior to estimation. The sample means and standard deviations for the growth rates of the 

original series are: '" GDP: 0.0056, 0.0098; '" GFCF: 0.0038, 0.0278; '" IP: 0.0037, 0.0157; '" EMP: 
0.0005,0.0051. Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. 
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France. As with the other countries analysed, a two-state MSDF model was first fitted 

to the French data. The parameter estimates of this model are presented in Table 3.3(a). 

The intercepts of recessions and expansions are Uo = -1.101 and UI = 1.064, with the 

transition probabilities POD = 0.740 and PII = 0.745. Since the long run growth rate, 

0, is 1.298, mean growth rates of recessions and expansions are calculated to be 

UO+O =0.197 and U I +0=2.362, respectively. This implies that the smoothed 

recession probabilities plotted in Panel 3(a) of Figure 3.1 identify growth cycles rather 

than business cycles. In contrast to the other countries analysed, the French economy 

appears to have experienced three business cycle phases (recessions, moderate-growth 

and high-growth) rather than the two phases (recessions and expansions) which are 

generally identified. This requires the use of a three-state MS model to clearly 

distinguish these different regimes. 

The parameter estimates of a three-state MS model are presented in Table 3.3(b). The 

estimated long-run growth rate of 0.598 implies that growth rates of the three regimes 

are Uo + 0 = -1.483, uI + 0 = 0.598 and u, + 0 = 2.648. The common factor switches 

among the three regimes, governed by the following nine transition probabilities: 

Poo = 0.777, Pal = 0.223, P02 = 0, PlO = 0.077, Pll = 0.893, PI2 = 0.03, P20 = 0, 

P21 = 0.099 and P22 = 0.901.10 The transition probabilities P02 = 0 and Plo = 0 imply 

that the French economy cannot switch directly between the recessionary and the high­

growth regimes. This differs from the dynamics observed in the US where recessions 

are directly followed by periods of fast-recovery and then moderate growth (elements 

and Krolzig, 1998; Kim et al., 2005). Differences in the business cycle dynamics of the 

two countries may stem from the levels of rigidity observed in their economies. As the 

French economy is characterised by strong union power, companies may find it more 

costly to layoff workers during recessions and consequently may be unwilling to hire 

additional workers when recessions ends. This may hold back the French economy 

from the rapid recovery observed in the US, which has much more deregulated labour 

and product markers. The estimated transition probabilities for France imply that the 

10 As the parameter estimates of u j and Pzo are insignificantly different from zero, they are set to zero. 

In total, seven additional parameters are estimated in the MSDF model. including un. u2 , Pon' Po!' 

PlO' PII and P21' The other transition probabilities are calculated as P;2 = 1- P;o - Pn . 
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average duration of recessions, moderate-growth and high-growth periods are 

(I-poot' =4.5 quarters, (I-Pllt' =9.3 quarters and (I-P22t' =10.1 quarters, 

respectively. 

The smoothed recession probabilities, plotted in Panel 3(b) of Figure 3.1, indicate four 

recessions, during 1980Q2-1981QI, 1982Q3-1985Ql, 1986Q4-1987Ql and 1992Q2-

1994QI. In addition, the smoothed high-growth probabilities capture two high-growth 

periods: 1987Q4-1989Q4 and 1997Q2-200IQ1. 

Table 3.3 (al: Parameter estimates of MSDF model for France 

Common Factor 

rP, rP2 Uo U, POO Pll 
0.191 0.384 ** -1.101** 1.064 * 0.740** 0.745** 
(0.173) (0.105) (0.467) (0.533) (0.177) (0.128) 

Idiosyncratic Components 

~GDP y, V/ll V/'2 all (J'2 , 
0,451** -0.054 -0.001 0.297* 0.355** 
(0.093) (0.156) (0.004) (0.125) (0.065) 

~IP Y2 V/21 Vl 22 a l2 (J'2 
2 

0.463** 0.017 0.139 0.583** 0.307** 

(0.105) (0.172) (0.151) (0.143) (0.061) 

~Sales Y3 V/3J VI32 aB (J'2 
3 

0.158** -0.290** 0.023 -0.018 0.808** 

(0.054) (0.093) (0.095) (0.089) (0.058) 

~EMP Y40 Y4' Y42 Y43 V/41 V/42 aJ4 (J'2 
4 

0.263** 0.015 0.053 0.104* 0.276** 0.221* -0.065 0.285** 
(0.067) (0.060) (0.052) (0.051) (0.107) (0.106) (0.138) (0.043) 

Long run growth rate: ;; = 1.298 
Error correction term 

GDP,_, = 32.360 + 2.324X IP,_, + 0.667x Sales,_,' 3.152X EMP,_, 
(0.188) (0.294) (0.679) 

Log-likelihood: -567.525 
Diagnostics Q(4) Jarque·Bera 

~GDP 3.444 2.591 

~GFCF 3.385 23.899** 

~Sales 0.922 15.503** 

~EMP 2.998 1.856 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at S%. The parameter 
estimates for France were estimated using data from 1975Q4-2006Q4. Logarithms of variables were 
used/ each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

~ GDP: 0.0053, 0.0044; ~ IP: 0.0035, 0.0115; ~ Sales: 0.0037, 0.0104; ~ EMP: 0.0013, 0.0026. 
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Table 3.3 (b); Parameter estimates of MSDF model for France 
Common Factor 

1/>, 1/>, Uo u, u, Poo POI PlO PII Pzo PZt 

-0.039 0.064 ·2.081 ** 0 2.050** 0.777** 0.223' 0.077* 0.893** 0 
(0.119) (0.091) (0.492) (0.490) (0.101) (0.101) (0.046) (0.052) 

Idiosyncratic Components 

ilGDP 7, 
0.700** 

(0.069) 

illP 72 
0.464** 

(0.066) 

L', Sales 7, 

0.204** 

(0.054) 

L',EMP 740 741 742 

0.232** 0.151** 0.098* 

(0.048) (0.048) (0.045) 

Long run growth rate: 0 = 0.598 
Error correction term 

\if" 
-0.052 

(0.139) 

\if" 
-0.045 

(0.103) 

1//3J 

-0.305** 

(0.091) 

743 1// 41 

0.104** 0.190* 

(0.Q44) (0.096) 

GDP,., = 32.360 + 2.324 x JP,_, + 0.667 x Sales,_, - 3.152 x EMP,_, 
(0.188) (0.294) (0.679) 

Log·likelihood: -575.339 

Diagnostics Q(4) 
L',GDP 7.837 

L', GFCF 4.033 

Ll Sales 0.927 

L',EMP 1.154 

Note: Please see the notes given underneath Table 3.3 (a). 

fJ/12 all 

-0.001 0.349** 

(0.004) (0.105) 

'1/'1 a 12 

0.069 0.569** 

(0.103) (0.103) 

fjf 32 a 13 

-0.023 0.Ql5 

(0.014) (0.085) 

if/ 42 a 14 
0.206* 0.099 

(0.101) (0.117) 

Jarque-Bera 

3.255 

19.088** 

14.544** 

1.634 

0.099 
(0.065) 

eT' , 
0.238** 

(0.107) 

a; 
0.498** 

(0.045) 

eT: , 
0.803** 

(0.057) 

eT' 4 

0.340** 

(0.038) 

Italy. Global factors, such as the introduction of floating exchange rate regimes and 

soaring oil prices, combined with internal events, notably weak government coalitions 

and rising labour costs, all had a negative impact on Italian economic performance in 

the 1970s. This is reflected by the significant volatility observed in the country's GDP 

and IP growth during this period. As a consequence, the baseline model, which 

assumes there are constant intercepts during recessions and expansions over the entire 

sample, fails to provide reasonable parameter estimates. As a result of the parameter 

estimates Uo = -5.850 and Poo = 0 obtained in the baseline model, the smoothed 

recession probabilities fail to identify any recessions over the studied period as shown in 

Panel 4(a) of Figure 3.1. This could be because the gap between recessions and 

expansions has narrowed significantly in recent decades as the economy has stabilised. 
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Table 3.4 la): Parameter estimates of MSDF model for Italy 

~, 
0.773** 
(0.123) 

f>GDP 

f> GFCF 

f> IP 

f>EMP 

~, 
-0.149** 
(0.048) 

1, 
0.600*'" 

(0.071) 

1, 
0.357** 

(0.063) 

1, 
0.468"'* 

(0.055) 

140 1" 
0.144* -0.020 

(0.078) (0.116) 

Common Factor 

Uo u, 
-5.850** 0.039 
(1.458) (0.085) 

Idiosyncratic Components 

/fIll 

-0.167 

(0.175) 

1Jf21 

-0.044 

(0.088) 

f// 3J 

-0.479** 

(0.117) 

Y42 Y43 D92q4 VI" 
0.027 0.025 -4.423** -0.080 
(0.119) (0.090) (0.853) (0.090) 

Long run growth rate: " = 0.815 

Error correction term 
GDP,_, = 2.645 + 0.0911 x GFCF,_, + 1.1424 x IP,., + 0.521 X EMP,., 

(0.105) (0.086) (0.243) 

Log-likelihood: -679.46 

Diagnostics 
f>GDP 

f> GFCF 

f> IP 
f>EMP 

Q(4) 

1.276 

3.869 

7.227 

0.492 

Poo 
0.000 
(0.000) 

1// ]'2 

-0.007 

(0.015) 

'1/22 

0.005 

(0.088) 

1f/32 

-0.016 

(0.107) 

'1/42 '1143 

-0.215' 0.210· 
(0.086) (0.091) 

Jarque-Bera 

3.425 

3.156 

15.832** 

5.343 

P" 
0.993** 
(0.007) 

all <T' , 
0.332* 0.202** 

(0.134) (0.067) 

a I2 <T' , 
0.040 0.706*'" 

(0.103) (0.052) 

a 13 <T2 
3 

0.402** 0.316** 

(0.111) (0.051) 

a" <T' 
4 

-0.143 0.667*'" 
(0.116) (0.049) 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for Italy were estimated using data from 1970Ql-2006Q4. Logarithms of variables were used, 
each variable was standardised to growth rates with mean zero and unit variance prior to estimation. 

The sample means and standard deviations for the growth rates of the original series are: Li. GDP: 

0.0056,0.0079; Li. GFCF: 0.0042, 0.0181; Li.IP: 0.0043, 0.0223; Li. EMP: 0.0012,0.0064. 

As discussed in section 3.3, structural breaks were added to the model's intercepts as 

specified in equations (3.13)-(3.15), where dummy variables Du = I during 1974Q4-

1975Ql and D21 = 1 during 1973Q2-1973Q4, 1976Q3-1976Q4 and 1979Q4 capture the 

steep recessionary and expansionary phases. I I The parameter estimates of the modified 

model are repOlied in Table 3.4(b). The growth rates during recessions and expansions 

are estimated to be lto + 0 = -0.816 and It, + 0 = 1.463, respectively. These values 

11 The five break dates detected by Bai and Perron's (2003) procedure are at 1973Q2, 1973Q4, 1974Q3, 

1975Q2 and 1980Q2. Dummy variables, Du and D21 , are set to be consistent with these break dates or 

within their confidence intervals, apart from the period 1976Q3-1976Q4. However, setting D'I = 1 

during this period yields a higher log-likelihood value and more reasonable smoothed recession 
probabilities than leaving this period out. 
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increase to liD +UOD +8=-5.885 and u, +UIl +8 = 6.228 when the corresponding 

dummy variables are set to one. The transition probabilities associated with recessions 

and expansions are PO~ = 0.662 and PIl = 0.852 These estimates imply that the 

average duration of recessions is (1- POD t' = 2.9 quarters and the average duration of 

expansions is (1- Pll t' = 6.7 quarters. Compared with the other countries analysed, 

Italy has the shortest average business cycle phases, with recessions occurring much 

more frequently. The null hypothesis of uoo = Ull = 0 is strongly rejected by the 

likelihood ratio statistic X' (2) = 44.06. This indicates the presence of structural breaks 

in the intercepts. 

Overall, the smoothed recession probabilities detect eight recessions: 1974Q4-1975Q2, 

1977QI-1977Q3, 1982QI-1983Q2, 1992Q2-1993Q4, 1996QI-1996Q4, 2001Q2-

2001 Q4, 2002Q4-2003Q2 and 2004Q3-2005Ql. These dates are close those obtained 

using the BBQ algorithm. 

Table 3.4 (b): Parameter estimates of MSDF model for Italy 

~, 
0.152 
(0.115) 

f, GDP 

f, GFCF 

f,IP 

~, 
-0.006 
(0.009) 

y, 
0.431** 

(0.078) 

y, 
0.253** 

(0.052) 

y) 
0.329** 

(0.057) 

Uo 
-1.716** 
(0.587) 

~ EMP Y40 Y4J Y42 

0.083* 0.011 0.008 
(0.045) (0.061) (0.066) 

Long run growth rate: 0 = 0.900 

Error correction term 

Common Factor 

Ut Uoo UII 
0.563* -5.069** 4.765** 
(0.256) (1.224) (0.991) 

Idiosyncratic Components 

Ijlll Ifll~ 

-0.043 -0.001 

(0.228) (0.005) 

IfIZl !fIzz 

-0.037 0.030 

(0.088) (0.088) 

'!I31 '1132 

-0.499** -0.061 

(0.110) (0.106) 

Y4.1 D92q4 If! 41 'P42 
0.007 -4.453** -0.081 -0.214* 
(0.054) (0.859) (0.091) (0.086) 

Poo 

O.662*'" 

(0.112) 

If/ 4.' 

0.206* 

(0.091) 

GDP t.l:: 2.645 + 0.0911 x GFCF 1.1 + 1.1424x IP t•, + 0.521 x EMP t-I 
(0.105) (0.086) (0.243) 

Log-likelihood: -657.430 

Diagnostics Q(4) 
LlGDP 5.465 

Ll G FCF 3.247 

f, IP 6.514 

LlEMP 0.560 

Note: Please see the notes given underneath Tab)e 3.4 (a). 
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Jarque-Bera 
6.053 

3.090 

14.935** 

4.907 

all 

PII 
0.852** 
(0.065) 

<7' , 
0.246** 0.155* 

(0.090) (0.070) 

a l2 (7; 
-0.009 0.699** 

(0.085) (0.052) 

a 13 <7 2 
.' 

0.330** 0.339** 

(0.073) (0.047) 

a" <7' , 
-0.179 0.656** 

(0.099) (0.049) 



Austria. The parameter estimates of the MSDF model for Austria are presented in 

Table 3.5. The mean growth rate is Uo +,) = -1.548 during recessions and 

uI +,) = 1.257 during expansions. Given the transition probabilities Poo = 0.826 and 

PI I = 0.958 , the average duration of recessions and expansions are calculated to be 

(1- POO)-I = 5.7 quarters and (1- Pll t = 23.8 quarters, respectively. Three recessions 

are highlighted by the smoothed recession probabilities during 1974Q2-1975Q2, 

1980Q2-1982Q4 and 2001QI-2003Q2. In contrast to the cycle dates produced by the 

BBQ algorithm, the MSDF model does not identify any recessions during the ERM 

crisis, as it appears much milder than the others downturns observed. 

Table 3.5: Parameter estimates of M5DF model for Austria 
Common Factor 

if, if, un U, Poo p" 
-0.068 0.099 -2.172** 0.633"'* 0.826** 0.958** 

(0.150) (0.117) (0.473) (0.196) (0.089) (0.024) 

Idiosyncratic Components 

i1GDP y, D78q1 '1111 /.f112 (T' , 
0.384** ~6.112** D.026 0.000 0.372** 

(0.064) (0.740) (0.118) (0.002) (0.064) 

i1GFCF y, D78q1 D03q1 /.f/21 '1/2'2. (j~ 
0.376** -6.701 ** 4.008"'* -0.166 -0.007 0.198** 

(0.057) (0.5S7) (0.653) (0.159) (0.013) (0.047) 

i1IP 73 VI" '1132 (T' 
] 

0.334** 0.016 0.205* 0.697** 

(0.072) (0.092) (0.090) (0.098) 

i1EMP Y40 Y4J '142 Y43 D82q1 D04q1 1// 41 If! 42 (T' 
4 

-0.024 0.238** -0.123 0.078 4.716** -3.892** -0.122 0.170 0.558** 

(0.062) (0.069) (0.072) (0.066) (0.770) (0.771) (0.096) (0.094) (0.076) 

Long run growth rate: S = 0.624 

Log·likelihood: -607.692 

Diagnostics Q(4) Jarque·Bera 
i1GDP 2.705 11.844** 

i1 GFCF 7.918 11.998** 

i1 IP 0.843 0.986 

i1EMP 2.474 24.655** 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for Austria were estimated using data from 1970Ql-2006Q4. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

i1 GO?: 0.0058,0.0087; i1 GFCF: 0.0085, 0.0155; L\.IP: 0.0050, 0.0221; i1 EMP: 0.0019, 0.0077. 
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The Netherlands. The Dutch recessions which occurred during the 1970s and early 

1980s were much more severe than the country's more recent downturns. Therefore, a 

one-time break is introduced to the recession intercept, uo' to capture the changes in the 

severity of recessionary phases over the sample period. DJt is set to one in the 

subsample from 1970Q4 to 1983Q2 and to zero for the latter subsample. 12 The 

intercept during expansions is assumed to be constant with D21 = 0 over the entire 

sample. The parameter estimates are presented in Table 3.6. 13 Compared to the above 

countries, the first difference of the Dutch common factor appears relatively persistent 

with 9, + 92 = 0.635. Before the structural break, the mean growth rates are 

Uo + Uoo + 0 = -4.795 and u, + 0 = 2.587 during recessIOns and expansions, 

respectively. After the break, the growth rate dramatically increases to Uo +,) = -0.156 

during recessions but remains the same during expansions. It is worth noting that the 

intercept Uo = -0.979 is insignificantly different from zero, which may suggest that the 

turning points identified after the break are for growth cycles rather than business cycles. 

In addition, in the second sample period it is found that luo 1< lu, I, which contradicts one 

of the stylised facts of business cycles, that recessions are steeper than expansions. As 

discussed in Chapter 2, this may reflect the comparatively strong economic growth 

observed in the Netherlands since the structural refonns undertaken in the 1980s. 

The smoothed recession probabilities are plotted in Panel 6 of Figure 3.1, they indicate 

five economic downturns: 1974Q2-l975Ql, 1980Ql-1982Q4, 1987Q4-l988Ql, 

1991Ql-1993Q4 and 2001Q2-2005Q3. 

II Both the sequential procedure and critical values identify the significant structural break in the Dutch 
common factor at 1983Q2. Therefore, a one-time break is introduced to the recession intercept at this 
date. The break identified at 2001 Q 1 coincides with the peak of the sustained recession that occurred 
during 200IQI-2005Q2, 
1) For the Netherlands, the baseline model failed to converge, therefore only parameter estimates of the 
modified model are presented. in which a one-time structural break is included in the recession intercept. 
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Table 3.6: Parameter estimates of MSDF model for Netherlands 

if, 
0.792** 
(0.163) 

~GDP 

~Sales 

~IP 

~EMP 

if, 
-0.157* 
(0.065) 

y, 
0.060 

(0.041) 

Y2 

0.043 

(0.029) 

r) 
0.056 

(0.038) 

y" Y4I 

0.015 0.075 

(0.026) (0.058) 

Uo 
-0.979 
(0.970) 

1'42 

0.007 
(0.023) 

Long run growth rate: S = 0.823 

Error correction terms 

Common Factor 

It, Uoo 
1.764 -4.639** 
(1.055) (2.057) 

Idiosyncratic Components 

D79q1 \VII W12 

-3.551** -0.342** -0.029 

10.847) 10.098) 10.017) 

D78ql D94q1 1.j121 '1/22 

2.553** -4.721** -0.307** -0.024 

(0.816) (0.782) (0.096) (0.015) 

!fI31 1j1 32 

-0.163 -0.007 

(0.101) 10.008) 

1'43 D96q1 If/ 41 W42 

0.053 -1.671** 0.977** -0.239** 
(0.044) (0.174) (0.135) (0.066) 

Poo PII 
0.896** 0.930** 
(0.053) (0.033) 

all all 0-
2 , 

-0.288 -0.446 0.637** 

10.505) (0.505) 10.078) 

all an 
, 

0--
2 

-1.051 >I< -1.187* 0.640** 

(0.496) (0.493) (0.077) 

a u a 23 0-
2 
3 

2.228** 1.898** 0.720** 

(0.641) (0.631) (0.088) 

a,. a 2• 0-
2 

4 

0.428 0.506 0.048** 
(0.274) (0.321) (0.014) 

GDP
t
.! = -8.524 - 3.444 x IP

t
•l + 4.1S6x EMP t•1 Sales!., = 63.86 + 24.946x IPt.] - 19.337x EMP1•1 

(0.708) 10.629) 

Log-likelihood: -547.257 

Diagnostics 
~GDP 

A Sales 

~IP 

~EMP 

Q(4) 
1.932 

4.179 

2.963 

0.701 

(3.871) (3.442) 

Jarque-Bera 
51.180** 

14.535** 

0.175 

31.971 ** 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and >I< at 5%. The parameter 
estimates for the Netherlands were estimated using data from 1970Ql-2006Q4. Logarithms of variables 
were used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

/l GDP: 0.0064, 0.0121; /l Sales: 0.0018, 0.0192; /lIP: 0.0041, 0.0181; /l EMP: 0.0029, 0.0063. 

Belgium. As with the Netherlands, the Belgian economy appears to be very volatile 

during the 1970s and the early 1980s. The parameter estimates of Uo = -2.784 and 

POD = 0.546, obtained by applying the baseline model to the data, imply that the 

recessionary phase is steep and brief. A one-time structural break has been introduced 

to the recession intercept, with DII = 1 from 1 970Q4 to 1981Ql and D" = 0 for the rest 

of the sample period. Although the choice of 1981 Ql is ad hoc, the severity of the 

recessionary phases decreases dramatically after this date. 14 The parameter estimates of 

the modified model are presented in Table 3.7(b). Before the break, the mean growth 

14 Both the sequential procedure and BIC identify breakpoints at 1974Q2 and 1983Q3. However, there is 
no improvement in the log-likelihood value and the smoothed recession probabilities when a one-time 
break is introduced at either date. However. when the one-time break data is set at 1981 Q I, we obtained 
reasonable smoothed recession probabilities and this date is supported by the likelihood ratio statistic. 
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rate was U o + uoo +" = -1.444 during recessions and u, +" = 1. 705 during expansions. 

After the break, the mean growth rate is Uo +" = 0.817 during recessions while 

remaining unchanged for expansions. This, again, may suggest that the turning points 

identified after 1981QI are for growth cycles. Given the transition probabilities 

Poo = 0.863 and Pll = 0.942, the average duration of recessions and expansions are 

(1- Poo t' "" 7.3 quarters and (1- Pll t' = 17.2 quarters, respectively. The null 

hypothesis of U oo = 0 is again rejected by the likelihood ratio statistic of X' (I) = 3.674 

at the marginal significance level of 5%. 

The smoothed recession probabilities, plotted in Panel 7(b) of Figure 3.1, capture four 

major downturns during 1974Q2-l975QI, 1980Q2-1983Q2, 1991Ql-1993Q4, and 

2001 Q2-2002QI. 

Table 3.7 (a): Parameter estimates of MSDF model for Belgium 
Common Factor 

~, ~2 llo U, P(ln 

1.233*'" -0.380"'* -2.784 ** 0.204* 0.546** 
(0.102) (0.063) (0.498) (0.102) (0.192) 

Idiosyncratic Components 

~GDP " D80ql If/ll Ijll~ '1/14 

0.133** 4.411 "'* 0.170 0.075 -0.277** 

(0.041) (0.745) (0.097) (0.086) (0.085) 

~ GFCF 1, Ij.I 21 1.// 22 

0.165** -0.065 0.096 
(0.034) (0.089) (0.086) 

~IP 1, If! '" 1J132 
0.213** -0.078 -0.002 
(0.036) (0.121) (0.005) 

LlEMP 1 4 (( )' 41 ;V 41 14.1 W41 W 42 

0.283** 0.075 -0.160"'* 0.111** 1.263** -0.399** 
(0.032) (0.044) (0.034) (0.025) (0.181) (0.114) 

Long run growth rate: 8:::: 1.315 
Error correction term 

GDP I-I = 15.805- O.220x GFCF 1-1 + 1.477 x IP,.1 -1.499x EMP 1-) 

(0.080) (0.080) (0.312) 

Log-likelihood: -597.854 

Diagnostics 
D. GDP 

D. GFCF 

~ IP 

D.EMP 

Q(4) 
4.199 

4.106 

1.043 

3.961 

Jarque-Bera 
7.233* 

2.656 

2.191 
9.111 .. 

p" 
0.968** 
(0.017) 

a" er' , 
0.123 a.591*'" 

(0.116) (0.073) 

a" er' 2 

0.054 0.726** 
(0.105) (0.090) 

aD er 2 
1 

0.628** 0.593** 
(0.137) (0.079) 

a" er 2 

• 
-0.019 0.019 
(0.038) (0.015) 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for Belgium were estimated using data from 1970Ql-2006Q4. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

,!,. GDP: 0.0059, 0.0074; ,!,. GFCF: 0.0044, 0.0209; ,!,.IP: 0.0044; 0.0209; ,!,. EMP: 0.0009, 0.0027. 
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Table 3.7 (b): Parameter estimates of MSDF model for Belgium 
Common Factor 

rp, rp, Uo u, uoo 
1.097** -0.301 ** -0,482 0.406* -2.261 ** 
(0,106) (0,058) (0,353) (0,166) (0,573) 

Idiosyncratic Components 

t-GDP y, 080q1 /fIll WIZ \1'" 
0.172** 4.406** 0,092 0,054 -0.248** 

(0,047) (0,740) (0,109) (0,090) (0,092) 

t-GFCF y, 1f/21 W22 

0.175** -0,090 0,099 

(0,036) (0,088) (0,086) 

t-IP Y3 \1'31 !fI32 

0.219** -0,161 -0,006 

(0,038) (0,121) (0,010) 

t- EMP Y40 Y4I y" Y43 1j141 !fI42 

0.269** 0.037 -0.107* 0.104** 1.063** -0.283** 
(0,040) (0,045) (0,045) (0,033) (0,143) (0,076) 

Long run growth rate: <5 = 1.299 

Error correction term 

GDP,_, = 15,805 - 0,220 x GFCF,., + 1.477 x IP,., -1.499 X EMP,_" 
(0,080) (0.080) (0,312) 

Log-likelihood: -596.D18 

Diagnostics Q(4) 
t-GOP 5,459 

t-GFCF 2.362 

t- IP 2,235 

t-EMP 6,313 

Note: Please see the notes given underneath Table 3,7 (a) 

3.4.2 Periphery countries: Spain and Finland 

Jarque-Bera 
4.314 

4,546 

1.777 

7.574* 

POO 

0.863** 
(0,084) 

all 
0,206 

(0,119) 

a l2 

0,049 

(0,102) 

al~ 

0.588** 

(0,126) 

a 14 

-0,043 
(0,048) 

PII 
0.942** 

(0,037) 

<T' , 
0.548** 

(0,074) 
, 

cri 
0.700** 

(0,087) 

(7; 
0.546** 

(0,076) 

<T' 
4 

0.057* 
(0,025) 

Spain. For Spain, the MSDF model seems to provide the least satisfactory results 

among all the countries analysed. The parameter estimates of the baseline model are 

presented in Panel 8(a) of Figure 3.1. The mean growth rates are lto + S = -2.203 and 

It, + S = 1.908 during recessions and expansions. The transition probabilities of 

POD = 0.444 and PII = 0.964 imply that the average duration of recessions and 

expansions are 1.8 and 27.8 quarters, respectively. It is not surprising that the smoothed 

probabilities only pick up a couple of the severe recessions but neglect the other mild 

downturns. Since the recession triggered by the ERM crisis appears much steeper than 

the others, the recession intercept is biased downwards to -3.855. Therefore, allowing 

for structural breaks in this intercept by setting DIt = I during 1992Q2-1993Q4 captures 
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the most severe recession over the entire sample. ls As a result, the average duration of 

recession increases from 1.8 quarters in the baseline model to 18.2 quarters in the 

modified model. The smoothed recession probabilities, plotted in Panel 8(b) of Figure 

3.1, identify a prolonged recessionary period during 1974Q2-1984Q2. However, it may 

be more appropriate to mark this period as below trend growth, as the recession mean is 

Uo + 5 = 0.034 during this period and it then decreased to Uo + u oo + (5 = -3.567 

during 1992Q2-1993Q4. The likelihood ratio statistic of 1'2(1) = 11.936 rejects the null 

ofuoo=O. 

Table 3.8 (aJ: Parameter estimates of MSDF model for Spain 
Common Factor 

I/J, 1jJ, liD U, Poo Pll 
0.286** 0.525** -3.855** 0.256* 0.444* 0.964** 
(0.097) (0.090) (0.837) (0.104) (0.204) (0.020) 

Idiosyncratic Components 

l>.GDP y, Iflll 1fI12 1// 14 all a~l a' , 
0.342** -0.511 ** -0.177 -0.181'" 0.087 0.265 0.355** 

(0.049) (0.112) (0.109) (0.084) (0.291) (0.279) (0.048) 

l>.GFCF y, 1f/21 If! ~2 all a 22 O"i 
0.415** 0.165 0.036 0.512 -0.251 0.275** 

(0.060) (0.140) (0.131) (0.369) (0.365) (0.053) 

l>.IP y, lJI31 1!I'J2 aD a 23 a' , 
0.319** -0.281 .. 0.191'" 1.193** -0.614* 0.521** 

(0.052) (0.101) (0.099) (0.343) (0.319) (0.050) 

l>.EMP Y4() Y4' Y42 Y43 
076ql D7Gq3 

1f141 '1142 a 14 
, 

a 24 
a-

4 

0.122** 0.099* 0.053 0.040 2.755** 3.716** 0.291** 0.214* -0.145 -0.268 0.176** 

(0.037) (0.039) (0.038) (0.037) (0.413) (0.418) (0.096) (0.093) (0.147) (0.300) (0.028) 

Long run growth rate: ,,= 1.652 

Error correction terms 

GDPt_1 = 6.403+ 2.054 x IP!.,' 0.121 X EMPt_1 GFCFt.] = -1.157+ 3.098x IPt•I , O.027x EMP
t
•1 

(0.167) (0.179) (0.473) (0.507) 

log-likelihood: -530.881 

Diagnostics Q(4) Jarque-Bera 
l>.GDP 4.632 9.843 ** 
l>.GFCF 0.663 1.526 

l>.IP 0.415 1.358 

l>.EMP 1.582 17.020** 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter estimates for 
Spain were estimated using data from 197203-200604. Logarithms of variables were used, each variables was 
standardised to growth rates with mean zero and unit variance prior to estimation. The sample means and 

standard deviations for the growth rates ofthe original series are: L1 GDP: 0.0069, 0.0074; L1 GFn: 0.0069, 0.0074; 

l>.1P, 0.0049, 0.0172; l>. EMP, 0.0035, 0.0082. 

IS This recession is identified by the BBQ algorithm in Chapter 2. Following the results obtained from 

the Bai and Perron procedure, several alternative specifications of D" have also been explored in this 

study, such as setting DIl = 1 during 1990Q4-1994Ql or allowing a one-time break from 19S5Q2 

onwards. However, these specifications fail to provide reasonable parameter estimates and smoothed 
recession probabilities. 
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Table 3.8 (bj: Parameter estimates of MSDF model for Spain 
Common Factor 

~l ~, U" u, u()() Po, 
0.001 0.403*'" -1.1D8**' 0.876** -3.601 *'" 0.945*'" 

(0.113) (0.097) (0.310) (0.221) (0.826) (0.035) 

Idiosyncratic Components 

flGDP Yl IfIlt \1'12 Wj</ a" 
0.334"'* ~.396** -0.047 -0.199* -0.196 

(0.052) (0.106) (0.106) (0.086) (0.287) 

fl GFCF y, V'2t \1122 al, 

0.438** 0.198 -0.010 0.248 

(0.062) (0.153) (0.015) (0.373) 

fl IP Y3 VI 31 lJI ;''2 a" 
0.312** -0.254* 0.193* 0.969** 

(0.053) (0.099) (0.097) (0.337) 

flEMP Y40 Y41 y" Y43 D76ql D76q3 \I"l W42 a l4 
0.146"'* 0.113** 0.062 0.039 2.798** 3.702** 0.225* 0.201* -0.157 

(0.035) (0.038) (0.039) (0.037) (0.406) (0.412) (0.100) (0.096) (0_337) 

long run growth rate: ;; = 1.142 
Error correction terms 
GDPt •l ;: 6.403+ 2.054 x IP\.j' O.121x EMPt •1 GFCFt •r =- -1.157+ 3.098 X IP t•1, 0.027 X EMP j .] 

(0.167) (0.179) 

log-likelihood: -524.913 

Diagnostics 
flGOP 
fl GFCF 
fliP 
flEMP 

Q(4) 
3.856 

1.219 

2.458 

2.597 

Note: Please see the notes given underneath Table 3.8 (d). 

(0.473) (0.507) 

Jarque-Bera 
9.476*'" 

1.671 

17.756** 

28.047** 

p" 
0.973** 
(0.021) 

a'l <5' , 
0.390 0.414** 

(0.270) (0.048) 

lX2J <5' , 
-0.132 0.242** 

(0.356) (0.057) 

a'l <5' l 
-0.529* 0.563** 

(0.212) (0.051) 

IX" <5' 
4 

-0.074 0.160** 

(0.317) (0.028) 

Finland. In comparison with the BBQ algorithm, fewer recessions are identified by the 

MSDF model for Finland. The smoothed recession probabilities, plotted in Panel 9, 

pick out three recessionary periods, during 1975Q2-1975Q4. 1980Q4-1981Ql and 

1991Q2-1993Q1. Mean growth rates during recessions and expansions are computed to 

be Jio +" = -1.588 and Jii + 0" = 1.089. The average duration of recessions and 

expansions are (1- Poo t = 4.5 quarters and (1- PII t = 31.3 quarters, respectively. 
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Table 3.9: Parameter estimates of MSDF model for Finland 

t/J, 
0.014 
(0.121) 

t/J2 
0.108 
(0.119) 

I'1GDP 7, 

0.555" 

(0.088) 

1'1 Sales 72 

0.430" 

(0.075) 

I'1IP 73 

0.384" 

(0.074) 

Common Factor 

u, 
-2.340'* 0.337" 
(0.454) (0.141) 

Idiosyncratic Components 

I'1EMP 740 74' 742 741 D76q1 

0.045 0.288** 0.137 0.263" 5.379" 
(0.062) (0.066) (0.074) (0.062) (0.744) 

Long run growth rate: ,)" 0.752 
Log-likelihood: -657.672 

Diagnostics Q(4} 
1'1 GDP 9.559' 

1'1 Sales 8.839 

Ll IP 4.369 

LlEMP 2.262 

Poo 
0.780" 
(0.135) 

W" 
-0.720" 

(0.150) 

W2' 
-0.002 

(0.004) 

W3' 
-0.170 

(0.091) 

W4' 
-0.069 
(0.123) 

Pll 
0.968" 
(0.026) 

W12 (J"' , 
-0.130' 0.223** 

(0.054) (0.088) 

V/22 (J"2 
2 

-0.085 0.615** 

(0.097) (0.055) 

W32 (J"2 
J 

0.117 0.676" 

(0.091) (0.055) 

V/42 (J"2 
4 

-0.162 0.335*' 
(0.137) (0.055) 

Jarque-Bera 
21.142" 

25.148" 

26.895" 

1.364 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and' at 5%. The parameter 
estimates for Finland were estimated using data from 1970Ql-2006Q4. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

1'1 GDP: 0.0069, 0.0121; 1'1 Sales: 0.0054, 0.0184; I'1IP: 0.0093, 0.0215; Ll EMP: 0.0011, 0.0081. 
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Figure 3.1: MS composite indices and smoothed recession probabilities 
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Figure 3.1: MS composite indices and smoothed recession probabilities (Continued) 
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probability at time t is greater than 0.5, the observation at time t is classified as a recession. 
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3.4.3 Non-EMU Countries: The UK, The US and Canada 

United Kingdom. The parameter estimates of the MSDF model for the UK are reported 

in Table 3.10. The mean growth rate is Uo +0 =-1.785 during recessions and 

U, + 0 = 1.262 during expansions. The average duration of recessions and expansions 

are calculated to be (1- Poo t' = 4 and (1- PI' t' = 20 quarters, respectively. 

Compared with the corresponding estimates in Mills and Wang (2003b), this study 

obtains a shorter recessionary phase and a longer expansionary phase. This is partly due 

to the use of different sample periods. The sample period used by Mills and Wang 

(2003b) included the 1960s when several brief recessions occurred. The data used in 

this chapter is from 1970 onwards with no recessions being picked out in the 2000s. 

In total, four recessions are identified by the smoothed recession probabilities, during 

1973Q3-1974QI, 1974Q4-1975Q3, 1979Q3-1981QI and 1990Q3-199IQ3. This 

replicates the cycle dates produced in Chapter 2. 

United States. The results for the US are summarised in Table 3.11. The asymmetric 

nature of business cycles is again supported by the parameter estimates. The mean 

growth rate is Uo + 0 = -0.184 during recessions and u, + 0 = 1.629 during expansions. 

Given the estimated transition probabilities, the average duration of recessions and 

expansions are 4.4 quarters and 19.2 quarters, respectively. The US common factor, 

along with the smoothed recession probabilities, are plotted in Panel 11. Five 

recessions are identified, during 1973Q3-1975QI, 1979QI-1980Q2, 198IQ2-1982Q3, 

1990Q2-1991 QI and 2000Q4-2001 Q3. These cycle dates do not correspond as closely 

to the NB ER dates as those obtained by the BBQ approach. 



Table 3.10: Parameter estimates of MSDF model for the UK 
Common Factor 

rP, rP, tto tt, Fao P" 
-0.192* -0,009 -2.625** 0.422** 0.752** 0.950** 
(0,102) (0,010) (0,398) (0,121) (0,108) (0,023) 

Idiosyncratic Components 

L'.GDP y, D79q2 D79q2 f//1I ~/12 
, 

all (r , 
0.544** 3.772** 1.671** -0.555* -0,077 -0,051 0,081 

(0,059) (0,523 ) (0.545) (0,207) (0,057) (0,056) (0,046) 

L'. GFCF y, If/ Z1 If!,." a 12 cr; 
0.230"'"' -0,145 -0,005 -0,014 0,891" 

(0,064) (0,097) (0,007) (0,083) (0,109) 

L'.IP y, D72q1 D72q2 D74q1 
, 

D74q2 Vi :- 1 '1/32 an eT; 
0.411 *:1< -2.472** 2.503** -2.227** 3.681** 0.384** -0,037 -0,019 Q.203u 

(0,048) (0,515) (0.533) (0.540) (0.520) (0,117) (0,022) (0,070) (0,040) 

L'.EMP Y40 Y41 Y42 y" D02q3 lj/41 1.// 42 a 14 

, 
(r 

4 

O.144U O.120*'" 0.143** 0,072 -4.969"'* 0.351** 0,062 ·0.230* 0.334** 
(0,040) (0,043) (0,045) (0,042) (0,558) (0,090) (0,096) (0,090) (0,041) 

Long run growth rate: S = 0.840 
Error correction term 

GDP,_, = 35.186+ 1.0569 x GFCF,_, + 0.674 x JP,_,- 2.824 X EMP,_, 
__________ JQ.123). ___ .--.lQl5.6L __ (Q,~50_) __________________ • __ 

Log-likelihood: -571.109 

Diagnostics 

L'.GDP 

L'. GFCF 

L'.IP 

L'.EMP 

Q(4) 
6.445 

2.172 

3.525 

1,527 

Jarque-Bera 

7.902* 

2.772 

7.255* 

5.218 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for the UK were estimated using data from 1970Ql-2005Ql. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

!1 GO?: 0.0057,0.0096; !1 GFCF: 0.0064, 0.0272; !1IP: 0.0028, 0.0186; !1 EMP: 0.0011,0.0054. 
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Table 3.11: Parameter estimates of MSDF model for the US 

rp, 

0.431 ** 
(0.120) 

~GDP 

~Sales 

~IP 

~EMP 

rp2 

·0.047 
(0.026) 

Y, 
0.560** 

(0.060) 

Y2 
0.345** 

(0.052) 

y, D74q4 

0.486** -1.178* 

(0.054) (0.548) 

Y40 Y4' 
0.356** 0.141* 

(0.060) (0.065) 

Common Factor 

Uo U, 
-1.474** 0.339* 
(0.359) (0.148) 

Idiosyncratic Components 

D78q2 V/ 11 

2.026** -0.472** 

(0.574) (0.156) 

D74q4 D80q2 VI" 
-1.723** -3.087** -0.197* 

(0.531) (0.556) (0.096) 

D75q1 D80q2 VI" 
-2.171** -1.966* 0.282* 

(0.763) (0.753) (0.128) 

Y42 Y43 lfI41 

0.027 0.100 0.072 

(0.066) (0.054) (0.101) 

Long run growth rate: 0 = 1.290 

Error correction term 

GDP,., = 0.004 + 0.545 x Sales,.] - 0.097 X lP,_] + 0.322 X EMP,., 
(0.071) (0.072) (0.197) 

log-likelihood: -589.215 

Diagnostics Q(4) 
~GDP 1.251 

~Sales 1.734 

~IP 3.961 

~EMP 5.050 

POD Pll 

0.771** 0.948** 
(0.106) (0.026) 

lfI'2 a1] (J"2 , 
-0.056 -0.122 0.173** 

(0.037) (0.099) (0.048) 

lfI22 a 12 
(J"2 

2 

-0.010 0.128 0.476** 

(0.009) (0.078) (0.060) 

VI" aB (J"2 
3 

0.094 -0.234** 0.185** 

(0.122) (0.101) (0.037) 

Vl42 a'4 (J"2 
4 

-0.001 -0.306** 0.389** 

(0.004) (0.115) (0.052) 

Jarque-Bera 
7.628* 

3.584 
20.577** 

5.510 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for the US were estimated using data from 1970Ql-2006Q4. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series are: 

~ GDP: 0.0078, 0.0082; ~ Sales: 0.0054, 0.0148; b.IP: 0.0069, 0.0149; ~ EMP: 0.0043,0.0048. 

Canada. Mean growth rates during recessions and expanSlOns are estimated to be 

uo+o=-O.652 and u,+o=I.437. The average duration of recessions and 

expansions are (1- Poo t = 3.5 quarters and (1- Pll t' = 47.6 quarters, respectively. 

Two recessions are identified by the smoothed recession probabilities, during 1981 Q3-

1982Q3 and 1990Q2-1991Ql. 
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Table 3.12: Parameter estimates of MSDF model for Canada 

ifl 

0.609** 
(0.125) 

LlGDP 

Ll Sales 

LlIP 

LlEMP 

11 

if, 
-0.093* 
(0.038) 

0.530** 

(0.059) 

1, 
0.277** 

(0.046) 

13 
0.530** 

(0.060) 

1'0 1,1 
0.344** 0.234 ** 

(0.065) (0.082) 

Common Factor 

Uo U I 

-1.948** 0.141 
(0.611) (0.100) 

Idiosyncratic Components 

142 
-0.052 

(0.079) 

D8101 

4.758** 

(0.755) 

143 
-0.036 

(0.064) 

\I'll 

-0.298* 

(0.118) 

\1"1 
-0.229* 

(0.092) 

\1'31 
0.231 * 

(0.117) 

V/41 
0.111 

(0.109) 

Long run growth rate: t5 = 1.296 

Error correction term 

GDP'_I = 4.586+0.261 x Sales'_1 + 0.399 x IP'_I + 0.632 X EMP'_I 
(0.045) (0.046) (0.047) 

log-likelihood: -626.231 

Diagnostics Q(4) 
LlGDP 8.723 

Ll Sales 0.239 

LlIP 6.145 

LlEMP 8.494 

POD 

0.714** 
(0.175) 

V/I' 
-0.022 

(0.018) 

\1'22 
0.113 

(0.091) 

\1'32 

0.105 

(0.105) 

\1'42 
0.024 

(0.106) 

Pl1 
0.979*' 
(0.017) 

all (J" 
I 

-0.030 0.280** 

(0.097) (0.048) 

a l2 
(J'2 , 

0.205** 0.534** 

(0.074) (0.046) 

a'3 (J'2 
3 

0.267* 0.276** 

(0.106) (0.049) 

ai, (J'2 
4 

-0.158 0.332** 

(0.125) (0.041) 

Jarque-Bera 
14.589** 

0.702 

0.951 
53.852** 

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter 
estimates for Canada were estimated using data from 197001-200604. Logarithms of variables were 
used, each variable was standardised to growth rates with mean zero and unit variance prior to 
estimation. The sample means and standard deviations for the growth rates of the original series 

are: Ll GDP: 0.0077, 0.0081; Ll Sales: 0.0079, 0.0168; LlIP: 0.0064, 0.0168; Ll EMP: 0.0050, 0.0058. 

SummalY. In general, the cycle dates produced by the MSDF model are broadly in line 

with those obtained by the BBQ algorithm used in Chapter 2. The parameter estimates 

obtained using the MSDF model confinns the asymmetric feature of business cycles, 

that recessions are steeper and shOlter than expansions. The MSDF model seems more 

successful in distinguishing between different regimes for large economies (i.e., 

Gennany, France, the UK and the US), whose recessions and expansions are of roughly 

constant magnitude over the period studied. Smaller economies exhibited greater 

volatility during the 1970s and early 1980s. The recession intercept for these countries 

is biased downwards by the severe recessions experienced during this period. As a 
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consequence, the smoothed probabilities fail to identify the mild recessions which 

occurred in the later years and instead classify them as expansions. Introducing 

structural breaks in the intercepts seems to improve the results for Belgium, Italy and 

the Netherlands. Por Spain, the MSDP model appears to deliver the worst fit, as the 

recession probabilities either capture a few brief recessions or pick out too many 

economic downturns. 

Figure 3.1: MS composite indices and smoothed recession probabilities (Continued) 
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Notes: The horizontal line in each figure marks the threshold value of 0.5. If the smoothed recession 
probability at time t is greater than 0.5, the observation at time t is classified as a recession. 
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3.5 Evaluating the coincidence of regime shifts 

In this section, the concordance of regime shifts is evaluated using pairwise correlations 

of binary variables and of the smoothed recession probabilities. The binary time-series 

are constructed with one denoting expansions and zero indicating recessions. For 

France, where three regimes are identified, the value one is assigned to both the 

moderate-growth and high-growth regimes and zero is assigned to recessions. 

3.5.1 Multidimensional mapping of business cycle distance 

The correlations of binary variables for the whole sample and two subsamples with the 

midpoint of 1991Ql are given in Table 3.13. Sammon mapping, introduced in Chapter 

2, is also used in this section to provide a pictorial representation of these correlations. 

In order to compare the results shown in Chapter 2 with those obtained in this section, 

Figure 2.2 is represented in Panels l(a)-3(a) of Figure 3.2, while Panels l(b)- 3(b) of 

Figure 3.2 present the three maps produced using binary series indicated by the 

smoothed recession probabilities over the whole sample and the two subsamples. It can 

be seen from both Panels lea) and 1 (b) that, over the whole sample, the conclusions are 

robust using either the BBQ or the MSDF approach. More synchronised business 

cycles are observed between the core EMU countries and the aggregate euro area, 

compared to those in the peripheral and non-EMU groups. A cluster of four core EMU 

countries, composed of Germany, Austria, Belgium and the Netherlands, who had 

highly synchronised business cycles, are shown in both Panels lea) and l(b). 

Panels 2(a) and 2(b) of Figure 3.2 reveal that the four core EMU countries mentioned 

above all had closer distances to the euro area aggregate than France, Italy, the 

peripheral and non-EMU groups during the first subsample. This is more obviously 

observed in Panel 2(b), where binary series are produced by the MSDF model. 

However, conflicting results are revealed when comparing Panels 3(a) and 3(b) of 

Figure 3.2. Although both figures show that the tight cluster of four core EMU 

countries are driven away from each other and the desynchronisation process between 

Austria, Belgium, the Netherlands and the aggregate euro area are notable over the 

second subsample, an increase in cycle correlation between France, two peripheral 
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countries and the euro area aggregate, which is shown in Panel 3(a), cannot be observed 

in Panel 3(b). This conflict can be explained by the identification of recessions during 

the early 2000s for the aggregate euro area but not for France and the peripheral 

countries when the MSDF model is used, which reduces the correlation between these 

countries and the euro area as a whole. Finally, a picture of diverging non-EMU 

business cycles from the euro area as a whole can clearly be observed from both 3(a) 

and 3(b). 

EMU 
GER 

'RA 
ITA 

AUS 
BEl 
NETH 
SPA 
'IN 
UK 
US 
CANA 

EMU 
GER 

'RA 
ITA 
AUS 

BEL 
NETH 
SPA 

FIN 

UK 
US 

Table 3.13: Correlation Coefficients of Binary Variables 

EMU GER 

0.80 
0.41 0.27 
0.44 0.30 
0.79 0.68 
0.65 0.53 
0.61 0.59 
0.36 0.21 
0.16 0.13 
0.11 0.26 
0.20 0.29 
0.21 0.14 

EMU GER 
0.85 

0.76 
0.46 0.25 
0.56 0.41 
0.68 0.55 
0.47 0.31 
0.57 0.52 
0.33 0.22 
0.20 0.20 
-0.14 0.00 
0.08 0.00 

Whole Sample Period 

'RA ITA AUS BEL NETH SPA FIN UK US 

0.28 
0.32 
0.33 
0.12 
0.07 

0.55 
0.55 0.61 
0.27 0.45 0.22 
·0.03 0.32 0.21 

0.27 
0.12 
0.43 
0.15 
0.33 
0.19 
0.14 -0.04 0.15 0.17 0.14 
-0.13 0.02 0.38 0.34 0.17 
-0.07 0.11 0.24 0.25 0.16 

Pre-1991Ql 

F~A ITA AUS BEL NETH 

0.40 0.30 0.90 0.85 0.71 
0.36 0.19 0.79 0.72 0.68 

0.22 0.31 0.36 0.15 
0.44 0.36 0.33 0.Z3 
-0.16 0.25 0.85 O.Bl 

0.60 0.30 0.21 0.71 
0.30 0.39 0.36 0.51 
O.5B 0.21 -0.20 0.73 0.47 
0.39 0.10 -0.17 0.65 0.42 
-0.10 -0.18 -0.11 0.35 0.24 
-0.12 0.00 0.30 0.28 0.01 
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Figure 3.2: Multidimensional mapping of business cycle distances 
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Note: two pairs of countries, the US and Canada, France and Spain, have perfectly synchronised turning 
points in the second subsample when the BBQ algorithm is used. 
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3.5.2 Rolling sample correlation of smoothed recession probabilities 

In addition to analysing changes in synchronisation using two fixed subsamples 16, 

bilateral correlations of the smoothed recession probabilities are also computed using a 

series of rolling samples, with a window width of six years. 17 The mean correlation 

coefficients of the core, periphery and non-EMU countries with respect to the euro area 

aggregate are calculated for each window and are plotted in Figure 3.3. There are a few 

points worth noting. First, a significant decline in synchronisation between both core 

and periphery EMU business cycles and the aggregate euro area is observed during the 

1980s. This is broadly in line with Inklaar and de Hann (2001) and Massmann and 

Mitchell (2004), who found desynchronised euro area growth cycles during this period. 

Second, a dramatic increase in cycle convergence is observed during the 1990s, 

specifically for the two periphery countries, whose mean correlation coefficient with 

respect to the euro area aggregate exceeded the core countries at the end of 1990s, but 

this was reversed during the 2000s. This, in part, reflects unbalanced economic 

performance across EMU member states after the introduction of the euro. A number of 

core EMU countries, such as Germany and Italy, who have large weights assigned to 

them when constructing aggregate euro area data series, suffered recessions and 

sluggish growth for several years during the 2000s, while two periphery countries, 

particular Spain, maintained strong economic growth. Finally, the cycle correlation 

between non-EMU and the euro area aggregate only increased during global downturns, 

such as during the early 1980s and at the beginning of 2000s, but completely diverged 

from the euro area during the ERM period. 

16 Pairwise correlations of the smoothed recession probabilities over the whole sample and the two 
subsamples are reported in Appendix D3. The focus of this subsection is to evaluate the changes in 
correlations using a rolling sample approach. 
17 We understand that the results are sensitive to the choice of window length. Long windows tend to 
smooth out important medium-tenn changes in synchronisation, while short windows are more sensitive 
to short- to medium-term deviations. The window length of six years is commonly used in the literature, 
see, for example, Gayer (2007). 
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Figure 3.3: Rolling correlations of the smoothed regime probabilities 

1.0 

1985 1990 1995 2000 2005 

~ EA-core __ 0 __ EA-periphery --- EA-non 

3.6 Conclusions 

In this chapter, one of the parametric business cycle dating approaches, the MSDF 

model, is applied to the same data used in Chapter 2 to date business cycle turning 

points. The cycle dates obtained using the MSDF model are broadly in line with those 

produced by the BBQ approach. One exception is the turning points obtained for the 

aggregate euro area. The smoothed recession probabilities indicate a period of 

recession during 2001QI-2003Q2, while this contradicts the conclusion, drawn from the 

BBQ algorithm and the CEPR business cycle dating committee, that no recessions 

occurred during the early 2000s. As such, an increase in cycle correlation between 

France, two peripheral countries and the euro area aggregate, which is shown in Chapter 

2, cannot be found here. 

In general, the baseline MSDF model was successful at detecting turning points for 

large economies (i.e., Germany and the UK and the US), where the magnitude of 

recessionary and expansionary phases appears to be constant over the entire sample. It 

was less successful at producing reasonable parameter estimates and smoothed 
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probabilities for the other countries. Therefore, adjustments had to be made for 

Belgium, the Netherlands, Italy and Spain to account for changes in the model's 

intercepts. For France, an additional regime is included to distinguish between the three 

phases of the French business cycle: recessions, moderate-growth and high-growth. 

The MS type of models were criticised by Harding and Pagan (2002) for producing 

significantly different results when different models and sample periods are used. It is 

true that, compared to the BBQ algorithm, the MS models appear to be less transparent 

and more dependent on the particular properties of the data. However, this is also 

described as an advantage over the BBQ approach by Hamilton (2003), as the MS 

approach can provide a specific model for the object of interest and can derive the 

optimal inference about it. 
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Appendix A3 

A3.1 Specification of the MSDF Model 

The MSDF model utilised in this chapter is specified as 

~y, =H/3" 

/3, =Ms +F/3H +0" o,-NID(O,Q) , 

(A3.l) 

(A3.2) 

where ~y, = [~YI"~Y2"LV'''~Y4,]T is the vector containing four coincident economic 

values of the common factor and innovation terms. The time-invariant and regime­

independent matrices F, Hand Q, contain the model's hyperparameters: 

<P, <P, 0 0 0 0 0 0 

I 0 0 0 0 0 0 0 

0 0 0 0 0 
0 I 0 0 0 0 0 0 

Y, I 0 

0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 

y, 
H= 0' F= 0 0 0 0 V/I! V/12 0 0 

y, 0 0 0 0 0 0 

0 0 0 
0 0 0 0 1 0 0 0 

Y,o Y41 Y41 y" 

0 0 0 0 0 0 V/41 VI" 
0 0 0 0 0 0 0 

2 
CT,. 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

and Q= 0 0 0 0 
, 

0 0 0 cr I 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 2 
CT, 0 

0 0 0 0 0 0 0 0 
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Ms, = !,us, ,0,0,0,0,0,0,0,0,0,0,0 j contains the MS intercept of the common factor, where 

the estimate of fts, depends on the current and lagged two-state MS variables, S, and 

A3.2 The Filtering Algorithm 

Kim's (1994) filter is designed for the state-space model with MS, and provides MLEs 

of the model's unknown parameters. It combines the KF and the Hamilton filter, along 

with appropriate approximations. This filter is started by the KF iterations, conditional 

on the current and lagged state variables, S, =} and SH = i , i,} = 1,2. The recursive 

equations are as follows, 

(J (i.j) - - F'(J' '1,-1 - ft J + HI,-I' 

(i.j) H'(J(i.J) 
17'1'-1 = y, - 'IH ' 

(J (i.J) = (J(i.J) _ p(i./) H T [1'11,/) 1-117 1I.j) 
tit 111-1 '1,-1 .1'11-1 J tit-I' 

p(i.j) = If _P(i·J)HT[,II.J) 1-1 H L(i.j) 
III \ (11-1 .1'11-1 J )f';lt-l' 

P(i·j) _ FP' FT Q 
tit-1 - t-J11-l + , 

,(i.J) = Hpll.J) HT 
J tlt-l 111-[ , 

where (J:_II,_I is an inference on (J'-I based on information up to time t -I, conditional 

on S'_I = i. (J,i~~) is an optimal forecast of (JH based on all information up to time 

is the prediction error and !'i:~) is the variance of 17il;!/. Since the above KF produces a 

2-fold increase in the number of (J,i~·j) and p,i:·J) at the end of each iteration, 

approximations to (J,I, and P,~ are needed to make the KF operable. Kim reduces the 

2 x 2 posteriors «(J,i~·j) and P,i:·J) ) to 2 posteriors «(J,I, and P,~ ) by using two 

approximation equations: 

pi = I~=I Pr(S, = },S,_I = i,lyrl,)(J,II: J1 , 

'I' Pr(S, = }IVI,) 
(A3.3) 
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'" P IS - . S -'1 )! ~U.j) (ai aU.i) Xai au./l)T I pi _ ~'",J r ~ f - J, r-l -l~ 1//( r;jl + /-"1)1 - Pt)1 1-'1)1 - Pill 

'I' - Pr(S, = Jjv/,) . 
(A3A) 

The Hamilton filtering algorithm is then utilised to calculate the probabilities 

Pr(S, = JIWt) and Pr(St = J,St-J = i,lwJ in equations (A3.3) and (A3A): 

(A3.S) 

(A3.S) 

are the marginal and conditional density of )I" respectively. Pr(S, = Jlw) gives the 

filtered probabilities for regime j. 

A3.3 The Smoothing Algorithm 

Compared to the filtering process described above, which aims to produce optimal 

estimates of fJ, and St based on infonnation up to time t, fJtl , and Pr(S, = Jlw,), the 

smoothing algorithm takes into account infonnation available after time t. The 

smoothed estimates of fJ, and S" conditional on the complete sample, are written as 

fJ'IT and Pr(St = ilw T)' Since the smoothed estimates are based on more information 

than their filtered counterparts, in general they provide more accurate inferences. 

The smoothed probability that S, = i based on full information can be derived by the 

following equations (see Kim, 1994; Kim and Nelson, 1998): 
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and 

'" Pr(S'+1 = kIWr)Pr(S, = ilS'+1 = k,W,) 

Pr(S'+1 = klw T ) Pr(S, = ilw,) Pr(S'+1 = klS, = i) 
Pr(S'+1 = klw, ) 

(A3.9) 

(A3.10) 

where Pr(ST = il\l'T) is the initial value for smoothing, which is obtained from the last 

iteration ofKim's (1994) filter. 

The smoothing algorithm for the vector fJ, can be derived as follows, given S, = i and 

St+1 = k: 

fJ U.k) - fJi pi FT (pu. k) \-1 (fJk fJlj.k») 
liT - tit + tit 1+11t) I+IIT - t+llt ' 

where fJ,i~·k) is the estimate of fJ, based on the full sample and P'W'k) is the mean 

squared error matrix of fJ,i~'k). fJ~, and P,(, are obtained in equations (A3.3) and (A3.4). 

The smoothed probabilities Pr(S, = i,S,+, = klwT) and Pr(ST = ilv/ T) can be used to 

approximate fJ,1T and P'(T' using the following equations: 

v' P (S - . S - k 1 ) nU.k) 

fJ
i = L...Jk==1 r 1- j, 1+1 - ,/j/r f-"tlT , 

(A3.l1) 
,IT Pr(S, = ilv/ r) 

'" Pr(S =}. S =k 111/ )Jnli,kJ +(ai _ au,klXai _ ai'kl)T) 
pi = L,,;.=I ' , ,+1 , Y T V-;IT I--',IT I--"IT I--"IT I--"IT (A3.12) 

'1 ' Pr(S, = ilw,l . 

By taking a weighted average over the states at time t, fJ'I1 is obtained as 
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A3.4 Approximate MLE 

The conditional density f(v,IS, =j,SH =i,w,_J in equation (A3.6) IS based on the 

prediction error decomposition: 

f{ y IS =J' S =i 11/ )=(27r)-~IJ,(i·j)I-~ exp{-~77(i,j)Tt:(i.j)-ln(i,j)} 
. ({ 't-l ''1- H t/t-J 2 t/t-J • ///-1 '/ //1-1 

The marginal density of y, conditional on past information, f(Y,I\i1t-<), is obtained from 

equation (A3.6). By summing the logged values of f(y,III't-<) at the end of each 

iteration, the approximate log likelihood function is given by 

A3.S The mean growth rate 8 of /::,C, 

The mean growth rate of the MS common factor is computed as the weighted average of 

the mean growth rates of the constituent variables, 8 = W(l)/::'Y, where W(l) is the first 

row of (J - (1- KH)Fr' K. K = KT = PTIT_IHT f~~_1 is the Kalman gain at the last 

. . P d f h' I d f p(i j) d j(i j) h' h IteratIOn. TIT-I an . TIT-( are t e welglte average 0 over TIT an TIT-' , w IC are 

calculated as follows 
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Appendix 83 

Figure 83.1 Growth rates of the MS common factors, D.C, 

the ELJfO Area Germal'lY Frartce 
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'970 ,MO 195, '~90 199~ 2000 2{)06 
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" , 
li 
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" . 
107~ ,MO wa, '900 199, 2000 2005 

Note: the horizontal line in each figure marks the threshold value of 0.5. 

141 



SupFr(1) 

SupFr(2) 

SupFr(3) 

SupFr(4) 

SupFT (5) 

UDmax 
WDmax(5%) 

WDmax(l%) 

SupF(211) 

SupF(312) 

SupF(413) 

SIC 
LWZ 
Sequential 

T, 

T, 

T4 

r, 

Appendix C3 

Table C3.1: Bai and Perron's multiple structural changes test 
Italy 

3.748 

17.655** 

15.016** 

12.894 ** 

23.858** 

23.858** 

34.343* i 

41.273** 

7.469 

11.375* 

24.509** 

5 

o 
o 

The Netherlands 

29.611 >1nl< 

44.037** 

43.548** 

39.403** 

31.878** 

44.037** 

69.953' 

79.793** 

61.330** 

13.473* 

28.461** 

Belgium 

15.173** 

14.545** 

23.146** 

18.565** 

22.635** 

23.146** 

38.358' 

45.411 ** 

17.599** 

9.825 

9.094 

Number of breaks selected 
2 I 5 

2 0 

4 2 

Break dates and confidence intervals 
BIC SIC Seq. siC Seq.! BIC 

i 
73:2 83:2 83:2 74:2 74:2 I 85:2 

(72:4·73:3) (82:4·86:1) (83:1·85:3) i (71:1·75:3) (72:3·75:1) i (84:4·85:4) 
73:4 01:1 90:1 i 80:1 83:3 i 90:4 

(73:3·74:1) '(00:2·02:2) (89:1·91:3), (78A·84:2) (81:4·88:4): (89:4-91:1) 
74:3 95:2 • 83:3 94:1 

(74:2-7"4) : (94:3·96:2) ; (83:1·84:1) i (93:4·96:1) 
75:2 i 01:1 i 90:2 i 97:2 

(74:4·75:3) : (00:3·01:2) ! (89:3·91:1) j (97:1·97A) 

80:2 93:4 00:4 
(78:4·84A) i • (922·94A) : (00:2·01:2) 

Spain 

66.815** 

87.494** 

60.096** 

52.899** 

65.126** 

87.494** 

110.363' 

130.654** 

13.871** 

44.641 ** 

22.883** 

lWZ 

5 

3 

4 

85:2 
(84:4·85,4) 

90:4 
(89:4·91:1) 

94:1 
(93:4·95:2) 

5eq. 
85:2 

(8M·85:4) 
90:4 

(89:2·91:2) 
96:4 

(96:3·98:1) 
00:4 

(00:2·01:3) 

Note: three criteria used to estimate the number of breaks are the Bayesian Information criterion (BIC) 
suggested by Vao (1988), a modified Schwarz criterion (LWZ) proposed by Liu et al (1997), and the 
sequential procedure proposed by Bai and Perron. The latter is based on the sequential application of 

the SupF(e\e + 1) test using the subsequent estimates of the breaks. 
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Appendix D3 

Table 03.1: Correlation Coefficients of Smoothed Recession Probabilities 
Whole Sample Period 

EMU GER FRA ITA AUS BEL NHH SPA FIN UK US 
EMU 
GER 0.94 
FRA 0.52 0.36 
ITA 0.56 0.46 0.43 
AUS 0.81 0.77 0.20 0.34 
BEl 0.83 0.73 0.56 0.46 0.63 

NETH 0.73 0.74 0.16 0.42 0.61 0.66 
SPA 0.42 0.25 0.41 0.15 0.27 0.39 0.11 
FIN 0.19 0.14 0.16 0.15 -0.06 0.28 0.20 0.35 
UK 0.15 0.28 0.16 -0.04 0.16 0.22 0.19 0.37 0.47 
US 0.26 0.37 -0.06 0.02 0.46 0.38 0.28 0.31 0.04 0.48 
CANA 0.28 0.23 0.00 0.16 0.36 0.42 0.29 0.24 0.23 0.19 0.61 

Pre-1991Ql 

EMU GER FRA ITA AUS BEL NETH SPA FIN UK US CANA 
EMU 0.96 0.51 0.46 0.94 0.90 0.80 0.59 -0.01 0.29 0.37 0.45 
GER 0.94 0.44 0.34 0.87 0.76 0.66 0.36 0.02 0.45 0.59 0.41 
FRA 0.58 0.44 0.45 0.41 0.55 0.20 0.30 -0.03 0.20 -0.13 -0.08 

... ITA 0.66 0.57 0.57 0.45 0.43 0.31 0.34 0.11 0.14 0.13 0.34 
Ci AUS 0.67 0.65 -0.12 0.26 0.85 0.80 0.47 0.00 0.27 0.48 0.47 ... 
Cl"> BEl 0.74 0.69 0.68 0.47 0.28 0.69 0.39 0.00 0.24 0.52 0.55 Cl"> ... NHH 0.71 0.73 0.31 0.51 0.53 0.48 0.26 0.01 0.32 0.47 0.47 ..:. 
'" SPA 0.32 0.33 0.42 0.17 -0.16 0.66 0.32 om 0.16 0.24 0.10 0 
0- FIN 0.33 0.30 0.40 0.18 -0.14 0.66 0.37 0.96 0.39 0.06 0.22 

UK -0.04 0.02 -0.03 -0.17 -0.16 0.34 0.19 0.71 0.78 0.48 0.07 
US 0.15 0.08 -0.15 -0.08 0.40 0.23 0.13 0.05 0.08 0.22 0.60 
CANA -0.05 -0.11 -0.02 -0.13 -0.02 0.19 0.07 0.37 0.41 0.61 0.57 -------- ----
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Appendix E3 

As illustrated in section 3.3, significant variation in the magnitude of recessionary and 

expansionary phases over the sample period means that the baseline model fails to 

produce reasonable parameter estimates and smoothed recession probabilities, One 

solution to this problem, used in Chapter 3, is to introduce dummy variables into the 

intercepts of the MSDF model in order to reduce the impact that large business cycle 

phases have on the model's parameter estimates, Applying this approach improves the 

log-likelihood values, parameter estimates and smoothed recession probabilities and so 

produces more reasonable turning points for Belgium, Italy, the Netherlands and Spain, 

An alternative approach considered in this section is to introduce a latent state variable 

into the intercepts of the MSDF modeL This approach is broadly in line with Kim and 

Nelson (l999a) and Mills and Wang (2003a), who introduced an additional latent state 

into the mean and residual variance of the Hamilton model to detect the unknown dates 

of business cycle moderation, To reduce the number of states at each stage of the KF 

iteration, we allow D, in equations (3.14) and (3,15) to evolve independently of their 

past values, As such, eight states appear at each stage of the KF iteration, The 

recursive equations are as follows 

fj U,j.k.l) - ji- + ji + F/J' 
tlt-l - j jj 1-111-1' 

n(i·j·hO) _ I _ H/J(i·}·kO;O) 
'1/11-1 -) I 111-1' 

n U.j .k• 1) _ _ H/Ju,j,h!) 
'//11-1 - Yt Ill-I' 

pU,j,k.O) = FP' FT + Q 
11(-1 1-111-1 ' 

fJ
U,j,k.O) = fJU.j,k.O) _ pU,p·O) HT [rU,j.k.Ol ]-1 nU.j.k.Ol 
tit tll-l /11-1 < tll-l '/11/-1' 

fj
U,j,k.l) = fjU,j.k·l) _ pU,j.k.l1 HT [rU,j,k.!) 1-! nU,j.k.!) 
II1 t!r-l '1/-1 . '1/-1 J '//11-1 ' 

pU,j,k.O) = (1 _ pU,j.k·O) HT [rU.j.k.OI 1-! H \~U,j,k.O) 
II1 '1/-1. /11-1 J Ttlt-l ' 
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The Hamilton filtering algorithm that calculates the probabilities Pr(S, = jlw,) and 

Pr(S, = j,St-J = i,lw,) can then be modified as follows 

Pr(S, = j,S'_1 = i,D, = kl~/'_I) = Pr(S, = JIS'_1 = i )Pr(S,_1 = ilw'_1 JPr(D, = kl~/'_I)' 

f(Y, I~/,-J = I~;I I~;I I:;JGI, IS, = j, S,_I = i, D, = k, w,_JPr(S, = j, S,_I = i, D, = kl~/t-I), 

-' -' _I f(Y,ls,=j,S'_I=i,D,=k,w,_Jp~S,=j,S'_I=i,D,=kl\flt-l) 
Pr(S,-},S'_1-1,D,-kVI,) ( I ) , 

f y, Wt-! 

Pr(S, = jlw,) = I~;II:;IPr(S, = j,S'_1 = i,D, = klw,), 

Since the MSDF model is a combination of the KF and the Hamilton filter, appropriate 

approximations are needed at each iteration to make the above KF operable. However, 

unlike Kim's (1994) filter, illustrated in Appendix A3.2, where the KF produces a 2-

fold increase in the number of f3,\;.j) and P,i:'/) at the end of each iteration, the KF 

presented here gives a 4-fold increase in the number of fi/I;.j.k) and P,i:·}·k) . 

'V' 'V' Pr(S = J' S = i D = kl"l )fi"·i.kI fiJ == L..Jk==l L..Ji==1 I '1-1 '! 'I' l tit 
'I' Pr(S, = jlvl,) , 

pj 
'I' 

'" 'V' PrCS = J' S = i D = 1""1 )J~".i.kl +(1'1/ _ a{i·j·kl y ai _ a(i.j.kl)T J 
LJk==l.L..i==! t '/-1 'I f\,IY' I r;11 1-'111 Ptll ~tlt Ptl l 

Pr(S, = jlw, ) 

However, reducing the 2 x 2 x 2 posteriors (fi,l;·}·k) and P,i:· j·k)) down to 2 posteriors 

( f3 ) and pj) requires a weighted average over fiU.j.k;O) and f3 U.j.hl ) and pU.j.k;O) and 
'I' 'I' 'I' 'I" 'I' 

p,i:·}·k;I). This may cause problems in the subsequent iterations when large variations 

are found between severe and nonnal business cycle phases. This leads to significant 

increases in volatility of the common factor as both jij and Jl ji are larger than those 

obtained using the dummy variable approach. Due to this problem, this approach fails 

to produce reasonable parameter estimates and smoothed recession probabilities for 

Belgium and the Netherlands. Although it gives acceptable results for Italy and Spain, 
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the log-likelihood values in Tables E3.l and E3.2 are lower than those in Tables 3.4(b) 

and 3.8(b). The dummy variable approach is thus preferred and used in Chapter 3. 

Table E3.1: Parameter estimates of MSDF for Italy 
Common Factor 

1/>, 1/>, Uo u, PO~ PII Uoo U" Pd 
0.693** ·0.120' ~2.427* 0.756 O.542*'" 0.816** -12.736' 7.646* 0.041' 
(0.152) (0.053) (0.970) (0.819) (0.117) (0.116) (5.117) (3.401) (0.022) 

Idiosyncratic Components 

.cl. GDP 7, W" If/I'!. a" 0-' , 
O.237*'" ·0.231 0.013 0.439** 0.236** 

(0.085) (0.138) (0.016) (0.120) (0.062) 

.cl. GFCF 7, W2! 1f/22 
, 

a" G'2 
0.142** -0.054 0.010 0.102 0.712** 

(0.052) (0.092) (0.088) (0.098) (0.053) 

.cl. IP Y, VI:,! V/32 

, 
a" 0--

3 

0.188** ~O.512** -0.055 0.483** 0.303** 

(0.071) (0.115) (0.108) (0.099) (0.055) 

L'l EMP 740 741 r 42 743 D92q4 W41 1f1 42 fj/ 43 

, 
a" 0--

4 

0.075 ·0.060 0.068 -0.020 -4.416** -0.065 -0.212' 0.198' -0.134 0.653** 
(0.043) (0.053) (0.061) (0.041) (0.850) (0.095) (0.087) (0.093) (0.126) (0.050) 

Long run growth rate: 6 = 1.327 

Error correction term 

GDP,., = 2.645 + 0.0911 x GFCF,., + 1.1424 x IP,_, + 0.521 X EMP,_, 
(0.105) (0.086) (0.243) 

Log-likelihood: -672.199 

Diagnostics Q(4} Jarque-Bera 
L'l GDP 1.771 1.061 

.cl. GFCF 3.342 3.379 

.cl. IP 7.779 17.412** 

.cI.EMP 0.357 6.596 

Figure E3.1: Italy 

200 

1975 1980 1985 1990 1995 2000 2005 
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Table E3.2: Parameter estimates of MSDF for Spain 

q" 
0.291* 
(0.112) 

q" 
0.428** 
(0.098) 

Uo 
-0.614* 
(0.291) 

Common Factor 

It, POll 

0.982** 0.970** 
(0.248) (0.024) 

Idiosyncratic Components 

.6.GDP 1, 
0.254** 

(0.051) 

.6.GFCF y, 
0.307"'''' 

(0.061) 

.6.IP 13 
0.247** 

(0.051) 

.6.EMP Y40 

0,095** 

(0.030) 

14' 
0.090** 

(0.031) 

Y42 

0.029 

(0.031) 

long run growth rate: 0 = 1.853 

Error correction terms 

Y43 

0.053 

(0.029) 

D76ql 

2.764** 

(0.407) 

\I'll 

-0.460** 

(0.110) 

076q3 

3.779** 

(0.412) 

1.// ]2 

-0.118 
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Figure E3.2: Spain 
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Cha.pter 4 - Evaluating Gro""rth Cycle 
Synchronisation in the EU 

4.1 Introduction 

Chapters 2 and 3 assessed the synchronisation of business cycle turning points 

identified from multivariate coincident economic time series using parametric and non­

parametric approaches. Although more synchronised business cycles are found between 

the aggregate euro area and the core EMU countries than the peripheral and non-EMU 

countries, this may reflect the large weights assigned to the core countries when 

constructing the aggregate euro area data. Overall, no common increase in cycle 

correlations is found between the aggregate euro area and EMU countries over two 

subsamples: pre-1991Ql and post-1991Ql. Furthennore, the unbalanced growth 

observed among EMU member states, even after the establishment of EMU, may 

reduce the appropriateness of having a common monetary policy for all countries. 

Given this concern, the research in this chapter is undertaken to identify and analyse the 

growth cycles of seven major European countries, Austria, Belgium, France, Germany, 

Italy, the Netherlands and Spain, during the period of 1980Ql to 2007Q3. These 

countries were previously members of the European Monetary System (EMS) and have 

been members of EMU since 1 January 1999. There has been an ongoing debate as to 

whether these countries, and the other members of EMU, have actually benefitted from 

adopting a common monetary policy. In macroeconomics, the growth cycle is 

consistent with the output gap, which is associated with inflationary pressures. As 

similar inflation rates are one important criterion for ensuring the optimality of EMU as 

defined in OCA theory (Fleming, 1962; Haberler, 1970), measuring the degree of 

growth cycle synchronisation is a relevant issue in analysing the optimality of EMU and 

its common monetary policy. 

The endogenous OCA theory, supported by Frankel and Rose (1998) and the European 

Commission (1990), argues that the operation of a monetary union in itself would 
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generate greater synchronisation. Given this assertion, this chapter examines the 

presence of a unique common cycle among the seven member countries mentioned 

above, given the operation of EMU and the quasi-union of the Exchange Rate 

Mechanism (ERM) of the EMS over the past thirty years. 

European growth cycle synchronisation is generally evaluated by analysing bilateral 

correlations between estimated cycles. Univariate trend-cycle decomposition 

methodologies, such as the Hodrick-Prescott and band-pass filters, are widely used to 

extract the cyclical component from industrial production indices, real GDP or its 

components. There is still no consensus on whether fixed exchange rate regimes or a 

monetary union generate synchronised cyclical fluctuations. Artis and Zhang (1997) 

and Darvas and Szapary (2004) find evidence of greater growth cycle synchronisation 

after countries joined a currency arrangement or a monetary union. However, Inklaar 

and de Haan (2001) contradict this assertion as they identify periods of convergence and 

divergence during the ERM period. Moreover, Camacho et al. (2006) conclude that the 

establishment of the EMU has not significantly increased synchronisation across the 

euro area, and that the synchronisation among member countries occurred prior to the 

introduction of the euro. These conflicting results are due to the use of different data, 

decomposition methodologies and measures of synchronisation. 

More recent studies have tended to assess the degree of growth cycle synchronisation 

within a multivariate setting. Harvey and Carvalho (2005) decompose real GDP per 

capita for five core euro area countries into their trend and cycle components 

simultaneously by using the seemingly unrelated time-series equations (SUTSE) model, 

in which all cycle components are restricted to have the same damping factor and 

frequency. The level of cycle correlation is measured by the cross-correlations between 

estimated cycle components. Luginbuhl and Koopman (2004) and Koopman and 

Azevedo (2008) introduce various time-varying mechanisms to the SUTSE models to 

account for gradual changes in cycle correlations between euro area countries. Sinclair 

and Mitra (2008) further apply the unobserved component (UC) model, which allows 

for non-zero correlations between the trend and cycle components, to analyse cross­

country relationships between members of the G7. An altemative approach used to 

assess growth cycle synchronisation in a multi-county analysis is to test for the presence 

of common and codependent cycles using vector autoregressive (V AR) models with 
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co integration. Since this methodology is based on a V AR representation, it has the 

advantage of allowing dynamic interactions between variables to be modelled. It is wen 

known that cointegration between a set of 1(1) variables indicates the presence of 

common trends (Johansen, 1988; Stock and Watson, 1988b). More recent studies, 

including Engle and Kozicki (1993), Vahid and Engle (1993, 1997), Hecq et al. (2000, 

2006) and Schleicher (2007), propose test statistics to detennine the number of common 

and codependent cycles among a set of stationary time-series. It is believed that, if the 

common feature restrictions are imposed correctly, estimation efficiency and the 

forecasting ability of a model will improve. Once appropriate models have been 

constructed, the Beveridge-Nelson (BN) decomposition methodology with common 

trend and cycle restrictions imposed, as proposed by Proietti (1997) and Hecq et al. 

(2000), can be used to calculate the trend and cyclical components for each of the 

variables simultaneously. This approach has been used by Vahid and Engle (1993) and 

Carlino and Sill (2001) to identify the number of common trends and cycles in real GDP 

per capita among the US states. Hecq (2005) adapts this model to analyse GDP series 

of Latin American countries. Beine et al. (2000) also apply this approach to assess the 

optimality of a monetary union consisting of five core European countries (i.e., 

Germany, Belgium, the Netherlands, Austria and France) and a restricted monetary 

union composed of Germany, Belgium and the Netherlands using monthly industrial 

production indices between 1975MI to 1997M4. Their results indicate that even the 

restricted monetary union could face a stabilisation cost as one common cycle emerges 

with a delay of adjustment of five months. 

In this chapter, both univariate and multivariate trend-cycle decomposition 

methodologies are applied. The BN decomposition and the unobserved component 

model proposed by Harvey and Trimbur (2003) are used to extract the cyclical 

component from individual real GDP series. Correlation coefficients between estimated 

cycles are then calculated to examine the degree of cycle comovemenl. More 

importantly, the common cyclical features of seven national GDP series are analysed 

using V AR models with cointegration. The multivariate BN decomposition 

incorporating trend and cycle restrictions, which has not previously been utilised in this 

context, is also used to provide a detailed investigation of the trend and cyclical 

movements in the GDP series. 
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The rest of the chapter is organised as follows. A brief introduction to the univariate 

BN decomposition and the unobserved component model proposed in Harvey and 

Trimbur (2003) are given in section 4.2. Section 4.3 outlines the common trend and 

cycle approach within the V AR framework. The trend-cycle decomposition 

methodology developed in Proietti (1997) and Hecq at al. (2000) is then presented in 

section 4.4. In section 4.5 the empirical results obtained from the multivariate approach 

are discussed. Section 4.6 concludes. 

4.2 Beveridge-Nelson and Unobserved-component Decompositions 

Two model-based trend-cycle decomposition methodologies are used to extract the 

cyclical components from real GDP data for the aggregate euro area and the seven 

EMU member states during the period 1980Ql to 2007Q3. i All series are seasonally 

adjusted observations expressed in logarithms. The first approach used in this section 

was proposed by Beveridge and Nelson (1981), who demonstrated that any 

ARIMA (p,l, q) process can be decomposed into a unique stochastic trend plus a 

transitory component, 

(4.1) 

where the trend component is defined as the infinite forecast of the series x" adjusted 

for its mean growth rate, 

(4.2) 

where /lX'+II' is the i -step ahead linear predictor of &, based on information at time t. 

The cycle component of {x,} is the difference between the trend and the value of x, : 

(4.3) 

I The real GDP data are taken from the OEeD Quarterly National Account database. 
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The BN trend has the structure of a random walk with drift, and the BN cycle is simply 

the deviation from the trend. The innovations of the BN trend and cyclical components 

are perfectly correlated. 

The second approach was introduced by Harvey and Trimbur (2003). It is based on an 

unobserved component model consisting of stochastic trend, cycle and irregular 

components. This approach is closely linked to the use of Butterworth filters and can 

produce smoother trend and cycle components than conventional structural time-series 

models, such as the BN decomposition and the model introduced by Harvey and Jaeger 

(1993). As presented in Harvey and Trimbur (2003), this model is specified as 

XI = 'm.l + en.1 + Br' t = 1, ... ,T 

where f m ., denotes the m-th order stochastic trend, defined as 

.6. T m.t = TII1 _ u +17/, 1]/ ..... " NID(O,O",~), 

[,,,,-11',,,_1.< =/;" /;,- NID(O,()"J), 

(4.4) 

(4.5) 

for m = 2,3 ... , where [,',,-1 = (1- L )",-1. The trend component with ()"~ = 0 and m = 2 

produces a smooth trend. Moreover, when m > 2, the estimated trend component can 

be compared with a Butterworth filter. For most economic time series, m is usually set 

to be two or three. Higher values of m will give a nonlinear forecast function and the 

estimated trend may become more responsive to shorter-tenn movements in the filter 

series (Harvey and Trimbur, 2003, p.l2). 

An n-th order stochastic cyclical component is given by 

(4.6) 

and 
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[
C".,] [ COSA, • =p . 
ell,! - SIn )L,.c 

sin }c, ][C"'H] [c,,_I.'] • + , for 11 = 2,3 ... , 
cos Ac CI/.t_l 0 

(4.7) 

where k, - NID(O,cy~). The parameter p is the damping factor and A, is the 

frequency, which satisfy 0 < pSI and 0 < A, S ff. A higher order for 11 leads to more 

concentration on a particular fi'equency band, and thus results in smoother cycle 

components than when 11 = 1. Finally, it is worth noting that innovations to the trend 

and cycle, denoted 17" r;, and k" are assumed to be serially and mutually uncorre1ated 

in the unobserved component model. This assumption is in contrast to the BN 

decomposition framework, where the innovations of the BN trend and cyclical 

components are perfectly correlated. 

Four different models for each country are estimated and reported in Table A4.2, 

Appendix A4. CY,; is set to zero for all models and the cycle period, 2ff I A" is 

restricted to 20 quarters when A, is estimated to be near zero. The model which yields 

the smallest standard error and the largest log-likelihood value is preferred and 

highlighted in bold in Table A4.2. The model consisting of a smoothed second-order 

trend, a generalised cycle of order two and an irregular component is preferred for most 

countries. The exceptions are France and Spain for which a generalised cycle of order 

three is preferred. 

Parameter estimates of the two methodologies are presented in Appendix A4. The 

estimated cyclical components are plotted in Figure 4.1. In general, the cycles obtained 

from the BN decomposition appear to be noisy, while the cycles estimated from Harvey 

and Trimbur's approach are smooth and highly persistent. In addition, as shown in 

Table 4.1, cycle correlations calculated from the BN cycles are, on average, smaller 

than the corresponding values calculated using the cycles extracted from Harvey and 

Trimbur's approach, especially for Belgium. The average cycle correlation between the 

Belgian BN cycle and the other BN cycles is 0.04, compared to the corresponding value 

of 0.51 calculated using cycles extracted from the unobserved component model. 



Table 4.1: Cross-Correlations 

The BN cycles 

EURO AUS BEL FRA GER ITA NETH 

EURO 1.00 

AUS 0.48 1.00 

BEL 0.06 0.17 1.00 

FRA 0.69 0.29 0.12 1.00 

GER 0.65 0.30 -0.25 0.25 1.00 

ITA 0.61 0.30 0.11 0.50 0.40 1.00 

NETH 0.48 0.35 0.12 0.26 0.36 0.29 1.00 

SPA 0.66 0.32 -0.07 0.50 0.36 0.33 0.37 

The UC cycles 

EURO AUS BEL FRA GER ITA NETH 

EURO 1.00 

AUS 0.32 1.00 

BEL 0.79 0.26 1.00 

FRA 0.71 0.21 0.61 1.00 

GER 0.76 0.11 0.43 0.29 1.00 

ITA 0.83 0.19 0.59 0.55 0.64 1.00 

NETH 0.32 0.50 0.29 0.12 0.12 0.21 1.00 

SPA 0.61 0.24 0.58 0.40 0.45 0.41 0.11 
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Figure 4.1: BN and UC Cycles 
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4.3 VAR Representation with Common Trend and Cycle Restrictions 

This section generalises the univariate decomposition approach to a multivariate setting. 

The multivariate BN decomposition with common trend and cycle restrictions is used to 

extract the trend and cycle components simultaneously from each output variable. The 

advantage of this approach is that it allows for dynamic interactions between variables 

and the identification of innovation sources (Lippi and Reichlin, 1993; Quah, 2002). 

This multivariate approach is based on a V AR representation. 2 Thus, consider a 

p-th order VAR with N elements in X,: 

p 

X, =m+ 2:IT,X,_, +c" c, -iid(O,L) 
i=l 

(4.8) 

where IT"i=l, ... ,p, are matrices oflag coefficients. Since some variables in X, are 

1(1), the roots of IIT(L)I = 0 are either on or outside the unit circle, where 

r 
IT(L)=IN - 2:D,1'. As demonstrated in Johansen (1995), the VAR in equation (4.8) 

i=,] 

can be rewritten as an (unrestricted) vector error correction model (VECM) by 

p-l P 

decomposing IT(L) into IT(l)L+l(L)(1-L), where l(L)=IN - 2:r,1', f;=-2:ITj' 

for i = L ... ,p-l, to obtain 

r-I 

!:XI = m-IT(1)XI_1 + 2:1,MI_, +cl 
i=i 

i=l i",l+l 

(4.9) 

In equation (4.9), the long-run matrix, ITO), can be factored as _afJT if D(l) has rank 

r < N. In this case the matrix fJ contains r cointegrating vectors and a is the matrix 

of corresponding adjustment coefficients. There are thus r linear combinations of the 

variables in XI that yield stationary series and X, is said to have k '" N - r common 

'The literature, which includes King et a1. (1991), Vahid and Eng1e (1993, 1997), Proietti (1997). Hecq et 
a1. (2000, 2006) and Schleicher (2007), provides various illustrations of the common trend and cycle 
assumptions imposed on the V AR models. 
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trends. It is therefore clear that the VECM imposes common trend restrictions on the 

VAR if IJ(l) has reduced rank. 

4.3.1 Common Cycles 

As with common trends, the presence of common cycles imposes additional restrictions 

on the VAR (Vahid and Engle, 1993). In this case, linear combinations of the first 

differences M, should remove all the serial correlation in these first differences. To 

illustrate this, premultiply both sides of equation (4.9) by an s x N cofeature matrix, 

denoted tjJT = [I, tjJ::CN-,)], to yield an s -dimensional vector of white noise, 

(4.1 0) 

Adding the rema111111g N - s reduced form VECM equations to (4.10) gives the 

'pseudo-structural' model, 

[ 
I, 

0(N-S)X5 

where the error term is 

[ 
I, 

v ;:;;: 
[ 0(N-5)(5 

'fsx(N-s) Ai'T ] 
U, 

I N-, 

o sxll/ 

[". 
P 

(4.11) 

It is clear that common cycle restrictions require tjJTIJ(l) = 0 and tjJT['J = 0, so that 

tjJT M, is independent of &'-1' Compared to the (unrestricted) VECM model, the 

restricted model in equation (4.11) eliminates s(Np+r)-s(N -s) additional 

parameters and is parsimoniously nested in the VECM. 
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It is worth noting that the number of cofeature combinations, s, is constrained by the 

dimension of the VECM and the presence of cointegrating vectors. The maximum 

value of s is N - r. The test statistic proposed in Tiao and Tsay (1989) can be applied 

to detennine the actual number of co feature combinations, 

Cs(s) '" -(T - P -I) i)n(l-R~), s '" I, ... ,n - r (4.12) 
)==1 

where the £~ , for j '" I, ... ,s, are the s smallest estimated squared canonical 

correlations between M, and W,-I '" (M~" ... ,M,~p,X'~I,8r.3 Under the null, this 

statistic has an asymptotic X' distribution with s(Np + r) - s(N - s) degrees of 

freedom, where p is the lag order of the VECM. 

The common cycle framework outlined above corresponds to the definition of strong 

fo= reduced rank structure (SF) introduced in Hecq et al. (2000, 2006). In addition, 

they also introduce two further common cycle models; the weak and mixed fo= 

reduced rank structures (WF and MF). Under WF, there exists a cofeature matrix 

-T ( -'T) -T T T -T t/J '" I, t/J"(N-') , where t/J (~, - a,8 Y'_I) '" t/J c,. The pseudo-structural model 

then has the structure, 

Thus WF only imposes the restriction that 1T
fj = 0 for all j. In other words, under 

WF, linear combinations of the first differenced variables should reduce to white noise 

processes after adjusting for long-run effects. 

;I By defining Y as the vector of observations on AYt and W_
J 

as the matrix of observations on U:~_l ' 

, ( T )-1 T (T )-' T the f'-j' for .i '" I •... , s . are the s smallest eigen values of Y Y Y W_1 117_1117_1 117_1 Y . 
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As with SF, the test statistic used to determine the number of WF cofeature 

combinations is similarly specified as 

CH,(s)=-(T-p-1):i)n(1- RJ), s=1, .. ,,11-1 (4.14) 
;",1 

where Cw(s) is distributed as 1'2 with sNp - s(N - s) degrees of freedom and the R] 

denote the s smallest squared canonical correlations between M, and 

W,:I = \M,~p" .. ,M,~p r. In the WF case, the rank of the cofeature matrix, s, may be 

greater than N - r but has an upper bound of N -1. For each value of s :5 N - r, one 

can compare SF against the nesting alternative of a WF. As proved by Hecq et al. 

(2006), the existence of S WF cofeature combinations with s > r already implies the 

presence of s - r SF cofeature combinations. Therefore, it is advisable to compare the 

two for values of s = max[1,sWF - r + 1] up to s = min[swn N - r], where SWF denotes 

the rank of the WF co feature matrix. Hecq et al. (2006) also propose a test statistic that 

allows SF to be tested against the WF alternative, for 

s = max[l,sWF - r + 1]. .. s = min[swnN - r], which is given by 

(4.15) 

where f!~ and R; are defined as above. Csw (s) is 1'2 with degrees of freedom equal to 

the rs parametric restrictions under the null of SF. 

In the case ofMF, an sxN co feature matrix is specified as ~T =(~IT'~2T), where ~IT 

and ~2T are s, x Nand (s - SI) x N full rank matrices, with max(O, s - r) < SI < N - r 

and s < N -1. Under the MF assumptions, the following equations should hold 

(4.16) 

(4.17) 
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and the pseudo-structural form is constructed as 

Is, ", 1 [ 
AY'_I 

tPl(S{X(N-s1» 0 Sr xN °SjxN °Si X)" 

[ 0 
' 'T 

°S2 xN tP2(SzX(N-S1» M f :::: OS2:N a, +v(' (4.18) 32 XSj M 1_
P 

O(N-S)XSI A(N-SHN-S,) [I 
[' a J p ftT X

t
_
1 

hybrid of WF and SF, a test cannot be formulated in terms of canonical correlations. 

However, the MF with SI SF vectors and S2 WF vectors can be tested against the 

nesting WF with s = s, + s, using the likelihood ratio approach. Under the null of MF, 

an LR test statistic is asymptotically X' - distributed with degrees of freedom equal to 

the number of additional parameter restrictions, SII' - S2S1 • 

4.3.2 Code pendent Cycles 

Most economic time-series are not perfectly synchronised due to structural rigidities or 

adjustment costs. Therefore, models which consider the lead and lag relationships 

among variables appear more appropriate for time-series analysis. Vahid and Engle 

(1997) extend the common cycle assumptions to a more general setting, thus defining 

codependent cycles. This allows some variables in M, to lag others by a short period 

of, say, q lags. 

Consider a Wold representation of an N - dimensional vector M, of reO) time-series: 

00 

M, = s, + ICjS,_j = C(L)s, 
j=l 

and suppose there exists a s x N cofeature matrix rp,~ that satisfies 
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(4.20) 

This implies that s linear combinations t/J; /'0(, are expected to have MA(q) 

representations rather than being white noise. Equation (4.20) is defined as a scalar 

component model of order q (SCM (0, q ».4 

The test statistic used to detennine the number of co feature combinations for an 

SCM(O.q) is specified as follows (Tiao and Tsay, 1989; Vahid and Engle, 1997): 

C(0,q)=-(T-(p-l)-q)2)n 1 __ 1_ 
., ( R,2(q)J 

j=! dj(q) 
(4.21) 

Here the f~(q) , for j = I, ... ,s, are the s smallest estimated squared canonical 

q 

d/q) = I + 2 LP" (?T /'0(, )p,,()-:-rW;_I_q) (4.22) 
v=l 

p,,(a,) is the lag-v sample auto correlation coefficient of the process a" and? and X 

are the canonical variates corresponding to e~(q) .5 The test statistic C(O,q) is 

asymptotically distributed as %2 (s(Np + r) - s(N - s». As with common cycle models, 

the number of codependent cycles is constrained by the dimension of the VECM and 

the number of cointegrating vectors. There can be at most (N - r)/(q + I) linearly 

independent cofeature combinations that yield an SCM (0, q) and the maximum order of 

an SCM cofeature is q = N - r -1 (Schleicher, 2003). 

4 Tiao and Tsay (1989) propose a more general class of scalar component models, SCM (p, q), which 

have an ARMA (p, q) representation. The common cycle framework is a special case of SCM (0, q ) 
whenq=O. 

'? and lare the eigenvectors of (yTytyTW(WTTf1tWTy and (WTW)-IWTy(yTy tyTW 

corresponding to (~( q), where Pr? is the matrix of observations on W~_l_(!' 
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Imposing codependence cycle restrictions on a VECM is not straightforward as these 

restrictions are non-linear. Therefore, Vahid and Engle (1997) suggest using 

Generalised method of moments (GMM), which provides reasonable estimates of r/lq . 

Under an SCM (0, q), the orthogonality conditions and their sample estimates can be 

constructed as 

(4.23) 

and 

(4.24) 

where T' =T-p-q. The 

Y=[M;+Q+l,M;+q+2, ... ,M;r are W;-l-q and M, stacked though time. It is 

important that r/lq can be nonnalised as r/l; = (1,,-CP~I"-,J and Y = [r; ,Y2 ], such that the 

sample moment conditions becomes 

(4.25) 

The GMM estimate can be derived as 

by minimising the quadratic fonn Sr(rp) = g;Prgr . Pr is a symmetric positive-definite 

weighting matrix, estimated using a 2-step procedure: the initial estimate is given by 

PT.! = (1, ® WTW t ' which is then updated as 

(4.27) 
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where ftt and fi" denote estimates of the i'h sample-autocovariances of ~: M, and 

w,-,-q' respectively, and ~: is the first-step GMM estimate obtained using PT.l' 

Compared to the common cycle model, the codependence framework appears to be a 

more appropriate approach for studying the comovement of European growth cycles. 

Since countries vary significantly in their labour market institutions, economic 

structures and openness to trade, their output data are less likely to respond 

simultaneously to a common shock. 

4.4 Trend and Cycle Decomposition 

In this section, the methodology proposed by Proietti (1997) and Hecq et al. (2000) is 

presented. This work provides a multivariate extension of the BN decomposition which 

takes into account the common trend and cycle restrictions. It calculates the trend and 

cyclical components of X, from the parameters of the reduced form VECM. Proietti 

(1997) shows that a VECM can be written in state-space form as 

(4.28) 

(4.29) 

where /, is the (Np + r) dimensional state vector and T IS the (Np + r) x (Np + r) 

transition matrix, specified respectivel y as 

M, f, +IXf3T f2 fp IX 

MH IN °NxN ° ""x N 
°NxN 

/,= T= °NxN 

M,.p 

J3 TX ,., J3T O,.xN I,. 
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In addition, Z = [1 N ,0 NxN"""O N"] is an N x (Np + r) matrix, and 111 = ~/ ,01xN ""01" 1 is 

a vector of dimension Np + r . 

Consider the case when m is zero. TIle BN cycle in equation (4.3) is then given by 

If the stability 

converges to (1 Np.,. - T )-1 T and the cycle is calculated as 

k 

condition is met, lim '" T' 
,(:-:l'''''~ 

i",] 

(4.30) 

As proved by Proietti (1997), if the state-space representation is stable, BN decomposes 

X, into cyclical and trend components expressed as 

(4.31 ) 

(4.32) 

p 

with 1; = .z:: I; 
;=,)+1 

However, the upward drift observed in the GDP data result in a non-zero 111. Successive 

substitution of equation (4.29) yields the expected value of the constant, 

k 

m' = lim LT' m = (1 Np+' - T) -1 111 • 111 can be removed from the transition equation to 
!.-4OC 

i=] 

the measurement equation by writing 

/lX, = 4t +ZI11' (4.33) 

(4.34) 
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where .r: = /, - m'. The cycle is then given by 

(4.35) 

Correspondingly, a zero-mean cyclical component can be obtained by replacing /',X, by 

/',X, -Zm* In equation (4.31), and also by subtracting 

(r(I)- apT t a~T (r(l) _apT t a jIE(PT X'_I) from equation (4.31), where 

(4.36) 

(4.37) 

Furthermore, Hecq et al. (2000) demonstrate that the above decomposition can be 

applied to a VECM with common cycle restrictions. However, it is worth noting that 

the decomposition differs under SF and WF. To illustrate this, premultiply the cyclical 

component, c, =V/" +\f/It' with the matrix rp«p rpfl rpT +rp}. (rpJ. (Ar' rpJ. = I" to yield 

e, = Vi"u + ViIA.l + VI'B., + ViIB.t' where <p is the co feature matrix and <p T <p}. = 0 .6 If SF 

holds, then X, consists of a trend component, Tt' and a common cycles component, 

e, =Vi2BJ +W1B.,. However, under the WF assumptions, X, is the sum of three 

components: T, , ct , and an additional transitory component W2A ., + W1A ." which is 

nonzero due to the long-run predictability of the linear combination of the variables in 

first differences. 
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4.5 Empirical Results 

This section evaluates the degree of growth cycle synchronisation among the seven 

European countries analysed above. Since the aggregate euro area output data is simply 

the weighted sum of its member countries output, it is excluded from this analysis to 

avoid multicoIlinearity. The empirical model is based on a V AR with four lags, where 

the lag length was chosen according to the LR test statistic at the 5% level. To cross­

check whether enough lags were included, the autocorrelation LM test was conducted, 

with no serial correlations being identified in the model residuals. This analysis starts 

by detennining whether the seven output series are cointegrated. If they have 

cointegrating relationships, the series share common stochastic trends, and the VECM 

can be estimated. The ADP and Johansen cointegration tests were conducted. ADP test 

statistics reported in Table 4.2 were not able to reject the null of a unit root in the level 

of real GDP for each country but did reject the null when first differences of the series 

were used. As shown in Table 4.3, the trace statistic from the Johansen cointegration 

test indicates the existence of five cointegrating vectors, whilst the eigenvalue statistic 

suggests that there are two at the 5% level. Since three of the five error correction terms 

estimated from the VECM with three lags and five cointegrating vectors are found to be 

nonstationary, the inference provided by the max eigenvalue statistic is preferred. 

Table 4.2: The Augmented Dickey-Fuller Test Statistics 

level First Differenced 

Constant Constant + Trend Constant 

AUS 0.400 -2.747 -9.057** 
(0.982) (0.221) (0.000) 

BEL 1.323 -3.549" -9.033** 
(0.999) (0.039) (0.000) 

FRA -0.587 -2.610 -4.518*' 
(0.868) (0.277) (0.000) 

GER -0.446 -1.288 -11.005** 
(0.896) (0.886) (0.000) 

ITA -1.157 -1.189 -7.590** 
(0.691) (0.907) (0.000) 

NETH 0.997 -3.487* -11.526** 

(0.996) (0.046) (0.000) 
SPA 0.481 -2.554 -3.308* 

(0.985) (0.302) (0.017) 

Notes: the numbers in parentheses are p-vaJues ... denotes significance at 1% and" at 5%. The AOF 
tests with a constant and a time trend included indicate that the Belgian and Dutch GDP series are trend 
stationary. 
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Table 4.3: Cointegrating Test (Johansen 1995) 

Null Eigenvalue Max-Eigen stat. Trace stat. 

1'=0 0.46 66.45** 226.32** 
(0.000) (0.000) 

1':-:;1 0.46 65.20** 159.87** 
(0.000) (0.000) 

r:-:;2 0.26 32.24 94.67** 
(0.078) (0.000) 

1':-:;3 0.23 27.51 62.44** 
(0.051) (0.001) 

1':-:;4 0.18 21.05 34.93* 
(0.051) (0.012) 

1':-:;5 0.12 13.84 13.88 
(0.058) (0.086) 

r:-:;6 0.00 0.05 0.05 
(0.831) (0.831) 

Note: the default option in EViews is used in which an intercept is included in both the cOintegration 
equation and the differenced form of the VAR. ** denotes significance at 1% and * at 5%. 

Having established the order of the VECM and the number of cointegrating vectors, and 

obtained estimates of the corresponding co integrating parameters, Tiao and Tsay's 

(1989) canonical correlation-based tests for common and codependent cycles outlined 

in section 4.3 are conducted. These tests are performed in the following order. First, 

the test statistics for SF and WF are calculated to determine the number of cofeature 

vectors. Next, SF IS tested against the alternative of WF for 

8 = max[l,swF - I' + 1]. .. 8 = min[SWF ,N - 1']. Finally, the presence of codependent cycles 

is examined sequentially, starting from SCM (0,1) and then incrementally increasing the 

order of the SCM. 

The results of the common and codependent cycle tests are presented in Table 4.4. The 

Tiao and Tsay tests do not reject the null of at least two SF or the null of four WF 

co feature vectors at the 5% level. In other words, there are five SF or three WF 

common cycles among the seven output series, rather than a unique common cycle. 

Since the finding of four WF cofeature vectors already implies the presence of two SF 

cofeature vectors, the null of SF is tested against the alternative WF for 8 = 3 and 8 = 4. 7 

As a result, both statistics strongly reject. This may suggest that there is not a MF 

structure. 

7 The existence of s WF cofeature combinations (s > r) implies the presence of s - r SF co feature 
combinations. 
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Table 4.4: Canonical correlation test for common and codependent cycles 

Null 
Common cycles Codependent cycles 

Cs(s) Cw(s) Csw (s) SCM(O,I) SCM(O,2) SCM(O,3) SCM(O,4) 

s 2: 1 17.34 13.64 14.24 7.46 7.16 8.89 
(0.43) (0.55) (0.65) (0.98) (0.98) (0.94) 

s2:2 45.35 31.21 28.60 19.70 18.59 19.70 
(0.14) (0.51) (0.81) (0.99) (0.99) (0.94) 

s2:3 78.02* 55.99 22.88** 47.33 44.66 37.42 41.99 
(0.03) (0.29) (0.00) (0.82) (0.88) (0.98) (0.93) 

s2:4 127.99** 89.42 40.07** 87.80 73.60 62.63 68.69 
(0.00) (0.08) (0.00) (0.26) (0.68) (0.92) (0.81) 

s2:5 197.83 ** 132.86** 139.07** 117.99 112.99 101.69 
(0.00) (0.01) (0.01) (0.18) (0.28) (0.57) 

s2:6 306.57** 202.64*' 215.31 ** 203.24** 169.68** 161.16* 
(0.00) (0.00) (0.00) (0.00) (0.01) (0.04) 

Note: The numbers in parentheses are p-values. ** denotes significance at 1% and * at 5%. The null of 

SF is tested with the WF alternative for S = max[l,sWF - r + I] up to s = min[swn N - r]. where 

SWF :::: 4. 

The test statistics for codependent cycles with q ~ 4 are also presented in Table 4.4.8 

The results show that the null of s, 24, s, 2:5, s, 2:5 and S4 25 cannot be rejected at the 

5% level. This implies that there are five co feature combinations, two SCM(O,O), two 

SCM(O,I) and one SCM(O,2).9 However, from Hecq (1998) and Mills and Harvey 

(2005), the use of seasonally adjusted data may induce size distortions and low power in 

the common cycle testing. Therefore, GMM was used to confirm the above results, 

with the estimates of the cofeature matrix ~;, where q =2 and s =5, given in Table 4.5. 

The sample autocorrelation functions are calculated to cross-check the data generating 

process of the linear combinations implied by the GMM estimates. However, the result 

indicates that there are one MA(O), three MA(l) and one MA( 4) linear combinations. 

, As proved in Schleicher (2003), the maximum order of an SCM cofeature is 'if = N - r -1. In this 

case N = 7 and r = 2 \ so the maximum order of an SCM cofeature is 4. 
"The SF common cycle is a special case ofSCM(O, q) when q = 0 . 
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Table 4.5: GMM Estimates of Cofeature Vectors: ~; = (Is ,-q:>(~'2») 
AUS BEL FRA GER ITA NETH SPA 
1 0 0 0 0 -0.367** -0.391 ** MA(l) 

(0.12) (0.10) 
0 1 0 0 0 -0.262 -0.473** MA(l) 

(0.16) (0.16) 
0 0 1 0 0 0.112 -0.720** MA(l) 

(0.11) (0.11) 
0 0 0 1 0 -0.339** -0.330** MA(4) 

(0_13) (0.13) 
0 0 0 0 1 -0.177 -0.412** MA(O) 

(0.13) (0.09) 

Note: Standard errors in parentheses. 

Schleicher (2003) performs a Monte Carlo experiment to demonstrate that LR tests 

based on full information maximum likelihood (FIML) estimation of the restricted 

VECMs have considerably higher power than the GMM and Tiao-Tsay tests. Therefore, 

the LR test statistics have been calculated by estimating a VECM subject to the cross 

equation restrictions imposed by common cycles. Another advantage ofthis full system 

estimation is that it allows us to compute the trend-cycle decomposition and the forecast 

error variance decomposition. In the following tests, five models were estimated by 

FIML using PcGive, which includes an unrestricted VECM (model 1) and three 

restricted VECMs obtained by imposing the assumptions of two SF, four WF and an 

MF, respectively (models 2 to 4). Granger causality tests suggest that, in the Dutch 

equation, the lagged values of the other countries' output data are jointly insignificant. 

In addition, in the Spanish equation, only the lagged Belgian output data appears 

significant at the 5% level. Therefore, model 5 imposes extra restrictions on the Dutch 

and Spanish equations used in model 2 by assuming that the parameters associated with 

these lagged values are equal to zero. It is worth noting that models 2 to 5 are estimated 

by a two-step procedure. The cointegrating vectors are estimated independently from 

the unrestricted VECM and then included in the simultaneous equations as explanatory 

variables, along with the lagged first differences of the output series. 
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No. Parameters 

Log-likelihood 

AIC 

HQ 

SC 

MZvs_ Ml 

M3 vs. Ml 

M4vs_ Ml 

M4vs. M3 

MS vs. Ml 

MS vs. M2 

Table 4.6: The Likelihood-Ratio Tests 

Model 1 Model 2 Model 3 Model 4 ModelS 

168 
3038.02 
-53.64 

-51.94 

132 
3016.27 
-53.91 
-52.57 

96 
2988.52 
-54.07 
-53.09 

93 
2984.01 
-54.04 
-51.71 

-49.45 -50.61 -51.67 -53.09 

Likelihood Ratio test 

X2(36) - 43.50[0.183] 

X2(72) - 98.99[0.019]* 

X2(75) -108.02[0.007]** 

X'(3) - 9.02[0.029] * 

X' (69) - 90.04[0.045]* 

X' (33) - 46.54 [0.059] 

99 
2993.00 
-54.09 
-53.09 
-51.62 

Notes: Model 1 is the (unrestricted) VECM with two cointegrating vectors; Model 2 is restricted with 
two SF cofeature vectors; Model 3 is restricted with four WF cofeature vectors; Model 4 has a MF 
structure with three SF vectors and one WF vector; Model 5 is obtained by imposing additional 
restrictions on the Dutch and Spanish equations in model 2. 

The full parameter estimates of the reduced forms of the five models discussed above, 

along with the Granger causality test statistics, are reported in Appendix A4 in Tables 

A4.4-A4.8. The log-likelihood and information criteria for these models are presented 

in Table 4.6, providing criteria for model selection. It is worth noting that all the 

restricted models can be tested against the unrestricted VECM. In addition, model 4 

can be tested against model 3, and model 5 can be tested against model 2. However, the 

other pairs of models are not nested, so that the LR test statistics are only calculated for 

the nested models. As the results show, the LR test statistics do not reject the null of 

model 2 against the alternative of model I, and model 5 cannot be rejected against 

model 2 at the 5% level. 

Once the appropriate models are chosen, the trend and cyclical components of each 

output series can be calculated simultaneously from the reduced fonn structure using 

the multivariate BN decomposition. Two sets of decompositions, calculated from 

models 2 and 5, are presented. The cyclical components obtained from these two 

models, along with the recessionary periods identified fj-om the national GDP series 

using the BBQ algorithm (Harding and Pagan, 2000, 2001, 2002), are plotted in Figure 

4.2. It appears that there are more growth cycles than business cycles over the period 

studied. In addition, the profound downturns observed in the growth cycles coincide 
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with the recessions in business cycles. Compared to the cycles obtained from univariate 

BN decompositions, the multivariate extension produces highly persistent cycles with 

large amplitudes. 

4.5.1 Out-of-Sample Forecasts 

The out-of-sample forecasting performance of the restricted models is now compared to 

the (unrestricted) VECM model. This comparison can be used to cross-check whether 

the more parsimonious models obtained by imposing the common cycle restrictions fit 

the data better. It is believed that if the restrictions are placed appropriately, the 

forecasting capability of a model will improve (Hecq et al., 2006; Schleicher, 2007). 

To investigate this assertion, the models were re-estimated for the period 1980Ql to 

2005Q3, with the last eight quarters of the sample used to evaluate forecast accuracy. 

Table 4.7 shows the root-mean-squared errors (RMSEs) for horizons from 1 to 8 

quarters. Three striking features are revealed in Table 4.7. First, the restricted models 

considerably outperform the unrestricted VECM over all forecast horizons for all 

countries. Second, for most countries, except Austria and Spain, restricted VECMs 

with SF assumptions imposed yield smaller RMSEs. Among the countries for which 

this holds, model 2 is preferred for Belgium and France, whilst model 5 is preferred for 

Gennany and Italy. Model 5 is also preferred for the Netherlands over the longer 

forecasting horizon. Finally, the models imposed with WF and MF restrictions are 

preferred for the Austrian and Spanish output data, respectively. This implies a strong 

predictability between the long-run relationship and linear combinations of short-run 

d)~lamics. 
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Table 4.7: out-of-Sample Forecasts: Root-Mean-Squared Errors (10-') 

h=l h=2 h=3 h=4 h=6 h=8 
AUS Model 1 0.327 0.264 0.272 0.234 0.252 0.261 

Model 2 0.309 0.241 0.257 0.228 0.232 0.240 

Model 3 0.249 0.204 0.222 0.169 0.176 0.177 

Model 4 0.258 0.225 0.242 0.193 0.197 0.201 

ModelS 0.283 0.248 0.250 0.191 0.194 0.196 

BEL Model 1 0.247 0.189 0.198 0.217 0.214 0.216 

Model 2 0.228 0.185 0.178 0.198 0.198 0.201 

Model 3 0.272 0.246 0.252 0.249 0.246 0.248 

Model 4 0.207 0.190 0.202 0.204 0.199 0.202 

ModelS 0.236 0.191 0.220 0.215 0.215 0.215 

FRA Model 1 0.308 0.321 0.279 0.272 0.286 0.287 

Model 2 0.289 0.297 0.267 0.26S 0.278 0.274 

Model 3 0.289 0.311 0.302 0.284 0.289 0.280 

Model 4 0.290 0.306 0.298 0.279 0.286 0.278 

ModelS 0.Z66 0.301 0.288 0.270 0.280 0.275 

GER Model 1 0.379 0.362 0.427 0.380 0.361 0.350 

ModelZ 0.402 0.367 0.379 0.366 0.352 0.352 

Model 3 0.362 0.355 0.394 0.401 0.393 0.385 

Model 4 0.329 0.311 0.344 0.343 0.342 0.332 

ModelS 0.304 0.308 0.321 0.308 0.308 0.300 

ITA Model 1 0.412 0.402 0.413 0.407 0.413 0.413 

Model 2 0.394 0.378 0.380 0.378 0.366 0.365 

Model 3 0.324 0.364 0.393 0.416 0.421 0.416 

Model 4 0.321 0.338 0.361 0.374 0.388 0.382 

ModelS 0.306 0.325 0.358 0.367 0.377 0.373 

NETH Model 1 0.518 0.462 0.417 0.456 0.451 0.469 

Model 2 0.506 0.500 0.443 0.504 0.484 0.485 

Model 3 0.396 0.420 0.423 0.460 0.465 0.464 

Model 4 0.399 0.415 0.422 0.456 0.461 0.460 

ModelS 0.420 0.444 0.449 0.448 0.447 0.447 

SPA Model 1 0.313 0.274 0.302 0.343 0.349 0.355 

Model 2 0.296 0.268 0.288 0.334 0.338 0.345 

Model 3 0.216 0.246 0.277 0.291 0.286 0.291 

Model 4 0.212 0.229 0.257 0.275 0.275 0.280 

ModelS 0.245 0.224 0.262 0.284 0.288 0.289 

Note: the numbers in bold are the smallest RMSE of each set of models. 
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Figure 4.2: Multivariate BN Cycles 
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4.5.2 Variance Decomposition 

Decomposing each output series into trend and cyclical components raises the question 

of whether the cyclical innovations explain a significant proportion of the forecast 

errors of output fluctuations. To examine this, the relative importance of permanent and 

transitory shocks in explaining the variance of output is assessed using a forecast error 

variance decomposition. Consider an innovation s, , which is the sum of its permanent 

and transitory components: 

(4.38) 

Since S""d., and Sqd,., are found to be correlated in most cases, it is necessary to 

orthogonalise them. The orthogonalisation procedure proposed by Issler and Vahid 

(2001) was used, in which it is assumed that the two innovations have the structure 

(4.39) 

The variance of &, can be decomposed into two orthogonal components as 

VAR(s,) = VAR(&"',,,d.,) + VAR(s".dc.,) (4.40) 

This procedure is comparable to a Cholesky factorisation and is sensitive to the ordering 

of the components. Here, Ei"'",dJ is placed first in the decomposition, since the 

innovations to productivity are assumed to cause both trend and cycle movements in 

real business cycle models. One-step-ahead innovations for the trends are obtained by 

taking the first differences of the estimated trends. H -step-ahead trend innovations are 

then given by the sum of the one-step-ahead trend innovations. First-quarter cycle 

innovations are the residuals from a regression of the estimated cycles on the variables 

on the right-hand side of the VECM. For longer horizons, H- step-ahead cycle 
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innovations were obtained by shifting the data set backwards. The variance 

decomposition results for models 2 and 5 are presented in Table 4.8, since they 

outperfonn the other models in forecasting, as was shown in section 4.5.1. Each cell in 

Table 4.8 contains two numbers. The first represents the relative importance of a 

trend/cyclical component to the total output variance estimated in model 5. The second 

number (in parentheses) is the corresponding value calculated from model 2. 

Table 4.8: Forecast Error Variance Decomposition 

Forecast 
horizons h=l h=S h=9 h=ll 
(quarters) Trend Cycle Trend Cycle Trend Cycle Trend Cycle 
AUS 0.28 0.72 0.95 0.05 0.98 0.02 0.99 0.01 

(0.29) (0.71) (0.96) (0.04) (0.99) (0.01) (0.99) (0.01) 
BEL 0.43 0.57 0.97 0.03 0.99 0.01 1.00 0.00 

(0.33) (0.67) (0.96) (0.04) (0.99) (0.01) (0.99) (0.00) 
FRA 0.09 0.91 0.92 0.08 0.97 0.03 0.98 0.02 

(0.08) (0.92) (0.91) (0.09) (0.96) (0.04) (0.08) (0.02) 
GER 0.47 0.53 0.96 0.04 0.99 0.01 0.99 0.01 

(0.31) (0.69) (0.94) (0.06) (0.98) (0.02) (0.99) (0.01) 
ITA 0.51 0.49 0.96 0.04 0.99 0.01 0.99 0.01 

(0.42) (0.58) (0.97) (0.03) (0.99) (0.01) (0.99) (0.01) 
NETH 0.62 0.38 0.96 0.04 0.98 0.02 0.99 0.01 

(0.37) (0.63) (0.95) (0.05) (0.98) (0.02) (0.99) (0.01) 
SPA 0.12 0.88 0.94 0.06 0.98 0.02 0.99 0.01 

(0.09) (0.91) (0.94) (0.06) (0.98) (0.02) (0.99) (0.01) 

Notes: the first number in each cell represents the relative importance of trend/cyclical movements to 
the total output variance which is calculated using modelS; the numbers in parentheses are the 
corresponding values calculated from model 2. 

In general, both models indicate that, for short period forecasts, transitory movements 

contribute more to total output variance than pennanent components, whilst over longer 

time periods it is the pennanent components which make the greatest contribution. The 

transitory movements in French and Spanish output are very significant in the first­

quarter forecast. The cyclical fluctuations for these two countries also appear to be 

more persistent than those for other countries. For example, 91 % (92%) of the total 

variance in French output in the first-quarter forecast can be attributed to transitory 

movements, whilst four quarters later 8% (9%) can. IO The results imply that France and 

Spain would benefit greatly fr0111 stabilising their cyclical fluctuations. In contrast, 

pennanent shocks explain a larger proportion of the output variance in the other 

10 The first percentage is that obtained using model 5, the percentage in parentheses is that from using 
model 2. 
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countries, especially Italy and the Netherlands. The cyclical components only account 

for 49% (58%) of the output variance in Italy and 38% (63%) for the Netherlands in the 

first-quarter forecast and their effects disappear quickly. 

The contributions of the cyclical components estimated from model 5 appear smaller 

than those from model 2, especially for the Netherlands. One possible explanation is 

that model 5 imposes additional restrictions on the Dutch equation that reduce the level 

of noise in the Dutch cyclical component. 

4.6 Conclusion 

This chapter has studied the growth cycles of seven European countries since 1980. 

Both univariate and multivariate trend-cycle decomposition methodologies based on 

structural time-series models were applied to extract trend and cycle components fi'om 

real GDP data .. The cyclical components estimated from the two univariate approaches 

vary significantly in cycle period and amplitude. The average cycle correlation between 

the BN cycles appears to be smaller than the corresponding correlation between the 

cycles estimated from the unobserved component model. This confinns the argument in 

Canova (1998) that the use of different trend-cycle decomposition methodologies may 

change the results obtained. 

In the multivariate framework, five SF and three WF common cycles are found among 

the seven output series rather than a unique common cycle. In addition, the inference 

from the canonical tests shows that two codependent cycles can be identified when 

q = 2. This indicates an adjustment delay of two quarters between countries. However, 

GMM results are more disappointing, suggesting the delay will last one year, as an 

MA( 4) data generating structure is found in the linear combination of the first 

differenced data. Overall, the presence of heterogeneous and codependent cycles 

identified in the multivariate approach contradicts the OCA criterion that members of a 

monetary union should share a high degree of growth cycle synchronisation. 

Furthermore, it can clearly be observed from Figure 4.2 that the seven European 

countries were at different stages in their growth cycle even after entering the euro area. 

In more recent years, Gennany, Austria and the Netherlands have been characterised by 
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below trend growth, while Spanish and French economic growth appeared to be 

relatively steady after the global economic downturn which occurred in 2000. These 

variations in economic perfonnance lead to diverging monetary requirements, causing 

difficulties in defining the appropriate timing and stance of a common monetary policy. 

Therefore, the demands that have been made in some countries for promoting economic 

growth, for example Germany, while simultaneously preventing the risk of rising 

inflation, as in Spain, may pose challenges for the ECB and its common monetary 

policy. 
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Appendix A4 

Table M.l: Parameter Estimates for Univariate BN Models 
Beveridge Nelson Decomposition 

Dependent 
Variables L'l EURO L'l AU5 L'l BEL L'l FRA L'l GER L'lITA L'l NETH L'l SPA 

Constant Constant Constant Constant Constant Constant Constant Constant 

0.003** 0.005** 0.005** 0.002** 0.003** 0.003** 0.005** 0.004** 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

L'l EURO_1 L'l AU5_1 L'l BEL_1 L'l FRA_1 L'l GER_1 L'lITA_l L'l NETH_1 L'l SPA_1 

0.205* 0.172* 0.068 0.297** -0.092 0.302** -0.090 -0.199* 

(0.095) (0.091) (0.097) (0.095) (0.094) (0.092) (0.096) (0.092) 

L'l EURO_2 L'l BEL_2 L'l FRA_2 L'l GER_2 L'l NETH_2 L'l SPA_2 

0.187* 0.224* 0.248** 0.014 0.181 * 0.383** 

(0.094) (0.097) (0.092) (0.093) (0.095) (0.085) 

L'l BEL_3 L'l GER_3 L'l5PA_3 

0.055 0.096 0.350** 

(0.095) (0.093) (0.091) 

L'l BEL_ 4 L'l GER_ 4 

-0.213* 0.323** 

(0.093) (0.092) 

log-likelihood 437.182 417.576 398.274 450.759 359.941 417.762 365.175 389.701 

DW 2.032 1.943 1.923 2.039 1.987 2.040 1.917 1.923 

Notes: DW is the Durbin-Watson statistic. Standard errors in parentheses. 
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Table A4.2: Parameter Estimates for Harvey and Trimbur's (2003) decomposition 

Series 

EUflO 

,us 

GER 

,,. 

NETI-I 

SPA 

(111,11) 

(2,2) 

(2,S) 

(3.2) 

(3.3) 

12,2) 

(2,3) 

(3,2) 

(3,3) 

(H) 

(2,3) 

(3,2) 

(3.3) 

(2.2) 

(2,3) 

(3,2) 

(3,3) 

(2,2) 

(2,3) 

(3,~) 

(3,3) 

(2,2) 

(2,3) 

(3,2) 

(3,3) 

(2,2) 

(2,3) 

(3,2) 

(3,3) 

(2,2) 

(2,3) 

(3,2) 

(3,3) 

Restrictions 

erf=O,21r i A,=20 

er:=0.21l"/2.,=20 

a;=0,2Iri.l.,"20 

a;=0,2,Ti.l.,=20 

0"; =0 

17;=0.2Il" i .l.,=20 

er;= ° 
17;=0,21r 'A,~20 

17;= ° 
17;=0 

(T~"0,2J'!"iA,"'20 

(T,~=0,2Jri,{,"20 

(T,~=0,21l"/A,=2.0 

(T,:=0,21r1J.,~O 

a,;~0,21r i.,=20 

a-,;=0,2Iri.t, =20 

er,; = 0, 21r! J.,=lO 

er;=0,21l"1J.,=lO 

a- ,;'" 0,:21</ J., =lO 

a-:"0,21l"/A,=20 

er;=0,2.TI),,=tO 

er,;~0,21l"!f.,=ZO 

er,;=0,2IriJ.,=ZO 

a,;"0.2lrlf.,<=20 

er .;" 0 

a;~0,~Ir;k~20 

er~~0,2lr!).:, =20 

er:~0.2:r(J.,=20 

er~~O,2:r(l.=20 

er~:>0,2IfiJ..;:20 

(J";~0,2:rIi..c=20 

a-,:= 0 

G,: 
o 
o 

o 

o 
o 

o 

C5j 
1.50S 

1.524 

0.029 

0.029 

2.096 

1.740 

0.096 

0,050 

1.835 

l.S27 

0.015 

0.015 

lA9!> 

Ui2& 

o.on 
0.034 

1.772 

1.892 

0.02.3-

0.020 

H05 

1.142 

0.017 

0.017 

3.207 

2.843 

OJl60 

0.061 

2.475 

2.462 

0.062 

0.060 

Unobserved Component$ model 

1.164 

0.£74 

2.108 

0.614 

t.o;m 

15.8"-1 

12.S13 

0,917 

0.9&0 

0.771 

6.250 

2,676 

1.66':} 

O.S£O 

1.941 

0.646 

1.46l 

0.371 

1.851 

O.4()7 

6.432 

3.186 

6.541 

3.024 

2.2.27 

8.072 

1S.62!> 

8.970 

0.798 

0,435 

1.504 

1.305 

4.229 

4.911. 

A.590 

S.23S 

0.739 

o.OlA 

12.539 

9.117 

9.144 

7.932 

9,016 

2.726 

3.OS4 

2.262 

3.283 

P 
0.688 

0.624 

0.742 

0.662 

0.409 

0.314 

0.3'34 

0.624 

0.1'36 

O.G5! 

0.715 

0.620 

0.767 

0.&74 

0.784 

0.&93 

30.1211 0.&15 

30.SW 0.731 

30.223 0.826 

30.!>7S 0.756 

4.tB4 

5.910 

5.037 

0.6115 

0.580 

0.705 

6.203 0.604 

22.349 0.613 

23537 0.345 

1!>AS2 0.516 

22.821 0.436 

16.55<\ 0.730 

16.5.64 0.610 

1£.6S9 0.731. 

15.554 O.GOl 

2;r i It, 
20 

20 

20 

20 

6.2!l7 

20 

8.61)0 

" 
11.0'73: 

12.618 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

6.480 

20 

20 

20 

20 

2P 

20 

" 

R~ 
0.110 

0.107 

0.049 

0,043 

0.066 

O.OSl 

4.341 

4.350 

4.509 

4.523 

5.391 

5.436 

-0.1J32 5.1)96 

-0.236 6.2.31 

0.077 

D.077 

Oms 

Om9 

0.214 

0.217 

0,155 

0.156 

5,944 

5.946 

6.145 

6.125 

3.860 

3,853 

4,023 

4.021 

.0.004 8.100 

.0.006 8.710 

_0.0&5 9.005 

_0,066 9.007 

0.071 

0.069 

0.012 

0.009 

0.069 

0.OS7 

5.322 

5.328 

5.512 

5.523 

8.396 

8.452 

_0.014 8.060 

_0.015 8.808 

0.194 6.630 

0.195 6.628 

0.146 6.859 

0.145 6.860 

log-likelihood OW 

591.518 1.931 

591.280 1.881 

579.453 

579.095 

567.705 

566.850 

554.212 

544.232 

556.980 

556.966 

545.300 

545.634 

604.391 

604.583 

592.070 

592.097 

515,219 

515.165 

503.596 

503.493 

569.159 

569.020 

557.290 

557.064 

519.218 

518.540 

506,494 

506.462 

545.111 

545.135 

533.794 

533.776 

1.911 

1.860 

UI12 

1.876 

1.882 

lA79 

2.011 

2.017 

2.045 

2.022 

1.958 

1,931 

1.972 

1.933 

1.834 

1.826 

1.844 

1.831 

1.957 

1.935 

1.941 

1.912 

1.932 

1.867 

1.932 

1.891 

2.142 

2.149 

2.14S 

2.161 

Notes: (j j is the slope variance; (j i is the cycle variance; (j; is the variance of the irregular term; The 

variance parameters are multiplied by 10 6
; P is the damping factor; 27< / A, is the cycle frequency; 

, Rv is the adjusted r-squared; (J" is standard error of regression; DW is the Durbin-Watson statistic. 
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Table A4.3: Granger-Causality Test 

Dependent '" NETH '" SPA '" AUS '" BEL '" FRA '" GER '" IT A 
variable 
Excluded Chi- Chi- Chi- Chi- Chi- Chi- Chi-
Variables square square square square square square square 

'" AUS 1.523 5.893 3.673 11.087' 2.929 2.722 

(0.677) (0.117) (0.299) (0.011) (0.403) (0.437) 

'" BEL 1.960 8.067' 8.176' 14.906** 6.377 7.306 

(0.581) (0.045) (0.043) (0.002) (0.095) (0.063) 

'" FRA 1.800 0.564 5.422 3.297 3.125 0.998 

(0.615) (0.905) (0.143) (0.348) (0.373) (0.802) 

'" GER 3.725 2.402 11.088* 1.279 3.347 10.660* 
(0.293) (0.493) (0.011) (0.734) (0.341) (0.014) 

'" IT A 1.051 4.385 8.495* 7.112 2.960 9.432' 

(0.789) (0.223) (0.037) (0.068) (0.398) (0.024) 

'" NETH 4.667 21.040*' 2.298 2.072 5.288 6.287 

(0.198) (0.000) (0.513) (0.558) (0.152) (0.099) 

'" SPA 1.054 20.641 ** 4.966 2.839 8.656' 2.671 

(0.788) (0.000) (0.174) (0.417) (0.034) (0.445) 

All Variables 16.792 24.101 74.108** 26.993 54.584** 43.280** 35.146** 
(0.538) (0.152) (0.000) (0.079) (0.000) (0.001) (0.009) 

Note: p-values in parentheses. 
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Table A4.4: Reduced form of Model 1 
Coinfegrating Vectors 

AUL' BEL_' FRA_' GER_' ITA_' NETH_ , SPA_' Constant 
I 0 1.555 -0.289 -0.311 -0.829 -0.739 -4.961 
0 2.651 0.427 -1.240 -1.347 -0.928 -8.674 

Lagged De~endenf Variable 
Variables t:, AUS t:,BEL t:, FRA t:, GER t:, ITA t:, NETH t:, SPA 

Constant 0.002" 0.002" 0.001 0.000 0.001 0.005** 0.005" 
(0.001) (0.001) (0.001 ) (0.002) (0.001) (0.002) (0.001) 

t:, AUS_' 0.022 0.074 0.267** 0.300 -0.217 0.112 0.298 
(0.114) (0.146) (0.082) (0.210) (0.132) (0.203) (0.161 ) 

t:, AUS_2 -OA11** -0.106 -0.030 -0.154 -0.013 -0.073 -0.191 
(0.103) (0.132) (0.074) (0.190) (0.120) (0.183) (0.145) 

t:, AUS_3 -0.138 -0.187 0.092 0.079 -0.099 -0.141 0.030 
(0.108) (0.138) (0.077) (0.199) (0.125) (0.191) (0.152) 

t:, BEL_' -0.041 -0.188 0.250** 0.033 0.323" 0.036 0.350" 
(0.104) (0.133) (0.075) (0.191) (0.120) (0.184) (0.146) 

t:, BEL_2 -0.283" 0.038 0.233** -0.264 0.103 -0.078 0.102 
(0.108) (0.138) (0.078) (0.199) (0.125) (0.191) (0.152) 

t:, BEL_3 -0.010 0.095 0.089 0.279 0.062 0.204 0.249 
(0.111) (0.143) (0.080) (0.205) (0.129) (0.197) (0.157) 

t:, FRA_' 0.265 0.237 -0.099 -0.315 -0.007 0.183 0.131 
(0.156) (0.200) (0.112) (0.287) (0.181) (0.276) (0.219) 

t:, FRA_2 0.114 -0.223 -0.021 -0.058 0.100 -0.285 -0.076 
(0.146) (0.186) (0.105) (0.268) (0.169) (0.258) (0.205) 

t:, FRA_3 0.151 -0.100 0.222" -0.299 0.118 -0.052 0.029 
(0.138) (0.176) (0.099) (0.254) (0.160) (0.244) (0.194) 

t:, GER_' -0.221" -0.034 -0.105' -0.338" 0.089 0.184 0.073 
(0.081) (0.104) (0.058) (0.149) (0.094) (0.144) (0.114) 

t:, GER_2 0.023 0.003 -0.030 -0.212 0.223" 0.193 0.066 
(0.074) (0.095) (0.053) (0.137) (0.086) (0.132) (0.104) 

t:, GER_3 0.010 0.077 -0.018 -0.107 0.199" 0.181 0.139 
(0.064) (0.083) (0.046) (0.119) (0.075) (0.114) (0.091) 

t:, ITA_' 0.145 0.099 0.018 0.595** 0.075 0.128 -0.264 
(0.108) (0.138) (0.077) (0.198) (0.125) (0.191) (0.152) 

t:, ITA_2 -0.033 0.127 0.035 -0.020 -0.153 0.046 0.154 
(0.108) (0.139) (0.078) (0.199) (0.126) (0.192) (0.152) 

t:, ITA_3 -0.247'" -0.310" -0.120 0.160 -0.122 0.142 -0.083 
(0.101) (0.130) (0.073) (0.187) (0.118) (0.180) (0.143) 

t:, LNETH_' 0.285** 0.103 -0.029 0.112 0.045 -0.285" -0.136 
(0.067) (0.086) (0.048) (0.123) (0.078) (0.119) (0.094) 

t:, NETH_2 0.222" 0.123 -0.071 0.283* 0.045 -0.089 -0.175" 
(0.074) (0.095) (0.053) (0.137) (0.086) (0.132) (0.105) 

t:, NETH_3 0.053 0.OS3 -0.008 0.010 -0.153* -0.183 -O.ISO" 
(0.071 ) (0.091) (0.051) (0.131) (0.082) (0.126) (0.100) 

t:, SPA_' 0.194" 0.110 0.007 0.423" 0.121 0.118 -0.378** 
(0.081) (0.104) (0.058) (0.149) (0.094) (0.144) (0.114) 

t:, SPA_2 0.359** 0.242" 0.093 0.266 -0.050 0.036 0.250" 
(0.086) (0.110) (0.062) (0.158) (0.099) (0.152) (0.121) 

t:, SPA_3 -0.013 0.079 0.003 -0.041 -0.051 -0.100 0.158 
10.082) 10.105) 10.059) 10.152) 10.096) 10 .146) 10.116) 

Error Correction Terms 
CointEql -0.214** 0.028 -0.031 -0.175 0.124 0.441 ** 0.369** 

(0.072) (0.092) (0.052) (0.133) (0.084) (0.128) (0.101) 
CointEq2 0.197''''' -0.032 -0.045 0.158 -0.098 -0.199" -0.266** 

10 .053) 10 .068) (0.038) (0.097) 10 .0611 10 .094 ) 10.074) 
Log~likelihood and Criteria 

No. Parameters 168 AIC -53.6452 SC -49.449 
Log-Likelihood 3038.017 HQ -51.9439 FPE -9.827 e-025 
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Table A4.S: Reduced form of Model 2 

Lagged 
VariabJes 

Constant 

CointEql 

CointEq2 

,1 AUS 

0.002* 

(0.001) 

0.026 

(0.104) 

-0.392"'* 

(0.095) 

-0.111 

(0.098) 

-0.033 

(0.097) 

-0.304** 

(0.099) 

0.020 

(0.101) 

0.203 

(0.141) 

0.124 

(0.132) 

0.063 

(0.125) 

-0.232"'* 

(0.074) 

-0.012 

(0.068) 

-0.002 

(0.059) 

0.160 

(0.099) 

-0.028 

(0.098) 

-0.206'" 

(0.092) 

0.292** 
(0.062) 

0.238** 

(0.069) 

0.046 

(0.065) 

0.170* 

(0.076) 

0.360** 

(0.079) 

0.013 

(0.074) 

FRA_l 

1.555 

2.651 

,1 BEL 

0.002* 

(0.001) 

0.191 

(0.133) 

-0.087 

(0.121) 

-0.116 

(0.125) 

-0.216 

(0.125) 

-0.006 

(0.127) 

0.146 

(0.128) 

0.125 

(0.181) 

-0.257 

(0.169) 

-0.195 

(0.160) 

-0.096 

(0.095) 

-0.092 

(0.087) 

0.009 

(0.075) 

0.179 

(0.127) 

0.155 

(0.125) 

-0.198 

(0.118) 

0.069 

(0.080) 

0.132 

(0.088) 

0.099 

(0.083) 

0.132 

(0.097) 

0.258** 

(0.102) 

0.081 

(O.095) 

-0.212*'" -0.001 

(0.068) (0.088) 
0.192** -0.007 

(0.050) (0.064) 

Cointegrating Vectors 

GER_l ITA_l 
-0.289 -0.311 

0.427 -1.240 

NETH_l 
-0.829 

-1.347 

Dependent Variables 

,1 FRA ,1 GER ,1 ITA 

0.001 -0.001 0.001 

(0.001) (0.002) (0.001) 

0.261 ** 
(0.070) 

-0.011 

(0.064) 

0.114 

(0.066) 

0.262** 

(0.068) 

0.215** 

(0.067) 

0.116 

(0.067) 

-0.155 

(0.095) 

-0.008 

(0.088) 

0.136 

(0.084) 

-0.111 '" 

(0.051) 

-0.059 

(0.046) 

-0.024 

(0.040) 

0.026 

(0.067) 

0.037 

(0.066) 

-0.085 

(0.062) 

-0.018 

(0.043) 

-0.054 

(0.047) 

-0.016 

(0.044) 

-0.021 

(0.053) 

0.093 

(0.055) 

0.031 

(0.050) 

-0.010 

(0.161) 

-0.203 

(0.150) 

-0.108 

(0.147) 

0.108 

(0.166) 

-0.149 

(0.156) 

0.146 

(0.149) 

-0.019 

(0.213) 

0.031 

(0.198) 

-0.048 

(0.191) 

-0.174 

(0.119) 

0.036 

(0.105) 

0.073 

(0.091) 

0.384* 

(0.157) 

-0.094 

(0.146) 

-0.134 

(0.141) 

0.201 '" 

(0.105) 

0.261 "'* 
(0.113) 

-0.031 

(0.104) 

0.364* 

(0.129) 

0.223 

(0.131) 

-0.045 

(0.110) 

Error Correction Terms 

-0.02.6 

(0.048) 
-0.052 
(0.035) 

-0.100 

(0.122) 
0.092 

(0.086) 

-0.030 

(0.109) 

0.007 

(0.100) 

0.002 

(0.101) 

0.274** 

(0.108) 

0.044 

(0.105) 

0.128 

(0.103) 

-0.156 

(0.146) 

0.041 

(0.136) 

0.010 

(0.130) 

-0.005 

(0.079) 

0.090 

(0.071) 

0.095 

(0.062) 

0.196 

(0.105) 

-0.110 

(0.101) 

0.036 

(0.096) 

-0.012 

(0.068) 

0.050 

(0.074) 

-0.124 

(0.070) 

0.170* 

(0.084) 

-0.024 

(0.086) 

-0.062 

(0.076) 

0.078 

(0.078) 

-0.056 

(0.056) 

Log-likelihood and Criteria 

No. Parameters 132 AIC -53.911 

Loe-Likelihood 3016.268 HQ -52.575 
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SPA_l 
-0.739 

-0.928 

Constant 

-4.961 

-8.674 

,1 NETH ,1 SPA 

a.OOG*'" 0.005** 

(0.002) (0.001) 

-0.092 

(0.154) 

-0.031 

(0.143) 

-0.166 

(0.141) 

0.121 

(0.158) 

-0.079 

(0.149) 

0.227 

(0.143) 

0.147 

(0.204) 

-0.182 

(0.190) 

-0.228 

(0.183) 

0.257* 

(0.113) 

0.227* 

(0.101) 

0.263** 

(0.087) 

0.037 

(0.150) 

0.010 

(0.140) 

0.099 

(0.135) 

-0.195* 

(0.099) 

-0.037 

(0.107) 

-0.239* 

(0.099) 

-0.021 

(0.122) 

0.009 

(0.125) 

0.002 

(0.105) 

0.348* 

(0.150) 

-0.209 

(0.136) 

0.026 

(0.141) 

0.326* 

(0.138) 

0.109 

(0.142) 

0.233 

(0.145) 

0.161 

(0.204) 

-0.105 

(0.190) 

0.104 

(0.180) 

0.058 

(0.107) 

0.069 

(0.097) 

0.123 

(0.085) 

-0.246 

(0.142) 

0.162 

(0.141) 

-0.087 

(0.133) 

-0.161 '" 

(0.089) 

-0.194* 

(0.098) 

-0.164 

(0.093) 

-0.335** 

(0.108) 

0.257* 

(0.113) 

0.124 

(0.107) 

0.502"'* 0.353"'* 

(0.115) (0.097) 

-0.264** -0.248** 

(0.081) (0.070) 

se 
FPE 

-50.614 

-3.12ge-024 



Table A4.6: Reduced form of Model 3 

Lagged 
Variables 

Constant 

CointEql 

CointEq2 

'" AUS 
0.002* 

(0.001) 

0.055 

(0.092) 

-0.311 ** 
(0.081) 

-0.031 

(0.081) 

-0.006 

(0.088) 

-0.217* 

(0.086) 

-0.026 

(0.084) 

0.065 

(0.117) 

0.173 

(0.110) 

0.125 

(0.104) 

-0.296** 

(0.066) 

-0.077 

(0.059) 

-0.076 

(0.051) 

0.191 '" 

(0.082) 

-0.055 

(0.083) 

-0.194* 

(0.079) 

D.312*'" 

(0.058) 

0.234* 

(0.061) 

0.096 

(0.058) 

0.210** 

(0.065) 

0.294** 

(0.070) 

-0.008 

(0.062) 

-0.270** 

(0.066) 

0.231 "'* 
(0.048) 

No. Parameters 96 
Log-likelihood 2988.519 

FRA_l 
1.555 

2.651 

'" BEL 
0.003** 

(0.001) 

0.182* 

(0.085) 

-0.096 

(0.065) 

0.032 

(0.053) 

-0.068 

(0.096) 

0.016 

(0.077) 

-0.003 

(0.052) 

0.028 

(0.073) 

-0.017 

(0.070) 

0.060 

(0.067) 

-0.155* 

(0.065) 

-0.120* 

(0.053) 

-0.092* 

(0.043) 

0.012 

(0.058) 

0.078 

(0.058) 

-0.133* 

(0.062) 

0.097 

(0.064) 

0.041 

(0.059) 

0.108* 

(0.056) 

0.003 

(0.057) 

0.166* 

(0.068) 

0.048 

(0.039) 

Co integrating Vectors 

GER_1 ITA_l 

~O.289 -0.311 

0.427 -1.240 

NETH_l 

-0.829 

-1.347 

Dependent Variables 

'" FRA '" GER '" ITA 
0.002 '" 

(0.001) 

0.268** 

(0.064) 

-0.057 

(0.056) 

0.126* 

(0.056) 

0.298** 

(0.062) 

0.189** 

(0.060) 

0.100* 

(0.057) 

-0.114 

(0.081) 

0.033 

(0.075) 

0.189* 

(0.072) 

-0.100* 

(0.046) 

-0.042 

(0.041) 

-0.022 

(0.035) 

-0.049 

(0.057) 

0.038 

(0.057) 

-0.075 

(0.055) 

-0.028 

(0.041) 

-O.Oa9*'" 

(0.042) 

-0.037 

(0.040) 

-0.092* 

(0.045) 

0.107* 

(0.049) 

0.036 

(0.043) 

0.000 

(0.002) 

-0.009 

(0.134) 

-0.297 

(0.109) 

-0.015 

(0.099) 

0.196 

(0.142) 

-0.194 

(0.124) 

0.016 

(0.100) 

-0.002 

(0.141) 

0.240 

(0.133) 

0.169 

(0.127) 

-0.235 

(0.100) 

0.016 

(0.084) 

-0.003 

(0.070) 

0.195 

(0.104) 

-0.132 

(0.104) 

-0.125 

(0.105) 

0.260* 

(0.094) 

0.198* 

(0.091) 

-0.015 

(0.086) 

0.208* 

(0.092) 

0.224* 

(0.105) 

-0.045 

(0.075) 

0.002* 

(0.001) 

-0.078 

(0.096) 

-0.054 

(0.081) 

0.028 

(0.079) 

0.367** 

(0.096) 

0.000 

(0.089) 

0.073 

(0.081) 

-0.108 

(0.113) 

0.159 

(0.106) 

0.120 

(0.101) 

0.027 

(0.070) 

0.139* 

(0.061) 

0.105* 

(0.052) 

0.049 

(0.081) 

-0.143 

(0.081) 

0.068 

(0.079) 

-0.017 

(0.063) 

-0.012 

(0.064) 

-0.172* 

(0.061) 

0.041 

(0.066) 

-0.042 

(0.074) 

-0.063 

(0.060) 

Error Correction Terms 

0.008 
(0.083) 

-0.025 

(0.058) 

-0.005 

(0.047) 

-0.063 
(0.034) 

-0.028 

(0.117) 

0.055 
(0.083) 

log-likelihood and Criteria 

Ale -54.066 
HQ -53.094 
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0.123 
(0.076) 

-0.099 

(0.054) 

SPA_l 
-0.739 

-0.928 

Ll NETH 

0.006** 

(0.001) 

-0.034 

(0.106) 

0.069 

(0.079) 

0.040 

(0.059) 

0.239 

(0.124) 

0.093 

(0.096) 

0.060 

(0.056) 

-0.094 

(0.079) 

0.034 

(0.076) 

0.045 

(0.074) 

0.104 

(0.082) 

0.099 

(0.065) 

0.082 

(0.052) 

-0.042 

(0.067) 

-0.057 

(0.066) 

0.095 

(0.074) 

-0.118 

(0.083) 

-0.095 

(0.074) 

-0.132* 

(0.070) 

-0.058 

(0.071) 

-0.112 

(0.086) 

-0.028 

(0.043) 

0.422** 

(0.108) 

-0.198* 
(0.077) 

se 
FPE 

Constant 
-4.961 

-8.674 

Ll SPA 

0.004** 

(0.001) 

0.361 ** 

(0.102) 

-0.007 

(0.081) 

0.170* 

(0.072) 

0.343* 

(0.111) 

0.296* 

(0.094) 

0.128 

(0.072) 

-0.148 

(0.101) 

-0.015 

(0.095) 

0.210* 

(0.091) 

-0.081 

(0.077) 

-0.063 

(0.064) 

-0.031 

(0.052) 

-0.112 

(0.076) 

0.085 

(0.076) 

-0.074 

(0.078) 

-0.096 

(0.074) 

-0.164* 

(0.069) 

-0.041 

(0.066) 

-0.171 * 

(0.069) 

0.093 

(0.080) 

0.060 
(0.054) 

0.235* 

(0.093) 

-0.182** 

(0.066) 

-51.668 
1.015e-023 



Table A4.7: Reduced form of Model 4 
COintegrating Vectors 

AUS_l BEl_l FRA_l GER_l ITA_l NETH_l SPA_l Constant 
I 0 1.555 -0.289 -0.311 -0.829 -0.739 -4.961 
0 2.651 0.427 -1.240 -1.347 -0.928 -8.674 

lagged Dependent Variables 
Variables ;:,. AUS ;:,. BEL ;:,. FRA ;:,. GER ;:,. ITA ;:,. NETH ;:,. SPA 
Constant 0.002* 0.003** 0.002' 0.000 0.002* 0.006** 0.004** 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
;:,. AUS_l 0.043 0.245** 0.274** 0.067 -0.025 -0.046 0.346** 

(0.092) (0.084) (0.063) (0.126) (0.091) (0.102) (0.098) 
;:,. AUS_2 -0.319** -0.075 -0.050 -0.283* -0.045 0.064 -0.001 

(0.081) (0.069) (0.056) (0.106) (0.079) (0.079) (0.080) 
;:,. AUS_3 -0.035 0.056 0.127* 0.018 0.052 0.034 0.162* 

(0.082) (0.058) (0.057) (0.094) (0.075) (0.057) (0.070) 
;:,. BEl_l -0.010 -0.045 0.296** 0.232 0.391 0.230 0.335** 

(0.089) (0.098) (0.062) (0.141) (0.095) (0.124) (0.110) 
;:,. BEl_2 -0.231* 0.078 0.198"'* -0.129 0.043 0.079 0.290** 

(0.086) (0.078) (0.060) (0.117) (0.085) (0.095) (0.091) 
;:,. BEl_3 -0.033 0.018 0.106' 0.032 0.083 0.054 0.132* 

(0.084) (0.059) (0.058) (0.096) (0.077) (0.056) (0.070) 
;:,. FRA_l 0.072 0.005 -0.120 -0.021 -0.120 -0.088 -0.152 

(0.118) (0.082) (0.082) (0.135) (0.108) (0.079) (0.099) 
;:,. FRA_2 0.181 -0.046 0.024 0.219 0.146 0.040 -0.019 

(0.111) (0.079) (0.076) (0.128) (0.102) (0.077) (0.094) 
;:,. FRA_3 0.129 0.068 0.180' 0.201 0.143 0.042 0.190* 

(0.105) (0.074) (0.072) (0.121) (0.097) (0.072) (0.089) 
;:,. GER_l -0.296** -0.159* -0.101 '" -0.240* 0.023 0.104 -0.079 

(0.067) (0.067) (0.047) (0.099) (0.069) (0.082) (0.076) 
;:,. GER_2 -0.072 -0.141 • -0.047 -0.004 0.125 0.102 -0.061 

(0.060) (0.055) (0.042) (0.083) (0.060) (0.066) (0.063) 
;:,. GER_3 -0.075 -0.101* -0.022 -0.017 0.095 0.082 -0.025 

(0.051 ) (0.045) (0.035) (0.068) (0.050) (0.052) (0.052) 
;:,. ITA_l 0.191* -0.009 -0.045 0.154 0.020 -0.038 -0.095 

(0.082) (0.061) (0.057) (0.098) (0.077) (0.064) (0.073) 
;:"ITA~ -0.061 0.107 0.043 -0.101 -0.121 -0.062 0.080 

(0.083) (0.063) (0.057) (0.100) (0.078) (0.066) (0.075) 
;:,. ITA_3 -0.191 * -0.146* -0.079 -0.135 0.061 0.097 -0.074 

(0.079) (0.066) (0.055) (0.102) (0.077) (0.074) (0.077) 
;:,. NETH_l 0.317** 0.072 -0.029 0.228* -0.039 -0.112 -0.090 

(0.058) (0.064) (0,040) (0.093) (0.062) (0.082) (0.073) 
;:,. NETH_2 0.238** 0.011 -0.088* 0.153 -0.043 -0.088 -0.150* 

(0.061) (0.058) (0.042) (0.086) (0.061) (0.072) (0.067) 
;:,. NETH_3 0.095 0.113* -0.034 -0.013 -0.170** -0.131 * -0.041 

(0.058) (0.058) (0.041) (0.086) (0.060) (0.071) (0.066) 
;:,. SPA_l 0.214** -0.030 -0.091 * 0.157* 0.005 -0.051 -0.156* 

(0.064) (0.057) (0.045) (0.086) (0.063) (0.067) (0.066) 
;:,. SPA_2 0.293** 0.173* 0.108* 0.233* -0.036 -0.112 0.090 

(0.070) (0.071) (0.049) (0.104) (0.073) (0.086) (0.080) 
;:,. SPA_3 -0.012 0.066 0.040 -0.028 -0.051 -0.031 0.060 

(0.062) (0.044) (0.043) (0.072) (0.057) (0.042) (0.053) 
Error Correction Terms 

CointEql -0.257** -0.045 -0.012 -0.085 0.085 0.437** 0.240* 
(0.066) (0.080) (0.046) (0.113) (0.073) (0.106) (0.091) 

CointEq2 0.220** 0.019 -0.058 0.103 -0.067 -0.212** -0.186** 
10.0471 10.0551 (0.033) 10.0781 [0.051) 10 .0741 (0.0631 

log-likelihood and Criteria 
No. Parameters 93 AIC -54.038 SC -51.7145 
loo-Likelihood 2984.012 HQ -53.096 FPE 3.40E-23 
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Table A4.8: Reduced form of Model 5 

Cointegroting Vectors 

AUS_1 BEl_1 FRA 1 GER_1 ITA _1 N ETH 1 SPA_1 Constant 
1 0 1.555 -0.289 -0.311 -0.829 -0.739 -4.961 

0 2.651 0.427 -1.240 -1.347 -0.928 -8.674 

Lagged De~endent Variables 

Variables t:, AUS t:, BEL t:, FRA t:, GER t:, ITA t:, N ETH t:, SPA 

Constant 0.002' 0.003' 0.001' 0.000 0.002' 0.007** 0.004** 
(O.OOI ) (O.OOI) (0.001) (0.002) (0.001) (0.001) (O.OOI) 

!!> A US_1 -0.026 0.101 0.309** 0.177 -0.096 

(0.089 ) (0.097) (0.066) (0.144) (0.096) 
t:, A US_2 ·0.329*'" -0.083 -0.019 -0.298* -0.028 

(0.079) (O.072 ) (O.057) (O.109) (0.073) 
!!>AUS_3 -0.086 -0.049 0.159' 0.062 0.034 

(0.082) (0.070 ) (0.059) (0.108) (O.071) 
t:, B EL_1 -0.091 -0.176 0.252** 0.144 O.356*'" 0.227* 

(O.085) (0.101) (0.061 ) (O.140) (0.093) (0.101 ) 
t:, B EL_2 -0.292* -0.010 0.210** -0.133 0.030 0.133 

(0.087) (0.091 ) (O.061) (0.121) (0.082) (O.101) 
t:, B EL_3 -0.051 -0.011 0.080 0.009 0.049 0.060 

(0.088) (0.084) (0.060) (0.100) (0.072) (0.099) 
!!> FRA_1 0.131 0.124 -0.171 '" -0.058 -0.098 

(0.119) (0.099 ) (0.085) (O.152) (0.100) 
t:, F RA_2 0.160 -0.094 0.018 0.205 0.158 

(O.III) (O.o89) (0.079) (0.137) (O.090) 
t:,FRA_3 0.058 -0.063 0.187' 0.227' 0.101 

(0.105) (O.o88) (0.075) (0.134) (0.089) 
t:, G ER_1 -0.290** -0.131 .. -0.150** -0.344** 0.027 

(0.063) (0.069) (0.047) (O.104) (0.068) 
t:, G ER_2 -0.076 -0.134' -0.102' -0.100 0.109' 

(0.058) (0.057) (0.042) (0.086) (0.056) 
t:, G ER_3 -0.083* -0.101 '" -0.083* -0.105 0.073 

(0.050) (0.047 ) (O.036) (0.072) (0.047) 
!!> IT A_ 1 0.232* 0.058 0.003 0.202* 0.020 

(0.082) (O.067) (0.059) (O.104) (0.068) 
t:, IT A_2 -0.063 0.103 0.044 -0.067 -0.129' 

(O.083) (0.068) (0.059) (O.105) (0.069) 
t:, ITA_3 -0.177* -0.131 '" -0.053 -0.159 0.074 

(0.078) (0.067) (0.056) (0.103) (O.067) 
!!>NETH_1 0.333** 0.130' -0.025 0.184 0.020 -0.138 

(0.054) (0.063 ) (0.041) (0.101) (0.062) (0.082) 
!!>NETH_2 O.295*" 0.100* -0.074* 0.207* -0.023 0.047 

(0.059) (0.061) (0.043) (O.IOI) (0.062) (0.080) 
!!> N ETH_3 0.128* 0.168* 0.016 0.073 -0.136' 0.007 

(0.056) (O.057) (0.D40) (0.096) (O.058) (O.075) 

t:,SPA_1 0.199' -0.082 -0.060 0.217* -0.062 -0.265' 

(0.067) (0.076) (0.047) (0.099) (O.068) (O.089) 
!!>SPA_2 O.345*" 0.274** 0.104' 0.273* -0.004 0.199' 

(O.070) 10.081) 10.050) (O.IIO) 10.074) 10.088) 
!!> SPA_3 0.039 0.179* 0.039 -0.040 O.OlS 0.238* 

(O.o67) (O.071) (O.046) (O.090) (0.063) (O.085) 
Error Correction Terms 

CointEq1 -0.270"'"- -0.052 -0.061 -0.185 O.oSO 0.312** 0.276** 
(0.062) (O.O77) (0.045) (O.114) (0.072) (0.OS3) (0.066) 

CointEq2 0.236** 0.029 -0.025 0.171' -0.066 -0.116' -0.189** 

10.0451 10.0541 10.032) 10 .0791 10.050) 10 .0531 10.0451 
log-likelihood and Criteria 

No. Parameters 99 AIC -54.093 SC -51.620 
Log-likelihood 2992.999 HQ -53.091 FPE 1.302e-023 
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Chapter 5 - Analysing the Euro Area Output Gap 

within a State-Space Framework 

5.1 Introduction 

In the previous chapter, the multivariate BN decomposition, and two univariate trend­

cycle decomposition methodologies, were used to extract the cyclical component of 

GDP for each country under analysis. This chapter continues to analyse growth cycles 

by investigating three topics concerning the euro area output gap by utilising the 

multivariate unobserved-component (UC) model, which incorporates a statistical output 

decomposition along with macroeconomic models such as the Phillips curve and 

Okun's law. 

A fundamental objective of monetary and fiscal policy is to dampen economic 

fluctuations by keeping output and unemployment close to their natural rates. To do 

this, economists need to identify accurately the unobserved features of an economy, 

such as potential output (trend output), the output gap (growth cycle) and the Non­

Accelerating Inflation Rate of Unemployment (the NAIRU), from observables such as 

real GDP and the unemployment rate. Potential output is the maximum level of output 

that the economy can produce at a stable inflation rate, which should be accompanied 

by an unemployment rate that is consistent with the NAIRU. Deviations in output from 

this potential are defined as the output gap, which is usually used as an indicator of 

inflationary pressures. When the output gap is positive, output is above its potential, the 

inflation rate starts rising and tighter monetary policy is needed to curb demand and 

inflationary pressures. Conversely, when the output gap is negative, the inflation rate is 

below expectations and expansionary monetary policies are required to stimulate 

economic growth. Moreover, from a fiscal policy perspective, by knowing the output 

gap, the cyclical adjusted budget deficit can be calculated. This is important as it 

provides a measure ofthe health of the underlying public finances. 
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In short, the output gap plays a central role in detennining the stance of monetary and 

fiscal policies. A macroeconomic policy based on accurate output gap estimates can 

help to mitigate the adverse effects associated with recessions and below trend growth, 

and provide sustainable economic growth. Conversely, basing economic policy on 

unreliable output gap estimates can damage the economy. For example, the surge in 

inflation during the 1970s was due in part to monetary policy underestimating the size 

of the output gap. 

In the euro area, the European Central Bank (ECB) implements a two-pillar monetary 

policy strategy to maintain price stability. Over the medium to long run, the objective is 

for monetary growth to match the euro area's potential output growth. In the short run, 

the output gap, along with unit labour costs, exchange rates and asset prices, are used to 

indicate inflationary pressures. Output gap estimates are also used to calculate the 

cyclical adjusted budget deficit for member states to ensure that they achieve a medium 

tenn budget balance as defined in the Stability and Growth Pact (SGP). Finally, the 

NAIRU indicates the degree to which labour market refonns should be undertaken. 

Three aspects of the euro area output gap are investigated in this chapter. First, the 

reliability of output gap estimates obtained from various muItivariate UC models is 

assessed. Second, the degree of business cycle moderation in the euro area is analysed. 

Third, the effectiveness of monetary policy transmission through the interest rate 

channel is examined. The results show that changes in real interest rates have a 

significant impact on the euro area output gap in the run-up to EMU and thereafter. 

The rest of the chapter is organised as follows. Section 5.2 presents a brief survey of 

frequently used trend-cycle decomposition methodologies, along with the literature on 

assessing the reliability of output gap estimates. Section 5.3 presents bivariate and 

trivariate models for estimating the output gap, core inflation and the NAIRU. The 

reliability of the output gap estimates obtained from these models is assessed in section 

5.4. In section 5.5, business cycle moderation is studied by allowing for time-varying 

variances in the models' disturbances. Section 5.6 investigates the effectiveness of the 

interest rate channel for the aggregate euro area by examining the response of output 

gap estimates to changes in real interest rates. Finally, section 5.7 concludes. 
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5.2 Literature reviews 

Potential output, the output gap and the NAIRU are unobservable quantities that need to 

be estimated from observed data. Many procedures have been proposed to estimate 

these unobservable features, and these can broadly be divided into three groups. The 

first group relies on purely statistical specifications, such as the Beveridge-Nelson 

(198\) decomposition, Harvey and Jaeger's (1993) UC model, the Hodrick-Prescott 

(1997) filter, and so on. These models simply 'let the data speak' and do not include 

potentially useful information about the supply side of the economy and business cycle 

information contained in macroeconomic variables other than aggregate output. The 

second group employs the production function approach (PFA), which has been widely 

used by international institutions, such as the OECD (2001), the International Monetary 

Fund (de Masi, 1997) and the European Commission (McMorrow and Roeger, 2001). 

Unlike the first group of univariate statistical approaches, the PF A is a multivariate 

method that obtains potential output from the levels of its structural determinates, such 

as productivity and factor inputs. A potential advantage of the PFA approach over the 

first group of statistical approaches is that it utilises a broad range of economic data. 

The third group of techniques incorporate a statistical output decomposition along with 

macroeconomic relations, including the Phillips curve, Okun's law, and other indicators 

such as output capacity utilisation and factor inputs. The method used in this chapter 

belongs to the third group. 

Various UC specifications have been used by the third group. These models allow the 

rich dynamic interactions that occur between the observed and unobserved features of 

an economy to be modelled in specific ways according to the objectives of the research. 

An early example is the UC model proposed by Clark (1989), who estimated a bivariate 

model of US output and unemployment based on Okun's law. Subsequently, Kuttner's 

(1994) bivariate specification combined Watson's (1986) output decomposition with the 

Phillips curve to relate changes in inflation to the output gap. A trivariate model of 

output, inflation and unemployment was proposed by Ape! and Jansson (1999) to 

systematically estimate the NAIRU and potential output for the UK, US and Canada. 

Riinstler (2002) extended Kuttner's (1994) bivariate model by including capacity 

utilisation and factor inputs to estimate the euro area output gap. A recent example of 

this approach is given by Proietti (2008), who estimated a multivariate model of the US 
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economy using mixed frequency data including quarterly GDP and monthly industrial 

production, unemployment and CPI inflation. 

All the models discussed above contain an element of measurement error. As such, it is 

important to assess the degree of uncertainty surrounding estimates of the output gap. 

The reliability of output gap estimates has been discussed in detail from both policy and 

academic standpoints, as it has significant implications for defining optimal monetary 

policy (Orphanides and van Norden, 1999; Orphanides, 2001; Camba-Mendez and 

Rodriguez-Palenzuela, 2001; Riinstler, 2002; Proietti et al., 2007). Orphanides and van 

Norden (1999) highlight the disadvantages of basing monetary policy on real-time 

estimates of the output gap. These include the uncertainty surrounding these estimates 

and their susceptibility to future revisions. They propose a minimum requirement for 

assessing the reliability of the output gap, that initial estimates should not be 

significantly affected by subsequent statistical revisions caused by the arrival of 

additional information at a later date. In their study, four univariate trend-cycle 

decomposition" models are examined. l Four output gap estimates are obtained from 

each model, including real-time, quasi-real, quasi-final and final estimates. By doing so, 

they successfully identify the extent to which revisions in the output gap estimates are 

caused by data revisions, statistical revisions and model uncertainty. They conclude 

that statistical revisions rather than data revisions appear to be the primary source of 

changes to estimates. Given this conclusion, Camba-Mendez and Rodriguez-PalenzueJa 

(2001) assess the statistical reliability of the output gap estimates according to three 

criteria: the consistency of the initial estimates with their subsequent revisions, the 

output gap estimates' ability to forecast future inflation, and the positive correlation 

between gap estimates and capacity utilisation. Unlike the univariate models estimated 

in Orphanides and van Norden (1999), Camba-Mendez and Rodriguez-Palenzuela's 

analysis is based on multivariate models of output, unemployment and inflation for the 

US and the euro area. They find that the multivariate UC models give reasonably 

satisfactory output gap estimates. Riinstler (2002) also investigates the uncertainty of 

output gap estimates caused by subsequent statistical revisions. In doing so, the 

reliability of the output gap estimates from various UC models is assessed in terms of 

three criteria; standard errors, unbiasedness and inflation forecasting. The results 

I The four types of models analysed in Orphanides and van Norden (1999) are detenninistic trends, the 
HP filter, the BN decomposition and the UC models. 
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suggest that the multivariate models, with factor inputs aud capacity utilisation included, 

significautl y reduce the uncertainty in the filtering process. 

5.3 Model specification 

This section utilises various multivariate UC models to produce output gap estimates. 

These models combine aggregate output with other macroeconomic variables that 

provide infonnation about the output gap. A bivariate model of output aud inflation and 

a trivariate model of output, inflation aud unemployment, are estimated in this study. 

5.3.1 Bivariate model of the output gap and inflation 

We begin with an UC model containing two variables, output aud inflation, that 

incorporates a Phillips curve relationship. The Phillips curve establishes a relationship 

between nominal prices and excess demaud, typically proxied by estimates of the output 

gap. The output equation follows Harvey aud Jaeger's (1993) decomposition, in which 

the output series, y" is decomposed into a trend component, Ji" and a cyclical 

component, VI, : 

y, = Ji, + VII' t = I, ... ,T. (5.1 ) 

The cyclical component is specified as a second-order autoregressive process 

(5.2) 

with 1/11 = 2pCOSAc aud 1/1, = -p' . The parameters p and Ac are the damping factor 

and cycle fi'equency, respectively, and satisfy o:s; p < I and 0 < Ac < 7r. If P = 0, the 

cycle reduces to a Gaussiau white noise process, VII = k,. The stochastic trend 

component is given by 

p, = JiH + PH + m + 77" TJ, - NID(O,O',~), (5.3) 
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where fJ, is the slope of the trend, m is a constant drift and ,p is the damping factor. 

The disturbances k" 77, and ~, are assumed to be mutually and serially independent. 

As proposed by Proietti et al. (2007), four alternative specifications of the trend 

component are obtained by imposing restrictions on equation (5.3). First, by setting 

m = 0, a~ = 0 and ,p = I, the trend component reduces to a random walk with drift 

(RW). Second, if l,pl < 1 the trend component has a damped slope (DS). Third, if 

m = 0 and ,p = 1 the trend becomes a local linear trend (LLT). Finally, Hodrick and 

Prescoti's (1997) restrictions (i.e., ai = 1600a~, a~ = 0 and p = 0) can also be 

imposed on the LLT model, yielding a smooth trend component and a white noise 

process. Hence, a; is the only variance parameter to be estimated in the HP trend. 

The foJlowing inflation equation is based on the Gordon (1997) triangle model, where 

the inflation rate is a function of inertia, excess demand and supply shocks, such as 

changes in the euro's nominal effective exchange rate (MeeT;) and commodity prices 

( !!.CompT;).2 

The inflation rate, M" calculated as the logged difference of the CPl, is driven by its 

core component, T" the supply shock proxies mentioned above, and an irregular tenn, 

s, . Entering the current and lagged values of output gap estimates into the core 

inflation equation aJlows the level effect of the output gap on inflation to be separated 

from the changes effect. The lag polynomial 8" (L) = 8'110 + 8,,,L can therefore be 

:2 The Gardon triangle model used in Chapter 5 reflects backward looking inflation expectations. However, 
more recent literature, such as Domenech and G6mez (2006) and Berger (2008), uses the New Keynesian 
approach of a forward looking Phillips curve. as inflation depends on future inflation expectations. 
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impact on core inflation. Finally, the model is completed by assuming that the 

disturbances 8, and 77. are mutually and serially uncorrelated and also orthogonal to 

disturbances in the output equations. 

Once equations (5.1), (5.2), (5.3) and (5.4) have been recast in a state-space 

representation, the hyperparameters ((b" (b" {i"oAd> (b, rn, u,~, u~, ui ' u; , un in the 

model can be estimated by MLE using a KF initiated with a diffuse prior, and the 

unobserved components (p" P, , if" if,-" T,) are then estimated using a smoothing 

algoritlun proposed by De long (1989, 1991).3 

5.3.2 Trivariate model of the output gap, inflation and unemployment 

The bivariate model is extended to include a third set of equations concerning the 

decomposition of the unemployment rate, denoted as u,. The unemployment rate is 

decomposed into the NAIRU, 1I"" and a cyclical unemployment component, 

B"oW, +B",W,_, +1fI"" that consists of the weighted output gap estimates, B"oVI, +B",W,_" 

and an idiosyncratic cycle, VI,,,: 

(5.5) 

The NAIRU for the euro area aggregate is modelled as a LLT due to the presence of a 

time-varying slope in the unemployment rate. The unemployment rate rose from 2% in 

1973-1974 to 11% by the mid-1990s and did not return to the levels observed in the 

early 1970s even when inflation stabilised at a low level. This suggests that the NAIRU 

has risen. 

'The state-space form for equations (5.1), (5.2), (5.3) and (5.4) is presented in Appendix AS, together 
\vith the augmented Kalman filter iterations introduced by De Jong (1989,1991). 
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The trivariate model containing equations (5.1), (5.2), (5.3), (5.4) and (5.5) can also be 

put into state-space form, with the KF and ML approach then applied to estimate the 

model's hyperparameters (9, ,92,8,,,,8,,,, ~,o,~'" 9.,0'9.", 9,m, ~,c1, ~,er;, er; ,~"' ~;,~J 
and the unobserved state components (,u, ,,u,,, ,p, ,/3,,,, W"VI,_, ,W", ,W",_" T, ).4 In addition, 

the four alternative output trend specifications discussed above are also applied to the 

trivariate model. 

5.4 Criteria to assess the reliability of output gap estimates 

Given the variety of models used in this chapter to estimate the output gap, it is essential 

to have some criteria to judge which model provides the most reliable estimates. Due to 

the data limitations in the euro area, this chapter focuses on analysing the statistical 

revisions which have occurred over time. The output gap estimates obtained from the 

bivariate and trivariate models are assessed against three criteria, the size of the 

revisions, the unbiasedness of the filtered estimates, and their ability to forecast future 

inflation rates. 

5.4.1 Size of revisions 

In the UC models, the filtered output gap, VI'I' , and its smoothed estimates, VI'IT' 

obtained using the final data release and the full-sample parameter estimates, are 

defined as the quasi-final and final estimates by Orphanides and van Norden (1999). 

The difference between these two estimates reflects the revisions caused by uncertainty 

in the filtering process. It is believed that this uncertainty declines as the information 

set is expanded, such as by using longer sample periods or including additional 

variables in the filtering process (Riinstler, 2002). This chapter examines this assertion 

by evaluating the Root-Mean-Squared Error (RMSE) of VI'I' (3) -Vl'I'" (3), where s = 8 

and s = 12, based on the full-sample parameter estimates, 3.5 The estimates of W'I' 

4 The state-space fonn for the trivariate model is also presented in Appendix AS. 
5 It is important to stress that the revisions analysed in this study are consistent with Riinstler (2002), but 
are fundamentally different from the revisions discussed in Camba-Mendez and Rodriguez-Palenzuela 
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and VltltH are produced using both the bivariate and trivariate models analysed above, 

together with a univariate model, specified as just equations (5.1), (5.2) and (5.3). As 

with the multivariate models 6, four alternative output trend specifications are also 

applied to the univariate model. 7 The model which provides the smallest RMSE is 

considered to be the most appropriate for estimating the output gap. 

5.4.2 Unbiasedness of filtered estimates 

In this section a test proposed by Riinstler (2002) is used to examine the unbiasedness of 

the filtered estimates, Il'tlt' to subsequent revisions, V/tl tH - Vltl t ' The variables V/tit and 

Il'tlt+s are the minimum mean square estimates of V/t' conditional on information 

available up to and including t and t + s , respectively (Harvey, 1989). These estimates 

are unbiased in the sense that the expectation of the estimation error is zero, i.e., 

E01t -V/tlt )= 0 and Elv/t -ll'tlt+,)=O' This property and the linearity of the 

expectation operator imply that Elll'tltH -Wtlt J= O. In addition, according to the law of 

iterated expectations (Gourieroux and Monfort, 1989), the property that 

Ellv/111H -Vltll ~/'lt J= 0 can be derived. Since 

it holds that ElWlltH - Will It )= 0, implying Wtlt is the orthogonal projection of WtltH 

conditional on the information set at time t. Therefore, the following equation holds 

The test for unbiasedness is designed as the regreSSIOn of revisions on the filtered 

estimates, 

(200]). In this latter study the revisions are caused by both filtering uncertainty and recursive estimation 
of the model hyperparameters. 
6 The multivariate models used here and later refer to the four bivariate and four trivariate models 
analysed in this study. 
7 The parameter estimates for the univariate models are reported in Appendix B6. 
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with unbiasedness requiring ib=i1 =0. The Newey-West (1987) estimators of the 

standard errors are used to obtain the HAC t-statistics for the individual null hypotheses 

bo =0 and bl = O. 

5.4.3 Inflation forecast 

In macroeconomics, the output gap is considered to be an indicator of inflationary 

pressure and thus should provide an indication of future inflation. Several studies 

(Gerlach and Svensson, 2003; Riinstler, 2002; Proietti et al., 2007) have used estimates 

of the output gap to forecast future inflation rates. In this section, the ability of the 

output gap to forecast future inflationary pressures is used as an important criterion in 

judging the reliability of output gap estimates. The variable to be forecast is the 

quarterly inflation rate. Since this variable is very volatile, the average out-of-sample 

forecasting performances of the bivariate and trivariate models are evaluated against 

two benchmark models. 

The first benchmark is the univariate model of inflation. Unlike equation (5.4), 

estimates of the output gap do not enter the core inflation equation. Instead, core 

inflation simply follows a random walk process, 

M, = " + 6e (L)/1Compr, + ON (L)/1Neer, + &" &, - NID(O. 0-;), (5.6) 

'I = ',-I + 17", 17 IT - NID(O, 0-;) . 

The second model is an AR(l) specification of the first-differences of the inflationary 

process, 
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A rolling sample approach is used, with the full-sample period first divided into a pre­

forecasting period from 1971Q3 to 1999Q4 and a forecasting period from 2000Ql to 

2005Q4. The pre-forecasting sample moves forward quarter by quarter and the model's 

hyperparameters are re-estimated at each step until the end of the sample is reached. 

This approach calculates unconditional forecasts of inflation. This means that forecasts 

of the future inflation rate are based on the predicted future output gap. The h -step­

ahead forecast of inflation can thus be obtained by iterating the transition and 

measurement equations in the state-space form. 8 In total, 25 one-quarter-ahead 

forecasts and 17 eight-quarter-ahead forecasts are calculated. 

The Modified Diebold and Mariano (MDM) test proposed by Harvey et al. (1997) is 

used to examine whether the differences in forecasting ability between the multivariate 

models and the two benchmark models are significant. Since this test statistic corrects 

for size distortions in small samples, it is more appropriate than the test statistics 

introduced in Diebold and Mariano (1995). The MDM statistic is specified as 

MDM =[N +1-2K +N-1K(K -I)] d 
N ~V(d) 

where Nand K denote the number of forecasts and the lag length respectively. d is 

the mean of a differential loss function, defined as d = N- 1 2)e~ - ei,), where el< and 

e
21 

are the h -step-ahead forecast errors obtained from models 1 and 2. The variance of 

d is estimated using the heteroskedastic-autocorrelation consistent (HAC) estimator 

Therefore, 
d 

--,:=; is simply a HAC t-statistic. The HAC estimate of the standard 
~V(d) 

error is calculated using the Bartlett kernel with a lag length of h -I when the forecast 

horizon is h periods. 

8 The procedure of unconditional forecasting is discussed in Appendix A5.4. 
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5.5 Data and empirical results 

The empirical analysis in this chapter is based on logged quarterly data for the 

aggregate euro area from 1970Q1 to 2005Q4. The data is taken from the AWM 

database (Fagan et al., 2001).9 All the series are seasonally adjusted except for the ePI 

and commodity prices index. Therefore, the Census X-12 procedure (US Bureau of the 

Census, 1999) is used to deseasonalise these two series. The ADF test statistics 

reported in Table 5.1 suggest that real GDP, the unemployment rate, commodity prices 

and nominal effective exchange rates are 1(1) series, while the CPI appears to be an 1(2) 

variable. The main data are plotted in Figure 5.1. 

Table 5.1: The Augmented Dickey-Fuller Test Statistics 

Level Variables First Differenced Variables 

Constant Constant + Trend Constant 
GDP ·1.946 -2.730 -8.493*' 

(0.310) (0.226) (0.000) 
CPI -3.928*' -3.048 -0.916 

(0.002) (0.123) (0.781) 
UNEM -2.950* -1.529 -4.258** 

(0.042) (0.815) (0.001) 

COMPR -2.477 -2.507 -8.522*' 
(0.123) (0.324) (0.000) 

NEER -2.333 -2.582 -8.557** 
(0.163) (0.289) (0.000) 

Notes: p-values are in parentheses. * denotes significance at 5% and ** at 1%. UN EM ; the 
Unemployment Rate, COMPR ; Commodity Prices Index and NEER ; Nominal Effective Exchange Rates. 

9 The data is taken from an updated version of the previous AWM database constructed by Fagan et a1. 
(2001). This new version contains data prior to 1996 drawn from the previous version and extended data 
to 2005Q4 adjusted for the latest changes in the national accounts, including the introduction of chained 
volume measures. 
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The parameter estimates for the four bivariate models are reported in Table 5.2. Two 

dummy variables are included in the model to capture the sudden drop in GDP observed 

during 1974Q4-1975QI, and in inflation during 1975Ql. One striking result is that the 

model with the HP restrictions imposed is strongly rejected, as the residuals show 

strong auto correlation patterns. Of the three other models, that incorporating the DS 

output trend provides the best fit to the data, Therefore, the following interpretation 

focuses primarily on this model. The fluctuations in the output gap estimates appear to 

be persistent as the sum of the parameter estimates rp, and rp, is close to one. The 

potential output growth follows an AR(I) process with the coefficient equal to 0.83. 

The significance of Bv,o and B,v' at the I % level implies that the output gap makes a 

significant contribution to core inflation. Although the null hypothesis of long-run 

neutrality of the output gap for core inflation is rejected by the Wald test statistic, the 

change effect of the output gap has a dominating impact on inflation. For instance, the 

change effect, measured hy - B"p is 0.21, while the level effect is only 

B"o + B", = 0.061 in the DS model. Finally, the parameter estimates of the dummy 

variables and the current supply shock variables are all found to be statistically 

significant. Potential output, the output gap and core inflation estimated from the 

bivariate models with the DS and HP output trend are plotted in Figure 5.2. 
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Unsurprisingly, the HP trend appears smoother than the DS trend, while the HP cycle is 

more volatile compared to the DS cycle. 

Table S.l: Parameter Estimates and Diagnostics for Bivariate Model 
RW DSlope LLT HP 

Output equation 

a/~ 165.280 137.040 148.700 0 

er; 0 11.730 3.832 0.930 

(7' , 65.455 69.325 63.923 1488.100 

~ 1 0.828 1 1 
m 0 0.006 0 0 

tPJ 1.658** 1.550** 1.549** 
(0.019) (0.029) (0.026) 

tP2 -0.734*'" -0.661 u -0.663** 
(0.034) (0.0511 (0.046) 

P 0.856 0.813 0.814 

2ff I [, 24.747 20.508 19.980 
Dum75Ql -0.012* -0.011 '" -0.011* -0.019 

(O.OOS) (0.005) (0.005) (0.018) 

Dum74Q4 -0.011** -0,011** -D.Oll*'" -0.012** 
(0.003) (0.003) (0.003) (0.004) 

Inflation equation 

(J(~ 31.067 35.388 35.247 30.250 

0"' , 7.385 7.942E-05 0.026 55379 

eVIl] 0.221 *" 0.276** D.273*'" 0.177*'" 
(0.076) (0.080) (0.079) (0.043) 

BVd -D.l8S*'" -0.214** -0206** -D.127*'" 
(0.068) (0.074) (0.072) 10.044) 

ON< 0.022* 0.023* 0.023* 0.024* 
(0.010) (0.010) (0.010) 10.010) 

ON2 0.013 0.015 0.015 O.OlS 
10.010) (0.010) 10.010) 10.010) 

OCI 0.006* 0.006* 0.006'" 0.007* 
(0.003) (0.003) (0.003) (0.003) 

°0 0.004 0.004 0.004 0.005" 
10.003) (0.003) 10.003) (0.003) 

Dum75Ql -0.011 '" -0.011 * -0.011* ·0.020 
10.005) (0.005) (0.005) 10.013) 

Wald test for Jong run neutrality 

Bv,(ll=O 3.553 6.057'" 7.186"''' 10.269** 

Diagnostics and ~oodness of fit 
log-likelihood 1148.162 1155.184 1150.570 1018.054 

Q(4) )',' 4.524 2.765 2.152 233.362"'* 

Q14) /!'p,' 5.782 5.946 5.578 40.758** 

Normality )'1: 4.311 4.630 5.890 13.622** 
Normality bp,: 1.634 2.014 2.134 4.161 

Notes: Standard errors are provided in parentheses. The variance parameters are multiplied byl07. 
Q(4) is the Ljung·Box Q-statistic for residual autoeorrelation using four autDeorrelations. Normality of 
the residua)s is checked using the Jarque-Bera test statistic. • denotes significance at the 5% level; ,. 
denotes significance at the 1% )evel. 
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Figure 5.2: Trend, Cycle and Core Inflation for the Bivariate Models with the OS and 
HP output trend 

os output trend specification GDP and the trend HP output trernl specification 

1970 1980 1990 2000 1970 1980 1990 2000 

CPJ inflation and ifS core component 

1970 1980 1990 2000 1970 1980 1990 2000 

The trivariate model outlined in the previous section is also estimated. The Ljung-Box 

Q-statistic at four lags indicates that there is significant auto correlation in the residuals 

of the inflation and unemployment equations. The autocorre\ation functions of these 

residuals were therefore examined and suggested the presence of third-order 

auto correlation in the former and fourth-order auto correlation in the latter. Therefore, 

moving average terms at lags three and four are included in the corresponding equations 

to eliminate the autocorrelation pattern in the residuals. The estimation results for the 

four trivariate models are reported in Table 5.3. Corresponding to the sudden decline 

observed in the output and inflation variables, the adverse effect of the first oil price 

shock also led to a dramatic increase in the unemployment rate between 1974Q4 and 

1975Q2. Therefore three dummy variables are used for this period. As with the 

bivariate models, the model with the HP restrictions is again rejected due to strong 

auto correlation in the residuals. The model with the DS output trend outperforms the 

other models. Both the output gap and potential output appear to be more persistent 

than in the bivariate models. The output gap has a cycle period of around 28 quarters 
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and the potential output growth evolves with a slope coefficient of 0.93. However, 

parameter estimates of B,l'o and B,;J are smaller than the con'esponding values in the 

bivariate models, with a level effect of Bv'o + BVd = 0.025 and a change effect of 

- B'l'i = 0.149 in the DS model. The null oflong-run neutrality cannot be rejected by 

the Wald test of the restriction B" (I) = 0 at the 5% level for all models. This implies 

that the output gap has only a transitory effect on inflation. The parameter estimates of 

BUD and BUi are all negative, suggesting that the unemployment rate is anti-cyclical with 

the output gap. Moreover, only BUi appears statistically significant, which may reflect 

adjustment delays in the labour market. It is also important to note that, although ifJ3e 

and ifJ4U are only marginally significant at the 10% level, they nevertheless successfully 

eliminate the autocorrelation in the residuals. 

Figure 5.3 presents the time path of potential output, the output gap, the NAIRU and 

core inflation estimated from the trivariate models with the DS and HP output trend 

specifications imposed. The HP output trend again appears very smooth, being very 

close to a linear time trend, while the HP output cycle is more volatile than the DS 

output cycle. The estimate of the NAIRU from the model with the DS output trend 

appears less volatile than when it is obtained from the model imposed with the HP 

restrictions. This is because, when potential output is modelled as an HP trend, a highly 

volatile output gap is produced and enters into the unemployment equation. This may 

lead to a large variance in the NAIRU slope disturbance. 
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Table 5.3 Parameter Estimates and Diagnostics for Trivariate Model 
RW DSlope lLT HP 

Output equation 

er 165.920 150.850 163.030 0 

a 0 4.883 0.176 0.936 

er 49.151 48.944 49.048 1497.100 

~ 1 0.934 1 1 
In 0 0.006 0 0 

~, 1.740 .... 1.756*" 1.747 .... 
(0.066) (O.O49) (0.063) 

1, -0.80S .... -0.810 .... -0.799** 
(0,108) {D.09O) (D.H6) 

p 0.898 0.900 0.935 

2" ! f, 28.398 28.443 29.173 
Dum74Q4 -0.010 ·0.010 -0.010 -0.023 

(0.006) (0.006) (0.006) W.OlS} 
Dum75Ql -0.012* -0.012* -0.012* -0.019 

(0.006) (0.006) (0.006) (0.022) 

Inflation equation 

(J L~ 24.422 24.406 24.867 27.539 

(I; 16.008 16.017 15.346 61.136 

B'I'il 0.174* 0.174* 0.174* 0.185*'" 
(0.066) (0.069) (Q.074) (O.OS3) 

B" -0.149* -0.149* -0.148* -0.140· 
(O.06S) (O.OS?) (0.072) (0.053) 

r5 ,\' I 0.016 0.016 0.016 0.022 
(0.012) (0.012) (0.012) (0.0~2) 

O.\'~ O.O~S 0.015 0,015 0.019 
(0.012) (0.012) (0.012) (0.012) 

0(') 0,004 0.004 0.004 0.004 
(0.004) (0.004) (0.004) (0.004) 

SC! O.OOS 0.004 0.005 0.006 
(0.004) (0.004) (0.004) (0.OO4) 

tP J" 0.399 0.399 0.392 0.370" 
(0.248) (0.252) (0.285) (0.2~9) 

Dum7SQl -0.010"* -0.010 .... -0.010 .... -0.011 .. 
(0.003) (0.003) (0.003) (O.OOS) 

Unemployment equation 

a' 
"'J 185.030 240.350 200.080 192.030 , 

Cl I~fi 62.259 62.900 57.385 1379.600 

(J ,~ 0.005 0.011 0.005 0.004 

6 1111 -1.873 -1.914 -1.937 -1.079"' 
(1.675) (1.094) (3.017) (0.531) 

B"r -4.529"'" -4.461"'" -4.537''' -1.152"' 
(1.425) (1.468) (2.481) (0,457) 

~ ,,, 0.485 0.496 0.482 0.503'" 
(0.320) (0.328) (0.375) (0.303) 

Dum74Q4 0.095'"* 0.094'""' 0.095"" 0.106 .... 

(0.020) (0.020) (0.021) (0.027) 
Dum75Ql 0.098 .... 0.097"'" 0.097 .... 0.114 .... 

(0.026) (0.026) (0.028) (0.040) 
Dum7SQ2 0.08S .... 0.088 .... 0.08S .... 0.090 .... 

(0.021) (0.021) (0.022) (0.032) 
Wald test for long run neutrality 

8,.(1)", (J 2.871 2.777 3.053 4.99.1 .. 
Diagnostics and goodness of fit 

Log-likelihood 1533.808 1541.251 1534.337 1386.907 

Q(4)y, : 3.407 0.661 0.823 210.763·" 

0(4)11, : 6.492 5.293 5.822 26.8~4"· 

Q(4)!::"p, : 2.093 2.225 2.201 57.623 .... 

Normallty.l', : 5.862 5.360 5.954 11.577 .... 

Normalityu, : 11.381 '" .. 11.J.70·" 11.970"''' 9.722"· 

Normality b.p, 3.805 4.1J.3 3.829 4.328 

Note: Please see notes underneath Table 5.2. 
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Figure 5.3: Trend, Cycle, the NAIRU and Core Inflation for the Trivariate Models with 
the OS and HP output trend 

HP output trend specification 
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Output Gap with 95% confidence bounds 

. ~ __ . __________ ~~ __ :~ _____ 0_.-_.---'----

1970 1980 1990 2000 1970 1980 1990 2000 

The three criteria discussed in section 5.4 are now used to assess the reliability of the 

output gap estimates. The size of the revisions, as measured by the RMSE, is reported 

in the top panel of Table 5.4. On average, the bivariate models yield the smallest 

revisions, followed by the trivariate and univariate models. This suggests that the model 

embodying the Phillips curve relation improves the reliability of the output gap 

estimates. However, the RMSE becomes larger when the unemployment rate is 

included in the model. This contradicts the assertion given by Riinstler (2002) that 

output gap estimates can potentially be improved by including additional information in 

the filtering process. One possible explanation for this is that cyclical fluctuations in the 

unemployment rate may not be closely correlated with the output gap due to rigid 

labour market institutions. It is also worth noting that the DS output trend specification 

gives the smallest RMSE for the univariate and trivariate models. Although it is the 

LLT which provides the smallest RMSE for the bivariate model, the DS trend yields the 

second smallest value among the bivariate models. On the other hand, the models with 
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the HP restrictions perform the worst, with considerably larger revisions compared to 

the other three trend specifications. 

The results of the unbiasedness test, presented in the lower panel of Table 5.4, show that 

al1 univariate and bivariate models fail to produce unbiased filtered estimates. The size 

of hi in the bivariate models is significantly reduced compared to the corresponding 

estimates in the univariate models when the filtered estimates are tested against 12-

quarter ahead estimates. However, the coefficients hi in bivariate models are all 

significantly positive, suggesting that basing monetary policy on these estimates may 

introduce pro-cyclical bias into policy making, as discussed in Orphanides (200 I) and 

Ross and Ubide (2002). Revisions are found to be orthogonal to filtered output gap 

estimates when the trivariate models are estimated with the output trend specified as 

RW, DS and LLT. One striking result is that the null of hi = 0 is rejected at the 1 % 

level for all the models where the HP restrictions are imposed. This again suggests that 

these restrictions are inappropriate. 

Table 5.5 reports the results of the mean out-of-sample forecasts. The h -step-ahead 

forecast en'or is calculated as !:'PT+{'(T - !:'PT+h • With the exception of the AR model, 

the mean errors produced by the VC models appear to be negative, suggesting that these 

models may have a tendency to underestimate future inflation rates. The forecasting 

ability across al1 the models is evaluated in tenns of the RMSE. The model that yields 

the smallest RMSE provides the most accurate forecasts. The multivariate models with 

the output trend specified as either RW, DS or LLT tend to produce smaller values of 

the RMSE than the two benchmark models, especially in the early periods of 

forecasting. However, the models with the HP restrictions have considerably larger 

RMSEs than other models. This again suggests that these restrictions are not 

appropriate for the data analysed in this chapter. The MDM statistics in parentheses are 

calculated for the null hypothesis that the multivariate model is equivalent in forecasting 

ability to the benchmark model. The alternative hypothesis varies depending on the 

sign of the MDM statistic. If the statistic is positive, the alternative hypothesis is that 

the multivariate model is better than the benchmark model in terms of forecasting 

accuracy. Alternatively, if the MDM is negative, the alternative hypothesis is inverted. 

The MDM test statistic is compared with the critical values of Student's t-distribution 
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with N -I degree of freedom. The null of equality in forecasting perfonnance between 

the multivariate models and the AR model cannot be rejected across all reported 

forecasting periods. However, the output gap estimates obtained from the multivariate 

models with the RW, DS and LLT restrictions imposed appear to be marginally 

preferable in the first and second step-ahead forecasts compared to the univariate model 

of inflation. 

Table 5.4: Revision: RMSE and Bias Tests 

RMSE(*100j 
Univariate Models RW DSlope LLT HP 

V/'II+' -1f/'11 
0.907 0.534 0.835 1.020 

~ ~ 1.120 0.630 1.011 1.127 VI' I I+I2 - Vi'lr 
Bivariate Models RW DSlope LLT HP 

1f/rlr+8 -1f/rlr 
0.531 0.486 0.475 0.744 

1f/rlr+I2 -1f/rlr 
0.552 0.487 0.477 0.815 

Trivariate Models RW DSlope LLT HP 

V/' lr+8 -1f/rll 
0.605 0.508 0.618 0.765 

1f/'II+12 - V/rlr 0.680 0.655 0.694 0.832 

Bias tests 
Univariate Models RW DSlope LLT HP 
~ ~ bo -0.006** -0.001 -0.004* 0.000 VI -VI /1(+8 II1 

(0.002) (0.001) (0.002) (0.001) 

bI -0.149 -0.069 -0.092 0.714** 
(0.132) (0.077) (0.135) (0.096) 

1f/'lr+I2 -1f/'lr ba -0.009** -0.001 -0.005** -0.001 
(0.002) (0.002) (0.002) (0.002) 

bI -0.308* -0.562* -0.240 0.726** 
(0.137) (0.281) (0.151) (0.111) 

Bivariate Models RW DSlope LLT HP 
~ ~ 

ba -0.000 0.001 0.001 0.000 Vlrl,.8 - Virlr 
(0.001) (0.001) (0.001) (0.001) 

bI 0.117* 0.208** 0.216** 0.422** 
(0.049) (0.056) (0.059) (0.120) 

- - ba -0.001 0.001 0.001 -0.001 Virlr+I2 - Vlrlr 
(0.001) (0.001) (0.001) (0.001) 

bI 0.104* 0.214** 0.227** 0.399** 
(0.051) (0.056) (0.058) (0.125) 

Trivariate Models RW DSlope LLT HP 
~ ~ 

ba 0.000 0.001 0.001 0.000 
Virlr+' - Vlrlr (0.001) (0.001) (0.001) (0.001) 

b, 0.014 0.017 0.001 0.435** 
(0.074) (0.067) (0.074) (0.096) 

~ ~ 

b" -0.000 0.001 0.001 -0.001 VI -VI /11+12 II1 (0.001) (0.001) (0.001) (0.001) 

b, -0.042 -0.026 -0.061 0.414** 
(0.085) (0.079) (0.085) (0.131) 

Notes: Standard errors are in parentheses. * denotes significance at the 5% level; ** denotes 
significance at the 1% level. 
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Table 5.5: Out-of-Sample Forecasts: Mean Errors and RMSE (*100) 
Mean Errors 

H=l H=2 H=3 H=4 H=S H=6 H=7 H=8 

Benchmark Models 

ARmodel 0.045 0.040 0.028 0.044 0.047 0.039 0.079 0.066 

Univariate -0.060 -0.092 -0.111 -0.093 -0.093 -0.103 -0.071 -0.086 

Bivariate Models 

RW -0.060 -0.073 -0.090 -0.091 -0.089 -0.113 -0.079 -0.095 

DSlope -0.065 -0.078 -0.097 -0.100 -0.101 -0.123 -0.094 -0.110 

LLT -0.064 -0.079 -0.099 -0.104 -0.106 -0.132 -0.100 -0.117 

HP -0.045 -0.052 -0.065 -0.061 -0.055 -0.070 -0.032 -0.050 

Trivariate Models 

RW -0.050 -0.061 -0.077 -0.080 -0.079 -0.109 -0.074 -0.094 

Dslope -0.051 -0.062 -0.078 -0.081 -0.080 -0.109 -0.075 -0.094 

llT -0.049 -0.060 -0.076 -0.078 -0.077 -0.106 -0.072 -0.092 

HP -0.040 -0.040 -0.062 -0.059 -0.049 -0.073 -0.034 -0.052 

Root-Mean-Squared Errors 

H=l H=2 H=3 H=4 H=5 H=6 H=7 H=8 

Benchmark Models 

AR model 0.202 0.232 0.242 0.249 0.249 0.251 0.248 0.245 

Univariate 0.223 0.247 0.261 0.251 0.256 0.262 0.260 0.262 

Bivariate Models 

RW 0.181 0.193 0.210 0.219 0.223 0.228 0.231 0.229 

[1.O16} [1. 688J [-0.308J [0.342J [0.362J [-0.040J [0.191} [0.298J 

11.839J' [1.878[' [0.303J [0.653J [0.943J [1.002] [-4.637e-04] [ 0.684] 

DSlope 0.182 0.193 0.210 0.218 0.222 0.227 0.230 0.227 

[0.945} [1.225J [-0.367J [0.715J [0.148J [-0.061J [0.486} [0.331} 

11.861]' 11.728]' 10.178] 10.790] [0.986J [0.970] [0.129] [0.742] 
llT 0.181 0.193 0.209 0.219 0.223 0.229 0.231 0.228 

[1.040} [1.583J [-0.244J [0.191J [0.242} [-0.156J [0.415} [0.287} 

[1.881]' [1.898]' [0.400] [0.755] [1.040J [0.995] [0.083] [0.759] 

HP 0.188 0.219 0.239 0.253 0.261 0.270 0.273 0.277 

[-0.194J [-0.271J [-0.814J [-0. 675J [-0.541} [-0.530J [-0.450} [-0.286} 

[1.246] [0.475] [-0.689] [-0.856] [-0.504] [-0.559] [-1.286] [0.311] 

Trivariate Models 

RW 0.170 0.199 0.216 0.227 0.237 0.244 0.246 0.242 

[1.186} [1.036J [-0.489J [0.069J [-0.434} [-0.294J [-0.059} [0.162} 

[1.986]' [1.566] [0.115] [0.619] [0.221J [0.448] [-0.144] [0.421] 

DSlope 0.171 0.200 0.217 0.228 0.238 0.245 0.247 0.243 

[1.156J [1.018J [-0.491J [0.040J [-0.412} [-0.309J [-0.G75J [0.133} 

[1.975J' [1.549] [0.121] [0.608] [0.227] [0.419] [-0.152] [0.409] 

llT 0.170 0.199 0.216 0.227 0.237 0.244 0.246 0.242 

[1.172J [1.056J [-O.492J [0.050} [-0.409} [-0.295J [-0.G75J [0.160} 

[1.974J' [1.594] [0.111] [0.614] [0.816] [0.451] [-0.153] [0.421] 

HP 0.181 0.227 0.248 0.259 0.272 0.279 0.281 0.285 

[-0.051J [-0.726} [-0.923J [-0.643J [-0.717J [-0.536J [-0.416J [-0.321} 

[1.492] [0.153] [-0.843] [-1.062] [-0.859] [-0.577J [-1.137J [0.134J 

Notes: Numbers in italic (roman) are the MDM statistics for the null that the multivariate model is 
equivalent in forecasting ability to the AR (univariate) model. The MDM statistics are compared with a 
student t-distribution with N-1 degrees of freedom. As a one-sided test is performed, the critical value 
associated with 5% significance levels for N-1 =24 and N-1 =23 are 1.708 and 1.711, respectively. * 
denotes significance at the 5% level. 
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5.6 Business cycle moderation 

In this section, the multivariate models outlined above are modified to consider one of 

the most striking changes in business cycles of industrialised countries, known as the 

'great moderation'. It is generally accepted that the volatility observed in economic 

fluctuations has declined in most industrialised countries over the past two decades. A 

significant body of research has been undertaken to identify the date and the possible 

causes of this stabilisation. In the literature, 1984 is often cited as the point at which 

this stabilisation occurred in the US. Several possible causes for the moderation of the 

US business cycle have been put forward, including changes in economic structure, 

improved monetary policy and the absence of major supply side shocks (Kim and 

Nelson, 1999a; McConnell and Perez Quiros, 2000; Stock and Watson, 2002c, 2003). 

Blanchard and Simon (2001), van Dijk et al. (2002), Mills and Wang (2002, 2003a) and 

Doyle and Faust (2005) have also found declines in output growth fluctuations in the 

other 07 members, although the magnitude and dates differ across countries. 

Identifying the possible causes of business cycle moderation is outside the scope of this 

research. Instead, the objective of this section is to identify the degree to which output 

fluctuations have declined in the euro area and to date the time at which this moderation 

began. The model applied in this section was proposed by Proietti (2008), who 

estimates a bivariate UC model of US output and inflation with time-varying variances 

in the level and cycle disturbances. A binary variable, S" is constructed to indicate the 

degree of output fluctuations, with I denoting high volatility and 0 low volatility. S, 

can be set either detenninistically or modelled as a first-order Markov chain. This 

section proposes a two-step procedure. In the first step, the break in the volatility of 

euro area output growth is detem1ined by the two-regime Markov-switching (MS) 

volatility model using the MSV AR Ox package (Krolzig, 1998). Once the date of the 

break is obtained, S, is set detenninistically in the multivariate UC models. Output 

growth is modelled as the following AR(2) process with a time-varying disturbance 

vanance. 
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e, - NID(O, (S,o-;, +(l-S,)o-;b) ' S, = {O,I} 

Pr[S, = IISI-I = I] = Pll' Pr[S, = 0IS,_1 = 0] = POD. 

The lag length is selected using the Box and J enkins (1976) strategy. Two dummy 

variables are also used to capture the effect of the first oil price shock. The magnitude 

of the disturbance variance depends on S,. If S, = I, output growth is in the high 

volatility state; likewise, if S, = ° it is in the low volatility state. The transition 

between states follows a first-order Markov-switching process, governed by the 

constant transition probabilities, Poo and Pll' The smoothed probabilities of high 

volatility estimated at time t using the full-sample, plotted as a solid line in Figure 5.4, 

suggest a high volatility state before 1993Q3 and a low volatility state thereafter. This 

is consistent with the unstable macroeconomic situation observed in the euro area 

during the earlier period. However, from 1993Q3 onwards, most countries had 

recovered from the ERM crisis and the ratification of the Maastricht treaty further 

encouraged economic integration among members. 

Figure 5.4: Smoothed and filtered probabilities of high volatility regime 
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The parameter estimates of this model are reported in Table 5.6: 0-;, is twice the value 

of o-;h. The presence of state shifts is also supported by the likelihood ratio statistic, as 

the null hypothesis that 0-;, = o-;b is strongly rejected. 
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Table 5.6: Markov-Switching Volatility Model 

Parameters estimates 

/10 0.003*' erw 0.006" 
(0.001) (0.000) 

/11 0.291*' er,b 0.003'* 
(0.083) (0.000) 

/12 0.157* 
(0.077) 

dum74q4 -0.022*' 
(0.006) 

dum75ql -0.009 
(0.006) 

Transition probabilities and regimes 

Pll 

Poo 
Ale: -7.766 

0.99 

1.00 
HQ: -7.689 

Log-likelihood: 556.503 

Regime 1 

Regime 2 
se: -7.578 

LR statistic (er;a = er;b): %' (I) = 16.996" 

Note: Standard errors are in parentheses. 

1971:4 - 1993:2 

1993:3 - 2005:4 

Given that the estimated date of the break is 1993Q3, S, is set to be 1 before 1993Q3 

and 0 from then onwards. The time-varying variance modification is only applied to 

multivariate models with the DS trend imposed, as these models provide the best fit to 

the data compared with the nested models, as shown in Tables 5.2 and 5.3. In addition, 

since fluctuations in slope estimates appear to be considerably smaller than variances in 

the level and cycle estimates, the time-varying variance is only considered for the level 

and cycle disturbances, specified as 

1), - NID(O, (S,er;a + (1- S, )er;b )), 

k, - NID(O, (S,erJ, + (1- S, )er;b )). 

The parameter estimates of the bivariate and trivariate models with time-varying 

variances are reported in Tables 5.7 and 5.8. In the bivariate model er;a and er;, are 

about six times larger than er'~b and er:", respectively. However, in the trivariate model, 

er'~1I is about four times larger than er'~b' while er;" is about twelve times the size of er';b . 

Therefore, it is not surprising that the likelihood ratio statistics of the null hypotheses 

that er,~a = er~b and er';a = er~b strongly reject for both models. The persistency of the 
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output gap does not alter significantly by introducing a one-time break in the variances 

of the bivariate specification. However, allowing for the break in the variances of the 

trivariate model does notably increase persistency, with tP] + tP, increasing to 0.96 and 

the cycle period increasing from 28.4 to 35.5 quarters. 

Table 5.7: Parameter Estimates and Diagnostics for Bivariate Model with Time-
Varying Variance 

Output equation Inflation equation 

, 
0"2 O""a 211.240 c 34.663 , , 

a'7Jb 36.044 0"- 4.141E-05 , 
aJ 10.792 011'0 0.284** 

2 
O"ka 92.373 (0.090) , 

(Jilt! O"kb 14.953 -0.220** 
rp 0.823 (0.083) 

m 0.006 ON] 0.021 * 

(A 1.545** (0.010) 

(0.386) ON' 0.014 

tP2 -0.664** (0.010) 

(0.137) °C] 0.006* 
P 0.814 (0.003) 

2" / l, 19.463 Oc, 0.004 
Dum75Q1 -0.012* (0.003) 

(0.006) Dum75Q1 -0.011** 
Dum74Q4 -0.011 * (0.003) 

(0.006) 

Wald test for long run neutrality: 6.551* 

log-likelihood: 1175.992 

Q(4) Y, : 1.196 Normality Y, : 0.237 

Q(4) /:;.P, : 13.378* Normality /:;.P, : 0.349 

lR .. 2 2 2, ' (2) statistic (O""a =O""b and O"ka=O"k"): X- =41.615** 

Note: Standard errors are provided in parentheses. 
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Table 5.8: Parameter Estimates and Diagnostics for Trivariate Model of Output, 
Unemployment and Inflation. 

Output equation Inflation equation Unemployment equation , , , 
0"7(1 275.66 (r 23.137 G'u 17 6.841E-07 , 

2 a 2 2 
a"b 63.763 , 16.598 CYu/3 47.394 

a; B"o 
2 , 0.561 0.169* (Juk 0.003 , 

BuD a", 64.564 (0.093) 1.123 , 
eVil (J'kb 5.310 -0.140* (2.760) 

rfi 0.940 (0.085) Bill -8.159** 

m 0.005 ON' 0.016 (2.026) 

ifJ, 1.794** (0.012) Dum74Q4 0.108** 

(0.100) ON' 0.015 (0.025) 

ifJ, -0.830** (0.012) Dum75Q1 0.112** 

(0.169) On 0.004 (0.032) 
P 0.911 (0.004) Dum75Q2 0.099** 

21t I le 35.488 °c, 0.005 (0.026) 
Dum75Q1 -O.OlD (0.004) 

(0.008) rfi" 0.426 
Dum74Q4 -0.011 (0.253) 

(0.008) Dum75Q1 -O.OlD** 
(0.003) 

Wald test for long run neutrality: 2.245 

log-likelihood: 1577.065 

Q(4) y, : 3.218 Normality y, : 0.571 

Q(4) u,: 3.473 Normality u,: 1.513 

Q(4) !J.p,: 1.024 Normality /:;.p,: 5.366 

..2222 
lR statistic ( (J'", = a"b and a k' = a kb ): X' (2) = 71.628*-

Note: Standard errors are provided in parentheses. 

5.7 Output gaps and monetary policy 

Understanding monetary transmission mechanisms for the euro area is crucial for 

stimulating economic growth in member states and maintaining stability in the euro area. 

It is a wide ranging topic that has attracted the attention of policymakers and academics 

alike. There has been a growing body of literature analysing the effectiveness of 

alternative monetary transmission mechanisms for individual countries and for the euro 

area as a whole (Mojon and Peersman, 2001; van Eis et al., 2002; Angeloni et al., 2002; 

Angeloni and Ehnnann, 2003). Different transmission mechanisms, for example 
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through the banking sector and financial markets, have been discussed extensively. 

This section focuses on evaluating monetary transmission through the interest rate 

channel (IRC), as this is the conventional way through which monetary policy operates 

in large and relatively closed economies, such as the US and the euro area. The IRC is 

characterised as the impact that changes in short -term interest rates have on components 

of aggregate demand, the output gap and, in turn, on prices through the PhiIIips curve 

relationship. The response of the output gap to policy controlled interest rates plays an 

important role in achieving the ultimate objective of price stability. Therefore, Taylor 

(1993) proposed a simple monetary policy rule that the federal funds rate should rise by 

1.5 percentage points in response to a J percentage point increase in the inflation rate, 

and by 0.5 percentage points in response to a I percentage point increase in GDP above 

its potential. The empirical reaction functions estimated by Clarida et al. (1998) suggest 

that central banks in the US, Germany and Japan all partly respond to the output gap. In 

a model estimated for an aggregate of five EU countries, Peersman and Smets (1999) 

demonstrate that, even if the central banks' sole objective is to stabilise inflation, an 

effective Taylor rule will include a strong response to the output gap due to its influence 

on future inflation. However, Orphanides and van Norden (1999) highlighted the risk 

of implementing inappropriate policies when using real-time output gap estimates, as 

these are subject to significant alterations due to data and statistical revisions. 

As stable prices can significantly reduce the level of uncertainty in an economy and 

promote the efficient allocation of resources, the European Central Bank's (ECB) 

primary objective is to maintain price stability, i.e., to ensure an annual increase in the 

Harmonised Index of Consumer Prices (HICP) of below 2%. In order to achieve this 

goal the ECB implements a two-pillar monetary policy strategy to forecast and analyse 

inflation rates at different time horizons. One pillar is 'economic analysis', which 

assesses the short to medium tenn determinants of price developments, such as the 

output gap, unit labour costs, exchange rates and asset prices. The second pillar, 

'monetary analysis', considers the medium to long run link between money and prices, 

and provides a long-tern1 cross-check for the first pillar. 

In this chapter, the responsiveness of the output gap to changes in real interest rates is 

evaluated using the multivariate UC models with the DS output trend imposed, as these 

models are able to produce relatively reliable output gap estimates and provide the best 
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fit to the data. In doing so, the first-differences of the real interest rate are inserted into 

the output equation of the bivariate and trivariate models: 

y, =,u, + W, , 

W,+! = rf!W, + rf,W,_! + Ai'>(i, - 7f,') + k,+!, k, - NID(O, 0";), 

,u,+1 =,u, + /3, + m + 17<+1' 17, - NID(O,CT>~), 

/3'+1 = rf/3, + ~I+i' ~, - NID(O,CT:). 

(5.9) 

The real interest rate is obtained by subtracting ex ante inflation expectations from the 

nominal interest rate. i, is the three-month interest rate on an mmualised basis, and ", 

is the annual rate of inflation, calculated as lnp, -lnp'_4' 7f,' is expected inflation at 

time t. Two proxies for 7f,' are used. First, 7f,' is calculated as the average value of the 

previous four quarters inflation rates, on the assumption that agents have adaptive 

expectations of future inflation rates. Second, 7f; is simply set to be the observed 

inflation at time t, with agents assumed to have rational expectations. 

The bivariate and trivariate models are re-estimated over the full-sample and two 

subsamples (pre-1993Q3 and post-1993Q3), with the estimates of ), measuring the 

sensitivity of the output gap to changes in the real interest rate. The choice of 1993Q3 

is consistent with the date when business cycle moderation was first observed in the 

euro area. Parmneter estimates of bivariate and trivariate models with the DS output 

trend for the full-sample and two subsamples are reported in Appendix B5. The trend 

components in the second subsample are more persistent than those in the first 

subsample. As the estimated slope coefficients of potential output growth are almost 

equal to I, the output trends are specified as LLTs in the second sUbsample. It should 

be recalled that the second subsample is very short, which may reduce the accuracy of 

the parameter estimates. Moreover, strong autocorrelation is found in the residuals. 

The analysis in this section focuses on the paran1eter estimates A and 8",(L), presented 

in Table 5.9, that measure the effectiveness of monetary transmission through the IRe. 

If changes in the real interest rate have an impact on the output gap, l, is expected to be 

negative and statistically significant. Although all the estimates of )., have the correct 
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SIgn, it is unsurprising to find that estimates of A are insignificant in the models 

estimated using the full-sample and the first subsample. This is due to the diverging 

inflation rates caused by the relatively volatile macroeconomic situation during the 

1970s and 1980s. However, parameter estimates of A become significantly negative 

during the second subsample. This is broadly in line with Angeloni and Ehrmann 

(2003), who find that the IRe across EMU member countries became more 

homogenous as a result of increased comovement of national interest rates after 1995. 

Focusing on parameter estimates over the second subsample, when agents have rational 

expectations of future inflation rates, it is found that a 1 percentage point increase in the 

real interest rates reduces the output gap by about 0.2% in the next quarter. The output 

gap has only a transitory impact on inflation, suggesting that a 1 percentage point 

increase in the output gap raises the inflation rate by 0.1-0.15%. The values of the 

corresponding parameter estimates are slightly lower when agents are assumed to have 

adaptive expectations. Parameter estimates for Bwo and B,d are found to be less 

significant in the trivariate model estimated over the two subsamples. 

Table 5.9: Selected parameter estimates 
Bivariate Model with DSlope 

A Bwo 8(1/1 e" (I) 
RE 1971Q3-2005Q4 -0.098 0.214** -0.184* 0.030* 

(0.118) (0.081) (0.077) [6.528] 
1971Q3·1993Q2 -0.069 0.266** -0.211** 0.055 

(0.081) (0.078) (0.073) [2.461] 
1993Q3·2005Q4 -0.243** 0.170** -0.155" oms 

(0.082) (0.074) (0.069) [3.586] 
AE 1972Q3-200SQ4 ·0.047 0.267** -0.189* 0.078* 

(0.089) (0.084) (0.076) [4.486] 
1972Q3-1993Q2 -0.107 0.242** -0.175* 0.067 

(0.114) (0.091) (0.089) [3.409] 
1993Q3-2005Q4 -0.202" 0.147* -0.137" 0.010 

(0.103) (0.072) (0.068) [1.289] 

Trivariate Model with DSlope 

}" Bwo ewl e" (1) 
RE 1971Q3-200SQ4 -0.046 0.172" -0.148* 0.024 

(0.082) (0.067) (0.066) [2.719] 
1971Q3-1993Q2 -0.031 0.191 >I< -0.161 0.030 

(0.094) (0.090) (0.089) [1.568] 
1993Q3-200SQ4 -0.233** 0.144 -0.132 0.012 

(0.082) (0.080) (0.076) [1.825] 
AE 1972Q3-2005Q4 -0.061 0.152* -0.127* 0.025 

(0.064) [0.065) (0.064) [3.432] 
1972Q3·1993Q2 -0.047 0.161 -0.131 0.030 

(0.085) (0.095) (0.093) [1.674] 
1993Q3-200SQ4 -0.175* 0.122 -0.108 0.053 

(0085) (0.070) (0.068) [1.170] 

Notes: Standard errors are in parentheses; Wald test statistics are reported in squared-parentheses; 

AE = Adaptive Expectation, RE= Rational Expectation. 
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5.8 Conclusions 

In this chapter, methodologies which combine a statistical trend-cycle decomposition 

with macroeconomic relations are used to estimate potential output and the output gap 

for the aggregate Euro Area. The first model used is a bivariate specification of output 

and CPI inflation, in which the inflation equation is based on the Gordon triangle model 

of inflation. The second model is a trivariate specification of output, CPI inflation and 

unemployment. Following Proietti et al. (2007), four alternative output trend 

specifications (i.e., R W, DS, LLT and HP) are applied to both the bivariate and 

trivariate models, giving eight specifications and, in turn, eight output gap estimates. 

Three criteria are used to analyse the reliability of the output gap estimates: the size of 

the revisions, the unbiasedness of the filtered output gap, and inflation forecasting. The 

results show that the bivariate model of output and inflation outperforms the univariate 

model of output decomposition. However, including the unemployment rate in the 

analysis does not significantly improve output gap estimates according to the three 

criteria used. Different specifications of trend output can have a significant impact on 

both a model's goodness of fit and the reliability of output gap estimates. The bivariate 

and trivariate models with the DS output trend imposed provide the best fit to the data 

and give relatively reliable output gap estimates. However, the models with the HP 

restrictions imposed are strongly rejected due to pronounced autocorrelation in the 

residuals. These models also produce less satisfactory output gap estimates. 

Once the models with tlle DS output trend imposed are identified as being the most 

appropriate specifications, they are then used to investigate business cycle moderation. 

To do this, time-varying variances are introduced to both level and cycle disturbances, 

with the structural break set to be 1993Q3, which is detected by a two-regime MS 

volatility model. The likelihood ratio statistics for the null hypothesis of time-invariant 

disturbance variances are strongly rejected in both the bivariate and trivariate models. 

We then examine the effectiveness of monetary policy transmission through the interest 

rate channel for the aggregate Euro Area. The output gap estimates obtained from 

multivariate models with the DS output trend imposed exhibit a significant response to 

changes in real interest rates over the second subsample 1993Q3 to 2005Q4. This 

suggests that the monetary policy pursued by the ECB may have had an impact on 
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stabilising euro area wide economic fluctuations and inflation rates through the interest 

rate channel in the run-up to EMU and thereafter. 
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Appendix AS 

AS.1 State-space Form of Bivariate and Trivariate Models 

For the estimation process, the bivariate unobserved-component model of equations 

(5'!), (5.2), (5.3) and (5.4) is specified in state-space form, which consists of a 

measurement and a transition equation. The measurement equation relates the observed 

variables, Y, , to the state vector of unobserved components, a, . The transition equation 

defines the dynamic behaviour of a, . 

a, = Ta, + Hu" u, - NID(O,I) 

(AS.!) 

(A5.2) 

The state vector a, =(I'"/J"If/"If/,_,,rJT 
contains unobserved components. e, =s)ac 

and u, =b,/a'l,;,/a",k)ak>7]rr/arrjT are disturbances. Z,T,G and Hare time­

invariant matrices containing the model's hyperparameters, 

Z=[~ 0 1 0 :]. T=[~' 
°2>:2 O,,] [ 1] [91 9, ] 7;, O~'I , 0, = ~ 0 0 0 9,7;,= 1 o ' 

°1x2 
TT 

p 

a,! 0 0 0 

0 cr, 0 0 
[e"091 + e,'1 ] [ 0 ] T= G= H= 0 0 a, 0 

p e 9' , 
!ffO 2 (j' £ 

0 0 0 0 

0 0 elflOa" arr 
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1 0 0 

0 1 0 

ao '" Woo + HOLlo is the initial condition of the state vector, where Wo '" 0 0 0 and 

0 0 0 

0 0 1 

0= (fio,!Jo' '0)' containing non-stationary elements in ao, that has a diffuse prior. The 

unconditional distribution of the cyclical components is initiated with H o170. 

In the trivariate model, observed and unobserved components are contained in the 

The disturbances in the measurement and transition equations are et = s'/O"c and 

Z, T, G and H are specified as 

z ~[: 
0 0 0 1 0 0 0 

nT~ 
T,t °4x2 °4x2 °4xl 

1 0 0 BUG Bill 1 0 
°2x4 T" °2x2 °2x! 

°2x4 0 ~'!fl °2xl 
0 0 0 0 0 0 0 

0", TT 
°lx2 1 

P 

1 0 1 0 

0 1 0 1 
, T" =[~1 ~2] T =[~"o I",] T , [e". +O~ 1 G~[: 1 T,t= 

0 0 ~ 0 o 'IIV' I o 'p (J ~' , 
\1/0 2 

0 0 0 
O"C 

0"" 0 0 0 0 0 0 

0 (j'ull 0 0 0 0 0 

0 0 (1'; 0 0 0 0 

0 0 0 all; 0 0 0 

H= 0 0 0 0 O"k 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 CTllk 0 

0 0 0 0 0 0 0 

0 0 0 0 elllOak 0 Un 
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AS.2 The Augmented Kaiman Filter 

The Kalman Filter (KF) is a recursive algorithm that computes the minimum mean 

squared error (MSE) estimate of a, , together with its MSE matrix, based on available 

information up to and including time t. The KF consists of two steps: prediction and 

updating. Initially, the optimal estimates 1',i'-' and a'iH are obtained, based on the 

previous infOlmation set at t -1. Once Y, is observed at time t, a'i'_' is updated using 

the prediction error, v, = Y, - 1',i'-" following the equation: a'i' = a'i'-' + K, v, ' where 

K, is known as the Kalman gain. Depending on the information set used, the filtered 

and smoothed estimates of a, are obtained, defined as a'i' and a'i r ' a'l< is estimated 

based on information available up to time t, while a'i r is based on the full-sample 

period from I to T . 

The augmented KF is used in this chapter as the state components, such as fi" fi, and T, ' 

are non-stationary. The recursive equations of the augmented KF are as follows, 

a'+'i' = Ta'i'_' + K, v,, 

for t = I, ... ,T and with A,io = -Wo, qo = 0 and (so,So)= O. The one-step-ahead 

prediction errors of the observation and state vectors and their corresponding MSE 

matrices are given by, 

F' - F T7S-l VT 
1- t + t I-I I , 
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The updated (filtered) estimates of the state vector and its covanance matrix are 

obtained as, 

atlt = atlt_1 - Atlt_,St-ISt + ~lt_IZT ;;;-1 (vt - V,St-ISt), 

~It = ~It-I -~lt_IZT ;;;-IZ~lt_1 + (Atlt_, + ~lt_IZT ;;;-1 v, ~t-I (At!t_, + ~lt_IZT ;;;-1 v, t 

The smoothed estimates, atlT , are considered to provide a more accurate estimate of 

at than the filtered ones, since they use the full-sample of observations. The following 

equations can be iterated backwards for t = T -I,T - 2, ... ,1 to obtain the smoothed 

estimates, with the initial values rT = 0, RT = 0 and NT = 0 (Bryson and Ho, 1969, de 

Jong, 1989). 

LT ZTF-I 
rr_l = t r t + t VI' 

atlT = at It-I - Atlt_,S;' ST + ~It-IG-I -Rt_IS;I ST ), 

~IT = ~It-I - ~lt-lNt-l~lt_' + (Atlt_1 + ~lt_,Rt-l ~;I (Atlt_1 + ~jt-lRt_' t 

where L'_l = T - KtZT. The smoothed estimates of the disturbances are given by 

HUt =HHT0,,_, -R,_IS;I ST ), 

Get = GG T [;;;-1 (v, - v,S;1 ST )- K,T 0; -R,S;' ST )j 
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AS.3 The Diffuse Likelihood Function 

The discussion above assumes that the model's parameters are known. However, in 

most cases, these parameters are unknown and need to be estimated. Given these 

estimates, the unobserved components in the state vector, a, , can then be computed 

iteratively. Since the initial condition, aD' and the disturbances, {et' U, } , are assumed to 

have multivariate normal distributions, the distribution of 1'; , conditional on past 

infom1ation, is also assumed to be normal. The likelihood function can be obtained 

from the augmented KF using v, and F, based on the prediction error decomposition. 

The diffuse likelihood function is used, as 0 has a diffuse distribution (de J ong, 1991), 

The unknown parameters in the model are stacked in a vector::::. For a given:::: =::::', 
the KF calculates the log likelihood value. The maximum likelihood estimates of the 

parameters can be obtained by maximising the log likelihood with respect to ::::. 

AS.4 Unconditional Forecasting 

The one-step-ahead forecast of the state vector, aT +11'" and the corresponding MSE 

matrix are obtained from the augmented KF at time T, 

Given aT +11'" the unconditional H-step-ahead forecast of the inflation rate and the 

con'esponding MSE can be obtained from iterating on the transition and measurement 

equations as follows, where H = 2,3, .... h . 
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" " T T 
PT+1,IT = TPT+h_lITT + HH 

YT+hIT = ZilT+hIT + OX'+h 

The second element in the vector YT +hlT is the H-step-ahead forecast of the inflation rate. 
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Appendix 85 

Table 85.1: Parameter Estimates and Diagnostics for Univariate 
RW DSlope LLT HP 

er' 
" 169.650 167.360 166.800 0 

er: 
f 0 0.001 0.225 0.929 , 

erk 61.463 62.017 62.564 1486.800 

~ 1 0.651 1 1 
m 0 0.006 0 0 

~l 1.739** 1.735** 1.715** 
(0.012) (0.013) (0.014) 

~2 -0.762** -0.761 ** -0.743** 
(0.022) (0.022) (0.025) 

Dum75Q1 -0.011 ** -0.011 ** -0.011** -0.024 
(0.004) (0.004) (0.004) (0.013) 

Dum74Q4 -0.009* -0.009* -0.009* -0.007 
(0.004) (0.004) (0.004) (0.013) 

Diagnostics and goodness of fit 
Log-likelihood 535.573 542.489 535.880 399.769** 
Q(4): 1.508 1.172 1.435 299.016 ** 
Normality test: 6.295* 4.110 6.562* 23.344** 

Note: Standard errors are in parentheses. The variance parameters are multiplied bylO'. 
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Table B5.2 Parameter Estimates for Bivariate Model (7[,' = 7[, ) 

1971Q3·2005Q4 1971Q3·1993Q2 1993Q3·2005Q4 
Output equation with D510pe 

a' 
" 138.42 177.520 49.718 , 

a; 11.420 7.379 3.928 , , 
a, 64.808 102.201 0.021 
rp 0.831 0.801 0.927 
m 0.006 0.006 0.005 

(A 1.588** 1.666** 1.947** 
(0.026) (0.036) (0.002) 

rp, -0.685** -0.728** -1.000** 
(0.046) (0.064) (0.000) 

P 0.828 0.853 0.999 

27[ I I, 22.035 28.695 27.233 

A -0.069 -0.098 -0.243** 
(0.081) (0.118) (0.082) 

Dum75Q1 -0.012* -0.013" 
(0.005) (0.006) 

Dum74Q4 -0.011** -0.011 ** 
(0.003) (0.003) 

Inflation equation 

a' , 35.455 30.804 18.386 

a' , 5.49E-04 14.920 0.000 

e"o 0.266** 0.214** 0.170** 
(0.078) (0.081) (0.074) 

e,d -0.211 ** -0.184* -0.155* 
(0.073) (0.077) (0.069) 

6N1 0.022* 0.Q15 0.021 * 
(0.010) (0.013) (0.011) 

ON' 0.016 0.026' -0.013 
(0.010) (0.013) (0.012) 

On 0.006* 0.004 0.012*' 
(0.003) (0.004) (0.004) 

On 0.004 0.005 -0.001 
(0.003) (0.004) (0.004) 

Dum75Q1 -0.011 ' -0.011 • 

(0.005) (0.006) 

Wald test for long run neutrality 

6,.(1)=0 6.528" 2.461 3.586 

Diagnostics and goodness of fit 

Log-likelihood 1158.602 771.462 443.062 

Q(4) Yt : 4.947 2.979 7.261 

Q(4) .6.Pt: 9.536 10.866 4.391 

Normality y, : 4.583 0.824 1.044 

Normality .6.Pt : 2.122 1.226 2.821 
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Table B5.3 Parameter Estimates for Bivariate Model (7f,' = if, ) 

1971Q3-2005Q4 1971Q3-1993Q2 1993Q3-2005Q4 

Output equation with DSlope 

(72 

" 142.22 234.95 39.980 

(7; 10.414 4.0433 12.900 , , 
(7-

k 61.078 64.118 5.317 

tP 0.826 0.808 1 
m 0.006 0.006 0 

tP] 1.591 " 1.752** 1.880** 

(0.019) (0.021) (0.008) 

tP2 -0.733** -0.871** -0.955** 

(0.036) (0.014) (0.004) 

P 0.855 0.933 0.977 

27f / I, 16.577 17.805 22.604 

A -0.047 -0.107 -0.202' 
(0.089) (0.114) (0.103) 

Dum7SQ1 -0.011 ' -0.011 ' 
(0.005) (0.007) 

Dum74Q4 -0.011 " -0.011 ** 
(0.003) (0.003) 

Inflation equation 

(72 , 32.445 34.826 20.032 

(72 , 0.000 1.141 0.001 

811'0 0.267** 0.242** 0.147' 
(0.084) (0.091) (0.072) 

elf/1 -0.189' -0.175' -0.137' 
(0.076) (0.089) (0.068) 

6N ] 0.023' 0.016 0.021' 
(0.010) (0.013) (0.013) 

6N2 0.015 0.026' -0.016 
(0.009) (0.012) (0.013) 

6C] 0.007' 0.005 0.013" 
(0.003) (0.004) (0.004) 

60 0.004 0.005 -0.002 
(0.003) (0.004) (0.004) 

Dum75Q1 -0.010' -0.010 
(0.005) (0.007) 

Wald test for long run neutrality 

Bt. (1) = 0 4.486' 3.409 1.289 

Diagnostics and goodness of fit 

Log-likelihood 1127.044 679.566 444.285 

Q(4) Y,: 5.637 3.624 4.648 

Q(4) !lp,: 9.939 11.345 4.339 

Normality y, : 5.627 0.996 0.774 

Normality !lp, : 2.149 0.542 0.279 
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Table 85.4 Parameter Estimates for Trivariate Model (71',' = 71', ) 

197103-200504 197103-199302 199303-200504 
Output equation with DSlope , 

er" 149.080 201.860 50.864 

er' , 4.920 8.476 1.685 , 
erlc 48.178 69.642 0.078 

rP 0.793 0.786 1 
m 0.006 0.006 0 

rP, 1.768" 1.742" 1.951" 
(0.071) (0.070) (0.002) 

rP, -0.818'* -0.805** -0.999** 
(0.129) (0.129) (0.000) 

P 0.904 0.897 0.999 

2" / l, 29.439 25.894 28.481 

A -0.046 -0.031 -0.233'* 
(0.082) (0.094) (0.082) 

Dum74Q4 -0.010 -0.010 
(0.006) (0.007) 

Dum75Q1 -0.012* -0.012* 
(0.006) (0.007) 

Inflation equation 

er' e 24.325 14.540 19.928 

er' , 16.027 30.681 0.000 

evlo 0.172' 0.191* 0.144 
(0.067) (0.090) (0.080) 

evil -0.148* -0.161 -0.132 
(0.066) (0.089) (0.076) 

ON' 0.016 0.005 0.022 
(0.012) (0.015) (0.014) 

ON' 0.015 0.028* -0.007 
(0.012) (0.015) (0.014) 

OC] 0.004 0.002 0.008 
(0.004) (0.004) (0.007) 

On 0.005 0.005 0.001 
(0.004) (0.004) (0.006) 

rPJc 0.397 0.645' 0.272 
(0.311) (0.331) (0.387) 

Dum75Ql -0.010" -0.010** 
(0.003) (0.003) 

Unemployment equation , 
0'111/ 359.700 0.025 0.000 

2 
U llf 63.706 87.954 270.990 , 
(J"~k 0.010 0.011 0.012 
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Table B5.4 Parameter Estimates for Trivariate Model (Continued) 

8"0 ·1.995 -1.445 -0.030 
(1.344) (1.791) (1.287) 

Bill -4.336** -4.934** -2.867* 
(1.251) (1.821) (1.241) 

rP,,, 0.515 0.583* -0.826* 
(0.344) (0.317) (0.369) 

Dum74Q4 0.095** 0.096** 
(0.021) (0.024) 

Dum75Q1 0.099** 0.101** 
(0.026) (0.031) 

Dum75Q2 0.090** 0.092** 
(0.021) (0.026) 

Wald test for long run neutrality 

8,(1)=0 2.719 1.568 1.825 
Diagnostics and goodness of fit 

Log-likelihood 1541.838 940.731 629.744 

Q(4)y,: 0.538 0.360 108.463** 

Q(4)U, : 4.576 3.046 93.770** 

Q(4) I'1p, : 2.074 0.911 140.476** 

Normality y, : 5.492 0.516 5.927 

Normalityu, : 16.946** 7.142* 4.606 

Normality I'1p, 4.286 3.217 2.156 

227 



Table 65.5 Parameter Estimates for Trivariate Model (",,' = 7f, ) 

1971Q3-2005Q4 1971Q3-1993Q2 1993Q3-2005Q4 
Output equation with DSlope , 

er" 152.130 202.57 50.739 

er' < 4.524 8.6691 1.977 , 
er, 43.189 67.472 1.656 

~ 0.787 0.774 1 
m 0.006 0.006 0 

~! 1.846** 1.818** 1.940** 
(0.047) (0.077) (0.002) 

~2 -0.892** -0.875** -0.992** 
(0.094) (0.148) (0.002) 

P 0.945 0.935 0.999 

27r If, 29.402 26.399 28.481 

A. -0.061 -0.047 -0.175* 
(0.064) (0.085) (0.085) 

Dum74Q4 -0.010 -0.009 
(0.006) (0.008) 

Dum75Q1 -0.012* -0.012 
(0.006) (0.007) 

Inflation equation 

er' e 24.533 30.290 20.140 , 
er-, 14.501 13.595 0.000 

8v'0 0.152' 0_161 0.122 
(0.065) (0.095) (0.070) 

Blft! -0.127' -0.131 -0.108 
(0.064) (0.093) (0.068) 

ON! 0.017 0.006 0.022 
(0.012) (0.015) (0.014) 

ON' 0.014 0.027* -0.008 
(0.012) (0.015) (0.015) 

0C1 0.004 0.003 0.007 
(0.004) (0.004) (0.006) 

On 0.005 0.005 0.000 
(0.004) (0.004) (0.006) 

~'e 0.361 0.647 0.307 
(0.263) (0.499) (0.403) 

Dum75Q1 -0.010*' -0.010** 
(0.003) (0.003) 

Unemployment equation 
, 

(J'~'I 393.740 229.39 0.107 , 
O"uf! 56.746 84.903 175.920 

er' 
Ilk 0.010 0.010 0.010 
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Table BS.S Parameter Estimates for Trivariate Model (Continued) 

BIIO -2.117 -1.737 1.142 
(1.614) (1.511) (1.134) 

Bill -4.055* -4.303* -5.276** 
(1.289) (2.395) (1.527) 

rP4" 0.530 0.594* -0.753* 
(0.348) (0.325) (0.477) 

Dum74Q4 0.091 ** 0.094** 
(0.020) (0.030) 

Dum75Q1 0.092** 0.085** 
(0.024) (0.024) 

Dum75Q2 0.084** -0.010** 
(0.019) (0.003) 

Wald test for long run neutrality 

&,.(1)=0 3.432 1.674 1.170 
Diagnostics and goodness of fit 

Log-likelihood 1500.266 897.831 629.443 

Q(4)y,: 0.499 0.379 45.497** 

Q(4)U, : 4.776 3.117 30.146** 

Q(4) b.p,: 1.974 2.210 122.583** 

Normality y, : 4.641 0.164 4.317 

Normality U, : 17.606** 5.522 5.737 

Normality b.p, 3.930 2.996 22.511 ** 
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Epilogue 

The optimality and sustainability of the euro area have frequently been challenged by 

academics and policymakers. Optimal Currency Area (OCA) theory provides the 

theoretical foundations for analysing the appropriateness of a currency area. One 

important prerequisite highlighted in the OCA literature is that member states should 

share a high degree of business cycle synchronisation, as a common monetary policy 

cannot offset country-specific shocks. Evaluating synchronisation of cyclical 

fluctuations is mainly an empirical issue. A large number of empirical studies have 

been carried out to assess the level of cycle synchronisation before and after the 

introduction of the euro. The survey presented in Chapter 1 takes stock of the existing 

literature on evaluating business cycle and growth cycle synchronisation between 

previous members of the ERM and members of the EMU. Chapter 1 concludes that 

there is no consensus on whether or not national cycles are synchronised to the degree 

required for a common monetary policy to benefit all members. There is also no 

consensus as to whether or not there is a positive correlation between more 

synchronised cyclical fluctuations and fixed exchange rate regimes or a monetary union, 

as suggested by the endogenous OCA theory. Therefore, there is room for further 

research at an applied level. This thesis revisited the issue of evaluating business cycle 

synchronisation in the euro area and brought in time-series models that may overcome 

some of the drawbacks inherent in the approaches taken in the existing literature. 

Most studies that measure business cycle synchronisation use turning points identified 

from individual macroeconomic series, such as industrial production and real GDP. 

This contradicts the classical business cycle definition proposed in Burns and Mitchell 

(1946) that a cycle should consist of expansions occurring at about the same time in 

many economic activities, followed by recessions, contractions and revivals. Therefore, 

Chapters 2 and 3 employ approaches that can date business cycle turning points using 

multivariate infonnation. It is hoped that including more variables containing business 

cycle inforn1ation in the dating process may produce more accurate turning points and, 

in turn, improve the accuracy of measuring cycle correlation. Synchronisation of 

business cycles is evaluated between the aggregate euro area, six core EMU countries 

(Austria, Belgium France, Germany, Italy and the Netherlands) and two peripheral 

230 



EMU countries (Spain and Finland). Three non-EMU countries (the UK, the US and 

Canada) are also included in the analysis to benchmark the evolution of synchronisation 

that has occurred in the euro area. 

Chapter 2 applied Stock and Watson's (1989, 1991, 1993) single DF model to four 

coincident macroeconomic time-series, including real GDP, industrial production and 

civilian employment, to estimate a composite index for each country in the analysis. 

This index is a weighted average of four series, and is thus considered to be a more 

appropriate indicator of aggregate economic activity than any individual economic 

variable. Modifications have been made in the DF model when the series are 

cointegrated, where a two-step estimation procedure has been proposed. In the first step, 

the number of cointegrating vectors and values of the cointegrating coefficients are 

determined by ]ohansen's (1995) procedure. In the second step, conditional on the error 

correction tem1S obtained in the first step, the adjustment parameters and parameters in 

the DF model are estimated. Harding and Pagan's (2000, 2001, 2002) BBQ algorithm 

is then employed to date turning points in the composite index. These turning points 

highlight periods of recession and expansion for the overall economy. Synchronisation 

is evaluated in terms of two criteria, the concordance of turning points and the similarity 

of business cycle phases over the whole sall1ple period (1970s to 2000S).1 The changes 

in synchronisation are also evaluated over two subsamples, pre-1991Ql and post-

1991 Q1, as a number of events occurred around this midpoint, such as German 

reunification in October 1990, the ERM crisis in 1992-1993 and the ratification of the 

Masstricht treaty in November 1993, all of which could have been expected to have a 

significant impact on the synchronisation of euro area business cycles. Maps of 

business cycle distances, various concordance indices and a linear regression approach 

proposed by Harding and Pagan are used to evaluate the coincidence of turning points 

between the countries analysed. Four cyclical features, measuring business cycle length, 

amplitude, steepness and welfare gains, first proposed in Harding and Pagan (2000), are 

computed to describe the similarities and differences of business cycle phases. The 

results indicate that the core EMU countries share more synchronised business cycle 

turning points with the aggregate euro area than with the peripheral and non-EMU 

countries. However, this may simply reflect the large weights core EMU countries are 

I Sample periods vary across countries depending on data availability: see Table A2.1 in Chapter 2, 
Appendix A2 for details. 
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assigned to them when constructing the aggregate euro area data. The results also 

suggest that the three non-EMU countries have diverged from the euro area over the 

two subsamples. However, there is no common tendency for euro area members to 

become either more or less synchronised with the aggregate euro area. France and two 

of the peripheral countries, Finland and Spain, show a significant increase in 

synchronisation with the aggregate euro area. However, no further convergence was 

observed between the aggregate euro area and the other four core EMU countries 

(Austria, Belgium, Germany and the Netherlands). This finding is broadly in line with 

Camacho et al. (2006), who conclude that the introduction of the euro had not 

significantly increased synchronisation across the euro area, and that the 

synchronisation among member countries occurred prior to the formation of the EMU. 

A comparison of the four cycle features indicates that significant differences exist in 

business cycle phases among euro area countries, and that the differences across 

expansionary phases have increased over time. This reflects the unbalanced growth 

across euro area countries. Short and mild expansions observed in Germany and Italy 

led to slow economic growth while, on the other hand, the steep and long lasting 

expansion observed in Spain brought huge welfare gains to the Spanish economy. 

Overall, the result obtained in Chapter 2 contradicts the argument proposed in the 

endogenous OCA theory that a monetary union will result in more synchronised 

business cycles across member countries. 

Chapter 3 considers dating business cycle turning points for the same countries analysed 

in Chapter 2 using the MSDF model that incorporates nonlinear dynamics into the 

estimation of the composite index by combining the DF model with the Hamilton (1989) 

MS model. Therefore, the MSDF model allows two stylised facts of the business cycle 

to be analysed - the comovement of economic variables throughout the cycle and the 

asymmetry of recessions and expansions. Three modifications were made to the MSDF 

model according to the properties of the data. First, when variables are found to be 

cointegrated, independently estimated error correction terms are included in the MSDF 

model. This is the same modification which is made to the DF model. Second, an 

additional regime is included in the MSDF model for France, as the French business 

cycle dynamics exhibit three phases, recession, moderate-growth and high-growth, 

rather than the two phases traditionally observed. In general, the MSDF model is more 

successful at identifying business cycle turning points for larger economies, such as the 
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aggregate euro area, Gennany, France, the UK and the US, whose recessions and 

expansions were of roughly constant magnitudes over the sample periods analysed. For 

economies, such as Italy, the Netherlands and Belgium, who exhibited greater volatility 

during the 1970s and early 1980s, the recession intercepts are biased downwards by the 

severe recessions that occurred during these periods. As a result, smoothed regime 

probabilities fail to identify the milder recessions which occurred in the later years. 

Therefore, a third modification is made for these countries by introducing structural 

breaks in the intercepts of the MSDF model to reduce the effect oflarge recessions and 

expansions on the model's parameter estimates. One objective of Chapter 3 is to 

compare cycle dates produced by the MSDF model with those obtained in Chapter 2. 

Although the two approaches are fundamentally different, the cycle dates obtained are 

broadly consistent. One exception is that a recession is identified during the 2000s for 

the aggregate euro area by the MSDF model but not by the BBQ algorithm. As such, an 

increase in cycle correlation between France, two peripheral countries and the euro area 

aggregate, which is shown in Chapter 2, is not identified in Chapter 3. 

The empirical analysis carried out in Chapter 4 investigates growth cycle 

synchronisation in seven major euro area countries, Austria, Belgium, France, Gennany, 

Italy, the Netherlands and Spain, during the period from 1980Ql to 2007Q3. Two 

univariate trend-cycle decomposition methodologies, the Beveridge-Nelson (1981) 

decomposition and Harvey and Trimbur's (2003) unobserved component model, are 

used to identify the trend and cyclical components of real GDP for each country. The 

cycles extracted from the two univariate approaches vary significantly in both cycle 

period and amplitude. This confinns the argument in Canova (1998) that the use of 

different trend-cycle decomposition methodologies may influence the results obtained. 

The average correlation calculated from the BN cycles is found to be smaller than the 

corresponding correlation estimated using cycles extracted from the unobserved 

component model. The main focus of this chapter is to evaluate cycle synchronisation 

within a multivariate setting. The multivariate extension of the BN decomposition with 

common factor restrictions imposed is employed to accomplish this task. The common 

factor restrictions include both long-run restrictions imposed by the presence of 

common trends (Engle and Granger, 1987; Stock and Watson, 1988b; Johansen, 1995), 

and short-run restrictions imposed by common cycles (Vahid and Engle, 1993; Hecq et 

al., :1.000, 2006). The number of common trends in the seven national GDP series is 
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deternlined by Johansen's (1995) cointegration test. Various types of common and 

codependent cycles among the GDP series are also investigated by using canonical 

correlation-based tests, GMM and likelihood ratio statistics (Vahid and Engle, 1993, 

1997; Hecq et al. 2000, 2006; Schleicher, 2007). The lllnnber of common and 

codependent cycles provides an indication of the level of growth cycle synchl'Onisation. 

The results produced from the multivariate approach indicate the presence of 

heterogeneous and codependent growth cycles. This contradicts the OCA criterion that 

members of a monetary union should share a high degree of growth cycle 

synchronisation. 

The appropriateness of common cycle restrictions is further investigated by comparing 

out-of-sample forecasting performance between more parsimonious models imposed 

with additional common cycle restrictions and a less restricted model with only 

common trend restrictions imposed. The results show that the fonner outperform the 

latter for all countries over all forecast horizons. Finally, Chapter 4 assesses the relative 

importance of permanent and transitory shocks to total output variance using the 

forecast error variance decomposition proposed by Issler and Vahid (2001). For short­

term forecasts, cyclical movements contribute more to total output variance than the 

trend components. Over longer time periods, however, it is the trend components that 

make the greatest contribution. 

Chapter 5 focuses on the euro area wide economy by investigating three issues 

concerning the euro area output gap; the reliability of output gap estimates, business 

cycle moderation, and the effectiveness of the monetary policy transmission through the 

interest rate channel. As the output gap is unobserved, it has to be estimated from 

observed data, such as output or factors inputs. Given the use of different methodologies, 

estimated cyclical components can vary significantly in cycle length and amplitude 

(Canova, 1998). Therefore, it is important to have certain criteria to judge which model 

provides the most reliable output gap estimates. Chapter 5 first investigates the 

reliability of output gap estimates obtained from various multivariate VC models that 

combine a statistical output decomposition with macroeconomic relations, such as the 

Phillips curve and Okun's law. In particular, a bivariate model of output and inflation 

and a trivariate model of output, inflation and unemployment are estimated. Both 

models have four alternative output trend specifications imposed and thus eight output 
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gap estimates are produced. The reliabili ty of these estimates is assessed against three 

criteria: the size of subsequent revisions to the data, the unbiasedness of the filtered 

estimates, and inflation forecasting. The results indicate that including the 

unemployment rate in the bivariate model of output and inflation does not significantly 

improve output gap estimates according to the three criteria used. However, different 

specifications of the output trend can have a significant impact on both model goodness 

of fit and the reliability of output gap estimates. The bivariate and trivariate models 

with the damped slope (DS) output trend imposed provide the best fit to the data and 

give relatively reliable output gap estimates. However, the models with the Hodrick­

Prescott (HP) restrictions imposed are strongly rejected due to severe auto correlation in 

the residuals. These models also produce less satisfactory output gap estimates. 

Once the models with the DS output trend imposed have been identified as being the 

most appropriate specifications, they are then used to investigate business cycle 

moderation. To do so, time-varying variances are introduced to both level and cycle 

disturbances, with the date of the structural break set at 1993Q3, which is detected by a 

two-regime MS volatility model. The likelihood ratio statistics for the null hypothesis 

of time-invariant distnrbance variances strongly reject in both the bivariate and 

trivariate models. Finally, Chapter 5 examines the effectiveness of the interest rate 

channel for the euro area. The first-differences of the real interest rate are inserted into 

the output equation of the bivariate and trivariate models with the DS output trend 

imposed. Both models are re-estimated over the full-sample and two subsamples, pre-

1993Q3 and post-1993Q3. The choice of 1993Q3 is consistent with the date when 

business cycle moderation began in the euro area. The output gap estimates exhibit a 

significant response to changes in real interest rates during the second subsample. This 

suggests that the monetary policy pursed by the ECB may have had an impact on 

stabilising euro area wide economic fluctuations and inflation rates through the interest 

rate channel in the run-up to EMU and thereafter. 

The results obtained from evaluating synchronisation in the euro area raise concerns 

about the appropriateness of a common monetary policy. A significant deb'Tee of 

disparity in cyclical fluctuations still occurs across countries and there is no clear sign 

as to whether the differences will gradually decrease for countries who participate in the 

euro area. Unbalanced economic perfonnance across EMU member states is another 

235 



striking feature observed in the results. A number of the larger economies, such as 

Germany, who suffered more severe downturns and sluggish growth for several years 

during the 2000s, required more expansionary monetary policy to boost growth. On the 

other hand, smaller economies, such as Spain, which combined high growth and high 

inflation during this period, needed tighter monetary conditions. Overall, members at 

different phases of their business cycles have diverging monetary requirements that 

complicate the implementation of a common monetary policy for the euro area wide 

economy. The findings of this thesis suggest the need for structural reforms to 

introduce greater flexibility in product and labour markets so as to increase the 

adjustment speed of business cycle phases when member countries face economic 

uncertainty in the future. More effective short term use of fiscal policy is also needed. 

This does not necessarily have to contradict the Stability and Growth Pact (SGP), as the 

Pact aims to promote medium to long teml fiscal stability in member states. A greater 

use of national fiscal policy in the short term during both expansions and contractions 

may help to reduce the degree of cyclical divergence. As such, a future challenge for 

the EMU is to balance the need to respect national sovereignties with co-ordinating 

policies to achieve strong economic growth and stable inflation in the euro area. 

The last empirical chapter of this thesis, Chapter 5, focuses on the euro area wide 

economy. The responsiveness of the output gap and inflation rates to changes in real 

interest rates is investigated using the unobserved components framework. The results 

suggest that a common monetary policy had an impact on stabilising area wide output 

fluctuations and inflation rates. Chapter 5 sets out further research which could be 

undertaken to analyse monetary policy transmission for the eure area in an open 

economy framework, in which both interest rate and exchange rate channels are 

considered. It is widely accepted that, in an open economy, reductions in output and 

inflation induced by an increase in short-term nominal interest rates can be accelerated 

and amplified by the adjustment of exchanges rates. Although there has been a growing 

body of literature analysing monetary transmission mechanisms for individual member 

states and the euro area as a whole using a variety of techniques (structural models, 

VARs, panel estimation, DSGE models), and using data ranging from area-wide, 

national aggregates to disaggregate data at industrial-level (Mojon and Peersman, 2001; 

Van Eis et al., 2002; Angeloni el ai .. 2002; Angeloni and Ehnnann, 2003), the 

multivariate unobserved components model has rarely been applied in the context of 
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analysing monetary policy transmission. However, this model is well suited for this 

task. Applying the multivariate unobserved components model will enable us not only 

to analyse the impact that changes in interest rates and exchange rates have on output 

and inflation, but also to reveal the unobserved features of an economy, such as the 

output gap, core inflation and the equilibrium exchange rate. This proposed future 

research has been awarded an ESRC postdoctoral fellowship and will be carried out at 

the University of Glasgow between October 2009 and 2011. 
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