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Abstract

This thesis revisits the issue of business cycle synchronisation in the euro area by
utilising time-series models that may overcome some of the drawbacks in the existing
literature. Two major contributions are made to the existing literature of evaluating
cycle synchronisation.

First, instead of identifying tuming points from individual macroeconomic time-
series, as carried out in most studies, this thesis obtains turning points from multivariate
information. It is hoped that including more variables containing business cycle
information in the dating process may produce more accurate turning points and, in turn,
improve the accuracy of measuring cycle correlation. In doing so, both parametric and
non-parametric business cycle dating procedures are used. These include the quarterly
Bry-Boschan (BBQ) algorithm, a single dynamic factor model and the Markov-
switching dynamic factor model. _

Second, unlike the traditional approach that measures growth cycle synchronisation
in the euro area by calculating pairwise cycle correlations, this thesis analyses the
degree of growth cycle comovement within a multivariate setting by using a VAR
model with cointegration. The advantages of this approach are two-fold. Firstly, it does
not require prior filtering or decomposition of data. Secondly, as it is based on a VAR,
dynamic interactions between the variables can be modelled. The common trends and
cycles in the output of seven major euro area countries are investigated. A number of
hypotheses on various types of common/codependent cycles among the seven national
GDP series are tested using canonical correlation-based tests, GMM and likelihood ratio
statistics. The number of common/codependent cycles indicates the level of growth
cycle synchronisation. The multivariate Beveridge-Nelson (BN) decomposition with
common trend and cycle restrictions imposed are then utilised to provide a detailed
investigation of the trend and cyclical movements in the output series.

Overall, the results obtained from ineasuring business cycle and growth cycle
synchronisation in the euro area contradict the Optimum Currency Area (OCA) criterion
that members of a monetary union should share a high degree of cycle synchronisation.
Furthermore, variations in economic performance are observed across the euro area,
which may lead to diverging monetary policy requirements, and may consequently
reduce the appropriateness of having a common monetary policy.

Parts of the thesis also focuses on the euro area wide economy by looking at three
issues concerning the aggregate euro area output gap using the multivariate unobserved
components model. The reliability of the different output gap measures obtained from
various unobserved components models 1s assess according to three criteria: the size of
subsequent revisions to the data, the unbiasedness of the filtered estimates, and inflation
forecasting. Results show that the models with the damped slope output trend imposed
provide the best fit to the data and give relatively reliable output gap estimates. These
models are then used to analyse the degree of business cycle moderation and the impact
that changes in real interest rates have on output and inflation.

JEL classification: C32; C52; E32, E52.
Keywords: Synchronisation, Turning points; Markov-switching; Common factor;

Common cycle; Codependent cycle; The output gap; Unobserved components; State-
space model; Augmented Kalman filter.
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Introduction

Economic and menetary union (EMU) in Europe has resulted in an increase in research
into business cycle synchronisation at both the national and regional level. It has been
argued by Optimum Currency Area (OCA) theory that a high degree of business cycle
synchronisation between member states is crucial for the smooth functioning of the
EMU. As the EMU permanently removes national monetary and exchange
independence and constrains the use of national fiscal policy, as set out in the Stability
and Growth Pact (SGP), a common monetary policy acts to stabilise output fluctuations
and inflation rates in the euro area as a whole. Highly synchronised national business
cycles will facilitate the implementation of monetary policy, as the stance and timing of
a common policy can be clearly defined. However, de-synchronisation will complicate
the operation of the EMU, as countries in different phases of their business cycle have
different monetary requirements. Business cycle synchronisation is not static and
instead is evolving over time. As such, the endogenous OCA theory argues that the
EMU may by itself spur the emergence of a common euro area business cycle due to
economic and financial integration and more coordinated policies. However, the
“Krugman hypothesis” holds the opposite view that the EMU will lead to cross-country

specialisation and therefore less synchronisation.

Since evaluating business cycle synchronisation is mainly an empirical issue, a large
number of studies have been undertaken to measure the degree of business cycle
synchronisation in the euro area. These studies can be broadly divided into two groups,
according to whether the aim is to evaluate the synchronisation of classical cycles or
growth cycles. Considerably more studies focus on growth cycles than classical cycles.
This is, in part, because when growth cycles are separated from trend growth they are
stationary series, and most measures of synchronisation require stationary series as
inputs. However, disagreement remains over how the trend should be identified and
estimated. A range of parametric and non-parametric approaches, such as various
structural time-series models and the Hodrick-Prescott (HP) and band-pass filters, are
extensively applied to macroeconomic variables to obtain their trend and cyclical

components. However, the estimated cyclical components vary depending on the




decomposition methodologies used (Canova, 1998). This may, in turn, give mixed
results when measuring cycle correlations. The second group of studies avoid trend and
cycle decomposition and define classical cycles in terms of turning points of the original
data series. Two fundamentally different approaches, the Markov-switching model and
variants of the Bry and Boschan (1971) algorithm, are widely used in the literature to
date turning points. The pros and cons of these approaches are discussed in Harding
and Pagan (2003) and Hamilton (2003). In addition, the use of different measures of
synchronisation contributes to the mixed results on cycle correlation. Different cycle
measures are used to indicate the degree of business cycle synchronisation, including
the bivariate cotrelation coefficient (Artis and Zhang, 1997, 1999), an aggregated
correlation coefficient (Camacho et al., 2006), a dispersion measure proposed by Artis,
Marcellino and Proeitti (2004a), the various concordance indices in Harding and Pagan
(2002), and so on. Furthermore, in addition to the different methodologies used to
identify business cycles and various measures of synchronisation, the choice of
economic variables can also have a significant impact on the conclusions drawn when
measuring cycle synchronisation. The literature survey presented in Chapter 1
concludes that there is no consensus on whether business cycle synchronisation in the
euro area has reached a level where a common monetary policy can benefit all member
states. There is also no consensus on whether fixed exchange rates or the introduction

of the euro have had an effect on increasing ¢yele synchronisation.

This thesis revisits the issue of business cycle synchronisation in the euro area by
bringing time-series models that may overcome some of the drawbacks in the existing
literature of evaluating cycle synchronisation. Two major contributions are made to the
existing literature of evaluating cycle synchronisation. First, most studies, inciuding
Harding and Pagan (2002), Garnier (2003} and Artis, Marcellino and Proietti (2004a),
measure classical cycle synchronisation using turning points identified from individual
macroeconomic seties, such as industrial production and real GDP. However, analysing
univariate economic variables 1s not optimal for dating business cycle turning points.
This is not only because there is no variable that can well represent aggregate economic
activity, but also because the comovement of many economic variables throughout the
cycle cannot be analysed in a univariate framework. Therefore, Chapters 2 and 3
employ the alternative dynamic factor (DF} models, proposed by Stock and Watson
(1989, 1991, 1993) and Diebold and Rudebusch (1996), to construct a composite index
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that is a weighted average of a number of coincident macroeconomic variables. It is
hoped that including more relevant variables may produce more accurate turning points

and, in turn, improve the accuracy of measuring cycle correlation.

Second, most studies of growth cycle synchronisation in the euro area have calculated
the correlation between each pair of estimated cycles. Univariate trend-cycle
decomposition methodologies, such as the HP and band-pass filters, are extensively
used to extract cycles from industrial production, real GDP or expenditure categories of
GDP. These filters are known to produce spurious cycles for non-stationary data and,
as such, the results are sensitive to the decomposition methodology used (Canova, 1988;
Cogley and Nason, 1995; Murray 2003; Doorn, 2006). To overcome this issue, Chapter
4 evaluates the degree of growth cycle synchronisation using a multivariate framework
which does not require prior filtering or decomposition of the GDP series. The common
trends and cycles in the GDP series of seven major EMU countries are investigated, A
number of hypotheses on various types of common cycles and codependent cycles are
tested using canonical correlation-based tests, Generalised method of moments (GMM)
and likelthood ratio statistics (Vahid and Engle, 1993, 1997; Hecq et al. 2000, 2006;
Schleicher, 2007). The number of common and codependent cycles between countries
provides an indication of the level of growth cycle synchronisation. Furthermore,
Chapter 4 employs the multivariate Beveridge-Nelson decomposition with common
trend and cycle restrictions proposed by Proietti (1997) and Hecq er «l. (2000) to
decompose the seven GDP series into their trend and cyclical components
simultaneously. The advantages of this decomposition are two-fold. Firstly, dynamic
interactions between the variables can be modelled, as the technique is based on a VAR.
Secondly, if common feature restrictions are imposed correctly, the estimation
efficiency and forecasting ability of a model will improve. Comparing out-of-sample
forecasting performance across different models suggests that more parsimonious
models, with additional common cycle restrictions imposed, outperform the less
restricted model, with only common trend restrictions imposed, by producing smaller

forecast errors.

The outline of the thesis is as follows. Chapter 1 first reviews the methodologies used
to date classical cycles and to identify trends and cycles in macroeconomic variables, as

these are the foundations for any business cycle related analysis. Various measures of
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synchronisation are then discussed, ranging from simple correlation coefficients fo
complex model-based approaches. Finally, Chapter 1 takes stock of the existing
literature on evaluating business cycle and growth cycle synchronisation between
previous members of the Exchange Rate Mechanism (ERM) and members of the EMU.
The main objective of Chapter 1 is to identify avenues of research that have not been

sufficiently explored in the existing literature.

The empirical analysis of this thesis begins in Chapter 2 and ends in Chapter 5.
| Chapters 2, 3 and 4 evaluate the synchronisation of classical cycles and growth cycles
among EMU member states. Chapter 5 focuses on the euro area economy as a whole by

analysing three aspects of the aggregate euro area output gap.

In particular, Chapter 2 evaluates the degree of business cycle synchronisation between
the aggregate euro area and its member countries from the 1970s to the 2000s. Three
non-EMU countries (the UK, the US and Canada} are also included in the analysis so as
to benchmark the changes of synchronisation that have occurred in the euro area.
Instead of using individual economic variables to represent aggregate economic activity,
Stock and Watson’s (1989, 1991, 1993) single DF model is applied to four quarterly
coincident macroeconomic variables, including real GDP, industrial production and
unecmployment, to estimate a composite index. Business cycle turning points of this
index can then be identified using Harding and Pagan’s (2000, 2001, 2002) BBQ
algorithm. The concordance of turning points and the similarity of business cycle
phases are used to measure the degree of synchronisation. Overall, Chapter 2 does not
find a common tendency for euro area members to become either more or less
synchronised over time. Furthermore, variations in economic performance observed
across the euro area may lead to diverging monetary policy requirements and,
consequently, reduce the appropriateness of héving a common monetary policy for all

members.

Chapter 3 employs Diebold and Rudebusch’s (1996) Markov-switching dynamic factor
{MSDF) model, based on Kim’s (1994) approximate maximum likelihood estimation, to
date business cycle turning points for the same countries that were analysed in Chapter
2. The MSDF model combines Stock and Watson’s single DF model and Hamilton’s

(1989) univariate Markov-switching model, and can thus incorporate two stylised facts
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of the business cycle; the comovement of economic variables throughout the cycle and
the asymmetry between business cycle phases. Compared to the dating procedure used
in Chapter 3, the MSDF model produces a composite index as well as smoothed regime
probabilities to indicate business cycle turning points, This model has been extensively
applied to US data (Kim and Yoo, 1995; Chauvet, 1998; Kim and Nelson, 1999¢), but
less often applied to the euro area countries.! The results obtained in Chapter 3 indicate
that the MSDF model is more successful in distinguishing different regimes for larger
economics (i.e., Germany, France and the US) whose business cycle phases were of
roughly constant magnitudes over the sample periods analysed. However, Belgium,
Italy and the Netherlands show greater volatility during the 1970s and early 1980s than
in more recent years. MSDF models which lack a mechanism to account for business
cycle moderation fail to produce reasonable parameter estimates and smoothed regime
probabilities for these countries. Therefore, structural breaks are introduced to the
intercepts of the MSDF model to reduce the impact that large recessionary and

expansionary phases have on the model’s parameter estimates.

Chapter 4 investigates growth cycle synchronisation in seven major euro area countries,
Austria, Belgium, France, Germany, Italy, the Netherlands and Spain, during the period
1980Q1 to 2007Q3. Two univariate structural time-series models, the Beveridge-
Nelson (1981) decomposition and Harvey and Trimbur’s (2003} unobserved component
model, are first used to identify the trend and cyclical components for each GDP series.
The two approaches yield starkly different results. This confirms the argument in
Canova (1998) that the use of different trend-cycle decomposition methodologies may
influence the results obtained. The main focus of Chapter 4 is to evaluate
synchronisation using a multivariate approach that identifies the number of common
trends and cycles in the seven national GDP series. The number of common trends, as
determined by Johansen’s {1995) cointegration test, constrains the maximum number of
common and codependent cycles in the seven GDP series. Adhering to these
constraints, the presence of three types of common cycles (i.e., strong, weak and mixed
forms} and codependent cycles are examined. The multivariate BN decomposition with

common trend and common cycle restrictions imposed is then used to analyse the trend

! Chauvet and Yu (2006) proposed a MSDT model with a filter that minimises the occurrence of false
turning points. They applied this modified MSDF to both the aggregate measures of G7 and OECD
countries and individual G7 countries including Germany, France and Italy,
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and cyclical movements in the GDP series. The relative importance of permanent and
transitory shocks to the variance of total output is assessed using the forecast error
variance decomposition proposed by Issler and Vahid (2001). The results indicate that,
in the short-term, the majority of the output variance can be attributed to cyclical
fluctuations rather than the trend components. Over longer time periods it is the trend

components of output that explain the majority of output fluctuations.

Chapter 5 analyses the output gap for the EMU as a whole by looking at the reliability
of output gap estimates, the degree of business cycle moderation and the effectiveness
of monetary policy transmission through the interest rate channel. The output gap, as a
proxy of excess demand, is widely used but is notoriously difficult to measure as it is a
latent variable, Estimates of the output gap can vary significantly depending on the
decomposition methodology used. Therefore, it 1s important to set up criteria to judge
which model provides the most reliable output gap estimate. Chapter 5 compares the
reliability of various output gap estimates obtained from multivariate unobserved

components models that incorporate output decomposition with other economic
variables carrying relevant business cycle information, such as the inflation rate and the
unemployment rate, A bivariate model of output and inflation and a trivariate model of
output, inflation and unemployment are estimated. Both models are imposed with four
alternative output trend specifications: damped slope (DS), local linear trend (LLT),
random walk (RW) and the Hodrick-Prescott (HP) trend. Estimates of the output gap
are assessed against three criteria; the size of subsequent revisions to the data, the
unbiasedness of the filtered estimates, and infiation forecasting. The results show that
the bivariate model of output and inflation outperforms the univariate model of output
decomposition. However, including the unemployment rate in the analysis does not
significantly improve output gap estimates according to the three criteria used.
Different specifications of output trend can have a significant impact on both a model's
goodness of fit and the reliability of its output gap estimates. The bivariate and
trivariate models with the DS output trend imposed provide the best fit to the data and
give relatively reliable output gap estimates. However, models with the HP restrictions
imposed are strongly rejected due to strong autocorrelation in the residuals. The
bivariate and trivariate models with the DS output trend imposed are found to be the

most appropriate specifications in the analysis. These models are then used to




investigate business cycle moderation and the effectiveness of the interest rate channel

for the euro area,

Finally, the Epilogue concludes this thesis, drawing together the research from the
substantive chapters, Further research prospects are also illustrated. This thesis mainly
aims to improve the existing literature on evaluating euro area cycle synchronisation by
applying time-series models that may overcome some of the drawbacks in the existing
literature. The responsiveness of the output gap and inflation rates to changes in real
interest rates are also assessed for the euro area wide economy by using the most

appropriate unobserved components models in the analysis.



Chapter 1 - A Survey of the Literature

1.1 Introduction

The optimality and sustainability of EMU has been frequently challenged by both
academics and policymakers. Since monetary integration permanently removed
national monetary independence, member states are unable to use monetary policy to
protect themselves from asymmetric shocks. Given the rigidities observed in most
European labour markets, a greater use of national fiscal policy is required to
compensate for this lack of national monetary instruments. However, within EMU, the
use of fiscal policies is also constrained by the Stability and Growth Pact (SGP)*. As
such, there remains a concern as to whether a common monetary policy can stabilise

output fluctuations and inflation rates for the euro area as a whole.

Optimal Currency Area (OCA) theory is frequently used to provide a theoretical
foundation for analysing the suitability of a currency union formed by a group of
sovereign countries who forego monetary and exchange rate independence. The theory
of OCA, which was established by Mundell (1961), McKinnon (1963) and Kenen
(1969), defines conditions and properties under which a currency union can operate
smoothly. One key criterion highlighted in the OCA theory is that member countries
should share a high degree of business cycle synchronisation to ensure that a common
monetary policy can stabilise area wide economic fluctuations and inflation.” Divergent
business cycles across members of a monetary unton will lead to different monetary
requirements. For example, a country in the downward phase of its business cycle
would require an expansionary monetary policy to stimulate economic growth, whereas

a country in the upward phase of its cycle would prefer tighter monetary policy to

* The SGP was adopted in 1997 and requires that national government budget deficits are not higher than
3% of GDP and that national government debt should be lower than 60% of GDP.

3 Other criteria proposed in the OCA theory include labour mobility (Mundell, 1961). economic openness
(McKinnon, 1963), industrial diversification (Kenen, 1969), price and wage flexibility (Fleming, 1971,
Corden, 1972), inflation rate similarity (Haberler, 1970; Fleming, 1971; Ishiyama, 1975) and fiscal and
political integration (Haberler, 1970; Mintz, 1970; Tower and Willett, 1976; Cukierman et al., 1992), Itis
widely accepted that if countries share these properties, their output fluctuations and inflation rates can be
stabilised through those mechanisms, instead of via national monetary and exchange rate adjustments.




prevent the risk of increasing inflation. The establishment of EMU has further
stimulated the debate surrounding endogenous OCA theory, which states that operating
in a monetary union helps member countries eventually become optimal members of
that monetary union even if they were not before (Frankel and Rose, 1998). If this
theory is true, we would expect EMU by itself will generate a greater degree of business

cycle synchronisation in member countries.

Many articles have been written on the issue of whether business cycles in the euro area
have become more synchronised, as argued by endogenous OCA theory. Theoretical
arguments in this field remain between endogenous OCA theory (the European
Commission, 1990; Frankel and Rose, 1998) and the “Krugman hypothesis” (Krugman
and Venables, 1993). The former suggests that the operation of monetary union should
generate synchronised cycle comovements between members due to greater trade
intensity and financial market integration. However, the latter argues that cycle
divergence might occur as the result of further economic integration, This is based on
trade theory and economies of scale and agglomeration effects. As further integration
may induce greater specialisation, sector-specific shocks may eventually become

region-specific shocks, causing diverging business cycles in the European countries,

Given different theoretical viewpoints, various empirical analyses have been undertaken
to measure the degree of business cycle synchronisation in the euro area, but no
consensus has been reached. Differences in the results can be attributed to the use of
various imacroeconomic variables over different sample periods and different
methodologies to identify business cycles and measure cycle synchronisation. It is
worth noting that another strand of empirical studies attempts to identify the potential
determinants of cyclical convergence. Many factors have been suggested that may
drive business cycle synchronisation. These include intemational trade, financial
market integration, exchange rate regimes, technology spillovers, and economic
structures. However, it is fair to say that no agreement has yet been reached on this

issue either.

As the main focus of this thesis is to provide business cycle measures and to evaluate
the degree of cycle synchronisation in the euro area, this chapter provides a review of

the literature on dating classical cycle turning points and modelling trends and cycles in




macroeconomic time-series. This is essential since, before any empirical analysis of
business cycles can take place, economists need to define both what is meant by the
term ‘business cycle’ and how business cycle information can be identified from
historical data. Studies measuring euro area business cycle synchronisation are also

surveyed in this chapter.

The remainder of this chapter is organised as follows. Section 1.2 discusses two broad
definitions of business cycles. Models used to identify business cycle turning points are
reviewed In Section 1.3. Section 1.4 outlines the main trend and cycle decomposition
methodologies for growth cycle studies.  Section 1.5 discusses measures of
synchronisation. The main findings in the literature of business cycle and growth cycle

synchronisation in the euro area are summarised 1n section 1.6. Section 1.7 concludes.

1.2 Classical business cycles and growth cycles

A distinction has to be made between (classical) business cycles and growth (deviation)
cycles. The empirical analysis of business cycles has a long intellectual history. The
conventional technique used to identify business cycles was developed by researchers at
the National Bureau of Economic Research (NBER) (Mitchell, 1927; Burns and
Mitchell, 1938; Burns and Mitchell, 1946). In the influential study by Burns and
Mitchell (1946), the following definition of the business cycle is proposed:

A cycle consists of expansions occurring at about the same time in many economic
activities followed by similarly general recessions, contractions, and revivals which
merge into the expansion phase of the next business cycle; This sequence of changes is
recurrent but not periodic; in duration business cycles vary from more than one year to
ten or twelve years; They are not divisible into shorter cycles of similar character with

amplitudes approximating their own (Burns and Mitchell, 1946, P. 3).

This definition explains what constitutes a business cycle and the duration of a cycle.
However, questions remain over how to identify business cycle turning points from
historical data, how to quantify the co-movement of a specific time-series with the

aggregate business cycle fluctuations, and what are the most appropriate economic
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variables to use in identifying the business cycle. Given the definition quoted above,
the NBER business cycle dating committee produced a set of statistical measures,
known as specific cycles and reference cycles, to identify the US business cycle turning
points from movements in output, income, employment and trade volumes. The periods
of expansions and recessions can be highlighted once turning points are identified. A
peak indicates the end of an expansion and the beginning of a recession, and vice versa
for a trough. Recessions are the periods of absolute declines in output and other
measures of economic activity. Recessions are characterised with the so-called ‘three
Ds’, which denotes that a recession should be sufficiently long (duration), involve a
substantial decline in economic activity (depth), and be spread widely across the
economy (diffusion). However, the NBER business cycle dating approach is often

criticised due to its lack of theoretical foundation (Koopmans, 1947).

Unlike the conventional business cycle definition outlined above, more recent studies
have analysed fluctuations in economic time-series around their long-run trend growfh.
Deviations from the long-run trend are defined as the growth cycle (the output gap). In
this context, expansions and recessions are periods of increasing and decreasing growth
(Zamowitz, 1985). Compared to business cycle phases, where the average recession 18
considerably shorter than expansions due to underlying trend growth, growth
expansions and recessions have approximately the same duration. The growth cycle is
usually considered to be an indicator of inflationary pressures. As central banks’ main
objective is to keep inflation stable, knowing the growth cycle provides them with

important information on the build-up of inflationary pressures in the economy.

In contrast to the ‘measurement without theory’ statistical methods used o analyse the
business cycle, growth cycle studies are directly derived from business cycle theories.
The debate as to whether fluctuations in macroeconomic time-series are dominated by
short-term cyclical fluctuations or long-term trend growth has profound methodological
implications. Both traditional Keynesian and Monetarist theories hold the view that
fluctuations in output are driven by demand shocks, and are temporary deviations from
potential output growth. This view is the foundation for traditional trend-cycle
decompeosition methodologies, which use linear or polynomial detenministic regression
equations to eliminate the trend component in a series. However, the use of a linear

time trend is challenged by Klein and Kosobud (1961), as it seems implausible that

11




economic growth can be well approximated by a constant deterministic trend given the
presence of structural changes, varying rates of production factor accumulation and
technical innovations. It is therefore reasonable to consider breaks in the trend or even
period-by-period random or stochastic trends. The presence of trend variability is
supported by Granger (1966), who shows that the typical spectral shape of a
macroeconomic series is monotonically decreasing, implying that fluctuations in a
series are dominated by very low frequency components (the trend component), rather
than business cycle frequency components. Furthermore, Beveridge and Nelson (1981)
and Nelson and Plosser (1982) initiated the debate on whether macroeconomic time-
series are trend-stationary (TS) or difference-stationary (DS). Beveridge and Nelson
(1981) propose a trend-cycle decomposition methodology by assuming that the
decomposed series is generated by a DS process. Nelson and Plosser (1982) employ the
Dickey-Fuller (1979) test to examine whether a set of US macroeconomic time-series
are indeed TS or DS, and find the evidence favours the latter. This study was followed
by Campbell and Mankiw (1987a, b) and Stock and Watson (1988a), who all support
the view that output is best modelled as a DS process. The presence of stochastic trends
confirms the finding of Granger (1966) that fluctuations in macroeconomic time-series
are mainly attributed to fluctuations of the long-term trend. More importantly, this
result supports the Real Business Cycle (RBC) theory over traditional Keynesian and
Monetarist theories, as the transitory (monctary) shocks are considered to be less
important in determining the movement of the series than permanent shocks. However,
not all researchers are convinced by the stochastic trend view of macroeconomic
dynamics. Rudebusch (1992) and DeJong and Whiteman (1991), who re-examine this
issue by applying alternative techniques to the Nelson and Plosser data set, conclude
that the failure to rgject the null hypothesis of DS against the alternative of TS is due to
the low power of the conventional integration tests.* In addition, Perron (1989) shows
that the DS hypothesis may be rejected if the trend is modelled as a nonlinear function
of time, where shifts in the deterministic trend are caused by infrequent permanent

shocks.

4 Rudebusch (1992) calculates small-sample distributions for various unit root test statistics and concludes
that the unit root tests ofien fail to distinguish between DS and TS. This finding is consistent with
DeJong and Whiteman (1991), who adopt a Bayesian perspective to identify the priors needed for the DS
and TS representations and find that for most macroeconomic series the TS hypothesis is generally
supported.




Controversy also remains over whether the trend and cycle components are correlated.
Separation of trend and cycle components is only justifiable if one can clearly
distinguish between the factors determining long-run growth and those determining
cyclical fluctuations. The RBC theory attempts to remove the dichotomy between trend
and cycle, as it suggests that long-run economic growth and short-run cyclical
fluctuations are accounted for by the same productivity shock. On the other hand, the
trend-cycle dichotomy is supported by most Keynesian and rational expectation models.
For example, sophisticated Keynesian macroeconomic models, such as the Fair model
(Fair, 1994), incorporate a production function to model output trend growth. In
addition, rational expectations with misperception models, such as Lucas (1973) and
Olun (1980), have monetary impulses that move output temporarily away from the
potential trend growth. In these models, aggregate demand shocks are thought to
temporarily drive the economy from its natural growth rate, while this natural growth
rate 1s determined by the capital stock, the labour force and technology in long-run

equilibrium.

Given the controversy that remains over the major business cycle theories, various trend
and cycle decomposition methodologies have been proposed, in which the trend
-components are modelled in either a stochastic or deterministic manner, and are either
correlated or uncorrelated with the cycle. In the next section, the major methodologies
used to identify business cycle tumning points are reviewed. Section 1.4 then surveys

the main techniques used in growth cycle studies.

1.3 Dating business cycle turning points

Both parametric and non-parametric methods of dating classical business cycles have
been proposed in the literature. The most commonly used parametric method is the
Markov-switching (MS) model popularised by the seminal work of Hamilton {1989,
1990). The non-parametric approach often refers to the Bry and Boschan (BB} (1971)
dating algorithm and its quarterly extension developed by Harding and Pagan (2000,
2001, 2002), known as the BBQ algorithm. A comparison of these two methods has
been made by Harding and Pagan (2003) and Hamilton (2003).




1.3.1 The regime switching models

In an influential article, Hamilton (1989) developed a Markov-based, regime-switching
method to model time-series subject to abrupt, non-linear regime changes. He applied a
two-regime Markov-switching model to US quarterly real GNP growth over the period
0f 1953-1984, Real GNP growth is modelled as an AR (4) process:

(AY: =M, )= o (AYr-] ~H )"' #, (AY.'—Z —H, J"' The) ¢4(AYr—4 'ﬂs,_4)+ e, (1.1)

b, =11~ 5,)+ 1,5,

where e, ~ NID{(0,c*). The idea behind regime-switching is to allow the mean growth
rate, 4, , to take on different values depending on the Jatent state variable (denoted as

S,). The likelihood of switching from one regime to the other is determined by the

transition probabilities;

Pre(S, =S, =1)=p, Pr(S, =05, =) =1-p,

Pr(S, =0l =0)=g¢, Pr(S, =1IS,, =0)=1-¢.

For each regime, the probability rule which governs the likelihood of various

observations is the normal density function, with different mean growth rates for
recessions and expansions, The normal density function of AY, based on past

information 1s given by
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Therefore, the log likelihood function 1s

IHL = i ln(f(AYt |l/j-‘—l’Sz ’S:—I ’ Sr-2 ’ Sr—s =Sr-4 ))

=




Maximum likelihood estimation (MLE) provides the parameter estimates

{;to, J7A A p,q}. The MLE parameter estimate of a particular regime mean is the

sample mean of the series corresponding to the periods when the series was in that
regime, The parameter estimates of the transition probabilities are given by frequency
counts of the pattern of known regime switches. The parameter estimates obtained in
Hamilton (1989) characterise the business cycle in two ways. Firstly, the mean growth
rate appears negative in recessions and positive in expansions. Secondly, transition
probabilities indicate that the average duration of recessions is much shorter than
expansions. More importantly, he obtains a time-series of recession probabilities. This
provides a quarterly chronology of US business cycles which successfully replicates the
NBER official business cycle dates over 1953-1984. Furthermore, in order to avoid the
singularity problem® which may occur in the unrestricted MLE used in Hamilton (1989),
Hamilton (1991) proposed a quasi-Bayesian MLE approach, in which the likelihood

function incorporates a priori information about the unknown means and varjances®,

Despite the initial success of Hamilton’s (1989) model in identifying US business cycle
turning points over 1953-1984, it 15 widely accepted that this model often fails to
provide reasonable parameter estimates and regime probabilities when an extended
sample period or different datasets are used. Therefore, there have been a large number
of subsequent extensions and refinements to this model. Modifications have been made
to Hamilton’s model by infroducing structural breaks in the model’s parameters, by
bringing in regime-dependent volatilities, intercepts or AR parameters, and by tncluding
additional regimes to model business cycle dynamics.” In addition, since Hamilton
(1989) did not examine the statistical significance of his model, Hansen (1992) tests the
null hypothesis of a linear AR(4) against the alternative of Hamilton’s MS model using

standardised likelihood-ratio (LR) test statistics, and fails to reject the null hypothesis.

* This problem occurs when a small subset of sample observations appears to be tightly clustered together.
Unrestricted MLE results in this cluster being interpreted as constituting drawings from one normal
distribution with very small variance and the rest of sample as coming from a second normal distribution
with a much larger variance.

% Prior means and variances were set to be the sample means and variances of the negative growth rate
observations for regime I and positive growth rate observations for regime 2.

" Another strand of papers relaxes the assumption of fixed transition probabilities by modelling with time-
varying or duration dependent transition probabilities: for example, Diebold ef af . {1999), Filardo {1994),
Filardo and Gordon (1998), Lahiri and Wang (1994), Durland and McCurdy (1994) and Layton and
Smith (2007).
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However, he finds strong evidence that a simple switching model fits the data better
than both the AR(4) and Hamilton’s model.?

In order to account for the significant moderation of US business cycles observed
during recent decades, Kim and Nelson (1999a) introduce a one-time break in the mean
growth rates and the residual variance of Hamilton’s model. The means and variances

are thus specified as

Ho, = Mg+ HopDy s fy < Ho + Heg (1.2)
TR 7 ) T TN T

)
ol =(1-D,Jol +D,c?, ol >0,

where D, is the one-time parameter which shifts from zero to unity at an unknown date
7. The likelihood of D, switching from zero to unity is governed by the transition

probabilities:

Pr(D, = 0D, =0) =g, Pr(D, =1|D,, =0) =1-g,,,

Pr(D, =1|D,, =1)=1, Px(D, =0|D,, =)= 0.

Under the null hypotheses that = 4, =0 and o =7, this model collapses to

Hamilton’s model. Four competing models are constructed to examine various null and

alternative hypotheses:

1. Hamilton’s model with no structural break |u, = &, = 0,02 = o2 ;

2. Amodel with a structural break in the mean growth rates |1, = 4 # 0,07 = &2 I
3. Amodel with a structural break in the variance |}, = 41, = 0,07 = o ;

4. A model with structural breaks in both mean growth rates and the variance

. . 2 2
[#00 # iy, = 0,04 # 0, .|

¥ The simple switching model allows for the intercept and the second AR parameier to randomly shift
between two values., Therefore there is no persistence in the states and the sum of the transition
probabilities p and ¢ is restricted to one.
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A Bayesian model selection procedure is employed to compare the above models. A
comparison of the marginal likelihoods obtained using Gibbs sampling suggests that
Hamilton’s model is clearly dominated by the other three. This indicates that the
moderation of US business cycles comes from two sources of stabilisation: a narrowing

gap between the mean growth rates and a decline in the volatility of real output growth.

Mills and Wang (20032) apply the Kim and Nelson {1999a) model to other G7 countries.

As with the US, a decline in output growth volatility is observed among other G7
countries, Narrowing growth differentials between recessionary and expansionary
regimes are found in five of the seven countries, with the UK and Germany being the

exceptions.

Additional phases in business cycle dynamics have also been .introduced to the
Hamilton model, including the three-regime mode! used in Sichel (1994), Boldin (1996)
and Clements and Krolzig (1998), and the ‘bounce back’ model proposed by Kim et al.
(2005). Boldin (1996} examines the robustness of Hamilton’s model by applying a
three-regime model o a revised version of Hamilton’s data and also to an extended
sample period. Three Jocal maxima in the likelihood function are found when the
revised data are used. One set of parameters, cotresponding to a local maximum, is
almost identical to the coefficients reported by Hamilton (1989). However, the other
two local maxima fail to provide reasonable parameter estimates. Moreover, there is no
longer a local maximum which can reproduce Hamilton’s parameter estimates when the
extended sample period is used. More positive results are obtained when a three-regime
MS model is applied to capture recessions, post recession rapid-recoveries and
moderate growth periods. A single local maximum is found, which is robust across
different sample periods. The NBER official dates are aiso captured fairly well by the
smoothed recession probabilities obtained in the three-regime model. As with Boldin
(1996), Clements and Krolzig (1998) also adapt Hamilton’s model to different sample
periods of US GNP and fail to obtain adequate results. However, by applying a three-
regime MS mode} with a regime-dependent intercept rather than mean growth rate, they
obtain a business cycle chronology which corresponds closely to the NBER official

dates.
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Unlike Boldin (1996) and Clements and Krolzig (1998), Kim ef @/, (2005) assume that
the post-recession recovery is strongly correlated with the length and severity of the

preceding recession. They therefore propose a ‘bounce-back’ model as follows:
¢(L)£AY: —Hy “‘ﬂlSr "_;LZ Sx-_jJ =8, (13)
=l

where y, is the underlying growth rate. If S, =1 and #, + 4, <0, the economy is in a

m
recessionary regime, When A > 0, the summation term ZS measures the ‘bounce-

=l

=

back’ effect, suggesting that the growth rate will be above 4, for the first m periods of

an expansion. The summation term increases each period up to the length of the
preceding recession and peaks after the recession ends. It then diminishes as the
expansion persists until it reaches zero. Applying this model, they find a large ‘bounce-
back’ effect in the US recovery phase, and this effect is robust to aliowing for a one-
time break in business cycle volatility in the mid-1980s or to relating the size of the

‘bounce-back’ effect to the depth of the previous recession,

The assumption made in Kim ef al (2005) is consistent with the ‘Plucking model’
proposed by Friedman (1964, 1993), in the sense that each recession is assumed to be of
the same amplitude as the succeeding expansion. In a plucking model, output cannot
exceed a ceiling level but is plucked downwards by recessionary shocks at irregular
intervals. The severity of recessions varies over time, but output always returns to the
ceiling level. Based on Friedman’s plucking model, Kim and Nelson (1999b) propose

an unobserved-component model, in which output, ¥,, can be decomposed into a
stochastic trend component, 7, , and a cyclical component, ¢,, which has both plucking

and asymmietric features. The stochastic trend is modelled as a local linear trend, with a

regime-dependent variance on the level disturbance:

£, =g +7+v,, v, ~ NID[0,62, ), (1.4)

W, W, ~ N[D(O, Cfi )5

o =0
St S -1

2 2 F3
O-V.S, = G\'.O (1 - Sr )+ O-v.lSr .
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The cycle component is given by

¢ =¢lcz—l +¢2Cr—2 +ES, T, U~ NID(O!Gr?.S,)ﬂ (15)
7y =S, T <0,

2 2 2
O.u.S, =T, (1 _Sr )+ T Sr *
Innovations to the cycle are assumed to be a mixture of two types of shock: a osual
symmetric shock u, and a discrete asymmetric shock, 7, , that is dependent upon .S, .

0'3‘5; is the regime-dependent vanance of the cycle disturbance. If aquf =0 and

75, <0, this implies the presence of a ceiling level for output, as suggested in

Friedman’s plucking model. Thus, when §, =1 the aggregate demand shocks ‘pluck’

output downward away from the ceiling level. Kim and Nelson find that the US real
GDP data can be well characterised by the plucking model. However, this model is less
successful when output data for other G7 members is used. Mills and Wang (2002)
show that, although negative asymmetric shocks influence the cyclical fluctuations, the

presence of a ceiling level is only found in the UK, France and ltaly.

Sinclair (2008) modifies Kim and Nelson’s plucking model by allowing for the
correlation between the innovations of the trend and cycle components. As such, the
negative correlation between a symmefric transitory shock and the permanent
innovations is revealed and the symmetric transitory shock can be interpreted primarily
as the adjustiment to permanent shocks. Moreover, the trend component appears more
variable than in Kim and Nelson’s ‘plucking’ model with zero-correlation between the
trend and cycle innovations. This suggests that US real GDP may experience more
permanent fluctuations than previously explained by the conventional *plucking’ model.
There may be different types of recessions with different underlying causes, rather than
only asymmetric transitory shocks. As such, the smoothed probabilities of asymmetric
transitory shocks fail to identify the recessions which occurred during the 1970s, as

supply shocks played a major part in these recessions.
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1.3.2 The Bry and Boschan method and its quarterly applications

Unlike the MS models discussed above, Bry and Boschan (1971) developed a non-
parametric algorithm which successfully replicates the NBER reference dates regardless
of the sample periods used. Due to its reliability, the BB algorithm has been used by the
Centre for International Business Cycle Research (CIBCR) to identify business cycle
chronologies for the US and eleven other countries. The BB algorithm operates in three
steps. Firstly, major cycle movements in a time-series are identified. Secondly,
neighbourhoods of peaks and troughs are established. Finally, the peaks and troughs are
determined by narrowing the search to these neighbourhoods. Three constraints are
imposed in the third step when identifying the final turning points. Firstly, a full cycle
should have a minimum duration of 15 months in order to separate it from any seasonal
movements. Secondly, no phase can be less than 5 months in duration. Thirdly, no
turning point is declared within 6 months of the beginning or end of the series. The
third restriction could be a potential problem for the BB algorithm, as it may tale some
time to recognise phase changes that have already occurred. As highlighted by the
CIBCR researchers, it can take as long as 12 months to identify a turning point when
using the BB algorithm. Adhering to these constraints, turning points are identified and
refined sequentially using three different filters with a decreasing degree of smoothness;
a centred, unweighted, 12-month moving average 1s first used, then a Spencer filter (i.e.,
a centred, weighted moving average), then finally a short-span moving average. At
each step, potential peaks and troughs are identified as the highest and lowest values
within a window width containing the previous five and the next five months. The
tuming points in the original series are finally determined within neighbourhoods of
peaks and troughs obtained from the short-span moving average. If these dates satisfy

the duration constraints, they are recognised as the final peaks and troughs for the series.

Harding and Pagan (2000, 2001, 2002) adapt the BB algorithm to quarterly data, where
a peak (ftrough) occurring at time ¢ is the maximum (minimum) value within
¢t + 2 quarters. The resulting algorithm is known as the BBQ algorithm. The censoring
rules are also adjusted to allow the minimum duration of a phase to be two quarters and

a complete cycle to last at least 5 quarters.



It is worth noting one related technique proposed by Artis, Marcellino and Proietti
(2004a). This methodology extends the BBQ algorithm, using the theory of Markov
chains, to implement the minimum duration constraints and to enforce the alternation of
peaks and troughs. The minimum duration of a full cycle determines the order of the
Markov chain, whereas the minimum duration of a phase indicates the number of
possible states. Applying this method to the euro area aggregate macroeconomic time-

series, they obtain turning points which mimic those in Harding and Pagan (2001).

1.3.3 Measuring business cycles using multivariate information

It should be noted that both the parametric and non-parametric methods discussed above
are based on a univariate framework. This means that the comovement among
individual economic variables throughout the business cycle cannot be modelled. In the
analysis of Burns and Mitchell (1946), the historical concordance of hundreds of series,
including income, interest rates and prices, were investigated. The choice of which
economic time-series should be used for business cycle dating is not straightforward.
The standard measure is real GDP. However, this variable is unsuitable for gaining a
timely and accurate insight into the current state of the economy due to its lagged
publication and frequent revisions. Industrial production is also frequently used in the
literature, but represents less than 20% of total output in the euro area. Rather than
looking for a particular economic time-series to represent aggregate economic activity,
an alternative approach is to construct the underlying common fluctuations among
several time-series. The dynamic factor (DF) models follow this line of thinking.
These models have long been used in cross-sectional analysis, and their generalisation
to dynamic environments is set out in Sargent and Sims (1977), Geweke (1977), and
Watson and Engle (1983). More recent examples include Forni et af. (2000, 2001),
Stock and Watson (2002a, 2002b, 2005), Reichlin et al. (2006, 2007) and Jungbacker
and Koopman (2008). The most prominent example is the single common factor model,
proposed by Stock and Watson (1989, 1991, 1993) to estimate composite coincident
and leading indices. They assume that one common dynamic factor drives the
comovement of several economic time-series, and reflects the state of the overall
economy. This model is applied in Chapter 2 to obtain composite indices for euro area

countries. It is worth noting that, as the series used by Stock and Watson were not




cointegrated, their model was therefore estimated in first-differences. However, the null
hypothesis of no cointegration is rejected for several of the countries analysed in
Chapter 2. Therefore, a two-step procedure is used where the error correction term is
estimated independently using a vector error correction model (VECM) and then
included in the subsequent model estimation. It is also possible to set up this model
with variables in levels. The unknown parameters in the model can be estimated by
maximum likelithood using an augmented Kalman fiiter initiated with a diffuse prior

(De Jong, 1989, 1991).

In a slight variation of Stock and Watson’s (1989, 1991, 1993) DF model, Diebold and
Rudebusch (1996) propose the Markov-switching dynamic-factor (MSDF) model. This
model incorporates nonlinear dynamics into the common factor extraction by
combining the DF model with Hamilton’s model. The MSDF model reflects two
stylised features of the business cycle put forward by Burns and Mitchell (1946): the
comox}ement among individual economic series through the cycle, and the asymmetry
of business cycle phases. Kim and Yoo (1995), Chauvet (1998) and Kim and Nelson
(1999c¢) all successfully implemented the MSDF using Kim’s (1994) approximate MLE
that combines the Kalman filter and Hamilton’s filter, along with appropriate
approxima’tions.9 To avoid these approximations, Kim and Nelson (2001) propose an
alternative solution by using Gibbs sampling. The MSDF model has been applied by
Chauvet (1998), Kim and Yoo (1995), Kim and Nelson (1999¢, 2001), and Mills and
Wang (2003b) to construct the coincident economic indicator and business cycle turning
points for the US and the UK. Chapter 3 applies this method to the euro area countries.
It performs fairly well in identifying business cycle turning points for large economies,
such as Germany and France, where recessions and expansions are of roughly constant
amplitude over the entire sample. However, it was less satisfactory at dating business
cycles for countries, such as Belgium and the Netherlands, whose recessions were
deeper during the 1970s and 1980s than in recent decades. Therefore, structural breaks
are introduced into the model’s parameters to improve parameter estimates and

smoothed regime probabilities.

? Detailed discussions of Kim’s (1994) filtering algorithm are presented in Appendix A3,
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Another important extension to the univariate Hamilton model is the Markov-switching
vector autoregression (MS-VAR) proposed by Krolzig (1997a, 1997b). This model is
designed to detect common business cycle turning points among multivariate time-
series without constructing any composite indices. In the general case, a MS-VAR of

order p with M regimes, MS (M }-VAR (p), can be expressed as follows:

AY, = 1{S,)+ iA,. (5)87,, +£,(5), &,(5)~ ND,3(5)),  (1.6)

i=l

where AY, is an Nx1 vector of the observed variables; x# is an Nx1 vector of
intercept terms; 4, is an N x N matrix of the autoregressive coefficients at lag 7; and
g, is an Nx1 vector of disturbance terms. In this specification, both the intercepts,

autoregressive parameters and disturbances are conditional on the unobserved state

variable S, =1,2,...M . Krolzig (1997b) also considers the case where time-series are

cointegrated. Therefore, a Markov-switching vector error correction model (MS-

VECM) is proposed:

p-1

AY, = pS,)+ 3. DAY +117,_, +£,8,), &,(5.)~ NID(0, 3 (5,)), (1.7)

i=

i I
where D, =-—(Iﬂ -ZAJ,.), =1 —ZA;. = A1) =-af", B is the rx N cointegrating

=1 i=]

matrix and o 1s the & x 7 corresponding loading matrix. To estimate the above model,
Krolzig proposes a two-step procedure. In the first stage, Johansen’s (1995) maximum
likelihood procedure is used to determine the cointegrating rank and to estimate the

cointegrating matrix, #. In the second stage, conditional on the estimated £, the

remaining parameters of the MS-VECM are obtained using the EM algorithm.

Harding and Pagan (2006) develop a non-parametric procedure to replicate the NBER
reference cycle by using the four time-series most frequently used by NBER researchers,
non-farm employment, industrial production, trade sales and disposable income, over
the period of 1951M1-2002M12. The BB algorithm 1s used to identify specific turning

points from each series. Prior to constructing the reference cycle using these specific




turning points, they propose heteroscedasticity and autocorrelation consistent tests to
examine whether there exists a common cycle in the four series, Given the presence of
a common cycle, a three-step non-parametric algorithm is then applied to consolidate

specific turning points info a set of common turning points.

'

In the first step, the distances in months from time ¢ to the closest peak (trough) in each

series are found, denoted DPF, (DT,.,). This gives a vector of dimension four. The
median of the elements in this vector is then found, denoted DP, {DT)). In the second
step, the potential common peaks (troughs) are picked out as local minima in DP

(DT,) with a window-width of & centred at time ¢:

M" ={DP

At

> DP}, forall |A<6. (1.8)

As such, M” (M T ) is a vector containing the central dates of the cluster of peaks
(troughs). Once the central dates are located, whether a.specific peak belongs to a

particular central date m; or m/ is defined in the third step:
Clong )= lns 1, ) <dlmf 1, )}, forall j =k and @l 1, )<3, (19)

where C(mj’ ) represents the cluster of peaks centred at mf . d defines the maximum

width of a cluster and is usually set to be 24 for monthly data and 8 for quarterly data.
Clusters of troughs can be defined in a similar way, This algorithm can be considered
to be a formalisation of the procedures used by the NBER. By applying this algorithm,
Harding and Pagan (2006) produce a chronology very similar to the NBER reference

cycle.

1.4 Modelling trends and cycles in macroeconomic time-series

This section discusses the main statistical techniques used to identify trends and cycles
in macroeconomic time-series. As controversy remains over whether macroeconomtic
time-series are more appropriately represented as DS or TS processes, and whether

there is interaction between trend growth and cyclical fluctuations, a wide variety of
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decomposition methods have been proposed, based on different assumptions about the
variability and exogeneity of the trend. Depending on the methodology used, the
resulting cyclical components may differ significantly in terms of cycle duration,

amplitude and spectrum shape. Such sensitivity has been discussed by Canova (1998).

1.4.1 Structural model-based trend and cycle decompositions

This section begins with two model-based, univariate decomposition methodologies that
produce starkly different results: the Bevenidge-Nelson (BN) (1981) decomposition and
the Unobserved-component (UC) models introduced by Clark (1989), Harvey and
Jaeger (1993) and Harvey and Trimbur (2003). The BN decomposition typically yields
a volatile trend and a small, noisy, cycle. In contrast, the UC models usually produce a

smooth trend component and a highly persistent cycle.

The BN decomposition provides a measure of trend and cycle for an integrated time-
series. It shows that any ARIMA (p,l, q) process can be decomposed into the sum of a

random walk plus a drift and a stationary component. Consider the Wold (1938)

representation of a stationary first-differenced series Ay, = 8+ A(L)e, = S+ Z AL,
=0

where £ is the long-run mean of the {Ay, } process and &, are uncorrelated innovations

with zero mean and variance o’. The BN trend component is defined as the infinite

forecast of the time-series { } less the deterministic drift:

Juf=1imxv%(.f’,wf—kﬂ)=y¢+(§:%)€,+[iﬂ;},-l+n., - (1.10)
i=] i=2

where v, is the & -step ahead linear predictor of y,,, based on information at time 7.

The cycle component of {y, } is the difference between the trend and the value of y,:
, =—(Zii]sr —(Z&.Jg,_l—... (1.11)

The trend and cycle components can alternatively be given by




w=(-LY'p+21)1-L) "¢, (1.12)

e, =(1-L)'[A(L)- 1)}, . (1.13)

Thus the innovations of the BN trend and cycle are perfectly correlated. The trend

A1)
ML)

in the sense that only current and past observations are used in its construction. Proietti

[2)F

and Harvey (2000) further propose a two-sided BN estimator, 4 = ——7—) ¥,, by
L)L)

component can also be expressed as y, = y,. This is a one-sided trend estimator

incorporating future observations.

Compared with the BN decompesition, where y, is only decomposed into its trend and

cycle components, the UC model allows for additional components to be separated from

¥,. A univariate UC model may be written as
v, =4 +e +y, v, +&, s,~NID(0,of), (1.14)

where y, is the seasonal component, v, is a first-order autoregressive component and

&, is the irregular term. The stochastic trend component is given by

M=MﬁﬁHﬂhm~thﬁl (1.15)

ﬂz "_"‘ﬁr—l +‘§t’ é:r ~ NID(O’O-;)’

where g, 1s the level of the trend and £, is the slope of the trend. The slope parameter
B, allows the trend to change smoothly, but in the special case where 0'§ =() the trend

reduces to a random walk with a drift, which is consistent with the BN trend. A variety

of trend specifications can be obtained by imposing restrictions on the variance

parameters o, 0'3 and Gfr. These are presented in the following table reported in

Koopman et al. (2006).




Table 1.1 Some special level and trend specifications

Level o o,
constant term * ¢

local tevel (LL} * *
random walk (RW} 0  *

Trend o; ©, o
deterministic * 0 0
LL with fixed slope  * * 0
RW with fixed drift 0 * 0
local linear (LLT) * * *
smoaoth trend * 0 *
second differencing 0 0 *
Hodrick-Prescott + g 1/16000;

Note: * indicates any positive value.

With regard to the cycle, Clark (1989) specifies a stationary cyclical component as a
finite autoregression. A trigonometric specification of the cyclical component is

introduced by Harvey and Jaeger (1993), which is given by

¢ | |cosd sink ¢, . k 1.16)
c, =P —sind, cosd e | |k | (1

where £, and ic: are two mutually uncorrelated white noise disturbances with zero
mean and common variance ;. The parameter p is known as the damping factor
with 0< p<1; A, is the frequency in the range 0< A, <7 . The stochastic cycle

becomes a first-order autoregressive processif A, isOor 7.

A higher order cycle is introduced by Harvey and Trimbur (2003), where an i —¢h order

stochastic cycle is specified as
_cl_, cosd,  sind, | ¢, k,

L i=po . . |+ , and (1.17)
k¥ -sin/, cosi | ¢, 0

e, cosd, sinA_ | ¢, |
Vi=p T+ T fori=2,.m
¢, -sind, cosd_ | ¢, 0
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The value of i determines the smoothness of the cycle. When i =6, this model-based
filter has a similar gain function to Baxter and King’s (1999} filter, while in the case of
i=1, the generalised cycle reduces to Harvey and Jaeger’s (1993) trigonometric

specification.

A seasonal component is introduced by Harvey and Jaeger (1993) to avoid the
potentially distorting effects of seasonal adjustment procedures. It can be modelled as

Ls/2]
the trigonometric form y, = Z?’ ;¢ » Where y, is given by

J=1
. cosd, sind. ||y, o,
ol 0 R PR RS Y51 ) (1.18)
4y —sind; cosd; |y, @,
where A, =27 /s is the frequency, and w, and w, are both NID(O, o-j).

It is worth noting that, in contrast to the BN decomposition, in which the innovations to
the trend and cycle are perfectly correlated, the disturbances in the UC model that drive
the unobserved components are mutually independent. Morley et al. (2003)
demonstrate that, once the orthogonal restriction imposed on the trend and cyclical
components in Clark’s (1989) UC model is relaxed, it gives the same trend-cycle

decomposition as the BN decomposition.

1.4.2 Filters

This subsection reviews three widely applied linear filters, by Hodrick and Prescott (HP)
{1997), Baxter and King (BK) (1999) and Christiano and Fitzgerald (CF) (2003}, that
are based on the theory of spectral analysis. As defined by Burns and Mitchell (1946),
the conventional definition of the business cycle considers fluctuations in the series
associated with periodicities within the business cycle duration of 6 to 32 quarters. This
corresponds to a business cycle frequency range of @, =27/6 to w_, =27/32. An
ideal band-pass filter, which gives a frequency response of unity in the band

o, <|w|<w, and zero elsewhere, is a useful tool for extracting the business cycle

frequency components. It can be constructed as the difference between two ideal low-
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pass filters with cut-off frequencies @, and @_,. The impulse response coefficients of

an ideal band-pass filter are given by

a, (L) —_ C(ch ; a)c] +i Sin(mczj)j;sin(wcij)(Lj + L—j) (1 19)
Jj=1

In practice, an approximation of this ideal filter is needed as the filter requires an
infinite-order moving average that, in turn, requires a filtered series of infinite length.
The BK and CF filters are based on the same ideal band-pass filter, but their
approximation methods differ in two ways. Firstly, the BK filter assumes that the
filtered time-series are independent and identically distributed, while the CF filter
presumes that they follow a random walk. Secondly, the BK filter assumes symmetric
weights whereas the CF filter does not. These two differences in assumptions lead to
divergent cyclical components. The CF filter puts more weight on lower frequencies,
whilst the BK filter places equal weight on all business cycle frequency components.
~ As a consequence, the CF filter can produce more accurate low frequency business
cycle components than the BK filter, while the BK filter estimates the ideal filter more
accurately for shorter business cycle frequencies. In addition, the trend component in
the filtered series is automatically removed by the BK filter as it assumes symmetric
weights. However, the CF filter does not make this assumption and so the trend must
be removed before applying this filter. Moreover, the assumption of symmetric weights
results in a loss of observations at the beginning and end of the filtered series when the
BK filter is used. Therefore, if the focus of the research is on cycles towards the end of

the sample, it is advisable to employ the CF filter.

Unlike the above filters, the HP filter was designed to minimise fluctuations in the
cyclical component, subject to a penalty for variation in the second-difference of the

trend component:

minf, 1, S A, - 20 P+ Allen, - 1)ty = 1) (1.20)

T
1=1

where 4 is a Lagrangean multiplier that controls the smoothness of the trend. The
higher the value of 4, the smoother the trend. In the limit, as 4 approaches infinity,

i, becomes a linear trend, while if A4 tends to zero, the trend is equivalent to the
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original data series. Although many early studies fixed 4, at 1,600 for quarterly data,
the optimal values for 4, lie between 1,000-1,050. For monthly and annual data, Mills

(2003¢) recommends 80,000 < 4,, <160,000 and 5 < A, <10, respectively.

The finite sample HP trend extraction filter, z, = (AF + 1) y,, is given by the first-
order conditions of equation (1.20), where y, is the (T X 1) vector of the original series,
and F is a Toeplitz matrix with diagonal band [1,—4,6,—4,1], initial and end conditions
Fo=Fy=LF,=F_;,=5and F,=F, =F,,,=F, , =-2, and zeros elsewhere.
As with an ideal high-pass filter, the transfer function of the HP cycle filter,
cr =(AF + I, Y AFy,, is zero at zero frequency and approaches unity at 7 radians.

However, since the transfer function increases gradually, a large proportion of low
frequency components pass through the filter. This phenomenon is pronounced when a
filtered series is integrated. This issue is discussed in more detail by Cogley and Nason

(1995).

Harvey and Jaeger (1993) show how the HP frend filker may be rationalised as the

optimal estimator of the trend component in a UC model, y, = 1, +¢, +&,, where g, is
specified as a local linear trend with restrictions A=02/c}, ¢2=0 and ¢, =0

mmposed.

1.4.3 Multivariate extensions of structural models

It 15 often the case that we wish to model trends and cycles of a group of time-series.
For example, King et al. (1991) examine the implication of neoclassical growth theory
by looking at whether US consumption, investment and output share a common
stochastic trend. Mills and Harvey (2005) further analyse common trends,
common/codependent cycles and common non-linearities in output, consumption and
investment for the G7 countries. In addition, Vahid and Engle (1993) and Carlino and
Sill (2001) investigate the existence of common trends and cycles among per capita
incomes of US regions. Barillas and Schleicher (2005) further extend the multivariate

analysis to Canadian sectoral output data. Furthermore, Rimnstler (2002) and Camba-
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Méndez and Rodriguez-Palenzuela (2001) find that multivariate UC models which
incorporate output and other cyclical indicators, such as the inflation rate, capacity
utilisation and factor inputs, can produce more reliable output gap estimates. Therefore,
the univariate structural models and linear filtering discussed above are often extended
to multivariate settings. The focus of this subsection is to outline the multivariate
structural models, as these types of models are applied in the subsequent empirical
chapters. In particular, Chapter 4 employs the multivariate BN decomposition, with
common factor restrictions imposed, to provide a detailed insight into the trend and
cyclical movements in the GDP series of the major euro members. Chapter 5 then
utilises the multivariate UC model which combines statistical decomposition with
macroeconomic relations to estimate various output gap measures for the aggregate euro

arca.

For the multivariate BN decomposition, common factor restrictions include both long-
run restrictions imposed by the presence of common trends (Engle and Granger 1987,
Stock and Watson, 1988b), and short-run restrictions imposed by common cycles
(Vahid and Engle, 1993). The model is the Wold representation of a vector of
differenced time-series. However, in practice, empirical studies are based on finite
order VAR representations. Chapter 4 outlines a number of test statistics proposed by
Vahid and Engle (1993, 1997), Hecq er al. (2000, 2006) and Schleicher (2007) to
determine the number of common and codependent cycles among a set of stationary
time-series. Chapter 4 also presents the multivariate BN decomposition proposed by
Proietti (1997) and Hecq et al. (2000), which takes into account common trend and

cycle restrictions.

A straightforward multivariate extension to the univariate UC model is the seemingly
unrelated time-series equations (SUTSE) model (Harvey, 1989). It has a similar form to

the univariate version, except that ¥, is an N x1 vector of observations, depending on

unobserved components that are also vectors. Consider the case where ¥, can be
decomposed into vectors of trends, cycles and irregular terms as follows

Y =/Ll! +[//.' +g!’ g{ M[O’zl:]

!

(1.21)

-

=+ B +,m,~ 0.3, ], (1.22)



ﬁz = ﬁa—i + é:r sgr ~ [052515 (1.23)

A inA N
t,yi 1y co.s . sind ®1 W’:l N :’i , (1.24)
W, -sind_  cosd, vl Lk

Elk kT )= E(k,"‘k,”}: s, and E(k‘ kT )= 0 (1.25)

Since all components and disturbances are N x1 vectors, the variances Z,, Z,, %, and

n?
%, become Nx N diagonal matrices. Strong restrictions are imposed so that the cycle
components of different variables are assumed to have the same damping factor p and

frequency A,. This implies that these cycles have the same properties, such as common

autocovariance functions and spectra.

If N variables in Y, are cotntegrated, having » cointegrating vectors, there exist N —r

common trends. These common frends may arise through common levels, common
slopes or both, To allow comparisons with the multivariate BN decomposition with

common trend and cycle restrictions imposed, the slope parameter is fixed so that

2, =0and B, =p,_ =4 Inthis case, g, =@ [, + u,, where i, is a vector of N —r
common trends, u, has zero for its first N —r elements while its last 7 elements are
unconstrained constants, and @ , is an (N x (N ~r)) factor loading matrix. The model

then becomes

Kszﬁr+#0+U/1+gt’ SJN[O’ZE]’ (126)

A =f.,+B+7,75~0oD,], (1.27)

where /3:@#,@, 7,=0,7 and T, x@ﬂDq@;.

Similarly, the existence of common cycles implies that v, = @ 17,, where i/, is the
(N —s)x 1) vector of common cycles and © ., 18 the (N x(N —s)) factor loading matrix

such that =, = ®wa®¢I . Therefore, a model with common levels and cycles imposed

can be written as



Y, =@ i, + i, +0 7, +¢,, (1.29)

/&r = !af-l +l§+ ﬁza (130)

—_ Z . A - ‘E
["’f;Hp[ O o f}@&}["’f@“’Hiz}. (131)
v, —sind, cosi, | |k

To ensure the factor loading matrices ©, and ©,, are identifiable, they are restricted to
lower triangular matrices, and the variance matrices D, and D, are set to be diagonal

to ensure that common factors are uncorrelated. The low triangularity restrictions

imposed on ®, and @, are merely for estimation purposes. Once the model

parameters are estimated, the common trends and cycles can then be premultiplied by
any orthogonal matrix. This allows the transformed common factors to be more easily

interpreted.

More sophisticated multivariate extensions of the UC model are used in Chapter 5 to
estimate the unobserved features of the euro area economy. These multivariate UC
models typically combine output decomposition with potentially useful information
about the supply side of the economy and the macroeconomic relations containing
business cycle information, such as the Phillips curve and Okun’s law, The advantages
of the multivariate UC model are two-fold. Firstly, its flexibility outperforms any other
decomposition model, including those listed above. Applying this model reveals not
only the unobserved quantities of an economy, such as the output gap, core inflation and
the natural rate of unemployment, but also allows for the rich dynamic interactions
which occur between the unobserved and observed quantities to be modelled in specific
ways according to the objectives of the research. This is demonstrated by the bivariate
and trivariate specifications used in Chapter 5. Secondly, this model is preferable to the
purely statistical decomposition methodologies as it can provide more reliable output
gap measures (Camba-Méndez and Rodriguez-Palenzuela, 2001; Rinstler, 2002).

Chapter 5 provides a short literature review of this type of multivariate UC model.




1.5 Measuring business cycle synchronisation

Once business cycle or growth cycle measures for members of a currency union are
obtained, synchronisation of these cyclical components can be evaluated using certain
statistical measures. The correlation coefficient is frequently used in the literature to
measure contemporaneous and lead/lag correlations for each pair of cycles (Artis and
Zhang 1997, 1999; Agresti and Mojon, 2001; Darvas and Szapary, 2004). More
sophisticated measures of correlation have also been developed, such as the
concordance index of Harding and Pagan (2002), the dispersion measure of Artis,
Marcellino and Proietti (2004a), and multivariate UC models with dynamic converging
mechanisms proposed in Luginbuhl and Koopman (2004) and Koopman and Azevedo
(2008).

The index of concordance proposed by Harding and Pagan (2002) measures the fraction
of time which two series spend in the same business cycle phase. This index for

countries / and j can be constructed as follows

T
I, =T 48, 8,+(1- S, )1-S5,)} (1.32)
f=4

where S, and S, are binary variables obtained from regime classification with unity
denoting expansions and zero indicating recessions. Under the assumption that .5, and

S. are independent, the estimate of the expected value of the concordance index is

E(J,)=1+258;8, -5, —3’7. Subtracting this from 7, gives the mean corrected
concordance index:
* 1 T — p
Iy=2I" Z{(S,-f -5)s, -5 ). (1.33)
1=1
Artis, Marcellino and Proietti (2004a) propose a test statistic based on a standardised
concordance index. [ ” is divided by a consistent estimate of its standard error under the

null hypothesis of independence, which is the square root of
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where 7,(r) is the lag v sample autocovariance of S, and / is the truncation parameter.

Harding and Pagan (2002) also propose a linear regression approach to test the

independence of a national business cycle, 5, , from the reference cycle, S, . This

regression equation is given by
S, =a+pfS, ¢, | (1.35)

The Newey-West estimator of the standard error is used to obtain the heteroscedasticity

and autocorrelation consistent (HAC) t-statistic for the null hypothesis that 8 =0.

Unlike various concordance indices which compute bilateral correlations in fixed
sample periods, the dispersion measure proposed by Artis, Marcellino and Proietti
(2004a) can provide a measure of synchronisation within a group of binary series at
each point of time. This dispersion measure is constructed using the diffusion index.
This index measures how diffuse business cycle fluctuations are across a group of
binary series on a 0-1 continuous scale. Ifthere are N binary series, the diffusion index

is given by

D,:iw,S,.,,1‘=1,...,T,iw,.=1. (1.36)
i=1

i=l

The dispersion measure can then be computed as D, (1-D,}. It has a maximum value
of 0.25 when D, =0.5, and a minimum value of zero when all series are in the same

phase of their business cycles. A measure is also proposed to evaluate the dispersion

within a group of growth cycles using the following weighted variance of the individual
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cycles, 7, , from the average cycle, i7, :



In addition to analysing bilateral correlations, Camacho er a/. (2006) compute the
combined correlation of several bilateral correlation coefficients. The Fisher

transformation of an individual bilateral correlation coefficient,
¢ =tanh™'(r)= 0.5(n(t + » ) In(1 —1)), is used to calculate the combined correlation

of N bilateral coefficients as follows:

1

e +1,¢, +...+T 1.37
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¢ =tanh™ (1) =

where 7, denotes the size of sample /. The aggregate correlation coefficient can then

be recovered from ¢ as r = tanh(g).

Based on frequency domain analysis, Croux et al. (2001) propose a measure known as
dynamic correlation to evaluate synchronisation of two time-series across different

frequencies. The dynamic correlation of two series x, and y, within the business cycle

frequency band is specified as

[.c,(az
‘/ [ s.(aA] s, ()ar

P (ar )=

(1.38)

where A" denotes the business cycle frequency band. The spectrum of x and y are

denoted as S,(4) and SJ_(,%), and the cross spectrum between x and y is Sxy(p).
C, (1) = real(S - (/1)) is the cospectrum between x and y . For infinite time-series this

measure is identical to the static correlation between two band-pass filtered series.
However, for finite economic time-series this equality does not hold as both the band-
pass filter and the dynamic correlation are estimated imperfectly. Croux ef al. (2001)
also construct a measure of cohesion based on the weighted average of dynamic

correlations, which provides a summary measure of comovement within a group of
variables. The cohesion within the business cycle frequency band A™ is given by

s
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cohx(AJ'): — , (1.39)
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where w,, 7 =12,...N, are the positive weights associated with the variables x,,
i=12,...N. Croux et al. calculate the cohesion of the output series for the US and the

euro area, and conclude that the former is higher than the latter across all frequencies.

Rather than computing statistical indices, recent research, including Camacho and
Perez-Quiros (2006), Luginbuhl and Koopman (2004) and Koopman and Azevedo
(2008), proposes model-based approaches to evaluate the degree of synchronisation,
Camacho and Perez-Quiros (2006), for example, use bivariate MS models to investigate
the unobserved states of two business cycles. There are two extreme cases of business
cycle correlation, where two business cycles are completely independent (two
independent Markov processes are hidden in the bivariate model), or where they are
perfectly synchronised (only one Markov process for both variables). As the actual
correlation observed between two cycles will lie somewhere between these two
extremes, Camacho and Perez-Quiros model the data generating process as a linear
combination of these two extreme situations. The distance between each pair of cycles
is then measured as the distance from the case of perfect correlation. Furthermore, they
simulate 100 pairs of output growth series with perfectly synchronised business cycles
and 100 pairs with completely independent cycles. The BBQ algorithm and the
univariate MS mode] are applied to these simulated series to identify turning points.
Bilateral correlations among these 200 pairs of cycles are then evaluated using the
concordance index. In addition, they compute their measure of business cycle distance.
Camacho and Perez-Quiros conclude that the bivariate MS model outperforms the
conventional univariate approaches used by Harding and Pagan (2002) and Guha and
Banerji (1998), as the univartate approaches often find a low level of synchronisation,

especially where two business cycles are perfectly synchronised.

Luginbuhl and Koopman (2004} use the standard SUTSE model, outlined in equations
(1.21)-(1.31), imposed with time-varying rank-reduction mechanisms, to analyse the
convergence of per capita GDP between five euro area countries. They define
convergence as a reduction in the ranks of covariance matrices associated with the
disturbance vectors driving trends, cycles and volatilities. The trend and cycle

components are driven by the vartance matrices, Z; and X, , which can be decomposed

T _ T . . .-
as X,=0,0.0, ad Z, 6 =0,D 0, using Cholesky decompositions. If



convergence occurs in the cycle components, the number of nonzero diagonal elements

of D, reduces. A gradual movement of a particular nonzero diagonal element d,,

towards zero can be modelled using the following logit function

dl,:j.z = dw.r‘ exp(sw.i.r )/{] + exp(sw.r’.r )}5 Sl,u.r'.r = va.i x ( - Tlﬂ.f ) (] '40)

The parameter s,, determines how quickly the function s,,,, approaches zero and 7,

it
determines the mid-point of the change. A similar logit function is also introduced into

the diagonal matrix D, to account for gradual convergence in the trend components.

Koopman and Azevedo (2008) further explore how multivariate UC models can be used
to investigate growth cycle relations among the real GDP series of six euro area
countries and the US. In particular, the multivariate UC model with time-varying phase
shifts and time-varying relations between cycles is proposed. As the main focus of their
study is the cycle components, the CF filter is used to isolate business cycle frequency
fluctuations. The multivariate cycle model proposed in Riinstler (2004) is then fitted to
the CF filtered series to account for phase shifts between cycles:

y, =diag {cos(/ld; )}w, + diag{sin(ﬂd - )}{//*

{?

(1.41)

where y, is a vector of CF filtered time-series. The vector d, = (0,£,,...£,) has its

first element restricted to zero, so that the phase of the first cycle in i, is the reference
for phase shifts of the other cycle elements. The phase shift between y, and y, is
measured by &, —& | for i,j=1,...,N. As with Luginbuh! and Koopman (2004), the

time-varying phase shifts are modelled using the logit function
$u =8 % GXP(Sg'.f.a )/{1 + er(S_f.f.: )Jls Seig =8z % (f =T )a (1.42)

for i=1,...,N, and where 5., determines the shape of the logit function and .,

determines the mid-point of the change. They define convergence to be when phase

shifts between two cycles turn towards zero, such as &, -&, =0. Their UC

specification also incorporates the time-varying relation feature. The covariance matrix




of the cycle disturbance vector can be specified as £, = CRC, where C is a diagonal

matrix of standard deviations and R contains contemporaneous correlations:

1 Prza o Praa
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R= : (1.43)

Pewny Prwa - 1

Similar logit functions are also imposed on g, ; to capture changes in the relationships
between cycles.'” These may have two distinct periods: in the first period cycles are

correlated, I Prs. j| <1, whereas in the second period the cycles are perfectly correlated,

Prij = 1.

1.6 Business cycle and growth cycle synchronisation in the euro

area

Various studies have examined the synchronisation of cyclical indicators aross the euro
area countries. These studies can broadly be divided into two groups according to
whether they analyse growth cycle or business cycle synchronisation. A large number
of studies have focused on growth cycles because cyclical fluctuations separated from
trend growth are usually stationary, and most statistical analyses of synchronisation
require stationary series as inputs. In addition, since classical business cycles oceur
much less frequently than growth cycles, analysing the latter will provide more

information on the comovement of cyclical fluctuations.

Artis and Zhang (1997) i1s an example of the type of growth cycle synchronisation
analysis that has been undertaken. The HP filter is used to obtain the cyclical
components of industrial production indices for the ERM countries. By computing
contemporaneous correlation coefficients between Germany and the other ERM

member countries both before and after the introduction of ERM, they show that growth

o Pri) = ill - (I - b)x exp(s ki ){1 + exp(s,_,.. i )}"J, Seigs =S8pij % (t —Tpij J The coefficient

b ensure that the correlation, 2, ;, is between b and one.
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cycles in the ERM countries become more synchronised with Germany in the post-
ERM period. This suggests that fixed exchange rate regimes may have a positive

impact on growth cycle synchronisation.

In contrast to Artis and Zhang (1997), Inklaar and de Haan (2001) do not find a clear
connection between exchange rate regimes and growth cycle synchronization. They
apply the HP filter to an updated sample peried. Unlike Artis and Zhang (1997), who
split the whole sample period into two subsamples, Inklaar and de Haan evaluate
changes in growth cycle correlations over four sub-samples (1960:1-1971:3, 1971:4-
1979:4, 1979:4-1987:9 and 1987:10-1997:12), as they believe that exchange rate
stability is not uniform across each of these periods. They find that there is an increase
in cycle correlation (with the German cycle) in 1971-1979, but this was reversed in
1979-1987. This finding contradicts the assertion that fixed exchange rate regimes

increase the degree of growth cycle synchronisation.

Massmann and Mitchell (2004) seck to resolve this dispute by using a series of rolling
windows, rather than just two or four windows of fixed width as utilised by Artis and
Zhang (1997) and Inklaar and de Haan (2001). In addition, Massmann and Mitchell use
a number of univariate trend-cycle decomposition methodologies, including the BN
decomposition, the UC model, and the BK and HP filters, to identify growth cycle
measures from industrial production indices for 12 euro area countries from 1960M1 to
2001M8. The BB algorithm is also used to identify classical business cycle turning
points in the monthly industrial production indices. The minimum duration of a phase
and of a full cycle are restricted to be at least 6 and 15 months, respectively. Rather
than focusing on individual bilateral correlation coefficients, Massmann and Mitchell
construct the mean and variance of all bilateral correlation coefficients between the 12
countries for each rolling window. Cycle convergence is defined to be when the
estimated mean correlation coefficients tend towards unity and the variances tend
towards zero over time. Although they confirm Canova’s (1998) conclusion that the
cycles identified vary significantly depending on the methodology used, these
differences do not translate to the measures of cycle convergence, as they find periods
of common convergence and divergence. The mean correlation coefficient appears to
follow an upward trend until the mid-1970s, when this process is reversed and the mean

falls to zero in the mid to late 1980s. This is consistent with Inklaar and de Haan’s
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(2001) finding that the growth cycle correlations of EU countries (with the German
cycle) are higher in 1971-1979 than 1979-1987. There is also evidence of increasing
cycle convergence in the run-up to EMU, as the mean coefficients increase and the
variances fall over this period. This finding is confirmed by Angeloni and Dedola
(1999), who also conclude that, in the pre-EMU period from 1993Q1 to 199701,
bilateral correlation coefficients between Germany and other ERM countries increased
across all growth cycle fluctuations in prices as well as in real economic performance,
such as real GDP and industrial production indices. This may suggest that monetary
integration contributes to greater growth cycle synchronisation between member
countries. This finding is supported by Darvas and Szapdry (2004) but rejected by
Camacho et al. (2006).

Some studies classify euro area countries into core and peripheral groups. The core
members generally refer to Germany, France, Italy, Belgium, the Netherlands and
Austria. The first five countries were the original founding members of the EU and the
sixth, Austria, had a fixed exchange rate with the Deutsche Mark from the 1960s.
Compared to the core members, the peripheral countries (Finland, Ireland, Portugal,
Spain and Greece) joined the EU much later, and hence joined the common market at a
later date. It is generally found that the core euro area countries exhibit a higher degree
of growth cycle synchronisation with the euro area as a whole compared to those in the
peripheral group. This may suggest that monetary integration has had some influence
on national growth cycles, and thus explains the weaker linkages found for the
‘latecomers’. However, the high correlation between the core group and the euro area
as a whole may simply reflect the large weights assigned to the core countries when
constructing aggregate euro area data series. Agresti and Mojon (2001} is a typical

example of the core-periphery literature. They compare the contemporary and lead/lag

correlation coefficients of 10 euro area growth cycles with the aggregate euro area cycle.

The BK filter is used to identify cyclical fluctuations in real GDP, consumption,
investment and short-term interest rates for individual countries and the aggregate euro
area. They conclude that large and core countries exhibit a greater degree of growth
cycle synchronisation with the euro area than do peripheral countries. Darvas and
Szapary’s (2004) findings are broadly consistent with Agresti and Mojon (2001). In
order to check the robustness of their results, Darvas and Szapary use the HP and BK

filters to identify the cyclical fluctuations in real GDP and its components for 10 euro
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area countries and the aggregate euro area. The evolution of cycle correlations between
individual countrics and the euro area cycle is evaluated using five measures (cycle
correlation, leads/lags, volatility, persistence of the cycle and a measure of impulse-
response) across four non-overlapping five-year subsamples between 1983-2002. In
addition to concluding that the core countries on average share a greater degree of
synchronisation than the peripheral countries with the euro area cycle, they also find
that synchronisation has significantly increased during the last two subsample periods,
1993-1997 and 1998-2002.

‘Darvas and Szapary (2004), Artis, Marcellino and Proietti (2004b) and Camacho ef al.
(2006) further analyse synchronisation between eight Central and Eastern European
countries (CEECs)!! and the euro area. Darvas and Szapary (2004) conclude that, apart
from Hungary, Poland and Slovenia, synchronisation between the other CEECs and the
euro area remains low. Rather than using static measures of cycle correlation as in
Darvas and Szapary (2004), Artis, Marcellino and Proietti (2004b) compute bilateral
dynamic correlations between band-pass filtered industrial production indices of eight
CEECs with the major euro area countries. They again observe that, with the
exceptions of Hungary, Poland and Slovenia, the other countries are diverging from the
euro area. Furthermore, they identify an even lower level of growth cycle
synchronisation between the euro area and the CEECs compared to the previous
accession countries at the time when they were about to participate in the EU."? This
finding may raise concerns as to the appropriateness of most CEEC countries adopting
the euro in the near future. Camacho ef o/ (2006) consider three different measures of
cycle comovements that have been proposed in the recent literature. These include the
correlations of the VAR forecast errors (den Haan, 2000), dynamic correlation defined
by Croux et al. (2001), and the linear regression approach proposed in Harding and
Pagan (2002). In addition to analysing pairwise correlations across countries, Camacho
et al (2006) study the comovements both within and between the euro area and the
CEECs. To do so, bilateral correlation coefficients are aggregated using the approach

given in equation (1.37). Despite the heterogeneity of these measures, the paper

" The eight CEECs include Estonia, Czech Republic, Hungary, Latvia, Lithuaniz, Poland, Slovak
Republic and Slovenia,

2 They compute dynamic correlation estimates between the earlier accession countries, including Ireland,
the UK, Greece, Spain, Portugal. Austria, Finland and Sweden, and a set of EU member countries
{Germany, Italy and France}.




concludes that synchronisation among euro area members is much higher than between
the euro area and the CEECs. However, unlike Darvas and Szapary (2004) and
Massmann and Mitchell (2004), Camacho ef al. conclude that the establishment of the
EMU has not significantly increased synchronisation across the euro area, and that the
synchronisation among member countries emerged prior to the introduction of the euro.
This is because the aggregate correlation within the euro area is higher during 1962-
1975 than the period of 1990-2003.

Other studies compare growth cycle synchronisation within the euro area with
synchronisation in the US. Since the US regions and states operate in a fixed exchange
rate system, the experience of the US may indicate whether fixed exchange rates
produce more synchronised growth cycles. Wynne and Koo (2000) compare growth
cycle correlations between EU countries with correlations between 12 Federal Reserve
districts in the US. The growth cycle fluctuations in real GDP, employment and prices
are recovered using the BK filter. The pairwise correlation coefficients and the
associated standard errors obtained using GMM estimates are used to assess the degree
of growth cycle synchronisation within the EU and the US. They identify a
significantly greater degree of cycle correlation within the US Federal Reserve districts
than between European countries. They conclude that, if EMU member countries stay
inside the EMU for a very long time, their cyclical fluctuations may become more
synchronised like the US regions. This view is also supported by Croux et al. (2001),
who compare the level of cohesion among 51 US states, 8 US regions, 17 European
countries and 11 EMU members. As expected, they find that the US regions have the
highest degree of cohesion at all frequencies, followed by US states, EMU members and
European countries. The difference in cohesion is large between Europe and the US at

business cycle frequencies, but is much smaller at lower frequencies.

Recent examples, including Luginbuhl and Koopman (2004) and Koopman and
Azevedo (2008), apply multivariate UC models with time-varying mechanisms to
account for gradual changes in cycle correlations. These models have an advantage
over conventional approaches in that they automatically capture the changes in cycle
correlation, thus avoiding the need to arbitrarily split the sample period into several
subsamples. However, a major drawback of these models is that changes in cycle

correlation can only be revealed to increase or decrease. As a consequence, these
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models cannot show periods of cycle convergence and divergence across a given
sample period, as in Inklaar and de Haan (2001} and Massmann and Mitchell (2004).
By applying the multivariate UC model imposed with time-varying rank-reduction
mechanisms, Luginbuhl and Koopman (2004) find that both slope and cycle
components in per capita GDP of five European countries began converging after the
introduction of the ERM. In particular, the cyclical components of the GDP series for
Italy, the Netherlands, and Spain converged to the German and French cycles at the
beginning of the 1990s. Koopman and Azevedo (2008) further extend the multivariate
UC model to incorporate time-varying phase shifts and time-varying cycle relations.
The bivariate specification is used to analyse growth cycle comovements between euro
area countries and the aggregaie euro area. In addition to finding a high degree of
growth cycle synchronisation for France and Germany with the euro area across the
sample period, the Italian and Spanish growth cycles are also found to become more
synchronised with the euro area over time. Italy displays a more synchronised growth
cycle with the euro area from 1980 onwards, which may suggest that the formation of
the ERM had a positive impact on raising growth cycle synchronisation. An increase in
cycle correlation of Spain with the euro area occurred in the 1990s, and roughly

coincided with the introduction of the Common Market in 1993.

In short, studies analysing growth cycle synchronisation, as outlined above, have
obtained very mixed results. Artis and Zhang (1997) and Darvas and Szapary (2004)
find evidence of greater growth cycle synchronisation after countries joined a currency
arrangement or a monetary union. However, others, including Camacho et al. (2006),
do not. Instead of studying comovement of growth cycles, another strand of research
evaluates the concordance of business cycle turnings points identified using the MS

model-based approaches or variants of the BB algorithm.

Artis, Krolzig and Toro (2004), for example, investigate whether there exists a common
European business cycle using industrial production indices for nine EU countries from
1970 to 1996. With the exception of Germany, three-regime MS models are applied to
the other countries analysed instead of the two-regime model as proposed in Hamilton
(1989). Therefore, this approach distinguishes between three regimes: recessions,
moderate growth and fast growth periods, rather than just expansions and recessions.

Synchronisation is evaluated using pairwise correlation coefficients between the
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smoothed recession probabilities and Pearson contingency coefficients between binary
variables over the entire sample period. Since both indices indicate a reasonable level
of business cycle synchronisation, they conclude that business cycles in the nine EU
countries may be driven by a common underlying factor. Therefore, the MS-VAR
approach proposed by Krolzig (1997a, 1997b) is employed to identify common regime
shifts among the nine industrial production indices. As a result, common recessions are
identified during 1974-1975, 1979-1982 and 1990-1992, which roughly coincide with
the two oil price shocks and the ERM crisis. Furthermore, based on the estimated MS-
VAR model, they analyse the impulse response of each industrial production index to a
shift in regimes, They find that the industrial production indices of France, Germany,
the Netherlands, Belgium and the UK respond in a similar manner, in terms of timing
and magnitude, when the common regime shifts from moderate growth to recession.
They also observe that Spain, Portugal and France react the most strongly when the
regimes shift to fast growth periods. As with Artis, Krolzig and Toro (2004), Altavilla
(2004) also uses the univariate MS model, but with two regimes, to date business cycle
turning points in real GDP series for five euro area members, the aggregate euro area
and the US between 1980 and 2001. The comovement of each national business cycle
with the reference cycles, the euro area or the US cycle, is studied by computing the
concordance index and correlation coefficient over two subsamples: the pre-Maastricht
period (1980-1991) and the post-Maastricht period (1992-2002). They find a moderate
increase in business cycle synchronisation between member countries and the aggregate
euro area over these two periods. A three-regime MS-VAR model with regime-
dependent intercept and heteroscedasticity is fitted to the real GDP series of the five
euro arca members to defect common turning points among these series. Three

common recessions are identified during 1980, 1992 and 2001.

In contrast to Artis, Krolzig and Toro (2004) and Altavilla (2004), who rely on business
cycle indicators obtained from individual series using the univariate MS approach,
Camacho and Perez-Quiros (2006) analyse business cycle synchronisation of the G7
countries, based on the bivariate MS model. They use the parameter estimate of the
distance from the full dependence case to indicate the degree of divergence between
each pair of business cycles. Their results suggest that three euro area countries,

Germany, France and Italy, share more synchronised business cycle dynamics with each
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other but nonsynchronised cycles with English speaking countries (the UK, the US and
Canada),

Harding and Pagan (2001}, Garnier (2003} and Artis, Marcellino and Proietti (2004a)
apply modified versions of the BB algorithm to identify business cycle turning points.
Harding and Pagan (2001) use the quarterly BB algorithm to obtain turning points in the
real GDP series for six euro area countries and the aggregate euro area. Various
concordance indices are computed to indicate synchronisation between national
business cycles and the aggregate euro area. They conclude that synchronisation
between euro area business cycles remains low. Garnier (2003) compares four variants
of the BB algorithm to date turning points in industrial production indices for a large
number of countries, including 12 euro area members, three EU but non-EMU countries
{Denmark, Sweden and the UK), and two non-EU countries (the US and Fapan) over the
period of 1962-2001. Pearson correlation coefficients and mean corrected concordance
indices of each business cycle with German and US reference cycles are computed over
two subsamples, pre-EMU and post-EMU. Although mixed results are obtained when
measuring synchronisation between individual euro area cycles and the German cycle,
both measures indicate that euro area business cycles are increasingly independent of
the US cycle.”® Last but not least, Artis, Marcellino and Proietti (2004a) extend the
BBQ algorithm using the theory of Markov chains to date turning points in the
industrial production indices for 12 euro area countries, The degree of business cycle
synchronisation is evaluated vsing a dispersion measure. They conclude that there is no

clear tendency for either convergence or divergence.

In general, studies which assess both growth cycle and business cycle synchronisation
conclude that synchronisation is found to be weaker in business cycles than growth
cycles. These include Artis, Marcellino and Proietti (2004a), Altavilla (2004) and
Harding and Pagan (2002).

13 N . . . . . ..
Pearsen coefficients indicate that, on average, synchronisation between individual euro area cvcles and
the German cycle has declined, while mean corrected concordance indices suggest the opposite.
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1.7 Conclusions

This chapter illustrates some of the controversies and difficulties incurred when trying
to identify business cycle information from historical data. It provides a literature
review of dating classical business cycle turning points and extracting trends and cycles
from macroeconomic time-series. Furthermore, various measures of synchronisation
are discussed, ranging from simple correlation-coefficient to complicated model-based
approaches. The existing literature on evaluating the synchronisation of classical cycles
and growth cycles in the euro area is reviewed. There is still no consensus on whether
fixed exchanges rate regimes or monetary union have resulted in increased cycle
synchronisation. The thesis aims to provide a fresh look at business cycle
synchronisation in the euro area by introducing time-series models that may overcome
some of the problems in the literature. In the subsequent empirical chapters, the
synchronisation of classical business cycles is evaluated using turning points identified
using multivariate information, rather than just from individual economic variables as
used in most previous studies (i.e., Harding and Pagan, 2002; Garnier, 2003; Artis,
Marcellino and Proietti, 2004a). In addition, a multivariate approach is used to analyse
growth cycle synchronisation for seven major euro area countries. One benefit of this
approach is that it does not require prior filtering or decomposition of the GDP series
and, in turn, avoids the sensitivity problem encountered by using different
decomposition methodologies. Instead of analysing individual EMU member states,
Chapter 5 focuses on the euro area economy as a whole by assessing three issues
concerning the aggregate euro area output gap using multivariate unobserved
component models. The impact that changes in real interest rates have on the output
gap and inflation rates is evaluated using the most appropriate models as suggested by

the criteria used in the analysis.
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Chapter 2 - Evaluating the Synchronisation of Euro
Area Business Cycles: An Application of

Nonparametric Business Cycle Pating Methodolegy

2.1 Introduction

Chapter 1 surveyed a number of empirical studies that evaluate the degree of classical
business cycle synchronisation by comparing the concordance of turning points.
Among recent examples, Beine ef al. (2003) and Artis, Krolzig and Toro (2005) find a
high degree of synchronisation among business cycles of euro area members. However,
Harding and Pagan (2001) and Altavilla (2004) conclude that the level of business cycle
synchronisation remains relatively low compared to growth cycle synchronisation.
Moreover, Camacho et al. (2006) conclude that the introduction of the euro has not
significantly increased synchronisation across the euro area, and that the
synchronisation among member countries occurred prior to the formation of EMU.
Another strand of the literature, which includes Camacho e al. (2008), Artis,
Marcellino and Proietti (2003) and Krolzig and Tore (2005), evaluates synchronisation
by examining the similarities and differences of business cycle characteristics. The
average business cycle duration, amplitude and shape are compared across countries
and notable differences are found. Camacho et af. (2008) also analyse the evolution of
business cycle characteristics over two subsamples (1962-1989 and 1990-2004). They

find that variances in business cycle characteristics increase over time.

To date, much of the empirical literature, including that mentioned above, has measured
business cycle synchronisation using cycles identified from individual macroeconomic
time-series, such as industrial production and real GDP. However, only analysing
univariate time series may not be optimal for dating business cycles. First, although
real GDP is the broadest output variable, it is less cyclical and subject to more frequent

revisions than other macroeconomic indicators. In contrast, industrial production
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appears more volatile than GDP but represents less than 20% of the total output of the
euro area. More importantly, a large number of studies in dating classical business
cycles, including Burns and Mitchell (1946), Stock and Watson (1989, 1991, 1993,
1999) and Hamilton (2003), have highlighted the comovement of many macroeconomic
variables as being a key feature of a business cycle. This feature cannot be analysed by

looking at individual variables as previous studies have done.

It is also believed that the accuracy of business cycle identification improves when more
variables are included in the cycle dating analysis. However, there are no fixed rules as
to which economic variables should be used, how many should be included, and what
data frequency should be considered for the analysis. The NBER business cycle dating
committee dates US business cycle turning points by using four monthly variables; real
income, industrial production, volume of sales and employment. These variables are
known as coincident macroeconomic variables, as they share a common cycle with the
unobserved state of the economy. Data limitations mean that such analysis cannot be
replicated for the euro area. Instead, a committee founded by the Centre for Economic
Policy Research (CEPR) suggests analysing a number of quarterly coincident
macroeconomic variables, such as real GDP, industrial production, gross fixed capital
formation and employment, to date business cycles for the aggregate euro area and for

mndividual member states.

The main objective of this chapter is to evaluate classical cycle synchronisation using
turning points identified from multivariate information. To do this, Stock and Watson’s
(1989, 1991, 1993) single dynamic factor (DF) model is employed to estimate a
composite index of a number of coincident macroeconomic variables. Harding and
Pagan’s (2000, 2001, 2002) quarterly extension of the Bry and Boschan (1971)
procedure, the BBQ algorithm, is then used to identify turning points in this index. The
two-step business cycle dating strategy used in this chapter is discussed in Harding and
Pagan (2001), who defined this approach as locating turning points in an aggregated

index.

The rest of this chapter 1s organised as follows. Section 2.2 presents the BBQ algorithm
and Stock and Watson’s DF model. The properties of the data, along with a modified

DF model incorporating error correction terms, are discussed in section 2.3, In section
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2.4, the business cycle turning points for the aggregate euro area and individual
countries are reported. The concordance of tuming points and the similarities of cycle
characteristics are evaluated in sections 2.5 and 2.6, respectively. Finally, section 2.7

concludes.

2.2 Locating turning points in the composite index using the BBQ

algorithm

The business cycle dating strategy utilised in this study involves two steps. First, the
single DF model is used to estimate a composite index which is a weighted average of
four coincident macroeconomic variables. Turning points of this index are then
identified using the BBQ algorithm. By applying the BBQ algorithm a peak (trough) at
time ¢ is defined as the maximum (minimum) value during the period from f—£% to
t+k, where k£ =2 for quarterly data. This algorithm is expressed in the following two

equations,

peak at t = {(¥, 5 Y0) <V, >V Vi) b s (2.1)

trough at t = {(¥, 2,2, > ¥, <(Vra1 Viu2)}» (2.2)

where y, is the composite index. A recession is declared if y, declines for two

consecutive quarters. Recessions and expansions can be highlighted once turning points
are located. A recession starts from one quarter after a peak to the following trough,

whilst an expansion is the period from one quarter after a‘trough to the subsequent peak.

Stock and Watson’s single DF model assumes the existence of an underlying common
dynamic factor, which drives the comovements of individual coincident economic
variables. As the variables used by Stock and Watson were integrated of order one, but
not cointegrated, their model is estimated in first differences.’ The growth rate of each

variable consists of a common factor and an idiosyncratic component:

! The four coincident variables used by Stock and Watson (1989, 1991, 1993} are industrial production,
real personal income less transfer payments, real manufacturing and trade sales and employee hours in
non-agricultural establishments.
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AY, =D, +y,(L)AC, +e,, i=12,..4, (2.3)

where AC, determines the comovement of different economic variables and is
orthogonal to D, + ¢, , which capture the idiosyncratic fluctuations of each variable.
¥,(L) is a polynomial in the lag operator, L, and contains the parameter estimates of
current and lagged values of AC,, which reflect the sensitivity of each variable to the
common factor. As employment data may slightly lag the common factor rather than
being an exact coincident variable, y,(L) issettobe ¥, (LY=y,, +y,L+...+y, L" when
employment growth is the dependent variable, otherwise it is set as y,(L)=y,. The
data generating structures of AC, and e, are modeled as stationary autoregressive

processes:

HIL)AC, =8 +v,, v, ~ NID(0,0?0), (2.4)

w,(Lye, =€,, &, ~ NID(0,a2). 2.5)

i

This model is completed by assuming that the innovations, ¢, and v,, are mutually and

serially uncorrelated. Stock and Watson estimated the above model using first-
differenced variables, standardised to have zero mean and unit variance. An advantage
of using demeaned variables is to solve the over identification problem by removing

two components, D, and & , from the model estimation. Therefore, equations (2.3)-(2.5)

become

Ay, =y (D)Ac, +e,,i=12,...4, (2.6)
#(L)Ac, =v,, v, ~ NID(0,57), (2.7
w,(LYe, =¢,,¢, ~ NID(0,a), 2.8)

with Ac, = AC, =& . To implement the Kalman filter (KF)%, equations (2.6)-(2.8} are

recast in state-space representation as

Ay, = HB,, (2.9}

? The Kalman filter is discussed in Appendix B2,
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B =FB_ +z,, & ~NID(0,0). (2.10)

Equations (2.9) and (2.10) are the measurement and transition equations of the state-
space model, respectively. Ay, =[Av,,Ay,,, A, Ay, 1" is the vector containing four
coincident economic variables. S =[Ac,,Ac,_,AC _,, A, 1,€,,€, 150+ €45€,_,]" cONtaing

the current and lagged values of the common factor and innovation terms. The time-

invariant matrices F, A and (7, contain the hyperparameters:

6 ¢, 00 0 0 0 0]
1 0 00 0 O 0 0
0w o roLog 11000 e
g7 0 0 00000 0
RERETIEY i R
Yao Vo Yo Yz 00 010 .. . . .
0 ¢ 0 0 ¥a Va
0 0 00 0 0 1 0
(62 0 00 0 0 0 0]
0 000 0 O 0 0
0 000 ¢ O© 0 0
O 000 0 0 0 0
and 0= 0 0 0 0 o] O 0 ol
0 000 0 O 0 0
0 000 0 O ol 0
] 00 0 O 0 0]

i

MLE is used to estimate the model’s hyperparameters: {;ﬁ.,wi, V.0, }, based on the

prediction error decomposition. Given the MLE parameter estimates, the unobserved

vector f, is calculated, with the first element being Ac, .



2.2.1 Calculating the mean growth rate §

Since the BBQ algorithm identifies turning points as the local maxima and minima in
the level of economic activity, the level of the common factor needs to be found from

the first differences:

C +Ac,,,+é‘, (2.11)

2 =
where & is the estimated mean growth rate of AC, given by

6 = E[AC,,] = E[W(L)AY, ] (2.12)
=W (1)E(AY,)

=W NAF .

W(l) can be computed by iterating the KF as follows (where K, denotes the Kalman

gain)

ﬂz{r zﬁr[f—l +Kr (Ayr —H/B:if—l) (213)
= FP,y. + Kby, ~ K HFf

£=1r1

=(I~-K H)FfS + K Ay,

-1f1-1

As t approaches infinity, K, approaches the steady-state Kalman gain, X . If K, is
plotied for ¢ =12,...T, it becomes apparent that K, converges to a steady-state value
reasonably fast. Once the steady state is reached, the equalities K, =K and

B, =B,y arefound. Thus, equation (2.13) can be rewritten as

By, = (I~ ~KH)YFL)" K1y, (2.14)

W (1) is the first row of (/ - (I —KH)F) 'K, where K = K, is obtained from the last

iteration. Given the value of W(1), & can easily be calculated. By setting the initial
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value of C;|;

{(i.e.,C ) to be zero, the time series of Crlr is obtained, The scale of C,

olo |¢
only reflects the speed of a country’s economic growth during the studied period, rather

than the size of the economy.

2.3 The properties of the data and modified models

Five coincident macroeconomic variables: real GDP, industrial production (IP), gross
fixed capital formation (GFCF), retail trade (Sales) and civilian employment, are
collected for the aggregate euro area and the following member states: Germany, France,
Italy, Austria, Belgium, the Netherlands, Spain and Finland.” In the literature, these
countries are usually divided into two groups: the core (Germany, France, Italy, Austria,
Belgium and the Netherlands) and peripheral countries (Spain and Finland), based on
their exchange rate behaviour against the Deutsche Mark (DM) in the past. Three non-
EMU countries (the UK, the US and Canada) are also included in the analysis to
benchmark the degree of cycle synchronisation which has occurred in the euro area. All
series are seasonally adjusted, quarterly observations and expressed in logarithms (times
100). Real GDP and GFCF are taken from the OECD Quarterly National Accounts
database. IP and Sales are taken from the OECD Main Economic Indicators database.

Employment data for most countries are taken from the OECD Labour Force Statistics.*

Four of the five variables mentioned above are chosen to estimate the composite index
for each country analysed. Although there are no set rules specifying which variables
should be used, real GDP and employment data are preferred. The former is the
broadest measure of output and the latter can provide an indication of labour market
flexibility, which is an important criterion when judging the optimality of a monetary
union. The time series of all the logged variables used are plotted in Figure A2.1 in
Appendix A2. Pronounced outliers are observed in some of the series. To reduce the
degree of non-normality in the residuals detected by the Jarque-Bera test, dummy

variables are used for the affected time periods.

? The sales data are not available for the aggregate euro area and Spain.

* Employment data for France, Belgium and the Netherlands are taken from Datastream, with the series
codes of FROCFEMPOQ, BGOCFETNO and NLOCFETNO, respectively. The aggregate euro area
employment data is taken from the AWM database constructed at the ECB by Fagan et al. (2001) and
updated using Datastream, data code EMEMPTOTO.
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To examine whether the model outlined above is appropriate for the data used in this
chapter, the Augmented Dickey-Fuller (ADF) (Dickey and Fuller, 1979} and Johansen’s
(1995) cointegration tests are conducted, with the test statistics reported in Tables A2.1
and A2.2 in Appendix A2. The ADF tests are unable to reject the null hypothesis of a
unit root in the levels of the variables but reject the null when first differences are used.’
However, the Johansen cointegration tests indicate the presence of one cointegrating
vector among the four variables used for the aggregate euro area, France, Belgium, Italy,
the UK, the US and Canada, and two for the Netherlands and Spain. Therefore, the

measurement equation is modified as follows:

Ay, = Hf, + AXECM,,, (2.15)

where ECM,_, is a vector of error correction terms and A is a matrix of corresponding
adjustment parameters. A two-step estimation procedure is proposed. In the first stage,

ECM,_, is estimated independently from the VECM. In the second stage, conditional

onthe ECM, ,, the remaining parameters are obtained.

2.4 Empirical results

The common factor for each country analysed is estimated using the DF factor model

outlined above. The parameter estimates are reported in Tables 2.1-2.12. The time path

of C

1o along with recessions identified using the BBQ algorithm, are plotted in Panels

1-12 of Figure 2.1.° These results will be discussed over the next a few sections,

divided up by core, peripheral and non-EMU countries.

* The ADF tests with a constant and a linear time trend included indicate that the IP data for the aggregate
euro area, the Nethertands and Canada, and the GDP data for Belgium and US may be trend stationary.
¢ The common factor growth rate for each country analysed is plotted in Figure A2.2, Appendix A2
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2.4.1 The aggregate euro area and core EMU counfries

The aggregate euro area. The four coincident macroeconomic variables used to
estimate the unobserved common factor for the aggregate euro area are real GDP,
GFCF, IP and employment during the period 1975Q3-2006Q4. As one cointegrating
vector is identified by the frace and eigenvalue statistics, the modified DF model
including one error cotrection term is used, with the parameter estimates reported in
Table 2.1. The common factor for the aggregate euro area is modelled as an AR(2)
process. The value of @, + ¢, = 0.58 indicates the persistency of this common factor.
Positive estimates of y, suggest that all four variables follow pro-cyclical patterns with
respect to the common factor. The size of y, determines the response of individual
variables to the common factor fluctuations. y, is the largest followed by ., ¥, and

¥4 This indicates that real GDP responds the most to the common factor fluctuations,

while employment responds the least. The fact that ,, is statistically significant also

suggests that employment lags the common factor. Unlike the other idiosyncratic terms,
the idiosyncratic fluctuations of employment follows an AR(4) process. This may also
imply slow adjustment in the euro area labour market. A significantly positive

adjustment parameter, &,,, in the IP equation confirms the presence of a long-run

relafionship among the variables. The mean growth rate of the common factor, &, is

estimated to be 1.03 and 1s equivalent to a trend growth of 4.1 per cent per annum.

The time series of C:Jr for the aggregate euro area is plotted in Panel 1 of Figure 2.1.

The BBQ algorithm identifies three recessions over the period: 1980Q2-1981Q1,
1982QQ2-1982Q4 and 1992Q2-1993Q2. Although these are not all consistent with the
cycle dates produced by the CEPR business cycle dating committee’, the fact that no

recessions are detected during the 2000s 1s in line with the committee’s findings.

” The three recessions identified by the committee since 1970 are 1974Q3-197401, 1980Q1-1982Q3, and
199201-199303.




Table 2.1: Parameter estimates for DF model for the euro arez

Commeon Factor

3 0.247 (0.111)*
¢, 0.336 (0.108)**
ldiosyncratic Components

AGDP ¥, - y - Y1 Yo - Oy 0'12
0.794** -0.058 -0.001 0102  0.187**
(0.080) {0.200)  (0.006) (0.148) (0.055)

AGFCF 7, - - - ¥ Y - 37! a;
0.664** -0.346%* 0.023 -0.083 0.280**
{0.072) (0.129)  (0.124) (0.126) (0.054)

AlP V3 - - - Wi Wi - 3 0-32
0.647** 0.132 0.273% 0.299* (.389*%*
(0.086) {0.158)  (0.125) (0.160) {0.070)

AEMP ¥y Yai Va 743 L ¥ m a, O‘i

0.234** 0.237%* 0.071 0.086 0.144 0.112 0.342*%* _0.169 0.310%*
(0.061) {0.062) (0.064) (0.063) (0.094) (0.093) (0.102) (0.141) (0.043)
Long run growth rate: & = 1.029

Error correction term

GDP, =18.598-0.932x GFCF +2.726 x IP, ;- 0.163x EMP_

{0.211) (0.273) (0.329)
Log-likelihood: -5388.894
Diagnostics Q(4) Jarque-Bera
A GDP 6.390 4.338
A GFCF 5.048 4.650
Aw 8.529 26.622**
A EMP 6.525 9.747%*

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for the euro area were estimated using data from 1975Q3-2006Q4. Logarithms of variables
were used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0054, 0.0047; A GFCF: 0.0056, 0.014; A IP: 0.0043, 0.0098; AEMP: 0.0014, 0.0028.

Germany. Unlike the aggregate euro area, no cointegration was found among the four
variables used for Germany. Therefore, the DF model is simply specified in first
differences. As a break in the employment data is observed in 1980Q1, a corresponding
dummy variable is included in the employment equation to reduce the degree of non-
normality in the residuals detected by the Jarque-Bera test. In contrast to the data
generating structure of the common factor obtained for the aggregate euro area, the
German common factor follows a white noise process with both ¢ and ¢, being small
and insignificant, as illustrated in Table 2.2. As suggested by the parameter estimates of

7;,» and in line with the findings for the aggregate euro area, employment is the least
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responsive, among the four variables analysed, to movements in the commeon factor for

Germany. It also lags the common factor fluctuations, with y,,, »,, and y,; being

positive and significant. These results partly reflect the comparative rigidity of the
German labour market. In addition, the idiosyncratic fluctuations of real GDP, GFCF
and employment all follow AR(4) data generating structures. The estimated mean
growth rate appears to be rather low, only around 1.3 per cent per annum. This is

largely due to the slow growth in German employment.®

In total, six recessions (i.e. 1973Q2-1975Q2, 1977Q2-1977Q3, 1980Q2-19820Q4,
1992Q2-1993Q2, 1995Q3-1996Q1 and 2001Q2-2003Q2) are found over the sample, as
shown in Panel 2 of Figure 2.1. The recessions which occurred in the 2000s appear
shallow compared to previous downturns, reflecting the increased moderation of the

German business cycle.

France. One cointegration vector was found among the four variables used for France.
Therefore the modified model is used with one error correction term included in the

system equations. The adjustment parameters ¢, and ¢,,, in Table 2.3, are significant.

12*
This confirms a long-run relationship among the four variables. The value of
¢ + ¢, =0.77 indicates that the common factor is more persistent for France than for
the aggregate euro area. Pro-cyclical pattemns between individual variables and the

common factor are also revealed by the positive estimates of y,. As with the aggregate

euro area and Germany, employment again exhibits the smallest response to changes in
the common factor and also lags the common factor fluctuations. This probably stems
from the relative rigidity of French labour markets and the historically strong labour

Unions.

The time path of C:|r’ and the three recessions: 1980Q2-1981Q1, 1982Q3-1984Q2 and

1992Q2-1993Q4, are plotted in Panel 3 of Figure 2.1. It can be seen that, although no
recessions are detected during the 2000s, the French economy has slowed down after a
period of comparatively strong economic growth at the end of 1990s. The estimated

long-run growth rate for the French common factor is about 4 per cent per annumt.

® The quarterly mean growth rate of German employment is 0.05 percentage points, compared to (.14
percentage points for the aggregate euro area.
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Table 2.2: Parameter estimates for DF model for Germany

Common Factor

¢, 0.073 (0.110)
&, 0.158 {0.112)
Idiosyncratic Components

AGDP 7, - - - - 4T ¥, ¥4 C’-tz
0.811%* 0034 -0109 0634** 0.167**
(0.081) (0.146) (0.104) (0.113) (0.065)

AGFCF 7, : - - - Vo  ¥n  Yu O3
0.609%* -0.254% -0.016 0.207*  0.473**
(0.086) (0.097) (0.012) {(0.102) (0.071)

AP 7, - - - - Wy o Wa oo - o5
0.738** 0.002  0.020 0.427**
(0.086} (0.118) {0.129) {0.087)

AEMP 7, Vi Vi Y D80g1 ¥/, Wi " O’j

0.208** 0.268** 0.168* 0.118* 5.648** 0.094 -0.077 0.253*  0.435**
{0.066) (0.064) (0.063) (0.065) (0.685) (0.092) (0.092) (0.091) {0.056)
Long run growth rate: 4 =0.374

Log-likelihood: -642.009

Diagnostics Qla) Jarque-Bera
AGDP 2.072 5.831

A GFCF 5.002 &.448

AP 4.863 4.980

A EMP 5.543 66.704**

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%.The parameter
estimates for Germany were estimated using data from 1970Q1-2004Q4. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0056, 0.0098; A GFCF:0.0038, 0.0278; AIP: 0.0037, 0.0157; A EMP: 0,0005, 0.0051.

Italy. One cointegration relattonship was identified by the Johansen cointegration test

among the four variables analysed for Italy. The presence of this long-run relationship

is further confirmed by the significant adjustment parameters ¢, and ¢,. A dummy

variable is included to catch the sudden drop in employment during 1992Q1, with the
parameter estimate of this dummy found to be negative and significant. The Italian
common factor follows an AR(2) process, but ¢, has a negative sign. Although the
Italian employment exhibits contemporaneous movements with the common factor, the

value of y,, appears to be rather low. As the long-run growth rate is estimated to be

0.72, this is equivalent to 2.9 per cent per annual.
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Compared to the other countries analysed, the Italian economy appears to be very
unstable with nine recessions identified over the sample period: 1974Q4-1975Q2,
1977Q2-1977Q3, 1982Q2-1983Q2, 1984Q4-1985Q1, 1992Q2-1993Q4, 1996Q2-
1996Q4, 2001Q2-2001Q4, 2003Q1-2003Q2 and 2004Q4-2005Q1.

Table 2.3: Parameter estimates for DF model for France

Common Factor

¢] 0.419(0.138)**
¢2 0.349{0.125)**
‘ ldiosyncratic Components
AGDP " ) ) ) Y Y12 Oy oy
0.640%** -0.008 0.000 0.359* 0.378**
(0.073) (0.145)  {0.001) (0.140)  (0.075)
. _ . 2
AlP ¥ W W ap, O,
0.685** 0.023 G.161 0.669** 0.278**
(0.020) (0.189)  (0.163) (0.162)  {0.073)
AsSales  y, - - ) ¥ ¥V Qi3 o3
0.229** -0,294%** 0.015 0.007 0.808**
{0.067) {0.093) {0.095}) {0.095) (0.105)
AEMP Vao Fal Y Vas W ) oy o

0.361**  0.066 0.104 0.136%* 0.247* 0.207* 0.037 0.280**
{0.069) {0.096) (0.077) (0.070) (0.112) (0.106)  (0.177) {0.044)
Long run growth rate: O = 0.982

Error correction term
GDP, ,=232.360+2.324x IP | +0.667x Sales, , -3.152x EMP, |

(0.188) (0.294) {0.679)
Log-likelihood: -568.881
Diagnostics Ql4) Jarque-Bera
A GDP 3.719 © 3.764
AP 4,278 4.035
A sales 0.856 12.576**
AEMP 3.164 1.837

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for France were estimated using data from 1975Q4-2006Q4. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0053, 0.0044; A (P: 0.0035, 0.0115; A Sales: 0.0037, 0.0104; A EMP: 0.0013, 0.0026.

60



Table 2.4: Parameter estimates for DF mode! for Italy
Common Factor

&, 0.719 {0.128}**
¢, -0.129 {0.046)**
Idiosyncratic Components

AGDP 7, - - - - ¥ ¥ - oy 0'12
0.697** 0.087  -0.002 0.267*  0.184**
{0.076) {0.190)  (0.009) (0.133)  (0.066)

AGECE 7, - - - - s 7P a, o;
0.403** 0052 0.007 0.001  0.714**
{0.069) {0.088)  (0.088) {0.101)  (0.089}

AlP Y3 - - - - ¥ Wan - 297 o)
0.540%* -0.471**  0.002 0.355%* 0.319%*
{0.058) (0.118)  (0.107) (0110}  (0.063)

AEMP ¥, Y4 Vi Y D32q4 W4 Y¥an Was ay, O'f :

0.160* 0.046 -0.074 0.083 -4.171** -0.076  -0.212* 0.229* .0.148  0.565**
{0.089) (0.119) {0.123) (0.097} (0.797) (0.091}  {0.086) (0.086) {0.114) (0.080)
Long run growth rate; §=0.725
Error correction term
GDP, = 2.645 +0.091x GFCF, |+ 1.142x IP | +0.521x EMP, |

{0.105) {0.086) (0.243)
Log-likelihood: -683.455
Diagnostics Q(4) Jarque-Bera
A GDP 0.722 3.921
A GFCF 4.797 5.315
AP 8.904 27.577%*
AEMP 0.703 8.419*

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for Italy were estimated using data from 1970Q1-200604. Logarithms of variables were used,
each variable was standardised to growth rates with mean zero and unit variance prior to estimation.

The sample means and standard deviations for the growth rates of the original series are: A GDP:
0.0056, 0.0079; A GFCF: 0.0042, 0.0181; AIP:0.0043, 0.0223; AEMP: 0.0012, 0.0064.

Austria. Upon plotting the four time series used for Austria, it became apparent that
there were large breaks in the real GDP, GFCF and employment data series.
Consequently dummy variables were inserted in the quarters when these breaks
occurred. It is also worth noting that real GDP and GFCF appear significantly smoother
from 1988 onwards due to different methodologies being used to deseasonalise these
series pre-1988 and post-1988. As with Germany, both the trace and eigenvalue
statistics cannot reject the null that the four variables used for Austria are not
cointegrated. As such, the DF model is specified in first differences. One striking

result observed in Table 2.5 is that y,, appears negative and insignificant, while y,, is

positive and significant. This suggests that, although the one-period lagged Austrian

employment variable is pro-cyclical to the common factor, its contemporaneous
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movement is found to be anti-cyclical. This may reflect the shortcomings of centralised
wage bargaining in Austria, which is aimed at long run equity objectives and job
preservation at the expense of greater labour market rigidity. The annual growth rate of

the Austrian common factor is estimated to be 3.2 per cent.

The time path of C, is plotted in Panel 5 of Figure 2.1. Five recessions are highlighted

during 1974Q2-1975Q2, 1980Q2-1982Q4, 1984Q1-1984Q2, 1992Q3-1992Q4 and
2001Q2- 2002Q4.

Table 2.5: Parameter estimates for DF model for Austria

Common Factor

&, 0.274 (0.136)*
#, 0.234 (0.136)*
Idiosyncratic Components

AGDP 7, - - - D78q1 - Ve Vo o o)
0.573+* 6.095%* -0.106 -0.003 0.308**
(0.078) (0.759) (0.162) (0.009) {0.071)

AGFCF 7, - - : D781 DO3ql Yy ¥n  O;
0.476%* 6.993** 3.819%* -0.022 0098  0.252**
(0.067) (0.649)  (0.586)  {0.133) (0.136) (0.053)

AP 7 . - . . : Vi o ¥n o Of
0.498%* 0.007 0.192% 0.656**
(0.089) (0.095) (0.094) (0.096)

AEMP 74  Zu Yo Ys  D82qL  DOAQL W, W, ol

-0.031  0.316** 0157 0.082  4.593** -3.921** .0.119 0.174 0.571**
(0.086) (0.095} (0.100) (0.0%0} (0.779)  (0.771)  (0.096) {0.093) (0.078)
Long run growth rate: & =0.808

Log-likelihood: -615.155

Diagnostics Q(4) larque-Bera
AGDP 1.827 9.336*

A GFCF 5.193 7.588*%

AlIP 1.603 1.883

AEMP 2.964 27.36%*

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for Austria were estimated using data from 197001-20060Q4. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0058, 0.0087; A GFCF: 0.0085, 0.0155; A1P; 0.0050, 0.0221; A EMP: 0.0019, 0.0077.
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The Netherlands. The trace statistic indicates one cointegrating vector among the four
variables used for the Netherlands, while the eigenvalue statistic suggests two. As the
two error correction terms estimated from the VECM appear stationary, they are both

included in the DF model. The inference provided by the eigenvalue statistic is

supported by the significant adjustment parameters, o,, a;,, &, and a,,. The Dutch
common factor is the most persistent among the countries analysed with @ +¢, = 0.915.
One striking feature observed in the Dutch results is that the y, are small but y,,, ¥,

and y,, are large. This may imply that the four variables analysed exhibit less

comovement but more individual fluctuations.

As revealed in Panel 6 of Figure 2.1, the growth of the Dutch common factor was
steady after the severe recession which occurred in the early 1980s. This strong
performance was boosted by the wide-ranging structural and regulatory reforms
undertaken in the 1980s and by the fast growth in foreign trade. Four complete
recessionary periods are identified in 1974Q4-1975Q3, 1980Q2-1983Q2, 1992Q3-
1993Q2 and 2002Q1-2004Q1. The recession triggered by the ERM crisis in the early
1990s was short lived. However, the Dutch economy struggled during 2002 and 2003,
due to rising labour costs and weak domestic demand. A sustained recession is
identified during this period, reflecting the breakdown in the country’s previously
strong economic performance. The estimated long-run growth for the Netherlands is

around 6.5 per cent per annum. It is significantly higher than the euro area average.

Belgium. One error correction term is included in the DF model for Belgium, with the
adjustment parameter, &, , found to be significant. The estimated common factor also
appears very persistent with ¢, +¢, = 0.86. Unlike most of the countries analysed
above, the Belgian employment data appears more responsive to the common factor,
with y,, being the largest among all the estimated y,. Six recessions are identified for
the Belgian economy during 1974Q4-1975Q3, 1977Q1-1977Q2, 1980Q2-1983Q2,
1991Q1-1991Q3, 1992Q3-19930Q4 and 2001Q2-2002Q1. The estimated mean growth

rate for the Belgian common factor is around 4.8 per cent per annum.




Table 2.6: Parameter estimates for DF model for Netherlands

Common Factor

é, 1.417 {0.123)**
#, -0.502 (0.087)**
idiosyncratic Components

AGDP 7, - - D75g1 - ¥ Y2 oy & 0'12
0.103** -3.797** -0.301%* -0.023 -0.506  -0.681  0.663**
{0.032) {0.878) (0.098)  (0.015) {0.548) (0.558)  (0.082)

ASales 7, . : D78a1  DSdal ¥, W, @, @y O3
0.079** 2.614%%  -4,695%* -0307** -0.024 -1.171% -1,330* 0.635**
{0.024) (0.815)  (0.776)  (0.085)  (0.015) (0.505} (0.510)  {0.076)

APy - - - i Wy o Wa @y ap O}
0.091** 0131 -0.004 2.176%* 1.830%* 0.747%*
(0.034) (0.100)  {0.007) (0.675) {0.672)  {0.091)

AEMP ¥4 Ya Y Vs D36ql Vi Wi oy N 042

0.073  0.056 0.01%6 0.141*  -1.703** $775** 0150 0.366  0.425  0.041**
(0.058) (0.072) (0.079) (0.056) (C.288)  (0.281)  (0.109) {0.337) (0.422)  (0.009)
Long run growth rate: J§=1.638
Error correction terms

GDP, ,=-8.524-3.444x IP  +4.156 xEMP, Sales,  =63.86 +24.946x IP - 19.337 x EMP,
(0.708) {0.629) {3.871) {3.442)

Log-likelihood: -560.705

Diagnostics Q{4) Jarque-Bera

A GDP 4.758 34.106%*

ASales 4.568 17.841%*

Alp 4.092 1.072

AEMP 2.037 11,294**

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for the Netherlands were estimated using data from 197001-2006Q4. Logarithms of variables
were used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0064, 0.0121; A Sales: 0.0018, 0.0192; AiP:0.0041, 0.0181; AEMP: 0.0029, 0.0063.
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Table 2.7: Parameter estimates for DF model for Belgium

Common Factor

&, 1.255 (0.101)**
0, -0,393 {0.155)*
Idiosyncratic Components

AGDP 7, - - D80Gl 1y, Wi W &, o}
0.253** 4.467%*  0.035 0.023 -0.224*  0.262 0.525%*
(0.083) (0743}  (0.155) (0.102)  (0.103) (0.143) {0.093)

AGFCF 7, - - - Yo Yo - o o;
0.222%* -0.079 0.114 0.038 0.720%*
{0.047) {0.089} (0.086) (0.109}  (0.088})

AlP Vs - - - ¥ W3 - 29R! o3
0.295%* -0.200 -0.010 0.583** (0.518**
(0.047) (0.143)  (0.014) (0.132)  {0.085)

AEMP 7, Ya Va2 Vi W Wy - a, 0'3
0.306%* 0.075 -0.123*  0.132** 1.066** -0.284** -0.041 0.067*
(0.057) {0.062) (0.068) (0.047) {0.151) {0.080) {0.052} {0.039)

Long run growth rate: & =1.207

Error correction term
GDP, =15.805-0.220x GFCF + 1.477x 1P, , - 1.499x EMP, |

(0.080) {0.080) {0.312)
Log-likelihood: -604,932
Diagnostics Ql4) Jarque-Bera
AGDP 15.277* 4.113
A GFCF 4.021 6.012
Alp 1.606 14.502**
A Emp 3.287 4.364

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for Belgium were estimated using data from 1970Q1-2006Q4. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit varjance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0059, 0.0074; A GFCF: 0.0044, 0.0209; A IP: 0.0044; 0.0209; A EMP: 0.0009, 0.0027.

2.4.2 The Periphery EMU Countries: Spain and Finland

Spain. The trace statistic indicates the existence of two cointegrating vectors, whilst the
eigenvalue statistic suggests that there is only one. As with the Netherlands, two

cointegrating vectors are included in the DF model for Spain. The significance of «,

confirms the presence of the first long-run relationship among three of the four variables

used for Spain. The parameter cstimate of «,, becomes significant when «,, is

restricted to zero, suggesting a second long-run relationship. The Spanish common
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factor is also persistent with ¢ +¢, =0.88. Employment is again the least responsive
and lags the common fluctuations. In total five recessions are found for Spain: 1974Q4-
1976Q1, 1978Q2-1979Q2, 1980Q2-1981Q4, 1983Q3-1984Q2 and 1992Q2-1993Q4.
No recessions are identified from 1994Q1 onwards, which may be a consequence of the
funding received from the European Region Development Fund and the strong growth
observed in the construction sector. In contrast to Germany and the Netherlands, who
both suffered from recessions and sluggish growth in récent years, Spanish economic
growth has accelerated. The estimated mean growth rate for Spain is 4.75 per cent per

annum over the period studied.

Finland. As no cointegration 1s found among the four variables used for Finland; the

DF model is thus specified in first differences. The Finnish common factor follows an
AR(2) process with both ¢ and ¢, positive and significant. Unsurprisingly, Finnish
employment lags behind the common factor fluctuations, with y,, béing insignificant,
and y,, and y, being positive and significant. To some extent, this reflects the

rigidities present in the Finnish labour market, stemming from the generous
unemployment benefits and high employment protection provided. Five recessions are
identified, during 1975Q2-1975Q4, 1977Q1-1977Q2, 1980Q4-1981Q1, 1990Q3-
1993Q2 and 2001Q2-2001Q3. The most severe recession was observed during the
early 1990s, triggered by the collapse of exports to the Soviet Union and later
exacerbated by the ERM crisis. The annual growth rate of the Finnish common factor is

estimated to be 3.3 per cent.
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Table 2.8: Parameter estimates for the DF model for Spain
Common Factor

& 0.397 (0.133)**
&, 0.441 (0.130}**
idiosyncratic Components

AGDP  p, - - - - - L Wy ¥ ay &y ‘J'f1
0.467%* -0.460** -0.107 -0.200* -0.168 0.405 0.382**
{0.060} (0.120) (0.116) (0.088) {0.260) (0.262) {0.064)

AGFCF 7, - - - - - ¥y (%3 - &y &y o]
0.586%* 0.168 C.022 0.228 -0.084  0.262%*
(0.072) 0172)  {0.152) (0.335) {0.349) (0.067)

AlP Vs - - - - . ¥ Yo - &y Xy o;
0.431%* -0.256** 0.195% 0.972** -0.498* (.550**
{0.085) [0.101) {0.099) (0.314) (0.234) (0.078)

AEMP 74 Ya Yo Yar D76q1  D76g3 vy Yo - oy Oy o}
0.185** 0.147** 0,090 0.050 2.788%* 3.664** 0.254** (,219* -0.214 - 0.166**
{0.048) (0.055) {0.052) (0.051) (0.412} (0.41%) {0100  (0.094) {0.173) (0.023)

Long run growth rate: § =1.180
Error correction terms
GDP, =6.403+2,054x IP, - 0121x EMP,; GFCF,_ =-1.157+3.098x 1P, - 0.027x EMP,

{0.167} {0.179) {0.473) {0.507)
Log-likelthood: -539.934 :
Diagnostics Qi4) Jargue-Bera
AGDP 0.164 20.741%*
A GFCF 1.638 34,936%*
AP 3.033 14.456**
AEMP 1.386 12.524%*

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The adjustment
parameter @,, becomes significant when a,, is restricted to be zero. The parameter estimates for

Spain were estimated using data from 197203-2006Q4. Logarithms of variables were used, each
variable was standardised to growth rates with mean zero and unit variance prior to estimation. The
sample means and standard deviations for the growth rates of the original series are: A GDP: 0.0069,
0.0074; A GFCF: 0.0069, 0.0074; AIP: 0.0049, 0.0172; A EMP: 0.0035, 0.0082.
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Table 2.9: Parameter estimates for DF mode! for Finland

Common Factor

é 0.333(0.137)**
&, 0.349(0.128)**
Idiosyncratic Components

AGDP 2 - - - - ¥ ¥ 0'12
Q.573** -0.622%* -0.097* 0.316*
(0.150) (0.144)  (0.045)  {0.130)

ASales 7, - - - - W W 0-22:
0.453%* -0.002 -0.087 0.655%%
(0.123) {0.005) (0.094) {0.102}

AP Ve - - - - ¥ay LY 0'32
0.414** -0.170 0.109 0.698**
{0.121) (0.091) {0.094) (0.106)

AEMP 74 Yar Va2 Va3 D76q1 W Vi o}
0.025 0.333**  (.098 Q.325**  5.234**  _0.09% -0.242 0.280*

{0.097)  (0.085)  (0.149) (0.075)  (0.737)  (0.139)  (0.252)  (0.119}
Long run growth rate: & =0.827

Log-likelihood: -665.342

Diagnastics Ql4) Jargue-Bera
AGDp 11.126* 17.706%%

A Sales 10.702* 19.807%%

Alp 4,317 17.197%*
AEMP 1.447 1.033

Notes: Standard errars are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for Finland were estimated using data from 1970Q1-200604. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0069, 0.0121; A Sales: 0.0054, 0.0184; AP 0.0093, 0.0215; A EMP; 0.0011, 0.0081.

2.4.3 The non-EMU countries: the UK, the US and Canada

United Kingdom. The four variables used for the UK are also cointegrated. Therefore,
one error correction term is included in the DF model. A long-run relationship is
confirmed by the significant adjustment parameter, @,,. Dummy variables are included
in the GDP and IP equations to remove the pronounced outliers caused by the frequent
industrial strikes during the 1970s. A dummy is also used to capture the break in the
employment series during 2002Q3. Analysing the values of y, presented in Table 2.10
reveals that employment is again the least responsive and lags the estimated UK
common factor. This runs contrary to the general view that the UK has a more flexible

fabour market than France and Germany. However, this finding can be explained in
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part by the fact that the labour market deregulation, which only commenced in the early
1980s, will not be fully reflected when estimating the sample average. Overall, four
recessions are identified during, 1973Q3-1974Q1, 1974Q4-1975Q3, 1979Q3-1981Q1
and 1990Q3-1991Q3. It can be seen from Panel 10 of Figure 2.1 that, in contrast to the
core EMU countries presented above, the UK economy has performed consistently well
since the mid-1990s. The mean growth rate for the UK is estimated to be 2.5 per cent

per annum, which is relatively low compared to the other non-EMU countries analysed.

United States. Instead of using the monthly data analysed by the NBER business cycle
dating committee, four quarterly variables are used for the US to ensure consistency
with the other countries analysed. One cointegration relationship is found among these
variables, so that one error correction term 1s included in the DF model. The adjustment
parameter, ¢,, is found to be significant, which confirms the presence of a long-run
relationship among the four variables used. Although the US employment series lags

the common factor fluctuations, the value of y,, is larger than the corresponding values

for the other countries analysed, perhaps reflecting the greater flexibility of the
deregulated US labour market. The five recessions identified, 1974Q1-1975Q1,
1980Q22-1980Q3, 1981Q4-1982Q4, 1990Q3-1991Q1 and 2001Q1-2001Q3, replicate
the cycle dates pronounced by the NBER business cycle dating committee’. The mean

growth rate of the US common factor is computed to be 4.6 per cent per annum.

? Five peaks announced by the committee are November 1973, January 1980, July 1981, July 1990 and
March 2001; five troughs are March 1975, July 1980, November 1982, March 1991 and November 2001.
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Tabie 2.10: Parameter estimates for DF madel for the UK

Common Factor

B, 0.207 {0.122)
¢, 0.170 (0.124)
Idiosyncratic Components

AGDP D73qgl  D79q2 - - W, W oo ol
0.688** 3.501**  1.498* -0.386* -0.037 -0.066  0.168**
{0.073) (0.581)  (0.641) (0.154)  (0.030) {0.129) (0.057)

AGFCF 7, : : . - Vo Wm @y,  Op
0.322%% -0.157 -0.006 -0.015  0.886%*
(0.089) (0.098) (0.008) (0.100) (0.110)

AP 2 D72q1  D72q2 D74ql  D74q2 ¥y Ve o O o;
0.621*%*% -2.443%* 2.485%* _2.347** 3.887*F (0.464*% -0.054 -0.006 0.135**
(0.064) (0.517) {0.535) (0.547}  (0.532)  (0.164) (0.038) (0.126] (0.049}

AEMP 7y Ya Y Vi D02g3 ¥ Y &y O‘f
0.203** 0.168**  0.194** 0.092 4.949*%  0339%* 0.055 -0.229% (0.328**
(0.057) (0.063) {(0.066) (0.064)  (0.559)  (0.098) (0.099) {0.107) (0.043})

Long run growth rate: 6 =0.615

Error correction term
GDP,, =35.186+ 1.056 x GFCF, +0.674x IP,, - 2.824 X EMP, .

(0.123} {0.156] (0.450)
Log-likelihood: -584.199
Diagnostics Qf4) Jargue-Bera
A GDP 7.795 32.807%*
A GFCF 3.968 3977
AlP 3.289 9.306%*
AEMP 0.855 3.417

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%, The parameter
estimates for the UK were estimated using data from 197001-2005Q1. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:
A GDP: 8.0057, 0.0096; A GFCF: 0.0064, 0.0272; AP: 0.0028, 0.0185; AEMP: 0.0011, 0.0054.
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Table 2.1%1; Parameter estimates for DF mode! for the US

Common Factor

& 0.654 (0.103)**
@, -0.107 (0.034)**
Idiosyncratic Components

AGDP - - D78q2 Yu 12 ay of
0.666%* 2.042%*  .0.510%*  -0.065  -0.028  0.168**
(0.061) {0.578)  (0.155) (0.040)  (0.106)  (0.047)

Asales 7, D74q4 - D80g2 ¥a ¥ 2y o3
0.410%*  -2,149* -1.960*  -0.196*  -0.010  0.185%  0.475**
{0.058)  (0.760) (0.750)  {0.095) (0.009}) (0.081)  (0.060)

AP 7 D744  D75q1  D80G2 ¥y W &y, o}

0.574**%  -1.680%*  -3.170*%* -1.185* 0.294* 0.085 -0.155 0.185**
{0.058) {0.5321) {0.544) {0.540) {0.125} {0.120)  {0.105) {0.035)
AEMP 74 Ya Va2 Ya Wy L o, o

0.429%*  0.163* 0.042 0.126*  0.082 0002  -0.207  0.389*
(0.068)  (0.076)  {0.078)  (0.064)  (0.101)  (0.004) (0.125) {0.052)

Long run growth rate: & =1.160

Error correction term
GDP,  =0.004 +0.545x Sales ;- 0.097x IP, + 0.322x EMP,

(0.071) (0.072) {0.197)
Log-likelihood: -598.771
Diagnostics Q(a) Jarque-Bera
A GDP 0.053 10.908**
Asales 1.198 2.322
Alp 2.975 14.547*
AEMP 4.194 7.429

Notes: 5tandard errors are in parenthesas. ** denotes significance at 1% and * at 5%. The parameter
estimates for the US were estimated using data from 1970Q1-2006Q4, Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0078, 0.0082; A Sales: 0.0054, 0.0148; A IP: 0.0069, 0.0149; A EMP: 0.0043, 0.0048.

Canada. One cointegrating vector is also determined by the Johansen cointegration test
for Canada. The adjustment parameters, ¢, and o, , appear significant, again
confirming the presence of a long-run relation among the four variables used for Canada.
As with the US, the Canadian labour market exhibits a certain degree of flexibility, with
the value of y,, found to be larger than the corresponding values for the EMU countries.
As plotted in Panel 12 of Figure 2.1, four recessions are identified, during 1974Q4-
1975Q1, 1981Q3-1982Q4, 1990Q2-1991Q1 and 2001Q1-2001Q3. These dates are

closely correlated with the US business cycle turning points, illustrating the close
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economic link between the two countries. Finally, the annual growth rate for Canada is

estimated to be 4.9 per cent.

Table 2.12: Parameter estimates for DF model for Canada

Common Factor

& 0.799 (0.109)**
o, -0.160 {0.044)**
idiosyncratic Components

AGDP 71 - - - ¥ Wiz ay 012
0.581%* -0.303** 0023  -0.085  0.273**
{0.063) {0.116)  (0.018) (0.112) {0.050}

ASales 7, . - D31Q1 ¥y ¥ 3%} o3
0.297** ' 4.793**  0.215* 0126  0.179*  0.539**
(0.051) (0.758)  (0.092)  (0.091) (0.079) {0.067)

AlP 2 - - - W) Vn o @y Oy
0.586** 0.188 0.095  0.214%  (0.272%*
(0.063) (0.115)  {0.105) (0.117)  (0.049)

AEMP o Ya Va Ya W W42 &y 53
0.365**  0.266**  -0.075 -0.035  0.133 0.03¢  -0.205  0.341%*

(0.075) (0.0903)  (0.091} ({0.072)  (0.108) (0.106)  {0.137)}  {0.048)
Long run growth rate: ¢ =1.241

Error correction term
GDP,, =4.586+0.261x Sales,, + 0.399x IP ,+0.632x EMP, |

{0.045) (0.046) {0.047)
Log-likelihood: -628.861
Diagnostics Q{4) Jarque-Bera
AGDP 7.842 6.601*
ASales 0.472 0.148
Alp 4,947 2.141
AEMP 9.500 25.465%*

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for Canada were estimated using data from 1970Q1-200604. Logarithms of variahles were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0077, 0.0081; A Sales: 0.0079, 0.0168; A IP: 0.0064, 0.0168; A EMP: 0.0050, 0.0058.



Figure 2.1: Compaosite indices and recessions
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2.5 Evaluating the coincidence of business cycle turhing points

Having identified business cycle tuming points for each country, the binary variable, S,,

can be constructed to indicate the states of an economy, with unity denoting expansions
and zero indicating recessions. The pairwise cycle correlation can then be evaluated
using the correlation coefficient and the various concordance indices proposed in

Harding and Pagan (2002).

2.5.1 Multidimensional mapping of business cycle distance

The correlation coefficient is the most commonly used index to measure the
coincidence between two variables. In this subsection, the correlation coefficients
between binary variables are calculated and reported in Table 2.13. However, given the
number of countries in this analysis, it is difficult to interpret all the information simply
by observing the individual bilateral correlations presented in Table 2.13. Therefore, a
multidimensional mapping technique, Sammon mapping (Sammon, 1969), is employed
to reveal a geometrical picture of the interdependencies among the business cycles.”
Countries that have non-synchronised business cycles are plotted far away from each
other in the picture. Applying this approach produces a two-dimensional map for 66
pairs of business cycle distances among 12 countries by minimising the following error

function, which is ofien referred to as Sammon s stress.

E= Nl ” :Zj(du ;yd!f )- , (216)

i<j ¥

where N =66 and &, is the business cycle distance between countries 7 and J,

obtained by subtracting the patrwise correlation coefficient from one. c?,.j is the

approximate distance between their projections on the map, given by the following

equation:

10 A function package for Matlab is used to conduct this procedure.
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‘?rj = Glzf =2

) =[f(z,-k -z, )Z} . 2.17)

k=l

As K =2, z; and z, are the two-dimensional projection of countries i and j, and z,,

and z, are the two dimensions of each country.

Maps of business cycle distances are shown in Panels 1-3 of Figure 2.2 over the whole
sample and two subsamples with midpoint of 1991Q1. It is important to emphasise that
the units denoted on the axes of the Sammon maps are, in themselves, meaningless, and
the orientation of the picture is arbitrary; the only thing that matters is the distances
between objects in the map (Kruskal and Wish, 1977). Therefore, the only aim of using
Sammon mapping is to graphically illustrate the level of business cycle synchronisation
between different groups of countries. It is also important to keep in mind that, when
looking at a map that has non-zero stress, the distances among objects imperfectly
represent the relations given by the data, and the greater the stress, the larger the
distortion. It can be seen from Panel 1 of Figure 2.2 that, over the whole sample, the
core EMU countries exhibit a higher degree of synchronisation within themselves and
with respect to the euro area aggregate, compared to those in the peripheral and non-
EMU groups. This is particularly true for Germany, Austria, Belgium and the
Netherlands who appear close to each other and the aggregate euro area. This is partly
because Austria and the Netherlands previously fixed their exchange rates against the

Deutsche Mark (DM) and their economies were highly integrated with Germany.

The above relations can also be illustrated numerically by calculating the mean
correlation of several pairwise correlations. The mean correlation for the core EMU
countries with respect to the aggregate euro area is 0.52, compared to the corresponding
values of 0.41 and 0.24 for the periphery and non-EMU countries. In addition, a even
higher mean correlation of 0.57 is found within the cluster of four core EMU countries
mentioned above. It is also worth noting that the highest correlation is between the US

and Canada, followed by the correlation between Germany and Austria, reflecting the

close economic links between these two pairs of countries.




Figure 2.2: Multidimensional mapping of business cycie distance

Panel 1:whole sample (E=0.02645)
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Note: two pairs of countries, the US and Canada, France and Spain, have perfectly synchronised turning

points in the second subsample.
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The changes in business cycle correlations over time are also analysed by evaluating the
cycle correlations of two subsamples: pre-1991Q1 and post-1991Q1. The reason for
choosing 1991Q1 as the breakpoint is because a number of important events happened
around this time, including German reunification in October 1990, the ERM crisis in
1992-1993, and the adoption of the Maastricht treaty in November 1993. These events
are all expected to have had significant influences on the cycle correlations between the
countries analysed. A closer look at Panels 2 and 3 of Figure 2.2 reveals a few striking
features. First, the tight cluster of four core EMU countries composed of Germany,
Austria, Belgium and the Netherlands, who all had close distances to the euro area in
the first subsample, deviated from the aggregate euro area and each other in the second
subsample. However, the other two core members, France and Italy, who only had
moderate correlation with the aggregate euro area, have shown an increase in
synchronisation with the latter. Second, a catching-up process of business cycle
convergence is also observed between the two periphery countries, Spain and Finland,
and the aggregate euro area over time. Third, a picture of diverging non-EMU business
cycles from the euro area as a whole can clearly be observed. This is also broadly in
line with Garnier (2003), who found that euro area business cycles are increasingly
independent of the US cycle. Finally, two pairs of perfectly synchronised binary
variables are found between France and Spain, and the US and Canada, in the second

subsample.

The above changes in cycle correlations, revealed in the maps, are again confirmed by
the mean correlations of different groups (i.e., the core, periphery and non-EMU
countries) with respect to the aggregate euro area. The mean correlation between the
four core EMU members with the euro area almost halved over the two subsamples,
with the mean correlation reducing from 0.67 to 0.37. In contrast, the mean correlation
between the two periphery countries and the euro area aggregate increased dramatically
from 0.25 to 0.72. A moderate increase in synchronisation is also found between the
French and Italian business cycles and the aggregate euro area, with their mean
correlation rising from 0.40 to 0.67. Finally, the mean correlation between non-EMU
countries and the aggregate euro area decline sharply from 0.35 to -0.08, implying anti-
cyclical correlations between the aggregate euro area and these countries in the second

subsample.
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Tabhle 2.13: Correlation Coefficients

Whole Sample Period
EMU GER FRA ITA AUS BEL NETH SPA FIN UK US
EMU
GER 0.59
FRA 0.57 0.30
ITA 039 042 039
AUS 0.45 067 039 023
BEL 060 050 052 048 059
NETH 051 048 044 027 062 054
SPA 0.37 023 064 016 0.37 0.43 0.37 |
FIN 045 020 027 023 034 049 0.16 0.27 |
UK 019 020 0416 -005 0.16 0.33 0.14 0.19 0.35 ‘
us 0.34 041 015 018 0.51 0.40 0.22 0.06 014 0.34
CANA 018 028 000 023 041 042 0.22 0.04 018 020 0.76
Pre-1991Q1
EMU GER FRA ITA AUS BEL NETH SPA FIN UK US CANA
EMU 079 040 040 0.58 072 058 0.09 041 027 052 027
GER  0.44 034 037 073 064 047 023 012 039 06 041
FRA  0.83 0.30 0.26 055 048 055 043 011 026 026 002
- ITA 050 047 060 0.26 051 035 -0.06 0.06 005 027 034
Q AUS 020 061 013 026 0.67 0.74 045 007 023 061 047
S BEL 042 032 056 049 045 075 035 035 031 044 046
j._‘, NETH 042 050 030 021 045 020 041 018 023 036 039
8 SPA 083 030 100 060 013 056 0.30 0.2 022 005 0.05
& RN 060 027 046 034 025 064 013 046 041 0.03 008
UK -0.07 -0.17 -0.09 -015 -0.10 043 -0.13 -0.09 0.6 0.35 0.17
us 0.09 009 -010 013 026 034 -0.15 -0.10 036 0.24 0.68
CANA 009 009 -010 013 026 034 -015 -0.10 0.36 024 1.00
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2.5.2 The concordance and mean corrected concordance indices

The index of concordance (IC) proposed by Harding and Pagan (2002) is utilised in this
section to measure the length in quarters that two business cycles spend in the same

phase. Let §, and S, denote the binary variables for countries ¢ and j. The IC can

be calculated as follows, where T is the sample size
| il
I,=T"Y (5,8, +1-8)1-S,)} (2.18)
r={

The value of /; equals one when two binary variables are perfectly pro-cyclical. 7,
equals zero when two binary variables are exactly counter-cyclical. The relation
between the IC and the correlation coefficient can be seen by rewriting equation (2.18)

as

2L r
I =1+¥Zsﬂsu —-S; -5 (2.19)
=1

=1+26,+25,5,-5,-3§,

r f |

=1+25,(5,0-5)"(5,0-5) +25,5-5,-5

where &, denotes the estimated covariance and p; is the estimated correlation
coefficient between S, and S, . When I, is one, the corresponding value of the
correlation coefficient is one, and when I, equals zero, the correlation coefficient is -1.

A problem occurs when the value of the correlation coefficient equals zero, which

results in equation (2.19) becoming

E(I)=1+2§§ -8 -5 (2.20)

In this case, even if two binary variables are independent of each other, 7, may be a

high value simply because a large fraction of time is spent in expansions. Therefore,
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Harding and Pagan (2002) further proposed a mean corrected index of concordance

(MCIC) to cross-check the values of ;. The MCIC is given by

I =27 i {s,-5.Xs, -5} @2.21)

=1

e T ey T »* o, . . - .
where S, =77'> S, ,and §, =T > S, . If I is negative, this indicates a counter-
=1 1=l

cyclical relationship between the two binary series, S, and S,. However, the value of

Iy is harder to interpret than 7, as the maximum value of J ; varies across each pair of

i?

binary variables compared to 7, which has a definite maximum value of one.

The upper panel of Table 2.14 reports the values of 7, and Iy calculated using the
whole sample. The values of I, suggest that the aggregate euro area is more in synch

with Finland and US than countries such as Germany and the Netherlands. This

contradicts what we have observed in Panel 1 of Figure 2.2. To cross-check the results,
I ,J for each pair of binary variables is computed, and the results are more in line with
those provided by correlation coefficients in the previous subsection. The mean [/ ;

between the core EMU countries and the aggregate euro area is (.13, compared to the
corresponding values of (.11 and 0.05 for the peripheral and non-EMU countries,

respectively. Furthermore, an average I_.:f of 0.21 is found among the four highly

synchronised core EMU business cycles.

The values of 7, and [ ,, calculated using the two subsamples are presented in the mid

and lower panels of Table 2.14. Upon comparing these values, changes in cycle
correlations over time are again observed across countries. Both 7, and I ” suggest that
French, Spanish and Finnish business cycles became more synchronised with the
aggregate euro area in the second subsample. However, the cluster of the four core

EMU countries all deviated from the euro area as a whole. Moreover, the

desynchronisation process between the non-EMU countries and the euro area, shown in

Panels 2 and 3 of Figure 2.2, is only revealed when comparing values of 7, across two
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subsamples. The corresponding values of I, provide a different story and this reflects
exactly the problem with /, when a large fraction of time is spent in expansions, as for

the non-EMU countries and the aggregate curo area less recessions are identified in the

second than the first subsample.

Table 2.14: IC (Upper Triangle) and MCIC {Lower Triangle)
"Whole Sample Period

EMU GER FRA ITA AUS BEL NETH SPA FIN UK us CANA

EMU 084 029 082 (085 087 085 083 087 082 036 0383
GER 0.19 075 077 086 080 079 069 070 071 077 074
FRA 0.14 010 0.81 083 085 083 050 081 o080 081 077
ITA 011 01l 0.11 075 0.83 074 072 077 065 077 079
AUS 012 026 011 0.08 0.86 0.87 079 075 075 0386 084
BEL 017 020 0.1e 016 0.20 Q.83 8 0.83 079 082 0283
NETH 014 015 013 0.09 021 019 078 074 072 075 076
SPA 0.10 009 0418 006 012 015 013 0.08 075 072 0.73
FIN 0.11 007 007 007 005 015 0.05 0.02 083 079 081
UK 0.04 006 004 -0.01 005 010 0.04 0.05 0.09 0.85 0.82
us 0.07 013 003 005 014 011 006 0402 003 008 0.95
CANA 0,04 008 000 006 010 011 0.06 0.02 004 004 0.15
Pre-1991Q1
EMU GER FRA ITA AUS BEL NETH SPA FIN UK us CANA

EMU 083 080 082 086 089 086 066 084 079 086 0.79
GER 0.27 078 078 089 08 079 067 070 0.78 0.85 079
FRA ¢13 011 078 085 0.82 085 078 077 078 078 072
ITA 0.1z 01z 007 075 084 Q.76 0.60 077 073 0.30 0.84
AUs 015 029 018 0.08 0.87 0.%0 077 070 072 086 0.82
BEL 025 024 (016 015 0.26 0.90 073 075 076 0.81 0.83
NETH 019 0.1% 0.18 011 027 0.29 076 075 071 076 0.78
SPA 003 o©10 015 -002 018 014 016 070 0.69 0.63 0564
FIN 010 004 0.02 001 Q02 Q10 0.05 0.06 083 075 0.7%
UK 008 014 007 001 008 020 0.08 6.08 011 0.80 0.76
us 015 o©¢20 007 007 021 014 0.12 0.02 001 0.10 0.91

CANA 008 012 001 008 015 013 012 002 002 005 0.18
Post-1991Q1

EMU GER FRA ITA AUs BEL NETH SPA  FIN UK us CANA

EMU 075 097 08T 084 084 0.84 097 082 086 0.8 0.86
GER 0.12 71 077 Q82 071 079 071 €70 061 066 0.66
FRA 0.14 0.0% 0.84 081 088 0.1 1.00 0.86 0.82 .83 0.83
ITA 011 020 0.16 075 081 0.72 0.84 077 065 073 073
AUS 004 021 003 0.08 0.84 0.84 081 080 079 086 0.86
BEL 0.0 013 014 017 013 0.75 0.88 0.89 0.82 0.8 0.83
NETH Q09 020 008 008 013 0407 081 073 072 0.73 0.73
SPA 014 0.0 019 016 003 014 0.08 086 0.82 0.83 083
FIN ¢i3 010 012 o012 007 021 005 0.12 0.84 0.84 024
UK -0.01 -0.04 -001 -0.03 -0.02 0.08 -0.02 -0.01 0.08 0.51 091
us -0.01 0.02 -001 003 0.04 007 -003 -0.01 007 0.03 1.00

CANA -0.01 ¢.02 -0.01 003 004 007 -003 -001 007 002 0.12
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2.5.3 Binary Variables as Regressand and Regressor

According to Harding and Pagan (2002), the null hypothesis that an individual business

cycle, S, , is independent of a reference cycle, S, can be tested using the following

j?

regression equation:

S, =a+ [BS,+g, (2.22)

B indicates the relationship between S, and §,. §, is independent from S, if £ is

jt
insignificantly different from zero. The Newey-West estimators of the standard errors
are used to obtain the heteroscedasticity and autocorrelation consistent (HAC) t-

statistics for the null hypothesis that #=0.

Table 2.15: Test for synchronisation: whole sample period

EMU GER FRA us
EMU - - . 0.308
. - . {0.188)
GER  0.456** - 0.243  0.299*
(0.143) - (0.138)  (0.111)
FRA  0.529** 0.362* - 0.125
(0.179)  (0.186) - (0.118)
TA  0.321*  0.475%% 0.341*  0.146
{0.136) (0.130) (0.163) {0.098)
AUS  0.393* 0.766** 0.366* (0.435**
(0.160) (0.082) (0.154)  {0.129}
BEL  0.478*%* (.546%*% 0.448%% 0.321%*
{0.118) (0.114) (0.147) (0.101)
NETH 0.419%* 0.497** 0.390* 0.167
{0.153) {0.137) (0.158) {0.110}
SPA  0.319  0.260  0.585** 0.049
(0.171)  (0.162) (0.165)  (0.084)
FIN  0.431* 0251 0276  0.128
(0.190) (0.172) (0.184)  (0.146)
UK 0.215  0.264 0190  0.336**
(0.219) (0.173) (0.222) (0.107)
us 0219  0.549** 0.173 -
(0.205)  (0.146) {0.157) -
CANA 0.195  0412* 0001  0.828%*
{0.959) {0196} (0.125)  (0.077)

Notes: Independence of individual business cycies is tested against four reference cycles, the EMU,
German, French and the US business cycles. Standard errors are in parentheses, ** denotes
significance at 1% and * at 5%.
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Business cycle correlations for individual countries, S, , with respect to the aggregate

ir?

euro area, Germany, France and the US are investigated, with their binary variables

Table 2.15 reports the estimates of S obtained

used as the dependent variable, S, .
over the whole sample. As shown in column 2 of Table 2.15, the core EMU countries
all exhibit cycle correlation with the aggregate euro area, with £ being statistically
significant in all cases. In contrast, no business cycle synchronisation is shown between
non-EMU countries and the aggregate euro area. As suggested by the estimates of S
reported 1in columns 3 and 4, both the German and French business cycles appear
correlated with the other core EMU countries. Moreover, business cycle comovements
are also identified between France and Spain, and Germany and two non-EMU
countries (the US and Canada). Finally, the Canadian cycle appears highly
synchronised with the US cycle, with the estimated £ being the largest among all

parameter estimates.

Table 2.16: Test for Synchronisation: Pre-1991Q1 and Posi-1991Q1

EMU GER FRA us EMU GER FRA us
Pre-1991Q1 Post-1921Q1
EMU - - - 0.479* |- - . -0.068
- - - (e.210) |- - - (0.046)
GER 0.746** 0.334 0.511** | 0263 - 0.209  0.051
(0.150) - (0.199)  (0.143) | (0.178) - (0.171)  (0.081)
FRA 0.386 0.354 - 0.229 0.714%* 0429 - -0.070
(0.234)  (0.228) - (0.163) | (0.061}  {0.233) - (0.047)
ITA 0.428*  0.461*  0.288 0.284 0.294*  0.488*  0.412*  0.075
{0.196)  {0.180)  (0.234)  (0.154) | {0.016) (0.190}  (0.203)  {0.094)
AUS 0.546%*  0,776**  (.530%*  0.555** | 0.168  0.787** 0131  0.186
(0.182)  {0.119)  (0.194)  (0.153) |{0.182) (0.079)  (0.187)  {0.160)
BEL 0.642%*  0.675%*  0.444*  0.392** | 0.288  0.360 0442 0211
{0.138)  (0.123)  (0.190)  {(0.137) | (C.190)  (0.206)  (0.235)  (0.123)
NETH 0.546**  0.468**  0.530*  0.304** | 0.288  0.560** 0249  -0.078
(0.164)  (0.178)  (0.205)  (0.140) | {0.218) (0.191)  (0.210)  (0.053)
SPA 0.075 0.225 0.378 0.040 0.714%*  0.429 1.000%*  -0.070
(0.202)  (0.187)  (0.195)  {0.118) | (0.061) (0.233)  (0.000)  (0.047)
FIN 0.319 0.172 0.148 0.040 0.417 0311 0378  0.231
(0.175)  (0.171)  (0.260)  (0.211) |{(0.226) {0.250)  (0.219)  (0.160}
UK 0.296 0.440%*  0.288 0.328* |-0.093  -0.358** 0130  0.278
(0.246)  (0.157)  {0.249)  (0.125) |{0.068) (0.106)  {0.083)  (0.184)
us 0.560*  0.706**  0.288 - 0.181  0.173 0117 -
{0.199)  (0.137)  (0.297) - (0.140)  {0.222)  (0.075) -
CANA 0.295 0.527*  0.026 0.746%* | .0.083  0.173 0117 1.000%*
(0.253)  (0.218)  (0.178)  (0.106) | {0.062) (0.222)  (0.075)  {0.000)
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The estimates of # obtained using the two subsamples are reported in Table 2.16. As

with the above findings, synchronisation between French and Spanish cycles and the

aggregate euro area increased remarkably, with the null of 2 =0 strongly rejected in

the second subsample. On the other hand, the four core EMU business cycles are found

to move out of sync with the aggregate euro area, with their estimates of 8 becoming

insignificant. Finally, business cycle divergence between the US and the euro area is

also observed by comparing the estimates of S reported in the last column of the left

and right panel of Table 2.16.

2.6 Average Cycle Characteristics

The four key business cyclical characteristics; length, amplitude, steepness and welfare
gains, proposed by Harding and Pagan (2000), are analysed in this section. The
similarity of these characteristics across euro area business cycles is relevant in
determining the effectiveness of common monetary policies. For example, if cycle
steepness differs between members, a common monetary policy cannot meet the
requirements of countries with deep cycles and those with mild cycles. Harding and
Pagan use a triangle approximation to describe a business cycle phase, in which the
height of the triangle is the amplitude and the base is the duration of the cycle. This is
illustrated for a stylised recessionary phase in the diagram below. Knowledge of the
height and base enables one to compute the area of the triangle to approximate the

cumulated losses (gains) in one particular recession or expansion.

Duration
A B
Amplitude
Actual
Path
C
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Instead of analysing the characteristics of one particular recessionary or expansionary
phase, this section measures the average business cycle characteristics over the whole
sample and the two subsample periods. The first feature considered is the average
duration of recessions (expansions), which measures the fotal time spent in recessions

(expansions) over the number of troughs (peaks),

T

T
D8, >a-s)

Dp=——  and D,y =—it (2.23)

-1

Z(I_SI+I)S.‘ (I_S.')SHI

=1 t

3

where PT (TP) denotes the phase from peak (trough) to trough (peak).

The second feature measures the average amplitude of recessions (expansions) as:

T T
S,AC, > (1-8))AC,
AMP, =—""——— and AMP, =2 — o (2.24)

-1

Z(I_SHI)Sr Z(I—S:)SHI

=]

where AC, is the common factor growth rate calculated in the DF model.

The steepness of business cycle phases is the third feature considered. It is expressed as

the ratio of the amplitude to the duration:

T

Z (1-S)HAC,
— 1=

and  STEEP,, = 1F0

- T
DPT Z(I—Sr)
t=1




This statistic describes the amount of welfare that is lost (gained) in each quarter spent
in recessions (expansions). It also measures the speed at which an economy falls into
and emerges from a recession. This figure tends to be big when a large portion of

output loss (gain) occurs during a short period of time.

The cumulative movement of recessions {(expansions), which measures the overall
welfare loss (gain) during recessions (expansions), is the last feature analysed in this

section. It is calculated as follows

CM, =0.5(AMP.*D,), i=TP,PT (2.26)

The results for the four cyclical characteristics outlined above are reported in Table 2.17
for the whole sample period. One of the stylised features of business cycles is revealed
by comparing columns 2 and 3, with expansions being much longer than recessions in
all the countries analysed. Significantly asymmetric business cycle phases are observed
in the three non-EMU countries, with expansions lasting over six times longer than
recessions. Oun the other hand, expansions are found to be relatively short in Germany
and Italy, with recessions occurting much more frequently than in the other countries
studied. Among the countries analysed, France experienced the longest average
expansionary phase of 35 guarters, while the longest average recessionary phase

occurred in the Netherlands, lasting for 7.2 quarters.

The asymmetric nature of business cycles is also observed in columns 4 and 3, with the
amplitude of expansions being significantly larger than those for recessions. Again, the
three non-EMU countries stand out, with their average expansionary amplitude being
eight times larger than their recessionary amplitude. In contrast, the comresponding
values for the peripheral and core EMU countries are six times and five times larger,
respectively, Large business cycle amplitude is observed in the Dutch results. This
reflects the severity of the recession which occurred during the early 1980s and the fast
economic growth thereafter. In addition, large expansionary amplitudes are also
observed in the French and Canadian business cycles, whilst the German cycle exhibits

the smallest expansionary amplitude.
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The steepness of expansions and recessions is reported in columns 6 and 7. Once more,
both the steepest recessionary and expansionary phases are found in the Netherlands. In
contrast, the German business cycle had the mildest expansionary phase. In general, the
non-EMU countries and small EMU countries had steeper recessionary and
expansionary phases than the other countries. To some extent, such volatility is caused

by the more deregulated labour and product markets in these countries.

The cumulative movements of expansions and recessions are reported in the last. two
columns of Table 2.17. For all countries, the welfare gains achieved in expansions
appear to be considerably higher than the losses suffered from recessions. On average,
the non-EMU countries had the largest gains during the expansionary phase and the
smallest losses in recessions. Again, the Dutch business cycle experienced the largest
welfare gain and loss out of all the countries analysed, while the German business cycle

shows the smallest welfare gain during expansions.




Table 2.17: Average Busihess Cycle Features

Duration (quarters) Amplitude (%) Steepness (%) Cumulated {%)

Expansion Recession Expansion  Recession Expansion Recession Expansion Recession
EMU 26.00 4,00 33,22 -2.33 1.28 -0.58 431.92 -4.67
GER 14.00 6.83 9.13 -3.49 0.65 -0.51 £3.90 -11.93
FRA 35.00 6.33 49,18 -4,09 141 -0.65 860.73 -12.85
AUS . 18.00 5.40 21.28 -2.41 1.18 -0.45 191.55 -6.51
BEL 18.67 5.33 36.94 -8.49 1.98 -1.59 344.80 -22.63
ITA 12.78 322 14.25 -2.65 1.12 -0.82 91.05 -4.27
NETH 27.00 7.20 84.80 -12.94 3.14 -2.63 1144.74 -68.19
SPA 21.00 5.80 36.34 -5.17 1.73 -0.89 381.52 -15.00
FIN 23.60 4.20 27.23 -4.36 1.15 -1.04 321.31 -8.16
UK 28.75 4.75 24.97 -4.96 0.84 -1.04 371.37 -11.77
us 25.20 3.60 36.57 -3.78 1.45 -1.05 460,78 -6.80
CANA 32.50 3.75 49.64 -4.83 1.53 -1.28 806.64 -9.06
Core 20.91 5.72 35.93 -6.68 1.58 -1.11 449,46 -21.08
Periphery  22.30 5.00 31.79 4,77 1.44 -0.97 351.42 -12.08
Non 29.15 4,03 37.06 -4.52 1.27 -1,13 546.26 -5.21

Note: Core, Periphery and Non denote the mean of the cyclical characteristics for the core, peripheral
and non- EMU countries.

As with the changes in cycle concordance, the evolutions in business cycle similarities
and differences are also evaluated to examine the validity of the endogenous OCA
theory. Table 2.18 reports the business cycle characteristics for the two subsamples:
pre-1991Q1 and post-1991Q1. The standard deviations of business cycle characteristics
are calculated across all the EMU countries. These figures suggest that mixed progress
has been made towards cyclical synchronisation. Differences in the recessionary phase
appear to diminish, while variations in the expansionary phase increase. This, again,
reveals the unbalanced economic growth which has occurred across EMU members.
Germany and Italy have been characterised by short and mild expansions, while French,
Spanish and Finnish expansionary phases appear longer lasting, with larger amplitudes

and greater welfare gains.

Comparing the mean statistics of all cyclical characteristics over the two subsamples
shows that differences in business cycle characteristics among the core, periphery and
non-EMU countries become more distinctive over time. On average, both recessions
and expansions in the core EMU countries exhibit shorter durations and smaller
amplitudes during the second subsample. The two periphery countries, particularly
Spain, achieved remarkable welfare gains during their sustained expansions. Finally,
the non-EMU countries also experienced long lasting expansions with moderate welfare

gains and little losses suffered in recessions.
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Tahle 2.18: Evolution of Business Cycle Features

Duration (quarters) Amplitude {%) Steepness (%) Cumulated (%} |
Expansion Recession Expansicn Recession Expansion Recession Expansion Recession I
Pre-199101 '
EMU 22.50 3.67 32.55 -2.42 1.45 -0.66 366,19 -4.43
GER 20.33 7.33 15.58 -11.66 a.77 -1.59 158.43 -42.75
FRA 24.00 6.00 33.69 -3.70 1.40 -0.62 404.23 -11.11
AUS 17.67 6.00 25.65 -8.79 1.45 -1.47 226.60 -26,38
BEL 15.25 6.33 32.20 -39.63 211 -6.26 245,53 -125.48
iTA 17.00 3.00 21.82 -12.50 1.28 -4,17 185.50 -18.75
WETH 28.50 7.67 05.31 -86.55 3.34 -11.28 1358.,19 -331.77
SPA 12.00 5.50 18.17 -14.51 151 -2.64 108.04 -39.90
FIN 16.50 3.00 18.44 -8.13 112 -2.71 152,14 -12.1%
STD. 5.24 1.76 26.18 27.83 0.79 3.49 415.13 108.74
UK 16.25 £33 15.38 -18.08 0,95 -3.39 125.00 -48.22
us 16.50 4.67 26.70 -16.24 1.62 -3.48 220.28 -37.90
CANA 23.23 5.50 40.54 -15.91 1.75 -2.8% 477.58 -43.76
Core 20.46 6.06 37.38 -27.14 1.73 -4.23 428,75 -92.71
Periphery  14.25 4,25 18.321 -11.32 1.32 +2.68 130.59 -26.05
Non 18.69 5.17 27.67 -16.74 1.44 -3.25 274.29 -43.2%
Post-199101

EMU 59.00 5.00 67.80 -6.91 1.15 -1.38 2000.03 -17.28
GER 9.25 6.33 4.29 -8.28 0.46 -1.47 19.83 -29.42
FRA 57.00 7.00 80.18 -8.56 141 -1.22 2285.19 -29.97
AUS 27.50 4.50 25.37 -3.27 0.92 -0.73 348.86 -7.35
BEL 25.50 4.33 46.42 -11.30 1.82 -2.61 591.92 -24.48
ITA 9.40 3.40 8.19 -11.34 0.87 -3.34 3851 -19.28
NETH 25.50 £.50 74.28 -8.16 2.81 -1.26 947.08 -26.53
SPA 57.00 7.00 108.98 -11.36 191 -1.62 3106.01 -39.76
FIN 52.00 6.00 63.12 -13.69 1.21 -2.28 1641.03 -41.06
STD. 15.92 1.37 37.02 3.14 0.77 0.86 1124.583 10.87
UK 54,06 3.00 38.33 -1.75 0.71 -0.58 1034.83 -2.62
us 60.0C 2.00 76.04 -2.65 1.27 -1.33 2281.34 -2.65
CANA 60.00 2.00 75.75 -3.42 1.26 -1.71 2272.59 -3.42
Core 25.6% 5.34 38.79 -8.65 1.40 -1.77 705.23 -22.84
Periphery  54.50 6.50 86.05 -12.53 1.56 -1.95 2373.52 -40.41
Non 58.00 2.33 63.37 -2.61 1.08 -1.21 1862.92 -2.90

Note: STD. denotes the standard deviation of the cyclical characteristics for the EMU countries.
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2.7 Conclusions

This chapter identifies business cycle turning points for both the aggregate euro area
and individual countries. Instead of just analysing GDP series, a composite index of
four multivariate coincident macroeconomic variables is derived using the DF model.
The BBQ algorithm is then applied to identify possible business cycle turning points in
this index, with a binary variable constructed to indicate the periods of recession and

expansion.

Two criteria are used to evaluate the degree of business cycle synchronisation: the
concordance of business cycle turning points and similarity of business cycle
characteristics. Overall, the core EMU countries share more synchronised business
cycles with the aggregate euro area than with the peripheral and non-EMU countries.
However, it is worth noting that the high cycle correlations with some countries may
reflect the large weights they are assigned when constructing the aggregate euro area
data. The evolution of business cycle correlations over time is also analysed by
breaking the sample period into two subsamples, with the midpoint being 1991Q1. The
business cycles between the EMU countries and the three non-EMU countries are found
to be unsynchronised. This is in line with the results obtained in Stock and Watson
(2003), Camacho and Perez-Quiros (2006) and Garnier (2003). However, no further
business cycle convergence is observed between the aggregate euro area and four of the
core EMU countries: German, Austria, Belgium and the Netherlands. This could be due
to the recessions experienced by these economies during the early 2000s which were not
observed in the euro area as a whole. Over the same period, France and the two
peripheral countries, Spain and Finland, show a significant increase in business cycle
comovements with the aggregate euro area, and have experienced robust growth during

recent years.

Finally, this chapter investigated four, sample averaged, cyclical characteristics
concerning cycle duration, amplitude, steepness and welfare gains. These results
suggest that there exist significant differences in the business cycle phases among the
EMU countries, and that the differences across expansionary phases have increased

over time. This, again, confirms the unbalanced economic performance observed across
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the euro area. The short and mild expansions observed in Germany and Italy led to
shuggish economic growth. However, the steep and long lasting Spanish expansionary

phase brought huge welfare gains to the Spanish economy.

Overall, the results obtained in this chapter contradict the argument proposed in the
endogenous OCA theory that operating a monetary union will increase the degree of
business cycle synchronisation in terms of both concordance and similarity.
Furthermore, variations in economic performance observed across the euro area will
lead to diverging monetary policy requirements and, consequently, will reduce the

appropriateness of having a common monetary policy for all members.
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Figure A2.2 Growth rates of common factors, Ac,
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Table A2.1: Coincident Macroeconomic Variables

‘ Sampie . T T T T e e T e
| periods Variables Level First- differenced
‘ R __ Constant_Constantstrend __ Constant

| EMU 197503-  GDP -0.334 2314 -5.747%*

| 200604 (0.915) (0.423) {0.000)

| GFCF 0.266 3.237 -5.341%*

‘ (0.976) (0.082) {0.000)

| IP -0.064 3.543% -5,011%*

‘ (0.950) (0.039) {0.000)

EMP 0.158 1.854 -2.652*

\ (0.969) 0.672) {0.056)

‘ GER 1870Q1-  GDP -2.297 1970 -11.952%*

200404 {0.175) {0.612) (0.000}

GFCF -1.012 -2.630 -14.361%*

{0.748} {0.268) {0.000}

P -0.764 3.078 -9.552%*

(0.826) (0.116} {0.000)

EMP -0.934 3.409 -B.564%*

(0.775) (0.054) {0.000)

FRA 197504-  GDP -1.416 22964 -6.005%*

200604 (0.573) {©.147) {0.000)

SALES 2.111 0.235 -13.722%*

(1.000) {0.992) {0.000)

1P 0.086 -2.095 -2.991*

(0.964) {0.543) {0.039)

EMP -0.786 2626 -5.322%*

(0.819) (0.270) (0.000)

iTA 197001-  GDP -2.081 2.097 -6,985%*

200604 (0.253} (0,543} {0.000)

GFCF -0.244 2114 -10.711

(0.929) (0.533) {0.000)

P -1.778 -2.869 -11.190%*

(0.390) (0.176) (0.000)

EMP 0.569 -1.453 -5.002%*

(0.988) (0.841) {0.000)

AUS 1973Q1-  GDP -1.264 2.486 -11.862%*

2006Q4 (0.645) (0.335) {0.000)

GFCF -0.469 2273 -13.136%*

(0.892) (0.4.45) {0.000)

Ip 1.644 0.834 -5.745%*

{1.000} {0.959) (0.000)

EMP 0.189 2279 -14.500%*

(0.971) (0.442) {0.000)

NETH 1570Q1-  GOP -0.723 1972 -15.556%*

200604 {0.837) (0.611) {0.000)

SALES -1.327 -1.485 -13.993**

(0.616) (0.831) {0.000)

IP 0.134 4.146% -3.895%*

{0.967) (0.007) {0.003)

EMP -0.723 1972 -15.556%*

{D.837) (0.611) {0.000)

Augmented Dickey-Fuller

Note: ** denotes significance at 1% and * at 5%,




Table A2.1: Coincident Macroeconomic Variables {Continued)

BEL 1970Q1-  GOP -1.304 -4.004* 8.418%*
200604 (0.627} (0.014) {0.000}
GECF -0.228 1.504 -5.983% ¥
(0.931) (0.647) (0.000)
Ip -0.662 -3.260 -12.368%*
(0.852) {0.077) {0.600) |
EMP 0.546 1,523 -3.451% |
{0.988) {0.817) {0.011) |
SPA 197203-  GDP 1.178 -1,953 -4.016* *
200604 {0.998) {0.621) {0.002)
GFCF 0.771 2224 -4.200* *
{0.593) ©.472) {0.001)
P -0.554 3.261 -6.276% *
(0.876} (0.077) {0.000)
EMP 0574 4162 2512 |
(0.989) (0.913) (0.115)
FiN 1970Q1-  GDP -0,152 -2.376 -4.475%*
200604 (0.540) {0.391} (0.000)
SALES 0.050 1313 -13.318%*
{0.961) {0.881) {0.000)
P -0.178 2331 14,098 **
(0.937) (0.414) (0.000)
EMP -2.109 2.157 -3.990*
(0.242) {0.510) {0.002)
UK 1970Q1-  GDP -2.082 -2.097 -6.985% ¥
2005Q1 (0.253) (0.543) (0.000)
GFCF -0.244 2.114 210711 %% ‘
(0.929) (0.533) {0.000) |
P -1.778 2.869 -11.190** |
{0.390) (0.176) {0.000) |
EMP 0.569 -1.453 : -5.002%* }
(0.988) {0.841) (0.000) |
us 1970Q1-  GOP -0.651 -3.863* -9.423%* |
200604 {0.854) {0.016) {0.000) |
SALES -0.261 -1.669 -11.140%* |
(0.927) (0.760 {0.000) :
1P -0.954 3175 -6.834% ¥ |
{0.768) (0.094) (0.000) |
EMP -1.744 -2.553 -6.547% |
(0.407) {0303) {0.000) |
CAN  1970Q1-  GDP -1.228 2824 -8.164%* |
200604 (0.661) {0,491} (0.000) |
SALES -0.070 -1.786 -12.835 ** |
(0.950) {0.707) {0.000} |
tp -1.561 -3.865% -6.283%* |
{0.500) (0.016) {0.000)
EMP -1.824 2,711 -6.197%
(0.368) {0.234) (0.000}

Note: ** denotes significance at 1% and * at 5%.




Table A2.2: Cointegrating Test {Johansen 1995)

Country Nuli r=0 < F<? r<3
EMU Max-Eigen 32.845%* 15.539 3,744 1.713
stat. {0.010) (0,253) (0.885) {0.191)
Trace stat. 53.841* 20.996 5.457 1.713
{0.012) (0.358) {0.759) {0.191)
GER Max-Eigen 19.375 16.242 6.599 1.769
stat. (0.386) (0.211) (0.538) {0.183)
Trace stat. 43.986 24.611 8.369 1.769
(0.110) (0.175) (0.427) {0.183)
FRA Max-Eigen 32.981** 19.400 4,080 0.668
stat. {0.009) {0.085) (0.853) (0.414)
Trace stat. 57.109** 24.128 4728 0.668
(0.005) {0.195) (0.837) (0.414)
ITA Max-Eigen 30.894* 17.256 6.086 1.216
stat. {0.018) (0.160) {0.602) {0.270)
Trace stat. 55.451** 24,557 7.302 1.216
(0.008) {0.178) {0.543) {0.270)
AUS Max-Eigen 47.570% 21.236 6.601 2.451
stat. (0.053) (0.343) {0.624) {0.117)
Trace stat. 26.334 14,635 4,150 2.451 |
: (0.072) (0.315) (0.843) {0.117)
NETH Max-Eigen 40.326* 24.666* 3.779 0.459
stat. {0.001) (0.015) (0.882) {0.498) ‘
Trace stat. §9.220%¥ 28.904 2,238 0.459
(0.000) (0.063) (0.883) (0.498)
BEL Max-Eigen 37.478** 16.043 6.209 0,245
‘ stat. (0.002) (0.222) (0.587) (0.621)
Trace stat, 59.974%* 22.497 6.454 0.245
(0.002) (0.272) {0.542) {0.621)
SPA Max-Eigen 36.238** 20.022 10.543 0.111
stat. (0.003) (0.071) {0.179) {0.740)
Trace stat. 66.913** 30.675* 10.653 0.111
(0.000) {0.040) {0.234) {0.740)
FIN Max-Eigen 39.248 19.510 6.131 1.178
stat. {0.251) (0.457) {0.680) {0.278)
Trace stat. 19,738 13.379 4,953 1.178
(0.360) (0.418) {0.748) (0.278)
UKk Max-Eigen 32.804%* 13.730 7.851 2.519
stat. (0.C10) (0.388) {0.394) (0.113) |
Trace stat. 56.903** 24.099 10.370 2.519 |
(0.006) (0.196) (0.253) (0.113)
us Max-Eigen 27.489% 16.928 5.713 0.772
stat. {0.051) (0.176) {0.630) (0.380)
Trace stat. 50.903* 23.413 6.485 0.772
(0.025) (0.226) (0.638) (0.330)
CAN Max-Eigen 44,115%+ 10,240 5.621 0.359
stat. (0.000) (0.722) (0.662) {0.549)
Trace stat. 60.335** 16.220 5.980 0,359
{0.002) (0.697) (0.698) {0.549)

Note: the default option in EViews is used in the above Johansen tests in which an intercept is included in
both the cointegration equation and the differenced form of the VAR, #** denotes significance at 1% and
¥ at 5%.




Appendix B2: Kalman filter

The measurement and transition equations utilised in this chapter are

Ay, = Hf,, (B2.1)
B =FB,_ +8,,5, ~NID,Q). (B2.2)

[

The filtering recursive equations are as follows,

ﬂfil-—l = Fﬁt—lir—l’ })1|pf1 =FR FT + Q s

~1]e~1
r
n1|1—1 =V~ Hﬁti(—l ’ ffl:—l = HR[I—IH ?
T e
ﬁt't = ﬁ!ll—l - ‘Ptlr-lH f;\:ilnrlz—] i

P[z = (J_P:[HHT 1|_rllH)F:|'!—l'

t

The smoothing process for the vector f, contains two equations:

Bir =By + B TP B 1 =B ) (B2.3)
- o4 7T T
PJ}T‘ = e + szzFT})zHlf{ (PI'-\«-I;T - Pz-Hfz )R'Hliz FP;Q; > (B24)

where £, and P, are the initial values of the smoothing. They are obtained from the

last iteration of the basic filter.



Chapter 3 - Parametric Business Cycle Dating
Procedure: The Markov-switching dynamic factor

model

3.1 Introduction

The seminal research of Bums and Mitchell (1946) has highlighted two dominant
features of business cycles: comovement among cconomic variables and asymmetry
between expansions and recessions. Following the non-parametric business cycle
dating strategy outlined in the previous chapter, the comovements among variables can
be modelled using the DF model, in which multivariate information is used to derive a
composite index representing aggregate economic activity. However, this methodology
cannot incorporate business cycle asymmetries as the estimated index has the same data

generating process during recessions and expansions.

Hamilton (1989) utilises the Markov-switching (MS) model to capture the asymmetry
between business cycle phases. This model allows the mean of an autoregression of US
real GNP growth to switch between low-growth and high-growth states by following a
first-order Markov process. On applying this model, Hamilton successfully replicates
the NBER reference dates over the period 1953-1984. However, the model fails to
identify the more recent US recessions when an extended sample period is used,
primarily because of the business cycle moderation observed during recent decades.
One-time breaks in both the mean growth rates and residual variances have thercfore
been allowed in the Hamilton model to overcome this problem (Kim and Nelson,
1999a). Mills and Wang (2003a) apply this modified model to the G7 countries, and
find evidence of moderated business cycles across all member countrics. In addition,
Hansen (1992) extended the Hamilton model to allow for regime switching in the
autoregressive parameters and residual variance. Furthermore, additional phases have
been introduced into business cycle dynamics to capture periods of fast economic

growth, such as the three-regime MS model used in Sichel (1994}, Boldin (1996) and

100




Clements and Krolzig (1998), and the “bounce back™ model proposed by Kim et al.
(2005). It should be noted that the models summarised above are based on a univariate
framework, so that the comovements of many macroeconomic variables through the
cycle cannot be modelled. Another important extension to the Hamilton model is the
Markov-switching Vector Autoregression (MS-VAR) proposed by Krolzig (1997a;
1997b). This model is designed to detect common business cycle turning points in
multivariate time-series. A number of studies, including Krolzig (1997a), Krolzig and
Toro (2005) and Artis, Krolzig and Toro (2004), have applied this model to the national
GDP and IP series of OECD and EMU countries to identify common businéss cycles
across countries. Krolzig (1997b) further proposes a Markov-switching vector error
correction model (MS-VECM) when the time-series analysed are cointegrated. Krolzig
(2001) applies a three-regime MS-VECM to detect the common regime shifts in the
mean growth rates of US employment and output over the period 1960-1997, as the two
series were found to have long-run dynamics when a time trend is included. In addition,
Krolzig et al. (2002) employ this model to analyse the UK labour market using output,
employment, labour supply and real earnings, which are characterised as having two
cointegrating vectors, The MS-VECM is also applied to disaggregated UK industrial
production data by Krolzig and Sensier (2000) to investigate the common cycle shared

by six major manufacturing sectors.

Finally, the Markov-Switching Dynamic-Factor (MSDF) model, first proposed in
Diebold and Rudebusch (1996}, was applied by Chauvet {1998), Kim and Yoo (1995),
Kim and Nelson {1999c, 2001) and Mills and Wang (2003b) to US and UK data. This
model applies the Hamilton mode} to a multivariate setting by combining the DF model
with the MS framework. Unlike the MS-VAR model, the MSDF model derives not
only common business cycle turning points, but also a composite coincident index

representing aggregate economic activity.

One of the objectives of this chapter is to compare the cycle dates produced by the
MSDF model with those obtained in the previous chapter.! Differences in results are
expected as the two approaches are based on fundamentally different mechanisms.

Recessions identified using the BBQ algorithm are based on the rule that recessions are

' The pros and cons of both the MS models and the BBQ algorithm have been debated in 2 series of
papers, including Harding and Pagan (2002) and Hamilton (20G3).
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defined to be the absolute fall in the level of economic activity in two consecutive
quarters. However, there are shortcomings with this rule. For example, if Economy A
grows by 2% in the first quarter but then declines by 0.5% in each of the following two
quarters, it is deemed to be in recession. However, if Economy B contracts by 2% in
the first quarter, increases by 0.5% in the second quarter, and then falls by 2% in the
third guarter no recession is identified, even though Economy B is weaker than
Economy A. This example illustrates that the severity of an economic downturn should
also be considered when defining a recession.” The MSDF model seems better suited to
this task. Instead of using the “two-quarter” rule, it makes inferences on the unobserved
regimes of an economy using the smoothed regime probabilities. If a downturn appears
to be deep, the smoothed recession probabilities will be close to unity. Likewise, if a
decline is shallow, the smoothed recession probabilities are close to zero. A recession is
declared only if the smoothed recession probabilities are above 0.5. Therefore, the

depth of recessions can be revealed using the MSDF model.

The rest of the chapter is organised as follows. Section 3.2 presents the baseline MSDF
model. Modifications of the baseline model are discussed in section 3.3. Section 3.4
describes the parameter estimates and cycle dates obtained using the MSDF model.
Cycle synchronisation is evaluated using pairwise correlations of both binary variables

and smoothed recession probabilities in section 3.5. Finally, section 3.6 concludes.

3.2 Baseline model specification

Kim and Nelson’s (1999¢, 2001) MSDF model with a two-state MS mean is specified

as follows

AY, =D, + 7, (L)AC, +e,, (3.1)
#(LXAC, — g =6)=v,, v, ~NID(0,0,), 1 (3.2)
w,(Lye, =¢,, &, ~ NID(0,6}), (3.3)
Hy = (1=8,}+p,5,, S, ={01}. (3.4)

® This is consistent with the business cycle dating approach used by the NBER, who define a recession as
a significant decline in economic activity spread across the economy lasting more than a few moenths,
rather than two consecutive quarters of decline in real GDP,

102




As with Stock and Watson’s (1989, 1991, 1993) DF model, the growth of each

macroeconomic variable, AY, , consists of two stochastic components: a linear
combination of the current and lagged values of the common factor, y,(L)AC,, and an
individual component, D, +¢,. In a slight variation of the DF model, the common

factor is modelled as a nonlinear AR process with MS deviations from its constant long-

run growth rate, &. The value of z; depends on whether the economy is in a recession
(S, =0) or an expansion (S, =1). g, +& and g, +J represent the mean growth rates
during recessions and expansions, respectively, with g, <0 < g4,. Transitions between

regimes are controlled by four constant transition probabilities:

Pi[S, =0iS,., =0]1=py. Pr[S, =15, =0]=1- py,

PrS, =4S, =11=p,;, PiS, =0S,_ =11=1-p,,.

The logged variables in first differences are standardised to have zero mean and unit

variance. This allows equations (3.1) and (3.2) to be replaced by

Ayﬁ =7 (L)AC[ e, (3.5}

HL)(Ae, = pg Y=V, ,v, ~ NID(0,67) (3.6)

where Ac, = AC, -0 . By recasting equations (3.3), (3.4) (3.5) and (3.6) into state-
space representation, Kim’s (1994) approximate MLE® can be applied to estimate the
hyperparameters: {gi,.,yfj,;f,.,al. s Paos Pirs Mo ,u]}. The state-space representation of the

above model is given by

Ay, =Hp,, (3.7
ﬁ.' :Mq)(L)S, +Fﬁ.’—l +€[,£‘l ""NID(O,Q) (38)

* Kim’s (1994) filtering and smoothing algorithms, together with the approximate MLE, are discussed in
Appendin A3,




Equations (3.7) and (3.8) are the measurement and transition equations, respectively.

The vectors Ay, and §,, and the time-invariant matrices H and F, are specified as the
corresponding components in the DF model. M, = [#(L)s, ,0,0...0] contains the

regime-switching —mean  for the  common  factor. The  equation

G(L)S, = ps, ~ hHs —@,u; , brings the current and two lagged two-state MS

variables (i.e.,S,, S, and S, ,) into the state-space form. Therefore, a total of 2°

states should be included at each stage of the KF iteration (Kim, 1994).* As with Kim
and Yoo (1995), Chauvet (1995} and Kim and Nelson (1999¢, 2001), this chapter
assumes that the intercept of the common factor, rather than the mean of the common

factor, is MS. Therefore, equation (3.6) is modified as

HL)Ac, = g, +V,. (3.9)

Only S, is included in the state-space representation, thus reducing the number of states

to 27 at each iteration.

As discussed in Chapter 2, Section 2.2.1, the mean growth rate of the linear common
factor is calculated as & = W()AY , where ¥ (1) is the first row of (I —(I -KH)F) 'K .

K is the steady-state Kalman gain. In the MSDF model, K is calculated as the

)

weighted average over 2° K 7{." , i,j =1,2, at the last iteration.

3.3 Modifications to the baseline model

The two-regime baseline model presented above is first considered for all countries in
the analysis. However, given the properties of the data analysed, three modifications
have been made to the baseline model. First, as discussed in section 2.3, Johansen
cointegration tests reject the null of no cointegration among the four variables used for
the aggregate euro area, France, Italy, Belgium, the Netherlands, Spain and the three

non-EMU countries. Therefore, the measurement equation (3.7) should be modified as

*Kim (1994) suggests that when current and 7 lagged M state MS variables are included in a state-

space form, at least A/ """ states should be included at each stage of the KF iteration,
® Please see Appendix A3 for details.
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Ay, = HB, + Ax ECM,_,, (3.10)

where £CM, contains the error correction terms which are estimated independently

using the VECM. A4 is a matrix containing the corresponding adjustment parameters.

Second, the fluctuations of the French common factor are observed to have three phases
rather than two: recessions, moderate-growth and high-growth periods. As with Sichel
(1994), Boldin (1996) and Clements and Krolzig (1998), who all include an additional
regime in the Hamilton model to capture the phases of rapid recovery in the US
business cycle dynamics, this chapter modifies the data generating process of the French

common factor to have a three-regime intercept. Equation (3.4) becomes
Hs = HoSo, + 1Sy + 138, (3.11)

The transition probabilities for France are modified accordingly:

3
Py = Pls, = A8 = i, > py =1, (3.12)
=1

Finally, structural breaks are introduced into the MS intercept for Italy, the Netherlands,
Belgium and Spain. This is because the baseline model fails to provide reasonable
parameter estimates for these countries, and thus fails to produce satisfactory inferences
on the probabilities of recessions or expansions. One potential reason is that the
baseline model assumes that intercepts during recessions and expansions are constant
over the entire sample. As the magnitude of the recessions for these four countries
appear to vary significantly, this assumption may not be valid. The recessions during
the early 1970s and mmd-1980s in Italy, Belgium and the Netherlands were notably
deeper than the more recent recessions, while the ERM recession in Spain during the
early 1990s appears to be more pronounced than the other downturns. The presence of
severe recessions over the sample period results in the recession intercept being
significantly negative. As such, the smoothed recession probabilities only capture the
pronounced turndowns but neglect the others. A solution to this problem is to introduce

dummy variables into the intercepts to reduce the impact that large recessions and
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expansions have on the model’s parameter estimates.® Therefore, (3.4) is extended as

follows

Hs, = tho, (1-8)+ 1,8, , S, ={01}, (3.13)
Hor = Mo + HooDyy s Hog <0 (3.14)
thy =+ gDy, 1y >0 (3.15)

where D), and D,, are dummy variables. In order to define these dummy variables

accurately, Bai and Perron’s (2003) multiple structural break test is used to detect the
significant changes in the common factor growth rates, estimated using the DF model,
for the above four countries.” The standard likelihood ratio test is then used to cross-

check the presence of these structural breaks,

3.4 Empirical results for the Markov-switching dynamic factor model

Having established the state-space representation of equations (3.3), (3.4) (3.5) and
(3.9), the filtering and smoothing algorithms, propesed in Kim (1994), can be used to
obtain the hyperparameters of the MSDF model, and to calculate the smoothed
inferences on the unobserved states of the economy. For consistency, the data set used
in Chapter 2 is also used in Chapter 3. The MLE of models’ hyperparameters for the
countries analysed are reported in Tables 3.1-3.12. Apart from the parameter estimates
associated with the common factor, the parameters of the idiosyncratic components in
the MSDF model are broadly consistent with the corresponding values in the DF model.
Therefore, the analysis of this chapter focuses on the MS parameters of the common
factor. The MS common factors, along with the smoothed recession probabilities, are

plotted in Panels 1-12 of Figure 3.1.8

¢ We have also tried a more complex solution to the above problem by introducing another latent state
into the intercepts of the MSDF model. This is more in line with Kim and Nelson (1999a) and Mills and
Wang (2003a) than the solution presented in the main text. However, the results are unsatisfactory as
adding an additional latent state causes problems for Kim’s (1994) approximate MLE. More discussions
are included in Appendix E3.

" The identified break dates and confident intervals are reported in Appendix C3.

¥ Growth rate of the MS common factor for each country analysed is plotted in Figure B3.1, Appendix B3.
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3.4.1 The Aggregate Euro Area and Core EMU Economies

The Aggregate Euro Area. The parameter estimates of the MSDF model for the
aggregate curo area are reported in Table 3.1. Both ¢ and ¢, are insignificant,

suggesting that the common factor is generated by a random walk with a MS drift.
Since the long run growth of the common factor, &, is estimated to be 1.097, the mean

growth rate switches between u, +J =-0.175 and u, + & =1.598, with the transition
probabilities associated with these two regimes being p,, = 0.821 and p,, =0.933.
These estimates imply that recessions (regime 0) have a duration of (1- p,, )" =5.6
quarters, while expansions (regime 1) have a duration of (- p, )" =14.9 quarters.
The findings that |uy|> || and p,, < p,, support the asymmetric feature of business

cycle phases, with recessions being steeper and shorter than expansions.

The estimated MS common factor and the smoothed recession probabilities are plotted

in Panel 1 of Figure 3.1. The smoothed probabilities can be considered as the optimal
inference of the regime at ttme ¢ using the full sample information y,.: Pr(S, = j'z//T) 2
The time path of the smoothed recession probabilities is used to date the business cycle
turning points. As defined by Hamilton (1989), in the case of two regimes, an

observation is classified into regime 0 when Pr(S, =0/,)>0.5, and classified into

regime 1 when Pr(S, =0|z//T)<0.5. Based on this rule, three recessions can be
identified, during 1980Q2-1982Q4, 1992Q2-1993Q3 and 2001Q2-2003Q2. Although
the first two recessions are consistent with the cycle dates produced by the CEPR, no
recessions are reported by the committee in the early 2000s. A few brief downturmns are
also identified by the MSDF model during the mid-1980s. This perhaps reflects the

frequent realignments of the EMS central exchange rate in this period.

? See Appendix A3.3 for more discussion on the smoothed regime probabilities.
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Table 3.1: Parameter estimates of MSDF mode! for the euro area
Common Factor

&, B, U, U P Pu
0.074 -0.001 -1.272% 0.501* 0.821%* 0.933 %%
(0.184) (0.007) {0.541) (0.264) (0.123) (0.060)
Idiosyncratic Components
AGDP ¥, - - - ¥ s - &, o}
0.684** -0.141 -0.005 0.033 0.175*
(0.097) (0.247)  (0.018) (0.136)  {0.080)
2
AGFCF ), - - - ¥ Y - &y o,
0.563** -0.378% -0.036 -0.144 0.293**
(0.083) (0.137)  (0.026) (0.115)  (0.054)
2
Ap Vi - - - ¥ Wi - 237 0,
0.581** 0.081 -0.002 0.134 0.398%*
(0.095) (0.135)  {0.006) (0.137)  {0.064)
2
AEMP ¥y Ya Va2 Y W W4 W4 oy g,

0.198** 0.186** 0053 0.067 0.166  0.134  0.333** .0.219* (0.319**
(0.058) (0.058} (0.054) (0.056) (0.092) (0.092) (0.100) (0.112) {0.039)

Long run growth rate: 0 =1.097
Error correction term

GDP, =18598-0932x GFCF +2.726x IP, ;- 0.163x EMP, |

{0.211) {0.273) {0.329)
Log-likelihood: -592.248
Diagnostics Q(4) Jarque-Bera
A GDP 3.654 2.857
A GFCF 3.691 4.847
AP 8.588 16.508**
A EMP 5.121 18.103**

Notes: Standard ervors are in parentheses. ** denates significance at 1% and * at 3%. The parameter
estimates for the euro area were estimated using data from 1975Q3-20060Q4. Logarithms of variables
were used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0054, 0.0047; A GFCE: 0.0056, 0.014; A IP:0.0043, 0.0098; A EMP: 0.0014, 0.0028.

Germany. As with the aggregate euro area, the data generating process of the German
common factor follows a random walk with a MS drift. As reported in Table 3.2, both
¢ and ¢, are insignificant. Compared to the aggregate euro area, the average
recessionary phase in Germany is much deeper whilst the average expansionary phase
appears to be much milder. Mean growth rates in Germany during recessions and

expansions are u, +J =-0.758 and u +J =0.847, respectively. The transition

probabilities  associated with the two regimes are p, =0.816 and

p, =0914, suggesting an average duration of the recessionary phase of




(1- py) ' =5.4 quarters and an average duration of the expansionary phase of

(1 — P )_] =11.6 quarters.

The smoothed recession probabilities, plotted in Panel 2 of Figure 3.1, highlight five
recessions, during 1973Q3-1975Q2, 1980Q2-1982Q4, 1992Q2-1993Q2, 1995Q3-
1996Q1 and 2001Q2-2003Q2Z.
produced by the BBQ algorithm in Chapter 2.

These cycle dates correspond closely with those

Table 3.2: Parameter estimates of MSDF model for Germany

Common Factor

2 ¢, U, U, Poo Py

-0.155 -0.006 -1.108* 0.497* 0.816** 0.914%*

(0.139) (0.010) (0.523) (0.286) (0.123) (0.065)

ldiosyncratic Components

AGDP 7, - - - Wy Y12 Wy o}
0.674** -0.016 -0.096 0.633** (0.183*
(0.114) (0.140)  (0.100) (0.110) {0.080)

AGFCF 7, B ) B W ¥ W 0'22
0.510** -0.266** -0.018 0.212* 0.468%*
{0.097) {0.098} - {0.013) {0.102} {0.053)

AlP Vs - - - - W3 ¥ - o)
0.624** 0.004 0.016 0.413**
(0.100) (0.119)  {0.130} (0.069}

AEMP 7, Y Ya Va4 D30qg1 W4 Ve W (742
0.171*%* 0.227** 0.145* 0.104* 5.633** 0.088 -0.083 0.250* 0.431%*
{0.061) {0.060) (0.055) (0.055) (0.685) (0.091) {0.091) (0.090) {0.042)

Long run growth rate: & = 0.350

Log-likelihood : -541.807

Diagnostics Q(4) Jarque-Bera
AGDP 1.125 23.155%%

A GFCF 4,492 1.567

Ap 2122 5.914

AEMP 2.410 64.179%*

Notes: The parameter estimates for Germany were estimated using data from 1970Q1-200404.
togarithms of variables were used, each variable was standardised to growth rates with mean zero and
unit variance prior to estimation. The sample means and standard deviations for the growth rates of the
original series are: A GDP: 0.0056, 0.0098; A GFCF; 0.0038, 0.0278; A IP: 0.0037, 0.0157; AEMP:
0.0005, 0.0051. Standard errors are in parentheses. ** denotes significance at 1% and * at 5%.
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France. As with the other countries analysed, a two-state MSDF model was first fitted
to the French data. The parameter estimates of this model are presented in Tabie 3.3(a).

The intercepts of recessions and expansions are 1, =-1.101 and #, =1.064, with the
transition probabilities p,, =0.740 and p,, =0.745. Since the long run growth rate,
8, i1s 1.298, mean growth rates of recessions and expansions are calculated to be
u,+6 =0.197 and u, +6 =2.362, respectively. This implies that the smoothed

recession probabilities plotted in Panel 3(a) of Figure 3.1 identify growth cycles rather
than business cycles. In contrast to the other countries analysed, the .French economy
appears to have experienced three business cycle phases (recessions, moderate-growth
and high-growth) rather than the two phases (recessions and expansions) which are
generally identified. This requires the use of a three-state MS model to clearly

distinguish these different regimes.

The parameter estimates of a three-state MS model are presented in Table 3.3(b). The
estimated long-run growth rate of 0.598 implies that growth rates of the three regimes

are u,+06 =-1.483, u, + 6 =0.398 and u, + 6 =2.648. The common factor switches

among the three regimes, governed by the following nine transition probabilities:

Pw =0.777, p, =0.223, p, =0, p,=0.077, p, =0.893 p,=003 p, =0,
P, =0.099 and p,, =0.901." The transition probabilities p,, =0 and p,, =0 imply

that the French economy cannot switch directly between the recessionary and the high-
growth regimes. This differs from the dynamics observed in the US where recessions
are directly followed by periods of faét-recovery and then moderate growth (Clements
and Krolzig, 1998; Kim et al., 2005). Differences in the business cycle dynamics of the
two countries may stem from the levels of rigidity observed in their economies. As the
French economy is characterised by strong union power, companies may find it more
costly to lay off workers during recessions and consequently may be unwilling to hire
additional workers when recessions ends. This may hold back the French economy
from the rapid recovery observed in the US, which has much more deregulated labour

and product markers. The estimated transition probabilities for France imply that the

1 As the parameter estimates of u, and p,, are insignificantly different from zero, they are set to zero.
In total, seven additional parameters are estimated in the MSDF model. including 24, 4,, Py, . Por»

P+ Pyy and p,,. The other transition probabilities are calculated as p,, =1- p,, — p,,.
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average duration of recessions, moderate-growth and high-growth periods are
(1- po ) =4.5 quarters, (1— pu)' =93 quarters and (1- pzz)“] =10.1 quarters,

respectively.

The smoothed recession probabilities, plotted in Panel 3(b) of Figure 3.1, indicate four
recessions, during 1980Q2-1981Q1, 1982Q3-1985Q1, 1986Q4-1987Q1 and 1992Q2-
1994Q1. In addition, the smoothed high-growth probabilities capture two high-growth
periods: 1987Q4-1989Q4 and 1997Q32-2001Q1.

Table 3.3 {a): Parameter estimates of MSDF model for France

Common Factor

&, &, U, U, Pw P
0.191 0.384%* -1.101*%* 1.064% 0.740%* 0.745%*
(0.173) (0.105} (0.467) (0.533) (0.177) (0.128)
Idiosyncratic Components
A GDP Y - - B ¥ Y12 ay, 612
0.451** -0.054 -0.001 0.297* 0.355%*
(0.093) (0.156)  (0.004) (0.125)  {0.065)
At Vs ) i ) Yy Wz oy C"-f
0.463** 0.017 0.139 0.583** 0.307*%
(0.105) 0.272)  (0.151) {0.143)  (0.061)
Asales  y, - - i W3 ¥sa &3 o3
0.158%* -0.290** 0.023 0.018 0.808**
(0.054) {0.093) (0.095)  (0.089)  (0.058)
AEMP ¥, Ya Y Va3 Va4 Wa ay, G'j
0.263** 0.015 0.053 0.104* 0.276%* 0.221* -0.065 0.285%*

(0.067)  (0.060)  (0.052) (0.051) (0.107)  (0.106) = (0.138)  (0.043)
Long run growth rate: o =1.298

Error correction term
GDP,  =32360+2.324x IP, | +0.667x Sales, ;- 3.252x EMP |

(0.188} {0.294) (0.679)
Log-likelihood: -557.525
Diagnostics Q(4) Jarque-Bera
A GDP 3.444 2.591
A GECE 3.385 23.899*%*
A Sales 0.922 15.503**
AEMP 2.998 1.856

Notes: Standard errors are in parentheses, ** denotes significance at 1% and * at 5%. The parameter
estimates for France were estimated using data from 197504-200604. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0053, 0.0044; A IP: 0.0035, 0.0115; A Sales: 0.0037,0.0104; A EMP: 0.0013, 0.0026.
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Table 3.2 {b): Parameter estimates of MSDF model for France
Common Factor

& ¢, U, i U, P Po P Pn Px P
-0.039  0.064 -2081%* 0  2.050%* 0777%* 0223* 0.077% 0893* 0 0.099
(0.119) {0.091) (0.492) - (0.490)  (0.101) (0.101) (0.046) (0.052) - (0.065)
Idiosyncratic Components
AGDP 7, - - - ¥ L4 @ o}
0.700** . -0.052 -0.001 0.349%* (,238**
(0.069) (0.139)  (0.004) {0.105) (0.107)
AlP 72 ) ) ) ¥ YW Uiy 0'§
0.464%* -0.045 0.069 0.560%* (.498**
{0.066) (0.103) {0.103) (0.103) (0.045)
ASales s - - - 7 77 a5, ol
0.204** -0.305%*%  -0.023 0.015 0.803**
{0.054) (0.091) (0.014) (0.085) (0.057}
AEMP Vao Ya Va Y Wa Y Ay 0'42
0.232**  0.151%* 0.098* (.104** 0.190* 0.206%  0.099 0.340%*
(0.048) (0.048) {0.045) {0.044) (0.096)  (0.101) (0,117}  (0.038)

Long run growth rate; § =0.598
Error correction term
GDP, ; =32.360 + 2.324 % IP,, +0.667x Sales,,-3.152x EMP |

(0.188) {0.294) {0.679)
Log-likelihood: -575.339
Diagnostics a(a) Jarque-Bera
AGDP 7.837 3.255
A GFCF 4.033 19.088**
A Sales 0.927 14.544%%
AEMP 1.154 1.634

Note: Piease see the notes given underneath Table 3.3 (a).

Italy, Global factors, such as the introduction of floating exchange rate regimes and
soaring oil prices, combined with internal events, notably weak government coalitions
and rising labour costs, all had a negative impact on Italian economic performance in
the 1970s. This is reflected by the significant volatility observed in the country’s GDP
and IP growth during this period. As a consequence, the baseline model, which
assumes there are constant intercepts during recessions and expansions over the entire
sample, fails to provide reasonable parameter estimates. As a result of the parameter

estimates u, =-5.850 and p,, =0 obtained in the baseline model, the smoothed

recession probabilities fail to identify any recessions over the studied period as shown in
Panel 4(a) of Figure 3.1. Ths could be because the gap between recessions and

expansions has narrowed significantly in recent decades as the economy has stabilised.
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Table 3.4 {a): Parameter estimates of MSDF mode! for Raly

Common Factor

& é, U, U, Poo P

0.773** -0,149*%* -5.850** 0.039 0.000 0.993%*

(0.123) {0.048) (1.458) (0.085) (0.000) (0.007)

Idiosyncratic Components

AGDP 7, - - - - ¥ Yia - &y, o}
0.600%* -0.167 -0.007 0.332* 0.202%*
(0.071) (0.175)  (0.015) (0.134)  (0.067)

AGFCF 7, - - - - Wa Waz - ap; 0-22
0.357** ~0.044 0.005 0.040 0.706%*
{0.063) (0.088)  (0.088) {0.103)  (0.052)

AlP Vs - - - - ¥s Wi - 275 o}
0.468** -0.479*%*  -0.016 0.402**  (.316%**
{0.055) (0.117)  (0.207) (0.111)  (0.051}

AEMP ¥, Yar Vi Vs D9Zq4 W Y Y &y o;

0.144*  -0.020 0.027 0.025 -4,423*%* 0,080 -0.215% 0.210% -0.143 0.667**
(0.078) {0.116} {0.119) {0.090) (0.853) {0.090) (0.086) (0.081} (0.116) {0.049}

Long run growth rate: & = 0.815
Error correction term
GDP, , = 2.645+0.0911 x GFCF,_, + 1.1424 < [P, + 0.521 x EMP,

(0.105) {0.086) {0.243)
Log-likelihood: -679.46
Diagnostics Q(4) Jarque-Bera
A GDP 1.276 3.425
A GFCF 3.869 3.156
AlP 7.227 15.832%*
AEMP 0.492 5.343

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for Italy were estimated using data from 1970Q1-200604. Logarithms of variables were used,
each variable was standardised to growth rates with mean zero and unit variance prior to estimation.

The sample means and standard deviations for the growth rates of the original series are: A GDP:
0.0056, 0.0079; A GFCF: 0.0042, 0.0181; AIP: 0.0043, 0.0223; AEMP: 0.0012, 0.0064.

As discussed in section 3.3, structural breaks were added to the model’s intercepts as
specified in equations (3.13)-(3.15), where dummy variables D, =1 during 1974Q4-
1975Q!1 and D,, =1 during 1973Q2-1973Q4, 1976Q3-1976Q4 and 1979Q4 capture the
steep recessionary and expansionary phases.'! The parameter estimates of the modified
model are reported in Table 3.4(b). The growth rates during recessions and expansions

are estimated to be u, +J =-0.816 and u, + S5 =1.463, respectively. These values

" The five break dates detected by Bai and Perron’s (2003) procedure are at 1973Q2, 197304, 1974Q3,
1975Q2 and 1980Q2. Dummy variables, D] , and D2r , are set to be consistent with these break dates or

within their confidence intervals, apart from the period 1976Q3-1976Q4. However, setting [, =1

during this period vields a higher log-likelihood value and more reasonable smoothed recession
probabilities than leaving this period out.




increase to i, +uy, +6=-5885 and wu, +u,, +J =6.228 when the corresponding

dummy variables are set to one. The transition probabilities associated with recessions

and expansions are p,, =0.662 and p;; =0.852 These estimates imply that the
average duration of recessions 1s (1 - P ) = 2.9 quarters and the average duration of

expansions is (I1— p,, ) = 6.7 quarters. Compared with the other countries analysed,
Italy has the shortest average business cycle phases, with recessions occurring much

more frequently. The null hypothesis of wuy, =u,, =0 is strongly rejected by the

likelihood ratio statistic y”(2) = 44.06. This indicates the presence of structural breaks

in the intercepts.

Overall, the smoothed recession probabilities detect eight recessions: 1974Q4-1975Q2,
1977Q1-1977Q3, 1982Q1-1983Q2, 1992Q2-1993Q4, 1996Q1-1996Q4, 2001Q2-
2001Q4, 20020Q4-2003Q2 and 2004Q3-2005Q1. These dates are close those obtained
using the BBQ algorithm.

Table 3.4 [b}: Parameter estimates of MSDF mode! for ltaly

Common Factor

é, 2 i, u, Han uy Pos P

0.152 -0.00% -1.716%* 0.563* -5.069%* 4. 765%* 0.662*%* 0.852**

{0.115) 10.009) {0.587) {0.256) {1.224) (0.991) (0.112) {0.065)

Idiasyncratic Components

AGDP ¥ - - - - V4N ¥ 12 - oy 0'13
0.431%* -0.043 ~0.001 0.246** 0.155*
(0.078) (0.228)  (0.005) (0.090)  (0.070)

AGFCF 7, - . - - Way Vi . & e
0.253%* -0.037 0.030 -0.009 0.699%*
{0.052) (0.088) {0.088) (0.085} (0.052)

AlP ¥a - y - - W Wi - a3 ol
0.320%* -0.499%*  -0.061 0.330** 0.339**
{0.057) (0.110)  (0.106) {0.073}  (0.047)

AEMP ¥y Yar Yar Y D32g4 Wy L) L a4 O'f
0.083* 0.011 0.008 0.007 -4.453%%  -0.081 -0.214% 0.206* -0.179 0.656**

(0.045) (0.061} (C.065) {0.054) {0.859) (0.091) (0.086) (0.091) (0.093) (0.04%)
Long run growth rate: & = 0,900
Error correction term
GDP, = 2.645+0.0911x GFCF ,+1.1424x [P, +0.521% EMP |

{0.105) {0.086) (0.243)
Log-likefihood: -657.430
Diagnostics Q{4} larque-Bera
A GDP 5.465 6.053
A GFCF 3.247 3.080
AP 6.514 14.935%*
A EMP 0.560 4.907

Note: Please see the notes given underneath Table 3.4 {a).
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Austria. The parameter estimates of the MSDF model for Austria are presented in

Table 3.5. The mean growth rate is w,+J =-1.548 during recessions and
u, +6 =1.257 during expansions. Given the transition probabilities p,, = 0.826 and
p,, =0.958, the average duration of recessions and expansions are calculated to be
(1- P J' =5.7quarters and (1- p,,}” = 23.8 quarters, respectively. Three recessions

are highlighted by the smoothed recession probabilities during 1974Q2-1975Q2,
19800Q2-19820Q4 and 2001Q1-2003Q2. In contrast to the cycle dates produced by the
BBQ algorithm, the MSDF model does not identify any recessions during the ERM

crisis, as it appears much milder than the others downturns observed.

Table 3.5: Parameter estimates of MSDF mode! for Austria
Common Factor

&, & , U, Pag by

-0.068 0.099 S2.172%% 0.633%* 0.826** 0.958**

{0.150) (0.117) (0.473) {0.196) {0.089} (0.024)

ldiasyncratic Components

AGDP ¥, - - - D78q1 - ¥ ¥y 0'12
0.384%* 6.112** 0.026  0.000 0.372**
(0.064) {0.740) (0.118)  {0.002) {0.064)

AGFCF - - - D78ql  DO3ql N ¥ 2 o}
0.376** -6.701%%  4.008**  .0.166  -0.007 0.198%*
(0.057) (0.587)  (0.653)  (0.159) {0.013} {(0.047)

AlP ¥ - - - - - W Vs ‘732
0.334%* 0.016  0.205* 0.637**
(0.072) {0.092)  (0.090} (0.098)

AEMP Y4 Y Yan Yar D82gq1l  DO4ql W ¥ 4o o

-0.024  0.233* -0.123 0.078 4.716%%  -3.892%+ 03122 0170  0.558**
(0.062) {0.069) (0.072) (0.066)  {0.770}  (0.771)  {0.096) (0.094) (0.076)
Long run growth rate: § = (.624
Log-likelihood: -607.692

Diagnostics Q(4) Jarque-Bera
AGDP 2.705 11.844%*

A GFCF 7.918 11.998**
AlP 0.843 0.986

AEMP 2474 24,655%*

Notes: Standard errors are in parentheses, ** denotes significance at 1% and * at 5%. The parameter
estimates for Austria were estimated using data from 1970Q1-2006Q4. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0058, 0.0087; A GFCF: 0.0085, 0.0155; A IP: 0.0050, 0.0221; A EMP: 0.0019, 0.0077.




The Netherlands. The Dutch recessions which occurred during the 1970s and early

1980s were much more severe than the country’s more recent downturns. Therefore, a
one-time break is introduced to the recession intercept, u,, to capture the changes in the
severity of recessionary phases over the sample period. D, is set to one in the
subsample from 1970Q4 to 1983Q2 and to zero for the latter subsample.'®> The
intercept during expansions is assumed to be constant with D,, =0 over the entire

sample. The parameter estimates are presented in Table 3.6."> Compared to the above
countries, the first difference of the Dutch common factor appears relatively persistent

with ¢, +¢, = 0.635. Before the structural break, the mean growth rates are
Uy g, +6 =—4.795 and u, +6=2.587 during recessions and expansions,
respectively. After the break, the growth rate dramatically increases to u, +& = ~0.156

during recessions but remains the same during expansions. It is worth noting that the
intercept u, = —0.979 is insignificantly different from zero, which may suggest that the
turning points identified after the break are for growth cycles rather than business cycles.
In addition, in the second sample period it is found that |ue| <|u,|, which contradicts one
of the stylised facts of business cycles, that recessions are steeper than expansions. As

discussed in Chapter 2, this may reflect the comparatively strong economic growth

observed in the Netherlands since the stiuctural reforms undertaken in the 1980s.

The smoothed recession probabilities are plotted in Panel 6 of Figure 3.1, they indicate
five economic downturns: 1974Q2-1975Q1, 1980Q1-1982Q4, 1987(Q4-19880Q1,
1991(21-1993Q4 and 2001Q2-2005Q3.

2Both the sequential procedure and critical values identify the significant structural break in the Dutch
common factor at 1983Q2. Therefore, a one-time break is introduced to the recession intercept at this
date. The break identified at 2001Q1 coincides with the peak of the sustained recession that occurred
during 2001Q1-2005Q2.

'* For the Netherlands, the baseline mode] failed to converge, therefore only parameter estimates of the
madified mode] are presented, in which a one-time structurai break is included in the recession intercept.




Table 3.6: Parameter estimates of MSDF model for Netherlands
Common Factor

& &, i, i, Uy, P P
0.792*~ -0.157* -0.979 1.764 -4,639%* 0.896%* 0.930%*
(0.163) {0,065} (0.970) (1.055) {2.057) {0.053} {0.033)
Idiosyncratic Components
2
AGDP - - D79q1 - L4t 242 oy &y aj
0.060 -3.551%* 0342%%  .0.026  -0.288  -0.446  0.637**
{0.041) {0.847) {0.098)  (0.017)  (0.505)  {0.505)  {0.078)
ASales ¥, - - D78q1 D94l W a,, Gy o}
0.043 2.553%%  .4.721%%  .§307¢* -0.024  -1.051* -1187*  0.640%*
{0.029) (0.816)  (0.782)  {0.095)  (0.015)  (0.496) {0493}  {0.077)
AP Vs - - - - LY L &y Uy 032
0.056 0.163  -0007  2.228%*  1.398**  (0.720**
{0.038) {0.101)  (0.008}  (0.641)  (0.631)  {0.088)
2
AEMP gy Fal Vi Fax 09641 ¥a ¥ @y Ty o,
0.015 0.075 0.007 0.053 SLETI** 0977FF  -0.239**  0.428 0.506 0.048%*

(0.026)  (0.058)  (0.023)  {(0.044)  (0.174)  (0.135)  (0.066)  (0.274}  (0.321)  (0.014)
Long run growth rate: § = 0.823

Error correction terms

GDP,  =-8.524-3.444x P  +4.156x EMP, Sales,  =63.86 + 24.946x IP, - 19.337x EMP,
{0.708) (0.629) (3.871) (3.442)

{og-likelihood : -547.257

Diagnostics - - Qf4) Jarque-Bera

AGDP 1.932 51.180**

A sales 4.179 14,535+

Alp 2.963 0.175

AEMP 0.701 31.971%*

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for the Netherlands were estimated using data from 1970Q1-2006Q4. Logarithms of variables
were used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are;

AGDP: 0.0064, 0.0121; A Sales: 0.0018, 0.0192; A IP:0.0041, 0.0181; A EMP: 0.0029, 0.0063.

Belgium. As with the Netherlands, the Belgian economy appears to be very volatile
during the 1970s and the carly 1980s. The parameter esitmates of u, = -2.784 and
Do =0.546, obtained by applying the bascline model to the data, imply that the
recessionary phase 1s steep and brief. A one-time structural break has been introduced
to the recession intercept, with D, =1 from 1970Q4 to 1981Q1 and D, = 0 for the rest
of the sample period. Although the choice of 1981Q1 is ad hoc, the severity of the

recessionary phases decreases dramatically after this date.' The parameter estimates of

the modified model are presented in Table 3.7(b). Before the break, the mean growth

" Both the sequential procedure and BIC identify breakpoints at 1974Q2 and 1983Q3. However, there is
no improvement in the log-likelihood value and the smoothed recession probabilities when a one-time
break is introduced at either date. However, when the one-time break data is set at 1981Q1, we obtained
reasonable smoothed recession probabilities and this date is supported by the likelihood ratio statistic.
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rate was u, +u,, + & =—1.444 during recessions and u, +& =1.705 during expansions.
After the break, the mean growth rate is u, +6 =0.817 during recessions while
remaining unchanged for expansions. This, again, may suggest that the turning points
identified after 1981Q1 are for growth cycles. Given the transition probabilities
Poo =0.863 and p,, =0.942, the average duration of recessions and expansions are

(1- pp)' =73 quarters and (1—p, )" =172 quarters, respectively. The null

hypothesis of u,, = 0 is again rejected by the likelihood ratio statistic of y°(1) =3.674

at the marginal significance level of 5%.

The smoothed recession probabilities, plotted in Panel 7(b) of Figure 3.1, capture four
major downturns during 1974Q2-1975Q1, 1980Q2-1983Q2, 1991Q1-1993Q4, and
2001Q2-2002Q1.

Table 3.7 (a}): Parameter estimates of MSDF model for Belgium
Common Factor

# ¢, u, u Pu Py

1.233%% -0.380%** ~2.7B4%* 0.204%* 0.546%* 0.968**

{¢.102) {0.063) {0.498) (0.102) {0.192) (0.017}

Idiosyncratic Components

AGDP 7, - - D30g1 Wy ¥z %14 &y 0'12
0.133%* 4.411** 0.170 0.075 -0.277%*  0.123 0.591%*
(0.041) (0.745) {0.097) (0.086) (0.085) (0.116) (0.073)

AGFCF 7, - - - W ¥ - &y ‘722
0.165** -0.085 0.096 0.054 0.726%*
(0.034) {0.089) (0.086) (0.105) {0.090)

AlP 7 - - - LY ¥ 32 - &y o
0.213%* -0.078 -G.002 0.628*%* 0,593%*
{0.036) {0.121) {C.005) {0.137) {0.079}

A EMP Y Y Y a2 Y i W 4 ¥ - a4y 0-42
0.283**  0.075 -0.160%% [p.111** 1.263*%* -0.399** -0.01% 0.019
(0.032} {0.044} {0.034)  (0.025) (0.i181) (0.114) {0.038)  {0.015)

Long run growth rate: § =1.315
Error correction term
GDP |, =15.805-0.220% GFCF , | +1.477x IP ,-1.499x EMP |

(0.080} {0.080) (0.312)
Log-likelihood: -557.854
Diagnostics Qfa) Jarque-Bera
A GDP 4.199 7.233*%
A GFCF 4.106 2.656
AP 1.043 2191
A EMP 3.961 ) 9.111*

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for Belgium were estimated using data from 1970Q1-200604. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0059, 0.0074; A GFCF: 0.0044, 0.0209; AIP: 0.0044; 0.0209; A EMP:0.0009, 0.0027.
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Table 3.7 {b}: Parameter estimates of MSDF model for Belgium

Commeon Factor

&, ¢ U, H, My, Poo P
1.097**  .0.301** -0.482 0.406* -2.261%* 0.863** [.G42**
{0.106) (0.058}) (0.353) (0.166} (0.573) {0.084) (0.037)
' Idiosyncratic Components
AGDP - - D80gl ¥, Wia ¥ &, oy
0.172%* 4.406** 0.092 0.054 -0.248**  0.206 0.548%*
(0.047) (0.740) (0.108) (0.090)  (0.092) {0.119) {0.074)
AGFCF 7y, - - . Wy W - &y, ‘7:?
0.175%* -0.090 0.099 0.049 0.700**
(0.035) (0.028) {0.086) (0©.102) (0.087)
AlP Vs - - - Wa Waa - &3 0'32
0.219** -0.161 -0.006 0.588** {(.540%*
{0.038) (0.121)  (0.010} (0.126)  (0.076)
AEMP 74, Va4 Vaa Va ¥a Waz - &y 0-42
0.269**  0.037 -0.107* 0.104** 1.063** .0.283** -0.043 0.057*
(0.040) (0.045) (0.045) {0.033) {0.143) {0.076) {0.048) (0.025)

Long run growth rate: §=1.299
Error correction term
GDP,, = 15.805 - 0.220x GFCF,  + 1.477x [P, - 1.499x EMP, .

(0.080) {0.080) {0.312)
Log-likelihood: -596.018
Diagnostics Ql4) Jarque-Bera
AGDP 5.459 4.314
AGFCF 2.362 4.546
AlP 2.235 1.777
AEMP 6.313 7.574%

Note: Please see the notes given underneath Table 3.7 (a)

3.4.2 Periphery countries: Spain and Finland

Spain. For Spain, the MSDF model seems to provide the least satisfactory results
among all the countries analysed. The parameter estimates of the baseline model are

presented in Panel 8(a) of Figure 3.1. The mean growth rates are 1, +& =—-2.203 and
u, +6 =1908 during recessions and expansions. The transition probabilities of

P =0444 and p, =0.964 imply that the average duration of recessions and

expansions are 1.8 and 27.8 quarters, respectively. It is not surprising that the smoothed
probabilities only pick up a couple of the severe recessions but neglect the other mild
downturns. Since the recession triggered by the ERM crisis appears much steeper than
the others, the recession intercept is biased downwards to -3.855. Therefore, allowing

for structural breaks in this intercept by setting D,, =1 during 1992Q2-1993Q4 captures




the most severe recession over the entire sample.'” As a result, the average duration of
recession increases from 1.8 quarters in the baseline model to 182 quarters in the
modified model. The smoothed recession probabilities, plotted in Panel 8(b) of Figure
3.1, identify a prolonged recessionary period during 1974Q2-1984Q2. However, it may
be more appropriate to mark this period as below trend growth, as the recession mean is

uy +06 = 0.034 during this period and it then decreased to u, +u, + & =—-3.567

during 1992Q2-1993Q4. The likelihood ratio statistic of (1) =11.936 rejects the null

of uy, =0.
Tabie 3.8 (a): Parameter estimates of MSDF model for Spain
Common Factor

¢, &, U, u, Pw P

0.286%* 0.525** -3,855%* 0.256* 0.444* 0.964**

(0.097) {0.080) {0.837) (0.104) (0.204) {0.020)

Idiosyncratic Components

AGDP ) ) ) ) ¥y, L W, ay, Gy o}
0.342%* 0.511%* .0.177  -0.181* 0.087  0.265  0.355%*
{0.049) 0.212) (0209} (0.084) {0.291} (0.27D) {D.D48}

AGFCF - - - . . W ¥32 &y Ay o
0.415** 0.165 0.936 0.512 -0.251 0.275%*
{0.060} (0.140] (0.131) ({0.369) {0.365) (0.053])

AlP Va ) i i ) i Ya Y Q3 Oy 0'32
0.319%* -0.281*  0.£91*  1,193** -0.614* (.521**
{0.052} (0.101) {C.098) (0.343) (0.319) (0.0%0)

AEMP  y,, Va Vi Yaa 076q1  D76e3 ¥ L) Gy &y, O’j

0.122** 0.099* 0.053 0.040 2.755%*  3.716**  (.291** (0.214* -0.145 -0.265  0.176**
(0.037) (0.039) (0.038) (0.037) (C413) {0.418) {0.096) (0.093} (0.147) (0300} {0.028)
Long run growth rate: § =1.652

Error correction terms
GDP, =5.403+2054x [P -0121x EMP,  GFCF, =-1.157+3.008x IP - 0.027x EMP,

{0.167) (0.179) (0.473} (0.507)
Log-likelihood: -5320.881
Diagnostics Qfa) Jarque-Bera
A GDP 4.632 9.843%+
A GECE 0.663 1.526
NG 0.415 1.258
AEMP 1582 17.020**

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * 2t 5%. The parameter estimates for
Spain were estimated using data from 1972Q3-2006Q4. Logarithms of variables were used, each variables was
standardised to growth rates with mean zero and unit variance prior to estimation. The sample means and
standard deviations for the growth rates of the original series are: A GDP: 0.0069, 0.0074; A GFCF: 0.0069, 0.0074;
AIP: 0.0049, 0.0172; A EMP: 0.0035, 0.0082.

" This recession is identified by the BBQ algorithm in Chapter 2. Following the results obtained from
the Bai and Perron procedure, several alternative specifications of [J|, have also been explored in this

study, such as setting 2, =1 during 1990Q4-1994Q1 or allowing a one-time break from 1985Q2

onwards. However, these specifications fail to provide reasonable parameter estimates and smoothed
recession probabilities.




Table 3.8 {b}: Parameter estimates of MSDF model for Spain
Common Factor

‘751 ¢2 un ul u;m Poo Pu

0.001 0.403** -1,108%* 0.876™ -3.601%* 0.945** 0.073%*

{0.113) {0.097) {8.310) {0.221) [0.826) 10.025) (0.021}

Idiosyncratic Components

AGDP v, - - . ) 1 ¥y Wi Xy 537 o/
0.334** 0.206% -0.047 -0.199%  -0.196 0.390 0.414**
{0.052) {0.106} {0.106} (c.086] {0.287} (0.270) {D.048)

AGFCF y, } B ) ) ) Wy Was &z 253 o;
(.438%* 0.198 £.010 0.248 0132 Q.242%*
{D.062) (0.153)  (£.01%) {0.373) 0.356) {0.057)

AfP Y3 - . - . i Wy Wiy &), Uy 0'32
0.312%* <0.254*  (0,193* 0.969%* -0.529% Q.563**
{0.053) (0.093) {0.097) {£.337) (0.212) {0.051)

AEMP v, Yay Fa Yay D76ql  D7643 Ya W &y oy, 0'3

0.146%* 0.113** 0.062 0.039 2798*%  3.702**%  0.225%  0.201* 0157 0074 0.160%*
(0.035) {0.038) {0.039) (0.037] (0.406} (0.412) (0.200) (0.096) {0.337) (0.317) (0.028)
Long run growth rate: &6 =1.142
Error correction terms
GDP  =6.403+ 2054 % IP,  -0021x EMP ,  GFCF, =-1157+3.098x 1P, ;- 0027 EMP

{0.157) (0.179) (0.473) (0.507}
Log-likelihood: 524,913
Diagnostics Q{4) larque-Bera
AGDP 3.856 9.476%%
A GFCF 1219 1,677
Alp 2.458 17.756**
AEMP 2,597 28.047**

Note: Please see the notes given vnderneath Table 3.8 [a).

Finland. Tn comparison with the BBQ algorithm, fewer recessions are identified by the
MSDF model for Finland. The smoothed recession probabilities, plotted in Panel 9,
pick out three recessionary periods, during 1975Q2-1975Q4, 19800Q4-1981Q1 and
1991Q2-1993Q1. Mean growth rates during recessions and expansions are computed to

be u,+5=-1588 and u,+6=1.089. The average duration of recessions and

expansions are {1- p,, ) =4.5 quarters and (1- p,,}” =31.3 quarters, respectively.




Table 3.2: Parameter estimates of MSDF model for Finland

Common Factor

¢, ¢, U, U, Puw P

0.014 0.108 -2.340** 0.337%* 0.780%* 0.968**

(0.121) (0.119) (0.454) (0.141) {0.135) (0.026)

Idiosyncratic Components

AGDP 7, - - - - Wi V4V o}
0.555** 0. 720%% -0.130* 0.223%*
(0.088) (0.150)  {0.054)  {0.088)

ASales 7, - - - - W ¥ 0'5
0.430%* -0.002 -0.085 0.615%*
(0.075) (0.004)  (0.097)  (0.055)

2

AlP 73 - - - - ¥ Wi T
0.384** -0.170 0.117 0.676**
(0.074) (0.091)  (0.091)  (0.055)

AEMP 74 Y ¥4z ¥Ya D76ql L ¥ O-f
0.045 0.288**  0.137 0.263*%* = 5379*%*  .0.069 0,162 0.335%*
(0.062)  (0.066)  (0.074)  (0.062)  (0.744)  (0.123)  (0.137}  {0.055)

Long run growth rate: & = (.752

Log-likelihood: -657.672
Diagnostics

AGDP

ASales

Alp

AEMP

af4)
9.559*
8.839
4.369
2.262

larque-Bera
21.142%+
25.148%*
26.895**
1.364

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for Finland were estimated using data from 1970Q1-2006Q4. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0069, 0.0121; A Sales: 0.0054, 0.0184; A IP: 0.0093, 0.0215; A EMP: 0.0011, 0.0081,




Figure 3.1: MS composite indices and smoothed recession probabilities
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Figure 3.1: MS compesite indices and smoothed recession probabilities (Continued)
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3.4.3 Non-EMU Countries: The UK, The US and Canada

United Kingdom. The parameter estimates of the MSDF model for the UK are reported

in Table 3.10. The mean growth rate is u,+J =—1.785 during recessions and

u, + & =1.262 during expansions. The average duration of recessions and expansions

are calculated to be (1—py)' =4 and (1-p, )" =20 quarters, respectively.

Compared with the corresponding estimates in Mills and Wang (2003b), this study
obtains a shorter recessionary phase and a longer expansionary phase. This is partly due
to the use of different sample periods. The sample period used by Mills and Wang
(2003b) included the 1960s when several brief recessions occurred. The data used in

this chapter is from 1970 onwards with no recessions being picked out in the 2000s.

In total, four recessions are identified by the smoothed recession probabilities, during
‘ 1973Q3-1974Q1, 1974Q4-1975Q3, 1979Q3-1981Q1 and 1990Q3-1991Q3. This
replicates the cycle dates produced in Chapter 2.

United States. The results for the US are summarised in Table 3.11. The asymmetric
nature of business cycles is again supported by the parameter estimates. The mean
growth rate is u, + & =—0.184 during recessions and u, +& =1.629 during expansions.

Given the estimated transition probabilities, the average duration of recessions and

expansions are 4.4 quarters and 19.2 quarters, respectively. The US common factor,

along with the smoothed recession probabilities, are plotted in Panel 11. Five
recessions are identified, during 1973Q3-1975Q1, 1979Q1-1980Q2, 1981Q2-1982Q)3,
1990Q2-1991Q1 and 2000Q4-2001Q3. These cycle dates do not correspond as closely
to the NBER dates as those obtained by the BBQ approach.




Table 3.10: Parameter estimates of MSDF model for the UK
Common Factor

¢] ¢2 uO ul lDOO })ll

-0.192* -0.009 -2.625%* 0.422%* 0.752%* 0.950%*

{0.102) (0.010) (0.398) {0.121) (0.108) {0.023}

Idiosyncratic Components

AGDP D7992  D7%q2 i, W, a,, oy
0.544%* 3.772%*  1671** -0.555* -0.077 -0.051 0.081
(0.059) (0.523)  (0.545)  {0.207) (0.057) (0.056} (0.046)

AGFCF 7, - - - - Yoy ¥ Xy, o3
0.230** -0.145  -0.005  -0.014  0.891**
(0.064) {0.097) {0.007) (0.083) (0.109)

APy, D72g1  D72q2  D74q1  D7aq2 Y, W4 &, ol

0.411**%  -2,472*% 2,503** -2.227*% 3.681** 0.384**% .0.037 -0.01¢  0.203**
{0.048) ({0.515) (0.533)  {0.540) (C.520) (0.217) (0.022) (0.070) (0.040)

-

AEMP 7, 74 Yar Va3 Do2g3 Wi Wi &, o,
0.144**  0.120%*  0.143** 0.072 -4.960%* (0.351** 0.062  -0.230*% 0.334**
{0.040} (0.043) {0.045) (0.042)  (0.558)  {0.090) (0.096) (0.080) (0.041)

Long run growth rate: & = (.840

Error correction term

GDP, | = 35.186+ 1.0569x GFCF,, + 0.674xIP, ,-2.824x EMP |

G223  (0a56) (0450 —
Log-likelihood: -571.109
Diagnostics Q(4) Jarque-Bera
AGpp 6.445 7.902*
A GFCF 2,172 2.772
Aw 3.525 7.255%
AEMP 1527 5.218

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for the UK were estimated using data from 1970Q01-2005Q1. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series are:

A GDP: 0.0057, 0.0096; A GFCF: 0.0064, 0.0272; AIP: 0.0028, 0.0186; A EMP: 0.0011, 0.0054.




Table 3.11: Parameter estimates of MSDF model for the US

Common Factor

Long run growth rate: & =1.290

¢ o8 H, U, Py P
0.431%* -0.047 -1.A474%¥ 0.239* Q.771%* 0.948*%*
{0.120) (0.026) (0.359) {0.148) (0.106) {0.026)
tdiosyncratic Components
AGDP 7 ) . D78q2 W Yy, 220 0'12
0.560** 2.026%* -0.472%% -0.056 -0.122 0.173%*
(0.060) (0.574)  (0.156)  (0.037)  (0.099)  {0.048)
ASales y, - D7444 D80q2 ¥, ¥ &y 3
0.345%* -1.723%%  3,087%*% -0.197* -0.010 0.128 0.476**
{0.052) (0.531)  {0.556)  (0.096)  (0.008) (0.078)  (0.060)
2
‘ A ]P }/3 D74q4 D75q1 D80q2 VISI lfUBZ au 0-3
0.486** -1.178* -2.171%* -1.966* 0.282* 0.094 -0.234%* 0.,185**
(0.054)  (0.548) (0.763)  (0.753)  (0.128)  (0.122)  (0.101)  (0.037)
2
AEMP v, Ya Y Va3 W4 WV 2 G,
0.356*%* 0.141* 0.027 0.100 0.072 -0.001 -0.306*%  0.389%*
(0.060) (0.065) (0.066)  (0.054)  (0.101)  (0.004)  (0.115)  (0.052)

Error correction term

GDP,, =0.004 + 0.545x Sales,  -0.097x IP_ + 0.322x EMP, |

{0.071) {0.072) {0.197)
Log-likelihood: -589.215
Diagnostics Q(4) Jarque-Bera
A GDP 1.251 7.628*
A sales 1.734 3.584
AP 3.961 20.577%*
A EMP 5.050 5.510

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for the US were estimated using data from 1970Q1-2006Q4. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The samplie means and standard deviations for the growth rates of the original series are:

A GDP: 0.0078, 0.0082; A Sales: 0.0054, 0.0148; A IP: 0.0069, 0.0149; A EMP: 0.0043, 0.0048.

Canada. Mean growth rates during recessions and expansions are estimated to be

U, +8=-0.652 and u, +06=1437.

The average duration of recessions and

expansions are (1— py, Y'=3.5 quarters and (1- P, ) =47.6 quarters, respectively.

Two recessions are identified by the smoothed recession probabilities, during 1981Q3-

198203 and 1990Q2-1991Q1.




Table 3.12: Parameter estimates of MISDF model for Canada

Common Factor

¢, ¢, U, U, Poo P

0.609** -0.003* -1.048%* 0.141 0,714*% 0.979%*

(0.125) (0.038) (0.611) (0.100) (0.175) (0.017)

Idiosyncratic Components

AGDP N - - - Y ¥, &y !
0.530%* -0.298* -0.022 -0.030 0.280**
{0.059) (0.118}  (0.018)  (0.097)  (0.048)

ASales Vs - - D81l Wa W a 0'22
0.277** 4,758%# -0.229* 0.113 0.205** 0.534%*
(0.046) (0.755)  (0.092)  (0.091)  (0.074)  (0.046)

AIP V3 - - - ¥ Y3 &y G'.f
0.530** 0.231* 0.105 0.267* 0.276**
(0.060) (0.117)  (0.105)  (0.106)  (0.049)

AEMP Yo Ya Vi Va3 Va Wa &y o;
0.344%** 0.234%* -0.052 -0.036 0.111 0.024 -0,158 0.332**

(0.065)  (0.082)  (0.079)  (0.064)  (0.109)  (0.106)  (0.125)  (0.041)
Long run growth rate: 6 =1.296

Error correction term
GDP,, =4.586+0.261x Sales, | + 0.399x P, +0.632x EMP,

(0.045) (0.046) {0.047)
Log-likelihood: -626.231
Diagnostics Qi4) larque-Bera
A GDp 8.723 14.589%*
A Sales 0.239 0.702
AP 5.145 0.951
A EMP 8.494 53.852**

Notes: Standard errors are in parentheses. ** denotes significance at 1% and * at 5%. The parameter
estimates for Canada were estimated using data from 1970Q1-2006Q4. Logarithms of variables were
used, each variable was standardised to growth rates with mean zero and unit variance prior to
estimation. The sample means and standard deviations for the growth rates of the original series

are: A GDP: 0.0077, 0.0081; A Sales: 0.0079, 0.0168; A IP: 0.0064, 0.0168; A EMP: 0.0050, 0.0058.

Summary. In general, the cycle dates produced by the MSDF model are broadly in line
with those obtained by the BBQ algorithm used in Chapter 2. The parameter estimates
obtained using the MSDF model confirms the asymmetric feature of business cycles,
that recessions are steeper and shorter than expansions. The MSDF model seems more
successful in distinguishing between different regimes for large economies (i.e.,
Germany, France, the UK and the US), whose recessions and expansions are of roughly
constant magnitude over the period studied. Smaller economies exhibited greater
volatility during the 1970s and early 1980s. The recession intercept for these countries

is biased downwards by the severe recessions experienced during this period. As a
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consequence, the smoothed probabilities fail to identify the mild recessions which
occurred in the later years and instead classify them as expansions. Introducing

structural breaks in the intercepts seems to improve the results for Belgium, Italy and

the Netherlands. For Spain, the MSDF model appears to deliver the worst fit, as the.

recession probabilities either capture a few brief recessions or pick out too many

economic downturns.

Figure 3.1: MS composite indices and smoothed recession probabilities (Continued)
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3.5 Evaluating the coincidence of regime shifts

In this section, the concordance of regime shifts is evaluated using pairwise correlations
of binary variables and of the smoothed recession probabilities. The binary time-series
are constructed with one denoting expansions and zero indicating recessions. For
France, where three regimes are identified, the value one is assigned to both the

moderate-growth and high-growth regimes and zero is assigned to recessions.

3.5.1 Multidimensional mapping of business cycle distance

The correlations of binary variables for the whole sample and two subsamples with the
midpoint of 1991Q1 are given in Table 3.13. Sammon mapping, introduced in Chapter
2, is also used in this section to provide a pictorial representation of these correlations.
In order to compare the results shown in Chapter 2 with those obtained in this section,
Figure 2.2 is represented in Panels 1(a)-3(a} of Figure 3.2, while Panels 1(b)- 3(b) of
Figure 3.2 present the three maps produced using binary series indicated by the
smoothed recession probabilities over the whole sample and the two subsamples. It can
be seen from both Panels 1(a) and 1(b) that, over the whole sample, the conclusions are
robust using either the BBQ or the MSDF approach. More synchronised business
cycles are observed between the core EMU countries and the aggregate euro area,
compared to those in the peripheral and non-EMU groups. A cluster of four core EMU
countries, composed of Germany, Austria, Belgium and the Netherlands, who had

highly synchronised business cycles, are shown in both Panels 1(a) and 1(b).

Panels 2(a) and 2(b) of Figure 3.2 reveal that the four core EMU countries mentioned
above all had closer distances to the euro area aggregate than France, Italy, the
peripheral and non-EMU groups during the first subsample. This is more obviously
observed in Panel 2(b), where binary series are produced by the MSDF model.
However, conflicting results are revealed when comparing Panels 3(a) and 3(b) of
Figure 3.2. Although both figures show that the tight cluster of four core EMU
countries are driven away from each other and the desynchronisation process between
Austria, Belgium, the Netherlands and the aggregate euro area are notable over the

second subsample, an increase in cycle correlation between France, two peripheral
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countries and the euro area aggregate, which is shown in Panel 3(a), cannot be observed
in Panel 3(b). This conflict can be explained by the identification of recessions during
the early 2000s for the aggregate euro area but not for France and the peripheral

countries when the MSDF model is used, which reduces the correlation between these

countries and the euro area as a whole.

business cycles from the euro area as a whole can clearly be observed from both 3(a)

Finally, a picture of diverging non-EMU

and 3(b}.
Table 3.13: Correlation Coefficients of Binary Variables
Whole Sample Period
EMU GER FRA ITA AUS BEL NETH SPA FIN UK us
EMU
GER 0.80
FRA 0.41 0.27
1TA .44 .30 0.27
AUS 079 068 012 0.8
BEL 0.65 0.53 0.43 0.32 0.55
NETH 061 059 015 033 455 061
SPA 036 021 033 012 027 045 022
FIN 016 013 019 007 003 032 021 0.35
UK Cc.11 0.26 0.14 -0.04 0.15 0.17 0.14 .32 (.59
us 020 029 013 0.0z 038 034 017 0.25 002 039
CANA 021 0.14 007 011 024 025  0.16 016 025 013 053
Pre-1991Q1
EMU GER FRA ITA AUS BEL NETH SPA FiN UK us CANA
EMU 0.85 0.40 0.30 0.90 0.85 £.71 0.54 0.11 a.27 030 C.35
GER 0.76 0.36 019 072 072 068 030 006 043 050 D25
FRA 0.46 0.25 0.22 0.31 0.36 0.15 0.21 0.07 .20 -0.21 -0.15
- 1ITA .56 0.41 0.44 0.26 033 0.23 0.30 0.02 Q.08 009 0.23
g AUS 0.68 0.55 0,16 0.25 J.85 0.81 0.48 0.08 0.23 0.41 0,32
a BEL 047 0.31 0.60 0.30 0.2t 0.71 0.48 0.00 0.16 043 C.34
=  NETH 037 052 030 03% 036 051 036 -0.02 020 D037 0326
S spa 033 022 058 021 -020 073 047 0.03 018 €18  0.03
FIN 020 020 03¢  0a0  -017 065 042 0.89 038 003 027
UK 014 000 -0.10 018 -0.11 035 024 0.48 054 041 002
us 0.08 .00 -0.12 0.00 0.30 0.28 0.01 0.00 0.02 0.18 0.54
CANA  -0.07 -010 -0D.05 089 -DB5S 020 013 028 031 057 039




Figure 3.2: Multidimensional mapping of business cycle distances
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Note: two pairs of countries, the US and Canada, France and Spain, have perfectly synchronised turning
points in the second subsample when the BBQ algorithm is used.
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3.5.2 Rolling sample correlation of smoothed recession probabilities

In addition to analysing changes in synchronisation wvsing two fixed subsamplesm,
bilateral correlations of the smoothed recession probabilities are also computed using a
series of rolling samples, with a window width of six years.!” The mean correlation
coefficients of the core, periphery and non-EMU countries with respect to the euro area
aggregate are calculated for each window and are plotted in Figure 3.3. There are a few
points worth noting. First, a significant decline in synchronisation between both core
and periphery EMU business cycles and the aggregate euro area is observed during the
1980s. This is broadly in line with Inklaar and de Hann (2001) and Massmann and
Mitchell (2004}, who found desynchronised euro area growth cycles during this period.
Second, a dramatic increase in cycle convergence is observed during the 1990s,
specifically for the two periphery countries, whose mean correlation coefficient with
respect to the euro area aggregate exceeded the core countries at the end of 1990s, but
this was reversed during the 2000s. This, in part, reflects unbalanced economic
performance across EMU member states after the introduction of the euro. A number of
core EMU countries, such as Germany and ltaly, who have large weights assigned to
them when constructing aggregate euro area data series, suffered recessions and
sluggish growth for several years during the 2000s, while two periphery countries,
particular Spain, maintained strong economic growth. Finally, the cycle correlation
between non-EMU and the euro area aggregate only increased during global downturns,
such as during the early 1980s and at the beginning of 2000s, but completely diverged

from the euro area during the ERM period.

“ Pairwise corrclations of the smoothed recession probabilities over the whole sample and the two
subsamples are reported in Appendix D3. The focus of this subsection is to evaluate the changes in
correlations using a rolling sample approach.

" We understand that the results are sensitive to the choice of window length. Long windows tend to
smooth out important medium-term changes in synchronisation, while short windows are more sensitive
to short- to medium-term deviations. The window length of six years is commonly used in the literature,
see, for example, Gayer (2007).




Figure 3.3: Roliing correlations of the smoothed regime probabilities
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3.6 Conclusions

In this chapter, one of the parametric business cycle dating approaches, the MSDF
model, is applied to the same data used in Chapter 2 to date business cycle turning
points. The cycle dates obtained using the MSDF model are broadly in line with those
produced by the BBQ approach. One exception is the turning points obtained for the
aggregate euro areca. The smoothed recession probabilities indicate a period of
recession during 2001Q1-2003Q2, while this contradicts the conclusion, drawn from the
BBQ algorithm and the CEPR business cycle dating committee, that no recessions
occurred during the early 2000s. As such, an increase in cycle correlation between
France, two peripheral countries and the euro arca aggregate, which is shown in Chapter

2, cannot be found here.

In general, the baseline MSDF model was successful at detecting turning points for
large economies (i.e., Germany and the UK and the US), where the magnitude of
recessionary and expansionary phases appears to be constant over the entire sample. It

was less successful at producing reasonable parameter estimates and smoothed
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probabilities for the other countries. Therefore, adjustments had to be made for
Belgium, the Netherlands, Italy and Spain to account for changes in the modei’s
intercepts. For France, an additional regime is included to distinguish between the three
phases of the French business cycle: recessions, moderate-growth and high-growth.
The MS type of models were criticised by Harding and Pagan (2002) for producing
significantly different results when different models and sample periods are used. If is
true that, compared to the BBQ algorithm, the MS models appear to be less transparent
and more dependent on the particular properties of the data, However, this is also
described as an advantage over the BBQ approach by Hamilton (2003), as the MS

approach can provide a specific model for the object of interest and can derive the

optimal inference about it.




Appendix A3

A3.1 Specification of the MSDF Model

The MSDF model utilised in this chapter is specified as

Ay, = Hp,, (A3.1)
B =M; +FB._ +s,, & ~ NID(0,0Q) (A3.2)

where Ay, =[Ay, Ay, Avy,,Av,, 1" is the vector containing four coincident economic

variables. B, =[Ac,AC 1, AC, 3,0, 3,€,,€, 15+ €4 »€4q] CONtains the current and lagged

values of the common factor and innovation terms. The time-invariant and regime-

independent matrices F, A and @, contain the model’s hyperparameters:
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M = l/.l s, ,0,0,0,0,0,0,0,0,0,0,0J contains the MS intercept of the common factor, where
the estimate of x; depends on the current and lagged two-state MS variables, S, and

S

-1

A3.2 The Filtering Algorithm

Kim’s (1994) filter is designed for the state-space model with MS, and provides MLEs
of the model’s unknown parameters. It combines the KF and the Hamilton filter, along
with appropriate approximations. This filter is started by the KF iterations, conditional

on the current and lagged state variables, S=;and S, , =1, i, j=12. The recursive

equations are as follows,

ﬂ(lj) =;‘;J + F i P(JJ') =FPI

t]e-1 -1j¢-12 fi-1 =Yi-1

FT+0,

g =y~ HBY fyd =HRHT,

fe-1 2 |e-1 1lr-1

iy __ i) _Ptl,.f)HT[]rl(z..f)}' m(‘lf:rl)’

e T Fe-l 1i-1 |1

ij iyt £un |l i
P! J)=(]_ G5y {ﬂ( J)}H ri(r—{)’

¢ te-1 -1

where is an inference on f,_, based on information up to time ¢ —1, conditional

1
=1jr-1

L}

- is an optimal forecast of £ _, based on all information up to time

on S, =1.

t-1, given S, = j andS,, =i. £’} is the mean squared error matrix of S 77,4

is the prediction error and f,' is the variance of 77}’ Since the above KF produces a

2-fold increase in the number of B and F"' at the end of each iteration,

i and P/

e . are needed to make the KF operable. Kim reduces the

approximations to J

2x2 posteriors ( ﬁflf‘” and RL‘” ) to 2 posteriors ( A/ and P ) by using two

approximation equations:

37 PK(S, = /S, =i,

!

w)B

- PI(S, = Jl,)




Z Pr(S, = 4,5, = |t//){P|'” +\B, -8 ”)Xﬁ,p B, )}

A34
Pr(S, = i) ( )

The Hamilton filtering algorithm is then utilised to calculate the probabilities

Pr(S, = jli,) and Pr(S, = j,S,, =ilw,) in equations (A3.3) and (A3.4):

Pr(S, =, S, =ilw,,)=PrlS, = S =i)Pe(S,_ =i fy..), (A3.5)
f(y: Ivfr-—l ) = Zj:l Zj:jf(YIth = j’Sr—l = i’ yjl—l )PI‘(S{ = j’ S{-] = ia!W;-]) s (A36)
Pr(St =j,S!_1 ::l.,ly_/!):f(y:lsr '—'-jsSf_[ zi,f//r_[)Pr( _]a = JV, 1) (A37)
)
|
PU(S, = lw) =D Pr(S, = 1,8, =ilw,), (A3.8)

\ Pr(S, = j|S,., =i) is the transition probability. f(y|y.) and 7([S, = /.5, =i.w)
are the marginal and conditional density of y,, respectively. Pr(S, = j]y/,) gives the

filtered probabilities for regime ;.

A3.3 The Smoothing Algorithm

Compared to the filtering process described above, which aims to produce optimal

estimates of B and S, based on information up to time 7, ﬁr{r and Pr(S, = j}y/,), the

smoothing algorithm takes into account information available after time ¢. The

smoothed estimates of §, and S,, conditional on the complete sample, are written as
1841" and Pr(§, = j]t//T). Since the smoothed estimates are based on more information

than their filtered counterparts, in generat they provide more accurate inferences.

The smoothed probability that S, = j based on full information can be derived by the

following equations (see Kim, 1994; Kim and Nelson, 1998):

Pr(S, = /.8, = klwy ) =Pr(S,,; = Ky )PK(S, = jIS.., = kwy)




~ Pr(S,., = k) Pe(S, = jiS,., = k,w,)
_Pr(S,, = Ky )Pr(S, = jjw,)Pr(S,,, =HS, = j) (a39)
Pr(S,,; =kly,)
and
P(S, = flyy) =Y. PK(S, = /.S =kly;), (A3.10)

where Pr(S; = j|gz/T) is the initial value for smoothing, which is obtained from the last

iteration of Kim’s (1994) filter.

The smoothing algorithm for the vector £, can be derived as follows, given §, = j and

S

=k
ﬁr{ﬁ“ - P:|IrFT(P(+i|r“}]( aﬁ1|r - :(:.1]!:)):
Py = pt = PFT(PU0 ) (B, — P Jpun T Rl

1l e H-lfr

where B7" is the estimate of f, based on the full sample and £/* is the mean
squared error matrix of 8. A/ and P are obtained in equations (A3.3) and (A3.4).

The smoothed probabilities Pr(S, = j,S,,; = ;) and Pr(S, = j|yfT) can be used to

approximate ,!'T and Pj, using the following equations:

qr>

3PN, = 1,5, =kfy ) B

i - , (A3.11)
" Pi(S, = jly'r)
Z PI‘(S J = ;\, I‘//T){Prll)+ | J”Iﬁ jl')) }
. (A3.12)
Pr(S: "'J.l//.f)

By taking a weighted average over the states at time ¢, ﬁrIT is obtained as

ﬁfl? = Zi=| Pr(S: = j|l//T )ﬁ,f'r
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A3.4 Approximate MLE

The conditional density f(y!|S,= j,S,ﬁ]=i,t,I/_]) in equation (A3.6) is based on the

prediction error decomposition:

N 1
- . YU HE) VownT pin™ g
70005, =180 =t} =@ 2 | expl= g i}

The marginal density of y, conditional on past information, f (yr W, ), is obtained from
equation (A3.6). By summing the logged values of f (y, |¢,z/,_l) at the end of each

iteration, the approximate log likelihood function is given by

LL= In[f(ypyzs---vyr )]= Z; In[f(y, !V/H )]

A3.5 The mean growth rate § of AC,

The mean growth rate of the MS common factor is computed as the weighted average of
the mean growth rates of the constituent variables, §= W()AY , where W (1) is the first

row of ({-(I-KH)F)'K. K=K, = HTfT'l;,_I is the Kalman gain at the last

TiT-

iteration. Py, and fy,, are the weighted average of over P:,SET"’ ) and fi,(f;’_)] , which are

calculated as follows

[//T )P;{;,:Ijl 2 . s
s Prp =2 PHSE = il 0B

i Zl} Pr(ST = j.‘) ST-] = i,
Pl = "
Pr(Sy = Ayr)

Zi PT(ST =_}.?S]"_j :i’!yf?').f“i:’jl 2 r ’
= = d i TP T Z j=l Pr(S; =] ‘WT ), T?T-‘ )

fi= ,
i P(S; = o)
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Figure B3.1 Growth rates of the MS common factors, Ac,
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Appendix C3

Table C3.1: Bai and Perron’s multiple structural changes test

Italy } The Netherlands Belgium Spain
SupFr (1) 3.748 | 29.611%* ‘ 15.173%* | 66.815%*
SupF,.(2) 17.655%* 44.037%* 14.545* 87.404**
SupF.(3) 15.016* | 43.548** 23.146** 60.096**
SupFr(4) 12.894%% | 30.403%* ‘ 18.565** 52.890%*
|
SupF, (5) 23.858%% | 31.878% 22,635+ 65.126%*
UDmax 23.858* 44,037%* 23.146%* 87.494%*
WDmax(5%) 34,343 £9.953* 38.358* 110.363*
WDmax(1%) 41273+ | 79.793% 45.411%* 130.654+%
SupF(2[t) 7.469 51.330%* 17.599%* 13.871%*
SupF (3[2) 11.375*% | 13.473% \ 0.825 5 44.641%
: !
SupF (43) 24,5007 ! 28.461%~ | 9,094 | 22.883%*
_ Number of breaks selected
BIC 5 2 | 5 i
LWz 0 2 0 3
Sequential 0 f 4 i 2 i
Break dates and confidence intervals
BIC BIC Seq. | BIC seq. | aIc Lw? Seq.
- 73:2 83:2 832 | 742 74:2 85:2 85:2 85:2
! (72:4-73:3) | (82:4-86:1) (83:1-85:3) | (71:1-75:3) (72:3-75:1) | (84:4-85:4) (84:4-85:4) (84:4-854)
. 734 01:1 90:1 i 80:1 83:3 g0:4 a0:4 a0:4
2 (73:3-74:1) | (00:2-02:2) (89:1-9L:3} (78:4-84:2) (81:4-88:4) | (BR:4-91:1) (89:4-91:1) (89:2-91:2)
- 74:3 : 95:2 83:3 I 94:1 94:1 96:4
3 (74:2-74:4) (94:3-96:2) © (83:1-84:1) | (93:4-96:1) (93:4-95:2) (96:3-98:1)
- 75:2 ozl | 902 97:2 00:4
P {74:4-75:3) | (00:3.02:2) | (89:3-81:1) (97:1-97:4) (00:2-01:3)
- 802 L 934 7 0O
c (78:4-84:4} | | {92:2.94:4) | (00:2-01:2)

Note: three criteria used to estimate the number of breaks are the Bayesian Information criterion {BI{)
suggested by Yao (1988), @ modified Schwarz criterion {LWZ) proposed by Liu et al {1997}, and the
sequential procedure proposed by Bai and Perron. The latter is based on the sequential application of

the SupF ((’lf + 1) test using the subsequent estimates of the breaks.




Appendix B3

Table D3.1: Correlation Coefficients of Smoothed Recession Probabilities

Whole Sample Period

EMU  GER FRA ITA AlUS BEL NETH SPA  FIN UK us
EMU
GER 0.94
FRA 0.52 0.36
ITA 0.56 0.46 0.43
AUS 081 Q.77 0.20 0.34
BEL 0.23 0.73 0.56 0.46 0.63
NETH 0.73 0.74 0.16 0.42 0.61 0.66
SPA 0.42 0.25 0.41 0.15 0.27 .39 0.11
FIN 0.19 0.14 0.16 0.15 -0.06 0.28 0.20 0.35
Ux 0.15 0.28 0.16 -0.04 0.16 0.22 0.19 037 047
us 0.26 0.37 -0.06 0.02 0.46 0.38 0.28 031 004 0.48
CANA 0.28 0.23 0.00 0.16 0.36 0.42 0.29 0.24 0.23 0.19 081
Pre-1991Q1
EMU  GER FRA ITA AUS BEL NETH SPA FIN UK Us CANA
EMU 0.96 0.51 0.45 0.94 0.80 080 0.58 -0.01 029 037 045
GER 0.94 0.44 0.34 0.87 076 0.66 036 002 045 055 041
FRA 0.58 0.44 0.45 0.41 055 0.20 030 -0.03 020 -013 -0.08
- ITA 0.66 0.57 0.57 0.45 043 031 0.34 012 014 013 034
9 AUS 0.67 0.65 012 026 0.85 0.8 0.47 0.00 027 048 047
g,‘ BEL 0.74 0.69 0.68 047 028 0.69 0.39 000 9024 052 055
E NETH 0.71 0.73 0.31 0.51 Q.53 0.48 0.26 001 032 047 047
3 SPA 032 033 Q42 Q.17 016 Q086 Q32 Q02 016 g24 Q10
& AN 0.33 0.30 0.40 0.8 -0.14 066 {0.37 0.96 032 0.0 022
UK -0.04 002 003 -017 -0.16 034 019 0.71 0.78 048 007
us 0.15 .08 -0.15  -0.68 0.40 023 0.13 0.05 0.08 .22 0.60
-0.02 0.37 041 061 057




Appendix E3

As illustrated in section 3.3, significant variation in the magnitude of recessionary and
expansionary phases over the sample period means that the baseline model fails to
produce reasonable parameter estimates and smoothed recession probabilities. One
solution to this problem, used in Chapter 3, is to introduce dummy variables into the
intercepts of the MSDF model in order to reduce the impact that large business cycle
phases have on the model’s parameter estimates. Applying this approach improves the
log-likelihood values, parameter estimates and smoothed recession probabilities and so

produces more reasonable turning points for Belgium, Italy, the Netherlands and Spain.

An alternative approach considered in this section is to introduce a latent state variable
into the intercepts of the MSDF model. This approach is broadly in line with Kim and
Nelson (1999a) and Mills and Wang (2003a), who introduced an additional latent state
into the mean and residual variance of the Hamilton model to detect the unknown dates
of business cycle moderation. To reduce the number of states at each stage of the KF

iteration, we allow D, in equations (3.14) and (3.15) to evolve independently of their

past values. As such, eight states appear at each stage of the KF iteration. The

recursive equations are as follows

ﬁ1(|;]1‘{ W =Ji, +Fp -1 Pr|(;-;i0 = FF] 11|~ 1FT+Q=
ﬂr(li;jl.h” =ﬁj +yij +Fﬁfi—1]1—1’ R](.',Jil\ W= FP? 1|t~ IFT +Q’
77:(|Jr ,IA =0) =y _Hﬂr(l:':q.k:m, -f[|:,{A =0) _ HPF(HA O)H'f,
A =3~ BB, 7 = RN,

ﬁfi.j.f\':O) ﬁ(i;l\ =0) _ (1‘ Jk= O)HT[f(r;A—O)] ?7(1].'\ =0)
7)¢-1 >

s fle=t 1}.' ] {]t-1

(jh=) _ plijé=l) _ ptik=D) T[ (i.j.k:l)]‘I (i jd=1)

tr ﬁrh 1 t\r ] H f;\f—l ??!|.'—] ’
(Fjk=0} _ (i.j.k=0) T[ (z;AU}]‘ )Pu,f\ =0)

P (I P H |{ ' i y

it f]e-1

ti.jd=1y k=l rT| ptig =ty [ G jk=1) ——
pl (I Plfl H [f,‘,_! }H = where 1, =12

i i e
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The Hamilton filtering algorithm that calculates the probabilities Pr(S, = j}t/f,) and

Pr(S, = /,S,., =i,7,) can then be modified as follows

Pr(SI =758, =D, = k’t//r_l)= Pr(S, =S, —z)Pr( =1y, l)Pr( =y, [)
10,

PrS, = 4,8 =i, D, =k|y/,)s‘

V)= 2 2 S f S, = .5, =0.D, =k, JP(S, = .5, =1,.D, = Ky,.),
(]S, = 7.8, =i.D, =kyw,, JPr{S, =/, 8, =,D, =Hw,_,)
S (y r|W ;»1)

PU(S, = fr )=, > PK(S, = /.S, =i,D, = K,),

b

where Pr(D, = k]c,//,_l)= Pr(D, = k) and ; Pr{D, =k)=1.

Since the MSDF model is a combination of the KF and the Hamilton filter, appropriate
approximations are needed at each iteration to make the above KF operable. However,

unlike Kim’s (1994) filter, illustrated in Appendix A3..2, where the KF produces a 2-

fold increase in the number of £y and P77 at the end of each iteration, the KF

presented here gives a 4-fold increase in the number of ,5’ (/4 and Pf“: A

J = Z;Z; Pr(S, = /.5, =i,D, =k ﬁ“]“
o Pr(S, = jl:,// ) ?

Z:Z Z Pr(S, =/, S, =i,D, =k, ){P‘”” (ﬁp ﬂj’J”X i~ r(llrm)T}
i Pr(S, = /) :

However, reducing the 2 x 2 x 2 posteriors ( /3’:’;"' 4 and Pr|(;j 1y down to 2 posteriors

(f], and F; '} requires a weighted average over 57 and By, U420 and Pr|(; 7429 and

P70 This may cause problems in the subsequent iterations when large variations

are found between severe and normal business cycle phases. This leads to significant
increases in volatility of the common factor as both 7, and u, are larger than those
obtained using the dummy variable approach. Due to this problem, this approach fails

to produce reasonable parameter estimates and smoothed recession probabilities for

Belgium and the Netherlands. Although it gives acceptable results for Italy and Spain,
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the log-likelihood values in Tables E3.1 and E3.2 are lower than those in Tables 3.4(b)

and 3.8(b). The dummy variable approach is thus preferred and used in Chapter 3.

Parameter estimates of MSDF for ltaly

.
.

Table E3.1

Common Factor

Uy, P

pll

Py

&
0.663**
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Figure E3.1
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Chapter 4 - Evaluating Growth Cycle
Synchronisation in the EU

4.1 Introduction

Chapters 2 and 3 assessed the synchronisation of business cycle turning points
identified from multivariate coincident economic time series using parametric and non-
parametric approaches. Although more synchronised business cycles are found between
the aggregate euro area and the core EMU countries than the peripheral and non-EMU
countries, this may reflect the large weights assigned to the core countries when
constructing the aggregate euro area data. Overall, no common increase in cycle
correlations 1s found between the aggregate euro area and EMU countries over two
subsamples: pre-1991Q1 and post-1991Q1. Furthermore, the unbalanced growth
observed among EMU member states, even after the establishment of EMU, may

reduce the appropriateness of having a common monetary policy for all countries.

Given this concern, the research in this chapter is undertaken to identify and analyse the
growth cycles of seven major European countries, Austria, Belgium, France, Germany,
Italy, the Netherlands and Spain, during the period of 1980Q1 to 2007Q3. These
countries were previously members of the European Monetary System (EMS) and have
been members of EMU since 1 January 1999. There has been an ongoing debate as to
whether these countries, and the other members of EMU, have actually benefitted from
adopting a common monetary policy. In macroeconomics, the growth cycle is
consistent with the output gap, which is associated with inflationary pressures. As
similar inflation rates are one important criterion for ensuring the optimality of EMU as
defined in OCA theory (Fleming, 1962; Haberler, 1970), measuring the degree of
growth cycle synchronisation is a relevant issue in analysing the optimality of EMU and

its common monetary policy.

The endogenous OCA theory, supported by Frankel and Rose {1998) and the European

Commission {1990), argues that the operation of a monetary union in itself would
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generate greater synchronisation. Given this assertion, this chapter examines the
presence of a unique common cycle among the seven member countries mentioned
above, given the operation of EMU and the quasi-union of the Exchange Rate

Mechanism (ERM) of the EMS over the past thirty years.

European growth cycle synchronisation is generaily evaluated by analysing bilateral
correlations between estimated cycles.  Univariate trend-cycle decomposition
methodologies, such as the Hodrick-Prescott and band-pass filters, are widely used to
extract the cyclical component from industrial production indices, real GDP or its
components, There is still no consensus on whether fixed exchange rate regimes or a
monetary union generate synchronised cyclical fluctuations. Artis and Zhang (1997)
and Darvas and Szapary (2004) find evidence of greater growth cycle synchronisation
after countries joined a currency arrangement or a monetary union. However, Inklaar
and de Haan (2001) contradict this assertion as they identify periods of convergence and
divergence during the ERM period. Moreover, Camacho et al. (2006) conclude that the
establishment of the EMU has not significantly increased synchronisation across the
euro area, and that the synchronisation among member countries occurred prior to the
introduction of the euro. These conflicting results are due to the use of different data,

decomposition methodologies and measures of synchronisation.

More recent studies have tended to assess the degree of growth cycle synchronisation
within a multivariate setting. Harvey and Carvalho (2005) decompose real GDP per
capita for five core euro area countries into their trend and cycle components
simultaneously by using the seemingly unrelated time-series equations (SUTSE) model,
in which all cycle components are restricted to have the same damping factor and
frequency. The level of cycle correlation is measured by the cross-correlations between
estimated cycle components., Luginbuhl and Koopman (2004) and Koopman and
Azevedo (2008) introduce various time-varying mechantsms to the SUTSE models to
account for gradual changes in cycle correlations between euro area countries. Sinclair
and Mitra (2008) further apply the unobserved component (UC) model, which allows
for non-zero correlations between the trend and cycle components, to analyse cross-
country relationships between members of the G7. An alternative approach used to
assess growth cycle synchronisation in a multi-county analysis is to test for the presence

of common and codependent cycles using vector autoregressive (VAR) models with
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cointegration. Since this methodology is based on a VAR representation, it has the
advantage of allowing dynamic interactions between variables to be modelled. It is well
known that cointegration between a set of I(1) variables indicates the presence of
common trends (Johansen, 1988; Stock and Watson, 1988b). More recent studies,
including Engle and Kozicki (1993), Vahid and Engle (1993, 1997}, Hecq et al. (2000,
2006) and Schleicher (2007), propose test statistics to determine the number of common
and codependent cycles among a set of stationary time-series. It is believed that, if the
common feature restrictions are imposed correctly, estimation efficiency and the
forecasting ability of a model will improve. Once appropriate models have been
constructed, the Beveridge-Nelson (BN) decomposition methodology with common
trend and cycle restrictions imposed, as proposed by Proietti (1997) and Hecq et al.
(2000), can be used to calculate the trend and cyclical components for each of the
variables simultaneously. This approach has been used by Vahid and Engle (1993) and
Carlino and Sill (2001) to identify the number of common trends and cycles in real GDP
per capita among the US states. Hecq (2005) adapts this model to analyse GDP series
of Latin American countries. Beine et a/. (2000) also apply this approach to assess the
optimality of a monetary union consisting of five core European countries (i.c.,
Germany, Belgium, the Netherlands, Austria and France) and a restricted monetary
union composed of Germany, Belgium and the Netherlands using monthly industrial
production indices between 1975M1 to 1997M4. Their results indicate that even the
restricted monetary union could face a stabilisation cost as one common cycle emerges

with a delay of adjustment of five months.

In this chapter, both univariate and multivariate trend-cycle decomposition
methodologies are applied. The BN decomposition and the unobserved component
model proposed by Harvey and Trimbur (2003) are used to extract the cyclical
component from individual real GDP series. Correlation coefficients between estimated
cycles are then calculated to examine the degree of cycle comovement. More
importantly, the common cyclical features of seven national GDP series are analysed
using VAR models with cointegration, The multivariate BN decomposition
incorporating trend and cycle restrictions, which has not previously been utilised in this
context, is also used to provide a detailed investigation of the trend and cyclical

movements in the GDP series.
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The rest of the chapter is organised as follows. A brief introduction to the univariate
BN decomposition and the unobserved component model proposed in Harvey and
Trimbur (2003) are given in section 4.2, Section 4.3 outlines the common trend and
cycle approach within the VAR framework. The trend-cycle decomposition
methodology developed in Proietti (1997) and Hecq at al. (2000) is then presented in
section 4.4. In section 4.5 the empirical results obtained from the multivariate approach

are discussed. Section 4.6 concludes,

4.2 Beveridge-Nelson and Unobserved-component Decompositions

Two model-based trend-cycle decomposition methodologies are used to extract the
cyclical components from real GDP data for the aggregate euro area and the seven
EMU member states during the period 1980Q1 to 2007Q3." All series are seasonally
adjusted observations expressed in logarithms, The first approach used in this section
was proposed by Beveridge and Nelson (1981), who demonstrated that any

ARIMA (p,l,q) process can be decomposed into a unique stochastic trend plus a

transitory component,
x,=7,+¢,, t=1..T (4.1)

where the trend component is defined as the infinite forecast of the series x,, adjusted

for its mean growth rate,

7, =x, +lim IZI [A?F — E(Ax, )] (4.2)

o+

where ASEW.% is the /-step ahead linear predictor of Ax, based on information at time ¢.

The cycle component of {x,} is the difference between the trend and the value of x, :

A.
c,=-lim Y [a%, , - Ea) (43)

' The reat GDP data are taken from the OECD Quarterly National Account database.
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The BN trend has the structure of a random walk with drift, and the BN cycle is simply
the deviation from the trend. The innovations of the BN trend and cyclical components

are perfectly correlated.

The second approach was introduced by Harvey and Trimbur (2003). It is based on an
unobserved component model consisting of stochastic trend, cycle and irregular
components. This approach is closely linked to the use of Butterworth filters and can
produce smoother trend and cycle components than conventional structural time-series
models, such as the BN decomposition and the model introduced by Harvey and Jaeger

(1993). As presented in Harvey and Trimbur (2003), this model is specified as

X =7, +cC

! mJ nt

+e, t=1..,T (4.4)

where 7, denotes the m-th order stochastic trend, defined as

Arm.{ = rm—l,l +??.: * U;N NID(OaO-j )5 (45)

Am_irm-l,: - 5{ , §t~ NID(O, O’; )s

for m=23..., where A" = (I—L)""l. The trend component with cr; =0 and m=2

produces a smooth trend. Moreover, when m > 2, the estimated trend component can
be compared with a Butterworth filter. For most economic time series, m is usually set
to be two or three. Higher values of m will give a nonlinear forecast function and the
estimated trend may become more responsive to shorter-term movements in the filter

series (Harvey and Trimbur, 2003, p.12).

An n~th order stochastic cyclical component is given by

¢, cosd, sind, |¢,.| (K (4.6)
N = ® + ’
¢, P -sind_ cosi, | ¢, 0




C,, cosd, sinl |c,,. ot R 23 47)
. = . . 1+ “, =2,3..., .
Cos Pl sind, cosd, | c,,. 0 o (

where k, ~ NID(0,0‘E). The parameter p is the damping factor and A, is the
frequency, which satisfy 0 < o<1 and 0 <4, <7. A higher order for » leads to more

concentration on a particular frequency band, and thus results in smoother cycle
components than when n=1. Finally, it is worth noting that innovations to the trend

and cycle, denoted 77,, £, and £,, are assumed to be serlally and mutually uncorrelated

in the unobserved component model. This assumption is in contrast to the BN
decomposition framework, where the innovations of the BN trend and cyclical

components are perfectly correlated.

Four different models for each country are estimated and reported in Table A4.2,

Appendix A4. o is set to zero for all models and the cycle period, 27/4,, is

restricted to 20 quarters when A4, is estimated fo be near zero. The model which yields

the smallest standard error and the largest log-likelihood value is preferred and
highlighted in bold in Table A4.2. The model consisting of a smoothed second-order
trend, a generalised cycle of order two and an irregular component is preferred for most
countries. The exceptions are France and Spain for which a generalised cycle of order

three 1s preferred.

Parameter estimates of the two methodologies are presented in Appendix A4. The
estimated cyclical components are plotted in Figure 4.1. In general, the cycles obtained
from the BN decomposition appear to be noisy, while the cycles estimated from Harvey
and Trimbur’s approach are smooth and highly persistent. In addition, as shown in
Table 4.1, cycle correlations calculated from the BN cycles are, on average, smaller
than the corresponding values calculated using the cycles extracted from Harvey and
Trimbur’s approach, especially for Belgium. The average cycle correlation between the
Belgian BN cycle and the other BN cycles 1s 0.04, compared to the corresponding value

of 0.51 calculated using cycles extracted from the unobserved component model.




Table 4.1: Cross-Correlations

The BN cycles

EURO AUS BEL FRA GER ITA NETH
EURD 1.00
AUS 0.48 1.00
BEL 0.06 0.17 1.00
FRA 0.69 0.29 0.12 1.00
GER 0.65 0.30 -0.25 0.25 1.00
ITA 0.61 0.30 0.11 0.50 0.40 1.00
NETH 0.48 0.35 0.12 0.26 0.36 0.29 1.00
SPA 0.66 0.32 -0.07 (.50 0.36 0.33 0.37
The UC cycles
EURO AUS BEL FRA GER ITA NETH
EURD 1.00
AUS 0.32 1.00
BEL 0.79 0.26 1.00
FRA 0.71 0.21 0.61 1.00
GER 0.76 0.11 0.43 0.29 1.00
ITA 0.83 0.19 0.59 0.55 0.64 1.00
NETH 0.32 0.50 0.29 0.12 0.12 0.21 1.00
SPA 0.61 0.24 0.58 0.40 0.45 0.41 0.11
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4.3 VAR Representation with Common Trend and Cycle Restrictions

This section generalises the univariate decomposition approach to a multivariate setting.
The multivariate BN decomposition with common trend and cycle restrictions is used to
extract the trend and cycle components simultaneously from each output variable. The
advantage of this approach is that it allows for dynamic interactions between variables
and the identification of innovation sources (Lippi and Reichlin, 1993; Quah, 2002).
This multivariate approach is based on a VAR representation. > Thus, consider a

p-thorder VAR with NV elements in X, :
4
X, =m+Y X, +&, ¢ ~iid(0,%) (4.8)
i=1

where I1,,7 =1,..., p, are matrices of lag coefficients. Since some variables in X, are

I(1), the roots of }H(L)|=O are either on or outside the unit circle, where

4
(Ly=1, —ZH L. As demonstrated in Johansen (1995), the VAR in equation (4.8)
i=l
can be rewritten as an (unrestricted) vector error correction model (VECM) by
=1 2
decomposing TI(L) into TM(HL+T1(LY1—-L), where [(L)=1, -y L', [;==> 11,
i=l Jj=itl

for i=1....p—1, to obtain

=1
AX, =m-TDX  + > T,AX, _ +¢, (4.9)

=1

Tn equation (4.9), the long-run matrix, TI(1), can be factored as —aB " if T1(1) bas rank
r< N, In this case the matrix 5 contains » cointegrating vectors and « is the matrix
of corresponding adjustment coefficients. There are thus r linear combinations of the

variables in X, that yield stationary sertes and X, is said to have £ = N~ common

The literature, which includes King et al. (1991), Vahid and Engle (1993, 1997), Proietti (1997). Hecq et
al, (2000, 2006) and Schleicher (2007), provides various illustrations of the common trend and cycle
assumptions imposed on the VAR models.
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trends. It is therefore clear that the VECM imposes common trend restrictions on the

VAR if TI(1) has reduced rank.

4.3.1 Common Cycles

As with common trends, the presence of common cycles imposes additional restrictions

on the VAR (Vahid and Engle, 1993). In this case, linear combinations of the first

differences AX, should remove all the serial correlation in these first differences. To
illustrate this, premultiply both sides of equation (4.9) by an sx N cofeature matrix,

denoted ¢ = [IS o N_S)], to yield an s - dimensional vector of white noise,
PTAX, =¢"¢, (4.10)

Adding the remaining N —s reduced form VECM equations to (4.10) gives the

‘pseudo-structural” model,

A/Y.'—l
7 '-«'[“i Osx’ Osx*’ Ox_ :
5 ¢sx(?\—5] Mr _ j’ ;:\ s: + v 4.1 1)
I3 F r d g
Owsps  Lnes oo, @ AL
ﬁT)(.r—i

where the error term is

*T
Is ¢sx( N-5)
\.’{ = H"
O(N—s B IN-ns

It is clear that common cycle restrictions require ¢'I3(1)=0 and ¢TF_J. =(, so that

gD’TAX, is independent of ¢,_,. Compared to the (unrestricted) VECM model, the

restricted model in equation (4.11) ehminates s(Np+r)—s(N-s) additional

parameters and is parsimoniously nested in the VECM.
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It is worth noting that the number of cofeature combinations, s, is constrained by the
dimension of the VECM and the presence of cointegrating vectors. The maximum
value of s is N—r. The test statistic proposed in Tiao and Tsay (1989) can be applied

to determine the actual number of cofeature combinations,
Co(s) =~(T-p-DDI{l=£2), s=1,..n—7 (4.12)
J=l

where the ¢, for j=L..,s, are the s smallest estimated squared canonical
; J q

correlations between AX, and W, , = {AX T AXT  XT ﬁ}T > Under the null, this

¢ t~p?
statistic has an asymptotic y° distribution with s(Np +r)~s(N —s) degrees of

freedom, where p is the lag order of the VECM.

The common cycle framework outlined above corresponds to the definition of strong
form reduced rank structure (SF) introduced in Hecq et al. (2000, 2006). In addition,
they also introduce two further common cycle models; the weak and mixed form

reduced rank structures (WF and MF). Under WF, there exists a cofeature matrix

.

o7 = (I . ¢S:IN7”), where ¢ TAX, —afly, )= ¢ Te,. The pseudo-structural model

then has the structure,

AXH
I 5T O,y - O @, :
s ¢s><”\*—s) A/Yf — { sx*}\ sx*N ]., :l : + v, (413)
OlN—s)xs Iy L l"p @y Mhp
ATX,

Thus WF only imposes the restriction that ¢ TFJ. =0 for all j. In other words, under

WF, linear combinations of the first differenced variables should reduce to white noise

processes after adjusting for long-run effects.

* By defining Y as the vector of observations on AX . and WV, as the matrix of observations on W _, ,

) -1 —
the f}_for J=1..,5 .arethe s smallest eigen values of (YTY) YTW_1 (W_TW_]) IWIY.
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As with SF, the test statistic used to determine the number of WF cofeature

combinations is similarly specified as

Cp()=—(T-p-DX (- 7), s=Lun 1 (4.14)

A=l

where C,.(s) is distributed as z* with sNp —s(N - s) degrees of freedom and the ?Jz

denote the s smallest squared canonical correlations between AX, and

W, :{AXL,...,M’,T_p }T. In the WF case, the rank of the cofeature matrix, s, may be

greater than N —» but has an upper bound of N —1. For each value of s <N —#, one
can compare SF against the nesting alternative of a WF, As proved by Heeq ef al.
(2006), the existence of s WF cofeature combinations with s > already implies the
presence of 5~ SF cofeature combinations. Therefore, it is advisable to compare the
two for values of s=max[l,s,, —r+1]up to s= minfs,,, N —r], where s, denotes
the rank of the WF cofeature matrix. Hecq et al. (2006) also propose a test statistic that
allows  SF to be tested against the WF  alternative, for

5= max[],sw -r+ 1]. ..s =minfs,, N - r], which is given by

J=l

Cop(8)=—(T~p —1)5:1n{((:-:—;~)}} (4.15)

where ¢ and 77 are defined as above. Cy, (s) is 4* with degrees of freedom equal to

the rs parametric restrictions under the null of SF.

In the case of MF, an sx N cofeature matrix is specified as ¢7 = (47,4, ), where ¢,

and 93; are 5, x N and (s-s,)x N full rank matrices, with max{Q,s —r)<s, <N-r

and § < N =1, Under the MF assumptions, the following equations should hold

g AX, =4¢, (4.16)

BI(AX, —af Ty, ) =dr ¢, (4.17)




and the pseudo-structural form is constructed as

1 bt 0 v 0 0 | AX
1 Tsex(N=5;)) sxM N s :
T :
5348 ¢2 (5, x{N=5)) T 0.92 s T sonN aZ M/ + v; s (4 i 8)
L] ... L4 ’,_p
O(N-s)xs, A(N—s}x(N—sl) I rp & ﬁT D e
L -1

where é;(..rlew-s.)) =, 932:::<uv-s ) and Ay o, =g, Iy.). Since MF is a
hybrid of WF and SF, a test cannot be formulated in terms of canonical correlations.
However, the MF with s, SF vectors and s, WF vectors can be tested against the
nesting WF with s = s, + 5, using the likelihood ratio approach. Under the null of MF,
an LR test statistic is asymptotically y°— distributed with degrees of freedom equal to

the number of additional parameter restrictions, s, — s,s,.

4,3.2 Codependent Cycles

Most economic time-series are not perfectly synchronised due to structural rigidities or
adjustment costs. Thetrefore, models which consider the lead and lag relationships
among variables appear more appropriate for time-series analysis. Vahid and Engle
(1997) extend the common cycle assumptions to a more general setting, thus defining

codependent cycles. This allows some variables in AX, to lag others by a short period

of, say, ¢ lags.

Consider a Wold representation of an N - dimensional vector AX, of I(0) time-series:

AX, =&+ Cie_; =C(L)s, (4.19)

f=1

and suppose there exists a s x /N cofeature matrix qﬁqT that satisties




¢Tc.j# jz 9 (4.20)

This implies that s linear combinations ¢;AX ., are expected to have MA(gq)

representations rather than being white noise. Equation (4.20) is defined as a scalar

component model of order ¢ (SCM (0, ¢ DN

The test statistic used to determine the number of cofeature combinations for an

SCM(0,q) is specified as follows (Tiao and Tsay, 1989; Vahid and Engle, 1997):

: (g
ClOy=~(T—-(p-1)- Inf1-- 4.21)
(O, =~T-(p-1) q); n{ 7, @] (

Here the fzj.(q) , for j=1,..,s, are the s smallest estimated squared canonical

.
AXT Xl]_qﬂ} , and

correlations between AX, and W,_,__ = {AX Digren DXL

t=1-g

aq
d(q)=1+2) 5, (G AY )P AT, ) (4.22)

v=|]

p,(a,) is the lag- v sample autocorrelation coefficient of the process «,, and ¢ and A
. . . 2 35 o .
are the canonical variates corresponding to £(q).” The test statistic C(0,q) is

asymptotically distributed as z° (s(Np+ r) = 5(N ~s)). As with common cycle models,

the number of codependent cycles is constrained by the dimension of the VECM and

the number of cointegrating vectors. There can be at most (N —r)/(g+1) linearly
independent cofeature combinations that yield an SCM (0,¢) and the maximum order of

an SCM cofeature is ¢ = N —r —1 (Schleicher, 2003),

* Tiao and Tsay (1989} proposs a more general class of scafar component models, SCM (ﬁ,c}" }, which
have an ARMA ( P,q ) representation. The common cycle framework is a special case of SCM (0.¢ )
when g = 0,

* ¢ and A are the eigenvectors of (YTY)_] YW (WTW )7] WTY and (WTW ]_1 w TY(YTY )_JY W

B 52 . . .
corresponding to £7(q}. where I’ is the matrix of observations on ¥, ,_ .
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Imposing codependence cycle restrictions on a VECM 1is not straightforward as these

restrictions are non-linear. Therefore, Vahid and Engle (1997) suggest using
Generalised method of moments (GMM), which provides reasonable estimates of ¢, .
Under an SCM (0,q), the orthogonality conditions and their sample estimates can be

constructed as

ElgTax,)ew,, |=0 (423)
and
gr($,)= ;} > (orax Jow,,, % (I, @Y peclg, ) (4.24)
t=ptg+l

where T =T~p-g. The matrices Wz[AWPT,AWT .,AWTT_q_I]T and

P+l

— al T T
Y =[AxT, . AXT ., AXT ] are W

and AX, stacked though time. It is

l-g
important that ¢, can be normalised as ¢; = (Is ,-—g.ol(ﬂ_s)) and ¥ = [YI,Y2 ], such that the

sample moment conditions becomes
& (@) === [, @R peclt,)~1, © (¥, ecto), (4.25)
The GMM estimate can be derived as
vec(@am ) = W)@ L BT, @Y [ 07w ) 1,51, @7y, Jpec(1,) (4.26)
by minimising the quadratic form S;{p) = g; F,g,. P, is a symmetric positive-definite

weighting matrix, estimated using a 2-step procedure: the initial estimate is given by

P, = (IS QWTW )_1 , which is then updated as

-1
q
P, = (ZFﬁf" ®r,.”'J (4.27)
i==g



where T'/}" and T denote estimates of the i* sample-autocovariances of ¢ AX, and

/4

g respectively, and ¢; is the first-step GMM estimate obtained using £, ,.

Compared to the common cycle model, the codependence framework appears to be a
more appropriate approach for studying the comovement of European growth cycles.
Since countries vary significantly in their labour market institutions, economic
structures and openness fo trade, their output data are less likely to respond

simultaneously to a common shock.

4.4 Trend and Cycle Decomposition

In this section, the methodology proposed by Proietti (1997) and Hecq er al. (2000) is
presented. This work provides a multivariate extension of the BN decomposition which

takes into account the common trend and cycle restrictions. It calculates the trend and

cyclical components of X, from the parameters of the reduced form VECM. Proietti

(1997) shows that a VECM can be written in state-space form as

AX, = 7f (4.28)
f=m+Tf, +7Zg, (4.29)

where f, is the (Np+r) dimensional state vector and T is the (Np +r)x(Np +r)

!

transition matrix, specified respectively as

AX, T+’ T, - T, @«
AX!-I Iy Ovan ** Opw ONxN
1= 3 ’ T=| Oy - . . '
AY, : SO
_,BTXH” ] ﬂT 0, = o I |




In addition, Z = |7,,0y.y 50, | 15 a0 N x (Np +7) matrix, and m = |¢7,0,.,,...0,,, | is
NV Ny Nt /4 <N }

a vector of dimension Np +r .

Consider the case when m is zero. The BN cycle in equation (4.3) is then given by

& k k
¢, = -}imZASEME{ =—%imZZTF fy - If the stability condition is met, }imZT "
—e0 i=1 {00 =1 v —+ 00 =1

converges to (I - T)'] T" and the cycle is calculated as

Np+r

¢, =~Z(y,,, = 1)1, , (4.30)

Np+r

As proved by Proietti (1997), if the state-space representation is stable, BN decomposes

X, into cyclical and trend components expressed as

c, ==, —P)T)-eB") ' T (L)AX, + PX, (4.31)
= ?,//2{ +{//]',
7, =1, -PYT()-af )" T(D)X, (4.32)

where P=(T()=-of ) alfT M) -ef ) ]’ 7 and I"(L)=T, +IL+..+T, "

with T = ST, .

i=j+1

However, the upward drift observed in the GDP data result in a non-zero m. Successive

substitution of equation (4.29) vyields the expected value of the constant,

fdon

&
m =lim> T'm=(I,,, —T)'m. m can be removed from the transition equation to
i=1

the measurement equation by writing
AX =Zf +Zm' B (4.33)

1=, 27, (4.34)




whete £ =f —m". The cycle is then given by

¢, ==Z(y,., - T)" Tf,"‘; (4.35)

Correspondingly, a zero-mean cyclical component can be obtained by replacing AX, by

AX, - Zm* in equation (#4.31), and also by subtracting

(F(l) —ap’ )_] a[ﬁ T (F(l) o7 )_] ar E(ﬁ X, ) from equation (4.31), where
E(AX,)=zm" = (1, - PTW) - | 'm (4.36)

B(p7x, )=-18"CW-aB) o] BT W) - By m (4.37)

Furthermore, Hecq et al. (2000) demonstrate that the above decomposition can be
applied to a VECM with common cycle restrictions. However, it is worth noting that
the decomposition differs under SF and WF. To illustrate this, premultiply the ¢yclical
component, ¢, =y, +i, , with the matrix @¢'@9) "¢ +d, (4 d) "¢ =1, to yield
¢ =Wy, W, +Wsg, s, , Where ¢ is the cofeature matrix and ¢ ¢, =0.% If SF
holds, then X, consists of a trend component,r,, and a common cycles component,
C, =Y, +¥, . However, under the WF assumptions, X, is the sum of three

components: 7, , ¢, , and an additional transitory component y,,, +,, ., which is

nonzero due to the long-run predictability of the linear combination of the variables in

first differences.

o =H]d Y yn, + K P B, + (B8 Bvn, + 0. (816 Blw,

=Y ou, YW TWop, W,



4.5 Empirical Results

This section evaluates the degree of growth cycle synchronisation among the seven
European countries analysed above. Since the aggregate euro area output data is simply
the weighted sum of its member countries output, it is excluded from this analysis to
avoid multicollinearity, The empirical model is based on a VAR with four lags, where
the lag length was chosen according to the LR test statistic at the 5% level. To cross-
check whether enough lags were included, the autocorrelation LM test was conducted,
with no serial correlations being identified in the model residuals. This analysis starts
by determining whether the seven output series are cointegrated. If they have
cointegrating relationships, the series share common stochastic trends, and the VECM
can be estimated. The ADF and Johansen cointegration tests were conducted. ADF test
statistics reported in Table 4.2 were not able to reject the null of a unit root in the level
of real GDP for each country but did reject the null when first differences of the series
were used. As shown in Table 4.3, the frace statistic from the Johansen cointegration
test indicates the existence of five cointegrating vectors, whilst the eigenvalue statistic
suggests that there are two at the 5% level. Since three of the five error correction terms
estimated from the VECM with three lags and five cointegrating vectors are found to be

nonstationary, the inference provided by the max eigenvalue statistic is preferred.

Table 4.2: The Augmented Dickey-Fuller Test Statistics

Level First Differenced

Constant Constant + Trend Constant

AUS 0.400 -2,747 -9.057**
(0.982) {(0.221) {0.000)

BEL 1.323 -3.549* -9.033**
{0.999) {0.039) {0.000}

FRA -0.587 -2.610 -4.518%*
{0.868} {0.277) {0.000}

GER -0.446 -1.288 -11.005**
{0.896) {0.886) {0.000)

ITA -1.157 -1.189 -7.590**
{0.691} (0.907) (0.000)

NETH 0.997 -3.487* -11,526**
{0.996) {0.046) {0.000)
SPA 0.481 -2.554 -3.308%
{0.985) (0.302) (0.017)

Notes: the numbers in parentheses are p-values. *¥ denotes significance at 1% and * at 5%. The ADF
tests with a constant and a time trend included indicate that the Belgian and Dutch GDP series are trend
stationary.
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Table 4.3: Cointegrating Test {Johansen 1995}

Nulf tigenvalue Max-Eigen stat. Trace stat.
F=0 0.46 66.45%* 226.32*%*
{0.000) (0.000}
r<l 0.46 £5.20%* 159.87%*
{0.000) {0.000)
F<2 0.26 32.24 94,67**
(0.078) {0.000)
<3 0.23 27.51 62.44%*
{0.051) {0.001})
r<4 0.18 21.05 34.93*
(0.051) (0.012}
F<5 0.12 13.84 13.88
- (0,058} (0.086)
rF<6 - 0.00 0.05 0.05
(0.831) (0.831)

Note: the default option in EViews is used in which an intercept is included in both the cointegration
equation and the differenced form of the VAR, ** denotes significance at 1% and * at 5%.

Having established the order of the VECM and the number of cointegrating vectors, and
obtained estimates of the corresponding cointegrating parameters, Tiao and Tsay’s
(1989) canonical correlation-based tests for common and codependent cycles outlined
in section 4.3 are conducted. These tests are performed in the following order. First,
the test statistics for SF and WF are calculated to determine the number of cofeature
vectors. Next, SF is tested against the alternative of WF  for
5= max[l,sWF —r+l]..s= min[s,,, N -r]. Finally, the presence of codependent cycles
is examined sequentially, starting from SCM (0,1) and then incrementally increasing the

order of the SCM.

The results of the common and codependent cycle tests are presented in Table 4.4. The
Tiao and Tsay tests do not reject the null of at least two SF or the null of four WF
cofeature vectors at the 5% level. In other words, there are five SF or three WF
common cycles among the seven output series, rather than a unique common cycle.
Since the finding of four WF cofeature vectors already implies the presence of two SF
cofeature vectors, the null of SF is tested against the alternative WF for s=3 and s=4.
As a result, both statistics strongly reject. This may suggest that there is not a MF

structure.

" The existence of § WF cofeature combinations (.5‘ > r) implies the presence of § —r SF cofeature
combinations.
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Table 4.4: Canonical correlation test for common and codependent cycles

Null Common cycles Codependent cycles
Ce(s)  Cup(s) Cg(s) SCM(0) SCM(0,2) SCM{03) SCM(0,4)
s=1  17.34 13.64 14.24 7.46 7.16 8.89
(0.43) {0.55) - {0.65) {0.98) (0.98) {0.94)
§=2 45.35 31.21 28.60 19.70 18.59 19.70
{0.14) {0.51) - {0.81) {0.99) {0.99) (0.94)
§=3  78.02* 55.99 22.88%* 4733 44.66 37.42 41.99
{0.03) {0.29) (0.00) {0.82) {0.88) (0.98) {0.93)
S=4  127.99*¢ 89.42 40.07**  87.80 73.60 62.63 68.69
{0.00) {0.08) {0.00) (0.26) {0.68) {0.92) {0.81)
§=5 197.83**% 132.86** - 139.07** 117.99 112.99 101.69
{0.00) {0.01) {0.01) (0.18) (0.28) {0.57)
520 306.57*% 20264%* - 215.31%% 203.24** 169.68%* 161.16*
(0.00) {0.00) {0.00) {0.00) (0.01) (0.04)

Note: The numbers in parentheses are p-values. ** denotes significance at 1% and * at 5%. The null of
SF is tested with the WF alternative for § =max[1,SWF —r+1] upto S = min[sWF, N — r], where

SWF = 4.

The test statistics for codependent cycles with g<4 are also presented in Table 4.4.°
The results show that the null of s, 24, s, 25, 5,25 and s, 25 cannot be rejected at the

5% level. This implies that there are five cofeature combinations, two SCM(0,0), two
SCM(0,1) and one SCM(0,2).° However, from Hecq (1998) and Mills and Harvey
(2005), the use of seasonally adjusted data may induce size distortions and low power in

the common cycle testing. Therefore, GMM was used to confirm the above results,
with the estimates of the cofeature matrix ¢J , where g=2 and s=35, given in Table 4.5.
The sample autocorrelation functions are calculated to cross-check the data generating

process of the linear combinations implied by the GMM estimates. However, the result

indicates that there are one MA(0), three MA(1) and one MA(4) linear combinations.

¥ As proved in Schleicher (2003), the maximum order of an SCM cofeature is § = N - —1. In this

case N =7 and r = 2, so the maximum order of an SCM cofeature is 4.
“ The SF common cycle is a special case of SCM(0, g ) when g=0.
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Table 4.5: GMM Estimates of Cofeature Vectors: ¢5G,T = (IS,—gp(Ex?_})

AUS BEL FRA GER iITA NETH SPA

1 0 0 0 0 -0.367** -0.391%* MA(1)
(0.12) {0.10)

0 1 0 0 0 -0.262 0.473** MA(1)
(0.16) (0.16)

0 0 1 0 0 0.112 -0.720%* MA(1)
(0.11) (0.11)

0 0 0 1 0 -0.339** -0.330%* MA(4)
{0.13) {0.13)

0 0 0 0 1 -0.177 0.412%* MA(0)
{0.13) (0.09)

Note: Standard errors in parentheses.

Schleicher {2003) performs a Monte Carlo experiment to demonstrate that LR tests
based on full information maximum likelihood (FIML) estimation of the restricted
VECMs have considerably higher power than the GMM and Tiao-Tsay tests. Therefore,
the LR test statistics have been calculated by estimating a VECM subject to the cross
cquation restrictions imposed by common cycles. Another advantage of this full system
estimation 1s that it allows us to compute the trend-cycle decomposition and the forecast
error variance decomposition. In the following tests, five models were estimated by
FIML using PcGive, which includes an unrestricted VECM (model 1) and three
restricted VECMs obtained by imposing the assumptions of two SF, four WF and an
MF, respectively (models 2 to 4). Granger causality tests suggest that, in the Dutch
equation, the lagged values of the other countries’ output data are jointly insignificant.
In addition, in the Spanish equation, only the lagged Belgian output data appears
significant at the 5% level. Therefore, model 5 imposes extra restrictions on the Dutch
and Spanish equations used in model 2 by assuming that the parameters associated with
these lagged values are equal o zero. It is worth noting that models 2 to 5 are estimated
by a two-step procedure. The cointegrating vectors are estimated independently from
the unrestricted VECM and then included in the simultaneous equations as explanatory

variables, along with the lagged first differences of the output series.
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Table 4.6: The Likelihood-Ratio Tests

Modell Model2 Model 3 Nodeld Model5

Ng. Parameters 168 132 96 g3 o9

Log-likeiihood 3038.02 3016.27 2088.52 2984.01 2993.00

AlC -53.64 -53.91 -54.07 -54.04 -84 .09

HQ -51.94 -52.57 -53.09 -51.71 -53.09

sC -49.45 -50.61 -51.67 -53.09 -51.62
Likelihood Ratio test

M2 vs. M1 72 (36)~43.50[0.183]

M3 vs. M1 27(72)~98.9910.019]*

M4 vs. M1 27 (75)~108.02[0.007]**

M4 vs. M3 27(3)~9.02[0.029]*

M5 vs. M1 22(69)~90.04[0.045]*

M5 vs. M2 7 (33)~46.54[0.059]

Notes: Model 1 is the {unrestricted) VECM with two cointegrating vectors; Madel 2 is restricted with
two SF cofeature vectors; Model 3 is restricted with four WF cofeature vectors; Model 4 has a MF
structure with three SF vectors and one WF vector; Model 5 is obtained by imposing additional
restrictions on the Dutch and Spanish equations in model 2.

The full parameter estimates of the reduced forms of the five models discussed above,

along with the Granger causality test statistics, are reported in Appendix A4 in Tables
A4.4-A4.8. The log-likelihood and information criteria for these models are presented
in Table 4.6, providing criteria for model selection. It is worth noting that all the
restricted models can be tested against the unrestricted VECM. In addition, model 4
can be tested against model 3, and model 5 can be tested against model 2. However, the
other pairs of models are not nested, so that the LR test statistics are only calculated for
the nested models. As the results show, the LR test statistics do not reject the null of
model 2 against the alternative of model 1, and model 5 cannot be rejected against

model 2 at the 5% level.

Once the appropriate models are chosen, the trend and cyclical components of each
output series can be calculated simultaneously from the reduced form structure using
the multivariate BN decomposition. Two sets of decompositions, calculated from
models 2 and 5, are presented. The cyclical components obtained from these two
models, along with the recessionary periods identified from the national GDP series
using the BBQ algorithm (Harding and Pagan, 2000, 2001, 2002), are plotted in Figure
4.2. It appears that there are more growth cycles than business cycles over the period

studied. In addition, the profound downturns observed in the growth cycles coincide
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with the recessions in business cycles. Compared to the cycles obtained from univariate
BN decompositions, the multivariate extension produces highly persistent cycles with

large amplitudes.

4.5.1 Qut-of-Sample Forecasts

The out-of-sample forecasting performance of the restricted models is now compared to
the (unrestricted) VECM model. This comparison can be used to cross-check whether
the more parsimonious models obtained by imposing the common cycle restrictions fit
the data better. It is believed that if the restrictions are placed appropriately, the
forecasting capability of a model will improve (Hecq et al., 2006; Schleicher, 2007).

To investigate this assertion, the models were re-estimated for the period 1980Q1 to
2005Q3, with the last eight quarters of the sample used to evaluate forecast accuracy.
Table 4.7 shows the root-mean-squared errors (RMSEs) for horizons from 1 to §
quarters. Three striking features are revealed in Table 4.7. First, the restricted models
considerably outperform the unrestricted VECM over all forecast horizons for all
countries. Second, for most countries, except Austria and Spain, restricted VECMs
with SF assumptions imposed yield smaller RMSEs. Among the countries for which
this holds, model 2 is preferred for Belgium and France, whilst model 5 is preferred for
Germany and Italy. Model 5 is also preferred for the Netherlands over the longer
forecasting horizon. Finally, the models imposed with WF and MF restrictions are
preferred for the Austrian and Spanish output data, respectively. This implies a strong
predictability between the long-run relationship and linear combinations of short-run

dynamics.
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Table 4.7: Out-of-Sampie Forecasts: Root-Viean-Squared Errors (107

h=1 h=2 h=3 h=4 h=6 h=8
AUS Model 1 0.327 0.264 0.272 0.234 0.252 0.261
Model 2 0.309 0.241 0.257 0.228 0.232 0.240
Model 3 0.249 0.204 0.222 0.16% 0.17¢ 0.177
Model 4 0.258 0.225 0.242 0.193 0.157 0.201
Model 5 0.283 0.248 0.250 0.191 0.194 ¢.196
BEL Model 1 0.247 0.189 0.198 0.217 0.214 0.216
Model 2 0.228 0.18% 0.178 0.198 0.198 0.201
Model 3 0.272 0.246 0.252 0.249 0.246 0.248
Model 4 0.207 0.190 0.202 0.204 0.199 0.202
Maodel 5 0.236 .191 0.220 (0.215 0.215 0.215
FRA Model 1 0.308 0.321 0.279 0.272 0.286 0.287
Model 2 0.289 0.297 0.267 0.265 0.278 0.274
Model 3 0.289 0.311 0.302 0.284 0.289 0.280
Model 4 0.290 0.306 0.298 0.279 0.286 0.278
Madel 5 0.266 0.301 0.288 0.270 0.280 0.275
GER Model 1 0.379 0.362 0.427 0.380 0.361 0.350
Model 2 0.402 0.367 0.37¢ 0.366 0.352 0.352
Model 3 0.362 0.355 0.394 0.401 0.393 0.385
Model 4 0.329 0.311 0.344 0.343 0.342 0.332
Model 5 0.304 0.308 0.321 ¢.308 6.308 0.300
ITA Model 1 0.412 0.402 0.413 0.407 0.413 0413
Model 2 0.3%94 0.378 0.380 0.378 0.366 0.365
Model 3 0.324 0.364 0.393 0.416 0.421 0.416
Model 4 0.321 0.338 0.361 0.374 0.388 0.382
Model 5 0.306 0.325 0.358 0.367 0.377 0373
NETH Medel 1 0.518 0.462 0.417 0.456 0.451 0.469
Mode! 2 0.506 0.500 0.443 0.504 0.484 0.485
Model 3 0.396 0.420 0.423 0.460 0.465 0.464
Maodet 4 0.399 0.415 0.422 0.456 0.461 0.460
Mode! 5 0.420 0.444 0.449 0.448 0.447 0.447
SPA Model 1 0.313 0.274 0.302 0.343 0.34% 0.355
Model 2 0.256 0.268 0.288 0.334 0.338 0.345
Model 3 0.216 0.246 0.277 0.291 0.286 0.291
Model 4 0.212 0.229 0.257 0.275 0.275 0.280
Model 5 0.245 0.224 0.262 0.284 0.288 0.289

Note: the numbers in bold are the smallest RMSE of each set of models.




Figure 4.2: Multivariate BN Cycles
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4.5.2 Variance Decomposition

Decomposing each output series into trend and cyclical components raises the question
of whether the cyclical innovations explain a significant proportion of the forecast
errors of output fluctuations. To examine this, the relative importance of permanent and
transitory shocks in explaining the variance of output is assessed using a forecast error

variance decomposition. Consider an innovation ¢, , which is the sum of its permanent

and transitory components:

£ =¢ +& (4.38)

{7 “uend.t crele.r

Since & and ¢ are found to be correlated in most cases, it is necessary to

trend arele

orthogonalise them. The orthogonalisation procedure proposed by Issler and Vahid

(2001) was used, in which it is assumed that the two innovations have the structure

grrena‘ ! o-tz Grc
S~ N, (4.39)
gqvc.’e.r U:c Ucc
The variance of ¢, can be decomposed into two orthogonal components as

VAR(g,)=VAR(¢ Y+ VAR(E . ) (4.40)

trend .t
2 2
T o,
=g 1+—-E o, r+0, +—
O-J‘n‘ O-t.f

This procedure is comparable to a Cholesky factorisation and is sensitive to the ordering

of the components. Here, ¢ 1s placed first in the decomposition, since the

rend .«
innovations to productivity are assumed to cause both trend and cycle movements in
real business cycle models. One-step-ahead innovations for the trends are obtained by
taking the first differences of the estimated trends. H -step-ahead trend innovations are
then given by the sum of the one-step-ahead trend innovations. First-quarter cycle
mnovations are the residuals from a regression of the estimated cycles on the variables

on the right-hand side of the VECM. For longer horizons, F-step-ahead cycle
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innovations were obtained by shifting the data set backwards. The variance
decomposition results for models 2 and 5 are presented in Table 4.8, since they
outperform the other models in forecasting, as was shown in section 4.5.1, Each cell in
Table 4.8 contains two numbers. The first represents the relative importance of a
trend/cyclical component to the total output variance estimated in model 5. The second

number (in parentheses) is the corresponding value calculated from model 2.

Table 4.8: Forecast Error Variance Decomposition

Forecast
horizons h=1 h=5 h=9 h=11
{quarters} Trend Cycle Trend Cycle Trend Cycle Trend Cycle
AUS 0.28 0.72 0.95 0.05 0.98 0.02 0.99 0.01
(0.29) (0.71) (0.96) {0.04) (0.99) {0.01) {0.99) (0.01)
BEL 0.43 0.57 0.97 0.03 0.99 0.01 1.00 0.00
{0.33) {0.67) (0.96) {0.04) {0.99) (0.01) {0.99) {0.00)
FRA 0.09 0.91 0.92 0.08 0.97 0.03 0.98 0.02
{0.08) {0.92) {0.91) {0.09) {0.96) (0.04) {0.08) {0.02)
GER 0.47 0.53 0.96 0.04 0.99 0.01 0.99 0.01
(0.31) (0.69) {0.94) (0.06) {0.98) {0.02) (0.99) (0.01)
ITA 0.51 0.49 0.96 0.04 0.99 0.01 0.99 0.01
{0.42) (0.58) (0.7} {0.03) {0.99) {0.01) {0.99) (0.01)
NETH .62 0.38 0.96 0.04 0.98 0.02 G.e9 0.01
{0.37) {0.63) {0.95) (0.05) {0.98) {0.02) (0.99} {0.01)
SPA 0.12 0.88 0.94 0.06 0.98 0.02 0.99 0.01
(0.09) {0.91) (0.94) (0.06) {0.98) {0.02) (0.99) (0.01)

Notes: the first number in each cell represents the relative importance of trend/eyclical movements to
the total output variance which is calculated using model 5; the numbers in parentheses are the
corresponding values calculated from model 2.

In general, both models indicate that, for short period forecasts, transitory movements
contribute more to total output variance than permanent components, whilst over longer
time periods it 1s the permanent components which make the greatest contribution. The
transitory movements in French and Spanish output are very significant in the first-
quarter forecast. The cyclical fluctuations for these two countries also appear to be
more persistent than those for other countries. For example, 91% (92%) of the total
variance in French output in the first-quarter forecast can be attributed to transitory
movements, whilst four quarters later 8% (9%) can.'® The results imply that France and
Spain would benefit greatly from stabilising their cyclical fluctuations, In contrast,

permanent shocks explain a larger proportion of the output variance in the other

' The first percentage is that obtained using model 5, the percentage in parentheses is that from using
model 2.




countries, especially Italy and the Netherlands. The cyclical components only account
for 49% (58%) of the output variance in Italy and 38% (63%) for the Netherlands in the
first-quarter forecast and their effects disappear quickly.

The contributions of the cyclical components estimated from model 5 appear smaller
than those from model 2, especially for the Netherlands. One possible explanation is
that model 5 imposes additional restrictions on the Dutch eguation that reduce the level

of noise in the Dutch cyclical component.

4.6 Conclusion

This chapter has studied the growth cycles of seven European countries since 1980.
Both univariate and multivariate trend-cycle decomposition methodologies based on
structural time-series models were applied to extract trend and cycle components from
real GDP data.. The cyclical components estimated from the two univariate approaches
. vary significantly in cycle period and amplitude. The average cycle correlation between
the BN cycles appears to be smaller than the corresponding correlation between the
cycles estimated from the unobserved component model. This confirms the argument in
Canova (1998) that the use of different trend-cycle decomposition methodologies may

change the results obtained.

In the multivariate framework, five SF and three WF common cycles are found among
the seven output series rather than a unique common cycle. In addition, the inference
from the canonical tests shows that two codependent cycles can be identified when

g = 2. This indicates an adjustment delay of two quarters between countries. However,

GMM results are more disappointing, suggesting the delay will last one year, as an
MA(4) data generating structure is found in the linear combination of the first
differenced data. Owverall, the presence of heterogeneous and codependent cycles
identified in the multivariate approach contradicts the OCA criterion that members of a
monetary union should share a high degree of growth cycle synchronisation.
Furthermore, it can clearly be observed from Figure 4.2 that the seven European
countries were at different stages in their growth cycle even after entering the euro area.

In more recent years, Germany, Austria and the Netherlands have been characterised by
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below trend growth, while Spanish and French economic growth appeared to be
relatively steady after the global economic downturn which occurred in 2000. These
variations in economic performance lead to diverging monetary requirements, causing
difficulties in defining the appropriate timing and stance of a common monetary policy.
Therefore, the demands that have been made in some countries for promoting economic
growth, for example Germany, while simultaneously preventing the risk of rising

inflation, as in Spain, may pose challenges for the ECB and its common monetary

policy.
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Appendix A4

Table A4.1: Parameter Estimates for Univariate BN Models

Beveridge Nelson Decomposition

Dependent
Variables AEURO A AUS ABEL AFRA AGER AITA ANETH A SPA
Constant Constant  Constant Constant Constant Constant Constant Constant
0.003** 0.005**  0.005**  0.002%* 0.003**  0.003** 0.005** 0.004**
(0.001) {0.001) {0.001) {0.001) {0.001) {0.001) (0.001) {0.001)
AEURO_1 AAUS_1 ABEL_.1 AFRA_1 AGER 1 AITA_1 ANETH_1 ASPA_1
0.205* 0.172* 0.068 0.297**  -0.092 0.302%*  -0.090 -0.199*
{0.095) (0.091)  (0.097)  (0.095)  (0.094)  (0.092)  {0.096) {0.092)
AEURO 2 ABEL 2 AFRA_2 AGER.2 ANETH_ 2  Aspa_2
0.187* 0.224* 0.248**  0.014 0.181* (0.383**
{0.094) (0.097} (0.092) {0.093) {0.095) (0.085)
ABEL 3 A GER_3 ASPA_3
0.055 0.096 0.350**
(0.095) {0.093) (0.091)
ABEL 4 A GER_4
-0.213* 0.323%*
{0.093) {0.092)
log-likelihood  437.182 417.576 388.274  450.759  355.941 417.762  365.175 389.701
DW 2.032 1.943 1.923 2.039 1.987 2.040 1.817 1.923

Notes: DW is the Durbin-Watson statistic. Standard errors in parentheses.
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Table A4.2: Parameter Estimates for Harvey and Trimbur's {2003} decompasition |

Unobserved Components madal

Serles {m.nl Restrictions o ‘ 53 g-f ol P 274 ,[‘ Rf, g Log-likelihoed DWW |
EURD  {2,2) ais02xiA = 0 1505 2384 4228 0,588 20 0.210 4341 591518 1931 .
(2,3) U;= 0,27/ 4 =20 Q 1524 0578 4914 D624 20 0.107 4.35¢ 591.280 1881 .
(3.2 U;;: 0,277 4, =20 a 0.029 1108 4.5%0 0.742 20 0.049 4.509 579.453 1911 |
(3.3) a',i =0,27 (2, =20 o 4.029 QE74 £.233 0.662 P 0,043 4.523 578.095 1.860 i
AUS (z:2) g;= 0 2.0%6 £030 2.73% 0,408 6.297 0.066 5.391 567,705 1.912 |
(2,3} g; =0,2x f,{' =30 0 1.740 15.831 0.014 0.314 piv] 0.051 5.436 566.850 1.876 i
{2.2) U«f= ] 0.096 12,513 a 0384 3.660 -0.032 5.696 554.212 1.882 i
13,3) oi=02r/2,520 O© 0.050 a.917 11338 0624 0% 0736 6.231 544,232 1479 |
BEL {2.2) 5—; =0 o 1.E35 0.980 9137 0,786 21.073 0.077 5,842 556,980 2.011 |
(2,3} g',i: -0 0 1.527 o 9.144 0.652 12.618 0.077 5.94g 556.966 2,017 |
(3,2) ai=02pid =0 9 0415 5260 7932 0715 20 0423 6145 545.300 2.045 |
(3.3 al=02x:3=w 90 0018 2,676 9,016 0.620 20 0.029 6.125 545.634 2.022 |
FRA {2.2) 47=0,2x/4 =20 [ 14399 1.669 272 0.767 20 0.214 3.860 604,391 1.958 |
2,3 gi=g2pid=w 0 1628 0.560 3454 0.673 20 0217 3.853 604.583 1.931 |
{3,2) ai=02mid=w 0 o032 1941 2362 0.784 20 0155 4,023 592.070 1.572 |
3,3) ¢i=02nii =20 O 0034 0.646 3283 0.6%3 20 D156 402t 592.057 1.983 |
GER {2,2} T ; 0,27/ A( =20 1] 1172 1462 30,128 0.815 20 ~0.008 8.700 515.27% 1.834 |
{2,3) O’,‘:’U.'-’?TJ)-‘ =20 Q 1892 6.377 30.520 0731 20 -boge 8.710 515.165 1.826 |
3.2) T ; =027/ ,1' =20 1] G023 1EB51 30.223 0.326 20 -0.065 8.005 503.596 1.844 |
3.3 0‘;2 0,2/ ,{' =20 Q 0.020 4.407 30.378 0.75% 20 -0.066 9.007 503.493 1.831 |
ITA {2,2) =l ; =0,27/4 =20 [ 1105 €431 4834 0.685 0 0.071 5.322 569,159 1.957 |
(2,3} o : =0,2mi A =20 Y] 1.142 2.1%¢ 5.210 0.580 20 0.069 5328 569.020 1.935 |
3,2} 5;‘: 0,2x/ A =20 Q 0017 6541 5.037 0.705 20 0.012 5.512 557.290 1941 |
{3,3) a=0,2a/4,=20 O 0017 2024 6203 0.604 20 0008 5523 557.064 1812 |
NETH (2,2) g ; E [H 3.207 2.227 22.349 0.613 6450 0.069 £8.39 5198.218 1.932
(2.3 o ﬂ =0, a7 A =10 1] 2843 £.072 23537 0345 20 0.057 8.452 518.540 1.867 |
3,2) O',;= 0,2 (3‘ =20 o 0.0eQ 15.829 19,432 0.516 20 -0.014 8.060 506.494 1.932 |
{3,3) o3:0,27¢2 =20 0 0081 2,970 22321 D436 20 0015 8.308 506.462 1.891 |
SPA 2,2 o0z 4 =0 0 2475 0,798 16554  0.730 20 0194  6.630 845,111 2142 |
2,3} a ; 20,27/ 2, =20 0 2462 4435 16.564 &.620 ] 9.155 6.628 545,135 2,145
3,2) gi=027/4=20 O 0.062 1504 16603 0.734 20 0.6 6.85Y 533,784 2.148
133 ol=0 o 0.060 1308 15654 0601 28 0.245 6860 533776 2.151

Notes: o is the stope variance; of is the cycle variance; o-j

variance parameters are multiplied by 10°; o is the damping factor; 277/ 4 _is the cycle frequency;

Rg, is the adjusted r-squared; @ is standard error of regression; DW is the Durbin-Watson statistic.
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Table A4.3: Granger-Causality Test

Dependent ANETH ASPA A AUS ABEL AFRA A GER AITA
variable
Excluded Chi- Chi- Chi- Chi- Chi- Chi- Chi-
Variables square square square square square square square
A AUS 1.523 5.893 3673 11.087* 2.929 2.722
{0.677) (0.117) 0.299) {0.011) {0.403) (0.437)
ABEL 1.960 8.067* 8.176% 14.906%* 6,377 7.306
{0.581) (0.045) (0.043) (0.002) (0.095) (0.063)
AFRA 1.800 0.564 5.422 3.297 3.125 0.998
{0.615) {0.905) (0.143) (0.348) (0.373) (0.802)
AGER 3.725 2.402 11.088% 1.279 3.347 10.660*
(0.293) (0.493}) (0.011) (0.734) (0.341) (0.014)
AITA £.051 4.385 8.495% 7.112 2.960 9.432*
{0.789) (0.223) {0.037) (0.068) (0.398) (0.024)
ANETH 4.667 21.040%*% 2208 2072 5.288 6.287
{0.198) 0.000) (0.513) (0.558) {0.152}) (0.099)
ASPA 1.054 20.641%*% 4966 2.839 8.656%* 2.671
(0.788) (0.000} (0.174) (0417} (0.034) (0.445)
All Variables 16.792 24,101 74.108%*% 26993 54.584%*  43280%%  35.146%%
(0.538) {0.152) {0.000) (0.079) {0.000} {0.001) {0.009)

Note: p-values in parentheses.
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Table A4.4: Reduced form of Model 1

Coinfegrating Vectors

AUS_1 BEL_1 ERA_1 GER_1 ITA_1 NETH_1 SPA_1 Constant
1 0 1.555 0282 -0.311 -0.829 -0.73% -4 947
0 1 2.651 0.427 -1.240 -1.347 -0.928 8674
Lagged Dependent Variable
Variables A AUS A BEL A FRA A GER A ITA A NETH A SPA
Constant 0.002* 0.002*  0.001 0.000 0.001 0.005™  0.005**
. (0.001) {0.001) (C.001) (0.0C2} (C.O01) (0.002) (0.001)
A AUS_T 0.022 0.074 0.267* 0.300 -0.217 0.112 0.298
(0.114) {0.148) (0.082) (C.210) {0.132) (0.203} {0161}
A AUS_2 -0.411*> -0.106 -0.030 -0.154 -0.013 -0.073 -C.191
{0.103) (0.132]) (0.074) (0.1920) (0.120) {C.183) (0.145)
A AUS_3 -0.138 -0.187 0.092 0.07¢ -0.099 -0.141 0.030
(0.108) (©.138) (0.077) (0.199) (0,125} (0.191) {0.152)
A BEL_1 -0.041 -0.188  0.250** 0.033 0.323* 0.036 0.350*
(C.104) (C.133) (0.075} (0091}  (0.120) (0.184) (0.146)
A BEL_2 -0.283* 0.038 0.233* 0.264 0.103 -0.078 0.102
[0.108) (0.138}) (0.078) (0.199) (0.125) (0.191} {0.152)
A BEL_3 -0.010 0.095 0.08% 0.279 0.062 0.204 C.24%
[0.111) (0.143) (0.080) (0.205) {0.129) (0.197) {0.157)
A FRA_1 0.265 0.237 0.0%¢ -0.315 -0.007 0.183 0.131
{0.154) (0.200) (0.112) (0.287) (0.1871}) (0.276) (0.21%)
AFRA_Z2 C.114 -0.223  -0.021 -0.058 0.100 -0.285 -0.076
(0.144) {0.186) (0.105) (0.2468) {0.169) (0.258) (0.205)
A FRA_3 015 -0.100  0.222%  -0.299 0.118 -0.052 0.029
{0.138} (0.178) (0.099) (0254} (0.160) (0.244) {0.194)
A GER_1 -0.221* 0.034 -0.105* -0.338* (.089 0.184 0.073
{0.081) {0.104) (0.058) (0.14%) (0.0%4} (0.144)  (0.114)
A GER_2 0.023 0.003 0030 -0.212 0.223" 0.193 0.0s86
{0.074) (0.095) (0.053) (0.137) (0.084) (0.132) (0104}
A GER_3 0.010 0.077 0018 007 0.199* 0.8 0.139
{0.044) (C.083) (0.048) (0.119) (0.075) (0.114) (C.091)
AITA_1 0.145 0.099 0.018 0.595** 0.075 0.128 -0.264
{0.108) (©.138) (C.O77) (©.98) (0.125) 10.191) (0.152)
AITA_2 -0.033 0.127 0.035 -0.020 -0.153 0.046 0.154
{0.108) (0.132) (0.078) (0.199) (0.1268) {0.192) (0.152)
ANTA_3 -0.247* -0.310* 0120 0.1460 -0.122 0.142 -0.083
{0.101) (0.130) (0.073) (0.87) (0.118) {0.180) (0.143)
A LNETH_1 0.285* 0.103 0029 0112 0.045 -0.285* -0.134
i (0.067) (0.086} (0.048) (0.123) {0.078} (0.119}) (0.094)
A NETH_2 0.222* 0.123 0.071 0.283* 0.045 -0.08% -0.175*
(0.074) {0.095) (0.053) (0.137) (0.084] (0.132) (0.105)
A NETH_3 0.053 0.083 0,008 0010 -0.153* -0.183 -0.180*
{0.071)} (C.0%1) (00351} (0131} (0.082) (0.126) {0.100}
A SPA_1 0.194* 0.110 0.007 0.423* 0121 0.118 -0.378%*
{0.021} (0.104) (0.058}) [0.149) [0.094) (0.144]) (0.114})
A SPA_2Z 0.359** 0.242*  0.093 C.26%6 -0.050 0.034 0.250*
{0.084) (0.110) (0.062) {0.158) [0.099) {0.152) {0.121)
A SPA_3 -0.013 0.079 0.003 -0.041 0051 0100 0.158
(0.082) (0.105) _(0.0591 (0.152) (0,094} (0.148) (0.116)
Error Correction Terms
CointEgl -0.214* 0.028 -0.031 -0.175 0.124 0.441%  0.3&9**
(0,072} {0.092) (0.052] (0.133) (0.084) (0.128) (0.101}
CointEg2 0.197* 0.032 -0.045 0.158 -0.098  0.199%  -0.2886%F
(0.053} {0.068) {0.038} (0.097) (00611 (0.0%4) (0.074)
Log-likelihood and Criteria
No. Parameters 1468 AlIC -53.6452 sC -49.449
Log-Likelihood  3038.017 HQ -51.943% FPE -92.827e-025
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Table A4.5: Reduced form of Miodel 2

Cointegrating Vectors

AUS_1 BEL_1 FRA_1 GER_1 ITA_1 NETH_1 SPA_1 Constant
1 o] 1.555 -0.289 -0.311 -0.829 -0.739 -4.961
O 1 2.651 0.427 -1.240 -1.347 -0.928 -8.674
Lageed Dependent Variables
Variables A AUS A BEL A FRA A GER AITA A NETH A SPA
Constant 0.002* 0.002* 0.001 -0.001 0.001 0.006*%* 0.005**
{0.001) (0.c01} (0.001) (0.002) {0.001) (0.002) (0.001)
A AUS_1 0.026 0.191 0.261** -0.010 -0.030 -0.092 0.348*
{0.104} {0.133}) {0.070Q) (0.161} {0.109) {0.154) {0.150)
A AUS_2 -0.392%* -0.087 -0.011 -(0.203 0.007 -0.031 -0.209
(0.095) (0.121) {0.064) (0.150) {0.100) (0.143) {0.136)
A AUS_3 -0.111 -0.116 0.114 -0.108 0.002 -0.166 0.026
{0.098) {0.125) (0.066}) {0.147) (0.101) (0.141) (0.141)
A BEL_1 -0.033 -0.216 0.262** 0.108 0.274** 0.121 0.326*
{0.097} (0.125}) (0.068} (0.166) {0.108) {0.158) (0.138}
A BEL_2 -0.304**  -0.006 0.215%** -0.149 0.044 -0.079 0.109
{0.093)} {0.127}) {0.067} {0.156) {0.105) {0.249) {0.142}
A BEL_3 0.020 0.146 0.116 0.146 0.128 0.227 0.233
(C.101) {0.128) {0.067) (0.249} {0.103) (0.143) {0.145)
A FRA_1 0.203 0.125 -0.155 -0.019 -0.156 0.147 0.161
(0.141) (0.181) {0.095) {0.213) {0.146) (0.204) (0.204)
A FRA_Z 0.124 -0.257 -0.008 0.031 0.041 -0.182 -0.105
{0.132) {0.169) (0.088) {0.198) (0.136) {0.190}) (0.190}
A FRA_3 0.063 -0.195 D.136 -0.048 0.010 -3.228 0.104
(0.125) (0.160) {0.084} (0.191}) {0.130) {0.183) {0.180)
A GER_1 -(.232%% -0.096 -0.111% -0.174 -0.005 0.257* 0.058
{0.074) (0.095) {0.051) {0.119} {0.079) {0.113) {0.107)
A GER_2 -0.012 -0.092 -0.059 0.036 0.090 0.227* 0.069
(C.068) (0.087) {0.046) (C.205} {0.071) (0.101) (0.097)
A GER_3 -0.002 0.009 -0.024 0.073 0.095 0.263** 0.123
(0.059) (0.075) {0.040) (0.091) (0.062} {0.087) (0.085)
AITA_1 0.160 0.179 0.026 0.384* 0.196 0.037 -0.246
(0.099) (0.127} (0.067) {0.157) (0.105) (0.150) {0.142)
AITA_Z -0.028 0.155 0.037 -0.094 -0.110 0.010 0.162
(0.098) {0.125} (0.066) {0.146) (0.101) (0.140) {0.141)
AITA_3 -0.206* -0.198 -0.085 -0.134 0.036 0.099 ~-0.087
(0.092) {0.118}) (0.062) {0.141) (0.096) {0.135) (C.133)
A LNETH_1 0.202%* 0.069 -0.018 0.201% -0.012 -0.195* -0.161%*
(0.062}) {0.080} (0.043) {0.105}) {0.068) {0.099) {0.089)
A NETH_2 0.238** D0.132 -0.054 0.261** 0.050 -0.037 -0.194*
(0.069) {0.088} (0.047) {0.113}) {0.074) {0.107) (0.098}
A NETH_2 0.046 0.099 -0.016 -0.031 -0.124 -0.239* -0.164
(0.065) {0.083) (0.044) (0.104) {0.070) (0.099) (0.093)
ASPA_1 Q0.170* 0.132 -0.021 0.364* 0.170* -0.021 -0.335**
[0.076) (0.097) (0.053) (0.129) {0.084) (0.122} (0.108)
A SPA_2 0.360** 0.258** 0.093 0.223 -0.024 0.009 0.257*
(0.079) (0.102) (0.055) (0.131) (0.086) (0.125}) (0.113)
A SPA_3 0.013 0.081 ©.031 -0.045 -0.062 0.002 0.124
(0.074) {0.095) (0.050) (0.110) (0.076) (0.105) (0.107)
Error Correction Terms
CointEqgl -0,212** -0.001 -0.026 -0.100 0.078 0.502%+ 0.353™*
(0.065) (0.088) {0.048) (0.122) (0.078) {0.115) (0.097)
CointEq2 0.192** -0.007 ~0.052 0.092 -0.056 -0.264%* -0.248%*
(0.050) {0.064) {0.035) {0.086) {0.056) {0.081) {0.070)
Log-likelihood and Criteria
No. Parameters 132 AlC -53.911 sC -50.614
Log-Likelihood 3016.268 HQ -52.575 FPE -3.129e-024
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Table A4.6: Reduced form of Model 3

Cointegrating Vectors

AUS_1 BEL_1 FRA_1 GER_3 ITA&_1 NETH_1 SPA_1 Constant
1 0 1.555 -0.,289 -0.311 -G.825 -0.739 -4.961
"] 1 2.651 0.427 -1,240 -1.347 -0.928 -8.674
Lagged Dependent Variabies
Variables A AUS A BEL A FRA A GER A ITA A NETH A SPA
Constant 0.002* D.003** 0.002* 0.000 0.002+* 0.006** 0.004**
(0.001) (0.001) {0.001) (0.002) {0.001) (0.001} {0.001)
A AUS_1 0.055 0.182* 0.268**  .0.009 -0.078 -0.034 0.361**
(0.092) (0.085) {0.064) (0.134}) {0.096) {0.108) {0.102)
A AUS_2 -0.311** -0.096 -0.057 -0.297 -0.054 0.069 -0.007
(0.081) (0.065) (0.056) {0.109) (0.081) {0.079} ~ {0.081)
A AUS_3 -0.031 0.032 0.126* -0.015 Q.028 0.040 0.170*
(0.081) {0.053) (0.056) (0.099) (0.079) {0.059) {0.072)
A BEL_1 -0.006 -0.068 0.298** 0.196 0.367*%* 0.239 0.343*
{0.088) {0.096) (0.062} {0.142) {C.096) {0.124) (0.111)
A BEL_2 -0.217% 0.016 0.189%* -0.194 0.000 0.023 0.296*
{0.086) (0.077) {0.060) (0.124) {0.089) (0.096) (0.094)
A BEL_3 -0.026 -0.003 0.100* 0.016 0.073 0.060 0.128
{0.084) {0.052) {0.057) (0.100) {0.081) (0.056) {0.072)
A FRA_1 0.065 0.028 -0.114 -0.002 -0.108 -0.094 -0.148
{0.117) (0.073) {0.081) {0.141}) (0.113) {0.079) {0.101)
A FRA_2 0.173 -0.017 0.023 0.240 0.159 0.034 -0.015
{0.110) (0.070) {0.075) {0.133) (0.106) {0.076} {0.095)
A FRA_3 0.125 0.060 0.189* 0.169 0.120 0.045 0.210*
{0.104}) (0.067) (D.072) {0.127) (0.101) {0.074) (0.091)
A GER_1 -0.296%* -0.155* -0.100* -0.235 0.027 0.104 -0.081
{0.066) (0.065) (0.046) (0.100) (0.070}) {0.082) (0.077)
A GER_2 -0.077 -0.120* -0.042 0.016 0.139* 0.099 -0.063
(0.059) (0.053) (0.041) (0.084) (0.061) {0.065) (0.064)
A GER_3 -0.076 -0.092* -0.022 -0.003 0.105* 0.082 -0.031
(0.051) {0.043} (0.035} (0.070) (0.052) (0.052) (0.052)
AITA_] 0.191* 0.012 -0.049 0.195 0.049 -0.042 -0.112
(0.082) {0.058) {0.057) (0.104) {0.081) (0.067) {0.076)
AITA_2 -0.055 0.078 0.038 -0.132 -0.143 -0.057 0.085
(0.083) {C.058) {0.057) (0.104) {0.081) (0.0686) {0.076)
AITA_3 -0.194* -0.133* -0.075 -0.125 0.068 0.095 -0.074
{0.079) {0.062) {0.055) (0.105} {0.079) {0.074) {0.078)
A NETH_1 0.312%** 0.097 -0.028 0.260* -0.017 -0.118 -0.096
(0.058) {0.064) (C.041) {0.094) (0.063) {0.083) (C.074)
A NETH_2 0.234* 0.041 -0.089**  (0,198* -0.012 -0.095 -0.164*
(0.061) (0.059) (0.042) {0.091) (0.064) {0.074) (0.069)
A NETH_32 0.096 0.108* -0.037 -0.015 -0.172% -0.132* -0.041
(0.058}) (0.056) (0.040) {0.086) (0.061} {0.070) {0.066)
A SPA_1 0.210%* 0.003 -0.092* 0.208* 0.041 -0.058 -0.171*
(0.065} {0.057) {0.045) (0.092) {D.068} (0.071) (0.069)
A SPA_2 0.294** 0.166* 0.107* 0.224% -0.042 -0.112 0.093
(0.070) (0.068) {0.049) (0.105) (C.074) (0.086) (0.080)
A SPA_3 -0.008 0.048 0.036 -0.045 -0.063 -0.028 0.060
(0.062) {0.039) {0.043) (0.075}) {0.060) {0.043) (0.054)
Error Correction Terms
CointEqgl -0.270** 0.008 -0.005 -0.028 0.123 0.422%* 0.235*
(0.0686) (0.083) (0.047) {0.117) (0.076) (0.108) {0.093)
CointEqg2 0.231** -0.025 -0.063 D.055 -0.099 -0.198* -0.182%*
(0.048) {0.058) {0.034) {0.083) (0.054) (0.077) (D.066)
Log-likelihood and Criteria
No. Parameters 96 AIC -54.066 sC -51.668
Log-Likelihood 2988.519 ale] -53.094 FPE 1.015e-023




Table A4.7: Reduced form of Model 4

Cointegrating Vectors

AUS_1 BEL_1 FRA_1 GER_T ITA_1 NETH_1 SPA_1 Constant
1 o 1.555 -0.28%9 -0.311 -0829 0.739 -4.941
0 1 2.651 0.427 -1.240 -1.347 -0.928 -8.674
Lagged Dependent Variables
Variables A AUS A BEL A FRA A GER A ITA A NETH A SPA
Constant 0,002* 0.003**  0.002* 0.000 0.002* 0.006**  0.004**
(0.001) {0.001) [0.001} (0.001) [0.001) (0.001) {0,001}
A AUS_1 0,043 0.245* 0.274* 0.067 -0.025 -0.046 0.346**
(0.0%2) {0.084) [0.063) (0.126) [0.091) (C.102) {0.098)
A AUS_2 0319 0075 -0.050 -0.283%  -0.045 0.044 -0.001
[0.081) (0.06%9) {0058) (0.106) (0.079) (0.079) (0.080)
A AUS_3 -0.035 0.054 0.127* 0.018 0.052 0.034 0.162*
_ {C.082) (0.058) (0.057) {(0.094) (0.075) {0.057) {0.070)
A BEL_1 -0.010 0.045 0.296™ 0.232 0.3%91 0.230 0.335™
{0.08%) (0.098) (0.062}) (0141} (0.095) (0.124) (C.110)
A BEL_2 -0.231~ 0.078 0.198**  -0.12%9 0.043 0079 0.290**
(0.084) (0.078} (0.060) (0.117) (0.085) (0.0%5) (0.091)
A BEL_3 -0.033 0018 0.106™ 0.032 0.083 0.054 0.132*
(0.084) {0.059) (0.058) (0.096) (0.077) {0.056} (0.070)
A FRA_1 0.072 0.005 -0.120 -0.021 0.120 -0.088 -0.152
(0.118) (¢.082) (0.082) (0.135) (0.108) (0.079) {0.099)
A FRA_2 0.181 -0.044 0.024 0219 0,146 0.040 -0.019
(0.111) (0.079) (0.078) (0.128) (0.102) (0.077) {0,094}
A FRA_3 0.129 0.048 0.180* 0.201 ©.143 0.042 0.190*
{0.105) (0.074) (0.072) (0.121) [0.097) (0.072) {0.08%)
A GER_1 -0.294**  -0.159* -0.101* -0.240* 0.023 0.104 -0.079
{C.067) (0.067) (0.047) (0.099) ({0.069) (0.082} (0.078)
A GER_2 -0.072 -0.141*  -0.047 -0.004 0.125 0.102 -0.041
{0.040) (0.055) (0.042) (0.083) (0.040) (0.06¢) 10.0463)
A GER 3 -0.075 0101 -0.022 -0.017 0.0%5 0.082 -0.025
{C.051) (Q.045) (0.035) (0.048) (0.050) (0.052) {0.052)
AITA 0.191* -0.00% -0.045 0.154 0,020 -0.038 -0.095
{C.082) (0.061) (0.D57) (0.098) (0.077) (0.064) (0.073)
AlTA_2 -0.041 0.107 0.043 -0.101 0121 -0.062 0.080
{0.083) (0.043) (0.057) (0.100} (0.078) (0.068) {0.075}
AITA_3 -0.191* -0.146* -0.079 -0.135 0.061 0.097 -0.074
{0.07%) (0.066) (0055} (0.102) ([0.077) (G.074) {0.077}
A NETH_1 0.317%* 0.072 -0.029 0.228* 0039 0112 -0.090
{0.058) {0.064) (0.040) [0.0%3) [0.062) {0.082) (0.073)
A NETH_2 0.238** 0.011 -0.088* 0.153 -0.043 -0.088 -0.150*
(0.041} (0.058) (0.042) {0.084) {0.061) {0.072) (0.067)
A NETH_3 0.095 0.113*  -0.034 -0.013 Cavo* 0,131 -0.041
(0.058]) (0.058) [0.041) {(0.088) (0.060) {0.071) (0.066)
A SPAT O.214** -0.030¢  -0.091* (0G.157* 0.005 -0.051 -0.156*
(0.044)} (C.057) (0.045) (0.08é6) (0.063} {0.067) (0.046)
A SPA_2 0.293%* 0173  0.108* 0.233* -0.034 -0.112 0.090
{0.070) (0.071) (0049} (0.104} (0.073) (0.088) {C.08C)
A SPA_3 -0.012 0.066 0.040 -0.028 -0.051 -0.031 0.060
{0.042) (C.044) (0.043) (0072 (0.057) (0.042) (0.053)
Error Correction Terms
CointEql -0.257* D045 -0.012 -0.085 0.085 0.437*  0.240*
(0.046) (0.080) (0.048) (0113} (0.073) {0C.106) (0.091)
CointEg2 0.220%* 0019 -0.058 0.103 -0.067 -0.212%  -0.186™*
(0.047) (0.055) [0.033) (0.078) (0.051) {0.074) [0.063)
Log-likelthood and Criteria
No. Parameters 93 AlC -54.038 sC -51.7145
_log-Likelihood 2984012 HQ -53.094 FPE 3.40E-23
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Table A4.8: Reduced form of Model 5

Cointegrating Vectors

AUS_1 BEL_1 FRA _1 GER_1 ITA 1 NETH_1 SPA_1 Constant
1 e 1.555 -0.289 -0.311 0829 -0.739 -4,941
0 1 2.651 0.427 -1.240 -1.347 -0.928 -8.674
Lagged Dependent Variables
Variables A AUS A BEL A FRA A GER AlTA A NETH A SPA
Constant 0.002* 0.003* 0.001* 0.000 0.002* 0.007** 0.004**
{0.007]} (0.001) {0.001) (0.002) {0.001}) (0.001) {0.001}
AAUS_ 0.026 0.101 0.309** c.177 -0.094
(0.089) (0.097) (0.065) (0.144) {0.098)
AAUS 2 -0 .329%  -0.083 0019 -0.298¢* -0.028
(0.079) (0072} {0.057} (0.109) {0.07 3)
AAUS_3 -0 .08s -0.049 0.15%9* 0.062 0.034
{0.082) {0.070) ({0.05%) {0.108) (0.071)
A BEL_1 -0.091 -0,176 0.252%* 0.144 0.356* 0.227*
{0.085) (001 (0.061) {C.140) (0.09 3) {0.101})
ABEL_2 -0.292% -0.010 0.210** -0.133 0.030 0.133
{0.087) {C.091}) ([0.041) (0.121) {0.082) (C.101)
ABEL_3 -0.05]1 -0.011 0.080 0.00%9 0.04% 0.060
{0.088) {0.084) [0.060) (0.100) {0.07 2) [0.099)
A FRA 1 0.131 0.124 0071 -0.058 -0.098
{0.119) (0.09%) [(0.085) (0.152] {0,100}
A FRA_2 0.160 -0.094 0.018 0.205 0.158
(0.111) (0089} {0.079) {0.137) (0.090)
AFRA_3 0.058 -0.063 0.187* 0.227* 0101
{0.105) (0.088) (0.075) {0.134) {0.089)
A GER_ -0.290%  -0.131*  -0.050%*  -0.344% 0,027
{0.063) {006%9] (0.047) (0.104} (0.068)
A GER_2 -0.076 -0.134%  -0.102* -0.100 0.109*
{0.058) (0.057) [0.042) (0.086) [0.056)
A GER_3 -0.083* -0.101*  -0.083* -0.105 0.073
{0.050) (0.C47) 1{0.03¢) {0.072) (0.047)
AITA_1 .232* 0.058 0.003 0.202* 0.020
(0.082) (0.067) ({0.059) {0.104) (0.068)
AITA 2 -0.063 0.103 0.044 -0.067 -0.129*
{0.083) (0068)  (0.05%) {C.105) {0.069)
AITA_3Z 077 -0.131*  -D.053 -0.15¢9 0074
(0.078) (0.067) (0.056) (0.103) {0.067)
ANETH_1 0.333** 0.130* 0023 0.184 0.020 -0.138
(0.054) [C.0&3) (0.041) {0101} {0.062) {0.082)
ANETH_2 0.295** 0.100* -0.074* 0.207* -0.023 0.047
{0.059) [0061) {0.043) {C.101) (0.062) [0.080)
ANETH_3 c.128* 0.168* 0.01¢6 0.073 -0.136* 0.007
{0.056) (0057) {0.040) {0.094) {0.058) (0.075)
ASPA 1 C.199* -0.082 -0.040 ¢.217* -0.062 -0.245*
(0.067) (0.076) (0.047) (0.099) {0.068] {0.089)
ASPA_2 0.345* 0.274%*  0.104* 0.273* -0.004 0.199*
(0.070]) [0.081}) (0.050) {(0.110) {0.07 4) (0.088]
A SPA_3 0.039 0.179* 0.03% ~0.040 0.018 0.238*
(C.067) (0.071) (0.048) {0.0%0) (0.063) {0.085)
Error Correction Terms
CointEql -0.270*  -0.052 -0.061 -0.185 0.080 0.312* 0.276*
(0.062) (0.077) (0.045) (0.114) {0.072) (0.083) (0.064)
CointEg2 0.236** 0.029 -0.025 0.171* 0086  -0.116*  -0.189**
(0.045) (0.054) ({(0.032) (C.079) (0.050) ({0.053] (0.045)
Log-likelihood and Criteria
No. Parameters 99 AlC -54.093 sC -51.620
Log-lLikelihood  26%2.99¢ HQ -53.0%1 FPE 1.302e-023
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Chapter 5 - Analysing the Euro Area Qutput Gap

within a State-Space Framework

5.1 Introduction

In the previous chapter, the multivariate BN decomposition, and two univariate trend-
cycle decomposition methodologies, were used to extract the cyclical component of
GDP for each country under analysis. This chapter continues to analyse growth cycles
by investigating three topics concerning the euro area output gap by utilising the
multivariate unobserved-component (UC) model, which incorporates a statistical output
decomposition along with macroeconomic models such as the Phillips curve and

Okun’s law,

A fundamental objective of monetary and fiscal policy ts to dampen economic
fluctuations by keeping output and unemployment close to their natural rates. To do
this, economists need to identify accurately the unobserved features of an economy,
such as potential output (trend output), the output gap (growth cycle) and the Non-
Accelerating Inflation Rate of Unemployment (the NAIRU), from observables such as
real GDP and the unemployment rate. Potential output is the maximum level of output
that the economy can produce at a stable inflation rate, which should be accompanied
by an unemployment rate that is consistent with the NAIRU. Deviations in output from
this potential are defined as the output gap, which is usually used as an indicator of
inflationary pressures. When the output gap is positive, output is above its potential, the
inflation rate starts rising and tighter monetary policy is needed to curb demand and
inflationary pressures. Conversely, when the output gap is negative, the inflation rate is
below expectations and expansionary monetary policies are required to stimulate
economic growth. Moreover, from a fiscal policy perspective, by knowing the output
gap, the cyclical adjusted budget deficit can be calculated. This is important as it

provides a measure of the health of the underlying public finances.
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In short, the output gap plays a central role in determining the stance of monetary and
fiscal policies. A macroeconomic policy based on accurate output gap estimates can
help to mitigate the adverse effects associated with recessions and below trend growth,
and provide sustainable economic growth. Conversely, basing economic policy on
unreliable output gap estimates can damage the economy. For example, the surge in
inflation during the 1970s was due in part to monetary policy underestimating the size

of the output gap.

In the euro area, the European Central Bank (ECB) implements a two-pillar monetary
policy strategy to maintain price stability. Over the medium to long run, the objective is
for monetary growth to match the euro area’s potential output growth. In the short run,
the output gap, along with unit labour costs, exchange rates and asset prices, are used to
indicate inflationary pressures. QOutput gap estimates are also used to calculate the
cyclical adjusted budget deficit for member states to ensure that they achieve a medium
term budget balance as defined in the Stability and Growth Pact (SGP). Finally, the

NAIRU indicates the degree to which labour market reforms should be undertaken.

Three aspects of the euro area output gap are investigated in this chapter. First, the
reliability of output gap estimates obtained from various multivariate UC models is
assessed. Second, the degree of business cycle moderation in the euro area is analysed.
Third, the effectiveness of monetary policy transmission through the interest rate
channel is examined. The results show that changes in real interest rates have a

significant impact on the euro area output gap in the run-up to EMU and thereafter.

The rest of the chapter is organised as follows. Section 5.2 presents a brief survey of
frequently used trend-cycle decomposition methodologies, along with the literature on
assessing the reliability of output gap estimates. Section 5.3 presents bivariate and
trivariate models for estimating the output gap, core inflation and the NAIRU. The
reliability of the output gap estimates obtained from these models is assessed in section
5.4. In section 5.5, business cycle moderation is studied by allowing for time-varying
variances in the models” disturbances. Section 5.6 investigates the effectiveness of the
interest rate channel for the aggregate euro area by examining the response of output

gap estimates to changes in real interest rates. Finally, section 5.7 concludes.
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8.2 Literature reviews

Potential output, the output gap and the NAIRU are unobservable quantities that need to
be estimated from observed data, Many procedures have been proposed to estimate
these unobservable features, and these can broadly be divided into three groups. The
first group relies on purely statistical specifications, such as the Beveridge-Nelson
(1981) decomposition, Harvey and Jaeger’s (1993) UC model, the Hodrick-Prescott
(1997) filter, and so on. These models simply ‘let the data speak’ and do not include
potentially useful information about the supply side of the economy and business cycle
information contained in macroeconomic variables other than aggregate output. The
second group employs the production function approach (PFA), which has been widely
used by international institutions, such as the OECD (2001), the International Monetary
Fund (de Masi, 1997) and the European Commission (McMorrow and Roeger, 2001).
Unlike the first group of univariate statistical approaches, the PFA is a multivariate
method that obtains potential output from the levels of its structural determinates, such
as productivity and factor inputs. A potential advantage of the PFA appfoach over the
first group of statistical approaches is that it utilises a broad range of economic data.
The third group of techniques incorporate a statistical output decomposition along with
macroeconomic relations, mcluding the Phillips curve, Okun’s law, and other indicators
such as output capacity utilisation and factor inputs. The method used in this chapter

belongs to the third group.

Various UC specifications have been used by the third group. These models allow the
rich dynamic interactions that occur between the observed and unobserved features of
an economy to be modelled in specific ways according to the objectives of the research.
An early example is the UC model proposéd by Clark (1989), who estimated a bivariate
model of US output and unemployment based on Okun’s law. Subsequently, Kuttner’s
(1994) bivariate specification combined Watson’s (1986) output decomposition with the
Phillips curve to relate changes in inflation to the output gap. A trivariate model of
output, inflation and unemployment was proposed by Apel and Jansson (1999) to
systematically estimate the NAIRU and potential output for the UK, US and Canada.
Rinstler (2002) extended Kuttner’s (1994) bivariate model by including capacity
utilisation and factor inputs to estimate the euro area output gap. A recent example of

this approach is given by Proietti (2008), who estimated a multivariate model of the US
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economy using mixed frequency data including quarterly GDP and monthly industrial

production, unemployment and CPI inflation.

All the models discussed above contain an element of measurement error. As such, it is
important to assess the degree of uncertainty surrounding estimates of the output gap.
The reliability of output gap estimates has been discussed in detail from both policy and
academic standpoints, as it has significant implications for defining optimal monetary
policy (Orphanides and van Norden, 1999; Orphanides, 2001; Camba-Méndez and
Rodriguez-Palenzuela, 2001; Riinstler, 2002; Proietti ef al., 2007). Orphanides and van
Norden (1999) highlight the disadvantages of basing monetary policy on real-time
estimates of the output gap. These include the uncertainty surrounding these estimates
and their susceptibility to future revisions. They propose a minimum requirement for
assessing the reliability of the output gap, that initial estimates should not be
significantly affected by subsequent statistical revisions caused by the arrival of
additional information at a later date. In their study, four univariate trend-cycle
decomposition models are examined.! Four output gap estimates are obtained from
each model, including real-time, quasi-real, quasi-final and final estimates. By doing so,
they successfully identify the extent to which revisions in the output gap estimates are
caused by data revisions, statistical revisions and model uncertainty. They conclude
that statistical revisions rather than data revisions appear to be the primary source of
changes to estimates. Given this conclusion, Camba-Méndez and Rodriguez-Palenzuela
(2001) assess the statistical reliability of the output gap estimates according to three
criteria: the consistency of the initial estimates with their subsequent revisions, the
output gap estimates’ ability to forecast future mnflation, and the positive correlation
between gap estimates and capacity utilisation. Unlike the univariate models estimated
in Orphanides and van Norden (1999), Camba-Méndez and Rodriguez-Palenzuela’s
analysis 1s based on multivariate models of output, unemployment and inflation for the
US and the euro area. They find that the multivariate UC models give reasonably
satisfactory output gap estimates. Riinstler (2002) also investigates the uncertainty of
output gap estimates caused by subsequent statistical revisions. In doing so, the
reliability of the output gap estimates from various UC models is assessed in terms of

three criteria; standard errors, unbiasedness and inflation forecasting. The results

! The four types of models analysed in Orphanides and van Norden (1999} are deterministic trends, the
HP filter, the BN decomposition and the UC models.

189




suggest that the multivariate models, with factor inputs and capacity utilisation included,

significantly reduce the uncertainty in the filtering process.

5.3 Model specification

This section utilises various multivariate UC models to produce output gap estimates.
These models combine aggregate output with other macroeconomic variables that
provide information about the output gap. A bivariate model of output and inflation and

a trivariate model of output, inflation and unemployment, are estimated in this study.

5.3.1 Bivariate model of the output gap and inflation

We begin with an UC model containing two variables, output and inflation, that
incorporates a Phillips curve relationship. The Phillips curve establishes a relationship
between nominal prices and excess demand, typically proxied by estimates of the output
gap. The output equation follows Harvey and Jaeger’s (1993) decomposition, in which

the output series, y,, is decomposed into a trend component, x , and a cyclical

component, y/, :

v, =4+, t=1..T. 5.1)

The cyclical component is specified as a second-order autoregressive process

W, =y, +dw,_, +k,, k, ~NID(O,0}) (5.2)

with ¢, =2pcosA, and ¢, =—p” . The parameters p and A are the damping factor
and cycle frequency, respectively, and satisfy 0< p<land O<A, <7z, If p=0, the
cycle reduces to a Gaussian white noise process, v, =k, . The stochastic trend

component is given by

rur =/ur—] +ﬂ1—l +m+77r ’ nr NNID(O’U;)’ (53)
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ﬁ! =¢ﬂ:—l +§¢ > é:r NNID(an-j‘) ’

where £, 1s the slope of the trend, m is a constant drift and ¢ is the damping factor.

The disturbances k,, 7, and £, are assumed to be mutually and serially independent.

As proposed by Proietti e al. (2007), four alternative specifications of the trend

component are obtained by imposing restrictions on equation (5.3). First, by setting
m=0, o*; =0 and ¢ =1, the trend component reduces to a random walk with drift
(RW). Second, if |¢| <1 the trend component has a damped slope (DS). Third, if
m=0 and ¢ =1 the trend becomes a local linear trend (LLT). Finally, Hodrick and
Prescott’s (1997) restrictions (ie., o; =16000:, o, =0 and p=0) can also be
imposed on the LLT model, vielding a smooth trend component and a white noise

process. Hence, o is the only variance parameter to be estimated in the HP trend.

The following inflation equation is based on the Gordon (1997) triangle model, where

the inflation rate is a function of inertia, excess demand and supply shocks, such as

changes in the euro’s nominal effective exchange rate ( ANeer, ) and commodity prices

{ACompr, )2

AP =1, +8.(L)ACompr, + 5, (L)ANeer, +¢,, g, ~ NID(0,57), (5.4)

1, =7, +6,(Lw, +n,, 17, ~NIDO, o).

The inflation rate, AP, calculated as the logged difference of the CPIL, is driven by its
core component, 7,, the supply shock proxies mentioned above, and an irregular term,

£, .

) Entering the current and lagged values of output gap estimates into the core
inflation equation allows the level effect of the output gap on inflation to be separated

from the changes effect. The lag polynomial &,(L)=86,, +6,L can therefore be

78] vl

written as 6, (L)=6,(1)-6,A. I 8 (1)=0, the output gap has only a transitory

W

2 The Gordon triangle model used in Chapter 5 reflects backward fooking inflation expectations. However,
more recent literature, such as Doménech and Gémez (2006) and Berger (2008), uses the New Keynesian
approach of a forward looking Phillips curve, as mflation depends on future inflation expectations.
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impact on core inflation. Finally, the model is completed by assuming that the

disturbances ¢, and 77, are mutually and serially uncorrelated and also orthogonal to

disturbances in the output equations.

Once equations (5.1), (5.2), (5.3) and (5.4) have been recast in a state-space

2
7

representation, the hyperparameters (¢,,¢2,9,0,9m,¢,m,0' aé,crf_,aj,af) in the

b
model can be estimated by MLE using a KF initiated with a diffuse prior, and the

unobserved components (;z,, ﬁa%,‘,’»’,_pﬂ) are then estimated using a smoothing

algorithm proposed by De Jong (1989, 1991).

5.3.2 Trivariate mode! of the output gap, inflation and unemployment

The bivariate model is extended to include a third set of equations concerning the

decomposition of the unemployment rate, denoted as #,. The unemployment rate is

decomposed into the NAIRU, u,, and a cyclical unemployment component,

r

8, +6 v, +,., that consists of the weighted output gap estimates, 8, +6,/,_,,

nt?

and an idiosyncratic cycle, v, :

u

”r = ”ur +6unf//; +9n117"/r—1 +l// (55)

e

um = uur—l + ﬁu!—] + ﬂm ’ T]m ~ NID(OB U;:r,a )3

2
ﬂm = 18:4;—1 + ‘ful H ‘fxrl ™~ NID (O’ O-rl;’ )’

l//m‘ = ¢HOWIH—] + ‘75!1](//!4(—2 + km‘ ’ km ~ NID(OB O-"Ek ) *

The NAIRU for the euro area aggregate is modelled as a LLT due to the presence of a
time-varying slope in the unemployment rate. The unemployment rate rose from 2% in
1973-1974 to 11% by the mid-1990s and did not return to the levels observed in the
early 1970s even when inflation stabilised at a low level. This suggests that the NAIRU

has risen.

*The state-space form for equations (5.1), (5.2), (5.3) and (5.4) is presented in Appendix A5, together
with the augmented Kalman filter iterations introduced by De Jong (1989, 1991).
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The trivariate model containing equations (5.1), (5.2), (5.3), (5.4) and (5.5) can also be
put into state-space form, with the KF and ML approach then applied to estimate the

model’s hyperparameters (¢],¢2,9W0, 6,1-6,0:0,: 80,0, M, G, 0%,0},0,,0. O, ofg,ofk)

n? [kl 17/
and the unobserved state components {¢,, 14, 5., B\ W, W, W,y 7, ).+ In addition,

the four alternative output trend specifications discussed above are also applied to the

trivariate model.

5.4 Criteria to assess the reliability of output gap estimates

Given the variety of models used in this chapter to estimate the output gap, it is essential
to have some criteria to judge which model provides the most reliable estimates. Due to
the data limitations in the euro area, this chapter focuses on analysing the statistical
revisions which have occurred over time. The output gap estimates obtained from the
bivariate and trivariate models are assessed against three criteria, the size of the
revisions, the unbiasedness of the filtered estimates, and their ability to forecast future

inflation rates.

5.4.1 Size of revisions

In the UC models, the filtered output gap, v, , and its smoothed estimates,

te> (T
obtained using the final data release and the full-sample parameter estimates, are
defined as the quasi-final and final estimates by Orphanides and van Norden (1999).
The difference between these two estimates reflects the revisions caused by uncertainty
in the filtering process. It is believed that this uncertainty declines as the information
set is expanded, such as by using longer sample periods or including additional

variables in the filtering process (Rinstler, 2002). This chapter examines this assertion

by evaluating the Root-Mean-Squared Error (RMSE) of Wi (._) w, (Z), where s =8

flr+s

5

and s =12, based on the full-sample parameter estimates, =.” The estimates of

1r

The state-space form for the trivariate model is also presented in Appendix AS.
Tt is important to stress that the revisions analysed in this study are consistent with Rinstler {2002}, but
are fundamentally different from the revisions discussed in Camba-Méndez and Rodriguez-Palenzuela
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and y, are produced using both the bivariate and trivariate models analysed above,

t|t+s
together with a univariate model, specified as just equations (5.1), (5.2) and (5.3). As
with the multivariate models®, four alternative output trend specifications are also
applied to the univanate model.” The model which provides the smallest RMSE is

considered to be the most appropriate for estimating the output gap.

5.4.2 Unbiasedness of filtered estimates

In this section a test proposed by Riinstler (2002) is used to examine the unbiasedness of

the filtered estimates, v, to subsequent revisions, —,,- The variables v/ and

t|t+s )t

L the minimum mean square estimates of i, , conditional on information

available up to and including ¢ and ¢+ 5, respectively (Harvey, 1989). These estimates
are unbiased in the sense that the expectation of the estimation error is zero, i.e.,
E(a,r/ =W ,i{)z 0 and E(I/f, - 1|J+SJz 0. This property and the linearity of the
expectation operator imply that E(y/ tivs ™ Wi ): 0. In addition, according to the Jlaw of

iterated expectations (Gourieroux and Monfort, 1989), the property that

Euy/ dees ~ W },// o )= 0 can be derived. Since

r): E(E(z//,|z + s}t)= E(r,u, ]r)-- W,

E(IJ"/!"IH

it holds that E(t//dm _V/WHZ 0, implying Wy is the orthogonal projection of

tlts

conditional on the information set at time #. Therefore, the following equation holds

z//m):O.

E((wflf” Y )//f|f )= E(E(I’//dfﬂ Yy Hi//!h )= E(O

The test for unbiasedness is designed as the regression of revisions on the filtered

estimates,

(2001). In this latter study the revisions are caused by both filtering uncertainty and recursive estimation
of the model hyperparameters.

® The multivariate models used here and later refer to the four bivariate and four trivariate models
analysed in this study.

" The parameter estimates for the univariate models are reported in Appendix B6.
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V/fJIH - err = bO + bl()[/zlx +£,

with unbiasedness requiring b, =8 =0. The Newey-West (1987) estimators of the

standard errors are used to obtain the HAC t-statistics for the individual null hypotheses

by=0and b, =0.

5.4.3 Inflation forecast

In macroeconomics, the output gap is considered to be ap indicator of inflationary
pressure and thus should provide an indication of future inflation. Several studies
(Gerlach and Svensson, 2003; Riinstler, 2002; Proietti e al., 2007) have used estimates
of the output gap to forecast future inflation rates. In this section, the ability of the
output gap to forecast future inflationary pressures is used as an important criterion in
judging the reliability of output gap estimates. The variable to be forecast is the
quarterly inflation rate. Since this variable is very volatile, the average out-of-sample
forecasting performances of the bivariate and trivariate models are evaluated against

two benchmark models.
The first benchmark is the univariate model of inflation. Unlike equation (5.4),

estimates of the output gap do not enter the core inflation equation. Instead, core

inflation simply follows a random walk process,

AP, =1, +8.(LYACompr, + 8,,(LYANeer, + ¢,, g, ~NID(0,52),  (5.6)

T, =1, 4+, 7, ~NID0,67).

The second model is an AR(I) specification of the first-differences of the inflationary

process,

AP =gAP_ + 8. (L)A Compr, + 8, (LYA* Neer, +v,, v, ~NID(0, o). (5.7)
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A rolling sample approach is used, with the full-sample period first divided into a pre-

forecasting period from 1971Q3 to 1999Q4 and a forecasting period from 2000Q1 to
2005Q4. The pre-forecasting sample moves forward quarter by quarter and the model’s
hyperparameters are re-estimated at each step until the end of the sample is reached.
This approach calculates unconditional forecasts of inflation. This means that forecasts
of the future inflation rate are based on the predicted future output gap. The /-step-
ahead forecast of inflation can thus be obtained by iterating the transition and
measurement equations in the state-space form. ® In total, 25 one-quarter-ahead

forecasts and 17 eight-quarter-ahead forecasts are calculated.

The Modified Diebold and Mariano (MDM) test proposed by Harvey et al. (1997) is
used to examine whether the differences in forecasting ability between the multivariate
models and the two benchmark models are significant. Since this test statistic corrects
for size distortions in small samples, it is more appropriate than the test statistics

introduced in Diebold and Mariano (1995). The MDM statistic is specified as

N+1—2K+N“K(K—1)J d

MDM =
{ N W)

where N and X denote the number of forecasts and the lag length respectively. d is

the mean of a differential loss function, defined as d = N~ Z:(czff —el,), where e, and
e, are the h-step-ahead forecast errors obtained from models 1 and 2. The variance of

d is estimated using the heteroskedastic-autocorrelation consistent (HAC) estimator

_ I—1
V(d)y=N"" {yﬂ +2NTY (N-K)y, }

A=l

d

Vid)

error is calculated using the Bartlett kernel with a lag length of 7—1 when the forecast

Therefore, is simply a HAC t-statistic. The HAC estimate of the standard

horizon is # periods.

¥ The procedure of unconditional forecasting is discussed in Appendix A5.4.
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5.5 Data and empirical resultfs

The empirical analysis in this chapter is based on logged quarterly data for the
aggregate euro area from 1970Q1 to 2005Q4. The data is taken from the AWM
database (Fagan et al., 2001).° All the series are seasonally adjusted except for the CPI
and commodity prices index. Therefore, the Census X-12 procedure (US Bureau of the
Census, 1999) is used to deseasonalise these two series. The ADF test stétistics
reported in Table 5.1 suggest that real GDP, the unemployment rate, commodity prices
and nominal effective exchange rates are I(1) series, while the CPI appears to be an I(2)

variable. The main data are plotted in Figure 5.1,

Table 5.1: The Augmented Dickey-Fuller Test Statistics

Level Variables First Differenced Variables
Constant Constant + Trend Constant
GDP -1.946 -2.730 -8.493**
{0.310) {0.226) {0.000)
CPl -3.928** -3.048 -0.916
(0.002) (0.123) {0.781)
UNEM -2.950* -1.529 -4, 258%*
(0.042) (0.815) {0.001)
COMPR -2.477 -2.507 -8,522%#%
(0.123) (0.324) {0.000)
NEER -2.333 -2,582 -8.557**
(0.163) (0.289) (0.000)

Motes: p-values are in parentheses. * denotes significance at 5% and ** at 1%. UNEM = the
Unemployment Rate, COMPR = Commaodity Prices Index and NEER = Nominal Effective Exchange Rates.

? The data is taken from an updated version of the previous AWM database constructed by Fagan et al.
(2001). This new version conttaing data prior to 1996 drawn from the previous version and extended data
to 200504 adjusted for the latest changes in the national accounts, including the introduction of chained
volume measures,
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Figure 5.1: Data
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The parameter estimates for the four bivariate models are reported in Table 5.2. Two
dummy variables are included in the model to capture the sudden drop in GDP observed
during 1974Q4-1975Q1, and in inflation during 1975Q1. One striking result is that the
model with the HP restrictions imposed is strongly rejected, as the residuals show
strong autocorrelation patterns. Of the three other models, that incorporating the DS
output trend provides the best fit to the data. Therefore, the following interpretation
focuses primarily on this model. The fluctnations in the output gap estimates appear to
be pérsistent as the sum of the parameter estimates ¢ and ¢, is close to one. The
potential output growth follows an AR(1) process with the coefficient equal to 0.83.

The significance of 9,‘,,0 and &, at the 1% level implies that the output gap makes a

significant contribution to core inflation. Although the null hypothesis of long-run
neutrality of the output gap for core inflation is rejected by the Wald test statistic, the
change effect of the output gap has a dominating impact on inflation. For instance, the

change effect, measured by -6,, is 021, while the level effect is only

8, +6, =0.061 in the DS model. Finally, the parameter estimates of the dummy
variables and the current supply shock variables are all found to be statistically
significant. Potential output, the output gap and core inflation estimated from the

bivariate models with the DS and HP output trend are plotted in Figure 5.2.
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Unsurprisingly, the HP trend appears smoother than the DS trend, while the HP cycle is

more volatile compared to the DS cycle.

Table 5.2: Parameter Estitmates and Diagnostics for Bivariate Model

Notes: Standard errors are provided in parentheses. The variance parameters are multiplied by107.

|
|
|
RW Dslope LLT HP }
Output equation |
2
o, 165.280 137.040 148,700 0 }
2
T 0 11.730 3.832 0.830 }
Ty 65.455 §9.325 63.523 1485.100 }
¢ 1 0.828 1 1 |
" o 0.008 0 0 |
# 1.558%* 1.550% 1.549%* |
(0.019) (0.029) {0.026)
é, 07347 0.661%* 0.663%
{0.034) {0.051] {C.046) -
e 0.856 0.813 0.814 -
2zl f, 24.747 20,508 19,980 . |
Dum75G1 -0.012* -0.011* -0.011% -0.019 ‘
{0.005] (0.005) {0.005) {0.018)
Dum7404 -0.011** 0.011%* Q.011%* 0.012%* |
{0.003) (0,003} {0.003) {0.004} }
inflation eguation |
2
o, 31,067 35.388 35.247 30.250
2
o, 7.385 7.982E-05 0.026 55375
By 0.221% 0.276%* 0,273%x 0.177**
{0.075) (0.080) {6.079) {0.043}
B, -0.185** 0.214%* £.206%* 0.127%
{0.068) {0.074) (0.072) 10.044)
Sy 0.022* 0.023% 0.023* 0.024*
{0.010) (0.0:0) {0.010) {0.010)
Bya 0.013 0.015 0.015 0015
{0.010) (0.010) (0.010) (0.010}
By 0.006*% 0.008" 0.605* 0007
{0.003) (0.003) {0.003} {0.003)
G 0.004 0.004 0.004 0.005*
{0.003) {0.003) {0.003) {0.003)
pum?7sQl 0.011* -0.011% 0.011* -0.020 |
{0.005) 10.205) {0.005) {0.013} }
Wald tast for lpng run newtrality \
=0 3553 6.057% 7.186%* 16.269** |
Diagnostics and goodness of it }
Log-fikefittood 148,162 1155.184 1150.570 1018.054 |
Qla) y: 4.524 2.765 2.152 233.362%* }
atal Ap,: 5.782 5546 5.578 40.758%* |
Normality 1 4311 4,630 5.890 13.622%+ }
Normality Ap, : 1634 2014 2134 4,167 }
|
|
\
|
|

Q[4) is the Ljung-Box Q-statistic for residuat autocorrelation using four autocorrelations. Normality of
the residuals is checked using the Jarque-Bera test statistic. * denotes significance at the 5% level; ¥*

denotes significance at the 1% level.
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Figure 5.2: Trend, Cycle and Core Inflation for the Bivariate Models with the DS and

HP output trend
DS output trend specification GDP and the trend HP output trend specification
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The trivariate model outlined in the previous section is also estimated. The Ljung-Box
Q-statistic at four lags indicates that there is significant autocorrelation in the residuals
of the inflation and unemployment equations. The autocorrelation functions of these
residuals were therefore examined and suggested the presence of third-order
autocorrelation in the former and fourth-order autocorrelation in the latter, Therefore,
moving average terms at fags three and four are included in the corresponding equations
o eliminate the autocorrelation pattern in the residuals. The estimation results for the
four trivariate models are reported in Table 5.3. Corresponding to the sudden decline
observed in the output and inflation variables, the adverse effect of the first oil price
shock also led to a dramatic increase in the unemployment rate between 1974Q4 and
1975Q2. Therefore three dummy variables are used for this period. As with the
bivariate models, the model with the HP restrictions is again rejected due to strong
autocorrelation in the residuals. The model with the DS output trend outperforms the
other models. Both the output gap and potential output appear to be more persistent

than in the bivariate models. The output gap has a cycle period of around 28 quarters

200




and the potential output growth evolves with a slope coefficient of 0.93. However,

parameter estimates of 0,, and 0, are smaller than the corresponding values in the

i

bivariate models, with a level effect of g,

+0,, =0.025 and a change effect of

-6, =0.149 in the DS model. The null of long-run neutrality cannot be rejected by

wl
the Wald test of the restriction 8, (1) = 0 at the 5% level for all models. This implies

that the output gap has only a transitory effect on inflation. The parameter estimates of

g, and &

1]

are all negative, suggesting that the unemployment rate is anti-cyclical with
the output gap. Moreover, only 6, appears statistically significant, which may reflect
adjustment delays in the labour market. It is also tmportant to note that, although ¢,
and ¢, are only marginally significant at the 10% level, they nevertheless successfully

eliminate the autocorrelation in the residuals.

Figure 5.3 presents the time path of potential output, the output gap, the NAIRU and
core inflation estimated from the trivariate models with the DS and HP output trend
specifications imposed. The HP output trend again appears very smooth, being very
close to a linear time trend, while the HP output cycle is more volatile than the DS
output cycle. The estimate of the NAIRU from the model with the DS output trend
appears less volatile than when it is obtained from the model imposed with the HP
restrictions. This 1s because, when potential output is modelled as an HP trend, a highly
volatile output gap is produced and enters into the unemployment equation. This may

lead to a large variance in the NAIRU slope disturbance.
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Table 5.3 Parameter Estimates and Diagnostics for Trivariate Model

RW DSlope LLT HP
Cutput eguation

Fy 165.920 150.850 163.030 o

T G 4.883 0.176 0.936

oy 49.151 28944 49.048 1487.100

¢ 1 0.934 1 1

m o 0.006 0 0

é, 1.740%* 1.756%* 1.747%* -
(0.066} (0.042) {0.063} -

&, -0.808** -0.810%* -0.799%* -
{0.108} {e.090) {0.116) -

Yol 0.898 0.900 0.835 -

2rlf, 28308 28.443 29.173 .

Dum7404 -0.010 -0.010 -0,010 -0.023
(0.008) (0.006) (0.006}) {0.015)

Dum75Q1 -0.012* -0.012* -0.012% -0.019
{0,006} (0.006) (0.008) {0.022)

Inflation equation

(2 24,422 24,406 24.867 27.539

T 16,008 16.017 15.346 £§1.136

Bus 0.174% 0.174* 0.174* 0.185%*
{0.066) (0.069) (0.074} {0.053})

g, -0.149* .0.149% -0.148% -0.140%
{0.065) {0.067} {0.072) {0.053)

&y 6.016 0.016 0.016 0.022
(0.012) {0.012) {0.012) (0.012)

8 s 0.015 0.015 0.01% 0.019
{0.012) (0.012) (0.012) {0.012)

8 0.004 0.004 0.004 0.004
(0.004} {0,004} (0.004} {0.004)

Ges 0.00% 0.004 0.005 0.006
{0.004) (0.004) {0.004)} (0.004}

2 0.399 0.399 0.392 0.370*
(0.248) {0.252} (0.285) {0.219)

Dum75al -0.010** -D.010* -0.010** -0.011*
{0.003) {0.003) {0.003) {0.005)

Unemplaoyment equation
Ty 185.030 240.350 200.080 192.030
2

Gy 62.259 62.900 57.385 31379600

O 0.005 a.011 0.005 0.004

g . -1.873 1914 -1.837 -1.079%
{1.675) {1.094) {3.017) (0.531)

2, -4.529%* -5.AB1%* -4.537* 1152
{1.425) (1.468) (2.481) (0.457)

¢, 0.485 0.496 0.482 0.503*
(0.320) {0.328) {0.375) {0.203)

Dum74Q4 0.095%* 0.094%* 0.095%* 0.106**
{0.020) (0.020) (0.021} (0.027}

Dum75Ql 0.008%* 0.097%* 0.097%* 0.114%*
{0.026) (0.026) {0.028) {D.040)

Dum7sQz 0.088** 0.088%* 0.088%* 0.090**
{0.021) (0.021) (0.022) (0.032)

Wald test for fong run neutrality
g, (=0 2.871 2.777 3.053 4.991%
Diagnostics and goodness of fit

Log-likalihoad 1533.808 1541.251 1534.337 1386.907

a4y y,: 3.407 0.661 0.823 210.763**

Q)i = £.492 5.293 5.822 26.814%*

Q@ Ap,: 2.093 2.225 2.201 57.623%*

Normality ¥, : 5.862 5.360 5.954 11.577%*

Normalityy, - 11.381%* 11.170** 11.870%* 9.722%*

Normality Ap, 3,805 4,113 3.829 4.228

Note: Please see notes underneath Table 5.2.
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Figure 5.3: Trend, Cycle, the NAIRU and Core Inflation for the Trivariate Models with
the DS and HP output trend
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The three criteria discussed in section 5.4 are now used to assess the reliability of the
output gap estimates. The size of the revisions, as measured by the RMSE, is reported
in the top panel of Table 5.4. On average, the bivariate models yield the smallest
revisions, followed by the trivariate and univariate models. This suggests that the model
embodying the Phillips curve relation improves the reliability of the output gap
estimates. However, the RMSE becomes larger when the unemployment rate is
included in the model. This contradicts the assertion given by Riinstler (2002) that
output gap estimates can potentially be improved by including additional information in
the filtering process. One possible explanation for this is that cyclical fluctuations in the
unemployment rate may not be closely correlated with the output gap due to rigid
labour market institutions. It is also worth noting that the DS output trend specification
gives the smallest RMSE for the univariate and trivariate models. Although it is the
LLT which provides the smallest RMSE for the bivariate model, the DS trend yields the

second smallest value among the bivariate models. On the other hand, the models with




‘

the HP restrictions perform the worst, with considerably larger revisions compared to

the other three trend specifications.

The results of the unbiasedness test, presented in the lower panel of Table 5.4, show that
all univariate and bivariate models fail to produce unbiased filtered estimates. The size
of b, in the bivariate models is significantly reduced compared to the corresponding
estimates in the univariate models when the filtered estimates are tested against 12-
quarter ahead estimates. However, the coefficients 4, in bivariate models are all
significantly positive, suggesting that basing monetary policy on these estimates may
introduce pro-cyclical bias into policy making, as discussed in Orphanides (2001) and
Ross and Ubide (2002). Revisions are found to be orthogonal to filtered output gap
estimates when the trivariate models are estimated with the output trend specified as
RW, DS and LLT. One striking result is that the null of 4 =0 is rejected at the 1%

level for all the models where the HP restrictions are imposed. This again suggests that

these restrictions are inappropriate.

Table 5.5 reports the results of the mean out-of-sample forecasts. The h-step-ahead

forecast error is calculated as AP, . — AP, ,. With the exception of the AR model,

fr
the mean errors produced by the UC models appear to be negative, suggesting that these
models may have a tendency to underestimate future inflation rates. The forecasting
ability across all the models is evaluated in terms of the RMSE. The model that yields
the smallest RMSE provides the most accurate forecasts. The multivariate models with
the output trend specified as either RW, DS or LLT tend to produce smaller values of
the RMSE than the two benchmark models, especially in the early periods of
forecasting. However, the models with the HP restrictions have considerably larger
RMSEs than other models. This again suggests that these restrictions are not
appropriate for the data analysed in this chapter. The MDM statistics in parentheses are
calculated for the null hypothesis that the multivariate model is equivalent in forecasting
ability to the benchmark model. The alternative hypothesis varies depending on the
sign of the MDM statistic. If the statistic is positive, the alternative hypothesis is that
the multivariate model is better than the benchmark model in terms of forecasting
accuracy. Alternatively, if the MDM is negative, the alternative hypothesis is inverted.

The MDM test statistic is compared with the critical values of Student’s t-distribution
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with & —1 degree of freedom. The null of equality in forecasting performance between
the multivariate models and the AR model cannot be rejected across all reported
forecasting periods. However, the output gap estimates obtained from the multivariate
models with the RW, DS and LLT restrictions imposed appear to be marginally

preferable in the first and second step-ahead forecasts compared to the univariate model

of inflation.
Table 5.4: Revision: RMSE and Bias Tests
RMSE(*100)
Univariate Models RW DSiope LLT HP
y7t|r ¢ _{/7{“ 0.907 0.534 0.835 1.020
V7r|r+12 - tj}:]: 1.120 0.630 1.011 1.127
Bivariate Models RW DSlope LLT HP
trﬁ:l: N _V}rlr 0.531 0.486 0.475 0.744
.
‘ﬁ:lmz - y’}m 0.552 0.487 0.477 0.815
Trivariate Models RW DSiope LLT HP
!/7{‘t . _1:174; 0.605 0.508 0.618 0.765
1/7;“ . _V7r|r 0.680 0.655 0.694 0.832
Bias tests
Univariate Models RW DSlope LLT HP
~ — ok *
7= b -0.006 -0.001 -0.004 0.000
st e ¢ (0.002) (0.001) (0.002) (0.001)
b] -0.149 -0.06% -0.092 0.714%*
(0.132) {0.077) {0.135) {0.096)
-~ - * 3k * %
R, b, -0.009 -0.001 -0.005 -0.001
a2l (0.002) (0.002) (0.002) (0.002)
bl -0.308* -0.562* -0.240 0.726%*
(0.137) {0.281) {0.151) (0.111)
Bivariate Models RW DSlope LLT HP
7, — 7 -0.000 0.001 0.001 0.000
W 7 b
fess Tl " (0.001) (0.001) (0.001) (0.001)
b1 0.117* 0.208** 0.216%* 0.422%*
{0.049) {0.056) (0.059) (0.120)
1,17 b= [/.} bo -0.001 0.001 0.001 -0.001
fher e (0.001) (0.001) (0.001) (0.001)
bl 0.104* 0.214** 0.227** 0.399**
{0.051) {0.056} (0.058) (0.125)
Trivariate Models RW Dslope LLT HP
1,17 , _1/7 b 0.000 0.001 0.001 0.000
et e ° (0001 (0.001) (0.001) (0.001)
bj 0.014 0.017 0.001 0.435%*
(0.074} (0.067) (0.074) {0.096)
7 — 7 -0.000 0.001 0.001 -0.001
7 7 b,
1z e " (0.001) (0.001) (0.001) (0.001)
bl -0.042 -0.026 -0.061 0.414**
(0.085) {0.079) {0.085) {0.131)

Notes: Standard errors are in parentheses. * denotes significance at the 5% level; ** denotes
significance at the 1% level.
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Table 5.5: Out-of-Sample Forecasts: Mean Errors and RMSE (*100)

Mean Errors

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8
Benchmark Models
AR model  0.045 0.040 0.028 0.044 0.047 0.038 0.078 0.066
Univariate  -0.060 -0.092 -0.111 -0.093 -0.093 -(,103 -0.071 -0.086
Bivariate Models
RW -0.060 -0.073 -0.090 -3.051 -0.089 -0.113 -0.079 -0.095
DSlope -0.065 -0.078 -0.097 -0,100 -0.101 -0.123 -0.094 -0.110
LLT -0.064 -0.07% -0.099 -0.104 -0.106 -0.132 -0.100 -0.117
HP -0.045 -0.052 -0.065 -0.061 -0.055 -0.070 -0.032 -0.050
Trivariate Modeis
RW -0.050 -0.061 -0.077 -0.080 -0.079 -0.102 -0.074 -0.084
Dslope -0.051 -0.062 -0.078 -0.081 -0.080 -0.109 -0.075 -0.094
LLT -0.049 -0.060 -0.076 -0.078 -0.077 -0.108 -0.072 -0.092
HP -0.040 -0.040 -0.062 -0.059 -0.049 -0.073 -0.034 -0.052
Root-Mean-5quared Errors
H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8
Benchmark Models
AR model 0.202 0.232 0.242 0.249 0.249 0.251 0.248 0.245
Univariate 0.222 0.247 0.261 0.251 0.256 0.262 0.260 0.262
Bivariate Models
RW 0.131 0,193 0.210 0.219 0.223 0.228 0.231 0.229
[1.018] [1.688] [-0.308] [0.342] [0.362]  [-0.040] [0.191) 10.298]
[1.839)* [1.878]* [0.303] [0:653} [0.943)  [1.002] [-4.637e-04] [0.684]
DSlope 0.182 0.193 0.210 0.218 0.222 0.227 0.230 0.227
{0.945]  [1.225]  [-0.367] [0.715]  [0.148] [-0.061]  [0.486] {0.331]
[1.861]* [1.728]* [0.178] [0.780]  [0.986] [0.270]  [0.129] [0.742]
LLT 0.181 0.193 0.209 0.219 0.223 0.229 0.231 0.228
[1.040] [1.583] [-0.244] [0.181) [G.242]  [-0.156] [0.415] 10.287]
[2.881]* [L.898]* [0.400] [0.755] {1.0407 [0.995] [0.083] [0.759]
HP 0.188 0.219 0.239 0.253 0.261 0.270 0.273 0.277
{-0.194] [-0.271] [-0.814] [-0.675] [-0.541] [-0.530] [-0.450] [-0.286}
[1.2468] [0.475] [-0.689] [-0.856) [-0.504] [-0.555] [-1.288] [0.311)
Trivariate Models
RW 0.170 0.159 0.216 0.227 0.237 0.244 0.246 0.242
[1.186]  [1.036]  [-0.489] [0.065] [-0.434]  [-0.294) [-0.059] [0.162}
[1.986]% [1.566] {0.115] [0.619] [0.221]  [0.448]  [-0.144) [0.421]
DSlope 0.171 0.200 0.217 0.228 0.238 0.245 0.247 0.243
[1.156] [1.018 [-0491] [0.040] [-0.412) [-0.309] [1-0.075] j0.133]
[1.975]* }1.549] [0.121] [0.608} [0,227] [0.419] [-0.152) [0.409]
LLT 0.170 0.199 0.216 0.227 .237 0.244 0.246 0.242
[1.172]  [1.058] [-0.492] [o0.050] [-0.409] [-0.295] [-0.075] [0.160]
[1.974]* [1.594] [0.111] [0.614]  [0.816]  [0.451]  [-0.153) [0.421]
HP 0.181 0.227 0.248 0.259 0.272 0.279 0.281 0.285%
[0.051] [-0.726] [-0.823] [-0.643] [-0.717] [-0.536] [-0.416) j-0.321]
[1.492] [0.153] {-0.843} [-1.062] [-0.838] [-0.577] [-1,137} [0.134]

Notes: Numbers in italic {roman) are the MDM statistics for the null that the multivariate model is
equivalent in forecasting ability to the AR (univariate) model. The MDM statistics are compared with a
student t-distribution with N-1 degrees of freedom. As a one-sided test is performed, the critical value
associated with 5% significance levels for N-1 =24 and N-1 =23 are 1.708 and 1.711, respectively, *
denotes significance at the 5% level.




5.6 Business cycie moderation

In this section, the multivariate models outlined above are modified to consider one of
the most striking changes in business cycles of industrialised countries, known as the
‘great moderation’. It is generally accepted that the volatility observed in economic
fluctuations has declined in most industrialised countries over the past two decades. A
significant body of research has been undertaken to identify the date and the possible
causes of this stabilisation. In the literature, 1984 is often cited as the point at which
this stabilisation occurred in the US. Several possible causes for the moderation of the
US business cycle have been put forward, including changes in economic structure,
improved monetary policy and the absence of major supply side shocks (Kim and
Nelson, 1999a; McConnell and Perez Quiros, 2000; Stock and Watson, 2002¢, 2003).
Blanchard and Simon (2001), van Dijk et al. {2002), Mills and Wang (2002, 2003a) and
Doyle and Faust (2005) have also found declines in output growth fluctuations in the

other G7 members, although the magnitude and dates differ across countries.

Identifying the possible causes of business cycle moderation is outside the scope of this
research. Instead, the objective of this section is to identify the degree to which output
fluctuations have declined in the euro area and to date the time at which this moderation
began. The model applied in this section was proposed by Proietti (2008), who
estimates a bivariate UC model of US output and inflation with time-varying variances

in the level and cycle disturbances. A binary variable, S,, is constructed to indicate the

degree of output fluctuations, with 1 denoting high volatility and 0 low volatility. S,

can be set either deterministically or modelled as a first-order Markov chain. This
section proposes a two-step procedure. In the first step, the break in the volatility of
euro area output growth is determined by the two-regime Markov-switching (MS)

volatility model using the MSVAR Ox package (Krolzig, 1998). Once the date of the

break is obtained, S, is set deterministically in the multivariate UC models. Output

growth is modelled as the following AR(2) process with a time-varying disturbance

variance.




Ay, = By + BAY _ + B Ay, + ¥ dumTdqd + y,dumT5¢1 + e, , (5.8)

e, ~ NID(0,(S,02 +(1-8)a2), S, =1{0,1}

ea

PI'[S, = 1!Sr—l =]]= Pus Pr[Sa = 0|Srk1 =0]= Poo -

The lag length is selected using the Box and Jenkins (1976) strategy. Two dummy
variables are also used to capture the effect of the first oil price shock. The magnitude

of the disturbance variance depends on S,. If §, =1, output growth is in the high
volatility state; likewise, if S, =0 it is in the Jow volatility state. The transition

between states follows a first-order Markov-switching process, govermned by the

constant transition probabilities, p,, and p,, . The smoothed probabilities of high

volatility estimated at time ¢ using the full-sample, plotted as a solid line in Figure 5.4,
suggest a high volatility state before 1993Q3 and a low volatility state thereafter. This
is consistent with the unstable macroeconomic situation observed in the euro area
during the earlier period. However, from 1993Q3 onwards, most countries had
recovered from the ERM crisis and the ratification of the Maastricht treaty further

encouraged economic integration among members.

Figure 5.4: Smoothed and filtered probabilities of high volatility regime
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The parameter estimates of this model are reported in Table 5.6: ¢ is twice the value
of &},. The presence of state shifts is also supported by the likelihood ratio statistic, as

the null hypothesis that o2, = ¢, is strongly rejected.




Table 5.6: Markov-Switching Volatility Model

Parameters estimates

B, 0.003** O ea 0.006**
(0.001) {0.000}
B, 0.291%* T 0.003**
(0.083) (0.000)
B, 0.157*
{0.077)
dumidqd 0.022%*
(0.006)
dum7541 -0.009
{0.008)
Transition probabilities and regimes
Py 0.99 Regime 1 1971:4 - 1993:2
P 1.00 Regima 2 1993:3 - 2005:4

AlC: -7.766 HQ: -7.689 SC:-7.578
Log-likelihood: 556.503

LR statistic (02 =2 ): 77 (1) = 16.996**

Note: Standard errors are in parentheses.

Given that the estimated date of the break is 1993Q3, S, is set to be 1 before 1993Q3

and 0 from then onwards. The time-varying variance modification is only applied to
multivariate models with the DS trend imposed, as these models provide the best fit to
the data compared with the nested models, as shown tn Tables 5.2 and 5.3. In addition,
since fluctuations in slope estimates appear to be considerably smaller than variances in
the level and cycle estimates, the time-varying variance is only considered for the level

and cycle disturbances, specified as

1, ~ NID{0,(5,0%, +(1-5, )02, ).

7

kl ~ NID(O’ (Sro-ifa + (1 - Sz )O-Azb ))

The parameter estimates of the bivariate and trivariate models with time-varying

variances are reported in Tables 5.7 and 5.8. In the bivariate model 0; and o, are

2

about six times larger than o, and o;, , respectively, However, in the trivariate model,

. . 2 . . . .
o, is about four times larger than a,,, while o, is about twelve times the size of o, .

br/s]
Therefore, it is not surprising that the likelthood ratio statistics of the null hypotheses

that o, =0, and o, = o, strongly reject for both models. The persistency of the

g nh
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output gap does not alter significantly by introducing a one-time break in the variances

of the bivariate specification. However, allowing for the break in the variances of the

trivariate model does notably increase persistency, with ¢ + 4, increasing to 0.96 and

the cycle period increasing from 28.4 to 35.5 quarters.

Table 5.7: Parameter Estimates and Diagnostics for Bivariate Mode! with Time-
Varying Variance

Output equation

infiation equation

ol 2
e 211.240 : 34.663
o2 2
- 36.044 ; 4.141F-05
2
O 10.792 o 0.284%*
2
Ot 92.373 {0.090)
2
Tis 14.953 B -0.220%*
¢ 0.823 {0.083)
m 0.006 O s 0.021*
¢, 1.545%* (0.010)
(0.385) w2 0.014
b -0.664** (0.010)
0137y 9 0.006*
Jo 0.814 (0.003)
271 f, 19463 O 0.004
DUmM75Q1  -0.012* (0.003)
(0.006)  Dum75Q1 -0.011**
Dum7404  -0.011% (0.003)
(0.006)

Waid test for long run neutrality: 6.551*
Log-likelihood: 1175.992
Q{4) y, :1.196

Q(4) Ap, : 13.378*

LR statistic (0, =0,, and 0}, =0}, ): 1 (2) =41.615*

Normality y,: 0.237
Normality Ap, : 0.349

Note: Standard errors are provided in parentheses.



Table 5.8: Parameter Estimates and Diagnostics for Trivariate Model of Output,
Unemployment and Inflation.

Output equation Inflation equation Unemployment equation
2 2 Cr2
O pa 275.66 o, 23.137 wn 6.841E-07
2 ] 2
O 63.763 o, 16.598 Cup 47.394
2 2
O¢ 0.561 8,0 0.169* Tk 0.003
2
epd 64.564 (0.093) 8.0 1.123
z
O 5.310 O -0.140* (2.760)
¢ 0.940 (0.085) &, -8.150%*
m 0.005 Sy, 0.016 (2.026)
& 1.794%% (0.012) Dum74Q4  0.108**
(0.100) Iyz 0.015 (0.025)
¢, 0.830%* (0.012) Dum75Q1 0.112**
(0.169) Oy 0.004 (0.032)
p 0.911 (0.004) DUM7502  0.099**
27/ 1. 35.488 ¢ 0.005 (0.026)
Dum75Qt  -0.010 (0.004)
(0.008) ¢, 0.426
Dum74Q4 -0.011 (0.253)
(0.008) Dum75Q1  -0.010%*
{0.003)

Wald test for long run neutrality: 2.245
Log-likelihood: 1577.065

Qf4) y,:3.218 Normality v, : 0.571
Ql4) u,: 3.473 Normality u,: 1.513
Ql4) Ap,: 1.024 Normality Ap,: 5.366

2

LR statistic ( o*ja =g, and or =05 ) 27 (2) =71.628**

Note: Standard errors are provided in parentheses,

5.7 OQufput gaps and monetary policy

Understanding monetary transmission mechanisms for the euro area is crucial for
stimulating economic growth in member states and maintaining stability in the euro area.
It is a wide ranging topic that has attracted the attention of policymakers and academics
alike. There has been a growing body of literature analysing the effectiveness of
alternative monetary transmission mechanisms for individual countries and for the euro
area as a whole (Mojon and Peersman, 2001; van Els ef al., 2002; Angeloni et al., 2002;

Angeloni and Fhrmann, 2003). Different transmission mechanisms, for example




through the banking sector and financial markets, have been discussed extensively.

This section focuses on evaluating monetary transmission through the interest rate
channel (IRC), as this is the conventional way through which monetary policy operates
in large and relatively closed economies, such as the US and the euro area. The IRC is
characterised as the impact that changes in short-term interest rates have on components
of aggregate demand, the output gap and, in turn, on prices through the Phillips curve
relationship. The response of the output gap to policy controlled interest rates plays an
important role in achieving the ultimate objective of price stability. Therefore, Taylor
(1993) proposed a simple monetary policy rule that the federal funds rate should rise by
1.5 percentage points in response to a ! percentage point increase in the inflation rate,
and by 0.5 percentage points in response to a | percentage point increase in GDP above
its potential. The empirical reaction functions estimated by Clarida ef al. (1998) suggest
that central banks in the US, Germany and Japan all partly respond to the output gap. In
a model estimated for an aggregate of five EU countries, Peersman and Smets (1999)
demonstrate that, even if the central banks’ sole objective is to stabilise inflation, an
effective Taylor rule will include a strong response to the output gap due to its influence
on future inflation. However, Orphanides and van Norden (1999) highlighted the risk
of implementing tnappropriate policies when using real-time output gap estimates, as

these are subject to significant alterations due to data and statistical revisions.

As stable prices can significantly reduce the level of uncertainty in an economy and
promote the efficient allocation of resources, the European Central Bank’s (ECB)
primary objective 18 to maintain price stability, i.e., to ensure an annual increase in the
Harmonised Index of Consumer Prices (HICP) of below 2%. In order to achieve this
goal the ECB implements a two-pillar monetary policy strategy to forecast and analyse
inflation rates at different time horizons. One pillar is ‘economic analysis’, which
assesses the short to medium term determinants of price developments, such as the
output gap, unit labour costs, exchange rates and asset prices. The second pillar,
‘monetary analysis’, considers the medium to long run link between money and prices,

and provides a long-term cross-check for the first pillar,

In this chapter, the responsiveness of the output gap to changes in real interest rates is
evaluated using the multivariate UC models with the DS output trend imposed, as these

models are able to produce relatively reliable output gap estimates and provide the best
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fit to the data. In doing so, the first-differences of the real interest rate are inserted into

the output equation of the bivariate and trivariate models:

V=M HY (5.9)
l//r+1 = ¢I{//£ + ¢2[//£~l + i'A(j!r - ﬂ'f) +kr+] * kt ~ NID(O? O-I.z) H

Moy =+ B +m+n,,, n,~NID0,0}),
By =88, +£,,, & ~NID(©0,52).

The real interest rate is obtained by subtracting ex ante inflation expectations from the

nominal interest rate. i, is the three-month interest rate on an annualised basis, and 7,
is the annual rate of inflation, calculated as In”, —-In2_,. 7/ is expected inflation at

time ¢. Two proxies for z; are used. First, z; is calculated as the average value of the
previous four quarters inflation rates, on the assumption that agents have adaptive
expectations of future inflation rates. Second, 77 is simply set to be the observed

inflation at time ¢, with agents assumed to have rational expectations.

The bivariate and trivariate models are re-estimated over the full-sample and two
subsamples (pre-1993Q3 and post-1993Q3), with the estimates of 4 measuring the
sensitivity of the output gap to changes in the real interest rate. The choice of 1993Q3
is consistent with the date when business cycle moderation was first observed in the
euro area, Parameter estimates of bivariate and trivariate models with the DS output
trend for the full-sample and two subsamples are reported in Appendix B5. The trend
components in the second subsample are more persistent than those in the first
subsample. As the estimated slope coefficients of potential output growth are almost
equal to 1, the output trends are specified as LLTs in the second subsample. It should
be recalled that the second subsample is very short, which may reduce the accuracy of
the parameter estimates. Moreover, strong autocorrelation is found in the residuals.

The analysis in this section focuses on the parameter estimates A and &, (L), presented

in Table 5.9, that measure the effectiveness of monetary transmission through the IRC.
If changes in the real interest rate have an impact on the output gap, A is expected to be

negative and statistically significant. Although all the estimates of 4 have the correct

2
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sign, it is unsurprising to find that estimates of A are insignificant in the models
estimated using the full-sample and the first subsample. This is due to the diverging
inflation rates caused by the relatively volatile macroeconomic situation during the
1970s and 1980s. However, parameter estimates of 1 become significantly negative
during the second subsample. This is broadly in line with Angeloni and Ehrmann
(2003), who find that the IRC across EMU member countries became more
homogenous as a result of increased comovement of national interest rates after 1995,
Focusing on parameter estimates over the second subsample, when agents have rational
expectations of future inflation rates, it is found that a 1 percentage point increase in the
real interest rates reduces the output gap by about 0.2% in the next quarter. The output
gap has only a transitory impact on inflation, suggesting that a 1 percentage point
increase in the output gap raises the inflation rate by 0.1-0.15%. The values of the
corresponding parameter estimates are slightly lower when agents are assumed to have

adaptive expectations. Parameter estimates for &

s and &, are found to be less

significant in the trivariate model estimated over the two subsamples,

Table 5.9: Selected parameter estimates
Bivariate Model with DSlope
A BWO Q;UI 9*/!(1)
RE 1971Q3-200504 -0.098 0.214%%  _0.184* 0.030*
(0.118)  {0.081}) {0.077)  [6.528]
1971Q3-199302 -0.069 0.266%* -0.211%* 0.055
{0.081)  {0.078) {0.073)  [2.461]
19930Q3-200504 -0.243** 0.170** -0.155%  0.01%
(0.082)  {0.074) {0.069}  [3.586)
AE 1972Q3-200504 -0.047 0.267** -0.189* 0.078*
(0.089)  {0.084) {0.076) [4.486)
1972Q3-18930Q2 -0.107 0.242** -0,175* 0.067
{0.114)  {0.091) {0.089)  [3.409)
1883Q3-200504 -D.202* 0.147*  -0.137* 0.010
(€.103) (0.072)  {0.068) 11.289]
Trivariate Mode! with DSlope

/"l QU/U 9;:/1 gw(l)

RE 1871Q3-200504 -0.046 0.172*  -0.148% 0.024
(0.082)  (0.067) (0.066)  [2.719]

1971Q3-1993Q2 -0.031 0.191*  -0.161 0.030
(0.094)  {0.0%0) (0.089) [1.568]

1593Q3-2005C4 -0.233** (.144 -0.132 0.012
{0.082)  {(0.080) {0.076}  [1.825]

AE 1972Q3-200504 -0.061 0.152*  -0.127% 0.025
{0.064)  [0.065) (0.064)  [3.432]

19720Q3-1993Q2 -0.047 0.161 -0.131 0.030
(0.085)  (0.095) (0.093}  [1.674]

1983Q3-200504 -0.175* 0.122 -0.108 0.053
(0.085) (0.070)  [0.068) [1.170]

Notes: Standard errors are in parentheses; Wald test statistics are reported in squared-parentheses;
AE = Adaptive Expectation, RE= Rational Expectation.




5.8 Conclusions

In this chapter, methodologies which combine a statistical trend-cycle decomposition
with macroeconomic relations are used to estimate potential output and the output gap
for the aggregate Euro Area. The first model used is a bivariate specification of output
and CPI inflation, in which the inflation equation is based on the Gordon triangle model
of mflation. The second model is a trivariate specification of output, CPI inflation and
unemployment.  Following Proietti ef al. (2007), four alternative output trend
specifications (i.e., RW, DS, LLT and HP) are applied to both the bivariate and
trivariate models, giving eight specifications and, in turn, eight output gap estimates.
Three criteria are used to analyse the reliability of the output gap estimates: the size of
the revisions, the unbiasedness of the filtered output gap, and inflation forecasting., The
results show that the bivariate model of output and inflation outperforms the univariate
model of output decomposition. However, including the unemployment rate in the
analysis does not significantly improve output gap estimates according to the three
criteria used. Different specifications of trend output can have a significant impact on
both a model's goodness of fit and the reliability of output gap estimates. The bivariate
and trivariate models with the DS output trend imposed provide the best fit to the data
and give relatively reliable oufput gap estimates. However, the models with the HP
restrictions imposed are strongly rejected due to pronounced autocorrelation in the

residuals. These models also produce less satisfactory output gap estimates.

Once the models with the DS output trend imposed are identified as being the most
appropriate specifications, they are then used to investigate business cycle moderation.
To do this, time-varying variances are introduced to both level and cycle disturbances,
with the structural break set to be 1993Q3, which is detected by a two-regime MS
volatility model. The likelihood ratio statistics for the null hypothesis of time-invariant

disturbance variances are strongly rejected in both the bivariate and trivariate models.

We then examine the effectiveness of monetary policy transmission through the interest
rate channel for the aggregate Euro Area. The output gap estimates obtained from
multivariate models with the DS output trend imposed exhibit a significant response to
changes in real interest rates over the second subsample 1993Q3 to 2005Q4. This

suggests that the monetary policy pursued by the ECB may have had an impact on
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stabilising euro area wide economic fluctuations and inflation rates through the interest

rate chanpel in the run-up to EMU and thereafter.
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Appendix A5

A5.1 State-space Form of Bivariate and Trivariate Models

For the estimation process, the bivariate unobserved-component model of equations
(5.1), (5.2), (5.3) and (5.4) is specified in state-space form, which consists of a
measurement and a transition equation. The measurement equation relates the observed

variables, Y, , to the state vector of unobserved components, «, . The transition equation

defines the dynamic behaviour of 4, .

Y,=Za,+8X,+Ge,, e ~NID(0,I) (AS.1)
a, =Ta, + Hu,, u, ~ NID(0,I) (A5.2)

where ¥ =( ,,AF,‘)T and X, =(ANeer,,M\f’eef;_],/_\Cornpfr;,/_\Compz;_l)T are known.
The state vector a, =(g,8,,v,.¥, .7, )T contains unobserved components. ¢, =¢,/0,

and u, =[77!/0',?,ff/ag,k,/'cr,{,nn/aﬁ]T are disturbances. Z,7,G and H are time-

invariant matrices containing the model’s hyperparameters,

T, 0., 0
10100 ooz 11 ¢ ¢
Zz[o 000 1}“ O T, Ooan L= ¢ ’73':[11 (ﬂ
T
0., I 1
o, 0 0 0]
0 o. 0 0
9g/0¢1 + 9(,'/1 0 G+
T, = iy ,G=| |,H={0 0 o 0
i O‘S
vers 0 0 0 0
0 0 8,0 o,




S

a, =Wyd + Hu, is the initial condition of the state vector, where W

and

o O O = O
- R e B e B

O O DO =

8 ={ut,, f,,7, ), containing non-stationary elements in a, , that has a diffuse prior. The

unconditional distribution of the cyclical components is initiated with H|

Ho -

In the trivariate model, observed and unobserved components are contained in the

Y

i

AP,

vectors .

=(y{’uf’ )T aﬁd ar :(#!’#Hr’ﬁl’ﬂﬂt’l//."w(—l’yjur’vjm—l’Tt)T

, respectively.

The disturbances in the measurement and transition equations are e, =¢, /o, and

H., = [ﬂ!/arpnrsr/arzr;?fl/G‘f5§rfr/o-u,=5kt /O.k?knl/o-ﬂk’nﬂ /o-r ]T . The tﬁne-inv
Z,T,G and H are specified as

1000 1 0 000 oTﬂ O;;z gdxz gm
Z=/001 0086, 6, 1 0 0],T= x4 v 2 V|
0000 06 0 00 1 0, 0 T, 0,

O T, 0, 1
1010
7 = 01 0 1} ’ Y;ﬂz!:ﬁﬁ] ¢2:} T, =l:¢uo ¢m} T, =}:9,f,0¢1+9m
0990 Lo Lo 6,9,
00 0 1
6, 0 0 0 0 0 0]
0 Ty 0 0 0 0 0
0 0 o 0 0 0 0
0 0 0 o, 0 0 0
H=l0 0 0 0 o, 0 0
6 0 0 0O 0 0 0
¢ o 0 0 0 c, O
o 0 0 0 0 0 0
_O 0 0 0 Qwo’k 0 Ty |
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A5.2 The Augmented Kaiman Filter

The Kalman Filter (KF) is a recursive algorithm that computes the minimum mean

squared error (MSE) estimate of «, , together with its MSE maitrix, based on available

information up to and including time ¢. The KF consists of two steps: prediction and

updating. Initially, the optimal estimates Y, o and g,  are obtained, based on the

1[{—1

previous information set at £~1. Once Y, is observed at time ¢, a, _ is updated using

t]e=1

+ K v, , where

tle-t Ve

the prediction error, v, =Y, —-Y

g following the equation: a, =a
K, is known as the Kalman gain. Depending on the information set used, the filtered

and smoothed estimates of g, are obtained, defined as a,, and Ay @ is estimated

th

based on information available up to time ¢, while ayr 18 based on the full-sample

period from 1 to 7.

The augmented KF is used in this chapter as the state components, such as z,, 4, andr,,

are non-stationary. The recursive equations of the augmented KF are as follows,

v, =Y, -Za, ,, K, =TR, Z"F,

F, =ZF), 2" +GG', V,=~Z4,.,,

g, =q,_,+vVFv, Ay = T4y + KV,

Ay = T‘sz!k_l +K v, (S{,Sl ) =(s,_, ,S,_i)-i— VIE v,V ),
Py =TP TT+HH -K FK/,

e+t

for t=1..,T and with 4, =-7,, q,=0 and (s,,5,)=0. The one-step-ahead

prediction errors of the observation and state vectors and their corresponding MSE

matrices are given by,

-~ _ -1
v, =V, -VIS.'—I‘Sz—l ’

- 1T
F=F+V. SOV,
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-~ A

=a

-1
AT A

a:{f—l fe-t1 fe-1

P| _}:Z\t I+A:|r 1Sl 1A1|1 1
The updated (filtered) estimates of the state vector and its covariance matrix are
obtained as,

-4

a ST+ By ZTE v - V,8]s,),

g = arlf—l £]e-1

=P, P

de=1 Ll

P

e

Z'F" ZP|[1 (A,|,,+P ZTF-*Vls;‘(A,!”+P ZTF“V)

tir-1 #li-1

The smoothed estimates, ar» are considered to provide a more accurate estimate of

a, than the filtered ones, since they use the full-sample of observations. The following
equations can be iterated backwards for +=7-1,7-2,..,1 to obtain the smoothed
estimates, with the mitial values r, =0, R, =0 and N, =0 (Bryson and Ho, 1969, de

Jong, 1989).

na =L+ 2y, R.,=LR+Z'F'V,
N_ =LNL+Z'F'Z,

_‘Ar|.t-1S;]sT +Pflr 1( _‘R!—ISTTIST)’

T
r
.'ir—l'Al—Jqu—l ( rir ! r I)S ( r|r a7t |1 1 R, l)

-P

a:|T = a!|f—l

P, =F

1L

T

where L, =7 -K,Z". The smoothed estimates of the disturbances are given by

Hu, “—'HHT("}-I —R[—]S;IST)’

Ge, =GGT[F (v, ~V,5;'s; )= K] (1, - RS7's, )|



A5.3 The Diffuse Likelihood Function

The discussion above assumes that the model’s parameters are known. However, in

most cases, these parameters are unknown and need to be estimated. Given these

estimates, the unobserved components in the state vector, ¢, , can then be computed
iteratively. Since the initial condition, «,, and the disturbances, {e,,u,}, are assumed to

have multivariate normal distributions, the distribution of Y, , conditional on past

information, is also assumed to be normal. The likelihood function can be obtained

from the augmented KF using v, and F, based on the prediction error decomposition,

The diffuse likelihood function is used, as ¢ has a diffuse distribution {de Jong, 1991),

—- 1{ & .
105 Ty 120 =3 S0 10 |+, 575,

=\ i=l
The unknown parameters in the model are stacked in a vector Z. For a givenE= =",
the KF calculates the log likelihood value. The maximum likelihood estimates of the

parameters can be obtained by maximising the log likelihood with respect to =.

A5.4 Unconditional Forecasting

The one-step-ahead forecast of the state vector, & and the corresponding MSE

TH|T 2

matrix are obtained from the augmented KF at time 7T,

A _ -1
Arojr = Grajr Ar 77 Sy,
r — -1 4T
Pm[r - P;m\r +AT+1\TST A7'+1;r

Given ar,,,, the unconditional H-step-ahead forecast of the inflation rate and the

corresponding MSE can be obtained from iterating on the transition and measurement

equations as follows, where H =2.3,....5.
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a =Ta

T+h|T T+h-1|T
B =TP., T"+HH"
T+ijr T A4 Teb-lT
YT+h|T = ZéT+h|T +dX,,,
. . T T
Frm[r = ZPT+}1|TZ +GG

The second element in the vector fmlr is the H-step-ahead forecast of the inflation rate.




Appendix B5

Table B5.1: Parameter Estimates and Diagnostics for Univariate

RW DSlope LLT HP
2
o, 169.650 167.360 166.800 0
2
Ts 0 0.001 0.225 0.929
2
o 61.463 62.017 62.564 1486.800
¢ 1 0.651 1 1
m 0 0.006 0 0
@, 1.739%* 1.735%* 1.715%* -
(0.012} (0.013) (0.014) .
0, 0.762+%* 0.761%* 0.743%* -
{0.022) (0.022) {0.025) ;
Dum75Q1 0.011%* -0.011%* 0.011%* 0.024
{0.004) (0.004) (0.004) (0.013)
Dum74Q4 -0.009* -0.009* -0.009* -0.007
(0.004) (0.004) (0.004) (0.013)
Diagnostics and goodness of fit
Log-likelihood 535.573 542.480 535.880 399,769**
Q(a); 1.508 1172 1.435 299.016 **
Normality test: 6.295* 4110 6.562* 23.344%*

Note: Standard errors are in parentheses, The variance parameters are multiplied by 107,




Table B5.2 Parameter Estimates for Bivariate Model (7:," =7, )

1971Q3-200504

197103-1993Q2

1993Q3-200504

Qutput equation with DSlope

O_Z
n 138.42 177.520 49.718
3
O 11.420 7.379 3.928
2
gy 64.808 102.201 0.021
¢ 0.831 0.801 0.927
m 0.006 0.006 0.005
) 1.588*+ 1.666%* 1.947%*
(0.026) (0.036) (0.002)
s -0.685** -0.728%* -1.000%*
(0.046) (0.064) (0.000}
o 0.828 0.853 0.999
2z /1. 22,035 28,695 27.233
A -0,069 -0.098 -0.243%%
(0.081) {0.118) (0.082)
Dum75Q1 -0.012* 0.013* -
(0.005) {0.006) -
Dum74Q4 -0.011** -0.011** -
(0.003) (0.003) -
Inflation equation
2
o, 35.455 30.804 18.386
2
: 5.49E-04 14.920 0.000
w0 0.266** 0.214%* 0.170%*
(0.078) (0.081) (0.074)
O, -0.211%* -0.184% -0.155*%
(0.073) (0.077) {0.069}
Sy 0.022* 0.015 0.021*
- (0.010) (0.013) (0.011)
Oua 0.016 0.026* -0.013
{0.010) (0.013) (0.012)
Ser 0.006* 0.004 0.012**
{0.003) {0.004) {0.004)
e 0.004 0.005 -0.001
{0.003) {0.004) (0.004)
Dum75Q1 -0.011* -0.011* -
(0.005) {0.006) -
Wald test for long run neutrality
g,1y=0 6.528* 2.461 3.586
Diagnostics and goodness of fit
Log-likelihood 1158.602 771.462 443,052
Q4) y,: £.947 2.979 7.261
Q4) Ap,: 9.536 10.866 4.391
Normality y,: 4.583 0.824 1.044
Normafity Ap,: 2.122 1.226 2.821




Table B5.3 Parameter Estimates for Bivariate Model (ﬂf =7, )

1971Q3-2005Q4

1971Q3-1993Q2

199303-2005Q4

Output equation with DSlope

0_2
" 142.22 234.95 39.980
O_Z
£ 10.414 4.0433 12.900
2
Oy 61.078 54.118 5.317
¢ 0.826 0.808 1
Ht 0.006 0.006 0
¢, 1.591** 1.752%* 1.880%*
{0.019) (0.021) {0.008)
#, 0.733** -0.871%* -0.955%*
{0.036) (0.014) {0.004)
o 0.855 0.933 0.977
2z ! f, 16.577 17.805 22.604
A -0.047 -0.107 -0.202*
{0.089) {0.114) {0.103)
Dum75Q1 -0.011* -0.011* -
{0.005) (0.007) -
Dum74Q4 -0.011** -0.011%* .
(0.003) (0.003) -
Infiation equation
2
a, 32.445 34.826 20.032
2
o, 0.000 1.141 0.001
o 0.267%* 0.242%* 0.147*
(0.084) {0.091) {0.072)
b, -0,189* -0.175* -0.137*
(0.076) {0.089) {0.068)
Sy 0.023* 0.016 0.021*
{0.010) (0.013) (0.013})
Sys 0.015 0.026* -0.016
{0.009) {0.012) (0.013)
oy 0.007* 0.005 0.013%*
{0.003) {0.004) {0.004)
Ses 0.004 0.005 -0.002
{0.003) (0.004) (0.004)
Dum75Qi -0.010* -0.010 .
{0.005) {0.007) .
Wald test for long run neutrality
8,1=0 4.486* 3.409 1.289
Diagnostics and goodness of fit
Log-likelihood 1127.044 679.566 444285
Qi) y,: 5.637 3.624 4.648
Qi4) Ap,: 9,939 11.345 4.339
Normality y,: 5.627 0.996 0.774
Normality Ap, : 2.149 0.542 0.279
225




Table B5.4 Parameter Estimates for Trivariate Model (7z'f‘ =7, )

1971Q3-2005Q4 197103-199302 19930Q3-2005Q4

Output equation with DSlope

7 149.080 201.860 50.864
0_2
£ 4.920 8.476 1.685
2
o, 48.178 69.642 0.078
¢ 0.793 0.786 1
m 0.006 0.006 0
&, 1.768%+ 1.742%* 1.051%*
(0.071) (0.070) (0.002)
@, -0.818** -0.805** -0.999**
{0.129) {0.129) (0.000)
£ 0.904 0.897 0.999
2zl f, 29.439 25.894 28.481
A -0.046 -0.031 -0.233**
" (0.082) {0.094) (0.082)
Dum74Q4 -0.010 -0.010 -
(0.006) (0.007) -
Dum75Q1 -0.012* -0.012* -
(0.006) (0.007) -
Infiation equation
2
O, 24.325 14,540 19.928
2
o, 16.027 30.681 0.000
B0 0.172% 0.191% 0.144
(0.067) {0.090) (0.080)
O -0.148* -0.161 -0.132
(0.066) (0.089) (0.076)
3y 0.016 0.005 0.022
{0.012) (0.015) (0.014)
S xa 0.015 0.028* -0.007
(0.012) (0.015) {0.014)
8¢ 0.004 0.002 0.008
(0.004) {0.004) {0.007)
Oey 0.005 0.005 0.001
(0.004) (0.004) {0.006)
s, 0.397 0.645* 0.272
(0.311) (0.331) (0.387)
Dum75Q1 -0.010** -0.010%* -
{0.003) (0.003) .
Unemployment equation
2
Ty 359.700 0.025 0.000
2
T 63.706 87.954 270.950
2
T i 0.010 0.011 0.012




Table B5.4 Parameter Estimates for Trivariate Miodel (Continued)

8, -1.995 -1.445 -0.030

(1.344) (1.791) {1.287)
6., 4.336%* -4.934% -2.867*

(1.251) {1.821) (1.241)
P 0.515 0.583* -0.826*

(0.344) {0.317) (0.369)
Dum7404 0.005** 0.096** -

(0.021) {0.024) ;
Dum75Q1 0.099** 0.101** -

{0.026) (0.031} -
Dum75Q2 0.090%** 0.092** -

{0.021) {0.026) .

Wald test for long run neutrality
8,()=0 2.719 1.568 1.825
Diagnostics and goodness of fit
Log-likelihood 1541.838 940.731 629.744
Q4)y,: 0.538 0.360 108.463**
Qld)u, . 4576 3.046 93.770**
Q(4)Ap,: 2.074 0.911 140.476**
Normality , : 5.492 0.516 5.927
Normality ¢, : 16.946** 7.142% 4.606
Normaiity Ap, 4,286 3.217 2.156
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Table B5.5 Parameter Estimates for Trivariate Model (x!" =T, )

1971Q3-200504

19710Q3-1993Q2

1993Q3-2005Q4

Output equation with DSlope

" 152.130 202.57 50.739
2
4.524 8.6691 1.977
2
oy 43.189 67.472 1.656
¢ 0.787 0.774 1
m 0.006 0.006 0
&, 1.846%* 1.818** 1.940%*
{0.047) {0.077) (0.002)
&, -0.892%* -0.875%* -0.992%*
(0.094) {0.148) (0.002)
£ 0.945 0.935 0.999
2zl f, 29.402 26.399 28.481
A -0.061 -0.047 -0.175*
(0.064) (0.085) {0.085)
Dum74Q4 0.010 -0.009 -
(0.006) (0.008) -
Dum75Q1l -0.012* -0.012 -
(0.006) {0.007) .
inflation equation
2
o, 24.533 30.290 20.140
2
o, 14.501 13.595 0.000
0 0.152% 0.161 0.122
(0.065) {0.095) {0.070)
0, 0.127* -0.131 -0.108
(0.064) (0.093) (0.068)
Sui 0.017 0.006 0.022
(0.012) {0.015) (0.014)
Sxa 0.014 0.027* -0.008
{0.012) (0.015) {0.015)
Oy 0.004 0.003 0.007
{0.004) (0.004) (0.005)
Ocs 0.005 0.005 0.000
(0.004) (0.004) {0.0086)
s 0.361 0.647 0.307
{0.263) {0.499) (0.403)
Dum75Q1 -0.010%* -0.010%* .
(0.003) {0.003) -
Unemployment equation
Tn 393,740 229.39 0.107
2
Cup 56.746 84.903 175.920
2
" 0.010 0.010 0.010




Table B5.5 Parameter Estimates for Trivariate Model (Continued)

.0 2,117 -1.737 1,142

(1.614) (1.511) (1.134)
g, 4.055* -4.303* 5.276%*

(1.289) (2.395) (1.527)
Pa, 0.530 0.594* -0.753*

{0.348) (0.325) (0.477)
Dum74Q4 0.091** 0.094** -

{0.020) (0.030) -
Dum75Q1 0.092%* 0.085%* -

{0.024) {0.024} -
Dum75Q2 0.084%* -0.010** -

{0.019) {0.003) -

Wald test for long run neutrality
g,1)=0 3.432 1.674 1.170
Diagnostics and goodness of fit

Log-likelihood 1500.266 897.831 629.443
Q4 y,: 0.499 0.379 45.497**
Qd)u, 4.776 3.117 30.146%*
Qi4) Ap, : 1.974 2.210 122.583%*
Normality ¥, : 4641 0.164 4317
Normality u, : 17.606** 5.522 5.737
Normality Ap, 3.930 2.996 22.511%*




Epilogue

The optimality and sustainability of the euro area have frequently been challenged by
academics and policymakers. Optimal Currency Area (OCA) theory provides the
theoretical foundations for analysing the appropriateness of a currency area. One
important prerequisite highlighted in the OCA literature is that member states should
share a high degree of business cycle synchronisation, as a common monetary policy
cannot offset country-specific shocks.  Evaluating synchronisation of cyclical
fluctuations is mainly an empirical issue. A large number of empirical studies have
been carried out to assess the level of cycle synchronisation before and after the
introduction of the euro. The survey presented in Chapter 1 takes stock of the existing
literature on evaluating business cycle and growth cycle synchronisation between
previous members of the ERM and members ‘of the EMU. Chapter 1 co.ncludes that
there is no consensus on whether or not national cycles are synchronised to the degree
required for a common monetary policy to benefit all members. There is also no
consensus as to whether or not there is a positive correlation between more
synchronised cyclical fluctuations and fixed exchange rate regimes or a monetary union,
as suggested by the endogenous OCA theory. Therefore, there is room for further
research at an applied level. This thesis revisited the issue of evaluating business cycle
synchronisation in the euro area and brought in time-series models that may overcome

some of the drawbacks inherent in the approaches taken in the existing literature.

Most studies that measure business cycle synchronisation use turning points identified
from individual macroeconomic series, such as industrial production and real GDP.
This contradicts the classical business cycle definition proposed in Bumns and Mitchell
(1946) that a cycle should consist of expansions occurring at about the same time in
many economic activities, followed by recessions, contractions and revivals. Therefore,
Chapters 2 and 3 employ approaches that can date business cycle turning points using
multivariate information. It is hoped that including more variables containing business
cycle information in the dating process may produce more accurate turning points and,
in turn, improve the accuracy of measuring cycle correlation. Synchronisation of
business cycles 1s evaluated between the aggregate euro area, six core EMU countries

(Austria, Belgium France, Germany, ltaly and the Netherlands) and two peripheral
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EMU countries (Spain and Finland). Three non-EMU countries (the UK, the US and
Canada) are also included in the analysis to benchmark the evolution of synchronisation

that has occurred in the euro area.

Chapter 2 applied Stock and Watson’s (1989, 1991, 1993) single DF model to four
coincident macroeconomic time-series, including real GDP, industrial production and
civilian employment, to estimate a composite index for each country in the analysis.
This index is a weighted average of four series, and is thus considered to be a more
appropriate indicator of aggregate economic activity than any individual economic
variable. Modifications have been made in the DF model when the series are
cointegrated, where a two-step estimation procedure has been proposed. In the first step,
the number of cointegrating vectors and values of the cointegrating coefficients are
determined by Johansen’s (1995) procedure. In the second step, conditional on the error
correction terms obtained in the first step, the adjustment parameters and parameters in
the DF model are estimated. Harding and Pagan’s (2000, 2001, 2002) BBQ algorithm
is then employed to date turning points in the composite index. These turning points
highlight periods of recession and expansion for the overall economy. Synchronisation
is evaluated in terms of two criteria, the concordance of turning points and the similarity
of business cycle phases over the whole sample period (1970s to 2000s).! The changes
in synchronisation are also evaluated over two subsamples, pre-1991Q! and post-
1991Q1, as a number of events occurred around this midpoint, such as German
reunification in October 1990, the ERM crisis in 1992-1993 and the ratification of the
Masstricht treaty in November 1993, all of which could have been expected to have a
significant impact on the synchronisation of euro area business cycles. Maps of
business cycle distances, various concordance indices and a linear regression approach
proposed by Harding and Pagan are used to evaluate the coincidence of turning points
between the countries analysed. Four cyclical features, measuring business cycle length,
amplitude, steepness and welfare gains, first proposed in Harding and Pagan (2000), are
computed to describe the similarities and differences of business cycle phases. The
results indicate that the core EMU countries share more synchronised business cycle
turning points with the aggregate euro area than with the peripheral and non-EMU

countries. However, this may simply reflect the large weights core EMU countries are

! Sample periods vary across countries depending on data availability: see Table A2.1 in Chapter 2,
Appendix A2 for details.




assigned to them when constructing the aggregate euro area data. The results also

suggest that the three non-EMU countries have diverged from the euro area over the
two subsamples. However, there is no common tendency for euro area members to
become either more or less synchronised with the aggregate euro area. France and two
of the peripheral countries, Finland and Spain, show a significant increase in
synchronisation with the aggregate euro area. However, no further convergence was
observed between the aggregate euro area and the other four core EMU countries
(Austria, Belgium, Germany and the Netherlands). This finding is broadly in line with
Camacho et al. (2006), who conclude that the introduction of the euro had not
significantly increased synchronisation across the euro area, and that the
synchronisation among member couniries occurred prior to the formation of the EMU.
A comparison of the four cycle features indicates that significant differences exist in
business cycle phases among euro area countries, and that the differences across
expansionary phases have increased over time. This reflects the unbalanced growth
across euro area countries. Short and mild expansions observed in Germany and Italy
led to slow economic growth while, on the other hand, the steep and long lasting
expansion observed in Spain brought huge welfare gains to the Spanish economy.
Overall, the result obtained in Chapter 2 contradicts the argument proposed in the
endogenous OCA theory that a monetary union will result in more synchronised

business cycles across member countries.

Chapter 3 considers dating business cycle turning points for the same countries analysed
in Chapter 2 using the MSDF model that incorporates nonlinear dynamics into the
estimation of the composite index by combining the DF model with the Hamilton (1989)
MS model. Therefore, the MSDF model allows two stylised facts of the business cycle
to be analysed — the comovement of economic variables throughout the cycle and the
asymmetry of recessions and expansions. Three modifications were made to the MSDF
model according to the properties of the data. First, when variables are found to be
cointegrated, independently estimated error correction terms are included in the MSDF
model. This is the same modification which is made to the DF model. Second, an
additional regime is included in the MSDF model for France, as the French business
cycle dynamics exhibit three phases, recession, moderate-growth and high-growth,
rather than the two phases traditionally observed. In general, the MSDF model is more

successful at identifying business cycle turning points for larger economies, such as the
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aggregate euro area, Germany, France, the UK and the US, whose recessions and
expansions were of roughly constant magnitudes over the sample periods analysed. For
economies, such as Italy, the Netherlands and Belgium, who exhibited greater volatility
during the 1970s and early 1980s, the recession intercepts are biased downwards by the

severe recessions that occurred during these periods. As a result, smoothed regime

probabilities fail to identify the milder recessions which occurred in the later years.

Thercfore, a third modification is made for these countries by introducing structural
breaks in the intercepts of the MSDF model to reduce the effect of large recessions and
expansions on the model’s parameter estimates. One objective of Chapter 3 is to
compare cycle dates produced by the MSDF model with those obtained in Chapter 2.
Although the two approaches are fundamentally different, the cycle dates obtained are
broadly consistent. One exception is that a recession is identified during the 2000s for
the aggregate euro area by the MSDF model but not by the BBQ algorithm. As such, an
increase in cycle correlation between France, two peripheral countries and the euro area

aggregate, which is shown in Chapter 2, is not identified in Chapter 3.

The empirical analysis carried out in Chapter 4 investigates growth cycle
synchronisation in seven major euro area countries, Austria, Belgium, France, Germany,
Italy, the Netherlands and Spain, during the period from 1980Q1 to 2007Q3. Two
univariate trend-cycle decomposition methodologies, the Beveridge-Nelson (1981)
decomposition and Harvey and Trimbur’s (2003) unobserved component model, are
used to identify the trend and cyclical components of real GDP for each country. The
cycles extracted from the two univariate approaches vary significantly in both cycle
period and amplitude. This confirms the argument in Canova (1998) that the use of
different trend-cycle decomposition methodologies may influence the results obtained.
The average correlation calculated from the BN cycles is found to be smaller than the
corresponding correlation estimated using cycles extracted from the unobserved
component model. The main focus of this chapter is to evaluate cycle synchronisation
within a multivariate setting. The multivariate extension of the BN decomposition with
common factor restrictions imposed is employed to accomplish this task. The common
factor restrictions include both long-run restrictions imposed by the presence of
common trends (Engle and Granger, 1987; Stock and Watson, 1988b; Johansen, 1995),
and short-run restrictions imposed by common cycles (Vahid and Engle, 1993; Hecq ef

al., 2000, 2006). The number of common trends in the seven national GDP series 1s
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determined by Johansen’s (1995) cointegration test. Various types of common and
codependent cycles among the GDP series are also investigated by using canonical
correlation-based tests, GMM and likelihood ratio statistics (Vahid and Engle, 1993,
1997; Hecq et al. 2000, 2006; Schleicher, 2007). The number of common and
codependent cycles provides an indication of the level of growth cycle synchronisation.
The results produced from the multivariate approach indicate the presence of
heterogeneous and codependent growth cycles. This contradicts the OCA criterion that
members of a monetary union should share a high degree of growth cycle

synchronisation.

The appropriateness of common cycle restrictions is further investigated by comparing
out-of-sample forecasting performance between more parsimonious models imposed
with additional common cycle restrictions and a less restricted model with only
. common trend restrictions imposed. The results show that the former outperform the
latter for all countries over all forecast horizons. Finally, Chapter 4 assesses the relative
importance of permanent and transitory shocks to total output variance using the
forecast error variance decomposition proposed by Issler and Vahid (2001). For short-
term forecasts, cyclical movements contribute more to total output variance than the
trend components. Over longer time periods, however, it is the trend components that

make the greatest contribution.

Chapter 5 focuses on the euro area wide economy by investigating three issues
concerning the euro area output gap; the reliability of output gap estimates, business
cycle moderation, and the effectiveness of the monetary policy transmission through the
interest rate channel. As the output gap is unobserved, it has to be estimated from
observed data, such as output or factors inputs, Given the use of different methodologies,
estimated cyclical components can vary significantly in cycle length and amplitude
(Canova, 1998). Therefore, it is important to have certain criteria to judge which model
provides the most reliable output gap estimates. Chapter 5 first investigates the
reliability of output gap estimates obtained from various multivariate UC models that
combine a statistical output decomposition with macroeconomic relations, such as the
Phillips curve and Okun’s law. In particular, a bivariate model of output and inflation
and a trivariate model of output, inflation and unemployment are estimated. Both

‘models have four alternative output trend specifications imposed and thus eight output
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gap estimates are produced. The reliability of these estimates is assessed against three
criteria: the size of subsequent revisions to the data, the unbiasedness of the filtered
estimates, and inflation forecasting.  The results indicate that including the
unemployment rate in the bivariate model of output and inflation does not significantly
improve output gap estimates according to the three criteria used. However, different
specifications of the output trend can have a significant impact on both model goodness
of fit and the reliability of output gap estimates. The bivariate and trivariate models
with the damped slope (DS) output trend imposed provide the best fit to the data and
give relatively reliable output gap estimates. However, the models with the Hodrick-
Prescott (HP) restrictions imposed are strongly rejected due to severe autocorrelation in

the residuals. These models also produce less satisfactory output gap estimates.

Once the models with the DS output trend imposed have been identified as béing the
most appropriate specifications, they are then used to investigate business cycle
moderation. To do so, time-varying variances are introduced to both level and cycle
disturbances, with the date of the structural break set at 1993Q3, which is detected by a
two-regime MS volatility model. The likelihood ratio statistics for the null hypothesis
of time-invariant disturbance variances strongly reject in both the bivariate and
trivariate models. Finally, Chapter 5 examines the effectiveness of the interest rate
channel for the euro area. The first-differences of the real interest rate are inserted into
the output equation of the bivariate and trivariate models with the DS output trend
imposed. Both models are re-estimated over the full-sample and two subsamples, pre-
1993Q3 and post-1993Q3. The choice of 1993Q3 is consistent with the date when
business cycle moderation began in the euro area. The output gap estimates exhibit a
significant response to changes in real interest rates during the second subsample. This
suggests that the monetary policy pursed by the ECB may have had an impact on
stabilising euro area wide economic fluctuations and inflation rates through the interest

rate channel in the run-up to EMU and thereafter.

The results obtained from evaluating synchronisation in the euro area raise concems
about the appropriateness of a common monetary policy. A significant degree of
disparity in cyclical fluctuations still occurs across countries and there is no clear sign
as to whether the differences will gradually decrease for countries who participate in the

euro area. Unbalanced economic performance across EMU member states is another
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striking feature observed in the results. A number of the larger economies, such as
Germany, who suffered more severe downturns and sluggish growth for several years
during the 2000s, required more expansionary monetary policy to boost growth, On the
other hand, smaller economies, such as Spain, which combined high growth and high
inflation during this period, needed tighter monetary conditions. Overall, members at
different phases of their business cycles have diverging monetary requirements that
complicate the implementation of a common monetary policy for the euro area wide
economy. The findings of this thesis suggest the need for structural reforms to
introduce greater flexibility in product and labour markets so as to increase the
adjustment speed of business cycle phases when member countries face economic
uncertainty in the future. More effective short term use of fiscal policy is also needed.
This does not necessarily have to contradict the Stability and Growth Pact (SGP), as the
Pact aims to promote medium to long term fiscal stability in member states. A greater
use of national fiscal policy in the short term during both expansions and contractions
may help to reduce the degree of cyclical divergence. As such, a future challenge for
the EMU is to balance the need to respect national sovereignties with co-ordinating

policies to achieve strong economic growth and stable inflation in the euro area.

The last empirical chapter of this thesis, Chapter 5, focuses on the euro area wide
economy. The responsiveness of the output gap and inflation rates to changes in real
interest rates is investigated using the unobserved components framework. The resulis
suggest that a common monetary policy had an impact on stabilising area wide output
fluctuations and inflation rates. Chapter 5 sets out further research which couid be
undertaken to analyse monetary policy transmission for the euro area in an open
economy framework, in which both interest rate and exchange rate channels are
considered. 1t is widely accepted that, in an open economy, reductions in output and
inflation induced by an increase in short-term nominal interest rates can be accelerated
and amplified by the adjustment of exchanges rates. Although there has been a growing
body of literature analysing monetary transmission mechanisms for individual member
states and the euro area as a whole using a variety of techniques (structural models,
VARs, panel estimation, DSGE models), and using data ranging from area-wide,
national aggregates to disaggregate data at industrial-level (Mojon and Peersman, 2001;
Van Els er al., 2002; Angeloni et al, 2002; Angeloni and Ehrmann, 2003), the

multivariate unobserved components model has rarely been applied in the context of
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analysing monetary policy transmission. However, this model is well suited for this
task. Applying the multivariate unobserved components model will enable us not only
to analyse the impact that changes in interest rates and exchange rates have on output
and inflation, but also to reveal the unobserved features of an economy, such as the
output gap, core inflation and the equilibrium exchange rate. This proposed future
research has been awarded an ESRC postdoctoral fellowship and will be carried out at

the University of Glasgow between October 2009 and 201 1.
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