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Abstract 

This thesis examines the implications of econometric estimation of energy demand in 

three separate empirical chapters. In particular; the issues addressed are: (i) the extent 

in which inappropriate modelling techniques could impact energy demand estimates, 

(ii) the relationship between energy demand estimates and carbon emissions and (iii) 

the relationship between the decomposition of derived energy input and carbon 

emissions. The research begins with the estimation of industrial energy demand across 

29 European countries over the period 1995–2009 using both the generalised method 

of moments (GMM) and the dynamic multilevel model (DMM) that accounts for the 

hierarchical structure of the data used. The main results indicate that the long run 

income and price elasticities of the standard dynamic model, that is, the GMM, which 

does not account for the hierarchical structure of the data used, are overestimated.  

The second empirical chapter carries out an exploratory investigation on the impact 

of energy demand elasticities on carbon emissions across Chinese sectors. The study 

allows for a structural change by dividing the period under consideration into period 

before (1995–2001) and after (2002–2009) China’s accession to WTO. This chapter 

estimates/demonstrates how to compute a range of elasticities by estimating a translog 

model, and then examines the impact of these elasticities on industrial carbon intensity. 

Findings suggest that there is a moderately negative relationship between energy 

substitution and carbon emissions, more especially after the structural change. 

The third chapter combines the first two chapters into a single study by adopting a 

two-stage procedure to measure the implications of inappropriate energy modelling 

technique/energy demand estimates on carbon emissions. The study is based on 

industry level data across Europe over the period 1995–2007. Firstly, the study 

decomposed energy estimates into substitution and output effects with a multilevel 

model and iterated seemingly unrelated regression (iSUR). The second stage examines 

the impact of the decomposition effects with other competing forces on carbon 

emissions. Findings reveal that the substitution effect dominates the output effect and 

is inversely related to the carbon emissions. For the output effect, the results derived 

from both techniques differ, as the output effect from the iSUR show a positive sign; 

however, the output effects from the multilevel model show a negative relationship 

with carbon emissions, which is more consistent with the ideal practice of a cost 

minimising firm. 
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Chapter 1    Introduction 
 

1.1 Background 

It is not an overstatement that energy is an important ingredient in the day-to-day 

running of economies globally, given its usefulness within the production technology 

and its contributions to the production of goods and services for mankind. More 

specifically, energy contributes to consumer welfare through end-use services such as 

cooling, heating, cooking, driving and so forth. However, some of the most crucial 

global development issues such as poverty and climate change are related to energy use. 

Poverty is linked to limited energy access (energy poverty), while climate change is 

largely attributed to greenhouse emissions resulting from energy use as energy-related 

CO2 emissions account for about 61% of global greenhouse gases (Lescaroux, 2011). 

As a result, never has it been more important for governments and policy makers around 

the world to devise methods and policy actions to manage economic prosperity through 

adequate and affordable access to energy, while also curbing greenhouse emissions. 

  More importantly, the devastating impact of CO2 emissions resulting from 

increasing energy consumption has motivated many researchers and policymakers to 

look for a long-lasting solution to reduce energy consumption by using reliable 

estimates in making appropriate predictions about future energy use and associated 

carbon emissions.  Further, for the sake of providing guidance for policy makers in 

designing appropriate policies, accurate prediction of how energy consumers react to 

changes in price, economic activity and other indicators is necessary. It is in this context 

that estimated energy parameters become valuable tools in formulating energy related 

policies. 
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Energy estimates provide relevant information with respect to the sensitivity of 

consumers’ behaviour to changes in important explanatory variables (e.g. energy price, 

income, non-energy inputs and even weather). In the field of energy demand modelling, 

it is now a major challenge for applied energy economists/ econometricians and 

modellers to determine energy demand elasticities that are useful for policy design and 

strategic decision-making of utilities, technology manufacturers, and other relevant 

stakeholders. In addition, the assessment of the relationship between energy use, 

economic activity and emissions is valuable for an appraisal of potentially conflicting 

policy objectives, such as the trade-off between energy conservation and economic 

growth, economic growth and greener environment, and energy conservation and 

sustainable environment1.  

With the primary purpose of generating more reliable energy estimates, econometric 

studies still seem to dominate the applied research done in empirical analysis of energy 

demand and its implications. In recent years, importantly, new econometric techniques 

(e.g. panel data analysis) have become more and more popular among researchers and 

analysts alike, and increasingly applied, while at the same time interest in the estimation 

of elasticities for industrial energy use and fuel types seems not to have diminished. 

However, both policy-makers and decision-makers in industry alike, and energy 

modellers providing model-based insights, rely on reliable estimates of the sensitivity of 

energy demand in reaction to changes in important variables shaping energy demand. 

The main arguments of this thesis are at least fourfold: (1) to describe and apply 

recent econometric techniques for estimating elasticities of energy demand; (2) to 

produce reliable energy estimates by estimating sectorial energy demand for own/cross-
                                            
1 The conflicting interest in the energy-income nexus is rooted in four alternative economic hypotheses 
namely the conservation hypothesis, the growth hypothesis, feedback hypothesis and the neutrality 
hypothesis. While the environmental Kuznets hypothesis largely describes the expected relationship 
between income and emissions 
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price elasticities and income elasticities; (3) to compare and contrast the empirical 

results obtained from different model specifications, estimation techniques and data 

samples; and (4) to measure the implications of the elasticities of energy demand 

obtained from different model specifications and techniques mainly on carbon 

emissions.  

1.2 Motivations and contributions 

They are two major motivations that have prompted the research discussed in this 

thesis. First, from the policy point of view, policy based on wrong or inaccurate energy 

demand estimates is very likely to be misleading. Hence, the main economic motivation 

of this thesis is to produce more reliable estimates by estimating energy demand 

functions with econometric methods that are more suitable to the industry-level data 

used. This motivation is driven by the fact that reliable econometric estimates of energy 

demand elasticities are rare, and research interest appears to have dwindled in recent 

years, despite an increasing stock of data and the acknowledgement that a better 

understanding of energy consumer behaviour is crucial for decision support in the 

energy domain (Bhattacharyya, 2011).  

The second motivation for the research discussed here is driven by Greening et al. 

(2007) as they concluded their article by hoping new research would be forthcoming on 

energy demand modelling. In response to this challenge, this research introduces a 

multilevel model, an established method of analysis in other branches of economics, but 

new in energy demand literature to the best of my knowledge2. The aim is to show that 

the application of this model can provide new insights on the estimation of energy 

                                            
2 Multilevel modelling approach forms the bedrock of the empirical analysis discussed in this thesis, 
especially, in the first two empirical chapters. The approach is discussed in a more detail in chapters three 
and four.     
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demand and its implications like never before. This motivation is driven by the 

availability of detailed data for industrial subsectors.    

With respect to contributions to the existing literature, this research contributes 

significantly to the literature on applied energy econometrics by providing new 

insightful information about the policy and environmental relevance of energy demand 

elasticities. Specifically, the three main contributions of this research are discussed as 

follows.   

First, generally, the econometric estimation of energy demand estimates has such a 

long history, going back as far as the early 1950s. While the oil shocks in 1970s 

prompted the interest in modelling industrial energy demand following the seminal 

work of Berndt and Wood (1975). In the interest of generating reliable energy estimates, 

many econometric estimation techniques have been employed ranging from estimating 

a system of cost equations (Christensen et al., 1973; Fuss, 1977; Uri, 1982) and to a 

single-equation model (Hunt et al., 2003a; Adeyemi and Hunt, 2007; Agnolucci, 2009). 

The research discussed here belongs to the latter category given the relative scare of the 

application of the single method approach in the literature of energy demand modelling 

as compared to the former. On a different terrain, empirical evidences have shown that 

hierarchical data such as industry-level data is very likely to suffer from potential 

cluster-level heterogeneity (Lee, 1997; Steenbergen and Jones, 2002). Hence, it is 

imperative to control for potential heterogeneity across different levels of the dataset. 

The first paper of this thesis combines the two arguments discussed above and 

demonstrates that failure to account for the cluster-level heterogeneity in energy data 

could severely produce bias the estimated energy demand elasticities.  
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Secondly, literature reveals that energy demand elasticities are indirectly related to 

the feasibility of the stated goals of emission reductions as they could serve as policy 

instruments. Hence, this research is worthwhile undertaking, which is rooted in the 

global agenda on climate change. As such, the link between global environmental 

challenges and energy consumption is well documented in the energy literature, given 

that energy consumption is arguably the main source of CO2 emissions. In an attempt to 

overcome notable environmental challenges like global warming, improvement in 

energy-saving in terms of capital-energy substitution is considered as a key measure3. 

The aim is to reduce energy consumption by using more non-emission inputs and 

consequently reducing CO2 emissions. Theoretical demonstration shows that a high 

elasticity of substitution (ES, hereafter) between energy and other inputs could lead to a 

large reduction in carbon, while a small ES between energy and other inputs could 

proves otherwise. However, there is no concrete empirical evidence to support these 

claims in the literature. Therefore, an empirical assessment of the implication of ES 

between energy and other inputs would help in understanding the relevance of the ES in 

reducing carbon emissions. This forms the second contribution of this thesis.   

In the literature of econometric estimation of energy demand, ES between energy 

and other inputs has remained a popular empirical research area with a strand in the 

literature arguing that energy and capital are substitutes, while other strand claims they 

are complements. However, the ES fails to represent a complete picture of inputs 

adjustment as it is based on the assumption of constant level of output. In reality, 

producer tends to adjust output in response to changes in relative factor prices and 

market conditions. The output effect represents a more complex picture of inputs 

                                            
3 This measure has two main advantages. First, it removes over-reliance of continuing increase in energy 
prices as a way of stimulating improvement in energy efficiency. Second, it represents a way of relaxing 
the pressure of increasing global energy consumption and regarded as a natural way of reducing 
greenhouse gases. 
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adjustments as it accounts for a non-constant level of output. Therefore, it is essential to 

factor in this argument while examining the implication of ES on carbon emissions. 

This research addresses this issue by examining the implications of substitution and 

output effects alongside with other factors on carbon emissions. This constitutes the 

third main contribution of this thesis.      

1.3 Research questions 

This thesis comprises three essays exploring important aspects of econometric 

estimation of energy demand elasticities using sector level data. To achieve the aims 

and objectives of this research, the following as-yet unanswered research questions are 

addressed: 

1. To what extent would inappropriate econometric techniques impact energy 
demand elasticities? 
 

2. What is the relationship between estimated energy demand elasticities and 
carbon emissions? 
 

3. What is the relationship between the decomposition of derived energy input and 
carbon emissions? 

1.4 Thesis plan 

This thesis is dedicated to answering the above research questions in three different 

empirical chapters. 

The first empirical chapter addresses research question 1 and the analysis undertaken in 

this chapter further leads to the following additional questions. 

Q1.1: Is there a significant difference between industry-level and country-level energy 

demand estimates? 
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Q1.2: Is heterogeneity in energy use more associated with between-industry or between-

country differences? 

In the first empirical chapter, the issue of generating unreliable estimates by using 

inappropriate econometric method is addressed. This chapter uses sector level data 

across 29 European countries to demonstrate the consequence of ignoring the 

hierarchical structure of industry-level energy data. As having accurate information on 

income and price elasticities is important for policy making, this paper introduces a 

dynamic multilevel model to estimate energy demand function. The long-run elasticities 

of the multilevel model are then compared to that of the generalized method of moment 

approach.  

Question 2 is addressed in second empirical-chapter (Chapter 3). In additional to the 

main question, this paper provides answers to the following specific questions. 

Q2.1: Are energy and non-energy inputs substitutes or complements? 

Q2.2: What are the main drivers of carbon intensity? 

More specifically, chapter 3 adopts a two-step procedure to address the relationship 

between the elasticities of factor substitution and CO2 emissions. Having motivated by 

the inconclusive evidence about the ES in the literature, this chapter derives a range of 

elasticities of substitution and complementarity by estimating a translog cost function in 

the first step. In the second step, the estimated factor substitution with other potential 

determinants are therefore analysed as drivers of carbon intensity having accounted for 

structural change in Chinese production sector. The empirical analysis is based on a rich 

Chinese sector-level data over the period of 1995–2009.   

Question 3 is addressed in chapter 4. In additional to the main question, this chapter 

provides answers to the following specific questions. 
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Q3.1: What are the estimates of the substitution and output effects? 

Q3.2: Which of the two effects dominates? 

In the production context, producer is likely to adjust output in response to changes 

in relative factor prices. More specifically, this chapter relaxes the assumption of 

constant level of output under pure substitution elasticity by decomposed derived 

energy input into substitution and output effects. Using sector-level data across Europe, 

this paper estimates a translog cost function with seemingly unrelated regression (SUR) 

and multilevel model. Then, the paper examines implications of the decomposition 

effects alongside with other competing forces on carbon emissions.   

The remainder of this thesis is organized as follows. Chapter 2, 3 and 4 contain the 

empirical chapters of this thesis. Chapter 5 summarises the main findings and offers 

remarks pertaining to the policy implications of the research questions/objectives 

highlighted in Chapter 1. This chapter also offers suggestions for future research. 
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Chapter 2    Econometric Estimation of Industrial Energy 
Demand: A Dynamic Multilevel Modelling Approach4 

 

 

2.1 Introduction 

The estimated long-run elasticities derived from energy demand functions have retained 

energy demand modelling as an area of interest in the literature. This is because these 

elasticities serve as important tools for the policy makers in making appropriate 

predictions about future energy use and energy related policies, Hunt and Ninomiya 

(2005). This subsequently highlights the potential implications of energy related 

policies based on inaccurate energy demand estimates, which are very likely to be 

misleading or inappropriate. Numerous approaches have been employed to derive 

energy demand estimates ranging from aggregate level to sectoral level analyses, but 

majority of the existing literature generate their energy demand estimates from 

aggregate demand models5. Although, energy demand estimates derived from aggregate 

energy demand functions are useful in formulating macroeconomic policies related to 

energy security and carbon emissions, but as such analysis fails to capture the 

potentially more diverse energy consumption behaviour of disaggregated units in the 

economy. Consequently, detailed information and understandings required in 

formulating specific energy related policies are lost (Bhattacharyya, 2011). This in turns 

highlights the importance of estimating industrial energy demand as it avoids masking 

the difference in the production process across the various productive sectors.  

                                            
4 A revised version of this Chapter has been published as: Sharimakin, A., Glass, A. J., Saal, D. S. and K. 
Karligash (2018), “Dynamic multilevel modelling of industrial energy demand in Europe”, Energy 
Economics,   
5 5 Lee and Lee (2010) list studies that have estimated aggregate energy demand function. In addition; 
York (2007), Adeyemi et al. (2010) and Lee and Chiu (2011) estimate aggregate energy demand function.  
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The purpose of this Chapter is to analyse industrial energy demand across 29 

European countries over the period 1995–2009. The main contribution of this study 

over the existing literature in industrial energy demand modelling is the introduction of 

the dynamic multilevel model that controls for the hierarchical structure of industry 

level data, given that failure to control for the multilevel structure of hierarchical dataset 

could produce unreliable estimates, Steenbergen and Jones (2002). The methodology 

adopts in this study subsequently highlights the implications of ignoring the hierarchical 

structure of industry level data while modelling industrial energy demand. Specifically, 

we analyse energy demand function for the sectors as a whole and for different sector 

types by classifying the sectors into primary, manufacturing and service sectors 

respectively. The categorising of the whole sample into three different sectors allows 

the estimation of price and income elasticities for each of the sectors, which in turn 

provide insightful information in formulating specific sector’s energy related policies. 

The estimation method employed in this paper is sensible as Lee (1997) demonstrates 

that the estimates from a model using only aggregated industrial data might be biased. 

The remainder of this Chapter is organised as follows. Section 2.2 presents the 

overview of existing literature in industrial energy demand. Section 2.3 introduces the 

dynamic multilevel econometric methodology and discusses our application of it to 

industrial energy demand.   Section 2.4 describes the data used for the estimations. The 

empirical results are then discussed in Section 2.5. Section 2.6 presents the concluding 

remarks and avenues for further research. 

2.2 Related literature on industrial energy demand 

The research interest in modelling industrial energy demand has increased in recent 

years owing to the fact that industrial energy consumption accounts for about one third 
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of the global energy consumption (Greening et al., 2007). Further, as noted by 

Agnolluci et al. (2017) the contribution of industrial energy consumption to global 

energy consumption has remained constant over the years fluctuating around 33% and 

27% in 1971 and 2013 respectively (IEA, 2016). In the last three decades, tremendous 

efforts have been taken to empirically model industrial energy demand. The closest 

relatives to this study falls into two categories: (i) empirical modelling of industrial 

energy demand using a system of cost share with a translog specification and (ii) 

empirical modelling of industrial energy demand using a single-equation model6. In 

respect to the former, existing literature in industrial energy demand modelling 

primarily focuses on the elasticities of substitution (ES) and complementarity (EC) 

between factor inputs/or fuel types owing to the seminar work of Berndt and Wood 

(1975). Among others, Berndt and Wood (1975), Fuss (1977), Anderson (1981), Prywes 

(1986), Arnberg and Bjøner (2007) and Tovar and Iglesias (2013) find capital and 

energy to be complements. However, some existing studies on industrial energy demand 

refute the claim that capital and energy are substitutes, and therefore argue that capital 

and energy are complements. These include Griffin and Gregory (1976), Uri (1982), 

Kim and Heo (2013), Haller and Hyland (2014), Lin and Ahmad (2016) and Li and Lin 

(2016).  

In addition to the analysis of factor substitution, some studies simultaneously 

highlight the importance of the price elasticities. Floros and Vlachou (2005) modelled 

the Greek industrial energy consumption using a two-stage translog model for the 

period 1982–1998. Their results suggest that energy price elasticities vary markedly 

between – 1.13 and – 0.02, with upper bound decreasing to –0.04 when the model only 

                                            
6 We classified models that are not system cost-share translog models such as fixed effect, random effect 
models and GMM etc. as single-equation model.  
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contains statistically significant elasticities. Kim and Heo (2013) estimate a translog 

cost function for the manufacturing sectors of 10 OECD countries and find energy price 

elasticities to be inelastic ranging between –0.08 and –0.76. Haller and Hyland (2014) 

also employ translog function to model production in the Irish manufacturing sector 

over the period 1991-2009 and find price to be elastic with an estimated elasticity −1.46. 

Similarly, Li and Lin (2016) estimate both static and dynamic tranglog cost function to 

analyse inter-factor/inter-fuel substitution in China over the period 1985–2012. The 

authors find own price elasticities for electricity, coal, and oil to be −0.72, −0.76 and 

−0.74 respectively. We acknowledge that the system based estimation of the translog 

cost model has remained a popular method to model industrial energy demand, because 

of the flexibility of the translog specification as well as this approach is consistent with 

microeconomic theory related to cost minimization. However, notwithstanding this 

popularity, most of the studies that model industrial energy demand using cost functions 

mainly focus on inter-factor and/or inter-fuels substitution possibilities rather than 

energy price or income/output estimates. 

In contrast, studies that have modelled industrial energy demand with the single-

equation model have focused more on investigating the implication of energy price and 

economic activity on energy demand by estimating long-run energy price and economic 

activity elasticities of energy demand. Bjøner and Jensen (2002) employ fixed effect 

model to analyse the survey data for 8 Danish industrial companies between 1983 and 

1997. They find average price elasticity –0.44 for the whole industry, while price 

elasticities vary between industries ranging from –0.69 and –0.21. The elasticities of 

economic activity vary between 0.44 and 0.65 with an average of 0.54 for the whole 

industry. The elasticities of energy price and economic activity produce by Agnolluci et 

al. (2017) are almost identical as the authors find average elasticities with respect to 
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energy price –0.41 and economic activity 0.57 for UK industrial subsectors. These 

average elasticities are somewhat similar to the average elasticities with respect to 

energy price and economic activities produce in Agnolucci (2009, 2010). Hunt et al. 

(2003a) demonstrate the importance for allowing for inherent underlying forces that can 

be stochastic in nature in energy demand modelling. Structural Time Series Model 

(STSM) of Harvey (1989) was used to estimate energy demand for the UK as a whole 

and for different sectors using a quarterly data for the period 1971q1 to 1997q4. Their 

findings suggest that energy demand models that fail to allow for these underlying 

forces are likely to produce biased estimates. In a very similar study, Dimitropolous et 

al. (2005) reconfirmed the importance for allowing for the inherent underlying forces in 

industrial energy demand modelling using an annual UK data for the period 1967–2002 

across different sectors. They find the elasticity with respect to energy price between –

0.11 and –0.23 and the elasticity with respect to economic activity between 0.34 and 

0.81. Similarly, Dilaver and Hunt (2011) investigate the impacts of energy price and 

economic activity on the Turkish industrial electricity consumption using STSM. 

Having controlled for the underlying forces that could affect electricity consumption in 

the model; they find both output and price to be inelastic with estimated elasticities 0.15 

and –0.16 respectively– value close to Dimitropolous et al. (2005) when considering 

only price.   

One strand in the literature of energy demand argues that there is a difference 

between the impacts of an increased energy price and a decreased energy price- the 

concept of asymmetric methodology introduced by Dargay and Gately (1995). With 

respect to industrial energy demand, Adeyemi and Hunt (2007) consider the APR 

methodology to demonstrate that the use of single-equation model had become a 

standard procedure while modelling industrial energy demand for a panel of 15 OECD 
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countries. They argue on the basis that the procedure is simple, straightforward and 

required limited data. The long-run elasticities with respect to economic activity for the 

two models estimated are 0.76 and 0.56. The estimated long-run price elasticity when 

assuming no asymmetric response is −0.22, though not statistically significant; when 

assuming asymmetric price responses, the elasticities for price-maxima, price-

recoveries and price-cuts are −0.52, −0.68 and −0.30 respectively. In a similar approach, 

Adeyemi and Hunt (2014) use the same set of 15 OECD countries explored in Adeyemi 

and Hunt (2007) to model the industrial energy demand using time series analysis over 

the period 1962–2010. The authors account for both APR and underlying trend in their 

models, and find estimated long-run income elasticities in the range of 0.34 to 0.96; 

estimated long-run price-maximum elasticities in the range of −0.06 to −1.22; estimated 

long-run price-recovery elasticities in the range of 0.00 to −0.27; and estimated long-run 

price-cut elasticities in the range of 0.00 to −0.18.   

Two key points can actually be drawn from the literature. First, existing literature on 

industrial energy demand that in principle heavily rely on industry/sectoral level data do 

not normally account for the hierarchical structure of the industry level data used and 

consequently likely to produce unreliable estimates. Second, despite the huge existing 

literature on energy demand modelling, studies primarily focusing on European 

industrial energy demand remain relatively scarce in the literature given the fact that 

most previous studies rather focused on modelling energy demand for OECD countries7 

or a single country. Therefore, first, this paper aims to contribute to the existing 

literature by estimating industrial energy demand with a dynamic multilevel model. 

Multilevel model is very popular among social scientists and has been widely used in 

other branches of economics. For instance, in education economics, Konishi et al. 
                                            
7 In addition to the studies mentioned above, Hass et al. (1998), Griffen and Schulman (2005) Filippini 
and Hunt, (2011) and Lee and Chiu, 2013) have also modelled energy demand for OECD countries. 
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(2010), Ronfeldt et al. (2013) and Voyer and Voyer (2014) have employed multilevel 

model to analyse the determinants of student achievement. Moreover, multilevel 

modelling has been widely used in social and health economics to analyse the 

relationship between social capital and health (Islam et al., 2006; Mohnen et al., 2011; 

Layte, 2011; Murayama et al., 2012). In regional economics, multilevel model has also 

been used to control for the nesting of regions within countries (Srholec, 2007; 

Rentfrow et al., 2013). Given the wide use of multilevel models in other branches of 

economics, we can conclude that multilevel model is in fact an established method of 

analysis in economics, the benefits of which are transferable to energy economics. 

Second, we extend the existing literature by modelling the European industrial energy 

demand.   

2.3 Empirical method 

2.3.1    Multilevel modelling 

Multilevel modelling aims to model the relationship between a response variable 

and a set of explanatory variables, but differs from standard regression analysis by 

modelling units of observation at different ‘levels’. In particular, multilevel analysis is 

applied to a hierarchical data structure. For instance, in the context of this study, we 

have a longitudinal data8 that is viewed as three-level or clustered data with occasions 

(that is, time period) nested in subjects (that is, industries) which are in other hand 

nested in countries. Following Rabe-Hesketh and Skrondal (2012) we use the term 

“occasions” i for level-1 units, “industries” j for level-2 units and “countries” k for 

level-3 units. In other words, this implies that the individual observations are in general 

not absolutely independent. That is, industries interact with and are influenced by the 
                                            
8 For interested reader on multilevel modelling for longitudinal or repeated measures data see Rabe-
Hesketh and Skrondal (2012). 
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economic environment to which they belong, and that national economies are in turn 

influenced by the industries that make them up.  

More importantly, one can associate differences in energy consumption between 

industries to the countries where they are located, but industries located in different 

countries may have different energy consumption behaviour even though they have 

similar industrial features. This could arise as a result of diversity in energy prices, 

climate, economic growth and technological progress across countries. In other words, 

the energy consumption behaviour of a typical industry operating in a given country can 

be influenced by the consumption behaviour of another industry operating in a different 

country. In other hand, industries located in the same country tend to have common 

energy consumption behaviour even though they have different industrial characteristics 

given the fact they face the similar economic and social situations. This could be 

referred as the consumption patterns of clusters, that is, industries with different 

characteristics. Steenbergen and Jones (2002) discuss the statistical problems inherent in 

clustered data and demonstrate that models that do not control for this clustering tend to 

produce unreliable estimates in terms of incorrect standard errors.  

In this study, we control for clustering in our data by using multilevel model that can 

explicitly accounting for the multilevel structures of the data. Multilevel modelling 

allows us to disentangle the clustering at different levels by including the explanatory 

variables and the disturbance term at every level. That is, our models incorporate 

predictors at each of the levels. This allows us to indirectly control for the heterogeneity 

of the relationships between the response variable and the explanatory variables among 

clusters- of industries and countries. Consequently, we are able to identify the 

unexplained heterogeneity associated with each level. Another advantage of using 

multilevel regression is to remove the “Robinson effect” after Robinson (2009). This is 
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often referred as dis-aggregation bias or ecological fallacy where an analyst wrongly 

analyses data at one level and formulates conclusions at another level. Hox et al. (2010, 

pp. 2-4) discusses the major statistical problem associated with this Robinson effect by 

arguing that when data is aggregated substantial information about underlying economic 

relationships is lost and the statistical analysis loses power, leading to a high potential 

for spurious results. Multilevel modelling is therefore explicitly designed to remove this 

biasedness as it provides a tool for analysing hierarchical data structures. 

2.3.2 Dynamic multilevel modelling of industrial energy demand 

The microeconomic model underlying our econometric specification of European 

industry energy demand is a modification of Medlock (2009) and is specified as follows, 

where i is a time index, j is an industry index and k is a country index: 

𝐸𝐸∗ = 𝐸𝐸(𝑌𝑌,𝑃𝑃,𝐷𝐷𝑖𝑖)                                                                                                                        (2.1) 

where 𝐸𝐸∗ is the energy demand, 𝑌𝑌 is output, 𝑃𝑃 is the price of energy and 𝐷𝐷𝑖𝑖 is the time 

dummies. We acknowledge that some existing literature considered the methodology of 

APR (Adeyemi et al., 2010; Adeyemi and Hunt, 2014) on the basis that there is a 

difference between the impacts of an increased energy price and a decreased energy 

price. Although, Griffin and Schulman (2005) refute this claim by arguing that the APR 

is only capturing energy saving technical progress endogenously, but Huntington (2006) 

replied by arguing that there is role for both the APR and technical progress while 

estimating energy demand model. In this paper, we are in favour of the former (Griffin 

and Schulman, 2005) as we do not considered APR like some existing literature on 

energy demand such as Hunt et al. (2003); Agnolucci, (2009, 2010);  Lee and Lee (2010) 

and Lee and Chiu (2013). In a separate strand of the literature, the importance of 

allowing for the underlying nonlinear forces related to energy consumption has been 
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considered (Hunt et al., 2003a; Dimitropoulous et al., 2005) with a mechanism termed 

as Underline Energy Demand Trend (UEDT)9. As noted by Adeyemi et al., (2010), the 

UEDT is regarded as a measure of energy saving technical progress and is captured by 

the time dummies in a panel data analysis, following the argument of Griffin and 

Schulman (2005). Following these arguments and the importance of allowing for the 

technical progress in energy demand model, we allow for the UEDT in our analysis and 

is captured by the time dummies, 𝐷𝐷𝑖𝑖.   

We employ a dynamic multilevel model (DMM hereafter) and generalised method 

of moments (GMM hereafter) estimators (Arellano and Bond, 1991)10 in estimating Eq. 

(2.1). However, we only discuss the DMM as the GMM has been extensively used and 

explicitly discussed in the literature. Given the structure of our dataset- a hierarchical 

structure with a balanced panel of multiple years of data on industries nested within 

countries, we apply a 3-level dynamic multilevel model in estimating European 

industrial energy demand where the numbers of occasion are regarded as level-1, the 

industries as level-2 which are nested in countries, level-3. Given our fully balanced 

panel data base, the general 3-level DMM is specified as follows:    

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝐸𝐸𝑖𝑖−1,𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖
(3)𝑢𝑢𝑖𝑖

(3) + 𝑋𝑋𝑖𝑖𝑖𝑖
(2)𝑢𝑢𝑖𝑖𝑖𝑖

(2)+𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖+ ∈𝑖𝑖𝑖𝑖𝑖𝑖                                                         (2.2) 

where 𝑘𝑘 = 1, … . ,𝐾𝐾 , 𝑗𝑗 = 1, … . , 𝐽𝐽𝑖𝑖 , and 𝑖𝑖 = 1, … . , 𝐼𝐼𝑖𝑖𝑖𝑖 . 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖  is the time dummies. For 

example, the dependent variable 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  denotes the energy consumption for industry j 

operating in country k in time period (or occasions) i. Each j and k group consists of i 

observations, while 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  and ∈𝑖𝑖𝑖𝑖𝑖𝑖 each have row dimension 𝐼𝐼. 𝑋𝑋𝑖𝑖
(3) is the 𝐼𝐼 × 𝐾𝐾 design 

                                            
9 Hunt et al., (2003a) demonstrate the importance of allowing for inherent underlying forces that are 
nonlinear to energy demand and argue that any energy demand model that fail to allow for these nonlinear 
forces might produce biased estimates.  
10 The GMM is recognised as the baseline model for comparison. The GMM is known for controlling for 
endogeneity in the model and we also control for the unobserved country- and time-specific effects by 
including country dummies and time dummies. The industry-specific effects are automatically control for 
in the GMM given the fact that the industries represent our identifiers.  
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matrix for the third-level random effects 𝑢𝑢𝑖𝑖
(3), and 𝑋𝑋𝑖𝑖𝑖𝑖

(2) is 𝐽𝐽 × 𝐾𝐾 design matrix for the 

second-level random effects 𝑢𝑢𝑖𝑖𝑖𝑖
(2) . The random terms are assumed to be identically 

independently distributed 

                          𝑢𝑢𝑖𝑖
(3)~𝑁𝑁(0,𝜎𝜎𝑣𝑣2);           𝑢𝑢𝑖𝑖𝑖𝑖

(2)~𝑁𝑁(0,𝜎𝜎𝑢𝑢2);          ∈𝑖𝑖𝑖𝑖𝑖𝑖 ~𝑁𝑁(0,𝜎𝜎∈2) 

For the purpose of estimation, we redefined Eq. (2.2) through a three-stage 

formulation using the notation of Bryk and Raudenbush (1992). The level-1 model for 

occasions i, industry j, and country k is a linear regression on time and is specified as: 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜋𝜋0𝑖𝑖𝑖𝑖 + 𝜋𝜋1𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖                                                                                               (2.3) 

where 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 is the time dummies and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is the level-1 residual. The intercept 𝜋𝜋0𝑖𝑖𝑖𝑖 in the 

level-1 model vary between industries according to the following level-2 model: 

𝜋𝜋0𝑖𝑖𝑖𝑖 = 𝛼𝛼00𝑖𝑖 + 𝛼𝛼01𝐸𝐸𝑖𝑖−1,𝑖𝑖𝑖𝑖 + 𝛼𝛼02𝑌𝑌𝑖𝑖𝑖𝑖 + 𝛼𝛼03𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛿𝛿0𝑖𝑖𝑖𝑖                                                      (2.4) 

where  𝐸𝐸𝑖𝑖−1,𝑖𝑖𝑖𝑖  is one period lagged value of energy use, 𝑌𝑌𝑖𝑖𝑖𝑖  stands for output at 

industry-level, 𝑃𝑃𝑖𝑖𝑖𝑖 energy price at industry-level and 𝛿𝛿0𝑖𝑖𝑖𝑖 is a level-2 random intercept. 

Further, we can introduce the country-level predictors by modelling the industry-level 

intercept, 𝛼𝛼00𝑖𝑖:  

𝛼𝛼00𝑖𝑖 = 𝛽𝛽000 + 𝛽𝛽001𝑌𝑌𝑖𝑖𝑐𝑐 + 𝛽𝛽002𝑃𝑃𝑖𝑖𝑐𝑐 + 𝜈𝜈0𝑖𝑖                                                                               (2.5) 

where 𝑌𝑌𝑖𝑖𝑐𝑐 stands for output at country-level, 𝑃𝑃𝑖𝑖𝑐𝑐 energy price at country-level and 𝜈𝜈0𝑖𝑖 is 

a level-3 random intercept. 

Substituting the level-3 model into the level-2 model gives 

𝜋𝜋0𝑖𝑖𝑖𝑖 = 𝛽𝛽000 + 𝛽𝛽001𝑌𝑌𝑖𝑖𝑐𝑐 + 𝛽𝛽002𝑃𝑃𝑖𝑖𝑐𝑐 + 𝛼𝛼01𝐸𝐸𝑖𝑖−1,𝑖𝑖𝑖𝑖 + 𝛼𝛼02𝑌𝑌𝑖𝑖𝑖𝑖 + 𝛼𝛼03𝑃𝑃𝑖𝑖𝑖𝑖 + 𝜈𝜈0𝑖𝑖 + 𝛿𝛿0𝑖𝑖𝑖𝑖       (2.6) 

By making assumptions that the effect of industry-level variables are fixed (i.e., 

𝛼𝛼0𝑥𝑥 = 𝛽𝛽01𝑥𝑥 for 𝑥𝑥 = 0) and that the effect of the level-1 variable is fixed as well (i.e., 
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𝜋𝜋1𝑖𝑖𝑖𝑖 = 𝛽𝛽100), then the substitution of level-2 model into level-1 model results to our 3-

level model given as: 

 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽000 + 𝛽𝛽001𝑌𝑌𝑖𝑖𝑐𝑐 + 𝛽𝛽002𝑃𝑃𝑖𝑖𝑐𝑐 + 𝛽𝛽010𝐸𝐸𝑖𝑖−1,𝑖𝑖𝑖𝑖 + 𝛽𝛽020𝑌𝑌𝑖𝑖𝑖𝑖 + 𝛽𝛽03𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛽𝛽100𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 +

                       𝜈𝜈0𝑖𝑖 +  𝛿𝛿0𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖                                                                                               (2.7) 

where  𝜈𝜈0𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑣𝑣2), 𝛿𝛿0𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑢𝑢2) and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜀𝜀2).  

This model has unique features as it brings together the predictor at different levels 

and it assumes that the error terms are uncorrelated across levels. A typical multilevel 

model normally consists of two parts: the fixed part, which shows the relationship 

between the predicted value of the dependent variable and the explanatory variables, 

and the random part, which shows the estimates of the group effects on the response 

variable. In principle, by simply including the lagged of the dependent variable into a 

static model such as Eq. (2.7), we are making a very strict assumption of no correlation 

between the lagged response and the residuals (that is, Cov (𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖,𝐸𝐸𝑖𝑖−1,𝑖𝑖𝑖𝑖) = 0 ). 

Therefore, estimating Eq. (2.7) directly without correcting for the potential correlation 

between the residuals and the lagged dependent variable is a very naïve way of 

estimating a dynamic model and this may consequently lead to biased and inconsistent 

estimates (Nickell 1981).11 This is described as the problem of initial conditions in the 

literature. However, Steele (2008) and Crouchley et al. (2009) have argued that the 

problem of initial conditions is difficult to justify in practice as it only arises if the 

length ‘T’ period of the study is relatively small because the problem is wiped out over 

a relatively long period of time. That is, in a longitudinal study with a relatively long 

time period, the problem of initial conditions might not occur. But unfortunately, none 

of these papers suggest an appropriate time period that is long enough for the problem 

                                            
11By ignoring the possibility of correlation between the dependent variable and the residuals and estimate 
Eq. (2.7) might lead to upward biasedness of the coefficient of the state dependency (𝛽𝛽010) and the 
downward biasedness of the estimate of the unobserved heterogeneity 𝜎𝜎𝑣𝑣02 .   
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of initial conditions not to be of concern.  Given the above argument, we control for the 

potential correlation that might occur between the lagged dependent variable and the 

residuals by adopting the joint working models proposes by Heckman (1981a) 

following Skrondal and Rabe-Hesketh (2014)12.  

The problem of initial condition arises when response at initial period does not 

coincide with the start of the process under study. In theory, response at the initial 

period 𝐸𝐸0𝑖𝑖𝑖𝑖 plays a crucial role in dynamic/transition models as subsequent responses 

(i.e., 𝐸𝐸1𝑖𝑖𝑖𝑖 , 𝐸𝐸2𝑖𝑖𝑖𝑖 ,…, 𝐸𝐸𝑛𝑛𝑖𝑖𝑖𝑖 ) depend on it13. The basic idea of Heckman (1981a) is to 

model the initial response, jointly with the subsequent responses. In practice, Eq. (2.7) 

is a as model at a later occasion (i.e., when i=1,…,I-1) and since we have on-going data 

process where initial response 𝐸𝐸0𝑖𝑖𝑖𝑖  is considered to be affected by random intercept 

𝛿𝛿0𝑖𝑖𝑖𝑖and pre-sample 𝐸𝐸−1,𝑖𝑖𝑖𝑖 response, thus, there is need to jointly model initial response 

𝐸𝐸0𝑖𝑖𝑖𝑖  and subsequently responses. An unrefined starting point would be to specify a 

similar version of Eq. (2.7) using the initial response 𝐸𝐸0𝑖𝑖𝑖𝑖 as the dependent variable as a 

function of the predictors, but without the lagged response and the time dummies, since 

we only have initial time period here. This model is regarded as when i=0 can be 

specified as: 

𝐸𝐸0𝑖𝑖𝑖𝑖 = 𝛾𝛾000 + 𝛾𝛾001𝑌𝑌𝑖𝑖𝑐𝑐 + 𝛾𝛾002𝑃𝑃𝑖𝑖𝑐𝑐 + 𝛾𝛾020𝑌𝑌𝑖𝑖𝑖𝑖 + 𝛾𝛾03𝑃𝑃𝑖𝑖𝑖𝑖 + 𝜈𝜈0𝑖𝑖 + 𝛿𝛿0𝑖𝑖𝑖𝑖 + 𝜀𝜀0𝑖𝑖𝑖𝑖                  (2.8) 

where  𝜈𝜈0𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑣𝑣2) and 𝛿𝛿0𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑢𝑢2) as given above, and 𝜀𝜀0𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎0𝜀𝜀2 ).  

It is important to point out that the remaining disturbance terms at subsequent period, 

that is, i > 0 and the initial period, that is, i=0 are not equal (that is 𝜎𝜎𝜀𝜀2 ≠ 𝜎𝜎0𝜀𝜀2 ). This is 

                                            
12 The approaches discuss in this paper are for binary response models, but they can also be adopted for 
continuous response models. Moreover, interested readers may see Kazemi and Crouchley (2006), 
Crouchley et al. (2009; Chapter 11) for other approaches.  
13 See appendix A1 for the technical notes. 
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simply because the variance of the residuals of subsequent responses 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  condition on 

the covariates 𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖 and the lagged response 𝐸𝐸𝑖𝑖−1,𝑖𝑖𝑖𝑖 is different from the variance of the 

residual of initial responses 𝐸𝐸0𝑖𝑖𝑖𝑖  which is condition on the covariates 𝑿𝑿0𝑖𝑖𝑖𝑖 only. In 

other words, the residual in the initial period is related to the explanatory variables of 

initial period, while the residuals of the subsequent period are related to the explanatory 

variables at subsequent period, 𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖 and the lagged response, 𝐸𝐸𝑖𝑖−1,𝑖𝑖𝑖𝑖. Since Eq. (2.8) for 

initial response 𝐸𝐸0𝑖𝑖𝑖𝑖 and Eq. (2.7) for response 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 shared the same industry (i.e., 𝛿𝛿0𝑖𝑖𝑖𝑖) 

and country (i.e., 𝜈𝜈0𝑖𝑖) random effects therefore, they must be jointly estimated.  

For estimation purposes, we create a time period indicators that distinguishes the 

initial period (i=0) coded as 𝑤𝑤1 from the subsequent periods (i > 0) coded as 𝑤𝑤2. The 

time period indicator 𝑤𝑤1  is coded as 1 for i=0 and 0 otherwise. The time period 

indicator  𝑤𝑤2 is coded as 1 for i > 0 and 0 otherwise. Then, we interact 𝑤𝑤1 with the 

predictors in Eq. (2.8) and interact 𝑤𝑤2 with the predictors in Eq. (2.7). Both models for 

i=0 and i > 0 are therefore jointly specified as one model as follows: 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛾𝛾000𝑤𝑤1 + 𝛾𝛾001𝑤𝑤1𝑌𝑌𝑖𝑖𝑐𝑐 + 𝛾𝛾002𝑤𝑤1𝑃𝑃𝑖𝑖𝑐𝑐 + 𝛾𝛾020𝑤𝑤1𝑌𝑌𝑖𝑖𝑖𝑖 + 𝛾𝛾03𝑤𝑤1𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛽𝛽000𝑤𝑤2

+ 𝛽𝛽001𝑤𝑤2𝑌𝑌𝑖𝑖𝑐𝑐 + 𝛽𝛽002𝑤𝑤2𝑃𝑃𝑖𝑖𝑐𝑐 + 𝛽𝛽010𝑤𝑤2𝐸𝐸𝑖𝑖−1,𝑖𝑖𝑖𝑖 + 𝛽𝛽020𝑤𝑤2𝑌𝑌𝑖𝑖𝑖𝑖 + 𝛽𝛽03𝑤𝑤2𝑃𝑃𝑖𝑖𝑖𝑖

+ 𝛽𝛽100𝑤𝑤2𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜈𝜈0𝑖𝑖 + 𝛿𝛿0𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖                                                            (2.9) 

where 𝜈𝜈0𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑣𝑣2) , 𝛿𝛿0𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑢𝑢2) and the estimated variance for level-1 residual 

𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 is decomposed into ε0𝑖𝑖𝑗𝑗~𝑁𝑁(0,𝜎𝜎0𝜀𝜀2 ) and ε𝑖𝑖𝑖𝑖𝑗𝑗~𝑁𝑁(0,𝜎𝜎𝜀𝜀2) by defining groups based on 

𝑤𝑤1 . It is worth pointing out that Eqs. (2.7), (2.8) and (2.9) are interrelated by 

substitution. If 𝑤𝑤1 and 𝑤𝑤2 are substituted as 0 and 1 respectively into Eq. (2.9) that gives 

Eq. (2.7), and If 𝑤𝑤1 and 𝑤𝑤2 are substituted as 1 and 0 respectively into Eq. (2.9) that 

gives Eq. (2.8). Ultimately, the model of interest is Eq. (2.7) when i > 0, that is, when 

𝑤𝑤1 = 0 and 𝑤𝑤2 = 1 in Eq. (2.9) as it relates to the time period of our analysis. The 
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inclusion of model 2.8, (i.e., when i= 0) becomes imperative only for controlling for the 

initial conditions problem. Hence, only the results for i > 0 in Eq. (2.9) will be presented 

in the analysis section. 

2.4 Data 

The main source of data for the emprical analysis is World Input-Output Database 

(WIOD) (Timmer et al., 2015)14. The WIOD is based on national accounts data and it 

provides a comprehensive, harmonized dataset that allows comparison of specific 

environmental indicators like sectoral energy use over the years covered by the database 

(1995 to 2009). The WIOD has two advantages with respect to existing data sources as 

suggested by Voigt et al. (2014) 15. First, the harmonization procedures undertaken 

throughout the data collection minimize the risks of measurement errors. Moreover, the 

consistence in data collection and comparability across countries describes the data 

efficiency gains at the sectoral and global levels. Second, the WIOD provides data on 

sectoral price deflators. This allows for the retaining of important information and 

variations with respect to price development, which is an advantage over the use of 

aggregate national price deflators in sectoral analysis.     

The empirical analysis is based on a fully balanced sample of industries16 at three- 

and four-digit level using International Standard of Industrial Classification (ISIC) 

Rev.4, which is consistent with NACE Rev.2 across 29 European countries17 over the 

                                            
14 This study obtained data from the three major accounts of the WIOD, the National Input-Output Tables 
(NIOT) released in November 2013, Environmental Accounts (EA) released in March 2012 and the 
Socio-Economic Accounts (SEA) released in July 2014.  Data downloaded from these accounts are 
available at www.wiod.org 
15 Other studies that have also obtained energy data from WIOD include: Hübler and Glas (2014), 
Kaltenegger et al. (2017) and Loschel et al. (2015).  
16 In the interest of balanced panel data and reliable estimates, sectors without data on energy use were 
excluded from our analysis and all the 34 sectors are listed in the appendix. 
17 The 29 EU countries comprises Austria, Belgium, Bulgaria, Cyprus, Czec Rep, Denmark, Estonia, 
Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, 
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sample period 1995–2009. Data on purchasing power parity exchange rates (US$) are 

taken from Penn World Table (PWT 7.1). Industry energy use (𝑒𝑒) in terajoule (TJ) is 

taken from the Environmental Accounts of WIOD, 2012. Industry output is measured as 

gross output by industry at current market prices in millions of national currency, and 

data is taken from the Socio-Economic Accounts of WIOD, 2014. To generate the real 

output (𝑦𝑦), we deflated the gross output using the price index of gross output (1995=100) 

obtained from the SEA of WIOD, 2014. In order to express the real output in 

international monetary unit, we used the purchasing power parity taken from the Penn 

World Table (PWT7.1) to convert the real output in national currencies to international 

units (US$). Since there is no ready-made data on industry price of energy from data 

sources, we therefore follow a similar process adopted in Adetutu et al., (2016) to 

generate the price of energy. The real price of energy (𝑝𝑝) is computed as the ratio of 

energy input expenditure at constant prices in US$ to energy use in TJ. Energy input 

expenditure is computed as the addition of the value of expenditure on coke, refined 

petroleum, nuclear fuel, electricity and gas supply purchased domestically and 

internationally (millions of US$). Data on the energy commodities are taken from the 

National Input-Output Tables (NIOT) of the WIOD, 2013. To derive the real price of 

energy in US$, we deflated the energy expenditure by constant unit (1995=100), and 

then divided the real energy expenditure by energy use in TJ.  

Table 2.1 Descriptive statistics of variables used in the analysis.  

Description Variable Mean Std. Dev Min Max 
Energy consumption in TJ    E 117125.8 396875.4   42.69    3109309 
Industry real energy price in US$/ TJ     P 1.59 2.36     0.002   16.01 
Industry real output in US$    Y 19230.86     37032.64    11.97     206776 
Country real energy price in US$/TJ    Pc

 1.59 1.78 0.004 14.91 
Country real output in US$    Yc 19230.86 28886.28 29.32 123376 

                                                                                                                                
Netherlands, Poland, Portugal, Romania, Russia, Slovak Rep, Slovania, Spain, Sweden, Turkey and 
United Kingdom. 
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2.5 Empirical analysis 

This section discusses the results of the models estimated and all variables estimated are 

in their natural logarithm. We employ the GMM and DMM to estimate Eq. (2.9) for all 

sectors as a whole and also separately for primary, manufacturing and service sectors18. 

For straightforward interpretation, we centred the industry-level variables on the log of 

their group means (country-level)19 so that the coefficients of the industry-level and 

country-level variables can be interpreted as the within-country (or between-industry) 

and between-countries elasticities. We present the parameter estimates of the GMM and 

DMM estimators in Tables 2.2 and 2.3 respectively, for the sectors as a whole and in the 

restricted samples. Unlike the initial DMM (model 2.7) the GMM does not suffer from 

the endogeneity problem of the correlation of the lagged response and the disturbance 

term that could result to a biased and inconsistent estimate. However, the GMM is not 

an estimator specifically designed to control for cluster-level heterogeneity resulting 

from hierarchical data and consequently not an estimator suitable to analyse multilevel 

model. This is simply because the GMM can only automatically control for a given 

level of heterogeneity at the level of the data in which the identifiers are based on.  

Since our analysis is based on industry data, therefore our identifiers are based on 

industry rather than country. This implies that the GMM automatically controls for 

heterogeneity across industries only and consequently might produce unreliable 

estimates. Generally, we acknowledged the fact that other unobserved heterogeneity 

(e.g., country-specific and time-specific effects in our analysis) could also be controlled 

for in the GMM by introducing dummies into the estimated models, but the models 

                                            
18 The classifications of the sectors into primary, manufacturing and service sectors are listed in the 
appendix. 
19 Henceforth, we shall interchangeably use contextual variables as country-level variables. 
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becomes very unlikely to analyse when the size of the sub-units (e.g country and time 

period) are very large20. Besides, the DMM does not only account for heterogeneity 

across all the sample units, but also produces random-effect results which provide 

information about the extent of unobserved heterogeneity across the sample units. 

Given the above argument, we choose the DMM as our preferred model and hence, we 

discuss the DMM result in much more detail. Nevertheless, our discussions of the 

estimated results start with the GMM results. 

2.5.1     Discussion of the estimated GMM results 

The estimated GMM results for model 2.9 for the sectors as a whole and for different 

sectors are reported in Table 2.2. We account for the country-specific and time-specific 

effects by incorporating country and time dummies into models estimated, while the 

industries heterogeneity is accounted for by demeaned the industry level variables. 

Given the fact that the two-step GMM estimator produces asymptotic efficiency gains 

over the one-step estimator, especially in large samples; we therefore employ the two-

step estimator21. As the estimated standard errors from GMM otherwise tend to be 

underestimated, we use the robust standard error option throughout. As display in Table 

2.2, all estimated models pass all the diagnostic tests (no autocorrelation at first 

difference, valid instruments and valid over-identifying restrictions) as none of the tests 

is statistically significant. As pointed out in the empirical model section, we test for the 

importance for allowing for the underlying nonlinear forces in our model by performing 

a restriction test between the unrestricted model (that is, models with time dummies) 

and restricted model (without time dummies) using a𝜒𝜒2 -Test. In other words, this 

                                            
20 This situation is similar to the issue discussed in Wooldridge (2009) when using pooling regression to 
control for fixed specific-effect.   
21 It is worth noting to point out that we employ one-step estimator to analyse the primary sector energy 
demand because its sample size is relatively small. 
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imposes the null hypothesis restriction that the coefficients on the time dummies are 

equal to zero (H0: β100=0) that is, there is no importance for allowing for the underlying 

nonlinear forces in the estimated energy demand models. For all models estimated, our 

results support the importance for allowing for the underlying nonlinear forces in 

energy demand model by rejecting the null hypothesis that the coefficients on the time 

dummies are statistically equal to zero. This result is in line with the outcome suggested 

by Adeyemi and Hunt (2007 and 2014).  

The primary results derived from the estimated GMM are as follows. First, majority 

of the estimated variables are statistically significant with expected signs across board 

while none of the intercepts is statistically significant with mix signs and relatively large 

values. Of course, the negative intercepts would have been difficult to justify, if they 

were statistically significant as this would have been interpreted that the expected 

demand for energy by industries with no influence from economic activity and energy 

price is negative. With the exception of the between-country output elasticity for the 

primary sector, the statistically significant of all other estimated elasticities suggest that 

both industry-level and country-level economic activities and energy prices influence 

industrial energy demand. Further, in general, the values of the between-industry price 

elasticities and between-country price elasticities are largely not different across the 

board. This suggests that there is no substantial difference on average, between the 

influence of industry-level energy prices and country-level energy prices on industrial 

energy use. For the whole sector, the coefficient on the industry-level energy price of 

about –0.30 suggests that a 1% increase in within-country energy price is associated 

with a –0.30% reduction in within-country energy use in the short-run. Whereas the 

coefficient on the country-level energy price of about –0.29 suggests that a 1% increase 

in between-country energy price is associated with a –0.29% reduction in between-
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country energy use in the short-run. However, our results suggest otherwise in the case 

of output elasticities as the coefficients of between-industry and between-country output 

elasticities differ in most cases across board. 

Table 2.2  Estimated generalized method of moment (GMM)  

Variables All  
Sectors 

Primary  
Sector 

    Manufacturing 
    Sector             

Service  
Sector 
 

Intercept −8.94 
(48.95) 

10.95 
(39.29) 

−5.69 
  (54.48) 

−0.69 
 (0.38) 

Industry  level variables     
 𝐸𝐸𝑖𝑖−1,𝑖𝑖𝑖𝑖   0.67*** 

(0.25) 
 0.23*** 
(0.09) 

   0.39*** 
  (0.10) 

 0.91*** 
(0.02) 

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖    0.46*** 
(0.14) 

 0.41*** 
(0.11) 

   0.46*** 
  (0.15) 

 0.06*** 
(0.14) 

 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖   −0.30*** 
(0.06) 

−0.21* 
(0.10) 

   −0.33*** 
  (0.08) 

−0.11*** 
(0.02) 

Country level variables     
 𝑌𝑌𝑖𝑖𝑐𝑐   0.58** 

(0.22) 
 0.43 
(0.29) 

   0.87*** 
  (0.29) 

 0.17*** 
(0.05) 

 𝑃𝑃𝑖𝑖𝑐𝑐  −0.29*** 
(0.06) 

−0.36*** 
(0.14) 

−0.47*** 
  (0.13) 

−0.10*** 
(0.02) 

Diagnostic Tests:     
Arellano-Bond test AR(2)  0.89    0.36    0.18  0.14 
Sangan/Hansen test  0.06  0.99    0.64  0.13 
Hansen exogeneity Test  0.98  0.99    0.12  0.13 
Restriction test (H0: 𝐷𝐷𝑖𝑖=0) 𝜒𝜒2(12)=75.5 

 (0.00)*** 
𝜒𝜒2(12)=33.5 

 (0.00)*** 
   𝜒𝜒2(12)=46.0 

   (0.00)*** 
𝜒𝜒2(12)=112.8 

(0.00)*** 

Sample size 12779  754    6006  6019 
Number of instruments 210  207    197  464 
Long-run elasticities      
Income  1.41 

(0.74) 
 0.54* 
(0.15) 

   0.75* 
  (0.18) 

 0.68* 
(0.16) 

Energy price  −0.91 
(0.61) 

−0.27 
(0.14) 

−0.54* 
  (0.07) 

−1.21* 
(0.13) 

     
***, ** and * represent statistically significant at 0.1%, 1% and 5% level of significance respectively. 
𝐿𝐿𝐿𝐿 = 𝛿𝛿𝑥𝑥

1−𝑒𝑒𝑖𝑖−1,𝑗𝑗𝑗𝑗 
      𝑥𝑥 = 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖. Standard errors are in parentheses 

For the estimated long-run elasticities, most of the estimated long-run elasticities are 

inelastic with majority being statistically significant with expected signs across the 

board22. Specifically, to the whole sector, neither the output elasticity (1.41), nor the 

price elasticity (−0.91) is statistically significant with both relatively have huge values 

                                            
22 We find the coefficient on the lagged response for the service sector to be relatively big compare to 
other sectors. One possible explanation for this outcome may be the difference among the sectors as the 
industries in the service sector tend to be more associated with previous energy use.  
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compared to the elasticities derived for different sectors with the exception of service 

sectors’ estimated long-run price elasticity (−1.21). The huge difference in the values of 

the estimated long-run elasticities for the whole sector, and those derived from sector 

types is an issue of concern. This is because in principle, the estimated long-run 

elasticities for the whole sector is expected not to be too far away from the average of 

the estimated long-run elasticities of the sector types. Our results show that the 

estimated long-run output elasticity for European industries (1.41) is substantially larger 

than the average of the estimated long-run output elasticities of the sector types (0.66) 

by 75%. Our results also show a similar pattern in the price elasticity as the estimated 

long-run price elasticity (−0.91) is larger than the average (0.67) of the sector types by 

about 23%. A possible explanation for the difference in values between the estimated 

long-run elasticities for the sector as a whole and the sector types may be the fact that 

the GMM is not an appropriate estimator to analysis data with a hierarchical structure as 

it fails to appropriately account for the multilevel structure of the data. These results 

again raise the concern about the appropriateness of GMM in estimating energy demand 

model using hierarchical data. 

Generally, we find the long-run output elasticities ranging from 0.54 to 1.41 to be 

larger than the estimated long-run price elasticities ranging from −0.27 to −1.21. The 

relatively large value of the output elasticities to the price elasticities suggests that 

across all the classifications of sectors, industries are more sensitive to changes in 

economic activity than to changes in energy price in terms of their energy consumption.   

2.5.2     Discussion of the estimated DMM results 

We estimated Eq. (2.9) for the sector as a whole and for the sector types using the 

DMM and the results are reported in Table 2.3. Although, it is difficult to statistically 
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demonstrate that the DMM is superior to the GMM in estimating an energy demand 

function, but we nonetheless again emphasize that the DMM controls for the 

hierarchical structure of the data used in this paper, and for this, we consider the DMM 

as the best modelling technique for our analysis.  

Table 2.3: Estimated dynamic multilevel model (DMM) 

Variables All 
Sectors 

Primary  
Sector 

Manufacturing  
Sector 

Service  
Sector  

Fixed part:     
Intercept  0.72***  

(0.09) 
 1.12*** 
(0.24) 

 1.91*** 
(1.15) 

 1.10*** 
(0.11) 

Industry level variables     
 𝐸𝐸𝑖𝑖−1,𝑖𝑖𝑖𝑖   0.66*** 

(0.01) 
 0.57*** 
(0.02) 

 0.57*** 
(0.01) 

 0.69*** 
(0.01) 

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖    0.28*** 
(0.01) 

 0.29*** 
(0.02) 

 0.36*** 
(0.01) 

 0.18*** 
(0.01) 

 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖   –0.23*** 
(0.00) 

–0.22*** 
(0.02) 

–0.33*** 
(0.01) 

–0.15*** 
(0.01) 

Country level variables     
 𝑌𝑌𝑖𝑖𝑐𝑐    0.29*** 

(0.01) 
 0.37*** 
(0.03) 

 0.25*** 
(0.01) 

 0.20*** 
(0.01) 

 𝑃𝑃𝑖𝑖𝑐𝑐    –0.17*** 
(0.01) 

–0.19*** 
(0.01) 

–0.14*** 
(0.01) 

–0.13*** 
(0.01) 

Random part:      
 𝜎𝜎𝑣𝑣2  0.09* 

(0.03) 
 0.14* 
(0.04) 

 0.15* 
(0.04) 

 0.05* 
(0.02) 

 𝜎𝜎𝑢𝑢2  0.09* 
(0.00) 

 0.03* 
(0.01) 

 0.16* 
(0.02) 

 0.06 
(0.01) 

 𝜎𝜎𝜀𝜀2   0.03* 
(0.00) 

 0.02* 
(0.00) 

 0.03* 
(0.00) 

 0.03* 
(0.00) 

 𝜎𝜎0𝜀𝜀2    0.44* 
(0.02) 

 0.25* 
(0.05) 

 0.35* 
(0.03) 

 0.45* 
(0.03) 

ICC  0.44  0.74  0.44  0.39 
Restriction tests      
H0: 𝐷𝐷𝑖𝑖=0  𝜒𝜒2(13)=570.7 

 (0.00)***  
 𝜒𝜒2(13)=80.8 

 (0.00)***  
 𝜒𝜒2(13)=219.9 
 (0.00)***  

 𝜒𝜒2(13)=342.2 
 (0.00)***  

H0: 𝛽𝛽001=𝛽𝛽002=0 𝜒𝜒2(2)=1260.5 
 (0.00)*** 

 𝜒𝜒2(2)=193.4 
 (0.00)*** 

 𝜒𝜒2(2)=354.4 
 (0.00)*** 

 𝜒𝜒2(2)=457.9 
 (0.00)*** 

Long-run elasticities     
Income  0.81* 

(0.02) 
 0.67* 
(0.04) 

 0.83* 
(0.02) 

 0.58* 
(0.03) 

Energy price  –0.68* 
 (0.11) 

–0.52* 
  (0.04) 

–0.77* 
  (0.01) 

–0.49* 
  (0.02) 

***, ** and * represent statistically significant at 0.1%, 1% and 5% level of significance.  Intra-class 

correlation coefficient ( 𝐼𝐼𝐼𝐼𝐼𝐼) = 𝜎𝜎𝑣𝑣2

𝜎𝜎𝑣𝑣2+𝜎𝜎𝑢𝑢2+𝜎𝜎𝜀𝜀2
 and 𝐿𝐿𝐿𝐿 = 𝛿𝛿𝑥𝑥

1−𝑒𝑒𝑖𝑖−1,𝑗𝑗𝑗𝑗 
      𝑥𝑥 = 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 . Standard errors are in 

parentheses. 

The DMM results reported in Table 2.3 consist of the fixed part where the estimates 

of the explanatory variables estimated are presented and the random part where the 
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results of the random unobserved heterogeneity are presented. Unlike the GMM, all 

estimated parameters of the DMM are statistically significant with expected signs 

inclusive the estimates of the random part. As carried out in the GMM, we also test for 

the importance for allowing for the underlying nonlinear factor in the DMM using the 

𝜒𝜒2-Test. The DMM results across all sector types also support for allowing for the 

underlying nonlinear factors while estimating energy demand by rejecting the null 

hypothesis that the coefficients on the time dummies are statistically equal to zero (that 

is, H0: β100=0) at 0.1% significant level. The primary results derived from the DMM 

models estimated are as follows. 

First, the statistical significance of the coefficients on all the country-level variables 

reported in Table 2.3 for the whole sector and sector types emphasize the important 

roles of aggregate activities on industrial energy use. Given the statistical significance 

of the contextual variables, the result suggests that industries are not operating in 

isolation as aggregate economic activities evidenced to influence the energy 

consumption of industries. For robustness check on the importance of the country-level 

explanatory variables in the models estimated, we perform a restriction test using the 

𝜒𝜒2-Test to test the null hypothesis that the coefficients on the country-level variables are 

jointly statistically not different from zero (that is, H0: 𝛽𝛽001=𝛽𝛽002=0). In all models 

estimated, our results reject the null hypothesis that the contextual variables are not 

statistically different from zero at 0.1% level of significance. This outcome thus 

reinforces the importance of controlling for the country-level variables while estimating 

industrial energy demand with industry-level data as failure to do so may lead to biased 

energy demand elasticities. Second, the difference between the size of the within-

country and between-country elasticities provides important information about the 

extent of the relationship between energy and the explanatory variables. Across board, 
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the relationship between energy and output is the same at industry-level and country-

level by looking at the difference between the average of the within-country output 

elasticity 0.27 and between-country output elasticity 0.27. However, this is not the case 

if will consider individual sector type. For instance, for the primary sector, the relative 

size of the within-country income elasticity 0.29 to its corresponding between-country 

income elasticity 0.37 indicates that the relationship between energy and income is 

stronger at the aggregate level than industry level, but otherwise in the manufacturing 

sector. In general, the within-country price elasticity is larger in value than its 

corresponding between-country price elasticity in all models estimated. For price 

elasticity across board, the average elasticity of the within-country price 0.23 and its 

corresponding average elasticity of the between-country price 0.16 suggest that the 

relationship between energy and own-price is stronger at the industry level by 7%. One 

possible explanation for this might be that industries are more sensitive to changes in 

local energy prices as they can alter their input use combination than a change in 

national energy price.   

In addition, we can also infer from the results reported in Table 2.3 that the values of 

the estimated short-run price elasticities and short-run output elasticities for the all 

sectors and primary sector are somewhat similar. However, this is not the case in 

comparison, especially with the short-run elasticities for the service sector as the short-

run elasticities for the manufacturing sector in some cases somewhat similar in values to 

that of the all sectors and the primary sector23. For instance, the short-run estimated 

within-country output elasticity for the all sectors and the primary sector are 0.28 and 

0.29 respectively. This result indicates that a 10% increase in output is associated with 

about 2.8% and 2.9% increase in the energy consumption of the all sector and primary 
                                            
23 We do not find this kind of similarity in the estimated GMM reported in Table 2.2 as we find the short-
run elasticities across different models estimated to be considerably differs in most cases.  
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sector respectively. This suggests that the impact of a change in the economic activity 

on the energy consumption of the primary sector and that of European industry as a 

whole is almost the same. The implication of this result is that a change in energy 

consumption of the primary sector is largely associated with a change in the energy 

consumption of the European industry as the degree of responsiveness of the primary 

industry resulting from a change in price or output is similar to that of the industry as a 

whole. For the price elasticity, the short-run estimated within-country price elasticity for 

the all sectors and primary sector are –0.23 and –0.22 respectively, suggesting that a 10% 

rise in energy price is associated with about 2.2% and 2.3% reduction in energy 

consumption of the sectors as a whole and the primary sector respectively.  

We now focus on the results of the random part of the estimated DMM reported in 

Table 2.3. The information provided by the results of the random part allows us to 

demonstrate the strengths of multilevel modelling in terms of its ability to account for 

and separate the unobserved heterogeneity at different levels of the data, which single-

level models such as GMM and fixed effect will overlook. As argued earlier, we would 

like to emphasize that failure to account for the cluster level of the data may lead to 

unreliable estimates. The results of the random part reported in Table 2.3 explain the 

unobserved cluster level heterogeneity in our models. The disturbance terms 𝜎𝜎𝑣𝑣2, 𝜎𝜎𝑢𝑢2 and 

𝜎𝜎𝜀𝜀2  represent country-differences, industry-differences and time-differences and they 

measure the changes in energy consumption with respect to differences in- country, 

industry and time respectively. Our results show that all estimated disturbance terms 

reported in Table 2.3 are statistically significant. Specifically for the whole sector, 

although, the statistical significance of the coefficients on unobserved terms 𝜎𝜎𝑣𝑣2=0.09, 

𝜎𝜎𝑢𝑢2 =0.09 and 𝜎𝜎𝜀𝜀2 =0.03 demonstrate the importance of country, industry and time 

variations to changes in European industrial energy consumption, but we are very much 
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interested to measure the role of country differences in energy consumption. To 

measure the extent of contextual effects in determine European industrial energy 

consumption, we employ the intra-class correlation coefficient (ICC). The coefficient of 

the ICC 0.44 suggests that 44% of the unexplained variations in industrial energy use in 

Europe are traceable to between-country differences. In other words, the differences in 

energy use by industries are to some reasonable extent affected by aggregate indicators.  

The ICC for the manufacturing and service sectors are very similar to that of the 

whole sector, implies that the differences in energy use of these sectors are to some 

meaningful extent characterised by aggregate activities. However, the results of the 

random part of the primary sector prove otherwise as the ICC (0.74) suggests that about 

74% of the unobserved variations in energy use of the primary sector are traceable to 

between-country differences rather than between-industry difference. In other words, 

industries in the primary sector are largely tied to their respective country. One possible 

explanation for this strong relationship between the primary sector and their respective 

aggregate activities may be because of the strong role of the government in industries 

such as the agriculture, fishing and forestry, which form the major part of the primary 

sector. For this reason, they are likely to be more sensitive to changes in 

macroeconomic policies24.  

The estimated long-run elasticities derived from energy demand functions have 

retained energy demand modelling as an important area of interest in the literature. This 

is because these elasticities have served as important tools for the policy makers in 

making appropriate predictions about future energy use and energy related policies. 

This subsequently highlights the potential implications of energy related policies based 

                                            
24 Interestingly, The Economist (2017) emphasised the danger for UK farmers that they may be among the 
first to feel the effects of Brexit as UK agriculture is heavily reliant of foreign workers and they may not 
be available for long.  
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on inaccurate estimates, which are very likely to be misleading or inappropriate. In 

respect to this argument, we now discuss the estimated long-run income and price 

elasticities reported in Table 2.3. Unlike the estimated GMM long-run elasticities, all 

estimated DMM long-run elasticities reported in Table 2.3 are statistically significant 

with expected signs. Our results show that the European industrial energy demand is 

income-inelastic with an estimated long-run elasticity 0.81 and also price-inelastic with 

estimated price elasticity –0.68. The results indicate that a 10% rise in income and in 

price is associated with 8.1% rise and 6.8% reduction respectively in European 

industrial energy consumption on average in the long-run. In terms of the elasticity of 

economic activity, our value is similar to that of Dimitropoulous et al. (2005). Our 

income elasticity 0.81 is almost the same of the average income elasticity 0.76 for the 

UK manufacturing and transport sector obtained in Dimitropoulous et al. (2005). 

However, they obtained average price elasticity –0.11, a value smaller to ours –0.68. 

The value of our long-run price elasticity –0.68 is almost identical to the price elasticity 

–0.64 obtained in Agnolucci (2009) for the British and German industrial sector25.  

The relative big value of the estimated income elasticity (0.81) compare to the price 

elasticity (–0.68) in absolute terms suggests that European industrial energy demand is 

more responsive to changes in economic activity than to changes in energy price. For 

the subsectors, we find the price elasticity of energy demand for the primary, 

manufacturing and service sectors to 0.67, 0.83 and 0.58 respectively. Further, the long-

run price elasticities for these sectors are −0.54, −0.77 and −0.49 respectively. The 

results show that the long-run elasticities of the manufacturing sector are markedly 

higher than the long-run elasticities of other sector types. This is reasonable, as we 

                                            
25  However, we advised that one should be exercise caution when comparing our estimates to 
Dimitropoulous et al. (2005) and Agnolucci (2009) due to differences in scope, data and econometric 
methodology employed. 
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would expect the considered largest energy-consuming sector (manufacturing) to be 

more sensitive to change in energy price and economic activity relative to other sectors.  

By comparing the long-run elasticities of the sector types, our results show that the 

DMM long-run output elasticities reported in Table 2.3 are somewhat similar in values 

to that of the GMM, reported in Table 2.2. However, with the exception of the service 

sector, the estimated DMM long-run price elasticities for the primary (−0.52) and 

manufacturing (−0.77) sectors are bigger in absolute value than their corresponding 

estimated long-run price elasticities derived from the GMM (−0.27, −0.54). Therefore, 

in general, one would have expected the estimated GMM long-run price elasticity −0.91 

for the whole sector (however, not statistically significant) to be smaller than that of the 

DMM −0.68 in absolute terms, but it is otherwise. This is due to the large value of the 

service’s sector price elasticity −1.21 reported in Table 2.2. This is an intriguing finding 

suggesting that estimates derived from a model using industry-level data that fails to 

control for the multilevel structure of the data may be unreliable as in the case of the 

GMM. Further, the whole sector’s estimated long-run income 1.41 derived from the 

GMM, though, not statistically significant is again larger the value obtained in DMM 

0.81. This further reinforces our argument that failure to account for the underlying 

multilevel structure of the data may lead to unreliable estimates in form of 

overestimation or underestimation.    

2.6     Conclusion and policy implications 

Given the pivotal role energy plays in the process of economic development and the 

continuation of economic growth, especially in modern industrialised countries, its 

absence or shortage (of course) is expected to cause nothing but a serious damage to the 

production processes and consequently retards economic growth and standard of living. 
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However, rapid economic growth or sustainable growth is associated with an increase in 

energy use that typically results in higher carbon and particulate emissions. The 

devastating impact of increasing emissions therefore requires accurate projections of 

future energy demand, which are necessary in order to understand and address issues 

relating to energy security, resource planning, trans-boundary emissions, etc. Thus, the 

improved energy demand parameters provided by our dynamic multilevel modelling 

approach should be seen as significant tools for policymakers.  

This chapter employs a dynamic multilevel model and GMM estimator to analyse 

industrial energy demand across European countries for the period 1995 – 2009. The 

energy demand model specified allow for the underlying non-linear forces that might 

influence the energy demand estimates as pointed out in the literature. In all models 

estimated, our findings are in the body of evidence in the literature by supporting the 

fact that it is important to allow for the inherent underlying non-linear forces in the 

energy demand model. Further, to a meaningful extent, we confirm that the DMM 

performs better than the GMM in terms of the estimated parameters that are statistically 

significant. Moreover, we would also like to reiterate that, unlike the GMM, our 

dynamic multilevel model controls for the hierarchical structure of the data used in the 

analysis by assigning disturbance terms to each level of the data. Given the advantages 

of the DMM over the GMM within the context of this study, we chose the DMM as our 

preferred choice of modelling technique.  

The preferred model reveals that the European industrial energy consumption is 

significantly influenced by the country-level variables given the statistically significant 

of the estimated country-level variables. This result is reinforced by the result of ICC in 

the DMM (0.44), suggesting that about 44% of the unexplained variations in industrial 

energy consumption are traceable to between-country differences. Moreover, we find 
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European industrial energy demand to be both income- and price-inelastic with 

estimated long-run elasticities of 0.81 and –0.68 respectively. However, the long-run 

elasticities generated from the alternative model, although not statistically significant, 

but are substantially overestimated with estimated income and price elasticity 1.41 and 

–0.91 respectively. This is an intriguing finding demonstrating that unless energy 

demand models using industry-level data are formulated to allow for the multilevel 

structure of the data, the estimated income and price elasticities could be seriously 

biased.  

Our findings have some policy implications. To start with, this chapter does not only 

introduced a new method of modelling energy demand, but also highlights the need for 

more sophisticated modelling of energy demand if policy makers seek to formulate 

appropriate policies related to energy security and climate change. This is because; any 

energy-related policy based on inaccurate energy estimates is very likely to be 

misleading or inappropriate. Moreover, given the importance for controlling for the 

hierarchical structure of data while using industry energy data as demonstrated in this 

study, we argue that it is imperative that future industry level energy demand studies 

account for the hierarchical structure of the data. This is to prevent energy policy 

making being based on industry level evidence that substantially inflates the 

responsiveness of long run energy demand to income and price changes. In addition, the 

difference in the magnitude of the long-run price elasticities of demand for the sector 

types suggests that the degree of responsiveness of industry to changes in energy price 

differ. From the policy perspective, this suggests that any policy being targeted to 

increase energy price with the intention to reduce energy consumption/increase in 

energy-saving is not very likely to produce desirable result in some industries as we find 

in the service sector with an estimated elasticity of –0.49. We therefore argue that it is 
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important to consider the characteristics of the sectors while formulating energy related 

policy. Also, as the preferred model indicates relatively large long-run income elasticity, 

this suggests that European industries are more responsive to changes in economic 

activities.  However, despite the relatively lower estimated long-run price elasticity in 

our preferred model, the results still suggest that policy responses influencing energy 

prices are likely to be effective in reducing energy consumption. More importantly, the 

main result drawn from this research suggests that controlling for the hierarchical 

structure of the energy data is imperative if European policy makers wish to make more 

appropriate predictions about future energy use and associated carbon emissions. We 

hope that our findings would be a blueprint for other developed countries.   

 With respect to further research, we hope that future studies will extend this work 

by estimating household energy demand and make appropriate predictions about future 

household energy use and emissions, which can help in policy making.  
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Chapter 3     Applied Econometrics to Factor Substitution 
with Implications for Carbon Intensity: Evidence from 

China’s Accession to the WTO 
 

 

3.1 Introduction 

The growing concern about the devastating impacts (e.g., global warming and acidic 

rain) of increasing anthropogenic greenhouse gases (GHGs) has motivated governments, 

institutions and researchers to look for a long-lasting solution in reducing CO2 

emissions. Since CO2 emissions account for half of the anthropogenic contribution to 

GHGs (Floros and Vlachou, 2005) therefore, reduction in CO2 emissions could be 

considered as a good measure of dealing with the rising effects of climate change on 

environment and people’s livelihood. Among available measures, energy saving is seen 

as a key in reducing CO2 emissions via reduction in energy consumption in the energy-

emissions literature. Of course, in practice, energy saving could be in form of energy 

efficiency or energy substitution. In particular, the latter allows firms/industry to 

substitute from the use of CO2 intensive fuels and towards the use of low carbon 

intensive fuels and factors.  

According to World Bank (2009), the increase in global CO2 emissions in recent 

decades is linked to the fast growing of the emerging economies notably China. The 

drastic increase in China’s CO2 emissions in recent years has been characterised by her 

increase in energy consumption with a staggering consumption of 119.67quadrillion 

BTU (IEA, 2015) because of rapid economic growth with an annual increase in GDP of 

6.8% from 1989–2017 and. In 2008, China became the world’s largest emitter of CO2 

emissions by overtaking the United States and China’s CO2 emissions account for about 
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one third (28%) of global CO2 emissions (IEA, 2015). Besides the rapid economic 

growth, China’s exports have also been regarded as a crucial contributor to China’s CO2 

emissions as more energy is being utilised to meet increasing exports (Weber et al., 

2008; Yungfeng and Laike, 2010). In 2014, China surpassed the US to become the 

world’s largest merchandise trader with foreign trade amounted to 43 billion US dollars 

according to World Trade Organisation (WTO). As the world’s largest exporter, China 

exports were worth US$2.119 trillion across the globe in 2016. This accounts for about 

13.1% of the global exports estimated at US$16.236 trillion in 2016. These figures 

demonstrate that China has substantially benefited from its vast trade surplus. However, 

the benefits associated with China’s trade surplus are at the expense of the environment. 

Given the connection between energy substitution and the environment, thus, an 

exploratory analysis of energy substitution effects of trade would help in understanding 

the extent of factor substitution that is induced by trade.  

 
           Figure 3.1: China’s export in comparison to Germany, Japan and US 

Source: World Trade Integrated Solution, World Bank 

Arguably, the rise in China’s trade surplus in recent years can be traced to China’s 

accession to the WTO in December 2001. As a result, China’s production related energy 
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use has increased. Zhang and Lahr (2014) argue that about 26.6% of the increase in 

China’s production-related energy use is because of increase in exports between 2002 

and 2007. In these 5 years, exports rose faster than immediate past 15 years in total with 

an average annual rate of 19.6% in exports, a number that almost doubled the previous 

annual average growth of 11.6%. The trade effects of WTO membership on trade flows 

are well documented in the literature (Shafaeddin, 2003 and 2004; Rose, 2004 and 2005; 

Tomz et al., 2007; Subramanian and Wei, 2007; Eicher and Henn, 2011). Fig. 4.1 

presents the historical trend of China’s exports in comparison to US, Germany and 

Japan. In comparison to those of other countries, China’s export has drastically 

increased since becoming a member of the WTO. Hence, a two-separate period (before 

and after joining the WTO) analysis would offer an in-depth understanding of trade’s 

effects on factor substitution. In this regard, this chapter extends the literature of factor 

substitution by deriving a range of elasticities of substitution (ES) and elasticities of 

complementarity (EC) rather than focusing on a single ES/EC like extant literature for 

China for the period before (1995–2001) and after (2002–2009) joining the WTO. 

Existing literature on factor/or fuel substitution for China includes Ma et al. (2008 

and 2009), Smyth et al. (2011), Su et al. (2012), Lin and Wesseh Jr (2013), Zha and 

Ding (2014), Yang et al. (2014) Li and Lin (2016) and Ma and Stern (2016). However, 

none of these studies (i) explored the richness in the theoretical literature of elasticities 

of substitution and complementarity (Hicks, 1932; Robinson, 1933; Lerner, 1933; Allen, 

1934, 1938; Uzawa, 1962; Syrquin and Hollender, 1982; Sato and Koizumi, 1973; 

Bertoletti, 2005; Stern, 2010) by estimating a range of elasticities as is done in this 

study; (ii) considered the implications of increasing China’s exports since joining WTO 

for production factor substitution. In this regard, this study provides new insights to the 

exiting literature by reaffirming the importance of the theoretical exposition on 
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elasticities of substitution and complementarity with a rich history for exertions that 

address extant issues. This chapter builds on the work of Stern (2010) and computes ten 

elasticities of substitution (ES) and complementarity (EC) for Chinese industry before 

and after gaining access to WTO. The following are the ten ES and EC derived from the 

translog cost functions, which we shall discuss in details in due course: (i) Allen (1934; 

1938)-Uzawa (1962) elasticity of substitution (AES); (ii) Morishima (1967) elasticity of 

substitution (MES); (iii) Hotelling (1968)-Lau (1978) elasticity of substitution (HLES); 

(iv) Shadow elasticity of substitution (McFadden, 1963) (SES); (v) Morishima gross 

elasticity of substitution (MGES) (Mundlak, 1968; Davis and Shumway, 1996); (vi) 

Antonelli elasticity of complementary (AEC) and (vii) Morishima elasticity of 

complementary (MEC) (Blackorby and Russell, 1981; Kim, 2000); (viii) Hicks (1970) 

elasticity of complementarity (HEC) (Sato and Koizumi, 1973); (ix) Pigou (1934) 

elasticity of complementarity (PEC) and (x) Shadow elasticity of complementarity 

(SEC) (McFadden, 1963). 

We compute these elasticities by adopting a simplified approach that is based on the 

AES. This is because from the AES we can derive the MES, HLES, SES, AEC and 

HEC. The MEC and SEC are derived from the AEC, while the PEC and MGES are 

easily derived from the HEC and HLES respectively. Since each of these elasticities 

provides different information on substitution (a case where a pair of inputs are (price) 

p-substitutes or p-complements) and complementarity (a case where a pair of inputs are 

(quantity) q-complements or p-substitutes) therefore, no single elasticity is preferred in 

all situations.26 

                                            
26 Two inputs are p-substitutes (complements) if an increase in the price of one input increases (reduces) 
the quantity of the other. An increase in a q-substitute (complement) reduces (increases) the marginal 
product of the other substitutable (complementary) input. 
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Secondly, this chapter contributes to existing literature of energy and environment 

by exploring the extent in which energy demand estimates in form of ES can impact 

carbon emissions, which has not been empirically tested until now, but has an 

established theoretical background as noted by Saunders, (2009). Specifically, the 

estimated results of the ES are further applied to carry out an exploratory analysis on the 

driving forces of Chinese industries’ carbon intensity (the amount of CO2 emissions 

emit per unit of industrial output) having controlled for other competing factors27.  

China has been increasingly under international pressure to reduce its CO2 emissions 

in recent years, and in response the Chinese government intended to reduce its carbon 

intensity by 40% – 45% in 2020 in comparison to 2005 level. To achieve this objective 

as well as for global environmental advantages given China’s contribution to global 

anthropogenic GHGs, it is therefore necessary to examine the driving forces of China’s 

carbon intensity and simultaneously investigate the relative effects of factor substitution 

and technological progress. In regard to existing literature on carbon intensity, Fan et al. 

(2007) use divisia index decomposition approach to measure the main drivers of 

China’s energy-related carbon intensity between 1980 and 2003. They find that about 

90% reduction in China’s carbon intensity is associated with a decrease in energy 

intensity. The authors further advocate that reduction in energy intensity is not sufficient 

enough for continuing reduction in emissions intensity and should be supplemented 

with changes in energy mix28.  

In a study similar to Fan et al. (2007) in terms of methodology, Tan et al. (2011) 

investigate the driving forces of China’s carbon intensity for the period 1998–2008 

                                            
27 The analysis involved in second contribution is regarded as exploratory as this is the first empirical 
study (as far as we know) that would examine the impact of ES directly on carbon emissions.  
28 This can be characterized as shifting away from the use of high carbon intensive fuels such as coal or 
even changes in input mix that is, substituting non-energy inputs for energy inputs.  
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using logarithmic mean divisia index approach. To help in their investigation, the 

authors further decomposed emissions intensity into the effects of energy intensity of 

power generation, energy intensity of GDP, electricity intensity of GDP, provincial 

structural change and energy consumption ratio. They find that decrease in China’s 

energy intensity in general accounts for 96.4% reduction in carbon emissions intensity, 

which fell by 29.14% during the period of observation. Ouayang and Lin (2015) also 

conclude that decrease in energy intensity is the key to reduction in carbon intensity in 

China. The authors investigate the determinants of Chinese industrial carbon intensity 

and show that a 1% increase in energy use and fuel consumption is associated with 

about 0.55% and 0.66% increase in energy-related industrial CO2 emissions 

respectively. These findings are similar to those reported in Chang and Lahr (2016), and 

the authors further advise the Chinese government about their trade policies as it is 

counterproductive in terms of carbon intensity. On the basis of decomposition of energy 

share equation derived from a translog cost function, Li and Lin (2007) observed that 

carbon intensity of China decreased by 60.1% between 1986 and 2012 as a result of 

factor substitution, which mainly results from the substitution of labour for energy, and 

technological progress. The findings are reinforced in Wang et al. (2017) as the authors 

argue that from 2000 to 2009, China’s carbon intensity decreased from 2.341 to 2.088 

ton/103US$, equivalently 89%, which is largely associated with energy reduction.  

Give the above discussion; we can deduce that this research is worth considered as it 

could offer insightful information via an exploratory analysis on the extent in which 

energy estimates impact of energy substitution on carbon emissions.  The remainder of 

this chapter is organised as follows. Section 2 presents the theoretical specifications of 

the translog cost function. Section 3 presents the general formula for each of the 

elasticities of substitution and complementarity computed and then describes the data 
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used for the estimations. Section 4 consists of two parts. The first part presents the 

results of both the estimated cost function and the elasticities of substitution and 

complementarity. In the second part, we attribute the driving forces of carbon intensity 

in terms of the estimated ES and other competing factors. In particular, we present the 

model specifications for the carbon intensity and subsequently present the results of the 

model estimated. Section 5 presents the concluding remarks by providing key insights 

for the China industry on changes in inter-factor substitution and complementarity, and 

also suggests possible future research.  

3.2 Modelling framework: Translog cost function 

Let 𝑤𝑤 ∈ ℝ be the set of Κ inputs, indexed 𝑘𝑘 = 1, … ,Κ, a representative producer uses to 

produce 𝑌𝑌 output. The firm’s production function can be expressed as follows: 

   𝑦𝑦 = ℎ(𝑤𝑤1, … ,𝑤𝑤𝑖𝑖,𝐴𝐴),                                (3.1) 

where 𝐴𝐴  represents the technical change. The function ℎ(. )  assumes a production 

technology where all inputs levels are varied. Under the duality theory, the cost function 

is regarded as a true dual of the production function, Shephard (1970). That is, the 

corresponding cost function is also twice differentiable if the production function is 

twice differentiable.  

Under the assumption of perfectively competitive markets for inputs, a standard cost 

function can be written as follows: 

   𝑐𝑐(𝑦𝑦, 𝑝𝑝) ≡ min𝑤𝑤{𝑝𝑝 ∙ 𝑤𝑤} 𝑠𝑠. 𝑡𝑡 .  𝑦𝑦 = ℎ(𝑤𝑤1, … ,𝑤𝑤𝑖𝑖,𝐴𝐴)              (3.2) 

where 𝑝𝑝 ∈ ℝ is the set of Κ input prices, w’s represent capital, energy, labour, material, 

and 𝑐𝑐 = ∑ 𝑝𝑝𝑖𝑖𝐾𝐾
𝑖𝑖=1 𝑤𝑤𝑖𝑖 is the total expenditure on inputs. In conformity to microeconomics 

theory, the cost function specified possesses the following four properties: (i) non-
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decreasing in 𝑝𝑝 , 𝜕𝜕𝑐𝑐(𝑦𝑦,𝑝𝑝)/𝜕𝜕 ln𝑝𝑝𝑖𝑖 ≡ 𝜂𝜂𝑝𝑝𝑖𝑖 ≥ 0, where 𝜂𝜂𝑝𝑝𝑖𝑖  is elasticity with respect to 

𝑘𝑘𝑡𝑡ℎ input; (ii) non-decreasing in 𝑦𝑦, 𝜕𝜕𝑐𝑐(𝑦𝑦,𝑝𝑝)/𝜕𝜕 ln 𝑦𝑦 ≡ 𝜂𝜂𝑦𝑦 ≥ 0; homogenous of degree 

one in 𝑝𝑝 , 𝑐𝑐(𝑦𝑦, 𝑡𝑡𝑝𝑝) ≡ 𝑡𝑡𝑐𝑐(𝑦𝑦,𝑝𝑝)  for 𝑡𝑡 > 0 ; (iv) concave and continuous in 𝑝𝑝 , 𝑐𝑐(𝑡𝑡𝑝𝑝 +

(1 − 𝑡𝑡)𝑝𝑝′ ≥ 𝑡𝑡𝑐𝑐(𝑦𝑦,𝑝𝑝) + (1 − 𝑡𝑡)𝑐𝑐(𝑝𝑝′,𝑦𝑦) for 0≤ 𝑡𝑡 ≤ 1 and for 𝑝𝑝 ≫ 0.   

For the purpose of estimation, we employ a flexible functional form with no a priori 

restrictions of the ES among factors and economic of scale. Although, they are various 

flexible functional forms in the literature, but we employ the translog function proposed 

by Christensen et al. (1973). This is because the translog function remains as the most 

widely used flexible function in the literature. Also, our translog function imposes the 

fundamental restrictions of symmetry (𝛿𝛿𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖∀𝑖𝑖𝑖𝑖) and linear homogeneity in input 

prices ( ∑ 𝛿𝛿𝑖𝑖 = 1; 𝑛𝑛
𝑖𝑖=1 ∑ 𝛿𝛿𝑖𝑖𝑖𝑖 = ∑ 𝑎𝑎𝑌𝑌 = ∑ 𝛿𝛿𝑖𝑖𝑖𝑖 =𝑛𝑛

𝑖𝑖=1 0𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 ). Since we estimate a few 

model specifications, we also follow the conventional practice by normalized one input 

price each time we estimate the cost function concurrently with the share equations. 

That is, we jointly estimated the cost function and three cost share equations in each 

case. Although, all estimated variables were mean-adjusted, which at least control for a 

minimum level of sectorial heterogeneity, but further controlled for potential 

heterogeneity across the sectors by including additional sectorial characteristics. In this 

regard, a categorical variable is included to indicate a similarity in production 

technology by classifying the sectors into primary, manufacturing and service sectors29. 

Also, a dummy is added to indicate a sector with multiple production units. These are 

all comprised in 𝑧𝑧𝑗𝑗  in Eq. (3.3). Our translog cost function is therefore specified as 

follows:  

                                            
29 The classification of the sectors to primary, manufacturing and service sectors can be found in the 
appendix. 
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𝑛𝑛

𝑖𝑖=1

ln𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗 ln𝑌𝑌𝑖𝑖𝑗𝑗 +
1
2
��𝛿𝛿𝑖𝑖𝑖𝑖

3

𝑖𝑖=1

3

𝑖𝑖=1

ln𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗 ln𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗 + 𝛿𝛿𝑌𝑌𝑗𝑗 ln𝑌𝑌𝑖𝑖𝑗𝑗 𝑡𝑡

+ � 𝛿𝛿𝑖𝑖𝑖𝑖
𝑛𝑛

𝑖𝑖=1
𝑡𝑡 ln𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗 + 𝑧𝑧𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑗𝑗                                                                   (3.3) 

where 𝑖𝑖  is the number of industries indexed 𝑖𝑖 = 1, … . ,𝑁𝑁  that operate over the time 

period. C is the total cost; Y is output; 𝑡𝑡 is time trend, which captures technical progress; 

Ps are the input prices as previously defined and 𝜀𝜀𝑗𝑗  is the residual. The factor share 

input demand functions can be derived using Shephard’s lemma by differentiating Eq. 

(3.3). 

𝑆𝑆𝑖𝑖𝑖𝑖𝑗𝑗 = 𝛿𝛿𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖𝜏𝜏 + ∑ 𝛿𝛿𝑖𝑖𝑖𝑖 ln𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗3
𝑖𝑖=1 + 𝛿𝛿𝑖𝑖𝑌𝑌 ln𝑌𝑌𝑖𝑖𝑗𝑗 + 𝜆𝜆𝑖𝑖𝑗𝑗      (3.4) 

where 𝑆𝑆𝑖𝑖𝑖𝑖𝑗𝑗  is the factor share equation of kth input. Eqs. (3.3) and (3.4) are jointly 

estimated using the iterated seemingly unrelated regression (iSUR) technique given its 

ability to account for potential correlation of the error terms across the equations. 

3.3    Elasticities of substitution and complementarity  

Until now the focus has been on the presentation of the translog cost function. This 

section presents the ten elasticities derived from the estimated cost function Eq. (3.3) 

and the factor share equations (3.4). The theoretical and methodological presentations of 

these elasticities of substitution and complementarity are motivated by several existing 

literature, but in particular Stern (2011). For clarity purposes, the presentation of these 

elasticities is written in terms of two inputs 𝑤𝑤𝑖𝑖 and 𝑤𝑤𝑖𝑖 from the input vector 𝑤𝑤. 

1. Symmetric Allen-Uzawa Elasticity of Substitution (AES): The AES is commonly 

regarded as the most popular ES in the literature originally proposed by Allen (1934; 
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1938) (i.e., the primal AES) before Uzawa (1962) demonstrate how the AES can be 

derived from a fitted cost function (the dual AES). The AES is a partial elasticity as it 

measures the change in k if the price j changes. The AES classifies inputs as p-

complements if, AES <0 and inputs as p-substitutes if, AES >0. Following Uzawa 

(1962) presentation of the dual AES, we have. 

𝐴𝐴𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 =
𝐼𝐼(𝑦𝑦,𝒑𝒑)𝜕𝜕

2𝐼𝐼(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑖𝑖𝜕𝜕𝑝𝑝𝑖𝑖

𝜕𝜕𝐼𝐼(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑖𝑖

𝜕𝜕𝐼𝐼(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑖𝑖

=
1
𝑆𝑆𝑖𝑖
𝜕𝜕 ln𝑋𝑋𝑖𝑖 (𝑦𝑦,𝒑𝒑)

𝜕𝜕𝑝𝑝𝑖𝑖
                                             (3.5) 

For the purpose of estimation, we compute the 𝐴𝐴𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 from the estimated Eqs. (3.3 and 

3.4) in our empirical analysis as follows: 

𝐴𝐴𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 =
𝛿𝛿𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖
𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖

                                                                              (3.6) 

where 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑖𝑖 are the estimated cost shares for inputs j and k respectively. Since our 

estimations are based on the sample mean, then 𝑆𝑆𝑖𝑖 = 𝛿𝛿𝑖𝑖  and 𝑆𝑆𝑖𝑖 = 𝛿𝛿𝑖𝑖  given that the 

quadratic and interaction terms in Eqs. (3.3 and 3.4) are equal to zero at the sample 

mean.  

2. Asymmetric Morishima Elasticity of Substitution (MES): The MES is initially 

owing to the work of Morishima (1967), but Blackorby and Russell (1975) proposes a 

popular formula for the MES that is identical to the Robinson’s (1933) definition of ES 

(i.e., changes in input ratio with respect to price ratio while holding output constant). 

𝑀𝑀𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 =
𝜕𝜕 ln �𝜕𝜕𝐼𝐼(𝑦𝑦,𝒑𝒑)

𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝐼𝐼(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑖𝑖

� �

𝜕𝜕 ln�𝑝𝑝𝑖𝑖 𝑝𝑝𝑖𝑖⁄ �
                                                   (3.7) 

Following Blackorby and Russell (1989), for a change in 𝑝𝑝𝑖𝑖 Eq. (3.7) can be specified 

as follows: 
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𝑀𝑀𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 =
𝑝𝑝𝑗𝑗�

𝜕𝜕2𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗𝜕𝜕𝑝𝑝𝑗𝑗

 𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

 − 𝜕𝜕
2𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

2  𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

�

𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

 𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

=
𝜕𝜕 ln𝑋𝑋𝑖𝑖 (𝑦𝑦,𝒑𝒑)

𝜕𝜕𝑝𝑝𝑖𝑖
−
𝜕𝜕 ln𝑋𝑋𝑖𝑖 (𝑦𝑦,𝒑𝒑)

𝜕𝜕𝑝𝑝𝑖𝑖
          (3.8) 

where 𝑋𝑋𝑖𝑖(𝑦𝑦,𝒑𝒑) and 𝑋𝑋𝑖𝑖(𝑦𝑦,𝒑𝒑) are factor input demand functions from Eq. (3.4). Eq. (3.8) 

presents the MES between inputs k and j in terms of the function of the cross-price 

elasticity of the AES. The asymmetric nature of the MES implies that 𝑀𝑀𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 ≠ 𝑀𝑀𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖. 

For analytical purpose, the MES between two inputs while holding output constant can 

be expressed in terms of the AES: 𝑀𝑀𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖(𝐴𝐴𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 − 𝐴𝐴𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖). 

3. Asymmetric Morishima Gross Elasticity of Substitution (MGES): Further to the 

proposition of MES, Mundlak (1968) proposes the gross version of the MES30. Under 

the assumption of cost minimization with output and all input prices held constant, 

Davis and Shumway (1996) present a unique generalized factor ratio elasticity of 

substitution (FRES) 𝜕𝜕 ln𝑋𝑋𝑗𝑗(𝑤𝑤,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

− 𝜕𝜕 ln𝑋𝑋𝑗𝑗(𝑤𝑤,𝒑𝒑)

𝜕𝜕𝑝𝑝𝑗𝑗
, where the demand function for w as the 

variable of interest is conditioned in a situation beyond the Mundlak (1968) ES. By 

modifying the FRES, by substituting q for w we have the MGES as follows: 

𝜕𝜕 ln𝑋𝑋𝑖𝑖 (𝑞𝑞,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑖𝑖

−
𝜕𝜕 ln𝑋𝑋𝑖𝑖 (𝑞𝑞,𝒑𝒑)

𝜕𝜕𝑝𝑝𝑖𝑖
                                                        (3.9) 

4. Symmetric Shadow Elasticity of Substitution (SES): McFadden (1963) presents the 

SES that later observed by Mundlak (1968) under the assumption of constant cost. The 

SES measures the input substitution along the isocost curve, which can be expressed as 

the share-weighted average of two MES (Chambers, 1988) or three AES (Stern, 2011). 

Unlike the MES that is asymmetric, the SES is symmetric because of the constant cost 

restriction. The SES can be specified as follows: 

                                            
30 Blackorby et al. (2007) provide detail discussion of the MGES. 



 

51 
 

             𝑆𝑆𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 =
𝜕𝜕 ln �𝜕𝜕𝐼𝐼(𝑦𝑦,𝒑𝒑)

𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝐼𝐼(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑖𝑖

� �

𝜕𝜕 ln�𝑝𝑝𝑖𝑖 𝑝𝑝𝑖𝑖⁄ �
\𝐼𝐼

=

−�𝜕𝜕2𝐶𝐶(𝑦𝑦,𝒑𝒑)� 𝜕𝜕𝑝𝑝𝑗𝑗
2�

𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

 𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

+ 2�𝜕𝜕
2𝐶𝐶(𝑦𝑦,𝒑𝒑� 𝜕𝜕𝑝𝑝𝑗𝑗𝜕𝜕𝑝𝑝𝑗𝑗�
𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

 𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

− �𝜕𝜕2𝐶𝐶(𝑦𝑦,𝒑𝒑� 𝜕𝜕𝑝𝑝𝑗𝑗
2�

𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

 𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑗𝑗

1
(𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)/𝜕𝜕𝑝𝑝𝑗𝑗)𝑝𝑝𝑗𝑗

+ 1
(𝜕𝜕𝐶𝐶(𝑦𝑦,𝒑𝒑)/𝜕𝜕𝑝𝑝𝑗𝑗)𝑝𝑝𝑗𝑗

                       (3.10) 

Stern (2011) presents an easily computational form of Eq. (3.10), which is expressed 

as the share-weighted average of three AES. In our empirical analysis we derive the 

SES using this computational form, which is written as follows: 

             𝑆𝑆𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖
𝑆𝑆𝑖𝑖+𝑆𝑆𝑖𝑖

�−𝐴𝐴𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 + 2𝐴𝐴𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 − 𝐴𝐴𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖�                                        (3.11) 

5. Symmetric Hotelling-Lau Elasticity of Substitution (HLES): This is the gross 

version of the AES, introduced by Mundlak (1968) and Lau (1978), but termed as 

Hotelling-Lau elasticity of substitution by Bertoletti (2005). In comparison with Syrquin 

and Hollender (1982), Bertoletti (2005) demonstrates the duality between the HLES and 

the HEC (Hicks Elasticity of Complementarity) and then argues that this dual 

relationship represents the final piece of the Hicks with respect to ES argument. The 

HLES interprets substitution inform of between gross p-substitutes and complements. 

The formula for the HLES is as follows: 

𝐻𝐻𝐿𝐿𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 =
Π(𝑞𝑞,𝒑𝒑)𝜕𝜕

2Π(𝑞𝑞,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑖𝑖𝜕𝜕𝑝𝑝𝑖𝑖

𝜕𝜕Π(𝑞𝑞,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑖𝑖

𝜕𝜕Π(𝑞𝑞,𝒑𝒑)
𝜕𝜕𝑝𝑝𝑖𝑖

=
Π

𝑝𝑝𝑖𝑖𝑤𝑤𝑖𝑖

𝜕𝜕 ln𝑋𝑋𝑖𝑖 (𝑞𝑞,𝒑𝒑)
𝜕𝜕 ln 𝑝𝑝𝑖𝑖

                                   (3.12) 

where Π is the profit function and q is the price of output. This elasticity is also valid for 

a price vector q like MGES, HEC and PEC (Pigou elasticity of complementarity). For 

empirical computation we obtain the HLES from the AES following the formula 

presents in Bertoletti (2005). 
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𝐻𝐻𝐿𝐿𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 = �
𝜕𝜕 ln𝐼𝐼
𝜕𝜕 ln 𝑦𝑦

− 1� �𝐴𝐴𝐸𝐸𝑆𝑆𝑖𝑖𝑖𝑖 −
𝜕𝜕 ln𝑋𝑋𝑖𝑖 𝜕𝜕 ln 𝑦𝑦⁄
𝜕𝜕 ln𝐼𝐼 𝜕𝜕 ln 𝑦𝑦⁄

𝜕𝜕 ln𝑋𝑋𝑖𝑖 𝜕𝜕 ln𝑦𝑦⁄
𝜕𝜕 ln𝜇𝜇 𝜕𝜕 ln 𝑦𝑦⁄ �          (3.13) 

where 𝜇𝜇 is the marginal cost of the translog function, 𝜕𝜕 ln𝜇𝜇
𝜕𝜕 ln𝑦𝑦

= −1 + 𝜕𝜕 ln𝐶𝐶
𝜕𝜕 ln𝑦𝑦

+ 𝛿𝛿𝑌𝑌𝑌𝑌
𝜕𝜕 ln𝐶𝐶 𝜕𝜕 ln𝑦𝑦⁄  

and 
𝜕𝜕 ln𝑋𝑋𝑗𝑗
𝜕𝜕 ln𝑦𝑦

= 𝜕𝜕 ln𝐶𝐶
𝜕𝜕 ln𝑦𝑦

+ 𝛿𝛿𝑗𝑗𝑌𝑌
𝑆𝑆𝑗𝑗

 

6. Symmetric Antonelli Elasticity of Complementarity (AEC): Blackorby and Russell 

(1981) originally derive this elasticity and argues is the true dual of the AES under non-

constant return to scale. Kim (2000) further develops this elasticity using the Antonelli 

substitution matrix of Antonelli (1886). To measure the response to a change in the 

input quantity 𝑤𝑤𝑖𝑖 the formula of AEC is: 

𝐴𝐴𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖 =
𝐷𝐷I(𝑦𝑦,𝒘𝒘)𝜕𝜕

2𝐷𝐷I(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑖𝑖𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑖𝑖

=
1
𝑆𝑆𝑖𝑖
𝜕𝜕 ln𝑃𝑃𝑖𝑖 (𝑦𝑦,𝒘𝒘)
𝜕𝜕 ln𝑤𝑤𝑖𝑖

                                         (3.14) 

The AEC is a net elasticity as it distinguishes between the net q-complements 

(positive value) and q-substitutes (negative values). To derive the 𝐴𝐴𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖  in our 

empirical analysis, we draw on the description in Broer (2004) by using the inverse 

matrix of the AESs. 

�𝑨𝑨𝑨𝑨𝑨𝑨 𝜄𝜄
𝜄𝜄′ 0� = �𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑(𝑆𝑆1, … . , 𝑆𝑆𝑛𝑛) �𝑨𝑨𝑨𝑨𝑨𝑨 𝜄𝜄

𝜄𝜄′ 0� 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑(𝑆𝑆1, … . , 𝑆𝑆𝑛𝑛)�
−1

                   (3.15) 

where 𝜄𝜄 is the column vector of ones and the elements of AEC and 𝑆𝑆𝑛𝑛 are obtained as 

discussed above.  

7. Asymmetric Morishima Elasticity of Complementarity (MEC): Blackorby and 

Russell (1981) and Kim (2000) introduced the complementary version of the Morishima 

elasticity based on the inverse demand function derived from an input distance function. 

Since the EC measures a change in quantity of an input, therefore, the MEC measures a 

change in the price ratio when one of the inputs in a fixed ratio changes while holding 
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output and all other inputs constant. The MEC is like the AEC as it does not measure 

substitutability along the efficient frontier. This is because the substitution along the 

efficient frontier requires changes in the distance for only one input to change while 

holding output constant. For a change in the quantity of input 𝑤𝑤𝑖𝑖, the formula for MEC 

is as follows: 

𝑀𝑀𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖 =
𝜕𝜕 ln �𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)

𝜕𝜕𝑤𝑤𝑖𝑖
𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑖𝑖

� �

𝜕𝜕 ln�𝑤𝑤𝑖𝑖 𝑤𝑤𝑖𝑖⁄ �
=
𝜕𝜕 ln𝑃𝑃𝑖𝑖 (𝑦𝑦,𝒘𝒘)

𝜕𝜕 ln𝑤𝑤𝑖𝑖
−
𝜕𝜕 ln𝑃𝑃𝑖𝑖 (𝑦𝑦,𝒘𝒘)

𝜕𝜕 ln𝑤𝑤𝑖𝑖
                    (3.16) 

 8. Symmetric Hicks Elasticity of Complementarity (HEC): This elasticity is owing 

to the work of Hicks (1970) and is being regarded as the first elasticity of 

complementarity to be discovered. The initial motivation behind the proposition of the 

HEC was to be the true dual of the AES and thus expected to mirror the change in the 

price ratio for a change in the input ratio while holding the quantities of other inputs and 

the price of output constant. However, Syrquin and Hollender (1982) and Blackorby 

and Russell (1981) both argue that the HEC is not the true dual of the AES under non-

constant returns to scale, but the dual of the gross version of the AES- HLES (Bertoletti, 

2005). Sato and Koizumi (1973) present the formula for the HEC as follows:  

𝐻𝐻𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖 =
𝑌𝑌(𝒘𝒘)

𝜕𝜕2𝑌𝑌𝑖𝑖𝑖𝑖(𝒘𝒘)
𝜕𝜕𝑤𝑤𝑖𝑖𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑌𝑌𝑖𝑖(𝒘𝒘)
𝜕𝜕𝑤𝑤𝑖𝑖

𝜕𝜕𝑌𝑌𝑖𝑖(𝒘𝒘)
𝜕𝜕𝑤𝑤𝑖𝑖

=
𝑞𝑞𝑌𝑌
𝑝𝑝𝑖𝑖𝑤𝑤𝑖𝑖

𝜕𝜕 𝑙𝑙𝑙𝑙 𝑃𝑃𝑖𝑖 (𝑞𝑞,𝒘𝒘)
𝜕𝜕 𝑙𝑙𝑙𝑙𝑤𝑤𝑖𝑖

                                 (3.17) 

where Y(x) is the production function. We can derive the general form of HEC for a 

case of multiple outputs by substituting the revenue function for qY in Eq. (3.17): 

𝐻𝐻𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖 =
𝐿𝐿(𝒒𝒒,𝒘𝒘)
𝑝𝑝𝑖𝑖𝑤𝑤𝑖𝑖

𝜕𝜕 𝑙𝑙𝑙𝑙 𝑃𝑃𝑖𝑖 (𝒒𝒒,𝒘𝒘)
𝜕𝜕 𝑙𝑙𝑙𝑙𝑤𝑤𝑖𝑖

=
𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖
𝐿𝐿𝑖𝑖𝐿𝐿𝑖𝑖

                                                  (3.18) 

We derive the HEC in our empirical analysis following Syrquin and Hollender 

(1982) as follows: 
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𝐻𝐻𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖 =
∑𝑖𝑖𝑖𝑖

𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖
−
𝜕𝜕 ln 𝜇𝜇
𝜕𝜕 ln 𝑦𝑦

                                                                  (3.19) 

where: 

    ∑ = � 𝑨𝑨𝑨𝑨𝑨𝑨 �∇ln𝑦𝑦 ln𝑿𝑿�
′

∇ln𝑦𝑦 ln𝑿𝑿 0
�
−1

                                               (3.20) 

9. Symmetric Shadow Elasticity of Complementarity (SEC): This elasticity is 

relatively recent compared to other elasticities discussed in this study. Stern (2010) 

proposes the SEC with the intention of developing an elasticity that can fit into the 

modern framework of elasticity of complementarity. The SEC measures the optimal 

response of the shadow factor price ratio to the change in the ratio of two input 

quantities while holding the quantities of other inputs, output and the distance constant. 

Unlike the AEC and the MEC that do not measure input substitution along the efficient 

frontier as output level adjusts optimally to the change in the input quantity, the SEC is 

referred as movements along the input distance frontier. Hence, under the assumption of 

fixed distance the SEC measure input substitution when production is technically 

efficient. Stern (2010) presents the formula for the SEC as follows: 

𝑆𝑆𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖 =
𝜕𝜕 ln �𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)

𝜕𝜕𝑤𝑤𝑖𝑖
𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑖𝑖

� �

𝜕𝜕 ln�𝑤𝑤𝑖𝑖 𝑤𝑤𝑖𝑖⁄ �
∖ 𝐷𝐷𝐼𝐼                                                                    

=

− 𝜕𝜕2𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘) 𝜕𝜕𝑝𝑝𝑗𝑗
2�

𝜕𝜕𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑗𝑗

 𝜕𝜕𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑗𝑗

+ 2𝜕𝜕
2𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘) 𝜕𝜕𝑤𝑤𝑗𝑗𝜕𝜕𝑤𝑤𝑗𝑗�
𝜕𝜕𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑗𝑗

 𝜕𝜕𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑗𝑗

− 𝜕𝜕2𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘) 𝜕𝜕𝑤𝑤𝑗𝑗
2�

𝜕𝜕𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑗𝑗

 𝜕𝜕𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑗𝑗

1
(𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘))/𝜕𝜕𝑤𝑤𝑗𝑗)𝑤𝑤𝑗𝑗

+ 1

�𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑗𝑗

�𝑤𝑤𝑗𝑗

             (3.21) 

where 𝐷𝐷𝐼𝐼(𝑦𝑦,𝒘𝒘) is the input distance function and the SEC is the true dual of SES, Eq. 

(4.10). As in Eq. (4.22) we derive the SEC as the share-weighted average of the AECs 

(Stern, 2010) in our empirical analysis: 

             𝑆𝑆𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖
𝑆𝑆𝑖𝑖+𝑆𝑆𝑖𝑖

�−𝐴𝐴𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖 + 2𝐴𝐴𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖 − 𝐴𝐴𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖�                                        (3.22) 
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10. Asymmetric Pigou Elasticity of Complementarity (PEC): This elasticity is 

originally proposed by Pigou (1934) following his awareness that elasticities of 

substitution and complementarity are asymmetric in general. In this regard, Pigou (1934) 

developed two possible elasticities in which the first of these elasticities was based on 

the concept on Hicks ES, holding the quantities of other inputs and output constant. The 

second elasticity termed as the Pigou elasticity of partial productivity by Hicks (1936) 

was based on the assumption that output and all inputs apart from one of the two in the 

input ratio under consideration are held constant. Later, Hicks demonstrates how this 

elasticity can be derived from a production function or profit function as HEC, which is 

written as a function of own quantity and cross-quantity elasticities. This elasticity was 

renamed as the “Pigou elasticity of complementarity” in a more recent literature of ES 

and EC (Stern, 2010). To measure the response to a change in 𝑤𝑤𝑖𝑖 the formula for the 

SEC is as follows: 

𝑃𝑃𝐸𝐸𝐼𝐼𝑖𝑖𝑖𝑖 =
𝜕𝜕 ln �

𝐿𝐿𝑖𝑖(𝑞𝑞,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑖𝑖

𝐿𝐿𝑖𝑖(𝑞𝑞,𝒘𝒘)
𝜕𝜕𝑤𝑤𝑖𝑖

� �

𝜕𝜕 ln�𝑤𝑤𝑖𝑖 𝑤𝑤𝑖𝑖⁄ �
=
𝜕𝜕 𝑙𝑙𝑙𝑙 𝑃𝑃𝑖𝑖 (𝑞𝑞,𝒘𝒘)

𝜕𝜕 𝑙𝑙𝑙𝑙𝑤𝑤𝑖𝑖
−
𝜕𝜕 𝑙𝑙𝑙𝑙 𝑃𝑃𝑖𝑖 (𝒒𝒒,𝒘𝒘)
𝜕𝜕 𝑙𝑙𝑙𝑙𝑤𝑤𝑖𝑖

                    (3.23) 

Eq. (3.23) shows that the PEC is the difference between two cross-quantity elasticities 

based on the inverse demand functions derived from the revenue function. Unlike the 

MEC, the PEC measures the optimal response of input shadow price ratio to a change in 

input quantity ratio with all other input quantities and the price of output being held 

constant, but while varying the quantity of output and all input prices. 

3.4 Data  

This study estimates a few model specifications for two different time periods using 

annual balanced panel data. The first period covers 1995–2001, which is before the 
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China accession to the WTO and the second period is 2002–2009, which covered China 

accession to the WTO31. The Chinese sectors covered in this paper comprises 33 sectors 

at two-and three-digit level using International Standard of Industrial Classification 

(ISIC) Rev. The industrial classification of the sectors is listed in the appendix. The raw 

data are mainly obtained from the World Input-Output Database (WIOD) (Timmer et al., 

2015)32. CO2 emissions in Gg (kt) and energy use in TJ are taken from the EAs of the 

WIOD. Except energy expenditures that are expressed in millions of US$ at current 

prices, all other monetary series are in millions of national currencies at current prices. 

Output is measured in terms of gross output (y) of individual sector. Energy 

expenditures expressed in millions of US$ are calculated as the addition of expenditures 

on energy inputs purchased domestically and internationally. Material expenditures are 

calculated as expenditures on intermediate inputs, while capital expenditures and labour 

expenditure are measured in terms of capital compensation and labour compensation 

respectively.  

All the series at current prices were converted to constant prices by using the related 

prices indices. Gross output is deflated by using the price index of gross output 

(1995=100). The gross output at constant prices is then converted to international 

monetary unit US$, using the purchasing power parity exchange rates obtained from the 

Penn World Table (PWT7.1). Similarly, producers’ input expenditures at current prices 

were converted to constant (1995=100) prices by applying the implicit prices deflator 

for that sector and thus converted the constant series to US$ using the purchasing power 

parity exchange rates. The total cost and input prices are then derived as follows. The 

                                            
31 We acknowledge the relevance for allowing for a transition period in our analysis, but given the short 
span of the data and with the intention to have a more robust result, we categorised the transition period 
as part of the time period 2002–2009.   
32 We used data from the three major accounts of the WIOD, the National Input-Output Tables (NIOT) 
released in November 2013, Environmental Accounts (EAs) released in March 2012 and the Socio-
Economic Accounts (SEA) released in July 2014. 
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total cost represents the addition of capital, energy, labour and material expenditures. 

The price of capital is derived as the ratio of capital compensation to real fixed capital 

stock; the price of labour is computed as the ratio of labour compensation to number of 

persons engaged in thousand; the price of energy is generated as the ratio of energy 

input expenditures to gross energy use in TJ and the price of material is computed as the 

ratio of the value of intermediate material input expenditure to intermediate material 

volume. For estimation purposes and smoothing interpretations, all variables estimated 

are naturally logged and mean-adjusted, so that the first order coefficients in the model 

can be interpreted as elasticities at the sample mean. 

Table 3.1: Variable descriptions and summary statistics 

Variable description Before joining the WTO 
(1995 – 2001) 

After joining the WTO 
(2002 – 2009) 

 Mean St. Dev. Mean St. Dev. 

CO2 emissions in Gg (kt) 85204 220626 117223 366450 

Energy (in terajoule) 1490264 3208284 2663665 6492539 

Output (millions US$) 195836 170977 481537 512147 

Price of capital (in millions of US$) 9.38 6.09 15.79 16.79 

Price of labour (in millions of US$) 3.97 2.88 6.32 4.49 

Price of energy in (millions US$/per TJ) 17.39 10.97 31.81 21.21 

Price of material (in millions of US$) 8.92 8.06 8.67 7.85 

Capital expenditure/cost 0.22 0.13 0.23 0.16 

Labour expenditure/cost 0.19 0.11 0.15 0.11 

Energy expenditure/cost 0.01 0.00 0.01 0.01 

Material expenditure/cost 0.59 0.15 0.61 0.19 

 
3.4     Empirical analysis 
3.4.1   Estimated results of the translog cost function 

The estimated translog/share-cost functions for model specifications (3.3 and 3.4) for 

the period before China’s accession to WTO (1995 – 2001) and for the period covers 

China’s accession to WTO (2002–2009) are presented in Table 2, where labour is the 
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normalized input. Although, it is possible to derive the coefficient of the normalized 

input (labour) from the results since the sum of all the coefficients of the inputs equals 

one, but the estimation of the coefficients where labour is interacted with other variables 

is not practically feasible. Hence, we also estimated model specifications where other 

inputs (capital, energy and material) are normalized since we are interested in the ES 

and EC among the four inputs.  

Table 3.2: Estimated results  

Before joining the WTO (1995 – 2001) After joining the WTO (2002 – 2009) 

Variable      Coefficient. Std. Err. Variable Coefficient. Std. Err. 
𝑦𝑦       0.251*** 0.026 𝑦𝑦      0.301*** 0.029 

𝑦𝑦2     –0.041** 0.017 𝑦𝑦2    –0.045** 0.021 

𝑦𝑦𝑡𝑡       0.009 0.009 𝑦𝑦𝑡𝑡      0.022** 0.012 

𝑦𝑦𝑝𝑝𝑖𝑖        0.023** 0.011 𝑦𝑦𝑝𝑝𝑖𝑖    –0.017 0.013 

𝑦𝑦𝑝𝑝𝑒𝑒     –0.001** 0.001 𝑦𝑦𝑝𝑝𝑒𝑒    –0.003*** 0.001 

𝑦𝑦𝑝𝑝𝑚𝑚     –0.068*** 0.015 𝑦𝑦𝑝𝑝𝑚𝑚      0.017 0.017 

𝑝𝑝𝑖𝑖       0.214*** 0.007 𝑝𝑝𝑖𝑖      0.219*** 0.008 

𝑝𝑝𝑒𝑒       0.005*** 0.000 𝑝𝑝𝑒𝑒      0.007*** 0.000 

𝑝𝑝𝑚𝑚       0.600*** 0.009 𝑝𝑝𝑚𝑚      0.619*** 0.011 

𝑝𝑝𝑖𝑖2       0.043*** 0.001 𝑝𝑝𝑖𝑖2      0.043*** 0.008 

𝑝𝑝𝑒𝑒2     –0.001** 0.000 𝑝𝑝𝑒𝑒2    –0.003*** 0.000 

𝑝𝑝𝑚𝑚2        0.116*** 0.009 𝑝𝑝𝑚𝑚2       0.059*** 0.011 

𝑝𝑝𝑖𝑖𝑝𝑝𝑒𝑒       0.001** 0.000 𝑝𝑝𝑖𝑖𝑝𝑝𝑒𝑒      0.000 0.001 

𝑝𝑝𝑖𝑖𝑝𝑝𝑚𝑚     –0.076*** 0.007 𝑝𝑝𝑖𝑖𝑝𝑝𝑚𝑚    –0.052*** 0.009 

𝑝𝑝𝑒𝑒𝑝𝑝𝑚𝑚     –0.001 0.000 𝑝𝑝𝑒𝑒𝑝𝑝𝑚𝑚    –0.000 0.001 

𝑝𝑝𝑖𝑖𝑡𝑡     –0.001 0.004 𝑝𝑝𝑖𝑖𝑡𝑡    –0.003 0.004 

𝑝𝑝𝑒𝑒𝑡𝑡       0.000 0.000 𝑝𝑝𝑒𝑒𝑡𝑡      0.001*** 0.000 

𝑝𝑝𝑚𝑚𝑡𝑡       0.010** 0.005 𝑝𝑝𝑚𝑚𝑡𝑡      0.008 0.005 

𝑡𝑡       0.046*** 0.009 𝑡𝑡      0.079*** 0.009 

𝑡𝑡2     –0.007** 0.003 𝑡𝑡2    –0.003 0.004 

𝑖𝑖𝑑𝑑       0.003 0.002 𝑖𝑖𝑑𝑑      0.027*** 0.004 

𝑖𝑖𝑑𝑑𝑑𝑑(2)       0.141*** 0.054 𝑖𝑖𝑑𝑑𝑑𝑑(2)    –0.095 0.090 

𝑖𝑖𝑑𝑑𝑑𝑑(3)       0.029 0.079 𝑖𝑖𝑑𝑑𝑑𝑑(3)    –0.387*** 0.134 

𝑖𝑖𝑑𝑑𝑝𝑝       0.049 0.027 𝑖𝑖𝑑𝑑𝑝𝑝      0.114** 0.048 

𝐼𝐼𝑙𝑙𝑡𝑡𝑒𝑒𝐼𝐼𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡     –0.198** 0.054 𝐼𝐼𝑙𝑙𝑡𝑡𝑒𝑒𝐼𝐼𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡    –0.336*** 0.086 

               *, ** and *** denote statistical significance at the 5%, 1% and 0.1% levels respectively.  
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To reiterate, all variables estimated are in their natural log (therefore all variables 

reported in Table 3.2 in lower case letters) and mean-adjusted to control for 

heterogeneity across the sectors and allows the first order coefficients to be interpreted 

as elasticities at the sample mean. In addition to mean-adjusted of estimated variables 

we further control for heterogeneity across the sectors through a set of 𝑧𝑧 variable. That 

is a dummy variable ( 𝑖𝑖𝑑𝑑𝑝𝑝 ) indicates sectors with multiple production units and a 

categorical variable that group sectors according to production technology (𝑖𝑖𝑑𝑑𝑑𝑑).  

For statistical justification of dividing data used into two sample periods, we 

performed a restriction to verify if a structural change did exist when China started 

gaining access to the WTO using 𝜒𝜒2~Test. The restriction test imposes a null hypothesis 

restriction that the estimated parameters are the same for the entire sample period 

(1995–2009). The results of the 𝜒𝜒2~ (32; 0.00) reject the null hypothesis that the 

estimated parameters are the same for the entire sample period. In other word, there is a 

structural change when China gained access to the WTO. The results for the two sample 

periods reported in Table 3.2 show that most of the estimates are statistically significant 

with output and inputs having the expected (positive) signs. The results suggest that as 

producer increases output level by using more inputs, the producer’s cost of production 

also increases. To observe the performance of the estimated cost function as required, 

we verified the monotonic property of the fitted cost function both at the sample and 

outside the sample mean. At the sample mean the fitted cost function for both sample 

periods in Table 3.2 produces positive output elasticities and positive input elasticities 

all through. Therefore, the results indicate that the estimated cost function satisfy the 

condition of monotonicity at the sample mean. Similarly, the results of the monotonicity 

property outside the sample mean indicate that the fitted cost function strongly satisfied 

the monotonicity property with 80% of the data points, on average are monotonic. The 
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negative elasticities of the output squared (𝑦𝑦2) for both sample periods are sensible as 

this suggests that in the long-run cost of production declines as output expands. From 

the estimates of the fitted cost function for the two sample periods, we observe evidence 

of strong economies of scale with values of 3.98 for the period 1995–2001 and 3.32 for 

the period 2002–2009. These results (of course) seem questionable, but our evidence of 

strong economies of scale of the pre– and post– China accession to the WTO is 

consistent with existing literature that estimated a translog cost function for China 

(Adetutu et al., 2016)33. This suggests for the sample average production sector in China 

that an increased production level in both sample periods would lead to a substantial 

proportionate saving in cost. One possible explanation could be the relative cheap cost 

of abundant labour input in China; therefore, narrowing down the production cost as 

more people are employed as output level rises.  

Having considered only the significant parameters of the t, our results suggest a 

negative (positive) relationship between the deterministic trend and the production cost 

for the period 1995–2001 (2002–2009)34. This suggests that in the face of technical 

progress the production cost was shifting upwards since China gained access to the 

world trade. This is an interesting result as one would have expected otherwise (like the 

result before access to the world trade), but the result reinforces the role of economies 

of scale and factor accumulation as opposed technical progress because of China’s 

economic growth in recent years. The result is similar to Adetutu et al. (2016) as they 

argue that the results support the view of Accumulationists that argue in favour of 

increased use and accumulation of inputs in form of investment rather than increased in 

                                            
33 We observe that existing literature on China using a translog function either assume a constant return to 
scale (Ma et al., 2009; Symth et al., 2012; Ma and Stern, 2016) or do not report the estimates of the 
translog function (Lin and Wesseh Jr, 2013; Li and Lin, 2016).   
34 E.g., the value of the time trend for period 1995–2001 is calculated as: 𝑑𝑑𝐶𝐶

𝑑𝑑𝑗𝑗
= 0.046 − 2(0.007)𝑡𝑡 + 𝑝𝑝𝑠𝑠. 
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productivity as what determines growth (Young, 1992, 1995; Krugman, 1994; Crafts, 

1999a, 1999b). To complete the discussion of the fitted cost function, attention is turned 

to the estimates of the 𝑧𝑧  variables. Majority of the 𝑧𝑧  variables meant to control for 

heterogeneity across the sample sectors are significant at 0.1% level. For instance, the 

coefficient of 𝑖𝑖𝑑𝑑𝑝𝑝  (0.11) for sample period 2002–2009 indicates that sectors with 

multiple production units are associated with a more increasing of about 11% than 

sectors with single production unit. The estimate of 𝑖𝑖𝑑𝑑𝑑𝑑3 (–0.39) indicates that the 

service sector shifts the cost function downwards by approximately 39% more than that 

of the primary sector.    

3.4.2   Results of the elasticities of substitution and complementarity  

For the pre-accession to the WTO (1995–2001) and for the post-accession to the WTO 

(2002–2009), at the sample mean we derive ten elasticities of substitution and 

complementarity (AES, MES, MGES, SES, HLES AEC, MEC, HEC, SEC, PEC) 

discussed in Section 3.3 following the estimation of Eqs. 3.5 to 3.6. These elasticities 

between production factors are reported in Tables 3.3 and 3.4 and we compute the 

standard errors for the elasticities of substitution using the delta method.35 To recap, and 

based on different assumptions, each of the elasticities discussed in this study possesses 

specific theoretical contributions to the literature of elasticities of substitution and 

complementarity and for this, no single elasticity is preferred in all circumstances. 

Further, it is often the case to compare different estimated elasticities of substitution and 

complementarity in the literature, however, given the wide range of elasticities 

presented here, it is therefore somewhat difficult to compare and contrast the elasticities 

                                            
35 The computation of the standard errors of the elasticities of complementarity requires the estimation of 
the corresponding production function, but since the derivation of these elasticities relies heavily on the 
AES (we use the matrix inversion in Eq. (3.15) to derive the AEC from the AES in which we build on to 
compute other EC) derived directly from the estimated cost function, it is impossible to compute the 
standard errors of the EC. 
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of substitution and complementarity reported in Tables 3.3 and 3.4. That being said, we 

provide to a reasonable extent a comparative description of the reported elasticities of 

substitution and complementarity in our empirical analysis.  

The ES reported in Table 3.3 provide information about the relationship between 

production inputs in form of p-substitutes (positive value) or p-complements (negative 

value). To start with, the AES are all positive and significant at 0.1% level for both 

sample periods. This suggests that energy and other inputs are p-substitutes. The 

magnitudes of the AES are similar on average for both sample periods. In terms of 

magnitude, our results are similar to Stern (2011) and Adetutu et al. (2016) as they find 

relatively strong p-substitutability between energy and other inputs. The shadow 

elasticity of substitution (SES) also shows that energy and capital are p-substitutes in 

both sample periods, but not statistically significant. Further, we observe that the values 

of the SES for the two periods are almost identical, but generally smaller than AES. 

With respect to positive values, our SES estimates are similar to Zha and Ding (2014), 

but relatively small in size, however, bigger than the SES reported in Stern (2011). In 

comparison to the AES, the SES estimates display a bit strong and less substitutability 

in both sample periods. For instance, the substitutability between energy and capital 

before China’s accession to the WTO is stronger for the AES (1.91) and stronger for the 

SES (1.38) after China’s accession to the WTO.  

Stern (2011) argues that the MES (likewise the MEC) is not a good measure of ES 

when production technology consists of more than two inputs because it erroneously 

classifies all inputs as p-substitutes as the own-price elasticity tends to be greater in 

absolute value than the cross-price elasticities (Frondel and Schmidt, 2002). However, 

we still report the MES (and the MEC) given their popularity in the literature of ES, 

appealing asymmetric feature and to point out the implications of erroneously using the 
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MES and its dual when using more than two inputs in production. As expected, the 

MES are all positive with the majority of the elasticities close to or greater than one in 

both sample periods. The MES indicates capital and energy as strong p-substitutable in 

both sample periods having observed a similarity in their sizes. In contrast, the gross 

version of the Morishima elasticity (MGES), which allows for output adjustment in 

response to changes in factor prices are all negative and significant at 0.1% level for 

both sample periods. This suggests that production inputs are p-complements and we 

observe no significant different in terms of size of the elasticities in most cases between 

the two sample periods. The HLES (the gross version of the AES) yield similar results 

in terms of sign as all elasticities are negative indicating p-complementarity and 

significant at 0.1% level for both sample periods. Our results differ to that of Stern 

(2011) especially in terms of magnitude as the reported HLES in Table 3.3 are generally 

larger. The magnitudes of the HLES differ between the two-sample periods relatively to 

other ES reported. For instance, the HLES indicates a strong p-complementarity 

between energy and capital for the period 1995 – 2001, which indicates a moderate p-

complementarity between energy and capital for the period 2002 – 2009.    
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Table 3.3: Elasticities of substitution between sample periods  
 Before joining the WTO (1995–2001) 

 
After joining the WTO (2002–2009) 

 AES MES SES MGES HLES AES MES SES MGES HLES 
K-L  1.26*** 

(0.14) 
 0.91*** 
(0.04) 

 0.89*** 
(0.28) 

–0.65*** 
 (0.05) 

–1.50*** 
 (0.00) 

 0.76*** 
(0.17) 

 1.00*** 
(0.04) 

 0.89** 
(0.33) 

–0.70*** 
 (0.07) 

–0.67*** 
 (0.01) 

K-E  1.91*** 
(0.38) 

 1.40*** 
(0.06) 

 1.39 
(0.76) 

–1.05*** 
 (0.10) 

–1.42*** 
 (0.02) 

 1.07*** 
(0.40) 

 1.40*** 
(0.06) 

 1.38 
(0.79) 

–0.98*** 
 (0.12) 

–0.67*** 
 (0.02) 

K-M  0.41*** 
(0.06) 

 0.45*** 
(0.03) 

 0.62*** 
(0.11) 

–0.40*** 
 (0.03) 

–0.47*** 
 (0.00) 

 0.62*** 
(0.06) 

 0.67*** 
(0.04) 

 0.70*** 
(0.13) 

–0.41*** 
 (0.04) 

–0.63*** 
 (0.01) 

L-K  1.26*** 
(0.14) 

 0.86*** 
(0.04) 

 0.89*** 
(0.28) 

–0.67*** 
 (0.06) 

–1.50*** 
 (0.01) 

 0.76*** 
(0.17) 

 0.75*** 
(0.05) 

 0.89** 
(0.33) 

–0.52*** 
 (0.08) 

–0.67*** 
 (0.01) 

L-E  2.72*** 
(0.32) 

 1.41*** 
(0.06) 

 1.40*** 
(0.63) 

–1.05*** 
 (0.10) 

–2.02*** 
 (0.02) 

 3.83*** 
(0.41) 

 1.42*** 
(0.06) 

 1.42 
(0.81) 

–0.99*** 
 (0.12) 

–2.60*** 
 (0.02) 

L-M  0.64*** 
(0.06) 

 0.59*** 
(0.04) 

 0.75*** 
(0.12) 

–0.53*** 
 (0.03) 

–0.69*** 
 (0.00) 

 1.12*** 
(0.07) 

 0.98*** 
(0.05) 

 1.04*** 
(0.15) 

–0.63*** 
 (0.04) 

–0.99*** 
 (0.01) 

E-K  1.91*** 
(0.38) 

 1.00*** 
(0.08) 

 1.39 
(0.76) 

–0.65*** 
 (0.06) 

–1.42*** 
 (0.01) 

 1.07*** 
(0.40) 

 0.82*** 
(0.09) 

 1.38 
(0.79) 

–0.52*** 
 (0.08) 

–0.67*** 
 (0.02) 

E-L  2.72*** 
(0.32) 

 1.18*** 
(0.06) 

 1.40*** 
(0.63) 

–0.74*** 
 (0.05) 

–2.02*** 
 (0.02) 

 3.83*** 
(0.41) 

 1.48*** 
(0.07) 

 1.42 
(0.81) 

–1.00*** 
 (0.07) 

–2.60*** 
 (0.02) 

E-M  0.76*** 
(0.16) 

 0.66*** 
(0.10) 

 1.39*** 
(0.32) 

–0.46*** 
 (0.03) 

–0.56*** 
 (0.01) 

 0.97*** 
(0.14) 

 0.89*** 
(0.08) 

 1.40*** 
(0.27) 

–0.37*** 
 (0.04) 

–0.57*** 
 (0.01) 

M-K  0.41*** 
(0.06) 

 0.67*** 
(0.03) 

 0.62*** 
(0.11) 

–0.45*** 
 (0.06) 

–0.47*** 
 (0.00) 

 0.62*** 
(0.06) 

 0.72*** 
(0.04) 

 0.70*** 
(0.13) 

–0.52*** 
 (0.08) 

–0.63*** 
 (0.00) 

M-L  0.64*** 
(0.06) 

 0.80*** 
(0.04) 

 0.75*** 
(0.12) 

–0.50*** 
 (0.05) 

–0.69*** 
 (0.00) 

 1.12*** 
(0.07) 

 1.06*** 
(0.04) 

 1.04*** 
(0.15) 

–0.75*** 
 (0.07) 

–0.99*** 
 (0.00) 

M-E  0.76*** 
(0.16) 

 1.40*** 
(0.06) 

 1.39*** 
(0.32) 

–0.05*** 
 (0.10) 

–0.56*** 
 (0.01) 

 0.97*** 
(0.14) 

 1.40*** 
(0.06) 

 1.40*** 
(0.27) 

–0.98*** 
 (0.12) 

–0.57*** 
 (0.01) 

Note: Capital (K), Labour (L), Energy (E) and Material (M). 
Standard errors in parentheses for the elasticities of substitution are calculated using the delta method. 
*, ** and *** denote statistical significance at the 5%, 1% and 0.1% levels respectively.  
 



 

65 
 

 
Table 3.4: Elasticities of complementarity between sample periods  
 Before joining the WTO (1995–2001) After joining the WTO (2002–2009) 

 AEC MEC SEC PEC HEC AEC MEC SEC PEC HEC 

K-L 0.16 1.05 1.14 0.98 2.88 1.24 0.19 0.23 0.98  1.57 

K-E       –0.32 0.71 0.72 0.72 0.94 0.95 0.01 0.01 0.72  0.48 

K-M 1.95 1.89 1.69 3.12 2.72 1.48 0.91 0.48 1.08 2.09 

L-K 0.16 1.23 1.14 1.31 2.88 1.24 0.27 0.23 1.44  1.57 

L-E       –0.70 0.71 0.71 0.72 0.82 –0.93      –0.01 0.02 0.71 –1.37   

L-M 1.65 1.72 1.41 3.13 2.65 0.89 0.55 0.22 0.80  1.68 

E-K       –0.32 1.13 0.72 1.07 0.94 0.95 0.21 0.01 1.21  0.48 

E-L       –0.70 0.90 0.71 0.60 0.82 –0.93      –0.14 0.02 0.71 –1.37 

E-M 1.51 1.63 0.73 2.04 0.87 1.04 0.65 0.01 0.33  0.92 

M-K 1.95 1.61 1.69 1.42 2.72 1.48 0.32 0.48 1.17  2.09 

M-L 1.65 1.32 1.41 1.18 2.65 0.89 0.14 0.22 0.71  1.68 

M-E 1.51 0.72 0.73 0.72 0.87 1.04 0.01 0.01 0.71  0.92 

Note: Capital (K), Labour (L), Energy (E) and Material (M). 
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The elasticities of complementarity reported in Table 3.4 provide information about 

the relationship between production inputs in form of q-complements (positive value) or 

q-substitutes (negative value). Unlike the AES that indicate energy and capital as p-

substitutes for both sample periods, the AEC indicates that energy and capital are q-

substitutes (–0.32) for the period 1995 – 2001, but that indicates energy and capital are 

q-complements (0.95) for the period 2002 – 2009. The size of the AEC differs 

significantly in most cases between the two sample periods. Our results for the period 

1995 – 2001 perfectly match Stern (2011) in terms of sign, but generally smaller in 

value. For the period 1995 – 2001, the MEC indicates that energy and other inputs are 

q-complements, however, for the period 2002 – 2009, energy and labour are q-

substitutes. We observe a relatively weak elasticity between inputs after China joined 

the WTO.  

As theoretically expected, the SEC is positive for all input combinations in both 

periods under study, indicating the relationship between inputs as q-complements. 

Again, we also observe a relatively weak elasticity between inputs after China joined 

the WTO. One possible explanation is that increased in alternative fuel source and 

technology as a result of increase in output/export level has reduced the degree at which 

one input needs to complement the others since China gaining access to the world trade. 

The PEC also indicates that input combinations are q-complements for the two sample 

periods as all values are positive. Both the MEC and the PEC demonstrate a reasonable 

degree of asymmetric unlike the MES and the MGES. For the HEC, except for the 

energy and labour for the period 2002 – 2009, which indicates q-substitutes like Kim 

(2000), the HEC is positive for all input combinations indicating input combinations as 

q-complements. The HEC demonstrate considerable variations in terms of size between 
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the two periods under investigation. In general, the elasticities of complementarity 

reported in Table 3.4 are relatively small to Kim (2000) and Stern (2011).     

3.4.3   ES-economic activity-emission: Theoretical interactions 

Mainstream neoclassical economics looks at energy and the environment as ‘inputs’ 

into consumption or production activities. Energy is an input produced from natural 

resources (such as fossil fuels), and the environment is also considered as an ‘inputs’ in 

the sense that it can act as a ‘sink’ for production activity wastes. The limited supply 

and non-renewable nature of some of the energy resources can put a limit on the 

capacity of the economy to sustain growth in the long term. The natural environment 

also has a limited capacity to absorb ‘wastes’ from economic activities and therefore 

this can act as a constraint on long-term sustainable economic growth. To demonstrate 

the relationship between ES, economic activity and emissions we begin with the 

simplest possible way to look at ES in form of energy efficiency in a production setting. 

We modify the production function in Eq. (3.24) as follows: 

          𝑌𝑌 = 𝑓𝑓(𝐸𝐸,𝐿𝐿)                                                    (3.24) 

where Y represents real output, E represents the amount of energy used in production 

and R is the quantity of other inputs used (capital, labour and materials). The energy 

efficiency in the production of the output can be characterised by the E/Y ratio36. The 

aim is to know how and why this ratio might differ for different production settings and 

it may differ over time, for example due to gains in energy efficiency in form of ES of 

non-energy inputs for energy inputs. A simple way to look at this question as 

demonstrated by Hogan and Manne (1977) is shown in Figure 3.2. The Figure shows 

that reducing the energy input does not result in a one-for-one loss in output, while 

                                            
36 The ratio E/Y is often called as ‘energy intensity’, which is the unit of energy per unit of output. 
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holding other inputs (R) constant for simplicity. The exact shape of this curve will 

depend of course on how we characterise the function f. The movement along this curve 

involves technology change or input adjustment. A good example is substituting more 

building insulation for heating oil use or using more labour in production setting. This is 

characterised in Figure 3.2, which shown that ratio E/Y can be reduced through energy 

efficiency gains, by substituting non-energy inputs for energy, which can be induced by 

increase in energy price.   

Figure 3.2: Economic output and energy input 

 

 

 

 

 

   

 

The reduction in ratio E/Y has implications for major environmental problems, such 

as global warming remedies. A Favoured remedy is the substitution of capital for 

energy, which can be induced by carbon tax or high energy price. The key element that 

drives the magnitude of this effect as pointed out by Hogan and Manne (1977) is the 

degree of substitutability between energy and non-energy inputs as illustrated in Figure 

3.3. Thus, if the objective is to reduce carbon emissions from energy use via a carbon 

tax, then we hope that easy substitution is possible in the real-world production setting. 

If this is the case, the economic cost (environmental benefit) of achieving any energy 

use target will be lower (higher). On the other hand, if substitution is more difficult, we 
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have a situation illustrated by the top curve where a given reduction in energy input has 

a larger negative effect on output and environmental benefit.  

Figure 3.3: Substitution potential and carbon taxes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, easy substitution is not always likely to yield greater environmental 

benefit or low economic cost with a given level of energy price (carbon tax). This may 
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figure and is then increased to a level illustrated by the solid line, one can see that with 

easy substitution economic output is reduced more than it would be with hard 

substitution (top panel). Of course, the increase in energy price will also lead to a lower 

energy use (lower panel).  

The main issue here, as discussed above is that one of the crucial parameters that 

determines sustainable-growth and-environment is the elasticity of substitution between 

energy and non-energy inputs. It is in this context, that an exploratory analysis of the 

relationship between ES and the environment is worth to be considered as presented in 

Section 3.4.4.  

3.4.4   Elasticity of substitution and carbon emission: Empirical specification 

Following the theoretical exposition presented in Section 3.4.3, this section presents an 

exploratory analysis on the relationship between carbon emissions and the estimates of 

factor substitution reported in Section 3.4.3 having controlled for other competing 

factors. Although, this is an exploratory analysis, but we acknowledge that by mere 

using the estimates of energy substitution as a measure of substituting one input for 

another is not the true measure of substitution among production factors in practice. 

However, for the analysis carried out here, the most feasible and closest measure of 

substitution possibility between energy and non-energy inputs we could use is the ES 

reported in Table 3.3. Notwithstanding the justification for analysing the estimates of 

capital-energy substitution directly on carbon emissions, we advise that our results 

should be interpreted with cautions either for scholarship or policy-making purposes.   

  So far, we have only discussed the estimated elasticities of substitution and 

complementarity reported in Tables 3.1 and 3.2. Now, the aim is to analyse the 

relationship between carbon intensity and the ES with other competing factors. To 
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attribute the Chinese industrial carbon intensity to various competing driving forces 

(particularly in terms of estimated factor substitution, energy intensity and technical 

progress), we firstly represent the carbon intensity as follows:  

            𝐶𝐶𝐶𝐶2
𝑄𝑄

= 𝐸𝐸
𝑄𝑄
∗ 𝐶𝐶𝐶𝐶2

𝐸𝐸
                                                                             (3.25) 

where 𝐼𝐼𝐶𝐶2 is carbon emissions, 𝑄𝑄 is the output and 𝐸𝐸 energy input. Eq. (3.24) expresses 

carbon intensity in terms of energy intensity (𝐸𝐸
𝑄𝑄

) and fuel mix (𝐶𝐶𝐶𝐶2
𝐸𝐸

). This analysis is 

motivated particularly by Welsch and Ochsen (2005) and Li and Lin (2016) as they 

attribute changes in energy/carbon intensity to factor substitution and technological 

progress. In combination with energy intensity and technical progress, we specify the 

driving forces of carbon intensity as in Eq. (3.24) by expressing the fuel mix in a 

simplest term of the estimated factor substitution derived from Eqs. (3.3 and 3.4).  

𝑐𝑐𝑐𝑐2,𝑖𝑖𝑗𝑗 = 𝛼𝛼𝑖𝑖 + 𝜋𝜋𝑒𝑒𝑖𝑖𝑗𝑗 + 𝛾𝛾0𝜎𝜎𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 + 𝛾𝛾1𝜎𝜎𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘 + 𝛾𝛾2𝜎𝜎𝑖𝑖𝑗𝑗𝑘𝑘𝑒𝑒 + 𝛾𝛾3𝜎𝜎𝑖𝑖𝑗𝑗𝑖𝑖𝑚𝑚 + 𝛾𝛾4𝜎𝜎𝑖𝑖𝑗𝑗𝑒𝑒𝑚𝑚 + 𝛾𝛾5𝜎𝜎𝑖𝑖𝑗𝑗𝑘𝑘𝑚𝑚 + 𝜃𝜃𝐷𝐷𝑗𝑗 + 𝑧𝑧𝑗𝑗  

+ 𝜖𝜖𝑖𝑖𝑗𝑗                                                                                                                (3.25) 

where: 

𝑐𝑐𝑖𝑖𝑗𝑗 is the natural logarithm of carbon intensity for industry i for time period t.  

𝑒𝑒𝑖𝑖𝑗𝑗 is the natural logarithm energy intensity for industry i for time period t.  

𝜎𝜎𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 is the estimated AES between capital and energy for industry i for time period t.  

𝜎𝜎𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘 is the estimated AES between capital and labour for industry i for time period t.  

𝜎𝜎𝑖𝑖𝑗𝑗𝑘𝑘𝑒𝑒 is the estimated AES between labour and energy for industry i for time period t.  

𝜎𝜎𝑖𝑖𝑗𝑗𝑖𝑖𝑚𝑚 is the estimated AES between capital and material for industry i for time period t.  

𝜎𝜎𝑖𝑖𝑗𝑗𝑒𝑒𝑚𝑚 is the estimated AES between energy and material for industry i for time period t.  

𝜎𝜎𝑖𝑖𝑗𝑗𝑘𝑘𝑚𝑚 is the estimated AES between labour and material for industry i for time period t.  

𝐷𝐷𝑗𝑗 is the time dummies representing technical progress.  

𝑧𝑧𝑗𝑗 represents a dummy and categorical variable to control for sectors’ heterogeneity 
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𝜖𝜖𝑖𝑖𝑗𝑗 is the error term. 
 

With respect to factor substitution, it is clearly observable from model (3.25) that 

our analysis is based on the popular AES. The decision to use the AES among the 

estimated elasticities of substitution reported in Table 3.2 is due to a number of 

compelling factors and advantages. Firstly, the AES formed the bedrock for the 

derivation of all other elasticities reported in Tables 3.3 and 3.4. Secondly, the AES 

allows us to assume for simplicity that the substitutability between two factors is 

symmetric in our analysis. Therefore, the 𝛾𝛾𝑠𝑠 can be interpreted as the extent in, which 

the substitution between two factors affect carbon intensity. Thirdly, the estimation of 

the 𝜎𝜎𝑠𝑠 in Eq. (3.25) requires the computation of the 𝜎𝜎𝑠𝑠 outside of the sample mean, but 

the AES is arguably the only elasticity that could be derived logically outside of the 

sample mean. Unlike the other ES, the AES (3.6) is directly derived from the estimates 

of the translog cost function reported in Table 3.2.    

To control for potential endogeneity, we estimated Eq. (3.25) with a GMM estimator 

(Arellano and Bond, 1991) and we control for time-specific effects by including time 

dummies, which also serve as the technical progress37. To recap, we control for possible 

heterogeneity among the sectors by including a 𝑧𝑧𝑗𝑗 variable in model 3.25. This consists 

of a dummy ( 𝑖𝑖𝑑𝑑𝑝𝑝 ) indicating 1 for sectors with multiple production units and 0 

otherwise; and a categorical variable that categorised sectors according to production 

technology (𝑖𝑖𝑑𝑑𝑑𝑑). That is primary sector (𝑖𝑖𝑑𝑑𝑑𝑑1), manufacturing sector (𝑖𝑖𝑑𝑑𝑑𝑑2) and 

service sector (𝑖𝑖𝑑𝑑𝑑𝑑3). We also verify the importance for allowing for structural break in 

our data using the 𝜒𝜒2~test. The result of the 𝜒𝜒2~(52; 0.00) reject the null hypothesis that 

the estimated parameters are the same for the entire sample period. The estimated GMM 
                                            
37 The coefficients of the time dummies reported in Table 3.5 are not directly estimated. Since they are 
dummies and to avoid the problem of dummy trap they are derived as the sum of the constant and the 
addition of all the coefficients of the time dummies in each of the model estimated.   
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results for model 3.23 for different sample periods are presented in Table 3.5. As 

reported in Table 3.5, all estimated models pass all the diagnostic tests of no 

autocorrelation AR (2) and the Sangan/Hansen instrument test as none of these tests is 

statistically significant.  

Table 3.5: Estimated results for China’s carbon intensity  

Variable Before joining the WTO     
(1995 – 2001) 

After joining the WTO               
(2002 – 2009) 

Constant                  –3.506 ***  
                 (0.121) 

                –1.212 ***  
                 (0.196) 

Energy intensity                   1.111***  
                 (0.018) 

                  1.062***  
                 (0.009) 

𝜎𝜎𝐶𝐶𝐶𝐶𝑝𝑝𝑗𝑗𝑖𝑖𝐶𝐶𝑘𝑘−𝐸𝐸𝑛𝑛𝑒𝑒𝐸𝐸𝐸𝐸𝑦𝑦                   –0.080***   
                 (0.012) 

                –0.079***   
                 (0.000) 

𝜎𝜎𝐶𝐶𝐶𝐶𝑝𝑝𝑗𝑗𝑖𝑖𝐶𝐶𝑘𝑘−𝐿𝐿𝐶𝐶𝐿𝐿𝐿𝐿𝑢𝑢𝐸𝐸                     0.005***  
                 (0.001) 

                  0.012***  
                 (0.004) 

𝜎𝜎𝐸𝐸𝑛𝑛𝑒𝑒𝐸𝐸𝐸𝐸𝑦𝑦−𝐿𝐿𝐶𝐶𝐿𝐿𝐿𝐿𝑢𝑢𝐸𝐸                   –0.026***    
                 (0.007) 

                –0.016***    
                 (0.005) 

𝜎𝜎𝐶𝐶𝐶𝐶𝑝𝑝𝑗𝑗𝑖𝑖𝐶𝐶𝑘𝑘−𝑀𝑀𝐶𝐶𝑗𝑗𝑒𝑒𝐸𝐸𝑖𝑖𝐶𝐶𝑘𝑘                   –0.018***  
                 (0.006) 

                –0.035***  
                 (0.011) 

𝜎𝜎𝐸𝐸𝑛𝑛𝑒𝑒𝐸𝐸𝐸𝐸𝑦𝑦−𝑀𝑀𝐶𝐶𝑗𝑗𝑒𝑒𝐸𝐸𝑖𝑖𝐶𝐶𝑘𝑘                   –0.009***  
                 (0.003) 

                  0.029  
                 (0.015) 

𝜎𝜎𝐿𝐿𝐶𝐶𝐿𝐿𝐿𝐿𝑢𝑢𝐸𝐸−𝑀𝑀𝐶𝐶𝑗𝑗𝑒𝑒𝐸𝐸𝑖𝑖𝐶𝐶𝑘𝑘                     0.686*** 
                 (0.152) 

                –0.902*** 
                 (0.147) 

Time dummies                 –3.262***  
                 (0.092) 

                –0.264***  
                 (0.047) 

𝑖𝑖𝑑𝑑𝑑𝑑2                  –0.500***  
                 (0.107) 

                –0.982***  
                 (0.073) 

𝑖𝑖𝑑𝑑𝑑𝑑3                    0.023  
                 (0.102) 

                –0.509***  
                 (0.073) 

𝑖𝑖𝑑𝑑𝑝𝑝                    0.261*** 
                 (0.034)  

                  0.367*** 
                 (0.075)  

Diagnostic Tests:                                    
Arellano-Bondtest AR(2)                   0.257                   0.729 
Sangan/Hansen test                   0.357                   0.999 
*, ** and *** denote statistical significance at the 5%, 1% and 0.1% levels respectively. Standard errors 
are in parentheses 

 

For the period before China’s accession to the WTO, Table 3.5 shows that the 

results are somewhat differ to the results for the period 2002–2009. Most estimated 

variables are statistically significant at 0.1%. As expected, energy intensity places itself 

as the main contributor to China’s carbon intensity with an estimated elasticity 1.11, 

indicating that a 10% rise in energy intensity is associated with a rise of about 11% in 
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carbon intensity. The result is similar to that of Fan et al. (2007) and Tan et al. (2011) as 

they both argue that the main determinant of carbon intensity is energy intensity.  

We observe that the substitution between energy and other inputs is inversely 

associated with carbon intensity, given the negative coefficients of the parameters 

reported in Table 3.5. However, their effects are weak in general. For instance, the 

substitution of capital for energy with an estimate –0.08 suggests a 10% in capital-

energy substitution is associated with a decrease of about 0.8% in China’s carbon. This 

suggests that Chinese industries have started adopting less-carbon intensive equipment, 

which is embedded in capital equipment even before China got access to the WTO. This 

could be driven by the fact that China recognised the potential damage associated with 

its increasing energy consumption as the economy is growing. Also, this could be 

because of the international pressure China is facing to cut down its emission since 

signing the Kyoto protocol in 1998, however, China only ratified this agreement in 

200238.  

The negative effect of technical progress on carbon intensity is massive given its 

large coefficient –3.26. A possible explanation for the large coefficient could be 

because of the small sample period, which ordinarily fails to capture the relative long-

term effect of the technical progress on carbon intensity. The coefficients of the 𝑧𝑧𝑗𝑗 are 

also statistically significant at 0.1% level and possess the same sign as that of the other 

sampled period.  

The results for the period China’s accession to the WTO (2002–2009) somewhat 

differ to that of the sample period 1995–2001 in terms of the magnitude of the estimates. 

                                            
38 The Kyoto protocol (1997) is an international agreement linked to the United Nation framework 
convention on climatic change that sets a minimum target for 37 industrialised economies including the 
European Union to reduce CO2 emissions to 5% lower than the 1990 level between 2008 and 2012. 
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Majority of the estimated variables are statistically significant at 0.1%. We also observe 

that energy intensity is the main driver of carbon intensity with an estimated elasticity 

1.06. On the other hand, the substitution effect of non-energy inputs for energy is 

associated with a decrease in China’s carbon intensity given the negative sign of the 

estimates. The magnitude of the substitution effect of capital for energy is weak like the 

other sample period. This is consistent with the findings of Li and Lin (2016) as their 

findings suggest that the substitution effect of capital for energy decreases carbon 

intensity. The substitution effect between energy and material, though not statistically 

significant, but indicates a rise in carbon intensity. This is contrary to the period before 

China’s accession to the WTO. The substitution effect between labour and material is 

relatively substantial compared to other factor substitution effects. The coefficient is 

negative (–0.90) and statistically significant at 0.1%. This indicates that a 10% increase 

in substitution between labour and material is associated with a 9% reduction in carbon 

intensity. This is expected as both inputs could be considered as low emission or 

emission free-inputs.  

Expectedly, technological progress is negatively related to carbon intensity given its 

significant negative coefficient (–0.26). The effect is (of course) relatively small to that 

of the period before China’s accession to the WTO. On the other hand, the negative 

effects of the 𝑧𝑧𝑗𝑗 variables are much larger for the period 2002–2009. For instance, the 

significance of the coefficient 𝑖𝑖𝑑𝑑𝑑𝑑2  (–0.98, which indicates that an increase in the 

number of manufacturing industries is associated with a reduction in carbon intensity) is 

almost twice of that of the period 1995–2001. However, like other sample period, (𝑖𝑖𝑑𝑑𝑝𝑝) 

displays a positive association with China’s carbon intensity given its positive 

coefficient (0.37). This suggests that sectors with multiple production units have 

tendency to increase China’s carbon intensity.  
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3.5   Conclusion and policy implications 

This chapter analyses the factor substitution for pre-and post-China’s accession to the 

WTO, and further carries out an exploratory investigation on the relationship between 

the factor substitution and the Chinese industrial carbon intensity. It is important that 

industries understand how increase in export and growth has affected their energy-

saving technology in terms of capital-energy substitution since China gaining access to 

the world trade. To carry out our analysis, we use a rich data source that has been 

applied to similar issue to date. We use a sector level data for China for the period 

1995–2009. Our analysis focuses on two different sample periods: pre- (1995–2001) 

and post- (2002–2009) China’s accession to the WTO. To analyse factor substitution, 

we estimated a translog cost function in which we accounted for potential heterogeneity 

across sectors by including additional sectoral characteristics. Moreover, for an in-depth 

analysis of ES we compute ten elasticities of substitution and complementarity where 

each of the elasticities computed possesses specific theoretical contributions to the 

literature, and hence, no single elasticity is preferred in all circumstances.  

Our results show some disparities mainly in terms of the magnitude of the 

elasticities of substitution and complementarity for the pre-and post-China’s accession 

to the WTO, but in general we find a relatively strong substitution possibility among 

production factors. This in turn suggests that China’s accession to the WTO is a 

motivation for embarking on a journey of energy-savings in form of capital-energy 

substitution. In particular, our results indicate that energy and non-energy inputs are 

strongly substitutable (positive ES) for both sample periods based on the computed AES, 

Morishima and SES given the magnitude of the majority of the elasticities greater than 

one. The AES, Morishima and the SES are based on the assumption of constant level of 
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in the face of changes in factor prices. However, as output is allowed to adjust in 

response to changes in relative factor prices as the case of MGES and HLES, our results 

indicate negative ES. The statistically significant of the negative estimates of the MGES 

and the HLES indicates that energy and non-energy inputs are complements as output 

changes in response to changes in factor prices.   

Having analysed the elasticities of substitution, we then carried out an exploratory 

investigation on the driving forces of Chinese carbon intensity for two different sample 

periods. In the empirical analysis, we attribute Chinese industrial carbon intensity to 

various competing driving forces namely; factor substitution, energy intensity and 

technical progress. We estimated the model for carbon intensity with a GMM estimator 

to accounts for potential endogeneity in the model. We also control for potential 

heterogeneity across sectors by adding different sectoral characteristics to the model. In 

general, our findings show that energy intensity is the main contributor to carbon 

intensity. This is consistent with the body of evidence in the literature. On the other 

hand, our results show that technological progress has key role to play in reducing 

carbon intensity.  

With respect to factor substitution, the results for the pre- and post-China’s 

accession to WTO differ in most cases either in terms of signs or the magnitude of the 

estimates reported in Table 3.5. Generally, although, we find that the substitution of 

non-energy for energy is negatively related to carbon intensity in both sample periods 

considered, but the effect is relatively small compared to the effects of technological 

progress and energy intensity. Specifically, the substitution between labour and 

materials has the greater impact on carbon intensity with the result for the post-WTO 

period suggests a negative relationship with carbon intensity while the result for the pre-

WTO suggest otherwise (positive sign).  



 

78 
 

In summary, despite some variations in the magnitude of the elasticities while 

holding output constant, the substitutability between energy and non-energy inputs is 

strong across the sample periods. However, energy and non-energy inputs are 

complements while output is free to adjust in response to changes to factor prices. 

Energy intensity serves as a major contributor to carbon intensity; however, factor 

substitution and technical progress reduce carbon intensity. These findings reinforce 

that China’s reduction in carbon emissions is largely associated with reduction in 

energy consumption, technological progress and to some extent energy-saving methods 

in form of factor substitution. 

The policy implications that can be drawn from our findings are as follows.  For 

instance, if one thinks of the substitution potential in the production setting or economy, 

one hopes that substitution potential is easy if producer wishes to reduce energy use to 

some specific target level- as this will require a smaller carbon tax and will results in 

less loss of economic output. In this situation, any energy related policy design to 

reduce carbon emissions is less likely to affect production level. However, if one 

imagines that substitution potential may be different sectors of the economy, which is 

likely the case in general, a uniform carbon tax applied to all sectors will hurt more 

sectors that deliver the greatest reduction in energy use. This curious result would likely 

strike most unfair. In addition, it may run counter to welfare maximization or cost 

minimisation. Since in general, producer should able to find for any target reduction in 

energy use via a combination of differentially applied carbon taxes resulting in less loss 

of output than one would obtain with a uniformity applied tax, whichever sector may be 

thereby favoured. This suggests a possible policy solution that would apply different 

levels of carbon taxes to different sectors. 
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In addition, our findings reveal that China’s accession to the world trade is a 

motivation for energy-savings and subsequently carbon reduction, given the strong ES 

between capital and energy after the structural break. One would expect this outcome 

given the international pressure China is facing to reduce its emissions level. Therefore, 

our findings should serve as a blueprint for other emerging economies. 

With respect to further work, we are hoping that future research could focus on the 

analysis of interfuel substitution rather than the approach adopted in this research. The 

findings from such research would provide new insight about the potential implications 

for different sources of energy.  
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Chapter 4    Econometric Decomposition of Derived Energy 
Input with Implications for CO2 Emissions39 

 

 

 

4.1 Introduction 

Oil price shocks and subsequently the growing awareness about the increasing 

greenhouse gases have initiated serious concern about energy security and 

environmental degradation. In particular, CO2 emission is one of the major 

environmental threats as it accounts for almost half of the anthropogenic greenhouse 

gases (Floros and Vlachou, 2005). On the other hand, technological improvement in 

terms of energy-savings is considered as an important way of mitigating greenhouse 

gases. This practice therefore reduces the sensitivity of consumers to increase in energy 

prices. To some extent, especially in the production setting, the substitution of non-

energy input for energy input can be characterised as a way of energy-savings or 

improvement in energy efficiency 40 . The positive implications of substituting non-

energy input for energy input can be categorised into two parts. Firstly, it removes over-

reliance of continuing increase in energy prices as a way of stimulating improvement in 

energy efficiency. Secondly, the measure could be considered as a natural way of 

reducing greenhouse gases with some social environmental benefits. Therefore, one can 

argue that one of the motives behind capital-energy substitution is to improve the 

quality of our environment by reducing energy consumption, which in turn leads to 

reduction in greenhouse gases. 

                                            
39 A revised version of this chapter has been submitted as Akinsehinwa Sharimakin “The Decomposition 
of Derived Energy Input with Implications for CO2 Emissions” The Energy Journal. 
40 However, a range of mechanisms, commonly grouped under the heading of rebound effects may reduce 
the size of the ‘energy savings’ achieved. 
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In fairness, empirical investigation of the substitution possibilities among factor 

inputs in the literature is highly recognised. In fact, the elasticity of substitution among 

production inputs plays an important role in firms’ decision making when the price of 

an input changes. In production settings, this allows a representative producer to adjust 

inputs demand and minimise cost by purchasing more of less expensive inputs to cover 

for the more expensive input(s). However, the elasticity of substitution may not provide 

a complete picture of inputs adjustment resulting from a relative change in input prices. 

This is because the pure elasticity of substitution assumes that the producer’s output is 

constant over time whereas, producers may adjust output in response to changes in 

relative factor prices and market conditions in practice. Chambers (1982) argues that the 

addition of the output effect to the substitution effect is likely to produce a more 

representative picture of inputs adjustments within a production function. This is 

because the output effect takes account of the fact that producers are not operating under 

the assumption of constant level of output unlike the substitution elasticities. Given the 

connection between changes in factor price and the producer’s reaction to these changes, 

therefore, an empirical assessment of both the substitution and output effects to changes 

in factor price is likely to provide a more representative picture of inputs adjustment. 

More importantly, it is an attempt to evaluate whether the inclusion of the ‘output’ 

effects is warranted. 

This chapter applies a two-stage procedure by firstly presenting the decomposition 

analysis of the change in energy demand resulting from changes in energy price. 

Secondly, this chapter carries out an exploratory investigation (as justified in chapter 3) 

about the implications of the output and substitution effects on CO2 emissions using 

industry level data for a sample of European countries for the period 1995–2007. 

Specifically, this chapter explores the substitution possibilities between energy and 
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other factors under the assumption of constant level of output and subsequently relax 

this assumption by decomposing changes in energy demand into substitution effect and 

output effect under the assumption that producer adjusts the level of output in response 

to changes in factor prices. Having analysed the decomposition effects, this study   

further carries out an exploratory investigate the impacts of both the substitution effect 

and output effect with other competing factors on carbon emissions.  

Arguably, we could present the reaction of a representative producer to changes in 

energy prices in terms of input substitution and output adjustment as the producer is 

expected to reduce energy consumption as energy price increases. This is achievable by 

altering production system through the substitution of other factor inputs for energy, if 

substitution is possible, which is termed as pure technical substitution adjustment. 

However, in reality, an increase in energy prices would not only lead to inputs demand 

substitution, but also output adjustments as producers are expected to adjust output 

accordingly in response to relative changes in input price. For instance, if the price of an 

input increases, the expectation is that the total cost of the producer will also rise.  

Similarly, substitution between production inputs allows producers to minimise cost 

by consuming more of those inputs that are cheaper and less of that input(s) with higher 

price(s). This implies that the producer’s cost of production is affected by the elasticity 

of substitution between factor inputs. This process of input adjustment can increase the 

total cost of the producer or leave the producer at the same cost before the increase in 

price. For instance, if substitution between energy and non-energy is very strong, then a 

relative increase in energy price to other inputs’ prices may not affect the cost of the 

producer as the producer can easily alter their inputs by using more of non-energy 

inputs that are relatively cheaper. However, if substitution possibility between inputs is 
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weak, then a relative increase in factor price is very likely to increase the cost of the 

producer, which might force such producers to cut down production (output adjustment).  

Despite the shortcoming associated with the elasticity of substitution among 

production factors, it remains an interesting research area in the academic literature. 

This is because the elasticity of substitution provides insightful information about the 

likely effect of relative changes in factor prices and relevant to policy questions related 

to the management of demand and supply for factor inputs (Kotse et al., 2008). Since 

the seminal work of Berndt and Wood (1975), the substitutability between capital and 

energy remained a subject of controversy as one strand in the literature suggests that 

energy and capital are substitutes, while another strand suggests they are complements. 

Berndt and Wood (1975) employ the translog model initially proposed by Christensen 

et al. (1973) to investigate the possibility of factor substitution and find capital and 

energy as complements. This argument is reinforced in Fuss (1977), Anderson (1981), 

Prywes (1986), Arnberg and BjØner (2007), and Tovas and Iglesias (2013) as shown in 

chapter 2. However, chapter also discusses that another strand in the literature refuted 

the claim that energy and capital are complements by arguing that they are substitutes 

(Cameron and Schwartz (1979); Uri (1979; 1982); Kim and Heo (2013) and Lin and 

Ahmad (2016)).  

The above arguments imply that there is no consensus in the literature about the 

substitution possibilities between energy and other factor inputs. Ironically, the 

inconclusive evidence about the substitutability between capital and energy makes it a 

popular research area in academic literature. Notwithstanding the popularity of the 

elasticity of substitution between production factors, the fact remains that it may not 

provide a complete picture of input adjustments as it ignores the output effect to 

changes in relative input price. From consumers’ perspectives, Ashenfelter and 
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Heckman (1974) build on the theory of consumer behaviour to analyse the income and 

substitution effects of negative income tax for US household labour supply. A more 

connected work to this study is Kako (1978) where the author analysed the growth of 

rice production in Japan by decomposed labour input demand into output effect, factor 

substitution effect and technical effect. The author finds technical change as the main 

reason why labour input declines and that the labour-saving effect from factor 

substitution are relatively small compared to the output effect. Chambers (1982) 

presents the theoretical and empirical exposition of the importance of output effects of 

changes in relative input prices by demonstrating how to use estimates of dual cost 

functions to generate the compensated and uncompensated elasticities. The author finds 

only capital and materials as complements when considering the pure substitution effect. 

However, materials and all other inputs are complements, when the level of output is 

free to adjust in response to changes in factor price. The author further highlights the 

importance of the output effect in terms of the difference between the compensated and 

uncompensated elasticities. More recently, Adetutu et al. (2016) empirically investigate 

the substitution and output effects of changes in energy input demand for the individual 

BRIIC countries 41. Their findings suggest that the substitution effect dominates the 

output effect in the BRIIC countries with estimated elasticities ranged from –0.007 to –

0.020 for the period under consideration.     

Having reviewed the literature, this study is motivated by two key points. First, there 

are very limited studies on the decomposition analysis of derived demand for 

production factors. Second, as far as we know, no existing study on the assessment of 

the implications of decomposed demand for factor inputs on the environment. This 

chapter makes a significant contribution to the decomposition analysis for production 

                                            
41 Adetutu et al. (2016) defines the BRIIC countries as Brazil, Russia, India, Indonesia and China. 
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factor by decomposing derived energy demand into substitution and output effects, and 

further empirically investigating the implications of these effects on industrial CO2 

emissions across Europe. In this chapter, we perform empirical analysis for the industry 

as a whole and for different sector types by classifying the industry into primary, 

manufacturing and service sectors respectively. From a policy point of view, we believe 

that the categorisation of the entire industries into different sector types would assist in 

formulating sector specific energy/climate change policies as we expect our results to 

provide insightful information about different production technologies. 

The remainder of this chapter proceeds as follows. Section 4.2 outlines the 

theoretical and econometric models used for the analysis. Section 4.3 describes the 

dataset. Section 4.4 consists of two parts. The first part presents the elasticities of 

substitution among factors and that of the decomposition effect, while the second part 

analyses the impact of the decomposition effect with other relevant factor on carbon 

emissions. Section 4.5 provides the concluding remarks and policy implications. 

4.2         Empirical method 

4.2.1       Modelling framework: Translog cost function 

To investigate the substitution possibility between production factors, we employ the 

translog cost model among available functional forms such as Cobb Douglas, Leontief 

and Constant Elasticity of Subtitution (CES). Our modelling choice is motivated by the 

fact that the translog cost function remains as the most popular in the academic 

literature since its introduction by Christensen et al. (1973) due to its flexible nature, 

which limits any a priori restriction on factor inputs relationships. Our translog model 

allows for non-neutral technical change and non-constant return to scale in order to 

capture the role of economies of scale and technical progress within the production 
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settings with capital, energy, labour and material as input factors. The corresponding 

input prices are: 𝑝𝑝𝑖𝑖,𝑝𝑝𝑘𝑘,𝑝𝑝𝑒𝑒 ,𝑝𝑝𝑚𝑚. In addition, our translog model imposes the fundamental 

restriction of symmetry (𝛽𝛽𝑧𝑧𝑧𝑧 = 𝛽𝛽𝑧𝑧𝑧𝑧∀𝑧𝑧, 𝐼𝐼) and linear homogeneity (∑ 𝛼𝛼𝑖𝑖 = 1;𝑖𝑖 ∑ 𝛿𝛿𝑖𝑖 =𝑖𝑖

∑ 𝜑𝜑𝑖𝑖 = 0𝑖𝑖 ;∑ 𝛽𝛽𝑧𝑧𝑧𝑧 =𝑖𝑖 ∑ 𝛽𝛽𝑧𝑧𝑧𝑧𝑧𝑧 = 0) in the input prices. For estimation purposes, we follow 

the conventional practice by normalised the cost and input prices with the price of 

material (𝑝𝑝𝑚𝑚). For simplicity, we defined the normalised input prices as �𝑝𝑝𝑧𝑧
𝑝𝑝𝑚𝑚

= 𝑤𝑤𝑧𝑧� 

where z= capital, energy and labour.  

Unlike previous studies, in our empirical analysis we recognise the fact that 

industries are not operating in isolation as their activities are clearly interrelated with the 

activities of economy as a whole. In this context, we control for the interactions 

between the industries and the economy by incorporating country level variables 

together with their interactions with the industry level variables in our translog cost 

function. Furthermore, we understand that the characteristics and activities of the 

sampled industries are not homogenous. As a result, we control for the heterogeneity 

across the industries by mean-adjusted all industry level variables to at least account for 

a minimum level of heterogeneity across sampled industries. We further account for 

industries heterogeneity by include a categorical variable for classifying industries 

based on similarity in production activity (that is, primary, manufacturing or service 

sectors). Again, we include a dummy variable with “1” for industries with a multiple 

production unit and “0” for industries with a single production unit. Both the categorical 

and dummy variables are in the vector 𝜋𝜋𝑗𝑗 as in Eq. (4.1). In addition, we account for the 

country-specific effects, by adding countries dummies (𝑧𝑧𝑗𝑗 ) into our translog cost 

function. We incorporate the above information by specifying Eq. (4.1) as follows: 
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ln
𝐼𝐼𝑖𝑖𝑖𝑖𝑗𝑗
𝑝𝑝𝑚𝑚,𝑖𝑖𝑖𝑖𝑗𝑗
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1
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+ 𝛼𝛼𝑗𝑗𝑌𝑌 ln𝑌𝑌𝑖𝑖𝑗𝑗 𝑡𝑡 + �𝛼𝛼𝐸𝐸 ln𝑊𝑊𝐸𝐸,𝑖𝑖𝑗𝑗

4

𝐸𝐸=1

+ �𝛼𝛼𝑦𝑦𝑦𝑦 ln 𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗 ln𝑊𝑊𝐸𝐸,𝑖𝑖𝑗𝑗

4

𝐸𝐸=1

+
1
2
��𝛽𝛽𝐸𝐸𝑧𝑧 ln𝑤𝑤𝑧𝑧,𝑖𝑖𝑖𝑖𝑗𝑗 ln𝑊𝑊𝐸𝐸,𝑖𝑖𝑗𝑗

4

𝐸𝐸=1

3

𝑧𝑧=1

+ �𝛼𝛼𝑗𝑗𝑦𝑦 ln𝑊𝑊𝐸𝐸,𝑖𝑖𝑗𝑗 𝑡𝑡
4

𝐸𝐸=1

+  𝜋𝜋𝑗𝑗 + 𝑧𝑧𝑗𝑗

+ 𝑣𝑣𝑖𝑖𝑗𝑗                                                                                                                  (4.1) 

where 𝑧𝑧 = 𝑘𝑘, 𝑙𝑙, 𝑒𝑒 ;   𝐼𝐼 = 𝑘𝑘, 𝑙𝑙, 𝑒𝑒,𝑚𝑚; lower and upper case letters represent industry-level 

and country-level variables respectively. Ln denotes the natural log; i represents 

industries; C is the total cost; y is output; t is time trend which captures technical 

progress; vit is the residual and w’s are input prices as previously defined. Y is the output 

at country level; W is the input prices at country level. The cost minimising input 

demand function can be derived using Shepherd lemma by differentiating Eq. (4.1) and 

this gives the input demand function in terms of cost share equations as: 

       𝑆𝑆𝑧𝑧,𝑖𝑖𝑖𝑖𝑗𝑗 = 𝛼𝛼𝑧𝑧 + 𝜑𝜑𝑧𝑧𝑡𝑡 + �𝛽𝛽𝑧𝑧𝑧𝑧 ln𝑤𝑤𝑧𝑧,𝑖𝑖𝑖𝑖𝑗𝑗

3

𝑧𝑧=1

+ 𝛿𝛿𝑧𝑧 ln 𝑦𝑦𝑖𝑖,𝑖𝑖,𝑗𝑗 + 𝛼𝛼𝑧𝑧𝑌𝑌 ln𝑌𝑌𝑖𝑖𝑗𝑗 + �𝛽𝛽𝐸𝐸𝑧𝑧 ln𝑤𝑤𝐸𝐸,𝑖𝑖𝑗𝑗

4

𝐸𝐸=1

+ 𝜆𝜆𝑖𝑖𝑗𝑗                                                                                                                  (4.2) 

Eqs. (4.1) and (4.2) can be jointly estimated using the popular Zellner’s iterated 

seemingly unrelated regression (iSUR) technique given its ability to increase efficiency 

by controlling for potential correlation of the error terms across the cost share equations. 

However, given the hierarchical structure of our data where industries nested in 

countries over time, and the potential cluster-level heterogeneity usually associated with 

hierarchical data, it is very likely that the iSUR technique may produce unreliable 
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estimates 42 . In addition, it is worth noting that the inclusion of the country level 

variables and their interactions suggest a necessity to account for the country level 

residual, which might not be possible with the iSUR43. In order to account for the 

hierarchical structure of the data as well as controlling for potential cluster-level 

heterogeneity, we therefore also estimate the cost function with a multilevel modelling. 

Multilevel modelling is a maximum likelihood estimation that aims to model the 

relationship between a response variable and a set of explanatory variables but differs 

from standard regression analysis by modelling units of observation at different ‘levels’. 

Specifically, multilevel modelling is predominantly for modelling hierarchical datasets, 

as the model possesses the ability to disentangle the clustering at different levels by 

including a disturbance term at each level of the data.44 Unlike the iSUR, multilevel 

modelling is not an approach purposely meant to jointly estimate a system of equations 

as it requires the estimation of only Eq. (4.1), but its ability to control for the 

hierarchical structure of the data and cluster-level heterogeneity is a significant 

advantage45. Moreover, it allows us to introduce a model that incorporates the structure 

of our data.  

On the other hand, Berndt and Christensen (1973) noted a notable shortcoming that 

might be associated with the use of single-equation models such as multilevel modelling 

and OLS if employ to estimate a system of equations like the translog cost function. The 

authors argue that since such modelling techniques would relax the restrictions imposed 

on the translog cost function and thus, only estimate Eq. (4.1) as in our own case, 

                                            
42 Steenbergen and Jones (2002) discuss the statistical problems and consequences inherent in hierarchical 
data and demonstrate that failure to control for the hierarchical structure of the data will lead to biased 
and inconsistent estimates. 
43 The inclusion of both explanatory variables and error term at each level enables us to measure the 
unexplained heterogeneity associated with each level.  
44 For interested readers on multilevel modelling see Rabe-Hesketh and Skrondal (2012) and Hox et al. 
(2010). 
45 This means 𝜋𝜋𝑗𝑗 = 𝑧𝑧𝑗𝑗 = 0 while estimating Eq. (4.1) with a multilevel model. 
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without simultaneously estimating the cost share equations (4.2), then the validity of 

such translog cost function could be violated and needs to be verified. However, Barten 

(1969) investigate the properties of maximum likelihood and that of translog equations 

and concludes that there is no difference between their estimates. Kmenta and Gilbert 

(1968); Dhrymes (1971) support this claim as noted by Berndt and Christensen (1973) 

by demonstrating that the iSUR and the maximum likelihood estimators are 

computationally equivalent. Notwithstanding, the arguments by Barten (1969); Kmenta 

and Gilbert (1968); Dhrymes (1971) we responded to the potential shortcoming noted 

by Berndt and Christensen (1973) by also verified the validity of our translog cost 

function with the iSUR technique. As a result, we estimated our translog cost function 

with both estimation techniques. Furthermore, since our data is regarded as three-level 

hierarchical dataset where the number of observations is regarded as a level 1, the 

industries being regarded as level 2, which are nested in countries, that is, level 3, we 

therefore estimate Eq. (4.1) with a three-level multilevel model. In the case of 

multilevel model, we control for potential cluster-level heterogeneity in our dataset by 

decomposing the error term in Eq. (4.1) as follows: 𝑣𝑣𝑖𝑖𝑖𝑖𝑗𝑗 = 𝑢𝑢𝑖𝑖
(3) + 𝑢𝑢𝑖𝑖𝑖𝑖

(2) + 𝜖𝜖𝑖𝑖𝑖𝑖𝑗𝑗 . Where 

𝑢𝑢𝑖𝑖
(3) is the random term for the jth country, 𝑢𝑢𝑖𝑖𝑖𝑖

(2) denotes the nested effect of ith industry 

within the jth country, and 𝜖𝜖𝑖𝑖𝑖𝑖𝑗𝑗 is the remaining disturbance term for each observation in 

the sample. 

4.2.2       Elasticities of substitution 

The elasticity of substitution (ES) between energy and non-energy inputs can be 

computed using the estimated parameters from the cost function Eq. (4.1) and the 

predicted cost shares Eq. (4.2). We apply the most three popular methods of measuring 

the elasticity of substitution in the literature, that is, the Allen-Uzawa elasticity of 
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substitution (AES), cross-price elasticity (CPE) and the Morishima elasticity of 

substitution (MES). Although, each of these elasticities of substitution has unique 

features, but they are interrelated as both the CPE and the MES could be derived from 

the AES46. Allen (1934 and 1938) initially proposed the AES, and then Uzawa (1962) 

later demonstrated the empirical estimation of the AES from a fitted cost function. The 

AES is a partial elasticity as it measures the change in input K (capital) if the price of 

input E changes. For simplicity purposes, we refer to only inputs K and E (energy) when 

presenting our elasticities of substitution and the decomposition effects (when 

necessary). The AES considers inputs as complements if ES denotes by σ less than zero 

(that is σ < 0 and inputs as substitutes if, σ > 1. The formula for the AES is written as 

follows: 

𝜎𝜎𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝑆𝑆 =
𝛽𝛽𝐸𝐸𝐸𝐸 + 𝑆𝑆𝐸𝐸2 − 𝑆𝑆𝐸𝐸

𝑆𝑆𝐸𝐸2
;        𝜎𝜎𝐸𝐸𝐾𝐾𝐴𝐴𝐸𝐸𝑆𝑆 =

𝛽𝛽𝐸𝐸𝐾𝐾 + 𝑆𝑆𝐸𝐸𝑆𝑆𝐾𝐾
𝑆𝑆𝐸𝐸𝑆𝑆𝐾𝐾

                                                             (4.3) 

where SE and SK are the estimated factor shares for energy and capital respectively and 

𝛽𝛽𝑠𝑠  are the parameter estimates from the translog cost function. The main argument 

against the use of AES in the literature is the fact that it fails to provide information on 

relative factor shares since the impact is on actual price changes rather than relative 

price changes. In addition, the symmetric nature of the AES (i.e.,𝜎𝜎𝐸𝐸𝐾𝐾=𝜎𝜎𝐾𝐾𝐸𝐸) makes it a 

limited measure of ES as it fails to capture the curvature properties of the production 

function (Blackorby and Russell, 1981). Although, the CPE and AES have similar 

features as both measure absolute change in input demand rather than relative change, 

unlike the AES the CPE is asymmetric, that is, 𝜎𝜎𝐸𝐸𝐾𝐾 ≠ 𝜎𝜎𝐸𝐸𝐾𝐾. The asymmetric property of 

the CPE is therefore an added advantage. The CPE is written in terms of the AES as 

follows:  

                                            
46 Broadstock et al. (2007) provide detailed explanation on the relationship between the AES, CPE and 
MES. 
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𝜂𝜂𝐸𝐸𝐸𝐸 = 𝑠𝑠𝐸𝐸𝜎𝜎𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝑆𝑆;    𝜂𝜂𝐸𝐸𝐾𝐾 = 𝑠𝑠𝐾𝐾𝜎𝜎𝐸𝐸𝐾𝐾𝐴𝐴𝐸𝐸𝑆𝑆.                                                                                            (4.4) 

where 𝜂𝜂𝐸𝐸𝐸𝐸  is the own-price elasticity of energy input and 𝜂𝜂𝐸𝐸𝐾𝐾  is the cross-price 

elasticity between capital and energy.  

Given the shortcomings associated with AES and CPE, Blackorby and Russell (1981) 

proposed the use of MES as a more appropriate measure of ES. They argued that the 

MES is theoretically superior to the AES and CPE as it is closer to the original 

definition of ES proposed by Hicks (1932) as noted in Haller and Hyland (2014)47. In 

addition, MES does not only allow for inputs adjustments while holding output constant, 

but also allows for the evaluation of the elasticity of change in input ratios with respect 

to price ratios for a given level of output (Stern, 2011). The MES can be written in 

terms of the AES as follows: 

𝜎𝜎𝐸𝐸𝐾𝐾𝑀𝑀𝐸𝐸𝑆𝑆 = 𝑠𝑠𝐾𝐾(𝜎𝜎𝐸𝐸𝐾𝐾𝐴𝐴𝐸𝐸𝑆𝑆 − 𝜎𝜎𝐾𝐾𝐾𝐾𝐴𝐴𝐸𝐸𝑆𝑆).                                                                                                      (4.5) 

where all notations remained as previously defined. The MES measures the change in 

the ratio of two inputs (E/K) when the price of K changes. If an increase in the price of 

K stimulates an increase in E/K input ratio (𝜎𝜎𝐸𝐸𝐾𝐾𝑀𝑀𝐸𝐸𝑆𝑆 > 0) then E and K are substitutes. On 

other hand, if 𝜎𝜎𝐸𝐸𝐾𝐾𝑀𝑀𝐸𝐸𝑆𝑆 < 0 where an increase in the price of K reduces E/K input ratio, 

then E and K are complements. Unlike the AES the MES is asymmetric in nature 

(𝜎𝜎𝐸𝐸𝐾𝐾𝑀𝑀𝐸𝐸𝑆𝑆 ≠ 𝜎𝜎𝐾𝐾𝐸𝐸𝑀𝑀𝐸𝐸𝑆𝑆) depending on which input price changes.  

4.2.3 Energy demand decomposition effect 

To this point, we mainly focused on the substitution possibilities among factors if the 

price of input changes by assuming that output level in unchanged. To recap, Chambers 

(1982) argues that these substitution elasticities may not represent the true 

                                            
47 However, Frondel (2004) argues that the CPE is preferable on the basis that it is more applicable in 
practice given the fact that it is an absolute measure of ES rather than relative measures of ES. 
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characteristics of a cost minimising firm as it fails to account for the output effects of a 

change in input price. In other words, producers do not adjust their output as factor 

prices change. However, in principle, this assumption undermines the true nature of 

firm behaviour because in practice, producers adjust output not only to changes in factor 

price, but also to changes in technology, external shocks and etc. Therefore, making the 

estimation of the output effect in addition to the substitution effect likely relevant as it 

may provide the missing point in input adjustments rather than estimating only the ES. 

To do this, we use the Slutsky equation in microeconomic theory to decompose the 

reaction of a representative firm resulting from changes in factor price into substitution 

and output effects. Specifically, our interest is own-decomposition of derived energy 

input to changes in own-price. To do so, we draw on duality theory by using the 

uncompensated (Marshallian) and compensated (Hicksian) input demand functions 

where we assume that firms’ minimize cost (c) subject to a given level of output ( y): 

𝑐𝑐(𝑦𝑦,𝒘𝒘) = 𝑐𝑐 = min𝒙𝒙′[∑ 𝒘𝒘𝑧𝑧𝑥𝑥𝑧𝑧𝑧𝑧 ] subject to 𝑦𝑦 = 𝑓𝑓(𝒙𝒙)                                                        (4.6) 

where 𝑐𝑐(𝑦𝑦,𝒘𝒘) is the targeted total cost of producing output y given input prices w. In 

microeconomic theory, the Marshallian demand function (𝑥𝑥𝑧𝑧 = 𝑑𝑑𝑧𝑧(𝑐𝑐,𝒘𝒘))  that 

expresses the input demand in terms of the total cost and a vector of input price is 

actually the true dual of the Hicksian demand function (𝑥𝑥𝑧𝑧 = ℎ𝑧𝑧(𝑦𝑦,𝒘𝒘))  where the 

firm’s input demand is written in terms of output and a vector of input price instead48. 

By substituting the cost function into the Marshallian demand function and using the 

implicit relationship between the Marshallian and the Hicksian functions, the total effect 

of changes in price is as follows: 

𝑥𝑥𝑧𝑧 = ℎ𝑧𝑧(𝑦𝑦,𝒘𝒘) = 𝑑𝑑𝑧𝑧(𝑐𝑐(𝑦𝑦,𝒘𝒘),𝒘𝒘)                                                                                           (4.7) 
                                            
48 The Hicksian functions present the amount of input (𝑥𝑥𝑧𝑧) demanded at each possible price (𝑤𝑤𝑧𝑧) holding 
output constant. Thus, the Hicksian function only depicts the substitution effects of a change in relative 
prices.   
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By differentiating Eq. (4.7) with respect to 𝑤𝑤𝑧𝑧 we have: 𝜕𝜕𝑥𝑥𝑧𝑧
𝜕𝜕𝑤𝑤𝑧𝑧

= 𝜕𝜕ℎ𝑧𝑧
𝜕𝜕𝑤𝑤𝑧𝑧

≡ 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑤𝑤𝑧𝑧

+ 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑐𝑐

∙ 𝜕𝜕𝑐𝑐
𝜕𝜕𝑤𝑤𝑧𝑧

. 

Since 𝑐𝑐 = 𝑐𝑐(𝑞𝑞,𝒘𝒘)  and also by Shepard’s Lemma, 𝜕𝜕𝑐𝑐
𝜕𝜕𝑤𝑤𝑧𝑧

= 𝑥𝑥𝑧𝑧 , then Eq. (4.7) is re-

arranged and written in terms of substitution and output effects of changes in input price 

as in Eq. (4.8):  

𝜕𝜕𝑑𝑑𝑧𝑧
𝜕𝜕𝑤𝑤𝑧𝑧

=
𝜕𝜕ℎ𝑧𝑧
𝜕𝜕𝑤𝑤𝑧𝑧

−
𝜕𝜕𝑑𝑑𝑧𝑧
𝜕𝜕𝑐𝑐

𝑥𝑥𝑧𝑧                                                                                                             (4.8) 

Eq. (4.8) decomposes the uncompensated price response (𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑤𝑤𝑧𝑧

) into a substitution 

effect (𝜕𝜕ℎ𝑧𝑧
𝜕𝜕𝑤𝑤𝑧𝑧

) and an output effect (−𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑐𝑐
𝑥𝑥𝑧𝑧). The substitution effect implies, if the price 

of one input changes, its relative price also changes, which results in a fall in demand 

for that input whose price increases and an increase in demand for inputs that are 

substitutable for it. The output effect captures the change in real output as a result of a 

change in input price. In our empirical analysis, we write the compensated cross-price 

elasticity between inputs E and K by converting Eq. (4.8) to Mundlak (1968) elasticity 

form as follows:  

𝜂𝜂𝐸𝐸𝐾𝐾 = 𝜂𝜂𝐸𝐸𝐾𝐾𝑐𝑐 − 𝑆𝑆𝐾𝐾𝜂𝜂𝐸𝐸                                                                                                                     (4.9) 

where 𝜂𝜂𝐸𝐸𝐾𝐾𝑐𝑐  captures the substitution effect and 𝜂𝜂𝐸𝐸  captures the output effect, which 

consists of two components. 𝑆𝑆𝐾𝐾 is the cost share of input K to total expenditure and 𝜂𝜂𝐸𝐸  

is the expenditure elasticity of input demand. For own-price elasticity, which is more 

relevant to this paper, Eq. (4.9) is written as follows: 

𝜂𝜂𝐸𝐸𝐸𝐸 = 𝜂𝜂𝐸𝐸𝐸𝐸𝑐𝑐 − 𝑆𝑆𝐸𝐸𝜂𝜂𝐸𝐸                                                                                                                   (4.10) 

The substitution effect is non-positive (𝜂𝜂𝐸𝐸𝐸𝐸𝑐𝑐 ≤ 0) , but the output effect can be 

negative or positive. If the output effect is positive (that is, −𝑆𝑆𝐸𝐸𝜂𝜂𝐸𝐸 > 0), this implies 

that the input is an inferior good; while a negative output effect (−𝑆𝑆𝐸𝐸𝜂𝜂𝐸𝐸 < 0) suggests 

that the input is a normal good. The former case suggests that an increase in the price of 
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energy would have a positive impact on the output level of the producer. The latter 

suggests that the output level of the producer reduces as energy price increases. The 

substitution and output effects can be generated from the estimated translog model as 

follows. The substitution effect, 𝜂𝜂𝐸𝐸𝐸𝐸𝑐𝑐  can be derived by taking the second-order 

derivatives of the estimated cost function with respect to energy price, that is: 

𝜂𝜂𝐸𝐸𝐸𝐸𝑐𝑐 =𝜕𝜕2 ln𝑐𝑐
𝜕𝜕 ln𝑤𝑤𝐸𝐸

2. The output effect consists of two components: 𝑆𝑆𝐸𝐸 is the cost share of energy 

input to total cost; 𝜂𝜂𝐸𝐸 , which is the expenditure elasticity of energy input demand and 

can be derived from the implicit relationship between the Marshallian and Hicksian 

functions in Eq. (4.10). That is 𝜂𝜂𝐸𝐸=𝜕𝜕 ln𝑥𝑥𝐸𝐸
𝜕𝜕 ln 𝑐𝑐

= �𝜕𝜕 ln𝑥𝑥𝐸𝐸
𝜕𝜕 ln𝑦𝑦

� �𝜕𝜕 ln𝑦𝑦
𝜕𝜕 ln 𝑐𝑐

�.  

4.3 Data 

This study is based on a panel of 34 industries across 29 European countries49 over the 

period 1995–2007 50 . Majority of our series are obtained from World Input-Output 

Database (WIOD) (Timmer et al., 2015). Temperature and purchasing power parity 

exchange rates are taken from the Climate Research Unit and Tyndall, and Penn World 

Table (PWT 7.1) respectively. CO2 emissions in Gg (kt) and energy use in (TJ) are 

obtained from the environmental accounts of WIOD. Energy input expenditure is 

calculated as the addition of the value of expenditure on energy inputs (coke, refined 

petroleum, nuclear fuel, electricity and gas Supply) purchased domestically and 

internationally in national currency. Material input expenditure is calculated as the 

expenditure on intermediate inputs at current national currency. Temperature is 

measured as the average annual temperature for each country, while the measure of 
                                            
49 The industries are listed in the appendix and 29 European countries consist of Austria, Belgium, 
Bulgaria, Cyprus, Czec Rep, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, 
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Russia, Slovak 
Rep, Slovania, Spain, Sweden, Turkey and United Kingdom. 
50 We are constrained to this period, as some of the series used in our estimation are not available beyond 
2007. 
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output (y) is gross output that is expressed in millions of national currency at current 

prices and employees are in thousand. Energy input expenditure; material input 

expenditure, capital compensation and labour compensation are in millions of national 

currency at current prices while numbers of persons engaged are in thousands. We 

deflated gross output using the price index of gross output (1995=100). Then used the 

exchange rates to convert the series to US$. Similarly, we convert the producers’ input 

expenditures to constant (1995=100) prices in each country by applying the implicit 

price deflator for that industry in each country. We then convert the constant series to 

US$ using the purchasing power parity exchange rates.  

The input prices are therefore computed as follows. The real price of energy (𝑝𝑝𝑒𝑒) is 

computed as the ratio of intermediate energy input expenditure at constant prices to 

energy use in TJ. The real price of capital (𝑝𝑝𝑘𝑘) is calculated as the ratio of capital 

compensation to real fixed capital stock; the real price of labour (𝑝𝑝𝑙𝑙) is computed as the 

ratio of labour compensation to number of persons engaged and the real price of 

material (𝑝𝑝𝑚𝑚) is derived as the ratio of value of intermediate material input expenditure 

to intermediate material volume.  
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Table 4.1: Variable descriptions and summary statistics 

Variable Obs. Mean    Std. Dev. 

CO2 emissions in Gg (kt) 12662 5144.84 29901.7 

Energy (in terajoule) 12662 148958.6 743730.6 

Output (millions US$) 12662 195836 170977 

Price of capital (in millions of US$) 12662 9.38 6.09 

Price of labour (in millions of US$) 12662 3.97 2.88 

Price of energy in (millions US$/per TJ) 12662 17.39 10.97 

Price of material (in millions of US$) 12662 8.92 8.06 

Capital expenditure/cost 12662 0.22 0.13 

Labour expenditure/cost 12662 0.19 0.11 

Energy expenditure/cost 12662 0.01 0.00 

Employee 12662 0.59 0.15 

Temperature 12662 10.05 4.58 

 

4.4         Empirical analysis 

4.4.1       Estimated results and elasticities of substitution 

Given the significant intuition of the parameter estimates of the translog cost function, 

we therefore reported the results of the estimated cost function in Tables 4.2 and 4.3. 

We estimated the specified translog model with both iSUR51 and multilevel modelling 

techniques for the entire industries and for sector types with all estimated variables in 

their natural logarithm. We control for heterogeneity across the industries and countries 

by incorporating additional industry and country characteristics (𝜋𝜋𝑗𝑗and 𝑧𝑧𝑗𝑗) respectively 

in Eq. (4.1). By mean-adjusted the industry level variables, we can therefore interpret 

the ES as elasticities at the sample mean. Although, the results reported in the appendix 

show that majority of the estimated parameters are statistically significant with expected 

signs, we observe that the multilevel modelling performs better in terms of the numbers 

                                            
51 We estimated the cost share equations while using the iSUR. 
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of significant estimates across the board52. The results of the estimated cost function 

lead to the discussion of the elasticities of substitution discussed above. However, it is 

necessary to discuss the curvature properties of the estimated cost function before 

analysing the ES as it provides information about the performance of the fitted cost 

function.  

In principle, a well-behaved cost function must possess an economic property that 

satisfies the condition of monotonicity at both samples mean and outside the sample 

mean. Given the positive and statistically significant of the coefficients of the output 

and input prices at the industry level as reported in Tables 4,2 and 4.3, our results 

suggest that the estimated cost functions strongly satisfied the condition of monotonicity 

at the sample mean. Further, we also test these curvature properties of the fitted cost 

function by verifying if the condition of monotonicity is also satisfied outside the 

sample mean. Our analysis shows that monotonicity is strongly satisfied outside the 

sample mean with on average 76% of the data points is monotonic53. The monotonic 

condition suggests that our estimated cost functions are non-decreasing in both output 

and input prices.  

 

 

 

 

                                            
52  Specifically, most of the estimates at country-level and their interactions with industry-level are 
significant. This reinforces the argument stated above that industries are not operating in isolation as their 
activities are closely integrated with aggregate activities, thus, there is a need to control for aggregate 
effects. 
53 As the entire sample comprises data points for the primary, manufacturing and service sectors, we 
verified the monotonic condition outside the sample mean with the entire sample only and the results are 
available on request. 
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Table 4.1:  Estimated translog cost function with multilevel modelling 

Variable Whole  Primary Manufacturing         Service  
Fixed part:     
Intercept   –0.20***          0.28**      –0.25      –0.01 
ly1_y   0.65***          0.63***        0.66***        0.63*** 
ly11_y2 –0.02***          0.00      –0.01***      –0.02*** 
ly1t_yt   0.01***          0.01*        0.01***        0.00 
ly1w1_yk –0.00          0.06***      –0.00        0.00 
ly1w2_yl –0.06*        –0.01        0.02***      –0.03*** 
ly1w3_ye –0.01        –0.01      –0.01**        0.00 
w1_k   0.14***          0.23***        0.16***        0.11*** 
w2_l   0.27***          0.30***        0.30***        0.29*** 
w3_e   0.05***          0.01***        0.04***        0.03*** 
w11_k2   0.02***          0.04***        0.03***        0.02*** 
w22_l2   0.00        –0.03***        0.01***      –0.02*** 
w33_e2 –0.01***          0.00      –0.01***        0.00 
w12_kl –0.03***        –0.01      –0.05***      –0.02*** 
w13_ke   0.00**        –0.01        0.01***      –0.01*** 
w23_le   0.03***        –0.03**        0.03***        0.03*** 
w1t_kt   0.00***          0.01***        0.01***        0.00*** 
w2t_lt –0.00***          0.00        0.00      –0.01*** 
w3t_et   0.00***          0.01***        0.00        0.00*** 
t   0.02***          0.02***        0.02***        0.03*** 
tsq_t2   0.00***          0.00***        0.00        0.00 
Country-level variables     
Y –0.21***        –0.27***      –0.22***      –0.14*** 
W1-K –0.11***        –0.07***      –0.14***      –0.06*** 
W2-L –0.12***        –0.09***      –0.16***      –0.08*** 
W3-E   0.02***        –0.01      –0.02***        0.01 
W4-M –0.41***        –0.09      –0.36***      –0.51*** 
Industry-country interactions     
Yt –0.01***          0.00      –0.01***      –0.01*** 
Yy   0.06***        –0.01        0.05***        0.06*** 
Yw1_Yk   0.01***        –0.01        0.02***        0.01 
Yw2_Yl   0.01***          0.00        0.01        0.02*** 
Yw3_Ye   0.01          0.01      –0.01*      –0.03*** 
W1t-Kt   0.00          0.00        0.00        0.00 
W2t-Lt   0.00          0.01***        0.00*        0.00 
W3t-Et –0.01***        –0.01**      –0.01***      –0.01*** 
W4t-Mt   0.01***          0.00        0.00        0.00 
W1y-Ky   0.02***        –0.02        0.02***        0.00 
W2y_Ly –0.02***        –0.02      –0.05***        0.02*** 
W3y_Ey   0.01***        –0.05***        0.01***        0.01 
W4y_My –0.02***          0.06***      –0.01      –0.03*** 
W1w1_Kk –0.04***        –0.05***      –0.05***      –0.03*** 
W2w1_Lk   0.04***          0.00        0.03***        0.04*** 
W3w1_Ek –0.00***        –0.01**        0.00*        0.00*** 
W4w1_Mk   0.00          0.04***        0.02***        0.00 
W1w2_Kl   0.05***          0.13***        0.06***        0.03 
W2w2_Ll   0.03***          0.00        0.01        0.08*** 
W3w2_El –0.01***        –0.07***      –0.01***        0.00*** 
W4w2_Ml –0.05***        –0.05**      –0.05**      –0.08 
W1w3_Ke   0.01***        –0.02***        0.00      –0.01 
W2w3_Le –0.05***        –0.02      –0.04***      –0.09*** 
W3w3_Ee   0.01***          0.03***        0.01***      –0.00** 
W4w3_Me   0.03***          0.04*        0.02**        0.07*** 
Intra-class correlation   0.77*          0.55*        0.82*        0.80* 
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Table 4.2: Estimated translog cost function with iSUR 

Variable    Whole  Primary Manufacturing       Service  
Cost share equation for capital     
ly1    0.02***    0.03***        –0.00       0.05*** 
w1    0.02***    0.02***          0.03***       0.02*** 
w2  –0.00***    0.02***        –0.01***       0.02*** 
w3  –0.00**  –0.01***        –0.01***     –0.00*** 
t    0.00***    0.01***          0.00***       0.00*** 
Y    0.01***         0.00          0.03***     –0.01** 
W1  –0.04***  –0.05***        –0.04***     –0.03*** 
W2  –0.00       –0.00          0.01***     –0.03*** 
W3    0.01***    0.00***          0.02***       0.01*** 
W4  –0.01***         0.01        –0.02***     –0.01*** 
Intercept    0.16         0.20***          0.13***       0.19*** 
Cost share equation for labour     
ly1    0.03***    0.07***          0.01***       0.03*** 
w1  –0.00***    0.02***        –0.01***       0.02*** 
w2    0.01***    0.01***          0.00       0.01*** 
w3    0.01***         0.00          0.01***       0.00*** 
t    0.00***       –0.00          0.00***     –0.00** 
Y  –0.03***  –0.03***        –0.01***     –0.04*** 
W1    0.05***    0.06***          0.07***       0.03*** 
W2    0.04***    0.04***          0.05***       0.05*** 
W3  –0.07***  –0.06***        –0.08***     –0.05*** 
W4    0.01***       –0.01**        –0.01***       0.02*** 
Intercept     0.30***    0.36***          0.26***       0.36*** 
Cost share equation for energy     
ly1    0.00**  0.00**        –0.00     –0.01*** 
w1  –0.00**       –0.01**        –0.01***     –0.00*** 
w2    0.01***         0.00          0.01***       0.00*** 
w3  –0.00***  –0.01***        –0.00***       0.00*** 
t  –0.01***  –0.00***        –0.00     –0.00*** 
Y    0.00         0.00          0.01***       0.01*** 
W1    0.01***    0.01***          0.02***       0.01*** 
W2  –0.03***  –0.03***        –0.04***     –0.02*** 
W3    0.01***    0.01***          0.01***       0.01*** 
W4    0.01***         0.00          0.00       0.00*** 
Intercept    0.04***    0.04***          0.04***       0.03*** 
Cost share equation for material     
ly1    0.02**         0.04**        –0.00     –0.02*** 
w1  –0.00**       –0.03**        –0.01***     –0.04*** 
w2    0.01***         0.00          0.21***       0.00*** 
w3  –0.00***       –0.01***        –0.10***       0.30*** 
t  –0.03***       –0.00***        –0.00     –0.02*** 
Y    0.00         0.20          0.01***       0.01*** 
W1    0.01***         0.01***          0.02***       0.01*** 
W2  –0.03***       –0.03***        –0.04***     –0.02*** 
W3    0.01***         0.01***          0.01***       0.12*** 
W4    0.01***         0.01          0.04       0.02*** 
Intercept    0.14***         0.12***          0.10***       0.15*** 
***, ** and * represent statistically significant at 0.1%, 1% and 5% level of significance 

Following the estimation of the translog cost function, we verified the possibility of 

factor substitution by computing the AES, CPE and MES using Eqs. (4.3 to 4.5). We 
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used the estimated parameters of the iSUR and the multilevel model reported in Table 

4.2 and 4.3 in computing the substitution elasticities 54. Empirical elasticities at the 

sample mean are presented in Table 4.4 and 4.5. Majority of the estimates of the AES 

reported in Table 4.4 are positive and statistically significant. The positive estimates of 

our elasticities indicate that energy and non-energy inputs are substitutes in most cases, 

though; we find capital and energy as complements for the manufacturing sector with 

multilevel modelling. Our estimates indicate a relatively strong ES between energy and 

non-energy inputs as most of the elasticities reported in Table 4.4 are close to or greater 

than one. However, our results display a weak/moderate ES between capital and energy 

for the Primary and Service sectors. As theoretically expected, the estimates of the MES 

are positive across board and statistically significant. The MES reinforces that energy 

and non-energy inputs are substitutes across sectors. Furthermore, the estimates of the 

AES and the MES show that the substitution between energy and labour is relatively 

stronger compared to others ES, while capital and labour are the least substitutes. 

Specific to the MES, the elasticity of substitution 𝜂𝜂𝐸𝐸𝐿𝐿 = 1.74 suggests that a 1% increase 

in the price of labour is associated with about 1.7% increase in energy-labour input ratio. 

The estimates of our ES are in line with existing literature. For the AES, our estimates 

are closer to Adetutu et al. (2016) and for the MES; our estimates are similar to Haller 

and Hyland (2014).  

For comparison purposes, the elasticities reported in Table 4.4 indicate that the 

values of the AES are bigger than that of the MES. The results suggest that the AES 

demonstrate a stronger technical substitution between factor inputs than the MES. One 

reason that might account for the difference between the values of the AES and MES 

                                            
54 However, substantial part our explanation is limited to the elasticities of substitution derived from the 
estimates of the multilevel modelling as this is our model of interest. Further, unlike chapter 3, since the 
purpose of this chapter is to analyse the decomposition effect rather than estimating ES, thus, we didn’t 
compute the ES for the normalised input (materials) as shown in Tables 4.4 and 4.5.  



 

101 
 

could be because of the restrictive symmetric relationship exhibits in input 

combinations under the AES, as it explains the potential input adjustment relative to 

factor share, if the price of other input changes. While, in contrast, MES exhibits a 

flexible asymmetric relationship in input combinations, as it captures the change in the 

ratio of two inputs when the price of one of the inputs changes. Ideally in practice, the 

producers are more concerned with the relative change rather than actual change in 

input demand when the price of one input changes. Therefore, the restrictive assumption 

of actual change in input demand under the AES rather than the relative change in input 

as other input price rises might be a possible explanation for the overstate of the AES.   

The own and cross-price elasticities for different sectors are reported in Table 4.5. 

We find majority of the elasticities reported in Table 4.5 statistically significant across 

board. As expected, all own-price elasticities are negative and significant. With few 

exceptions, the estimates of the CPE generally indicate that factor inputs are substitutes 

given their positive coefficients. However, we observe a relative weak substitutability 

among factors in CPE compared to the AES and MES as majority of the CPE less than 

0.5. This suggests that the substitution possibility among factors is predominantly weak, 

with the substitution of capital for energy (𝜂𝜂𝐾𝐾𝐸𝐸) demonstrates the weakest, while the 

substitution of energy for labour (𝜂𝜂𝐸𝐸𝐿𝐿) demonstrates the strongest in general. Moreover, 

the elasticities reported in Table 4.5 demonstrate considerable variations in terms of 

asymmetric from factor to factor. For instance, although, the demand for labour 

demonstrates a weak response to changes in energy prices (𝜂𝜂𝐿𝐿𝐸𝐸 = 0.13), the demand for 

energy displays a strong response to changes in labour prices (𝜂𝜂𝐸𝐸𝐿𝐿 = 1.05). Further, in 

most cases, our results show considerable differences in the estimates of the CPE 

derived from the iSUR and the multilevel technique. For instance, the elasticities from 

the iSUR (multilevel) indicate substitutability (complementarity) between capital and 
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energy for the manufacturing sector. In contrast, although, not statistically significant, 

the elasticities from the iSUR indicates complementarity while that of the multilevel 

technique indicates substitutability between capital and energy for the service sector.   

Across the board, our estimated elasticities indicate that energy is the most price 

responsive input, with average estimated own-price elasticities of about −0.94 and 

−1.07 from the iSUR and multilevel techniques respectively. In contrast, we find labour 

as the least price responsive input with average estimated elasticities of about −0.65 and 

0.68 from the iSUR and multilevel techniques respectively. These results are consistent 

with Haller and Hyland (2014) as they find energy as the most price responsive input 

with an estimated elasticity of −1.46%, and labour as the least price responsive input 

with an estimated elasticity of −0.48%. Also, Griffin and Gregory (1976); Nguyen and 

Streitwieser, (1999) find energy as the most price-elastic input with Griffin and Gregory 

(1976) find labour as the least price-elastic input with an average estimated elasticity 

−0.23, which is similar to Arnberg and Bjørner (2007).   
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Table 4.4 Elasticity of substitution estimates.  

                                        Elasticities with iSUR estimates 
 

Elasticities with multilevel model estimates 

   Whole  Primary  Manufacturing        Service  Whole  Primary  Manufacturing         Service  
Allen-Uzawa elasticities         
𝜎𝜎𝐾𝐾𝐿𝐿 = 𝜎𝜎𝐿𝐿𝐾𝐾   0.95***  1.25*** –0.43***   1.26***  0.35***  0.87***   0.72***   0.76*** 
𝜎𝜎𝐾𝐾𝐸𝐸 = 𝜎𝜎𝐸𝐸𝐾𝐾    0.82***  0.43***   2.57***   0.66**  1.43***  0.24 –0.43*** –0.07 
𝜎𝜎𝐿𝐿𝐸𝐸 = 𝜎𝜎𝐸𝐸𝐿𝐿   2.33***  1.12***   3.45***   1.31***  3.53***  2.61***   2.23***   3.31*** 
Morishima elasticities         
𝜎𝜎𝐾𝐾𝐿𝐿   0.94***  1.05***   0.92***   1.07***  0.79***  1.04***   0.58***   0.95*** 
𝜎𝜎𝐾𝐾𝐸𝐸    1.10***  0.80***   0.99**   0.91***  1.24***  0.96***   1.22***   1.03*** 
𝜎𝜎𝐿𝐿𝐸𝐸   1.16***  0.84***   1.12***   0.93***  1.32***  1.06***   1.26**   1.15*** 
𝜎𝜎𝐿𝐿𝐾𝐾   0.84***  0.94***   0.75***   0.95***  0.75***  0.79***   0.58***   0.85*** 
𝜎𝜎𝐸𝐸𝐾𝐾    0.82***  0.77***   0.58***   0.83***  0.94***  0.66***   0.97***   0.70*** 
𝜎𝜎𝐸𝐸𝐿𝐿  1.35***  1.00***   1.31***   1.09***  1.74***  1.67***   1.58***   2.01*** 
***, ** and * represent statistically significant at 0.1%, 1% and 5% level of significance. . Standard errors are calculated using the delta method. 

  

Table 4.5 Own-and cross-price elasticities.  

                                        Elasticities with iSUR estimates 
 

Elasticities with multilevel model estimates 

   Whole  Primary  Manufacturing        Service Whole  Primary  Manufacturing            Service  
𝜂𝜂𝐾𝐾𝐾𝐾  –0.68*** –0.68*** –0.65*** –0.72*** –0.69***  –0.61***  –0.63***    –0.71*** 
𝜂𝜂𝐿𝐿𝐿𝐿   –0.65*** –0.59*** –0.73*** –0.62*** –0.67***  –0.72***  –0.67***    –0.68*** 
𝜂𝜂𝐸𝐸𝐸𝐸  –1.07*** –0.79*** –1.01*** –0.89*** –1.19***  –0.95***  –1.10***    –1.03*** 
𝜂𝜂𝐾𝐾𝐿𝐿    0.29***   0.45**   0.19**   0.45***   0.10***    0.31***  –0.11**      0.27** 
𝜂𝜂𝐾𝐾𝐸𝐸     0.03***   0.02*** –0.03***   0.02**   0.05***    0.01***    0.11***    –0.00 
𝜂𝜂𝐿𝐿𝐸𝐸    0.09***   0.05***   0.10***   0.04***   0.13***    0.11***    0.15***      0.11*** 
𝜂𝜂𝐿𝐿𝐾𝐾    0.16***   0.26***   0.09**   0.24***   0.06***    0.18***  –0.05***      0.14*** 
𝜂𝜂𝐸𝐸𝐾𝐾    0.14***   0.09*** –0.08***   0.12**   0.25***    0.05***    0.33***    –0.01 
𝜂𝜂𝐸𝐸𝐿𝐿   0.69***   0.41***   0.58***   0.47***   1.05***    0.95***    0.89***      1.32*** 
***, ** and * represent statistically significant at 0.1%, 1% and 5% level of significance.  Standard errors are calculated using the delta method. 

 



 

104 
 

4.4.2     Estimated decomposition results 

To this point, we mainly focused on the pure substitution possibilities among factors if 

there is an absolute or relative change in input price without accounting for the output 

effect. We argued above that by estimating only the ES without considering the output 

effect may undermines the true nature of firm’s behaviour, as firms are likely to adjust 

output accordingly not even only to changes in factor price, but also to technological 

change, shocks and market imperfections. Hence, we critically analyse this argument by 

estimating the output effect in addition to the substitution effect. In our empirical 

analysis, we explore the output effect of a change in energy input following the 

estimation of Eqs. (4.1 and 4.2) by decomposing the derived energy input into 

substitution and output effects with Slutsky equation as discussed in section 4.2.  

The focus of this chapter is on own-price effect as expressed in Eq. (4.10) rather 

than the cross-price effect. To analyse the decomposition effects, we used the parameter 

estimates of the iSUR and multilevel models reported in Tables 4.1 and 4.2 to derive 

separate substitution and output effects from each of the techniques. The estimates of 

the substitution and output effects for whole sector and sector types are reported in 

Table 4.655. For the multilevel modelling, we find the estimates of the substitution 

effects to be negative and statistically significant as expected. The results are in 

conformity with economic theory indicating that producer’s consumption of energy 

input reduces as energy price increases. The reduction could be as a result of using 

cheaper substitutable inputs. On the other hand, we find a mix results for the iSUR 

technique, which is somehow questionable as substitution effect takes negative (whole 

                                            
55 The estimation of the output effect is not straightforward unlike the substitution effect, which is directly 
obtainable from the estimated translog model, therefore, generating the standard error is problematic. 
Moreover, since the output effect can either be positive or negative, the standard error is considered 
inconsequential here.     



 

105 
 

and manufacturing) and positive (primary and service) values and statistically 

significant. This result contradicts the theory as positive substitution effect indicates that 

producer increases the amount of energy use as energy price increases.  

In general, it could be observed that the substitution effect from the multilevel 

modelling is bigger than that of the iSUR in absolute terms, but smaller than the 

estimates reported in Adetutu et al. (2016). One possible explanation to this difference 

could be the choice of analysis and sampled countries as they decomposed energy 

demand for individual BRIIC countries, while this study decomposes energy demand 

for a panel of industries across European countries.  

Table 4.6:  Decomposition effects of derived energy demand  

 Based on iSUR estimates Based on multilevel estimates 

 Substitution effect  Output effect Substitution effect  Output effect 

Whole         –0.004*      0.000        –0.008*     –0.001 

Primary           0.007*    –0.000          0.000     –0.001 

Manufacturing         –0.003*      0.000        –0.006*     –0.000 

Service          0.002*    –0.000        –0.002*       0.000 

* represent statistically significant at 5% level of significance 

Arguably, industries in fast emerging economies such as BRIIC are likely to be more 

sensitive to changes in energy price as they exhibit a very strong substitution between 

energy and other inputs as demonstrated by Adetutu et al. (2016).    

For the output effect, the results based on the estimates of the iSUR and the 

multilevel model differ by sign for the whole, manufacturing and service sectors. A 

positive output effect implies that energy input is an inferior factor, which suggests that 

a firm is not sensitive to a rise in energy price and therefore fails to reduce output 

accordingly. In contrast, a negative output effect indicates that energy is a normal factor 

input, therefore a rise in energy price is expected to increase the firm’s production cost 
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and consequently reduce the firm’s output level. Intuitively, the latter case represents 

the true behaviour of a rational cost-minimizing firm, as we expect producer to reduce 

output to minimize loss when cost of production increases. Further, it is more logical to 

consider energy as a normal good given its historical essentiality in the production 

process. Again, we consider the multilevel modelling as a preferred method given the 

estimated negative output effects. The positive output effect for the service sector is 

justifiable given the nature of the service sector as they mainly provide services. This is 

because in the service sector, employers are unlikely to reduce the quality of their 

services or reduce the level of services by laying off workers, in response to an increase 

in energy price unlike in the manufacturing and primary sectors where energy input 

forms the major part of their production process.  

However, notwithstanding the intuition behind the estimates of the output effect, the 

estimates are generally not different from zero, which allows the substitution effect to 

be a dominant factor in our case. With this outcome, it is logical to conclude that the 

output effect is likely not to have a significant implication on carbon reduction via 

reduction in energy use. Given this argument and in addition to the fact that the 

multilevel model is our preferred method of analysis as discussed above, we only 

analysed the relationship between carbon emissions and the output effects derived from 

the multilevel model in section 4.4.3. Therefore, it is in the context of these results we 

extend the literature by carrying out an exploratory investigation to analyse the 

relevance of the output and substitution effects (arising from increase in energy price) 

on carbon emissions.  
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4.4.3        Energy demand decomposition and CO2 emissions  

The exploratory analysis presented here is underpinned by the theoretical exposition 

discussed in chapter 3. Following the decomposition of derived energy demand into 

substitution and output effects, we now focus on the implications of these effects on 

CO2 emissions. Given the hierarchical structure of our dataset and the necessity to 

control for heterogeneity at each level of the data as we did in chapter 1, we therefore 

employ a generalised 3-level multilevel modelling approach where country is level 3 

and industry is level 2 number of observation is level 156. Our generalised 3-level 

multilevel model is specified as follows:  

𝑐𝑐𝑐𝑐2,𝑖𝑖𝑖𝑖𝑗𝑗 = 𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗′ 𝛿𝛿 + 𝐼𝐼𝐿𝐿𝑖𝑖𝑗𝑗′ 𝛾𝛾 + 𝑢𝑢𝑖𝑖
(3) + 𝑢𝑢𝑖𝑖𝑖𝑖

(2) + 𝜖𝜖𝑖𝑖𝑖𝑖𝑗𝑗                                                                    (4.11)                             

where 𝑡𝑡 = 1, … . ,𝑇𝑇 , 𝑖𝑖 = 1, … . . , 𝐼𝐼  and 𝑗𝑗 = 1, … . . ,𝑀𝑀 . The dependent variable 𝑐𝑐𝑐𝑐2,𝑖𝑖𝑖𝑖𝑗𝑗 

denotes the CO2 emissions for industry i in country j in time t. X denotes a vector of 

industry-level variables including estimated substitution and output effects, CR 

represents a vector of country-level variables and t indicates time dummies. The error 

terms assumed to be independently and identically distributed (IID), with zero mean and 

their respective variances:  

                          𝑢𝑢𝑖𝑖
(3)~𝑁𝑁(0,𝜎𝜎𝑣𝑣2);           𝑢𝑢𝑖𝑖,𝑖𝑖

(2)~𝑁𝑁(0,𝜎𝜎𝑢𝑢2);          ∈𝑖𝑖,𝑖𝑖,𝑗𝑗 ~𝑁𝑁(0,𝜎𝜎∈2) 

where 𝑢𝑢𝑖𝑖
(3) is the error term for the jth country, 𝑢𝑢𝑖𝑖,𝑖𝑖

(2) represents the nested effect of ith 

industry within the jth country, and 𝜖𝜖𝑖𝑖,𝑖𝑖,𝑗𝑗 is the remaining error term for tth response 

time of ith industry within the jth country.   

                                            
56 Given that the 3-level model had been explicitly defined in Chapter 2, we thus specified the general 
version in this chapter for simplicity. 
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We estimated Eq. (4.11) without and with the decomposition effects. The estimated 

results are reported in Tables 4.7 and 4.8 respectively. For analysis purposes, all 

estimated variables are in their natural logarithm and we centred the industry level 

variables on the log of their group means so that their estimated parameters can be 

interpreted as elasticities within country. The country level variables are the group 

means of the industry level variables and their coefficients can be interpret in form of 

between-country effect or contextual effect of a given variable57. As output is one of the 

variables estimated, we acknowledge that a strand in the literature (Halicioglu, 2009; 

Ghosh, 2010; Pao and Tsai, 2011) argues that output could mirror carbon emissions; as 

a result, Eq. (4.11) might suffer from endogeneity problem. However, another strand in 

the literature (Ang, 2007; Soyta and Sari, 2007; Zhang and Cheng, 2009; Chang, 2010) 

of emission-output nexus refutes this claim by arguing that there is a unidirectional 

causality running from output to carbon emissions. This implies there is no consensus in 

the existing literature regarding the direction of causality between output and emissions. 

We leverage on this inconclusive evidence in the literature of output-emissions nexus 

and estimated Eq. (4.11) on the assumption that only output drives emissions, but not 

the other way around in our case. Notwithstanding the strand in the literature we support, 

we advise readers to interpret our results with caution.  

The results of the estimated model without decomposition are reported in Table 4.7. 

The results show that majority of the estimated variables for the whole, manufacturing 

and service sectors are statistically significant with expected sign. However, our results 

show the opposite for the primary sector as majority of the estimates are not statistically 

significant. Expectedly; energy, output and employees all have positive relationship 

                                            
57 Hox et al. (2010) and Steele (2008) provide explanation on using the means of lower level variables as 
higher level variables in multilevel model.  
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with carbon emissions. Generally, we find energy as the main driver of carbon 

emissions with relatively large within-country (0.24) and between-country elasticities 

(0.58). The larger value of the between-country elasticity compared to the within-

country elasticity indicates that aggregate energy use has a stronger influence on carbon 

emissions than industry-level energy use.  

Table 4.7: Estimated results for CO2 emissions without decomposition effects  

Fixed part: Whole Primary  Manufacturing       Service  
Constant   –1.80*** 

 (0.30) 
 –3.93*** 

(0.86) 
 –2.62*** 

(0.39) 
 –1.04** 

(0.49) 
Industry-level variables     
Energy  0.24*** 

(0.01) 
 0.25*** 
(0.04) 

 0.29*** 
(0.01) 

 0.19*** 
(0.01) 

Output  0.11*** 
(0.02) 

  0.16 
(0.10) 

 0.06*** 
(0.02) 

  0.21*** 
(0.04) 

Employee  0.11*** 
(0.01) 

−0.06 
(0.05) 

 0.01 
(0.02) 

  0.17*** 
(0.02) 

Country-level variables     
Temperature  –0.12*** 

(0.02) 
  0.00 
 (0.07) 

 –0.28*** 
(0.03) 

  0.07 
(0.04) 

Energy   0.58*** 
(0.04) 

  0.90 
 (0.10) 

 0.89*** 
(0.05) 

  0.21*** 
(0.05) 

Output   0.08*** 
(0.02) 

−0.06 
(0.10) 

 0.08*** 
(0.03) 

  0.15*** 
(0.04) 

Employee   0.47*** 
(0.04) 

 0.23 
(0.13) 

 –0.00 
(0.06) 

 1.03*** 
(0.07) 

Random part:     
 𝜎𝜎𝑣𝑣2  0.23** 

(0.09) 
 0.22 
(0.19) 

 0.27** 
(0.12) 

 0.86*** 
(0.26) 

 𝜎𝜎𝑢𝑢2  2.36*** 
(0.11) 

 0.75** 
(0.21) 

 2.32*** 
(0.16) 

 1.64*** 
(0.12) 

 𝜎𝜎𝜀𝜀2   0.07*** 
(0.00) 

 0.04*** 
(0.00) 

 0.06*** 
(0.00) 

 0.08*** 
(0.00) 

Intra-class correlation  0.09** 
(0.03) 

 0.21 
(0.18) 

 0.10** 
(0.04) 

 0.33 
(0.08) 

***, ** and * represent statistically significant at 0.1%, 1% and 5% level of significance. Intra-class 
correlation coefficient (𝐼𝐼𝐼𝐼𝐼𝐼) = 𝜎𝜎𝑣𝑣2

𝜎𝜎𝑣𝑣2+𝜎𝜎𝑢𝑢2+𝜎𝜎𝜀𝜀2
. 

The statistical significance of most of the estimated country-level variables 

demonstrates the importance for controlling for country-level effects while using 

industry level dataset. The results reinforce the fact that industries are not operating in 

isolation as their activities evidently tied to macroeconomic activities. Further, 

temperature is negatively related with industrial carbon emissions with estimated 
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elasticities negatively statistically significant across the board as expected. The estimate 

of –0.12 suggests that a 10% increase in temperature is associated with about 1.2% 

reduction in carbon emissions. One possible explanation for the inverse relationship 

between carbon emissions and temperature is that industries are likely to reduce their 

energy consumption in warm weather period and subsequently reduce the amount of 

carbon emissions during this period.  

The results of the random part explain the unobserved heterogeneity in our dataset. 

The results demonstrate the strengths of multilevel modelling in terms of its ability to 

account for and separate the unobserved heterogeneity at different levels of the data, 

which iSUR ignores. The coefficients on error terms 𝜎𝜎𝑣𝑣2 , 𝜎𝜎𝑢𝑢2  and 𝜎𝜎𝜀𝜀2  represent 

unobserved variations in country, industry and time period respectively with most of the 

estimated coefficient being significant. To measure the extent of contextual unobserved 

heterogeneity in carbon emission, we employ the intra-class correlation coefficient 

(ICC). The coefficient of the ICC 0.09 suggests that just 9% of the unexplained 

variations in industrial carbon emission are traceable to country differences. In other 

words, 91% of unobserved heterogeneity in industrial carbon emissions is due to 

industry differences. 

Table 4.8 presents the results of the decomposition effect derived from the estimated 

multilevel model having controlled for other competing factors. We find our control 

variables reliable as majority are statistically significant and demonstrate minimum or 

no variation compared to the estimates from model without decomposition. As expected, 

the substitution effect has a negative relationship with carbon emission across the board 

with estimated elasticities raging from –0.64 to –0.54. The estimated elasticity –0.64 

indicates that a 10% increase in substitution effect arising from increase in energy price 

is associated with approximately 6.4% reduction in industrial CO2 emissions. This result 
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suggests that a rational producer will reduce energy use when energy price increases by 

consuming less energy, which could be in form of using more alternative sources of fuel, 

other substitutable inputs, more energy efficient or even the combination of the 

measures listed. The statistically significant and reasonable values of the substitution 

effects depict the degree of sensitivity of the producers to changes in price via the use of 

other inputs. However, the substitution effect for the primary sector is positive but not 

statistically significant. The result would have contradicted the theory if it was 

significant as it would imply that producers use more energy as energy price increases  

As for the output effect, the estimates are negative across board, but only the 

estimates for the whole and service sectors are statistically significant. The negative 

output effect implies that energy is a normal good, which is logical given its historical 

importance in the production setting. The implication of the negative output effect is 

that producer is likely to adjust output accordingly following an increase in energy and 

this could result in higher production cost if substitution is hard as discussed in chapter 

3. Subsequently, output level is reduced as well as CO2 emissions. However, the values 

are generally smaller compared to the estimates of the substitution effect. For instance, 

the output effect –0.06 suggest that a 1% increase in output effect as a result of increase 

in price is associated with about 0.06% reduction in carbon emissions. In general, the 

impact of the output effect is relatively small compared to the impact of the substitution 

effect and that makes the substitution effect to be the dominant factor. The key 

implication of these results is that the output effect may not be as worthy to be 

considered as previous literature suggested when analysing the decomposition effect of 

an input. In overall, the impact of the decomposition effect arising from the increase in 

energy price is associated with reduction in carbon emissions given the negative 

combination of the substitution and output effects. 
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Table 4.8:  Estimated results for CO2 emissions with decomposition effects 

Variable Whole Primary  Manufacturing       Service  
Constant   –2.11*** 

(0.31) 
 –2.79*** 

(0.89) 
 –2.28*** 

(0.40) 
 –1.72*** 

(0.49) 
Industry-level variables:     
Substitution effect  –0.64*** 

(0.06) 
   0.28 

(0.36) 
 –0.59*** 

(0.11) 
 –0.54*** 

(0.07) 
Output effect  –0.06*** 

(0.02) 
 –0.86 

(1.43) 
 –0.00 

(0.03) 
 –0.09*** 

(0.03) 
Output  0.27*** 

(0.02) 
 0.08 
(0.11) 

 0.28*** 
(0.02) 

 0.29*** 
(0.04) 

Employee  0.17*** 
(0.01) 

  –0.06 
(0.05) 

 0.08*** 
(0.02) 

 0.20*** 
(0.02) 

Country-level variables:     
Temperature  –0.13*** 

(0.02) 
 –0.10 

(0.07) 
 –0.33*** 

(0.03) 
   0.09** 

(0.04) 
Energy   0.48*** 

(0.04) 
 0.78***  
(0.11) 

 0.74*** 
(0.05) 

 0.16*** 
(0.05) 

Output   0.17*** 
(0.02) 

 –0.20  
(0.11) 

 0.20*** 
(0.03) 

 0.19*** 
(0.04) 

Employee   0.64*** 
(0.04) 

 0.40*** 
(0.13) 

 0.15*** 
(0.06) 

 1.18*** 
(0.07) 

Random part:     
 𝜎𝜎𝑣𝑣2  0.17** 

(0.07) 
 0.25 
(0.23) 

 0.27** 
(0.13) 

 0.79** 
(0.25) 

 𝜎𝜎𝑢𝑢2  3.10*** 
(0.15) 

 0.91** 
(0.26) 

 3.39*** 
(0.22) 

 1.91*** 
(0.13) 

 𝜎𝜎𝜀𝜀2   0.07*** 
(0.00) 

 0.04*** 
(0.00) 

 0.07*** 
(0.01) 

 0.08*** 
(0.00) 

Intra-class correlation  0.05** 
(0.02) 

 0.21 
(0.18) 

 0.07* 
(0.03) 

 0.29*** 
(0.07) 

***, ** and * represent statistically significant at 0.1%, 1% and 5% level of significance. Intra-class 
correlation coefficient (𝐼𝐼𝐼𝐼𝐼𝐼) = 𝜎𝜎𝑣𝑣2

𝜎𝜎𝑣𝑣2+𝜎𝜎𝑢𝑢2+𝜎𝜎𝜀𝜀2
. 

 

As for the results of the random part, the results reported in Table 4.8 show a 

decrease in the intra-class coefficients when allowing for the decomposition effect as 

compared to those reported in Table 4.7. The coefficient of the ICC 0.05 suggests that 

just 5% of the unexplained variations in industrial carbon emission are traceable to 

variations in country while allowing for decomposition effect. The insignificant of the 

primary sector’s ICC (21%) indicates that country effect plays no role in the 

unexplained variations of the primary sector’s CO2 emissions.    
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4.5           Conclusion and policy implications 

This chapter develops two-step procedure to analyse the decomposition effect of 

derived energy input on CO2 emissions. Our empirical analysis makes significant 

contributions to the literature of inter-factor substitution and decomposition effect by 

comparing the estimates of the iSUR and the multilevel modelling techniques and then 

support in favour of the latter approach. To do so, we use hierarchical industry dataset 

across 29 European countries for the period 1995–2007. To analyse inter-factor 

substitution, we estimate a translog cost function with the popular iSUR and multilevel 

modelling. Unlike the iSUR, the multilevel model accounts for the cluster-level 

heterogeneity in our dataset and we further argue that failure to account for this 

heterogeneity may lead to unreliable estimates. Thereafter, we use the estimates of the 

estimated translog function from both techniques to decompose changes in energy 

demand resulting from changes in price into substitution and output effects. We 

conclude our analysis by investigating the impact of the substitution and output effects 

on CO2 emissions having controlled for other competing forces.    

Our empirical results reaffirm the importance of controlling for aggregate effects 

and cluster-level heterogeneity as majority of our country level variables as well as the 

estimates of the random part are statistically significant across board. We find some 

disparities in the magnitude of the elasticities of substitution derived from the iSUR and 

multilevel model, but the results of the AES and MES indicate strong substitutability 

between energy and other inputs. However, the estimates of the cross-price elasticity 

indicate weak substitutability between energy and other inputs. Specifically, we find 

energy as the most price responsive input and labour as the least price responsive. 
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Further, in asymmetric form, the substitutability between energy and labour 

demonstrates the strongest. These results are in line with existing literature.  

The estimated decomposition results show that changes in derived energy input are 

largely dominated by substitution effects in absolute terms. In addition, our results 

reveal that, although both the substitution and the output effects arising from increase in 

energy price are inversely related to the carbon emissions, but the substitution effect is 

largely dominated. This result therefore suggests that the output effect may not be as 

worthy to be considered as previous literature suggested when analysing the 

decomposition effect of an input. In fairness, these results are in conformity with real 

life experience, as one would expect a cost minimising firm to adjust both output and 

inputs accordingly if an input price increases. Subsequently, one would expect carbon 

emissions to reduce as firms adjust output accordingly when marginal cost increases. 

Our findings are theoretically rooted as increase in input cost is expected to reduce 

output level and the amount of such input use in production. In addition, this study 

demonstrates the importance of using a more suitable modelling technique when 

analysing the decomposition effects of changes in production factor as failure to do so 

could lead to unreliable estimates.  

The policy implications that can be drawn from our analysis are as follows. Firstly, 

the insignificant of the output effect suggests that producers are less likely to reduce the 

level of output as they can substitute other inputs for energy without any loss in 

production if energy price increases. Therefore, any energy policy targeted to increase 

energy/carbon taxes is less likely to be counterproductive. We hope this result will 

inform policy makers of European countries and other developed countries that policy 

targeted to increase energy/carbon taxes is not likely to retard business activities. 



 

 
 
 

115 

Secondly, we argue that there is a need to observe the substitution potential across 

sectors and the economy at large before formulating energy/carbon reduction related 

policy. This is because any emission reduction targeted policy being formulated without 

accounting for the substitution potential in a production setting is likely to be ineffective.  

In addition, although, we find that the overall effect of an increase in energy price will 

reduce carbon emissions, but moderately. Therefore, we argue that any attempt to 

reduce carbon emissions via an increase in energy/carbon taxes should be reinforced by 

other measures.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 

116 

Chapter 5    Conclusions and Future Research 
 

 

5.1 Summary 

This thesis contains three essays aimed at examining the policy/environmental 

implications of econometric estimation of energy demand elasticities. More specifically, 

the main objective was to empirically analyse energy demand function with the primary 

purpose of generating reliable estimates, which could serve as policy tools in 

formulating macroeconomic policies related to energy security and carbon emissions. In 

doing so, the research undertaken in this thesis compare and contrast empirical results 

obtained from different model specifications and estimation techniques using a panel 

data analysis. Further, as tackling energy challenges such as climate change requires 

robust and effective energy policy actions, this research work observed the impact of 

energy demand elasticities and to what extent they are relevant in reducing to carbon 

emissions. The issues presented above were addressed via three papers/essays in 

Chapters 2, 3 and 4. The next section provides the main research findings of this thesis 

in terms of the research questions in Chapter 1. 

5.2 Empirical findings and policy implications 

Essay 1: To what extent would inappropriate econometric technique impacts 

energy demand elasticities? 

• Is there a difference between industry-level and country-level energy demand 

estimates? 

• Is heterogeneity in energy use more associated with between-industry or 

between-country differences? 
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Despite the huge existing literature on energy demand modelling, no previous study 

has extensively examined the implications of not account for the hierarchical nesting of 

industries within a system that also adequately allows for country specific determinants 

of energy demand. To fill this vacuum in the literature, chapter 3 therefore analyses 

energy demand for European industries over the period 1995-2007 using a dynamic 

multilevel model that accounts for this hierarchical data structure and the generalised 

method of moments (GMM). Among other things, findings from the first essay indicate 

that the European industrial energy consumption is significantly influenced by the 

country-level variables, as all country-level variables estimated are statistically 

significant. This is reinforced by the result of ICC in the DMM (0.44), suggesting that 

about 44% of the unexplained variations in industrial energy consumption are traceable 

to between-country differences. 

The results of the dynamic multilevel model suggest that if industry income and the 

industry energy price increase by 10% respectively, long run energy demand will 

increase by 8.1% and fall by 6.8%, respectively. In contrast, the corresponding long run 

income and price elasticities are substantially larger in a standard dynamic model of 

energy demand which does not account for the hierarchical data structure. The results 

therefore suggest that not accounting for the hierarchical data structure results in 

unreliable estimates of energy demand elasticities. From a policy perspective this essay 

argues that it is imperative that future industry level energy demand studies account for 

the hierarchical structure of the data. This is to prevent energy policy making being 

based on industry level evidence that substantially inflates the responsiveness of long 

run energy demand to income and price changes. This finding has a serious implication 

that policy based on such wrong or inaccurate energy demand estimates is very likely to 
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be misleading or inappropriate. More importantly, results of this essay indicate the need 

for modelling energy demand with appropriate econometric technique if we wish to 

make more appropriate predictions about future energy use and associated carbon 

emissions. 

Essay 2: What is the relationship between estimated energy demand elasticities 

and carbon emissions? 

• Are energy and non-energy inputs substitutes or complements? 

• What are the main drivers of carbon intensity? 

It is well established in the theoretical literature that energy demand estimation in 

terms of ES between energy and non-energy provides insightful information on the 

relevance of capital-energy substitution in reducing CO2 emissions. Moreover, there are 

two positive implications associated with this practice. First, it removes over-reliance of 

continuing increase in energy prices as a way of stimulating improvement in energy 

efficiency. Second, it represents a way of relaxing the pressure of increasing global 

energy consumption and regarded as a natural way of reducing greenhouse gases. 

However, there is clearly a lack of empirical assessment of the effects of capital-energy 

substitution on carbon reduction. Hence, chapter 3 examined the relevance of factor 

substitution to carbon reduction by empirically analysing the impact of energy and non-

energy substitution on carbon intensity for China. Another important issue that this 

study takes on is the potential role of export shocks in factor substitution. As far is 

known, this study is the first to consider the effect of structural change on energy 

substitution. To account for structural change, this study provides an empirical analysis 

for the period before and after China’s accession to the World Trade Organisation.  
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Unlike most studies that estimate a single elasticity of substitution/complementarity, 

this study explicitly demonstrates how to compute a range of elasticities with each of 

the elasticities being identified with unique features. The empirical analysis is based on 

sectorial level data over the period of 1995–2009. Main findings reveal that energy and 

non-energy factors are substitutes while holding output constant but complements if 

output is free to adjust to changes in factor prices. Also, the results suggest that energy 

intensity is the major contributor to China’s carbon intensity, which is in conformity 

with body of evidences. In contrast, technological progress and capital-energy 

substitution are inversely related to carbon intensity, though, their impacts are relatively 

weak. On the other hand, labour-material substitution displays a relative strong negative 

relationship with carbon intensity with an estimated elasticity of –0.90 before the 

structural change.  

The main policy implications that emerge from chapter 3 are as follows. Firstly, it 

appears that China’s accession to the WTO is a motivation for energy-savings and 

subsequently carbon reduction, given the strong ES between capital and energy after the 

structural break. One would expect this outcome given the international pressure China 

is facing to reduce its emissions level. This finding provides a blueprint for other 

emerging economies. Nonetheless, energy policy designs in these countries must 

consider that reduction in emissions cannot be achievable by only increasing energy and 

carbon taxes, but also by adopting a sound strategy that would encourage the use 

alternative fuels/inputs. In addition, our findings reveal that easy substitution between 

inputs in production setting will require a smaller carbon tax and will results in less loss 

of economic output. In this situation, any energy related policy design to reduce carbon 

emissions is less likely to affect production level. However, if substitution potential is 
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different between sectors of the economy, which is more likely the case in practice, then 

the application of uniform tax to all sectors will hurt more sectors that deliver the 

greatest reduction in energy use. This curious result would likely strike most unfair. In 

addition, it may run counter to welfare maximization or cost minimisation for the 

energy efficient sector(s). Our results therefore reinforce the suggestion for a possible 

policy solution that would apply different levels of carbon taxes to different sectors. 

Essay 3: What is the relationship between the decomposition of derived energy 

input and carbon emissions? 

• What are the estimates of the substitution and output effects? 

• Which of the two effects dominates? 

Having argued in the literature that energy demand estimation in terms of energy 

substitution provides insightful information while making decisions related to energy 

security and carbon reduction, but this could have a serious policy implication as pure 

ES assumes of constant level of output. A representative producer would adjust output 

accordingly in response to changes in relative input prices. Hence, this renders the 

capital-energy substitution incomplete picture of inputs adjustment resulting from a 

relative change in inputs prices. A strand in the literature of energy economics argues in 

favour of the decomposition effects of changes in energy demand arising from an 

increase in energy prices. In this regard, the decomposition output effect depicts a more 

complex picture of inputs adjustments compared to the ES. This is because the output 

effect accounts for the flexibility of the producer to adjust output accordingly.  

Chapter 4 builds on the above argument to provide more accurate/reliable 

information that could serve as policy tools by examining the impact of energy demand 

decomposition on carbon emissions. This study also picks on the importance of using 
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suitable econometric technique while estimating energy demand. To achieve the 

objective, this study adopts a two-stage procedure using industry level data across 

Europe for the period 1995–2007. The first stage estimated a translog cost function 

using the iSUR and multilevel models, and decomposed derived energy input into 

substitution and output effects. The second stage carried out an exploratory 

investigation to examine the relationship between the decomposition effects and carbon 

emissions. The main findings show that, although both the substitution effect and the 

output effects have a negative relationship with carbon emissions, but the substitution 

effect largely dominates the output effect. This suggests that the estimation of the output 

effect while decomposing factor of production is less likely important as previous 

studies suggest. In fact, this is an indication as pointed out in chapter 3, that an easy 

substitution between inputs in a production setting will result in less loss of economic 

output. This is because, the insignificant of the output effect suggests that producers are 

less likely to reduce the level of output as they can substitute other inputs for energy 

without any loss in production if energy price increases. 

From a policy perspective, our results argue for the need to observe the substitution 

potential across sectors and the economy at large before formulating energy/carbon 

reduction related policy. This is because any emission reduction targeted policy being 

formulated without accounting for the substitution potential in a production setting is 

likely to be ineffective. In addition, the overall implication of this chapter cuts across 

the relevance of both chapter 2: as it also reinforces the importance of using a more 

suitable modelling technique while estimating energy demand as failure to do so could 

lead to unreliable estimates, and chapter 3: argues that any attempt to reduce carbon 

emissions via increase in energy taxes should be reinforced by other measures. 
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In summary the main contributions of this thesis are three-fold. Firstly, this thesis 

argues that the application of inappropriate econometric modelling technique to energy 

demand could severely produce unreliable energy demand elasticities. Therefore, warns 

that future research should control for the hierarchical structure of energy data while 

using industry level data. Secondly, this thesis provides a blueprint on the extent in 

which energy demand elasticities in form of ES could act as a measure for carbon 

reduction by carrying out an exploratory investigation between ES and carbon 

emissions. Thirdly, this thesis extends the literature on decomposition analysis by 

carrying out an exploratory investigation on the impact of the decomposition effects of 

derived energy on carbon emissions. Therefore, argues that only the substitution effect, 

which arises from an increase in energy price, is relevant in policy making.  

5.3 Limitations of the study 

It is recognised that all research and analytical framework have limitations and this 

research work is not an exception in this respect. The limitations of this research are 

highlighted as follows. Firstly, this thesis was limited by the sample size across the 

three papers due to a lack of consistent data over the years for a good number of 

countries. For instance, the energy demand estimation in Chapter 2 relied on 29 

countries for a period of 15 years (1995–2009). Given the global view associated with 

energy demand issues, it would have been more useful to have more years and countries 

to consider in this regard. This is also the case for Chapter 3 where inclusion of other 

countries would have provided a more informative finding on the relevance of structural 

change to energy demand elasticities and carbon emissions. Similarly, Chapter 4 is also 

limited by data sample size where by expanding the scope of the study would have 

permitted a much broader evaluation of energy demand decomposition.   
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Secondly, on a similar note, it is recognised that energy policies differ across 

countries and this research seriously considered this difference, but limited data and 

changing policy stance overtime made it difficult. The availability of consistent data on 

energy policy indicators for a number of years would have allowed for the inclusion of 

policy variables that could provide insightful information about the changes in energy 

policy across the sample countries. Energy policy is known to be changing overtime 

given the relative importance of energy issues. Hence, some policy measures were only 

implemented for a few years and discontinued thereafter. The use of dummy variables 

for instance, would amplify the impact of such discontinued policies overtime in respect 

to the relatively long-time frame of the dataset. 

Finally, as it is often the case with most empirical research, the results of this thesis 

cannot establish a complete causality within all the estimated models, although, it is 

demonstrated with a high level of confidence that the major implications of applied 

energy econometrics have been analysed using well established modelling techniques. 

5.4 Future research  

This thesis comprises 3 essays/papers on the policy implications of applied energy 

econometrics. While these papers address important research questions, the insightful 

results provide useful avenues for further research. The first essay shows amongst 

others that energy demand estimates could be severely biased if inappropriate 

econometric technique is used to estimate energy demand. This indicates the importance 

of appropriate modelling technique if we wish to make accurate predictions about 

energy security and associated carbon emissions. Hence, it would be interesting to 

extend the analysis in Chapter 2 by re-visiting energy demand forecasts across the 
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sampled countries with a view eliminating the biasedness in energy demand estimates. 

In a way, this would allow the assessment of actual future energy needs and related 

carbon emission. In addition, this paper highlights the need for more energy demand 

modelling techniques that can actually match up with the increasing stock of data. 

Chapter 3 primarily focuses on the implications of energy demand elasticities on 

carbon emissions having adjusted for a structural change. Given the direction of the 

paper and data availability, the analysis is restricted to Chinese economy only. The main 

findings indicate that the relationship between energy substitution and carbon emissions 

after the structural break is more noticeable and negative. In this respect, a more 

rigorous study that accounts for structural change across countries is actually needed to 

solidify the findings of this essay. This would enable the evaluation of alternative policy 

options to achieve the long-term targets for sustainable energy consumption and climate 

change. 

In Chapter 4, an implication of energy demand decomposition on carbon emissions 

across sectors in European countries is conducted. Having controlled for the 

hierarchical structure of the data, amongst others, although, the results indicate that the 

substitutability between energy and other inputs dominates changes in energy use, 

compared to the output effect. However, both effects have negative relationship with 

carbon emissions. These results motivate future research in terms of focusing on the 

decomposition analysis for different types of fuel rather than the approach adopted here. 

As such, analysis would not only show variations in substitution and output effects 

among fuel types, but also provides information about the fuel type that makes the 

economy better off in terms of sustainable environment.  

All the above suggestions constitute the future research agenda. 
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Appendix  
 

 

A1: To show the importance of the response at first period let consider a simple 

dynamic multilevel model for simplicity. 

𝐸𝐸𝑖𝑖,𝑖𝑖 =  𝛽𝛽1 + 𝛿𝛿𝐸𝐸𝑖𝑖−1,𝑖𝑖 + 𝛽𝛽2 𝑥𝑥𝑖𝑖,𝑖𝑖 + 𝑢𝑢𝑖𝑖𝜖𝜖𝑖𝑖,𝑖𝑖                                                                                                              (𝐴𝐴. 11) 

Eq. (A.12) is only for time periods i > 1 because the value of the lagged response at 

period 1 is unknown. The model for the response at i = 2 is 

𝐸𝐸2,𝑖𝑖 =  𝛽𝛽1 + 𝛿𝛿𝐸𝐸1,𝑖𝑖 + 𝛽𝛽2 𝑥𝑥1,𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝜖𝜖2,𝑖𝑖                                                                                               (𝐴𝐴. 12) 

and by substituting Eq. (A.12) for the expression 𝐸𝐸2,𝑖𝑖 in model for the response at i = 3, 

we derive 

𝐸𝐸3,𝑖𝑖 =  𝛽𝛽1 + 𝛿𝛿𝐸𝐸2,𝑖𝑖 + 𝛽𝛽2 𝑥𝑥2,𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝜖𝜖3,𝑖𝑖  

       =  𝛽𝛽1 + 𝛿𝛿�𝛽𝛽1 + 𝛿𝛿𝑒𝑒1,𝑖𝑖 + 𝛽𝛽2 𝑥𝑥1,𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝜖𝜖2,𝑖𝑖� + 𝛽𝛽2 𝑥𝑥2,𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝜖𝜖3,𝑖𝑖  

       = (1 + 𝛿𝛿)𝛽𝛽1 + 𝛿𝛿2𝐸𝐸1,𝑖𝑖 + �𝛿𝛿𝑥𝑥1,𝑖𝑖 + 𝑥𝑥2,𝑖𝑖�𝛽𝛽2 + (1 + 𝛿𝛿)𝑢𝑢𝑖𝑖 + 𝛿𝛿𝜖𝜖2,𝑖𝑖 + 𝜖𝜖3,𝑖𝑖              (𝐴𝐴. 13)  

Eq. (A.13) displays the importance of time period 1 as model 𝐸𝐸3,𝑖𝑖 can be re-specified in 

which it depends on 𝐸𝐸1,𝑖𝑖 with coefficient 𝛿𝛿2. Therefore, by continuing the substitution 

process it is straightforward to show that the response 𝐸𝐸𝑖𝑖,𝑖𝑖 at any period k (k = 2,…,T) 

depends on 𝐸𝐸1,𝑖𝑖 with coefficient 𝛿𝛿𝑖𝑖−1.   
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Table A. 3  List of ISIC Rev.4 (NACE Rev.2) Sectors  

NACE 
Description 

Sector 

secAtB Agriculture, Hunting, Forestry and Fishing 
secC Mining and Quarrying 
sec15t16 Food, Beverages and Tobacco 
sec17t18 Textiles and Textile Products 
sec19 Leather, Leather and Footwear 
sec20 Wood and Products of Wood and Cork 
sec21t22 Pulp, Paper, Paper , Printing and Publishing 
sec23 Coke, Refined Petroleum and Nuclear Fuel 
sec24 Chemicals and Chemical Products 
sec25 Rubber and Plastics 
sec26 Other Non-Metallic Mineral 
sec27t28 Basic Metals and Fabricated Metal 
sec29 Machinery, Nec 
sec30t33 Electrical and Optical Equipment 
sec34t35 Transport Equipment 
sec36t37 Manufacturing, Nec; Recycling 
secE Electricity, Gas and Water Supply 
secF Construction 
sec50 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel 
sec51 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 
sec52 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods 
secH Hotels and Restaurants 
sec60 Inland Transport 
sec61 Water Transport 
sec62 Air Transport 
sec62 Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies 
sec64 Post and Telecommunications 
secJ Financial Intermediation 
sec70 Real Estate Activities 
sec71t74 Renting of M&Eq and Other Business Activities 
secL Public Admin and Defence; Compulsory Social Security 
secM Education 
secN Health and Social Work 
secO Other Community, Social and Personal Services 

Notes: based on the NACE classification, the industries could be classified into: primary sector which 
consists of S/N 1 to 2, manufacturing sector consists of S/N 3 to 18 and service sector consists of S/N 19 
to 34. 
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A3: Assuming a standard multilevel model where only level 1 and level 2 variables are 

considered for simplicity is written as: 

           𝐸𝐸𝑖𝑖,𝑖𝑖 =  𝛽𝛽1 + 𝛽𝛽2 𝑥𝑥𝑖𝑖,𝑖𝑖 + 𝛽𝛽3 𝑥𝑥2,𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝜖𝜖𝑖𝑖,𝑖𝑖                                                                                   (𝐴𝐴. 21)  

where level 1 variable is 𝑥𝑥𝑖𝑖,𝑖𝑖 and level 2 variable is 𝑥𝑥2,𝑖𝑖. If the level 2 variable is the 

mean of level 1 variable (as the case of this study) that is also included in the model, Eq. 

(A.21) becomes  

          𝐸𝐸𝑖𝑖,𝑖𝑖 =  𝛽𝛽1 + 𝛽𝛽2 𝑥𝑥𝑖𝑖,𝑖𝑖 + 𝛽𝛽3 �̅�𝑥𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝜖𝜖𝑖𝑖,𝑖𝑖                                                                                             (𝐴𝐴. 22) 

where �̅�𝑥 is the mean of x in group j. In Eq. (A.22) 𝛽𝛽2  is the within-group effect of x and 

𝛽𝛽2 + 𝛽𝛽3  is the between-group effect of x. 𝛽𝛽2 measures the relationship between an 

individual’s x and E values within group while 𝛽𝛽2 + 𝛽𝛽3 captures the effect of the group 

mean of x on the group mean of E. 𝛽𝛽2 measures the contextual effect of the group mean 

of x on an individual e that is over and above the effect of an individual x on E. The 

problem with Eq. (A.22) is that estimate of the between-group effect cannot be 

estimated directly. In order to get a direct estimate and standard error for the between-

group effect of x, 𝑥𝑥𝑖𝑖,𝑖𝑖 is transformed to 𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖 which is called group mean centring, 

then Eq. (A.22) is therefore re-specified as: 

           𝐸𝐸𝑖𝑖,𝑖𝑖 =  𝛽𝛽1∗ + 𝛽𝛽2∗�𝑥𝑥𝑖𝑖,𝑖𝑖 − �̅�𝑥𝑖𝑖� + 𝛽𝛽3∗ �̅�𝑥𝑖𝑖 + 𝑢𝑢𝑖𝑖 +                                           (𝐴𝐴. 23) 

where the within-group effect equals 𝛽𝛽2∗ = 𝛽𝛽2, and 𝛽𝛽3∗ = 𝛽𝛽2 + 𝛽𝛽3 is the between-group 

effect. 
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