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Abstract 

This dissertation studies the cost of carry relationship and the international dynamics of 
mispricing, price and volatility in the three Nikkei futures markets - the Osaka Exchange (OSE), 
the Singapore Exchange (SGX) and the Chicago Mercantile Exchange (CME). Previous 
research does not fully consider the unique characteristics of the triple-listed Nikkei futures 
contracts, or the price and volatility dynamics in the three Nikkei futures exchanges at the same 
time. This dissertation makes a significant contribution to the existing literature. In particular, 
with a comprehensive new 19-year sample period, this dissertation helps deepen the 
understanding of the Nikkei spot-futures equilibrium and arbitrage behaviour, cross-border 
information transmission mechanism, and futures market integration. 
 
The first topic of the dissertation is to study the cost of carry relationship, mispricing and index 
arbitrage in the three Nikkei markets. The standard cost of carry model is adjusted for each 
Nikkei futures contract by allowing for the triple-listing nature and key institutional differences. 
Based on this, the economic significance of the Nikkei mispricing is explored in the presence 
of transaction costs. The static behaviour of the mispricing suggests that it is difficult especially 
for institutional investors to make arbitrage profits in the OSE and SGX, and that index 
arbitrage in the CME is not strictly risk-free due to the exchange rate effect. Smooth transition 
models are used to study the dynamic behaviour of the mispricing in the three markets. The 
results show that mean reversion in mispricing and limits to arbitrage are driven more by 
transaction costs than by heterogeneous arbitrageurs in the Nikkei markets.  
 
The second topic of the dissertation is to investigate the price discovery process in individual 
Nikkei markets and across the Nikkei futures markets. With smooth transition error correction 
models, this dissertation reports the leading role of the futures prices in the pre-crisis period 
and the leading role of the spot prices in the post-crisis period, in the first-moment information 
transmission process. Moreover, there is evidence of asymmetric adjustments in the Nikkei 
prices and volatilities. The cross-border dynamics suggest that the foreign Nikkei markets (the 
CME and SGX) act as the main price discovery vehicle, which implies the key functions of the 
equivalent, offshore markets in futures market globalisation.  
 
The third topic of the dissertation is to study the volatility transmission process in individual 
Nikkei markets and across the Nikkei futures markets, from the perspectives of the volatility 
interactions in and across the Nikkei markets and of the dynamic Nikkei market linkages. This 
dissertation finds bidirectional volatility spillover effects between the Nikkei spot and futures 
markets, and the information leadership of the foreign Nikkei markets (the CME and SGX) in 
the second-moment information transmission process across the border. It further examines the 
dynamic conditional correlations between the Nikkei markets. The results point to a dramatic 
integration process with strongly persistent and stable Nikkei market co-movements over time. 
 
Keywords: 
Nikkei 225 futures; cost of carry relationship; mispricing; index arbitrage; price discovery; 
smooth transition; heterogeneity; volatility spillover; cross-border information transmission; 
dynamic conditional correlations; futures market integration; globalisation 
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Chapter 1  

Introduction 
 
 

1.1 Background and motivations  

Since the mid-1980s, globalisation has become a widely accepted idea in the international 

investment community. Arbitrage activities that span several continents seeking profits have 

been stimulated by the reduction in the costs of information processing and sharing, and by the 

growing mobility of financial capital through worldwide deregulation. In a macroeconomic 

sense, globalisation is reflected in the integration of several markets, especially those where 

similar products are traded such that these markets can be regarded as essentially equivalent. In 

a microeconomic sense, globalisation is reflected in one asset that can be traded on more than 

one venue, and between these venues are enormous flows of information generated by 

investment strategies such as arbitrage, hedging, speculation, diversification and risk 

management.  

 

A seminal example of these phenomena is the Nikkei 225 stock index futures contracts. Based 

on one common stock market (Tokyo Stock Exchange, TSE), Nikkei 225 stock index futures 

contracts are traded on three different markets: Osaka Exchange (OSE), Singapore Exchange 

(SGX) and Chicago Mercantile Exchange (CME). Few futures contracts are like the Nikkei 

futures, which boast an international dimension with triple-listing in the three exchanges that 

have key institutional differences. Even today, in the course of futures market globalisation, 

futures contracts that start to trade in two or more exchanges do not typically enjoy a complete 

history as long as the Nikkei contracts do. The abundant and interesting characteristics of the 

Nikkei futures contracts provide a natural field to explore and examine the spot-futures 

relationship, market dynamics and the level of integration in and across the equivalent yet 

different markets.  
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This dissertation aims to study the cost of carry relationship and the international dynamics of 

mispricing, price and volatility in the three Nikkei futures markets. This is an important topic 

from three perspectives. First, the cost of carry model sets out equilibrium conditions between 

spot and futures markets. It defines theoretical (or fair) futures prices and thus departures from 

the theoretical prices, or futures mispricing. Understanding the cost of carry relationship and 

the behaviour of mispricing in interrelated markets is an essential task for investors worldwide 

who are keen to capitalise on temporary price deviations to make a profit. Second, price and 

volatility are important information transmission channels between financial markets. The 

cross-market information linkages and interactions have developed to such an unprecedented 

level that knowledge of the cross-border information transmission mechanism becomes vital 

for every participant involved in international financial markets, especially for asset managers 

who may wish to construct well-diversified portfolios and regulators who care about exchange 

competition, financial stability and integration in the global context. Third, the Nikkei futures 

contracts are one of the most actively traded derivatives in the world. Given the triple-listing 

nature and the institutional differences, the Nikkei spot-futures relationship and the 

cross-border price and volatility dynamics deserve a careful investigation. The reasons include: 

  

a) Japanese firms adopt special dividend payout practices different from those in the US or the 

UK. This impacts the theoretical prices of the Nikkei futures contracts through the dividend 

streams on the underlying index, and hence Nikkei mispricing and index arbitrage. 

 

b) Trading and settlement on the CME involve US dollars while trading and settlement on the 

underlying stock market, the OSE and the SGX involve Japanese yen. This introduces currency 

risk to the arbitrage between the CME and any other Nikkei market. 

 

c) The three futures exchanges are located in different time zones. For example, the time used 

in the CME is 15 hours behind the time used in the OSE. The different trading hours may affect 

the Nikkei spot-futures relationship, futures price interactions and market co-movements. 

 

d) The different levels of transaction costs in the Nikkei spot and futures markets affect the 
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behaviour of Nikkei mispricing and index arbitrage, as index arbitrage will not be profitable 

until the size of mispricing is sufficiently large to cover the transaction costs incurred. The 

differences in market transaction costs also have implications for the information transmission 

mechanism across the border, as information tends to be disseminated more quickly in the 

market with lower transaction costs.  

  

e) There are two hypotheses regarding the location of information leadership in international 

information dissemination: the home-bias hypothesis argues for the information leadership of 

the domestic market (OSE) for a set of home-market advantages; in contrast, the international 

centre hypothesis argues for the predominance of the foreign market (SGX or CME) for the 

better trading environment it can provide. It is an empirical issue whether the domestic or 

foreign exchange plays a leading role in specific markets such as the Nikkei. 

 

Taking into consideration the special characteristics of the triple-listed Nikkei futures contracts 

and the major institutional differences, this dissertation investigates the following key issues: 

 

1) The cost of carry equilibrium, the behaviour of mispricing and index arbitrage in the Nikkei 

markets. 

 

2) The first-moment and second-moment information transmission mechanism in individual 

Nikkei markets and across the three Nikkei futures markets.  

 

3) The dynamic Nikkei market linkages over time. 

 

The first empirical chapter (Chapter 4) of the dissertation aims to investigate the static and 

dynamic behaviour of Nikkei futures mispricing in the three markets, using an adjusted cost of 

carry model for each contract, to explore the index arbitrage activities between Nikkei spot and 

futures markets. It addresses the specific question whether the mispricing, if any, represent 

profitable index arbitrage opportunities for investors in the three Nikkei futures markets. This is 

motivated by the fact that the cost of carry equilibrium and the mispricing behaviour of the 
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three Nikkei futures contracts remain unclear to academics and practitioners, in that previous 

research does not fully consider the special characteristics of the Nikkei futures contracts when 

applying the cost of carry model. Yet ignoring them in the cost of carry model may lead to 

significant biases in pricing the Nikkei futures contracts. In addition, extant studies on the 

Nikkei futures mispricing were mostly published in the early 1990s when the three Nikkei 

futures markets were in their infancy. The futures mispricing behaviour in the currently mature 

Nikkei markets should be examined to enable a deeper understanding of the quickly changing 

market conditions and the impact of 2008 global financial crisis. 

 

The second empirical chapter (Chapter 5) of the dissertation aims to study the international 

price discovery process in the Nikkei markets. It addresses the specific question of which 

market serves as the main price discovery vehicle in individual Nikkei markets and across the 

border. The price interactions constitute the first-moment information transmission channel in 

the Nikkei markets. With transactions taking place in the three exchanges, the Nikkei price 

dynamics could be quite different in the different exchanges due to the institutional differences. 

More importantly, it is not clear whether the home-bias hypothesis or the international centre 

hypothesis is more relevant for the Nikkei prices. There has been little published work on the 

price dynamics of all of the three Nikkei futures markets, except the paper by Booth et al. 

(1996) who use a linear error correction model without allowing for the effect of transaction 

costs. These considerations motivate Chapter 5. 

 

The third empirical chapter (Chapter 6) of the dissertation aims to study the international 

volatility transmission process in the Nikkei markets. It addresses the following two specific 

questions: whether there is volatility spillover in and across the Nikkei markets; and how the 

Nikkei market linkages evolve over time. Apart from price, volatility interactions serve as 

another information channel between the Nikkei markets. Despite that the importance of the 

cross-market information linkages through volatility is widely acknowledged, there has been 

little published work on the volatility dynamics of all of the three Nikkei markets, leaving the 

volatility transmission mechanism across the border opaque. Further, little attention has been 

given to the dynamic Nikkei market linkages and the effect of the time differences on the 
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Nikkei market linkages has not been treated explicitly in the literature. These considerations 

motivate Chapter 6. 

1.2 Contributions to knowledge 

The most important contribution of the dissertation is that it investigates the cost of carry 

equilibrium and disequilibrium, price discovery and volatility transmission in individual Nikkei 

markets and across the three Nikkei futures markets. Previous research does not fully consider 

the unique characteristics of the triple-listed Nikkei futures contracts, or the price and volatility 

dynamics in the three Nikkei futures exchanges at the same time. By studying the cost of carry 

relationship, mispricing, price and volatility dynamics in the Nikkei markets, this dissertation 

helps deepen the understanding of the Nikkei spot-futures equilibrium and arbitrage behaviour, 

international first-moment and second-moment information transmission mechanism, and 

futures market integration. 

 

The dissertation uses a completely new 19-year daily dataset. Almost all studies on the Nikkei 

markets were published in the early 1990s-early 2000s, and thus their samples exclude a series 

of major historical events that may significantly impact the international dynamics of Nikkei 

futures mispricing, price and volatility. Figure 1.1 illustrates the timeline of these events and 

the sample range of the dissertation. The whole sample period spans from 1996 to 2014, and 

includes a pre-crisis period (sample A) and a post-crisis period (sample B) divided by the 2008 

global financial crisis. As such, the dissertation is able to provide comprehensive new evidence 

for the three Nikkei futures markets, to compare and contrast the cross-border mispricing, price 

and volatility dynamics before and after the 2008 global financial crisis, and to analyse the 

effects of the major historical events on the Nikkei market relationships.  

 

In terms of methodology, a major contribution of the dissertation lies in the modification of the 

standard cost of carry model, which cannot be applied directly to the Nikkei contracts given the 

triple-listing nature and the institutional differences. The dissertation finds that the effects of 

the dividend and currency risks are strongly significant on the pricing of the Nikkei futures 
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contracts, while the effect of the time differences is insignificant. Based on this, the dissertation 

modifies the standard cost of carry model for each Nikkei contract. It also allows for the effect 

of transaction costs when examining the Nikkei futures mispricing. In this way, the dissertation 

extends the work of Brenner et al. (1989a) and Board and Sutcliffe (1996) in adjusting the 

standard cost of carry model for index futures contracts traded on more than one exchange, and 

improves understanding of the impact of dividend and currency risks on spot and futures prices 

and on mispricing.  

 

 

 
Figure 1.1 Major historical events in the Nikkei markets and the sample range of the 
dissertation 
Notes: This figure displays major historical events in the Nikkei markets in chronological order. The 
Japanese “Big Bang” is a five-year financial reform aimed at deregulating and eliminating all partitions in 
Japanese financial markets (Flath, 2014). Globex is the electronic trading platform used in the CME. ETS is 
the electronic trading system used in the SGX. More details of these events are provided in Chapter 3. The 
whole sample period of the dissertation is 20/06/1996-31/12/2014 (OSE and SGX); 01/01/1997-31/12/2014 
(CME). The pre-crisis period (sample A) is during 28/06/1996-09/10/2008 (OSE, SGX); 
09/01/1997-12/09/2008 (CME). The post-crisis period (sample B) is during 04/11/2008-31/12/2014 (OSE, 
SGX); 02/12/2008-31/12/2014 (CME).   
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Smooth transition models have been studied in a few markets but never in the triple-listed 

Nikkei markets. This dissertation contributes to the smooth transition literature by showing that 

smooth transition nonlinearity is present in individual Nikkei markets and across the three 

Nikkei futures markets, and that the smooth transition models are appropriate for describing the 

nonlinear adjustment processes of the Nikkei futures mispricing and price. Furthermore, the 

dissertation analyses the effect of heterogeneity in investor structure and market transaction 

costs on the Nikkei spot and futures markets. The degree of heterogeneity as a futures market 

characteristic was not emphasised in the literature until the 2000s by Taylor et al. (2000), Tse 

(2001), McMillan and Speight (2006), for example. But none of these works consider the 

heterogeneity in an international setting. Using the smooth transition models, the dissertation is 

able to demonstrate that the degree of heterogeneity provides an important perspective at least 

for market regulation in separate countries and exchange competition across the border. 

 

Studies on the Nikkei market dynamics tend to focus on the OSE and SGX, and circumvent the 

CME for its currency and time complexities. The only paper of Booth et al. (1996) on the price 

dynamics in the three Nikkei markets does not allow for the effect of transaction costs. The 

only volatility study on the three Nikkei markets is Bacha and Vila (1994) who look at the 

potential destabilising effects of the introduction of a new futures contract on the underlying 

stock volatility and the existing futures markets, but the volatility transmission mechanism 

across the three Nikkei exchanges have not been investigated. Focusing on the first-moment 

and second-moment information transmission across the three Nikkei markets, this dissertation 

finds the consistent result of the dominance of the foreign, offshore Nikkei markets (the CME 

and SGX) in the first-moment and second-moment information transmission processes across 

the border. This result is robust to the use of methodology and the time differences. In this 

respect, the dissertation makes an important contribution to knowledge by supporting the 

international centre hypothesis in the cross-border information dissemination procedure, and 

confirming the key role of equivalent, offshore markets in futures market globalisation.     

 

There has been a substantial amount of research on the integration of stock markets, but futures 

market integration has not received much academic interest. To the best of my knowledge, no 
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research has examined Nikkei market co-movements over time. The dissertation examines not 

only the dynamic Nikkei market linkages over the 19-year sample period, but also the effect of 

the different trading hours of the CME futures contracts on the Nikkei market linkages, an issue 

previously ignored in the literature. The dissertation fills in this research space and sheds light 

on the dramatic integration process of the Nikkei markets in the context of globalisation. 

1.3 Organisation of the dissertation 

The rest of the dissertation is organised as follows. 

 

Chapter 2 critically reviews the extant literature on the spot-futures pricing relationship, based 

on two strands of research: the pricing efficiency of futures contracts, including the cost of 

carry relationship, mispricing, and index arbitrage; and the price and volatility dynamics 

between spot and futures markets, including the first-moment price discovery, second-moment 

volatility transmission processes within and across countries.  

 

Chapter 3 introduces the Nikkei 225 index and index futures markets, and provides essential 

institutional and background information for the subsequent empirical chapters. 

 

Chapter 4 studies the cost of carry equilibrium, futures mispricing and index arbitrage in the 

three Nikkei markets. It adjusts the standard cost of carry model for dividend lumpiness, 

currency risk, different trading hours and transaction costs. Based on this, it investigates the 

static behaviour of Nikkei mispricing using parametric and non-parametric methods. It then 

investigates the dynamic behaviour of Nikkei mispricing and heterogeneous arbitrage activities 

by an exponential smooth transition autoregressive (ESTAR) model.  

 

Chapter 5 studies the international price discovery process through the price adjustments 

towards equilibrium in individual Nikkei markets and across the three Nikkei futures markets, 

using a linear error correction model (ECM) and a nonlinear exponential smooth transition 

error correction model (ESTECM). The robustness of the futures price interactions is checked 
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by re-estimating the models with an alternative time sequence.   

 

Chapter 6 studies the international volatility transmission process from two perspectives: the 

volatility interactions in and across the Nikkei markets, by a cross-correlation function (CCF) 

approach based on the ESTECM specification; and the Nikkei spot-futures and futures-futures 

dynamic conditional correlations (DCC), by a bivariate DCC model. The effect of the different 

trading hours of the CME futures contracts on the dynamic Nikkei market linkages is examined 

by re-estimating the DCC model with an alternative time sequence. 

 

Chapter 7 provides main empirical findings, implications, limitations of the dissertation and 

directions for future research. 
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Chapter 2 

The spot-futures pricing relationship: A literature review 
 

 

2.1 Introduction 

The chapter aims to critically review the extant literature on the spot-futures pricing relationship. 

On the whole, research has been conducted in the following two main areas: the pricing 

efficiency of futures contracts; and the price and volatility dynamics between spot and futures 

markets. To begin with, the pricing efficiency literature centres primarily on the cost of carry 

relationship, which gives the equilibrium condition between spot and futures prices. The cost of 

carry relationship argues that the theoretical (or fair) futures price should equal the deferred 

value of the underlying stock price over the remaining life of the futures contract in a perfect 

economy. In the presence of market imperfections, the cost of carry relationship becomes a 

no-arbitrage band whose lower and upper bounds are determined by factors such as transaction 

costs. Nevertheless, pricing deviations from the no-arbitrage relation, or futures mispricing, do 

exist and persist, evincing the possibility of profitable index arbitrage. Basically, index arbitrage 

activities will not be profitable until the size of mispricing is sufficiently large to cover the 

transaction costs incurred. Considering the option of liquidating futures contracts before 

expiration, another decision rule states that the absolute mispricing plus the value of early 

liquidation should exceed the transaction costs to create arbitrage opportunities. Econometric 

models have been developed to describe the index arbitrage behaviour and disentangle 

conditions required to profitably exploit the arbitrage opportunities.  

 

Another area that attracts considerable academic interest is the price and volatility dynamics 

between spot and futures markets. Specifically, the first-moment price dynamics involves the 

interactions of conditional means, or the lead-lag relationship in price. Although all asset prices 

ultimately transmit information, the differences in market frictions can give rise to different 
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speeds of information transmission, i.e. prices in one market are quicker in reflecting and 

disseminating information, such that its prices act as an important predictor for the subsequent 

prices in the other markets. Futures prices are generally thought to reflect and disseminate 

information more quickly than underlying spot prices, as is supported by theories concerning, 

inter alia, nonsynchronous trading, market frictions, nature of information, and trading 

mechanisms. Nevertheless, the lead-lag relationship between spot and futures prices in the real 

world can be more complex than the simplified theoretical prediction. Most empirical studies 

on the spot-futures price dynamics are conducted using an error correction mechanism (ECM). 

Some studies use the implicit efficient price implied by the cost of carry relationship to 

quantify the contribution of each market to price discovery to elucidate the relative efficiency 

of each market in response to information.       

 

The second-moment volatility dynamics pertains to the interactions of conditional variances and 

covariances between spot and futures markets. Besides the information channel provided by 

price levels, price volatilities relay a considerable amount of information regarding risk 

perceptions and market efficiency, and therefore serve as another and arguably even more 

important channel for information transmission. The link between information flow and price 

volatility is reflected in several stylised facts of price volatilities. One of them is volatility 

spillover, or the lead-lag relationship in volatility, which captures the fact that price volatilities 

are not isolated but contagious from one market to the other. Multivariate GARCH-class models 

permeate the empirical research into the second-moment volatility transmission process. An 

alternative approach to examine causality-in-variance is the cross-correlation function test which 

values the information contained in sample residual cross-correlations. The importance of the 

cross-market information linkages through volatility is acknowledged in either methodology.   

 

The globalisation of futures markets calls for investigation into the price and volatility dynamics 

across countries. A wealth of literature looks at the leads and lags in price and volatility among 

several stock markets, but far less attention has been paid to index futures markets. For futures 

contracts traded on the same (or nearly the same) underlying index but listed on more than one 
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exchange, spread arbitrage maintains the equilibrium relationship between the futures markets in 

a similar way to index arbitrage. Due to institutional differences among the exchanges, these 

futures prices may react to information non-simultaneously; besides, volatility in one exchange 

may be predictable on the basis of volatility in the related exchange, and the futures volatilities 

can be closely related to each other. As such, the international price discovery and volatility 

transmission constitute the potential information linkages across the countries. There are two 

possible hypotheses as to the location of the information leadership in transnational information 

dissemination: the home-bias hypothesis and the international centre hypothesis (e.g. Fung et al., 

2001; Covrig et al., 2004). The home-bias hypothesis argues for the information leadership of 

the domestic market for a set of home-market advantages. In contrast, the international centre 

hypothesis argues for the predominance of the foreign market for the better and more 

international trading environment it can provide. It is an empirical issue whether the domestic 

or foreign exchange plays a leading role in specific markets. The methodologies are extended 

in the multivariate context to measure the role and efficiency of each exchange in the 

cross-border price discovery and volatility transmission mechanisms.  

 

The rest of this chapter is structured according to the above research areas. Section 2.2 looks at 

the cost of carry relationship, the pricing deviations from the cost of carry relationship, index 

arbitrage and its modelling techniques. Section 2.3 focuses on the price and volatility dynamics 

within and across countries, in the order of price discovery, volatility transmission, and 

cross-border dynamics in respective subsections. Section 2.4 concludes the chapter.                            

2.2 Index arbitrage 

The crux of many theories in finance is rooted in the concept of arbitrage, which involves buying 

an asset and selling the same or equivalent asset simultaneously in pursuit of a costless, riskless, 

yet positive payoff (Sutcliffe, 2006). Naturally, any pricing deviations from equilibrium will not 

be sustained as arbitrage activities are able to drive prices back to their fair level (Brailsford and 

Cusack, 1997). At least three types of arbitrage activities can take place in index futures markets. 
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First, index arbitrage refers to the strategy whereby investors seek to make a profit from the price 

discrepancies between stock index and index futures markets (Chan and Chung, 1993). As the 

most important form of programme trading,1 index arbitrage maintains the equilibrium between 

the two markets, in the sense that short-run deviations of the spot and futures prices can be 

removed promptly so that the two price series are aligned back to the equilibrium level in the 

long run. Second, spread arbitrage exploits the price differentials between index futures 

contracts listed on more than one exchange. Spread arbitrage maintains the equilibrium 

between the domestic and foreign exchanges where those futures contracts are traded. This links 

the domestic and foreign futures markets, and this link could be tighter than the spot-futures link 

due to the lower transaction costs incurred by spread arbitrage. Third, futures-options arbitrage 

focuses on index futures and index options markets, and capitalises on any departures from the 

no-arbitrage condition between the two markets derived from European put-call parity (Sutcliffe, 

2006). In this literature review, index arbitrage is of my primary interest, although some 

discussion will also include spread arbitrage. 

2.2.1 The cost of carry relationship 

The no-arbitrage condition between spot and futures markets can be given by the cost of carry 

relationship of Cornell and French (1983a; 1983b). In a perfectly efficient economy absent 

market frictions such as taxes, transaction costs, and short sale restrictions, index futures prices 

should equal the deferred value of the underlying stock prices over the remaining life of the 

futures contract:  

                                 * ( )( )r d T t
t tF S e − −=       (2.1)                             

where Ft
* is the theoretical (or fair) futures price at time t, St is the spot price at time t, (r-d) is 

the net cost of carry for the underlying stocks in the index. That is, the single, constant, 

risk-free interest cost r minus the known, constant, continuous dividend yield d. T is the 

maturity date of the futures contract and (T-t) is time to maturity, or the number of calendar 

days remaining in a futures contract until expiration. The relationship is expressed in terms of 

                                                        
1 Programme trading is known as the purchase or sale of an entire portfolio by a single, computer-generated order (Stoll and 
Whaley, 1990). Apart from index arbitrage, other forms of programme trading include portfolio insurance and index 
substitution (Chan and Chung, 1993). 
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continuous compounding.2  

 

The no-arbitrage argument states that the above relationship must hold at every instant t; 

otherwise costless and riskless arbitrage opportunities with a guaranteed positive profit would 

occur. To be more specific, if the actual futures price, Ft, is lower than the deferred spot price 

(underpriced), i.e. Ft<Ste(r-d)(T-t), index arbitrageurs would short the underlying index, investing 

the proceeds at the risk-free interest rate and foregoing any dividend payouts, and long the 

futures, to ensure a net payoff of Ste(r-d)(T-t)-Ft at time T; if the actual futures price is higher than 

the deferred spot price (overpriced), i.e. Ft>Ste(r-d)(T-t), they would undertake the reverse strategy 

- borrow money at the risk-free interest rate to long the index, accumulating dividends, and 

short the futures, to generate a net profit of Ft-Ste(r-d)(T-t) at time T. Thus, the no-arbitrage 

condition maintains the fair price of the futures contract, so that Ft
*=Ste(r-d)(T-t) (Sutcliffe, 2006). 

 

Equivalently, equation (2.1) can be written in logarithmic returns (Stoll and Whaley, 1990): 

 *( )t ts r d f∆ = − + ∆    (2.2)                           

where ∆st=ln(St+1/St), ∆ft
*=ln(Ft+1

*/Ft
*). Provided that the net cost of carry (r-d) is deterministic, 

equation (2.2) implies that the expected spot return equals the net cost of carry plus the 

expected futures return, and that the variance of the spot return equals that of the futures return. 

Besides, the contemporaneous rates of spot return and futures return are perfectly positively 

correlated, whereas the non-contemporaneous rates of return are uncorrelated (ibid). As such, 

there should be no temporal causality, or leads and lags between the non-contemporaneous spot 

and futures prices. In reality, however, it is common to observe causal relationships between 

the two price series, which were originally thought to be evidence violating the cost of carry 

model (e.g. Stoll and Whaley, 1987; Stoll and Whaley, 1990; MacKinlay and Ramaswamy, 

1988).3 

 

                                                        
2 The cost of carry relationship in discrete compounding can be formulated as Ft

*=St(1+r-d). 
3 Nonetheless, a growing number of more recent papers prove that the causality detected is consistent with the cost of carry 
relationship because of cointegration. See section 2.3.1.2 for further discussions. 
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A plausible explanation for the violation is that the cost of carry relationship is a perfect market 

model. In the presence of market imperfections, it is possible for the deviations from the 

no-arbitrage condition to exist. First, the constant risk-free interest rate can hardly be justified 

in the real world. Since the cost of carry per se is a forward pricing model, the use of the 

assumption is to leave out the differences in futures and forward prices, which stem primarily 

from marking to market and the associated daily re-settlement procedure in the futures market. 

Cox et al. (1981) contend that futures prices are dependent on the correlation between spot 

prices and interest rates while forward prices are not. In the case of a positive correlation, for 

example, a rise (fall) of the interest rate followed by a rise (fall) of the spot prices triggers a rise 

(fall) of the futures prices and generates cash inflow (outflow) for a long futures position, 

which can be reinvested (financed) at a higher (lower) interest rate. The obvious benefit from 

both an increase and a decrease in the interest rate makes the futures contracts more attractive 

than the forward contracts, so that the futures prices are higher than the forward prices. The 

negative correlation between spot prices and interest rates attaches reinvestment and financing 

risks to the futures contracts, and thus makes the futures prices lower than the forward. If the 

risk-free interest rates are non-stochastic, futures and forward prices are identical (Hull, 2008). 

With marking to market and non-stochastic risk-free interest rates, the no-arbitrage condition 

still applies, and empirical findings show that the effect of marking to market with stochastic 

risk-free interest rates is small on the risk on the futures position (e.g. Chang et al., 1990; Yadav 

and Pope, 1994). Hence, although Cornell and French (1983a; 1983b) extend the cost of carry 

relationship in a perfect market to allow for stochastic interest rates, the generalised version of 

the cost of carry model is of little practical interest (Sutcliffe, 2006). The single risk-free 

interest rate is also unrealistic in that it is not very likely for the borrowing and lending rates to 

be equal. When the borrowing rate rb exceeds the lending rate rl, the cost of carry develops into 

a no-arbitrage band within which the fair futures price lies: ( )( ) ( )( )*l br d T t r d T t
t t tS e F S e− − − −≤ ≤ (ibid). 

 

Second, the known, constant, continuous dividend assumption is difficult to be valid. The size 

of the dividends, the ex-dividend date, and the actual dividend payment date constitute three 

major sources of dividend risk (Yadav and Pope, 1994). For performance indices such as the 
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Deutscher Aktienindex (DAX) 30, the dividend risk is negligible as the calculation of the index 

presumes that all dividends are reinvested (Buhler and Kempf, 1995; Theissen, 2012). But for 

other indices such as the Financial Times Stock Exchange (FTSE) 100, one has to estimate 

future dividends by adding a fixed percentage growth rate to historical dividends and use 

corresponding ex-dividend and payment dates (Yadav and Pope, 1994). Apart from dividend 

uncertainty, dividend flows tend to fluctuate seasonally due to the lumpiness in dividend 

payments (Cornell and French, 1983a). Dividend payouts in emerging markets such as Poland 

(Białkowski and Jakubowski, 2008) and China (Wang, 2011) are also irregular and clustered. 

Although the impact of uncertain dividends on futures prices is not important (Yadav and Pope, 

1994), the cost of carry model is suggested to be modified to Ft
*=Ster(T-t)-Dt, where Dt is the 

sum of the future values at time T of all dividends on the underlying component stocks between 

t and T, to accommodate the lumpiness in dividend payouts (Brenner et al., 1989a). Dividends 

are found to contribute to the systematic pricing errors from the cost of carry relationship in 

some studies (e.g. Brailsford and Cusack, 1997; Fung and Draper, 1999). 

           

Third, taxes can affect the no-arbitrage condition via differential tax rates and tax timing option. 

A simple tax structure consisting of capital gains rate, ordinary income rate and futures tax rate 

can be added to the cost of carry model, and the capital gains rate and the ordinary income rate 

are found to influence the theoretical futures price. The independence of the futures tax rate 

arises from the assumption of symmetry in the tax structure which well approximates cash 

settlement contracts such as index futures (Cornell and French, 1983a). The tax timing option 

owned by stockholders means that capital gains taxes are not levied until a transaction occurs, 

such that they have a motivation to defer capital gains and realise capital losses. However, 

investors in the futures market do not have this option due to marking to market (daily 

re-settlement). Unless the stockholders are tax exempt or cannot hold the spot asset indefinitely, 

the tax timing option should make the spot appealing and thus depress the futures prices (Cornell 

and French, 1983a; 1983b; Yadav and Pope, 1994). This gives rise to underpricing, and the 

discrepancy between the spot and futures prices should be larger for more volatile spot prices in 

which case the tax timing option is more valuable. Cornell and French (1983a) hold that the tax 
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timing option is one of the reasons for the consistently lower actual futures prices of New York 

Stock Exchange (NYSE) composite index than those predicted by the cost of carry model, and 

that adding the tax timing option to the cost of carry model reduces the theoretical futures prices. 

Chen et al. (1995) argue that the tax timing option contributes to the net advantage, or 

“customisation value” of a stock position, which becomes more important in times of higher 

stock volatility.4  

 

Fourth, transaction costs in spot and futures markets are at least composed of the following: 

bid-ask spreads, brokerage commissions, transaction taxes, borrowing costs, market-impact 

costs, and capital requirements.5 It is widely accepted that the transaction costs of marginal 

traders together with other market imperfections bound the cost of carry relationship from above 

and below so that the no-arbitrage condition becomes the following no-arbitrage band: 

                             *L U
t t tF F F≤ ≤     (2.3)                          

where Ft
L denotes the lower limit and Ft

U denotes the upper limit. Index arbitrageurs compare 

the actual futures prices Ft with Ft
L and Ft

U to make decisions on programme trading to chase a 

costless and riskless profit (Kawaller et al., 1987; Wahab and Lashgari, 1993). Arbitrage 

activities only appear when Ft move outside the band given by Ft
L and Ft

U, in which case 

profitable arbitrage opportunities are available. For instance, if Ft<Ft
L, index arbitrageurs would 

short the underlying index and long the futures; conversely, if Ft>Ft
U, they would long the index 

and short the futures. The band becomes wider for larger transaction costs. However, it is 

difficult to estimate the width of the band a priori, as the transaction costs are likely to be risky, 

asymmetric, time-varying, and with threshold effects (MacKinlay and Ramaswamy, 1988; 

Sofianos, 1993; Board and Sutcliffe, 1996; Sutcliffe, 2006). More importantly, as investors are 

heterogeneous, their transaction costs are heterogeneous, and thus there is not a single level of 

                                                        
4 See section 2.2.2 for a further review of the relationship between futures mispricing and spot volatility. 
5 Specifically, market makers sell at an ask price higher than the bid price at which they buy, and the gap between the two 
prices is the bid-ask spread, which is a monopoly right granted by the exchange in return for their providing liquidity (Tsay, 
2005). Brokers charge commissions to compensate for order-processing costs incurred by their trading on behalf of customers 
(Fleming et al., 1996). Transaction taxes are imposed on stocks traded to discourage excess volatility through speculation and 
noise (Chou and Lee, 2002). Borrowing costs are faced by index arbitrageurs who finance their transactions by borrowing fixed 
interest capital and index stocks (Yadav and Pope, 1994). Market-impact costs in the form of price concessions are available 
for large orders as they move market quotes downwards or upwards (Fleming et al., 1996). Capital requirements usually take 
the form of margins earmarked for default and volatility reduction in the futures market (Sutcliffe, 2006). 
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transaction costs suitable for all in the markets (Tse, 2001). Gay and Jung (1999) construct four 

sets of lower and upper bounds using various combinations of transaction costs to describe 

three groups of arbitrageurs, and find that the transaction costs explain much, though not all, of 

the systematic pricing errors in the Korea Stock Price Index (KOSPI) 200 futures market.       

 

Fifth, short selling is the ability of an investor to sell a borrowed security to a third party. Besides 

legal bans, impediments to short sales in spot market include prohibitive selling costs, delayed 

receipt of short sales proceeds, tracking errors, and nonsynchronous trading (Lin et al., 2013).6,7 

But such constraints are absent in futures market. The higher costs in holding a spot position 

push down the lower bound of the no-arbitrage band by permitting greater futures underpricings 

(Pope and Yadav, 1994; Gay and Jung, 1999). The short-selling constraints further shift the 

equilibrium position between spot and futures prices, increasing the spot price and thus the value 

of holding the spot position (McMillan and Phillip, 2012). In terms of informational efficiency, 

those constraints reduce the absolute and relative speed of adjustment of market prices to private 

information especially to bad news, and raise the bid-ask spread. This weakens the 

contemporaneous relationship between spot and futures markets, and hence contributes to the 

temporal leads and lags observed therein (Diamond and Verrecchia, 1987; Jiang et al., 2001). In 

contrast, lifting such restrictions narrows the no-arbitrage band by reducing the frequency and 

magnitude of underpricing, and increases the speed of adjustment of a market to the pricing 

deviations from the cost of carry relationship (Fung and Draper, 1999).    

 

As a partial equilibrium model that premises the non-stochastic interest rate and an exogenous 

stock market, the cost of carry relationship can be nested as a special case of a closed-form 

general equilibrium model developed by Hemler and Longstaff (1991): in a continuous-time 

production economy, the logarithm of the dividend-adjusted futures-spot price ratio is 

represented as a linear regression on the stochastic risk-free interest rate and market volatility. 

                                                        
6 Tracking errors stem from the fact that it is hardly possible to replicate the underlying index with perfect substitutes. This 
means that the value of the spot position held by arbitrageurs may not exactly track the futures prices (Figlewski, 1984; 
MacKinlay and Ramaswamy, 1988).   
7 See section 2.3.1.2 for details about nonsynchronous trading.  



 19 

It seems that the general equilibrium model provides reasonable explanatory power in 

empirical studies. For example, Hemler and Longstaff (1991) document that the model 

generates lower level of pricing errors in times of high volatility in the NYSE composite index 

markets, and so is preferable to the cost of carry model. Moreover, Wang (2011) reports that the 

general equilibrium model outperforms the cost of carry model in the volatile FTSE China A50 

and Hong Kong H-share markets. However, the support for the general equilibrium model is 

not clear, especially in markets with low volatility. Gay and Jung (1999) maintain that although 

the price series do not strictly follow the cost of carry model as evidenced by the systematic 

pricing errors prevalent in the literature, one cannot claim that they instead follow the general 

equilibrium model. For simplicity, the cost of carry relationship may be sufficient for index 

futures pricing (Brailsford and Cusack, 1997).  

2.2.2 Futures mispricing, basis and index arbitrage 

Research indicates that index arbitrage opportunities arise from futures mispricing (Richie et al., 

2008). Following MacKinlay and Ramaswamy (1988), mispricing is defined as the difference 

between the actual and the theoretical futures prices, normalised by the index value: 

                          
* ( )( )[ ]r d T t

t t t t
t

t t

F F F S eMis
S S

− −− −
= =  (2.4) 

Mispricing is split into underpricing (when Ft< Ft
*) and overpricing (when Ft>Ft

*). The sources 

of mispricing are the aforementioned market imperfections, and/or other factors including 

liquidity constraints (Richie et al., 2008), tracking errors (Figlewski, 1984; MacKinlay and 

Ramaswamy, 1988), different reactions of markets to information (Tse, 2001), and noise 

(Figlewski, 1984). Economically significant mispricing, regardless of the choice of the cash 

asset (Richie et al., 2008), is recorded to exist and persist in a vast range of markets, implying 

that index arbitrage opportunities do occur frequently. Given the potential risks such as interest 

rate risks, dividend risks, tracking error risks, margin variation risks and delayed execution, 

index arbitrage is seldom riskless in practice, although persistent mispricing implies that 

delayed execution is less likely to be a serious risk (Kawaller, 1987; Yadav and Pope, 1994; 

Wang, 2011). It is an empirical issue whether the mispricings can be profitably exploited.     
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A much explored topic in the literature is the time series properties of mispricing. The first-order 

autocorrelation of the mispricing series is usually positive and high, which suggests persistence 

in mispricing, and the average persistence ranges from a few minutes (Richie et al., 2008) to 

more than two trading days (Wang, 2011). However, the first-order autocorrelation of the first 

differences in mispricing tends to be negative, implying that mispricing is a mean-reverting 

process (MacKinlay and Ramaswamy, 1988; Neal, 1996; Kempf, 1998). Possible explanations 

of the mean reversion include: (a) arbitrage activities, which maintain the no-arbitrage bounds by 

preventing futures prices from diverting too far away from equilibrium (MacKinlay and 

Ramaswamy, 1988); (b) infrequent trading of the stock index, in the sense that even without 

arbitrage, the first differences in mispricing would appear to be negatively autocorrelated (Miller 

et al., 1994); and (c) the trading activities of heterogeneous arbitrageurs (Tse, 2001). On average, 

underpricing persists longer than overpricing, which can be attributed to the higher costs 

associated with short sales (Gay and Jung, 1999; Wang, 2011). Fung and Draper (1999), Fung 

and Jiang (1999) find that after the relaxation of the short-selling constraints, both underpricing 

and overpricing drop and the integration between the Hang Seng index (HSI) spot and futures 

prices improves. In addition, early unwinding and delayed unwinding introduce path dependence 

into the mispricing series.8 Path dependence means that the stochastic behaviour of mispricing 

displays properties dependent on its historical properties, so that a positive (negative) mispricing 

will remain positive (negative), even with a further divergence between spot and futures prices, 

especially when coupled with capital constraints (MacKinlay and Ramaswamy, 1988; Shleifer 

and Vishny, 1997). 

 

In theory, the magnitude of mispricing (or absolute mispricing) should be greater for longer 

times to maturity, which carries more uncertainties over interest rates, dividends, 

marking-to-market cash flows, and future volatility (Yadav and Pope, 1994). As a result, the 

no-arbitrage band may become wider. Nevertheless, longer dated contracts are more likely to 

                                                        
8 Early unwinding is the option that arbitrageurs close out outstanding contracts by establishing an equal and opposite 
arbitrage position to that taken initially. Delayed unwinding is the possibility that arbitrageurs unwind the near contracts early 
and roll over their arbitrage positions into the far contracts. The goal of both strategies is to seek the potential arbitrage profits 
consisting of the gains from the initial arbitrage, arbitraging the reverse mispricings, and arbitraging the far contracts (Sutcliffe, 
2006).  
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be unwound prior to maturity; in such cases the no-arbitrage band would be narrower 

(MacKinlay and Ramaswamy, 1988). The net effect on the band width cannot be determined 

theoretically. Yet the empirical findings from Standard &Poor’s (S&P) 500, FTSE 100, KOSPI 

200, HSI, FTSE China A50, H-share index futures markets unanimously support a positive 

relationship between absolute mispricing and time to maturity (MacKinlay and Ramaswamy, 

1988; Yadav and Pope, 1994; Gay and Jung, 1999; Fung and Draper, 1999; Wang, 2011), 

implying that the lower and upper bounds are farther apart for further dated contracts. The 

signs of mispricing are studied by Yadav and Pope (1990) and Kempf (1998), who document 

that the FTSE 100 and DAX 30 futures contracts are more underpriced the longer the time to 

maturity. 

 

Compared with index futures, stock positions have a net advantage or “customisation value”, 

which investors tend to maximise (Chen et al., 1995). Intuitively, investors would retain the stock 

and short the futures to hedge the risk of a volatile stock market, in the hope that the marginal 

customisation value of holding the stock may increase. This argument also implies that futures 

tend to be underpriced, and the underpricing should be greater for longer time to maturity. The 

evidence in Chen et al. (1995), Gay and Jung (1999) appears that stock volatility decreases 

mispricing. However, since the mean mispricing in their research is negative, the finding actually 

indicates a positive relationship between the magnitude of mispricing and stock volatility. 

Besides, a more volatile stock market tends to depress the ability of stock prices to impound 

information, thereby resulting in more mispricing (Richie et al., 2008). The evidence that futures 

mispricing increases with stock volatility is found by Yadav and Pope (1994), Fung and Draper 

(1999), Richie et al. (2008), Cummings and Frino (2011), and Wang (2011), among others. A 

special case is Chan and Chung (1993), who find that mispricing (termed “arbitrage spread”) 

leads to increased spot and futures volatility; yet higher spot or futures volatility is followed by a 

decrease in mispricing in the Major Market Index (MMI) markets, probably because the higher 

volatility encourages more arbitrage activities and speedier price adjustments that will ultimately 

reduce the magnitude of mispricing.    
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Frequent and persistent mispricing is likely to attract index arbitrage, which involves programme 

trading in spot and futures markets. In this way, futures mispricing is positively related to spot 

and futures trading volume. Furthermore, the relationship is associated with volatility given the 

positive link between volume and volatility. Nevertheless, a heavy volume may indicate a liquid 

and efficient market without any arbitrage opportunities, suggesting that a negative relationship 

between mispricing and volume is also possible (Brailsford and Cusack, 1997). The empirical 

evidence is mixed. Chan and Chung (1993) reveal that an increase in the futures mispricing is 

followed by an increase in the volume of the underlying index in the MMI markets. Richie et al. 

(2008) document low trading volume in the Standard & Poor’s Depository Receipt (SPDR) 

market relative to that in the corresponding S&P 500 futures market during the periods of low 

volatility, and the insufficient stock volume is deemed as a limit to arbitrage; this indirectly 

signifies a positive relationship between futures mispricing and stock volume. Wang (2011) 

examines the effects of futures trading volume and spot volatility on mispricing in the FTSE 

China A50 and H-share markets. The results regarding the volume are all positive yet 

insignificant. Given that the spot volatility variable is significantly positive, his work suggests 

that arbitrage signals do encourage more trading volume and volatility in the China-related 

markets. Cummings and Frino (2011) study the impact of unexpected trading volume on 

mispricing in the Australian Share Price Index (SPI) 200 spot and futures markets, respectively, 

and find that the impact is negative and significant in the spot market, but positive and 

insignificant in the futures. Since unexpected trading volume signals unexpected information 

arrival, their finding implies that index arbitrage dominates trading activities based on 

firm-specific information in moving spot prices, and arbitrageurs in the spot market respond to 

small mispricings more often than those in the futures market.   

 

After taking natural logarithms on both sides of equation (2.1), the model becomes the following: 

 * ( )( )t tf s r d T t= + − −  (2.5) 

where ft
*=lnFt

* and st=lnSt. Basis is defined as the difference between Ft and St. If ft=ft
*, express 

the basis in natural logarithms: 
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 log-basis ( )( )t tf s r d T t= − = − −  (2.6)   

where ft=lnFt. Equation (2.6) shows that the basis also plays an important role in index 

arbitrage. Its value equals the net cost of carry to maturity. As the maturity date draws near, the 

futures price converges to its underlying spot price, and the basis converges to zero, due to the 

diminishing risks attached to r and d (Antoniou and Garrett, 1993). At maturity, the futures 

price equals its underlying spot price, and the basis is zero. Similar to the mispricing, the basis 

is mean-reverting: investors would sell the futures and buy the index if the basis widens 

dramatically, and reverse their strategy if the basis narrows markedly. It is the arbitrage 

activities that drive prices back to equilibrium (Tse, 2001). The basis is also related to volatility 

and volume effects. Theobald and Yallup (1996) consider the relationship between basis (in a 

standardised form), volume and volatility in the FTSE 100 spot and futures markets. They find 

a feedback loop between basis and spot volatility, which means that past, contemporaneous, 

and future volatilities all have significant negative effects on the basis. On the side of volume, 

they find that lagged and current volume variables exert significant positive effects on the basis. 

Moreover, Yang et al. (2012) find that positive lagged basis has a significant positive effect on 

spot and futures volatilities, and the effect is larger on spot volatility than that on futures 

volatility in the China Securities Index (CSI) 300 markets. Given that a negative basis is 

closely related to underpricing, and a positive basis to overpricing, Wang (2011) uses a dummy 

variable to distinguish a positive basis from a negative basis, and discovers that the mispricing 

is greater in the case of a negative basis than a positive basis in the FTSE China A50 and 

H-share markets. The basis further serves as the error correction term indicating the 

cointegration between spot and futures prices in an error correction model.9 Variance in the 

basis, or basis risk, measures the extent of integration between markets (Harris, 1989), and 

affects the hedging performance for index futures (Figlewski, 1984). Like the basis, the basis 

risk converges to zero as maturity approaches (Sutcliffe, 2006). 

 

 

                                                        
9 See section 2.3.1.1 for further details about the error correction model. 
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2.2.3 Modelling index arbitrage 

Based on the cost of carry relationship are two arbitrage decision rules: a basic rule and its 

extension considering the option of early unwinding. Assuming that the futures contract is held 

to maturity, the basic rule states that index arbitrage positions are established when the absolute 

mispricing is sufficiently larger than a constant transaction cost threshold, which is inclusive of 

bid-ask spreads, brokerage commissions, transaction taxes, borrowing costs, market-impact 

costs, and capital requirements. Arbitrage activities cease when the absolute mispricing becomes 

smaller than the transaction cost threshold. As such, the frequency of building up arbitrage 

positions is a step function of the absolute mispricing, and the mispricing threshold necessary to 

invite the arbitrage should be constant (Neal, 1996). Empirically, with the basic rule and a total 

transaction cost that equals 1% of the index value, Brenner et al. (1989a; 1989b) record persistent 

underpricings exceeding the transaction cost for the Nikkei 225 futures in Singapore in its early 

years of trading. As the market matured, the futures became persistently overpriced, and the 

mispricings declined substantially in magnitude such that they were largely less than a total 

transaction cost of 0.5% (Brenner et al., 1990). Using the same transaction cost structure and 

almost the same sampling period as those in Brenner et al. (1990), Lim (1992) confirms that 

profitable arbitrage opportunities in the Nikkei 225 spot and futures markets were very limited 

for brokers, and not exploitable for institutional investors. Taking early unwinding into 

consideration, the early liquidation option model of Brennan and Schwartz (1990) offers another 

decision rule. It predicts that index arbitrage positions are only established when the absolute 

mispricing plus the value of the early liquidation option exceeds the constant transaction cost. 

Yet the model does not predict a step function of the absolute mispricing, for the variation in the 

value of the early liquidation option makes the mispricing threshold changeable (Neal, 1996). It 

is held that the transaction cost of following an early unwinding strategy is higher than that of 

liquidating a contract at expiration, but lower than that of building up a new arbitrage position. 

Moreover, the option alleviates the capital constraints of arbitrageurs as their capital can be 

withdrawn early and put into other transactions (Brennan and Schwartz, 1990; Sofianos, 1993; 

Dwyer et al., 1996; Neal, 1996; Kempf, 1998; Sutcliffe, 2006). Accordingly, arbitrageurs may 

well consider closing out their positions before maturity. Neal (1996) finds empirical evidence 
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supporting the early liquidation option model to a certain extent in the S&P 500 markets, and 

concludes that arbitrage trading is not a step function of the absolute mispricing. 

 

Investigations into index arbitrage behaviour are mainly carried out by two econometric models: 

threshold autoregressive (TAR) models and smooth transition autoregressive (STAR) models. 

Directly following from the above, the TAR model of Tong (1990) and Tsay (1989) postulates 

the constant transaction cost threshold and homogeneous arbitrage behaviour, such that the 

arbitrageurs only enter a market when mispricing is sufficiently large to cover the transaction 

costs and risks (Martens et al., 1998). As an illustration, a TAR model can be formulated as 

below (ibid):10 

                        ( ) ( ) ( )

1

p
r r r

t j t j t
j

z k z up −
=

= + +∑   rdtr CzC ≤< −−1  (2.7) 

where the basis adjusted for the cost of carry is the threshold variable zt;11 d is the threshold 

lag; the model lag j=1, 2, …, p, with p as a positive integer; Cr denotes the constant transaction 

cost thresholds, with r=1,…, m (m is the maximal number of the threshold regimes set 

arbitrarily) and -∞ = C0 < C1 <…< Cm = ∞; ut is iid with zero mean and finite variance; k is a 

constant. For stationarity outside the transaction costs bounds, the roots of the autoregressive 

(AR) coefficients πj
(r) should lie outside the unit circle (Brooks, 2014).  

 

In a three-regime case, for example, suppose d=1, the SETAR model can be expressed more 

explicitly as below: 

 (1) (1) (1)

1

p

t j t j t
j

z k z up −
=

= + +∑   1 1tz C− ≤  (2.7a) 

 (2) (2) (2)

1

p

t j t j t
j

z k z up −
=

= + +∑  1 1 2tC z C−< ≤  (2.7b)   

                                                        
10 Precisely speaking, this is a self-exciting TAR (SETAR) model as the dependent variable is the same as the threshold 
variable. The dependent variable is different from the threshold variable in a general TAR model. 
11 Some papers use the basis without the adjustment for the cost of carry as the threshold variable. See Kim et al. (2010) for a 
comparison of the two measures. 
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 (3) (3) (3)

1

p

t j t j t
j

z k z up −
=

= + +∑  1 2tz C− >  (2.7c)  

Equation (2.7b) shows the no-arbitrage threshold range within which a small zt-1 follows a 

non-stationary process without triggering any arbitrage activities, and the bounds of the range 

are determined by the constant transaction cost thresholds C1 and C2. Equation (2.7a) and (2.7c) 

provide the lower and upper regimes where zt-1 is sufficiently large to offset C1 and C2, 

respectively, such that investors will enter the market to seek a riskless profit, reverting zt-1 to 

the no-arbitrage regime. Such a discrete mean-reverting mechanism brings market prices back 

to equilibrium. In this way, the SETAR model exhibits nonlinear regime-switching behaviour 

of mispricing. Empirically, Martens et al. (1998) use a five-regime SETAR model with impulse 

response functions for the mispricing errors of the S&P 500 index futures contracts, and report 

that some of the mispricings may well be due to infrequent trading. With a three-regime 

SETAR, Brooks and Garrett (2002) find that the FTSE 100 basis exhibits more persistence in 

the lower regime than that in the upper regime, explained by the short sale restrictions in the 

spot market. Tsuji (2007) obtains similar results for the Nikkei 225 basis during 1995-1999, but 

he obtains more persistent Nikkei basis in the upper regime during 2000-2004, indicating a 

slower adjustment speed in the upper regime when the Nikkei stock market experienced 

successive downward pressure.     

 

Because C1 and C2 apply to everyone in the market, the TAR model relies on the assumption 

that investors are homogeneous. However, investors are more likely to be heterogeneous, as 

they face different trading objectives, transaction costs, capital constraints, and perceived risks 

(Tse, 2001). It follows that there may be different transaction cost thresholds in the market, and 

in the aggregate these thresholds (or step functions) would be blurred so that the transition 

between the regimes would become gradual and smooth (ibid). For this reason, the STAR 

process of Granger and Teräsvirta (1993) and Teräsvirta (1994) may be more suitable for 

modelling mispricing for a market as a whole, as it assumes that the aggregation of the 

arbitrage conditions gives rise to a continuous, smooth transition function, either exponential or 

logistic. Since logistic smooth transition functions cannot depict the mean-reverting behaviour 
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of mispricing, exponential transition functions are relatively common in the literature. An 

exponential STAR (ESTAR) model can be represented in the simplest form as follows (Tse, 

2001): 

 1 1( ) ( )t t t t d ty y y T y u− − −= + − × +  (2.8) 

 2( ) 1 exp( )t d t dT y yγ− −= − −  (2.9) 

where {yt} is a stationary, ergodic series, often acted by mispricing; d is a delay parameter, d>0; 

ut is iid with zero mean and finite variance; T(∙) is the exponential smooth transition function 

whose value varies from 0, the middle regime where no investor will trade, to 1, the outer 

regime where all investors will trade, in a continuous and gradual way. The rate of transition 

between 0 and 1 is controlled by γ (γ>0), the smoothness parameter. A higher value of γ 

represents a quicker response of a market to absolute mispricing, and hence more arbitrage 

activities. The ESTAR model can be viewed as a generalisation of a three-regime TAR model 

(Teräsvirta, 1994; Tse, 2001). The empirical findings of Anderson (1997) and Taylor (2007) are 

in support of the ESTAR model in terms of model fit. Taylor (2007) further generalises the 

standard STAR model to an augmented STAR model to allow γ to vary over time. A further 

comparison between the threshold and smooth transition models is provided later in section 

2.3.1.2. 

2.3 Price and volatility dynamics 

2.3.1 The price discovery process 

Price discovery is a process by which market participants impound all available information to 

reach equilibrium asset prices (Booth et al., 1999; Chen and Gau, 2009), representing the 

first-moment dynamics between spot and futures markets. In general, the literature on price 

discovery can be classified into two strands: one strand examines the direction and extent of 

causality-in-mean, or the lead-lag relationship between spot and futures prices; and the other 

strand measures the information content of spot and futures prices. Specifically, testing 

causality-in-mean is essentially the causality test in the spirit of Granger (1969) and Sims (1972): 

futures prices Granger-cause or lead spot prices if the past information about the futures prices 
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helps to predict the current spot prices, relative to using only the past information about the spot, 

while the past information about the spot prices cannot help to predict the current futures prices 

using the past information about the futures (Sutcliffe, 2006). It follows that the futures prices act 

as an indicator of the subsequent spot prices, and the spot market lags behind the futures market 

in the process of price formation. Likewise, spot prices Granger-cause or lead futures prices 

when the reverse occurs. Given a series of efficient trading conditions in the futures market, 

economic theories predict that futures prices should lead spot prices, whereas the empirical 

studies of the leads and lags generate complex results. On the other hand, the information content 

of spot and futures prices is measured by common factor weights (CFW) or information shares 

(IS), and the empirical findings are also mixed. Despite differences in methodological details, the 

cointegrating relationship arising from the cost of carry relationship between spot and futures 

prices links both strands that together display a comprehensive picture of the first-moment 

efficiency of index futures markets.     

2.3.1.1 Cointegration and error correction 

Research on the price discovery process in spot and futures markets develops in line with the 

evolution of econometric modelling. In early studies (e.g. Kawaller et al., 1987; Stoll and Whaley, 

1990; Chan, 1992), the conditional mean of price series was usually described by a vector 

autoregressive (VAR) model that specifies the linear dependence of current spot and futures 

returns on the past spot and futures returns. The main drawback of the VAR model, however, is 

associated with the notion of cointegration. A non-stationary series is integrated of order one, 

denoted I(1), if it becomes stationary only after first differencing. Two I(1) series are said to be 

cointegrated when it is possible to select a constant such that a linear combination of the two 

series is stationary, denoted I(0). That constant is called cointegrating parameter (Engle and 

Granger, 1987). The rationale behind the concept of cointegration is that the two series follow a 

long-run equilibrium relationship, notwithstanding that they may deviate from each other in the 

short run (Ghosh, 1993). Stock index and index futures prices are expected to be I(1) and 

cointegrated given the cost of carry relationship, and index arbitrage would correct short-run 

departures in the two price series such that they can move closely together in the long run. In this 
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way, the VAR model in the returns is misspecified because it lacks consideration of the long-run 

cost of carry equilibrium relationship between the spot and futures prices. 

 

Engle and Granger (1987) put forward a two-step approach to test for cointegration between two 

series. For cointegrated series, Granger Representation Theorem proves that they can be 

represented by an error correction model (ECM) and conversely (Granger, 1983; Engle and 

Granger, 1987). Nevertheless, if more than one cointegrating relationship is expected, the 

Engle-Granger two-step methodology becomes problematic as the parameter estimates would be 

inefficient (Engle and Yoo, 1987; Kim et al., 1999). Instead, Johansen trace and maximal 

eigenvalue tests should be used to test for the number of linearly independent cointegrating 

vectors (Johansen, 1991). In either scenario, provided that the common long-run trend(s) in spot 

and futures markets can be accepted, the use of the ECM is justified to examine the first-moment 

dynamics between the two markets. A typical linear ECM can be expressed as follows: 
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where Δst, Δft represent spot and futures returns, respectively; the model lag j=1, 2, …, p, with 

p as a positive integer; k is a constant; ut is a white noise. The coefficients πsf, πfs are short-run 

cross-market adjustment parameters. Futures leading spot requires that at least one πsf ≠0, 

whereas the reverse causality requires that at least one πfs ≠0. If at least one πsf ≠0 and at least 

one πfs ≠0, the causality is bidirectional, and if πsf =πfs =0,∀ j then neither leads nor lags exist 

between the two price series. The coefficients πss, πff measure the short-run dynamics within the 

respective markets. 

 

The basis zt-1 linking spot and futures markets is included in the framework as an error 

correction term, whose coefficient α measures the direction of causality in the long run and the 

speed of adjustment towards the long-run equilibrium. A significant error correction coefficient 



 30 

suggests that there exists an error correction effect, or basis effect, i.e. any previous departures 

from the long-run equilibrium would affect the price dynamics in one or both markets at 

present (Tao, 2008). Since two series should not be cointegrated in an efficient market 

according to the Efficient Market Hypothesis, the coefficient also has implications for testing 

the hypothesis, despite the fact that a significant error correction coefficient does not 

necessarily imply market inefficiency until trading rules based on the ECM generate 

sufficiently large profits after adjustment for transaction costs and risks involved (Ghosh, 1993; 

Wahab and Lashgari, 1993). Taking into account both long-run and short-run adjustments, the 

ECM is therefore more appropriate than the VAR model for describing the first-moment 

dynamics between spot and futures markets. Numerous empirical studies have reported 

statistically significant error correction coefficients, corroborating the presence of the error 

correction effect. Table 6.3 (p.156-157) of Sutcliffe (2006) provides a survey. 

2.3.1.2 Leads and lags 

When it comes to the relationship between cointegration and causality, traditional papers (e.g. 

Stoll and Whaley, 1987; Stoll and Whaley, 1990; MacKinlay and Ramaswamy, 1988) argue that 

the causal relationships between spot and futures prices are evidence against the cost of carry 

model. However, increasing works (e.g. Cuthbertson et al., 1992; Puttonen, 1993; Wahab and 

Lashgari, 1993; Green and Joujon, 2000) hold that cointegration requires the causal relationships 

to exist. In other words, the causality detected is consistent with the cost of carry relationship. By 

Granger Representation Theorem, short-run deviations of spot and futures prices must be 

corrected so as to reach equilibrium in the long run; thus investigations of the spot-futures price 

dynamics are anticipated to find some causal relationships, or leads and lags (Sutcliffe, 2006). 

 

Before reviewing the leads and lags, it is necessary to be aware that the standard ECM 

implicitly assumes that the conditional means in spot and futures equations evolve over time 

following a linear pattern. To be more specific, it implies a constant cointegrating relationship 

and an adjustment speed independent of the size of mispricing (Theissen, 2012). It is 

increasingly realised that, however, market frictions, trader inertia, liquidity constraints and 
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informational impediments could give rise to time-varying cointegration and dependent 

adjustment process, or in other words, nonlinear adjustment mechanisms (Anderson, 1997). For 

instance, investors may not react to mispricing until they believe that the mispricing is 

sufficiently large so that the benefits generated by index arbitrage can outweigh the fixed costs 

of adjustment plus interest rate and dividend risks (Anderson, 1997; Balke and Fomby, 1997; 

Martens et al., 1998; Brooks and Garrett, 2002). Behavioural finance literature contributes a 

different perspective that interactions between heterogeneous trader types account for the 

nonlinearity (McMillan and Speight, 2006; Röthig and Chiarella, 2007). More importantly, Tse 

(2001) and Brooks and Garrett (2002) show that a nonlinear specification may yield contrasting 

results with those of a linear specification about the functioning of spot and futures markets, 

suggesting that forcing the basis to stay in a single state space could lead to a misunderstanding 

of the nature of the basis and the speed of adjustment. Anderson (1997) maintains that 

nonlinear models outperform their linear counterparts in forecasting both in and out of sample. 

Hence, the linear framework should be extended to allow for the potential nonlinear dynamics 

in spot and futures markets. 

 

Threshold-type nonlinearity has received growing interest since the proposal of a threshold ECM 

(TECM) by Dwyer et al. (1996) and Balke and Fomby (1997). Intuitively, the basis (or 

mispricing) can fluctuate freely within the no-arbitrage band which acts as a threshold range. 

Index arbitrage would not take place within the thresholds as factors such as transaction costs and 

risks would make arbitrage unprofitable, and thus the behaviour of the basis exhibits a 

non-stationary process similar to random walk. Once the no-arbitrage band is crossed, however, 

arbitrage profits are now sufficiently large as to exceed the transaction costs and risks. Therefore, 

index arbitrage would quickly bring the basis back inside the threshold range so that the long-run 

equilibrium is maintained. The feature is known as “threshold cointegration” (Balke and Fomby, 

1997). A TECM can be established as below: 
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where the basis zt-1 acts as a threshold variable, and r stands for different regimes. Similar to 

the TAR model in equation (2.7), in a three-regime case, for example, r=1 if zt-1≤C1; r=2 if C1< 

zt-1≤C2; r=3 if zt-1>C2; with real numbers C1 and C2 representing lower and upper thresholds, 

respectively.  

 

The TECM successfully captures the discrete adjustment process and allows the error 

correction effect to vary across the regimes (Tao and Green, 2013). Another merit of the 

threshold model is that linear techniques such as the Engle-Granger two-step methodology and 

the Johansen trace test prove asymptotically applicable to the case of threshold cointegration, 

despite a loss of power or an increase in size distortion (Balke and Fomby, 1997). Empirically, 

the TECM is able to provide an independent, endogenous estimate of the no-arbitrage band 

(Tao and Green, 2013) and the TECM fits significantly better than the linear ECM (Dwyer et 

al., 1996). Yet a practical problem is that the classical approach based on the recursive arranged 

autoregressions of Tsay (1989) proves difficult to identify the number of regimes of the TECM 

(Martens et al., 1998). While Bayesian estimation can be used to generate simultaneous 

estimates of all parameters and exploit prior knowledge of transaction costs, it assumes three 

regimes (two thresholds) a priori, and postulates cointegration between price series without 

formal testing. As a consequence, a significant drift can be found in the outer regimes, implying 

a drift-away rather than mean reversion (Forbes et al., 1999; Kim et al., 2010). It seems that the 

SupLM statistic of Hansen and Seo (2002) is more advantageous because it can determine the 

number and location of the thresholds and enable estimation of the cointegrating relationship 

without including the drift term (Kim et al., 2010).  

 

However, the discontinuous mean-reverting mechanism, which is the foundation of the TECM, 

is not realistic, relying as it does on the assumption of homogeneous investors. A natural 

outcome generated from the model is an abrupt on/off switch between the regimes, which 

reflects that every investor has the same belief about the fair price of futures contracts, and 



 33 

every investor is subject to the same objectives, costs, and risks. Hence, once the thresholds are 

crossed all investors engage in index arbitrage at the same time to remove disequilibrium (Tse, 

2001). Tse (2001) and Taylor (2007) maintain that this is not possible because investors tend to 

have diverse understandings of the fair price and face different transaction costs. Even if they 

share similar knowledge and transaction costs, they are deterred from responding to mispricing 

simultaneously due to differential objectives, constraints and risks. As a result, they are more 

likely to enjoy different thresholds and these thresholds will be blurred after aggregating over 

heterogeneous investors (Tse, 2001). This means that in the aggregate the transition between 

the regimes can be slow, gradual, and smooth to accommodate the heterogeneity of investors. 

With that logic as its basic spirit, a smooth transition error correction model (STECM) may 

therefore be more powerful in depicting the nonlinear price dynamics in spot and futures 

markets.  

 

There are two versions of the STECM: exponential STECM (ESTECM) and logistic STECM 

(LSTECM). The ESTECM is usually preferred for the more desirable property of its exponential 

transition function that arbitrage is positively and gradually linked to absolute mispricing (Tse, 

2001; McMillan and Speight, 2006; Taylor, 2007). An ESTECM based on Anderson (1997) and 

Tse (2001) can be established as below:   
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where T(∙) is the exponential smooth transition function whose value varies between 0, the 

middle regime where no investor will trade, and 1, the outer regime where all investors will 
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trade; g(∙) is the asymmetry function that describes the asymmetric behaviour of investors. 

Three parameters in the above framework relate to the informational efficiency of spot and 

futures markets. Specifically, the error correction coefficient α measures the long-run speed of 

adjustment within a single regime. It is expected to be positive, significant for the spot, and 

negative, insignificant for the futures, provided that the futures market reflects information 

more quickly than the spot. The smoothness parameter γ controls the steepness of T(∙), and 

measures the speed at which the transition function switches between 0 and 1. The higher is γ, 

the steeper the transition function, and the quicker adjustments between the regimes. The 

asymmetry parameter θ gauges the asymmetric market responses to positive and negative 

pricing deviations, and is expected to be negative if more investors correct a negative pricing 

deviation than a positive pricing deviation of the same magnitude. In addition, Tse (2001) 

shows that the model captures the non-simultaneous establishment of spot and futures positions, 

labelled as the “legging” process in Sofianos (1993), which is omitted in other alternative 

specifications. Despite that the smooth transition models are relatively new in studying the 

spot-futures price dynamics, the empirical evidence from index futures markets to date has 

been obtained by Taylor et al. (2000), Tse (2001), McMillan and Speight (2006) and Fung and 

Yu (2007).                

 

There are several reasons for predicting the price leadership of futures markets: nonsynchronous 

trading, market frictions, nature of information, and trading mechanisms. First, nonsynchronous 

trading of the stocks comprising the index results in stale information in spot prices and hence 

they lag futures prices by a short time period, usually an intraday period at most. The problem of 

stale prices may be caused by infrequent trading of the component stocks, whose prices are 

determined by their most recent transaction prices. If they are not traded when the index is 

recorded, past information may remain in the observed index values. Since it is assumed that 

futures prices immediately reflect new information, futures prices appear to lead spot prices 

(Stoll and Whaley, 1990). The nonsynchronicity may also be caused by the higher transaction 

costs in the stock market, which prevent investors from trading more than a limited amount of 

stocks in the index and thus the component stocks cannot reflect information continuously and 
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sufficiently. But the lower transaction costs in futures market allow investors to trade the whole 

index in one transaction, so that the futures market can disseminate information more promptly 

than the spot (Green and Joujon, 2000). Moreover, the nonsynchronous effect could be 

exacerbated by the time delays in the computation and reporting of the stock index, while price 

changes in the futures market are assumed to be recorded instantly (Stoll and Whaley, 1990). 

Other than futures leading spot, the nonsynchronous trading of the component stocks tends to 

induce positive first-order cross-correlation between those stock returns, positive first-order 

autocorrelation in the index return, and negative autocorrelations in the return series of a 

particular stock, even though the correlations in itself may not have economic significance (Tsay, 

2005). It can further introduce a moving-average (MA) error structure in stock returns (Antoniou 

and Garrett, 1993), although Chan (1992) holds that the MA process is due to bid-ask spreads. 

 

To reduce or eliminate the effect of nonsynchronous trading, three solutions have been 

suggested. One solution is to replace transaction data with quote data, which are executable 

prices better at representing market conditions (Shyy et al., 1996). Since the FTSE 100 index is 

constructed using the weighted average of the mid-quotes of the component stocks, its effect of 

nonsynchronous trading should be less serious (Antoniou and Garrett, 1993; Abhyankar, 1995). 

However, studies of the FTSE 100 markets cannot avoid the problem, in that different closing 

times on the spot and futures exchanges and different observed quotes from closing quotes still 

constitute sources of nonsynchronicity (Theobald and Yallup, 1996). Shyy et al. (1996) adopt 

mid-quote data to examine the Cotation Assistée en Continu (CAC) 40 markets and find 

reverse causality of spot leading futures, but the finding may result from other factors, e.g. the 

use of second nearest futures contracts (Alphonse, 2000), rather than the use of quote data. 

Theissen (2012) estimate the DAX 30 markets by a modified version of the TECM with 

mid-quote data, and obtain results in contrast with those of Shyy et al. (1996). A more effective 

solution is to simulate the nonsynchronous effect and filter it out from the return series. For 

example, Stoll and Whaley (1990) develop an autoregressive moving average (ARMA) process 

to purge the effect of infrequent trading. Later, Chan (1992) argues that the ARMA process may 

not be adequate for the changing effects of infrequent trading throughout the day; he dismisses 
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the MA components as they are insignificant and applies the AR specifications, similar to 

Miller et al. (1994) and Kim et al. (1999). Yet to allow for the MA component in return 

innovations, Antoniou and Garrett (1993) employ a Kalman Filter which is per se compatible 

with the ARMA process. Nevertheless, Theobald and Yallup (1996) point out that the ARMA 

process could yield downward bias in parameter estimators, and they handle the 

nonsynchronous effect by including standardised changes in the observed index value. 

Moreover, as Exchange-Traded Funds (ETFs) are popular in replicating a stock index with less 

transaction costs but are free from infrequent trading, recent studies (e.g. Schlusche, 2009; 

Theissen, 2012) mitigate the problem by substituting an ETF for the associated stock index.     

 

The second reason that futures are likely to lead spot is that futures markets have fewer frictions 

such as transaction costs (including bid-ask spreads) and short-selling constraints (Abhyankar, 

1995). Unlike infrequent trading, the effect of bid-ask spreads is to induce negative first-order 

autocorrelation (cross-correlations in multivariate case) in return series, i.e. bid-ask bounce 

(Stephan and Whaley, 1990; Miller et al., 1994; Tsay, 2005). In response, an MA filtering is 

usually used after Stoll and Whaley (1990) within the system of ARMA. As mentioned, it is 

sometimes left out in the literature because of insignificance. An alternative way is to select the 

index with relatively higher price and larger market capitalisation stocks for its bid-ask spreads 

are considerably lower (Stoll and Whaley, 1983; Bhardwaj and Brooks, 1992; Kim et al., 1999). 

It is observed that the average bid-ask spreads in futures are smaller than those in spot, and this is 

also true for other types of costs (Kuserk and Locke, 1993; Fleming et al., 1996; Shyy et al., 1996; 

Kim et al., 1999; Berkman et al., 2005). Based on transaction costs hypothesis that the market 

with the lowest overall transaction costs will be the quickest to reveal new information (Fleming 

et al., 1996), it is expected that futures reflect information more quickly than the underlying spot. 

Transaction costs can be further interrelated with systematic information: market-wide informed 

investors have an incentive to trade futures to circumvent a larger capital outlay otherwise. 

Accordingly, market-wide information flows from futures to spot, and the lead could last longer 

than a trading day (Chan, 1992; Abhyankar, 1995; Green and Joujon, 2000; Sutcliffe, 2006; 

Cummings and Frino, 2011).  
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The short-selling constraints in stock market, inter alia, bar investors from making use of 

negative information or discourage them by imposing prohibitive costs, yet investors in futures 

market are aloof from such constraints. Thus, they affect the temporal causality between the 

two markets. During “bad news” periods in which arbitrageurs would wait to short-sell stock, 

the speed of mean reversion of stock prices slows down and in some cases becomes 

insignificant (Diamond and Verrecchia, 1987; Puttonen, 1993; Jiang et al., 2001; McMillan and 

Phillip, 2012). This implies that the arbitrage link between spot and futures markets weakens 

and therefore futures should lead the spot to a larger extent under bad news than under good 

news. Besides, short-selling restrictions result in significant futures underpricings (Pope and 

Yadav, 1994; Gay and Jung, 1999). Since arbitrageurs are restricted from removing the 

underpricings by longing futures and shorting stock, futures will stay underpriced, and so the 

informational efficiency of the futures market could be dampened (McMillan and Philip, 2012). 

The empirical evidence of Puttonen (1993), Fung and Jiang (1999), and Tse and Chan (2010) 

supports the restrictions on short selling as a major cause of the leadership in index futures. 

Chan (1992) confirms the finding, but notices that index futures prices do not enjoy a longer 

lead over spot prices during bad news periods. 

 

The causal relationship is also dependent on the trading mechanism of each market (Green and 

Joujon, 2000). Floor trading is a system of open outcry, with traders standing in a pit and 

negotiating prices face to face, whereas screen trading has a fully computerised structure that 

matches orders automatically (Grünbichler, 1994). Differences exist between the two 

mechanisms. Floor trading tends to be more liquid as the transactions supplied by locals are 

sufficient; screen trading, however, brings along more advantages such as rapid execution, 

reduced expenses on people and building, flexibility of trading places, and effective prevention 

of out trades (Khan and Ireland, 1993; Board et al., 2002). Apparently, screen trading is better at 

reflecting and transmitting information. As such, causality could go from a screen-based market, 

such as index futures, to a floor-traded market, such as stock index (Grünbichler et al., 1994). As 

London International Financial Futures and Options Exchange (LIFFE) moved from floor 
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trading to an electronic trading platform named LIFFE CONNECT, Tao and Green (2013) find 

improved informational efficiency after the reform, which is consistent with the conjecture that 

screen trading facilitates the price discovery process (Grünbichler et al., 1994). For regulatory 

purposes, albeit no consensus on choosing the “best” trading mechanism, there is a view that 

screen trading appears desirable when market volume and volatility are low or normal; but that 

floor trading turns out superior during periods of high volume and volatile prices (Sutcliffe, 2006; 

Chung et al., 2010).  

 

Using the linear ECM or vector ECM (VECM) in multivariate case, a wealth of literature reveals 

that index futures prices lead the underlying spot prices, with no or weak reverse causality from 

spot to futures. See, for example, the evidence of Ghosh (1993) in the S&P 500 markets; 

Antoniou and Garrett (1993), Brooks et al. (2001) in the FTSE 100 markets; Shyy et al. (1996) in 

the CAC 40 markets; Tse (1995) in the Nikkei 225 markets. After testing for threshold-type 

nonlinearity, Dwyer et al. (1996), Martens et al. (1998), Forbes et al. (1999), Kim et al. (2010) 

report similar results about the leadership of the S&P 500 futures market by threshold VECM 

(TVECM). Theissen (2012) modifies the TVECM by explicitly taking into account time-varying 

transaction costs, and obtains results supporting the predominant role of the DAX 30 futures 

market. Allowing for the heterogeneity of investors, Tse (2001) describes the nonlinear dynamics 

between the Dow Jones Industrial Average (DJIA) spot and futures prices with an ESTECM, and 

documents that the DJIA futures reflects information faster and mispricings occur in the futures. 

Also, investors establish futures position first and respond more quickly to futures underpricings. 

McMillan and Speight (2006) compare a set of linear and nonlinear models in estimating the 

FTSE 100 spot-futures pricing relationship, and support the use of an ESTECM. In addition, they 

substantiate the interpretation in behavioural finance that noise traders tend to engage in 

momentum trading in bullish markets; but fundamental traders respond quickly to small 

mispricings in an attempt to maintain market equilibrium. Fung and Yu (2007) extend the 

previous work to a four-regime ESTECM by incorporating dummy variables representing 

conditions of order imbalance in the HSI stock market. They find that the lead of the HSI futures 

over the order imbalance strengthened during the 1997 Hong Kong stock market crash.  
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In contrast to the theoretical prediction, some empirical studies find that spot markets reflect 

information faster and thus assume the price discovery function relative to futures. See, for 

example, the evidence of Ghosh (1993) in the Commodity Research Bureau (CRB) markets; 

Wahab and Lashgari (1993) in the FTSE 100 markets; Green and Joujon (2000) in the CAC 40 

markets. This phenomenon can be explained by the transaction costs related to unsystematic 

information. For information that affects only a few companies, investors are more likely to 

trade individual stocks rather than index futures, as the firm-specific information is trivial in 

determining derivative prices so that the involved costs of exploiting such information are 

relatively cheaper in the spot market. Thus it is possible for the spot to react faster to 

firm-specific information and lead the futures (Chan, 1992; Sutcliffe, 2006). Moreover, a spot 

market with a more efficient trading system is likely to lead the corresponding futures due to 

the differential transaction costs involved. Tao and Green (2013) apply a three-regime TVECM 

for the FTSE 100 spot and futures prices, and report causality from spot to futures in the lower 

and upper regimes. Their finding matches the observation period when the quote-based FTSE 

100 index is able to impound information more quickly than the corresponding 

transaction-based futures. Yang et al. (2012) report that information flows from the CSI 300 

spot to futures at the infancy stage of the futures market, probably resulting from the high entry 

barriers or transaction costs set by regulators to protect the futures market. The above reasons 

reinforce the contention that the lead-lag relationship depends on relative transaction costs 

(Fleming et al., 1996; Kim et al., 1999). On the other hand, because of legal or contractual 

restrictions, some institutional investors such as pension funds and foundations are not allowed 

to trade derivatives and thus the spot market acts as the only vehicle of price discovery. Given 

the special privileges associated with stocks such as the tax timing options, voting rights, and 

shareholder discounts, if they are important for certain reasons, investors would prefer stocks 

over futures to which no such privileges are attached (Puttonen, 1993).  

 

A few studies find a feedback relationship between spot and futures markets, meaning that 

futures prices Granger-cause spot prices and vice versa. See, for example, the evidence of the 



 40 

second sample period of Green and Joujon (2000), and the second regime of the TVECM of 

Tse and Chan (2010). The bidirectional causal relationship may result from the fact that 

information is impounded into spot and futures markets simultaneously (Kang et al., 2013), and 

that market microstructures in the two markets ensure lagged price adjustments even after the 

direct price impact of the information has been fully understood by investors (Tao and Green, 

2012). Occasionally it is documented that there is no significant causality between spot and 

futures, e.g. under the lower regime of the bivariate TAR model of Chung et al. (2011). The 

mixed empirical results suggest the complexity of the price dynamics in reality which could be 

far away from the simplified theoretical prediction of futures dominating spot. Notwithstanding 

the research focus on leads and lags, it is noteworthy that stock index and index futures markets 

largely react to information in a simultaneous manner, and the contemporaneous relationship 

between the two markets is in fact stronger than any leads and lags. The contemporaneous 

relationship should not be overshadowed in the literature (Sutcliffe, 2006).12   

2.3.1.3 Information content 

Another aspect of studying the first-moment dynamics in spot and futures markets is measuring 

the contribution of each market to price discovery. Spot and futures prices are expected to be 

cointegrated, and thus they share a common stochastic factor which is the implicit efficient price 

(Baillie et al., 2002). Methodologically, proposed by Schwarz and Szakmary (1994) and formally 

justified by Gonzalo and Granger (1995), the common factor weight (CFW) measure, also 

known as the “permanent-transitory decomposition”, directly uses the coefficients of the error 

correction term in the linear VECM to obtain the extent to which each market contributes to the 

implicit efficient price. A simple way to calculate the CFW in spot and futures markets, 

respectively, is given by (Theissen, 2012): 

 f
s

f s

CFW
α

α α
=

−
, s

f
f s

CFW α
α α
−

=
−

   

                                                        
12 With a VAR model, Kawaller et al. (1987) argue that the S&P 500 spot and futures prices move largely in unison. Lim (1992) 
notice a strong positive correlation between contemporaneous Nikkei 225 spot and futures returns in Singapore, despite that the 
work is based on a very small sample consisting of only 20 observations. The simultaneity between spot and futures markets is 
formally studied by Koch (1993), who recommends a simultaneous equations model (SEM) where contemporaneous terms are 
included as explanatory variables. Yet Chan and Chung (1995) demonstrate that if information shocks are unobservable, the 
SEM would generate unreliable inferences about the causal relationships between the two markets.  



 41 

where αs, αf are the error correction coefficients in equations (2.10a) and (2.10b). The CFW 

model decomposes the common factor into a combination of spot and futures prices (Baillie et 

al., 2002). The value of common factor weights varies between zero, when no price discovery 

occurs in a market, and unity, when price discovery occurs exclusively in that market 

(Schlusche, 2009). The higher is the weight attributed to a market, the greater is the 

contribution that the market makes to the process of price discovery. The advantage of the 

measure is that the contribution is defined as a function of the error correction coefficients α, 

such that common factor weights are readily accessible after estimating a linear VECM.13 A 

set of empirics adopt the CFW to examine the contribution made by spot and futures markets to 

the process of price discovery. For example, Booth et al. (1999) reveal that the price discovery 

role is shared equally by the DAX 30 spot and futures based on the similar weights estimated 

from each market, whereas Theissen (2012) and Schlusche (2009) record that the DAX 30 

futures leads the underlying spot as the former assigns a substantially larger contribution to 

price formation. Theissen (2012) extends the CFW metrics by allowing for the presence of 

arbitrage opportunities, and concludes a major contribution of the DAX 30 futures.  

 

Nevertheless, the CFW has been criticised for generating biased estimates of the true price 

discovery parameters (Hasbrouck, 2002) and neglecting innovation variances (Lien and 

Shrestha, 2009). A different avenue to quantify the information content of stock index and 

index futures prices is the information share (IS) developed by Hasbrouck (1995). The method 

is again established on the basis of the linear VECM, but considers its vector MA (VMA) 

representation. The IS of market i is defined as follows:  

 
2
i ii

iIS =
′

ψ Ω
ψΩψ

  

where ψ is an innovation coefficient in the VMA representation, and Ω denotes a diagonal 

covariance matrix. When Ω is not diagonal, the IS of market i can be calculated as follows: 

                                                        
13 The CFW in nature is a Stock-Watson common stochastic trend plus an additively separable idiosyncratic transitory 
disturbance, and thus it is useful when establishing the innovations in the implicit efficient price from the full innovation vector 
(de Jong, 2002). 
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where F is the Cholesky decomposition of Ω, i.e. F is the lower triangular matrix such that 

Ω=FF'. 

 

The IS of a market is the proportion of variance in the common factor that is attributable to the 

innovations in that market (Baillie et al., 2002). Empirical studies suggest that the IS gives a 

proper indicator of the amount of information impounded by a market in face of perturbation. For 

example, Tse (1999) adopts the IS measure to investigate the relative leadership in the DJIA 

markets, and finds the leading role played by the index futures market. Tse et al. (2006) 

re-examine the question and obtain a slightly larger share allocated to the spot market. Chen and 

Gau (2009) report that the Taiwan spot market contributes most to price discovery relative to the 

corresponding futures, and the contribution is higher as the minimum tick size becomes smaller.    

 

Yet the IS measure can only provide lower and upper bounds or a variation range, rather than a 

unique value, because the calculation of the IS depends on the ordering of each series. The fact 

that the bounds are often far apart when innovations of the series are highly contemporaneously 

correlated entices some papers to use the mean of the bounds to reduce ambiguity (e.g. Baillie 

et al., 2002; Chen and Gau, 2009; Guo et al., 2013). Alternatively, the problem can be 

overcome by the work of Lien and Shrestha (2009) who propose a distinct linear factor 

structure in the computation process, and generate a measure called modified IS (MIS) that can 

output a unique measurement of the information content of asset prices. They compare the 

performance of the MIS and the IS in the S&P 500, FTSE 100, and Tokyo Stock Price Index 

(TOPIX) spot and futures markets, and find that the MIS outperforms the IS and that 

information dissemination takes place mostly in the futures. Both the IS and the MIS fit in with 

the study of spot and futures prices as the price series share the common stochastic factor. 

Nevertheless, it should be noticed that when the cointegrating relationship is not one-to-one 

(for example, across futures, options, credit default swaps and bond markets), the IS cannot be 

applied in that it relies on the identical row of ψ. Lien and Shrestha (2014) further expand the 
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compatibility of the MIS by introducing a generalised version of the IS (GIS). Independent of 

the ordering as well, the GIS merely requires the n series under scrutiny to be cointegrated with 

the number of cointegrating vectors equal to (n-1). Obviously this is common and thus the GIS 

can be employed to examine the interrelationships across a wide range of financial markets.          

 

The debate on which method, the CFW or the IS, is superior does not end up with a clear 

answer,14 probably because they are designed from different perspectives to measure different 

spheres of the cointegrated system. The CFW metrics centres on the components of the 

common factor and the error correction mechanism, whereas the IS measure looks into the 

contribution made by each market to the total variation in common trend innovations. Both 

models yield qualitatively similar results when residual correlation is negligible and residual 

variances are equal. In the case of highly correlated or heteroskedastic innovations, however, 

the results can be quite different (Baillie et al., 2002). It seems to make more sense to exploit 

the relationship between the CFW and the IS, that is, the results of both models are mainly 

derived from a common factor coefficient vector (ibid), and to combine them in practice to help 

in the understanding of the relative efficiency of each market in response to information. Guo 

et al. (2013) use both measures in the CSI 300 markets and confirm that the futures market 

dominates the price discovery process. 

2.3.2 The volatility transmission process 

The first-moment dynamics captured by the price discovery process tells only part of the story 

about the information transmission mechanism between stock index and index futures markets. 

In fact, a considerable amount of information is disseminated through higher moment 

dependencies between the two markets, which can be viewed as the most important feature of 

speculative price changes (Koutmos and Tucker, 1996). Second-moment transmission that 

involves dynamic interactions of conditional variances and covariances, in particular, becomes 

notably attractive as autoregressive conditional heteroskedasticity (ARCH) effects play a vital 

role in deciphering uncertainties over competitive market forces. However, compared with the 

                                                        
14 The details of the debate can be found in Baillie et al. (2002), de Jong (2002), Hasbrouck (2002), Harris et al. (2002), 
Lehmann (2002), among others. 
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behaviour of conditional means, the behaviour of conditional variances has been less well 

understood in the literature, partly because economic theories on the time-varying conditional 

variances are very limited (Bollerslev et al., 1992), and partly because early empirics (e.g. 

Kawaller et al., 1987; Stoll and Whaley, 1990) overlook the important channel of information 

transmission in index futures markets.  

2.3.2.1 Information flow and price volatility 

The relation between information flow and price volatility should not be understated. In the 

simple parameterised model developed by Ross (1989), the variance of price change is proven 

to be identical to the variance of information flow in a no-arbitrage economy. This theorem, 

independent of the particular asset-pricing models being used, helps to shed light on the 

mechanism whereby the rate of information flow is directly related to price volatility. As such, 

focusing only on the first-moment dynamics could lead to specification errors and false 

inferences about the interactions between spot and futures prices (Chan et al., 1991). Besides, 

exploring the temporal dependencies of conditional variances may open the door to new 

insights. For example, the strong bidirectional dependence in intraday volatility between the 

S&P 500 spot and futures prices in Chan et al. (1991) implies that information originating from 

one market could forecast the rate of information flow in the other, which challenges the 

common interpretation that market-wide information tends to flow from futures to spot. The 

volatility transmission process also has important implications for the debate on the influence 

of futures trading on stock market volatility.  

         

The link between information and volatility manifests itself via some stylised facts of price 

volatility. Volatility clustering characterises the behaviour that large price changes tend to be 

succeeded by large price changes with random signs (Mandelbrot, 1963). It is often analogous to 

“heat waves” - a high temperature in a place today is likely to be followed by a high temperature 

there tomorrow but not by a high temperature in another place (Engle et al., 1990). In the time 

plot of conditional variance series, the phenomenon is depicted by periods of perturbation 

alternating with periods of tranquillity, and it becomes more apparent as the frequency of data 
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increases. Econometrically speaking, volatility clustering can be reflected by time-varying, 

market-specific autocorrelations between price changes, which suggest the persistence and 

predictability of conditional variances. One reason for the clustering is that the arrival of 

information flow is in clusters, triggering the ARCH effects in asset prices even if the market 

itself could be efficient. Another reason is that investors with heterogeneous information need 

time to adjust their expectations to a particular information shock. In either case, market 

dynamics enable the volatility process to be consistent with market efficiency (ibid).  

 

The GARCH model proposed by Bollerslev (1986) overcomes some of the limitations of the 

ARCH model of Engle (1982) and provides a prominent framework to capture the tendency of 

volatility clustering. The model specifies the evolution of the conditional variance σt
2 as a 

linear function of lagged squared information shocks and lagged conditional variances. A 

typical, univariate GARCH (1, 1) model can be established as below: 

 t t tu σ η=  (2.13) 

 2 2 2
1 1t t tau bσ ω σ− −= + +  (2.14) 

where ω>0; a≥0; b≥0; a+b<1. ut is the innovation or information shock at time t; σt is a 

time-varying, positive and measurable function of the information set at time t-1; ηt is a 

sequence of iid normal random variables with zero mean and unit variance; the ARCH 

parameter a measures the impact of shocks and the GARCH parameter b measures the extent 

of volatility persistence; a+b<1 is a necessary and sufficient condition for the existence of a 

finite unconditional variance (Tsay, 2005). The GARCH (1, 1) model is widely used to study 

the second-moment behaviour of asset prices, and the number of parameters that need to be 

estimated in the GARCH model is typically far less than that in the ARCH model. As the 

GARCH model recognises the contribution of the past information shock and that of the past 

conditional variance to the current conditional variance, volatility transmits from ut-1 or σt-1 to 

σt
2, and then to the current information shock ut, such that a large current innovation follows a 

large past innovation, giving rise to the phenomenon of clustering. The sum (a+b) also 

indicates the level of volatility persistence. For instance, the influence of historical shocks 
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could be permanent when the sum equals 1 as in the integrated GARCH (IGARCH) model of 

Engle and Bollerslev (1986) (McMillan and Speight, 2003).  

 

The effect of clustering is closely connected with fat tailedness, which means that asset prices 

tend to be leptokurtic. It can be shown that the excess kurtosis in the information shock ut 

arises from the randomness in the conditional variance σt
2, or from the excess kurtosis in the 

conditional distribution of ut, or from both (Bollerslev et al., 1994). Despite that the GARCH 

model provides a parsimonious modelling of the clustering, it does not adequately account for 

the leptokurtosis. In other words, the standardised residuals from the fitted model often appear 

to have fatter tails than the normal distribution, and the conventional standard errors for the 

estimated parameters obtained under the assumption of conditional normality of ηt tend to 

understate the true standard errors in the presence of leptokurtosis (Bollerslev et al., 1992). A 

common solution to the problem of excess kurtosis is to assume that ηt follows a more general 

distribution, such as a standardised t-distribution or a generalised exponential distribution, 

which could accommodate the fat tailedness, although recent studies using high-frequency data 

indicate that the tail behaviour of the GARCH model is too short even with the standardised 

t-distribution (Tsay, 2005). 

 

Numerous studies (e.g. Chan et al., 1991; Tse, 1999) document a U-shaped volatility pattern - 

volatilities tend to be higher at the open and close - for stock index and index futures prices 

within each trading day. The pervasive evidence of the intraday pattern in volatility indicates that 

information accumulates at the open and close while the accumulation becomes slow during the 

middle of the day. Since information that arrives when markets are closed is very likely to be 

reflected in prices when the markets re-open (Bollerslev et al., 1994), liquidity investors with 

discretion over their trading time prefer exploiting that information together to exert minimal 

impact on market prices (Admati and Pfleiderer, 1988). Besides, the optimal portfolio to be held 

over non-trading periods is likely to be different from that over trading periods, and thus 

portfolio rebalancing trades could contribute to the volatility surge at the open and close (Brock 

and Kleidon, 1992). It is also recorded that price changes tend to be substantial following 
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weekends and holidays, and are associated with forecastable events where important information 

is released. The GARCH model can be modified to allow for the time-related anomalies in 

volatility due to non-trading periods and predictable information releases (Bollerslev et al., 

1994). For example, a constant conditional correlation (CCC) structure of Bollerslev (1990) can 

be imposed on the GARCH process in event study methodology (Bollerslev et al., 1992). 

 

The negative link between current returns and future return volatility, introduced by Black (1976) 

as “predictive asymmetry”, commonly referred to as “the leverage effect”, implies that price 

changes tend to be larger in the case of bad news than those in the case of equally sized good 

news. Black (1976) and Christie (1982) maintain that bad news decreases the share prices of a 

company and so increases its debt to equity ratio, or leverage, lifting the riskiness (volatility) of 

the company. Likewise, market declines engender a higher aggregate leverage and thus higher 

stock market volatility. Although the leverage effect partially explains the asymmetric responses 

of the volatilities, it is inherently difficult to apply the effect to futures markets (Koutmos and 

Tucker, 1996; McMillan and Speight, 2003). The predictive asymmetry could also be the result 

of volatility feedback. Campbell and Hentschel (1992) hold that a large piece of news is likely to 

raise expected future volatility and thus the required rate of return on stocks. Stock prices 

therefore fall, and the negative impact of bad news is amplified whereas the positive impact of 

good news is attenuated. In particular, the (G)ARCH-in-mean model of Engle et al. (1987) 

incorporates the conditional variance into the conditional mean equation. The parameter of the 

conditional variance, called the risk premium parameter, is expected to be positive, indicating the 

fundamental risk-return tradeoff. 15  Empirically, Tao and Green (2012) report a significant 

volatility feedback effect through the positive risk premium parameter for the FTSE 100 spot and 

futures prices. Furthermore, Sentana and Wadhwani (1992) note that large price declines lead to 

more positive feedback trading16 that increases with the level of stock price volatility, relative to 

equivalent price rises. The asymmetry is consistent with the fact that investors have to sell their 

                                                        
15 An explicit tradeoff between expected return and variance is documented in many finance theories. For instance, under the 
assumption of risk aversion, the excess returns on all risky assets are proportional to the systematic risk measured by the 
covariances with the market portfolio in the traditional capital asset pricing model (Bollerslev et al., 1994). 
16 Sentana and Wadhwani (1992) split the noise traders into positive and negative feedback traders. Positive feedback traders 
buy assets after asset prices rise, while negative feedback traders buy after prices fall. They argue that positive (negative) 
feedback trading predominates in times of high (low) volatility.   
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holdings to meet obligations when a market falls and with the possibility that risk aversion 

declines rapidly with wealth. McMillan and Speight (2003) attribute the significant asymmetric 

responses of the quarter-hourly and hourly FTSE 100 index futures returns to the activities of 

feedback traders as they do not find evidence in favour of the volatility feedback. 

 

The linear GARCH model, however, is unable to capture the asymmetry because the conditional 

variance is parameterised as a function of the magnitudes of the lagged squared information 

shock and the lagged conditional variance; the signs of these variables play no part within the 

symmetric framework. In the class of nonlinear GARCH models, the conditional variance 

depends not only on the magnitudes but also on their corresponding signs (Bollerslev et al., 

1992), and thus can describe the asymmetric volatility effect. For example, Nelson (1991) 

develops the exponential GARCH (EGARCH) model where the conditional variance is a 

function of both the magnitudes and the signs of the lagged variables. Let σt
2 be the conditional 

variance as in equation (2.13), a simple univariate EGARCH (1, 1) model can be formulated as 

below: 

     2 2
1 1 1 1 1ln ( / ) / lnt t t t t tu a u bσ ω l σ σ σ− − − − −= + + +  (2.15) 

where there are no constraints on the non-negativity of the coefficients ω, a and b. The above 

specification enables ηt-1 (or ut-1/σt-1) to impact the logarithmic conditional variance lnσt
2 

asymmetrically, and the impact is a linear combination of λ and a. For a positive shock, 

ut-1/σt-1>0, the impact is (λ+a); for a negative shock, ut-1/σt-1<0, the impact is (-λ+a) (Enders, 

2010). Thus, a negative λ is required for negative shocks to trigger higher volatility. Compared 

with the linear GARCH, the EGARCH model is less restrictive as no constraints on a or b are 

needed, and thus the EGARCH model is a more general process that encompasses random 

oscillatory behaviour of asset return volatilities (Darrat et al., 2002). Besides, the conditional 

moments of the linear GARCH model may explode as shocks could persist in one norm and die 

out in another even when the model itself is strictly stationary and ergodic, making the 

persistence pattern difficult to discern; but the stationarity and ergodicity of lnσt
2 can be easily 

checked (Nelson, 1990). The EGARCH process can be regarded as a weighted moving average 

of past volatility and return regression residuals and such an averaging process can reduce the 
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time discrepancies in reporting and recording procedures between spot and futures prices 

(Darrat et al., 2002). Pagan and Schwert (1990) find that the EGARCH model performs better 

than other parametric models in sample and non-parametric models out of sample. Abhyankar 

(1995) adopts the univariate EGARCH model to generate the time series of conditional 

variances for hourly FTSE 100 spot and futures returns before examining the lead-lag 

relationship in volatility in a VAR framework.  

 

Another asymmetric GARCH model commonly used is the GJR-GARCH model of Glosten et 

al. (1993). With zero as a threshold to differentiate positive from negative information shocks, a 

univariate GJR-GARCH (1, 1) model can be represented as: 

 2 2 2 2
1 1 1 1t t t t tau I u bσ ω l σ− − − −= + + +  (2.16) 

where the dummy variable It-1=1 if ut<0 and 0 otherwise. For a positive shock, ut-1/σt-1>0, It-1=0, 

the impact of the positive shock on σt
2 is a; for a negative shock, ut-1/σt-1<0, It-1=1, the impact of 

the negative shock on σt
2 is (a+λ) (Enders, 2010). In this way, provided that λ>0, a negative 

shock increases volatility more than a positive shock of the same magnitude. The linear 

GARCH can be seen as a special case of GJR-GARCH with λ=0. Suppose ut follows a 

symmetric distribution, the necessary and sufficient condition for the existence of a finite 

unconditional variance is a+b+0.5λ<1 for the GJR-GARCH, which reduces to a+b<1 for the 

linear GARCH (Ling and McAleer, 2002). The close connection with the linear GARCH and 

the relative ease in forecasting as it is reasonable to assume the probability of a future shock of 

either sign being 0.5, make the GJR-GARCH model prevalent in the literature. Other types of 

asymmetric models include the quadratic GARCH (QGARCH) model of Sentana (1995), 

among others. McMillan and Speight (2003) apply the univariate GJR-GARCH and QGARCH 

models to the FTSE 100 spot and futures returns, and report that the volatility behaviour at 

hourly frequency is satisfactorily described by the asymmetric GARCH models.     

2.3.2.2 Leads and lags in price volatility 

The concept of Granger causality extended to second-moments is second-order causality and 

causality-in-variance. Granger et al. (1986) define second-order noncausality as:  
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1 1 1 1( ) ( )t t t t t tE E E E− − − −

     − Ω Ω = − Ω Ω      
1XX X X

1t 1t 1t 1tX X X X    

where Xt is a n-dimensional matrix at time t, which can be partitioned into Xt={X1t, X2t} with 

dimensions n1 and n2, respectively; Ωt-1 is the information set at time t-1 for Xt (or X1t). The 

definition of variance noncausality is slightly different. X2 does not cause X1 in variance means 

1 1t tV V− −
  Ω = Ω   

1XX
1,t 1,tX X , where V[∙] denotes conditional variance (Comte and Lieberman, 

2000). The difference between the two definitions lies in the conditioning information sets: 

2
1 1 1( )t t t tV E E− − −

    Ω = − Ω Ω    
1 1 1X X X

1,t 1,t 1,tX X X (Caporin, 2007). Variance noncausality exists if 

and only if there are both mean noncausality and second-order noncausality. Hence a sequential 

testing scheme is suggested that check causality-in-mean first; provided no relation is found 

then tests for second-order noncausality. If and only if both tests do not detect any causation 

one can conclude variance noncausality or no causality-in-variance (Caporin, 2007; Tchahou 

and Duchesne, 2013).  

 

The causality-in-variance, or the lead-lag relationship in price volatility, is critical as volatility 

serves as another important information channel between markets, apart from price. The 

volatility interactions are especially important in the absence of causality-in-mean, in which 

case information can only transmit through the conditional variances and covariances of asset 

prices. In practice, the causality-in-variance is sometimes termed “volatility spillover”, which 

captures the fact that information shocks are not restricted in a market but can spread out to 

affect the volatility processes elsewhere. In contrast to volatility clustering, volatility spillover 

implies that sources of information shocks are not market-specific fundamentals (Mantalos and 

Shukur, 2010); rather, shocks are contagious from one market to the other such that volatilities 

become predictable on the basis of volatilities in the related markets, violating the Efficient 

Market Hypothesis. The spillover effect can be analogous to “meteor showers” - a meteor 

shower in one place may be followed by a meteor shower in another place (Engle et al., 1990). 

Zhong et al. (2004) split the spillover effect into short-run and long-run versions for Mexican 

spot and futures markets. The short-run spillover bears much resemblance to the interim 

adjustment of spot and futures prices, with temporal leads and lags in volatility; while the 

long-run spillover reflects the error correction effect under which previous departures from the 
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cost of carry equilibrium are allowed to impact current conditional variances and covariances.        

 

Research on the volatility interactions or spillovers is permeated by multivariate GARCH 

(MGARCH) specifications, the most obvious application of which is the study of the dynamics 

of volatilities and co-volatilities of several markets (Bauwens et al., 2006). Like the univariate 

GARCH models, the MGARCH models parameterise the conditional variance as a function of 

its lagged residuals suggesting volatility persistence within a market. Yet unlike the univariate 

GARCH models, the MGARCH models also encompass cross-market lagged innovations and 

conditional covariance in an effort to estimate cross-market volatility interactions. In this way, 

information contained in the volatility in one market can have predictive power for the volatility 

in the other market. Combined with the leverage effect, a bearish futures (spot) market is likely to 

be followed by higher spot (futures) market volatility than a bullish futures (spot) market. For 

example, applying a bivariate EGARCH (1, 1) model to daily S&P 500 spot and futures returns, 

Koutmos and Tucker (1996) record that a given futures market decline increases stock volatility 

1.6326 times more than a futures market advance of equivalent size.  

 

In general, the MGARCH models can be divided into three types (Bauwens et al., 2006). The 

first type directly generalises the standard univariate GARCH models and thus can involve an 

excessive number of unknown parameters which are difficult to interpret and may lead to 

computational burdens. Examples are VECH of Bollerslev et al. (1988) and BEKK of Engle 

and Kroner (1995). Yang et al. (2012) employ a BEKK specification with asymmetric basis 

terms to examine the volatility transmission mechanism between the CSI 300 spot and futures 

markets, and find strong bidirectional dependence in intraday volatility of both markets. Guo et 

al. (2013) re-consider the issue with a BEKK model, but find the CSI 300 futures leading the 

spot in volatility. However, Bauwens et al. (2006) suggest that the VECH and BEKK are too 

restrictive to be used to investigate volatility transmission across markets. The second type can 

be viewed as linear combinations of the univariate GARCH models, each of which needs not 

necessarily to be a linear GARCH model. The orthogonal GARCH model of Alexander and 

Chibumba (1997) belongs to the type and can be nested in the BEKK model such that its 
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properties follow those of the BEKK model (Bauwens et al., 2006). Yet there are few empirical 

studies using the method in index futures markets. The third type combines the univariate 

GARCH models in a nonlinear fashion, exemplified by the CCC model of Bollerslev (1990). 

The model assumes that the conditional correlations are time-invariant and hence the 

conditional covariance is proportional to the product of the conditional standard deviation of 

each price series. The assumption considerably reduces the number of unknown parameters that 

need to be estimated, thereby making the model tractable, despite the fact that the constant 

correlation coefficients are not realistic as they are very likely to change over time. It is a 

common practice to impose constant correlations on the MGARCH models to simplify 

estimation. For example, Chan et al. (1991) assume a constant correlation matrix within a 

bivariate GARCH (1, 3) model to examine the volatility spillovers between the S&P 500 spot 

and futures markets and document a bidirectional spillover effect. Tse (1999) follows the 

practice with a bivariate EGARCH (1, 1) model in the DJIA markets but reports futures leading 

spot in volatility. The dominant role of futures market in volatility transmission is also obtained 

in the S&P 500 spot and futures markets by Koutmos and Tucker (1996), who modify the 

constant correlation specification with dummy variables measuring structural changes built in a 

bivariate EGARCH (1, 1) model. The constant correlation is also implied in the cost of carry 

relationship which predicts that the correlation between spot and futures prices should be 

constant and equal to unity, provided non-stochastic risk-free interest rate and dividend (ibid).     

 

As a generalisation of the CCC model, the dynamic conditional correlation (DCC) model 

proposed by Engle (2002), Tse and Tsui (2002), and Christodoulakis and Satchell (2002) allows 

the conditional correlation matrix to be time-varying. To ensure the positive definiteness17 of 

the conditional variance-covariance matrix, the DCC model imposes simple conditions on the 

model, such as the scalar parameters in Engle (2002) and Tse and Tsui (2002), and the Fisher 

transformation of the correlation coefficients in Christodoulakis and Satchell (2002). As an 

illustration, the DCC multivariate GARCH model of Engle (2002) employs a parsimonious 

parameterisation for the conditional correlation matrix Rt: 
                                                        
17 The conditional variance-covariance matrix in the MGARCH models must be positive definite. A square matrix is positive 
definite if it is symmetric and all of its eigenvalues are positive (Tsay, 2005).  
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 = *-1 *-1
t t t tR Q Q Q  (2.18)  

where, in a bivariate system, Ht is the 2×2 conditional variance-covariance matrix, whose 

elements are conditional variances and covariances estimated from univariate GARCH-class 

models; Dt is the 2×2 diagonal matrix of conditional standard deviations, or Dt = diag(σ1t, σ2t); 

Rt is the time-varying conditional correlation matrix with 1 on the diagonal, conditional 

correlation coefficients ρ12,t off the diagonal; 1 1(1 ) t tm n mu u n− −′= − − + +t t-1Q Q Q , where Q is 

the 2×2 unconditional correlation matrix of the standardised residuals, and m, n are scalar 

parameters that provide a GARCH-like dynamic structure for Qt: m captures the impact of past 

shocks and n captures the impact of past dynamic correlations; 11, 22,( , )t tdiag q q=*Q  is the 

2×2 diagonal matrix that contains the square roots of the diagonal elements of Qt. For the 

positive definiteness of Ht, it is sufficient to require Rt to be positive definite. For the positive 

definiteness of Rt, I only need to ensure that Qt is positive definite (Engle and Sheppard, 2001). 

The positive definiteness of Qt and hence the positive definiteness of Ht is satisfied if m, n are 

non-negative, and have a sum less than 1. If m+n=0, the correlations are constant in time, and 

the DCC reduces to the CCC model of Bollerslev (1990). Given the positive definiteness of Qt, 

Q* guarantees that Rt is a conditional correlation matrix with 1 on the diagonal, ρ12,t off the 

diagonal no larger than 1 in absolute value (Cappiello et al., 2006). The time-varying 

conditional correlation coefficients are calculated as 12, 12, 11, 22,t/t t tq q qρ = in Rt. 

 

The scalars m and n constitute the major critique of the DCC model for they imply that all the 

conditional correlations obey the same dynamics, which can be hard to justify when the 

dimension N is high (Tsay, 2005; Bauwens et al., 2006). Nevertheless, the critique may be 

outweighed by the flexibility and tractability of the DCC model. If the conditional variances 

are modelled by a univariate GARCH (1, 1) process, Bauwens et al. (2006) show that the 

number of the parameters that need to be estimated in the DCC model is (N+1)(N+4)/2, far less 

than that in the VECH model. Engle and Sheppard (2001) suggest a two-step estimation 
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procedure for the DCC model which requires the estimation of univariate GARCH models first 

and then the time-dependent correlation between the price series. The procedure is proved to 

generate consistent and asymptotically normal log-likelihood estimates and thus makes the 

model feasible. The DCC model has become a standard method in the literature for studying 

dynamic market co-movements. Tao and Green (2012) use a bivariate DCC model with a 

GJR-GARCH-in-mean formulation to study the co-movements between the FTSE 100 spot and 

futures markets. They report that the market relationships are closer and less variable after the 

cost-reducing reforms of market microstructure.   

 

As an alternative to the MGARCH methodology, the cross-correlation function (CCF) test of 

Cheung and Ng (1996) is a diagnostic approach that makes use of the information contained in 

sample residual cross-correlations to detect causality-in-variance. This is again a two-stage 

procedure. Univariate conditional mean and conditional variance models are estimated in the 

first stage and the cross-correlation functions of the squared standardised residuals obtained 

from the first stage are calculated and tested in the second stage. Given that the distribution of 

the sample cross-correlations converges to standard normality, a normal test statistic or a χ2 test 

statistic can be used to test the null hypothesis of variance noncausality. Compared with the 

MGARCH models, the two-stage CCF test is convenient to implement, especially when large 

numbers of series are present and long lags are expected, as the test does not involve the 

estimation of excessive parameters that may well lead to computational burdens. Pantelidis and 

Pittis (2004) demonstrate that inferences on causality-in-variance could suffer from severe size 

distortions if the possible effect of causality-in-mean is ignored. The CCF test is therefore 

appealing by which the causal patterns in both mean and variance can be determined 

simultaneously. The CCF test results can further provide helpful guidance on formulating a 

multivariate model. In the case of a small sample size, a modified test statistic of Koch and 

Yang (1986) can be used to approximate a χ2 distribution accurately. Moreover, the CCF test 

enjoys fairly good finite-sample properties including considerable empirical power, robustness 

to asymmetric and leptokurtic errors, and insulation of the size of the test from volatility 

persistence. Nevertheless, the case of zero cross-correlations cannot be detected by the CCF 
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test, and any misspecification resulting in autocorrelations in the models in the first stage can 

affect the size of the test, which is similar to the EGARCH and GARCH-in-mean models in 

that the full formulations must be correctly specified (Bollerslev et al., 1992). Selecting a 

wrong order of the test statistics could also dampen the performance of the test (Hafner and 

Herwartz, 2006).          

 

The CCF test has been improved in several aspects. Wong and Li (1996) replace the 

assumption of independent residual series with a weaker condition. Hong (2001) modifies the 

uniform weighting structure in the test to a flexible weighting scheme where larger weights are 

assigned to lower-order lags to achieve better power. van Djik et al. (2005) suggest pre-testing 

for volatility breaks before performing the CCF test, because structural breaks in volatility 

could give rise to size distortions and hence unreliable inferences on the spillover effect. 

Rodrigues and Rubia (2007) extend the single volatility break to non-stationary volatility 

processes and theoretically justify the pre-testing procedure. Tchahou and Duchesne (2013) 

generalise the univariate CCF test to a multivariate framework from two perspectives: to obtain 

the asymptotic distributions of residual cross-covariance matrices; and to define transformed 

residuals and derive the asymptotic distributions of the cross-correlations of the transformed 

residuals. As a result, they propose new test statistics that reduce to the test statistics of Cheung 

and Ng (1996) in the univariate context. 

   

Empirical studies using the CCF approach can be found in exchange rate markets (Hong, 2001), 

credit default swap markets (Tamakoshi and Hamori, 2013) and international stock markets 

(Tchahou and Duchesne, 2013). In index futures markets, Cheung and Ng (1996) apply the CCF 

test to the 15-minute S&P 500 spot and futures returns, and reveal a feedback relationship in 

conditional means and conditional variances. Tao and Green (2012) use the CCF test to examine 

the causal relationship in volatility in the FTSE 100 markets over two samples. They do not find 

any spillovers in the first sample and only find bidirectional volatility spillovers at lags 8 and 9 in 

the second sample, suggesting that information is largely impounded into the FTSE 100 spot and 

futures prices in a simultaneous manner.  
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2.3.3 The price and volatility dynamics across countries 

One of the prominent features of globalisation is the increasing linkages and interactions 

among worldwide financial markets. Despite numerous papers on the interrelationships of 

stock markets,18 research on the integration of index futures markets is far less abundant. Even 

so, it is held that the interdependencies of index futures markets has been dramatically 

enhanced by deregulatory policies, information-sharing mechanisms and advances in 

information technology (Booth et al., 1997). The trend of globalisation is clearly reflected by 

futures contracts with an international dimension. Dual- or triple-listed index futures contracts 

such as the Nikkei 225 futures contracts based on the same underlying index are actively traded 

instruments in more than one exchange, and these futures contracts act as important vehicles 

for the information linkages across the markets. To illustrate, a piece of news might be 

impounded into the Nikkei 225 futures prices in Chicago first, and then transfer to the Nikkei 

225 futures prices in Osaka, causing the observed lead-lag relationships in their price and 

volatility (Fung et al., 2001).19 The resulting temporal price differentials among the futures 

markets invite spread arbitrage activities that aim for a riskless profit (Board and Sutcliffe, 

1996). 20 In this respect, spread arbitrage maintains the long-run equilibrium relationship 

between the domestic or home futures market where the futures contracts are traded in the 

same country as the stocks underlying the index (Osaka in this case), and the foreign or 

offshore market in whose country the futures contracts are traded but the stocks underlying the 

index are not (Chicago in this case). Given that spread arbitrage requires lower transaction 

costs, its no-arbitrage band is narrower than that of index arbitrage, and the link between 

domestic and foreign markets is tighter than the link between spot and futures markets (Board 

and Sutcliffe, 1996; Sutcliffe, 2006). Index futures traded on nearly the same underlying stocks 

provide a similar conduit for information transmission. For instance, both the Taiwan Morgan 

Stanley Capital weighted stock index (TiMSCI) and the Taiwan Stock Exchange Capitalisation 

Weighted stock index (TAIEX) measure the stock market conditions in Taiwan and the 

                                                        
18 See, for example, Garbade and Silber (1979), Hamao et al. (1990), Koutmos and Booth (1995), and Grammig et al. (2005). 
19 As will be discussed below, this example is evidence supporting the international centre hypothesis. 
20 However, it is noteworthy that spread arbitrage is seldom riskless in practice. Despite that multiple-listed futures are based 
on the same index, they are not perfect substitutes, as differences exist in, inter alia, (futures) contract specifications, regulatory 
regimes, trading hours and transaction costs among the markets (Board and Sutcliffe, 1996).   
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correlation of their 5-minute returns can be greater than 97%. It is thus not surprising for their 

corresponding futures returns to be correlated at 99.9% (Roope and Zurbruegg, 2002). 

However, riskless arbitrage exploiting the price differentials among the four markets is not 

possible due to structural differences in contract specifications and variations in the component 

stocks of the underlying indices (Frino et al., 2013). Even if the underlying assets are different, 

e.g. the S&P 500 index and the FTSE 100 index (Booth et al., 1997), their interactions with the 

corresponding futures contracts still constitute the potential information linkages through 

cross-border price discovery and volatility transmission mechanisms, and the linkages can be 

more effectively traced than the stock market linkages alone due to the lack of nonsynchronous 

trading and fewer market frictions in futures markets (Sim and Zurbruegg, 1999).      

 

In particular, the price and volatility dynamics between domestic spot/futures markets and 

foreign spot/futures markets shed critical light on the information role of each market, in the 

sense that new information generated in one market is very likely to affect the other market in a 

predictable way. This has important implications at least for exchange competition and asset 

management. The institutional differences between futures exchanges may attract much of the 

trading volume which was originally captured domestically to migrate to a competing foreign 

exchange, rendering the exchange at home redundant in information dissemination, i.e. it lags 

behind in reacting to new information, with fewer participants and less liquidity (Roope and 

Zurbruegg, 2002). This perception is called the order flow diversion hypothesis (Frino et al., 

2013). Hence, the increasing exchange competition necessitates careful contract design and 

trading regulation on the basis of the knowledge of the interaction mechanism in informationally 

linked markets, through which an exchange may gain competitive advantage over other 

exchanges. On the other hand, for small markets that rely on global financial centres, and 

markets in the increasingly integrated financial environment, the influence of foreign market 

behaviour on the local spot-futures relationship can be tremendous. It follows that investors in 

those markets are suggested assigning a heavy weighting to foreign markets when capitalising on 

the mutual adjustments between domestic and foreign prices and volatilities in their strategies of 

asset allocation and risk management worldwide (Sim and Zurbruegg, 1999; Fung et al., 2001).  
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2.3.3.1 Home bias vs international centre 

Two hypotheses regarding the information transmission mechanism between domestic and 

foreign markets are often examined in the literature: the home-bias hypothesis and the 

international centre hypothesis. The home-bias hypothesis states that the domestic market tends 

to reflect new information first, and then transmit the news to the foreign market. The rationale 

behind the hypothesis pertains to the “home market advantages” resulting from geographic 

proximity (Fung et al., 2001). For example, the home market of futures contracts locates near the 

underlying stock market (within the same country), so that domestic investors enjoy a priority in 

obtaining firm-specific information such as dividends and taxes compared with foreign investors 

(ibid). Another benefit is that domestic investors are better informed about local trading 

environment and regulatory regime, and thus they contribute to greater efficiency in trading 

assets and less noise at home. Moreover, domestic investors face far less trading hurdles such as 

currency fluctuations and non-overlapping trading hours than their foreign counterparts, further 

giving rise to the home-market bias. In contrast, the international centre hypothesis means that a 

foreign market, usually a global financial centre, should play a leading role in the information 

dissemination process. This is buttressed by the fact that an offshore venue generally provides 

more lenient and liquid trading conditions, e.g. lower entry barriers, fewer transaction costs, 

larger price/position limits, longer trading hours, bigger minimum price movements, etc. (Fung 

et al., 2001; Roope and Zurbruegg, 2002; Covrig et al., 2004), which is consistent with the 

transaction costs hypothesis. Besides, as a niche player, the foreign market is especially attractive 

to some international investors who manage risk by trading futures together with other financial 

instruments also available on that market. Due to differences in trading hours, a foreign market 

offers additional opportunities for arbitrage when the domestic market is closed (Board and 

Sutcliffe, 1996).   

 

As such, it seems reasonable to conjecture that both domestic and foreign markets contribute 

significantly to the information transmission mechanism across borders (Covrig et al., 2004), 

but the relative extent of the contribution is an empirical issue. From the perspective of the 



 59 

price discovery process across markets, the CFW and the IS measures for information content 

are employed jointly to test the hypotheses, after model modifications to fit in the multivariate 

case. In the Nikkei 225 markets, for example, Covrig et al. (2004) use both measures to 

examine the contribution of the Osaka Exchange (OSE), the Singapore Exchange (SGX), and 

the underlying stock market to price discovery. They find that futures dominate the price 

formation process relative to spot in each market; in addition, 46% of the common factor 

weights can be attributed to the OSE and 33% to the SGX. Although the evidence suggests that 

the price discovery function is mainly assumed by the domestic market, the contribution of the 

SGX is more revealing considering the low trading volume in the foreign market. The results 

from the IS metrics are consistent, with 39.15% contributed by the OSE and 34.09% by the 

SGX. The relative importance of the SGX is argued to be due to lower transaction costs and 

longer trading hours, plus the trading system of open outcry. Similar evidence is found by Guo 

et al. (2013), who use the two measures jointly for the CSI 300 spot, futures in China and the 

FTSE China A50 spot, futures in the SGX, and corroborate the primary role of China as the 

domestic market in price discovery. Meanwhile they point out that the contribution made by the 

relatively thinly-traded Singaporean market is indeed substantial. Roope and Zurbruegg (2002) 

study the cross-border price dynamics between the Taiwan Futures exchange (TAIFEX) spot, 

futures in Taiwan and the TiMSCI spot, futures in the SGX. The CFW results show that each 

futures market leads its spot market, whereas the IS results show spot leading futures in Taiwan 

and such a relationship is subject to change.21 However, both measures confirm that the SGX 

plays a major role in the price discovery, thereby supporting the international centre hypothesis.  

 

Alternatively, Granger causality tests in the multivariate setting consist of block exogeneity test 

for short-run adjustments and the linear VECM for long-run causality.22 Roope and Zurbruegg 

(2002) adopt the methodology and report a temporal feedback relationship among the four 

                                                        
21 The variability of the relationship results from the large difference between lower and upper bounds in the IS measure and 
the high correlation between price movements in Taiwan (Roope and Zurbruegg, 2002).  
22 Kim et al. (1999) examine the price discovery process across the S&P 500, NYSE Composite, and MMI futures, and across 
their respective spot indices. However, the Johansen trace test shows that no cointegration exists across the futures markets, or 
across the spot markets, so that they adopt variance decomposition and impulse response functions from a VAR model without 
cointegration constraints. They report that the S&P 500 futures leads the other futures and the MMI index leads the other 
indices in the price discovery, consistent with the prediction of the transaction costs hypothesis.   
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Taiwan-related markets, i.e. the TAIFEX spot, futures and the TiMSCI spot, futures. The error 

correction coefficients, however, indicate that the spot leads the futures in each market, and the 

two stock indices respond to information at approximately the same speed in the long run. Guo 

et al. (2013) report bidirectional causality between the CSI 300 spot, futures in China and the 

FTSE China A50 spot, futures in the SGX, and highlight the key function of China as the 

domestic market. With the Granger causality test, Shyy and Shen (1997) investigate the Nikkei 

225 futures contracts in the OSE and the SGX. Although they do not conclude clear directions 

of any causal relationships, the information flow seems more evident from the OSE to the SGX 

than the other way round in the short run.23 In contrast, Booth et al. (1996) find that none of 

the trading markets of the Nikkei 225 futures contracts, i.e. the OSE, the SGX, and the Chicago 

Mercantile Exchange (CME), can be regarded as a main source of information flow, implying 

that each market is informationally efficient. Furthermore, after the reduction in the futures 

transferring tax from 0.05% to 0.025% in Taiwan, the TAIFEX futures experienced an 

improved information advantage relative to the TiMSCI futures in the SGX (Chou and Lee, 

2002; Hsieh, 2004), which suggests that the information role of markets is susceptible to 

regulatory reforms pertinent to transaction costs. Frino and West (2003) directly test the 

transaction costs hypothesis for the Nikkei 225 futures listed on the OSE and the SGX, and 

demonstrate that the lower transaction cost structure at least stemming from negotiable 

brokerage commissions and less margin requirements in the offshore market induces the SGX 

futures prices to lead the OSE futures prices.      

  

In terms of price volatility behaviour, it is held that stock volatilities are usually higher during 

trading hours when more public and private information and noise occur than non-trading 

hours (e.g. Fama, 1965; French and Roll, 1986). But it is not clear whether the argument holds 

in futures markets. Booth et al. (1996) therefore compare trading time variances with 

non-trading time variances in the three Nikkei 225 futures markets. For the OSE and the SGX, 

the argument is supported; whereas for the CME, the trading time variances are found to be 

lower than the non-trading time variances. Due to differences in time zones, the non-trading 

                                                        
23 See Table 4(b) of Shyy and Shen (1997). 
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periods of the CME overlap the trading periods of the other two markets, and thus the result 

suggests that the three markets are driven by the same kind of information which is released 

during Japanese business hours. Shyy and Shen (1997) find that the Nikkei 225 futures returns 

at the opening of the OSE and the SGX are more volatile and serially correlated than at the 

close, but the differences of such behaviour between the two markets are not significant. 

Regarding the cross-border volatility spillovers, innovation accounting and impulse response 

analysis based on a VAR system are conducted by Booth et al. (1997), who consider the 

interaction of the S&P 500, the FTSE 100, the Nikkei 225 futures volatilities estimated by the 

method of Garman and Klass (1980) across the US, the UK and Singapore. The US and the UK 

are found to spread volatilities to each other, as well as cluster volatilities individually. In 

contrast, Japanese volatilities seem to depend only on its past values. Besides, a given shock 

from the US or the UK spills over to each other and then diminishes quickly, while a Japanese 

shock only affects its own volatilities and the impact can last for more than ten days. The 

MGARCH models are also used by several studies on the volatility transmission process across 

borders. Specifically, the quadvariate ECM-ARCH (1) model of Sim and Zurbruegg (1999) 

incorporates an error correction term into the conditional variance equation to explicitly allow 

for any potential relationship between disequilibrium and uncertainty in Australia and Japan. 

They report that Australian traders in either the SPI futures or the All Ordinaries Index (AOI) 

spot markets should take into account the price and volatility movements in the Nikkei 300 

spot and futures markets in their risk perceptions, for the volatility spillover from Japan to 

Australia is unidirectional and significant, which is in line with the dependence that Australia 

has on the Japanese economy. The BEKK model of Guo et al. (2013) shows the leading effect 

of the CSI 300 spot, futures volatilities on the FTSE China A50 counterparts, respectively, 

which reaffirms the domestic market as a main source of information flow. Fung et al. (2001) 

construct a bivariate ECM-GJR-GARCH (1, 1) model to examine the Nikkei 225 futures 

volatilities in the OSE and the CME. Despite strong interactions in cross-market terms, the 

volatility contagion from the US to Japan is greater than the reverse, evincing the dominant role 

of the foreign market in transmitting information. 
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2.4 Conclusion 

The spot-futures pricing relationship hitherto has been investigated from the perspectives of the 

pricing efficiency of futures contracts, and of the price and volatility dynamics between spot 

and futures markets within and across countries. The cost of carry relationship defines the 

no-arbitrage condition between spot and futures markets. In the presence of transaction costs 

and risks, however, it develops into a no-arbitrage band, and the pricing deviations from the 

no-arbitrage relation, or futures mispricing takes place frequently and persistently, signalling 

potential opportunities for index arbitrage. Based on the arbitrage decision rules, and 

econometric models such as the TAR models and the STAR models, the literature generally 

reaches a consensus that the profitability of index arbitrage activities can only be determined 

after allowing for the associated transaction costs and risks.  

 

The cost of carry model implies that the spot-futures price differential, or basis, must be 

embodied in the framework that models the price discovery process between spot and futures 

markets, for the basis reflects the error correction mechanism between the two markets in the 

sense that any present departures from the cost of carry relationship will be corrected in the 

next stage so that spot and futures prices move closely together in the steady state. As such, the 

linear ECM is appropriate for studying the short-run adjustments and long-run equilibrium of 

spot and futures prices. More advanced models such as the TECM and the STECM are 

designed to capture the nonlinear adjustment mechanisms in spot and futures markets. The 

TECM extends the constant cointegration in a linear ECM to threshold cointegration, such that 

spot and futures prices follow a stepwise adjustment pattern and the error correction 

mechanism is regime-dependent - only when a specific transaction cost threshold is crossed can 

arbitrage be activated to remove disequilibrium. This is based on the assumption that investors 

are homogeneous. If investors are assumed to be heterogeneous, in the aggregate they may not 

transit between the regimes discontinuously; rather, the whole market is more likely to adjust in 

a gradual and smooth manner. Taking the line of reasoning as its basic spirit, the STECM may 

be more suitable for studying market reactions as a whole.  



 63 

 

An increasing number of papers hold that cointegration is consistent with causality in price 

series, and thus leads and lags in spot and futures prices can constitute evidence supporting the 

cost of carry model, rather than refuting it. Theories generally predict that price leadership 

should take place in a futures market, or in other words, a piece of news is more likely to be 

impounded into futures prices first and then transfer to the underlying spot prices, in that the 

spot market is usually characterised by nonsynchronous trading, higher transaction costs, 

short-selling restrictions, concentration of unsystematic information, and less efficient trading 

systems. This is reinforced by numerous empirical studies with conforming evidence from a 

wide range of markets. However, several papers generate different results, such as spot 

dominating futures in the process of price discovery, suggesting that the price dynamics in the 

real world may be more complex than the theoretical prediction.    

 

The volatility of spot and futures prices provides another conduit for information transmission, 

apart from the price. Spot and futures variances exhibit conditional heteroskedasticity, 

characterised by volatility clustering, fat tailedness, intraday fluctuations, predictive asymmetry, 

and volatility spillover. In particular, the volatility spillover effect taking the form of leads and 

lags in volatility suggests that information contained in the volatility in one market has 

predictive power for the volatility in the other market, showing the information transmission 

between spot and futures markets through the volatility linkage. The MGARCH models are 

prevalent in the empirical research investigating the volatility interactions, as they are proved to 

be successful in describing the dynamics of volatilities and co-volatilities. For example, the 

DCC multivariate GARCH model allows the conditional correlation matrix to vary over time; 

meanwhile it maintains tractability and feasibility through a two-step estimation procedure. An 

alternative method is the CCF test which makes use of the information contained in sample 

residual cross-correlations and has been performed in a few papers. The empirical evidence of 

the volatility spillovers is supported in several markets, but rejected in others probably because 

in those markets information is reflected in spot and futures prices simultaneously.  
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Beyond national borders, the price and volatility dynamics between domestic spot/futures 

markets and foreign spot/futures markets constitute the informational linkages across countries. 

Both the domestic and the foreign markets can contribute to the international information 

dissemination mechanism in theory, but their relative degree of the contribution is an empirical 

issue. The Granger causality test and the information content method are modified in the 

multivariate setting to explore the cross-border price dynamics, and the MGARCH models are 

ubiquitously adopted to examine the transnational volatility transmission process. Although the 

literature is not unanimous in the location of the information leadership across countries, most 

works recognise the important functions of foreign futures exchanges and the international 

linkages and interactions among the related futures markets.  
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Chapter 3  

The Nikkei 225 stock index and index futures markets 
 

 

3.1 Introduction  

This chapter aims to introduce the Nikkei 225 stock index and index futures markets, and 

provide essential institutional and background information for the subsequent empirical 

chapters. The chapter is organised in the following order. A brief history of the triple-listed 

Nikkei futures contracts is given below. Section 3.2 introduces the Nikkei 225 stock index 

market. Section 3.3 analyses the main differences among the Nikkei 225 futures contracts. 

Section 3.4 concludes the chapter.    

 

On 3 September 1986, the first Nikkei 225 futures contract in the world was launched in the 

Singapore International Monetary Exchange (SIMEX), later merged to the Singapore Exchange 

(SGX). Unlike all other index futures contracts at that time, whose underlying asset was a 

national stock index in the same country, the Nikkei futures contract was based on the Nikkei 

Stock Average (the Nikkei 225), which is the premier barometer of stock markets in Japan. SGX 

therefore became the world’s first offshore exchange for index futures contracts. It remained the 

only marketplace for index arbitrage between Nikkei spot and futures until 3 September 1988, 

when the Osaka Securities Exchange, now the Osaka Exchange (OSE), started to trade Nikkei 

225 futures contracts. Due to some similarities in contract specifications and overlapping in 

trading hours, arbitrage between the OSE futures contracts and the SGX futures contracts began 

to attract scores of investors, including Nick Leeson whose trading ultimately led to the 

insolvency of Barings Bank. In a further development the Chicago Mercantile Exchange (CME) 

introduced Nikkei 225 futures contracts on 25 September 1990, in response to the increasing 

importance of the Japanese economy and the pressing need for risk management tools among US 

investors. Therefore the unique feature of the Nikkei futures contracts is that they are 

simultaneously listed on three futures exchanges with one common stock market.  
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3.2 The Nikkei 225 index 

The Nikkei 225 index consists of 225 blue-chip common stocks listed on the First Section of the 

Tokyo Stock Exchange (TSE). In June 2014, the market capitalisation of the constituent stocks 

amounted to $4.49 trillion, covering 64% of that of all stocks in the First Section of the TSE.24 

Similar to the Dow Jones Industrial Average (DJIA), the Nikkei 225 is a price-weighted index 

calculated by summing up the prices of all constituent stocks adjusted by presumed par values 

and dividing the summation by a divisor which changes from time to time to maintain the 

continuity of the index in cases of stock splits, reverse splits, component changes, etc. The 

constituent stocks include companies such as Toyota, Sony, Mitsubishi and Fast Retailing. The 

Nikkei index is calculated every 15 seconds from 4 January 2010 (and every 1 minute before 

then) during the trading hours of the TSE, and reported to two decimal places, by Nikkei Inc. 

Figure 3.1 graphs the historical daily closing price of the Nikkei 225 index from 3 September 

1986 to 31 December 2014. Following the bubble era in the late 1980s when the Nikkei index 

rose to historically high levels, there are several periods in which the index is decreasing. The 

first period is the Japanese stock market crash in the early 1990s. The second is the Japanese “Big 

Bang” period from November 1996 to March 2001, although the decrease lingers on until early 

2003.25 The third is the credit crunch and global financial crisis period from 2007 to 2012, which 

envelops the Japan earthquake and Fukushima nuclear crisis in March 2011.   

 

Trading of stocks in the First Section in the TSE was on the floor before 30 April 1999, and after 

that transactions were computerised and the current electronic trading system is called 

Arrowhead. The TSE opens during 9.00-11.30 (morning session), 12.30-15.00 (afternoon 

session) (Japan Standard Time, JST). The TSE is an auction or order-driven market, traditionally 

with two types of members: regular members and saitori members (Takagi, 1989). Regular 

members are securities companies that trade on proprietary accounts or on customers’ accounts  

                                                        
24 Data are from Nikkei Inc. 
25 The Japanese “Big Bang” is a five-year financial deregulatory reform proposed by Japan’s government in November 1996, 
aimed at eliminating all partitions in Japanese financial markets no later than 2001. During the “Big Bang” period, a series of 
policies came into effect to remove barriers and increase competition among financial intermediaries. A notable example is the 
full deregulation of brokerage commission rates in 1 October 1999, and from then on the commission rates in Japan were no 
longer fixed but negotiable for all transactions (Liu, 2010; Flath, 2014).     
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Figure 3.1 The Nikkei 225 index  
Notes: This figure plots the daily closing price of Nikkei 225 index during the period 03/09/1986-31/12/2014. 
Data are from Thomson Reuters Eikon. 

 

 

in the exchange. Saitori members are market specialists who act as intermediaries between  

regular members and they are not allowed to trade for their own account. Now all members are 

called general trading participants and there are 93 general trading participants in the TSE.26 

Trading is conducted using limit orders with specific execution prices and market orders without 

specific execution prices. The auction rules are based on the principles of price priority and time 

priority. The first priority is price, which means that market orders take precedence over limit 

orders, and for limit orders, the highest bid and lowest offer prices are matched before other 

orders. The second priority is time, which means that earlier accepted orders have priority over 

later accepted orders given the same execution price. The stock opening prices (including initial 

prices at the resumption of trading after trading halts) and closing prices of each trading session 

are determined by the Itayose (call auction) method which uses the price priority principle only 

to clear the market. The stock prices in the rest of the trading sessions are determined by the 
                                                        
26 After the establishment of Japan Exchange Group by the OSE, TSE and other institutions on 1 January 2013, apart from 
general trading participants, there are futures, etc. trading participants and government bond futures, etc. trading participants; 
as their names suggest, the latter two are allowed to trade derivatives rather than stocks. 
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Zaraba (continuous auction) method which uses both principles. Regular transactions account for 

more than 99% of all transactions and settlement is due on the third business day following the 

transaction date (T+3).   

3.3 Differences among the Nikkei 225 futures contracts 

Despite sharing the same stock market, the three Nikkei 225 futures contracts differ in many 

aspects. The most striking difference is in trading volume. Figure 3.2 shows the daily number of 

contracts traded on the three exchanges. Clearly, the OSE Nikkei futures contracts are the most 

heavily traded, with a daily average volume of 54,181 contracts. Given that the SGX futures 

contracts are half the size of the OSE futures contracts, the SGX volume is divided by two to 

facilitate direct comparison with the OSE volume. The adjusted SGX volume is much smaller, on 

average about 26,777 contracts are traded daily. The CME futures contracts are denominated in 

US dollars and thus the CME volume is unadjusted,27 but from the figure it is still evident that 

the CME futures contracts are the most thinly traded, on average about 6,767 contracts are traded 

daily. The OSE has been the largest market over the course of years, while the offshore 

exchanges (SGX and CME) are smaller in terms of trading volume.   

  

Another difference is in trading hours. The three exchanges are located in different time zones 

and the three Nikkei futures contracts are traded within different time periods. The OSE opens 

9.00-15.15, with an overnight session 16.30-3.00 (JST). The SGX opens 7.45-14.25, with an 

overnight session 15.15-2.00 (Singapore time, SGT), corresponding to 8.45-15.25 and 

16.15-3.00 (overnight) in terms of JST. Hence, the trading hours of the two markets are almost 

overlapping, and the SGX opening time is longer by 40 minutes. The longer trading time of the 

SGX may be important to liquidity investors and research supports the contribution of the extra 

minutes of the SGX to daily price changes (Covrig et al., 2004). The CME futures contracts are 

traded on both open outcry and electronic (Globex) systems during 1995-2015. The CME open 

                                                        
27 The CME futures contracts have a contract size of 5 dollars. If applying an exchange rate of 107.55 yen per dollar, which is 
the average yen-dollar middle rate during 1997-2014, the CME contract size amounts to about 54% of the OSE contract size. 
This accentuates the difference in volume between CME and the other two exchanges.  
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Figure 3.2 Trading volumes of the Nikkei 225 futures contracts 
Notes: (a)-(c) graph the daily number of contracts traded on the Nikkei futures markets over the period 
20/06/1996-31/12/2014 (OSE and SGX); 01/01/1997-31/12/2014 (CME). The SGX contracts shifted from 
open outcry to electronic trading on 01/11/2004, and thus the SGX volume is the number of the contracts 
traded on the floor before 01/11/2004, and the number of the contracts traded electronically after the date. The 
SGX volume is halved to facilitate direct comparison with the OSE volume. The CME adopts both open outcry 
and electronic trading during the period and the CME volume is the total number of the contracts traded on 
both systems. Data are from Datastream, OSE, SGX and CME. 
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outcry opens 8.00-15.15 (Central Standard Time, CST), which is equivalent to 23.00-6.15 (JST). 

As shown in Figure 3.3, there is no overlap in trading hours between the spot market and the 

CME open outcry, and only a short overlapping interval from 23.00 to 3.00 (JST) (or from 8.00 to 

12.00 in CST) between the OSE (or SGX) and the CME open outcry. Globex trades from 17.00 

to 16.15 the next day (CST), which envelopes the opening times of the other Nikkei markets. 

Although the CME Globex alleviates the effect of time zones, it is still likely that the OSE and 

SGX are more closely linked with each other by arbitrage which is essentially not affected by 

time differences, than any one of them with the CME. Further discussions are provided in section 

4.2.4, Chapter 4. 

 

(a) TSE and CME 

 
(b) OSE and CME 

Figure 3.3 Trading hours of the Nikkei 225 futures contracts 
Notes: (a) illustrates the trading hours of the TSE and CME; the bottom line shows the time when futures 
settlement price (F) and stock closing price (S) are generated. (b) illustrates the trading hours of the OSE 
(including the overnight session) and CME; the bottom line shows the time when the OSE, CME settlement 
prices are generated. The trading hours of the OSE and SGX are almost overlapping, and thus only the trading 
hours of the OSE and CME are compared in (b). The time is CST unless otherwise marked. The subscripts t-1, 
t and t+1 indicate the timing differences. Trading hours are presented as of 31/12/2014. 
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Table 3.1 The Nikkei 225 futures contracts 
 OSE SGX CME 

Underlying asset Nikkei 225 Nikkei 225 Nikkei 225 
Launch date 03/09/1988 03/09/1986 25/09/1990 
Contract size Index×¥1,000 Index×¥500 Index×$5 

Tick size 10 index points (¥10,000) 
5 index points (¥2,500); 

5 index points ($25) 
1 index point (¥500) for strategy trades 

Contract months 
Nearest 3 for Mar and Sept;  
nearest 10 for Jun and Dec 

Nearest 6 for serial months;  
nearest 20 for Mar, Jun, Sept, Dec 

Mar, Jun, Sept, Dec 

Trading hours 9.00-15.15, 16.30-3.00 (JST) 7.45-14.25, 15.15-2.00 (SGT) 
Floor trading: 8.00-15.15 (CST) 

Screen trading: 17.00-16.15 (CST) 

Daily price limits 
8%, 12%, 16% up/down of a base price 

calculated by the OSE 

1,000 points, 1,500 points, 2,000 points up/down 
of the previous settlement price for the front 

quarter month of the SGX contract 

8%, 12%, 16% up/down of a futures fixing price 
calculated by the CME 

Circuit breaker 
10% up/down of the price limit range;  

duration 10 minutes at least 
No trading halts No trading halts 

Margins per unit ¥720,000 
Initial margin: ¥396,000                                    

Maintenance margin: ¥360,000 
Initial margin: $3,600                                    

Maintenance margin: $3,600 a 
Mutual offset No mutual offset Mutual offset with the CME Mutual offset with the SGX 

Trading mechanism Screen trading 
Floor trading (before 01/11/2004) 

Floor trading and screen trading b 
Screen trading (after 01/11/2004) 

Last trading day The business day prior to the settlement date The business day prior to the settlement date The business day prior to the settlement date 
Final settlement day Second Friday of the contract month Second Friday of the contract month Second Friday of the contract month 

Final settlement price 
Special quotation based on the total opening 

prices of each constituent of Nikkei 225 index on 
the settlement date 

Special quotation based on the total opening 
prices of each constituent of Nikkei 225 index on 

the settlement date 

Special quotation based on the total opening 
prices of each constituent of Nikkei 225 index 

on the settlement date 
Settlement procedure Cash settlement Cash settlement Cash settlement 

Notes: The table presents the details of the Nikkei futures contracts traded on the OSE, SGX and CME as of 31/12/2014. a The CME margin levels are for hedgers or 
CME members. b The CME closed the floor trading system for the Nikkei contracts on 19/06/2015. Data are from the OSE, SGX and CME. 
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There are also differences in the details of the Nikkei futures contracts and regulatory policies. 

Table 3.1 provides a summary. First, denominated in yen, the OSE futures has a contract size 

(Nikkei index price×¥1,000) that is twice the contract size of the SGX futures (Nikkei index 

price×¥500). The smaller contract size of the SGX futures allows lower capital requirements and 

risks which may appeal to investors with capital constraints and/or risk aversion. In contrast, the 

CME contract has a multiplier of $5 and is transacted and settled in dollars. This special 

arrangement introduces currency risk to the arbitrage between the CME and any other Nikkei 

market, as the CME investors would frequently convert currencies and expose their arbitrage 

positions to the yen-dollar exchange rate fluctuations. It follows that the OSE and SGX should be 

more integrated through arbitrage activities aloof from the currency risk. Also, CME futures 

price deviations (mispricing) could be larger in size and quantity due to exchange rate 

fluctuations than the OSE and SGX mispricing. 

 

Second, the minimum price movement, or tick size, of the OSE contract is 10 index points, while 

the tick size of the SGX, CME contracts are 5 index points. The SGX allows an even smaller tick 

size of 1 index points for strategy trades. The tick size is closely related to trading volume and 

transaction costs. The OSE has the largest trading volume from Figure 3.2, which can be 

attributable to the large tick size of the OSE contract. However, finer tick sizes encourage more 

continuous price changes and narrower bid-ask spreads. Covrig et al. (2004) estimate the average 

percentage bid-ask spread on the OSE to be 0.069%, compared with that on the SGX to be 

0.040%. Given that the bid-ask spread is a main component of transaction costs, the offshore 

exchanges (the SGX and CME) are likely to offer lower transaction costs for Nikkei investors.  

 

Third, the OSE futures contracts have had a computerised trading system from the inception of 

the contracts. The SGX futures contracts used open outcry, but officially shifted from open 

outcry to electronic trading on 1 November 2004. The shift of the trading systems is smooth, 

without exerting a material effect on the SGX futures prices. This is because the SGX investors 

were given time to adapt to the electronic trading system (ETS) in overnight sessions and there 

was a period when both systems were available for trading. The ETS started to rival open outcry 

in volume from 1 November 2004, and shortly afterwards the ETS dominated and became the 
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only trading mechanism. The CME futures contracts were traded on the floor from its inception. 

The electronic trading platform CME Globex was introduced on 25 June 1992 and stock index 

products began to trade on Globex from 1995. Up until 2015, both open outcry and Globex were 

available for the CME Nikkei futures contracts. The CME closed the open outcry system on 19 

June 2015 for most stock index futures products including the Nikkei contracts, as a result of the 

decline in futures volumes on the system.  

 

Fourth, in terms of key regulatory policies, while all the three exchanges use price limits, the 

OSE employs a circuit breaker which is a cooling-off system triggered when a price stays at a 

price limit or within 10% of the price limit range for 1 minute. Once the circuit breaker is 

triggered, trading will be halted for at least 10 minutes. After the trading halt, trading will be 

resumed with the initial price determined by the Itayose method, and the price limit will be 

expanded. There are no trading halts in the SGX and CME. Besides, the OSE charges the highest 

margin for trading one contract, which is almost twice that charged by the SGX (partly because 

of the larger contract size in the OSE). If the CME margin $3,600 is converted to yen by an 

exchange rate of 107.55 yen per dollar, the average yen-dollar middle rate during 1997-2014, it is 

about ¥387,180, which is also lower than the OSE margin cost. Furthermore, the SGX, CME 

Nikkei futures contracts can be traded through the Mutual Offset System (MOS) which is a 

mutual agreement between the SGX and CME. The MOS allows investors to enter a position in 

either exchange and clear that position in either the SGX or CME without additional cost. 

Compared with the OSE, the offshore exchanges (the SGX and CME) provide a more lenient 

trading environment for Nikkei investors. 

3.4 Conclusion 

To summarise, Figure 3.4 (the same as Figure 1.1) provides a chronological view of the major 

historical events in the Nikkei markets. Most studies on the Nikkei markets were published in 

the early 1990s-early 2000s. In the subsequent empirical chapters, I will study the Nikkei 

markets with a comprehensive new 19-year sample period which includes a pre-crisis period 

and a post-crisis period divided by the 2008 global financial crisis and therefore is able to cover  
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Figure 3.4 Major historical events in the Nikkei markets  
Notes: This figure displays major historical events in the Nikkei markets in chronological order. The whole 
sample period of the dissertation is 20/06/1996-31/12/2014 (OSE and SGX); 01/01/1997-31/12/2014 (CME). 
The pre-crisis period (sample A) is during 28/06/1996-09/10/2008 (OSE, SGX); 09/01/1997-12/09/2008 
(CME). The post-crisis period (sample B) is during 04/11/2008-31/12/2014 (OSE, SGX); 
02/12/2008-31/12/2014 (CME).   

 

 

a series of recent major historical events, reflect the quickly changing market conditions, and 

compare the cross-border mispricing, price and volatility dynamics before and after the 2008 

global financial crisis. 

 

The unique characteristics of the Nikkei futures contracts and the key institutional differences 

can be summarised as the following. 

 

a) Triple-listing: the Nikkei futures contracts are traded on the OSE, SGX and CME, sharing a 

common stock market in the TSE. 

 

b) Market sizes: The OSE is the largest market and the OSE futures contracts are the most 

heavily traded, while the SGX and CME are smaller in terms of trading volume. 
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c) Time differences: the three futures exchanges are located in different time zones. For 

example, the time used in the CME is 15 hours behind the time used in the OSE. 

 

d) Currency denominations: trading and settlement on the CME involve US dollars while 

trading and settlement on the underlying stock market, the OSE and the SGX involve 

Japanese yen. 

 

e) Trading mechanisms: the OSE contracts have had been traded electronically, but the SGX 

contracts shifted from open outcry to electronic trading and the CME adopted both open 

outcry and electronic trading during my sample period. 

 

f) Transaction costs: there are differences in the Nikkei contract specifications and regulatory 

policies among the three exchanges. Generally speaking, the SGX and CME offer lower 

transaction costs and a more lenient trading environment for Nikkei investors. 

 

g) Dividend practices: the special dividend payout practices of Japanese firms which will be 

investigated in depth in Chapter 4. 

 

No previous research has fully considered the unique features of the three Nikkei futures and the 

key institutional differences listed above. I will study them in detail and allow for them in 

examining the spot-futures pricing relationship, market dynamics and the level of integration in 

and across the Nikkei futures exchanges in the subsequent empirical chapters. 
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Chapter 4  

Cost of carry, mispricing and index arbitrage in the Nikkei 225 

futures markets 
 

 

4.1 Introduction 

The cost of carry relationship defines the equilibrium between spot and futures markets. By this 

relationship, there should be a theoretical (or fair) futures price at any particular point in time, 

and any deviations from the theoretical price are measured as “mispricing”. The basic arbitrage 

decision rule states that it may not be possible to exploit mispricing profitably if the mispricing 

lies within no-arbitrage bounds determined by transaction costs (section 2.2.3, Chapter 2). For 

this reason, the economic significance of mispricing, or whether it represents profitable 

arbitrage opportunities, is of particular interest in practice. Based on one common stock index 

market (Tokyo Stock Exchange, TSE), the Nikkei 225 stock index futures contracts are traded 

on three equivalent yet different markets: Osaka Exchange (OSE), Singapore Exchange (SGX) 

and Chicago Mercantile Exchange (CME). Knowledge of the cost of carry relationship and the 

behaviour of mispricing in the three Nikkei futures markets is therefore invaluable for investors 

around the world.   

 

Recall from Chapter 2 that the standard cost of carry model of Cornell and French (1983a; 

1983b) is given by: 

 * ( )( )r d T t
t tF S e − −=  (2.1) 

where Ft
* is the theoretical (or fair) futures price at time t, St is the spot price at time t, (r-d) is the 

net cost of carry for the underlying stocks in the index. That is, the single, constant, risk-free 

interest cost r minus the known, constant, continuous dividend yield d. T is the maturity date of 

the futures contract and (T-t) is time to maturity, or the number of calendar days remaining in a 



 77 

futures contract until expiration. And the mispricing is defined as the difference between the 

actual (Ft) and the theoretical futures prices, normalised by the index value (MacKinlay and 

Ramaswamy, 1988):   

 
* ( )( )[ ]r d T t

t t t t
t

t t

F F F S eMis
S S

− −− −
= =  (2.4) 

While the two equations are widely used to study the behaviour of mispricing, they cannot be 

applied directly to the Nikkei futures contracts. This is because the triple-listing nature of the 

Nikkei contracts and key institutional differences among the Nikkei exchanges contribute to the 

special characteristics of the Nikkei futures contracts, such as dividend lumpiness, currency risk 

and different trading hours, and these characteristics require tailored formulas for the Nikkei 

contracts. However, previous research does not fully consider these characteristics, and yet 

ignoring them may lead to significant biases in the calculation of Nikkei futures mispricing. 

Besides, there is little research on the international dynamics of Nikkei futures mispricing - in 

particular, the speed of market responses to a given mispricing, or “propensity-to-arbitrage” 

(Taylor, 2007), such that the dynamic behaviour of mispricing remains unclear to market 

participants in the three Nikkei exchanges. In addition, extant studies on the static behaviour of 

Nikkei mispricing were mostly published in the 1990s; obviously they need to be updated to 

enable a deeper understanding of the quickly changing market conditions and the impact of the 

2008 global financial crisis. The above considerations motivate this chapter. 

 

The aim of this chapter is to investigate the static and dynamic behaviour of Nikkei futures 

mispricing using modified versions of the cost of carry model, to explore the index arbitrage 

activities in the Nikkei markets. Specifically, this chapter addresses the question whether the 

mispricing, if any, represent profitable arbitrage opportunities for investors in the three Nikkei 

futures markets. The starting point is to modify the standard cost of carry model by taking into 

account the unique dividend payout practices of Japanese firms, the yen-dollar exchange rate 

fluctuations, and the different trading hours among the Nikkei exchanges. The chapter also 

allows for the effect of transaction costs to analyse the Nikkei futures mispricing net of 

transaction costs. With a comprehensive new 19-year data range and (non-)parametric methods, 
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the chapter presents systematic evidence on the static behaviour of Nikkei mispricing, 

including magnitude, sign, persistence, path dependence, and the relationship of Nikkei 

mispricing with a set of variables. The dynamic behaviour of Nikkei mispricing is addressed by 

describing the Nikkei mispricing with an exponential smooth transition autoregressive (ESTAR) 

model, and the smoothness parameter in the ESTAR specification provides an estimate of the 

propensity-to-arbitrage. At the stage of modelling, the whole sample is split into a pre-crisis 

period and a post-crisis period, such that the international dynamics of Nikkei mispricing can 

be compared before and after the 2008 global financial crisis. The chapter further interprets the 

heterogeneous arbitrage behaviour by analysing the ESTAR model parameters, and reveals that 

the effect of heterogeneity may be weaker than the effect of transaction costs in the Nikkei 

markets.        

 

The chapter contributes to the literature in the following ways. First, the chapter takes into 

consideration the triple-listing nature of the Nikkei futures contracts and key institutional 

differences among the Nikkei exchanges in studying the cost of carry, mispricing and index 

arbitrage in the Nikkei markets. No previous research on the Nikkei futures pricing has 

considered the unique features of the Nikkei futures and the institutional differences as 

comprehensively as this chapter. The chapter finds that the effects of the dividend and currency 

risks are strongly significant on the pricing of the Nikkei futures contracts, while the effect of 

the time differences is insignificant. Based on this, it modifies the standard cost of carry model 

for each Nikkei contract. It also allows for the effect of transaction costs when examining the 

Nikkei futures mispricing. In this way, the chapter extends the work of Brenner et al. (1989a; 

1989b; 1990), Board and Sutclifffe (1996) in modifying the standard cost of carry model for 

dual- or triple-listed index futures contracts, and therefore deepens understanding the impact of 

divided lumpiness and currency risk on the spot, futures and mispricing. Second, this chapter 

substantially and significantly updates literature on the static behaviour of Nikkei mispricing, 

using a comprehensive new 19-year sample period and (non-)parametric methods. Third, there 

has been little published work on the dynamic behaviour of Nikkei mispricing as smooth 

transition models have never been applied to the three Nikkei futures markets. The chapter 
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examines the dynamics of Nikkei mispricing by an ESTAR model to disentangle different 

market responses to a given Nikkei mispricing. With the ESTAR model, it further investigates 

the level of heterogeneity in index arbitrageurs in the three Nikkei markets.      

 

The rest of the chapter is structured as follows. Section 4.2 modifies the standard cost of carry 

model for each of the Nikkei futures contracts, allowing for dividend risk, currency risk, 

different trading hours and transaction costs. Section 4.3 describes data and analyses the static 

behaviour of Nikkei mispricing. Section 4.4 provides methodology of the ESTAR modelling, 

empirical results about the dynamic behaviour of Nikkei mispricing from the perspective of the 

propensity-to-arbitrage, and interpretations of the ESTAR parameters as to heterogeneous index 

arbitrage activities. Section 4.5 discusses the main findings and concludes the chapter.      

4.2 The Pricing of Nikkei 225 futures contracts 

In this section, different versions of the cost of carry model will be applied to the Nikkei 225 

futures contracts traded on the OSE, SGX and CME to find out the most appropriate model for 

each market. A few general assumptions that apply throughout the section are listed below, 

although specific assumptions will also be set out in context. 

1) Arbitrage positions are not unwound early but held to maturity. 

2) There are no restrictions on short sales in the TSE. 

3) Initially, there are no transaction costs. This assumption will be relaxed in section 4.2.5. 

4) There are no taxes on gains or losses on the arbitrage positions.  

4.2.1 The dividend payout practices in Japan 

The institutional features of Japanese firms help to form their unique dividend payout practices 

that impact the theoretical prices of the Nikkei futures contracts through the dividend streams 

on the underlying index. First, the code law system in Japan puts low emphasis on 

individualism but high emphasis on uncertainty avoidance (Ho, 2003). In the past, Japanese 

executives regarded dividends as a cost to their businesses rather than as a reward for 

shareholders, and thus they intentionally kept dividend payouts low and stable. Although 
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financial reforms in the 1990s, especially the Japanese “Big Bang”,28 encouraged firms to 

increase dividend payments to attract investors, Japanese dividend payout rates remain at a low 

level, both in absolute and relative terms (Flath, 2014). Slight adjustments of dividends take 

place occasionally, but because Japanese firms are sensitive to adverse circumstances, they are 

more liable to reduce than to raise the amount of dividend payouts. Group influence on member 

firms is also widespread, as can be evidenced by clustered ex-dividend dates, i.e. a multitude of 

firms choose to go ex-dividend on the same day. Second, business group affiliation, or keiretsu, 

means that firms are integrated by long-term financial and non-financial ties, horizontally 

around a main bank or vertically around a core manufacturing firm, or mixed (Aggarwal and 

Dow, 2012), giving rise to concentrated ownership and prevalent cross-shareholdings. Many 

dividend studies support that the practice decreases information asymmetries and agency costs 

in keiretsu firms, providing some grounds for the low dividend payouts in Japan. Reforms have 

taken place in the 1990s to reduce the size and power of keiretsu, but their influence is still 

strong. Third, a few main banks act as the principal sources of corporate finance. The dual role 

of these banks, as creditors and shareholders, are not perfect substitutes, and they tend to take a 

conservative accounting approach in valuing assets and liabilities of the related firms, resulting 

in creditor protection in a credit-based system and depressed demands for dividends (Ho, 

2003). 

 

There are several important dates for Japanese dividend payments. The ex-dividend date is the 

third business day before the record date, which is 31st March for year-end dividends, and 30th 

September for interim dividends. Declaration date is around two months after the ex-dividend 

dates. Ordinary shareholders’ meetings are held to discuss and approve dividend proposals in 

late June, usually one business day before the dividend payment date. Similarly, meetings of 

board of directors are held in November for interim dividend issues. The dividend payment 

date, or effective date, varies from company to company, but generally it is in June for year-end 

dividends, and in December for interim dividends. Unlike firms in the US or the UK, Japanese 

                                                        
28 The Japanese “Big Bang” is a five-year financial deregulatory reform proposed by Japan’s government in November 1996, 
aimed at eliminating all partitions in Japanese financial markets no later than 2001. During the “Big Bang” period, a series of 
policies came into effect to remove barriers and increase competition among financial intermediaries (Flath, 2014). 
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firms tend to announce dividends after the ex-dividend dates and shortly before the annual 

meeting of shareholders. This means that investors on the ex-dividend date have to forecast 

future dividend inflows on the index to be received on the payment date over a period of about 

two months, which may introduce dividend uncertainty to index arbitrage activities. 

 

In the past, only a small portion of Japanese firms paid out dividends twice a year (Kato and 

Loewenstein, 1995). The regulatory changes in the 1990s made it easier for firms to increase 

the frequency of dividend payments, such that more and more firms listed on the TSE began to 

distribute dividends semi-annually. For my sample from 1996 to 2014, generally speaking, 

Japanese firms pay out dividends twice a year. Since most firms set March as the end of a fiscal 

year, they go ex-dividend in March and pay year-end dividends in June. Another ex-dividend 

date is in September, the end of the second quarter of a fiscal year, after which many firms pay 

out interim dividends in December.  

 

As to dividend size, despite the evidence of low and stable dividend flows on the Nikkei index in 

the early literature (e.g. Brenner et al., 1989a; 1989b; 1990), recent studies document a steady 

growth of dividend payouts in non-horizontal keiretsu firms (Ferris et al., 2006). Dividend yields 

have been gradually increasing as well. Statistics indicate that the average annualised dividend 

yield of the Nikkei index was 0.76% from 1996 to 1999, 1.09% in the 2000s, and 1.78% from 

2010 to 2014.29 These can be roughly compared with the data in Kato and Loewenstein (1995), 

in which the average dividend yield of the 1,203 firms listed on the First Section of the TSE was 

0.69% by 1990. The slowly growing trend is probably motivated by the regulatory changes in the 

1990s and 2000s. For example, the TSE now requires that firms pay a minimum amount of 

dividends in each of the three years before listing, and that once they are listed, they should 

commit to continuing the payouts (Aggarwal and Dow, 2012). For most Japanese firms, the 

relative sizes of the year-end dividends and the interim dividends are equal: they each take up 

50% of total dividends on average. In other words, the annual dividends are usually split evenly 

in June and December. 

                                                        
29 Data are from Thomson Reuters Eikon. 
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The new Corporation Law of Japan went into effect on 01/05/2006. Under the law, Japanese 

firms are permitted to pay interim and year-end dividends at any time during a fiscal year, and 

are permitted to choose flexible dividend payments, subject to certain limits on retained 

earnings and approval of shareholders. This may explain the more flexible dividend payout 

practices in Japan in recent years. For example, firms sometimes adjust dividends to corporate 

earnings and the business environment, alter their dividend payment dates, and use share 

repurchase as an alternative method of profit distribution. However, the general tendency of 

Japanese dividend payouts has not changed much. For the most part, firms continue to adopt a 

steady and sustained dividend policy to seek medium-term or long-term growth, and thus tend 

to maintain a prudent, conservative attitude towards the allocation of surplus. The common 

practice of evenly paying year-end dividends in June and interim dividends in December has 

been followed at least over the sample period. In addition, cash has always been the dominant 

form of dividend payouts in Japan.  

4.2.2 Dividend lumpiness 

In view of the unusual dividend payout practices, dividends of the constituents of Nikkei 225 

index are treated based on a few simplifying assumptions as below: 

a) Investors have perfect foresight - they are able to accurately forecast future dividends 

which is the same as actual, ex-post dividends;  

b) Dividends are certain; 

c) Dividends are only paid in the last 10 trading days in June and the first 10 trading days in 

December; 

d) Dividends are exempt from tax. 

 

Given the stable and predictable dividend flows on the Nikkei index over the sample period, 

assumption a) is justified as this study uses an implied dividend series, computed from the 

historical dividend yield of the index, as a proxy for the ex-post aggregate dividends. Of course, 

investors may incur forecasting errors in the real world, but the risks of such errors are not 
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likely to be important, as demonstrated by Yadav and Pope (1994). One might argue that the 

practice that Japanese firms tend to announce dividends after the ex-dividend dates induces 

dividend uncertainty. Nevertheless, assumption b) may still survive because of the availability 

of ex-ante dividend forecasts by the firms,30 and the stability and predictability of their 

dividend payouts. Moreover, since only the nearest contracts are used to compile the futures 

series, dividend uncertainty may be small during the short time to maturity (Yadav and Pope, 

1994; Tao, 2008). Assumption c) is based on a sample consisting of 35 companies randomly 

selected from the constituents of Nikkei 225 index. Historical dividend payment dates of the 

companies are traced back as far as possible, although the payment dates in the sample period 

of the chapter are inspected with special attention. It is found that most of the companies paid 

out dividends in June and December, and their dividend payment dates are clustered in the 

second half of June and the first half of December. The 10-working-day range is selected to 

remove weekends and to take into account possible slight changes made by firms as to the 

timing of their payouts over the years. Under the new Corporation Law of Japan, dividend 

payouts in Japan become more flexible, and firms are allowed to declare dividends at any time 

of a fiscal year, subject to certain criteria. While some of the sample companies amended their 

payment dates in recent years, assumption c) is generally held for the majority of the 

companies in most years in the sample period. As to tax on dividends, 50% of the total amount 

of dividends received is tax deductible for corporations. The remaining 50% subjected to a 

withholding tax rate of 20% from 1996 to March 2003, 10% from April 2003 to December 

2013, and then 20% from January 2014.31 Since cross-shareholding is prevalent in Japan, 

dividends paid by firm A to firm B and dividends paid by firm B to firm A could offset each 

other to some extent, leaving the taxable amount small. Even if tax is levied on that amount, 

given the low and stable dividend payouts of Japanese businesses, the magnitude of the tax 

could be smaller. Thus, the effect of the dividend tax is decided to be ignored as in assumption 

d), for the imposition of tax may complicate the cost of carry model, given the frequent tax 

reforms during the 19 years under consideration. 

                                                        
30 Japanese firms publish dividend forecasts on average 17.67 days before the ex-dividend dates (Kato and Loewenstein, 1995), 
and any revisions to these forecasts, to which investors can refer. 
31 Data are from the TSE and Ministry of Finance, Japan. 
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Following Brenner et al. (1989a; 1989b; 1990), Gay and Jung (1999), I use an adjusted cost of 

carry model for the Nikkei futures contracts traded on the OSE and SGX:  

 ( )( )* pt
T

r T pr T t
t t p

p t

F S e D e −−

=

= −∑  (4.1)  

where Ft
*, St, (T-t) are theoretical (or fair) futures price, spot price, time to maturity, respectively; 

rt is the annualised gensaki treasury bill overnight rate divided by 365; Dp is the aggregate 

dividends on the Nikkei index paid at time p, p∈[t,T], so that the dividend term, i.e. the second 

term on the right-hand-side of equation (4.1), measures the future value at time T of the 

accumulated dividend payments on the index. Since Dp is not directly available, it is proxied by 

an implied dividend series which is the product of the annualised dividend yield of the Nikkei 

index and the index closing price. The implied dividend series is then converted into a daily 

series following assumption c). To be more specific, it is divided by 2 to become year-end 

dividend series and interim dividend series, and then by 10 so that the outcome is the daily 

dividend amount paid on the index in the 10-day window in June or December. The daily 

dividend amount series is credited to futures’ maturity date on each of the proposed dividend 

payment dates, and summed over time to create the dividend term.     

 

For comparison, the standard cost of carry model, equation (2.1), is constructed for the same 

futures contracts, with rt as the annualised gensaki treasury bill overnight rate, and dt as the 

annualised dividend yield of the Nikkei index, both of which are divided by 365 to become daily 

rates. The standard model is denoted as COC1; equation (4.1) is denoted as COC2. Panel A of 

Table 4.1 shows the results of paired t-tests and Wilcoxon signed rank tests for the differences 

between the two models, in terms of theoretical futures price and futures mispricing.32 The null 

hypothesis is that the means (medians) of the differences are zero. The mean (median) difference 

of theoretical futures price in the OSE is about 20 (18) yen; the mean (median) difference of 

mispricing in the OSE is about 0.16% (0.14%). The counterpart values in the SGX are similar. 

These statistics are all significant at the 5% level, suggesting that the null hypothesis can be 

                                                        
32 Futures mispricing without transaction costs is computed using equation (2.4). 
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rejected in favour of the alternative that the mean (median) differences are significantly different 

from zero, and hence it may be appropriate to allow for the dividend payout practices of Japanese 

firms in the cost of carry model. As a further parametric test, the mispricing generated from 

COC1 is regressed on a constant and 20 dummy variables which represent the proposed 10 

dividend payment dates in June and 10 dividend payment dates in December. If mispricing on the 

dividend payment dates is significantly different from mispricing on non-payment dates, the 

coefficients of the dummy variables should be significant. Table 4.2 provides the regression 

results. Clearly, t-tests show that most of the coefficients of the dummy variables in the OSE and 

SGX are significant at the 5% (or 10%) level, and conventional F-tests indicate that the joint 

contribution of the 20 dividend payment dates is highly significant, which reinforces that 

dividend lumpiness significantly affects the Nikkei mispricing. However, it is puzzling that the 

10th dividend payment date, i.e. the last trading day of June, is not significant in any market. In 

fact, 57 out of the 225 constituent stocks paid out dividends on that day in 2014, and the end of 

June usually sees the most clustered dividend payouts during a year. The insignificance may be 

associated with time-related anomalies such as the turn-of-the-month effect,33 and thus the last 

trading day of June is still retained as one of the proposed dividend payment dates. Restricted 

versions of the regression are run to check the joint explanatory power of the June dummy 

variables and that of the December dummy variables, and F-statistics indicate that they are 

highly significant in each market.34 In light of the above, for the pricing of the OSE and SGX 

Nikkei contracts, I can conclude that COC2 is superior to COC1 because the former takes into 

account the specific dividend payout practices in Japan, and therefore will be adopted to 

calculate mispricing in the rest of the study.

                                                        
33 Another 11 dummy variables which represent the last trading day of each calendar month except June are added to the 
regression model, and negative, significant variables are found in May, August and December. However, dividends are seldom 
paid on the last trading days of the three months, and the significance is more likely to be associated with time-related 
anomalies. The joint marginal contribution of the dummy variables is significant at the 10% level in the SGX, but not in the 
OSE. There is therefore weak evidence of the turn-of-the-month effect. See Appendix 4.1 for more discussions. 
34 An additional set of 40 dummy variables which represents the 10 trading days before and after the proposed dividend 
payment dates in June and December, respectively, is added to the regression model. The significance of these new dummy 
variables displays a general trend of fade-away around the proposed payment dates. See Appendix 4.2 for more discussions.  
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Table 4.1 Model selection for Nikkei 225 futures contracts 
 

Panel A: Dividend risk and currency risk       

  OSE SGX CME (original) CME (past) CME (future) 
Differences in theoretical futures price (¥;$)       

COC1 vs COC2 Mean -19.5812** -19.7319** -0.1994** -0.1994** -0.1994** 
Median -17.9388** -18.1174** -0.1732** -0.1732** -0.1736** 

COC2 vs COC3 Mean   18.2374* 18.2876** 18.5470** 
Median   29.6363 29.6642 28.3943 

COC3 vs COC1 Mean   -18.0380* -18.0882* -18.3476** 
Median   -29.4162 -29.4977 -28.3631 

Differences in futures mispricing (%)       

COC1 vs COC2 Mean 0.1592** 0.1605** 0.0017** 0.0017** 0.0017** 
Median 0.1376** 0.1387** 0.0013** 0.0013** 0.0013** 

COC2 vs COC3 Mean   -0.0967 -0.0970 -0.0991 
Median   -0.2516* -0.2532* -0.2451* 

COC3 vs COC1 Mean   0.0951 0.0953 0.0974 
Median   0.2499* 0.2519* 0.2429* 

Panel B: Signed exchange rate effects (CME) a        

  Positive exchange rate effect Negative exchange rate effect 
  original past future original past future 

Differences in theoretical futures price ($)        

COC2 vs COC3 Mean -459.6443** -459.7624** -452.7612** 435.9399** 435.9399** 430.3092** 
Median -371.3157** -371.5022** -365.4715** 276.3951** 276.3951** 271.3176** 

COC3 vs COC1 Mean 459.8501** 459.9681** 452.9657** -435.7461** -435.7461** -430.1144** 
Median 371.6221** 371.7392** 365.5612** -276.1826** -276.1826** -271.0455** 

Differences in futures mispricing (%)        

COC2 vs COC3 Mean 3.4830** 3.4841** 3.4319** -3.2257** -3.2257** -3.1840** 
Median 2.8860** 2.8871** 2.8179** -2.2508** -2.2508** -2.2337** 

COC3 vs COC1 Mean -3.4847** -3.4858** -3.4336** 3.2241** 3.2241** 3.1824** 
Median -2.8855** -2.8874** -2.8193** 2.2499** 2.2499** 2.2303** 
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Table 4.1 continued 
 

Notes: This table compares different versions of the cost of carry model for Nikkei 225 futures contracts traded on the OSE, SGX and CME, in terms of differences in 
theoretical futures price and mispricing calculated from COC1, COC2 (OSE, SGX, CME) and COC3 (CME). The mean differences are tested by paired t-tests; the 
median differences are tested by Wilcoxon signed rank tests. The null hypothesis is that the mean (median) differences are zero. Panel A compares the models in pair 
for the three futures contracts. Panel B compares the models in pair for the CME futures contracts, after positive and negative exchange rate effects are separated. The 
CME results are listed in the order of original view, past view and future view. Panel C compares the three views in pair by each cost of carry model for the CME 
futures contracts. Negative signs are due to the order of comparison: all the differences are calculated by subtracting the theoretical futures price or mispricing in the 
second model (or view) from that in the first model (or view). Theoretical futures price is in yen for the OSE and SGX futures contracts; in dollars for the CME 
futures contracts. Mispricing is in percentage. a 12 trading days with zero exchange rate effect are randomly included in the tests on the positive and negative 
exchange rate effects, half in each category. **denotes significance at the 5% level. *denotes significance at the 10% level. 
 
 

Panel C: Different trading hours (CME)     
  COC1 COC2 COC3 

Differences in theoretical futures price ($)     

Past vs Future Mean 0.0608  0.0608  0.3201  
Median 0.0000  0.0000  0.0000  

Past vs Original Mean 0.0000  0.0000  0.0000  
Median 0.0000  0.0000  0.0000  

Future vs Original Mean -0.0608  -0.0608  -0.3201  
Median 0.0000  0.0000  0.0000  

Differences in futures mispricing (%)     

Past vs Future Mean -0.0005 -0.0005 -0.0026 
Median 0.0000 0.0000 0.0000 

Past vs Original Mean 0.0099 0.0099 0.0099 
Median 0.0485 0.0485 0.0485 

Future vs Original 
Mean 0.0104 0.0104 0.0125 

Median 0.0498 0.0498 0.0512 
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Table 4.2 Dividend payment dates and dividend lumpiness 
 

 OSE SGX 

Coefficient Unrestricted Restricted Unrestricted Restricted 
  Jun dummies Dec dummies  Jun dummies Dec dummies 

β0 0.0009**  0.0010**  0.0010**  0.0010**  0.0011**  0.0011**  
β1 0.0027**  0.0026**   0.0029**  0.0028**   
β2 0.0026**  0.0025**   0.0029**  0.0028**   
β3 0.0012*  0.0011   0.0013**  0.0012*   
β4 0.0011*  0.0011*   0.0016**  0.0015**   
β5 0.0015**  0.0014*   0.0015**  0.0014**   
β6 0.0006  0.0005   0.0010*  0.0009   
β7 0.0020**  0.0019**   0.0023**  0.0022**   
β8 0.0020**  0.0019**   0.0023**  0.0022**   
β9 0.0018**  0.0017**   0.0016**  0.0015**   
β10 -0.00001  -0.0001   -0.0004  -0.0005   
β11 0.0030**   0.0029**  0.0023**   0.0023**  
β12 0.0013*   0.0012  0.0014**   0.0014**  
β13 0.0029**   0.0028**  0.0029**   0.0028**  
β14 0.0020**   0.0019**  0.0015**   0.0014**  
β15 0.0024**   0.0024**  0.0028**   0.0027**  
β16 0.0023**   0.0022**  0.0022**   0.0021**  
β17 0.0029**   0.0029**  0.0026**   0.0025**  
β18 0.0012**   0.0012**  0.0014**   0.0013**  
β19 0.0022**   0.0022**  0.0022**   0.0021**  
β20 0.0025**   0.0024**  0.0022**   0.0022**  

F-statistic 7.1521**  9.5780**  5.2105**  6.0785**  7.2182**  5.3713**  
R2 0.0306    0.0258    

No. of obs 4554    4603    

Notes: This table provides the results of an ordinary least squares (OLS) regression of the mispricing 
calculated from the standard cost of carry model, equation (2.1), on 20 dummy variables that represent the 
proposed dividend payment dates, i.e. the last 10 trading days in June and the first 10 trading days in 
December, for Nikkei 225 futures contracts traded on the OSE and SGX. The regression model is:

  
t

p
ppt DMis εββ ++= ∑

=

20

1
0

 

where Mist is the futures mispricing calculated from equation (2.1); β0 is a constant term; εt is an error term; 
Dp=1 if the day is the pth dividend payment date, 0 if otherwise; βp is the coefficient of the corresponding 
dummy variable. The proposed dividend payment dates are in ascending order: p=1 for the 1st dividend 
payment date (the 10th trading day counted backwards in June), p=11 for the 11th dividend payment date (the 
1st trading day in December), etc. The unrestricted versions of the regression are estimated with the 20 
dummy variables. The restricted versions of the regression are estimated with the 10 June dummy variables 
(D1 to D10) and the 10 December dummy variables (D11 to D20). ** denotes significance at the 5% level. * 
denotes significance at the 10% level.
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4.2.3 Currency risk 

CME Nikkei futures contracts are traded on the Nikkei index, but have a contract multiplier of 

5 dollars and are denominated in dollars. This feature makes the CME Nikkei futures contracts 

a quanto, as trading and settlement involve dollars while trading and settlement on the 

underlying stock market, the TSE, involve yen. Obviously, this special arrangement introduces 

currency risk to the index arbitrage, as arbitrageurs would have to convert currencies and 

expose their arbitrage positions to yen-dollar exchange rate fluctuations. In this regard, the cost 

of carry model should also allow for the effect of such risk on the CME Nikkei futures 

contracts, so that the theoretical futures price and mispricing generated from the cost of carry 

model could reflect the higher risk and compensation required by investors in the CME. The 

dividend assumptions discussed in section 4.2.2 still apply, but extra assumptions are needed 

for the CME Nikkei futures contracts: 

e) Investors in the CME are from the US. They observe US holidays and use the financial 

markets in the US. Central Standard Time (CST) is applied each trading day. 

f) The trading hours of the CME and TSE are overlapping. This will be relaxed in section 4.2.4. 

 

To make things simple, it is necessary to differentiate futures and stock prices from the actual 

costs of the arbitrage positions. Futures and spot prices are usually expressed as indices, which 

are pure numerical values without regard to currency denomination. However, the actual cost is 

the amount of money invested on the futures (spot) contracts; it equals the contract multiplier 

times the futures (spot) price, and thus is denominated in dollars (yen). Let the futures price be Ft, 

the spot price be St, and their respective actual costs in the futures and spot markets be Gt and Ht. 

When the futures contracts mature at time T, gains or losses on the CME Nikkei futures contracts 

depend on the difference between Gt and GT, and GT does not equal HT, because GT=mFT, or 

GT=mST; but HT is the yen equivalent of mST, where m is the dollar multiplier. 

 

The derivation and notation below is based on the framework of Board and Sutcliffe (1996). 

Suppose that, at time t, a typical investor in the CME Nikkei futures market shorts a futures 
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contract, at the cost of Gt; borrows money at risk-free interest rate rt and uses it to long a unit of 

stock (or portfolio) in the TSE, at the cost of Ht. All dividends Kp received at time p on the stock 

position are converted to dollars and invested at the risk-free rate rp. The dividend amount 

received on the Nikkei index itself is Dp, and Dp = Kp/m. At maturity T, the investor repurchases 

the futures contract and sells the stock at costs GT and HT, respectively. She also pays back the 

loan and gains the dividends invested earlier with interest. 

 

Denote ct, cp, and cT as the yen value of one dollar at time t, p, and T, respectively. The cash flows 

to the investor at different times can be tabulated as follows: 

 
Table 4.3 Long arbitrage in the CME 
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Notes: A long arbitrage requires buying stock and selling futures at time t; then selling the stock and 
repurchasing the futures at time T. A short arbitrage requires selling stock and buying futures at time t; then 
buying back the stock and selling the futures at time T. 

 

The no-arbitrage condition requires that this index arbitrage strategy generate zero net cash flows 

at time T. Or: 
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Rearranging equation (4.2) gives 
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Board and Sutcliffe (1996) show that Ht=mStct, HT/Ht=ST/St. Since the futures and spot prices are 

usually reported as index values, equation (4.3) is rewritten in terms of index values as below: 
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The first two terms on the right-hand-side of equation (4.4) constitute a cost of carry model 

adjusted for dividend lumpiness. However, each dividend received on the index needs to be 

converted to dollars on each dividend payment date p by dividing the dividend by cp, the yen 

price of dollars at time p. The last term is the rate of change in the exchange rate between time t 

and time T, adjusted by the spot price at time T. Equation (4.4) displays the sources of currency 

risk contained in the CME Nikkei futures prices: exchange rate fluctuations on dividend payment 

dates p and futures’ maturity date T, and the spot price at maturity T. Since these important 

variables are uncertain as of time t and cannot be perfectly hedged, index arbitrage activities in 

the CME Nikkei futures market are not strictly risk-free. Hence, equation (4.4) actually gives a 

nearly fair price for the CME Nikkei futures contracts. It is denoted as COC3 for comparison 

with the other two versions of the cost of carry model. 

 

COC3 is constructed for the CME Nikkei futures contracts. The risk-free interest rate is proxied 

by the annualised federal funds effective rate converted to a daily rate. The yen-dollar exchange 

rate is fixed at noon in New York (approximately 11.00am in the CME) each trading day, and is 

used to represent the rate to which investors refer throughout the day. For comparison, COC1 and 

COC2 are also built for the same CME futures contracts, yet with modifications.35 Specifically, 

dt is converted to its dollar equivalent in COC1, by dividing the dollar-denominated implied 

dividend series by the index closing price. Besides, rt and dt are converted to daily rates. In COC2, 

daily dividends received on the index are converted to dollars using the corresponding exchange 

rate on that day.36  

                                                        
35 The cost of carry models are built for the CME Nikkei futures contracts without regard to the effect of the different trading 
hours between the CME and the TSE. In other words, each model is actually in an original view that ignores a 1-day time lag 
between the stock closing price and the futures settlement price. See section 4.2.4 for discussions of this effect. 
36 See Table 4.4 for these specifications. 
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As shown in Panel A of Table 4.1, like the OSE and SGX Nikkei futures contracts, the mean 

(median) differences of the CME Nikkei futures contracts between COC1 and COC2 in 

theoretical futures price and mispricing are significant at the 5% level, which confirms that the 

lump-sum adjustment of dividends is appropriate. Paired t-tests show that the mean differences 

in theoretical futures price between COC2 and COC3, and between COC3 and COC1 amount to 

about 18 dollars, and are all significant at the 10% level. Wilcoxon signed rank tests show that 

the median differences in mispricing between COC2 and COC3, and between COC3 and COC1 

are 0.25%, which are also significant at the 10% level. One might notice that the median 

difference in theoretical futures price and the mean difference in mispricing are not significant. 

This is probably because the exchange rate effect measured by the last term on the 

right-hand-side of equation (4.4) could be positive or negative each trading day. For the whole 

sample, the positive effect of the exchange rate on some days could offset the negative effect of 

the exchange rate on other days. Given that the only difference between COC3 and COC2 is the 

exchange rate effect, and COC2 and COC1 produce similar (yet significantly different) results, 

the differences between COC3 and COC2 (COC1) over the sample period may not be as 

significant as expected.  

 

The necessity of the currency risk adjustment is further checked by running an OLS regression of 

the last term on the right-hand-side of equation (4.4) on a constant. If the exchange rate effect is 

significantly different from zero, the constant should be significant. The regression result 

suggests a constant of -18.2374, with t-statistics -1.9586 and p-value 0.0502. It is likely that 

currency fluctuations indeed impact the fair price of the CME contracts. As a further test, 

positive exchange rate changes are separated from negative exchange rate changes, and paired 

t-tests and Wilcoxon signed rank tests are repeated for the model differences in theoretical 

futures price and mispricing. The results are provided in Panel B of Table 4.1. The differences 

between the models are much larger in magnitude, and more importantly, they are all strongly 

significant. Taken together, the significant differences in Table 4.1 indicate that ignoring the 

special dividend payout practices and exchange rate fluctuations may lead to significant biases in 
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the pricing of the CME Nikkei futures contracts. As such, COC3 may be more suitable for the 

CME contracts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Signed mispricing and exchange rate fluctuations 

Notes: The figure illustrates the implication of the cost of carry model adjusted for dividend and currency 
risks, in terms of the relation between the sign of mispricing and the tendency of the yen-dollar exchange 
rates. The CME mispricing calculated from COC3 is assigned to the left axis; the exchange rate is assigned 
to the right axis. Mispricing is in percentage; the exchange rate is expressed as yen per dollar. 

 

 

The no-arbitrage argument predicts that if the yen appreciates relative to dollar over the life of the 

CME futures contract, the actual futures price will tend to exceed its theoretical price, in that 

investors with stock positions would profit from the conversion of yen to dollar at maturity of the 

futures contract. It follows that futures should be overpriced in the CME to maintain the 

no-arbitrage condition. Likewise, underpricing should be associated with a depreciation of the 

yen relative to dollar over the life of the contract. Figure 4.1 plots together the yen-dollar 

exchange rate and the futures mispricing computed from COC3. Clearly, overpricing tends to 

predominate during the periods of 1998-1999, 2002-2004 and 2007-2011, when yen showed a 

general tendency to increase in value relative to dollar. The reverse is true when yen depreciated. 
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The subsequent analysis on the sign of the CME mispricing indicates that overpricing dominates 

the CME over the sample period (Table 4.7), which is consistent with the overall tendency of the 

appreciation of yen relative to dollar. For comparison, the mispricing generated from COC2 is 

also checked for its sign. In the periods of 1998-1999, 2002-2004 and 2007-2011, 1,077 

overpricings are found against 1,445 underpricings; over the whole sample, 1,826 overpricings 

are found against 2,713 underpricings. Since COC2 also implies overpricing associated with yen 

appreciation due to the conversion of dividends, the preponderance of underpricing from COC2 

contradicts the general tendency of the appreciation of yen relative to dollar, and thus suggests 

that COC2 by lack of the currency risk adjustment may not be correct in pricing the CME futures 

contracts. In contrast, COC3 is consistent with the conjecture that arbitrageurs require more 

overpriced (underpriced) futures contracts in response to higher risk of yen appreciation 

(depreciation) relative to dollar, and that currency fluctuations markedly influence the CME 

mispricing. It follows that COC3 will be used for the CME Nikkei futures contracts in the rest of 

the study.    

4.2.4 Different trading hours 

The above logic rests on the assumption that the spot market, TSE, and the futures market, 

CME, have simultaneous trading hours. Before 1995 when CME stock index products started 

to trade on an electronic trading platform called Globex, this assumption was not realistic.37 As 

the CST used in Chicago is 15 hours behind the JST used in Tokyo,38 the opening hours of the 

TSE, 9.00-11.30, 12.30-15.00 (JST), correspond to 18.00-20.30, 21.30-0.00 (CST), and they do 

not overlap with the opening hours of the open outcry system in the CME, 8.00-15.15 (CST). 

Figure 4.2 illustrates the non-overlapping trading hours of the TSE and the open outcry system 

in the CME.  

                                                        
37 The CME Globex trading platform was first introduced to exchange rate and interest rate products in 1992 and then to stock 
index products in 1995.   
38 The CME observes Central Daylight Time (CDT) which was between the first Sunday in April and the last Sunday in 
October until 2006, and is between the second Sunday in March and the first Sunday in November from 2007, during which 
clocks are turned forward by 1 hour, such that the time gap between the TSE and the CME reduces to 14 hours. As a result, the 
common trading hours of the two markets are 19.00-21.30, 22.30-1.00 (CST). But this does not affect the existence of the time 
lag between the stock closing price and the futures settlement price.    
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(a) TSE perspective 

 

(b) CME perspective 
 
Figure 4.2 Trading hours of the CME futures and the underlying spot markets 
Notes: The figure illustrates the trading hours of the CME and TSE, and any overlapping between their 
trading hours on a typical trading day t as of 31/12/2014. The bottom line shows the time when futures 
settlement price (F) and stock closing price (S) are generated, from the perspectives of the TSE (a) and CME 
(b). The subscripts t-1 and t indicate the timing differences. The time is CST unless otherwise marked. 

 

 

One of the many contributions of the CME Globex trading system is that it extends the trading 

hours of the CME to nearly 24 hours a day. For Nikkei futures contracts, trading in Globex starts 

at 17.00 (CST) on day t-1 and closes at 16.15 (CST) on day t. This allows the typical investor in 

the CME to engage in the aforementioned long arbitrage strategy by shorting futures and longing 

stock, and doing the reverse during 18.00-20.30, 21.30-0.00 (CST), when the TSE and the CME 

open simultaneously, as shown in Figure 4.2. Index arbitrage between the TSE and the CME 

seems to be almost riskless once dividend lumpiness and currency fluctuations have been 

sufficiently accommodated. However, the different daily settlement time ranges in the two 

markets still introduce a time lag between stock closing price and futures settlement price, which 



 96 

may pose an additional risk to the arbitrage activities. From the perspective of the stock market 

(Figure 4.2(a)), the stock closing price St is generated in the afternoon closing auction at 15.00 

(JST) or 0.00 (CST), whereas the futures settlement price Ft is derived during 15:14:30-15:15:00 

(CST). It is assumed that St incorporates the spot market information up to 0.00 (CST) on day t, 

and Ft incorporates the futures market information up to 15.15 (CST) on day t. As riskless 

spot-futures arbitrage occurs when both markets are open, if information generated by the 

arbitrage activities in the common trading hours can be revealed and transmitted by market 

prices, the information contained in St is likely to match the information contained in Ft; yet the 

information contained in St leads the information contained in Ft by 1 trading day. Besides, 

dividends are usually paid during Japanese business hours, and thus Dp should be on the same 

day as the stock market. 
 

Ideally, investors aiming for a riskless profit convert currencies at the spot exchange rate and 

invest money at the spot interest rate in the common trading hours. However, those data are not 

available. Instead, ct is fixed at around 11.00 (CST), and rt is supposed to be published before 

15.15 (CST) on day t, each of which precedes the time when index arbitrage activities take place 

on day t. From the perspective of the CME investors (Figure 4.2(b)), there are two possible 

views as to the selection of the rates: a past view and a future view. The past view means that 

investors tend to consult historical rates in arbitrage activities - they trade in the common trading 

hours and use the rates released prior to the common trading hours, yet on the same day. Since ct 

and rt become available before trading commences on day t, they are likely to be applied to the 

stock closing price St, such that they convey the same kind of information as that in St. By 

contrast, the future view means that investors are able to forecast the rates for tomorrow, and 

arbitrage activities are based on the perfect foresight assumption: the rates forecasted and used 

by investors on day t-1 equal the actual rates on day t. Thus, ct and rt on day t can be known 

precisely on day t-1 in the arbitrage associated with St-1. Similarly, ct+1 and rt+1 are respectively 

used to convert and invest St, and so forth. Table 4.4 compares the two views with an original 

view that ignores the time lag between the stock closing price and the futures settlement price, 

regarding the selection of variables and modifications to COC1, COC2 and COC3 in each view. 
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Table 4.4 The cost of carry model in different views for the CME futures contracts 
 

 Original view Past view Future view 

Variables St, Ft, Dp (dt), ct, rt St, Ft+1, Dp (dt), ct, rt St, Ft+1, Dp (dt), ct+1, rt+1 
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Notes: This table compares the cost of carry model in different views as to variable selection and model modifications for the CME futures contracts. The original 
view ignores the time lag between the stock closing price in the TSE and the futures settlement price in the CME. From the perspective of the CME investors, the past 
view assumes that the historical rates released prior to arbitrage, yet on the same day, are used in arbitrage; the future view assumes that rates on the next day can be 
known precisely and used in arbitrage today. The first row shows the variables that are required in the cost of carry model in each view. The variables are stock 
closing price (S), futures settlement price (F), exchange rate (c) and risk-free interest rate (r). Their subscripts t and t+1 indicate the timing difference. Since COC1 
uses the continuous dividend rate dt, while COC2 and COC3 use the aggregate dividend term Dp paid on day p, Dp is followed by dt which is in brackets, as they both 
are dividend-related variables. The following rows list the modifications to the three versions of cost of carry model using the variables. a dt has been converted to its 
dollar equivalent using ct. b dt has been converted to its dollar equivalent using ct+1. 
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The effect of the different trading hours is examined by performing paired t-tests and Wilcoxon 

signed rank tests for differences in CME theoretical futures price and mispricing generated from 

the modified versions of COC1, COC2 and COC3 in each view, with the null hypothesis of zero 

mean (median) differences. The results are presented in Panel A of Table 4.1. It is found that 

these results are qualitatively the same as those of the CME data in the original view, which 

suggests that the difference in trading hours may not be important. Panel B gives the test results 

for the past view and the future view when positive and negative exchange rate effects are 

separated. Again they are very close to the results generated in the original view. More directly, 

the three views are compared pairwise by each cost of carry model. The null hypothesis is that 

the means (medians) of the differences between any two views in theoretical futures price and 

mispricing are zero. As indicated in Panel C of Table 4.1, the differences are all very small in 

magnitude, with the means (medians) close to zero; paired t-tests and Wilcoxon signed rank tests 

suggest that none of the mean (median) differences is significant at any conventional level. This 

is probably due to the short period of the time lag, as it only lasts for 1 trading day. The exchange 

rate is relatively stable in the sample period, and it further smoothes the effect of the 1-day time 

lag. Since the impact of the different trading hours is negligible, index arbitrageurs in the CME 

Nikkei futures market could ignore the 1-day time lag between the stock closing price and the 

futures settlement price. Moreover, as the differences among the past view, the future view and 

the original view are trivial, the timing of the rates is less important, as long as they are on day t 

or t+1, in association with trading on day t. By contrast, more attention should be paid to the 

dividend risk and currency risk embodied in the CME Nikkei futures contracts. Therefore, for 

simplicity, COC3 in the original view will be adopted to form the CME mispricing series from 

now on.  

4.2.5 Transaction costs 

The effect of transaction costs on the pricing of the Nikkei futures contracts is considered here. 

The assumption 3) at the beginning of section 4.2, i.e. no transaction costs, is replaced with the 

assumption that transaction costs are one-off payment made at the start of each trade. In general, 

transaction costs invite lower and upper limits around the fair futures price, within which 
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arbitrage activities are not profitable. Denote TCt
U as the transaction costs at time t of a long 

arbitrage, and TCt
L as the transaction costs at time t of a short arbitrage, both of which include the 

costs of dividend and currency risk adjustments. The transaction costs are measured in relative 

terms as percentages of the index value. Based on Brenner et al. (1989a), the lower limit, Ft
L, and 

the upper limit, Ft
U, can be formulated for the OSE and SGX Nikkei futures contracts: 
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Similarly, the lower and upper limits for the CME Nikkei futures contracts: 
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With transaction costs, the mispricing formula, equation (2.4), is modified as below (Fung and 

Draper, 1999):  
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 (4.7) 

Equation (4.7) clearly shows that mispricing opportunities (and profitable arbitrage activities) 

only appear when actual futures price Ft move away from the lower and upper transaction cost 

bounds. Equations (4.5a)-(4.7) will be used to compile the mispricing series of the Nikkei 

futures contracts in the presence of transaction costs. 

4.3 Data 

4.3.1 Data description 

Daily closing prices of Nikkei 225 index and daily settlement prices of the corresponding futures 
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are collected from Datastream, OSE, SGX and CME, during the whole sample period 

20/06/1996-31/12/2014 (OSE and SGX); 01/01/1997-31/12/2014 (CME).39 The starting date is 

the earliest possible date I can find with dividend data (OSE and SGX), or with sufficient trading 

volume (CME). Although higher-frequency intraday data have been used in some literature, 

daily data are used in this study due to the daily re-settlement procedure in futures markets. 

Futures contracts are marked to market on a daily basis, and the gains or losses on a particular 

contract are realised at the end of a trading session each trading day, with reference to the daily 

settlement price. It follows that the daily settlement price reflects the arbitrage activities and the 

supply-demand relation in the futures market each trading day. In nature, mispricing is a measure 

of the deviation from the theoretical futures price. The daily settlement price as a benchmark of 

everyday trading activities makes it more meaningful to quantify such deviations on a daily basis. 

Statistically, the power of many tests will not improve by increasing the number of observations 

without extending the data range (Shiller and Perron, 1985). In other words, given the sample 

period, intraday data will not necessarily produce better statistical power than daily data. Instead 

of using intraday data, therefore, I make my sample as long as possible, and the 19 years under 

consideration should be sufficient to generate reasonable power. Non-trading days such as 

weekends and public holidays are excluded from the sample according to Japanese holiday 

observances for the TSE and OSE, and US holiday observances for the CME. The SGX used the 

same holiday schedule as the OSE until March 2011, and thus Japanese holiday observances are 

applied for the SGX data until March 2011. Since April 2011, the SGX has been using a different 

trading calendar for the Nikkei futures contracts; and from then on, only trading days with zero 

volume and unchanged open interest are deleted for the SGX. The futures, spot prices are 

matched with other rates each trading day in each market; dates when these series do not match 

each other are removed. The total observations are 4554 (OSE), 4603 (SGX), 4539 (CME).   

 

The contract months of the OSE and CME futures contracts follow the usual quarterly cycle - 

March, June, September and December, while the SGX futures contracts mature in the quarterly 

months plus a few serial months. Compared with contracts that expire in serial months, contracts 
                                                        
39 In the process of modelling, this sample is split into a pre-crisis period (sample A) and a post-crisis period (sample B). See 
Table 4.15. 
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that expire in the quarterly months in the SGX are more actively traded, probably because of 

cross-hedging, so that their prices contain more information. As such, only the contracts that 

mature in the quarterly months are considered in each market. Since there are several futures 

contracts with different maturities at a specific time point in each market, a single continuous 

series of futures price does not exist. Following convention, a continuous, synthetic futures price 

series is compiled using the prices of the nearest contracts and moving onto the next nearest 

contract at the start of the expiration month.40 This is because the nearest contracts are the most 

actively traded, and thus their prices contain more information. Besides, futures prices in the 

expiration month usually exhibit excessive volatility due to final settlement, known as the 

expiration effect, which has been reported in the Nikkei markets by Daal et al. (2006). The 

common practice has been adopted in many studies on the Nikkei markets (e.g. Iihara et al., 1996; 

Booth et al., 1996; Watanabe, 2001; Covrig et al., 2004).   

 

The gensaki treasury bill overnight (middle) rate is selected as a proxy for the risk-free interest 

rate in the OSE and SGX, because it is a repo rate with treasury bills as collateral, and it is an 

open market rate, free from the price control of Ministry of Finance, Japan. In the literature, 

various kinds of gensaki rates have been widely used, as they represent the longest continuous 

time series of short-term interest rates in Japan (Flath, 2014), which may facilitate the 

comparison of the results of this study with those of the existing literature. In addition, foreign 

investors, whose trading volume takes up 70.5% of the total volume of the OSE Nikkei futures 

contracts in 2014, 41  are exempted from transaction tax in the gensaki market and from 

withholding tax and corporation tax in trading treasury bills, which is consistent with the general 

assumption 4) at the beginning of section 4.2, i.e. no taxes. In the CME, the proxy for the 

risk-free interest rate is the daily effective federal funds (middle) rate, because the CME Nikkei 

futures contracts are denominated in dollars, and assumption e) in section 4.2.3 argues that 
                                                        
40 The SGX Nikkei contracts shifted from open outcry to electronic trading on 01/11/2004. Apart from the roll-over, the SGX 
futures price series is compiled as the settlement prices on the floor before the date, and the settlement prices traded 
electronically after the date. It is deemed that the shift is smooth and does not introduce jumps to the series. This is because 
investors in the SGX were given a period to adapt to the electronic trading system (ETS) in overnight sessions and there was a 
period when both systems were available for trading. In fact, the ETS started to rival open outcry in volume from 1/11/2004, 
and shortly afterwards the ETS dominated and became the only trading mechanism. Visual inspection and Quandt-Andrews 
unknown breakpoint test find that there are no discernible breaks in the compiled series around the date. Results are available 
upon request.    
41 Data are from the OSE. 



 102 

American investors will tend to use financial markets in the US. The effective federal funds rate 

is a weighted average of the rates of inter-bank borrowing or lending overnight without collateral 

through brokers at the Federal Reserve. Compared with other alternatives, the effective federal 

funds rate has a longer history sufficient to cover the chosen sample period. The gensaki rate and 

the federal funds rate are obtained from Datastream. 

 

The daily dividend yield of Nikkei 225 index is collected from Thomson Reuters Eikon. For 

missing values in the dividend yield series, values on the previous trading days are filled in, 

assuming that the dividend yield remains constant on the missing day.42 Given that the index is 

price weighted, the implied dividend series is computed as the product of the dividend yield and 

the corresponding index closing price on the previous trading day. The daily exchange rate is 

downloaded from Datastream. Expressed as the yen price of one dollar, it is the middle rate 

employed in cable transfers in New York, sampled and certified by the Federal Reserve Bank of 

New York. It is selected because the fixing-time rates would more precisely represent the actual 

rates at which investors convert currencies in the midst of their arbitrage activities, compared 

with averaged rates. The selected exchange rate is fixed at noon in New York, or approximately 

11.00am in the CME; as there are nine time zones in the US, the fixing time should be an 

appropriate hour when investors around the US have started trading.  

 

The transaction costs of two types of investors, brokers and institutional investors, are estimated 

for the Nikkei futures markets.43 Here brokers are differentiated from institutional investors in 

the sense that brokers trade on behalf of customers while institutional investors trade for their 

own sake. Apart from that, I do not separate the transaction costs of domestic brokers 

(institutional investors) from those of foreign brokers (institutional investors). In general, 
                                                        
42 There are altogether 22 trading days with missing values. Considering the length of the sample period, and the stability of 
Japanese dividend payments, it is deemed that the assumption would not lead to important errors in the results.  
43 Individual investors are not taken into account in this study, because (a) they are barred from trading gensaki and/or treasury 
bills in Japan, meaning that the cost of carry relationship cannot model their theoretical futures prices if the gensaki treasury 
bill rate is used to proxy for the risk-free interest rate required in the cost of carry model; (b) the trading volume of individual 
investors accounts for 10.1% of the total volume of the OSE Nikkei futures contracts in 2014; the counterpart is 70.5% (foreign 
investors), 18.7% (institutional investors). Instead, individual investors are more likely to trade Nikkei 225 E-mini futures, 
occupying 19.9% of its total volume in 2014 (data from the OSE); (c) individual investors typically face higher transaction 
costs than institutional investors, who in turn face higher transaction costs than brokers. In practice, the width of the 
no-arbitrage band is determined by investors with the lowest transaction costs (MacKinlay and Ramaswamy, 1988; Gay and 
Jung, 1999). 
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brokers enjoy a lower level of transaction costs than institutional investors; and market 

participants in the OSE and SGX enjoy a lower level of transaction costs than those in the CME 

due to costs associated with the currency risk adjustment in the CME. Hence, I simplify a 

multitude of transaction costs incurred in index arbitrage by using a two-tier transaction cost 

system: 0.5% for brokers, 1.0% for institutional investors in the OSE and SGX; 1.5% for brokers, 

2.0% for institutional investors in the CME.44 These transaction costs are inclusive of the major 

costs involved in a typical long or short arbitrage, such as the adjustment costs of dividends (OSE, 

SGX and CME) and exchange rate (CME). It is recognised that the estimated transaction costs 

might differ from real transaction costs - ideally, a market survey should be conducted to a group 

of brokers and institutional investors in these markets. However, the 19-year sample period has 

seen a set of reforms take place in Japan, Singapore and the US, with frequent changes of fee 

schedules in their financial markets. A survey of such size and depth in these markets is costly, 

especially when an increasing number of trading activities employ negotiable costs. More 

importantly, the purpose of this study is to look into the mispricing or profitable arbitrage 

opportunities of the Nikkei futures contracts, through finding out the most suitable cost of carry 

model for each contract. Transaction costs act as filters to help to examine the existence and 

behaviour of mispricing net of market frictions; the exact amount of the costs themselves is less 

vital. The estimated transaction costs at both high and low levels should provide a reasonable 

approximation of the hindrance that different investors face in different markets.  

 

The OSE Nikkei futures contracts have an electronic system launched from the inception of the 

contracts, and their trading volume is measured as the number of the contracts transacted on that 

system. The SGX Nikkei contracts shifted from open outcry to electronic trading on 01/11/2004, 

and their volume is the number of the contracts traded on the floor before the date, and the 

number of the contracts traded electronically after the date. The CME adopts both open outcry 

and Globex during the sample period, and thus the volume of the CME Nikkei futures is the total 

number of the contracts traded on both systems. The futures volume data are obtained from 

                                                        
44 The estimation is based on the literature: Brenner et al. (1989a;1989b;1990) estimate the transaction costs in the OSE and 
SGX to be 0.5%, 1.0% and 2.0%; Board and Sutcliffe (1996) estimate the transaction costs of spread arbitrage in the CME to 
be 1.0%.  
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Datastream, OSE, SGX and CME. 

4.3.2 Behaviour of Nikkei 225 futures and spot returns 

The logarithmic returns of Nikkei 225 spot and futures are denoted as ∆st and ∆ft, respectively: 

∆st=ln(St+1/St), ∆ft=ln(Ft+1/Ft). Table 4.5 presents the descriptive statistics of Nikkei spot and 

futures returns during the sample period. Over the years, the means of the spot returns in the TSE, 

and the futures returns in the OSE, SGX and CME have similar values with the same signs, 

which suggests that the four markets may be potentially linked. The standard deviations of the 

spot and futures returns in the four markets are relatively stable, with the lowest values in 2005 

and the highest values in 2008. But they are all higher than the standard deviations reported by 

Brenner et al. (1990) and Lim (1992),45 implying that the Nikkei markets may be more volatile 

in recent years, probably due to heavier trading volume than that at the early stage of the markets. 

Inter-market comparison indicates that the standard deviations of the futures returns in the OSE 

and CME tend to be higher in 16 out of 19 years, and this is also true for the overall sample period, 

suggesting that futures returns are likely to be more volatile in the OSE and CME than in the 

SGX, although Bacha and Vila (1994) report no significant differences between the OSE and the 

SGX in volatility.46 It is noted that the spot market displays higher volatility than the futures 

markets in 1996, 2006 and 2011; further analysis on the relative volatility of the spot and futures 

returns is provided later. In contrast to Booth et al. (1996) who found slightly positive skewness, 

I report slightly negative skewness for most spot and futures returns over the years and over the 

whole period. Not surprisingly, the daily returns display moderate kurtosis; however, the returns 

are relatively leptokurtic in 2008 and 2011, and in the overall sample period. This again suggests 

that the four markets may be intrinsically connected, as the Nikkei returns in the four markets 

exhibit higher kurtosis simultaneously. Jarque-Bera (1980) statistics show that the null 

hypothesis of normality can be rejected for the Nikkei returns in most years under consideration. 

                                                        
45 For reference, the standard deviations of Nikkei spot and futures returns in Brenner et al. (1990) range from 0.441% to 
0.615%, and the counterpart values in Lim (1992) range from 0.050% to 0.085%.  
46 Strictly speaking, Bacha and Vila (1994) report no significant differences between Osaka and Singapore in standard 
deviations, a measure of interday volatility; but they find that Singapore is significantly more volatile than Osaka in 
Parkinson’s extreme value variance estimator, a measure of intraday volatility. 
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Table 4.5 Descriptive statistics of Nikkei 225 spot and futures returns 

       Autocorrelations (Lag)  

Year Assets Mean (%) SD (%) Skewness Kurtosis JB 1 2 8 No. of obs 

1996 

S -0.1117 1.0318 -0.2455  3.2616  1.7020  -0.2130**  0.1180**  -0.0600  132 
OSE -0.1152 1.0055 -0.2495  3.5231  2.8751  -0.2010**  0.1430**  -0.0530  132 
SGX -0.1150 0.9869 -0.2649  3.5745  3.3593  -0.2000**  0.1560**  -0.0560  132 

          

1997 

S -0.0972 1.7591 0.0374  4.7102  29.9140**  -0.1390** -0.1770**  0.0530**  245 
OSE -0.0964 1.8856 -0.0914  4.1399  13.6058**  -0.2060**  -0.1250**  0.0790**  245 
SGX -0.0992 1.8695 0.2285  5.6825  75.5874**  -0.1820**  -0.1400**  0.0690**  245 
CME -0.0937 1.7563 -0.2908  3.7724  9.8164**  -0.2290**  0.0530**  0.0130**  252 

1998 

S -0.0394 1.7094 0.3046  4.4274  24.7893**  -0.0070  -0.1350  -0.0030*  247 
OSE -0.0431 1.7872 0.3380  4.7120  34.8686**  -0.0630  -0.1160  -0.0130**  247 
SGX -0.0370 1.7770 0.4525  5.0151  50.0184**  -0.0120  -0.1540*  -0.0060*  246 
CME -0.0419 1.8177 0.2209  4.6683  31.2749**  0.0170  -0.1670**  -0.0100  252 

1999 

S 0.1279 1.2909 0.1267  4.0178  11.2314**  -0.0900  -0.0520  0.0410  245 
OSE 0.1298 1.3219 0.2301  3.5675  5.4493*  -0.1000  -0.0470  0.0300  245 
SGX 0.1259 1.3152 0.1266  3.4876  3.0690  -0.0710  -0.0460  0.0440  244 
CME 0.1272 1.1905 0.1028  3.9237  9.4393**  -0.0310  -0.0070  -0.0040  253 

2000 

S -0.1280 1.4304 -0.4727  5.2118  59.7859**  0.0320  0.0290  0.0090  248 
OSE -0.1265 1.5272 -0.6385  5.2332  68.3889**  -0.0040  0.0080  0.0220  248 
SGX -0.1262 1.4726 -0.7583  5.8668  108.6916**  0.0260  0.0160  0.0190  248 
CME -0.1270 1.4209 -0.1585  2.8609  1.2584  0.0000  -0.0660  -0.0630  252 

2001 

S -0.1090 1.8472 0.2061  4.3391  20.1210**  -0.1010  -0.0490  0.0590  246 
OSE -0.1115 1.9757 -0.0570  6.2409  107.7916**  -0.1710**  -0.0350**  0.0530**  246 
SGX -0.1134 1.8337 -0.3003  6.2888  114.1008**  -0.1000  -0.0520  0.0560  245 
CME -0.1103 1.9296 0.3637  4.5760  31.6345**  -0.1050*  -0.0900*  0.1480  252 

2002 

S -0.0838 1.6293 0.2804  3.1497  3.4525  0.0000  -0.0310  -0.0790  246 
OSE -0.0834 1.5648 0.3087  2.9533  3.9282  0.0290  -0.0020  -0.0930  246 
SGX -0.0849 1.5830 0.2853  3.0811  3.4040  -0.0090  0.0150  -0.0970  246 
CME -0.0787 1.7587 -0.0416  3.4927  2.6220  -0.1060*  0.0600  -0.0760  252 
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Table 4.5 continued 
 

       Autocorrelations (Lag)  

Year Assets Mean (%) SD (%) Skewness Kurtosis JB 1 2 8 No. of obs 

2003 

S 0.0893 1.4509 -0.5229  3.5132  13.8522**  0.0300  -0.0040  -0.1710**  245 
OSE 0.0934 1.5485 -0.6676  3.7551  24.0179**  -0.0640  0.0500  -0.1550**  245 
SGX 0.0964 1.5102 -0.6934  3.9600  29.0386**  -0.0320  0.0310  -0.1520**  245 
CME 0.0920 1.4473 -0.0472  3.7711  6.3364**  0.0340  0.0520  -0.1450  252 

2004 

S 0.0298 1.1351 -0.3578  3.9792  15.0771**  -0.0100  -0.0170  0.0160  246 
OSE 0.0282 1.1492 -0.5843  5.4160  73.8264**  -0.0370  0.0090  0.0380  246 
SGX 0.0282 1.1276 -0.6501  5.9143  104.3835**  -0.0100  -0.0080  0.0470  246 
CME 0.0271 1.2160 -0.4027  3.6983  11.9314**  -0.0780  0.0130  -0.0380  252 

2005 

S 0.1380 0.8545 -0.2619  4.7895  35.4900**  0.0510  -0.0990  -0.0220  245 
OSE 0.1368 0.8664 -0.3949  5.0400  48.8492**  0.0780  -0.1250*  0.0040  245 
SGX 0.1362 0.8791 -0.3836  5.1091  51.2098**  0.0610  -0.1290*  -0.0200  244 
CME 0.1339 0.9385 -0.2004  3.9049  10.2839**  -0.0150  -0.0460  0.0180  252 

2006 

S 0.0270 1.2532 -0.1530  3.3938  2.5707  -0.0520  -0.0240  -0.1210  248 
OSE 0.0295 1.2278 -0.1728  3.3107  2.2320  -0.0250  -0.0290  -0.1210  248 
SGX 0.0302 1.1973 -0.1629  3.2796  1.9043  -0.0120  -0.0190  -0.1220  248 
CME 0.0271 1.2347 -0.1789  3.4111  3.1063  -0.0350  -0.0300  -0.0530  251 

2007 

S -0.0482 1.1666 -0.5165  5.0178  52.4566**  0.0090  0.0040  0.0550*  245 
OSE -0.0508 1.2254 -0.3036  4.0284  14.5609**  -0.0020  -0.0200  0.0150**  245 
SGX -0.0509 1.2165 -0.3804  4.2151  20.9792**  0.0060  -0.0140  0.0030**  245 
CME -0.0506 1.2861 -0.3543  3.3408  6.4671**  -0.1640**  0.1170**  0.0020  251 

2008 

S -0.2232 2.9292 -0.2335  6.7208  143.5566**  -0.0690  -0.0680  -0.0120  245 
OSE -0.2230 3.2192 -0.0109  10.3813  556.1879**  -0.1580**  -0.0710**  -0.0190  245 
SGX -0.2269 3.1529 -0.0266  9.3109  404.9374**  -0.1400**  -0.0760**  -0.0110  244 
CME -0.2012 3.1491 0.0137  6.1366  103.7187**  -0.0750  -0.1900**  0.0440**  253 

2009 

S 0.0717 1.7561 -0.0554  3.5056  2.7128  -0.0730  0.1170*  0.0660**  243 
OSE 0.0728 1.7737 0.0178  4.1084  12.4510**  -0.0540  0.1090  0.0720**  243 
SGX 0.0755 1.7659 0.0101  3.9256  8.6789**  -0.0340  0.0940  0.0840**  243 
CME 0.0612 1.8086 0.2930  4.7841  37.0287**  -0.0280  -0.0850  -0.0040  252 
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Table 4.5 continued 
 

Notes: This table gives the descriptive statistics of Nikkei 225 spot (S) and futures returns by market (OSE, SGX, CME) and by year over the sample period. Returns 
are calculated as logarithmic changes of spot (futures) prices. The statistics include mean, standard deviation (SD), skewness, kurtosis, Jarque-Bera (1980) statistics 
(JB) and autocorrelation coefficients. Mean, SD are in percentage. Autocorrelation coefficients are reported at lags 1, 2 and 8. ** denotes significance at the 5% level. 
* denotes significance at the 10% level. 

       Autocorrelations (Lag)  

Year Assets Mean (%) SD (%) Skewness Kurtosis JB 1 2 8 No. of obs 

2010 

S -0.0125 1.3202 -0.2161  3.0405  1.9245  -0.0090  -0.1130  -0.0940**  245 
OSE -0.0130 1.3228 -0.2340  3.2430  2.8383  0.0020  -0.1130  -0.0840*  245 
SGX -0.0124 1.3188 -0.2427  3.1875  2.7635  0.0080  -0.1240  -0.1030**  245 
CME -0.0165 1.3765 -0.1593  4.5315  25.7955**  -0.0750  -0.0230  -0.0980  253 

2011 

S -0.0777 1.4988 -1.6571  15.6539  1746.6870**  0.0120  -0.0070  -0.0110*  245 
OSE -0.0772 1.4188 -1.3692  11.2703  774.7770**  0.0830  -0.0300  -0.0050*  245 
SGX -0.0734 1.3784 -1.2783  10.9811  749.1620**  0.0910  0.0040  -0.0040**  256 
CME -0.0775 1.4625 -0.6464  6.1385  120.9758**  0.0080  0.1760**  0.0650**  252 

2012 

S 0.0833 1.0237 -0.1086  2.8483  0.7250  0.0480  0.1120  0.0540  248 
OSE 0.0833 1.0306 -0.0985  2.7638  0.9772  0.0480  0.1110  0.0280  248 
SGX 0.0785 1.0076 0.0374  2.7118  0.9603  0.0440  0.1040  0.0310  260 
CME 0.0901 1.0485 -0.0350  2.9794  0.0562  0.0980  0.0680  0.0260  253 

2013 

S 0.1834 1.7040 -0.7485  5.1968  72.1407**  -0.1330**  0.0550*  0.0390  245 
OSE 0.1836 1.7517 -0.5385  5.2875  65.2547**  -0.1470**  0.0720**  0.0410*  245 
SGX 0.1727 1.6792 -0.5287  5.8250  98.5652**  -0.1170*  0.0600  0.0330**  260 
CME 0.1746 1.7172 -0.0721  3.7501  6.1266**  -0.0650  -0.0730  0.0660  252 

2014 

S 0.0282 1.2838 -0.0537  4.2111  15.0303**  -0.0110 0.0810 -0.0020 244 
OSE 0.0282 1.3033 -0.0540  4.3132  17.6519**  -0.0340 0.0930 -0.0540 244 
SGX 0.0257 1.2268 0.1088  4.3814  21.1842**  0.0100 0.0850 -0.0570 260 
CME 0.0232 1.2949 0.5364  7.4101  216.3001**  0.0640 0.0060 0.0050 252 

Overall 

S -0.0055 1.5524 -0.3149  8.4193  5646.8630**  -0.0430** -0.0240** -0.0010** 4553 
OSE -0.0056 1.6139 -0.2398  12.4884  17123.0600**  -0.0800** -0.0180** -0.0020** 4553 
SGX -0.0056 1.5760 -0.2319  11.7503  14723.1400**  -0.0570** -0.0240** -0.0020** 4602 
CME -0.0023 1.6202 -0.0786  8.0865  4896.7430**  -0.0530** -0.0470** 0.0110** 4538 
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As to autocorrelation coefficients, Table 4.5 shows that negative first-order autocorrelations are 

more common than positive first-order autocorrelations in the Nikkei markets. The negative 

first-order autocorrelations are more likely to be significant at the 5% (or 10%) level, while 

none of the positive first-order autocorrelations is significant. For comparison, Iihara et al. 

(1996) find significantly positive first-order autocorrelations for Nikkei spot and futures returns 

using five-minute data. Since the nonsynchronous trading problem should not be serious for 

daily returns, the significantly negative first-order autocorrelations may result from the bid-ask 

bounce of the Nikkei prices. First-order autocorrelations in the spot market are smaller in 

magnitude than those in the futures markets in most years, and like the evidence in MacKinlay 

and Ramaswamy (1988), the first-order autocorrelations in spot and futures markets tend to be 

high or low at the same time, confirming that the effect of nonsynchronous trading is not 

important. Higher-order autocorrelation coefficients exhibit a slight tendency to die down, but 

in many years they are indistinguishable from white noise in that the autocorrelations are all 

small in magnitude and insignificant. Significant autocorrelation coefficients in each market 

tend to cluster during 1996-1998 and 2007-2011, when the Nikkei markets experienced turmoil 

due to the Japanese “Big Bang” and the global financial crisis, respectively. For the overall 

sample, the autocorrelations are small but significant, which indicates weak linear dependence 

in the daily Nikkei returns. 

 

The relative variability of Nikkei spot and futures returns is shown in Table 4.6. Provided that 

the risk-free interest rate r and dividend d are non-stochastic or constant, an inference from the 

cost of carry model is that spot return and futures return should have equal volatility under the 

no-arbitrage condition. In other words, the variance ratio, computed as the variance of futures 

return divided by that of spot return, should equal unity to maintain the arbitrage link. To test 

this null hypothesis, the variance ratios are calculated for the Nikkei returns, and their 

significance is checked by conventional F-test, with the assumption of independent variance 

ratios across the years.47 Panel A of Table 4.6 shows that the OSE futures return has higher 

variability than the spot return in 15 out of 19 years, and the SGX futures return has higher
                                                        
47 In itself, variance ratios that exceed unity are the usual F-statistics; variance ratios less than unity are the inverses of the 
usual F-statistics, as the F-statistics are usually calculated with the higher variance in the numerator. 
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Table 4.6 Relative volatility of Nikkei 225 futures and spot returns 
 
Panel A: F-test        

Year OSE p-value SGX p-value CME p-value 
1996 0.9495  0.7673  0.9147  0.6107  NA NA 
1997 1.1490  0.2786  1.1294  0.3424  1.0497  0.7010  
1998 1.0930  0.4859  1.0762  0.5658  1.1411  0.2963  
1999 1.0487  0.7105  1.0325  0.8036  0.8765  0.2962  
2000 1.1399  0.3041  1.0599  0.6481  1.0204  0.8730  
2001 1.1440  0.2929  0.9873  0.9206  1.1429  0.2907  
2002 0.9224  0.5277  0.9441  0.6527  1.1919  0.1650  
2003 1.1390  0.3099  1.0834  0.5322  1.0432  0.7377  
2004 1.0249  0.8473  0.9869  0.9180  1.1732  0.2065  
2005 1.0280  0.8294  1.0532  0.6865  1.2549  0.0726*  
2006 0.9598  0.7476  0.9128  0.4737  0.9891  0.9308  
2007 1.1034  0.4427  1.0875  0.5128  1.2332  0.0982*  
2008 1.2078  0.1411  1.1470  0.2858  1.1631  0.2311  
2009 1.0202  0.8763  1.0112  0.9308  1.0935  0.4794  
2010 1.0040  0.9752  0.9979  0.9871  1.1284  0.3383  
2011 0.8961  0.3921  0.8839  0.3249  0.9676  0.7943  
2012 1.0136  0.9154  1.0156  0.9010  1.0670  0.6073  
2013 1.0568  0.6666  1.0301  0.8116  1.0489  0.7053  
2014 1.0306  0.8142  0.9733  0.8283  1.0479  0.7110  

Overall 1.0809  0.0087**  1.0409  0.1736  1.0981  0.0016**  
Panel B: Brown-Forsythe test       

Year OSE p-value SGX p-value CME p-value 
1996 0.1709  0.6796  0.4947  0.4825  NA NA 
1997 0.9014  0.3429  0.4274  0.5136  1.3353  0.2484  
1998 0.2547  0.6140  0.0340  0.8538  0.8862  0.3470  
1999 0.4457  0.5047  0.3628  0.5472  0.1717  0.6788  
2000 0.6440  0.4226  0.0316  0.8590  0.9800  0.3227  
2001 0.3295  0.5662  0.1604  0.6890  1.7197  0.1903  
2002 0.1236  0.7253  0.1148  0.7349  1.7068  0.1920  
2003 0.6943  0.4051  0.0887  0.7659  0.8359  0.3610  
2004 0.0288  0.8654  0.2302  0.6316  2.4153  0.1208  
2005 0.0038  0.9507  0.0050  0.9436  4.0904  0.0437**  
2006 0.0406  0.8403  0.2975  0.5857  0.0330  0.8559  
2007 0.6525  0.4196  0.3058  0.5805  3.6185  0.0577*  
2008 0.1971  0.6572  0.0508  0.8218  0.7566  0.3848  
2009 0.0106  0.9179  0.0029  0.9569  0.3223  0.5705  
2010 0.0002  0.9902  0.0003  0.9851  0.1646  0.6851  
2011 0.2229  0.6370  0.1566  0.6924  0.2167  0.6418  
2012 0.0071  0.9328  0.3182  0.5729  0.7534  0.3858  
2013 0.0861  0.7694  0.1881  0.6647  1.1685  0.2802  
2014 0.0811  0.7760  0.0378  0.8460  0.7536  0.3857  

Overall 1.2172  0.2699  0.1049  0.7460  14.5246  0.0001**  

Notes: This table provides the results of F-test and Brown-Forsythe test of the relative volatility of Nikkei 
225 futures and spot returns by market and year. Panel A shows the variance ratios computed as the ratio of 
the variance of futures returns to that of spot returns, followed by p-values. The F-tests are based on the null 
hypothesis of equal variances between each of the futures market and the spot market. Panel B shows the 
non-parametric Brown-Forsythe F-statistics and their associated p-values, with the null hypothesis of equal 
variances between each of the futures market and the spot market. ** denotes significance at the 5% level. * 
denotes significance at the 10% level. 
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variability than the spot return in 11 out of 19 years; yet none of them is significant. The CME 

futures return is more volatile than the spot return in 15 out of 18 years, and significant 

variance ratios at the 10% level are found in 2005 and 2007. As to the whole sample, the OSE 

and CME generate significant variance ratios greater than 1 at the 5% level, which indicates the 

rejection of the null hypothesis against the alternative that the futures volatilities therein are 

significantly higher than the spot volatility. 

 

Given that the F-test is sensitive to departures from normality, and Jarque-Bera (1980) statistics 

of the Nikkei returns reject the null hypothesis of normal distribution in most years (Table 4.5), 

the non-parametric Brown-Forsythe test is run to test the equality of futures variances and stock 

variance, again with the assumption of independent Brown-Forsythe F-statistics across the 

years. The outcomes are provided in Panel B of Table 4.6. Significant Brown-Forsythe 

F-statistics are present in the CME in 2005 and 2007, which is consistent with the results in 

Panel A by parametric tests. The CME also shows significant Brown-Forsythe F-statistics 

greater than 1 in the overall sample. On balance, there is evidence supporting more volatile 

Nikkei futures markets - in particular, the OSE and CME - than the underlying spot market, 

although the evidence is not very strong in individual years.  

4.3.3 Behaviour of Nikkei 225 futures mispricing 

Figure 4.3 plots the mispricing patterns in the three Nikkei exchanges over the sample period 

without transaction costs. Graphically, the mispricing in the OSE and SGX look similar, and 

both exhibit moderate persistence with a few spikes. However, the CME mispricing suggests a 

different pattern which is largely attributable to the currency risk adjustment in the CME 

futures contracts. The CME mispricing shows strong persistence and is generally larger in 

magnitude than the OSE and SGX mispricing, which is consistent with the higher risk 

embodied in the CME futures price. But there seems to be a relatively tranquil period during 

2003-2007 with mispricing much smaller in magnitude in the three markets.  
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Figure 4.3 Nikkei 225 futures mispricing without transaction costs 
Notes: (a) (b) (c) represent Nikkei 225 futures mispricing in the OSE, SGX and CME, respectively. The OSE 
and SGX mispricing are calculated from COC2; the CME mispricing is calculated from COC3 in the original 
view. The mispricing series are in percentage. Transaction costs are not taken into account. 
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Table 4.7 Descriptive statistics of Nikkei 225 futures mispricing without transaction costs 
 

 

Panel A: OSE 

Year No. of pos No. of neg Mean pos (%) Mean neg (%) Mean (%) SD (%) No. of obs 
1996 91 42 0.20 -0.14 0.09 0.21 133 
1997 105 140 0.23 -0.27 -0.06 0.34 245 
1998 89 158 0.27 -0.40 -0.16 0.43 247 
1999 118 127 0.26 -0.31 -0.04 0.36 245 
2000 103 145 0.31 -0.29 -0.04 0.42 248 
2001 112 134 0.28 -0.34 -0.06 0.46 246 
2002 122 124 0.24 -0.35 -0.06 0.37 246 
2003 109 136 0.24 -0.28 -0.05 0.34 245 
2004 111 135 0.19 -0.21 -0.03 0.25 246 
2005 116 129 0.15 -0.20 -0.04 0.23 245 
2006 127 121 0.17 -0.23 -0.02 0.26 248 
2007 133 112 0.16 -0.22 -0.01 0.26 245 
2008 102 143 0.34 -0.34 -0.06 0.52 245 
2009 109 134 0.23 -0.31 -0.07 0.39 243 
2010 90 155 0.19 -0.26 -0.09 0.32 245 
2011 103 142 0.19 -0.27 -0.08 0.36 245 
2012 99 149 0.19 -0.28 -0.09 0.36 248 
2013 132 113 0.25 -0.29 0.00 0.37 245 
2014 122 122 0.19 -0.27 -0.04 0.31 244 

Overall 2093 2461 0.22 -0.28 -0.05 0.36 4554 
Panel B: SGX 

Year No. of pos No. of neg Mean pos (%) Mean neg (%) Mean (%) SD (%) No. of obs 
1996 93 40 0.19 -0.14 0.09 0.21 133 
1997 119 126 0.24 -0.30 -0.04 0.36 245 
1998 93 153 0.29 -0.39 -0.13 0.44 246 
1999 121 123 0.28 -0.29 -0.01 0.37 244 
2000 106 142 0.30 -0.27 -0.03 0.38 248 
2001 122 123 0.29 -0.34 -0.03 0.45 245 
2002 124 122 0.26 -0.34 -0.04 0.39 246 
2003 118 127 0.25 -0.29 -0.03 0.34 245 
2004 113 133 0.20 -0.21 -0.02 0.26 246 
2005 105 139 0.16 -0.21 -0.05 0.23 244 
2006 128 120 0.16 -0.22 -0.02 0.24 248 
2007 131 114 0.16 -0.24 -0.03 0.26 245 
2008 104 140 0.33 -0.35 -0.06 0.48 244 
2009 112 131 0.25 -0.32 -0.06 0.40 243 
2010 92 153 0.20 -0.29 -0.11 0.33 245 
2011 101 155 0.23 -0.32 -0.11 0.45 256 
2012 99 161 0.25 -0.31 -0.10 0.41 260 
2013 139 121 0.35 -0.32 0.04 0.55 260 
2014 117 143 0.25 -0.31 -0.06 0.46 260 

Overall 2137 2466 0.24 -0.29 -0.04 0.39 4603 
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Table 4.7 continued 

Notes: This table presents descriptive statistics of Nikkei 225 futures mispricing in the absence of transaction 
costs by market and by year over the sample period. Mispricing is calculated using equations (2.4), (4.1) and 
(4.4). Panel A, B and C display the mispricing in the OSE, SGX and CME, respectively. The signed 
mispricing is categorised into the number of overpricing (No. of pos), the number of underpricing (No. of 
neg), and their respective means, in percentage. The mean, standard deviation (SD) of the mispricing without 
regard to sign are in percentage. 

 

 

Table 4.7 reports the descriptive statistics for the Nikkei futures mispricing without transaction 

costs. The mean and standard deviation of mispricing in the OSE and SGX are also similar, 

suggesting that the two markets may be more closely linked with each other than any one of 

them with CME. The standard deviation of the CME mispricing is higher due to currency 

fluctuations. Following Brenner et al. (1989a; 1989b; 1990), I distinguish overpricing (Mist>0) 

from underpricing (Mist<0) and summarise statistics for each category. Overall, the OSE and 

SGX are dominated by underpricing, while the CME is dominated by overpricing. This implies 

that different arbitrage strategies are required in the Nikkei futures markets: short arbitrage 

seems to be more suitable in the OSE and SGX, and long arbitrage in the CME. However, as 

Panel C: CME 

Year No. of pos No. of neg Mean pos (%) Mean neg (%) Mean (%) SD (%) No. of obs 
1997 83 170 6.35 -5.13 -1.36 6.36 253 
1998 138 114 6.44 -6.10 0.77 7.50 252 
1999 179 74 4.37 -4.04 1.91 4.94 253 
2000 81 171 1.83 -3.12 -1.53 2.96 252 
2001 109 143 2.72 -3.79 -0.97 3.90 252 
2002 179 73 3.22 -2.23 1.64 3.06 252 
2003 178 74 2.19 -1.46 1.12 2.42 252 
2004 127 125 2.11 -2.32 -0.09 2.74 252 
2005 69 183 1.26 -3.46 -2.17 3.36 252 
2006 93 158 1.40 -2.10 -0.80 2.15 251 
2007 154 97 3.29 -2.70 0.98 3.86 251 
2008 137 116 6.06 -4.03 1.44 6.23 253 
2009 165 87 3.98 -3.84 1.28 4.67 252 
2010 155 98 3.00 -1.68 1.19 3.09 253 
2011 155 97 2.21 -2.54 0.38 3.03 252 
2012 109 144 1.82 -6.37 -2.84 5.36 253 
2013 108 144 3.44 -3.80 -0.70 4.32 252 
2014 84 168 1.29 -4.82 -2.79 4.14 252 

Overall 2303 2236 3.29 -3.67 -0.14 4.61 4539 
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Brenner et al. (1989b) notice, the dominant underpricing in the OSE and SGX may be partly 

explained by the higher costs related to short sale, e.g. the uptick rule in the stock exchange.48 

As such, underpricings may not necessarily indicate short arbitrage opportunities in the two 

markets, especially when they are moderately persistent; even if they do, it depends on 

transaction costs whether the underpricing can be profitably exploited. As mentioned in section 

4.2.3, the preponderance of overpricing in the CME is consistent with the general tendency of 

the appreciation of yen relative to dollar in the sample period. Yet there are a few years when 

yen decreases in value against dollar, and thus underpricing dominates the CME. The dominant 

underpricing in the CME might suggest arbitrage opportunities subject to currency risk, in that 

the dominance only appears in the periods of yen depreciation. At those times, investors may 

want to engage in a short arbitrage, or replace the stock position by the relatively cheaper 

futures contracts in their portfolio. But such strategies cannot be completely free from the 

currency fluctuations. The difference between average overpricing and absolute average 

underpricing is small in the OSE and SGX, with maxima -0.13% and -0.10%, respectively, in 

1998. The counterpart in the CME is much larger, with the maximum -4.55% in 2012. This 

results from the dramatic trend of yen depreciation starting from September 2012 and lasting 

until the end of the sample.   

 

With transaction costs, Table 4.8 and Figure 4.4 indicate that the dominance of underpricing 

remains in the OSE and SGX. However, the OSE underpricing reduces sharply from 2,461 to 

432 under 0.5% transaction costs, and to 50 under 1.0% transaction costs over the sample. The 

same happens in the SGX: only 64 underpricings survive under 1.0% transaction costs. 

Overpricing becomes even less in the two markets. MacKinlay and Ramaswamy (1988) posit 

that persistent mispricings are more likely to suggest arbitrage opportunities. Hence, it seems 

that only brokers with a lower level of transaction costs may have been able to profit from the 

short arbitrage in the OSE and SGX; it is, however, relatively difficult for institutional investors 

                                                        
48 The TSE uptick rule, in effect since the 1940s, stipulates that the price of short sale must be above the last traded price of a 
stock if the last traded price is lower than the price in the previous trade, or at the last traded price if the last traded price is 
higher than the price in the previous trade. During the 2008 global financial crisis, all the stocks listed on Japanese stock 
exchanges were banned from short sale, and higher costs related to short sale lasted until November 2013. From November 
2013, the uptick rule applies only when the stock price falls by 10% of a triggered price which is published daily by the TSE, 
and once active the uptick rule lasts until the end of the next trading day (Data from TSE).  
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Figure 4.4 Nikkei 225 futures mispricing with transaction costs 
Notes: (a) (b) (c) represent Nikkei 225 futures mispricing in the OSE, SGX and CME, respectively. The OSE 
and SGX mispricing are calculated from COC2; the CME mispricing is calculated from COC3 in the original 
view. 0.5% and 1.0% transaction costs are applied for the OSE and SGX; 1.5% and 2.0% transaction costs 
are applied for the CME. The mispricing series are in percentage.
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Table 4.8 Descriptive statistics of Nikkei 225 futures mispricing with transaction costs 
 
Panel A: OSE  
With transaction costs of 0.5% 

Year No. of pos No. of neg Mean pos (%) Mean neg (%) Mean (%) SD (%) No. of obs 
1996 3 1 0.06 -0.12 0.00 0.02 4  
1997 15 20 0.10 -0.28 -0.02 0.11 35  
1998 11 48 0.18 -0.29 -0.05 0.18 59  
1999 13 20 0.13 -0.26 -0.01 0.10 33  
2000 19 26 0.31 -0.21 0.00 0.20 45  
2001 20 24 0.23 -0.41 -0.02 0.25 44  
2002 16 34 0.15 -0.17 -0.01 0.10 50  
2003 10 21 0.10 -0.22 -0.02 0.09 31  
2004 4 7 0.23 -0.07 0.00 0.04 11  
2005 2 10 0.07 -0.08 0.00 0.02 12  
2006 6 9 0.14 -0.10 0.00 0.03 15  
2007 6 10 0.24 -0.15 0.00 0.06 16  
2008 21 25 0.41 -0.49 -0.01 0.31 46  
2009 11 28 0.22 -0.36 -0.03 0.16 39  
2010 9 37 0.19 -0.15 -0.02 0.09 46  
2011 9 31 0.24 -0.32 -0.03 0.14 40  
2012 10 34 0.31 -0.28 -0.03 0.13 44  
2013 19 25 0.23 -0.17 0.00 0.12 44  
2014 11 22 0.15 -0.17 -0.01 0.08 33  

Overall 215 432 0.22 -0.25 -0.01 0.14 647  
With transaction costs of 1.0% 

Year No. of pos No. of neg Mean pos (%) Mean neg (%) Mean (%) SD (%) No. of obs 
1996 0 0 0.00 0.00 0.00 0.00 0 
1997 0 2 0.00 -0.37 0.00 0.04 2 
1998 0 11 0.00 -0.22 -0.01 0.06 11 
1999 0 3 0.00 -0.12 0.00 0.02 3 
2000 2 3 0.95 -0.37 0.00 0.12 5 
2001 2 4 0.32 -0.95 -0.01 0.17 6 
2002 1 2 0.03 -0.09 0.00 0.01 3 
2003 0 2 0.00 -0.30 0.00 0.03 2 
2004 0 0 0.00 0.00 0.00 0.00 0 
2005 0 0 0.00 0.00 0.00 0.00 0 
2006 0 0 0.00 0.00 0.00 0.00 0 
2007 1 0 0.08 0.00 0.00 0.01 1 
2008 6 6 0.50 -0.84 -0.01 0.21 12 
2009 1 9 0.15 -0.13 0.00 0.04 10 
2010 0 1 0.00 -0.05 0.00 0.00 1 
2011 1 4 0.00 -0.20 0.00 0.04 5 
2012 1 1 0.21 -0.09 0.00 0.01 2 
2013 2 1 0.27 -0.32 0.00 0.04 3 
2014 0 1 0.00 -0.14 0.00 0.01 1 

Overall 17 50 0.38 -0.34 0.00 0.07 67 
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Table 4.8 continued 
 
Panel B: SGX 
With transaction costs of 0.5% 

Year No. of pos No. of neg Mean pos (%) Mean neg (%) Mean (%) SD (%) No. of obs 
1996 3 1 0.14 -0.09 0.00 0.03 4 
1997 14 23 0.17 -0.25 -0.01 0.12 37 
1998 18 42 0.16 -0.34 -0.05 0.18 60 
1999 14 16 0.21 -0.29 -0.01 0.12 30 
2000 16 19 0.27 -0.22 0.00 0.14 35 
2001 18 21 0.27 -0.39 -0.01 0.22 39 
2002 15 28 0.14 -0.24 -0.02 0.13 43 
2003 10 21 0.13 -0.17 -0.01 0.08 31 
2004 6 7 0.16 -0.09 0.00 0.04 13 
2005 1 12 0.03 -0.08 0.00 0.02 13 
2006 5 6 0.15 -0.11 0.00 0.03 11 
2007 6 12 0.13 -0.12 0.00 0.04 18 
2008 24 39 0.27 -0.29 -0.02 0.24 63 
2009 12 26 0.22 -0.39 -0.03 0.16 38 
2010 9 36 0.15 -0.19 -0.02 0.09 45 
2011 15 37 0.26 -0.44 -0.05 0.23 52 
2012 13 38 0.39 -0.31 -0.03 0.17 51 
2013 23 30 0.68 -0.19 0.04 0.36 53 
2014 12 29 0.36 -0.34 -0.02 0.28 41 

Overall 234 443 0.27 -0.28 -0.01 0.17 677 
With transaction costs of 1.0% 

Year No. of pos No. of neg Mean pos (%) Mean neg (%) Mean (%) SD (%) No. of obs 
1996 0 0 0.00 0.00 0.00 0.00 0 
1997 1 3 0.18 -0.25 0.00 0.03 4 
1998 1 9 0.13 -0.28 -0.01 0.07 10 
1999 2 4 0.13 -0.13 0.00 0.03 6 
2000 1 1 1.01 -0.59 0.00 0.07 2 
2001 2 4 0.28 -0.64 -0.01 0.15 6 
2002 1 4 0.20 -0.30 0.00 0.05 5 
2003 0 3 0.00 -0.10 0.00 0.01 3 
2004 0 0 0.00 0.00 0.00 0.00 0 
2005 0 0 0.00 0.00 0.00 0.00 0 
2006 0 0 0.00 0.00 0.00 0.00 0 
2007 0 0 0.00 0.00 0.00 0.00 0 
2008 5 6 0.16 -0.53 -0.01 0.14 11 
2009 1 10 0.20 -0.17 -0.01 0.05 11 
2010 0 0 0.00 0.00 0.00 0.00 0 
2011 2 10 0.17 -0.46 -0.02 0.12 12 
2012 3 4 0.26 -0.23 0.00 0.05 7 
2013 8 1 1.14 -0.82 0.03 0.27 9 
2014 1 5 2.53 -0.79 -0.01 0.21 6 

Overall 28 64 0.58 -0.37 0.00 0.10 92 
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Table 4.8 continued 

Notes: This table presents descriptive statistics of Nikkei 225 futures mispricing in the presence of 
transaction costs by market and by year. Mispricing is calculated using equations (4.5a)-(4.7). The 
transaction costs are 0.5% for brokers, 1.0% for institutional investors in the OSE and SGX; 1.5% for 
brokers, 2.0% for institutional investors in the CME. Panel A, B and C display the mispricing in the OSE, 
SGX and CME, respectively. The signed mispricing is categorised into the number of overpricing (No. of 
pos), the number of underpricing (No. of neg), and their respective means, in percentage. The mean, standard 
deviation (SD) of the mispricing without regard to sign are in percentage.

Panel C: CME 
With transaction costs of 1.5% 

Year No. of pos No. of neg Mean pos (%) Mean neg (%) Mean (%) SD (%) No. of obs 
1997 64 151 6.54 -4.17 -0.83 5.19 215 
1998 123 98 5.63 -5.46 0.62 6.29 221 
1999 146 57 3.66 -3.51 1.32 3.93 203 
2000 47 123 1.04 -2.49 -1.02 1.98 170 
2001 84 118 1.77 -2.93 -0.78 2.76 202 
2002 146 43 2.30 -1.74 1.04 2.05 189 
2003 100 26 1.80 -1.37 0.57 1.64 126 
2004 73 76 1.70 -1.87 -0.07 1.66 149 
2005 26 123 0.70 -3.25 -1.51 2.65 149 
2006 43 92 0.72 -1.57 -0.45 1.17 135 
2007 110 68 2.82 -2.07 0.68 2.85 178 
2008 114 90 5.61 -3.47 1.30 5.09 204 
2009 131 58 3.29 -3.87 0.82 3.61 189 
2010 104 50 2.59 -1.11 0.85 2.17 154 
2011 96 50 1.61 -2.82 0.05 2.04 146 
2012 62 121 1.11 -5.95 -2.58 4.35 183 
2013 74 122 3.18 -2.85 -0.45 3.17 196 
2014 32 131 0.86 -4.51 -2.23 3.29 163 

Overall 1575 1597 2.96 -3.35 -0.15 3.57 3172 
With transaction costs of 2.0% 

Year No. of pos No. of neg Mean pos (%) Mean neg (%) Mean (%) SD (%) No. of obs 
1997 61 143 6.34 -3.88 -0.67 4.82 204 
1998 118 92 5.35 -5.30 0.57 5.90 210 
1999 126 54 3.69 -3.18 1.16 3.62 180 
2000 29 109 1.03 -2.28 -0.87 1.71 138 
2001 68 110 1.62 -2.63 -0.71 2.44 178 
2002 130 36 2.06 -1.52 0.84 1.76 166 
2003 78 19 1.72 -1.29 0.43 1.44 97 
2004 59 62 1.54 -1.74 -0.07 1.35 121 
2005 14 106 0.58 -3.22 -1.32 2.45 120 
2006 27 68 0.53 -1.54 -0.36 0.93 95 
2007 90 57 2.88 -1.93 0.59 2.57 147 
2008 105 82 5.57 -3.28 1.25 4.73 187 
2009 120 53 3.07 -3.72 0.68 3.29 173 
2010 88 32 2.52 -1.06 0.74 1.93 120 
2011 74 41 1.52 -2.87 -0.02 1.77 115 
2012 48 117 0.87 -5.65 -2.45 4.07 165 
2013 71 115 2.81 -2.50 -0.35 2.83 186 
2014 22 120 0.66 -4.39 -2.03 3.06 142 

Overall 1328 1416 2.97 -3.24 -0.14 3.28 2744 
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to make a profit, for a majority of the mispricings disappear and the remaining mispricings 

scatter around over several years under a higher level of transaction costs. In contrast, the CME 

Nikkei futures contracts tend to be primarily underpriced in the presence of transaction costs 

during the sample period. Most of the mispricings survive and cluster even with the stricter 

2.0% transaction costs. This implies that mispricings mainly resulting from the currency 

fluctuations are sufficient to cover transaction costs involved in a typical arbitrage, such that it 

is possible for investors in the CME to profit from the arbitrage.49 It is therefore important to 

grasp the trend of the yen-dollar exchange rates and respond to it accordingly. Nonetheless, as 

mentioned, since the currency risk cannot be completely eliminated, the profit gained from the 

arbitrage in the CME is not strictly risk-free. 

 

The persistence of mispricing is measured by its autocorrelation coefficients up to lag 8 in 

Table 4.9. First-order autocorrelations are significantly positive in the three markets: moderate 

values are observed in the OSE and SGX in most years under consideration, indicative of mild 

persistence; while high values up to 0.963 are observed in the CME, indicative of strong 

persistence, which is probably due to the currency risk adjustment. Beyond first order, the 

autocorrelations in the three markets diminish gradually but do not disappear, especially in the 

CME, where even the eighth-order autocorrelation is 0.748 over the sample. Transaction costs 

may deter investors from removing mispricing (Brenner et al, 1989a; 1989b), and the higher 

the costs are, the more mispricings are preserved, as in the case of the CME. In terms of first 

differences in mispricing, the first-order autocorrelations in the three markets are significantly 

negative, consistent with the notion that mispricing is a mean-reverting process. Given that the 

nonsynchronous trading problem is not serious with the use of daily data, arbitrage may explain 

the mean reversion of mispricing in the sense that investors drag the diverged prices back 

inside the no-arbitrage bounds (MacKinlay and Ramaswamy, 1988). However, this is not the 

sole reason. Tse (2001), McMillan and Speight (2006) argue that heterogeneous arbitrage 

activities could be another explanation. I will formally look into this issue in section 4.4.4. 

                                                        
49 In the real world, as ST is not known at time t, investors use expectations E(St) to form ST, assuming rational expectations. 
The CME mispricing could simply result from the expectation biases of the investors. If this is the case, the number of 
overpricings should equal the number of underpricings in the CME; in other words, the CME mispricing should be 
symmetrical around zero. However, the CME is found to be dominated by overpricing (without transaction costs) and 
underpricing (with transaction costs). As such, it is maintained that the CME mispricing is not likely to be a result of the 
expectation biases.          
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Table 4.9 Autocorrelation coefficients of Nikkei 225 futures mispricing 
 
Panel A: OSE 

Autocorrelations (Lag) 
Year 1 2 3 4 5 6 7 8 

Level of mispricing 
1996 0.074  0.118  0.092  -0.030  0.112  -0.011  0.029  -0.029  
1997 0.221**  0.295**  0.236**  0.194**  0.231**  0.186**  0.145**  0.171**  
1998 0.281**  0.059**  0.062**  0.149**  0.221**  0.139**  0.109**  0.096**  
1999 0.271**  0.156**  0.206**  0.175**  0.076**  0.093**  0.092**  0.026**  
2000 0.247**  -0.035**  -0.043**  0.117**  0.166**  0.094**  -0.035**  0.000**  
2001 0.188**  0.254**  0.213**  0.154**  0.110**  0.202**  0.069**  0.016**  
2002 0.162**  0.008**  -0.060*  0.077*  -0.063*  0.010  0.004  0.065  
2003 0.136**  0.213**  0.183**  0.164**  0.119**  0.024**  0.085**  0.010**  
2004 0.241**  0.238**  0.174**  0.173**  0.157**  0.115**  0.112**  0.103**  
2005 0.488**  0.356**  0.344**  0.317**  0.207**  0.172**  0.141**  0.069**  
2006 0.511**  0.482**  0.267**  0.313**  0.245**  0.314**  0.214**  0.174**  
2007 0.494**  0.455**  0.388**  0.307**  0.273**  0.192**  0.238**  0.139**  
2008 0.118*  0.185**  0.248**  0.178**  0.047**  0.133**  0.100**  0.007**  
2009 0.544**  0.414**  0.496**  0.496**  0.350**  0.337**  0.351**  0.300**  
2010 0.674**  0.630**  0.557**  0.502**  0.457**  0.433**  0.335**  0.320**  
2011 0.646**  0.595**  0.520**  0.498**  0.431**  0.371**  0.314**  0.300**  
2012 0.771**  0.666**  0.613**  0.515**  0.487**  0.426**  0.336**  0.274**  
2013 0.434**  0.357**  0.300**  0.322**  0.285**  0.162**  0.199**  0.202**  
2014 0.512**  0.488**  0.341**  0.347**  0.311**  0.253**  0.226**  0.216**  

Overall 0.357**  0.299**  0.271**  0.270**  0.222**  0.201**  0.163**  0.133**  
Autocorrelations (Lag) 

Year 1 2 3 4 5 6 7 8 
First-order difference in mispricing 

1996 -0.517**  0.023**  0.059**  -0.118**  0.100**  -0.039**  0.034**  0.030**  
1997 -0.547**  0.087**  -0.008**  -0.058**  0.054**  -0.005**  -0.040**  0.032**  
1998 -0.335**  -0.161**  -0.047**  0.007**  0.092**  -0.042**  0.003**  -0.008**  
1999 -0.418**  -0.095**  0.046**  0.042**  -0.059**  0.009**  0.038**  -0.080**  
2000 -0.319**  -0.188**  -0.097**  0.074**  0.081**  0.035**  -0.111**  0.012**  
2001 -0.538**  0.062**  0.011**  -0.006**  -0.077**  0.131**  -0.045**  -0.056**  
2002 -0.417**  -0.038**  -0.116**  0.175**  -0.135**  0.055**  -0.044**  0.067**  
2003 -0.544**  0.064**  -0.005**  0.015**  0.034**  -0.099**  0.076**  -0.113**  
2004 -0.499**  0.047**  -0.049**  0.020**  0.012**  -0.024**  0.004**  0.066**  
2005 -0.362**  -0.114**  0.012**  0.079**  -0.075**  -0.008**  0.035**  -0.081**  
2006 -0.473**  0.198**  -0.260**  0.110**  -0.141**  0.167**  -0.061**  0.041**  
2007 -0.448**  0.028**  0.021**  -0.052**  0.030**  -0.113**  0.127**  -0.074**  
2008 -0.538**  0.003**  0.078**  0.034**  -0.122**  0.066**  0.033**  -0.031**  
2009 -0.357**  -0.230**  0.088**  0.161**  -0.150**  -0.032**  0.080**  0.085**  
2010 -0.430**  0.045**  -0.031**  -0.014**  -0.036**  0.116**  -0.126**  0.040**  
2011 -0.427**  0.033**  -0.074**  0.064**  -0.009**  -0.007**  -0.059**  0.001**  
2012 -0.271**  -0.114**  0.100**  -0.154**  0.073**  0.062**  -0.061**  -0.043**  
2013 -0.432**  -0.017**  -0.070**  0.052**  0.076**  -0.142**  0.030**  0.015**  
2014 -0.476**  0.126**  -0.156**  0.042**  0.022**  -0.032**  -0.017**  0.068**  

Overall -0.455**  -0.023**  -0.021**  0.037**  -0.021**  0.013**  -0.006**  -0.011**  



 121 

Table 4.9 continued

Panel B: SGX 
Autocorrelations (Lag) 

Year 1 2 3 4 5 6 7 8 
Level of mispricing 

1996 0.114  0.268**  -0.014**  0.021**  0.051**  0.023*  -0.012*  0.011  
1997 0.258**  0.352**  0.151**  0.176**  0.237**  0.189**  0.161**  0.159**  
1998 0.313**  0.087**  0.074**  0.222**  0.273**  0.107**  0.080**  0.112**  
1999 0.242**  0.156**  0.172**  0.158**  0.082**  0.077**  0.065**  0.057**  
2000 0.277**  0.024**  0.005**  0.057**  0.152**  0.076**  -0.052**  -0.003**  
2001 0.217**  0.233**  0.239**  0.170**  0.119**  0.254**  0.076**  0.048**  
2002 0.132**  0.004  -0.048  0.169**  -0.035**  -0.004*  0.000*  0.013  
2003 0.220**  0.154**  0.181**  0.137**  0.081**  0.032**  0.027**  0.021**  
2004 0.340**  0.287**  0.247**  0.178**  0.154**  0.149**  0.122**  0.072**  
2005 0.448**  0.387**  0.295**  0.318**  0.238**  0.222**  0.162**  0.107**  
2006 0.518**  0.487**  0.272**  0.313**  0.255**  0.294**  0.162**  0.142**  
2007 0.447**  0.413**  0.332**  0.291**  0.236**  0.166**  0.223**  0.067**  
2008 0.203**  0.269**  0.275**  0.185**  0.082**  0.167**  0.072**  0.002**  
2009 0.512**  0.411**  0.423**  0.384**  0.293**  0.312**  0.311**  0.259**  
2010 0.645**  0.612**  0.527**  0.474**  0.414**  0.415**  0.288**  0.290**  
2011 0.593**  0.505**  0.452**  0.477**  0.426**  0.325**  0.272**  0.265**  
2012 0.572**  0.509**  0.454**  0.377**  0.345**  0.314**  0.278**  0.219**  
2013 0.399**  0.137**  0.117**  0.112**  0.064**  0.058**  0.118**  0.132**  
2014 0.220**  0.201**  0.233**  0.180**  0.115**  0.233**  0.099**  0.112**  

Overall 0.358**  0.279**  0.248**  0.247**  0.195**  0.197**  0.145**  0.129**  
Autocorrelations (Lag) 

Year 1 2 3 4 5 6 7 8 
First-order difference in mispricing 

1996 -0.589**  0.233**  -0.166**  0.019**  0.003**  0.035**  -0.046**  0.044**  
1997 -0.562**  0.197**  -0.151**  -0.012**  0.053**  -0.001**  -0.031**  0.024**  
1998 -0.336**  -0.155**  -0.116**  0.072**  0.161**  -0.104**  -0.043**  0.008**  
1999 -0.443**  -0.067**  0.028**  0.041**  -0.052**  0.006**  -0.008**  0.021**  
2000 -0.335**  -0.168**  -0.034**  -0.028**  0.121**  0.036**  -0.128**  0.048**  
2001 -0.504**  0.005**  0.044**  -0.005**  -0.113**  0.189**  -0.091**  -0.061**  
2002 -0.425**  -0.019**  -0.155**  0.262**  -0.158**  0.028**  -0.010**  -0.010**  
2003 -0.449**  -0.057**  0.051**  0.007**  -0.003**  -0.036**  0.001**  -0.045**  
2004 -0.467**  0.001**  0.018**  -0.022**  -0.028**  0.026**  0.015**  0.004**  
2005 -0.431**  0.041**  -0.118**  0.093**  -0.061**  0.032**  -0.008**  -0.039**  
2006 -0.469**  0.200**  -0.256**  0.097**  -0.106**  0.168**  -0.115**  0.016**  
2007 -0.456**  0.041**  -0.024**  0.000**  0.009**  -0.109**  0.179**  -0.166**  
2008 -0.534**  0.038**  0.069**  0.004**  -0.123**  0.113**  -0.015**  0.014**  
2009 -0.377**  -0.130**  0.059**  0.054**  -0.123**  0.020**  0.064**  0.040**  
2010 -0.450**  0.070**  -0.045**  0.011**  -0.085**  0.177**  -0.180**  0.061**  
2011 -0.391**  -0.045**  -0.095**  0.094**  0.055**  -0.053**  -0.057**  0.016**  
2012 -0.424**  -0.009**  0.024**  -0.051**  0.000**  0.004**  0.024**  -0.066**  
2013 -0.277**  -0.205**  -0.011**  0.033**  -0.034**  -0.053**  0.035**  0.063**  
2014 -0.493**  -0.027**  0.056**  0.005**  -0.116**  0.165**  -0.102**  0.036**  

Overall -0.439**  -0.037**  -0.023**  0.038**  -0.041**  0.041**  -0.027**  0.000**  
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Table 4.9 continued 

Panel C: CME 
Autocorrelations (Lag) 

Year 1 2 3 4 5 6 7 8 
Level of mispricing 

1997 0.963**  0.941**  0.928**  0.916**  0.895**  0.878**  0.858**  0.839**  
1998 0.959**  0.925**  0.897**  0.877**  0.863**  0.841**  0.827**  0.801**  
1999 0.939**  0.891**  0.854**  0.817**  0.783**  0.751**  0.721**  0.700**  
2000 0.859**  0.797**  0.767**  0.711**  0.643**  0.603**  0.570**  0.528**  
2001 0.888**  0.853**  0.823**  0.805**  0.781**  0.746**  0.748**  0.723**  
2002 0.858**  0.834**  0.797**  0.770**  0.747**  0.723**  0.710**  0.683**  
2003 0.788**  0.728**  0.664**  0.612**  0.526**  0.462**  0.401**  0.368**  
2004 0.898**  0.849**  0.816**  0.777**  0.764**  0.718**  0.670**  0.628**  
2005 0.920**  0.863**  0.806**  0.764**  0.729**  0.680**  0.645**  0.598**  
2006 0.819**  0.738**  0.686**  0.641**  0.610**  0.551**  0.509**  0.461**  
2007 0.898**  0.853**  0.820**  0.759**  0.696**  0.640**  0.596**  0.555**  
2008 0.813**  0.767**  0.782**  0.745**  0.708**  0.690**  0.686**  0.660**  
2009 0.868**  0.838**  0.810**  0.779**  0.727**  0.688**  0.655**  0.618**  
2010 0.833**  0.750**  0.709**  0.676**  0.629**  0.586**  0.543**  0.477**  
2011 0.800**  0.769**  0.722**  0.695**  0.646**  0.616**  0.610**  0.561**  
2012 0.945**  0.905**  0.870**  0.832**  0.792**  0.748**  0.707**  0.670**  
2013 0.897**  0.871**  0.835**  0.810**  0.753**  0.739**  0.699**  0.682**  
2014 0.911**  0.881**  0.863**  0.814**  0.791**  0.766**  0.743**  0.727**  

Overall 0.916**  0.884**  0.863**  0.839**  0.812**  0.789**  0.771**  0.748**  
Autocorrelations (Lag) 

Year 1 2 3 4 5 6 7 8 
First-order difference in mispricing 

1997 -0.200**  -0.131**  -0.028**  0.132**  -0.034**  0.012**  0.000**  -0.032**  
1998 -0.073  -0.084  -0.085  -0.082  0.102*  -0.094*  0.140**  -0.033**  
1999 -0.145**  -0.062**  -0.043* -0.029  -0.088  0.028  -0.035  0.024  
2000 -0.289**  -0.112**  0.090**  0.073**  -0.113**  -0.050**  0.042**  -0.059**  
2001 -0.341** -0.031**  -0.057**  0.026**  0.064**  -0.174**  0.138**  0.051**  
2002 -0.412**  0.039**  -0.033**  -0.009**  0.012**  -0.043**  0.046**  -0.018**  
2003 -0.365**  0.009**  -0.035**  0.079**  -0.043**  -0.013**  -0.073**  0.027**  
2004 -0.274**  -0.076**  0.022**  -0.124**  0.155**  0.019**  -0.036**  -0.015**  
2005 -0.145**  -0.003*  -0.092*  -0.042*  0.084*  -0.084*  0.071*  0.083*  
2006 -0.278**  -0.086**  -0.018**  -0.039**  0.080**  -0.049**  0.013**  -0.044**  
2007 -0.324**  -0.047**  0.126**  -0.021**  -0.025**  -0.034**  -0.027**  0.094**  
2008 -0.380**  -0.164**  0.132**  0.005**  -0.059**  -0.039**  0.060**  0.020**  
2009 -0.390**  -0.004**  -0.004**  0.084**  -0.058**  -0.034**  0.026**  -0.048**  
2010 -0.250**  -0.126**  -0.032**  0.050**  -0.011**  0.015**  0.059**  -0.132**  
2011 -0.438**  0.037**  -0.052**  0.078**  -0.055**  -0.079**  0.129**  -0.053**  
2012 -0.180**  -0.036**  0.015**  0.021*  0.030  -0.033  -0.044  0.010  
2013 -0.395**  0.028**  -0.061**  0.145**  -0.199**  0.148**  -0.108**  0.131**  
2014 -0.338**  -0.082**  0.168**  -0.139**  0.002**  0.002**  -0.018**  0.033**  

Overall -0.310**  -0.069**  0.021**  0.019**  -0.024**  -0.031**  0.034**  0.001**  

Notes: This table gives the autocorrelation coefficients of Nikkei 225 futures mispricing by market and by 
year over the sample period. The autocorrelation coefficients are calculated up to the eighth lag for the level 
of mispricing and for the first-order difference in mispricing. Panel A, B and C display the autocorrelation 
coefficients in the OSE, SGX and CME, respectively. ** denotes significance at the 5% level. * denotes 
significance at the 10% level. 
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4.3.4 Nikkei 225 futures mispricing and a set of variables 

4.3.4.1 Mispricing and time to maturity 

Without early unwinding as prescribed in assumption 1) at the beginning of section 4.2, the 

magnitude of mispricing should increase with time to maturity, as longer dated futures 

contracts carry more uncertainties. This means that in terms of signed mispricing, underpricing 

should be more negative for longer time to maturity, and overpricing more positive. A 

non-parametric method is used to examine the relationship between mispricing and time to 

maturity.50 Following Brenner et al. (1989b) and Yadav and Pope (1994), the mispricing data 

are categorised into 5 groups by time to maturity in descending order, with each group covering 

roughly 20 trading days, and the means (medians) of the mispricing data are checked for 

monotonic orderings. As shown in Table 4.10, the mean absolute mispricing in the OSE and 

CME are found to increase with time to maturity. The mean (median) underpricing in the OSE, 

and the mean underpricing in the SGX and CME become more negative for longer time to 

maturity, which is consistent with the positive relationship between absolute mispricing and 

time to maturity. The mean (median) overpricing in the CME also increases monotonically with 

time to maturity. The null hypothesis of equal means across the groups is tested by running an 

OLS regression on dummy variables that represent the groups; the mean relationships are 

significant if the F-statistics of the regression are significant. The null hypothesis of equal 

medians across the groups is tested by the Jonckheere trend test (Jonckheere, 1954; Terpstra, 

1952), which is a non-parametric test for suspicious median ordering among groups, 

complemented with Kendall’s tau-b coefficient (Kendall, 1938), which helps to identify the 

direction of the ordering. The test statistics show that the observed positive relationships are all 

significant at the 5% level, leading to the rejection of the null hypotheses. Thus, I support the 

literature by holding that mispricings tend to be greater in magnitude for longer dated contracts. 

This can be particularly attributed to the riskier adjustments for dividends and exchange rate 

fluctuations for the Nikkei futures contracts with longer time to maturity, among other 

                                                        
50 Throughout section 4.3.4, I examine the Nikkei mispricing without transaction costs to have sufficient observations. 
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uncertainties. The significantly positive relationships are largely located in the underpricing of 

the OSE and SGX, and in the overpricing of the CME, in agreement with the dominant signs of 

mispricing in these markets.  

4.3.4.2 Mispricing and stock volatility 

To examine the relationship between mispricing and stock volatility, the fitted value of the 

conditional variance of a GARCH (1, 1) model of Bollerslev (1986) with constant mean is used 

to estimate the time-varying volatility in the TSE. Likewise, following Yadav and Pope (1994), 

the mispricing data are divided into 5 groups of roughly equal size based on the stock volatility 

estimate in descending order, and the means (medians) of the mispricing data are checked for 

monotonic orderings. Table 4.11 presents the results. Monotonically positive relationships 

between the magnitude of mispricing and stock volatility are mainly in the OSE and SGX, yet 

the evidence is less in the CME, where only median overpricing increases with stock volatility. 

The null hypothesis of equal means across the groups is tested by F-statistics of a regression on 

dummy variables that represent the groups, and the null hypothesis of equal medians across the 

groups is tested by the Jonckheere trend test (Jonckheere, 1954; Terpstra, 1952), complemented 

with Kendall’s tau-b coefficient (Kendall, 1938). The observed positive relationships between 

the magnitude of mispricing and stock volatility are all significant at the 5% level, which 

indicates rejection of the null hypotheses against the alternative that mispricing in magnitude 

increases when the stock market is more volatile. Given the positive relationship between the 

magnitude of mispricing and time to maturity, the effect of stock volatility on mispricing is 

likely to be larger for longer dated contracts.  

4.3.4.3 Mispricing and futures volume 

The relationship between mispricing and futures volume is investigated by sorting the 

mispricing data into 5 groups of roughly equal size by futures volume in descending order and 
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Table 4.10 Nikkei 225 futures mispricing and time to expiration 
 
 Mispricing (%) Absolute mispricing (%) Underpricing (%) Overpricing (%)  

Time to expiration Mean Median Mean Median Mean Median Mean Median No. of obs 
Panel A: OSE          

(80, 105] -0.1361 -0.1514 0.3976 0.3506 -0.4259 -0.3879 0.3501 0.2825 1071 
(60, 80] -0.0518 -0.0109 0.2615 0.1946 -0.3022 -0.2109 0.2177 0.1742 955 
(40, 60] -0.0248 -0.0106 0.2008 0.1444 -0.2136 -0.1551 0.1866 0.1296 1047 
(20, 40] -0.0036 0.0034 0.1952 0.1502 -0.2015 -0.1522 0.1891 0.1479 1032 
[8, 20] -0.0099 -0.0047 0.1833 0.1443 -0.1861 -0.1348 0.1802 0.1564 449 

Test statistics   132.0443**a   80.6546**a  -16.2661**b     
      -0.2410**c     

Panel B: SGX          
(80, 105] -0.1411 -0.1464 0.4043 0.3442 -0.4323 -0.3846 0.3564 0.3078 1078 
(60, 80] -0.0352 -0.0166 0.2827 0.2039 -0.3062 -0.2190 0.2573 0.1941 967 
(40, 60] -0.0219 -0.0130 0.2145 0.1490 -0.2282 -0.1622 0.1998 0.1407 1060 
(20, 40] 0.0096 0.0171 0.2157 0.1654 -0.2191 -0.1641 0.2127 0.1662 1048 
[8, 20] -0.0150 -0.0150 0.1847 0.1332 -0.1856 -0.1303 0.1836 0.1445 450 

Test statistics     69.3707**a      
          

Panel C: CME          
(80, 105] -0.3509 -0.1287 4.2746 3.2544 -4.4934 -3.7474 4.0425 2.9710 1055 
(60, 80] -0.0796 0.2133 4.0243 3.2705 -4.2241 -3.8294 3.8356 2.9169 949 
(40, 60] -0.2386 0.2841 3.4716 2.6425 -3.9061 -3.3511 3.0786 2.3496 1057 
(20, 40] 0.0137 0.2164 2.7914 2.1636 -2.8971 -2.5648 2.6941 1.9219 1068 
[8, 20] 0.1005 -0.1444 1.9750 1.5074 -1.7628 -1.4761 2.2161 1.6406 410 

Test statistics   68.9583**a   48.6807**a   25.1099**a  9.5344**b  
        0.1461**c  

Notes: This table provides non-parametric results of the relationship between Nikkei futures mispricing and time to expiration. Mispricing, absolute mispricing, underpricing 
and overpricing are each categorised into 5 groups by time to expiration in descending order, with each group covering roughly 20 trading days. The means (medians) of the 
mispricing data are checked for monotonic orderings. The mispricing data are in percentage. Shaded columns indicate the location of the monotonic relationships observed. 
With the null hypothesis of equal means across the groups, significance of the means is tested by F-statistics of an OLS regression on dummy variables that represent the 
groups. With the null hypothesis of equal medians across the groups, significance of the medians is tested by the Jonckheere trend test (Jonckheere, 1954; Terpstra, 1952); 
Kendall’s (1938) tau-b coefficients are calculated additionally to help identify the direction of median orderings. a F-statistics. b Standardised Jonckheere-Terpstra statistics. c 
Kendall’s tau-b coefficients (one-tailed). **denotes significance at the 5% level.
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Table 4.11 Nikkei 225 futures mispricing and stock volatility 
 

 Mispricing (%) Absolute mispricing (%) Underpricing (%) Overpricing (%)  
Stock volatility (%) Mean Median Mean Median Mean Median Mean Median No. of obs d 
Panel A: OSE          

(0.0289, 0.1926] -0.0812 -0.0489 0.3342 0.2431 -0.3741 -0.2822 0.2843 0.2057 908 
(0.0205, 0.0289] -0.0680 -0.0356 0.2728 0.2076 -0.3028 -0.2425 0.2342 0.1884 901 
(0.0158, 0.0205] -0.0665 -0.0439 0.2527 0.1892 -0.2758 -0.2003 0.2210 0.1692 921 
(0.0120, 0.0158] -0.0208 -0.0025 0.2259 0.1665 -0.2443 -0.1819 0.2072 0.1553 895 
[0.0019, 0.0120] -0.0149 0.0015 0.1861 0.1272 -0.2024 -0.1300 0.1701 0.1251 900 

Test statistics 6.6462**a   46.0638**a  12.7057**b  27.9851**a  -10.0536**b  16.6563**a  7.3849**b   
    0.1380**c   -0.1487**c   0.1183**c   
Panel B: SGX          

(0.0283, 0.1908] -0.0636 -0.0436 0.3391 0.2591 -0.3726 -0.2841 0.2997 0.2290 918 
(0.0202, 0.0283] -0.0631 -0.0477 0.2807 0.2146 -0.3016 -0.2333 0.2530 0.1952 921 
(0.0156, 0.0202] -0.0635 -0.0516 0.2666 0.1986 -0.2959 -0.2159 0.2296 0.1866 909 
(0.0119, 0.0156] -0.0071 -0.0008 0.2483 0.1740 -0.2546 -0.1845 0.2420 0.1601 919 
[0.0019, 0.0119] -0.0247 -0.0037 0.2087 0.1402 -0.2291 -0.1539 0.1875 0.1248 907 

Test statistics   27.9282**a  11.8805**b  17.8626**a  -8.6795**b   7.8965**b   
    0.1283**c   -0.1281**c   0.1252**c   
Panel C: CME          

(0.0286, 0.1988] -0.0016 -0.0871 3.9398 2.9723 -3.8772 -3.1705 4.0046 2.8735 905 
(0.0205, 0.0286] 0.4844 0.4814 3.2888 2.6094 -3.1638 -2.5576 3.3883 2.6747 898 
(0.0158, 0.0205] 0.2068 0.1967 3.6085 2.6679 -3.5434 -2.6417 3.6686 2.6722 900 
(0.0122, 0.0158] -0.3709 -0.0698 3.2195 2.4342 -3.5317 -3.0999 2.8967 2.0164 903 
[0.0057, 0.0122] -1.2189 -0.2921 3.2269 2.3225 -4.1604 -3.4714 2.1559 1.8587 904 

Test statistics        8.4513**b   
        0.1294**c  
Notes: This table provides the non-parametric results of the relationship between Nikkei futures mispricing and stock volatility. Stock volatility is estimated by the fitted value 
of the conditional variance of a GARCH (1, 1) model of Bollerslev (1986) with a constant mean equation. Mispricing, absolute mispricing, underpricing and overpricing are 
each divided into 5 groups of roughly equal size by the volatility estimate in descending order. The means (medians) of the mispricing data are checked for monotonic 
orderings. The stock volatility and mispricing data are in percentage. Shaded columns indicate the location of the monotonic relationships observed. With the null hypothesis 
of equal means across the groups, significance of the means is tested by F-statistics of an OLS regression on dummy variables that represent the groups. With the null 
hypothesis of equal medians across the groups, significance of the medians is tested by the Jonckheere trend test (Jonckheere, 1954; Terpstra, 1952); Kendall’s (1938) tau-b 
coefficients are calculated additionally to help to identify the direction of median orderings. a F-statistics. b Standardised Jonckheere-Terpstra statistics. c Kendall’s tau-b 
coefficients (one-tailed). d A period of 28 trading days during 14/10/2008-21/11/2008 (OSE, SGX), 15/10/2008-21/11/2008 (CME) are excluded from the data because of 
extreme volatility. ** denotes significance at the 5% level.
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Table 4.12 Nikkei 225 futures mispricing and trading volume 
 
 Mispricing (%) Absolute mispricing (%) Underpricing (%) Overpricing (%)  

Futures volume Mean Median Mean Median Mean Median Mean Median No. of obs 
Panel A: OSE          

(82555.2, 393139] -0.0495 -0.0198 0.2472 0.1752 -0.2758 -0.2024 0.2139 0.1564 911 
(53987, 82555.2] -0.0438 -0.0204 0.2139 0.1500 -0.2395 -0.1640 0.1841 0.1408 911 
(37155.2, 53987] -0.0551 -0.0185 0.2437 0.1708 -0.2774 -0.1966 0.2043 0.1406 910 

(24576.8, 37155.2] -0.0490 -0.0291 0.2627 0.1978 -0.2868 -0.2145 0.2340 0.1884 911 
[65, 24576.8] -0.0545 -0.0307 0.3167 0.2472 -0.3409 -0.2709 0.2878 0.2206 911 

          
Panel B: SGX          

(94467.4, 568962] -0.0721 -0.0528 0.2675 0.1860 -0.2896 -0.1953 0.2362 0.1757 921 
(58340.2, 94467.4] -0.0333 -0.0115 0.2133 0.1500 -0.2363 -0.1654 0.1881 0.1381 920 
(21217, 58340.2] -0.0610 -0.0326 0.2824 0.1872 -0.3150 -0.2205 0.2433 0.1615 921 
(13891.6, 21217] -0.0122 0.0044 0.2725 0.2126 -0.2878 -0.2269 0.2576 0.1890 920 

[0, 13891.6] -0.0451 -0.0211 0.3174 0.2539 -0.3413 -0.2747 0.2902 0.2426 921 
          
Panel C: CME          

(11226.2, 59428] -0.3853 -0.2179 3.6314 2.5787 -3.7522 -2.9399 3.4923 2.3012 908 
(6783, 11226.2] 0.0914 0.2895 3.1119 2.4851 -3.1708 -2.5595 3.0583 2.4315 907 

(2767, 6783] -0.5277 0.0198 2.8437 2.0378 -3.3789 -2.4077 2.3109 1.7901 906 
(1253, 2767] 0.2409 0.3154 3.4770 2.7324 -3.5534 -2.9596 3.4131 2.5324 907 

[3, 1253] -0.1268 0.0569 4.3244 3.4656 -4.4757 -4.0185 4.1746 3.1127 911 
Notes: This table provides the non-parametric results of the relationship between Nikkei 225 futures mispricing and futures trading volume. Mispricing, absolute mispricing, 
underpricing and overpricing are each sorted into 5 groups of roughly equal size by futures trading volume in descending order. The means (medians) of the mispricing data 
are checked for monotonic orderings. The mispricing data are in percentage. 
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checking for monotonic orderings in the means (medians) of the mispricing data. Table 4.12 

reports the results. However, there does not seem to be any monotonic relationship between 

mispricing and trading volume in the Nikkei futures markets. Rather, the futures volume 

appears to exhibit a U-shaped pattern, with the lowest mispricing in magnitude associated with 

modest volume. It seems that more mispricings attract heavier futures volume, yet more 

mispricings might also be related to relatively thin trading. Empirical studies using multivariate 

regressions (e.g. Brailsford and Cusack, 1997; Wang, 2011; Cummings and Frino, 2011) 

generally document an insignificant effect of futures volume on mispricing. With the 

non-parametric method, I still cannot clearly conclude the relationship between mispricing and 

futures volume.       

4.3.5 Path dependence in Nikkei 225 futures mispricing 

The practice of early unwinding has been ignored so far. Here I look at its potential effect on the 

Nikkei mispricing series in terms of path dependence. Specifically, I address the following 

question: what is the probability that the Nikkei futures mispricing crosses a lower/upper 

transaction cost bound on day t+1, given that it crosses a lower/upper bound on day t-1 and 

returns to zero on day t? If the stochastic behaviour of mispricing does not depend on its past, the 

probability of hitting a lower/upper bound on day t+1 should be equal, or 0.5. But if early 

unwinding protects mispricing from reversing its direction, the future behaviour of mispricing 

becomes conditional on its historical behaviour, and thus the probability of hitting a lower/upper 

bound on day t+1 becomes conditional as well. Based on MacKinlay and Ramaswamy (1988) 

and Kempf (1998), I calculate the conditional probability of each of the four scenarios: “lower, 

lower”, “lower, upper”, “upper, upper” and “upper, lower”. A “lower, lower” scenario describes 

the case that mispricing hits a lower bound on day t+1, given that it hits a lower bound on day t-1 

and returns to zero on day t; similarly, a “lower, upper” scenario describes the case that 

mispricing hits an upper bound on day t+1, given that it hits a lower bound on day t-1 and returns 

to zero on day t; and so forth. The narrower transaction cost bounds, i.e. 0.5% for the OSE, SGX 

and 1.5% for the CME, are adopted to calculate the conditional probabilities as there are more 

observations to enable valid significance tests. Table 4.13 shows that the “lower, lower”, “upper, 
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upper” scenarios have much larger conditional probabilities in each of the Nikkei futures markets. 

χ2 tests are performed to test the null hypothesis that there is no association between hitting a 

lower/upper bound on day t+1 and hitting a lower/upper bound on day t-1, given that mispricing 

returns to zero on day t. Since the χ2 statistics are highly significant, the null hypothesis can be 

rejected, and thus I support path dependence in the Nikkei futures markets, with the argument 

that the Nikkei futures mispricings are more likely to cross the same transaction cost bound as the 

bound they crossed in the past. The daily measure makes the argument stronger compared with 

studies using higher-frequency data (e.g. MacKinlay and Ramaswamy, 1988; Kempf, 1998).   

 

Table 4.13 Path dependence in Nikkei 225 futures mispricing 
 

Scenario Conditional probability No. of obs 

Panel A: OSE   
0.5% Transaction costs   

Lower, lower 0.8750  56 
Lower, upper 0.1250 8 
Upper, upper 0.7407 20 
Upper, lower 0.2593  7 

χ2 statistic 42.2593**   
Panel B: SGX   

0.5% Transaction costs   
Lower, lower 0.8302  44 
Lower, upper 0.1698  9 
Upper, upper 0.6316  12 
Upper, lower 0.3684 7 

χ2 statistic 24.4290**   
Panel C: CME   

1.5% Transaction costs   
Lower, lower 0.9000  81 
Lower, upper 0.1000  9 
Upper, upper 0.8714 122 
Upper, lower 0.1286 18 

χ2 statistic 134.8571**   
Notes: This table gives the evidence of path dependence in the Nikkei futures mispricing. The conditional 
probabilities are calculated for each of the four scenarios: “lower, lower”, “lower, upper”, “upper, upper” and 
“upper, lower”. A “lower, upper” scenario describes the case that mispricing hits an upper bound on day t+1, 
given that it hits a lower bound on day t-1 and returns to zero on day t; other scenarios can be analogously 
defined. The transaction costs are 0.5% for the OSE and SGX, 1.5% for the CME. The χ2 tests are based on 
the null hypothesis that there is no association between hitting a lower/upper bound on day t+1 and hitting a 
lower/upper bound on day t-1, given that mispricing returns to zero on day t. ** denotes significance at the 
5% level. 
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4.4 Index arbitrage activities in the Nikkei 225 futures markets 

4.4.1 The ESTAR model 

An interesting dynamic issue is to measure the reaction of a market to a given mispricing. The 

speed of the reaction can be interpreted as the propensity-to-arbitrage of the market, a gauge of 

how quickly index arbitrage activities take place to pull deviated prices back to equilibrium. A 

parametric estimate of such propensity is the smoothness parameter in an ESTAR model. Besides, 

different trading objectives, capital constraints, transaction costs and perceived risks contribute 

to heterogeneous investors (Tse, 2001), such that in the aggregate a market is more likely to 

adjust price discrepancies in a smooth, gradual fashion than in an discontinuous, abrupt way. 

Taking market participants as a whole, the ESTAR model has an exponential transition function 

that is able to depict such adjustments in the sense that the transition between regimes is 

continuous and smooth, and that large mispricings are removed more rapidly than small 

mispricings. Econometrically, the ESTAR model belongs to the family of regime-switching 

models for returns, and it is often proved to outperform other regime-switching models for 

returns, in terms of better explanation of the nonlinear adjustment process of futures mispricing.  

 

Here it is assumed that the Nikkei futures mispricing follows an ESTAR model; the linear 

alternative is an autoregressive (AR) model, as Table 4.9 suggests linear dependence in the 

mispricing. Following Teräsvirta (1994) and Michael et al. (1997), I formulate a STAR model as 

below: 

 * *

1 1

( ) ( )
p p

t j t j j t j t d t
j j

y k y k y T y up p− − −
= =

= + + + × +∑ ∑  (4.8) 

where {yt} is a stationary, ergodic series; k, k* are constants; πj, πj
* are adjustment coefficients, 

j=1, 2, …, p, with p as a positive integer; ut ~ iid(0, σt
2); yt-d is the transition variable with the 

delay parameter d, d>0; T(∙) is a continuous smooth transition function, bounded between 0, the 

middle regime where no investors will trade, and 1, the outer regime where all investors will 

trade. An exponential STAR (ESTAR) model has an exponential T(∙) as:    
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 * 2( ) 1 exp[ ( ) ]t d t dT y y cγ− −= − − −  (4.9) 

The location parameter c* gives the centre of T(∙). With the restriction k*=c*=0, equations 

(4.8)-(4.9) form the exponential autoregressive (EAR) model of Haggan and Ozaki (1981). The 

smoothness parameter γ, an estimate of the propensity-to-arbitrage, measures the rate of 

transition from one regime to the other, or how quickly investors respond to mispricing in a 

market. The higher the value of γ, the greater is the speed that deviated prices are adjusted 

towards equilibrium, and hence more arbitrage activities. γ should be positive in value. If γ=0, or 

T(∙) =0, the ESTAR model (4.8)-(4.9) reduces to a linear AR(p) model: 

 
1

p −
=

= + +∑
p

t j t j t
j

y k y u  (4.10) 

Thus, πj’s are the adjustment coefficients in the middle regime; equation (4.10) constitutes an 

ESTAR model under the null hypothesis H0: γ=0.  

 

If γ=∞, or T(∙) =1, the ESTAR model (4.8)-(4.9) also becomes a linear AR(p) model but with a 

different representation: 

 * *

1

( )
p

t j j t j t
j

y k k y up p −
=

= + + + +∑   (4.11) 

As such, (πj+πj
*) measure the adjustments towards equilibrium in the outer regime. The 

adjustment coefficients are analysed more deeply in section 4.4.4. 

 

Alternatively, a logistic STAR (LSTAR) model has a logistic transition function as: 

 * 1( ) {1 exp[ ( )]}t d t dT y y cγ −
− −= + − −  (4.12) 

The effect of transaction costs on the cost of carry model justifies an exponential rather than a 

logistic transition function. With the restriction k*=c*=0, equation (4.9) is a U-shaped curve with 

quicker (slower) reversion for larger (smaller) mispricings, which is in agreement with the 

expectation that arbitrage rises with the magnitude of mispricing. Nonetheless, under the 

restriction, equation (4.12) is monotonically increasing, suggesting that arbitrage increases over 

time without any relevance to mispricing, and hence LSTAR models are not able to capture the 
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mean-reverting behaviour of mispricing. The superiority of the ESTAR models is confirmed by a 

formal selection procedure of Teräsvirta (1994), which will be provided later. Therefore, I only 

model the nonlinear adjustment process of the Nikkei futures mispricing with an ESTAR 

specification.  

4.4.2 Methodology 

4.4.2.1 Unit root tests 

Given the positive relationship between mispricing and time to maturity (section 4.3.4.1), I run 

an OLS regression of the Nikkei futures mispricing on a constant c and time to maturity (T-t):51 

*( )
tt tMis c T - t Misβ= + +  

The error term Mist
* is the demeaned mispricing series free from the effect of time to maturity.52 

To check the suitability of Mist
* as the transition variable in equation (4.8), a set of unit root tests 

are performed to examine whether the series is stationary. These tests include Augmented 

Dickey-Fuller (ADF), Phillips-Perron (PP), Kwiatkowski-Phillips-Schmidt-Shin (KPSS), and 

Zivot-Andrews (ZA). Appendix 4.3 provides methodological details of these tests.     

4.4.2.2 Linearity tests 

Assume that the demeaned mispricing series is the transition variable, it is at first modelled as a 

linear AR(p) process as equation (4.10) in each market; the model order p is selected by 

Box-Jenkins (1976) approach. It is necessary to consider whether the linear AR is able to 

adequately describe the dynamics of the mispricing. This is examined by taking the linear AR 

model as the null model and the ESTAR model as the alternative. The null hypothesis of linearity 
                                                        
51 The regression is run to remove the time to maturity from the Nikkei futures mispricing. As the mispricing is unobservable 
and has to be estimated, the regression could suffer from measurement errors in the mispricing. However, based on the analysis 
in section 4.2, errors in the mispricing estimated from COC2 (OSE, SGX) and COC3 in the original view (CME) should not be 
important, and errors in the mispricing as a dependent variable will not cause serious problems.    
52 The ESTAR-GARCH model is sensitive to outliers (Chan and McAleer, 2002). 7 trading days with outliers are later found to 
lead to excessive ARCH in the SGX residual. These trading days are 21/04/2000, 12/09/2001, 02/01/2013, 03/01/2013, 
06/05/2013, 03/01/2014, and 03/11/2014. As such, for the mispricing in the SGX, the OLS regression is modified as: 

7
*

1

( )
tt t i

i

Mis c T - t dum Misβ
=

= + + +∑  

where dum1=1 if the day is 21/04/2000, 0 otherwise; the other dummy variables are defined analogously. The regression error 
Mist

* is without the influence of the outliers and thus will be used in the following procedures. For consistency, it is still called 
the demeaned mispricing series. 
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can be expressed as H0: γ=0, in which case an ESTAR model collapses to a linear AR model. 

However, under the hypothesis, the ESTAR model suffers from the problem of unidentified 

nuisance parameters, which means that with γ=0, the parameters k*, πj
* and c* are not restricted in 

equations (4.8)-(4.9) and hence the model is not identified (Teräsvirta, 1994; Franses and van 

Dijk, 2000). The problem can be circumvented using the Lagrange multiplier (LM)-type 

linearity test proposed by Saikkonen and Luukkonen (1988) and Teräsvirta (1994). To be more 

specific, given the value of d, run the following auxiliary regression by OLS: 

 2
00 0 1 2

1

ˆ ( )
p

t j t j j t j t d j t j t d t
j

u y y y y y vβ β β β− − − − −
=

= + + + +∑  (4.13) 

where the dependent variable is the residual estimated from equation (4.10); vt is the residual 

from the auxiliary regression. The null hypothesis of linearity H0: γ=0 corresponds to H01: 

β1j=β2j=0, under which a LM-type statistic asymptotically follows a χ2 distribution with 2p 

degrees of freedom. The alternative hypothesis is an ESTAR(p) model. To specify d, the linearity 

test is repeated for different candidates of d, and d is selected as the one that generates the 

smallest p-value of the test, because a correct d should have the highest power in the test (Tsay, 

1989; Teräsvirta, 1994). With the restriction k*=c*=0, it is useful to test two additional 

hypotheses, H02: β1j=0 against the alternative hypothesis of an ESTAR(p) model, and provided 

that H02 is not rejected, H03: β2j=0 | β1j=0 against the alternative hypothesis of an EAR(p) model 

(Michael et al., 1997). Ordinary F-statistics approximate the LM-type statistics, and for data with 

relatively large p and small sample, the F-statistics are more powerful and without size 

distortions (Teräsvirta, 1994).    

4.4.2.3 Selection between ESTAR and LSTAR models 

If linearity is rejected, the alternative hypothesis, an ESTAR(p) specification as equation (4.8), 

will be used to model the Nikkei futures mispricing. But prior to the modelling, I formally 

demonstrate the incompatibility of the LSTAR model with the data using the selection approach 

of Teräsvirta (1994). Consider a similar auxiliary regression by OLS:  

 2 3
00 0 1 2 3

1

ˆ ( )
p

t j t j j t j t d j t j t d j t j t d t
j

u y y y y y y y vβ β β β β− − − − − − −
=

= + + + + +∑  (4.14) 
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and test three null hypotheses as the following: 

H04: β3j=0 

H05: β2j=0 | β3j=0 

H06: β1j=0 | β2j=β3j=0 

The hypotheses H04, H05 and H06 are tested consecutively by F-tests. The relative strengths of 

rejecting these hypotheses shed light on the suitability of a model. Provided that the p-value of 

the test of H05 is the smallest, the ESTAR(p) model is favoured by the data; otherwise the 

LSTAR(p) model is more desirable. 

4.4.2.4 Estimation and evaluation 

If the ESTAR(p) model is selected as the mean equation, the exponential transition function, 

equation (4.9), is standardised by dividing its exponent by the sample variance of the transition 

variable to make the smoothness parameter γ scale-free and to facilitate searching for initial 

values (Teräsvirta, 1994; van Dijk et al., 2002). The model order p is determined by the method 

of Haggan and Ozaki (1981): keep γ fixed at one of a grid of values such that the ESTAR model 

becomes linear, and estimate the resultant model with different values of p; and p is selected as 

the order with which the model has the smallest Akaike Information Criterion (AIC).  

 

The estimation of an ESTAR model is by nonlinear least squares (NLS). This is equivalent to 

maximum likelihood if the model residual ut is normal; otherwise NLS estimates can be 

interpreted as quasi-maximum likelihood estimates (van Dijk et al., 2002). The NLS estimates 

are consistent and asymptotically normal under certain conditions, which hold provided that {yt} 

is stationary and ergodic, ut ~ iid(0, σt
2) (Klimko and Nelson, 1978; Tong, 1990; Michael et al., 

1997). The starting values are also obtained by a grid search over γ and estimating the resultant 

linear model (Teräsvirta, 1994; van Dijk et al., 2002). Since there may be several local maxima in 

the likelihood function, various sets of starting values are used, including the estimates with the 

lowest residual sum of squares (RSS), the estimates with the highest log likelihood, and the OLS 

estimates. Among the models whose algorithms converge and parameter estimates look 

reasonable, the final model is decided as the one that generates the lowest residual variance. 
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For the variance equation, ut is allowed to follow a GARCH (1, 1) process of Bollerslev (1986): 

 t t tu σ η=  (4.15) 

 2 2 2
1 1t t tau bσ ω σ− −= + +   (4.16) 

where ηt ~ iid(0,1); ω>0; a≥0; b≥0; a+b<1; σt is a time-varying, positive and measurable function 

of the information set at time t-1. This model is chosen because a preliminary estimation of 

equations (4.8)-(4.9) reveals significant ARCH effect in the residual, which could lead to severe 

problems in the estimation. Besides, the GARCH (1, 1) model is widely used and has fewer 

parameters than higher order GARCH models.53 The estimation of equations (4.15)-(4.16) is by 

maximum likelihood, or quasi-maximum likelihood if ηt is not assumed to be normal. 

 

Equations (4.8)-(4.9), (4.15)-(4.16) form an ESTAR-GARCH model. The stationarity and 

ergodicity of the model and the existence of moments are proved in Chan and McAleer (2002). 

Essentially they require that {yt} is stationary and ergodic, ut ~ iid(0, σt
2). However, joint 

estimation of the mean equation and the variance equation is difficult. I apply the two-step 

procedure of Chan and McAleer (2002): estimate equations (4.8)-(4.9) by NLS, and then 

estimate equations (4.15)-(4.16) using the residual computed from equations (4.8)-(4.9). The 

separate estimation of the mean and the variance does not affect the consistency and the 

asymptotic normality of the (quasi-)maximum likelihood estimates, nor bias the ESTAR model. 

See proofs in Chan and McAleer (2002).54  

 

The estimated ESTAR-GARCH model is subjected to diagnostic checks, including the LM serial 

correlation test of Eitrheim and Teräsvirta (1996) for residual autocorrelation, the ARCH-LM 

test of Engle (1982) for remaining ARCH, the BDS independence test of Brock et al. (1996) for 

remaining nonlinearity, and the Jarque-Bera (1980) test for residual normality. The RSS of the 

linear AR model and the RSS of the ESTAR-GARCH model are compared to see whether the 

latter is smaller.     
                                                        
53 It is found that a GARCH (2, 2) process is necessary to remove the excessive ARCH in the residual of SGX (sample A). 
Thus, for SGX (sample A) only, equation (4.16) is 2 2 2 2 2

1 1 2 2 1 1 2 2t t t t ta u a u b bσ ω σ σ− − − −= + + + + , where the sum of the non-negative 
(G)ARCH parameters is less than 1.  
54 It is recognised that the separate estimation could lead to a loss of efficiency of the estimates. Due to computational 
difficulties of the joint estimation, however, the two-step procedure provides a practical way to estimate the ESTAR-GARCH.  
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4.4.3 Empirical results 

Table 4.14 reports the unit root test statistics for the demeaned mispricing series of the three 

Nikkei markets. The ADF test and the PP test suggest strong rejection of the null hypothesis of a 

unit root. The KPSS test does not suggest rejection of the stationary null even at the 10% 

significance level. Allowing for an endogenous one-time structural break, the ZA test again 

indicates strong rejection of the null hypothesis of a unit root in the series. Overall, the results of 

these unit root tests are consistent: the demeaned mispricing series is stationary at the level, or 

I(0). Thus it will act as the transition variable in the modelling.55 It follows that the restriction 

k=k*=c*=0 will be applied to the ESTAR model, for the series {yt} is mean-adjusted (k=k*=0) 

and the transition functions are usually centred at zero (c*=0); fixing c*
 can also improve the 

accuracy of the remaining estimates (Chan and McAleer, 2002). This is a common restriction to 

reduce model parameters in ESTAR studies with demeaned data; see Michael et al. (1997), 

Anderson (1997), Taylor (2007), among others.  

 

The demeaned mispricing series is first modelled as a linear AR(p) process as equation (4.10) in 

each market during the whole sample period. It seems that p=6 for the OSE and SGX, p=4 for the 

CME, but the residuals are autocorrelated by Ljung-Box (1978) Q-statistics.56 The residual 

autocorrelation may result from the structural break in the data. Hence two stability tests are 

conducted: the Quandt-Andrews unknown breakpoint test shows the breakpoint on 16/10/2008; 

the recursive coefficients show the breakpoint during October-November 2008, which are in 

agreement with the market turbulence characterised by trading halts, Nikkei index plummets and 

abnormal volatility at that time. For this reason, in the process of modelling, my data range is 

divided into a pre-crisis period (sample A) and a post-crisis period (sample B), excluding a short 

turmoil interval in the middle of the crisis, as listed in Table 4.15. 

                                                        
55 According to Granger and Teräsvirta (1993), it is impossible to test the ergodicity of a finite series in practice; however, for 
a simplified nonlinear model yt=g(yt-1)+εt, the ergodicity of yt is essentially achieved if│g(y)/y│<1 for│y│large. In the ESTAR 
model equation (4.8), this implies that either ut≠0, or y+[k+∑πjy+(k*+∑πj

*y)×T(y)]≠0 for│y│large. These are satisfied for the 
demeaned mispricing series.  
56 Results are available upon request. 
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Table 4.14 Unit root test statistics for the demeaned mispricing series  
  

 ADF PP KPSS ZA 
OSE -18.8820***  -59.6999***  0.0358  -17.4756***  
SGX -19.2524***  -58.6547***  0.0377  -18.0052***  
CME -8.1904***  -15.4427***  0.1053  -8.0323***  

Notes: This table reports the statistics of unit root tests, i.e. Augmented Dickey-Fuller (ADF), Phillips-Perron 
(PP), Kwiatkowski-Phillips-Schmidt-Shin (KPSS), and Zivot-Andrews (ZA), for the mispricing series by 
market. The mispricing series is demeaned and the time to maturity effect removed by running the following 
OLS regressions. For the OSE, CME: *)( ttt MistTcMis +−+= β ; for the SGX: *

7

1

)( t
i

itt MisdumtTcMis ++−+= ∑
=

β , where 

dum represents 7 trading days with outliers. The error term Mist
* is the series that undergoes the unit root 

tests. The ADF test is carried out excluding any constant and trend term because Mist
* is demeaned and the 

time to maturity effect removed. The lag length l is determined by Schwartz Bayesian Criterion (SBC). The 
constant and trend are also excluded from the PP test. However, for robustness the KPSS test is carried out 
with a null of trend stationarity. The test critical values for the ADF test and the PP test are -2.57(1% level), 
for the KPSS test are 0.12 (10% level), for the ZA test are -4.80 (1% level). They are taken from MacKinnon 
(1991), Kwiatkowski et al. (1992), and Zivot and Andrews (1992), respectively. *** denotes significance at 
the 1% level. 

 

 

 
Table 4.15 Sample division 

 
 Pre-crisis (sample A) Post-crisis (sample B) 

OSE 28/06/1996-09/10/2008 04/11/2008-30/12/2014 
SGX 28/06/1996-09/10/2008  04/11/2008-31/12/2014 
CME 09/01/1997-12/09/2008  02/12/2008-31/12/2014 

Notes: This table lists the start and end dates of each sample in each Nikkei market. The whole data range is 
20/06/1996-31/12/2014 (OSE, SGX); 01/01/1997-31/12/2014 (CME). In the process of modelling, it is split 
into a pre-crisis period (sample A) and a post-crisis period (sample B), excluding a short turmoil interval in 
the middle of the crisis. 
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Table 4.16 Estimation and evaluation results: the linear AR model 
 

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
p 6 4 5 6 4 4 
k 0.0000  0.0000  0.0001  -0.0001  0.0001  -0.0002  
 (0.1898)  (-0.0810)  (0.9167)  (-0.7127)  (0.4880)  (-0.4741)  

π1 0.1958  0.3788  0.2247  0.3346  0.6755  0.5560  
 (7.4765)  (9.1015)  (10.3369)  (9.0508)  (23.2624)  (11.9645)  

π2 0.1035  0.1542  0.1010  0.1353  0.1556  0.2216  
 (4.6015)  (4.1665)  (4.4093)  (4.4840)  (5.2394)  (5.4275)  

π3 0.0529  0.1328  0.0488  0.1108  0.0742  0.1147  
 (2.0718)  (3.5978)  (2.1652)  (3.9022)  (2.9855)  (3.1055)  

π4 0.0942  0.0878  0.1042  0.1036  0.0528  0.0582  
 (4.5043)  (2.3424)  (5.0056)  (3.5220)  (2.4860)  (1.9417)  

π5 0.0584   0.0591     
 (2.6903)   (2.7986)     

π6 0.0377    0.0250    
 (1.7406)    (0.9665)    

R2 0.1140  0.3913  0.1260  0.3033  0.8789  0.8485  
RSS 0.0312  0.0118  0.0293  0.0172  0.7220  0.4734  
Q(6) [1.0000]  [0.9416]  [0.9656]  [0.9849]  [0.9473]  [0.6868]  

Q(12) [0.9983]  [0.7760]  [0.8927]  [0.8815]  [0.1702]  [0.8117]  
ARCH(12) [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  

JB [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  

Notes: This table presents the estimation and evaluation results of the linear AR model, equation (4.10): 

t

p

j
jtjt uyky ++= ∑

=
−

1

p  

The estimation is by OLS with White (1980) heteroskedasticity-consistent standard errors and covariance. 
The model order p is determined by Box-Jenkins (1976) model selection criteria. Diagnostic checks include 
the Ljung-Box (1978) portmanteau test (Q), the ARCH-LM test (ARCH) of Engle (1982) and the 
Jarque-Bera (1980) normality test (JB). Q (m) and ARCH (m) are respective test statistics up to order m. 
Numbers in parentheses are t-statistics. Numbers in square brackets are p-values. 
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Table 4.17 Linearity tests 
 

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
Panel A: The linearity test H01 for different d 

d       
1 2.25E-09 1.04E-14 6.01E-04 6.26E-07 3.21E-05 3.51E-07 
2 3.61E-07 4.05E-01 1.99E-07 1.95E-02 7.76E-03 5.04E-01 
3 6.04E-04 1.40E-01 1.34E-02 2.68E-03 1.93E-03 1.32E-02 
4 1.51E-02 7.95E-04 1.93E-01 1.05E-02 9.28E-04 2.26E-01 
5 2.35E-01 5.05E-02 1.01E-02 1.04E-03 9.78E-04 7.81E-02 

Panel B: The linearity tests H01-H03 
d 1 1 2 1 1 1 

H01 2.25E-09 1.04E-14 1.99E-07 6.26E-07 3.21E-05 3.51E-07 
H02 2.33E-06 1.05E-12 1.34E-03 3.50E-06 3.93E-01 3.37E-01 
H03     3.91E-06 3.25E-08 

Notes: This table gives the results of the linearity tests of the residual estimated from the linear AR model, 
equation (4.10). An auxiliary regression by OLS as equation (4.13) is run: 

2
00 0 1 2

1

ˆ ( )
p

t j t j j t j t d j t j t d t
j

u y y y y y vβ β β β− − − − −
=

= + + + +∑  

And three hypotheses, H01:β1j=β2j=0, H02: β1j=0, H03: β2j=0 | β1j=0 are tested by F-statistics. The p-values of 
the F-statistics are reported. Panel A shows the results of testing H01 for different d selected from {1, 2, 3, 4, 
5}. d is determined as the candidate that generates the smallest p-value of the test. Panel B shows the results 
of testing the three hypotheses for the determined d. 

 

Table 4.18 ESTAR vs LSTAR models 
 

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
H04 1.31E-01 7.30E-03 1.53E-03 3.77E-02 1.19E-01 8.30E-01 
H05 1.57E-06 7.80E-06 9.12E-05 1.37E-02 1.73E-06 1.48E-07 
H06 8.69E-05 4.42E-11 1.56E-04 2.75E-06 6.76E-01 1.05E-01 

Notes: This table gives the results of the selection between ESTAR and LSTAR models. An auxiliary 
regression by OLS as equation (4.14) is run: 

2 3
00 0 1 2 3

1

ˆ ( )
p

t j t j j t j t d j t j t d j t j t d t
j

u y y y y y y y vβ β β β β− − − − − − −
=

= + + + + +∑  

And three hypotheses, H04: β3j=0, H05: β2j=0 | β3j=0, H06:β1j=0 | β2j=β3j=0 are tested by F-statistics. The 
p-values of the F-statistics are reported. 

 

 

 



 140 

Table 4.16 presents the linear estimation results for each market in each sample. The model order 

p indicates that the linear dependence in the demeaned mispricing lasts for approximately a week. 

While the constants are not significantly different from zero, the AR coefficients are highly 

significant. The model residuals are not autocorrelated, but are heteroskedastic and non-normal. 

Based on the linear models, the linearity tests are performed and their results are in Table 4.17. 

Panel A shows the test results of H01 for different delay parameters d selected from {1, 2, 3, 4, 5}. 

The smallest p-values of the test occur when d=1 for OSE, SGX (sample B), CME; d=2 for SGX 

(sample A). Panel B shows the test results of H01-H03. It can be seen that linearity is rejected in 

each Nikkei market in each sample. Despite that the CME does not reject H02, its strong rejection 

of H03 indeed reveals the presence of nonlinearity. As such, the null linear AR models can be 

rejected.  

 

The results of the selection between ESTAR and LSTAR models are given in Table 4.18. H05 is 

most strongly rejected in all the data except the OSE, SGX in sample B. This reinforces the 

superiority of the ESTAR models over the LSTAR models for most mispricings. The relatively 

weak rejection of H05 in sample B of the OSE (SGX) may be because more observations lie 

above (below) zero, in which case an ESTAR model could be approximated by a LSTAR model. 

In fact, Teräsvirta (1994) finds that if data are asymmetrically distributed, the ESTAR and 

LSTAR models are close substitutes. Given that the substitutability disappears when the 

restriction k=k*=c*=0 is imposed, and more importantly, a logistic transition function contradicts 

the common understanding of the arbitrage behaviour, an ESTAR model with the restriction will 

be applied to each Nikkei market in each sample.   

 

The ESTAR model is estimated by NLS; the GARCH model is estimated by quasi-maximum 

likelihood, both assuming a student t-distribution, with which the NLS estimates can be 

interpreted as quasi-maximum likelihood estimates and the two estimation methods are 

consistent in the ESTAR-GARCH framework. The estimation results of the ESTAR-GARCH are 

provided in Table 4.19. The model orders p reduces from 6 or 5 (sample A) to 4 (sample B) in the 

OSE and SGX, which implies a quicker adjustment of the two markets over time. The 
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(standardised) smoothness parameter γ is quite small in all the markets in sample A, but in 

sample B, an increase in γ is found in the OSE and SGX, while a slight decrease in γ is found in 

the CME. The opposite directions of change in γ are clearly illustrated in Figure 4.5 (note the 

differences in scales of the vertical axes). The U-shaped transition functions reveal the 

mean-reverting behaviour of the Nikkei futures mispricing, with tails depicting quicker 

movements to equilibrium for larger mispricings. In the OSE and SGX, steeper transition 

functions in the post-crisis period suggest higher propensity-to-arbitrage, or more arbitrage 

activities to remove mispricing. In particular, about 0.02% investors respond to a mispricing of 

1%, and about 0.04% investors respond to a mispricing of 1.5%; the counterpart proportions of 

investors in the pre-crisis sample are much lower. In the CME, as γ decreases slightly in sample B, 

the transition function becomes flatter, meaning slower market response to a given mispricing. 

Inter-market comparison indicates that the quickest market response to the Nikkei futures 

mispricing is in the CME before the crisis, which is consistent with my previous finding about 

the greater size and risk of the CME mispricing; however, after the crisis, it is the OSE that 

enjoys the quickest market response. 

 

Table 4.19 also evaluates the estimated ESTAR-GARCH model. It is clear that the model does 

not suffer from any remaining autocorrelations, ARCH effects, or nonlinearity. Moreover, the 

RSS of the ESTAR-GARCH model is smaller than the RSS of the linear AR model in each 

market in each sample (compared with Table 4.16). The two-stage estimates could be 

inefficient, but the GARCH estimates in the table are generally very significant and efficiency 

does not appear to be a problem.57 However, the Jarque-Bera (1980) test of residual normality 

is not passed because of excess kurtosis in the residual. This suggests that the model may not 

fully describe the higher moments of my data. Even so, I decide to retain the model as my goal 

is not to find a model that could explain everything in the data. The fairly satisfactory nature of 

the model exhibited by other diagnostic tests is more important for my research focus. The 

rejection of normality is also reported and tolerated by other ESTAR studies such as Michael et 

al. (1997) and Taylor (2007).
                                                        
57 A minor puzzle in Table 4.19 is the significance of most ω’s even though they are very small in value. This could be caused 
by remaining deterministic components in the demeaned mispricing series and would not affect the variance model.   
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Figure 4.5 Transition functions in Nikkei 225 futures markets 
Notes: (a)-(f) represent the transition functions computed from equation (4.9) in each Nikkei market in each 
sample. T(yt-d) on vertical axis, yt-d on horizontal axis, have been multiplied by 100. 
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Table 4.19 The ESTAR-GARCH model 

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
ESTAR coefficients 

p 6 4 5 4 4 4 
d 1 1 2 1 1 1 
γ 0.0009  1.9950  0.0100  1.9395  0.3260  0.0047  
 (0.0073)  (3.7140)  (0.1426)  (4.0019)  (1.3951)  (0.0150)  

π1 0.2364  -0.0330  0.2165  0.0122  0.5744  0.4723  
 (9.4586)  (-0.3350)  (9.8748)  (0.1310)  (18.6496)  (12.9091)  

π2 0.1526  0.0072  0.2015  -0.0169  0.1850  0.2453  
 (7.1242)  (0.1524)  (6.8062)  (-0.4110)  (6.3220)  (7.1839)  

π3 0.0566  0.0578  0.0581  0.0364  0.0697  0.1541  
 (2.7574)  (1.4238)  (2.7337)  (1.0790)  (2.5348)  (4.7825)  

π4 0.0873  0.0658  0.0684  0.0522  0.1113  0.0783  
 (4.1525)  (1.7166)  (3.1657)  (1.7403)  (4.6614)  (2.6632)  

π5 0.0466   0.0453     
 (2.2320)   (2.1857)     

π6 0.0417       
 (2.0618)       

π1
* -3.5581  0.4416  1.8244  0.3073  0.2604  6.6508  
 (-0.0075)  (4.0012)  (0.1476)  (2.8330)  (2.8218)  (0.0152)  

π2
* -8.7582  0.2429  -2.2817  0.2991  -0.1695  -3.5954  
 (-0.0074)  (3.2591)  (-0.1540)  (4.6939)  (-1.6091)  (-0.0152)  

π3
* 4.6466  0.0837  -0.2018  0.1161  0.0742  -1.3846  
 (0.0074)  (1.1435)  (-0.1117)  (1.8882)  (0.7645)  (-0.0152)  

π4
* -5.8337  0.0051  1.3754  0.0444  -0.1207  -1.6491  
 (-0.0074)  (0.0756)  (0.1470)  (0.8497)  (-1.4831)  (-0.0153)  

π5
* 9.5721   1.6016     
 (0.0074)   (0.1494)     

π6
* -4.3488       
 (-0.0074)       

GARCH coefficients a 
ω  1.09E-07 9.15E-07 4.76E-09 6.22E-06 2.51E-05 4.55E-05 
 (3.1334)  (4.3185)  (1.3183)  (5.9142)  (4.4284)  (4.0407)  

a1 0.0539  0.2275  0.0963  0.4857  0.1097  0.1775  
 (6.3732)  (4.9765)  (4.1796)  (4.3766)  (5.3348)  (4.3921)  

a2   -0.0909     
   (-4.1561)     

b1 0.9371  0.6813  1.6254  0.1353  0.7851  0.6742  
 (100.3153)  (14.5597)  (13.1883)  (1.6621)  (20.9452)  (11.4593)  

b2   -0.6311     
   (-5.2261)     
Evaluation 

R2 0.1183  0.3999  0.1326  0.3075  0.8804  0.8521  
RSS 0.0310  0.0116  0.0291  0.0171  0.7131  0.4620  

LM(6) [0.3838]  [0.8176]  [0.8813]  [0.7528]  [0.2468]  [0.3075]  
LM(12) [0.7523]  [0.6074]  [0.7065]  [0.7221]  [0.2181]  [0.5055]  

ARCH(12) [0.9254]  [0.1436]  [0.4823]  [0.8853]  [0.9714]  [0.9999]  
BDS [0.5540]  [0.1140]  [0.5860]  [0.3780]  [0.9660]  [0.9300]  
JB [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  
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Notes for Table 4.19: This table shows the estimation and evaluation results of the ESTAR-GARCH model, 
equations (4.8)-(4.9), (4.15)-(4.16): 

* *

1 1

( ) ( )
p p

t j t j j t j t d t
j j

y k y k y T y up p− − −
= =

= + + + × +∑ ∑ , * 2( ) 1 exp[ ( ) ]t d t dT y y cγ− −= − − − ; 

t t tu σ η= , 2 2 2
1 1t t tau bσ ω σ− −= + + . 

The model restriction is k=k*=c*=0. yt is the demeaned mispricing series. p is determined by the method of 
Haggan and Ozaki (1981). d is determined by the selection approach in the linearity tests. The estimation of 
the ESTAR model is by NLS; the estimation of GARCH is by quasi-maximum likelihood, both assuming a 
student t-distribution, with which the NLS estimates can be interpreted as quasi-maximum likelihood 
estimates. Diagnostic checks include the LM serial correlation test (LM) of Eitrheim and Teräsvirta (1996), 
the ARCH-LM test (ARCH) of Engle (1982), the BDS independence test (BDS) of Brock et al. (1996) and 
the Jarque-Bera (1980) normality test (JB). LM (m) and ARCH (m) are respective test statistics up to order m. 
Numbers in parentheses are z-statistics. Numbers in square brackets are p-values. a For SGX (sample A), a 
GARCH (2, 2) model, 2 2 2 2 2

1 1 2 2 1 1 2 2t t t t ta u a u b bσ ω σ σ− − − −= + + + + is used as equation (4.16).  

  

4.4.4 The heterogeneous arbitrage activities 

One interpretation of the ESTAR model is the heterogeneity in the arbitrage behaviour. Apart 

from transaction costs, heterogeneous arbitrage activities may also contribute to the mean 

reversion of futures mispricing. Nonetheless, with heterogeneous arbitrageurs, small mispricings 

are argued to be resolved more rapidly than large mispricings. The rationale is that, based on a 

market composed at least of noise traders who divert prices away and fundamental traders who 

restore equilibrium, small price deviations with short-term risks and low capital requirements are 

more likely to be arbitraged. As such, large price deviations are mostly foregone, rather than 

resolved to pull the prices back to equilibrium (McMillan and Speight, 2006). The heterogeneity 

in the Nikkei markets is explored through the adjustment coefficients in the ESTAR model. Table 

4.20 gives the ESTAR adjustment coefficients in the middle regime and the outer regime. 

Negative adjustment coefficients, especially in the outer regime, are indicative of mean reversion. 

In addition, following McMillan and Speight (2006), I test two parameter restrictions, H07: 

πj=πj+πj
*=0 to check the mean-reverting properties of mispricing and the interaction of 

heterogeneous arbitrageurs, and H08: πj=πj+πj
* to check whether the adjustments in different 

regimes are symmetric.58 The hypotheses are considered by Wald tests. Wald1, Wald2 are used to 

name the χ2 statistics under H07, H08, respectively, and they are also reported in Table 4.20.   

 

                                                        
58 H08 is tested separately for each lag and jointly for all lags. 
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For the OSE and SGX, negative adjustment coefficients in the outer regime in sample A 

suggest mean reversion of the mispricing. H07 is strongly rejected in the two markets, 

supporting the mean-reverting behaviour and the existence of heterogeneous arbitrageurs. The 

slow adjustments from one regime to the other are obvious, as the reversion even takes place 6 

trading days after a given mispricing appear. Though slow, the adjustments in different regimes 

are symmetric, as H08 cannot be rejected. In sample B, both hypotheses are strongly rejected, 

and the reversion is found at low lags in the middle regime. While in the outer regime the 

reversion is not very apparent and prices seem to be driven further away from equilibrium, it is 

found that the size of the deviations decays over time. Large mispricings are removed more 

quickly than small mispricings within 2-3 trading days, after which the adjustments in different 

regimes become symmetric. The opposite is true for the CME. Before the crisis, the CME 

mispricing tends to exhibit persistence yet diminishing size of deviations. Large mispricings are 

arbitraged more quickly, but after 1 trading day, the adjustments in different regimes are 

symmetric. After the crisis, however, there is evidence of mean reversion, heterogeneity and 

symmetric adjustments. Therefore, it turns out that in the Nikkei markets, the effect of 

transaction costs may be stronger than the effect of heterogeneous arbitrageurs, such that large 

mispricings have quicker market responses than small mispricings, not the reverse. 
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Table 4.20 ESTAR adjustment coefficients 

 
 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
Panel A: Testing for mean reversion and heterogeneity (H07) 

j       
Middle regime adjustment coefficients 

1 0.2364  -0.0330  0.2165  0.0122  0.5744  0.4723  
2 0.1526  0.0072  0.2015  -0.0169  0.1850  0.2453  
3 0.0566  0.0578  0.0581  0.0364  0.0697  0.1541  
4 0.0873  0.0658  0.0684  0.0522  0.1113  0.0783  
5 0.0466   0.0453     
6 0.0417       

Outer regime adjustment coefficients 
1 -3.3217  0.4086  2.0409  0.3195  0.8347  7.1231  
2 -8.6056  0.2500  -2.0802  0.2822  0.0155  -3.3502  
3 4.7032  0.1415  -0.1437  0.1525  0.1439  -1.2304  
4 -5.7465  0.0709  1.4438  0.0966  -0.0094  -1.5708  
5 9.6187   1.6468     
6 -4.3070       

Wald1 536.7086  1040.5250  602.6965  986.1742  16157.2793  12177.4101  
 [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  

Panel B: Testing for symmetric adjustments (H08) 
j       
1 0.0001  16.0093  0.0218  8.0261  7.9628  0.0002  
 [0.9941]  [0.0001]  [0.8826]  [0.0046]  [0.0048]  [0.9879]  
2 0.0001  10.6217  0.0237  22.0329  2.5892  0.0002  
 [0.9941]   [0.0011]  [0.8776]  [0.0000]  [0.1076]  [0.9879]  
3 0.0001  1.3075  0.0125  3.5653  0.5845  0.0002  
 [0.9941]   [0.2528]  [0.9111]  [0.0590]  [0.4446]  [0.9879]  
4 0.0001  0.0057  0.0216  0.7220  2.1996  0.0002  
 [0.9941]  [0.9397]  [0.8831]  [0.3955]  [0.1380]  [0.9878]  
5 0.0001   0.0223     
 [0.9941]   [0.8813]     
6 0.0001       
 [0.9941]       

Joint Wald2 0.0001  49.4841  0.0364  67.5145  12.3675  0.0002  
 [1.0000]  [0.0000]  [1.0000]  [0.0000]  [0.0148]  [1.0000]  

Notes: This table reports the adjustment coefficients estimated from the ESTAR-GARCH model, equations 
(4.8)-(4.9), (4.15)-(4.16); and the associated Wald statistics. Panel A shows the adjustment coefficients in the 
middle regime (πj) and the outer regime (πj+πj

*), j=1, 2, ..., p. Wald1 is a χ2 statistic to test H07: πj=πj+πj
*=0 

against πj≠πj+πj
*≠0. Rejection of H07 indicates the mean-reverting behaviour of mispricing and the 

heterogeneity in arbitrage activities. Wald2 is a χ2 statistic to test H08: πj=πj+πj
* against πj≠πj+πj

*. Rejection 
of H08 indicates asymmetric adjustments in different regimes. Panel B shows the results of Wald2 separately 
for each j and jointly for all j. Numbers in square brackets are p-values. 
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4.5 Discussion and conclusion 

The chapter investigates the pricing of Nikkei 225 stock index futures contracts, the static and 

dynamic behaviour of the Nikkei futures mispricing and index arbitrage activities in the three 

Nikkei markets: the OSE, SGX and CME. The specific question it focuses on is whether the 

Nikkei futures mispricing, if any, represent profitable arbitrage opportunities for investors in 

the three Nikkei markets. The investigation starts from the cost of carry equilibrium between 

the Nikkei spot and futures markets. The standard cost of carry model cannot be directly 

applied to the triple-listed Nikkei futures contracts, as the standard model assumes continuous 

dividend payment over a year and ignores the effects of currency risk and time zones. Allowing 

for the unique characteristics of the Nikkei futures contracts, such as dividend lumpiness, 

currency risk and different trading hours, I find that the dividend payout practices of Japanese 

firms and the yen-dollar exchange rate fluctuations are essential in influencing theoretical 

Nikkei futures prices, while the effect of the time differences among the exchanges is 

negligible. Accordingly, this chapter modifies the standard cost of carry model for each Nikkei 

contract: the cost of carry model adjusted for dividends (COC2) for the OSE, SGX contracts; 

the cost of carry model adjusted for dividends and exchange rate fluctuations (COC3) in the 

original view for the CME contracts. This chapter further modifies the formula of no-arbitrage 

bounds to allow for the effect of transaction costs to study mispricing net of transaction costs, 

or profitable arbitrage opportunities in the three Nikkei exchanges.    

 

The comprehensive new 19-year sample period covers a few important events in the Nikkei 

markets, including the Japanese “Big Bang”, the SGX shift from open outcry to electronic 

trading, and the 2008 financial crisis. With the sample, the chapter examines the static 

behaviour of the Nikkei mispricing in a systematic way. The Nikkei markets are found to be 

intrinsically connected, and the OSE and SGX may be more closely linked with each other than 

any one of them with the CME. Without transaction costs, the OSE and SGX are dominated by 

underpricing; the CME by overpricing. While this might imply different arbitrage strategies in 
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the different Nikkei markets, the higher costs related to short sale could impede investors from 

carrying out short arbitrage in the OSE and SGX. With transaction costs, mispricing reduces 

considerably in the OSE and SGX, and the short arbitrage strategy could be even more difficult 

for institutional investors whose transaction costs are higher than those of brokers. By contrast, 

the large magnitude and strong persistence of the CME mispricing in the presence of 

transaction costs may suggest profitable arbitrage opportunities for brokers and institutional 

investors, but it is important to notice that the yen-dollar exchange rate fluctuations make the 

arbitrage costly and riskier. In fact, since the currency risk cannot be completely eliminated, the 

profit gained from the arbitrage in the CME is not strictly risk-free. Using non-parametric 

methods, I report a significantly positive relationship between the Nikkei mispricing and time 

to maturity, and between the Nikkei mispricing and stock volatility, consistent with mainstream 

studies. However, the relationship between the Nikkei mispricing and the Nikkei futures 

volume does not seem to be clear. Furthermore, the Nikkei mispricing shows strong evidence 

of path dependence and hence the impact of early unwinding.  

 

The dynamic behaviour of the Nikkei mispricing is examined in terms of market responses to a 

given mispricing, or propensity-to-arbitrage. The whole sample is divided into a pre-crisis 

period and a post-crisis period at this stage to exclude structural changes. With demeaned 

mispricing series as the transition variable, a restricted ESTAR-GARCH model is constructed 

to describe the nonlinear adjustment processes of the Nikkei mispricing. In the post-crisis 

period, quicker market responses to mispricing are found in the OSE and SGX, but slower 

responses are found in the CME. This could be because of the increased currency risk in 

arbitraging the CME futures contracts in more recent years. Regarding the mean reversion of 

mispricing, the transaction cost argument is that arbitrage pulls deviated prices back inside the 

transaction cost bounds; as arbitrage increases with the magnitude of mispricing, large 

mispricings exceeding the transaction cost bounds are more likely to be removed. 

Heterogeneous arbitrageurs could also prevent prices from diverting away, but only small 

mispricings with low risks and capital requirements are likely to be exploited. The adjustment 

coefficients in the ESTAR model indicate the existence of mean reversion and heterogeneous 
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arbitrage activities in the Nikkei markets. However, the effect of transaction costs may be 

stronger than the effect of heterogeneous arbitrageurs, as evidenced by quicker adjustments for 

larger mispricings. 

 

Two implications from the chapter are as follows. First, I consider the triple-listing nature of 

the Nikkei futures contracts and key institutional differences among the Nikkei exchanges in 

studying the cost of carry, mispricing and index arbitrage in the Nikkei markets. In this respect, 

I find that the influences of the dividend and currency risks are essential on the theoretical 

Nikkei futures prices, while the influence of the different trading hours among the Nikkei 

exchanges is trivial. For this reason, I adjust the standard cost of carry model for dividends and 

exchange rate fluctuations for the Nikkei futures contracts. In the course of futures market 

globalisation, an increasing number of futures contracts become listed on more than one trading 

venue. Though based on the same asset, they can be quite different in specifications, costs and 

risks. These differences should be taken into consideration when pricing these futures contracts. 

Second, the Nikkei futures mispricing exhibits mean reversion, explained by transaction costs 

and heterogeneous arbitrageurs. Given the weaker effect of heterogeneity which may echo the 

low emphasis on individuals in the Japanese businesses, investors in the Nikkei markets may 

want to be more concerned about transaction costs in their arbitrage activities.  

 

The index arbitrage behaviour in the Nikkei markets could be studied from another perspective 

by including the error correction mechanism in the smooth transition model. Besides, the 

asymmetric responses to positive or negative price deviations may exist in the conditional 

mean and conditional variance. These will be considered in Chapter 5. 
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Appendix 4.1 The turn-of-the-month effect 

Table 4.2 reveals that the coefficients of D10, the last trading day of June, are negative and 

insignificant in the OSE and SGX. It is suspected that the insignificance be associated with 

time-related anomalies such as the turn-of-the-month effect. Thus, 11 dummy variables that 

represent the last trading day of each calendar month except June are added to the regression 

model. Table A4.1 shows the results of the regression with the newly added dummy variables. 
 
 
 
Table A4.1 The turn-of-the-month effect 
 

 OSE SGX 

Coefficient Unrestricted Restricted Unrestricted Restricted 
  Jun dummies Dec dummies  Jun dummies Dec dummies 

β0 0.0010**  0.0011**  0.0010**  0.0010**  0.0011**  0.0011**  
β1 0.0027**  0.0026**   0.0029**  0.0028**   
β2 0.0025**  0.0024**   0.0028**  0.0027**   
β3 0.0011*  0.0010   0.0012**  0.0011*   
β4 0.0011*  0.0010*   0.0015**  0.0014**   
β5 0.0014**  0.0013*   0.0015**  0.0014**   
β6 0.0006  0.0005   0.0010*  0.0009   
β7 0.0020**  0.0019**   0.0023**  0.0022**   
β8 0.0019**  0.0018**   0.0022**  0.0021**   
β9 0.0018**  0.0017**   0.0016**  0.0015**   
β10 0.0000  -0.0001   -0.0004  -0.0005   
β11 0.0029**   0.0029**  0.0023**   0.0022**  
β12 0.0012*   0.0012  0.0014**   0.0013**  
β13 0.0029**   0.0028**  0.0029**   0.0028**  
β14 0.0019**   0.0019**  0.0014**   0.0014**  
β15 0.0024**   0.0023**  0.0028**   0.0027**  
β16 0.0022**   0.0022**  0.0022**   0.0021**  
β17 0.0029**   0.0028**  0.0025**   0.0025**  
β18 0.0012**   0.0011**  0.0014**   0.0013**  
β19 0.0022**   0.0021**  0.0022**   0.0021**  
β20 0.0025**   0.0024**  0.0022**   0.0021**  
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Table A4.1 continued 
 

Notes: This table provides the results of an OLS regression of the mispricing calculated from COC1 on 20 dummy 
variables that represent the proposed dividend payment dates, plus 11 end-of-month (EOM) dummy variables that 
represent the last trading day of each calendar month except June, for Nikkei 225 futures contracts traded on the 
OSE and SGX. The regression model is: 

tDECFEBJAN
p

ppt DECFEBJANDMis εβββββ ++++++= ∑
=

...
20

1
0

 

where JAN=1 if the day is the last trading day of January, JAN=0 if otherwise; βJAN is the coefficient of JAN. The 

other EOM dummy variables and their corresponding coefficients are defined analogously. Other variables are 

defined as in Table 4.2. ** denotes significance at the 5% level. * denotes significance at the 10% level. 

 

 

Table A4.1 indicates that the last trading days in most months are negative and insignificant. 

The significant last trading days are found in May, August and December. However, dividends 

are seldom paid on the last trading days of the three months. In fact, only 3 out of the 225 

constituents of the Nikkei index distributed dividends on those dates in 2014. The significance 

is more likely to be related to calendar effects. To name a few, the Halloween effect which 

starts from May, the summer effect which covers August, the turn-of-the-year effect which 

covers December, and the holiday effect as the end of December is a bank holiday in Japan. 

The joint marginal contribution of the newly added dummy variables is not significant in the 

 OSE SGX 

Coefficient Unrestricted Restricted Unrestricted Restricted 
  Jun dummies Dec dummies  Jun dummies Dec dummies 

βJAN -0.0009  -0.0010  -0.0010  -0.0007  -0.0008  -0.0008  
βFEB -0.0009  -0.0010*  -0.0009  -0.0001  -0.0002  -0.0002  
βMAR -0.0006  -0.0007  -0.0007  -0.0008  -0.0009  -0.0009  
βAPR 0.0001  0.0000  0.0001  0.0006  0.0005  0.0005  
βMAY -0.0010**  -0.0011**  -0.0011**  -0.0014**  -0.0015**  -0.0015**  
βJUL -0.0003  -0.0004  -0.0004  -0.0001  -0.0002  -0.0002  
βAUG -0.0013**  -0.0014**  -0.0014**  -0.0014**  -0.0015**  -0.0015**  
βSEP 0.0000  -0.0001  -0.0001  -0.0004  -0.0005  -0.0004  
βOCT -0.0012  -0.0013  -0.0013  -0.0006  -0.0007  -0.0006  
βNOV -0.0001  -0.0002  -0.0002  -0.0005  -0.0006  -0.0006  
βDEC -0.0014  -0.0015*  -0.0014*  -0.0024**  -0.0025**  -0.0024**  

F-statistic (EOM) 
 

1.2808  1.5059  1.4336  1.6154*  1.8047**  1.7608*  
F-statistic (total dummies) 5.0711**   4.5009**   

R2 0.0336   0.0296   
No. of obs 4554   4603   
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OSE, but significant at the 10% level in the SGX by F-test. Overall, there is some weak 

evidence of the turn-of-the-month effect. Although the last trading day of June is not significant, 

it is retained as one of the proposed dividend payment dates because of the concentrated 

dividend payouts on that day.  

 

Appendix 4.2 Dividend payment dates of Nikkei 225 index 

To further check the appropriateness of the proposed dividend payment dates, i.e. the last 10 

trading days in June and the first 10 trading days in December, an additional set of 40 dummy 

variables is added to the regression model as displayed in Table 4.2, for the Nikkei futures 

contracts traded on the OSE and SGX. The new dummy variables represent the 10 trading days 

before and the 10 trading days after the proposed dividend payment dates in June and 

December, respectively. The proposed dividend payment dates are justified if the regression 

with the newly added dummy variables suggests significance of the proposed dividend 

payment dates, and a tendency of fade-away in significance of the new dummies around the 

proposed dividend payment dates. The regression results are shown in Table A4.2. 

 

 
Table A4.2 The proposed dividend payment dates 
 

 OSE SGX 

Coefficient Unrestricted Restricted Unrestricted Restricted 
  Jun dummies Dec dummies  Jun dummies Dec dummies 

β0 0.0007**  0.0009**  0.0010**  0.0008**  0.0010**  0.0010**  
β1 0.0029**  0.0028**   0.0031**  0.0029**   
β2 0.0028**  0.0026**   0.0031**  0.0029**   
β3 0.0014**  0.0012*   0.0015**  0.0013**   
β4 0.0014**  0.0012*   0.0018**  0.0016**   
β5 0.0017**  0.0015**   0.0017**  0.0015**   
β6 0.0008  0.0006   0.0012**  0.0010*   
β7 0.0022**  0.0020**   0.0025**  0.0023**   
β8 0.0022**  0.0020**   0.0025**  0.0023**   
β9 0.0020**  0.0019**   0.0018**  0.0016**   
β10 0.0002  0.0000   -0.0002  -0.0003   
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Table A4.2 continued 
 

 OSE SGX 

Coefficient Unrestricted Restricted Unrestricted Restricted 

  Jun dummies Dec dummies  Jun dummies Dec dummies 

β11 0.0032**   0.0029**  0.0025**   0.0023**  
β12 0.0015*   0.0012*  0.0016**   0.0014**  
β13 0.0031**   0.0029**  0.0031**   0.0029**  
β14 0.0022**   0.0019**  0.0017**   0.0015**  
β15 0.0026**   0.0024**  0.0030**   0.0028**  
β16 0.0025**   0.0022**  0.0024**   0.0022**  
β17 0.0031**   0.0029**  0.0028**   0.0025**  
β18 0.0014**   0.0012**  0.0016**   0.0014**  
β19 0.0024**   0.0022**  0.0024**   0.0022**  
β20 0.0027**   0.0025**  0.0024**   0.0022**  
β-1 0.0030**  0.0028**   0.0028**  0.0026**   
β-2 0.0029**  0.0027**   0.0027**  0.0025**   
β-3 0.0018**  0.0016**   0.0020**  0.0018**   
β-4 0.0014**  0.0012**   0.0009*  0.0007   
β-5 0.0018*  0.0016   0.0014  0.0013   
β-6 0.0022**  0.0020**   0.0014**  0.0012**   
β-7 0.0023**  0.0021**   0.0027**  0.0025**   
β-8 0.0016**  0.0014*   0.0013*  0.0011   
β-9 0.0014**  0.0012*   0.0016**  0.0014**   
β-10 0.0025**  0.0023**   0.0018**  0.0016**   
β-11 0.0002   0.0000  0.0007   0.0005  
β-12 -0.0006   -0.0008  -0.0001   -0.0004  
β-13 0.0003   0.0000  0.0006   0.0004  
β-14 0.0005   0.0003  0.0004   0.0001  
β-15 -0.0006   -0.0009  -0.0006   -0.0008  
β-16 -0.0005   -0.0007  -0.0011*   -0.0013**  
β-17 0.0002   -0.0001  -0.0002   -0.0004  
β-18 -0.0001   -0.0003  -0.0002   -0.0004  
β-19 0.0006   0.0003  0.0003   0.0001  
β-20 0.0001   -0.0001  -0.0003   -0.0005  
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Table A4.2 continued 
 

Notes: This table provides the results of an OLS regression of the mispricing calculated from COC1 on 20 
dummy variables that represent the proposed dividend payment dates, plus 40 dummy variables that 
represent the 10 trading days before and the 10 trading days after the proposed dividend payment dates in 
June and December, respectively, for Nikkei 225 futures contracts traded on the OSE and SGX. The 
regression model is: 

t
p

ppt DMis εββ ++= ∑
−=

40

20
0

 

where D1 to D20 are the proposed dividend payment dates, defined as in Table 4.2. The newly added 40 
trading days are in ascending order: D-1 to D-10 are the 10 trading days before the 1st dividend payment date 
in June; D-11 to D-20 are the 10 trading days before the 1st dividend payment date in December; D21 to D30 are 
the 10 trading days after the 10th dividend payment date in June; D31 to D40 are the 10 trading days after the 
10th dividend payment date in December. Each dummy variable has its corresponding coefficient β. Other 
variables are defined as in Table 4.2. ** denotes significance at the 5% level. * denotes significance at the 
10% level. 
 
 
 
 

 
 

OSE SGX 

Coefficient Unrestricted Restricted Unrestricted Restricted 
  Jun dummies Dec dummies  Jun dummies Dec dummies 

β21 0.0010*  0.0008   0.0012**  0.0010*   
β22 0.0021**  0.0019**   0.0024**  0.0022**   
β23 0.0004  0.0003   0.0011*  0.0010   
β24 0.0022**  0.0020**   0.0024**  0.0022**   
β25 0.0018**  0.0017**   0.0018**  0.0017**   
β26 0.0008*  0.0006   0.0009**  0.0007   
β27 0.0011*  0.0009   0.0012*  0.0011   
β28 0.0004  0.0002   0.0000  -0.0002   
β29 0.0006  0.0004   0.0002  0.0001   
β30 0.0004  0.0002   0.0005  0.0003   
β31 0.0007   0.0005  0.0007   0.0005  
β32 0.0020**   0.0018**  0.0021**   0.0019**  
β33 0.0024**   0.0022**  0.0029**   0.0027**  
β34 0.0012*   0.0009  0.0010   0.0007  
β35 0.0002   -0.0001  0.0004   0.0001  
β36 0.0009   0.0007  0.0015   0.0013  
β37 0.0022**   0.0020**  0.0036**   0.0033**  
β38 0.0028**   0.0026**  0.0025**   0.0022**  
β39 0.0006   0.0004  0.0009   0.0007  
β40 0.0006   0.0003  0.0008   0.0005  

F-statistic (new dummies) 3.6893**  4.2041**  2.0306**  3.4092**  3.3318**  2.5130**  
F-statistic (total dummies) 4.8992**    4.3412**    

R2 0.0614    0.0542    
No. of obs 4554   4603   
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Apart from the significance of most dividend payment dates, the significance of the newly 

added dummy variables displays a general trend of fade-away around the proposed payment 

dates. The 10 trading days after the proposed payment dates in June clearly show a diminishing 

trend of significance. For the December payment dates, the prior 10 trading days are 

insignificant, and the subsequent 10 trading days display a similar trend to die down in 

significance. The significance of D37, D38 is likely to be associated with the holiday effect, as 

they are 23rd-27th December over the years. 

 

The fade-away trend is not so obvious in the 10-day period before the proposed payment dates 

in June due to the dividend payouts on these days. The dividend streams received on the Nikkei 

index are unevenly distributed in a calendar month. For instance, 181 stocks paid out dividends 

in June 2014, including 150 stocks that paid out dividends in the last 10 trading days of June.59 

Since the dividend payouts tend to cluster in the second of half of June, and similarly, in the 

first half of December, I stick to assumption c) in section 4.2.2, i.e. dividends are only paid in 

the last 10 trading days in June and the first 10 trading days in December, and support the 

superiority of COC2 assuming lumpy dividend payouts over COC1 assuming continuous 

dividend payments for the OSE and SGX Nikkei futures contracts. 
 

Appendix 4.3 Unit root tests 

A set of unit root tests are performed to test the stationarity of the demeaned mispricing series, 

Mist
* in section 4.4.2.1. These tests include Augmented Dickey-Fuller (ADF), Phillips-Perron 

(PP), Kwiatkowski-Phillips-Schmidt-Shin (KPSS), and Zivot-Andrews (ZA). The test results 

are given in Table 4.14.The methodological details of the tests are provided below.  

 

The ADF test of Dickey and Fuller (1979; 1981) estimates the following regression equation:  

* * *
1

1
t i

l

t t i t
i
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−−

=

∆ = + ∆ +∑  

                                                        
59 Data are from Thomson Reuters Eikon. 
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where et is the residual from the regression. The ADF test is based on the assumption that et is iid. 

The null hypothesis of a unit root is H0: ψ=0, against the alternative stationary hypothesis H1: 

ψ<0. This form of the regression equation, which does not include a constant or a trend, is 

considered because Mist
* is without mean and its time plot does not show obvious evidence of 

deterministic elements. The lag length l is determined by SBC. If the ADF test statistic is no 

larger than the critical value at a given significance level, the null hypothesis of a unit root can be 

rejected in favour of the stationary alternative.   

 

The PP test of Phillips and Perron (1988) is a non-parametric unit root test. It generalises the 

ADF test by estimating a similar regression equation: 

1

* *
t t tMis Mis eψ

−
∆ = +  

with the same null hypothesis H0: ψ=0 and the alternative H1: ψ<0. However, the residual et is 

allowed to be autocorrelated and heterogeneous, such that a wide class of residual processes can 

be applicable. This is achieved by modifying the ADF test statistics to asymptotically remove the 

effects of autocorrelation and heterogeneity, while the limiting distributions and the critical 

values of the ADF test still hold. For the demeaned mispricing series in question, visual 

inspection of the data does not suggest including a constant or a trend in the regression equation. 

The PP test is used as a robustness check of the ADF test, as the (non)stationarity of the 

demeaned mispricing series is strengthened if both tests show consistent results. 

 

The KPSS test of Kwiatkowski et al. (1992) has a null hypothesis of stationarity rather than a unit 

root. It interprets a series, say Mist
*, as the sum of a deterministic trend, a random walk and a 

stationary error: 

*
t t tMis t r eξ= + +  

with rt as a random walk process rt=rt-1+ςt, ςt ~ iid(0, σς
2), given an initial level r0. As et is 

stationary, the trend stationary null is σς
2=0. Equivalently, the model can be expressed as: 

*
1t t tMis v vξ θ −∆ = + −  

where vt is nid. The null hypothesis of trend stationarity corresponds to H0: θ=1 against the unit 
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root alternative H1: θ<1. The KPSS test is based on fairly mild assumptions of the residual 

processes as in the PP test. Despite that the demeaned mispricing series does not appear to have a 

deterministic trend in its time plot, the trend stationary hypothesis is tested for security. Moreover, 

tests with a stationary null complement tests with a unit root null in the sense that the latter tends 

to have low power against the relevant alternatives.  

 

The presence of structural changes is likely to bias unit root tests such that it is difficult to reject 

the null hypothesis of a unit root. Breaks as exogenous shocks or simply statistical processes are 

common for long time series, e.g. my 19-year sample. In the time plot of the demeaned 

mispricing series Mist
*, it is suspected that the 2008 global financial crisis induce jumps in the 

data; if that is the case, the results of the tests above may not be very useful. The ZA test of Zivot 

and Andrews (1992) is thus performed to further check the stationarity of Mist
*, allowing for a 

one-time structural break in the trend. The null hypothesis is that the series has a unit root without 

an exogenous structural break: 

H0: * *
1t t tMis Mis eµ −= + +  

where the intercept μ is expected to be zero. The alternative hypothesis is that the series is trend 

stationary with an unknown one-time break in the trend. With λ as the time of the breakpoint 

relative to sample size n, the test estimates the following regression equation: 

* * *
1
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where DTt(λ)=t-nλ if t >nλ, 0 otherwise; hats are put to indicate fitted values from estimating λ. 

The lag length l’ is selected using a backward testing procedure. The location of the breakpoint 

is determined as the λ with which the one-tail t-statistics of testing ψ’=1 is the smallest. 

Compared with other unit root tests that treat breaks as exogenous, the ZA test is chosen 

because, for the data under consideration, it is easier to attribute the jumps to a period than to 

an exact date.   
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Chapter 5  

Price discovery in the Nikkei 225 futures markets 
  

 

5.1 Introduction 

Price discovery is the process whereby market participants impound all available information 

to reach equilibrium asset prices (Booth et al., 1999; Chen and Gau, 2009), representing the 

first-moment dynamics of asset prices. The price discovery process is a key function of stock 

index futures markets. Although all prices ultimately transmit information, the differences in 

market frictions can give rise to different speeds of information transmission, i.e. prices in one 

market are quicker in reflecting and disseminating information, such that its prices become an 

important predictor for the subsequent prices in the other markets. Index futures markets are 

generally thought to assume the price discovery function in theory as opposed to the underlying 

spot markets, and the reasons for the futures leadership essentially relate to the more efficient 

trading conditions in futures, such as lower trading costs, absence of short-selling restrictions, 

etc. However, the observed price dynamics in reality, which could be more complex than the 

simplified theoretical prediction, necessitates detailed research into the price discovery process 

in specific markets.  

 

The Nikkei 225 futures contracts are one of the earliest index futures in the world that boast an 

international dimension. Based on one common stock index market (Tokyo Stock Exchange, 

TSE), the Nikkei 225 futures are traded on three equivalent yet different markets: Osaka 

Exchange (OSE), Singapore Exchange (SGX) and Chicago Mercantile Exchange (CME). 

Following Board and Sutcliffe (1996), I define the domestic or home futures market as the 

exchange where the futures contracts are traded in the same country as the stocks underlying 

the index, i.e. the OSE; the corresponding foreign or offshore futures market as the exchange in 

whose country the futures contracts are traded but the stocks underlying the index are not, i.e. 
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the SGX and the CME. The triple-listing nature of the Nikkei futures contracts makes their 

first-moment price dynamics particularly interesting as the spot-futures lead-lag relationships 

could be quite different in the different trading venues. Furthermore, the price discovery 

process across the three Nikkei futures markets remains a key issue in exchange competition 

and asset management in the course of futures market globalisation. To understand cross-border 

price discovery, two possible hypotheses are put forward in the literature: the home-bias 

hypothesis and the international centre hypothesis (e.g. Fung et al., 2001; Covrig et al., 2004). 

The home-bias hypothesis argues that domestic investors enjoy a battery of advantages such as 

geographic proximity to the underlying spot market, familiarity with local trading environment 

and regulation, and fewer trading barriers, and thus the domestic market should dominate the 

information transmission across borders. By contrast, the international centre hypothesis argues 

if a foreign market is a global financial centre, we might expect it to dominate transnational 

price discovery because of the better trading conditions it can provide. Higher efficiency in 

processing and sharing information, and more opportunities for risk management by trading 

other financial instruments are also available on the foreign market. The empirical research that 

contributed to this area is far from sufficient to answer which hypothesis is more relevant in the 

Nikkei futures markets. Hence, this chapter is motivated to explore the international price 

discovery process in individual Nikkei markets and across the Nikkei futures markets.   

 

The international price discovery process is studied by looking into the linear and nonlinear 

price adjustments towards equilibrium. Specifically, the chapter tests the following null 

hypotheses: a) in individual Nikkei markets, the futures prices lead the spot prices; b) across 

the Nikkei futures markets, the domestic market (OSE) leads the foreign markets (SGX, CME). 

The tests are in the spirit of Granger (1969) and Sims (1972): futures prices lead or 

Granger-cause spot prices if the past futures prices help to predict the current spot prices, 

relative to using the past spot prices alone. A similar logic can be extended to the futures price 

interactions. Following most studies on price discovery, I first perform such tests in the 

framework of a linear error correction model (ECM), which is consistent with the cost of carry 

relationship and Granger causality. The error correction coefficient in the ECM sheds light on 

the speed of adjustment and the direction of causality in the long run. The short-run causalities 
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are examined by joint significance tests on the autoregressive coefficients. The resulting linear 

adjustment process is constant and ever-present, irrelevant to the potential states or regimes 

where the mean-reverting behaviour is different inside or outside. I next use an exponential 

smooth transition error correction model (ESTECM) to describe the nonlinear price 

adjustments towards equilibrium. The smooth transition error correction behaviour in the price 

adjustments can be attributed to transaction costs, heterogeneity and predictive asymmetry. In 

particular, profitable arbitrage activities will not be triggered unless the benefits gained from 

the arbitrage can cover the transaction costs incurred, such that large price deviations should be 

removed more quickly than small price deviations. Besides, investors differ in trading 

objectives, transaction costs, capital constraints and perceived risks (Tse, 2001), and thus the 

aggregate market response to a given price deviation should be gradual and smooth, rather than 

sharp and abrupt. The often observed phenomenon of the leverage effect, i.e. bad news is 

associated with larger market reactions, may also exist in the price interaction mechanisms 

between the markets. As such, the nonlinear adjustment process is analysed in terms of the 

speed of price adjustments towards equilibrium, the rates of smooth transition60 and the 

asymmetric market responses to negative and positive price deviations. Based on the ESTECM 

and a 19-year data range that distinguishes periods before and after the 2008 global financial 

crisis, I find that, in individual Nikkei markets, the futures prices dominate the price discovery 

process in the pre-crisis period, while the spot prices react faster in the adjustments in one 

regime and between the regimes in the post-crisis period. The null hypothesis a) is therefore 

rejected in the post-crisis period. Across the futures markets, the foreign exchanges play a 

leading role in the information transmission across the border; and the robustness of their 

information advantage is checked by re-estimating the models with an alternative time 

sequence. The null hypothesis b) is again rejected in the Nikkei markets. The results also show 

evidence of larger impact of bad news in the Nikkei prices and variances. An increasing trend 

of transaction costs is noticed in the spot-futures arbitrage after the crisis, while the transaction 

costs in the spread arbitrage among the futures markets are decreasing. 

             
                                                        
60 As will be explained in more detail in section 5.2.2, the rates of smooth transition are between a middle regime of a narrow 
band around zero indicating small price deviations and few arbitrage, and an outer regime of areas far away from zero 
indicating large price deviations and active arbitrage. 
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The contributions of the chapter are fourfold. First, studies on the Nikkei price dynamics tend 

to focus on the OSE and SGX, and circumvent the CME for its currency and time complexities. 

The only paper of Booth et al. (1996) on the price dynamics in the three Nikkei markets simply 

uses a linear ECM and does not allow for the effect of transaction costs. This chapter studies 

the price dynamics of all of the three Nikkei futures markets, allowing for the effects of 

transaction costs, heterogeneity and asymmetry. In doing so, it significantly extends the work 

of Fung et al. (2001), Covrig et al. (2004) and Frino et al. (2013) in understanding the key roles 

of offshore financial centres in global information revelation and price determination. Second, 

the smooth transition error correction mechanism has been studied in a few markets but never 

in the triple-listed Nikkei markets. The chapter shows that smooth transition nonlinearity is 

present in individual Nikkei markets and across the Nikkei futures markets, and that the smooth 

transition models are more appropriate for describing the first-moment price dynamics in the 

Nikkei markets. Third, following from Chapter 4, the chapter continues to consider the effect of 

heterogeneity, yet in the structure of market transaction costs. In this respect, I find that the 

Nikkei spot market exhibits a lower level of heterogeneity than the futures, and the OSE 

exhibits a lower level of heterogeneity than the offshore exchanges. The level of heterogeneity 

as a futures market property was not emphasised in the literature until the 2000s by Taylor et al. 

(2000), Tse (2001), and McMillan and Speight (2006), for example; but none of these works 

consider the heterogeneity in an international setting. The chapter makes a significant 

contribution by demonstrating that the level of heterogeneity does affect the price adjustments 

within one regime and between the regimes, and hence the information role of the Nikkei 

markets. Fourth, with the 19-year sample covering a pre-crisis period and a post-crisis period, 

the chapter is able to compare and contrast the international price discovery process before and 

after the 2008 financial crisis, offering a comprehensive picture of the Nikkei price dynamics 

over the years.  

 

The rest of the chapter is organised as follows. Section 5.2 and section 5.3 focuses on the 

spot-futures price adjustment process in individual Nikkei markets and the price adjustment 

process across the Nikkei futures markets, respectively, and introduces the relevant linear and 

nonlinear error correction mechanisms to be used later in estimation. Section 5.4 describes data 
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and analyses preliminary test results of the data. Section 5.5 contains the methodological 

details involved in estimation and evaluation. The empirical results are provided in section 5.6. 

The robustness of the futures price interactions is checked in section 5.7. Section 5.8 discusses 

the main findings and concludes the chapter.     

5.2 Price adjustments to cost of carry: the error correction mechanism 

5.2.1 Basis, cointegration and linear ECM  

The cost of carry relationship implies that spot and futures prices should not deviate far from 

each other for long, as arbitrage would quickly pull the deviated prices back inside a 

no-arbitrage band to maintain equilibrium. This means that the basis, the difference between 

spot and futures prices which are individually I(1), should be I(0), and the spot and futures 

prices should be cointegrated with one cointegrating vector. A simple way to formulate the 

cointegrating relationship between spot and futures prices is the following: 

 0 1t t tf s bβ β= + +  (5.1) 

where st, ft are respectively spot and futures prices in natural logarithms, and bt is a residual. 

Numerous empirical studies have demonstrated that the spot and futures prices are cointegrated 

with the cointegrating vector [1, -1]. This requires that bt, as a measure of the basis spread 

between the spot and futures prices, should be I(0), and the regression coefficients β0=0, β1=1; 

in other words, bt is expected to equal (ft - st).  

 

According to the Granger Representation Theorem (Engle and Granger, 1987), an error 

correction model (ECM) is justified to examine the linear adjustments of the cointegrated spot 

and futures prices towards equilibrium, and any causal relationships between the spot and 

futures prices, or causality-in-mean. Based on Engle and Granger (1987), an ECM can be 

established as below:61 

 , , 1 ,
1 1

p p

t s ss j t j sf j t j s t s t
j j

s k s f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑  (5.2a) 

                                                        
61 The subscripts of the model parameters indicate the market to which they belong: s means spot and f means futures. For 
simplicity, I omit these subscripts in the notation explanation hereafter unless otherwise confusions might occur.  
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 , , 1 ,
1 1

p p

t f fs j t j ff j t j f t f t
j j

f k s f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑  (5.2b) 

where ∆st=st - st-1, ∆ft=ft - ft-1 are spot and futures price returns, respectively; the model lag j=1, 

2, …, p, with p as a positive integer; k is a constant; ut is a white noise. zt-1 is the error 

correction term, usually represented by the residual bt from the cointegrating relationship (5.1). 

The error correction coefficient α indicates the speed of adjustment towards equilibrium and 

the direction of causality in the long run. For the error correction mechanism to function 

properly, it is generally expected that αs>0, αf<0, as the negative αf suggests a reverse price 

movement compared with the previous one.62 For example, a positive basis at time t (futures 

price Ft > spot price St) should be followed by a decrease in the futures price and an increase in 

the spot price at time t+1. The higher the magnitude of α, the larger the proportion of the 

pricing errors are adjusted, and therefore the slower the price reflects information. If futures 

leads spot in transmitting information or futures Granger-causes spot in the long run, αf is 

expected to be insignificant while αs significant, as the spot price which slowly reflects 

information makes the adjustment (Tse, 2001). The coefficients πsf, πfs capture short-run 

adjustments between spot and futures prices, and πss, πff short-run dynamics within the 

respective markets. 

 

For hypothesis testing, as futures is generally thought to play a major part in the price 

discovery process, I test the null hypothesis of futures-to-spot causality with H01: αs=0 and H02: 

πsf,j =0, j=1, …, p. Rejecting H01 is evidence supporting the error correction effect, i.e. any 

pricing errors from the cost of carry relationship in the previous period would be corrected in 

the current period, mainly by the spot prices in this case. Futures prices Granger-cause spot 

prices in the short run if H02 can be rejected. In a similar way, spot-to-futures causality requires 

either H03: αf=0 or H04: πfs,j =0, j=1, …, p to be rejected. Bidirectional causality exists in the 

long run provided that both H01 and H03 can be rejected; in the short run provided that both H02 

and H04 can be rejected.  

                                                        
62 In some markets αs is not necessarily positive; the sign of αs depends on the net outcome of the two opposing effects of 
arbitrage and momentum (Zhong et al., 2004; Bohl et al., 2011). 
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5.2.2 Nonlinear ESTECM for spot-futures arbitrage 

The linear error correction mechanism above implies a mean-reverting tendency wherever 

pricing errors occur. Taking into account the effect of transaction costs, however, it is more 

likely the case that investors would only correct the pricing errors when their adjustment costs 

can be offset by potential gains, and thus large pricing errors tend to be removed more quickly 

than small pricing errors. As such, the adjustment process towards equilibrium can relate 

closely to the magnitude of the pricing errors, and the error correction behaviour is in fact 

dependent on the state or regime that takes place at a certain point in time; in other words, 

regime-switching (Priestley, 1980; Franses and van Dijk, 2000). Particularly, I consider two 

possible regimes: a middle regime of a narrow band around zero indicating small pricing errors 

without substantial price adjustments or arbitrage, and an outer regime of areas far away from 

zero indicating large pricing errors with rapid adjustments and active arbitrage. A further aspect 

of the effect is that, as transaction costs are different for different investors, the boundaries of 

the individual regimes of the error correction may be blurred when aggregating over all 

investors in a market (Anderson, 1997); hence, with heterogeneous transaction costs, the price 

adjustment process between the different regimes is likely to be continuous, gradual and 

smooth for a market as a whole. Moreover, the widely documented leverage effect suggests that 

the speed of adjustment tends to be associated with the sign of the pricing errors: negative 

information (bad news) with larger market response, whereas positive information (good news) 

with smaller market response. It follows that the error correction mechanism is actually 

nonlinear with variable speed of adjustments. 

 

To allow for the nonlinear adjustment process on account of the effects of transaction costs, 

heterogeneity and asymmetry, based on Anderson (1997) and Tse (2001), it is assumed that the 

nonlinear adjustment process follows an exponential smooth transition error correction model 

(ESTECM): 

* * *
, , , , 1 ,

1 1 1 1

( ) ( )
p p p p

t s ss j t j sf j t j s ss j t j sf j t j s t s t d s t
j j j j

s k s f k s f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑  

* 2( ) 1 exp[ ( ) ( )]s t d s t d s t dT z z c g zγ− − −= − − − ×  
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 ( ) 0.5 1/{1 exp[ ( )]}*
s t d s t dg z θ z c− −= + + − −  (5.3a) 

* * *
, , , , 1 ,

1 1 1 1

( ) ( )
p p p p

t f fs j t j ff j t j f fs j t j ff j t j f t f t d f t
j j j j

f k s f k s f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑  

* 2( ) 1 exp[ ( ) ( )]f t d f t d f t dT z z c g zγ− − −= − − − ×  

 ( ) 0.5 1/{1 exp[ ( )]}*
f t d f t dg z θ z c− −= + + − −  (5.3b) 

where k, k* are constants; π, π* are the short-run autoregressive coefficients; the model residual 

ut is iid with zero mean and finite variance. As in the linear model, the error correction term is 

zt-1, and the error correction coefficient α measures the long-run speed of adjustments. Thus, I 

generally expect αs>0, αf<0, and the market with a slower (quicker) speed of information 

transmission to have significant (insignificant) and larger (smaller) α in magnitude. Note that 

this type of price adjustments takes place within a single regime. 

 

T(∙) is an exponential smooth transition function bounded between 0, the middle regime where 

no investor will trade, and 1, the outer regime where all investors will trade. zt-d is the transition 

variable with the delay parameter d, d>0. Consistent with the effect of transaction costs that 

arbitrage will only be triggered when the pricing errors are large, T(∙) is a U-shaped curve with 

larger values for larger zt-d in magnitude, indicating more arbitrage activities. The rate of the 

transition between the regimes is governed by the smoothness parameter γ, γ>0. Graphically, 

this can be seen as the steepness of the transition function - the higher is γ, the steeper the 

transition function, and the quicker adjustments between the regimes. If γ→0 or γ→∞, T(∙) 

converges to 0 or 1, respectively, and the ESTECM approaches a linear model (van Dijk et al., 

2002). For example, in the extreme case γ=0, equations (5.3a) (5.3b) reduce to a linear error 

correction framework in the middle regime:63 

, , ,
1 1

p p

t s ss j t j sf j t j s t
j j

s k s f up p− −
= =

∆ = + ∆ + ∆ +∑ ∑  

                                                        
63 Note that the error correction term zt-1 should be included in both the linear and nonlinear parts of a complete specification 
of the ESTECM to allow for error corrections in the middle regime and the outer regime. If that is the case, with γ=0, equations 
(5.3a) (5.3b) collapse exactly to equations (5.2a) (5.2b), respectively. However, I decide to retain zt-1 only in the nonlinear 
section, or the outer regime of the ESTECM for the following reasons: a) arbitrage would be too costly to exist for small 
pricing errors zt-1 in the middle regime, yet arbitrage is expected to be active for large zt-1 in the outer regime, and so the error 
correction in the outer regime is more interesting and deserves more attention; b) the model is simpler to estimate with one 
error correction term; c) this is the practice in most studies with the ESTECM. This explains why, with γ=0, equations (5.3a) 
(5.3b) merely reduce to a linear ECM that appears without an error correction term. 
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, , ,
1 1

p p

t f fs j t j ff j t j f t
j j

f k s f up p− −
= =

∆ = + ∆ + ∆ +∑ ∑  

Clearly, the autoregressive coefficient π’s indicate the short-run adjustments in the middle 

regime. As another example, if γ=∞, equations (5.3a) (5.3b) become linear but with a different 

representation in the outer regime: 

* * *
, , , , 1 ,

1 1

( ) ( ) ( )
p p

t s s ss j ss j t j sf j sf j t j s t s t
j j

s k k s f z up p p p α− − −
= =

∆ = + + + ∆ + + ∆ + +∑ ∑  

* * *
, , , , 1 ,

1 1

( ) ( ) ( )
p p

t f f fs j fs j t j ff j ff j t j f t f t
j j

f k k s f z up p p p α− − −
= =

∆ = + + + ∆ + + ∆ + +∑ ∑  

The autoregressive coefficients (π+π*) indicate the short-run adjustments in the outer regime. 

The parameter γ also has implications for the degree of heterogeneity in the transaction costs in 

a market: smaller values of γ indicate more heterogeneous, higher transaction costs, while 

larger values of γ indicate more homogeneous, lower transaction costs (Taylor et al., 2000). The 

location parameter c* gives the centre of T(∙). 

  

g(∙) is an asymmetry function bounded between 0.5 and 1.5. It increases monotonically with the 

asymmetry parameter θ, which measures the asymmetric market response to positive and 

negative pricing deviations. Negative (positive) θ suggests that more investors tend to correct a 

negative (positive) zt-d, than to correct an equally sized positive (negative) zt-d. When θ=0, 

g(∙)=1, T(∙) becomes symmetrical around c* and investors would be indifferent about the sign 

of zt-d. It follows that, as long as θ≠0, the shape of T(∙) will exhibit some sorts of asymmetry, 

with the higher tail associated with the signed zt-d that is adjusted more quickly.  

 

Alternatively, a logistic transition function may be used as T(∙) which would allow for the 

asymmetric adjustments of positive and negative pricing errors, making the resultant model a 

logistic smooth transition error correction model (LSTECM). However, I do not consider the 

alternative as appropriate, for the logistic transition function is monotonically increasing, 

meaning that the error correction dynamics are irrelevant to the size of the pricing errors, and 

thus the LSTECM is unable to capture the effects of transaction costs and the associated 

heterogeneity. 
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5.3 Error correction dynamics across futures markets 

5.3.1 Futures price parity and linear ECM 

Futures contracts listed on domestic and foreign markets but sharing the same underlying index 

and the same maturity date are equivalent assets. Their prices should move together, and their 

markets are closely linked by spread arbitrage, which aims to profit from buying and selling 

across these markets. For such spread arbitrage, Board and Sutcliffe (1996) derive the 

no-arbitrage condition which states that the current futures prices in index points are identical 

in domestic and foreign markets. Any departures from the price parity, or spreads, or price 

differentials between the markets, would be quickly removed - even quicker than in the 

spot-futures arbitrage, as lower transaction costs and risks are involved in trading the futures. In 

this way, the price differentials function like the basis, and should be I(0) to maintain 

equilibrium. It follows that dual- or triple-listed futures prices should be cointegrated with one 

common stochastic factor. Consider a bilateral pair of logarithmic futures prices (f1, f2), where 1, 

2 represent any two futures markets based on the same spot market. If the long-run relationship 

between f1 and f2 is expressed as the following: 

 1, 0 1 2,t t tf fβ β δ′ ′= + +  (5.4) 

where δt is a residual, then by the no-arbitrage condition, the constant and slope coefficients are 

expected to be 0 and 1, respectively (ignoring any scale differences). That is, δt is expected to 

equal (f1,t - f2,t), the difference between the two futures prices.  

 

Based on Chou and Lee (2002) and Hsieh (2004), a bivariate (vector) error correction model 

can be constructed for the cointegrated futures prices (f1, f2) as the following: 

 1, 1 11, 1, 12, 2, 1 1 1,
1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑  (5.5a) 

 2, 2 21, 1, 22, 2, 2 1 2,
1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑  (5.5b) 

The error correction term zt-1 reflects the price parity across the equivalent futures markets 

(Roope and Zurbruegg, 2002); it can be represented by the regression residual δt from equation 
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(5.4). Its coefficient α gauges the long-run speed of adjustment between f1 and f2. To restore 

equilibrium, at least one of α should be negative in the ECM system. The magnitude of α sheds 

light on the location of information leadership: the smallest α in magnitude emerges in the 

quickest futures market in revealing information; larger α in magnitude implies slower market 

adjustments and hence redundant role in the process of price formation. The significance of α 

also suggests the direction of causality, and bidirectional causality in the long run requires both 

α1 and α2 to be significant. The short-run adjustments are captured by the coefficient π’s, within 

the respective markets (π11,j and π22,j) and between the markets (π12,j and π21,j). Futures market 2 

Granger-causes futures market 1 if the joint test on all the π12,j is significant, and futures market 

1 Granger-causes futures market 2 if all the π21,j are jointly significant. 

5.3.2 Nonlinear ESTECM for futures price interactions 

Following a similar logic as in section 5.2.2, I propose the ESTECM to model the possible 

nonlinear price adjustments across the futures markets, as the smooth transition error correction 

behaviour is likely to arise from the effects of transaction costs, heterogeneity and asymmetry 

in the futures markets. The nonlinear ESTECM for futures prices is established by adding a 

nonlinear component, i.e. a transition function to each of the equations (5.5a) (5.5b), such that a 

transition variable is allowed to switch between a middle regime and an outer regime. The 

following is an ESTECM system for a bilateral pair of futures prices (f1, f2):   

 * * *
1, 1 11, 1, 12, 2, 1 11, 1, 12, 2, 1 1 1 1,

1 1 1 1

( ) ( )
p p p p

t j t j j t j j t j j t j t t d t
j j j j

f k f f k f f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑  

* 2
1 1 1( ) 1 exp[ ( ) ( )]t d t d t dT z z c g zγ− − −= − − − ×  

 1 1( ) 0.5 1/{1 exp[ ( )]}*
t d t dg z θ z c− −= + + − −  (5.6a) 

* * *
2, 2 21, 1, 22, 2, 2 21, 1, 22, 2, 2 1 2 2,

1 1 1 1

( ) ( )
p p p p

t j t j j t j j t j j t j t t d t
j j j j

f k f f k f f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑

* 2
2 2 2( ) 1 exp[ ( ) ( )]t d t d t dT z z c g zγ− − −= − − − ×  

 2 2( ) 0.5 1/{1 exp[ ( )]}*
t d t dg z θ z c− −= + + − −  (5.6b) 

Most model parameters above are the same as those in equations (5.3a) (5.3b), and thus 
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extensions of their interpretations to the futures markets are straightforward. For example, the 

smoothness parameter γ controls the rate of the regime switch in each of the futures markets, 

and the asymmetry parameter θ captures the asymmetric market response to positive and 

negative futures spreads. Worthy of note, however, is that the error correction term zt-1 and the 

transition variable zt-d are to be represented by the futures price differentials, not the 

spot-futures basis. The joint significance tests on the coefficient π’s can now be performed 

separately in different regimes, enabling a more accurate description of the short-run causal 

relationships and the cross-border futures price dynamics. 

5.4 Data and preliminary analysis 

5.4.1 Data and descriptive statistics 

Daily closing prices of Nikkei 225 index and daily settlement prices of the Nikkei 225 index 

futures on the OSE, SGX and CME are obtained from the respective exchanges and Datastream 

over the whole sample period 20/06/1996-31/12/2014 (OSE and SGX); 01/01/1997-31/12/2014 

(CME). The contract months of the Nikkei futures contracts follow the usual quarterly cycle - 

March, June, September and December, and the futures price series in each market is compiled 

using the nearest futures contracts and rolling over to the next nearest contract at the start of the 

expiration month. For individual spot-futures pairs, the local holiday schedule is applied and 

holidays are excluded from the data; if the futures market is closed while the spot is open due 

to the different holiday observances in the different markets, that day is removed as I assume 

that both markets need to be open to make index arbitrage available. Figure 5.1 displays the 

time plots of the log-differenced return series in the Nikkei markets. An obvious spike can be 

found in each series at the time October-November 2008, when Quandt-Andrews breakpoint 

test suggests structural changes (see Chapter 4, p.136). As such, the overall sample is divided 

into a pre-crisis period (sample A) and a post-crisis period (sample B), excluding a short 

turmoil interval in the middle of the crisis. 

Pre-crisis period (sample A): 

28/06/1996-09/10/2008 (OSE, SGX); 09/01/1997-12/09/2008 (CME) 



 170 

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014  
(a) Spot 

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014  
(b) OSE 

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014  
(c) SGX 

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

1998 2000 2002 2004 2006 2008 2010 2012 2014  
(d) CME 

 
Figure 5.1 Nikkei 225 spot and futures returns 
Notes: (a)-(d) plot the log-differenced price returns in the Nikkei spot and futures markets over the whole 
sample period 20/06/1996-31/12/2014 (OSE and SGX); 01/01/1997-31/12/2014 (CME). 
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Post-crisis period (sample B): 

04/11/2008-31/12/2014 (OSE, SGX); 02/12/2008-31/12/2014 (CME)  

 

For futures price interactions, the three Nikkei futures prices are pooled together but 

observations are only retained when all of the three markets are open; any date when any one 

of the markets is closed is removed from the dataset. This is because the three markets adopt 

different holiday schedules, and for simplicity I do not consider the information transmissions 

associated with closed markets. Moreover, the starting and ending dates of the sample periods 

are adjusted such that the three futures series have the same length. As will be explained later, 

the starting date of sample A is also moved slightly forward to allow for the estimated lags in 

the linear model. Therefore, a different sample division is employed for the futures price 

dynamics.         

Pre-crisis period (sample A): 

17/01/1997-12/09/2008 

Post-crisis period (sample B): 

02/12/2008-30/12/2014  

 

Table 5.1 presents descriptive statistics for the Nikkei price returns, basis and basis change in 

each market in each sample. The means of the price returns are negative in sample A and 

positive in sample B, and the means are very similar in value. This reveals that the Nikkei 

markets may be potentially linked. The standard deviations of the price returns are also close to 

each other, with a slight increase in the spot market and the OSE in the post-crisis period. The 

futures markets tend to have slightly higher standard deviations than the spot market before the 

crisis, but this is not so obvious after the crisis. As such, one may not draw strong conclusions 

about the more volatile Nikkei futures markets than the underlying spot. The first-order 

autocorrelation coefficients of the spot returns are small and significantly negative, suggesting 

that the nonsynchronous trading problem is not severe. The first-order autocorrelation 

coefficients of the futures returns are small and negative, and significant in most cases, which 

may be explained by the effect of bid-ask bounce. The higher-order autocorrelation coefficients 

generally diminish in magnitude and/or significance. 
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Table 5.1 Descriptive statistics of Nikkei 225 price returns, basis and basis change 
 

 S OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B Sample A Sample B 
Panel A: Price returns 

Mean -0.0003 0.0005 -0.0003 0.0005 -0.0003 0.0005 -0.0001 0.0005 
SD 0.0147 0.0153 0.0153 0.0154 0.0150 0.0150 0.0149 0.0149 

Autocorrelation         
Lag1 -0.0341* -0.0552** -0.0712** -0.0505** -0.0455** -0.0371 -0.0729** -0.0141 
Lag2 -0.0300** 0.0110* -0.0166** 0.0121 -0.0266** 0.0118 -0.0143** -0.0073 
Lag8 -0.0063 0.0241 -0.0032** 0.0183 -0.0062 0.0137 -0.0059** 0.0084 

Panel B: Basis 
Mean   -3.5961 -8.4241 -2.1468 -8.9494 10.6465 37.4029 
SD   47.3897 34.3022 47.0671 47.6074 129.4377 130.9044 

Autocorrelation         
Lag1   0.2540** 0.4357** 0.2620** 0.3176** 0.1288** 0.2023** 
Lag2   0.1698** 0.3964** 0.1846** 0.2250** 0.0088** 0.1974** 
Lag8   0.0912** 0.2551** 0.0950** 0.1557** 0.0288** 0.1077** 

Panel C: Basis change 
Mean   0.0014 0.0836 0.0047 0.0040 0.0240 0.3104 
SD   57.8834 36.5534 57.1567 55.6166 170.8389 166.6847 

Autocorrelation         
Lag1   -0.4431** -0.4614** -0.4471** -0.4312** -0.4311** -0.4891** 
Lag2   -0.0342** 0.0065** -0.0174** -0.0711** -0.0962** 0.0284** 

Lag8   -0.0187** 0.0475** -0.0010** 0.0189** -0.0010** 0.0615** 

Notes: The table presents descriptive statistics of the price returns, basis and basis change in the Nikkei spot 
(S) and futures (OSE, SGX, CME) markets, including mean, standard deviation (SD) and autocorrelation 
coefficients at the lags 1, 2 and 8. The price returns are calculated as the first-order differences in logarithmic 
prices. The basis is the difference between actual futures and spot prices. The basis change is the first-order 
difference in the basis. Panel A shows the descriptive statistics of the price returns in each market. Panel B 
and Panel C show the descriptive statistics of the basis and basis change, respectively, obtained from each 
spot-futures pair, and thus the statistics are placed under the relevant futures markets. ** denotes significance 
at the 5% level. * denotes significance at the 10% level. 
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Basis is calculated as Basist= Ft - St (difference between the actual futures and spot prices). The 

means of the basis are negative in the OSE and SGX, positive in the CME. In other words, on 

average the futures prices are lower than the spot prices in the OSE and SGX and yet higher 

than the spot prices in the CME. The standard deviation of the basis provides a measure of 

basis risk. The higher standard deviations of the CME basis suggest more risks inherent in the 

spot-futures arbitrage in the CME, probably due to the yen-dollar exchange rate fluctuations. 

The positive autocorrelation coefficients of the Nikkei basis are moderate and diminishing, 

indicating a mild persistence of the basis over trading days. I follow Miller et al. (1994) in 

defining the basis change as the first-order difference in the basis. The Nikkei basis changes 

exhibit significantly negative first-order autocorrelation coefficients. This indicates a 

mean-reverting tendency induced by arbitrage64 and probably error correction in the Nikkei 

markets. 

 

The cross-correlation coefficients of the Nikkei spot and futures returns are provided in Table 

5.2. Not surprisingly, the Nikkei spot and the OSE futures returns are strongly correlated with a 

coefficient larger than 0.96, suggesting high synchronisation between the two markets. The 

Nikkei spot and the SGX futures returns show similar high correlations. The OSE and SGX 

futures returns are even more highly correlated at 0.99. Given that the OSE, SGX contracts 

based on the same index are denominated in the same currency and traded almost at the same 

time, daily price information is somewhat homogeneous and shared between the markets 

through arbitrage activities, resulting in substantial information flows across the spot, OSE and 

SGX, and their close relationships. However, the correlations of the CME returns with the other 

returns are relatively low in both samples. For comparison, Booth et al. (1996) report the daily 

CME correlation coefficients with the OSE, SGX at approximately 0.8 over the period 

1990-1994. The low co-movements of the CME with the other Nikkei markets may reflect the 

relatively small trading volume of the CME futures and/or extra risks associated with the 

trading. Yet the different trading hours of the CME futures should not be a reason. As an 

additional check, the CME correlations are computed again between the CME returns on day 
                                                        
64 According to Miller et al. (1994), the mean reversion in basis change emerges because of arbitrage and/or nonsynchronous 
trading of the index price. However, the analysis above shows that the nonsynchronous trading is less likely to be a problem in 
my data.   
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t-1 and any one of the other returns on day t, to allow for a possible time sequence by which the 

CME is the earliest trading market. The last row of each sample in Table 5.2 still gives low 

correlations. More discussions on the timing issues are provided in section 5.7.  

 
Table 5.2 Cross-correlations of Nikkei spot and futures returns 
 

Notes: The table displays the cross-correlation coefficients of the Nikkei spot (S), futures (OSE, SGX, CME) 
returns in sample A (17/01/1997-12/09/2008) and sample B (02/12/2008-30/12/2014). The sample division is 
used to ensure that all the series have the same length. The last row of each sample shows additional 
evidence of the relatively low correlations of the CME, by matching the CME returns on day t-1, denoted as 
CME(t-1), with any one of the other returns on day t, which is the default time and thus omitted. 

   

5.4.2 Tests for cointegration 

The two-step procedure of Engle and Granger (1987) is adopted to test for cointegration in 

individual Nikkei markets. Augmented Dickey-Fuller (ADF) tests and Phillips-Perron (PP) 

tests for unit roots are applied to the log-prices and log-differenced returns in each market.65 

As shown in Panel A of Table 5.3, the spot and futures prices are I(1). The long-run relationship 

between the spot and futures prices, equation (5.1), is estimated by ordinary least squares 

(OLS), and Panel B of Table 5.3 indicates the estimated constant close to 0, the estimated slope 

close to 1. When the coefficient restrictions β0=0, β1=1 are tested by Wald statistics, the CME 

cannot reject these hypotheses, but the OSE and SGX show significant rejections - the 

significance may arise from the neglected nonlinearity embedded in the asset prices. If the spot 

                                                        
65 See Appendix 4.3 in Chapter 4 for methodological details of the unit root tests. 

 S OSE SGX CME CME(t-1) 

Sample A    
S 1     

OSE 0.9646  1    
SGX 0.9637  0.9884  1   
CME 0.6691  0.6718  0.6695  1  

CME(t-1) 0.2470  0.2168  0.2367  -0.0654  1 
Sample B    

S 1     
OSE 0.9787  1    
SGX 0.9759  0.9922  1   
CME 0.5064  0.5371  0.5327  1  

CME(t-1) 0.4241  0.3984  0.4173  -0.0234  1 
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and futures prices are indeed cointegrated in the OSE and SGX, the cointegrating vector 

implied by the cost of carry relationship should be [1, -1]. Therefore I still apply the restrictions 

β0=0, β1=1, and check the stationarity of the regression residual bt of equation (5.1). The results 

are given in Panel A of Table 5.3. The ADF tests and PP tests show that bt is I(0), and hence, 

the spot and futures prices are cointegrated in each Nikkei market. With the cointegrating 

vector [1, -1], bt = ft - st, and bt is to be called the log-basis.   

 

The standard Johansen (1988; 1991) maximum likelihood procedure is followed to test for 

cointegration across the Nikkei futures markets. From Panel A of Table 5.3, each of the futures 

prices is I(1). A vector autoregression (VAR) model in levels is built for the three futures series. 

The optimal lag length of the VAR is determined by the sequential modified likelihood ratio 

test and Akaike Information Criterion (AIC), as Schwartz Bayesian Criterion (SBC) is found to 

select too short lags with which the model residuals are not white. The lag selection criteria 

indicate 8 lags (sample A) and 5 lags (sample B), i.e. 7 lags (sample A) and 4 lags (sample B) 

in first differences.66 The results are the same when the VAR model is estimated for each 

bilateral pair of the futures prices, (OSEt, SGXt), (OSEt, CMEt) and (SGXt, CMEt). Taking into 

account an alternative trading sequence (for more details see section 5.7), I also estimate the 

VAR for the pairs (OSEt, CMEt-1) and (SGXt, CMEt-1), and find 7 lags (sample A) and 5 lags 

(sample B), i.e. 6 lags (sample A) and 4 lags (sample B) in first differences. The chosen lags 

will be used in the following linear specifications where relevant.  

 

The Johansen trace and maximal eigenvalue tests are carried out to determine the number of 

cointegrating relationships. The trace statistic tests the null hypothesis of at most r 

cointegrating vectors, and is calculated as 

1

ˆ( ) ln(1 )
n

trace q
q r

r Tl l
= +

= − −∑  

where T is the sample size, n is the number of endogenous variables, q̂l is the q-th largest 

                                                        
66 It is recognised that the pre-crisis lags are longer than what are usually reported in the literature with daily data, but they 
have to be used to remove the model residual autocorrelations, especially in the CME. The long lags make 17/01/1997 as the 
starting date of sample A for futures price interactions. 
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eigenvalue obtained from the Π matrix.67 The maximal eigenvalue statistic tests the null 

hypothesis of r cointegrating vectors against (r+1) cointegrating vectors, and is calculated as 

max 1
ˆ( , 1) ln(1 )rr r Tl l ++ = − −  

Panel A of Table 5.4 shows that both tests strongly reject the null hypotheses of r=0 and r≤1 but 

cannot reject the null hypothesis of r≤2. This means that the three Nikkei futures prices are 

cointegrated with two cointegrating vectors, or with one common stochastic factor as expected. 

The result is robust with respect to the number of lags and trend assumptions. It follows that 

each bilateral pair of the Nikkei futures prices is cointegrated with one cointegrating vector. 

Panel B of Table 5.4 displays the test results of the restriction imposed on the transposed 

cointegrating matrix beta 

1 0 1
0 1 1

− 
=  − 

β'  

The likelihood ratio tests cannot reject the above restriction at conventional levels. Hence, the 

long-run equilibrium β' ft =0, where ft is a column vector that contains the three futures prices 

subscripted by 1, 2 and 3 for brevity, can be written as68 

1,

2,

3,

1 0 1 0
0 1 1 0

t

t

t

f
f
f

 
−     =    −     

 

which is equivalent to f1,t - f3,t=0, f2,t - f3,t=0. Since the order of the futures series is arbitrary, this 

implies that I cannot reject zero constant and unit slope in equation (5.4); in other words, the 

cointegrating vector is [1, -1] for any two Nikkei futures prices. Therefore, the price differential 

(f1 - f2) at lag 1 will be used as the error correction term zt-1 to study the price dynamics across 

the futures markets. 

                                                        
67 Π=αβ′, where α is a matrix of speed-of-adjustment parameters, β′ is a transposed matrix of long-run parameters. For details 
I refer to the original works. 
68 This is analogous to saying that the error correction term is zero in the long-run equilibrium in a single-equation case 
(Asteriou and Hall, 2007). 
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Table 5.3 Tests for (non)stationarity and cointegration in individual Nikkei markets 
 

Notes: The table contains the results of unit root tests and Engle-Granger (1987) cointegration tests for each 
Nikkei spot-futures pair in each sample. Panel A lists the unit root test results of ADF and PP for the 
log-prices (st, ft), log-differenced price returns (∆st, ∆ft), log-basis (bt), and the detrended, outlier-free 
log-basis (bt

*). For st, ft and bt, the ADF and PP test statistics are computed with constant and trend; for ∆st, 
∆ft and bt

*, the ADF and PP test statistics are computed without constant or trend. Lag length is determined 
by SBC. Panel B lists the OLS regression results of the long-run relationship between the spot and futures 
prices, equation (5.1): ft=β0+β1st+bt. a The coefficient restrictions, β0=0, β1=1 are tested by Wald statistics. ** 
denotes significance at the 5% level. 

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
Panel A: Unit root tests 
ADF 

st -1.8208  -1.8860  -1.8205  -1.9148  -1.8173  -1.7739  
ft -1.7740  -1.8810  -1.8641  -1.9030  -1.7527  -1.8133  

∆st -56.8693**  -41.4880**  -56.8378**  -42.3184**  -56.9526**  -41.7665**  
∆ft -59.0176**  -41.5847**  -57.4696**  -41.6747**  -58.3330**  -40.4335**  
bt -17.4540**  -9.9524**  -17.3997**  -9.5683**  -48.1257**  -14.8581**  
bt

* -17.5880**  -10.2081**  -17.5705**  -10.2030**  -47.6145**  -14.4661**  
PP 

st -1.7379  -1.7552  -1.7315  -1.7881  -1.6766  -1.7076  
ft -1.7681  -1.7805  -1.7666  -1.8457  -1.6918  -1.7928  

∆st -56.9286**  -41.5128**  -56.9140**  -42.3444**  -57.1968**  -41.7198**  
∆ft -59.0839**  -41.5605**  -57.5571**  -41.6509**  -58.6504**  -40.4262**  
bt -50.8582**  -30.3514**  -49.1950**  -32.7350**  -49.0954**  -37.5927**  
bt

* -51.2415**  -32.4737**  -49.5679**  -34.2554**  -49.4651**  -37.5262**  
       

Panel B: The long-run spot-futures relationship a 
β0 -0.0155**  -0.0166**  -0.0129**  -0.0155**  0.0062  -0.0060  
β1 1.0016**  1.0017**  1.0013**  1.0016**  0.9994  1.0010  
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Table 5.4 Cointegration across the Nikkei futures markets 
 

Notes: The table contains the results of Johansen (1988; 1991) cointegration tests on the three Nikkei futures 
returns. Panel A shows the test statistics of the trace test (λtrace) and maximal eigenvalue test (λmax). H0 is the 
null hypothesis of at most r cointegrating vectors in the trivariate system. Pr(0.01) is the 1% critical value 
taken from Osterwald-Lenum (1992). The number of lags used is 7 (sample A) and 4 (sample B) in first 
differences, determined by the sequential modified likelihood ratio test and AIC. The trend assumption is 
linear deterministic trend in the level data. However, the test results are robust with respect to the number of 
lags and trend assumptions. The results indicate 2 cointegrating vectors, shown in Panel B. The following 
restriction is tested on the transposed cointegrating matrix beta 

1 0 1
0 1 1

− 
=  − 

β'  

The likelihood ratio (LR) test statistic is calculated as 

*

1

ˆ ˆln[(1 ) / (1 )]
r

q q
q

T l l
=

− −∑  

where T is the sample size; *
q̂l ,

q̂l are the q-th estimated eigenvalues of the restricted and unrestricted 
specifications, respectively. The LR statistic is asymptotically distributed as χ2(2) in this case. The LR 
statistics and the associated p-values are also shown in Panel B.  

 

 
 
 
 
 

Panel A: Tests for the number of cointegrating vectors  

 Trace test Maximal eigenvalue test 
H0 λtrace Pr(0.01) λmax Pr(0.01) 

Sample A     
r=0 643.5701  35.6500  343.9272  25.5200  
r≤1 299.6429  20.0400  296.9541  18.6300  
r≤2 2.6889  6.6500  2.6889  6.6500  

Sample B     
r=0 451.1996  35.6500  247.8994  25.5200  
r≤1 203.3002  20.0400  202.8050  18.6300  
r≤2 0.4952  6.6500  0.4952  6.6500  

     
Panel B: Tests of cointegration restrictions  

  No. of cointegrating vectors LR stat p-value 
Sample A 2 1.7245  0.4222  
Sample B 2 0.4760  0.7882  
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5.4.3 Trends and outliers 

In effect, the spot-futures log-basis bt is trended with trends from three possible sources: time to 

maturity of the futures contracts, rolling over the futures contracts, and the passage of time. 

From the cost of carry model, bt equals the net cost of carry of holding a futures contract. As 

the maturity date draws near, the value of bt decreases as a result of the decreasing risks 

contained in the interest rate and dividends; at maturity, the risks are zero, the spot price equals 

the futures price, and bt reduces to zero. Low et al. (2002) record that the maturity effect is 

linear: the average Nikkei log-basis increases linearly and significantly with the time to 

maturity. To examine whether the maturity effect is significant in my data, bt is regressed on a 

constant c and time to maturity (T-t):69 

 ( )t tb c T t bβ= + − +   (5.7) 

where the last term on the right-hand-side is a residual. Panel A of Table 5.5 shows the 

regression results in each Nikkei market in each sample. The coefficient of time to maturity is 

significantly negative (positive) for negative (positive) log-basis on average, except in the 

CME (sample A) where the coefficient is insignificant; however, an additional regression over 

the whole sample generates a coefficient of 1.27E-05 with p-value 0.0396 in the CME. Taken 

together, I support the significantly positive relationship between bt and time to maturity. The 

regression residual from equation (5.7) is the log-basis net of the maturity effect.  

 

The practice of rollover introduces jumps into the log-basis series at rollover dates, as the 

futures contracts of different maturities are spliced together. Switching contracts at the start of 

the contract month impairs the degree of the basis jumps, for the trading days very near the 

maturity date, i.e. the second Friday of the contract month in the Nikkei markets, are excluded. 

The remaining basis jumps can be captured by equation (5.7). This is because when a new 

futures contract enters the data, the time to maturity jumps as well, so that the series of time to 

maturity exhibits a similar saw-tooth pattern as in the log-basis series. The above regression of 

bt on the time to maturity should allow for the basis jumps caused by the practice of rollover. 
                                                        
69 Time to maturity is the number of calendar days remaining in a futures contract until expiration. I use calendar days because 
the cost of carry model uses calendar days and the real world uses calendar days to calculate interest rates and dividends. 
Replacing time to maturity by the number of trading days remaining in a contract generates qualitatively the same results.  
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The residual from equation (5.7) is actually the log-basis net of the maturity effect and the 

rollover effect.  

 
Table 5.5 Possible trends in Nikkei log-basis 
 

Notes: The table shows the possible trends in the log-basis in each Nikkei market in each sample. Panel A 
reports the regression results of the log-basis on a constant and time to maturity, to allow for the maturity 
effect and the rollover effect. Panel B reports the regression results of the log-basis on a constant and the 
time intervals between consecutive data-points, to allow for the calendar effect. Regressions are by OLS with 
White (1980) heteroskedasticity-consistent standard errors and covariance. The bottom line gives the average 
of the log-basis in each market in each sample for reference. a

 Regression of the CME log-basis on the time 
to maturity over the whole sample generates a coefficient of 1.27E-05 with p-value 0.0396. b Regression of 
the OSE log-basis on the time intervals over the whole sample generates a coefficient of -2.16E-05 with 
p-value 0.6727. ** denotes significance at the 5% level. * denotes significance at the 10% level. 

  

 

Time-related patterns, or the calendar effect, are often observed in financial returns but the 

calendar effect of the (log-)basis is not clear, especially in the Nikkei markets. The passage of 

time may have significant impacts on the spot and futures prices, and thus their difference. This 

possibility is checked by regressing bt on a constant and the time intervals between consecutive 

data-points; the calendar effect exists if the coefficient of the time interval is significant. In 

Panel B of Table 5.5, the coefficients of the interval are generally small and insignificant in the 

Nikkei markets. The only significance is in the OSE (sample B); however, this coefficient 

becomes insignificant when the regression is re-run for the OSE during the whole sample 

period. Using st, ft, ∆st, ∆ft as the dependent variable in turn generates insignificant results in 

each market in each sample (results available upon request). Since the calendar effect is likely 

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
Panel A: Regression of the log-basis on the time to maturity 

Constant 0.0008**  0.0013**  0.0009**  0.0013**  0.0009**  0.0006  
Coefficient -1.99E-05** -3.74E-05** -2.05E-05** -3.88E-05** -2.50E-06a  4.66E-05** 

       
Panel B: Regression of the log-basis on the time intervals 

Constant -0.0004**  -0.0006**  -0.0002**  -0.0009**  0.0005  0.0036**  
Coefficient 8.66E-07 -1.41E-04*b -3.55E-06 1.19E-05 1.42E-04 -2.31E-04 

       

Average log-basis -0.0004  -0.0009  -0.0002  -0.0009  0.0007  0.0032  
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to be consistent in a market, the only significance could be data-specific and thus I decide to 

ignore the calendar effect in the Nikkei markets.  

 

Nonlinearities in the error correction can be caused by a few outliers in the data (van Dijk and 

Franses, 1997). To ensure that the nonlinear smooth transition model does describe the “real” 

adjustment process rather than being the accidental outcome of several anomalies, I remove 

outliers by dummying out the observations exceeding 6 standard deviations in absolute value of 

each of the spot, futures and log-basis series. For the log-basis series, equation (5.7) is modified 

to include the dummy variables that represent the outliers: 

 *( )t l t
l

b c T t dum bβ= + − + +∑  (5.8) 

where duml=1 if the day has an outlier, 0 otherwise, with l the number of the outliers; bt
* is a 

new residual, or the detrended log-basis without the influence of the outliers. Panel A of Table 

5.3 indicates that bt
* is also I(0). This confirms the cointegration between the Nikkei spot and 

futures, and justifies an ECM representation in studying their first-moment price dynamics. 

Moreover, bt
* will act as the error correction term. For the spot and futures returns, each series 

is regressed on a constant, time to maturity and dummy variables according to equation (5.8). 

The residuals from the regressions are the demeaned spot and futures returns free from the 

maturity and rollover effects and outliers; for convenience, they will still be denoted as ∆st, ∆ft 

in the following estimation. The outliers are removed in a consistent way for the three series - 

for example, when day t has an outlier in the futures return, I dummy out this day in the spot, 

futures and log-basis, to remove any potential effect of the outlier on all the series in a market. 

The number of the outliers removed is 4(OSE), 8(SGX) and 2(CME), leaving the total amount 

of observations for estimation to 4533(OSE), 4582(SGX) and 4479(CME).  

 

Across the futures markets, I follow similar steps to check for the possibility of trends and 

outliers in the futures prices and their differentials. For the maturity and rollover effects, each 

futures return and price differential is regressed on a constant and the time to maturity; for the 

calendar effect, each is regressed on a constant and the time intervals between consecutive
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Table 5.6 Possible trends in Nikkei futures returns and price differentials 
 

Notes: The table shows the possible trends in the Nikkei futures returns (OSE, SGX, CME) and price 
differentials. The price differentials are calculated as the differences between two logarithmic futures prices, 
presented as OSE-SGX, OSE-CME, and SGX-CME. Given that the order of taking the differences does not 
affect the results, for consistency, the second price is always subtracted from the first price in each 
presentation to make the relevant differential series hereafter. Panel A shows the regression results of each 
series on a constant and time to maturity, to allow for the maturity effect and rollover effect. Panel B shows 
the regression results of each series on the time intervals between consecutive data-points, to allow for the 
calendar effect. Regressions are by OLS with White (1980) heteroskedasticity-consistent standard errors and 
covariance. a Regressions on the time to maturity over the whole sample (coefficient followed by p-value in 
parentheses): CME 8.37E-06 (0.3681); OSE-CME -4.36E-05 (0.0000); SGX-CME -4.45E-05 (0.0000). b 

Regressions on the time intervals over the whole sample (coefficient followed by p-value in parentheses): 
CME 0.0003 (0.2734); OSE-CME 0.0002 (0.2091); SGX-CME 0.0002 (0.2623). ** denotes significance at 
the 5% level. * denotes significance at the 10% level. 

 

 OSE SGX CME OSE-SGX OSE-CME SGX-CME 

Panel A: Regressions on the time to maturity a    
Sample A       

Constant 0.0001  0.0002  -0.0001  -0.0002**  0.0001  0.0003  
Coefficient -5.34E-06 -5.68E-06 -6.89E-07 1.07E-06 -2.11E-05** -2.21E-05** 

       
Sample B       

Constant -0.0009  -0.0009  -0.0014  0.0000  0.0010  0.0010  
Coefficient 2.38E-05 2.44E-05 3.36E-05** 9.29E-07 -8.70E-05** -8.79E-05** 

       
Panel B: Regressions on the time intervals b    
Sample A       

Constant -0.0007  -0.0009  -0.0012**  -0.0001**  -0.0011**  -0.0010**  
Coefficient 3.68E-04 4.49E-04 6.65E-04* 7.69E-06 8.36E-06 6.76E-07 

       
Sample B       

Constant 0.0004  0.0004  0.0014*  0.0001  -0.0047**  -0.0048  
Coefficient 3.84E-05 5.76E-05 -5.64E-04 1.81E-05 5.26E-04* 5.08E-04* 
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data-points. The results are presented in Table 5.6. Panel A shows that the maturity effect is 

strongly significant mainly in the price differentials between the OSE and the CME, between 

the SGX and the CME. The strong significance of the time to maturity in the price differentials 

is confirmed when the regressions are repeated over the whole sample. In contrast, panel B 

suggests that the calendar effect is only periodical and marginally significant in a few series, 

and the whole-sample regressions of the time intervals do not indicate significance. As in the 

case of the individual markets, I therefore decide to ignore the calendar effect. In terms of 

outliers, I apply the same criterion of 6 standard deviations and dummy out observations 

exceeding the criterion in absolute value of each of the futures returns and differentials. The 

number of outliers found is 3 when the timing issues of the CME are ignored; 4 when the 

timing issues are considered. The complete regression for each of the series is on a constant, 

the time to maturity and the dummy variables that represent the outliers. The regressions are 

run consistently throughout all the data - any trends and outliers taken out from one series are 

also removed from all the other series. The regression residuals, detrended and free from the 

outliers, are to be used as their dependent variables in estimation. The total number of 

observations ready for estimation is 2776 (sample A) and 1443 (sample B) in the futures 

markets.   

5.5 Methodology 

5.5.1 Linearity tests 

To test for the smooth transition nonlinearity in individual Nikkei markets, I employ the 

specification procedure of Teräsvirta (1994) that takes the linear ECM, equations (5.2a) (5.2b), 

as the null model, and the ESTECM, equations (5.3a) (5.3b), as the alternative model. The null 

hypothesis of linearity can be expressed as H0: γ=0, with which equations (5.3a) (5.3b) become 

linear. However, when γ=0, the ESTECM is not identified in the sense that the nonlinear model 

parameters other than γ can each assume more than one value; this is called the problem of 

unidentified nuisance parameters (Teräsvirta, 1994; Franses and van Dijk, 2000). Yet the 

problem can be circumvented by performing the LM-type linearity tests of Saikkonen and 

Luukkonen (1988) and Teräsvirta (1994). Given the value of the delay parameter d, this 
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involves running an auxiliary regression in each of the spot and futures markets, and the 

following is the regression in the spot market (McMillan, 2005):  

 2 3
00 0 1 2 3

1

( )
p

t j t j j t j t d j t j t d j t j t d t
j

s x x z x z x z vβ β β β β− − − − − − −
=

∆ = + + + + +∑  (5.9) 

where xt contains the adjusted price returns ∆st, ∆ft and the error correction term zt-1; zt-d is the 

transition variable; vt is the residual from the auxiliary regression; the model lag p is 

determined from estimating the linear ECM. Using ∆ft as the dependent variable yields the 

regression in the futures market. The null hypothesis of linearity H0: γ=0 is equivalent to H0: 

β1j=β2j=β3j=0, j=1, …, p, under which a LM-type test statistic asymptotically follows a χ2 

distribution with 3p degrees of freedom. The LM-type test statistic is constructed as 

LM=T(RSSL-RSSA)/RSSL, where T is the sample size, RSSL is the residual sum of squares from 

estimating the linear ECM, RSSA is the residual sum of squares from estimating the auxiliary 

regression (5.9). F versions of the LM-type statistics can be used for better power and size 

properties in small samples. H0 is expected to be rejected, which suggests the smooth transition 

nonlinearity in the spot-futures adjustment process and thus the ESTECM more appropriate.      

 

The standard selection approach of the delay parameter d is to repeat the LM-type linearity 

tests for different candidates of d, and determine d as the one that generates the lowest p-value 

of the test, because the correct d should have the highest power in the test (Teräsvirta, 1994). 

Alternatively, one can use information criteria and/or other evaluation tests to select the value 

of d, as it is expected that a suitable d should be accompanied with better model fit (van Dijk et 

al., 2002; Enders, 2010). 

 

Several modifications are needed when applying the LM-type linearity tests to the bilateral pair 

of Nikkei futures prices (f1, f2). First, the bivariate ECM in the futures markets, equations (5.5a) 

(5.5b), are the null model and the nonlinear ESTECM in the futures markets, equations (5.6a) 

(5.6b), are the alternative model. Indeed, with the null hypothesis of linearity H0: γ=0, 

equations (5.6a) (5.6b) become linear, and rejecting H0: γ=0 means the presence of smooth 

transition nonlinearity in the price adjustments between the equivalent futures markets. Second, 

equation (5.9) should be altered so that both prices f1 and f2 enter the auxiliary regression of 
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market 1: 

 2 3
1, 00 0 1 2 3

1

( )
p

t j t j j t j t d j t j t d j t j t d t
j

f x x z x z x z vβ β β β β− − − − − − −
=

∆ = + + + + +∑  (5.10) 

where xt contains the futures returns ∆f1,t, ∆f2,t and the error correction term zt-1 which is the 

price differential (f1 - f2) at lag 1, all data detrended and free from the influence of outliers. 

Correspondingly, the transition variable zt-d is the price differential (f1 - f2) at a certain lag d. 

Replacing ∆f1,t by ∆f2,t as the dependent variable gives the auxiliary regression of market 2. An 

additional consideration is about the model lag p, which, in fact, is associated with an 

alternative trading sequence and also applies in the linear ECM, equations (5.5a) (5.5b). The 

number of lags in the linearity test should be the same as that in the linear model. Given that 

the CME market operates in a different time zone, if the CME returns on day t-1 is aligned with 

the other returns on day t to test for nonlinearity with the alternative trading sequence by which 

the CME is the earliest trading market, the p lags of the linear ECM should be applied 

consistently to CMEt-1, OSEt and SGXt in the test; as a result, the CME maximum lags used in 

returns would always be 1 lag longer than the maximum lags of the other two markets, even 

though the lag length is the same p.    

5.5.2 Estimation and evaluation 

The estimation of the linear ECMs, equations (5.2a) (5.2b) for spot-futures pairs and (5.5a) 

(5.5b) for bilateral futures pairs, is by OLS. The model lag p is selected by SBC in the 

individual markets; across the futures markets, p is pre-determined by the sequential modified 

likelihood ratio test and AIC in the Johansen procedure. The error correction term zt-1 is 

represented by the log-basis bt
* at lag 1, or by the futures price differentials (f1 - f2) at lag 1, 

detrended and outlier-free. Preliminary estimations show that the model residuals are affected 

by excessive ARCH effects. For this reason, the conditional variance equation in the Nikkei 

markets is estimated by a univariate GARCH (1, 1) model of Bollerslev (1986): 

 t t tu σ η=  (5.11) 

 2 2 2
1 1t t tau bσ ω σ− −= + +  (5.12) 

where ut is the ECM residual; ηt ~ iid(0,1); ω>0; a≥0; b≥0; a+b<1; σt is a time-varying, positive 

and measurable function of the information set at time t-1. The GARCH (1, 1) model is chosen 
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because it is widely used and simple enough to provide a benchmark for the conditional 

variance models at the nonlinear stage.70 The estimation of equations (5.11) (5.12) is by 

(quasi-)maximum likelihood. The linear ECM-GARCH forms the base model of the error 

correction mechanism in individual Nikkei markets and across. 

 

The estimation of the ESTECM, equations (5.3a) (5.3b) and (5.6a) (5.6b), is by nonlinear least 

squares (NLS). The model restriction k*=c*=0 is imposed because the adjusted price returns ∆st, 

∆ft and ∆f1,t, ∆f2,t do not contain constants, and the transition functions are usually centred at 

zero. The error correction term zt-1 is as in the linear ECM. The transition variable zt-d is 

represented by the detrended and outlier-free log-basis bt
*, or futures price differential (f1 - f2) at 

a certain lag d, which is to be determined in the linearity tests. To provide a scale-free 

environment for the nonlinear parameters, I standardise the smoothness parameter γ by dividing 

it by the sample variance of zt-d, and standardise the asymmetry parameter θ by dividing it by 

the sample standard deviation of zt-d. The standardisation is a common practice in studies with 

smooth transition models (e.g. Teräsvirta, 1994; Anderson, 1997).  

 

To find out the model lag p in the ESTECM, I follow Haggan and Ozaki (1981) to grid search 

for possible combinations of (γ, θ). With fixed (γ, θ), the ESTECM becomes linear, and the 

resultant linear model is estimated with different lags. The model lag p is determined as the lag 

that yields the minimal AIC; also, that minimum needs to be stable for different combinations 

of (γ, θ). The NLS estimation of the ESTECM is equivalent to maximum likelihood if the 

model residual ut is assumed to be normally distributed; otherwise the NLS estimates can be 

interpreted as quasi-maximum likelihood estimates (van Dijk et al., 2002). 71  The NLS 

estimates are conditional upon starting values. A two-dimensional grid search over γ and θ is 

performed to obtain different sets of starting values. More specifically, I fix γ first at a given 

value and then search for θ that generates the lowest residual variance, and then keep θ fixed at 

that value and search for γ with the lowest residual variance. The selected values of γ and θ, 

                                                        
70 In some cases, a GARCH (2, 1) process is found necessary to remove the excessive ARCH effects. For example, the OSE, 
SGX spot residuals in sample B when examining the spot-futures dynamics. If a GARCH (2, 1) model is needed, equation 
(5.12) is modified to: 2 2 2 2

1 1 2 2 1t t t ta u a u bσ ω σ− − −= + + + , where the non-negative (G)ARCH parameters have a sum less than 1.  
71 For conditions of consistency and asymptotical normality of the NLS estimates I refer to Klimko and Nelson (1978) and 
Tong (1990). 
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together with the OLS estimates of the remaining parameters (the ESTECM is linear with fixed 

γ and θ), provide a set of starting values with the lowest residual variance for NLS estimation. 

At the second round, slightly change the given value of γ and repeat the searching process, and 

obtain another set of starting values with the lowest residual variance. The grid search 

continues until all the potential values of γ and θ are exhausted (Franses and van Dijk, 2000; 

Enders, 2010).72 Among the models whose algorithms converge and parameter estimates look 

reasonable, the final model is decided as the one with the lowest residual variance. 

 

The ESTECM captures asymmetric market responses through the asymmetry parameter θ; I 

would expect the corresponding conditional variance model to be able to describe the leverage 

effect as well. This is because the asymmetric market responses to good news and bad news 

may also occur in the second moments, and previous studies on a wide range of markets tend to 

show evidence of more volatile markets in the aftermath of negative shocks than positive 

shocks of the same magnitude. However, the linear GARCH model is unable to accommodate 

such asymmetry. As can be seen from equation (5.12), the conditional variance σt
2 is 

parameterised as a function of the magnitude of the lagged squared information shock(s) ut and 

the magnitude of the lagged conditional variance σt
2 - the signs of the variables play no part in 

the symmetric framework. In this respect, nonlinear GARCH models with asymmetry are 

preferable as they allow the conditional variance to depend on both the magnitudes and the 

signs, and thus capture the asymmetric volatility effect (Bollerslev et al., 1992). Hence, the 

ESTECM residual ut is assumed to follow a univariate exponential GARCH (EGARCH) 

process of Nelson (1991) in the Nikkei markets. The EGARCH model is selected as it takes 

into account the different impacts of good news and bad news on volatility. Compared with 

other asymmetric GARCH models, the EGARCH model specifies the conditional variance as 

an exponential function, consistent with the exponential transition function which contains the 

asymmetry function in the first moment. Let σt
2 be the conditional variance as in equation 

(5.11). A simple EGARCH (1, 1) model can be formulated as below:73     
                                                        
72 There are two grid searches involved in the estimation procedure. The first is to determine the model lag p and the second is 
to find starting values. In this context, searching simultaneously over γ and θ would be computationally burdensome and fixing 
one of the variables and searching the other at a time at each round simplifies the searching process. The risk of missing the 
global maximum in the likelihood function is deemed to be small. As a robustness check, different sets of starting values are 
used to estimate the same model, and the model parameter estimates are very similar despite the different starting values.     
73 As in the linear case, sometimes an EGARCH (2, 1) model is found necessary to remove the excessive ARCH effects. 
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 2 2
1 1 1 1 1ln ( / ) / lnt t t t t tu a u bσ ω l σ σ σ− − − − −= + + +  (5.13) 

where ut is the residual from the ESTECM; there are no constraints on the non-negativity of the 

coefficients ω, a and b; the coefficient λ sheds light on the presence of the predictive 

asymmetry of asset prices. To be more specific, the impact of any price innovations on the 

logarithmic conditional variance is a linear combination of λ and a. For a positive shock, 

ut-1/σt-1>0, the impact is (λ+a); for a negative shock, ut-1/σt-1<0, the impact is (-λ+a) (Enders, 

2010). Thus, a negative λ is required for negative shocks to trigger higher volatility, and I 

expect λ to be significantly negative in the Nikkei spot-futures and futures price adjustments. 

The estimation of equations (5.11) (5.13) is by (quasi-)maximum likelihood. The joint 

estimation of the ESTECM as the conditional mean and the EGARCH model as the conditional 

variance is difficult. A two-step approach in the spirit of Chan and McAleer (2002) is applied 

that first estimate the ESTECM, and then estimate the EGARCH using the residual obtained 

from the ESTECM. The ESTECM-EGARCH makes the nonlinear error correction framework 

alternative to the base model. 

 

The estimated models, linear (ECM-GARCH) and nonlinear (ESTECM-EGARCH), should 

have reasonable parameters in the conditional mean and conditional variance equations. 

Besides, the model residuals are subject to diagnostic tests for residual autocorrelation, 

remaining ARCH effects, remaining leverage effects and normality. The RSS of the linear 

model is compared with the RSS of the corresponding nonlinear model to see whether the latter 

is smaller. Model selection criteria, AIC and SBC, are also considered to compare the 

in-sample fit of the linear and nonlinear models. 

5.6 Empirical results 

5.6.1 Spot-futures price dynamics 

The estimation results of the linear ECM-GARCH in individual Nikkei markets are reported in 

Table 5.7. The lag length p=1 in the mean model is selected by SBC. The long-run error 

                                                                                                                                                                                
Accordingly, when needed, equation (5.13) is modified to: 2 2

1 1 1 1 1 2 2 2 1ln ( / ) / / lnt t t t t t t tu a u a u bσ ω l σ σ σ σ− − − − − − −= + + + + , 

where the impact of price innovations is a linear combination of λ, a1 and a2. The predictive asymmetry exists if λ<0. 
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Table 5.7 Estimation and evaluation results in individual Nikkei markets: the linear 
ECM-GARCH model 
 

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
ECM coefficients 

Spot       
ks 0.0000 0.0007 0.0000 0.0008 0.0006 -0.0002 
 (0.1370) (2.0204) (-0.0170) (2.3366) (3.1755) (-0.9572) 

πss -0.1422 -0.4221 -0.2217 -0.2361 -0.0392 -0.0956 
 (-1.5292) (-2.9096) (-2.4743) (-2.3913) (-1.5404) (-3.2829) 

πsf 0.1222 0.4014 0.2126 0.2227 0.0183 0.0723 
 (1.3360) (2.7728) (2.3791) (2.2712) (0.6254) (2.0604) 

αs 0.3481 0.0109 0.4096 0.2686 0.7631 0.7364 
 (3.3224) (0.0695) (3.9760) (2.0821) (19.9597) (17.6859) 

Futures       
kf 0.0002 0.0006 0.0002 0.0006 0.0001 0.0006 
 (0.9151) (1.7830) (0.8421) (1.6250) (0.3016) (1.8947) 

πfs 0.0165 -0.1947 -0.0557 -0.0625 -0.0476 0.0402 
 (0.1718) (-1.3335) (-0.5952) (-0.6543) (-1.5514) (1.0590) 

πff -0.0460 0.1736 0.0419 0.0532 0.0050 -0.0472 
 (-0.4898) (1.1906) (0.4507) (0.5652) (0.1406) (-0.9979) 

αf -0.2665 -0.3488 -0.2090 -0.2342 -0.1049 0.0246 
 (-2.4707) (-2.2769) (-2.0068) (-1.8797) (-2.1596) (0.4654) 

GARCH coefficients 
Spot       
ωs 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 (3.6085) (2.9298) (3.6193) (3.1675) (2.9284) (2.0847) 

as,1 0.0828 0.0152 0.0825 0.0105 0.0683 0.0546 
 (6.6246) (0.5387) (6.7476) (0.4051) (5.5429) (2.6988) 

as,2  0.0765  0.0766   
  (2.2691)  (2.3325)   

bs 0.9028 0.8724 0.9035 0.8738 0.9204 0.9140 
 (66.3234) (31.4238) (67.9445) (32.7177) (66.3388) (29.1230) 

Futures       
ωf 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 (3.6093) (2.9416) (3.5452) (3.1563) (3.2361) (3.1009) 

af 0.0840 0.0907 0.0816 0.0926 0.0648 0.0828 
 (6.8547) (4.2444) (6.4575) (4.1867) (6.0745) (4.0212) 

bf 0.8998 0.8797 0.9022 0.8742 0.9190 0.8740 
 (65.7411) (35.5805) (64.0633) (34.1358) (73.6606) (31.6330) 
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Table 5.7 continued 
 

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
Evaluation 

Spot       
RSS 0.6334 0.3382 0.6312 0.3385 0.4606 0.1851 

Q(24) for ηt [0.6953] [0.9927] [0.4792] [0.8925] [0.9425] [0.2993] 
Q(24) for ηt

2 [0.3413] [0.3098] [0.5939] [0.3240] [0.2680] [0.5422] 
JB [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] 

Asymmetric tests 
Sign bias test [0.8058] [0.6771] [0.6125] [0.5761] [0.5326] [0.1495] 

Neg. size bias test [0.9723] [0.5874] [0.8510] [0.2475] [0.9351] [0.8867] 
Pos. size bias test [0.0002] [0.4961] [0.0003] [0.2318] [0.3105] [0.2365] 

Joint test [0.0029] [0.4079] [0.0061] [0.3167] [0.1846] [0.6733] 
       

Futures       
RSS 0.6762 0.3468 0.6545 0.3393 0.6515 0.3387 

Q(24) for ηt [0.5667] [0.9956] [0.3000] [0.9421] [0.9435] [0.9095] 
Q(24) for ηt

2 [0.3057] [0.2517] [0.4673] [0.3789] [0.9728] [0.9396] 
JB [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] 

Asymmetric tests 
Sign bias test [0.5975] [0.6401] [0.9782] [0.7278] [0.0960] [0.7704] 

Neg. size bias test [0.8283] [0.9966] [0.6079] [0.7804] [0.2120] [0.7939] 
Pos. size bias test [0.0004] [0.0225] [0.0008] [0.0901] [0.4016] [0.0050] 

Joint test [0.0012] [0.1190] [0.0079] [0.1916] [0.0307] [0.1028] 
Notes: The table presents the estimation and evaluation results of the linear ECM-GARCH model in 
individual Nikkei markets. The mean models are equations (5.2a) (5.2b): 
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The variance models are equations (5.11) (5.12): 
t t tu σ η= , 2 2 2

1 1t t tau bσ ω σ− −= + + , or a GARCH(2,1) 
2 2 2 2

1 1 2 2 1t t t ta u a u bσ ω σ− − −= + + +  is used instead of (5.12) to remove the excessive ARCH effects in the residuals. 
The estimation of the ECM is by OLS; the estimation of the GARCH is by quasi-maximum likelihood with 
Bollerslev-Wooldridge (1992) robust standard errors and covariance. The model lag p=1 is determined by 
SBC. ∆st, ∆ft are detrended, outlier-free price returns; zt-1 is represented by the detrended, outlier-free 
log-basis at lag 1. The diagnostic checks include the Ljung-Box (1978) portmanteau test (Q) for standardised 
residuals and squared standardised residuals up to order 24, the Jarque-Bera (1980) normality test (JB), and 
the asymmetric test of Engle and Ng (1993) which contains sign bias test, negative (neg.) size bias test, 
positive (pos.) size bias test, and joint test. Numbers in parentheses are z-statistics. Numbers in square 
brackets are p-values.  
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correction coefficient α is positive in the spot and negative in most of the futures, which is 

consistent with my expectation of the error correction mechanism. The only exception is in the 

CME (sample B) where the error correction terms are positive in both the spot and futures 

markets; however, taking the difference (αf - αs) gives the net error correction effect in the 

market and it is negative as expected. The error correction terms are found significant in both 

the spot and futures markets in the OSE (sample A), SGX and CME (sample A), indicating 

bidirectional causality between the spot and futures markets. In the OSE (sample B), αs is 

insignificant and smaller, but αf is significant and larger in magnitude: this is evidence of 

unidirectional causality from spot to futures, implying that the spot market plays a primary role 

in the information transmission process after the crisis. The reverse causality from futures to 

spot is found in the CME (sample B) for significant, larger αs and insignificant, smaller αf, 

which supports the predominant function of the futures market in the price discovery. In terms 

of the speed of information transmission, the Nikkei futures are generally quicker in reflecting 

information (αf is smaller in magnitude than αs), except that, as noted, the spot market shows 

quicker speed of information transmission than the OSE futures in the post-crisis period.  

 

In the short run, the Nikkei futures lead the spot in the OSE (sample B), SGX and CME 

(sample B), as indicated by the significant πsf and insignificant πfs. Yet the short-run adjustments 

may be accomplished within 1 trading day in the rest of the markets, where neither of the 

lagged returns is significant. Moreover, the spot market needs 1 trading day to adjust to its own 

equilibrium, as πss is often significantly negative, while each of the futures markets makes the 

adjustments within 1 trading day, as πff is always insignificant. Table 5.7 also provides the 

results of the diagnostic tests of the linear model. The linear model residuals do not suffer from 

autocorrelations or remaining ARCH effects, but they show significant leverage effects by the 

asymmetric tests of Engle and Ng (1993), especially in the futures markets. Clearly, the 

presence of predictive asymmetry necessitates a nonlinear error correction mechanism with 

asymmetric considerations.          
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Table 5.8 Linearity tests in individual Nikkei markets 
 

Notes: The table displays the results of the LM-type linearity tests in individual Nikkei markets. An auxiliary regression by OLS as equation (5.9) is run in the spot 
market: 
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Using ∆ft as the dependent variable yields the regression in the futures market. xt contains the adjusted price returns ∆st, ∆ft and the error correction term zt-1. The 
model lag p=1. Different candidates of the delay parameter d are selected from {1, 2, 3}.The null hypothesis of linearity is equivalent to H0: β1j=β2j=β3j=0, j=1,…, p, 
under which a LM-type test statistic follows χ2(3p) asymptotically. The LM-type test statistic is constructed as LM=T(RSSL-RSSA)/RSSL, where T is the sample size, 
RSSL is the residual sum of squares from estimating the linear ECM, RSSA is the residual sum of squares from estimating the auxiliary regression (5.9). The p-values 
of the LM-type test statistics are reported for different values of d in each market in each sample. Note that d can be determined as the candidate that generates the 
smallest p-value of the test or by evaluation tests. 

 

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 

d Spot Futures Spot Futures Spot Futures Spot Futures Spot Futures Spot Futures 

1 6.22E-09 1.94E-09 1.85E-09 4.37E-11 8.24E-03 8.38E-03 2.89E-03 4.64E-02 1.70E-04 2.17E-08 2.97E-09 1.56E-09 

2 3.95E-03 1.88E-03 4.45E-04 1.93E-05 1.21E-01 6.70E-02 1.49E-02 2.31E-02 3.70E-06 1.12E-01 7.54E-10 2.03E-07 

3 5.66E-04 1.70E-04 3.91E-09 2.64E-09 1.38E-06 4.87E-08 7.63E-04 1.98E-02 8.39E-03 1.83E-04 1.46E-04 4.82E-07 
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Table 5.9 Estimation and evaluation results in individual Nikkei markets: the ESTECM-EGARCH model 
 

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
 Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat 
Panel A: ESTECM coefficients 

Spot             
p 2  1  4  2  4  4  
ks -0.0001  -0.3939  0.0007  2.0902  -0.0001  -0.5438  0.0006  1.9409  0.0002  0.7660  -0.0003  -1.0955  

πss,1 -0.6008  -5.9185  -0.4484  -2.9477  -1.0953  -4.8835  -0.1780  -1.3440  -0.2731  -2.7999  0.1764  0.5216  
πss,2 -0.3050  -3.3769    -0.9696  -4.4204  0.1146  0.9800  -0.1861  -2.1438  0.0727  0.2200  
πss,3     -0.6463  -3.4864    -0.1598  -2.1835  0.3023  1.2850  
πss,4     -0.3560  -2.4010    -0.1706  -2.9540  -0.4681  -2.3462  
πsf,1 0.5765  5.7733  0.4474  2.9222  1.1067  4.9270  0.1396  1.0263  0.2220  2.2318  -0.3899  -0.9047  
πsf,2 0.3138  3.5142    0.9632  4.4109  -0.1213  -1.0008  0.2199  2.4459  -0.4410  -1.2840  
πsf,3     0.6421  3.5028    0.2031  2.6240  -0.3504  -1.1271  
πsf,4     0.4103  2.6770    0.1296  2.0532  -0.0894  -0.5128  
πss,1

* 1.5186  1.7640  0.0975  0.1818  0.9742  3.4631  -0.1627  -0.8335  0.1069  0.7651  -0.4083  -1.1355  
πss,2

* 0.4753  1.0683    1.0546  4.0967  -0.5705  -2.7705  0.0702  0.5595  -0.1798  -0.5233  
πss,3

*     0.6421  2.5988    0.1073  1.0176  -0.3363  -1.3776  
πss,4

*     0.3201  1.5291    0.1825  2.3720  0.4645  2.3041  
πsf,1

* -1.5768  -1.7406  -0.2703  -0.4700  -1.0370  -3.7486  0.1773  0.9083  -0.0539  -0.3821  0.5802  1.2951  
πsf,2

* -0.5340  -1.2396    -1.0529  -4.1274  0.6634  3.2381  -0.0881  -0.7003  0.5876  1.6239  
πsf,3

*     -0.6049  -2.4636    -0.1670  -1.4993  0.3927  1.2123  
πsf,4

*     -0.4495  -2.1382    -0.0986  -1.0831  0.0852  0.4666  
αs 1.1559  1.5269  0.1631  0.4695  0.5400  3.3099  0.1831  1.7592  0.6253  7.5587  0.6120  9.9129  

γs 0.1461  1.0069  0.1478  0.4299  1.9356  1.8197  1.7694  1.1857  4.4606  2.6413  852.7394  1.6061  

θs -2.3406  -0.2721  -47.7984  -0.0001  0.4863  0.2775  -1.4902  -0.3643  3.5954  0.6950  1.1110  0.0215  
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Table 5.9 continued

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
 Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat 

Futures             
p 1  1  2  2  1  1  
kf 0.0001  0.5883  0.0005  1.5775  0.0002  0.8242  0.0003  0.9866  0.0000  0.1376  0.0005  1.3397  

πfs,1 -0.0076  -0.0698  -0.1202  -0.8038  -0.4685  -2.5065  0.0235  0.1759  -0.0926  -1.0127  -0.0068  -0.2084  
πfs,2     -0.3865  -2.4770  0.3036  2.4524      
πff,1 0.0065  0.0590  0.1135  0.7492  0.4816  2.5268  -0.0508  -0.3719  0.0451  0.4302  0.0097  0.2483  
πff,2     0.3853  2.4570  -0.3238  -2.4549      
πfs,1

* -0.1067  -0.4799  0.2074  0.3088  0.5647  2.2836  -0.0396  -0.1762  0.0327  0.3252  34.2537  0.0011  
πfs,2

*     0.6064  3.1156  -0.7771  -3.4538      
πff,1

* -0.0125  -0.0576  -0.3307  -0.4960  -0.6414  -2.5938  0.0631  0.2819  -0.0336  -0.2922  -94.3634  -0.0011  
πff,2

*     -0.6071  -3.1070  0.8945  3.8835      
αf -0.3575  -1.9752  -0.2918  -0.7096  -0.0640  -0.4798  -0.2044  -1.5750  -0.1068  -2.4801  -15.3060  -0.0011  
γf 0.7785  1.0618  0.1051  0.5572  2.3417  1.5282  1.6575  1.4016  20.2189  0.2665  0.0001  0.0011  
θf 15.0295  0.0101  -16.2092  -0.0011  119.8710  0.0002  -3.0504  -0.5382  30.0258  0.0076  -1.3540  -0.1293  

EGARCH coefficients 
Spot             
ωs -0.3532  -6.6801  -0.4679  -5.4409  -0.3606  -6.7875  -0.4585  -5.4724  -0.3467  -4.4232  -0.4904  -2.5987  
λs -0.0784  -7.1727  -0.0910  -5.5864  -0.0792  -7.0450  -0.0977  -5.7200  -0.0451  -3.0222  -0.0450  -1.6242  

as,1 -0.0248  -0.5423  -0.0908  -1.3666  -0.0367  -0.8188  -0.0808  -1.2545  0.1001  1.6899  0.1511  3.6283  
as,2 0.1766  3.8254  0.2595  4.0767  0.1952  4.3031  0.2432  3.9369  0.0567  0.9734    
bs 0.9727  181.9127  0.9612  109.4971  0.9725  179.3767  0.9617  113.3818  0.9747  135.2674  0.9592  52.2453  

Futures             
ωf -0.3337  -6.4597  -0.5120  -5.5020  -0.3158  -6.4118  -0.4674  -5.5247  -0.2864  -5.5547  -0.5163  -4.2165  
λf -0.0821  -7.3079  -0.0986  -6.0936  -0.0796  -7.1750  -0.1043  -6.4223  -0.0603  -5.3048  -0.0882  -4.4347  

af,1 0.1364  7.1459  -0.0853  -1.2768  0.1341  7.1199  -0.0758  -1.2059  0.1245  7.0333  0.1733  5.2122  
af,2   0.2583  4.0756    0.2371  3.8087      

bf 0.9734  187.4445  0.9565  100.9841  0.9753  196.8538  0.9609  113.6901  0.9780  187.2128  0.9554  75.0776  
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Table 5.9 continued 
 

Notes: The table presents the estimation and evaluation results of the nonlinear ESTECM-EGARCH model in individual Nikkei markets. The mean models are 
equations (5.3a) (5.3b): 

* * *
, , , , 1 ,

1 1 1 1

( ) ( )
p p p p

t s ss j t j sf j t j s ss j t j sf j t j s t s t d s t
j j j j

s k s f k s f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑ , * 2( ) 1 exp[ ( ) ( )]s t d s t d s t dT z z c g zγ− − −= − − − × , ( ) 0.5 1/{1 exp[ ( )]}*
s t d s t dg z θ z c− −= + + − −  

* * *
, , , , 1 ,

1 1 1 1

( ) ( )
p p p p

t f fs j t j ff j t j f fs j t j ff j t j f t f t d f t
j j j j

f k s f k s f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑ , * 2( ) 1 exp[ ( ) ( )]f t d f t d f t dT z z c g zγ− − −= − − − × , ( ) 0.5 1/{1 exp[ ( )]}*
f t d f t dg z θ z c− −= + + − −  

The variance models are equations (5.11) (5.13):
t t tu σ η= , 2 2

1 1 1 1 1ln ( / ) / lnt t t t t tu a u bσ ω l σ σ σ− − − − −= + + + , or 2 2
1 1 1 1 1 2 2 2 1ln ( / ) / / lnt t t t t t t tu a u a u bσ ω l σ σ σ σ− − − − − − −= + + + + is 

used instead of (5.13) to remove the excessive ARCH effects in the residuals. The model restriction is k*=c*=0. The model lag p is determined by the method of 
Haggan and Ozaki (1981). ∆st, ∆ft are detrended, outlier-free price returns; zt-1 is represented by the detrended, outlier-free log-basis at lag 1.The delay parameter d=1. 
The estimation of the ESTECM is by NLS; the estimation of the EGARCH is by quasi-maximum likelihood, with Bollerslev-Wooldridge (1992) robust standard 
errors and covariance in the CME spot due to the excessive ARCH effects in the residuals therein. Panel A presents the coefficient estimates followed by z-statistics in 
each market in each sample. Panel B presents the model diagnostic checks. The diagnostics include the Ljung-Box (1978) Q-statistics for standardised residuals and 
squared standardised residuals up to order 24, the Jarque-Bera (1980) normality test (JB), and the asymmetric test of Engle and Ng (1993) which contains sign bias 
test, negative (neg.) size bias test, positive (pos.) size bias test, and joint test. Numbers in square brackets are p-values.

 OSE SGX CME 

 Sample A Sample B Sample A Sample B Sample A Sample B 
 Spot Futures Spot Futures Spot Futures Spot Futures Spot Futures Spot Futures 
Panel B: Evaluation 

RSS 0.6298  0.6738  0.3369  0.3451  0.6228  0.6502  0.3377  0.3381  0.4589  0.6513  0.1803  0.3354  
Q(24) for ηt  [0.5645]  [0.4812]  [0.9939]  [0.9915]  [0.2366]  [0.2510]  [0.9082]  [0.9625]  [0.9774]  [0.9307]  [0.4345]  [0.9174]  
Q(24) for ηt

2  [0.4959]  [0.4975]  [0.6513]  [0.6092]  [0.8622]  [0.5396]  [0.1932]  [0.9482]  [0.2218]  [0.9683]  [0.6982]  [0.9889]  
JB [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  

 Asymmetric tests 
Sign bias test [0.1673]  [0.2289]  [0.7307]  [0.2921]  [0.8448]  [0.7068]  [0.6884]  [0.4560]  [0.4002]  [0.1630]  [0.4443]  [0.7734]  

Neg. size bias test [0.7356]  [0.3109]  [0.4094]  [0.4463]  [0.3163]  [0.5905]  [0.2956]  [0.3747]  [0.9710]  [0.1784]  [0.5206]  [0.0864]  
Pos. size bias test [0.4694]  [0.2216]  [0.3525]  [0.3495]  [0.9853]  [0.1442]  [0.4729]  [0.3684]  [0.8180]  [0.9151]  [0.4858]  [0.0647]  

Joint test [0.3598]  [0.1098]  [0.5887]  [0.3741]  [0.7266]  [0.3381]  [0.6004]  [0.2642]  [0.4380]  [0.3718]  [0.8764]  [0.2382]  
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Table 5.8 displays the results of the LM-type linearity tests based on the linear ECM in 

individual Nikkei markets. The tests are performed for different delay parameters d selected 

from {1, 2, 3}. The null hypothesis of linearity can be strongly rejected in majority of the cases 

(except when d=2 in the SGX spot and CME futures in sample A), in favour of the nonlinear 

smooth transition error correction model. The smallest p-values of the LM-type test statistics 

occur when d=1 for the OSE, CME futures; d=3 for the SGX; and d=2 for the CME spot.74 A 

value of d higher than 1 means that the nonlinear regime switch takes more than 1 trading day 

to complete. This is not likely the case, however, given the potential arbitrage speed facilitated 

by the electronic trading systems in the Nikkei markets. As such, I decide to estimate the 

ESTECM with the d whose p-value is the smallest and with d=1, and defer the final choice of d 

to the evaluation stage.75 The finding is that the parameter estimates are generally similar 

despite the use of the different values of d, but the AIC of the models with d=1 is always 

smaller than the AIC of the models with d higher than 1. This suggests that the models with the 

unit d have a better model fit. Moreover, in the CME (sample A), the spot market shows 

excessive ARCH in the model residual in high orders of Ljung-Box (1978) Q-statistics of 

squared standardised residuals (thus heteroscedastic-consistent standard errors are used), yet 

this is more severe when d=2. Hence, I will only report and analyse the estimation results with 

d=1 in the main context. The estimation results with d higher than 1 are provided in Table A5.1 

in the Appendix.    

 

Table 5.9 presents the estimation results of the nonlinear ESTECM-EGARCH model in 

individual Nikkei markets. The model lags vary from 1 to 4, but in general, the spot market has 

longer lags than the futures markets. The SGX, CME show longer lags than the OSE, and in the 

spot market, the earlier sample (A) shows longer lags than the later sample (B) in the OSE and 

SGX. In all cases, the error correction terms have the expected signs - positive in the spot and 

negative in the futures, which supports the error correction adjustments towards equilibrium. 

However, the common evidence of bidirectional causality in the long run found by the base 

model remains only in the CME (sample A). With the nonlinear specification, causality is 
                                                        
74 Using F versions of the LM-type test statistics generate the same results. Results are available upon request. 
75 van Dijk et al. (2002) defer the final choice of d to the evaluation stage and use out-of-sample forecasting to aid the 
selection of d=1 with US unemployment data. 
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unidirectional in most cases. The Nikkei futures markets show quicker speed of information 

transmission than the spot in sample A (αf is smaller than αs in magnitude); the reverse is true in 

sample B. This implies that, within a single regime, the futures markets dominate the price 

discovery process in the pre-crisis period, but the process is dominated by the spot market in 

the post-crisis period. For short-run adjustments, the evidence of futures leading spot is found 

in the OSE and CME (sample A). Bidirectional causality in the short run is present in the SGX, 

but no short-run causality is found in the CME (sample B). Within each market, the futures 

usually revert to its own equilibrium within 1 trading day, or 2 trading days at most; in contrast, 

the spot market takes 2-4 trading days to restore its own equilibrium in the SGX and CME.      

 

The estimated exponential transition functions in individual Nikkei markets are plotted in 

Figure 5.2. The U-shaped curves indicate the effect of transaction costs in the sense that few 

adjustments will take place when the pricing errors are located in a narrow range in the centre 

(the middle regime), but rapid regime switch and hence more arbitrage activities are present 

when the pricing errors are far away from zero (the outer regime). The smoothness parameter γ 

is found to be larger in the futures markets than in the spot market in sample A. Figure 5.2 

illustrates the relatively large γf as the transition functions of the futures markets are always 

above the transition functions of the spot in sample A. This implies that the Nikkei futures 

prices are not only faster to reflect information within one regime, but also faster to transit 

between the regimes before the crisis. Compared with the γ in the OSE, the γ’s in the SGX and 

CME are much higher, with steeper functions and even quicker movements between the 

regimes. By contrast, the Nikkei spot prices exhibit a quicker rate of the smooth transition than 

the futures prices in sample B, as the transition functions of the spot become steeper. This is 

most obvious in the CME, where γs is considerably large,76 and yet γf is so small that its 

transition function looks flat in the same diagram.77 Given that the spot leads the futures in 

revealing information in sample B, it is the spot market that plays a major part in the nonlinear 
                                                        
76 The estimate of γs in the CME (sample B) appears excessively large compared with the counterpart estimates in the other 
markets. Different sets of starting values are tried to estimate this parameter in this market but the results are very similar. In 
fact, an enormous γ is possible to occur in smooth transition models as the precise estimation of γ is difficult. Rescaling the 
parameters may solve the problem, but at a cost of higher residual variance of the model (Teräsvirta, 1994). Given the 
invariably large estimates of γs in the CME (sample B) despite the use of different sets of starting values, the general message 
conveyed is the more uniform structure of the spot transaction costs after the crisis.        
77 Figure 5.2(g) shows the transition function of the futures with non-standardised γ in the CME (sample B). It is actually a 
skewed U-shaped curve.  
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Figure 5.2 Transition functions in Nikkei 225 spot and futures markets
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Notes for Figure 5.2: (a)-(f) represent the transition functions estimated from the ESTECM in each Nikkei 
spot-futures pair in each sample, with the black crosses for the spot, estimated from equation (5.3a), and the 
grey dots for the futures, estimated from equation (5.3b). T(zt-d) is on vertical axis, and zt-d is on horizontal 
axis. The parameters γ and θ are non-standardised original values in (a)-(e). Because the parameter estimate 
γs in the CME (sample B) is excessively large, for (f) only, the parameters are standardised: γ is divided by 
the sample variance of zt-d, and θ is divided by the sample standard deviation of zt-d. (g) shows the transition 
function of the futures in the CME (sample B) with non-standardised parameters. 

 

 

dynamics in the post-crisis period. Table 5.9 shows that the value of γs stays almost the same 

from sample A to sample B in the OSE. A decline in the smoothness parameter estimates in 

sample B is found in the OSE futures and the SGX. Despite the substantial increase in γs in the 

CME market which may suggest less various transaction costs in the spot market after the crisis, 

the consistently downsized γf in sample B, especially in the CME, perhaps suggests higher 

transaction costs in the Nikkei spot-futures arbitrage in the post-crisis period.     

 

The asymmetric responses of the Nikkei spot and futures prices are examined from the 

perspectives of the first moment and the second moment. Figure 5.2 also shows that there is 

some skewness in the transition functions in the mean model; and such skewness indicates the 

degree of asymmetry. Table 5.9 indicates that most of the asymmetry parameters θ are positive 

in sample A, negative in sample B. This implies that the aggregated market response to positive 

(negative) pricing errors is stronger before (after) the crisis, than the response to equally sized 

negative (positive) pricing errors. The general finding has exceptions in the OSE (sample A), 

where the spot market has more investors for negative pricing errors than positive pricing 

errors of the same magnitude, and in the CME (sample B), where the spot market has more 

investors for positive pricing errors than negative pricing errors of the same magnitude. Note 

that all the estimates of θ are insignificant by conventional t-tests. However, taking θ as zero in 

the mean model does affect the lag length and estimation of the models. The estimated results 

of the asymmetry parameter λ in the variance model are more consistent: it is significantly 

negative in 11 out of 12 cases, which suggests negative shocks associated with greater volatility, 

or the leverage effect in individual Nikkei markets. Although the literature often reports the 

larger impact of bad news, and this is also true for most of the Nikkei prices in the post-crisis 
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period and the Nikkei variances, I find that most of the Nikkei prices, especially in the SGX 

and CME, react to good news more than equally sized bad news in the pre-crisis period. 

 

The diagnostic test results of the nonlinear ESTECM-EGARCH model are also reported in 

Table 5.9. The model residuals are free from autocorrelations or remaining ARCH effects. 

There is some evidence of remaining asymmetry in the residual of the CME futures (sample B) 

by the negative and positive sign bias tests, but the asymmetry effect is insignificant by the 

joint test. In fact, the asymmetry test results of the nonlinear residuals are much better than the 

results of the linear residuals in Table 5.7. Besides, in each Nikkei market in each sample, the 

nonlinear RSS is always smaller than the corresponding linear RSS (compared with Table 5.7). 

Although the normality tests are not passed as in the linear case, the error correction 

mechanism represented by the ESTECM-EGARCH specification provides reasonable 

descriptions for the nonlinear spot-futures price adjustments in the Nikkei markets.       

5.6.2 Cross-border futures price dynamics 

Following the convention of most studies on the transnational price discovery process, I 

tabulate the estimation results of the linear and nonlinear models across the Nikkei futures 

markets in an integrated and interpretable way, with emphases on the long-run speed of 

adjustments, the rates of the smooth transition, the asymmetric behaviour and the short-run 

causal relationships. The models are estimated for bilateral pairs of Nikkei futures prices, 

(OSEt, SGXt), (OSEt, CMEt) and (SGXt, CMEt), and the results are categorised by the same 

pairing. For the moment, I ignore the timing issues of the different markets and use all the three 

futures prices on day t, which allows an intuitive understanding of the price adjustment process 

across the markets and avoids potential modelling difficulties related to matching prices in 

several time zones. The timing issues and the associated price dynamics are analysed in section 

5.7. In terms of the causal relationships, I test the significance of the lagged autoregressive 

coefficients jointly rather than individually, because the joint influence of one market on the 

other is much more important, and the cross-border information flows are often considered on 

an aggregated basis. The individual coefficients and their significance are reported in Table 

A5.2 and A5.3 in the Appendix for reference. In the linear framework, Wald tests for Granger 
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causality are carried out by the augmented lag method of Toda and Yamamoto (1995), Dolado 

and Lütkepohl (1996), which involves estimating a VAR (p) in levels with one extra lag and 

performing the usual Wald tests on the original p variables, to ensure that the Wald statistics 

follow a standard asymptotic χ2 distribution with p degrees of freedom.       

 

Table 5.10 shows the estimation results of the linear ECM-GARCH for bilateral pairs of Nikkei 

futures prices. Panel A presents the estimated error correction coefficients. As expected, at least 

one α is negative in each pair, implying the presence of price adjustments or error corrections 

towards the price parity condition across the futures markets. Between the OSE and the SGX, 

the magnitude of the OSE coefficients is larger than the magnitude of the SGX coefficients, 

which suggests that the OSE mainly makes the price adjustments and is slow in reflecting 

information. This is also true for the pair of the OSE and the CME. Between the foreign 

markets, the SGX coefficients are found larger in magnitude than the CME coefficients, and 

hence the speed of adjustment is faster in the SGX than in the CME. Moreover, in the pairs 

concerning the CME, its coefficients are always insignificant while the coefficients in the other 

market show significance, implying that the long-run causality runs from the CME to the other 

markets. It turns out that the CME is the quickest market in the price discovery process, 

followed by the SGX and then the OSE. The foreign markets tend to lead the domestic market. 

  

Panel B of Table 5.10 provides the pair-wise Granger causality test results. The common null 

hypothesis is that the past prices in one market do not Granger-cause the current prices in the 

other market in the short run (Covrig et al., 2004). It is found that the non-causality from the 

OSE to the SGX cannot be rejected at conventional levels, but the reverse non-causality can be 

easily rejected. The significant Wald statistics in the other pairs indicate bidirectional causality, 

with the causality from the CME to the other markets much stronger. Consistent with the 

magnitudes and significance of the error correction coefficients, the CME plays a leading role 

in the cross-border price determination, and the information flows from the foreign markets to 

the domestic market are stronger than the other way round.
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Table 5.10 Estimation results across the Nikkei futures markets: the linear ECM-GARCH 
model 
 

Notes: The table presents the estimation results of the linear ECM-GARCH model for bilateral Nikkei 
futures pairs (OSE, SGX), (OSE, CME) and (SGX, CME). The mean models are equations (5.5a) (5.5b): 

1, 1 11, 1, 12, 2, 1 1 1,
1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑ ,
2, 2 21, 1, 22, 2, 2 1 2,

1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑  

The variance models are equations (5.11) (5.12): 
t t tu σ η= , 2 2 2

1 1t t tau bσ ω σ− −= + + , or a GARCH (2,1) model 
2 2 2 2

1 1 2 2 1t t t ta u a u bσ ω σ− − −= + + +  is used instead of (5.12) to remove the excessive ARCH effects in the residuals. 
The estimation of the ECM is by OLS; the estimation of the GARCH is by quasi-maximum likelihood with 
Bollerslev-Wooldridge (1992) robust standard errors and covariance. The model lag p=7 (sample A) or 4 
(sample B) in first differences is determined by the sequential modified likelihood ratio test and AIC. The 
futures returns ∆f1,t, ∆f2,t are detrended and outlier-free. The error correction term zt-1 is represented by the 
detrended, outlier-free price differentials (f1 - f2) at lag 1. Panel A presents the estimated error correction 
coefficients (α) in each market in each pair. Panel B presents the results of Wald tests for Granger causality, 
by the augmented lag method of Toda and Yamamoto (1995), Dolado and Lütkepohl (1996), with the null 
hypothesis that the past prices in one market do not Granger-cause the current prices in the other market in 
the short run (Covrig et al., 2004). The Wald statistics are asymptotically distributed as χ2(8) in sample A, 
χ2(5) in sample B, reported with the associated p-values. Numbers in parentheses are z-statistics. More 
results such as the individual significant tests on the short-run autoregressive coefficients are reported in 
Table A5.2 in the Appendix. 

 

 

Panel A: Parameter estimates     

 (OSE, SGX) (OSE, CME) (SGX, CME) 
Dependent variable OSE SGX OSE CME SGX CME 

Sample A       
α -1.0946  -0.1595  -0.9659  0.0039  -0.9721  0.0406  
 (-1.9044)  (-0.2909)  (-10.8556)  (0.0518)  (-10.8722)  (0.5257)  

Sample B    
α -0.8340  0.0598  -0.8477  -0.0761  -0.8133  -0.0731  
 (-1.3173)  (0.0958)  (-11.8565)  (-0.7847)  (-11.4988)  (-0.7472)  

Panel B: Granger causality tests     
   Wald stat p-value 

Sample A       
OSE does not cause SGX 7.4347  0.4905  
SGX does not cause OSE 36.3391  0.0000  
OSE does not cause CME 14.9148  0.0608  
CME does not cause OSE 909.6269  0.0000  
SGX does not cause CME 19.0258  0.0147  
CME does not cause SGX 930.2693  0.0000  

Sample B       
OSE does not cause SGX 3.0781  0.6880  
SGX does not cause OSE 10.7331  0.0569  
OSE does not cause CME 20.9322  0.0008  
CME does not cause OSE 955.4050  0.0000  
SGX does not cause CME 20.2243  0.0011  
CME does not cause SGX 975.8948  0.0000  
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Table 5.11 Linearity tests in Nikkei futures markets 
 

Notes: The table contains the results of the LM-type linearity tests for bilateral Nikkei futures pairs (OSE, 
SGX), (OSE, CME) and (SGX, CME). An auxiliary regression, equation (5.10) is run for market 1: 

2 3
1, 00 0 1 2 3

1

( )
p

t j t j j t j t d j t j t d j t j t d t
j

f x x z x z x z vβ β β β β− − − − − − −
=

∆ = + + + + +∑  

Using ∆f2,t as the dependent variable yields the regression of market 2. xt contains ∆f1,t, ∆f2,t and zt-1; zt-1 is 
represented by the price differential (f1 - f2) at lag 1; all data detrended and free from the influence of outliers. 
The model lag p=7 (sample A) or 4 (sample B). Given the results in individual Nikkei markets, the delay 
parameter d is set to be 1. The null hypothesis of linearity is equivalent to H0: β1j=β2j=β3j=0, j=1,…, p, under 
which a LM-type test statistic follows χ2(3p) asymptotically. The LM-type test statistic is constructed as 
LM=T(RSSL-RSSA)/RSSL, where T is the sample size, RSSL is the residual sum of squares from estimating the 
linear ECM, RSSA is the residual sum of squares from estimating the auxiliary regression (5.10). Panel A 
provides the p-values of the LM-type test statistics in each market in each bilateral pair. Panel B provides 
additional evidence of nonlinearity: the CME on day t-1, denoted as CME(t-1), is aligned with the OSE, 
SGX on day t (the default time omitted), to test for nonlinearity with an alternative trading sequence. The 
model lag used is 6 (sample A) or 4 (sample B). The associated p-values of the LM-type test statistics are 
placed under the relevant markets.  

 

 (OSE, SGX) (OSE, CME) (SGX, CME) 

Dependent variable OSE SGX OSE CME SGX CME 
Panel A: CME with OSE, SGX      

Sample A 1.19E-09 5.10E-09 2.53E-16 1.16E-15 9.11E-16 1.44E-15 
Sample B 1.06E-16 2.55E-17 1.81E-15 1.86E-11 3.08E-14 9.56E-12 

Panel B: CME(t-1) with OSE, SGX      
Sample A   3.53E-13 6.31E-15 4.90E-12 4.00E-15 
Sample B   5.75E-06 7.56E-16 2.81E-05 1.75E-15 
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Given that I selected a unit delay parameter in the individual Nikkei markets, I test for the 

smooth transition nonlinearity across the futures markets only with d=1. In this way, the 

linearity tests become more or less a specification check of the linear ECM-GARCH, and I 

expect to reject the null hypothesis of linearity as in the individual markets. Table 5.11 displays 

the linearity test results for the bilateral futures pairs. It is clear that the LM-type statistics are 

all highly significant, thereby supporting the smooth transition error correction behaviour 

across the futures markets.  

 

The estimation results of the nonlinear ESTECM-EGARCH are listed in Table 5.12. Panel A 

shows the parameter estimates. It is interesting that the model lags in the nonlinear model are 

merely 1 or 2, much shorter than the model lags in the linear model. This is likely to reflect 

more nearly the actual price dependence of the Nikkei futures contracts on a daily basis and the 

high speed of information transmission across the markets. Note that the longer lags in the 

linear framework are necessary to remove the residual autocorrelations. This also implies that 

the nonlinear model may better fit my data. Compared with the ESTECM lags of the 

spot-futures pairs (Table 5.9), those of the futures price interactions are still shorter. As futures 

transactions incur fewer costs and risks, faster adjustments and shorter price dependence across 

the futures markets are not surprising.  

 

Panel A of Table 5.12 shows the estimated error correction coefficients. Their negative signs 

are expected, and the foreign markets generally have smaller α in magnitude than the domestic 

market. With the smallest α in both samples, the CME remains the quickest market in the 

nonlinear adjustment process towards equilibrium. The SGX react faster to price differentials 

than the OSE in sample A (the magnitude of α is smaller in the SGX than in the OSE), but the 

two markets show similar speed of adjustments in sample B, with the OSE slightly quicker. 

There is also evidence of long-run bidirectional causality between the OSE and the CME in 

sample B. Overall, as in the linear model, the CME is the most dominant market in the 

cross-border price discovery process, in terms of price adjustments within a single regime. 
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Table 5.12 Estimation results across the Nikkei futures markets: the nonlinear 
ESTECM-EGARCH model 
 

Panel B: Granger causality tests Middle regime Outer regime 
   Wald stat p-value Wald stat p-value 

Sample A       
OSE does not cause SGX 2.4497  0.1175  4.5126  0.1047  
SGX does not cause OSE 14.1663  0.0008  22.3182  0.0002  
OSE does not cause CME 2.3839  0.1226  2.6288  0.2686  
CME does not cause OSE 1.7192  0.1898  1.8392  0.3987  
SGX does not cause CME 1.8213  0.1772  2.0069  0.3666  
CME does not cause SGX 0.9182  0.3379  0.9269  0.6291  

       
Sample B       

OSE does not cause SGX 0.1767  0.6742  0.2041  0.9030  
SGX does not cause OSE 0.0561  0.8128  0.2557  0.8800  
OSE does not cause CME 0.3616  0.5476  2.9971  0.2235  
CME does not cause OSE 3.9428  0.1393  13.4770  0.0092  
SGX does not cause CME 5.3791  0.0204  7.1097  0.0286  
CME does not cause SGX 3.2738  0.1946  12.8173  0.0122  

Panel A: Parameter estimates      

 (OSE, SGX) (OSE, CME) (SGX, CME) 
Dependent variable OSE SGX OSE CME SGX CME 

Sample A       
p 2 1 1 1 1 1 
α -3.4355  -1.0656  -0.8532  0.0708  -0.8437  0.0819  
 (-2.7324)  (-1.1475)  (-22.3866)  (0.4059)  (-22.1564)  (0.3915)  
γ 0.3945  0.2535  3024.3838  0.1930  18347.6705  0.1483  
 (1.5462)  (0.9728)  (0.7482)  (0.7645)  (0.5265)  (0.6808)  
θ -66.8270  -68.2985  203.2291  -71.9725  -133.0122  -27306.5802  
 (-0.0003)  (-0.0001)  (0.1075)  (0.0000)  (-0.1643)  (0.0000)  
λ -0.0732  -0.0739  -0.0381  -0.0594  -0.0359  -0.0595  
 (-6.0012)  (-6.0412)  (-3.2108)  (-4.9907)  (-3.0292)  (-4.9871)  

Sample B       
p 1 1 2 1 2 1 
α -0.3714  0.3917  -0.8867  -0.1731  -0.8477  -0.0866  
 (-0.8084)  (0.7475)  (-16.8463)  (-2.3674)  (-16.0663)  (-1.6029)  
γ 5.4304  2.8788  42.7342  5.2953  49.0643  3331.5697  
 (1.0068)  (0.8938)  (1.6484)  (0.6480)  (1.8682)  (0.9340)  
θ -5.1529  -3.8982  43.3605  58.0112  25.8319  42.5430  
 (-0.3041)  (-0.2923)  (0.0633)  (0.0017)  (0.2052)  (0.2703)  
λ -0.0912  -0.0908  -0.0881  -0.1098  -0.0958  -0.1175  
 (-5.1735)  (-5.0157)  (-4.1879)  (-4.9301)  (-4.2181)  (-5.0784)  
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Notes for Table 5.12: The table presents the estimation results of the nonlinear ESTECM-EGARCH model 
for bilateral Nikkei futures pairs (OSE, SGX), (OSE, CME) and (SGX, CME). The mean models are 
equations (5.6a) (5.6b): 

* * *
1, 1 11, 1, 12, 2, 1 11, 1, 12, 2, 1 1 1 1,

1 1 1 1

( ) ( )
p p p p

t j t j j t j j t j j t j t t d t
j j j j

f k f f k f f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑  

* 2
1 1 1( ) 1 exp[ ( ) ( )]t d t d t dT z z c g zγ− − −= − − − × ,

1 1( ) 0.5 1/{1 exp[ ( )]}*
t d t dg z θ z c− −= + + − −  

* * *
2, 2 21, 1, 22, 2, 2 21, 1, 22, 2, 2 1 2 2,

1 1 1 1

( ) ( )
p p p p

t j t j j t j j t j j t j t t d t
j j j j

f k f f k f f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑
* 2

2 2 2( ) 1 exp[ ( ) ( )]t d t d t dT z z c g zγ− − −= − − − × ,
2 2( ) 0.5 1/{1 exp[ ( )]}*

t d t dg z θ z c− −= + + − −  

The variance models are equations (5.11) (5.13):
t t tu σ η= , 2 2

1 1 1 1 1ln ( / ) / lnt t t t t tu a u bσ ω l σ σ σ− − − − −= + + + , or 
2 2

1 1 1 1 1 2 2 2 1ln ( / ) / / lnt t t t t t t tu a u a u bσ ω l σ σ σ σ− − − − − − −= + + + + is used instead of (5.13) to remove excessive ARCH 
effects. The model restriction is k*=c*=0. The model lag p is determined by the method of Haggan and Ozaki 
(1981). The futures returns ∆f1,t, ∆f2,t are detrended and outlier-free. The error correction term zt-1 is 
represented by the detrended, outlier-free price differentials (f1 - f2) at lag 1. The delay parameter d=1. The 
estimation of the ESTECM is by NLS; the estimation of the EGARCH is by quasi-maximum likelihood. 
Panel A presents the most important parameter estimates (α, γ, θ, λ) in each market in each pair. Panel B 
presents the results of joint significance tests on the short-run autoregressive coefficient π’s by Wald tests, 
with the null hypothesis of no causality from the past prices in one market to the current prices in the other 
market. The Wald statistics and the associated p-values are reported in the middle regime and the outer 
regime. Numbers in parentheses are z-statistics. More results such as the individual significant tests on the 
short-run autoregressive coefficients are reported in Table A5.3 in the Appendix. 
 
 
 

The rate of transition between the regimes, the smoothness parameter γ, is compared in relative 

terms, to find out which market has a relatively larger γ in each of the bilateral pairs. From 

Panel A of Table 5.12, in the pairs (OSEt, SGXt) and (OSEt, CMEt), the larger estimates of γ are 

in the OSE; in (SGXt, CMEt), the larger estimates of γ are in the SGX (sample A) or the CME 

(sample B). These results can be sorted as OSE>SGX>CME before the crisis, 

OSE>CME>SGX after the crisis, in terms of the transition speed in descending order. As such, 

the OSE is followed by the other two markets in the relative value of γ.78 This probably reveals 

that the OSE has the most homogeneous structure of transaction costs among the three markets. 

After the crisis, the CME takes over the SGX to be the second place in that order, suggesting a 

possible increase in the value of γ in the CME. As higher γ means more rapid adjustments 

between the regimes and thus reduced transaction costs in the market, the CME transaction 

costs may be lower after the crisis. As a further check, I compare the value of γ between the 

two samples in each pair. In the pair (OSEt, SGXt), both smoothness parameters increase from 

                                                        
78 One may notice the enormous estimates of the smoothness parameters in the pairs (OSEt, CMEt) and (SGXt, CMEt). Several 
sets of starting values are tried but the estimates are very similar. The literature agrees that the estimation of the smoothness 
parameter is difficult: the precise estimates are difficult to obtain and very often the estimates are insignificant (e.g. Franses and 
van Dijk, 2000). However, what I am concerned about is the relative size of the parameter in the three markets. The precise 
magnitude of the parameter in each market is deemed less important. 
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sample A to sample B, which indicates that the transaction costs in the two markets are 

decreasing. In the other two pairs, there is also a rise in γ in the CME, which confirms the 

reduced transaction costs in the CME. Compared with the CME, however, the OSE and the 

SGX have smaller γ in the two pairs of the CME in the post-crisis period. This could be that the 

CME cuts down its transaction costs to a very low level in this period so that any normal 

decline in the transaction costs in the OSE and the SGX appears less obvious. The common 

increasing trend of γ in the three futures markets from sample A to sample B is indicative of the 

decreasing futures transaction costs in the post-crisis period. Worthy of note is that, this should 

by no means be taken as a contradictory argument to the finding of the generally higher 

transaction costs in the spot-futures arbitrage after the crisis. The previous estimates of the 

spot-futures pairs indeed imply higher transaction costs after the crisis, but the higher 

transaction costs could come from the spot market - for example, the adjustment costs of 

dividends (OSE, SGX and CME) and exchange rate (CME), and the costs related to short sale 

in the post-crisis regulation. Considering the futures markets alone, I find that the transaction 

costs therein are actually falling in the post-crisis period, notably in the CME. 

 

The first-moment asymmetry parameter θ is found to be consistently negative between the OSE 

and the SGX in both samples, as shown in Panel A of Table 5.12. Hence, in the arbitrage 

between the two markets, more investors respond to negative price differentials than equally 

sized positive price differentials. In the pairs pertaining to the CME, it is mostly negative in 

sample A but positive in sample B. Recall that the spot-futures arbitrage generally has positive 

θ in sample A, negative θ in sample B. It can be seen that the nonlinear asymmetric behaviour 

of the futures prices can be quite different once the spot market is involved. The futures prices 

exhibit predictive asymmetry to various extents and in changing nature. However, this does not 

mean that I cannot draw anything from the results. Rather, they suggest that bad news may 

have a larger impact after the crisis in the spot-futures arbitrage; given that more investors 

respond to positive futures price differentials of the CME after the crisis, the larger impact of 

bad news observed in the spot-futures arbitrage could be associated with the spot market. The 

EGARCH parameter λ is significantly negative in each futures pair, which confirms the 

leverage effect in the Nikkei variances. 
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Since, to the best of my knowledge, there are no previous studies on Granger causality tests on 

parameters of a nonlinear smooth transition model, in each bilateral pair of futures prices, the 

causality tests of one market are performed by imposing zero restrictions on the lagged returns 

of the other market, with the null hypothesis that each market is only affected by its own lagged 

returns. The restrictions are tested by Wald statistics. In the nonlinear model, the causal 

relationships can be examined in the middle regime and the outer regime. As displayed in Panel 

B of Table 5.12, one-way causality from the SGX to the OSE is found significant in both 

regimes before the crisis. After the crisis, there is unidirectional causality from the CME to the 

OSE, though significant only in the outer regime. Between the foreign markets, feedback 

relationships exist in both regimes, with the causality from the CME to the SGX stronger. 

Again, the foreign markets are more dominant in the cross-market information transmission, 

and the CME plays a leading role among the three markets. Comparing the significant Wald 

statistics associated with the p-values in the middle regime and those in the outer regime, I find 

that, in general, the short-run non-causalities are more strongly rejected in the outer regime. 

This lends support to the transaction cost argument that larger price differentials which locate 

in the outer regime tend to be adjusted more quickly, given that cointegration implies causality. 

 

The evaluation results of the linear ECM-GARCH and the nonlinear ESTECM-EGARCH are 

summarised in Table 5.13. The models are not affected by residual autocorrelations or 

excessive ARCH effects, despite that the normality test results remain significant as in the 

spot-futures case. Significant asymmetric test results are found in the linear model between 

(OSEt, SGXt) in both samples and in the CME in sample B, but they almost disappear in the 

nonlinear model. To compare model fit, I check whether the RSS of the nonlinear model is 

smaller than the RSS of the corresponding linear model. However, the RSS measure yields 

mixed results: the nonlinear RSS is smaller in three pairs but larger in the rest. As the linear 

model has longer lag lengths than those of the nonlinear model, the small linear RSS may 

simply result from the many parameters used in the linear model. Thus, I switch to compare the 

information criteria, AIC and SBC, between the linear model and the corresponding nonlinear 

model. Table 5.13 shows that the AIC and SBC of the nonlinear model are always smaller. 
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Therefore, it is deemed that both models are able to depict the error correction dynamics in the 

Nikkei futures price interactions, but the nonlinear ESTECM-EGARCH may better 

characterise my data in terms of the remaining asymmetry and model fit. 

 
 
 
Table 5.13 Evaluation results of the linear and nonlinear models in Nikkei futures markets 
 

 (OSE, SGX) (OSE, CME) (SGX, CME) 

Dependent variable OSE SGX OSE CME SGX CME 
Sample A       
Linear model: ECM-GARCH      

RSS 0.6245  0.6054  0.4719  0.6412  0.4500  0.6406  
Q(24) for ηt [0.9782]  [0.9847]  [0.9249]  [0.9662]  [0.9367]  [0.9672]  
Q(24) for ηt

2 [0.1350]  [0.1471]  [0.3175]  [0.9046]  [0.3488]  [0.9136]  
JB [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  

Asymmetric tests       
sign bias test [0.7731]  [0.4478]  [0.9395]  [0.8409]  [0.8483]  [0.7546]  

neg. size bias test [0.4631]  [0.6289]  [0.4455]  [0.9578]  [0.4840]  [0.9084]  
pos. size bias test [0.1166]  [0.2262]  [0.2303]  [0.2447]  [0.3896]  [0.2739]  

joint test [0.0521]  [0.0598]  [0.2072]  [0.3050]  [0.4550]  [0.3073]  
Information criteria       

AIC -5.6598  -5.6843  -5.9437  -5.6271  -5.9851  -5.6279  
SBC -5.6171  -5.6416  -5.9031  -5.5865  -5.9445  -5.5873  

       
Nonlinear model: ESTECM-EGARCH     

RSS 0.6223  0.6052  0.4745  0.6424  0.4524  0.6426  
Q(24) for ηt [0.8606]  [0.8533]  [0.8673]  [0.7066]  [0.8523]  [0.7099]  
Q(24) for ηt

2 [0.1790]  [0.1125]  [0.1352]  [0.9711]  [0.1884]  [0.9702]  
JB [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  

Asymmetric tests       
sign bias test [0.2163] [0.2861]  [0.5144]  [0.9841]  [0.4697]  [0.9875]  

neg. size bias test [0.8691]  [0.6958]  [0.7365]  [0.6144]  [0.7450]  [0.6138]  
pos. size bias test [0.4882]  [0.4215]  [0.1865]  [0.6515]  [0.8729]  [0.6640]  

joint test [0.4289]  [0.4913]  [0.5046]  [0.8942]  [0.7558]  [0.9009]  
Information criteria       

AIC -5.6968  -5.7284  -5.9703  -5.6485  -6.0170  -5.6480  
SBC -5.6584  -5.6985  -5.9426  -5.6207  -5.9892  -5.6202  
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Table 5.13 continued 
 

Notes: The table summarises the diagnostic checks and model fit measures of the linear ECM-GARCH and 
the nonlinear ESTECM-EGARCH models for bilateral Nikkei futures pairs (OSE, SGX), (OSE, CME) and 
(SGX, CME). The diagnostics include the Ljung-Box (1978) portmanteau test (Q) for standardised residuals 
and squared standardised residuals up to order 24, the Jarque-Bera (1980) normality test (JB), and the 
asymmetric test of Engle and Ng (1993) which contains sign bias test, negative (neg.) size bias test, positive 
(pos.) size bias test, and joint test. The RSS and information criteria, AIC and SBC, are reported for 
comparing model fit. The AIC is calculated as -2ln(L)/T+2n/T, the SBC is calculated as -2ln(L)/T+nln(T)/T, 
where ln(L) is the maximised value of the log-likelihood function, n is the number of parameters, and T is the 
sample size. Numbers in square brackets are p-values. 

 (OSE, SGX) (OSE, CME) (SGX, CME) 

Dependent variable OSE SGX OSE CME SGX CME 
Sample B       
Linear model: ECM-GARCH      

RSS 0.3216  0.3168  0.1950  0.3341  0.1890  0.3340  
Q(24) for ηt [0.8260]  [0.8296]  [0.6116]  [0.9865]  [0.7823]  [0.9864]  
Q(24) for ηt

2 [0.7003]  [0.7594]  [0.8349]  [0.6058]  [0.9007]  [0.6203]  
JB [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  

Asymmetric tests       
sign bias test [0.6755]  [0.5554]  [0.8088]  [0.3464]  [0.3284]  [0.1578]  

neg. size bias test [0.4975]  [0.4425]  [0.5481]  [0.4620]  [0.1578]  [0.2936]  
pos. size bias test [0.0255]  [0.0321]  [0.6175]  [0.0016]  [0.8324]  [0.0007]  

joint test [0.0444]  [0.0546]  [0.6361]  [0.0721]  [0.1038]  [0.0432]  
Information criteria       

AIC -5.7133  -5.7282  -6.2256  -5.6241  -6.2490  -5.6242  
SBC -5.6657  -5.6807  -6.1745  -5.5766  -6.2015  -5.5766  

       
Nonlinear model: ESTECM-EGARCH     

RSS 0.3225  0.3165  0.1951  0.3376  0.1893  0.3358  
Q(24) for ηt [0.8439]  [0.8307]  [0.3985]  [0.9734]  [0.5429]  [0.9758]  
Q(24) for ηt

2 [0.5630]  [0.7755]  [0.8159]  [0.6326]  [0.9840]  [0.8219]  
JB [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000]  

Asymmetric tests       
sign bias test [0.7294]  [0.8447]  [0.3969]  [0.1620]  [0.2565]  [0.0541]  

neg. size bias test [0.9428]  [0.9573]  [0.2721]  [0.9598]  [0.1822]  [0.1948]  
pos. size bias test [0.5561]  [0.7031]  [0.5831]  [0.0043]  [0.5476]  [0.0064]  

joint test [0.8069]  [0.9378]  [0.1252]  [0.1150]  [0.1660]  [0.1298]  
Information criteria       

AIC -5.7470  -5.7658  -6.3091  -5.6943  -6.3398  -5.6980  
SBC -5.6995  -5.7183  -6.2469  -5.6468  -6.2777  -5.6468  
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5.7 Robustness checks 

The above results of the cross-border futures price interactions appear to support the CME as 

the most dominant market in the transnational price discovery process. As mentioned, the 

results are based on data on day t, with which the three futures markets are assumed to have 

overlapping trading hours. Since the Central Standard Time (CST) used by the CME is 15 

hours behind the Japan Standard Time (JST) used by the OSE and SGX,79 using all the returns 

on day t makes a default time sequence whereby the OSE, SGX are well ahead of the CME. 

Obviously, it deserves consideration whether the dominance of the CME is associated with 

such sequence. Following Booth et al. (1996), I re-estimate the models with an alternative time 

sequence by which the CME acts as the earliest trading market to check the robustness of its 

price leadership. 

 

On a typical trading day, the OSE opens 9.00-15.15, with an overnight session 16.30-3.00 

(JST); the SGX opens 7.45-14.25, with an overnight session 15.15-2.00 (Singapore time, SGT). 

Given that SGT is 1 hour behind JST, the trading hours of the two markets are almost 

overlapping. Thus, for simplicity, I only compare the time differences between the OSE and the 

CME. Figure 5.3 illustrates the simultaneous trading hours of the OSE and the CME. It is clear 

that, with the aid of the CME Globex and the OSE overnight trading, there are fairly long 

periods during a day when both markets are open. Moreover, the futures settlement prices in 

the OSE and the CME are generated on the same day.80 The prior use of the same-day returns 

is hence justified from two aspects: a) arbitrage activities across the markets can be quite active 

due to the common trading hours in the default time sequence; b) the CME settlement price on 

day t reflects the information on day t; from the perspective of the OSE investors, the OSE 

settlement price on day t also reflects the information on day t (although it is actually day t-1 

from the perspective of the CME investors) - matching CMEt with OSEt, SGXt captures 

information on the same “nominal” day. 
                                                        
79 The SGX uses Singapore time which is 1 hour behind the Japan time; as will be explained later, the OSE, SGX trading 
hours are almost overlapping, and thus I can regard the SGX as using the Japan time.  
80 This also holds when the Central Daylight Time (CDT) is observed by the CME during summer. The CDT reduces the time 
differences between the OSE and the CME to 14 hours, so that the settlement prices OSEt are generated at 1.15 in Chicago on 
day t under the CDT. 
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Figure 5.3 Trading hours of the OSE and the CME Nikkei futures markets 
Notes: This figure illustrates the trading hours of the OSE (including the overnight session) and the CME 
(Globex and open outcry) as of 31/12/2014. The time is CST unless otherwise marked. The bottom shows the 
time when the OSE, CME settlement prices are generated; the subscripts t-1, t and t+1 indicate the timing 
differences. 

 

 

Alternatively, CMEt-1 can be aligned with OSEt, SGXt so that the CME becomes the earliest 

trading market in this time sequence, and all the returns are able to reveal information within 

the same 24-hour time intervals (Booth et al., 1996). Table 5.14 shows the estimation results of 

the linear ECM-GARCH using the alternative trading sequence. Contrary to the outcomes in 

Table 5.10, however, the CME takes the adjustment roles with relatively large error correction 

coefficients, and the OSE, SGX show much faster adjustments towards futures price parity. The 

long-run feedback relationships absent in Table 5.10 are also found in sample B. The Wald tests 

for short-run causality again indicate stronger influences of the OSE, SGX. Combining the 

previous results of the SGX leading the OSE, which is not affected by the timing issues, I find 

that the SGX now becomes the leading market, followed by the OSE, and finally the CME. 

With the alternative time sequence, the information leadership of the CME seems to be 

transferred to the SGX. Note that the results with the different time sequences are still 

consistent in the sense that the last trading market in each time sequence reflects information 

the most quickly, and that the foreign markets lead the domestic market in the cross-border 

information transmission. 
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Table 5.14 Robustness checks: the linear ECM-GARCH across the Nikkei futures markets 
 

Notes: The table presents the estimation results of the linear ECM-GARCH model for bilateral Nikkei 
futures pairs (OSE, CME) and (SGX, CME), with the CME on day t-1 aligned with the OSE, SGX on day t 
to make the alternative time sequence by which the CME is the earliest trading market. The models and 
estimation details are the same as in Table 5.10, except that the model lags are 6 (sample A), 4 (sample B) in 
first differences. Panel A presents the estimated error correction coefficients (α) in each market in each pair. 
Panel B presents the results of Wald tests for Granger causality, by the augmented lag method of Toda and 
Yamamoto (1995), Dolado and Lütkepohl (1996), with the null hypothesis that the past prices in one market 
do not Granger-cause the current prices in the other market in the short run (Covrig et al., 2004). The Wald 
statistics are asymptotically distributed as χ2(7) in sample A, χ2(5) in sample B, reported with the associated 
p-values. Numbers in parentheses are z-statistics. 
 

 

Panel A: Parameter estimates   

 (OSE, CME) (SGX, CME) 
Dependent variable OSE CME SGX CME 

Sample A     
α -0.0876  0.9663  -0.0645  0.9987  
 (-0.8486)  (20.2841)  (-0.5979)  (20.9107)  

Sample B     
α -0.1868  0.8573  -0.1883  0.9195  
 (-2.1171)  (7.7796)  (-2.1128)  (6.7818)  

Panel B: Granger causality tests   
   Wald stat p-value 

Sample A     
OSE does not cause CME 5502.1624  0.0000  
CME does not cause OSE 16.0325  0.0248  
SGX does not cause CME 5611.5337  0.0000  
CME does not cause SGX 16.5222  0.0208  

     
Sample B     

OSE does not cause CME 1495.1841  0.0000  
CME does not cause OSE 13.4686  0.0194  
SGX does not cause CME 1498.9699  0.0000  

CME does not cause SGX 11.8033  0.0376  
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Nevertheless, the results with the alternative time sequence should be interpreted with caution. 

From Figure 5.3, there is a non-trading interval after the OSE overnight session closes and 

before the OSE normal session opens, lasting about 6 hours. Although the CME is still open 

during the interval, the OSE, SGX are both closed such that the spread arbitrage across the 

futures markets is not available. In fact, the spot market remains closed during the interval,81 

making the spot-futures arbitrage impossible. As such, trading activities in the Nikkei markets 

are expected to be low in those hours. Matching CMEt-1 with OSEt, SGXt includes the thinly 

traded period in the estimation. Besides, clustered volatilities or risks are often reported when 

markets close and re-open in response to news that arrives during the non-trading gap.82 Such 

news in the Nikkei markets can only manifest itself via the CME during the gap when the other 

markets are all closed. This may explain some autocorrelated residuals observed in the re-timed 

linear CME model, especially in sample B. The problem becomes severe when the nonlinear 

ESTECM-EGARCH is estimated with the alternative time sequence, as the CME generates 

poorly conditioned estimates with excessive residual autocorrelations which cannot be removed 

by increasing model lags. Since the smooth transition models may not be able to appropriately 

describe such information, the nonlinear results with the alternative time sequence are not 

reported. The results of the re-timed linear models should be interpreted with caution. 

5.8 Discussion and conclusion 

The chapter studies the international price discovery process in the Nikkei 225 stock index 

futures markets; specifically, the linear and nonlinear price adjustments towards equilibrium 

between the spot and futures prices in individual Nikkei markets, and across the equivalent 

Nikkei futures prices. With a 19-year sample covering a pre-crisis period and a post-crisis 

period, the Nikkei spot and futures markets are found to be intrinsically linked, and in fact 

cointegrated, in the sense that the spot and futures prices are cointegrated with the cointegrating 

vector [1, -1] in individual Nikkei markets, and that the three Nikkei futures prices are 

cointegrated with one common stochastic trend. Given the cointegrating relationships of the 
                                                        
81 The trading hours of the Nikkei spot market are 9.00-11.30, 12.30-15.00 (JST), corresponding to 18.00-20.30, 21.30-0.00 
(CST). 
82 That is, the widely documented U-shaped intraday pattern in volatility. Possible explanations include the discretionary 
liquidity traders of Admati and Pfleiderer (1988) and the portfolio rebalancing strategies of Brock and Kleidon (1992). 
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Nikkei markets, the error correction mechanisms are employed to describe the spot-futures 

price adjustments towards the cost of carry equilibrium, and the futures price adjustments 

towards the price parity condition across the equivalent futures markets. The linear ECM acts 

as a benchmark specification for modelling such adjustment processes. The nonlinear 

ESTECM is further used to capture the possible smooth transition error correction behaviour in 

the Nikkei markets, given the effects of transaction costs, heterogeneity and predictive 

asymmetry. Specification tests and evaluation criteria indicate the presence of smooth transition 

error correction dynamics and the nonlinear model more appropriate. 

 

In individual Nikkei markets, with the linear ECM, there is considerable evidence of long-run 

bidirectional causality between the spot and futures prices; besides, the futures market 

generally assumes the price discovery function, except that the spot market plays a leading role 

in the OSE market in the post-crisis period. By contrast, with the nonlinear ESTECM, I find 

that the majority of the causalities are one-way, running from the futures to the spot in the 

pre-crisis period and from the spot to the futures in the post-crisis period. As the finding of 

futures leading spot is in agreement with the theoretical prediction, the crucial role of the spot 

market in the process of price discovery after the crisis is interesting. This type of price 

adjustments takes place within a single regime. More importantly, quicker movements between 

the regimes, which take place in the futures market before the crisis, are found in the spot 

market after the crisis. This means that the Nikkei spot market is quicker in adjustments within 

one regime and between the regimes. Among the consistently downsized rates of smooth 

transition which imply higher transaction costs of the spot-futures arbitrage in the Nikkei 

markets after the crisis, the transition speed in the Nikkei spot market is actually rising, 

probably reflecting the more uniform structure of the spot transaction costs. Recall that the 

effect of heterogeneous index arbitrageurs is rather weak in the Nikkei markets (see section 

4.4.4, Chapter 4). Hence, the lower level of heterogeneity, not only in investor structure but 

also in transaction costs, may contribute to the major part played by the spot market in 

information dissemination after the crisis. To understand this, the interactions between noise 

traders and fundamental traders affect the nature of the price adjustments. Noise traders who 

divert prices away from equilibrium tend to follow market sentiment in rising markets; in the 
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period of market downturns, as in the Nikkei markets after the crisis, they pay more attention to 

fundamental information, and prices are driven by fundamental traders to equilibrium 

(McMillan and Speight, 2006). If investors are by and large similar, they are likely to behave in 

a similarly conservative manner after the crisis, facing less various transaction costs. The 

aggregate market response to pricing errors may also subject to fewer risks of cognitive biases 

and deviation persistence (Shleifer, 2000), resulting in more rapid mean-reverting behaviour. 

This is in relative terms, however. The point made here is that the Nikkei spot market, with 

many different investors and transaction costs, may exhibit a lower level of heterogeneity in the 

investors and transaction costs than the Nikkei futures markets in the post-crisis period.  
 
Across the Nikkei futures markets, the linear and nonlinear models show consistent results that 

the CME has the strongest influence on the other markets, and that the foreign markets lead the 

domestic market in the cross-border information transmission. The nonlinear ESTECM is 

further examined as to the speed of smooth transition across the futures markets. The OSE is 

found to exhibit the least heterogeneous structure of transaction costs, again in relative terms. It 

turns out that both the spot and futures markets in Japan show a lower level of heterogeneity, 

compared with the offshore markets. The common increasing trend of the transition speed 

indicates the decreasing transaction costs in the three futures markets in recent years, especially 

in the CME. Therefore, the information advantage enjoyed by the CME in the cross-border 

price discovery process may be explained by its role as a global financial centre and more 

lenient trading environment, such as lower (and more heterogeneous) transaction costs, and 

longer trading hours facilitated by the CME Globex. When an alternative time sequence is used, 

the price leadership of the CME seems to be transferred to the SGX. Like the CME, the SGX is 

a global financial centre and provides investors with greater heterogeneity and longer trading 

hours than the OSE. As such, my results consistently support the international centre 

hypothesis that the offshore information centre more strongly disseminates information to the 

other markets than the reverse, and thus acts as the main price discovery vehicle across the 

border. My results are also consistent with network/platform literature (e.g. Rochet and Tirole, 

2003), which holds that information gravitates to the most ubiquitous international platform - in 

this case, the CME or the SGX. The last trading market in each time sequence may have more 
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opportunities to absorb information that already exists in the earlier markets, which contributes 

to its price dominance. This is consistent with the finding of Booth et al. (1996). 

 

Predictive asymmetry is present in the Nikkei prices and more investors respond to bad news 

than to good news of the same size. In individual Nikkei markets, such asymmetry is most 

evident in the post-crisis period; across the Nikkei futures markets, it is found in all the three 

markets in the pre-crisis period. The Nikkei variances also exhibit asymmetric behaviour, and 

bad news has a larger impact on volatility than equally sized good news. The asymmetry may 

reflect the various interactions of heterogeneous investors and transaction costs in the Nikkei 

markets. Sentana and Wadhwani (1992) put forward a theoretical model in which the activities 

of noise traders are closely associated with market volatility. Bad news induces investors to sell 

their holdings to meet obligations and to reduce exposure to any further falls in prices. This 

leads to more noise trading that increases volatility. However, the higher costs related to short 

sale, which lasted until November 2013 in Japan, may have alleviated the impact of bad news 

on the spot market. It is still found that more investors respond to positive price deviations in 

the index arbitrage before the crisis and in the spread arbitrage of the CME after the crisis. 

Among other factors, the heterogeneity in investors and transaction costs may contribute to the 

asymmetry observed in the Nikkei prices and variances. 

 

Two implications from the chapter are as follows. Despite higher transaction costs in index 

arbitrage activities in the post-crisis period, which largely come from the Nikkei spot market as 

the Nikkei futures transaction costs are actually falling, the spot prices lead the futures prices in 

information dissemination in the period, probably due to the lower level of heterogeneity in 

investor structure and transaction costs in the spot market. The CME and SGX, however, with 

higher level of heterogeneity as one of their many advantages, dominate the cross-border price 

discovery process. The level of heterogeneity as a futures market characteristic has not received 

much academic interest in an international setting. Here it is obvious that it provides an 

important perspective at least for market regulation in separate countries and exchange 

competition across the border. On the other hand, the information leadership of the CME and 

SGX demonstrate the key functions of offshore markets in futures market globalisation. As 
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more and more futures contracts become listed on multiple venues, it is no doubt a valuable 

task for investors and regulators to understand and make use of the price interaction 

mechanisms between the home market and the equivalent, offshore markets.  

 

The chapter has focussed on the first-moment price dynamics in the Nikkei markets. The 

conditional variance equations used in the chapter are univariate GARCH or EGARCH models, 

simple representations to get rid of the excessive ARCH effects in the residuals. The 

second-moment volatility dynamics in the Nikkei markets will be addressed in more depth in 

the next chapter.  
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Appendix 

 
 
Table A5.1 Estimation results in individual Nikkei markets: the nonlinear 
ESTECM-EGARCH model with delay parameter d>1  
 
 SGX CME 

 Sample A Sample B Sample A Sample B 
 Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat 
ESTECM coefficients 

Spot         
p 3  2  4  5  
d 3  3  2  2  
ks -0.0002  -0.8688  0.0007  2.1951  0.0003  1.7086  -0.0002  -0.8107  

πss,1 -0.5187  -3.9395  -0.2900  -1.6726  -0.5368  -3.4984  -0.7207  -4.6848  
πss,2 -0.3758  -2.7015  -0.3038  -1.6040  -0.3628  -1.5191  0.0232  0.1127  
πss,3 -0.1289  -0.9774    -0.0518  -0.2885  -0.0330  -0.2069  
πss,4     0.0852  0.6924  -0.1923  -1.3853  
πss,5       -0.2419  -2.7513  
πsf,1 0.5051  4.0047  0.3269  1.8274  0.5524  4.4281  0.7795  8.3357  
πsf,2 0.3853  2.8287  0.4667  2.2812  0.3606  1.4324  0.1793  0.8504  
πsf,3 0.1852  1.4234    0.3439  1.8017  -0.1874  -0.9013  
πsf,4     -0.0465  -0.3296  0.0695  0.4425  
πsf,5       0.1944  1.7863  
πss,1

* -0.0461  -0.2099  0.0070  0.0352  0.3540  2.1176  0.4204  2.4649  
πss,2

* 0.0443  0.2111  0.2276  1.0546  0.2433  0.9679  -0.2305  -1.0357  
πss,3

* -0.1173  -0.5633    -0.0414  -0.2167  -0.0729  -0.4152  
πss,4

*     -0.1453  -1.1333  0.1327  0.8867  
πss,5

*       0.2220  2.3271  
πsf,1

* 0.0248  0.1141  -0.0952  -0.4680  -0.3985  -2.8532  -0.5355  -4.5251  
πsf,2

* -0.0781  -0.3768  -0.3923  -1.7452  -0.2190  -0.8275  0.0293  0.1267  
πsf,3

* 0.0433  0.2088    -0.2620  -1.3010  0.3316  1.4836  
πsf,4

*     0.1161  0.7796  -0.0008  -0.0048  
πsf,5

*       -0.1604  -1.3339  
αs 0.3342  1.7774  0.2373  2.4316  0.6213  10.1967  0.5624  8.5703  
γs 1.7548  0.9376  19.6767  0.9767  224.0359  1.3885  43.4930  1.6229  
θs 4.7226  0.1993  -37.5042  -0.0308  -96.3074  -0.0698  1891.9147  0.0000  
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Table A5.1 continued 
 
 SGX CME 

 Sample A Sample B Sample A Sample B 
 Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat 

Futures         
p 1  1      
d 3  3      
kf 0.0000  0.1756  0.0004  1.2674      

πfs,1 0.0838  0.9786  0.1966  1.6761      
πff,1 -0.1033  -1.2398  -0.1752  -1.5358      
πfs,1

* -0.8995  -2.3119  -0.3088  -1.7215      
πff,1

* 0.8436  2.2130  0.2373  1.3159      
αf -0.7082  -1.7207  -0.1436  -1.1671      
γf 0.2978  1.1109  3.4897  0.6312      
θf -22.4422  -0.0031  -22.6416  -0.0132      

EGARCH coefficients 
Spot         
ωs -0.3727  -6.8785  -0.4919  -5.5268  -0.3398  -4.0604  -0.5755  -2.9984  
λs -0.0837  -7.2583  -0.0978  -5.6770  -0.0429  -2.8764  -0.0343  -1.0497  

as,1 -0.0295  -0.6360  -0.0870  -1.3588  0.1024  1.6526  0.1917  3.5984  
as,2 0.1876  4.0348  0.2541  4.0675  0.0556  0.9288    
bs 0.9710  176.5954  0.9582  105.3115  0.9755  127.6515  0.9532  51.6799  

Futures         
ωf -0.3214  -6.4049  -0.5059  -5.4916      
λf -0.0784  -7.0409  -0.1049  -6.4500      

af,1 0.1365  7.1166  -0.0686  -1.0834      
af,2   0.2353  3.7209      

bf 0.9748  194.3441  0.9569  103.6616      

Notes: This table shows the estimation results of the nonlinear ESTECM-EGARCH with d determined by the 
standard approach in the LM-type linearity tests in individual Nikkei markets, the SGX and the CME. The 
mean models are equations (5.3a) (5.3b):  

* * *
, , , , 1 ,

1 1 1 1

( ) ( )
p p p p

t s ss j t j sf j t j s ss j t j sf j t j s t s t d s t
j j j j

s k s f k s f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑ ,

* 2( ) 1 exp[ ( ) ( )]s t d s t d s t dT z z c g zγ− − −= − − − × , ( ) 0.5 1/{1 exp[ ( )]}*
s t d s t dg z θ z c− −= + + − −  

* * *
, , , , 1 ,

1 1 1 1

( ) ( )
p p p p

t f fs j t j ff j t j f fs j t j ff j t j f t f t d f t
j j j j

f k s f k s f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑ ,

* 2( ) 1 exp[ ( ) ( )]f t d f t d f t dT z z c g zγ− − −= − − − × , ( ) 0.5 1/{1 exp[ ( )]}*
f t d f t dg z θ z c− −= + + − −  

The variance models are equations (5.11) (5.13):
t t tu σ η= , 2 2

1 1 1 1 1ln ( / ) / lnt t t t t tu a u bσ ω l σ σ σ− − − − −= + + + , or 
2 2

1 1 1 1 1 2 2 2 1ln ( / ) / / lnt t t t t t t tu a u a u bσ ω l σ σ σ σ− − − − − − −= + + + + is used instead of (5.13) to remove the excessive 
ARCH effects in the residuals. The model restriction is k*=c*=0. The estimation details are the same as in 
Table 5.9, except that the delay parameter d is determined as the candidate that generates the smallest p-value 
of the linearity test. That is, d=3 for the SGX, d=2 for the CME spot (Table 5.8). The coefficient estimates 
followed by z-statistics are reported for each market in each sample.
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Table A5.2 Estimation results across the Nikkei futures markets: more parameters of the linear ECM-GARCH model  
 

 (OSE, SGX) (OSE, CME) (SGX, CME) 

Dependent variable  OSE SGX OSE CME SGX CME 
(Market 1) Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat 

Sample A             
k 0.0002  0.8791  0.0002  0.8820  0.0010  4.5640  0.0002  0.7635  0.0010  4.6075  0.0002  0.6209  

Market 1 lags             
π1 0.1079  0.1941  -0.1972  -0.3736  0.0727  0.8840  -0.0864  -1.2535  0.0854  1.0374  -0.0581  -0.8264  
π2 0.2168  0.4338  -0.2712  -0.5806  0.0959  1.3516  -0.0756  -1.2406  0.1019  1.4570  -0.0534  -0.8623  
π3 0.0273  0.0608  -0.0531  -0.1255  0.0835  1.3667  -0.0707  -1.2705  0.0925  1.5237  -0.0539  -0.9630  
π4 0.2778  0.6835  -0.3078  -0.7992  0.0787  1.5120  -0.0576  -1.0578  0.0691  1.3505  -0.0423  -0.7715  
π5 0.1480  0.4386  -0.1335  -0.4150  0.1026  2.2194  -0.0732  -1.4177  0.0922  2.0344  -0.0574  -1.1069  
π6 0.1445  0.5350  -0.1699  -0.6471  0.0722  1.8946  -0.0902  -1.9633  0.0717  1.8703  -0.0836  -1.8104  
π7 -0.1122  -0.6191  0.1005  0.5653  0.0432  1.5622  -0.1093  -2.9025  0.0454  1.6666  -0.1146  -3.0395  

Market 2 lags             
π1 -0.1322  -0.2372  0.1765  0.3354  -0.1003  -1.2047  0.0469  0.6908  -0.1055  -1.2630  0.0231  0.3309  
π2 -0.2374  -0.4748  0.2544  0.5446  -0.0975  -1.3223  0.0811  1.3486  -0.1042  -1.4206  0.0608  0.9984  
π3 -0.0202  -0.0448  0.0606  0.1439  -0.0887  -1.4154  0.0739  1.3180  -0.0951  -1.5336  0.0587  1.0405  
π4 -0.2987  -0.7327  0.2866  0.7462  -0.0937  -1.7177  0.0490  0.8903  -0.0864  -1.6098  0.0330  0.5924  
π5 -0.1399  -0.4142  0.1398  0.4350  -0.1054  -2.1905  0.0507  1.0012  -0.0946  -2.0113  0.0343  0.6731  
π6 -0.1855  -0.6813  0.1311  0.5039  -0.0852  -2.1496  0.0733  1.6192  -0.0842  -2.1444  0.0709  1.5471  
π7 0.1000  0.5510  -0.1130  -0.6366  -0.0842  -2.6100  0.0627  1.8774  -0.0856  -2.6732  0.0719  2.1496  

GARCH coefficients             
ω 0.0000  3.3477  0.0000  3.2985  0.0000  2.9041  0.0000  3.0034  0.0000  2.8481  0.0000  2.9909  
a1 0.0241  1.0646  0.0242  1.0705  0.0625  5.5601  0.0641  5.9558  0.0632  5.5952  0.0640  5.9586  
a2 0.0567  2.3042  0.0553  2.2303          
b 0.9017  61.7580  0.9018  58.3953  0.9272  73.2666  0.9216  72.3634  0.9253  70.0018  0.9217  72.3402  
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Table A5.2 continued 
 

 (OSE, SGX) (OSE, CME) (SGX, CME) 

Dependent variable  OSE SGX OSE CME SGX CME 
(Market 1) Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat 

Sample B             
k 0.0008  2.2815  0.0007  1.9236  -0.0006  -2.0795  0.0007  1.7279  -0.0007  -2.1191  0.0007  1.7097  

Market 1 lags             
π1 0.0952  0.1771  -0.1604  -0.2995  -0.1392  -2.1871  -0.0768  -0.8273  -0.1507  -2.3892  -0.0838  -0.8892  
π2 -0.1377  -0.3029  0.0935  0.2059  -0.0958  -1.7430  0.0130  0.1605  -0.1115  -1.9715  -0.0007  -0.0089  
π3 -0.3224  -0.8305  0.2305  0.5957  -0.0246  -0.5685  0.0407  0.6216  -0.0356  -0.8139  0.0291  0.4362  
π4 0.0528  0.1922  -0.1228  -0.4517  -0.0169  -0.5863  0.0617  1.2208  -0.0249  -0.8689  0.0587  1.1474  

Market 2 lags             
π1 -0.1077  -0.2000  0.1514  0.2834  0.0719  1.0212  0.0579  0.6314  0.0929  1.3744  0.0733  0.7834  
π2 0.1735  0.3783  -0.0624  -0.1385  0.0983  1.6738  -0.0315  -0.4101  0.1083  1.8122  -0.0175  -0.2242  
π3 0.3187  0.8167  -0.2380  -0.6200  0.0167  0.3555  -0.0888  -1.5015  0.0294  0.6264  -0.0781  -1.2834  
π4 -0.0796  -0.2892  0.0962  0.3543  0.0066  0.1751  -0.0713  -1.7952  0.0075  0.2027  -0.0744  -1.8799  

GARCH coefficients             
ω 0.0000  3.0579  0.0000  3.0969  0.0000  2.0898  0.0000  2.5124  0.0000  2.6575  0.0000  2.5039  
a1 0.1025  4.3095  0.1029  4.1745  0.1558  2.2574  0.0767  3.3181  0.1034  2.7579  0.0760  3.3075  
a2     -0.0972  -1.4142        
b 0.8662  31.8214  0.8653  30.7821  0.9087  29.3026  0.8781  25.7397  0.8411  17.7008  0.8795  25.9872  

Notes: The table contains more parameter estimates of the linear ECM-GARCH model for bilateral Nikkei futures pairs (OSE, SGX), (OSE, CME) and (SGX, CME). 
The mean models are equations (5.5a) (5.5b): 

1, 1 11, 1, 12, 2, 1 1 1,
1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑ ,
2, 2 21, 1, 22, 2, 2 1 2,

1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑  

The variance models are equations (5.11) (5.12): 
t t tu σ η= , 2 2 2

1 1t t tau bσ ω σ− −= + + , or a GARCH (2,1) model 2 2 2 2
1 1 2 2 1t t t ta u a u bσ ω σ− − −= + + +  is used instead of (5.12) to 

remove the excessive ARCH effects in the residuals. The estimation details are the same as in Table 5.10. In each bilateral pair, the short-run autoregressive 
coefficients are sorted by market 1 and 2, where market 1 is the market of the dependent variable, and market 2 is the other market. For example, if OSE is the 
dependent variable in the pair (OSE, SGX), OSE is the market 1 and SGX is the market 2; if SGX is the dependent variable in the pair (OSE, SGX), SGX is the 
market 1 and OSE is the market 2. This arrangement enables most subscripts to be omitted without loss of clarity. The parameter estimates followed by z-statistics are 
reported in each market in each pair. The estimated error correction coefficients and the joint significant test results on the short-run coefficients are not included but 
reported in Table 5.10. 
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Table A5.3 Estimation results across the Nikkei futures markets: more parameters of the nonlinear ESTECM-EGARCH model  
 

 

 (OSE, SGX) (OSE, CME) (SGX, CME) 

Dependent variable 
(Market 1) 

OSE SGX OSE CME SGX CME 
Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat 

Sample A             
k 0.0000  0.1491  0.0001  0.5366  0.0008  3.8991  0.0001  0.5338  0.0009  4.2339  0.0001  0.4731  

Market 1 lags             
π1 -0.9391  -3.8358  0.2790  1.4702  -0.1374  -0.5860  0.0116  0.2779  0.7820  1.0887  0.0013  0.0327  
π2 -0.4386  -2.1240            
π1

* 3.3208  2.8313  -1.5647  -1.6706  0.0936  0.3953  -0.1839  -0.8148  -0.8261  -1.1503  -0.1738  -0.6859  
π2

* 1.8411  2.5201            
Market 2 lags             

π1 0.9297  3.7383  -0.2882  -1.5652  0.4452  1.3112  -0.0578  -1.5440  -0.7395  -0.9582  -0.0491  -1.3495  
π2 0.4339  2.0679            
π1

* -3.4502  -2.8707  1.4290  1.5824  -0.4547  -1.3362  0.1512  0.8401  0.7417  0.9611  0.1435  0.7149  
π2

* -1.8946  -2.5517            
EGARCH coefficients            

ω -0.3515  -6.3769  -0.3485  -6.3031  -0.2682  -5.3312  -0.2776  -5.2814  -0.2626  -5.1956  -0.2777  -5.2818  
λ -0.0732  -6.0012  -0.0739  -6.0412  -0.0381  -3.2108  -0.0594  -4.9907  -0.0359  -3.0292  -0.0595  -4.9871  
a1 -0.01221 -0.2664  -0.0168  -0.3660  0.1403  7.4239  0.1234  6.7986  0.1381  7.2523  0.1232  6.7896  
a2 0.1596  3.5123  0.1643  3.6087          
b 0.9723  172.6033  0.9726  172.1142  0.9820  197.2234  0.9788  183.0125  0.9825  196.6311  0.9788  182.8828  
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Table A5.3 continued 
 

 (OSE, SGX) (OSE, CME) (SGX, CME) 

Dependent variable 
(Market 1) 

OSE SGX OSE CME SGX CME 
Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat Estimate z-stat 

Sample B             
k 0.0007  1.9763  0.0007  2.0241  -0.0005  -1.9136  0.0004  1.1801  -0.0006  -2.4185  0.0004  1.1365  

Market 1 lags             
π1 -0.0237  -0.0502  0.0643  0.1577  -0.1260  -0.8991  -0.0239  -0.2547  0.0397  0.2756  0.6903  1.1052  
π2     0.1443  1.4048    0.1577  1.3935    
π1

* -0.1041  -0.1551  -0.1036  -0.1521  -0.0068  -0.0444  -0.1182  -0.9319  -0.1942  -1.2476  -0.7619  -1.2154  
π2

*     -0.2605  -2.4272    -0.2737  -2.3248    
Market 2 lags             

π1 -0.1128  -0.2368  -0.1734  -0.4204  0.1187  0.6685  -0.0465  -0.6013  -0.1202  -0.6595  -1.3337  -2.3193  
π2     -0.1206  -0.9821    -0.2292  -1.5980    
π1

* 0.2978  0.4421  0.2914  0.4303  -0.0843  -0.4401  0.1468  1.4983  0.1934  0.9931  1.3811  2.4012  
π2

*     0.2203  1.6874    0.3414  2.2885    
EGARCH coefficients            

ω -0.5259  -4.7780  -0.5320  -4.9267  -0.5062  -4.4539  -0.5691  -4.5150  -0.6178  -4.6089  -0.6648  -4.7004  
λ -0.0912  -5.1735  -0.0908  -5.0157  -0.0881  -4.1879  -0.1098  -4.9301  -0.0958  -4.2181  -0.1175  -5.0784  
a1 0.1843  5.3165  0.1848  5.4344  0.1240  4.2434  0.1707  5.0381  0.1402  4.4978  0.0730  1.0335  
a2           0.1267  1.7308  

b 0.9557  86.2220  0.9552  87.2573  0.9551  82.4048  0.9487  71.0803  0.9443  68.7977  0.9402  62.7431  
Notes: The table contains more parameter estimates of the nonlinear ESTECM-EGARCH model for bilateral Nikkei futures pairs (OSE, SGX), (OSE, CME) and (SGX, 
CME). The mean models are equations (5.6a) (5.6b): 

* * *
1, 1 11, 1, 12, 2, 1 11, 1, 12, 2, 1 1 1 1,

1 1 1 1

( ) ( )
p p p p

t j t j j t j j t j j t j t t d t
j j j j

f k f f k f f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑ , * 2
1 1 1( ) 1 exp[ ( ) ( )]t d t d t dT z z c g zγ− − −= − − − × ,

1 1( ) 0.5 1/{1 exp[ ( )]}*
t d t dg z θ z c− −= + + − −  

* * *
2, 2 21, 1, 22, 2, 2 21, 1, 22, 2, 2 1 2 2,

1 1 1 1

( ) ( )
p p p p

t j t j j t j j t j j t j t t d t
j j j j

f k f f k f f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑ , * 2
2 2 2( ) 1 exp[ ( ) ( )]t d t d t dT z z c g zγ− − −= − − − × ,

2 2( ) 0.5 1/{1 exp[ ( )]}*
t d t dg z θ z c− −= + + − −  

The variance models are equations (5.11) (5.13):
t t tu σ η= , 2 2

1 1 1 1 1ln ( / ) / lnt t t t t tu a u bσ ω l σ σ σ− − − − −= + + + , or 2 2
1 1 1 1 1 2 2 2 1ln ( / ) / / lnt t t t t t t tu a u a u bσ ω l σ σ σ σ− − − − − − −= + + + + is used 

instead of (5.13) to remove excessive ARCH effects. The model restriction is k*=c*=0. The estimation details are the same as in Table 5.12. In each bilateral pair, the 
short-run autoregressive coefficients are sorted by market 1 and 2, where market 1 is the market of the dependent variable, and market 2 is the other market. For example, 
if OSE is the dependent variable in the pair (OSE, SGX), OSE is the market 1 and SGX is the market 2; if SGX is the dependent variable in the pair (OSE, SGX), SGX is 
the market 1 and OSE is the market 2. This arrangement enables most subscripts to be omitted without loss of clarity. The parameter estimates followed by z-statistics are 
reported in each market in each pair. The estimated error correction coefficients, smoothness parameters, asymmetry parameters and the joint significant test results on 
the short-run coefficients are not included but reported in Table 5.12. 
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Chapter 6  

Volatility transmission in the Nikkei 225 futures markets 
 
 

6.1 Introduction 

Chapter 5 looked into the first-moment price dynamics in the Nikkei 225 stock index futures 

markets. Apart from price, another and arguably even more important conduit for cross-market 

information linkages is price volatility. The theoretical model of Ross (1989) suggests that the 

variance of price change is equal to the variance of information flow in a no-arbitrage economy, 

which reveals the mechanism whereby price volatility and the rate of information flow are 

directly related. A considerable amount of information disseminates through second-moment 

interdependencies that involve the dynamics of conditional variances and covariances. It is 

accepted in the literature that focusing only on the first-moment price dynamics could lead to 

specification errors and false inferences about the interactions between spot and futures prices 

(Chan et al., 1991). Empirical evidence is ample that the second-moment dependence is much 

more significant than the first-moment dependence, and in some situations, the second-moment 

serves as the only information channel in the absence of the first-moment (e.g. Hamori, 2003).  

 

Based on one common stock index market (Tokyo Stock Exchange, TSE), the Nikkei 225 stock 

index futures contracts are traded on three equivalent yet different markets: Osaka Exchange 

(OSE), Singapore Exchange (SGX) and Chicago Mercantile Exchange (CME). However, 

research is still very limited on the volatility dynamics of the triple-listed Nikkei futures 

contracts, and thus the second-moment information transmission process in the Nikkei markets 

is not as adequately understood as is the first-moment. Studying the information linkages 

through the second-moments may provide further insights into the cross-border information 

transmission mechanism in the Nikkei markets. There are two possible hypotheses as to the 

location of the information leadership in transnational information dissemination: the 

home-bias hypothesis and the international centre hypothesis (e.g. Fung et al., 2001; Covrig et 
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al., 2004). The home-bias hypothesis argues that domestic or home investors enjoy a battery of 

advantages such as geographic proximity to the underlying spot market, familiarity with local 

trading environment and regulation, and fewer trading barriers, and thus the domestic market 

should dominate the information transmission across borders.83 By contrast, the international 

centre hypothesis argues if a foreign market is a global financial centre, then we might expect it 

to dominate transnational information dissemination because of the better trading conditions it 

can provide. Higher efficiency in processing and sharing information, and more opportunities 

for risk management by trading other financial instruments are also available on the foreign 

market. The second-moment information channel can exist with or without the first-moment 

information channel, and thus it is not clear which hypothesis is more relevant for the Nikkei 

volatilities. More importantly, the triple-listing nature of the Nikkei futures contracts 

necessitates a proper understanding of the Nikkei volatility dynamics, in that information 

shocks can be contagious from one market to the other such that the Nikkei volatilities become 

predictable, and that volatility co-movements between the markets have important implications 

for portfolio management strategies and maintaining financial stability in the course of futures 

market globalisation. In addition, the different trading hours of the CME Nikkei futures may 

affect the dynamic linkages between the CME and the other Nikkei futures markets, but this 

issue has not been treated explicitly in the literature. This chapter is therefore motivated to 

explore the second-moment volatility dynamics between Nikkei spot and futures markets, and 

across the Nikkei futures markets.   

 

The chapter aims to investigate the international volatility transmission process in the Nikkei 

markets from two perspectives: a) the volatility interactions in individual Nikkei markets and 

across the Nikkei futures markets; and b) the time-varying behaviour of dynamic conditional 

correlations for Nikkei spot-futures pairs and futures-futures pairs. For volatility interactions, 

using the exponential smooth transition error correction model (ESTECM) as the conditional 

mean and univariate exponential GARCH (EGARCH) as the conditional variance, I perform 

                                                        
83 Following Board and Sutcliffe (1996), I define the domestic or home futures market as the exchange where the futures 
contracts are traded in the same country as the stocks underlying the index, i.e. the OSE; the corresponding foreign or offshore 
futures market as the exchange in whose country the futures contracts are traded but the stocks underlying the index are not, i.e. 
the SGX and the CME. 
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the cross-correlation function (CCF) test of Cheung and Ng (1996), which is a diagnostic, 

two-stage approach for testing causality-in-variance, or the volatility spillover effect. If rt is a 

2×1 vector of asset returns at time t with elements r1t and r2t, r2 does not cause r1 in variance 

means 1
1 1 1 1

r
t t t tV r V r− −

  Ω = Ω   
r , where Ωt-1 is the information set at time t-1 for r (or r1), and 

V[∙] denotes conditional variance (Comte and Lieberman, 2000). In other words, the notion of 

causality-in-variance indicates that volatilities are not restricted in one market but can spill over 

to other markets, and thus volatilities become predictable on the basis of volatilities in the 

related markets. With the CCF test, I find bidirectional volatility spillover between Nikkei spot 

and futures markets, with some evidence that the causality-in-variance originating from futures 

to spot is stronger than the reverse. Across the Nikkei futures markets, the CME causes the 

other Nikkei markets in variance the most strongly and is the leading market in the 

international volatility transmission. More generally, it is the foreign Nikkei markets (the CME 

and SGX) that act as the main source of information flow in the cross-border information 

dissemination mechanism. Consistent with conclusions in Chapter 5, the volatility results lend 

further support to the international centre hypothesis and confirm the key role of equivalent, 

offshore futures markets in the transnational information transmission process. 

 

The most significant result of the CCF test is the contemporaneous correlations of the Nikkei 

returns, suggesting that the majority of information is transmitted in the Nikkei markets 

simultaneously. This finding points to the critical importance of the dynamic linkages between 

the Nikkei markets. As such, I use the Dynamic Conditional Correlation (DCC) multivariate 

GARCH model of Engle (2002) to examine the Nikkei market co-movements over time. 

Overall, the Nikkei markets are highly integrated, and the majority of information is absorbed 

jointly. The Nikkei conditional correlations are strongly persistent and stable, but there is 

evidence that the Nikkei spot-futures correlations exhibit more dynamics and their level of 

persistence declines from the pre-crisis period to the post-crisis period. The effect of different 

trading hours of the CME futures is checked by re-estimating the DCC model with an 

alternative time sequence. I notice that the time effect generates a different correlation pattern 

between the CME and the other markets, but this may merely reflect a thinly traded period 
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incorporated in the sequence rather than the true market linkages. The time differences among 

the Nikkei markets do not affect the main characteristics of the Nikkei conditional correlations 

such as high level, strong persistence and stability. 

 

The chapter contributes to the literature in the following ways. First, existing studies tend to 

look at the potential destabilising effects of Nikkei futures trading on the underlying stock 

volatility, e.g. Bacha and Vila (1994), Chang et al. (1999); or the first-moment price dynamics 

across the Nikkei futures markets, e.g. Booth et al. (1996). Few works have focused on the 

volatility transmission process of all of the three Nikkei futures markets. The chapter studies 

the volatility transmission in individual Nikkei markets and across the three Nikkei futures 

markets, which provides comprehensive new evidence on the Nikkei volatility dynamics and 

therefore helps deepen the understanding of the second-moment information linkages in the 

Nikkei markets. Second, with the univariate CCF test and the multivariate DCC model, the 

chapter shows the consistent result of the predominance of the foreign Nikkei markets in the 

cross-border information dissemination. The result is in agreement with the conclusions in 

Chapter 5 and continually supports the international centre hypothesis. In this way, I am able to 

confirm the important contributions of offshore futures exchanges in spreading first-moment 

and second-moment information to the information dissemination mechanism across the border. 

Third, there is little research on the dynamic Nikkei market linkages over time. By analysing 

the time-varying behaviour of Nikkei market co-movements, the chapter reports that the Nikkei 

markets are all very closely related to each other and the close relationships are strongly 

persistent and stable over time. Undoubtedly, the finding has important implications at least for 

investors and policy makers in the Nikkei markets. Fourth, the effect of different trading hours 

of the CME Nikkei futures has been largely ignored in the literature. The chapter explicitly 

considers the effect of different trading hours of the CME on the Nikkei conditional 

correlations, and shows that the time differences do not affect the main characteristics of the 

Nikkei conditional correlations, despite that they generate a different correlation pattern 

between the CME and the other markets, which may merely reflect low trading volume rather 

than the dynamic Nikkei market linkages. 
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The rest of the chapter is organised as follows. Section 6.2 describes data and presents 

preliminary analysis. The CCF test and the results of the volatility spillover effect are provided 

in section 6.3. The DCC methodology and its estimation results are provided in section 6.4. 

Section 6.5 discusses the main findings and concludes the chapter.       

6.2 Data and preliminary analysis 

Data used in this chapter are daily closing prices of Nikkei 225 index and daily settlement 

prices of Nikkei 225 index futures traded on the OSE, SGX and CME, which are obtained from 

the respective exchanges and Datastream over the period 20/06/1996-31/12/2014 (OSE and 

SGX); 01/01/1997-31/12/2014 (CME). This is the same dataset as that used in the last chapter. 

The contract months of the Nikkei futures contracts follow the usual quarterly cycle - March, 

June, September and December, and the futures price series is compiled using the nearest 

futures contracts and moving onto the next nearest contract at the start of the contract month. 

Daily returns for Nikkei spot (St) and futures prices (Ft) are calculated as Δst =ln(St/St-1) and Δft 

=ln(Ft/Ft-1), respectively. For individual spot-futures pairs, the local holiday schedule is applied 

and holidays are excluded from the data, as I assume that both markets need to be open to make 

index arbitrage available. Figure 5.1 in Chapter 5 plots the Nikkei spot and futures return series. 

An obvious spike is observed in each market in October-November 2008 during the financial 

crisis, with the Quandt-Andrews breakpoint test suggesting structural changes (see Chapter 4, 

p.136). As such, the overall sample is divided into a pre-crisis period (sample A) and a 

post-crisis period (sample B), excluding a short turmoil interval in the middle of the crisis. 

Pre-crisis period (sample A): 

28/06/1996-09/10/2008 (OSE, SGX); 09/01/1997-12/09/2008 (CME) 

Post-crisis period (sample B): 

04/11/2008-31/12/2014 (OSE, SGX); 02/12/2008-31/12/2014 (CME)  

 

For futures-futures pairs, observations of the Nikkei futures returns are retained only when all 

of the three markets are open. This is because the three markets adopt different holiday 

schedules, and for simplicity I do not consider the information transmissions associated with 
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closed markets. Moreover, the starting and ending dates of the sample periods are altered to 

ensure that the three futures series have the same length. The starting date of sample A is also 

adjusted to allow for the estimated lag parameters in the conditional mean. Therefore, a 

different sample division is employed for the futures-futures interactions.         

Pre-crisis period (sample A): 

17/01/1997-12/09/2008 

Post-crisis period (sample B): 

02/12/2008-30/12/2014  

 

Table 6.1 presents descriptive statistics of Nikkei spot and futures returns. The means of the 

returns are very close in value and with the same signs, suggesting that the Nikkei markets may 

be potentially linked. The standard deviations of the returns are also broadly comparable. The 

futures standard deviations are slightly higher than the spot standard deviations before the crisis, 

but this is not so obvious after the crisis. In other words, the evidence is weak that the Nikkei 

futures markets are more volatile than the underlying spot market. Most of the Nikkei returns 

are negatively skewed and leptokurtic, suggesting departures from normality. Besides, the 

Jarque-Bera (1980) statistics decisively reject the null hypothesis of normal distribution in all 

the Nikkei markets. The Ljung-Box (1978) Q-statistics for the returns and squared returns 

indicate the presence of linear and nonlinear dependencies in the data, respectively. The much 

larger size and stronger significance of the Q-statistics for the squared returns also imply more 

influential nonlinear dependencies. It is well established in the literature that nonlinear 

(higher-moment) dependencies can be attributed to conditional heteroskedasticity (Koutmos 

and Tucker, 1996).  

 

Table 5.2 in Chapter 5 displays the unconditional correlation coefficients for pair-wise Nikkei 

spot and futures returns. The Nikkei spot, OSE and SGX futures show close relationships with 

correlations larger than 0.96. The highest level of co-movement emerges between the OSE and 

SGX futures, correlated at 0.99 in both samples. This can be explained by the fact that the OSE, 

SGX contracts based on the same index are denominated in the same currency and traded 

almost at the same time. As a result, spread arbitrage between OSE and SGX incurs fewer 
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hurdles, and most information can be transmitted and shared simultaneously between the two 

exchanges. By contrast, the CME futures show relatively low co-movements with the other 

Nikkei returns, due perhaps to their relatively small trading volume and/or extra risks involved 

in the CME arbitrage. As an additional check, the CME correlations are computed again by 

matching the CME returns on day t-1 with any one of the other returns on day t, to allow for a 

possible alternative time sequence by which the CME is the earliest trading market (Booth et 

al., 1996); and the last row of each sample in Table 5.2 shows even smaller correlations. As will 

be discussed in section 6.4, however, the unconditional correlations tend to underestimate the 

true associations among the Nikkei markets; these associations are represented by conditional 

correlations estimated from bivariate DCC models. 

 

The cost of carry relationship requires that the spot and futures prices should be cointegrated 

with the cointegrating vector [1, -1]. Table 5.3 in Chapter 5 tests for cointegration in individual 

Nikkei markets using the two-step procedure of Engle and Granger (1987). Augmented 

Dickey-Fuller (ADF) tests and Phillips-Perron (PP) tests for unit roots are applied to the 

log-prices (st, ft) and returns in each market. I find that the spot and futures prices are I(1), and 

the log-basis bt, defined as (ft - st), is I(0). In other words, the spot and futures prices are 

cointegrated with the cointegrating vector [1, -1] in individual Nikkei markets. Likewise, for 

futures contracts traded on more than one exchange, futures price parity requires that these 

exchanges should be cointegrated with one common stochastic trend. Table 5.4 in Chapter 5 

tests for cointegration across the Nikkei futures markets using the Johansen (1988; 1991) 

procedure. It is clear that the three Nikkei futures markets are cointegrated with one common 

stochastic factor, and each bilateral pair of Nikkei futures prices is cointegrated with the 

cointegrating vector [1, -1]. 84 Given that the Nikkei markets are cointegrated, an error 

correction mechanism is justified to act as the conditional mean equation in the subsequent 

analysis. For individual spot-futures pairs, the log-basis bt will be used as the error correction 

term. For bilateral futures pairs, the futures price differential (f1 - f2) will be used as the error 

correction term, where 1, 2 denote any two Nikkei futures markets for brevity.  

                                                        
84 See section 5.4.2, Chapter 5 for more details about the test procedures and the test results. 
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Table 6.1 Descriptive statistics of Nikkei 225 spot and futures returns 
 

 S OSE SGX CME 

Sample A     
Mean -0.0003 -0.0003 -0.0003 -0.0001 
SD 0.0147 0.0153 0.0150 0.0149 

Skewness -0.1902 -0.3257 -0.2724 -0.0471 
Kurtosis 5.2172 6.1591 6.1722 4.5263 

JB 637.6581** 1310.9621** 1303.1264** 286.8665** 
Q(12) for rt 13.4092 25.5513** 17.3270 23.6483** 
Q(12) for rt

2 406.2301** 353.9619** 334.8531** 400.6054** 
     

Sample B     
Mean 0.0005 0.0005 0.0005 0.0005 
SD 0.0153 0.0154 0.0150 0.0149 

Skewness -0.5398 -0.3991 -0.3605 0.0366 
Kurtosis 6.9314 6.5969 6.6591 5.3772 

JB 1045.0729** 853.5288** 905.8228** 361.7884** 
Q(12) for rt 18.9721* 16.9911 18.9153* 12.0514 
Q(12) for rt

2 369.8906** 548.5039** 604.9055** 243.6330** 

Notes: The table presents descriptive statistics of Nikkei 225 price returns in spot (S) and futures (OSE, SGX, 
CME) markets, including mean, standard deviation (SD), skewness, kurtosis, Jarque-Bera (1980) statistics 
(JB) of testing the null hypothesis of normal distribution, and Ljung-Box (1978) Q-statistics up to order 12 
for returns (rt) and squared returns (rt

2). The price returns are calculated as the first-order differences in 
logarithmic prices. ** denotes significance at the 5% level. * denotes significance at the 10% level. 
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Trends and outliers in the data are removed by regressing each of the return series and error 

correction terms on a constant, time to maturity85 and dummy variables which represent the 

outliers. I define outliers as observations larger than 6 standard deviations in absolute value of 

each of the series. The regression residuals, detrended and free from the outliers, are to be used 

as their dependent variables in the following estimation. In individual Nikkei markets, the 

number of outliers removed is 4(OSE), 8(SGX) and 2(CME), leaving the total amount of 

observations for estimation to 4533(OSE), 4582(SGX) and 4479(CME). Across the futures 

markets, the number of outliers is 3 when the timing issues of the CME are ignored, 4 when the 

timing issues are considered, leaving the total number of observations for estimation to 2776 

(sample A) and 1443 (sample B). Table 5.3 in Chapter 5 shows that the log-basis without the 

effect of trends or outliers, denoted as bt
*, is also I(0), which confirms the Nikkei spot-futures 

cointegrating relationship. 

6.3 Volatility interdependencies in the Nikkei markets 

6.3.1 The cross-correlation function (CCF) test 

I study the second-moment, cross-market linkages in the Nikkei markets using the CCF test 

designed by Cheung and Ng (1996). The CCF test in itself is a diagnostic method based on the 

squared standardised residuals estimated from univariate conditional variance models. In the 

last chapter, I demonstrated the suitability of the exponential smooth transition error correction 

model (ESTECM) with univariate EGARCH in describing first-moment price dynamics in the 

Nikkei markets. Given this, the CCF test will be conducted based on the squared standardised 

residuals estimated from the ESTECM-EGARCH model. The CCF approach has an advantage 

that it allows the model estimations and the calculation of sample cross-correlations to be 

undertaken in two separate stages rather than simultaneously, making it convenient to 

implement in practice. Compared with multivariate GARCH models, the CCF test avoids 

excessive parameters which are difficult to interpret and computational burdens. More 

importantly, the CCF test results can provide helpful guidance on formulating a multivariate 
                                                        
85 Time to maturity is the number of calendar days remaining in a futures contract until expiration. Time to maturity is found to 
exert significant impact on my data for maturity and rollover effects. However, time-related patterns or the calendar effect is 
ignored as the effect is not important on my data. See section 5.4.3, Chapter 5 for more discussions.      
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model. As will be shown later, my CCF test results provide justification for DCC multivariate 

GARCH specifications. In fact, multivariate GARCH models should not be estimated without 

checking for such effects in the data a priori by diagnostic tests (Soriano and Climent, 2005), a 

widely adopted one of which is the CCF test.  

6.3.2 The conditional mean and conditional variance models 

Recall that in Chapter 5 I discussed the ESTECM-EGARCH model. The same specification 

will be used in performing the CCF test. For convenience, a brief review of the conditional 

mean (ESTECM) and the conditional variance (EGARCH) is provided below. Following from 

Chapter 5, I assume that the nonlinear adjustments of spot and futures returns in individual 

Nikkei markets follow an ESTECM, given as follows: 

* * *
, , , , 1 ,

1 1 1 1

( ) ( )
p p p p

t s ss j t j sf j t j s ss j t j sf j t j s t s t d s t
j j j j

s k s f k s f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑

* 2( ) 1 exp[ ( ) ( )]s t d s t d s t dT z z c g zγ− − −= − − − ×  

 ( ) 0.5 1/{1 exp[ ( )]}*
s t d s t dg z θ z c− −= + + − −  (6.1a) 

* * *
, , , , 1 ,

1 1 1 1

( ) ( )
p p p p

t f fs j t j ff j t j f fs j t j ff j t j f t f t d f t
j j j j

f k s f k s f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑  

* 2( ) 1 exp[ ( ) ( )]f t d f t d f t dT z z c g zγ− − −= − − − ×  

 ( ) 0.5 1/{1 exp[ ( )]}*
f t d f t dg z θ z c− −= + + − −  (6.1b) 

where k, k* are constants; π, π* are the short-run autoregressive coefficients; the model residual 

ut is iid with zero mean and finite variance; the model lag j=1, 2, …, p, with p as a positive 

integer. The error correction term is zt-1, and the error correction coefficient α measures the 

long-run speed of adjustments and direction of causality. I generally expect αs>0, αf<0, and the 

market with a slower (quicker) speed of information transmission to have significant 

(insignificant) and larger (smaller) α in magnitude.86 T(∙) is an exponential smooth transition 

function bounded between 0, the middle regime where no investor will trade, and 1, the outer 

regime where all investors will trade. zt-d is the transition variable with the delay parameter d, 

                                                        
86 The sign of αs depends on the net outcome of the two opposing effects of arbitrage and momentum (Zhong et al., 2004; Bohl 
et al., 2011), and therefore the sign of αs is not necessarily positive in some markets. 
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d>0. The rate of the transition between the regimes is governed by the smoothness parameter γ, 

γ>0. If γ→0 or γ→∞, T(∙) converges to 0 or 1, respectively, and the ESTECM converges to a 

linear error correction model (van Dijk et al., 2002). The location parameter c* gives the centre 

of T(∙). g(∙) is an asymmetry function bounded between 0.5 and 1.5. The asymmetry parameter 

θ measures the asymmetric market response to positive and negative pricing deviations. 

Equations (6.1a) (6.1b) are used to model the conditional mean in individual Nikkei markets. 

 

For a bilateral pair of futures prices (f1, f2), the nonlinear price adjustments across the futures 

markets are assumed to follow a similar ESTECM as below:  

* * *
1, 1 11, 1, 12, 2, 1 11, 1, 12, 2, 1 1 1 1,

1 1 1 1

( ) ( )
p p p p

t j t j j t j j t j j t j t t d t
j j j j

f k f f k f f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑  

* 2
1 1 1( ) 1 exp[ ( ) ( )]t d t d t dT z z c g zγ− − −= − − − ×  

 1 1( ) 0.5 1/{1 exp[ ( )]}*
t d t dg z θ z c− −= + + − −  (6.2a) 

* * *
2, 2 21, 1, 22, 2, 2 21, 1, 22, 2, 2 1 2 2,

1 1 1 1

( ) ( )
p p p p

t j t j j t j j t j j t j t t d t
j j j j

f k f f k f f z T z up p p p α− − − − − −
= = = =

∆ = + ∆ + ∆ + + ∆ + ∆ + × +∑ ∑ ∑ ∑

* 2
2 2 2( ) 1 exp[ ( ) ( )]t d t d t dT z z c g zγ− − −= − − − ×  

 2 2( ) 0.5 1/{1 exp[ ( )]}*
t d t dg z θ z c− −= + + − −  (6.2b) 

Most model parameters above are the same as those in equations (6.1a) and (6.1b), and thus 

extensions of their interpretations to the futures markets are straightforward. For example, the 

smoothness parameter γ controls the rate of the regime switch in each of the futures markets, 

and the asymmetry parameter θ captures the asymmetric market response to positive and 

negative futures spreads. Equations (6.2a) (6.2b) describe the conditional mean across the 

Nikkei futures markets. 

 

The ESTECM residual ut is assumed to follow a univariate EGARCH process of Nelson (1991) 

in the Nikkei markets. The EGARCH model is selected as it takes into account the different 

impacts of good news and bad news on volatility. Compared with other asymmetric GARCH 

models, the EGARCH model specifies the conditional variance as an exponential function, 
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consistent with the exponential transition function which contains the asymmetry function in 

the first moment. Let σt
2 be the conditional variance, which is a time-varying, positive and 

measurable function of the information set at time t-1. An EGARCH (1, 1) model can be 

formulated as follows:87    

 t t tu σ η=  (6.3) 

 2 2
1 1 1 1 1ln ( / ) / lnt t t t t tu a u bσ ω l σ σ σ− − − − −= + + +  (6.4) 

where ηt ~ iid(0,1); there are no constraints on the non-negativity of the coefficients ω, a and b; 

the coefficient λ sheds light on the presence of the predictive asymmetry of asset prices. The 

impact of any price innovations on the logarithmic conditional variance is a linear combination 

of λ and a. For a positive shock, ut-1/σt-1>0, the impact is (λ+a); for a negative shock, ut-1/σt-1<0, 

the impact is (-λ+a) (Enders, 2010). Thus, a negative λ is required for negative shocks to trigger 

higher volatility, or the leverage effect. Equations (6.3) (6.4) are the conditional variance model 

in the Nikkei markets.  

6.3.3 The CCF test for testing causality-in-variance 

As noted earlier, the CCF test consists of two stages. In the first stage, univariate time series 

models are estimated that allow for time variation in the conditional mean and conditional 

variance. In the second stage, the squared residuals standardised by conditional variances are 

constructed and the cross-correlation functions are calculated to test the null hypothesis of no 

causality-in-variance. Consistent sample estimates of the models, and sample estimators of the 

squared standardised residuals should be used in practice. In my study, the series {ηt
2} obtained 

from estimating the ESTECM-EGARCH in the first stage is used to calculate the sample 

cross-correlation. For a bilateral pair of futures prices (f1, f2), as an example, denote 2
1,tη , 2

2,tη as 

their respective squared standardised residuals.88 The sample cross-correlation coefficient at 

lag l, r1,2(l), is computed as: 

                                                        
87 Model residuals are checked for excessive ARCH effects. If an EGARCH (2, 1) model is found necessary to remove the 
excessive ARCH effects, equation (6.4) is modified to: 2 2

1 1 1 1 1 2 2 2 1ln ( / ) / / lnt t t t t t t tu a u a u bσ ω l σ σ σ σ− − − − − − −= + + + + , where 

the impact of price innovations is a linear combination of λ, a1 and a2. The predictive asymmetry exists if λ<0.  
88 Note that 2

1,tη , 2
2,tη , 2

1η , 2
2η and r1,2(l) in the context are all estimated from samples; I omit the “^” symbol used to denote 

estimated values for simplicity. 
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1,2
1,2

1,1 2,2

( )
( )

(0) (0)
c l

r l
c c

=  

where c1,2(l) is the sample cross-covariance at lag l, given by   

( )( )2 2 2 2
1,2 1, 1 2, 2

1( ) t t lc l
T

η η η η−= − −∑ , l=0, ±1, ±2,..., 

and c1,1(0), c2,2(0) are the sample variances of 2
1,tη , 2

2,tη , respectively; T is the sample size.  

 

Under regularity conditions, Cheung and Ng (1996) prove that: 

( ) ( )1,2 1 1,2( ),..., ( ) ,mT r l r l N→ m0 I  

as T→∞, where l1,…,lm are m different integers. To test for causality-in-variance at a specified 

lag l, the test statistic ( )1,2 ( )T r l is compared with a standard normal distribution. If it falls 

outside the critical values of the standard normal distribution at a certain significance level, I 

reject the null hypothesis of no causality-in-variance and find evidence of cross-border 

volatility interactions. If all cross-correlations of squared standardised residuals at all possible 

lags are not significantly different from zero, then there is no causal relationship in variance. 

The CCF test for the Nikkei spot-futures pairs can be conducted analogously. 

6.3.4 Estimation procedure 

The two-stage approach of Cheung and Ng (1996) is followed to examine the second-moment 

causal relationships in the Nikkei markets. The first stage of the CCF test involves estimating 

conditional mean and conditional variance models. The estimation of the ESTECM, equations 

(6.1a) (6.1b) and (6.2a) (6.2b), is by nonlinear least squares (NLS). The model restriction 

k*=c*=0 is imposed because the adjusted price returns ∆st, ∆ft and ∆f1,t, ∆f2,t do not contain 

constants, and the transition functions are usually centred at zero. The error correction term zt-1 

is represented by the log-basis bt
* at lag 1, or by the futures price differentials (f1 - f2) at lag 1, 

both detrended and free of outliers. The transition variable zt-d has a delay parameter d=1.89 To 

provide a scale-free environment for the nonlinear parameters, I standardise the smoothness 

parameter γ by dividing it by the sample variance of zt-d, and standardise the asymmetry 

parameter θ by dividing it by the sample standard deviation of zt-d. The standardisation is a 
                                                        
89 The delay parameter d=1 is determined by linearity tests and model evaluations. See section 5.5.1, Chapter 5 for details. 
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common practice in studies with smooth transition models (e.g. Teräsvirta, 1994; Anderson, 

1997).  

 

To estimate the model lag p in the ESTECM, I follow Haggan and Ozaki (1981) to grid search 

for possible combinations of (γ, θ). With fixed (γ, θ), the ESTECM becomes linear, and the 

resultant linear model is estimated with different lags. The model lag p is determined as the lag 

that yields the minimal Akaike Information Criterion (AIC); also, that minimum needs to be 

stable for different combinations of (γ, θ). The NLS estimation of the ESTECM is equivalent to 

maximum likelihood if the model residual ut is assumed to be normally distributed; otherwise 

the NLS estimates can be interpreted as quasi-maximum likelihood estimates (van Dijk et al., 

2002).90 The NLS estimates are conditional upon starting values. A two-dimensional grid 

search over γ and θ is performed to obtain different sets of starting values. Among the models 

whose algorithms converge and parameter estimates look reasonable, the final model is decided 

as the one with the lowest residual variance. The estimation of EGARCH, equations (6.3) (6.4), 

is by quasi-maximum likelihood to generate consistent estimates under the assumption of 

conditional t-distribution. The joint estimation of the ESTECM as the conditional mean and the 

EGARCH as the conditional variance is difficult. Instead, I first estimate the ESTECM, and 

then estimate the EGARCH using the residual obtained from the ESTECM. The separate 

estimation is in the spirit of Chan and McAleer (2002) and would not bias the models. See 

section 5.5.2, Chapter 5 for more details. 

 

Results of the ESTECM-EGARCH are reported in Table 5.9 and Table 5.12 in Chapter 5. 

Analyses of these results are given in section 5.6, Chapter 5 and thus are not repeated here. As 

Cheung and Ng (1996) point out, autocorrelations in standardised residuals or in their squares 

affect the size of the CCF test. I apply Ljung-Box (1978) Q-statistics for ηt and ηt
2 to check the 

model adequacy and find that there are no remaining residual autocorrelations or excessive 

ARCH effects, as seen in Panel B of Table 5.9 and Table 5.13, Chapter 5. Hence, I believe that 

the proposed ESTECM-EGARCH framework is able to reasonably describe the dynamics 

                                                        
90 For conditions of consistency and asymptotical normality of the NLS estimates I refer to Klimko and Nelson (1978) and 
Tong (1990). 



 239 

inherent in the data, and construct the series of squared standardised residuals and calculate 

sample cross-correlation coefficients as required in the second stage of the CCF test. 

 

The longest lag l in the CCF test is selected to be 10. This is because the maximal lag length p 

in the conditional mean model is 4 (Table 5.9 in Chapter 5), suggesting that the Nikkei price 

dependence lasts for approximately a week. Although causality-in-variance can exist with or 

without causality-in-mean, many studies report that the second-moment dependence is much 

stronger than the first-moment dependence, e.g. Hamori (2003). Therefore, I extend the longest 

lag in the cross-correlation functions to 10 trading days to allow for the probably more 

influential, persistent volatility interactions in the Nikkei markets. However, lags longer than 

10 are not investigated as I do not think that major second-moment dependence would last for 

more than two weeks, considering the development of technology in futures trading. 10 lags 

should be sufficiently long for capturing any volatility spillovers between the Nikkei series. As 

a result of calculating the cross-correlations for up to 10 lags, I discard 10 observations at each 

end of each sample to keep the sample size T fixed, such that the sample means, sample 

variances of the squared standardised residuals are also fixed for different lags l. 
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6.3.5 The CCF test results 

6.3.5.1 Spot-futures volatility interactions 

Table 6.2 shows the sample cross-correlation coefficients of the squared standardised 

residuals estimated from the ESTECM-EGARCH model in individual Nikkei markets. The 

“lag” refers to a positive l, i.e. the number of periods the Nikkei futures market lags behind 

the underlying stock market. The “lead” refers to a negative l, i.e. the number of periods the 

Nikkei futures market leads the underlying stock market. Statistically significant 

cross-correlations indicate rejecting the null hypothesis of no causality-in-variance and thus 

spot-futures volatility interactions. Significant cross-correlation at a certain lag suggests 

volatility spillovers from spot to futures, while significant cross-correlation at a certain lead 

suggests volatility spillovers from futures to spot. Note that the Nikkei spot and CME returns 

are not synchronised in time while performing the CCF test, i.e. the spot on day t is aligned 

with the CME on day t, because the different trading hours between the two markets are not 

important on a daily basis (see section 4.2.4, Chapter 4), and because studies on international 

volatility linkages tend to use same-day data, not merely those using the CCF method, e.g. 

Fung et al. (2001), Hamori (2003). As such, significant cross-correlations at lag 0 are 

interpreted as contemporaneous relationships, and significant cross-correlations at other leads 

and lags are interpreted as lead-lag relationships in volatility, in the CME the same way as in 

the OSE and SGX. 

 

The most obvious finding of Table 6.2 is the high level and strong significance of the sample 

cross-correlations at lag 0 in all Nikkei spot-futures pairs. The contemporaneous correlations 

are over 0.9 in the OSE and SGX, and about 0.6 in the CME, all significant at the 5% level. 

The OSE has the highest spot-futures correlation at 0.98 in sample B, and there is an increase 

in the contemporaneous correlation from sample A to sample B in all the markets. At 

non-zero leads and lags, the cross-correlations are much smaller in magnitude, and many of 

them are not significant. This means that the contemporaneous spot-futures relationships are 

the most important and much information is transmitted between the Nikkei spot and futures 
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markets simultaneously.  

 

As shown in Table 6.2, there exist volatility feedbacks in both samples between the Nikkei 

spot and the OSE. The Nikkei spot causes the OSE in variance at lag 7 and the OSE causes 

the spot in variance at lag 3 in the pre-crisis period, and the two-way causal relationships are 

at lag 9 in the post-crisis period, although it is less easy to identify the direction in which the 

causality is stronger. The SGX has a similar causation pattern. The Nikkei spot has a spillover 

effect on the SGX at lags 1 and 7, and the SGX has a spillover effect on the spot at lag 3 in 

sample A. In sample B, the bidirectional volatility spillovers are found at lag 9. The larger 

size and stronger significance of the lead implies stronger causality-in-variance running from 

the futures, and thus the futures’ leadership in volatility transmission; however, this may not 

matter much for investors as it is 9 trading days afterwards. The lead-lag relationships in 

volatility between the spot and the CME are somewhat different. The cross-correlations at lag 

1 in sample A are both significant at the 5% level, suggesting an important information 

transmission channel between the two markets. Before the crisis, spot leads futures in 

variance at lag 1, and futures leads spot in variance up to lag 7. After the crisis, spot causes 

futures in variance at lag 8, and the reverse causality occurs at lag 4. Despite volatility 

feedbacks, there is again some evidence that causality-in-variance and information flows 

originating from the futures market are stronger. 
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Table 6.2 Sample cross-correlations of squared standardised residuals for individual 
Nikkei spot-futures pairs 
 

l Lag Lead Lag Lead Lag Lead 

  S and OSE(+l) S and OSE(-l) S and SGX(+l) S and SGX(-l) S and CME(+l) S and CME(-l) 

Sample A      
0 0.9478**  0.9371**  0.5681**  
1 -0.0288  0.0136  -0.0346*  0.0167  0.0429**  0.0382**  
2 -0.0201  -0.0129  -0.0250  -0.0151  0.0170  -0.0154  
3 0.0295  0.0366*  0.0242  0.0367*  0.0141  0.0099  
4 -0.0034  -0.0126  -0.0046  0.0156  0.0040  0.0385**  
5 0.0002  -0.0143  0.0010  -0.0065  -0.0096  0.0142  
6 0.0135  0.0219  0.0050  0.0025  0.0297  0.0026  
7 0.0377**  0.0258  0.0348*  0.0255  0.0285  0.0441**  
8 0.0005  -0.0068  0.0051  -0.0053  0.0029  0.0032  
9 -0.0083  0.0130  -0.0124  0.0103  0.0114  -0.0089  
10 0.0178  0.0071  0.0087  -0.0060  -0.0174  0.0005  
       

Sample B      
0 0.9805**  0.9529**  0.5998**  
1 0.0063  0.0149  0.0064  0.0088  0.0168  0.0391  
2 0.0037  0.0169  -0.0023  0.0133  0.0000  0.0219  
3 -0.0108  -0.0046  -0.0015  -0.0071  0.0284  0.0179  
4 -0.0234  -0.0198  -0.0181  -0.0125  -0.0027  0.0512*  
5 0.0122  0.0239  0.0173  0.0408  0.0044  0.0173  
6 -0.0054  -0.0053  0.0086  0.0008  -0.0320  0.0026  
7 0.0032  0.0133  0.0005  0.0084  -0.0080  -0.0106  
8 0.0073  0.0097  0.0043  0.0059  0.0452*  0.0007  
9 0.0456*  0.0475*  0.0435*  0.0640**  0.0082  -0.0069  
10 -0.0202  -0.0208  -0.0205  -0.0139  0.0281  0.0057  

Notes: This table shows the sample cross-correlation coefficients of the squared standardised residuals 
estimated from the ESTECM-EGARCH model (Table 5.9) for individual spot-futures pairs. The “lag” refers 
to a positive l, i.e. the number of periods the Nikkei futures market lags behind the underlying stock market. 
The “lead” refers to a negative l, i.e. the number of periods the Nikkei futures market leads the underlying 
stock market. ** denotes significance at the 5% level. * denotes significance at the 10% level. 
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Table 6.3 Sample cross-correlations of squared standardised residuals for bilateral Nikkei 
futures pairs 
 

  (OSE, SGX) (OSE, CME) (SGX, CME) 

l Lag Lead Lag Lead Lag Lead 
  SGX and OSE(+l) SGX and OSE(-l) CME and OSE(+l) CME and OSE(-l) CME and SGX(+l) CME and SGX(-l) 

Sample A 
0 0.9842**  0.6100**  0.6072**  
1 0.0185  0.0156  0.0525**  -0.0118  0.0637**  -0.0066  
2 -0.0170  -0.0223  0.0095  0.0061  0.0042  0.0056  
3 0.0157  0.0124  0.0143  0.0095  0.0121  0.0101  
4 -0.0095  -0.0132  0.0460**  0.0171  0.0415**  0.0144  
5 -0.0086  -0.0123  0.0162  0.0017  0.0169  -0.0019  
6 0.0053  0.0027  -0.0078  0.0162  -0.0086  0.0166  
7 0.0235  0.0236  0.0452**  0.0182  0.0403**  0.0212  
8 0.0041  0.0048  -0.0133  0.0024  -0.0101  0.0019  
9 -0.0032  0.0015  0.0154  0.0029  0.0109  -0.0009  
10 0.0108  0.0023  0.0167  -0.0135  0.0169  -0.0111  
       

Sample B 
0 0.9901**  0.6379**  0.5894**  
1 -0.0049  -0.0056  0.0242  0.0294  0.0096  0.0537*  
2 0.0152  0.0055  0.0374  -0.0054  0.0213  -0.0101  
3 -0.0005  0.0076  0.0523*  0.0228  0.0511*  0.0178  
4 0.0177  0.0090  0.0227  -0.0025  0.0280  -0.0085  
5 -0.0145  -0.0165  0.0066  -0.0179  0.0048  -0.0195  
6 0.0177  0.0219  0.0048  -0.0122  0.0104  -0.0097  
7 0.0006  0.0014  -0.0006  -0.0138  -0.0030  -0.0084  
8 0.0380  0.0280  0.0059  0.0334  -0.0015  0.0403  
9 0.0434  0.0509*  -0.0124  -0.0092  -0.0074  -0.0130  
10 -0.0064  -0.0055  0.0240  0.0323  0.0329  0.0334  

Notes: This table shows the sample cross-correlation coefficients of the squared standardised residuals 
estimated from the ESTECM-EGARCH model (Table 5.12) for bilateral futures pairs (f1, f2). The “lag” refers 
to a positive l, i.e. the number of periods market 1 lags behind market 2. The “lead” refers to a negative l, i.e. 
the number of periods market 1 leads market 2. ** denotes significance at the 5% level. * denotes 
significance at the 10% level. 
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6.3.5.2 Cross-border futures volatility interactions 

Table 6.3 gives the sample cross-correlation coefficients of the squared standardised residuals 

estimated from the ESTECM-EGARCH model across the Nikkei futures markets. For each 

bilateral futures pair (f1, f2), the “lag” refers to a positive l, i.e. the number of periods market 1 

lags behind market 2. The “lead” refers to a negative l, i.e. the number of periods market 1 

leads market 2. Statistically significant cross-correlations indicate rejecting the null hypothesis 

of no causality-in-variance and therefore cross-border volatility spillovers. For example, the 

OSE is the market 1 and the SGX is the market 2 in the pair (OSE, SGX). Significant 

cross-correlation at a certain lag suggests volatility spillovers from the SGX to the OSE, while 

significant cross-correlation at a certain lead suggests volatility spillovers from the OSE to the 

SGX. As in the previous table, I do not synchronise the OSE, SGX returns and the CME returns 

in time, i.e. the OSE or SGX on day t is aligned with the CME on day t. To consider the effect 

of time differences, the ESTECM-EGARCH model is re-estimated with an alternative time 

sequence whereby the OSE or SGX on day t is matched with the CME on day t-1 such that the 

CME becomes the earliest trading market in the sequence, but this leads to severe model 

problems such as poorly conditioned estimates and excessive residual autocorrelations in the 

CME (results not reported; see section 5.7, Chapter 5). As a consequence, the CME squared 

standardised residuals cannot be generated to carry out the CCF test and timing issues are 

ignored here. For all the futures pairs, significant cross-correlations at lag 0 are interpreted as 

contemporaneous relationships, and significant cross-correlations at other leads and lags are 

interpreted as lead-lag relationships in volatility across the border. 

 

Similar to the results in individual Nikkei markets, the cross-correlation coefficients at lag 0 are 

high and strongly significant across the Nikkei futures markets, as displayed in Table 6.3. The 

contemporaneous correlations between the OSE and the SGX are higher than 0.98 in sample A 

and 0.99 in sample B, implying that the information transmission between the OSE and the 

SGX is almost simultaneous. The very close link between the two futures is not surprising as 

they are based on the same index, and use the same currency and time zone. The CME 
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correlations are relatively lower, at around 0.6. Moreover, there is an increase in the OSE 

contemporaneous correlations, and yet a slight decrease in the SGX-CME contemporaneous 

correlations in recent years. Overall, the Nikkei cross-correlations at lag 0 are far more 

important than those at other leads and lags, in terms of size and significance. Consistent with 

the results in individual spot-futures pairs, the CCF test indicates that the majority of 

information is transmitted across the Nikkei futures markets in a simultaneous manner. 
 

In Table 6.3, the CCF test results for the pair (OSE, SGX) suggest that there is no evidence of 

causality-in-variance between the two futures, except that the OSE causes the SGX in variance 

at lag 9 in the post-crisis sample. But the only causal relationship may not be of practical 

importance to investors as it occurs 9 trading days later. The virtual absence of cross-market 

spillovers between the OSE and the SGX again implies that information is shared almost 

simultaneously between the two markets within the same day. Different are the cross-market 

causation patterns related to the CME futures. For the pair (OSE, CME), the CME causes the 

OSE in variance at lags 1, 4 and 7 in sample A, at lag 3 in sample B. Yet I do not find evidence 

of reverse causality. The CCF test results for the pair (SGX, CME) indicate that the CME leads 

the SGX in variance up to lag 7 in sample A, and that volatility spillovers are bidirectional in 

sample B: the CME causes the SGX in variance at lag 3 and the SGX causes the CME in 

variance at lag 1. The causal relationships between the CME and the OSE or SGX are 

somewhat stronger in the pre-crisis period than in the post-crisis period. 

 

The above results can be sorted as CME>SGX>OSE, in terms of information leadership in 

descending order in the volatility transmission mechanism across the Nikkei futures markets. 

The CME has the strongest influence on the other markets, in that the CME has a spillover 

effect on the other markets up to lag 7 and the reverse spillover effect is weaker. The SGX is 

second to the CME for I find evidence of the SGX causing the CME in variance at lag 1 in 

sample B. In contrast, the OSE tends to lag behind the CME and SGX in transmitting volatility. 

Recall that the foreign Nikkei futures markets (the CME and SGX) play a leading role in the 

first-moment information transmission process (see section 5.8, Chapter 5). The CCF test 

results consistently show that they still lead the domestic futures market (the OSE) in the 
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second-moment information transmission process. The information advantage of the foreign 

futures markets can be mainly attributed to the more lenient trading environment they provide, 

such as longer trading hours and lower transaction costs. Therefore, I repeatedly support the 

international centre hypothesis that global financial centres are likely to dominate cross-border 

information dissemination - in fact, I find that the dominance exists in both first-moment price 

discovery and second-moment volatility spillovers in the Nikkei markets. 

 

To summarise, the volatility causation patterns in the Nikkei markets are as follows. First, the 

contemporaneous relationships are much more important than any lead-lag relationships in 

volatility, which means that the majority of information is impounded into the Nikkei markets 

simultaneously. Second, in individual Nikkei markets, volatility spillovers are bidirectional, 

with some evidence that the information flows from the futures market are stronger. Third, 

across the Nikkei futures markets, the CME causes the other markets in variance the most 

strongly and thus enjoys the information leadership; foreign Nikkei futures exchanges, the 

CME and SGX, act as the main source of information flow in the cross-border information 

transmission process. Using the CCF method, I find that multivariate GARCH models are 

appropriate for my data as volatility interactions are present in and across the Nikkei markets. 

The critical importance of the contemporaneous relationships justifies the DCC multivariate 

GARCH specifications to be employed in the next section.  

6.4 The dynamics of Nikkei conditional correlations 

Univariate GARCH models have been applied so far to investigate volatility dynamics in the 

univariate setting. They are, however, unable to depict the variances and covariances of several 

assets jointly. More often than not, information hits several assets simultaneously, and asset 

volatilities move together and affect each other. For example, the CCF test suggests volatility 

feedbacks between the Nikkei spot and futures markets, i.e. volatility shocks to the Nikkei 

futures intensify the underlying stock volatility, and vice versa. Moreover, asset managers may 

wish to construct well diversified portfolios for different kinds of assets, in which case the 

covariances and correlations among these assets become crucial. Multivariate GARCH models 
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are used in this section to model the volatilities and volatility co-movements of the Nikkei 

series. In particular, I select the DCC multivariate GARCH model of Engle (2002). The 

contemporaneous relationships between the Nikkei volatilities are the most important, based on 

the CCF test in the previous section. Following this, one would naturally ask how the 

contemporaneous market linkages evolve over time. An understanding of the time-varying 

dynamics of Nikkei conditional correlations is essential for investors as changes in the 

volatility co-movements necessitates changes in their strategies of international portfolio 

management. This is even more relevant for regulators, as fluctuations in the conditional 

correlations are indicative of changes in the market stability and integration in the global 

context. 

 

The DCC model is a standard method in the literature for estimating volatility co-movements 

among markets. It allows the conditional correlations to evolve over time, such that the 

time-varying dynamics of the interrelations among the Nikkei volatilities are not lost as in the 

Constant Conditional Correlation (CCC) model of Bollerslev (1990) which assumes that the 

conditional correlations are time-invariant. The DCC model has an advantage over other 

multivariate GARCH models such as VECH of Bollerslev et al. (1988) and BEKK of Engle 

and Kroner (1995) for involving far less parameters; in a bivariate DCC-GARCH (1, 1) model, 

for instance, only nine parameters need to be estimated within the whole framework. 

Estimation of the DCC model consists of two separate stages, and the two-stage parameter 

estimates are consistent and asymptotically normal (Engle and Sheppard, 2001). The parsimony 

and tractability of the DCC model outweighs its potential drawback that the conditional 

correlations in the DCC model obey the same dynamics regulated by two scalar parameters, 

which is difficult to justify when the number of variables is large (Bauwens et al., 2006). This 

should not be a problem in this study anyway, as I will examine the dynamics of Nikkei 

conditional correlations in a bivariate system, or in other words, for individual spot-futures 

pairs and bilateral futures pairs.   
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6.4.1 The bivariate DCC-GARCH (1, 1) framework 

Let rt be the 2×1 vector of asset returns in a given spot-futures pair or futures-futures pair at 

time t; Ωt-1 the information set available at time t-1; ut the 2×1 vector of residuals; ηt the 2×1 

vector of standardised residuals assumed to be iid with zero mean and identity variance. The 

bivariate DCC-GARCH (1, 1) framework can be represented as follows: 

 1( )tE −= Ω +t t tr r u  (6.5) 

 =t t tu H η  (6.6)  

 =t t t tH D R D  (6.7)  

 = *-1 *-1
t t t tR Q Q Q  (6.8) 

Equation (6.5) is the conditional mean model. Based on Chapter 5 and the CCF analysis above, 

a natural candidate for the conditional mean is the smooth transition model, equations (6.1a) 

(6.1b) and (6.2a) (6.2b). However, preliminary estimations show that they are difficult to 

converge in the multivariate GARCH context, irrespective of the use of different starting values 

or optimisation algorithms. To deal with the problem, I tried to estimate the smooth transition 

models without GARCH models at first, and then estimate the bivariate GARCH using the 

residuals obtained from the smooth transition models. Unfortunately, estimating smooth 

transition models alone without GARCH effects turns out to be problematic, as neglected 

heteroskedasticity does affect the lag parameters of the smooth transition models and hence the 

residuals of the smooth transition models. Therefore, I impose an additional restriction, γ=0 

(zero smoothness parameter), on the smooth transition models to assist convergence. With the 

restriction, equations (6.1a) (6.1b) reduce to the following linear error correction model (ECM) 

for individual Nikkei spot-futures pairs:91 

                                                        
91 Note that the error correction term zt-1 should be included in both the linear and nonlinear parts of a complete specification 
of the ESTECM to allow for error corrections in the middle regime and the outer regime. If that is the case, with γ=0, equations 
(6.1a) (6.1b) collapse exactly to equations (6.9a) (6.9b), (6.2a) (6.2b) exactly to equations (6.10a) (6.10b). However, I decide to 
retain zt-1 only in the nonlinear section, or the outer regime of the ESTECM for the following reasons: a) arbitrage would be too 
costly to exist for small pricing errors zt-1 in the middle regime, yet arbitrage is expected to be active for large zt-1 in the outer 
regime, and so the error correction in the outer regime is more interesting and deserves more attention; b) the ESTECM is 
simpler to estimate with one error correction term; c) this is the practice in most studies with the ESTECM. This explains why, 
with γ=0, equations (6.1a) (6.1b) and (6.2a) (6.2b) merely reduce to a linear ECM that appears without an error correction term. 
I retain the error correction term in equations (6.9a) (6.9b) and (6.10a) (6.10b). 
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t s ss j t j sf j t j s t s t
j j
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= =

∆ = + ∆ + ∆ + +∑ ∑  (6.9a) 
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p p

t f fs j t j ff j t j f t f t
j j

f k s f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑  (6.9b) 

Similarly, equations (6.2a) (6.2b) reduce to the following linear ECM under the restriction γ=0, 

for bilateral Nikkei futures pairs:   

        1, 1 11, 1, 12, 2, 1 1 1,
1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑  (6.10a) 

 2, 2 21, 1, 22, 2, 2 1 2,
1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑  (6.10b) 

The linear ECM is a simple specification to describe the dynamics in the Nikkei price returns. 

Although some dynamics such as the regime-switching nature is ignored, the linear ECM is 

still appropriate in this context, because the error correction term is preserved whose coefficient 

α measures the speed of adjustment towards long-run equilibrium. Estimating the linear ECM 

by OLS will also be much easier than estimating the ESTECM by NLS which entails a grid 

search for starting values, and thus I can focus more on the second-moment dynamics exhibited 

by conditional variances and conditional correlations. The DCC literature often uses a simple, 

linear conditional mean such as constant mean, AR and reduced-form VAR, as long as it is able 

to fit the data, e.g. Koch (2014), Jones and Olson (2013). I apply the linear ECM to the Nikkei 

series and report no autocorrelations or remaining ARCH effects in the model residuals (see 

Table 5.7 and Table 5.13, Chapter 5). Therefore, the restricted ESTECM or linear ECM, 

equations (6.9a) (6.9b) and (6.10a) (6.10b), will act as the conditional mean model (6.5) in 

individual Nikkei markets and across the Nikkei futures markets, respectively.    

 

The residual vector ut has a 2×2 full rank conditional variance-covariance matrix Ht, as shown 

in equation (6.6). The elements of Ht are conditional variances and covariances estimated from 

univariate GARCH-class models. EGARCH models were used as the conditional variance 

model for asymmetric and exponential considerations. The conditional variance model was the 

same for all Nikkei series when results of the conditional mean were of interest; a fixed 

conditional variance model enables me to compare the mean results among different markets, 
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eliminating the possibility that any differences might come from the differences in the 

conditional variance specifications. Since I specially focus on the conditional variances here 

(thus the linear ECM acts as the conditional mean for all the series), I no longer want to limit 

the conditional variance model to EGARCH. Instead, I use the AIC and Schwartz Bayesian 

Criterion (SBC) to select the univariate conditional variance model for each spot-futures pair 

and futures-futures pair, from the most commonly used GARCH-class models. These models 

include GARCH, GJR-GARCH and EGARCH models, all at the order (1, 1). An EGARCH (1, 

1) specification is given by equations (6.3) (6.4). Let σt
2 be the conditional variance as in 

equation (6.3), a GARCH (1, 1) model of Bollerslev (1986) is given as below: 

 2 2 2
1 1t t tau bσ ω σ− −= + +  (6.11) 

where ω>0; a≥0; b≥0; a+b<1. I consider the GARCH (1, 1) process as it is simple enough to 

provide a benchmark for other candidate conditional variance models. However, it is not able to 

allow for the different impacts of good news and bad news on volatility, or the leverage effect. 

Such predictive asymmetry can be found in the EGARCH and GJR-GARCH processes. A 

GJR-GARCH (1, 1) model of Glosten et al. (1993) can be represented as: 

 2 2 2 2
1 1 1 1t t t t tau I u bσ ω l σ− − − −= + + +  (6.12) 

where the dummy variable It-1=1 if ut<0 and 0 otherwise. The coefficient λ sheds light on the 

presence of the leverage effect. For a positive shock, ut-1/σt-1>0, It-1=0, the impact of the 

positive shock on σt
2 is a; for a negative shock, ut-1/σt-1<0, It-1=1, the impact of the negative 

shock on σt
2 is (a+λ) (Enders, 2010). Thus, provided that λ>0, a negative shock increases 

volatility more than a positive shock of the same magnitude.   

 

Equation (6.7) shows a possible decomposition of Ht. Dt is the 2×2 diagonal matrix of 

conditional standard deviations estimated from univariate GARCH-class models, or Dt = 

diag(σ1t, σ2t). Rt is the time-varying conditional correlation matrix with 1 on the diagonal, 

conditional correlation coefficients ρ12,t off the diagonal. Engle (2002) and Engle and Sheppard 

(2001) suggest estimating Ht in two separate stages. Univariate GARCH-class models are 

selected and estimated in the first stage, and the univariate residuals divided by their standard 

deviations estimated in the first stage are used to estimate the conditional correlations in the 
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second stage. The two-stage estimation maintains the consistency and asymptotic normality of 

the parameter estimates in the DCC model. 

 

The estimation of the conditional correlations is based on equation (6.8), which governs the 

evolution of Rt. For the positive definiteness of Ht, it is sufficient to require Rt to be positive 

definite. For the positive definiteness of Rt, I only need to ensure that Qt in equation (6.8) is 

positive definite (Engle and Sheppard, 2001). 1 1(1 ) t tm n mu u n− −′= − − + +t t-1Q Q Q , where Q is 

the 2×2 unconditional correlation matrix of the standardised residuals, and m, n are scalar 

parameters that provide a GARCH-like dynamic structure for Qt: m captures the impact of past 

shocks and n captures the impact of past dynamic correlations. The positive definiteness of Qt 

and hence the positive definiteness of Ht is satisfied if m, n are non-negative, and have a sum 

less than 1. If m+n=0, the correlations are constant in time, and the DCC reduces to the CCC 

model of Bollerslev (1990). 11, 22,( , )t tdiag q q=*Q  is the 2×2 diagonal matrix that contains 

the square roots of the diagonal elements of Qt. Given the positive definiteness of Qt, Q* 

guarantees that Rt is a conditional correlation matrix with 1 on the diagonal, ρ12,t off the 

diagonal no larger than 1 in absolute value (Cappiello et al., 2006). The conditional correlation 

coefficient is calculated as 12, 12, 11, 22,t/t t tq q qρ = in Rt, which is of my primary interest. 

6.4.2 The DCC estimation 

I apply the two-stage approach of Engle (2002) and Engle and Sheppard (2001) to estimate the 

bivariate DCC models in the Nikkei markets. Initially, the linear ECM, equations (6.9a) (6.9b) 

and (6.10a) (6.10b), act as the conditional mean model for Nikkei spot-futures pairs and 

bilateral futures pairs, respectively. The SBC selects the lag parameter p=1 for spot-futures 

pairs, with which the mean residuals are not autocorrelated. The SBC still selects p=1 for 

bilateral futures pairs, but this seems too short to capture the price dynamics related to the 

CME. I then consider the AIC which suggests p=7 (sample A) and p=4 (sample B). With 7 

(sample A) and 4 (sample B) lags the mean residuals are not autocorrelated, and thus 7 (sample 

A) and 4 (sample B) lags are used in the conditional mean for bilateral futures pairs.    
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The first stage of the DCC estimation procedure involves specifying and estimating univariate 

conditional variance models. The AIC and SBC are used to select from univariate GARCH, 

GJR-GARCH and EGARCH models for each pair. In addition, the selected models should be 

well specified, i.e. the univariate residuals should not exhibit remaining autocorrelations or 

ARCH effects. In the course of estimating the univariate models, the Nikkei returns are 

assumed to be conditionally normal, i.e. rt|Ωt-1~N(0,Ht), and the estimation is by 

quasi-maximum likelihood with Bollerslev-Wooldridge (1992) robust standard errors and 

covariance; however, if a model fails to converge under the normality assumption, then a 

conditional t-distribution is assumed, because distributional assumptions do not affect the 

consistency and asymptotic normality of the DCC estimates (Engle and Sheppard, 2001). The 

optimisation algorithm is Berndt-Hall-Hall-Hausman (BHHH). The selection results are shown 

in Table 6.4. The GJR-GARCH models are selected in most cases, and the GARCH models are 

selected for the spot-OSE pair and for the OSE-SGX pair in sample B.  

 

The second stage of the DCC estimation procedure involves estimating the parameters of 

dynamic correlations from the univariate residuals standardised by their standard deviations 

estimated during the first stage. The DCC-GJR-GARCH (1, 1) models are fitted in most cases, 

and the DCC-GARCH (1, 1) models are fitted for the spot-OSE pair and for the OSE-SGX pair 

in sample B. As with univariate models, a bivariate conditional normal distribution is assumed, 

or a bivariate conditional t-distribution is assumed provided that a DCC model fails to converge 

under the normality assumption. The DCC estimation is by (quasi-)maximum likelihood. The 

optimisation algorithm is BHHH. Model adequacy is checked by the ARCH-LM test of Engle 

(1982). Likelihood ratio tests are performed to test the null hypothesis of constant correlation 

against the alternative hypothesis of DCC.  

 

Prior to analysis of the DCC results, it is noteworthy that the default time sequence is applied in 

the DCC estimation in which the CME returns on day t is aligned with any other market returns 

on day t. The different trading hours of the CME futures are ignored at the moment, and the 

Nikkei futures markets are assumed to be simultaneous. Section 6.4.5 examines the effect of 

the different trading hours of the CME futures on the DCC and provides the DCC estimation 
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results with the alternative time sequence whereby the CME returns on day t-1 is matched with 

any other market returns on day t.  

 

Table 6.4 Univariate GARCH-class models 
 

Notes: This table shows the model selection results of the univariate GARCH-class models: GARCH, 
GJR-GARCH and EGARCH, all at the order (1, 1). The selection criteria are the AIC and SBC; in addition, 
the selected models should be well specified, i.e. the univariate residuals should not exhibit remaining 
autocorrelations or ARCH effects. 

6.4.3 The DCC results: spot-futures conditional correlations 

6.4.3.1 Spot-OSE 

Table 6.5 contains the DCC estimation results for the pair (spot, OSE). There is evidence of 

error correction dynamics in the conditional mean, as the error correction coefficients αs>0, 

αf<0 in sample A, and both are negative in sample B. In sample A, the error correction 

coefficients are significant in the two markets, indicating bidirectional causality-in-mean in the 

long run. In terms of the long-run speed of adjustment, αf is smaller than αs in magnitude and 

thus the futures market is quicker in transmitting price information. Besides, the significant 

autoregressive coefficient πsf suggests futures leading spot in the short run. In sample B, the 

significant and larger αf in magnitude suggests that the spot market is quicker in transmitting 

price information in the long run. Yet the significant autoregressive coefficients πsf and πfs 

suggest bidirectional causality-in-mean in the short run. The conditional variance is the 

GJR-GARCH (1, 1) model in the pre-crisis period. The asymmetry coefficients are 

significantly positive in the two markets, indicating the presence of the leverage effect, i.e. bad 

news increases market volatility more than equally sized good news. The GARCH (1, 1) model 

is selected for the post-crisis sample, which implies that the leverage effect may not be 

Models selected for spot-futures pairs   

 (Spot, OSE) (Spot, SGX) (Spot, CME) 
Sample A GJR-GARCH GJR-GARCH GJR-GARCH 
Sample B GARCH GJR-GARCH GJR-GARCH 

Models selected for futures-futures pairs  
 (OSE, SGX) (OSE, CME) (SGX, CME) 

Sample A GJR-GARCH GJR-GARCH GJR-GARCH 
Sample B GARCH GJR-GARCH GJR-GARCH 
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prevalent over the period in the two markets.  

 

In both samples, the DCC parameters in the conditional covariance equation are significant, 

which proves the time-varying nature of the conditional correlations between the two markets. 

The DCC parameters also imply strong effect of past dynamic correlations: the news parameter 

m is quite small while the persistence parameter n is large. The persistence of conditional 

correlations is an increasing function of (m+n) (Aielli, 2013), and this sum is close to 1, 

although it is still less than 1 so that the variance-covariance matrix Ht remains positive 

definite. Highly persistent conditional correlations are often reported in the DCC literature, e.g. 

Engle and Sheppard (2001). Nevertheless, I notice that the conditional correlations may have 

become less persistent in recent years, as the sum (m+n) reduces to a lower level in sample B. 

According to the ARCH-LM test, there is no evidence of any remaining ARCH effects in the 

model standardised residuals. The null hypothesis of constant correlation is strongly rejected by 

the likelihood ratio test.  

 

Figure 6.1 shows the conditional correlations between the two markets over time. The 

spot-futures correlations are high, with the average level of the DCC 0.9756 (sample A) and 

0.9845 (sample B). The correlations generally fluctuate within the two-standard-error bands, 

especially in the post-crisis sample. In sample A, the DCC series is a V-shaped curve with the 

sharpest spike during April-May 2000, close to the finishing time of the Japanese “Big 

Bang”.92 The decreasing spot-futures correlations during the “Big Bang” may be related to 

market adaptations to a set of deregulatory policies that sequentially came into effect in 

financial markets in Japan. As of the completion of the “Big Bang”, however, the spot-futures 

correlations show an overall uprising trend. The terrorist attacks on 11/09/2001 also cause a 

temporary drop of the spot-futures relationship but its effect is smaller and shorter than the 

“Big Bang” effect. In sample B, the correlations remain at a very high level with quite a few 

minor dynamics. The correlations between the two markets show a slightly decreasing trend 

over time.
                                                        
92 The Japanese “Big Bang” is a five-year financial deregulatory reform proposed by Japan’s government in November 1996, 
aimed at eliminating all partitions in Japanese financial markets no later than 2001. During the “Big Bang” period, a series of 
policies came into effect to remove barriers and increase competition among financial intermediaries (Flath, 2014). 
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Table 6.5 Estimation results of the DCC models: Spot and OSE 
 

Notes: This table contains the DCC estimation results for the pair (spot, OSE). The conditional mean is the linear ECM, equations (6.9a) (6.9b): 
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∆ = + ∆ + ∆ + +∑ ∑ . The first letter in the subscripts of the ECM parameters indicates the 

market to which the parameters belong: s means spot and f means futures, and this is omitted in the table presentation for brevity. But the second letter (if any) in the 
subscripts of the ECM parameters is retained in the table presentation. The conditional variance in sample A is the GJR-GARCH (1, 1), equations (6.3) and (6.12): 

t t tu σ η= , 2 2 2 2
1 1 1 1t t t t tau I u bσ ω l σ− − − −= + + + , where the dummy variable It-1=1 if ut<0 and 0 otherwise; the conditional variance in sample B is the GARCH (1, 1), 

equations (6.3) and (6.11): 
t t tu σ η= , 2 2 2

1 1t t tau bσ ω σ− −= + + . The conditional correlation is equation (6.8): = *-1 *-1
t t t tR Q Q Q , where 

1 1(1 ) t tm n mu u n− −′= − − + +t t-1Q Q Q . 
The DCC model adequacy is checked by the ARCH-LM test of Engle (1982) up to order 10, and the significance levels are in square brackets. The bottom line reports 
the likelihood ratio (LR) test statistics and the associated p-values of testing the null hypothesis of constant correlation (CCC) against the alternative hypothesis of 
DCC. 

 Spot Futures  Spot Futures 

Sample A     Sample B     
 Estimate t-stat Estimate t-stat  Estimate t-stat Estimate t-stat 

ECM coefficients     ECM coefficients     
k 0.0000 0.0472 0.0002 1.1047 k 0.0005  1.4116  0.0004  1.0234  
πs -0.2375 -3.4625 -0.0642 -0.9023 πs -0.5699  -3.9433  -0.3578  -2.4454  
πf 0.1988 2.8997 0.0163 0.2283 πf 0.5044  3.5129  0.2819  1.9396  
α 0.3313 3.7469 -0.2501 -2.7459 α -0.0640  -0.4191  -0.4779  -3.0926  

GJR-GARCH coefficients     GARCH coefficients     
ω 0.0000 4.6083 0.0000 4.9811 ω 0.0000  6.3900  0.0000  6.8898  
a 0.0360 5.4495 0.0293 4.4185 a 0.1082  12.3637  0.1051  12.8911  
b 0.9295 134.9893 0.9343 144.8005 b 0.8570  78.0296  0.8585  83.0827  
λ 0.0446 4.9952 0.0449 5.1977      

DCC-GJR-GARCH coefficients    DCC-GARCH coefficients    
m 0.0200 6.3113   m 0.0353  4.2636    
n 0.9789 282.0148   n 0.8927  22.3700    

m+n 0.9989    m+n 0.9280     
ARCH-LM(10) [0.4597] [0.8122] ARCH-LM(10) [0.2770]  [0.4448]  

          

Testing for CCC 
LR stat p-value 

Testing for CCC 
LR stat p-value 

75.2333 0.0000 16.3600  0.0001  
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Figure 6.1 Conditional correlations between Nikkei spot and OSE 
Notes: This figure shows the conditional correlations between the spot and OSE. “DCC” denotes the 
conditional correlations estimated from the DCC-GJR-GARCH (1, 1) model in sample A; the DCC-GARCH 
(1, 1) model in sample B. “CCC” denotes the constant correlations estimated from the CCC-GJR-GARCH (1, 
1) model in sample A; the CCC-GARCH (1, 1) model in sample B. “Lower” and “Upper” denote the 
two-standard-error lower and upper bands of the estimated DCC, respectively. The mean of the estimated 
DCC is 0.9756 (sample A) and 0.9845 (sample B). The estimated CCC is 0.9783 (sample A) and 0.9845 
(sample B).  
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Table 6.6 Estimation results of the DCC models: Spot and SGX 
  

Notes: This table contains the DCC estimation results for the pair (spot, SGX). The conditional mean is the linear ECM, equations (6.9a) (6.9b): 

, , 1 ,
1 1

p p

t s ss j t j sf j t j s t s t
j j

s k s f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑  ,
, , 1 ,

1 1

p p

t f fs j t j ff j t j f t f t
j j

f k s f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑ . The first letter in the subscripts of the ECM parameters indicates the 

market to which the parameters belong: s means spot and f means futures, and this is omitted in the table presentation for brevity. But the second letter (if any) in the 
subscripts of the ECM parameters is retained in the table presentation. The conditional variance is the GJR-GARCH (1, 1), equations (6.3) and (6.12): 

t t tu σ η= , 
2 2 2 2

1 1 1 1t t t t tau I u bσ ω l σ− − − −= + + +  , where the dummy variable It-1=1 if ut<0 and 0 otherwise. The conditional correlation is equation (6.8): = *-1 *-1
t t t tR Q Q Q , where 

1 1(1 ) t tm n mu u n− −′= − − + +t t-1Q Q Q . The DCC model adequacy is checked by the ARCH-LM test of Engle (1982) up to order 10, and the significance levels are in 
square brackets. The bottom line reports the likelihood ratio (LR) test statistics and the associated p-values of testing the null hypothesis of constant correlation (CCC) 
against the alternative hypothesis of DCC. 

 Spot Futures  Spot Futures 

Sample A     Sample B     
 Estimate t-stat Estimate t-stat  Estimate t-stat Estimate t-stat 

ECM coefficients     ECM coefficients     
k -0.0002 -0.9440 0.0000 0.0967 k 0.0007  1.7404  0.0004  0.9909  
πs -0.2228 -3.4709 -0.0548 -0.8268 πs -0.2744  -2.6352  -0.1254  -1.2023  
πf 0.2053 3.1432 0.0339 0.5017 πf 0.2136  2.0405  0.0654  0.6244  
α 0.4178 4.9313 -0.1810 -2.0625 α 0.2054  1.6244  -0.2899  -2.2899  

GJR-GARCH coefficients    GJR-GARCH coefficients    
ω 0.0000 6.2662 0.0000 7.9452 ω 0.0000  4.1721  0.0000  4.4345  
a 0.0403 7.6895 0.0287 6.0625 a 0.0624  3.8482  0.0595  3.9415  
b 0.9162 156.8142 0.9238 184.1715 b 0.8742  44.9796  0.8711  45.9876  
λ 0.0624 9.6084 0.0641 11.1277 λ 0.0459  2.3965  0.0512  2.7352  

DCC-GJR-GARCH coefficients    DCC-GJR-GARCH coefficients    
m 0.0326 10.4035   m 0.1111  5.4831    
n 0.9648 273.0598   n 0.7093  13.8930    

m+n 0.9974    m+n 0.8204     
ARCH-LM(10) [0.6437] [0.8687] ARCH-LM(10) [0.4155]  [0.1713]  

          

Testing for CCC 
LR stat p-value 

Testing for CCC 
LR stat p-value 

116.3013 0.0000 14.8967  0.0001  
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Figure 6.2 Conditional correlations between Nikkei spot and SGX 
Notes: This figure shows the conditional correlations between the spot and SGX. “DCC” denotes the 
conditional correlations estimated from the DCC-GJR-GARCH (1, 1) model. “CCC” denotes the constant 
correlations estimated from the CCC-GJR-GARCH (1, 1) model. “Lower” and “Upper” denote the 
two-standard-error lower and upper bands of the estimated DCC, respectively. The mean of the estimated 
DCC is 0.9747 (sample A) and 0.9674 (sample B). The estimated CCC is 0.9762 (sample A) and 0.9778 
(sample B).  
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6.4.3.2 Spot-SGX 

The DCC estimation results for the pair (spot, SGX) are provided in Table 6.6. In the 

conditional mean equation, the error correction coefficients are with expected signs, i.e. αs>0, 

αf<0, which is indicative of the error correction mechanism. In sample A, the error correction 

coefficients are significant in the two markets, suggesting bidirectional causality-in-mean in the 

long run. The fact that αf is smaller than αs in magnitude also suggests futures leading spot in 

reflecting price information. In the short run, the futures still plays a leading role in price 

discovery as πsf is significant. In sample B, the significant and larger αf in magnitude indicate 

spot leading futures in the long run, while the significant πsf indicates the primary role of the 

futures market in the short run. The conditional variance in both samples is described by the 

GJR-GARCH (1, 1) model. The significantly positive asymmetry coefficient λ indicates the 

more pronounced impact of bad news on volatility.  

 

Turning to the conditional covariance, I find that the DCC parameters are significant in both 

samples, meaning that the conditional correlations between the spot and futures vary through 

time. The large persistence parameter n suggests highly persistent conditional correlations 

between the spot and SGX. The sum (m+n) is over 0.99 in sample A, and this also confirms the 

persistent nature of the DCC between the two markets. However, I find that the sum reduces to 

around 0.82 in sample B, as a result of the decrease in the persistence parameter n. The 

relatively lower level of persistence in the conditional correlations may reflect the fact that 

information is disseminated more quickly in the two markets in the post-crisis period than in 

the pre-crisis period, and hence, the conditional correlation pattern exhibits more dynamics in 

sample B. The estimated DCC-GJR-GARCH (1, 1) models do not suffer from excessive ARCH 

in the standardised residuals. Furthermore, I test the null hypothesis of constant correlation, and 

the null hypothesis is rejected decisively in both samples.  

 

Figure 6.2 plots the conditional correlations between the two markets over time. The spot-SGX 

correlations are slightly smaller than the spot-OSE correlations, yet still high, with the average 

DCC 0.9747 (sample A) and 0.9674 (sample B). The spot-futures relationship is generally 
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stable, though at times it becomes temporarily loose, as represented by several spikes from 

2012. A detailed examination indicates a V-shaped correlation pattern in sample A. The deepest 

valley of the correlations occurs a few days after the terrorist attacks on 11/09/2001. The 

generally decreasing correlations between the spot and SGX during 1996-2000 is probably 

caused by the Japanese “Big Bang”, which also leads to the fall of the spot-OSE correlations at 

the same time. However, the DCC between the spot and SGX is apparently affected by the 9/11 

event to a larger extent than by the “Big Bang”. Given that the SGX is a global financial centre, 

worldwide incidents are more likely to exert a larger impact on the SGX, while the financial 

reforms at the national level are more likely to exert a larger impact on the Japanese markets. 

Moreover, it is interesting to observe that the switch from floor trading to electronic trading of 

the SGX Nikkei futures contracts on 01/11/2004 does not have a discernible effect on the 

conditional correlations between the spot and SGX. In sample B (note the scale difference), the 

volatility of the correlations increases over time, which is consistent with the lower level of 

persistence found in the correlation process over the sample, implying more rapid absorption of 

information shocks in the two markets. 

6.4.3.3 Spot-CME 

The DCC estimation results for the pair (spot, CME) are presented in Table 6.7. The error 

correction coefficients αs>0, αf<0 suggest the presence of error correction mechanism. Before 

the crisis, the error correction coefficients are significant in the two markets, showing the 

evidence of feedback in the mean. In terms of the long-run speed of adjustment, αf is smaller 

than αs in magnitude, and thus the futures leads the spot in price discovery. The autoregressive 

coefficients πsf and πfs are both significant, indicating bidirectional causality-in-mean between 

the spot and futures markets in the short run. After the crisis, the futures market plays a leading 

role in reflecting price information both in the long run (αf is insignificant and smaller than αs 

in magnitude) and in the short run (πsf is significant). The conditional variance is the 

GJR-GARCH (1, 1) specification. The volatility asymmetry coefficients are significantly 

positive in the two markets, which is indicative of the presence of the leverage effect. 
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Table 6.7 Estimation results of the DCC models: Spot and CME 
 

 Spot Futures  Spot Futures 
Sample A     Sample B     

 Estimate t-stat Estimate t-stat  Estimate t-stat Estimate t-stat 
ECM coefficients     ECM coefficients     

k 0.0004 1.9242 -0.0002 -0.8565 k -0.0006 -2.0287 0.0006 1.4575 
πs -0.0628 -2.7291 -0.0565 -2.0088 πs -0.1247 -5.1056 0.0325 0.9832 
πf 0.0462 1.7802 0.0239 0.7343 πf 0.0939 3.0018 -0.0519 -1.2242 
α 0.7052 23.6674 -0.1384 -3.8394 α 0.6844 19.5121 -0.0049 -0.1026 

GJR-GARCH coefficients    GJR-GARCH coefficients    
ω 0.0000 6.7656 0.0000 6.6470 ω 0.0000 3.6049 0.0000 3.4996 
a 0.0383 8.4856 0.0277 5.1738 a 0.0206 1.7777 0.0225 1.6041 
b 0.9202 174.3678 0.9232 136.1029 b 0.9101 53.6314 0.8903 44.5940 
λ 0.0551 6.5185 0.0575 7.0522 λ 0.0598 3.1331 0.1044 4.3135 

DCC-GJR-GARCH coefficients    DCC-GJR-GARCH coefficients    
m 0.0294 9.0753   m 0.0159 2.3983   
n 0.9661 248.4066   n 0.9698 62.9043   

m+n 0.9955    m+n 0.9857    
ARCH-LM(10) [0.1067] [0.9463] ARCH-LM(10) [0.9462] [0.8978] 

          

Testing for CCC LR stat p-value Testing for CCC LR stat p-value 
61.2937 0.0000 10.8947 0.0010 

Notes: This table contains the DCC estimation results for the pair (spot, CME). The conditional mean is the linear ECM, equations (6.9a) (6.9b): 

, , 1 ,
1 1

p p

t s ss j t j sf j t j s t s t
j j

s k s f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑  ,
, , 1 ,

1 1

p p

t f fs j t j ff j t j f t f t
j j

f k s f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑ . The first letter in the subscripts of the ECM parameters indicates the 

market to which the parameters belong: s means spot and f means futures, and this is omitted in the table presentation for brevity. But the second letter (if any) in the 
subscripts of the ECM parameters is retained in the table presentation. The conditional variance is the GJR-GARCH (1, 1), equations (6.3) and (6.12): 

t t tu σ η= , 
2 2 2 2

1 1 1 1t t t t tau I u bσ ω l σ− − − −= + + + , where the dummy variable It-1=1 if ut<0 and 0 otherwise. The conditional correlation is equation (6.8): = *-1 *-1
t t t tR Q Q Q , where 

1 1(1 ) t tm n mu u n− −′= − − + +t t-1Q Q Q . The DCC model adequacy is checked by the ARCH-LM test of Engle (1982) up to order 10, and the significance levels are in 
square brackets. The bottom line reports the likelihood ratio (LR) test statistics and the associated p-values of testing the null hypothesis of constant correlation (CCC) 
against the alternative hypothesis of DCC. 
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Figure 6.3 Conditional correlations between Nikkei spot and CME 
Notes: This figure shows the conditional correlations between the spot and CME. “DCC” denotes the 
conditional correlations estimated from the DCC-GJR-GARCH (1, 1) model. “CCC” denotes the constant 
correlations estimated from the CCC-GJR-GARCH (1, 1) model. “Lower” and “Upper” denote the 
two-standard-error lower and upper bands of the estimated DCC, respectively. The mean of the estimated 
DCC is 0.7570 (sample A) and 0.6319 (sample B). The estimated CCC is 0.7835 (sample A) and 0.6527 
(sample B).  
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In the conditional covariance equation, the DCC parameters are significant, meaning that the 

conditional correlations are indeed time-varying. Besides, the small news parameter m and 

large persistence parameter n imply the strong influence of previous dynamic correlations. 

The sum (m+n) is close to 1, which suggests the highly persistent conditional correlations 

between the spot and CME. I also notice a decrease in the sum from sample A to sample B, 

which implies that information shocks may have a more immediate effect in recent years, and 

as a result, the conditional correlations exhibit more dynamics. The DCC-GJR-GARCH (1, 1) 

models are free from excessive ARCH effects in the standardised residuals. The null 

hypothesis of constant correlation is tested against the alternative hypothesis of DCC, and the 

likelihood ratio test is able to reject the null hypothesis at conventional significance level.      

 

The time-varying conditional correlations between the two markets generally exhibit a 

decreasing trend in sample A and an increasing trend in sample B, as depicted in Figure 6.3. 

The average level of the DCC is 0.7570 (sample A) and 0.6319 (sample B), which are lower 

than those of the previous pairs. In sample A, the conditional correlations between the spot 

and the CME experience three major drops - the first drop is during 1997-2000 which can be 

related to the Japanese “Big Bang”, the second occurs within a short period after 11/09/2001 

and the third starts from 2007. Like the previous spot-futures correlations, the spot-CME 

relationship falls during the five-year “Big Bang” and reaches a periodic bottom close to the 

completion of the “Big Bang”; and it is temporarily loosened by the 9/11 event. But there is 

an obvious decrease in the relationship from 2007, which is not found in the previous pairs. 

The CME futures market is probably affected by the credit crunch and hence its 

co-movement with the Nikkei spot market becomes weakened. In sample B, the correlations 

are generally growing, with a dramatic drop of the correlations in March 2011, the time of 

Japan earthquake followed by the Fukushima nuclear crisis. 
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6.4.4 The DCC results: futures-futures conditional correlations 

6.4.4.1 OSE-SGX 

Table 6.8 contains the estimation results for the pair (OSE, SGX). The error correction 

towards futures price parity is present for at least one error correction coefficient is negative 

in the two markets. In both samples, the SGX leads the OSE in the first-order information 

transmission process, in that α in the OSE is significant and larger in magnitude while α in 

the SGX is insignificant and smaller in magnitude. In other words, the OSE mainly makes 

adjustments to the OSE-SGX spreads and thus lags behind the SGX in the cross-border price 

formation process. Before the crisis, the short-run autoregressive coefficients indicate 

feedback causality-in-mean between the OSE and SGX, with the causality running from the 

SGX to the OSE being slightly stronger than the reverse. After the crisis, however, none of 

these are significant and therefore the short-run causalities are absent, which implies that the 

two markets are likely to be more efficient in the post-crisis period. The GJR-GRACH (1, 1) 

is the conditional variance in sample A. As expected, the asymmetry coefficient λ is 

significantly positive in the two markets, confirming the existence of the leverage effect. The 

GARCH (1, 1) model is the conditional variance in sample B, which implies that the 

volatility asymmetry may not be evident in the two markets in the post-crisis period.    

 

The DCC-GJR-GARCH (1, 1) model cannot converge between the OSE and SGX in sample 

A. I tried to fit the DCC-GARCH (1, 1) and DCC-EGARCH (1, 1) models for the pair, but 

they show convergence problems as well. Since all the DCC models are difficult to converge, 

I estimate the conditional correlations in sample A by CCC models: CCC-GJR-GARCH, 

CCC-GARCH and CCC-EGARCH, all at the order (1, 1). The CCC-GJR-GARCH (1, 1) has 

a higher log-likelihood than the CCC-GARCH (1, 1), and the CCC-EGARCH (1, 1) does not 

converge. As such, I select the CCC-GJR-GARCH (1, 1) for the OSE-SGX pair in sample A. 

The CCC-GJR-GARCH (1, 1) can be viewed as the DCC-GJR-GARCH (1, 1) with the 

restriction m+n=0, i.e. the two DCC parameters sum up to zero. The estimated CCC is 0.9944 

between the OSE and SGX. This reveals the close relationship between the two markets, and 
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helps elucidate the DCC non-convergence over the sample. The OSE and SGX share the 

same underlying index, operate almost at the same time and adopt the same currency; hence, 

the conditional correlations between the OSE and SGX are likely to be highly stable and 

persistent, but not so dynamic as would be expected in the correlations between either of the 

two markets and the CME, for example. The DCC models may not be able to properly 

characterise the less dynamic conditional correlation structure. In sample B, the 

DCC-GARCH (1, 1) results show a small news parameter m and large persistence parameter 

n, and a nearly unitary (m+n), which indicate strong persistence in the conditional correlation 

process. The ARCH-LM test shows that the estimated models do not suffer from remaining 

ARCH effects. Given that the CCC-GJR-GARCH (1, 1) is selected for sample A, testing for 

constant correlation is conducted for sample B only. The null hypothesis of constant 

correlation is not rejected in sample B, because the DCC log-likelihood is smaller than the 

counterpart CCC log-likelihood, giving rise to a negative χ2 statistic for which the likelihood 

ratio test cannot be performed. This suggests that, as in sample A, there is insufficient time 

variation in the correlations between the two markets. One might want to regard the 

correlations as constant (thus the CCC is reported and plotted together with the DCC in 

Figure 6.4). But the more important information conveyed is that the OSE and SGX are 

highly integrated in both samples.  

 

Figure 6.4 illustrates the close relationship between the two markets. The estimated constant 

correlation is 0.9944 in sample A. The average DCC is 0.9952 and the estimated CCC is 

0.9955 in sample B. The OSE-SGX relationship remains high and stable over the years. After 

the crisis, the dynamic conditional correlations are strongly persistent and growing. An 

obvious periodic fall is found in March 2011, suggesting that the Japan earthquake on 

11/03/2011 and the following nuclear crisis temporarily weaken the degree of co-movement 

between the OSE and SGX. The estimated constant correlation is plotted for reference, given 

the non-rejection of the null hypothesis of constant correlation over the period. 
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Table 6.8 Estimation results of the DCC models: OSE and SGX 

 OSE SGX  OSE SGX 

Sample A     Sample B     
 Estimate t-stat Estimate t-stat  Estimate t-stat Estimate t-stat 

ECM coefficients     ECM coefficients     
k 0.0003 1.1442 0.0003 1.1358 k 0.0009 2.5768 0.0008 2.2583 

OSE lags     OSE lags     
π1 0.3006 1.3312 0.3523 1.5513 π1 0.0859 0.1817 0.1320 0.2823 
π2 0.4327 2.0006 0.4599 2.1181 π2 -0.1949 -0.4593 -0.1357 -0.3220 
π3 0.0880 0.4196 0.1099 0.5218 π3 -0.3466 -1.0759 -0.2807 -0.8801 
π4 0.4516 2.2576 0.4510 2.2492 π4 0.1323 0.5436 0.1695 0.7065 
π5 0.3099 1.4973 0.2919 1.4195      
π6 0.3172 1.6270 0.3006 1.5465      
π7 -0.1174 -0.7876 -0.1159 -0.7867      

SGX lags     SGX lags     
π1 -0.3158 -1.3885 -0.3637 -1.5916 π1 -0.0835 -0.1763 -0.1242 -0.2653 
π2 -0.4668 -2.1528 -0.4908 -2.2537 π2 0.2100 0.4964 0.1468 0.3498 
π3 -0.0711 -0.3417 -0.0913 -0.4368 π3 0.3375 1.0452 0.2710 0.8478 
π4 -0.4685 -2.3336 -0.4672 -2.3226 π4 -0.1679 -0.6958 -0.2048 -0.8615 
π5 -0.3217 -1.5441 -0.3044 -1.4700      
π6 -0.3503 -1.8052 -0.3326 -1.7188      
π7 0.0984 0.6575 0.0967 0.6535      
α -1.3964 -4.9874 -0.4382 -1.5566 α -0.8759 -1.7170 0.0008 0.0015 

GJR-GARCH coefficients     GARCH coefficients     
ω 0.0000 5.7655 0.0000 6.2956 ω 0.0000 6.3788 0.0000 6.4165 
a 0.0282 7.0455 0.0284 8.0431 a 0.0668 9.0954 0.0646 8.4147 
b 0.9479 285.9573 0.9489 309.0278 b 0.8842 75.5962 0.8840 72.1092 
λ 0.0318 6.7115 0.0293 6.7710      

CCC-GJR-GARCH coefficients    DCC-GARCH coefficients    
CCC 0.9944 5502.1349   m 0.0034 4.0358   

     n 0.9966 1056.0266   
     m+n 0.99995    

ARCH-LM(10) [0.8454] [0.7098] ARCH-LM(10) [0.2930] [0.2705] 

Testing for CCC 
LR stat p-value 

Testing for CCC 
LR stat p-value 

NA NA -6.1915 NA 
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Table 6.9 Estimation results of the DCC models: OSE and CME 

 OSE CME  OSE CME 

Sample A     Sample B     
 Estimate t-stat Estimate t-stat  Estimate t-stat Estimate t-stat 

ECM coefficients     ECM coefficients     
k 0.0006 2.7052 -0.0002 -0.7506 k -0.0004 -1.5530 0.0007 2.0706 

OSE lags     OSE lags     
π1 0.0099 0.2752 0.0173 0.2792 π1 -0.1505 -2.6427 0.0329 0.4492 
π2 0.0463 1.2420 0.0577 0.9724 π2 -0.0952 -1.9710 -0.0167 -0.2610 
π3 0.0489 1.3574 0.0652 1.2091 π3 -0.0278 -0.6962 -0.0426 -0.7993 
π4 0.0476 1.4071 0.0356 0.7663 π4 -0.0256 -1.0540 -0.0500 -1.4948 
π5 0.0689 2.1248 0.0601 1.4126      
π6 0.0566 1.9297 0.0795 2.1938      
π7 0.0332 1.5007 0.0583 2.1499      

CME lags     CME lags     
π1 -0.0449 -1.1707 -0.0489 -0.7531 π1 0.0778 1.2831 -0.0726 -0.9177 
π2 -0.0529 -1.4434 -0.0529 -0.8786 π2 0.0895 1.6596 -0.0058 -0.0815 
π3 -0.0580 -1.5678 -0.0602 -1.0674 π3 0.0234 0.5216 0.0219 0.3624 
π4 -0.0625 -1.8768 -0.0471 -0.9681 π4 0.0254 0.7936 0.0675 1.5745 
π5 -0.0617 -1.9384 -0.0641 -1.5026      
π6 -0.0699 -2.2874 -0.0976 -2.5489      
π7 -0.0777 -3.3128 -0.1080 -3.6663      
α -0.8840 -19.0771 0.0579 0.8063 α -0.8425 -13.8794 -0.0839 -1.0624 

GJR-GARCH coefficients    GJR-GARCH coefficients    
ω 0.0000 5.6394 0.0000 5.9814 ω 0.0000 4.1658 0.0000 3.6988 
a 0.0338 5.7407 0.0281 5.1288 a 0.0197 1.3434 0.0178 1.3200 
b 0.9143 126.7264 0.9221 125.7025 b 0.8907 47.8657 0.8903 45.3558 
λ 0.0721 7.6373 0.0636 7.2777 λ 0.0769 3.7092 0.1048 4.3201 

DCC-GJR-GARCH coefficients    DCC-GJR-GARCH coefficients    
m 0.0599 14.6957   m 0.0129 3.2902   
n 0.9306 187.7924   n 0.9870 241.7422   

m+n 0.9905    m+n 0.99996    
ARCH-LM(10) [0.9228] [0.9989] ARCH-LM(10) [0.3510] [0.5705] 

Testing for CCC 
LR stat p-value 

Testing for CCC 
LR stat p-value 

109.9569 0.0000 10.4354 0.0012 
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Table 6.10 Estimation results of the DCC models: SGX and CME 

  SGX CME   SGX CME 

Sample A     Sample B     
  Estimate t-stat Estimate t-stat   Estimate t-stat Estimate t-stat 

ECM coefficients     ECM coefficients     
k 0.0006  2.8578  -0.0003  -0.9766  k -0.0005  -1.9630  0.0007  1.9789  

SGX lags     SGX lags     
π1 0.0360  0.9878  0.0161  0.2581  π1 -0.1529  -2.6776  0.0289  0.3942  
π2 0.0661  1.7609  0.0546  0.9081  π2 -0.0997  -2.0482  -0.0068  -0.1058  
π3 0.0709  2.0074  0.0640  1.1767  π3 -0.0298  -0.7438  -0.0399  -0.7404  
π4 0.0466  1.3825  0.0314  0.6682  π4 -0.0293  -1.2346  -0.0552  -1.6500  
π5 0.0626  1.9224  0.0474  1.0913       
π6 0.0568  2.0005  0.0756  2.0669       
π7 0.0349  1.6095  0.0690  2.5380       

CME lags     CME lags     
π1 -0.0653  -1.7006  -0.0501  -0.7678  π1 0.0858  1.4151  -0.0657  -0.8324  
π2 -0.0731  -2.0091  -0.0503  -0.8290  π2 0.0915  1.6911  -0.0100  -0.1409  
π3 -0.0762  -2.0958  -0.0561  -0.9862  π3 0.0298  0.6609  0.0174  0.2862  
π4 -0.0650  -1.9727  -0.0442  -0.9045  π4 0.0293  0.9147  0.0673  1.5617  
π5 -0.0580  -1.8299  -0.0568  -1.3117       
π6 -0.0693  -2.3165  -0.0928  -2.3978       
π7 -0.0796  -3.5001  -0.1148  -3.9254       
α -0.9019  -19.6424  0.0681  0.9374  α -0.8330  -13.7773  -0.0761  -0.9649  

GJR-GARCH coefficients    GJR-GARCH coefficients    
ω 0.0000  5.9896  0.0000  6.0007  ω 0.0000  4.5147  0.0000  3.7345  
a 0.0345  6.0387  0.0285  5.0520  a 0.0197  1.2908  0.0187  1.3528  
b 0.9149  132.8747  0.9221  122.9820  b 0.8756  43.8618  0.8873  44.4774  
λ 0.0696  7.8744  0.0622  7.2920  λ 0.0843  3.7976  0.1072  4.3475  

DCC-GJR-GARCH coefficients    DCC-GJR-GARCH coefficients    
m 0.0608  15.0541    m 0.0144  3.5566    
n 0.9301  190.8025    n 0.9856  234.1480    

m+n 0.9909     m+n 0.9999994     
ARCH-LM(10) [0.9726]  [0.9985]  ARCH-LM(10) [0.7697]  [0.5825]  

Testing for CCC 
LR stat p-value 

Testing for CCC 
LR stat p-value 

114.6106  0.0000  12.1371  0.0005  
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Notes for Table 6.8: This table contains the DCC estimation results for the pair (OSE, SGX). The conditional mean is the linear ECM, equations (6.10a) (6.10b): 

1, 1 11, 1, 12, 2, 1 1 1,
1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑ ,
2, 2 21, 1, 22, 2, 2 1 2,

1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑ . The subscripts of the ECM parameters are omitted for brevity except 

that the model lags j of the autoregressive coefficients are retained in the table presentation. The conditional variance in sample A is the GJR-GARCH (1, 1), 
equations (6.3) and (6.12): 

t t tu σ η= , 2 2 2 2
1 1 1 1t t t t tau I u bσ ω l σ− − − −= + + + , where the dummy variable It-1=1 if ut<0 and 0 otherwise; the conditional variance in sample B 

is the GARCH (1, 1), equations (6.3) and (6.11): 
t t tu σ η= , 2 2 2

1 1t t tau bσ ω σ− −= + + . The conditional correlation is equation (6.8): = *-1 *-1
t t t tR Q Q Q , where 

1 1(1 ) t tm n mu u n− −′= − − + +t t-1Q Q Q . The DCC model adequacy is checked by the ARCH-LM test of Engle (1982) up to order 10, and the significance levels are in 
square brackets. The bottom line reports the likelihood ratio (LR) test statistics and the associated p-values of testing the null hypothesis of constant correlation 
(CCC) against the alternative hypothesis of DCC.  
 
 
Notes for Table 6.9: This table contains the DCC estimation results for the pair (OSE, CME). The conditional mean is the linear ECM, equations (6.10a) (6.10b): 
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1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑ . The subscripts of the ECM parameters are omitted for brevity except 

that the model lags j of the autoregressive coefficients are retained in the table presentation. The conditional variance is the GJR-GARCH (1, 1), equations (6.3) and 
(6.12): 

t t tu σ η= , 2 2 2 2
1 1 1 1t t t t tau I u bσ ω l σ− − − −= + + + , where the dummy variable It-1=1 if ut<0 and 0 otherwise. The conditional correlation is equation (6.8): 

= *-1 *-1
t t t tR Q Q Q , where 

1 1(1 ) t tm n mu u n− −′= − − + +t t-1Q Q Q . The DCC model adequacy is checked by the ARCH-LM test of Engle (1982) up to order 10, and the 
significance levels are in square brackets. The bottom line reports the likelihood ratio (LR) test statistics and the associated p-values of testing the null hypothesis of 
constant correlation (CCC) against the alternative hypothesis of DCC. 
 
 
 
Notes for Table 6.10: This table contains the DCC estimation results for the pair (SGX, CME). The conditional mean is the linear ECM, equations (6.10a) (6.10b): 

1, 1 11, 1, 12, 2, 1 1 1,
1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑ ,
2, 2 21, 1, 22, 2, 2 1 2,

1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑ . The subscripts of the ECM parameters are omitted for brevity except 

that the model lags j of the autoregressive coefficients are retained in the table presentation. The conditional variance is the GJR-GARCH (1, 1), equations (6.3) and 
(6.12): 

t t tu σ η= , 2 2 2 2
1 1 1 1t t t t tau I u bσ ω l σ− − − −= + + + , where the dummy variable It-1=1 if ut<0 and 0 otherwise. The conditional correlation is equation (6.8): 

= *-1 *-1
t t t tR Q Q Q , where 

1 1(1 ) t tm n mu u n− −′= − − + +t t-1Q Q Q . The DCC model adequacy is checked by the ARCH-LM test of Engle (1982) up to order 10, and the 
significance levels are in square brackets. The bottom line reports the likelihood ratio (LR) test statistics and the associated p-values of testing the null hypothesis of 
constant correlation (CCC) against the alternative hypothesis of DCC.
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Figure 6.4 Conditional correlations between the OSE and SGX 
Notes: This figure shows the conditional correlations between the OSE and SGX. In sample A, “CCC” 
denotes the constant correlations estimated from the CCC-GJR-GARCH (1, 1) model. In sample B, “DCC” 
denotes the conditional correlations estimated from the DCC-GARCH (1, 1) model, and “CCC” denotes 
the constant correlations estimated from the CCC-GARCH (1, 1) model. “Lower” and “Upper” denote the 
two-standard-error lower and upper bands of the estimated CCC in sample A, and of the estimated DCC in 
sample B, respectively. The estimated CCC is 0.9944 in sample A. The mean of the estimated DCC is 
0.9952 in sample B, and the estimated CCC is 0.9955 in sample B.  
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Figure 6.5 Conditional correlations between the OSE and CME 
Notes: This figure shows the conditional correlations between the OSE and CME. “DCC” denotes the 
conditional correlations estimated from the DCC-GJR-GARCH (1, 1) model. “CCC” denotes the constant 
correlations estimated from the CCC-GJR-GARCH (1, 1) model. “Lower” and “Upper” denote the 
two-standard-error lower and upper bands of the estimated DCC, respectively. The mean of the estimated 
DCC is 0.7806 (sample A) and 0.7186 (sample B). The estimated CCC is 0.8106 (sample A) and 0.7259 
(sample B).  
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Figure 6.6 Conditional correlations between the SGX and CME 
Notes: This figure shows the conditional correlations between the SGX and CME. “DCC” denotes the 
conditional correlations estimated from the DCC-GJR-GARCH (1, 1) model. “CCC” denotes the constant 
correlations estimated from the CCC-GJR-GARCH (1, 1) model. “Lower” and “Upper” denote the 
two-standard-error lower and upper bands of the estimated DCC, respectively. The mean of the estimated 
DCC is 0.7843 (sample A) and 0.7207 (sample B). The estimated CCC is 0.8149 (sample A) and 0.7270 
(sample B). 
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6.4.4.2 OSE-CME 

Table 6.9 presents the DCC estimation results for the pair (OSE, CME). Error correction 

towards the futures price parity between the two futures markets is active for at least one of 

the error correction coefficients in the pair is negative. The CME is the dominant market in 

reflecting price information across the border, as its error correction coefficient is 

insignificant and much smaller in magnitude than that of the OSE. Before the crisis, the 

short-run causality-in-mean is bidirectional, and it is clear that the causality running from the 

CME to the OSE is stronger than the reverse. After the crisis, the only significant 

cross-market autoregressive coefficient indicates the CME leading the OSE in the short run. 

The scarcity of short-run causalities implies that the informational efficiency of the two 

markets may have been improved in recent years. The GJR-GARCH (1, 1) is employed as the 

conditional variance model. In both samples, I find significantly positive asymmetry 

coefficients and thus evidence of the asymmetric behaviour of volatility in response to 

negative and positive information.  

 

In the DCC-GJR-GARCH (1, 1) specifications, the significant DCC parameters suggest the 

time-varying nature of the conditional correlations between the OSE and CME. The small 

news parameter m and large persistence parameter n imply the strong influence of previous 

dynamic correlations. The sum (m+n) is over 0.99, and there is even an increase in the sum 

from sample A to sample B. These results suggest not only a highly persistent correlation 

structure but also an increase in the degree of persistence in the DCC between the two 

markets. The estimated DCC-GJR-GARCH (1, 1) models do not suffer from excessive 

ARCH in the standardised residuals. The null hypothesis of constant correlation can be 

strongly rejected in both samples.  

 

Figure 6.5 plots the estimated time-varying conditional correlations between the OSE and 

CME. The average level of the DCC is 0.7806 (sample A) and 0.7186 (sample B). In sample 

A, the most obvious finding is a plunge in the correlations that occurs within a short period 
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after the terrorist attacks on 11/09/2001. This event decreases the correlations dramatically, 

and makes the correlations negative at one time, with the lowest correlation -0.0933 on 

17/09/2001. Yet the normal dynamics of the correlations is recovered shortly afterwards. 

Similar to the results of the spot-CME pair, the OSE-CME relationship declines during the 

“Big Bang” and the credit crunch. The general trend of the relationship in sample A is 

decreasing. In sample B, the conditional correlations have a much more persistent pattern and 

they are generally increasing. A periodic peak in March 2011 indicates that the level of 

co-movement between the two markets temporarily strengthens following the massive 

earthquake on 11/03/2011. In fact, the highest correlation between the two markets reaches 

0.8469 on 15/03/2011.  

6.4.4.3 SGX-CME 

The DCC estimation results for the pair (SGX, CME) are provided in Table 6.10. There is 

error correction adjustment towards the futures price parity between the SGX and CME since 

at least one of the error correction coefficients in the pair is negative. In the long run, the 

CME leads the SGX in reflecting price information across the border, as its error correction 

coefficient is insignificant and much smaller in magnitude than that of the SGX. In the short 

run, I find bidirectional causality-in-mean in both samples, and the causality originating from 

the CME to the SGX is much stronger than the reverse. In addition, the short-run causalities 

become less in quantity and significance in sample B than in sample A, suggesting that the 

SGX and CME are probably more informationally efficient in the post-crisis period. The 

conditional variance is described by the GJR-GARCH (1, 1) model. Significantly positive 

asymmetry coefficients are found in each market, confirming the negative association 

between current returns and future volatility.  

 

The conditional correlation pattern of the SGX and CME bears much resemblance to that of 

the OSE and CME. The time-varying dynamics of the conditional correlations are proved by 

the significant DCC parameters. The small news parameter m and large persistence parameter 

n imply strong persistence. The sum (m+n) is over 0.99 and even higher in the post-crisis 
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sample. Obviously the strong persistence in the conditional correlation structure becomes 

even stronger in recent years, and the SGX-CME correlations are mainly driven by their 

history rather than information shocks. The ARCH-LM test does not detect excessive ARCH 

in the model standardised residuals. Also, the likelihood ratio tests strongly reject the null 

hypothesis of constant correlation in favour of the alternative hypothesis of DCC.  

 

The DCC between the SGX and CME is shown in Figure 6.6. This is very similar to the DCC 

between the OSE and CME in Figure 6.5, because of the close and stable relationship 

between the OSE and SGX. The average level of the SGX-CME DCC is 0.7843 (sample A) 

and 0.7207 (sample B). In the pre-crisis sample, noticeable is a sharp spike within a short 

period after the 9/11 event, which loosens the link between the SGX and CME and makes 

their correlations temporarily negative, with the lowest correlation -0.0701 on 17/09/2001. 

However, the DCC restores its normal dynamics shortly afterwards, and the conditional 

correlations are generally decreasing over time. Similar to the OSE-CME relationship, the 

SGX-CME relationship falls in the course of the “Big Bang” and the credit crunch. In the 

post-crisis sample, the correlations are highly persistent and generally increasing over time. 

The level of co-movement between the two markets temporarily rises in the aftermath of the 

Japan earthquake on 11/03/2011, with the highest correlation 0.8685 on 15/03/2011. Note that 

the earthquake and the following incidents exert different impacts on the bivariate conditional 

correlations. They weaken the correlations between the OSE and SGX but strengthen the 

correlations between the OSE (SGX) and CME. This implies that the Nikkei investors tend to 

transfer to the CME to hedge and/or diversify in the face of domestic shocks.    

 

For all of the Nikkei pairs, the average conditional correlations are larger than their 

counterpart unconditional correlations (compared with Table 5.2 in Chapter 5), which means 

that the unconditional correlations are liable to underestimate the true co-movements of these 

markets. The high degree of co-movements indicates that, by and large, news is absorbed and 

transmitted in the Nikkei markets jointly. The stability of the market co-movements can be 

seen as the correlations evolving inside their two-standard-error bands most of the time in 

Figures 6.1 through 6.6. The persistence in the correlations decreases for the spot-futures 
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pairs and increases for the bilateral futures pairs from sample A to sample B.  

6.4.5 Effect of different trading hours on the conditional correlations 

I examine the effect of different trading hours of the CME futures on the conditional 

correlations by applying an alternative time sequence and re-estimating the bivariate DCC 

models. On a typical trading day, the OSE opens 9.00-15.15, with an overnight session 

16.30-3.00 (Japan Standard Time, JST); the SGX opens 7.45-14.25, with an overnight session 

15.15-2.00 (Singapore Time, SGT). Given that SGT is 1 hour behind JST, the trading hours of 

the two markets are almost overlapping. For this reason, I only consider the time differences 

between the OSE and CME. Figure 6.7 illustrates the OSE and CME trading hours. Although 

the Central Standard Time (CST) used by the CME is 15 hours behind the JST used by the 

OSE, with the aid of the CME Globex and the OSE overnight trading, there are fairly long 

periods during a day when both markets are open. Moreover, the futures settlement prices in 

the OSE and the CME are generated on the same day.93 The former application of the default 

time sequence is hence justified from two aspects: a) arbitrage activities across the markets 

can be quite active due to the common trading hours in the default time sequence; b) the 

CME returns on day t reflects the information on day t; from the perspective of the OSE 

investors, the OSE returns on day t also reflects the information on day t (although it is 

actually day t-1 from the perspective of the CME investors) - matching the CME returns on 

day t with the OSE, SGX returns on day t captures information on the same “nominal” day. 

 

Alternatively, the CME returns on day t-1 can be matched with any other market returns on 

day t, so that the CME becomes the earliest trading market in the sequence and all the returns 

are able to reveal information within the same 24-hour time intervals (Booth et al., 1996). 

Due to the high level of integration between the OSE and SGX which is not affected by the 

timing issues, the conditional correlation structure of the SGX and CME will not be 

dissimilar to that of the OSE and CME with the alternative time sequence, and thus I will 

re-estimate the conditional correlations between the OSE and CME only. I again follow the

                                                        
93 This also holds when the Central Daylight Time (CDT) is observed by the CME during summer. The CDT reduces the 
time differences between the OSE and the CME to 14 hours, so that the settlement prices OSEt are generated at 1.15 in 
Chicago on day t under the CDT. 
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Figure 6.7 Trading hours of the OSE and the CME Nikkei futures markets 
Notes: This figure illustrates the trading hours of the OSE (including the overnight session) and the CME 
(Globex and open outcry) as of 31/12/2014. The time is CST unless otherwise marked. The bottom shows 
the time when the OSE, CME settlement prices are generated; the subscripts t-1, t and t+1 indicate the 
timing differences.  

 

 

two-stage approach of Engle (2002) and Engle and Sheppard (2001). The conditional mean 

model is the linear ECM, equations (6.10a) (6.10b). The sequential modified likelihood ratio 

test suggests the model lag p=6 (sample A) and p=4 (sample B).94 For the univariate 

GARCH-class models, I use the AIC and SBC to select from univariate GARCH, 

GJR-GARCH and EGARCH models, all at the order (1, 1). The finding is that the 

GJR-GARCH shows smaller values of the AIC and SBC than the GARCH, and the 

EGARCH is difficult to converge. 95  Hence, the conditional variance model is the 

GJR-GARCH, equations (6.3) and (6.12). I first estimate the univariate GJR-GARCH and 

then estimate the conditional correlation parameters using the univariate residuals 

transformed by their standard deviations estimated from the first stage. As before, the 

estimation of the DCC-GJR-GARCH (1, 1) is by (quasi-)maximum likelihood; the 

optimisation algorithm is BHHH. I check the model adequacy by the ARCH-LM test of 
                                                        
94 It is noticed that the AIC and SBC select too short model lags with which the model residuals are autocorrelated. I use the 
sequential modified likelihood ratio test as the lag length criterion to ensure that the model residuals are white. However, the 
CME still shows remaining autocorrelations which cannot be removed by increasing the number of lags, especially in sample 
B. As illustrated in Figure 6.7, on a typical trading day t, there is a non-trading interval after the OSE overnight session 
closes and before the OSE normal session opens, lasting about 6 hours. News that arrives during the non-trading interval can 
only manifest itself via the CME as it is the only open market during the interval. This may explain the remaining 
autocorrelations observed in the re-timed univariate model in the CME. Therefore, my results with the alternative time 
sequence should be interpreted with caution.      
95 The univariate results are not reported but available upon request. 
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Engle (1982), and test the null hypothesis of constant correlation against the alternative 

hypothesis of DCC by likelihood ratio test. 

 

Table 6.11 presents the estimation results of the DCC-GJR-GARCH (1, 1) specification for 

the OSE and CME with the alternative time sequence. In the conditional mean, the OSE with 

negative and smaller α in magnitude now reflects price information more quickly, whereas 

the CME with positive and larger α mainly makes adjustments to spreads between the 

markets. In other words, the CME lags behind the OSE in the cross-border price discovery 

process. Before the crisis, there is feedback causality-in-mean in the short run and the 

causality running from the OSE to the CME is slightly stronger than the reverse. After the 

crisis, the short-run causality is one-way from the OSE to the CME, and yet the long-run 

causality is bidirectional. Combining the previous results of the SGX leading the OSE which 

is not affected by the timing issues, I find that the SGX is the quickest market in transmitting 

price information across the border, followed by the OSE and the CME. With the alternative 

time sequence, the information leadership of the CME seems to be transferred to the SGX. 

This is consistent with the findings of the univariate CCF test, and still consistent with the 

bivariate DCC results obtained when the default time sequence is used, in the sense that the 

foreign markets (the CME and SGX) lead the domestic market (the OSE) in the cross-border 

information transmission. The conditional variance results are similar to those in Table 6.9. 

The asymmetry coefficient λ is significantly positive, lending support to the presence of the 

leverage effect in the two markets. 

 

The OSE-CME correlation pattern exhibits strong persistence, for the news parameter m is 

small and the persistence parameter n is large. The sum (m+n) is over 0.99, and it increases 

slightly from sample A to sample B, implying an even higher level of persistence in the 

post-crisis period. The estimated models do not suffer from excessive ARCH effects. The null 

hypothesis of constant correlation is rejected in sample A. Nevertheless, it is not rejected in 

sample B because the log-likelihood of the DCC-GJR-GARCH (1, 1) is smaller than that of 

the corresponding CCC model, giving rise to a negative χ2 statistic and thus the likelihood 

ratio test cannot be performed. Recall that the same OSE-CME relationship rejects the null 
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hypothesis of constant correlation when the default time sequence is applied (Table 6.9). The 

non-rejection here suggests insufficient time variation in the correlations, which probably 

arises from an inactive trading period entailed in the alternative time sequence. From Figure 

6.7, on a typical trading day t, there is a non-trading interval after the OSE overnight session 

closes and before the OSE normal session opens, lasting about 6 hours. Although the CME is 

still open during the interval, spread arbitrage and index arbitrage activities are not available 

for Nikkei investors as the OSE, SGX and the underlying spot market are all closed.96 As a 

consequence, news that arrives during the non-trading interval can only manifest itself via the 

CME as it is the only open market during the interval, and trading volumes in the Nikkei 

markets are expected to be low in those hours. The lack of active transactions may lead to the 

little time variation in the correlations and hence the non-rejection of the null hypothesis of 

constant correlation. 

 

Figure 6.8 shows the estimated conditional correlations between the OSE and CME with the 

alternative time sequence. The average level of the DCC is 0.4900 (sample A) and 0.6069 

(sample B), which are smaller than the average level of the DCC, 0.7806 (sample A) and 

0.7186 (sample B), obtained with the default time sequence. The relatively low correlations 

may not reflect the true relationship between the two markets; instead, they may simply 

reflect the inactive trading period which the alternative time sequence inevitably includes.  

 

To see this from another perspective, in Figure 6.8 the OSE-CME correlations drop during 

1997-2001 and in March 2011 which can be related to the Japanese “Big Bang” and the 

massive earthquake on 11/03/2011, respectively. However, worldwide incidents such as the 

terrorist attacks on 11/09/2001 do not seem to have an obvious effect on the DCC series. The 

conditional correlations show a generally rising trend in sample A, which contradicts the 

overall decreasing trend of the OSE-CME correlations over the same period in Figure 6.5. 

The different correlation pattern obtained from the re-timed DCC models is not likely to 

reflect the real impact of the information shocks due to thin trading in these markets. 

                                                        
96 The trading hours of the Nikkei spot market are 9.00-11.30, 12.30-15.00 (JST), corresponding to 18.00-20.30, 21.30-0.00 
(CST). 
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Table 6.11 Estimation results of the DCC models: OSE and CME with the alternative time sequence 
 

Notes: This table contains the DCC estimation results for the pair (OSE, CME), with the CME returns on day t-1 aligned with 
the OSE returns on day t to make the alternative time sequence by which the CME is the earliest trading market. The 
conditional mean is the linear ECM, equations (6.10a) (6.10b): 

1, 1 11, 1, 12, 2, 1 1 1,
1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑ ,
2, 2 21, 1, 22, 2, 2 1 2,

1 1

p p

t j t j j t j t t
j j

f k f f z up p α− − −
= =

∆ = + ∆ + ∆ + +∑ ∑ . The subscripts of the ECM 

parameters are omitted for brevity except that the model lags j of the autoregressive coefficients are retained in the table 
presentation. The conditional variance is the GJR-GARCH (1, 1), equations (6.3) and (6.12): 

t t tu σ η= , 
2 2 2 2

1 1 1 1t t t t tau I u bσ ω l σ− − − −= + + + , where the dummy variable It-1=1 if ut<0 and 0 otherwise. The conditional correlation is equation 
(6.8): = *-1 *-1

t t t tR Q Q Q , where 
1 1(1 ) t tm n mu u n− −′= − − + +t t-1Q Q Q . The DCC model adequacy is checked by the ARCH-LM test 

of Engle (1982) up to order 10, and the significance levels are in square brackets. The bottom line reports the likelihood ratio 
(LR) test statistics and the associated p-values of testing the null hypothesis of constant correlation (CCC) against the 
alternative hypothesis of DCC.

  OSE CME   OSE CME 

Sample A     Sample B     
  Estimate t-stat Estimate t-stat   Estimate t-stat Estimate t-stat 

ECM coefficients     ECM coefficients     
k -0.0001  -0.2367  -0.0009  -5.2779  k 0.0003  0.9375  0.0011  4.3360  

OSE lags     OSE lags     
π1 0.0037  0.0574  -0.0337  -0.9172  π1 0.1160  1.4233  0.1650  4.0069  
π2 0.0019  0.0331  -0.0578  -1.7598  π2 0.1027  1.4312  0.1030  2.4082  
π3 0.0164  0.3154  -0.0290  -0.9732  π3 0.0841  1.5233  0.0574  1.5142  
π4 -0.0056  -0.1177  -0.0323  -1.1828  π4 0.0078  0.1793  -0.0071  -0.2345  
π5 0.0225  0.5284  -0.0394  -1.6215       
π6 0.0157  0.4620  -0.0409  -2.0981       

CME lags     CME lags     
π1 -0.0306  -0.5190  0.0530  1.5712  π1 -0.0885  -1.1574  -0.0762  -1.6570  
π2 -0.0265  -0.4956  0.0497  1.6273  π2 -0.1020  -1.5941  -0.0409  -1.0307  
π3 -0.0189  -0.3879  0.0438  1.5700  π3 -0.0691  -1.4675  -0.0029  -0.0918  
π4 -0.0079  -0.1803  0.0520  2.0812  π4 -0.0257  -0.8607  0.0059  0.3195  
π5 -0.0375  -1.0225  0.0381  1.8133       
π6 -0.0610  -2.9358  0.0016  0.1311       
α -0.0890  -1.3361  0.9934  26.0807  α -0.2173  -2.6155  0.8070  17.3188  

GJR-GARCH coefficients    GJR-GARCH coefficients    
ω 0.0000  3.5787  0.0000  3.9540  ω 0.0000  4.1688  0.0000  4.6998  
a 0.0312  3.2329  0.0228  2.4843  a 0.0454  4.2971  0.0693  3.8723  
b 0.9329  101.6893  0.9298  94.7647  b 0.9042  63.1935  0.8506  42.0420  
λ 0.0474  3.9296  0.0626  5.2476  λ 0.0360  4.0208  0.0811  4.7389  

DCC-GJR-GARCH coefficients    DCC-GJR-GARCH coefficients    
m 0.0066  2.3291    m 0.0081  3.2423    
n 0.9932  241.2071    n 0.9917  375.0335    

m+n 0.99981     m+n 0.99984     
ARCH-LM(10) [0.8829]  [0.6818]  ARCH-LM(10) [0.6632]  [0.5161]  

Testing for CCC 
LR stat p-value 

Testing for CCC 
LR stat p-value 

23.2836  0.0000  -11.8395  NA 
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Figure 6.8 Conditional correlations between the OSE and CME (alternative time sequence) 
Notes: This figure shows the conditional correlations between the OSE and CME, with the CME returns on 
day t-1 aligned with the OSE returns on day t to make the alternative time sequence by which the CME is the 
earliest trading market. “DCC” denotes the conditional correlations estimated from the re-timed 
DCC-GJR-GARCH (1, 1) model. “CCC” denotes the constant correlations estimated from the re-timed 
CCC-GJR-GARCH (1, 1) model. “Lower” and “Upper” denote the two-standard-error lower and upper 
bands of the estimated DCC, respectively. The mean of the estimated DCC is 0.4900 (sample A) and 0.6069 
(sample B). The estimated CCC is 0.4807 (sample A) and 0.6344 (sample B).  
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The low trading volume involved in the alternative time sequence also affects the persistence 

in the DCC series in Figure 6.8. In sample A, the conditional correlations are much more 

persistent than the conditional correlations estimated by default in Figure 6.5. Because of thin 

trading, news cannot contribute much to the evolution of the conditional correlations over 

time. The DCC is mainly driven by its past correlations and exhibits less dynamics than the 

DCC of the default time sequence. The conditional correlations estimated with the different 

time sequences look similar in terms of persistence in sample B. Nevertheless, the estimated 

persistence parameter n in Table 6.11 is always larger than that in Table 6.9.  

 

To sum up the effect of the different trading hours, the conditional mean results estimated 

from the re-timed DCC models are consistent with those estimated when the timing issues are 

ignored, suggesting the leading role of the foreign Nikkei futures exchanges in the 

information dissemination process across the border. The different dynamics of the 

conditional correlations obtained with the alternative time sequence may result from the 

thinly traded period in the time sequence; they do not represent the true co-movements of the 

Nikkei markets. The different trading hours do not affect the underestimation of the 

unconditional pair-wise correlations (Table 5.2 in Chapter 5) which are still smaller than the 

corresponding re-timed DCC on average, nor affect the stability of the conditional 

correlations as they evolve within their two-standard-error bands most of the time in Figure 

6.8. The increased persistence in the correlations observed for the bilateral futures pairs in the 

post-crisis period is also robust to the time differences among the Nikkei markets. 

6.5 Discussion and conclusion 

The chapter investigates the international volatility transmission process in the Nikkei 225 

stock index futures markets from two perspectives: a) the volatility interactions between the 

Nikkei stock index and index futures markets, and across the Nikkei futures markets; b) the 

time-varying behaviour of the dynamic conditional correlations of the Nikkei markets. With a 

19-year sample covering a pre-crisis period and a post-crisis period, the Nikkei spot and 

futures markets are found to be cointegrated, in the sense that the spot and futures returns are 
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cointegrated with the cointegrating vector [1, -1] in individual Nikkei markets, and that the 

three Nikkei futures returns are cointegrated with one common stochastic trend. Error 

correction mechanism is thus employed to describe the conditional mean for both 

perspectives.  

 

The volatility interactions or spillovers of the Nikkei markets are examined by the CCF test 

based on the ESTECM-EGARCH specification. Using the CCF test, I find the critical 

importance of the contemporaneous relationships between the Nikkei spot and futures 

markets, and across the Nikkei futures markets. This means that the majority of information 

is transmitted in and across the Nikkei markets in a simultaneous manner. In individual 

Nikkei markets, I document bidirectional causality-in-variance between spot and futures, with 

some evidence that the information flows from the futures market to the spot market are 

stronger than the reverse. Across the Nikkei futures markets, the CME causes the other 

markets in variance the most strongly and thus takes the information leadership in the 

cross-border second-moment information dissemination. More generally, it is the foreign 

Nikkei futures markets (the CME and SGX) that play a major part in the international 

volatility transmission process. This is in agreement with the price dominance of the foreign 

futures markets in the international price discovery process in Chapter 5. Therefore, my 

results corroborate the international centre hypothesis that global financial centres are more 

likely to dominate cross-border information transmission; in the Nikkei markets, the 

information leadership of the foreign futures markets exists in both the first-moment and the 

second-moment information transmission mechanisms across the border.  

 

The bivariate DCC model is used to study the time-varying dynamics of the Nikkei 

conditional correlations. With the linear ECM as the conditional mean, there is widespread 

evidence of error correction dynamics in the Nikkei markets. Between Nikkei spot and 

futures markets, the futures market acts as the main price discovery vehicle, with two 

exceptions that the spot leads the OSE, SGX futures in the post-crisis period. Across the 

Nikkei futures markets, the CME is the most dominant market in transmitting information, 

followed by the SGX and OSE. If the alternative time sequence is applied whereby the CME 
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returns on day t-1 is matched with any other market returns on day t, the information 

leadership of the CME seems to be transferred to the SGX. In any case, my results point to 

the information advantage of the foreign Nikkei futures markets (the CME and SGX) and 

thus repeatedly support the international centre hypothesis. Taking together the volatility 

spillover results of the CCF test, I confirm the primary role of the foreign futures markets in 

spreading first-moment and second-moment information. This can be explained by the fact 

that foreign futures exchanges are usually global financial centres which are more efficient in 

processing and sharing information, and provide more lenient trading environment for 

investors - for example, lower and more heterogeneous transaction costs, longer trading hours, 

fewer trading restrictions and more risk management opportunities. My findings are 

consistent with Fung et al. (2001), Covrig et al. (2004) in revealing the contribution of 

offshore futures exchanges to information dissemination across the border. My findings are 

also consistent with Rochet and Tirole (2003) in suggesting that information tends to 

gravitate to the most ubiquitous international platform. The key functions of the foreign 

futures markets in the cross-border information dissemination imply that small offshore 

exchanges are able to compete with a large home exchange,97 and that it is a valuable task to 

understand and take advantage of the information role of global financial centres when 

trading futures contracts listed on multiple venues.       

 

Turning to the second-moment dynamics, with the DCC-GJR-GARCH (1, 1) model I find 

prevalent evidence of the leverage effect in the Nikkei markets. The Nikkei volatility 

behaviour is asymmetric: negative information increases market volatility to a larger extent 

than positive information of the same magnitude. Exceptions are for the pairs (spot, OSE) and 

(OSE, SGX) in the post-crisis sample, where a simple GARCH (1, 1) model acts as the 

conditional variance, implying the absence of volatility asymmetry. On the other hand, the 

Nikkei markets are highly integrated, and the majority of information is absorbed jointly on a 

daily basis. The highest level of integration occurs between the OSE and SGX futures 

markets; or in the wider sense, among the Nikkei spot, OSE and SGX futures. The OSE and 

                                                        
97 The SGX and CME are small while the OSE is large in terms of trading volume. See section 3.3, Chapter 3 for more 
discussions. 
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SGX futures are based on the same underlying spot market and thus information originating 

from one market should be quickly transmitted to the other. The common characteristics 

shared by the OSE and SGX, such as operating at almost the same time and using the same 

currency, make their relationship even closer. The CME futures is based on the same index, 

but its extra issues such as exchange rate risk and low trading volume may have reduced its 

degree of co-movement with the other Nikkei markets. This is in relative terms, however. 

Overall, the Nikkei markets are all closely related, and the Nikkei conditional correlations are 

always larger than their corresponding unconditional correlations. In this respect, I show 

different result from Koutmos (1996) who records the overestimation of unconditional 

correlations and the underestimation of the potential for diversification among major 

European stock returns. I argue that the generally high conditional correlations may make 

further diversification difficult, because the high level of co-movements implies that investors 

are already well diversified among the Nikkei markets. For regulators, the high level of 

Nikkei market co-movements implies that effective measures should be taken to maintain the 

stability of the financial system in each market. 

 

The Nikkei conditional correlations are time-dependent, strongly persistent and stable. Except 

for major events, news has a small impact on the Nikkei market relationships, which are 

mainly driven by their history. This may reject the argument that news drives volatility, as the 

volatility of the Nikkei correlations is mainly in-built. However, in relative terms, it is still 

found that the level of persistence in the correlations decreases for the spot-futures pairs and 

increases for the bilateral futures pairs from the pre-crisis period to the post-crisis period. The 

persistence decline in the spot-futures correlations implies that index arbitrageurs may wish 

to pay more attention to the impact of news on the market relationships in recent years, when 

news has a relatively more immediate effect and the correlations exhibit more dynamics. The 

impact of news largely relies on the nature of the events (national or global, temporary or 

long-lasting, etc.) and the cross-market linkages. For example, the Japanese “Big Bang” 

causes the Nikkei conditional correlations to fall until its completion. The terrorist attacks on 

11/09/2001 leads to a dramatic, temporary drop of the correlations. The credit crunch starting 

from 2007 also decreases the CME co-movement with the other markets. The Japan 
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earthquake on 11/03/2011 and the following events have mixed effects: they loosen the link 

between the OSE and SGX while strengthen the link between the OSE (SGX) and CME, 

implying that the CME acts as an important vehicle for cross-market hedging and/or 

diversification when confronted with domestic shocks. To consider the effect of different 

trading hours of the CME futures, the alternative time sequence is applied and a different 

correlation pattern is obtained which may merely reflect the thinly traded period incorporated 

in the sequence rather than the true relationships of the Nikkei markets. Robust to the time 

differences are the main characteristics of the Nikkei conditional correlations such as high 

level, strong persistence and stability. These characteristics should be emphasised in Nikkei 

futures trading and regulation to a greater extent than the time differences.    
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Chapter 7  

Concluding remarks 
 
 

7.1 Summary of main empirical findings 

Nikkei 225 stock index futures contracts are a vital investment tool in worldwide trading 

activities, but little is known about the spot-futures pricing relationship, market dynamics and 

the level of integration in and across the Nikkei futures exchanges, in the context of rapidly 

changing market conditions and in the course of futures market globalisation. This dissertation 

studies the cost of carry relationship and the international dynamics of mispricing, price and 

volatility in the three Nikkei futures markets - the Osaka Exchange (OSE), the Singapore 

Exchange (SGX) and the Chicago Mercantile Exchange (CME), over a comprehensive new 

19-year sample period covering a series of important historical events such as the 2008 global 

financial crisis. The dissertation contains three empirical chapters, each with a distinctive focus. 

Chapter 4 investigates the cost of carry relationship, static and dynamic mispricing behaviour 

and index arbitrage activities in the three Nikkei markets. Chapter 5 examines the price 

discovery process in individual Nikkei markets and across the Nikkei futures markets. Chapter 

6 examines the volatility transmission process in individual Nikkei markets and across the 

Nikkei futures markets.  

 

The most important contribution of the dissertation is that it investigates the cost of carry 

equilibrium and disequilibrium, price discovery and volatility transmission in and across the 

three Nikkei futures markets. Previous research does not fully consider the special 

characteristics of the triple-listed Nikkei futures contracts and the key institutional differences 

among the Nikkei exchanges, or the price and volatility dynamics in the three Nikkei futures 

markets at the same time. The dissertation therefore contributes to knowledge in the areas of 

the Nikkei spot-futures equilibrium and index arbitrage behaviour, international first-moment 

and second-moment information transmission mechanism, and futures market integration. 
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The dissertation contributes to the theoretical framework on pricing and modelling the 

triple-listed Nikkei futures contracts. In terms of pricing, it modifies the standard cost of carry 

model for each Nikkei futures contract, allowing for the special characteristics of the Nikkei 

futures contracts such as the dividend and currency risks, and the key institutional differences 

such as the different trading hours and transaction costs. No previous research on the Nikkei 

futures pricing has considered the unique features of the Nikkei futures and the institutional 

differences as comprehensively as this work. In terms of modelling, it describes the nonlinear 

adjustment processes of the Nikkei futures mispricing and price with smooth transition models, 

and shows that the level of heterogeneity in investor structure and transaction costs is closely 

related to the information role of the Nikkei markets. The level of heterogeneity as a futures 

market characteristic was not emphasised in the literature until the 2000s but never in an 

international setting. In this way, the dissertation contributes to the literature by demonstrating 

the importance of market heterogeneity in price discovery and informational efficiency in 

individual Nikkei markets and across the border. 

 

Moreover, the dissertation provides substantial empirical evidence on the spot-futures pricing 

relationship, market dynamics and the level of integration for the three Nikkei futures markets. 

First, almost all studies on the Nikkei markets were published in the early 1990s-early 2000s. 

Using a comprehensive new 19-year dataset, the dissertation significantly updates the empirical 

studies on the Nikkei markets by encompassing the quickly changing market conditions in 

research and comparing the cross-border mispricing, price and volatility dynamics before and 

after the 2008 global financial crisis. Second, smooth transition models have been studied in a 

few markets but never in the triple-listed Nikkei markets. The dissertation applies the smooth 

transition models to the Nikkei futures mispricing and price, and hence it extends the smooth 

transition literature by showing the suitability of the smooth transition models for the 

triple-listed Nikkei futures contracts. Third, studies on the Nikkei market dynamics tend to 

focus on the OSE and SGX, and circumvent the CME due to its currency and time complexities. 

Two exceptions are Booth et al. (1996) who study the price dynamics across the three Nikkei 

markets without allowing for the effect of transaction costs, and Bacha and Vila (1994) who 
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study the potential destabilising effects of the inception of a new Nikkei futures market (as it 

then was) on the existing Nikkei volatilities. The systematic evidence that this work presents on 

the international dynamics of Nikkei futures mispricing, price and volatility is not available in 

past research. Fourth, this work studies the dynamic Nikkei market linkages and the effect of 

the time differences on the Nikkei market linkages, issues previously ignored in the literature. 

The dissertation therefore fills in this research space and sheds light on the dramatic integration 

process of the Nikkei markets in the context of globalisation.    

   

The main empirical findings of the dissertation can be summarised as follows. 

7.1.1 Cost of carry, mispricing and index arbitrage activities 

Chapter 4 first studies the cost of carry relationship in the Nikkei markets. The standard cost of 

carry model cannot be directly applied to the triple-listed Nikkei futures contracts, as it lacks 

the considerations of dividend lumpiness, exchange rate fluctuations and time differences. It is 

found that the dividend and currency risks have a significant impact on the pricing of the 

Nikkei contracts, while the impact of the time differences among the exchanges is trivial. As 

such, the standard cost of carry formula is modified for each Nikkei contract: the cost of carry 

model adjusted for lumpy dividends (COC2) is adopted for the OSE, SGX contracts; the cost of 

carry model adjusted for lumpy dividends and exchange rate fluctuations (COC3) in the 

original view is adopted for the CME contracts. The formula of the no-arbitrage bounds are 

also modified to take into account the effect of transaction costs to estimate the Nikkei futures 

mispricing. 

 

The static behaviour of Nikkei futures mispricing is examined in a systematic way over the 

19-year sample period, by parametric and non-parametric methods. The economic significance 

of the Nikkei futures mispricing, or whether the mispricings represent profitable arbitrage 

opportunities, is of particular interest. The evidence suggests that only brokers with a lower 

level of transaction costs may have been able to profit from short arbitrage in the OSE and 

SGX. It is relatively difficult for institutional investors to make a profit in the two markets, in 

that the mispricings are substantially less under a higher level of transaction costs. In contrast, 
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the CME mispricings are much larger in size and quantity, most of which survive and cluster 

even with a stricter level of transaction costs. This may suggest profitable opportunities for 

arbitrage; nonetheless, in fact most of the CME mispricings arise from the currency risk and 

arbitrage in the CME is not strictly risk-free. The general properties of the Nikkei futures 

mispricing include the dominance of underpricing, persistence, path dependence, positive 

relationship with time to maturity, and positive relationship with underlying stock volatility. 

 

The dynamic behaviour of Nikkei futures mispricing is examined in terms of market responses 

to a given mispricing, or propensity-to-arbitrage. An ESTAR-GARCH model is constructed to 

describe the nonlinear adjustment processes of the Nikkei mispricing. And hereafter the whole 

sample period is divided into a pre-crisis period (sample A) and a post-crisis period (sample B), 

separated by the 2008 global financial crisis. Quicker market responses to mispricing are found 

in the OSE and SGX, yet slower responses are found in the CME in the post-crisis period, 

which could result from the increased currency risk in arbitraging the CME contracts in more 

recent years. Moreover, there is evidence of mean reversion and heterogeneous arbitrageurs in 

the Nikkei markets, but the effect of transaction costs may be stronger than the effect of 

heterogeneous arbitrageurs, in that larger Nikkei mispricings are removed more quickly than 

smaller Nikkei mispricings.  

7.1.2 Price discovery in and across the Nikkei markets 

In Chapter 5, the Nikkei markets are found to be cointegrated, in the sense that the spot and 

futures prices are cointegrated with the cointegrating vector [1, -1] in individual Nikkei markets, 

and that the three Nikkei futures prices are cointegrated with one common stochastic trend. 

This justifies the use of error correction mechanisms for the Nikkei markets. To examine the 

Nikkei price adjustments towards equilibrium, the linear ECM is first estimated as a base 

model. The nonlinear ESTECM is further employed to capture the possible smooth transition 

error correction behaviour in the Nikkei markets. The smooth transition nonlinearity can result 

from transaction costs, heterogeneity and predictive asymmetry. It is found that the Nikkei 

prices exhibit the smooth transition dynamics and the nonlinear ESTECM is more appropriate 

for describing the price interaction mechanisms in the Nikkei markets.  
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In individual Nikkei markets, the estimated results of the ESTECM generally show that futures 

lead spot in the pre-crisis period and spot lead futures in the post-crisis period. Given that it is 

generally believed that the futures market plays a primary role in the price formation process, 

the spot leadership in the post-crisis period is interesting. This type of price adjustments takes 

place within a single regime. Going beyond and considering a middle regime of a narrow band 

around zero which indicates small pricing errors without arbitrage, and an outer regime of areas 

far away from zero which indicates large pricing errors with active arbitrage, the futures market 

is found to move more quickly between the regimes before the crisis, while the spot market 

move more quickly between the regimes after the crisis. The finding that the Nikkei spot 

market assumes the price discovery function in the post-crisis sample may reflect the relatively 

low level of heterogeneity in the investors and transaction costs during the period, compared 

with the futures markets.  

  

Across the Nikkei futures markets, the ESTECM shows that the CME is the most dominant 

market in the cross-border first-moment information transmission mechanism. The dominance 

of the CME seems to be transferred to the SGX when an alternative time sequence is applied 

whereby the CME acts as the earliest trading market in the sequence. Hence, I consistently 

support the international centre hypothesis that the foreign futures market, which is usually a 

global information centre, should dominate the international price discovery process. Reasons 

for the price leadership of the offshore exchanges relate to the better trading conditions they 

can provide. Following the logic of heterogeneity, the CME and SGX are found to exhibit a 

more heterogeneous structure of market transaction costs than the OSE. Although all the 

futures transaction costs have decreased in recent years, the decreasing trend is most notably 

observed in the CME. Besides, as global information centres, the CME and SGX have higher 

efficiency in processing and sharing information, and they are able to offer longer trading hours, 

fewer trading barriers, and more risk management tools for investors. An additional finding is 

that the last trading market in each time sequence tends to dominate the price discovery process 

across the border, when different time sequences are applied. This may be because the last 

trading market in each time sequence has more opportunities to absorb information that already 

exists in the earlier markets. 
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7.1.3 Volatility transmission in and across the Nikkei markets 

The volatility issues are touched in Chapter 5 but an in-depth study of the Nikkei volatility 

transmission mechanism is given in Chapter 6. In this chapter, the Nikkei volatility dynamics 

are studied from the perspectives of volatility interactions and dynamic market linkages. The 

volatility interactions are examined by the CCF approach based on the ESTECM. In individual 

Nikkei markets, there is evidence of bidirectional volatility spillover between spot and futures, 

with some evidence that the information flows from futures to spot are stronger than the other 

way round. Across the Nikkei futures markets, the CME takes the information leadership in the 

cross-border volatility transmission process. More generally, it is the foreign Nikkei markets 

(the CME and SGX) that play a major part in the second-moment information transmission. 

Combining the results from Chapter 5, I therefore continually support the international centre 

hypothesis, in that the information advantage of the CME and SGX exists in both the 

first-moment and the second-moment information transmission mechanisms across the border. 

The key role of the offshore futures markets is confirmed once more in the subsequent DCC 

multivariate GARCH analysis.  

 

The CCF results point to the critical importance of the contemporaneous relationships in and 

across the Nikkei markets. As such, the other perspective of the chapter examines the dynamic 

Nikkei market linkages through the time-varying behaviour of conditional correlations by the 

DCC multivariate GARCH specification. Using a bivariate DCC model, I find evidence of the 

leverage effect in most of the Nikkei markets, i.e. bad news increases market volatility to a 

larger extent than good news of the same magnitude. Overall, the Nikkei markets are all closely 

related, and the majority of information is absorbed jointly on a daily basis. The highest level 

of integration occurs between the OSE and SGX futures markets. This is because the OSE and 

SGX futures are based on the same underlying spot market and thus information originating 

from one market should be quickly transmitted to the other. The common characteristics shared 

by the OSE and SGX, such as operating at almost the same time and using the same currency, 

make their relationship even closer. Moreover, the bivariate Nikkei conditional correlations 

exhibit strong persistence and stability. Except for major events, news has a small impact on 
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the dynamic Nikkei market linkages but the news impact on the spot-futures relationships 

becomes relatively more immediate in recent years. To consider the effect of different trading 

hours of the CME contracts, the DCC framework is re-estimated with the alternative time 

sequence. It is found that main characteristics of the Nikkei market relationships are robust to 

the time differences.                                                                                                                                                                                                                                                                                                                                                                             

7.2 Theoretical and practical implications of the findings 

Although the dissertation is an empirical work, the findings of the dissertation have at least two 

important theoretical implications. First, the standard cost of carry model is a perfect economy 

model; modifications of the standard model are necessary for futures contracts listed on more 

than one trading venue - though based on the same asset, they can be quite different in 

specifications, costs and risks. For the triple-listed Nikkei futures contracts, in the midst of 

institutional differences, the dividend payout practices of Japanese firms and the yen-dollar 

exchange rate fluctuations are shown to be essential in influencing the theoretical (or fair) 

Nikkei futures prices, while the effect of the time differences among the exchanges is 

negligible. A growing number of futures contracts, especially those in emerging countries, 

become listed at home and abroad. As an example, the India Nifty 50 index futures contracts 

have been traded on the National Stock Exchange of India located in Mumbai as well as the 

SGX, CME and OSE since 2014.98 The spot-futures pricing relationship of the multiple-listed 

futures contracts may be significantly affected by the differences in contract design and 

regulatory environment in the different exchanges, which should be taken into consideration 

when pricing these futures contracts in the cost of carry analysis.             

 

Second, much of the research in the dissertation is conducted by smooth transition models, 

relying on the assumption of heterogeneity. For this reason, I examine aggregate market 

responses rather than individual reactions. Chapter 4 studies the effect of heterogeneous 

arbitrageurs on the mean reversion of mispricing, and reports that the effect of heterogeneity 

may be weaker than the effect of transaction costs in the Nikkei markets. Chapter 5 and 6 

                                                        
98 The CME Nifty 50 index futures are E-mini futures contracts. 
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further study the effect of heterogeneity in transaction costs on the error correction dynamics. 

The level of heterogeneity is the lowest in the Nikkei spot market in the post-crisis period, 

which may explain the spot leadership in the price formation process during the period. Across 

the border, the CME and SGX have a more heterogeneous structure of market transaction costs 

than the OSE, which may contribute to the predominance of the offshore exchanges in the 

international information dissemination. The level of heterogeneity as a futures market property 

was not emphasised in the literature until very recently. From the dissertation, it is evident that 

the level of heterogeneity in investor structure and transaction costs is closely related to the 

information role of the Nikkei markets. The recognition of financial markets being 

heterogeneous rather than uniform provides a valuable perspective for studies on price 

discovery, informational efficiency and market microstructure.       

 

The practical implications of my findings for investors are as follows. Given that the index 

arbitrage limits in the Nikkei markets are driven by transaction costs to a greater extent than by 

heterogeneous arbitrageurs, Nikkei investors may need to be more concerned about transaction 

costs in their arbitrage activities. In terms of portfolio diversification among the Nikkei markets, 

the high level of Nikkei market co-movements implies that all of the markets respond to 

information very rapidly and almost simultaneously, and hence, price discrepancies are already 

adjusted and investors are already well diversified, making further diversification difficult on a 

daily basis. For index arbitrageurs trading between Nikkei spot and futures markets, they may 

need to pay more attention to the impact of news on the market relationships, in that news has a 

relatively more immediate impact on the Nikkei spot-futures conditional correlations in recent 

years. 

 

For policy makers in the Nikkei markets, importance should be attached to the awareness of 

heterogeneity in market regulation in separate countries and exchange competition across the 

border. My findings suggest that the level of heterogeneity in investor structure and transaction 

costs is closely related to the information role of the Nikkei markets, implying that a change in 

the level of market heterogeneity may be followed by a change in the market competitiveness 

in the information transmission process. Regulators may want to increase the diversity of risk 
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management tools and transaction costs available in a market. Moreover, given the high level 

of Nikkei market co-movements, regulators should take effective measures to maintain the 

stability of the financial system in each market. 

 

For both investors and policy makers of multiple-listed futures contracts, it would be a valuable 

task to understand and make use of the information transmission mechanism between the 

domestic futures market and the equivalent, offshore futures markets. My findings consistently 

demonstrate the key functions of the offshore Nikkei futures markets in the international price 

discovery and volatility transmission mechanisms. I also show that the CME acts as an 

important vehicle for cross-market hedging and/or diversification in the face of Japanese 

shocks. Therefore, small offshore futures markets are able to compete with a large domestic 

futures market in practice. In addition, despite time differences among the exchanges, my 

findings show that the time issue does not exert a significant effect on the pricing of the Nikkei 

futures contracts, nor affect the information leadership of the offshore exchanges, nor affect the 

main characteristics of the dynamic Nikkei market linkages such as high level, strong 

persistence and stability. The message conveyed is that the time issue should not be excessively 

underlined in Nikkei futures trading and regulation.    

7.3 Limitations and directions for future research 

Daily data are used throughout this dissertation due to the daily re-settlement procedure in 

futures markets. Futures contracts are marked to market on a daily basis, and the gains or losses 

on a particular contract are realised at the end of a trading session each trading day, with 

reference to the daily settlement price. It follows that the daily settlement price reflects the 

arbitrage activities and the supply-demand relation in the futures market each trading day. The 

19-year daily dataset is sufficiently long to generate reasonable statistical power. However, it is 

recognised that one limitation of the dissertation is that information contained in the Nikkei 

mispricings, prices and volatilities at intraday levels cannot be captured. The advances in 

information technology and the widespread use of computer trading have enhanced the speed 

and liquidity of higher frequency trading, and the adjustments of disequilibrium towards the 
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steady state may be accomplished within one trading day. Hence, a promising direction for 

future research is to re-visit some of the research issues in the dissertation using intraday data 

and compare the relevant results. With intraday data, one can also release some of the 

restrictions imposed on the smooth transition models. For instance, the constant smoothness 

parameter (gamma) can be assumed to be time-varying (Taylor, 2007).   

 

The dissertation documents the predictive asymmetry of Nikkei prices and volatilities. In terms 

of price, bad news triggers a larger aggregate market response than good news of the same 

magnitude. In terms of volatility, bad news increases market volatility more than equally sized 

good news. This dissertation uses the CCF test to study the volatility interactions in the Nikkei 

markets. While the CCF test has many advantages, it is unable to explore the asymmetric 

volatility spillover effect, i.e. bad news in one market increases volatility in the other market 

more than equally sized good news. Also, the standard DCC framework of Engle (2002) is 

unable to model the asymmetry in conditional correlations, which means that conditional 

correlations may increase after systematic bad news to a larger extent than after systematic 

good news of the same magnitude. Future research may wish to look into such asymmetries. 

For example, one can apply the asymmetric DCC (ADCC) model of Cappiello et al. (2006) to 

the Nikkei conditional correlations to investigate the possible asymmetric correlation dynamics 

following the 2008 global financial crisis.  

 

The scope of the dissertation is confined to the Nikkei yen contracts in the OSE, SGX and the 

dollar contracts in the CME, for they are the earliest Nikkei futures contracts with sufficiently 

long time series. New Nikkei futures contracts have emerged to meet various investment 

demands. The SGX has started to trade Nikkei dollar contracts since 2006 and the CME has 

started to trade Nikkei yen contracts since 2004. There are also E-mini Nikkei futures contracts 

denominated in yen in the three exchanges. It is left for future research to study the cost of 

carry relationship and the price and volatility interactions of these Nikkei products. As more 

and more futures contracts are on the road of overseas listing, the mispricing, price and 

volatility dynamics between their equivalent markets will be an interesting research area in the 

future. 
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