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Abstract

This paper presents a response surface analysis for the distributions of the pop-
ular tests for seasonal unit roots in quarterly observed time series variables
developed by Hylleberg et al. (1990). Approximate asymptotic distributions
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1 Introduction

When analyzing seasonally unadjusted macroeconomic time series observed at quar-

terly or monthly frequency, it is common practice to test for the presence of seasonal

unit roots. By far the most popular among the available testing procedures (see

Ghysels and Osborn (2002, Chapter 3) for an overview) is the regression-based ap-

proach developed by Hylleberg, Engle, Granger and Yoo (1990), henceforth HEGY,

for quarterly series and extended by Beaulieu and Miron (1993) for monthly series.

The asymptotic distributions of these test statistics are non-standard, and critical

values are usually calculated by Monte Carlo simulation. HEGY and Beaulieu and

Miron (1993) tabulate approximate asymptotic critical values, as well as critical val-

ues for a selected number of finite sample sizes; see also Franses and Hobijn (1997).

The finite sample distributions of the HEGY statistics can differ substantially

from the asymptotic distributions, implying that caution is required regarding the

use of the latter for conducting inference. In empirical applications critical values

are sometimes obtained by simulation for the particular sample size at hand. In

this paper, we use response surface regressions to provide an easy-to-use method

for obtaining appropriate critical values at the 1%, 5% and 10% significance levels

for any sample size. The basic methodology underlying this analysis was developed

by MacKinnon (1991, 1994, 1996). Other applications include Sephton (1995), Car-

rion, Sansó and Art́ıs (1999), MacKinnon, Haug and Michelis (1999), Ericsson and

MacKinnon (2002), and Presno and López (2003).

The HEGY statistics are based on testing parameter restrictions in an autore-

gressive model of order k for seasonal differences of the time series under scrutiny.

Although the asymptotic distributions do not depend upon the lag order k, the finite

sample distributions do. Hence, our response surfaces account for the value of k used

in the implementation of the tests, cf. Cheung and Lai (1995a, 1995b) for tests of a

unit root at the zero frequency. Furthermore, in practice the appropriate lag order is

not known a priori, but has to be determined by the researcher. Popular approaches

to achieve this are information criteria and the general-to-specific approach of Ng

and Perron (1995). We account for this feature by providing response surfaces for

several commonly applied lag selection procedures.

Sansó, Suriñach and Art́ıs (1998) also estimate response surfaces for several sea-

sonal unit root tests. These authors focus exclusively on tests for unit roots at the

annual frequency, and place emphasis on allowing the response surfaces to depend

on the seasonal frequency. On the other hand, dependence on the lag order is not

accounted for (k is set to zero), and only a subset of the deterministic specifications
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that we consider here are admitted.

As discussed in MacKinnon (1994, 1996, 2000), the response surface methodology

can also be used to obtain approximations to the asymptotic distributions that

generally are far more accurate than using a single set of Monte Carlo experiments

with a very large sample size. Hence we also consider such “numerical” asymptotic

distribution functions for the HEGY test statistics.

The outline of the paper is as follows. In Section 2 we briefly discuss the HEGY

statistics for quarterly observed time series variables. In Section 3, we detail the

simulation design and the response surface methodology. Results are discussed in

Section 4, while Section 5 concludes.

2 Seasonal Unit Root Tests

The HEGY approach for testing for the presence of seasonal unit roots in a quar-

terly observed time series variable yt amounts to testing the significance of the πi

parameters, i = 1, . . . , 4, in the auxiliary regression

∆4yt = µt +π1y1,t−1 +π2y2,t−1 +π3y3,t−2 +π4y3,t−1 +
k

∑

j=1

φj∆4yt−j +εt, t = 1, . . . , T,

(1)

with ∆k being the differencing filter defined as ∆kyt ≡ (1 − Lk)yt ≡ yt − yt−k for

all k = 1, 2, . . . , with L the usual lag operator, and where µt includes deterministic

terms to be discussed in more detail below, and

y1,t = (1 + L + L2 + L3)yt, (2)

y2,t = −(1 − L + L2 − L3)yt, (3)

y3,t = −(1 − L2)yt. (4)

Given that (1−L4) = (1−L)(1+L)(1+L2), yt possibly contains seasonal unit roots

at the zero frequency, at the bi-annual frequency −1, and at the annual frequency ±i.

The filters leading to y1,t, y2,t and y3,t annihilate all but one of these unit roots, which

follows from the fact that the annual differencing filter (1−L4) can be decomposed

as (1−L4) = (1 + L + L2 + L3)(1−L), or (1−L4) = −(1−L + L2 −L3)(1 + L), or

(1− L4) = −(1− L2)(1 + L2). Hence, π1 = 0 in (1) implies that yt contains a (non-

seasonal) unit root at the zero frequency. Similarly, when π2 = 0 there is a seasonal

unit root at the bi-annual frequency −1, and when π3 = π4 = 0, seasonal unit roots

are present at the annual frequency ±i. HEGY suggest using one-sided t-tests to

examine the significance of π1 and π2, denoted as ti, i = 1, 2, and an F -test for the
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joint significance of π3 and π4, denoted F34. A procedure based on the t-statistics of

π3 and π4 is also possible, but this is hardly used in practice. Moreover, Burridge and

Taylor (2001) show that in the presence of higher order serial correlation, the limiting

null distributions of these t-statistics are not in general corrected by appropriate lag

augmentation, and recommend against use of such procedures. Ghysels, Lee and

Noh (1994) consider in addition F -tests for the joint significance of π2, π3 and π4

(F234) and for the joint significance of all four πi coefficients (F1234). It can be shown

that y1,t, y2,t and y3,t are mutually orthogonal, such that the tests described above

are pairwise independent. The asymptotic distributions of the HEGY statistics are

non-standard, and are functionals of Wiener processes.

Concerning the deterministic component µt in (1), HEGY consider five different

specifications nested in

µt = µ1 + µ2D2,t + µ3D3,t + µ4D4,t + µ5t, (5)

where Ds,t, s = 2, 3, 4, are seasonal dummy variables that are equal to 1 if quarter t

coincides with season s and 0 otherwise. The five specific cases are (i) no constant,

no dummies, no trend: µ1 = . . . = µ5 = 0; (ii) constant, no dummies, no trend:

µ2 = . . . = µ5 = 0; (iii) constant, no dummies, trend: µ2 = . . . = µ4 = 0; (iv)

constant, dummies, no trend: µ5 = 0; and (v) constant, dummies, and trend. In

this paper, we denote these cases by µt = 0, c, ct, cd and cdt respectively. Recently,

Smith and Taylor (1998) proposed a more general specification for µt including sea-

sonal linear trends (augmenting (5) with
∑4

s=2 µ4+sDs,tt), but we do not consider

this generalization here. The asymptotic distributions of the HEGY test statistics

typically depend on the specification chosen for the deterministic component, al-

though the distribution sometimes is invariant to the choice of µt. For example, the

asymptotic distribution of the t2 statistic is the same for specifications µt = 0, c and

ct, and for specifications µt = cd and cdt.

In practice one has to decide upon the appropriate number k of lagged annual

differences to be included in (1). Popular approaches in empirical practice include

the use of information criteria, such as the Akaike Information Criterion (AIC) and

the Schwarz’ Bayesian Information Criterion (BIC), and the general-to-specific pro-

cedure developed by Ng and Perron (1995). In the latter approach, one starts with

a large value for k and sequentially eliminates the highest-order lag until it is signif-

icant at a pre-specified significance level αNP. The asymptotic distributions of the

HEGY test statistics are independent of the value of k. However, the finite sample

distributions, which already can be quite different from the asymptotic distributions
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even for k = 0, do depend on the lag augmentation, as demonstrated in Cheung and

Lai (1995a) for the (Dickey-Fuller) test for a unit root at the zero frequency.

3 Methodology

Instead of providing tables with estimated critical values for a few specific sample

sizes and lag truncations, we estimate response surface regressions. These describe

the 1%, 5% and 10% critical values for the HEGY test statistics as functionals of the

sample size T and of the number of lagged annual differences k in the test regression

(1). Hence, the response surfaces can be used to obtain appropriate critical values

for any specific combination of these test features.

To implement the response surface regressions, we first obtain estimates of the

relevant quantiles of the distributions of the HEGY statistics for various combina-

tions of T and k from an extensive set of Monte Carlo simulations. Each experiment

consists of N = 50000 replications, where the series yt is generated by a seasonal ran-

dom walk with standard normal innovations, that is ∆4yt = εt with εt ∼ n.i.d.(0, 1).

We use 13 different sample sizes, with T = 32, 36, 40, 52, 64, 76, 100, 124, 152,

200, 300, 400, and 500, and vary k among k ∈ {0, 1 . . . , 8}. It should be noted

that here T is the effective sample size. For each replication, the HEGY tests are

computed from the regression (1). From each experiment, we record the estimated

0.01, 0.05 and 0.10 quantiles for the t-statistics and the estimated 0.99, 0.95 and

0.90 quantiles for the F -statistics. For each sample size T and lag truncation k, we

perform M = 25 experiments; see MacKinnon (2000) for an elaborate discussion of

the reasons for conducting multiple experiments for the same sample size (and lag

truncation). It is worth remarking that a pseudo-random number generator with

a sufficiently long period needs to be employed, due to the very large number of

random numbers involved in the computations. The Monte Carlo simulations were

programmed in GAUSS 5.0, using the KISS+Monster random number generator

developed by George Marsaglia, which has a period of greater than 108888.

We use the estimated quantiles as the dependent variable in a response surface

regression of the form

qα
i (T, k) = θα

∞
+ θα

1 T−1 + θα
2 T−2 + θα

3 kT−1 + θα
4 k2T−1 + θα

5 k3T−1 + ei, (6)

where qα
i (T, k) denotes the α quantile obtained from the i-th experiment with sample

size T and with lag truncation k. This functional form, which is similar to the

response surface specification used in the work of MacKinnon and Cheung and Lai

(1995a, 1995b), was determined after some experimentation. For some statistics and
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some quantiles not all coefficients in (6) were significant but we opted for a uniform

specification rather than optimizing the functional form for every specific test and

specific quantile.

The response surface regression in (6) can be used to obtain appropriate critical

values for any feasible combination of sample size T and fixed truncation lag k.

Note however that in practice, the value of k is rarely specified in advance but

rather is determined empirically using information criteria or the general-to-specific

procedure of Ng and Perron (1995), as discussed in the previous section. To account

for this and to provide response surfaces which are useful in this empirically more

relevant context, we proceed as follows. For each replication, we determine the

appropriate lag order in (1) using the AIC or BIC by varying k between kmin = 0

and kmax, where kmax is taken to be equal to 1,. . .,8. Similarly, the truncation lag

is determined with the Ng-Perron procedure starting with kmax lags and using a

significance level αNP = 0.05 or 0.10 (denoted NP0.05, NP0.10 respectively). We then

record the same quantiles of the empirical small sample distributions as before and

estimate response surface regressions as in (6) with k replaced by kmax.

The parameters in (6) are estimated using two procedures from the response

surface literature, and the results compared. The first approach follows Ericsson

and MacKinnon (2002), and estimates the response surface regression by ordinary

least squares (OLS). However, the errors in (6) are heteroskedastic, with the variance

depending systematically on the sample size (in particular, we observe that the

residual variance declines as T becomes larger; on the other hand, no systematic

dependence of the variance on k or kmax was detected). To account for these non-

spherical disturbances, heteroskedasticity-consistent standard errors are computed

using the jackknife covariance estimator of MacKinnon and White (1985). Denoting

by θ̂ the vector of estimated parameters and by X the matrix of regressors in (6),

this estimator is given by

V̂ (θ̂) = n−1(n − 1)(X ′X)−1(X ′Ω̂X − n−1X ′ûû′X)(X ′X)−1, (7)

where n is the number of observations in (6), Ω̂ is an (n × n) diagonal matrix with

diagonal elements û2
j , and ûj = (1 − kjj)

−1êj with kjj denoting the j’th diagonal

element of X(X ′X)−1X ′.

The second procedure follows MacKinnon, Haug and Michelis (1999) and MacK-

innon (2000), and involves using a generalized method of moments (GMM) estimator

similar to that of Cragg (1983):

θ̃ = [X ′W (W ′Ω̃W )−1W ′X]−1X ′W (W ′Ω̃W )−1W ′qα, (8)
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where qα denotes the vector of quantiles on the left hand side of (6), W is a matrix

of dummy variables – one for every (T, k) combination, and Ω̃ is an (n×n) diagonal

matrix with diagonal elements ω̃2
j . The estimated error variances ω̃2

j are obtained

by estimating two least squares regressions: first, qα is regressed on W to demean

the quantiles for each (T, k) combination; second, the squared residuals from the

first step are regressed on a constant, T−1 and T−2. The fitted values from this

second regression are then used as the variance estimates ω̃2
j . The GMM estimator

(8) can also be computed using a weighted least squares regression with as many

observations as there are (T, k) combinations; this method is described in detail for a

simpler case excluding terms in k by MacKinnon (2000). Standard errors associated

with θ̃ can be computed from the estimated covariance matrix:

V̂ (θ̃) = X ′W (W ′Ω̃W )−1W ′X. (9)

The parameter θα
∞

in (6) can be interpreted as the qth quantile in the asymp-

totic distribution of the relevant test statistic. As argued in MacKinnon (1994, 1996,

2000), using response surface regressions to obtain the quantiles of asymptotic distri-

butions provides much more accurate estimates than running a single Monte Carlo

experiment for a very large sample size T . Here we pursue this approach to obtain

numerical asymptotic distribution functions for the HEGY test statistics. For this

purpose, we perform the following additional Monte Carlo experiments. Each ex-

periment now consists of N = 100000 replications, where yt is again generated by a

seasonal random walk with standard normal innovations. For each sample size T , we

perform M = 50 experiments, where in addition to the 13 sample sizes used before

we also consider T = 600, 800, 1000, and 1200. For each replication, the HEGY tests

are computed from the regression (1) with k = 0. From each experiment, we then

record 221 estimated quantiles (α = 0.0001, 0.0002, 0.0005, 0.001, 0.002, . . ., 0.01,

0.015, . . ., 0.99, 0.991, . . ., 0.999, 0.9995, 0.9998, 0.9999). Using qα
i (T ) to denote

the α quantile in the i-th experiment with sample size T we estimate “simplified”

response surface regressions of the form

qα
i (T ) = θα

∞
+ θα

1 T−1 + θα
2 T−2 + ei, (10)

where again we use both OLS estimation with jackknife standard errors, and GMM

estimation, as discussed above.

In addition to providing numerical asymptotic distribution functions through the

intercepts θα
∞

, the estimation results from (10) can be used to generate approximate

probability values and asymptotic and finite sample densities for the HEGY test
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statistics. Although only 221 specific quantiles are recorded, we can interpolate

between these values using the methodology of MacKinnon (1996), which involves

estimating the regression

Φ−1(α) = γ0 + γ1q̂
α + γ2(q̂

α)2 + γ3(q̂
α)3 + vα, (11)

where Φ−1 is the inverse of the cumulative standard normal distribution, and q̂α is

an estimate of the α quantile obtained from estimation of (10): for asymptotic den-

sities, q̂α = θ̂α
∞

, while for finite sample densities, the fitted value θ̂α
∞

+ θ̂α
1 T−1 + θ̂α

2 T−2

for the appropriate sample size is used. The regression (11) is then estimated using

observations for a small number of reported quantiles, in our case 15, in the neigh-

bourhood of the desired quantile we wish to approximate. Feasible GLS estimation

can be employed to account for heteroskedasticity and serial correlation, using a

symmetric covariance matrix with elements

ω̂ij = s.e.(θ̂αi
∞

)s.e.(θ̂αj
∞

)
√

αi(1−αj)

αj(1−αi)
, i < j, (12)

where the standard errors of θ̂αi
∞

are also obtained from estimation of (10). Use of

the inverse standard normal distribution in (11) is appealing for the t-statistics,

but for the F -tests, it is more appropriate to let Φ−1 be the inverse of a chi-

squared distribution—we found the χ2(2) distribution performed well for all three

F -statistics.

Using the estimates from (11), an approximate probability value for an observed

test statistic, τ̂ , can then be obtained from

p = Φ(γ̂0 + γ̂1τ̂ + γ̂2τ̂
2 + γ̂3τ̂

3). (13)

Since Φ approximates the cumulative distribution function of the relevant seasonal

unit root test at τ̂ , the approximate density at this point is given by the first deriva-

tive of (13), i.e.

f(τ̂) ≈ φ(γ̂0 + γ̂1τ̂ + γ̂2τ̂
2 + γ̂3τ̂

3)(γ̂1 + 2γ̂2τ̂ + 3γ̂3τ̂
2), (14)

where φ(.) denotes the standard normal probability density function for the t-tests,

and the χ2(2) probability density function for the F -tests.

4 Results

The primary results are presented in Tables 1–5 and Figure 1. The tables contain

coefficient estimates for the response surface regression (6); each table corresponds to
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a different test, and within a given table, results for all combinatons of deterministics

and lag order determination methods that we consider are provided. These estimated

coefficients can be substituted into (6) to allow very simple computation of accurate

1%, 5% and 10% critical values for any sample size and truncation lag k or maximum

truncation lag kmax (for the endogenously determined lag order versions).

The results reported in the tables are those associated with OLS estimation of

(6), with jackknife standard errors. Estimation using the GMM estimator (8) yielded

very similar results to those recorded in Tables 1–5, suggesting a reassuring degree

of robustness to the estimation method. The latter results are not reported due to

their close similarity to the OLS output, but are available upon request.

As in MacKinnon (1991) and Ericsson and MacKinnon (2002), standard errors

are provided for θ̂α
∞

of (6), but not for other coefficients, since it is the former that is

of particular interest given its interpretation as the qth quantile of the relevant test’s

asymptotic distribution. As expected, the standard errors are larger for the smaller

significance levels, since estimation becomes increasingly difficult as more extreme

quantiles of the distributions are considered. Overall, the parameter estimates are

seen to be very precise, with generally very small standard errors observed. The

standard errors are substantially smaller for the t statistics than for the F tests,

with, on average, the former ranging from 0.0004 at the 10%-level to 0.0009 at the

1%-level, and the latter from 0.0009 at the 10%-level to 0.0026 at the 1%-level.

The goodness-of-fit of the response surface regressions is also assessed by the

standard R2 measure reported in the tables. A very close fit is observed in most

cases, and the average R2 across all estimations conducted is 0.925. Although there

are some occasions for which the R2 is somewhat low, the vast majority of the

estimations suggest good reliability of the response surface in fitting the simulated

critical values, with an R2 of at least 0.9 obtained in 75% of cases.

Figure 1 provides plots of the asymptotic cumulative distribution functions for

the five tests with different deterministic specifications. These results were obtained

using the θ̂α
∞

values obtained from OLS estimation of the simplified response surface

regression (10) for all 221 quantiles. Tables of values employed in these plots are

available from the authors on request. As with the estimations discussed above,

GMM estimation of (10) gave very similar results to those derived using OLS; the

practically identical cumulative distribution function plots which result are therefore

not reported.

The graphs confirm previously known results about the impact of the determin-

istic specification on HEGY tests: inclusion of a constant or a constant and a trend
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affects only those tests concerned with a non-seasonal unit root (i.e. t1, F1234), while

inclusion of seasonal dummies affects tests for unit roots at seasonal frequencies (i.e.

all except t1). Compared to the baseline case of µt = 0, when inclusion of deter-

ministic components impact the asymptotic distribution the result is a shift to the

left for the t-tests and to the right for the F -tests, corresponding to absolute value

increases in the critical values as expected.

The statistical adequacy of the response surface regressions’ functional forms

can be evaluated using either of the estimation methods. Drawing on Ericsson and

MacKinnon (2002) and Ericsson (1986), the response surface regression (6) or (10)

can be seen to be nested by a more general regression of the quantiles qα on a set

of dummy variables, one for each (T, k) combination when considering (6), or one

for each T value when considering (10). Comparison of the appropriate estimated

general regression with the OLS estimated response surface regression using a stan-

dard F -test then provides a test of the null hypothesis that the chosen functional

form is correct. When GMM estimation is employed for the response surface re-

gressions, MacKinnon (1994), for example, notes that functional form adequacy can

be assessed by the standard GMM overidentification test. Using the more general

equation (6) for purposes of illustration, the relevant statistic is the minimum of the

objective function involved in computing the estimator (8), i.e.

(qα − Xθ̃)′W (W ′Ω̃W )−1W ′(qα − Xθ̃). (15)

Under the null hypothesis, the statistic follows a χ2 distribution with degrees of

freedom equal to the number of dummy variables involved in the GMM estimation,

less the number of estimated parameters.

Using either the OLS or GMM approaches, tests of the functional form associ-

ated with the response surface regression (10) (used for the numerical asymptotic

distribution analysis) yielded favourable results. Rejections of the null at the 5%

significance level occurred for approximately 7% of the estimated response surface

regressions when using the OLS-based F -test, and approximately 8% of cases when

employing the GMM method. However, results for the more general response surface

regression (6), which allows for lag augmentation, were not so encouraging. For this

regression, the null hypothesis of functional form adequacy was strongly rejected for

almost every case considered. Further experimentation with a range of alternative

functional forms showed that this outcome was not sensitive to the particular form

selected, with all considered specifications resulting in similar rejection of the null.

Despite this limitation, as noted by Ericsson (1986), the response surface regression

still provides a very useful approximation to the true unknown functional form, and
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its use can be justified on the grounds of the significant coefficients obtained and the

generally high R2 values discussed above.

Finite sample critical values obtained using the response surface coefficients pro-

vided in Tables 1–5 will of course depend, for a given test and deterministic speci-

fication, on the sample size and lag order (or maximum lag order). The nature of

these dependencies can be observed by plotting three dimensional surfaces of de-

rived critical values against T and k or kmax, as in Figures 2–4. In the remainder of

this section, we concentrate for ease of exposition on the most commonly used tests

t1, t2 and F34. The values used to construct Figures 2–4 were obtained by substi-

tuting (T, k) or (T, kmax) combinations from T ∈ {30, 40, . . . , 200}, k ∈ {0, 1, . . . , 8}

and kmax ∈ {1, 2, . . . , 8} into the relevant estimated response surface equation. We

report results for the representative (and most general) deterministic specification

µt = cdt, and, for conciseness, omit the case where the lag order is selected using the

Ng-Perron procedure with αNP = 0.05, due to the close similarity of critical value

dependencies with the NP0.10 case.

Several features can be observed in Figures 2–4: first, as would be expected,

variation in the critical values with the sample size and lag order is greater with

a smaller significance level. Also, the smaller the sample size, the stronger is the

observed dependence on k or kmax, while variation with regard to T is usually great-

est for larger fixed or maximum lag orders. A particularly interesting result is the

difference between the critical values when using fixed values of k and those associ-

ated with endogenously determined values from a maximum considered kmax. The

critical values are decreasing in absolute value in k, but increasing in absolute value

in kmax, regardless of the selection method.

It is also instructive to consider plots of probability density functions, both to

provide an alternative picture of the asymptotic distributions, and also to examine

the dependencies of the complete finite sample distributions on the sample size and

lag order. Figure 5 reports densities for the t1, t2 and F34 tests, for the asymptotic

case and three finite sample sizes. Two deterministic specifications are considered

(µt = c, cdt), chosen so as to represent different asymptotic distributions for each

test. Concentrating on the most general case µt = cdt and a moderate sample size

T = 52, Figure 6 presents finite sample densities for four different (maximum) lag

orders, considering the fixed k case and a representative well-used data-dependent

lag selection procedure, NP0.10. These densities that admit dependence on k and

kmax were obtained using the method described in Section 3, with the difference

that q̂α and s.e.(θ̂αi
∞

) in (11) and (12) respectively were obtained using fitted values
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and standard errors from estimation of (6) rather than (10). Additional estimated

quantiles to those discussed early in Section 3 were actually recorded from the sim-

ulations for this purpose, and the response surface regression (6) was, for the cases

considered in Figure 6, subsequently estimated for all 221 quantiles discussed in the

numerical asymptotic distribution context.

For the t-tests, compared to the asymptotic densities in Figure 5, the main body

of the densities are shifted to the right as the sample size falls, although the effect of

this shift is less marked in the tails of the densities, and for the simpler deterministic

specification. A similar feature can be observed for the F -test when µt = cdt, except

the shift is to the left rather than the right; when µt = c, the density pivots as T falls,

although the magnitude of the change is relatively small. For a given sample size,

inclusion of increasing fixed numbers of lagged annual differences also generally shifts

the t-test densities to the right and the F -test density to the left; this is consistent

with the decrease in absolute value of the critical values observed in Figures 2–4.

In contrast, allowing data-dependent choice from increasing maximum lag orders

does not in general lead to a clear directional shift, but does result in fatter-tailed

densities, a feature that is again consistent with the plots of critical value surfaces.

5 Conclusion

This paper presents results of a response surface analysis for the distributions of a

number of popular seasonal unit root tests. Approximate asymptotic distributions

are obtained, and response surface coefficients for 1%-, 5%- and 10%-level critical

values are reported. These coefficients allow simple and accurate computation of

critical values for standard seasonal unit root tests applied to quarterly observed

time series variables, using any effective sample size and lag order. Results are

provided for five deterministic specifications, and allowance is made for the lag order

to be determined endogenously, using commonly applied selection methods. These

response surface coefficients should prove useful to practitioners. Dependence of the

critical values and the probability density functions on the sample size and lag order

is also investigated.
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Table 1: Response Surface Regression Estimates for the t1 Test

k µt α θα
∞

θα
1 θα

2 θα
3 θα

4 θα
5 R2

Fixed 0 0.01 −2.5677 (0.0009) 3.6140 −96.6185 0.2682 0.1195 −0.0081 0.8284
0.05 −1.9402 (0.0005) 3.6975 −53.4440 0.2158 0.0910 −0.0057 0.9361
0.10 −1.6163 (0.0004) 3.5785 −40.8039 0.1418 0.0860 −0.0051 0.9540

c 0.01 −3.4320 (0.0009) 0.5492 −85.5132 0.0905 0.1518 −0.0120 0.6312
0.05 −2.8629 (0.0005) 2.5118 −34.3978 0.1235 0.1361 −0.0100 0.9286
0.10 −2.5680 (0.0004) 2.9983 −15.6449 0.1522 0.1205 −0.0086 0.9607

ct 0.01 −3.9661 (0.0010) 0.6600 −154.7242 0.1396 0.2151 −0.0183 0.6808
0.05 −3.4133 (0.0006) 2.5526 −56.2466 0.1390 0.2021 −0.0156 0.8951
0.10 −3.1283 (0.0005) 3.1819 −21.8300 0.1257 0.1898 −0.0139 0.9482

cd 0.01 −3.4326 (0.0008) 4.0266 −131.1404 1.7081 −0.1842 0.0085 0.8726
0.05 −2.8627 (0.0005) 4.9286 −38.5320 1.5030 −0.1406 0.0068 0.9790
0.10 −2.5677 (0.0004) 5.0502 −10.1180 1.4565 −0.1451 0.0080 0.9869

cdt 0.01 −3.9680 (0.0010) 4.3937 −225.0318 2.4988 −0.2819 0.0121 0.8206
0.05 −3.4136 (0.0006) 5.0863 −70.0937 2.3066 −0.2522 0.0127 0.9703
0.10 −3.1283 (0.0005) 5.3177 −18.3395 2.1255 −0.2297 0.0126 0.9837

AIC 0 0.01 −2.5767 (0.0009) 1.8167 −0.1349 −2.7342 0.3733 −0.0213 0.9028
0.05 −1.9440 (0.0005) 2.7320 −6.1086 −1.4923 0.2183 −0.0128 0.7540
0.10 −1.6190 (0.0004) 2.9369 −7.7952 −1.0777 0.1656 −0.0099 0.7113

c 0.01 −3.4301 (0.0009) −2.7044 44.9819 −4.3404 0.5544 −0.0303 0.9812
0.05 −2.8639 (0.0005) 2.5159 −35.7828 −3.1554 0.4134 −0.0231 0.9823
0.10 −2.5686 (0.0004) 3.3457 −33.5511 −2.5082 0.3347 −0.0189 0.9685

ct 0.01 −3.9672 (0.0010) −9.6239 260.0559 −6.6045 0.9011 −0.0497 0.9831
0.05 −3.4076 (0.0005) −2.2191 126.7243 −5.7938 0.7702 −0.0420 0.9937
0.10 −3.1257 (0.0003) 1.3564 43.1979 −5.0170 0.6517 −0.0355 0.9953

cd 0.01 −3.4286 (0.0009) 0.1317 15.1462 −3.5420 0.4184 −0.0220 0.9689
0.05 −2.8619 (0.0004) 4.8824 −37.8872 −2.6042 0.3064 −0.0164 0.9644
0.10 −2.5677 (0.0004) 5.7984 −37.9769 −2.0907 0.2521 −0.0138 0.9364

cdt 0.01 −3.9702 (0.0010) −6.6328 201.8800 −5.1218 0.6490 −0.0345 0.9694
0.05 −3.4054 (0.0005) −0.9870 147.1974 −4.5356 0.5461 −0.0277 0.9826
0.10 −3.1227 (0.0004) 2.5318 75.2344 −4.0547 0.4782 −0.0242 0.9876

BIC 0 0.01 −2.5690 (0.0008) 3.0524 −87.4758 −1.2363 0.2054 −0.0116 0.6140
0.05 −1.9410 (0.0005) 3.1714 −40.5628 −0.6054 0.1067 −0.0062 0.5138
0.10 −1.6169 (0.0003) 3.0933 −26.2149 −0.4213 0.0759 −0.0045 0.8249

c 0.01 −3.4302 (0.0009) 3.4232 −220.1916 −2.9099 0.4437 −0.0244 0.9559
0.05 −2.8641 (0.0005) 4.5012 −133.2284 −1.6719 0.2755 −0.0155 0.8957
0.10 −2.5680 (0.0004) 4.2756 −87.1972 −1.1959 0.2021 −0.0115 0.6828

ct 0.01 −3.9498 (0.0010) 3.1922 −308.4425 −5.3904 0.7824 −0.0429 0.9809
0.05 −3.4116 (0.0007) 7.1220 −268.7485 −3.8189 0.5958 −0.0331 0.9718
0.10 −3.1292 (0.0005) 7.0066 −204.5621 −2.9049 0.4691 −0.0263 0.9568

cd 0.01 −3.4299 (0.0010) 7.4252 −296.4777 −2.6341 0.3628 −0.0199 0.9401
0.05 −2.8645 (0.0005) 7.9297 −177.1329 −1.5965 0.2386 −0.0133 0.7833
0.10 −2.5682 (0.0004) 7.2725 −115.7187 −1.1947 0.1859 −0.0105 0.8094

cdt 0.01 −3.9465 (0.0011) 4.9200 −327.3957 −4.4714 0.5850 −0.0314 0.9768
0.05 −3.4108 (0.0008) 9.9298 −307.2852 −3.3027 0.4543 −0.0245 0.9526
0.10 −3.1294 (0.0006) 10.2241 −247.3305 −2.6908 0.3904 −0.0214 0.9146

continued on next page
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continued from previous page

k µt α θα
∞

θα
1 θα

2 θα
3 θα

4 θα
5 R2

NP0.05 0 0.01 −2.5769 (0.0008) 1.5378 16.8366 −1.5996 0.1424 −0.0074 0.8439
0.05 −1.9434 (0.0005) 2.3667 11.6441 −0.7794 0.0638 −0.0035 0.7547
0.10 −1.6186 (0.0004) 2.6045 5.8786 −0.5212 0.0426 −0.0023 0.8215

c 0.01 −3.4361 (0.0009) −0.9635 1.6698 −3.1065 0.3205 −0.0165 0.9723
0.05 −2.8651 (0.0004) 1.8883 6.5740 −1.9344 0.1816 −0.0094 0.9678
0.10 −2.5688 (0.0004) 2.4264 15.3893 −1.4147 0.1212 −0.0062 0.9428

ct 0.01 −3.9754 (0.0009) −3.2044 51.6112 −5.8520 0.7347 −0.0397 0.9861
0.05 −3.4183 (0.0005) 0.8056 52.4024 −4.1501 0.4581 −0.0239 0.9887
0.10 −3.1326 (0.0004) 2.0345 52.6296 −3.1860 0.3127 −0.0159 0.9879

cd 0.01 −3.4367 (0.0009) 2.9169 −69.3618 −2.7197 0.2575 −0.0129 0.9593
0.05 −2.8647 (0.0005) 4.8310 −23.5718 −1.7192 0.1465 −0.0074 0.9407
0.10 −2.5684 (0.0004) 5.1601 −6.8204 −1.3287 0.1137 −0.0060 0.9318

cdt 0.01 −3.9792 (0.0010) 0.4677 −42.5722 −4.6612 0.5137 −0.0262 0.9803
0.05 −3.4188 (0.0005) 3.4097 17.7293 −3.3539 0.3094 −0.0145 0.9818
0.10 −3.1322 (0.0004) 4.4340 34.3524 −2.7018 0.2287 −0.0105 0.9798

NP0.10 0 0.01 −2.5777 (0.0009) 1.3034 34.0686 −2.4500 0.2751 −0.0143 0.8967
0.05 −1.9431 (0.0005) 2.3519 11.2264 −1.2022 0.1203 −0.0062 0.8278
0.10 −1.6188 (0.0004) 2.8013 −1.6768 −0.8228 0.0823 −0.0041 0.7877

c 0.01 −3.4383 (0.0009) −1.5873 34.3283 −4.1411 0.5058 −0.0263 0.9762
0.05 −2.8653 (0.0005) 1.8081 13.9398 −2.8763 0.3277 −0.0168 0.9794
0.10 −2.5687 (0.0004) 2.5773 12.3855 −2.2067 0.2352 −0.0118 0.9695

ct 0.01 −3.9849 (0.0011) −4.8148 120.9308 −6.6917 0.9239 −0.0501 0.9822
0.05 −3.4209 (0.0006) −0.4571 109.6356 −5.5733 0.7228 −0.0380 0.9875
0.10 −3.1329 (0.0004) 1.2429 91.1764 −4.6520 0.5590 −0.0285 0.9889

cd 0.01 −3.4396 (0.0009) 2.0541 −32.3121 −3.3966 0.3844 −0.0191 0.9607
0.05 −2.8653 (0.0005) 4.6598 −11.0945 −2.4256 0.2574 −0.0125 0.9534
0.10 −2.5687 (0.0004) 5.2781 −6.0870 −1.9229 0.1991 −0.0097 0.9399

cdt 0.01 −3.9878 (0.0011) −0.9590 20.2584 −5.3687 0.6954 −0.0365 0.9737
0.05 −3.4220 (0.0006) 2.2816 69.3513 −4.4601 0.5256 −0.0257 0.9759
0.10 −3.1336 (0.0004) 3.7355 69.3051 −3.8310 0.4251 −0.0201 0.9767

Note: OLS estimates of the response surface regression (6) for critical values at significance level α of the HEGY t1 test for a unit root

at the zero frequency in (1). The different specifications of the deterministic component µt are labelled (0): no constant, no dummies,

no trend; (c) constant, no dummies, no trend; (ct) constant, no dummies, trend; (cd) constant, dummies, no trend; and (cdt) constant,

dummies, and trend. The number of lagged annual differences k in the test regression is either fixed (panel labelled “Fixed”) or

determined endogenously using AIC (“AIC”), BIC (“BIC”), or the general-to-specific procedure of Ng and Perron (1995) with a 5% or

10% significance level (“NP0.05” and “NP0.10”). Standard errors of θα

∞
are reported in parentheses.
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Table 2: Response Surface Regression Estimates for the t2 Test

k µt α θα
∞

θα
1 θα

2 θα
3 θα

4 θα
5 R2

Fixed 0 0.01 −2.5620 (0.0008) 3.0846 −83.3265 0.2089 0.1295 −0.0089 0.8169
0.05 −1.9401 (0.0005) 3.8748 −57.5709 0.1464 0.1077 −0.0069 0.9377
0.10 −1.6165 (0.0004) 3.6462 −42.8153 0.1269 0.0871 −0.0051 0.9544

c 0.01 −2.5622 (0.0009) 3.7542 −81.7967 0.6378 0.0498 −0.0047 0.8472
0.05 −1.9402 (0.0005) 4.3921 −55.7587 0.4881 0.0430 −0.0035 0.9375
0.10 −1.6165 (0.0004) 4.0032 −39.2287 0.4278 0.0297 −0.0020 0.9516

ct 0.01 −2.5627 (0.0014) 4.3279 −83.4974 1.1259 −0.0060 −0.0052 0.7136
0.05 −1.9401 (0.0010) 4.6271 −50.8016 0.8755 0.0012 −0.0041 0.8321
0.10 −1.6164 (0.0008) 4.1679 −34.1225 0.7597 −0.0044 −0.0028 0.8538

cd 0.01 −3.4348 (0.0008) 4.2223 −134.8052 1.6417 −0.1643 0.0070 0.8728
0.05 −2.8634 (0.0005) 4.9497 −37.3719 1.4951 −0.1405 0.0069 0.9782
0.10 −2.5677 (0.0004) 5.0642 −8.2354 1.3982 −0.1293 0.0067 0.9874

cdt 0.01 −3.4352 (0.0013) 5.0307 −137.8061 2.4190 −0.3005 0.0128 0.7513
0.05 −2.8632 (0.0010) 5.4041 −29.0203 2.1342 −0.2459 0.0111 0.9124
0.10 −2.5676 (0.0009) 5.4560 0.8544 1.9948 −0.2313 0.0111 0.9355

AIC 0 0.01 −2.5672 (0.0009) 0.5589 31.1741 −2.6868 0.3638 −0.0209 0.9130
0.05 −1.9442 (0.0005) 2.9188 −8.1918 −1.5679 0.2330 −0.0137 0.7752
0.10 −1.6194 (0.0003) 3.0699 −12.1327 −1.0778 0.1645 −0.0097 0.7283

c 0.01 −2.5670 (0.0009) 2.0295 34.0666 −3.1716 0.4795 −0.0289 0.8933
0.05 −1.9445 (0.0005) 4.2223 −11.0929 −1.9398 0.3198 −0.0198 0.7528
0.10 −1.6198 (0.0003) 4.2046 −14.8381 −1.4191 0.2432 −0.0152 0.8314

ct 0.01 −2.5671 (0.0009) 3.6894 42.1883 −4.0773 0.7019 −0.0447 0.8390
0.05 −1.9440 (0.0005) 5.4807 −1.9439 −2.6603 0.4937 −0.0322 0.7531
0.10 −1.6195 (0.0004) 5.3564 −8.2455 −2.0621 0.3973 −0.0261 0.8464

cd 0.01 −3.4320 (0.0007) 0.3634 9.2896 −3.4468 0.4003 −0.0211 0.9689
0.05 −2.8614 (0.0004) 4.5768 −26.5812 −2.5981 0.3062 −0.0164 0.9619
0.10 −2.5670 (0.0003) 5.6624 −31.0324 −2.1379 0.2630 −0.0146 0.9464

cdt 0.01 −3.4300 (0.0008) 2.0283 26.8500 −4.3496 0.6323 −0.0372 0.9488
0.05 −2.8605 (0.0005) 6.2578 −7.9179 −3.5394 0.5418 −0.0329 0.9248
0.10 −2.5660 (0.0004) 7.1963 −11.3635 −3.0109 0.4765 −0.0293 0.9145

BIC 0 0.01 −2.5623 (0.0009) 2.4051 −71.8004 −1.2998 0.2211 −0.0127 0.6490
0.05 −1.9414 (0.0005) 3.3290 −42.3539 −0.6448 0.1136 −0.0066 0.5563
0.10 −1.6179 (0.0003) 3.3363 −33.8236 −0.4288 0.0775 −0.0046 0.8475

c 0.01 −2.5623 (0.0008) 3.3717 −66.3855 −1.6125 0.2839 −0.0169 0.5498
0.05 −1.9421 (0.0005) 4.1457 −42.3118 −0.8323 0.1528 −0.0092 0.7320
0.10 −1.6185 (0.0003) 3.9693 −32.9600 −0.5724 0.1068 −0.0065 0.9012

ct 0.01 −2.5651 (0.0009) 4.6078 −72.2433 −2.1175 0.3900 −0.0240 0.5055
0.05 −1.9432 (0.0005) 4.6519 −32.1288 −1.1744 0.2248 −0.0140 0.7995
0.10 −1.6195 (0.0003) 4.3494 −22.0687 −0.8660 0.1692 −0.0106 0.9212

cd 0.01 −3.4349 (0.0009) 7.8225 −305.8303 −2.5346 0.3450 −0.0189 0.9382
0.05 −2.8637 (0.0005) 7.7241 −169.3757 −1.6108 0.2415 −0.0135 0.7880
0.10 −2.5681 (0.0004) 7.2794 −114.3731 −1.2087 0.1880 −0.0106 0.8288

cdt 0.01 −3.4336 (0.0009) 9.0475 −296.3037 −3.1830 0.4887 −0.0292 0.9263
0.05 −2.8645 (0.0005) 9.0120 −166.1549 −2.1219 0.3483 −0.0208 0.7529
0.10 −2.5692 (0.0004) 8.4592 −111.6713 −1.6500 0.2805 −0.0169 0.8738

continued on next page
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continued from previous page

k µt α θα
∞

θα
1 θα

2 θα
3 θα

4 θα
5 R2

NP0.05 0 0.01 −2.5682 (0.0009) 0.4026 46.3104 −1.5398 0.1262 −0.0065 0.8570
0.05 −1.9440 (0.0005) 2.4990 11.4032 −0.8233 0.0713 −0.0039 0.7669
0.10 −1.6193 (0.0003) 2.8103 −0.5277 −0.5253 0.0430 −0.0023 0.8387

c 0.01 −2.5684 (0.0009) 1.5064 42.1884 −1.9206 0.2216 −0.0132 0.8368
0.05 −1.9441 (0.0005) 3.3111 8.8649 −1.0922 0.1362 −0.0084 0.7885
0.10 −1.6192 (0.0003) 3.4124 −1.0196 −0.7505 0.0986 −0.0062 0.8788

ct 0.01 −2.5687 (0.0009) 2.3679 45.4811 −2.6566 0.4018 −0.0258 0.8078
0.05 −1.9441 (0.0005) 3.7940 13.9931 −1.5856 0.2617 −0.0175 0.7711
0.10 −1.6195 (0.0004) 3.8093 4.1609 −1.1777 0.2066 −0.0141 0.8582

cd 0.01 −3.4402 (0.0008) 3.2328 −77.3063 −2.6323 0.2387 −0.0118 0.9605
0.05 −2.8645 (0.0004) 4.7036 −18.5462 −1.7128 0.1444 −0.0073 0.9407
0.10 −2.5679 (0.0003) 5.0031 −0.8699 −1.2952 0.1021 −0.0051 0.9459

cdt 0.01 −3.4394 (0.0008) 4.4175 −74.1647 −3.3739 0.4310 −0.0255 0.9487
0.05 −2.8641 (0.0005) 5.8143 −20.1804 −2.3479 0.3006 −0.0182 0.9209
0.10 −2.5678 (0.0003) 6.0297 −3.6022 −1.8579 0.2410 −0.0148 0.9328

NP0.10 0 0.01 −2.5695 (0.0009) 0.0555 67.5936 −2.3629 0.2569 −0.0135 0.9060
0.05 −1.9440 (0.0005) 2.5960 9.1768 −1.2928 0.1361 −0.0071 0.8395
0.10 −1.6190 (0.0003) 2.9148 −5.3304 −0.8328 0.0837 −0.0042 0.8044

c 0.01 −2.5701 (0.0009) 1.5540 61.0082 −2.8783 0.3876 −0.0224 0.8847
0.05 −1.9445 (0.0005) 3.7087 5.1529 −1.6754 0.2373 −0.0143 0.8106
0.10 −1.6191 (0.0004) 3.7843 −6.8145 −1.1710 0.1727 −0.0106 0.8313

ct 0.01 −2.5704 (0.0009) 3.0032 61.4897 −3.8910 0.6549 −0.0416 0.8329
0.05 −1.9443 (0.0005) 4.6977 8.5168 −2.4122 0.4289 −0.0282 0.7340
0.10 −1.6195 (0.0004) 4.7252 −5.5941 −1.8534 0.3507 −0.0235 0.7743

cd 0.01 −3.4421 (0.0008) 2.3368 −37.1396 −3.4129 0.3918 −0.0199 0.9600
0.05 −2.8653 (0.0004) 4.5438 −5.4619 −2.4397 0.2592 −0.0126 0.9525
0.10 −2.5684 (0.0003) 5.1223 1.2261 −1.9307 0.1972 −0.0095 0.9504

cdt 0.01 −3.4420 (0.0009) 4.1280 −42.7149 −4.2100 0.6032 −0.0349 0.9412
0.05 −2.8652 (0.0005) 6.1347 −6.0574 −3.2790 0.4795 −0.0282 0.9164
0.10 −2.5687 (0.0004) 6.6254 −1.0660 −2.6799 0.3927 −0.0233 0.9163

Note: OLS estimates of the response surface regression (6) for critical values at significance level α of the HEGY t2 test for a unit root

at the bi-annual frequency in (1). The different specifications of the deterministic component µt are labelled (0): no constant, no

dummies, no trend; (c) constant, no dummies, no trend; (ct) constant, no dummies, trend; (cd) constant, dummies, no trend; and

(cdt) constant, dummies, and trend. The number of lagged annual differences k in the test regression is either fixed (panel labelled

“Fixed”) or determined endogenously using AIC (“AIC”), BIC (“BIC”), or the general-to-specific procedure of Ng and Perron (1995)

with a 5% or 10% significance level (“NP0.05” and “NP0.10”). Standard errors of θα

∞
are reported in parentheses.
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Table 3: Response Surface Regression Estimates for the F34 Test

k µt α θα
∞

θα
1 θα

2 θα
3 θα

4 θα
5 R2

Fixed 0 0.99 4.7280 (0.0024) −0.9386 396.1993 −2.0767 0.2356 −0.0166 0.7137
0.95 3.1095 (0.0011) −5.0771 206.3868 −1.2777 0.1463 −0.0116 0.7663
0.90 2.4073 (0.0008) −5.1923 142.7831 −0.9888 0.1056 −0.0082 0.8833

c 0.99 4.7283 (0.0024) −7.4417 439.2318 −0.5857 −0.0931 0.0045 0.5579
0.95 3.1100 (0.0011) −9.1962 227.0026 −0.3190 −0.0821 0.0039 0.8502
0.90 2.4073 (0.0008) −8.3082 155.4414 −0.2765 −0.0587 0.0026 0.9306

ct 0.99 4.7319 (0.0028) −15.6501 539.2490 1.5179 −0.5171 0.0302 0.3677
0.95 3.1110 (0.0014) −14.1329 276.3174 0.8902 −0.3297 0.0191 0.8008
0.90 2.4074 (0.0010) −11.8853 184.8446 0.6622 −0.2587 0.0152 0.8935

cd 0.99 8.8236 (0.0033) 3.5092 720.4606 −6.9602 0.6517 −0.0253 0.8394
0.95 6.6474 (0.0017) −6.9507 218.0850 −6.0408 0.5553 −0.0269 0.9592
0.90 5.6337 (0.0013) −10.5304 102.6333 −5.5339 0.4985 −0.0248 0.9815

cdt 0.99 8.8272 (0.0039) −3.8611 884.8551 −8.7804 0.9460 −0.0375 0.7524
0.95 6.6495 (0.0024) −11.7649 295.0294 −7.7672 0.8614 −0.0424 0.9287
0.90 5.6344 (0.0020) −14.0134 145.8176 −7.2389 0.8192 −0.0426 0.9584

AIC 0 0.99 4.7431 (0.0026) 2.6808 201.0219 9.4001 −0.8677 0.0414 0.9796
0.95 3.1171 (0.0012) −3.8661 144.1372 4.9657 −0.4389 0.0194 0.9819
0.90 2.4122 (0.0008) −4.4217 102.8357 3.4980 −0.3281 0.0149 0.9771

c 0.99 4.7392 (0.0026) −3.6573 203.7073 11.1254 −1.2307 0.0656 0.9751
0.95 3.1176 (0.0012) −8.9533 172.3565 6.2838 −0.7210 0.0385 0.9774
0.90 2.4121 (0.0008) −8.3402 125.1107 4.4197 −0.5188 0.0279 0.9714

ct 0.99 4.7378 (0.0026) −14.3076 292.6668 15.4070 −2.1169 0.1224 0.9728
0.95 3.1168 (0.0012) −15.7669 233.6213 8.6323 −1.2048 0.0706 0.9706
0.90 2.4115 (0.0008) −13.4257 169.7369 6.1208 −0.8694 0.0511 0.9623

cd 0.99 8.8091 (0.0036) 24.4275 154.3111 10.9822 −0.6348 0.0158 0.9882
0.95 6.6387 (0.0016) 2.4334 55.7901 6.6087 −0.2629 0.0006 0.9885
0.90 5.6291 (0.0011) −5.4923 75.9283 4.9110 −0.1680 −0.0013 0.9831

cdt 0.99 8.8082 (0.0037) 20.6004 220.0351 8.8408 −0.2189 −0.0113 0.9844
0.95 6.6371 (0.0017) 0.6565 63.4968 4.7597 0.1054 −0.0244 0.9826
0.90 5.6261 (0.0011) −6.1706 58.3401 3.0325 0.2244 −0.0279 0.9702

BIC 0 0.99 4.7347 (0.0026) −5.4075 610.1042 5.2378 −0.7135 0.0354 0.9537
0.95 3.1099 (0.0011) −5.6461 265.2697 2.4651 −0.3785 0.0202 0.9223
0.90 2.4084 (0.0008) −5.4038 176.0797 1.5898 −0.2513 0.0136 0.8490

c 0.99 4.7357 (0.0027) −14.0083 710.6973 6.7617 −1.0000 0.0540 0.9372
0.95 3.1114 (0.0012) −11.1465 324.2607 3.3056 −0.5315 0.0296 0.8709
0.90 2.4087 (0.0008) −9.2278 207.5305 2.1400 −0.3516 0.0198 0.7275

ct 0.99 4.7412 (0.0028) −28.0092 958.5265 10.2617 −1.6573 0.0961 0.9322
0.95 3.1149 (0.0012) −19.0033 450.4189 4.9056 −0.8210 0.0475 0.8517
0.90 2.4104 (0.0008) −14.8106 293.9190 3.1973 −0.5450 0.0318 0.7820

cd 0.99 8.8147 (0.0045) −10.8306 1573.4336 9.4477 −0.9675 0.0469 0.9750
0.95 6.6490 (0.0020) −16.8066 801.9190 5.0693 −0.5584 0.0260 0.9580
0.90 5.6343 (0.0014) −17.3400 525.1915 3.5996 −0.4242 0.0203 0.9039

cdt 0.99 8.8072 (0.0046) −15.9267 1669.9886 8.8952 −0.7975 0.0374 0.9727
0.95 6.6505 (0.0022) −21.6767 901.2098 4.4660 −0.3707 0.0141 0.9473
0.90 5.6362 (0.0015) −21.0619 595.0342 2.9626 −0.2359 0.0078 0.8719

continued on next page
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continued from previous page

k µt α θα
∞

θα
1 θα

2 θα
3 θα

4 θα
5 R2

NP0.05 0 0.99 4.7453 (0.0025) 3.8998 112.9692 6.2470 −0.3169 0.0098 0.9721
0.95 3.1178 (0.0011) −2.1614 51.3718 2.9264 −0.0899 0.0018 0.9725
0.90 2.4117 (0.0007) −2.8759 25.3314 1.9529 −0.0557 0.0013 0.9665

c 0.99 4.7463 (0.0026) −3.0966 166.0547 7.1990 −0.4936 0.0212 0.9645
0.95 3.1175 (0.0011) −6.5213 72.9139 3.6115 −0.2257 0.0106 0.9649
0.90 2.4116 (0.0007) −6.1927 41.7324 2.3616 −0.1336 0.0063 0.9577

ct 0.99 4.7504 (0.0026) −14.4129 309.0905 10.7636 −1.2099 0.0675 0.9629
0.95 3.1186 (0.0011) −12.8182 152.6124 4.9660 −0.4790 0.0270 0.9635
0.90 2.4118 (0.0007) −10.6933 93.9195 3.2929 −0.3102 0.0179 0.9558

cd 0.99 8.8401 (0.0035) 10.8963 495.5854 9.6429 −0.5135 0.0141 0.9853
0.95 6.6549 (0.0016) −3.2525 118.5935 5.0935 −0.1021 −0.0052 0.9799
0.90 5.6389 (0.0011) −8.0776 37.1881 3.6107 −0.0288 −0.0066 0.9678

cdt 0.99 8.8453 (0.0037) 2.5547 694.9273 8.9801 −0.3845 0.0065 0.9818
0.95 6.6561 (0.0016) −7.8770 195.7276 4.5309 0.0311 −0.0144 0.9736
0.90 5.6387 (0.0011) −11.3964 82.7371 3.0565 0.0927 −0.0147 0.9543

NP0.10 0 0.99 4.7472 (0.0026) 5.5242 25.1008 8.9622 −0.7250 0.0295 0.9770
0.95 3.1180 (0.0011) −1.9932 40.1654 4.3231 −0.2102 0.0047 0.9829
0.90 2.4110 (0.0007) −2.9970 28.8738 2.9575 −0.1309 0.0030 0.9821

c 0.99 4.7482 (0.0026) −1.7142 68.9304 10.3882 −1.0262 0.0493 0.9709
0.95 3.1184 (0.0011) −6.6028 60.1338 5.3588 −0.4391 0.0198 0.9792
0.90 2.4116 (0.0007) −6.6594 47.5308 3.6757 −0.2838 0.0129 0.9774

ct 0.99 4.7521 (0.0026) −13.0862 207.0054 14.1980 −1.8232 0.1005 0.9682
0.95 3.1200 (0.0011) −13.3744 136.2460 7.3334 −0.8474 0.0460 0.9732
0.90 2.4121 (0.0008) −11.4869 97.2431 5.0507 −0.5707 0.0314 0.9703

cd 0.99 8.8605 (0.0037) 14.1521 389.8819 11.4545 −0.8377 0.0262 0.9850
0.95 6.6592 (0.0017) −0.6545 49.7193 6.7623 −0.3300 0.0012 0.9818
0.90 5.6415 (0.0011) −6.5967 7.4781 5.0212 −0.1919 −0.0037 0.9728

cdt 0.99 8.8639 (0.0038) 7.0772 565.7423 9.9567 −0.5692 0.0102 0.9806
0.95 6.6614 (0.0017) −5.0979 137.1056 5.5597 −0.0973 −0.0145 0.9737
0.90 5.6424 (0.0012) −9.7516 61.4463 3.8471 0.0364 −0.0190 0.9537

Note: OLS estimates of the response surface regression (6) for critical values at significance level α of the HEGY F34 test for a unit

root at the annual frequency in (1). The different specifications of the deterministic component µt are labelled (0): no constant, no

dummies, no trend; (c) constant, no dummies, no trend; (ct) constant, no dummies, trend; (cd) constant, dummies, no trend; and

(cdt) constant, dummies, and trend. The number of lagged annual differences k in the test regression is either fixed (panel labelled

“Fixed”) or determined endogenously using AIC (“AIC”), BIC (“BIC”), or the general-to-specific procedure of Ng and Perron (1995)

with a 5% or 10% significance level (“NP0.05” and “NP0.10”). Standard errors of θα

∞
are reported in parentheses.
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Table 4: Response Surface Regression Estimates for the F234 Test

k µt α θα
∞

θα
1 θα

2 θα
3 θα

4 θα
5 R2

Fixed 0 0.99 3.9289 (0.0019) 3.2974 349.7239 −1.5818 0.1572 −0.0111 0.8719
0.95 2.7441 (0.0008) −2.0727 189.2581 −0.9616 0.0596 −0.0044 0.7867
0.90 2.2135 (0.0006) −2.9242 128.1830 −0.7250 0.0365 −0.0031 0.8540

c 0.99 3.9296 (0.0019) −1.3875 370.2738 −0.9399 0.0021 −0.0004 0.7869
0.95 2.7443 (0.0008) −5.2333 199.9586 −0.5243 −0.0459 0.0027 0.8043
0.90 2.2136 (0.0006) −5.4452 135.7841 −0.4015 −0.0434 0.0024 0.9165

ct 0.99 3.9318 (0.0021) −7.0670 438.7555 0.0306 −0.2109 0.0140 0.5910
0.95 2.7451 (0.0010) −8.7947 229.8030 0.0747 −0.1868 0.0127 0.7665
0.90 2.2138 (0.0007) −8.1297 153.5925 0.0176 −0.1412 0.0093 0.8907

cd 0.99 7.5702 (0.0028) 16.8346 760.8801 −4.9480 0.3538 −0.0097 0.9536
0.95 5.9162 (0.0012) 4.3847 218.8137 −4.3053 0.2429 −0.0081 0.9426
0.90 5.1324 (0.0009) −0.9269 87.2640 −3.9204 0.2145 −0.0089 0.9800

cdt 0.99 7.5754 (0.0036) 11.7026 860.8747 −7.5675 0.7659 −0.0244 0.8839
0.95 5.9178 (0.0019) 1.0835 259.4967 −6.5045 0.6267 −0.0263 0.8672
0.90 5.1329 (0.0016) −3.3990 109.2033 −6.0038 0.5971 −0.0288 0.9429

AIC 0 0.99 3.9402 (0.0020) 9.1016 101.0523 7.8055 −0.7319 0.0352 0.9857
0.95 2.7516 (0.0009) 0.0687 100.3717 4.6655 −0.4470 0.0218 0.9896
0.90 2.2191 (0.0006) −1.6194 73.5624 3.4483 −0.3367 0.0162 0.9890

c 0.99 3.9387 (0.0020) 4.2472 100.7050 8.8183 −0.9500 0.0495 0.9841
0.95 2.7517 (0.0009) −3.8067 114.9404 5.4875 −0.6259 0.0339 0.9870
0.90 2.2192 (0.0006) −4.7626 85.3400 4.1289 −0.4827 0.0261 0.9856

ct 0.99 3.9390 (0.0020) −2.8817 143.1463 11.4539 −1.5190 0.0866 0.9820
0.95 2.7505 (0.0009) −8.4876 142.1160 7.0331 −0.9489 0.0552 0.9832
0.90 2.2188 (0.0006) −8.6106 112.2009 5.3036 −0.7304 0.0429 0.9809

cd 0.99 7.5678 (0.0030) 29.1219 380.2881 10.9381 −0.9648 0.0455 0.9930
0.95 5.9092 (0.0012) 10.0518 84.3475 7.4844 −0.5948 0.0249 0.9950
0.90 5.1283 (0.0008) 1.7414 60.9433 5.9722 −0.4567 0.0185 0.9942

cdt 0.99 7.5696 (0.0030) 23.0393 442.8646 11.2435 −1.0974 0.0552 0.9916
0.95 5.9080 (0.0012) 6.6156 87.5698 7.5270 −0.6783 0.0318 0.9924
0.90 5.1257 (0.0009) −0.7184 44.1059 5.8680 −0.4836 0.0210 0.9899

BIC 0 0.99 3.9349 (0.0020) −1.1320 558.1640 5.0216 −0.7057 0.0363 0.9709
0.95 2.7440 (0.0009) −2.4746 245.9146 2.3922 −0.3653 0.0195 0.9678
0.90 2.2138 (0.0006) −2.8756 156.6232 1.6208 −0.2559 0.0139 0.9500

c 0.99 3.9337 (0.0021) −6.6183 600.1559 5.9224 −0.8641 0.0465 0.9636
0.95 2.7459 (0.0009) −6.7613 287.7368 3.0143 −0.4758 0.0263 0.9524
0.90 2.2150 (0.0006) −6.1362 184.4985 2.0525 −0.3336 0.0187 0.9087

ct 0.99 3.9372 (0.0022) −15.1392 728.9851 8.0182 −1.2497 0.0715 0.9560
0.95 2.7491 (0.0010) −12.5854 375.1317 4.2433 −0.7040 0.0408 0.9381
0.90 2.2170 (0.0007) −10.3228 243.9417 2.8462 −0.4765 0.0275 0.8785

cd 0.99 7.5633 (0.0037) 4.4593 1441.5509 8.6788 −0.9531 0.0497 0.9861
0.95 5.9164 (0.0018) −5.5646 747.7480 5.1360 −0.5952 0.0295 0.9809
0.90 5.1358 (0.0012) −9.0881 519.1097 3.8772 −0.4766 0.0238 0.9713

cdt 0.99 7.5637 (0.0038) −2.0691 1541.2566 9.5437 −1.0955 0.0605 0.9844
0.95 5.9203 (0.0019) −10.7768 829.1731 5.5374 −0.6442 0.0335 0.9768
0.90 5.1386 (0.0013) −13.0339 572.1424 4.0599 −0.4793 0.0244 0.9603

continued on next page
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k µt α θα
∞

θα
1 θα

2 θα
3 θα

4 θα
5 R2

NP0.05 0 0.99 3.9488 (0.0020) 7.0229 123.4437 5.6862 −0.3547 0.0130 0.9821
0.95 2.7527 (0.0009) 0.9468 34.5123 2.9013 −0.1332 0.0047 0.9852
0.90 2.2189 (0.0006) −0.4155 5.5468 1.9826 −0.0714 0.0021 0.9840

c 0.99 3.9471 (0.0020) 2.6642 126.3159 6.4005 −0.4985 0.0223 0.9794
0.95 2.7532 (0.0009) −2.5124 51.5959 3.3885 −0.2355 0.0115 0.9812
0.90 2.2193 (0.0006) −3.2174 19.7081 2.3627 −0.1536 0.0077 0.9787

ct 0.99 3.9474 (0.0020) −4.0952 195.1298 8.6660 −0.9847 0.0550 0.9781
0.95 2.7550 (0.0009) −7.4093 109.2580 4.6062 −0.4814 0.0278 0.9788
0.90 2.2193 (0.0006) −6.5971 53.5962 3.1432 −0.3053 0.0177 0.9761

cd 0.99 7.5874 (0.0030) 20.5018 615.6120 9.4672 −0.7531 0.0351 0.9916
0.95 5.9234 (0.0012) 5.8044 157.7776 5.7740 −0.3561 0.0135 0.9930
0.90 5.1380 (0.0008) −0.0906 51.9037 4.3199 −0.2214 0.0067 0.9903

cdt 0.99 7.5898 (0.0032) 13.4496 753.7530 10.1339 −0.9323 0.0488 0.9901
0.95 5.9263 (0.0013) 0.9341 239.3169 6.1927 −0.4826 0.0228 0.9903
0.90 5.1395 (0.0009) −3.6981 100.0131 4.6059 −0.3126 0.0137 0.9846

NP0.10 0 0.99 3.9536 (0.0020) 8.8177 39.7647 7.6050 −0.6532 0.0269 0.9834
0.95 2.7541 (0.0009) 1.4812 11.0058 4.1741 −0.2731 0.0097 0.9894
0.90 2.2196 (0.0006) −0.4139 3.9242 2.9643 −0.1600 0.0048 0.9906

c 0.99 3.9536 (0.0020) 4.0736 51.0133 8.4161 −0.8461 0.0403 0.9812
0.95 2.7548 (0.0009) −2.2514 27.5021 4.9066 −0.4401 0.0206 0.9866
0.90 2.2200 (0.0006) −3.4335 16.4174 3.5622 −0.2945 0.0135 0.9878

ct 0.99 3.9564 (0.0020) −3.6445 128.1455 11.0279 −1.4227 0.0782 0.9788
0.95 2.7563 (0.0009) −7.3592 77.7724 6.4758 −0.7878 0.0438 0.9828
0.90 2.2207 (0.0006) −7.1526 49.3990 4.6760 −0.5434 0.0303 0.9833

cd 0.99 7.6032 (0.0032) 21.9168 546.6482 11.5421 −1.1785 0.0569 0.9914
0.95 5.9291 (0.0013) 7.3095 95.0705 7.7180 −0.6811 0.0276 0.9925
0.90 5.1409 (0.0009) 0.7460 15.2216 6.0979 −0.4919 0.0176 0.9904

cdt 0.99 7.6070 (0.0033) 14.4260 699.3109 11.6276 −1.2557 0.0633 0.9900
0.95 5.9334 (0.0014) 2.1524 177.0879 7.8659 −0.7936 0.0370 0.9889
0.90 5.1436 (0.0010) −3.2544 69.1484 6.1711 −0.5786 0.0249 0.9830

Note: OLS estimates of the response surface regression (6) for critical values at significance level α of the HEGY F234 test for unit

roots at the bi-annual and annual frequencies in (1). The different specifications of the deterministic component µt are labelled (0): no

constant, no dummies, no trend; (c) constant, no dummies, no trend; (ct) constant, no dummies, trend; (cd) constant, dummies,

no trend; and (cdt) constant, dummies, and trend. The number of lagged annual differences k in the test regression is either fixed

(panel labelled “Fixed”) or determined endogenously using AIC (“AIC”), BIC (“BIC”), or the general-to-specific procedure of Ng and

Perron (1995) with a 5% or 10% significance level (“NP0.05” and “NP0.10”). Standard errors of θα

∞
are reported in parentheses.
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Table 5: Response Surface Regression Estimates for the F1234 Test

k µt α θα
∞

θα
1 θα

2 θα
3 θα

4 θα
5 R2

Fixed 0 0.99 3.4803 (0.0015) 5.9064 345.7451 −1.1371 0.0562 −0.0030 0.9360
0.95 2.5214 (0.0007) 0.2183 179.9413 −0.7916 0.0354 −0.0029 0.8789
0.90 2.0854 (0.0005) −1.1922 124.4361 −0.6217 0.0151 −0.0013 0.8366

c 0.99 4.3824 (0.0016) 10.9911 411.5903 −0.9469 −0.1175 0.0117 0.9604
0.95 3.3088 (0.0008) 2.5579 189.6645 −0.8798 −0.0852 0.0077 0.9167
0.90 2.8090 (0.0006) −0.1989 125.4875 −0.7853 −0.0668 0.0052 0.9109

ct 0.99 5.2702 (0.0020) 12.9347 632.5322 −1.4192 −0.2017 0.0231 0.9646
0.95 4.0999 (0.0010) 4.2828 258.7713 −1.1164 −0.1939 0.0173 0.9289
0.90 3.5509 (0.0007) 0.9763 155.0614 −1.0484 −0.1475 0.0117 0.9219

cd 0.99 6.8717 (0.0024) 25.2608 913.2567 −2.2877 −0.1705 0.0228 0.9812
0.95 5.4967 (0.0012) 12.5387 266.2877 −2.1034 −0.1716 0.0152 0.9590
0.90 4.8419 (0.0010) 6.0745 114.5318 −2.0352 −0.1285 0.0092 0.9404

cdt 0.99 7.6603 (0.0028) 30.5070 1167.1821 −2.5309 −0.3423 0.0404 0.9830
0.95 6.2220 (0.0014) 16.0839 341.0064 −2.5909 −0.2013 0.0171 0.9616
0.90 5.5310 (0.0012) 8.9636 130.4721 −2.4718 −0.1694 0.0110 0.9382

AIC 0 0.99 3.4918 (0.0015) 12.1011 91.3529 6.6932 −0.6123 0.0286 0.9913
0.95 2.5297 (0.0007) 2.2488 91.4368 4.3839 −0.4295 0.0215 0.9933
0.90 2.0908 (0.0005) 0.3538 63.4039 3.2999 −0.3193 0.0155 0.9923

c 0.99 4.3910 (0.0017) 16.7639 144.4764 9.4806 −1.1027 0.0596 0.9932
0.95 3.3118 (0.0008) 4.4929 93.8647 6.5686 −0.7787 0.0432 0.9950
0.90 2.8133 (0.0006) 0.0802 100.9693 5.1924 −0.6140 0.0338 0.9938

ct 0.99 5.2907 (0.0022) 26.5432 16.6896 14.2506 −1.7988 0.0997 0.9941
0.95 4.0979 (0.0010) 11.9558 −73.1221 11.0065 −1.3821 0.0762 0.9966
0.90 3.5467 (0.0007) 5.1720 −26.4153 9.2450 −1.1489 0.0633 0.9971

cd 0.99 6.8761 (0.0023) 30.2021 717.7987 11.4896 −1.1489 0.0585 0.9959
0.95 5.4930 (0.0010) 14.3196 208.4080 8.2196 −0.7969 0.0394 0.9972
0.90 4.8377 (0.0008) 6.4119 111.9433 6.8344 −0.6478 0.0310 0.9968

cdt 0.99 7.6722 (0.0027) 37.5553 783.1087 15.9760 −1.8642 0.1012 0.9962
0.95 6.2142 (0.0012) 20.5489 108.1164 12.0425 −1.3539 0.0697 0.9975
0.90 5.5219 (0.0008) 11.3676 −4.6245 10.0022 −1.0661 0.0526 0.9975

BIC 0 0.99 3.4825 (0.0017) 2.8108 511.1405 4.4449 −0.6066 0.0309 0.9818
0.95 2.5226 (0.0007) −0.4651 241.3935 2.3168 −0.3507 0.0187 0.9829
0.90 2.0843 (0.0005) −0.9837 148.0387 1.6176 −0.2536 0.0137 0.9753

c 0.99 4.3809 (0.0020) 3.7240 726.9378 6.9804 −1.0174 0.0561 0.9860
0.95 3.3109 (0.0009) −1.5471 375.5370 3.9535 −0.6154 0.0340 0.9867
0.90 2.8098 (0.0007) −2.8647 257.7463 2.8303 −0.4545 0.0253 0.9808

ct 0.99 5.2412 (0.0027) 4.2801 1036.0841 12.1337 −1.7127 0.0959 0.9890
0.95 4.0984 (0.0015) −5.9387 689.9063 7.9002 −1.1908 0.0660 0.9874
0.90 3.5507 (0.0010) −6.8386 493.8530 5.9839 −0.9411 0.0526 0.9856

cd 0.99 6.8667 (0.0033) 9.7703 1619.0871 8.6868 −0.9692 0.0513 0.9907
0.95 5.5029 (0.0017) −0.0939 827.3578 5.4059 −0.6498 0.0332 0.9884
0.90 4.8450 (0.0012) −3.3837 546.4964 4.1911 −0.5321 0.0273 0.9848

cdt 0.99 7.6392 (0.0040) 10.7300 2005.8648 12.9621 −1.5886 0.0912 0.9912
0.95 6.2256 (0.0024) −3.3613 1138.5225 8.4729 −1.0350 0.0554 0.9876
0.90 5.5372 (0.0018) −7.5935 810.0778 6.6342 −0.8402 0.0446 0.9835

continued on next page
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continued from previous page

k µt α θα
∞

θα
1 θα

2 θα
3 θα

4 θα
5 R2

NP0.05 0 0.99 3.4999 (0.0015) 9.7185 131.6420 5.0434 −0.3314 0.0128 0.9885
0.95 2.5302 (0.0007) 3.0660 35.6927 2.7048 −0.1218 0.0039 0.9914
0.90 2.0899 (0.0005) 1.4567 0.0129 1.9285 −0.0742 0.0022 0.9894

c 0.99 4.3984 (0.0017) 13.6813 220.3071 7.4856 −0.7471 0.0384 0.9914
0.95 3.3163 (0.0008) 4.6563 57.3341 4.3597 −0.3725 0.0187 0.9932
0.90 2.8145 (0.0006) 1.4049 27.8286 3.1712 −0.2453 0.0122 0.9915

ct 0.99 5.2977 (0.0023) 17.8243 288.0837 12.8071 −1.5167 0.0821 0.9936
0.95 4.1134 (0.0010) 6.6901 61.3787 8.4796 −0.9249 0.0494 0.9953
0.90 3.5588 (0.0008) 3.1149 −3.6236 6.4347 −0.6473 0.0340 0.9947

cd 0.99 6.8891 (0.0024) 24.3382 848.1837 9.8737 −0.8967 0.0453 0.9952
0.95 5.5056 (0.0011) 11.3985 238.8333 6.3918 −0.5228 0.0251 0.9960
0.90 4.8467 (0.0008) 5.5069 79.0775 4.9625 −0.3738 0.0173 0.9954

cdt 0.99 7.6930 (0.0030) 26.3858 1093.8820 14.8254 −1.6891 0.0950 0.9952
0.95 6.2373 (0.0014) 13.1797 291.4399 9.9246 −1.0030 0.0524 0.9960
0.90 5.5419 (0.0010) 6.5914 89.2033 7.7612 −0.7172 0.0359 0.9952

NP0.10 0 0.99 3.5050 (0.0016) 11.1032 67.2108 6.6291 −0.5937 0.0254 0.9890
0.95 2.5323 (0.0007) 3.4821 12.4800 3.9725 −0.2883 0.0111 0.9928
0.90 2.0914 (0.0005) 1.5171 −5.2626 2.8838 −0.1717 0.0056 0.9930

c 0.99 4.4072 (0.0018) 14.9763 152.7395 9.3252 −1.0949 0.0567 0.9915
0.95 3.3190 (0.0009) 5.1179 26.1883 6.1196 −0.6531 0.0327 0.9939
0.90 2.8159 (0.0006) 1.4459 17.8827 4.6462 −0.4577 0.0223 0.9934

ct 0.99 5.3193 (0.0025) 19.5967 196.9387 14.5927 −1.9205 0.1039 0.9928
0.95 4.1219 (0.0012) 8.6959 −34.3439 10.8269 −1.3675 0.0726 0.9941
0.90 3.5633 (0.0009) 4.3850 −71.4750 8.8294 −1.0582 0.0548 0.9943

cd 0.99 6.9065 (0.0026) 24.5264 819.5329 12.0353 −1.3262 0.0671 0.9950
0.95 5.5121 (0.0012) 12.1016 192.6117 8.5608 −0.9068 0.0439 0.9958
0.90 4.8511 (0.0008) 5.7033 53.4786 6.9801 −0.6976 0.0318 0.9954

cdt 0.99 7.7179 (0.0032) 26.3604 1063.8845 17.0919 −2.1833 0.1201 0.9949
0.95 6.2497 (0.0015) 13.7971 227.2358 12.7933 −1.5709 0.0819 0.9955
0.90 5.5499 (0.0012) 7.2551 25.7479 10.5292 −1.2182 0.0603 0.9944

Note: OLS estimates of the response surface regression (6) for critical values at significance level α of the HEGY F1234 test for unit

roots at the zero, bi-annual and annual frequencies in (1). The different specifications of the deterministic component µt are labelled

(0): no constant, no dummies, no trend; (c) constant, no dummies, no trend; (ct) constant, no dummies, trend; (cd) constant, dummies,

no trend; and (cdt) constant, dummies, and trend. The number of lagged annual differences k in the test regression is either fixed

(panel labelled “Fixed”) or determined endogenously using AIC (“AIC”), BIC (“BIC”), or the general-to-specific procedure of Ng and

Perron (1995) with a 5% or 10% significance level (“NP0.05” and “NP0.10”). Standard errors of θα

∞
are reported in parentheses.
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(a) t1 statistic (b) t2 statistic

(c) F34 statistic (d) F234 statistic

(e) F1234 statistic

Figure 1: Asymptotic Distributions of HEGY test statistics
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(a) k fixed, 1% level (b) k fixed, 5% level (c) k fixed, 10% level

(d) AIC, 1% level (e) AIC, 5% level (f) AIC, 10% level

(g) BIC, 1% level (h) BIC, 5% level (i) BIC, 10% level

(j) NP0.10, 1% level (k) NP0.10, 5% level (l) NP0.10, 10% level

Figure 2: Critical Values for the t1 Test; µt=cdt.
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(a) k fixed, 1% level (b) k fixed, 5% level (c) k fixed, 10% level

(d) AIC, 1% level (e) AIC, 5% level (f) AIC, 10% level

(g) BIC, 1% level (h) BIC, 5% level (i) BIC, 10% level

(j) NP0.10, 1% level (k) NP0.10, 5% level (l) NP0.10, 10% level

Figure 3: Critical Values for the t2 Test; µt=cdt.
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(a) k fixed, 1% level (b) k fixed, 5% level (c) k fixed, 10% level

(d) AIC, 1% level (e) AIC, 5% level (f) AIC, 10% level

(g) BIC, 1% level (h) BIC, 5% level (i) BIC, 10% level

(j) NP0.10, 1% level (k) NP0.10, 5% level (l) NP0.10, 10% level

Figure 4: Critical Values for the F34 Test; µt=cdt.
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(a) t1 statistic, µt=c (b) t1 statistic, µt=cdt

(c) t2 statistic, µt=c (d) t2 statistic, µt=cdt

(e) F34 statistic, µt=c (f) F34 statistic, µt=cdt

Figure 5: Asymptotic and Finite Sample Densities of HEGY test statistics.
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(a) t1 statistic, k fixed (b) t1 statistic, NP0.10

(c) t2 statistic, k fixed (d) t2 statistic, NP0.10

(e) F34 statistic, k fixed (f) F34 statistic, NP0.10

Figure 6: Finite Sample Densities of HEGY test statistics with Lagged Annual
Differences; µt=cdt, T=52.
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