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1. INTRODUCTION 
 
Between mid-1999 and the end of 2000, UK wholesale natural gas prices, which 

had remained at very low levels since the spot and futures markets were first 

established in 1995-1996, increased very substantially, with prices almost 

doubling. This rapid increase in the price of gas was concomitant with that 

occurring in the international oil market, where the price of Brent Crude oil 

increased by more than one hundred per cent during 1999. Between 2001 and 

2003 UK gas prices continued to experience much greater volatility than 

previously and, by late 2002, the rising oil price was again accompanied by rising 

gas prices.  

 

This development was, on the face of it, surprising, since the conventional view 

of the behaviour of gas prices in a liberalised market like that of the UK, is that 

“the linkage with oil prices is now much less transparant.” (Barton & Vermeire, 1999, 

p.1). However, a report by Ilex Energy Consulting Ltd (Ilex 2001) to the UK 

Government in January 2001 argued that the main factor explaining the rise in 

the gas price through 1999-2000 was the link that had recently been established 

between the UK and oil-indexed Continental gas markets. The opening of the 

UK-Belgium inter-connector gas pipeline at the end of 1998 established a 

relationship between two gas markets which had previously been quite 

independent of one another. Ilex concluded that “the link with oil indexed gas prices 

on the Continent is the most important factor in explaining the rise in UK gas prices 

through 2000” (Ilex 2001, p.iii). 

 

The inter-connector pipeline between Bacton in Norfolk and Zeebrugge in 

Belgium was originally built to allow UK gas to be supplied to continental 

markets where reserves and gas production are much lower than that of the UK.  

However, the flow of gas can be reversed (albeit at a smaller rate than the flow 

from the UK to the continent). After the opening of the inter-connector in 
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October 1998, initially gas began to flow in this ‘reverse’ direction, from the 

Continent to the UK. However, with Continental gas prices rising sharply in 

1999, it became clear to UK gas traders that arbitrage profits were available, 

selling UK gas, via the inter-connector, in the higher priced Continental markets. 

Thus gas prices traded at Bacton began to converge with gas prices in 

Zeebrugge1.  Continental gas prices are indexed to the price of oil (either crude or 

fuel oil) in long-term contracts so that when oil prices rise eventually so will 

Continental gas prices through their contracts. Therefore, arbitrage activities 

between the UK and Continental gas markets that led to price convergence 

between the two markets also indirectly linked UK gas prices to the price of oil.  

 

Contrasting with the argument presented by Ilex (2001), which posits a link 

between gas and oil prices which is fundamentally dependent upon the existence 

of contractual terms linking oil and gas prices in a non-liberalised gas market, 

Barcella (1999) discovered a relationship between oil and gas prices in the 

liberalised US gas market) which was based on more fundamental and long-run 

economic factors. The author found that crude oil and natural gas prices were 

highly correlated in the US, “yearly trends in crude oil and natural gas prices …are 

highly correlated, with a coefficient of 0.916. The weekly gas and fuel oil prices… are less 

highly correlated, but are cointegrated” (Barcella, 1999, p.12) Barcella argued that the 

close relationship between natural gas and oil prices (both crude and fuel oil) 

reflected the underlying economic fact that the fuels were substitutes for one 

another in a large number of industrial processes.  In particular she referred to 

“the significant inter-fuel competition in the electric power sector.” 

 

However, in the UK, prior to the opening of the inter-connector and the 

establishment of a direct link between the UK gas price and the oil price, the 

relationship between the two commodity prices certainly appeared to be 

                                                 
1 Plus the costs of transportation via the inter-connector. 
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minimal. In spite of the same underlying substitutability factors, natural gas 

prices for industrial customers in the UK fell well below the calorific equivalent 

oil prices between 1994 and 1998.2 On the other hand this does seem to have been 

attributable to a ‘conjunctural’ factor  – a substantial, but temporary, oversupply 

of gas in this period and consequent fierce gas-on-gas competition which drove 

down both spot gas prices and base prices in new contracts  (IEA, 1998, p.9) 

Ilex (2001) conclusions were based on a descriptive analysis of the UK and 

Continental gas markets and networks rather an econometric analysis of the 

relationship between UK gas prices and oil prices. This paper investigates 

whether econometric analysis supports the argument presented by Ilex. 

Specifically, we examine the presence of a cointegrating (long-run) relationship 

between UK gas prices and oil prices; did this emerge only after the opening of 

the Inter-connector (as Ilex’s work would appear to suggest) or does it pre-date 

the Inter-connector?  And what is the nature of the oil price-gas price relationship 

in the short-run?   

 

Economic theory suggests that past changes in the oil price cause current changes 

in the price of UK gas but not vice versa. Apart from the fact that Continental gas 

prices are indexed to the price of oil and not vice-versa, it seems unlikely that the 

gas price would be able to influence the oil price. The size of the contract market 

and volumes traded for oil are vastly greater than for the gas market3. The Brent 

crude oil price is an international price determined in large part by the world 

supply and demand for oil, whereas the UK gas market is, by definition, only a 

national one. However, it is possible that expectations of an oil-gas relationship 

                                                 
2 Domestic gas prices followed a different trajectory since they were controlled by the Regulator 
(OFGAS and then later, OFGEM) from 1986 until 1998. However, prices to Industrial customers 
were excluded from regulation. Partly because they were controlled by the RPI-X  method which 
initially was very lax, nominal domestic gas prices actually rose after privatisation and when they 
eventually began to decline in the mid-1990s, the decline was considerably less than that 
experienced by industrial gas prices. 
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could cause gas prices to feed back onto oil prices. To investigate these 

possibilities, we shall also employ Vector Error Correction Models (VECM) 

specifications to model the UK gas price on the one hand and impulse response 

functions are generated on the other to examine the consequences of a shock 

introduced in the oil price.   

The rest of the paper is organised as follows.  Section 2 presents the related 

literature and Section 3 provides more information about the data set.  Unit root 

and cointegration tests are considered in Section 4 whereas the error correction 

models are given in Section 5.  The discussion of the empirical analysis and the 

impulse response function analysis is provided in Sections 6 and 7 respectively. 

Finally, Section 8 contains some concluding remarks. 

 

2. RELATED LITERATURE  

Most of the literature on energy price modelling in general has focused on 

electricity markets rather than gas markets. Electricity and gas markets are 

similar in the sense that these commodities have been deregulated over the last 

decade in many countries. Since deregulation, prices for these commodities have 

become more volatile. Therefore understanding the factors that drive them on 

the one hand and modelling them on the other could reduce uncertainty, 

something that is highly desirable for market participants.   

 

Electricity prices have however, been much more volatile than gas prices, partly 

due to the non-storability of electricity (Huisman and Mahieu, 2001). It is, 

perhaps, for this reason that most of contemporary research has concentrated on 

modelling electricity prices, rather than gas prices.  

 

                                                                                                                                                  
3 Volumes for the Brent oil futures contract market at the IPE per day were 1,639,041 in February 
2002 compared to only 43,560 for the natural gas futures contract market. 
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De Vany and Walls (1999) used cointegration methods to model regional US 

electricity markets and to assess price integration between these markets. Using a 

vector error correction model, the authors provide strong evidence of 

cointegration between eleven regional electricity markets in the US.  More 

recently, Hendry and Juselius (2000, 2001) discuss extensively the cointegrating 

relations between weekly gasoline prices at different locations. 

 

In a univariate framework, Robinson (2000) considers modelling the behaviour of 

electricity prices in England and Wales since the creation of their spot market in 

1990. It is argued that the process is nonlinear and a logistic smooth transition 

model (LSTAR) is fitted. 

 

3.  DATA SOURCES 
 
The price of wholesale natural gas in the UK is determined in several markets, 

the Over-the-Counter (OTC) or ‘spot’ market, the On the Day Commodity 

Market (OCM) used primarily for gas balancing purposes, and the IPE gas 

futures market. Price data is available for all three markets which we will use in 

our empirical analysis.   

 

The most liquid market is the OTC market.  Total annual volumes traded (both 

physical and ‘paper’ trades) amount to around 6 times the throughput of the UK 

gas pipeline system. Dealing on the OTC market is usually through bi-lateral 

trade or through a broker and consequently price data is confidential, or only 

available through commercial energy consultancies. PH Heren Ltd, produces a 

monthly series - the ‘Heren Index’-, which is a volume-weighted average of OTC 

transaction prices reported during the month in pence/therm. The series 

commences April 1995 and PH Heren Ltd has kindly made this data available to 

the authors.  
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Another source of wholesale gas price data is the On-the-day Commodity Market 

(OCM) operated by EnMO. This market was established on 1st October 19994 

replacing the original ‘Flexibility Mechanism’ operated by the UK pipeline 

company, Transco which had been originally introduced to provide a mechanism 

for daily gas balancing on the UK pipeline system. EnMO publishes cash-out 

price data as a daily series and the System Average Price (SAP is broadly an 

average trading price for wholesale gas measured in pence per kilowatt hour 

(p/kWh) on a particular day. Although the OCM is a relatively small market5 

and exhibits a high degree of volatility there is evidence to suggest that OCM 

cash-out prices (SAP) are strongly correlated with the OTC (spot) prices 

(OFGEM, 2000, p.25), and can therefore be used as a good proxy for the daily 

spot price in our econometric analysis. 

 

The final source of UK wholesale natural gas price data we shall be employing in 

our analysis is from the International Petroleum Exchange (IPE), established in 

January 1997, and is the main exchange for trading gas futures contracts in the 

UK. The exchange was established to manage the risk in the underlying physical 

gas market, i.e., the OTC market. The IPE provides daily a one month forward 

price for wholesale natural gas prices for physical delivery within the UK natural 

gas grid at the National Balancing Point (NBP). As this data series is a one month 

forward price – although it is closely related to the spot price – it experiences less 

volatility than the spot or OCM price data 

 

In Europe and throughout most of the world, gas prices are quoted per KWh. In 

the UK natural gas is usually priced in pence per therm, while in the 

international crude oil markets, oil is priced in US dollars per barrel. We have 

                                                 
4 Prior to this a different market structure known as the Flexibility Mechanism was in place. 
5 OCM volumes are only about 8 percent of total UK pipeline throughput 
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converted both into pence per kilowatt-hour (p/kWh) in order to allow direct 

comparison between the two fuel prices6.  

 

European Gas contracts are indexed against inland German heating and fuel oil, 

and this is where the link with the oil price occurs. Crude oil is benchmarked 

against a variety of blends; in the UK and Europe the benchmark blend is Brent. 

The spot price of Brent crude oil is available from several commercial energy 

agencies and the monthly series is obtained from Datastream.  

 

4. UNIT ROOT AND COINTEGRATION TESTS 
 
The Augmented Dickey Fuller (ADF) and the Phillips-Perron (PP) unit root tests 

for each series are presented in Table 1.  Each of the three data series for 

wholesale natural gas, i.e., IPE, OCM’s SAP and the Heren Index series exhibit 

unit roots and are integrated of order one, as does the price of Brent crude oil, 

(see Table 1). Both the ADF and the PP tests suggest that the first differences of 

the series are stationary.  

 

Having established that the wholesale natural gas data and oil price series each 

contain a unit root we can proceed to investigate the existence of a cointegrating 

relationship between the two commodity prices. As explained in the previous 

section we expect the two variables to be cointegrated after the opening of the 

Inter-connector However the possibility of a cointegration relationship predating 

that will also be investigated. 

 

                                                 
6 The kWh is a more internationally accepted unit of volume than the therm, one therm = 29.3 
kilowatts an hour. One barrel of Brent crude oil is taken to be equal to 1597 kWh: we have been 
unable to discover a precise calorific definition for Brent, but we believe this is a reasonable 
approximation). Oil in US$ barrel is converted using daily or monthly exchange rates (depending 
on the frequency of the gas data it is being compared to); the oil price in £/barrel can then be 
converted into pence by multiplying by 100 and finally to pence/kWh by dividing by 1597. 
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Two distinct methodologies are used to test for cointegration; the trace test 

developed by Johansen (1995) and the nonparametric test for cointegration 

proposed by Breitung (2002).  The Johansen procedure, like many others, 

requires estimation of various structural and nuisance parameters. For example, 

a vector autoregressive (VAR) lag order must be specified and the lag parameters 

estimated. To get around this problem we employ the recently developed 

nonparametric test for cointegration due to Breitung (2002). No lag structure or 

deterministic terms need to be estimated. As Breitung (2002) notes: “ there are a 

number of situations where the nonparametric approach may be attractive. Since the 

short-run component does not affect the asymptotic null distribution of the test statistic, 

the test is robust against deviations from the usual assumption of linear short-run 

dynamics” (also, see the technical appendix).   

 

Both the Johansen and Breitung tests accept the hypothesis that a cointegrating 

equation exists between crude oil and the three different proxies for gas. Using 

the logs of the series, the outcome was further confirmed.  Table 2 presents the 

results for all the different proxies of the gas for both the parametric (Johansen) 

and the nonparametric (Breitung) method.  However, relationships between 

economic variables do not necessary remain the same throughout time.  Factors 

like technology, innovation, political crisis (1974 for instance),, investment (inter 

connector) etc could influence and alter the nature of the relationship, 

 

To test the stability of the results presented in Table 2 on the one hand and 

examine potential changes in the relationship between the two variables over 

time, we employ a recently developed econometric methodology.  Following 

Hansen & Johansen (1999) we consider the parameter constancy in the 

cointegrated VAR model.  This is very useful since we would like to examine 

whether the opening of the UK-Mainland Europe inter-connector has affected the 

relationship between oil and gas.  The adopted methodology recursively 
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estimates the trace test (see Johansen 1995 and Hansen & Johansen 1999) and 

uses the time paths of the estimated parameters as a diagnostic tool in evaluating 

the parameter constancy.  Figures 3 and 5 present the results.  We calculate the 

trace test statistic for each additional observation using an expanding window 

and then divide the test statistic by the critical value.  If this fraction is greater 

than one then we accept that the two series are cointegrated and there is a long-

run relationship.  If it is below one cointegration is rejected. As it is obvious from 

both graphs the ratio is above unity throughout our sample for both the levels 

and the logs of the prices.  The latter allows us to conclude firstly, that the prices 

were cointegrated for the whole period 1996-2003 and that the inter-connector 

did not change that relationship, and secondly, that the (potential) outliers did 

not alter this relationship in any point in time.  

 

The long-run solution estimates for all the series are presented in Table 3.  The 

estimates vary from 0.38 (2) to 0.855 (4).  The coefficients for IPE and Heren are 

very close (around 0.5 for the levels and 0.8 for the logs).  The long-run 

coefficient for SAP is the smallest in both cases (equations (2) and (5)).  The next 

step was to investigate whether there were considerable changes in magnitudes 

of these coefficients throughout the period and especially whether the inter-

connector has affected the relationship.  In other words we ask “how long-un is 

our long-run solution?”  We proceed with estimating the recursive β’s together 

with their standard errors (see equation 1 in the next section), using an 

expanding window.  Each point in the graph corresponds to what an investigator 

at the time would have found (see Figures 4 and 6). In 1999 we observe a 

reduction in the Brent long-run coefficient which suggests a smaller dependency 

during that year and up to mid 2000.This seems to be reverted from mid 2001 up 

to the end of our sample (see Figure 4).  The same picture emerges from the log 

analysis (see Figure 6).  In both cases little variation appears after 2001.  Note 
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here that the last point in Figure 6 corresponds to the long-run solutions 

presented in Table 3 (0.855 and (-1)* -0.542 respectively).  

 

To sum-up, both methodologies support the existence of a cointegrating 

relationship between UK gas prices and the oil price in the period prior to the 

opening of the Bacton - Zeebrugge gas inter-connector7. These results provide 

support for the theory that an equilibrium relationship between UK gas prices 

and the oil price has come about before the opening of the gas inter-connector.  

The long run coefficients decrease in the first 15 months of the operation but 

quickly moved upwards after that.  Our initial findings, therefore, indicate the 

presence of a long-run equilibrium relationship but does not imply a linear short-

run specification.   

 
5. ERROR CORRECTION MODELS 

 

In Johansen’s (1988, 1995) notation, we write a p-dimensional Vector Error 

Correction Model (VECM) as: 

∆ Γ ∆ Πy y y t Tt i t i
i

k

t t= + + + =−
=

−

−∑
1

1

1 1µ ε , , ... ,  (1) 

where ∆ is the first difference operator, yt is the set of I(1) variables discussed 

above, ε t niid~ ( , )0 Σ , µ is a drift parameter, and Π is a (p x p) matrix of the form 

Π = ′αβ , where α and β are (p x r) matrices of full rank, with β containing the r 

cointegrating vectors and α carrying the corresponding loadings in each of the r 

vectors.  In our approach, we set yt  = [Brent, Heren]′ and  εt = [εBt, εHt]. 

 

                                                 
7 Two periods when the inter-connector was shut were not included in the data analysis – 16-26 July 2000 
and 17-27 September 2001. 
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The linearity assumption which characterizes equation 1 has not received 

support by the empirical results of the literature lately.  Many tests for neglected 

non-linearity have been proposed in the literature. Instead of using a single 

statistical test, for the purposes of this paper, four different tests are considered; 

McLeod & Li (1983), Engle LM (1982), Tsay (1986) and the Brcok et al (BDS) 

(1996).  All these tests share the principle that once any (linear or non-linear) 

structure is removed from the data, any remaining structure should be due to an 

(unknown) non-linear data generating mechanism.  All the procedures embody 

the null hypothesis that the series under consideration is an i.i.d. process.  

The McLeod & Li test looks at the autocorrelation function of the squares of the 

prewhitened data and tests whether corr ( 22 , ktt ee − ) is non-zero for some k and can 

be considered as an LM statistic against ARCH effects (see Granger & Terasvirta 

1993; Patterson & Ashley 2000).  The test suggested by Engle (1982) is an LM test, 

which should have considerable power against GARCH alternatives (see 

Granger & Terasvirta 1993; Bollerslev, 1986).  The Tsay (1986) test explicitly looks 

for quadratic serial dependence in the data and has proven to be powerful 

against a TAR (Threshold Autoregressive) process.  The BDS test is a 

nonparametric test for serial independence based on the correlation integral of 

the scalar series, {et} (see Brock, Hsieh & LeBaron 1991 and Granger & Terasvirta 

1993).  This is a general linearity test where the alternative to linearity can be 

considered to be a stochastic non-linear model (Granger & Terasvirta 1993).  The 

reader is also referred to the detailed discussion of these tests in the technical 

appendix and the simulations in Patterson & Ashley (2000). 

 
6.  EMPIRICAL ANALYSIS 
 
 A general-to-specific approach is followed where each VECM was estimated for 

i= 0 to 6 and lag order was selected using the Akaike Information Criterion (AIC) 

and the Hannan-Quin Information criterion (HQ).  The results for both the raw 

data and the logs are presented in Tables 4 and 5.  The error correction term is 
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significant in both models 1 and 2 for the Heren equation8 and the lagged values 

of both variables are found to be significant..  

 

The residuals of these models were saved and the four tests for linearity were 

estimated. These tests could provide us information about any neglected non-

linearity present in the VECM on the one hand and on the other guide us into the 

nature of this (potential) non-linearity (McLeod & Li for ARCH, Engle for 

GARCH, Tsay for TAR and BDS as general linearity test).  Table 6 reports the 

tests for residuals of models 1 and 2. The employed tests are, like most 

econometric procedures, only asymptotically justified. Given the limited sample 

available, the tests are estimated using both the asymptotic theory and the 

bootstrap.  The values under “asymptotic theory” are based on the large sample 

distributions of the relevant test statistics. For the “Bootstrap” results, 1000 new 

samples are independently drawn from the empirical distribution of the pre-

whitened data.  Each new sample is used to calculate a value for the test statistic 

under the null hypothesis of serial independence.  The obtained fraction of the 

1000 test statistics, which exceeds the sample value of the test statistic from the 

original data, is then reported as the significance level at which the null 

hypothesis can be rejected (for a detailed discussion on the sample size, the 

asymptotic theory and the bootstrap see Patterson and Ashley 2000). 

 

Throughout the battery of the tests we can accept the null hypothesis that the 

residuals of the second equation in both cases are i.i.d (we are not interested in 

the residuals of the Brent equation since this is affected by other factors). 

 

To summarise the results, we have used a vector error correction specification to 

capture the short run dynamics of the relationship between oil and gas prices in 

                                                 
8 We are interested in the equation where (L)Heren is the dependent variable as Brent is affected by other 
factors. 
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the light of the completion of the inter-connector pipeline which connects the oil-

indexed continental gas markets with the UK. We provided evidence that this 

mechanism is linear using four different test statistics which conclude that the 

employed VECM can satisfactory explain the dynamics of the series. 

 
7. IMPULSE RESPONSE FUNCTIONS 

 
Using the VECM system that has been estimated in the previous section, we 

extend the analysis and generate impulse response functions. A shock to the ith 

variable not only directly affects the ith variable but it is also transmitted to all 

the other endogenous variables through the dynamic (lag) structure of the 

VECM. An impulse response function (IRF) traces the effect of a one-time shock 

to one of the innovations on current and future values of the endogenous 

variables. If the innovations εt are contemporaneously uncorrelated, the 

interpretation of the impulse response is straightforward. The ith innovation εi,t is 

simply a shock to the ith endogenous variable yit.  

 

The generalised IRF (GIRF) can be defined as 

 

 ][],[),,( 11,1 −+−+− −= tntttjnttt yEyEnGIRF ϖωεωε     (8) 

where yt is a random vector, it+ε  is a random shock, 1−tϖ  a specific realisation of 

the information set 1−Ω t  and n is the forecast horizon. The GIRF is a random 

variable given by the difference between two conditional expectations which are 

themselves random variables. We estimate the generalized impulses (GIRF) 

following Pesaran and Shin (1998). They construct an orthogonal set of 

innovations that does not depend on the VAR ordering. The generalized impulse 

responses from an innovation to the jth variable are derived by applying a 

variable specific Cholesky factor computed with the jth variable at the top of the 

Cholesky ordering [for more details see Pesaran and Shin (1998)]. 
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It would be useful to point out that that IRF analysis can be viewed as a 

‘conceptual experiment’. We are interested in investigating the consequences of 

introducing a shock to the oil price. Figures 7 and 8 present the results of our IRF 

analysis. Introducing a positive shock to the oil price, we observe a negative 

response from gas price which dies out after 7 periods (response standard errors 

were calculated using 1000 Monte Carlo repetitions). However this response is 

not statistically different from zero. In the second graph the shock is introduced 

to the log prices (Model 2). Again a negative response from Gas price is observed 

which dies out much quicker (after four periods) but still is not significant.  

 
8. CONCLUSIONS 
 
The sharp increase observed in UK wholesale natural gas prices during 1999-

2000 was attributed to the opening of the UK-Belgium gas pipeline, the agument 

being that  this gave opportunities to both the UK and Continental gas traders for 

arbitrage profits.  Evidence is provided that the UK gas prices are cointegrated 

with oil prices using both the Johansen methodology and the recently developed 

Breitung nonparametric procedure. However, using recursive techniques it has 

also been demonstrated that cointegration is accepted throughout the whole 

sample period 1996-2003 and that this was not affected by the inter-connector.  In 

the same framework, the long run coefficients reduced considerably (from 1 to 

0.2) for the first 15 months but seem to converge to a 0. 5 (or 0.8 for the logs) long 

run value.  We employed a VECM specification to capture the short-run 

dynamics. Three tests for neglected non-linearity were estimated: the McLeod-Li 

and Engle test for (G)ARCH effects and the BDS test statistic  as general test for 

linearity. Bootstrap values as well as asymptotic are generated. Strong evidence 

emerges to support the argument that the relationship between oil and gas is a 

linear one.  Finally, we generated impulse response functions to investigate the 
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response of Gas price as a result of a shock introduced in the price of oil.  

Negative responses from gas seem to die out quickly. 
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Note: see the discussion in Section 3 for the unit of measurement.  
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Figure 3: Recursive Trace tests (Heren-Brent) 
Critical Values from MacKinnon-Haug-Michelis (1999) 

1998 1999 2000 2001 2002 2003
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0 Trace_Test/CV (Heren - Brent) 

 
 
Figure 4: Recursive Beta Coefficients (Heren-Brent) 
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Figure 5: Recursive Trace test (LHeren – LBrent) 
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Figure 6: Recursive Beta Coefficients (LHeren - LBrent) 
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Figure 7: Impulse response Function (from Model 1). Response standard errors 
were calculated using 1000 Monte Carlo repetitions. 
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Figure 8 Impulse Response Function (from Model 2). Response standard errors 
were calculated using 1000 Monte Carlo repetitions. 
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Table 1: Unit Root tests  
 

 SAMPLE  LEVELS FIRST DIFFERENCES LEVELS-LOGS 
FIRST DIFFERENCES-

LOGS 
   t-Statistic Prob.* t-Statistic Prob.* t-Statistic Prob.* t-Statistic Prob.* 

Brent 
1996:01- 
2003:6 ADF -1.6102 0.4733 -12.9788 0.0001 -1.7962 0.3802 -11.8837 0.0001

  PP -1.8734 0.3434 -13.1087 0.0001 -1.5812 0.4880 -12.0483 0.0001

Heren 
1996:01- 
2003:6 ADF -0.7310 0.3972 -7.0174 0.0000 -2.7727 0.0660 -7.5093 0.0000

  PP -0.5884 0.4598 -6.7131 0.0000 -2.0166 0.2794 -7.2735 0.0000

IPE 
1997:01- 
2003:7 ADF -1.9892 0.2910 -7.2432 0.0000 -2.4529 0.1311 -7.0196 0.0000

  PP -2.1758 0.2167 -7.2496 0.0000 -2.1366 0.2312 -7.0408 0.0000

SAP 
1997:12- 
2003:7 ADF -2.3988 0.1462 -9.7133 0.0000 -0.8105 0.3610 -8.8628 0.0000

  PP -0.9706 0.2935 -13.2230 0.0000 -1.1456 0.2271 -12.8855 0.0000
           
  C.V.: 1% level -3.49917, 5% level -2.89155, 10% level -2.58285  
  *MacKinnon (1996) one-sided p-values.     
  ADF Lag Length:  (Decision based on Schwartz Info Criterion, MINLAG=0 MAXLAG=11) 
  PP Bandwidth selection based on Newey-West   

Note: ADF is the Augmented Dickey-Fuller test statistic, PP is the Phillips-Perron test statistic, 
C.V. Critical Values 
 

Table 2: Testing for Cointegration 
 

  
H0: 

rank<= Trace Test [Prob] Breitung Test 10%CV 5% CV 
Simulated
p-values Data 

1Heren-Brent 0 23.67 0.015** 454.66** 261 329.9 0.0154** 1996:1-2003:6 
  1 2.2 0.737 18.06 67.89 95.6 0.5361   

2SAP-Brent 0 28.41 0.002*** 330.06** 261 329.9 0.0487** 1997:12-2003:6 
  1 4.06 0.415 16.63 67.89 95.6 0.5808   

3IPE-Brent 0 23.94 0.013** 396.15** 261 329.9 0.0251** 1997:1-2003:6 
  1 2.08 0.759 15.11 67.89 95.6 0.654  
          

4LHeren-LBrent 0 22.55 0.022** 369.93** 261 329.9 0.0368** 1996:1-2003:6 
  1 2.45 0.69 18.48 67.89 95.6 0.5265  

5LSAP-LBrent 0 26.07 0.006*** 288.34* 261 329.9 0.0771* 1997:12-2003:6 
  1 3.94 0.433 15.28 67.89 95.6 0.6411  

6LIPE-LBrent 0 19.98 0.053* 366.04** 261 329.9 0.0358** 1997:1-2003:6 
  1 2.22 0.734 14.78 67.89 95.6 0.6568  

**, * denotes rejection at the 1%, and 5% significance level respectively (critical 
values from Doornik, 1998). Trace Test is the cointegration test proposed by 
Johansen (1995). Breitung test is the nonparametric cointegration test suggested 
by Breitung (2002). The simulated p-values are based on 10000 replications of 
Gaussian random walks with length n = 90. 
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Table 3: Long-run Cointegrating Equations (Johansen) 

  Costant s.e. Coefficient s.e. 
(1) Heren= 0.033 + 0.567 Brent (0.078) (0.089) 
(2) SAP = 0.179 + 0.38 Brent (0.067) (0.071) 
(3) IPE =  0.07 + 0.54 Brent (0.064) (0.07) 
(4) LHeren = -0.542 + 0.855 LBrent (0.061) (0.1698) 
(5) LSAP = -0.61 + 0.592 LBrent (0.042772) (0.11204) 
(6) LIPE = -0.51 + 0.808 LBrent (0.047) (0.12) 
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Table 4: VECM for Brent – Heren (Model 1) 

 D(BRENT) D(HEREN) 

D(BRENT(-1)) -0.366263 -0.202569 

 [-3.145] [-2.849] 

D(BRENT(-2)) -0.159369 -0.137813 

 [-1.323] [-1.874] 

D(BRENT(-3)) 0.136781 -0.175990 

 [ 1.198] [-2.524] 

D(HEREN(-1)) -0.151838 0.386844 

 [-0.941] [ 3.926] 

D(HEREN(-2)) 0.029989 0.033838 

 [ 0.173] [ 0.320] 

D(HEREN(-3)) 0.271467 0.007904 

 [ 1.600] [ 0.076] 

C 0.004508 0.003308 

 [ 0.371] [ 0.446] 

CV1(-1) -0.054633 -0.278945 

 (0.09937) (0.06067) 

 [-0.550] [-4.598] 

R-squared 0.195086 0.317301 

Adj. R-squared 0.125526 0.258302 

S.E. equation 0.113984 0.069594 

F-statistic 2.804560 5.378101 

Log likelihood 71.18688 115.0975 

Akaike AIC -1.419930 -2.406685 

Schwarz SC -1.196232 -2.182987 

Log likelihood 186.6995 

Akaike information criterion -3.835943 

Schwarz criterion -3.388548 

 
 

Table 5 VECM for LBrent – LHeren (Model 2) 

 D(LBRENT) D(LHEREN) 
D(LBRENT(-1)) -0.227250 -0.144515 

 [-2.112] [-1.249] 
D(LHEREN(-1)) -0.120214 0.335327 

 [-1.324] [ 3.435] 
C 0.006452 0.004084 
 [ 0.494] [ 0.291] 

CV2(-1) -0.014647 -0.211189 
 (0.04810) (0.05171) 
 [-0.304] [-4.084] 

 R-squared 0.074198 0.220152 
 Adj. R-squared 0.041523 0.192628 
 Sum sq. resids 1.287229 1.487766 
 S.E. equation 0.123060 0.132299 
 F-statistic 2.270777 7.998548 
 Log likelihood 62.22290  55.78002 
 Akaike AIC -1.308380 -1.163596 
 Schwarz SC -1.196531 -1.051747 
 Mean dependent 0.004942 0.005692 
 S.D. dependent 0.125698 0.147238 
 Determinant resid covariance (dof adj.)  0.000263 
 Determinant resid covariance  0.000240 
 Log likelihood  118.3787 
 Akaike information criterion -2.480420 
 Schwarz criterion -2.256722 

 
Standard Errors in ( ) and t-statistics in [ ]  
CV1 and CV2 are the error correction terms. 
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Table 6: Linearity Tests for the Residuals of Models 1 and 2  

(only from the Heren and LHeren equations) 
 εH (from Model 1) εLH (from Model 2) 
 BOOTSTRAPASYMPTOTIC BOOTSTRAPASYMPTOTIC 
MCLEOD-LI TEST     
USING UP TO LAG 20 0.895 1.00 0.829 1.00 
USING UP TO LAG 24 0.882 1.00 0.753 1.00 
     
ENGLE TEST     
USING UP TO LAG 1 0.703 0.777 0.772 0.827 
USING UP TO LAG 2 0.782 0.891 0.774 0.891 
USING UP TO LAG 3 0.920 0.972 0.894 0.968 
USING UP TO LAG 4 0.967 0.993 0.961 0.992 
     
TSAY TEST 0.631 0.721 0.658 0.726 
     
BDS     
Dimension      

2 0.1108 0.0649 0.3412 0.3031 
3 0.1348 0.0942 0.4062 0.4004 
4 0.1810 0.1477 0.6064 0.6783 
5 0.1804 0.1523 0.7102 0.8391 
6 0.2938 0.3109 0.6266 0.7477 

 
Note: only p-values are reported 
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TECHNICAL APPENDIX 
 
BREITUNG NONPARAMETRIC TEST FOR COINTEGRATION 
 
Breitung’s unit roots and cointegration test employ a variance ratio as the test 

statistic. As noted this approach can eliminate the problem of the specification of 

the short run dynamics and the estimation of nuisance parameters. If { }1

T
ty  

denotes an observable process that can be decomposed as t t ty d xδ ′= + , where 

tdδ ′  is the deterministic part (dt=1 or [1, ]t ′ ), and xt is the stochastic part. If we do 

not assume the deterministic part, then yt is consistent with xt. The null 

hypothesis is that xt is I(1), if T →∞ , 1/ 2
[ ] ( )aTT x W aσ− ⇒ , where σ>0 represents 

the constant (long-run variance), and W(a) denotes a Brownian motion, [ ] is the 

integer part. The expression of xt makes possible the application of a general data 

generating process. Asymptotically, to construct a consistent estimate which 

does not require the specification in short run dynamics and an estimate of σ, 

Breitung has proposed the following test statistic 

24
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=
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=
∑

∑
   (1) 

where tu  is the OLS residuals that t t tu y dδ ′= − , and tU  is the partial sum 

process that 1 ...t tU u u= + + . If yt is I(0), the test statistic Tρ  converges to 

0.Breitung shows that the variance ratio test has favourable small sample 

properties using Monte Carlo simulations. 

We could proceedand test for cointegration by the generalasation of the 

nonparametric unit roots test on the assumption that the process can be 

decomposed into a q-dimensional vector of stochastic trend components ξt and a 

(n-q)-dimensional vector of transitory components of vt where n is the number of 
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variables. Asymptotically, ξt and vt is 1/ 2
[ ] ( )aT qT W aξ− ⇒  and 2

1
(1)T

t t pt
T v v o−

=
′ =∑ , 

respectively, where Wq(a) denotes a q-dimensional Brownian motion with unit 

covariance matrix. The dimension of ξt is related to the cointegration rank. In 

addition, it assumes that the variance of ξt diverges with a faster rate than vt 

instead if assuming the stationarity of vt. From the assumption, the transitory 

component denoting the cointegration relationship can be generated by any 

process.  

To test the number of cointegrating vectors, Breitung has proposed the following 

problem about the n x n matrix At, Bt. 

0j T TB Aλ − =   (2) 

where 
1

T
tT t t

A u u
=

′= ∑ , 
1

T
t tT t

B U U
=

′= ∑ , and 
1

t
t tj

U u
=

=∑  represent the n-

dimensional partial sum concerning tu . The problem is equilvelant to solving the 

eigenvalue of 1
T T TR A B−= . The solution of equation (1) is ( ) /( )j j T j j T jA Bλ η η η η′ ′=  

where jη  is the eigenvalue of jλ . If the vectors of the stochastic trends are less 

than q, T2λj diverges to infinity. In that case, since stochastic trends are linked 

with each other, a cointegrating vector exists. Hence, the test statistic is the 

following. 

2

1

q

q j
j

T λ
=

Λ = ∑ , 

where 1 2 ... nλ λ λ≤ ≤ ≤  is the ordered eigenvalues of RT. The idea of cointegration 

rank behind the approach is similar to Johansen’s idea. The statistic tests whether 

a q-dimensional stochastic component is rejected at the significance level. 

 

 

BDS TEST FOR RANDOMNESS  

 A powerful test used for independence -and, under certain circumstances, for 

non-linear dependencies- was developed by Brock, Dechert, and Scheinkman 
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(1996) and is based on the correlation integral. The BDS statistic tests the null 

hypothesis that the elements of a time series are independently and identically 

distributed (IID). For a time series which is IID, the distribution of the statistic: 

{ }1( ) ( )
( )

( )

m
m

m
m

n C C
W

ε ε
ε

σ ε

−
=   (1) 

is asymptotically N(0,1).Wm(ε) is known as the BDS statistic. Cm(ε) denotes the 

fraction of m-tuples in the series, which are within a distance of each other and 

( )mσ ε  is an estimate of the standard deviation under the null hypothesis of IID. 

The test statistic is asymptotically standard normal under the null of whiteness. 

The null is rejected if the test statistic is absolutely large, (say greater than 1.96). If 

the null hypothesis of IID cannot be accepted this implies that the residuals 

contain some kind of hidden structure, which might be non-linear – or even 

chaotic. Following the recommendation by Brock, Hsieh & LeBaron (1991, p169) 

and the suggestions by Brooks & Heravi (1999), we set ε σ =0.5 to 2, and m= 2 to 

4. 
 

MCLEOD AND LI TEST 

The McLeod and Li test (McLeod and Li, 1983) can be used as a portmanteau test 

of non-linearity. To test for non-linear effects in time series data McLeod and Li 

have proposed the statistic: 
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are the autocorrelations of the squared residuals, et
2 , obtained from fitting a 

model to the data. If the series et is independently and identically distributed 

(IID) then the asymptotic distribution of Q(m) is χ2 with m degrees of freedom.  
 

ENGLE LM TEST 

This test was suggested by Engle (1982) to detect ARCH disturbances. Bollerslev 

(1986) suggests that it should also have power against GARCH alternatives. 

Since it is a Lagrange Multiplier test, the test statistic itself is based on the R2 of 

an auxiliary regression, which in this case can be defined as: 

 ∑
=

− ++=
p

i
titkt vee

1

2
0

2 αα     (4) 

Under the null hypothesis of a linear generating mechanism for et, NR2 for this 

regression is asymptotically χ2(p). 

 

TSAY TEST 

The Tsay (1986) test is a generalisation of the Keenan (1985) test. It explicit looks 
for quadratic serial dependence in the data. 
Let K=k(k-1)/2 column vectors V1,…,Vk contain all of the possible cross-products 
of the form et-iet-j, where i ∈ [1,k] and j ∈ [i,k] . Thus, 2

11, −= tt ev , vt,2=et-1et-2, vt-3=et-1et-

3, vt,k+1=et-2et-3, vt,k+2=et-2et-4,.., 2
, ktkt ev −= .And let jtv ,ˆ  denote the projection of vt,i on 

the subspace orthogonal et-1,…,et-k, (i.e. the residuals from a regression of vt,j on et-

1,…,et-k. 
The parameters γ1,…,γk are then estimated by applying OLS to the regression 
equation 

∑
=

++=
K

i
titit ve

1
,0 ˆ ηγγ     (7) 

Note that the jth regressor in this equation is jtv ,ˆ , the period t fitting error from a 
regression of vt,j on et-1,…,et-k. So long as p exceeds K, this projection is 
unnecessary for the dependent variable {et} if it is pre-whitened using an AR(p) 
model. The Tsay test statistic then is just the usual F statistic for testing the null 
hypothesis that γ1,…,γk are all zero. 
 


