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ABSTRACT 

 
It has long been recognized that productivity in manufacturing plants can often be 
increased by producing similar products in manufacturing cells.  This involves: (i) 
assigning parts to individual machines and (ii) forming machines into manufacturing 
cells.  These two activities have traditionally been carried out separately.  However 
most solution procedures for (i) above, utilize a solution to (ii), and vice versa.  Here we 
present a new model that deals with (i) and (ii) simultaneously. We then extend this 
model to allow for the reassignment of operations to different machine types by 
incorporating machine type modification costs.  Such modification enables additional 
machine types to process certain parts, with view to reducing inter-cell travel.  The cost 
of such modifications must be balanced by the consequent reduction in inter-cell travel 
cost.  The extended model specifies which individual machines should be modified to 
enable them to process additional part types, part-machine assignment, and the grouping 
of individual machines for cell formation.  The objective is to minimize the sum of the 
machine modification costs and the inter-cell travel.  We call this endeavour the General 
Cell Formation Problem.  Computational experience with the models indicates that they 
are likely to be useful additions to the production engineer’s toolkit. 

 
Key Words: manufacturing, general cell formation problem, integer programming. 
 
1. Introduction 
 
Skinner [1974] was the first to propose the concept of a focused factory, in which small 
manufacturing systems operate independently within large production plants.  The idea 
works best for medium-variety, medium-volume situations, that is, batch production.  
The focused factory is constructed using the notions of either flexible manufacturing 
systems (FMS) or group technology (GT), which are based on the precept that certain 
activities should be dedicated to a family of related parts in a manufacturing cell.  Later 
Burbidge [1975] developed and popularized a systematic approach to this concept, 
which has subsequently seen widespread adoption in western industry. 
 

lesgt 
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Since machines are located in close proximity in a manufacturing cell and a family of 
related parts are produced, there is usually a reduction in: transport requirements, 
conveyance times, set up times, and inventory.  Moreover, the relatively large autonomy 
within these manufacturing cells leads to extra motivation of the workers (who are 
responsible for “their products”), often resulting in higher productivity and product 
quality.  These, and other advantages, have been discussed by Shunk [1985] and Hadley 
[1996].  However there are also disadvantages to this approach, such as the relatively 
costly duplication of machines. 
 
FMS is related to GT in so far as both are sub-systems that represent “islands” within 
the production process, comprising groups of machines (sometimes including a material 
handling system), which produce a family of items.  The main difference is that an FMS 
represents a fully automated system, whereas in GT conventional technology generally 
predominates.  Most of the recent major results in the GT literature, concerned with the 
single criterion of minimizing inter- cell materials handling costs, have been discussed 
by: Billo [1998], Chu [1995], Kusiak and Heragu [1987], Selim, Askin, and Vakharia 
[1998], Vakharia [1986], Wemmerhov and Hyer [1987], and Wang [1998].  An 
evolutionary approach to multicriteria manufacturing cell formation has been reported 
by Pierreval and Plaquin [1998]. 
 
Suppose that a number of different products have to be manufactured using certain 
machine types. It is known from the process plans of the parts, which machine types are 
required for producing the individual parts, and the routing (machine ordering) for each 
part is given.  We wish to assign the different parts to the individual machines of the 
types required and to group the machines so that each group forms a manufacturing cell. 
 
 This leads to the following activities: 
 
(a) Assign part families to groups of machine types, 
(b) Find lot sizes of the parts produced, 
(c) Determine the number of machines needed of each machine type, 
(d) Assign parts to individual machines, 
(e) Group individual machines into manufacturing cells, and 
(f) Compute job schedules for the machines. 
 
The so-called machine type-part incidence matrix specifies which parts must be 
processed by which machine types.  It is desirable that the machine type-part matrix 
should be transformed into a block-diagonal form to solve problem (a) (see, for 
example, Askin and Standridge [1993], Kumar, Kusiak, and Vanelli [1986], Kusiak and 
Chow [1988], and Hadley [1996]).  Each block then shows which family of parts is to 
be processed in which group of machine types. This is reviewed in Section 2 of the 
present paper. 
 
If such a block-diagonal clustering cannot be obtained, activities (b) to (e) have to be 
carried out.  Well-known methods from inventory control (Hillier and Liebermann 
[1995], Nahmias [1993], Domschke, Scholl, and Voss [1997], and Neumann [1996]) 
can be used to carry out activity (b).  A method that includes specific information 
relevant to group technology has been proposed by Askin and Chiu [1990].  Given the 
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lot sizes for all parts, we can compute the necessary utilization level of each machine 
type, which also provides the number of machines needed of each type, ie, the solution 
to problem (c).  Problems (b) and (c) are discussed briefly in Section 3. 
 
Problems (d) and (e) have traditionally been solved separately.  (See, for example, 
Askin and Chiu [1990], Askin and Standridge [1993], Cao and McKnew [1994], Faber 
and Carter [1986], Garcia-Diaz and Lee [1995], Hadley [1996], Kumar et al. [1986], 
Kusiak and Chow [1988], Moussa and Kamel [1995], Plaquin and Pierreval [2000], 
Neumann [1996], Vanelli and Hall [1993], Rajagopalan and Batra [1975], and Zhou and 
Askin [1998].)  However, most solution procedures for problem (d) utilize a solution to 
problem (e) and vice versa.  Problems (d) and (e) are reviewed in Section 4. 
 
In Section 5 of the present paper we present a new approach that we believe represents 
an improvement on early attempts at solving problems (d) and (e) simultaneously, as 
reported by Atami, Lashkari, and Caron [1995] and Caux, Bruniaux, and Pierreval 
[2000].   
 
After the formation of the manufacturing cells, a job-shop scheduling problem has to be 
solved.  A job corresponds to a batch of some part. For each set of manufacturing cells, 
with some inter-manufacturing cell material flow (briefly called a manufacturing cell 
system), the makespan, that is, the maximum completion time of all jobs, is to be 
minimized.  We seek to determine the job sequence for each machine of the 
manufacturing cell system and the job schedules, which specify the start and completion 
times of the jobs.  These job-shop problems can be solved by well-known methods 
(Pinedo [1995]). 
 
In Section 6 we extend the ideas of Section 5 and produce a comprehensive model of 
the cell formation problem.  This model subsequently introduces the possibility of 
machine modification to reduce inter-cell travel.  The model has been tested on a 
reasonably realistic data set and the results are described.  The model is discussed 
further in Section 7. 
 
Section 8 summarizes our conclusions. We now briefly discuss the abovementioned 
preliminary problems (a), (b), and (c), and sketch methods for solving them 
approximately.  A glossary of the notation used in this paper is appended.   
 
 
2. Formation of Families of Parts and Their Assignment to Manufacturing Cells of 

Machine Types 
 
Assume that n parts, numbered 1, 2,...,n, are to be processed on m  machine  types: 
numbered 1,2,…,m, which are to be grouped into up to p manufacturing cells, numbered 
1.2,…,p.  The information as to which parts are to be processed on which machine types 
is given by the so-called machine type-part matrix, with elements: 
 
(2.1)   aij :  =  1, if part j is processed on Mi, and 
                = 0, otherwise, (i = 1, 2, ..., m; j = 1, 2, ..., n.), 
            where Mi denotes the machine type i. 
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We attempt to reorder the machine type rows and part columns of the machine type-part 
matrix to obtain a block diagonal structure as shown in Figure 1.   

 
Figure 1 about here 

 
The term “block diagonal” implies that we can partition the matrix such that the boxes 
on the main diagonal contain as many 1’s as possible, but the off-diagonal boxes 
contain only 0’s.  If such a block diagonal structure (as shown) is obtained, the items 
that correspond to columns of one block (constituting a family of parts) are processed 
only on those machine types that correspond to the rows of that block (a group of 
machine types).  Each block is a candidate for a manufacturing cell.  To order the rows 
and columns of the machine type-part matrix, we can use, for instance, a binary 
ordering algorithm (Askin and Standridge [1993], Neumann [1996]).  As an example, 
we consider the machine type-matrix given in Table 1.   
 

Table 1 about here 
 
It can be shown that is impossible to convert Table 1 into a block diagonal structure.  
When such a conversion is impossible, it is necessary to consider individual machines 
instead of machine types, and to attempt to reduce the flow of materials between 
different manufacturing cells by a more detailed investigation.  This is now discussed 
further. 

 
 
3. Computation of Lot Sizes and Minimum Number of Machines 
 
For each part j, let dj be the demand rate, Kj be the set up cost, and hj be the inventory 
holding cost per unit per period.  We can often choose the lot size or batch size qj , to be 
the economic order quantity: 
 

(3.1)     nj
h

dK

j

jj
j ,...,2,1,

2
==q .                  

 
The rationale for formula (3.1) is well-known (Hillier and Lieberman [1995], Nahmias 
[1993], Domschke, et al. [1997], and Neumann [1996]).  Askin and Chiu [1990] have 
modified the economic order quantity formula by assuming that the total throughput 
time for a part is a multiple of the total processing time (including the set up time) for 
each lot of that part. 
 
Next, for each Mi , 1,2,…,m, we determine the minimum number of machines needed. 
Let Ci be the capacity of each Mi (measured by its running time, including set up) 
available per period.  Let sij be the required set up time per batch or lot of part j for any 
Mi and let tij be the processing time (without set up time) for one unit of part j on any 
Mi. We do not consider conveyance times as they can be neglected within each 
manufacturing cell.  The processing time pij , of a job j (of batch size qj) on any Mi is 
then 
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(3.2)        pij = sij + qjtij.         
 
The utilization uij, of the Mi 's by part j is given by 

 

(3.3)     
i

ijj
j

ijj

ij C

td
q

sd
+

=u .       

 
Note that uij is the number of Mi 's, or fraction thereof, that is required for the processing 
of part j.  We set uij = 0 if part j is not processed on any Mi.  The numerator in formula 
(3.3) represents the running time of an Mi per period required for part j.  If uij > 1, say,  
1 < uij < 2, we introduce a dedicated Mi to process part j.  
 
Given the utilization uij of the Mi 's by part j (j = 1, 2,   ,n) the minimum number ei, of Mi 
‘s required for producing all parts, can be computed as: 
 

(3.4)     e         







= ∑

=

n

j
iji u

1

 
where  is the smallest integer greater than or equal to c (rounded up). The average 
utilization 

 c

ie  of an Mi is 
 

(3.5)     
i

n

j
ij

i e

u∑
== 1e .       

 
We now go on to use the concepts we have just defined to address the two activities (d) 
and (e) introduced in Section 1.  In the next section we survey traditional heuristic 
methods that address activities (d) and (e) sequentially.  In Sections 5 and 6 we present 
new models that address these two activities simultaneously. 
 
 
4. Machine-Part Assignment and the Grouping of Machines into Cells 
 
If part j must be processed by an Mi and ei > 1, we must specify to which of the ei Mi 's 
that part j is assigned.  Thus, for each Mi with ei > 1, we have to solve a machine-part 
assignment problem whose objective function (to be minimized) is a measure of the 
material flow or material handling cost between different manufacturing cells.  In other 
words, the solving of the machine-part assignment problem requires some preliminary 
knowledge of the solution to the machine grouping problem. 
 
The machine-part assignment problem can be modelled as a graph-partitioning 
problem, where the nodes of the graph correspond to the parts processed on Mi 's.  We 
seek to determine a minimum-cost partition into ei subgraphs (See, for example, Askin 
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and Chiu [1990], Askin and Standridge [1993], and Neumann  [1996].)  If ei = 2, and no 
limits are imposed on the number of nodes of the subgraphs, the graph-partitioning 
problem can be solved as a multi-terminal network network flow problem, in 
polynomial time (See, for example, Gomory and Hu [1961], Nagamochi and Ibaraki 
[1992], and Shahrokhi and Matula [1990].)  Otherwise, the graph-partitioning problem 
is known to be NP-hard in the strong sense (Garey and Johnson [1979]).  In the 
machine-part assignment problem there is a maximum number of parts which can be 
processed on a single Mi due to the limited capacity of that machine.  Thus, the 
corresponding graph-partitioning problem is NP-hard in the strong sense, whenever ei ≥ 
2. 
 
To reduce the computational effort required to solve the graph-partitioning problem, it 
is recommended to use a heuristic method, for example, that of Kandiller [1998], or the 
Kernighan-Lin heuristic (Kernighan and Lin [1970]), preceded by some partition 
construction procedure (Askin and Standridge [1993] or Neumann [1996]). 
 
The construction procedure determines an assignment of the parts to the machines so 
that machine capacities are not exceeded.  Consider an Mi with ei > 1.  Let Ji ⊆ {1,2,..., 
n} be the set of parts processed on Mi ‘s.  To construct a feasible solution, assign the 
parts j∈Ji successively to the first Mi , with capacity available.  If the capacity of the 
first Mi is exceeded, we use a second machine, and proceed analogously.  Only if none 
of the Mi 's has sufficient capacity to process all of part j, should the operation be 
divided into partial processing by more than one Mi. 
 
Returning to the example of Section 2, suppose that the utilizations uij , of the various 
machine types by parts j are given in Table 2, which also shows the minimum numbers 
ei and average utilization ie of each Mi . 
 

Table 2 about here 
 

As an example, we apply the construction procedure to the M4 ‘s, where J4 = {2,4,5,6} 
and e4 = 3.  Let represent the kk

iM th machine of type i.  Part 2 has a utilization of M4 

that exceeds one.  This creates a dedicated , that processes a single part (part 2).  
The remaining utilization by part 3 is assigned to , along with part of the utilization 
of part 4.  The remaining utilization of part 4 is assigned to  together with parts 5 
and 6.  The solution to the assignment problem for all machine types can be 
summarized in a machine-part incidence matrix with elements: 

1
4M

2
4M

3
4M

 
(4.1) brj  = 1, if part j is assigned to machine r,      

= 0, otherwise, where the number r, is the unique numerical label of 
some individual machine. 

 
Table 3 gives the machine-part incidence matrix for our example. 
 

Table 3 about here 
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Given a machine-part incidence matrix, the machine grouping problem (that is, the 
formation of manufacturing cells) can be solved in a variety of ways which involve the 
solution of problems (d) and (e) sequentially.  For instance, Kusiak and Chow [1988], 
and others, have devised decomposition procedures for the machine-part matrix.  
Methods proposed by Askin and Chiu [1990], Askin and Standridge [1993], Faber and 
Carter [1986], Neumann [1996], Rajagopalan and Batra [1975], and others, are based 
upon a machine graph.  The nodes of the machine graph correspond to the actual 
machines.  There is an edge, with endnodes r and s, if some part j has to be processed 
on both machines r and s, and if the machine sequence (or routing) of part j contains the 
subsequence (r, s) or (s, r).  That is, if part j is moved from machine r to machine s, or 
vice versa.  Edge [r, s] is weighted according to the sum of the demand rates of the parts 
moved from machine r to machine s or vice versa.  Again, a graph-partitioning problem 
can be formulated and solved by the methods mentioned above, where the resulting 
subgraphs correspond to the manufacturing cells. 
 
Suppose that the minimum number emin , and maximum number emax , of machines that 
can be grouped in a single manufacturing cell is known.  These numbers are usually 
arrived at by the management of the firm, based upon its plant organization parameters.  
(In our example we choose emin = 4 and emax = 6.)  It is possible to use a binary ordering 
algorithm (Askin and Standridge [1993] and Neumann [1996]) to transform the 
machine-part matrix into an initial grouping of machines (as discussed in Section 2).  
To attempt to improve this initial grouping, it is possible to use the Kernighan-Lin 
heuristic.  However the results may still be decidedly suboptimal.  To achieve 
optimality we develop a new model that solves tasks (d) and (e) simultaneously.  It is 
discussed in the next section. 
 
 
5.  A New Approach to Simultaneous Machine - Part Assignment and the   

Formation of Manufacturing Cells 
 
We now develop a new integer program that addresses, simultaneously, the two 
activities of machine – part assignment and the formation of manufacturing cells.  
 

Input data 
 

iju  , emin , and  emax . 

We assume that all the given machines of the various types are to be formed into a 
maximum of p manufacturing cells.  As p is unknown, it is recommended that the 
following estimate , of p be used: p̂
 

(5.1)        ( ) ,/1ˆ
1







∑

=

m

i
iee


=p      

where 

(5.2)     
( )

.
2

maxmin




 +

=
eee                   
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Decision Variables 

ijqx  = number of  Mi 's, or fraction thereof, that process part j in manufacturing cell q , 

ikqy  = 1, if Mi
k is assigned to manufacturing cell q, 

 =  0, otherwise, 

jqw  = 1, if part j is processed in manufacturing cell q, 

 =  0, otherwise, 

qv     = 1, if manufacturing cell q is formed, and 

    = 0, otherwise. 

MODEL 1:  Constraints 

(5.3) = u  .                                                                       ∑
q

ijqx ij

(The requirements for processing part j on the Mi ‘s must be satisfied.) 

(5.4) ∑
j

ijqx ≤  ikq
k

y∑  .                                                              

(The total requirement for processing of parts on the Mi 's in cell q must be met.) 

(5.5)  = 1 .                                                                        ∑
q

ikqy

(  must be assigned to exactly one manufacturing cell.) k
iM

(5.6) eq
ki

ikq vy ≥∑
,

min .                                                                

(A manufacturing cell q, if formed, must contain at least emin  machines.) 

(5.7) eq
ki

ikq vy ≤∑
,

max .                                                                

(A manufacturing cell q, if formed, must contain at most emax  machines.) 

(5.8)  .                                                                   jqijijq wux *≤

(A logical constraint.) 

(5.9)  .                                                                          qq vv ≤+1

(Cells are formed in successive numerical order.) 

Objective 
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(5.10)  Minimize ∑
qj ,

jqw .                                                         

(Minimize the occurrence of inter-manufacturing cell travel.) 

We now solve a numerical example of Model 1, where: 

m = 8, n = 10, p = 4, emin  = 4, and emax = 6, and (uij ) 8x10  and the part routings are  

defined in Tables 2 and 4 respectively. 

 

As part of the optimal solution, four manufacturing cells are formed, as follows: 

Manufacturing cell 1 contains:  ,  ,  ,  ,  ,  , 1
1M 1

2M 1
3M 1

4M 1
5M 2

5M

Manufacturing cell 2 contains:  ,  ,  , ,  , 4
2M 3

4M 6
5M 7

5M 1
7M

Manufacturing cell 3 contains:  ,  ,  ,  , and 3
2M 2

4M 5
5M 2

6M

Manufacturing cell 4 contains:  ,  ,  ,  ,  ,  . 2
2M 2

3M 3
5M 4

5M 1
6M 1

8M

 

Manufacturing cell 1 processes Parts 2, 4, 8, 

Manufacturing cell 2 processes Parts 4 and 5, 

Manufacturing cell 3 processes Parts 2, 6, 10, and 

Manufacturing cell 4 processes Parts 1, 3, 7, 9. 

 

The example requires 31265 nodes of the branch and bound tree created by XPRESS-
MP to be examined.  The optimal solution was found at node 31104, taking 606 CPU 
seconds on a Sun-Solaris computer. The optimal objective value = 12. (Note that, in 
general, the objective function value will never be smaller than the value of n).  The 
flow of parts within and between cells is illustrated in Figure 2.  It was found that 
models of this type are not particularly robust.  Small changes in the values of  lead 
to instances of the model which solve in less than 10 CPU seconds.   

iju

 
We now go on to the main contribution of this paper, the generalization of the previous 
model to include costs arising from both machine modification and inter-cell travel. 
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6.  The General Cell Formulation Problem 
 
It has been noted in the literature (Burbidge [1982], Hyer and Wemmerhov [1989], and 
Selim et al. [1998]) that it is often important in practice to be able to reassign parts to 
different machine types in order to create better cell configurations.  This involves 
extending the set of parts that certain individual machines can process.  Such extensions 
may be cheaper than simply purchasing additional machines.  Also, it may not be 
feasible to add any additional machines to a particular cell if the number of machines in 
the cell is already at the upper limit of emax .  Machine extension of the nature just 
proposed is certainly feasible, given the operational flexibility of modern, general-
purpose machines currently in existence. 
 
Each given machine type, Mi say, is initially capable of processing a known set of parts, 
as specified by the (aij) matrix, defined in Section 2.  We assume that any individual 
machine Mi

k say, can be modified so that it can also perform as a machine of another 
type, at a given cost, thus increasing the operational flexibility of Mi

k .  We further 
assume that the cost of extending the flexibility of any individual machine in a 
particular way is constant for all machines of its type.  The decision as to which 
individual machines to extend, and the particular machine types that they are extended 
to incorporate, will depend upon their capacity, which cells they reside in, and the 
corresponding modification costs.  Of course, the costs of certain machine type 
modifications pairs may be prohibitive.   
 
The motivation for incurring the abovementioned modification costs is to reduce inter-
cell materials handling costs.  To this end, we also assume that the cost of transporting a 
batch of each given part between a pair of given cells is known.  The overall objective is 
to minimize the total of all modification costs and of all inter-cell materials handling 
costs.  The latter may have to be amortized as they are ongoing costs, whereas the 
former are one-off costs. 
 
This minimization is achieved by deciding simultaneously: (i) which individual 
machines are to be modified so that they can behave as which additional machine types 
(subject to their processing capability), (ii) which individual machines will process 
which parts, and (iii) to which cell each individual machine will be assigned.  Care must 
be taken that, in the minimum and maximum number of machines allowed in each cell, 
emin and emax respectively, are satisfied for all cells created. 
 
We call the above endeavour the General Cell Formation Problem (GCFP).  We now 
develop a model of GCFP, as an extension of Model 1.  To begin this we introduce 
some additional notation.  Let  
 

hif   = the cost of modifying any individual Mh so that it can also perform as an Mi , 
 

jqrg = the cost of transporting a batch of part j between cells q and r, 
 

khiz  = 1, if Mh
kis modified so that it can also perform as an Mi , and 
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       = 0, otherwise. 
 
MODEL 2:  Constraints 
 
Constraints (5.3) – (5.9), modified to allow for the possibility of machine modification 
via the introduction of the  's.  The sum of the  's must still not exceed 1 (the 
capacity of any machine) even with additional processing due to modification.   

khiz ijqx

 
• Objective :                     Minimize       ∑

ikh
hif

,,
.   +  khiz ∑

rqj
jqrg

,,
  . jqw jrw

 
We now continue with the numerical example of Section 5, where additionally: 
 
 

hif   = (h)(i)  [the product of h and i]     h,i = 1,2,…8, and 
 

jqrg = 4(j)(q)(r)     j = 1,2,...,10;      q,r = 1,2,3,4. 
 
Considering the solution to the numerical example given in Section 5 as a solution to 
Model 2, we have 
 

khiz  = 0,  for all h,k,j. 
 
Hence the objective function value equals only the cost of inter-cell travel, namely that 
of part 2 travelling from cell 1 to cell 3, and part 4 travelling from cell 1 to cell 2.  That 
is, the total cost is: 
 

213g   +  414g
= 4(2.1.3) + 4(4.1.2) 
= 56. 
 
This cost is necessitated by part 2 travelling from cell 1 to cell 3 to be processed by 
(0.6) of M4

2 and (0.7) of M6
2 , and by part 4 travelling from cell 1 to cell 2 to be 

processed by (0.5) of M4
3 and (0.2) of M7

1 .The utilizations of the individual machines 
in cell 1 are: 
 
M1

1 : 0.3 (part 2) + 0.1 (part 4) + 0.1 (part 8)  = 0.5, 
M2

1 : 1.0 (part 4)                                   = 1.0, 
M3

1 : 0.2 (part 8) = 0.2, 
M4

1 : 0.6 (part 2) + 0.4 (part 4) = 1.0, 
M5

1 : 0.2 (part 2) + 0.8 (part 4) = 1.0, 
M5

2 : 1.0 (part 8) = 1.0. 
 
Thus only M1

1 and M3
1 have spare capacity, while the other four machines are all fully 

utilized.  As cell 1 already has emax = 6 machines assigned to it, it is not possible to add 
another machine to the cell.  Given the available spare capacity in cell 1 it is feasible to 

  



 14

modify M1
1 and M3

1 to allow either (but not both) of parts 2 or 4 to be processed solely 
in cell 1.  It is cheapest to modify M1

1 and M3
1 to become, additionally, machines of 

type M7 and M4 respectively.  That is, set  = 1 and  = 1.  This allows part 4 to be 
processed solely in cell 1.  The objective function value becomes: 

117z 134z

 
14f  +  +   37f 213g

= (1)(4) + (3)(7) + 4(2)(1)(3) 
= 49, 

 
which represents an overall cost reduction of 7. 
 
In fact we can do better than this by solving a revised model to optimality.  The model 
also avoids the need for quadratic terms in the objective function.  In what follows we 
assume, without loss of generality, that any machine cannot be modified more than 
once. 
 
We introduce the new variables: 
 

hiqkt = fraction of machine Mi
k (which is assigned to cell q), which is used as a machine  

 of type i, 
 

jqrs  = 1, if part j moves from cell q to cell r for processing, 
       = 0, otherwise. 
 
The objective function is: 
 
Minimize       .   +   . . ∑

ikh
hif

,,
khiz ∑

rqj
jqrg

,,
jqrs

The model is constraints (5.3), (5.5) - (5.9) together with the constraints (6.1) - (6.5). 

(6.1) ∑ ∑≤
j kh

hiqkijq tx
,

 

(The generalisation of constraint 5.4.) 

(6.2) ∑ ≤
i

hqkhiqk yt  

(Each assigned machine creates a unit of processing which may or not be subdivided 

after machine modification.) 

(6.3) ∑
≠

≤
hii

khiz
|

1 

(Each machine cannot be modified more than once.) 

(6.4) ihzt khihiqk ≠≤   

(If a machine is modified then it creates a fraction of a unit of modified processing.) 
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(6.4) 1−+≥ jrjqjqr wws  

(if a part uses two machines, the variable indicating inter-cell movement is set to 1.) 

 
This revised model was run to optimality and produced an optimal solution of cost 28.  
In this solution, no parts travelled between cells.  The optimal solution is: 
 
Manufacturing cell 1 contains:  ,  ,  ,   , 1

1M 1
2M 1

4M 1
5M

Manufacturing cell 2 contains:  ,  ,  , ,  , 4
2M 3

4M 6
5M 7

5M 1
7M

Manufacturing cell 3 contains:  ,  ,  , , ,  , and 2
2M 2

3M 3
5M 4

5M 1
6M 1

8M

Manufacturing cell 4 contains:  ,  , ,  ,  ,  . 3
2M 1

3M 2
4M 2

5M 5
5M 2

6M

 

Manufacturing cell 1 processes Parts 4, 

Manufacturing cell 2 processes Parts 5 and 6, 

Manufacturing cell 3 processes Parts 1, 3, 7, 9, and 

Manufacturing cell 4 processes Parts 2, 8, 10. 
 
 

1
1M  is modified to a machine , 7M

3
2M  is modified to a machine , 4M

4
2M  is modified to a machine , 5M

1
3M  is modified to a machine . 1M

 
The objective function is calculated as (1)(7)+(2)(4)+(2)(5)+(3)(1) = 28.  This solution 
was obtained after 21702 branch and bound nodes (2632 CPU seconds).  The complete 
search to prove optimality required a total of 67876 nodes (6329 CPU seconds).  
Although this is a considerable computational effort, it was felt to be appropriate given 
the generality of the new model.   
 
 
7. An Extension 
 
Further extensions of the models given in Section 6 are possible.  One extension, which 
has not been investigated but seems a natural consequence of considerations of machine 
utilisation, would be to make use of further machine modification in order to avoid 
setting up machines.  Considering the solution given at the end of the previous section, 
we see that cell 1 contains four machines but only processes part 1.  Part 1 requires a 
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total of 3.0 units of machine processing, so it could be completely processed in cell 1 
but using only three machines.  Thus the model could be extended to include costs of 
allocating machines to cells (setup costs), and if these costs were sufficiently high 
relative to the cost of modifying machines, then it might be possible to reduce total cost 
by not using certain machines.  Such machines could then be dedicated to new tasks in 
other new cells. 
 
 
8.  Summary and Conclusions 
  
We have reviewed some issues in the formulation of manufacturing cells, including the 
assigning of parts to individual machines, the grouping of individual machines into 
manufacturing cells, and the modification of individual machines to increase their part 
processing capability.  We have presented new integer programs that combine these 
activities in one model, with the objective of minimizing overall machine modification 
and materials handling costs.  We believe that the resulting models will become useful 
tools for production planners. 
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Glossary of notation   
Input data 
aij :  =  1, if part j is processed on Mi, and 
       = 0, otherwise, (i = 1, 2, ..., m; j = 1, 2, ..., n.), 
brj   = 1, if part j is assigned to machine r,      

= 0, otherwise, where the number r, is the unique numerical label of some            
individual machine, 

Ci  = the capacity of each Mi (measured by its running time, including set up) available 
per period, 

ei = the minimum number of Mi 's required, 
emin = the minimum number of machines that can be assigned to a cell, 
emax = the maximum number of machines that can be assigned to a cell, 

hif   = the cost of modifying any individual Mh so that it can also perform as an Mi , 

jqrg = the cost of transporting a batch of part j between cells q and r, 
hj = the inventory holding cost per period for part j, 
Ji = the set of parts to be processed by Mi , 
Kj = the set up cost of part j, 
Mi  denotes machine type i, 
m = the number of machine types, 
Mi

k  denotes the kth individual machine of type i, 
n = the number of different types of parts, 
pij = the processing time of a batch of part j on an Mi , 
p = the maximum possible number of cells, 
qj = the economic order quantity for part j, 
uij = the utilization of Mi by part j, 
Indices 
h,i ~ machine types, 
j ~ parts, 
k ~ individual machines, 
q,r ~ cells, 
k ~ instances of a machine, 
Decision Variables  

ijqx  = number of  Mi 's, or fraction thereof,  that process part j in manufacturing cell q , 

iqky  = 1, if Mi
k is assigned to manufacturing cell q, 

 =  0, otherwise, 

jqw  = 1, if part j is processed in manufacturing cell q, 

 =  0, otherwise, 

qv     = 1, if manufacturing cell q is formed, and 

    = 0, otherwise,  

khiz  = 1, if Mh
kis modified so that it can also perform as an Mi and 

       = 0, otherwise, 
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hiqkt = fraction of machine Mi
k (which is assigned to cell q), which is used as a machine  

 of type i, 
 

jqrs  = 1, if part j moves from cell q to cell r for processing, 
       = 0, otherwise. 
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Figure 2.  Available as a hard copy. 
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      Parts      
  1 2 3 4 5 6 7 8 9 10 
 1 0 1 0 1 0 0 0 1 0 0 
 2 0 0 0 1 1 0 1 0 1 1 
Machine 3 0 0 1 0 0 0 0 1 1 0 
Types 4 0 1 0 1 1 1 0 0 0 0 
 5 1 1 0 1 1 1 1 1 1 0 
 6 0 1 0 0 0 0 1 0 0 1 
 7 0 0 0 1 1 0 0 0 0 0 
 8 1 0 0 0 0 0 0 1 1 0 
 
Table 1. 
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    Parts          
Machine 
Types 

1 2 3 4 5 6 7 8 9 10 ∑
i

iju  ei ie  

1 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.5 0.5 0.5 

2 0.0 0.0 0.0 1.0 0.5 0.0 0.9 0.0 0.1 0.6 3.1 3.1 0.775

3 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.2 0.1 0.0 1.2 1.2 0.6 

4 0.0 1.2 0.0 0.9 0.5 0.4 0.0 0.0 0.0 0.0 3.0 3.0 1.0 

5 0.4 0.2 0.0 0.8 1.1 1.0 0.6 1.0 1.0 0.0 6.1 6.1 .871 

6 0.0 0.7 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.3 1.8 1.8 0.9 

7 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.4 

8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.7 0.7 0.7 
 
Table 2 
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Parts 

r  1 2 3 4 5 6 7 8 9 10 
1 1

1M  0 1 0 1 0 0 0 1 0 0 

2 1
2M  0 0 0 1 0 0 0 0 0 0 

3 2
2M  0 0 0 0 1 1 0 0 0 0 

4 3
2M  0 0 0 0 0 1 0 0 0 1 

5 4
2M  0 0 0 0 0 0 0 0 1 0 

6 1
3M  0 0 1 0 0 0 0 0 1 0 

7 2
3M  0 0 0 0 0 0 0 1 0 0 

8 1
4M  0 1 0 0 0 0 0 0 0 0 

9 2
4M  0 1 0 1 0 0 0 0 0 0 

10 3
4M  0 0 0 1 1 1 0 0 0 0 

11 1
5M  1 0 0 0 0 0 1 0 0  

12 2
5M  0 1 0 1 0 0 0 0 0 0 

13 3
5M  0 0 0 0 1 0 0 0 0 0 

14 4
5M  0 0 0 0 0 1 0 0 0 0 

15 5
5M  0 0 0 0 0 1 0 0 0 0 

16 6
5M  0 0 0 0 0 0 0 1 0 0 

17 7
5M  0 0 0 0 0 0 0 0 1 0 

18 1
6M  0 1 0 0 0 0 0 0 0 1 

19 2
6M  0 0 0 0 0 0 1 0 0 0 

20 1
7M  0 0 0 1 1 0 0 0 0 0 

21 1
8M  1 0 0 0 0 0 0 0 1 0 

 
Table 3 
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Part Machine sequences (routings) of parts 

1 M5 , M8 
2 M1 , M5 , M4 , M6 
3 M3 
4 M1 , M2 , M5 , M4 , M7 
5 
6 
7 
8 
9 
10 

M2 , M4 , M5 , M7 
M4 , M5  
M5 , M2 , M6 
M1 . M3 , M5 
M3 , M5 , M2 , M8 
M2 , M5 

 
 
Table 4. 

  



 

 

26

 

 
Captions 
 
Figure 1. Block-diagonal structure of a machine type-part matrix 
Figure 2. Material flows within and between manufacturing cells 
 
Table 1 Machine type-part matrix 
Table 2. Utilizations uij of machine types Mi by parts j 
Table 3. Individual machine-part matrix 
Table 4. Machine sequences (routings) of parts 
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