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SCOPE AND PURPOSE 
 

In manufacturing systems there is frequently the need to process parts on a series of 
machines.  To create suitable working environments cells are usually created 
comprising a subset of machines.  Then when the processing is undertaken each part 
may be handled more efficiently because the processing operations may be confined to 
only a small number (ideally one) of cells thus avoiding the need for transportation of 
in-process parts across substantial distances on the factory floor. 
 
A number of papers have considered previously the problem of optimal cell formation, 
but in this paper we introduce the possibility that machines within cells may be 
modified, at a cost, to allow them to undertake the role of a different machine in 
addition to their usual role.  Such machine modification is technically feasible given the 
current operational flexibility of machines.  With the additional possibility of machine 
modification the production system is able to move further to the ideal of conducting all 
processing of a part within the confines of one cell.  In the paper a new model is 
developed for the cell formation problem with machine modification.  Heuristics are 
developed to solve the problem and these are analyzed and discussed. 
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ABSTRACT 
 

An approach for manufacturing cell formation with machine modification is presented.  
In cell formation it is often important in practice to be able to reassign parts to 
additional machine types in order to create better cell configurations.  This involves 
extending the set of parts that certain individual machines can process.  Such extensions 
may be cheaper than simply purchasing additional machines.  Thus, there is the 
possibility of machine modification to reduce inter-cell travel.  The cost of such 
modifications must be balanced by the consequent reduction in inter-cell travel cost.  
The extended machine cell formation problem to be described involves the specification 
of which individual machines should be modified to enable them to process additional 
part types, part-machine assignment, and the grouping of individual machines for cell 
formation.  The objective is to minimize the sum of the machine modification costs and 
the inter-cell travel.  We call this the General Cell Formation Problem (GCFP).  As far 
as the authors are aware, there have not been any solution procedures for this important 
problem reported in the open literature.  It is our purpose to fill this gap by presenting a 
mixed integer programming model of the GCFP.  We also proposed and analyze greedy 
and tabu search heuristics for the design of large-scale systems related to the GCFP.  
Computational experience with the solution procedures indicates that they are likely to 
be useful additions to the production engineer’s toolkit. 

 
Key Words: manufacturing cell formation, machine modification costs, models, integer 
programming, heuristics. 
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Introduction 
 
As is well known, the activities required for the formation of a system of manufacturing 
cells, include: 
(a) Assigning part families to groups of machine types, 
(b) Finding lot sizes of the parts produced, 
(c) Determining the number of machines needed of each machine type, 
(d) Assigning parts to individual machines, and 
(e) Grouping the individual machines into cells. 
 
Most of the major results in the literature on manufacturing cell system formation, 
where the single criterion of minimizing inter- cell materials handling costs is adopted, 
have been discussed by: Billo [7], Chu [11], Kusiak and Heragu [21], Selim et al. [30], 
Vakharia [33], Wemmerlov and Hyer [37], and Wang [36].  An evolutionary approach 
to multicriteria cell system formation has been reported by Pierreval and Plaquin [27].  
Many solution procedures for cell system formation involve solving the problems 
represented by activities (d) and (e) above separately and iteratively.  (See, for example, 
Askin and Chiu [4], Askin and Standridge [5], Faber and Carter [12], Garcia-Diaz and 
Lee [14], Hadley [16], Kumar et al. [19], Kusiak and Chow [20], Moussa and Kamel 
[25], Plaquin and Pierreval [28], Neumann [26], Vanelli and Hall [34], Rajagopalan and 
Batra [29], and Zhou and Askin [38].)   
 
The most effective solution procedures that solve the problems represented by activities 
(d) and (e) simultaneously involve integer programming models (that have the special 
structure of being multi-divisional) or meta heuristic approaches. Such models have 
been reported by: Sundaram and Fu [1987], Ahmed et al. [1991], Jain et al. [1991] (also 
involving tool provisioning), Logendran [1993], Wang and Roze [1995], Zhu et al. 
[1995], Atamani et al. [1995] (involving cost trade-offs), Cao and McKnew [1998], 
(involving Lagrangian relaxation), Moon and Gen [1999] (involving a genetic 
heuristic), Abdelmola et al. [1998] (also involving unutilized machine time usage), 
Taboun et al. [1999] (involving cost trade-offs), Caux et al. [2000] (also involving 
alternative process plans and machine capacity constraints), Arzi et al. [2001] (also 
involving lumpy demand), Lozano et al. [2001] (involving quadratic programming, 
neural network solution procedures), and Foulds and Neumann [2003] (involving a 
network flow approach).  In the next section we present a new cell system formation 
model, which also solves the problems represented by activities (d) and (e) 
simultaneously. 
 
It has been noted by Burbidge [8], Hyer and Wemmerlov [17], and Selim et al. [30], that 
it is often important in practice to be able to reassign parts to different machine types in 
order to create better cell system configurations.  This involves extending the set of 
parts that certain individual machines can process.  Such extensions may be cheaper 
than simply purchasing additional machines.  Thus, there is the possibility in cell 
system formation, of machine modification to reduce inter-cell travel.  When such 
machine modification is feasible, we call the resulting cell system formation problem 
the General Cell Formation Problem (GCFP).  However, as far we are aware, there have 
not been any solution procedures for this important problem reported in the open 
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literature.  It is our purpose to fill this gap.  Section 3 is the main contribution of the 
paper in which we modify the model we developed in Section 2 to present an effective 
mixed integer programming model. We also develop greedy and tabu search heuristics 
for the design of large-scale systems related to the GCFP.  Possible extensions of the 
model are discussed in Section 4.  Section 5 summarizes our conclusions.  A glossary of 
the notation used in this paper is appended. 
 
 
2. A New Model of Manufacturing Cell System Formation 
 
2.1 The development of the model 
We now develop a new model that addresses, simultaneously, the two activities of 
machine-part assignment and the formation of cells.  Assume that n parts, numbered 1, 
2,...,n, are to be processed on m machine types, numbered 1,2,…,m, which are to be 
grouped into up to p cells, numbered 1.2,…,p.  Let: 
 
Mi  denote machine type i (i = 1,2,…,m), 
Mi

k  denote the kth individual machine of type i, 
emin = the minimum number of machines that can be assigned to form a cell, and 

emax = the maximum number of machines that can be assigned to a cell. 
 
For each Mi, (i = 1,2,…,m), we can determine ei, the minimum number of machines 
needed.  To this end, let: 
 
Ci = the capacity of each Mi (that is, its running and set up time) available per period, 
dj = the demand per period for part j, 
sij = the required set up time per batch or lot of part j for any Mi, 
tij = the processing time (without set up time) for one unit of part j on any Mi.  
 
We neglect travel times within each cell.  The processing time pij, of a job j (of batch 
size qj) on any Mi is then 
 
        pij = sij + qjtij.         
 
The utilization uij, of the Mi 's by part j is given by 

 

     
i

ijj
j

ijj

ij C

td
q

sd
+

=u .       

 
Note that uij is the number of Mi 's, or fraction thereof, that is required for the processing 
of part j.  We set uij = 0 if part j is not to be processed on any Mi.  The numerator in the 
above formula for uij represents the running time of an Mi per period required for part j.  
If uij > 1, say, 1 < uij < 2, we introduce a dedicated Mi to process part j.  
 
Given the utilization uij of the Mi 's by part j (j = 1, 2,   ,n) the minimum number ei, of  
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Mi ‘s required for producing all parts, can be computed as: 
 

     e         

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where  is the smallest integer greater than or equal to c (rounded up).   c
 

As was stated at the beginning of this section, we assume that all of the individual 
machines of the various types are to be formed into a maximum of p cells.  As p is 
unknown, it is recommended that the following estimate , of p be used: p̂
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We now construct a new model of cell system formation.  Let: 

ijqx  = the number of Mi 's, or fraction thereof, that process part j in cell q , 

ikqy  = 1, if Mi
k is assigned to cell q, 

 =  0, otherwise, 

jqw  = 1, if part j is processed in cell q, 

 =  0, otherwise, 

qv     = 1, if cell q is formed, and 

    = 0, otherwise. 

MODEL 1 

Constraints 

(2.3) = u .                                                                       ∑
q

ijqx ij

(The requirements for processing part j on the Mi
 ,s must be satisfied.) 

(2.4) ∑
j

ijqx ≤  ikq
k

y∑ .                                                              

(The total requirement for processing of parts on the Mi 's in cell q must be met.) 

(2.5)  = 1.                                                                        ∑
q

ikqy
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(  must be assigned to exactly one cell.) k
iM

(2.6) eq
ki

ikq vy ≥∑
,

min .                                                                

(A cell q, if formed, must contain at least emin machines.) 

(2.7) eq
ki

ikq vy ≤∑
,

max .                                                                

(A cell q, if formed, must contain at most emax machines.) 

(2.8) .                                                                   jqijijq wux *≤

(A constraint to determine .) jqw

(2.9) .                                                                          qq vv ≤+1

(Cells are formed in successive numerical order.) 

Objective 

(2.10)  Minimize ∑
qj ,

jqw .                                                         

(Minimize the occurrence of inter-cell travel.) 

We now solve a numerical instance of Model 1. 

2.2 Example 1 

m = 8, n = 10, p = 4, emin  = 4, and emax = 6, and (uij)8x10  and the part-machine 

utilizations and the part-machine routings are defined in Tables 1 and 2 respectively. 

Table 1 about here. 
Table 2 about here. 

The optimal solution was identified using the XPRESS integer programming code on a 

Sun-Solaris computer.  The optimal objective value = 12. (Note that, in general, the 

objective function value can never be smaller than n.)  As part of the optimal solution, 

four cells are formed, as follows: 

• Cell 1 contains: , , , , , , 1
1M 1

2M 1
3M 1

4M 1
5M 2

5M

• Cell 2 contains: , , , , , 4
2M 3

4M 6
5M 7

5M 1
7M

• Cell 3 contains: , , , , and 3
2M 2

4M 5
5M 2

6M

• Cell 4 contains: , , , , , . 2
2M 2

3M 3
5M 4

5M 1
6M 1

8M

Also, 

• Cell 1 processes Parts 2, 4, 8, 
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• Cell 2 processes Parts 4 and 5, 

• Cell 3 processes Parts 2, 6, 10, and 

• Cell 4 processes Parts 1, 3, 7, 9. 

 

The part-machine assignment is given Table 3. The cells formed and the flow of parts 

(with the machine utilization requirements given in parentheses) are illustrated in Figure 

1.  Note that in cell 1,  and  are dedicated to parts 4 and 8 respectively; in cell 2, 

 is dedicated to part 5; in cell 3,  is dedicated to part 6; and in cell 4,  is 

dedicated to part 9.

1
2M 2

5M

7
5M 5

5M 3
5M

 

Table 3 about here. 

Figure 1 about here. 

We now go on to generalize the previous model to include costs arising from machine 
modification. 
 
 
3. The General Cell Formulation Problem 
 
3.1 A description of the GCFP 
We noted earlier that it is often important in practice to be able to reassign parts to be 
processed on individual machines of additional types in order to create better cell 
system configurations.  This involves extending the set of parts that certain individual 
machines can process.  Such extensions may be cheaper than simply purchasing 
additional machines.  Also, it may not be feasible to add any additional machines to a 
particular cell if the number of machines in the cell is already at the upper limit emax, the 
maximum number of machines allowed in any cell.  Machine modification of the nature 
just proposed is certainly feasible given the operational flexibility of modern, general-
purpose machines currently in existence.  Suppose that each given machine type, Mi 
say, (i = 1, 2 ,..., m) is initially capable of processing a given set of parts, as specified by 
the (aij)mxn matrix, defined as follows: 
 
aij :  =  1, if part j is processed on Mi, and 
       = 0, otherwise, (i = 1, 2 ,..., m; j = 1, 2 ,..., n). 
 
We assume that any individual machine Mi

k say, can be modified so that it can also 
perform as a machine of at most one other type, at a given cost, thus increasing its 
operational flexibility.  We further assume that the cost of extending the flexibility of 
any individual machine in a particular way is constant for all machines of its type.  The 
decision as to which individual machines to extend, and the particular machine type that 
each is extended to, will depend upon their capacity, which cells they are assigned to, 
and the corresponding modification costs.  Of course, certain machine type 
modifications may be technically infeasible or prohibitively costly.  In the former case, 
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as is usual in these circumstances, the costs of such modifications should be set at a 
relatively high level.  In this paper we assume that a machine can be modified at most 
once. 
 
The motivation for incurring the abovementioned modification costs is to reduce inter-
cell materials handling costs.  To this end, we also assume that the cost of transporting 
all batches of each given part between a pair of given cells is known for the time 
horizon of the analysis.  The overall objective is to minimize the total of all 
modification costs and of all inter-cell materials handling costs for the given time 
horizon.  In order to make a useful comparison of costs for a given time horizon, the 
handling costs may have to be amortized as they are ongoing, whereas the modification 
costs are one-off.  This point will be discussed further in the analysis of the numerical 
examples given later.  The minimization of the total costs is achieved by deciding 
simultaneously:  
 
For each individual machine:  

(i) Whether or not it is to be modified so that it can behave as at most one 
additional machine type,  

(ii) If it is to be modified, which additional machine type capability it will 
assume, 

(iii) To which cell it is assigned, and 
 
For each individual part:  

(i) Its individual machine routing sequence, and 
(ii) Its utilization of each individual machine by which it is processed. 
 

Care must be taken that the minimum and maximum number of machines allowed in 
each cell emin and emax, respectively, are satisfied for all cells created.  We now develop 
a model of the GCFP, as an extension of Model 1.   
 
3.2 The development of a model of the GCFP 
To begin the development of a GCFP model, we introduce some additional notation. Let  
Input parameters 

hif   = the cost of modifying any individual Mh so that it can also perform as an Mi , and 

jqrg  = the cost of transporting all batches of part j between cells q and r, for the given 
time horizon, 

Decision Variables 
khiz  = 1, if Mh

k is modified so that it also has the capabilities of machines of type Mi,  
       = 0, otherwise. 

hiqkt = the fraction of machine Mi
k (if the machine is assigned to cell q), that is used as a 

machine of type i, 
jqrs  = 1, if part j is transported from cell q to cell r for processing, and 

       = 0, otherwise. 
 
MODEL 2 
Constraints  
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Constraints (2.3), (2.5) - (2.9) together with the following constraints (3.1) - (3.5): 

(3.1) ∑ ∑≤
j kh

hiqkijq tx
,

 

(The generalization of constraint 2.4.) 

(3.2) ∑ ≤
i

hqkhiqk yt  

(Each assigned machine creates a unit of processing that may possibly be subdivided 

after machine modification.) 

(3.3) ∑
≠

≤
hii

khiz
|

1 

(Each machine cannot be modified to encompass more than one additional machine 

type.) 

(3.4) ihzt khihiqk ≠≤   

(Machine modification creates a fraction of a unit of modified processing.) 

(3.5) 1−+≥ jrjqjqr wws  

(If a part is processed on two machines, the variable indicating inter-cell movement is 

set to 1.) 

 

Objective 
 
(3.6) Minimize       ∑

ikh
hif

,,
.   +  khiz ∑

rqj
jqrg

,,
 . . jqrs

(The sum of all inter-cell travel costs and all machine modification costs.) 
 
We now develop heuristics for the GCFP based on the greedy strategy.   
 
3.3 The development of heuristic solution procedures for the GCFP 
We first develop a heuristic for the GCFP based on the greedy strategy.  Considering 
the solution to Example 1 as a solution to Model 2, we have, as there is no machine 
modification, 

khiz  = 0, for all k, h, i. 
 
Referring to Figure 1, in calculating the objective function value, as defined by (3.6), 
we need focus only on the cost of inter-cell travel. This cost arises from: (i) part 2 
travelling from cell 1 to cell 3, and (ii) part 4 travelling from cell 1 to cell 2.  Thus, 
objective function value is  
 
(3.7) g213  + g412 = 4(2.1.3) + 4(4.1.2) = 56. 
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There is the possibility of reducing the objective function value by reducing inter-cell 
travel by machine modification.  Such reductions can be investigated in a systematic, 
greedy manner.  This consideration suggests the following greedy heuristic for the 
GCFP.  In the statement below, a “cell system” implies a feasible solution to the GCFP, 
that is, a solution that satisfies all the constraints of Model 2. An illustration of such a 
solution is given in Figure 1.  Methods for the identification of such systems, without 
regard to machine modification costs, have been surveyed by Foulds and Neumann 
[13], and include those reported by Askin and Chiu [4], Askin and Standridge [5], and 
Neumann [26]. 
 
The FW1 (Greedy) Heuristic 
Input: A cell system 
Step 
1. For the current cell system, identify for each part j that is subject to inter-cell travel: 

i.  The sequence of cells that part j visits, say: rj
1, rj

2,…,rj
b-1,rj

b. 
ii.  The cheapest feasible combination of machine modifications (that maintain a 

cell system) in: 
a) Cell rj

2, that enables the sequence to become: rj
2,…,rj

b-1,rj
b.        

(Eliminate travel the initial travel of part j, from cell rj
1 to cell rj

2.) 
b) Cell rj

b , that enables the sequence to become: rj
1, rj

2,…,rj
b-1. 

(Eliminate the final travel of part j, from cell rj
b-1 to cell rj

b.) 
2 Implement the combination of machine modifications identified in Step (1) that 

reduces the objective function by the greatest amount to create a new current cell 
system.  (Ties are settled by choosing the combination with the least number of 
modifications and, beyond that, arbitrarily.) 

3 Return to Step (1) until no further objective function can be identified, in which 
case terminate. 

 
We now illustrate the FW1 heuristic by applying it to the following numerical instance 
of Model 2.   
 
Example 2 
 
The input data is as for Example 1 with, additionally: 

hif   = (h)(i)  [the product of h and i]     h, i = 1,2,…8, (h not equal to i) and 

jqrg = 4(j)(q)(r)     j = 1,2,...,10;      q, r = 1,2,3,4 (q not equal to r). 
The cell system inputted is the solution to Example 1 given in Section 2.   
 
Step 1(i) 
The objective function value arises due to:  

(i) Part 2 travelling from cell 1 to cell 3 to be processed by (0.6) of M4
2 and 

(0.7) of M6
2.  Thus for j = 2, b = 2 and  (rj

1, rj
b) = (1,3). 

(ii) Part 4 travelling from cell 1 to cell 2 to be processed by (0.5) of M4
3 and, 

subsequently, (0.2) of M7
1.  Thus for j = 4, b = 2 and  (rj

1, rj
b) = (1,2). 

 
Step 1(ii) 
The utilizations of the individual machines in cell 1 are: 
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M1
1: 0.3 (part 2) + 0.1 (part 4) + 0.1 (part 8)   = 0.5, 

M2
1: 1.0 (part 4)                                   = 1.0, 

M3
1: 0.2 (part 8) = 0.2, 

M4
1: 0.6 (part 2) + 0.4 (part 4) = 1.0, 

M5
1: 0.2 (part 2) + 0.8 (part 4) = 1.0, 

M5
2: 1.0 (part 8) = 1.0. 

Thus only M1
1 and M3

1 have spare capacity, while the other four machines are all fully 
utilized.  As cell 1 already has emax = 6 machines assigned to it, it is not possible to add 
another machine to the cell.  Given the available spare capacity in cell 1 it is feasible to 
modify M1

1 and M3
1 to allow either (but not both) of parts 2 or 4 to be processed solely 

in cell 1.  As there is insufficient machine capacity, it is infeasible, to process either part 
2 in cell 3 or part 4 in cell2. 
 
Step 2 
It is cheapest to modify M1

1 and M3
1 so that they also have the capabilities of machines 

of types M7 and M4, respectively.  That is, set  = 1 and  = 1.  This allows part 4 
to be processed solely in cell 1.  (The alternative of processing part 2 solely in cell 1 
entails modifying both M

117z 134z

1
1 and M3

1 so that they have the capabilities M4 and M7 
respectively.  The objective function value of this alternative is 

f14  + f37  + g412 = (1)(4) + (3)(7) + 4(4)(1)(2) = 57, 
which is more expensive than the original solution.) 
 
Step 3 
As there are no further machine modifications that bring about a reduction in the 
objective function, the heuristic is terminated.  The objective function value becomes: 

14f  +  +  = (1)(4) + (3)(7) + 4(2)(1)(3) = 49, 37f 213g
which represents an overall cost reduction of 7 over the solution to Example 1.  The 
part-machine assignment is given Table 4.  Machine-cell assignment is shown in the 
table in square parentheses and the additional machine capability, due to modification, 
is shown in round parentheses.  The cells formed and the flow of parts are illustrated in 
Figure 2.  It can be seen in Figure 2 that part 4 is processed twice on M1

1(7), initially as 
(.1) of an M1 and finally as (.2) of an M7.  Thus the corresponding entry in Table 4 is 
(.3). 

Table 4 about here. 
Figure 2 about here. 

We now go on to develop a more effective heuristic, that is based on a tabu search 
learning metaheuristic.  (The reader is referred to the book by Glover and Laguna [15] 
for an introduction to tabu search.)  We provide a simple overview of the heuristic first, 
follwed by a more rigorous description. 
 
Once again, as with the FW1 heuristic, the procedure requires, as input, a cell system. 
The method proceeds, at each iteration, by altering the cell system into another 
(feasible) cell system by employing one of the following transformations: 
 

1 Reassign an individual machine from its cell to another cell, 
2 Interchange the cell locations of two individual machines that are assigned to 

two different cells, 
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3 Modify the capability of an individual machine by: 
a. Adding the capability of a second machine type, 
b. Removing the capability of one of its two machine types, or 
c. Replacing one of its machine type capabilities by a new machine type 

capability. 
 
The cell system of least objective function value that can be identified by implementing 
one of the above transformations is recorded and updated to prevent cycling.  Methods 
for identifying, the processing sequence of individual machines for each part have been 
surveyed by Foulds and Neumann [13]. 
 
The Choice Rule 
Implement the transformation that produces the new cell system with the least objective 
function value. 
 
Tabu Tenure 
Make tabu, for a given number N, iterations, the reverse transformation just 
implemented. (A reverse transformation is one that would return the cell system to that 
from which it has just been transformed.) 
 
Aspiration Criterion 
Override the tabu tenure restriction if a different transformation produces a new cell 
system that is a cell system with the lowest objective function value yet identified. 
 
The FW2 (Tabu Search) Heuristic 
Input:  
A cell system and, 
Tmin, Tmax the minimum and maximum tabu tenures, respectively. 
Step 
1 Set the tabu tenure T, to be Tmax.  Empty the tabu list and the diversification list.  

Set the current cell system to be the inputted cell system. 
2 Evaluate all the cell systems that can be created by a single transformation. 
3 If a cell system with a lower objective function value is found, transform the cell 

system to the one with the lowest objective function value and go to Step 1, 
otherwise go to Step 4. 

4 If none of the cell systems found in Step 2 is better than the best encountered 
current cell system, select the cell system found in Step 2 with the least objective 
function value that is created by a transformation not in the tabu list.  (This 
defines a new tabu transformation.)  Update the tabu list by adding the 
transformation just identified, and remove all transformations that have 
remained in the list longer than N. 

5 If this iteration is one of the first two iterations following Step 1 or Step 8, add 
the new tabu transformation to the diversification list. 

6 If the transformation to the current cell system just performed in Step 4 increases 
the value of the objective function, decrease the increase the tabu tenure by 1. 

7 If T > Tmin, go to Step 2. 
8 If T = Tmin, diversify by: 

a. Set the current cell system to be the best encountered cell system. 
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b. Set T = Tmax. 
c. Create a tabu list containing all entries in the diversification list, with the 

present iteration as their recorded entry to the tabu list (that is, after T 
additional iterations, all of them will be removed from the tabu list). 

d. Go to Step 2. 
The FW2 heuristic was applied to Example 2.  The inputted cell system was the final 
solution produced by the FW1 heuristic when it was applied to Example 2, as illustrated 
in Table 4 and Figure 2.  Tmin, Tmax were set at 2 and 10 respectively.  In the final 
solution produced by FW2, four cells are formed, as follows:  

• Cell 1 contains: , , , , 1
1M 1

2M 1
4M 1

5M

• Cell 2 contains: , , , , , 4
2M 3

4M 6
5M 7

5M 1
7M

• Cell 3 contains: , , , , , , 3
2M 1

3M 2
4M 2

5M 5
5M 2

6M

• Cell 4 contains: , , , , , ,  2
2M 2

3M 3
5M 4

5M 1
6M 1

8M

• Cell 1 processes Parts 4, 

• Cell 2 processes Parts 5 and 6, 

• Cell 3 processes Parts 2, 8, 10, and 

• Cell 4 processes Parts 1, 3, 7, 9. 

 
Further: 

•  is modified so that it also has the capabilities of machines of type , 1
1M 7M

•  is modified so that it also has the capabilities of machines of type , 3
2M 4M

•  is modified so that it also has the capabilities of machines of type , and  4
2M 5M

•  is modified so that it also has the capabilities of machines of type . 1
3M 1M

The part-machine assignment is given Table 5.  As there is no inter-cell travel, the 
matrix is in block-diagonal form, as indicated by the shaded entries.  The cells formed, 
and the flow of parts, are illustrated in Figure 3. 

Table 5 about here. 
Figure 3 about here. 

In Figure 3, it can be seen that part 8 is processed twice on (1), first as (.1) of an M1
3M 1 

and then as (.2) of an M3.  Thus the corresponding entry in Table 5 is (.3).  The 
objective value is  
 
(3.8) f17 + f24 + f25 + f31 = (1)(7)+(2)(4)+(2)(5)+(3)(1) = 28. 
 
The preceding solution was identified as an optimal solution to the corresponding 
numerical instance of Model 2, by using the XPRESS integer programming code on a 
Sun-Solaris computer.  In practice, the cost of this solution, which arises solely from 
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machine modification costs, should be compared with solutions such as that to Example 
1, given in Section 2.  Although the cost in (3.8) is half that of (3.7), care must taken in 
making comparisons in order to decide if the machine modifications specified in 
“optimal” solutions to Model 2 are worthwhile.  This is because ongoing costs of 
transport are being added to, and being compared with, the one-off costs of 
modification.  Obviously, the definitions of the ’s and the ’s, the time horizon 
chosen, and the calculation of the net present value of the total transport costs over the 
time horizon must be made carefully if a rational decision on machine modification 
selection is to be made. 

hif jqrg

 
 
4 Extensions to Model 2 
 
Extensions of the model given in Section 3 are possible.  One extension, which seems a 
natural consequence of considerations of machine utilisation, is to make use of further 
machine modification in order to avoid setting up machines.  Considering the solution 
given at the end of the previous section, we see that cell 1 contains four machines but 
processes only part 1.  This part requires a total of 3.0 units of machine processing, so it 
could be completely processed in cell 1, using only three machines.  Thus the model 
could be extended to include the set up costs of allocating machines to cells, and if these 
costs were sufficiently high relative to the cost of modifying machines, then it might be 
possible to reduce the total cost by not using certain machines.  Such machines could 
then be dedicated to new tasks in other cells.  We plan to publish our investigation into 
this proposed extension, and others, elsewhere.  We now summarize the paper and 
present our conclusions. 
 
 
5. Summary and Conclusions 
 
We have reviewed some issues in the formulation of manufacturing cell systems, 
including the assigning of parts to individual machines, the grouping of individual 
machines into cells, and the modification of individual machines to increase their part 
processing capability.  We have presented a mixed integer programming model that 
combines these activities, with the objective of minimizing overall machine 
modification and inter-cell travel costs.  We term this model the General Cell Formation 
Problem.  The GCFP heuristics that have been proposed and analyzed are suitable for 
the design of large-scale systems. We believe that the resulting solution procedures that 
have been developed from the models will become useful tools for production planners. 
 
 
Glossary of notation  
 
 

Input data 
ija  :  =  1, if part j is processed on Mi, and 

       = 0, otherwise, (i = 1, 2, ..., m; j = 1, 2, ..., n.), 
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iC   = the capacity of each Mi (measured by its running time, including set up) 
available per period, 

jd   = the demand per period for part j, 

ie  = the minimum number of Mi 's required, 
emin = the minimum number of machines that can be assigned to a cell, 
emax = the maximum number of machines that can be assigned to a cell, 

hif   = the cost of modifying any individual Mh so that it can also perform as an Mi , 

jqrg = the cost of transporting all batches of part j between cells q and r, per period, 
Mi  denotes machine type i, 
m = the number of machine types, 
Mi

k  denotes the kth individual machine of type i, 
n = the number of different types of parts, 

ijp  = the processing time of a batch of part j on an Mi , 
p = the maximum possible number of cells, 
p̂  = an estimate of the maximum possible number of cells 

qj = the batch size of part j, 
rj

q = the qth cell visited in the processing sequence part j, 
ijs  = the required set up time per batch or lot of part j for any Mi, 

ijt   = the processing time (without set up time) for one unit of part j on any Mi, 
Tmin, Tmax the minimum and maximum tabu tenures, respectively for the FW2 heuristic, 
uij = the utilization of Mi by part j, 
 
Decision Variables  

jqrs  = 1, if part j moves from cell q to cell r for processing, 
= 0, otherwise. 

hiqkt = fraction of machine Mi
k (which is assigned to cell q), which is used as a machine  

 of type i, 
qv     = 1, if cell q is formed, and 

  = 0, otherwise, 
jqw  = 1, if part j is processed in cell q, 

 = 0, otherwise, 
ijqx  = the number of  Mi 's, or fraction thereof,  that process part j in cell q , 

iqky  = 1, if Mi
k is assigned to cell q, 

 = 0, otherwise, 

khiz  = 1, if Mh
kis modified so that it can also perform as an Mi and 

= 0, otherwise. 
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Captions 
Table 1. The part-machine utilization for Example 1. 
Table 2. The machine sequences (routings) of parts for Example 1. 
Table 3.  The part-machine utilization matrix of the optimal solution to 

Example 1. 
Table 4.  The part-machine utilization matrix for the solution to Example 2 

produced by the FW1 heuristic. 
Table 5.  The part-machine utilization matrix for the solution to Example 2 

produced by the FW2 heuristic. 
Figure 1 The cells formed and the part flows, within and between cells, for 

Example 1. 
Figure 2 The cells formed and the part flows, within and between cells, for the 

solution to Example 2 produced by the FW1 heuristic. 

Figure 3 The cells formed and the part flows, within cells, for the solution to 
Example 2 produced by the FW2 heuristic. 

 
Parts 
/Mi 

1 2 3 4 5 6 7 8 9 10 ∑
j

iju  ei ie  

M1 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.5 1 0.5 

M2 0.0 0.0 0.0 1.0 0.5 0.0 0.9 0.0 0.1 0.6 3.1 4 0.775

M3 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.2 0.1 0.0 1.2 2 0.6 

M4 0.0 1.2 0.0 0.9 0.5 0.4 0.0 0.0 0.0 0.0 3.0 3 1.0 

M5 0.4 0.2 0.0 0.8 1.1 1.0 0.6 1.0 1.0 0.0 6.1 7 .871 

M6 0.0 0.7 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.3 1.8 2 0.9 

M7 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.4 1 0.4 

M8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.7 1 0.7 
 

Table 1 
 
Parts Machine sequences (routings) of parts 

1 M5, M8 
2 M1, M5, M4, M6 
3 M3 
4 M1, M2, M5, M4, M7 
5 M2, M4, M5, M7 
6 M4, M5 
7 M5, M2, M6 
8 M1, M3, M5 
9 M3, M5, M2, M8 
10 M2, M6 

Table 2 
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Parts 
/Mi

k 
1 2 3 4 5 6 7 8 9 10 ∑

j
iju  

1
1M  0 .3 0 .1 0 0 0 .1 0 0 .5 

1
2M  0 0 0 1.0 0 0 0 0 0 0 1.0 
2
2M  0 0 0 0 0 0 .9 0 .1 0 1.0 
3
2M  0 0 0 0 0 0 0 0 0 .6 .6 
4
2M  0 0 0 0 .5 0 0 0 0 0 .5 
1
3M  0 0 0 0 0 0 0 .2 0 0 .2 
2
3M  0 0 .9 0 0 0 0 0 .1 0 1.0 
1
4M  0 .6 0 .4 0 0 0 0 0 0 1.0 
2
4M  0 .6 0 0 0 .4 0 0 0 0 1.0 
3
4M  0 0 0 .5 .5 0 0 0 0 0 1.0 
1
5M  0 .2 0 .8 0 0 0 0 0 0 1.0 
2
5M  0 0 0 0 0 0 0 1.0 0 0 1.0 
3
5M  0 0 0 0 0 0 0 0 1.0 0 1.0 
4
5M  .4 0 0 0 0 0 .6 0 0 0 1.0 
5
5M  0 0 0 0 0 1.0 0 0 0 0 1.0 
6
5M  0 0 0 0 .1 0 0 0 0 0 .1 
7
5M  0 0 0 0 1.0 0 0 0 0 0 1.0 
1
6M  0 0 0 0 0 0 .8 0 0 0 .8 
2
6M  0 .7 0 0 0 0 0 0 0 .3 1.0 
1
7M  0 0 0 .2 .2 0 0 0 0 0 .4 
1
8M  .2 0 0 0 0 0 0 0 .5 0 .7 

 
Table 3 
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Parts 

/Mi
k 

1 2 3 4 5 6 7 8 9 10 ∑
j

iju  

[1] (7

) 

1
1M 0 .3 0 .3 0 0 0 .1 0 0 .7 

[1]  1
2M 0 0 0 1.0 0 0 0 0 0 0 1.0 

[4]  2
2M 0 0 0 0 0 0 .9 0 .1 0 1.0 

[3]  3
2M 0 0 0 0 0 0 0 0 0 .6 .6 

[2]  4
2M 0 0 0 0 .5 0 0 0 0 0 .5 

[1] (4
) 

1
3M 0 0 0 .5 0 0 0 .2 0 0 .7 

[4]  2
3M 0 0 .9 0 0 0 0 0 .1 0 1.0 

[1]  1
4M 0 .6 0 .4 0 0 0 0 0 0 1.0 

[3]  2
4M 0 .6 0 0 0 .4 0 0 0 0 1.0 

[2]  3
4M 0 0 0 0 .5 0 0 0 0 0 .5 

[1]  1
5M 0 .2 0 .8 0 0 0 0 0 0 1.0 

[1]  2
5M 0 0 0 0 0 0 0 1.0 0 0 1.0 

[4]  3
5M 0 0 0 0 0 0 0 0 1.0 0 1.0 

[4]  4
5M .4 0 0 0 0 0 .6 0 0 0 1.0 

[3]  5
5M 0 0 0 0 0 1.0 0 0 0 0 1.0 

[2]  6
5M 0 0 0 0 .1 0 0 0 0 0 .1 

[2]  7
5M 0 0 0 0 1.0 0 0 0 0 0 1.0 

[4]  1
6M 0 0 0 0 0 0 .8 0 0 0 .8 

[3]  2
6M 0 .7 0 0 0 0 0 0 0 .3 1.0 

[2]  1
7M 0 0 0 0 .2 0 0 0 0 0 .2 

[4]  1
8M .2 0 0 0 0 0 0 0 .5 0 .7 

 
Table 4 
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Parts 

/[Cells]Mi
k 

4 5 6 2 8 10 1 3 7 9 ∑
j

iju  

[1] (7) 1
1M .1 0 0 0 0 0 0 0 0 0 0.1 

[1]  1
2M 1.0 0 0 0 0 0 0 0 0 0 1.0 

[1]  1
4M .9 0 0 0 0 0 0 0 0 0 0.9 

[1]  1
5M .8 0 0 0 0 0 0 0 0 0 0.8 

[2] (5) 4
2M 0 .5 0 0 0 0 0 0 0 0 0.5 

[2]  3
4M 0 .5 0.4 0 0 0 0 0 0 0 0.9 

[2]  6
5M 0 0 1.0 0 0 0 0 0 0 0 1.0 

[2]  7
5M 0 1.0 0 0 0 0 0 0 0 0 1.0 

[2]  1
7M 0 .2 0 0 0 0 0 0 0 0 0.2 

[3] (4) 3
2M 0 0 0 0.2 0 0.6 0 0 0 0 0.8 

[3] (1) 1
3M 0 0 0 0.3 0.3 0 0 0 0 0 0.6 

[3]  2
4M 0 0 0 1.0 0 0 0 0 0 0 1.0 

[3]  2
5M 0 0 0 0.2 0 0 0 0 0 0 0.2 

[3]  5
5M 0 0 0 0 1.0 0 0 0 0 0 1.0 

[3]  2
6M 0 0 0 0.7 0 0.3 0 0 0 0 0.3 

[4]  2
2M 0 0 0 0 0 0 0 0 0.9 0.1 1.0 

[4]  2
3M 0 0 0 0 0 0 0 0.9 0 0.1 1.0 

[4]  3
5M 0 0 0 0 0 0 0 0 0 1.0 1.0 

[4]  4
5M 0 0 0 0 0 0 0.4 0 0.6 0 1.0 

[4]  1
6M 0 0 0 0 0 0 0 0 0.8 0 0.8 

[4]  1
8M 0 0 0 0 0 0 0.2 0 0 0.5 0.7 

 
Table 5 
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