
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Solving the generalized assignment problem: a hybrid Tabu search/branch
and bound algorithm

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Andrew John Woodcock

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Woodcock, Andrew J.. 2019. “Solving the Generalized Assignment Problem: A Hybrid Tabu Search/branch
and Bound Algorithm”. figshare. https://hdl.handle.net/2134/17881.

https://lboro.figshare.com/

University Library

n 1:1 L0l!ghb.orough
"U UmversIty

AuthorlFiling Title '!:!p.9..~.9.~.~~/" .. .e.:]J.;

..... ,
T Class Mark .. .

Please note that fines are charged on ALL
overdue items.

0403694604

11111' 11111'11 III 1111 111'11111

SOLVING THE GENERALIZED ASSIGNMENT
PROBLEM: A HYBRID TABU SEARCH / BRANCH

AND BOUND ALGORITHM

by

Andrew John Woodcock

Doctoral thesis

submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy

of Loughborough University

25 th September 2007

© by Andrew John Woodcock 2007

I

i ".' \1.","(,

\ l"-~"'- -~"~.~-='-.. ~ '""~ ->
\Ck,
\ t __ -,-,-.-..-..-. --·----l
1, l_cc
: ;<0. 0,*01 b e1 trboLf

c_~--------~----~

Table of Contents

List of Figures ... 5

List of Tables .. 7

Abstract ... 9

Acknowledgements ... 10

I INTRODUCTION .. 12

1.1 Background to the research ... 14

1.2 Aims of the research ... 17

1.3 Structure of the thesis .. 19

2 THE GENERALIZED ASSIGNMENT PROBLEM 21

2.1 Related problems .. 21

2.1.1 The Knapsack problem ... 21

2.1.2 The Multiple Knapsack problem : 23

2.1.3 The Multi-dimensional Knapsack problem 24

2.1.4 The Assignment problem .. 25

2.2 Problem formulation for GAP .. 26

2.3 Applications .. 27

2.4 Summary ... 28

3 A REVIEW OF THE LITERATURE .. 29

3.1 Branch and Bound approaches .. 29

3.1.1 Linear programming relaxation .. 29

3.1.2 Relaxing the capacity constraints .. 30

3.1.3 Relaxing the assignment constraints 31

3.1.4 Lagrangian relaxation ... 34

3.1.5 Surrogate constraints ... 36

3.1.6 Other Branch and Bound approaches 36

3.2 Heuristic approaches ... 37

3.2.1 Tabu Search .. 37

3.2.2 Genetic Algorithms ... 42

3.2.3 Simulated Annealing ... 46

3.2.4 Path Relinking ... 48

3.2.5 Variable Depth Search .. 49

3.2.6 Other heuristics ... 51

2

3.2.6.1 Improvement heuristic of Martello and Toth 51

3.2.6.2 Variable fixing approach ... 52

3.2.6.3 Adaptive search heuristics .. 53

3.3 Assessment of the reviewed methods ... 55

3.4 Summary ... 57

4 AN OVERVIEW OF BRANCH & BOUND AND TABU SEARCH ... 59

4.1 Branch and Bound ... 59

4.1.1 Relaxation ... 60

4.1.2 Variable selection .. 63

4.1.3 Separation ... 62

4.1.4 Node selection ... 65

4.1.5 Bounds, fathoming and pruning .. 66

4.1.5.1 Bounds .. 66

4.1.5.2 Fathoming ... 67

4.1.5.3 Pruning .. 67

4.2 Tabu Search .. 68

4.2.1 Local Search .. 73

4.2.2 The use of memory ... 75

4.2.2.1 Recency based memory .. 75

4.2.2.2 Frequency based memory ... 76

4.2.3 Strategic aspects .. 77

4.2.3.1 Searching the neighbourhood ... 78

4.2.3.2 Intensification ... 78

4.2.3.3 Diversification ... 79

4.2.3.4 Strategic oscillation ... 80

4.2.3.5 Candidate lists ... 81

4.3 Summary ... 82

5 HYBRID TABU SEARCH / BRANCH & BOUND 83

5.1 Referent Domain Optimization ... 83

5.2 Local Branching .. 84

5.3 Relaxation Induced Neighbourhood Search (RlNS) 87

5.4 The hybrid TSBB algorithm ... 89

5.4.1 Solution neighbourhoods .. 94

5.4.1.1 Drop/Add neighbourhood ... 97

5.4.2 Short-term phase ... 101

5.4.3 Intensification ... 105

3

5 .4.4 Diversification ... 106

5.4.5 Aspiration criteria ... 108

5.5 Summary ... 112

6 COMPUTATIONAL TESTING AND RESULTS 113

6.1 Benchmark test problems .. 1 \3

6.2 Parameter settings ... 115

6.2.1 Tabu tenure ... 117

6.2.2 Intensification and diversification parameters 120

6.3 Performance of short-term and intensification phases 120

6.4 Comparison with Xpress-MP .. 128

6.4.1 Medium size problem set.. .. 129

6.4.2 Large size problem set .. 134

6.5 Comparison with Ejection Chain TS .. 141

6.5.1 Comparison of the medium size test set 141

6.5.2 Comparison of the large size test se!.. 145

6.6 Comparison with other heuristics ... 149

6.6.1 Comparison of alternative algorithms for medium size

problems .. 149

6.6.2 Comparison of alternative algorithms for large size

problems .. 153

6.7 Summary ... 157

7 CONCLUSIONS AND DISCUSSION .. 159

7.1 TSBB development and performance ... 159

7.2 Further work .. 166

7.2.1 Algorithm development .. 166

7.2.2 Application to extensions of GAP .. 168

7.2.3 Application to other non-GAP problems 169

Appendix ... 170

Bibliography ... 181

4

--.---.---

List of Figures

Figure 3.1.1 Martello and Toth branching scheme for unassigned jobs 33

Figure 3.1.2 Martello and Toth branching scheme for jobs assigned to

multiple agents .. 33

Figure 4.1.1 Branching on integer variables 63

Figure 4.1.2. Branching on binary variables 63

Figure 4.1.3. Branching on a subset ofvariables 64

Figure 4.2.1. Simple Tabu Search algorithm 70

Figure 4.2.2. Local search algorithm .. 74

Figure 5.2.1. Local branching node separation 85

Figure 5.4.1. Flowchart of the TSBB algorithm 93

Figure 5.4.2. Shift neighbourhood ... 94

Figure 5.4.3. Swap neighbourhood .. 95

Figure 5.4.4. Double-shift neighbourhood 96

Figure 5.4.5. Ejection chain neighbourhoods 97

Figure 5.4.6. Short term phase ofTSBB ... 104

Figure 6.2.1. Cumulative frequency of solution times for

short-term phase ... 117

Figure 6.2.2. Mean % gap from best bound for medium size test

problems types D and E .. 118

Figure 6.2.3. Mean % gap from best bound for large size

test problems ... 119

Figure 6.3.1. Number of new best solutions found during the search

for each of the two phases for problems with 100 jobs 122

Figure 6.3.2. Number of new best solutions found during the search

for each of the two phases for problems with 200 jobs 122

Figure 6.3.3. Number of new best solutions found during the search

for each of the two phases for problems with 1600 jobs 123

Figure 6.3.4. New best solutions found by search phase for

problem type D, m=20,n=100 124

5

Figure 6.3.5. New best solutions found by search phase for

problem type D, m=40, n=400 125

Figure 6.3.6. New best solutions found by search phase for

problem type 0, m=15, n=900 126

Figure 6.3.7. New best solutions found by search phase for

problem type C, m=80, n=1600 127

6

List of Tables

Table 3.3.1 Number of optimal solutions found for small problems 57

Table 6.1.1 Problem dimensions for medium size test instances 115

Table 6.1.2 Problem dimensions for large size test problems 115

Table 6.4.1 Comparison of the best solutions obtained by TSBB

and Xpress-MP for medium size problems 130

Table 6.4.2 Significance tests for the difference in % gap between

TSBB and Xpress-MP for best solutions from the medium

size problem set. .. 132

Table 6.4.3 Comparison of average solution value for TSBB over

5 runs with best solution obtained by Xpress-MP for

medium size problems ... 133

Table 6.4.4 Significance tests for the difference in % gap for

the average of 5 TSBB runs and Xpress-MP for medium

size problems .. 134

Table 6.4.5 Comparison of the best solutions obtained for TSBB

and Xpress-MP for large size test problems 136

Table 6.4.6 Time taken by TSBB to find solutions at least as good

as Xxpress-MP ... 137

Table 6.4.7 Significance tests for the difference in % gap

between TSBB and Xpress-MP for large problems 138

Table 6.4.8 Comparison of average solution for TSBB over 5

runs with best solution obtained by Xpress-MP for

large size problems .. 139

Table 6.4.9 Significance tests for the difference in % gap for

the average of 5 TSBB runs and Xpress-MP for large

size problems .. 140

Table 6.4.10 Significance tests for the difference in % gap between

TSBB and Xpress-MP for both test sets combined 140

Table 6.5.1 Comparison of the best solution run obtained by TSBB

and ECTS for the medium size problem set 142

7

r--- ,

Table 6.5.2 Significance tests for the best solution ofTSBB

and ECTS for medium size problems 143

Table 6.5.3 Comparison of the average of 5 solution runs obtained

by TSBB and ECTS for the medium size problem set 144

Table 6.5.4 Hypothesis test results for the difference of 5

solutions runs for each problem by TSBB and ECTS 145

Table 6.5.5 Comparison of the best solution run obtained by

TSBB and ECTS for the large size problem set. 146

Table 6.5.6 Hypothesis test for the difference in the % gap for

best solution values from the large size problems 147

Table 6.5.7 Comparison of the average of5 runs by TSBB and

ECTS for the large size problem set. 148

Table 6.5.8 Hypothesis test for the difference in the % gap

for large size problems ... 149

Table 6.6.1 Solution values of the different heuristics for the

medium size problems ... 151

Table 6.6.2 % gap from the best bound for the 9 comparative

heuristics ... 152

Table 6.6.3 ANOVA tables for difference in %gap of the 9

methods for medium size problems 153

Table 6.6.4 Solution values ofthe different heuristics for the large

size problems ... " 154

Table 6.6.5 % gap from the best bound for the 5 comparative

heuristics .. 155

Table 6.6.6 ANOV A tables for difference in %gap of the 5 methods

for large problems , , 156

8

Abstract

The research reported in this thesis considers the classical combinatorial

optimization problem known as the Generalized Assignment Problem (GAP).

Since the mid 1970's researchers have been developing solution approaches

for this particular type of problem due to its importance both in practical and

theoretical terms. Early attempts at solving GAP tended to use exact integer

programming techniques such as Branch and Bound. Although these tended to

be reasonably successful on small problem instances they struggle to cope

with the increase in computational effort required to solve larger instances.

The increase in available computing power during the 1980's and 1990's

coincided with the development of some highly efficient heuristic approaches

such as Tabu Search (TS), Genetic Algorithms (GA) and Simulated Annealing

(SA). Heuristic approaches were subsequently developed that were able to

obtain high quality solutions to larger and more complex instances of GAP.

Most of these heuristic approaches were able to outperform highly

sophisticated commercial mathematical programming software since the

heuristics tend to be tailored to the problem and therefore exploit its structure.

A new approach for solving GAP has been developed during this research that

combines the exact Branch and Bound approach and the heuristic strategy of

Tabu Search to produce a hybrid algorithm for solving GAP. This approach

utilizes the mathematical programming software Xpress-MP as a Branch and

Bound solver in order to solve sub-problems that are generated by the Tabu

Search guiding heuristic. Tabu Search makes use of memory structures that

record information about attributes of solutions visited during the search. This

information is used to guide the search and in the case of the hybrid algorithm

to generate sub problems to pass to the Branch and Bound solver. The new

algorithm has been developed, imp lemented and tested on benchmark test

problems that are extremely challenging and a comprehensive report and

analysis of the experimentation is reported in this thesis.

9

Keywords: Integer programming, Tabu Search, Branch and Bound,

Generalized Assignment Problem, heuristic.

10

Acknowledgements

I would firstly like to thank Professor John Wilson for providing me with

the opportunity to undertake this research. John's supervision, friendship,

support, knowledge, advice, encouragement and patience throughout have

been invaluable. I would also like to thank Dr Alan French for his contribution

as a member of the research panel, in particular for the assistance he has given

me with regard to the technical aspects of the Xpress-MP software. My thanks

also go to Professor Malcolm King for his contribution as Research Director.

Finally I would like to express my most heartfelt thanks and gratitude to

my partner Lorraine for her support throughout. Thanks for everything Lo1, I

couldn't have done it without you.

11

1 Introduction

During the late 1930's UK scientists began to use quantitative techniques

in order to study the strategic and tactical effectiveness of a number of

military operations. Since military resources at this time were limited analysis

of certain military operations took place in order to attempt to find the most

efficient use of such resources. During World War II Operational Research

(OR) groups were set up within the UK armed forces but it was not long

however before similar groups were being set up in the USA and other

European countries. Following the end of the war the use of OR methods

began to spread into industry within the UK and USA and by the mid 1950's

had been adopted by a number of other countries. The increasingly

widespread usage and availability of computing power during the last 30 to 35

years has coincided with considerable growth in the development of OR

techniques and applications. This is no coincidence since the majority of OR

techniques are extremely computer intensive in that they require large

numbers of numeric calculations to be carried out in as short a time as

possible.

The science of OR attempts to take structured and semi-structured

problems and develop mathematical models that can be used to represent the

problems under consideration. Attempts at solving such models can then be

carried out using one of a number of solution approaches. Examples of such

techniques include Mathematical Programming, simulation methods, network

analysis, game theory and queuing theory. Significantly OR is used to solve

real-world problems encountered within business, industry and the public

services, examples of these are

(i) Scheduling problems. Typical examples of scheduling problems

include production scheduling where there is a requirement to schedule a

number of jobs or tasks to be performed on a limited number of

machines over time whilst taking into account that one or more

12

objectives need to be achieved as a result of such a schedule, this could

be to minimise the amount of time needed to complete the last of the

jobs. Another widely posed scheduling problem is that of timet ab ling, an

example of which is the task of allocating certain resources such as staff,

rooms or equipment to taught modules in a University or other

educational establishment.

(ii) Vehicle Routing Problems. A typical example of a vehicle routing

problem is that of how to utilise a fleet of vehicles, each with a fixed

capacity, in order to meet the demands of a certain number of customers

where goods have to be delivered to those customers by the fleet of

vehicles from a certain number of depots or warehouses. In such

circumstances there exist different distances between each customer and

each depot. The problem then is one of minimising the total distance

travelled by the fleet of vehicles or minimising the number of vehicles

required in order to satisfy customer requirements.

(iii) Knapsack problems. Given a collection of items each having a value

and a cost associated with it, this classical problem is one of selecting

items from the collection to place into the knapsack having a fixed

capacity with the objective of maximising the value of the items to be

placed into the knapsack whilst satisfying the constraint of the capacity

of the knapsack. In a more practical setting a 'knapsack' could be

thought of as representing a cargo hold in an aircraft or a container.

(iv) Assignment problems. This type of problem involves the allocation of

resources to enable jobs or tasks to be performed satisfactorily. A simple

example of such a problem would be where a number of jobs were

required to be performed by the same number of people. Associated with

each job-person combination is a cost, the problem is then to complete

I3

all of the jobs at minimum cost. The Generalised Assignment problem

falls into this category of problems and a detailed description is given in

chapter 2.

The research described in this thesis focuses on a particular type of

problem known as the Generalised Assignment Problem (GAP) and attempts

to combine aspects of two widely used OR solution techniques for solving

GAP in order to construct a hybrid solution method. The two solution

techniques are the exact mathematical programming approach known as

Branch and Bound and the meta-heuristic approach of Tabu Search. The

remainder of this chapter describes the background to the research, outlines

the research aims and objectives and finally describes the contribution and

structure of the thesis.

1.1 Background to the research

Mathematical programming is an OR technique that is widely used to

mathematically model and solve complex real-world decision problems. One

such approach is to model the problem using a set of linear equalities and

inequalities to represent the constraints of the problem together with a linear

objective function and can be formally stated as

minimize

subject to

ex
Ax:o;b

(1.1)

(1.2)

where e is a 1 x n vector of cost coefficients, x is an n x 1 vector of decision

variables where each element Xj of x is allowed to take on any real value, A

is an m x n matrix containing the constraint coefficients of the m constraints

and b is an n x 1 vector of values that specify the right hand side of each of

the m constraints.

This concept of linear programming was put forward around 1947 by

George B. Dantzig who proposed an algorithm for solving such linear models

14

known as the simplex algorithm. This is highly significant in that it allows

optimal solutions to many complex real-world problems to be obtained and is

incorporated into many commercial solvers currently available. The linear

constraints of the model define the feasible region of the problem and the

intersections of the constraints define the extreme points of such a region, an

optimal solution to the problem can be found at one or more of these extreme

points. Dantzig's simplex algorithm moves from one extreme point to another

evaluating the objective function at each point in order to find the optimal

solution. In 1984 Karmarker (Karmarkar. 1984) presented an alternative,

polynomial time algorithm for solving the linear programming problem

which, in contrast to the simplex algorithm, is an interior point method that

moves, by a series of iterations, through the feasible solution space to the

optimal solution at the boundary ofthe feasible region. Karmarker's algorithm

is not as well established as the simplex algorithm and the fact that a

polynomial time algorithm can solve LP problems suggests that they are not

as hard as were first thought. Existing implementations of the simplex

algorithm in commercial software such as Xpress-MP and Cplex are highly

efficient at solving very large complex linear programming problems to

optimality. The linear programming approach however relies on the condition

that the decision variables are allowed to take on continuous values and the

introduction of integer constraints on the decision variables increases the

complexity of the problem. In 1960 however a paper by Land and Doig

(Land and A. G. Doig. 1960) proposed the Branch and Bound approach for

solving such integer programming problems and is also included as the default

algorithm in many commercial software solvers today. The essence of the

branch and bound approach is one of solving a series of linear programming

sub-problems that are constructed by dividing up the feasible region by

considering those variables that take on fractional values in the optimal

solution to the LP sub-problem under consideration. The bounding aspect of

the algorithm uses the best integer solution found during the solution process

to eliminate those LP sub-problems having an optimal solution value worse

15

than the value of the best integer solution.

Whilst the application of the branch and bound approach to solving many

classes of integer programming problems has been quite successful, an

increase in size and complexity of many instances over time has resulted in a

situation where such problems are unable to be solved to optimality even

using some of the most efficient commercial implementations available today.

This situation applies to many classes of combinatorial optimization problems

that are known to be NP-hard and so has prompted research into the

development of heuristic methods in order to find good solutions to difficult

problems, where good can be thought of as optimal or near optimal, within

reasonably defined timescales. The development of many powerful heuristic

and meta-heuristic approaches such as Genetic Algorithms (GA's), Tabu

Search (TS) and Simulated Annealing (SA) has produced substantial

contributions towards obtaining improvements both in respect of solution

values and solution times for a variety of different classes of problems

including GAP. More recently however combining heuristic methods with

exact optimization methods has been the subject of research that has produced

new hybrid approaches that appear to be quite successful and indeed this has

been the approach adopted in this research.

A variety of real-world problems in industry, business and the public

services require the allocation of resources in order to achieve certain aims

and objectives. There will typically be a limit to the amount of resource

available and a cost incurred by the allocation of such resource and it is

therefore important to allocate such resources as efficiently as possible whilst

attempting to achieve the objectives of the situation under consideration.

These types of problem can typically be represented by integer programming

problems and detailed descriptions of those relevant to the research are given

in the following chapter. Due to their practical relevance such problems have

been the subject of extensive research in recent years as problem instances

have become larger and more difficult to solve resulting in the emergence of

16

more sophisticated and powerful algorithms for solving them.

One of the most successful heuristic approaches that has been developed

and applied to many difficult problems since the late nineteen eighties is Tabu

Search (TS). First introduced by Glover (Glover. 1989) and (Glover. 1990) TS

has evolved as a strategy that can be adapted and tailored to construct

extremely powerful algorithms that have proved to be successful for solving

many very difficult problems. Despite the extensive research that has been

undertaken and the advances that have resulted there remain several

possibilities for further development with Tabu Search, many of which are

highlighted by Glover and Laguna (Glover and Laguna 1997) including the

approach of fixing problem variables in order to generate sub-problems that

can be much more easily solved using exact optimization techniques. Such a

strategy, it is further suggested, can be guided by a TS heuristic in order to

generate complete solutions to the problem. This approach is the focus of this

research using branch and bound as the exact optimization algorithm.

1.2 Aims of the research

The research focus has three main elements, these being the Generalized

Assignment Problem (GAP), the meta-heuristic strategy Tabu Search (TS) and

the exact optimization method Branch and Bound (B&B). The GAP has been

selected as it is one of the combinatorial optimization problems that are

known to be NP-hard and it has frequently been used to model a number of

relevant real-world problems. Its importance has been confirmed by the

extensive research that has been conducted in terms of solution methods,

among which some of the most successful have been TS and B&B

approaches. Many alternative approaches have been presented in the literature

and a review of these is presented in chapter three of the thesis. The

effectiveness and performance of each new approach to GAP tends to be

assessed by testing the algorithm using a set of benchmark test instances. The

result of such testing is typically compared to results of previously developed

17

methods in order to compare the quality of the achieved solutions. Two key

indicators that are commonly used to compare the performance of different

algorithms are the solution value of the objective function and the speed with

which such solutions have been obtained. Whilst the aim of this research is to

follow suit in terms of producing results by conducting testing on these same

benchmark instances the objective is not just to produce results that

outperform alternative algorithms in respect of solution value and speed

although these two factors will clearly form part of the assessment as to the

effectiveness of any proposed algorithm.

It seems reasonable to suggest however that, considering previous research

based on the three key aspects of the thesis, combining a TS approach with a

B&B approach in order to produce a hybrid approach for solving GAP could

have relevance both in theoretical terms as well as practical importance and

therefore provides the main aim of the research.

The main aim of the research is to investigate the possibilities for

combining the TS and B&B approaches in order to produce a hybrid approach

that can be implemented using existing commercial software and to test such

an approach on a set of benchmark test instances in order to compare the

effectiveness of the hybrid with other algorithms. The aim with respect to

solution quality is to produce solutions that are of high quality when compared

to solution values previously obtained and the best known solutions and, in

addition, to produce such solutions within reasonable time scales when

compared to the speed with which alternative algorithms are able to produce

such solutions. The effective combination of the two approaches to form a

hybrid algorithm should therefore highlight both practical and theoretical

issues for such combinations that can also form the basis for development and

further investigation into the approach.

18

~---,

1.3 Structure of the thesis

This thesis is comprised of seven chapters. The first of these seven

chapters provides an introduction to the research by first providing an

explanation of the positioning of the research within the field of Operational

Research.

Chapter two gives a formal description of the Generalized Assignment

Problem (GAP) along with a definition of its mathematical formulation and

provides some examples of applications of GAP in real world settings.

Additionally some problems related to GAP are also presented in this chapter

that are relevant in terms of providing some insight into both the structure of

GAP and its various solution approaches.

Chapter three provides a review of the relevant literature that has been

published over a period spanning the last thirty plus years. This literature

review describes the wide variety of solution techniques that have been

developed and applied to solving GAP. The development of increasingly

powerful and efficient algorithms for solving larger more complex instances

of the problem is also evident in this review of the literature. In keeping with

the scope of this research the review approaches this literature from two

perspectives, the exact branch and bound approach and the heuristic / meta­

heuristic approach. Additional literature that is not solution specific for GAP

is subsequently reviewed in chapters four and five.

A general overview of both the branch and bound and Tabu Search

approaches is described in chapter four. The key components of each

technique are described and their relevance to solving integer programming

problems is discussed. This chapter also includes the review of additional key

literature relating more generally to the solution techniques as opposed to the

specific applications given in chapter three.

19

Chapter five is concerned with the hybridisation aspect of the research and

first discusses theory and techniques that have been proposed in the literature

that have relevance with regard to the construction of the hybrid approach that

has been developed and subsequently described later in the second part of

chapter five. A description of the hybrid algorithm is given in detail along

with a discussion of how the algorithm has been developed and implemented

for solving GAP.

Chapter six is devoted to the presentation and discussion of the results

obtained from the computational testing and experimentation performed

following implementation of the proposed algorithm. Due to the extensive

research conducted for solution approaches for solving GAP libraries of

benchmark instances that have been used for testing the effectiveness of

various algorithms have been generated and made available. Comparisons in

performance of alternative approaches can be made using these GAP libraries

and a detailed description of problems contained in the libraries is given in the

first part of chapter six. The remainder of the chapter is concerned with the

performance of the proposed new hybrid approach and its effectiveness is

compared with relevant approaches that have been shown to produce results

that are considered to be among the best available.

Conclusions that have been derived as a result of computational testing

and experimentation are discussed in chapter seven along with the

presentation of thoughts to provide some direction for future work and

development.

20

- - ----- ----------

2 The Generalized Assignment Problem

The Generalized Assignment Problem (GAP) is one of the classical

combinatorial optimisation problems that are known to be NP-Hard. GAP has

been the focus of much research over the last thirty years giving rise to the

development of some very effective and sophisticated solution approaches

that have been assessed on increasingly difficult instances. This has resulted in

advances from both practical and theoretical perspectives. This chapter of the

thesis gives a formal definition of the problem along with an indication of its

practical relevance with a brief description of some of its practical

applications. The first section of this chapter however gives an overview of

some important related problems.

2.1 Related problems

A common and effective approach that has been widely used to solve GAP

is that of reducing the problem to a series of knapsack problems or a series of

assignment problems by relaxing some of the problem constraints. The

solution effort then focuses on solving a series of sub-problems which usually

will produce infeasible solutions which need to be manipulated in order to

restore feasibility. The following problems are therefore relevant both in terms

of the structure of GAP and approaches to its solution.

2.1.1 The Knapsack problem

The Knapsack Problem (KP) and its variations has itself been the subject

of extensive research over several years. Comprehensive coverage of the

problem, its variants and solution methodologies are given in (Martello and

Toth 1990) and more recent comprehensive treatment of the problem and its

variants along with solution approaches, both exact and approximate, can be

found in (Kellerer et al. 2004). The problem is formulated by considering

which items from a set of n items should be selected to be packed into a

single knapsack having a capacity c. Each of the n items has an associated

21

benefit if it is placed into the knapsack, which can be considered as a profit

Pp and a corresponding weight w, ifitem i is included. The problem KP can

therefore be formulated as an integer programming problem as defined in

(Martello and Toth 1990) as

n

KP = maximize L,p,x,
i=l

n

subject to L, w,x, :<> C
1=1

x, =Oorl, i=l, ... ,n.

(2.1)

(2.2)

(2.3)

KP is the most common variant of the knapsack problem known as the 0-1

knapsack problem where each item i E N is either included in or excluded

from the knapsack container. Two extensions to this version of the problem

occur as a result of varying the number of each item included in the item set

N.

The bounded knapsack problem

Let the item set N now represent the different types of items that can be

included in the knapsack and let B represent the number of copies of each

item that are available so that there are now b, instances of type i that are

available to be placed into the knapsack. Each instance of type i has an

identical weight w, and identical profit p,. The bounded knapsack problem

(BKP) can thus be represented by the model

n

BKP = maximize L,p,x, (2.4)
1=1

n

subject to L, w,x, :<> c (2.5)
i=!

0:<> x, s b" x, integer, i = I, ... , n. (2.6)

The unbounded knapsack problem

If there exists an unlimited amount of each item type i then constraints

(2.6) in BKP can be replaced to obtain the unbounded knapsack problem UKP

22

~-------------------------

where

n

UKP = maximize ~>;x;
i=l

n

subject to 2: w;x; :<;; C
1=1

>0 't '-1 XI - , Xj In eger, 1- , ... ,n

(2.7)

(2.8)

(2.9)

Modest sized instances of KP can be solved to optimality using exact

branch and bound methods, early implementations of which were proposed in

(Kolesar. 1967) and later in (Martello and P. Toth. 1977). A comprehensive

description and comparison of several algorithms can also be found in

(Martello and Toth 1990). Larger problem instances however require

approximate approaches due to the significant increase in computational

requirements associated with increases in problem sizes. One of the first

approximate approaches was proposed by Sahni (Sahni. 1975).

2.1.2 The Multiple Knapsack problem

Increasing the number of knapsacks in a problem from a single knapsack

to say m knapsacks each with its own capacity gives rise to a generalized

form of the knapsack problem known as the mUltiple knapsack problem. The

objective now becomes one of assigning each item to one of several

knapsacks without exceeding the capacity of each knapsack whilst

maximizing the overall profit from such assignments. As in the 0-1 version an

available set of items N = {I, ... ,n} each with weight w, and profit p; are

available to be placed into one of the m knapsacks each with capacity c j'

The problem is then formally defined in the following integer programming

formulation as

23

n m

MKP = maximize LLP,xij (2.1 0)
;=1 }=I

n

subject to Lw,xlj ~Cj' j:;::: 1, ... ,m, (2.1 1)
i=l

m

2:>ij SI, i::::l, ... ,n, (2.12)
}=1

Xij = 0 or 1, i::: 1, ... ,n,j = 1,o .. ,m (2.1 3)

where the variable xij takes on the value 1 if item i is included in knapsack j

and 0 otherwise. Upper bounds for MKP can easily be computed using

relaxation methods such as relaxing constraints (2.13)

with

0 < <1 '-1 '-1 _ xi} - ,l- , ... ,n,j - , ... ,m

and replacing them

(2.1 4)

to yield a linear programming formulation which can be easily solved. Other

relaxation methods such as lagrangian relaxation can also be used to calculate

the upper bound. Several branch and bound algorithms have been presented as

solution methods for MKP including (Martello and P. Toth. 1980) and

(Pi singer. 1999).

2.1.3 The MUlti-dimensional Knapsack problem

The knapsack and multiple knapsack problems consider only the weights

of the items when choosing which items to include which are constrained by

the total weight that can be accommodated by the knapsack i.e. the problem is

constrained only in a single dimension. If one were to consider an additional

constraint in relation to the knapsack, say its volume, then the resulting

problem can be thought of as a two-dimensional knapsack problem. Clearly

then the general case is one of a multi-dimensional knapsack problem. Each

item to be packed into the knapsack now needs to be considered with respect

to each dimension j = I, ... , d resulting in the problem formally stated as

24

-- .--- ---

" MdKP = maximize LP,x, (2.15)
;:::1

" subject to LWy'x/ ~ cl' j=I, ... ,d, (2.16)
i=l

x, = 0 or I, i = I, ... ,n (2.17)

Early attempts at solving the multi-dimensional knapsack problem date

back to the 1960's such as the dynamic programming approaches presented in

(Gilmore and R. E. Gomory. 1966) , (Weingartner and D. N. Ness. 1967) and

(Nemhauser and Z. Ullmann. 1969). An exact branch and bound approach was

later present by Gavish and Pirkul (Gavish and H. Pirkul. 1985).

2.1.4 The Assignment problem

The assignment problem (AP) can be considered to be a special case of

GAP which has also been the subject of extensive research in its own right.

The objective of the assignment problem is to minimize the cost or maximize

the profit associated with allocating a set of n jobs to one of n agents that

are able to carry out the jobs, where agent is a term that can be used to

represent people, machines, vehicles, computer processors and a variety of

other components dependent upon the problem being modelled. The

constraints of the problem are that each job must be completed and each agent

must be assigned a job to complete. As with the knapsack problems

previously described the assignment problem can be easily stated as an integer

programming problem but increases in the size of problem instances are not

trivial to solve. Given the cost cij of assigning each job j to an available

agent i then the integer programming problem is formally defined as

" "
AP = mimimize LLcijxij

f=l 1'=1

" subject to ~>ij = I, i = I, ... ,n
}=1

" LXij =1, j=1...,n
1=1

Xij = 0 or 1, i = I, ... ,n,j = I, ... ,n

25

(2.18)

(2.19)

(2.20)

(2.21)

Although the Assignment problem is an integer programming problem solving

the LP relaxation always yields an integer solution and so it is useful as a sub­

problem for solving more difficult problems. GAP is constrained by aspects of

both the knapsack problem and the assignment problem and so this chapter

concludes with a formal definition of GAP and its significance is highlighted

by some examples of its applications.

2.2 Problem formulation for GAP

The Generalized Assignment Problem (GAP) is the problem of either

minimizing cost or maximizing profit by assigning n jobs to m agents such

that each job is assigned to exactly one agent whilst ensuring that the resource

capacities of each agent are not violated. Let] = {I, ... , m} be the set of agents

and J = {I, ... ,n} the set of jobs to be assigned to an agent i E 1. GAP can

then be formulated as the integer programming problem:

m n

GAP = Minimize LLcijxij (2.22)
;=1 1",1

n

subject to Laijxlj $bl ViE] (2.23)
1·\
m

LXlj =1 VjEJ (2.24)
i=1

Xlj = 0 or I ViE I,j E J (2.25)

where cij represents the cost of assigning job j to agent i, aij represents the

amount of resource consumed if job j is performed by agent i, although in

some variants of GAP the cost of performing job j is identical for each agent

and so all is replaced by a l' and bl is the amount of available resource for

agent i. Constraints (2.23) prevent violation of the resource capacity for each

agent i E] and can be thought of as knapsack constraints, whereas constraints

(2.24) ensure that each job j E J is assigned to exactly one agent and can be

thought of as assignment constraints. Constraints (2.25) represent the binary

26

conditions on the decision variables where xij takes on the value 1 if job j is

assigned to agent i and 0 otherwise. As can be seen from the definition of

GAP the mathematical model for GAP can be relatively easily structured as a

linear and integer programming problem, however it transpires that even

instances with fairly modest values of m and n can be quite difficult to solve

to optimality using exact algorithms. As values of m and n grow it is soon

realised that optimal solutions from solution attempts using exact methods are

unlikely to be achieved. It can be seen that GAP is quite similar in its

formulation to that of the multiple knapsack problem but differs in that the

cost or profit values and also the weights associated with an assignment of an

item to a particular knapsack will typically vary according to which knapsack

it is placed into. The second difference is that in GAP all of the n items in the

item set must be placed into one of the knapsacks. The similarities between

GAP and AP are also apparent although in most GAP instances m will

typically be small in comparison to n. All the problems described in this

chapter, with the exception of the Assignment Problem, are known to be NP­

hard and the reader is referred to (Martello and Toth 1990) and (Garey and

Johnson 1979) for further explanation.

2.3 Applications

There are several real-world applications of problems that can be mode led

using GAP and solved using an appropriate solution method. A vehicle

routing problem was successfully modeled as a GAP by Fisher and Jaikumar

(Fisher and R. Jaikumar. 1981) where items to be delivered were represented

as jobs and the vehicles that were to deliver the items were considered to be

the agents. Ross and Soland (Ross and P. Soland. 1977) presented a method

for modeling facility location problems using GAP. The task of allocating jobs

to computers in computer networks was also modeled using GAP by

Balachandran (Balachandran. 1976). Foulds and Wilson (Foulds and J. M.

Wilson. 1997) use a variation of GAP to represent the problem of allocating

milk-producing farms to collection depots in the New Zealand dairy industry.

27

Other applications include assigning tasks to computer programmers in

software development projects, storage space allocation problems, design of

communication networks, sugar cane harvesting and scheduling such things as

television commercials into time slots.

2.4 Summary

A formal description and definition for GAP have been provided in this

chapter and its significance highlighted in terms of applications that occur in

real situations. Research into solution approaches for GAP is still very much

active as it provides a difficult challenge with respect to the development of

new approaches for solving it. An insight into its structure has been put

forward by means ofthe explanation of the associated problems that have also

been presented. The following chapter reviews a variety of approaches for

solving GAP that have been published in the literature.

28

3 A review of the literature

A variety of solution approaches to solving GAP have been developed and

reported over the last 30 years. Most of the early methods reported in the

literature for solving GAP are exact branch and bound schemes which were

very effective at solving small loosely constrained instances. The development

of some very efficient heuristics and meta-heuristics in the 1990's coincided

with an increase in problem size and difficulty of real world instances of GAP

that could not be solved to optimality using the previously reported branch

and bound methods. More recently attempts have been made at combining

heuristic, meta-heuristic and exact methods in order to produce some highly

efficient algorithms that are capable of producing extremely high quality

solutions to large, tightly constrained problems in realistic time intervals. The

remainder of this chapter reviews these various approaches.

3.1 Branch and Bound approaches

In the branch and bound context the solution to a relaxed version of GAP

provides both a bound on the objective function of the original problem and

identifies how the relaxed problem may be further constrained by a relevant

branching strategy in order to generate primal feasible solutions to GAP. This

section provides a review and summary of the alternative relaxation

approaches that have been exploited within a branch and bound approach for

solving GAP.

3.1.1 Linear programming relaxation

The linear programming (LP) relaxation is used in a conventional branch

and bound scheme by relaxing the integrality constraints and for GAP

allowing 0 :s; xij :s; 1 for all i e I and j e J . The solution to the LP

relaxation at each node provides both a bound for GAP and may contain one

or more fractional variables which become candidates for selection as the

branching variable. The bound provided by the LP relaxation has been rarely

used in the literature in relation to branch and bound approaches for GAP as it

29

is fairly weak compared to some of the bounds obtained using alternative

relaxations as subsequently described. The LP relaxation however does have

properties which have been exploited in some heuristic approaches as

discussed in 3.2 and 3.3 and is used in the branch and bound algorithm of

most commercial integer programming solvers including Xpress-MP.

3.1.2 Relaxing the capacity constraints

Relaxation of the capacity constraints was implemented by Ross and

Soland (Ross and P. Soland. 1975). Deleting the capacity constraints yields

the following relaxed problem:

m n

PR, = Min L~>ijXij (3.1)
1=1 }=1

m

S.t LXij =1 'ifjEJ (3.2)
;=1

Xij =0 or I 'if i E I, j E J (3.3)

At each node of the branch and bound tree PR" subject to the relevant

branching constraints, is solved by assigning each unassigned job to the least

costly agent. The resulting solution to PR, yields a lower bound on the

problem at that node. It is highly probable, except in trivial instances, that the

solution to PR, will violate one or more of the capacity constraints for GAP

and so the bound is then improved by considering the following knapsack

problem for each of the agents whose capacity has been violated:

K: = minimise L PjYij (3.4)
je)

subject to L aijYij ~ d, (3.5)
jeJ

Yij = 0 or 1 (3.6)

where d l = L:aijx; -hi ,x; represents an assignment in the solution to PR,

30

and Pj is the minimum increase in cost incurred by reassignment of job j.

Each knapsack problem K, minimizes the penalty for reassigning jobs in

order to restore feasibility for the violated agent i and the combined penalty

resulting from solving each knapsack problem is added to the lower bound in

order to update the bound at that node. If the solution to the relaxation at the

current node is primal infeasible then branching is performed from that node.

The branching strategy used by the authors is a depth first approach that

selects a variable for separation from those variables that were not selected for

reassignment during the bound improvement phase. Two branches are created

using the 0-1 dichotomy of the Dakin branching scheme by constraining the

variable xij to take on the value 0 or 1. The variable chosen is the one that

represents an assignment that is most attractive when considering the

consequences in terms of the penalty incurred from reassignment and also the

spare capacity of the agent to which the job is currently assigned. The

algorithm first considers the problem associated with the I-branch and this

node can be fathomed if a primal feasible solution is found as a result of

identifying reassignments when solving the series of knapsack problems. In

such circumstances the algorithm backtracks and explores the O-branch.

3.1.3 Relaxing the assignment constraints

Martello and Toth (Martello, Toth 1981) use a maximization version of

GAP in order to demonstrate how relaxation of the assignment constraints can

be applied in order to calculate an upper bound. Deletion of the assignment

constraints results in the GAP relaxation defined by

m n

PR, = Max L2:>ijXij (3.7)
i=l }=1

n

S.t Laijxij :,; b, 'tiEl (3.8) .
j~1

Xij = 0 or I 't i E l, j E J (3.9)

31

Relaxation PR, naturally decomposes into a series of 111 knapsack problems

K, = maximise I CijXij (3.1 0)
jej

subject to L aijxij:5: hi (3.11)
jeJ

xi} = 0 or 1 (3.12)

each of which can be solved to yield an objective function value z,. The

upper bound obtained is thus I z,. The authors then attempt to strengthen
IEl

this bound by calculating, for each job, a lower bound, I
j

, the penalty that

would be incurred in order to satisfy the violated assignment constraint for job

j. Each job j that has not been uniquely assigned in the solution to the

relaxed problem then either belongs to

J o = {j I I Xij = O} or J, = {j I I Xij > I} . Each job is considered in turn and
iei iel

an upper bound uij is calculated for each problem K; as a result of setting

Xij = 1 'if i E 1 if j E J o and xij = 0 if j E J, andxij = 1. The penalty

incurred I j to satisfy the assignment constraint for each job j E Jo u J, is

then used to calculate the revised bound Iz; -maxjEJ,uJ, {I).
'El

Consideration is given in (Martello and Toth 1990) as to whether their

own bound is superior to that of Ross and Soland and conclude, based on two

different examples, that the stronger of the two bounds is dependent upon the

problem instance and therefore compute both their own bound and the Ross

and Soland bound at each node of the branch and bound tree, except for the

root node, where they also compute the bound of Fisher et al. (Fisher, et al.

1986) as subsequently described in 3.1.4.

In contrast to the Ross and Soland scheme Martello and Toth use an

alternative branching strategy to the 0-1 scheme by creating multiple branches

from each node based on the reassignment of jobs in the solution at that node.

32

As described above the relaxed problem results in each job being allocated to

0, I or several agents. Each job j E Jo u J, is considered and the job having

the largest If value is selected for branching. If job j has not been assigned

in the current solution then m branches are created as in figure 3.1.1.

Figure 3.1.1 Martello and Toth branching scheme for unassigned jobs.

x = I
m}

Alternatively if job j has been assigned to k agents where k > I then k + I

branches are created, one branch for each assignment and an additional branch

excluding all current assignments for job j. Given a solution where job I is

assigned to agents I and 2 then the branching would be as in figure 3.1.2.

Figure 3.1.2 Martello and Toth branching scheme for jobs assigned to multiple agents.

x =1
" x = 1 x + x :: 0

" 11 11

33

3.1.4 Lagrangian relaxation

A lagrangian relaxation of the generalized assignment problem can be

achieved by dualizing either the capacity constraints or the assignment

constraints. The latter is explored by Guignard and Rosenwein (Guignard and

M. B. Rosenwein. 1989) in their heuristic approach as described in 3.1.5

however the former is the approach used by Fisher et al. (Fisher, et al. 1986)

where the assignment constraints are dualized into the objective function to

give the relaxed formulation

LR= maximize L~)cij -Aj)Xij
iel jeJ

subject to L aijxij ::;, bi 'if i E J
jeJ

Xij = 0 or 1 'if i E J, j E J

(3.13)

(3.14)

(3.15)

The authors initialize the lagrange multipliers to the value of the second

largest cij thus producing a bound equivalent to the Ross and Soland bound,

and decompose LR into a series of knapsack problems LRi • A solution to

LR is then obtained by first assigning the value 0 or 1 to those variables

having cij - Aj > 0 according to the value of that variable in the optimal

solution to LRi , followed by an attempt to assign values to as many of the

remaining free variables having cij - Aj = O. This second phase is achieved

according to some heuristic approach the choice of which, according to the

authors, is not critical as there are few feasible choices remaining and so

assignments are made based on decreasing cost coefficients. The resulting

solution to LR is feasible but may contain one or more jobs that have not

been assigned. An attempt to assign these jobs is made by decreasing the

lagrange multipliers in an attempt to include an assignment xij = I in the

optimal solution to LRi • The multiplier adjustment method proceeds until no

further improvements to the solution are possible and then selects the free

34

variable Xy having the greatest resource requirement ay for branching using

the 0-1 branching strategy.

Fisher et al. (Fisher, et al. 1986) give a comparison of their own algorithm

with those of Ross and Soland and Martello and Toth on a set of 160

randomly generated test problems with m = 3 and 5, n = 10 and 20 .

More recently Haddadi and Ouzia (Haddadi and H. Ouzia. 2004) follow

the Martello and Toth convention and formulate GAP as a maximization

problem but use the relaxation LR in their branch and bound approach along

with subgradient optimisation to so lve the relaxation. They also introduce a

heuristic that is applied at each iteration of the subgradient phase in order to

generate feasible solutions for GAP. At iteration k of the subgradient phase

the authors fix those jobs that are uniquely assigned in the solution X' and

generate a smaller sub-problem which is that of assigning the remaining jobs

that have either not been assigned or have been assigned to multiple agents. In

this sub-problem the agents' capacities are reduced to take into account those

assignments appearing in Xk. The heuristic of Martello and Toth (Martello

and Toth 1981) is then applied to the sub-problem in order to generate an

approximate solution. The resulting solution thus uniquely assigns those jobs

that were not previously uniquely assigned in X k • The authors identified that

as k increases during the subgradient phase the number of uniquely assigned

jobs also increases resulting in near feasible solutions to GAP and therefore

smaller sub-problems to solve. The upper bound at each node of the branch

and bound tree is given by the objective function value from solving the

relaxed problem LR .

Having solved the relaxation and generated a relaxed solution, a job j' is

selected from those jobs not already having been assigned by the branching

strategy to be the next job selected for branching based upon the contribution

35

to the objective function of each available assignment. The node selection

strategy follows the breadth-first approach and selects the node having the

largest upper bound. The number of child nodes created will be between 2 and

m dependent upon how many of the agents can be assigned to job j' .

3.1.5 Surrogate constraints

The approach of Fisher et al.(Fisher, et al. 1986) was improved upon in

terms of both computational times and the size of the branch and bound trees

by Guignard and Rosenwein (Guignard and M. B. Rosenwein. 1989). As a

result they were able to solve larger problem instances than had previously

been reported, generating problems with m:S; 10 and n :s; 50. They also use the

lagrangian relaxation LR but they allow L xij ;:: 0 for all j E J whereas
iei

Fisher et al. use L xij :s; 1. The solution process begins by solving the
ie/

relaxation at the root node using sub gradient optimization. At each subsequent

node lagrangian dual ascent is used to solve LR and in addition the relaxation

is strengthened by the addition of the surrogate constraint

L L xij :s; n or L L xij ;:: n if the number of assignments does not equal n.
;e/ jeJ ie! jeJ

Multiple branching is employed from each node by considering those jobs

being assigned to multiple agents and selects a job j' that minimizes the

maximum resource requirements of an assignment (i, j) . A separate branch

for each assignment (i, j') where xij' = 1 is created by setting xij' = 0 and

selecting the branch with the largest resource coefficient Gij' to explore first.

3.1.6 Other Branch and Bound approaches

A variety of strategies are used by Nauss (Nauss. 2003) as a means to

strengthen the bounds at each node of the tree in his special purpose branch

and bound algorithm for solving GAP. The algorithm begins by using the tabu

search heuristic of Laguna et al. (Laguna, et al. 1995) in order to generate an

initial feasible solution. The integrality constraints of P are then relaxed in

36

order to generate and solve the LP relaxation and the resulting objective

function is used to test for optimality by comparing it with the objective

function of the heuristic solution. Unless the heuristic solution is optimal the

authors attempt to increase the lower bound by applying a series of linear

programming cuts and then solving the lagrangian relaxation LR using sub­

gradient optimization. They fix as many variables as possible by calculating

the penalties incurred for not fixing such variables in an effort to reduce the

number of variables that may be selected for branching. If the number of fixed

variables at the current node of the branch and bound tree is above a certain

threshold then they complete the solution using complete enumeration and

update the best solution and objective function if appropriate. Alternatively if

not enough variables have been fixed than they use logical feasibility tests in

order to fix additional variables followed by subgradient optimisation in order

to solve the relaxation. If the node cannot be fathomed then a free variable is

chosen for branching using the 0-1 dichotomy.

3_2 Heuristic approaches

This section reviews some of the powerful heuristic and meta-heuristic

approaches that have been implemented for solving GAP that were mostly

developed during the 1990's as a means for finding high quality solutions for

larger, harder problem instances.

3.2.1 Tabu Search

The origins of Tabu Search (TS) were first evident in the literature

towards the end of the nineteen seventies (Glover. 1977) and early nineteen

eighties (Glover. 1986) but were formally presented by Glover (Glover. 1989)

and (Glover. 1990) at the end of the nineteen eighties as a strategy for solving

combinatorial optimization problems. The first of these two papers describes

the standard components of the strategy and the second follow up paper

details more advanced aspects of TS. An overview of the strategy and its

components is subsequently described in the following chapter and the

37

--- ----------------------

remainder of this section reviews some of the TS applications for GAP as

found in the literature ..

GAP can be considered to be the single-level version of the multilevel

generalised assignment problem (MGAP) which was solved using a tabu

search approach by Laguna et al. (Laguna, et al. 1995). An initial solution is

first generated by relaxing the capacity constraints and making assignments

according to minimum cost (for a minimization problem). The search process

then proceeds by moving from the current solution x to the best neighbouring

solution x' where the best neighbour is selected by considering the change in

objective function and the violation of the capacity constraints. The novel

approach presented by the authors was the construction of neighbourhoods

using a series of ejection chain moves which if applied to the current solution

will transform x into x'. Ejection chains are compound moves that eject

either one or two assignments from the current solution and replace them with

one or two new assignments in order to form a new trial solution. The authors

define a dynamic tabu list for each job that records those assignments being

removed from the current solution to be replaced by a new assignment and

apply a tabu tenure to such an entry based on the number of available ways in

which that job may be assigned to an agent. A long term memory element is

also incorporated into this process using a frequency based memory which

records the number of times an assignment has been part of an ejection chain

move. The method also uses the concept of strategic oscillation that forces the

search into the infeasible region with regard to capacity constraints when there

is no solution with an objective function value better than that of the solution

first encountered when the search last entered the feasible region.

The use of ejection chains for solving GAP was further developed more

recently by Yagiura et al. (Yagiura, et al. 2004) where the authors construct

three ejection chain neighbourhoods of the current solution that are utilised in

a local search phase. The first two neighbourhoods correspond to the

38

commonly used shift moves which are termed 'Shift' and 'Double-shift' and

are in fact special cases of the third type of neighbourhood termed 'long

chain' which generates neighbouring solutions by constructing a chain of

reassignments. Initially an assignment (i, j) is dropped from the current

solution thus increasing the spare capacity at agent i. This freeing of capacity

triggers off a series of subsequent shift moves where complete trial solutions

are generated by reassigning job j . These three neighbourhoods constitute the

core ofthe algorithm which begins by randomly generating an initial solution

and proceeds by attempting to improve this solution using local search with

shift moves. This is followed by a second attempt at improvement using local

search with double-shift and then by implementing a long-chain move. The

generation of the long-chain neighbourhood ceases as soon as an improving

solution is found and if no improving solution is found then all solutions in the

neighbourhood are examined. The search process is allowed to visit the

infeasible region by violating the capacity constraints and in such

circumstances the objective function is penalized using a weighted penalty

function that reflects the relative implications of an alternative assignment in

terms of both cost and resource. The weights are changed dynamically

throughout the search process in order to control the time spent searching both

in the feasible and infeasible regions. The authors also apply subgradient

optimisation to the lagrangian relaxation both in the construction of ejection

chains and to calculate a lower bound on the minimization problem.

Prior to the ejection chain approach of Yagiura et al. two alternative tabu

search approaches had been proposed in (Diaz and E. Fernandez. 2001) and

(Higgins.2001). The approach ofHiggins was a dynamic tabu search strategy

and focused on very large problems with respect to the number of jobs n. The

classical shift and swap neighbourhoods for GAP were employed in order to

identify moves from the current solution to the new neighbouring solution but,

due to the size of the very large problems being solved, explorations of the

neighbourhoods were reduced by means of sampling as complete evaluation

39

of the neighbourhood would prove far too costly in terms of CPU time. Two

new variants of TS for GAP are proposed by the authors that employ the TS

strategy of strategic oscillation where the search is allowed to alternate

between the feasible and infeasible solution space. In the first instance

infeasibility is defined by violation of the capacity constraints where the

objective function is penalized for such a violation. Although applying

penalties to the objective function had previously been employed in

applications of TS the novel aspect of the authors approach was that they

adapted the penalty dynamically according to the change in the objective

function during phases ofthe search that

a) transformed one feasible solution into a subsequent feasible solution

b) included a move from one solution to a neighbouring solution where

one or both solutions are infeasible.

Adjustment of the penalty in this manner has the effect of focusing the search

toward promising areas of the feasible region by encouraging moves to

feasible solutions during periods when feasible solutions have improved the

objective function value and discouraging moves to feasible solutions thus

encouraging the search to enter the infeasible region when the recent

improvement in objective function has been poor. The second variant also

incorporates a dynamically changing neighbourhood size. The sample used to

select a move from the current solution to the next solution is taken from the

combined shift and swap neighbourhood and the proportion of moves taken

from each that are used to make up the sample is allowed to change according

to which type of move has given rise to the size of the gain in objective

function in the recent history of the search. It seems reasonable therefore to

include a high proportion of shift moves in the neighbourhood sample if shift

moves have recently caused a large improvement in objective function value.

The two new variants were tested on problems with between 20 and 40 agents

and between 2000 and 50000 jobs.

40

Diaz and Fernandez (Diaz and E. Fernandez. 200 I) adopt a similar

dynamic oscillation approach to the search in that they too use the shift and

swap neighbourhoods along with an evaluation function where the objective

function is penalized by a weighted penalty based on whether the search has

most recently been conducted in the feasible or infeasible region and adjust

this weight dynamically as the search progresses. Whereas Higgins uses a

simple tabu list that keeps track of the t most recent solutions visited during

the search where experimentation indicated values of t > 1000 were necessary

in order to improve final solution values, Diaz and Femandez use additional

TS concepts in order to improve the efficiency of their algorithm. Firstly they

incorporate a short-term recency memory that renders certain assignments

tabu for the next t iterations where the value of t changes dynamically

within a fixed range[tm;n,tm"j. This is implemented by means of an

m x n matrix T that records those assignments that are forbidden from being

included in subsequent solutions and is updated whenever an assignment

(i, j) has been dropped from a solution i.e. when a job j is reassigned from

an agent i to a new agent i' at iteration k then T,j is given the value k + t

where t m;n ~ t ~ t m"". In addition to this short-term memory aspect the authors

also incorporate a longer-term frequency based memory that is utilised for

intensification and diversification strategies. This frequency memory also

takes the form of an m x n matrix and records the number of solutions

containing the assignment (i,j). As a result an intensification strategy is

implemented by first recovering the best solution found during the search and

fixing those assignments that have occurred in at least 85% of solutions and a

short term phase is subsequently implemented in order to search for a solution

to the resulting reduced problem. Diversification is achieved by penalising the

objective function coefficient for those high frequency assignments thus

encouraging the selection of less frequently occurring assignments resulting in

a series of high influence moves that transform the structure of the solution

and drive the search into regions that have remained previously unexplored.

41

Finally a standard aspiration criterion is used in order to override tabu status

when a feasible solution is encountered that improves the objective function

of the current best solution. The method was tested on a set of standard

benchmark problems and performed favourably when compared to other high

quality solution methods.

3.2.2 Genetic Algorithms

In contrast to the deterministic approach of Tabu Search, Genetic

Algorithms (GA's) adopt a randomised approach in an attempt to

mathematically simulate the biological process of evolution within a

population and were first proposed and developed by Holland (Holland 1975).

A population of solutions is generated and allowed to evolve by reproductive

means in a survival of the fittest approach. One GA approach was formulated

and applied to GAP by Chu and Beasley (Beasley and P. C. Chu. 1997) which

begins by constructing an initial population where each solution in the

population is simply generated by randomly assigning each job j to one of

the m agents. The structure of each solution takes the form of vector Sk of

size n where each element Skj is given the value i where job j is assigned to

agenti. As a result of these random assignments it is likely that this initial

population contains some highly infeasible solutions when considering the

capacity constraints. The fitness of each solution in the population is assessed

by computing two values, firstly the objective function value fk is used as a

measure of fitness and secondly a measure of infeasibility, with respect to

violation of the capacity constraints, uk (x) is calculated to represent the

unfitness of a solution where

fk = ~>'.f
feJ

and

42

Reproduction is achieved by selecting two parent solutions from the

population to which crossover is applied followed by mutation in order to

generate a child solution. The selection of the two parents is achieved by

means of binary tournament selection where two randomly chosen solutions

are selected from the population and compete to become a parent by

comparison of the fitness values only. The two winners of the binary

tournaments subsequently go on to produce a child solution consisting of the

first p elements of one parent and the remaining n - p elements from the

other parent where the value of p is selected randomly from J . Two elements

of the child solution are randomly selected from J and their values swapped

in order to achieve mutation. The resulting child solution is then subjected to

an improvement heuristic which attempts to improve both the fitness and

unfitness values by reassigning jobs prior to replacing a solution in the current

population. The solution chosen from the current population to be replaced by

the child is the one that is most unfit i.e. the most infeasible solution and if the

entire population consists of feasible solutions then the one with the poorest

fitness is selected for replacement. Children are not allowed to enter the

population if an identical solution already exists within tbe current population.

The GA was tested on a set of benchmark instances ranging in size from 5 to

20 agents and 15 to 200 jobs and compared favourably with other heuristics

available at that time in terms of solution quality although this was at the

expense of longer computational times when compared with some methods.

An alternative GA approach was proposed at around the same time in

(Wilson. 1997) where the emphasis focused on producing a population of

solutions that have potentially optimal objective function values but are

infeasible with regard to constraint satisfaction and subsequently concentrates

on improving feasibility whilst maintaining solution quality in terms of

objective function value. This is in contrast with the approach of Chu and

Beasley who focused on improving feasibility and optimality simultaneously.

The author first generates an initial population based on the optimal solution

43

to a relaxed problem obtained by deletion of the capacity constraints. Each

solution in the population is generated by selecting one job at random and

randomly assigning it to one agent, with the remaining jobs in the trial

solution being assigned according to the optimal solution to the relaxed

problem. This initial population is then subjected to the standard GA

procedures of reproduction, crossover and mutation in an effort to improve

the fitness of the population where fitness is calculated according to the

m

degree of infeasibility ~), where, given a solution x
1=1

r, = max[o{~aijxij -b, J](i Em) . Parents are selected from the population

using the binary tournament selection method as in Chu and Beasley (Beasley

and P. C. Chu. 1997) although crossover is performed by transferring those

assignments common to both parents to the resulting child and allocating the

remaining assignments according to some probability based on the fitness of

each parent, effectively encouraging the inheritance of attributes from the

fittest parent. In addition to the crossover procedure a variable rate of

mutation is implemented which is increased as the average fitness value of the

population approaches zero which randomly mutates the assignments of one

or more jobs according to the current mutation rate. The resulting child

solution then replaces a solution from the current population and the solution

to be replaced must be one with a lower fitness value than the child in order to

maintain a population of the fittest solutions. As in Chu and Beasley (Beasley

and P. C. Chu. 1997) a child solution is only added to the population if it is

different to all solutions in the current population. The GA phase of the

algorithm terminates when a solution of fitness value zero is obtained or the

generation of children reaches a specified limit and the best solution is

subjected to improvement using local search that in a first phase allows the

best solution found to take on values from the optimal solution to the initial

relaxed problem if this would produce a feasible solution, and in the second

phase attempts to swap assignments of jobs in order to improve objective

44

function value. The GA was tested on problem instances with values of m

between 10 and 50 and n between 20 and 500 and performed well with

respect to generating near optimal solutions quite quickly. On the smaller

problems most improvement seemed to be gained during the GA phase

whereas on the larger problems there seemed to be greater gain as a result of

the local search phase.

More recently the GA approach has been further researched and an

improved GA for solving GAP was proposed by Raidl and Feltl (Raidl, and

Feltl2004) which is largely based on the method of Chu and Beasley (Beasley

and P. C. Chu. 1997). The authors present two variants of their GA that differ

from each other in the way that the initial population of solutions are

generated and effort is concentrated on generating a high proportion of

feasible solutions. In the first variant this is achieved by considering the

desirability of assigning jobs to agents where desirability is measured by

means of a desirability index . Assignments are made by

considering each job in random order and identifying those agents having

spare capacity for performing the job, of these agents the one chosen to

perform the job is determined by comparison of the relevant desirability

indices and the most desirable agent is selected, and if no agent can feasibly

perform the job then an assignment to one ofthe agents is made at random. In

the second instance an initial integer solution is obtained from the linear

programming relaxation for GAP which typically contains a large number of

assignments, which are subsequently adopted by the initial solution. For those

jobs that are split between two or more agents in the LP relaxation the agent

who contributes most to performing job j is selected to perform the entire

job. The resulting integer solution will typically be highly infeasible with

regard to the capacity constraints, particularly for the more difficult problem

instances, is thus subjected to the heuristic improvement strategy described

earlier and developed in (Beasley and P. C. Chu. 1997) in order to produce a

45

--------- ------------

number of more suitable solutions for the GA. The evaluation function used to

assess the fitness of each solution is the objective function penalised for

infeasibility where a measure of infeasibility is calculated according to the

average relative capacity excess. Binary tournament selection is also used

here in order to select solutions from the population for reproduction and its

offspring replaces the worst solution in the population. Crossover and

production of a child is achieved as in the Chu and Beasley algorithm,

however a heuristic mutation operator is then applied by selecting a specified

number of jobs to be reassigned using the heuristic approach of Martello and

Toth (Martello, Toth 1981) as subsequently reviewed in 3.2.6. The new GA

algorithms are subsequently tested and the results compared with those of Chu

and Beasley and also with the commercial solver CPLEX on an existing set of

benchmark test problems along with a set of new, larger and more difficult

test problems generated by the authors. Results of such testing seemed to

indicate that the new GA variants were able to significantly outperform their

predecessor and with the more difficult problems for which CPLEX was

unable to provide optimal solutions could outperform the commercial solver

as well. Of the two variants proposed the version that uses the LP relaxation

as its starting point seemed to be the stronger.

3.2.3 Simulated Annealing

Whilst Genetic Algorithms attempt to mimic the evolutionary process of

reproduction, Simulated Annealing (SA) algorithms attempt to simulate the

annealing process of a solid and is a strategy that is used to guide a local

search method in the direction of high quality local optima. Starting from an

initial point in the solution space the local search begins its descent towards a

local optimum by a series of moves to solutions in the neighbourhood of the

current solution. The move selected from the current neighbourhood may not

necessarily be an improving move as SA allows non-improving as well as

improving moves. In the SA setting a neighbouring solution is selected at

random and a move to that solution is executed providing that it produces an

46

improvement in terms of evaluation of the quality of that solution, if however

the randomly selected solution is non-improving then it is accepted according

to some probability determined by the current temperature as updated by the

cooling schedule.

An SA approach to solving GAP was proposed by Osman(Osman. 1995)

using a cooling schedule that periodically increases the temperature in an

oscillating manner in contrast to the common approach of gradually

decreasing the temperature during the execution of the algorithm. The

neighbouring solutions are generated by interchanging the assignment of one

or more jobs from an agent i with one or more jobs from an agent i', where

the number of jobs to be shifted is determined by the parameter A where

typically A = 1 or A = 2 due to the increasing amount of work required to

consider neighbourhoods of size A > 2. The algorithm combines the

oscillating SA approach with the metaheuristic approach of Tabu search and

proceeds by moving from a current solution to a neighbouring solution as

would occur during a standard TS approach by accepting the best non- tabu

move to a neighbouring solution, however whereas a non-improving move

would normally be accepted with probability 1, in this hybrid approach a non­

improving move is only accepted subject to the probability determined by the

current temperature as defined by the oscillating cooling schedule as stated.

The author proposes and tests six variants of the algorithm based upon

• Selection strategy

• Strength of tabu restriction

• Aspiration criteria.

The selection strategy refers to exploration of the neighbourhood and

considers either terminating exploration of the neighbourhood as soon as the

first improving move is found, or exploring the entire neighbourhood and

accepting the best solution found. The strength of the tabu restriction is

determined by the number of attributes involved in a move that are recorded

as tabu and the aspiration criteria determines the circumstances under which

47

tabu status can be overridden. Results are given on a set of 60 test problems in

order to make comparisons of the different strategies and also to highlight

comparisons with the solutions obtained using the Martello and Toth heuristic

in (Martello and Toth 1990). The results obtained at the time seemed to

indicate that combining aspects of simulated annealing and tabu search

formed an effective approach for solving GAP and suggested exploration of

alternative forms of cooling schedule, such as probabilistic tabu search

approach, may produce further improvements.

3.2.4 Path Relinking

In the path relinking approach the focus is on generating new solutions by

combining attributes from two different solutions and in particular by

examining solutions on the path from the first solution known as the starting

solution to the second solution known as the guiding solution. This is

essentially achieved by transforming the starting solution into the guiding

solution by changing one or more attributes of the starting solution resulting in

new solutions that sit on the path between the two solutions. A more detailed

description of the method is given in (Glover 1997).

This approach was applied to GAP in (Yagiura, et al. 2006) where the

authors further develop their ejection chain approach by incorporating a path­

re linking aspect. The ejection chain approach as previously described in

(Yagiura, et al. 2004)is applied in turn to a reference set of 20 high quality

solutions that are initially generated randomly. This reference set is updated

by searching for feasible solutions using the ejection chain process described

previously. The resulting locally optimal solution is then compared with the

worst solution in the reference set and replaces that solution if it has a better

penalized objective function. Each path relinking phase selects two solutions

from the reference set and generates a path of solutions between the two

which starts at the source solution and by executing shift moves leads to the

destination solution. Each solution along this path is subjected to the ejection

48

chain search phase and the reference set updated with those solutions

encountered that improve the worst solution in the reference set. The process

then iterates by selecting two new solutions from the reference set to generate

a new path. The two solutions are either selected randomly from the reference

set or deterministically by considering pairs of solutions that have not yet been

combined. An element of diversification is applied to the reference set by only

allowing solutions to be admitted if they are at least a minimum distance from

the other member of the set.

3.2.5 Variable Depth Search

A variable depth search procedure for GAP was proposed in (Amini and

M. Racer. 1994) that consists of a two phase effort to improve solutions. An

initial solution is first generated randomly by assigning jobs to one of m + I

agents where the agent i = m + I represents a dummy agent with an infinite

cost for its use and having infinite capacity. Along with its associated

objective function a lower bound on the problem is obtained by means of

solving the linear relaxation to GAP. In the subsequent search phase improved

solutions are sought by generating sequences of feasible task re-assignments

that result in the reduction of the objective function value, where

reassignments are achieved by means of standard shift and swap moves

commonly used for GAP, until no improving sequence can be found in which

case the algorithm terminates. Following presentation of the algorithm the

remainder of the paper concentrates on the construction of a comprehensive

testing system that is used to compare the relative efficiencies of the VDSH

approach with that of three of the exact methods presented in 3.1 due to

(Martello, Toth 1981), (Ross and P. Soland. 1975) and (Fisher, et al. 1986).

The testing system has three components

a) A random problem generator

b) A set of user supplied codes to solve the randomly generated problems

c) An analysis module to perform statistical analysis.

Subsequently three separate experiments are described and the results reported

49

that compare firstly the performance of the four methods on a set of small

problems, secondly the experimentation focuses purely on the comparison of

the VDSH with the Martello and Toth algorithm in respect of the small test

problems, and finally the third experiment compares the VDSH with the

heuristic of Martello and Toth (Martello, Toth 1981) on a set of larger

randomly generated test problems. The results indicate that VDSH performs

well in terms of being able to find solutions of comparable quality to the three

exact methods on the small test problems and in much shorter solution times,

although performance seems inferior to that of the Martello and Toth heuristic

on the large test problems and is only able to perform favourably if the VDSH

is given the correct parameter settings thus highlighting the trade-off between

quality of solution verses computation time.

Subsequent research undertaken and reported in (Amini and M. Racer.

1995) follows up on these findings by constructing a hybrid heuristic that

generates solutions using the Martello and Toth heuristic and then subjects

these high quality solutions to a refinement process using VDSH after first

checking for optimality. Testing of the hybrid algorithm still seemed to

indicate that the Martello and Toth algorithm was able to significantly

outperform VDSH and the hybrid heuristic in terms of computational times

however given longer running times the hybrid algorithm was able to find

improved solutions.

A branching variable depth search approach to solving GAP was given in

(Yagiura, et al. 1998) where branching trees are constructed by generating

child nodes that represent solutions derived from the parent by means of

searching the commonly used shift and swap neighbourhoods for GAP. The

process begins initially by generation of a random solution which represents

node 0 in the branching tree and is then subjected to a procedure termed "SSS­

Probe ", which is a local search procedure that uses modifications to the

standard shift and swap neighbourhoods that are commonly used when

50

searching the solution space for GAP. The modification to the shift

neighbourhood essentially involves the introduction of a memory structure

that prevents a reversal of previous shift moves from being executed as would

be utilised in a standard tabu search procedure. The modification to the swap

neighbourhood however results in a much restricted neighbourhood in respect

of size as the restriction imposed is to only consider swap moves that involve

at least one of the agents included in the previous shift move. Each iteration of

the algorithm consists of construction and evaluation of tree structures where

the nodes of the tree relate to solutions which have been generated using

"SSS-Probe" which begins by first shifting a job from its current agent to a

new agent subject to the restrictions placed on the neighbourhood by the tabu

list. The shift move chosen to be executed is the one that minimises an

objective function penalised for violation of capacity constraints and the local

search continues to a local optimum by subsequent moves to improving

solutions within the modified swap neighbourhood and the locally optimal

solution is used to create a child node which is then added to the tree. The

number of child nodes generated by each parent is determined by a parameter

of the method whose value produces tree structures of different types since the

number of nodes generated at a given depth is a function of the improvement

in objective function between depth 0 and depth d . If a new best solution is

found whilst searching the current tree then this forms node zero of a new tree

to be subsequently searched. The algorithm was tested on a set of benchmark

problems of size m = 5,10,20 and n = 100,200 and performed better than most

existing algorithms at the time both in terms of solution quality and the

computational times required to obtain those solutions.

3.2.6 Other heuristics

3.2.6.1 Improvement heuristic of Martello and Toth

In addition to the exact branch and bound approach in (Martello, Toth

1981) also subsequently described in (Martello and Toth 1990) the authors

present a heuristic approach to solving GAP using a two-phase approach that

51

------ - -------~

first generates a feasible solution by allocating the assignment of jobs

according to the difference between the best and second best assignments for

each job. In the first instance the algorithm iteratively considers all unassigned

jobs and allocates each a value based on the desirability of allocating the job

j to the agent i and i' where the desirability of such an assignment (i, j) is

determined by one of the following measures

a) cij

b) cij {
laij

d) -ay(.
Comparisons are then made to identify the job j having the largest difference

between the assignments (i,j) and (i',j) and the assignment (i,j) is

subsequently the next to be made. If as a result of this first phase, a feasible

solution has been found then this is subjected to an improvement phase

shifting the assignment of jobs to alternative agents whilst maintaining

feasibility with regard to the capacity constraints. In addition to the heuristic

algorithm for generating and improving feasible solutions the authors further

propose a heuristic approach for fixing variables in order to determine

whether such a solution is optimal. In the first instance variables are fixed to 0

if fixing them to one would exceed the best bound as calculated in the

previously described branch and bound algorithm and determining whether a

situation occurs whereby for ajob j, all assignments (i,j),i E m are fixed to

zero then the previously found feasible solution must be optimal. The second

reduction phase considers bounds on each of the I knapsacks with regard to

setting a variable equal to 0 or I as also described earlier and fixing such a

variable dependent upon their effect on the best bound.

3.2.6.2 Variable fixing approach

A similar approach of fixing variables in order to reduce the problem was

52

subsequently implemented by Trick (Trick. 1992) who uses the solution to the

linear programming relaxation of GAP in order to render certain variables

'useless' thereby allowing them to be fixed to O. As discussed in chapter 2.2

such a relaxation produces at least n - m assignments and Trick provides

proof that at least one variable relating to an assignment (i,j) for one of the

unassigned jobs will require an amount of resource that is greater than the

available capacity for such an assignment, if the naturally occurring

assignments to the LP relaxation are fixed, and as such the corresponding

variable can be fixed to O. This result subsequently yields a quite

straightforward heuristic approach comprising:

• solving an LP relaxation

• fixing those variables with value I

• removing the 'useless' variables and solving the LP relaxation of the

resulting reduced problem.

This procedure iterates until no 'useless' variables occur, in which case a

feasible but not necessarily optimal solution has been found. The solution

found using the LP heuristic is subsequently subjected to an improvement

heuristic that attempts to find a better solution. The improvement phase also

takes advantage of the results previously described by randomly fixing some

portion of the previously obtained solution and subsequently solving for the

remaining portion of the problem using the original relaxation heuristic. The

approach was implemented and tested on standard type problems with up to

500 jobs and 100 agents and was able to produce some reasonably good

solutions but still left room for improvements to be gained. A later paper by

Cattrysse et aI. (Cattrysse, et aI. 1998) points out some deficiencies in Trick's

method in that it does not always yield a feasible solution to GAP

3.2.6.3 Adaptive search heuristics

A general framework for adaptive search heuristics for GAP is proposed

in (Lourenco and D. Serra. 2002)which considers two alternative strategies for

generating initial solutions followed by local search procedures that begin

53

from these initial solutions in order to obtain better solutions. The approaches

used for generation of initial solutions are based on the MAX-MIN ant system

(MMAS) heuristic and the greedy randomized adaptive search procedure

(GRASP). These two procedures are then combined with the two local search

procedures, local descent and tabu search, to produce the following four

alternative heuristics for solving GAP

a) GRASP with Local Descent

b) MMAS with Local Descent

c) GRASP with Tabu Search

d) MMAS with Tabu search.

In heuristics a) and c) an initial solution is generated by means of a greedy

heuristic that considers each job j E J and allocates the job to an agent i E I

according to some probability Pij determined by the available resource at

agent i and the resource required to perform the assignment aij . The chosen

assignment is then made according to such probabilities except where the

chosen agent has insufficient capacity to accommodate job j in which case

the job is assigned to the first agent having such spare capacity, assuming one

exists, otherwise the job is assigned to a random agent. This process is

repeated until all jobs have been assigned which may result in an infeasible

solution with regard to the capacity constraints in which case the objective

function is penalised by addition of a penalty function

at,max[o,~aijXij -b;] where a> 0 represents the cost of using one extra

unit of capacity. In heuristics b) and d) jobs are assigned to agents in the same

greedy manner apart from the probability that is used being based upon the

desirability of making such an assignment which the authors define to be

based on the cost incurred by making such an assignment. The association

with the ant colony approach (Dorigo, Di Caro 1999)is that as new improved

solutions are found by means of the local search algorithm these initial

probabilities change based upon the difference in the desirabilities between

54

the assignments in the starting solution and those in the improved solution.

The second aspect of the general framework is that of local search for which

the authors define two types of neighbourhoods, the first being a simple shift

neighbourhood and the second an ejection chain neighbourhood. In the

descent local search algorithm the neighbourhoods of the current solution are

searched until an improving solution is found, known as the first improvement

strategy, and a move to the new solution is executed. The search continues in

this manner until no improving solution can be found in the neighbourhoods

in which case the local search phase stops, necessary parameters are updated

and a new iteration is started by generation of a new starting solution. The

tabu search strategy uses the same neighbourhoods and moves but does not

necessarily stop at a local optimum since non-improving moves are allowed

during this approach and a return to previous solutions is prohibited by means

of a tabu list that prevents reassignment of a job to an agent that has

previously been shifted except where the aspiration criteria allows acceptance

of a tabu assignment if the resulting solution is better than the best solution

found during the search. Computational testing revealed that the addition of

local search and tabu search to the MMAS and GRASP approach to

generating initial solutions outperforms algorithms where MMAS and GRASP

alone are used by experimenting with different combinations of the stated

approaches and also indicated that a more sophisticated tabu search

implementation might provide further improvements.

3.3 Assessment of the reviewed methods

The methods reviewed in this chapter have been compared against

alternative methods on a variety of test problems. The methods of Martello

and Toth (Martello and Toth 1990), Ross and Soland (Ross and P. Soland.

1975) and Fisher et a!. (Fisher, et a!. 1986) have all been compared on a set of

randomly generated test problems with m = 2,3,5 and n = 10,20. There are 4

levels of difficulty and the reader is referred to (Martello and Toth 1990) or

(Fisher, et a!. 1986) for a description of how these problems were generated.

55

The results are reported in both (Fisher, et al. 1986)and (Martello and Toth

1990) but with different interpretations as to which performs best. Martello

and Toth suggest that the Ross and Soland algorithm performs better on the

easier problems whilst the Martello and Toth branch and bound algorithm

performs better on the harder problems and the algorithm of Fisher et al.

performs worse. This is in contrast to the interpretation of results in (Fisher, et

al. 1986)where it is suggested that the algorithm of Fisher et al. performs

better than both Ross and Soland and Martello and Toth, the latter suggesting

that this may be due to the fact that results were obtained on different

machines in the earlier research reported in (Fisher, et al. 1986).

Along with the presentation of their GA algorithm Chu and Beasley

generated two sets of benchmark test problems for GAP. The first consists of

60 small problem instances with 5:<> m :<> 10 and 15:<> n:<> 60. Chu and

Beasley report results of several methods on this small set which are

summarized in table 3.3.2 along with the results of Haddadi and Ouzia

(Haddadi and H. Ouzia. 2004), Diaz and Femandez (Diaz and E. Femandez.

2001) and the ejection chain approach in(Yagiura, et al. 2004)for this problem

set.

The ejection chain tabu search was able to find all 60 optimal solutions for

these small test problems in less than I second indicating that this set of

problems was no longer suitable for testing more recent algorithms. As a

result more recently developed and more powerful algorithms have been

tested on larger problem instances. A description of these larger test problems

along with a detailed comparison of a variety of algorithms including TSBB is

presented in chapter 6.

56

Table 3.3.1 Number of optimal solutions found for small problems.

Method

Martello and Toth heuristic

Fisher et al. branch and bound

Martello and Toth branch and bound

Hybrid simulated annealing/tabu search

Chu and Beasley Genetic algorithm

Haddadi and Duzia branch and bound

Diaz and Fernandez Tabu Search

Ejection Chain Tabu Search

3.4 Summary

Number of optimal

solutions found

o
26

24

39

60

57

60

60

A wide variety of solution approaches for GAP have been researched,

implemented and tested during a period spanning the last thirty years. During

this time significant improvements have been made both in terms of practical

and theoretical issues. Technological developments with regard to

computational power have been significant as has the introduction of some

powerful heuristic and metaheuristic procedures. The trade off between

solution quality and computational times however is still a relevant issue and

there are some methods that seem to be able to produce good quality solutions

in very short computational times whilst other approaches tend to focus on

producing extremely high quality solutions at the expense of longer running

times. The suitability of a method therefore may be context dependent in

terms of a real application. In conjunction with such developments researchers

have attempted to solve harder and more complex test instances that have

resulted in a challenging set of test libraries. These are now freely available

and important in terms of measuring further development as they provide a

benchmark against which alternative algorithms can be compared. More

57

recently attempts have been made to hybridise certain strategies and, as can be

seen from much of the research carried out, there are a number of possibilities

for constructing new algorithms that use aspects from, and combinations of,

alternative approaches in the construction of such hybrid methods and this

research has been conducted with this hybrid approach in mind. It is thought

however that there still exists scope for further research into solution

methodologies for GAP. This is motivated by evidence that the problem is

still actively being researched by leading researchers in the field of

combinatorial optimization, in addition to the requirement of solutions to ever

more complex problem instances. Two of the approaches, Tabu Search and

Branch and Bound, reviewed in this chapter have been the subject of

significant research and have provided some very efficient algorithms for

solving GAP and so it seems reasonable to suggest that a combination of the

two might prove interesting. The following chapter provides an outline and

overview of these two methodologies and at the same time identifies and

summarizes some of the key literature that is relevant to the development of

the two methodologies.

58

4 An overview of Branch and Bound and Tabu

Search

This chapter presents an overview of both the Branch and Bound (B&B)

and Tabu Search (TS) methods. In the following section 4.1, an outline of

how the B&B algorithm works is presented which includes relaxation of the

integer problem, selecting variables for branching to create new sub-problems,

consideration of how such variables should be separated and the types of

constraints that can be used to achieve such separation and how to select the

next sub-problem to be solved from those outstanding sub-problems yet to be

explored. Section 4.2 then presents a description of the basic TS approach and

how this incorporates the use of local search techniques to search the solution

space. Explanation is also provided as to how the use of memory, both short

and long term, is incorporated into the search process in order to enhance its

ability to find good integer solutions, intensifying the search around

previously found good solutions and also by escaping local optima and

diversifying the search in order to explore previously unexplored areas of the

solution space. More sophisticated implementations of TS require the use of

more strategic techniques and so some more strategic aspects of the method

are outlined in this section too. Finally some examples of how TS has been

applied to solve a variety of real-world combinatorial optimization problems

will be discussed.

4.1 Branch and Bound

The Branch and Bound algorithm is an exact optimization algorithm used

for solving integer programming problems and was first introduced by Land

and Doig (Land and A. G. Doig. 1960) and is today incorporated into several

commercial solvers, including Xpress-MP, as the default algorithm used to

solve integer and mixed integer programming problems. The following

subsections describe the basic components that form the basis of the algorithm

although there is considerable scope with regard to implementation of the

59

algorithm for a variety of problems. The B&B strategy is essentially one of

divide and conquer and begins by first solving a relaxed version ofthe integer

problem. An optimal solution to the relaxed problem can typically be found

quite quickly and is subsequently used to define two or more sub-regions that

exclude the relaxed solution previously found but still include the optimal

integer solution to the original problem, assuming that one exists. This

separation process is defined by a tree structure where the sub-problems are

represented by nodes of the tree and the branches represent the rules for

separating the nodes of the tree.

4.1.1 Relaxation

The remainder of this chapter considers the integer programming problem

formally stated as

minimize

subject to

ex

Ax~b

I ~ x~u

Xj integer \fj E J,J = {1,2, ... ,n)

(4.1)

(4.2)

(4.3)

(4.4)

where n is the size of the column vectors x, I and u with objective function

4.1 and constraints 4.2 as previously described in chapter 1.1 with the

stipulation that all elements of e are integer values. Constraints 4.3 specify

restrictions on the upper and lower values allowed to be taken on by each

decision variable Xj in the column vector x. Constraints 4.4 specify that

each decision variable Xj must have an integer value in the solution.

Generally the B&B algorithm will first solve the linear programming (LP)

relaxation obtained by removing the integrality constraints 4.4 and allowing

the decision variables to take on fractional values within the specified upper

and lower limits. This LP relaxation can typically be solved quite quickly to

yield one of three possible outcomes:

60

_. _. - - - -- --------------------

i. The LP relaxation is infeasible.

ii. An optimal solution to the LP relaxation has been found and one or

more of the n decision variables has a fractional value.

iii. An optimal solution to the LP relaxation has been found and all n

decision variables are integer valued.

Outcome j indicates that the integer problem must be infeasible, outcome iii

indicates that the optimal solution to the integer problem has been found and

only if outcome ii occurs is additional work required in order to solve the

integer problem. In case ii it is necessary to select a decision variable having a

fractional value in the solution to the relaxation and to then generate two or

more sub-problems each having a feasible region that excludes the optimal

solution to the parent problem, whilst further ensuring that one of the newly

generated problems has a feasible region that contains the optimal solution to

the integer problem. This is achieved by the addition of branches to represent

constraints that restrict the values that the selected decision variable is allowed

to take in a solution to the original problem.

Whilst most commercial solvers use an LP relaxation as the basis for the

B&B solver alternative relaxations can also be used in problem specific

implementations of B&B such as those reviewed in the previous chapter by

(Ross and P. Soland. 1975) and (Martello and Toth 1981). Both of these

approaches maintain the integrality constraints and the former of these two

relaxes the knapsack constraints whilst the latter relaxes the assignment

constraints which result in two very different branching schemes. Both of

these relaxations exploit the structure of the problem although the Ross and

Soland (Ross and P. Soland. 1975) scheme still proceeds by selecting a single

decision variable for branching, whilst the Martello and Toth (Martello, Toth

1981) scheme constructs a branching scheme based on a multiple choice

approach. Having solved the relaxed problem it is then necessary to identify

those variables that are infeasible with regard to the problem constraints. In

61

the case of the LP relaxation to the integer programming problem those

decision variables having fractional values violate the integer constraints.

4.1.2 Variable selection

Having identified those variables that violate the problem constraints with

regard to the relaxed problem it is then necessary to select a variable or set of

variables which will define the division of the current sub-problem into two or

more child problems. Consider a solution x to an LP relaxation of an integer

problem which contains one or more decision variables whose values are

fractional. One relatively simple way to select a decision variable on which to

separate might be to select the variable whose value is most infeasible in

relation to integrality. In order to assess feasibility of a decision variable x j

where v < xl < u and v and u are integer values and u - v = I then a measure

of infeasibility for Xl can be defined as min{xj - v,u - x). Other frequently

used approaches for deciding which variable to select for separation are those

of specifying priorities, penalties and degradations. Knowledge of a particular

problem context could be used in order to set priorities that determine the

order in which the decision variables are to be chosen for separation. For

example a variable that represents a major decision within the problem

formulation may be given a higher priority than one whose variation in the

solution has less of an impact. Applying penalties to a relaxed solution and

estimating the degradation in the change in objective function that would

occur by forcing a fractional decision variable to an integer value are also

commonly used approaches for selecting the variable on which to separate

next. A detailed description of applying penalties and estimating degradation

can be found in (Nemhauser and Wolsey 1998).

4.1.3 Separation

The structure of the branch and bound tree is determined by the way in

which separation is applied to the current problem under consideration to

produce subsequent child problems. In the general case where each integer

62

- - - -----

decision variable Xj is restricted by an upper bound, uj ' and lower bound, Ij'

on its value in the integer problem, and its value in the solution to the current

LP relaxation is fractional where v < Xj < v + I and v is the greatest integer

less than x j ' then separation can be achieved by imposing two branches that

will ensure that xI cannot take on values between v and v + 1 in the solution

to any subsequent relaxation as shown in figure 4.1.1.

Figure 4.1.1 Branching on integer variables.

LP Relaxation

Sub-problem I Sub-problem 2

In the zero-one case where some or all of the decision variables are

constrained to be binary, branching on a binary decision variable x j is

achieved by means of applying two equality constraints as apposed to the

inequalities used for branching in the general case as in figure 4.1.2. This

results in a binary decision tree that fixes the value of the variables Xj to

either 0 or 1 as in figure 4.1.2

Figure 4.1.2 Branching on binary variables

LP Relaxation

Sub-problem I Sub-problem 2

63

Consistent with the latter of the two approaches already described, a

multiple branching scheme can also be applied where appropriate by imposing

additional branches using equality constraints where the right hand side of

each constraint is an integer between U j and I j .

The two branching schemes previously described branch on a single

decision variable however there are many integer programming problems

(including GAP) that are modelled using constraints of the form

~>j = I J = {1,2, ... ,n}
je}

where there is a requirement to select one variable from a subset of the

problem's decision variables to take on the value I. In such a case it may be

beneficial to branch from the current node using a subset of variables as in the

example of figure 4.1.3.

Figure 4.1.3 Branching on a subset of variables.

LP Relaxation

~>j =0
jeJ\J'

Sub-problem 1 Sub-problem 2

where J' can be constructed using information available from the solution at

the parent node.

The separation approaches outlined in this section ate commonly used to

solve a variety of integer programming problems and are utilised in

commercial solvers including Xpress-MP.

64

As the branch and bound tree grows during the solution process there will

be a number of nodes representing sub-problems that are yet to be solved,

these are commonly called the leaf nodes and the process of selecting which

node to consider next in the solution process is now described in the following

section.

4.1.4 Node selection

There are several ways that the next node to be examined from the set of

leaf or active nodes can be chosen including

a) Best First: As the name suggests this approach considers all of the

outstanding nodes and selects the node that is best where best is

assessed according to some pre-determined evaluation criteria. Such

evaluation might be achieved by considering the value of the objective

function of the solution to the relaxed problem at the node, or by using

some type of estimating approach to approximate the value of a

possible integer solution from that node. However the evaluation is

achieved the node with the best evaluation is the one chosen next for

development. Clearly this approach can become time consuming as the

size and complexity of the problem increases and so may not be

suitable in some cases.

b) Depth First: This strategy always considers the child nodes that are

generated as a result of branching being applied to the current node.

The child nodes are one level deeper in the tree than the parent hence

the approach is known as the depth first approach. The child node to

be selected for further development can be chosen by means of

evaluation as described in a) or by means of consideration according to

some pre-defined order. If the current node does not require any

further development then the algorithm is said to backtrack up the tree

to the deepest parent node that has child nodes that have not yet been

examined.

65

c) Local First: The local first approach considers the children and sibling

nodes of the current node as candidates for selection as the next node

to be processed. If all child and sibling nodes require no further

development then the algorithm must backtrack and select a node

according to some alternative criteria, possibly the deepest or best

node available in the tree.

Whilst these are some of the most commonly used strategies for node

selection it is possible to combine these kinds of approaches to produce other

alternatives for specifying the order in which nodes are selected.

4.1.5 Bounds, fathoming and pruning

Construction of the branch and bound tree using the strategies described in

the previous subsections would result in complete enumeration as a means of

finding an optimal integer solution. The effort required to solve an integer

programming problem to optimality can be significantly reduced by the use of

bounds and pruning.

4.1.5.1 Bounds

Solving the LP relaxation of the original problem will yield an objective

function value that can be used to generate a bound on the best integer

solution that can be found, assuming that the relaxation has a feasible solution.

In a minimization problem the bound can be generated by rounding up the

objective function value to the nearest integer since all of the objective

function coefficients are integer. If, during the solution process, an integer

solution is found such that the difference between its objective function value

and the generated bound is zero then clearly this integer solution must be

optimal and therefore there is no need to continue the solution run. Various

strategies can also be used to improve the bound for example by generating

additional constraints, fixing the values of variables, specifying restricted

ranges of values that variables are allowed to take and numerous heuristic

strategies. Improving the bound however obviously requires additional effort

66

during the solution process and so consideration should be given to the

amount of effort expended in improving the bound verses the actual gains to

be had from such improvements.

4.1.5.2 Fathoming

During the branch and bound search a bound on the objective function

value of the best integer solution obtainable will be available, as described in

the preceding section. An integer solution to the problem however mayor

may not be available. Solving the LP relaxation at any node of the branch and

bound tree will result in one of the following situations:

a) The relaxed sub-problem has no feasible solution.

b) The relaxed sub-problem has a feasible solution but its objective

function value is worse than the best known integer solution.

c) The relaxed sub-problem has a feasible solution, its objective function

value is better than the best known integer solution but one or more of

the variables required to take integer values are fractional.

d) The relaxed sub-problem has a feasible solution, its objective function

value is better than the best known integer solution and all of the

integer constraints are satisfied.

In situations a, band d the node is said to have been fathomed since in

situation a) there is no feasible region that can be further divided, and in

situations b) and d) the feasible region of the sub-problem cannot contain an

integer solution that is better than the best integer solution already known. It is

therefore only necessary to branch on the current node in situation c).

4.1.5.3 Pruning

When a new best integer solution to the problem is found during the

branch and bound search this new information can be used to prune the tree

by essentially fathoming those leaf nodes that have yet to be developed whose

relaxed objective function is worse than the objective function value of the

new best solution. If all outstanding nodes have been fathomed then clearly

the branch and bound process ceases and the best integer solution found, if

67

indeed one has been found must be the optimal integer solution to the

problem.

4.2 Tabu Search

In contrast to the exact approach described in the preceding section Tabu

Search (TS) is a heuristic strategy that has been successfully utilized in order

to solve a variety of hard real world optimization problems. TS is one of a

group of heuristic approaches that are known as meta-heuristics which are

essentially heuristic strategies that are used to guide other heuristics to explore

the solution space of a problem. TS was first introduced by Glover in 1989

(Glover. 1989) where he presents the fundamental principles that form the

basis of the approach. This was followed by a second paper, (Glover. 1990) ,

that presents refinements and some more sophisticated aspects of the method.

In the first paper a basic TS algorithm is proposed termed Simple Tabu Search

which can be used to guide a local search heuristic beyond locally optimal

solutions where the local search procedure would normally cease, in order to

search for alternative local optima. This is achieved by allowing the search to

execute moves to non-improving solutions whilst maintaining a record of

changes in solution attributes that have occurred during the previous t

moves. Forbidding the reversal of the changes in solution attributes recorded

during the previous t moves renders such solutions tabu. In its simplest form

such a record is just a list T, of size t, where each entry in the list identifies

the changes in attributes that have occurred during the previous t moves.

Clearly a list that is allowed to grow up to size t = +00 will ensure that each

new solution visited will never be revisited however this can prove very costly

in terms of computational time and effort particularly as problems become

large and complex. Empirical evidence has shown that small values of t can

be quite effective in controlling the search by preventing a return to those

solutions visited during the previous t moves with a constant amount of effort

required at all stages of the search process with regard to checking whether a

solution is in the list T. The flowchart in figure 4.2.1 depicts the simple tabu

68

search algorithm that can be used as a basis for development of a more

sophisticated TS algorithm.

The description of Simple Tabu Search highlights the need for certain

basic ingredients to incorporate into most TS formulations

a) A suitable initial starting solution.

b) A relevant neighbourhood structure.

c) A suitable Tabu list.

d) A suitable evaluation function.

e) Some form of stopping criteria.

All of the above are largely problem dependent although Glover does give

some guidelines relating to the form of the evaluation function 'OPTIMUM'

indicating that this may take on an 'aggressive orientation' in contrast to other

methods that use a less aggressive approach based on the premise that this

gives a better chance of reaching a local optimum that is also global. A

discussion of the size and structure of the tabu list is also given along with an

example of how this might be achieved.

In the remainder of Part I Glover goes on to outline some more advanced

aspects of the strategy that can be incorporated into the algorithm in order to

produce more powerful and sophisticated applications.

The first of these aspects is the use of some form of aspiration criteria that

define the circumstances under which tabu status may be overridden, such as

allowing a move to be admissible if it leads to a solution that improves the

best solution found so far, or in circumstances where all neighbouring

solutions to the current solution are rendered tabu then the oldest tabu

restriction may be lifted in order that the search may continue. Glover goes

into some detail about how aspiration criteria may be defined but the key idea

here appears to be that tabu restriction and aspiration criteria have a dual role

to play in an effective implementation afTS.

69

Figure 4.2.1 Simple Tabu Search algorithm

Generate initial solution x. Let the best solution x* = X Set

iteration CQunter k = 0 .set tabu list T = 13

Update tabu list

N

Generate the non-tabu

neighbourhood of X

Select the best neighbour x'

Exit

y

Two other key strategies that may be included in a TS approach are those

of strategic oscillation and medium-term and long-term memory structures.

Strategic oscillation can be useful in certain circumstances where it may be

advantageous to allow the search to cross the feasible boundary and allow the

search to access a feasible solution via a path that would not otherwise be

available. Some control is required however to ensure that the search does not

travel too far into the infeasible space and that it does not travel too far in the

opposite direction either, hence the term oscillation. This is a particularly

70

relevant consideration for this research since some harder GAPs are very

tightly constrained and thus may have very small feasible regions and in fact

some problem instances may have no feasible region at all. This technique has

been incorporated into a TS strategy for solving GAP by Diaz and Femandez

(Diaz and Fernandez 2001) with some success.

The use of medium and long-term memory structures are also introduced

as a means of intensifying or diversifying the search at certain stages of the

process. Tabu search utilizes these types of memory as a means of identifying

regions of the solution space that deserve more thorough consideration and

also to move the search to previously unexamined regions. In contrast to

heuristic methods that use randomization in order to restart the search at

different points, TS seeks to use information gathered during the search in

order to make more informed decisions as to which regions of the solution

space should be searched.

The final concept presented in this first part is the use of a probabilistic

approach within the TS framework, see (Lokketangen and Glover 1996). This

initially appears to be in contrast with the deterministic approach of TS since

inclusion of a probabilistic strategy introduces an element of randomization to

the search, whereas the principles of TS are those of an intelligent search

procedure basing decisions regarding the selection of moves on information

collected by the search process as opposed to making decisions for executing

a move according to some probability. Glover points out however that there

are gains to be made in terms of efficiency by a reduction in record keeping

and evaluation operations, whilst also losing some of its efficiency due to

possible repetition and duplication that would not be present in the more

systematic approach.

The incorporation of some or all of these more advanced aspects in

various forms provide considerable scope for the development of different TS

strategies that can be tailored to suit the required approach for different

71

- - - - - - - -------------------

problem types. Many new applications of TS have been successfully

constructed and tested during the last 17 years as a result of the concepts and

ideas presented in Part I and thus this work is considered extremely important

since it provides a broad foundation for other researchers to develop more

efficient solution methods for many different types of problems.

Of prime importance to the efficiency of a TS approach is the way in

which the tabu lists are managed. In Part I Glover describes the structure of a

static tabu list that is fixed in size and contains the reversal of those moves

executed in the previous t iterations, where t is the size of the tabu list. In Part

11 the concept of dynamic tabu lists are introduced and a detailed explanation

of two types of dynamic tabu list are given. One such approach is the Reverse

Elimination Method (REM) also described in (Glover and Laguna 1997) and

(Dammeyer, F. and Voss, S. 1993). Both of these strategies involve the

construction of a new tabu list at each iteration by identifying sequences of

moves that would result in a return to a previously visited solution. Whilst this

approach can be advantageous in terms of preventing a return to a previously

visited solution it has to be realised that there will be an increase in the

amount of computational effort required to manage this type of list as the

search progresses. As such there is some scope for researchers in discovering

ways to reduce this computational effort whilst maintaining the advantage

given to the search by the use of these types of dynamic tabu lists.

Glover goes on to discuss the application of dynamic tabu strategies to

search processes that can be viewed in terms of stages or levels. The

suggested strategy is that of marrying tabu lists to different stages and in the

case where the stages, or levels, can be viewed as a hierarchy such as a branch

and bound tree, then it is appropriate to allow the list to grow as the search

progresses to deeper levels of the tree, and to purge the list associated with

deeper levels as the search backtracks towards the root node of the tree.

Glover concludes that this may be a highly desirable procedure, whether this

72

is actually achievable in terms of implementation, and if so whether the

benefits of doing so confirm what Glover is suggesting remain to be proven.

The remainder of this chapter now describes the local search procedure and

how the use of memory can be used to strategically guide a local search

heuristic through the problem solution space in order to discover good locally

optimal solutions.

4.2.1 Local Search

Local search heuristics can be used to search the solution space of a

problem by executing a sequence of moves from one solution to the next

where the next solution is in the neighbourhood of the current solution. In

order for the search to begin an initial solution must first be generated and

methods for doing this are numerous but some commonly used approaches

include random generation where values are allocated randomly to decision

variables, and heuristically where values are allocated to decision variables

according to a set of rules that may take into account the structure of the

problem. The neighbourhood of this initial solution must then be defined

along with a set of rules specifying how the defined neighbourhood will be

searched. During the search ofthe neighbourhood an evaluation must be made

with regard to the benefit of moving from the current solution to the

neighbouring solution such as the change in objective function obtained by

implementing such a move. The goal in searching the neighbourhood is to

find a solution that is better than the current solution. A straightforward

evaluation can be achieved by comparing the objective function value of the

current solution x, c(x) , with the objective function value of the

neighbouring solution x', c(x') . If the aim is to minimize the objective

function then clearly if c(x') < c(x) then a move from x to x' will be an

improving move. Figure 4.2.2 represents a simple local search procedure

where the objective is one of minimization. The solution output from this

local search is clearly locally optimal with regard to its neighbourhood,

however it may not be globally optimal in tenns of the original problem. A

73

key consideration is the approach taken to searching the neighbourhood to

find improving solutions. Clearly one could evaluate every solution in the

neighbourhood and execute a move to the solution that yields the greatest

improvement, assuming that the current solution is not a local optimum with

regard to the current neighbourhood. Complete evaluation of the

neighbourhood may not always be practical in terms of the amount of

computational effort required for such an evaluation at each iteration of the

search. This may occur where the size of the neighbourhood is extremely

large or where generation and evaluation of each neighbour requires

considerable effort. Tabu search incorporates several strategies for more

efficient ways of searching the neighbourhoods and these are described in

4.2.3.5.

Figure 4.2.2 Local search algorithm.

Generate initial solution x

Generate neighbourhood
N(x)ofx

Select a solution
x'fromN(x)

N

N
c(x') < c(x) >----.1

y

Stop

74

N(x) = 0

Remove x'

from N(x)

y

4.2.2 The use of memory

Introducing the use of memory into a local search procedure, as in a tabu

search setting, brings several benefits in terms of exploring the solution space

more fully. On reaching a local optimum, the simple local search described in

the previous section must cease as there are no improving moves available.

Allowing the search to accept non-improving moves will overcome this

situation and allow the search to continue. In certain circumstances this may

result in the search simply reversing the sequence of improving moves that

facilitated its arrival at the local optimum. On its return to the solution from

which the sequence of improving moves began, depending on how improving

moves are selected from the neighbourhood, the search may simply descend

once again to the same local optimum from which it began its ascent. Such

behaviour is known as cycling. Cycling can be overcome by the introduction

of a short-term or recency based memory that forbids a return to the t most

recently visited solutions. There are several alternative approaches for

implementing a short-term memory aspect and these are further discussed in

sub-section 4.2.2.1.

Whilst short-term memory seeks to prevent the search from becoming

trapped at a local optimum and allows the search to continue past this point,

two important strategic aspects of TS are those of Intensification and

Diversification. Both of these longer-term strategies can often be achieved

with the aid of frequency based memory in order to identify solution attributes

or collections of solution attributes that may indicate regions of the solution

space that seem promising with regard to providing good solutions and also to

guide the solution towards previously unexplored areas of the solution space.

4.2.2.1 Recency based memory

A standard approach to implementing a recency based short term memory

would usually be to maintain one or more Tabu lists that record information

about the solutions visited during the previous t iterations of the search. Each

75

entry on such a list might be a vector that represents the solution explicitly or,

for reasons of practicality and to reduce computational effort, might simply

identify those attributes that have changed in order to transform one solution

into the next solution. Maintaining a simple static list of size t is guaranteed

to prevent the occurrence of cycles up to size t. Clearly if cycles of size

greater than t are detected then action is required in order to break such a

cycle and guide the search towards some alternative path. The list size t is a

parameter of the algorithm and will usually require experimentation in order

to identify values, or ranges of values that are effective. Empirical evidence

has shown however that quite small values of t can be quite effective for a

variety of problems. The tabu list is updated at each iteration of the search by

simply replacing the oldest member of the list with the newest, or attribute

information ofthe newest solution.

An alternative, and computationally efficient method of maintaining a

short-term recency based memory, can be achieved using a tabu structure

whose elements represent solution attributes of the problem. The value of each

element then defines whether each attribute is tabu at a given iteration of the

search. Those attributes that are involved in a move from one solution to the

next at iteration k will have their tabu status recorded by setting the

corresponding elements in the tabu structure to a value of k + t . At iteration

k + 1 any attribute having a tabu status of greater than or equal to k + 1 is

forbidden from being included in a move at the current iteration. Once again

the value of t can be fixed or alternatively can be allowed to vary dynamically

within some pre-defined range. The dynamic approach may allow t to be

selected randomly within the given range at each iteration or may be

deliberately increased or decreased during the search according to the recent

history of the search.

4.2.2.2 Frequency based memory

Longer term strategies in TS tend to incorporate some form of frequency

76

based approach. Counting the frequency with which solution attributes are

included in a solution is commonly known as residence frequency whilst

counting the number of times that a solution attribute changes during the

search is usually known as transition frequency. Residence frequencies can be

useful in identifying attributes or collections of attributes that consistently

appear in a number of good quality solutions or indeed poor quality solutions.

Such information can be useful as a means of focusing the search temporarily

on regions of the solution space that contain solutions with attributes that have

high residence frequencies when considering good quality solutions and low

residence frequencies when considering poor quality solutions. Diversification

strategies can also take advantage of residence frequencies for example by

forcing the inclusion into the solution of a small number of attributes that have

rarely or never been included in solutions that have previously been visited. In

the GAP context this could mean the inclusion or exclusion of assignments of

jobs to agents.

It can sometimes be beneficial to count how many times certain solution

attributes change as this can help to identify parts of solutions which are less

important in relation to how they can affect the quality of the solution. In

other words it might be more productive to focus on assigning values to

variables based on high residence values and allowing those attributes with

high transition values to be dealt with subsequently. How the frequency

memory is implemented and what information is collected in terms of

frequencies however depends on the strategic approach to searching the

solution space and the following section 4.2.3 now considers some of these

aspects and how they can be incorporated into a TS algorithm

4.2.3 Strategic aspects

Strategically TS incorporates a number of principles that can be combined

in order to guide a local search heuristic to find high quality solutions to a

77

variety of difficult problems. This section outlines some of the more widely

used aspects and refers the reader to (Glover and Laguna 1997) for a more

detailed description of these and other TS strategies.

4.2.3.1 Searching the neighbourhood

It is important to define a set of rules that determine how the

neighbourhood of the current solution will be examined at each iteration of the

search as this can impact both on the quality of the best solution found and

also on the amount of computational effort required to execute each iteration.

Two commonly used approaches for examining the neighbourhood are to (a)

accept the best admissible solution or (b) accept the first admissible solution.

In order to apply strategy (b) then it is first necessary to order the solution

attributes in some way that they become candidates to be changed as part of a

move to the next solution. Having ordered the attributes they should then be

examined in order by evaluating the moves associated with them until an

admissible move is found. For example a move may be admissible if it

exceeds an amount of improvement in objective function or some other

threshold that is relevant. When an admissible solution has been found

however the search of the neighbourhood ceases and the solution is accepted

as the next solution. Applying strategy (a) however does not require any

ordering of the attributes of the current solution since in order to find the best

admissible solution then it is usually necessary to search the entire

neighbourhood.

4.2.3.2 Intensification

The purpose of an intensification strategy in a TS approach is to identify

regions of the solution space that appear attractive by some criteria and thus to

implement a more thorough search of search areas. Such strategies are usually

based on some form of historical data that is collected and stored during the

search process. One way of doing this would be to maintain a frequency based

memory as discussed in section 4.2.2.2 and then to fix or constrain a large

78

subset of the problem variables based on information which indicates that

certain variables take on certain values or ranges of values with a relatively

high frequency and allow the search to continue under these conditions for a

short period of time.

An alternative method to that of focusing the search on sub-regions that

contain a large number of attributes found in good solutions could be to

maintain a list of elite solutions and to systematically or periodically initiate

an intensification phase of the search beginning from one of the elite solutions

and at the same time clearing the short-term memory. An elite solution list

would typically contain the e best solutions found during the search process

but will require updating as solutions are used for each intensification phase.

Consideration must also be given to criteria other than the evaluation function

when assessing the suitability of a solution to be added to the elite list, for

example if a solution is close by some measure to a solution already in the list

then its inclusion may simply result in a duplication of effort at a subsequent

intensification phase. One way to achieve this may be to establish a threshold

in respect of distance from each solution already in the list and to only add a

solution if it exceeds such a threshold, alternatively it may be acceptable to

penalize the evaluation of a potential elite solution according to how close it is

to those solutions already in the list and then add it to the list if the penalized

evaluation is acceptable.

A lesser used strategy is that of recording information about the unvisited

neighbours of previously visited solutions and selecting such high quality

solutions as a means of initiating a return to regions of the solution space that

have been visited previously but starting from a different solution in this

region.

4.2.3.3 Diversification

Diversification strategies are important in the TS approach as they use

79

historical information as a means of forcing the search into sub regions of the

solution space that have previously not been explored. This may be as a means

of breaking a cycle that has trapped the search process and cannot be

overcome by means of the short term memory in operation, or to overcome

barriers or peaks in the solution landscape that cannot otherwise be traversed

during the normal search process. Diversification can often be achieved by

modification of the rules for selecting solution attributes to be changed that

would otherwise not be selected under normal circumstances. A common

approach is to employ some form of trigger that instigates a diversification

move or series of moves such as the number of iterations performed without

improving the best known solution. In such a situation a frequency memory

can then be consulted to identify attributes that have never or seldom been

included in the solution. A move or series of moves can subsequently be

implemented that encourage, or in some cases force one or more of the rarely

seen attributes to be included and possibly remain in the solution for some

period of time. Conversely, a similar approach can be employed in order to

exclude attributes that have high residence frequencies thus encouraging the

search to incorporate solutions that have possibly not been seen before. The

normal search procedure resumes from the solution identified by the

diversification phase, which may be of poor quality in terms of evaluation but

may provide access to a path that can lead to a local optimum that improves

the best know solution. It may be the case that such a solution may never have

been accessible without such modification.

4.2.3.4 Strategic Oscillation

The strategy of controlling the search so that its movement can be viewed

as a form of oscillatory pattern about some form of boundary can be useful as

a means of approaching such a boundary from a number of different

directions. If, for example, the boundary is deemed to be the boundary of the

feasible region where, under normal circumstances the search would stop or

turn and retreat away from the boundary, then there may be an advantage to

80

be had by allowing the search to cross the boundary and move into the

infeasible region for a period of time as an approach back towards the

boundary from a different direction may allow access to solutions on or near

the boundary that could not otherwise have been reached if the search were

restricted only to the feasible region. A key component of the strategy is that

of controlling the oscillation so that it moves away from the boundary

sufficiently to allow the approach back towards it to be different from

previous approaches, whilst at the same time restricting the movement away

from the boundary so as to prevent subsequent approaches from bypassing

good solutions that are close to the boundary. This is commonly achieved by

modifying the evaluation function dependent upon which side of the boundary

the search is, and which direction it is moving relative to the boundary. An

example of such a strategy is used by Diaz and Femandez (Diaz and E.

Femandez. 200 I) who use an evaluation function that includes a weighted

penalty for infeasibility which is systematically increased and decreased

according to which side of the boundary the search has occupied in the

previous iterations.

4.2.3.5 Candidate Lists

Candidate list strategies attempt to reduce the amount of effort involved in

identifying good solutions in the neighbourhood of the current solution,

particularly where such neighbourhoods tend to be very large, very complex

in terms of evaluation, or both. The Aspiration Plus candidate list approach as

used by Budenbender (Budenbender, et al. 2000) defines a threshold for the

quality of a move prior to beginning the neighbourhood scan. The

neighbourhood is then examined until the first move that exceeds the

threshold is found, at which point a counter is initialized and the number of

moves examined subsequently is restricted to plus and the best move found is

chosen to be applied in order to continue the search. Additionally the scan can

be forced to examine at least a minimum number of moves and at most a

maximum number of moves. In this situation if the threshold is reached by a

81

-- -----------------

move prior to the minimum number of moves having been examined then the

counter does not initialize until the minimum value is reached. Also if the

maximum value is reached prior to plus moves having been examined then the

maximum value overrides the value of plus.

An alternative candidate list strategy is known as the Elite Candidate List

strategy. In this approach a large number of neighbouring moves, or possibly

even the entire neighbourhood, are examined and the best k moves are

recorded. In the subsequent iterations the best move from the list of elite

candidates is chosen to be executed as opposed to scanning the neighbourhood

at each iteration. Since the quality of a move included in the candidate list

may change at each iteration a threshold is established so that when the best

move on the list falls below this threshold the list is reconstructed using the

neighbourhood ofthe current solution.

A more detailed discussion of these and other candidate list strategies such

as the Successive Filter Strategy and Sequential Fan Candidate Lists can be

found in (Glover and Laguna 1997).

4.3 Summary

Th is chapter has attempted to provide the reader with an overview ofthe

two contrasting approaches of Branch and Bound and Tabu Search. The vast

and wide ranging literature for both of these approaches includes numerous

variations and implementations of both methods being applied to a variety of

difficult real-world problems. Many such methods have been tailored to be

problem specific and as such some highly sophisticated and novel approaches

have evolved. The basic components of each approach as briefly described in

this outline of the two methods form the basis for many of the more

sophisticated algorithms that have been constructed and the following chapter

describes the hybrid approach developed as part of this research.

82

5 Hybrid Tabu Search I Branch and Bound

Recently researchers have attempted to combine aspects of both exact and

heuristic approaches in order to construct more powerful solution methods for

solving hard combinatorial optimisation problems. A survey and classification

of such approaches is given in (Puchinger and Raidl 2005) where the authors

classify such approaches into Integrative and Collaborative methods. The

hybrid approach described subsequently falls into the integrative category and

uses a Tabu Search metaheuristic as a master strategy and the branch and

bound solver Xpress-MP as a sub-strategy for solving restricted instances of

the original problem. The approach of restricting a large number of problem

variables and using an exact method to solve the resulting sub-problem is

suggested by Glover and Laguna in (Glover and Laguna 1997) and is termed

Referent Domain Optimisation . An application of such an approach is given

in (Budenbender, et al. 2000). Fischetti and Lodi (Fischetti and A. Lodi.

2003) and (Danna, et al. 2005) propose solution methods for general Mixed

Integer Programming (MIP) problems also based on this approach and these

two methods are further discussed and outlined in sections 5.2 and 5.3

respectively due to their relevance to this research, in terms of their strategic

approach to generating neighbourhoods defined by smaller sub-problems of

the ori ginal.

5.1 Referent Domain Optimization

Referent domain optimisation is referred to in Glover and Laguna

(Glover and Laguna 1997) as being a process of using optimisation methods

together with heuristic processes to generate trial solutions which can then be

optimised to generate a new solution and the process repeated. Several

examples of how this can be achieved are given.

The strategy being developed as part of this research is in keeping with an

observation made by Glover and Laguna in (Glover and Laguna 1997) which

83

is based on the fact that a problem with a small number of zero-one variables

can typically be solved quite quickly using a branch and bound solver such as

Xpress-MP. The idea therefore is to fix a large number of the problem

variables to produce a restricted integer problem and then to call the branch

and bound solver to assign values to the relatively small number of remaining

free variables. In relation to GAP advantage can be gained from the fact that

solving the LP relaxation of an instance of GAP will yield a solution

containing a large number (at least n-m) of assignments of jobs to agents. It

is not unreasonable to suggest that such assignments could be considered

attractive in terms of generating a complete integer solution and so the

approach of fixing the values of the relevant variables in order to generate a

restricted integer problem seems sensible. The remaining unassigned jobs can

then be considered by the branch and bound solver in an attempt to produce a

complete solution. As a result of optimising the restricted problem a feasible

integer solution mayor may not have been found and it is then necessary to

continue the search by generating a new collection of assignments that are

different to the previous collection in order to continue the process. The use of

Tabu memory structures is required in order to guide the process with regard

to the generation of sets of assignments that can be fixed in order to provide

restricted regions that can quickly be searched by the branch and bound

solver, along with longer term strategies to provide information for

intensification and diversification strategies.

A key question here is that of deciding which of the problem variables

should be fixed and which should be left to be dealt with by the exact solution

method. The Local Branching method subsequently described in section 5.2

uses what is termed a soft fixing approach.

5.2 Local Branching

The approach of defining solution neighbourhoods to be the feasible

region of a sub-problem of the original problem is described by Fischetti and

84

Lodi in (Fischetti and A. Lodi. 2003). Having first generated an initial

solution to the problem (the incumbent solution) their approach constructs a

branching tree where each node of the tree represents a sub-problem that is

constrained to be within a certain distance of the current incumbent solution.

Given an incumbent solution x whose elements are constrained to take on

binary values then the distance Ll(x,x') where x' is an alternative feasible

solution to the problem, can be measured as

L(l-X'j)+ LX'j (5.1)
jeSI jeSo

where S. = {j: Xj = O} and S, = {j: Xj = J}. Furthermore if IS.I and IS.I for

all feasible solutions to a problem are constant then the distance between two

solutions can be considered to be Ll'(x,x') where

6.'(x,x') = L(1-xj) (5.2)
s,

or alternatively

S(x,x') = LXj (5.3)
s,

A neighbourhood of the current incumbent solution x can therefore be

considered to be those solutions that are within a distance k of x and

therefore branching from the current node of the tree can be achieved by

applying inequality constraints using either equations 5.2. or 5.3 as shown in

figure 5.2.1.

Figure 5.2.1Local branching node separation.

L(1-X)~k+l
j ESl

2

85

- --------------------------------------

In this situation the neighbourhood of the incumbent solution defined by

node 2 is explored first using a branch and bound solver. A time limit is

applied for searching the neighbourhood and the search ceases either when a

new incumbent solution has been found or the time limit has been reached

without improvement of the incumbent solution. If the time limit is reached

without discovering a new incumbent solution then the search backtracks to

node I and reduces the size of the neighbourhood k to k 1 2 and nodes 2 and

3 are regenerated for the new value of k 12. If a new incumbent solution is

found within the time limit then the search backtracks to node I and the new

incumbent solution is used to identify a new neighbourhood to be explored

and nodes 2 and 3 are regenerated. Local Branching also incorporates a

diversification aspect that is triggered whenever no improved solution can be

found at the current node. In such a situation the search is widened by

increasing the size of the neighbourhood by say k 1 2, if no improved solution

can be found in the enlarged neighbourhood then a second diversification step

is invoked which accepts the first solution found in the neighbourhood after

removing the bound restriction to the problem.

The approach being used in this local branching method is consistent with

referent domain optimization in that the objective is to fix a large number of

variables in order to define a much smaller sub-problem that can then more

easily be solved using an exact method (in this case Branch and Bound) .

Local Branching however defines the proportion of problem variables in the

incumbent solution that are to be fixed when moving from one solution to the

next, and so is less restrictive since any of the variables may change value.

This is in contrast to the approaches of sections 5.3 and 5.4 which specify the

variables that must be fixed to the same values in both the current and the new

solution which is more in keeping with the referent domain optimization

approach. An important consideration common to all of these approaches is

the size of the neighbourhood k as explicitly fixing say 90% of the problem

variables to take specific values results in a sub-problem requiring less

86

computational time and effort to solve than one generated by the local

branching approach which only specifies that 90% of the problem variables

should be fixed but does not specify which ones.

5.3 Relaxation Induced Neighbourhood Search (RINS)

As has already been suggested in section 5.1 the difficulty in constructing

sub-problems obtained from fixing a large number of problem variables is

deciding which problem variables should be fixed, and which should be left to

the exact solver to take care of. In a heuristic approach the attractiveness of

fixing certain variables to certain values can be assessed by considering the

objective function coefficients or constraint coefficients or sometimes a

combination of both. In addition Tabu Search can also make use of longer

term frequency memories in order to identify values, or indeed ranges of

values, taken by certain variables in high quality solutions. Exact methods

such as branch and bound also use evaluation techniques such as assessing

reduced costs in order to decide which sub-regions should be subsequently

explored as defined by the branches that restrict the values of certain problem

variables.

The Relaxation Induced Neighbourhood Search (RINS) approach, as

proposed by Danna et al in (Danna, et al. 2005), takes advantage of

information supplied by two high quality solutions available at various nodes

of the branch and bound tree. Both solutions are available at any feasible node

of the tree. The first of these is the current incumbent solution (the best

feasible solution found during the search up to the current point) and the

second is the relaxed solution obtained when solving a particular node. Since

both solutions can be considered to be attractive in some respect, in terms of

objective function value with regard to the relaxed solution, and in terms of

feasibility with regard to the incumbent solution, it seems fairly logical to

isolate solution attributes that are common to both solutions and to treat them

as being highly attractive when attempting to construct a new improved best

87

solution. The RINS algorithm was designed to be a general mixed integer

problem (MIP) solver and as such does not take into account the underlying

structure of the problem being solved. It simply attempts to construct new

improved solutions to the problem by formulating and searching

neighbourhoods, by means of generating sub-problems, where the

neighbourhoods derived are common to both solutions available at the node of

the tree under consideration.

The RINS method proceeds by searching the branch and bound tree of the

problem using a commercial solver (in this case CPLEX) but pauses at certain

intervals where the size, f, of each interval is quite large and is measured by

the number of nodes processed. This interval is set to be quite large due to the

fact that neighbourhoods generated by nodes that are close together tend to be

quite similar resulting in considerable amounts of duplicated effort. Assuming

that the node at which the search pauses is a feasible node, and that an

incumbent feasible solution is available, a sub-problem is defined by fixing

those variables having the same values in both the incumbent and relaxed

solutions, and then allocating values to the remaining variables according to

the solution ofthe sub-problem. Generating and solving these sub-problems is

purely an attempt to improve on the incumbent solution and in practice such

sub-problems have the potential to be quite large and thus require extensive

computational effort. The amount of time spent exploring the sub-problem is

therefore tactically truncated by the imposition of a node limit. If the solution

attempt yields a solution with better objective function value than the current

incumbent then the incumbent solution is updated, as are the bounds for the

original problem and the main branch and bound search continues. Despite the

use of large intervals between generations of sub-problems there still exists

the potential to generate neighbourhoods that can be quite similar and

searching them may require a certain amount of duplicated effort. This is

accepted without any attempts to eliminate such duplicated effort. By contrast

in the TSBB approach subsequently described in the following section 5.4, the

88

use of memory does assist attempts to reduce some of the computational effort

that may be involved when searching neighbourhoods that may be similar to

others that have already been searched.

Section 5.4 now describes the new algorithm, TSBB, which has been

developed as part of this research. As with the approaches already described

in this chapter, TSBB incorporates a variable fixing approach in order to

generate sub-problems that represent neighbourhoods of solutions that can be

searched using the exact branch and bound method incorporated within the

Xpress-MP solver. A Tabu Search strategy is employed, incorporating both

short-term and longer-term memory structures that guide the search in terms

of generating neighbourhoods that are different to neighbourhoods that have

been previously generated during the search process. A detailed description is

now given.

5.4 The Hybrid TSBB Algorithm

The motivation behind the development of the hybrid approach for solving

GAP has been provided by the successful implementations of both Branch and

Bound and Tabu Search (see Chapter 3) for solving GAP. The review of the

literature of solution approaches for solving GAP has provided two key

insights into the development of the hybrid algorithm. The first of these is that

Branch and Bound is quite effective at solving small to medium sized

instances ofthe problem, however this effectiveness deteriorates quite quickly

in relation to larger, and more difficult instances. The second is that TS

approaches have outperformed most alternative heuristic approaches in terms

of solution quality when compared with the results of these alternative

approaches on a set of benchmark test problems. This is particularly true in

the case of the larger, more difficult problems. Also evident from the literature

is that the approach of relaxing problem constraints for GAP can be extremely

advantageous when constructing heuristic algorithms although most

approaches tend to focus on relaxation of the capacity constraints or the

89

assignment constraints. The TSBB algorithm also takes advantage of a

relaxation of GAP, but in contrast to most of the alternative relaxation

approaches relaxes the binary constraints and also takes advantage of the fact

that the resulting LP relaxation can typically be easily solved using a

commercial software package (in this case Xpress-MP). Quite importantly the

resulting relaxed solution to the problem contains a relatively large number of

variables whose values are binary and thus feasible in relation to the original

integer problem. In light of these observations it seems intuitive to consider a

referent domain optimization approach since the infeasible portion of the

problem, identified from the relaxed solution, can typically be more easily

solved as a smaller sub-problem using the exact branch and bound method.

The resulting partial solution can subsequently be combined with the integer

feasible section of the relaxation to produce a complete integer feasible

solution.

The TSBB algorithm proceeds by first applying the Xpress-MP branch and

bound solver to an instance of GAP, as defined in chapter 2.2, until the first

integer feasible solution is found. The resulting solution is then used to

initialize x *, the best solution found during the search, x the current and

initial solution, and the corresponding objective function values z * and z

respectively. If the branch and bound search completes without finding an

integer solution then clearly the problem is infeasible and the search ceases at

this point. The benchmark test problems used during the computational testing

of TSBB did not pose any significant difficulty for the Xpress software with

regard to finding integer feasible solutions very early in the search. These

initial solutions were typically of poor quality but provided suitable starting

solutions for TSBB. It may be possible to generate problem instances that

pose a more difficult test in terms of generating initial solutions and an

alternative method for generating initial solutions may be required. Although

TSBB does require an integer solution to begin the search this does not

necessarily have to be feasible and so initial solutions could either be

90

- - -- - - -- ---- ---------------------

generated randomly or by alternative means if necessary. The algorithm

proceeds by iteratively performing a short-term search phase, followed by an

intensification phase. If a new improved solution is found during the

intensification phase then this solution is used as the starting point for the next

short term phase. If the intensification phase fails to find an improving

solution then the next short-term phase begins from a solution found as a

result of implementing a diversification phase. The short-term search phase is

described in detail in section 5.4.3 and is itself iterative in that it moves

through the feasible solution space from the current solution x to a

neighbouring solution x'. A move from x to x' is achieved by re-allocating

one or more assignments in x in order to transform it into x'. The

neighbourhoods that are used in order to identify those assignments that are to

be re-allocated in order to obtain the new solution are termed Drop/Add

neighbourhoods and, as the name suggests, have two components that can be

thought of as sub-neighbourhoods. The transformation from x to x' is a two­

stage process that first considers the drop neighbourhood whilst the second

stage considers only those assignments that have been dropped and attempts

to reallocate the unassigned jobs in order to produce x'. This approach is

somewhat different to the more traditional approach of using shift or swap

neighbourhoods as described in the following section along with a detailed

description of the Drop/Add neighbourhood. Information gathered from

integer feasible solutions identified during this short-term phase of the search

is subsequently used in order to identify a promising sub-region of the

solution space that can be searched in order to try to improve the current best

solution, where the sub-region is constructed according to frequency

information collected from the integer solutions found during the short-term

phase. The sole purpose of the intensification phase is to search for solutions

that are better than the best solution found up to this point during the search

and in this respect follows the branch and bound convention in that a cut-off

value is set at the beginning of each intensification phase according to the

objective function of the current best solution found. If a feasible solution is

91

found during this phase then it follows that this must be better than any

previous solution found and so x * and z * are updated accordingly, and the

new solution is also added to the frequency memory. The diversification phase

is implemented as a means to move the search away from the regions of the

solution space explored during the preceding short-term and intensification

phases. This is carried out in order to identify new and, as yet, unexplored

regions that may contain solutions which improve the best solution found

during the search to this point. The new solution, if one is found during this

diversification, is then utilized to initiate the next short-term phase of the

search. If no new solution is found as a result of the diversification phase then

the next short-tern phase of the search simply resumes from the last solution

found during the previous short-term phase. The stopping condition for the

algorithm is simply a time limit that is set dependent upon problem size,

details of which are given in chapter 6. The flowchart in figure 5.4.1 depicts

the TSBB algorithm.

92

Figure 5.4.1 Flowchart of the TSBB algorithm.

Gen initial solution x and obj val z

* • Setx =xandz ~z

y

Update N

x· ,x,z· ,z andTL

y

Update x, z and TL

N N

Stop

update x * and z *

93

5.4.1 Solution Neighbourhoods

Two commonly used local search neighbourhoods for GAP are the Shift

neighbourhood and the Swap neighbourhood. More recently however more

complex neighbourhoods have been used such as Double Shift and Ejection

Chains. Both the Shift and Swap neighbourhoods, and indeed the Double Shift

neighbourhood, can be considered to be Drop/Add neighbourhoods since they

all result in the deletion of at least one assignment and replace the deleted

assignments by adding new ones. The Drop/Add neighbourhood used by

TSBB however is more in keeping with the ejection chain approach in that it

allows for more than two jobs to be reassigned during a move from one

solution to the next and therefore these neighbourhoods can be considerably

larger and consequently may require considerable effort to search. In order to

combat excessive amounts of computational effort being applied to the search

of a neighbourhood it is common practice to apply some form of stopping

criterion that cuts short the scan of the neighbourhood and indeed TSBB

follows this convention as described in more detail in subsequent sections.

Shift Neighbourhood

A solution to GAP consists of a set of assignments of jobs to agents such

that each job is uniquely assigned to one agent. A shift neighbourhood

consists of those moves that can be made by reassigning a job j from its

current agent i to a different agent i' as in figure 5.4.2.

Figure 5.4.2 Shift neighbourhood.

Job

--

Agents

\\
o

-------------{!Jj

94

A feasible shift move for a job j can be obtained simply by comparing

the available capacity of each agent s," Vi' E J where i' oF i, with the amount

of resource that would be consumed if job j were to be performed by agent

i', a,;. Clearly if a,; :s; s,- then job j can be feasibly reassigned from agent i

to agent i'. Infeasible shift moves can also be included in a shift

neighbourhood in a process that allows infeasible moves to be made, and are

usually evaluated by means of a penalty applied to such a move based on

a,) - 8" when agent i' does not have enough available resource to perform

job j.

Swap Neighbourhood

Consider the two assignments (i,j) and (i',}'). A swap neighbourhood

consists of those moves that can be made by reassigning job j from agent i

to i' and also reassigning job }' from agent i' to i as shown in figure 5.4.3.

Figure 5.4.3 Swap neighbourhood.

Jobs Agents

o /
./

./

Double-Shift Neighbourhood

This neighbourhood was used by Tai-Hsi et al. (Tai-Hsi Wu., et al. 2004)

95

and consists of moves that shift a job j from an agent i to an agent i' and

then also shift a job j' from agent i' to any other agent i" as shown in figure

5.4.4.

Figure 5.4.4 Double-shift neighbourhood.

Job Agent

~"" \
""""'" -----0 \

[Z}--------------><:~:""',,0/:;l
i' i
. !
\. i

............ /

Both components of the swap moves and the double-shift moves are clearly

shift moves when treated in isolation however it is important to highlight that

in both cases the first shift move is dependent upon the second shift move.

Ejection Chain Neighbourhoods

Ejection chains are used to create complex, powerful moves and have been

utilised in by Yagiura et al.(Yagiura, et al. 2004), for instance an ejection

move firstly de-allocates an assignment (i, j) from a complete solution so that

job j is un-assigned and then the resultant incomplete solution is subjected to

a series of attempts to reassign some of the remaining assignments until

finally the job j that was initially ejected can be reassigned to another agent

to form a new trial solution as depicted in figure 5.4.5. The ejection chain

move for GAP can also be viewed as a series of shift moves of length I where

each shift component in the chain is dependent upon the previous shift

component. In fact the shift move can be considered to be an ejection chain

move of length I = 1 and the swap move and double-shift move can be

96

considered to be ejection chain moves oflength I = 2.

The following section 5.4.1.1 now gives a description of the Drop/Add

neighbourhood that has been derived for use in the TSBB algorithm. It is

important to note that this approach differs from the systematic approaches

described previously for de-allocating and re-allocating assignments since the

neighbourhoods are defined by feasible regions to both restricted linear

programming and integer programming formulations of the original problem.

Figure 5.4.5 Ejection chain neighbourhoods.

Jobs Agents Jobs Agents Jobs Agents

0-----0 D D D
0-----0 0-----0 .. D
0-----0 0-----0 0-----0

•
D ..

D

5.4.1.1 Drop/Add Neighbourhood

Given an integer feasible solution x to GAP, a move from x to x' can be

achieved by first dropping one or more assignments in x and then reassigning

97

those jobs that are unassigned as a result of the drop phase. In order to

generate x' at least one assignment in x' must be different from those

assignments in x. In order to make the move from x to x' TSBB first drops

one or more assignments from the set of assignments S x , defined by x, where

Sx ={(i,j):xij =l} to obtain the set of assignments Sy that should be

retained for inclusion in x'. As a means of deciding which assignments to

drop TSBB takes advantage of the fact that the optimal solution to the linear

programming relaxation of GAP will typically contain a relatively large

number of integer assignments in terms of the total number of jobs n, m

being the number of agents available to do the n jobs, in fact at least n - m

jobs will be uniquely assigned in the LP solution and as n is typically much

larger than m there will be relatively few assignments to be made in addition

to those contained in S y in order to obtain x'. The construction of S y is

achieved by solving an LP relaxation of GAP, GAPLR where

GAPLR= min

n

s.t ~>ljYij ~bi
j=l

j=l

':fiE!

':fjEJ

':f i E !, j E J

(5.4)

(5.5)

(5.6)

and so the drop neighbourhood can be defined by the feasible region of

GAPLR. Whilst this can be extremely large and contain many solutions it is

fairly straightforward, in most cases, to obtain an optimal solution to GAPLR

using the Xpress-MP solver and hence obtain a good set of assignments S y'

The optimal solution y to GAPLR can now be used to obtain

S y = {(i, j) : Y ij = I and (i, j) E Sx} and subsequently the set of assignments D

that have been dropped from is given by

98

D = W,): (i,) E Sx and (i,) !i! S,}. In order to ensure that at least one or

more assignments are dropped from S x and so IDI;::: 1, the following

constraint is added to each instance of GAPLR

(5.7) .

Each instance of GAPLR, is then further restricted by a tabu constraint which

prevents those assignments that were added during the move to x in the

previous iteration, from being dropped in the move to x' during the current

iteration as is subsequently discussed in section 5.4.2.

Having dropped one or more assignments from Sx in order to obtain S,

by means of solving a linear relaxation of GAP it is then necessary to add

assignments to S, in order to obtain SxOo The add neighbourhood can be

thought of as the feasible sub-region region of GAP that can be defined by

further constraining the original integer programming formulation for GAP to

include all assignments (i,) that are contained in S,. This leads to the

following restricted instance of GAP, RGAP where

m n

RGAP= min L~>ijXij
1=1 j=l

n

S.t LajjXIj ~ bl ViE! (5.8)
j=l

m

LXij =1 V)EJ (5.9)
;=1

Xij =0 or I ViE I,) E J (5.10)

LXij ;:::IS,I (5.11)
(i,j)e$y

A key aspect of this approach is due to the fact that typically the number

of assignments contained in S, will be large by comparison to n. The

99

implications ofthis with regard to solving RGAP are extremely advantageous

as constraint (5.11) is quite restrictive in terms of reducing the size of problem

to be solved by the branch and bound solver. In the implementation of the

TSBB algorithm constraint 5.11 is enforced by fixing the lower bound on

those variables representing assignments in S y to 1 . This approach of fixing

variables that are identical in both an integer feasible solution and a solution

to an LP relaxation is in keeping with the approach of Danna et al (Danna, et

al. 2005), as described in section 5.3, although their approach does not take

advantage of the structure of the problem and is only utilized at various

intervals during a branch and bound search . Constraint 5.11 also has

similarities with a local branching constraint as described by Fischetti and

Lodi (Fischetti and A. Lodi. 2003) and discussed in section 5.2. The

difference between constraint 5.11 and the local branching constraints

however is that constraint 5.11 specifies which problem variables must be

fixed, in contrast to the soft-fixing approach of Fischetti and Lodi (Fischetti

and A. Lodi. 2003) who specify only the proportion of problem variables to be

fixed and allow the branch and bound solver to determine which ones to fix.

Constraint 5.11 is therefore more restrictive as the size of the feasible region is

more focused. The optimal solution, assuming one exists, to RGAP is clearly

the best solution in the neighbourhood and so is defined to be the new solution

x'. This new solution x' has been obtained by first dropping those

assignments in D from S x to obtain S y and then allowing the Xpress-MP

branch and bound solver to add new assignments to Sy in order to obtain x'.

In the following section 5.4.2 the short-term phase of the search is

described in detail explaining how the use of short term memory is utilized in

conjunction with the Drop/Add neighbourhoods in order to generate feasible

integer solutions and direct the search through a region of the solution space

in the short-term.

100

5.4.2 Short-Term Phase

Tabu search employs adaptive memory structures in order to direct the

search in the short term when the search proceeds from one solution to

another solution in the neighbourhood and also in the longer term in order to

identify promising regions of the solution space that warrant a more thorough

search as well as a means of driving the search into new unexplored regions of

the solution space.

Short term or recency-based memory is used to record historical

information about changes in attributes that have taken place within the

previous t iterations of the local search and its purpose is to prevent a return

to a solution visited within this period and thus prevent the local search from

becoming trapped in a cycle. A short term memory structure would typically

take the form of a list containing those attributes that are forbidden from being

included in subsequent solutions. In the extreme case this list would be of

unlimited size where solution attributes are added to the list at each iteration,

however as this list grows there are implications in terms of running time

since the list has to be checked at each iteration. This problem can be

overcome by the use of fixed size tabu lists where, at each iteration, the most

recent tabu attributes are added to the list replacing the oldest tabu attributes.

The size of such a list is largely context dependent and takes into account

problem size and also the strength of the rule that identifies an attribute as

being tabu. The size of such a list is therefore an important parameter of the

method and requires some experimentation in order to identify a range of

suitable values. Having identified these values a suitable list size can be

determined, alternatively the size of the list can be varied dynamically as in

(Tai-Hsi Wu., et al. 2004).

There are two short term memory structures used in TSBB, the first

identifies those assignments that have been dropped as a result of solving

GAP LR which are those assignments contained in D. Each entry on this list

101

T add , of size ta' is a vector identifying the column indices of those variables

Xij where the assignment (i,j) is contained in D. The restricted problem

RGAP is constructed at each iteration by the addition of constraint 5.11 in

addition to a constraint corresponding to each entry on the list Tadd of the

form

LXij ::;iDi-1 (5.12)
(/,j)eD

to GAP. The purpose of this is to prevent the combination of assignments

contained in D from being reinstated in the next t a iterations. The second

structure Tdmp is a vector containing the column indices of those variables xij

contained in the set A = W, j); (i, j) E Sx' and (i, j) 110 Sx}' The purpose of this

tabu restriction is to prevent those assignments that have just been added in

the move from x to x' from being dropped in the next solution to GAPLR.

This is achieved by the addition of the following constraint to GAPLR

(5.13).

This tabu restriction is considerably stronger than the restriction preventing

assignments from being added since there are many more possible

assignments excluded from a solution compared with the number of

assignments included in a solution and in fact the computational

experimentation indicated that applying a single tabu constraint of type 5.13 at

each iteration is sufficient.

The short-term phase begins from a solution x, from which an instance of

GAPLR can be formulated with the addition of constraints 5.7 and 5.13. In

keeping with a conventional tabu search approach the short -term phase of the

algorithm is allowed to search for non-improving solutions and as a result no

cut-off value is specified for the search of the sub-region defined by the sub­

problem at the current iteration. The objective function value of the solution to

102

the relaxed problem may be greater than the best integer solution found but,

since the purpose of the current iteration is to find the best integer feasible

solution within the sub-region in the time allowed, is still accepted as a partial

move from x to x'. If a solution to GAPLR is found then this is used to

generate the next instance of RGAP and those assignments that have been

dropped as a result of the solution to GAPLR are added to the tabu list Tadd • A

constraint of type 5.12 is then added to RGAP for each entry on the tabu list

Tadd prior to solving in an attempt to obtain the next solution x'. If GAPLR is

infeasible then it is necessary to override the tabu status of one or more

assignments that are tabu from being dropped according to the aspiration

criteria described in section 5.4.5 and update constraint 5.13 of GAPLR

accordingly. If there are no assignments in x that are tabu from being dropped

then the short term phase ceases at this point. Assuming that a solution x' has

been found by solving RGAP then the tabu list Tdrop is updated by first

deleting those assignments (i, j) that are currently members of Tdrop and then

recording those assignments present in S x' but not in S x , since these are the

set of assignments that have been added during the current iteration and are

therefore tabu from being dropped during the move from x' to the next

solution x". In addition to updating Tdrop the long term frequency memory T

is also updated at this point. Having obtained a solution x' with

corresponding objective function value z', a comparison is made with the

objective function value of the best solution found during the search to

ascertain whether z' < z *, if so then x * and z * are updated by setting

x* = x' and z* = z' . The new solution is set to be the current solution by

setting x = x' and z = z' . The number of iterations performed during a short­

term phase of the algorithm is set according to the ratio n I m. If RGAP is

infeasible then clearly the add neighbourhood defined by the constraints 5.11

and 5.12 does not contain a feasible solution to GAP and so no add move is

made in these circumstances, instead the solution to the relaxed problem

GAPLR is adopted as the new solution x'. A flowchart of the short-term

103

phase is given in figure 5.4.6.

Figure 5.4.6 Short term phase ofTSBB.

Feasible

y

Let soln. to GAPLR= X Ir

Update T
add

Generate and solve RGAP to give x' and z'

N
x = x'

lr Feasible

y

x' = x',z' = z' z'< z·

N

y

Exit sIt phase

104

TD = 0

y

5.4.3 Intensification

Longer term memory uses frequency information as a means for

introducing intensification and diversification strategies. These frequency

based memory structures are used to provide information that helps to identify

promising regions of the solution space that have been previously visited but

which may warrant a more thorough search and also to help identify changes

in attributes that would help to drive the search into unexplored regions ofthe

solution space. The longer term memory structure used by TSBB records the

number of times that an assignment is contained in an integer solution. These

frequencies are recorded in a matrix T of size m x n which is updated at each

iteration by increasing the value tij by I if an assignment (i,j) e Sx' This

memory structure is then used as a means for implementing the intensification

and diversification strategies as follows.

The purpose of the intensification phase is to search a region of the

feasible solution space that includes solutions for GAP which contain

assignments that could be considered attractive since they are

and

a) Included in the best solution found during the search up to this point

b)Have been included in a large number of integer feasible solutions that

have been visited during the search so far.

The best solution x' encountered so far by the search is recovered and the

assignments (i,j) contained in Sx' are compared with the corresponding

values in tij in order to construct the set F={(i,j):(i,j)eSx' andtij ;=:ak}.

The parameter a is the threshold for the proportion of time tij / k , where k is

the number of feasible integer solutions generated during the search, that an

assignment (i,j) needs to have been included in solutions to date in order to

be considered for inclusion in F. At each execution of the intensification

phase the value of a is initially set to the value I and the set F is

subsequently generated. If F is empty i.e. there are no assignments that have

105

been included in all feasible integer solutions generated thus far, then a is

reduced at a rate of 0.1 at each attempt and another attempt to generate F is

carried out. This process continues until F contains at least one assignment or

until a = 0 . In practice the value of a did not reach the value 0 and the

likelihood of such an event occurring is thought to be small, although in some

circumstances it may be necessary to re-evaluate the reduction rate of a in

order to avoid the occurrence of such an event. The set F can now be used to

generate a restricted instance of GAP that has as its feasible region, only those

solutions that contain all assignments in F by adding an intensifying

constraint

L>y:?:IFI (5.14)
(i,})eF

to GAP. Constraint 5.14 is implemented within the algorithm by fixing the

lower bound of those variables that represent each assignment contained in F

to 1. Prior to solving the resulting restricted problem a cut-off value of z' is

given to the branch and bound solver which, in keeping with the branch and

bound strategy, restricts the search still further. Clearly the size of F is

determined by a and the size of the feasible region of the restricted problem

is determined by the size of F and the quality of the current best solution.

Any solution obtained as a result of solving the restricted problem must

improve on the best solution found and therefore x', z' and T must be

updated accordingly.

5.4.4 Diversification

TSBB attempts to diversify the search by generating a solution that

contains one or more assignments that have very low (ideally 0) residence

frequency i.e. assignments that have rarely been included in integer feasible

solutions found prior to this point in the search. Once such a solution has been

generated this is then used to launch the next short term phase of the search

process. This is achieved by using the longer term frequency based memory in

order to generate a constraint that can be added to GAP that will force the

106

--------- ---------------------------------

inclusion of low frequency assignments into the diversified solution. In order

to achieve this TSBB first attempts to identify those assignments that have

rarely been included in any previous solutions i.e. those assignments having

the lowest (ideally 0) residence frequency values and constructs the set

H = {(i,j): tif S h} where h is the threshold for the maximum proportion of

time that an assignment (i, j) has been included in solutions to date in order

to become a member of H, and thus become a candidate for inclusion in the

diversified solution to be subsequently generated by the addition of the

constraint

~>if ?d (5.15)
(i,j)eH

to GAP, where d is the level of required diversification.

If all elements of H have corresponding value t if = 0 then at least one

assignment that has never been included in any of the solutions generated will

be included in the new diversified solution and hence this new diversified

solution will be different to any other solution previously encountered during

the search. Clearly the size of H is required to be greater than or equal to d

and in order to achieve the required size for H the threshold h is initially set

to O. If IHI < d then h is increased by 0.1 and H is regenerated. This process

continues untillHI? d at which time the diversification constraint 5.15 can be

added to GAP and the diversified solution generated in the same way as the

initial solution described earlier and subsequently used to initiate the next

short term phase ofthe search. As in the intensification phase the step size for

the change in value of the threshold appeared to work quite well in practice

although further consideration should be given to this aspect as necessary. If

all elements of H have a value t if ? I then there is no guarantee that the

diversified solution will not have been visited previously during the search.

Larger values of d will reduce the likelihood of a previously visited solution

107

be generated during the diversification phase since there should be less chance

of a larger number of rarely seen assignments being included to gether in an

integer feasible solution. Whilst the quality of the diversified solution is

usually poor in comparison to the best known solution, starting the next short­

term phase from a previously unseen solution can be advantageous in terms of

providing access to high quality solutions that have previously been

inaccessible.

5.4.5 Aspiration Criteria

Aspiration criteria are utilised in tabu search in order to determine when

and how to override the tabu status of solution attributes. Implementation of

suitable aspiration criteria can greatly affect the performance of the tabu

search strategy and can be viewed as a complementary strategy to that of

imposing tabu restrictions. There are a number of commonly used aspiration

strategies some of which are detailed in (Glover and Laguna 1997).

The move from one solution to another within the search is dependent

upon a feasible solution being found to a relaxed version of GAP, either a

feasible solution to the LP relaxation GAPLR when dropping assignments, or

the feasible integer solution to an instance of RGAP when attempting to add

assignments. In the first of these two cases a tabu restriction is applied in

order to force the relaxed solution to contain those assignments previously

added to the current integer solution. In the situation when no feasible solution

to GAPLR exists then clearly the tabu constraint is too restrictive and so must

be relaxed in order to solve GAPLR. This is achieved by applying an

aspiration criteria which allows the right hand side of the tabu constraint to be

reduced by 1. This has the effect of constraining all but 1 of the assignments

that are tabu from being dropped to be included in the relaxed solution. If the

relaxation is still infeasible then the right hand side is repeatedly reduced until

a feasible solution to the relaxation is obtained.

108

If the solution to an instance of RGAP is found to be infeasible i.e. no

integer solution is generated then clearly constraint 5.11 is too restrictive in

terms of forcing a collection of assignments to be included in an integer

solution. Since no new integer solution has been generated the search must

come to a halt. In order that the search can continue the restriction is indirectly

overridden by adopting the solution to the relaxation as the current solution

thus forcing one or more assignments in the relaxation to be dropped on the

next iteration and releasing the restriction of constraint 5.11 from the previous

iteration.

Example

Given the problem defined below which is taken from the Beasley OR-library

m=5

n = 15

25 25 18 24 20 19 25 24 23 15 18 18 25 15 22
25 18 17 22 21 23 20 23 16 19 15 18 16 23 16

c= 18 16 19 15 15 18 15 20 19 24 22 20 25 16 21
18 21 16 18 17 24 18 23 22 16 17 22 22 18 16
17 18 15 21 23 21 24 23 20 22 19 15 22 22 25

16 20 9 22 17 19 20 22 20 13 6 20 23 19 7
12 22 18 18 6 13 17 17 17 14 20 12 17 14 22

A= 5 19 19 14 24 16 7 8 9 22 13 23 24 15 20
20 8 6 9 5 17 23 18 14 12 14 17 15 23 21
6 6 24 24 8 7 5 25 21 18 12 20 20 7 12

b =(40 38 38 35 34)

Firstly generate an initial integer feasible solution

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

with objective function value z = 270.

109

From this initial solution generate the set

S, ~ ((5,1), (5,2), (4,3), (3,4), (5,5), (5,6), (3,7), (3,8), (3,9), (4,10), (2,11), (4,12), (2,13), (1,14), (1,15) j

The drop neighbourhood can now be defined by an instance of GAPLR

according to the formulation given in 5.4.1.1 with Tdmp ~ 0 to give the relaxed

solution

0 0 0 0 0 0.239555 0 0 0 1 0.574743 0 0 0

0 0 0 0 0 0 0 0 0 0.2 0 0 0

0 0 0 0 0.5625 1 0 0 0 0 0 0 0

0 0 0.974401 0 0 0 0 0 0 0.225257 0 0 0

1 0.0255993 0 0 0.197945 0 0 0 0 0 0 0 0

S y ~ ((5,1), (5,2), (3,4), (4,5), (3,7), (3,8), (2,9), (1,1 0), (5,12), (2,13), (1,14), (4,15»)

D ~ {(4,3), (5,5), (5,6), (3,9), (4,10), (2,11), {4,12), (I,15)}

Tadd = D

An instance ofRGAP can now be formulated as described in 5.4.1.I to define

the add neighbourhood. The solution to RGAP is infeasible in this instance

and so no move to a solution in the add neighbourhood is made and the

solution to GAPLR is defined to be the new solution x' . We now set

x = x' and have s, ~ s y and Td,ap ~ 0 since no new assignments have yet been

added. The new s, is now used to construct a new instance of GAPLR by

adding the constraint LY ij ~ IS, I-I to GAP which is then solved to give a
(i,j)eS",

relaxed solution

o 0 o o 0 0.562276 0 0 0 0.332059 1 0 0 1 0

o 0 o o 0 0 o 0 0.965231 0 o 0 1 0 0.208685

o 0.0886046 0 1 0 0.437724 1 1 0.034769 0 o 0 0 0 0

o 0 0.894516 0 1 0 000 0.667941 0 0 0 0 0.791315

1 0.911395 0.105484 0 0 0 o 0 0 o o 1 0 0 0

110

Now
S y = {(5,1), (3,4), (4,5), (3,7), (3,8), (I,ll), (5,12), (2,13), (I,14)}

and
D = {(5,2), (2,9),(1,10), (4,15)} •

_ (4,3), (5,5), (5,6), (3,9), (4,10), (2,11), (4,12), (1,15»)
T dd-

a (5,2), (2,9), (l,IO), (4,15)

Formulating and solving the new instance of RGAP with the addition ofthe 2

tabu constraints

x(4,3) + x(5,5) + x(5,6) + x(3,9) +x(4,10) +x(2,11)+x(4,12)+x(1,15)';; 7

x(5,2) +x(2,9) + x(1,IO) + x(4,15) ,;; 3

as defined by Tadd yields the solution

000000000110010

o 0 000 1 0 0 000 0 1 0 0

000100111000000

001010000000001

110000000001000

with z = 255 ,

Sx = {(5,1), (5,2), (4,3), (3,4), (4,5), (2,6), (3,7), (3,8), (3,9), (1,10), (I,ll), (5,12), (2,13), (1,14), (4,15)}

and
T <Cop = {(5,2), (4,3), (2,6), (3,9), (1,10), (4,15) .

The frequency based memory has also been updated to record the frequency

with which assignments occur in the 2 integer solutions generated thus far to

give

000000000110021

00000 I 0 000 102 0 0

T= 0 0 0 2 0 0 2 2 2 0 0 0 0 0 0

002010000101001

220011000001000

In order to perform an intensification phase the best solution found so far x'

is recovered with

111

Sx' = {(5,I), (5,2), (4,3), (3,4), (4,5), (2,6), (3,7), (3,8), (3,9), (I,I 0), (1,1 I), (5,12), (2,13), (1,14), (4,I5)}

and

F = {(5,I), (5,2), (4,3), (3,4), (3,7), (3,8), (3,9), (2,13), (I,I 4)) .

The intensification neighbourhood is now defined by adding the constraint

x(5,I) + x(5,2) + x(4,3) + x(3,4) + x(3,7) + x(3,8) + x(3,9) + x(2,I3) + x(I,I4) 2: 9

and an objective function cutoff value of

z < 255

to the original GAP problem. Solving the intensification problem informs us

that no feasible solution exists in the intensification region and so a

diversification is performed to begin the next short term phase. The diversified

solution is obtained by formulating, and taking the first integer feasible

solution of, GAP with the additional diversifying constraint

~>ij ~m where H={(i,j):tij =O}.
(i,})eH

5.5 Summary

This chapter has given a description of the hybrid algorithm TSBB. The

approach of generating neighbourhoods by means of constraining the integer

programming formulation of GAP has been adopted, motivated by the local

branching and RINS methods for so Iving general mixed integer programming

problems along with the concept of referent domain optimization. The

neighbourhoods generated by this approach are dissimilar to the conventional

neighbourhoods that are used in local search methods for solving GAP but do

still take advantage of the structure of the problem, in contrast to RINS and

Local Branching. A tabu search strategy is used to generate constraints that

are added to and deleted from the linear programming relaxations and also the

integer programming formulations that are generated at each iteration. In the

following chapter the performance of TSBB is assessed by means of

computational testing performed on a set of benchmark test problems and the

results of this experimentation will be described in detail.

112

6 Computational Testing and Results

This chapter of the thesis considers the performance of the algorithm

developed and described in the previous chapter. The algorithm was applied to

two sets of benchmark test problems. The first set consists of problems of size

n::; 200 and the larger set of problems has 400::; n::; 1600. Section 6.1

describes the different types of problem in relation to how the instances have

been generated, how they differ in terms of difficulty, where they can be

found and why they can be considered to be a suitable set of problems in

terms of testing the performance of the TSBB algorithm. Section 6.2 describes

how the TSBB parameter settings were determined and section 6.3 describes

the performance of the different phases of the algorithm. Section 6.4 compares

the results obtained by TSBB with those obtained by Xpress-MP. Section 6.5

compares TSBB with the ejection chain Tabu Search approach developed by

Yagiura et al (Yagiura, et al. 2004) which has been shown to outperform most

other approaches in solving the set of benchmark test problems and so can be

considered to provide a good comparison in terms of the quality of solutions

generated by TSBB. Section 6.6 compares TSBB with a selection of

alternative heuristic algorithms on the two sets of benchmark test problems

and performs analysis of variance tests to assess any difference in

performance between the various algorithms. This chapter then concludes

with a summary of the reported results and performance of the TSBB

algorithm.

6.1 Benchmark Test Problems

Benchmark instances for testing GAP have been categorised into five

different types A, B, C, D and E and there are a number of instances available

at http://people.brunel.ac.ukl-mastjjb/jeb/orlib/files/ and http://www­

or.amp.i.kyoto-u.ac.jp/members/yagiura/gap/. Instances from the first four

categories, with m = 5,10,20 and n = 100,200 were generated by Chu and

Beasley (Beasley and P. C. Chu. 1997) and are derived as follows:

113

Type A: aij are random integers from the uniform interval [5,25], cij are

uniform random integers from the interval [10,50] and bi = 9(nl m) + OAR

where R = max ,el L:aij and 1j = min[i I cij :'> akj , lik E 1]
je},1 J=i

Type B: aij and cij are the same as type A and bi is 70% of the value in type

A.

Type C: aij and cij are the same as in type A and bi = 0.8L aij I m.
le}

Type D: aij are random integers from the interval [1,100], cij = I 1 I - aij + e,

where e, are random integers from the interval [-10,10] and bi = 0.8L aij I m.
jE}

.
Type E instances were generated by Yagiura et al.(Yagiura, et al. 2004) as

follows:

TypeE: aij =1-lOlne2 where e2 are random numbers from [0,1],

cij = 10001 aij -IOe3 where e3 are random numbers from[O,I] and

b, =0.8Laijlm.LargerinstancesoftypesC,DandEwith m:'>80 and
jeJ

n :'> 1600 were also generated.

In terms of difficulty, problems of type A are least difficult to solve and

type Band C problems are harder to solve than the preceding category due to

tightening of the capacity constraints. Type D and E problems are

considerably more difficult due to the inverse relationship that occurs between

the cost coefficients and the capacity coefficients. Problem instances of types

A and B can quite easily be solved using the standard Xpress-MP solver and

so do not provide a suitable level of difficulty with regard to testing TSBB.

Testing of the TSBB algorithm therefore focuses on problem types C, D and

E. The first problem set consists of six problems of each of these three types

114

------ ---

as detailed in table 6.1.1 giving a total of eighteen problems in the first of the

benchmark test sets whose problems are deemed in the literature to be of

medium size.

Table 6.1.1 Problem dimensions for medium size test instances

m

5

10

20

5

10

20

n

100

100

100

200

200

200

The second set of test problems are deemed to be large problems whose sizes

are detailed in table 6.1.2

Table 6.1.2 Problem dimensions for large size test problems

m n

10 400

15 900

20 400

20 1600

30 900

40 400

40 1600

60 900

80 1600

6.2 Parameter Settings

The branch and bound results obtained from Xpress-MP subsequently

presented in 6.3 were all obtained using the default settings of the software

which are available from the user manual. These default settings were also

used by all calls to the Xpress-MP branch and bound solver from within the

TSBB algorithm. For each problem instance TSBB takes the two parameters

115

fa and fd as inputs and all other parameters are set according to problem size

where problem size is defined to be mn. Two of the parameters set according

to problem size are the maximum time allowed for the solution to a restricted

sub-problem in the short-term phase and the time allowed to solve a sub­

problem in the intensification phase. Due to the size and complexity of many

of the benchmark test problems even highly restricted sub-problems can be

difficult and time consuming to solve to optimality. It is therefore necessary to

restrict the time allowed for the solution of each sub-problem in order to give

the algorithm sufficient opportunity to generate the integer feasible solutions

in the short term phase, which subsequently provide information to generate

the neighbourhood for the intensification and diversification sub-problems. In

the diversification phase the Xpress solver is applied to the diversification

sub-problem and ceases on finding the first integer feasible solution and so no

time limit is necessary. In practice the Xpress solver typically tends to find

integer feasible solutions early in the branch and bound process and quickly

reduces the gap between the best known solution and the best bound. After

this initial progress it is then common for the branch and bound process to

spend large amounts of time and effort attempting to reduce the gap by

relatively small amounts or even purely to confirm optimality. This initial

period increases with the size and difficulty of the problem instance and so in

determining the time restrictions to apply, the short term phase of TSBB was

run for 100 iterations for each of the problems in the medium size test set with

a time limit of 60 seconds for each sub-problem in the short term phase.

Figure 6.2.1 shows the cumulative frequency of sub-problems that were

solved to optimality and obtained an integer feasible solution within a 60

second time period, indicating that over 97% of such sub-problems of GAP

instances with up to 4000 variables were manageable within this time period.

The time limit for each sub-problem in the short-term phase of the algorithm

for the medium size problem set was subsequently set to 60 seconds and the

time limit for the intensification phase was set to be twice that of the short­

term phase time limit.

116

Figure 6.2.1 Cumulative frequency of solution times for short-term phase

100

95

'" u 90 0 • = C"

.!:
• 85
>

'" .!!l =
E

80 = 0

.x'Xo)('X-X-X')(')('X-X-X.)(.X-XoX«.)(.)(.)(.)(o)(.)(.x.)(.x..x-x,)(,)(,)(,xo)(')('x-x

---------.--- .. -.... :x;x"»(.x.x~·_x-.)(:>:.~~-- -... -... -............. -----.-------- --- .•. __ _.
,~.

---~/'~<--------------------------- --
--f--- --------------------------- ------------------------

-l---
,

75

70
0 10 20 30 40 50 60 70

Time(seconds)

The intensification sub-problems are typically larger than those of the

short-term phase and so preliminary experimentation indicated that it was

necessary to give the solution attempt more time for these sub-problems. It

should be noted however that the objective function value of the best solution

found during the search was used as a bound on the intensification sub­

problem in an attempt to reduce the size of the branch and bound tree in these

situations.

6.2.1 Tabu Tenure

There are two short term tabu memory structures that are used to guide the

short term phase of the algorithm. The first of these prevents those

assignments that have been brought into the current solution as a result of the

add phase from being dropped during the next drop phase. Preliminary

experimentation indicated that these assignments tend to be highly restrictive

and whilst such a tabu restriction is necessary to avoid cycling there seemed to

be no advantage to be gained by using values greater than 1 for this tabu

tenure. As a result the computational results detailed in the remainder of this

chapter have all been obtained by fixing the value of td to 1. The second

117

short term memory structure is that which prevents those assignments that are

excluded as a result of the previous drop phase from being included during the

next I a add phases. The preliminary experimentation also indicated that whilst

the value of I a should not be too small in order to avoid cycling, large values

tend to be counter productive in terms of slowing down the algorithm. This

seems fairly intuitive when considering that each of the t a tabu restrictions

takes the form of an additional constraint and as such tends to slow down the

solution of each of the sub-problems in the short term phase of the algorithm.

Testing of the TSBB algorithm therefore considers values of la in the range

5 ~ t a ~ 25. Each problem in the medium size set of test problems has been

solved five times with the value of la being set to 5, 10, 15 20 and 25. Figure

6.2.2 shows the mean percentage gap from the best bound for problem types

o and E for each value of la' The best bound is obtained from the Xpress-MP

solution run for each problem. The results for problem type C have been

omitted since the percentage gap is zero for all values of la for this problem

set.

Figure 6.2.2 Mean % gap from best bound for medium size test problems types D and E

I I 0.3

•
i
~
~ 0.2 ,

0.1
·_~_~_~_~_~_~_~_~_~_~_~_~_~_~_=_~_~_-:-:_-::-_~_::-_:: -O:_~_-:o-____ __________ _

o+---------~--------~--------~----------
5 10 15 20 25

tabutlllnuN

For the type 0 problems the lowest mean % gap was obtained with a value

118

of to = 15 and the highest mean % gap was obtained at to = 25 with the

difference between the two being 0.091 % (3 d.p). For the type E problems the

lowest value was achieved by setting la = 25 and the highest value was

obtained from using la = 10 with a difference between the two of 0.044% (3

d. p). These results suggest that the algorithm is fairly robust in terms of

solution quality for values of I a in this range. Figure 6.2.3 shows the

corresponding results for the large size test problems. For the type C problems

the lowest mean % gap is obtained with a value of la = 25 and the highest gap

is achieved with la = 15 with the difference between these two of 0.012% (3

d.p), for the type D problems we have corresponding values of la = 15 and

to = 25 with a difference of 0.019% (3 d.p) and the results for the type E

problems give la = 20, to = 10 with the difference being 0.047% (3 d.p).

Figure 6.2.3 Mean % gap from best bound for large size test problems.

0.4 --' ---_._------------

-------~--------~--------~-------0.3 .. ----.---.----.------- --.-.--.-.--.-.-'.--------.----.----------------------.--.'.--.'.--.'.--

0.1 w .•.•. ', .•.•.. ,. ',.: '.' ":0':;'; '.;'::'::': :.:.:,u. '.-:'.': ~:.:"": '.':'~:::':~' :1

J I
5 10 15 20 25

tabu IIInutt

The first point to note from these results is that the quality of solution for

the type C problems, in both sets of test instances, does not appear to be

sensitive to the value of ta as is evident from the small difference between the

highest and lowest mean %gap over this range of values for ta' and the mean

119

% gap for t a = 5 is very close to that of t a = 25, the difference being

0.000001. The results for the type D and E problems also show little variation

in terms ofthe quality of solution obtainable within the range of values for ta'

A second observation to make from these results would be that for the type D

problems the quality of solution tends to improve with values of ta towards

the middle of the range with little observable difference between the upper

and lower end whilst for the type E problems the better quality solutions tend

to be obtained with values of t a in the upper half of the range, irrespective of

problem size. The quality of solution for type C problems however, seems to

be consistent across the whole of this range. The two plots also give an

indication as to the overall level of difficulty for TSBB of the three different

problem types. Type D problems seem to provide most difficulty with regard

to the quality of solution obtainable for both medium and large problems.

6.2.2 Intensification and Diversification parameters

The diversification phase of the algorithm uses frequency based memory

in order to obtain a solution that is a distance of at least m from any previous

solution encountered in the search. The value m was chosen based on

preliminary experimentation which indicated that as the size of problem grows

due to the number of agents which are able to perform the n jobs then a

greater level of diversification is required if the algorithm is to find high

quality solutions. This was most evident with regard to harder type D and E

problems.

6.3 Performance of short-term and intensification

phases

The purpose of the diversification phase in the TSBB algorithm is purely

to find an integer feasible solution that is a distance of at least m from any

solution visited by the search. The solution found then begins the next short

120

term phase. The objective of both the short-term phase and the intensification

phase are to search the solution space for new improving solutions and so the

performance and effectiveness of these two aspects of the method are reported

in this section.

Figure 6.3.1 shows the number of new best solutions found during each of

the two phases of the search for each of the problems where the number of

jobs is 100. This information was taken from the solution run where the best

objective function value ofthe five runs was found. For the type C problems it

is noticeable that all of the new best solutions are found during the short-term

phase and for the type 0 and E problems the majority of new best solutions

were also found during the short-term phase. Out of all the test problems

solved these were the least difficult problems with regard to size and so the

short term search phase was able to improve the quality of the best solution

quite substantially. For the type D and E problems the short term phase alone

was not sufficient and the intensification phase played a more significant role

in these situations.

As the size of the problems increases the role of the intensification phase

seems to become more significant. Figure 6.3.2 gives the split for each

problem where the number of jobs is 200. Generally there are more solutions

found during the intensification phase for this subset of problems than for

those with 100 jobs although both phases of the algorithm appear to still be

contributing towards finding new improved solutions.

121

-- -- -- _. ------ ---------------------------

Figure 6.3.1 Number of new best solutions found during the search for each of the two

phases for problems with 100 jobs.

"r--,
'"r-----------------------~i

8 25 r-------­
'§

"ii " r-------
j
~ ,,1------
o
'0
~ ,,1---

Figure 6.3.2 Number of new best solutions found during the search for each of the two

phases for problems with 200 jobs.

"r·-----····-----·------.. -------·--·-···-.. ----·-------·------.... - .. -... -.---.. ----,
clnten&ilcatlon phase

11 shDlf-t.mn pllan

'"r--------------------------------------~k

o
o "r--------------------------------------
~
o "r------------------
j
~ 151---
o
'0
c:i 10
Z

The success ofthe intensification phase is dependent to some degree upon

how well the short-term phase operates. One function of this short-term phase

is to find good integer feasible solutions which then provide information to

122

'--- - - - - - -

-- - - - - - -- - - -------------------------

both define the region to be searched by the intensification phase and restrict

the search of this region by providing a good upper bound on the solution

value. The information summarized in figures 6.3.1 and 6.3.2 give a

reasonably good indication that for these sizes of problems both phases are

working effectively in seeking out good solutions in the short-term phase and

that the frequency based memory is being constructed and used to good effect

in defining good regions of the solution space to explore during the

intensification phase.

Figure 6.3.3 gives a summary of new best solutions found during the two

search phases for the largest of all the problems tested where the number of

jobs is 1600. For problems with this number of jobs it is noticeable that as the

number of agents grows up to 80 the contribution made by the intensification

phase of the search diminishes.

Figure 6.3.3 Number of new best solutions found during the search for each of the two

phases for problems with 1600 jobs.

~ "I----~

~
-5 25
o
;;
.8 20

~
c " "0
o
z"

As the solution space grows with problem size it clearly becomes more

difficult to identify a region for the intensification phase to find a new

improving solution. One reason for this could be that the bound placed on

123

such a region by the short term phase is strong enough to rule out an

improving solution. If this is the case then clearly the short term phase of the

algorithm is working effectively. An alternative reason could be that the size

of the region to be searched during intensification is just too large and an

improving solution cannot be found in the time limit given to this phase of the

search. Whatever the reason for this these circumstances require the

diversification phase to be working effectively to guide the short term phase

towards previously unexplored regions. If this is indeed the case then it will be

noticeable that the short term phase continues to find new best solutions deep

into the search.

Figure 6.3.4 New best solutions found by search phase for problem type D, m;20, n;100.

• " ..
>

6700 ---.-.---.------.---------------------.--.----.--.. --.----.--._----------.---.------,----.

::t(shorl-lerrn phase

<>illlensllcation Phase

6600 ------_. ---- ---- ------- ---" ----- -.- --- ---.. - .----- ------ ----- -- -.- --- -------------_. --------.- ----

" " S 6500 --------------------':1::---.--------- ---------."----------.---

'" u
c
.;!
• ~ 6400

i
6300 ----.--------------.-- ----------_._-----._- --_. --------(>._-------_ •• -----------------_.----------

Q

6200+-----r----r----~-----__ -----~

0.01 0.1 10

time (cpu seconds)

100 1000

In figure 6.3.4 the progress of new best solutions found during the search

is plotted for problem type D with m = 20, n = 100. The initial improvement

in objective function is provided by the short term phase of the search. The

intensification phase of the search then improves on the previous best solution

4 times. The fourth improvement yields a solution which launches a

subsequent short-term search where clearly there is no better solution found in

the region of this new best solution and there follows a period oftime without

124

improvement before the short-term phase once again finds new improving

solutions. Prior to the discovery of these new improvements the search

diversifies to a new unseen solution. In doing so the diversification has

launched the next short-term search in a new and fruitful region. The

discovery of the new improving solution by the short-term phase provides

new frequency information which contributes to the definition of a region of

intensification where the best solution is improved still further. The best

solution is finally improved once more by the short-term phase. This is a good

example of how the three phases of the algorithm work in conjunction with

each other in order to guide the search quite successfully towards new

improving solutions.

For the type D problem where m = 40 and n = 400 all but 2 of the

improving best solutions are discovered by the short-term phase. The profile

in figure 6.3.5 shows that the intensification phase does not find any

improving best solutions until much further into the search. The

diversification and short-term phases however contribute to the frequency

memory that defines the regions within which the improving best solutions are

found during the latter stages of the search.

Figure 6.3.5 New best solutions found by search phase for problem type D, m=40, n=400.

f
g
'" o

26000 -... --.. --.. --.--.-.--.. -.. --.. ---.-.----.----.--.-.---.--------.-.-... -----._---.-.----.. ----.-.--.---.-----.--.----.-.--... --.. -. ___ .. _._.

25600

)I(fhort-term phase

olnten.ltcation phasa

__________ :t:. ___ _

] 25200 ----------"j:--- ---------------------_._-------------------

•
~ i
o

~ '1:
24800 -------------------------:1(----- .---------------------------- .. -----------------------_- _______ _

,~'"

24400+-------~--------~--------~------_.------~
0.1 10 100 1000 10000

time (cpu seconds)

125

This result gives a good indication that the memory structures and the

three different phases of the search are working together to exploit the feasible

solution space throughout the whole of the search. This is an important aspect

to highlight since it is in contrast to the effectiveness of the standard branch

and bound approach which tends to improve the solution early during the

search but often struggles to discover regions of the branch and bound tree

containing these new improved solutions as the search progresses. In this

respect the tabu search aspect of TSBB helps to overcome this situation and to

explore areas of the tree that branch and bound would not otherwise reach.

The best solution found during the search for this problem is discovered by

the short-term phase following a new best solution found during a previous

intensification phase. The best solution found during intensification has been

used to launch a subsequent short-term phase which has found the best

solution in the neighbourhood of the intensification solution. This is

encouraging and a further indication of how each phase of the algorithm

works in conjunction with each of the others. This behaviour can also be seen

with the larger problems also as depicted in Figure 6.3.6 which indicates how

the three separate search phases have combined in a similar way when solving

a type D problem with 900 jobs.

Figure 6.3.6 New best solutions found by search phase for problem type D, m=15, n=900

i
55560

j 55520

I
55480

X at>orl-larm ph ...
~ Int.nalftcation

_____ . _____________ . __________________ ---;1<.---____ _

x,
• ,

.. I

• o ,

55440 +----_---~----_---~-----J
0.1 10 100 1000 10000

time (cpu seconds)

126

For the problem instance of type C where m = 80 and n = 1600 there are

no new improved best solutions found during the search by the intensification

phase. The regions defined for intensification during the search for a problem

of this size can be large and the branch and bound solver encounters the same

problems as it would when operating by itself on a large problem. TSBB can

still be very effective under these conditions since it becomes more important

for the diversification and short-term phase to work in conjunction with each

other. Figure 6.3.7 indicates that after a significant improvement in the best

solution during the early part of the search there is a period during the middle

part of the search where no improvement to the best solution is made. The

move to unexplored regions and the short-term search phase are still able to

combine and find improvements to the best solution deep into the latter stage

of the search indicating that the long-term memory structures work well in

providing information about where to find these more promising regions.

Figure 6.3.7 New best solutions found by search phase for problem type C, m=80,

n=1600.

17400 T--------------- ---.--.

• ,
17200

~ 17000
o
g
u
~ 16800

• i!;

:Kshort-l&ml phase

------------j:- --- --~- -.. _--- -- ----- --------- --- ------------- -- ------ ----- -----------

-------------------5i---------------------------- ... ------------------ .. ------------------------

lil 16600 --- --- -----_. -------- --- ------- --- --- .-- -- ------".---. --------- --- ---- --- -- --- -- ----- --- --- --- --

" o
~

16400 ":K .. .
'!it

16200+-------.--------.--------,---------r------~
10 100 1000 10000 100000

time (cpu seconds)

The results presented in this section have provided insight into the

effectiveness of TSBB to be able to effectively solve both the medium and

large size test problems. Examination ofthe results for these problems gives a

127

- --------------------------------------

good indication as to how the components of the method work together and

complement each other in the overall aim of finding high quality solutions.

The results show how, with the use of the short and long term memory

structures, the solution space can be intelligently searched with the aim of

discovering these high quality solutions. The remaining sections of this

chapter compare the TSBB algorithm with the standard branch and bound

approach using the Xpress-MP solver, the ejection chain tabu search approach

of (Yagiura, et al. 2004) and other algorithms from the literature. A

comprehensive comparison and analysis of the performance of TSBB with

these methods is presented.

6.4 Comparison with Xpress-MP

The results presented in this section compare the TSBB algorithm with the

Xpress-MP branch and bound solver. The results obtained by the Xpress-MP

solver were all achieved using the default settings of the software with regard

to the branch and bound strategy for solving each problem. The same default

settings were also used within TSBB whenever the Xpress solver is called to

solve the generated sub-problems. Firstly, following solution of the LP

relaxation the Xpress solver attempts to strengthen the lower bound on the

problem by generating a series of cuts. There are varying degrees of

aggressiveness that can be used during this cut generation phase although it is

important to strike a balance between a very aggressive strategy which

increases computational time and effort, due to the increased number of cuts

generated, and a less aggressive strategy which generates fewer cuts but takes

less time and effort but will normally result in a weaker initial bound and

increased time and effort during the tree search. The default strategy allows

the Xpress solver to select the most appropriate strategy. Having attempted to

increase the lower bound on the problem Xpress then attempts to set an initial

cut-off value for the tree search by generating an integer feasible solution

heuristically, typically using a rounding approach. Once again this is left to

the default heuristic strategy of the software. The solver then progresses into

128

L-______________________________ ._ _ _ _ _

the branch and bound tree search where the following strategic aspects need to

be set in order to minimize the time and effort ofthe solution process.

Node selection: The strategy of selecting outstanding nodes for

processing is based on an assessment of the characteristics of the problem

matrix. The set of nodes from which one will be chosen for processing is

identified by this strategy.

Backtrack: Having identified the set of nodes from which to choose, the

backtrack approach specifies which node should be processed next. The

default here is to select the node which provides the best bound on the

solution.

Variable selection: The variable chosen for branching at the selected node

is determined by means of calculating up and down pseudo-costs for each

variable. The default approach is to select the variable with the smallest up

and down pseudo costs.

6.4.1 Medium size problem set

The results given in table 6.4.1 are for the medium size problem set where

the maximum solution time allowed for each problem with both methods was

set at 3000 and 6000 cpu seconds for n = 100 and n = 200 respectively.

These time restrictions were set according to the time allowed for solutions to

these problems as defined in (Yagiura, et al. 2002) and (Yagiura, et al. 2004).

All experimental testing was carried out on a Linux machine with an Intel P4

Xeon 3.0 GHZ processor and 1.0 GB of RAM.

Columns I, 2 and 3 define the problem type and size, column 4 gives the

best bound for each problem that was found during the Xpress-MP solution

run, columns 5 and 8 give the best objective function values obtained during

the specified time limits from each method whilst columns 6 and 9 give the

time in cpu seconds that each method took to find its best objective function

value. Column 11 indicates whether or not the solution found by Xpress-MP

was proved to be optimal during the solution run. From table 6.4.1 it can be

129

seen that Xpress was able to solve all of the type C problems and 4 out of the

6 type E problems to proven optimality. The type D problems appear to pose a

much stiffer test where only one out of the 6 problems of this type was solved

to optimality by Xpress-MP and this was the smallest of the 6. It can be seen

from table 6.4.1 that optimal solutions found by Xpress-MP were also found

by TSBB. For the problems that were not solved to optimality by Xpress-MP

the solution values obtained by TSBB were better than those obtained by

Xpress-MP in all instances.

Table 6.4.1 Comparison of the best solutions obtained by TSBB and Xpress-MP for

medium size problems

TSBB X~ress-MP

Time to % Time to %
Best best deviation Best best deviation Solution

Best solution solution from best solution solution from best optimal?
T~e· m n Bound value value bound value value bound 'iln

c 5 100 1931.00 1931 0.79 0.00 1931 0.00 0.00 y

c 10 100 1402.00 1402 4.03 0.00 1402 6.00 0.00 Y

c 20 100 1243.00 1243 0.69 0.00 1243 1.00 0.00 Y

c 5 200 3456.00 3456 7.85 0.00 3456 4.00 0.00 Y

c 10 200 2806.00 2806 23.96 0.00 2806 233.00 0.00 Y

c 20 200 2391.00 2391 137.92 0.00 2391 871.00 0.00 ¥

d 5 100 6351.94 6353 702.54 0.02 6353 1571.00 0.02 Y

d 10 100 6335.03 6350 2581.01 0.24 6359 2453.00 0.38 n

d 20 100 6160.76 6222 574.74 0.99 6277 1385.00 1.89 n

d 5 200 12739.87 12743 5114.75 0.02 12746 4775.00 0.05 n

d 10 200 12422.19 12440 399.45 0.14 12460 122.00 0.30 n

d 20 200 12224.29 12280 3400.98 0.46 12318 5907.00 0.77 n

e 5 100 12681.00 12681 18.5 0.00 12681 84.00 0.00 Y

e 10 100 11577.00 11577 106.1 0.00 11577 327.00 0.00 Y

e 20 100 8423.77 8467 1942.65 0.51 8597 3751.00 2.06 n

e 5 200 24930.00 24930 30.81 0.00 24930 20.00 0.00 Y

e 10 200 23307.00 23307 110.83 0.00 23307 1156.00 0.00 Y

e 20 200 22376.28 22380 202.25 0.02 22658 75.00 1.26 n

Mean 0.13 0.37

130

A scan of table 6.4.1 also reveals that the TSBB algorithm tends to find

solutions of equally high quality or better and for most instances in

substantially shorter times, suggesting that TSBB is able to outperform the

Xpress-MP branch and bound solver for problems of this size and level of

difficulty. In order to substantiate this claim a comparison between the two

methods can be made by calculating the percentage gap from the best bound

as provided by Xpress during its solution attempts as detailed in columns 7

and 10 of the results table.

Across all 18 problems in this test set the mean % gap from the best bound

for TSBB is 0.13% compared to a mean % gap of 0.37% achieved by Xpress­

MP, representing a difference between the two means of 0.24%. This suggests

that TSBB performs better than Xpress-MP across this problem set. In order

to ascertain whether TSBB is significantly better than Xpress-MP statistical

significance tests have been conducted which consider each of the problem

types in isolation and also the problem set as a whole. Since the number of

data values available for these tests is small there seemed to be little

justification to make the assumption of normality with regard to the

distribution of the difference in the % gaps of TSBB and Xpress-MP for each

problem type. It was therefore necessary to consider a non-parametric test, in

this case the Wilcoxon signed rank test to test the hypothesis

Ho :M=O

where M is the median difference in % gap from the best bound of each of

the two methods. Table 6.4.2 gives the results of these significance tests for

each problem type in addition to the overall set of medium size problems. The

table gives a test statistic in column 2 calculated using the statistical software

package SPSS and column 3 gives a probability value indicating the two-tail

significance of the test statistic.

131

Table 6.4.2 Significance tests for the difference in % gap between TSBB and Xpress-MP

for best solutions from the medium size problem set.

Type Test statistic significance

c nla nla

d -2.02 0.043

e -1.34 0.18

all -2.366 0.018

There is no difference between the two methods for the type C problems

from this problem set since both are able to find the optimal solutions for all

six problems of this type. For the type D problems from this set the results of

the hypothesis test shows that at the 95 % confidence level TSBB is able to

obtain a significantly better quality of solution compared to Xpress-MP where

quality of solution is measured by the % gap from the best bound. When

considering the type E solutions in isolation there is no significant evidence to

suggest that the hypothesis Ho can be rejected at the 90 % confidence level

although when we consider the problem set as a whole we see that there is

sufficient evidence to suggest that TSBB is significantly better at finding high

quality solutions at the 95 % confidence level.

Section 6.2.1 described how each problem was solved by TSBB with 5

different tabu tenures and although there was some variance in the quality of

solution obtained with the different values the overall quality of solution

seemed to be reasonably good across the whole range. Table 6.4.3 compares

the average solution value for each problem across the five different values of

la with the best solution found by Xpress. Column 7 in table 6.4.3 now gives

the mean percentage gap from the best bound for the average of the five runs

of TSBB. The results show that for the solutions solved to proven optimality

by Xpress, TSBB was able to obtain the same optimal solution on all of the

five runs for each of these problems. For the remaining problems in this set

\32

---- ---------------------------------

the percentage gap from the best bound for the average solution value

obtained by TSBB was smaller than the percentage gap from the best bound

of the best solution obtained by Xpress in all cases. The overall mean

percentage gap for TSBB is therefore smaller than that of Xpress. If we repeat

the hypothesis tests using these new values we obtain the results in table 6.4.4

Table 6.4.3 Comparison of average solution value for TSBB over 5 runs with best

solution obtained by Xpress-MP for medium size problems.

TSBB XEress~MP
Average % %
lime to deviation Time to deviation

Average best from Best best from
Best solution solution best solution solution best

T:i~e m n Bound value value bound value value bound

c 5 100 1931.00 1931.00 0.80 0.00 1931.00 0.00 0.00

c 10 100 1402.00 1402.00 6.99 0.00 1402.00 6.00 0.00

c 20 100 1243.00 1243.00 0.70 0.00 1243.00 1.00 0.00

c 5 200 3456.00 3456.00 8.63 0.00 3456.00 4.00 0.00

c 10 200 2806.00 2806.00 91.81 0.00 2806.00 233.00 0.00

c 20 200 2391.00 2391.00 275.79 0.00 2391.00 871.00 0.00

d 5 100 6351.94 6353.00 1441.69 0.02 6353.00 1571.00 0.02

d 10 100 6335.03 6356.80 940.98 0.34 6359.00 2453.00 0.38

d 20 100 6160.76 6230.00 924.50 1.12 6277.00 1385.00 1.89

d 5 200 12739.87 12744.00 2499.42 0.03 12746.00 4775.00 0.05

d 10 200 12422.19 12445.20 268.49 0.19 12460.00 122.00 0.30

d 20 200 12224.29 12292.00 2680.01 0.55 12318.00 5907.00 0.77

e 5 100 12681.00 12681.00 175.74 0.00 12681.00 84.00 0.00

e 10 100 11577.00 11577.00 351.66 0.00 11577.00 327.00 0.00

e 20 100 8423.77 8475.60 689.33 0.62 8597.00 3751.00 2.06

e 5 200 24930.00 24930.00 39.88 0.00 24930.00 20.00 0.00

e 10 200 23307.00 23307.00 265.80 0.00 23307.00 1156.00 0.00

e 20 200 22376.28 22388.00 1584.69 0.05 22658.00 75.00 1.26

Mean 0.16 0.37

Clearly there is no significant difference in average solution quality for the

type C problems. For the type D and type E problems the results are identical

133

Solution
optimal?

y.'n

y

Y

Y

Y

Y

~

Y

n

n

n

n

n

Y

Y

n

Y

Y

n

to those presented in table 6.4.2. indicating that there is evidence to suggest

the performance of TSBB compared with Xpress-MP for this problem set

across the range of tabu tenures tested is significantly better.

Table 6.4.4 Significance tests for the difference in % gap for the average of 5 TSBB runs

and Xpress-MP for medium size problems

Type Test statistic significance

c nla nla

d -2.023 0.043

e -1.342 0.18

all -2.366 0.018

Considering the 5 TSBB runs, a measure of solution quality is given by

taking the average of the 5 solution values. If the average time taken to find

the 5 solution values is considered to be a measure of solution time, i.e. the

time taken to find the average solution value, then it seems fair to compare the

average solution time for TSBB with the solution time of the Xpress run. Such

a comparison shows that TSBB perform well particularly on the harder type D

and E problems, where in many cases the solution times are a fraction of those

for Xpress. Section 6.4.2 now considers the larger problem set.

6.4.2 Large size problem set

For the large size problems the time limits for each solution run were set at

10000 cpu seconds for problems where n = 400 and n = 900 and 50000cpu

seconds for n = 1600. Table 6.4.5 compares the best solutions obtained by

TSBB and Xpress-MP for the large size problems. The Xpress branch and

bound solver was only able to solve 2 out of the 27 problems in this set to

proven optimality and both of these optimal solutions were also found by

TSBB. In both of these cases TSBB was able to find the optimal solution in a

much shorter time than the Xpress solver. Of the remaining 25 problems in

this set Xpress was able to find a better objective function value for two of

these instances, both of which were type D problems. In all of the remaining

23 instances for this problem set TSBB was able to find objective function

134

values better than Xpress.

It is noticeable from the results presented in table 6.4.5 that in some

instances the time taken by Xpress to obtain its best solution value is

considerably shorter than the time taken for TSBB to find its best solution. In

everyone of these cases the objective function value of the best solution

found by TSBB is smaller than that found by Xpress. If the 12 instances

where this occurs are isolated, as presented in table 6.4.6, it can be seen that in

10 out of the 12 instances TSBB is able to find a solution at least as good in

shorter times. This behaviour in the Xpress branch and bound approach is

typical of how the branch and bound approach can struggle to find improving

solutions particularly for large and difficult problems. In large trees consisting

of many thousands of nodes the tree search process can spend large amounts

of time searching areas of the tree that subsequently turn out to be

unproductive. One of the objectives of the TSBB algorithm is to attempt to

overcome this issue by using tabu search memory structures and strategies to

guide the search towards areas of the solution space that the normal branch

and bound process may never reach. The results presented in this section

certainly seem to suggest that TSBB achieves reasonable success in achieving

this aim since it is able to find new improving solutions in stages of the search

where the branch and bound search cannot.

The mean percentage gap from the best bound for TSBB for the whole of

the large problem set is 0.14%, as detailed in table 6.4.5, and the

corresponding value for the solutions obtained by Xpress is 0.64%. As for the

medium size problem set the distribution of the difference between the

percentage gaps obtained by each method is used to provide a test of whether

there can be considered to be any significant difference between the two

approaches for solving problems of this size and type.

135

Table 6.4.5 Comparison of the best solutions obtained for TSBB and Xpress-MP for

large size test problems

Type

c

c

c

c

c

c

c

c

c

d

d

d

d

d

d

d

d

d

e

e

e

e

e

e

e

e

e

m n
Best

Bound

10 400 5597.00

20 400 4779.33

40 400 4243.04

15 900 11338.38

30 900 9979.12

60 900 9320.43

20 1600 18800.30

40 1600 17141.35

80 1600 16283.00

10 400 24957.38

20 400 24556.18

40 400 24348.00

15 900 55401.16

30 900 54830.23

60 900 54551.00

20 1600 97821.97

40 1600 97105.00

80 1600 97034.00

10 400 45746.00

20 400 44873.07

Best
solution
value

TSBB
Time to

best
solution

value

5597 58.62

4782 536.74

4245 156.17

11341 866.89

9989 3485.02

9331 1231.45

18805 4179.67

17150 3509.96

16289 48178.8

24976 656.17

24620 4901.229

24552 5650.05

55456 4443.55

55012 666.76

54785 3008.51

97906 6322.73

97328 31823.87

97449 33495.4

45746 240.27

44877 2175.536

40 400 44548.93 44609 3433.93

15 900 102419.27 102421 1560.29

30 900 100423.18 100430 8890.69

60 900 100119.91 100363 4962

20 1600 180642.64 180645 7697

40 1600 178286.69 178391 18579.62

80 1600 176792.84 177035 34624

Mean

%
deviation
from best

bound

0.00

0.06

0.05

0.02

0.10

0.11

0.02

0.05

0.04

0.07

0.26

0.84

0.10

0.33

0.43

0.09

0.23

0.43

0.00

0.01

0.13

0.00

0.01

0.24

0.00

0.06

0.14

0.14

Xpress-MP
Time to %

Best
solution
value

best deviation
solution from best
value bound

5597 255.00

4791 8819.00

4254 6054.00

11346 4869.00

9998 3975.00

9459 28.00

18811 13.00

17178 29.00

16729 47804.00

24983 12076.00

24668 5607.00

24574 4158.00

55461 2973.00

54979 8436.00

54963 41.00

97908 6476.00

97311 42646.00

97459 24017.00

45746 8293.00

45484 3951.00

45484 37.00

102686 163.00

101312 18.00

101954 6492.00

181060 30095.00

180071 17982.00

178727 840.00

0.00

0.24

0.26

0.07

0.19

1.49

0.06

0.21

2.74

0.10

0.46

0.93

0.11

0.27

0.76

0.09

0.21

0.44

0.00

1.36

2.10

0.26

0.89

1.83

0.23

1.00

1.09

0.64

The results for these tests are presented in table 6.4.7 and suggest that for

136

Solution
optimal?

y/n

y

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

y

n

n

n

n

n

n

n

n

the large type C problems there is a significant difference between the % gap

achievable by the two approaches at the 95% confidence level. The difference

between the quality of solutions obtained for the type D problems is not

significant but for the large type E problems the result suggests that the

difference between the % gaps is also significant at the 95% confidence level.

Table 6.4.6 Time taken by TSBB to find solutions at least as good as Xpress-MP

TSBB Xf!ress

Best

T~~e m n Bound ObjValue Time ObjValue Time

c 60 900 9320.43 9446 3.86 9459 28.00

c 20 1600 18800.30 18811 185.64 18811 13.00

c 40 1600 17141.35 17176 23.1 17178 29.00

c 80 1600 16283.00 16468 11.08 16729 47804.00

d 40 400 24348.00 24567 2397.87 24574 4158.00

d 15 900 55401.16 55461 1332.89 55461 2973.00

d 80 1600 97034.00 97449 33495.37 97459 24017.00

e 40 400 44548.93 45383 10.93 45484 37.00

e 15 900 102419.27 102571 13.2 102686 163.00

e 30 900 100423.18 101025 4.76 101312 18.00

e 40 1600 178286.69 179250 11.66 180071 17982.00

e 80 1600 176792.84 178631 37.85 178727 840.00

Considering the entire set of large problems suggests that TSBB is able to

produce significantly better results than the default Xpress branch and bound

solver for problems of this size and type since the result of the significance

test comparing the overall difference in the % gaps is significant at the 99%

confidence level.

137

Table 6.4.7 Significance tests for the difference in % gap between TSBB and Xpress-MP

for large problems.

Type Test statistic significance

c -2.2521 0.012

d -1.402 0.161

e -2.2521 0.012

all -4 0

As for the medium size set of problems the large problems were each run a

total of 5 times with the different values of the tabu tenure fa' The average

solution value for each problem over the 5 runs is presented in table 6.4.8 in

order to compare this value with the best solution obtained by the Xpress-MP

branch and bound solver. The average time taken to obtain the best solution in

each case is given in column 6 of the table. The average solution values

obtained across the five different values of fa compare favourably with the

best solutions found by Xpress, reinforcing the fact that the TSBB algorithm

performs well compared to Xpress branch and bound across this particular

range of values for fa'

The results of the significance tests in table 6.4.9 show that the difference

in % gap from the best bound of the 5 TSBB solutions for the type C and E

problems yields a significant test statistic at the 95% confidence level. There

is no evidence to suggest that there is any significant difference for the type

D problems however there is evidence to suggest that for all problems

combined TSBB is able to find better solutions on average for fa in the range

5 to 25 than Xpress at the 99% confidence level.

If the two problem sets are combined into one larger set of problems then

a comparison can be made of the overall effectiveness of TSBB compared

with the Xpress branch and bound approach.

138

Table 6.4.8 Comparison of average solution for TSBB over 5 runs with best solution

obtaiued by Xpress-MP for large size problems.

Type m

c 10

c 20

c 40

c 15

c 30

c 60

c 20

c 40

c 80

d 10

d 20

d 40

d 15

d 30

d 60

d 20

d 40

d 60

e 10

e 20

e 40

e 15

e 30

n

400

400

400

900

900

900

1600

1600

1600

400

400

400

900

900

900

1600

1600

1600

400

400

400

900

900

Best
Bound

5597.00

4779.33

4243.04

11338.38

9979.12

9320.43

18800.30

17141.35

16283.00

24957.36

24556.18

24346.00

55401.16

54830.23

54551.00

97821.97

97105.00

97034.00

45746.00

44673.07

44548.93

102419.27

100423.18

e 60 900 100119.91

Average
solution

value

5597.00

4782.20

4245.00

11341.40

9991.40

9333.60

18807.00

17151.80

16290.8

24977.60

24630.20

24563.60

55460.20

55008.6

54633.40

97918.20

97355.40

97500.20

45746.00

44693.40

44633.60

102421.00

100504.40

TSBB

Average
time to

best
solution

value

281.14

1336.68

1010.81

3444.62

1657.99

1763.68

4932.39

1091.61

26748.59

2346.78

5469.28

5040.72

5831.54

6671.97

2914.67

36113.54

27647.99

16064.41

426.09

1665.03

4562.97

2394.00

6544.70

e

•
e

20 1600 160642.64 160646.40 7729.54

40 1600 178286.69 178408.6 20299.16

60 1600 176792.84 177058.60 28657.66

Mean

139

%
deviation

from
best

bound

0.00

0.06

0.05

0.03

0.12

0.14

0.04

0.06

0.05

0.08

0.30

0.89

0.11

0.33

0.52

0.10

0.26

0.48

0.00

0.05

0.19

0.00

0.08

0.00

0.07

0.15

0.16

Xpress~MP

Best
solution
value

5597

4791

4254

11346

9998

9459

18811

17178

16729

24983

24666

24574

55461

54979

54963

97906

97311

97459

45746

45484

45464

102666

101312

Time to
best

solution
value

255.00

6819.00

6054.00

4669.00

3975.00

28.00

13.00

29.00

47804.00

12076.00

5607.00

4156.00

2973.00

8436.00

41.00

6476.00

42646.00

24017.00

6293.00

3951.00

37.00

163.00

16.00

101954 6492.00

161060 30095.00

180071 17982.00

176727 640.00

%
deviation

from
best

bound

0.00

0.24

0.26

0.07

0.19

1.49

0.06

0.21

2.74

0.10

0.46

0.93

0.11

0.27

0.76

0.09

0.21

0.44

0.00

1.36

2.10

0.26

0.89

1.83

0.23

1.00

1.09

Solution
optimal?

y/n

y

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

y

n

n

n

n

n

n

n

n

0.64

,

-----"

The results for these hypothesis tests are given in table 6.4.1 0 where it can be

seen that for all type C problems from the two problem sets the quality of

solution obtained by TSBB can be considered to be significantly better than

those obtained by Xpress at the 95% confidence level. For the type 0

problems the difference in the % gap of solutions obtained by the two

methods is also significant at the 95% confidence level and for the type E

problems the level of significance is 99%.

Table 6.4.9 Significance tests for the difference in % gap for the average of 5 TSBB runs

and Xpress-MP for large size problems

Type Test statistic significance

c -2.2521 0.012

d 0.35 0.726

e -2.2521 0.012

all -3.687 0

When considering all problems in the two sets combined TSBB appears to

significantly outperform branch and bound over all 45 test problems at the

99% level of significance. When considering all 45 problems the number of

observations is large enough for the test statistic to be considered

approximately distributed as a standard normal. Comparing the test statistic

value of -4.645 against the against a critical value of -2.57 confirms that the

difference between the two methods is highly significant.

Table 6.4.10 Significance tests for the difference in % gap between TSBB and Xpress-

MP for both test sets combined

Type Test statistic significance

c -2.2521 0.012

d -2.552 0.011

e -2.803 0.005

all -4.645 0

140

The results of these hypothesis tests reflect the perfonnance of the two

algorithms on the three different problem types. The type C problems are

relatively easy to solve and so the Xpress branch and bound solver was able to

handle these problems better than the harder type D and E problems thus

reducing the difference in solution quality between the two methods. The type

D problems were generally found to be the most difficult to solve for TSBB

and whilst it was able to outperfonn Xpress on many of these difficult

problems the degree to which it was able to find better solutions than Xpress

was less than that for the type E problems. The TSBB algorithm generally

performed better on the type E problems than the type D problems and was

able to obtain significantly better quality of solutions overall.

In the following section the TSBB algorithm will be compared with what

could be considered to be the most highly effective tabu search approach to

solving GAP and comparison of TSBB with the ejection chain tabu search

provides another good indication of the performance of the TSBB algorithm.

6.5 Comparison with Ejection Chain TS

A review of the ejection chain tabu search approach (Yagiura, et al. 2004)

is given in the literature review of chapter three of this thesis. Its application

to the medium and large size problems is highly effective and it is considered

to be a good indication as to the performance of the TSBB algorithm.

6.5.1 Comparison of the medium size test set

The first comparison of the two algorithms, both for these medium size

problems and in section 6.5.2 for the large size problems, considers the

objective functions of the best solution found by each method. Table 6.5.1

gives the values for both methods along with the respective % gap from the

best bound obtained from the Xpress-MP branch and bound solution runs. It is

noticeable from the results table that there is no difference between the two

141

methods for any of the type C problems. For the 12 type D and E problems

ECTS obtained solutions with a smaller % gap from the best bound in 5

instances. The mean difference for these 5 problems however is 0.13%. The

difference between the overall means for the % gap from the best bound is just

0.03%. In order to establish whether this difference is significant enough to

suggest that the ECTS is better at finding high quality solutions than TSBB

the hypothesis tests carried out in section 6.4 are applied here as well.

Table 6.5.1 Comparison of the best solution run obtained by TSBB and ECTS for the

medium size problem set.

TSBB Ejection Chain 15

% %
Best deviation Best deviation

Best solution from best solution from best
T~~. m n Bound value bound value bound

c 5 100 1931.00 1931 0.00 1931 0.00

c 10 100 1402.00 1402 0.00 1402 0.00

c 20 100 1243.00 1243 0.00 1243 0.00

c 5 200 3456.00 3456 0.00 3456 0.00

c 10 200 2806.00 2806 0.00 2806 0.00

c 20 200 2391.00 2391 0.00 2391 0.00

d 5 100 6351.94 6353 0.02 6353 0.02

d 10 100 6335.03 6350 0.24 6349 0.22

d 20 100 6160.76 6222 0.99 6206 0.73

d 5 200 12739.87 12743 0.02 12743 0.02

d 10 200 12422.19 12440 0.14 12440 0.14

d 20 200 12224.29 12280 0.46 12277 0.43

e 5 100 12681.00 12681 0.00 12681 0.00

e 10 100 11577.00 11577 0.00 11577 0.00

e 20 100 8423.77 8467 0.51 8436 0.15

e 5 200 24930.00 24930 0.00 24930 0.00

e 10 200 23307.00 23307 0.00 23307 0.00

e 20 200 22376.28 22380 0.02 22379 0.01

Mean 0.13 0.10

Table 6.5.2 gives the results for each problem type along with a result for

142

-_._------------

the entire problem set. There is no difference for the type C problems since

both methods are able to find the optimal solutions as found by the Xpress

branch and bound solver. For the type D problems alone the results suggest

that there is no significant difference between the two methods for solving this

type and size of problem since the value of the test statistic does not suggest

that there is evidence that the null hypothesis can be rejected. This result is

also true for the type E problems only. The test for all problem types of this

size considered together shows that there is some evidence at the 95%

confidence level to suggest that ECTS is able to find solutions with a smaller

% gap from the best bound compared with TSBB

Table 6.5.2 Significance tests for the best solution of TSBB and ECTS for medium size

problems.

Type Test statistic significance

c n/a n/a

d -1.604 0.109

e -1.342 0.18

all -2.023 0.043

The detailed results reported in (Yagiura, et al. 2004) give average

solution values for 5 runs of each problem. Table 6.5.3 compares the average

of these 5 runs with the average of the 5 runs performed by TSBB and table

6.5.4 give the results of tests with regard to whether the difference in the mean

% gap from the best bound is significant.

The results of the hypothesis tests presented in table 6.5.4 show that the

mean difference in the quality of the average solution values for each problem

are not significantly different for the type C and E problems although the

results for the type D problems seem to indicate that the average solution

values attainable by ECTS are significantly better than those from the TSBB

solutions at the 90% confidence level. This level of confidence increases to

95% for the entire problem set.

143

Table 6.5.3 Comparison of the average of 5 solution runs obtained by TSBB and ECTS

for the medium size problem set.

TSBB Ejection Chain TS

% %
Average deviation Average deviation

Best solution from best solution from best
T~E!e m n Bound value bound value bound

c 5 100 1931.00 1931.00 0.00 1931 0.00

c 10 100 1402.00 1402.00 0.00 1402 0.00

c 20 100 1243.00 1243.00 0.00 1243 0.00

c 5 200 3456.00 3456.00 0.00 3456 0.00

c 10 200 2806.00 2806.00 0.00 2806 0.00

c 20 200 2391.00 2391.00 0.00 2391 0.00

d 5 100 6351.94 6353.00 0.02 6353 0.02

d 10 100 6335.03 6356.80 0.34 6351.8 0.26

d 20 100 6160.76 6230.00 1.12 6210.6 0.81

d 5 200 12739.87 12744.00 0.03 12743.2 0.03

d 10 200 12422.19 12445.20 0.19 12441.6 0.16

d 20 200 12224.29 12292.00 0.55 12278.6 0.44

e 5 100 12681.00 12681.00 0.00 12681 0.00

e 10 100 11577.00 11577.00 0.00 11577 0.00

e 20 100 8423.77 8475.60 0.62 8438.4 0.17

e 5 200 24930.00 24930.00 0.00 24930 0.00

e 10 200 23307.00 23307.00 0.00 23307 0.00

e 20 200 22376.28 22388.00 0.05 22379 0.01

Mean 0.16 0.11

The evidence would seem to suggest that the ECTS algorithm is able to

outperform TSBB for this problem set although it would seem that this is

largely due to the difference between the solutions for the type D problems

which were the hardest of the three problem types for TSBB. For the type C

and E problems the results suggest that there is little or no difference between

the two methods of problems of medium size.

144

---- --

Table 6.5.4 Hypothesis test results for the difference of 5 solutions runs for each

problem by TSBB and ECTS

Type Test statistic significance

c nla nla

d -1.826 0.068

e -1.342 0.18

all -2.201 0.028

6.5.2 Comparison of the large size test set

The results given in the previous section indicated that TSBB was

competitive compared to the ECTS method for the types C and E problems of

medium size and the results that follow seem to indicate that this is indeed the

case for the large problems also. Table 6.5.5 details the solution values for the

large set of problems along with the % gap from the best bound found by the

Xpress-MP branch and bound solver. The results of the hypothesis tests given

in table 6.5.6 suggest that the ECTS performs better than the TSBB method

for this problem set. There are however some positive aspects of the

performance of TSBB for this problem set. Ofthe 27 problems ECTS is able

to find better solution values for 19 out of the 27, ofthe remaining 8 problems

TSBB is able to match the solutions found by ECTS for 3 instances and for

the other 5 problems TSBB is able to find better solutions than ECTS. Of the

5 instances where TSBB was able to improve on the best solutions found by

ECTS, I instance was for a type C problem and the remaining 4 were type E

problems. The I type C problem was in fact the largest of the 9 sizes of

problem and for the type E problems improved solution values were found

across all three values for n.

The results presented in table 6.5.7 give a comparison of the average of 5

solution runs for each problem instance.

145

Table 6.5.5 Comparison of the best solution run obtained by TSBB and ECTS for the

large size problem set.

TSBB Ejection Chain T8

% %
Best deviation Best deviation

Best solution from best solution from best
T~~e m n Bound value bound value bound

c 10 400 5597.00 5597 0.00 5597 0.00

c 20 400 4779.33 4782 0.06 4782 0.06

c 40 400 4243.04 4245 0.05 4244 0.02

c 15 900 11338.38 11341 0.02 11340 0.01

c 30 900 9979.12 9989 0.10 9984 0.05

c 60 900 9320.43 9331 0.11 9328 0.08

c 20 1600 18800.30 18805 0.02 18803 0.01

c 40 1600 17141.35 17150 0.05 17147 0.03

c 80 1600 16283.00 16289 0.04 16291 0.05

d 10 400 24957.38 24976 0,07 24974 0.07

d 20 400 24556.18 24620 0.26 24604 0.19

d 40 400 24348.00 24552 0.84 24456 0.44

d 15 900 55401.16 55456 0.10 55425 0.04

d 30 900 54830.23 55012 0.33 54983 0.28

d 60 900 54551.00 54785 0.43 54656 0.19

d 20 1600 97821.97 97906 0.09 97867 0.05

d 40 1600 97105.00 97328 0.23 97160 0.06

d 80 1600 97034.00 97449 0.43 97097 0.06

e 10 400 45746.00 45746 0.00 45746 0.00

e 20 400 44873.07 44877 0.01 44882 0.02

e 40 400 44548.93 44609 0.13 44579 0.07

e 15 900 102419.27 102421 0.00 102422 0.00

e 30 900 100423.18 100430 0.01 100438 0.01

e 60 900 100119.91 100363 0.24 100177 0.06

e 20 1600 180642.64 180645 0.00 180647 0.00

e 40 1600 178286.69 178391 0.06 178311 0.01

e 80 1600 176792.84 177035 0.14 176856 0.04

Mean 0.14 0.07

These average values follower a similar pattern to the one observed when

146

'--------------------------------------- -- - - - - -- - -

----- ---

analysing the best of the 5 solution runs for each problem. The results of the

hypothesis tests detailed in table 6.5.8 reach the same conclusions as the tests

conducted for the difference in % gap for the best solutions also. In 4

instances the average of the 5 different runs for TSBB the average solution

values are smaller than the average of the 5 solution values from the ECTS

runs. Whilst this is not sufficient to be able to say that TSBB performs better it

does indicate that in certain situations there are some instances where TSBB

will perform as well as, or even better than ECTS. Since ECTS is known to

outperform most other algorithms for these types and sizes of problems it is

encouraging that the TSBB algorithm is able to surpass this performance in

some circumstances. A significant point of note is that the 5 TSBB runs were

implemented with five different settings of the tabu tenure reinforcing the

observation that the algorithm is particularly robust across this range of

settings.

Table 6.5.6 Hypothesis test for the difference in the % gap for best solution values from

the large size problems.

Type Test statistic significance

c -1.859 0.063

d -2.666 0.008

e -1.12 0.263

all -3.686 0

In the following section 6.6 the TSBB algorithm will be assessed against

several other algorithms reported in the literature to be reasonably successful

at solving the two problems sets which have been used to assess TSBB.

147

- - - -------------------------------------

Table 6.5.7 Comparison of the average of 5 runs by TSBB and ECTS for the large size

problem set.

TSBB Election Chain T8

% %
Average deviation Average deviation

Best solution from best solution from best
T~E· m n Bound value bound value bound

c 10 400 5597.00 5597.00 0.00 5597 0.00

c 20 400 4779.33 4782.20 0.06 4782.4 0.06

c 40 400 4243.04 4245.00 0.05 4244.6 0.04

c 15 900 11338.38 11341.40 0.03 11340.4 0.02

c 30 900 9979.12 9991.40 0.12 9984.6 0.05

c 60 900 9320.43 9333.60 0.14 9329 0.09

c 20 1600 18800.30 18807.00 0.04 18803.2 0.02

c 40 1600 17141.35 17151.80 0.06 17147.4 0.04

c 80 1600 16283.00 16290.8 0.05 16292.4 0.06

d 10 400 24957.38 24977.60 0.08 24976.4 0.08

d 20 400 24556.18 24630.20 0.30 24609 0.22

d 40 400 24348.00 24563.60 0.89 24461.2 0.46

d 15 900 55401.16 55460.20 0.11 55433.4 0.06

d 30 900 54830.23 55008.6 0.33 54908.8 0.14

d 60 900 54551.00 54833.40 0.52 54666.6 0.21

d 20 1600 97821.97 97918.20 0.10 97872.4 0.05

d 40 1600 97105.00 97355.40 0.26 97166 0.06

d 80 1600 97034.00 97500.20 0.48 97103 0.07

e 10 400 45746.00 45746.00 0.00 45746 0.00

e 20 400 44873.07 44893.40 0.05 44883.4 0.02

e 40 400 44548.93 44633.60 0.19 44584.6 0.08

e 15 900 102419.27 102421.00 0.00 102423 0.00

e 30 900 100423.18 100504.40 0.08 100440.6 0.02

e 60 900 100119.91 100375.40 0.26 100181.2 0.06

e 20 1600 180642.64 180646.40 0.00 180647.4 0.00

e 40 1600 178286.69 178408.6 0.07 178313.2 0.01

e 80 1600 176792.84 177058.80 0.15 176862.8 0.04

Mean 0.16 0.07

148

Table 6.5.8 Hypothesis test for the difference in the % gap for the average of 5 runs for

the large size problems.

Type Test statistic significance

c -2.047 0.041

d -2.524 0.012

e -2.214 0.027

all -3.949 0

6.6 Comparison with other Heuristics

In the two previous sections a detailed comparison of the results and

performance of the TSBB algorithm with firstly a commercial integer

programming branch and bound soLver and secondly with the ejection chain

tabu search approach. This section provides analysis and comparison of the

TSBB algorithm with several other heuristic approaches that have been

applied to the two problem sets for GAP. The first of these comparisons in

section 6.6.1 compares the TSBB with 9 alternative algorithms that have all

been tested on the medium size problem set while section 6.6.2 compares

TSBB with 4 other approaches whose performance has been tested on the

large problem set.

6.6.1 Comparison of alternative algorithms for medium size

problems

The TSBB algorithm is compared with 9 other heuristics for the medium

size problems and the solution values for each of these is given in table 6.6.1

where solution vaLues in boLd type indicates the best soLution found out of all

the methods. The values for the 9 heuristics are taken from resuLts reported in

(Yagiura, et al. 2006), where the problems with n = LOO were limited to L50

seconds of soLution time and the probLems with n = 200 were limited to 300

seconds of solution time. In order to make a fair comparison the values for

149

TSBB were taken from the best solution runs with the same time limits. The 9

other heuristic methods are:

• Path relinking with ejection chains (PREC) (Yagiura, et al. 2006)

• Ejection chain tabu search (ECTS) (Yagiura, et aI. 2004)

• Two branching variable depth search methods (BVDS-I and BVDS-j)

(Yagiura, et aI. 1998)

• A variable depth search method due to Yagiura (VDS) (Yagiura,

Yamaguchi et aI. 1999)

• A variable depth search approach by Racer and Amini (RA) (Amini

and M. Racer. 1994)

• A tabu search approach Laguna et al (LK GG) (Laguna, et aI. 1995)

• A genetic algorithm approach due to Chu and Beasley (CB) (Beasley

and P. C. Chu. 1997)

• The tabu search method by Diaz and Fernandez (DF) (Diaz and E.

Fernandez.2001).

Although a detailed comparison for TSBB with ECTS has already been

presented in section 6.5 this was performed with the longer time limits as

detailed in that section. The best bound for each problem given in table 6.6.1

is the one found by Xpress-MP during its longer run as specified in section

6.4. The summary of results in table 6.6.1 show that the results obtained by

TSBB in this short time limit compare very favourably against all of the other

heuristics for these much shorter runs with regard to the actual solution

values. In keeping with the results presented in sections 6.4 and 6.5 the % gap

from the best bound has been calculated for each algorithm in order to make a

fair comparison and are detailed in table 6.6.2. The comparisons made in

sections 6.4 and 6.5 were carried out using t-tests for the difference in % gaps

between two methods. In order to make comparisons between these multiple

methods it is more appropriate to use ANOVA analysis in order to determine

significant differences between approaches.

150

Table 6.6.1 Solution values of the different heuristics for the medium size problems.

Best
Tvpe m n bound TSBB PREC EelS BVDS-I BVOS-! VDS RA LKGG CB OF

5 100 1931.00 1931 1931 1931 1931 1931 1931 1938 1931 1931 1931

10 100 1402.00 1402 1402 1402 1402 1403 1402 1405 1403 1403 1402

20 100 1243.00 1243 1243 1243 1244 1244 1246 1250 1245 1244 1243

c
5 200 3456.00 3456 3456 3456 3456 3457 3457 3469 3457 3458 3457

10 200 2806.00 2806 2807 2806 2609 2808 2809 2835 2812 2814 2807

20 200 2391.00 2391 2391 2392 2401 2400 2405 2419 2396 2397 2391

5 100 6351.94 6355 6353 6357 6358 6362 6365 n.a 6386 6373 6357

10 100 6335.03 6366 6356 6356 6367 6370 8360 6532 6406 6379 6355

20 100 6160.76 6254 6211 6221 6275 6245 6284 6428 6297 6269 6220

o
5 200 12739.87 12745 12744 12748 12755 12755 12778 n,a 12788 12796 12747

10 200 12422.19 12449 12438 12446 12460 12473 12496 12799 12537 12601 12457

20 200 12224,29 12332 12269 12284 12440 12318 12335 12665 12436 12452 12351

5 100 12681.00 12681 12681 12682 12681 12682 12665 12917 12687 n.s 12681

10 100 11577.00 11577 11577 11577 11565 11599 11565 12047 11641 n.s 11561

20 100 8423.77 8488 8444 8443 8499 8484 8490 9004 6522 n.s 8460

E
5 200 24930.00 24930 24930 24930 24942 24933 24948 25649 25147 n.s 24931

10 200 23307.00 23307 23310 23307 23346 23348 23340 24717 23587 n.s 23318

20 200 22376.28 22380 22379 22391 -,2",24"7,,-5 __ -,,22,,4,,,37,-- 22452 24117 22659 n_a 22422

The difference in performance between the algorithms, measured by %

gap from the best bound, is assessed for each of the three problem types and

also for the entire set of 18 problems combined. The ANOV A tables for each

of these four situations are given in table 6.6.3. and clearly show that there is a

significant difference between the mean % gap of at least two of the methods

for each of the problem types and for the whole set of problems. In order to

identify which of the methods differ significantly from others Tukey's method

is used to create pairwise confidence intervals and thus identify which

methods are significantly better than others.

151

- --

Table 6.6.2 % gap from the best bound for the 9 comparative heuristics.

Best

Type m n bound TSBB PREC EClS BVDS", BVDS-! VDS RA LKGG CB OF

c

o

E

5 100 1931.00

10 100 1402.00

20 100 1243.00

5 200 3456.00

10 200 2806.00

20 200 2391.00

Mean

o

o

o

o

o

o

o

o

o

o

o

o

o

o 0

0.036 0

o 0.042

0.006 0.007

5 100 6351.94 0.048 0.017 0.08

10 100 6335.03 0.489 0,331 0.363

20 100 6160.76 1.513 0.815 0.978

5 200 12739.87 0.04 0.032 0.048

10 200 12422.19 0.216 0.127 0.192

20 200 12224.29 0.881 0.366 0.488

Mean 0.531 0.261 0.356

5 100 12681.00 0 0 0.008

10 100 11577.00 0 0 0

20 100 8423.77 0.763 0.24 0.228

5 200 24930.00 0 0 0

10 200 23307.00 0 0.D13 0

20 200 22376.26 0.017 0.012 0.006

Mean 0.13 0.044 0.05

Overall Mean 0.22 0.111 0.138

o

o

0.08

o

0.107

0.418

0.101

0.095

0.505

1.854

0.119

0.465

1.765

0.801

o

0.069

0.893

0.048

0.167

0.441

o

0.071

0.08

0.029

0.071

0.376

0.105

0.158

0.552

1.367

0.119

0.409

0.767

0.562

0.008

0.19

0.715

0.012

0.176

0.271

o 0.363 0 0

o 0.214 0.071 0.071

0.241 0.563 0.161 0.06

o

o

o

0.029 0.376 0.029 0.058 0.029

0.107 1.033 0.214 0.285 0.036

0.586 1.171 0.209 0.251 0

0.16 0.62 0.114 0.124 Ml1

0.200 n.s 0.536 0.331 0.0&

0.71 3.109 1.12 0.694 0.315

2 4.338 2.211 1.757 0.002

0.299 n.s 0.378 0.441 0.056

0.594 3.033 0.924 1.439 0.28

0.906 3.605 1.732 1.863 1.037

0.786 3.521 1.15 1.086 0.455

0.032 1.861 0.047 n.s 0

0.069 4.00 0.553 n.B 0.035

0.786 6.888 1.166 n.s 0.43

0.072 2.864 0.87 n.s 0.004

0.142 6,05 1.116 n.a 0.047

0.336 7.779 1.263 n.s 0.204

0.27 0.229 0,24 4.92 0,838 n.s 0.12

0.39 0.298 0.395 2.956 0.7 0.606 0.195

The results show that the TSBB algorithm is significantly better than RA

for each of the three problem types and for the whole of the problem set. The

confidence level of these tests was set at 9S % and shows that TSBB is at

least as good as 8 out of the 9 other heuristics in terms of quality of solution

for this set with these time limits and performs significantly better than RA in

these circumstances.

152

Table 6.6.3 ANOV A tables for difference in %gap of the 9 methods for medium size

problems.

Type C
Source OF SS MS F P
Method (ind) 9 1.8254 0.2028 7.42 0.000
Error 50 1.3661 0.0273
Total 59 3.1915

Type D
Source OF SS MS F P
Method (ind) 9 34.887 3.876 11. 68 0.000
Error 48 15.930 0.332
Total 57 50.817

Type E
Source OF SS MS F P
Method (ind) 8 119.579 14.947 21. 91 0.000
Error 45 30.700 0.682
Total 53 150.279

Al.l
Source OF SS MS F P
Method (Tot) 9 105.895 11. 766 16.25 0.000
Error 162 117.268 0.724
Total 171 223.163

Further analysis of these results also shows that there are no significant

differences between 8 of the 9 algorithms in terms of quality of solution and

the only method which performs significantly worse than the others is the RA

method. The results of a similar analysis for the large set of test problems is

now presented in section 6.6.2.

6.6.2 Comparison of alternative algorithms for large size

problems

There are fewer methods in the literature that have been tested on the large

set of test problems and so the comparison is restricted to 4 alternative

algorithms in this instance. These are the path relinking with ejection chain,

branching variable depth search, the tabu search LKGG and the Diaz and

Fernandez tabu search. No comparison is given here with the ejection chain

tabu search since this has already been given in section 6.5.

153

Table 6.6.4 Solution values of the different heuristics for the large size problems.

Best

Type m n bound TSBB PREC BVDS LKGG DF

10 400 5597.00 5597 5597 5605 5608 5598

20 400 4779.33 4782 4782 4795 4792 4786

40 400 4243.04 4245 4245 4259 4251 4248

15 900 11338.38 11341 11341 11368 11362 n .•

C 30 900 9979.12 9989 9984 10022 10007 n .•

60 900 9320.43 9331 9328 9386 9341 n .•

20 1600 18800.30 18805 18803 18892 18831 n .•

40 1600 17141.35 17150 17145 17262 17170 n .•

80 1600 16283.00 16289 16289 16380 16303 n .•

10 400 24957.38 24976 24969 25032 25145 25039

20 400 24556.18 24620 24587 24780 24872 24747

40 400 24348.00 24552 24417 24724 24726 24707

15 900 55401.16 55456 55414 55614 56423 n .•

D 30 900 54830.23 55012 54868 55210 55918 n .•

60 900 54551.00 54785 54606 55123 55379 n .•

20 1600 97821.97 97906 97837 98248 100171 n .•

40 1600 97105.00 97328 97113 97721 99290 n .•

80 1600 97034.00 97449 97052 98146 98439 n .•

10 400 45746.00 45746 45746 45878 172185 45781

20 400 44873.07 44877 44879 45079 137153 45007

40 400 44548.93 44609 44574 44898 63669 44921

15 900 102419.27 102421 102422 102755 463142 n .•

E 30 900 100423.18 100430 100434 100956 527451 n.'

60 900 100119.91 100363 100169 100917 479650 n .•

20 1600 180642.64 180645 180646 181143 936609 n .•

40 1600 176266.69 176391 178302 179036 1026259 n .•

80 1600 176792.84 177035 176857 178205 1026417 n .•

Table 6.6.4 gives the solution values for each of the 5 algorithms. The

results for TSBB are the best of the five solution runs as detailed in section 6.4

whilst the solution values for the other 4 algorithms are those reported in

(Yagiura, et at. 2006) .

154

Table 6.6.5 % gap from the best bound for the 5 comparative heuristics.

Best

T~~8 m n bound TSBB PREC BVOS LKGG OF

10 400 5597.00 0 0 0.1429337 0.1965339 0.0178667

20 400 4779.33 0.055915 0.055915 0.3279198 0.2651495 0.1396088

40 400 4243.04 0.0460887 0.0460887 0.3760405 0.1874966 0.1167927

15 900 11338.38 0.0231342 0.0231342 0.2612636 0.2083459 n.a

C 30 900 9979.12 0.0989958 0.0488911 0.4296862 0.2793724 n.a

60 900 9320.43 0.1134311 0.0812438 0.7035328 -96.34137 n.a

20 1600 18800.30 0.0249996 0.0143615 0.4877582 0.1632953 n.a

40 1600 17141.35 0.0504651 0.0212958 0.7038558 0.167142 n.a

80 1600 16283.00 0.0368482 0.0368482 0.5957133 0.1228275 n.a

Mean 0.0499864 0.0364198 0.4476338 -10.52791 0.0914227

10 400 24957.38 0.0746194 0.0465716 0.299002 0.7517739 0.3270498

20 400 24556.18 0.2598792 0.1254935 0.9114462 1.2860973 0.7770605

40 400 24348.00 0.8378512 0.2833908 1.5442747 1.5524889 1.4744538

15 900 55401.16 0.0989939 0.0231832 0.3841865 1.8444448 n.a

0 30 900 54830.23 0.3315205 0.0688916 0.6926352 1.9838938 n.a

60 900 54551.00 0.4289564 0.1008231 1.0485601 1.5178457 n.a

20 1600 97821.97 0.0859022 0.0153659 0.4355169 2.401333 n.a

40 1600 97105.00 0.2296483 0.0082385 0.6343649 2.2501416 n.a

80 1600 97034.00 0.4276851 0.0185502 1.1459901 1.4479461 n.a

Mean 0.3083396 0.0767232 0.7884418 1.6706628 0.8595213

10 400 45746.00 0 0 0.2885498 276.39356 0.0765094

20 400 44873.07 0.0087486 0.0132056 0.4589072 205.64654 0.2984547

40 400 44548.93 0.1348412 0.0562759 0.7835661 42.919259 0.8351947

15 900 102419.27 0.0016858 0.0026622 0.3277963 352.202 n.a

E 30 900 100423.18 0.0067916 0.0107747 0.530575 425.22834 n.a

60 900 100119.91 0.2428026 0.049035 0.7961391 379.07556 n.a

20 1600 180642.64 0.0013061 0.0018597 0.2769885 418.48722 n.a

40 1600 178286.69 0.0585083 0.0085887 0.4202852 475.6229 n.a

80 1600 176792.84 0.1369717 0.0362889 0.7987632 480.5761 n.a

Mean 0.0657395 0.0198545 0.5201745 339.57239 0.4033863

Overall mean 0.1413552 0.0443325 0.5854167 110.23838 0.4514435

155

As with all previous results the % gap from the best bound has been

calculated and these are summarized in table 6.6.5. These values are once

again used to perform a comparison of the alternative algorithms with an

ANOVA analysis to identify significant differences between the quality of

solution obtained by each using the % gap from the best bound as the

indicator of performance. The ANOV A tables have been calculated for each

of the three problem types for this large set as well as an ANOVA table

comparing the entire set of problems. These results are summarized in table

6.6.6. There are no reported results for the DF algorithm for problems where

n = 900 and n = 1600 .

Table 6.6.6 ANOV A tables for difference in %gap of the 5 methods for large problems.

Type C

Source DF SS MS F P
Method 4 1.0095 0.2524 24.85 0.000
Error 34 0.3453 0.0102
Total 38 1. 3548

Type D
Source DF SS MS F P
Method 4 13.484 3.371 24.83 0.000
Error 34 4.616 0.136
Total 38 18.099

Type E
Source DF SS MS F P
Method 4 797254 199313 41. 42 0.000
Error 34 163608 4812
Total 38 960861

All
Source DF SS MS F P
Method 4 267740 66935 8.80 0.000
Error 112 851672 7604
Total 116 1119412

The ANOV A tables clearly show that there is a significant difference

between at least two of the algorithms and so further pair wise comparisons

156

are performed using Tukey's method to identify which of the algorithms differ

significantly. The analysis shows that the % gaps for the type C and D

solutions found by TSBB are significantly better at the 95% confidence level

than both the LKGG algorithm and the BVDS algorithm. The results also

indicate that the TSBB performs better on the type E problems than LKGG as

it does for the entire set of large problems. The results also indicate that the %

gaps for the TSBB solutions form the best bound are at least as good as those

for PREC and DF. Although the comparison between TSBB and DF is not

significantly different it should be noted that DF only provides solutions for

three problems of each type with n = 400 and the mean % gap over all

problems sizes for TSBB for each type is lower than that of DF for the

problems with n = 400 indicating the ability of TSBB to find better solutions

thanDF.

6.7 Summary

This chapter has given a detailed description of the computational

experimentation and presented detailed results of the experimentation. The

functionality of the different aspects of the algorithm have been analysed and

an explanation of its parameter settings given. The performance of the

algorithm has been assessed in detail by comparing the results obtained during

computational testing on two sets of benchmark test problems with those

obtained by the branch and bound solver in the Xpress-MP software and other

high quality heuristic algorithms that have been reported in the literature. By

measuring the quality of performance of an algorithm by comparing the % gap

between the solution value and the best bound found by the Xpress solver

statistical tests of significant differences have been conducted. The TSBB

algorithm appears to work effectively at solving a range of problems of

differing size and difficulty, some of which prove to be highly challenging to

even the most powerful of heuristic approaches. Whilst TSBB clearly is able

to outperform the default branch and bound strategy of Xpress for these two

sets of test problems the detailed comparison with the ejection chain tabu

157

search shows this to be very difficult to outperform. Encouragingly TSBB is

able to find improved solutions compared to those found by ECTS on some

large and difficult problems. The ANOV A analysis presented in section 6.6

shows that the TSBB algorithm is able to significantly outperform some of the

alternative algorithms both on the medium size problems with short running

times and also for the larger problems with longer run times. The results of

this analysis also show that none of the alternative algorithms are able to

significantly outperform TSBB with any degree of confidence suggesting that

TSBB is at least as good as all the alternative algorithms under these

circumstances. Noticeably algorithm PREC seems to perform particularly well

on the type D problems due to the importance it places on the diversification

aspect of the search. Yagiura et. al (Yagiura, et a!. 2006) give some

experimental results that indicate that the distance between locally optimal

solutions for the type D problems are further apart than those for type C and E

problems and so the strong diversification element of PREC attempts to

overcome this.

158

7 Conclusions and discussion

The research presented in this thesis has described the development of a

hybrid approach to solving the generalized assignment problem (GAP). GAP

is one of a class of combinatorial problems that are known to be NP-Hard and

as a result solution approaches for solving it have been widely researched

within the OR community over the last thirty years due to its theoretical

importance. Its importance is further enhanced since GAP is used to model a

variety of real world applications as described in chapter 2. During this thirty

year period some of these practical situations that can be modelled by GAP

have become larger, more complex and thus much harder to solve. Also

during this time there have been considerable developments in approaches for

solving GAP and other combinatorial optimization problems and so much

larger and more difficult instances of GAP have been generated and used as

benchmark test instances for the ever more powerful heuristic and meta­

heuristic approaches that have been developed including Genetic Algorithms,

Tabu Search and Simulated Annealing. More recently however researchers

have attempted to combine different methods in order to construct even more

powerful hybrid methods and as described earlier this is the approach taken

during this research. The focus of the discussion in this chapter is firstly on

the motivation, development and performance of the TSBB algorithm and

secondly section 7.2 is devoted to suggestions for further work and research.

7.1 TSBB development and performance

A key aspect of the hybrid TS/Branch and Bound algorithm, developed

during this research and presented in chapter 5, is to search the solution space

of the problem by identifying promising regions of that space, generating sub­

problems to represent the smaller more focused region and then solving the

sub-problem prior to defining a different sub-region to be examined during the

next iteration of the algorithm. The tabu search aspect ofthe algorithm is used

to generate these sub-regions using both recency and frequency based memory

159

structures. This approach of generating sub-problems as a means of obtaining

solutions to large and difficult problems has been applied in a number of ways

by taking advantage of the structure of GAP. This is possible due to the fact

that GAP can be viewed as a series of related Knapsack or Assignment

problems and whose relevance to the GAP has been described in chapter 2.

This divide and conquer approach has been adopted quite successfully in

some methods although the increase in difficulty with modest increase in the

sizes of GAP instances proves testing even for the appropriate sub-problems.

Another successful approach has been to relax some of the problem

constraints in order to generate an infeasible solution and then for feasibility

to be restored in a heuristic manner. This approach is indeed central to the

conventional branch and bound method which generates LP relaxations to

perform a tree search in order to identify integer feasible solutions. In this

respect TSBB takes advantage of the structure of GAP since the solution to

the LP relaxation contains a large number of binary assignments to variables

leaving a relatively small number of infeasible fractional assignments of

values to variables and TSBB takes advantage of this in the short-term phase

of the algorithm to generate integer feasible solutions. All of these and other

approaches to solving GAP have been comprehensively reviewed in chapter 3.

One advantage to the TSBB method is that it utilises a commercial

mathematical programming software application, the Xpress-MP solver, to

implement the standard branch and bound aspect of the algorithm. There are

alternative mathematical programming software applications that could be

used to implement TSBB and indeed these modern solvers tend to be very

powerful and sophisticated implementations of mathematical programming

techniques. The Xpress-MP software provides the facility to interact with the

branch and bound solver in order to customize approaches to different

problem types whilst also providing a highly effective set of default settings

which are able to solve a wide variety of problems. In-built into the software

are a set of libraries that can be called from within the user's own program

160

which provides a high degree of flexibility for the programmer. This has been

important in terms of implementation of the TSBB algorithm since it has been

coded in C thus allowing the generated sub-problems to be easily called from

within the program at the relevant stages of the algorithm. This ease of

implementation is considered to be a positive aspect of the TSBB algorithm.

There are three phases to the TSBB algorithm that perform separate tasks

and yet are integrative in the sense that they must work together in order to be

successful in finding good integer solutions. The short-term phase of the

algorithm moves from one integer solution to a neighbouring solution by

means of dropping assignments from the current solution and then adding new

assignments to the resulting partial solution in order to produce a new

solution. The dropping of assignments from the current solution is achieved

by solving a linear relaxation with an added tabu constraint and is

advantageous in that it is quickly and easily achieved by a caU to Xpress once

the relaxed LP problem has been formulated from within the program. The

integer assignments that occur naturally within the resulting solution are then

fixed and another call to Xpress generates a new integer solution. The

objective of this short term phase is to look for good integer solutions with the

intention of

a) Improving the objective function value of the best solution found

during the search since this will assist the intensification phase of the

algorithm by providing a cut-off value which is intended to reduce the

amount of effort spent searching the region identified for the

intensification phase and

b) Providing the frequency memory with information about attributes that

tend to be found in good integer solutions so that the intensification

phase can focus its search in an attempt to find solutions containing

such assignments.

The results presented in chapter 6.3 are evidence of the fact that the short-term

phase does achieve both of these objectives very well in most situations since

161

many new improving best solutions are found during this search phase even

during the latter stages of the time allowed for solving the problem. This is in

contrast to the performance of the standard branch and bound approach of

Xpress-MP which tends to reduce the gap between the best integer solution

and the best bound early on in the solution process but can then be drawn into

large unproductive areas of the branch and bound tree where it fails to

improve the solution any further, which is particularly evident in the larger

and harder type D and E problems.

The intensification phase of the TSBB algorithm is in keeping with the

standard tabu search strategy of using frequency based memory in order to

identify promising solution attributes that can then be incorporated into a

more focused search on regions of the solution space where these solution

attributes occur. The frequency based memory employed within TSBB is a

long term memory structure that is driven by the short-term phase of the

algorithm and is used to generate sub-problems where the integer feasible

solution space contains only integer solutions that have assignments that are

contained in a very high proportion of the integer solutions found during the

short-term phases of the search. These regions are easily identified from the

frequency based memory and are just as easily implemented by the addition of

a constraint to the sub-problem that is given to Xpress to solve. This more

focused search can then be performed using the standard branch and bound

approach and in keeping with this strategy a cut off value is given to the

solver as a result of improvements made during the short-term phase in order

to further reduce the computational effort in searching this region. An

additional aspect to this intensification phase is that as the search progresses

the number of assignments that appear in a high proportion of the total

number of integer solutions reduces. This could be perceived as the area to be

searched by branch and bound is growing in size since the restriction on

assignments that must be contained in any new integer solution is fewer. As

this occurs however it is usual that the objective function value of the best

162

~---.-- -- -- -- -- --

solution is at such a level that it becomes extremely difficult to find any

further improving solutions and in such situations fixing fewer assignments

during the intensification phase could in fact be advantageous as it allows

more scope for the introduction of new assignments. This could effectively be

viewed as a widening of the intensification search area similar in fact to the

variable neighbourhood approach which tends to widen the search when there

is no improvement to be found within the current neighbourhood. The results

presented in section 6.3 show once again that this strategy does appear to

work quite effectively as solutions are improved during intensification across

all the three different types of problem and also across the different sizes of

problem although its effect does seem to diminish for the very large very

difficult instances.

The third phase ofthe algorithm is the diversification phase and whilst this

once again follows a fairly straight forward tabu search strategy that uses

frequency based memory in order to guide the search to new and unexplored

areas of the solution space its role is still an important aspect of the algorithm.

This is once again easily implemented by means of the addition of a tabu

constraint to the original problem. This restricted problem is once again given

to Xpress to solve and the first integer solution found during the tree search is

accepted as the new solution for the next short-term phase of the algorithm.

Since the purpose of the tabu constraint is to exclude assignments from the

next solution it is less restrictive than both the short-term and intensification

sub-problems and as such an integer solution is usually found quite quickly by

Xpress, the timing of this phase therefore has not been a practical issue.

Whilst the aim of this phase of the search is not to find an improving solution

its strategic importance cannot be overlooked and its contribution in terms of

guiding the search to areas of the solution space where the possibility of new

improvements can be made is crucial to the overall performance of the

algorithm. There is evidence of its success in terms of achieving this guidance

in the search profiles of some of the problems presented in section 6.3. This

163

can be seen in the periods of time where there is no improvement in the best

solution and then a new period of improving solutions are found by the short

term phase. Since the solution found during diversification is used to

implement the next short-term phase then such an occurrence is due to the

move to a new region by means of diversification.

In section 6.3 detailed results of a comparison of TSBB with the Xpress­

MP branch and bound solver on two sets of benchmark test problems are

presented. Analysis of these results clearly shows that the TSBB strategy used

to guide the branch and bound aspect does indeed lead to areas of the solution

space that the standard branch and bound approach would otherwise not

encounter. The objective function values of the best obtainable solutions by

TSBB generally tend to be lower than those found by the Xpress solver. By

focusing the search based on information gained from previous integer

feasible solutions the neighbourhoods defined by the subsequent sub-problems

tend to be more fruitful than the areas of the branch and bound tree that are

chosen to be searched by the default settings of the Xpress software. In the

instances where Xpress is able to obtain optimal solutions to a problem TSBB

is also able to find the optimal solution in every case and usually in

significantly shorter periods of time than Xpress. By using the % gap from the

best bound found by the Xpress solver as a measure of the quality of the

solution found by each method it was possible to confirm, by testing whether

there was any difference between the mean % gap ofthe two approaches, that

TSBB is significantly better than Xpress at solving the types and sizes of the

GAP instances contained within the two sets of benchmark problems. These

results also reinforce the fact that the memory structures utilised within the

different phases of the TSBB algorithm are effective at exploiting the solution

space and defining sub-trees that provide high quality solutions.

In section 6.4 further comparisons were made with an ejection chain tabu

search approach that is widely accepted as one of the most effective tabu

164

search approaches for solving the instances of GAP from the two sets of test

problems. This situation provided a much tougher test of the quality of

solution found by TSBB although the comparison shows that TSBB is quite

competitive across the range of problems. The significance tests for the

medium size problems show that when considering each of the three problem

types in isolation TSBB is able to match the quality of solution found by

ECTS although when considering the test set as a whole there is evidence to

show that ECTS can outperform TSBB for this problem set. There are

however 2 problem instances, one of type D and one of type E, where ECTS

is able to find a solution significantly better than those found by TSBB.

Removal of these two problems would suggest that the difference between the

two methods is much less significant.

The significance tests for the large problems indicate that ECTS can

indeed outperform TSBB for this set of test problems. Further examination of

the objective function values for this set of results indicate that in general

TSBB is able to find solutions with objective function values close to those

obtainable by ECTS and in some instances is able to find solutions with better

objective function values than those found by ECTS. It could be argued

therefore that for some instances TSBB will outperform ECTS and on this

basis TSBB should be considered as a valid approach to apply to these types

and sizes of problem particularly in view of its ease of implementation and

utilisation of existing commercially available software.

The final set of comparisons in section 6.6 also give a good indication that

TSBB can be competitive against a range of different approaches that have

been developed and reported in the literature in recent years. In contrast to the

comparisons of 6.4 and 6.5 a comparison with alternative algorithms with a

much shorter time limit is performed. The results of these comparisons show

that TSBB is competitive against all ofthe other algorithms and can therefore

be considered as a valid approach for solving large hard instances of GAP

165

over longer time periods as well as shorter ones.

The TSBB algorithm developed during this research and presented here in

this thesis has practical relevance since it has been shown to perform well on

benchmark instances of varying size and difficulty and there is evidence to

show that it is extremely competitive with regard to the quality of solutions

obtained. TSBB also has theoretical relevance since it shows how it is

possible to use tabu search memory structures to guide a standard branch and

bound process by defining neighbourhoods that are represented by sub­

problems that can be passed to an existing commercial solver to be solved,

and that using the default settings can produce high quality solutions. Chapter

six also shows how the different tabu search strategies are effectively

integrated and co-operate with each other to search the solution space

effectively. With regard to implementation tabu search restrictions are applied

by means of tabu constraints which use the information stored in the memory

structures to define the sub-problems and hence the region of the solution

space where the next phase of the search should be focussed. The following

section 7.2 now presents some suggestions for further work that may be

carried out in order to develop the hybrid approach and its applications.

7.2 Further work

There are two aspects to the development of the TSBB algorithm. The first

is the development of the algorithm itself to perhaps include additional

strategies that may, after additional experimentation, provide scope for

developing some aspects ofthe algorithm. The second aspect presented in this

chapter gives consideration to the suitability and application of TSBB to

extensions to the GAP problem.

7.2.1 Algorithm development

Whilst this research has produced a hybrid tabu search and branch and

bound algorithm and performed considerable experimentation and testing on

large and difficult sets of benchmark test problems to assess its effectiveness

166

for solving these types of problem it is thought that there remains some scope

for developing additional and perhaps slightly more sophisticated memory

structures and strategies that may enhance the algorithm in some way.

Essentially TSBB uses both a short term recency memory and a longer term

frequency memory in order to guide the search process towards regions of the

solution space that may prove productive with regard to identifying new

improved best solutions. This strategy seems to work quite effectively as has

been discussed in chapter 6. With some of the largest and most tightly

constrained problems however the regions defined by the sub-problems

generated by reference to the memory structures can still prove extremely

challenging to solve within reasonable time limits. One approach to tackling

this situation might be to embed a separate heuristic to further guide the

branch and bound search within the region of such a sub-problem. This could

involve fixing still more assignments in a heuristic manner to narrow the sub­

region further or, as is suggested by Glover in Tabu Search part II (Glover.

1990), using separate tabu memory structures at different levels of the search

which can then be purged and discarded when the search moves up a layer.

For example suppose that during the search process a sub-problem has been

defined by fixing a large number of assignments according to the appropriate

memory structure, this could be defined to be a top level problem. Prior to

attempting to solve the sub-problem new tabu memory structures could be

initialized that are considered to be one level down from the top level and

apply only to the search of the region defined by the sub-problem. An attempt

to solve this sub-problem during the specified time limit using either the

branch and bound solver or some other heuristic approach similar to the short­

term phase of TSBB, or intensification within the sub region can be made.

When the search returns to the top level following its attempt to solve the sub­

problem the memory structures created for searching the previous sub­

problem can then be discarded. This approach might involve searching down

to several layers which would require corresponding levels of tabu memory

and so consideration of how such a layered approach might be implemented

167

- -----.---

could be of interest to this approach.

An alternative form of memory that may be of interest might be to record

the frequency of assignments appearing in an elite solution list containing the

best n solutions say. This information could then be used as a means of

implementing an alternative intensification strategy for example.

The implementation of TSBB has used the default settings of Xpress-MP

for the branch and bound aspect of the algorithm and it may be interesting to

adjust some of these settings either dynamically within the search process or

statically prior to attempting to solve problems of different types and sizes and

perhaps the structure of the problem could be further exploited in doing so.

As well as adapting TSBB by means of differing strategies with regard to

its implementation a further aspect that would be worthy of further

investigation would be to attempt to apply TSBB to extensions of the GAP

problem and this is discussed in the following section.

7.2.2 Application to extensions of GAP

The generalized assignment problem with special ordered sets of type 2

extends the standard GAP problem by replacing the binary variables

xij E (0,1) with 0 S; xij S; 1. With reference to GAP where each job must be

allocated entirely to one agent the special ordered set of type 2 allows each job

to be split between two agents providing that they are adjacent in some way.

The special ordered sets of type 2 were first introduced by Beale and Tomlin

(Beale, TomIin 1970) and then further developed by Beale and Forrest (Beale

and J. J. H. Forrest. 1976). The TSBB strategy of fixing the value of variables

that satisfy feasibility and occur naturally in the solution of the LP relaxation

could also be employed in the problem with these special ordered sets. This

would still allow sub-regions of the solution space to be defined that could

then be passed to the Xpress-MP solver to be solved. Since the Xpress solver

168

--.--

also has the capability to solve problems with special ordered sets of type two

this would assist with ease of implementation. Implementation of the tabu

structures, both short and long-term, could prove to be more challenging since

it would now be necessary to consider pairs of variables to include or exclude

during the short term phase and also the frequency with which jobs are split

between adjacent variables in the longer term for intensification and

diversification purposes.

The approach therefore would also prove interesting and challenging by

extending the special ordered sets aspect. In the original GAP the assignment

constraints have a right hand side value of I which can be split between two

adjacent variables in GAPS2. If the right hand side of the assignment

constraints were constrained to have value k say, where k is some integer

greater than or equal to I then this might provide additional challenges.

7.2.3 Application to other non-GAP problems

One area of future research that may prove interesting and challenging

would be to attempt to solve other types of non-GAP combinatorial

optimization problems. It is evident from the research reported in this thesis

that the GAP suits the approach taken in terms of the structure of the problem.

This may not necessarily be the case with other types of problem and may

therefore require additional strategies, for example with regard to determining

the problem variables to fix in order to generate the sub-regions that represent

the neighbourhoods and in terms of generating relevant tabu search memory

structures that can be used in order to formulate suitable tabu constraints to be

added to the problem.

169

--

Appendix: C code for Algorithm TSBB
/********************************Include Files*************************/
#include<stdlib.h>
#include<math.h>
#include<limits.h>
#include<stdio.h>
#include "xprs.h"
#include<time.h>
#include<ctype.h>
#include<string.h>
!***/
void init x(char *fname);
void XPRS:CC intsol{XPRSprob my-probl void *my_object);
void XPRS_CC getRsol(XPRSprob my-prob, void *my_object)i
void get Total(void):
void alloc mem(void);
void drop_x(char *fname);
void add drop con(void};
void solve IPR(char *fname};
void fix (void);
void update T(void);
void upctate-Ta(voidli
void relax T(void)i
void add T-con(void):
void add-Ta con (void);
void get-x(void):
void update Tt(void);
void intensIfy(char *fname);
void diversify(char *fname):
void init LP{char *fname):
1*************************Global
Variables**1
int m, n, iter=O, **T, *Tstatus, t, **Ta, *Tastatus, ta, *TL, s=O, tlim:
double Total~O, subTotal=O, elapsed=O;
double *x, *xnew, *xlp, *xbest, z, znew, zIp, zbest:
clock t start,end:
XPRSprob lP, LP;
char *resfile;
1**1
1*****************************Main***1
int main(int argc, char *argv(J)

int i, j, mipstatus, lpstatus;

m=atoi(argv[l});
resfile=argv{ 4 J;
tlim=atoi(argv[7}):

n=atoi(argv(2):
t=atoi(argv[5)):

start=clock(): Ilstart the clock
alloc_mem(): Ilallocate memory to arrays

Ilgenerate initial solution
init x(argv(31);
init=LP(argv[3})i

ta=atoi{argv(6]):

/Icheck for integer solution
XPRSgetintattrib(IP,XPRS_MIPSTATUS,&mipstatus):

if(mipstatus==4)llif an integer solution has been found
{

Ilget the solution and objective function value
XPRSgetsol(IP,x,NULL,NULL,NULL):
XPRSgetdblattrib(IP,XPRS_MIPOBJVAL,&z):

update_TL(};
++s;

/!update frequency memory
Ilincrease number of integer solutions found

XPRSdestroyprob(IP):
do{llmain loop

170

for(i=O:i«int) (n/m):++i)//short term phase
{

//drop assignments
drop_x(argv[3]):

//check feasibility
XPRSgetintattrib(LP,XPRS LPSTATUS,&lpstatus):
if(lpstatus!=l)//relaxation infeasible
{

//overide tabu status
dol

relax_T () :
drop x (argv{3):

xPRsgetintattrib(LP~XPRS_LPSTATUS,&lpstatus):

}while(lpstatus!=l);
//until relaxed solution found

}
//get relaxed solution and objective function
XPRSgetsol(LP,xlp,NULL,NULL,NULL) ;
xPRSgetdblattrib(LP,XPRS_LPOBJVAL,&zlp):

//sve the basis
XPRSwritebasis(LP,"",""):

Ilupdate tabu add memory
update Ta () ;
//XPRSdestroyprob(LP):

/Igenerate and solve restricted integer problem
solve_IPR(argv[3):

I/check feasibility
XPRSgetintattrib(IP,XPRS MIPSTATUS,&mipstatus);
if(mipstatus==4 I I mipstatus==6)
I/integer solution found
{

//get solution and objective value
XPRSgetsol(IP,xnew,NULL,NULL,NULL):

xPRSgetdblattrib(IP,XPRS_MIPOBJVAL,&Znew):

get Total ()://update total time
update_T():llupdate tabu drop memory

Ilupdate current solution and objective value
for(j=O:j<m*n:++j) { x[j]=xnew[j]: }
z=znew:

if(z<zbest)llif new best solution found
{
xPRSgetsol(IP,xbest,NULL,NULL,NULL);

zbest=z:

XPRSdestroyprob(IP):
update TL()://update frequency memory
++s:llupdate number of integer solutions

else//if no integer solution found
{

get x():llget relaxed solution
XPRSdestroyprob(IP):

ll/end of short term phase

intensify(argv[3]l://perform intensification

/Icheck feasibility
XPRSgetintattrib(IP,XPRS MIPSTATUS,&mipstatus):
if(mipstatus==4 I I mipstatus==6)

171

)

Ilif new best solution found
{

Ilupdata best solution
XPRSgetsol(IP,xbest,NULL,NULL,NULL);
XPRSgetdblattrib(IP,XPRS_MIPOBJVAL,&zbest);

Ilrecord new solution
xPRsgatsol(IP,xnew,NULL,NULL,NULL);
XPRSgatdblattrib{IP,XPRS MIPOBJVAL,&znew);

XPRSdestroyprob(IP); -

update_T(};llupdate tabu drop memory

Ilupdate current solution and objective valua
for(j=O:j<m*n:++j){ x[j]=xnew[j]: }
z=znew;

update_TL();llupdate frequency memory
++s:llupdate number of integer solutions

else / /if no new best solution found
{

XPRSdestroyprob(IP);
diversify(argv[3]);llperform diversification

Ilcheck feasibility
XPRSgetintattrib(IP,XPRS MIPSTATUS,&mipstatus);
if(mipstatus==4 I I mipstatus==6)
(llif diversified solution found

Ilupdate new and current solutions
XPRsgetsol(IP,xnew,NULL,NULL,NULL);

xPRSgetdblattrib(IP,XPRS_MIPOBJVAL,&znew);
update T();
for (j=O:j<m*n:++j) (x[j]=xnew[j): }
z=znew:

XPRSdestroyprob{IP):

get Total():llupdate elapsed time
}while{Total<tlim):llend of main loop

else if(mipstatus==5)llif problem is integer infeasible
{

printf ("problem is integer infeasible\n"):

else if(mipstatus==6}llif solution is optimal
{

printf ("optimal integer solution found\n");

XPRSdestroyprob{LP);

Ilfree memory
XPRSfree () ;
free (xnew) ;
free(TL);

return 1;

free(x);
free(xbest):
free(Tstatus);

free(xlp);
free(T): free(Ta);
free(Tastatus):

1**1
void solve_IPR(char *fname)
{

int status;

Ilinitialize problem
XPRScreateprob(&IP);
XPRSsetintcontrol(IP,XPRS OUTPOTLOG,O);
XPRSreadprob(IP, fname, "I");
XPRSsetintcontrol{IP,XPRS SOLUTIONFILE,O);
XPRSsetintcontrol(IP,XPRS-PRESOLVE,O);
XPRSsetintcontrOl{IP,XPRS=MIPLOG,-100);

172

//function to record integer solution
XPRSsetcbintsol(IP,getRsol,NULL):
//set time limit
XPRSsetintcontrol(IP,XPRS MAXTIME,-60);
//fix assignments -
fix () :
//add tabu constraints
add Ta con () :
/ /solve
XPRSreadbasis (lP, fname, "");
XPRSminim(IP, "g"):

/**/
void alloc_mem(void)
{

int i:
FILE *fp:

x=calloc(m*n,sizeof(double»;
xnew=calloc(m*n,sizeof(double)) 1
xlp=calloc(m*n,sizeof(double));
xbest=calloc(m*n,sizeof(double»;
T=malloc(sizeof(int*)*t);
for(i=O;i<t;++i)
{

T[ij=calloc(l,sizeof(int»;

Tstatus=calloc(t,sizeof(int» ;

Ta=malloc(sizeof(int*)*ta);
for(i=O:i<ta;++i)
{

Ta[i]=calloc(l,sizeof(int»;

Tastatus=calloc(ta,sizeof(int»;

TL=calloc(m*n,sizeof(int»:

if «fp=fopen (resfile, "a")) ==NULL)
{

printf("Cannot open file!! \n");
exit(l):

fprintf (fp, "t=%d\tta=%d\n", t, tal :
fclose (fp);
zbest=XPRS_PLUSINFINITY;

/**/
void update_TL(void)
{

int i;

for(i=O;i<m*n;++i)
{

if(x[i]>1.0-l.OE-09)
{

++TL[ij;

/**/
void diversify(char *fname)
{

int i, j=O, *mclind, mstart[2j,status;
double *dmatval, rhs[l], f=O.O;
char qrtype[l]i

//array to store column indices
mclind=calloc(m*n,sizeof(int»:
//array to store matrix values
dmatval=calloc(m*n,sizeof(double»:

173

Ilinitialize problem
XPRScreateprob(&IP);
XPRSsetintcontrol(IP,XPRS OUTPUTLOG,l);
XPRSreadprob (IP, fname, "l ");
XPRSsetintcontro1(IP,XPRS PRESOLVE,O);
XPRSsetintcontrol(IP,XPR~MAXTIME,l);

Ilanalyse frequency memory
dol

j=O;
for(i=O:i<m*n;++i)
I

if(TL[i]<=f*s)
I

mclind[j]=i;
dmatval [j j =1. 0;
++j;

}
£=f+0.1;

)while (j<m);

Iladd diversifying constraint
if(j>O)
I

mstart[Oj=O; mstart(l)=j;
rhs[O]=m;
qrtype [0) ='G';

XPRSaddrows (IP, l,j,qrtype,rhs,NULL,mstart,mclind,dmatval);

XPRSminim(IP, "g"l; Ilsolve

free (mclind) ; free (dmatval) ;

1**1
void intensify(char *fname)
I

int i, j=O, *mindex, status;
double *bnd, f=1.0;
char *qbtype;

FILE *fp;

Ilinitialize arrays
mindex=calloc{n,sizeof(int»;
bnd=calloc(n,sizeof(double»;
qbtype=malloc(sizeof(char)*n) ;

Ilinitialize problem
XPRScreateprob(&IP);
XPRSsetintcontrol(IP,XPRS OUTPUTLOG,l);
XPRSreadprob (lP, fname, "1 ");
XPRSsetintcontrol(IP,XPRS PRESOLVE,O);
XPRSsetintcontrol (IP, XPRS MIPLOG, -1000);

XPRSsetdblcontrol{IP,XPRSIMIPABSCUTOFF,zbest-O.9999);
XPRSsetintcontrol(IP,XPRS-MAXTIME,-120);
Ilfunction to record integer solutions
XPRSsetcbintsol(IP,intsol,NULL);

//identify bounds to be fixed
dol

j=O;
for (i=O;i<m*n;++i)
I

if(xbest[ij>1.0-1.OE-09 && TL[i]>=f*s)
I

mindex[j]=i;
bnd[j]=1.0;
qbtype [j] =' B ';
++j;

174

}

}
£=£-0.1:

}while(f>=O.l && j<=O);

Iladjust size ef arrays
mindex=realloc(mindex,sizeof(int)*j):
bnd=realloc{bnd,sizeof(double)*j):
qbtype=realloc(qbtype,sizeof(char)*j):

I/fix bounds
if{j>O)
(

XPRSchgbounds(IP,j,mindex,qbtype,bnd):

if ((fp=fopen (res file, "an» ==NULL)
{

printf("Cannot open file!! (function intsol) \n");
exit (1);

fprintf(fp,"int,%d\n",j):
fclose(fp);
XPRSminim(IP, "g"); / /solve

Ilcheck feasibility
XPRSgetintattrib(IP,XPRS MIPSTATUS,&status):
if(status==4 I I status==6)//if new best solution found
(

//update current and best solutions
XPRSgetdblattrib{IP,XPRS MIPOBJVAL,&z):
xPRsgetdblattrib(IP,XPRS:MIPOBJVAL,&zbest);
xPRSgetsol(IP,x,NULL,NULL,NULL)i
XPRSgetsol(IP,xbest,NOLL,NULL,NULL)i

free (mindex) i free (bnd); free (qbtype);

/**/
void get_x(void)
(

}

int i;

for(i=O;i<m*n;++i)
(

if(x[i]>1.O-1.OE-09 && xlp[i]>1.0-1.OE-09)
{

else
{

x[iJ=1.0;

x[iJ=O.O;

/**/
void relax_T(void)

int i;

for(i=t-l;i>=O;--i)
(

if(T[i] [OJ>O && Tstatus[i]>l)
(

--Tstatus[i];
break;

else if(T[i] (0»0 && Tstatus[i)==l)
(

T[i1=realloc(T[i],sizeof(int»;
T{i} [O}=O;
Tstatus[i]=O;

175

breaki

/**/
void update_T(void)
(

}

int if j;

for(i=t-lii>O;--i)
{

}

T{i] {0]=T[i-1] [0];
T(ij=rea11oc (T(il, sizeof(int) *T(ij (0)+1);
for(j=l;j<=T[ij [O];++j)
{

T[i] [j]=T[i-1] [j];

Tstatus[i]=Tstatus[i-l];

T[O] [OleO;
for (i=O;i<m*n;++i)
(

}

if(xnew[i]>=1.0-1.0E-09 && x[i]<1.0-1.0E-09)
{

++T[O] [0];
T [O]=realloc (T [DJ, sizeof (int) * (T [0) [0])+1):
T[O][T[O][O]]-i;

Tstatus(O]::::T(O] [0];

/**/
void update_Ta(void)
(

int i, j;

for(i=ta-l;i>O;--i)
{

}

Ta[i] [0] =Ta [i-1] [O};
Ta (i] =realloc (Ta [i), sizeof (int) *Ta [i] [0] +1) ;
for(j=l;j<=Ta(i] (01:++j)
{

Ta[i] [j]=Ta[i-1] [j];
}
Tastatus[i]=Tastatus(i-l];

Ta[O] [0]=0;
for(i=Oii<m*n;++i)
(

}

if(xli}>1.0-1.0E-09 && xlp[ij<=1.D-l.DE-D9)
{

++Ta [0] [0];
Ta [0] =realloc {Ta {DI, sizeof (int) * (Ta [0) [0]) +1) i
Ta[O] [Ta[O] [0]]=i;

Tastatus[Oj=Ta[O] [OJ;
}
/**/
void fix (void)
(

int i, j=O, *mindex;
double *bnd:
char *qbtype;
FILE *fPi

//intialize arrays
mindex=calloc(n,sizeof(int»;
bnd=calloc(n,sizeof(double»);
qbtype=malloc(sizeof(char)*n);

176

//identify variables to be fixed
for (i=O;i<m*n;++i)
(

if(x[i]>l.O-l.OE-09 && xlp[i]>l.O-l.OE-09)
(

mindex[j]=i;
bnd[j]=1.0;
qbtype[j]='S' ;
++j;

//resize arrays
mindex=realloc(mindex,sizeof(int)*j);
bnd=realloc(bnd,sizeof(double)*j);
qbtype=realloc(qbtype,sizeof(char)*j);

//fix bounds on variables
if (j>O)
(

XPRSchgbounds(IP,j,mindex,qbtype,bnd);

if ((fp=fopen (res file, "a"» ==NULL)
{

printf ("Cannot open file!! (function intsol) \nn);
exit(l);

fprintf (fp, "st, %d\n", j) i
fclose (fp);
free(mindex); free(bnd); free(qbtype);

/**/
void drop_x(char *fname)
(

int i, rows, mindex[l];

XPRSgetintattrib(LP,XPRS ROWS,&rows);
if (rows>rn+n) -
(

for (i=m+nii<rows; ++i)
(

mindex[O]=ii
XPRSdelrows(LP,l,mindex);

/*XPRScreateprob(&LP)i
XPRSsetintcontrol(LP,XPRS OUTPUTLOG,l)i

if (XPRSreadprob (LP, fname, "fi') ! =0)
(

exit (1);

XPRSsetintcontrol{LP,XPRS PRESOLVE,O)i*/
//XPRSsetdblcontrol(Lp,XP~S_MIPABSCUTOFF,zbest-O.9999) i

//add the drop constraint
add_drop_con(J i

//add the tabu constraint
add T con () i
//solve
XPRSminim(LP, "");

/**/
void init_LP(char *fname)
(

//initialize the problem
XPRScreateprob(&LP):
XPRSsetintcontrol(LP,XPRS_OUTPUTLOG,O);
XPRSreadprob (LP, fname, "1 ");

XPRSsetintcontrol(LP,XPRS_PRESOLVE,O);

177

Ilsolve
XPRSminim(LP, "");

1**1
void add_Ta_con(void)

}

int i, j, k=O, mstart[2], *mclind;
double *dmatval, rhs[l];
char qrtype [1] :

Ilinitialize arrays
mclind=calloc(n,sizeof(int»:
dmatval=calloc(n,sizeof(douole»;

Iladd constraint
for(i=Oii<ta:++i)
{

for (j=1: j<=Ta (i1 [0] ; ++j)
{

}
if(k>O)
{

mc1ind[k]=Ta[i] (j]:
dmatval [k]=!. 0;
++k:

mstart (01=0; mstart (lj=k:
rhs[O]=(double) (Tastatus[i]-l):
qrtype[O]='L' :

XPRSaddrows(IP,l,k,qrtype,rhs,NULL,mstart,mclind,dmatvaI):

k==O:

free (mclind) : free (dmatval) ;

1**1
void add_T_con(void)

}

int i, j, k=O, mstart(2), *mclind:
double *dmatval, rhs[1]:
char qrtype [1]:

Ilinitialize arrays
rnclind=calloc(n,sizeof(int»;
dmatva!=calloc(n,sizeof(double»:

Iladd constraint
for(i=O;i<t;++i)
{

for(j=l:j<=T[i] [0] :++j)
{

}
if (k>O)
{

mclind[k]=T[i] [j]:
dmatval (k]=l. 0;
++k:

mstart[O]=O: mstart[l]=k:
rhs(O)=(double)Tstatusti);
qrtype[O)='G' ;

XPRSaddrows(LP,l,k,qrtype,rhs,NULL,rnstart,rnclind,drnatva1);
}
k~O;

free (mclind): free (drnatval):

1**1
void add_drop_con(void)
{

178

int i, j=O, *mclind, mstart[2];
double *dmatval, rhs[l];
char qrtype[l];

//initialize arrays
mclind=calloc(n,sizeof(int»:
dmatval=calloc(n,sizeof(double»:

//add constraint
for(i=Oii<m*n;++i)
(

}
if (j>O)
(

if(x[i]>1.O-1.OE-09)
(

mClind[j]=i;
dmatval[j]=l.O;
++j;

mstart[O]=O; mstart(l]=j;
rhs[O]=j-l;
qrtype[O]='L' ;
XPRSaddrows(LP,l,j,qrtype,rhs,NULL,mstart,mclind,dmatvall;

free(mclind}; free(dmatval};

/**/
void get_Total (void)
(

end=clock();//(double)tcurr)/CLOCKS_PER SEC;

if (end<start)
(

else
(

elapsed=(double) «(INT_MAX-start)+(INT_MAX+end»/CLOCKS_PER_SEC;

elapsed=(double) (end-start)/CLOCKS_PER_SEC;

Total=Total+elapsed;
start=clock();//«double)tcurr)/CLOCKS_PER SEC;//start the clock

/**/
void init_x(char *fname)
(

int i, j, status;

//initialize the solver
XPRSinit (NULL);

//initialize the problem
XPRScreateprob{&IP);
XPRSsetintcontrol(IP,XPRS_OUTPUTLOG,l);
XPRSreadprob (lP, fname, "1");
XPRSsetintcontrol(IP,XPRS_PRESOLVE,O);

XPRSsetintcontrol(IP,XPRS MIPLOG,-1000);
/*XPRSsetcbintsol(IP,intsol~NULL);*/

XPRSsetintcontrol(IP,XPRS_MAXTIME,l);
XPRSsetcbintsol(IP,intsol,NULL)i//record integer solution

//solve
XPRSminim(IP,"g");

//check feasibility
xPRSgetintattrib(IP,XPRS MIPSTATUS,&status);
if (status==4 I I status==6)
(I/if feasible solution found

//update solution
XPRSgetsol(IP,xbest,NOLL,NULL,NULL);

179

XPRSgetdblattrib(IP,XPRS_MIPOBJVAL,&zbest);

}
/**/
void XPRS_CC getRsol{XPRSprob my-prob, void *my_object)

}

FILE *fp;

XPRSgetsol(IP,xnew,NULL,NULL,NULL);
XPRSgetdblattrib(IP,XPRS_MIPOBJVAL,&znew);

get_Total();
if ((fp=fopen (res file, "a"» ==NULL)
{

printf ("Cannot open results file (function Rsol) !! \n");
exit(l);

if (znew<zbest)
{

fprintf (fp, "%f\t%d\tsterm\n", Total, (int) znew);

fclose (fp) ;

/**/
void XPRS_CC intsol(XPRSprob my-prob, void *my_object)
{

}

FILE *fp;
double obj;

XPRSgetdblattrib(IP,XPRS_MIPOBJVAL,&Obj);

get Total();
if «fp::fopen (resfile, "a"» ==NULL)
{

printf("Cannot open file!! (function intsol) \n");
exit(l);

if (obj<zbest)
{

fprintf (fp, "%f\t%d\tintensify\n", Total, (int) obj);

fclose (fp);

1*** ***********************/

180

Bibliography

Amini,M.M. and Racer, M., 1995. A hybrid heuristic for the generalized

assignment problem. European Journal o/Operational Research, 87, pp. 343-

348.

Amini,M.M. and Racer, M., 1994. A rigorous computational comparison of

alternative solution methods for the generalised assignment problem.

Management Science, 40, pp. 868-890.

Balachandran,V., 1976. An integer generalized transportation model for

optimal job assignment in computer networks. Operations Research, 24(4),

pp. 868-890.

Beale,E.M.L. and Forrest, J.J.H., 1976. Global Optimization using special

ordered sets. Mathematical Programming, 10(1), pp. 52-69.

Beale, E.M.L. and Tomlin, J.A., 1970. Special facilities in a general

mathematical programming system for non-convex problems using ordered

sets of variables. J. LAWRENCE, ed. In: 5th International Conference on

Operational Research. 1970, Tavistock Publications pp447-454.

Beasley,J.E. and Chu, P.C., 1997. A Genetic Algorithm for the generalised

assignment problem. Computers and Operations Research, 27, pp. 17-23.

Budenbender,K., Grunert, T. and Sebastian, H., 2000. A Hybrid Tabu

SearchlBranch-and-Bound Algorithm for the Direct Flight Network Design

Problem. TRANSPORTATION SCIENCE, 34(4), pp. 364-380.

Cattrysse,D.G., Degraeve, Z. and Tistaert, J., 1998. Solving the generalized

assignment problem using polyhedral results. European Journal 0/
Operational Research, 108, pp. 618-628.

Dammeyer, F. and Voss, S., 1993 . Dynamic Tabu list management using the

reverse elimination method. Annals 0/ Operations Research, 41, pp. 31-46.

181

Danna,E., Rothberg, E. and Le Pape, C., 2005. Exploring relaxation induced

neighbourhoods to improve MIP solutions. Mathematical Programming,

A(102), pp. 71-90.

Diaz,J.A. and Femandez, E., 2001. A Tabu search heuristic for the generalized

assignment problem. European Journal of Operational Research, 132, pp. 22-

38.

Dorigo, M. and Di Caro, G., 1999. The ant colony optimization meta­

heuristic. In: F. GLOVER, ed, New Ideas in Optimization. McGraw-Hill, .

Fischetti,M. and Lodi, A., 2003. Local Branching. Mathematical

Programming, B(98), pp. 23-47.

Fisher,M.L. and Jaikumar, R., 1981. A Generalized Assignment Heuristic for

Vehicle Routing. Networks, 11, pp. 109-124.

Fisher,M.L., Jaikumar, R. and Van Wassenhove, L.N., 1986. A Multiplier

Adjustment Method for the Generalized Assignment Problem. Management

Science, 32(9), pp. 1095.

Foulds,L.R. and Wilson, J.M., 1997. A variation of the generalized

assignment problem arising in the New Zealand dairy industry. Annals of

Operations Research, 69, pp. 105-114.

Garey, M.R. and Johnson, D.S., 1979. Computers and Intractability. A Guide

to the Theory ofNP-Completeness. W.H.Freeman and Company. San

Francisco: .

Gavish,B. and Pirkul, H., 1985. Efficient algorithms for solving

multiconstraint zero-one knapsack problems to optimality. Mathematical

Programming, 31, pp. 78-105.

182

Gilmore,P.C. and Gomory, R.E., 1966. The theory and computation of

knapsack functions. Operations Research, 14(5), pp. 1045-1074.

Glover, F., 1997. A template for scatter search and path relinking. In: 1.K.

Hao, E. Lutton, E. Ronald, M. Schoenauer and D. Snyers, eds, Lecture Notes

in Computer Science. 1363 edn. Springer, pp. 13-54.

Glover,F., 1989. Tabu Search-PartI. ORSA Journal on Computing, 1(3), pp.

190-205.

Glover,F., 1986. Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers and Operations Research, 13(5), pp. 533-549.

Glover,F., 1977. Heuristics for Integer Programming Using Surrogate

Constraints. Decision Sciences, 8(1), pp. 156-166.

Glover,F., 1990. Tabu Search-PartII. ORSA Journal on Computing, 2(1), pp.

4-32.

Glover, F. and Laguna, M., 1997. Tabu search. Kluwer Academic Publishers.

Boston: .

Guignard,M. and Rosenwein, M.B., 1989. An improved dual based algorithm

for the generalized assignment problem. Operations Research, 37(4), pp. 658-

663.

Haddadi,S. and Ouzia, H., 2004. Effective algorithm and heuristic for the

generalized assignment problem. European Journal of Operational Research,

153, pp. 184-190.

Higgins,A.1., 2001. A dynamic Tabu search for large-scale generalised

assignment problems. Computers and Operations Research, 28, pp. 1039-

1048.

183

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. 1st edn.

MIT. Michigan: .

Karmarkar,N., 1984. A new polynomial-time algorithm for linear

programming. Combinatorica, 4(4), pp. 373-395.

Kellerer, H., Pferschy, U. and Pisinger, D., 2004. Knapsack Problems. 1 st edn.

Springer-Verlag. Berlin: .

Kolesar,P.J., 1967. A branch and bound algorithm for the knapsack problem.

Management Science, 13(9), pp. 723 -73 5.

Laguna,M., Kelly, J.P., Gonzalez-Verlade, J.L. and Glover, F., 1995. Tabu

search for the multilevel generalized assignment problem. European Journal

o/Operational Research, 82, pp. 176-189.

Land,A.H. and Doig, A.G., 1960. An Automatic Method of Solving Discrete

programming Problems. Econometrica, 28(3), pp. 497-520.

L0kketangen, A. and Glover, F. Probabilistic move selection in Tabu Search

for zero-one mixed integer programming problems. In I.H. Osman & J.P.

Kelly, eds, Meta-Heuristics: Theory & Applications, 1996,467-487, Kluwer

Academic Publishers.

Lourenco,H.R. and Serra, D., 2002. Adaptive search heuristics for the

generalized assignment problem. Mathware and Soft Computing, 9, pp. 209-

234.

Martello, S. and Toth, P., 1990. Knapsack Problems: Algorithms and

Computer Implementations. Wiley. Chichester: .

Martello, S. and Toth, P., 1981. An algorithm for the Generalized Assignment

Problem. J.P. Brans, ed. In: Ninth IFORSlnternational Con/erenceon

Operational Research, July 1981 1981, North-Holland pp589-603.

184

Martello,S. and Toth, P., 1980. Solution of the zero-one multiple knapsack

problem. European Journal of Operational Research, 4(4), pp. 276-283.

Martello,S. and Toth, P., 1977. An upper bound for the zero-one knapsack

problem and a branch and bound algorithm. European Journal of Operational

Research, 1(3), pp. 169-175.

Nauss,R.M., 2003. Solving the Generalised Assignment Problem: An

Optimizing and Heuristic Approach. INFORMS Journal on Computing, 15(3),

pp. 249-266.

Nemhauser,G.L. and Ullmann, Z., 1969. Discrete dynamic programming and

capital allocation. Management Science, 15(9), pp. 494-505.

Nemhauser, G.L. and Wolsey, L.A., 1998. Integer and combinatorial

optimisation. Wiley. Chichester: .

Osman,I.H., 1995. Heuristics for the Generalised assignment problem:

Simulated Annealing and Tabu Search approaches. OR Spektrum, 17, pp. 211-

215.

Pisinger,D., 1999. An exact algorithm for largemultiple knapsack problems.

European Journal of Operational Research, 114(3), pp. 528-541.

Puchinger, G. and Raidl, G., 2005. Combining metaheuristics and exact

algorithms in combinatorial optimization: A survey and classification,

Proceedings of the First International Work-Conference on the Interplay

Between Natural and Artificial Computation, 2005, Springer pp41-53.

Raidl, G.R. and Feltl, H., 2004. An improved hybrid genetic algorithm for the

generalized assignment problem, . In: Haddadd, H.M. et ai., ed. Proceedings

of the 2003 ACM Symposium on Applied Computing, 20032004, ACM Press

pp990-995.

185

- - -- - - ----------------------------------

Ross,G.T. and Soland, P., 1977. Modelling Facility Location problems as

Generalized Assignment Problems. Management Science, 24(3), pp. 354-357.

Ross,G.T. and Soland, P., 1975. A Branch and Bound based algorithm for the

generalised assignment problem. Mathematical programming, 8, pp. 91-\03.

Sahni,S., 1975. Approximate algorithms for the 0-\ knapsack problem.

Journal of the ACM, 22, pp. 115-134.

Tai-Hsi Wu., Jinn-Yi Yeh. and Yu Ru Syau., 2004. ATabu Search Approach

To The Generalised Assignment Problem. Journal of the Chinese Institute of

Industrial Engineers., 21(3), pp. 301-311.

Trick,M.A., 1992. A Linear Relaxation Heuristic for the Generalized

Assignment Problem. Naval Research Logistics, 39, pp. 137-151.

Weingartner,H.M. and Ness, D.N., 1967. Methods for the solution of the

multidimensional Oil knapsack problem. Operations Research, 15(1), pp. 83-

103.

Wilson,J.M., 1997. A Genetic Algorithm for the generalised assignment

problem. Journal of the Operational Research Society, 48, pp. 804-809.

Yagiura,M., Ibaraki, T. and Glover, F., 2006. A path relinking approach with

ejections chains for the generalized assignment problem. European Journal of

Operational Research, 169(2), pp. 548-569.

Yagiura,M., Ibaraki, T. and Glover, F., 2004. An ejection chain approach for

the generalized assignment problem. INFORMS Journal on Computing, 16(2),

pp. 131-151.

Yagiura,M., Ibaraki, T. and Glover, F., A Path Relinking Approach for the

generalized assignment problem in: Proceedings of the International

Symposium on Scheduling, Japan, June 4-6, 2002, pp. 105-108.

186

Yagiura,M., Yamaguchi, T. and Ibaraki, T., 1998. A variable depth search

algorithm with branching search for the generalised assignment problem.

Optimisation Methods & Software, 10, pp. 419-441.

Yagiura, M., Yamaguchi, T. and Ibaraki, T., 1999.

A variable depth search algorithm for the generalized assignment problem. In:

S. Voss, S. Martello, LH. Osman and C. Roucairol, eds, Meta-heuristics:

Advances and Trends in Local Search Paradigms for Optimization. Boston:

Kluwer Academic Publishers., pp. 459-471.

Xpress-MP, Dash Optimization Ltd., Blisworth, Northamptonshire, United

Kingdom.

187
