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1 Abstract 

Developing conditionally automated driving systems is on the rise. Vehicles with full 

longitudinal and latitudinal control will allow drivers to engage in secondary tasks without 

monitoring the roadway, but users may be required to resume vehicle control to handle 

critical hazards. The loss of driver’s situational awareness increases the potential for 

accidents. Thus, the automated systems need to estimate the driver’s ability to resume 

control of the driving task. 

The aim of this study was to assess the physiological behaviour (heart rate and pupil 

diameter) of drivers. The assessment was performed during two naturalistic secondary 

tasks. The tasks were the email and the twenty questions task in addition to a control group 

that did not perform any tasks. The study aimed at finding possible correlations between 

the driver’s physiological data and their responses to a takeover request. A driving 

simulator study was used to collect data from a total of 33 participants in a repeated 

measures design to examine the physiological changes during driving and to measure their 

takeover quality and response time. 



Secondary tasks induced changes on physiological measures and a small influence on 

response time. However, there was a strong observed correlation between the physiological 

measures and response time. Takeover quality in this study was assessed using two new 

performance measures called PerSpeed and PerAngle. They are identified as the mean 

percentage change of vehicle’s speed and heading angle starting from a take-over request 

time. Using linear mixed models, there was a strong interaction between task, heart rate 

and pupil diameter and PerSpeed, PerAngle and response time. This, in turn, provided a 

measurable understanding of a driver’s future responses to the automated system based on 

the driver’s physiological changes to allow better decision making. The present findings of 

this study emphasised the possibility of building a driver mental state model and prediction 

system to determine the quality of the driver's responses in a highly automated vehicle.   

Such results will reduce accidents and enhance the driver’s experience in highly automated 

vehicles. 

2 Introduction 

In the past few decades, vehicle automation has gained substantial traction in both industry 

and automotive research (e.g., Department of Transport, 2015; Meinlschmidt et al., 2018). 

Several manufacturers introduced simple automation systems to handle several driving 

tasks. As these systems evolve, different levels of automation have been characterised 

based on the system’s ability to intervene in longitudinal and lateral control of the vehicle 

(Flemisch et al., 2011; SAE International, 2018). 

Level 3 of automation, identified as the Conditional Automation System, will have full 

control over all safety-critical functions with occasional cases for the driver to intervene 

(SAE International, 2018). While full automation is in action, drivers may direct their 

attention away from driving to engage in non-driving related (NDR) tasks (SAE 



International, 2018). Nevertheless, Level-3 systems are limited and will require the driver 

to re-engage immediately to handle a critical latent hazard (SAE International, 2018).  This 

mandatory transition could be due to either a sensory or decision-making limitations 

(NHTSA, 2013).  

The theoretical background of this paper was based on the following. In summary, there 

are several factors affecting driver’s responses during an emergency takeover in highly 

automated driving studies, as reviewed in section 2.1 and 2.2. Though, a very limited 

research has been given to the driver’s physiological data in highly automated driving 

environment, as reviewed in section 2.3. This research gap was the main motivation of this 

research and has been covered in the Results and Discussion sections. Moreover, the study 

identified a dispersion in the literature regarding the performance measures used to assess 

the driver’s ability to manoeuvre the vehicle, as reviewed in section 2.4. Thus, the study 

introduced new performance measures assessing driver’s performance in handling the 

vehicle. Finally, the study examined the validity of the driver’s physiological data as valid 

predictors to driver’s responses. More details are laid out in the following sections. 

2.1 Driver’s Take-over 

Level-3 automated driving systems have to identify its limitations using system boundaries 

(SAE International, 2018).  For example, the system may not be able to handle construction 

sites or heavy weather conditions due to sensory limitations. When a system boundary is 

detected, a take-over request is issued to the driver to take over the vehicle’s control. The 

take-over request (TOR) will have to be prompted in a timely manner allowing the driver 

to perform a safe transition before a potential collision is expected (NHTSA, 2013).  

The time given to drivers before they respond has been extensively studied in the literature. 

Several studies reported seven (Gold et al., 2013), eight (Wandtner et al., 2018), ten 



(Melcher et al., 2015) and 12 seconds (Zeeb et al., 2015) as a safe time budget to be given 

to drivers to respond. Gold's, Damböck, et al., (2013) study concluded that a 7 seconds 

budget is adequate for drivers to respond to critical hazards in highly automated driving. 

Since then, Gold, Damböck, et al., (2013) study was recommended by NHTSA for 

manufacturers to design their automated system’s transitions (Campbell et al., 2018).  

The takeover time is spent by drivers in regaining physical and mental control over the 

driving task (Zeeb et al., 2015). Motor readiness is identified as the time it takes a driver to 

regain mechanical control i.e., hands-on wheel and feet on pedals (Zeeb et al., 2015) while 

response time is the time between a TOR and the driver applying a significant change on 

braking or steering wheel (Zeeb et al., 2015). Several studies showed that motor readiness 

is consistent, ranging from 1.2 to 1.8 seconds (Gold et al., 2013; Zeeb et al., 2015). 

However, response time varied among drivers based on several factors which are discussed 

in the next subsection. 

2.2 Factors Affecting Driver’s Responses 

Driver’s response time and quality are reviewed in this section. To start, the response time 

differed significantly among studies (e.g., Gold et al., 2016, 2013; Zeeb et al., 2015). 

Literature showed that response time was influenced by NDR tasks (Merat et al., 2012), 

drivers background measures which are the factors unique to each driver such as age 

(Körber et al., 2016), years of driving experience (Wright et al., 2016b),  and road 

conditions such as traffic situation (C. Gold et al., 2016; Radlmayr et al., 2014). In addition, 

it was reported that the take-over time budget influenced driver’s response time. For 

example, when given a longer time budget, drivers had a longer response time (Gold et al., 

2013). An explanation to this could be due to drivers investing time in restoring situational 

awareness before taking an action. Hence, drivers who spent a longer time had a safer 



response as measured by the objective measures in comparison to the group who were given 

a shorter time to respond (Gold et al., 2013; Radlmayr et al., 2014; Zeeb et al., 2016).  

Similarly, response quality is impacted by the NDR tasks due to their visual or visuo-

cognitive distraction from the driving environment (Zeeb et al., 2016). To respond to a 

take-over situation, drivers require a cognitive processing time to restore situational 

awareness and then respond accordingly (Endsley, 1995; Endsley et al., 1997).  

In automated driving literature, studies investigated secondary tasks that induced cognitive 

workload such as n-back task (Radlmayr et al., 2014), Twenty Questions Task (Merat et 

al., 2012), visuo-cognitive tasks such as reading news (Zeeb et al., 2016), internet search 

(Zeeb et al., 2016), vehicle’s multimedia systems (Zeeb et al., 2015) and IQ questions 

(Louw et al., 2016). Gold et al., (2015) reported a significant decrease in performance for 

tasks including manual versus cognitive workload.  

Such results concur with Petermann-Stock et al., (2013) findings that the worst 

performance decrements were caused by quizzes requiring a combined visual, cognitive 

and manual workload in comparison to quizzes requiring one or two of those workloads. 

Such findings contradict Gold's et al., (2015b) findings that reported cognitive and manual 

tasks had the same detrimental effect. The contradiction among those results provides the 

necessary motivation to study the physiological differences caused by cognitive and visuo-

cognitive tasks in order to provide a better understanding of the differences among those 

studies. 

2.3 Physiological Analysis of Drivers in Highly Automated Driving Environment 

Many studies examined the influence of NDR tasks on gaze related measures during highly 

automated and manual driving (Marquart et al., 2015). In previous studies, takeover time 

and performance have been correlated with eye blinking (Merat et al., 2012), gaze 



behaviour (C. Gold et al., 2016; Ko and Ji, 2018; Louw et al., 2016; Wright et al., 2016a; 

Zeeb et al., 2016, 2015), eye movements and PERCLOS (Jamson et al., 2013). Two manual 

driving studies induced mental workload using verbal and spatial imagery NDR tasks 

(Recarte and Nunes, 2003, 2000). Their results indicated that the used NDR tasks caused 

pupil dilation which indicated a higher mental workload. Finally, the literature had limited 

to no studies that investigated pupil diameter changes in a highly automated driving 

environment, to the best of our knowledge.  

However, few studies examined the effect of NDR tasks on heart rate (Carsten et al., 2012; 

de Waard et al., 1999; Wille et al., n.d.). The heart rate measured in highly automated 

driving is lower than manual driving and ACC driving (Carsten et al., 2012) which matches 

with findings of de Waard et al., (1999) that reported a slight decrease (73.2 vs 74.0 

beats/min) in driver’s heart rate during automated driving. This difference is an indication 

of mental workload reduction (De Winter et al., 2014). In a manual driving study, heart rate 

increased incrementally with increasing mental workload, and a plateau of the 

physiological measures was observed (Mehler et al., 2009). Moreover, the study reports a 

decrease in driving performance as the mental workload increases. Additionally, wearable 

technologies at a consumer level achieved a reasonable accuracy in detecting the 

cognitive workload using collected physiological data of the driver (i.e., heart rate). In 

the study by Mehler et al (2009) the experiment took place on a simulator with 14 

participants driving in rural, motorways and other roads and with a simulated accident. 

Results showed reliability in detecting cognitive workload based on heart rates 

(Melnicuk et al., 2016).  

2.4 Performance Measures of Driver’s Responses 

Highly automated driving studies have used several performance measures for vehicle 

handling during take-over scenarios (Radlmayr et al., 2019). Several studies identified time 



to collision (C. Gold et al., 2016; Körber et al., 2016; Radlmayr et al., 2014), longitudinal 

acceleration (C. Gold et al., 2016; Radlmayr et al., 2014), braking (Körber et al., 2016; 

Larsson et al., 2014), minimum speed (Larsson et al., 2014) and occurred collisions  

(Radlmayr et al., 2014; Wandtner et al., 2018). Such scarcity makes it challenging to 

provide a cross-comparison among studies. Therefore Radlmayr et al., (2019) reported new 

take-over performance measures named TOPS that aggregates vehicle, mental and 

subjective ratings of the take-over to provide a single metric assessing the takeover. 

Though, the study has not provided any correlation between driver's physiological changes 

and the TOPS results for each participant.  

While minimum time to collision is a popular performance measure in driving studies 

generally (C. Gold et al., 2016; Körber et al., 2016; Radlmayr et al., 2014), the performance 

measure has some flaws in highly automated driving scenarios. The main flaw of min-TTC 

is its tendency to reward hard braking which is confirmed by Radlmayr et al., (2019) who 

stated that “ drivers […] staying longer in the ego lane (lower TTC’s) tend to brake harder 

before executing the lane change ”. Finally, the min-TTC ignores the changes in speed or 

steering angle of the vehicle even though they are considered poor performance indicators 

in motorway driving scenarios (Steven J Kass et al., 2007; Zeeb et al., 2016); especially in 

this study’s scenario design, please see the Methodology section.  

The poor depth of min-TTC motivated the authors to identify new performance measures 

that could quantify a smooth take-over manoeuvre. Staring off, , no rapid change in speed 

or heading angle was required in the design of the scenario because it allowed participants 

to perform a smooth transition from their lane to the next lane. Therefore, hard braking or 

steering were penalised in this study because it correlates with a lack of situational 

awareness according to Steven J. Kass et al., (2007). Thus, the study examined new 



performance measures based on the changes of steering and braking changes to assess the 

driver’s performance. More details are laid out in section 3.7. 

2.5 The Purpose of the Study 

The main purpose of the study reported here was to examine physiological changes caused 

by cognitive and visuo-cognitive secondary tasks and how they influence response time 

and quality during take-over scenarios. Reading and responding to an email and twenty 

questions tasks are known to degrade driver’s response time and quality (Merat et al., 2012; 

Zeeb et al., 2016). Thus, the study investigated the influence of secondary tasks on the 

driver’s physiological behaviour. Furthermore, the study was designed to examine whether 

the reported learning curve (Körber et al., 2016) of take-over handling could have any effect 

on drivers physiological changes before and during the takeover, how it correlates with 

response time and quality after a TOR. Specifically, the literature used objective and 

subjective measures to quantify the quality of the takeover. Few studies identified a 

convergence between reported subjective and objective measures (Zeeb et al., 2016). Thus, 

this study was designed to assess whether physiological changes at TOR could provide 

more information to explain the aforementioned convergence. A further aim was to propose 

new performance measures to assess the quality of drivers handling vehicles.  

The remainder of this paper is organised as follows. The Methodology section discusses 

the experiment’s procedure including participants, driving simulator, secondary tasks and 

driving scenario used in this study. Results section lays out the data analysis approach and 

provides the results of this study which is then discussed in the Discussion section. The 

future work and limitations are provided in Future Work section. Finally, conclusions are 

drawn in the Conclusion chapter. 



3 Methodology 

3.1 Participants 

Data represented in this study were collected in an experiment run at Loughborough 

University Design School. There was a total of thirty-six participants recruited for this 

study (53% females) and between 20 and 30 years of age (M=25.8, SD=5.7). Participants 

were invited to the lab for 90 minutes. Participants were asked to fill in a demographics 

survey and a questionnaire regarding their driving experience. 

Drivers had a minimum of two years of driving experience (M=7.01, SD=3.6), 95% of 

them driving once a day with an average reported mileage of 7340 a year (SD=5350). In 

addition, they were required to have a normal or corrected-to-normal vision. Of all 

participants, 84.6% had no experience with adaptive cruise control. An informed consent 

was obtained after the experimenter explained the procedure which was approved by the 

university ethics panel. All experimental procedures were conducted in accordance with 

the ethical guidelines of the hosting university. Three participants were excluded from the 

study. Two of these were due to some missing data during the data collection process and 

another participant who informed the researcher they were profoundly fatigued during the 

experiment.    

3.2 Experiment Equipment 

The study used the STISIM driving simulator (STISIM, 2018). The simulator provided 

135° with graphics projection serving as a test environment. The rig consists of an SUV 

seat and steering wheel with automatic transmission, see Figure 1. The cockpit included a 

tablet for multimedia use. On the right side of the cabin, a camera was placed to record the 

participant's posture and behaviour. 



 
Figure 1: Photo of the driving simulator during an experiment. 

 

To communicate the transition from normal to automated driving, a visuo-auditory message 

was played informing drivers that the system is taking over control when a certain point in 

the simulated environment is reached. When the ego vehicles get close to a predefined 

hazard for the scenario, an intermittent beep (based on NHTSA guidelines (Campbell et al., 

2007)) was played to instruct the driver to takeover. When automated driving is activated, 

the vehicle speed is set to 70mph and is placed to provide a seven seconds gap from the 

leading vehicle. A seven-second gap was chosen based on the study by (Gold et al., 2013). 

The automated system provided lateral and longitudinal control with no overtaking 

maneuverers, changing lanes or changing speed. This was done to reduce the number of 

dependent variables and ensure drivers will engage in secondary tasks. Finally, the driving 

simulator collected any changes to steering wheels and pedals which were the variables 

used to calculate response time, PerSpeed and PerAngle.  

Before the training phase starts, participants were required to put on an eye-tracking system 

(Tobii Pro Glasses) to track their eye movements and heart rate monitor (Polar H7 chest 

strap). The eye tracking system calculated the pupil diameter and blinking rate of both eyes. 



The heart rate monitor has a 99% accuracy in comparison to ECG devices (Wang et al., 

2016). 

3.3 Non-driving related (NDR) Tasks 

To understand how visuo-cognitive and cognitive distractions may affect physiological 

behaviour of drivers, non-driving related tasks were selected based upon two previous 

studies (Merat et al., 2012; Zeeb et al., 2015); namely email and twenty questions tasks. 

Also, participants were requested to pay attention to the road without engaging in any tasks 

(control group). The sequence of those tasks was picked randomly for each participant to 

alleviate the order effect. 

The email task included reading an email on a tablet on the vehicle’s dashboard then writing 

a reply. The emailer asked participants to pick a close friend and describe their perfect 

birthday party. The Twenty Questions Task (TQT) was chosen because it causes a cognitive 

distraction and has been selected in similar studies (C. Gold et al., 2016; Merat et al., 2012). 

During the TQT, participants were asked to guess an animal by asking the researcher a 

maximum of 20 polar questions via a simulated hands-free phone call (Jamson et al., 2004). 

These two tasks were designed to ensure participants engagement until the takeover request 

(similar to (Zeeb et al., 2015)) to maintain the same effect on mental workload among all 

participants. The NDR task engagement lasted for 10 minutes which is in line with Zeeb's 

et al., (2016) to ensure driver’s full involvement in the task. 

3.4 Training Procedure 

At the start of the participant's visit, they were given an information sheet explaining the 

experiment, what to expect, how data is stored and manipulated and the importance of the 

experiment. The information sheets included an explanation of how the system works, its 

limitations and their role in the vehicle. Participants were informed orally of how the 



experiment was run and encouraged to ask questions. They were also informed they could 

stop at any point. After answering all their questions, participants were asked to sign an 

informed consent and fill in the demographics survey. Before showing them the simulator, 

participants were asked of their familiarity with Android or iOS. Based on that answer, the 

multimedia tablet placed in the vehicle rig was chosen accordingly. This was done to 

alleviate any learning curve of handling the tablet during the experiment. 

Participants were given manual and highly automated driving training that included a TOR. 

They started with 20 minutes of manual driving to get them familiar with the driving 

simulator in manual driving. Then, they were given 15 minutes of highly automated driving 

practice that involved the activation of the automated system and the handling of a critical 

incident.  

3.5 The Experiment Procedure 

The main experiment was 40 minutes long. It included three takeovers and three slots for 

secondary tasks with no stop in between. The main scenario of this experiment was a 

repetition of the same test scenario where participants started driving manually and then 

placed the vehicle on automated mode at the second kilometre. This was done by asking 

the drivers to place the ego-vehicle in a specific lane. Lane choice was alternated every 

time to cover the three lanes for every participant; this was done to reduce expectancy 

effects and to consider takeover behavioural changes in different lanes. After a minute, 

drivers were asked via an audio message to engage in one of the secondary tasks or pay 

attention to the road.  

After 10 minutes of NDR tasks engagement, an intermittent beep was sounded 

accompanied by a visual cue to a signal a takeover request. Participants were expected to 

stop the NDR task and engage immediately in handling the vehicle. This entire scenario is 



then repeated twice to cover a total of three takeovers three slots for secondary tasks. The 

main difference among these phases are 1) the secondary task; participants are expected to 

do a different secondary task in each phase and 2) the lane; the vehicle changes lane right 

after the automation starts. This repeated measure approach allowed more results for each 

participant and provided data to study the learning effect of drivers and how it correlates 

with their physiological measures. 

3.6 Data Analysis Procedure 

Pupil diameter (PD) and heart rate (HR) data were normalised according to Equation 1 

where V is a window of the collected data ending at each takeover request. A window is a 

number of recordings that span over a period of time, e.g., a window size of 30 seconds 

includes 30 recordings of HR data over a period of 30 seconds at a sampling rate of 1Hz or 

300 recordings of pupil diameter at 10 Hz. Normalisation was performed to alleviate the 

individuality of the collected data by putting minimum HR or PD value at 0.0 and a 

maximum value at 1.0 per each participant for the entire duration of the experiment. 

Out of six participants, 21 HR readings were missing out of an average of 2000 readings. 

To resolve those missing points, linear interpolation was applied to fill in those gaps. When 

calculating the mean value of HR or PD, several window sizes were tested to assess their 

effect on the accuracy of the statistical models.  

𝛼 =
1

𝑛
∗  ∑

𝑉𝑖 − min(𝑉)

max(𝑉) − min(𝑉)

𝑛

𝑖=𝑘

 

Equation 1 Normalisation of heart rate and pupil diameters data were performed using 

the method, where V is a vector containing readings from k is time0 and n is window 

size. 



3.7 Performance Measures of the Study 

To assess the performance of driver’s handling the vehicle, response time, PerSpeed and 

PerAngle were used. Response Time analysis examined the driver’s readiness to respond 

but not necessarily the quality of drivers' responses. It is collected using the driver’s 

simulator data and was defined in section 0. Response time is not the only measure of 

performance in takeover situations; other studies take the quality of takeover as another 

important performance measure (C. Gold et al., 2016; Radlmayr et al., 2014; Zeeb et al., 

2016).  

To quantify the driver’s manoeuvre, PerSpeed and PerAngle measures were introduced in 

this study. PerSpeed is the mean percentage change of vehicle’s speed for a period before 

the TOR (e.g., 30 seconds), see Equation 3. A higher percentage indicates a sharper change 

in speed which could be either braking or acceleration. PerAngle, similarly, is the mean 

percentage change of vehicle’s heading angle. The usage of the accumulation of the mean 

percentage change provides a comprehensive judgement of the driver’s manoeuvre; unlike 

using maximum or minimum values which focus on a specific moment in time. In addition, 

the standard deviation was rejected because it provides a reading of the overall deviation 

from the mean steering or braking whilst mean percentage change provides an 

accumulative reading of the steering or braking changes made by the driver throughout the 

transition. 

𝑦 =
100

𝑛
× ∑

𝑥i − 𝑥𝑖−1

|𝑥𝑖−1|

𝑛

𝑖=𝑘

 

Equation 2: Mean percentage change formula, where 𝑦 is PerSpeed or PerAngle, 𝑥 is a vector 

containing readings (speed or heading angle values), k is time0, and n is window size. 



4 Results 

4.1 Physiological Behaviour at the Start of the Scenario 

At the beginning of the experiment, a peak in normalised HR and PD were observed in all 

participants. This was probably due to the stress caused by the anticipation of the 

experiment. After three seconds of manual driving, it dropped by an average of 20% (M=.6, 

SD=0.15), see Figure 3, and stabilised (M=.29, SD=.14) as the vehicle switched to 

automation. To simplify the plot, the drop in heart rate after the start is not plotted in Figure 

3.  

4.2  Effect of the NDR Tasks on Physiological Behaviour 

4.2.1 Pupil diameter and secondary task  

Repeated measures ANOVA analysis among the three groups of secondary tasks was 

conducted to explore their impact on the right pupil diameter. The data were collected 

whilst drivers were performing a secondary task prior to a takeover request. There was a 

statistically significant difference at F(1.22, 21.9)=60.741, p<.0001 with Greenhouse-

Geisser correction. Post-hoc tests using Bonferroni correction demonstrated an increase in 

pupil diameter by an average of 0.314 during email task (p<0.0001) and 0.06 during TQT 

(p=.02) in comparison to the control group. A five-second window length demonstrated the 

highest p values of repeated measures ANOVA test on periods from 1 to 150 seconds. The 

overall mean values of PD of all participants (after normalisation) are plotted in Figure 2.    



 

Figure 2 the values of driver’s pupil diameters under the conditions of different non-

driving related tasks. 

4.2.2 Heart rate and Secondary Tasks 

The relationship between normalised heart rate and response time was investigated using 

repeated measures ANOVA to investigate whether there was a significant difference 

among different groups. Normalised HR, with an average of 90 seconds window, had the 

strongest significance, F(2,36)=7.75, p<.02, among window sizes. Pairwise comparison 

using Bonferroni correction showed a definite difference between the control group and the 

and email task (p=.03) and the control group and the TQT task (p=.013). Differences 

showed that heart rate increases significantly when drivers are engaged in secondary tasks 

which align with the results of Carsten et al., (2012). No statistical difference was reported 

between TQT and email tasks (p=.95).  Therefore, normalised HR could be considered a 

valid physiological measure to identify engagement in secondary tasks; however, it cannot 

distinguish secondary task type for the tasks used in the study reported here.  

4.3 Effect of the Handover Process on the Driver’s Physiological Behaviour 

Takeover requests sparked a peak in HR (M=.43, SD=.2) that lasted for few seconds, see 

Figure 3. Then, HR gradually drops to the mean of the control group (M=.36, SD=.14) 

among the three groups within a mean of 10 seconds (SD=6.2) of a successful takeover. In 
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takeovers that ended with an accident, the significant increase of HR remained for a longer 

period (M=20, SD=6.2).  

 
Figure 3: Average normalised HR fluctuations throughout the scenario of the experiment based 

on 60-second window average. In blue, are the average heart rate values of participants grouped 

by order of the takeover. In orange (dashes), are the average heart rate values of participants 

grouped by the secondary task type they performed. Standard deviation of reported variables 

was between 0.13 and 0.14 among all groups; therefore, was omitted from the graph for 

simplicity. 

Figure 3 plots a limited view of the heart rate changes across the experiment. The mean 

value of the heart rate is limited and doesn’t allow a better understanding of the fluctuations 

of the heart rate. Thus, the study used the Markov Transition Field’s visualisation to plot 

the heart rate as seen in Figure 4. 

The Markov Transition Fields (MTF) is one of the recent approaches to encode time series 

to an image. MTF images “represent the first order Markov transition probability along one 

dimension and temporal dependency along the other”, (Wang and Oates, 2014). MTF 

images were used to visualise HR signals and their temporal dependencies in an image. So, 

the more squares and more colours in an image, the more transitions and temporal 

dependencies are among the signals. It is essential to understand that MTF provides a 

subjective comparison between signals and is used in this study for this purpose. 
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a. Control Group b. Email Task Group c. TQT Group 

Figure 4: Markov Transition Field of heart rate of drivers’ groups. Colours and squares 

represent a visual approach to subjectively visualise the shapes and transitions of the signal. A 

clear difference is seen between the control group (a) and secondary task groups (b and c). 

Group B and group C show a slight difference among their signals. Those subjective 

observations match with repeated measures ANOVA results reported earlier in the study.  

4.3.1 Effect of the Order of the NDR Tasks on Driver’s Heart Rate 

Design of repeated measure studies could cause a severe ambiguity and bias when learning 

or practice effects are not taken into account; especially when observations of learning 

effects are reported in the handover process studies (Larsson et al., 2014). The repeated 

measure-approach was used in this study to assess whether the reported learning curve may 

affect the physiological behaviour of drivers; specifically, their heart rate changes.  

Consequently, one-way analysis between takeover groups based on the analysis of variance 

was performed to assess the correlation between heart rate and the order of takeover 

requests. Average heart rate was calculated of all participants grouped by the order in which 

a takeover is performed. For example, the second takeover group means the values 

collected at the second takeover among all participants regardless of the secondary task 

type they performed. 

Results showed that the second takeover group had a higher HR mean (M=.49, SD=.13) 

than the first (M=.462, SD=0.13) and third (M=0.42, SD=0.14) groups. There was a slight 

difference, F=3.1, p<.05, even though the difference in mean (as identified earlier) between 

the three groups was quite small. Therefore, the hypothesis that HR could decrease over 

time because of drivers experience in handling the takeover was rejected. Accordingly, the 



study suggests that the order of the secondary tasks has no significant influence on the 

physiological changes happening during the secondary task engagement.  

4.3.2 Response Time Estimation Using Driver’s Physiological Data  
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Figure 5: A histogram of the response time values. 

Response time od drivers was collected on the three different takeovers of drivers. A 

histogram of the response time is plotted on Figure 5. The next sections assessed the 

correlation between the response time and the driver’s physiological data. 

HR and PD were analysed using linear mixed models. LLMs assessed their correlation with 

response time. Since LMMs assumes no correlation among their covariate variables, left 

pupil diameter was excluded from this analysis due to its strong dependence with right 

pupil diameter, r=.98, p=.002.  

On the main effects (at window size=30s), right pupil diameter was significant, F(1, 

30.5)=12.2, p=.001, and HR was not significant F(1, 27.2)=3.8, p=.06. When using 

secondary task type as a fixed effect in the model, HR demonstrated a strong significance, 

F(1, 30.3)=11, p=.002. This means HR window length may not have been long enough to 

provide enough significance among groups. Moreover, HR and right PD had a strong 

interaction term, F(1,24.7)=4.2, p=.049. Table 1 shows the interaction effect among 



variables and intercepts value of the analysis. This confirms that normalised HR has a 

predictability potential for response time assuming the right window size is chosen.  

In order to understand if window size influences the analysis, the same statistical methods 

were applied to the data extracted from a 60 seconds window size. HR was statistically 

significant F(1,24.3)=6.2, p=.019 with no secondary tasks type added as a fixed effect. 

When added, significance increased, p<.0001. Reversely, right pupil diameter was not 

significant, F(1, 19.2)=1, p=.317. This indicated that window size has a strong effect on the 

correlation between physiological changes and response time since pupil diameter was 

significant at 5-second window size.  

In order to find the optimal window size in which heart rate and pupil diameters performed 

at, a simple optimisation algorithm was run on window sizes of 1 to 120 seconds. Results, 

as indicated above, showed that a 30 seconds window was the best performing window size 

for PD correlation with response time and 60 seconds for heart rate. This could be 

correlated to HR responding slower than PD to external changes.  Hence, a longer HR 

window captures long-term physiological changes, and PD captures short-term 

physiological changes; hence window size values reacted accordingly. Those findings align 

with Solovey et al., (2014) that reported that the best window size for their physiological 

data was 30 seconds.  

Table 1: Estimates of Fixed Effects on response time using 30-sec window size 

Parameter Estimate Std. Error Sig. 

Intercept 1.100432 .361619 .005 

hr 1.077343 .552368 .062 

pdr 6.786712 1.935462 .001 

hr × pdr -4.645041 2.247214 .049 



4.4 Quality of the Takeover 

4.4.1 PerSpeed and PerAngle Objective Measures  
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Figure 6 Mean Percentage Change of a.) Speeding and b.) Heading angle of the vehicle. 

Participants are split independently into three clusters representing low, medium and high-risk 

groups. Black circles represent the centroid of each cluster. 

PerSpeed and PerAngle at each takeover are plotted in Figure 6 by sorting takeover incidents 

by their corresponding PerSpeed (a) and PerAngle (b) values. The K-Means clustering 

algorithm (Lloyd, 1982) was used to cluster PerSpeed and PerAngle readings 

independently into three groups. Since Zeeb et al.'s, (2016) study split participants into 

three groups based on the quality of their response, this study followed the same approach 

by defining clusters 1, 2 and 3 as low, medium and high-risk groups. Clusters start/end 

ranges identified by the K-Means algorithms, and their corresponding mean HR and PD 

are defined in Table 2. The table includes start and end ranges of both HR and PD of each 

cluster, their mean and standard deviation values. As indicated in Figure 6, the high-risk 

group had four incidents; three of them ended with an accident, and the fourth one was an 

anomaly where a participant decided to stop the vehicle for six seconds before deciding to 

move and change lane. 
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Equation 3: Mean percentage change formula, where 𝑦 is PerSpeed or PerAngle, 𝑥 is a vector 

containing readings (speed or heading angle values), k is time0, and n is window size. 

Statistical analysis of K-Means groups based on their corresponding HR/PD data yielded 

interesting results. A one-way ANOVA showed that the mean normalised HR had a 

significant difference, F=4.2, p=.01, among PerSpeed groups. These findings indicate that 

higher HR means a higher probability of strong braking; which is considered a bad 

performance measure. No significant difference was reported based on drivers’ PD mean 

values.  

Table 2: Definition of clusters of PerSpeed and PerAngle. 

 PerSpeed PerAngle 

 Start Range 

(%) 

End Range 

(%) 

HR 

mean 

HR 

std. 

Start 

Range (%) 

End Range 

(%) 

PDR 

mean 

PDR 

std. 

Group 1 0 20 0.47 0.13 0 195 0.5 0.2 

Group 2 >20 40 0.56 0.10 >195 453 0.7 0.08 

Group 3 >40 220 0.61 0.11 >453 1200 0.57 0.19 
 

When analysing PerAngle K-Means groups, no correlation, F=2.4, p=0.09 was identified 

between PD and mean of low (m=.5, SD=.2), medium (m=.7, SD=.08) and high (m=.57, 

SD=.19) risk groups. Though, higher risk groups had higher pupil dilation than the low 

one. Based on (Batmaz and Ozturk, 2008) findings, pupil diameter dilates with the mental 

workload which explains the increase of PD mean value from low to high-risk groups. 

However, the medium risk group had a significantly higher mean than the high risk one.  

4.4.2 Correlation of PerSpeed and PerAngle with Driver’s Physiological Measures 

To measure whether the study's independent variables (task type, HR and PD) have any 

influence on PerAngle and PerSpeed, a linear mixed model using Toeplitz covariance type 

with repeated measures test was performed. The task was used as a fixed effect; HR and 



PD were used as a covariate to understand whether they significantly impacted the 

predefined quality measures. 

For PerSpeed performance metric, task type was significant F(2, 43)=4.3, p=.019, as was 

HR, F(1,44)=5.5, p=.01, and PD, F(1,46)=2.5, p=.01. All other higher-order interactions 

were significant, specifically PD × HR, F(1,46)=8.2, p=.006 that had the highest 

significance. Bonferroni test showed no significant differences in PerSpeed values among 

task groups. Additionally, estimates of fixed effects demonstrated that each one per cent 

increase in HR corresponds to 4.6% decrease in PerSpeed (p=.002) and for each one per 

cent increase in PD corresponds to 9.1% decrease in PerSpeed (p=.004).   

Similarly, for the PerAngle metric, the secondary task type, F(2,18), p=.001, was 

significant, so was PD, F(1,26)=4.4, p=.04, and HR, F(1,26)=5.1, p=.003. Higher level 

interactions were not more significant, and Bonferroni pairwise comparison showed no 

difference among task groups. Estimates of fixed effects indicated that one per cent change 

in HR corresponds to approximately 54% change in PerAngle and for each one per cent in 

PD, 71% change in expected. Such results indicate that physiological measures are valid 

predictors for PerSpeed and PerAngle performance measure. 

4.4.3 Subjective Measures of Driver’s Performance 

   

 

a. First handover b. Second handover c. Third handover  

Figure 7: Subjective ratings of the difficulty of first, second and third handovers. 

Drivers reported the difficulty of each takeover as seen in Figure 7 based on their order. In 

addition, drivers reported that the email task was ranked more difficult than the TQT.   



5 Discussion 

The study identified normalised mean HR and PD as valid physiological measures to 

predict response time. The study introduced PerSpeed and PerAngle as new measures of 

takeover quality assessment. The findings identified a correlation between normalised 

mean HR/PD and PerAngle/PerSpeed. In addition, window size, in which mean values 

were calculated, had a substantial effect on the identified correlations. 

In general, predicting response time and quality are crucial for highly automated driving to 

plan for transition times. There have been several papers studying different fixed transition 

times between 2-12 seconds (C. Gold et al., 2016; Gold et al., 2013; Körber et al., 2016; 

Zeeb et al., 2015). With our findings, automation systems could identify a dynamic 

transition time based on the driver’s physiological state to allow for the safest handover 

process possible. In addition, based upon PerSpeed and PerAngle’s correlation with 

driver’s physiological measures, the automation systems could predict poorly performing 

drivers during handovers before a TOR is initiated. With such knowledge, the automation 

system may choose to resort to an emergency manoeuvre or give drivers a longer reaction 

time to regain situational awareness.  

5.1 Effect of the Window Size on the Physiological Measures 

The window size played a crucial role in the stability of the linear mixed models for 

response time, PerSpeed and PerAngle. Finding an optimal window size is usually an 

essential task in similar studies (Grimes et al., 2008; Tapia et al., 2007). In addition, several 

studies reported a trade-off between window size and accuracy in other studies (Solovey et 

al., 2014). Specifically, the findings of Solovey et al., (2014) showed that their longest heart 

rate window performed better than smaller ones which match with the findings in this study. 

Essentially, a large window size means a lag in understanding HR state (in comparison to 



instantaneous HR), but it provides an overall understanding of how driver’s mental state 

affected the heart rate values. 

Conversely, the findings of this study suggested that a smaller window size of PD 

performed better than larger window sizes. This could be because pupil diameter can 

change rapidly according to the changes in driver’s cognitive workload (Klingner et al., 

2011; Kramer et al., 2013). Our findings indicated that a 30s window size performed well 

for the secondary task, response time and performance measures. Those findings match 

with outcomes of related studies (e.g., Klingner et al., 2011; Son et al., 2012) that concluded 

best performing window size was 30 seconds.  

Surveyed literature used the mean value to analyse HR data (ROSCOE, 1993; Solovey et 

al., 2014). However, mean values negate both shape and transition of the HR signal that 

could provide better predictability than just the mean.  MTF images, see Figure 4, were 

generated to plot the average transitions of the HR signals of each group. Images 

demonstrate significant signal transitions among TQT and email tasks in comparison to the 

control group. A clear difference could be identified among the three images. Looking 

specifically at email and TQT, the signals had similar probabilities of transitions; however, 

temporal dependencies were significantly different. In contrast, the control group had fewer 

transitions probabilities and less temporal dependencies. This means that during secondary 

tasks, HR transitions were much more frequent than the control group. In addition, TQT 

transitions were much higher than the email group. The same analysis of PD will be 

reported in a future study. 

5.2 Subjective Ratings of the Takeover’s Difficulty  

The subjective rating reported by drivers indicated some interesting insight to understand 

some of the previously reported subjective measures of the NDR tasks. Zeeb et al., (2016) 



reported that the email task was ranked the most challenging task in a subjective rating 

which conflicted with their study’s objective measures (e.g., deviation from lane centre). 

Their justifications were “email task was simply less demanding... drivers had difficulties 

rating their workload”, (Zeeb et al., 2016).  

On the contrary, this study reported that the email task engagement caused a significant 

increase in HR during the email task followed by a significant HR peak at TOR, see Figure 

3. Thus, an email task cannot be assumed a less demanding task as Zeeb et al., (2016) 

reported. In fact, Salvucci and Bogunovich, (2010) reported that “Interruptions occurring 

at points of higher mental workload are more disruptive and lead to larger resumption lags 

than those occurring at points of lower mental workload”. Also, writing emails had a strong 

correlation with stress (Marulanda-Carter and Jackson, 2012). Reflecting that on our 

analysis, we could assume that the email task-induced a high mental workload which 

matches with the reported subjective measures of our study and Zeeb's et al., (2016) study. 

Accordingly, switching from the demanding email task to another demanding task (i.e., 

takeover) justified the subjective measures choices by the drivers and reflected on their 

physiological behaviour as reported earlier. Another explanation could be due to a 

significantly degraded situational awareness (due to a higher time-off-road (Steven J Kass 

et al., 2007) in comparison to the TQT group that maintained eyes-on-road throughout the 

task.  

On the other hand, subjective measures showed that TQT was considered the least 

demanding task in our study by 82% of drivers. HR peak at TOR was significantly lower 

than the email task and so was the average HR as reported in Figure 3. During TQT, drivers 

spent an average of 3.3 seconds (SD=4.2) coming up with a new question. When drivers 

noticed a critical incident of a vehicle tailgating another on the neighbouring lane, a 

significant delay was reported (M=4.2, SD=1.2) among drivers to ask a new question. Such 



delayed responses showed that drivers performed multitasking between road monitoring 

and TQT.  

According to Young and Stanton, (2002), active engagement in tasks makes participants 

more engaged and more alert which makes it easier to takeover during TQT. Interestingly, 

the TQT group had a lower HR peak at TOR in comparison to the control group. 

Considering Young and Stanton, (2002) findings again, the control group had no active 

task engagement before the TOR which turned them into a passive state causing a reduction 

in their level of alertness. Such an assumption could justify how the control group reported 

that it was difficult to engage in the takeover and why the control group had a higher HR 

peak than TQT group during the TOR phase. This indicates that a certain level of mental 

workload is preferential in the context of improved TOR quality. This should be explored 

in further research.  

In addition to the takeover type, the order of handover processes played another role in the 

perception of the difficulty of the handover phase due to a previously reported learning 

curve of the automated system (Körber and Bengler, 2014; Larsson et al., 2014; Wright et 

al., 2016a). Reported subjective ratings (see Figure 7) of the takeover difficulty sorted by 

order showed that 40% of drivers perceived the first takeover as easy in comparison to 68% 

in the third takeover. Such results are taken with caution because of previously reported 

divergence of driving performance and subjective estimates of performance (Horrey et al., 

2009). Reported subjective measures align with the average heart rate peaks observed after 

TOR in the three takeovers as seen in Figure 3.  

 

 

 



Table 3: Comparing normalised HR at each takeover 

  Normalised HR mean before TOR  

(60-sec window) 

Relative HR Peak  

at the TOR 

Takeover 1 Mean 0.47 0.126 

SD 0.125 0.22 

Takeover 2 Mean 0.491 0.08 

SD 0.135 0.187 

Takeover 3 Mean 0.424 0.093 

SD 0.130 0.127 

 

To assess whether this assumption is valid, HR peak at TOR was recalculated by 

subtracting the mean of ‘a 60 seconds normalised HR window before TOR' from the HR 

peak at TOR, referred to as relative HR peak in Table 3. Relative HR peak on Table 3 of 

the second (M=.08) and third (M=.09) takeovers were significantly smaller than the first 

takeover (M=.126). Relative peak HR may be considered a proxy measure of the difficulty 

of the takeover; especially that it matches with the reported subjective measures. 

5.3 Objective Ratings of the Takeover’s Difficulty  

This study introduced PerSpeed and PerAngle as two new performance measures for take-

over quality in Level-3 automated driving. Minimum time to collision is an established 

performance measure in the field (Radlmayr et al., 2019) but it does not provide any 

measure of how drivers handled their vehicle. For example, a driver could employ sharp 

braking; this may maximise the minimum time to the collision but introduces a significant 

hazard to other vehicles, as would sharp transitions to a neighbouring lane. PerSpeed and 

PerAngle provide the missing measures that will support minimum time to collision 

analysis.  

PerSpeed and PerAngle metrics are a further development of previously introduced 

performance measures such as maximum lateral and longitudinal accelerations (C. Gold et 

al., 2016), deviation from lane centre (Zeeb et al., 2016), speed reduction (Larsson et al., 



2014), percent road centre (Jamson et al., 2013). The introduction of PerSpeed and 

PerAngle could be a standard for assessing performance quality to provide comparability 

among studies. The literature review of this study identified no open access datasets that 

we could have been used to cross-validate those measures on previous studies. 

5.3.1 The Correlation between the Physiological Data and Performance Measures 

PerSpeed showed some interesting correlations with the physiological measures. Even 

though there was no statistical difference among secondary task groups, they correlated 

with physiological measures. This could be due to some drivers who can handle secondary 

tasks better than others; thus, no observed increase in HR/PD. For example, a driver who 

has more experience would respond better than others under the same secondary task 

condition (Ko and Ji, 2018) causing less stress and probably less increase in their 

physiological behaviour (Adler et al., 2000). This could explain why PerSpeed or PerAngle 

have no statistical significance among secondary task groups.  

Though, PerSpeed and PerAngle showed a strong correlation with physiological measures 

which, in turn, has a strong correlation with mental workload (Brookhuis and De Waard, 

2010; Marquart et al., 2015). Previous studies reported braking as a link to the lack of 

situational awareness (Zeeb et al., 2015), which shows the possibility that situational 

awareness could also be correlated to PerSpeed and potentially PerAngle. Hence, future 

work is required for further exploration.   

The results demonstrated further evidence that HR and PD correlate with braking behaviour 

of drivers. According to (Gold et al., 2013), braking is associated with out-of-loop drivers 

allowing themselves a longer time to restore situational awareness. Due to an increase in 

mental workload is associated with an increase in HR (Wilson, 2002) and PD (Batmaz and 



Ozturk, 2008), the reported results indicated that PerSpeed, PerAngle and driver's mental 

workload have an indirect negative correlation; assuming drivers are out-of-loop. 

5.3.2 Assessment of the Physiological Data as Valid Predictors of the Performance 

Measures 

The study analysed heart rate and pupil diameter to assess their predictability of the 

performance measures. The study identified that pupil diameter was unstable measure 

throughout the experiment. For example, the main secondary task performed by the 

medium risk group was the email task. Reflecting that on the reported results in section 

4.4.2. The increase in pupil diameter in the second task group could have been due to the 

difference in lighting between the tablet screen and the simulator screens. This could 

explain the significant difference in pupil diameter in comparison to other groups; even 

though, the experiment setup insured a minimal change in lighting throughout all screens. 

Another explanation could be due to the change in pupil diameter as participants transit 

from one screen to another since the lab was significantly darker than the two screens.  

The results highlight that the established knowledge that the pupil diameter measure is valid 

only in highly controllable measures (Marquart et al., 2015) where the environment of the 

experiment is highly controlled. This means that pupil diameter estimation in real-world 

driving may not be accurate; however, there has been significant research in assessing 

mental workload under different lighting conditions (Pfleging et al., 2016). Hence, results 

presented in this study are potentially useful to be used in real-world applications. 

In conclusion, the study provided the experimental evidence that physiological measures 

prior to a takeover are capable of predicting drivers’ response time and quality as predicted 

by (Chan and Singhal, 2015). It also aligns with the vision introduced by Rakotonirainy et 

al., (2014) that predicting driver’s behaviour could enhance their experience. Based on 



previous suggestions, Heger et al., (2010) a mental workload recognition system using EEG 

and machine learning techniques is extendable to highly automated driving scenarios. 

Findings of this study have enabled a machine learning model to be built to accurately 

predict drivers’ mental workload and extend that to predict the response quality of the 

takeover. 

6 Future Work 

As identified through the literature review of this study, there are some factors affecting 

response time and quality such as fatigue (Driver, 2014), age (Körber et al., 2016), traffic 

density (Christian Gold et al., 2016), weather conditions (Louw et al., 2016) and driving 

experience (Larsson et al., 2014). Those variables were not taken into consideration due to 

the limitations of the study; however, it should be considered for future work. Additionally, 

future work will need to recruit different age groups which was identified by others as a 

critical variable in driver’s performance in highly automated driving  

Finally, the study acknowledges the limited effort placed on comparing PerSpeed and 

PerAngle with other measures that were surveyed and introduced in Radlmayr's et al., 

(2019) comprehensive study. The comparison between TOPS model and their affiliated 

vehicle-based performance measure would be a great contribution to the research of highly 

automated vehicles.  

7 Conclusion 

There is a substantial interest in predicting the driver’s response time and the quality of 

takeovers in highly automated driving. Not only do they affect the safety of the system but 

also provide a great opportunity for the automated system to assess the reliability of the 

person behind the wheel throughout the journey and specifically before starting the 

handover process.  



As automated systems will change the dynamics of driving, it is essential that the systems 

have a deeper understanding of the driver’s mental state and their ability to perform well 

in emergencies that could cause serious accidents. This research was performed to explore 

the prospect of identifying the necessary measure to define the driver’s mental state and 

link their physiological behaviour before a takeover request with their response time and 

takeover quality. 

The most significant findings of the study are, heart rate and pupil diameters of drivers are 

valid predictors for both response time and determining the quality of takeovers in highly 

automated driving environments. Interestingly, these results are similar to findings in air 

traffic control and aviation systems in addition to manual driving studies that were 

performed previously. The findings of this experiment provide the path to building 1) 

generic driver state model and a 2) a driver’s response time and the quality of takeover 

prediction models. The models could be applied to all drivers based on the physiological 

behaviours without necessarily accounting for individual differences or relying on 

identifying the secondary tasks drivers were performing.  

Moreover, two new quality measures were introduced and examined in this study to provide 

an estimate of braking and steering, and they were linked to drivers’ physiological 

measures. Those measures could be used by the automation system to assess the driver's 

future responses. Those quality measures, PerSpeed and PerAngle, could be generalised as 

valid performance measures for takeover scenarios. Those proposed measures provide 

insight into driver's readiness and therefore, allow automated systems to adopt the right 

driving strategy and plan to enhance their experience and make the transition phase safer 

for everyone.  
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