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Abstract

In data envelopment analysis, cone extensions of production technologies are often used for
the estimation of scale efficiency of decision making units. Furthermore, the non-increasing
and non-decreasing returns-to-scale (NIRS and NDRS) technologies are often used for their
returns-to-scale characterization. Although a number of new production technologies have
recently been developed in the literature, their cone, NIRS and NDRS extensions have
not always been fully explored. In this paper, we obtain general results that show how
these extensions can be obtained, for an arbitrary polyhedral technology. We illustrate the
usefulness of our results by examples.
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1. Introduction

Most convex production technologies developed in the literature on data envelopment
analysis (DEA) are polyhedral sets. Podinovski, Chambers, Atici, and Deineko (2016) refer
to such technologies as polyhedral technologies. Examples include the standard constant
and variable returns-to-scale (CRS and VRS) technologies of Charnes, Cooper and Rhodes
(1978) and Banker, Charnes and Cooper (1984), their extensions by production trade-offs
(Podinovski, 2004d; Podinovski & Bouzdine-Chameeva, 2013), the hybrid returns-to-scale
technology (Podinovski, 2004c), different technologies with multiple component processes
(Cherchye, De Rock, Dierynck, Roodhooft, & Sabbe, 2013; Podinovski, Olesen, & Sarrico,
2018), various network technologies (Färe, Grosskopf, & Whittaker, 2007; Kao, 2017), and
technologies incorporating the assumptions of weak disposability of outputs (Kuosmanen,
2005) and inputs (Mehdiloozad & Podinovski, 2018).

A common challenge in developing new technologies is the need to explain how the
established concepts and approaches commonly used with the existing technologies could be
applied to the new proposed technologies. An example of this is the notion of scale efficiency.
In DEA, this concept was defined by Banker et al. (1984) and Banker (1984).

According to Banker (1984), testing for scale efficiency of a decision making unit (DMU)
in the VRS technology requires evaluating its efficiency in the VRS technology and in the
reference cone technology, which is the CRS technology of Charnes et al. (1978). A related
question of returns-to-scale (RTS) characterization is often addressed by using either a non-
increasing or non-decreasing (NIRS and NDRS) reference technologies (Färe, Grosskopf, &
Lovell, 1983, 1985; Kerstens and Vanden Eeckaut, 1999; Podinovski, 2004a, 2004b).
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The above common approaches to the evaluation of scale efficiency and RTS conceptu-
ally extend to any other polyhedral technology.1 However, implementing these approaches
assumes that we know how to construct the required cone, NIRS and NDRS reference tech-
nologies for the given polyhedral technology. This task is not always simple, and for a
number of recently introduced polyhedral technologies, it has remained unexplored or has
been approached heuristically, using an unverified analogy with the VRS technology.

In this paper, we consider the whole class of polyhedral technologies. All such technolo-
gies are closed convex sets which can be stated in a particular form discussed in Section 2.
We obtain general results that show how the cone, NIRS and NDRS reference technolo-
gies can be obtained for any polyhedral technology. These results make bespoke, and often
lengthy, rigorous developments of such technologies in all special cases largely unnecessary.
We illustrate our approach by several examples in which the statements of the reference
technologies may not be immediately obvious but are easily obtained by using our general
results.

We proceed as follows. In Section 2, we briefly introduce the general statement of a
polyhedral technology. In Section 3, we establish several mathematical results clarifying the
role of the reference cone technology in the evaluation of scale efficiency. In Section 4, we
prove our main result that shows how the reference cone technology is constructed in the
general case. In Section 5, we discuss the construction of the NIRS and NDRS technologies.
In Section 6, we illustrate our results by examples. In Section 7, we consider the construction
of the cone technology from the dual perspective. A summary of our results is presented in
Section 8. All mathematical proofs are given in Appendix A.

2. Polyhedral technologies

Let T ∈ Rm+s
+ be a polyhedral technology with m inputs and s outputs.2 DMUs are

denoted (x, y), where x ∈ Rm
+ is the vector of inputs and y ∈ Rs

+ is the vector of outputs.
As follows from Podinovski et al. (2016), any polyhedral technology T can be stated as

the set of all DMUs (x, y) ∈ Rm+s
+ for which there exists a vector z of some dimension q such

that the following conditions (taking on a more specific form for particular technologies) are
true:

Az = x, (1a)

Bz = y, (1b)

Cz = d, (1c)

z ≥ 0. (1d)

In statement (1), A, B and C are some matrices of dimensions m × q, s × q and p × q,
respectively. The vector d is a constant vector of dimension p.

1For nonconvex technologies, which excludes polyhedral technologies, the reference technology approaches
identify global types of RTS (Podinovski, 2004a, 2004b) which are different from the conventional local
types of RTS based on the notion of scale elasticity. For convex, including polyhedral technologies, the
local and global RTS characterizations are the same (Podinovski, 2017). A common example of nonconvex
technologies is the free disposal hull (FDH) of Deprins, Simar, and Tulkens (1984). For the FDH technology,
special enumeration algorithms for the evaluation of global RTS have been developed and shown to be
computationally superior to the generic approaches based on the reference technologies – see, e.g, Soleimani-
damaneh, Jahanshahloo, and Reshadi (2006) and Cesaroni and Giovannola (2015).

2In a finite-dimensional space, a polyhedral set is defined as the intersection of a finite number of closed
half-spaces (Rockafellar, 1970).
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The parameter conditions (1c) are optional and may not be specified for some technolo-
gies. An individual equality t = 1, . . . , p in the parameter conditions (1c) is homogeneous if
the constant on its right-hand side is equal to zero, i.e., dt = 0. Otherwise, i.e., if dt 6= 0,
the corresponding parameter condition t is nonhomogeneous.

Most polyhedral technologies assume free disposability of all inputs and outputs. For
such technologies, it is common to state the input and output conditions (1a) and (1b) as
inequalities. Alternatively, the same conditions can be represented as equalities, by intro-
ducing a slack variable for each inequality. The above general statement (1) of technology
T assumes the latter approach and treats any slack variables as components of vector z.

For example, consider the VRS technology of Banker et al. (1984) for which conditions (1)
take on a more specific form:

Xλ+ sx = x, (2a)

Y λ− sy = y, (2b)

1>λ = 1, (2c)

λ, sx, sy ≥ 0. (2d)

In the above statement, X and Y are the m× n and s× n matrices whose columns are
the input and output vectors of the observed DMUs (xj, yj), j = 1, . . . , n, respectively.

It is clear that statement (2) is a special case of (1). In particular, the vector z in (1) is
the combined vector (λ, sx, sy) in (2) whose dimension is q = n+m+s. The matrix A in (1a)
is the combined matrix [X, Im×m, 0m×s] in (2a), where Im×m and 0m×s are the unit (identity)
and null (zero) matrices of the specified dimensions. Similarly, the matrix B in (1b) is the
combined matrix [Y, 0s×m,−Is×s] in (2b). Finally, the matrix C in (1c) has a single row in
conditions (2c) stated as the combined vector (1n, 0m, 0s) whose first n components are each
equal to 1 and the remaining m+ s components are zeros. The vector d in (1c) corresponds
to the scalar 1 in (2c). Note that the parameter condition (2c) consists of a single equality
and is nonhomogeneous.

For many other technologies, conditions (1) have a more complex structure. We consider
examples of such technologies in Section 6.

3. The role of cone technologies

We start with the following definition.

Definition 1. Technology T is a cone technology if, for any (x, y) ∈ T and any α ≥ 0,
(αx, αy) ∈ T .

Let T be a polyhedral technology stated by conditions (1). It is clear that, if all parameter
conditions (1c) are homogeneous (or are not specified, as for the CRS model), the polyhedral
technology T defined by (1) is a cone technology.3

Cone technologies play an important role in efficiency analysis. For example, the notions
of scale efficiency and most productive scale size (MPSS) introduced for the VRS technol-
ogy by Banker (1984) typically involve the evaluation of the output radial efficiency of the
DMUo = (xo, yo) of interest in the reference CRS technology. The latter is the cone technol-
ogy generated by VRS technology. Below we show that a similar approach is applicable to

3Various properties of convex cones have been extensively studied in the literature (Rockafellar, 1970;
Rockafellar & Wets, 1998).
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any other polyhedral technology T . Discussing this requires some additional mathematical
development.

Following Banker (1984), DMUo is at MPSS if, for all DMUs (αxo, βyo) ∈ T , where
α > 0, we have β/α ≤ 1. In other words, DMUo is at MPSS if the supremum of the
following program is attained at α = β = 1 and is, therefore, equal to 1:

sup β/α

subject to (αxo, βyo) ∈ T ,
α, β > 0.

(3)

It is clear that, if DMUo is at MPSS, it is output radial efficient in T but the converse
is not necessarily true. In order to linearize program (3), introduce the reference cone
technology C as follows:

C =
{

(x, y) ∈ Rm+s | ∃(x̃, ỹ) ∈ T , δ ≥ 0 : (x, y) = (δx̃, δỹ)
}
. (4)

Technology C includes all rays in Rm+s
+ starting from the origin and passing through the

points (DMUs) in technology T . It is straightforward to prove that technology C coincides
with the intersection of all cone technologies T ′ such that T ⊆ T ′. Therefore, C is the
smallest cone technology generated by T .

Proposition 1. The supremum of program (3) is equal to the supremum of the program

sup β

subject to (xo, βyo) ∈ C.
(5)

If the supremum in either program (3) or (5) is attained, then it is attained in both
programs.

Note that, because (xo, yo) ∈ C, the condition β > 0 in program (5) is redundant and is
omitted. A similar observation applies to programs (7), (8) and (9) presented below.

We now address the question of attainability of the suprema in programs (3) and (5). If T
is the conventional VRS technology, C is the conventional CRS technology, which is a closed
cone. In this case, the supremum in (5) is always attained and is the inverse of the output
radial efficiency of DMUo in the CRS technology. By Proposition 1, the supremum in (3)
is also attained. Therefore, if T is the VRS technology, we can substitute the supremum of
the objective functions in (3) and (5) by their maximum, and the latter program becomes a
linear program.

In contrast, for an arbitrary polyhedral technology T , the corresponding cone technology
C may not be a closed set and the suprema in programs (3) and (5) may not be attained. This
possibility was illustrated by an example in Podinovski (2017). In this case, the problem that
we face in solving program (5) is that C is not a polyhedral technology (as any polyhedral
technology is a closed set) which cannot therefore be conveniently represented by linear
conditions (1). To overcome this problem and find an operational way of solving program (5),
consider the closure C̄ of technology C:

C̄ = cl C. (6)

Technology C̄ is the intersection of all closed cone technologies T̄ such that T ⊆ T̄ . In
this sense, C̄ is the smallest closed cone technology generated by T .

We now prove that the supremum of β in program (5) representing the inverse of the
output radial efficiency of DMU (xo, yo) in the generally not closed technology C does not
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change if we replace it by its closure C̄. Below we establish a more general result from
which the required statement follows. Namely, we consider the assessment of efficiency of
DMU (xo, yo) in the direction of an arbitrary vector g = (gx, gy) ∈ Rm+s

+ , such that g 6= 0
(Chambers, Chung, & Färe, 1998). Consider the program:

sup β

subject to (xo − βgx, yo + βgy) ∈ C,
(7)

and the program obtained from it by replacing technology C by C̄:

sup β

subject to (xo − βgx, yo + βgy) ∈ C̄,
(8)

The following result is not trivial, and its proof relies on the explicit form of the tech-
nology C̄ obtained in the next section.4

Proposition 2. The suprema of β in programs (7) and (8) are equal.

Because program (5) is a special case of (7),5 we have

Corollary 1. The supremum of program (5) does not change if we replace the cone tech-
nology C in its constraints by its closure C̄.6

In the next section we show that, for any polyhedral technology T , its closed cone
extension C̄ is a polyhedral technology whose statement is obtained by a simple modification
of the statement (1) of technology T . This means that evaluating MPSS in an arbitrary
polyhedral technology T is a straightforward task that requires solving the following linear
program:7

max β

subject to (xo, βyo) ∈ C̄.
(9)

Using all the results obtained above, we conclude that DMUo in an arbitrary polyhedral
technology is at MPSS if and only if it is output radial efficient in the closed cone technology
C̄ generated by the original polyhedral technology T .

Furthermore, following Banker et al. (1984), the output radial efficiency of DMUo in
the closed convex technology C̄, i.e., the inverse of the optimal value of program (9), is
interpretable as the aggregate technical and scale efficiency of DMUo. The scale efficiency
of DMUo is found as the ratio of its output radial efficiency in technology C̄ to its output
radial efficiency (technical efficiency) in the original polyhedral technology T .

4This result is not valid if we substitute C and C̄ in programs (7) and (8) by, respectively, an arbitrary
convex set and its closure. An example of this was given in Podinovski (2017).

5Program (7) becomes (5) if we take gx = 0, gy = yo and redefine 1 + β in the former program as β in
the latter.

6This does not imply that the attainability of the supremum is unaffected. The resulting program (9) is
a linear program. Its maximum may be attained even if the supremum in (5) is not.

7In line with the conventional notation used in linear programming, we replace the supremum by max-
imum of the objective function. If the objective function β of the linear program (9) is bounded above,
then its maximum is attained. However, without additional assumptions, for an arbitrary technology C̄ this
cannot be guaranteed. An example of this was explored by Podinovski and Bouzdine-Chameeva (2013) who
showed that, in the case of the VRS or CRS technology expanded by weight restrictions, program (9) may
have an unbounded optimal value, which indicates a particular error in the specification of the technology.
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4. The closed cone technology

Below we prove our main result. It establishes that the closed cone technology C̄ gen-
erated by any polyhedral technology T is obtained by a simple modification of the general
statement of the latter technology. We illustrate the usefulness of this result by the examples
in Section 6.

Proposition 3. Technology C̄ is a polyhedral technology. It is the set of all DMUs (x, y) ∈
Rm+s

+ for which there exist z ∈ Rq and α ∈ R such that the following conditions are true:

Az = x,

Bz = y,

Cz = αd,

z, α ≥ 0.

(10)

By Proposition 3, we can restate program (3) in the explicit linear programming form:

max β

subject to Az = xo,

Bz = βyo,

Cz = αd,

z, α ≥ 0, β sign free.

(11)

Corollary 2. If the parameter conditions (1c) include a single nonhomogeneous condition
(and any other parameter conditions are homogeneous), then technology C̄ can alternatively
be stated in the form (1) from which this nonhomogeneous condition is removed.

As an example, consider the VRS technology of Banker et al. (1984). The statement (2)
of this technology contains a single nonhomogeneous equality (2c). By Corollary 2, the
technology C̄ is obtained by removing this condition. The remaining conditions define the
CRS technology of Charnes et al. (1978) which is the closed cone technology generated by
the VRS technology.

5. The NIRS and NDRS technologies

The NIRS and NDRS technologies generated by technology T are used in the method
of testing RTS developed by Färe et al. (1983) and in its variants explored by Kerstens
and Vanden Eeckaut (1999), Briec, Kerstens, Leleu and Vanden Eeckaut (2000), Podinovski
(2004a, 2004b, 2017), and Cesaroni, Kerstens, and Van de Woestyne (2017). Below we show
that, if technology T is a polyhedral technology, its reference NIRS and NDRS technologies
can be obtained by a simple modification of its statement (1).

We start by giving the following definitions.

Definition 2. T is a NIRS technology if, for any (x, y) ∈ T and any α ∈ [0, 1], (αx, αy) ∈ T .

Definition 3. T is a NDRS technology if, for any (x, y) ∈ T and any α ≥ 1, (αx, αy) ∈ T .

The NIRS technology H and the NDRS technology G generated by technology T are
conventionally defined as follows:

H =
{

(x, y) ∈ Rm+s | ∃(x̃, ỹ) ∈ T , δ ∈ [0, 1] : (x, y) = (δx̃, δỹ)
}
,
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G =
{

(x, y) ∈ Rm+s | ∃(x̃, ỹ) ∈ T , δ ≥ 0 : (x, y) = (δx̃, δỹ)
}
.

It is straightforward to prove thatH and G coincide with the intersection of all NIRS and,
respectively, NDRS technologies T ′ such that T ⊆ T ′. Therefore, H and G are, respectively,
the smallest NIRS and NDRS technologies generated by T .

It is known that, if T is the conventional VRS technology of Banker et al. (1984),
the corresponding NIRS and NDRS technologies are both closed sets. For an arbitrary
polyhedral technology T , the corresponding NDRS technology G is always a closed set but
the NIRS technology H may be not closed (Podinovski, 2017).

Proposition 4. The NDRS technology G is a closed set.

In the cases in which the NIRS technology H is not a closed set, it is not a polyhedral
technology (because any polyhedral technology is closed). In such cases, H cannot be stated
in the form (1). Let H̄ be the closure of H:

H̄ = cl H.

Proposition 5. Technology H̄ is stated by conditions in (10) with the additional condition
α ≤ 1. Technology G is stated by conditions in (10) with the additional condition α ≥ 1.

Similar to Proposition 2, it can be proved that the efficiency of any DMUo evaluated in
the direction of any vector g 6= 0, of which the input and output radial efficiency of DMUo

is a special case, is the same in technology H and its closure H̄.
According to Proposition 5, assessing the output radial efficiency of DMUo in the closed

NIRS and NDRS technologies H̄ and G requires solving the linear program (11) with the
additional constraints α ≤ 1 and α ≥ 1, respectively.

6. Examples

Below we consider examples of different polyhedral technologies. We show how their
closed cone, NIRS and NDRS extensions can be constructed using Propositions 3 and 5.

6.1. A two-stage network technology

Consider the following two-stage network production technology (Kao, 2014, 2017; Liang,
Cook, & Zhu, 2008; Sahoo, Zhu, Tone, & Klemen, 2014). The first stage uses the vector of
inputs x ∈ Rm

+ to produce the vector of intermediate outputs w ∈ Rl
+. The latter vector

is used as the input vector of the second stage which produces the vector of final outputs
y ∈ Rs

+.
Let observed DMUs be the triplets (xj, wj, yj), j = 1, . . . , n. Denote X, W and Y the

m× n, l × n and s× n matrices whose columns are the vectors xj, wj and yj, j = 1, . . . , n,
respectively. Following Liang et al. (2008) and Sahoo et al. (2014), consider the VRS
network technology TN generated by the above observed DMUs and stated in the input and
final output dimensions only. To show that this technology is a special case of the general
statement of polyhedral technology (1), we state it as follows.

Technology TN is the set of all DMUs (x, y) ∈ Rm+s
+ for which there exist vectors λ, µ ∈

Rn, the vector of intermediate outputs w ∈ Rl, and slack vectors sx, sy, s
1
w and s2w of
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appropriate dimensions such that

Xλ+ sx = x, (12a)

Y µ− sy = y, (12b)

Wλ− w − s1w = 0, (12c)

Wµ− w + s2w = 0, (12d)

1>λ = 1, (12e)

1>µ = 1, (12f)

λ, µ, w, sx, sy, s
1
w, s

2
w ≥ 0. (12g)

We are now concerned with the following question: what is the closed cone extension
C̄N generated by technology TN? To answer this question, note that (12) is a special case
of the general statement of polyhedral technology (1). In particular, we can view z as
the combined vector (λ, µ, w, sx, sy, s

1
w, s

2
w). Equalities (12a) and (12b) correspond to (1a)

and (1b). The homogeneous conditions (12c) and (12d) and the two nonhomogeneous scalar
conditions (12e) and (12f) are the parameter conditions (1c).

By Proposition 3, the closed cone technology C̄N is defined by conditions (12) in which
we introduce an additional scalar variable α and replace equalities (12e) and (12f) by the
following conditions:

1>λ = α,

1>µ = α,

α ≥ 0.

(13)

By Proposition 5, the NIRS and NDRS technologies H̄N and GN are stated by incorpo-
rating the further condition α ≤ 1 or α ≥ 1, respectively.

Note that, if we simply omit the two equalities (12e) and (12f), we also obtain a closed
cone technology T ′N that extends TN. However, this would be equivalent to replacing (12e)
and (12f) by the conditions

1>λ = α1,

1>µ = α2,

α1, α2 ≥ 0.

It is easy to show that technology T ′N is generally larger than C̄N and is therefore not
suitable for the evaluation of MPSS and scale efficiency.

Similarly, replacing both equalities (12e) and (12f) by the “≤” or “≥” inequalities is in-
correct and produces the technologies that are larger than the NIRS and NDRS technologies
H̄N and GN, respectively.

6.2. Technologies with bounded measures

Consider the bounded CRS technology TB introduced by Cooper, Pastor, Borras, Apari-
cio, and Pastor (2011).8 Let x ∈ Rm

+ be the vector of inputs and y ∈ Rs
+ the vector of

outputs. Denote observed DMUs (xj, yj), j = 1, . . . , n. Denote X and Y the m × n and
s× n matrices whose columns are the vectors xj and yj, j = 1, . . . , n, respectively.

8Further extensions of technology TB were developed by Pastor, Aparicio, Alcaraz, Vidal, and Pastor
(2015).
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It is additionally assumed that there exist a lower bound on each input and an upper
bound on each output, represented by the vectors x ∈ Rm

+ and ȳ ∈ Rn
+, respectively.

As shown by Cooper et al. (2011), technology TB is the set of all DMUs (x, y) ∈ Rm+s
+

for which there exist a vector λ ∈ Rn and slack vectors sx, sy, s
′
x and s′y of appropriate

dimensions such that

Xλ+ sx = x, (14a)

Y λ− sy = y, (14b)

Xλ− s′x = x, (14c)

Y λ+ s′y = ȳ, (14d)

λ, sx, sy, s
′
x, s
′
y ≥ 0. (14e)

Although the conventional CRS technology is a closed cone technology, its bounded
analogue TB is not. A question therefore arises as to what is the closed cone technology C̄B
generated by technology TB?

Note that (14) is a special case of the general statement of polyhedral technology (1). In
particular, vector z in (1) is the combined vector

(
λ, sx, sy, s

′
x, s
′
y

)
in (14). Conditions (14a)

and (14b) correspond to conditions (1a) and (1b). The nonhomogeneous conditions (14c)
and (14d) are parameter conditions (1c).

By Proposition 3, the statement of technology C̄B is obtained from (14) by introducing
an additional scalar variable α and replacing its constraints (14c) and (14d) by the following:

Xλ− s′x = αx,

Y λ+ s′y = αȳ,

α ≥ 0.

(15)

By Proposition 5, the statements of the NIRS and NDRS technologies H̄B and GB require
the incorporation of the additional inequality α ≤ 1 and α ≥ 1, respectively.

6.3. Technologies with weight restrictions

Many applications of DEA involve the specification of weight restrictions in the multiplier
models based on the conventional VRS or CRS production technologies (Allen, Athanas-
sopoulos, Dyson, & Thanassoulis, 1997; Dyson and Thanassoulis, 1988; Podinovski, 2015).
Below we consider the VRS models with weight restrictions.

Using notation from the previous example, let X and Y be the m×n and s×n matrices
whose columns are the input and output vectors of the observed DMUs (xj, yj), j = 1, . . . , n,
respectively. Let u ∈ Rs

+ and v ∈ Rm
+ be the vectors of the output and input weights used in

either the input or output-oriented multiplier VRS model. The most common homogeneous
weight restrictions are stated in the form:

Q>t u− P>t v ≤ 0, t = 1, . . . , K, (16)

where Qt ∈ Rs and Pt ∈ Rm are constant vectors whose components can be positive, negative
or equal to zero. Define the matrices Q and P whose dimensions are s × K and m × K,
respectively, and whose columns are vectors Qt and Pt, t = 1, . . . , K.

The incorporation of weight restrictions (16) in the multiplier VRS model leads to the
corresponding change in the dual envelopment model. As shown by Podinovski (2004d),
the dual terms to weight restrictions (16) are interpretable as production trade-offs. Fur-
thermore, the evaluation of the input or output radial efficiency in then performed in the
expanded technology denoted TTO.
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Technology TTO is stated as the set of all DMUs (x, y) ∈ Rm+s
+ for which there exist

vectors λ ∈ Rn, π ∈ RK and slack vectors sx and sy of appropriate dimensions such that

Xλ+ Pπ + sx = x, (17a)

Y λ+Qπ − sy = y, (17b)

1>λ = 1, (17c)

λ, π, sx, sy ≥ 0. (17d)

It is clear that the above statement of technology TTO is a special case of the general
statement (1) if we define z as the combined vector (λ, π, sx, sy). Then conditions (17a),
(17b) and (17c) correspond to (1a), (1b) and (1c), respectively.

By Corollary 2, the closed cone extension C̄TO of technology TTO is obtained by the state-
ment (17) from which we need to remove equality (17c). Therefore, technology C̄TO is the
conventional CRS technology expanded by the trade-offs dual to the weight restrictions (16).

According to Proposition 5, the NIRS technology H̄TO is obtained by changing condi-
tion (17c) to the equality 1>λ = α, where α ≥ 0 and α ≤ 1. It is easy to see that this is
equivalent to replacing (17c) by the “≤” inequality. Similarly, the NDRS technology GTO is
obtained by replacing (17c) by the “≥” inequality.

Podinovski (2017, Theorem 2) obtains the same technologies C̄TO, H̄TO and GTO in a
development requiring an independent proof. Note that these results now simply follow
from Corollary 2 and Proposition 5.

6.4. The hybrid returns-to-scale technology

The hybrid returns-to-scale (HRS) technology was developed by Podinovski (2004c) for
the scenario in which a subset of inputs and outputs are mutually proportional (scalable)
but the remaining inputs and outputs are not. Podinovski, Ismail, Bouzdine-Chameeva, and
Zhang (2014) report an application of this technology to the assessment of school efficiency
in which the number of pupils is assumed proportional to the number of teaching hours.
However, the socio-economic factors, including the number of pupils from families of higher
socio-economic status and the academic achievements of students are excluded from this
proportion. Podinovski and Wan Husain (2017) use a similar approach and utilize the HRS
technology in the context of higher education.

Let X and Y be the m× n and s× n matrices whose columns are the input and output
vectors of the observed DMUs (xj, yj), j = 1, . . . , n, respectively. Let X̃ and Ỹ be the matri-
ces obtained from X and Y , respectively, whose rows corresponding to the nonproportional
inputs and outputs are changed to zero rows.

The HRS technology THRS is the set of all DMUs (x, y) ∈ Rm+s
+ for which there exist

vectors λ, µ, ν ∈ Rn and slack vectors sx, sy and sλ of appropriate dimensions, such that

Xλ+ X̃µ− X̃ν + sx = x, (18a)

Y λ+ Ỹ µ− Y ν − sy = y, (18b)

λ− ν − sλ = 0, (18c)

1>λ = 1, (18d)

λ, µ, ν, sx, sy, sλ ≥ 0. (18e)

It is clear that the above statement is a special case of the general statement (1) of
polyhedral technology. In particular, the vector z in (1) corresponds to the combined vector
(λ, µ, ν, sx, sy, sλ) in (18). The parameter conditions (1c) correspond to n homogeneous
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equalities (18c) and the single nonhomogeneous equality (18d). By Corollary 2, to obtain
the closed cone extension C̄HRS of technology THRS, it suffices to remove the nonhomogeneous
equality (18d) from the set of conditions (18).

Podinovski (2009) provides an independent derivation of the same technology C̄HRS, which
requires a bespoke mathematical proof. In this paper, we have shown that the same tech-
nology C̄HRS is immediately obtained by Corollary 2.

It is interesting to note that technology C̄HRS may be used not only as a technical tool
(reference technology) for evaluating the scale efficiency in technology THRS but also as
a suitable model of some actual production processes. An example of this is discussed
in Podinovski (2009) in the context of university departments. In this example, the two
inputs are teaching and research staff, and the two outputs are students and publications.
If we assume full proportionality (scalability) between all inputs and outputs (i.e., CRS)
and, additionally, selective proportionality between teaching staff and students, then this
production process is correctly modelled by the closed cone technology C̄HRS. The latter
technology is generally larger than the corresponding standard CRS technology of Charnes
et al. (1978).

Finally, using Proposition 5, and similar to the example in Section 6.3, the NIRS and
NDRS technologies H̄HRS and GHRS are obtained by replacing the equality (18d) by the “≤”
and “≥” inequalities, respectively.

7. The dual perspective

Assessing the efficiency of any DMU (xo, yo) in a polyhedral technology T involves solving
a linear program that can be stated in two mutually dual forms referred to as the envelopment
and multiplier models.

To be specific, and without loss of generality, consider the evaluation of the output radial
efficiency of DMU (xo, yo) in technology T stated in the general form (1). This is defined as
the inverse of the optimal value of θ in the following multiplier program:

max θ (19a)

subject to Az = xo, (19b)

−Bz + θyo = 0, (19c)

Cz = d, (19d)

z ≥ 0. (19e)

Let v ∈ Rm and u ∈ Rs be the vectors of input and output weights defined as dual to
constraints (19b) and (19c), respectively. Let ω ∈ Rp be the vector of dual variables to the
parameter conditions (19d). The multiplier program is the dual to (19):

min x>o v + d>ω

subject to y>o u = 1,

A>v −B>u+ C>ω ≥ 0,

u, v, ω sign free.

(20)

For example, for the conventional VRS model defined by (2), ω is a scalar, and the terms
d>ω and C>ω appearing in program (20) are replaced by ω and 1>ω, respectively. Also,
in the case of VRS (and any other freely disposable technology), the nonnegativity of the
vectors of weights u and v follows from the constraints dual to the nonnegative slack vectors
sx and sy in program (2).
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Let us show how the multiplier model (20) changes if the technology T is replaced by
its closed cone extension C̄. In this case, by Proposition 3, an additional variable α ≥ 0 is
introduced in the envelopment program (19), and condition (19c) is replaced by Cz = αd.
The dual multiplier model based on technology C̄ is now stated as follows:

min x>o v (21a)

subject to y>o u = 1, (21b)

A>v −B>u+ C>ω ≥ 0, (21c)

d>ω = 0, (21d)

u, v, ω sign free. (21e)

Comparing programs (20) and (21), note that the latter program has the additional
constraint (21d). The absence of the term d>ω in the objective function of this program is
unimportant. We can formally use the objective function of program (20) in program (21)
as well because this term is equal to zero.

It is straightforward to verify that the same modification is required in the case of input
radial efficiency, and also for the multiplier models stated in terms of directional distance
functions (Chambers et al., 1998). This observation can be formally stated as follows.

Proposition 6. Let C̄ be the closed cone technology generated by polyhedral technology T .
Then the multiplier programs based on technology C̄ are obtained from the multiplier programs
based on technology T by incorporating the additional constraint d>ω = 0 in the latter.

As an illustration, consider the closed cone extension C̄N of the two-stage network tech-
nology TN stated in the form (12) in Section 6.1. By Proposition 6, the multiplier models
based on technology C̄N require the additional constraint

ωI + ωII = 0,

where ωI and ωII are the dual variables to the first and second-stage normalizing equali-
ties (12e) and (12f), respectively.

Corollary 3. Let the parameter conditions (1c) include a single nonhomogeneous condition,
and possibly any other conditions all of which are homogeneous. Let ω be the dual variable
corresponding to this nonhomogeneous condition. Then the multiplier programs based on
technology C̄ are obtained from the multiplier programs based on technology T by incorpo-
rating the condition ω = 0 in the latter or, equivalently, by removing the variable ω and all
terms with this variable from the program.

An example illustrating Corollary 3 is the conventional CRS technology which is the
closed cone technology generated by the VRS technology. The multiplier CRS programs are
obtained from the multiplier VRS programs by removing the sign-free variable ω dual to the
convexity constraint (2c).

8. Conclusion

The notions of scale efficiency and returns to scale are important in many applications of
DEA. According to a well-established methodology, the evaluation of these characteristics in
technology T is based on the use of the reference cone, NIRS and NDRS technologies gen-
erated by technology T . These reference technologies are readily available if the underlying
technology T is the VRS technology of Banker et al. (1984) and in some other cases.
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A number of new models of production technologies (often defined axiomatically) have
recently been developed in the DEA literature. Most of them are stated in the form of linear
equalities and inequalities and are therefore polyhedral technologies. In some cases, the
production technology is not stated explicitly but is introduced implicitly by the statement
of the multiplier program for the assessment of the input or output radial efficiency of the
DMUs, or for the evaluation of the directional distance function of Chambers et al. (1998).
For many such technologies their reference technologies have remained unexplored, or have
been introduced heuristically, often using unverified analogy with the conventional VRS
model.

In this paper, we consider the cone, NIRS and NDRS reference technologies for an arbi-
trary polyhedral technology T whose general statement was suggested by Podinovski et al.
(2016). Our results show that the required reference technologies are obtained by a modifi-
cation of the statement of technology T which is the same for all polyhedral technologies.
We also show how the multiplier models should be modified for their use with the reference
cone technologies.

Our results should also be of interest for the axiomatic development of polyhedral tech-
nologies, to be used as models of the actual production processes, and not only as technical
means for the evaluation of scale efficiency. A common approach to this is based on the state-
ment of the production assumptions in the form of axioms. The technology is subsequently
defined by the minimum extrapolation principle (Banker et al., 1984) as the intersection of
all technologies that satisfy the stated axioms. In many cases, after a particular technology
T has been obtained, a question arises as to how to define the cone (CRS) analogue of T .
Answering this question requires stating an additional axiom of scalability of DMUs and
formally deriving the required cone technology from the new set of axioms. The results
obtained in this paper facilitate this stage of development and show that the statement of
the resulting cone technology can easily be obtained by modifying the statement of technol-
ogy T .
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Appendix A. Proofs

Proof of Proposition 1. Consider the program obtained from (3) by replacing T by C in
its constraints:

sup β/α

subject to (αxo, βyo) ∈ C,
α, β > 0.

(A.1)

The suprema of programs (3) and (A.1) are equal. Indeed, by (4), any feasible solution
of (A.1) is stated as (δα, δβ), where (α, β) is feasible in (3). Because (δβ)/(δα) = β/α,
∀α, δ > 0, the values of the objective function achievable in both programs are the same.

Let (α∗, β∗) be any feasible solution to program (A.1), for which its objective function
is equal to β∗/α∗. Then the same value β∗/α∗ is achieved at any solution (δα∗, δβ∗), for
any δ > 0. In particular, we can take δ = 1/α∗, for which we obtain the feasible solution
(1, β∗/α∗). Therefore, the supremum of program (A.1) does not change if we reduce its
feasible region to its subset by requiring α = 1 and remove the now redundant positivity
conditions on variables α and β. This results in program (5).

Let the supremum of (3) be equal to β∗/α∗ and attained at some (α∗xo, β
∗yo) ∈ T .

Then the same value is attained in (5) at (xo, β
∗/α∗yo) ∈ C. Conversely, let the supremum

of (5) be equal to β∗ and attained at some (xo, β
∗yo) ∈ C. By (4), there exists a (x̃, ỹ) ∈ T

and δ > 0 such that (xo, β
∗yo) = (δx̃, δỹ). Then δ > 0, and the ratio β∗/α∗ is attained at

(x̃, ỹ) = ((1/δ)xo, (β
∗/δ)yo) ∈ T .

Proof of Proposition 2. Let β∗ and β̄∗ be the suprema of β in programs (7) and (8),
respectively. (We allow the case β∗ = +∞ or β̄∗ = +∞.) Because C ⊆ C̄, we have β∗ ≤ β̄∗.

Conversely, consider any β′ ∈ [1, β̄∗). Because C̄ is a convex set and (xo, yo) ∈ C̄, by
definition of β̄∗, we have (xo − β′gx, yo + β′gy) ∈ C̄. It suffices to prove that β∗ ≥ β′, as
this would imply β∗ ≥ β̄∗. By Proposition 3 whose proof is independent of this proof,
(xo − β′gx, yo + β′gy) satisfies (10) with some z′ and α′. Two possibilities arise.

(i) Let α′ > 0. Define (x̃, ỹ) = (1/α′)(xo − β′gx, yo + β′gy). Then (x̃, ỹ) satisfies (1)
with z = 1/α′. Therefore, (x̃, ỹ) ∈ T . Because (xo − β′gx, yo + β′gy) = (α′x̃, α′ỹ), by (4),
(xo − β′gx, yo + β′gy) ∈ C. By definition of β∗, we have β∗ ≥ β′.

(ii) Let α′ = 0. For k = 1, 2 . . . , define the sequence of units

(xk, yk) =
1

k
(xo, yo) +

(
1− 1

k

)
(xo − β′gx, yo + β′gy)

= (xo − βkgx, yo + βkgy),

(A.2)

where βk = (1− 1/k)β′. Because both (xo, yo) and (xo− β′gx, yo + β′gy) are in C̄, and C̄ is a
convex set, (xk, yk) ∈ C̄, for all, k = 1, 2, . . .

Because (xo, yo) ∈ T , it satisfies (1) with some z = zo. Therefore, (xo, yo) satisfies (10)
with zo and α = 1. Then each (xk, yk) in (A.2) satisfies (10) with zk = (1/k)zo + (1− 1/k)z′

and αk = (1/k) + (1 − 1/k)α′. Note that, for each k, αk > 0. Then, as proved in Case (i),
(xk, yk) ∈ C, for each k. By definition of β∗, we have β∗ ≥ βk, for all k. Because βk → β′ as
k → +∞, we have β∗ ≥ β′.

Proof of Proposition 3. Let T ∗ be the technology defined by (10). We need to prove
that T ∗ = C̄, where C̄ is defined by (6). Let us first prove that C ⊆ T ∗, where C is defined
by (4). Indeed, let (x, y) ∈ C. By (4), there exists a (x̃, ỹ) ∈ T and δ ≥ 0 such that
(x, y) = (δx̃, δỹ). Let (x̃, ỹ) satisfy (1) with some z′. Then (x, y) satisfies (10) with z = δz′
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and α = δ. Therefore, (x, y) ∈ T ∗ and C ⊆ T ∗. Taking the closure of both sides, we have
C̄ = cl C ⊆ cl T ∗ = T ∗. (The last equality follows from the fact that T ∗ is a polyhedral and
therefore a closed technology.)

It remains to be proved that T ∗ ⊆ C̄. Consider any (x′, y′) ∈ T ∗. Then (x′, y′) satis-
fies (10) with some z′ and α′. Two possibilities arise.

(i) Let α′ > 0. Define (x̃, ỹ) = (1/α′)(x′, y′). Then (x̃, ỹ) satisfies (1) with z = 1/α′.
Therefore, (x̃, ỹ) ∈ T . Because (x′, y′) = (α′x̃, α′ỹ), by (4) and (6), (x′, y′) ∈ C ⊆ C̄.

(ii) Let α′ = 0. Let us prove that (x′, y′) is a limit point of C and is therefore in C̄.
Consider any (x∗, y∗) ∈ T which satisfies (1) with some z∗. Therefore, (x∗, y∗) satisfies (10)
with z = z∗ and α = 1. For k = 1, 2 . . . , define the sequence of units

(xk, yk) =
1

k
(x∗, y∗) +

(
1− 1

k

)
(x′, y′).

Each (xk, yk) satisfies (10) with zk = (1/k)z∗+ (1− 1/k)z′ and αk = (1/k) + (1− 1/k)α′.
Therefore, (xk, yk) ∈ T ∗, for all k = 1, 2, . . . For each k, αk > 0 and, as proved in Case (i),
(xk, yk) ∈ C̄. The limit of the sequence of units (xk, yk) is (x′, y′). Because C̄ is a closed set,
(x′, y′) ∈ C̄.

Proof of Corollary 2. Let t′ ∈ {1, . . . , p} be the single nonhomogeneous condition in (1c).
Denote T ∗ the technology defined by conditions (1) from which the condition t′ in the
group (1c) is removed. We need to prove that C̄ = T ∗. By Proposition 3, any (x, y) ∈ C̄ sat-
isfies conditions (10) with some z′ and α′. Then (x, y) satisfies (1), with the nonhomogeneous
condition t′ removed, with the same z′. Therefore, (x, y) ∈ T ∗ and C̄ ⊆ T ∗.

Conversely, let (x, y) ∈ T ∗ satisfy conditions (1), from which the nonhomogeneous con-
dition t′ with the right-hand side dt′ 6= 0 is removed, with some z′. Define α′ = Dz′/dt′ .
Then (x, y) satisfies (10) with z′ and α′. Therefore, (x, y) ∈ C̄ and T ∗ ⊆ C̄.

Proof of Proposition 4. According to Proposition 5, G is a polyhedral set. Therefore, G
is a closed set.

Proof of Proposition 5. The proof of this result is similar to the proof of Proposition 3
and is only outlined. Consider technology H̄. Denote T ∗ the technology defined by (10)
and the additional condition α ≤ 1. It is straightforward to show that H̄ ⊆ T ∗. The
inverse embedding is proved by considering Cases (i) and (ii) similar to those in the proof
of Proposition 3. The case of technology G is similar. For this technology, α ≥ 1, and only
Case (1) is possible.
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