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ABSTRACT

The truncated Cornish–Fisher inverse expansion is well known and has been used to
approximate value-at-risk (VaR) and conditional value-at-risk (CVaR). The follow-
ing are also known: the expansion is available only for a limited range of skewnesses
and kurtoses, and the distribution approximation it gives is poor for larger values of
skewness and kurtosis. We develop a computational method to find a unique, cor-
rected Cornish–Fisher distribution efficiently for a wide range of skewnesses and
kurtoses. We show that it has a unimodal density and a quantile function which is
twice-continuously differentiable as a function of mean, variance, skewness and kur-
tosis. We extend the univariate distribution to a multivariate Cornish–Fisher distri-
bution and show that it can be used together with estimation-error reduction meth-
ods to improve risk estimation. We show how to test the goodness-of-fit. We apply
the Cornish–Fisher distribution to fit hedge-fund returns and estimate CVaR. We
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conclude that the Cornish–Fisher distribution is useful in estimating risk, especially
in the multivariate case where we must deal with estimation error.

Keywords: conditional value-at-risk (CVaR); estimation error; goodness-of-fit; kurtosis; skew-
ness.

1 INTRODUCTION

Consider how we might estimate the risk of investing in some combination of n
assets. We may choose one or more risk measures such as variance, value-at-risk
(VaR), deviation measures or conditional value-at-risk (CVaR). Whatever we choose,
we should deal with estimation error (Herold and Maurer 2006) whenever we esti-
mate the risk measure. This is an error that arises from using n > 1 sample statistics
to estimate n population statistics. Its effect is that the asset with the lowest mea-
sured risk has underestimated risk, while the asset with the highest measured risk
has overestimated risk. This effect increases rapidly with n. It is made worse when
we consider not just n assets but combinations of them.

If variance were the only risk measure of interest, then the covariance-shrinkage
method of Ledoit and Wolf (2004) might be enough. But usually we want risk mea-
sures like CVaR that change as skewnesses and kurtoses change. If we want to cor-
rect anything beyond mean and variance, or to compute estimates for combinations
of assets, we cannot simply adjust the data, for example, by shifting and scaling.
Rather, we want a multivariate estimate of the distribution.

Our choice of the Cornish–Fisher distribution may seem surprising. Although it
has been used in risk estimation (Bali et al 2007; Liang and Park 2007), it has two
obvious problems: it is valid only for a small range of skewnesses and kurtoses, and it
is known to be inaccurate for estimating distributions not close to normal. Recently,
Maillard (2012) suggested a correction. We improve this correction and develop a
method to find the estimation quickly, with guaranteed convergence to a unique set
of parameters for skewness and kurtosis in a region ( OR of Figure 1) large enough to
fit most asset returns. We then extend it to a multivariate distribution.

We show that the corrected Cornish–Fisher distribution has many desirable prop-
erties. When fitting normal data, we get a normal distribution. Otherwise, the den-
sity function f is smooth, unimodal (ie, it has only one maximum) and flat-tailed;
that is, f .x/ > 0 for x 2 R. These are properties that we would usually expect
in asset distributions. We also show that Cornish–Fisher VaR and CVaR risk esti-
mates are twice-continuously differentiable functions of the coefficients of a linear
combination of assets.

Formally, suppose that we have n random variables with an unknown distribution
function, although its shape must generalize the normal distribution. Suppose also
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that we know the mean �i , variance �2i , skewness �3i and (excess) kurtosis �4i
of each variable. We seek a family F .pi / (pi D .�i ; �i ; �3i ; �4i /, i D 1; : : : ; n)
of distributions to model the random variables, ideally one that we can use to fit a
multivariate distribution of all of them. Typically, as in our example, �3i and �4i will
differ substantially from zero.

We can use the normal family for F .p/ if skewness and kurtosis are zero. If skew-
ness is zero, we can use the elliptical family of distributions. If we ignore kurtosis
and can limit skewness to .�1; 1/, we can use the skew-normal distribution family.
However, none of these conditions is likely in financial data. The Box–Cox power
exponential (BCPE) distribution (Rigby and Stasinopoulos 2004) appears to be a
plausible alternative to F .p/ because it is a four-parameter family of distributions.
However, its quantile function does not, in general, have a continuous derivative, and,
if the distribution is not symmetric, it is truncated in one or other of its tails; hence
our approach.

We find a multivariate distribution that fits a mean vector, covariance matrix, co-
skewness and co-kurtosis tensors. The use of higher co-cumulants is not uncom-
mon in the literature. They have been used to evaluate investment fund performance
(Moreno and Rodrı́guez 2009) and portfolio allocation (Hitaj et al 2012). Jondeau
et al (2017) even developed a model to explain the drivers of co-skewness and co-
kurtosis, giving rise to a better explanation of stock returns. It is well known that
higher co-cumulants are difficult to estimate accurately and often give rise to esti-
mation error. Future research may explore how to deal with these issues more effec-
tively. The multivariate Cornish–Fisher distribution gives us a practical way to esti-
mate risk measures when we do not estimate skewness and kurtosis directly from the
data.

Let X be a random variable. Writing

FX .x/ D ˚.u/; (1.1)

we can derive a power series expansion (Cornish and Fisher 1938; Hill and Davis
1968):

x D

1X
kD0

aku
k : (1.2)

We call it the Cornish–Fisher inverse expansion. Here, ak are polynomials in the
cumulants ofX . The expansion truncated to four terms is commonly used to approx-
imate FX , for example, to approximate conditional CVaR. We use it with a system-
atic correction. We write C 2q for the set of functions of q that is twice-continuously
differentiable over some region of interest.
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We use hedge-fund data and CVaR to illustrate the Cornish–Fisher distribution in
risk estimation. For simplicity, we ignore time series effects in estimating cumulants
in the data, although we could easily include them (see, for example, Gabrielsen et al
2015).

Section 2 shows how to correct the Cornish–Fisher expansion to get a distribution.
Section 3 shows that it has desirable properties for risk measurement and discusses
generalizations, the most important of which is a multivariate Cornish–Fisher distri-
bution. Section 4 provides a practical example that shows how to fit the distribution
and how to estimate CVaR. Supplements A–D (available online) give details of our
derivation.

2 THE CORNISH–FISHER EXPANSION

Suppose X has mean 0 and variance 1. Then, (1.2) gives

F �1X .u/ D

1X
kD0

ak.˚
�1.u//k;

where each ak is a polynomial in the cumulants of X , and ˚ is the standard normal
distribution function. To use this in practice, we need to truncate the series. For the
approximation to be increasing, the highest power of k must be odd. In practice,
the fourth-order (k D 3) approximation is used. This gives (see Cornish and Fisher
1938) a2 D �a0 D s, a1 D 1 C 5s2 � 3k and a3 D k � 2s2, with s D �3=6 and
k D �4=24. So, the fourth-order expansion (see (1.2)) is

x D �.u/ D �s C .1C 5s2 � 3k/uC su2 C .k � 2s2/u3; (2.1)

giving the quantile function

QF �1.u/ D �sC.1C5s2�3k/˚�1.u/Cs.˚�1.u//2C.k�2s2/.˚�1.u//3: (2.2)

Following Maillard (2012), we treat s and k as parameters because (2.4) and (2.5)
show QF does not have skewness s=6 or kurtosis k=24 unless s D k D 0. We write
q D s2 to simplify expressions containing only even powers of s. QF can only be a
distribution function if � is a strictly increasing function of u. It is straightforward
to show (see Maillard 2012) that � is strictly increasing in the region R, given by
q < 3 � 2

p
2 and

1C 11q �
p
q2 � 6q C 1

6
< k <

1C 11q C
p
q2 � 6q C 1

6
: (2.3)
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The moments of the fourth-order Cornish–Fisher inverse expansion are given by
Maillard (2012) (correcting a misprint and as functions of s and k):

�1.s; k/ D 0;

�2.s; k/ D 1C 6k
2
� 24s2k C 25s4;

�3.s; k/ D 6s � 76s
3
C 510s5 C 36sk � 468s3k C 108sk2;

�4.s; k/ D 3C 3348k
4
� 28080s2k3 C 1296k3 � 6048s2k2

C 252k2 � 123720s6k C 8136s4k � 504s2k

C 24k C 64995s8 � 2400s6 � 42s4 C 88380k2s4:

9>>>>>>>>>=>>>>>>>>>;
(2.4)

The skewness and kurtosis are given by

Os.s; k/ D
�3.s; k/

.�2.s; k//3=2
and Ok.s; k/ D

�4.s; k/

.�2.s; k//2
� 3: (2.5)

Equations (2.4) and (2.5) implicitly define a function

G.s; k/ D .Os.s; k/; Ok.s; k//T: (2.6)

Maillard (2012) suggests G might be invertible and tabulates some values. Figure 1
shows an empirical plot of R (part (a)) and of OR D fG.s; k/ W .s; k/ 2 Rg (part (b)).
If a distribution has skewness �3 and kurtosis �4, then we must have �4 > �23 � 2.
The gray regions in Figure 1 show the areas that are excluded by this inequality. The
points and dashed lines are discussed in Section 4. Both plots show lines on which s
or k is constant.
G is not globally invertible. We show in Supplement A online that we can write its

Jacobian determinant as jJ.s; k/j D �9=22 S.q; k/=144, where S.q; k/ is a polynomial
in q and k that has a root at approximately .0;�0:139/ 62 R. However, G remains
useful if we can establish two things. First, G has a unique inverse for .�3; �4/ 2 OR
so that QF �1.u/ is a twice-continuously differentiable function of �3 and �4. Second,
there is an efficient method to obtain this inverse.

The method we use is essentially Newton’s method, which is well known and
efficient. Define

J.s; k/ D

0BB@
@Os

@s

@Os

@k

@ Ok

@s

@ Ok

@k

1CCA ;
the Jacobian matrix of G. Supplement A online demonstrates that G has a unique
inverse for .�3; �4/ 2 OR by showing jJ.s; k/j > 0 for .s; k/ 2 R.
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FIGURE 1 R and OR.
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We solve G.s; k/ D .�3; �4/ starting from .s0; k0/ by Newton’s method. We
compute .sj ; kj / iteratively using

J.sj ; kj /

 
Qsj
Qkj

!
D �

 
Os.sj ; kj / � �3

Ok.sj ; kj / � �4

!
;

 
sjC1

kjC1

!
D

 
sj

kj

!
C

 
Qsj
Qkj

!
: (2.7)
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For Newton’s method to converge, we require Os.s; k/ and Ok.s; k/ to be continuously
differentiable, and J.s; k/ to be nonsingular wherever we evaluate it. We note that

�2.s; k/ D 1C6k
2
�24qkC25q2 > 1C6.k2�4qkC4q2/ > 1C6.k�2q/2 > 1:

Hence Os and Ok are twice-continuously differentiable. Since G.0; 0/ D .0; 0/, we set
.s0; k0/ D .0; 0/. By symmetry, we can assume �3 > 0 and s > 0. Then, to ensure
J.s; k/ > 0, we restrict Newton’s method, replacing the equation on the right in (2.7)
with  

sjC1

kjC1

!
D

 
sj

kj

!
C ˛

 
Qsj
Qkj

!
; (2.8)

where we choose ˛ 2 .0; 1� so that

� .sjC1; kjC1/ is in a convex subset containing the right-hand side of R (see
Figure 1) and

� the solution is improving.

Supplement A online explains this in more detail.
In practice, most nonlinear optimizers should be able to invert G, even without

explicit derivatives, provided s and k are constrained to lie in a convex subset of R.
Our method is merely efficient and allows us to invert G for points very close to the
dashed line in Figure 1(b), where the Jacobian is singular. The final paragraph of
Section 4.2 explains this line in more detail.

Suppose that we want a distribution with mean �, variance �2, skewness �3 and
kurtosis �4. Suppose also that � and � are finite and .�3; �4/ 2 OR. Then, we can use
Newton’s method to evaluate G�1.�3; �4/, giving us values for s and k and hence
a0, a1, a2 and a3. Define

F �1.uIp/ D �C ��
�1=2
2

3X
jD0

aj .˚
�1.u//j ; (2.9)

where �2 is given by (2.4). QF , defined by (2.2), has mean 0, variance �2, skewness
�3 and kurtosis �4. Skewness and kurtosis are invariant under scaling and shifting.
So, F has mean �, variance �2, skewness �3 and kurtosis �4. We call it the Cornish–
Fisher distribution with parameters �, � , �3 and �4. Thus, (2.9) defines a family of
distributions for finite �, finite � > 0 and .�3; �4/ 2 OR. We write Y � F .p/ to
indicate Y is a distribution in this family. For reasons that become clearer at the end
of Section 3 and in Section 4, we occasionally abuse notation by referring to F as a
Cornish–Fisher distribution when .�3; �4/ 62 OR.
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The Cornish–Fisher distribution that approximates a distribution by putting s D
�3=6 and k D �4=24 is widely used (Bali et al 2007; Liang and Park 2007). We
call it the uncorrected Cornish–Fisher distribution and show (in Section 4) that it is
sometimes a poor approximation.

3 THE CORNISH–FISHER DISTRIBUTION AND A MULTIVARIATE
GENERALIZATION

We will now demonstrate some properties of the Cornish–Fisher distribution and a
multivariate expansion.

If we wish to estimate risk by fitting a distribution to data, then we should be con-
cerned about some of the properties of the distribution, particularly those of the left
tail. We want VaR˛ and CVaR˛ to be well behaved. Usually, this means that we want
them to be strictly increasing as functions of ˛; that is, as ˛ ! 0 there is no point at
which risk becomes zero and no range over which it is not decreasing. Consequently,
we want a smooth distribution with a density that does not become zero at some point
in the left tail, as, for example, the lognormal and gamma densities do.

Proposition 3.1 shows that the Cornish–Fisher distribution has these properties and
consequently makes sense when estimating tail risk. We end Section 3.1 by showing
that, even if we relax the region on which the Cornish–Fisher distribution is defined,
CVaR˛ often remains well behaved for not-too-small ˛.

In the multivariate case, we may wish to estimate the risk of some convex
combination

nX
iD1

�iXi

of assetsX1; : : : ; Xn satisfying
Pn
iD1 �i D 1 and �i > 0 for i D 1; : : : ; n. Again, we

want the risk measure to change smoothly as we change � D .�1; : : : ; �n/T. Propo-
sition 3.2 shows that this will happen provided we choose a smooth risk measure
such as VaR or CVaR, and provided skewness and kurtosis also change smoothly
with �. They do so for the multivariate distribution of Section 3.2, which preserves
the covariance matrix and co-cumulant tensors.

3.1 Properties of the Cornish–Fisher distribution

Suppose Y � F .p/. Equations (2.1) and (2.9) give

F �1.uIp/ D �C ��
�1=2
2 �.˚�1.u//: (3.1)
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Making Cornish–Fisher fit for risk measurement 61

We can rearrange (3.1) to get the distribution function:

F.x/ D u D ˚

�
��1

�
�
1=2
2

x � �

�

��
: (3.2)

In the R-package in the supplementary material (available online), we use New-
ton’s method to evaluate ��1 rather than the formula for the roots of a cubic. This
is because � 0 > 0 guarantees that the root is unique and that Newton’s method
converges.

The following two propositions are proved in Supplement B online. Note that the
density function without the �1=22 correction is given in Maillard (2013).

PROPOSITION 3.1 Let Y � F .p/. The density function of Y is

f .x/ D
�
1=2
2 �.v/

�� 0.v/
;

with v D ��1.�
1=2
2 .x � �/=�/. The distribution function is smooth, and f .x/ is

unimodal and satisfies f .x/ > 0 for x 2 R.

Note that smoothness and f .x/ > 0 are more important for risk estimation. How-
ever, unimodality increases our confidence: when we estimate risk through a distri-
bution function, we want that function to match the properties of the true distribution
as closely as possible.

PROPOSITION 3.2 F �1 is twice-continuously differentiable with respect to p D

.�; �; �3; �4/.

We can use the Cornish–Fisher distribution to estimate the ˛ quantile, F �1.˛/,
and the (lower) ˛ tail mean,

TM.X I˛/ D EŒX W X 6 F �1.˛/�;

of X . These are often seen in finance as value-at-risk, VaR.X I˛/ D �F �1.˛/ (Tee
2009), and conditional-value-at-risk, CVaR.X I˛/ D �TM.X I˛/. Acerbi (2002)
shows that

TM.X I˛/ D
1

˛

Z ˛

0

F �1.u/ du:

Put

�r.˛/ D
1

˛
p
2�

Z ˚�1.˛/

�1

zr exp.�1
2
z2/ dz:
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Then, if Y has a Cornish–Fisher distribution approximating X ,

TM.Y I˛/ D
1

˛

Z ˛

0

�
�C ��

�1=2
2

� 3X
rD0

ar.˚
�1.u//r

��
du

D �C ��
�1=2
2

3X
rD0

ar
1

˛

Z ˛

0

.˚�1.u//r du

D �C ��
�1=2
2

3X
rD0

ar
1

˛
p
2�

Z ˚�1.˛/

�1

zr exp.�1
2
z2/ dz

D �C ��
�1=2
2

3X
rD0

ar�r.˛/: (3.3)

This last expression is a twice-continuously differentiable function of p, and so, by
Proposition 3.2, VaR, TM and CVaR are also in C 2p . To use this result in practice,
we need expressions to compute the partial derivatives of F �1. Supplement C online
derives such expressions.

The tail means and quantiles are only defined if �.u/ is strictly increasing on R.
Suppose, however, that �.u/ is increasing on .u1; u2/ and that ˛ 2 .˛1; ˛2/ with
˛1 D ˚.u1/ and ˛2 D ˚.u2/. Then, both F �1.Y I˛/ and TM.Y I˛/ are sensibly
defined and are the quantile and tail mean of a distribution given by

F 0.x/ D

8̂̂<̂
:̂
F1.x/; x 6 x1;

F .x/; x1 < x < x2;

F2.x/; x > x2;

for x1 D F �1.u1/ and x2 D F �1.u2/ if we can find strictly increasing continuous
functions F1 and F2 satisfying F1.x1/ D ˛1, F2.x2/ D ˛2, and

1

˛1

Z ˛1

0

F �11 .u/ du D �C ���1=22

3X
rD0

ar�r.˛1/; (3.4)

1

1 � ˛2

Z 1

˛2

F �12 .u/ du D �C ���1=22

3X
rD0

ar�r.1 � ˛2/:

Such functions are easy to find. For example, F �11 .u/ D mu C x1 � m˛1 satisfies
F1.x1/ D ˛ and

1

˛1

Z ˛1

0

F �1.u/ du D x1 � 1
2
m˛1;

and it is straightforward to show that

�C ��
�1=2
2

3X
rD0

ar�r.˛/ < x1:
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So, if we choose m satisfying (3.4), then m > 0, and so F1 is, as required, strictly
increasing. It follows that if .�3; �4/ 62 OR but ˛ 2 .˛1; ˛2/, we can still use the
Cornish–Fisher distribution to estimate quantiles and tail means. We return to this
issue in Section 4.

3.2 Generalizations and the multivariate Cornish–Fisher
distribution

We have established that the Cornish–Fisher distribution has very desirable proper-
ties and a region of validity that is much larger than we might have naively expected.
We now consider generalizations.

Hill and Davis (1968) generalize Cornish–Fisher expansions to use nonnormal
distributions. So, we might ask what happens if we replace ˚�1 in (2.9) with a non-
normal quantile function. We have tried this and found that if we replace ˚�1 with
the quantile function of a beta, gamma or lognormal distribution, then F fails to be
a distribution function except in degenerate cases. The log of a Cornish–Fisher dis-
tribution is usually well defined. However, we find, in contrast with Proposition 3.1,
that it is only unimodal in the most degenerate case. So, it has few practical uses.

In contrast, a multivariate Cornish–Fisher distribution is practically useful. We
want to estimate the distribution of a vector .X1; : : : ; Xn/ so that we may estimate
risk measures of not only individual assets but also convex combinations of them;
that is, of portfolios. We can write each portfolio as

X D

nX
jD1

�jXj

for �1; : : : ; �n > 0, satisfying �1 C � � � C �n D 1.
One way to estimate a multivariate Cornish–Fisher distribution is to use data. If

rjt is the t th of T observations from Xj , then

rt D

nX
jD1

�j rjt ; t D 1; : : : ; T;

is a vector of observations of the portfolio, with cumulants that we can use to estimate
a Cornish–Fisher distribution, as before.

We generalize this. For various reasons, such as reducing estimation risk or
accounting for time series effects, we may not wish to estimate the cumulants from
the data directly but instead from tensors of means, covariance, co-skewnesses and
co-kurtoses (Hitaj et al 2012; Moreno and Rodrı́guez 2009).
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Write �1; : : : ; �n and �21 ; : : : ; �
2
n for the means and variances of X1; : : : ; Xn.

Then, co-skewness is defined as

Sijk D
EŒ.Xi � �i /.Xj � �j /.Xk � �k/�

�i�j�k
;

where i , j and k need not be distinct. Si i i is the skewness of Xi . Similarly, the
co-kurtosis is

Kijkl D
EŒ.Xi � �i /.Xj � �j /.Xk � �k/.Xl � �l/�

�i�j�k�l

and Ki i i i is the kurtosis of Xi .
Suppose we have an estimate sij of cov.Xi ; Xj / (variance if i D j ) for i; j D

1; : : : ; n. Then, we estimate the variance of the portfolio X as

sX D

nX
iD1

nX
jD1

�i�j sij :

Similarly, we estimate the skewness as

SX D
1

s3X

nX
iD1

nX
jD1

nX
kD1

�i�j�kSijk

and the kurtosis as

KX D
1

s4X

nX
iD1

nX
jD1

nX
kD1

nX
lD1

�i�j�k�lKijkl :

Thus, any estimate of the four co-cumulant tensors allows us to construct a multi-
variate Cornish–Fisher distribution.

Section 1 summarizes the univariate alternatives to the Cornish–Fisher distribu-
tion. We know of no general distribution defined by mean, covariance, co-skewness
and co-kurtosis parameters that does not generalize one of these. The multivariate
Cornish–Fisher distribution has the same advantages over multivariate alternatives as
the univariate Cornish–Fisher distribution. Its weakness is that it is not well defined
for the rare cases where it does not fit (see Section 4).

Note that the multivariate Cornish–Fisher distribution can be used whether we
estimate the parameters directly from the data or use, for example, some time series
model. It is especially helpful when the parameter estimates are not the same as
those of the data, so that we have no empirical distribution from which to estimate
risk measures.
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TABLE 1 Investment fund types.

Prefix Type Prefix Type

HFFeq Hedge funds of funds MS Multistrategy
for equity

HFFms Hedge funds of funds SF Systematic futures
for multistrategy

HFFmasy Hedge funds of funds GM Global macro
for macrosystematic

LSeq Long–short equity ED Event-driven strategy
strategy

4 AN APPLICATION TO INVESTMENT FUND DISTRIBUTIONS

We now investigate the practical applicability of the Cornish–Fisher distribution. We
do this in four ways. First, we compare the Cornish–Fisher distribution with the
uncorrected version to get a broad picture of how much the difference matters. We
do this by simulating both distributions using intended parameters and comparing
these with observed parameters. Second, we investigate how well a large data set fits
the Cornish–Fisher distribution. We do this using goodness-of-fit tests and compar-
ing our results with the uncorrected distribution. We also test the fit of the normal
distribution to show that the data cannot plausibly have zero skewness and kurto-
sis. Third, we investigate the value of using the Cornish–Fisher distribution with a
risk estimate (CVaR). Estimating risk in this manner is mostly valuable when we are
using a model that does not allow us to estimate risk directly from the data. Here,
however, we mainly use cases where an empirical CVaR estimate is also possible,
so that we can directly compare two methods. Finally, we investigate the extent to
which we can fit the multivariate Cornish–Fisher distribution to the entire data set.

To illustrate the Cornish–Fisher distribution, we consider the monthly returns
of 339 investment funds from January 2000 to December 2012. We choose this
data because investment returns often plausibly have a unimodal density that is too
skewed, platykurtic or leptokurtic to be normal. This data originates from hedge
funds. We collected monthly returns for the various strategies listed in Table 1. The
data comes from Morningstar (2014), which describes the strategies in detail.

The points in Figure 1(b) show the skewness and kurtosis (estimated by k-
statistics) for each investment except GM15, HFFms9 and SF49, which have skew-
ness 5:672, �8:099 and 6:26 (beyond the range of the chart). The prefix on the
labeled fund shows its type. We choose a range of types to ensure a range of values
of skewness and kurtosis. Table 1 shows the prefixes and fund types.
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FIGURE 2 Comparison of Cornish–Fisher (black) and uncorrected (gray) distributions.
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4.1 Comparison with the uncorrected Cornish–Fisher distribution

We first compare the Cornish–Fisher distribution with the uncorrected Cornish–
Fisher distribution. Figure 2 shows the skewnesses and kurtoses of the funds of
Figure 1 as black points. The gray points show the skewnesses and kurtoses of the
uncorrected Cornish–Fisher distributions; we have joined corresponding points with
a gray line to show the effect of not using the correction. The Cornish–Fisher distri-
bution has the same skewness and kurtosis as the data except for GM2, HFFms22,
MS8 and the three points we noted above that are beyond the chart’s range.

The solid and dashed black lines are described in Section 2.
We omit comparisons of mean and variance, because both distributions give the

same values. Note that the uncorrected Cornish–Fisher distribution still uses the
�
�1=2
2 correction of (3.1), although we are not aware of even this correction being

used in the published literature.
Although the uncorrected distribution is reasonable for many of the funds, a sub-

stantial proportion of these funds have greatly exaggerated skewness and kurtosis
that sometimes falls outside of the region where the distribution is valid.

4.2 Fitting the Cornish–Fisher distribution

We fit Cornish–Fisher distributions for as many of the funds as we can using the
R-package in the supplementary material (available online). We do this even if
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FIGURE 3 Anderson–Darling p-values for Cornish–Fisher and normal distributions.
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.�3; �4/ 62 OR, and we compute a bootstrap Anderson–Darling (Cheng 2006) test
statistic whenever we can. We fail to fit Cornish–Fisher distributions for seven funds:
GM2, GM15, HFFms9, HFFms22, LSeq24, MS8 and SF49. All are strongly skewed.
GM4, LSeq22 and thirteen SF funds also have .�3; �4/ 62 OR. We find Cornish–Fisher
distributions for them when we relax the requirement that the distribution function is
defined in its tails. We tried using a Jarque–Bera in place of the Anderson–Darling
test and found very similar results.

If we assume all fund returns have Cornish–Fisher distributions with known
parameters and are independent, then the p-values from the Anderson–Darling
tests should be uniformly distributed on Œ0; 1�. Figure 3(a) shows the observed and
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expected p-values under this assumption. Note that Figure 3 does not show p–p
plots. We are not comparing the observed and expected values of a single distribu-
tion; rather, we are comparing the p-values of Anderson–Darling tests of the fits of
three families of distributions with asset returns under the null hypothesis that each
asset fits the family with some set of parameter values. This comparison is made
under the assumption that all the null hypotheses are true for the given family. Under
this assumption, we expect to observe p-values that are uniformly distributed on
Œ0; 1�. The y-coordinates in each plot are uniform on Œ0; 1�; a family fits well if the
points fall roughly on the gray line.

We record a p-value of 0 when we cannot fit a distribution. The funds with
.�3; �4/ 2 OR have black points and the rest have gray. For comparison, we show
the Anderson–Darling p-values if we use uncorrected Cornish–Fisher distributions
(Figure 3(b)), defined at the end of Section 2, and normal distributions (Figure 3(c)).
In Figure 3(b), we omit the fifty-nine cases where the uncorrected Cornish–Fisher
expansion does not give a distribution function.

Both the Cornish–Fisher and uncorrected Cornish–Fisher fits have better-than-
expected p-values for many funds. We think this is largely because the four param-
eters allow the distribution to fit the data better than its population. We note that the
correlation between many pairs of fund returns is too high for them to be plausibly
independent.

Figures 4–6 show more detail for some of the fitted Cornish–Fisher distributions.
Each chart shows a Q–Q plot, the fitted distribution function together with an empir-
ical distribution function, and a histogram together with the fitted density function
(solid) and a density function estimated by kernel density estimation. The p shown
is the p-value from the bootstrap Anderson–Darling test.

Depending on how accurate a fit is needed, twenty to thirty funds do not plau-
sibly fit their (corrected) Cornish–Fisher distributions or do not have one. Most
of these have one or two extreme values and .�3; �4/ 62 OR, though ED12 (Fig-
ures 1(a) and 4(a)) does not. MS19 (Figure 4(b)) and HFFms42 (not shown) both
have .�3; �4/ 62 OR but density functions that are likely not unimodal.

Figure 5 shows two better-fit distributions. LSeq55 (Figure 5(a)) is the 302nd best
fit and SF64 (Figure 5(b)), the 149th. Figure 6 shows two weaker-fit distributions.
GM11 (Figure 6(a)) is the 320th best fit. GM4 (Figure 6(b)) has the least good fit
of the thirteen funds with negative kurtosis. We find that nine of these funds have
Anderson–Darling-estimated p-values exceeding 0:9. To see why this might happen,
consider the case s D 0. The Jacobian has a zero at approximately k D �0:139,
corresponding to a kurtosis of about �1:31. And �.u/ is increasing between its roots
at ˙

p
1 � 1=.3k/. Thus, in the worst case (when k D �0:139), the distribution is

well defined for approximately 1:84 standard deviations on either side of the mean
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value. That is, only the extreme tails of the distribution function are undefined. These
are not visible on the plot and do not affect the Anderson–Darling test.

The dashed lines in Figure 1 approximate and interpolate skewness and kurto-
sis corresponding to some of the zeros of the Jacobian. The lines are not simple.
For example, we estimate three closely spaced zeros for skewness around ˙2:7.
Nonetheless, we conjecture that the region featuring R on which G is invertible
includes most of the points between OR and this line. This would account for the very
good fit of funds with kurtosis not in OR.

4.3 CVaR estimation

Section 3 showed that we can estimate quantiles and tail means using the Cornish–
Fisher distribution. The estimates should be less influenced by outliers than, for
example, the method of Acerbi (2007) for estimating CVaR directly from the data.

We estimate CVaR at ˛ D 0:1 in four different ways. These are as follows:

(i) from a piecewise-linear empirical distribution estimate (Acerbi 2007);

(ii) using the Cornish–Fisher distribution and (3.3);

(iii) using the uncorrected Cornish–Fisher distribution; and

(iv) using the Cornish–Fisher distribution together with shrinkage estimators to
deal with estimation error.

Shrinkage estimators correct estimation error, which underestimates the smallest
and overestimates the largest statistic in multivariate samples (Herold and Maurer
2006). We use the method of Jorion (1986) for the mean value and that of Ledoit and
Wolf (2004) for the covariance matrix. The means are estimated as

Nr� � 0:234 Nr1n C 0:766 Nr;

where the usual estimate of the n mean returns is Nr , 1n is a vector of n 1s, and Nr is
the mean of Nr . The covariance matrix estimate is

S� � 0:073mIn C 0:927Sn; (4.1)

where Sn is the unbiased estimator of the covariance matrix, m � 22:81 is the
average variance of the n D 339 funds and In is the n � n identity matrix. Sup-
plement D online shows the details of the calculation. We do not discuss specific
choices of shrinkage estimators. We do, however, note that they shrink the mean and
variance toward the overall mean, and the correlations toward zero. We expect them
to increase small and reduce large values of CVaR.
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FIGURE 4 Poor-fit Cornish–Fisher distributions: part (a).
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FIGURE 4 Poor-fit Cornish–Fisher distributions: part (b).
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FIGURE 5 Good-fit Cornish–Fisher distributions: part (a).
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FIGURE 5 Good-fit Cornish–Fisher distributions: part (b).
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FIGURE 6 Weak-fit Cornish–Fisher distributions: part (a).
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FIGURE 6 Weak-fit Cornish–Fisher distributions: part (b).
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Figure 7 compares the various CVaR estimates for the 339 funds. Section 3
notes that we can sometimes estimate CVaR when .�3; �4/ 62 OR. For example,
for GM4 (see Figure 6(b)), � is increasing between about �0:917 and 1:428 so
that the Cornish–Fisher expansion defines a quantile function except in the extreme
(< 0:005) tails. So, we compute CVaR in all 339 cases, including the seven in Sec-
tion 4 where the fit fails. The circles show funds with skewness and kurtosis in R
(see Figure 1); the squares show funds with skewness and kurtosis in OR; and the
triangles show the worst-behaved funds, including the seven where the fit fails. As
expected, Cornish–Fisher CVaR fails in most of the seven worst cases. Figure 7(a)
shows a good fit between the empirical CVaR and the Cornish–Fisher distributions.
Except in extreme cases, we can attribute variations to the smoothing effect of the
Cornish–Fisher distribution.

Figure 7(b) shows the problem of using the uncorrected Cornish–Fisher expan-
sion: CVaR is often underestimated. This usually happens when .�3; �4/ 62 R.

Figure 7(c) illustrates why we should consider estimation error; otherwise, we
tend to underestimate CVaR when it is small and overestimate it when it is large.
Note especially that the empirical CVaR estimate can be less than 50% of shrinkage
CVaR or even negative when CVaR is small.

The shrinkage CVaR estimates here use shrinkage only for mean and variance.
We expect (see Figure 2) better estimators of skewness and kurtosis to shrink the
more extreme estimates of these values. Section 4.2 notes that the worst-fit funds
tend to have extreme skewness and kurtosis and so are likely to fit better if we can
find such estimators. In addition, we expect negative kurtosis to be reduced, leading
to risk estimators that are valid even in the more extreme tails of the Cornish–Fisher
distribution. Martellini and Ziemann (2010) discuss possible shrinkage estimators
for the co-cumulants. These can be used in the univariate case, and we discuss them
further in the next section.

4.4 Multivariate fitting

Section 3.2 describes how we can fit a multivariate Cornish–Fisher distribution using
a mean vector, covariance matrix, skewness and kurtosis tensors. We cannot illustrate
every example of multivariate portfolio fit and, in general, we expect randomly cho-
sen portfolios to fit as well as the funds above. So, we illustrate using an example of
a problematic portfolio and show how the Cornish–Fisher distribution can help with
risk estimation.

The portfolio contains eleven of the 339 funds, with weights between 0 and 0:313.
Figure 8 shows the empirical distribution function as circles. We choose this portfolio
because it has multiple returns slightly greater than �1, giving an empirical estimate
for VaR at 10% of 1. This likely underestimates the risk of future portfolio returns.
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FIGURE 7 Comparison of CVaR estimates.
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Figure 8(a) shows the (corrected) Cornish–Fisher distribution fitted to the empir-
ical data (that is, using data estimates for means, covariances, co-skewnesses and
co-kurtoses). The bootstrap Anderson–Darling p-value confirms an obviously poor
fit. In this case, the Cornish–Fisher fit gives us a worse estimate of VaR but tells us
that the empirical estimate is also likely unreliable.

Figure 8(b) shows the (corrected) Cornish–Fisher distribution fitted to the data,
with the most extreme left- and right-tail values removed. Note the substantial
changes in skewness and kurtosis and the much more plausible fit. This time, the
Cornish–Fisher distribution gives us a more conservative and plausible estimate of
VaR than the empirical estimate.
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FIGURE 8 Fitting a portfolio from the multivariate distribution.
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(a) Mean: 1.771. Standard deviation: 3.176. Skewness: 3.001. Kurtosis: 18.819. p D 0:001. (b) Mean: 1.666.
Standard deviation: 2.517. Skewness: 1.142. Kurtosis: 3.105. p D 0:301.

If one’s aim is to estimate risk in individual cases, then censoring extreme data
points may be sufficient and will, for example, improve the fits in Figures 4 and 6.
More generally, it is likely that co-cumulant shrinkage estimators such as those of
Martellini and Ziemann (2010) could be combined with the multivariate Cornish–
Fisher distribution to give good risk estimators for most portfolios.
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5 CONCLUSION

Extending and correcting an idea of Maillard (2012), we demonstrate how to fit
a Cornish–Fisher distribution with specified mean, variance, skewness and kurto-
sis. We show that the distribution has desirable properties such as unimodality and
normal-like tails. We also demonstrate that we can fit the distribution for a range of
skewnesses and kurtoses big enough to fit a multivariate Cornish–Fisher distribution
by excluding only the rarest of asset returns.

Risk measures such as CVaR and VaR are based on the tail of a distribution.
This makes estimates from data very sensitive to extremes. Estimating from our
Cornish–Fisher distribution has advantages. First, the distribution shape – flat-tailed,
smooth and unimodal – is common in asset returns. Second, we can use it along-
side other methods to reduce estimation risk. This makes it more promising as we
develop improved shrinkage estimators. In the univariate case, we suggest using the
Cornish–Fisher distribution to help identify where estimating CVaR or VaR may be
problematic. In the multivariate case, we recommend using shrinkage estimators to
reduce estimation error in estimating risk. The Cornish–Fisher distribution allows
us to do this for CVaR and VaR and is particularly important in helping us avoid
underestimating risk in lower-risk assets.

Proposition 3.2 tells us that risk measures like CVaR will be twice-continuously
differentiable as a function of the coefficients of the linear combination. This makes
minimizing risk over a set of assets easier, especially when we use risk measures
such as CVaR that are convex functions of the coefficients of a linear combination of
assets.

Scope and space have limited our exploration of two issues. First, we have ignored
time series effects to simplify Section 4. We can include these effects in principle
(Gabrielsen et al 2015), but it would be useful to see what happens in practice.

Second, we have limited our discussion of estimation error and shrinkage estima-
tors to some well-known methods for mean, variance and covariance (Herold and
Maurer 2006; Ledoit and Wolf 2004). This area could be further explored. One ben-
efit of the Cornish–Fisher distribution is that it allows the possibility of develop-
ing shrinkage estimators for skewness and kurtosis. Just as Ledoit and Wolf (2004)
shrink not just the variances but the whole covariance matrix, such methods could
shrink the co-skewess and co-kurtosis tensors. The Cornish–Fisher distribution is
then likely to be useful: it is more likely to fit. Moreover, while we can change
the mean and variance of data without affecting any other cumulants, changing the
covariance is problematic, and we know of no way to change its skewness or kurtosis
without affecting other cumulants. Shrinking skewness and kurtosis would prevent
us from estimating risk measures such as VaR and CVaR empirically; however, the
Cornish–Fisher distribution estimates would remain.
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6 SUPPLEMENTARY MATERIAL

Making Cornish–Fisher distributions fit: detailed derivations

The file CornishFisherSupplement.pdf, available online, provides detailed deriva-
tions of some of the results used in this paper (portable document file format).

R-package for Cornish–Fisher functions

The file CornishFisher 1.0.tar.gz, also available online, contains code to compute the
Cornish–Fisher expansions, distribution functions, quantile functions and bootstrap
Anderson–Darling test described in this paper (gnu zipped tar file format).
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