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Abstract 

This paper studies a double-load crane scheduling problem (DLCSP) in steel slab 

yards. A slab yard stores slabs in stacks. To prepare for use in production, some slabs 

need to be moved from one place to another. These movement tasks are performed by 

a double-load crane which can hold up to two slabs simultaneously. Given a set of tasks 

and possibly precedence relationship among them, the scheduling problem is to allocate 

the tasks to double-load operations and determine the schedule for the crane to perform 

the tasks so as to minimize the makespan. The problem is first formulated as a mixed 

integer linear programming (MILP) model with variables representing the order of tasks. 

Based on properties of the problem, it is then reformulated from a crane operation 

perspective. Computational experiments are carried out on practical data collected from 

a steel company. The results show that both models can solve practical sized problems 

optimally, with the second model being more efficient. 
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1. Introduction  

The slab yard in a steel production system is a warehouse for storing slabs that come 

from the continuous casting process and will be used as input of the rolling processes. 

Operation efficiency of the slab yard has great influence on the production stages before 

and after it. On one hand, it can ensure smooth output of the slabs from the continuous 

casting process, reducing the chance of blocking. On the other hand, it can provide raw 

materials in time and guaranteeing the continuous production of rolling process. The 

slab yard serves as a very important buffer in the whole steel production system. Bridge 

cranes are used for handling these slabs in the yard. Similar to those used in most heavy 

industry, the bridge crane consists of a horizontal beam that runs along an overhead rail 

track and a hoist that moves along the beam and can lift up and place down slabs. We 

will refer to the hoist of the crane as the crane for simplicity. The latest crane can hold 

up to two slabs simultaneously, under certain condition, e.g., the slab underneath must 

be wider than, or roughly the same as, the above slab. While such new cranes have 

higher productivity, their operations become more complex and effective scheduling is 

essential to achieve their potentials. This paper studies the problem of scheduling such 

new cranes that can hold two slabs. We will call it double-load crane scheduling 

problem. A crane task is a required move of a slab from one position to another in the 

yard. Given a set of tasks and possible precedence relationships among them, the 

scheduling problem for one such crane is to determine the schedule for the crane to 

perform the tasks so as to minimize the makespan. 

Figure 1 shows the typical layout of a slab yard of a hot rolling plant. This example 

yard has two storage halls and four cranes, Cranes 1 and 2 in Hall 1, Cranes 3 and 4 in 

Hall 2. The operations in different halls are independent to each other, and their crane 

scheduling problems can be considered separately. Cranes in the same hall cannot cross 

each other and a minimum safety distance must be maintained between any two 

adjacent cranes. In current practice, each crane is allocated to a designated area in the 

slab yard, and operates above this fixed area. Thus, it is sufficient to solve the problem 



of one crane in each area. For simplicity, we refer to the storage area being studied as 

the slab yard, from here on wards. This paper studies this single crane scheduling 

problem in a steel company. 
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Figure 1 Crane in the slab yard 

Crane scheduling problem (CSP) with overlapping working area has received a lot 

of studies, such as crane cyclic scheduling in automated electroplating lines and quay 

crane scheduling problem in container yard, and so on. However, crane scheduling in 

warehouses storing slabs has received little attention. 

Aron et al. (2011) proposed a dynamic programming (DP) algorithm to solve a 

CSP. In this problem, each job has been pre-assigned to a crane. The DP mainly focuses 

on obtaining the optimal crane trajectories. While in our problem, tasks could be 

interrupted and merge with another task. The task allocation and combination are 

decision variables. So, the proposed DP is not applicable to our problem considered 

here.  

Another kind of similar crane scheduling problem is in electroplating line. For 

example, Zhou et al. (2008) investigated the electroplating line processing identical 

products cyclically. Each part should visit a given sequence of tanks and the movements 

are performed by hoists. The objective is to maximize the throughout or equivalently 



minimize the cycle length. They proposed a heuristic algorithm to solve the problem. 

The main differences between electroplating scheduling problem and our problem are 

that our problem is not a cyclic scheduling problem, and the routine of each job 

(referring to ‘part’ in electroplating line) is not given in advance. 

There are previous studies on a single-crane scheduling problem in steel industry. 

Xie et al. (2015) studied the problem of scheduling crane operations in a steel coil 

warehouse to retrieve all required coils to their designated positions in the shortest 

possible time (makespan). Since the problem is shown to be NP-hard, a genetic 

algorithm (GA) is proposed. Zapfel et al. (2006) investigated a single crane scheduling 

problem in a steel coil distribution center that needs to store incoming coils and retrieve 

coils required by customers. The problem was viewed as a job shop scheduling problem 

and formulated as a nonlinear integer programming model, which is hard to solve. A 

local search-based heuristic was proposed and tested through computation. Rei et al. 

(2008) considered a single crane scheduling problem to store and retrieve steel items 

with known arrival and retrieval dates to minimize the number of crane movements. 

The items were stacked one on top of another in a similar way to container stacking. A 

simulation-based heuristic was proposed to solve the problem. Tang et al. (2009) 

studied a single-crane scheduling problem in a steel annealing system where the main 

decisions were to assign furnaces to steel stacks for processing and scheduling the crane 

to move the furnaces around the plant. There were no shuffling operations involved and 

the problem was solved using a sequential approach that assigned the furnaces first and 

then schedule the crane. Dohn and Clausen (2010) studied a slab yard planning problem 

to decide the slab movements and a crane scheduling problem to carry out the 

movement tasks. This paper split the problem to two stages which were solved 

sequentially using greedy heuristic and local search, respectively. Ge and Yih (1995) 

studied crane scheduling with time windows in circuit board production lines. Fleury 

et al. (2001) also considered the time window constraints in industrial systems, and they 

further considered random events in the scheduling problem. 



Apart from these, there is relevant research on crane scheduling problems in 

container yard. Kim et al. (2006) mentioned a branch-and-bound procedure and 

presented a heuristic for determining the storage positions for shuffled containers 

during the process of retrieving a given sequence of export containers to minimize the 

number of shuffles. Wan et al. (2009) developed a linear integer programming model 

for container retrieval and shuffling problems and also presented heuristics for handling 

container storage and retrieval in both static and dynamic settings. Lee et al. (2010) 

presented a three-phase heuristic for retrieving containers in a given sequence to 

minimize the weighted sum of the number of container movements and the crane’s 

working time. Lee et al. (2009) solved larger instances of the pre-marshalling export 

problem using neighborhood search heuristics. Li et al (2009) developed an efficient 

discrete model for yard crane (YC) scheduling by considering realistic operational 

constraints such as inter-crane interference, fixed YC separation distances and 

simultaneous container storage/retrievals. Li et al. (2012) developed an efficient 

continuous time MILP model for YC scheduling, which considers constraints about 

multiple inter-crane interference, container inbound and outbound, as well as yard 

spacing and priority constraints. Liu et al. (2006) studied the problem of scheduling 

quay cranes at container terminals where incoming vessels have different ready times. 

They decomposed and solved the problem in two levels, scheduling given numbers of 

cranes for each vessel at the vessel level and allocate cranes at the terminal level. A 

unidirectional movement formulation for the vessel level problem was proposed. Chen 

et al. (2014) also considered unidirectional movement in a cluster-based quay crane 

scheduling problem and developed a compact mathematical formulation considering 

crane initial positions. Zhang et al. (2015) modelled a problem of scheduling both quay 

cranes (QC) and yard cranes (YC) at container terminals and solved it using a bi-level 

genetic algorithm. At the lower level, the stowage plan of the outbound containers and 

the YC schedule are determined to minimize the operating time of YCs, while at the 

higher level, the total operating time of both QC and YC is minimized by optimizing 



the loading and unloading sequence for the hatches and stacks in each ship-bay, 

considering double cycle operation of the QCs. Zheng et al. (2018) studied a single yard 

crane scheduling problem with uncertain release times of retrieval tasks in a container 

yard. They proposed a two-stage stochastic programming model, and developed a 

heuristic algorithm to solve the problem. The first stage problem was the general single 

crane scheduling problem for container yard, then in the second stage they considered 

the retrieval information on the release times. Guo et al. (2018) studied a crane 

scheduling problem in a railroad container terminal. In this problem each task needs to 

be performed by a gantry crane at one fixed position, while the hoist loading the 

containers to truck/railcar or unloading from truck/railcar.. In addition, the gantry crane 

can move only one container in one task. These are different from the tasks in the 

problem studied in this paper. For more research on container terminal operations, 

please see an overview by Stahlbock and Voß (2008). 

In all the above studies, a crane can only handle one item, such as a steel coil, a 

container or a furnace at one time. In this paper, the crane can hold two slabs 

simultaneously, and so two slab-moving tasks can be combined in one loaded trip. This 

new feature can potentially increase productivity but also make the problem more 

complicated. 

 The following three references consider double operations. Upadhyay et al. (2017) 

presented a new mathematical model for optimizing the loading of double-stack 

container trains. The problem is to allocate containers to each carriage where containers 

can be stacked two-level high. Mantovani et al. (2018) proposed a model that can deal 

with single- or double-stack railcars as well as arbitrary containers-to-cars matching 

rules. The objective is to choose the optimal subset of containers and the optimal way 

of loading them on outbound railcars so as to minimize the resulting loading cost. The 

decisions of the above two problems are actually on space assignment rather than crane 

or train scheduling. Lai et al. (2013) studied the problem of transporting goods in 

containers from a port to importers and from exporters to the port by trucks that can 



carry one or two containers, without separating the truck and containers during the trip. 

All the goods in the same container are sent to (or collected from) one customer location. 

Essentially, each truck has the capacity of one or two containers. The starting point and 

ending point of each trip are the same terminal, and so the trips are independent from 

each other. The decision of this problem is to allocate customers to truck trips. Each trip 

may have up to four nodes and so the routing is very simple once the customers are 

assigned to truck trips. In our problem, the initial point and target point of each task are 

different, and so the situation is much more complex. We need not only to decide task 

combination, but also to decide the overall crane route to perform all the tasks.  

We study this double-load crane scheduling problem and optimize the operations. 

In the following part of the paper, we first describe the problem in more detail in the 

next section. Then two MILP models are formulated in section 3. Section 4 reports the 

experiments carried out on data collected from a steel company. Conclusions are drawn 

in section 5. 

 

2. Problem description 

The double-load crane can perform one task at a time (single-load operation) or 

perform two tasks together (double-load operation). Depending on the positions of the 

two slabs involved, a double-load operation can be one of the following types. 

(1) The target stacks and the initial stacks of the two slabs are all different. The 

double-load operation process in this case is shown in Figure 2. The crane 

picks up the first slab from its initial stack, moves to the initial stack of the 

second slab where it puts the first slab above the second one and then lifts the 

two slabs together, then moves to the second slab’s target stack and puts down 

the second slab, finally moves to the first slab’s target stack and puts down the 

first slab. 

(2) The two slabs have the same initial stack but different target stack. In order to 



be moved in a double-load operation, the two slabs must be in adjacent 

positions in the initial stack. In this case, the crane lifts the two slabs together 

from the initial stack, then puts the lower slab and then the higher slab at their 

target stacks respectively. 

(3) The two slabs have different initial stacks but the same target stack. In this 

case, the required positions of the two slabs in the target stack must be adjacent. 

In the operation, the crane first lifts the slab that is to be stored at a higher 

position in the target stack and then picks up the other slab, from their initial 

stacks respectively, and finally puts the two slabs together at their target stack. 

(4) The two slabs have the same initial stack and the same target stack. The two 

tasks can be performed in a double-load operation only if the positions of the 

two slabs in both stacks are adjacent and their relative positions are the same 

in both stacks. In this case, the crane can pick up both slabs in the initial stack 

and put them together at the target stack, similar to a single-load operation. 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7
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Line 02
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Figure 2 The process of a double-load operation  

In the current practice, the tasks are generated from the ERP system according to 

the production plans in the production stages before and after the slab yard. The system 

also provides a sequence for performing the tasks considering the priorities and space 

relations of the slabs. However, the system provided sequence does not take full 

advantage of the double-load capability and the efficiency of the crane. 

(1) Because the system does not consider the actual crane movements when 

generating the task sequence, the crane may need long empty moves from one 



task’s target stack to the next task’s initial stack, making the total time for the 

crane to complete all the tasks longer. 

(2) The system combines two tasks into a double-load operation only if the two 

slabs have similar specifications as well as the same initial and target stacks. 

Potential double-load operations for the tasks with different initial or target 

stacks are not explored, which leads to low capacity utilization of the crane. 

(3) In actual operation, if there are two adjacent tasks which have the same initial 

(target) stack and close target (initial) stacks and the two slabs have similar 

specifications, the crane operator will perform these two tasks as a double-load 

operation. This can improve the plan generated by the system, but the 

improvement is limited. 

We study the double-load cane scheduling problem for a given set of tasks to 

improve productivity. The constraints that need to take into account are: 

(1) Task precedence constraints 

There are several types of crane tasks including receiving and storage, 

rearrangement, retrieval and shuffling. In any case, a task is to move a slab 

from one position to another. There may be precedency requirements among 

the tasks according to their priorities in time and positions in space. Tasks have 

different emergency levels. Priority has to be given to more urgent tasks. For 

two tasks of moving two slabs away from the same stack, the task of moving 

the slab in the higher position must be performed first. Similarly, for two tasks 

of moving two slabs into the same stack, the task of move the slab to the lower 

position must be performed first.  

(2) Crane transport capacity constraints 

The crane can hold two slabs at most at the same time. Furthermore, a double-

load operation may involve at most two tasks, as any one of the four types 

described at the start of this section. That is to say, after picking up two slabs 



from one or two stacks, the crane has to put down both slabs at their target 

stacks before picking up any other slab. 

(3) The task integrity constraints 

Each task must and can be executed for only one time by the crane. 

 The time a crane spends for moving from one stack to another depends on the larger 

value between the time for moving in row direction and that in column direction. If the 

x axis is the row direction of the slab yard and the y axis is the column direction, stack 

A (x1, y1) and stack B (x2, y2) are the coordinates of the two stacks in the slab yard, the 

movement speeds of the crane in row and column directions are vr and vc, respectively, 

then the duration for the crane moving from stack A to stack B will be max{|x1-x2|/vr, 

|y1-y2|/vc}. The move time between two stacks can be calculated in advance and used as 

problem parameters. 

Given the set of tasks to be performed, whether two tasks may be combined in a 

double-load operation can be determined according to the conditions described earlier. 

The precedence relationships between tasks can also be worked out. These can all be 

expressed as known problem parameters as shown in the next section. 

 

3 Problem Formulation  

3.1 Problem formulation using crane routing variables 

3.1.1 Parameters 

We are given a set of n tasks, O = {1, …, N}, which include N slabs.  

O+  the set of tasks’ original stacks, io+  denote the original stack of task i. 

O−  the set of tasks’ target stacks, io −  denote the target stack of task i. 

ijp : a precedence parameter, equal to 1 if i must precede j, otherwise equal to 0. 



ijq : a parameter indicating if tasks i and j meet the double-load conditions, equal to 1 if 

yes, otherwise equal to 0. 

αβτ : the time needed for the crane holding one slab to move from stack α  to stack β . 

αβτ + : the time needed for the crane holding two slabs to move from stack α  to stack 

β . 

αβτ − : the time needed for the empty crane to move from stack α  to stack β . 

3.1.2 Decision variable 

1, if task  starts immediately following task  ,
0, otherwiseij

j i
x 

= 


 

0

1, if task  is the first task in the sequence,
0, otherwisej

j
x 

= 


 

1, if tasks  and  are performed together in a double-load operation,
0, otherwiseij

i j
y 

= 


 

iS : a variable reflecting the relative order of task i according to the start time. It is used 

to avoid sub-tours in the crane movement. 

ijR : the revision or savings of travel time due to the double load combining tasks i and 

j. 

3.1.3 Mathematical model F1 

According to the target and constraints of the actual crane scheduling problem in 

steel enterprises, the mixed integer programming model is established: 
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k k
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= =
≠ ≠
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 , 1,...,i j N= , i j≠ . (8) 

{ }, 0,1ij ijx y ∈ ,  , 1,...,i j N= , i j≠ . (9) 

0iS ≥ , 1,...,i N= . (10) 

The objective function consists of three parts: The first part is the sum of the 

execution time for single-operation task. The second part is the sum of the travel time 

from one task to another. The third part is the sum of revisions/savings in travel time 

due to double-operation tasks. Constraints (1) and (2) ensure that the crane begins from 

a dummy task 0, performs all the tasks in a sequence according to the start time and 

returns to the dummy task. Constraints (3) avoid sub-tours in the sequence. Constraints 

(4) ensure that the required precedence relationships are satisfied. Constraints (5) mean 

that any task may be carried out on double-load with at most one other task. Constraints 

(6) indicate that if two tasks are performed by a double-load operation, these two tasks 

must perform successively and have fixed sequence. Constraints (7) indicate that only 

the tasks satisfying the conditions can be performed in a double-load operation. 



Constraints (8) calculate the travel time revision/savings due to double load operations. 

Constraints (9) and (10) define the range of variable values. 

In order to verify the validity of the mathematical model, the mathematical model 

was solved using standard software CPLEX. Nine sets of data were derived from the 

actual production records, each set consists of 10 different problem instances of the 

same size. The nine sets can be classified into three groups, small, medium and large. 

Each problem instance was solved with the maximum runtime set to 3600 seconds. In 

the cases where the optimal solution is not found within the time limit, the best feasible 

solution is recorded. Table 1 shows the statistics of results for each set of data. The third 

column indicates the number of instances in the set for which optimal solution was 

found within the time limit, the forth column gives the numbers of instances for which 

a feasible solution was obtained but optimality was not verified within the time limit, 

and fifth column shows the number of instances for which no feasible solution was 

found within the time limit. 

Table 1. Experimental results for F1 using CPLEX 

Classification 
Number 
of tasks 

Optimal 
solution 
obtained 

Feasible 
solution 
obtained 

Feasible 
solution 

not 
obtained 

Average 
solution time 

(s) 

The longest 
solution 
time (s) 

Small scale 

6 10 0 0 0.38352 0.449 

8 10 0 0 0.74732 0.897 

10 10 0 0 3.6271 3.917 

Medium scale 

20 10 0 0 10.6568 10.870 

30 10 0 0 59.4248 68.339 

45 10 0 0 212.709 229.726 

Large scale 

60 10 0 0 1009.9224 1211.907 

80 6 4 0 2633.042 3600 

100 1 9 0 3521.608 3600 

 As can be seen from table 1, CPLEX can find the optimal solution of all the 

instances of small scale and medium scale, but it can only obtain the optimal solution 



for part of the large-scale instances. In addition, when the number of tasks increase, the 

run time increases rapidly. When the number of problem size reaches 80, the program 

runs until the time limit 3600 seconds for some instances without obtaining an optimal 

solution. When the problem size is 100, only one instance is solved optimally, though 

feasible solutions are found for all other instances within the time limit. 

3.2 Problem formulation based on crane operation steps 

Because the tasks are usually given in short notice, the crane scheduling problem 

must be solved quickly. Our research is not only to provide effective scheduling scheme 

for the slab yard, but also to improve the efficiency of decision making as much as 

possible. Now we formulate another model to solve the problem efficiently from the 

equipment operations perspective. Clearly, each task involves two slab-handling steps: 

picking up the slab and dropping off the slab. Hence, there are totally 2N steps for the 

N tasks. We redefine variables to represent the sequence of these 2N steps and formulate 

constraints to ensure feasibility of the sequence. Whether two tasks are combined as a 

double-load operation can also be expressed using the sequence. For normal single-load 

operations, the lifting-up and dropping-off steps appear alternately in the sequence. A 

double-load operation will appear in the sequence as a series steps of lifting up two 

slabs followed immediately by dropping off them in reverse order.  

We use Q = {1, …, 2N} to denote the set of slab handling steps. Other parameters 

used are the same as those for the last model. The variables for the new model are 

defined below. 

3.2.1 Decision variables 

th1, if slab  is picked up at the crane's  step,
0, otherwiseik

i kz+ 
= 


 

th1, if slab  is dropped off at the crane's  step,
0, otherwiseik

i kz− 
= 


 

, 1k kt + : the crane operation time between step k and step k+1. 



3.2.2 Mathematical model F2 

According to the target and constraint of the actual crane scheduling problem in 

steel enterprises, the mixed integer programming model is established: 

2 1

, 1
1

min  
N

k k
k

t
−

+
=
∑  

s.t.  

1 1
1

N N

ik ik
i i

z z+ −

= =

+ =∑ ∑ ,  1,..., 2k N= . (11) 

2

1
1

N

ik
k

z+

=

=∑ , 1,...,i N= . (12) 

2

1
1

N

ik
k

z−

=

=∑ , 1,...,i N= . (13) 

2 2

1 1
1

N N

ik ik
k k

kz kz+ −

= =

+ ≤∑ ∑ , 1,...,i N= . (14) 

2

'
1 '

2
N k

ik
i k k

z
+

+

= =

≤∑∑ ,  1,..., 2 2k N= − . (15) 

, 1 , 3ik i k i kz z z+ − −
+ += + , 1,...,i N= , 1,..., 2 3k N= − . (16) 

2 2

1 1

N N

ik jk
k k

kz kz− +

= =

≤∑ ∑ , 1ijp = , , 1,...,i j N= . (17) 

, 1 +1ik j k ijz z q+ +
++ ≤ , , 1,...,i j N= , 1,..., 2 1k N= − . (18) 

, 1 +1jk i k ijz z q− −
++ ≤ , , 1,...,i j N= , 1,..., 2 1k N= − . (19) 

, 1 , 1 , 1,
1

2
i i

N

k k j k ik i ko o
j

t z z zτ + −
+ + + −

+ − +
=

 
≥ + + − 

 
∑ , , 1,...,i j N= , 1,..., 2 1k N= − . (20) 

, 1 , 1 , 1,
1

2
i i

N

k k j k ik i ko o
j

t z z zτ + −
− + −

+ − +
=

 
≥ + + − 
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( ), 1 , 1,
1

i j
k k ik j ko o

t z zτ + +
+ +

+ +≥ + − , , 1,...,i j N= , 1,..., 2 1k N= − . (22) 



( ), 1 , 1,
1

i j
k k ik j ko o

t z zτ − −
− −

+ +≥ + − , , 1,...,i j N= , 1,..., 2 1k N= − . (23) 

( ), 1 , 1,
1

i j
k k ik j ko o

t z zτ − +
− − +

+ +≥ + − , , 1,...,i j N= , 1,..., 2 1k N= − . (24) 

{ }, 0,1ik ikz z+ − ∈ , 1,...,i N= , 1,..., 2k N= . (25) 

, 1 0k kt + ≥ , 1,..., 2 1k N= − . (26) 

The objective of this model is to minimize the total time to complete all the steps. 

Constraints (11) indicate that for each step k, the crane can perform only one handling 

operation, either picking-up or dropping off a slab. Constraints (12) and (13) require 

that each slab i must be picked up in exactly one step and dropped off in exactly one 

step, respectively. Constraints (14) ensure that the step of picking up a slab must be 

before the step of dropping off it. Constraints (15) are crane capacity constraints 

requiring that there cannot be more than two picking-up steps consecutively. 

Constraints (16) indicate that when a slab is picked up in step k, the crane must drop off 

it in step k+1 or step k+3. If it is the first slab in a double-load operation, then it will be 

dropped off in step k+3, otherwise, it will be dropped off in step k+1. Constraints (17) 

guarantee that if the slab i and the slab j have precedence relations, then the step of 

picking up slab j must be later than the step of dropping off slab i. Constraints (18) and 

(19) require that if two tasks are performed by a double-load operation, these two tasks 

must perform successively with a fixed order of picking-up and dropping-off steps. 

Constraints (20) to (24) ensure that there is  sufficient time for the crane operations 

from each step to the next. Constraints (25) and Constraints (26) define the range of the 

decision variables. 

 

4. Computational Experiments 

Computational experiments are carried out to test the effectiveness and efficiency 

of the two models. 20 real problem instances of different sizes are collected from the 

slab yard of a steel company. The actual production schedules for these instances are 

also obtained for comparison. Standard solver CPLEX12.51 is used to solve the models 



on a PC with Pentium IV 3.0GHz CPU. 

The objective values of the model results are compared with those of the practical 

production schedules in Table 2. Column Size shows the number of tasks in instance. 

Column Improve is the relative improvement in objective value by the optimal solution 

of the models as compared to the actual production schedule. 

Table 2 Comparison of objective values of actual production and optimal solution 

Instance 

index 
Size 

Actual 

production(min) 

Optimal 

Solution(min) 
Improve 

1 6 50 39 21.31% 

2 6 63 47 25.66% 

3 10 71 58 18.83% 

4 10 84 60 28.29% 

5 15 88 73 16.67% 

6 15 106 78 26.34% 

7 20 114 82 28.05% 

8 20 119 90 24.19% 

9 30 127 92 27.65% 

10 30 131 92 29.72% 

11 30 121 93 23.01% 

12 45 132 95 28.03% 

13 45 130 101 22.27% 

14 45 163 108 33.66% 

15 45 152 108 29.07% 

16 60 188 135 28.33% 

17 60 598 432 27.81% 

18 60 672 460 31.57% 

19 80 628 476 24.19% 

20 80 691 497 28.05% 

AVG    26.14% 



Both formulations give optimal solutions for all the instances. As can be seen from 

Table 2, the optimal solution significantly improves the actual schedule used in practice 

for all instances, with an average relative improvement of 26.14%. 

To compare the efficiency of the two formulations, we recorded their running time 

(seconds) for solving each instance. The results are shown in Table 3. Column F1-Time 

(sec) and F2-Time (sec) are the running times (seconds) for solving F1 and F2, 

respectively. Saving is the relative saving in solution time by F2 as compared to F1.  

Table 3 Comparison of the running times of F1 and F2 
Instance 

index 
Size F1-Time(sec) F2-Time(sec) Saving 

1 6 1.168 0.655  43.90% 

2 6 0.409 0.280  31.58% 

3 10 1.491 1.217  18.38% 

4 10 4.256 3.728  12.42% 

5 15 5.748 2.902  49.51% 

6 15 6.359 1.217  80.86% 

7 20 11.293 4.883  56.76% 

8 20 11.865 9.309  21.54% 

9 30 63.391 12.712  79.95% 

10 30 67.203 37.159  44.71% 

11 30 66.014 23.317  64.68% 

12 45 286.153 142.503  50.20% 

13 45 304.597 241.068  20.86% 

14 45 325.093 132.799  59.15% 

15 45 273.233 150.774  44.82% 

16 60 999.964 560.693  43.93% 

17 60 1113.162 851.455  23.51% 

18 60 1617.612 445.581  72.45% 

19 80 1919.892 1189.031  38.07% 

20 80 2664.714 1444.917 45.78% 

AVG    45.15% 



We can observe from the results in Table 3 that F2 constantly takes shorter time to 

solve the problem than F1. The average saving of running time by F2 is around 45%, 

showing that F2 is much efficient than F1. Although the saving varies for different 

instances, it does not show a general trend as the problem size increases, indicating that 

the relative efficiency is not affected by problem size. This can also be seen clearly 

from Figure 3 where the average running times of F1 and F2 and the saving for each 

problem size are shown. 

 

Figure 3 The saving and the average running times of each size 

Because the decision variables z of the second model consider the crane lifting-up 

and dropping-off operations, according to the integrity of the task and the requirement 

for the crane double-load operation, constraints (14) to (19) limit values of the decision 

variables, which greatly reduce the search space. This may be the reason why the 

computational efficiency of the second model is much higher than the first one. 

 

5. Conclusions  

In this paper, we have studied a double-load crane scheduling problem in a steel 

company. The double-load crane can handle two slabs at the same time and so can be 

more productive. However, the problem of scheduling its operations becomes much 

more complex and is quite different from previous studies in the literature. We first 
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formulated the problem as a mixed integer linear programming model considering the 

route of the crane movements. Then another formulation was proposed to determine the 

slab lifting-up and dropping-off operations in each crane operation step. The 

computational experiments were conducted to verify the efficiency and effectiveness 

of the models. The results show that the model solutions greatly improve the schedules 

used in practice with an average improvement about 26% on the test instances. The 

experiments also show that the models proposed in this paper can solve instances of 

practical size, and that the second model is more efficient than the first one, with an 

average savings of around 45% in computation time. 
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