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1 Introduction 
We live in a 3D world with increasing availability of real time spatial data, from satellite 
information, mobile tracking, autonomous transportation systems, among many other 
sources. Such availability of data, together with increasingly sophisticated risk and 
decision analytic frameworks, is enabling more effective support in answering questions 
such as:  

• How to plan the growth of cities in a sustainable way? 

• Where to bury nuclear waste?  

• Where to increase flood defenses?  

• What is the likely spatial spread of a disease? 

• How will airborne or waterborne contamination disperse? 

• What is the likely impact region of a satellite in a decaying orbit? 

• How to distribute police on open patrol in a large city? 

• How to assess the chance of finding a missing aircraft over a wide area?  
 

In answering these questions, there is growing recognition that the spatial distribution of 
many of the factors affecting the risks, costs and outcomes are heterogeneous (e.g. Keller 
et al. 2014, Zagmutt et al., 2015, Zhou et al., 2014). The rich literature on multi-criteria 
spatial decision support systems (Malczewski, 2006) has also seen an increasing number 
of applications involving risk assessment (e.g. Aceves-Quesada et al., 2007; Vadrevu et 
al., 2010). In parallel with the analysis of spatial risk, the presentation of spatial and 
geographical uncertainty has also attracted growing attention (MacEachren et al. 2005). 
 
The time is thus ripe for having a special issue on Spatial Risk Analysis, which we have 
edited. The aims of the special issue were to:  

(i) gather recent theoretical and applied developments in the field;  
(ii) identify common trends and new directions of research;  
(iii) provide some coherence to this active field of research. 

 
We are delighted that the response to our call for papers has been so positive, with 45 
submissions, the highest number of submissions for a special issue in Risk Analysis 
history. This success confirms the widespread and fast-growing interest on the topic. From 
the initial set, 17 papers have been accepted after the reviewing process. This collection 
of papers includes both theoretical and applied studies, which deal with different types of 
risks (e.g. environmental, industrial, health) and cover different stages of risk analysis 
processes.  Applications cover risks related to business, biosecurity, biological invasion, 



civil aviation, climate change vulnerability, contamination, groundwater induced 
subsidence, emergency risk analysis, flooding and extreme rain events, power networks, 
radiation dose assessment, railways, subsidence, and tornados.  
 
 
In the next section, we suggest a five-stage framework which may help to position this 
special issue within the fast-growing field of research outlined above. Subsequently, we 
identify key complexities in each stage of the framework brought by the spatial dimension 
of the assessment. We then discuss the contributions of the papers in this special issue 
for each stage in the proposed framework. We conclude with some directions for further 
research in this emerging field, by identifying some potential gaps as well as strengths for 
the consolidation of the topic. 
 

2 Key Steps and Complexities in Spatial Risk Analysis 
 
Based on our experiences in conducting risk analysis (Francis et al. 2011; French, 1996; 
Han et al. 2009, French et al, 2016; Guikema 2009; Guikema et al. 2014; Papamichail and 
French, 2013) as well as spatial decision analysis (Ferretti and Montibeller, 2016) we 
propose the following conceptualization of spatial risk analysis processes (Figure 1). For 
each stage, represented by a box, we identify the corresponding inputs and outputs, with 
the latter becoming an input to the next stage. We emphasise that the analytic process is 
interactive, constructive and, above all, provides a learning experience for the risk-owners 
and stakeholders.  
 

 
Figure 1. Five-stage framework for spatial risk analysis. 
 
The first stage of any risk analysis consists in structuring the context of the intervention 
and providing scope to the analysis. Key activities in this stage consist in identifying 
stakeholders, understanding the main uncertainties, locating spatial alternatives, and 
agreeing on objectives for project appraisal.  Once these characteristics are identified, the 



analyst will work with the risk-owner and stakeholders to select an adequate assessment 
method as well as specify component variables and target variables. 
 
In stage two, i.e. predictive modelling and forecasting, spatial distributions of component 
variables will be defined, and their overall impact assessed.  When evidence is missing 
and simulation models cannot be developed, expert judgment may provide the necessary 
estimates for the analysis (Dias et al, 2018). In parallel, preferences and values relating 
to potential impacts need to be elicited and explored, often for several stakeholders’ 
groupings.  Although Stages 2 and 3 may be separated conceptually, in practice they will 
interact. Predictive modelling will identify that impacts need to be evaluated with 
preference and value modelling and, in turn, preference and value modelling may identify 
further aspects of the impacts that need predicting. 
 
The input to the fourth stage, i.e. robustness analyses, is a spatial distribution of outcomes 
across the area under analysis. This stage tests the stability of the analytical results 
against variations in model parameters. Its result is an evidence-based recommendation 
for resource allocation and/or mitigation measures. A successful intervention, after the 
final stage of communication and presentation of results, will have as output an action plan 
agreed among the key stakeholders, as well as the decision makers’ commitment to its 
implementation.  
 
In the following sections, we attempt to identify the main complexities associated to each 
of the above stages of spatial risk analysis. We also cluster the special issue’s papers 
based on the stage that they deal with and summarise their key contribution. 
   
   

2.1 Stage 1: Problem Structuring 
Problem structuring is a crucial first step of any risk and decision analysis process, given 
the importance of agreeing on who should be involved in the analysis, on the problem 
framing, on the key components of the evaluation (uncertainties, objectives, alternatives), 
which jointly will lead to the selection of a suitable assessment method. There is extensive 
literature on supporting this stage with useful guidelines on how to use these qualitative 
problem structuring methods, e.g. causal maps, causal loop diagrams, and soft systems 
methodology (Rosenhead and Mingers, 2001; Shaw et al., 2006). However, most of this 
literature addresses problems from a non-spatial perspective. 
 
If we are instead engaged in a spatial risk analysis, the following complexities may make 
this stage more challenging. First, the geographical distribution of stakeholders may affect 
the evaluation of impacts and may require geographical procedural justice to ensure fair 
representativeness across the area. Second, existing problem structuring methods are 
currently not designed to visualise geographical factors within their qualitative models. 
Third, conceptualising geographical uncertainty is surprisingly difficult since natural 
language may merge several distinct concepts.     
 
Gardezi and Arbuckle’s paper in this special issue addresses a preliminary stage of spatial 
risk analysis by exploring whether specific model parameters, in this case perceived 
farmers’ capacity against extreme rain events, should be considered in the modelling 
stage. They develop a vulnerability index that incorporates both objective and perceived 
attributes of adaptive capacity and suggest that vulnerability assessments relying only on 
objective measures might miss important socio-cognitive dimensions of capacity.  
 



 
 

2.2 Stage 2: Predictive Modelling and Forecasting 
Predictive modelling and forecasting provide estimates of the probability distribution of 
outcomes or events and thus represent a core activity in any risk analysis (Bedford and 
Cooke, 2001). Typically, predictive models require historical data and/or simulations to 
infer the impacts of events. Within this context, expert judgment is often used whenever 
specific data is sparse or lacking (Dias et al., 2017).   
 
In spatial risk analysis, this stage becomes more challenging due to the presence of 
spatially distributed parameters, complex geographical co-variation, and availability of big 
data for spatio-temporal predictive models. In addition, the number of judgments required 
from experts can become unmanageable if experts have to be consulted when data is 
sparse and spatially spread out. The majority of papers in this special issue focused on 
this stage and are briefly described next. 
 
Calabrese et al. propose a method for detecting the risk of small and medium enterprises 
defaults by considering the enterprises’ location and their demographic characteristics. 
They found that taking into account this information helped to improve the ability to predict 
defaults of non-start-ups in London.  
 
Cope et al. study the risk of biological invasions associated with particular transport 
pathways and source regions by adapting the “range bagging” method to determine 
environmental matching between areas. They classify patterns of global invasion into 
Australian states and territories, validate it and produce a list of high-risk species not 
previously known to be present in Australia. They find that geographic distance is an 
important predictor of the potential risk of invasive species, in addition to transport and 
environmental similarity. 
 
Sundell et al. present a novel method for combining a probabilistic soil stratification model 
with statistical analysis of compression parameters for simulation of subsidence on a large 
area with a simple nonlinear 1-dimensional compression model. The results of this 
simulation include spatially explicit probabilistic estimates of subsidence magnitude and 
is used to create risk maps where areas with significant risk for subsidence are 
distinguished from low-risk areas. 
 
Walker et al. develop a spatio-temporal exposure-hazard model, in which a dynamic 
model is built for quantifying concentration of contaminants in space and time. The model 
is tested on a simulation study where the impact of genetically modified maize is assessed 
on non-targeted insects. 
 
The papers of Hu et al, Avelino and Dall’ebra, Ouyang and Trakas examine spatial impact 
assessment in interconnected systems. Hu et al consider the effects of hazards in network 
systems, examining how local hazards can spread out through the network topology. Two 
vulnerability indices are proposed for such systems, taking into account hazard location, 
affected area and direct and indirect hazard impacts. The paper also examines alternative 
ways of assessing impact by concentrating on different aspects of the network system 
topology.  
 
Avelino and Dall’erba consider the case of economic impacts of natural disasters taking 
into account ripple effects due to business interruption. The paper examines the use of 



five different models in the literature for assessing economic losses in interconnected 
systems and offers a review of how future events can be assessed, as well as guidance 
on model selection. 
 
In a similar vein, Ouyang et al examine failures in networks that form critical 
infrastructures, specific the Chinese Railway System.  Discussing the concept of a 
spatially localised failure (SLF), they consider infrastructure vulnerability failures at a given 
node.  They consider how to identify nodes whose failure would cause major impacts 
because of their connectivity and how these risks can be quantified.  Drawing on examples 
from the Chinese railway networks for illustration, they demonstrate their approach.  
 
The paper of Trakas presents an approach for online risk analysis for evaluating the 
spatio-temporal impacts of extreme events on power networks and assessing system 
resilience. To capture the spatial risk on the system the paper introduces a severity risk 
index to capture probability and impacts on different network branches during an extreme 
event. Computing the risk index online can allow for real-time mitigation decisions during 
extreme events. 
 
The paper of Robertson considers the case of spatial transmission models. Such models 
can be used to examine how phenomena like diseases, fires, rumours, among others, 
spread across a spatial system. The paper provides a review and a taxonomy of a wide 
variety of available modelling techniques, as well as recommendations to guide the choice 
of an appropriate model for a given context. 
 
Schneeberger et al provide a proof-of-concept study on the use of a probabilistic 
framework for risk analysis of widespread flood events. The study introduces a flood-risk 
modelling framework consisting of three components:  a hazard module for the expected 
water levels for all points in considered area; an impact module is used to characterize 
potential adverse consequences of flooding; and a risk assessment module combines the 
results to calculate expected and maximum values of flood impact indicators. 
 
Terti et al consider the specific case of flash floods, recognising that the impacts of these 
depend much more on the dynamics of the local social-economic patterns.  Traffic flows, 
work patterns, building occupancies, among other factor, vary with the time of day and 
days of the week.  Thus, vulnerabilities are harder to establish.  Using data from Texas 
and Oklahoma, they examine the risk of fatality in vehicle-related incidents during flash 
floods.   
 
The ongoing risk of future nuclear accidents are a major concern to much of the public.  
The dose received by any population group predicts their risk of cancer.   In their empirical 
study, Takahara et al. compare estimates of the dose actually received by four population 
groups after the Daiichi Fukushima Disaster with the predictions made at the time of the 
accident. 
 

2.3 Stage 3: Preference Modelling and Value Aggregation 
 
Whenever we are confronted with multiple impacts or non-linear preferences over 
prospects, there is a need to elicit value trade-offs among conflicting objectives as well as 
the risk attitudes of risk owners and stakeholders. Well-established protocols have been 
extensively used for non-spatial decisions (von Winterfeldt and Edwards, 1986; Dias et 
al., 2017), helping decision makers and stakeholders to represent their preferences and 



priorities in complex assessments. If preference modelling is needed in a spatial risk 
analysis, three extra complexities should be highlighted. First, traditional preference 
elicitation protocols will become more cognitively demanding as they have to be expressed 
over spatially spread out data and taking into account spatial relations (e.g. continuity of 
cells with similar values, proximity to sensitive areas, etc.). Second, the comparison of 
spatial alternatives typically requires an overall assessment of maps (with an aggregation 
of spatially distributed values into a single value index) which is complex due to such 
spatial relations (Metchebon et al., 2013). Third, potential variation among the effects of 
different hazards across regions, areas or groups of people may bring out concerns about 
equitability and fairness in remediation strategies, which need to be appropriately captured 
in preference modelling and decision making (see e.g. Karsu, Morton and Argyris, 2018). 
 
The paper by Keller and Simon in this special issue considers the problem of the numerical 
representation preferences over spatially-varying outcomes by cardinal preference 
functions. The paper offers conditions for the existence of such preference functions for 
the cases where outcomes are described by a single attribute or multiple attributes. 
Assessment of such functions allows for evaluating decision problems where alternative 
outcomes need to be compared, or a choice among them be made.  
 
The paper by Ferretti and Montibeller in this special issue proposes an integrated 
framework for spatial risk analysis when the considered impacts are multi-dimensional in 
nature. The proposed framework decomposes the problem into the assessment of three 
spatially-varying components: probabilities of adverse outcomes, vulnerabilities and multi-
dimensional impacts, which are aggregated through the use of multi-attribute preference 
functions.  
 
 

2.4 Stage 4: Robustness Analyses 
 
Robustness analyses help stakeholders and decision makers to better understand the 
consequences of setting up different priorities, varying the shape of utility functions, and 
considering the uncertainties in the data and in the model parameters. This type of 
analysis also improves communication of results and helps in identifying if more data on 
certain aspects need to be collected. However, they become more challenging in the 
spatial context (Ferretti and Montibeller, 2016) for three reasons. First, the data spread 
may impose a high computational load on the model. Second, it is unclear how to judge 
geographical sensitivity of the results and decide when a result should be considered 
sensitive given the changes in values in the final maps. Third, there might be cognitive 
and conceptual difficulties in dealing with geographically varying risks (e.g. in map-
comparison tasks).  
 
While the robustness of different systems exposed to a variety of hazards is the focus of 
several papers in this Special Issue, only few papers have considered the robustness of 
the results with respect to assumptions and model parameters. In their case-study of the 
Chinese Civil-Aviation Network, Hu et al. consider three scenarios for the spatial 
distribution of local hazards. Sundell et al. consider three scenarios for water-drawdown 
measurements in their study of potential subsidence induced by the excavation of a 
planned power-line tunnel in Stockholm. Ferretti and Montibeller consider the sensitivity 
of their proposed model for multi-impact spatial risk analysis to changes in the criterion 
weights of an additive utility function used to aggregate different impact categories. Finally, 
a number of papers in this Special Issue address robustness by using a probabilistic 



approach in their Predictive Models and Forecasts. Schneeberger et al. and Terti et al. 
develop probabilistic models for flood events. Takahara et al develop a probabilistic model 
for radiation dose assessment. 
 

2.5 Stage 5: Communication and Presentation of results 
Typically, the results of a risk or decision analysis are communicated via a static 
presentation of a small number of selected scenarios obtained through a back-room 
analysis. An interactive analysis with the decision makers, with real-time visualization of 
changes in the maps (e.g. using touch screen tables and online tools) may help 
stakeholders and decision makers to better develop a sense of ownership of the final 
recommendation as well as agree on an action plan (Ferretti and Montibeller, 2016). 
 
However, communicating uncertainty in a spatial context is a difficult task (MacEachren et 
al. 2005) as the visualization of uncertainty may lead to misinterpretation and behavioral 
issues. For instance, contours of an effect can be confused with probability contours; or a 
lack of standardisation in symbols can mean maps become very difficult to decipher 
without constant reference to a legend. Finally, it might be challenging to communicate 
the results to spatially distributed and culturally diverse stakeholders.  
 
In this special issue, French et al. review the literature associated with spatio-temporal 
uncertainties in emergency risk analysis from both technical and behavioural perspectives. 
They suggest the use of multiple scenarios for exploring the consequences of spatio-
temporal uncertainties and communicating them to decision makers. 
 
Meteorological offices regularly face the problem of advising the authorities and warning 
the public of severe weather events.  How can this be done most effectively, if there is to 
be a balanced response without risking panic? Jon et al.  in this special issue consider the 
case of tornados in the USA.  They note that little research has been conducted into how 
people actually interpret and respond to the warning polygons used by the national 
weather service. Their research has many interesting findings, including the fact that the 
public are optimistic about their personal safety, but more pessimistic about the safety of 
their possessions such as cars, buildings, etc. 
 
The previously mentioned paper by Cope et al. contribute to this stage by developing an 
interactive web-app so users may observe how risk of invasive species changes with 
changes in the model parameters. Sundell et al., also mentioned before, show how 
mapped risk areas and the results of the sensitivity analysis could be used to support 
decision making and communication with stakeholders about mitigation and monitoring 
measures. They mention the case for the planned City Link tunnel in Stockholm, where 
their maps have been successfully used for risk communication in legal court in the 
application for permit to modify groundwater conditions. 
 

3 Directions for Further Research 
 
Table 1 summarises what we judge as the key complexities for the five stages that we 
proposed for spatial risk analysis interventions.    
 
  



Table 1 Stages and associated complexities in spatial risk analysis 
 

Stages Complexities 

Problem Structuring • The geographical distribution of stakeholders may 
affect the evaluation of impacts and may require 
geographical procedural justice. 

• Existing problem structuring methods are currently 
not designed to visualise geographical factors within 
their qualitative models. 

Predictive Modelling and 
Forecasting 

• Presence of many parameters, complex 
geographical co-variation, and availability of big data 
for spatio-temporal predictive models. 

• Expert judgement elicitation load can become 
unmanageable as data become sparse. 

Preference Modelling and 
Value Aggregation 

• More cognitively demanding preference elicitation 
protocols resulting from relating preferences to 
geographic factors and regions. 

• Aggregation of spatially distributed values into a 
single value index for map comparison. 

• Agreeing equitable distribution of costs and benefits 
across regions. 

Robustness Analyses • Very high computational load. 

• Unclear how to judge geographical sensitivity of the 
results across the several outputs of the SA (when is 
a result considered sensitive given the changes in 
values in the map?). 

• Cognitive and conceptual difficulties of dealing with 
geographically varying risk (e.g. in map-comparison 
tasks). 

Communication and 
Presentation of results 

• Difficulty in visualising geographical uncertainty.  

• Behavioural issues associated to uncertainty 
communication. 

• Communicating to spatially distributed and culturally 
diverse stakeholders. 

 
 
As we noted, the majority of the papers in this issue relate to Stage 2 in the framework 
(Figure 1); there seems to be relatively less research in the other stages.  This suggests 
that the risk analysis community may need to consider whether spatial risks bring 
complexities into Stages 1, 3, 4 and 5 that need further processes, modelling tools and 
interventions to be developed and introduced to our tool kits.  We believe that they do. 
 
Moreover, we are aware that in focusing on distinct stages, cross-cutting issues may lose 
emphasis but many of them are highly relevant.  For instance, behavioural heuristics and 
biases arise in all aspects of risk management (Aven and Zio, 2014; Montibeller and von 
Winterfeldt, 2015).  The perception of and response to spatial risks are poorly researched 
in contrast with nonspatial ones (Slovic, 2000).  Spatial risks often also have a temporal 
component and that can add to the difficulty in conceptualising, analysing and 
communicating aspects of the risk to decision makers.  There is a need for many more 
studies to understand the cognitive issues associated with uncertainty visualisation and 



communication in all five stages.  We note too that expert judgement is an important input 
to many analyses when specific data are sparse or lacking; however, structured expert 
judgement methodologies (Dias et al., 2018) hardly consider spatial uncertainties. 
 
Therefore, we hope that this special issue helps to further promote innovative applications 
of spatial risk analysis as well as inspire further theoretical developments in this relevant 
and growing field for risk analysis. 
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