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Abstract 

This paper analyses the predictive power of the DJIA index returns, measured at different 
quantiles of its distribution, for future return distribution. The returns measured at quantile 
.75 have predictive power for most quantiles of future returns, except for their median. This 
result prevails after controlling for the predictive power of the lagged first four moments of 
returns and of other economic predictors used in the literature. Furthermore, this finding is 
stable over time. Forecasts of future mean returns based on predicted return quantiles have 
positive economic value, as do forecasts of future volatility, the latter especially for investors 
with low risk aversion. The predictive power of quantile .75 DJIA returns is shown to be the 
result of their ability to forecast shocks to future investment and consumption. 
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Keywords: Return predictability; DJIA index; distribution; forecasting.  

 



1 

 

1. Introduction 

This paper analyses the predictive power of the DJIA stock index returns measured at 

different quantiles of their distribution for the future index return distribution. Traditionally, 

the extant literature has focused on directly predicting the center of the future return 

distribution, i.e., the future mean return. Different economic variables have been proposed 

(those reviewed by Welch and Goyal, 2008, and additional ones, e.g., Bollerslev, Tauchen, 

and Zhou, 2009; Kelly and Jiang, 2014) and have been found to possess predictive power for 

future returns in-sample, across markets, and up to four centuries of data (Golez and Koudijs, 

2014). However, their predictive power out-of-sample has been questioned (e.g., Welch and 

Goyal, 2008), especially when choosing among only those predictive variables that would 

have been known to a hypothetical investor at the time (Turner, 2015). On the other hand, 

Cochrane (2008) points out that the out-of-sample tests can underestimate the predictive 

power of variables. Hence, the traditional variables as well as the new ones could generate 

valuable forecasts of future mean returns after all, especially when theory-derived restrictions 

on estimates and forecasts are imposed (Campbell and Thompson, 2008), market volatility is 

high (Marquering and Verbeek, 2004), nonlinearities in the predictive relationship are 

allowed for (Guidolin et al., 2014), commodities returns are utilised as predictors (Jordan et 

al., 2016) or innovative predictive approaches are used (e.g., Ferreira and Santa Clara, 2011, 

or others, as reviewed in Rapach and Zhou, 2013). Predictability is reported to have been 

stronger until the late 1970s to early 1980s (Marquering and Verbeek, 2004, Welch and 

Goyal, 2008, Ferreira and Santa Clara, 2011). Furthermore, whereas most of the traditionally 

employed predictors can be labelled as macroeconomic variables, Neely et al. (2014) point 

out that valuable information about the future index returns can be found in the historical 

behaviour of stock indices themselves, which they propose to extract using well-known 

technical trading rules such as the moving average rule.  
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In addition, a related branch of the literature focuses on forecasting the left tail of the 

return distribution, rather than the mean, as it is of relevance for the calculation of value at 

risk (VaR) measures. Engle and Manganelli (2004) propose direct dynamic quantile 

regression for calculating VaR, termed CAViaR, whereas Gerlach, Chen, and Chan (2011) 

propose a family of nonlinear CAViaR models (see, e.g., Chen et al., 2012, for a review of 

the literature, and Şener, Baronyan, and Mengütürk, 2012, on a comparative study of 

predictive performance of VaR estimators). 

Yet another related branch of literature investigates the predictive power of observed 

economic variables for the entire future return distribution, as approximated by a set of 

different quantiles. Ma and Pohlman (2008) show that in-sample, different financial valuation 

factors can explain different quantiles of future return distribution. Pedersen (2015) also 

reports the in-sample and out-of sample predictive power of economic variables for stock and 

bond return distributions, finding that different variables predict different quantiles of future 

return distribution, most frequently in the tails and least strongly in the center. Zhu (2013) 

combines quantile regressions and the copula approach and also finds in-sample 

predictability of bond and stock returns using economic variables, with the predictive power 

of economic variables being heterogeneous across quantiles of the future return distribution. 

Cenesizoglou and Timmermann (2008) report predictive power for economic variables for 

future stock returns, too, especially in the right tail but not in the distribution’s center. The 

same result of predictive power which is heterogeneous over future quantiles is obtained by 

Meligkotsidou et al. (2014), who also propose two approaches of forecasting future mean by 

combining individual variables’ predictions—combining quantiles predicted by each variable 

first, and combining those predicted values across variables second, or combining predictions 

for each quantile separately (across all predictors) first, and combining predicted quantiles 

next, all with constant or time-varying endogenously optimised weights.  
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In this paper, we extend the earlier literature by adopting a complementary approach 

and investigate whether information valuable for the forecasting of the future distribution can 

be found in the whole distribution, rather than just the mean, of past DJIA index returns. In 

addition, we analyse the predictive power of past return distribution not only for the future 

mean return, but also for other quantiles of the future return distribution.1 The ability to 

predict the distribution would be valuable for those interested in its specific parts, e.g., the 

center or the left-hand tail as used in VaR analysis. In addition, even if the center of the 

distribution (e.g., the mean or the median) is not directly predictable, if we could predict 

some points/quantiles of the future distribution, we could try to infer, e.g., other points of that 

distribution, some features of that distribution such as its variance, or the functional form of 

that distribution. This would yield potentially improved forecasts of the directly unpredictable 

points of the distribution of future returns, e.g., the mean or the median future return, even if 

those were not predictable directly. 

Previous research finds that certain features of the lagged distribution, such as 

volatility, skewness, or kurtosis, can be used to predict certain features of the future return 

distribution.2 We argue that measures of moments of the past return distribution can be too 

crude of estimates to capture its relevant characteristics, and changes therein. For example, an 

increase in volatility might suggest that the distribution is more spread out around the mean, 

but this might happen in a number of ways, e.g., in a specific sub-domain of the distribution 

(e.g., quantiles below .40), not necessarily across its entire domain. Similarly, a change in a 

skewness or a kurtosis measure can come across as a result of different changes in the shape 
                                                           

1 Differentiated responses of returns across quantiles of its distribution to its own lagged values as well as to 
other variables have been documented in previous studies, e.g., Chuang et al. (2009), Baur et al. (2012), Baur 
(2013).  
2 For instance, Bollerslev et al. (2009) report that the variance risk premium predicts mean returns on 
international markets, and Amaya et al. (2015) demonstrate the predictive content of skewness and kurtosis for 
future mean returns. Paye (2012) shows that economic variables can generate superior volatility forecasts, 
especially prior to the 1980s.  
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of the distribution. Hence, it would be largely uncertain what an observed change in the past 

distribution’s moment actually tells us about how the exact distribution changed. We argue 

that more information about those distributional changes, and potentially higher predictive 

power, can be extracted by looking at a wide range of specific quantiles of past distribution, 

even after controlling for the predictive power of the lagged first four moments. Our 

approach is more in spirit of the original proposal by Granger (1969), which defines causality 

in terms of conditional distributions of variables, than its subsequent operationalizations 

which focus almost exclusively on conditional means or variances.  

We find that most DJIA returns measured at the 75th quantile have predictive power 

for most future quantile returns, with the exception of the median. This predictive power 

appears to prevail after controlling for the predictive power of other features of the lagged 

return distribution (i.e., its first four moments). It does not appear to be driven only by 

specific sub-periods (i.e., is stable over time). It also prevails when one controls for other 

potential predictors (as summarised in Welch and Goyal (2008), and Kelly and Jiang’s (2014) 

tail risk). Predictions of future mean return based on predicted quantiles are found to have 

positive economic value, as are those utilising quantile predictions to forecast volatility, 

especially for investors with low aversion to risk. Lastly, the predictive power of quantile .75 

DJIA returns is shown to be due to its ability to forecast future investment and consumption 

shocks. 

2. Methodology 

2.1. Quantile returns 

For each year, using daily index log returns we obtain the estimated return at each 

quantile 𝜃𝜃 considered, i.e., 𝑅𝑅𝑡𝑡(𝜃𝜃 = 𝑘𝑘), where k∈{.01, .02, .05, .10, .20, .25, .30, .40, .50, .60, 

.70, .75, .80, .90, .95, .98, .99}. This is accomplished by regressing the daily return on a 
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constant in a quantile regression framework (Koenker and Bassett, 1978), with the resulting 

intercept value constituting the estimated daily return (in a given year) at a given quantile 𝜃𝜃 

(but could also be done by ranking daily returns in each year and selecting the relevant 

quantile observation). This procedure is repeated for each quantile and year, and generates a 

time series of returns for each of the specified quantiles, at annual frequency.3  

2.2. Predictive models using lagged quantile returns 

The baseline (parsimonious) model employs the first to fourth moments of lagged 

daily returns as well as the lagged dependent variable as predictors and is of a form: 

𝑌𝑌𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−1 + 𝛼𝛼2𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡−1 + 𝛼𝛼3𝑆𝑆𝑘𝑘𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑡𝑡−1 + 𝛼𝛼4𝐾𝐾𝐾𝐾𝐾𝐾𝑉𝑉𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆𝑡𝑡−1 +

 𝛼𝛼5𝑌𝑌𝑡𝑡−1 +  𝜀𝜀𝑡𝑡.          (1) 

The dependent variable, 𝑌𝑌𝑡𝑡, equals the returns calculated for a specific quantile, i.e., 

𝑌𝑌𝑡𝑡 = 𝑅𝑅𝑡𝑡(𝜃𝜃 = 𝑘𝑘), where k∈{.01, .02, .05, .10, .20, .25, .30, .40, .50, .60, .70, .75, .80, .90, .95, 

.98, .99}, calculated as explained in section 2.1. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−1 is the mean daily return in period t-

1, with this period being one calendar year, hence periods are non-overlapping. The second, 

third and fourth moments are also calculated from daily returns in year t-1. The last 

component, 𝛼𝛼5𝑌𝑌𝑡𝑡−1, accounts for potential autocorrelation in the dependent variable. 

The larger (encompassing) model that nests the parsimonious model above (eq. (1)) 

and contains one more explanatory variable, 𝑋𝑋𝑡𝑡−1 is: 

𝑌𝑌𝑡𝑡 =  𝛼𝛼0 + 𝛼𝛼1𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−1 + 𝛼𝛼2𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡−1 + 𝛼𝛼3𝑆𝑆𝑘𝑘𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑡𝑡−1 + 𝛼𝛼4𝐾𝐾𝐾𝐾𝐾𝐾𝑉𝑉𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆𝑡𝑡−1 +

 𝛼𝛼5𝑌𝑌𝑡𝑡−1 +  𝛼𝛼6𝑋𝑋𝑡𝑡−1  +  𝜀𝜀𝑡𝑡         (2) 

                                                           

3 The estimated return quantiles are those for daily returns, each representing the average 
daily value (over each year). One could annualize those estimated values to obtain annual 
quantile return equivalents, but this would not affect their relevant statistical properties, only 
their magnitude. 
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This additional variable 𝑋𝑋𝑡𝑡−1 is related to the quantile returns and can take on 

different forms. To conserve space, we concentrate on only one variant of it, i.e., 𝑋𝑋𝑡𝑡−1 equals 

the returns calculated for a specific quantile, i.e., 𝑋𝑋𝑡𝑡−1 = 𝑅𝑅𝑡𝑡−1(𝜃𝜃 = 𝑘𝑘), where k∈{.01, .02, 

.05, .10, .20, .25, .30, .40, .50, .60, .70, .75, .80, .90, .95, .98, .99}, and 𝑋𝑋𝑡𝑡−1 ≠ 𝑌𝑌𝑡𝑡−1 . 

Therefore, in this variant model (2) includes the lagged value of quantile returns (for each 

quantile return on the LHS, we estimate models with each quantile return on the RHS).4 

Predictive models such as (1) and (2) are estimated here using annual non-overlapping 

observations, as, e.g., in Ferreira and Santa-Clara (2011). Rather than using quantile 

regression technique here, we employ the OLS approach to estimate (1) and (2), which has 

the advantage of allowing for a straightforward calculation of standard errors corrected for 

autocorrelation and heteroscedasticity, where required. It also allows for direct comparability 

with studies on predictability of future stock returns. Further, as our variables (quantile 

returns and moments of return distribution) are estimated, a potential error-in-variable 

problem arises. However, these variables are not directly observable and have to be 

estimated. In addition, the potential error-in-variable problem in both dependent and 

independent variables will lead to t-statistics being biased downward, hence, any significant 

predictive power we observe will be even more meaningful than it would be otherwise, in 

absence of a (potential) bias.5 Further, some of the predictability literature uses overlapping 

observations to increase the sample size, it is well known that this approach leads to 

                                                           

4 We also considered two other options for 𝑋𝑋𝑡𝑡−1 : firstly, where 𝑋𝑋𝑡𝑡−1 equals to the differences between returns 
calculated for a specific quantile and the median return, i.e., 𝑋𝑋𝑡𝑡−1 = 𝑅𝑅𝑡𝑡−1(𝜃𝜃 = 𝑘𝑘) − 𝑅𝑅𝑡𝑡−1(𝜃𝜃 = .50), and 
secondly, there 𝑋𝑋𝑡𝑡−1 equals to the differences between returns calculated for quantiles symmetrical around the 
median, i.e., 𝑋𝑋𝑡𝑡−1 = 𝑅𝑅𝑡𝑡−1(𝜃𝜃 = 1 − 𝑘𝑘) − 𝑅𝑅𝑡𝑡−1(𝜃𝜃 = 𝑘𝑘), e.g., 𝑅𝑅𝑡𝑡−1(𝜃𝜃 = .99) −  𝑅𝑅𝑡𝑡−1 (𝜃𝜃 = .01). Results for those 
alternative measures of return distribution were qualitatively similar to those obtained when using past quantile 
returns and are not reported to conserve space. 
5 In addition, unreported results indicate that model fits for (1) and (2) are significantly higher when using OLS 
rather than quantile regressions, especially for those quantiles in the tails for which the number of observations 
of extreme returns is limited. In the OLS framework, by contrast, the number of observations is identical across 
(estimated) quantile returns. 
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numerous problems and potentially incorrect inferences about the existence and magnitude of 

the predictive power of variables. Even though several measures have been proposed to 

account for potential biases in, for example, the estimated coefficients, their significance, and 

R-squares, no solution can be guaranteed to be perfect and we prefer to avoid the problem 

altogether.6 Hence, non-overlapping annual variables are used.  

2.3. Tests of out-of-sample performance 

To assess the predictive power of 𝑋𝑋𝑡𝑡−1 out-of-sample, over and above the lagged 

values of the first four moments of returns and the lagged dependent variable, two 

encompassing tests are used. 

2.3.1. The Clark and McCracken (2001) test 

Clark and McCracken (2001) propose a test for forecasting accuracy of one-step 

predictions derived from nested linear models, which is designed to perform well in small 

samples: 

𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐸𝐸𝑁𝑁 = 𝑃𝑃 𝑃𝑃−1 ∑ (𝑢𝑢�1,𝑡𝑡+1
2 −𝑢𝑢�1,𝑡𝑡+1𝑢𝑢�2,𝑡𝑡+1)𝑡𝑡

𝑃𝑃−1 ∑ (𝑢𝑢�2,𝑡𝑡+1
2 )𝑡𝑡

, 

where 𝐾𝐾�1,𝑡𝑡+1 and 𝐾𝐾�2,𝑡𝑡+1 are estimated 1-step ahead prediction errors obtained recursively 

from the restricted and unrestricted (encompassing) model, respectively. P denotes the 

number of predictions (out-of-sample), whereas the in-sample period contains R 

observations. The distribution of the ENC-NEW statistic is shown to depend on = 𝑃𝑃
𝑅𝑅�  , 

among other parameters, and is simulated and tabulated in Clark and McCracken (2001). 

These authors also demonstrate that the ENC-NEW test has superior power compared to 

those proposed by, e.g., Harvey, Leybourne, and Newbold (1998) and Ericsson (1992), 

especially in small samples (low values of P). 
                                                           

6 See, e.g., Richardson and Smith (1991), Boudoukh and Richardson (1993), Stambaugh (1999), Valkanov 
(2003), Ang and Bekaert (2007), Boudoukh, Richardson, and Whitelaw (2008). 
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2.3.2. The Clark and West (2007) test 

Clark and West (2007) note that under the null that the data is generated by the 

parsimonious rather than the larger (encompassing) model, the latter introduces noise into its 

forecasts. Hence, under the null, when parameters are set to their population values on both 

models, the mean square prediction error (MSPE) of the parsimonious model will be smaller 

than that of the larger model, even though the models are essentially identical. Clark and 

West (2007) propose an approach to control for this noise by comparing the MSPE of the 

parsimonious model (𝜎𝜎�12) with an adjusted MSPE of the larger model (𝜎𝜎�22 − 𝑀𝑀𝑎𝑎𝑎𝑎), where: 

𝜎𝜎�12 = 𝑃𝑃−1 ∑(𝑉𝑉𝑡𝑡+𝜏𝜏 − 𝑉𝑉�1𝑡𝑡,𝑡𝑡+𝜏𝜏)2, 

𝜎𝜎�22 − 𝑀𝑀𝑎𝑎𝑎𝑎 = 𝑃𝑃−1 ∑�𝑉𝑉𝑡𝑡+𝜏𝜏 − 𝑉𝑉�2𝑡𝑡,𝑡𝑡+𝜏𝜏�
2
− 𝑃𝑃−1 ∑(𝑉𝑉�1𝑡𝑡,𝑡𝑡+𝜏𝜏 − 𝑉𝑉�2𝑡𝑡,𝑡𝑡+𝜏𝜏)2, 

𝑉𝑉𝑡𝑡+𝜏𝜏 denotes the observed value of the to-be-predicted variable at time 𝑉𝑉 + 𝜏𝜏, 𝜏𝜏 denotes the 

prediction horizon, 𝑉𝑉�1𝑡𝑡,𝑡𝑡+𝜏𝜏 and 𝑉𝑉�2𝑡𝑡,𝑡𝑡+𝜏𝜏 stand for 𝜏𝜏-period ahead predicted (at time 𝑉𝑉) values of 

𝑉𝑉 using the parsimonious and the larger models, respectively, and 𝑃𝑃 is the number of 

predictions. They define  𝑓𝑓𝑡𝑡+𝜏𝜏 = (𝑉𝑉𝑡𝑡+𝜏𝜏 − 𝑉𝑉�1𝑡𝑡,𝑡𝑡+𝜏𝜏)2 − (�𝑉𝑉𝑡𝑡+𝜏𝜏 − 𝑉𝑉�2𝑡𝑡,𝑡𝑡+𝜏𝜏�
2
− (𝑉𝑉�1𝑡𝑡,𝑡𝑡+𝜏𝜏 −

𝑉𝑉�2𝑡𝑡,𝑡𝑡+𝜏𝜏)2) and notice that 𝜎𝜎�12 − (𝜎𝜎�22 − 𝑀𝑀𝑎𝑎𝑎𝑎) is a sample average of 𝑓𝑓𝑡𝑡+𝜏𝜏, hence the test for 

equal MSPE (i.e., whether 𝜎𝜎�12 − (𝜎𝜎�22 − 𝑀𝑀𝑎𝑎𝑎𝑎)  equals zero) can be conducted by regressing 

𝑓𝑓𝑡𝑡+𝜏𝜏 on a constant and using the resulting t-statistic (hereafter referred to as CW07 ) to test 

for significance of the resulting coefficient (one-sided test, 𝛼𝛼 > 0). The advantage of this 

regression-based test is that the standard errors can easily be adjusted for heteroskedasticity 

and autocorrelation, if necessary, using the usual approaches, hence the distribution of the test 

statistic does not have to be simulated.  

3. Data and estimated quantile returns 
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We employ daily values of the Dow Jones Industrial Average index, from May 26, 

1896, to September 10, 2014. Observations up to and including March 2007 are available 

from WRDS and the remaining ones are obtained from Datastream.7  

In every calendar year, the whole set of return quantiles for that year is estimated 

using daily index returns. Utilising one year of data at a time allows to mitigate potential 

biases due to existence of seasonalities in stock prices, e.g., the January effect, etc. The 

estimated quantile returns are presented in Figure 1 and their selected descriptive statistics in 

Table 1. It is apparent that the return distribution varies over time, in many respects. First, 

returns at each quantile are volatile, with those returns measured closer to the center of the 

distribution (median return is represented by a thick black line) showing lower levels of 

volatility than those situated in the tails. Second, distances among quantiles vary over time as 

well, implying that the shape of the distribution, and not only its location, is time varying. 

The mean and the median return are fairly close to each other, which suggest that the 

distribution is close to symmetry; this feature is also visible in Figure 1 to some extent. Those 

returns estimated for quantiles above (below) the mean have negative (positive) skewness, 

i.e., they “lean towards” the mean of the distribution. However, excess kurtosis is positive in 

all cases, indicating higher probability of extreme returns in any quantile, and for the 

distribution as a whole when mean return’s kurtosis is considered.  

                                                           

7 DJIA time series data is employed due to the high number of observations available, a feature which allows us 
to avoid incorrect inference due to subperiod-specific characteristics or inefficiency of estimates obtained from 
small samples. The latter issue is further analysed in section 4.3. 
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Figure 1: Estimated quantile returns 
 

 

Note: Lines represent estimated returns at quantiles 𝜃𝜃 ∈{0.01, 0.02, 0.05, 0.10, 0.20, 0.25, 0.30, 0.40, 0.60, 0.70, 0.75, 0.80, 0.90, 0.95, 0.98, 0.99} and the mean return, at annual frequency. 
The solid line represents the mean return, the dotted line in the middle represents the median return, (R(𝜃𝜃 = .50)), and triangles represent quantile .75 returns (R(𝜃𝜃 = .75)).

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010-0
.10

0
-0

.07
5

-0
.05

0
-0

.02
5

0.0
00

0.0
25

0.0
50

0.0
75

Year

Qu
an

til
e r

etu
rn



11 

 

Table 1: Descriptive statistics for estimated quantile returns and the mean return. 

Quantile Mean Standard 
Deviation Skewness Excess 

Kurtosis Minimum Maximum 

1 -0.0282 0.0155 -1.9637 5.3883 -0.1044 -0.0110 
2 -0.0226 0.0110 -1.5949 2.9996 -0.0654 -0.0079 
5 -0.0165 0.0082 -1.9604 4.9035 -0.0541 -0.0059 

10 -0.0117 0.0059 -2.3227 7.9554 -0.0435 -0.0041 
20 -0.0070 0.0039 -2.8885 12.6666 -0.0302 -0.0023 
25 -0.0053 0.0031 -2.6354 10.0304 -0.0219 -0.0016 
30 -0.0040 0.0025 -2.6307 9.7613 -0.0169 -0.0012 
40 -0.0017 0.0016 -2.3611 9.1484 -0.0103 0.0006 
50 0.0004 0.0011 -1.6408 8.4259 -0.0057 0.0028 
60 0.0025 0.0011 1.1384 1.7926 0.0006 0.0072 
70 0.0047 0.0018 1.7668 5.5464 0.0023 0.0136 
75 0.0061 0.0025 2.2772 8.6311 0.0031 0.0191 
80 0.0077 0.0032 2.3229 8.6620 0.0035 0.0244 
90 0.0120 0.0054 2.5686 10.2116 0.0053 0.0425 
95 0.0160 0.0074 2.2821 7.5140 0.0066 0.0531 
98 0.0210 0.0107 2.3895 8.0514 0.0074 0.0768 
99 0.0261 0.0141 2.2148 6.7910 0.0079 0.0905 

Mean 0.0002 0.0009 -0.8042 1.5863 -0.0030 0.0024 
 

We also compare the predictive power of lagged quantile returns against that of a set 

of economic variables which has been widely used in the literature and are analysed in, e.g.,  

Welch and Goyal (2008):8 

• Default yield spread (dfy), calculated as the difference between BAA- and AAA-rated 

corporate bond yields. 

• Inflation (infl), calculated utilising the data in the Consumer Price Index (All Urban 

Consumers) from the Bureau of Labor Statistics. 

• Stock variance (svar), computed as sum of squared daily returns on S&P500. 

                                                           

8 All data and its detailed descriptions can be obtained from Professor Goyal’s webpage 
(http://www.hec.unil.ch/agoyal/). We thank those authors for making their updated data publicly available. 
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• Dividend payout ratio (de), calculated as the difference between log of dividends and log 

of earnings, where dividends (earnings) are twelve-month moving sums of dividends 

(earnings) paid on the S&P 500 index. 

• Long-term government bond yield (lty). 

• Term spread (tms), defined as the difference between the long-term yield on government 

bonds and the T-bill. 

• Treasury bills rate (tbl). 

• Default return spread (dfr), the difference between the return on long-term corporate 

bonds and return on the long-term government bonds. 

• Dividend price ratio (dp), the difference between the log of dividends and the log of 

prices.  

• Dividend yield (dy), difference between the log of dividends and the log of lagged prices. 

• Long-term government bond returns (ltr). 

• Earnings price ratio (ep), the difference between log of earnings and log of prices. 

• Book to market ratio (bm) is the ratio of book value to market value for the Dow Jones 

Industrial Average. 

• Investment to capital ratio (ik), the ratio of aggregate (private non-residential fixed) 

investment to aggregate capital for the whole economy, as proposed in Cochrane (1991). 

• Net equity expansion (ntis) as a measure of corporate issuing activity, the ratio of twelve-

month moving sums of net issues by NYSE listed stocks divided by the total market 

capitalization of NYSE stocks. 

• Percent equity issuing (eqis), the ratio of equity issuing activity as a fraction of total 

issuing activity. 
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In addition, we use the Kelly and Jiang’s (2014) tail risk measure (tail) as a proxy for 

extreme event risk.9 

4. Results 

4.1. Predictive power beyond the lagged first four moments and the lagged dependent 

variable. 

Model (2) with lagged quantile returns employed as the RHS variable 𝑋𝑋𝑡𝑡−1 is 

estimated and the encompassing tests are employed to test for the predictive power of lagged 

quantile returns in excess of that of lagged dependent variable and the lagged four moments 

of return distribution (i.e., model (1) is the parsimonious model and model (2) is the larger 

model). We conduct this analysis in two different ways with respect to how the whole sample 

is divided into the in-sample and out-of-sample periods. First, we consider a short in-sample 

period (R=30 years) and a long out-of-sample period (P=89 years), which corresponds to 

Clark and McCracken’s (2007) π value of roughly 3, where π stands for the ratio of 

observations in out-of-sample (P) vs. in-sample (R) periods. Second, we also analyse an 

opposite case in which we allow for a long in-sample and short out-of-sample period, with 

R=85 and P=34 years in each, respectively. This case is denoted by π=0.4. However, in our 

discussions we tend to concentrate on cases where the out-of-sample period is long (π=3): 

Hansen and Timmermann (2012) show that out-of-sample tests of predictive ability have 

better size properties when the forecast evaluation period is a relatively large proportion of 

the available sample (Neely et al., 2014). 

Table 2 (3) presents encompassing test statistics for the CW07 (ENC_NEW) tests 

when the out-of-sample period is long (π=3). The former test generates fewer significant 

                                                           

9 We are grateful to Professor Kelly for providing us with his data on estimated tail risk. 
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results than the latter (i.e., the CW07 approach seems to be more conservative), but the 

common result is the superior forecasting accuracy of model (2) over model (1), mostly when 

it contains lagged returns from quantiles .70 and .75, and for the next-year returns measured 

at all quantiles except those in quantiles .70 and .75. There is also evidence of forecasting 

ability of returns in quantile .25 for the next-year returns in quantiles .80 and higher, and of 

those in quantiles .10-.25 for returns in quantile .60. 

When we consider a shorter out-of-sample period (π=0.4), the results (presented in 

Tables 4 and 5) indicate fewer cases of significantly superior forecast accuracy of model (2) 

over model (1). This might be due to poor test size properties when forecast evaluation period 

is short (Hansen and Timmermann, 2012), or indicate a decline in forecasting ability of 

quantile returns in the later part of our sample. However, those cases which remain 

significant are largely in line with the results for a long out-of-sample period. Lagged returns 

measured at quantiles .70 and .75 show forecasting power for next-year returns across a wide 

range of quantiles of the latter. There is also evidence of predictive power of, for example, 

returns in quantiles .20-.60 and .99 for the future median return.  

Taken together, the results in Tables 2-5 show evidence of predictive ability of lagged 

returns in quantiles .70 and .75 for a wide range of next-year’s return quantiles. This 

predictive power is in addition to any information content captured by the lagged first four 

moments of the respective to-be-predicted returns, as well as their own lagged values. It does  



15 

 

Table 2: Encompassing tests statistics for CW07, variant 1 RHS variables, π=3. 

LHS: 1 2 5 10 20 25 30 40 50 60 70 75 80 90 95 98 99 

θ: CW07 

0.99 -1.032 -1.624 0.171 0.461 0.480 0.158 0.107 0.972 1.3449 -0.714 -1.128 -1.360 -0.462 0.227 1.051 0.955  

0.98 0.733 -0.433 -0.393 -1.056 -1.072 -1.153 -1.223 -1.031 -0.906 -0.050 -0.225 -0.283 -1.086 -0.429 -0.535  0.643 

0.95 -0.963 -0.601 0.562 1.110 -0.271 0.696 0.827 0.398 -1.005 0.851 -0.423 -0.151 -0.379 0.758  -0.482 0.206 

0.90 -0.569 -0.925 -1.293 -1.064 -0.291 1.019 0.898 -1.256 -1.27 1.500 0.419 -1.462 -0.712  1.285 -0.647 -0.245 

0.80 -0.343 -0.683 -0.088 -0.917 -1.138 -1.411 -1.186 -0.652 0.7656 0.114 -1.992 1.431  0.063 1.747 0.283 -0.124 

0.75 1.700 1.915 1.693 1.889 2.302 2.228 2.284 2.234 1.4128 2.651 0.205  2.268 2.300 2.738 2.867 2.754 

0.70 2.496 2.155 1.995 1.979 2.094 2.350 2.276 2.626 0.7284 1.998  -1.056 1.321 1.610 2.448 2.253 2.465 

0.60 -0.868 0.320 0.706 -0.576 -0.844 -0.720 -0.233 -0.161 -0.455  0.998 -1.154 -1.208 -1.045 -0.913 -0.706 0.418 

0.40 -0.963 -1.459 -1.270 -1.134 -1.145 -0.669 -0.067  1.3392 -0.386 0.327 -1.368 -1.309 -1.009 -0.585 -0.561 -1.272 

0.30 -0.323 -0.827 0.629 0.032 0.873 -1.430  0.452 1.2093 -0.973 0.215 -0.501 0.958 0.959 1.141 0.963 0.792 

0.25 0.358 -0.262 0.838 0.549 1.152  0.022 -0.215 0.882 1.785 1.165 0.542 1.435 1.417 1.486 1.564 1.406 

0.20 -0.068 -0.719 -0.484 -1.025  -0.009 -0.015 -0.712 0.6902 1.316 -0.629 -1.114 0.978 0.827 1.426 0.747 0.320 

0.10 -0.856 -0.803 -1.111  -1.032 -0.153 0.595 -0.825 -0.777 1.384 -0.533 -0.650 -1.059 -1.099 -0.711 -0.813 -0.515 

0.05 1.098 0.208  -0.900 -1.026 -0.798 -0.369 -0.971 -1.127 -0.289 -0.993 -0.872 -1.255 -1.162 -1.139 -1.096 -1.025 

0.02 0.760  -0.561 -0.581 -1.047 -1.010 -1.259 -1.093 -0.856 0.703 1.119 1.096 0.976 0.302 0.733 -0.738 0.731 

0.01  0.420 -1.046 -1.014 -1.081 -1.121 -1.125 -1.020 0.6887 0.468 0.894 0.764 0.784 -0.161 0.717 -0.034 -0.049 

Note: CW07 denotes the test statistic of Clark and West (2007). Shaded areas indicate significance at 10% level, bold numbers 
indicate significance at 5% level. π denotes the ratio of the number of observations in the out-of-sample (forecasting) period to the 
number of observations in the in-sample (estimation) period (Clark and McCracken, 2007). The critical values for CW07 and 
ENC_NEW at 10% and 5% level are: for π=3: 1.292/1.664 (one-sided test) and 1.442/2/374, and for π =0.4: 1.314/1.703 and 
0.685/1.079.
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Table 3: Encompassing tests statistics for ENC_NEW, variant 1 RHS variables, π=3. 

LHS: 1 2 5 10 20 25 30 40 50 60 70 75 80 90 95 98 99 

θ: ENC_NEW 

0.99 -1.929 -0.963 0.234 0.954 1.269 0.402 0.401 3.911 3.7794 -0.771 -2.704 -0.926 -0.429 0.330 1.697 12.647  

0.98 1.651 -0.318 -0.377 -2.497 -4.803 -3.708 -4.030 -2.319 -6.045 -0.059 -0.399 -0.455 -1.491 -1.092 -0.716  3.477 

0.95 -1.684 -0.522 0.772 1.923 -1.292 2.691 5.548 0.355 -4.769 2.857 -0.609 -0.150 -0.205 3.008  -0.211 0.215 

0.90 -1.593 -3.142 -2.913 -3.253 -0.867 3.453 8.065 -1.505 -2.967 5.989 0.408 -0.865 -0.305  6.734 -0.637 -0.120 

0.80 -0.375 -1.582 -0.128 -1.303 -2.978 -2.223 -2.373 -1.718 0.9834 0.117 -2.002 4.137  0.076 3.479 0.390 -0.173 

0.75 3.250 4.832 12.100 13.141 7.192 4.039 3.049 5.508 2.5513 5.101 0.268  9.540 6.028 11.727 9.865 9.946 

0.70 7.468 13.528 19.149 18.751 9.951 7.888 8.296 6.947 0.7085 5.170  -1.526 3.518 4.281 7.786 11.718 15.892 

0.60 -1.932 0.493 1.630 -0.704 -2.078 -1.345 -0.348 -0.511 -1.076  1.560 -2.368 -3.933 -5.472 -4.340 -2.837 1.008 

0.40 -1.080 -1.459 -2.291 -4.465 -2.493 -1.013 -0.092  4.1199 -0.764 0.918 -3.042 -3.280 -2.773 -0.847 -0.631 -1.039 

0.30 -0.606 -2.423 2.505 0.112 3.431 -2.011  1.506 10.763 -0.770 0.451 -0.987 7.348 10.650 15.121 4.422 1.723 

0.25 0.917 -0.802 3.333 1.852 6.798  0.017 -0.637 4.163 3.140 2.908 1.149 8.968 9.698 19.414 7.033 3.508 

0.20 -0.149 -2.178 -1.441 -4.420  -0.017 -0.020 -3.461 2.7479 2.224 -0.793 -2.452 2.978 3.303 13.406 2.378 0.595 

0.10 -3.404 -2.496 -3.130  -4.119 -0.290 1.677 -3.144 -1.381 5.671 -1.759 -2.602 -5.492 -7.272 -2.882 -2.775 -1.640 

0.05 3.640 0.257  -4.055 -6.785 -3.014 -1.044 -5.358 -3.114 -0.238 -2.342 -2.176 -5.807 -9.362 -6.825 -5.543 -4.438 

0.02 3.043  -1.639 -3.138 -7.310 -5.282 -5.761 -3.736 -1.847 2.260 14.269 12.393 9.795 1.433 3.041 -1.861 3.343 

0.01  0.494 -2.927 -6.144 -7.186 -5.555 -3.850 -4.405 4.0367 1.065 4.763 3.776 4.077 -0.579 3.193 -0.100 -0.098 

Note: ENC_NEW denotes the test statistic of Clark and McCracken (2001). Shaded areas indicate significance at 10% level, bold 
numbers indicate significance at 5% level. π denotes the ratio of the number of observations in the out-of-sample (forecasting) 
period to the number of observations in the in-sample (estimation) period (Clark and McCracken, 2007). The critical values for 
CW07 and ENC_NEW at 10% and 5% level are: for π=3: 1.292/1.664 (one-sided test) and 1.442/2/374, and for π =0.4: 
1.314/1.703 and 0.685/1.079.
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Table 4: Encompassing tests statistics for CW07, variant 1 RHS variables, π=0.4 

LHS: 1 2 5 10 20 25 30 40 50 60 70 75 80 90 95 98 99 

θ: CW07 

0.99 -1.896 -2.076 -0.840 -0.843 0.250 0.060 0.278 0.809 2.572 0.650 0.959 -0.254 -1.900 -0.817 0.709 -1.040  

0.98 -0.505 -2.495 -1.239 -1.754 -0.406 -1.226 -0.859 -0.283 -0.933 1.406 -1.469 -0.960 -1.972 -2.233 1.550  -2.062 

0.95 -1.486 -0.532 0.976 0.770 0.807 1.631 1.179 1.287 -0.118 0.257 -1.199 0.230 0.610 2.414  1.822 -0.983 

0.90 1.091 0.465 -0.728 -1.898 -1.944 -1.327 -1.459 -0.672 -1.331 1.250 0.615 -1.643 -0.003  1.703 0.839 2.297 

0.80 -0.016 -0.372 -0.153 0.202 1.225 -1.506 -1.470 0.790 1.367 0.884 -1.361 0.095  -0.121 0.293 0.142 1.538 

0.75 0.899 0.255 1.063 1.848 1.989 1.707 1.858 3.024 1.830 1.987 0.608  1.411 1.141 1.158 1.541 2.708 

0.70 1.195 0.411 0.775 0.951 1.931 1.648 1.821 2.654 1.536 2.580  -0.524 1.216 0.661 0.809 1.086 2.440 

0.60 -0.488 -0.904 -1.321 -1.228 -0.902 -0.156 -0.030 2.217 1.789  1.944 1.802 -2.386 -1.706 -1.333 -0.679 -0.028 

0.40 -0.251 -0.584 -0.527 -0.149 -1.920 -1.256 -1.637  2.023 0.331 1.403 -2.524 0.057 0.613 0.726 0.308 0.302 

0.30 -0.872 -0.852 -0.606 -0.443 -0.127 -1.343  -0.302 1.906 -0.255 0.219 -0.351 0.062 -0.584 0.146 -0.368 0.498 

0.25 -0.395 -0.431 -0.119 -0.018 1.058  -0.454 -0.456 1.423 0.812 0.339 -0.100 0.059 -0.433 0.298 -0.322 0.623 

0.20 -1.009 -1.165 -0.817 -0.354  -0.716 -1.650 0.156 2.425 -0.790 -1.604 -1.087 -1.251 -1.594 -0.057 -0.501 0.333 

0.10 0.020 -0.653 -0.572  -1.357 -1.478 -2.093 1.782 -3.253 -0.254 1.762 2.310 -1.189 -1.016 0.244 -0.017 1.954 

0.05 -0.107 -0.484  -1.297 -0.443 -0.368 -0.249 0.568 -1.717 0.238 1.323 1.378 0.675 -0.044 -1.677 -1.586 0.307 

0.02 -0.489  -1.123 -1.084 -0.720 -0.771 -0.806 -0.260 0.333 -1.524 0.254 0.470 0.790 0.232 0.050 0.771 -0.605 

0.01  -1.906 -1.411 -1.029 -0.753 -0.899 -0.995 -1.136 0.769 -1.294 -0.744 -0.590 -0.145 -0.576 -0.271 -0.042 -0.418 

Note: CW07 denotes the test statistic of the test statistic of Clark and West (2007). Shaded areas indicate significance at 10% level, bold numbers indicate significance at 5% level. π denotes 
the ratio of the number of observations in the out-of-sample (forecasting) period to the number of observations in the in-sample (estimation) period (Clark and McCracken, 2007). The critical 
values for CW07 and ENC_NEW at 10% and 5% level are: for π=3: 1.292/1.664 and 1.442/2/374, and for π =0.4: 1.314/1.703 and 0.685/1.079. 
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Table 5: Encompassing tests statistics for ENC_NEW, variant 1 RHS variables, π=0.4 

LHS: 1 2 5 10 20 25 30 40 50 60 70 75 80 90 95 98 99 

θ: ENC_NEW 

0.99 -0.547 -0.409 -0.374 -0.416 0.185 0.028 0.130 0.405 1.070 0.152 0.277 -0.055 -0.228 -0.431 0.312 -1.068  

0.98 -0.084 -0.056 -0.054 -0.096 -0.029 -0.046 -0.058 -0.051 -0.329 0.348 -0.318 -0.394 -0.219 -0.215 0.194  -0.474 

0.95 -0.320 -0.025 0.215 0.623 0.460 1.073 0.899 0.523 -0.037 0.132 -0.093 0.146 0.186 1.904  0.381 -0.094 

0.90 0.537 0.129 -0.091 -0.379 -1.055 -1.110 -0.934 -0.102 -0.454 1.023 0.167 -0.217 -0.001  1.563 0.182 0.481 

0.80 -0.007 -0.213 -0.080 0.220 0.283 -0.180 -0.133 0.569 0.302 0.492 -0.099 0.144  -0.071 0.246 0.072 0.780 

0.75 0.763 0.238 1.318 3.272 5.002 4.140 3.314 7.043 2.771 1.852 0.304  3.276 1.524 1.896 2.075 3.705 

0.70 1.093 0.488 1.174 1.849 2.532 2.406 2.619 4.701 1.766 3.460  -0.240 0.849 0.531 0.842 1.170 2.900 

0.60 -0.224 -0.465 -0.671 -0.806 -0.445 -0.081 -0.018 1.791 1.360  2.193 0.788 -0.184 -0.556 -0.504 -0.422 -0.022 

0.40 -0.134 -0.183 -0.164 -0.050 -0.370 -1.196 -1.819  2.764 0.066 0.375 -0.162 0.008 0.284 0.487 0.166 0.117 

0.30 -0.780 -0.676 -0.490 -0.491 -0.082 -0.520  -0.673 2.850 -0.061 0.043 -0.137 0.056 -0.811 0.239 -0.497 0.636 

0.25 -0.423 -0.389 -0.107 -0.030 0.959  -0.254 -0.930 0.854 0.643 0.206 -0.133 0.080 -0.582 0.423 -0.441 0.779 

0.20 -0.720 -0.727 -0.512 -0.418  -0.299 -0.174 0.258 0.996 -0.537 -0.474 -0.651 -1.026 -1.522 -0.068 -0.554 0.297 

0.10 0.018 -0.454 -0.137  -0.194 -0.323 -0.250 0.815 -1.584 -0.303 0.396 1.622 -0.253 -0.147 0.219 -0.011 1.238 

0.05 -0.051 -0.266  -0.187 -0.117 -0.093 -0.073 0.220 -0.516 0.124 0.429 0.771 0.140 -0.007 -0.096 -0.253 0.073 

0.02 -0.089  -0.134 -0.104 -0.202 -0.277 -0.270 -0.089 0.155 -0.671 0.203 0.524 0.640 0.086 0.015 0.208 -0.113 

0.01  -0.204 -0.324 -0.273 -0.215 -0.393 -0.406 -0.123 1.147 -1.576 -1.394 -1.098 -0.186 -0.532 -0.139 -0.030 -0.191 

Note: ENC_NEW denotes the test statistic of Clark and McCracken (2001). Shaded areas indicate significance at 10% level, bold numbers indicate significance at 5% level. π denotes the ratio 
of the number of observations in the out-of-sample (forecasting) period to the number of observations in the in-sample (estimation) period (Clark and McCracken, 2007). The critical values for 
CW07 and ENC_NEW at 10% and 5% level are: for π=3: 1.292/1.664 and 1.442/2/374, and for π =0.4: 1.314/1.703 and 0.685/1.079
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not seem to be restricted to a certain subperiod of the sample.10 

We conduct further tests to analyse the robustness of this finding (results not reported 

but available on request). Firstly, we investigate all quantiles between .60 and .80 to establish 

whether quantile .75 return is indeed the one with superior predictive power, or whether it is 

just a proxy for other quantiles in its immediate proximity with superior forecasting 

performance. The results of the Clark and West (2007) and Clark and McCracken (2001) 

tests which compare the forecasting performance of model 2 vs. model 1 indicate that 

quantile .75 returns show significant forecasting power for the highest number of future 

return quantiles (jointly with quantile .74 returns). Hence, we conclude that quantile .75 

returns are not dominated by any neighbouring quantile in terms of their forecasting power.  

A second robustness test comprises of using a different stock market index to 

investigate broader validity of our findings. For reasons which will be demonstrated in 

section 4.3, this analysis requires daily data starting in 1920s or earlier: We have been able to 

obtain daily data on S&P500, starting in 1928, and conducted the forecasting tests in an 

equivalent way to those reported in Tables 2 and 3 (Clark and West (2007) and Clark and 

McCracken (2001), respectively, to compare the forecasting performance of model 2 vs. 

model 1). The results indicate that for both tests, predictions generated by quantile .75 returns 

are resulting in the highest number of significantly superior forecasts (i.e., for the highest 

number of future to-be-predicted quantiles), in one case jointly with quantile .70 and in 

                                                           

10 A potential criticism could be that we are bound to find some significant results when considering outcomes 
from 256 independent tests (on average, in X% of cases when the significance level is X%), hence, these results 
could be due to data mining. However, as it is not known a priori, on theoretical level, which quantile(s) could 
have predictive power, considering a wide range of quantiles empirically is the only way to establish their 
individual forecasting ability. In other words, we do not search for the predictive quantile but rather analyse the 
predictive power of each separately in order to establish if, and which, quantiles possess predictive power. 
Further, even when we employ the false discovery rate approach, which accounts for multiple testing in a rather 
stringent way, and compute p-values following Benjamini and Hochberg (1995) and Benjamini and Yekutieli 
(2001) (see Harvey and Liu, 2014, for a discussion), quantiles 70 and 75 retain predictive power for a wide 
range of future quantiles (20-40, 60, 95-99), whereas other quantiles are overwhelmingly lacking predictive 
ability (results not reported to conserve space). Hence, our findings are not due to data mining. 
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another with .10. Hence, these results confirm that quantile .75 returns have a superior 

predictive power and this result is not restricted to one stock market index. 

We also conducted our forecasting power analysis on stock level data. We identified 

stocks in the CRSP database with share codes 10 and 11 which traded over that entire period 

1926-2014 by their PERMNO identifier (i.e., where the PERMNO identifier was reported for 

the start and the end of the entire sample). This procedure resulted in a sample of 31 stocks. 

We then analysed the forecasting power of quantile .75 returns using the same approach as 

above, with Clark and West (2007) test and π=3. The overall result was that quantile .75 

returns did not outperform other quantile returns as a predictor. The possible reasons are that, 

firstly, stock-level returns are more noisy, due to idiosyncratic noise, than index-level returns, 

and hence more difficult to predict; secondly, index level predictability can be driven by 

other effects and does not require stock-level predictability to exist (Lo and MacKinlay, 

1990); and, thirdly, any potential stock-level predictability is more likely to have been 

exploited due to historically lower transaction costs of trading in individual stocks rather than 

in an index. Virtually all papers in this branch of the literature focus on forecasting index-

level rather than individual stock returns. Hence, when we construct an equally-weighted 

index out of these 31 stocks, this index's quantile .75 returns are the superior predictor of 

future market returns among all analysed quantiles, which is in line with our previous 

findings for other indices. 

4.2.  Predictive power of return quantiles beyond the historical mean 

The results discussed above indicate that returns measured at quantiles .70 and .75 do 

possess superior predictive power for next-year returns at a wide range of quantiles (.20-.60 

and .80 and above), which comes in excess of the potential predictive power of four moments 

of return distribution as well as the lagged to-be-predicted quantile return. However, it is not 
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clear from those results whether the model with added lagged quantile returns (eq. (2)) 

performs any better than a model which uses only the historical mean of the LHS return 

variable. The historical mean is a standard benchmark in the literature. To address this 

question, we run encompassing tests comparing two models. The larger model is as shown in 

equation (2), and the nested, parsimonious one is a regression of the quantile return on a 

constant. The latter model generates estimates of historical means when it is estimated 

recursively for each period t, which are then used to predict one-year ahead (t+1) returns in 

the out-of-sample subperiod. We calculate the values of both statistics, however, Clark and 

McCracken (2001) do not report the critical values for the case of six excess parameters in 

the larger model (as is the case here), hence in our discussions we rely on the test statistics 

from the more conservative Clark and West (2007) approach.  

To get an idea of the magnitude of the differences in predictability between the 

parsimonious (historical mean) and full models, we compute the out-of-sample goodness-of-

fit measure as follows (Kelly and Jiang, 2014; Da, Jagannathan, and Shen, 2014): 

𝑂𝑂𝑂𝑂𝑆𝑆_𝑅𝑅2 = 1 −  ∑ (𝑟𝑟𝑖𝑖+1−�̂�𝑟𝑖𝑖+1)2𝑇𝑇
𝑡𝑡=𝑚𝑚

∑ (𝑟𝑟𝑖𝑖+1−�̅�𝑟𝑖𝑖+1)2𝑇𝑇
𝑡𝑡=𝑚𝑚

 , 

where 𝐾𝐾𝑖𝑖+1is the observed return, �̂�𝐾𝑖𝑖+1 is the predicted return based on the larger model and 

�̅�𝐾𝑖𝑖+1 stands for the predicted return based on the parsimonious model, i.e., the historical mean 

return calculated for the sample up to period 𝑚𝑚. Positive values of this measure indicate 

better out-of-sample predictive accuracy of the larger model, negative values indicate that the 

historical mean generated less error-ridden forecasts. 

It should be noted that the CW07 approach does not simply compare the MSPE of the 

parsimonious and larger models, but adjusts for the extra noise (induced if the null is correct) 

in the predictions made using the larger model. Hence, the test statistic is always larger than 

one which would be given by the difference in MSPE of the parsimonious vs. larger model. 
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An implication of this adjustment is that the 𝑂𝑂𝑂𝑂𝑆𝑆_𝑅𝑅2 measure, which does not adjust for the 

additional noise of the incorrectly specified larger model (under the null), can be negative and 

indicate the inferior performance of the larger model vis-á-vis the historical mean, but the 

CW07 statistic will be significant, implying the opposite (superior forecasting power of the 

larger model). We base our inference on the CW07 statistic, but report the values of the 

𝑂𝑂𝑂𝑂𝑆𝑆_𝑅𝑅2 measure to give a flavour of the magnitude of the potential forecasting power of 

models including quantile returns (as well as first four moments and lagged dependent 

returns) as explanatory variables. 

The results (Table 6) indicate that most models are better than the historical mean 

(parsimonious model), as the CW07 statistics are significant for both long (π=3) and short 

(π=.4) out-of-sample periods. A noticeable exception is when the median return is used as the 

dependent variable, as the CW07 statistics are insignificant (more so for π=3) and 𝑂𝑂𝑂𝑂𝑆𝑆_𝑅𝑅2 

values negative.  

Taken together and in conjunction with the previous findings, these results indicate that 

models using returns at quantiles .70 and .75 possess a superior forecasting power for future 

returns at various quantiles, over and above any forecasting ability of the lagged first 

moments of the return distribution as well as lagged values of to-be-predicted quantile return. 

However, the predictive content of those quantile returns is not exceeding that of the 

historical mean when it comes to forecasting the center of future return distribution. On the 

other hand, however, this predictive content of those quantile returns appears to be superior to 

both parsimonious models considered (historical mean and the one without lagged quantile 

returns only) when we forecast future returns at quantiles away from the center of the 

distribution. 
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Table 6: Values of the 𝑂𝑂𝑂𝑂𝑆𝑆_𝑅𝑅2 statistic. 

LHS: 1 2 5 10 20 25 30 40 50 60 70 7 80 90 95 98 99
θ

99 0.10 0.23 0.21 0.23 0.11 0.16 0.08 0.18 -0.38 0.13 0.37 0.51 0.50 0.45 0.48 0.42 0.33
98 0.16 0.24 0.21 0.18 0.01 0.10 0.02 0.09 -0.73 0.13 0.38 0.50 0.48 0.42 0.45 0.36 0.33
95 0.04 0.23 0.22 0.25 0.04 0.16 0.09 0.15 -0.61 0.09 0.29 0.48 0.48 0.43 0.47 0.35 0.33
90 -0.14 0.09 0.14 0.16 0.08 0.20 0.14 0.12 -0.55 0.03 0.27 0.46 0.44 0.46 0.48 0.35 0.33
80 0.14 0.18 0.20 0.20 0.05 0.14 0.07 0.05 -0.40 0.18 0.40 0.54 0.51 0.44 0.48 0.34 0.29
75 0.13 0.22 0.27 0.33 0.18 0.21 0.15 0.16 -0.37 0.21 0.42 0.53 0.55 0.47 0.51 0.38 0.34
70 0.19 0.31 0.34 0.37 0.20 0.24 0.19 0.17 -0.41 0.21 0.43 0.50 0.51 0.45 0.47 0.37 0.38
60 0.10 0.23 0.22 0.21 0.06 0.14 0.09 0.09 -0.47 0.19 0.43 0.50 0.45 0.36 0.39 0.25 0.27
40 0.12 0.21 0.17 0.14 0.07 0.13 0.08 0.16 -0.34 0.15 0.41 0.49 0.46 0.41 0.44 0.35 0.31
30 0.08 0.14 0.15 0.17 0.13 0.14 0.13 0.06 -0.26 0.16 0.40 0.49 0.50 0.47 0.50 0.34 0.26
25 0.03 0.15 0.16 0.21 0.18 0.19 0.12 0.07 -0.35 0.18 0.41 0.51 0.54 0.50 0.55 0.36 0.25
20 0.10 0.16 0.10 0.10 0.13 0.14 0.10 -0.04 -0.41 0.19 0.40 0.47 0.48 0.41 0.46 0.30 0.20
10 -0.01 0.13 0.13 0.24 0.03 0.15 0.11 0.04 -0.81 0.08 0.33 0.47 0.41 0.33 0.40 0.25 0.23
5 0.13 0.23 0.22 0.12 -0.05 0.10 0.07 -0.05 -0.70 0.17 0.37 0.47 0.40 0.27 0.34 0.23 0.19
2 0.15 0.25 0.15 0.07 -0.10 0.03 -0.04 0.05 -0.63 -0.01 0.36 0.48 0.46 0.36 0.43 0.31 0.28
1 0.16 0.24 0.15 0.06 -0.06 0.05 0.02 -0.02 -0.55 0.15 0.40 0.48 0.46 0.36 0.43 0.29 0.23

θ
99 0.13 0.15 0.11 0.07 0.06 0.06 0.00 0.01 -0.05 -0.05 -0.06 0.04 0.08 0.14 0.08 -0.05 0.01
98 0.15 0.17 0.13 0.10 0.08 0.07 0.01 0.01 -0.13 -0.04 -0.09 0.02 0.08 0.16 0.08 0.06 -0.02
95 0.14 0.17 0.14 0.11 0.09 0.09 0.02 0.03 -0.12 -0.08 -0.07 0.04 0.09 0.21 0.07 0.08 0.00
90 0.17 0.18 0.13 0.09 0.00 -0.03 -0.08 0.00 -0.14 -0.05 -0.06 0.03 0.09 0.17 0.09 0.07 0.03
80 0.15 0.15 0.12 0.09 0.10 0.06 0.00 0.02 -0.08 -0.06 -0.07 0.01 0.09 0.15 0.03 0.04 0.03
75 0.11 0.08 0.07 0.05 0.18 0.17 0.13 0.23 0.03 -0.07 -0.06 0.05 0.12 0.14 0.02 0.02 0.07
70 0.12 0.09 0.06 0.05 0.12 0.12 0.08 0.15 -0.01 0.00 -0.07 0.02 0.09 0.14 0.04 0.00 0.04
60 0.13 0.13 0.07 0.03 0.03 0.04 -0.01 0.05 -0.04 -0.06 0.01 0.08 0.08 0.13 0.03 0.00 -0.05
40 0.15 0.17 0.13 0.10 0.06 -0.03 -0.17 0.01 0.02 -0.06 -0.05 0.04 0.09 0.18 0.08 0.06 0.01
30 0.09 0.12 0.09 0.05 0.05 0.04 0.01 -0.21 -0.01 -0.07 -0.08 0.03 0.04 0.04 0.01 -0.02 -0.01
25 0.10 0.13 0.11 0.07 0.06 0.07 -0.01 -0.13 -0.07 -0.06 -0.08 0.00 0.03 0.06 0.02 -0.01 0.01
20 0.10 0.12 0.10 0.07 0.08 0.03 0.00 -0.02 -0.05 -0.14 -0.11 0.00 -0.01 0.03 0.00 -0.01 0.00
10 0.13 0.13 0.12 0.11 0.07 0.05 -0.01 0.05 -0.23 -0.17 -0.05 0.10 0.07 0.16 0.06 0.04 0.06
5 0.15 0.15 0.13 0.10 0.07 0.06 0.00 0.02 -0.15 -0.07 -0.05 0.07 0.09 0.17 0.06 0.05 0.01
2 0.15 0.18 0.13 0.10 0.07 0.05 -0.01 0.00 -0.10 -0.11 -0.10 0.02 0.10 0.17 0.06 0.07 0.00
1 0.16 0.17 0.12 0.09 0.07 0.04 -0.02 0.00 -0.06 -0.19 -0.22 -0.07 0.04 0.13 0.04 0.05 -0.01

Panel A: Short estimation/long forecast evaluation (OOS) period (π=3)

Panel B: Long estimation/shortforecast evaluation (OOS) period (π=0.4)

Note: Positive values indicate that the MSPE is lower for model (2) as compared to a model using recursively estimated historical 
mean as a predictor. Shaded areas indicate cases with insignificant CW07 statistics. 
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4.3. Time variations in the predictive power of quantile .75 returns 

To assess the time-varying nature of out-of-sample predictive power of returns at 

quantile .75, we apply the CW07 testing approach to model (2) vs. (1) recursively, in both 

directions. First, we fix the starting point and allow the sample window to increase by one 

observation, until it reaches the sample end; for each window, divided into estimation (in-

sample) and prediction (OOS) subperiods, the CW07 test is performed, which results in a 

time series of test statistics and their corresponding p-values for the one-sided test. Similarly, 

we perform the recursive estimation with the fixed end point date while allowing the starting 

point to move over time (from the beginning of the sample). The smallest sample in each 

approach contains 40 observations, and we concentrate on cases where the out-of-sample 

period is long (π=3), due to superior size properties of the OOS tests (Hansen and 

Timmermann, 2012). The results from these forward and backwards recursive estimations are 

presented in Figures 2 and 3, respectively. More specifically, these figures show the 

estimated right-hand side, one-sided p-values of the CW07 tests. The last (first) period in 

Figure 2 (Figure 3) corresponds to the full-sample test. Figure 2 (fixed starting date, moving 

sample end date) shows most p-values to be higher than 10% for subsamples ending in the 

early part of the sample, which could suggest weak predictive power of quantile .75 returns 

until at least the mid-1940s. On the other hand, Figure 3 (fixed end date, moving sample start 

date) shows most p-values to be below 10% for subsamples starting in the 1930s, suggesting 
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Figure 2: p-values for CW07 statistics, recursive method (start-of-sample fixed) 

 
 
Figure 3: p-values for CW07 statistics, backwards recursive method (end-of-sample fixed) 
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better predictive power in the earlier part of the sample, but poorer in the later part of the 

sample. Considered separately, these two figures appear to provide contradictory evidence on 

the timing of predictive ability of quantile .75 returns. However, taken together, these non-

rejections of the null of the predictive power in the early (Fig. 2) and late (Fig. 3) parts of the 

sample appear to be due to poor power of the CW07 tests when applied to short subsamples, 

as the underlying coefficients would have been imprecise (Campbell and Thompson, 2008, 

Cochrane, 2008). As the sample in the recursive estimations becomes larger, the coefficients 

estimated for forecasts are based on an increasing number of observations, hence becoming 

less prone to biases and generating a more reliable picture of the forecasting power of the 

model. Therefore, when we look at those results obtained from larger subsamples and hence 

the more precise and reliable (the RHS (LHS) side of Figure 2 (3)), most p-values are below 

the 10% (and even 5%) level, and we can conclude that the quantile 0.75 returns’ predictive 

power was strong across the whole sample period and not confined to a narrow subperiod. 

4.4. Predictive power of quantile .75 returns vs. other variables 

We further analyse whether our predictive variable, the lagged index return measured 

at the 75th percentile of index return distribution, possesses predictive power for one-year 

ahead index returns which is not captured by other economic variables, as identified in the 

literature. To this end, we utilise the variables considered by Welch and Goyal (2008): Book-

to-market ratio (bm), Default return spread (dfr), Default yield spread (dfy), Dividend payout 

ratio (de), Dividend price ratio (dp), Dividend yield (dy), Earnings price ratio (ep), Inflation 

(infl), Long-term return (ltr), Long-term yield (lty), Net equity expansion (ntis), Percentage 

equity issuing (eqis), Stock volatility (of S&P500, svar), Term spread (tms), Investment to 

capital ratio (ik), and Treasury-bill rate (tbl). In addition, we employ the tail risk measure 

from Kelly and Jiang (2014) (tail). Following the literature, we run single regressions, with 



27 

 

each of the quantile returns as the dependent and one-year lag of each of the abovementioned 

variables, and our quantile .75 return, as explanatory ones, one variable at a time. We also 

estimate models with two independent variables at a time, one being always the lagged 

quantile .75 return, and the other one a variable from those listed above. All variables except 

the dependent ones and the quantile .75 return are standardised. 

Table 7 presents the results from simple regressions for samples which vary across 

regressions, as different variables are available from different points in time (results for a 

unified sample starting in year 1963 are not reported to conserve space).  The parameters are 

multiplied by 10,000 and R2 statistics are expressed in percentage points, for ease of 

exposition. Looking at samples of varying lengths (Table 7), most parameters on lagged 

predictive variables appear to be insignificant. From 17 variables used here, based on prior 

research, only a few show a consistent pattern of significance, mostly the default yield spread 

and volatility (both for most quantiles of future returns) and, to a lesser extent, the investment 

to capital ratio (most cases) and the dividend payout ratio (only a few cases). Interestingly, 

when it comes to the predictive ability for the center of future return distribution, as measured 

by median returns here, variables such as net equity expansion and tail risk, in addition to 

investment to capital ratio, turn out to be significant, whereas default yield spread and 

volatility are not. Hence, the relevant set of significant predictors for the center of the future 

return distribution is different from that for predicting any other quantile of that distribution.  

When it comes to our variable, the lagged 75th quantile returns, it is a significant predictor for 

all studied quantiles of future return, with an exception of the future median. Its predictive 

power seems to be superior to that of the remaining variables, as the R2 values from models 

with the 75th quantile return as  an explanatory variable are in most cases higher than those 

from models using other predictors, and in cases where they are not, they came a close  
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Table 7: Simple predictive regressions, varying samples (full data utilisation).  
 
Quantile 1 2 5 10 20 25 30 40 50 

 beta t-stat R2 beta t-stat R2 beta t-stat R2 beta t-stat R2 beta t-stat R2 beta t-stat R2 beta t-stat R2 beta t-stat R2 beta t-stat R2 

dfy 7.02 3.94 19.68 6.11 4.85 28.06 4.88 5.24 31.67 3.89 4.02 37.78 2.53 3.57 35.92 1.86 3.47 30.76 1.45 3.19 28.16 0.74 4.17 20.90 0.13 0.88 1.45 

infl 3.85 1.16 5.62 3.29 1.24 8.36 2.44 1.12 8.25 1.72 0.99 7.73 0.92 0.81 5.02 0.63 0.71 3.73 0.41 0.57 2.41 0.20 0.49 1.50 0.02 0.20 0.04 

svar -6.16 -4.22 16.94 -5.26 -5.25 24.32 -4.06 -5.58 26.37 -3.19 -5.87 31.13 -1.91 -4.69 25.55 -1.42 -4.28 22.25 -1.12 -4.04 21.04 -0.58 -4.10 14.89 -0.07 -0.72 0.44 

de -4.64 -2.74 8.63 -3.67 -2.96 10.66 -2.73 -1.74 10.70 -1.89 -1.44 9.82 -1.17 -1.33 8.69 -0.82 -1.19 6.64 -0.58 -1.01 4.97 -0.31 -0.95 3.72 0.00 -0.01 0.00 

lty 3.03 1.23 3.66 1.98 1.04 2.94 0.96 0.66 1.22 0.32 0.30 0.26 -0.12 -0.17 0.07 -0.08 -0.15 0.06 -0.17 -0.40 0.40 -0.16 -0.65 0.93 -0.10 -0.88 0.82 

tms -0.48 -0.23 0.09 -0.62 -0.40 0.29 -0.26 -0.21 0.09 -0.28 -0.32 0.19 -0.12 -0.20 0.08 -0.04 -0.09 0.02 -0.05 -0.12 0.03 -0.02 -0.10 0.02 -0.03 -0.25 0.07 

tbl 2.88 1.23 3.31 2.03 1.12 3.08 0.96 0.68 1.21 0.41 0.39 0.42 -0.05 -0.08 0.01 -0.06 -0.11 0.03 -0.13 -0.32 0.24 -0.13 -0.55 0.64 -0.07 -0.66 0.47 

dfr 2.34 1.62 2.05 1.47 1.46 1.53 0.91 1.23 1.04 0.30 0.57 0.22 0.14 0.38 0.10 0.04 0.12 0.01 -0.04 -0.15 0.02 -0.08 -0.57 0.25 -0.16 -1.42 2.28 

dp -1.55 -0.75 1.06 -1.17 -0.75 1.20 -0.74 -0.63 0.86 -0.57 -0.53 0.98 -0.40 -0.53 1.09 -0.27 -0.46 0.78 -0.23 -0.50 0.91 -0.12 -0.44 0.60 0.05 0.49 0.20 

dy -0.55 -0.26 0.14 -0.45 -0.28 0.19 0.06 0.05 0.01 0.23 0.26 0.16 0.24 0.44 0.42 0.23 0.53 0.59 0.18 0.52 0.54 0.10 0.55 0.48 0.14 1.50 1.88 

ltr -0.72 -0.41 0.19 -0.80 -0.64 0.45 -0.30 -0.32 0.11 -0.04 -0.06 0.00 0.06 0.13 0.02 0.12 0.33 0.12 0.11 0.39 0.16 0.14 0.86 0.76 0.20 1.85 3.83 

ep 1.69 0.90 1.34 1.40 1.00 1.80 1.18 1.15 2.35 0.76 1.00 1.84 0.42 0.87 1.32 0.31 0.80 1.08 0.16 0.54 0.47 0.10 0.55 0.42 0.05 0.56 0.27 

bm 0.49 0.20 0.10 0.12 0.06 0.01 -0.26 -0.18 0.09 -0.55 -0.40 0.74 -0.55 -0.83 1.71 -0.37 -0.71 1.24 -0.41 -1.01 2.31 -0.28 -1.23 3.00 -0.06 -0.52 0.29 

ik -1.65 -0.97 2.32 -1.09 -0.85 1.78 -1.47 -1.71 6.57 -1.21 -2.02 9.15 -1.04 -2.75 14.88 -0.90 -2.93 16.09 -0.81 -3.43 19.10 -0.54 -4.27 21.94 -0.23 -2.58 7.94 

ntis -0.52 -0.24 0.10 -0.57 -0.35 0.23 -0.98 -0.79 1.19 -0.87 -0.96 1.78 -0.68 -1.16 2.47 -0.70 -1.52 4.17 -0.61 -1.67 4.82 -0.38 -1.58 5.20 -0.23 -2.05 4.65 

eqis -2.36 -1.07 2.06 -1.77 -1.07 2.20 -1.64 -1.32 3.32 -1.28 -1.40 3.79 -0.91 -1.54 4.37 -0.76 -1.63 4.82 -0.65 -1.76 5.41 -0.40 -1.89 5.74 -0.13 -1.14 1.50 

tail 0.05 0.02 0.00 -0.33 -0.20 0.14 0.17 0.15 0.07 0.32 0.44 0.60 0.33 0.71 1.42 0.41 1.07 3.08 0.37 1.34 3.70 0.30 1.80 6.45 0.26 2.17 9.14 

q75 ret -3.16 -4.59 25.62 -2.65 -5.51 35.86 -2.02 -4.90 38.10 -1.53 -4.77 41.38 -0.94 -3.89 35.44 -0.72 -3.96 32.75 -0.56 -3.89 29.40 -0.30 -4.01 22.50 -0.04 -0.91 0.95 
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Table 7 continued 
 

Quantile 60 70 75 80 90 95 98 99 

 beta t-stat R2 beta t-stat R2 beta t-stat R2 beta t-stat R2 beta t-stat R2 beta t-stat R2 beta t-stat R2 beta t-stat R2 

dfy -0.50 -4.30 21.37 -1.19 -4.39 40.59 -1.78 -4.26 47.85 -2.40 -4.55 49.55 -4.06 -4.57 51.36 -5.28 -4.59 45.44 -7.07 -3.85 39.11 -8.50 -3.75 31.57 

infl -0.29 -1.34 6.60 -0.56 -1.08 8.78 -0.80 -1.05 9.66 -0.97 -0.99 8.36 -1.58 -0.97 8.02 -2.18 -1.02 8.02 -3.12 -0.98 7.89 -4.44 -1.12 9.00 

svar 0.47 3.04 18.99 0.98 6.50 31.72 1.46 6.09 37.87 2.00 7.36 41.56 3.28 7.72 40.03 4.47 7.65 38.83 5.89 6.32 32.48 7.27 6.03 28.47 

de 0.34 2.49 9.20 0.66 1.84 13.03 0.97 1.75 14.96 1.25 1.71 14.63 2.11 1.74 14.88 2.59 1.59 11.72 3.61 1.52 10.99 4.20 1.35 8.56 

lty -0.13 -0.82 1.51 -0.14 -0.43 0.57 -0.12 -0.25 0.20 -0.13 -0.21 0.14 -0.10 -0.11 0.03 0.22 0.17 0.08 -0.06 -0.03 0.00 0.05 0.02 0.00 

tms -0.03 -0.19 0.06 0.06 0.23 0.10 0.08 0.22 0.09 0.26 0.55 0.58 0.65 0.83 1.30 1.22 1.14 2.40 0.84 0.54 0.55 1.42 0.69 0.87 

tbl -0.11 -0.67 0.94 -0.15 -0.48 0.66 -0.14 -0.31 0.29 -0.23 -0.40 0.46 -0.39 -0.42 0.48 -0.37 -0.29 0.22 -0.44 -0.24 0.15 -0.61 -0.25 0.16 

dfr -0.22 -2.11 3.90 -0.20 -1.24 1.02 -0.24 -1.15 0.82 -0.35 -1.24 0.97 -0.48 -1.02 0.67 -0.72 -1.09 0.78 -0.73 -0.76 0.39 -0.84 -0.64 0.29 

dp 0.20 1.45 3.32 0.32 0.98 3.34 0.46 0.96 3.73 0.56 0.90 3.27 0.88 0.83 2.84 0.84 0.60 1.35 1.28 0.66 1.53 0.86 0.34 0.39 

dy 0.13 0.94 1.52 0.11 0.41 0.42 0.14 0.38 0.37 0.09 0.19 0.09 -0.04 -0.06 0.01 -0.35 -0.32 0.24 -0.23 -0.14 0.05 -1.03 -0.51 0.58 

ltr 0.22 1.92 4.08 0.23 1.15 1.45 0.28 0.99 1.07 0.28 0.77 0.65 0.34 0.55 0.33 0.66 0.78 0.66 0.36 0.30 0.10 0.63 0.38 0.16 

ep -0.04 -0.29 0.12 -0.13 -0.57 0.62 -0.20 -0.62 0.77 -0.30 -0.70 0.96 -0.58 -0.85 1.31 -0.97 -1.04 1.93 -1.23 -0.91 1.50 -2.13 -1.22 2.57 

bm 0.13 0.58 1.50 0.25 0.55 1.75 0.48 0.71 3.35 0.67 0.77 3.85 1.14 0.81 3.99 1.27 0.65 2.59 1.58 0.61 1.92 1.25 0.52 0.67 

ik 0.02 0.23 0.08 0.27 1.55 5.41 0.47 2.11 10.15 0.65 2.08 10.02 1.03 1.81 8.40 1.40 1.61 6.72 2.20 1.99 9.35 2.74 1.78 6.88 

ntis 0.00 0.02 0.00 0.18 0.67 0.87 0.23 0.61 0.76 0.13 0.25 0.13 0.07 0.08 0.01 -0.12 -0.11 0.02 0.57 0.34 0.23 1.30 0.61 0.69 

eqis 0.05 0.34 0.18 0.26 0.96 1.82 0.33 0.86 1.52 0.39 0.77 1.19 0.64 0.77 1.19 0.81 0.70 0.98 1.78 1.09 2.30 2.31 1.07 2.16 

tail 0.17 1.38 3.91 0.11 0.48 0.83 0.12 0.38 0.55 0.10 0.24 0.20 0.00 0.00 0.00 0.24 0.23 0.19 -0.17 -0.13 0.05 0.19 0.10 0.03 

q75 ret 0.22 3.41 24.06 0.48 5.03 42.86 0.70 5.19 50.05 0.91 5.37 49.89 1.43 4.79 44.68 1.96 4.84 44.06 2.75 4.64 41.24 3.47 4.69 36.88 

Note: We further analyse whether our predictive variable, the lagged index return measured at the 75th percentile of index return distribution, possesses predictive power for one-year ahead 
index returns which is not captured by other economic variables, as identified in the literature. We utilise the variables considered by Welch and Goyal (2008): Book-to-market ratio (bm), 
Default return spread (dfr), Default yield spread (dfy), Dividend payout ratio (de), Dividend price ratio (dp), Dividend yield (dy), Earnings price ratio (ep), Inflation (infl), Long-term return 
(ltr), Long-term yield (lty), Net equity expansion (ntis), Percentage equity issuing (eqis), Stock volatility (of S&P500, svar), Term spread (tms), Investment to capital ratio (ik), and Treasury-
bill rate (tbl). In addition, we employ the tail risk measure from Kelly and Jiang (2014) (tail). We run single regressions, with each of the quantile returns as the dependent and one-year lag of 
each of the abovementioned variables, and our quantile .75 return, as explanatory ones, one variable at a time. We also estimate models with two independent variables at a time, one being 
always the lagged quantile .75 return, and the other one a variable from those listed above. All variables except the dependent ones and the quantile .75 return are standardised. Tables 7 and 8 
present the results from simple regressions for samples which vary across regressions, as different variables are available from different points in time (Table 7) and for a unified sample period 
starting in year 1963 (Table 8).  Shaded areas indicate significance at 10% level, bold values additionally at 5% level. Values under “beta” were multiplied by a factor of 10,000.
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second (except for models predicting the median). Hence, the evidence suggests that our 

variable possesses predictive power for the future return distribution which is not contained 

in any of the alternative predictors, and is superior to those alternative predictors. 

The unreported results for a unified sample starting in year 1963 show that only a 

small number of previously identified economic variables possess predictive power for future 

returns, slightly more so for those returns in the upper part of the distribution. Volatility 

appears to have maintained its predictive power as compared to the whole sample, but the 

default yield spread seems to be more predictive for returns in the upper part of the 

distribution. The dividend payout ratio appears to have lost its predictive power, and 

investment to capital ratio can only predict a few quantiles of future returns. On the other 

hand, net equity expansion and default return spread emerge as significant predictors for 

several quantile returns. As above, the set of predictors for median return is different from 

that for other quantiles: Net equity expansion, percentage equity issuing, investment to capital 

ratio, and tail risk each appear to significantly predict future median returns. Most 

importantly, however, the lagged 75th quantile return is a significant predictor for all but the 

median future returns, and its predictive power, as measured by R2 values, tends to be the 

best, especially for upper quantiles of future return distribution. 

Overall, we can conclude that the predictive power of lagged returns measured at the 

75th quantile is not captured by any of the traditional predictors for future returns. It appears 

to be stable over time, unlike that of some other predictors. However, quantile .75 returns 

don’t have predictive power for the center of the future return distribution. 

In addition to those simple predictive regressions analysed above, we also estimated 

models with two independent variables at a time, one being always the lagged quantile 75th 

return, and the other one a variable from Welch and Goyal (2008) or the tail risk of Kelly and 

Jiang (2014). The results in Table 8 derived from unequal samples and utilising all available 
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data for each variable clearly show that the quantile .75 lagged return is a significant 

predictor of one-year ahead returns at all quantiles except for the median (the relevant 

estimated parameter values are reported under “q beta” and the corresponding t-statistics 

under “q tstat”). Other variables tend to be insignificant; for each dependent variable, only up 

to six out of seventeen predictors are significant. Compared to the simple regressions, the 

default yield spread and the investment to capital ratio remain significant across a wide range 

of quantiles, whereas dividend yield appears to have lost some of its predictive ability across 

the quantiles of future returns. Volatility maintained its predictive ability when combined 

with quantile .75 returns only for some high quantiles of future returns. On the other hand, 

default return spread emerges as a significant predictor of mostly high quantile returns. As 

before, predictive regressions for the median fare much worse than those for other quantiles, 

both in terms of the number of significant predictors and the R2 values of those models. 

Hence, predicting the future center of return distribution appears to be much more difficult 

than other parts of it. 

When we look at the homogenised sample starting in year 1963 (unreported), the 

predictive pattern is somewhat similar to those in simple models. Default return spread and, 

to a lesser degree, net equity expansion and investment to capital ratio predict future returns 

at different, if not all, quantiles of the distribution; however, volatility seems to have lost its 

predictive power when combined with quantile .75 returns in one model. As for the latter 

variable, it significantly predicts future returns in all but central (.50 and .60) quantiles in 

almost all models. Interestingly, it is insignificant when combined with mostly the volatility, 

although the latter does not show any significance either. As before, the model predicting the 

median suffers from the worst performance as compared to those predicting other quantiles of 

future return distribution. 
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Table 8: Predictive regressions with two predictors, varying samples (full data utilisation).  
 
Quantile 1 2 5 10 20 25 

 q beta q tstat beta  tstat R2 q beta q tstat beta  tstat R2 q beta q tstat beta  tstat R2 q beta q tstat beta  tstat R2 q beta q tstat beta  tstat R2 q beta q tstat beta  tstat R2 

dfy -2.92 -3.84 17.75 0.90 31.70 -2.28 -4.44 20.22 1.52 41.79 -1.69 -3.13 18.53 1.67 44.99 -1.20 -3.20 17.39 1.85 50.44 -0.64 -2.47 13.92 1.79 43.90 -0.53 -2.70 9.17 1.68 39.43 

infl -3.07 -4.78 16.61 1.03 27.28 -2.56 -6.36 14.74 1.43 38.87 -2.00 -5.81 10.10 1.02 42.00 -1.55 -6.31 6.14 0.79 45.90 -0.97 -5.61 2.37 0.43 38.15 -0.75 -5.41 1.00 0.23 35.37 
svar -3.10 -3.29 -1.77 -0.08 25.62 -2.50 -3.26 -4.26 -0.29 35.91 -1.87 -3.62 -4.38 -0.52 38.21 -1.29 -3.59 -7.06 -1.37 41.90 -0.84 -4.07 -2.86 -0.86 35.64 -0.69 -4.38 -0.85 -0.34 32.78 

de -2.90 -4.88 -17.41 -1.20 26.69 -2.47 -6.48 -12.07 -1.29 36.88 -1.90 -6.14 -8.36 -1.31 38.99 -1.46 -6.59 -4.46 -0.80 41.86 -0.89 -6.00 -2.95 -0.67 35.92 -0.70 -5.94 -1.31 -0.38 32.90 
lty -3.34 -5.98 25.13 1.71 33.55 -2.78 -5.79 15.47 2.44 41.98 -2.17 -5.30 6.21 1.44 43.12 -1.66 -5.42 0.67 0.21 46.52 -1.01 -4.69 -2.72 -1.19 38.66 -0.78 -4.52 -2.04 -1.03 35.91 

tms -3.50 -5.78 13.23 0.87 31.29 -2.88 -5.50 8.62 0.79 40.24 -2.24 -5.15 9.00 1.33 43.00 -1.71 -5.28 6.03 1.37 46.83 -1.03 -4.66 4.14 1.64 38.36 -0.79 -4.53 3.64 1.76 35.76 
tbl -3.30 -5.70 16.47 1.09 31.68 -2.76 -5.46 9.92 1.77 40.42 -2.16 -5.09 1.45 0.40 41.99 -1.67 -5.31 -2.16 -0.82 46.08 -1.02 -4.69 -4.34 -2.19 38.47 -0.78 -4.52 -3.50 -2.06 35.70 

dfr -3.56 -6.61 33.66 2.34 35.33 -2.91 -7.31 23.07 2.51 43.52 -2.24 -5.61 15.58 2.28 45.10 -1.70 -5.61 7.93 1.78 47.79 -1.02 -4.75 4.30 1.27 38.92 -0.78 -4.53 2.59 0.99 35.74 
dp -3.13 -5.53 -6.97 -0.50 25.84 -2.63 -7.26 -4.57 -0.52 36.04 -2.01 -5.99 -1.89 -0.29 38.16 -1.52 -5.87 -1.59 -0.30 41.46 -0.93 -5.32 -1.46 -0.36 35.59 -0.72 -5.18 -0.75 -0.24 32.82 

dy -3.16 -5.56 1.24 0.09 25.63 -2.65 -6.73 1.09 0.15 35.87 -2.04 -5.86 4.91 1.04 38.51 -1.55 -5.65 5.52 1.97 42.35 -0.95 -5.15 4.42 2.39 36.86 -0.74 -5.05 3.84 2.45 34.43 
ltr -3.42 -5.63 -3.45 -0.24 31.19 -2.81 -5.58 -4.95 -0.58 39.99 -2.18 -5.04 -0.59 -0.09 42.11 -1.67 -5.16 1.43 0.30 46.39 -1.01 -4.44 1.68 0.47 38.10 -0.77 -4.28 2.02 0.79 35.52 

ep -3.13 -5.43 3.44 0.26 25.67 -2.63 -6.44 2.67 0.36 35.92 -2.00 -5.51 3.28 0.69 38.28 -1.52 -5.44 1.10 0.32 41.42 -0.94 -4.96 0.27 0.11 35.45 -0.72 -4.87 0.00 0.00 32.75 
bm -3.56 -4.22 21.45 1.34 32.66 -2.92 -5.88 14.77 1.59 41.44 -2.23 -5.30 7.79 1.28 42.83 -1.68 -5.34 2.32 0.57 46.13 -0.99 -4.54 -0.93 -0.31 37.47 -0.76 -4.34 -0.21 -0.09 34.61 

ik -2.61 -2.88 -13.25 -0.95 15.08 -2.09 -3.09 -8.30 -0.80 16.22 -1.52 -3.53 -12.87 -2.02 21.79 -1.17 -4.11 -10.62 -2.50 28.09 -0.74 -3.93 -9.49 -3.39 31.43 -0.55 -3.47 -8.28 -3.52 29.35 
ntis -3.43 -5.63 1.57 0.10 31.15 -2.82 -5.93 -0.18 -0.01 39.81 -2.16 -5.62 -5.50 -0.42 42.48 -1.66 -5.74 -5.46 -0.71 47.03 -0.99 -4.95 -4.88 -0.90 39.20 -0.75 -4.99 -5.55 -1.17 37.76 

eqis -3.39 -4.14 -12.28 -0.49 32.16 -2.80 -6.51 -8.41 -0.55 40.78 -2.15 -5.74 -9.23 -0.96 43.51 -1.64 -5.63 -7.31 -1.39 47.93 -0.98 -4.67 -5.84 -2.23 40.25 -0.75 -4.55 -5.09 -2.25 37.87 
tail -2.56 -2.46 4.60 0.28 11.63 -2.04 -2.46 -0.05 0.00 13.32 -1.44 -2.64 3.96 0.46 13.26 -1.11 c 5.02 0.89 17.76 -0.69 -2.89 4.44 1.17 16.57 -0.51 -2.56 4.90 1.54 15.18 

Table 8 continued 

Quantile 30 40 50 60 70 75 

 q beta q tstat beta tstat R2 q beta q tstat beta tstat R2 q beta q tstat beta tstat R2 q beta q tstat beta tstat R2 q beta q tstat beta tstat R2 q beta q tstat beta tstat R2 

dfy -0.42 -2.84 7.00 1.57 36.34 -0.24 -3.45 3.12 1.24 28.61 -0.04 -0.76 0.51 0.30 2.01 0.17 2.03 -1.93 -1.53 30.24 0.35 3.20 -5.58 -2.01 53.19 0.50 3.92 -8.80 -2.41 61.29 

infl -0.60 -5.47 -0.12 -0.03 32.90 -0.33 -5.75 -0.38 -0.18 26.87 -0.07 -1.45 -0.27 -0.17 2.46 0.19 2.80 -1.49 -1.06 24.53 0.45 4.65 -2.35 -1.09 43.90 0.68 5.03 -3.16 -1.15 51.65 
svar -0.51 -3.89 -1.38 -0.64 29.50 -0.30 -3.49 0.02 0.01 22.50 -0.06 -0.71 0.41 0.26 1.00 0.18 2.55 1.17 0.59 24.45 0.42 4.23 1.63 0.64 43.15 0.59 4.99 3.19 1.00 50.66 

de -0.55 -5.81 -0.40 -0.14 29.42 -0.30 -5.94 -0.19 -0.11 22.52 -0.05 -1.15 0.51 0.47 1.14 0.20 3.10 1.53 1.56 25.63 0.44 5.00 2.38 1.49 44.31 0.65 5.38 3.35 1.57 51.62 
lty -0.61 -4.40 -2.67 -1.69 33.84 -0.33 -5.41 -2.08 -1.34 28.32 -0.06 -1.39 -1.05 -0.96 2.87 0.22 3.09 -1.00 -1.08 29.43 0.50 4.69 -0.64 -0.52 48.68 0.74 4.88 -0.02 -0.01 55.20 

tms -0.61 -4.41 2.71 1.55 32.97 -0.33 -4.55 1.48 1.29 26.49 -0.05 -0.94 -0.02 -0.02 1.52 0.24 3.30 -1.51 -1.25 31.37 0.53 4.78 -2.11 -1.29 50.38 0.77 4.98 -3.19 -1.73 57.03 
tbl -0.61 -4.43 -3.63 -2.59 33.76 -0.33 -5.38 -2.54 -1.60 28.11 -0.06 -1.30 -0.93 -0.84 2.28 0.23 3.14 -0.20 -0.19 29.59 0.51 4.69 0.39 0.28 49.21 0.75 4.91 1.44 0.86 55.88 

dfr -0.61 -4.42 1.38 0.67 33.15 -0.32 -4.49 0.10 0.07 26.93 -0.05 -1.15 -1.44 -1.29 3.77 0.24 3.98 -2.87 -2.80 36.74 0.53 5.21 -3.46 -2.55 52.68 0.77 5.42 -4.61 -2.38 58.70 
dp -0.55 -4.86 -0.88 -0.33 29.53 -0.30 -4.87 -0.38 -0.24 22.57 -0.04 -1.11 0.59 0.62 1.28 0.22 3.43 1.40 1.70 25.73 0.47 5.17 1.97 1.42 44.12 0.69 5.40 2.77 1.46 51.42 

dy -0.57 -4.68 2.96 2.17 30.90 -0.31 -4.69 1.67 1.71 23.76 -0.05 -1.19 1.50 1.61 3.12 0.22 3.38 0.86 1.16 24.71 0.48 5.05 0.14 0.14 42.86 0.70 5.23 -0.02 -0.02 50.05 
ltr -0.60 -4.20 1.77 0.91 33.30 -0.32 -4.37 1.80 1.68 28.11 -0.06 -1.38 2.11 1.92 5.95 0.22 3.16 1.98 2.20 33.30 0.51 4.51 1.78 1.17 50.37 0.74 4.67 1.95 0.99 56.28 

ep -0.56 -4.62 -0.72 -0.39 29.49 -0.30 -4.62 -0.30 -0.27 22.55 -0.04 -0.97 0.34 0.36 1.06 0.23 3.50 0.57 0.73 24.35 0.48 5.06 0.66 0.65 43.01 0.71 5.22 0.94 0.72 50.21 
bm -0.58 -4.13 -1.43 -0.73 32.25 -0.31 -4.13 -1.39 -1.13 26.38 -0.05 -0.87 -0.35 -0.32 1.59 0.23 3.17 0.28 0.24 29.68 0.51 4.75 0.13 0.08 49.12 0.74 4.97 1.34 0.58 55.78 

ik -0.41 -3.11 -7.55 -3.90 29.75 -0.24 -3.10 -5.08 -4.23 31.41 -0.03 -0.47 -2.22 -2.51 8.25 0.14 2.12 0.05 0.06 6.61 0.37 4.40 2.27 1.81 27.38 0.52 5.27 4.09 2.77 37.33 
ntis -0.59 -4.90 -4.97 -1.46 36.06 -0.31 -5.07 -3.15 -1.62 30.55 -0.05 -0.96 -2.16 -0.65 6.14 0.23 3.02 -0.43 -0.28 30.23 0.51 4.45 0.81 0.49 49.70 0.75 4.60 0.85 0.31 55.85 

eqis -0.58 -4.39 -4.56 -2.55 36.18 -0.31 -4.37 -2.92 -2.14 30.83 -0.05 -0.96 -1.11 -0.68 3.14 0.23 3.03 -0.29 -0.21 30.04 0.51 4.43 0.93 0.52 49.79 0.74 4.60 0.82 0.38 55.91 
tail -0.39 -2.31 4.33 1.63 13.68 -0.23 -2.31 3.38 2.11 16.16 -0.03 -0.36 2.61 2.18 9.40 0.13 1.80 1.45 1.23 10.25 0.37 3.64 0.53 0.33 22.99 0.53 4.23 0.32 0.16 28.40 

.  
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Table 8 continued 

Quantile 80 90 95 98 99 

 q beta q tstat beta tstat R2 q beta q tstat beta tstat R2 q beta q tstat beta tstat R2 q beta q tstat beta tstat R2 q beta q tstat beta tstat R2 

dfy 0.64 4.22 -12.51 -2.73 61.94 0.92 3.53 -24.14 -2.74 60.56 1.39 4.20 -27.93 -2.80 56.48 2.04 3.54 -34.07 -2.05 50.60 2.75 3.52 -35.65 -1.76 43.20 
infl 0.90 5.34 -3.32 -0.99 51.84 1.43 4.86 -5.66 -0.99 47.55 1.95 4.85 -7.93 -1.15 46.80 2.71 6.45 -11.97 -0.80 43.75 3.32 6.06 -20.77 -1.08 39.43 

svar 0.67 4.46 6.92 1.71 51.57 0.88 3.50 15.80 2.34 47.91 1.23 3.50 20.90 2.33 47.02 2.16 3.23 17.16 1.76 42.18 2.88 3.40 16.95 0.93 37.40 
de 0.85 5.64 4.23 1.49 51.36 1.31 5.12 7.96 1.47 46.59 1.85 5.12 7.29 1.07 44.90 2.60 6.69 10.35 0.97 42.04 3.32 6.62 9.84 0.66 37.28 

lty 0.97 5.11 0.24 0.12 54.90 1.56 6.50 1.36 0.59 51.11 2.15 6.63 5.54 1.55 50.35 2.96 5.51 3.99 0.77 45.98 3.71 5.32 6.29 0.84 40.47 
tms 1.00 5.12 -2.57 -1.08 55.81 1.59 4.54 -1.71 -0.47 51.44 2.15 6.32 1.12 0.23 50.20 3.03 5.33 -7.23 -0.89 46.34 3.78 5.10 -5.33 -0.51 40.66 

tbl 0.99 5.12 1.39 0.61 55.43 1.59 4.62 2.01 0.54 51.48 2.18 4.75 4.46 0.83 50.49 3.02 5.52 6.89 1.57 46.31 3.79 5.36 8.08 1.35 40.82 
dfr 1.01 5.74 -6.38 -2.49 58.77 1.63 4.97 -9.45 -2.20 54.61 2.23 5.29 -13.58 -2.08 53.78 3.08 4.66 -16.11 -1.66 48.91 3.87 4.57 -19.54 -1.38 43.40 

dp 0.90 5.61 3.24 1.27 50.98 1.40 5.01 4.93 1.06 45.61 1.94 4.98 3.04 0.49 44.25 2.73 5.94 5.43 0.56 41.52 3.47 4.79 -0.64 -0.05 36.88 
dy 0.92 5.43 -1.00 -0.56 49.99 1.44 4.88 -3.51 -1.15 45.17 1.98 4.96 -7.73 -1.62 45.30 2.78 5.63 -8.16 -1.40 41.89 3.53 4.87 -17.58 -1.93 38.59 

ltr 0.98 4.90 1.76 0.67 55.80 1.59 4.42 1.63 0.37 52.12 2.17 4.56 4.22 0.73 51.29 3.01 5.40 0.35 0.04 47.04 3.79 4.16 2.10 0.19 41.88 
ep 0.92 5.35 0.88 0.46 49.97 1.43 4.70 0.36 0.10 44.69 1.95 4.71 -1.30 -0.27 44.10 2.75 5.48 -0.61 -0.10 41.24 3.41 4.51 -7.04 -0.84 37.15 

bm 0.97 5.24 2.24 0.75 55.68 1.55 6.79 4.22 0.98 51.86 2.14 6.93 2.79 0.45 50.28 2.97 5.51 2.03 0.25 46.02 3.78 5.33 -5.08 -0.52 40.74 
ik 0.71 5.09 5.67 2.73 35.93 1.32 5.59 8.68 2.48 38.45 1.86 4.94 11.73 2.10 32.49 2.27 4.52 19.16 2.56 31.25 3.05 4.01 23.61 2.09 25.57 

ntis 0.99 4.87 -0.68 -0.17 55.59 1.60 4.41 -2.45 -0.31 52.22 2.19 4.55 -5.56 -0.51 51.48 3.01 5.63 -0.27 -0.02 47.04 3.77 4.20 5.56 0.19 41.98 
eqis 0.99 4.89 0.57 0.20 55.85 1.59 4.44 1.13 0.23 52.48 2.18 4.58 0.81 0.11 51.37 2.99 5.71 7.87 0.85 47.85 3.76 4.13 10.51 0.70 42.60 

tail 0.71 3.99 -0.14 -0.05 25.86 1.29 4.39 -2.09 -0.45 29.55 1.71 3.69 -0.31 -0.04 22.96 2.05 3.24 -5.00 -0.50 18.61 2.89 3.07 -2.77 -0.19 17.02 

Note: “q beta” (“q tstat”) refer to estimated parameter values (t-statistics) for the lagged quantile .75 return as predictor, “beta” (“tstat”) refer to those for the variable listed in column 1. For 
those latter variables only, shaded areas indicate significance at 10% level, bold values additionally at 5% level. Values under “beta” were multiplied by a factor of 10,000. 
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Overall, these results show the predictive power of lagged quantile .75 return which is 

consistent across the predicted return quantile as well as sample period, and is not captured by other 

variables. 

5. Economic value of forecasts 

 Given the finding of the predictive power of quantile .75 returns, we investigate the economic 

implications of this finding.11 Even if this variable does not predict the center of the distribution 

better than the competitors, and investors are interested in the center (e.g., the mean future return), 

there is evidence of superior predictive power for other quantiles of future return distribution. We 

propose to use these out-of-center superior predictions to estimate, rather than directly predict, the 

future distribution’s center (as well as the volatility). To assess the economic values of those 

estimated predictions, we follow the framework employed in Marquering and Verbeek (2004), 

Ferreira and Santa-Clara (2011), and Neely et al. (2014), among others, and consider a risk-averse 

investor who re-allocates his wealth among stocks and bonds every year, based on his predictions of 

the next year’s expected stock market return and volatility. It can be shown (see, Marquering and 

Verbeek, 2004) that for the expected utility function of a form �̂�𝐾𝑡𝑡+1 −
1
2
𝛾𝛾𝜎𝜎�𝑡𝑡+12 , the optimal weight for 

the fraction of wealth allocated to stocks at time t (for the holding period between t and t+1) is: 

𝜔𝜔𝑡𝑡 = �1
𝛾𝛾
� ��̂�𝑟𝑡𝑡+1−𝑟𝑟𝑟𝑟

�𝑡𝑡+1
𝜎𝜎�𝑡𝑡+12 �, 

where �̂�𝐾𝑡𝑡+1 is the predicted stock market return between t and t+1, 𝐾𝐾𝑓𝑓�𝑡𝑡+1 is the predicted risk-free 

rate between t and t+1, 𝜎𝜎�𝑡𝑡+12  is the predicted stock return volatility between t and t+1, and 𝛾𝛾 is the 

investor’s risk aversion coefficient. The remaining fraction of investor’s wealth (1-𝜔𝜔𝑡𝑡) is allocated to 

risk-free bonds. The resulting portfolio return at t+1 is then given by: 

                                                           

11 It is by no means obvious that a model with higher statistical forecasting performance will also generate forecasts with 
higher economic value, as Cenesizoglu and Timmermann (2012) demonstrate. 
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𝑅𝑅𝑃𝑃,𝑡𝑡+1 = 𝜔𝜔𝑡𝑡𝐾𝐾𝑡𝑡+1 + (1 − 𝜔𝜔𝑡𝑡)𝐾𝐾𝑓𝑓𝑡𝑡+1, 

where 𝐾𝐾𝑡𝑡+1 and 𝐾𝐾𝑓𝑓𝑡𝑡+1 are the realised values of the stock market and risk-free return, respectively. 

The certainty equivalent return (CER) for this investor can then be computed as:  

𝐸𝐸𝐸𝐸𝑅𝑅𝑃𝑃 = �̂�𝜇𝑃𝑃 −
1
2
𝛾𝛾𝜎𝜎�𝑃𝑃2, 

where �̂�𝜇𝑃𝑃 and 𝜎𝜎�𝑃𝑃2 are the estimated mean and variance of the investor’s portfolio returns in the 

evaluation period. The CER can be interpreted as a risk-free rate of return the investor would be 

willing to accept in exchange for his risky portfolio, or as a fee the investor would be willing to pay 

for access to the model generating forecasts �̂�𝐾𝑡𝑡+1 (Ferreira and Santa-Clara, 2011, Neely et al., 2014).  

In our paper, the one-year ahead predicted mean stock return �̂�𝐾𝑡𝑡+1 and/or the accompanying 

predicted future volatility 𝜎𝜎�𝑡𝑡+12  will be generated from the predicted quantile returns (as explained 

below), and the resulting CER values will be compared to those obtained from models using 

predictions based on other variables. Following Ferreira and Santa-Clara (2011), we assume the 

value of risk aversion coefficient 𝛾𝛾 to be two. To obtain more realistic values of weight, 𝜔𝜔𝑡𝑡, we 

follow Campbell and Thompson (2008), Ferreira and Santa-Clara (2011) and Neely et al. (2014) and 

constrain 𝜔𝜔𝑡𝑡 to be between 0 and 1.5, these conditions exclude short selling and more than 50% 

leverage, respectively. Further, unless stated otherwise, the predicted variance equals the (moving) 

average of the last five period’s variances (Campbell and Thompson, 2008, Neely et al., 2014).12 

Lastly, the next period’s risk free rate (𝐾𝐾𝑓𝑓𝑡𝑡+1) is assumed to be known at period t, in line with the 

literature, and we employ data from Welch and Goyal (2008). 

To obtain recursive forecasts of the next period’s mean return, �̂�𝐾𝑡𝑡+1, using quantile .75 returns 

(𝑅𝑅𝑡𝑡(𝜃𝜃 = .75)) in each period t, each of the to-be-predicted quantiles is regressed on a constant and 

the first lag of 𝑅𝑅𝑡𝑡(𝜃𝜃 = .75). The resulting parameters as well as the current (period t) value of 

                                                           

12 Kambouroudis and McMillan (2015) demonstrate that volatility forecasts based on short in-sample periods are most 
accurate. 
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𝑅𝑅𝑡𝑡(𝜃𝜃 = .75)  are used to generate next year’s (t+1) predicted value of returns at each considered 

quantile 𝜃𝜃. This is done recursively; that is, in the sample beginning at a fixed date and running up to 

period t, with t expanding until the end of our data sample, and leaves us with a time series of annual 

predicted quantile returns for a set of quantiles, beginning 20 years after the sample’s start (1963, to 

utilise data on all variables) to allow for the initial estimation window (the value of 20 is suggested 

by Ferreira and Santa-Clara, 2011). These predicted quantile returns (except for the median) are then 

employed to calculate the predicted mean return for each year in the prediction/OOS period.13 In the 

next step, in the spirit of Rapach et al. (2010) and Meligkotsidou et al. (2014), we calculate the 

predicted mean at t+1 as an equally weighted sum of t+1 predicted quantile returns.14 Two 

approaches are adopted here. First, all predicted quantile returns except for the median are averaged 

to obtain a prediction of next year’s mean return, and, second, averages of pairs of symmetrical 

quantiles (𝜃𝜃 =.99 and .01, .98 and .02, etc.) are used for the same purpose.  

For the sake of comparison, we use two alternative predictions for one-year ahead mean 

returns. First, the historical average of mean return, calculated recursively, is used as a prediction of 

the future return. Second, also calculated recursively, the mean index return is regressed on a lag of 

each economic variable, and the resulting coefficients and the current value of the relevant economic 

variable are used to predict the one-year ahead mean stock return. 

To obtain forecasts of the next period’s return volatility, 𝜎𝜎�𝑡𝑡+12 , using the quantile .75 return, 

we follow the approach proposed by Taylor (2005) using the estimated quantile return predictions. 

This approach utilises the feature that the distance between symmetric quantiles, 𝜃𝜃 and 1 − 𝜃𝜃, 

                                                           

13 We do not utilise the predicted median to infer about the same period’s predicted mean as our previous results 
demonstrate that quantile .75 return has no predictive power for the next year’s median. It does have predictive power for 
other quantiles of future return distribution, however. 
14 This is the simplest weighting scheme possible and more advanced techniques could be used, potentially to obtain 
forecasts that are more accurate; however, the literature demonstrated that a simple average often outperforms those more 
advanced approaches (see Meligkotsidou et al., 2014, or Timmermann (2006) and Aiolfi et al. (2011) who provide 
reviews of theoretical arguments and empirical evidence in support of simple forecast aggregation methods). However, 
our aim is to show that even such a naïve scheme can generate superior forecasts.  
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contains information about the variance of the distribution. Specifically, in the first step, our annual 

volatility measure, 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡, calculated as squared standard deviation of daily returns for each calendar 

year, is recursively regressed on squared symmetrical quantile returns: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑅𝑅𝑡𝑡2(𝜃𝜃) + 𝛽𝛽2𝑅𝑅𝑡𝑡2(1 − 𝜃𝜃) + 𝛽𝛽3𝑅𝑅𝑡𝑡2(𝜃𝜃)𝑅𝑅𝑡𝑡2(1 − 𝜃𝜃) + 𝐾𝐾𝑡𝑡. 

The resulting estimated parameter values �̂�𝛽0 − �̂�𝛽3 as well as quantile returns predicted using the 75th 

quantile return, 𝑅𝑅�𝑡𝑡+1(𝜃𝜃) and 𝑅𝑅�𝑡𝑡+1(1 − 𝜃𝜃), are substituted into the above model to obtain predictions 

of return volatility one period ahead. This procedure is repeated recursively, beginning 20 years after 

the sample’s start to allow for the initial estimation window (the value corresponds to that of Ferreira 

and Santa-Clara, 2011), and results in a time series of predicted stock return volatilities which are 

based on predictions generated using 𝑅𝑅𝑡𝑡(𝜃𝜃 = 0.75). This is done for all pairs of symmetrical 

quantiles (𝜃𝜃 =.99 and 0.01, 0.98 and 0.02, etc.) considered in this paper. As noted above, the 

alternative volatility prediction follows the literature and equals the (moving) average of the last five 

period’s variances (Campbell and Thompson (2008), Neely et al. (2014)). 

 First, we evaluate the economic values of quantile return forecasts based on predictive power 

of quantile 0.75 returns by comparing them to those based on (moving) historical mean. Table 9, 

Panel A, presents the differences in annualised CER as well as those for Sharpe ratios (SR). 

Volatility is in both cases predicted using a five-year moving average, i.e., any differences in 

economic value stem from differences in forecasting performance for the mean. It is evident that, 

when either all predicted quantiles or those pairs in the tails are used (𝜃𝜃 =.99 and .01, .98 and .02, 

.95 and .05), the predictions based on quantile .75 returns are superior to those based on historical 

mean, both in terms of the CER and the SR. However, for the remaining quantile pairs (.90-.10 and 

those closer to the distribution’s center) the historical mean performs better. The predictive power of 

quantile .75 based predictions for the mean return versus those based on economic variables is 

further explored and the results presented in Table 9, Panel B. Here the quantile-based predictions 
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perform better when utilising predicted quantile returns from the tails, outperforming each variable, 

except for the tail risk when all predicted quantiles or the pair 𝜃𝜃 ={.95, .05} are used. When mean 

returns are predicted using quantile pairs closer to the center of the distribution, they tend to perform 

worse than those based on macro variables, except for the pair {.75, .05}. Overall, combining 

quantile predictions based on lagged quantile .75 returns to forecast the mean return appears to 

generate economically successful predictions, as compared to the alternative predictors. 

The advantage of being able to predict several points of the return distribution by means of 

return quantiles, as compared to just the mean of the future distribution when using economic 

variables, is that a prediction of volatility is also possible. We first compare the predictive power of 

quantile returns for future volatility against that of moving five-year average of observed volatility. 

Predicted quantile returns are utilised to obtain predictions of future volatility using the approach by 

Taylor (2005), as explained above. When models with historical mean as predictor for future mean 

returns are considered, those utilising quantile pairs perform consistently better than those using five-

year volatility average. For all quantile pairs considered, the CER values are 0.05693 for quantile 

based and 0.056853 for historical volatility-based portfolios, and the values of SP are 0.29635 and 

0.29592, respectively (not tabulated).15 

Lastly, we compare models using quantile predictions for both the mean and the volatility 

against models using the moving average of volatility and lagged value of each economic variable to 

forecast the volatility and mean, respectively. While the results are too numerous to report (CER and 

SP values are calculated for combinations of each way to predict the mean using quantile returns, for 

each way to predict the volatility using quantile returns, and for each economic variable), some 

                                                           

15 All pairs generate identical CER and SP values as their constrained weights 𝜔𝜔𝑡𝑡 are identical. When we lift the 
restriction on the weights to be within 0 and 1.5, different quantile pairs generate different values of weights and CER 
and SP. 
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Table 9: Economic value of predictive power of quantile .75 based returns for the mean  

Variable Measure
average all .99 and .01 .98 and .02 .95 and .05 .90 and .10 .80 and .20 .75 and .25 .70 and .30 .60 and .40

CER 0.002 0.007 0.007 0.002 -0.028 -0.035 -0.005 -0.036 -0.028
SR 0.018 0.042 0.045 0.018 -0.155 -0.209 -0.029 -0.221 -0.173

CER 0.016 0.021 0.021 0.016 -0.014 -0.021 0.009 -0.023 -0.014
SR 0.102 0.126 0.129 0.102 -0.071 -0.125 0.055 -0.138 -0.090

CER 0.011 0.016 0.017 0.011 -0.018 -0.026 0.004 -0.027 -0.019
SR 0.071 0.095 0.098 0.071 -0.102 -0.156 0.024 -0.168 -0.120

CER 0.022 0.027 0.027 0.022 -0.008 -0.015 0.015 -0.017 -0.008
SR 0.130 0.155 0.157 0.130 -0.042 -0.097 0.083 -0.109 -0.061

CER 0.013 0.018 0.018 0.013 -0.017 -0.024 0.006 -0.026 -0.017
SR 0.078 0.102 0.104 0.078 -0.095 -0.149 0.031 -0.162 -0.114

CER 0.038 0.043 0.044 0.038 0.009 0.001 0.031 0.000 0.008
SR 0.242 0.266 0.268 0.242 0.069 0.014 0.195 0.002 0.050

CER 0.010 0.015 0.015 0.010 -0.020 -0.027 0.003 -0.029 -0.020
SR 0.058 0.082 0.085 0.058 -0.115 -0.169 0.011 -0.181 -0.133

CER 0.013 0.018 0.018 0.013 -0.017 -0.024 0.006 -0.026 -0.017
SR 0.081 0.106 0.108 0.081 -0.091 -0.146 0.034 -0.158 -0.110

CER 0.009 0.014 0.014 0.009 -0.021 -0.028 0.002 -0.030 -0.021
SR 0.066 0.091 0.093 0.066 -0.106 -0.161 0.019 -0.173 -0.125

CER 0.045 0.049 0.050 0.045 0.015 0.007 0.038 0.006 0.014
SR 0.285 0.309 0.312 0.285 0.112 0.058 0.238 0.046 0.094

CER 0.042 0.047 0.047 0.042 0.012 0.005 0.035 0.003 0.012
SR 0.265 0.289 0.292 0.265 0.092 0.038 0.218 0.025 0.074

CER 0.021 0.026 0.027 0.021 -0.009 -0.016 0.014 -0.017 -0.009
SR 0.124 0.149 0.151 0.124 -0.048 -0.103 0.078 -0.115 -0.067

CER 0.056 0.060 0.061 0.056 0.026 0.019 0.049 0.017 0.025
SR 0.377 0.401 0.404 0.377 0.204 0.150 0.330 0.137 0.185

CER 0.027 0.032 0.033 0.027 -0.002 -0.010 0.020 -0.011 -0.003
SR 0.165 0.189 0.192 0.165 -0.008 -0.062 0.118 -0.075 -0.027

CER 0.013 0.017 0.018 0.013 -0.017 -0.025 0.006 -0.026 -0.018
SR 0.072 0.097 0.099 0.072 -0.100 -0.155 0.025 -0.167 -0.119

CER 0.007 0.012 0.013 0.007 -0.022 -0.030 0.000 -0.031 -0.023
SR 0.041 0.065 0.068 0.041 -0.132 -0.186 -0.006 -0.199 -0.151

CER 0.006 0.011 0.012 0.006 -0.023 -0.031 -0.001 -0.032 -0.024
SR 0.034 0.059 0.061 0.034 -0.138 -0.193 -0.013 -0.205 -0.157

CER -0.003 0.002 0.003 -0.003 -0.033 -0.040 -0.009 -0.041 -0.033
SR -0.003 0.022 0.025 -0.003 -0.189 -0.250 -0.056 -0.265 -0.213

Predicted returns quantiles

Panel B: Evaluated against the macro variables' predictions and 5 years moving average volatility

Panel A: Evaluated against the historical mean and 5 years moving average volatility 
Historical 
average
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general patterns can be reported. First, portfolios formed using quantile-based 

predictions for both the mean and the volatility have higher CER and SR than those using 

historical volatility and economic variables when the former utilise quantiles .98 and .02 to 

predict the mean (regardless of which quantiles are used to predict future volatility).  

When quantiles .99 and .01 are used to predict the mean (and any quantile pair for 

volatility prediction), the resulting portfolio has the highest SR and second-highest CER 

value (beaten only by the tail risk in the latter case). When all quantiles or the pair 𝜃𝜃 ={.95, 

.5} are used to predict the mean, the resulting portfolio still outperforms other approaches 

except for the one using tail risk as a mean return predictor. However, as before, using 

predicted returns from those quantiles closer to the median does not result in superior 

performance, except when the pair {.75, .05} is used to forecast the mean.  Hence, these 

results obtained using predicted tail quantiles to forecast the mean and predicted quantile 

returns to forecast volatility are in line with our previous findings when the volatility was 

predicted using its historical values.  

However, the best models using quantile predictions for both future mean and 

volatility have, on average, lower CER and SP values than those using quantile predictions 

for the mean only. Apparently, better volatility forecasts can result in allocation of returns 

away from the stock market when volatility is predicted to be high, at a cost of foregoing 

higher returns. As both the CER and the SP impose a specific relationship between returns 

and risk, the realised gains from lower volatility might not be compensating for lower return, 

hence leading to lower CER and SP values when volatility forecasts are more accurate. 

Indeed, when we lower the risk aversion coefficient 𝛾𝛾 (from 2 to 0.5 in our example) to 

decrease the “penalty” for higher volatility, the CER values for portfolios relying on quantile 

estimates for both mean and volatility predictions become higher than those relying on 

quantile estimates for mean alone. Therefore, it appears that predicting mean using quantiles 
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is superior, and additionally predicting volatility can also be superior if an investor is not too 

risk averse. For investors with sufficiently high-risk aversion, more accurate predictions of 

future volatility cause stronger allocation of wealth towards safer assets, resulting in lower 

risk but also lower return and lower economic value of those volatility forecasts.   

Lastly, it is entirely possible that further economic value of the predictive ability of 

quantile .75 returns can be extracted if those are used to predict other features of the future 

return distribution, such as higher moments of the behaviour of tails for the VaR analysis. 

6. Why are quantile .75 returns good at predicting future stock returns? 

In this section, we empirically analyse potential reasons for quantile .75 returns to 

have superior forecasting performance for the next year’s stock return distribution, as 

compared to other quantile returns. Specifically, we investigate if quantile .75 returns possess 

superior predictive power for future consumption and investment: if they do, and given that 

one would expect the stock market to be affected by (expected) changes in future realisations 

of those two variables, the rationale for the predictive power of quantile returns for next 

year’s stock returns would be established. Our reasoning leading to selection of these two 

variables is as follows. Firstly, Vassalou and Liew (2000) demonstrate that FF factors predict 

future GDP growth, especially the news about it (Vassalou, 2003). Hence, variables which 

contain information about aspects of the future business cycle can explain stock returns, as 

the latter depend on future states of the economy, and we conjecture that this should be the 

case for any variable able to predict future economic growth. Henceforth, the ability of 

quantile .75 returns to predict GDP better than returns any other quantile do would help to 

explain why those quantile .75 returns also have the best predictive power for future returns.  

In addition, Li et al. (2006) observe that investment component of the GDP has a 

stronger explanatory power for stock returns than the aggregated GDP figures do. Hence, we 
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conjecture that a variable able to predict future investment should be able to predict future 

stock returns, too. In addition, it is well established analytically that economic agents find 

intertemporal smoothing of their consumption to be utility-maximising, and from the 

consumption-CAPM we know that they are willing to pay a premium for assets which allow 

them to do so. Hence, movements in stock prices will be related to movements in future 

changes to consumption opportunities, especially the unexpected ones, and we conjecture that 

a variable able to predict future shocks to consumption opportunities should also possess 

predictive ability for stock returns. In both cases, i.e., predicting shocks to future investment 

and consumption, we analyse whether the predictive ability of quantile .75 returns is superior 

to that of any other quantile returns, as this would explain why the former also perform best 

in predicting next year’s stock returns. 

We use data on gross private domestic investment and personal consumption 

expenditures, components of the GDP, from FRED. For each estimated annual return quantile 

𝑅𝑅𝑡𝑡(𝜃𝜃 = 𝑘𝑘), where k∈{.01, .02, .05, .10, .20, .25, .30, .40, .50, .60, .70, .75, .80, .90, .95, .98, 

.99}, we estimate its ability to explain shocks to the future growth of investment and 

consumption, calculated over a period of three years, three years ahead, i.e., years t+4 to 

t+6.16 This is done by estimating the following model within the quantile regression 

framework:  

𝑆𝑆𝑆𝑆𝑂𝑂𝐸𝐸𝐾𝐾_𝑍𝑍𝑡𝑡+6(𝜃𝜃 = 𝑎𝑎) = 𝛽𝛽0 +  𝛽𝛽1𝑅𝑅𝑡𝑡(𝜃𝜃 = 𝑘𝑘) + 𝜀𝜀𝑡𝑡 . 

                                                           

16 It is not known theoretically what the relevant future horizon is which is the most relevant determinant for the 
current movements of the stock market. On the one hand, if we treat current prices as sums of future discounted 
cashflows, all future periods are important, but those cash flows laying further in the future are being discounted 
most. Hence, the nearest future may be argued to be more relevant. On the other hand, short term movements in 
economic variables may suffer from more noise than long-term trends, which would speak in favor of using 
longer term (expected) economic conditions as relevant variables driving stock market movements. This issue is 
addressed empirically here, by varying the length of time those future growth rates in Z are estimated, between 1 
and 5 years, both starting in same year as the to-be-predicted returns are estimated and offset by one additional 
year.  The results for 3-years growth rates measured over years t+4 to t+6 generate the most pronounced results, 
and are reported in this paper. 
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𝑆𝑆𝑆𝑆𝑂𝑂𝐸𝐸𝐾𝐾_𝑍𝑍𝑡𝑡+6 is a measure of shocks to the future growth of Z between t+4 and t+6, with Z 

being investment or consumption, and shocks are estimated as the observed minus the 10-

periods moving average values of Z. By allowing for quantiles j of the conditional 

distribution of 𝑆𝑆𝑆𝑆𝑂𝑂𝐸𝐸𝐾𝐾_𝑍𝑍𝑡𝑡+6 to range between 0 and 100, for each (potentially predictive) 

quantile k of the past stock returns we analyse its power to predict components of future 

distribution, and not only the expected value, of the dependent variable, 𝑆𝑆𝑆𝑆𝑂𝑂𝐸𝐸𝐾𝐾_𝑍𝑍𝑡𝑡. As a 

measure of the predictive ability of returns at quantile k for future economic shocks at 

quantile j, we use the log-likelihood value of the estimated model. If stock returns at a 

particular quantile k* possess superior predictive ability for future shocks to the economy 

(𝑆𝑆𝑆𝑆𝑂𝑂𝐸𝐸𝐾𝐾_𝑍𝑍𝑡𝑡+6(𝜃𝜃 = 𝑎𝑎)), then models using those returns (𝑅𝑅𝑡𝑡(𝜃𝜃 = 𝑘𝑘∗)) as a RHS variable will 

have higher values of the log-likelihood function than models using returns measured at other 

quantiles k ≠ k*. A superior predictor would ideally generate higher log-likelihood values 

across a wide range of quantiles j of the dependent variable. 

 The results from models using investment to calculate the LHS variable Z are shown 

in Figure 4. Each line represents log-likelihood values for one particular explanatory variable 

(𝑅𝑅𝑡𝑡(𝜃𝜃 = 𝑘𝑘), with k fixed) across quantiles j of the dependent variable 𝑆𝑆𝑆𝑆𝑂𝑂𝐸𝐸𝐾𝐾_𝑍𝑍𝑡𝑡+6. It can be 

seen that quantile .75 returns (the black thick line) do a rather good job in predicting future 

shocks to investment growth, across a wide range of quantiles. Specifically, they perform best 

in predicting the area around the center of the distribution (only outcompeted by closely 

related 70th quantile returns in some cases, denoted by a thick blue line), but also provide 

superior forecasts for areas around quantiles j=20, 30, 75, and 90. Although beaten slightly 

by the closely related 70th quantile returns when all predictions (for j=0 to 100) are 

considered jointly (e.g., by summing up all values of the log-likelihood function across 

quantiles j, or calculating the number of cases in which each predictive return quantile k ranks 

first), the evidence is rather strong that quantile .75 returns can generate superior predictions 
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for future shocks to investment growth over a wide range of quantiles of the latter variable’s 

distribution. If the stock market is concerned about the same points of the distribution of 

future investment shocks, this would explain why the quantile .75 returns and future stock 

market returns are related, i.e., why the former predicts the latter, as demonstrated in previous 

sections.  

 The results from models using consumption to calculate the LHS variable Z are 

shown in Figure 5. The quantile .75 return generates best predictions in almost all quantiles j 

between 30 and 60 of future consumption shocks, and it also performs very well in those 

quantiles above j=80 and 90. In addition, among all explanatory return quantiles k considered 

here, returns at k=.75 quantile have the highest average log-likelihood value when considered 

across all to-be-forecasted quantiles j, and the highest number of cases (quantiles j) where it 

provides the best model fit/prediction. Hence, the results support the notion that quantile .75 

returns possess superior explanatory power for future shocks to private consumption.  

To sum up, our findings imply that quantile 75 returns are a better predictor of next 

year’s stock returns than those returns measured at any other quantile because quantile 75 

returns are best, among returns from other quantiles, in predicting future shocks to investment 

and consumption, and these shocks appear to be the relevant determinants of next year stock 

returns. 

We further analyse how the ability of quantile 75 returns to predict future shocks to 

investment and consumption compares to that of other economic variables. The discussion of 

the results in tables 7-10 concludes that, even when controlling for the impact of one 

economic variable at a time, quantile .75 returns are still a significant predictor for next 

year’s stock returns across a wide range of its quantiles, with exception of the center of the 

distribution. We are interested to see if this in-sample predictive ability exists because of the  
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Figure 4: Log-likelihood values of model (3) for future investment shocks. 
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Figure5: Log-likelihood values of model (3) for future consumption shocks 
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ability to predict future consumption and investment shocks. To that end, we regress the 

future shocks, defined as above, on a constant, quantile .75 returns, and an economic variable, 

the latter one at a time. The results (not reported to conserve space) show that quantile 75 

returns are a significant in-sample predictor for future economic shocks. For future 

consumption, the relevant coefficient is significant on average for 62% of all quantiles of the 

consumption shock distribution, and only when the volatility is included as another 

explanatory variable do the 75 quantile returns lose their predictive power for all quantiles of 

future shocks. For future investment shocks, a significant predictive power is observed in 

20% of all cases, and quantile 75 returns have no predictive power (for any of the quantiles) 

only when the dividend payout ratio or the yield on long term government bond are included 

as another repressor. Overall, quantile .75 returns remain a significant in-sample predictor of 

either future investment or consumption shocks in over 67% of all quantiles of the shocks, on 

average, and significantly predict at least 39% quantiles of future shocks to investment or 

consumption, regardless of which economic variable is also used in the predictive regression. 

Hence, we conjecture that the ability of quantile returns to predict future mean stock returns, 

beyond what would be predicted by economic variables, stems to a large extent from its 

incremental ability to predict future investment or consumption shocks, which again goes 

beyond what other variables are able to predict. 

7. Summary and conclusions 

In this paper, we empirically demonstrate that DJIA returns measured at the 75th 

quantile possess predictive power for a wide spectrum of future quantile returns, with the 

exception of the median. This predictive power appears to prevail after controlling for the 

predictive power of other features of the lagged return distribution (i.e., its first four 

moments), is relatively stable over time, and prevails when one controls for other economic 
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predictors (as summarised in Welch and Goyal, 2008), with Kelly and Jiang’s (2014) tail risk 

being maybe the most difficult alternative to outcompete. Predictions of future mean return 

based on predicted quantiles possess positive economic value, as are those utilising quantile 

predictions to forecast volatility, especially for investors with low aversion to risk. Lastly, our 

results strongly indicate that this superior predictive power stems from quantile .75 returns’ 

ability to predict future shocks to consumption and investment. 

One potential issue with the result presented here is that it is not derived from any 

economic theory, hence it is unclear why the quantile .75 returns possess predictive power for 

the future return distribution (or that of future consumption and investment). Consequently, it 

could be argued that the uncovered causality is a statistical artefact. However, its robustness 

to empirical settings, as presented here, seems to suggest otherwise. More broadly, we would 

argue that many phenomena hotly debated in the academic literature, such as calendar 

anomalies, the causal impact of trading volume on stock return, or indeed one of the most 

prominent examples, the Fama and French (1993) three-factor model, started their life as 

empirical observations, by practitioners or academics, with little or no theoretical 

underpinnings. Attempts to find economic explanations for those phenomena only followed 

later. In this context, we observe that quantile .75 returns show similar predictive pattern to 

that of default yield spread and volatility in simple regressions, and that our predictive 

variable appears to be related to Kelly and Jiang’s (2014) tail risk, which suggests that this 

variable might be capturing negative news about the state of the economy. However, our 

variable seems to be predicting more than the occurrence of negative shocks in the tail, as its 

increases also lead to subsequent increases in return quantiles in the right part of the 

distribution. In addition, it also predicts changes in both shoulders of that distribution (areas 

between the tails and the center), something which cannot be attributed to the extreme (and 

only negative) shocks. Therefore, the link between the quantile .75 DJIA returns and other 
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variables, and economic reasons for its predictive ability could constitute an interesting 

avenue for further research. In addition, an investigation of whether our results also apply to 

other indices, possibly in other countries, would be another interesting avenue, assuming the 

availability of long-term daily data on other indices.  
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