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Abstract

In applications of data envelopment analysis (DEA) data about some inputs and outputs
is often available only in the form of ratios such as averages and percentages. In this
paper we provide a positive answer to the long-standing debate as to whether such data
could be used in DEA. The problem arises from the fact that ratio measures generally do
not satisfy the standard production assumptions, e.g., that the technology is a convex set.
Our approach is based on the formulation of new production assumptions that explicitly
account for ratio measures. This leads to the estimation of production technologies under
variable and constant returns-to-scale assumptions in which both volume and ratio measures
are native types of data. The resulting DEA models allow the use of ratio measures “as
is”, without any transformation or use of the underlying volume measures. This provides
theoretical foundations for the use of DEA in applications where important data is reported
in the form of ratios.

Keywords: data envelopment analysis, technology, production assumptions, efficiency,
ratio measures

1. Introduction

Analysis of efficiency of organizations is an important area of management science which
can be approached by different methodologies. Data envelopment analysis (DEA) is a well-
established non-parametric methodology used for the assessment of efficiency of organiza-
tions, referred to as decision making units (DMUs) (Cooper et al., 2007; Thanassoulis et
al., 2008). From the economic perspective, DEA makes use of a multidimensional model of
production technology in which each dimension represents an input or output. The tech-
nology extrapolates the observed set of DMUs based on stated production assumptions.
The efficiency of DMUs is measured relative to the efficient (non-dominated) frontier of the
production technology.

One of the long-standing methodological questions in DEA is whether ratio measures
are acceptable as input and output data. Such measures can be found in many applications
of DEA and include various percentages, proportions, rates and averages. These are usually
obtained as the ratio of two underlying volume measures, although more complex ratio
measures are not uncommon.

Ratio measures are often used as contextual variables, for example, to represent the qual-
ity of the socio-economic environment in which DMUs operate, such as income per capita,
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unemployment rate, average age and proportion of people on benefits in a community. Con-
textual ratio measures may also represent inputs that are non-discretionary for management
at the lower level of organizations, such as marketing costs per capita.

Ratio measures are also often used to represent attributes of the inputs or outputs used
in the analysis. In the case of outputs, these may reflect the quality of products and services,
such as success rates in health care, pass rates in academic exams and average time for
graduates to find a job. Ratio measures may also represent the performance of a production
or service process, for example, the proportion of services delivered within a target lead
time. In the case of inputs, ratio measures often characterize their quality, for example, the
proportion of students with good academic record on entry to schools.

In some applications ratio measures represent inputs or outputs directly, and not as a
complement to volume measures. For example, performance analysis of the financial sector
often focuses on such ratios as the equity capital to asset ratio, net charge-offs to loans and
return on assets.

The suitability of ratio data in DEA models has been subject of academic debate for
some time, although much of this has not been properly documented. The earlier discussion
focused on the acknowledgement of the problems that ratio data presented to DEA and
attempted to decide which of the standard DEA models were more suitable for such data—
see, e.g., Golany and Thore (1997), Dyson et al. (2001), Hollingsworth and Smith (2003),
and Cooper et al. (2007, page 19).

1.1. Motivational example

We use the following simple example to illustrate the problems with ratio measures in
DEA applications. Examples similar to this could be found in most sectors, from education
to banking, but we choose hospital management for two reasons. First, this sector gives
us a variety of ratios of different types in a single setting. Second, most readers should be
intuitively familiar with its context and terminology.

Example 1. Consider a decision maker (DM) who wishes to assess the performance of a
group of publicly funded hospitals. Suppose the purpose of this assessment is to identify the
treatment costs of the efficient hospitals and use these as benchmarks in funding decisions.

To keep our discussion focused, suppose the DM wishes to use a DEA model with a
single aggregate volume input (costs), and two aggregate volume outputs (inpatients and
outpatients).1 In line with the literature on health care applications of DEA, the DM may
use either the variable or constant returns-to-scale (VRS or CRS) model. The choice depends
on whether the DM believes that scale economies cannot be ignored (and use VRS) or are
negligible (and assume CRS).

Suppose that the DM wishes to take into account the following additional inputs and
outputs represented by ratio measures:

R1: success rate for certain treatments;
R2: proportion of patients with a certain condition treated within the target time;
R3: acute readmission rates from primary admissions in selected diagnostic categories;
R4: mortality rates after specific surgical procedures;
R5: rate of cancer radiotherapy treatments per device (number of treatments per hour,

per device);
R6: the average distance from the hospital to the patients;

1We also assume that the hospitals are sufficiently homogeneous, and that all performance measures are
adjusted for age, gender, casemix and other relevant factors.
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Table 1: Hospitals in Example 2.

Hospital Patients Successful treatments Success rate

A 1000 200 20
B 500 400 80

C = 0.5A+ 0.5B 750 300 50 (incorrect), 40 (correct)

R7: proportion of the population in the catchment area with specific adverse health
conditions such as diabetes or obesity;

R8: proportion of the population in the catchment area who have received vaccination
against flu (funded separately by state-sponsored programs).

The dilemma that the DM faces is: what DEA model should be used?

Below, in the rest of this introductory section, we first show that neither the conventional
VRS nor CRS model is appropriate for the above situation—this is because the use of ratio
measures makes them theoretically unsubstantiated and efficiency rankings arbitrary. We
then review the relevant literature on the subject and show that the few suggested approaches
are insufficient or unsatisfactory for the above example. Finally, we use this example to
motivate the new models developed in our paper and outline the logic of our approach.

We give an answer to the stated DM’s dilemma at the end of our paper in §8.

1.2. Why are ratio measures problematic in the VRS and CRS DEA models?

Banker et al. (1984) state the production assumptions (axioms) assumed true in the
standard CRS and VRS production technologies. If some of these axioms are not satisfied,
the DEA model of production technology becomes an arbitrary extension of the observed
data set, and the analysis based on it is generally unsubstantiated.

It is straightforward to show that the use of ratio measures is generally inconsistent
with such production assumptions, most importantly the assumption that the technology
is a convex set in all input and output dimensions. This was first shown by Olesen and
Petersen (2006, 2009) and further discussed by Emrouznejad and Amin (2009). The following
example, based on Olesen and Petersen (2006), demonstrates this point.

Example 2. Consider two hospitals, A and B, whose outputs are shown in Table 1. The
first output is the number of patients who have received a certain treatment. The second
output is the number of successful treatments. The last column shows the success rate for the
treatment calculated as the ratio of the second to the first output (ratio R1 in Example 1).
Let C be the simple average of hospitals A and B, that is, their convex combination taken
with equal weights of 0.5. Hospital C has 750 patients of which 300 were successfully treated,
and its success rate is 40%. Note that this is less than 50%, which is the simple average of
the success rates of 20% and 80% of hospitals A and B. It is clear that the 50% success
rate is unsubstantiated. This problem arises from the fact that the denominators in the two
ratios are different (1000 for hospital A and 500 for hospital B).

In the CRS model, ratio measures are also generally inconsistent with the assumption of
proportionality that allows proportional scaling of its inputs and outputs. As an illustration,
refer to Example 1. If the volume inputs and outputs (costs and patients) are scaled in a
certain proportion, the ratios fromR1 toR6 may also change, but not in the same proportion
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or even direction as the volume measures. Furthermore, ratios R7 and R8 are exogenous
and should remain constant regardless of the scaling.

The above shows that the use of ratio measures in the standard VRS and CRS models
generally results in an incorrect model of the production technology.2

It is sometimes argued that the efficiency obtained in the VRS and CRS models is still
meaningful and can be defined using their dual multiplier forms. The latter do not explicitly
refer to the notion of technology and define efficiency through the ratio of total weighted
output to input. An obvious drawback of this approach is that the efficiency defined only
through the multiplier model lacks its technological meaning as a possible improvement
factor for inputs or outputs (because the technology as the set of production possibilities
is not correctly modeled). Even the radial nature of efficiency in the standard VRS and
CRS models is not obvious from the multiplier formulations. Furthermore, such important
notions as returns to scale, scale efficiency, and productivity change become unsubstantiated.

While the above interpretation may be useful in some contexts, it does not help the DM
in Example 1: because the multiplier model does not model the technology, the benchmarks
(including costs) for inefficient hospitals obtained from this model are not necessarily achiev-
able, and funding decisions based on the use of such benchmarks would be unsubstantiated
and possibly flawed.

1.3. Existing alternative approaches

While acknowledging problems with ratio data, the existing DEA literature suggests
few approaches that can be used to overcome them, and such approaches have important
limitations.

1.3.1. Using volume measures instead of ratios

It is often suggested that one should use the underlying volume measures (used as the
numerator and denominator in ratios)—see, e.g., Thanassoulis et al. (1995) and Emrouzne-
jad and Amin (2009). This approach is attractive but may not be possible or practical, or
even appropriate, for a number of reasons.

First, the underlying volume data may be unavailable. Second, the use of volume mea-
sures may make little sense in the given context. For example, consider the use of income
per capita in the catchment area as a contextual ratio measure linked to student attainment
in the assessment of school performance. Neither the numerator (total income) nor the
denominator (population of the area) would be considered relevant in such models. Third,
the use of ratio measures may be embedded in the organizational decision making, and the
analyst may be required to use such data even if the volume data is available—see, e.g.,
Golany and Thore (1997). Fourth, the volume data may be judged to be too sensitive and
confidential, so the ratio data has to be used instead.

2A simple exception to this is a re-normalization of a particular volume input or output by the same
denominator for all DMUs. For example, suppose the annual production level (output) is changed to the
average monthly production level, by dividing the former by twelve. Because the denominator is the same
for all DMUs, it is straightforward to verify that such a re-normalization does not affect the validity of
the VRS and CRS production assumptions. For the same reason, changing the units of measurement, e.g.,
currency, used in the measurement of inputs or outputs does not lead to any problems with the production
assumptions.
In the case of CRS (but not VRS) another obvious exception is the normalization of all inputs and outputs

of each DMU by a single unit-specific denominator. For example, in a comparative assessment of countries,
all inputs and outputs of each country may be divided by its population (or all divided by its GDP). This
re-scaling does not change the CRS technology. However, if different measures are divided by different
country-specific denominators (e.g., some by the population and some by GDP), the convexity assumption
is no longer satisfied and the conventional CRS technology becomes unsubstantiated.

4



1.3.2. Using free disposal hull (FDH) model

The FDH model (Deprins et al., 1984) does not assume convexity and can in principle
be used with both volume and ratio measures. However, because this model does not use
the information that volume inputs and outputs can form convex combinations (and can
be scaled in the case of CRS), the resulting technology would be unnecessarily small, and
the efficiency scores overestimated. In practice this often manifests itself in low efficiency
discrimination between DMUs, especially when the observed sample is small.

1.3.3. Other approaches

Dyson et al. (2001) suggest that a ratio measure could be multiplied by an appropriate
measure of the size of the DMU, so that the resulting measure could change in proportion
to the size of the latter. An obvious drawback of this approach is that any measure, except
the denominator used in the ratio in the first place, is arbitrary.

Close to this discussion are studies of the use of environmental and categorical vari-
ables in DEA that raise arguments equally applicable to socio-economic types of ratio data
(Banker and Morey, 1986a, 1986b; Ruggiero 1996). For similar types of contextual data the
approaches of Paradi et al. (2004b), Paradi et al. (2009), and Olesen and Petersen (2009)
aim at limiting the use of DMUs operating in a favorable environment in benchmarks for
DMUs operating in a harsh environment. The transformation of outputs representing cat-
egorical quality measures to related cumulative volume measures before their incorporation
in a CRS model is explored in Olesen and Petersen (1995).

1.4. Contribution of this paper

The main contribution of this paper is the development of Ratio-VRS and Ratio-CRS
(R-VRS and R-CRS) models that allow the incorporation of ratio measures for inputs and
outputs “as is”, without any transformation of the data. This gives a constructive answer
to the long-standing debate as to how ratio measures could be used in DEA models.

The idea of our approach is that ratio measures should not be incorporated in the con-
ventional DEA models: the latter have been developed for volume measures that exhibit
different characteristics compared to ratio measures. Instead, we obtain new DEA models
in which both volume and ratio measures are native types of data.

The following specific contributions should be mentioned. First, we revisit the conven-
tional production axioms and restate them in the forms that account for ratio measures:
this includes new variants of the axioms of convexity and proportionality.

Second, we suggest that in the R-CRS model, ratio measures should be represented
differently according to the way in which they respond to the scaling of volume measures.
For example, increasing the size of a hospital (or the number of treatments) may improve
the success rate R1 (Gaynor et al., 2005) and possibly reduce the mortality rate R4, while
keeping the contextual ratios R7 and R8 constant. To address this diversity of behavior, we
develop a classification of ratio measures into different types and suggest their functional
representations.

Third, we formally derive the new production technologies from the stated axioms. A
particularly complex task accomplished in our paper is the development of a unifying R-CRS
model that incorporates ratio measures of all types, in one single formulation.

Fourth, we explore theoretical properties of the new DEA models, discuss computational
approaches to their solution and illustrate our development by an example.
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2. Basic definitions and notation

A basic assumption of most applications of DEA is that the observed DMUs are elements
of some production technology T . While the mainstream DEA is concerned with the model
specification that has a clear economic and technological sense, in many applications of
DEA the latter is not considered essential or even required (Paradi et al., 2004a; Dulá,
2009). Even if T has a clear technological meaning, it may be desirable to incorporate
additional ratio measures whose economic meaning may be questionable but which have an
obvious managerial or policy meaning, such as the average salary increase after obtaining a
degree or life expectancy after a hospital treatment.

The main focus of our development is on the use of ratio data in technologies that
have a clear economic interpretation. Our results also extend to any application beyond
the traditional economic boundaries, provided the technology T (perhaps, better called a
correspondence set in such cases) satisfies all the assumptions stated below.

For a production technology T , let I = {1, ...,m} and O = {1, ..., s} be the sets of
inputs and outputs, respectively. Let IV ⊆ I and OV ⊆ O be the subsets of volume inputs
and outputs (volume measures). The complementary subsets IR = I\IV and OR = O\OV

include, respectively, ratio inputs and outputs (ratio measures).
It is important to underline that, when modeling production technologies, volume and

ratio measures are classed as inputs or outputs depending on the way they satisfy the
assumption of free disposability, stated as Axiom 2 below. Inputs have a nonnegative impact
on production, and their larger values (compared to the current level of a DMU) are assumed
to be technologically possible. Outputs have a nonpositive impact in the sense that their
smaller values are technologically possible. In the case of ratio measures, their classification
into inputs and outputs often has no direct relationship to what types of volume measure
(input or output) are specified as the numerator and denominator. For example, in the
assessment of school performance, each of the following would be a volume output of its
own (because each consumes resources, and smaller numbers are technologically possible
in the sense of free disposability): y1—all students, y2—students with special needs, and
y3—students from privileged background. Note that, from the technology point of view, the
ratio y2/y1 is an output (smaller values are technologically possible), while y3/y1 is an input
(larger values are possible).

Elements of T are decision making units, or DMUs. These are stated in the form

(X, Y ) = (XV , XR, Y V , Y R), (1)

where X ∈ Rm
+ and Y ∈ Rs

+ are the vectors of inputs and outputs, respectively, and the
subvectors XV , XR, Y V and Y R correspond to the sets IV , IR, OV and OR. Observed DMUs
are denoted (Xj, Yj), where j ∈ J = {1, ..., n}.

In standard DEA models no specific upper bounds are imposed on inputs and outputs.
This assumption may clearly be incorrect for ratio measures. Therefore, we assume that
there are upper bounds in the form

XR ≤ X̄R and Y R ≤ Ȳ R, (2)

where components of vectors X̄R and Ȳ R can be finite or +∞.3 The latter means that
no particular bound is specified on the corresponding ratio measure. For example, the

3We use vector inequalities to state that the specified inequality is true for each component of the vector.
For example, XR ≤ X̄R means XR

i ≤ X̄R
i , for all i ∈ IR.
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proportion of satisfied customers is naturally bounded above by 100%, while the firm’s
growth rate is not and can be more than 100%.4

The following two assumptions are required for the development of the R-VRS technology
with ratio measures in the next section.

Data Assumption 1. At least one of the two sets I and O is not empty.5

Data Assumption 2. For all j ∈ J , observed DMUs (Xj, Yj) ∈ Rm
+ × Rs

+ and their
subvectors of ratio measures XR

j and Y R
j satisfy (2).

3. The R-VRS technology

3.1. Axioms

As discussed above, ratio measures cannot be assumed to satisfy the standard axioms of
the VRS technology, and the axioms need restating. The first two are straightforward.

Axiom 1 (Feasibility of observed data). For any j ∈ J , (Xj, Yj) ∈ T .

Axiom 2 (Free disposability). Let (X, Y ) ∈ T . If (X̃, Ỹ ) ∈ Rm
+ × Rs

+ satisfies the bounds

(2), X̃ ≥ X and Ỹ ≤ Y , then (X̃, Ỹ ) ∈ T .

As a motivation of the third axiom, refer to the above Example 2. As noted, the incorrect-
ness with the convex combinations arises if the ratio measures have different denominators
for different DMUs. An obvious exception from this is when the DMUs have equal ratios,
even if the denominators are different. For example, if both hospitals have the same 80%
success rate then, regardless of the number of patients, the average of the two hospitals
(hospital C) has an 80% success rate. This means that convex combinations of DMUs in
the presence of ratio data are still possible provided their ratio inputs and outputs take on
respectively equal values.

The above observation corresponds to the notion of selective convexity introduced by
Podinovski (2005) who extended earlier ideas explored by Banker and Morey (1986b) and
Ruggiero (1996). In the context of volume and ratio measures, this observation is stated as
follows.6

Axiom 3 (Selective convexity). Let (X̃, Ỹ ) ∈ T and (X̂, Ŷ ) ∈ T . Assume that

X̃R = X̂R and Ỹ R = Ŷ R. (3)

Then γ(X̃, Ỹ ) + (1− γ)(X̂, Ŷ ) ∈ T , for any γ ∈ [0, 1].

4Bounds (2) are needed for the formal definition of technologies based on ratio measures. They may also
be binding (and cannot be omitted) in special cases of DEA models based on general directional distance
function (Chambers et al., 1998). However, these bounds are automatically satisfied and need not to be
stated as explicit constraints in most common cases when the input or output radial efficiency is assessed.
This is stated in Proposition 7.

5Note that Data Assumption 1 is somewhat unusual because it allows one of the sets I or O to be empty.
The standard assumption that there is at least one input and at least one output is not needed for the
R-VRS technology, although this changes in the R-CRS technology, as stated in Data Assumption 4 in §5.
This may be of interest to applications of DEA in which there are no clear inputs or outputs. In such cases
a common approach is to introduce a dummy input or output equal to one for all DMUs. In view of this
comment, this is redundant.

6In the development of the R-CRS technology in §4, we introduce different types of ratio measures.
Axiom 3 assumes that condition (3) is satisfied by any type of ratio measure.
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3.2. Definition of the R-VRS technology

Based on the stated production axioms, and in line with the minimum extrapolation
principle used by Banker et al. (1984), we give the following definition:

Definition 1. The R-VRS technology TR
VRS is the intersection of all technologies (sets)

T ⊂ Rm
+ × Rs

+ that satisfy Axioms 1–3.

The rationale of the above definition is as follows. While there exist infinitely many
technologies that satisfy Axioms 1–3, technology TR

VRS is the smallest among all of them.7

This guarantees that TR
VRS includes only the DMUs that are needed to satisfy the stated

axioms, and no arbitrary DMUs.
To obtain an explicit statement of technology TR

VRS, we use a related formulation proved
in Podinovski (2005) for the technology based on the notion of selective convexity. In
comparison to the latter result, the following theorem accounts for bounds (2) on ratio
measures.8

Theorem 1. Let Data Assumptions 1 and 2 be true. Technology TR
VRS is the set of all DMUs

(X, Y ) ∈ Rm
+ × Rs

+ that satisfy (2) and for which there exists a vector λ ∈ Rn such that∑
j∈J

λjY
V
j ≥ Y V , (4.1)∑

j∈J

λjX
V
j ≤ XV , (4.2)

λj

(
Y R
j − Y R

)
≥ 0, ∀j ∈ J, (4.3)

λj

(
XR

j −XR
)
≤ 0, ∀j ∈ J, (4.4)

1⊤λ = 1, (4.5)

λ ≥ 0. (4.6)

The meaning of conditions (4) is intuitively clear. If λj > 0, inequalities (4.3) and (4.4)
imply Y R

j ≥ Y R and XR
j ≤ XR, respectively. This means that the observed DMUs used

in the convex combinations of volume inputs and outputs in (4.1) and (4.2) are not worse
than the DMU (X, Y ) on all ratio inputs and outputs. To be more specific and expanding
the logic of Ruggiero (1996), let ratio measures represent the quality of the socio-economic
environment in which the DMUs operate or the quality of services they provide. Then the
volume outputs and inputs of the DMU (X,Y ) are weakly outperformed (weakly dominated)
by a convex combination of observed DMUs that operate in the same or worse environment,
or produce services of the same or higher quality than (X, Y ).

Proposition 1. Let Data Assumptions 1 and 2 be true. Then technology TR
VRS is a closed

set.

If there are no ratio measures and IV ̸= ∅ and OV ̸= ∅, inequalities (4.3) and (4.4)
vanish and TR

VRS becomes the standard VRS technology. If there are no volume measures
and I = IR and O = OR, then TR

VRS becomes FDH. If OR = ∅, TR
VRS is the technology used

in model (7) in Ruggiero (1996).
Although all conditions (4) are linear with respect to λ, the technology TR

VRS is not a
convex set. Figure 1 shows technology TR

VRS induced by two DMUs A and B. It has a volume

7It is straightforward to verify that the technology TR
VRS satisfies Axioms 1–3 and bounds (2).

8We use bold symbols 0 and 1 for the vectors whose components are all zeros and ones, respectively.
The dimensions of these vectors are clear from the context. The symbol ⊤ means transposition.
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Figure 1: Technology TR
VRS with a ratio output.

input, volume output and a ratio output. This technology is unbounded on the right: its
section EFGKLW shows its nonconvex section for a fixed level W of the volume input.
Note that any section of TR

VRS for a fixed level of ratio output is convex.

3.3. Treatment of bad inputs and outputs

Axiom 2 provides an unambiguous classification of volume and ratio measures into inputs
and outputs. This leads to a straightforward treatment of bad (undesirable) outputs (such
as the readmission and mortality rates R3 and R4 in Example 1) and bad inputs (such as
the proportion R7 of people with adverse health conditions). If larger values of bad outputs
are possible in the sense of Axiom 2, these are (technological) inputs that are modeled by
inequalities (4.2) or (4.4), as any other input measure. Similarly, if bad inputs are classified
by Axiom 2 as (technological) outputs, they satisfy output inequalities (4.1) or (4.3). This
modeling issue is separate from the question whether, for example, in the calculation of
input radial efficiency, the improvement factor should be attached only to the good inputs
or to the bad outputs (modeled as inputs) as well.9

4. Types of ratio measures under the assumption of CRS

The standard CRS technology TCRS (Charnes et al., 1978) is defined by the axioms of
VRS and the additional assumption of proportionality (Banker et al., 1984). Consider any
DMU (X∗, Y ∗) ∈ TCRS, where X∗ and Y ∗ are the vectors of volume inputs and outputs,
respectively. The assumption of proportionality states that, for any scaling factor α ≥ 0,
the DMU (αX∗, αY ∗) ∈ TCRS. Obviously, this assumption does not extend to the majority
of ratio measures.

In order to define an R-CRS technology with ratio measures, we need to specify how
each ratio measure changes in response to the proportional scaling of the volume measures
with α ≥ 0.

9There is also an extensive literature which deals with the treatment of bad outputs and inputs that
cannot be assumed to satisfy Axiom 2 (as either input or output) and are instead assumed to satisfy the
property of weak disposability. Our development excludes this type of volume and ratio measures, and leaves
it open for future research.
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Consider, for example, a simple scenario with a single ratio (input or output) measure
R. Then any DMU D is represented by the triplet (X∗, Y ∗, z∗), where z∗ is the value of
ratio R observed at the DMU. If the volume measures are scaled by α ≥ 0, the resulting
DMU can be stated as D(α) = (αX∗, αY ∗, z(α)), where z = z(α) describes R as a function
of α. Obviously, z(1) = z∗. Our task is to specify the function z = z(α) such that the DMU
D(α) is technologically possible (producible) for any α ≥ 0.

Below we show that most ratio inputs and outputs arising in practical applications
(including all ratio measures from R1 to R8 in Example 1) can be modeled by a small
number of simple linear and piecewise-linear functions z = z(α). Based on this, we classify
ratio measures into different types. We use this classification to state the R-CRS technology
in which each ratio measure is modeled differently, according to its type.10

A particular problem that we have to address in our development is that the exact
response of the ratio measure R to the scaling factor α is often unknown, although it is
usually possible to assume that the measure is non-decreasing or non-increasing in α. In
such cases it is impossible to estimate the actual ratio R as a function of α. To overcome
this problem, we define z = z(α) as the most conservative and safe bound on the ratio R
based on the worst-case assumptions.

4.1. Fixed ratio measures

Fixed ratio inputs and outputs can be assumed constant while the volume measures are
scaled up or down with α ≥ 0:

z(α) = z∗, ∀α ≥ 0. (5)

Two distinct groups of ratios would normally be classed as being of the fixed type.
Contextual measures. These include uncontrollable (non-discretionary) socio-economic

and environmental factors. In Example 1, R8 is a non-discretionary (for hospital manage-
ment) fixed ratio input. Similarly, R7 is a bad input modeled as fixed ratio output. In other
assessment contexts further examples include income per capita (ratio input), academic abil-
ity of students on entry (ratio input), proportion of school children eligible for some form of
support, and unemployment rate in the area (both are undesirable inputs modeled as ratio
outputs).

Quality factors obtained as the ratios of two mutually proportional volume measures.
The idea is that if both volume measures are changed in the same proportion, their ratio
remains constant. The success rate of hospital treatments (ratio R1 in Example 1) is a
possible example of a fixed ratio output. However, if existing evidence suggests that R1 is an
increasing function of the number of treatments (Gaynor et al., 2005), a more appropriate
model for this ratio output is the downward-proportional type discussed below. In the
educational context, an example of fixed ratio output is the pass rate in exams that may be
assumed invariant of the size of the school.

4.2. Proportional ratio measures

Proportional ratio measures change in the same proportion α as the volume measures:

z(α) = αz∗, ∀α ≥ 0. (6)

10It should be noted that the suggested types do not include all theoretically possible ratio measures.
For example, ratio measures modeled by non-monotone functions z(α) are not covered by our classification
and cannot be used in the developed models of technology. The main criterion for deciding which types of
ratio measures to include in this paper has been whether or not we could identify relevant examples such as
R1–R8 in the motivational example.
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Measures of this type are typically the ratios of a controllable volume output or input
to a constant volume measure. When the numerator changes in proportion α and the
denominator remains constant, the ratio changes in the same proportion α.11

Although proportional ratios respond to α in the same way as volume measures, the
former do not satisfy the assumption of convexity and require a different treatment.

Example 3 (Proportional ratio output). In Example 1, the average distance from the hos-
pital to patients R6 is a bad input modeled as a ratio output. Large average distances imply
long travel times to the hospital. For certain illnesses, like cardiac arrest, long transportation
may aggravate the patient’s condition and imply a more complicated (and costly) treatment.
As the size of hospital increases, so does its catchment area and the average distance to the
patients, although the exact relationship is impossible to specify. In this case formula (6)
provides a reasonable approximation and classes R6 as a proportional ratio output.

Example 4 (Proportional ratio input and output). Applications of DEA to the assessment
of policy performance of nations (viewed as DMUs) usually involve various macroeconomic,
social factors and policy variables. The transformation of inputs to outputs in these models is
regarded not as a result of a production process but rather as a result of different government
policies (Golany and Thore, 1997). The data available to such applications is often given
in the form of ratios (e.g., normalized per capita or as a proportion of GDP), growth rates,
etc.

The assumption of CRS in the above context imply proportional relationship between
the ratio input and output measures. Examples include GDP per capita (ratio input) and
education expenditure per capita (ratio output). Note that that the denominator (pop-
ulation of the country) is different for different DMUs. In this context, GDP per capita
should be regarded as a proportional ratio input, and education expenditure per capita as a
proportional ratio output.

4.3. Downward-proportional ratio outputs

This modeling type is suitable for ratio outputs R that are non-decreasing functions of
α. This includes the cases where the exact functional form is either unknown, or is known
but the fixed or proportional types do not describe R sufficiently well. Figure 2 illustrates
this type. Point A represents ratio R at α = 1. Because we do not know the actual curve
UAW or its shape is too complex, we model R by its lower bound represented by the broken
line BAC.

Using output-specific notation y = y(α) instead of the generic function z = z(α), the
downward-proportional ratio output12 is modeled as follows:

y(α) =

{
αy∗ + (1− α)q, if 0 ≤ α < 1,

y∗, if α ≥ 1.
(7)

The value y(α) of this type remains constant for α ≥ 1 and is reduced in a linear fashion
as α decreases from 1 to 0, from the value y(1) = y∗ to some assumed value q ∈ [0, y∗].
Because the true ratio R is intentionally underestimated by the function y(α) in (7) and
R is a ratio output, the resulting DMU D(α) = (αX∗, αY ∗, y(α)) must be technologically
possible for all α ≥ 0.

11Formula (6) applies to unbounded ratio measures. We deal with bounded ratio measures at the end of
this section.

12In our naming convention, the word “downward-proportional” refers to the scaling factor α being reduced
from the value α = 1 downward to 0, and not to the decreasing or increasing type of the function y(α). In
contrast, the term “upward-proportional” used in §4.5 means the proportionality on the right of α = 1.
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Figure 2: Downward-proportional ratio output R = R(α) and its lower bound y = y(α). The curve UAW
shows the actual (possibly unknown) ratio output which is non-decreasing in α. It is conservatively modeled
by its lower bound y(α) represented by line BAC.

Example 5 (Downward-proportional ratio output). Measures R1 and R2 from Example 1
may be regarded as ratio outputs of this type. To be specific, consider R1, the success rate
for a certain treatment as a function of α. Empirical evidence (Gaynor et al., 2005) suggests
that the success rate for some treatments may improve with the larger number of treatments.
In line with this, if α > 1, R1 may increase, but the exact relationship is difficult to specify.
In the worst case, R1 should remain at least at the level y∗. If α < 1, it is reasonable to
assume that R1 does not decrease below the value αy∗ + (1 − α)q, where q is an assumed
worst possible success rate for the given treatment. In the absence of any information about
q it is always possible to take q = 0. Formula (7) describes these scenarios and models R1

as a downward-proportional ratio output.

4.4. Downward-proportional ratio inputs

Similar to its ratio output analogue, this type is suitable for the modeling of ratio inputs
R that are non-increasing functions of α, as represented by the curve UAW in Figure 3.
If the exact relationship between R and α cannot be assumed to be of the fixed type or is
unknown, we model R by its upper bound represented by the broken line BAC.

Using input-specific notation x = x(α), this type can be described as follows:

x(α) =

{
αx∗ + (1− α)p, if 0 ≤ α < 1,

x∗, if α ≥ 1,
(8)

where p ≥ x∗ is an assumed value. Because the function x(α) in (8) overestimates the ratio
input R, the DMU D(α) = (αX∗, αY ∗, x(α)) must be technologically possible for all α ≥ 0.

Example 6 (Downward-proportional ratio input). Let us show that ratios R3 and R4 from
Example 1 may be viewed as measures of this type. Both measures are bad outputs, and
we treat them as ratio inputs. To be specific, consider R4, the mortality rate after a specific
surgery procedure as a function of α. Because, as pointed in Example 5, the success rate
may increase with the number of treatments, it is reasonable to assume that R4 is a non-
increasing function of α. Therefore, if α > 1, the mortality rate R4 cannot exceed x∗. To
model the case α < 1, we need to specify (assume) the worst-case upper bound p ≥ x∗ on

12



Figure 3: Downward-proportional ratio input R = R(α) and its upper bound x = x(α). The curve UAW
shows the actual (possibly unknown) ratio input which is non-increasing in α. It is conservatively modeled
by its upper bound x(α) represented by line BAC.

the mortality rate for the given surgical procedure. If no estimate is available, we can use
the logically highest value p = 1. It may then be reasonable to assume that the line BA in
Figure 3 represents a conservative upper bound on all values R4 if 0 ≤ α < 1, as stated by
formula (8).

4.5. Upward-proportional ratio inputs

This type can be used to model ratio inputs R that are non-decreasing functions of α.
Figure 4 illustrates this type. If the exact functional form of R is unknown or does not allow
the use of fixed or proportional input types, we model R by its upper bound shown as the
broken line BAC.

This type is formally described by the function x(α) that is constant for 0 ≤ α ≤ 1 and
increases proportionally for α > 1:

x(α) =

{
x∗, if 0 ≤ α < 1,

αx∗, if α ≥ 1.
(9)

Example 7 (Upward-proportional ratio input). Consider the rate of radiotherapy treat-
ments at a hospital per device (ratio R5 in Example 1). The higher capacity of radiotherapy
facilities at larger hospitals (with larger number of devices) allows for well-known advantages
from pooling queues potentially resulting in lower waiting times and higher throughput per
device. Therefore, it may be reasonable to assume that R5 is a non-decreasing function of α.

We may view R5 as a ratio input because lower waiting times (corresponding to higher
values of R5 at larger hospitals) contribute to speedier treatment of patients and higher
success rates. Because R5 is non-decreasing in α, it cannot exceed the constant value x∗

in the case 0 ≤ α < 1. For α > 1 we might expect R5 to increase but not in proportion
exceeding α. Formula (9) describes these two cases and modelsR5 as an upward-proportional
ratio input.

4.6. Bounded ratio measures

Below we consider ratio measures that have a finite upper bound specified by conditions
(2). For the fixed or downward-proportional types, formulae (5), (7) and (8) keep the ratios
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Figure 4: Upward-proportional ratio input R = R(α) and its upper bound x = x(α). The curve UAW
shows the actual (possibly unknown) ratio input which is non-decreasing in α. It is conservatively modeled
by its upper bound x(α) represented by line BAC.

within the bounds (2) and, therefore, require no adjustment. The proportional and upward-
proportional types in (6) and (9) are, however, inconsistent with the finite upper bounds
and should be reconsidered.

Bounded Proportional Ratio Outputs. In the context of socio-economic performance of
countries described in Example 4, the enrolment ratio for secondary education y = y(α) may
be viewed as a bounded ratio output which is proportional with respect to GDP per capita
(treated as ratio input).13 The ratio y(α) satisfies (6) but only until it reaches the upper
bound of 1, and remains constant if α continues to increase. Formula (6) for a proportional
ratio output y(α) with an upper bound ȳ takes on the form:

y(α) = min{αy∗, ȳ}, ∀α ≥ 0. (10)

Bounded Proportional and Upward-Proportional Ratio Inputs. In the assessment of com-
petitiveness of nations, the proportion of population with a certain level of education x(α)
may be viewed as a proportional ratio input. Note that x(α) can be assumed to satisfy
(6) only until it reaches the upper bound of x̄ = 1. A further increase of α implies in-
creasing other proportional (e.g., volume) measures in proportion α while keeping the ratio
x(α) = 1 constant. This is hardly acceptable because the numerator (volume input) of x(α)
is no longer increasing. Therefore an upper bound x̄ on ratio x(α) puts an upper bound
ᾱ = x̄/x∗ ≥ 1 on α for which the R-CRS technology is defined.14

13The enrolment ratio is obtained by dividing the number of students enroled in secondary school education
by the total number of young people of the corresponding age.

14The following example provides an alternative argument why α should not exceed the value ᾱ = x̄/x∗.
Let (X∗, Y ∗, x∗) be an observed unit, where X∗ and Y ∗ are the vectors of volume inputs and outputs, and
x∗ is a proportional ratio input with an upper bound x̄ = 1. Let x∗ = 0.5. If α is unbounded, applying
α1 = 4 and noting the upper bound on x, the observed unit becomes (4X∗, 4Y ∗, 1). We now apply α2 = 0.25
to the resulting unit to obtain (X∗, Y ∗, 0.25). The latter dominates the original observed unit. This means
that no observed unit with x∗ > 0 can be fully efficient, which is meaningless in a practical application.
Note that the same example does not apply if x∗ is an upward-proportional ratio input. However, it seems
inconsistent and, therefore, unacceptable to allow α exceed the value x̄/x∗ for upward-proportional ratio
inputs and disallow this for proportional inputs. As proved in Proposition 7, the specification of bounds x̄ is
primarily of theoretical interest and affects only a limited number of practical models of efficiency analysis.
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5. The R-CRS technology

In this section we develop an extension to the standard CRS technology that allows the
incorporation of ratio inputs and outputs. This is based on Axioms 1–3 and two further
axioms.

5.1. Additional notation and axioms

Banker et al. (1984) define the CRS technology as the one based on the same axioms
as the VRS technology and the additional axiom of proportionality, or “ray unboundness”.
Below we maintain the latter property with respect to volume measures but change it with
respect to ratio measures, taking into account the types of ratio measures introduced in §4.

Let, as above, IV and OV be the sets of volume inputs and outputs, respectively, and
let XV and Y V be the corresponding vectors of volume inputs and outputs. Similarly, let
superscripts F , D, U and P refer to the four types of ratio measures: fixed, downward-
proportional, upward-proportional and proportional, respectively, as defined in §4. For
example, we denote IF and OF the sets of fixed ratio inputs and outputs, respectively, and
denote XF and Y F the corresponding vectors. DMUs (X,Y ) are stated in the following
extended form that replaces (1):(

X
Y

)
=

(
XV , XF , XD, XU , XP

Y V , Y F , Y D, Y P

)
. (11)

Similarly, the upper bounds in (2) are stated as X̄R = (X̄F , X̄D, X̄U , X̄P ) and Ȳ R =
(Ȳ F , Ȳ D, Ȳ P ).

For downward-proportional ratio outputs r ∈ OD, the constant q in (7) may be different
for different r. Denote q̄ the vector of dimension |OD| whose components q̄r ≥ 0 are equal
to the corresponding constants q . Similarly, define the vector p̄ of dimension |ID| whose
components p̄i ≥ 0 are equal to the corresponding constants p specified in (8) for the ratio
inputs i ∈ ID.

Consider any DMU (X, Y ) in technology T stated in the form (11). The following two
axioms state that the volume vectors XV and Y V can be scaled by a factor α ≥ 0, provided
the ratio measures change as stated in conditions (5)–(10). Because the cases of contraction
(0 ≤ α < 1) and expansion (α > 1) are sufficiently different, we consider them separately.

Axiom 4 (Selective proportional contraction). Let (X, Y ) ∈ T . Then for all 0 ≤ α < 1,(
Xα

Y α

)
=

(
αXV , XF , αXD + (1− α)p̄, XU , αXP

αY V , Y F , αY D + (1− α)q̄, αY P

)
∈ T.

Consider the expansion scenario with α > 1. As discussed in §4.6, α can increase while
all proportional and upward-proportional ratio inputs are within the bounds (2), after which
α cannot increase any further. In contrast, if the upper bounds on proportional ratio outputs
are reached, α can increase further but such ratio outputs remain constant at their maximum
level.

For any two vectors a and b of the same dimension K, let min{a, b} be the vector of
dimension K whose components are equal to the minimum of the corresponding components
of a and b: min{a, b}k = min{ak, bk}, for all k = 1, ..., K.

Axiom 5 (Selective proportional expansion). Let (X,Y ) ∈ T . Then for all α > 1 such that
αXU ≤ X̄U and αXP ≤ X̄P ,(

Xα

Y α

)
=

(
αXV , XF , XD, αXU , αXP

αY V , Y F , Y D,min{αY P , Ȳ P}

)
∈ T.
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We need two further assumptions for the development of R-CRS technology with ratio
measures.

Data Assumption 3. Vectors p̄ and q̄ are within the bounds stated in (2): p̄ ≤ X̄D and
q̄ ≤ Ȳ D. Furthermore, XD

j ≤ p̄ and Y D
j ≥ q̄, for all j ∈ J .

Data Assumption 4. One or more of the following three conditions is satisfied:
(a) IV ̸= ∅ and XV

j ̸= 0, for all j ∈ J ;
(b) IU ̸= ∅ and XU

j ̸= 0, for all j ∈ J ;
(c) IP ̸= ∅ and XP

j ̸= 0, for all j ∈ J .

Note that Data Assumption 4 makes Data Assumption 1 redundant.15

5.2. Definition of the R-CRS technology

The following definition introduces the R-CRS technology.

Definition 2. The R-CRS technology TR
CRS is the intersection of all technologies (sets)

T ⊂ Rm
+ × Rs

+ that satisfy Axioms 1–5.16

Theorem 2. Let Data Assumptions 2–4 be true. Technology TR
CRS is the set of all DMUs

(X, Y ) ∈ Rm
+ × Rs

+ that satisfy (2) and for which there exist vectors λ, α, β ∈ Rn such that∑
j∈J

λjβjαjY
V
j ≥ Y V , (12.1)∑

j∈J

λjβjαjX
V
j ≤ XV , (12.2)

∀j ∈ J, if λj > 0 then

(Y F
j ≥ Y F , (12.3)

XF
j ≤ XF , (12.4)

αjY
D
j + (1− αj)q̄ ≥ Y D, (12.5)

αjX
D
j + (1− αj)p̄ ≤ XD, (12.6)

βjX
U
j ≤ XU , (12.7)

βjαjY
P
j ≥ Y P , (12.8)

βjαjX
P
j ≤ XP ), (12.9)

1⊤λ = 1, (12.10)

α ≤ 1, (12.11)

β ≥ 1, (12.12)

λ, α, β ≥ 0. (12.13)

Conditions (12) are intuitively clear. Consider any observed DMU (Xj, Yj), j ∈ J ,
for which λj > 0. Such a DMU is contracted by the scaling factor αj ≤ 1 and further
expanded by the factor βj ≥ 1.17 Each condition (12.3)–(12.9) represents the response of

15Also note that Data Assumption 4 does not require that the technology has volume measures (although
this is required for the properties of R-CRS models established in §6.2.) This makes our development
applicable to DEA models where all inputs and outputs are ratios. As pointed in Example 4, models of this
type are common in the assessment of socio-economic performance of countries.

16It is straightforward to prove that technology TR
CRS satisfies Axioms 1–5 and bounds (2).

17Note that the factor βj corresponds to α in Axiom 5. We use notation βj for a better differentiation
between the contraction and expansion cases in the statement of Theorem 2.
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Figure 5: Downward-proportional ratio output in technology TR
CRS.

a particular type of ratio input or output to the scaling with αj and βj discussed in §4
and stated by Axioms 4 and 5. For each j, denote the resulting DMU (X̃j, Ỹj). (To avoid
excessive technicalities, we assume that all DMUs (X̃j, Ỹj) are within the bounds (2). A full
explanation without this simplifying assumption is given in the proof of Theorem 2.) Similar
to the case of R-VRS, the signs of inequalities (12.3)–(12.9) imply that the scaled observed
DMUs (X̃j, Ỹj) that are used in the convex combinations of volume measures in (12.1) and
(12.2) with a positive λj are not worse on all ratio measures than the DMU (X, Y ).

If Data Assumptions 2–4 are true, the following two statements hold.

Proposition 2. Technology TR
CRS is a closed set.

Proposition 3. TR
VRS ⊂ TR

CRS.
18

Figure 5 shows an example of technology TR
CRS induced by DMUs A and B, and incor-

porates a downward-proportional ratio output. The latter is scaled down to zero together
with the volume measures but remains constant if the volume measures are increased from
the observed levels.

The technology in Figure 6 is induced by a single DMU A and incorporates a downward-
proportional ratio input. This technology includes the DMUs above the facets ABC and
ACDE, and is unbounded with respect to its volume and ratio inputs. Because this tech-
nology is induced by a single DMU, it is convex—this is no longer true in the case of two or
more observed DMUs.

5.3. Linearized statement of the R-CRS technology

The statement by Theorem 2 is intuitively clear but not sufficiently operational. Theorem
3 below restates the conditions for technology TR

CRS in a simpler but equivalent form which
has obvious computational advantages. The main idea of this transformation is based on
the substitution of variables in Theorem 2 by µj = λjαj(βj − 1) and νj = λj(1− αj), for all
j ∈ J .

18We assume that ratio inputs and outputs of all types are referred to the sets IR and OR of technology
TR
VRS.
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Theorem 3. Let Data Assumptions 2–4 be true. Technology TR
CRS is the set of all DMUs

(X, Y ) ∈ Rm
+ × Rs

+ that satisfy (2) and for which there exist vectors λ, µ, ν ∈ Rn such that
the following conditions hold.

Conditions for volume outputs and inputs:∑
j∈J

(λj + µj − νj)Y
V
j ≥ Y V , (13.1)∑

j∈J

(λj + µj − νj)X
V
j ≤ XV , (13.2)

Conditions for fixed ratio outputs and inputs:

(λj + µj)
(
Y F
j − Y F

)
≥ 0, ∀j ∈ J, (13.3)

(λj + µj)
(
XF

j −XF
)
≤ 0, ∀j ∈ J, (13.4)

Conditions for downward-proportional ratio outputs:

(λj − νj)Y
D
j + νj q̄ ≥ λjY

D, ∀j ∈ J, (13.5a)

µj

(
Y D
j − Y D

)
≥ 0, ∀j ∈ J, (13.5b)

Conditions for downward-proportional ratio inputs:

(λj − νj)X
D
j + νj p̄ ≤ λjX

D, ∀j ∈ J, (13.6a)

µj

(
XD

j −XD
)
≤ 0, ∀j ∈ J, (13.6b)

Conditions for upward-proportional ratio inputs:

(λj + µj − νj)X
U
j ≤ (λj − νj)X

U , ∀j ∈ J, (13.7a)

λj

(
XU

j −XU
)
≤ 0, ∀j ∈ J, (13.7b)

Conditions for proportional ratio outputs:

(λj + µj − νj)Y
P
j ≥ λjY

P , ∀j ∈ J, (13.8a)

if
(
µj > 0 and Y P

r > 0
)
then Y P

jr > 0, ∀r ∈ OP , ∀j ∈ J, (13.8b)

Conditions for proportional ratio inputs:

(λj + µj − νj)X
P
j ≤ λjX

P , ∀j ∈ J, (13.9)

General conditions:

1⊤λ = 1, (13.10)

λj − νj ≥ 0, ∀j ∈ J, (13.11)

λ, µ, ν ≥ 0. (13.12)

The statement of technology TR
CRS in Theorem 3 is less intuitive than its equivalent

statement in Theorem 2. However, its conditions (13) are computationally simpler than
conditions (12). Three remarks are worth making regarding the above results.

1. Each of the conditions (12.5)–(12.8) in Theorem 2 corresponds to a pair of conditions
in Theorem 3. For example, the conditional inequality (12.5) (required to be true if
λj > 0) corresponds to two unconditional inequalities (13.5a) and (13.5b).

2. If some types of ratios are not used, the corresponding conditions are removed from
the statements of Theorems 2 and 3. For example, if ID = OP = ∅, conditions (12.6)
and (12.8) are removed from Theorem 2, and (13.6a), (13.6b), (13.8a) and (13.8b) are
removed from Theorem 3.
In particular, if there are no ratio measures, technology TR

CRS becomes the conventional
CRS technology. Indeed, in this case conditions (12.3)–(12.9) are omitted from (12).
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Figure 6: Downward-proportional ratio input in technology TR
CRS.

By denoting λ̂j = λjβjαj and removing conditions (12.10)–(12.12) as redundant, we

obtain the standard CRS technology stated in terms of vector λ̂. The same result
follows from conditions (13). In this case conditions (13.3)–(13.9) are omitted. The
standard CRS technology is obtained by denoting λ̃j = λj + µj − νj and removing
conditions (13.10) and (13.11) as redundant.

3. If all components of vectors Y P
j are strictly positive for all j ∈ J , then condition

(13.8b) is obviously redundant and can be omitted.

5.4. Special case: the R-CRS technology with fixed ratio measures

Suppose that technology TR
CRS includes both volume inputs and outputs, and ratio mea-

sures of the fixed type only. Denote such a technology TF
CRS. It is described by Theorem 2 in

which conditions (12.5)–(12.9) are omitted, and by Theorem 3 in which conditions (13.5a)–
(13.9) are removed.

An alternative, and simpler, statement of the same technology TF
CRS is given by the

following proposition, under the additional assumption Y V ̸= 0 which should not be prob-
lematic in practical applications. An advantage of this statement is that it utilizes a single
vector λ.

Proposition 4. Let Data Assumptions 2–4 be true. Consider any (X,Y ) ∈ Rm
+ × Rs

+ such
that Y V ̸= 0. Then (X,Y ) ∈ TF

CRS if and only if (X, Y ) satisfies (2) and there exists a
vector λ ∈ Rn such that conditions (4.1)–(4.4) and (4.6) are true.

Technology TF
CRS models an important practical scenario in which volume measures sat-

isfy the assumption of CRS and can be scaled up and down (because the normalizing con-
dition (4.5) is missing in the above statement), while the ratio measures control for the
environment and quality, and remain unchanged. Technology TF

CRS can be regarded as a
partial cone extension to technology TR

VRS, of which the technology of Ruggiero (1996) is a
special case.

Figure 7 shows technology TF
CRS induced by two observed DMUs A and B. It has a fixed

ratio output and its section EFGKLW is not convex. As the volume input and output are
scaled up or down, the ratio output remains constant.
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Figure 7: Fixed ratio output in technology TF
CRS.

6. DEA models with ratio measures

The formulation of R-VRS and R-CRS DEA models based on technologies TR
VRS and

TR
CRS is straightforward. For simplicity, below we limit our discussion to models with radial

input and output efficiency measures. These are easy to extend to measures based on the
general directional distance function (Chambers et al., 1998), but this leads to lengthier
formulations and is not pursued further.

6.1. Formulation

First, consider the case of input minimization. In production theory, the input radial
efficiency of DMU (Xo, Yo) is usually defined by attaching the improvement factor θ only
to its volume inputs, while using ratio measures to control for environment and quality
of production. However, in the broader context, we may also be interested in possible
improvements to ratio measures.19 In such cases θ may not have the conventional meaning
of input radial efficiency, but it is still a measure of input improvement. For simplicity,
we refer to input radial efficiency as a unifying term applicable to both volume and ratio
measures.

As a general case, suppose it is desirable to measure the input radial efficiency of DMU
(Xo, Yo) only with respect to a subset of inputs (for example, only volume inputs). To state
this, we attach the improvement factor θ to a non-empty subset of inputs Iθ ⊆ I and define
the improved vector Xo(θ) as follows:

Xoi(θ) =

{
θXoi, if i ∈ Iθ,

Xoi, if i ∈ I\Iθ.

19As an illustration, the DM in Example 1 may ask 1) what is the best practice (lowest) mortality rate R4

that an observed hospital should aim at without changing its other volume and ratio inputs and outputs, or
2) what is the lowest contextual proportion of vaccinated people R8 that should not affect the performance
of a hospital? In both cases the improvement factor θ is attached to the corresponding ratio input. As
another illustration, the efficiency of countries in the context of Example 4 is also measured with respect to
ratio measures.
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Based on Theorem 1, the input radial efficiency E1
VRS(Xo, Yo) of the DMU (Xo, Yo) ∈ TR

VRS

is equal to the optimal value θ∗ in the following model:20

[M1
VRS]

θ∗ = min θ,

subject to: (X, Y ) = (Xo(θ), Yo) satisfies (2) and (4), θ sign free.

Similarly, to allow the assessment of the output radial efficiency of DMU (Xo, Yo) with
respect to a non-empty subset of outputs Oη ⊆ O, define

Yor(η) =

{
ηYor, if r ∈ Oη,

Yor, if r ∈ O\Oη.

The output radial efficiency E2
VRS(Xo, Yo) of the DMU (Xo, Yo) ∈ TR

VRS is obtained by
inverting the maximum output-improvement factor η∗ in the model

[M2
VRS]

η∗ = max η,

subject to: (X,Y ) = (Xo, Yo(η)) satisfies (2) and (4), η sign free.

In the case of CRS, we replace conditions (4) in models M1
VRS and M2

VRS by condi-
tions (13), and denote the resulting R-CRS models M1

CRS and M2
CRS, respectively. For any

DMU (Xo, Yo) ∈ TR
CRS, its input radial efficiency E1

CRS(Xo, Yo) is equal to the optimal value
θ∗ in model M1

CRS. Its output-radial efficiency E2
CRS(Xo, Yo) is reciprocal to the optimal

value η∗ in model M2
CRS.

6.2. Properties of DEA models with ratio measures

Below we obtain some basic properties of the R-VRS and R-CRS DEA models based
on technologies with ratio data, and the corresponding efficiency measures. Because these
models are based on Theorems 1–3, the relevant Data Assumptions 1–4, as specified in
the above theorems, are assumed to be true. We also require an additional assumption
concerning the nonnegativity of data.

Data Assumption 5. IV ̸= ∅, OV ̸= ∅, and all volume inputs and volume outputs of
all observed DMUs j ∈ J and the DMU (Xo, Yo) are strictly positive. Furthermore, the set
IV ∩ Iθ ̸= ∅ in models M1

VRS and M1
CRS, and OV ∩Oη ̸= ∅ in models M2

VRS and M2
CRS.
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Proposition 5. The optimum values in models M1
VRS, M2

VRS, M1
CRS, and M2

CRS are attained.
Furthermore,

0 < Ei
CRS(Xo, Yo) ≤ Ei

VRS(Xo, Yo) ≤ 1, i = 1, 2.

We now refer to the known property of conventional CRS DEA models, namely, that
the input and output radial efficiencies of any DMU are always equal. Because TR

CRS is
generally not a cone technology, the above property does not automatically extend to the
models based on it. The next statement identifies conditions under which the two efficiency
measures remain equal.

Proposition 6. In addition to Data Assumptions 2–5, let
(a) Iθ = IV ∪ IP, Oη = OV ∪OP,
(b) ID = OD = IU = ∅,
(c) if OP ̸= ∅ then Ȳ P

r = +∞, ∀r ∈ OP.
Then E1

CRS(Xo, Yo) = E2
CRS(Xo, Yo).

20According to Proposition 5, the objective functions of all models in this section are attained.
21In the Appendix we replace Data Assumption 5 by a significantly weaker but more technical assumption

that is actually needed for the proofs of Propositions 5–7.
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As an example, consider technology TF
CRS stated in Proposition 4, in which all inputs

and outputs are either volume or fixed ratio measures. By Proposition 6, the input radial
efficiency of any DMU (Xo, Yo) ∈ TF

CRS measured with respect to all volume inputs is equal
to its output radial efficiency measured with respect to all volume outputs.

Proposition 7. (a) In models M1
VRS, M2

VRS and M1
CRS, all bounds (2) are redundant and

can be removed from the formulation.
(b) In model M2

CRS, all bounds (2) are redundant and can be removed from the formula-
tion, except the bounds on the ratio outputs r ∈ OP ∩Oη.

According to Proposition 7, in model M2
CRS we need to specify the bounds only for those

proportional ratio outputs that have the improvement factor η attached to them. Such
bounds take on the form ηY P

or ≤ Ȳ P
r , ∀r ∈ OP ∩Oη.

6.3. Dual formulations

Below we construct the dual multiplier forms of the R-VRS models in the practically
important special case when the radial improvement factor is attached only to the volume
inputs or outputs. A similar dual formulation can be given for the R-CRS models if all ratio
inputs and outputs are of the fixed type only.

To be specific, consider the input-minimization model M1
VRS in which all volume inputs

are minimized: Iθ = IV . To simplify the exposition, we also assume that no finite upper
bounds (2) are specified. (By Proposition 7, such bounds are redundant in the R-VRS
models). In this case model M1

VRS is a linear program that minimizes θ over the feasible set
described by linear inequalities (4), in which the DMU (XV , XR, Y V , Y R) is substituted by
(θXV

o , X
R
o , Y

V
o , Y R

o ).
Define the subset of observed DMUs Jo ⊆ J as follows: Jo = {j ∈ J | XR

o ≥ XR
j , Y

R
o ≤

Y R
j }.The DMUs j ∈ Jo have lower or equal levels of ratio inputs, and higher or equal levels of

ratio outputs, compared to DMU (Xo, Yo) under the assessment. If the ratio inputs represent
the quality of the environment in which the DMUs operate, and the ratio outputs represent
the quality of products or services, then the observed DMUs in the set Jo operate in the
environment of the same or lower quality compared to DMU (Xo, Yo), and the quality of
their products and services is not lower than of the latter DMU.22

Proposition 8. Let Iθ = IV . Then the dual to model M1
VRS can be stated as

max u⊤Y V
o + w,

subject to

v⊤XV
o = 1,

u⊤Y V
j − v⊤XV

j + w ≤ 0, ∀j ∈ Jo,

u, v ≥ 0, w sign free,

(14)

where the variable vectors u and v are of dimensions |OV | and |IV |, respectively, and w is a
scalar variable.

22If (Xo, Yo) is an observed DMU jo then jo ∈ Jo and Jo ̸= ∅. If DMU (Xo, Yo) is not observed, the set
Jo may be empty. In this case conditions (4) (more precisely, conditions (4.3)–(4.6)) cannot be satisfied.
This means that DMU (Xo, Yo) is not in technology TR

VRS. In this case model M1
VRS is infeasible, and its

dual model (14) has an unbounded optimal value.
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Program (14) is “almost” the standard multiplier model except for it limits the number
of comparator DMUs to the set Jo, which generally depends on DMU (Xo, Yo). This is
equivalent to the assessment of efficiency in the standard VRS technology (with volume
inputs and outputs only) induced by the restricted set of observed DMUs Jo.

23

Model (14) allows the standard interpretation associated with conventional VRS multi-
plier models. In particular, it retains the meaning of the optimal weights u and v as the
shadow prices of outputs and shadow costs of inputs, respectively, and the free variable w
can be used to identify scale properties of the DMUs. As noted, the only difference with the
conventional case is that each DMU (Xo, Yo) is compared with the qualifying DMUs j ∈ Jo,
and the other DMUs from the set J\Jo are disallowed as potential comparators.

The dual to the output-maximization R-VRS model M2
VRS is obtained in a similar way,

assuming that Oη = OV .
A similar treatment is applicable to the R-CRS models M1

CRS and M2
CRS, provided the

ratio inputs and outputs are of the fixed type only and, as above, the improvement factors
are attached only to the volume measures. To be specific, consider the input-minimization
model M1

CRS with fixed ratio inputs and outputs. According to Proposition 4, the underlying
technology TF

CRS is described by inequalities (4) from which the normalizing equality (4.5) is
removed. Repeating the proof of Proposition 8, it is straightforward to verify that the dual
to model M1

CRS (under the specified conditions) can be stated as program (14) in which the
scalar variable w is omitted.

The investigation of the dual programs to models M1
CRS and M2

CRS that incorporate ratio
measures other than of the fixed type goes beyond the scope of this paper.

7. Computational issues and example

Below we consider computational approaches to the R-VRS and R-CRS models and
provide a computational example.

7.1. Computational approaches

To be specific, we consider the solution of input-minimization R-VRS and R-CRS mod-
els M1

VRS and M1
CRS based on conditions (4) and (13), respectively. The case of output-

maximization models is similar, with a minor difference in the treatment of bounds (2) as
stated in Proposition 7.

Depending on which inputs are included in the set Iθ and (in the case of R-CRS) what
types of ratio measures are used, models M1

VRS and M1
CRS can take on linear, mixed integer

linear and nonlinear forms. Below we briefly discuss these three cases.

1. Linear programming. This is the simplest case that arises if the radial improvement
factor θ is attached only to volume inputs of the DMU (Xo, Yo). Then the R-VRS
model M1

VRS is a linear program with respect to λ and θ. The R-CRS model M1
CRS is

also a linear program with respect to λ, µ, ν and θ, if condition (13.8b) is not used.

23It is interesting to note that the envelopment R-VRS model M1
VRS based on conditions (4) can also be

restated using the set Jo. Indeed, for any j ∈ Jo the corresponding inequalities (4.3) and (4.4) are trivially
true and can be omitted as redundant. Furthermore, from (4.3) and (4.4) we have λj = 0, for all j ∈ J\Jo.
Therefore, conditions (4) are equivalently restated by omitting both groups of inequalities (4.3) and (4.4),
and by performing the summation in (4.1) and (4.2) over the set Jo instead of J . Model M1

VRS based on
the resulting restatement of conditions (4) is the standard dual of the multiplier model (14).
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Table 2: Hospital data.

Hospital Costs (£) Patients Target time (%)

A 40,000 70 85

B 30,000 50 55

C 60,000 120 90

D 25,000 65 20

2. Mixed integer linear programming. This is the general case of the R-VRS model M1
VRS

in which the improvement factor θ may be attached to any inputs. For the R-CRS
model M1

CRS this case is restricted to the situation in which θ is attached to any
volume inputs or ratio inputs of the fixed type only. In this case, the nonlinear in-
equalities in either model can be linearized by the well-known method of treatment
of “either-or” conditions. This transforms models M1

VRS and M1
CRS to mixed integer

linear programs.24

3. Nonlinear programming. This is the general case of the R-CRS model M1
CRS in which

the factor θ may be attached to any inputs. Note that the corresponding inequalities
become nonlinear. For example, (13.6a) contains the product θλj on its right-hand
side. In this case a simple line search procedure can be programmed that requires
solving a (mixed integer) linear program at each step. The idea is to identify the value
θ∗ such that the model M1

CRS is feasible with θ∗ and infeasible with θ = θ∗ − ε, where
ε > 0 is the required precision. Then θ∗ may be taken as the input radial efficiency of
the DMU (Xo, Yo) calculated with the required precision.

7.2. A computational example

To illustrate the use of new DEA models, consider the following variant of Example 1.
Table 2 shows four hospitals: A, B, C, and D, their volume input (costs in British pounds),
volume output (number of patients treated for a certain condition) and the proportion of
patients treated within the target time (ratio R2 in Example 1). The latter is regarded as
a ratio output.

To be specific, we assess the efficiency of the four hospitals with respect to the volume
measures only. In particular, for the input radial efficiency we define Iθ = {Costs}, and
for the output radial efficiency we define Oη = {Patients}. As above, we use notation
M1

VRS andM2
VRS to denote the input-minimization and output-maximization R-VRS models,

respectively. In the case of R-CRS, we use models M1
CRS and M2

CRS based on the formulation
of Theorem 3. According to Proposition 7, the upper bound on the ratio output (100%)
needs not specifying in any of these models.

We use this example to illustrate how the assumption of the ratio type can affect the
resulting efficiency in the R-CRS model. Below we consider three scenarios in which the
ratio output R2 is modeled as the fixed (F), downward-proportional (D) or proportional

24The treatment of condition (13.8b) in the R-CRS modelM1
CRS requires an extra step. First, we introduce

a new variable vector τ ∈ Rn
+ and note that condition (13.8b) can be restated as follows: if µj > 0, there

exists a τj ≥ 0 such that τjY
P
j ≥ Y P . This is equivalent to the “either-or” statement: either µj = 0 or

τjY
P
j ≥ Y P , ∀j ∈ J .
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(P) type. We add the corresponding letter to the model notation to indicate that the ratio
output is treated as being of a particular type.

For example,M1
CRS(D) is the input-minimization R-CRS model in whichR2 is a downward-

proportional ratio output defined by formula (7) with q = 0. For hospital A this model takes
on the form:25

θ∗ = min θ,

subject to

70(λA + µA − νA) + 50(λB + µB − νB) + 120(λC + µC − νC) + 65(λD + µD − νD) ≥ 70,

40(λA + µA − νA) + 30(λB + µB − νB) + 60(λC + µC − νC) + 25(λD + µD − νD) ≤ 40θ,

0.85(λA − νA) + 0νA ≥ 0.85λA,

(0.85− 0.85)µA ≥ 0,

0.55(λB − νB) + 0νB ≥ 0.85λB,

(0.55− 0.85)µB ≥ 0,

0.9(λC − νC) + 0νC ≥ 0.85λC ,

(0.9− 0.85)µC ≥ 0,

0.2(λD − νD) + 0νD ≥ 0.85λD,

(0.2− 0.85)µD ≥ 0,

λA + λB + λC + λD = 1,

λA − νA ≥ 0, λB − νB ≥ 0, λC − νC ≥ 0, λD − νD ≥ 0,

λA, λB, λC , λD ≥ 0, µA, µB, µC , µD ≥ 0, νA, νB, νC , νD ≥ 0, θ sign free.

Table 3 shows the efficiency of the four hospitals in different models.26 Comparing the
efficiency of hospitals in the input-minimization R-CRS models, we observe that the least
discriminating is model M1

CRS(D). This is consistent with the fact that the assumption
of the downward-proportional type, based on the worst-case scenario, is weaker than the
assumptions of the fixed and proportional types.27 A similar observation can be made in
the case of output maximization: model M2

CRS(D) is the least discriminating of the three
R-CRS models in this case.

Also note that the efficiency of each hospital is the same in the input-minimization R-
CRS model M1

CRS(F) and the output-maximization R-CRS model M2
CRS(F). This illustrates

the statement of Proposition 6. Note that the same observation does not apply to models
M1

CRS(D) and M1
CRS(P): the efficiency of hospitals in these R-CRS models is generally

different from their efficiency in the corresponding output maximization models M2
CRS(D)

and M2
CRS(P).

8. The answer to the DM’s dilemma in Example 1

The DM’s dilemma in Example 1 arises from the fact that none of the existing DEA
models is suitable for the incorporation of ratio measures from R1 to R8. Their use would

25To be consistent with the description of the downward-proportional ratio output (7) and its use in
program (13), we have transformed the target times shown in Table 2 as percentages, into fractions of 1.

26All models were solved using a common commercial solver.
27The fixed type makes larger values of the ratio output (compared to the downward-proportional type)

feasible for α < 1. The proportional type adds more points to the technology than the downward-
proportional type for α > 1.
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Table 3: Efficiency in different models.

Input-minimization models Output-maximization models

Hospital M1
VRS M1

CRS(F) M1
CRS(D) M1

CRS(P) M2
VRS M2

CRS(F) M2
CRS(D) M2

CRS(P)

A 1 0.875 1 1 1 0.875 1 1

B 1 0.833 0.923 0.913 1 0.833 0.893 0.86

C 1 1 1 0.952 1 1 1 0.93

D 1 1 1 1 1 1 1 1

result in an incorrect model of production technology and potentially lead to a flawed as-
sessment of benchmark costs. The models developed in our paper are designed to resolve
this type of problem.

The case of R-VRS is straightforward: the DM can use model M1
VRS that minimizes the

costs (as in the above computational example). In particular, ratio outputs R1 and R2,
and bad ratio inputs R6 and R7 (treated as outputs) should be incorporated in conditions
(4.3). The ratio inputs R5 and R8, and bad ratio outputs R3 and R4 (viewed as inputs)
are modeled by conditions (4.4).

In the case of R-CRS there is some modeling flexibility depending on the DM’s willingness
to make a specific assumption about the type of ratio measures. As a reasonable starting
point, the DM may assume that R1 and R2 are downward-proportional ratio outputs, R3

and R4 are downward-proportional ratio inputs, and R5 is an upward-proportional ratio
input. As discussed, this corresponds to the most conservative model of these ratios and
expands the technology in the least possible way. Also, as argued in §4, the DM may model
R6 as proportional ratio output, andR7 andR8 as fixed ratio output and input, respectively.

All of these ratios are incorporated in the cost-minimization R-CRS model M1
CRS using

the inequalities (13) of the corresponding type. For example, the downward-proportional
success rate R1 is modeled by two inequalities (13.5a) and (13.5b). Although all ratio
measures, except R5 and R6 are bounded above by 1 (or 100%), by Proposition 7, these do
not need to be specified in the input-minimization model.

Assume the DM decides that the success rate R1, and readmission and mortality rates
R3 and R4 do not significantly depend on the simultaneous reduction of costs and numbers
of patients. In other words, scale is irrelevant for these measures. In this case R1 is modeled
as a fixed ratio output by condition (13.3). The ratio inputs R3 and R4 are modeled as
fixed ratio inputs in (13.4).

Furthermore, the DM may decide that the classification of the rate of radiotherapy treat-
ments R5 as an upward-proportional input type is too conservative and wish to investigate
the effect of reclassifying this ratio as the proportional input type. In this case R5 is incor-
porated in the model by conditions (13.8a) and (13.8b).

The computational example in §7.2 suggests that the reclassification of the above ratios
to the fixed or proportional types should generally have a positive impact on the efficiency
discrimination of the model.
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9. Conclusion

Various performance indicators in different industries and public organizations are avail-
able only in the form of ratios. A question as to how such data could be integrated in
efficiency analysis has been debated for at least two decades. Despite a clear need of a
definitive methodology, the existing literature has so far provided only a partial and often
unconvincing answer as to how this could be done.

If ratio measures are used in conventional VRS and CRS DEA models, the underlying
technology is generally modeled incorrectly: for example, it may include DMUs that cannot
be produced. This implies that the efficient frontier becomes arbitrary and the efficiency
cannot be reliably interpreted as a feasible improvement factor. This has a domino effect
on such derived notions as scale and productivity change, both of which rely on a correct
model of technology.

In our paper we address the above problem by developing new DEA models in which
the production technology is modeled correctly, in accordance with the stated axioms. The
latter explicitly account for different properties of volume and ratio measures. The new
R-VRS and R-CRS technologies are formally derived from these axioms—this means that
they are consistent with the stated assumptions and contain no arbitrary extensions to the
observed set of DMUs.

The main result of our paper is the development of the R-VRS and R-CRS models of
production technology suitable for ratio measures. Once the technologies are constructed,
we can use different projection methods to obtain different DEA models and efficiency mea-
sures. An example of this is the assessment of radial input and output efficiency measures
considered in §6, where the radial improvement factor can be applied to all, or only some,
of the inputs or outputs. Other common efficiency measures can be used with the new tech-
nologies in a similar way. This includes measures based on directional distance functions,
slack-based and hyperbolic measures of efficiency, to name a few common approaches. Prop-
erties of such models, related computational methods and methodological issues remain to
be explored.

A number of other issues are left outside the scope of this paper. These include the
statistical validation (testing) of assumptions, addressed for standard DEA models by Simar
and Wilson (2002). Also unaddressed in this paper is the notion of scale efficiency. Its
development for models with ratio data raises a number of conceptual problems and remains
open for future research.
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Appendix A. Proofs

Proof of Theorem 1. The proof is a straightforward modification of the proof given by
Podinovski (2005), and is omitted.

Proof of Proposition 1. This is similar to the proof Proposition 2 below and is omitted.

Proof of Theorem 2. Let T̃R
CRS be the set of all DMUs (11) that satisfy (2) and (12) with

some vectors λ, α, β ∈ Rn. The proof of the theorem follows from Lemmas 1–3.

Lemma 1. Technology T̃R
CRS satisfies Axioms 1—3.

Proof of Lemma 1. Axioms 1 and 2 are straightforward. Consider Axiom 3. Let DMUs
(X̃, Ỹ ) and (X̂, Ŷ ) satisfy (12) with λ̃, α̃, β̃ and λ̂, α̂, β̂, respectively, and let (3) be true.
Let us prove that, for any γ ∈ [0, 1], the DMU (X∗, Y ∗) = γ(X̃, Ỹ ) + (1− γ)(X̂, Ŷ ) satisfies
(12) with the vectors λ∗, α∗ and β∗ as defined below. First, let

λ∗ = γλ̃+ (1− γ)λ̂. (A.1)

Define J+ = {j ∈ J | λ∗
j > 0}. For each j ∈ J+, define β∗

j and α∗
j from the equalities

λ∗
jβ

∗
j = γλ̃jβ̃j + (1− γ)λ̂jβ̂j, (A.2)

λ∗
jβ

∗
jα

∗
j = γλ̃jβ̃jα̃j + (1− γ)λ̂jβ̂jα̂j. (A.3)

For each j ∈ J+, from (A.1) and (A.2), we have

β∗
j =

γλ̃jβ̃j + (1− γ)λ̂jβ̂j

λ∗
j

=
γλ̃jβ̃j + (1− γ)λ̂jβ̂j

γλ̃j + (1− γ)λ̂j

. (A.4)

Taking into account the last term of (A.4),

min{β̃j, β̂j} ≤ β∗
j ≤ max{β̃j, β̂j}. (A.5)

By (A.5), β∗
j ≥ 1, ∀j ∈ J+. Then similarly, from (A.2) and (A.3), we have

α∗
j =

γλ̃jβ̃jα̃j + (1− γ)λ̂jβ̂jα̂j

λ∗
jβ

∗
j

=
γλ̃jβ̃jα̃j + (1− γ)λ̂jβ̂jα̂j

γλ̃jβ̃j + (1− γ)λ̂jβ̂j

, (A.6)

min{α̃j, α̂j} ≤ α∗
j ≤ max{α̃j, α̂j}. (A.7)

From (A.1) and (A.3),

β∗
jα

∗
j =

γλ̃jβ̃jα̃j + (1− γ)λ̂jβ̂jα̂j

λ∗
j

=
γλ̃jβ̃jα̃j + (1− γ)λ̂jβ̂jα̂j

γλ̃j + (1− γ)λ̂j

,

min{β̃jα̃j, β̂jα̂j} ≤ β∗
jα

∗
j ≤ max{β̃jα̃j, β̂jα̂j}. (A.8)

Finally, for each j such that λ∗
j = 0 (i.e. j ∈ J\J+), arbitrarily define β∗

j = α∗
j = 1.

Let us prove that DMU (X∗, Y ∗) and vectors λ∗, α∗ and β∗ satisfy (12). Consider (12.1)
and (12.2). State each of these inequalities twice, with DMU (X̃, Ỹ ) and vectors λ̃, α̃, β̃,
and with DMU (X̂, Ŷ ) and vectors λ̂, α̂, β̂, respectively. Multiply the first inequality in each
pair by γ and the second by 1− γ, and add the two resulting inequalities. Noting (A.3) and
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rearranging the terms, we obtain (12.1) and (12.2) stated for the DMU (X∗, Y ∗) with λ∗,
α∗ and β∗.

To prove (12.3)–(12.9), let λ∗
j > 0. The case λ̃j = 0 or λ̂j = 0 is trivial. For example,

if λ̃j = 0, by (A.4) and (A.6), β∗
j = β̂j, α

∗
j = α̂j, and inequalities (12.3)–(12.9) are true

because (X̂, Ŷ ) satisfies (12) with λ̂, α̂, β̂. Let both λ̃j ̸= 0 and λ̂j ̸= 0. Then conditions
(12.3) and (12.4) are obviously satisfied.

Noting (3), conditions (12.5)–(12.9) are true for subvectors Y D, XD, XU , Y P and XP

together with each of the two sets of vectors: λ̃, α̃, β̃, and λ̂, α̂, β̂. Consider (12.5). By
(A.7), there exists a δ ∈ [0, 1] such that α∗

j = δα̃j+(1−δ)α̂j. State (12.5) twice, with α̃j and
α̂j. Multiply the former by δ and the latter by 1 − δ. By adding the resulting inequalities
and rearranging the terms, observe that (12.5) is satisfied by α∗

j . The inequality (12.6) is
proved in the same way. The proof of inequalities (12.7)–(12.9) follows from (A.5) and (A.8).

Conditions (12.10)–(12.13) follow from (A.1), (A.5) and (A.7). Finally note that the
DMU (X∗, Y ∗) is nonnegative and satisfies (2). Therefore, (X∗, Y ∗) ∈ T̃R

CRS.

Lemma 2. Technology T̃R
CRS satisfies Axioms 4 and 5.

Proof of Lemma 2. Let (X, Y ) satisfy (2) and (12) with λ, α and β . Let 0 ≤ γ < 1. Then
the DMU (Xγ, Y γ) defined in Axiom 4 (here we use γ instead of α) satisfies (12) with the
same λ, β and α̃ = γα. Indeed, conditions (12.1)–(12.4), (12.7)–(12.13) are straightforward.
Also, in (12.5),

α̃jY
D
j + (1− α̃j)q̄ = γαjY

D
j + (1− γαj)q̄

= γ(αjY
D
j + (1− αj)q̄)− γq̄ + q̄ ≥ γY D + (1− γ)q̄ = (Y γ)D,

and (12.5) follows. Inequality (12.6) is proved in a similar way. Conditions (2) are straight-
forward.

The proof of Axiom 5 is similar. Let γ > 1. Then the DMU (Xγ, Y γ) defined in Axiom 5
(we use γ instead of α) satisfies conditions (2) and (12) with the same λ, α and β̃ = γβ.

Lemma 3. Technology T̃R
CRS is a subset of any technology T ′ that satisfies Axioms 1–5.

Proof of Lemma 3. Assume that (X,Y ) ∈ T̃R
CRS. Therefore, (X, Y ) satisfies (2) and (12)

with some λ, α and β. We need to prove that (X,Y ) ∈ T ′, where T ′ is any technology that
satisfies Axioms 1–5. By Axiom 1, all observed DMUs (Xj, Yj) ∈ T ′, ∀j ∈ J .

Without loss of generality, let λj > 0 for all j ∈ J and, therefore, (12.3)–(12.9) are
unconditionally true. Consider the DMUs (X̃j, Ỹj) constructed from (Xj, Yj) ∈ T ′ using the
components on the left-hand side of inequalities (12) and the vector min{βj(αjY

P
j ), Ȳ P}

defined in §5.1:(
X̃j

Ỹj

)
=

(
βj

(
αjX

V
j

)
, XF

j , αjX
D
j + (1− αj)p̄, βjX

U , βj

(
αjX

P
j

)
βj

(
αjY

V
j

)
, Y F

j , αjY
D
j + (1− αj)q̄,min{βj(αjY

P
j ), Ȳ P}

)
.

The DMU (X̃j, Ỹj) is the result of contraction of the observed DMU (Xj, Yj) ∈ T ′ with
0 ≤ αj ≤ 1, and its further expansion with βj ≥ 1, following the “rules” of Axioms 4–5. By
(12.3)–(12.9) and because (X, Y ) satisfies (2), (X̃j, Ỹj) also satisfies (2). By Axioms 4 and
5, (X̃j, Ỹj) ∈ T ′.

Change the ratio inputs and outputs of the DMU (X̃j, Ỹj) to the corresponding equal
or “worse” values XF , XD, XU , XP and Y F , Y D, Y P on the right-hand side of (12.3)–(12.9).
Note that, by (2) and (12.8), min{βj(αjY

P
j ), Ȳ P} ≥ Y P . Define

(X̂j, Ŷj) =
(
βj

(
αjX

V
j

)
, XF , XD, XU , XP , βj

(
αjY

V
j

)
, Y F , Y D, Y P

)
.
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By Axiom 2, (X̂j, Ŷj) ∈ T ′. All DMUs (X̂j, Ŷj), j ∈ J , have the same subvectors of ratio
inputs and outputs and, by Axiom 3, the following DMU is in T ′:

(X̂, Ŷ ) =

(∑
j∈J

λjβj

(
αjX

V
j

)
, XF , XD, XU , XP ,

∑
j∈J

λjβj

(
αjY

V
j

)
, Y F , Y D, Y P

)
.

Finally, by (12.1) and (12.2), (X̂, Ŷ ) dominates (X,Y ). By Axiom 2, (X, Y ) ∈ T ′.

Proof of Theorem 3. The proof follows from Lemmas 4 and 5.

Lemma 4. Let DMU (X, Y ) satisfy conditions (12) with λ, α, β ∈ Rn. Then (X, Y ) satisfies
conditions (13) with the same vector λ and some vectors µ, ν ∈ Rn.

Proof of Lemma 4. For all j ∈ J , define

µj = λjαj(βj − 1), (A.9)

νj = λj(1− αj). (A.10)

From (A.9) and (A.10), and taking into account (12.11) and (12.12), for all j ∈ J , we have

λj + µj − νj = λjβjαj, (A.11)

λj − νj = λjαj, (A.12)

if µj > 0 then λj > 0. (A.13)

Conditions (13.1) and (13.2) follow by substituting (A.11) into (12.1) and (12.2). By (A.13),
λj + µj > 0 implies λj > 0, and (13.3) and (13.4) follow from (12.3) and (12.4). To prove
(13.5a), (13.6a), (13.8a) and (13.9), multiply both sides of (12.5), (12.6), (12.8) and (12.9) by
λj. To prove (13.7a), multiply (12.7) by λjαj. The proof of all these conditions is completed
by noting (A.10)–(A.13). Furthermore, (12.5) and (12.6) imply (13.5b) and (13.6b). Indeed,
by (A.13) and Data Assumption 3,

Y D
j ≥ αjY

D
j + (1− αj)q̄ ≥ Y D,

XD
j ≤ αjX

D
j + (1− αj)p̄ ≤ XD.

Similarly, (12.7) implies (13.7b). Indeed, XU
j ≤ βjX

U
j ≤ XU .

Let us prove (13.8b). Consider any j ∈ J and r ∈ OP such that µj > 0 and Y P
r > 0.

Then by (A.13), λj > 0. Then (12.8) is true and, in particular, for the given r, we have

βjαjY
P
jr ≥ Y P

r .

Because, as assumed, Y P
r > 0, we have Y P

jr > 0, and (13.8b) follows. Finally, (12.10)–(12.13)
imply (13.10)–(13.12).

Lemma 5. Let DMU (X, Y ) satisfy conditions (13) with vectors λ, µ, ν ∈ Rn. Then (X,Y )
satisfies conditions (12) with some vectors λ̃, α̃, β̃ ∈ Rn.

Proof of Lemma 5. Below we identify five different types of j ∈ J depending on the values
of λj, µj and νj. Each type requires a different definition of vectors λ̃j, αj and βj that satisfy
(12.3)–(12.9) and (12.11)–(12.13). Regardless of the type, for each j, we have

λj + µj − νj = λ̃jαjβj. (A.14)
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This implies that conditions (12.1) and (12.2) follow from (13.1) and (13.2). Finally, the
normalizing equality (12.10) may not be true for the vector λ̃ but becomes true after a
renormalization of λ̃.

Consider the following five mutually exclusive types of j ∈ J .
Type 1. This type includes all j ∈ J : λj = µj = νj = 0. Define λ̃j = 0 and arbitrarily

let αj = βj = 1. The only conditions that need proving are (12.11)–(12.13). These are
obviously true.

Type 2. This type includes all j ∈ J : λj − νj > 0. By (13.11) this implies λj > 0.
Define

λ̃j = λj, (A.15)

αj = (λj − νj)/λj, (A.16)

βj = (λj + µj − νj) / (λj − νj) . (A.17)

From (A.16) and (A.17),
βjαj = (λj + µj − νj) /λj. (A.18)

Note that αj and βj satisfy (12.11)–(12.13). Because λ̃j = λj > 0, we need to prove
(12.3)–(12.9). Note that (13.3) and (13.4) imply (12.3) and (12.4). Inequalities (12.5) and
(12.6) follow by dividing both sides of (13.5a) and (13.6a) by λj > 0 and noting (A.16).
Condition (12.7) is obtained by dividing both sides of (13.7a) by λj − νj > 0 and noting
(A.17). Inequalities (12.8) and (12.9) are obtained by dividing both sides of (13.8a) and
(13.9) by λj > 0 and noting (A.18).

Type 3. This type includes all j ∈ J : λj = νj > 0 (therefore, λj − νj = 0) and µj = 0.
Define

λ̃j = λj > 0, (A.19)

αj = 0, (A.20)

βj = 1. (A.21)

Note that αj and βj satisfy (12.11)–(12.13). Because λ̃j = λj > 0, we need to prove (12.3)–
(12.9). Note that (12.3) and (12.4) follow from (13.3) and (13.4). To prove (12.5) and (12.6),
divide both sides of (13.5a) and (13.6a) by λj and note that (λj − νj)/λj = 0 = αj and
νj/λj = 1 = 1− αj. Because λj > 0 and noting (A.21), condition (13.7b) implies (12.7).

For any j of Type 3, λj + µj − νj = 0. Because λj > 0, (13.8a) implies Y P = 0, and
(12.8) is true. From (A.20) and (A.21), βjαj = 0, and (12.9) is trivially true.

Type 4. This type includes all j ∈ J : λj = νj > 0 (therefore, λj − νj = 0) and µj > 0.
Define

λ̃j = λj > 0, (A.22)

αj = ε, (A.23)

βj = µj/(λjε) = µj/(λjαj), (A.24)

where ε ∈ (0, 1) is so small that, in (A.24) βj ≥ 1. Then conditions (12.11)–(12.13) are true.
Because λ̃j = λj > 0, (13.3) and (13.4) imply (12.3) and (12.4). Divide both sides of

(13.5a) and (13.6a) by λj > 0. Noting that λj − νj = 0 and νj/λj = 1, and by Data
Assumption 3, we have

εY D
j + (1− ε)q̄ ≥ 0Y D

j + 1q̄ ≥ Y D, (A.25)

εXD
j + (1− ε)p̄ ≤ 0XD

j + 1p̄ ≤ XD. (A.26)
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Taking into account (A.23), the inequalities (A.25) and (A.26) become (12.5) and (12.6).
If IU ̸= ∅ then, as λj − νj = 0 and µj > 0, from (13.7a), XU

j = 0, and (12.7) follows.
Finally, (12.8) and (12.9) follow by dividing (13.8a) and (13.9) by λj > 0, noting that
λj − νj = 0 and by (A.24).

Type 5. This type includes all j ∈ J : λj = νj = 0 and µj > 0. For all such j, (13.8b)
implies there exists a βj ≥ 1 such that βjY

P
j ≥ Y P , and (12.8) follows. Also define

αj = 1, (A.27)

λ̃j = µj/(αjβj) = µj/βj > 0. (A.28)

Note that αj and βj satisfy (12.11)–(12.13). Also note that λ̃j can be larger than 1.
Below we renormalize vector λ̃ to correct this. Because λ̃j > 0, we need to prove (12.3)–
(12.7) and (12.9). By (A.28), µj > 0. Then (13.3) and (13.4) imply (12.3) and (12.4), and
conditions (13.5b) and (13.6b) imply (12.5) and (12.6), where αj = 1 as in (A.27). Because
µj > 0 and by (13.7a) and (13.9), if IU ̸= ∅ then XU

j = 0, and if IP ̸= ∅ then XP
j = 0. This

implies (12.7) and (12.9).
We have proved that (X, Y ) satisfies (12.3)–(12.9) with the vectors λ̃, α and β whose

components are defined differently depending on the type of j. It is easy to verify that
equality (A.14) is true for each type of j. Therefore, (13.1) and (13.2) imply (12.1) and
(12.2).

Finally, consider the normalizing equality (12.10). If all j ∈ J are of Types 1–4 only,
then from (A.15), (A.19), (A.22), we have λ̃ = λ, and (12.10) follows. Assume there exists
a j∗ of Type 5. Because λj∗ = 0 and, by (A.28), λ̃j∗ > 0, we have 1⊤λ̃ = Λ∗ > 1. Let

λ̂ = λ̃/Λ∗, β̂ = βΛ∗ and α̂ = α, where λ̃, β and α are the vectors whose components were
defined above for each type of j. Then all conditions (12) are true with λ̂, α̂ and β̂. (As
shown above, in this case we have XU

j = 0 and XP
j = 0.)

Proof of Proposition 2. Consider the statement of TR
CRS by Theorem 3. Assume that a

sequence of DMUs (Xk, Y k) ∈ TR
CRS converges to (X∗, Y ∗) ∈ Rm×Rs as k → +∞. We need

to prove that (X∗, Y ∗) ∈ TR
CRS. For sufficiently large k, all vectors Xk are in some small

neighborhood of vector X∗. For each k, (Xk, Y k) satisfies (13) with some vectors λk, µk

and νk. Because of (13.10)–(13.12), all vectors λk, νk ∈ [0, 1]n, and λk
j > 0 for at least one

j. Data Assumption 4, (13.2), (13.7a) and (13.9) imply that µk
j
cannot be unbounded, and

therefore there exists a constant M1 > 0 such that µk
j ≤ M , for all j ∈ J and k = 1, 2, ...

Therefore, all vectors µk ∈ [0,M ]n.
The sequence {(λk, µk, νk)} is in the set ∆ = [0, 1]n × [0, 1]n × [0,M ]n. Because ∆ is a

compact set, there exists a subsequence of this sequence that converges to some (λ∗, µ∗, ν∗) ∈
∆. Without loss of generality, let {(λk, µk, νk)} → (λ∗, µ∗, ν∗) when k → +∞.

Consider conditions (13), with the exception of (13.8b) which is dealt with below. By
stating these conditions with the DMU (Xk, Y k) and components λk

j , µ
k
j , ν

k
j , and taking k

to +∞, we prove that these are satisfied at the limit by (X∗, Y ∗) and λ∗, µ∗ and ν∗. Assume
that, for some r ∈ OP , µ∗

j > 0 and (Y ∗)Pr > 0. Then, for all sufficiently large k, µk
j > 0 and

(Y k)Pr > 0. By (13.8b), Y P
jr > 0. Therefore, (13.8b) is true for (X∗, Y ∗) and µ∗.

Finally, all DMUs (Xk, Y k), and therefore the limit DMU (X∗, Y ∗), satisfy (2).

Proof of Proposition 3. Any DMU (X,Y ) that satisfies (4) with some λ, also satisfies
(12) with the same λ and α = β = 1, and the proof follows.

Proof of Proposition 4. If DMU (X, Y ) satisfies (12.1)–(12.4) and (12.10)–(12.13) with
some λj, αj and βj, ∀j ∈ J , then it satisfies (4.1)–(4.4) and (4.6) with λ̃j = λjαjβj. In
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particular, if λ̃j > 0 then λj > 0. Then (4.3) and (4.4) follow from (12.3) and (12.4).
Conversely, if (X,Y ) satisfies (4.1)–(4.4) and (4.6) with some λ, define Λ =

∑
j∈J λj. Because

Y V ̸= 0 and by (4.1), Λ > 0. For all j ∈ J , let λ̃j = λj/Λ. Also, if Λ ≤ 1, define α̃j = Λ and
β̃j = 1, ∀j ∈ J . Otherwise, i.e. if Λ > 1, define α̃j = 1 and β̃j = Λ, ∀j ∈ J . Then conditions
(12.1), (12.2), and (12.10)–(12.13) are true. Finally, because α̃j > 0 and β̃j > 0 for all j,
λj > 0 implies λ̃j > 0 and, therefore, (4.3) and (4.4) imply (12.3) and (12.4). Therefore,
(X, Y ) satisfies (12.1)–(12.4) and (12.10)–(12.13) with λ̃, α̃ and β̃.

In the proof of Propositions 5–7 we use R-CRS models M̃1
CRS and M̃2

CRS. These are,
respectively, equivalent to models M1

CRS and M2
CRS and are obtained from the latter by

replacing their conditions (13) by the equivalent nonlinear conditions (12). We also require
the following assumption that replaces the stronger Data Assumption 5 stated in §6.2.
Data Assumption 5*. (a) For model M1

VRS, there exists an i∗ ∈ IV ∩ Iθ such that XV
oi∗ > 0

and XV
ji∗ > 0, ∀j ∈ J . (b) For model M2

VRS, there exists an r∗ ∈ OV ∩Oη such that Y V
or∗ > 0.

(c) For model M1
CRS (and M̃1

CRS), condition (a) is true and there exists an r∗ ∈ OV such
that Y V

or∗ > 0. (d) For model M2
CRS (and M̃2

CRS), condition (b) is true and there exists an
i∗ ∈ IV such that XV

oi∗ > 0 and XV
ji∗ > 0, ∀j ∈ J .

Proof of Proposition 5. Consider model M1
VRS. By Data Assumption 5*(a) and (4.2),

at any feasible solution to M1
VRS, θ ≥ 0. Therefore, the infimum θ∗VRS ≥ 0. Because TR

VRS

is a closed set, (Xo(θ
∗
VRS), Yo) ∈ TR

VRS and θ∗VRS is attained for some vector λ∗. By Data
Assumption 5*(a),

∑
j∈J λ

∗
jX

V
ji∗ > 0. Because XV

oi∗ > 0, we have θ∗VRS > 0. Consider

model M2
VRS. Because of (4.5) and (4.6), the left-hand side of (4.1) is bounded above. By

Data Assumption 5*(b), the supremum η∗VRS is finite. Because TR
VRS is a closed set, η∗VRS is

attained and, obviously, η∗VRS ≥ 1.
Consider model M̃1

CRS. Similar to the case ofM1
VRS, the infimum θ∗CRS ≥ 0 and is attained.

Assume that θ∗CRS = 0. Then (12.2) and Data Assumption 5*(a) imply λjαjβj = 0, ∀j ∈ J .
Then by (12.1), Y V

o = 0, which contradicts Data Assumption 5*(c). Therefore, θ∗CRS > 0.
Consider model M̃2

CRS. By (12.2) and Data Assumption 5*(d), there exists a δ such
that λjαjβj ≤ δ, ∀j ∈ J . Then the left-hand side of (12.1) is bounded above. By Data
Assumption 5*(b), the supremum η∗CRS is finite and, obviously, η∗CRS ≥ 1. Because TR

CRS is a
closed set, η∗CRS is attained.

By Proposition 3, TR
VRS ⊂ TR

CRS. Therefore, θ
∗
CRS ≤ θ∗VRS and η∗CRS ≥ η∗VRS.

Proof of Proposition 6. Let λ∗, α∗, β∗, and θ∗ be optimal in model M̃1
CRS. By Propo-

sition 5, θ∗ > 0. Then λ∗, α∗, β = β∗/θ∗, and η = 1/θ∗ is feasible in model M̃2
CRS.

Because E1
CRS(Xo, Yo) = θ∗ and E2

CRS(Xo, Yo) ≤ 1/η = θ∗, it follows that E1
CRS(Xo, Yo) ≥

E2
CRS(Xo, Yo). Conversely, let λ∗, α∗, β∗, and η∗ be optimal in model M̃2

CRS. Then η∗ ≥ 1,
and λ∗, α = α∗/η∗, β∗, and θ = 1/η∗ is feasible in model M̃1

CRS. Therefore, E
1
CRS(Xo, Yo) ≤

E2
CRS(Xo, Yo), and E1

CRS(Xo, Yo) = E2
CRS(Xo, Yo).

Proof of Proposition 7. We need to consider only the inputs and outputs that change in
the process of minimization or maximization. (a) By Proposition 5, in both models M1

VRS

and M̃1
CRS, θ

∗ ≤ 1 and, therefore, XR
o (θ

∗) ≤ XR
o ≤ X̄R. At any feasible solution to M2

VRS,
there exists a j∗ such that λj∗ > 0. Because all observed DMUs j ∈ J satisfy (2), condition
(4.3) implies Y R

o (η) ≤ Y R
j∗ ≤ Ȳ R. Therefore, conditions (2) are satisfied at any optimal

solution to the above three models.
(b) At any feasible solution to M̃2

CRS, there exists a j∗ such that λj∗ > 0. By Data
Assumption 2, (12.3) implies Y F

o (η) ≤ Y F
j∗ ≤ Ȳ F , and (12.5) implies Y D

o (η) ≤ αj∗Y
D
j + (1−

αj∗)q̄ ≤ Ȳ D.
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Proof of Proposition 8. Let u, v, δj and εj, j ∈ J , be the dual vectors of appropriate
dimensions, and w the dual scalar that correspond to constraints (4.1)–(4.5), respectively.
Then the dual to M1

VRS takes on the form:

max u⊤Y V
o + w, (A.29.1)

subject to

v⊤XV
o = 1, (A.29.2)

u⊤Y V
j − v⊤XV

j + w + δ⊤j (Y
R
j − Y R

o ) + ε⊤j (−XR
j +XR

o ) ≤ 0, ∀j ∈ J, (A.29.3)

u, v, δj, εj ≥ 0,∀j ∈ J, w sign free. (A.29.4)

If j ∈ J\Jo, then there exists a r∗ ∈ OR such that Y R
jr∗−Y R

or∗ < 0 or there exists an i∗ ∈ IR

such that −XR
ji∗ + XR

oi∗ < 0. Then each inequality in (A.29.3) for j ∈ J\Jo is satisfied by
taking a sufficiently large component δjr∗ > 0 or εji∗ > 0. Therefore, all inequalities (A.29.3)
for j ∈ J\Jo are redundant and can be omitted from (A.29).

Let us show that the remaining inequalities (A.29.3) for all j ∈ Jo can equivalently be
stated by omitting the terms δ⊤j (Y

R
j −Y R

o ) and ε⊤j (−XR
j +XR

o ), which leads to program (14).
Indeed, any feasible solution (u, v, w) in (14) is also feasible in (A.29) with δj = 0 and εj = 0,
j ∈ Jo. Conversely, let (û, v̂, ŵ) be feasible in (A.29) with some δj ≥ 0 and εj ≥ 0, j ∈ Jo.
For each j ∈ Jo we have Y R

j − Y R
o ≥ 0 and −XR

j +XR
o ≥ 0. Therefore, (û, v̂, ŵ) is feasible

in (A.29) with δj = 0 and εj = 0, for all j ∈ Jo. Therefore, (û, v̂, ŵ) is feasible in (14).

34



References

Banker, R.D., Charnes, A., Cooper, W.W. (1984) Some models for estimating technical and scale efficiencies
in data envelopment analysis. Management Science, 30(9), 1078–1092.

Banker, R.D., Morey, R.C. (1986a) Efficiency analysis for exogenously fixed inputs and outputs. Operations
Research, 34(4), 513–521.

Banker, R.D., Morey, R.C. (1986b) The use of categorical variables in data envelopment analysis. Manage-
ment Science, 32(12), 1613–1627.
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Dulá, J.H. (2009) A geometrical approach for generalizing the production possibility set in DEA. Journal
of the Operational Research Society, 60(11), 1546–1555.

Dyson, R.G., Allen, R., Camanho, A.S., Podinovski, V.V., Sarrico, C., Shale, E.A. (2001) Pitfalls and
protocols in DEA. European Journal of Operational Research, 132(2), 245–259.

Emrouznejad, A., Amin, G.R. (2009) DEA models for ratio data: convexity consideration. Applied Mathe-
matical Modelling, 33(1), 486–498.

Gaynor, M., Seider, H., Vogt, W.B. (2005) The volume-outcome effect, scale economies, and learning-by-
doing. American Economic Review, 95(2), 243–247.

Golany, B., Thore, S. (1997) The economic and social performance of nations: efficiency and returns to
scale. Socio-Economic Planning Sciences, 31(3), 191–204.

Hollingsworth, B., Smith, P. (2003) Use of ratios in data envelopment analysis. Applied Economics Letters,
10(11), 733–735.

Olesen, O.B., Petersen, N.C. (1995) Incorporating quality into data Envelopment analysis: a stochastic
dominance Aapproach. International Journal of Production Economics, 39(1–2), 117–135.

Olesen, O.B., Petersen, N.C. (2006) Controlling for socioeconomic characteristics in DEA. North American
Productivity Workshop, Stern School of Business, New York University, NY.

Olesen, O.B., Petersen, N.C. (2009) Target and technical efficiency in DEA—controlling for environmental
characteristics. Journal of Productivity Analysis, 32(1), 27–40.

Paradi, J.C., Asmild, M., Simak, P.C. (2004a) Using DEA and worst practice DEA in credit risk evaluation.
Journal of Productivity Analysis, 21(2), 153–165.

Paradi, J.C., Vela, S., Yang, Z. (2004b) Assessing bank and bank branch performance. In W.W. Cooper,
L.M. Seiford, J. Zhu (Eds.), Handbook on data envelopment analysis (pp. 349–400). Boston: Kluwer
Academic Publishers.

Paradi, J.C., Vela, S.A., Zhu, H. (2009) Adjusting for cultural differences, a new DEA model applied to a
merged bank. Journal of Productivity Analysis, 33(2), 109–123.

Podinovski, V.V. (2005) Selective convexity in DEA models. European Journal of Operational Research,
161(2), 552–563.

Ruggiero, J. (1996) On the measurement of technical efficiency in the public sector. European Journal of
Operational Research, 90(3), 553–565.

Simar, L., Wilson, P.W. (2002) Non-parametric tests of returns to scale. European Journal of Operational
Research, 139(1), 115–132.

Thanassoulis, E., Boussofiane, A., Dyson, R.G. (1995) Exploring output quality targets in the provision of
perinatal care in England using data envelopment analysis. European Journal of Operational Research,
80(3), 588–607.
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