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ABSTRACT 

This two-part paper presents a new approach to stochastic dynamic modeling for vehicle platoons. 

Part I develops a vehicle platoon model to capture the dynamics of vehicles’ grouping behavior and 

proposes an online platoon recognition algorithm. On the basis of the developed platoon model, Part 

II investigates various important characteristics of vehicle platoons and derives their statistical 

distribution models, including platoon size, within-platoon headway, between-platoon headway and 

platoon speed. It is shown that the derived statistical distributions include some important existing 

models in the literature as their special cases. These statistical distribution models are crucial for us to 

understand the traffic platooning phenomenon. In practice, they can be used as the inputs for the 

design of traffic management and control algorithms for traffic with a platoon structure. Real traffic 

data is used to illustrate the obtained theoretical results.  
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1. Introduction 
 

Traffic platooning is an important traffic phenomenon. Vehicle platoons increase the capacity of 

roads and hence, when the traffic platoon structure is taken into consideration, the efficiency of traffic 

management can substantially be enhanced.  

In Part I of this two-part paper in Li (2016), we develop a stochastic model to describe the 

dynamic behavior of vehicle platooning.  We characterize vehicle platoons by both vehicle speeds and 

vehicle time headways so that the dynamic nature of the platoon-to-platoon transition process and 

within-platoon movements can be captured.  

In part II, we turn to investigate various statistical properties of vehicle platoons. Traffic platoons 

are usually described by several important characteristics, including platoon size, platoon speed, 

within-platoon headway and between-platoon headway. These characteristics play an important role 

in traffic management and control. For example, between-platoon headway and platoon size are 

crucial inputs to traffic signal control algorithms (see, e.g., Jiang et al. 2006). 

In the traffic literature, not much attention has been paid to date to investigating these platoon 

characteristics. Here we outline some important existing studies in this area. 

The first strand of research is mostly based on queueing theory, aiming to develop some new 

theoretical distribution models. This includes the Borel-Tanner distribution (Tanner 1961; Haight and 

Breuer, 1960) and Miller distribution (Miller, 1961) for platoon sizes.  

The other line of research takes an empirical approach, aiming to find which existing statistical 

distributions are suitable to describe the collected traffic data. Most of the studies on car-followers’ 

headways fall into this category (e.g. Buckley, 1962, 1968; Ashton, 1971; Branston, 1976).  

The recent research continues this line of research and uses an empirical approach to measuring 

the important platoon characteristics. Based on a large sample of measurements on the real traffic, 

Jiang et al. (2006) explored the platoon characteristics by using some common statistical distributions. 

They found that the exponential distribution was suitable for platoon size data and the normal 

distribution was a good approximation for platoon speed measurements. With respect to headways, 

their results suggested that the normal and log-normal distributions fitted well to within-platoon 
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headway data and platoons’ inter-arrival times respectively. On the other hand, Ramezani et al. (2010) 

suggested the shifted exponential distribution for platoon sizes. They also found that the normal 

distribution was suitable for within-platoon headways and the shifted exponential distribution fitted 

between-platoon headways well. In addition, Sun and Benekohal (2005) also suggested the shifted 

exponential distribution for platoon sizes. 

Li (2016) in part I of this paper has developed a stochastic model to describe the dynamic 

behavior of vehicle platooning. Here in part II we will investigate theoretical properties of the model 

for some important platoon characteristics (platoon size and speed, and within and between platoon 

headways) and derive their statistical distributions. The derived statistical distributions provide a 

probabilistic approach to understanding the statistical properties of the platoon characteristics by 

taking into consideration vehicles’ dynamic grouping behavior that varies at different velocity levels. 

We note that the existing researches on vehicle platoons in the literature are solely based on vehicle 

time headways, and the dependence of the platoon characteristics on velocity is not captured (see, 

e.g., Tanner 1961; Miller, 1961; Cowan, 1975; Jiang et al. 2006).  

This paper is structured as follows. In the next section we briefly summarize the dynamic platoon 

model proposed in Li (2016). Then we investigate various statistical properties of vehicle platoons’ 

characteristics and use a practical example to illustrate the resulting statistical distributions in Section 

3.  Section 4 is devoted to model comparison and assessment. Here the derived statistical distributions 

are regarded as stand-alone models. We explore the relationships of these models with the existing 

distribution models in the literature. We also compare and assess the performances of the proposed 

distribution models. Finally, we draw conclusions in Section 5. The proofs of the theorems are offered 

in Appendix A. Some computational issues are discussed in Appendix B.  

 

 
2.   Summary of the stochastic dynamic model for vehicle platoons  

In this section, we briefly summarize the stochastic platoon model developed in Part I of this 

paper; see Li (2016) for further details.  
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In the traffic literature, a vehicle platoon is defined to be a group of vehicles traveling together at 

approximately the same speed. Consider a traffic flow consisting of a number of consecutive vehicles 

indexed by 𝑛𝑛 = 1,2 … … Each individual vehicle  𝑛𝑛 is characterized by two microscopic traffic 

variables, i.e. vehicle speed 𝑣𝑣𝑛𝑛 and vehicle time headway ℎ𝑛𝑛.  

In Li (2016), a Markov regime-switching stochastic process is used to model the dynamic 

behavior of platoon-to-platoon transitions, and a state-space model is employed to describe individual 

vehicles’ dynamic movements within each vehicle platoon. 

For this end, a vehicle platoon indicator 𝐺𝐺𝑛𝑛 ∈ ℳ𝑃𝑃 = {1,2, … ,2𝑀𝑀}  for vehicle 𝑛𝑛 is used to 

describe platoon-to-platoon transitions that follows a Markov switching process with a transition 

matrix 𝑄𝑄: 

 𝑄𝑄 = �
𝑞𝑞11 ⋯ 𝑞𝑞1×(2𝑀𝑀)
⋮ ⋱ ⋮

𝑞𝑞(2𝑀𝑀)×1 … 𝑞𝑞(2𝑀𝑀)×(2𝑀𝑀)
�,       (1) 

where the entry in the ith row and jth column of matrix 𝑄𝑄 is the transition probability  𝑞𝑞𝑖𝑖𝑖𝑖(ℎ𝑛𝑛) =

Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖|𝐺𝐺𝑛𝑛−1 = 𝑗𝑗,ℎ𝑛𝑛} . 

A vehicle platoon ℙ𝑚𝑚(𝑗𝑗), which is indexed by 𝑚𝑚 and of size 𝐿𝐿𝑚𝑚 and is associated with a velocity 

mode 𝑗𝑗 (𝑗𝑗 ∈ ℳ𝑉𝑉), is defined to be a number of consecutive vehicles 𝑚𝑚1 + 1, … , and 𝑚𝑚1 + 𝐿𝐿𝑚𝑚 such 

that the following conditions (C1)-(C3) are met (Li, 2016): 

 (C1) either {𝐺𝐺𝑚𝑚1 ≠ 𝑗𝑗} ∩ {𝐺𝐺𝑚𝑚1 ≠ 𝑗𝑗 + 𝑀𝑀} ∩ {𝐺𝐺𝑚𝑚1+1 = 𝑗𝑗} or  {𝐺𝐺𝑚𝑚1+1 = 𝑗𝑗 +𝑀𝑀}; 

 (C2)  𝐺𝐺𝑚𝑚1+𝐿𝐿𝑚𝑚+1 ≠ 𝑗𝑗; 

 (C3) 𝐺𝐺𝑛𝑛 = 𝑗𝑗   for all 𝑚𝑚1 + 2 ≤ 𝑛𝑛 ≤ 𝑚𝑚1 + 𝐿𝐿𝑚𝑚. 

The within-platoon movements of vehicles are described by a state-space model. Each speed 

measurement 𝑣𝑣𝑛𝑛 is assumed to follow a normal distribution with mean �̅�𝑣𝑛𝑛 and standard deviation 𝜎𝜎0: 

 𝑣𝑣𝑛𝑛 =  �̅�𝑣𝑛𝑛 + 𝜎𝜎0𝜀𝜀𝑛𝑛 with       𝜀𝜀𝑛𝑛~𝑁𝑁(0,1).     (2) 

For a vehicle 𝑛𝑛 belonging to vehicle platoon ℙ𝑚𝑚(𝑗𝑗), its mean speed �̅�𝑣𝑛𝑛 of is equal to the mean speed 

level of the platoon (denoted as 𝜇𝜇𝑖𝑖), plus a speed adjustment 𝑤𝑤𝑛𝑛 made by the individual driver, i.e. 

�̅�𝑣𝑛𝑛 = 𝜇𝜇𝑖𝑖 +  𝑤𝑤𝑛𝑛. To reflect the dynamics of the within-platoon movements of vehicles, the speed drift 

𝑤𝑤𝑛𝑛 is assumed to follow an auto-regressive AP(p) model: 
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 𝑤𝑤𝑛𝑛 = ∑ 𝛾𝛾𝑘𝑘𝑤𝑤𝑛𝑛−𝑘𝑘
𝑝𝑝
𝑘𝑘=1 + 𝜎𝜎𝑖𝑖𝑒𝑒𝑛𝑛,     with   𝑒𝑒𝑛𝑛~𝑁𝑁(0,1)     (3) 

where the standard deviation 𝜎𝜎𝑖𝑖 characterizes the magnitude of the adjustment and 𝛾𝛾𝑘𝑘 are coefficients.  

In Li (2016), the platoon indicator 𝐺𝐺𝑛𝑛 is characterized by two traffic indicators, headway mode 𝑅𝑅𝑛𝑛 

and velocity mode 𝑆𝑆𝑛𝑛, and the platoon indicator is expressed as 𝐺𝐺𝑛𝑛 = 𝑆𝑆𝑛𝑛+𝑀𝑀𝑅𝑅𝑛𝑛. The headway mode 

𝑅𝑅𝑛𝑛 ∈ ℳ𝐻𝐻 = {0,1}  indicates the status of the headway of a vehicle 𝑛𝑛: 𝑅𝑅𝑛𝑛 = 0 representing the ‘car-

following’ status and 𝑅𝑅𝑛𝑛 = 1 representing the ‘free-speed’ status. On the other hand, velocity mode 

𝑆𝑆𝑛𝑛 ∈ ℳ𝑉𝑉 = {1, … ,𝑀𝑀}  represents the velocity level of a vehicle 𝑛𝑛; A velocity mode 𝑗𝑗 is associated 

with a mean speed level  𝜇𝜇𝑖𝑖 (with 𝜇𝜇1 < ⋯ < 𝜇𝜇𝑀𝑀) and standard deviation 𝜎𝜎𝑖𝑖. Both the traffic indicators 

𝑅𝑅𝑛𝑛 and 𝑆𝑆𝑛𝑛 are modeled by the Markov processes with probability transition matrices 𝑃𝑃𝐻𝐻 and 𝑃𝑃𝑉𝑉 

respectively. The probability transition matrix 𝑃𝑃𝐻𝐻 with entry in the ith row and jth column 

Pr{𝑅𝑅𝑛𝑛 = 𝑖𝑖|𝑅𝑅𝑛𝑛−1 = 𝑗𝑗,ℎ𝑛𝑛} is given by: 

 𝑃𝑃𝐻𝐻 = �
𝑟𝑟0(ℎ𝑛𝑛) 𝑟𝑟0(ℎ𝑛𝑛)

1 − 𝑟𝑟0(ℎ𝑛𝑛) 1 − 𝑟𝑟0(ℎ𝑛𝑛)�.       (4) 

Conditional on headway ℎ𝑛𝑛, the probability transition matrix 𝑃𝑃𝑉𝑉 = �𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛)�  is modeled as  

 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛) = Pr{𝑆𝑆𝑛𝑛 = 𝑖𝑖|𝑆𝑆𝑛𝑛−1 = 𝑗𝑗,ℎ𝑛𝑛 } = 𝑎𝑎𝑖𝑖𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑖𝑖𝑖𝑖

1+∑ 𝑎𝑎𝑘𝑘𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑘𝑘𝑖𝑖𝑘𝑘≠𝑖𝑖
,    (5) 

where  𝑎𝑎𝑘𝑘𝑖𝑖 ≥ 0 and 𝑏𝑏𝑘𝑘𝑖𝑖 ≥ 0 for 𝑘𝑘 ≠ 𝑗𝑗, and  𝑎𝑎�𝑖𝑖𝑖𝑖 = 0 and 𝑏𝑏𝑖𝑖𝑖𝑖 = 0. Both of 𝑟𝑟0(ℎ𝑛𝑛) and 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛) in (4) 

and (5) are dependent on the current headway ℎ𝑛𝑛. 

The probability transition matrix of the platoon indicator 𝐺𝐺𝑛𝑛 is given by 𝑄𝑄 = 𝑃𝑃𝐻𝐻 ⊗ 𝑃𝑃𝑉𝑉, where ⊗ 

denotes the Kronecker product of the two matrices 𝑃𝑃𝐻𝐻  and 𝑃𝑃𝑉𝑉. We therefore have  

 𝑞𝑞𝑖𝑖𝑖𝑖(ℎ𝑛𝑛) = 𝑞𝑞𝑖𝑖(𝑖𝑖+𝑀𝑀)(ℎ𝑛𝑛)   and   𝑞𝑞(𝑖𝑖+𝑀𝑀)𝑖𝑖(ℎ𝑛𝑛) = 𝑞𝑞(𝑖𝑖+𝑀𝑀)(𝑖𝑖+𝑀𝑀)(ℎ𝑛𝑛)    for any 𝑖𝑖,𝑗𝑗 ∈ ℳ𝑉𝑉 .     (6) 

 

3.   Statistical models for vehicle platoons’ characteristics 

In this section, we investigate some important characteristics of vehicle platoons ℙ𝑚𝑚(𝑗𝑗) (𝑗𝑗 ∈ ℳ𝑉𝑉), 

including platoon size, within-platoon headway, between-platoon headway, and platoon speed. 

Following the traffic literature (e.g., Breiman et al., 1968; Cowan, 1975), we assume that 

headways ℎ𝑛𝑛 (𝑛𝑛 = 1,2, …) across a traffic stream are approximately independent of each other, and 



 6  

each follows a mixture distribution with two components: a ‘car-following’ component 𝑔𝑔0(ℎ) that is 

associated with the vehicles following its lead vehicle, and a ‘free-speed’ component 𝑔𝑔1(ℎ) that is 

associated with the vehicles traveling at a free speed: 

 𝑔𝑔(ℎ) = 𝜃𝜃𝑔𝑔0(ℎ) + (1 − 𝜃𝜃)𝑔𝑔1(ℎ),       (7) 

where 𝜃𝜃 is the mixing probability. Following Cowan (1975) and Li (2016), we use the following 

gamma distributions to describe the headway components: 

 𝑔𝑔𝑖𝑖(ℎ) = (ℎ − 𝜏𝜏)𝛼𝛼−1exp (−(ℎ − 𝜏𝜏)/𝜆𝜆𝑖𝑖)/[𝜆𝜆𝑖𝑖𝛼𝛼Γ(𝛼𝛼)]     (for ℎ ≥ 𝜏𝜏)      𝑖𝑖 ∈ ℳ𝐻𝐻,   (8) 

where 𝜏𝜏 is the minimum time headway, 𝛼𝛼 ≥ 1 is the common shape parameter, and 𝜆𝜆𝑖𝑖 is the scale 

parameter of the distribution 𝑔𝑔𝑖𝑖(ℎ) with 𝜆𝜆1 > 𝜆𝜆0. Given the headway ℎ𝑛𝑛 of a vehicle 𝑛𝑛, we can 

explicitly write out the expression for the probability in (4): 

 𝑟𝑟0(ℎ𝑛𝑛) = Pr{𝑅𝑅𝑛𝑛 = 0|ℎ𝑛𝑛} = 𝜃𝜃𝑔𝑔0(ℎ𝑛𝑛)
𝜃𝜃𝑔𝑔0(ℎ𝑛𝑛)+(1−𝜃𝜃)𝑔𝑔1(ℎ𝑛𝑛) .     (9) 

In addition, based on the headway model (7) and noting 𝑄𝑄 = 𝑃𝑃𝐻𝐻 ⊗ 𝑃𝑃𝑉𝑉, we can work out the 

expected transition probabilities 𝑞𝑞�𝑖𝑖𝑖𝑖 ≔ 𝐸𝐸�𝑞𝑞𝑖𝑖𝑖𝑖(ℎ)�: 

 𝑞𝑞�𝑖𝑖𝑖𝑖 = 𝑞𝑞�𝑖𝑖(𝑖𝑖+𝑀𝑀) = ∫
𝑎𝑎𝑖𝑖𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑖𝑖𝑖𝑖

1+∑ 𝑎𝑎𝑘𝑘𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑘𝑘𝑖𝑖𝑘𝑘≠𝑖𝑖

+∞
𝜏𝜏  𝑟𝑟0(ℎ)𝑔𝑔(ℎ)𝑑𝑑ℎ    

 = 𝜃𝜃 ∫
𝑎𝑎𝑖𝑖𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑖𝑖𝑖𝑖

1+∑ 𝑎𝑎𝑘𝑘𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑘𝑘𝑖𝑖𝑘𝑘≠𝑖𝑖

+∞
𝜏𝜏  𝑔𝑔0(ℎ)𝑑𝑑ℎ   𝑖𝑖, 𝑗𝑗 ∈ ℳ𝑉𝑉.    (10) 

𝑞𝑞�(𝑖𝑖+𝑀𝑀)𝑖𝑖 = 𝑞𝑞�(𝑖𝑖+𝑀𝑀)(𝑖𝑖+𝑀𝑀)=∫
𝑎𝑎𝑖𝑖𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑖𝑖𝑖𝑖

1+∑ 𝑎𝑎𝑘𝑘𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑘𝑘𝑖𝑖𝑘𝑘≠𝑖𝑖

+∞
𝜏𝜏  [1 − 𝑟𝑟0(ℎ)]𝑔𝑔(ℎ)𝑑𝑑ℎ   

 = (1 − 𝜃𝜃)∫
𝑎𝑎𝑖𝑖𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑖𝑖𝑖𝑖

1+∑ 𝑎𝑎𝑘𝑘𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑘𝑘𝑖𝑖𝑘𝑘≠𝑖𝑖

+∞
𝜏𝜏  𝑔𝑔1(ℎ)𝑑𝑑ℎ 𝑖𝑖, 𝑗𝑗 ∈ ℳ𝑉𝑉. 

The expected transition probabilities 𝑞𝑞�𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗 = 1, … ,2𝑀𝑀) describe dynamic transition behavior of 

platoons averaged across the entire traffic stream. It plays a very important role in the following 

analysis.  A detailed discussion on the calculation of (10) is given in Appendix B.  

 

3.1.   Platoon size distributions 

We now consider the statistical distribution of platoon sizes. We will first develop a theoretical 

model and then use the results in Li (2016) to illustrate the proposed model. 
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3.1.1.   The model 

The size of a platoon ℙ𝑚𝑚(𝑗𝑗) (𝑗𝑗 ∈ ℳ𝑉𝑉) is defined to be the number of the vehicles within the 

platoon. In this subsection, we denote the platoon size of ℙ𝑚𝑚(𝑗𝑗) as 𝐿𝐿𝑚𝑚(𝑗𝑗) to emphasize the 

dependence of the platoon size on the velocity level 𝑗𝑗. 

We first note that, given that vehicle 𝑚𝑚1 + 1 is the platoon leader with 𝑆𝑆𝑚𝑚1+1 = 𝑗𝑗, we have either 

𝐺𝐺𝑚𝑚1+1 = 𝑗𝑗 ≤ 𝑀𝑀 (hence 𝑅𝑅𝑚𝑚1+1 = 0) or 𝐺𝐺𝑚𝑚1+1 = 𝑗𝑗 +𝑀𝑀 (hence 𝑅𝑅𝑚𝑚1+1 = 1). We therefore consider  

𝐺𝐺𝑚𝑚1+1 = 𝑙𝑙 with 𝑙𝑙 = 𝑗𝑗 or 𝑗𝑗 + 𝑀𝑀. We calculate the conditional probability that the vehicle platoon has 

only one vehicle: 

 Pr�𝐿𝐿𝑚𝑚(𝑗𝑗) = 1|ℎ𝑚𝑚1+2� 

 = Pr�𝐺𝐺𝑚𝑚1+2 ≠ 𝑗𝑗�𝐺𝐺𝑚𝑚1+1 = 𝑙𝑙,ℎ𝑚𝑚1+2 � = 1 − 𝑞𝑞𝑖𝑖𝑗𝑗�ℎ𝑚𝑚1+2� = 1 − 𝑞𝑞𝑖𝑖𝑖𝑖�ℎ𝑚𝑚1+2�, 

where the last equality in the above equation is obtained from equation (6). In general, the conditional 

probability that the vehicle platoon includes 𝑘𝑘 vehicles given the relevant headways is: 

 Pr�𝐿𝐿𝑚𝑚(𝑗𝑗) = 𝑘𝑘|ℎ𝑚𝑚1+𝑖𝑖, 𝑖𝑖 = 2, … ,𝑘𝑘 + 1� 

 = Pr�𝐺𝐺𝑚𝑚1+𝑘𝑘+1 ≠ 𝑗𝑗,𝐺𝐺𝑚𝑚1+𝑖𝑖 = 𝑗𝑗, 𝑖𝑖 = 2, … ,𝑘𝑘, �𝐺𝐺𝑚𝑚1+1 = 𝑙𝑙,ℎ𝑚𝑚1+𝑖𝑖, 𝑖𝑖 = 2, … ,𝑘𝑘 + 1 � 

 = �1 − 𝑞𝑞𝑖𝑖𝑖𝑖�ℎ𝑚𝑚1+𝑘𝑘+1��∏ 𝑞𝑞𝑖𝑖𝑖𝑖�ℎ𝑚𝑚1+𝑖𝑖�
𝑘𝑘
𝑖𝑖=2 .       (11) 

This distribution is a generalized geometric distribution that is conditional on the headways.  

The dependence on the headways in (11) makes theoretical analysis difficult. We hence consider 

the marginal probabilities for the platoon size by integrating out the headways: 

 𝑙𝑙𝑖𝑖𝑘𝑘 ≔ 𝐸𝐸�Pr�𝐿𝐿𝑚𝑚(𝑗𝑗) = 𝑘𝑘|ℎ𝑚𝑚1+𝑖𝑖, 𝑖𝑖 = 2, … ,𝑘𝑘 + 1�� 

= � (1 − 𝑞𝑞𝑖𝑖𝑖𝑖�ℎ𝑚𝑚1+𝑘𝑘+1�)𝑔𝑔�ℎ𝑚𝑚1+𝑘𝑘+1�𝑑𝑑ℎ𝑚𝑚1+𝑘𝑘+1

+∞

𝜏𝜏

� � 𝑞𝑞𝑖𝑖𝑖𝑖�ℎ𝑚𝑚1+𝑖𝑖�
+∞

𝜏𝜏

𝑔𝑔�ℎ𝑚𝑚1+𝑖𝑖�
𝑘𝑘

𝑖𝑖=2
𝑑𝑑ℎ𝑚𝑚1+𝑖𝑖 

    =(1 − 𝑞𝑞�𝑖𝑖𝑖𝑖)(𝑞𝑞�𝑖𝑖𝑖𝑖)𝑘𝑘−1 for 𝑘𝑘 = 1,2, … and  𝑗𝑗 ∈ ℳ𝑉𝑉 ,    (12) 

with 𝑞𝑞�𝑖𝑖𝑖𝑖 given by (10). We can see from (12) that, after integrating out the headways, the generalized 

geometric distribution (11) collapses to the ordinary geometric distribution 𝐺𝐺𝑒𝑒𝐺𝐺(1 − 𝑞𝑞�𝑖𝑖𝑖𝑖). It is 

important to note that the platoon size distributions 𝐺𝐺𝑒𝑒𝐺𝐺(1 − 𝑞𝑞�𝑖𝑖𝑖𝑖) at the different velocity modes 

𝑗𝑗 ∈ ℳ𝑉𝑉 are different, and consequently vehicle platoons traveling at different velocity levels have 
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different average sizes. As a whole, the platoon size over the entire traffic stream is a mixture 

distribution of these individual geometric distributions.  

From equation (12), we can calculate the average platoon size for 𝑗𝑗 ∈ ℳ𝑉𝑉: 

 𝐿𝐿�(𝑗𝑗) = ∑ 𝑘𝑘𝑙𝑙𝑖𝑖𝑘𝑘+∞
𝑘𝑘=1 = ∑ 𝑘𝑘(1 − 𝑞𝑞�𝑖𝑖𝑖𝑖)(𝑞𝑞�𝑖𝑖𝑖𝑖)𝑘𝑘−1+∞

𝑘𝑘=1 = 1/(1 − 𝑞𝑞�𝑖𝑖𝑖𝑖).    (13) 

This quantity is important in traffic management.  

In the literature, Dunne et al. (1968) investigated a geometric distribution,   𝑙𝑙𝑘𝑘=(1 − 𝑞𝑞)𝑞𝑞𝑘𝑘−1, to 

describe platoon sizes. The parameter 𝑞𝑞 in the model of Dunne et al. (1968), however, was uniform 

across all vehicle velocities because Dunne et al. (1968) did not take into account speed variability 

and their platoon classification was solely based on time headways. In the numerical example 

investigated in the next subsection, we will see that this assumption is restrictive and unrealistic in 

practice.  

 

3.1.2.   Numerical illustration 

We use the results obtained in the empirical study in Li (2016) to illustrate the platoon size 

distributions. The expected transition probability matrix obtained in Li (2016) is:  

 𝐸𝐸𝑄𝑄 = 𝑄𝑄� = �

0.081 0.102 0.081 0.102
0.390 0.369 0.390  0.369
0.082 0.123 0.082 0.123
0.447 0.406 0.447 0.406

�, 

where each element  𝑞𝑞�𝑖𝑖𝑖𝑖  of 𝑄𝑄� = �𝑞𝑞�𝑖𝑖𝑖𝑖� is the probability that a vehicle platoon indicator 𝐺𝐺𝑛𝑛 =

𝑆𝑆𝑛𝑛+𝑀𝑀𝑅𝑅𝑛𝑛 is equal to 𝑖𝑖, given that the platoon indicator of its lead vehicle is 𝑗𝑗. Here 𝑅𝑅𝑛𝑛 ∈ {1,2} and 

𝑆𝑆𝑛𝑛 ∈ ℳ𝑉𝑉 = {1,2}, with  𝑆𝑆𝑛𝑛 = 1 for the lower speed mode and 𝑆𝑆𝑛𝑛 = 2 for the higher speed mode. For 

example, 𝑞𝑞�21 = 0.390 is the transition probability that platoon indicator 𝐺𝐺𝑛𝑛 is 2 (and hence is of the 

car-following status and traveling at the higher speed level), given that the platoon indicator of its lead 

vehicle is 1 (and hence the lead vehicle is of the car-following status and traveling at the lower speed 

level). 

On the basis of the expected transition matrix 𝑄𝑄�,  we can work out the average vehicle platoon 

size 𝐸𝐸{𝐿𝐿𝑚𝑚(𝑗𝑗)} for 𝑗𝑗 ∈ ℳ𝑉𝑉.  For the vehicle platoons associated with the lower velocity mode, we use 



 9  

equation (13) to obtain the average platoon size  1/(1 − 0.081) = 1.088 and  the corresponding 

variance  0.096. This shows that vehicles at the lower velocity mode tended to travel alone rather than 

to form a vehicle platoon. In other words, the following vehicle tended not to form a platoon with the 

lead vehicle when the lead vehicle traveled at a low speed. On the other hand, for vehicle platoons 

associated with the higher velocity mode, the average platoon size is equal to 1/(1 − 0.369) = 1.584 

and the corresponding variance is 0.927. Hence, on average, platoon sizes at the higher velocity mode 

tended to be larger. It is therefore unrealistic to assume the same platoon size distribution across the 

entire traffic stream as it did in Dunne et al. (1968). 

From equation (12), the distribution for platoon size at the lower velocity level is   

 𝑙𝑙1𝑘𝑘 = 0.919 (0.081)𝑘𝑘−1 for 𝑘𝑘 = 1,2, … ,     (14) 

whereas the distribution for platoon size at the higher velocity level is   

 𝑙𝑙2𝑘𝑘 = 0.631(0.369)𝑘𝑘−1  for 𝑘𝑘 = 1,2, …      (15) 

The upper left panel in Figure 1 shows a grouped bar plot for the lower velocity mode,  where the 

actual proportion of the platoon sizes (represented as the left white bar) and their corresponding 

theoretical value (the right black bar) calculated using distribution (14) are clustered around the same 

location on the x-axis. Likewise, for the higher velocity mode, the upper right panel shows the actual 

proportion of the platoon sizes (the left white bar) and the corresponding theoretical value (the right 

black bar) calculated using distribution (15) clustered at each location on the x-axis.  

Overall, the two graphs show that the theoretical values calculated using the derived probability 

mass functions (14)-(15) are close to the actual values. In addition, in each case, the frequency 

decreases rapidly as the platoon size increases. It can also be seen that a majority of vehicle platoons 

at the lower velocity mode (see the upper left panel) has a size of 1, whereas more platoons at the 

higher velocity mode (the upper right panel) have a size larger than 1. This clearly shows that 

vehicles’ platooning behavior can differ from each other substantially at the different velocity levels.  
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Figure 1. Actual proportions of platoon sizes (the left white bars) and the corresponding probabilities 

(the right black bars) for the lower velocity mode (the upper left panel) and for the higher velocity mode 

(the upper right panel) respectively; Actual proportions of platoon sizes and the corresponding shifted 

exponential approximations for the lower velocity mode (the lower left panel) and for higher velocity 

mode (the lower right panel) respectively. 

 

 

3.2.   Distributions of within-platoon headways  

Next, we turn to consider the within-platoon headway distributions. We first develop a theoretical 

model and then use the results in Li (2016) to illustrate the proposed model. 

3.2.1.   The model 

Consider any two consecutive vehicles (indexed as 𝑛𝑛 − 1 and 𝑛𝑛 respectively) in a platoon ℙ𝑚𝑚(𝑗𝑗) 

(𝑗𝑗 ∈ ℳ𝑉𝑉). Let ℎ𝑛𝑛 denote the headway of vehicle 𝑛𝑛. Then, given 𝐺𝐺𝑛𝑛−1 = 𝑙𝑙 with either 𝑙𝑙 = 𝑗𝑗 or 

𝑙𝑙 = 𝑗𝑗 + 𝑀𝑀, the conditional probability that vehicle 𝑛𝑛 stays within the platoon ℙ𝑚𝑚(𝑗𝑗) is 

  Pr{𝑛𝑛 ∈ ℙ𝑚𝑚(𝑗𝑗)|𝑛𝑛 − 1 ∈ ℙ𝑚𝑚(𝑗𝑗),ℎ𝑛𝑛} = Pr{ 𝐺𝐺𝑛𝑛 = 𝑗𝑗|𝐺𝐺𝑛𝑛−1 = 𝑙𝑙,ℎ𝑛𝑛} = 𝑞𝑞𝑖𝑖𝑗𝑗(ℎ𝑛𝑛) = 𝑞𝑞𝑖𝑖𝑖𝑖(ℎ𝑛𝑛),  

where the last equality in the above equation is from equation (6).  
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For any two consecutive vehicles 𝑛𝑛 − 1 and 𝑛𝑛 ∈ ℙ𝑚𝑚(𝑗𝑗) (𝑗𝑗 ∈ ℳ𝑉𝑉), the probability density function 

for within-platoon headways for mode 𝑗𝑗 is given by  

 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ𝑛𝑛; 𝑗𝑗): = 𝑓𝑓(ℎ𝑛𝑛|𝑛𝑛 − 1 and 𝑛𝑛 ∈ ℙ𝑚𝑚(𝑗𝑗)). 

From Bayes’ rule, we can obtain  

 𝑓𝑓(ℎ𝑛𝑛|𝑛𝑛 − 1 and 𝑛𝑛 ∈ ℙ𝑚𝑚(𝑗𝑗)) = Pr {𝑛𝑛∈ℙ𝑚𝑚(𝑖𝑖)|𝑛𝑛−1∈ℙ𝑚𝑚(𝑖𝑖),ℎ𝑛𝑛}𝑓𝑓(ℎ𝑛𝑛|𝑛𝑛−1∈ℙ𝑚𝑚(𝑖𝑖))

∫ Pr {𝑛𝑛∈ℙ𝑚𝑚(𝑖𝑖)|𝑛𝑛−1∈ℙ𝑚𝑚(𝑖𝑖),ℎ𝑛𝑛}𝑓𝑓(ℎ𝑛𝑛ℎ|𝑛𝑛−1∈ℙ𝑚𝑚(𝑖𝑖))𝑑𝑑ℎ𝑛𝑛
+∞
𝜏𝜏

. 

We note that Pr{𝑛𝑛 ∈ ℙ𝑚𝑚(𝑗𝑗)|𝑛𝑛 − 1 ∈ ℙ𝑚𝑚(𝑗𝑗),ℎ𝑛𝑛} = 𝑞𝑞𝑖𝑖𝑖𝑖(ℎ𝑛𝑛). In addition, 𝑓𝑓(ℎ𝑛𝑛|𝑛𝑛 − 1 ∈ ℙ𝑚𝑚(𝑗𝑗)) =

𝑔𝑔(ℎ𝑛𝑛) as {ℎ𝑛𝑛,𝑛𝑛 = 1,2, … } are mutually independent. Hence, from equation (7), we obtain  

 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ𝑛𝑛; 𝑗𝑗) = 𝑞𝑞𝑖𝑖𝑖𝑖(ℎ𝑛𝑛)𝑔𝑔(ℎ𝑛𝑛)

∫ 𝑞𝑞𝑖𝑖𝑖𝑖(ℎ𝑛𝑛)𝑔𝑔(ℎ𝑛𝑛)𝑑𝑑ℎ𝑛𝑛
+∞
𝜏𝜏

= 𝜃𝜃𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛)𝑔𝑔0(ℎ𝑛𝑛)/𝑞𝑞�𝑖𝑖𝑖𝑖, for 𝑗𝑗 ∈ ℳ𝑉𝑉  (16) 

with 𝑞𝑞�𝑖𝑖𝑖𝑖 given by (10). We can now calculate the average headway over 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ𝑛𝑛; 𝑗𝑗): 

 𝜌𝜌𝑊𝑊𝑃𝑃(𝑗𝑗) = ∫ ℎ+∞
𝜏𝜏  𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗)𝑑𝑑ℎ for 𝑗𝑗 ∈ ℳ𝑉𝑉. 

See Appendix B for a detailed discussion on the numerical computation of 𝜌𝜌𝑊𝑊𝑃𝑃(𝑗𝑗). The following 

theorem discusses some theoretical properties of  𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗). See Appendix A for proof.  

Theorem 1. Let 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗) (for 𝑗𝑗 ∈ ℳ𝑉𝑉) be given by (16) and 𝑔𝑔0(ℎ) be given by (8). We have 

(i) 𝜌𝜌𝑊𝑊𝑃𝑃(𝑗𝑗) < ∫ ℎ+∞
𝜏𝜏 𝑔𝑔0(ℎ)𝑑𝑑ℎ < ∫ ℎ𝑔𝑔(ℎ)𝑑𝑑ℎ+∞

𝜏𝜏 ; 

(ii) limℎ→∞
𝑓𝑓𝑊𝑊𝑊𝑊(ℎ;𝑖𝑖)
𝑔𝑔0(ℎ) = 0; 

(iii) 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗) has the mode at  ℎ∗ ∈ (𝜏𝜏, 𝜏𝜏 + (𝛼𝛼 − 1)𝜆𝜆0) and then it strictly decreases for ℎ > ℎ∗ if 

𝛼𝛼 > 1; if 𝛼𝛼 = 1, then  𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗) strictly decreases for all ℎ ≥ 𝜏𝜏. 

By definition (16) and from Theorem 1, 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗) is the probability density function of within-

platoon headway at velocity mode 𝑗𝑗 ∈ ℳ𝑉𝑉. We can see that  𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗) essentially depends on the 

product of two components, i.e. 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ) and 𝑔𝑔0(ℎ). Consequently, because the transition probability 

𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛) is different at the different velocity modes, the within-platoon headway behaves differently 

for the different velocity modes. 

The above theorem also shows that the overall shape of 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗)  is similar to 𝑔𝑔0(ℎ). The right 

tail of 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗), however, decreases more rapidly than that of 𝑔𝑔0(ℎ). In empirical analysis for within-
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platoon headways, therefore, it is quite often that we only see a histogram around its mode ℎ∗, beyond 

which the histogram vanishes rapidly.  

In addition, Theorem 1 demonstrates that: (a) the average within-platoon headway is less than the 

average headway of the ‘car following’ component ∫ ℎ𝑔𝑔0(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏 ; (b) which in turn is less than the 

average headway of the entire traffic stream, i.e. ∫ ℎ𝑔𝑔(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏 .  

Finally, we point out that, in Jiang et al. (2006), the platoons are defined using a deterministic 

rule, that is, a vehicle and its lead vehicle belong to the same platoon if its time headway is less than 

2.5 s. Hence, the within-headway distribution used in Jiang et al. (2006) is  𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗) ∝ 𝐼𝐼(ℎ ≤

2.5)𝑔𝑔(ℎ), i.e. it is the traffic headway distribution 𝑔𝑔(ℎ) truncated over the interval of [𝜏𝜏, 2.5], where 

𝐼𝐼(𝐴𝐴) is an indicator function of set 𝐴𝐴. Clearly, the derived distribution in equation (16) is not suitable 

to those vehicle platoons recognised using the deterministic rule.  

3.2.2.   Numerical illustration 

Based on the numerical results in the empirical study in Li (2016), the corresponding within-

platoon headway distribution at the lower velocity level is: 

 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 1) 

 = 23.783(ℎ − 0.490)1.320exp (−(ℎ − 0.490)/0.507)[1 + 4.842(ℎ − 0.490)0.093]−1.  

Similarly, the obtained within-platoon headway distribution at the higher velocity level is: 

 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 2) 

 =  5.236 (ℎ − 0.490)1.320exp (−(ℎ − 0.490)/ 0.507)[1 + 0.279(ℎ − 0.490)0.061]−1.  

The upper left and upper right panels of Figure 2 display the above probability density functions 

for the lower velocity mode and for the higher velocity mode respectively. For comparison purposes, 

we also display the histograms of the corresponding within-platoon headways on the same graph. 

Overall, we can see that the within-platoon headways are fairly homogeneous:  the probability 

densities of within-platoon headways, as shown in Theorem 1, vanish rapidly beyond their modes.  
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Figure  2. Distribution of within-platoon headway 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 1) for the lower velocity mode (upper left) 

and distribution of the higher velocity mode 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 2) (upper right) respectively;  
Distribution of between-platoon headway 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ; 1,2) (lower left) and distribution of between-platoon 

headway distribution  𝑓𝑓𝐵𝐵𝑃𝑃(ℎ; 2,1) (lower right) respectively.   
 
 

3.3.   Distributions of between-platoon headways 

Next, we consider the distributions of between-platoon headways.   

3.3.1.   The model 

The between-platoon headway of any two consecutive platoons is defined to be the elapsed time 

between the front of the last vehicle of a platoon passing a point on the roadway and the front of the 

platoon leader of the following platoon passing the same point.  

We note that there are two different scenarios where two consecutive vehicle platoons are 

separated from each other: (a) the two platoons belong to the same velocity mode and there is a large 

temporal gap between the two platoons; (b) the two platoons do not belong to the same velocity mode, 

and hence the temporal gap between them can be large and can be small.  
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First, we consider case (a) where the two consecutive vehicles under investigation belong to two 

different platoons which have the same velocity mode:   𝑛𝑛 − 1 ∈ ℙ𝑚𝑚−1(𝑖𝑖) and 𝑛𝑛 ∈ ℙ𝑚𝑚(𝑖𝑖) for any 

𝑖𝑖 ∈ ℳ𝑉𝑉. In this case, the two platoons must have a large temporal gap between them.  

Specifically, given 𝐺𝐺𝑛𝑛−1 = 𝑙𝑙  with either 𝑙𝑙 = 𝑖𝑖 (hence 𝑅𝑅𝑛𝑛−1 = 0)  or 𝑙𝑙 = 𝑖𝑖 + 𝑀𝑀 (so 𝑅𝑅𝑛𝑛−1 = 1), the 

conditional probability that vehicle 𝑛𝑛 is the platoon leader of ℙ𝑚𝑚(𝑖𝑖) is 

 Pr {𝑛𝑛 ∈ ℙ𝑚𝑚(𝑖𝑖)|𝑛𝑛 − 1 ∈ ℙ𝑚𝑚−1(𝑖𝑖),ℎ𝑛𝑛} = Pr{ 𝐺𝐺𝑛𝑛 = 𝑖𝑖 + 𝑀𝑀|𝐺𝐺𝑛𝑛−1 = 𝑙𝑙, ℎ𝑛𝑛} = 𝑞𝑞(𝑖𝑖+𝑀𝑀)𝑖𝑖(ℎ𝑛𝑛) , 

where the last equality in the above equation is from equation (6).  

The probability density function for between-platoon headways, 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ𝑛𝑛|𝑖𝑖, 𝑖𝑖), is given by  

 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ𝑛𝑛|𝑖𝑖, 𝑖𝑖) ≔ 𝑓𝑓(ℎ𝑛𝑛|𝑛𝑛 − 1 ∈ ℙ𝑚𝑚−1(𝑖𝑖),𝑛𝑛 ∈ ℙ𝑚𝑚(𝑖𝑖),𝑅𝑅𝑛𝑛). 

Now we apply Bayes’ rule to obtain: 

 𝑓𝑓(ℎ𝑛𝑛|𝑛𝑛 − 1 ∈ ℙ𝑚𝑚−1(𝑖𝑖),𝑛𝑛 ∈ ℙ𝑚𝑚(𝑖𝑖),𝑅𝑅𝑛𝑛) = 𝑞𝑞(𝑖𝑖+𝑀𝑀)𝑖𝑖(ℎ𝑛𝑛)𝑔𝑔(ℎ𝑛𝑛)

∫ 𝑞𝑞(𝑖𝑖+𝑀𝑀)𝑖𝑖(ℎ𝑛𝑛)𝑔𝑔(ℎ𝑛𝑛)𝑑𝑑ℎ𝑛𝑛
+∞
𝜏𝜏

 

 = (1 − 𝜃𝜃)𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛)𝑔𝑔1(ℎ𝑛𝑛)/𝑞𝑞�(𝑖𝑖+𝑀𝑀)𝑖𝑖 for 𝑖𝑖 ∈ ℳ𝑉𝑉 .     (17) 

On the basis of (17), we can calculate the average headway over 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ𝑛𝑛|𝑖𝑖, 𝑖𝑖): 

 𝜌𝜌𝐵𝐵𝑃𝑃(𝑖𝑖, 𝑖𝑖) = ∫ ℎ+∞
𝜏𝜏  𝑓𝑓𝐵𝐵𝑃𝑃(ℎ; 𝑖𝑖, 𝑖𝑖)𝑑𝑑ℎ  for 𝑖𝑖 ∈ ℳ𝑉𝑉 . 

See Appendix B for the numerical computation of 𝜌𝜌𝐵𝐵𝑃𝑃(𝑖𝑖, 𝑖𝑖). Similar to Theorem 1, we have 

Theorem 2. Let 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ|𝑖𝑖, 𝑖𝑖) (for 𝑖𝑖 ∈ ℳ𝑉𝑉 ) be given by (17) and 𝑔𝑔1(ℎ) be given by (8).  We have 

(i) 𝜌𝜌𝑊𝑊𝑃𝑃(𝑖𝑖) < 𝜌𝜌𝐵𝐵𝑃𝑃(𝑖𝑖, 𝑖𝑖) < ∫ ℎ+∞
𝜏𝜏 𝑔𝑔1(ℎ)𝑑𝑑ℎ; 

(ii) limℎ→∞
𝑓𝑓𝐵𝐵𝑊𝑊(ℎ|𝑖𝑖,𝑖𝑖) 
𝑔𝑔1(ℎ) = 0; 

(iii) 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ|𝑖𝑖, 𝑖𝑖)   has the mode at  ℎ∗ ∈ (𝜏𝜏, 𝜏𝜏 + (𝛼𝛼 − 1)𝜆𝜆1) and then it strictly decreases for ℎ > ℎ∗ if 

𝛼𝛼 > 1; if 𝛼𝛼 = 1, then  𝑓𝑓𝐵𝐵𝑃𝑃(ℎ|𝑖𝑖, 𝑖𝑖)  strictly decreases for all ℎ ≥ 𝜏𝜏. 

By definition (17) and from Theorem 2, 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ|𝑖𝑖, 𝑖𝑖)  is the probability density function of between-

platoon headway when two consecutive platoons are both at the same velocity mode 𝑖𝑖 ∈ ℳ𝑉𝑉. 

Essentially the probability density function in (17) depends on 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛) and 𝑔𝑔1(ℎ𝑛𝑛). Hence, between-

platoon headway behaviors differently at the different velocity levels. Theorem 2 (i) also shows that 
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the average between-platoon headway 𝜌𝜌𝐵𝐵𝑃𝑃(𝑖𝑖, 𝑖𝑖) is larger than the average within-platoon headway 

𝜌𝜌𝑊𝑊𝑃𝑃(𝑖𝑖) for each 𝑖𝑖 ∈ ℳ𝑉𝑉 .  

Now we turn to case (b) and consider two consecutive vehicles, 𝑛𝑛 − 1 ∈ ℙ𝑚𝑚−1(𝑖𝑖) and 𝑛𝑛 ∈ ℙ𝑚𝑚(𝑗𝑗) 

(𝑖𝑖 ≠ 𝑗𝑗 and 𝑖𝑖, 𝑗𝑗 ∈ ℳ𝑉𝑉). Clearly the platoon indicator 𝐺𝐺𝑛𝑛 of vehicle 𝑛𝑛 can be either  𝑗𝑗 or 𝑗𝑗 + 𝑀𝑀; In 

addition, 𝐺𝐺𝑛𝑛−1 can be equal to either 𝑖𝑖 or 𝑖𝑖 + 𝑀𝑀. For given 𝐺𝐺𝑛𝑛−1 = 𝑙𝑙 with  𝑙𝑙 = 𝑖𝑖 or 𝑖𝑖 + 𝑀𝑀, we have 

 Pr {𝑛𝑛 ∈ ℙ𝑚𝑚(𝑗𝑗)|𝑛𝑛 − 1 ∈ ℙ𝑚𝑚−1(𝑖𝑖),ℎ𝑛𝑛} 

 = Pr{ (𝐺𝐺𝑛𝑛 = 𝑗𝑗) ∪ ((𝐺𝐺𝑛𝑛 = 𝑗𝑗 + 𝑀𝑀)|𝐺𝐺𝑛𝑛−1 = 𝑙𝑙,ℎ𝑛𝑛} 

 = Pr{ 𝐺𝐺𝑛𝑛 = 𝑗𝑗|𝐺𝐺𝑛𝑛−1 = 𝑙𝑙,ℎ𝑛𝑛} + Pr{ 𝐺𝐺𝑛𝑛 = 𝑗𝑗 + 𝑀𝑀|𝐺𝐺𝑛𝑛−1 = 𝑙𝑙,ℎ𝑛𝑛} 

 = 𝑞𝑞𝑖𝑖𝑗𝑗(ℎ𝑛𝑛)+𝑞𝑞(𝑖𝑖+𝑀𝑀)𝑗𝑗(ℎ𝑛𝑛) = 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛), 

where the last equality in the above equation is obtained from equation (6). Clearly, the results are 

identical for either 𝑙𝑙 = 𝑖𝑖 or  𝑖𝑖 +𝑀𝑀.  

For two consecutive vehicles, 𝑛𝑛 − 1 ∈ ℙ𝑚𝑚−1(𝑖𝑖) and 𝑛𝑛 ∈ ℙ𝑚𝑚(𝑗𝑗) (𝑖𝑖 ≠ 𝑗𝑗 and 𝑖𝑖, 𝑗𝑗 ∈ ℳ𝑉𝑉), the 

probability density function for between-platoon headways, 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ𝑛𝑛; 𝑗𝑗, 𝑖𝑖), is given by 

 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ𝑛𝑛; 𝑗𝑗, 𝑖𝑖) ≔ 𝑓𝑓(ℎ𝑛𝑛|𝑛𝑛 ∈ ℙ𝑚𝑚(𝑗𝑗),𝑛𝑛 − 1 ∈ ℙ𝑚𝑚−1(𝑖𝑖) ). 

We apply Bayes’ rule to obtain 

 𝑓𝑓(ℎ𝑛𝑛|𝑛𝑛 ∈ ℙ𝑚𝑚(𝑗𝑗),𝑛𝑛 − 1 ∈ ℙ𝑚𝑚−1(𝑖𝑖) ) = 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛)𝑔𝑔(ℎ𝑛𝑛)

∫ 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛)𝑔𝑔(ℎ𝑛𝑛)𝑑𝑑ℎ𝑛𝑛
+∞
𝜏𝜏

 

 = [𝑞𝑞�𝑖𝑖𝑖𝑖 + 𝑞𝑞�(𝑖𝑖+𝑀𝑀)𝑖𝑖]−1𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛)𝑔𝑔(ℎ𝑛𝑛), for 𝑖𝑖 ≠ 𝑗𝑗     (18) 

where 𝑞𝑞�𝑖𝑖𝑖𝑖  is given by (10) and 𝑔𝑔(ℎ) is the headway distribution in (7). We calculate the average 

headway over 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ𝑛𝑛; 𝑗𝑗, 𝑖𝑖): 

 𝜌𝜌𝐵𝐵𝑃𝑃(𝑗𝑗, 𝑖𝑖) = ∫ ℎ+∞
𝜏𝜏  𝑓𝑓𝐵𝐵𝑃𝑃(ℎ; 𝑗𝑗, 𝑖𝑖)𝑑𝑑ℎ  for 𝑖𝑖, 𝑗𝑗 ∈ ℳ𝑉𝑉  and for 𝑖𝑖 ≠ 𝑗𝑗. 

See Appendix B for the numerical computation of 𝜌𝜌𝐵𝐵𝑃𝑃(𝑗𝑗, 𝑖𝑖). Similar to Theorems 1 and 2, we have 

Theorem 3. Let 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ; 𝑗𝑗, 𝑖𝑖) (for 𝑖𝑖, 𝑗𝑗 ∈ ℳ𝑉𝑉  and 𝑖𝑖 ≠ 𝑗𝑗) be given by (18) and 𝑔𝑔(ℎ) be given by (7). We 

have 𝜌𝜌𝐵𝐵𝑃𝑃(𝑗𝑗, 𝑖𝑖) ≥ ∫ ℎ+∞
𝜏𝜏 𝑔𝑔(ℎ)𝑑𝑑ℎ. 

By definition (18) and from Theorem 3, 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ|𝑗𝑗, 𝑖𝑖)  (for 𝑖𝑖, 𝑗𝑗 ∈ ℳ𝑉𝑉  and 𝑖𝑖 ≠ 𝑗𝑗) is the probability 

density function of between-platoon headway when two consecutive platoons travel at different 
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velocity levels 𝑖𝑖, 𝑗𝑗 ∈ ℳ𝑉𝑉. Theorem 3 shows that the average between-platoon headway is larger than 

the average headway across the entire traffic stream. In addition, noting that 𝑔𝑔(ℎ) in (7) is a mixture 

distribution, 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ|𝑗𝑗, 𝑖𝑖)  in equation (18) is also a mixture distribution,  

 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ𝑛𝑛; 𝑗𝑗, 𝑖𝑖) = 𝜃𝜃[𝑞𝑞�𝑖𝑖𝑖𝑖 + 𝑞𝑞�(𝑖𝑖+𝑀𝑀)𝑖𝑖]−1𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛)𝑔𝑔0(ℎ) + (1 − 𝜃𝜃)[𝑞𝑞�𝑖𝑖𝑖𝑖 + 𝑞𝑞�(𝑖𝑖+𝑀𝑀)𝑖𝑖]−1𝑝𝑝𝑖𝑖𝑖𝑖(ℎ𝑛𝑛)𝑔𝑔1(ℎ), 

which indicates that the between-platoon headway in case (b) can be small or large. In addition, from 

Theorem 1 (i) and Theorem 3, we can see that the average between-platoon headway is larger than the 

average within-platoon headway.  

3.3.2.   Numerical illustration 

Based on the numerical results of the empirical study in Li (2016), the corresponding between-

platoon headway distribution are: 

 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ; 2,1) =  (ℎ−0.490)1.413

1+4.842(ℎ−0.490)0.093 {11.168exp �− ℎ−0.490
0.507

�+ 0.535 exp �− ℎ−0.490
1.974

�}  

and 

 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ; 1,2) =  (ℎ−0.490)1.381

1+0.279(ℎ−0.490)0.061 {2.392exp �−ℎ−0.490
0.507

�+ 0.115 exp �−ℎ−0.490
1.974

�}.  

The lower left and lower right panels of Figure 2 display the above probability density functions 

of between-platoon headway respectively. For comparison purposes, we also display the histograms 

of the corresponding between-platoon headways on the same graph.  

Overall, we can see from Figure 2 that the between-platoon headways have a heavier tail. In 

addition, the average between-platoon headways are much larger than that of the within-platoon 

headways, as asserted in Theorems 1 and 3.   

From Figure 2 (the lower left and right panels), there are rather a lot of vehicles with a headway 

of less than 2.5 seconds that are considered to be in separate platoons. This is because, by the platoon 

definition, two consecutive sets of vehicles travelling at different speed levels will be classified into 

two separate platoons, even if their temporal gap is relatively small.  

 

3.4.   Platoon speed distribution 

3.4.1.   The model 
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The speed of a platoon can be characterized by two quantities: its speed level and speed 

dispersion.  First, we define the platoon speed 𝑉𝑉�𝑚𝑚 of ℙ𝑚𝑚(𝑗𝑗) (𝑗𝑗 ∈ ℳ𝑉𝑉) to be 

   𝑉𝑉�𝑚𝑚(𝑗𝑗) = ∑ �̅�𝑣𝑚𝑚1+𝑗𝑗
𝐿𝐿𝑚𝑚
𝑗𝑗=1 /𝐿𝐿𝑚𝑚 = 𝜇𝜇𝑖𝑖 + 𝛿𝛿𝑚𝑚,  

with 𝛿𝛿𝑚𝑚 = ∑ 𝑤𝑤𝑚𝑚1+𝑗𝑗
𝐿𝐿𝑚𝑚
𝑗𝑗=1 /𝐿𝐿𝑚𝑚, i.e. 𝑉𝑉�𝑚𝑚 is the average speed of the vehicles within the platoon.  

From equation (2), it is straightforward to conclude that, for given 𝛿𝛿𝑚𝑚, the observed platoon speed 

𝑉𝑉𝑚𝑚 = ∑ 𝑣𝑣𝑚𝑚1+𝑗𝑗
𝐿𝐿𝑚𝑚
𝑗𝑗=1 /𝐿𝐿𝑚𝑚  follows a normal distribution with a mean of 𝑉𝑉�𝑚𝑚(𝑗𝑗) and variance of 𝜎𝜎02/𝐿𝐿𝑚𝑚: 

 𝑉𝑉𝑚𝑚=𝜇𝜇𝑖𝑖 + 𝛿𝛿𝑚𝑚 + 𝜀𝜀�̃�𝑚 for 𝑚𝑚 = 1,2 … 

where  𝜀𝜀�̃�𝑚 ≔ ∑ 𝑒𝑒𝑚𝑚1+𝑗𝑗
𝐿𝐿𝑚𝑚
𝑗𝑗=1 /𝐿𝐿𝑚𝑚. In addition, 𝜀𝜀�̃�𝑚 and 𝜀𝜀�̃�𝑗 for two platoons 𝑚𝑚 and 𝑙𝑙 (𝑚𝑚 ≠ 𝑙𝑙) are mutually 

independent. Also note the heterogeneity of 𝜀𝜀�̃�𝑚; the variances 𝑣𝑣𝑎𝑎𝑟𝑟(𝜀𝜀�̃�𝑚) = 𝜎𝜎02/𝐿𝐿𝑚𝑚 are different when 

the platoons have different sizes. Clearly, given 𝛿𝛿𝑚𝑚, the conditional distribution of the observed 

platoon speeds {𝑉𝑉𝑚𝑚}  (𝑚𝑚 = 1,2 … ) may be approximated by a normal mixture with a sufficiently large 

number of components, 𝐾𝐾.  

Since 𝛿𝛿𝑚𝑚 = ∑ 𝑤𝑤𝑚𝑚1+𝑗𝑗
𝐿𝐿𝑚𝑚
𝑗𝑗=1 /𝐿𝐿𝑚𝑚 also follows a normal distribution, the unconditional univariate 

distribution of 𝑉𝑉𝑚𝑚 is also normal. Note, however, because 𝛿𝛿𝑚𝑚 and 𝛿𝛿𝑗𝑗   for two platoons 𝑚𝑚 and 𝑙𝑙 (𝑚𝑚 ≠

𝑙𝑙) are not mutually independent, 𝑉𝑉𝑚𝑚 and 𝑉𝑉𝑗𝑗 are correlated. Therefore, the unconditional distribution of 

a vector of observed platoon speeds [𝑉𝑉1, … ,𝑉𝑉𝑚𝑚]𝑇𝑇 is an m-dimensional multivariate normal 

distribution.  

Next, we turn to consider platoons’ speed dispersion. We note that the vehicles that follow the 

platoon leader in ℙ𝑚𝑚(𝑗𝑗) usually travel at different speeds, as indicated by equation (3). However, 

although the speeds of the vehicles within the platoon may vary from vehicle to vehicle, the variation 

of the individual speeds may largely cancel out each other; it is the difference, �̅�𝑑𝑚𝑚(𝑗𝑗) = �̅�𝑣𝑚𝑚1+𝐿𝐿𝑚𝑚 −

�̅�𝑣𝑚𝑚1+1 (for 𝐿𝐿𝑚𝑚 > 1), i.e. vehicle speeds between the last vehicle within the platoon and the platoon 

leader, that reflects the overall change in the vehicle speeds. Hence, we use �̅�𝑑𝑚𝑚(𝑗𝑗) to characterize the 

dispersion of platoon speeds.  

Let 𝑑𝑑𝑚𝑚(𝑗𝑗) = 𝑣𝑣𝑚𝑚1+𝐿𝐿𝑚𝑚 − 𝑣𝑣𝑚𝑚1+1 (for 𝐿𝐿𝑚𝑚 > 1) denote the observed platoon speed dispersion. Note 

that both 𝑑𝑑𝑚𝑚(𝑗𝑗) and �̅�𝑑𝑚𝑚(𝑗𝑗) are conditional on the platoon length 𝐿𝐿𝑚𝑚. Here we suppress the 
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dependence for notational simplicity. Under the assumptions for equations (2) and (3), it can be seen 

that, for given 𝑤𝑤𝑚𝑚1+𝑗𝑗  (𝑙𝑙 = 1, … , 𝐿𝐿𝑚𝑚),  𝑑𝑑𝑚𝑚(𝑗𝑗) follows a normal distribution with a mean of ∆𝑤𝑤𝑚𝑚 =

𝑤𝑤𝑚𝑚1+𝐿𝐿𝑚𝑚 − 𝑤𝑤𝑚𝑚1+1 and variance of 2𝜎𝜎02. 

3.4.2.   Numerical illustration 

We display the histogram of the platoon speeds for the lower velocity mode (higher velocity 

mode) in the upper left panel (upper right panel) of Figure 3.  We also superimpose the probability 

density function of a mixture normal with two components for each case. It seems that the normal 

mixture with two components does not provide a brilliant fit.  

 
Figure 3. Histograms and the corresponding normal mixture density functions of platoon speeds for 
the lower velocity mode (upper left panel) and for the higher velocity mode (upper right panel);  

Empirical cumulative distributions (real line) and the corresponding normal mixture distribution 
functions (broken line) of platoon speeds for the lower velocity mode (lower left panel) and for the higher 

velocity mode (lower right panel). 
  

To better assess the goodness of fit, we also plot the empirical cumulative distributions of the 

platoon speeds and the corresponding normal mixture distribution for the lower velocity mode (the 

lower left panel) and for the higher velocity mode (the lower right panel) respectively. We can see a 
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clear gap between the empirical cumulative distribution and the theoretical values. For example, from 

the lower right graph we can see that the real line (the empirical cumulative distribution) is higher 

than the broken line (the theoretical values calculated from the normal mixture with two components) 

in the middle part of the graph.  

This is not surprising: due to the heterogeneity of the platoon speeds, a sufficiently large number 

of normal mixture components is expected to fit to the platoon speeds. In Section 4.4, we will explore 

the quality of fit for the normal mixture with more than two components.  

 

4.  Model comparison and assessment   
 

In the previous section, several statistical distributions were derived based on a state space model 

with a Markov regime-switching process. In practice, these distributions can be regarded as stand-

alone models for the platoon characteristics and used to fit to vehicle platoon data. 

In this section, we will investigate the relationships between the developed distribution models for 

the platoon characteristics and the existing statistical distribution models in the literature. In addition, 

we will also assess the numerical performances of the derived statistical distributions.  

In the following numerical comparison, we use the vehicle platoons recognized in Li (2016). In 

total there were 1057 vehicles under investigation and 712 platoons were recognized in Li (2016). 

During the platoon recognition, the probability of the platoon indicator for each vehicle was first 

calculated, and then the platoon classification was undertaken using Algorithm B in Li (2016) that 

was based on a state space model with a Markov switching process; see Li (2016) for the details.  

We choose two widely used model selection criteria, i.e. the deviance and Akaike information 

criterion (AIC), to compare and contrast the models (see, e.g., Lunn et al., 2012). 

Deviance in statistics is a quality-of-fit statistic for a model. It is a generalization of the least 

square criterion in multiple linear regression analysis to cases where model-fitting is achieved by 

maximum likelihood (McCullagh and Nelder, 1989). Specifically, the deviance for a model with a 

parameter vector 𝜉𝜉 is defined to be the log maximum likelihood multiplied by -2 (e.g., Lunn et al., 

2012): 
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 𝐷𝐷�𝜉𝜉� = −2𝑙𝑙𝐺𝐺𝑔𝑔ℒ(𝜉𝜉), 

where ℒ(𝜉𝜉) is the likelihood function of a model and  𝜉𝜉 is the maximum likelihood estimate of 𝜉𝜉. 

When the underlying model is a normal distribution, 𝐷𝐷�𝜉𝜉� reduces to the least square criterion.  

AIC is also a commonly used criterion for comparison among several models. Unlike the 

deviance that only takes into account quality of fit, AIC is a trade-off between quality of fit and model 

complexity. AIC is defined to be the deviance plus 2 times the number of the parameters in the model: 

 AIC= 𝐷𝐷�𝜉𝜉� + 2dim (𝜉𝜉),  

where dim (𝜉𝜉) denotes the number of the parameters. Note that only the differences in AIC between 

models are important; hence, of any two models for comparison, the model with a smaller AIC is 

more favorable. Clearly, AIC penalizes more complicated models.  

Lunn et al. (2012, pp 166-167) have used the following guideline for model selection: (a) 

differences in AIC between two models more than 10 might definitely rule out the model with the 

higher AIC; (b) differences between 5 and 10 are substantial; and (c) there is uncertainty about the 

choice of model for differences less than 5. In this section, we will follow this guideline for model 

selection.  

 

4.1.   Platoon size distributions  

We first consider the following geometric distribution 𝐺𝐺𝑒𝑒𝐺𝐺(1 − 𝑞𝑞𝑖𝑖) for platoon sizes derived in 

Section 3.1: 

    𝑙𝑙𝑖𝑖𝑘𝑘=(1 − 𝑞𝑞𝑖𝑖)𝑞𝑞𝑖𝑖𝑘𝑘−1 for 𝑘𝑘 = 1,2, …,      (19) 

where the parameter 𝑞𝑞𝑖𝑖 is the probability that a vehicle remains in the same platoon traveling at speed 

level 𝑗𝑗.  

In the literature, there are several other existing distribution models for platoon sizes, including: 

(a) the Borel-Tanner distribution (Tanner, 1961; Miller, 1961); (b) the Miller’s model (Miller, 1961); 

and (c) the shifted exponential distribution (Sun and Benekohal, 2005; Jiang et al., 2006; Ramezani et 

al., 2010). See also Cowan, (1975), Galin (1980), and Gartner et al. (2001) for further discussions 

about these models.  
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The Borel-Tanner distribution, 𝑙𝑙𝑘𝑘 = (𝑘𝑘𝛼𝛼𝑒𝑒−𝛼𝛼)𝑘𝑘−1𝑒𝑒−𝛼𝛼/𝑘𝑘!, is a discrete distribution with a single 

parameter 𝛼𝛼. On the other hand, the Miller distribution, 𝑙𝑙𝑘𝑘 = (𝑚𝑚 + 1)(𝑚𝑚 + 𝑠𝑠 + 1)! (𝑠𝑠 + 𝑘𝑘 − 1)!/

[𝑠𝑠! (𝑚𝑚 + 𝑠𝑠 + 𝑘𝑘 + 1)!], is a discrete distribution with two parameters 𝑚𝑚 and 𝑠𝑠. Both models are 

derived under the assumptions of Poisson arrivals and constant service time in queueing theory.  

It is of interest to compare model (19) with the Borel-Tanner distribution and Miller distribution. 

First, the geometric distribution (19) has a simpler mathematical expression. Its parameter 𝑞𝑞𝑖𝑖 has a 

clear interpretation in practice. In addition, distribution (19) is a velocity-specific model, assuming the 

statistical characteristics of platoon sizes are different at different speed modes. This assumption has 

support from empirical analysis (see the upper left and upper right graphs in Figure 1). On the other 

hand, the Borel-Tanner distribution and Miller distribution assume the same average platoon size 

across the entire traffic stream, regardless of the traveling speeds of vehicles under investigation.  

In terms of the connections among these distributions, we point out that the geometric distribution 

(19), Borel-Tanner distribution, and Miller distribution have similar mathematical forms for their 

means; they can all be written as  

𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 𝑝𝑝𝑙𝑙𝑎𝑎𝑒𝑒𝐺𝐺𝐺𝐺𝑛𝑛 𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 =  1/(1 − 𝜑𝜑),  

where we have 𝜑𝜑 = 𝑞𝑞𝑖𝑖 for model (19), 𝜑𝜑 = 𝛼𝛼 for the Borel-Tanner distribution, and 𝜑𝜑 = (𝑠𝑠 +

1)/(𝑚𝑚 + 𝑠𝑠 + 1) for Miller distribution. Hence, when the corresponding parameters are carefully 

calibrated, these three distributions will have the same estimate of the average platoon size.  

Next, we turn to consider the exponential distribution model for platoon sizes. There are several 

recent studies (e.g., Sun and Benekohal, 2005; Jiang et al., 2006; Ramezani et al., 2010) using the 

exponential distribution to approximate the platoon size distribution. In theory, the geometric 

distribution (19) is closely related to the exponential distribution, as shown in the following lemma: 

Lemma (Johnson, 2011, pp.159). If a random variable 𝑋𝑋 follows a geometric distribution 𝐺𝐺𝑒𝑒𝐺𝐺(𝑝𝑝) 

with 𝑝𝑝 = 1/(𝜆𝜆𝑛𝑛), then the distribution of the random variable 𝑌𝑌 = 𝑋𝑋/𝑛𝑛 approaches to the exponential 

distribution with mean 𝜆𝜆 when 𝑛𝑛 becomes large.  
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Hence, an exponential distribution is the limiting case of the corresponding geometric distribution 

under some mild conditions. To illustrate the above theoretical result, we display the actual 

proportions of the platoon sizes and the exponential approximation at the lower (or higher) velocity 

mode in the lower left (or right) panel of Figure 1. It can be seen that the shifted exponential 

distribution is a good approximation to the actual platoon sizes but the gap between them is 

substantial.  

Finally, based on the deviance and AIC, we compare the numerical performances of these models. 

Note that although the Borel-Tanner distribution and Miller distribution model assume the identical 

parameters across the entire traffic stream, we apply them to each of the different velocity modes in 

the following numerical comparison. This is because, as shown in Figure 1, the statistical 

characteristics of the platoon sizes at the two velocity models are very different, and hence a pooled 

analysis would not make much sense.  

 

Table 1. The deviance and AIC for the shifted exponential distribution with continuity correction, 

Borel-Tanner distribution, Miller distribution, and geometric distribution (19). 

 Exponential 
distribution 

Borel-Tanner 
distribution 

Miller 
distribution 

Geometric 
distribution (19) 

  At the lower speed mode  

Deviance 228.4 140.0 140.5 140.0 

AIC 232.4 142.0 144.5 142.0 

  At the higher speed mode  

Deviance 1198.8 1118.9 1108.0 1110.4 

AIC 1202.8 1120.9 1112.0 1112.4 

 

We calculate the maximum likelihood estimate for each model, and hence work out the deviance 

and AIC values. The results are displayed in Table 1. It can be seen from Table 1 that overall, the 

shifted exponential distribution performs poorly. For both the lower speed mode and higher speed 

mode, the differences in AIC between the shifted exponential distribution and the other models are 

much larger than 10. This indicates that this model should be ruled out in this analysis.  
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On the other hand, the other three models have similar performances: the differences in AIC 

among them are small. This suggests that the Borel-Tanner distribution, Miller distribution, and 

geometric distribution perform equally well for this analysis.  

 

4.2.   Within-platoon headway distributions  

For the case where there are only two velocity modes, the within-platoon distribution for one 

velocity mode developed in the previous section can be written as: 

 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ) = 𝑒𝑒(ℎ − 𝜏𝜏)𝛼𝛼−1exp (−(ℎ − 𝜏𝜏)/𝜆𝜆)/[1 + 𝑎𝑎(ℎ − 𝜏𝜏)𝑏𝑏],    (20) 

where 𝑎𝑎, 𝑏𝑏, 𝛼𝛼, 𝜆𝜆, and 𝜏𝜏 are parameters and 𝑒𝑒 is the normalization constant.  

In the literature, the normal distribution is also used to describe within-platoon headways. For 

example, Jiang et al. (2006) and Ramezani et al. (2010) found that a normal distribution fitted their 

within platoon headway data well. The following theorem shows that the model (20) and normal 

distribution have a close relationship. 

Theorem 4. If a random variable 𝑋𝑋 follows distribution (20), then the distribution of the random 

variable 𝑌𝑌 = (𝑋𝑋 − 𝛼𝛼𝜆𝜆)/(𝛼𝛼1/2𝜆𝜆) approaches to the normal distribution with mean of 𝜏𝜏 and unit 

variance for any fixed 𝑏𝑏 when 𝑎𝑎 → 0 and 𝛼𝛼 → +∞.  

 

See Appendix A for proof. Theorem 4 shows that normal distributions are a special case of the 

model (20) for within-platoon headways.  

There are, however, two important differences between the two models. First, within-platoon 

headways are usually asymmetrical; the skewness of the headways cannot be captured by the normal 

approximation. Hence, the normal approximation is a good choice only when within-platoon 

headways are more or less symmetric. Secondly, model (20) has a clear practical interpretation: it is 

the headway distribution of the car-following mode, corrected by the probability that a vehicle will 

remain in the same platoon. There is no such an interpretation when the normal approximation is 

used. 
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Now we consider the issue of model selection. We calculate the deviances and AIC values to 

compare the two within-platoon headway models, i.e. the normal distribution and developed model 

(20), as displayed in Table 2.  

For the lower speed mode, it can be seen from Table 2 that the proposed distribution model (20) 

provides a better fit in terms of quality-of-fit, with deviance of 23.2, when comparing to the normal 

approximation with deviance of 32.7. However, their difference in AIC is small (less than 5), 

suggesting the two models perform equally well. This is due to the fact that model (20) has more 

parameters and AIC penalises a more complicated model.  

At the higher speed mode, on the other hand, the difference in AIC between the two models is 

large. Hence, the proposed distribution model (20) is a better choice for this case.  

Table 2. The deviance and AIC for the normal distribution and the proposed model (20) for 

within-platoon headways. 

 Normal distribution Proposed distribution (20) 

 At the lower speed mode 

Deviance 32.7 23.2 

AIC 36.7 33.2 

 At the higher speed mode 

Deviance 483.0 340.6 

AIC 487.0 350.6 

 

4.3.   Between-platoon headway distributions  

We now consider the between-platoon headway models. For the case where there are only two 

velocity modes and two platoons travel at different speed levels, the between-platoon distribution 

developed in the previous section is given by: 

 𝑓𝑓𝐵𝐵𝑃𝑃(ℎ) = 𝑒𝑒𝑎𝑎(ℎ − 𝜏𝜏)𝑏𝑏+𝛼𝛼−1{𝜃𝜃𝜆𝜆0−𝛼𝛼exp (−(ℎ − 𝜏𝜏)/𝜆𝜆0) 

   +(1 − 𝜃𝜃)𝜆𝜆1−𝛼𝛼exp (−(ℎ − 𝜏𝜏)/𝜆𝜆1)}/[1 + 𝑎𝑎(ℎ − 𝜏𝜏)𝑏𝑏]         (21) 

where 𝛼𝛼, 𝜏𝜏, 𝜆𝜆0, 𝜆𝜆1, 𝜃𝜃, 𝑎𝑎 and 𝑏𝑏 are parameters and 𝑒𝑒 is the normalization constant. Model (21) has a 

clear practical interpretation: it is the vehicle time headway distribution, corrected by the probability 

that a vehicle will switch to the other speed mode.  
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In the literature, the log-normal distribution (Jiang et al., 2006) and shifted exponential 

distribution (Ramezani et al., 2010) are used to describe between-platoon headways.  

Theoretically, there is no directly connection between model (21) and the lognormal distribution. 

We note however, with 𝜃𝜃 = 0 and 𝑎𝑎 ≠ 0, the distribution in (21) approaches to a three-parameter 

gamma distribution 𝑔𝑔1(ℎ) = (ℎ − 𝜏𝜏)𝛼𝛼−1exp (−(ℎ − 𝜏𝜏)/𝜆𝜆1)/[𝜆𝜆1𝛼𝛼Γ(𝛼𝛼)] when 𝑏𝑏 → +∞.  Therefore, 

model (21) includes the gamma distribution as its special case. In the literature, the gamma 

distribution and lognormal distribution are often used interchangeably (see, e.g., Wiens, 1999). Firth 

(1988) proves that analyzing log-normal data assuming a gamma distribution is more efficient than 

analysing gamma data assuming log-normality. Because the model (21) is much more flexible than 

the gamma distribution, we would expect that model (21) usually provides a better fit than the 

lognormal distribution.   

On the other hand, model (21) and the shifted exponential distribution are closely related, as 

shown in the following theorem.  

Theorem 5. Suppose a random variable 𝑋𝑋 follows distribution (21). If 𝑎𝑎 ≠ 0 is fixed with 𝜃𝜃 = 0 and 

𝛼𝛼 = 1, then the distribution of the random variable 𝑋𝑋 approaches to a shifted exponential distribution 

with mean of 𝜏𝜏 + 𝜆𝜆1 and variance of 𝜆𝜆1 when 𝑏𝑏 → +∞.   

 

The proof of Theorem 5 is trivial. Theorem 5 shows that as a special case of (21), the shifted 

exponential distribution may fit between-platoon headways well in some applications.  

Table 3. The deviance and AIC for the lognormal distribution, shifted exponential distribution and the 

proposed model (21) for between-platoon headways. 

 Lognormal 
distribution 

Shifted exponential 
distribution 

Proposed distribution 
(21) 

 At the  lower speed mode  

Deviance 787.5 786.3 519.3 

AIC 791.5 790.3 533.3 

 At the  higher speed mode  

Deviance 805.6 779.2 525.0 

AIC 809.6 783.2 539.0 
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We now consider the numerical performances of these models. We calculate the deviance and 

AIC values to compare the three between-platoon headway models. The results are displayed in Table 

3. It can be seen that the proposed distribution model (21) for between-platoon headways has a much 

lower values of deviance and AIC than the other two competitors, and hence it is a better choice than 

the lognormal distribution and shifted exponential distribution for both the lower and higher speed 

modes. 

 

4.4.   Platoon speed distributions  

Finally, we turn to consider platoon speed distributions. In the literature, the normal distribution is 

used to approximate platoon speed distribution (see, e.g. Jiang et al., 2006). In Section 3.4, it was 

suggested that a normal mixture model with a sufficiently large number of components 𝐾𝐾 be used to 

approximate the platoon speed distribution. Clearly, the normal mixture model includes the normal 

distribution used in Jiang et al. (2006) as its special case with 𝐾𝐾 = 1.  

To quantitatively evaluate the models, we calculate the deviance and AIC values based on the 

vehicle platoons obtained in Li (2016). In particular, we choose 𝐾𝐾 = 2, 3, 4, and compare the normal 

mixture with different numbers of components to the normal approximation. The results are displayed 

in Table 4.  

 

Table 4. The deviance and AIC for the normal distribution and the normal mixture for platoon speeds. 

 Normal 
distribution 

Normal mixture   
(2 components) 

Normal mixture  
 (3 components)  

Normal mixture  
 (4 components) 

              At the lower                speed mode           

Deviance 916.1 914.9 581.7 548.5 

AIC 920.1 924.9 597.7 570.5 

             At the higher                speed mode           

Deviance 2733.6 2682.2 2232.8 1789.3 

AIC 2737.6 2692.2 2248.8 1811.3 
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It can be seen from Table 4 that the normal mixture with two components and the normal 

approximation have similar performances in terms of deviance and AIC for the lower velocity mode, 

where their difference in AIC is less than 5. For the higher velocity mode, however, the normal 

mixture with two components performs better than the normal approximation.   

When the number of the components is taken higher than 2, the normal mixture model greatly 

outperforms the normal approximation for both the lower and higher speed modes. This suggests that 

a normal mixture does a better job to accommodate the heteroscedasticity in platoon speeds due to the 

speed drifts within platoons. 

 

5.   Concluding remarks  

 

In this paper, on the basis of the stochastic dynamic model for vehicle platoons developed in Li 

(2016), we have proposed several statistical distribution models for some important platoon 

characteristics, including platoon size, within-platoon headway, between-platoon headway and 

platoon speed.  

These statistical distributions can be regarded as stand-alone models for platoon characteristics. 

We have explored the relationships between the proposed models and the existing models in the 

literature. It is shown that the statistical models investigated in this paper include some important 

existing models as special cases. It is therefore not surprising that the derived statistical distributions 

fitted the vehicle platoon data equally well or outperformed the existing models in the numerical 

analysis.  

In practice, the developed statistical distribution models can help us better understand traffic 

platooning behavior. These statistical characteristics also provide crucial inputs into the traffic 

management and control algorithms for traffic with a platoon structure.  

Finally, we would like to point out that the vehicle platoons used in the numerical analysis of this 

paper were recognized based on the vehicle classification algorithm in Li (2016). Consequently, the 

probability distributions arising from the developed model tend to provide a good fit to the platoon 

data; therefore care must be taken when interpreting the numerical results. More real traffic data are 
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needed in future research to test the proposed distribution models for the platoon characteristics. We 

note, however, given the fact that the derived distributions include some important existing 

distribution models as their special cases, the quality of fit of the proposed distribution models will 

not be worse than these existing models.  
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Appendix A.   Proofs of theorems 

We provide the proofs of the Theorems in this appendix.  

Proof of Theorem 1.  

To show (i), we note that the function  𝑝𝑝𝑖𝑖𝑖𝑖(ℎ) is strictly decreasing. From Chebyshev’s integral 

inequality (see, e.g. Niculescu and Persson, 2006), we obtain   

∫ ℎ+∞
𝜏𝜏 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔0(ℎ)𝑑𝑑ℎ < ∫ 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔0(ℎ)𝑑𝑑ℎ+∞

𝜏𝜏 ∫ ℎ𝑔𝑔0(ℎ)𝑑𝑑ℎ +∞
𝜏𝜏 = (𝑞𝑞�𝑖𝑖𝑖𝑖/𝜃𝜃)∫ ℎ𝑔𝑔0(ℎ)𝑑𝑑ℎ+∞

𝜏𝜏 . 

This indicates that (𝜃𝜃/𝑞𝑞�𝑖𝑖𝑖𝑖)∫ ℎ 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔0(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏 < ∫ ℎ𝑔𝑔0(ℎ)𝑑𝑑ℎ+∞

𝜏𝜏 . In addition, ∫ ℎ𝑔𝑔0(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏 <

∫ ℎ𝑔𝑔(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏  is obvious by noting 𝜆𝜆0 < 𝜆𝜆1. 

The proof of (ii) is trivial. We turn to (iii) and focus on 𝛼𝛼 > 1. We note that for any ℎ ≥ 𝜏𝜏 + (𝛼𝛼 −

1)𝜆𝜆0, both 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ) and 𝑔𝑔0(ℎ) are decreasing, and hence 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗) is a decreasing function of ℎ. In 

addition, it is easy to verify that 𝑑𝑑𝑓𝑓𝑊𝑊𝑃𝑃(ℎ; 𝑗𝑗)/𝑑𝑑ℎ has a unique root in (𝜏𝜏, 𝜏𝜏 + (𝛼𝛼 − 1)𝜆𝜆0) and there 

exists a point ℎ∗ ∈ (𝜏𝜏, 𝜏𝜏 + (𝛼𝛼 − 1)𝜆𝜆0) such that 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔0(ℎ) attains its maximum.  

 

Proof of Theorem 2.  

We focus on part (i) and show 𝜌𝜌𝑊𝑊𝑃𝑃(𝑖𝑖) < 𝜌𝜌𝐵𝐵𝑃𝑃(𝑖𝑖, 𝑖𝑖); the other parts of theorem can be shown in a 

similar way as done in the proof of Theorem 1. 
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From equations (16) and (17), 𝜌𝜌𝑊𝑊𝑃𝑃(𝑖𝑖) < 𝜌𝜌𝐵𝐵𝑃𝑃(𝑖𝑖, 𝑖𝑖) holds if and only if 

 ∫ ℎ𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔0(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏

∫ 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔0(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏

< ∫ ℎ𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔1(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏

∫ 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔1(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏

. 

This can equivalently be written as 

 ∫ 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔0(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏 ∫ ℎ𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔1(ℎ)𝑑𝑑ℎ+∞

𝜏𝜏 > ∫ 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔1(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏 ∫ ℎ𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔0(ℎ)𝑑𝑑ℎ+∞

𝜏𝜏 . 

We note 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔0(ℎ)/[𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔1(ℎ)] = (𝜆𝜆1/𝜆𝜆0)𝛼𝛼exp {−ℎ[1/𝜆𝜆0 − 1/𝜆𝜆1]} and 𝜆𝜆1 > 𝜆𝜆0. Hence, 

𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔0(ℎ)/[𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔1(ℎ)] strictly decreasing. From Theorem 7 in Liu et al. (2009), we conclude that 

the above inequality holds.  

 

Proof of Theorem 3.  

We note that the function 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ) is strictly increasing. From Chebyshev’s integral inequality (see, 

Niculescu and Persson, 2006), we obtain that 

∫ ℎ𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏 > ∫ 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔(ℎ)𝑑𝑑ℎ+∞

𝜏𝜏 ∫ ℎ𝑔𝑔(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏 . 

This indicates that 𝜌𝜌𝐵𝐵𝑃𝑃(𝑗𝑗, 𝑖𝑖) = ∫ ℎ𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏  /∫ 𝑝𝑝𝑖𝑖𝑖𝑖(ℎ)𝑔𝑔(ℎ)𝑑𝑑ℎ+∞

𝜏𝜏 > ∫ ℎ𝑔𝑔(ℎ)𝑑𝑑ℎ+∞
𝜏𝜏 .  

 

Proof of Theorem 4.  

Clearly for any fixed 𝑏𝑏 and as 𝑎𝑎 → 0,  model (20) collapses to a gamma distribution 𝑓𝑓𝑊𝑊𝑃𝑃(ℎ) =

𝑒𝑒(ℎ − 𝜏𝜏)𝛼𝛼−1exp (−(ℎ − 𝜏𝜏)/𝜆𝜆) which approaches to a normal distribution when 𝛼𝛼 becomes large (see, 

e.g., Patel and Reed, 1996).  

 

Appendix B.   Computational issues on platoons’ characteristics 

In this appendix, we discuss the numerical evaluations of various numerical characteristics of 

vehicle platoons using a Monte Carlo method. Consider a random variable 𝑋𝑋 that follows a mixture 

distribution 𝑔𝑔(𝑒𝑒) consisting of two components, 𝑔𝑔0(𝑒𝑒) and 𝑔𝑔1(𝑒𝑒), with a weight function 𝑤𝑤(𝑒𝑒) ≥ 0:  

 𝑔𝑔(𝑒𝑒) = 𝑒𝑒𝑤𝑤(𝑒𝑒)[𝜋𝜋𝑔𝑔0(𝑒𝑒) + (1 − 𝜋𝜋)𝑔𝑔1(𝑒𝑒)],                         

where the parameter 𝜋𝜋 (0 ≤ 𝜋𝜋 ≤ 1) is the mixing probability. The parameter 𝑒𝑒 is a normalizing 

constant. We wish to evaluate an integral of the following form for a given 𝐴𝐴(𝑒𝑒): 
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 𝐸𝐸[𝐴𝐴(𝑋𝑋)] = 𝑒𝑒 ∫ 𝐴𝐴(𝑒𝑒)𝑤𝑤(𝑒𝑒)[𝜋𝜋𝑔𝑔0(𝑒𝑒) + (1 − 𝜋𝜋)𝑔𝑔1(𝑒𝑒)]𝑑𝑑𝑒𝑒+∞
−∞ .           

Analytically this may not be evaluated easily for some choice of the functional forms of 𝑤𝑤(𝑒𝑒), 𝑔𝑔0(𝑒𝑒), 

𝑔𝑔1(𝑒𝑒), and 𝐴𝐴(𝑒𝑒). A quick approach is to use a Monte Carlo method: 

 𝐸𝐸[𝐴𝐴(𝑋𝑋)] ≈ 𝑒𝑒∑ 𝐴𝐴(𝑒𝑒𝑘𝑘)𝑤𝑤(𝑒𝑒𝑘𝑘)𝐾𝐾
𝑘𝑘=1 , 

where 𝑒𝑒𝑘𝑘 (𝑘𝑘 = 1. , … ,𝐾𝐾) are independently drawn from 𝜋𝜋𝑔𝑔0(𝑒𝑒) + (1 − 𝜋𝜋)𝑔𝑔1(𝑒𝑒). 𝐾𝐾 is a sufficiently 

large number. This is summarized in the following Algorithm.  

 

Algorithm C. 

Given: 𝑒𝑒, 𝜋𝜋𝑔𝑔0(𝑒𝑒) + (1 − 𝜋𝜋)𝑔𝑔1(𝑒𝑒), 𝑤𝑤(𝑒𝑒) and 𝐴𝐴(𝑒𝑒). 

Set 𝐸𝐸 = 0. 

For 𝑘𝑘 = 1:𝐾𝐾 

 Draw 𝑞𝑞 from the uniform distribution on [0, 1]. 

 If 𝑞𝑞 < 𝜋𝜋, then draw 𝑒𝑒𝑘𝑘 from 𝑔𝑔0(𝑒𝑒); otherwise draw 𝑒𝑒𝑘𝑘 from 𝑔𝑔1(𝑒𝑒). 

 Calculate 𝐸𝐸 = 𝐸𝐸 + 𝐴𝐴(𝑒𝑒𝑘𝑘)𝑤𝑤(𝑒𝑒𝑘𝑘). 

End of for loop 

Return 𝐸𝐸 = 𝑒𝑒𝐸𝐸/𝐾𝐾. 

 

We can apply Algorithm C to calculate 𝑞𝑞�𝑖𝑖𝑖𝑖 by setting 

 𝑤𝑤(𝑒𝑒) = 𝑎𝑎𝑖𝑖𝑖𝑖(𝑥𝑥−𝜏𝜏)𝑏𝑏𝑖𝑖𝑖𝑖

1+∑ 𝑎𝑎𝑘𝑘𝑖𝑖(𝑥𝑥−𝜏𝜏)𝑏𝑏𝑘𝑘𝑖𝑖𝑘𝑘≠𝑖𝑖
    and    𝐴𝐴(𝑒𝑒) = 1,  

with 𝑒𝑒 = 𝜃𝜃 and 𝜋𝜋 = 1 if 𝑖𝑖 ≤ 𝑀𝑀, and with 𝑒𝑒 = 1 − 𝜃𝜃 and 𝜋𝜋 = 0 otherwise.  

In addition, we can calculate the average within-platoon headway 𝜌𝜌𝑊𝑊𝑃𝑃(𝑗𝑗) by setting 

 𝑤𝑤(𝑒𝑒) = 1

1+∑ 𝑎𝑎𝑘𝑘𝑖𝑖(𝑥𝑥−𝜏𝜏)𝑏𝑏𝑘𝑘𝑖𝑖𝑘𝑘≠𝑖𝑖
,   𝐴𝐴(𝑒𝑒) = 𝑒𝑒,   𝑒𝑒 = 𝜃𝜃/𝑞𝑞�𝑖𝑖𝑖𝑖, and 𝜋𝜋 = 1. 

We can calculate the average between-platoon headway 𝜌𝜌𝐵𝐵𝑃𝑃(𝑗𝑗, 𝑗𝑗) by setting 

 𝑤𝑤(𝑒𝑒) = 1

1+∑ 𝑎𝑎𝑘𝑘𝑖𝑖(𝑥𝑥−𝜏𝜏)𝑏𝑏𝑘𝑘𝑖𝑖𝑘𝑘≠𝑖𝑖
,   𝐴𝐴(𝑒𝑒) = 𝑒𝑒,   𝑒𝑒 = (1− 𝜃𝜃 )/𝑞𝑞�(𝑖𝑖+𝑀𝑀)𝑖𝑖, and 𝜋𝜋 = 0. 

Finally, in order to calculate the average between-platoon headway 𝜌𝜌𝐵𝐵𝑃𝑃(𝑗𝑗, 𝑖𝑖) (𝑖𝑖 ≠ 𝑗𝑗), we set 
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 𝑤𝑤(𝑒𝑒) = 𝑎𝑎𝑖𝑖𝑖𝑖(𝑥𝑥−𝜏𝜏)𝑏𝑏𝑖𝑖𝑖𝑖

1+∑ 𝑎𝑎𝑘𝑘𝑖𝑖(𝑥𝑥−𝜏𝜏)𝑏𝑏𝑘𝑘𝑖𝑖𝑘𝑘≠𝑖𝑖
,   𝐴𝐴(𝑒𝑒) = 𝑒𝑒,   𝑒𝑒 = 1/(𝑞𝑞�𝑖𝑖𝑖𝑖 + 𝑞𝑞�(𝑖𝑖+𝑀𝑀)𝑖𝑖) and  𝜋𝜋 = 𝜃𝜃. 
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