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ABSTRACT 

Pedestrians who cross streets during the red-man phase of traffic light signals expose themselves 

to safety and health hazards and hence are considered to be at risk. Pedestrians’ street-crossing 

behavior is in general the outcome of interaction between pedestrians and vehicles: the gaps between 

vehicles provide an opportunity for pedestrians to cross the street, and pedestrians may or may not 

accept the street-crossing risk during the red-man phase. In this paper, we propose a multivariate 

method to investigate pedestrians’ risk exposure associated with unsafe crossings. The proposed 

method consists of two hierarchically interconnected generalized linear models that characterize two 

different facets of the unsafe crossing behavior. It gauges pedestrians’ attitudes toward risk-taking and 

also measures the impact of potential risk factors on pedestrians’ intended waiting times during the 

red-man phase of the traffic lights. A Bayesian approach with the data augmentation method is used to 

draw statistical inference for the parameters associated with risk exposure. The proposed method is 

illustrated using field traffic data.  

 

Keywords: Bayesian inference; Pedestrian’s street-crossing behavior; Risk analysis; Signalized 

intersection. 
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1. Introduction 

 

Pedestrians are vulnerable road users. Every year there are an enormous number of pedestrian-

involved fatalities all over the world, in particular in the emerging-economic countries due to the 

rapid motorization and urbanization. Even in the developed countries, the percentage of pedestrian-

involved fatalities is high, especially in the urban areas of large cities such as London. 

Pedestrians crossing streets during the red-man phase of traffic light signals are considered to be 

at risk. In the traffic literature, considerable attention has been paid to risk analysis for pedestrians’ 

street crossings, as this is usually the time of intensive interaction between pedestrians and vehicles.  

Keegan and O’Mahony (2003), Yang et al. (2006), Lipovac et al. (2012), among many others, 

investigated pedestrians’ risk exposure associated with street crossings at signalized intersections in 

different countries, namely Ireland, China, and Bosnia and Herzegovina. They used 

questionnaires/interviews to identify the factors that may influence pedestrians’ street-crossing 

behavior during the red-man phase of traffic light signals. Their surveys involved several different 

research issues including: (a) which particular group of pedestrians tends to be risk takers; and (b) for 

how long on average they intend to wait. Hamed (2001), Tiwari et al. (2007), and Wang et al., (2011), 

on the other hand, focused on one particular facet of the problem, i.e. the waiting time, with a more 

sophisticated analytical approach. In their studies, pedestrians’ waiting times were treated as time-to-

event data and the Cox proportional hazard model was applied to identify the risk factors affecting 

pedestrians’ waiting times during their unsafe crossings. This multivariate approach enabled the 

researchers to gain further insights into risk analysis of pedestrians’ crossing behavior by 

simultaneously revealing multiple traffic variables and social-economic factors that affected 

pedestrians’ waiting times in Jordan, India, and China respectively. 

From a methodological perspective, we note that the scenario considered in many of these 

empirical studies were a special case of the general situation.  An example can be seen from the study 

in Tiwari et al. (2007) where the duration of the entire cycle time of traffic light signals was set to be 

long, with three to five phases, at the seven intersections under investigation. The length of the cycle 
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time averaged over the seven intersections in the study was over three minutes with the longest cycle 

time of 285 s; see Table 1 in Tiwari et al. (2007). As a consequence, pedestrians in the samples tended 

not to wait for the green-man phase of the traffic light signals. Correspondingly, the waiting time 

distributions in Tiwari et al. (2007) had a shape similar to that of the exponential distribution, showing 

that as the waiting time increased, the pedestrians became less likely to wait. The reader is referred to 

Figure 6 in Tiwari et al. (2007) for the survival functions, both of which resemble an exponential 

function. A similar example can be found in Figure 2 in Wang et al. (2011). For these problems, given 

the fact that the waiting time distributions were close to the exponential distribution, it seemed 

reasonable to apply the Cox proportional hazard model in the risk analysis to investigate pedestrians’ 

waiting times.  

 

Figure 1. Illustration of pedestrians’ street-crossing behavior. Risk-taking pedestrians tend to 

value their time highly and hence become less likely to wait as the waiting time increases; 

whereas risk-averse pedestrians tend to be law-abiding. The longer they wait, the less likely 

that the risk-averse pedestrians will cross the street during the red-man phase. 

 

Li (2013) has recently proposed a U-shaped distributional model to characterize pedestrians’ 

intended waiting time during the red-man phase of traffic light signals at signalized intersections. This 

model was developed based on the interaction between pedestrians and vehicles, and hence it helps 

understand the mechanism of pedestrians’ street-crossing behavior. The U-shaped distributional 
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model shows that the exponential distribution or the like reflects the crossing behavior of risk-taking 

pedestrians only; the waiting time of a population that consists of both risk-taking and risk-averse 

pedestrians in general exhibits a U-shaped distribution, as illustrated in Figure 1. The reason behind 

this is  that law-abiding pedestrians behave differently: they are aware that the red light will soon 

change, making a safe crossing possible, and hence the longer they wait, the less likely that they will 

cross the street during the red-man phase. This argument was supported by many existing empirical 

studies. For instance, Keegan and O’Mahony (2003) found that a substantial proportion of the 

pedestrians in their survey always wait for the green-man signal before crossings. In other studies 

(e.g. Hamed (2001), Ahuja et al. (2005)), it is found that elderly and/or female pedestrians tend to be 

more law-abiding. In addition, pedestrians tend not to accept higher risk if they involved in a traffic 

accident in the past, or they are accompanied by children, or they have heavy luggage, or their 

mobility is impaired. 

The motivation of this paper is two-fold. First, we note that there is a real need to extend the 

univariate approach in Li (2013) to a multivariate method. The U-shaped distribution in Li (2013) is a 

univariate model that involves one variable only, i.e. pedestrians’ intended waiting time. In many 

traffic safety studies, pedestrian safety is of great importance, and it is imperative to develop a 

multivariate method to assess risk factors associated with pedestrians’ unsafe crossing behavior at 

signalized intersections.  

Secondly, in order to better understand pedestrians’ street crossing behavior, it is of interest to 

unpack pedestrians’ street-crossing  risk and investigate different facets of risk separately, i.e. (a) to 

gauge the pedestrians’ attitudes toward risk-taking and investigate what factors influence their 

decision; and (b) to measure the impact of risk factors that affect the pedestrians’ waiting times.  

For this end, we will develop a bilevel multivariate approach which consists of two 

interconnected generalized linear models: one focuses on pedestrians’ intended waiting time 

conditional on pedestrian type, and the other is based on the marginal distribution of pedestrian type 

that gauges pedestrians’ attitudes toward risk-taking. Statistically, the two models are closely linked to 

each other. As a whole, the bilevel model measures different facets of risk exposure associated with 

pedestrians’ street-crossings during the red-man phase of traffic light signals. 
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This paper is structured as follows. In the next section we propose a multivariate approach to risk 

analysis for pedestrians’ unsafe street-crossing behavior at signalized intersections. In Section 3 we 

investigate Bayesian inference and develop Markov chain Monte Carlo (MCMC) algorithms. To 

illustrate this model, a practical example is given in Section 4. Finally, concluding remarks are offered 

in Section 5.  

 
2.   A bilevel multivariate model for pedestrians’ street-crossing behavior  

In this section, we develop a bilevel multivariate approach to risk analysis for pedestrians’ street-

crossing behavior at signalized intersections. We first introduce the notation used in this paper. Then 

we provide a brief summary for the univariate model proposed in Li (2013), and finally we extend the 

univariate model to multivariate risk analysis. 

 

2.1   Notation  

Pedestrians’ street-crossing behavior is the outcome of interaction between pedestrians and 

vehicles. We first introduce the notation that describes traffic flow, pedestrians and traffic signal 

setting respectively.  

Li (2013) argues that, when vehicular speed is capped by a relatively low speed limit in urban 

areas (especially in the city/town centers), the most important traffic variable that affects pedestrians’ 

street-crossing behavior is vehicle time headway because it characterizes the gap between two 

consecutive vehicles and hence provides a measure of opportunity for a pedestrian to cross the street 

during the red-man phase. In this paper, we use 𝐻 to denote the random variable of vehicle time 

headway and the lower case ℎ to denote its realization.  

A commonly used headway model is the two-component model developed in Cowan (1975) that 

consists of a ‘tracking’ component and a ‘free’ component: 

 𝑓𝐻(ℎ; 𝜌, 𝜆) =  𝜌𝛿(ℎ − 𝜏) + (1 − 𝜌)𝜆−1exp {−(ℎ − 𝜏)/𝜆}  for ℎ ≥ 𝜏,  (1) 

where 𝜏 is the minimum headway of traffic.  𝜌 is the proportion of vehicles associated with the 

‘tracking’ component. Vehicles associated with the “tracking” component have a minimum headway 

𝜏. 𝜆 + 𝜏 is the average headway of the ‘free’ component. Hence,  parameter 𝜆 represents the 
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difference in the  average headway between the “tracking” component and the ‘free’ component. 𝛿(𝑥) 

denotes the Dirac delta function of 𝑥. It is a generalized function on the real line that is zero 

everywhere except at zero, with an integral of one over the entire real line. 

As for pedestrians, Li (2013) shows that the effective critical headway (ECH), defined to be the 

minimum vehicle time headway required by a pedestrian to cross a street safely, also plays an 

important role in the modeling of pedestrians’ behavior. A pedestrian will cross a street only if the 

current vehicle time headway is greater than his/her ECH. In the literature, the ECH is shown to be 

related to the crosswalk length and a pedestrian’s average walking speed (Ishaque and Noland, 2008). 

In reality, the time that a pedestrian requires for street crossings is usually larger than this level. This 

is because he/she also takes into consideration of safety issue before crossings, and there is a 

perception-response time of human beings to a reasonably clear stimulus (Dewar and Olson, 2007). 

Besides these physical factors, pedestrians’ street-crossing behavior is also related to their risk 

attitude. Risk attitude is a concept based on the behavior of humans while exposed to uncertainty. It is 

used in a number of disciplines such as business and economics to describe the choice made by a 

given individual or group in the face of a particular risky situation. Although risk attitude exists on a 

continuous spectrum in the sense that there are an infinite variety of possible responses to risk which 

can be displayed by a particular individual or group, individuals are usually clarified into a few risk 

attitude groups in the literature.  

Following Li (2013), we consider two broad categories of pedestrian in this paper, i.e. risk averse 

and risk taking, according to whether or not their ECH is greater than the minimum headway 𝜏  or not. 

Risk-averse pedestrians tend not to trade safety with time and/or have less mobility. In general, they 

have a higher average level of ECH, so they tend to wait until they are sure it is safe to cross. Risk-

taking pedestrians, on the other hand, value their time highly so they have a lower average level of 

ECH and tend to cross the street whenever possible. Let 𝜇1 and 𝜇2 denote the average ECH of risk-

taking and risk-averse pedestrians respectively with 𝛍 = [𝜇1,𝜇2]𝑇. By definition we have 𝜇1 ≤ 𝜏 and 

𝜇2 > 𝜏.  
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In the literature, there are many factors that are related to characterizing the risk-averse and risk-

taking groups but none of them can uniquely determine their risk attitudes. In terms of demographic 

characteristics, age and gender are widely considered to be factors affecting gap acceptance and 

pedestrian compliance (Ishaque and Noland, 2008). Many other factors have also been identified, 

including trip purposes (commuting, shopping, etc.), education level of a pedestrian, physical 

restriction on mobility, past experience involving road accidents (see, e.g. Hamed (2001), Ahuja et al. 

(2005)). 

Finally, throughout this paper, we use 𝑊 to denote a pedestrian’s intended waiting time (random 

variable) and the lower case 𝑤 to denote its realization. In addition, we use 𝐶 to denote the duration of 

the red-man phase of the traffic light signals. 

 
2.2   A brief summary of the univariate model  

Now we introduce the univariate model developed in Li (2013). For a pedestrian of type 𝑃 (𝑃 =1 

for risk-taking and 2 for risk-averse pedestrians) with a given headway 𝐻 = ℎ, Li (2013) considered 

the following conditional probability model for intended waiting time 𝑊 during the red-man phase: 

 𝑊|(𝐻 = ℎ,𝑃) ~ �
𝑓𝐵𝑃(𝑤;𝜃𝑃 ,𝐶)         𝑖𝑓 ℎ > 𝜇𝑃
𝛿(𝑤 − 𝐶)               𝑖𝑓 ℎ ≤ 𝜇𝑃

  .     (2) 

Model (2) simply says that for a given headway ℎ, the pedestrian’s intended waiting time 𝑊 during 

the red-man phase follows a bounded Pareto distribution 𝑓𝐵𝑃(𝑤;𝜃𝑃 ,𝐶) if the vehicle time headway is 

greater than his/her ECH; otherwise he/she has to be prepared to wait for up to the entire red-man 

phase. The probability density function of the bounded Pareto distribution is given by 

 𝑓𝐵𝑃(𝑤; 𝜃,𝐶) = (𝜃/𝐶)(1 −𝑤/𝐶)𝜃−1  for 0 ≤ 𝑤 ≤ 𝐶,    

with θ the parameter. As shown in Li (2013), 𝑓𝐵𝑃(𝑤; 𝜃,𝐶) is strictly decreasing (or increasing) if 

𝜃 > 1  (or 0 < 𝜃 < 1).  𝑓𝐵𝑃(𝑤;𝜃,𝐶) with 𝜃 > 1 is used to model the scenario where a pedestrian 

highly values his/her time and becomes more impatient as he/she waits longer, whereas 𝑓𝐵𝑃(𝑤;𝜃,𝐶) 

with  0 < 𝜃 < 1 describes the scenario where a pedestrian tends to be law-abiding and not to risk 

his/her safety. Hence, the longer he/she waits, the less likely that he/she will cross the street during the 
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red-man phase. See Figure 1 for an illustration of 𝑓𝐵𝑃(𝑤;𝜃,𝐶) with 𝜃 = 10 for risk-taking pedestrians 

and 𝜃 = 0.5 for risk-averse pedestrians.  

The parameter 𝜃𝑃 in model (2) is linked to the headway and the pedestrians’ ECH as follows: 

  𝜃𝑃 = 𝛽𝑃max (ℎ − 𝜇𝑃 , 0) with 𝑃 =1 and 2,      (3) 

where 𝛽𝑃 > 0 is termed sensitivity coefficient. It reflects how sensitive a certain type of pedestrian is 

to a given excess gap ℎ − 𝜇𝑃. Risk-taking pedestrians are usually more sensitive, i.e. 𝛽1 > 𝛽2. Let 

𝛃 = [𝛽1,𝛽2]𝑇 denote the vector of the sensitivity coefficients.  

Equation (2) is a model conditional on both headway and pedestrian type. To derive an 

unconditional distribution model, Li (2013) assumed that the binary random variable P, i.e. pedestrian 

type, follows a Bernoulli distribution:  

 Pr{𝑃 = 1} = 𝜋    and    Pr{𝑃 = 2} = 1 − 𝜋,       (4) 

where 𝜋 is the probability that a pedestrian is risk-taking. Li (2013) also assumed that vehicle time 

headway follows model (1). On the basis of the two marginal models for pedestrian type and vehicle 

time headway, i.e. (4) and (1), Li (2013) derived the following unconditional distribution function of 

pedestrians’ intended waiting time: 

 𝐹𝑊(𝑤) = 𝑟1𝐺(𝑤;𝐴𝑅𝑇 ,𝐵𝑅𝑇 ,𝐶) + 𝑟2𝐺(𝑤;𝐴𝑅𝑇 , 0,𝐶) + 𝑟3𝐺(𝑤; 0,𝐵𝑅𝐴,𝐶) + 𝑟4𝐺(𝑤; 0,0,𝐶), 

             (5) 

where 𝐺(𝑤;𝐴,𝐵,𝐶) (for 𝐴 ≥ 0, 𝐵 ≥ 0) is a distribution function given by  

 𝐺(𝑤;𝐴,𝐵,𝐶)  = 1 − �1 − 𝑤
𝐶
�
𝐴

{1 − 𝐵 ln �1 − 𝑤
𝐶
�}−1   if    𝑤 ∈ [0,𝐶]. 

In model (5),   𝑟1, … , 𝑟4  are mixing probabilities of the four components with ∑ 𝑟𝑗 = 14
𝑗=1 . 𝐴𝑅𝑇, 𝐵𝑅𝑇, 

and 𝐵𝑅𝐴 are the parameters of the individual component distributions. Conceptually, all these 

parameters depend on  𝛍, 𝛃 and the parameters in model (1). In empirical studies, however, they are 

estimated directly from observed waiting time data. 

 

2.3   A conditional multivariate model for pedestrians’ intended waiting time 

Next, we extend the univariate distributional model to a bilevel multivariate model so that the risk 

factors of interest can be accounted for. This is carried out in two steps: first, conditional on 
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pedestrian type, we develop a generalized linear model for pedestrians’ intended waiting time; then 

we use a logit model to gauge pedestrians’ attitudes toward risk-taking.  

We first note that the unconditional distribution (5) is complicated. It has six independent 

parameters. Potentially all of them can depend on the risk factors of interest. If each of these 

parameters is explicitly linked to multiple risk regressors, the entire model would likely suffer from a 

serious over-fitting problem. Hence, it is difficult, if not impossible, to investigate the impact of risk 

factors with model (5).  

The conditional model, equation (2), however, is much more mathematically convenient because 

the bounded Pareto distribution belongs to the exponential distribution family (see, e.g., McCullagh 

and Nelder, 1989). More specifically, the bounded Pareto distribution can be expressed in the 

following form: 

 𝑓𝐵𝑃(𝑤; 𝜃,𝐶) = (1/𝐶)exp {𝜃𝑙𝑜𝑔 �1 − 𝑤
𝐶
� + log(𝜃)− 𝑙𝑜𝑔 �1 − 𝑤

𝐶
�}   for 0 ≤ 𝑤 ≤ 𝐶, 

with the mean function 𝜕{− log(𝜃)}/𝜕 𝜃 = −1/𝜃. Li (2013) thus considered a simple generalized 

linear model, equation (3), to approximate the complicated relationship and related the parameter 𝜃𝑃 

to the only attribute, the excess headway ℎ − 𝜇𝑃.  

Clearly, when risk factors are to be taken into consideration explicitly, model (3) needs to be 

further extended. Specifically, let 𝐱 denote a vector of M risk covariates that may potentially affect 

pedestrians’ intended waiting times for street-crossings at signalized intersections. These may include 

any factors in the following categories (see, e.g. Hamed (2001); Ishaque and Noland (2008)): 

• current traffic condition: traffic volume, vehicle speed, etc. 

• roadway layout: location of the crossing point, number of lanes, width of the street, if 

there is a raised median refuges (Yes/No), etc. 

• settings of the traffic light signal: total cycle length, number of phases, etc. 

• time (peak or off-peak time), day (weekday or weekend) and weather condition. 

• social-economic characteristics associated with a pedestrian: gender, age, education, 

physical disability, trip purpose, pedestrian’s speed, pedestrians’ group size, if the 

pedestrian was involved or witnessed an accident in the past (Yes/No),  etc.  
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In this paper, we propose the following generalized linear model to account for these risk factors 

that may affect pedestrians’ intended waiting time: 

 𝜃𝑃 = 𝛽𝑃exp (𝛄𝑇𝐱)max (ℎ − 𝜇𝑃 , 0)      with  𝑃 =1 and 2,     (6) 

where 𝛄 = [𝛾1, … , 𝛾𝑀]𝑇 is an M-vector of coefficients associated with the risk vector 𝐱.   

Under the generalized linear model (6), the sensitivity to the excess headway ℎ − 𝜇𝑃 is captured 

by 𝛽𝑃exp (𝛄𝑇𝐱). Hence, it describes how risk covariates 𝐱 affect pedestrians’ sensitivity to the excess 

headway and impact on their intended waiting times. Equation (6) reduces to the conditional model 

(3) with sensitivity 𝛽𝑃 if 𝐱 = 𝟎.  

 

2.4   A marginal model for gauging risk attitude 

Model (2) with (6) is a probabilistic model conditional on pedestrian type P. To complete the 

model specification, we need to further consider a marginal model for random variable P. This also 

provides an approach to gauging pedestrians’ attitudes toward risk-taking. 

Let vector  𝐳 include all K risk covariates that may affect pedestrians’ risk attitudes, as well as 1 

that corresponds to the intercept. On the basis of equation (4) that assumes that binary random 

variable 𝑃 follows a Bernoulli distribution, we specify the following logit model for pedestrian type: 

 𝜋 = 1/{1 + exp (−𝛂𝑇𝐳)},         (7) 

where 𝜋 = Pr{𝑃 = 1}. 𝛂 = [𝛼0,𝛼1, … ,𝛼𝐾]𝑇 is a (K+1)-dimensional vector of coefficients. Note that 

it usually includes intercept 𝛼0.  

 

2.5   A bilevel multivariate model 

The conditional model (2) and marginal distribution (7) can be pooled together using the total 

probability theorem:    

 𝑊|(𝐻 = ℎ) ~ 𝑓𝑀𝐵𝑃(𝑤;𝛉,𝜋,𝐶)  ,       (8) 
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with  𝛉 = [𝜃1,𝜃2]𝑇. 𝑓𝑀𝐵𝑃(𝑤;𝛉,𝜋,𝐶) = 𝜋𝑓𝐵𝑃(𝑤; 𝜃1,𝐶) + (1 − 𝜋)𝑓𝐵𝑃(𝑤; 𝜃2,𝐶) is the probability 

density function of the mixture distribution of the bounded Pareto distributions for risk-averse and 

risk-taking pedestrians. 

Equation (8) is a bilevel model with  𝛉 and 𝜋 specified by equations (6) and (7) respectively, each 

reflecting a different facet of risk exposure associated with pedestrians’ unsafe crossing behavior. 

Pedestrians may have different perceptions to risk-taking and also there may be a number of factors 

affecting their risk attitudes. This is characterized by equation (7). Equation (6), on the other hand, 

describes the waiting time that a pedestrian is willing to spend, given the risk attitude. The two 

generalized linear models are hierarchically linked to each other, one conditional on the other.  

In terms of statistical inference, we note that although logit model (7) has the standard form of 

multinomial discrete choice models reflecting pedestrians’ individual decision-making (see, e.g., 

Train, 2009; Li, 2011), vector 𝛂 cannot be estimated solely based on model (6) because the pedestrian 

type is not directly observable in practice.  

  In general, risk factors that are included in equation (6) may differ from the risk factors in (7). In 

empirical analysis, the following modeling strategy can be used to identify the relevant risk factors for 

each facet. Initially, the risk covariates in vector  𝐳, if applicable, may be chosen the same as the risk 

covariates in vector 𝐱. Then in the subsequent statistical analysis, we can identify which particular 

risk covariates are associated with each facet of risk exposure via a variable selection process. This 

will be illustrated in the empirical study later in the paper.  

Finally, we consider the interpretation of the risk coefficients, 𝛂 and 𝛄. First, we note that vector 

𝛂 in logit model (7) can be interpreted in terms of odds ratio as does in logistic regression analysis.  

In general, consider two outcomes with probabilities of 𝜋 and 1 − 𝜋 respectively. The odds are 

defined to be 𝜋/(1 − 𝜋). The ratio of two odds is termed odds ratio.  

Equation (7) can be rewritten as  

 𝑙𝑜𝑔 𝜋
1−𝜋

= 𝛂𝑇𝐳,          

where 𝜋 (or 1 − 𝜋) represents the probability of being a risk-taking (or risk-averse) pedestrian. 

Consider one particular covariate 𝑧𝑗 in vector 𝐳 and its corresponding coefficient 𝛼𝑗 in vector 𝛂. When 
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𝑧𝑗 is increased by one unit, the odds are multiplied by exp (𝛼𝑗). Hence, each exponentiated coefficient 

exp (𝛼𝑗) is the ratio of two odds. For further discussion on the interpretation of the coefficients of 

logistic regression, see, e.g. Gelman and Hill (2007, Chapter 5) and Christensen (1997) in the general 

situation, and Washington et al. (2010, Chapter 12) in the context of transportation and traffic studies.  

Next, we turn to consider the interpretation of vector 𝛄 in equation (6). We note that conditional 

on pedestrian type, equation (2) with (6) is a proportional hazard model. To see this, we write out the 

hazard function of the bounded Pareto distribution below: 

 ℎ(𝑤;𝜃,𝐶) = 𝑓𝐵𝑃(𝑤;𝜃,𝐶)
1−𝐹𝐵𝑃(𝑤;𝜃,𝐶) = (𝜃/𝐶)(1 −𝑤/𝐶)−1, 

where 𝐹𝐵𝑃(𝑤;𝜃,𝐶) = 1 − (1 −𝑤/𝐶)𝜃 is the cumulative distribution function of 𝑓𝐵𝑃(𝑤;𝜃,𝐶). 

Substituting equation (6) into the above equation, we obtain 

 ℎ(𝑤;𝜃𝑃 ,𝐶) = ℎ�𝑃(𝑤;𝐶)exp (𝛄𝑇𝐱), 

where ℎ�𝑃(𝑤;𝐶) = 𝛽𝑃max (ℎ − 𝜇𝑃 , 0)(𝐶 − 𝑤)−1 is defined to be the baseline hazard function of 

pedestrian type P (P =1 and 2). Therefore, conditional on pedestrian type P, each risk coefficient in 

vector 𝛄 can be, in principle, interpreted in a similar manner as does in Cox’s proportional hazard 

models in time-to-event analysis; see, e.g., Washington et al. (2010, Chapter 10)  and Collett (2003), 

for an introduction to Cox’s proportional hazard models.  

Specifically, consider pedestrians of type P and a 0-1 binary covariate 𝑥𝑗 (say 𝑥𝑗 = 1  for males 

and 0 for females). For the two pedestrian sub-groups with 𝑥𝑗 = 1  and 𝑥𝑗 = 0  respectively, with the 

same excess headway ℎ − 𝜇𝑃 > 0 and all other risk factors being equal,  exp (𝛾𝑗) may be interpreted 

as the hazard ratio for the sub-group of 𝑥𝑗 = 1  (males) versus the sub-group of 𝑥𝑗 = 0  (females). 

Note that the benchmark for the comparison of hazards differs for different pedestrian type because 

ℎ�𝑃(𝑤;𝐶) depends on P. 

The above interpretation applies to all risk-taking pedestrians (P=1). Care must be taken, 

however, for risk-averse pedestrians (P=2): the interpretation of exp (𝛾𝑗) as the hazard ratio applies 

only to the case where excess headway ℎ − 𝜇2 > 0; for any two risk-averse pedestrians with the same 
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excess headway ℎ − 𝜇2 < 0, both pedestrians will wait until the green-man signal shows. In this case, 

they are not at risk at all because they do not expose themselves to safety and health hazards.  

 
 
3.  Statistical inference  
 

In this section, we investigate statistical inference for the developed bilevel multivariate model via 

a Bayesian approach.  

In practice, vehicle time headway may or may not be observed in a risk analysis, which has 

important implications to statistical inference. We hence differentiate two different scenarios: (a) 

measurements on vehicle time headway are available in analysis; and (b) vehicle time headway is not 

observed. We first focus on scenario (a). Then with the data augmentation method, scenario (b) will 

be investigated by a straightforward extension of the method used for scenario (a). 

 

3.1   Statistical inference with observed vehicle time headways 

In this subsection we investigate statistical inference when the measurements on vehicle time 

headway are available. We first discuss the likelihood function and specify the prior distribution. 

Then we derive the posterior distribution of the parameters and develop an MCMC algorithm for the 

Bayesian analysis.  

 

3.1.1   Data and likelihood function 

Pedestrians’ waiting time data in empirical analysis usually contains a substantial number of 

censored values because the observation process of pedestrians’ intended waiting times is often 

interrupted by the green-man signal: if the green-man signal appears before a pedestrian crosses, the 

observation of the intended waiting time is not available and hence considered to be censored (Tiwari 

et al., 2007; Li, 2013).  

In general, we consider a random sample of n pedestrians, {�𝑤𝑗, 𝑐𝑗, 𝐱𝑗, 𝐳𝑗 ,ℎ𝑗�}  for j=1,…,n, where 

𝐱𝑗 and 𝐳𝑗 are the vectors of risk factors associated with pedestrian j. ℎ𝑗 is the measured vehicle 

headway when pedestrian j crossed the street.  𝑤𝑗 is the observed actual waiting time of pedestrian j, 
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defined to be the time difference between arriving at the crossing point during the red-man phase and 

leaving the curb. 𝑐𝑗 is the corresponding indicator, with 𝑐𝑗 = 0 if the time that pedestrian j is willing to 

wait is observed, and 𝑐𝑗 = 1 if the observation is interrupted by the green-man signal.  

Now we turn to consider the likelihood function. When a piece of waiting time data, say the jth, is 

censored, the only information available is that the intended waiting time is longer than the observed 

duration. Hence, its contribution to the likelihood function is 1 − 𝐹𝑀𝐵𝑃�𝑤𝑗;𝛉,𝜋,𝐶�, where 

𝐹𝑀𝐵𝑃�𝑤𝑗;𝛉,𝜋,𝐶� is the cumulative distribution function of 𝑓𝑀𝐵𝑃(𝑤;𝛉,𝜋,𝐶) defined in equation (8).  

On the other hand, if the waiting time of pedestrian j is observed, its contribution to the likelihood 

function is proportional to 𝑓𝑀𝐵𝑃�𝑤𝑗;𝛉,𝜋,𝐶�. The likelihood associated with pedestrian j for the two 

different scenarios can be written in a unified form:  

 𝐿𝑗(𝛂,𝛄,𝛃,𝛍|𝑤𝑗, 𝐱𝑗, 𝐳𝑗,ℎ𝑗) ∝ [𝑓𝑀𝐵𝑃�𝑤𝑗;𝛉,𝜋,𝐶�]1−𝑐𝑗[1− 𝐹𝑀𝐵𝑃�𝑤𝑗;𝛉,𝜋,𝐶�]𝑐𝑗. 

Note that headway ℎ𝑗, risk covariates 𝐱𝑗 and  𝐳𝑗, as well as parameter vectors 𝛂,𝛄,𝛃,𝛍, are linked to 𝛉 

and 𝜋 via equations (6) and (7). In most risk analysis for pedestrians’ street-crossings, we are 

interested in the coefficient vectors 𝛄 and 𝛂. Taking into consideration of all pedestrians, the 

likelihood is given by 

    𝐿(𝛂,𝛄,𝛃,𝛍|𝐰,𝐗,𝐙,𝐡) = ∏ 𝐿𝑗(𝛂,𝛄,𝛃,𝛍|𝑤𝑗, 𝐱𝑗, 𝐳𝑗 ,ℎ𝑗) 𝑛
𝑗=1 ,    (9) 

where 𝐰 = [𝑤1, … ,𝑤]𝑇, 𝐗 = [𝐱1𝑇 , … , 𝐱𝑛𝑇]𝑇 ,  𝐙 = [𝐳1𝑇 , … , 𝐳𝑛𝑇]𝑇, and 𝐡 = [ℎ1, … ,ℎ𝑛]𝑇.  

 

3.1.2   Choice for the prior 

Now we specify the prior distribution. If there is some information available on the parameters of 

model (8) that was obtained in the previous studies, it may be used to form the prior 

distribution 𝑝(𝛂,𝛄,𝛃,𝛍). In this paper, we assume that there is no such information in the current 

analysis. Hence we use a non-informative prior for the parameters of primary interest: 

 𝑝(𝛂,𝛄) ∝ 1.          

It is well known that Bayesian analysis for mixture models can experience identifiability 

difficulty in computation (see, e.g. Gelman et al. (2013, Chapter 18); Zucchini and MacDonald (2009, 

Chapter 7)). Prior knowledge that defines the sub-groups of the mixture models can substantially 
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alleviate this problem. For the model considered here, the two pedestrian groups are defined by their 

ECHs and sensitivity coefficients. By definition, the ECH for risk-averse (or risk-taking) pedestrians 

is greater (or not greater) than the minimum headway 𝜏. In addition, risk-taking pedestrians have a 

larger sensitivity coefficient.  We thus specify the following prior: 

 𝑝(𝛃,𝛍) ∝ 𝐼(0 < 𝛽2 < 𝛽1)𝐼(0 < 𝜇1 ≤ 𝜏)𝐼(𝜏 < 𝜇2 ≤ 𝐶).    

In practice, the minimum headway 𝜏 can be obtained using the current headway measurements 

𝐡 = [ℎ1, … ,ℎ𝑛]𝑇 via model (1).  

Combining the above prior distributions, the joint prior distribution is specified as 

𝑝(𝛂,𝛄,𝛃,𝛍) ∝ 𝐼(0 < 𝛽2 < 𝛽1)𝐼(0 < 𝜇1 ≤ 𝜏)𝐼(𝜏 < 𝜇2 ≤ 𝐶).       (10) 

 

3.1.3    The posterior distribution and MCMC algorithm 

The posterior distribution for the parameters in model (8) can be derived straightforwardly by 

applying Bayes’ rule that pools likelihood (9) with prior distribution (10): 

 𝑝(𝛂,𝛄,𝛃,𝛍|𝐰,𝐗,𝐙,𝐡) ∝  𝐿(𝛂,𝛄,𝛃,𝛍|𝐰,𝐗,𝐙,𝐡)𝑝(𝛂,𝛄,𝛃,𝛍) .    (11) 

The above posterior distribution is analytically intractable. In empirical analysis, we have to 

obtain a numerical solution using Markov chain Monte Carlo (MCMC) simulation. The overall 

structure of the MCMC algorithm used in this paper is based on the Gibbs sampler where each block 

of the parameters is simulated, one at a time, during each iteration k, as outlined below:  

 

Algorithm I: 

Initialization: set an initial guess of 𝛃(0), 𝛍(0)  𝛂(0) and 𝛄(0); 

For k=1: N 

- simulate parameters 𝛂(𝑘) from (11) for given 𝛄(𝑘−1), 𝛃(𝑘−1)  and 𝛍(𝑘−1);  

- simulate parameters 𝛄(𝑘) from (11) for given 𝛂(𝑘)  , 𝛃(𝑘−1)  and 𝛍(𝑘−1); 

- simulate parameters 𝛃(𝑘)  from (11) for given 𝛂(𝑘), 𝛄(𝑘) and 𝛍(𝑘−1);  

- simulate parameters 𝛍(𝑘)  from (11) for given 𝛂(𝑘), 𝛄(𝑘) and 𝛃(𝑘). 

End 
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The total number of iteration N in Algorithm I is specified sufficiently large to ensure the 

convergence. The first 𝑁0 (𝑁0 < 𝑁) iterations are termed burn-in period and samples simulated in this 

period are discarded. Summary statistics (such as posterior means, posterior standard deviations, and 

credible intervals) are calculated using the samples simulated beyond the burn-in period. The reader 

who is not familiar with MCMC is referred to Gelman et al. (2013), Chapter 11, for a comprehensive 

introduction to MCMC.  

Next we focus on the simulation of 𝛃; the simulation of the other parameters can be undertaken in 

a similar manner.  

We first note that the sensitivity coefficients are positive. Hence, instead of simulating 𝛃 =

[𝛽1,𝛽2]𝑇, we apply a log-transformation 𝛾0𝑃 = log (𝛽𝑃) (for P=1 and 2) and simulate 𝛾0𝑃 at each 

iteration k.  From equation (10), we can obtain the prior distribution for 𝛾01 and 𝛾02, i.e. 𝐼(𝛾02 < 𝛾01).  

We focus on iteration k. Let 𝛾01
(𝑘−1) and 𝛾02

(𝑘−1)  denote the draws of 𝛾01 and 𝛾02 obtained at 

iteration 𝑘 − 1 with 𝛃(𝑘−1) = [exp (𝛾01
(𝑘−1)), exp (𝛾02

(𝑘−1))]𝑇. We now wish to simulate 𝛾01 and 𝛾02 at 

iteration k, denoted by 𝛾01
(𝑘) and 𝛾02

(𝑘). There is no simple way to simulate them directly from the 

posterior so we use the Metropolis-Hastings algorithm.  

Specifically, let 𝜑(𝑥;𝑎, 𝑏2, 𝑐) denote the probability density function of a normal distribution, 

right-truncated at c (where c can be finite or +∞), with a location parameter a and scale parameter b 

respectively. We use the following random walk to simulate candidates of  𝛾0𝑃
(𝑘): 

 𝛾�0𝑃
(𝑘) = 𝛾0𝑃

(𝑘−1) + 𝜀𝑃       for P=1, 2, 

where 𝜀𝑃 follows 𝜑(𝑥; 0, 𝑏2, 𝑐𝑃). We choose 𝑐1 = +∞ (i.e. without truncation). To ensure 𝛾02
(𝑘) <

𝛾01
(𝑘), we take  𝑐2 = 𝛾�01

(𝑘). 𝑏 is a tuning parameter which can be tuned in the iteration process. Let 

𝛃�(𝑘) = [exp (𝛾�01
(𝑘)), exp (𝛾�02

(𝑘))]𝑇 denote the candidate vector of the sensitivity coefficients. 

Note that the joint proposal distribution for (𝛾�01
(𝑘),𝛾�02

(𝑘)) is  

 𝑝 �𝛾�01
(𝑘),𝛾�02

(𝑘)� = 𝑝 �𝛾�01
(𝑘)�𝑝 �𝛾�02

(𝑘)|𝛾�01
(𝑘)� = 𝜑(𝛾�01

(𝑘); 𝛾01
(𝑘−1),𝑏2, +∞) 𝜑(𝛾�02

(𝑘); 𝛾02
(𝑘−1),𝑏2,𝛾�01

(𝑘)) 

which is not symmetrical. Hence we calculate the ratio as follows: 
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 𝑟 = 𝑝�𝛂(𝑘),𝛄(𝑘),𝛃�(𝑘),𝛍(𝑘−1)�𝐰,𝐗,𝐙,𝐡�/𝜑(𝛾�02
(𝑘);𝛾02

(𝑘−1),𝑏2,𝛾�01
(𝑘)) 

𝑝(𝛂(𝑘),𝛄(𝑘),𝛃(𝑘−1),𝛍(𝑘−1)|𝐰,𝐗,𝐙,𝐡)/𝜑(𝛾02
(𝑘−1);𝛾�02

(𝑘),𝑏2,𝛾01
(𝑘−1))

  . 

Following the Metropolis-Hasting algorithm, the candidate vector [𝛾�01
(𝑘), 𝛾�02

(𝑘)]𝑇 is accepted with 

probability of min (1, 𝑟), i.e. we draw a value 𝑣 from the uniform distribution on interval [0, 1]. We 

then take [𝛾01
(𝑘),𝛾02

(𝑘)]𝑇 = [𝛾�01
(𝑘), 𝛾�02

(𝑘)]𝑇 if 𝑣 < 𝑟; otherwise [𝛾01
(𝑘), 𝛾02

(𝑘)]𝑇 = [𝛾01
(𝑘−1),𝛾02

(𝑘−1)]𝑇. 

 

3.2   Statistical inference when the measurements on vehicle time headway are unavailable  

In practice, sometimes the measurements on vehicle headway are not available. In this subsection, 

we investigate statistical inference in this scenario. 

Essentially, statistical inference in this case can be drawn in a similar manner as outlined in the 

previous subsection. However, since the headway measurements 𝐡 are not available, they need to be 

integrated out from the posterior in equation (11). Usually, the dimension of 𝐡 is extremely high, and 

hence directly evaluating the integral is difficult. Instead, the computation can be carried out using the 

data augmentation method: the headway vector 𝐡 in each iteration of the MCMC simulation is 

simulated, and on the basis of the imputed vector 𝐡, all the parameters are drawn using the method 

outlined in Algorithm I. This process continues in an alternating manner until the convergence. We 

now discuss the details of this method.  

 

3.2.1   Likelihood function 

The data collected in this case includes a random sample of n pedestrians, {�𝑤𝑗, 𝑐𝑗, 𝐱𝑗 , 𝐳𝑗�} for 

j=1,…,n. To make use of the algorithm in Section 3.1, we treat vehicle time headway H as a latent 

variable and carry out the analysis as if the observations were available in the analysis. To clarify the 

scenarios of with and without the headway measurements in the analysis, we distinguish two different 

types of likelihood, i.e. ‘complete’-data and ‘incomplete’-data likelihoods. The former is referred to 

the likelihood based on the data of form {�𝑤𝑗, 𝑐𝑗, 𝐱𝑗, 𝐳𝑗,ℎ𝑗�} (j=1,…,n), whereas the latter is based on 

{�𝑤𝑗, 𝑐𝑗, 𝐱𝑗, 𝐳𝑗�} (j=1,…,n). 
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Consider each pedestrian j. As shown in Section 3.1, the likelihood conditional on a given 

headway measurement  ℎ𝑗 is 

  𝐿𝑗(𝛂,𝛄,𝛃,𝛍|𝑤𝑗, 𝐱𝑗, 𝐳𝑗 ,ℎ𝑗) = [𝑓𝑀𝐵𝑃�𝑤𝑗;𝛉,𝜋,𝐶�]1−𝑐𝑗[1− 𝐹𝑀𝐵𝑃�𝑤𝑗;𝛉,𝜋,𝐶�]𝑐𝑗.  

Hence, the joint distribution of �𝑤𝑗,ℎ𝑗� for given �𝑐𝑗, 𝐱𝑗, 𝐳𝑗� is 

 𝐿�𝑗�𝛂,𝛄,𝛃,𝛍,ℎ𝑗�𝑤𝑗, 𝐱𝑗, 𝐳𝑗� =� 𝐿𝑗(𝛂,𝛄,𝛃,𝛍|𝑤𝑗, 𝐱𝑗, 𝐳𝑗 ,ℎ𝑗) 𝑓𝐻�ℎ𝑗;𝜌, 𝜆�, 

where  𝑓𝐻(ℎ; 𝜌, 𝜆) is specified in equation (1). However, the Dirac delta function 𝛿(ℎ − 𝜏) in equation 

(1) can cause some difficulties in numerical computation. We circumvent this difficulty as follows: 

we use an exponential distribution 𝜆0−1exp {−(ℎ − 𝜏)/𝜆0} with a very small 𝜆0 to replace the Dirac 

delta function 𝛿(ℎ − 𝜏) in (1). This is equivalent to using the headway model proposed in Griffiths 

and Hunt (1991): 

 𝑓𝐻(ℎ; 𝜌, 𝜆0, 𝜆) = 𝜌𝜆0−1exp {−(ℎ − 𝜏)/𝜆0} + (1 − 𝜌)𝜆−1exp {−(ℎ − 𝜏)/𝜆}    for ℎ ≥ 𝜏. 

            (1a) 

Let 𝛟 = [𝛃,𝛍,𝜌, 𝜆0,𝜆] 𝑇. The ‘complete’-data likelihood can be rewritten as  

    𝐿(𝛂,𝛄,𝛟,𝐡|𝐰,𝐗,𝐙) = ∏ 𝐿�𝑗(𝛂,𝛄,𝛃,𝛍,ℎ𝑗|𝑤𝑗, 𝐱𝑗, 𝐳𝑗)𝑓𝐻�ℎ𝑗;𝜌, 𝜆0,𝜆� 𝑛
𝑗=1 .   (12) 

 

3.2.2   Model identifiability  

We note that when both headway 𝐻 and ECH 𝜇𝑃 are not observed, model (8) with (6) is no longer 

identifiable. This is because from equation (6), adding any constant value to both headway 

measurements ℎ𝑗 and ECH 𝜇𝑃 does not affect the statistical inference for the other parameters. Hence 

it is only the differences between headway ℎ𝑗 and ECH 𝜇𝑃 that can be estimated. As a consequence, 

the minimum headway 𝜏 can be set to any reasonable value without changing the estimates of the 

parameters of interest, i.e.  𝛂 and 𝛄.   

 

3.2.3   Choice for the prior 

Now we specify the prior distribution. The prior for 𝛂, 𝛄, 𝛃 and 𝛍 is kept the same as equation 

(10). We specify the prior of parameters 𝜌, 𝜆0 and 𝜆 in equation (1a) as follows:  

 𝑝(𝜌, 𝜆0,𝜆) ∝ 𝑝(𝜌)𝐼(𝜆0 < 𝜆)𝐼(𝜆 ≤ Λ)𝐼(𝜆0 ≤ Λ0),      
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where the upper bound Λ for 𝜆 is a pre-specified hyper-parameter in statistical analysis. Note that 

𝜆 + 𝜏 is the average time headway for the ‘free’-component. Hence this upper bound Λ can be easily 

elicited in practice based on the traffic characteristics. In addition, as mentioned earlier, the upper 

bound Λ0 for the ‘tracking’ component should be pre-specified as a small value. Finally, we choose 

prior 𝑝(𝜌) of 𝜌 as a uniform distribution, i.e. 𝑝(𝜌) ∝ 1. 

Combining the above prior distributions, we specify the joint prior distribution as 

𝑝(𝛂,𝛄,𝛟)        

            ∝ 𝐼(0 < 𝛽2 < 𝛽1)𝐼(0 < 𝜇1 ≤ 𝜏)𝐼(𝜏 < 𝜇2 ≤ 𝐶)𝐼(𝜆0 < 𝜆)𝐼(𝜆 ≤ Λ)𝐼(𝜆0 ≤ Λ0).    (13) 

 

3.2.4    The posterior distribution and MCMC algorithm 

The ‘complete’-data posterior distribution can be derived straightforwardly by applying Bayes’ 

rule that pools the ‘complete’-data likelihood (12) with the prior distribution (13): 

 𝑝(𝛂,𝛄,𝛟,𝐡|𝐰,𝐗,𝐙) ∝ 𝐿(𝛂,𝛄,𝛟,𝐡|𝐰,𝐗,𝐙)𝑝(𝛂,𝛄,𝛟) .     (14) 

The ‘complete’-data posterior (14) depends on vector 𝐡, and hence cannot be dealt with 

analytically. A commonly used method in statistical inference for problems with latent variables is 

data augmentation where the simulation is carried out in an alternating manner: first the values of the 

unobserved latent variable(s) are simulated for fixed values of the parameters; then with the imputed 

values of the latent variable(s), the parameters are drawn from the posterior distribution. This process 

continues until the convergence.  

The MCMC algorithm with data augmentation used in this paper is outlined below:  

 

Algorithm II: 

Initialization: set an initial guess of 𝛟(0), 𝛂(0) and 𝛄(0); 

For k=1: N 

- Imputation step 

simulate vector 𝐡(𝑘) from (14) for fixed parameters 𝛂(𝑘−1), 𝛄(𝑘−1), and 𝛟(𝑘−1); 

- Posterior step 
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for the given headway vector 𝐡(𝑘), simulate all the parameters parameters 𝛂(𝑘), 𝛄(𝑘), and 𝛟(𝑘)  

from (14).  

End 

 

Clearly once vector 𝐡(𝑘) is imputed at each iteration k, the posterior step can be undertaken in a 

similar way as does in Algorithm I. So next we focus on the imputation step only. 

We consider the simulation of headway vector 𝐡  at iteration k. There is no convenient way to 

simulate the headway vector directly, so we use the Metropolis-Hastings algorithm. Let 𝐡(𝑘−1) denote 

vector 𝐡 obtained at iteration 𝑘 − 1.  

At iteration 𝑘, the simulation of 𝐡(𝑘) using the Metropolis-Hastings algorithm is carried out 

element-wise. Consider the simulation for the j-th element (for j=1,…,n). When j=1, we define the 

current headway vector as 𝐡𝑐 = 𝐡(𝑘−1). Note that 𝐡𝑐 will be updated for each of j=2,…,n.  

We suggest using distribution (1a) as the proposal distribution to generate a proposal, i.e., to draw 

each entry ℎ�𝑗
(𝑘) as 

  ℎ�𝑗
(𝑘)~𝑓𝐻 �ℎ; 𝜌(𝑘−1),𝜆0

(𝑘−1),𝜆(𝑘−1)�      for j=1,…,n. 

Hence the jumping distribution is 𝐽(𝐡) = ∏ 𝑓𝐻 �ℎ𝑗;𝜌(𝑘−1),𝜆0
(𝑘−1),𝜆(𝑘−1)�𝑛

𝑗=1 . Let �̃�𝑗
(𝑘) be the current 

headway vector 𝐡𝑐 except that the j-th element is replaced with ℎ�𝑗
(𝑘). The ratio for the j-th element in 

the Metropolis-Hastings algorithm is: 

 𝑟𝑗 =
𝑝�𝛂(𝑘−1),𝛄(𝑘−1),𝛟(𝑘−1),�̃�𝑗

(𝑘) �𝐰,𝐗,𝐙�/𝐽(�̃�𝑗
(𝑘) )

𝑝�𝛂(𝑘−1),𝛄(𝑘−1),𝛟(𝑘−1),𝐡𝑐�𝐰,𝐗,𝐙�/𝐽(𝐡𝑐)
   . 

The candidate ℎ�𝑗
(𝑘)  is accepted with probability min�1, 𝑟𝑗�, i.e.  

 ℎ𝑗
(𝑘) = �

ℎ�𝑗
(𝑘)      if  accepted

ℎ𝑗
(𝑘−1)  otherwise

   . 

Then the current headway vector 𝐡𝑐 is updated with the j-th element being replaced by ℎ𝑗
(𝑘). We can 

then progress to draw the (j+1)-th element. 
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4.  A practical example  
 

To illustrate the proposed method, we consider a practical example in this section. The same data 

was examined in Li (2013) using the univariate model (5).  

 

4.1   Data and models 

The intersection considered in Li (2013) is located in a busy area of a Chinese metropolitan city, 

Kunming. It has four arms, with two major roads crossing. Around the intersection are a theater, a 

number of small shops, and several residential areas. The pedestrians’ crossing behavior was observed 

at a crossing point of the north arm of the intersection. During the time period of data collection, the 

intersection was signalized with the standard three-phase cycle. The duration of the red-man phase 

was 𝐶=75 s. 

The data used in Li (2013) includes measurements on intended waiting time, an indicator whether 

pedestrians crossed the street in the red-man phase or waited until the green-man signal showed, plus 

two factors, i.e. age (grouped into young, middle-aged, and elderly categories) and gender (males or 

females).  In total, 283 observations were included in the analysis in Li (2013). The data shows that 

there were a considerable number of pedestrians who crossed the street immediately after their 

arrivals at the crossing point, and also a large proportion of the pedestrians who were willing to wait 

for the entire red-man phase. Overall, the data distribution was shown to be U-shaped; see Figure 1 in 

Li (2013).  

In order to apply the bilevel multivariate approach, we created a couple of covariates, including: 

(a) a gender indicator 𝑢1 for the investigation of gender effect: 𝑢1 = 1 for male pedestrians and 0 

otherwise; (b) two covariates 𝑢2 and 𝑢3 for the investigation of age effect, i.e. 𝑢2 = 1 if a pedestrian 

was young and 0 otherwise; and 𝑢3 = 1 if a pedestrian was middle-aged and 0 otherwise.   

We will perform a multivariate analysis to examine risk factors. For this end, several models were 

explored and compared: 
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• Model I: 𝐱 = 𝑢1 and 𝐳 = [1,𝑢1]𝑇; Equations (6) and (7) are specified as 

𝜃𝑃 = 𝛽𝑃exp (𝛾1𝑢1)max (ℎ − 𝜇𝑃 , 0) and 𝜋 = 1/{1 + exp[−(𝛼0 + 𝛼1𝑢1)]};  

• Model II: 𝐱 = [𝑢2,𝑢3]𝑇 and 𝐳 = [1,𝑢2,𝑢3]𝑇; Equations (6) and (7) are specified as  𝜃𝑃 =

𝛽𝑃 exp(𝛾2𝑢2 + 𝛾3𝑢3) max(ℎ − 𝜇𝑃 , 0)  and 𝜋 = 1/{1 + exp[−(𝛼0 + 𝛼2𝑢2 + 𝛼3𝑢3)]};  

• Model III: 𝐱 = [𝑢1,𝑢2,𝑢3]𝑇 and 𝐳 = [1,𝑢1,𝑢2,𝑢3]𝑇; Equations (6) and (7) are specified as 

𝜃𝑃 = 𝛽𝑃exp (𝛾1𝑢1 + 𝛾2𝑢2 + 𝛾3𝑢3)max (ℎ − 𝜇𝑃 , 0) and 𝜋 = 1/{1 + exp[−(𝛼0 + 𝛼1𝑢1 +

𝛼2𝑢2 + 𝛼3𝑢3)]}.      

   

Model I focused on the gender effect, investigating if the male pedestrians behaved differently 

from the females when crossing the street during the red-man phase. Model II, on the other hand, was 

used to investigate the age effect, i.e. if the pedestrians in the different age groups had different street-

crossing behavior. Finally, both gender and age effects were taken into account in Model III.  

 

4.2   Settings in the MCMC algorithm 

As vehicle time headway was not observed during the data collection, Algorithm II was used to 

simulate the posterior distribution.  

There were a few hyper-parameters that needed to be set in the MCMC simulation.  In the 

following numerical computation, we set the minimum headway 𝜏 = 2s. As mentioned earlier, the 

choice for 𝜏 had no impact on the estimation of 𝛂 and 𝛄. The two upper bounds for headway were set 

as Λ = 10 s and Λ0=10-6 s respectively. The choice of Λ = 10 s was reasonable for the problem under 

investigation because during the data collection the traffic was congested with relatively small vehicle 

time headway. The choice for Λ0 was purely technical as mentioned in the previous section. The 

setting for the initial values of the parameters was explored using some randomly generated initial 

values. The following initial values were used in the final results reported below: 𝛂 = 𝟎, 𝛄 = 𝟎, 

𝛃 = [1,1/2]𝑇 , 𝛍 = [𝜏/2,𝐶/2]𝑇, 𝜌 = 0.5, 𝜆0 = Λ0, and  𝜆 = 1.  
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The total number of iterations of the MCMC simulation was set to be 10,000. The first 5,000 

iterations were considered the burn-in period so the samples obtained in this period were discarded. 

The results reported in the next sub-section were based on the remaining 5,000 iterations.  

Finally, following Zucchini and MacDonald (2009, pp. 10) and Li (2013), we used a discretized 

probability mass function of the bounded Pareto distribution 𝑓𝐵𝑃(𝑤;𝜃,𝐶) in the numerical 

computation with waiting times grouped into 75 time intervals of duration 1 s. 

 

4.3   Empirical results and analysis 

The results of statistical analysis using different models are displayed in Table 1. The multivariate 

analysis has revealed some interesting findings.  

 

Table 1. The coefficients of the risk factors in the empirical study * 

 
parameters Model I Model II Model III Model IV 

𝛼0    -0.232     

(-0.780, 0.357) 

-0.837 

(-1.522, -0.168) 

-1.045 

(-1.736, -0.178) 

-0.866 

(-1.485, -0.227) 

𝛼1 0.314 

(-0.374, 1.003) 

 

- 

0.400  

(-0.221, 0.964) 

 

- 

𝛼2  

- 

0.963 

(0.145, 1.715) 

1.114 

(0.269, 1.911) 

1.171 

(0.285, 2.050) 

𝛼3  

- 

0.902 

(0.114, 1.751) 

0.827 

(0.021, 1.556) 

0.899 

(0.103, 1.605) 

𝛾1 0.814 

(0.288, 1.515) 

- 0.817 

(0.314,1.352) 

0.877  

(0.284, 1.442) 

𝛾2  

- 

0.002 

(-0.722,  0.731) 

0.265 

(-0.579, 1.691) 

 

- 

𝛾3  

- 

-0.271 

(-1.092, 0.498) 

0.172 

(-0.647, 1.552) 

 

- 
*Posterior means and 95% credible intervals in parentheses 
 

 

First, it can be seen from column two of Table 1 that the estimate of 𝛾1 in Model I is equal to 

0.814 and is significant at 5% level. This indicates that the males tended to be more impatient and had 
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shorter waiting time than females. However, as the estimate of 𝛼1 is not significant, there was not 

enough evidence about whether the males were more likely to be risk-takers.  

Now we turn to consider the age effect. It can be seen from column three of Table 1 that the 

estimates of 𝛼2 and 𝛼3 in Model II are equal to 0.963 and 0.902 respectively. Both of them are 

significant at 5% level, indicating that compared with the elderly pedestrians, the young and middle-

aged pedestrians tended to be risk-takers. However, the estimates of both 𝛾2 and 𝛾3 are not significant 

at 5% level. Hence, there was not enough evidence about the age effect on pedestrians’ intended 

waiting time.  

Model III took into account both age and gender effects simultaneously. The results, as displayed 

in column four of Table 1, show that: by controling gender effect, the young and middle-aged 

pedestrians tended to be risk-takers; in addition, by controling age effect, the males tended to be less 

patient when waiting for the green-man signal.  

      

 

Figure 2. Posterior distributions of the risk coefficients in Model IV. 
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Finally, we removed the covariates that were not significant in Model III to work out the final 

model, Model IV. This model included the two age-related covariates to gauge the age effect on 

pedestrians’ risk attitudes, i.e. 𝐳 = [1,𝑢2,𝑢3]𝑇. On the other hand, only gender indicator, 𝑥1, was used 

to measure the impact on intended waiting time, i.e.  𝐱 = 𝑢1. Hence, the two generalized linear 

models (6) and (7) in Model IV were specified as: 

 𝜃𝑃 = 𝛽𝑃exp (𝛾1𝑢1)max (ℎ − 𝜇𝑃 , 0)      with  𝑃 =1 and 2,    

 𝜋 = 1/{1 + exp[−(𝛼0 + 𝛼2𝑢2 + 𝛼3𝑢3)]}.   

The results are displayed in the last column of Table 1. Figure 2 displays the simulated posterior 

distributions of the parameters of interest in the final model. 

The final column in Table 1 shows that the odds ratio for young pedestrians versus elderly 

pedestrians is exp(1.171) = 3.225, and the odds ratio for middle-aged pedestrians versus elderly 

pedestrians is exp(0.899) = 2.457. In addition, the hazard ratio for being males versus females is 

exp(0.877) =  2.404. 

The findings of this multivariate analysis seem reasonable and are consistent with our 

observation. Physically younger pedestrians are more able to accept smaller gaps during street 

crossings. Compared to elderly people, they usually have a much faster pace of life during the current 

rapid urbanization in China. Hence, in comparison with the elderly people, they tend to accept higher 

risk and to cross the street immediately after arriving at the crossing point. On the other hand, once 

the pedestrians stopped at the crossing point in the red-man phase, the results suggest that the males 

seemed to be more impatient and tended to find an opportunity to cross the street, leading to a shorter 

waiting time. 

Overall the results obtained by using the bilevel multivariate model have confirmed what were 

revealed in Li (2013) using the univariate analysis: both the age and gender of pedestrians affected 

pedestrians’ street-crossing behavior. The results are also in line with other empirical studies in the 

literature; see, e.g. Oxley et al. (1997),  Keegan and O’Mahony (2003), Yang et al. (2006), among 

many others. However, with a univariate approach we are unable to consider potential factors 

simultaneously, i.e. investigate some risk factors by controlling the others, and unable to reveal 
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different facets of risk exposure. The analysis in this paper shows that different risk factors can affect 

pedestrians in different ways: some of them primarily affect their attitudes toward risk-taking, 

whereas the others may impact on their intended waiting times.  

 

Before we conclude this section, there are a couple of points we would like to make. First, we 

point out that this is an over-simplified example for risk analysis of pedestrians’ unsafe crossings. It 

serves illustration purposes only. In practice, besides gender and age effect, pedestrians’ crossing 

behavior is usually influenced by many other factors, some of which were listed in Section 2.3. As 

this paper focuses on the methodological development, a full investigation on the identification of 

these risk factors is beyond the scope of this paper. However, the method developed in this paper 

provides a useful tool for researchers to fully explore this important research issue.  

We also note that pedestrians’ perceptions to risk vary from time to time and vary from 

intersection to intersection. For instance, even at the same crossing point, the pattern in peak time of 

normal working days will in general differ from that in weekends. The duration of the cycle time and 

the layout of intersections may also have a great impact on pedestrians’ crossing behavior. Care must 

be taken when generalizing the empirical findings in this paper to other scenarios.  

Finally, an alternative way of identifying risk factors can be used in practice: we can initially set 

vector 𝐳 in the way that includes the same covariates as that contained in 𝐱, both having all potential 

risk factors. This leads to Model III for this particular example. We can then undertake backward 

variable selection by removing any insignificant risk covariates out of the model, one at a time, so that 

a refined model, Model IV in the example, can be obtained.  

 

5.   Concluding remarks  

 

In this paper we have developed a bilevel multivariate modeling approach to risk analysis for 

pedestrians’ unsafe street-crossing behavior at signalized intersections. 

The developed bilevel multivariate method consists of two interconnected generalized linear 

models, each focusing on a particular facet of pedestrians’ risk exposure associated with unsafe street-
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crossings: one gauges pedestrians’ attitudes toward risk-taking, whereas the other measures the impact 

of the risk factors on pedestrians’ waiting times. Statistically the two models are hierarchically linked 

to each other.  

We have investigated two different approaches to statistical inference for the developed method: 

inference with and without measurements on vehicle time headway. We would like to emphasize that 

making use of headway data in the statistical analysis will greatly enhance the quality of the research. 

Given the rapid technological advances, traffic data collection has been becoming cheaper and 

cheaper. Efforts should be made in future empirical studies to make use of headway data.  

As shown in the practical example, risk factors associated with the two facets of the developed 

method may differ, indicating that some risk factors may have larger effects on risk attitudes, whereas 

the others primarily on waiting times.  Although the example given in this paper serves illustration 

purposes only and  its findings may not be directly generalized to other intersections, the developed 

modeling methodology per se can be used in a much wider range of applications. The bilevel 

multivariate model developed in this paper can help us identify risk factors and thus better understand 

the potential risk exposure of pedestrians. In particular, following Hamed (2001), Tiwari et al. (2007), 

and Wang et al., (2011), further empirical studies could be done to investigate the potential risk 

factors for the scenarios where pedestrians’ waiting times are U-shaped. The research focus could be 

to understand which risk factors affect which facets of the risk analysis: do they influence the 

intended waiting time or acceptance of risky crossing or both? In addition, the developed method can 

also be used to investigate the impact on pedestrians’ unsafe street-crossings with different settings of 

traffic light signals (number of phrases, total cycle time, etc.) and different layouts of street, and hence 

improve on pedestrians’ safety. For instance, to investigate the impact of a new street layout, before-

and-after comparisons can be carried out to compare and contrast the changes in pedestrians’ crossing 

behavior.  

Before we conclude this paper, we would like to point out some limitations of the proposed 

method. The multivariate method in this paper is built on the basis of the univariate model in Li 

(2013). This univariate model assumes that pedestrians’ intended waiting time, conditional on 

pedestrian type and headway, follows a bounded Pareto distribution. In practice, this assumption 
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could be too restrictive. A more advanced non-parametric approach could be used in the multivariate 

method to overcome this limitation, where the bounded Pareto distribution is replaced with an 

unspecified underlying distribution function. In addition, the logit model for pedestrians’ choice 

bebavior (accept or not accept a gap) could be restrictive in some applications, and hence it can be 

replaced with a more general semi-parametric model developed in Li (2011) in future research. 

Finally, for both the univariate and multivariate methods, we consider two broad categories of 

pedestrians with respect to their attitudes to risk: risk-taking and risk-averse groups. This can be 

extended to the case of three or more pedestrian groups. For this end, equation (7) could be replaced 

with the ordinal logistic regression.  
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