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Abstract 

Container stacking and reshuffling are important issues in the operations 

management of container terminals.  Minimizing the number of reshuffles can 

increase productivity of the yard cranes and the terminal efficiency.  In this research, 

we improve the existing static reshuffling model, develop five effective heuristics and 

analyze the performance of these algorithms.  A discrete-event simulation model is 

developed to animate the stacking, retrieving and reshuffling operations and to test the 

performance of the proposed heuristics and their extended versions in the dynamic 

environment with arrivals and retrievals of containers.  The experimental results for 

the static problem show that the improved model can solve the reshuffling problem 

more quickly than the existing model and the proposed extended heuristics are 

superior to the existing ones.  The experimental results for the dynamic problem 

show that the results of the extended versions of the five proposed heuristics are 

superior or similar to the best results of the existing heuristics and consume very little 

time. 
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1．Introduction 

With the continued increase in global trade, the volume of container 

transportation around the world has been growing steadily.  According to Zhang 

(2010), the total throughput of world’s top 50 container terminals was approximately 

306 million TEUs (Twenty-foot Equivalent Units) in 2009, which is an increase of 

16.8% from that in 2005.  To cope with the increasing volume and maintain service 

quality, it is critical for terminals to enhance their space utilization and operational 

efficiency in addition to expanding the capacities. 

A container terminal can be roughly divided into two main areas: one is the 

quayside for berthing vessels, and the other is the terminal yard where containers are 

stored.  The container handling process in the terminal yard is dynamic with 

containers continually being stored and retrieved.  To better utilize the limited space 

at the terminal, the containers stored in the yard are stacked one on top of another.  

In a container yard, the storage area is generally divided into blocks.  Fig. 1 adopted 

from Wan et al. (2009) but using slightly different terminology shows the 

configuration of a block in a terminal yard.  The directions of the length, width and 

height of a block are defined in the lower right corner of the diagram.  The set of 

containers in a block that share the same length coordinate is called a bay; the set 

sharing the same width coordinate is called a lane; the set sharing the same height 

coordinate is called a tier; the set of containers in a bay sharing the same width 

coordinate is called a column.  Note that a bay, as defined in Fig. 1, is called a stack 

in Wan et al. (2009).  The smallest storage unit is called a position, and the 

three-dimensional coordinate (bay number, column number, tier number) is used to 

represent a position.  A typical block served by rubber tyre gantry cranes (RTGCs) 

may include more than 20 bays with each bay normally consisting of 6 columns, and 

in each column, the containers may be stacked up to 4 or 5 high. 
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Fig. 1 The layout of a block 

Although stacking containers high can improve the space utilization, it will give 

rise to high handling costs because of unproductive moves.  If a container to be 

retrieved is not on top of a column, those blocking it need to be moved to other 

columns in the same bay.  Because there is only one container being retrieved in the 

process, the moves of other containers are considered as unproductive moves.  While 

storing new arrival containers is called stacking, storing blocking containers is called 

reshuffling.  The action of reshuffling a blocking container to another position is 

called a reshuffle.  The storage positions of incoming and reshuffled containers in a 

bay should be well determined to avoid future reshuffles as much as possible and to 

improve the operating efficiency of the yard cranes.  In this article, we study the 

storage location assignment problem for one bay in static and dynamic cases. 

In practice, the storage and retrieval operations in terminal yards are dynamic, 

and the configuration of each bay changes with arrivals and departures of containers.  

Due to the dynamic features, optimization models and solution methods performing 

well in static situations may not necessarily perform well in this dynamic situation.  

Therefore, optimization models and methods for the problem need to be tested in the 

dynamic environment.  Furthermore, the solution methods must be fast enough to 

make decisions in real-time.  Simulation can capture the characteristics of the 

dynamic system operations and, therefore, is an appropriate platform in evaluating the 

effectiveness and efficiency of decision rules and optimization methods in dynamic 

operations. 

The remainder of the paper is organized as follows.  Section 2 reviews the 

related research on reshuffling and stacking as well as simulation studies of terminal 

operations.  Section 3 gives a more detailed description of the reshuffling and 
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dynamic stacking problems in one bay and develops an improved model for the 

reshuffling problem.  Five new heuristics are then proposed and analyzed in Section 

4.  In Section 5, a discrete-event simulation model is developed to simulate the 

stacking, retrieving and reshuffling operations and to test the algorithms in a dynamic 

environment.  Section 6 reports the results of the experiments to evaluate the 

algorithms.  Finally Section 7 concludes the paper. 

2．Literature review 

In this section, we review previous studies related to reshuffling and stacking 

problems in container terminal yards.  For the reshuffling problem in a bay where 

the initial configuration was given and there were no new container arrivals, which 

will be called the static reshuffling problem in this paper, Kim (1997) developed a 

methodology to evaluate the expected number of reshuffles to pick up a specific 

container, and the total number of reshuffles to empty all containers.  Kim et al. 

(2000) proposed a method to determine the storage location of an arriving export 

container according to its weight.  First, the arriving export containers were 

classified into three pre-determined weight groups: light, medium and heavy.  Next, 

a dynamic programming model was presented to determine the optimal storage slot 

for each arriving container to minimize the total expected number of reshuffles.  

Finally, a decision tree rule was used to determine the storage slots for arriving 

containers instead of using time-consuming dynamic programming.  Kang et al. 

(2006) presented a method for deriving a strategy for stacking containers with 

uncertain weight information, and the method can significantly reduce the number of 

reshuffles at the time of loading compared to the traditional 

same-weight-group-stacking strategy.  Zhang (2000) proposed the lowest-slot (LS) 

heuristic to put an incoming or reshuffled container to the lowest available position of 

a bay.  Murty et al. (2005) proposed the reshuffling index (RI) heuristic to determine 

a position for an incoming or reshuffled container.  An incoming or reshuffled 

container was put in the column where the reshuffling index was the smallest.  For 

an incoming or reshuffled container, the RI of a column represents the number of 

containers that will be picked up earlier than the container being considered.  Kim 

and Hong (2006) studied the static reshuffling problem and proposed a branch and 

bound algorithm to determine the optimal storage positions for reshuffled containers.  

They also proposed a heuristic, ENAR, to quickly obtain satisfactory solutions, but 
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this algorithm’s time complexity is exponential because of the recursive manner for 

calculating the expected number of additional reshuffles.  For the static reshuffling 

problem, Wan et al. (2009) divided the process of emptying a bay into stages, each for 

retrieving one container, and defined binary variables to indicate the container 

positions in each stage.  Using these and other variables they formulated the problem 

as an integer programming model.  Heuristics based on the integer program were 

then developed and applied to the static reshuffling problem as well as the dynamic 

problem with continual retrievals and arrivals of containers.  Experimental results 

showed that the model-based heuristics were competitive for both static and dynamic 

problems.  Caserta et al. (2009) developed a binary description of the bay 

configuration to adapt heuristics and metaheuristics, and used the new description 

within a look ahead heuristic to solve the static reshuffling problem.  Caserta et al. 

(2011) proposed a new metaheuristic approach based on dynamic programming for 

the static reshuffling problem.  The above two methods are both metaheuristics, and 

their performances are only tested in a static situation.  Lee and Lee (2010) presented 

a three-phase heuristic for the static reshuffling problem, but the objective was to 

minimize the number of container movements and the crane’s working time, which 

was different from the problem investigated in our paper.  Forster and Bortfeldt 

(2012) proposed a tree search procedure for the container relocation problem.  The 

key of the algorithm is to determine a move sequence with minimum length, and it is 

also a metaheuristic approach.  Caserta et al. (2011) reviewed recent contributions 

dealing with reshuffling operations in container terminals.  The remarshalling 

problem, the premarshalling problem and the relocation problem were considered and 

the related algorithms to tackle such problems were summarized.  Though most 

previous research on the static reshuffling problem focused on developing efficient 

approximate algorithms, the complexity of the problem was unknown until recently.  

Caserta et al. (2012) proved that the static reshuffling problem is NP-hard by reducing 

it to the decision problem of Mutual Exclusion Scheduling (MES). 

The performance of the reshuffling algorithms in practice needs to be evaluated 

in a dynamic, operational environment with container arrivals and retrievals.  

Simulation is a suitable tool for evaluating the algorithms or rules.  There have been 

some simulation studies on container yard operations, e.g., Duinkerken et al. (2001), 

Sgouridis and Angelides (2002), Hartmann (2004), Park et al. (2006), Stahlbock and 

Voss (2010), Borgman et al. (2010), Petering (2010) and Klaws et al. (2011).  Most 



 6 

of these studies simulate the operation of the entire terminal, which includes the yard 

operations and the transport between the yard and the vessels.  Different stacking 

rules are compared for assigning storage positions to incoming containers.  The 

criteria used for comparison include the percentage of reshuffle moves and the time 

for both container handling and crane travel. 

In this paper, both the static reshuffling problem and the dynamic stacking 

problem are investigated.  For the static reshuffling problem, five new construction 

heuristics and their extended versions are proposed, and then worst-case performance 

analysis is performed.  The existing static reshuffling model proposed by Wan et al. 

(2009) is improved to reduce the required solution time.  The optimal solutions from 

the model will be used to evaluate the heuristics.  A simulation model is developed 

to compare the proposed heuristics with the existing heuristics in a dynamic situation. 

3．Problem description and the improved model 

3.1 Problem description 

In actual container yards, containers are continually stored and retrieved.  In 

this dynamic process, a bay has a specific configuration at any moment.  The 

configuration can be described by the size of the bay, i.e., the numbers of columns and 

tiers of the bay, as well as the set of containers stored in the bay and the pattern they 

are stored in.  Fig.2 shows a configuration of a bay at a given moment.  The 

containers in the bay are numbered according to the order that they are retrieved, and 

a smaller number represents a higher priority in the retrieving order.  A storage 

position in the bay is defined by a column-index and a tier-index.  For a given 

configuration of a bay, if there are no new containers assigned to the bay before all the 

containers are retrieved, we have a static reshuffling problem to empty all containers 

in the bay according to their priorities to minimize the total number of reshuffles.  If 

new containers continually arrive to the bay while the containers in the bay are 

retrieved, then the problem is a dynamic reshuffling and stacking problem.  In the 

dynamic problem, when a new container arrives its storage position must be decided, 

and when a container is to be retrieved, decisions must be made on the positions 

where the blocking containers (if any) should be reshuffled.  The objective of the 

dynamic problem is to minimize the average number of reshuffles needed to retrieve a 

container in the long run.  Wan et al. (2009) demonstrated that this general problem 

is NP-hard by associating it with a one-bay vessel stowage problem. 
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Fig. 2 Containers stored in a bay to be retrieved in a given order 

3.2 The improved model 

At any decision making point, the dynamic problem may be viewed as a static 

problem considering the available information at that time.  Therefore, the study into 

the static problem is the basis of the dynamic problem and algorithms for solving the 

static problem can be used for making decisions in the dynamic problem.  Even the 

static problem is difficult to formulate as a mathematical model because it has a 

dynamic feature, i.e., the decisions for the earlier reshuffling of containers will 

influence the later decisions.  Wan et al. (2009) successfully formulated the first 

integer linear programming model for the static problem, which was called MRIP 

model.  To develop the model, they defined the operations related to retrieve one 

container as a stage, and introduced innovative variables to represent the bay 

configuration as well as reshuffling decisions in each stage.  They also skillfully 

constructed constraints to trace the transitions from the configuration in one stage to 

the next stage to ensure physical feasibility.  The model uses column-relationship 

variables to identify whether a container is in the same column with the container to 

be retrieved in a stage.  These variables in turn determine the reshuffle variables, 

which indicate whether a container needs to be reshuffled in that stage. 

The MRIP model takes a long computation time to solve the problem for a bay 

with a large number of containers.  In order to obtain an optimal solution more 

quickly, we improve the MRIP model by removing the column-relationship variables 

and some associated constraints.  Determining the reshuffle variables, which the 

column-relationship variables were used for, will be achieved by introducing new 

reshuffling-related constraints for individual columns. 

For easy comparison, we use the same notations for the parameters and decision 

variables as in the MRIP model.  The notations are listed below for completeness. 
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Parameters: 

S –  The total number of containers initially stored in the bay. 

P –  The total number of storage positions (tiers) in each column of the bay. 

C –  The total number of columns in the bay. 

s –  Index for the container to be retrieved, and also the stage for retrieving this 

container, 1 s S≤ ≤ . 

i,j –  Indexes for the containers under consideration, 1 ,i j S≤ ≤ . 

p –  Index for positions in a column by counting from the lowest position, 

1 p P≤ ≤ . 

c –  Index for the columns in the bay, 1 c C≤ ≤ . 

X1icp –  Indicating the initial locations of the containers in the bay.  If container i is 

stored in position p of column c, X1icp=1; otherwise, X1icp=0. 

Decision variables: 

 

1 if container  is at position  of column  at the beginning of stage 
0 otherwise                                                                                             


= 


sicp

i p c s
x

 

 

1 if container  is reshuffled in the retrieval of container 
0 otherwise                                                                         


= 


si

i s
y  

 

if containers  and  are reshuffled during stage  and container  
1

is at a higher position than container  before reshuffling
0 otherwise                                                         

=sij

i j s j
iw

                               





  

The model: 

With the above notations, the improved model can be formulated as follows: 

(ILP) 
1

1 1
min  

−

= = +
∑ ∑
S S

si
s i s

y  (1) 

s.t.  

1 1 1
(1 ) ( ) /

= = =

− + ≥ −∑ ∑ ∑
P P P

sscp si sicp sscp
p p p

x P y px px P       1 ,  1 C;≤ < ≤ ≤ ≤s i S c  (2) 

1 1
( ) / 1       1 ,  1 C;

= =

− ≤ − ≤ < ≤ ≤ ≤∑ ∑
P P

sscp sicp si
p p

px px P y s i S c  (3) 

1 1
1                                    1 ;

= =

= ≤ ≤ ≤∑∑
C P

sicp
c p

x s i S  (4) 

1                                         1 ,1 ,1 ;
=

≤ ≤ ≤ ≤ ≤ ≤ ≤∑
S

sicp
i s

x s S c C p P  (5) 
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, 1                              1 ,1 , 2 ;−
= =

≤ ≤ ≤ ≤ ≤ ≤ ≤∑ ∑
S S

sicp sic p
i s i s

x x s S c C p P  (6) 

1,
1 1

2                1 ,1 ;
P P

s icp si sscp
p p

x y x s i S c C+
= =

≤ − − ≤ < ≤ ≤ ≤∑ ∑  (7) 

1 1 1 1
2 ( ) /

= = = =

− − + ≥ −∑∑ ∑∑
C P C P

si sj sij sjcp sicp
c p c p

y y w px px P    

1 ,1 , ;≤ < ≤ ≤ < ≤ ≠s i S s j S i j  
(8) 

1 1 1 1
3 ( ) /

= = = =

+ + ≤ + −∑∑ ∑∑
C P C P

si sj sij sjcp sicp
c p c p

y y w px px P    

1 ,1 , ;≤ < ≤ ≤ < ≤ ≠s i S s j S i j  
(9) 

≤sij siw y                         1 ,1 , ;≤ < ≤ ≤ < ≤ ≠s i S s j S i j  (10) 

≤sij sjw y                         1 ,1 , ;≤ < ≤ ≤ < ≤ ≠s i S s j S i j  (11) 

1, 1, 1,
1 1 1

(1 ) (1 )  (1 ) (1 )+ + +
= = =

− ≥ − − − − − − − −∑ ∑ ∑
P P P

s icp s jcp sij si sj s icp
p p p

px px P w P y P y P x  (12) 

1 ,1 , ,1 ;≤ < ≤ ≤ < ≤ ≠ ≤ ≤s i S s j S i j c C  

1,+ − ≥ −s icp sicp six x y              1 ,1 ,1 ;≤ < ≤ ≤ ≤ ≤ ≤s i S c C p P  (13) 

1,+− ≥ −sicp s icp six x y               1 ,1 ,1 ;≤ < ≤ ≤ ≤ ≤ ≤s i S c C p P  (14) 

1 1=icp icpx X                     1 ,1 ,1 ;< ≤ ≤ ≤ ≤ ≤i S c C p P  (15) 

1=sicp icpx X                  2 min{ , }, ,1 ,1 ;≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤is i s s i S c C p P  (16) 

{0,1}∈siy                      1 ;≤ < ≤s i S  (17) 

{0,1}∈sijw                     1 ,1 , ;≤ < ≤ ≤ < ≤ ≠s i S s j S i j  (18) 

{0,1}∈sicpx                     1 ,1 ,1 .≤ ≤ ≤ ≤ ≤ ≤ ≤s i S c C p P  (19) 
The objective of the model is to minimize the total number of reshuffles, which 

is expressed in the same way as in the MRIP model.  The MRIP model uses three 

types of variables, usi, vsi and zsi, and five sets of constraints associated with them to 

identify whether a container i is in the same column as the container to be retrieved in 

stage s.  In the improved model, these variables and the five sets of constraints are 

removed.  Meanwhile, constraint sets (2) and (3) are used to determine the reshuffle 

variables ysi. 

Note that for a pair of containers s and i, a constraint (2) is formulated for every 

column c.  If both s and i are in this column and the position of i, which is pi, is 

higher than the position of s, which is ps, then the constraint becomes 

( ) /si i sy p p P≥ − .  The right hand side of this constraint is a positive number less 

than 1 which correctly forces ysi to be 1, indicating that container i needs to be 
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reshuffled when retrieving s.  In all other situations, this constraint does not set any 

restriction on ysi.  In these situations, container i does not need to be reshuffled for 

retrieving s and Constraint (3) forces ysi to be 0. 

Constraints (4) to (16) are the same as constraints in the MRIP model (with 

different numberings).  Hence we only briefly explain them here.  Constraints (4) to 

(6) ensure that each container i s≥ must occupy a feasible slot.  Constraints (7) 

ensure that a reshuffled container cannot be reshuffled to its current column. 

Constraints (8) to (11) and (12) consider the relative heights of the two reshuffled 

containers at stage s and s+1, respectively.  Constraints (13) and (14) ensure that 

containers not moved keep their positions in the next stage.  Constraints (15) and (16) 

assign known values to sicpx .  Constraints (17) to (19) define the nature and range of 

the decision variables. 

Compared with the MRIP model, the number of binary decision variables in the 

improved model is reduced by 23S  due to the removal of the column-relationship 

variables usi, vsi and zsi, although the number of constraints increases by (C-4)S(S-1) 

because of using constraints (2) and (3) to replace the constraints related to these 

variables.  As demonstrated in the computational results in Section 6, the improved 

model can obtain an optimal solution in shorter time. 

4．Heuristics and performance analysis 

4.1 Heuristics 

Because the location assignment of a reshuffled container may cause further 

future reshuffles and affect remaining retrieval decisions, the number of possible bay 

configurations in the retrieval process increases exponentially as the number of 

containers to be retrieved increases.  Therefore, methods to generate an optimal 

solution such as the branch and bound algorithm and the integer linear programming  

model, are time-consuming and not suitable for practical uses.  It is necessary and 

realistic to develop fast and effective heuristics to obtain an approximate solution.  

Murty et al. (2005) and Kim and Hong (2006) have proposed the reshuffling index 

(RI) heuristic and the ENAR heuristic, respectively, for the static reshuffling problem 

to obtain approximate solutions.  Wan et al. (2009) proposed the extended versions 

of RI and ENAR as well as a MRIP-based heuristic to obtain better solutions.  In this 

section, we propose five new polynomial time heuristics, referred to as H1 through 

H5, for the reshuffling problem and try to analyze their properties and performance.  



 11 

These heuristics share the same overall framework but use different heuristic rules to 

determine the positions for the reshuffled containers. 

The main idea is to choose the position for each reshuffled container to avoid or 

reduce the number of possible further reshuffles in the future as much as possible. 

The heuristic framework: 

The basic framework of the heuristics is outlined as follows.  In each iteration 

of the procedure, one container is retrieved.  We use S as a dynamic parameter in this 

procedure.  It initially represents the total number of containers in the original bay, 

and then in each iteration it represents the number of containers remaining to be 

retrieved.  After retrieving a container, therefore, S will be reduced by 1.  The 

remaining containers will also be renumbered from 1 to S while still keeping their 

retrieval order, i.e., smaller numbered containers are to be retrieved earlier.  With the 

renumbering, the container to be retrieved in each iteration is always container 1.  In 

this procedure M is used to denote the accumulated number of reshuffles, and M1 is 

used to denote the number of reshuffles for retrieving the container in the current 

iteration. 

Step 0: Initialize M = 0. 

Step 1: If S = 1, retrieve container 1; stop. The total number of reshuffles is M. 

Step 2: Compute the number of containers blocking container 1, and denote it as 

M1.  If M1=0, go to Step 4. 

Step 3: Reshuffle the M1 blocking containers to new storage positions according to 

a heuristic rule. 

Step 4: Retrieve container 1; let M = M + M1.  Renumber the containers such that 

container (i+1) becomes container i, i=1,…,S-1; let S=S-1; go to Step 1. 

The heuristic rules: 

The heuristic rules used to determine the storage positions of the reshuffled 

containers in Step 3 of the proposed heuristics H1 through H5 are described below.  

In the descriptions, RI of a column is the total number of containers in this column to 

be retrieved earlier than the reshuffled container being considered.  BI of a column is 

the number of containers that will block the container with the smallest number in the 

column if the reshuffled container being considered is put into this column. 

H1: Consider each of the M1 blocking containers from the top down.  For each of 

these containers k, define the smallest container number in each column c as nc.  

For an empty column, nc is defined as S+1.  If there is an available column c 
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that satisfies nc>k, put container k into column c.  Break ties by putting 

container k into the column with nc closest to k.   If no column satisfies the 

above condition, put container k into an available column with the minimum RI.  

Break ties again by putting it into the column with nc closest to k.  Update the 

configuration of the bay, and consider the next blocking container in the same 

way until all M1 containers are considered. 

H2:  Consider each of the M1 blocking containers from the top down.  For each of 

these containers k, if there is a column c satisfying nc>k, put container k into 

column c.  Break ties by putting container k into the column with nc closest to 

k.   If no column satisfies the above condition, put container k into a column 

with the minimum BI.  Break ties again by putting it into the column with nc 

closest to k.  Update the configuration of the bay and consider the next 

blocking container in the same way until all M1 containers are considered. 

H3:  If the number of the blocking containers is not greater than the number of the 

available columns and their numberings are strictly increasing from the top 

down in their current column, determine the new storage positions of these 

blocking containers in decreasing order of their numbers according to H1, but 

disallow any two reshuffled containers to be placed into the same column.  

Otherwise, determine the new storage positions of the reshuffled containers 

according to H1 directly. 

H4: Determine the new storage positions of the blocking containers in decreasing 

order of their numbers according to H1, but using the adjusted RI values.  

When considering to place a blocking container into a target column, if its 

position in the original column is higher than those of any blocking containers 

already assigned to this target column, then this container should be placed 

below these containers in the target column, and the number of these containers 

are added to the RI value calculated in the normal way. 

H5:  The same as the rule in H4 above except that H1 is replaced by H2, and RI is 

replaced by BI. 

It can be observed that the computation time complexities of heuristics H1, H2, 

H3, H4 and H5 are O(SCP), O(SCP), ( log )O SP P SCP+ , ( log )O SP P SCP+  and 

( log )O SP P SCP+ , respectively. 

Based on the description of the heuristics, it is clear that heuristics H1 and H2 are 
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the basis of the other heuristics.  Both H1 and H2 first try to assign the reshuffled 

container k to a column c with nc>k so that the reshuffled container will leave earlier 

and, thus, not block other containers in the column.  Choosing the column with the 

smallest nc in case of a tie not only ensures container k does not block the other 

containers but also leaves the columns with a greater nc available for the later 

reshuffled containers so that there will be a lower chance for them to cause blocking 

in these columns.  For example, in the situation shown in Fig.3(a), containers 2 and 6 

must be reshuffled when picking up container 1.  When container 2 is considered, 

nc>2 for all available columns (n2=4, n3=3 and n4=7), and in such a case of a tie, 

container 2 will be reshuffled to column 3 according to H1 or H2.  By doing so, the 

empty column 4 is left to accommodate the next reshuffled container 6 to avoid it 

blocking other containers.  In the case where container k has to block the other 

containers (nc<k for every available column c), H1 assigns it to the column where it 

blocks the least other containers, while H2 assigns it to the column where the least 

reshuffles are needed for the next retrieval.  In case of a tie, H1 and H2 both choose 

the column with the largest nc, which delays the next reshuffling of k to the latest 

possible time to reduce the chances of container k being further reshuffled.  An 

example is shown in Fig.3(b) where containers 5 and 3 must be reshuffled when 

picking up container 1.  When the blocking container 5 is considered, it will be 

reshuffled to column 2 according to H1 because the smallest container number in 

column 2 is the largest among all available columns when the values of RI are the 

same, while container 5 will be reshuffled to column 3 according to H2 because BI3 

<BI2. 
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Fig. 3 Examples to illustrate algorithms H1 and H2 
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When retrieving the target container in the current stage, if there are several 

blocking containers to be reshuffled and if a blocking container at a higher position 

has a smaller number than the container at a lower position, then assigning new 

storage positions to these containers in the order of their actual reshuffling may result 

in blocking among themselves in the new positions in case they are assigned to the 

same column.  H3 through H5 assign new storage positions to the blocking 

containers in decreasing order of their numberings in an attempt to avoid this.  H3 

uses H1 as its base.  H3 only changes the order of decisions and avoids assigning 

any two reshuffled containers to the same column in a special situation.  H4 and H5 

always make the assignment decisions for the reshuffled containers in decreasing 

order of their numberings, but H4 and H5 use H1 and H2 as their basis, respectively.  

Note that although the order of making the assignment decisions is different, the order 

of actual reshuffling operations in these heuristics is still from the top down, and in 

case any two reshuffled containers are put in the same column, the container at a 

higher position in the current column will be at a lower position in the new column. 
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6tier 1
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Fig.4(a)

Fig.4(b) Fig.4(c)

Fig.4(d) Fig.4(e)  
Fig. 4 An example to illustrate algorithm H4 

To make algorithm H4 easier to understand, a small example is illustrated, as 

shown in Fig.4.  To pick up container 1, the blocking containers 5, 11 and 8 must be 

reshuffled.  According to H4, the new storage positions of containers 11, 8 and 5 are 

determined in this order.  First by attempting to put container 11 to each target 

column, we can calculate their RI.  Because the value of RI1 is the smallest, 

container 11 is assigned to column 1 according to H1 and is temporarily put in 

position 2 as shown in Fig.4(b).  With the new configuration, we then attempt to put 

container 8 to each target column and calculate their RI again.  When attempting to 

put container 8 to column 1, we can see that containers 8 can be feasibly put on top of 

container 11 and so RI1 can be calculated in the normal way.  Because the value of 
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RI1 is the smallest, container 8 is assigned to column 1 according to H1 and 

temporarily put in position 3 as shown in Fig.4(c).  With the updated configuration, 

we finally attempt to put container 5 to each target column and calculate their RI.  

When attempting to put container 5 to column 1, we know that if container 5 is put to 

this column, it must be put below containers 8 and 11 as shown in Fig. 4(d) because 

the position of container 5 in the original column is higher than that of containers 11 

and 8 and so the value of RI1 should be increased by 2 based on the rule of H4. 

Because the value of RI4 is the smallest this time, Container 5 is assigned to column 4 

and the positions of containers 11 and 8 are also confirmed.  Therefore, the final 

storage positions of blocking containers 5, 11 and 8, when picking up container 1, are 

shown in Fig.4(e). 

4.2 Worst case analysis 

To the best of our knowledge, there exists no related research on the static 

reshuffling problem with worst case analysis, because the problem presents some 

dynamic feature.  In this paper, we try to analyze the worst-case performance of the 

heuristics for the static reshuffling problem.  Because the lower bound of the static 

reshuffling problem may be zero when its objective function is to minimize the 

number of reshuffles, it cannot be used to calculate the worst case performance ratio 

bound.  In order to avoid this case, we consider the objective to minimize the total 

number of crane lifting moves for the static reshuffling problem.  Crane lifting 

moves include the actions of retrieving and reshuffling containers.  In this case, 

optimal solution *C ′  and approximate solution HC ′ are more than *C and 
HC respectively by S, where *C and HC are the optimal solution and approximate 

solution for the static reshuffling problem to minimize the total number of reshuffles. 

Theorem 1. For the static reshuffling problem to minimize the total number of crane 

lifting moves, the worst-case performance ratio of any heuristic with the above 

framework (including the five new heuristics) is ( 1)
2( 1)
P PP

S
−

−
−

, when 2( 1)S P− ≥ . 

Proof. When the last container in the given bay is picked up, the total number of 

crane lifting moves is equal to 1.  When the second last container in the given bay is 

picked up, the total number of crane lifting moves is at most 2.  Similarly, when the 

Pth container from the bottom in the given bay is picked up, the total number of crane 

lifting moves is at most P.  The number of crane lifting moves from the second 
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container to the (S-P)th container is overestimated respectively to P.  Assume the 

number of crane lifting moves for the first container is x.  Therefore, an upper bound 

for this problem is equal to 1+2+…+P+[S-(P+1)]P+x, and a lower bound is equal to 

S-1+x.  The worst-case performance ratio is as follows: 

2

*

( 1) ( 1 )1 ... [ ( 1)] 2
1 1

H
P P S x P P xP xC P S P P x

S x S xC

+
+ − + − − +′ + + + − + +

≤ =
− + − +′

 

2 ( 1)
2 (1 ) (1 )2

1 2( 1 )

P Px xP P x P P PP P
S x S x

+
− − + − + −

= + = +
− + − +

 

2( 1)
2( 1) 2

P xP P
S x

+
= − −

− +
 

If 2( 1)S P− ≥ , then 2
2( 1) 2 2( 1)

P x P
S x S

+
≥

− + −
. Thus, when 2( 1)S P− ≥ , the following 

equation holds. 

*

2 ( 1)( 1)
2( 1) 2 2( 1)

HC P x P PP P P
S x SC

′ + −
≤ − − ≤ −

− + −′
    □ 

4.3 Special cases 

Lemma 1. For the static reshuffling problem to minimize the total number of 

reshuffles, if the number of tiers is P=2, the objective values obtained by the 

developed five heuristics (CH) are equal to the optimal objective value (C*). 

Proof. Note that the five heuristics are equivalent when the number of tiers is equal to 

2, and we will prove Lemma 1 using heuristic H1.  In this special case, each column 

has at most two containers.  If the numbering of a top container is higher than that of 

the one below it, then reshuffling of the top container is unavoidable.  Consider the 

retrieval process and the first time when such a reshuffle is to be made. H1 will put 

the reshuffled container to a column such that this container will not need to be 

reshuffled again in the future, if such a column exists. If such a column does not exist, 

then the reshuffled container has to be reshuffled again unavoidably.  After this stage, 

there is always at least one empty column, and so H1 retrieves the remaining 

containers without further reshuffles except the unavoidable ones.  Therefore, the 

reshuffles made by H1 are all unavoidable and so the solution is optimal.  □

Lemma 2. For the static reshuffling problem to minimize the total number of 

reshuffles, if the initial configuration of a bay which has C columns and P tiers 
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satisfies: 1) an empty column exists; 2) containers 1 to (C-1) are stored in the first tier, 

containers C to 2(C-1) are stored in the second tier, containers 2C-1 to 3(C-1) are 

stored in the third tier and so on, the objective values obtained by the proposed five 

heuristics (CH) are equal to the optimal objective value (C*). 

Proof. Because there exists an empty column in the initial configuration of the bay 

and the numberings of the containers in each nonempty column are increasing from 

the bottom upwards, the blocking containers on container 1 will be reshuffled to the 

empty column according to the proposed heuristics and they can be retrieved in the 

future sequentially without reshuffling.  At the same time, the retrieval of container 1 

will create a new empty column.  Similarly, when each of the first C-1 containers is 

picked up, the blocking containers will be reshuffled to the empty column and will not 

need any further reshuffling.  Meanwhile a new empty column will appear.  After 

the first C-1 containers are picked up, all the remaining containers can be picked up 

without reshuffling.  Clearly, each of the reshuffles in the above process is 

unavoidable.  Therefore, the total number of reshuffles is optimal.    □  

Lemma 3 below analyzes the worst-case performance ratio of heuristics H1 and 

H2 for some special configurations of a bay.  Unlike in Theorem 1, the objective 

function here is the number of reshuffles because the lower bound of the static 

reshuffling problem is not zero in this case. 

Lemma 3. For the static reshuffling problem to minimize the total number of 

reshuffles, if the initial configuration of a bay which has C columns and P tiers 

satisfies: 1) the total number of containers in the initial configuration is (C-1)P+1; 2) 

containers 1 to C are stored in the first tier, containers C+1 to 2C are stored in the 

second tier,…, containers C(P-1)+1 to (C-1)P+1 are stored in the Pth tier, the 

absolute performance ratio of heuristics H1 and H2 in this case is bounded by 3. 

Proof. Like the situation in Lemma 2, all the containers in tier 2 and above have to be 

reshuffled in order to retrieve the containers in tier 1.  Therefore, a lower bound of 

the optimal total number of reshuffles is LB = (C-1)P+1-C = (C-1)(P-1).  Next, we 

will derive an upper bound UB of the optimal total number of reshuffles.  Because 

containers 1 to C are stored in the first tier, the total number of reshuffles is at most 

C(P-1) when containers 1 to C are picked up.  After retrieving container 1, an empty 

column will appear and all the containers blocking container 1 in the initial 

configuration will be reshuffled to other columns, one in a column.  Let U be the set 
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of these columns.  In this stage, considering the given initial configuration, the 

(numberings of) containers in each column are in increasing order (from bottom) 

upwards, except that the top container of each column in U may be not in order.  

Because container 1 may have at most P-1 blocking containers, we know that 

| | 1≤ −U P .  When retrieving each of containers 2 to C, the blocking containers will 

be reshuffled to the empty column and the column of the container being retrieved 

will become empty.  If the column of the container being retrieved is not in U, then 

the blocking containers will be in decreasing order upwards after being reshuffled to 

the new column and will be retrieved in the future without further reshuffling.  If the 

column of the container being retrieved is in U, some blocking container may be 

reshuffled to a non empty column and in this case it must not block any container 

there.  In the worst case, the blocking containers will be reshuffled to the empty 

column with the container originally blocking container 1 placed at the bottom and 

the other blocking containers placed above it in the decreasing order upwards.  In the 

new column, the number of containers above the one originally blocking container 1 

is at most P-2.  Hence, in the worst case, retrieving the containers originally 

blocking container 1 will need at most (P-1)(P-2) reshuffles.  After retrieving each 

of these containers (at most P-1), the containers blocking it will be in a new column in 

increasing order upwards.  Retrieving the bottom one in the new column will need at 

most P-3 reshuffles and the reshuffled containers will be in decreasing order upwards 

in another new column and can be retrieved in the future without further reshuffling.  

Thus an upper bound of the optimal total number of reshuffles is UB= C(P-1)+ 

(P-1)(P-2)+(P-1)(P-3) 

For these special cases, the worst-case performance ratio is then: 

 *

UB ( 1) ( 1)( 2) ( 1)( 3) 1 ( 2) ( 2)
LB ( 1)( 1) ( 1)

HC C P P P P P C P P
C C P C

− + − − + − − − + − + −
≤ = =

− − −
 

 2 2      1+ 1 1 1 3
1 1

P P
C C
− −

≤ + ≤ + + =
− −

       □ 

Fig.5 shows an example of the situation described in Lemma 3 and the process of 

retrieving the containers in the bay (the stages without reshuffling are omitted).  It 

can be seen from the figure that the actual reshuffles in each stage are no more than 

the upper bound calculated in the proof. 
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Fig. 5 An example of special configurations in Lemma 3 

5．Simulation model 

To evaluate the effectiveness and efficiency of different reshuffling and storage 

methods in a dynamic situation, we develop a discrete-event simulation model 

specifically to simulate the dynamic process of container storage and retrieval in a 

container bay.  To ensure that the same series of containers are used for testing all 

methods, which insures for fair comparison, we follow most previous studies to 

separate the problem generation from the simulation. 

According to the data in container terminal operations, the interarrival and dwell 

times of containers in a container yard follow exponential distributions, For any given 

problem setting with parameters C, P and space utilization, the data generation 

program is designed to randomly generate a series of containers with appropriate 

interarrival and dwell times and then the arrival and departure times of each container 

can be calculated accordingly.  In case the bay is full when a new container arrives, 

this container is diverted to another bay and, therefore, removed from the problem 

data.  The simulation model is then run to test any reshuffling and storage method 

using the data.  Details of the simulation model are described in the following. 

5.1 Input data 

The input data include the structure of the bay, a series of containers with their 

arriving and departure times randomly generated as mentioned above, the warm-up 

period and the resulting collection period.  The structure of the bay is defined by the 
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number of tiers and columns.  The warm-up and result collection periods are both in 

terms of number of containers retrieved.  According to the arriving and departure 

times of the generated container series, the stacking and retrieval sequences of 

containers are identified. 

5.2 Numbering of the containers and the events in the simulation 

We are most interested in the number of reshuffles, so the time needed for actual 

container moves are ignored.  Because those containers arriving when the bay is full 

overflow to other bays, there will be no queues observed in the system apart from the 

containers staying in the bay.  This reduces the types of events in the system.  The 

simulation model contains two types of events: container arrival and container 

departure. 

Comparing the arriving time of the next container with the departure times of all 

the containers in the bay, if the departure time of a container in the bay is earlier than 

the arriving time of the next container, the next event is a container departure.  

Recall that the departure times of the containers in the bay are known and the 

containers are numbered in ascending order of their departure times with the departing 

container as No. 1.  If the departing container is not blocked by other containers, it 

will be retrieved directly.  If the container is blocked by some containers, these 

blocking containers need to be reshuffled and their new positions will be determined 

using the reshuffling and storage decision method.  When using any index based 

heuristic as the decision method, for each blocking container, the index is calculated 

for each available column and the new storage position of the container is chosen 

based on the rule of this heuristic.  When using an IP model as the decision method, 

a model is formulated as if all the containers in the bay are to be retrieved assuming 

there is no container arrival in the process.  Solving the model we can determine the 

new storage positions for all the containers blocking the departing container.  Based 

on the decision, the blocking containers are moved to the new positions and the 

departing container is retrieved.  In either case, the remaining containers are 

renumbered, the total number of containers in the bay is decreased by one, and the 

bay configuration is updated. 

Conversely, if the arriving time of the next container is earlier than the departure 

time of any container in the bay, the next event is a new container arrival.  In this 

case, the new container and all the containers in the bay are first renumbered from 
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No.1 in ascending order of their departure times, and the total number of containers in 

the bay is increased by one.  Then, the reshuffling and storage decision method is 

called to assign a storage position in the bay for the new container.  When using any 

index based heuristic as the decision method, the decision process is similar to that for 

a reshuffled container, i.e., the index is calculated for each available column and the 

storage position of the new container is chosen based on the rule of this heuristic. 

When using an IP model as the decision method, for each available column, assuming 

that the new container is put in this column, we formulate and solve a corresponding 

model, as if all the containers in the bay are to be retrieved without any further 

container arrival in the process, to obtain the total number of reshuffles needed.  The 

new container is then assigned to the column with the minimum total number of 

reshuffles. 

5.3 Output data 

The final output of the simulation mainly includes the total number of reshuffles 

in the result collection period and the average number of reshuffles per retrieval, 

which is the ratio of the total number of reshuffles to the total number of containers 

retrieved in the result collection period.  During the simulation, the configuration of 

the bay at any moment can be output if it is needed. 

5.4 Interface 

In a dynamic situation, the simulation model invokes the reshuffling and storage 

method being tested by passing the configuration of the container bay to the method 

and receiving the new state of the bay returned from the method.  Therefore, with the 

correct input and output settings, any new decision method can be tested using the 

simulation system. 

5.5 Animation display 

The simulation model has an animation function.  If we want to directly see 

how a container will be moved, we can switch on the animation function to display 

every detail for stacking, retrieving and reshuffling and observe the dynamic changes 

in the bay configuration.  The animation function can simultaneously display the 

animations for multiple heuristics in multiple windows in addition to being displayed 

alone.  The animation screen can be paused or closed at any time as needed.  Fig. 

6(a) to Fig. 6(f) illustrate the container numbering and retrieving, reshuffling and 

stacking operations in the dynamic environment for six successive states of a bay at 
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different times when one heuristic is used. 

 
Fig.6(a)                                Fig.6 (b) 

 
Fig.6 (c)                                Fig.6 (d) 

 
Fig.6 (e)                                Fig.6 (f) 

Fig. 6. The dynamical changes of the bay configuration 

Fig.6(a) is a configuration of the bay at certain time point and all the containers 

are numbered from No.1 in ascending order of their departure times.  Container 1 

represents the first container to be picked up, but it is blocked by container 10.  

Fig.6(b) shows the reshuffling of container 10 to its new storage location in tier 4 of 

column 2.  Fig.6(c) shows container 1 is being retrieved.  The remaining containers 

in the bay are renumbered from No.1 in ascending order of their departure times, i.e. 

decreasing the number by one for all the containers, and the new configuration is 

shown in Fig.6(d).  The next event is the arrival of a new container, which has the 

seventh earliest departure time among the containers in the bay and so will be 

numbered as No.7.  The existing containers with later departure times will be 

renumbered, i.e., increasing the numbering for each of these containers by one, as 

shown in Fig.6(e).  The storage location of the new arrival container is shown in 

Fig.6(f). 
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6. Computational experiments 

6.1 Computational results for the static reshuffling problem 

Comparison of the MRIP model and the improved model 

In this section, we verify the effectiveness of our model.  In order to avoid 

deadlock, at least P-1 empty positions need to be reserved for reshuffling.  Therefore, 

as indicated in Wan et al. (2009), the storage capacity for a bay with C columns and P 

tiers is (C-1)P+1.  We define the utilization of a bay as the percentage of its capacity 

being occupied by containers stored in it.  A bay with (C-1)P+1 containers stored in 

it will be said to have a utilization of 100%.  When the utilization of the bay is given, 

the total number of containers stored in a bay is equal to [(C-1)P+1]×(the utilization).  

In general, the higher the utilization of a bay is, the fewer empty positions it has for 

reshuffling and the higher chances the reshuffled containers have to be reshuffled 

again.  We consider the common bay structures (6 columns and 2 to 5 tiers) in the 

experiment.  For each bay structure, we generate two classes of problem with bay 

utilizations of 80% and 100%, respectively.  We use “the number of columns-the 

number of tiers-the number of containers stored in a bay” to represent the problem 

class.  For each problem class, 50 instances are generated randomly.  The MRIP 

model and the improved model are coded in C++ and solved using CPLEX 11.0, 

which is a commercial software package, on a computer with 2.83GHz Intel Core 2 

CPU and 3.25GB RAM.  We set a time limit (one hour) for solving each problem 

because some instances would be extremely time consuming.  Table 1 shows the 

percentage of instances optimally solved within the one-hour time limit as well as the 

average computation time spent by the models for each problem class. 

Table 1 Comparison between the MRIP model and the improved model ILP 
Problem class 

(80%) 
 MRIP 

model 
ILP 

model 
 Problem class 

(100%) 
 MRIP 

model 
ILP 

model 

6-2-9 %Opt 100% 100%  
6-2-11 

%Opt 100% 100% 
Time 0.084 0.079  Time 0.138 0.124 

6-3-13 %Opt 100% 100%  6-3-16 %Opt 100% 100% 
Time 0.342 0.294  Time 0.680 0.547 

6-4-17 %Opt 100% 100%  6-4-21 %Opt 100% 100% 
Time 16.11 2.71  Time 135.36 50.88 

6-5-21 
%Opt 98% 100%  

6-5-26 
%Opt 48% 58% 

Time 253.87 69.39  Time 783.13 201.97 
%Fea 100% 100%  %Fea 56% 90% 

“%Opt” = the percentage of instances for which an optimal solution was obtained within the time limit. 
“Time” = the average CPU time for instances that were solved optimally by both models. 
“%Fea” = the percentage of instances where a feasible solution was obtained within the time limit. 

As shown in Table 1, both models obtained optimal solutions for all instances in 
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all the problem classes except “6-5-21” and “6-5-26”, but the improved model 

consumes less time.  For “6-5-21”, there was one instance for which the MRIP 

model did not obtain an optimal solution within one hour while the improved model 

ILP obtained an optimal solution for all instances within the time limit.  Problem 

class “6-5-26” is the most difficult to solve because the number of tiers is the greatest 

and the utilization of the bay is the largest.  For this problem class, the MRIP model 

found a feasible (integer) solution for 56% of the instances within one hour, which 

included 48% of the instances solved optimally, while the corresponding figures for 

the improved model ILP were 90% and 58% respectively.  In other words, the 

improved model ILP obtained a feasible solution for 34% more instances and an 

optimal solution for 10% more instances in this class within the time limit.  For each 

problem class, Table 1 also shows the average CPU time over the instances that were 

solved optimally by both models.  The results show that the improved ILP model 

takes a shorter amount of time to obtain an optimal solution especially for larger 

problems where it only takes one quarter to one third of the time taken by the MRIP 

model.  The optimal solutions obtained by the improved ILP model will be used as a 

benchmark to evaluate the performance of the heuristic rules. 

Comparison of the different heuristics 

The eight problem classes mentioned above are also used to compare the five 

new heuristics with the existing heuristics RI and ENAR.  Table 2 shows the average 

number of reshuffles in the solution of each heuristic for each problem class.  

Because the heuristics consume very little time, their CPU times are not presented 

here. 

In Table 2, the first column lists the problem classes tested, column “Opt” gives 

the average number of optimal reshuffles, and the other columns report the average 

numbers of reshuffles in the solutions for each heuristic.  For problem class “6-5-26”, 

the place for “Opt” is left empty because optimal solutions were not obtained for 

some instances within one hour. 

Table 2 Comparison of RI, ENAR and our heuristics 
Problem class (80%) Opt RI ENAR H1 H2 H3 H4 H5 

6-2-9 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 
6-3-13 4.32 4.4 4.34 4.32 4.32 4.36 4.32 4.32 
6-4-17 7.64 8.06 7.92 7.8 7.7 7.88 7.7 7.74 
6-5-21 11.04 12.14 12 11.7 11.52 11.78 11.58 11.64 

         
Problem class (100%) Opt RI ENAR H1 H2 H3 H4 H5 

6-2-11 2.74 2.74 2.74 2.74 2.74 2.74 2.74 2.74 
6-3-16 6.8 6.88 6.96 6.88 6.88 6.96 6.96 6.96 
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6-4-21 12.18 13.08 13.04 12.7 12.72 12.96 12.96 12.82 
6-5-26  20.68 20.26 19.6 19.78 19.56 19.74 19.96 

From the results in Table 2, we can see that the proposed new heuristics have a 

better performance in most cases compared with RI and ENAR.  The best heuristic 

result for each problem class is highlighted in bold in Table 2.  It can be observed 

that H1 shows the best performance for the instances where the bay has a 100% 

utilization, while H2 shows the best performance for those with an 80% utilization.  

Furthermore, the computational results for “6-2-9” and “6-2-11” further verify the 

conclusions of Lemma 1. 

We apply an idea of extension to the five new heuristics and the existing 

heuristics and test the performances of all the extended heuristics on the problem 

instances mentioned above.  The idea of the extended version Wan et al. (2009) for 

an original heuristic is as follows: a reshuffled container is tested for each potential 

and feasible location, and the location with the minimum number of reshuffles needed 

to empty the bay using the original heuristic is selected to store the reshuffled 

container.  Break ties by putting the reshuffled container into the column determined 

by the original heuristic.  Table 3 shows the average number of reshuffle results of 

different extended heuristics.  In this table, the extended version of original heuristic 

* is denoted as *_E. 

Table 3 Comparison results among different extended heuristics 
Layout (80%) Opt RI_E ENAR_E H1_E H2_E H3_E H4_E H5_E 

6-2-9 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 
6-3-13 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 
6-4-17 7.64 7.7 7.68 7.66 7.64 7.66 7.66 7.64 
6-5-21 11.04 11.3 11.16 11.1 11.12 11.1 11.08 11.1 

         
Layout (100%) Opt RI_E ENAR_E H1_E H2_E H3_E H4_E H5_E 

6-2-11 2.74 2.74 2.74 2.74 2.74 2.74 2.74 2.74 
6-3-16 6.8 6.8 6.82 6.8 6.8 6.8 6.8 6.8 
6-4-21 12.18 12.36 12.34 12.22 12.24 12.3 12.26 12.22 
6-5-26  18.78 18.7 18.52 18.6 18.56 18.52 18.54 

Comparing the results in Tables 2 and 3, we can see that the extended heuristics 

give better solutions than the corresponding original heuristics.  From the results in 

Table 3, it can also be observed that the performance differences between the 

extended heuristics are reduced when compared with the original heuristics.  For the 

problem classes where extended heuristics do not perform the same, the extended 

versions of our proposed heuristics show superior performance to that of RI and 

ENAR.  Among all the extended heuristics, “H1_E” and “H4_E” show the best 

performance in most cases. 
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In addition to the above problem instances, we have also tested the problem 

instances used in Wan et al. (2009).  The experimental results show that the 

improved model can obtain optimal solutions or feasible solutions more quickly than 

the MRIP model proposed by Wan et al. (2009).  This confirms the results on the 

instances we generated.  The performance of the five proposed heuristics is superior 

to or the same as that of the existing heuristics.  This conclusion also applies to their 

extended versions.  The conclusions from the results on these problem instances are 

again similar to those on the instances we generated.  The detailed comparison 

results are not included in our paper because of the space limitation. 

Furthermore, we also tested our extended heuristics on the larger scale instances 

on problem data given by Caserta et al. (2011).  The results are also compared to that 

of the corridor method (CM) in Caserta et al. (2011).  The details of the comparison 

results can be seen in Table 4.  As mentioned in Caserta et al. (2011), h × m is used 

to represent a bay size, where h is the number of tiers, m is the number of stacks and h 

× m is the total number of containers in the bay.  The percentages in Table 4 are the 

utilization of its corresponding bays. 

 Table 4 Comparison results of CM and our extended heuristics 
Bay size CM H1_E H2_E H3_E H4_E H5_E 

6×6 (87%) 32.4 32.8 33.325 32.925 32.875 32.975 
6×10 (82%) 49.5 47.1 47.5 47.4 47.15 47.625 
10×6 (95%) 102.0 86.925 90.675 87.4 87.7 93.65 
10×10 (90%) 128.3 121.55 126.425 122.825 122.575 134.375 

The experimental results show that the extended heuristics are better than the 

corridor method in almost all cases, and the advantage of the extended heuristics is 

more obvious with the increase of the utilization of a bay. 

6.2 Dynamic simulation results with incoming containers 

The ultimate evaluation of any reshuffling method is whether it can be effectively 

applied to the dynamic environment with continual arrivals and retrievals of 

containers.  Therefore, we will test and compare the performance of the above seven 

heuristics and their extended versions in the dynamic environment in a container bay.  

In this case, the simulation system needs to use the specified method to make not only 

the reshuffling decisions when retrieving each container but also the stacking decision 

when each new container arrives.  In addition, we will also compare the performance 

of the above methods with that of the MRIP-based heuristics proposed in Wan et al. 

(2009).  In a MRIP-based heuristic, the decisions are made using a reduced MRIP 
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model where the total number of reshuffles needed to retrieve the first K containers is 

minimized.  Wan et al. (2009) show that the MRIP-based heuristics with K=5,6,7,8 

(denoted as MRIP model-DK) give better solutions than RI and ENAR.  Therefore, 

we use MRIP model-DK (K=5,6,7,8) in the comparison.  We also test the 

model-based heuristics with the MRIP model replaced by the improved ILP model, 

which will be referred to as ILP-based heuristics. 

General setup for experiments 

In the dynamic experiments, the common bay structures (6 columns and 2 to 5 

tiers) are considered, and the numbers of the available tiers should be specified as 

needed before an experiment.  Here the average storage space utilization of a 

container bay is set to 75% to simulate actual terminal yards with a higher storage 

space utilization. 

Simulation results 

To evaluate the long-term performance of the different stacking and reshuffling 

methods in the dynamic environment, the simulation experiments should be 

performed for the four common bay configurations mentioned above for a longer 

period.  For each bay configuration, we first generate ten independent tested data 

sets according to the data generation rule mentioned in Section 5; second, the 

simulation experiments based on the ten independent tested data sets are run until a 

total of 1000 containers are retrieved within the bay, and then, the total number of 

reshuffles and the total CPU time needed to retrieve 1000 containers is obtained for 

each data set.  Finally, based on the results of the simulation experiments for each 

bay configuration, the average total number of reshuffles and the average total CPU 

time for the ten data sets are obtained and listed in Table 5.  Here we performed ten 

simulation experiments for each bay configuration where 1000 containers were 

retrieved to test the universality and long-term performance of all the heuristics using 

a large number of reshuffling operations. 

The simulation results of all the heuristics can be observed in Table 5. 

Table 5. The average total number of reshuffles and the average total CPU time 
 (Average total number of reshuffles, average total CPU time in seconds) 
 (C,P)=(6,2) (C,P)=(6,3) (C,P)=(6,4) (C,P)=(6,5) 

RI (126, 0.35) (251.5, 0.657) (433, 0.825) (626.5, 0.93) 
ENAR (127.2, 0.365) (246.7,0.702) (439.1, 6.53) (654,73.1) 

H1 (125.7, 0.416) (247.8,0.582) (416.3, 0.629) (600, 0.908) 
H2 (125.7, 0.429) (244, 0.569) (414.2, 0.762) (606, 1.095) 
H3 (125.7, 0.369) (250.1, 0.581) (421.4, 0.657) (620.2,0.859) 
H4 (125.7, 0.357) (245.2, 0.639) (420, 0.708) (612.3, 1.017) 
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H5 (125.7, 0.414) (246.7, 0.633) (420.7, 0.681) (600.9, 0.983) 
RI_E (131.1, 0.321) (252, 0.812) (422.4, 1.125) (593.4, 3.788) 

ENAR_E (127.8, 1.515) (249.9, 1.918) (418.7,16.95 ) (608, 245.641) 
H1_E (124.1, 0.411) (244.6, 0.801) (407.4, 1.662) (591.5, 3.280) 
H2_E (125.7, 0.441) (243.1, 0.733) (406.1, 1.808) (588.7, 3.365) 
H3_E (124.1, 0.463) (245.1, 0.908) (414, 1.482) (589, 3.430) 
H4_E (124.1, 0.496) (245.1, 0.956) (417.6, 2.354) (589.9, 5.167) 
H5_E (125.7, 0.497) (243.1, 1.254) (413.2, 1.892) (589.2, 6.341) 

MRIP model-D5 (129.6, 107.690) (250.7, 347.908) (433.2, 863.19) (657.2, 2543.465) 
ILP model-D5 (127.2, 100.783) (256.2, 326.394) (434, 806.244) (640.1, 1731.957) 

MRIP model-D6 (131.6, 113.840) (252.6, 382.539) (433.8, 1012.517) (618.9, 2587.367) 
ILP model-D6 (131.9, 106.238) (252.1, 355.771) (430, 910.989) (623.9, 2529.296) 

MRIP model-D7 (127.7, 117.636) (247.6, 411.015) (432.5, 1172.624) (622.4, 4604.497) 
ILP model-D7 (129.6, 108.370) (252.4, 379.292) (421.6, 1038.684) (623.6, 3317.614) 

MRIP model-D8 (128, 119.714) (244.9, 433.148) (418.1, 1370.753) (626.9, 8245.435) 
ILP model-D8 (131, 110.819) (255.5, 398.506) (429.2, 1116.538) (624.1, 4504.546) 

As shown in Table 5, the best heuristic result for each bay configuration is 

highlighted in bold.  It can be seen that H1_E to H5_E are superior or similar to the 

best results of the existing heuristics listed in Table 5 and consume very little time.    

Among these five heuristics, H2_E has the best performance in most of the tested bay 

structures.  Recall that H2_E performed the best for problems 80% utilization of a 

bay in the static environment.  Since the average utilization of a bay is similar in the 

dynamic experiment, the excellent performance of H2_E can be expected.  At the 

same time, we can observe that the performances of the ILP-based heuristics are close 

to that of the MRIP-based heuristics, but ILP-based heuristics take much less time, 

which is consistent with the results obtained by the static experiment. 

7. Conclusions 

In this paper, we have studied two different, but related, problems, which are the 

static reshuffling problem and the dynamic stacking problem in container terminal 

yards.  For the static reshuffling problem, an improved static reshuffling model was 

formulated by removing the column-relationship variables and some associated 

constraints from an existing model and introducing new reshuffling-related 

constraints for individual columns.  Five new effective heuristics and their extended 

versions were also developed and the worst performance was analyzed.  For the 

dynamic problem with continual arrivals and retrievals of containers, the different 

heuristics of the static environment were applied and tested, and a simulation model 

was developed with an animation function to show the stacking, retrieving and 

reshuffling operations if needed.  The experimental results have shown that the 

improved model can obtain optimal or feasible solutions more quickly than the 

existing model, and that the extended versions of the five proposed heuristics are 
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superior or similar to the best results of the existing heuristics and consume very little 

time for both the static and the dynamic problems. 
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