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Abstract 

This study is motivated by the practice of large iron and steel companies, which have steady and 

heavy demands for bulk raw materials such as iron ore, coal, limestone and so on.  These materials are 

usually transported to a bulk cargo terminal by ships (or to a station by trains).  Once discharged, they are 

moved to and stored in bulk material stock yard, waiting for retrieval for production use.  Efficient 

storage space allocation and ship scheduling are critical to achieve high space utilization, low material loss 

and low transportation costs.  In this paper, we study the integrated storage space allocation and ship 

scheduling problem (IASP) in the bulk cargo terminal.  Our problem is different from other associated 

problems due to the special way that the materials are transported and stored.  A novel mixed-integer 

programming model (MILP) is developed, and then solved by Benders decomposition algorithm, which is 

enhanced by the use of various valid inequalities, combinatorial Benders cuts, variable reduction tests and 

an iterative heuristic procedure.  Computational results indicate that the proposed solution method is 

much more efficient than the standard solution software CPLEX. 

Keywords: Benders decomposition; Integer programming; Valid inequality; Variable reduction tests; 

Heuristics. 

* Corresponding author. E-mail: qhjytlx@mail.neu.edu.cn .

D
ow

nl
oa

de
d 

by
 [

L
ou

gh
bo

ro
ug

h 
U

ni
ve

rs
ity

] 
at

 0
5:

29
 2

9 
Ju

ly
 2

01
5 

mailto:qhjytlx@mail.neu.edu.cn


2 

1  Introduction 

This paper addresses the integrated bulk material storage space allocation and ship scheduling 

problem arising in the bulk raw material ports of large iron and steel companies.  An iron and steel 

company usually consumes a large quantity of bulk raw materials such as ore and coal which are 

frequently moved in and out the material stockyard.  With the increasing steel production, the 

material stock yards have become scarce resources in many iron and steel companies.  Therefore, it 

is essential to schedule the ship unloading activities and to effectively allocate storage spaces to 

unloaded materials. 

The material unloading and storage operation decisions determine the allocation costs related to 

distribution operations and material mixing losses, etc., in the storage yard as well as the scheduling 

costs associated with unloading sequence of the ships at the berth (or trains in the unloading station). 

Shipping companies usually charge for the tardiness if the unloading of a ship cannot be completed 

before the scheduled departure time.  Therefore effective storage space allocation and ship 

scheduling will help iron and steel companies reduce cost and improve profitability. 

Figure 1 is a schematic diagram showing the logistics structure and the bulk material flows in a 

typical iron and steel company.  The materials are usually unloaded in the unloading area (berth for 

example) from ships one by one and then transported to the material stock yard through a complicated 

belt conveyor network and stored in the form of piles.  When needed, the stored materials are 

collected from the material stock yard by reclaimers and transported to the production facilities or 

customers, usually through a belt conveyor network too. It is worth noting that for the same material, 

the unloading operation in the berth and the storing operation in the material stock yard are performed 

simultaneously. 
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A material stock yard consists of several stock rows, each of which is a 

hundreds-of-meters-long strip area capable of storing various materials in the form of piles (as shown 

in Fig.2).  At any particular time, some parts of a row may be occupied by materials stored earlier 

while other parts (called empty fields) are still available for allocation to new materials.  Depending 

on its length, one empty field may be used to store several piles of different materials if it has enough 

capacity.  Notice that different empty fields may have different lengths.  The empty fields may have 

some residuals left by the materials that were previously stored there.  When storing a new material 

in an empty field, the material will inevitably have some mixing with the residuals at the bottom of 

the pile.  If the residuals are not of the same material, a thin bottom layer of the current material 

cannot be used as quality material, resulting in material loss. 

Figure 2 shows the top and side views of a stock row. We can easily tell the position and the 

length of each material pile or each empty field in the row from the coordinate axis along the length of 

the row.  As can be seen from figure 2, the width of each material pile is almost the width of the 

stock row (leaving only narrow margins on the sides).  Different material piles in a row must be 

separated from each other by at least a given safety distance to prevent mixing. The physical 

characteristics of the materials and the amounts stored determine the shapes and lengths of the piles. 

Since each material has its fixed bulk density (therefore fixed pile height), we can easily calculate the 

required storage pile length for a given quantity of a given material. The calculations also take the 

slope into consideration (see Figure 2b). The slope at both ends of each material pile will cause 

inevitable capacity waste, which is dependent on the material’s type and the width of the allocated 

stock row, since the width of the row and the slop of the material can affect the amount of the material 

piled in unit length. 
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Field 3 in Fig.2 is initially occupied by material 4 at the beginning of the planning horizon, but at 

a certain time point in the planning horizon, material 4 will be retrieved from the stock row and field 3 

will be cleared and become available. Therefore, if a material is allocated to field 3, its unloading and 

storing operations cannot be started until this available time. 

If a material is allocated to some part of an empty field, then the rest part can be seen as a new 

field and thus available for future use. Moreover, as shown in Fig.2, if some space on the right side of 

field 2 has not been allocated yet when field 3 is cleared up, then the right part of field 2 together with 

field 3 will form a longer consecutive new field. This will be useful for those material piles of large 

quantity, each of which needs long consecutive storage space. 

The same type of material arriving with different ships/trains is considered as different materials 

for traceability and due to their difference in moisture etc. One ship is considered to carry only one 

material.  This is in line with the practical situation we encountered in these bulk cargo terminals of 

large iron and steel companies. 

In bulk cargo terminals, it is important to consider the status of the storage space utilization and 

the tardiness cost rates of different ships when making unloading sequence decisions. In this case, 

first-come-first-serve is usually not an optimal policy. The ships do not have a pre-scheduled 

unloading time until the integrated unloading and allocation decisions are made by the terminals, but 

each of them has an arrival time and a due time for departure.  The duration between the arrival time 

and the departure time of a ship is normally much longer than the time needed for unloading, leaving 

flexibility to decide when the ship is unloaded. Given the status of the material stock yard and the 

ships arriving/due times in the planning horizon, the integrated storage space allocation and ship 

scheduling problem is to decide the unloading sequences of the material ships, as well as the stock 
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rows and the exact storage locations for each material so as to minimize the associated costs. 

Corresponding to a particular bulk material storage yard (e.g. yard used to store iron ore only), 

there is a relatively fixed berth position for ship unloading.  The ship scheduling part of the problem 

needs only to determine the sequence for unloading the ships.  On the other hand, because the 

unloading operation and the storage operation need to be done simultaneously, the scheduling of ships 

is closely related to the material storage allocation.  Therefore, although there have been many 

previous studies on berth allocation to ships, the results are not applicable to our problem.  Material 

storage allocation is the major type of decision in our problem.  Although there has been plenty of 

papers focusing on the problems in other production and logistics stages (e.g. Tang et al. 2014, Kim et 

al. 2011), little research has been done about the bulk raw material production and logistics, especially 

the bulk raw material storage space allocation problem.  Kim et al. (2009) formulated an integer 

programming model for a bulk material stock yard allocation problem to allocate materials to each 

available yard, and solved the model using commercial software. The problem is a tactical-level 

problem faced at the design stage or for longer term planning. Ago et al. (2007) modeled the yard 

allocation problem and the routing problem simultaneously, but did not consider the actual shapes of 

the material piles nor the clearance distances between different materials stored in the same storage 

yard.  What was called a yard in these two studies is actually a stock row as shown in Fig. 2.  The 

models in these studies did not consider the exact location of each material in the stock rows, and the 

available rows were considered all empty before the allocation. In the operational level problem that 

we study, it is important to consider the spaces already occupied and the exact locations of the 

available fields in each row.  The exact locations for each material to be stored must be specified in 

the solution so as to provide practical guidance to the actual yard operations. 
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There have been some similar studies on the space allocation problem encountered in container 

terminals.  Zhang et al. (2003) solved the container storage space allocation problem in container 

terminals using a rolling-horizon approach. For each planning horizon, the problem was 

decomposed into two levels, the storage space allocation level and the exact location assignment level.  

Kim et al. (2000) considered the container storage location problem in the operational level, and 

solved it using dynamic programming and a decision tree heuristic. Bruzzone and Signorile (1998) 

combined simulation and genetic algorithms to determine the storage clusters of containers (and the 

berth allocation) of vessels. Tang et al. (2015) improve the existing static model for container stacking 

and reshuffling problem in stock yards of container terminals, and develop a discrete event simulation 

model and five effective heuristics which can together well adapt dynamic environment with arrivals 

and retrievals of containers. There has also been some research on allocation of specific storage 

locations to containers in container terminals, e.g., Kim and Hong (2006) and Wan et al. (2009). 

However, our problem has its special characteristics that are different from those for the container 

space allocation.  The bulk materials do not have a fixed shape and the available fields have different 

lengths and different available times. 

Our major contribution in this paper is to develop a novel mixed integer programming model to 

first address the practical integrated problem of storage space allocation and ship scheduling in the 

bulk cargo terminal, and then propose an efficient Benders-based solution procedure to solve it. By 

investigating deeply into the problem structure, we develop various accelerating strategies which are 

embedded into the basic Benders algorithm for quick convergence. These strategies include (1) 

Benders decomposition-based valid inequalities which take the form similar to Benders cuts, (2) 

effective Combinatorial Benders (CB) cuts which can work even when the Benders subproblem is 
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feasible, (3) several variable reduction tests which can significantly lower the computational burden 

of the Benders master problem, and (4) a Benders-based heuristic procedure for the priori cuts and 

variable reduction tests. In order to verify the efficiency of the solution procedure, computational 

experiments on both the real-world data and random-generated instances are performed. 

The rest of the article is organized as follows.  The next section describes the bulk material 

storage space allocation and ship scheduling problem in detail.  An integer programming formulation 

of the problem is developed in Section 3. Section 4 presents an improved Benders decomposition 

approach to solving the model.  In Section 5, we present computational results illustrating the 

performance of our solution algorithms.  Finally, conclusions are drawn in Section 6. 

2  Problem definition 

At any time of the whole planning horizon, some parts of a stock row may be occupied leaving 

several fields available for use.  As the unloading and storage operations goes on, available fields 

keep changing.  Moreover, there may be different residuals left at different parts of a field, resulting 

in a piecewise cost function of material loss. 

To simplify the problem formulation, we view each stock row as a series of unit storage spaces, 

called slots, each of which is 5 meters long (viz. the length of the minimum safety distance) and can 

be used to store at most one material. Because some parts of a stock row are occupied by materials 

that will not be retrieved during the whole planning horizon, they cannot be allocated to store 

incoming materials in the period and so we do not need to consider their actual size.  Instead, we 

only need to consider an unavailable part as a border slot (BS) separating two adjacent available fields 

on its two sides, as shown in Figure 3.  With this treatment, each row can be viewed as a sequence of 

fields with border slots between some adjacent fields.  The fields in the row can then be marked 
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along the length axis using slot as unit.  Note that the lengths of different available fields are often 

different, and that the lengths of different rows may be different as well. Besides, different slots in the 

same field may have different available times. 

The original rules for space allocation still need to be observed.  Each material, brought by one 

ship, can be allocated to one stock row only, and must be stored in one pile which may occupy several 

consecutive slots.  This is because storing the material in one pile can ensure that the corresponding 

unloading, transferring and stacking operations can be carried out uninterruptedly. This can also help 

improve the utilization of the stock yard because it reduces the chance of generating scattered smaller 

available fields. Moreover, storing a material in one pile makes it easier to track and manage the 

material since the material transported in a ship has a unique batch number. Between two piles of 

materials, there must be at least one slot to keep the safety distance. Given a certain material, the 

maximum amount of this material that can be allocated to any slot in the given stock row is a constant 

due to the fixed bulk density mentioned earlier. During the whole planning horizon (usually 2 days 

considering availability of the ship arriving information), the newly allocated materials will need to 

first go through a checking process (for example, chemical components analysis tests) before use, and 

such a process normally last for several days. Therefore, once the material is allocated, it will not be 

retrieved from the storage yard during the same planning horizon.  Based on this realistic situation, 

any available slot cannot be allocated to more than one incoming material during the same planning 

horizon. 

Figure 4 shows an example allocation of 5 slots to a material in a row of 9 slots.  Slots 1 to 5 are 

allocated uninterruptedly and comprise a material pile, leaving slots 6 to 9 as an available field for 

future use.  For the allocated material pile, slots 1 and 5 are called the start slot (SS) and the end slot 
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(ES), respectively, of the material pile and slot 7 is the SS of the new field.  If there are only two 

slots between two existing material piles, this two slot space will not be considered as an available 

field because it cannot be used to accommodate a new material pile due to the safety distance needed. 

It is worth to note that the first and the last slots of each storage row can be used to store materials 

since there is a natural border before the first slot and after the last one, and so no border slot is 

needed at the two ends of the row. 

An available storage slot may have been used previously to store a material, and has some 

residuals of that material even after the clearance operation.  As noted earlier, when storing a new 

material in the slot, there will be inevitably some mixing with the residuals at the bottom.  Since the 

quality of the bottom layer of the material is affected, this can be considered as a cost.  Obviously, 

this cost is dependent on the differences between the chemical and physical properties of the two 

materials. 

The material stock yard is connected with the unloading area through conveyer belts, and so the 

unloading and storing operations are performed simultaneously.  The tardiness penalty cost charged 

by the shipping companies is another significant factor which the managers need to consider when 

making storage allocation and ship scheduling decisions. 

Our objective for allocating storage slots to the materials and scheduling the ships is to minimize 

the overall cost consisting of all the above mentioned.  According to the real-world data, we assume 

that there are plenty of empty fields to store the incoming materials in the whole planning horizion, 

which means that the problem we consider is always feasible. 
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3  Model Formulation 

3.1  Notations 

In this section we formulate the integrated storage space allocation and ship scheduling problem 

as a mixed integer linear programming model (MILP).  To present the model, we first define some 

notations. 

Sets and indices 

I set of incoming materials to be allocated. They are indexed from 1 to |I|. This index is also 

used as ship index since one ship carries only one material. 

R set of stock rows that are indexed from 1 to |R|. 

Sr set of storage slots in row r that are indexed from 1 to |Sr|. 

Parameters 

isrf penalty cost (due to the mixing of residuals at the bottom) and distribution cost of storing 

material i into slot s of stock row r. 

ih unit tardiness cost of the ship carrying material i. 

id the planned departure time of the ship carrying material i. 

ia the arriving time of the ship carrying material i. 

ip the operation time needed to unload and store material i. 

ijb setup time between the operations from material i to j, i j associated with routine 

adjustment of the belt conveyers. 

irw capacity waste at the ends of the piles (due to slope) when allocating material i to row r. 

irq maximum quantity of material i that can be stored into each slot of row r. 

qi0 total quantity of material i to be allocated. 
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rse the earliest available time of slot s in row r. 

rsk parameter indicating whether slot s is the BS in stock row r or not (equals 0 when true, and 1 

otherwise). 

M a positive number that practically serves as infinity for the problem. 

|Sr|+1 a virtual slot in row r outside |Sr| to indicate the end of the row. 

Decision variables 

it the starting time of material i’s unloading operation. 

iC the tardy time of material i’s unloading operation. 

iju one if material j is unloaded after material i, zero otherwise. 

irsy one if material i is allocated to slot s of row r, zero otherwise. As the virtual slot |Sr|+1 

cannot be used to store any material, we define
,| | 1 0

rir Sy   for any i and r. 

irsx  one if slot s is the ES for material i in stock row r, zero otherwise. 

irz one if material i is allocated to stock row r, zero otherwise. 

3.2  Model formulation 

Using the notations above, we can formulate the MILP as follows: 

(MILP)  Minimize 

r

irs irs i i

i I r R s S i I

f y hC
   

  (1) 

Subject to 

i i i iC t p d   i I  (2) 

 1j i ij i ijt t M u p b     , ,  i j I i j   (3) 

1ij jiu u   , ,  i j I i j   (4) 

i rs irst e y , , ri I r R s S    (5) 
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i it a i I  (6) 

1ir

r R

z


  i I  (7) 

0

r

ir irs ir ir i ir

s S

q y w z q z


  ,i I r R    (8) 

irs rs

i I

y k


 , rr R s S   (9) 

 
, 1

\

1jr s irs

j I i

y y



  , , ri I r R s S    (10) 

, 1irs ir s irsy y x  , , ri I r R s S    (11) 

r

irs ir

s S

x z


 ,i I r R    (12) 

, 0i it C   i I  (13) 

 , , , 0,1irs irs ir ijx y z u  , , , ri I j I r R s S     (14) 

The objective (1) is to minimize the total cost associated with the allocation. The first term 

represents the residuals mixing costs and distribution costs.  The second term represents the tardiness 

penalty costs charged by the ships. 

Constraints (2) are used to calculate the tardiness time of each material. Constraints (3) ensure 

that the unloading of a material can start only when the unloading of any material scheduled before it 

has completed and a setup is done. For any two materials, constraints (4) require that one of them 

must be unloaded after another. Constraints (5) ensure that, if a material is allocated to a slot, the 

starting time of its unloading cannot be earlier than the earliest available time of the slot.  Constraints 

(6) ensure that each material cannot be unloaded until the ship carrying this material arrives.  

Constraints (7) guarantee that each material can be allocated to only one stock row.  Constraint set (8) 

ensures that sufficient slots are allocated for each material.  Constraints (9) guarantee that each slot 

can be used to allocate at most one incoming material in the planning horizon. Constraints (10) are the 

safety distance constraints.  Constraint set (11) identifies (the ES of) the piles of materials in each 
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row.  Constraint set (12) ensures that only one pile is stored on the chosen stock row for each 

material.  Constraints (13) and (14) are the binary and non-negativity constraints. 

We propose to solve this problem using the Benders decomposition method, which could 

decompose it into two easier problems. This decomposition method could also inspire us to develop 

various accelerating strategies associated with the problem structure (e.g., quick ways to carry out 

variable reduction tests and generation of Combinatorial Benders cuts, illustrated in later sections). 

4  Benders decomposition based solution approach 

Benders Decomposition (BD) is an effective method applicable to mixed-integer programs 

(Benders, 1962), based on the partition and delayed constraint generation ideas.  It decomposes the 

original problem into two simpler ones: an integer master problem and a linear subproblem, which are 

solved in an iterative fashion by utilizing the solution of one in the other.  The master problem 

actually behaves as a relaxation of the original problem and involves all the integer variables and one 

continuous auxiliary variable to incorporate the information transferred from the subproblem.  Using 

the fixed integer variable values obtained from the master problem solution as input parameters, a 

dual subproblem is constructed and its solution provides the means to construct a Benders cut that 

includes the information of the subproblem.  The Benders cut is then added to the master problem in 

the next iteration.  The Benders cut excludes the solution just obtained in the last master problem. 

Therefore, each solution of the master problem must satisfy all the Benders cuts generated so far to 

avoid repetition.  Solving the master problem and the dual subproblem can provide a lower bound 

and an upper bound for the overall problem, respectively.  The master problem and the subproblem 

are solved iteratively in this fashion until an optimal solution to the original problem is obtained. 

Most studies on Benders focus on how to improve the quality of Benders cuts, or how to solve 
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the integer master problem quickly. Magnanti and Wong (1981) first define a cut as Pareto-optimal if 

no other cut dominates it, which can significantly improve Benders if applied to problems with 

degenerate subproblem. Tang et al. (2013) improve this technique by a high density Pareto cut 

generation strategy. Saharidis et al. (2011) present a Covering Cut Bundle strategy to accelerate 

Benders decomposition algorithm by generating a bundle of cuts in order to cover all the decision 

variables of the master problem. 

Solving the integer master problem to optimal could help the subproblem to generate the most 

powerful cut.  However it is time consuming.  In fact, if any feasible solution (even if the solution 

of the LP relaxation) of the master problem is passed to the subproblem, the cuts generated are still 

valid for the integer programming problem (McDaniel and Devine, 1977).  We refer to this as 

Property 1 in the rest of this paper. 

4.1  Benders reformulation 

Let irsy  and iju  represent the given values of the integer variable
irsy and

iju . Then, for any 

fixed values irsy and iju , the Benders subproblem SP is given as the following linear program 

which includes all the original constraints involving the continuous variables: 

(SP) Minimize i i

i I

h C


 (15) 

Subject to 

i i i iC t p d   i I  (16) 

 1j i i ij ijt t p b M u     , ,  i j I i j   (17) 

i rs irst e y , , ri I r R s S    (18) 

i it a i I  (19) 
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, 0i iC t  i I  (20) 

Note that constraint (16)-(18) is the Benders rewritten form of constraint (2), (3) and (5). 

Therefore, the dual sub-problem (DSP), which is the dual of SP can be written as: 

(DSP)  Maximize    
,

1i i i i ij ij ij

i I i I i j j I

p d p b M u 
   

     
   

r

rs irs irs i i

i I r R s S i I

e y a 
   

     

  

(21) 

Subject to 

i ih  i I  (22) 

0
r

ji ij i i irs

j J j J r R s S

    
   

        
i I  (23) 

, , , 0i ij irs i      , , , ri I j I r R s S     (24) 

Utilizing the above representation of the DSP and based on the extreme points and the extreme 

rays of its polyhedron, we can introduce a variable π for the overall tardiness penalty costs and 

formulate the master problem as: 

(MP) Minimize 

r

irs irs

i I r R s S

f y
  

 (25) 

Subject to 

constraints (4), (7) - (13) 

   
,

1
r

i i i i ij ij ij rs irs irs i i

i I i I i j j J i I r R s S i I

p d p b M u e y a    
       

           
         (26) 

   
,

0 1
r

i i i i ij ij ij rs irs irs i i

i I i I i j j J i I r R s S i I

p d p b M u e y a   
       

           
       (27) 

We can iteratively solve MP and DSP until an optimal solution to the original problem is 

obtained.  In each iteration a new Benders cut (26) associated with the extreme point or (27) 

associated with the extreme ray of last DSP is added to MP. 

4.2  Valid inequalities 
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Observe that the iterative algorithm BD is initialized with empty subsets of extreme rays and 

extreme points, therefore the master problem initially contains only the integrality constraints.  As a 

result, several iterations must be performed before enough information is transferred to the master 

problem by Benders cuts. 

When solving model MP, various types of valid inequalities can be added to the formulation. 

They can improve convergence by helping the master problem to find solutions that are feasible and 

close to optimal.  

In this section, besides two problem-structure-based valid inequalities, we also introduce a new 

type that we called Benders-based valid inequality, which is derived from the idea of imitating the 

Benders cuts, to help the master problem find near-optimal solutions. 

4.2.1  Valid inequality of unloading sequence 

We find that the absence of constraints (3) in MP may result in uij solution values that cause 

infeasibility of SP. To handle this situation, we investigate the optimal solution structure of uij and add 

the following valid inequality into MP: 

\{ } \{ }

ij i j

j I i j I i

u u 

 

  , \ { }i I i I i    (28) 

This valid inequality is based on the observation that each material (ship) occupies a unique 

position in the feasible unloading sequence. It can reduce the possibility of having uij solution values 

that make SP infeasible. Note that (28) is allowable in the standard commercial software CPLEX we 

used when implementing our solution approach. 

4.2.2  Valid inequality based on capacity 

Between two adjacent border slots (or before the first border slot or after the last border slot) in a 

row is a sequence of consecutive available slots though their available times may be different.  If 
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there are no new materials stored, this sequence of slots will all be empty at some time point of the 

planning horizon, and so can potentially accommodate a material with large quantity.  We refer to 

such a sequence of slots as a potential field. 

Considering the allocation structure of material i, if a potential field is not long enough to 

accommodate the quantity of the material, the material cannot be allocated to any slot in this potential 

field and the corresponding decision variable yirs should be 0. That is 

( , )

0
i

irs

r s G

y


 i I  (29) 

where Gi represents the set of slots in all the potential fields that are not long enough to allocate 

material i.  As the border slots and the quantity of material i are known, Gi can be obtained easily in 

advance. 

4.2.3  Benders-based valid inequality 

Given a general mix-integer programming problem MIP:{Min cx+dy | Ax+By  a; Cyb; x0; y

∈{0, 1}}, its master problem can be written as MP:{Min dy+π | Cyb; πCutExp(y); y∈{0, 1}}, where 

πCutExp(y) is the Benders cut expression. Let SP(y) represent the optimal objective value of the 

associated subproblem when the value of y is given.  As illustrated earlier, in each iteration of the 

Benders algorithm, MP and dy+SP(y) provides the LB and UB of MIP respectively, and MIP is solved 

to optimal when LB=UB. 

In this section, we investigate the possibility of developing valid inequalities by imitating the 

Benders cuts. We call this strategy as Benders-based inequality, which is based on the observation 

that a Benders cut is constructed as a linear function of Boolean variables. 

Before we illustrate the Benders-based valid inequality strategy, we first define expression RL(y) 

to be used later as a linear function of Boolean variables y. 
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Proposition 1.  If a given expression RL(y) satisfies SP(y*)RL(y*) for the optimal solution of 

MIP (denoted as y*), then the cut-like inequality πRL(y) is valid for the master problem MP. We call 

it the Benders-based valid inequality. 

Proof. We first construct an auxiliary master problem AMP by adding the Benders-based 

inequality πRL(y) into the master problem MP. Then we employ a Benders algorithm structure in 

which we solve AMP and SP iteratively until achieving the optimum. Let y^ denote this optimal 

solution. Note that when reaching this optimal solution, the value of AMP (i.e. dy^+π(y^)) equals the 

associated upper bound dy^+SP(y^), which is also an upper bound (UB) of MIP. If the Benders-based 

inequality πRL(y) is not valid for the master problem MP, then y^ is not the optimal solution of MIP, 

that is to say, y^ is different from y*, then for the current AMP polyhedron we have dy*+π(y*)  

dy^+π(y^)=UB since y^ is the optimal solution of the current AMP polyhedron. Observe that 

dy*+CutExp(y*) is a lower bound of MIP (based on Property 1), then we have RL(y*)CutExp(y*) 

and further dy*+π(y*)=dy*+RL(y*). However, given that SP(y*)RL(y*), we have dy*+SP(y*)  

dy*+RL(y*) = dy*+π(y*) dy^+π(y^) = UB, which is definitely a contradiction because dy*+SP(y*) is 

the optimal objective value of MIP (denoted as OPT) and the assumption leads to OPTUB. 

Therefore, y^ is the optimal solution of MIP, which means that the Benders-based inequality πRL(y) 

is valid. 

Effective RL(y) expression will prevent the generation of integer solutions far from optimal and 

further reduce the number of iterations.  In our problem, based on (16)-(20), we can easily observe 

that hiCi  hi(ersyirs+pi-di). Therefore, it is obvious that SP(y)  RL(y) =  i rs irs i i

i

h e y p d  for any 

solution y. Moreover, based on the problem structure and the observation hiCi  hi(ersyirs+pi-di), the 

Benders-based valid inequality πRL(y) we established is separable, and can be further converted to 
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the form of 

i

i I

 


  
(30) 

 i i rs irs i ih e y p d    i I  (31) 

 1
j

i i ji i i ji

j

h b p d M u
h




 
       

  

 
 , \i I j I i   (32) 

0i    i I  (33) 

Actually, given a problem-structure-based RL(y) expression that does not satisfy RL(y*)SP(y*), 

this strategy may still accelerate the BD algorithm. As in the proof above, we can solve AMP instead 

of MP in the first few steps of standard Benders procedure. Since the Benders cuts generated in these 

few steps is still valid because of Property 1, we can probably improve convergence by helping the 

master problem to find solutions that are close to optimal. 

4.3  Combinatorial Benders cut 

Once the linear subproblem has big-M constraints (like constraint (17) in our problem), the 

resulting Benders cuts will be weak especially when the subproblem is infeasible.  In order to break 

the infeasibility effectively, Hooker (2000) propose a Benders cuts generating technique based on the 

idea of minimal set of inconsistencies. Codato and Fischetti (2006) further extend it to solve the MIP 

with special structures using combinatorial Benders cuts (CB cuts), by figuring out the integer 

variables that need to be changed to break the infeasibility. Cao et al. (2010) apply this strategy to 

solve an integrated yard truck and yard crane scheduling problem with the help of an auxiliary linear 

system. 

In this paper, by constructing infeasible auxiliary subproblem, we chose to take advantage of 

combinatorial Benders cuts even when the subproblem SP is feasible.  That is to say, we chose to 

D
ow

nl
oa

de
d 

by
 [

L
ou

gh
bo

ro
ug

h 
U

ni
ve

rs
ity

] 
at

 0
5:

29
 2

9 
Ju

ly
 2

01
5 



20 

figure out the integer variables that need to be changed to help the algorithm get close to the optimal 

solution. To achieve that, we propose two strategies as follows: 

4.3.1  CB-cut generating strategy one 

Similar to Cao et al. (2010), when solving the subproblems SP in each Benders iteration, we 

introduce the following linear system: 

Sub(y,u)
constraints(16) (20)

: UB-MPV-i i

i I

h C 



  



(34) 

where UB is the incumbent upper bound, MPV is a parameter satisfying MPV
*

r

irs irs

i I r R s S

f y
  

 , 

*

irsy  is the optimal value of irsy in the optimal solution of MILP, andε is a sufficiently small 

positive value. 

Let 
*

iC  denote the optimal value of variables iC  in MILP, it can be easily observed that 

* * *MPV+ UB
r

i i irs irs i i

i I i I r R s S i I

hC f y hC
    

     , therefore 
* UB-MPVi i

i I

hC


 , i.e. the optimal 

value of integer variables in MILP should guarantee that the subproblem SP satisfies constraints (34). 

Therefore, we can proceed as follows: 

When Sub(y,u) is feasible, we can update the incumbent upper bound UB by solving SP; 

otherwise, if Sub(y,u) is infeasible, we can look for the minimal infeasible subsystem (MIS) of 

Sub(y,u), indexed by , and observe that at least one binary variables involved in it has to be 

changed to break the infeasibility so as to get close to the optimal solution. This observation can be 

expressed as combinatorial Benders cut: 

 

 
 

 
1 1 2 2, : 0 , : 1 ( , , ) , 0 ( , , ) , 1

1 1 1
ij ij irs irs

ij ij irs irs

i j u i j u i r s y i r s y

u u y y
       

          
(35) 

where 1 2   . The subset 1  contains indices of rows corresponding to constraint (17); 

and the subset 2  contains indices of rows corresponding to constraint (18). 
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When the subproblem SP is infeasible, MILP and Sub(y,u) are both infeasible, we could look 

for an MIS of SP (or Sub(y,u)) to generate a CB cut, and 
2  in this case. 

Because of the structure of Benders algorithm, we can easily get a proper value of MPV by 

setting MPV=
1

r

irs irs

i I r R s S

f y
  

 , where 
1

irsy denotes the optimal value of irsy obtained when 

solving the mater problem MP in the first iteration. Observe that 

1 *

r r

irs irs irs irs

i I r R s S i I r R s S

f y f y
     

  since only the item 

r

irs irs

i I r R s S

f y
  

 in the objective function 

is involved when solving MP in the first iteration. 

4.3.2  CB-cut generating strategy two 

Considering the large problem scale of MP and the risk of infeasible SP, we further give an 

easier way to generate CB cuts (and initial cuts) by employing a set of auxiliary problems. 

In the k
th

 iteration of the Benders approach, we relax all the binary integer variables in MP
k
, 

except uij, to [0,1] to get a relaxed master problem MP
k
LP. We first solve MP

k
LP and obtain the optimal

value of variables yirs, zir and uij in MP
k
LP, denoted as ˆ k

irsy , ˆk

irz  and ˆk

iju . Then solving the SP involving 

ˆ k

irsy , ˆk

irz  and ˆk

iju , we will encounter two cases: 

Case 1: If the SP is infeasible, we can generate a CB cut through investigating the MIS of SP, 

indexed by 3 . This CB cut can be illustrated as: 

 

 
 3 3ˆ ˆ, : 0 , : 1

1 1
ij ij

ij ij

i j u i j u

u u
   

     
(36) 

Proposition 2. If the SP involving ˆ k

irsy , ˆk

irz  and ˆk

iju  is infeasible, then the resulting 

combinatorial Benders cut (36) is valid for MILP. 

Proof.  We know SP is infeasible for any solution of MP
k
 that satisfying ˆk k

ij iju u .  It is easy 

to check that (36) only excludes the exact uij values that make the problem infeasible but allows any 
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other combination of uij values.  Therefore (36) is a valid cut. 

Case 2: If the SP is feasible, besides the general cut generating procedure, we may further 

generate an additional CB cut with the help of an auxiliary linear system. Relax all the integer 

variables in MILP except uij to get a relaxation problem MILPLP. Fix the variables ˆk

ij iju u  in

MILPLP to get an auxiliary problem A_MILPLP, let v(A_MILPLP) denote the optimal solution value 

of A_MILPLP. We introduce the following linear system: 

MILP_CB LP

LP

:
( ) UB-v 


 



A_MILP

A_MILP
(37) 

If the MILP_CB is infeasible, we can generate a CB cut through investigating the MIS of 

MILP_CB, indexed by 4 . This CB cut can be illustrated as: 

 

 
 4 4ˆ ˆ, : 0 , : 1

1 1
ij ij

ij ij

i j u i j u

u u
   

     
(38) 

Proposition 3. If the MILP_CB is infeasible, the resulting combinatorial Benders cut (38) is 

valid for MILP. 

Proof.  This is based on the fact that v(A_MILPLP) is the lower bound of MILP for any 

solution that satisfying ˆk

ij iju u . Therefore, if MILP_CB is infeasible, then at least one binary 

variables involved in the MIS 4  has to be changed to break the infeasibility so as to get close to the 

optimal solution of MILP. 

Consequently, in the k
th

 iteration, before solving MP
k
, we could first iteratively solve MP

k
LP and

SP, until SP is feasible and MILP_CB is feasible. During this iterative procedure in the k
th
 iteration 

of Benders approach, a set of CB-cuts and traditional Benders cuts are generated, and could further 

restrain the solution space of MP
k
. 

Moreover, based on Property 1, before starting the Benders procedure, we could generate a set 

D
ow

nl
oa

de
d 

by
 [

L
ou

gh
bo

ro
ug

h 
U

ni
ve

rs
ity

] 
at

 0
5:

29
 2

9 
Ju

ly
 2

01
5 



23 

of initial cuts by solving the easier relaxation problem MILPLP in Benders style involving MPLP and 

SP. The CB-cut generating strategies illustrated in section 4.3.2 can still fit well in this 

initial-cut-generating procedure. 

4.4  Variable reduction tests 

The number of variables and constraints is very high in large scale instances, making the master 

problem a tough computational burden.  However, we can figure out two efficient strategies to 

handle this situation, one is to generate a set of initial Benders cut by solving a series of much easier 

integer master problems as illustrated earlier, the other is to reduce the number of variables using 

some reduction tests (e.g. Contreras et al. 2011 for hub location problem). 

In this section, we develop three different reduction tests capable of eliminating variables that 

are known not to appear in an optimal solution. The basic idea of most of these reduction tests comes 

from the observation of a contradiction. Assuming that a Boolean variable takes the value of 1 in the 

final optimal solution, if the optimal objective value of the problem under this assumption turns out to 

be greater than the upper bound, contradiction happens, and therefore this variable should be fixed to 

0 in the optimal solution. Let UB denote an upper bound of MILP. 

Proposition 4. Given a parameter MPV2 satisfying MPV2 
*

r

irs irs

i I r R s S

f y
  

 and a 

parameter Eirs satisfying Eirs = ers + pi - di, if we have MPV2 + Eirs  UB, then yirs=0 in the optimal 

solution of MILP. 

Proof.  Because of constraints (2) and (5), we have Ciersyirs + pi - di . Then we can easily 

observe the fact that MPV2 + Eirs is a lower bound of MILP if yirs=1. Therefore, if v(MILPLP) + Eirs  

UB, then yirs=0 in the optimal solution of MILP. 
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We can obtain the value of MPV2 by choosing the larger one of 
1

r

irs irs

i I r R s S

f y
  

 and 

v(MILPLP) - i i

i I

h C


 , where 
iC  is the optimal value of Ci in MILPLP. 

Proposition 5. Let IR be a subset of {(i,r) | iI; rR }, and v[MP
k
(IR)] be the optimal value of 

the MP
k
 with additional constraint 

 ,

1ir

i r IR

z


 . If v[MP
k
(IR)] UB, then zir=0 for each (i,r)IR in

the optimal solution of MILP (also the corresponding yirs=0,
rs S  according to constraints (11) 

and (12)). 

Proof.  It is certain that v[MP
k
(IR)] is a lower bound of the optimal value of any MP with 

constraint zir=1 for any (i,r) IR. Therefore, if v[MP
k
(IR)] UB, then zir=0 in the optimal solution of

MILP. 

Consequently, we can further observe an easier reduction test inspired by Proposition 5: 

Proposition 6. Let v[MP
k
LP(IR)] be the optimal value of MP

k
LP requiring

 ,

1ir

i r IR

z


  for a

subset IR of {(i,r) | iI; rR }. If v[MP
k
LP (IR)] UB, then zir=0 for each (i,r)IR in the optimal

solution of MILP. 

Proof.  Similar to Proposition 5, this proposition is based on the fact that v[MP
k

LP (IR)] is a

lower bound of any MP requiring zir=1 for any (i,r)IR. 

Moreover, once the reduction tests confirm that a yirs variable must be 0 in the optimal solution, 

we can view slot (r,s) as a special border slot only effective for material i.  Such special border slots 

will make some previously feasible potential fields for material i become infeasible.  Based on this 

we can update the infeasible slot set for material i, Gi, as defined in section 4.2.2.  We refer to this 

observation as Proposition 7. This is in fact a further reduction test since we will be able to fix more 

y variables according to (29). 
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Variable reduction tests in this section could reduce the number of integer variables, and can be 

applied in every step of Benders procedure. The valid inequalities mentioned in section 4.2 can help 

the master problem find solutions that are feasible and close to optimal, especially in the first few 

iterations, resulting in better lower bound. The combinatorial cut strategy in section 4.3 aims at 

generating effective cuts in fewer iterations and having less computational burden, to restrict the 

solution space of master problem. 

Furthermore, ingenious combination of these strategies will bring about faster convergence 

consuming less computation time. In the next section, we will present a Benders-based solution 

procedure, which includes all the above strategies as well as another useful observation. 

4.5  A Benders-based solution procedure 

After investigating the problem structure in the last section, we now outline the whole procedure 

of the proposed Benders-based solution algorithm that can make good use of all the accelerating 

strategies illustrated earlier and quickly solve the problem to optimal. 

There are mainly three layers in the procedure.  (i) The first layer is a Benders based iterative 

heuristic procedure containing Steps 1-6, in which we make use of the LP relaxation and the structural 

properties of the master problem to generate effective Benders cuts and further Combinatorial 

Benders cuts illustrated in section 4.3; and meanwhile, in every iteration of this layer we could utilize 

the variable reduction tests illustrated in Proposition 4 and 7 to reduce the number of integer variables. 

(ii) The second layer contains Step 7 which is based on the variable reduction test illustrated in 

Proposition 6, aiming at further reducing the number of integer variables.  (iii) The third layer is the 

typical Benders procedure illustrated in Step 8, which gives the optimal solution value. Note that in 
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this layer, with the variable reduction results and the various cuts generated in the first two layers, we 

can easily get the optimal solution in a much shorter computational time. 

Utilizing the observation that the values of zir in the optimal solution of MPLP indicate the 

preferable rows for each material in MP, we established this Benders-based solution procedure. The 

whole solution procedure is illustrated as follows (see Table A in the Appendix for index of referred 

optimization programs): 

Step 0: Initialization. I1=I, k=1. 

Step 1: In the k
th

 iteration of the Benders-based iterative heuristic procedure, first solve MP
k
LP to

optimal and obtain the values ˆ k

irsy , ˆk

irz  and ˆk

iju . Then solve SP employing ˆ k

irsy , ˆk

irz  and ˆk

iju . If 

SP is feasible, solve MILP_CB, and go to Step 2 if MILP_CB is also feasible. If SP is 

infeasible, or a feasible SP leading to an infeasible MILP_CB, generate a traditional Benders 

cut and/or a CB cut as illustrated in section 4.3 (see CB-cut generating strategy two), and add 

these cuts into the cut set BendersCutSet_Initial and MP
k
LP, repeat Step 1.

Step 2: Fix variables uij = ˆk

iju  in MP
k
. Check the values of ˆk

irz  for each material 
1i I . If ˆk

irz =0 then 

fix variables zir=0 as well as the associated yirs=0 in MP
k
. Then we obtain a reduced master

problem MP
k
(reduced). 

Step 3: Solve MP
k
(reduced). If it is feasible, update the dummy lower bound LB_D = 

v[MP
k
(reduced)], and turn to Step 5; otherwise, proceed to Step 4. 

Step 4: Find the material i in I1 that gives the largest value of   ˆ ˆmin k k

ir irz z r R    
 and delete it

from I1. Go to Step 2. 

Step 5: Solve SP to get a traditional Benders cut and a CB cut (if possible, see CB-cut generating 

strategy one illustrated in section 4.3), as well as an upper bound of MILP. Add these initial cuts 
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into the cut set BendersCutSet_Initial. Update the incumbent upper bound (UB) of MILP and 

do the reduction test illustrated in Proposition 4 as well as the further reduction test illustrated 

in Proposition 7 to reduce the number of variables. 

Step 6: If LB_D = UB, turn to Step 7; otherwise, k=k+1, turn to Step 1. 

Step 7: Start IR={(i,r)|iI,rR}, the full set of ships and rows. Solve the following auxiliary master 

problem (with some variables fixed based on the reduction tests): 

[MPLP(IR)]  Minimize 

r

irs irs

i I r R s S

f y
  

 (39) 

Subject to 

constraints (4), (7)-(13), (26)-(33) 

cuts in BendersCutSet_Initial 

 ,

1ir

i r IR

z


  
(40) 

UB
r

irs irs

i I r R s S

f y
  

   
(41) 

   , , 0,1 , 0,1irs irs ir ijx y z u  , , , ri I j I r R s S     (42) 

If MPLP(IR) is feasible, remove from IR all the (i,r) with zir>0 in the optimal solution of 

MPLP(IR), then solve SP and MPLP(IR) iteratively until MPLP(IR) is infeasible or IR= . 

Perform the reduction test illustrated in Proposition 6 to reduce the number of variables. 

Step 8: Solve MILP to optimal in Benders style (with all the cuts generated earlier and all the variable 

reduction results), stop. Note that CB-cut generating strategy one illustrated in section 4.3 and 

the reduction tests illustrated in Propositions 4&7 are also applied in the procedure of this step. 
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5  Computational results 

To evaluate the computational efficiency of the proposed solution approach, we test it on the 

real-world data obtained from an iron and steel corporation in China. Furthermore, in order to 

investigate the efficiency of the proposed approach in different problem scales, we generate more test 

instances that reflect real application and use them in further test. To benchmark the performance of 

the Benders algorithm, the MILP models for the instances are solved using CPLEX 12.6.  CPLEX 

12.6 is also employed to solve the Benders master problem and subproblem.  All the computational 

experiments are performed on a computer with Intel Core i3-2350 2.30 GHz CPU and 4GB RAM. 

5.1 Results of real-world data 

We first test the practical data obtained from a bulk material stock yard of an iron and steel 

corporation, which has 7 stock rows and has around 15 ships to be unloaded on average in each 

planning horizon. The average length of a stock row is 800 meters, therefore the maximum numbers 

of slots in one stock row is 160. We solve ten real-world instances and summarize the CPU time (hour: 

minute: second) in Table 1.  In the table, B represents the basic Benders approach, B+C represents 

the Benders approach with the combinatorial Benders cut in section 4.2, B+C+V represents B+C with 

valid equalities (28)-(33) and BA represents the proposed Benders-based approach illustrated in 

section 4.5. We observe that reducing the optimality gap below 1% requires a massive computational 

effort.  Therefore in order to avoid high computational time, a stopping criterion of a 1% optimality 

gap is used.  A time limit of 12 CPU hours is imposed for any method to solve an instance. 

The results reported in Table 1 indicate that solving the model directly by CPLEX takes very 

long but the gap requirement has been achieved within the 12 hour time limit.  The fact that it stops 
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when the gap is equal to or very close to the required gap demonstrates that the gap reduces very 

slowly in the solution process.  The traditional Benders approach perform poorly due to the large 

problem scale of the master problem and high infeasible risk of the subproblem in each iteration. 

For each of the problem instances, it reaches the 12 hour time limit when the optimality gap is still 

very large.  The accelerating strategies presented in section 4 can accelerate the Benders approach 

significantly. 

We can see from Table 1 that every strategy can contribute to shortening the computation time. 

We also measure the numbers of combinatorial Benders cuts appeared in different approaches. Table 

2 presents the average number of these cuts as well as the average of first lower bounds (and the 

corresponding relative difference compared to standard Benders) obtained when basic Benders 

procedure begins in each approach. Note that when we do the measurement in approach B+C and 

B+C+V, we also take into account the effect of the initial-cut-generating procedure illustrated in the 

last paragraph of Section 4.3. The number of CB cuts in B+C+V is less than that in B+C, because that 

valid inequalities help avoid the possibility of infeasible subproblem. 

The major issues affecting computation time (or convergence) of Benders algorithm are (1) 

solving the Benders Master problem (MP), and (2) the quality of Benders cuts. The combinatorial 

Benders cuts strategy can obtain effective cuts through easier ways, while the valid inequalities can 

also restrict the solution space of Benders master problem, helping the Benders approach convergent 

quickly within fewer iterations. The variable reduction tests in BA can significantly reduce the 

number of Boolean variables before the standard Benders approach starts in step 8 (e.g. on average 

65.80% of variables xirs), and therefore can significantly save computation time spent on Benders 

master problems. With all the strategies, the proposed procedure BA has an outstanding performance 
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in terms of both the runtime and the optimality gap, and could satisfy the runtime requirement for 

practical application in steel corporations. 

5.2 Results of random data 

There is not much difference in the scale of the problems faced at different time by the same 

corporation because of the heavy and steady demands for bulk materials. Therefore, in order to test 

the efficiency of the proposed Benders approach for different problem scales, we have generated more 

test instances based on the real-world data, but of different scales.  We consider three levels for the 

number of materials (10, 15 and 20), two levels for the total number of slots (400 and 600), and two 

levels for the number of stock rows (5 and 10).  The total quantity of all materials to be unloaded in 

the planning horizon is set to the same level for the same number of materials.  Considering different 

levels of these factors, we have 7 problem groups each with a different combination of factor levels as 

shown in Table 3.  For each problem group 10 instances are generated randomly.  For each instance, 

the number of slots in a row is generated from a range, making sure that the sum of the slots for all the 

rows equal to the set total.  The lengths of the potential fields, the lengths of empty fields and the 

lengths of the fields occupied by the materials to be retrieved in the planning horizon and their 

available times are all generated in certain ranges reflecting the situation in practice.  The quantity of 

each material is generated with a practical range, so that the space utilization will be at the set level. 

The stopping criterion of a 1% optimality gap is also used for these instances. 

For each problem group, we summarize the average CPU time and optimality gap in Table 3. 

The results show that the Benders approach (BA) we proposed outperforms the CPLEX in terms of 

the runtime. In both methods, the number of materials has a significant influence on the CPU time. 

Also, for the problem groups that have the same number of materials, both methods are more efficient 
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when the levels of space utilization are higher. The Benders-based approach (BA) we proposed is able 

to solve problems of large scales in reasonable computational time, and is more efficient for the 

problems at the same level of space utilization while |R| is larger. 

6  Conclusion 

In this paper, a mixed integer linear programming model is formulated for the integrated storage 

space allocation and ship scheduling problem in bulk cargo terminal, and a solution procedure based 

on Benders decomposition algorithm is applied to solve the problem.  Two types of valid inequalities 

are added to the Benders master problem to restrict its solution space and improve the lower bounds 

efficiently. The combinatorial Benders cut is generated to help break infeasibility and further 

accelerate convergence. Several variable reduction tests are conducted to identify the variables that 

would not appear in the optimal solution of MILP, so as to reduce the problem scale. Also, we 

construct a solution procedure that could get full utilization of the accelerating strategies mentioned 

above.  Experimental results demonstrate that the Benders method we proposed is effective in 

convergence performance and solution time, and could well respond to the challenges of realistic 

operations. 
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Appendix 

Table A.  Index of optimization programs referred in the paper 

Program name First apperance Explanation 

MILP Section 3.2 the problem fomulation in the paper 

MP/ SP/ DSP Section 4.1 Benders master/ sub-/ dual sub- problem formulation 

MP
k
 Section 4.3.2 MP in the k

th
 iteration of the Benders approach 

MP
k
LP Section 4.3.2 relaxed problem of MP

k
 with integer variables relaxed 

(except variables u) 

MILPLP Section 4.3.2 relaxation problem of MILP with integer variables 

relaxed (except variables u) 

A_MILPLP Section 4.3.2 auxiliary problem constructed from MILPLP with 

variables u fixed 

MILP_CB Section 4.3.2 auxiliary problem constructed from A_MILPLP by 

adding an upper bound constraint, so as to construct 

combinatorial Benders cut 

MP
k
LP(IR) Section 4.4 MP

k
LP with the constraints

 ,

1ir

i r IR

z


  for a subset IR

of {(i,r) | iI; rR }, so as to carry out variable reduction 

tests in Proposition 6 
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Table 1 Experimental result of real-world problem instances 

Instance CPLEX B B+C B+C+V BA 

1 

CPU 09:50:35 12:00:00 08:25:06 06:12:53 00:05:24 

Gap(%) 0.82 23.89 0.46 0.59 0.78 

2 

CPU 09:37:64 12:00:00 07:03:44 06:51:42 00:07:56 

Gap(%) 0.65 18.10 0.77 0.60 0.35 

3 

CPU 09:21:08 12:00:00 08:05:31 07:13:29 00:09:53 

Gap(%) 1.00 22.59 0.72 0.59 0.49 

4 

CPU 08:17:55 12:00:00 08:51:46 06:59:56 00:07:15 

Gap(%) 0.96 30.85 0.89 0.64 0.86 

5 

CPU 10:49:06 12:00:00 08:12:36 06:25:17 00:06:31 

Gap(%) 1.00 26.71 0.42 0.77 0.63 

6 

CPU 08:50:19 12:00:00 08:34:41 08:28:46 00:07:18 

Gap(%) 1.00 17.55 0.83 0.34 0.76 

7 

CPU 10:11:30 12:00:00 07:35:29 06:15:27 00:07:03 

Gap(%) 0.92 34.03 0.22 0.71 0.56 

8 

CPU 09:39:15 12:00:00 07:27:50 06:49:33 00:08:21 

Gap(%) 0.89 16.28 0.72 0.75 0.58 

9 

CPU 08:23:46 12:00:00 07:24:07 06:13:01 00:06:44 

Gap(%) 0.94 22.86 0.31 0.62 0.36 

10 

CPU 09:20:38 12:00:00 06:43:37 06:31:38 00:09:15 

Gap(%) 0.75 21.49 0.65 0.32 0.47 
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Table 2 Number of CB cuts and first LBs obtained in different approaches 

Approach B B+C B+C+V BA 

number of CB Cuts - 11.5 3.8 4.6 

First LB 

LB value 5082 9715 10521 13654 

Relative 

difference

- 91.16 % 107 % 168.67 % 
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Table 3 Experimental results of random data 

Group 

Scale CPLEX BA 

|I| |R| |S| CPU Gap CPU Gap 

1 10 5 300 03:06:31 0.77 0:04:26 0.56 

2 10 5 500 03:51:27 0.89 0:05:09 0.52 

3 15 5 300 07:05:54 0.81 0:07:19 0.67 

4 15 10 300 07:31:02 0.75 0:06:53 0.68 

5 15 10 500 08:44:39 0.82 0:07:46 0.40 

6 20 10 500 12:28:06 0.93 0:10:55 0.61 
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ships/trainsunloaders stackers/reclaimers

Production 

facilitiesBelt conveyers

Material yard
Unloading area

Belt conveyers

Fig. 1 The schematic flows of bulk materials 
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Material 1 Material 2 Material 3Field 1 Field  2

Safe distance

Trail of the stacker

Material 5
Material 4

(a) Top view

(b) Side view

Length axis

Field  3

Fig. 2 Top and side views of a stock row 
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MaterialField 1 Field  2

Length axis

Minimum safe distance

Field 1 Field  2

New axis

1

Slot

2 3 4 5 6 7 8

(a) original stock row

(b) new stock row

BS

Fig. 3 Illustration of modeling available fields in a row 
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1 2 3 4 5 6 7 8 9slot

Fig. 4 Allocation structure 
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