
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Sign eigenanalysis and its applications to optimization problems and robustSign eigenanalysis and its applications to optimization problems and robust
statisticsstatistics

PLEASE CITE THE PUBLISHED VERSION

http://www.sciencedirect.com/science/article/pii/S0167947304002324

PUBLISHER

© Elsevier

VERSION

AM (Accepted Manuscript)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Li, Baibing. 2019. “Sign Eigenanalysis and Its Applications to Optimization Problems and Robust Statistics”.
figshare. https://hdl.handle.net/2134/9223.

https://lboro.figshare.com/
http://www.sciencedirect.com/science/article/pii/S0167947304002324


 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



 
Sign eigenanalysis and its applications  

to optimization problems and robust statistics 
 
 

Baibing Li * 
 

School of Mathematics and Statistics 
University of Newcastle 

Newcastle upon Tyne, NE1 7RU, UK 
 

 
 

Abstract 
 
Sign eigenvectors for a real square matrix, A, are defined to be sign vectors for 

which all of its elements either retain the same signs or become to their opposite signs 
after the linear transformation A, where a sign vector is a vector with the elements equal 
to either 1 or −1. Existence of sign eigenvectors for symmetric positive semi-definite 
matrices is investigated. It is shown that the sign eigenanalysis is closely related to 
some certain optimization problems and can be applied to develop robust statistical 
inference procedures in the L1 norm. A numerical example is given to illustrate the 
applications to robust multivariate statistical analysis. 
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1.   Introduction 
 
For an n×n matrix, A, an eigenvector associated with an eigenvalue, λ, is defined to 

be an n-vector, y, satisfying 
 yAy λ= .          
Eigenanalysis is closely related to the optimization of quadratic forms in the L2 norm. 

For instance, suppose that a matrix A is symmetric positive semi-definite (A≥0), then it 
is well known that an eigenvector y associated with the largest eigenvalue is a solution 
to the following optimization problem (Rao, 1973): 

Ayy
y

Tmax ,   subject to   1
2
=y ,     

where 2/1

1

2
2

)(∑
=

=
n

i
iyy   is the L2 norm of a vector [ ]Tnyy ,...,1=y . 

The above optimization problem is widely used in multivariate statistical inference 
such as principal component analysis; see for instance, Rao (1973). 

In this paper, we define a sign eigenvector for a real square matrix, A, to be a sign 
vector for which all of its elements either retain the same signs or become to their 
opposite signs after the linear transformation, A. We investigate existence of sign 
eigenvectors for symmetric positive semi-definite matrices and relate the sign 
eigenanalysis to some certain optimization problems which are useful to develop robust 
statistical inference procedures in the L1 norm. For instance, similar to the above results 
in the L2 norm, we will show that that for a matrix A≥0, a sign eigenvector associated 
with the largest sign eigenvalue is a solution to the following optimization problem: 
 ,  where z is a sign vector with the elements equal to either 1 or −1. Azz

z

Tmax

 
 

2.   Definition and main results 
 

Consider an n×n real matrix, A. Define a space of sign-vectors to be 
 Z={ }ni-zzz i

T
n ,...,1 1,or  1 is    ,] ,...,[   1 =+=zz ,   

and a sign function, S(x), to be 

 .         
⎩
⎨
⎧

<−
≥

=
01
01

)(
x
x

xS

When x is a vector, S(x) is a vector the same size as x containing the signs of the 
elements of x. 
Definition. For an n×n real matrix, A, define a sign eigenvector of A associated with a 
sign eigenvalue λ  to be a sign vector, z ∈Z, satisfying zAz )()( λSS = , where the 
corresponding sign eigenvalue is defined to be . nTT /) Azzz =T /(zAzz=λ

According to this definition, a sign eigenvector of the matrix A is a sign vector for 
which all of its elements either retain the same signs or become to their opposite signs 
after the linear transformation, A. In addition, for a matrix A≥0, a sign eigenvector may 
be simply defined to be a sign vector z ∈Z satisfying )(Azz S=  since its associated 
sign eigenvalue λ  is non-negative and thus 1)( =λS . 
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Example. For a 2×2 matrix , the sign vector z=  is a sign eigenvector 

of A associated with the sign eigenvalue of 3.5 since  and . 

⎥
⎦

⎤
⎢
⎣

⎡
=

12
13

A T1] ,1[

T]3 ,4[=Az )(Azz S=
 

The following theorem shows that, like their counterparts of ordinary eigenvectors in 
the L2 norm, there is a relationship between sign eigenvectors and extrema of quadratic 
forms. 
Theorem 1. For any n×n matrix A≥0, there exists an optimal solution, z*, to following 
optimization problem 
 ,         (1) Azz

Zz

T

∈
max

which is a sign eigenvector of the matrix A corresponding to the largest sign eigenvalue. 
The theorem given below guarantees existence of sign eigenvectors for symmetric 

positive semi-definite matrices. 
Theorem 2. For any n×n matrix A≥0, there exists at least one sign eigenvector of A, z 
∈Z, satisfying . )(Azz S=

Proofs of theorems 1 and 2 will be given in next section. 
The following counter-example shows that if a matrix is not symmetric positive 

semi-definite, then it may not have a sign eigenvector. There is no necessary and 
sufficient condition for the existence of a sign eigenvector for an n×n real matrix. 
Example. For n=2, the set Z consists of four elements,  and . It is easy 

to verify that none of them is a sign eigenvector of matrix , and thus the 

matrix A does not have a sign eigenvector. 

T1] ,1[±

=A

T1]- ,1[±

⎥
⎦

⎤
− 2
1

⎢
⎣

⎡
1
3

 
 
3.   Applications to optimization problems and robust statistics 

 
In this section, we consider some applications of sign eigenvectors to optimization 

problems and robust statistical inference in the L1 norm which are summarized in 
theorems 3 and 4. Proofs of theorems 1 and 2 are then given. At the end of this section 
we discuss the issue of algorithms. 

For an n×n symmetric positive semi-definite matrix, A, denote a square root of A as 
B satisfying A=BBT, where   is an n×m matrix and bi  (i=1,…,n) are m-
vectors.  

T
n ],...,[ 1 bbB =

Consider the following optimization problem: 
 ,   subject to   Bxz

zx

T

, 
max 1

2
=x  and   z∈Z,  (2) 

where x is an m-vector. 
We first consider the case where the matrix B has some zero row-vectors, i.e. =0 

for some j. From the optimization point of view, those zero row-vectors are not of 
interest since they neither contribute to the objective function in problem (2) nor to the 
objective functions in problems (4) and (5) discussed later. Therefore, they may simply 
be removed from the analysis. Those elements of the optimal solution z* to the problem 
(2) or (5), which correspond to the zero row-vectors, may be either 1 or −1 since they 

T
jb
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do not change values of the associated objective function. We thus eliminate the case 
where the matrix B has zero row-vectors in the sequel of this section. 
 
Lemma 1. If  (i=1,…,n), then any optimal solution to the problem (2), (x*,z*), 
satisfies  for i=1,…,n. 

0≠ib
0* ≠xbT

i

Lemma 2. If  (i=1,…,n), then any optimal solution to the problem (2), (x*,z*), 
satisfies 

0≠ib

2
*/** zBzBx TT= ,        (3a) 

and .         (3b) *)(* Bxz S=
The proofs for both lemmas 1 and 2 are given in the Appendix.  
Note that lemma 2 above gives a necessary condition of an optimal solution to (2). 

Substituting (3a) into (3b) we have  
  ,         *)(* zBBz TS=
hence, a necessary condition of an optimal solution (x*,z*) to the problem (2) is that z* 
is a sign eigenvector of A=BBT. 
 

The following theorem relates sign eigenvectors to an optimization problem in the L1 
norm. 
Theorem 3. Suppose that  for i=1,…,n. Then the vector x* is an optimal solution 
to the following problem: 

0≠ib

∑
=

n

i

T
i

1

max xb
x

,   subject to 1
2
=x ,    (4) 

if and only if (x*, z*) is an optimal solution to the problem (2), where . *)(* Bxz S=
Proof. Suppose that (x*, z*) is an optimal solution to the problem (2). Then we have 
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From lemma 2, we obtain ∑
=∈

=
=

n

i

T
i

T

1
1

*max
2

xbBxz
Zz

x
. Hence, x* is an optimal solution to 

(4). 
Next, suppose that x* is an optimal solution to (4) but (x*, z*) is not an optimal 

solution to the problem (2). Denote (x0, z0) as an optimal solution to (2), thus 

. From lemma 2 we have **00 BxzBxz TT > ∑
=

==
n

i

T
i

TT S
1

00000 )]([ xbBxBxBxz . In 

addition, since , we have *)(* BxS=z ∑
=

=
n

i

T
i

T

1

*** xbBxz . This leads to 

∑∑
==

>
n

i

T
i

n

i

T
i

11
0 *xbxb  and contradicts the assumption that x* is an optimal solution to 

(4).  
The theorem 4 given below relates the optimization problem (1) to problem (2). 

Theorem 4. Let  be an n×m matrix, where T
n ],...,[ 1 bbB = 0≠ib  (i=1,…,n) are m-

vectors. Then the vector z* is an optimal solution to the following problem 
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 ,         (5) zBBz
Zz

TT

∈
max

if and only if (x*, z*) is an optimal solution to the problem (2), where 

2
*/** zBzBx TT= . 

Proof. Suppose (x*, z*) is an optimal solution to the problem (2) but z* is not an 
optimal solution to the problem (5). Denote z0 as an optimal solution to (5), and let 

2000 / zBzBx TT= . Then noting that (x*, z*) is an optimal solution to the problem (2) 

we have  
 *.        (6) *00 BxzBxz TT <

Inserting 
2

*/** zBzBx TT=  and 
2000 / zBzBx TT=  into (6) results in 

 which contradicts the assumption that z0 is an optimal 
solution to (5). This completes the proof of sufficiency. The necessity can be proved 
similarly.  

**00 zBBzzBBz TTTT <

 
Next, we consider proofs of theorems 1 and 2. If a square root of the matrix A, 

,  satisfies  for all i=1,…,n, then theorem 1 is immediate from 
theorem 4 and lemma 2. Note that if a matrix A does not have zero columns (nor zero 
rows since A is symmetric), then the condition of 

T
n ],...,[ 1 bbB = 0≠ib

0≠ib
T
jb
 for all i=1,…,n satisfies. On 

the other hand, if there exist some rows of B satisfying =0 then theorem 1 still holds 
if the corresponding elements of an optimal solution to problem (1) are simply taken as 
1. In addition, theorem 2 follows immediately by noting that there always exists an 
optimal solution to the optimization problem (5). 

 
Finally, we consider the issue of algorithms. From theorems 2-4, to solve the 

problem (2) or (4), we can first solve the problem (5) by enumeration and then calculate 
an optimal solution to (2) or (4) through (3a). This algorithm was first suggested by 
Choulakian (2001). Theorems 2-4 demonstrate that the algorithm proposed by 
Choulakian (2001) is correct although Li et al. (2002) showed that the Choulakian’s 
proof itself was questionable.  

In practice, the sizes of real problems may be quite large, thus this enumeration 
algorithm could be very expensive in terms of computational costs since it involves 

 choices. In this case, we may apply the following alternating algorithm which 
was proposed by O’Leary and Peleg (1983) to solve a similar problem.   

)2( nO

Specifically, let A be an n×n symmetric positive semi-definite matrix and let  
be an initial guess of the alternating algorithm. Calculate z1 to be a vector that solves 

. Let z2 be a vector that solves , etc. In general, define  to be a 

vector that solves . 

Zz ∈0

Azz
Zz

T
0max

∈
Azz

Zz

T
1max

∈ kz

Azz
Zz

T
k 1max −∈

It is clear that solving these sub-problems,  (k=1,2,…), is straightforward, 

yielding a solution, . A sign eigenvector z* is obtained after zk converges, 
i.e. . Note that this heuristic algorithm cannot guarantee a convergence to 

Azz
Zz

T
k 1max −∈

)( 1−= kk S Azz

1−= kk zz
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those sign eigenvectors which are associated with the largest sign eigenvalue of A. See 
an example below. 

Example. Consider a 2×2 matrix  and set the initial guess as 

. According to O’Leary and Peleg algorithm, it converges instantly. The 
corresponding sign eigenvalue is . It is easy to verify, however, a 
sign eigenvector associated with the largest sign eigenvalue, 3, is . 

0
21
12

>⎥
⎦

⎤
⎢
⎣

⎡
−

−
=A

1)/( 0000 =zzAzz TT

T]1  ,1[0 =z
=λ

T]1  ,1[ −
 

To some extents, the above algorithm is akin to the power method in the L2 norm 
which is used to calculate an (ordinary) eigenvector. Specifically, starting from an 
initial guess u0, a series of vectors  in the power method is defined to be 

 and 
}{ ku

1−= kk Auv
2

/ kkk vvu = . An eigenvector associated with the largest eigenvalue 
of a matrix A is thus calculated after convergence; see for example, Golub and Van 
Loan (1996), pp406. 

The optimization problem (4) may be applied to multivariate statistical analysis to 
construct robust statistical inference procedures in the L1 norm. For instance, Galpin 
and Hawkins (1987) developed a robust principal component analysis procedure in the 
L1 norm which was based on the optimization problem (4).  
 
 
4.   A Numerical example 
 

A numerical example is given in this section to illustrate sign eigenanalysis and its 
application to robust principal component analysis (PCA) in the L1 norm.  

Galpin and Hawkins (1987) considered the following robust PCA formulation. The 
first loading vector in PCA, x1, is defined to be a solution to the following problem: 

∑
=

n

i

T
i

1

max xb
x

,   subject to 1
2
=x , 

where  is a centred observation matrix. The second loading vector, x2, is 
a solution to the above problem constrained by the condition of orthogonality between 
the loading vectors x1 and x2. The remaining loading vectors, x3, x4,…, are defined 
similarly. 

T
n ],...,[ 1 bbB =

 
Example. Consider a 13×2 data matrix Y=[y1,y2]T shown in Table 1. 
 

Table 1. An artificial data set 
 

y1 0.281 0.284 0.262 0.276 0.308 0.302 0.252 
y2 −0.020 0.074 0.072 0.043 0.056 0.092 0.014 
y1 0.241 0.323 0.311 0.324 0.355 0.290  
y2 0.050 0.096 0.095 0.045 0.085 0.077  

 
It should be noted that the first data point, (0.281, −0.020), is an outlier. In this 

problem the median is used as an estimate of location.  Now let B=[Y−1MT], and 
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A=BBT, where M is a column-vector comprising the median of y1 and y2 and 1 is a 13-
dimensional vector of ones. 

According to Galpin and Hawkins (1987), to derive the major axis, x1, of PCA in the 
L1 norm, we have to solve the problem (4) or, equivalently, to solve the sign 
eigenvector associated with the largest sign eigenvalue of A. Keeping the first element 
of a sign eigenvector being positive, the matrix A has the following two distinct sign 
eigenvectors:  

 z1=[1, 1, 1, 1, −1, −1, 1, 1, −1, −1,  −1, −1, −1]T, 
 z2=[1, 1, 1, 1,   1, −1, 1,  1, −1, −1,   1, −1, −1]T, 

where z1 is a sign eigenvector associated the largest sign eigenvalue, 0.0127. From (3a) 
the corresponding major axis of PCA is 

2111 / zBzBx TT=  =[0.8050, 0.5933]T, which 

is the optimal solution to the problem (4). The first component is therefore Bx1. The 
minor axis, x2=[0.5933, −0.8050]T, is taken as a vector orthogonal to the major axis, x1. 
Figure 1 shows the scatter plot (upper left) and the resultant axes using the PCA in the 
L1 norm (lower left).  For comparison, Figure 1 also displays the axes using the L2 PCA 
without and with the outlier, (0.281, −0.020) (upper and lower right respectively). 
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Figure 1. Comparison of several approaches to principal component analysis  
 

It can be seen from Figure 1 (lower left) that the major axis derived by L1 PCA is 
drawn slightly towards the outlier when compared with the axes obtained by removing 
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the outlier (upper right). In contrast, if the outlier is not removed, the major axis in L2 
PCA, Figure 1 lower right, is drawn significantly towards the outlier, indicating that L2 
PCA has greater sensitivity to outliers.   
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Appendix. Proofs of Lemmas. 
 
Proof of Lemma 1. 
 

If lemma 1 does not hold, then there exists an index, i, say i=1, such that , 
and the corresponding element of the optimal solution z* =[z1*,…,zn*]T, z1*, can be 
either 1 or −1. Let t1=[1,z2*,…,zn*]T and t2=[−1,z2*,…,zn*]T. Then  and  
cannot be zero simultaneously (otherwise, from =0 we have 

, and from =0 we have ∑ ). Without 

loss of generality we suppose that ≠0. Define v=b1 if t v= −b1, 
such that >0. Consider 

0*1 =xbT

12 BbtT
11 BbtT

011 <bT

>0, otherwise 

12 BbtT

1 −= bb

1Bb

011
2

1 >=∑
=

bbbb T
n

j

T
jjz

BvtT
1

11 BbtT

11 BbtT

x

2=
b

n

j

T
jjz

1
T

vx εε += *)( . The objective function evaluated at 
( )(εx ,t1) is: 

 212
11

2

1

)**(
 *

)(
)()( /TT

TTT

J
vvxx
BvtBxt

x
Bxt

ε
ε

ε
ε

ε
+
+

== . 

It is easy to verify that { } 3

2

2

21
2

21 )( *)(*)(/)( −−= εεεε xvBxtxBvt TTddJ . Since 

 and 0***1 >= BxzBxt TT 0*
2
≠x , there exist some small ε >0 such that 

0/)( >εε ddJ . This contradicts the assumption that (x*,z*) is an optimal solution to the 
problem (2).  
 
Proof of Lemma 2. 
 

Equation (3a) is immediate by differentiating the Lagrange function of problem (2), 
, with respect to x, and setting the derivative to zero, where μ  is 

a Lagrange multiplier.  
)1( −−= xxBxz TTL μ

Next, to prove (3b), we note that . From Lemma 1 we have 

, thus, to attain the maximum,  must have the same signs as  
(i=1,…,n), i.e. .  

∑
=

=
n

i

T
ii

T z
1

**** xbBxz

*iz0* ≠xbT
i *xbT

i

*)(* Bxz S=
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