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Abstract 

The architecture of the UK‘s passive power network has taken over one hundred years to 

evolve through a process of demand and technology led development.  In the early years of 

electrical power, distribution systems were islands of distributed generation, often of 

different voltages and frequencies.  Increasing demand for electrical power and the need to 

reduce distribution costs eventually led to the standardisation of frequency and voltages 

and to the connection of the island systems into a large network.  Today‘s power networks 

are characterised by their rigid hierarchical structure and unidirectional power flows. 

The threat of climate change is driving the demand for the use of more renewable energy.  

For electricity production, this is achieved through generation using more wind, biomass, 

tidal and solar energy.  This type of generation is often referred to as ―Distributed 

Generation‖ (DG) because it is not a centralised facility connected to the high voltage 

transmission grid but a distributed source connected to the lower voltage distribution 

network.  The connection of DG to the distribution network significantly alters the power 

flow throughout the network, and costly network reinforcement is often necessary.  The 

advancement in the control of electrical power has largely been facilitated by the 

development of semiconductor power electronic devices and has led to the application of 

―Flexible Alternating Current Transmission Systems (FACTS), which include such devices 

as ―Static Var Compensators‖ (SVC) and Static Compensators (STATCOM), for the 

control of network voltages and power flows. 

Providing a secure power network is a demanding task, but as network complexity is 

expected to grow with the connection of high levels of DG, so the problem of integration, 

not just connection, of each successive generator becomes more protracted.  A fundamental 

change to the network architecture may eventually become necessary, and a new, more 

active network architecture, perhaps based on power cells containing local generation, 

energy storage and loads, has been proposed by some researchers. 

The results of an historic review of the growth of power networks, largely in the UK, forms 

the basis of a case to replace the conventional power transformer with an Active 

Transformer that will provide a more controllable, flexible and robust DG connection and 
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will facilitate greater network management and business opportunities, and new power 

flow control features. 

The Active Transformer design is based on an a.c. link system and an a.c.-a.c. high-

frequency direct resonant converter.  This thesis describes a model of the converter, built in 

MATLAB and Simulink®, and used to explore control of the converters.  The converter 

model was then used to construct a model of the Active Transformer, consisting of  a 

resonant, supply-side converter, a high frequency transformer and a resonant, load-side 

converter.  This was then used to demonstrate control of bi-directional power flow and 

power factor control at the Grid and Distribution Network connections. 

Issues of robustness and sensitivity to parameter change are discussed, both for the 

uncompensated and compensated converters used in the Active Transformer.  The 

application of robust H∞ control scheme proposed and compared to a current PI control 

scheme to prove its efficacy. 
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Untitled 

 

Born of a million yesterdays 

was I, wise man, and you, 

gleanings from time‘s unnamed byways 

humbling, wise man, but true. 

 

And all that‘s left of yesterday 

to me, wise man, and you 

just images, how stored away 

I ask, wise man, you too? 

 

Those bubbles snatched from yesterday 

are mine, wise man, and yours 

until they burst, then who‘s to say 

what kills, wise man, or cures? 

 

True wealth we gleaned from yesterday 

if mine, wise man, or thine, 

illumination‘s brightest ray 

in us, wise man, will shine. 

 

Festus Pragnell (of West Tytherley, 1879 –1966) 
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Chapter 1.  

Introduction 

“The purpose of my research is not to change the world, but to understand it.” 

1.1. Project sponsorship 

he ―Architecture and Control of Large Power Networks with Distributed 

Generation‖ project was sponsored under the EPSRC scheme, Co-operative 

Awards in Science and Engineering (CASE) for New Academics (CNA), grant 

reference CASE/CNA/04/63, and the industrial support was provided by Converteam Ltd., 

Rugby, formerly ALSTOM Power Conversion Limited.  The CNA scheme provides a 

means for new academics to build links with an industrial organisation at an early stage in 

their career through co-supervision of a CASE student.  In the case of this project, the 

collaborators shared a common interest in the: 

i) effects on contemporary power networks of the introduction of large scale 

renewable energy generation 

ii) development, architecture and control of power networks 

iii) application and control of high power electronic systems. 

1.2. Overview 

1.2.1 Power networks 

The architecture of the UK‘s power network has taken over one hundred years to evolve 

through a process of demand and technology led development.  In the early years of 

electrical power, distribution systems were islands of distributed generation, often of 

different voltages and frequencies.  Increasing demand for electrical power and the need to 
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reduce distribution costs eventually led to the standardisation of frequency and voltages 

and to the connection of the island systems into a large network. 

Contemporary power networks are largely passive, with unidirectional power flow, and 

through much of their development have been centrally controlled.  Global warming and 

the need to reduce carbon emissions are driving the power generation industry towards the 

use of more renewable energy and distributed generation and consequently, towards the 

need for a change of network architecture.  Today, distributed generation is defined as an 

electric power source connected directly to the distribution network or to the customer side 

of the network [1]. 

With the increasing application of distributed generation, power networks, which are 

already large-scale, will evolve into even more complex systems.  The transition to an 

intelligent network via an enhanced network architecture and control characterised by bi-

directional power flow and power management, will become more necessary. 

This research project has sought to define a potential means to control a future flexible 

network architecture, such as one based on a matrix of independent, asynchronous, power 

hubs or cells, that will improve operability and controllability of the whole network and 

facilitate the integration of future tranches of distributed generation. 

In the past, the advancement in the control of electrical power has largely been facilitated 

by the development of semiconductor power electronic devices such as thyristors, Gate 

Turn-Off thyristors (GTOs), and Insulated-Gate Bipolar Transistors (IGBTs).  Their ability 

to switch high voltages or currents has led to the design of converters and inverters that 

have been used in the design of Static VAR Compensators (SVCs), HVDC transmission 

systems, Static Compensators (STATCOMS) and other Flexible A.C. Transmission 

System (FACTS) apparatus.  These systems have significantly improved the performance 

of modern power networks.  Therefore, it is not unreasonable to assume that the 

development of intelligent or active networks will require greater control measures and that 

these will be based on power electronic devices and converters.  The difficulty with 

today‘s semiconductor devices is that they are of limited voltage capability and must be 
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connected in large, series strings to achieve the high voltage operation needed for cost 

effective, direct connection to distribution and transmission systems. 

1.3. Scope of research 

1.3.1 Active Transformer 

In the longer term, where a significant proportion of the UK‘s generation may be 

connected to distribution networks, there are important issues of power flow and stability 

of networks for national security of supply [2], and for sound technical reasons this cannot 

be achieved through piecemeal development  [3] as has been demonstrated by the reports 

of dynamic stability problems in NE America in August 2003 [4] and operational 

difficulties in Denmark [5].  These issues highlight the need for greater control of power 

networks. 

An Active Transformer is intended to replace a conventional power transformer, initially in 

a distribution network, in order to provide greater power management opportunities 

through additional robust control features.  The use of fast acting current control will also 

limit network fault currents, thus reducing or postponing the need to upgrade circuit 

breaker capacity as power levels increase. 

The Active Transformer will have fast acting current control that may also be configured to 

limit or interrupt network fault currents.  Designed for 20 kHz operation, the power circuit 

components will be smaller than their equivalent 50 Hz design and will provide a smaller 

overall footprint than the conventional power transformer.  The use of direct a.c. 

conversion will reduce the number power semiconductors required in each converter by 

half compared to an equivalent d.c. link design. 

The Active Transformer is a novel concept and a simplified schematic diagram is shown in 

Figure 1.  It is essentially a high-frequency, a.c. link converter system.  The system 

consists of a grid-side converter, a high frequency transformer and a distribution-side 

converter.  The converters are similar in design, current sourced, 50 Hz 3-phase resonant, 

direct converters.  The grid converter is controlled as a 3-by-2 matrix converter, essentially 
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a 50 – 20 kHz frequency changer.  The distribution-side converter operates as a 20 kHz -3-

phase 50 Hz frequency changing converter.  Input grid current and phase angle, grid-side 

converter output voltage (at 20 kHz) and distribution-side converter output current and 

phase angle are controlled.  When controlling current flow from grid to distribution side, 

the grid converter current control determines which of the 8 possible converter switch 

configurations will produce current in the line inductors that is closest to the demanded 

value over the next half cycle of converter output.  A voltage control loop is used to control 

the mean of the peak converter output voltage.  Having a symmetrical design, the Active 

transformer is able to operate and control current in either direction. 

The proposed application of the Active Transformer is as an interface between the supply 

Grid and a Distribution Network cell as a means of providing improved network 

management and control.  In a future decentralised distributed power network an Active 

Transformer may also be used to control bi-directional power flow between a distribution 

power cell and another power cell, or a large wind farm.  A future network of power cells 

will be characterised by high penetration levels of distributed generation, variable cell 

loads will be satisfied firstly, by the locally connected wind or other renewable energy 

generation, which is will be variable, and secondly, by power drawn from energy storage, 

the transmission grid or an adjacent network via the active transformer to automatically 

achieve a local balance between power supply and demand while maintaining cell voltages 

at supply standards.  At times of excess power generation capacity in the cell, and rather 

than balancing the cell load/generation by generation curtailment, real and/or reactive 

power could be traded and exported via the active transformer.  The Active Transformer 

may also provide a means of controlling and stabilising distribution network voltages and 

limiting, or isolating, fault currents in either direction should the need arise.  An ―islanded 

network‖ control capability may also be achieved although the distribution side converter 

would use a different method of control from the one described in this research.  What ever 

the application, the key to the exploitation of the Active Transformer is its versatility and 

controllability. 

A number of control approaches were investigated during this research and an effective 

control solution is demonstrated.  Robust control techniques, such as H∞ control via loop-
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shaping (which effectively deal with system uncertainty of the load conditions) and multi-

objective performance criteria [6][7], were applied. 
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1.4. Project Scope and Aims 

The research aims were to: 

i) review the architecture of the UK power network and investigate changes that 

may result from the introduction of large amounts of distributed generation to 

make a case for an advanced power flow controller 

ii) demonstrate, using simulation techniques, the key features of the Active 

Transformer that may replace, in a future decentralised network, the 

conventional, high-power 50 Hz transformers that are widely used throughout 

the UK‘s transmission and distribution systems 

iii) apply modern techniques to the control of the Active Transformer to ensure 

robust and stable operation under network operating conditions 

iv) Analyse rigorously of robustness of the current and proposed control schemes. 

The many possible power flow control features of the Active Transformer may be used to 

enhance power system performance.  The operation and control of the Active Transformer 

was investigated through modelling and simulation of the converters and the control 

system in order to verify its robustness and suitability for use in very large and complex 

power systems. 

1.5. Work addressed in this thesis 

1.5.1 General 

The research described in this thesis reviewed the evolution of transmission and 

distribution networks from the late 19th century, and explained that the introduction of 

significant amounts of distributed generation may bring about a future fundamental change 

to power network architecture.  Three options for change currently being researched were 

reviewed.  Their potential application makes a case for the conventional power transformer 

to be replaced by an Active Transformer as part of an evolutionary process towards more 

active networks.  The objective of the proposed change was to provide a more controllable, 
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flexible and robust interface that will facilitate greater network management and business 

opportunities, and new power flow control features. 

The Active Transformer is based on high-frequency converter technology and an a.c. link.  

The research in this thesis takes a proven converter design, enhances its control with the 

use of modern robust techniques and uses it in a model of an Active Transformer.  The 

model was then subjected to testing in a simulated network environment. 

1.5.2 Thesis organisation 

This thesis is laid out as follows: 

i) Chapter 2 describes the background and motivations to the research and some 

of the subsequent developments and initiatives in the United Kingdom (UK). 

ii) Chapter 3 is a brief historical review of power network development and a 

brief look at some of the current developments currently being researched.  

This review makes the case for a more controllable interface between 

transmission and distribution systems or between more localised power cells. 

iii) Chapter 4 is a brief review of literature dealing with the control of converters. 

iv) Chapter 5 focuses on a previously designed PI controller design and records 

additional analysis to highlight issues on its of robustness performance. 

v) Chapter 6 develops a Simulink
®
 model of a direct, high-frequency converter 

based on the work from Nottingham University as the basis for the design of a 

controller that uses modern robust control techniques.  The results of 

simulations are compared with those from Nottingham to verify the clarity of 

the Simulink
®
 model. 

vi) Chapter 7 proposes an alternative controller design based on the H∞ loop-

shaping and a design procedure.  It presents the results of simulations using the 

Nottingham University converter design. 

vii) Chapter 8 contains a description of the Active Transformer model and presents 

the results of simulations including demand and load changes.  A 

demonstration of power flow reversal and phase angle control are also shown. 
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viii) Chapter 9 contains conclusions and discussions on the overall thesis results, 

and suggests possible further work. 

The following information is included in Appendices: 

i) Appendix A The d-q Transform 

ii) Appendix B Power system modelling 

iii) Appendix C MATLAB
®
 m-files 

iv) Appendix D Derivation of converter state-space equations 

v) Appendix E Simulink
®
 converter model diagrams 

vi) Appendix F Copies of published papers 

1.6. List of published papers 

i) W.G. Garlick, A.C. Zolotas, ―Modelling of a direct converter with H∞ voltage 

control,‖ submitted to ICSE 2009 conference, Coventry, 8-10 September 2009. 

ii) W. G. Garlick, A. C. Zolotas, D. Grieve, R. M. Goodall, ―The Architecture and 

Control of Large Power Systems with Distributed Generation,‖ CIGRE 2008 

Session, Paris, 24 – 29 August 2008. 

iii) W. G. Garlick, A. C. Zolotas, D Infield, ―A novel architecture for power 

networks with distributed generation - concept outline,‖ UKACC, Control 

2006, paper 223, September 2006. 

1.7. Thesis contributions 

This thesis addresses a number of the issues concerning the application of power electronic 

converters in a future, active power network and makes contributions in the following 

areas: 

i) the novel idea of replacing a conventional power transformer with an Active 

Transformer 
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ii) design, development and modelling of an H∞ controller as an alternative to a 

classical PI controller used in a resonant converter 

iii) a rigorous analysis of robustness issues and the use of uncertainty modelling to 

identify controller design limitations 

iv) development of an Active Transformer model and simulations to demonstrate 

forward and reverse current flow and independent control of real and reactive 

power flows. 

The work reported in [45] is the design and laboratory demonstration of a direct, current-

sourced resonant converter that uses classical PI voltage control.  However, research 

described in this thesis identifies stability problems with the converter at light loads and 

develops an alternative H∞ controller to address stability at light loads.  The revised 

converter/controller design is used in the design of an Active transformer that was intended 

to replace a conventional network power transformer.  Modelling and simulations 

techniques are then employed to demonstrate its operation. 
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Chapter 2.  

Background to research 

“But, as I have said, things have changed, and they have not changed yet as 

much as they are going to change in the future.  The question that we have to 

deal with must be considered in the light of what electricity will be ten, fifteen, 

or twenty years hence.”
1
 

 

2.1. Motivation 

he European Council‘s (EC) Decision 2002/358/EC of 25 April 2002 [8] ratified 

the Kyoto Protocol to the United Nations Framework Convention on Climate 

Change and agreed to an overall 8% reduction of greenhouse gas emissions 

compared to 1990 levels by the year 2012.  A target was also fixed for Member States of 

the European Union and that for the United Kingdom (UK) was 12.5%. 

The Directive of the European Parliament and Council on the Promotion of Electricity 

Production from Renewable Energy Sources in the Internal Electricity Market [9] 

established targets for the increase in the generation of electricity from renewable energy 

sources (RES).  The Directive stated that ―the increased use of electricity produced from 

renewable energy sources constitutes an important part of the package of measures needed 

to comply with the Kyoto Protocol to the United Nations Framework Convention on 

Climate Change ...‖.  The Directive required electricity generated from RES in the EU to 

rise from 14% in 1997 to 22% in 2010. 

                                                 

 

1 Mr S. Z. De Ferranti in his opening speech at an Extraordinary meeting of the I.E.E. held in association with the American Institute 

of Electrical Engineers held on 16 August 1900 at the US National pavilion in the Paris Exhibition. 
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The European commission defined the need for R&D for Distributed Generation [10]: 

“To pave the way to a sustainable energy future based on a large share of DG, 

there is a clear need to prepare the European electricity system for the large-

scale integration of both renewable and other distributed energy sources.  To 

this end research on the key technologies will allow a transition towards 

interconnected grids using common European planning and operational 

systems. 

The research will assist in removing barriers relating to finance, policies, 

technologies and technology standards and RTD actions aimed at the 

adaptation of technical grid infrastructures, the establishment of necessary 

institutions and the harmonisation of related regulatory frameworks and 

market conditions need to be undertaken. 

The challenges that need to be addressed to achieve a broad and sustainable 

future European energy service network can be summarised as: power 

reliability and quality; power system technologies; enabling technologies and 

the commercial and regulatory challenge.” 

In the 2003 Energy White Paper [11], ‗Our energy future – creating a low carbon 

economy‘, the UK government sets out it‘s policy on renewable energy and confirmed the 

EU target that, by 2010, 10 per cent of electricity should come from renewable sources.  

The paper also included the aspiration that, by 2020, 20% of the UK‘s electricity supply 

should be met by renewable energy. 

Increased usage of renewable energy and technologies will contribute to greater diversity 

in energy supply.  The increased importance attached to this form of energy production 

was highlighted by The Prime Minister, Tony Blair.  In the White Paper, he stated: 

“However, our energy system faces new challenges. Energy can no longer be 

thought of as a short-term domestic issue. Climate change - largely caused by 

burning fossil fuels - threatens major consequences in the UK and worldwide, 
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most seriously for the poorest countries who are least able to cope. Our 

energy supplies will increasingly depend on imported gas and oil from Europe 

and beyond. At the same time, we need competitive markets to keep down costs 

and keep energy affordable for our businesses, industries, and households. 

This white paper addresses those challenges. It gives a new direction for 

energy policy.  We need urgent global action to tackle climate change.  We are 

showing leadership by putting the UK on a path to a 60% reduction in its 

carbon dioxide emissions by 2050. And, because this country cannot solve this 

problem alone, we will work internationally to secure the major cuts in 

emissions that will be needed worldwide.” 

 

Figure 2  Kentish Flats wind farm under construction 

2.2. United Kingdom developments and initiatives 

Figure 2 shows an example of the UK Department of Trade and Industry (DTI)‘s and The 

Crown Estate‘s first round of wind farm development at the Kentish Flats in the Thames 
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estuary where 30, 3 MW wind turbines were under construction and are now producing 

electrical power.  As part of the UK‘s programme to further the development of renewable 

energy sources, in December 2003, the Department of Trade and Industry (DTI) and The 

Crown Estate announced the second round of 12 successful wind farm developers, who 

have been offered 15 site leases, with a potential generation capacity ranging from 64 to 

1200 MW, the largest being further than 12 miles offshore.  Existing power distribution 

networks were not designed to accept extensive distributed generation and added to their 

size and distance offshore, the proposed increase in generation presents new technical 

challenges for their connection to the power network.  Often the closest connection will be 

at the end of a long and weak distribution cable and therefore fault levels and stability are 

significant reinforcement issues. 

To focus attention on the issues surrounding the connection of distributed generation the 

DTI and the Office of Gas and Electricity Markets (Ofgem) created, and jointly chaired, 

the Distributed Generation Co-ordination Group (DGCG).  The Group was concerned with 

a wide range of issues related to the connection and operation of distributed electricity 

generation in Great Britain, [2] and [12].  The issues included the consideration and 

making of recommendations as to any research and development action that may be 

helpful to achieving Government targets for the generation of electricity from renewable 

energy sources. 

A key objective of DGCG Workstream 3 (WS3), was to establish how to facilitate the 

connection to the distribution networks of distributed generation, without driving 

reinforcement costs high and without impairing the quality of supply to load customers.  

The problems and the solutions that the group proposed were categorised in terms of 

managing fault levels, voltage levels and network power flows.  Identification of 

STATCOMs and Active Network Voltage Control solutions were identified as long term 

solutions requiring significant additional research and development.   

The integration of large wind farms into power networks will hold new challenges for 

Transmission and Distribution System Operators, (TSOs and DSOs).  In the UK the 

responsibility for balancing the supply and demand of electrical power currently resides 
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with the TSO.  With low levels of wind power penetration, a number of researchers have 

suggested that wind generation behaves more like negative load than generation and 

perhaps it should be treated accordingly in analysis.  Power system engineers are used to 

dealing with an aggregate load that has a high degree of randomness and uncertainty so 

perhaps they may start to think about accepting the uncertainty of wind generation and 

continue to balance the net load [13]. 

Distribution systems generally have few or no control mechanisms, only protection 

mechanisms.  So, with large amounts of distributed generation comes the need for more 

certainty in the control, meeting of statutory requirements for voltage limits and the 

despatch of distributed generation.  Only when distributed generation can be ―dispatched‖ 

will their benefits be fully realised. 

In 2004, as part of DGCG Workstream 5 (WS5) Long-term network concepts and options, 

the DGCG asked the I.E.E. to investigate Technical Architecture options.  The results of 

the I.E.E.‘s investigation were presented in a report [14].  This report summarised the 

current status in the UK as: 

―It has become abundantly clear that unless a common framework for future 

network design is adopted, the chance of being able to integrate in a cost 

efficient, safe and reliable way, many of the enabling technologies to allow 

future flexibility could be severely limited and, at worst, be excluded from the 

UK. This will not only damage our competitiveness as a country but will 

reduce our ability to take advantage of innovative solutions in the future.” 

The report presented a vision that the current technical architecture would change from a 

centralised plant model to an ―active network model‖.  The term ―active network‖ is taken 

to mean an enlarged distribution network containing integrated monitoring, control and 

communication systems.  A number of projects were identified including: automation for 

active networks and future network scenarios, tools and methodologies. 

This research project develops a novel active network solution that addresses directly the 

problems identified by DGCG Workstream outcomes. 
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2.3. Comparisons with a conventional power 

transformer 

Conventional power transformers can exceed 1000MVA and weigh 100s of tonnes.  They 

are used to transfer the incoming high voltage to the next voltage level, for example, an 

incoming high voltage of 400 kV would be transformed down to 220 kV.  They are 

connected to the grids via high voltage bushings and cables.  Power transformers are 

designed for operation at relatively low frequencies and therefore require a large soft iron 

core for high efficiency.  The highest-voltage transformers are contained in large, 

insulating oil filled, steel tanks and have extensive monitoring and cooling systems.  As a 

result of their construction, materials and the need for high-voltage insulation and isolation, 

power transformers are very large and heavy. 

HV and LV windings are galvanically isolated.  For high voltage windings at voltages 

greater 145 kV, paper insulated layer windings of transposed copper conductors are 

preferred.  The low and high voltage windings are cylindrically wound to form a compact 

integrated system.  The advantages of this type of construction are: high short circuit 

strength, compact dimensions, few conductor joints.  The cylindrical windings are arranged 

concentrically and separated by axial oil ducts to improve cooling effectiveness. 

In order to alter the voltage ratio to meet the requirements of the power system, the 

transformer may be fitted with a tapped winding.  The voltage ratio can therefore be 

changed either by a no-load tap changer (NLTC) after switching off the transformer, or 

under load with an on-load tap changer (OLTC).  Motor drives are used to operate the 

OLTC switches, which may be controlled locally or remotely at a control centre.  No-load 

tap changers are normally set manually. 

The type of cooling system most frequently used is natural cooling (ONAN).  The heat loss 

is absorbed by the transformer oil and given off to the surrounding air via radiators.  With 

ONAF cooling the radiators are additionally cooled by fans.  The cooling system may also 

consist of separate radiator banks, or water coolers. 
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Types of cooling: 

i) natural air cooling with radiators (ONAN) 

ii) radiators additionally cooled by fans (ONAF) 

iii) cooling by separate radiator banks 

iv) water instead of air as cooling medium. 

At this early stage of development, a practical Active Transformer has not be designed and 

therefore its physical characteristics are not known and can not be directly compared to 

those of a contemporary power transformer.  However, some characteristics may be 

compared in a general way.  Noting that, ideally, transformers are designed for the smallest 

size, highest efficiency and lowest cost, materials that produce low size designs invariably 

produce low efficiency and high cost designs.  Whereas, a design with high efficiency is 

usually large and has a high cost. 

The windings are likely to be cylindrical or toroidal but made from a low-loss high 

frequency conductor, such as Litz wire.  Some design compromises will be necessary for 

operation at 20 kHz, but a smaller, less dense core material, such as amorphous iron or 

ferrite that is efficient at these frequencies will be a key design requirement.  The core 

configuration may well be similar to conventional 50 Hz transformer designs to minimise 

stray field loss although a toroidal design, perhaps with an air core would eliminate 

saturation effects and reduce the transformer size.  More novel solutions, such as planar or 

superconducting transformers, may also be feasible. 

Power frequency transformers suffer a degradation or breakdown of their insulation 

systems when exposed to high frequency transient events such as lightning strikes or 

converter switching transients.  The effects of high frequency operation will reduce the 

breakdown voltage of transformer mineral oil, for a gap of 4 mm, from 80 kV to 30 kV.  

Therefore, the insulation system of the Active Transformer will be designed to withstand 

the high operating frequency continuously with the use of improved dielectrics.  The type 

of insulation used will be a balance between the thermal and electrical insulation designs.  

Encapsulating the windings in silicone rubber may be one solution that meets the electrical 

requirements but the cooling system design will be difficult using the conventional 
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methods above.  Because of the likely difficulties in balancing cooling and insulation, a 

superconducting design has the advantage of direct cooling using liquid nitrogen that has 

good high frequency dielectric properties. 

The overall effect of using a high frequency design, see Table 1, should lead to a smaller, 

lighter transformer that may enhance application options, but as with all power electronic 

applications, the cost will be a critical factor. 

Table 1 Comparison of conventional and high-frequency transformers 

Conventional 50 Hz power transformer High frequency power transformer 

Advantages Disadvantages Advantages Disadvantages 

Simple construction 
Very large and heavy 

transportation difficult 

Small and light weight 

transportation easier 
Complex construction 

Established and proven 

design 
Voltage transformation 

No voltage 

transformation 
Unproven design 

Basic materials – copper 

& iron 
Insulation – paper & oil 

Potentially solid 

insulation 

High frequency 

conductors  

High efficiency Saturation effects 
No saturation effects if 

air-cored  
Lower efficiency 

Lower manufacturing  

cost 
On-load tap changing 

Fixed windings possibly 

cables 
Higher cost likely 

 

2.4. Application scenario 

An example of a future distribution network application of the Active Transformer is 

shown in Figure 3.  The key difference between the network shown and a contemporary 

distribution network is where and how generation and load are balanced.  In a 

contemporary network, balancing is undertaken against an aggregated load at the large 

central generators.  Future networks will be de-centralised and included high levels of 

distributed, renewable energy, generation, for example > 40% of the load, energy storage 

as well as convention loads.  The balancing of generation and load may therefore be best 

undertaken locally to avoid excessive voltage variations using the control of power from 

local generators and energy storage.  The presence of energy storage will facilitate the 

management and timing of power export as well as network support functions.  The Active 

transformer provides the means by which a decentralised network may be managed. 
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In a conventional network, with high levels of distributed generation, excess generation in 

a network will cause a local variation in voltage.  If the excess generation is sufficiently 

large to exceed the local load, the local voltage will increase to balance generation and load 

power by reverse power flow through the grid transformers.  Current monitoring and 

protection systems, and indeed, the transformer tap changers, may well be defeated in this 

situation leading to costly network and equipment failure. 

In a conventional substation of two in-feed transformers, the network protection and 

monitoring is usually designed for power flow in one direction only and the network would 

not be fully protected against continuous reverse powers. In the application scenario 

shown, the Active Transformer is connected in parallel with a conventional power 

transformer and is able to control the flow and direction of power flow through itself and 

hence, through the fixed transformer.  Thus, in the case where the network load exceeds 

the local generation the network controller balances the power flow through the Active 

Transformer and the conventional transformer.  When local generation exceeds the local 

load the power flow, the network management may choose to store or export power, or a 

combination of both in any ratio.  In choosing to export power the flow through the Active 

Transformer would be reversed and adjusted to maintain the load-side voltage and power 

balanced.  In each of these modes of operation, the impedance presented to the grid and 

distribution networks may be adjusted, thereby controlling active and reactive power 

independently, supporting the grid and the network in much the same manner as 

STATCOM. 
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Chapter 3.  

Network Architecture 

“What I am seeing today is the dream of my life realised.  I don’t know what electricity is, 

and cannot define it – I have spent my life on it – I do not know the limits of electricity but 

it will go far beyond anything we conceive today.”
2
 

3.1. Historical Review, 1880 - 1948 

here are few comprehensive studies of the development of the British Electrical 

Network but ―Electricity before Nationalisation: A study of the Development of 

the Electricity Supply Industry in Britain to 1948‖ [15] by Leslie Hannah is 

essential reading.  The study was commissioned by the Electricity Council of Great 

Britain, which gave the author free access to a considerable collection of documentation.  

Hannah‘s study does not focus on a technical history, but more on the central policy-

making relevant to the development of the national network.  However, the work does 

describe the changing nature of electricity supply network, from one with numerous 

inefficient stand-alone systems with no standards to larger, more integrated networks 

where control was divided between private companies and municipal authorities by 

legislation.  Hannah thus gives a good overview of the network development and the 

processes of change that are important in understanding the network that we have today 

and how it may change in the future.  What became clear very quickly was that the change 

process was led by consumer demand for electricity; technical innovation and development 

often lagged behind the demand for more power.  A change process that is not unfamiliar 

today. 

                                                 

 

2 Lord Kelvin – from his speech on the opening of Neptune Bank Power Station on Tyneside in 1901. 
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The Institution of Electrical Engineers (I.E.E.) was founded in 1871 and incorporated in 

1883.  The Journals of the I.E.E. provide a rich source of history of the UK‘s electrical 

network.  Not only do they provide insights into technical developments but also record, 

sometimes at great length, transcripts of presentations made to I.E.E. meetings and 

transcripts of subsequent discussions.  For example, Volume XIX No. 88 1890, contains 

the text of a paper, ―The treatment, regulation, and control of electricity supply by the 

Legislature and the Board of Trade [16]‖ read by Major P. Cardew.  Cardew compared the 

requirements of the first legislative action, The Electricity Act 1882, and the Amending 

Act 1888.  Although the author advised that ―the scientific interest of the paper is very 

small‖, it did highlight safety and modes of supply issues, e.g. parallel and series systems 

and the use of overhead wires, which were significant issues in the development of the 

early distribution systems.  Legislation also laid down the first standards of supply 

declaring that: 

“pressure at the consumer’s terminals, which is not to vary more than 4 percent each way 

from the mean or a total variation of 8 percent, and the variation of which may be tested 

for the consumer on his application by the electrical inspector”. 

This requirement may be compared to today‘s standard of ±6%.  Many of the major 

technical problems of the day were discussed at I.E.E. meetings.  For example, an 

extraordinary meeting of the I.E.E. was held in association with the American Institute of 

Electrical Engineers on 16 August 1900 in the US National Pavilion at the Paris Exhibition 

[17].  This was a grand setting for a discussion on the relative advantages of alternating 

and continuous current for a general supply of electricity.  The meeting underlined the fact 

that the technology of the electrical supply apparatus was international, but that the supply 

systems were designed to meet national and even local requirements.  The meeting also 

focused of the interference effects of electricity, electrolysis, and the damage caused to 

traction and telephone cables.  However, during the meeting Sir William Preece raised the 

topic of standardisation of frequency and gave examples in the UK of 50 Hz, 67 Hz, and in 

the City of London, 97-100 Hz, but, regrettably, little debate was recorded. 
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The invention of the incandescent lamp by Joseph Swan in 1878 initiated a luxury market 

in electrical lighting powered by generators installed in individual premises.  On 18 

December 1878 Swan demonstrated his incandescent electric light bulb to an audience at 

the Newcastle Chemical Society.  Unfortunately, it burned out after only a few minutes.  

On 19 January 1879, the incandescent electric light bulb once again successfully 

demonstrated during a lecture to an audience at the Athenaeum in Sunderland.  His 

invention quickly led to a demand for lighting to be supplied from public supply mains in 

order to minimise the cost of installing generators on individual properties.  Electrical 

power networks began their development to meet a growing commercial need for electrical 

power in the later quarter of the 1800s.  The demand was small by today‘s standard, 1-2 

GWh [18] and in competition with the gas supply industry.  The network architecture was 

simple; power flowed from a generator to a distributed load.  The early years from 1881 to 

1920 are characterised by small-scale, local generation and a sense of pioneering as the 

boundaries of scientific and technical knowledge were being expanded. 

The first public electricity supply system was introduced in 1881 at Godalming.  It was 

used for street lighting and used water-wheel hydropower from the river Wey [19].  The 

Electric Lighting Act 1882 enabled the Government to grant licences to municipalities, 

companies or persons to install electricity supply systems and, importantly to dig up streets 

in order to bury cables.  Previously, the cables for some distribution systems had been laid 

in gutters!  It also empowered local authorities to buy any supply company‘s system at 

―written-down‖ values after 21 years.  This was a sure way to dampen investment.  During 

the next few years proposed developments using overhead cables were often blocked by 

municipalities in order to protect their own gas supply industry.  Fortunately however, the 

barriers to development were reduced by the Electric Lighting Act 1888 that allowed the 

Board of Trade to overrule objections and grant licenses to independent electricity supply 

companies and extend take-over periods from 21 to 42 years. 

By the late 1880s most of the electricity supply development had led to d.c. systems with a 

wide range of voltages and only a few a.c. systems with frequencies varying from 25 to 

100 Hz.  The challenge then was, not as it is now, to seek economies of scale by using 

larger generators and creating larger networks.  Sebastion de Ferranti‘s plan for a large 
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electricity supply system for London was ambitious.  It used 10 kV transmission at 83.5 Hz 

over a distance of 11 km to central London loads.  In 1889, the first generating station had 

4 small generators and two new 2 MW 10 kV generators.  Unfortunately, the 10 kV cables 

proved to be unreliable, which delayed the project and allowed other companies to meet 

the demand.  25 Hz supplies became the standard for industrial motors and for conversion 

to d.c. but, to avoid problems of flicker, lighting supplies were of higher frequencies, often 

100 Hz, which made them unsuitable for higher power industrial applications.  In 1899 

Charles Mertz, aided by William McLellan and R.P. Sloan, designed the Neptune Bank 

power station and adopted the 3-phase distribution system established by Westinghouse in 

the USA, to facilitate the use of higher voltages for industrial motors and lower voltages 

for domestic lighting.  Metz compromised on the supply frequency and chose 40 Hz and 

6.6 kV, meeting both power and lighting demands, and this became the standard frequency 

in the North East coast area.  With the addition of further power stations of a similar design 

and a rapidly expanding customer base, the north east of the UK pioneered a unique 

integrated regional power network and soon began to show the benefits of large-scale 

interconnected operation [15]. 

The Electricity Lighting Act 1909 authorised two or more municipalities to set up joint 

boards to create larger systems.  Progress of interconnecting local supply schemes was 

slow, with the exception of the Newcastle Electricity Supply Company who by the 

technical ingenuity and imagination of Merz and McLellan, expanded their network from 

16 km
2
 to 3600 km

2
 by 1914 and in so doing created the largest interconnected power 

system in Europe.  Changes in the rest of the UK followed more slowly with some linking 

of small-scale systems, often along non-standard lines, to achieve some of the economies 

offered by Merz and McLellan networks.  But it wasn‘t until the onset of war in 1914 that 

the efficacy of the act really became clear: inefficient small generating plants were not 

affordable and the lead set by Merz and McLellan had indeed been the right one.  With 

interconnection came the opportunity for greater operational control of power from 

multiple generators, which improved availability, but made the protection and control 

requirements more complex.  Thus the interconnection of power systems produced 
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vertically integrated networks and unidirectional power flow.  The passive network was 

born. 

By 1920 the transmission of electrical power by overhead line was rare except in parts of 

the North East of the UK as a result of difficulties in obtaining wayleaves and objections 

based on aesthetic and environmental grounds.  Overhead lines were substantially cheaper 

to install than underground cables and their use often meant the difference between a 

successful and an unsuccessful network.  Following the Electricity Act 1919, an increasing 

number of high voltage transmission lines were approved at voltages ranging from 6.6 kV 

to 66 kV.  The question of standard voltages and frequency across the whole country was 

again raised in an I.E.E. paper, ―Electrical Standardisation, 1926‖ [20], in a year when the 

British Engineering Standards Association (B.E.S.A.) issued many British Electrical 

Standards for electrical equipment and apparatus. 

A major advance in the integration of power systems came with the Electricity (Supply) 

Act 1926 that established the Central Electricity Board (CEB) with a duty to: 

i) concentrate generation in ―selected‖ stations 

ii) interconnect existing regional systems into a national ―Grid‖ by building a high 

voltage transmission network 

iii) standardise frequency throughout the country 

iv) supply local distributors from the selected stations. 

This was the birth of today‘s network architecture.  The CEB started work in 1927 and the 

132 kV 50 Hz Grid, Figure 4, was completed in 1934 enabling full commercial operation 

in January 1935 with the CEB directing the operation of 140 generating stations.  The 

network became known as the ―National Grid‖ because of its grid-iron type structure 

running North-South and East-West and connecting nine areas.  The grid-like structure or 

architecture was not initially designed as a long distance transmission system but as an 

economic means of interconnection of the different regions.  The capacity of the inter-

regional tie-lines was only 50 MW and it was the main rings of the grid in industrial areas 

that made a significant contribution to the economy of scale.  In effect, the National Grid at 
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this time was a network of inter-regional interconnections with some ties being able to 

carry limited power between regions to support maintenance and fault outages.   
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Figure 4  The National Grid in 1933
3
  

                                                 

 

3 L. Hannah, "Electricity before Nationalisation", published by The Macmillan Press Ltd., 1979, page 120. 
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In 1936 the whole of the grid system was operated experimentally as one machine, the 

largest number of generating stations ever run in parallel.  Following this, the northern and 

southern regions of the UK were regularly run as two systems.  In 1938 a National Grid 

Control Centre was established and subsequently, the whole system was run as a 

synchronised network for long periods of time. 

3.2. Contemporary Networks, 1948 – today 

“The North American interconnected power system is the largest and most 

complex machine ever devised by man
4
. 

3.2.1 Overview 

At the end of the Second World War engineers had the task of rebuilding much of the 

European power networks that had been ravaged by war.  On 1 April 1948 the Electricity 

Act 1947 brought all former company and municipal electricity suppliers into full public 

ownership.  The British Electricity Authority (BEA) was formed and was then responsible 

for 14 generating divisions, and the transmission and the sale of electricity to 14 regional 

boards.  Contemporary power networks have a well-established and recognisable design 

that results from their history under this centralised industry in which a central body, in the 

UK - the Electricity Council, provided the technical focus and architectural design [18]. 

In the 1950s increasing demand for power led to the construction of a new high voltage 

―supergrid‖ operating at 275 kV.  The Electricity Act 1957 formed the Central Electricity 

Generating Board (CEGB), which was given the responsibility for generation, transmission 

and wholesale selling of electricity.  Twelve area boards were created and responsible for 

distribution retailing.  These changes moved the network towards a more decentralised 

structure reversing the direction set under the 1947 Act.  With the introduction of nuclear 

                                                 

 

4 Charles Steinmetz, paraphrased by Prabha Kundur in ―Power System Stability and Control.‖ 
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power, in the early 1960s the ―Supergrid‖ was upgraded to 400 kV and our current network 

is largely based on those developments. 

During this period the growing complexity of the network and the use of system diagrams 

and centralised operational control boards, to visualise its structure and connectivity, has 

perhaps added to the idea of power network architecture.  The development of power 

networks has been largely incremental and conservative following the traditional practices 

and standards developed by engineers, some who have long since retired.  In the United 

Kingdom a common set of standards and guidance documents were developed to ease 

integration and network expansion.  These standards now form part of the transmission and 

distribution Grid Codes [21] [22].  As networks matured, and deregulation introduced, 

these ―codes‖ have replaced the original ―Network Architects‖ such that there is no longer 

a recognisable person or agency that can claim design authority for the network, 

transmission and distribution, as a whole.  The regulatory framework and market forces 

effectively decide the extent of network design changes. 

Although electrical power networks have grown in size and structure, they all have similar 

characteristics [23], which in effect describe their architecture: 

i) they are built around three-phase systems operating at constant voltages 

ii) primary sources of energy are converted to electrical energy by synchronous 

machines 

iii) power is transmitted to consumers over considerable distances via complex 

networks of subsystems and cables. 

In addition, in many networks: 

iv) generation, transmission, and distribution are vertically integrated and centrally 

controlled. 

The difference between distribution and transmission networks is usually based on a legal 

definition as part of the electricity market regulation.  Anything that is not defined as a 

transmission network in the legislation can be regarded as a distribution network. 
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A ―transmission‖ network is the backbone of the system.  It connects all the major 

generating stations and loads, and operates at voltages usually in excess of 230 kV, 

although there are some indications that the connections to some of the larger offshore 

wind farms will be designated as ―transmission‖ connections at 132 kV.  ―Distribution‖ 

networks transfer power to the loads at appropriate voltage levels from the transmission 

network via a series of voltage changing substations. 

3.2.2 Distributed Generation 

In the literature there are many types and definitions of generation [24] that are not 

centralised e.g. embedded generation, distributed or dispersed generation.  This thesis will 

follow the general definition proposed in [1]: 

“Distributed generation is an electric power source connected directly to the 

distribution network or on the customer side of the meter.” 

It should be noted [1] defines the rating, source, area of power delivery and technology of 

distributed generation as ―not relevant‖, as these will depend upon the local distribution 

network conditions. 

From the previous sections it is clear that contemporary distribution networks are designed 

and operated to accept bulk power from the transmission system and to distribute to 

consumers, i.e. unidirectional power flow for the connection of loads.  Unlike the largest 

power stations, which are connected to high-voltage electricity transmission systems, 

distributed generation is often connected to regional distribution networks at lower 

voltages.  Distribution networks were not designed to include power generation but, with 

the introduction of distributed generation, the direction of power flow in the network will 

change because generated power is largely independent of the load demand and indeed, 

may exceed local load requirements.  The direction of power flows, particularly under fault 

and light loading conditions, is an important consideration for the design of protection 

schemes [25] [26].  Short circuit current profiles on distribution feeders will differ from 

those on more conventional networks and will certainly have an impact on protection co-

ordination and circuit breaker interruption requirements and may prove difficult to evaluate 
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reliably.  Because of differing local network conditions and load requirements, the bespoke 

connection of DG has led to networks with different design and operating restrictions and 

to the abundance of one-off constraint management and DG connection schemes. 

Distributed generators are mostly, though not exclusively, those generating power from 

environmentally friendly renewable energy sources, such as on-shore/off-shore wind, tidal 

and biomass energy, or from combined heat and power (CHP) plants.  It is anticipated that 

electrical power generated from renewable energy will, over the next twenty years, become 

a significant part of the total generating capacity of the European Union (EU).  For 

example, the installed capacity of wind energy in Europe, between 1995 and 2004, 

increased from 2.5 GW to 34 GW [27].  In the UK the amount of distributed generation is 

relatively small and from an operational point of view it has been ―connected to‖ rather 

than ―integrated with‖ the grid on the basis that once the connection has been designed it 

will be fit for purpose.  In some quarters this is called a ―fit and forget‖ strategy [28] .  A 

DG connection strategy, as opposed to an integration strategy, reinforces the essentially 

passive nature of the power network, which means that DG is often regarded as a negative 

load precluded from contributing to network ancillary functions that are traditionally 

assigned to the larger generators. 

The connection of large wind farms, particularly those proposed for large offshore sites, 

into existing power networks presents new management and control challenges for 

network engineers.  In the past, network expansion has not been without its problems.  The 

control and stability of power flow and voltage were issues of electrical power distribution 

that grew out of the developing network of interconnected distribution systems in 1920 

[29] and in 1988 [30].  Thus it is not surprising to find that there are similar concerns today 

as networks continue to grow and develop to meet an increasing demand for more 

electrical power in a deregulated environment. 

These concerns are forcing Distribution Network Operators to consider a more active role 

for distributed generation in the supply of ancillary services such as voltage control, 

reactive power support, post-fault network restoration, black-start facilities frequency 

control and support [31] [32].  The need for a fault ride-through capability for wind 
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generation is particularly relevant to an increased contribution to ancillary services.  Fault 

ride-through requirements differ throughout the world but in the UK the requirement is 

quite significant; the Grid Code requires ride-through down to 0% of rated voltage for 140 

ms compared to Spain where the requirement is 20% and 500 ms [24].  When a fault on the 

network occurs, most network operators disconnect distributed generation to maintain safe 

conditions for repair activities, to simplify the network for ease of restoration and to 

facilitate auto-reclosing circuit breakers.  There is an ongoing debate about fault ride-

through requirements but what appears to be accepted is that there is a need for distributed 

generation to stay connected to the network and contribute to post-fault recovery 

conditions. 

The current approach [33] is to examine each proposed connection and assess its 

compliance with the Grid and Distribution Codes.  Load flow studies are undertaken in 

support of the connection using critical scenarios representing conditions of 

minimum/maximum load and maximum embedded generation output, which may then 

determine the need for any special network support or control measures.  These measures 

are generally costly and not undertaken lightly. 

In the USA, the Public Service Company of New Mexico successfully integrated a 204 

MW wind farm with the transmission grid.  The connection was to a ―certified control 

area‖ and achieved 10.5% and 18.2% of the company‘s on-peak and off-peak control area 

load respectively.  At the time this was the largest penetration of wind energy in the USA.  

However, due to the small size of the control area, the company had experienced difficulty 

in meeting standards for further DG connections and had a queue of connection requests 

for a further 1 GW of wind energy generation. 

Control technologies, such as HVDC and Static Compensators (STATCOMs), are 

sometimes specified as network support measures to assist with DG connection.  These are 

based on power electronic devices and may prove to be the only feasible and economic 

way for DG connections to comply with current Codes in the near term.  Development of 

these control technologies for distribution network applications is currently being 

undertaken in industry where the equipment is manufactured.  HVDC can offer some 
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significant benefits not normally available to network operators [34].  They allow power 

flow control and frequency decoupling and considerably increase the potential for meeting 

the Grid Code requirements.  Further, the reduced operational power losses and cabling 

requirements for longer connections provide some cost advantage over an a.c. connection.  

Recently, small wind farms have been successfully connected using ―HVDC Light‖; e.g. 

8MW scheme at Tjaereborg, Denmark, this scheme uses voltage source converters (VSC) 

with IGBT devices. 

3.2.3 Wind turbine generators 

Wind turbines and wind farms continue to increase in size and electrical capacity with no 

indication of this trend coming to an end. The size of wind farms grows as offshore and 

large onshore sites are developed.  In response to the growing capacity of wind generation, 

transmission system operators are proposing to demand that wind turbines contribute to the 

operation of the power system. 

Conventional fossil fuel, nuclear and large hydro generating stations all use synchronous 

generators, while DG use a variety of generator technologies, such as squirrel cage 

induction generators or wound rotor asynchronous generators either fully or partially 

coupled to the grid via voltage source converters.  However, wind turbine designers often 

view the electrical generator, and any power electronic converters, primarily as a means of 

obtaining the required dynamic response of the drive train.  In response to more stringent 

network connection regulations concerning large wind farms, variable speed wind turbines 

employing doubly-fed induction generators (DFIG) are now used and need to perform both 

drive-train and network control functions.  These generators are of proven technology[33] 

and use power converters connected to a wound rotor of an induction generator, but at a 

reduced power rating, typical 0.25 to 0.35 p.u. compared to a fully-fed solution.  The 

present design of these DFIG systems has difficulty in meeting the Grid Code [35]. 

A wind turbine employing a DFIG has the capability to provide reactive power, voltage 

and frequency support to the network by virtue of the capability to vary the power and 

reactive power production and the potential ability to ―ride through‖ a.c. system faults.  On 

the other hand, the manufacturing cost of a DFIG wind turbine is higher that an equivalent 
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fixed speed induction generator (FSIG) wind turbine and has a reduced reliability due to its 

power electronic equipment.  To meet the ‗ride-through‘ requirement of the grid 

connection codes, the DFIG has to be modified from its present design and is dependent on 

the addition of hardware and control software modifications.  This enhancement potentially 

increases the cost of the offshore installations and may also impact on reliability, 

availability and maintenance issues. 

In a recent paper [36], Strbac el al. used a simplified network model to assess the cost 

benefits of wind generation assuming different levels of wind penetration of the UK power 

network.  To deal with the unpredictable nature of demand, system operators commit about 

600 MW to the dynamic control of frequency and hold 2400 MW reserve capacity to 

manage demand over a 3 – 4 hour period.  The cost of this management is included in the 

current cost of power, which for domestic users is 6p/kWh.  Strbac‘s analysis demonstrates 

that in order to maintain network security wind generation cannot replace conventional 

plant on a MW for MW basis and calculates that the net additional cost would be 

0.28p/kWh.  The application of energy storage for standing reserve was found to be 

economic, particularly for generating systems with limited flexibility.  The paper also 

studies the cost of accommodating significant amounts of wind generation without the 

capability to ride-through network faults and concludes that it would lead to a considerable 

increase in system costs, higher than the cost of providing fault ride through for DFIG 

generators. 

The technical impact of DG on the Portuguese transmission system operation at different 

levels is reviewed by Peças Lopes el al. [37].  The work emphasises the need to move 

away from the ―fit and forget‖ DG policy towards full integration into the power system 

and operation through active management of distribution networks.  The need for 

operational changes is in the areas of co-ordination of protection and operation of ancillary 

services. 

3.2.4 Summary of contemporary networks 

The construction of a large wind farm takes a short time compared to the time needed to 

construct a large coal-fired or nuclear power station.  In some cases this may lead to the 
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wind farm development in weak areas being faster than the process of planning approval 

and for network support measures to be constructed, causing operational delays or 

restrictions.  For the connection of new larger scale distributed generation, e.g. large wind 

farms or biomass projects, system stability and fault current capability need to be assured 

via a formal analytic impact assessment.  Modelling plays a significant role in this 

exercise.  It is already a complex task, but as the power network grows with each new 

connection so the problem of assuring stability and fault capability becomes more and 

more protracted and will generate pressure for a change of network architecture.  The 

network operator‘s ability to increase the capacity of the contemporary network is thus 

limited and a more flexible, active network will be needed to assure future electrical 

supplies and network development. 

3.3. Future Networks 

Throughout the 130-year history of the electricity supply network in the UK there has been 

a dependence upon a steady development of technology to meet a growing demand for 

electrical power.  The industry has always been conservative in its adoption of new 

technology and radical change, tending to err on the side of caution to maintain a robust, 

cost efficient and reliable supply. 

Power network capacity has expand through a demand led change and technical advance 

process from an abundance of small-scale isolated systems to the large-scale, bulk power 

transfer, complex network that we have today.  We can see that this history represents two 

significant changes of network architect: 

i) isolated to interconnected systems 

ii) interconnected systems to a bulk power transmission system. 

These changes did not happen quickly, without cost implications or without much 

legislative, commercial and technical debate.  However, radical change happened in the 

past and will continue, much as Lord Kelvin and Mr Ferranti predicted.  The drivers for 

change are clear, and arguments for integration and connection are heard regularly, both of 

which usually involve little change to the basic network architecture.  But should the 
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debate also include interconnection along the American and European lines as a means to 

network expansion?  Perhaps the first step towards an interconnected architecture appeared 

when the Cross-Channel link was constructed in 1961. 

So what may the UK network architecture be in the future?  Will the current architecture 

expand until it cannot accept any further change, will it collapse unable to maintain 

stability and control due to demands of a low-carbon economy?  Or will we see a gradual 

change, perhaps reverting to the interconnected networks of late 1920s and early 1930s?  

My personal view is the latter case will eventually dominate and it is this view that has 

driven my research. 

One of the major limitations of the contemporary network architecture is a lack of 

flexibility.  For example, generation schedules may be exchanged daily at a pedestrian 

pace, and generators have to meet their agreed power schedule.  There is no automatic 

response to power flow fluctuations in local or distribution network other than at an 

aggregated level.  This is significant when changes of power flow are tightly linked to the 

trade between energy converters and users in a deregulated market where the production of 

power from large wind farms is not accurately predicable. 

A fundamental change to the network architecture and its control is therefore to be 

considered.  Research is currently being undertaken on network architectures.  Given the 

past history of slow architectural change, no change to the network, except for a more 

sophisticated SCADA architecture taking on an active control role, is a short-term solution.  

Network architecture is being researched at University of Manchester Institute of Science 

and Technology, (UMIST) based on a distribution cell [38] and on an energy hub at ETH 

Zurich [39].  Both schemes seek to divide power networks into small cells that incorporate 

electrical generation, storage and loads.  The cells are managed and controlled centrally by 

a dedicated controller.  However, given the experience in New Mexico, the capacity and 

topology of the cell will need to be carefully designed. 
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3.3.1 SCADA Active Control 

There are high barriers to change in the electricity network architecture, including load 

management and the time taken from fault identification to corrective action being taken.  

The existing architecture, perhaps with expanded capacity, may be used in an active 

manner with a revised SCADA architecture and system configured for active control.  This 

would make it possible to monitor the network and issue signals or dispatch generators to 

balance network states thus facilitating additional distributed generation and avoiding 

network reinforcement. 

A feasibility study, [40], undertaken by Scottish Power Systems Ltd. to investigate 

SCADA based active network control concluded that there were fundamental limitations to 

the speed of operation, reliability and resilience of existing SCADA systems.  Active 

control involves taking regular measurements from the network, performing assessments to 

compare with predetermined references, output of a control command and reporting 

control action complete.  To convert the existing network into a more active network it is 

import to consider stand-alone generation and future network development.  Therefore, 

embedding more logic into the distribution network requires reliable and secure 

communications.  An active SCADA scheme would be based on a layered architecture as 

shown in Figure 5.  High bandwidth communications will be a prime requirement of this 

approach to active network control. 

Each layer of the scheme is important.  The Active Unit is autonomous, effecting local 

control and ensuring local integrity of voltage and fault level.  The Active Cell co-

ordinates the control of a group of Active Units and utilises bi-directional communications 

passing data and commands to Unit and Network controllers.  The Active Transformer 

may be used in a control role at this level to balance load/demand and enhance 

management opportunities from detailed data.  The Active Network would consist of 

Active Cells and Units adjusting network targets to balance generation/load with adjacent 

networks or provide a range of ancillary services such as network frequency control. 
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Active management is shown to be beneficial achieving a three-fold increase in the 

distributed generation connections compared with connections to a passive network.  The 

use of active network control effectively changes a ―connection strategy‖ into an 

―integration strategy‖, as discussed previously, for distributed generation.  A Distribution 

Management System (DMS) controller is proposed and five levels of design are 

considered.  Control is hierarchical and requires appropriate levels of communications 

between the network and the active elements.   

The Grid and Distribution Codes define the quality of supply that users can expect.  These 

codes determine the design and cost of the distribution network and hence, over many 

years, techniques have been developed to make the maximum use of the network to supply 

users within the required voltages.  Some supply transformers are fitted with on-load tap 

changers (OLTC) that are adjusted to maintain voltages within the limits set by the codes, 

for example, to compensate for voltage drop due to line resistance.  At maximum load, 

network voltages are adjusted so that remote users receive an acceptable voltage, during 

periods of low load, the voltage at user terminals is just below the maximum allowed. 

If an embedded generator is now connected to the end of such a circuit, then the power 

flowing in the circuit will change and hence the voltage profiles will vary.  In some 

instances, a voltage rise can be limited by reversing the flow of reactive power (Q) either 

by using an induction generator or by under-exciting a synchronous machine and operating 

at leading power factor.  This can be effective on higher voltage overhead circuits, which 

tend to have a higher reactance/resistance ratio.  However, on low voltage cable 

distribution circuits the dominant effect is that of the real power and the network resistance 

and so only relatively small generators are connected to low voltage networks. 

Thus, for the cases where significant amounts of generation are to be integrated into the 

distribution network, which may also include energy storage, active control over the local 

supply is required in order to maintain the quality of supply.  A power module or cell, 

Figure 6, is thus formed and the network architecture and its dynamics have been changed.  

A local balance of generation, storage and load will be the factors that determine the size 

of the cell and the degree/sophistication of control and communications required to meet 
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the supply codes.  This should be more readily achieved within a cell than having to 

rebalance the whole of the electricity network each time new DG is added to the network. 

3.3.2 Energy Hub 

At the Swiss Federal Institute of Technology, Zurich, a novel project entitled Vision of 

Future Energy Networks [39] is researching a green field approach to future power systems 

using ―energy hubs‖, where the boundary conditions of contemporary power systems are 

disregarded in order to achieve greater overall system performance.  The project examines 

the use of multiple energy carriers and the use of distributed energy resources, conversion 

and storage.  Potential applications are suggested as: 

i) power plants, co- and tri-generation 

ii) industrial plants, steel works, paper mills, refineries 

iii) big buildings airports, hospitals, shopping malls 

iv) bounded geographical areas, rural and urban districts, towns and cities 

v) island power systems, trains, ships, aircrafts. 

Energy converters and storage devices are integrated into energy hubs, Figure 7, which are 

supplied by various energy sources and deliver power to loads consuming different forms 

of energy.  This approach combines the transmission of different energy carriers in one 

device, which is called an energy inter-connector.  Electricity and gaseous (e.g. hydrogen) 

energy carriers can be transported together in an underground transmission element.  The 

whole energy system, Figure 8, is then designed using energy hubs, inter-connectors, and 

conventional elements. 
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Direct connections are used to deliver energy or power from an input to an output without 

any conversion or change of quality, e.g., electric voltage, hydraulic pressure.  Electric 

cables, overhead lines, and pipelines are examples of this type of element.  Besides that, 

converter elements are used to transform power into other forms or qualities.  Examples 

are steam and gas turbines, reciprocating internal combustion engines, Stirling engines, 

electric machines, fuel cells, electrolysers and thermoelectric converters.  The use of 

energy storage is also proposed using technologies such as supercapacitors, 

superconducting devices, batteries, hydro reservoirs, flywheels, compressed air storage or 

reversible fuel cells.  The project uses modelling to study the power flows within and 

without the hubs and therefore does not give much detail about the energy interfaces. 

3.4. Summary 

In the early electrical power networks, operational control was effected using geographical 

system diagrams of the whole network.  As the networks grew in size and complexity, 

hand dressed-diagrams were commonly used for large systems and these were considered 

to be superior to automatic diagrams [41].  As network complexity grew, new methods 

were needed to ensure network security and availability.  Calculating boards, such as the 

General Electric Company‘s a.c. network analyser [42], were used to ascertain fault MVA 

and current levels.  Remote supervisory equipment was installed by some progressive 

operators to enable voltage regulation and switching to be done from a central control 

room and these methods has led to the idea of network architecture. 

With the introduction of nuclear power, in the early 1960s the ―Supergrid‖ was upgraded 

to 400 kV and the current passive network is largely based on those developments.  

Connection type strategies for additional generation are unlikely to meet all future 

integration needs and a fundamental change to the network architecture and its control is 

needed to facilitate further network development and robust integration of large renewable 

energy generation.  If the use of significant amounts of DG are to displace large central 

generation and its ancillary facilities in the UK, then the present legislative framework, as 

well as the network architecture, must change to enable DG to contribute to the network 
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support activities.  Whatever solution or solutions are eventually used to fully integrate 

distributed generation, their capital cost and reliability will be significant considerations. 

The use of SCADA systems to implement active control strategies will be a short term 

solution but, based on the continued growth of demand for renewable power generation, a 

greater degree of freedom will eventually be required for network control.  Distribution 

cells and energy hubs are two schemes currently being researched and both use a 

conventional power transformer as the connection to the rest of the network. 
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Chapter 4.  

Literature Review 

4.1. Introduction 

ower electronic equipment is widely used in transmission and distribution 

systems to solve grid problems and improve power quality.  Contemporary 

equipment uses silicon semiconductor devices as switches.  New generations of 

power semiconductors will have a significant impact on the design and application of 

power electronic equipment for power networks, e.g. transformers with inbuilt voltage 

source converters for power flow control, [44]. 

The idea of an ―Active Transformer‖ arose some years ago in a discussion between me and 

Dr Colin Oates at AREVA Technology Centre.  The discussion was centred on the results 

of some modelling of a converter for a device described as a ―solid-state sub-station‖ 

(SSS).  At that time my interests were in machines, which to indicate a high level 

integration with power electronics, were classed as ―active motors‖ and ―active 

generators‖.  The extension of this class to transformers, being stationary machines, was 

logical and so the idea of the ―active transformer‖ was born.  Dr Oates subsequently 

registered two patents in the USA.  In some papers similar devices are called ―solid state 

transformers‖ (SSTs). 

4.2. Converters Topologies 

There are many possible converter topologies that could be used within an Active 

Transformer and [45] provides a good review of the main candidates that have potential 

applications at high frequencies, powers and voltages.  A summary of the review is given 

here. 
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The Active Transformer can provide voltage transformation, bi-directional power flow and 

galvanic isolation.  Using high frequency conversion will minimise the size and weight of 

the transformer, however, the cost of the transformer is likely to be higher.  Four possible 

converter configurations are shown in Figure 9.  The first example is a three stage 

conversion with grid-side and DN-side d.c. links.  The second example is a two stage 

conversion with a DN-side d.c. link.  The third example is a two stage converter with a 

grid-side d.c. link.  In these examples the d.c. link may be resonant thus facilitating zero 

voltage or current switching to minimise switching losses in the converter and harmonic 

distortion.  The fourth example is a single stage a direct a.c/a.c. resonant conversion.  All 

four use a high frequency transformer for galvanic isolation, and, reduced size compared 

with a conventional power transformer. 

The fourth configuration, direct a.c./a.c. resonant conversion, is preferred for the following 

reasons: 

i) the power semiconductor device count is the lowest therefore minimising 

device cost 

ii) d.c. link capacitors are not required 

Figure 9  Power converter configuration 
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iii) resonant operation minimises switching losses and reduces harmonic 

distortion. 

iv) semiconductor devices can be connected in series to achieve high operating 

voltages without complex arrangements for voltage sharing, such as active gate 

control as proposed by Palmer [46]. 

4.3. Power converter switching strategy 

4.3.1 Background 

The choice of converter topology, and the devices used to implement a direct a.c./a.c. 

resonant converter, will largely determine the device switching strategy employed.  

Converter control techniques are briefly reviewed in [45] and cover pulse density, delta-M 

and sigma-delta M techniques.  However, the choice is that of sliding mode control, which 

is a form of ―switching-law‖ or boundary control and has been used by researchers at 

Nottingham University successfully in several other applications with proportional-integral 

voltage control.  Its simplicity and ease of application that subsequently leads to good 

robustness, are the key reasons for its use in the Active Transformer.  It possible 

disadvantage is its coarseness of control. 

Other control techniques are also available for direct a.c-a.c. converter control and two of 

these are compared in [47].  The authors contrast the Venturi and Space Vector Modulation 

(SVM) methods for their relative performance under balanced/unbalanced supply 

conditions, input/output current harmonics and converter losses.  These converters may be 

used in frequency and voltage changing applications and it is noted that the maximum 

voltage at the output was 86% of the supply because the output can not be greater than the 

minimum peak-to-peak line voltage.  SVM is a simpler method for the control of input 

power factor and results in lower switching losses but the Venturi method compensates for 

unbalanced supply conditions and produces a similar harmonic content.  However, the 

authors do not address robustness, stability limits or direct resonant converters.   
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4.3.2 Semiconductor devices 

While it is possible to connect a large number of devices in series with contemporary 

silicon semiconductor technology, the cost of a transmission voltage or large distribution 

voltage converter is likely to be prohibitive except in very exceptional circumstances.  

Direct-on-line high voltage converter topology is however, more suited to silicon carbide 

devices (SiC) currently under development, which operate at much higher voltages (20-30 

kV) than silicon (5-7 kV), and may be available in suitable ratings in the next five to ten 

years. 

Low power SiC devices are finding widespread use in the automotive and 

telecommunications industries.  Devices based on diamond semiconductors are also being 

developed and these would undoubtedly operate at higher voltages than even silicon 

carbide and therefore could considerably reduce the device count needed for very high 

voltage converters, however, commercially available power devices are even further away 

than SiC devices. 

4.3.3 Pulse width modulation 

Pulse width modulation (PWM) is a well established converter control technique and many 

schemes have been devised for particular applications.  Different PWM techniques (ways 

of determining the modulating signal and the switch-on switch-off instants from the 

modulating signal) exist.  Popular examples are sinusoidal PWM, hysteric PWM and the 

relatively new space-vector (SV) PWM.  There are many excellent textbooks that describe 

conventional PWM strategies, reference [48] was found to be particularly useful and 

readable and although it briefly mentioned soft-switching resonant converters as a current 

area of research interest, disappointingly, it did not consider them further. 

4.3.4 Space-vector pulse width modulation 

SV PWM refers to a way of determining the switching states, or sequence, of a three-phase 

converter bridge.  It is often applied to voltage sourced converters used in the control of 

rotating machines where the control of both voltage and frequency are important.  It has 
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been shown to generate less harmonic distortion in the output voltages and/or currents in 

the windings of the motor load and provides more efficient use of d.c. supply voltage, in 

comparison to direct sinusoidal modulation technique [49]. 

SVM applies the d-q transform, Appendix A, to the supply phase voltages or currents.  

This is the same as an orthogonal projection of the phase variable on to the two-

dimensional d-q plane and results in eight stationery or basic space vectors, six non-zero 

and two zero or null vectors.  The angle between any two adjacent vectors is 60°.  The 

objective of the SVM method is to control an output voltage or current by approximating it 

to a combination of switching states equivalent to the basic state vectors.  Any output 

vector can be derived from the application of the adjacent basic vectors for a defined 

duration.  The only criterion necessary is that the period of change must be small with 

respect to the period of the required output voltage/current.  In practice, this is a normal 

condition of PWM techniques. 

4.4. Advanced control methods 

4.4.1 Introduction 

The design of converters generally has to cope with a significant level of uncertainties, not 

just in component parameters, but also in the environmental conditions, often 

unpredictable, such as wide variations in temperature, load and supply voltages.  The 

conventional approach is to use a PI controller, over design and over rate the converter for 

its particular application to ensure performance is maintained over a wide range of 

conditions.  Substantial test regimes are then used to verify performance, which tend to be 

costly and lengthy. 

So, in considering the choice of controller for the Active Transformer, the key factors 

affecting the design are that it: 

i) is a non-linear system 

ii) has high levels of load uncertainty 

iii) has complex control requirements. 
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Some of the disadvantages and limitations of classical linear design methods are shown in 

the results of Chapter 5.  Modern design techniques aim to produce controllers that are 

robust by design and attempt to overcome these limitations and the disadvantages of over 

design.  A complete design of the current-sourced converter used in the Active 

Transformer will require a multivariable control strategy to cater for the complex control 

requirements, i.e. line current, input phase angle and output voltage, but the key 

requirement at this stage of the design process is for a robust controller design that caters 

for the uncertainty of the load.  A further more general requirement is that the controller 

design method must be relatively straightforward to apply if it is to be accepted in the 

power electronics industry.  The candidate control methods are discussed below. 

4.4.2 Review of candidate strategies and methodologies 

Current sourced converters are often used in high power converter applications.  A drive 

system application, [50], used a multivariable PI controller where high performance was 

required.  In this paper the state matrices were derived in state-space form, which is the 

modern method.  The controller design used a tuning strategy and recommended the use of 

the inverse d.c. gain matrix of the open loop system as the matrix for the integral 

controller.  The results presented, without feed forward, showed an acceptable response to 

a step change, but with some overshoot that was much reduced when feed forward was 

introduced. 

For current-sourced resonant converters, although not widely used in power electronics 

applications because choosing suitable weights may be difficult, an alternative to PI 

strategies are optimal control strategies.  These techniques have several forms, but each 

uses a quadratic performance index to reduce a signal or transfer function to a minimum at 

every control step and should, in practise, lead to stable, high dynamic system responses 

with a classical 60° phase margin guaranteed, [51].  For supply-side converter applications, 

such as in the Active Transformer, it has good robustness against supply variations. 

A robust control system [52] is one that exhibits the required performance in the presence 

of significant uncertainty.  A control system is robust when: 
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iv) there are low sensitivities to environmental effects 

v) it is stable over the required range of parameters (uncertainty), i.e. the concept 

of robust control 

vi) its performance continues to meet specification in the presence of defined 

parameter variation, i.e. the concept of robust performance. 

There are many methods for the design of converter controllers.  Methods applicable to the 

design of the Active Transformer are: 

a) Signal based methods. 

In this approach, time domain formulations result in the minimisation of a norm 

of a signal, such as an error signal or system output.  The Linear Quadratic 

Gausian (LQG) method is such an example where the input signal is assumed to 

be stochastic and the expected value of the system output is minimised against a 

quadratic cost function (2-norm).  It is a simple method to apply, however, the 

system dynamics are required to be linear and, importantly, known.  In practise, 

all states are not known and therefore a state estimator is used with optimal 

state feedback.  Frequency dependent weights may be added to the signals 

leading to the so called H2 control that aims to minimise the r.m.s. the 

controlled value.  Because of the use of a state estimator, the LQG method often 

leads to complex transfer functions that do not guarantee satisfactory robustness 

of the controller, once the estimator is included in the loop.  It is criticised for 

the representation of uncertain disturbances by white noise as being unrealistic.  

In the Active transformer, the uncertainty is in the load.  The converter transfer 

function used in the design of the voltage loop includes a term containing the 

load.  The variation in load is not known, and therefore, neither is the transfer 

function known.  Therefore, signal based methods, such as the LQG, are not as 

attractive for the design of the controller for the Active Transformer.  Where 

uncertainty is addressed, an H∞ procedure is a more direct and natural approach 

than H2 control. 
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b) H∞ mixed-sensitivity methods 

Mixed-sensitivity is the name given to methods that shape closed-loop transfer 

functions, e.g. the sensitivity transfer function  along one or 

more other closed-loop transfer functions, such as the complementary 

sensitivity transfer function T.  For example, in a regulation type control 

problem, the aim is to reject a disturbance at the system output, and it is 

assumed that measurement noise can be ignored.  The disturbance is usually a 

low frequency and will be rejected when the maximum singular value of S is 

made small at the same low frequencies.  This is achieved by a scalar low-pass 

filter, ω1(s), with bandwidth equal to that of the disturbance and the control 

designed minimising .  For the Active Transformer converter, which 

has a right-hand plane zero, the controller requires infinite gains and is 

therefore not a practical control solution.  For a more practical situation 

may be applied, where ω2 is a scalar high-pass filter, with a 

crossover frequency approximately equal to the desired closed-loop bandwidth.  

This method is usually restricted to less complex systems with control channels 

of quite different bandwidths.  The mixed-sensitivity approach is often 

cumbersome to apply to complex systems, due to the choice of appropriate 

weights and a more flexible design procedure is required. 

c) H∞ loop shaping methods. 

H∞ mixed-sensitivity methods incorporated the formulation of the control 

problem in closed-loop.  By contrast, the H∞ loop-shaping method, [52], 

provides robust stability in an open-loop shaping method to achieve closed-loop 

specifications, and in fact this ides is based on the well known classical loop-

shaping concepts.  The classical loop-shaping method is to shape the frequency 

response of the open-loop transfer function to give the desired bandwidth.  In 

the H∞ approach, the multivariable system specification includes the magnitude 

of the singular values, which are the values of the transfer functions between 

specific inputs and an outputs, or directions, as a function of frequency.  The 
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designer then seeks a controller to give the required loop shape.  The key 

benefit of the H∞ loop-shaping design procedure is that it makes the system 

robust at all frequencies and guarantees stability.  The control problem aims 

simply to minimise the peaks of the maximum singular values of the open-loop 

frequency response of a shaped system, which is the original system transfer 

function embraced with suitable pre- and post-weighting functions.  The shaped 

system is then robustly stabilised with respect to a general class of coprime 

factor uncertainty using H∞ optimisation. 

To avoid the limitations of LQG and mixed-sensitivity approaches, for many 

industrial applications, the flexibility and simplicity of the H∞ loop-shaping 

method is preferred because it is based on classical loop-shaping ideas that are 

well understood. 

4.4.3 Choice of controller 

Power converters operate in a sensitive environment where the consequence of a failure, 

whether due to a fault or poor design, is often catastrophic for the converter.  Consequently 

converter designers are usually very conservative in their designs, which give them a high 

degree of robustness.  The application of advanced modern control schemes in high power 

or high voltage converters is, until recently, quite rare.  A back-to-back HVDC scheme has 

some similarities in application to the Active transformer in that it connects two isolated 

power networks and controls the flow of power between them.  It comprises of two 

notionally independent converters and a d.c. link as opposed to an a.c. link used in the 

Active Transformer. 

A good example of an application is given in [53], which applies mixed-sensitivity H∞ 

design to the control of an HVDC back-to-back converter scheme.  A major difference 

between the converters used in the HVDC scheme and the Active Transformer is the 

converter topology.  In conventional HVDC schemes the converters are supplied from a 

step down transformer and use thyristor technology and series bridges at power frequencies 

to achieve the required performance and reliability.  Power frequency operation 

necessitates large transformers, wound components and link capacitors.  The Active 
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Transformer, on the other hand, uses direct high frequency resonant conversion, silicon 

carbide technology and high frequency techniques that aim to significantly reduce device 

costs and minimise the overall converter size. 

In the HVDC scheme the H∞ controller design objectives were robust stability, disturbance 

rejection and tracking performance over a wide variation of a.c. system short circuit 

currents (SCL).  Good disturbance rejection is necessary for the recovery from a.c. faults 

and reduces the risk of commutation failures.  There are two controllable inputs, phase-

lock-loop (PLO) oscillators, that control the timing of the firing pulses on each side of the 

d.c. link.  The PLO frequency is varied to control the d.c. link current, Idc, and link voltage, 

Vdc independently. 

Multiplicative uncertainty modelling of the SCL was used and a tuning procedure from 

[52] used to determine the weights for an H∞ mixed-sensitivity design approach that 

shaped the sensitivity (S) and complementary (T) sensitivity functions of the closed loop 

plant.  Weights were applied to S and T to provide adequate tracking and disturbance 

rejection, and noise rejection respectively.  Extensive simulation confirmed that the H∞ 

controller was stable for all SCR conditions and was ―superior‖ in rejecting disturbances of 

Idc. 

The application of H∞ mixed-sensitivity to the design of the HVDC controller gives good 

confidence in the application of H∞ methods in a high power environment.  But a concern 

over the untried complexity of the resonant converter control compared to that of the 

conventional HVDC bridge and the desire to use simple methods that extend the use of 

classical control methods, and the novelty in proposing an alternative untried design 

method for this application makes the choice of H∞ loop-shaping the preferred method. 

4.5. Patents 

In his patent [54] Oates details an electrical substation, described as a ―solid state 

substation‖ (SSS), based on a high frequency d.c. link power converter that overcomes 

some of the limitations of tap-changing conventional power transformers and permits a 

degree of control usually provided by a Static VAr Compensator (SVC).  It is also 
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suggested that ―the input switching network may include a resonant circuit‖ and a high voltage 

resonant matrix converter is described in his companion patent [55].  Both d.c. and a.c. 

supplied converters are described.  The resonant configuration enables high voltage 

operation by overcoming the problems of synchronising the switching of large numbers, 50 

or more, of series semiconductor devices needed to construct a suitable converter. 

The combination of high frequency resonant converters and a high frequency transformer 

that Oates outlines in his two US patents can be considered more generally as an ―active 

transformer‖.  This is a novel power system device and no prior research or application 

was initially found in power systems or networks.  The matrix topology of the a.c. supplied 

converter in [55] perhaps implies the use of space-vector control techniques.  In [56] the 

technique is referred to as ―hysteresis-band control‖ and is perhaps similar to what Oates 

had in mind. 

4.6. Discussion on previous work relating resonant 

converters 

Work in [45] provides a comprehensive and readable investigation of the design of direct, 

high-frequency power conversion with the analysis, design, construction and test of a 5 kW 

direct converter.  Oates is acknowledged for his contribution at the beginning of the 

research but the work is focused on the design of a supply converter that could be used as 

the front-end of a ―solid-state Transformer‖ (SST) or the ―Solid State Substation‖ (SSS) as 

both are descriptions of similar applications, rather than a complete SST or SSS.  The 

converter design aims to control input current using a predictive current technique to 

achieve unity power factor and conventional PI control of output voltage. 

Depending largely on their application and topology, there are many ways in which power 

converters may be modelled for design purposes.  For example, detailed component 

models are used for circuit analysis and design where the timing and rating of components 

is critical.  Block diagram or transfer function models, often of a simplified or 

representative nature, are used for system and controller design where the converter‘s 

response to an environmental change is more important. 
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The thrust of the afore mentioned work was the practical demonstration of the feasibility of 

the direct current-sourced converter using predictive current control and hence a popular 

circuit-based modelling tool, SABER
®
, was used for the detailed analysis and design of a 

demonstration 5 kW converter to verify the design.  The design aim of the converter 

control was to maintain a steady tank voltage level, and keep the input phase currents at a 

defined magnitude and phase related to the supply voltage.  However, the Active 

Transformer essentially consists of a 3-phase to 1-phase supply converter connected in 

series with a load or output converter, of a similar design, but configured to supply a 3-

phase output from a high frequency single phase supply. 

The results of the test of a 5 kW converter demonstrate its feasibility and the control 

method, up to a point.  The analysis and design of the voltage controller is based on a 

linearised model operating at a full load condition and this is valid for only small 

perturbations around the operating point.  In practice however, the design should have been 

tested for a wider variety of loads, particularly as power converters are well known to have 

stability problems at low loads, which would have shown the possibility of unstable 

operation with light loads.  In the case of the intended application on a power network, the 

load is likely to be constantly varying or uncertain, and may range from 10 to 120%.  The 

linearised transfer function used for the design of the voltage control loop also indicates 

closed loop poles that move towards the right-hand half of the s-plane (RHP) for light 

loads.  However, the test results reported did not show any instability as a result of this 

movement, perhaps because the loop gain also reduces for smaller loads and the two 

effects tend to cancel each other to some extent.  The possibility for instability still 

remains.  Further analysis of PI voltage controller is discussed in Chapter 5. 
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Chapter 5.  

Linear Modelling and Classical 

Control Design 

5.1. Introduction 

he challenge for the converter control system designer is that results of the often 

used small signal analysis method are very dependent upon the model, and the 

frequency domain behaviour is well known to be dependent upon the load.  The 

design then proceeds with an analysis based on worst case conditions, which is problematic 

when the model is variable and inevitably leads to over design or a lack of robustness.  It 

may also be argued that, because of the presence of non-linear switching functions in a 

power converter, that non-linear techniques, though more complex, require much more 

effort for success.  The next chapter will review sliding mode control, a non-linear method 

used for current control in a resonant converter. 

However, small-signal designs do provide a systematic way to address the design and they 

do provide a good insight in to the controller performance.  As we shall see in the 

following sections, this approach has been used to good effect in the design of the voltage 

controller. 

This chapter describes the converter PI voltage control system.  It was based on a classical 

PI controller design using the traditional root-locus method.  These methods and 

techniques are still popular with converter designers because, with conservative circuit 

designs and component specification, they lead to quite robust converters able to achieve 

satisfactory performance under a wide range of operational conditions.  However, a 

potential for instability often remains with load shedding to light loads, and this was 
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verified by further analysis.  In an attempt to overcome the problem, the controller was 

redesigned using a robust PI method.  The results of an analysis of the two designs were 

compared and contrasted. 

5.2. Review of PI converter control 

5.2.1 Control of line currents 

A block diagram of a resonant converter control system is shown in Figure 10, [45].  It 

describes a means of controlling the three-phase input currents, i.e. choose a switching 

sequence for the 3-phase bridge to generate the error vector that takes the output voltage or 

input currents closer to their desired values.  The converter has eight possible switch states, 

Table 2, but states 7 and 8 have similar outcomes and, therefore, there are only seven 

possible control outcomes for line currents. 

Table 2  Coefficients Ka, Kb and Kc as a function of switch state 

 

  

Switch 

state 

Upper switches Lower switches 

Sa Sb Sc Ka Kb Kc 

Sa1 Sb1 Sc1 Sa2 Sb2 Sc2 

1 1 0 0 0 1 1 1 0 0 -⅔ ⅓ ⅓ 

2 1 1 0 0 0 1 1 1 0 -⅓ -⅓ ⅔ 

3 0 1 0 1 0 1 0 1 0 ⅓ -⅔ ⅓ 

4 0 1 1 1 0 0 0 1 1 ⅔ -⅓ -⅓ 

5 0 0 1 1 1 0 0 0 1 ⅓ ⅓ -⅔ 

6 1 0 1 0 1 0 1 0 1 -⅓ ⅔ -⅓ 

7 (zero 

vector) 
1 1 1 0 0 0 1 1 1 0 0 0 

8 (zero 

vector) 
0 0 0 1 1 1 0 0 0 0 0 0 
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Figure 11  Representation of phase A 

A representation of the converter, phase A, is shown in Figure 11, from which the 

converter state equations, (1)(2)(3), are derived for a 3-phase supply system: 
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that completely described the behaviour of the converter.  The state equations in the dq0 

co-ordinate system are: 
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The afore mentioned model is not directly employed for control system design, instead an 

expression for the input inductor current has been derived for designing the ―predicted 

current controller‖.  Thus, integrating (1), the change in current through the line inductors 

over the next half cycle of the output voltage was: 

(7) CBAiVKV
L

I mkiin
rs

i ,,;21
_tan  

This result was then added to the instantaneous value of line-inductor currents to provide a 

prediction of the line current at the next zero crossing of the output voltage.  A simple 

error-squared cost function is used to determine the switching state that produces the 

minimum line current error and this result is then the next switch-state of the converter. 

5.2.2 PI voltage controller 

A linearised, small-signal, low frequency model of the converter is used as the basis of the 

voltage control design, deriving the converter transfer function from a balance of the 

instantaneous power at the converter input to the instantaneous power delivered to the 

output of the converter and considering a small perturbation of the input currents, in the 

dq0 plane, applied at the nominal full-load operating point. 

(8) )(/)()( _tan sIsVsG davgk  

(9) 

eq

avgk

avgkeq

dsdds

R

V
sVC

IRVsIL

sG
*

_tan*

_tan

**

2

)3
2

3
(

2

3

)(  

This is a fairly common initial approach to the design of a converter controller, but in this 

case it has two potential problems that affect the converter‘s performance.  Firstly, by 

inspection it can be seen that, if Req, which is essentially the load resistance, increases, the 

open loop pole, moves closer to the origin of the s-plane.  There is a risk that the complex 

closed loop poles, which from the compensated root locus design were placed in the left 

half of the s-plane, will move towards the right half plane as the load varies and hence, the 

system will become unstable.  Secondly, Vtank_avg will be derived from the measurement of 



 

 

Chapter 5  Converter control studies 

 

 

 

(63) 

the peak tank voltage and the measurement circuit will have some dynamics that must be 

taken into account in the controller design.  This aspect is dealt with further in Chapter 7. 

The benefits of power electronic converters come from their flexibility to operate over a 

wide range of loads and conditions.  Hence their design and operation is not normally 

restricted to a small region close to a fixed point, such as full load.  Therefore, the PI 

controller designed at full load must be sufficiently robust to meet practical applications 

and realistic load conditions. 

Power converters, that are not robustly designed, are well known to have stability 

problems, particularly when lightly loaded.  The following analysis demonstrates the 

stability problem and evaluates the value of the load resistance that would cause unstable 

operation. 

For ease of analysis, the uncompensated open loop converter transfer function is depicted 

as (gain, pole, zero designations): 

)(

)(
)( 0

ps

as
KsG  

The values for K0, a, p are teken from [45], i.e.: 

K0 = -46.79 

a = -9251.70 

p = 13,333.52 

Using the transfer function 
)52.333,13(

)7.9251(
79.46)(

s

s
sG , the PI controller can be then 

designed using MATLAB
®
 SISOTOOL feature, with traditional design requirements of 

damping factor ξ=0.7 and a cut-off frequency fn =500 Hz.  The resulting coefficients were: 

Kp = 0.002, (proportional) 

Ki = 100,  (Integral) 
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The PI controller transfer function is: 

(10) s
K

K
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The compensated open loop transfer function is: 
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And the closed loop transfer function is given by: 
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Re-arranging coefficients: 
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Thus, the point of marginal stability occurs when: 

(17) 0)( 00 aKKKKp pi  

Substituting in the values from above gives: 

(18) 4679774865p  

(19) 2263813p  

However: 
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And thus: 

*

_tan

*

_tan2

avgkeq

avgk

eq
VpC

V
R

 

Using the afore mentioned : 

ohmsR

ohmsR

gives

ohms
R

R

FC

eq

eq

L
eq

eq

35.283

1085.1226.3813/2

8

85.1

6

2

 

while ohmsRL 57349 . 

Thus, load resistances greater than 350 ohms may result in unstable operation.  Compared 

to the full load resistance of 100 ohms, this result is approximately 28% of full load and 

well within the normal range of operation of the converter and would be an unacceptable 

restriction of performance.  This system, with an expected wide range of loads, may not be 

considered adequately robust. 

5.3. Additional analysis 

5.3.1 Effect on gain and the position of the zero 

The load resistance changes in the transfer function produce a pole movement towards the 

origin of the s-plane, i.e. towards a pure integrator.  Further examination of the converter 

voltage transfer function reveals that when a change in load resistance occurs, a change in 

supply current Id also occurs simultaneously, leading to a change of system gain and 

system zero position.  The position of the zero is in the right half of the s-plane and thus 

defines the system as non-minimum phase.  The load resistance increases (towards a light 
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load), and Id reduces, hence the system gain also falls towards zero.  The position of the 

system zero moves away from the s-plane axis towards infinity as the load resistance 

increases.  The reduction in gain helps to stabilise the system at light loads but the effect of 

the zero moving increases the speed of the system and hence increases the likelyhood for 

an oscillatory response to a step change of input.  The combined effects of the pole, gain 

and zero changes on the stability and performance of the converter may be seen by 

examining the uncompensated frequency response, Figure 12, for a range of converter 

loads.  The controller gains remain unchanged from those determined at the 100 % load 

design point, that is, the plant transfer function changes as RL changes from 50 to 1000 Ω 

but the controller gains remain constant. 

The pole and zero movements are clearly seen in magnitude response, Figure 12, which 

gives, at 50 Ω, the asymptotic break frequency of the system zero at 3 krads/s and the pole 

at 30 krads/s.  These move to 100 krads/s and 1.2 krads/s respectively at 1 kΩ load with 25 

dB increase in low frequency gain and a similar decrease in high frequency gain.  At 1 kΩ 

load the system response is similar to an integrator so that when the control loop is closed 

with a PI controller, the closed loop system now has a double integrator response, the 

classical configuration of an oscillator. 

Although the magnitude responses are always positive, never crossing the 0 dB line, and 

would normally indicate an infinite phase margin, in practise, the phase changes caused by 

the movement of positive zero in the system are difficult conditions for the design of a 

classical PI controller.  From the step response plots, Figure 13, the system remains stable, 

but oscillatory, largely due to the reduction in gain, effected by a reduction in input current 

Id associated with the change in load.  However, the system performance becomes 

increasingly degraded and oscillatory such that it no longer meets the original settling time 

requirement.  It can then be claimed that, relative to achieving the specification, the system 

is not classified as robust and hence leads to a need for further system robustness. 
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5.3.2 Sensitivity analysis 

Another approach to the analysis of robustness is to consider the variations in the system 

sensitivity.  The sensitivity of a control system to parameter changes is of high importance 

and a prime advantage of closed loop systems is their ability to the system sensitivity.  The 

closed loop transfer function, T(s) of the system G(s) with feedback K(s), , is given by: 

(20) 
)(1

)(
)(

sGK

sG
sT  

Thus, if , then  and is insensitive to changes in G(s). 

System sensitivity is defined as the ratio of the change in the system transfer function to 

the change of a process transfer function (or parameter) for a small incremental 

change,[57]: 

(21) 
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but, GK(s) =Gol 

from Equation (13), 
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(26) 72

42
T

G
10329.4s9250s9064.0

10333.1s
S  

Note that the system sensitivity S may be reduced by increasing the value of GK(s) over 

the frequencies of interest.  A Bode plot of 20log|S(jω)| is shown in Figure 14.  Where |Sj | 

< 1 feedback control will improve performance in terms of reducing |error|. 

From Figure 14 we can see that at low frequencies, up to 3.38 krads/s, the gain is less than 

1 and therefore a feedback system will attenuate these frequencies.  At frequencies greater 

than 3.38 krads/s the gain is greater than 1 and therefore signals, particularly high 

frequency noise will be amplified.  A peak of 4.09 dBs occurs at 7.85 krads/s and this may 

be particularly troublesome as it is within the range of harmonic signals expected at the 

converter input. 

Therefore, the peak of the sensitivity response in, max |Sj |, is a measure of the worst-case 

performance degradation, or a measure of robustness, but for both stability and 

performance max |Sj | should be close to or less than unity.  It can then be claimed that, 

relative to achieving a sensitivity function less than 1, the system is not classified as robust 

and hence again shows the a need for further system robustness. 
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5.4. Summary 

Analysis of the resonant converter voltage loop transfer function showed that instability 

could occur for loads above 350 Ω.  A sensitivity analysis also indicated a lack of adequate 

robustness.   

A linearised, small-signal, low frequency model of the converter is used as the basis for a 

classical PI design for the voltage control loop.  The converter load is an uncertain quantity 

and is expected to vary between 10 and 110% in a random manner.  The load resistance 

changes produce a pole movement towards the origin of the s-plane, i.e. towards a pure 

integrator; a change of system gain and a change system zero position in the right half of 

the s-plane (RHP).  The nature of these changes means that the converter transfer function 

has variable and uncertain parameters and the analyses in this chapter demonstrated that 

the design of a classical PI controller with fixed gains was problematic and unlikely to 

result in a robust design. 

The design of a robust controller using advanced control techniques is presented in Chapter 

7. 
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Chapter 6.  

Non-linear Converter Modelling 

and Simulation 

“For comparison with scant experimental data, the use of a low order model produces a 

more reliable guide to system performance”
5
 

6.1. Introduction 

ne of the aims of this project has been to understand and improve the control of 

the converter in order to facilitate its use when connected to a power network as 

an Active Transformer.  Within the normal duration of study, the design and 

building of a demonstration Active Transformer would not have been practicable as it 

takes many years of development and testing before new equipment, even in demonstrator 

form, is permitted to be connected to the power network.  Equally, to build a reasonable 

laboratory demonstration, a converter (rated at 150 kW, or greater, with some simple load 

to represent a grid connection) to verify controller action would not readily have been 

achievable within the period of research.  A small laboratory model of the Active 

transformer, would also have taken too long to build and set to work and left insufficient 

time to verify controller action. 

Modelling is a cost effective precursor to a practical demonstration of all high power 

converter designs and applications.  The design of large converters follows an incremental 

process that starts with a simple computer model in order to explore design options and 

                                                 

 

5 L.W. Taylor, ―How complex should a model be?‖ Proceedings of JACC 1970, Session Paper 18D, page 441. 
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gain an overall appreciation of the design problems and constraints.  Design issues 

associated with the scaling up of the Active Transformer are largely concerned with the 

power circuit layout and its physical construction, when such issues as: 

i) voltage insulation 

ii) voltage isolation 

iii) stray inductance and capacitance 

iv) timing and switching 

v) ratings, losses and cooling 

vi) component temperatures 

vii) protection 

become more significant.  In the case of the Active Transformer, it was the performance of 

the control system that was to be investigated and this, at least in this early design stage, 

requires a simplified converter model.  In the view of the author, it was more important to 

be able to compare the results of alternative controller models with published work than to 

address any scaling issues at this early stage in the development cycle. 

The approach adopted in this project was achievable and thus the values of the principle 

power circuit components used are similar to those used in [45]:  The principle component 

values are: 

i) line inductors L1-L3 3.75 mH and 1mΩ in series 

ii) resonant inductor La 84.4 µH and 1mΩ in series 

iii) resonant capacitor C 0.75 µF 

iv) full load resistance 100 ohms 

v) 20 kHz transformer 1:1 turns ratio 
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6.2. Converter design 

A schematic diagram of the supply converter is shown in Figure 15.  Key design variables 

are the bridge model, tank circuit voltage and the supply current ripple. 

6.2.1 Bridge model 

Simulink
®
 offers a selection of bridge models, including some containing detailed power 

semiconductor device models.  At this stage in the development process, a sophisticated 

converter model using SiC power devices, assuming that they were available, was 

unnecessary and would not have been helpful in understanding the operation of an Active 

Transformer.  A simple functional, lossless model was all that was needed to explore 

control issues and therefore a universal bridge model, containing ideal switches, was 

chosen. 

6.2.2 Tank circuit 

The tank circuit provides a means of storing energy in a similar manner to the capacitors in 

a d.c. link converter.  As with the d.c. link voltage, a design aim is to maintain the tank 

voltage constant.  The resonant circuit is normally a lossy device and with high Quality 

factors (Q) comes high resonant circulating currents, approximately Q×load current.  It is 

therefore important to keep Q, hence the tank losses, as low as practicable in order to have 

high converter efficiency.  Q must also be high to store sufficient energy to maintain robust 

oscillation.  Thus there is a balance to be achieved between converter efficiency and tank 

voltage robustness.  The tank circuit component values were calculated using the standard 

formulae for a parallel resonant circuit with a load resistance defined at the maximum 

rating of the converter.  A reasonable balance was achieved with Q = 10, and hence Ltank = 

84.4 µH and Ctank = 0.75 µF.  The inductance has been assigned a small resistive element, 

1 mΩ, to avoid numerical errors in the simulation. 

The mean tank circuit voltage must be sufficiently high in order to control the input 

current.  If the tank voltage is much smaller or insufficiently greater than the instantaneous 

line voltage then the line currents will increase uncontrollably.  If the tank voltage is 
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sufficiently higher than the instantaneous line voltage then the line currents can be 

controlled.  To satisfy this requirement the mean tank voltage must therefore satisfy the 

condition: 

(27)  

(28)  

therefore: 

(29)  

where VTank_max is the peak voltage between the tank circuit and the supply neutral and Vs 

is the peak phase voltage of the line-to-line supply voltage.  For a three phase supply 

voltage of 415 vrms line-to-line, the tank voltage must be greater or equal to 921.9 volts 

peak.  1000 Vpeak was therefore chosen as the nominal operating point for the converter. 

6.2.3 Current ripple 

Power quality may be adversely affected by switching power converters connected to it 

and converter designers usually have to meet a ripple current requirement specification for 

converters connected to a power supply or network.  Line current ripple is caused by the 

converter switching action and will occur at the tank resonant frequency.  As this is quite a 

high frequency it should be quickly attenuated by the supply capacitance or line filters.  

From the circuit shown in Figure 15, the current through the input inductors is given by the 

equation [45]: 

(30)  

where is is the line current, Ls is the line inductance, 1 is the tank circuit resonant 

frequency, νs is the instantaneous supply phase voltage, K is the switching coefficient (see 

Table 2) and Vtank_max is the peak tank voltage 

The peak current occurs when: 
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(31)  

Figure 16 shows the waveforms of the 50 Hz line current, I, at an arbitrary time when the 

source voltage is not zero and for the duration of a half cycle of the tank voltage, may be 

assumed to be a constant.  t1 and t2 are the times of the maximum/minimum ripple on the 

line current. 

Figure 16  Ripple in line current 

For the condition when the switching coefficient is zero, K=0, i.e. when the input inductors 

are shorted together by the switching action, Table 2 switch states 7 and 8, integrating (30) 

over a half cycle, t, of the tank circuit voltage, gives the change in line current, Δis: 

(32)  

(33)  

Therefore, evaluating the ripple current for the converter design in [45], for example, with 

a line voltage of 300 V gives: 

(34) Ais 2  

ΔIripple
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Thus, the line currents will increase at the rate of 80 mA/µs. 

For other switch states when K≠0 the change in line current, Δis is given by: 

(35)  

The results of plotting Δis for variations in line voltage are shown in Figure 17.  The 

magnitude of the maximum input current ripple was found to be approximately 2.8 A. 

 

Figure 17  Line ripple current variation with line voltage 

6.3. The Simulink
®
 converter model 

The Simulink
®
 converter model is shown in Figure 15.  It was intended to be quite flexible 

in its design to facilitate the creation of alternative designs.  Considerable use was made of 

the Simulink
®
 Scope and of other monitoring facilities to verify intended operation of the 

converter design.  The component values and the controller coefficients are derived from 
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the MATLAB
®
 workspace after the running of an m-file that declares or calculates their 

values.  The central features of the model are: 

i) a universal bridge 

ii) inductors in the 3-phase supply lines 

iii) a resonant circuit at the bridge output 

iv) the converter control system. 

The converter was current fed and controlled to directly convert the 3-phase 415 V supply 

to a single phase, 1000 V output at 20 kHz into a resistive load. 

The control system model is shown in Figure 18.  It consists of four subsystems: 

i) voltage maximum detection.  This subsystem model detects the time and level 

of the peak of the 20 kHz converter output voltage. 

ii) converter output voltage control.  The subsystem provides either PI (discussed 

in Chapter 5) or H∞ control ( an alternative controller design discussed in 

Chapter 7), selectable prior to running a simulation.  It produces a reference 

supply current for the current controller from the mean level of the converter 

output voltage. 

iii) supply current control.  This subsystem calculates the supply current at the end 

of the next half cycle of the converter output for each of the seven possible 

converter bridge switch combinations.  These values are then compared with 

the current reference produced by the voltage controller to give an error signal.  

The error signals are weighted by an error squared cost function. 

iv) switch vector selector.  The selector model finds the switch combination that 

gives the minimum weighted error and enables the appropriate converter bridge 

switches ready for the next commutation at a zero crossing of the converter 

output voltage. 
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6.3.1 Voltage maximum detection 

The voltage maximum detection model is shown in Figure 19.  Both positive and negative 

peaks of the 20 kHz converter output voltage, Vtank, are detected by this model by 

comparing the relative values of consecutive samples of the output voltage.  Maximum and 

minimum running sample measurements are triggered by a zero crossing of the output 

voltage.  When triggered by the appropriate peak detection signal the peak measurements 

are fixed for half a cycle.  A switch and control logic combine the maximum and minimum 

peak levels to form a composite signal consisting of peak voltages each constant for half a 

cycle of the converter output. 
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6.3.2 Voltage control system 

The converter output voltage is a 1000 V peak, 20 kHz sinusoid.  The voltage control aims 

to keep the mean of the peak output voltage constant by controlling the value of the 

reference for direct current id and details of the voltage control model are shown in Figure 

20.  The reference value of Iq and I0 are set to zero.  The Iq reference is intended to control 

the phase between supply voltage and current in a similar manner to id, but has not been 

implemented in this work.  For a balanced three-phase system I0 is zero. 

The modulus of the converter output, Vtank, is passed through a low pass filter to derive the 

mean level of the output voltage.  It is then compared to the reference voltage, Vtref, to 

produce an error signal for input to the PI or H∞ controller.  The design of these controllers 

was produced off-line prior to running a simulation. 

For convenience of comparing results, the voltage control model allows the manual 

selection of either PI or H∞ control prior to running a simulation.  The transfer functions 

are derived from the MATLAB
®
 workspace.  [The PI voltage controller is a Simulink

®
 

implementation of the analysis previous shown in section 5.2.2 and the H∞ controller is an 

implementation of the designs developed in Chapter 7]. 

The output of the voltage control model is replicated seven times to provide an individual 

reference for each channel in the current controller model. 
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6.3.3 Predictive current control system 

6.3.3.1 Background 

Predictive current control as used in the resonant converter is a form of sliding mode 

control and some further background to this technique is presented.  The choice of sliding 

mode current control for a direct matrix converter is rather an intuitive one.  It meets the 

usual desires for robustness and stability, but because the converter has only seven switch 

states, choosing the one that takes the controlled variable, in this case, line current, closest 

to the desired reference value is a very simple control objective to implement.  In the 

design of power converters, simplicity is often a great advantage.  However, a 

disadvantage is the level of ripple in the chosen variable, but this can usually be set at an 

acceptable level by appropriate design. 

The term ―geometric‖ is often related to ―sliding mode‖ in control systems literature [58] 

as a method of controlling non-linear systems by imposing defined system states by 

specific switching action.  The similarity in power electronic systems can be seen as the 

way in which the switching interacts with the system states.  For example, switch states are 

changed as voltages or currents cross zero, or when a reference voltage crosses a triangular 

waveform in pulse width or phase modulation schemes.  This action is also referred to as 

―boundary control‖ and can be seen in operation in early gunnery control systems, where a 

system of coarse/fine change-over as tracking errors reach set boundaries was used in 

naval gun target tracking and stabilisation systems. 

Hysteresis control is another form of boundary control and often applied to the control of 

power converters.  In hysteresis control, boundaries are usually expressed in terms of a 

single state variable or system output, and control effected by maintaining the variable 

between two, narrowly separated limits by on-off or bang-bang control.  In effect, 

hysteresis control can eliminate output variations other than the ripple caused by the 

control dead-band and is therefore a robust means of control.  Most boundary control 

systems are robust to system uncertainty and provide an immediate response to a system 

disturbance. 
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Hysteresis control is a special case of boundary control employing a single state variable.  

In general, any number of states or combinations of states and boundaries can be used for 

control.  Boundary control uses the ideas of structures in state space with one less 

dimension than the number of states.  So for a two state system, such as the resonant 

converter, the peak level of the output voltage is a system boundary.  For a system with 

more than two states, the boundary becomes a switching surface. 

When studying boundary control it is useful to consider the state trajectories as they cross a 

boundary.  There are three possibilities: 

i) refractive - states evolve in a new direction when they cross the boundary 

ii) reflective - states are redirected back to the boundary when they cross the 

boundary 

iii) rejective - on both sides, states evolve away from the boundary. 

In the reflective case, the system reverses direction when a boundary is reached.  This 

action leads to ―chatter‖ and the system is constrained to move along the boundary thus 

defining a ―sliding mode‖ as described in control literature.  The reversing action of the 

direct converter at zero voltage crossing to maintain the tank circuit oscillating and in 

conjunction with the predictive current control justifies the description of a ―sliding mode 

controller‖. 

Academic groups in the former Soviet Union undertook early work on such systems.  

Discontinuous feedback control strategies first appeared under the name of variable-

structure systems where the control inputs take values from a limited set of defined values.  

Based on these principles, sliding mode control was developed in a seminal paper by 

Utkin, [59].  The essential feature of this method is that a switching surface of the state 

space is chosen to meet the closed loop dynamic requirements.  The main advantages are 

[60]: 

i) its robustness against perturbations and uncertainties 

ii) less information than classical control techniques 



 

 

Chapter 6  Converter modelling and simulation 

 

 

 

(88) 

iii) the possibility of stabilising some non-linear systems that are not stabilised by 

continuous state feedback laws. 

An example of converter control is described in [61], showing sliding motion and direct 

control of a full bridge boost converter.  Here, periodic references were tracked and the 

unstable inductor current was independently regulated at a prescribed level.  The results of 

simulation showed that the system was robust to changes of load. 

6.3.3.2 Simulink current controller model 

The current controller design is a Simulink
® 

implementation of the analysis shown in 

Equation (7), which is repeated here for convenience. 

(36) CBAiVKV
L

I mkiin
rs

i ,,;21
_tan  

The change in current through the input inductors, Δi, during the next half-cycle of the 

output voltage was evaluated for each possible switch state of the converter bridge.  The 

results were then used to predict the average supply current for the next half cycle of the 

output voltage and compared to a reference current generated by the output voltage 

controller. 

The current predictor model is shown in Figure 22.  This model has inputs of: 

i) Maximum tank voltage Vtank_max 

ii) A matrix of coefficients derived from Table 2 for Ki 

iii) Instantaneous value of the 3-phase supply voltage Vabc_1 

iv) Instantaneous value of 3-phase supply current Iabc_1 

v) A 50 Hz reference signal 50 Hz sin_cos 

The model consists of seven similar channels that replicate the evaluation of ΔIi, Equation 

(36), for each possible combination of the switches in the converter bridge circuit.  A sub-

matrix is selected providing the appropriate values 2KiVtank_max for each channel to which is 

added the value of Vabc_1×π.  The resulting value is multiplied by a constant derived from 

circuit component values to give the change in line current, ΔIi.  The change in current is 
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then added to the present supply current to give the predicted average 3-phase current 

during the next half cycle of the converter output voltage.  The predicted 3-phase current in 

each channel is then transformed into the d-q plane by the dq-transform.  The demanded or 

reference current in d-q form is subtracted from each channel output to create a predicted 

error signal, Figure 21.  The seven possible predicted error signals are weighted by an error 

squared cost function Figure 23. 
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6.3.4 Switch vector selector 

The seven weighted error signals are evaluated by the switch selector model, Figure 24, to 

determine the channel that provides the minimum error.  First, the minimum error is 

determined and fed to seven £relational operators‖ so that a logical ―1‖ indicates where 

there is an equivalence of inputs and hence the channel with the minimum error.  All other 

output will remain at a logical ―0‖.  The logical ―1‖ output of the channel that has the 

minimum error is increased by a gain proportional to the channel number.  At the next zero 

crossing of the tank voltage, Vtank. this channel number is used to select a pattern of switch 

states from a look up table that enables the appropriate converter bridge switches. 
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6.4. Simulation of converter operation 

The aim of verification was to compare and contrast the results of the equivalent Simulink
®
 

converter model, using a classical PI controller, with the simulation test results in [45], for 

similar load and demand changes in configurations for: 

i) current control only 

ii) both voltage and current control. 

The model supply voltage, output voltage demand and simulation parameters were set to: 

i) simulation time, Ts, 1.0
-6

 s 

ii) solver type Variable step 

iii) solver ode23t 

6.4.1 Test 1 Current control verification. 

The design aim of the converter control is to maintain a steady tank voltage level and the 

input phase currents at a defined magnitude and phase related to the supply voltage.  To 

verify the current controller operation a simulation without voltage control was first run for 

80 ms duration.  To facilitate this change the voltage control model, Figure 20, was 

replaced by a constant for the demanded line current. 

The test simulations are described with reference to Figure 15.  In this test the converter 

model is configured for forward mode operation with the following initial conditions set: 

i) grid side generator line-line 415 V, 50 Hz 

ii) line current demand 12 A 

iii) fixed load 100 Ω 150 Ω 

iv) switched load cct. breaker closed, open at 50 ms 

v) switched load 100 Ω 300 Ω 
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The simulation was run for 80 ms.  At 50 ms a step change in load from 100 to 150Ω was 

introduced by opening the load circuit breaker thus increasing the load resistance to 150 Ω 

and increasing the load voltage while maintaining the load power.  The results, showing 

the converter output voltage and 3-phase input currents, are shown below in Figure 25.  

The mean of Vtank peak is approximately 1100 volts and is consistent with a peak input 

current of 12 amps.  An expanded view of the output voltage shows a sinusoidal waveform 

with a small amplitude difference between successive peaks.  The variation is more evident 

in the full view where it appears as a ragged edge to the voltage peaks.  It is caused by the 

errors in the predicted current and the limited options of voltage applied to the tank circuit.  

At the change of load, the load resistance is increased hence, as the converter current is 

expected to remain constant, the output voltage must increase to approximately 1300 V.  

The change in voltage is rapid and with not observable overshoot. 

The three-phase grid current waveform also shows a high frequency ripple as a result of 

the switch of the converter bridge.  The grid current signal could have been filtered to 

provide a cleaner waveform and one that made the measurement of the amplitude more 

straight forward, but the visibility of the ripple current was considered to be useful 

indication of the correct operation of the converter, hence retained, and the mean amplitude 

was estimated as 11.6 A, close to the demanded 12 A.  This procedure is used consistently 

throughout this thesis. 

These simulation results show good agreement with those from [45], which are shown in 

Figure 26 for comparison. 

A plot of single phase input voltage and current, Figure 27, shows the voltage and current 

in phase and good agreement with the results from [45], which are shown in Figure 28 for 

comparison. 

  



 

 

Chapter 6  Converter modelling and simulation 

 

 

 

(97) 

  

 

F
ig

u
re

 2
5
  
S

im
u

li
n

k
 c

o
n

v
er

te
r 

m
o
d

el
 t

a
n

k
 v

o
lt

a
g
e 

w
it

h
 p

re
d

ic
ti

v
e 

co
n

tr
o
l 

o
n

ly
 



 

 

Chapter 6  Converter modelling and simulation 

 

 

 

(98) 

  

                                                 

 

6 [45] Figure 5.8 page 102. 
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7 [45] Figure 5.9 page 103. 
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6.4.2 Test 2 Voltage and current control 

The second verification simulation used both line current control and output PI voltage 

control.  PI voltage control was selected by ―Selector controller ― switch shown in the 

voltage control model, Figure 20.  The PI control provides a demand current reference to 

current control so that the converter output voltage, Vtank, is kept close to a constant mean 

peak level. 

The test simulations are described with reference to Figure 15.  In this test the converter 

model is configured for forward mode operation with the following initial conditions set: 

i) grid side generator line-line 415 V, 50 Hz 

ii) Vtank_ref 636.6 Vmean 

iii) fixed load 100 Ω 100 Ω 

iv) switched load cct. breaker closed, open at 40 ms 

v) switched load 100 Ω 100 Ω 

First the simulation was run for approximately 40 ms then the load circuit breakers opens 

resulting in a step change of load, from 100 to 50 ohms.  At approximately 80 ms, a 

manual change to the demanded output voltage, 636.6 to 826.8 Vmean, was made. 

The results of the simulation are shown in Figure 29.  They show good agreement with the 

results from [45], which are shown in Figure 30 for comparison.  It is difficult to make 

accurate measurements from these traces therefore all measured values are treated as best 

approximations.  The simulation starts from zero initial conditions and therefore the 

voltage and current variations in the first few mille-seconds of the results are numerical as 

a result of the start-up transient and are generally ignored.  Up to 40 ms the Vtank trace 

shows good voltage control with the amplitude approximately 1069 V, a little higher than 

the demanded.  At 40 ms the voltage trace dips to 930 V and then recovers to 1100 V 

without significant overshoot.  A similar increase in voltage outcome is shown in the 

reference trace, Figure 29.  The reason for this discrepancy is that the PI controller was 

designed for small perturbations around full load, but the change in load was large and 

therefore the controller is no longer operating at its design point. 
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On application of the step change in demand to 1300 V, the output voltage rises and 

overshoots to approximately 1535 V and recovers to 1488 V whereas the reference trace, 

Figure 29, is under-damped but has a similar change in final voltage possible due to 

additional damping introduced for the demonstration model. 

However, these responses indicating that the Simulink
®
 model was a reasonable 

representation of the results from the simulations and demonstration model given in [45] 

and would be the basis of comparisons for alternative controller designs. 
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8 Dang‘s Thesis [45] Figure 5.14 page 108. 
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6.5. Summary 

The above results gave sufficient confidence in the verification tests that the Simulink
®
 

converter model could be used as a test vehicle for advanced controller designs and for 

building an Active Transformer model for further simulation.  The key characteristics 

required for the converter controllers are summarised as: 

i) to maintain strong oscillations, reverse the voltage across the resonant circuit 

every half cycle 

ii) select a switch vector with reference to the state/phase of the supply voltage 

that minimises input current error with respect to a reference determined by the 

voltage controller 

iii) maintain the peak output voltage within ±10% for loads of 10 – 200%, and for 

changes of load of 100-200% and 100-10%.  These loads changes are very 

severe.  The change from 100 – 200% load would never happen under normal 

operating conditions but is regarded as a withstand test to demonstrate 

robustness or survivability of abnormal conditions.  The sudden change from 

100 to 10% is more likely to occur than the previous conditions as a result of 

fault clearance or restoration actions on a network. 
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Chapter 7.  

Converter Advanced Control 

Studies 

7.1. Introduction 

 number of modern control methods are available in control literature, however 

this thesis concentrates on the use of an H∞ method as applied to the control of 

the converter output voltage.  This chapter describes the application of an 

alternative controller design method based on the H∞ technique and a design procedure 

described by Skogestad and Postlethwaite [52].  It presents the results of simulations using 

a resonant converter model and compares the performance of the PI and H∞ controllers. 

Modern control methods provide an approach where a number of objectives of the control 

problem can be simultaneously addressed.  Classical control can be effectively applied to 

many SISO control design problems providing robust designs that were proven in many 

naval gun control applications, but modern control methods address a wider class of 

control problems including the more complicated structures such as MIMO systems. 

Analysis of the classical converter PI voltage controller has shown a potential problem of 

instability at light converter loads and an alternative controller is the main subject of this 

chapter.  The converter control requirements necessitate a multi-variable control system 

approach, but to aid an early appreciation of the H∞ technique the requirements were 

restricted to a single-input single-output system and a step-by-step approach was adopted. 

The first step was to design a H∞ controller using the loop-shaping design procedure in 

[52] and the original PI controller gains as a weighting function, effectively wrapping the 

PI design in an H∞ controller.  The next step was to adjust the weights to improve robust 
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performance.  Uncertainty modelling was used to choose appropriate weights and ensures 

that the controller was robust and able to deal with the uncertainties of the load that appear 

in the linearised converter transfer function.  The Simulink
®
 converter model was used to 

verify the new controller‘s performance and compare it to the performance of the original 

PI controller. 

7.2. H∞ controller 

7.2.1 Background 

The H∞ norm of a stable scalar transfer function f(s) is equal by definition as the peak value 

of the | f(jω) |: 

j
f

s
f max

)(
 

In the early 1980s the poor robustness properties of Linear Quadratic Gaussian (LQG) 

control [62] led to the further development of H∞ optimisation for robust control.  Since 

that time H∞ has become a widely used method in the design of control systems generally, 

but in high power electronic applications, it is only relatively recently that designers are 

beginning to apply it to robust drive systems [63] and d.c.-a.c. converters [64], perhaps 

because of its frequency-domain nature and ready inclusion of uncertainty [65]. 
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There are many ways in which the design of feedback controllers can be formulated using 

H2 (efficient with stochastic control specifications) or H∞ (efficient with deterministic 

control specifications) optimisation and it is useful to have a systematic way of describing 

the design problem in which any specific problem may be solved [52].  Such a system may 

be described by a general system shown in Figure 31. 

A system P is described by: 

(37) 
u

w

sPsP

sPsP

v

z

)()(

)()(

2221

1211
 

(38) vsKu )(  

with a state-space realisation of the system given by: 

(39) 

22212

12111

21

DDC

DDC

BBA

P
s

 

i.e   

 

Figure 31  General system control configuration (Generalised regulator) 
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where the signals are: u the control variables, v the measured variables, w the exogenous 

signals e.g. disturbances wd  and commands r , and z the so-called ―error‖ signals that are 

to be minimised to meet the control objectives.  The closed loop transfer function from w 

to z is given by the linear fractional transformation (a way of representing a closed loop 

system with plant and controller integrated): 

(40) wKPFz l ),(  

where: 

(41) 21
1

221211 )( PKPIKPPFl  

H∞ control aims to minimise the H∞ norms of Fl(P,K). 

7.2.2 H∞ loop-shaping 

Classical loop-shaping shapes the magnitude of the open-loop transfer function and the 

designer aims to obtain a desired bandwidth, slope etc.  It is difficult to apply to complex 

systems and therefore the step-by-step loop-shaping design procedure, described in 

Skogestad & Postlethaite‘s excellent and very readable book, [52], is used in this thesis and 

which is based originally on the work of McFarlane and Glover [66] ―H∞ robust 

stabilisation combined with classical loop-shaping‖.  Readers are referred to these texts for 

an in-depth understanding.  The key mathematical analysis needed to understand the 

application of robust stabilisation is given in 7.2.4. 

The H∞ loop-shaping design process has two stages: 

i) the open-loop system is augmented by pre- and post-compensators to give the 

required open-loop frequency response.  The pre-compensator or weighting 

function was initially chosen as the original PI controller transfer function. 

ii) the resulting shaped system was robustly stabilised with respect to the general 

class of coprime factor uncertainty using H∞ optimisation. 
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7.2.3 Loop shaping 

Figure 32  Shaped plant and controller 

Shaping of the plant open-loop transfer function, G, is achieved with the use of weighting 

functions W1 and W2, or pre and post processors respectively.  The ―shaped‖ plant transfer 

function Gs is shown in Figure 32(a) and the system implementation, with the weighting 

functions absorbed into the controller, is shown in Figure 32(b).  Gs is given by: 

(42) 12GWWGs  

Omitting the Laplace ―s” for clarity, the controller, K, for the original plant G is then: 

(43) 21 WKWK s  

Plant and final 

controller 

Shaped plant and 

designed controller 
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In this analysis it is important to recognise that the system must have stable co-primes.  

Coprime means having no common factors and is an alternative way to represent a system 

transfer function.  Consider the system transfer function (having an unstable zero): 

 

This may be represented in coprime (factors have no common unstable zeros) form by: 

 

For example: 

 

Here both coprimes are first order polynomials, are stable and do not contain any common 

factors. 

In considering the converter, it is clearly non-linear with a resonant circuit at its output.  

However, the linearised transfer function, equation (9), is stable. 

7.2.4 Robust stabilisation 

Classical gain and phase margins are unreliable indications of stability in multivariable 

systems because simultaneous changes may be occurring in each loop.  Stability and 

coprimeness imply that there are no right-hand plane zeros in the co-primes that would 

result in pole cancellations when describing a transfer function. 

The following analysis develops the equations necessary for the design of a stable and 

robust controller.  It is an integral part of the design procedure used in section 7.2.5.  The 

coprime uncertainty description provides a good generic uncertainty model for systems 

where there is little or no prior information regarding the uncertain parameters. 

Consider the stabilisation of a system G(s), Figure 33, which has normalised left coprime 

factorisation where the subscript l has been omitted for clarity: 
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Figure 33  H∞ robust stabilisation problem 

(44) )()()( 1 sNsMsG  

where M and N are coprime if and only if they have no common right-hand-plane zeros, 

including the point s=∞.  Therefore, there exists a stable U(s) and V(s) such that the 

following Bezout identity is satisfied: 

(45) IMVNU  

We can therefore describe a perturbed system Gp as: 

(46) )(1
NMp NMG  

where ∆M and ∆N are stable unknown transfer functions representing the uncertainty in the 

system, Figure 33.  Here the object is to stabilise the system Gp defined by: 

(47) MNNMP NMG :
1  

where ε > 0 is then the margin of stability. 

To maximise the stability margin is the problem of robust stabilisation of coprime factor 

systems that was solved by Glover and McFarlane [67].  For the system shown in Figure 
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33, the stability characteristic is stable ―if and only if‖ (iff) the original feedback system is 

stable and: 

(48) 1
)( 11 MGKI

I

K
K

 

where γK is the H∞ norm from Ф to 
y

u
 and 

1
GKI  is the sensitivity function for a 

positive feedback system.  The lowest achievable value of γK and the corresponding 

maximum stability margin ε are: 

(49) 
5.05.021

maxmin ))(1(1 XZMN H  

where 
H

.  represents the Hankel norm [52], ρ denotes the spectral radius (maximum 

eigenvalue), and for a minimal state-space realisation (A,B,C,D) of G. 

Z is the unique positive definite solution to the algebraic Riccati equation: 

(50) FilterBBSCZRZCCDBSAZZCDBSA TTTTT ;0)()( 1111
 

where: 

(51) DDISDDIR TT ,  

and is the unique positive definite solution of the following algebraic Riccati equation: 

(52) ControlCRCXBXBSCDBSAXXCDBSA TTTTT ;0)()( 1111
 

For a strictly proper plant (when D=0), the formulae simplify. 

A controller, which guarantees that: 

(53) 11)( MGKI
I

K
 

for a specified γ>γmin is given by: 
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(54) 
TT

TTTTs

DXB

ZCLDFCZCLBFA
K

1212 )()()(
 

Which has the general form: 

 

(55) )(1 XBCDSF TT
 

(56) XZIL )1( 2
 

MATLAB statements, used in subsequent m-files, for the design of the controller Ks are 

listed in Appendix C.2. 

7.2.5 Systematic H∞ loop-shaping controller design procedure 

The design approach is rather adhoc in choosing the weighting functions, usually some 

initial aspects of equivalent classical control is used and further changes applied iteratively.  

There have been attempts at building a more systematic selection procedure and in this 

context the following procedure, based on [52] was used for the design of the controller. 

i) The converter outputs were scaled using normalisation. 

ii) Diagonalisation was recommended but for a SISO system this was 

unnecessary. 

iii) The pre-and post compensators, W1 and W2 were chosen for the ―shaped 

plant‖, Gs=W2GW1 where W1=WpWaWg.  This involves some trial and error.  

W2 is usually chosen as a constant to reflect the relative importance of the 

controlled system outputs, with only one output, W2 was set to equal one.  The 

pre-compensator, Wp, contains the dynamic shaping, i.e. high-gain integral 

action for low frequency performance, phase advance or phase lag as for 

classical control etc.  (Some time was spent in this activity and a variety of 

compensators were initially chosen, including low-pass and band-pass filters 

with various centre frequencies, to see their effect on performance.  However, 
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most of these were based on trial and error and proved unsatisfactory and later 

abandoned.) 

iv) The PI controller had good robustness near its design point and this seemed to 

offer a useful starting point for the weight W1for the H∞ design. 

v) The singular values were aligned at a desired bandwidth using a further 

constant weight contained if Wa.  (This optional step was quite useful as it 

simply adjusted the controller gain.) 

vi) Wg was an optional gain introduced to provide control over actuator usage.  For 

the SISO system under consideration. 

vii) The shaped plant, GS=W2GW1, was robustly stabilised.  The maximum stability 

margin εmax=1/γmin.  If the margin was too small, <0.25, then modify the 

weights, otherwise select γ> γmin by about 10% and synthesise the controller 

using the procedure given in C.2. 

viii) The design was analysed and compared with the performance specification, 

and weights adjusted for any improvements required. 

ix) The controller was implemented in the system model. 

Initially, the controller was designed at the full load condition, 100 Ω, without the 

measurement filter characteristics in order to make a comparison with [45], and 

subsequently redesigned with the filter characteristics included in the converter model.  

Finally, the controller was designed at a 10% load, 1000 Ω, condition.  Closed loop step 

response simulations using the MATLAB
®
 model, were compared to those of the original 

PI controlled system. 

7.3. Controller designed at 100% converter load 

7.3.1 Converter model without measurement filter 

The design procedure requires the controller designer to choose appropriate weighting 

functions and adjust these for the required system performance.  This is a rather arbitrary 

task.  The weight W1 contains the dynamic shaping.  In the classical design the PI 

controller provided good robustness against small perturbations near the operating point 
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and this seemed a reasonable starting weight for the H∞ controller design.  The use of the 

classical PI gains also enabled a comparison to be made with the original system 

performance.  Using the design procedure, the resulting H∞ controller transfer function at 

the full load design point was: 

(57) 
79243

112733

10882.110882.110516.7

10957.110833.1229001174.0

sss

sss
K  

This is in fact a more complex controller than the original PI controller: 

(58) 
s

s
K PI

100002.0
 

The frequency response of each controller is shown in Figure 34.  The shapes of the gain 

responses are very similar but the phase responses are quite different and thus have quite 

different dynamic effects on the converter.  Notably the phase advance of the H∞ controller 

occurs at a much lower frequency than in the PI controller and therefore the H∞ controller 

is expected to have a faster response time.  The additional complexity would be acceptable 

provided an improved system performance was achieved. 
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The H∞ controller design aims to improve system robustness without degrading 

performance.  Using the the design procedure, the bandwidth weighting Wa, an element of 

W1, Figure 32, was varied to investigate its effect on the overall system performance and 

the results recorded in Table 3 below. 

Table 3 Variation of stability margin with bandwidth weighting Wa 

All the above results with a stability margin greater than 25% are acceptable designs and 

an example of the loop shapes resulting from the design procedure are shown in Figure 35.  

The ―H∞ wrapping‖ has reduced the loop gain and reduced the cross-over frequency to 

3.74 krads/s, but did not significantly alter the overall shape of the response.  For step 

changes in demand, controllers using the lower values of bandwidth weighting produced a 

sluggish system performance while those using the higher values tended to give an 

oscillatory response, particularly for high values of RL (low loads).  Wa was therefore 

chosen as 2.5 to give an acceptable performance and approximately 42% co-prime stability 

margin. 

Figure 36 shows the closed-loop system step responses, from a MATLAB
®
 simulation of 

the voltage control system described by (9), the original Proportional plus Integral (PI) 

 
Converter model without 

measurement filter 

Converter model with 

measurement filter 

Wa γmin 
Maximum 

stability margin 
γmin 

Maximum 

stability margin 

1.5 1.9891 0.5027 2.771 0.361 

2.0 2.1869 0.4572 2.851 0.351 

2.5 2.3872 0.4189 2.91 0.344 

3.0 2.5896 0.3862 2.95 0.339 

4.0 3.0003 0.3333 3.01 0.332 

6.0 3.8434 0.2602 3.09 0.324 
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controller and the H∞ controller for load changes from 50 Ω, (twice full load) to 100 kΩ.  

Notably, the H∞ controller produces significant beneficial improvements, Table 4: a faster 

response, less overshoot and great damping for light loads.  However, the overshoot is still 

greater than 50% where less than 20% would be a reasonable design aim. 

Table 4  Comparison of Time responses – 100 kΩ load 

Controller 
Maximum 

overshoot 
Rise time Settling 

PI 82% 0.28 ms >7 ms 

H∞ 64% 0.24 ms 3 ms 
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Using the non-linear converter model developed in Chapter 6, simulations of step changes 

in loads, similar to those in Chapter 6.4.2 from 100 Ω to 150 Ω and a change of demand 

from 1000 V to 1300 V, were made to compare the performance of the PI and H∞ 

controller. 

The model simulation parameters used in this chapter were set to: 

i) simulation time, Ts, 1.0
-6

 s 

ii) solver type Variable step 

iii) solver ode23t 

In the following controller simulations the converter model, Figure 15, is configured for 

forward mode operation with the following initial conditions set for the initial step 

changes: 

i) grid side generator line-line 415 V, 50 Hz 

ii) Vtank_ref 636.6 Vmean 

iii) fixed load 100 Ω 100 Ω 

iv) switched load cct. breaker closed, open at 40 ms 

v) switched load 100 Ω 100 Ω 

and, additionally for the load change to 10% simulation: 

i) fixed load 100 Ω 1000 Ω 

ii) switched load cct. breaker closed, open at 20 ms 

iii) switched load 100 Ω 1000/9 Ω 

For the PI controller, Figure 37 shows the simulation results of step changes and similarly, 

Figure 38 shows the results for the H∞ controller.  These figures show well behaved 

responses with similar results to those described in Chapter 6.4.2. 
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Load throwing is a test often applied to converters during development to verify their 

robustness and response to abnormal conditions.  This strategy was also applied to the 

models developed in this research. 

Using the same controller designs as used above, Figure 39 and Figure 40 show the tank 

voltage and supply currents responses to a larger step change in load, from 100 Ω to 1000 

Ω, which is equivalent to a load change from 100 to 10%.  The results for the two 

controllers are similar, but are far from satisfactory responses.  Recall that the SISO design 

model includes a varying RHP zero.  Although the H∞ controller produces better results 

than the classical PI approach, being a SISO controller design its performance will still be 

constrained by the RHP zero characteristics [68].  Further remarks on the above issues are 

discussed in Chapter 7.4 (uncertainty and choice of design model).  Up to 20 ms the 

responses are as for normal operation at 100% load.  On the load change at 20 ms the 

converter output voltage rises to 2000 V amplitude before recovering into an irregular 

regime with large variations in amplitude.  The line current response shows a similar 

pattern and clearly this mode of operation does not meet the design expectation for control 

of the average peak voltage on a half cycle basis. 

Both responses are unacceptable and sufficient robustness has not been achieved with 

either controller design.  The converter model used for the design of the voltage control 

loop is a first order, non-minimum phase model and does not represent the practical 

converter in sufficient detail, and it should include the feedback measurement dynamics.  

An alternative converter model was therefore derived that included the measurement low 

pass filter used in [45]. 
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7.3.2 Converter model including measurement filter 

In the transfer function (9), the converter output voltage, Vtank_avg has no dynamics whereas 

in practise, it is derived from a measurement of the peak tank voltage and the measurement 

circuit uses a low-pass filter.  The dynamics of the filter should be taken into account as 

part of the system transfer function in the controller design.  A 500 Hz first order low pass 

filter was therefore used, thus avoiding the addition of further unknown dynamics in the 

uncertainty of the model: 

(59)  

The PI controller was retuned using MATLAB
®
 Sisotool for this new converter model, 

which resulted in revised controller gains as shown in Table 5 below. 

The design of an H∞ controller was repeated using the new PI gains and the stability 

margins recorded in Table 2 above for comparison with the original design.  The effect of 

including the measurement filter in the converter model was to reduce the stability margin.  

However, within the range of weighting functions used, the results fell well within the limit 

recommended, gammin < 4.0 and indicated a robust design. 

The shaped loop singular values were plotted for the revised converter model, which now 

included the measurement filter and a revised H∞ controller, Figure 41.  Because of its low 

frequency characteristic, the filter now dominates the converter responses, reducing the 

system gain, particularly at high frequencies.  The cross-over frequency is much reduced at 

1.5 krads/s but the characteristic has a smaller angle at the cross over frequency, which 

results in a slow response to changes of load.  The slower response of both controllers is 

clearly shown in the step responses, Figure 42, but this is somewhat academic because for 

large changes of load large, i.e. to 1 kΩ and 100 kΩ, the system output is increasing with 

time and therefore unstable. 

The non-linear simulations from Chapter 7.2.6 were repeated using the revised controller 

designs, Figure 43 and Figure 44, and as anticipated also showed a slower system response 
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to step changes when compared to the results shown in Figure 37 and Figure 38 

respectively. 

 

Table 5  PI Controller gains 

Gain PI gains for converter 

model without 

measurement filter 

PI gains for converter 

model with 

measurement filter 

Kp – proportional gain 0.002 0.000734 

Ki – Integral gain 100 36.7 
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7.3.3   

F
ig

u
re

 4
4
  
C

o
n

v
er

te
r 

m
o
d

el
 w

it
h

 m
ea

su
re

m
en

t 
fi

lt
er

 –
  
H

∞
(1

0
0
) 

st
ep

 c
h

a
n

g
es

 

 



 

 

Chapter 7  Converter advanced control studies 

   

 

 

(134) 

7.3.4 Load changes from 100 to 10% 

Using the non-linear converter model with the PI and H∞ controllers designed at full load 

(100 Ω) to include the measurement filter, the converter model was again subjected to a 

large step change of load from full load, equivalent to 100 -10% load change.  Figure 45 

and Figure 46 show the tank voltage and supply currents responses to the step change in 

load from 100 Ω to 1000 Ω at 20 ms.  Both controllers produce satisfactory steady state 

control at full load but after the change of load both controllers exhibit large variations in 

the amplitude of the converter output voltage, which again do not meet with the 

requirements for control of the average peak voltage and thus the use of classical PI gains 

in as weighting functions in the design of an H∞ controller in this instance did not produce 

an acceptably robust system design.  Some further analysis and refinements of the 

weighting functions are needed. 
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7.4. Uncertainty modelling 

7.4.1 Controller designed at 10% converter load 

To improve performance the controller design point was changed from full load, 100 Ω to 

1000 Ω and the PI controller retuned using MATLAB
®
 Sisotool for this new converter 

model, which resulted in revised controller gains as shown in Table 5.  The shaped system 

singular values were again plotted and are shown in Figure 47. 

With this revised controller design the cross-over frequency of the loop is greater than the 

two previous results at 4.5 krads/s and again close to that of the shaped system.  The angle 

of the response at cross-over is much gentler indicating wider bandwidth, gain and phase 

margins.  The corresponding step response results are shown in, Figure 48, which shows 

that the H∞ controller is less oscillatory with light loads but at the expense of an over- 

damped response at 50 and 100 Ω loads.  The initial rate of change of output voltage (100 

kΩ load) was 4.2 V/µs compared to 4.8 V/µs for the original PI controller.  The 

corresponding comparison of time responses in shown in and Table 6, again indicating 

good improvement in performance, if at the expense of a slower rise time. 

Table 6  Comparison of time responses – 100 kΩ load 

Controller 
Maximum 

overshoot 
Rise time Settling 

PI 

(original design) 
82% 0.28 ms >7 ms 

H∞ 64% 0.32 ms 2.5 ms 

 

The Simulink
®
 simulations were repeated for step changes from full to 10% load.  Figure 

50 shows the performance of the revised H∞ controller design and compared to the 

performance of the PI controller, Figure 49, shows a more consistent steady-state level 

without any pronounced variations.  The mean peak tank voltage is a little higher at full 

load before the load change, estimated as 1015 V peak, but afterwards, is very close to the 

demanded 1000 V.  The rise in tank voltage at the change of load is interesting as its 
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amplitude seems unaffected by any of the voltage controller designs.  Its duration for the 

H∞ controller, however, is 1 ms compared to 3.5 ms for the PI controller and may well be a 

function of the coarse current control, changes to which are outside the scope of this work. 
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7.4.2 Multiplicative Uncertainty 

An H∞ controller, designed using Mcfarlane and Glover‘s loop shaping approach [66], was 

chosen to provide improved robustness over that provided by a classical PI controller as 

robust stability is an integral part of this procedure.  One measure of the robustness of a 

control system is its insensitivity to differences between the model used for analysis and 

control design and the real system, or to paraphrase, its uncertainty model.  Its robustness 

properties, in dealing with the uncertainties of the converter load that appear in the 

linearised transfer function of the converter, are a key consideration in choosing an 

appropriate control methodology. 

Real systems contain frequency-dependant or dynamic uncertainty where the model lacks 

unknown system dynamics or lacks a true understanding of the detailed system 

characteristics.  A power converter when connected to an uncertain load is a good example 

of such a type of model uncertainty.  The uncertain load generates an uncertain pole, gain 

and importantly a right half plane zero in the converter transfer function. 

The various sources of uncertainty are often lumped together into Multiplicative 

uncertainty.  Multiplicative (or relative) uncertainty is often preferred and is expressed as: 

(60)  

With a rational weight: 

(61)  

Where lI is the value of the relative errors of all possible systems as a function of ω, Gp is 

the transfer function of the perturbed system, G is the transfer function of the original 

system.  Equation (61) then represents a weight, or desired transfer function, that embraces 

all the family of possible systems due to the uncertainty. 

In the design of an H∞ controller a family of perturbed system transfer functions is often 

used for uncertainty modelling, but in this investigation, we have chosen two plant transfer 

functions at the extremes of expected normal load conditions to represent the system 
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uncertainty.  Understanding the performance differences between the two controller 

designs is fundamental to good design practice. 

Using the Multiplicative Uncertainty model from (60) a frequency response of relative 

errors was plotted using each model in turn as the nominal plant and the other as the 

perturb plant and the results are shown in Figure 51.  The converter control system was 

designed using positive feedback and, for the system designed at full load, the uncertainty 

response lies above 0 dB for low frequencies.  This indicates that an integrator in the H∞ 

weighting function, W1, is not appropriate, because when closing the control loop, the 

system would still have positive gain at these frequencies.  Alternatively, with the system 

designed at 10% load, the uncertainty response lies below 0 dB for low frequencies, 

indicating an integrator in the H∞ weighting function, W1, is feasible.  For the converter 

controller, integral action is required in order to provide zero error between the tank 

voltage and reference. 

From Figure 51 it was also recognised that there was a threshold design point between 

stable and unstable operation and this was found to be for a load of approximately 200 Ω, 

which is much less than 350 Ω indicated by the simple analysis shown in Chapter 5.2.2. 

The choice of a design point at 10% load ensured a sufficiently low resistance to 

demonstrate a large step change in load.  In a practical design, an analysis with the real 

load would be necessary to provide a more optimum design point or a limit to load 

excursions. 
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7.4.3 Inverse Multiplicative Uncertainty 

Reference [52] suggests an alternative approach for cases of pole uncertainty, as is the case 

of the converter, which is well represented by inverse multiplicative uncertainty that can 

represent complex perturbations.  The inverse multiplicative responses for the two systems 

are shown in Figure 53.  These are simply the inverse of those shown in Figure 51.  

However, the aim of the controller design process is to guarantee robustness and stability 

in the presence of uncertainty and the necessary conditions for this are derived in the 

analysis below.  

Figure 52  Feedback system with inverse multiplicative uncertainty 

A representation of inverse multiplicative uncertainty, Figure 52, is given by: 

(62) 1)(;))()(1)(()(: 1 jsssGsG iIiIiIpiI  

Where: 

 is a set of possible perturbed system models, (the nominal model) G(s) , (the 

perturb model) Gp(s)  and )(sI  is any stable transfer function where its magnitude at 

any frequency is ≤ 1.  ωiI is the magnitude of the system uncertainty expressed at each 

frequency, e.g. uncertainty response of relative errors.  The subscript I denotes ―input‖, but 

for a SISO system the perturbation may be considered at the system input or output. 
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Assuming that the perturbed loop transfer function, Lp, is stable, then robust stability is 

guaranteed if the encirclements by Lp(jω) of the point -1 are avoided, hence: 

(63)  

(64)  

(65)  

The worst case for Equation (65) is when |ΔiI| = 1 and when (1 + L) and ωiIΔiI have 

opposite signs, thus: 

(66)  

(67)  

where S is the sensitivity function.  Thus, the condition for robust stability with inverse 

multiplicative uncertainty gives an upper bound: 

(68)  

At frequencies where the uncertainty is large and  is greater than 1, the system 

sensitivity, S, must be made small.  For system such as the power converter, this is not 

always possible because of the right-hand-plane-zero (RHP-zero), which constrains S = 1 

and therefore requires that: .  The result is that there can not be large pole 

uncertainty where a system has a RHP-zero. 

Figure 54 shows the sensitivity of the closed-loop systems for the H∞ controllers designed 

at 100% and 10% load constrained to 1 at high frequencies and , thus meeting 

the robustness requirements.  Using the inverse multiplicative uncertainty model, a 

designer would normally choose a weight closer to the sensitivity function response than is 

shown in Figure 54 to ensure that the system performance (bandwidth) was not overly 

degraded.  Increasing the gain in the weight by a factor of ten brought the frequency 

response of the weight closer to the sensitivity responses, and increased the system 

bandwidth from 3.4 to 8.3 krads/s.  However, using the increased gain in the controller 
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weight was subsequently shown to cause severe fluctuations of the converter output 

voltage when used in the Simulink
®
 converter model and thus was not used in the final 

design. 
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7.5. Summary of Advanced Control Studies 

The design of a resonant converter controller for application in a power system Active 

Transformer has been investigated.  PI and H∞ controllers were designed and their 

performance compared.  The results of the comparison showed that the H∞ controller had 

an improved performance to a series of step changes in load up to 100 kΩ.  These are 

summarised in Table 7.  For a step change to 100 kΩ, the final design of the H∞ controller 

produced a slightly slower rise time than the original PI controller, but higher damping of 

subsequent oscillations.  The cost of this improvement was an over damped response at 

loads of 100% and greater.  When used in the non-linear converter model, it provided a 

similar response to that of the PI controller for a load increase of 100% and for a demanded 

30% increase in output voltage. 

Table 7  Summary of time responses 

Controller 
Maximum 

overshoot 
Rise time Settling 

PI 

(original design) 
82% 0.28 ms >7 ms 

H∞ 
(100 Ω design point) 

64% 0.24 ms 3.0 ms 

H∞ 

(1 kΩ design point) 
64% 0.32 ms 2.5 ms 

 

For large load changes, e.g. 100 to 10%, both the PI and the H∞ controllers, designed at 

100% load, were unstable after the load change.  The H∞ controller was redesigned at the 

10% load condition resulting in a stable response, both at full load and 10% load.  The step 

response results are again shown in Table 7.  The difference in performance between the 

H∞ controller designs at the selected design points was reviewed using uncertainty 

modelling of the system.  Using a multiplicative uncertainty model, the system designed at 

full load had gain positive relative errors at low frequencies and therefore should not be 

used with integral action in a positive feedback controller as it would produce positive low 

frequency gain when the loop was closed.  Recall that for a tracking system the closed loop 

transfer function (complementary sensitivity) touches the 0 dB at low frequencies.  
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However, this is not possible for the above model choice (inverse of the uncertainty bound 

is below 0 dB).  The uncertainty model of the system designed at 10% load had negative 

relative errors at low frequencies and therefore integral action was appropriate as the 

inverse of the uncertainty bound was above 0 dB.  The threshold design point between 

stable and unstable operation was found to be a load of approximately 200 Ω, which was 

much lower than the 350 Ω identified as the threshold of marginal stability by the simple 

analysis in Chapter 5.2.2. 

The choice of a PI function for the weighting in the H∞ controller appeared a logical 

choice, but in fact was rather an arbitrary one and therefore, the ―inverse multiplicative‖ 

approach recommended in [52] was also used as a design procedure to choose a suitable 

weight.  The PI gains from the original controller design used as the H∞ weighting 

function produced the appropriate frequency response but with a low bandwidth of 3.4 

krads/s.  Increasing the gain in the weight by 10 produced an inverse weight response 

closer to the system response as suggested by the approach.  Although a bandwidth of 8.3 

krads/s was achieved, which may have indicated an improved transient performance, the 

system actually produced unstable responses when used in the Simulink
®
 converter model 

indicating too much system gain. 

For the resonant converter, the use of a prior PI controller design at full load as the 

weighting function in an H∞ controller design proved to be a successful start and is 

therefore recommended as an additional step in the general procedure for the design of 

converter controllers.  The subsequent change to a design point less than full load to 

facilitate the use of integral action was found to be necessary and may well be a more 

general requirement for power converter designs to avoid poor load throwing performance. 

Using the Simulink
®

 converter model a step change of load to 10% load was successfully 

simulated.  Both controller designs produced an initial over-shoot of the converter output 

voltage to a step change in load, usually in excess of 150%, which, for a practical 

converter, would prove to be a design limitation.  Variations of the voltage controller 

design appeared to have little effect on the amplitude of the initial overshoot, which is the 

effect of the varying RHP zero in the system and a further analysis might be required to 
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quantify these effects.  However, the addition of more measurements in the controller 

could solve the problem and this is suggested as further work. 
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Chapter 8.  

Active Transformer 

8.1. Introduction 

he principal aim of this research project was to demonstrate, using simulation 

techniques, the feasibility of the Active Transformer.  This chapter contains a 

description of the development of Active Transformer model and presents the 

results of simulations including demand and load changes but note that only the H∞ 

controller designed for the 10% load point is used for work in reported in this chapter.  A 

simulation to demonstrate the reversal of power flow is also presented. 

The proposed application of the Active Transformer was an interface between the Grid 

side of a network and a Distribution Network cell as a means of providing improved 

network management and control in a network with revised architecture.  It could also be 

used to control bi-directional power flow between a power cell and the network, or a large 

wind farm.  In a future network of power cells characterised by high penetration levels of 

distributed generation, variable cell loads would be satisfied: 

i) by the locally connected wind or other renewable energy generation, which is 

likely to be variable 

ii) by power drawn from the network via the active transformer 

to automatically achieve a balance between power supply and demand while maintaining 

cell voltages at supply standards.  At times of excess power generation capacity in the cell, 

and rather than balancing the cell load/generation by generation curtailment, real and/or 

reactive power could be stored, traded and exported via the active transformer.  The Active 

Transformer may also provide a means of controlling and stabilising distribution network 

voltages and limiting, or isolating, fault currents in either direction should the need arise.  

T 
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An ―islanded network‖ control capability may also be achieved although the distribution 

side converter would use a different method of control from the one described in this 

research.  Whatever the application, the key to the exploitation of the Active Transformer 

is its versatility and controllability. 

An Active Transformer enables the control of power flow, whether it is required to flow 

from the Grid side (supply side) in the forward direction to the distribution network side 

(load side) or vice versa in the reverse direction from the distribution network to the 

transmission network.  This implies that the converter design should be symmetrical, and 

the Grid side and the Distribution side converters should be of similar topology for ease of 

reverse operation. 

The building of an Active Transformer model, simply put, involves connecting two 

converter models and simplifying their controllers.  Firstly, the converter controller model 

was simplified from that used in Chapter 6 and the controller was then tested for 

functionality using a Grid side converter model.  Secondly, the Grid side converter model 

was reversed and reconfigured as a Distribution side converter.  Finally, the two models 

were coupled and tested to verify that the desired Active Transformer functionality had 

been achieved, i.e. to control the flow of current through the Active Transformer in the 

forward and reverse directions and the ability to control grid and distribution side phase 

angles independent of current flow.  The simplified converter model facilitated this process 

without many difficulties. 

A three-phase switch model was not available in the Simulink
®
 library and therefore a 

three-phase circuit breaker model was used instead.  However, this model did not open all 

three phases simultaneously, but opened each phase on the next zero crossing of the phase 

current.  Thus, a step change of load used in this chapter effected by opening a breaker was 

an unbalanced change and although not initially intended to be, was perhaps a more 

realistic scenario than the sudden event envisaged. 

There was one notable lesson learnt from the use of Simulink
®
 library measurement 

models.  Simulink
®
 Sympowersystems provides a model for measuring 3-phase voltages 

and currents.  It is important to recognise that a.c. models, when using measurement 
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models as part of a control function, the phase of the measurement signal depends upon the 

direction of the current flowing through the model block.  Although this seems a logical 

conclusion, Simulink
®
 Help does not state this detail clearly and as a result the reversing of 

the converter proved to be a more lengthy exercise than expected.  Therefore, in order to 

make the measurement of currents consistent and clear in this work, the following 

convention was adopted: 

i) current out of a generator, through a resistance or inductance is measured using 

A-a connections as positive, and negative if using a-A connection 

ii) forward mode is defined as current flowing from the Grid side converter to a 

Distribution side converter 

iii) reverse mode is defined as current flowing from a Distribution side converter 

to a Grid side converter. 

The Active Transformer model simulation parameters used in this chapter were set to: 

i) simulation time, Ts, 10
-6

 s 

ii) solver type Variable step 

iii) solver ode23t 

8.2. Grid side converter 

8.2.1 Introduction 

For power flow control in the forward direction, the grid side converter model controls the 

line currents sourced from the grid supply, the phase angle between the supply line voltage 

and current, and the amplitude of the 20 kHz a.c. link voltage. 

A Simulink
®
 model of the supply converter was built from a copy of the model used for 

verification as shown in Chapter 6.  Only minor changes were made to the controller model 

by separating out the voltage and current control in order to facilitate reversal of power 

flow.  The model was used to test the design of the reverse mode operation.  A diagram of 

the Grid side converter model is shown in Figure 55 below.  The model consists of five 

main parts: 
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i) converter 1 

ii) grid network 

iii) load circuit 

iv) control functions 

v) monitoring functions. 

8.2.1.1 Converter 1 

The converter model consists of a three-phase bridge a resonant circuit connected across its 

output as described in Chapter 6.3.  In the model and subsequent results, the voltages and 

currents measured at the 3-phase terminals of converter 1 are labelled ―Vabc 1‖ and ―Iabc 

1 respectively‖ 

8.2.1.2 Grid network 

The Grid network in the forward mode is a source of power but in the reverse mode, it is a 

three-phase load on the converter.  The network, in the forward mode, is represented by a 

fixed 50 Hz frequency, fixed 415 V line-line voltage generator that in the reverse mode 

sets the grid voltage, as the converter was not designed to control both 3-phase voltage and 

current simultaneously.  A switchable split resistive load (initially 32 Ω) and a series 

resistance and inductance (1 MΩ and 1 mH) connected in parallel were also included to 

represent network impedances.  The resistive load also helped to identify the phase 

relationship of the converter and network currents. 

8.2.1.3 Converter load circuit 

For forward mode operation the output of the converter was connected to a fixed load 

resistance (shown as 100 Ω) and a variable resistance (also shown as 100 Ω) at its output.  

For reverse mode operation, the output circuit was replaced by a fixed 1000 V, 20 kHz 

generator. 

8.2.1.4 Control functions 

The functions of the controller used in Chapter 6 were split into separate voltage and 

current controllers. 
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(a) Voltage control 

The functions of voltage control were defined as a subsystem, ―Voltage and direction 

controller‖, Figure 56, and was modified to enable forward and reverse operation to be 

easily selected, external to the model, by a change of a constant, Simulink
®
 signal 

―For_rev‖, from +1 to -1, as shown in Figure 55.  To facilitate comparisons in the forward 

mode, the output of the voltage controller provided a Grid current reference, for both Id 

and Iq, derived from H∞ loop-shaping controller and a constant respectively.  In the 

reverse mode, a 3-phase 50 Hz signal was generated and used to provide an Id and Iq 

reference for distribution network converter operation. 

(b) Current control 

The current controller was unchanged from that described in Chapter 6.3.3.  The change in 

current in the converter line inductors was given by Equation (7) for the forward mode of 

the converter operation.  Repeating the analysis for a reverse current flow resulted, 

logically, in the negative of Equation (7).  In the reverse mode of operation, the Grid side 

converter, converter current was measured at its output as negative current because of the 

a-A orientation of the current measurement block.  When used in the current controller to 

determine the control error, this measurement of current at the output naturally applies the 

conditions for operation of the converter in the reverse mode and means that the current 

controller model was the same for both Grid and Distribution side converters. 

8.2.1.5 Monitoring functions 

In order to keep the converter diagram uncluttered, the simulation signal and waveform 

monitoring was confined to a subsystem, ―Monitoring‖.  Monitored signals in this 

subsystem were derived from the model directly using monitoring ―scope‖ functions or 

indirectly using Simulink
®
 signal recording features. 

8.2.2 Initial simulations 

To verify that the revised converter model operated as intended, simulations were run 

firstly, in the forward mode and then in reverse mode.  
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8.2.3 Forward mode simulation 

For the Grid converter, the forward mode is defined as current flowing from the 3-phase 

terminals to the 2 terminal side of the converter and the input current reference is derived 

from the voltage feedback loop.  The following simulation conditions were set: 

i) simulation time 0.06 s 

ii) grid side generator line to line 400 Vrms 50 Hz 

iii) select Vtank ref Tank voltage ref 1000 V 

iv) fixed load 100 Ω 100 Ω 

v) grid load cct. breaker closed 

vi) grid load 64 Ω 

vii) switched grid load cct. breaker closed 

viii) switched grid load 64 Ω 

ix) mode (forward) 1 

The results of this simulation are shown in Figure 57.  The three-phase converter line 

current, Iabc 1, signal, shows a high frequency ripple as a result of the switch of the 

converter bridge.  This signal could have been filtered to provide a cleaner waveform and 

one that made the measurement of the amplitude more straight forward, but the visibility of 

the ripple current was considered to be a useful indication of the correct operation of the 

converter, hence retained, and the mean amplitude was therefore estimated.  This 

procedure is used consistently throughout this chapter. 

In the forward mode, total current supplied by the Grid is shared between the grid load, 10 

A peak, and the converter.  The converter portion flows into the converter line inductors 

and is determined by the converter operation into a load resistance with the demanded 

output voltage, which were set to 100 Ω and 1000 V peak respectively as the full load 

condition.  For this load the approximate converter line input current Iabc 1 was 9.9 Apeak 

and the total Grid current approximately 20 Apeak. 
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8.2.4 Reverse mode simulation 

For the Grid converter, the reverse mode is defined as current flowing from the 2-terminal 

side to the 3-phase terminals and the output current reference is set by a constant value 

before running the simulation. 

It was during the testing of the reverse converter model that the importance of the phasing 

of the output current measurement referred to in 8.1 was realised.  Selection of the wrong 

phase invariably led to unstable operation of the converter. 

For the reverse mode simulation the forward mode load circuit was replaced with a 

generator and the simulation initial conditions set similar to the forward mode except for: 

i) Generator 1000V 20 kHz generator 

ii) output current reference 5.  For this demand the converter will supply current 

in anti-phase to the grid supply. 

iii) mode (reverse) -1. 

The results of this simulation are shown in Figure 58.  In the reverse mode, the grid side 

load and grid voltage determine the grid side load current, Iabc grid load, of 10 A peak.  The 

converter current reference was set to give a converter current of 5 Apeak in anti-phase to 

the grid supply, but because the current now flows out of the converter 3-phase terminals, 

its measurement in Figure 58, Iabc 1, is in anti-phase to the actual current, i.e. it appears to 

be in-phase with the grid load current, Iabc grid load.  The grid therefore supplies 15 Apeak to 

satisfy the grid side load conditions. 
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8.3. Distribution side converter model 

The Distribution side converter model, Figure 59, was built by reflecting the grid converter 

design about the high frequency transformer, including, initially, the voltage controller, 

and altering signal names to make it distinguishable from the grid converter.  To 

distinguish the DN converter measurements from those of the Grid converter, the voltages 

and currents of the DN converter measured at the 3-phase terminals of the converter have 

been labelled ―Vabc 2‖ and ―Iabc 2 respectively‖ 

In the forward mode the converter controls the current fed (and hence the power) to the 

distribution network load.  In the reverse mode it transfers power from the distribution 

network and controls the a.c. link voltage.  To ensure no errors had been made in the 

building of the distribution side converter model forward and reverse operation, similar to 

that applied to the grid side converter, were simulated. 

8.3.1 Forward mode simulation 

For the Distribution side converter forward mode is the same as the reverse mode in the 

Grid converter, i.e. current flows from the 2-terminal side to the 3-phase side of the 

converter. 

For the forward mode simulation, the reverse mode load circuit, Figure 59, was replaced 

with a generator and the following simulation initial conditions set: 

i) simulation time 0.06 s 

ii) Generator 1000V 20 kHz generator 

iii) output current reference -5.  For this demand the converter will supply current 

in phase with the Distribution network supply. 

iv) DN side generator line to line 400 Vrms 50 Hz 

v) DN load cct. breaker closed 

vi) DN load 64 Ω 

vii) Switched DN load cct. breaker closed 

viii) Switched DN load 64 Ω 
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ix) mode (forward) 1 

The results of the forward mode simulation are shown in Figure 60.  Although the DN side 

converter current, Iabc 2, is in phase with the DN load current, due to the inversion of the 

measurement, it is shown as approximately 5 Apeak in anti-phase.  However, the DN load 

current is 10 Apeak, comprising of 5 A peak converter current and 5 A peak DN grid 

current. 

8.3.2 Reverse mode simulation 

For the DN side converter, reverse mode, Figure 59, is the same as the forward mode in the 

Grid converter, i.e. current flows from the 3-phase side to the 2-terminal side of the 

converter.  The simulation initial conditions were similar to those for the forward mode 

simulation except for: 

i) Select Vtank reference Tank voltage reference 1000 V 

ii) fixed load 100 Ω 

iii) switched load 100 Ω cct. breaker open 

iv) mode  (reverse) -1 

The results are shown in Figure 61 and are similar to those of the Grid converter in forward 

mode, Figure 57, noting that the converter current measurement does not have an inversion 

and is in-phase with the DN supply current. 
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8.4.  Active transformer model 

8.4.1 Model outline description 

The Grid and Distribution side converter models and their respective network side models 

were connected to form the Active Transformer model.  Duplicate and redundant 

subsystems and monitoring were removed.  Some additional switching was included to 

facilitate a mode change during simulations and some connections were replaced with 

―goto‖ functions to simplify the model schematic diagram.  Connecting the converters at 

their 20 kHz terminals created a high frequency link system.  The control of the link 

voltage was assigned to the Grid converter when the Active Transformer was operating in 

the forward mode and to the Distribution Network converter during reverse operation.  A 

block diagram of the test arrangement is shown in Figure 62 and the Simulink
®
 model of 

the Active Transformer is shown in Figure 63.  The model was used to simulate the control 

of power flow from the transmission network side (Grid-side) in the forward direction to 

the distribution network (DN-side) and, vice versa, in the reverse direction from the 

distribution network to the transmission network.  For power flow control in the forward 

direction, the Grid converter was used to control the source line currents, the phase angle 

between the supply line voltage and current, and the a.c. link voltage.  Whereas the 

Distribution Network converter controls the output converter current (and hence the 

power) fed to the distribution network. 
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8.5. Simulations and results 

8.5.1 Test descriptions 

Four test simulations were used to verify the operation of the Active Transformer model.  

The first two tests repeat the load and demand changes used in the converter simulations, 

8.2 and 8.3, to give confidence in the model.  The second two tests were sudden reversals 

of power flow.  These tests can be compared to the emergency crash reversal of a ship‘s 

propulsion system, which should only be encountered a very few times in the lifetime of 

the system because of the excessive stress it creates in the system.  It is therefore a very 

harsh operation for a practical implementation of the Active Converter and may cause 

power semiconductor switch commutation failures unless the transition is designed to 

happen in a very controlled manner.  In the following tests the transitions are sudden in 

order to identify any underlying control problems. 

The test simulations are described with reference to Figure 63 , which is shown with 415 V 

50 Hz Grid and DN generators instead of the 400 V generators previously used. 

Test 1: In this simulation the Active Transformer model is configured for forward 

mode operation and step changes in load and demand are made.  The following 

initial conditions were set: 

i) simulation run time 0.12 s 

ii) Grid and DN generators line-line 415 V, 50 Hz 

iii) mode select (forward) For = 1 

iv) select Vtank ref switch Test voltage reference 1000V 

v) output current reference 5, manually changed to 2.5 A at 80 ms 

vi) Grid load cct. breaker closed 

vii) Grid load 68.9 Ω 

viii) split grid load cct. breaker closed 

ix) split grid load 68.9 Ω 

x) DN load cct. Breaker closed 

xi) DN load 68.9 Ω 
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xii) switched load DN cct. breaker closed, set to open at 50 ms 

xiii) switched DN load 68.9 Ω 

At 50 ms the DN split load circuit breaker opens reducing the Active Transformer load to 

68.9 Ω.  At approximately 80 ms, the output current reference is manually changed from 5 

to 2.5 A.  These actions result in a 100-50% load change and an Active Transformer output 

current change 5 – 2.5 A. 

Test 2: In this simulation the Active Transformer model is configured for forward 

mode operation at full load and a step change to 20 kW output is made.  The 

initial conditions were similar to those set for Test 1 except: 

i) simulation run time 0.08 s 

ii) DN load 34.45 Ω 

iii) switched DN load cct. breaker open, set to close at 40 ms 

iv) DN switched load 11.48 Ω 

At 40 ms the DN switched load circuit breaker was closed and the Active Transformer load 

increased from 5 to 20 kW. 

Test 3: In this simulation the Active Transformer model was started in forward mode 

operation and a sudden mode reversal, forward to reverse, demand was made at 

60 ms.  The following initial conditions were set: 

i) simulation run time 0.12 s 

ii) Grid and DN generators line-line 415 V, 50 Hz 

iii) mode select (forward) For=1 

iv) select Vtank ref switch Test voltage reference 1000V 

v) output current reference 5 

vi) Grid load cct. breaker closed 

vii) Grid load 68.9 Ω 

viii) split grid load cct. breaker closed 

ix) split grid load 68.9 Ω 

x) DN load cct. Breaker closed 
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xi) DN load 68.9 Ω 

xii) switched load DN cct. breaker closed, set to open at 50 ms 

xiii) switched DN load 68.9 Ω 

Test 4: In this simulation the Active Transformer model was started in reverse mode 

and a sudden mode reversal, reverse to forward, demand was made at 60 ms.  

The initial conditions were similar to those for Test 3 except for: 

i) mode select (forward) Rev = -1 

Test 5: Phase angle changes.  There were two parts to this simulation: 

i) changes to grid-side phase angle 

ii) changes to distribution-side phase angle 

These changes were effected by setting a simulation constant representing Iq to 

±5 A for the reference demands of the forward and reverse converters.  The aim 

was to verify that the phase angle of the converters could be changed 

independent of the current amplitude, Id, which was set to 5 A.  The change of 

phase angle from zero creates reactive power and therefore the power supplied 

by the Grid and to the Distribution Network was recorded as an indication of 

phase angle control. 

8.5.2 Test 1 results 

The main currents resulting from the application of step changes of the resistive load and 

load-side converter demand are presented in Figure 64 with the start-up variations in the 

first 20 ms of the traces suppressed for clarity.  Although the Active Transformer output 

current, Iabc 2 is sinusoidal, the grid current, Iabc 1 contains some distortion that was not 

present in the individual converter simulations.  The cause was likely to be the different 

loading effects of an active load (the DN converter), often more like a capacitive load than 

the purely resistive load of previous studies.  The ripple was a readily identifiable 

characteristic of the ―importing‖ converter when reviewing the results of later reversal 

simulations, and conversely, the undistorted current became the characteristic of the 

―exporting‖ converter. 
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The a.c. link voltage, Vtank, shown in Figure 65 is also noticeably more ―lumpy‖ with an 

amplitude ripple of 200 V peak-peak at 300 Hz.  In the resistance loaded converter model 

this would indicate that the voltage condition, Equation 77, has been violated and the 

current controller is not operating effectively.  The remedy in the case of the converter 

would be to increase the tank voltage reference.  In the case of the Active Transformer, this 

change was ineffective indicating a more complex loading problem, the investigation of 

which was assigned to ―further work‖.  The a.c. link voltage ripple did not affect the 

overall operation of the Active Transformer and indicated a good degree of robustness of 

the control system in dealing with variable link voltage. 

8.5.2.1 20 – 50 ms period 

During the period 20-50 ms, the DN load is 10 A peak.  The Distribution Network 

generator and the DN converter each supply, in-phase with the generator voltage, 5 A 

mean-peak into the distribution side load, IDN load.  Note that Iabc 2 shown in Figure 64 is in 

anti-phase to IDN load due to the measurement method.  As the model is essentially lossless, 

the DN converter power is drawn from the Grid supply.  The Grid converter mean peak 

current is 5 A, in phase with the Grid supply voltage.  The Grid also supplies 10 A peak to 

the Grid load making a total of 15 A peak drawn from the supply. 

8.5.2.2 Step change of load at 50 ms 

At 50 ms the DN load was changed from 34.45 to 68.9 Ω and was effected at the next zero 

crossing of the phase currents.  No untoward transient events were seen on the current 

traces at the zero crossings. 

8.5.2.3 50 – 80 ms period 

The DN converter was controlled to provide 5 A mean-peak and therefore the reduced load 

demand was balanced by a reduction of the current supplied by the DN generator.  A fall to 

zero was expected, but due to the 20 kHz ripple on the converter current and the nature of 

the coarseness of the current control, the DN generator provides a current to maintain 

balanced load conditions. 
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8.5.2.4 Step change in demand at 80 ms 

The DN converter demand was changed from 5 to 2.5 A mean-peak at 80 ms. 

8.5.2.5 80 – 120 ms period 

Some variation of the DN converter currents are seen on the Iabc 2 and I DN traces as they 

change to 2.5 A mean-peak, but it is well controlled and the converter resumes a steady 

supply within 5 ms.  The reduction in current from the DN converter coincides with an 

increase in the current supplied by the distribution network generator, I DN, from zero to 

2.5 A mean-peak.  The change to the DN converter current is reflected through the Grid 

converter to the Grid supply, which also reduces from 15 to 12.5 A mean-peak. 
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8.5.3 Test 2 results 

The results of a large load increase from 5 to 20 kW are shown in Figure 66.  The grid 

converter is in forward mode, recognisable from the distortion in Iabc 1 trace.  The effects 

of the load change are seen in the trace IDN load.  Up to 50 ms, the Distribution Network 

load is supplied by 5 A mean-peak from the Active Transformer and 5 A mean-peak from 

the Distribution side generator.  At 50 ms, the load increases suddenly, but the Active 

Transformer and Grid, Iabc 1, Iabc 2 and I Grid respectively, currents remain unchanged.   

This is not a practical test but serves to demonstrate that the models are well behaved for 

sudden large changes in demand. 
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8.5.4 Test 3 results 

The results of the forward to reverse mode change are shown in Figure 67.  The traces are 

arranged in columns for the Grid and Distribution converters.  As with previous results the 

first 20 ms are suppressed for clarity. 

During the period 20 -50 ms the Grid converter is operating in an ―forward mode‖ mode 

and the characteristic distorted current is seen in Iabc 1.  The Grid and Distribution loads are 

constant at 10 A throughout the simulation.  The Grid supplies 15 A mean-peak, 10 A 

mean-peak to the Grid load and 5 A mean-peak to the grid converter.  The DN converter 

provides current, Iabc 2, 5 A mean-peak, into the Distribution Network load and the 

distribution generator also provides 5 A mean-peak into the load. 

At 60 ms the mode is changed to reverse so that current is now exported from the Grid 

converter where previously it had been imported.  The current remains in phase with the 

Grid supply voltage but as its measurement is also reversed it appears as sudden change to 

an anti-phase signal in trace Iabc 1.  Note also that now the Grid converter is operating in 

reverse, its current is undistorted and that the Grid current is reduced from 15 A mean-peak 

to 5 A mean-peak to maintain balanced conditions at the grid load. 

At the mode change, the DN converter current, Iabc 2, changes from forward to reverse 

mode, and a reversal of phase is evident.  The DN generator now has to supply both the 

DN load and the DN converter so its current increases from 5 A mean-peak to 15 A mean-

peak to maintain balanced load conditions. 

The mode change used in this simulation was a sudden event, which in practise, may lead 

to high transient voltages that are clearly unwanted.  The solution to this is to profile the 

mode command first to produce a gradual reduction in the current reference to a zero 

demand over several cycles, i.e. no power flow through the Active Transformer, and then 

implement the mode change.  The current reference would then be ramped up to the 

desired level over several cycles. 
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8.5.5 Test 4 results 

The results of the forward to reverse mode change are shown in Figure 68.  The traces are 

arranged in columns for the Grid and Distribution converters.  As with previous results the 

first 20 ms are suppressed for clarity. 

These results are similar to those above except that the Grid and DN converter roles are 

reversed.  The distorted converter currents again indicate the period of ―import‖ operation. 

8.5.6 Test 5 Results 

(1) Grid supply phase change 

Figure 69 shows the results of changing the Grid converter Iq reference when it was 

operating in forward mode.  The amplitude of the DN converter current, Id, was set to 5 A 

peak, which was equivalent to 2.5 kW real power supplied by the Grid.  The first 10 ms of 

the traces is suppressed to hide the simulation start-up from zero initial conditions.  The 

fourth trace shows the reactive power supplied by the Grid and at 0.3 ms Iq was changed 

from 0 to +5 A, which was equivalent to a demand of +2.5 kW reactive power supplied by 

the Grid.  After a further 20 ms Iq was changed back to 0 A and at 70 ms Iq was changed 

from 0 to -5 A, -2.5 kW reactive power.  The two conditions, ±5 A, represent the Active 

Transformer absorbing and exporting reactive power respectively.  The third trace shows 

the real power from the Grid, which remains unaltered throughout the simulation verifying 

the independence of real and reactive power control.  Trace 1 shows the Grid supply phase 

A voltage Va and trace 2 shows the Grid supply phase A current Ia. 

During the initial 20 ms when Iq is zero, the voltage and currents, trace 1 and 2 

respectively, are in phase.  The sudden changes in Iq demand are clearly seen as step 

changes of phase in trace 2.  The exact phase change was difficult to measure due to the 

converter 20 kHz switching action causing several zero crossings.  However, it was 

reasonably clear that each phase shift was approximately 2.5 ms or 45° as was expected 

from the demands set. 
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(2) DN converter phase change 

Figure 70 shows the results of simulating the changing of the Iq reference of the DN 

converter in forward mode.  The DN converter current amplitude, Id, is set to -5 A peak, 

which is equivalent to 2.5 kW real power supplied to the Distribution Network by the 

converter.  Note that the Ia DN and DN converter real and reactive power traces are inverted 

due to the method of measurement in the model as previously mentioned.  The first 10 ms 

of the traces is again suppressed to hide the simulation start-up from zero initial conditions.  

Grid real and reactive mean power remains consistent throughout the simulation at 2.5 and 

0 kW respectively.  The trace of DN converter reactive power shows the power supplied to 

the Distribution Network and at 0.3 ms Iq changes from 0 to +5 A, which is equivalent to a 

demand for +2.5 kW reactive power.  After a further 20 ms Iq is changed back to 0 A and 

at 70 ms Iq is changed from 0 to -5 A, -2.5 kW reactive power.  These two conditions 

represent the Active Transformer exporting and absorbing reactive power respectively.  

Throughout these changes DN converter mean real power remains constant at 2.5 kW. 

During the initial 20 ms when Iq is zero, the voltage and currents are in phase.  The sudden 

changes in Iq demand are clearly seen by the step change of phase in trace 2.  The exact 

phase change was difficult to measure due to the converter 20 kHz switching action 

causing several zero crossings.  However, it was reasonably clear that each phase shift was 

approximately 2.5 ms or 45°. 
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8.6. Summary 

Two copies of the converter model were used to create the Grid and Distribution converter 

models that were first used individually to simulate power flow in the forward and reverse 

modes of operation.  Only the H∞ controller designed for the 10% load point was used for 

work in reported in this chapter.  The current waveforms from the initial simulations were 

much as expected, except for the converter currents Iabc 1 in reverse mode and Iabc 2 in 

forward mode.  Here the level of ripple current appeared to be greater than that shown Iabc 

1 in forward mode and Iabc 2 in reverse mode.  On a closer examination of the waveforms 

ripple currents in both conditions were similar, varying between 2.7 to 2.9 A, and were 

similar to the predicted level of 2.8 A in Chapter 6.2.3. 

The Grid and Distribution side models were then connected back-to-back arrangement to 

create the Active Transformer model.  For power flow control in the forward direction, the 

Grid converter controlled the source line currents, the phase angle between the supply line 

voltage and current, and the a.c. link voltage.  The Distribution converter controlled the 

level of the output current (and hence the power) fed to the distribution network. 

Five test simulations were successfully run and demonstrated: 

i) 50% load throwing from full load and a 50% reduction in current demand 

ii) a sudden load increase to 20 kW 

iii) a reversal from forward mode operation 

iv) a reversal from reverse mode operation 

v) phase angle changes. 

The simulations proved successful and importantly demonstrated that there was a power 

balance between the power supplied by the Grid and that delivered to the DN load.  The 

change of phase simulation successfully demonstrated the independence of controls using 

the dq0-transform and a means by which the phase angle of the current supplied by the 

Grid and that of the current supplied to the DN could be varied from net inductive to net 

capacitive. 
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The current drawn from the supply by which ever converter was operating in the forward 

mode contained some distortion that was not present in the individual converter 

simulations.  The cause is likely to be the loading effects of an active load (the DN 

converter), which are often more like a capacitive load than the purely resistive load of 

previous studies. 

The a.c. link voltage had developed an amplitude ripple of approximately 200 V peak-peak 

at 300 Hz that had not previously been seen in converter simulations.  In the case of the 

resistance loaded converter model, this ripple would have indicated that the necessary 

voltage condition had been violated and that the current controller was not operating 

effectively.  The remedy in the case of the converter would be to increase the tank voltage 

reference, but in the case of the Active Transformer, this change proved ineffective, 

indicating the presence of a more complex loading problem.  The a.c. link voltage ripple 

did not affect the overall operation of the Active Transformer, the performance of which 

indicated a good degree of robustness of the control system in dealing with variable link 

voltage. 
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Chapter 9.  

 

Conclusions and future work 

he historical review of the UK power network provided an overview of the 

network development and the processes of change that have led to the network 

that we have today.  What became clear very quickly was that the change 

process was continual, led by technical innovation and development but invariably, 

particularly in the early years, electrical equipment lagged consumer demand for more 

electrical power.  This historical scenario may be likened to today‘s demand for more 

―greener‖ power and the search for technical solutions. 

The first significant architectural change came with the introduction of The Electricity 

(Supply) Act 1926, which established the Central Electricity Generating Board (CEB) and 

co-ordinated the integration of the many disparate power systems.  It standardised the 

supply frequency across the whole country and interconnected existing regional systems 

into a national ―Grid‖ by building a high voltage transmission network.  This was the birth 

of today‘s network architecture.  The network became known as the ―National Grid‖ 

because of its grid-iron type structure running North-South and East-West and connecting 

nine areas.  The grid like structure or architecture was not initially designed as a long 

distance transmission system but as an economic means of standardisation and the 

interconnection of the different regions.  The end of the Second World War provided an 

opportunity for major architectural change that has resulted in today‘s passive, but highly 

reliably and robust, network.  In the 1950s increasing demand for power led to the 

construction of a new high voltage ―Supergrid‖ operating at 275 kV and to a bulk-power 

transfer architecture. 
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Today‘s ―demand for more electricity‖ is not so much for more power, but for more 

―power from renewable energy sources‖.  The growing demand for the use renewable 

energy is putting the power network under pressure to change again.  Many of the potential 

sources of renewable energy, such as wind, are often intermittent and situated at remote, 

weak points of the power network and require network support or more cabling to be of 

most benefit.  The initial response from the electricity industry to the pressure for change is 

usually to seek the lowest cost solution.  Hence, there is much interest in ―active‖ networks 

as these are seen to have a lower cost than new cable or network support systems.  What 

this means in practice, is that the rigid power architecture is unchanged, but a more 

sophisticated and extensive communications and control architecture overlaid on the 

existing network.  This change is feasible, but only with the introduction of increased level 

of automation.  It is more acceptable to the industry and customers alike than more 

overhead cables or the high cost of support measures.  The conclusion was drawn that 

active networks will no doubt relieve some of the current pressures, at least for a few years, 

but, as the penetration levels of distributed generation increase over the next decades, so 

the pressure to change the rigid power architecture will increase once again and the time 

will eventually come when an architectural change is not only necessary but unavoidable. 

The author concludes that there is a clear need for an architectural solution and has found 

some support regarding this view in Universities, if not yet in the power companies, in the 

work at the University of Manchester and ETH in Switzerland.  Power electronics 

technology is used to solve many of today‘s network control problems but its applications 

are limited by its high cost.  With a successful outcome of current power semiconductor 

device development, power electronics promises to be an enabling technology for future 

architectural change. 

With this scenario in mind, Sood and Lipo‘s a.c. link distribution system, [69], and Dang‘s 

demonstration of a high-frequency, direct converter [45], when considered together create 

a novel solution that in this research has been called an ―Active Transformer‖, whose 

application is intended to replace the large transformers in a power network.  Generally, 

the literature in converter applications for high power systems mainly concentrates on d.c. 

link type converters that employ classical PI controllers.  Contemporary d.c. link 
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converters require a large number of series devices to achieve high-voltage operation, 

whereas the direct converter will require less than half the number of devices used in an 

equivalent d.c. link design.  In both cases, the use of silicon semiconductors makes the 

design uneconomic, except in very specific applications.  Thus, it will be the economic 

demands that dictate the need for fewer devices operating at high voltages, probably 

greater than 20 kV.  Such semiconductor technology, SiC and diamond technology, is in its 

infancy today and may take 10 or more years to reach the level of maturity, capability and 

reliability necessary for high power applications. 

This thesis focuses on a more novel approach to high-voltage power conversion and 

studies the use of direct, resonant converters with a modern robust H∞ controller.  The 

author has concentrated his research on the control of these converters that are the major 

part of the Active Transformer concept.  The first part of the work created a model of the 

converter and a basis controller to investigate in a vigorous way its performance and 

limitations and explore design options.  This model was used throughout the work in 

subsequent chapters.  During simulations of the converter operation with a basic PI 

controller a potential problem with stability and performance of the closed loop at light 

loads was identified. 

A robust loop-shaping H∞ controller design for the voltage control loop of a resonant 

converter has been proposed; in particular, this is based on classical control theory 

extensions of robustness.  Classical loop-shaping procedures shape the magnitude of the 

open-loop transfer function and the designer aims to obtain a desired bandwidth, slope etc.  

The key mathematical analysis needed to understand the application of robust stabilisation 

is given in Chapter 7.  The rigorous analysis of robustness issues and the use of uncertainty 

modelling to identify controller design limitations are an important contribution of this 

thesis.  A rigorous and systematic design procedure of the linear control transfer functions 

affecting small signal stability can lead to good controller performance and robustness and 

take less design time.  Robust stability and performance was demonstrated for specific 

variations of load, particular light loads where the decoupling effect resulting from the use 

of the dq0-transform eliminated interaction between tracking of supply current demand and 

control of the high-frequency converter output voltage. 
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Many converter controllers are designed at the full load operating point because at that 

point the converter is at its most efficient and likely to be operating close to that condition 

for much of its life.  This is not the case with a grid connected converter where the 

expected load will be varying.  The loop-shaping H∞ controller design procedure offered 

an alternative approach, but one which retained the simplicity and physical understanding 

of classical methods.  The procedure was based on what is known as ‗coprime 

factorisation‘ method, which incorporates the solutions of appropriate control and filtering 

Riccati equations for the design of the controller and weighting functions. 

The weighting function in H∞ controllers contains all the controller dynamics and 

compensation features that determine the overall system performance.  The operation and 

performance of the two converter controller designs were compared using transfer and 

function and non-linear models and were shown to have similar performance for changes 

in load around full load.  For large changes from full to a light load of 10%, both controller 

designs produced unstable responses.  In the author‘s experience this was not an 

unexpected result, particularly for the PI controller, where system gains can change a great 

deal with operating point.  The result brought the design point at 100% load into question.  

From a control point of view, the general method for dealing with large system gain 

changes is to schedule changes in the controller gains to maintain stable operating 

conditions.  Although, at first, this seems to be an attractive approach, it is a rigid solution 

to a very flexible problem, particularly when converter system gains are not well or 

completely defined.  However, the use of the nominal model at full load, with issues of 

robustness at light loads, proved a burden for the design and in fact, produced some 

unstable closed loop responses during implementation at light loads.  Therefore, a modified 

design procedure was needed and this was followed via a rigorous uncertainty bound. 

The controller design point was changed to the lighter load scenario, 10% load, this being 

the operating point of minimum load.  A reduction of the peak voltage, 82 to 64%, and a 

reduced settling time, >7 to 3 ms, was achieved for the 100 kΩ load simulation at the 

expense of over-damping at full load and greater.  In the intended application this 

additional damping may be advantageous, particularly for overload and fault conditions.  
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The non-linear simulations of load and demand changes were repeated with the revised 

controller design, and confirmed stable operation at both full and 10% load. 

A important contribution of this thesis is the use of an ―uncertainty model‖ of the system to 

investigate performance differences at full and light loads.  The frequency response of the 

relative errors of the uncertainty model, designed at 100% load, produced positive low 

frequency gain in the closed loop system and when combined with the integrator in the 

controller produced an unstable response.  The investigation also indicated that the design 

point where an integrator would not be effective in the control loop, thus avoiding stability 

problems.  This was at a much larger load (50%) than had predicted by an earlier simple 

stability analysis. 

The choice of a PI filter characteristic for the weighting function of the H∞ controller 

appeared logical, but in fact was rather arbitrary and therefore an attempt was made to 

validate its use by comparison with an ―inverse multiplicative‖ scenario.  The PI gains 

from the original controller design used as the H∞ weighting function produced the 

appropriate frequency response but with a low bandwidth of 3.4 krads/s.  Increasing the PI 

gains by 10 produced a response closer to that suggested by the approach and a bandwidth 

of 8.3 krads/s, but this produced unstable responses when used in the non-linear converter 

model and showed the effects of system RHP zeros. 

From the results of the uncertainty modelling it was concluded that the design procedure 

from [52] was not helpful in choosing the H∞ controller weights for this class of converter.  

A modified approach, based on the PI gains from a classical controller design at 10% load, 

proved to be more successful and produced a stable system design for this class of 

converter.  Further refinement may be possible for specific converter designs by examining 

a family of systems with differing design points. 

A key contribution of this thesis is the concept of an Active Transformer that provides a 

means of isolating the Grid network from sudden demands that may be balanced at a local 

level and the control of real and reactive power flows.  Control is instantly available and at 

a distribution network level where, for example, current, and hence power, drawn from the 
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Grid during periods of high local demand may be kept constant while local demands are 

reduced, or available local generation (from wind or stored energy) is dispatched to supply 

an increased load demand or a change of network voltage is accepted.  Early control action 

at a local level should be much more effective than later action taken by a central generator 

controller to stabilize the network frequency, minimise the effects of faults and meeting 

performance targets. 

An Active Transformer model was built from two converter models connected between a 

representation of the Grid and Distribution networks.  Individual converter operation was 

first simulated for forward and reverse power flow modes to verify designed operation and 

control.  A series of simulations were run using the Active Transformer model that 

demonstrated current control and a power balance between the Grid and Distribution 

networks during load and mode changes. 

The simulations proved successful and importantly, demonstrated that there was a power 

balance between the power supplied by the Grid and that delivered to the DN load.  In a 

fully designed system there will be losses in the converters and transformer, but these were 

not represented or needed in simulations to demonstrate the functionality of the Active 

Transformer.  Of particular concern will be the currents circulating in the resonant circuits, 

which, dependent upon the ―Q‖ of the circuit will be of the order of ten times the supply 

current.  Local conductor resistances and stray reactances will need to be made very small 

by good design and layout of components.  The high frequency transformer is a novel 

device because of the combination of high-voltage, high-power at a high frequency.  Its 

design will be a complex key task and critical to the reliability of the Active Transformer.  

Stray circuit and component reactances appear in parallel with the converter resonant 

circuit and will contribute to its designed operating frequency; careful choice of 

components and layout will be essential. 

The change of phase simulation successfully demonstrated the independence of controls 

using the dq0-transform and a means by which the phase angle of the current supplied by 

the Grid and that of the current supplied to the DN could be varied from net inductive to 

net capacitive.  This is an important attribute of the Active Transformer and will give 
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Distribution Network operators a much needed degree of freedom for voltage control that 

could make the unreliable mechanical tap changers of conventional power transformers 

redundant. 

The Active Transformer a.c. link voltage had an amplitude ripple of approximately 200 V 

peak-peak at 300 Hz that had not previously been seen in converter simulations and was 

probably the result of the complex loading effects of back-back converters.  The remedy in 

the case of a single resistance loaded converter would be to increase the tank voltage 

reference, but in the case of the Active Transformer, this change proved ineffective.  The 

a.c. link voltage ripple did not appear to affect the overall operation of the Active 

Transformer. 

A balance between generated and load power is critical to achieving robust and reliable 

power network operation.  The indicator of this balance is the network frequency.  

Maintaining a power balance, and hence a stable frequency between very tight limits, is the 

role of a central control facility where generation is scheduled and dispatched to balance a 

forecast load.  Insufficient generation or an excess of load leads to a low network 

frequency, whereas an excess of generation or too little load leads to high network 

frequencies.  The UK power network is essentially an ―island network‖ and the 

maintenance of the system frequency is an obsession in avoiding system collapse, which 

may be caused very rapidly by an unexpected loss of generation or increase in load.  

Central controllers have to act very quickly in these circumstances to bring reserve 

generation on line, but this will take anything from several minutes to several hours to 

become effective depending on the state of their readiness.  The alternative of load 

shedding is avoided whenever possible and only used in extreme circumstances to avoid 

total system collapse.  A fast and readily available means of balancing network power and 

load, such as the Active Transformer, will be required to fully integrate high levels of 

renewable energy generation in the power networks of the future. 

Modelling and simulation of the Active Transformer used resistive loads only but the 

simulated change of phase angle successfully demonstrated the independence of the 
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control of real and reactive power flow at the input and out of the Active Transformer.  The 

results give initial confidence in the designs but further work is suggested as follows: 

i) the models need to be tested against a power network load with varying 

demands, outages and faults.  MATLAB/Simulink is probably not the best tool 

to undertake these studies and therefore new models will need to be developed 

in an alternative simulation tool, such as IPSA. 

ii) It will be useful to assess the robust controller performance on a laboratory 

demonstration of the Active Transformer design at 5 kW and an investigation 

of the tank voltage loading effects in the Active Transformer. 

iii) from a control point of view, it would be interesting to follow a structured 

singular value approach (µ-synthesis) control design, [52].  This includes worst 

case uncertainty design but unfortunately at the expense of rather high order 

controllers.  In such cases, it is usually unwise to implement these controllers 

in their original form, and thus a controller reduction approach will be 

necessary. 
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Appendix A.  

The d-q transform 

A.1. Derivation 

Designers of contemporary control systems, particularly of rotating machines driven by 

power electronic converters, often use a system of artificial variables rather, than the more 

traditional phase variables, as a means of analysis and control.  These artificial variables 

are derived in analysis from the phase variables by means of a transformation known as the 

―d-q transform‖.  This methodology may also be applied to the design of three-phase 

power converter systems.  When using the transform, many books and papers dealing with 

vector control quote only the transform, often with a different system of reference vectors, 

and do not fully explain the scaling used, describing it as arbitrary, or show how the 

transform is derived.  This tends to leave some gaps in the readers‘ understanding that may 

cause some confusion over scaling.  This appendix therefore gives a full derivation of the 

transform and aims to clarify the use of scaling factors. 

 

Figure 71  Three-phase and two-phase system phasor diagrams 

The analysis is in two stages: 
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i) transformation from a stationary, three-phase axis to equivalent two-phase 

stationary axes system 

ii) transformation from a two phase stationary axes to a two phase rotating axes 

system. 

For the purpose of this analysis it is assumed that a balanced three-phase supply system 

can be replaced by an equivalent two-phase system, [70] page 100-102, and that the three-

phase currents sum to zero. 

The analysis first transforms the three-phase to a two-phase, abc to - , stationary axis 

system, phasor diagram Figure 71.  This shows a conventional anticlockwise rotation of 

the phase voltages and where the phases rotate to give a voltage or current sequence of a-b-

c. 

For an arbitrary, balanced three-phase current source let the phase currents be: 

(69) 

)34cosˆ
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Where Î is the peak value of the phase current and ωt is is the angular frequency of the 

supply.  For the purposes of analysis, these phase currents are assumed to be independent 

variables.  Choosing to let the axis of the a-phase and -phase be coincident as shown in 

Figure 71 is an arbitrary, but usual, choice because of the relationship between the a-phase 

and the -phase currents and voltages that result under balanced conditions.  Resolving the 

three-phase currents along  and  axes: 

(70) 
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Where N is an arbitrary constant.  In the analysis of synchronous machines N represents the 

ratio of the effective number of turns of the 3-phase winding and the number of turns of the 

2-phase winding and is taken as ⅔ [30]. 
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From a mathematical consideration, a third independent variable is needed.  In most three-

phase systems the instantaneous currents and voltages sum to zero and this practical 

consideration defines a third variable, i0, which, for independence, must be orthogonal to i  

and i  and is only physically realisable if i0 is zero as in the balanced three-phase system.  

Therefore: 

(71) )(
0 c

ki
b

ki
a

kiNi  

where k is an arbitrary constant, giving, in matrix form: 
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which may be written as: 

(73) abciCi 1
 

For invariance of power, [1] page 97, requires: 
TCC 1  

therefore: 
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noting that the scaling factor 2/3 is derived from the inversion of C
-1

, and therefore: 
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comparing C
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, then: 

(76) 
k

kand
N

N
2

1

3

2
*

1
 

therefore: 
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or expressed in trigonometric functions: 
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In this analysis the effect of the arbitrary constant N is to increase i  and i  by √3/2 and 

hence the total power by 3/2, but because the number of phases is reduced from 3 to 2, the 

total power remains unchanged.  Some authors prefer a direct comparison between the α 

and a-phases, some omit the factor √3/2 and this leads to i = ia but of course, not to the 

invariance of power.  While this may be convenient, this analysis proceeds assuming the 

invariance of power. 



 

 

Appendix A  d-q transform 

 

 

 

(209) 

 
 

Figure 72  Transforming stationary to rotating axes 

The second stage transforms a stationary axes to a rotating axes system (i 0- idq0).  The 

relationship between the axes is shown in Figure 72. 
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In matrix form, where  = t, and extending the matrix to include the orthogonal zero-

sequence currents that are not transformed: 
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using trigonometric identities: 
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or Idq0 = TI 0 

where θ=ωt is the angular frequency.  T is known as ―d-q Transform‖ that maintains the 

invariance of power. 
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Appendix B.  

Power system modelling 

B.1. General 

Because of their size and power requirements it is impractical to produce physical models 

of power networks except under very specific conditions and restrictions.  Therefore, it has 

always been an engineering task to model power networks and systems and over the years 

many commercial and bespoke methodologies and techniques have been developed, 

largely aimed at specific problems or scenarios such as load flow, short circuit, 

electromagnetic transient and stability analysis.  Tools used include. PSS/E, PSCAD, and 

EMTP.  Load flow studies tend to be the most significant studies of power system analysis 

and design.  Load flow studies are necessary for planning, operation and network 

scheduling, but are usually undertaken prior to short circuit and stability studies. 

Models for conventional power system components, such as generators and their control 

systems are well understood.  However, the trend towards open competitive electricity 

markets and infrastructure developments, resulting from the introduction of distributed 

generation and from the constraints of higher power transfers, demands different, more  

powerful modelling and simulation tools to support research, development, design and 

operations.  The potential connection of hundreds of 2-5 MW wind turbines, 

interconnected by a significant medium voltage system, potentially to a weak point in a 

distribution system, is a significant problem and necessitates a formal analytic assessment 

of their impact on the network.  These turbines exhibit static and dynamic characteristics 

completely different to those of large steam turbines and as a result do not fit the outline of 

models of conventional generation. 

The size of a network cell model containing a wind farm is likely to be very large and 

therefore some simplification is necessary.  From previous experience, the dynamic 
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characteristics of a new architecture will be of key importance and a single generator 

model of a large wind farm will not represent the full dynamic behaviour of the ―network 

cell‖ for all types of disturbance.  Experience of modelling individual wind generators is 

growing steadily but experience of wind farm or aggregate models is quite limited and not 

intuitive.  When considering the modelling needs for a potentially new network 

architecture containing an active transformer and a large wind farm, the prime modelling 

requirement was identified as being the ability to model and control the dynamics of a 

large complex systems, at a power electronic converter level and at network level.  For 

analytic studies of these power networks the time frames of interest will range from micro-

seconds to seconds for steady state.  Therefore, power system electrical apparatus models 

must accurately reflect behaviour over the whole bandwidth.  The models need not contain 

all the characteristics, e.g. those of the mechanical system, but include only those that 

effect the performance of the electrical system.  The tools required should be able to model 

and simulate power system dynamics, nonlinear systems, power electronics, and have a 

comprehensive range of control system design facilities. 

The conventional methodology of power system modelling cannot guarantee the quality or 

accuracy of models except where they have been verified for specific conditions on a 

power network.  The process of power system modelling, like that of any other industrial 

system, consists of physical analysis, mathematical deduction and model construction and 

scenario testing.  Based on a great deal of industry or operational experience, the existing 

knowledge of many engineering disciplines, a trial and error method is commonly used to 

develop power system models. 

For the purposes of this research project, the aim is to examine the feasibility of a new 

architecture based around an active transformer and therefore sophisticated models of all 

the components are not yet required, however, they will be needed for later design stages.  

This somewhat simplifies the choice of modelling tools to those that are used for control 

system design. 
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B.2. Computational tools 

B.2.1. MATLAB/Simulink 

Simulink is a platform for multi-domain simulation and Model-Based Design for dynamic 

systems. It provides an interactive graphical environment and a customisable set of block 

libraries, and can be extended for specialised applications.  SimPowerSystems extends 

Simulink with tools for modelling and simulating basic electrical circuits and detailed 

electrical power systems.  These tools facilitate the modelling of the generation, 

transmission, distribution, and consumption of electrical power.  SimPowerSystems is well 

suited to the development of complex, self-contained power systems. 

Together, SimPowerSystems and Simulink provide an efficient environment for multi-

domain modelling and controller design.  By connecting the electrical parts of the 

simulation to other Simulink blocks, circuit topology can be rapidly drawn and 

simultaneously analyze the circuit‘s interactions with mechanical, thermal, and control 

systems. 

The latest version of MATLAB/SIMULINK is a powerful simulation tool and the 

―Simpowersystems‖ library contains models of the basic elements of the proposed resonant 

converters and they have been used to build a model of the ―active transformer‖.  The 

block libraries and simulation methods in SimPowerSystems were developed by 

TransÉnergie Technologies Inc. of Montreal, which tends to give some confidence in the 

models and their application. 

B.2.2. PSAT 

PSAT [71] is MATLAB-based and aimed at power flow, optimal power flow, continuation 

power flow and electromechanical transient problems.  Comparing PSAT and 

Simulink/Simpowersystems, the two software packages realistically have different goals 

and use different mathematical models.  SimPowerSystems has a longer history and has 

been written by many people and should be generally more reliable than PSAT. 
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The Simulink environment and its graphical features are used in PSAT only to create a 

CAD tool able to design power networks, visualise the topology and change the data stored 

in it, without the need of directly dealing with lists of data.  Simulink has been conceived 

for a control environment with diagrams, outputs and inputs variables.  Milano believes 

that this is not the best way to approach a power system network and, therefore, the time 

domain routines that come with Simulink and its ability to build control block diagrams are 

not used.  PSAT simply reads the data from the Simulink model and writes down a PSAT 

data file. 

B.3. Modelling simplifications 

Power system and network modelling involves many simplifications that aid understanding 

of basic effects and concepts.  Simplified systems help to develop an appreciation of the 

physical aspects of control and help engineers gain experience with using different analysis 

techniques and therefore they are able to understand larger and more complex systems. 

 

Figure 73  Network diagram 

For example, an often used simplification in power system analysis is the infinite bus.  

Consider the network shown in Figure 73 .  For analysis purposes it may be reduced to that 

shown in Figure 74 by application of Thévenin‘s theorem.  The generator dynamics will 

cause negligible change to the voltage and frequency, Eb, of the network because of the 
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relative size of the network compared to the generator that is supply power.  Such a voltage 

source is referred to as ―an infinite bus‖. 

 

Figure 74  Equivalent system 

 



 

 

 

 

 

 

 

(216) 

Appendix C.  

MATLAB m-files 

C.1. tf_evaluation_dang.m 

%   Last update:    22 February 2007 

%   M file to evaluate closed loop transfer function of Dang's converter. 

%   Set system constants 

% 

clear all;close all; 

Vs=415                  %   Vsupply L-L r.m.s. 

Ls=3.75e-3              %   Line inductance 

Power=5000              %   Design peak power 

Vd=Vs*(2^0.5)/(3^0.5)   % 

Id=Power/(3*Vd/2)       %   Line current 

RL=100                  %    Load resistance 

Req=8*RL/pi^2           %   Equivalent load resistance 

Q=10                    % 

C=7.5e-7                %   Tank capacitance 

Ceq=pi^2*C/4 

Rs=0                    %   Input resistance 

Vtav=636.6              %   Average output voltage 

% 

%   Calculate system transfer function from [45] 

a=-9251.7 

p=13333.52 

K0=-46.79 

G=tf(K0*[1 a],[1 p]) 

% 

% 

% 

%   Controller PI gains 

% 

Ki=100 

Kp=0.002 

% 

%   Calculate controller transfer function 

% 

Gc=tf(Kp*[1 Ki/Kp],[1 0]) 

Gol=series(Gc,G) 

% 
%calculate system closed loop transfer function 

% 

T = feedback(Gol,1) 

Tzpk=zpk(T) 

% 

%   Calculate RLl at marginal stability 



 

 

Appendix C  MATLAB
®

 m-files 

 

 

 

(217) 

% 

p1=-(K0*Ki+K0*Kp*a) 

p2=(p+p1)/(1+K0*Kp) 

Req1=2/(p1*Ceq) 

RL1=Req1*(pi^2)/8 

% 

%   Sensitivity transfer function 
% 

S=tf([p 0],[(1+K0*Kp) (p+(K0*Ki)+(K0*Kp*a)) (a*K0*Ki)]) 

bode(S,T) 

% 

%   Filter for Robust design 

%   T-ideal=Wn^2/(S^2+1.4Wns+Wn^2) 

% 

zeta=0.7                %   Damping ratio 

Ts=100e-6               %   Settling time within 2% 

Wn=4/(zeta*Ts)          %   rads/sec 

Eq1=1.4*Wn 

Eq2=Wn^2 
% 

%   Comparing T with T-ideal 

%   and equating coefficients of s 

%   (Eq1-p)=(Ko)Ki + (-Eq1K0+aK0)Kp 

%   and contstant 

%   Eq2=(aK0)Ki-(Eq2K0)Kp 

%   and expressing in matrix form as Ax=B gives: 

% 

A=[K0 (-(Eq1*K0)+(a*K0));(a*K0) -(Eq2*K0)] 

B=[(Eq1-p);Eq2] 

%   

%   Solving simultaneously 

% 

x=A\B 

Kir=x(1,1) 

Kpr=x(2,1) 

% 

%   Checking by substituting back 

% 

ck1=(p+(K0*Kir)+(a*K0*Kpr))/(1+(K0*Kpr)) 

ck2=a*K0*Kir/(1+(K0*Kpr)) 

% 

%   Calculate ITAE compensator transfer function Gi 

% 

Gci=tf(Kpr*[1 Kir/Kpr],[1 0]) 

% 

%   calculate ITAE system closed loop transfer function Ti 

% 
Goli=series(Gci,G) 

Ti = feedback(Goli,1) 

Tiz=zpk(Ti) 

[z p k]=zpkdata(Ti,'v') 

Gpi=zpk([],[z(1,1) z(2,1)],(Wn^2/k)) 

% 

%   Check transfer function of new system 

%   and plot bode diagram in sisotool 

% 
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ck3=series(Gpi,Ti) 

%bode(ck3) 

sisotool(G,Gci,1,Gpi) 
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C.2. MATLAB m-code to generate the H∞ loop shaping controller 

AppC_2 

%%   Reference MCF Table 9.2 page 367: Matlab function to generate the 

Hinf controller in (9.70). 

% 

gamrel=1.1; 

S=eye(size(d'*d))+d'*d; 

R=eye(size(d*d'))+d*d'; 

Rinv=inv(R);Sinv=inv(S); 

A1=a-b*Sinv*d'*c; 

R1=S; 

B1=b; 

Qc1=c'*Rinv*c; 

[X,XAMP,G]=care(A1,B1,Qc1,R1); 

A2=A1'; 

Qc2=b*Sinv*b'; 

B2=c'; 

R2=R; 

[Z,ZAMP,G]=care(A2,B2,Qc2,R2); 

    %   Optimal gamma 

XZ=X*Z; 

gammin=sqrt(1+max(eig(XZ))); 

    %   Use higher gammin 

gam=gamrel*gammin; 

gam2=gam*gam; 

gamconst=(1-gam2)*eye(size(XZ)); 

Lc=gamconst+XZ; 

Li=inv(Lc'); 

Fc=-Sinv*(d'*c+b'*X); 

Ac=a+b*Fc+gam2*Li*Z*c'*(c+d*Fc); 

Bc=gam2*Li*Z*c'; 

Cc=b'*X; 

Dc=-d'; 
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Appendix D.  

Copies of published papers 

i) W.G. Garlick, A.C. Zolotas, ―Modelling of a direct converter with H∞ voltage 

control,‖ submitted to ICSE 2009 conference, Coventry, 8-10 September 2009. 

ii) W. G. Garlick, A. C. Zolotas, D. Grieve, R. M. Goodall, ―The Architecture and 

Control of Large Power Systems with Distributed Generation‖, CIGRE 2008 

Session, Paris, 24 – 29 August 2008. 

iii) W. G. Garlick, A. C. Zolotas, D Infield, “A novel architecture for power 

networks with distributed generation - concept outline”, UKACC, Control 

2006, paper 223, September 2006. 
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