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Abstract 

Multiple antennas at the transmitter and receiver, formally known as multiple-input 

multiple-output (MIMO) systems have the potential to either increase the data rates 

through spatial multiplexing or enhance the quality of services through exploitation 

of diversity. In this thesis, the problem of downlink spatial multiplexing, where a 

basestation (BS) serves multiple users simultaneously in the same frequency band is 

addressed. Spatial multiplexing techniques have the potential to make huge saving 

in the bandwidth utilization. We propose spatial diversity techniques with and with­

out the assumption of perfect channel state information (CSI) at the transmitter. 

We start with proposing improvement to signal-to-leakage ratio (SLR) maximization 

based spatial multiplexing techniques for both fiat fading and frequency selective 

channels. For orthogonal frequency division multiplexing (OFDM), even for a fre­

quency selective channel, the channel in each frequency bin would appear as flat, 

hence beamformers developed for frequency flat fading channels can be applied in 

each frequency bin for a frequency selective OFDM system. However, for spatial 

multiplexing of TDMA systems with frequency selective channels, we propose a novel 

approach based on uplink-downlink duality. A general framework based on chan­

nel shortening filters has been considered. A better link performance is achieved as 

compared to equalization based spatial multiplexing techniques. 

The spatial diversity techniques proposed in the first phase of the thesis require 

nearly perfect CSI at the transmitter, which is in general not possible. We therefore 
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focus on developing spatial diversity techniques that are resilient to errors in the 

CSI. Several techniques based on advanced convex optimization theory have been 

proposed to obtain robust solution by incorporating the possibility of CSI errors in 

the design. A robust SLR based downlink beamformer using worst-case performance 

optimization has been proposed. Having demonstrated outstanding performance, the 

problem of robust downlink beamforming using semi-definite programming (SDP) 

has been addressed. Two novel schemes using worst-case performance optimization 

and positive semidefinite (PSD) constraints have been proposed. Finally, a robust 

downlink beamformer with per-antenna power constraint has also been developed. 
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Chapter 1 

Introduction 

Multiuser wireless communication systems such as the wireless cellular networks for 

·. e.g. global system for mobile communications (GSM) [10] or the wireless local area 

network (WLAN) for e.g. IEEE 802.11 (Wi-Fi) [11] impose several challenges such 

as providing higher data rates, mitigating interference and maintaining a level of 

required quality of service (QoS). Furthermore, the ever increasing demand for simpler 

and lighter mobile units 1 has resulted in a need to move the receiver complexity 

to the basestation (BS) in a cellular network. The transceiver has to pre-process 

the data prior to transmission to combat the phenomena of the physical wireless 

channel and inter-user interference (IUI) to support the users in the system. The pre­

processing at the transceivers may require the knowledge of channel state information 

(CSI). In practice, the CSI is fed back from receiver terminals. The CSI available at 

the· transceiver would normally be in error due to feedback delay, feedback error, 

quantization, etc. 

Several advanced signal processing techniques exist which assume perfect CSI 

at the transmitter. However, in practice, this is an unrealistic assumption. The 

performance of these algorithm is known to degrade as the quality of CSI available at 

the transmitter worsens. Therefore, in the presence of such errors, robust techniques 
1These refer to the end user product such as the mobile phones, laptops, palmtops, etc. 

1 



1.1. The Wireless Communications Channel 2 

are needed which will incorporate for the errors in the CSI into the design. 

The aim of this thesis is to provide an extensive literature review of fundamentals 

and the key topics in multiuser downlink communication systems and to propose 

several transceiver optimization techniques to improve the performance of wireless 

communications systems. 

1.1 The Wireless Communications Channel 

The wireless communication channel as a medium poses several challenges for high­

speed communications. A signal propagating through the wireless communication 

channel suffers from various different impediments before arriving at the receiver. 

Moreover, noise 2 and interference 3 also impair the quality of the received signal. 

The receiver applies several advanced signal processing techniques 4 to overcome the 

effect of these phenomena in order to construct the original signal. 

Path loss is one of the main impediment. It results in the reduction in power 

density of the transmitted signal as it propagates through the medium and it may be 

due to effects such as free-space loss, refraction, diffraction, reflection and absorption. 

The terrain contours, urban or rural environments, foliage, distance between the 

transmitter and the receivers also influence path loss. 

On the other hand, the wireless propagation channel also induces fading, in which 

the received signal exhibits random fluctuations in signal level. These fluctuations 

are induced as a result of the superposition of the multiple copies of the original 

transmitted signal 5 , each traversing a different path and experiencing differences 

in attenuation, delay and phase shift. Fading is usually modeled as a time-varying 

2This refers to Johnson Nyquist noise and its amplitude is assumed to have a Gaussian probability 
density function 

3 This mainly refers to signals arriving form undesired users in the system. 
4These techniques may be applied at the transmitter to pre-remove the effect of channel, inter­

ference etc. 
5This phenomenon is known as the multipath. 
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random change in the amplitude and phase of the transmitted signal and the terms 

slow and fast fading refer to the rates at which the magnitude and phase change 

occur. Slow fading is caused by events such as shadowing, where a large obstruction 

such as large building obscures the main signal path between the transmitter and 

the receiver. Fast fading however, is caused due to the scattering and reflection off 

objects between the transmitter and receiver. 

In a multipath channel, the transmitted signal arrives through multiple paths 

(different gains) and hence arriving at the receiver at different times (different de­

lays). This causes time dispersion of the transmitted signal. A measure of this time 

dispersion is called the channel delay spread T max [12, 13]. This delay spread causes 

frequency selective fading which can be characterized by the coherence bandwidth of 

the channel Be ~ 1/Tmax [12, 13]. It measures the frequency bandwidth over which 

the channel remains correlated. The channel is known as frequency selective if the 

coherence bandwidth of the channel is less than the signal bandwidth else the channel 

is known as frequency fiat. 

Scatterers and transmitter /receiver mobility induce time variations in the prop­

agation channel and this time variation is characterized by doppler spread Fd i.e. a 

signal of frequency Vc hertz spreads over a finite spectral bandwidth ( Vc±Vmax) [12, 13]. 

The time selective fading is characterized by the coherence time which is inversely 

proportional to the doppler spread and is given as Tc ~ 1/Fd [12, 13]. This gives the 

measure of time over which the propagation channel remains correlated i.e. measures 

how fast the channel changes in time - the larger the coherence time, the slower the 

channel fluctuations. 

As mentioned earlier, a signal propagating in a multipath channel experiences 

different gains over different paths before arriving at the receiver through different 

angle of arrivals (AOA). Hence, these paths add up differently at different point 

in space i.e. the spatial location of the antenna. This effect is known as space-
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selective fading. It mainly depends on the angle spread (J8 of the arriving paths 

and is characterized by the coherence distance, De :::; 1/(Je [12, 13] and it refers to 

the distance over which the channel impulse response remains strongly correlated. 

Techniques including beamforming and spatial multiplexing could be exploited using 

the space selective behavior as it induces channel variations from antenna to antenna. 

The larger the angle spread - the shorter the coherence distance. 

The transceiver thus needs to be equipped with appropriate signal processing 

techniques to overcome these channel induced effects. Moreover, in a multiuser en­

vironment, where users either compete or corporate for the available resources 6 , the 

transceiver must be able to optimally allocate to the most suitable user or optimally 

share the resources among all users in the system. 

1.2 Multiple Antennas 

Wireless systems continue to strive for even higher data rates with limited bandwidth, 

power and complexity. The use of multiple antennas at both the transmitter and the 

receiver has opened up a new domain that can be exploited to provide significant 

increase in channel capacity. Pioneering work by [14-16] predicted remarkable in­

crease in spectral efficiency which leads to an explosion in the research activity to 

characterize the capacity limits of multiple-input multiple-output (MIMO) channels 

for both point-to-point (single user) and multiuser systems. An excellent overview of 

Shannon capacity for MIMO system for both single and multiuser has been provided 

in [17]. 

Space-time processing is the core idea in MIMO systems. In such a system the 

time is complemented with the spatial dimension of multiple spatially distributed 

antennas, hence it is generally viewed as an extension to a popular technology known 

as smart antennas. See [12, 13, 18] for a detailed overview of the recent advances in 

6 This could be time, frequency, code etc. 
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Single Antenna Systems Multiple Antenna Systems 

Figur 1. 1: Multiple anL nna system models. 

aspects of space-time processing l\lll\10 communications. 

1.2.1 Gains and Features of MIMO Syst em 

A key feature of 1\.IIMO systems can be summarized as its ability Lo use the multipat.h 

propagation in the favor of the u er [19]. It uses fading and multipath delay spread 

for mulLiply i11g data rat ' . The uccess of MIMO is largely d uc to the fact that i L 

enhances Lh sys tem performance with no extra spectrum, on ly hardware complexity 

is added . In an a ttempt to contribute and to improve the performance of Mll\10 

communication y. tetns in particular mulLiu er l\II 10 systems, we will investigate 

and propos various techniques. 

We begin hy looking a t. d ifferent configuration of a multiple antennas systems. Fig. 

1.1 presents the different. configurations for thr multiple antenna system ·, which in-
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eludes single-input single-output (SISO), single-input multiple-output (SIMO), multiple­

input single-output (MISO) and MIMO systems. Using multiple antenna arrays at 

the transmitter, receiver or both gives rise to improvement in the system performance. 

This increase in system performance is due to gains that antenna arrays are able to 

achieve in MIMO systems. 

Array gain or beamforming gain can be achieved by increasing the average signal 

to noise ratio (SNR) at the receiver through the process of coherently combing the 

signals which arrive at the receiver antennas with different amplitudes and phases. 

This process increases the average received signal power which is proportional to the 

number of receiver antennas. Hence array gain offers improved coverage and QoS. 

Beamforming gain can be easily characterized as a shift in the BER curve (plotted 

against the received power per antenna) due to the gain in SINR. See [19, 20] for 

further details on array gain in MIMO systems. 

Due to channel fluctuations the signal suffers from fading and to combat this 

fading, diversity techniques are exploited. Both transmit and receive diversity are 

exploited for multiple antenna systems. Receive antenna diversity can be used in 

SIMO channels [21]. On the other hand, transmit diversity can be achieved in MISO 

channels with or without the knowledge of channel at the transmitter. See [22, 23] for 

transmit diversity schemes based on space-time block codes (STBC) in the absence of 

channel knowledge at the transmitter. Whereas in MIMO channel a combination of 

receive and transmit diversity can be achieved. Diversity is characterized by a number 

of independently fading branches, more formally known as diversity order. Table 1.2.1 

lists the diversity order achieved for a given system configuration, assuming that all 

channels from transmit antenna to receive antenna and vice versa fade independently. 

Diversity gain provides improvement in link reliability and this gain can be easily 

characterized as the increase in the BER (plotted against received power per antenna 

on a logarithmic scale) slope in the low BER region. 
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Table 1.1: System configurations and diversity order achieved. 
I System Configuration I Diversity Order 
I SIMO I Number of receive antennas (Nn). 
I MISO I Number of transmit antennas (Nr). I 

MIMO Product of number of receive and 
transmit antennas (Nr x Nn). 
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Spatial multiplexing offers for the same bandwidth and power consumption a 

linear increase in the transmission rate (i.e. capacity). Unlike array and diversity gain 

spatial multiplexing is only possible in MIMO systems [14,16,24]. An an example, let 

us consider a system with Nr transmit and Nn receive antennas. In such a system, 

a bit stream can be multiplexed into Nr bit streams with a rate of 1/Nr, modulated 

and transmitted simultaneously through the Nr transmit antennas, which can then 

be demultiplexed and demodulated using Nn 2': Nr receive antennas and combined 

together to form the original signal stream. Similarly in a multiuser scenario, spatial 

multiplexing can used in both uplink and downlink, also known as space division 

multiple access (SDMA). In uplink multiple users (K) can simultaneously transmit 

data through the same channel to a BS equipped with multiple receive antennas 

Nr 2': K. Similarly in downlink, a BS can transmit data to multiple users using 

spatial filtering, which allows users to decode their signals independently. Spatial 

multiplexing allows increase in capacity and is proportional to the number of antennas 

at the BS and the number of users. An example of such a transmission scheme over 

a MIMO is often referred to as V-BLAST (Vertical-Bell Labs Layered Space-Time 

Architecture) [25]. 

Cc-channel interference (CCI) arises due to reuse of the frequency in wireless 

channels [12,26]. Using multiple antennas the effect ofCCI can be mitigated, however 

it requires knowledge of CSI for both desired signal and the eo-channel signals. For 

multiuser downlink MIMO systems, with the knowledge of CCI for the channels 

between the BS and the users, techniques such as multiuser beamforming can be 
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used to increase network capacity and to reuse the network resources. See [27] for an 

example of interference mitigation in multiuser MIMO systems. 

1.2.2 Tradeoffs Between Gains 

In a multi-antenna system both beamforming and diversity gain may be achieved 

simultaneously by coherently combining the received signal. Beamforming gain re­

quires CSI at the transmitter and is independent of the channel statistics whereas 

diversity gain may be achieved independently of the CSI, however, requires the sta­

tistical behavior of the channel. Thus, there is no tradeoff between beamforming and 

diversity gain. 

On the other hand, beamforming and multiplexing gain have a fundamental trade­

off. Since maximum beamforming requires only the maximum singular value of the 

channel may be used [28], whereas to achieve maximum multiplexing a subset of 

channel singular values (sub-channels) are used based on water-filling solutions [29]. 

Finally, although diversity and multiplexing gain can be achieved simultaneously, 

they share a fundamental tradeoff in terms of how much of each gain can be extracted 

in a communication system [30]. It has been shown that diversity-multiplexing trade­

off is essentially the tradeoff between the error probability and the data rate of the 

system. 

The deployment of multiple antennas at the transceiver allows us to exploit these 

gains, which may be achieved fully simultaneously or share a tradeoff. In this thesis, 

we consider a wireless system where the transceiver is equipped with an array of 

multiple antennas, however, each user in the system could either have single antenna 

or multiple antennas. 
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ln this lhcsis we olcly . tudy the problem of pa tia.l multiplcxing, or in pa rticui<U" 

downlink b('amforming. Let u. begin by looking at the ha ics of thi. problem. Fig 

1.2. depicts a basic block diagrau1 of a multiuscr downlin k sysLem. ln such a system, 

a BS equipped with Nr ant nnas simultaneously transmits independent data s treams 

to J( decentralized users . Each u. er could have either single or multiple an tennas. 

To do this the BS multiplexes the data intended for differ nt u crs and t ransmit s a 

vector x (l) E [:Nrx l at tinl<' I as 

/ ( 

x (t ) = L wisi(t ) 
j= l 

(J.l ) 

whcr wi E [:Nrx 1 and s; arc the beamfon ning vector and the data symbol 

intended for the jl11 user. The problem of downlink b amforming i to design a set of 

bcamforming vectors and perform . pa tial multiplexing, so tha t a pro-defined threshold 

ou QoS 7 is achieved for each us r. Assuming single antenna users, the signa l received 

by the jL11 user a t time t is given as 

7This could be ignal- to-interfercncc plus noise ratio. mean square error. bit. error rat.c, capacity 
etc. 
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(1.2) 

where hj E ctxNT is the complex (flat fading) channel vector between the BS 

and the jlh user and ni is additive white Gaussian noise (AWGN) at jlh user with 

variance er~. 

1.3.1 Frequency Selective Channels 

If the channels seen between the BS and the users are frequency selective, space­

time filters are required to perform spatial multiplexing at the transmitter. Defining 

Wi = [wi(O), wi(1), ... , wi(N1 - 1)] as the space-time filter for the jlh user, where 

N1 is the filter length, the transmit signal from the BS at time t can be written as 

K Nrl 

x(t) = L L wi(n)si(t- n). (1.3) 
j=l n=O 

Assuming that the channel has an impulse response of length Nh and users are 

equipped with a single antenna, the signal received by the j'h user can be written as 

Nh-1 

Yi(t) = L hi(m)x(t- m)+ ni(t), (1.4) 
m=O 

where hj(m) E ctxNT is the complex channel vector for the m'h delay between 

the BS and the j'h user. In this thesis we provide an extensive literature review and 

propose various techniques on the beamformer design for flat fading channels and 

space-time filter design for frequency selective fading channels assuming perfect CSI 

is available at the transmitter. 
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1.3.2 Non-Perfect Channel State Information 

A wireless communication system may employ time division multiplexing (TDD) or 

frequency division multiplexing (FDD) as its duplexing scheme. TDD uses a single 

frequency to transmit signals in both the downstream (forward link) and upstream 

(reverse link) directions. In TDD, the reciprocity principle is normally exploited to 

obtain the CSI at the transmitter. However, a FDD based system uses different fre­

quencies for downstream and upstream transmissions. Thus, the reciprocity principle 

in general cannot be exploited in FDD. As a consequence, the CSI is estimated by 

the receiver on the forward link and then fed back through a feed back channel from 

the receiver to the transmitter on the reverse link. This, however, requires additional 

bandwidth and power, but only a limited amount of resources are allocated to such 

a feed back channel. As a result, the CSI available at the transmitter is generally 

in error, these may arise due to feedback error, feedback delay, quantization, estima­

tion errors and so on. In the presence of such errors, robust techniques are generally 

needed to incorporate for the CSI errors. Let us define a channel covariance matrix 

as R = E{hHh} E §~TxNT. Throughout the thesis, we will use the following model 

RActual = RKnown + ~' (1.5) 

where RActual is the actual (error-free) channel covariance matrix, RKnown is the 

known channel covariance matrix at the transmitter and~ is the unknown uncertainty 

matrix, where its Frobenius norm has assumed to be bounded above by a known 

constant, i.e. II~IIF ~ c. Such an upper bound can be obtained in practise using a 

priori statistical information. In this thesis we will provide an extensive literature 

review on robust beamforming techniques which incorporate for the CSI errors in the 

design and propose novel techniques using advanced convex optimization theory. 
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1.4 Figures of Merit 

In this section we discuss the common measures of performance that will be readily 

used throughout this thesis. 

1.4.1 Mean Square Error 

The mean square error (MSE) is defined as 

(1.6) 

where x corresponds to the estimation of the transmitted symbol x and is bounded 

by 0 < MSE :::; 1. An MSE in the vicinity of 0 corresponds to a good estimate of the 

transmitted symbol, thus systems are usually optimized to minimize the MSE. 

1.4.2 Signal to Interference-plus-Noise Ratio 

In any communication system the received signal may be written as y = x + i + n, 

where x corresponds to the desired signal component, n corresponds to interference 

and i corresponds to noise. Thus, the signal to interference-plus-noise ratio (SINR) 

for a communication system is defined as 

(1.7) 

and is bounded by 0 < SINR < oo. The higher the SINR the better it is for a 

communication link, hence the systems are usually optimized to maximize the SINR. 

1.4.3 Bit Error Rate 

Bit error rate (BER) is known to be the ultimate performance measure for a digital 

communication system and it is defined as the bit error probability. Assuming i + n 
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in (1.7) is Gaussian distributed, then the symbol error probability P. can be defined 

as [31] 

(1.8) 

where Q is the Q-function defined as Q(x) = }z;; fxco e->-212d>. [31], a and j3 are 

constants that depend on the signal constellation [31]. The BER can be approximate 

from P. as 

BER <=:j P./ k (1.9) 

where k = log2 M is the number of bits per symbol and M is the constellation 

size. The BER is bounded by 0 < BER ::::; 0.5. A BER of 0.5 corresponds to an 

outage probability of 1, thus normally system are usually optimized to minimize the 

BER. 

1.5 Thesis Outline 

Numerical optimization techniques has played a major role in various research disci­

plines over the last few decades. In particular, convex optimization has emerged as 

an important tool and found applications in almost all fields including signal process­

ing, communications, finance, etc. It is a general view that once a problem is put 

into a convex optimization form, it can be naturally solved due to the advancements 

in the numerical optimization techniques. Chapter two outlines the important con­

cepts to understand the fundamentals of convex optimization theory. The chapter 

describes the most generic classes of convex problems, namely, linear programming 

(LP), quadratic programming (QP), second-order cone programming (SOCP) and 

semidefinite programming (SDP). The chapter also lays the foundations to Lagrange 
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optimization and Karush-Kuhn-Thcker (KKT) conditions, which allow the convex 

problems to be solved both analytically (if possible) and numerically. Finally, the 

interior-point methods are introduced. These are the backbone of all the conic op­

timization software available in the market, for example, CVX [32], SeDuMi [33], 

etc. 

Various diversity techniques including time, frequency, polarization and space 

diversity are introduced in chapter three. An extensive literature review on both 

receiver and transmitter spatial diversity techniques is presented. The particular 

attention is on spatial diversity techniques at the transmitter, as they form the core 

of this thesis. Spatial diversity at the transmitter can be broken down into techniques 

requiring CSI, such as beamforming and techniques which do not require CSI, such 

as STBC. 

Chapter four proposes a downlink beamforming technique based on maximizing 

signal to leakage ratio (SLR). Herein we propose an iterative scheme where instead 

of maximizing the SLR at the frontend of the receiver, the SLR at the output of 

the receiver is maximized. We show high gain in performance as the iterations are 

increased, however this gain vanishes as the noise floor is reached. Simulations results 

are presented for both flat fading and frequency selective channels, where we employ 

orthogonal-frequency division multiplexing (OFDM) at the transmitter. 

The problem of separating multiple users transmitting data in the uplink is con­

siderably easy as compared to the downlink. This is because, for the uplink the 

weight vectors can be designed individually for each user. Thus, it is desirable to 

establish a link between the uplink and downlink paradigms. Chapter five discusses 

this link which is more formally known as the uplink-downlink duality. The duality 

has been well established for flat fading channels, however we extend this to frequency 

selective channels. In such a scenario, the beamformers are replaced by space-time fil­

ters, which could be viewed as multiple-tap beamformers. Finally, we propose partial 
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equalization or channel shortening based spatial multiplexing schemes. In this ap­

proach, the effective channel is shortened to a desired target impulse response (TIR). 

The performance of channel shortening based space-time filters is compared to that 

of a full equalization based scheme. 

In chapter six, we propose a robust counterpart to the SLR based beamformer 

using worst-case performance optimization. Analytical expressions are derived for the 

diagonal loading parameters, which appear in the cost function for the SLR based ro­

bust beamforming. Simulation results confirm the superior performance of the robust 

solution over the non-robust solution for a flat fading environment. An application 

of this scheme for frequency selective channels using OFDM is also presented. Here, 

we assume that instead of feeding back CSI for all Ne frequency bins, the CSI is 

quantized over N 3 <Ne blocks and fed back to the transmitter. 

Chapter seven builds upon the well known technique of robust downlink beam­

forming using worst-case performance optimization. The worst-case performance op­

timization violates the positive semidefinite (PSD) constraints on the channel eo­

variance matrices. This is an immediate consequences of negative diagonal loading 

in the cost function. The chapter builds upon this technique by incorporating for 

the semidefinite constraints. Two different SDP based methods are proposed, which 

are approximated into convex problems using semidefinite relaxation (SDR). The 

resulting designs are shown to be less conservative as compared to the worst-case 

performance optimization which does not incorporate for the PSD constraints. 

The problem of conventional downlink beamforming can be expressed as mini­

mizing the total sum power subject to satisfying some QoS constraints. However, in 

practice each antenna or a sub-group of antennas may be equipped with their own 

individual power amplifiers. In chapter eight, we discuss the problem of downlink 

beamforming with per-antenna power constraints and QoS constraints. We propose 

a robust solution based on worst-case performance optimization. 
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Finally conclusions are drawn in chapter nine and a brief outline of the possible 

future research directions is also provided. 



Chapter 2 

Literature Review 

Multiple-input multiple-output (MIMO) communication system, where multiple an­

tennas are employed at both the transmitter and the receiver, has proven to be an 

extremely promising technique in enhancing data rates of a wireless communication 

system without requiring additional spectrum. Moreover, multiple antennas in MIMO 

systems can be used to achieve diversity [22], beamforming [34] or spatial multiplex­

ing [25]. 

Random fluctuations of signals, for example in time, frequency and space is the 

main impairment in wireless channels [12]. In order to improve reception at the 

receiver, diversity techniques are used, as they provide the receiver with multiple 

independent look of the signal. These multiple looks are more formally known as 

diversity branches. The probability of all the branches being in fade together decreases 

as the number of diversity branches increases. Therefore, with a high probability, the 

receiver can detect data reliably as the probability of at least one branch or link with 

a good signal increases. 

Wireless channels in general exhibit all or a combination of space-time-frequency 

fading. The actual diversity captured by the receiver depends on the inherent diversity 

that is available in the channel, the coding and the modulation scheme used for 

17 
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transmission, and the receiver design itself. This inherent diversity depends on the 

size of the codeword used, the number of transmit antennas Nr, the number of 

receiver antennas N R, the coherence bandwidth Be and the coherence time Tc [12, 13]. 

There are many ways to obtain diversity. The utilization of time/frequency diversity 

incurs at the expense of time (in the case of time diversity) and bandwidth (in case 

of frequency diversity) due to introduction of redundancy. Spatial diversity is an 

attractive alternative that does not sacrifice time or bandwidth. Moreover, it provides 

array gain or increased average SNR [12, 13]. This, however may incur at an expense 

of additional hardware complexity. However in comparison to system resources such 

as the time and bandwidth, hardware complexity is diminutive. The exact nature 

of the scheme that extracts spatial diversity depends on the antenna configuration 

(SIMO, MISO or MIMO). 

2.1 Single User Spatial Diversity Techniques 

2.1.1 Receiver Antenna Diversity 

Receiver diversity requires multiple receiver antennas that are spaced far enough 

apart so that the channel between each transmit and receive antenna can be assumed 

uncorrelated. As shown in Fig.2.1 the received signal is combined using a weight 

vector wE CNnxl. The central idea in receiver diversity techniques is to design the 

weight vector w to reduce the effect of fading and to maximize SNR. Let us consider 

a SIMO system shown in Fig. 2.1. The input-output relation for the channel can 

then be expressed as 

Yi = VE,his + ni, i = 1, 2, .... , NR, (2.1) 

where Yi is the received signal at the i 1h receiver antenna, s is the transmit symbol 
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Input Signal Output Signal 
) 

Figmc 2.1 : Ilcrciver diversity in n 811\10 system. 
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with unit vari ru1ce, Es is the average symbol energy in each link and n1 is the addi l ive 

white Gaussian noise (AWG ) with zero mean and vari ance a~. The channel gains 

h1, i = 1, 2 ..... , N 17 , arc assumed to be zcro-mcau complex Gaussian nmdom variables 

with unity variance and the gains are indrpcnclcnL ncro. s Lh • antennas. A suming 

tha t. the complex channel gains ar p rfectly known to the rcccivN, Lh receiver 

performs maximal ratio combining (MRC) [31 35] to maxin tizc the I 11 as 

z - JE h 11 h + h 11 n s (2.2) 

where h E <CN11 x 1 .n E <eNuxt and w = h 11 is us d. which is effectively a match 

filter and known to be optimal for single-u er c· nario. The posl -~1RC S -R is Lh n 

given by 

Nn 

s TR = p L lhtl2
, (2. 3) 

i = l 



2.1. Single User Spatial Diversity Techniques 20 

where p = E,ja~ is the average SNR per receive antenna. Assuming that the 

receiver employs a Maximum Likelihood (ML) detector, the symbol error rate (SER) 

is given by [36] 

(2.4) 

where N. and dmin are the nearest neighbors and the minimum distance of the 

constellation used. Combining (2.3) and (2.4), it has been shown in [31] that the 

average SER P. is given by 

(2.5) 

Hence, a diversity order equal to the number of receiver antennas N R is achieved, 

since in the absence of diversity (Nn = 1), P.::; N.(pd;,.;n/4)- 1. Diversity affects the 

slope of the SER vs SNR curve on a log-log scale. The magnitude of the slope equals 

the diversity order N R· This is demonstrated in 2.2, where we plot SER as a function 

of SNR for a fading link, with BPSK modulation for Nn = 1, 2, and 4. Moreover, the 

average postprocessing SNR is given by 

SNR = Nn.SNR. 

Hence, in addition to the increased diversity order, the average SNR is also enhanced 

by a factor of Nn over a single-receive antenna case due to the array gain. We have 

seen that full diversity and array gain are achieved using receiver diversity. Other 

popular receiver diversity techniques include selection combining [13] and equal gain 

combining [13]. 

Employing multiple antennas at the receiver adds to the complexity and cost of 

the receiver. Therefore, to keep the receiver structure simple, transmit diversity is 
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preferred. 
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Figure 2.2: Performance of receive diversity technique (MRC) for various number of 
antennas. 

2.1.2 Transmit Antenna Diversity 

In transmitter diversity techniques, the signal is pre-processed or pre-coded prior to 

transmission [22, 23]. Transmit diversity techniques can be classified into two main 

categories: techniques for which the channel state information (CSI) is available at 

the transmitter and techniques for which the CSI is not available at the transmitter. 

Channel Unknown to the transmitter 

A well known and fully developed transmitter diversity scheme is space-time block 

coding (STBC), originally proposed by Alamouti [22] for a MISO (two transmit and 

one receive antenna) flat fading channels and later extended to frequency-selective 
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channels in [37, 38]. The Alamouti scheme extracts a diversity order of 2 (full NT 

diversity). 

Channel Known to the transmitter 

Transmit - MRC 

A well known technique for transmitter diversity is known as transmit maximal 

ratio combining (transmit-MRC) [39,40]. The signal is transmitted from each antenna 

after being weighted appropriately, so that the signals arrive in phase at the receiver 

antenna and add coherently. The signal at the receiver can be written as 

{E. 
y= VN:;.hws+n, (2.6) 

where y is the received signal, w E i[;Nrxi is the MRC weight vector, h E IC1xNr 

is the channel gain vector and n is zero mean circularly symmetric complex Gaussian 

(ZMCSCG) noise with variance a;. The weight vector is designed such that llwll~ = 

NT, so that the average total power of the transmitted signal is 1. The weight vector 

w that maximizes the SNR is given by [39] 

(2.7) 

The SNR at the receiver is given by 

SNR = llhii~P (2.8) 

where p = E,ja~ is the average SNR at the receiver antenna. Assuming, that the 

separation between the antennas is greater than the coherence bandwidth and rich 

scattering environment, it follows that the average probability of symbol error in the 

high SNR regime is upper-bounded by 
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Figure 2.3: Performance of transmit diversity technique (transmit-MRC) for various 
number of antennas. 
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(2.9) 

Thus transmit-MRC delivers a diversity order of Nr in the presence of independent 

and identically distributed (IID) Rayleigh fading. The average received SNR at the 

receiver defined as 

and is improved by a factor of Nr over a SISO link. Hence when perfect CSI is 

available to the transmitter, transmit-MRC will deliver array gain and diversity gain. 

A MISO system with Nr transmit antennas, using transmit-MRC, has the same 

performance as SIMO system with the same number of receiver antennas (employing 

receive-MRC). This is illustrated in Fig. 2.3, where we plot SER as a function of 

SNR, with BPSK modulation and Nr = 1, 2, and 4. 
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MIMO Beamforming 

In a MIMO system, to extract spatial diversity a technique known as dominant 

eigenmode transmission or beamforming can be used. In such a system, the signal is 

weighted with a weight vector and transmitted through an array of antennas. The 

received signal vector is then given by 

(E: 
y= YNrHws+n, (2.10) 

where y E ICNnxi is the received signal vector, H E I(;NnxNr is the channel matrix, 

w E I(;Nrxl is the weight vector and nE ICNnxl is a spatially white ZMCSCG noise 

vector. Again w must be designed such that [[w[[~ = NT to maintain the required 

total transmitted energy. The receiver then weights and sums the received signal at 

each of the antennas according to 

(2.11) 

where g E I(;Nnxl is the receiver weight vector. The SNR at the receiver is then 

given by 

(2.12) 

where p = E,fa~ is the SNR per receiver antenna. In order to maximize the SNR, 

we perform singular value decomposition (SVD) of the channel matrix Has 

H = UI:VH. (2.13) 

It can be verified that the SNR is maximized when wand g are the left and right 

singular vectors corresponding to the largest singular value amax of H. Hence the 

input-output relation for the channel reduces to 
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(2.14) 

where n is ZMCSCG noise with variance u~ and Umax = v'>-max• where Amax is 

the maximum eigenvalue of HH R. The SNR at the receiver is then given by 

SNR = AmaxP· (2.15) 

The P. for a system employing dominant eigenmode transmission may be upper 

and lower bounded in the high SNR regime by [12] 

(2.16) 

The above result implies that the SER slope must maintain a slope of magnitude 

NrNn, as a function of SNR (on a log-log scale). Hence, we can conclude that the 

dominant eigenmode transmission extracts a full diversity order of NrN R [12]. This is 

depicted in Fig. 2.4, where we plot SER as a function of SNR, with BPSK modulation 

for a SISO, MISO using transmit-MRC with Nr = 2 and MIMO using eigenmode 

transmission with Nr = 2 and Nn = 2. 

2.2 Joint Transceiver Design 

Joint transceiver design deals with the problem of jointly designing the transmit and 

receive filters. This problem is commonly known as linear precoding at the transmitter 

and equalization at the receiver. Here CSI is assumed to be at both ends of the link. 

The design goal is to select an optimal pair of linear transformations F (precoder) 

and G (decoder) of blocks of the transmit symbols and receive samples, respectively, 

that operate jointly and linearly on the time and space dimensions. In all designs, 

the paradigm of linear preceding/decoding exploits the channel eigendecomposition 
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in constructing the optimal F,G. The distinct solutions are characterized by how the 

power is loaded on each channel eigenfunction. The precoder designs capitalize on 

the available knowledge about the channel by investing the available power wisely in 

each dimension. 

In literature various joint design of linear precoders and decoders according to a 

variety of design criterion have been considered. Some of these are, [41-43] and [44], 

where the objective to minimize was defined as sum of the mean square error (MSE) of 

the channel substreams was under an average power constraint. In [45], the above cri­

terion was generalized by using a weighted sum of the substream MSEs. A maximum 

SINR criterion with a ZF constraint was proposed in [44]. The original complicated 

design problem is greatly simplified in these criterion because the channel turns out 

to be diagonalized by the transmit-receive processing. Several other approaches based 

on minimizing the determinant of the MSE structure were proposed in [43]. A unified 

framework for the problem of joint transmit and receiver beamforming for multicar-
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rier channels based on convex optimization was presented in [46,47]. Some interesting 

results for the joint transceiver design for MIMO channel shortening were presented 

in [48]. 

2.3 Multiuser Spatial Diversity Techniques 

So far, we have looked at a single user wireless system. However, spatial diversity 

techniques can be used to transmit signal simultaneously to multiple users and we will 

refer to this system as MU-MIMO. MU-MIMO has been used in many applications 

such as satellite communications and cellular systems. We will refer to the forward 

link MU-MIMO channel as MIMO broadcast channel (MIMO-BC) and the reverse 

link MU-MIMO channel as MIMO multiple access channel (MIMO-MAC). 

2.3.1 MIMO-MAC and MIMO-BC 

In downlink beamforming a BS simultaneously transmits data to multiple users with­

out compromising the available radio spectrum. The users may be equipped with 

single antenna, and hence have no ability for spatial discrimination. If the users are 

equipped with multiple antennas, they could perform some type of interference sup­

pression. However in both cases, we have a MIMO system. Much of the research in 

MU-MIMO has been focused on the uplink scenario, also known as MIMO-MAC. In 

such a scenario a BS equipped with multiple antennas can separate the signals arriv­

ing from several different users. However, the focus here in this thesis is on downlink 

MU-MIMO systems, also known as MIMO-BC. 

The main issue in MIMO downlink transmission is to maximize the received signal 

power for each user while minimizing interference leaked to all other users. The 

solution for achieving this goal is subject to the availability of CSI at the transmitter. 

CSI is crucial in multiuser scenario interference suppression needs to be performed 
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prior to transmission. 

Consider a BS equipped with Nr antennas simultaneously transmits data to K 

users each equipped with NR, antennas (single antenna receiver means NR, = 1, Vi). 

The flat fading channel between BS and the ith user is given by 

hl,l 
• 

hi,2 
• 

hi,Nr 
• 

h2,i h2,2 h2,Nr 

H;= • • • (2.17) 

h~Ri,l 
• 

hNR,,2 

• 
hNR;•NT 
• 

Let m; denote the number of data streams intended for user j. Usually the number 

m; depends on the data rate for user j, the total transmit power, the achievable 

signal-to-interface plus noise ratio (SINR) and the number of receiver and transmitter 

antennas. The BS wishes to transmit a vector s; E l(;m;xl to the ph. Prior to 

transmission vectors s;,j = 1,2, ... ,K are mapped to a vector x of size Nr x 1 

through a linear mapping as 

K 

x= LW;s; 
j=l 

(2.18) 

where W; = [w1;, w2;, ... , Wm;] and W;; correspond to the transmit beamformer 

for the ith symbol of the ph user. We can write the signal received by the Ph user as 

K 

Y; = H;W;s; + L H;Wksk + n; 
k=l,k#j 

where n; is assumed to be spatially white noise with E{n;(t)nf (t)} =I. 

2.3.2 Single Receive Antenna 

(2.19) 

In this section we assume that the receivers are equipped with single antenna only. 

Hence the receivers are unable to perform any type of interference suppression. The 
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transmitter must perform pre-coding in order to pre compensate for the interference 

at the receiver terminals. Note, in this case mi = l,j = 1, 2, ... , K. 

Channel Inversion 

This is the simplest techniques of all and is based on channel inversion. This technique 

imposes constraints that all the interference terms are zero. In order for this scheme 

to work, the number of transmitting antennas should be greater than the number 

of receiving antennas i.e. NT ;::: K = NR [49, 50]. The precoder at the transmitter 

should perform 

(2.20) 

where s = [si> s2, ... , sK] E cKxt is the signal vector for all K users and H = 

[h1 , h2 , ... , hK] E cKxNr is the channel matrix for all K users. Channel inversion 

ideally cancels all the interference so that each user will see only the signal transmitted 

to it (except white noise) as 

(2.21) 

However in [51] it has been shown that this technique does not provide linear 

capacity growth with min(NT, NR) that should be achievable in the MU channel. 

This is because for an ill-conditioned channel matrix, at least one of the singular 

values of (HHH)-1 is very large and therefore requires a large normalization factor 

which drastically reduces the SNR at the receivers. 

Regularized Channel Inversion 

The problems in channel inversion simply arise due to the stringent requirement 

that all the interference be zero. We could allow a limited amount of interference 
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i.e. regularizing the inverse in the zero-forcing (ZF) filter above. This technique is 

known as regularized channel inversion. Recently such a technique based on minimum 

mean square error (MMSE) criterion was proposed in [51]. This is achieved at the 

transmitter as follows 

(2.22) 

where, a = K /Pis the regularization parameter and P is the total transmit power. 

This technique maximizes the SINR and results in linear increase in the capacity. 

Vector Modulo Pre-coding 

Even with regularized channel inversion there is still a significant gap in the perfor­

mance offered by regularization and the sum capacity bound. Techniques based on 

so called dirty paper coding (DPC) [52, 53] have shown to approach sum capacity 

(in some cases it could even achieve it). DPC techniques generally employ non­

traditional techniques such as non-linear coding and high dimensional lattices, and 

they are often difficult to implement. For these techniques, the symbol stream itself 

is coded rather than a spatial filter (beamformer) to mitigate the inter-user interfer­

ence. However the focus of this thesis is on linear processing techniques and we will 

not discuss techniques based on D PC any further. For further reading, the reader is 

referred [52-54 J . 

2.3.3 Multiple Receive Antennas 

A natural extension to MU-MIMO would be to employ multiple antennas at the 

receivers. This allows transmission of parallel data streams to multiple users and 

enables the receivers to have some degree of freedom to suppress interference. Trans­

mission of parallel data streams to multi-antenna receivers has been accomplished by 
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for example BLAST [12] for single user systems. However, the remaining sections 

focus on multiple users. 

Channel Block Diagonalization 

A block diagonalization (BD) based method has been provided in [55-58]. It removes 

interuser interference, but the receiver needs to perform some type of spatial demul­

tiplexing to separate and decode individual data steams sent to it. The ultimate goal 

for this is to find W so that 

(2.23) 

Assuming that up to NR; data streams are transmitted to user j, then M; in the 

above equation is NR; x NR;- In case if m;~ NR; some of the columns of M; would 

be zero. An example of such a technique based on sum-capacity has been provided 

in [58]. Define an extended channel matrix H; for the Ph user which excludes the 

channel matrix for user j as 

(2.24) 

Perform SVD of H; 

(2.25) 

where Vj0
) holds (Nr- L;) singular vectors that are in the null space of H; and 

L; is rank of {H;}. Therefore Vj0
) are the candidate for the beamforming matrix W; 

for user j. If the number of null spaces is more than the number of data streams that 

user j can support, a linear combination of the null spaces must be used to form W;. 
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Coordinated Tx/Rx beamforming 

BD algorithms have a stringent constraint on the number of transmitting antennas 

NT· In this section we look at methods where such a constraint can be relaxed, 

however we should have NT 2: 2:::1 mJ i.e. no smaller than the total number of 

data streams to be transmitted. If this is not the case, spatial multiplexing must be 

augmented with other multiple access techniques such as time and frequency mu!-

tiplexing. A strategy to optimally group best K users for spatial multiplexing in a 

given time-frequency slot has been provided in [59]. 

Let us consider the case where mJ = 1 (i.e. single data stream per user). Then 

each users symbol (scalar here) is multiplexed using its corresponding beamforming 

vector. The signal at the receiver is decoded using gj as 

K 

Xj = gfyj - L gfHJwksk + gfnj 
k=l 

K 

""'-H - ~hj WkSk+iij 
k=l 

(2.26) 

where iif = gfHJ represents the effective channel from the transmit array to the 

output of the receiver beamformer Wj, and i'ij = gfnJ represents the noise at the 

output of the receive beamformer gj. Defining fiH = [h1, h1, ... , iiK], we can rewrite 

the above equation as 

x= HWs+ii (2.27) 

where x = [x1, x2, ... , xKJT and W = [wb w2, ... , wK]· Assume that the receiver 

uses the conjugate of its transmit weights for downlink reception. Also assume that 

BS knows the CSI and interference generated for each user in the system. Hence 

BS can determine each user's beamformer. In turns out that what ever the design 
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criterion is at the receiver, its optimal value will depend on the beamformers W. 

On the other hand the choice of W depends on H, which in turns depends on the 

receiver beamformers g;. This interdependency of g; and W suggests use of iterative 

methods. Examples of such iterative method based on uplink-downlink duality in 

terms of SINR can be found in [34]. These duality results were extended to systems 

where the receivers are also equipped with multiple antennas in [60], where the duality 

is proven for the sum-MSE regions attained in the uplink-downlink paradigm. 

2.4 Summary 

In this chapter we carried out an extensive literature survey on spatial diversity 

techniques. In particular, we looked at the receiver diversity, transmitter diversity 

and joint transmitter and receiver diversity techniques. Multi user diversity techniques 

have also been presented. A brief introduction to convex optimization based diversity 

techniques has also been provided. In particular the focus was on beamformer design 

using SDP and SOCP. Application of Lagrange duality in this context has also been 

discussed. 



Chapter 3 

Convex Optimization Theory 

Mathematical optimization plays a major role in the engineering research community 

including signal processing, communications and so on [61]. Unconstrained optimiza­

tion such as the well known least squares and constrained optimization such as linear 

programming have been around for many years and have been widely exploited [62]. 

A new general class of mathematical optimization, known as convex optimization has 

emerged as a sturdy candidate for constrained optimization in the last decade or so, 

with new applications of convex optimizations constantly being reported from almost 

every area of engineering, including signal processing, communications, control. cir­

cuit design, information theory, economics, computer science etc. See [61] and the 

references therein. 

Convex optimization theory allows for a wider range of mathematical optimization 

to be solved efficiently. This is due to the fact, interior point methods developed in the 

1980s to solve linear programs, can be generalized to solve other convex optimization 

problems [63]. In a nutshell, convex problems can be solved optimally either in closed 

form using Lagrange duality or numerically using interior point methods [61]. As a 

consequence, it is typically said, that once a problem is expressed in a convex form, 

it has been solved. However a major drawback in engineering is that most of the 

34 
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problems are not convex when directly formulated. Hence the challenge in using 

convex optimization is to recognize and formulate the problem in convex form. 

3.1 Why Convex? 

In engineering, a vast number of the design problems may be cast as a constrained 

optimization problem of the form [61] 

m in fo(x) 
X 

s.t. /;(x) ~ 0 i = 1, ... ,m 

h;(x) = 0 i=1, ... ,p (3.1) 

where x is the optimization variable of the problem. The function f 0 ,f; and h; 

are the cost, inequality constraints, and equality constraints. However, there are a 

number of potential hurdles, which effectively make the problem (3.1) quite tedious 

to solve. These impediments can be classified as [61] 

1. The dimension n of the optimization variable may be very large. 

2. The domain of the problem may be riddled with local optima. 

3. The problem might not be feasible. 

4. Stopping criteria available may be arbitrary. 

5. The algorithms might have poor convergence rates. 

6. There might be a problem with numerical accuracy, which could cause the 

minimization problem to stop all together or wander. 
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The first three problems could be easily dealt with provided that the J; are all 

convex and h; are affine [64]. If this is the case, the problem is convex and any local 

optima, is in fact, a global optimum; feasibility can be determined unambiguously, and 

accurate stopping criterion can be obtained using the principle of duality [61]. The 

problem of convergence and numerical sensitivity were still potential problems, until in 

the late 'SO's and '90's, researchers showed that if f;, in addition to convexity, satisfied 

a property known as self-concordance, the problems of convergence and numerical 

sensitivity may be dealt with using interior point methods [63, 65]. Interestingly, a 

large number of functions used in engineering satisfy the self-concordance property, 

as a consequence, a large number of convex optimization in engineering can now be 

solved with great efficiency. 

3.2 Basic Optimization Concepts 

In this section, we introduce some basic optimization concepts that would be readily 

used throughout this thesis. 

3.2.1 Convex Sets 

A convex set S E JRn is defined mathematically as follows [61] 

ex+ (1- e)y E S, Ve E [0, 1] and x,y E S. (3.2) 

In simple words, (3.2) is interpreted as, a set S is convex if for any two points 

x, y E S, the line segment between these two points is also in S. For example, the 

ball S = { x I llxll ::; e} is convex, however a sphere S = { x I llxll = e} is not a convex 

set, since the line segment joining any two points is no longer on the sphere. Fig. 3.1 

shows a plot of convex balls and non-convex spheres in 2-D for various value of e. In 

general, convex sets have non-empty interior i.e. they must have solid body with no 
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holes. Other examples of convex sets include ellipsoids polyhed ron, and so on . 

3 .2.2 Convex Cones 

37 

A set /( is said to be a convex cone if for ach x E /( and each G > 0. ax E /( and is 

convex [Gl) i.e. 

Ox + (1 - B)y E /C, VB 2: 0 and x , y E /C. (3.3) 

Exa mples of convex cone include Lhe nonnegative orthant IR~, Lhc posiLi ve scmidcf­

initc matrix cone JC = §~ = {X I X symmetric a nd X t: 0} , and so on . 

3.2.3 Convex Functions 

A func tion f(x ) : !Rn--. IR is said to b convex if for any two points x , y E IR11 [61) 

J(Bx + (1 - B)y ) :::; OJ(x ) + (1- B)J(y ) ve E [o, 1]. (3.4) 
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f is concave, if - f is convex. The convexity of a differentiable function f : JR.n --+ JR. 

can also be characterized by its '\7 f and Hessian '\72 f. We know, that the gradient 

yields a first order Taylor approximation at x 0 : 

f(x) ~ f(Xo) + '\7 f(xof (x- xo) (3.5) 

We have the following first-order condition: f is convex if and only if for all 

x, xo E domf, f(x) 2:: f(xo) + '\7 f(xo)T(x- x 0 ) i.e., the first order approximation 

off is a global underestimator [61]. Recalling, that the Hessian of J, '\72 J, yields a 

second order Taylor series expansion around x0 : 

f(x) ~ f(xo) + '\7 f(xof(x- xo) + ~(x- xof'\72 f(xo)(x- xo) (3.6) 

We have the following necessary and sufficient second order conditions: a twice 

differentiable function f is convex if and only if for all x E dom, '\72 f(x) ~ 0, i.e. 

its Hessian is positive semidefinite on its domain [61]. Thus, for example a linear 

function is always convex, while a quadratic function xTPx+aTx+b is convex if and 

only if P ~ 0. 

3.3 Convex Optimization Problems 

Mathematically, a convex problem can be written in standard form as [61,64] 

m in 
X 

fo(x) 

s.t. J;(x) :::; 0 i = 1, ... ,m 

h;(x) = 0 i=1, ... ,p (3.7) 

where the vector x E IR.n is the optimization variable of the problem. The function 
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fo is the objective function or cost function. The functions f;, i = 1, 2, ... , m are 

convex functions and the functions h;, i = 1, 2, ... ,p are linear functions 1 . The 

inequalities f;(x) ~ 0 are called the inequality constraints and equalitities h;(x) = 0 

are called the equality constraints. 

The domain of the optimization problem (3. 7) is the set of points for which the 

objective and the constraints are defined and is denoted as 

m p 

D = n domf; n n domh; (3.8) 
i=O i=O 

Problem (3.7) is said to be feasible if there exists a point x E D that satisfies all 

the constraints f;(x) ~ 0 and h;(x), the problem is said to be non-feasible otherwise. 

The optimal value or the solution of the optimization problem is achieved at the 

optimal point x* if and only if it has the smallest objective among all feasible points 

i.e. for any feasible point zED, fo(z) ~ fo(x*). 

3.3.1 Art of Using Convex Optimization 

The key or the art of using convex optimization is to formulate non convex problems 

into convex problems. Unfortunately its not systematic to formulate a non-convex 

problem into one that is convex, rather it is an art which can only be learned by 

means of examples. There are two main ways to formulate problems into convex 

form [47, 61] 

• Firstly, by using change of variables, a non-convex problem can be easily for­

mulated into a convex problem which is equivalent to the original problem. For 

e.g. let us consider minimizing the t'2-norm of a vector i.e. min llwl!2, using a 

change of variable as W = wwH, we can now minimize the trace of the new 

variable W i.e. min trace{W}, which is equivalent to minimizing the t'2-norm 

1 A function h : n.n ...., R is linear if it satisfies h(ax + f3y) = ah(x) + f3h(y) for all x, y E n.n 
and all a,/3 ER 
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of w. Thus change of variables has immediate advantages in transforming a 

non-convex problem into an equivalent convex problem. 

• Secondly, by relaxing the problem i.e. removing some of the constraints. This 

technique is sufficient as long as both the non-convex problem and its formu­

lated convex problem are equivalent i.e. have the same set of optimal solutions 

(related by some mapping). A famous example of this technique is semidefinite 

relaxation (SDR), where a non-convex constraint restricting the rank of the op­

timization variable matrix may be dropped. As shown in the example above, 

we could minimize trace of the matrix W which is equivalent of minimizing 

the t'2-norm of the vector w. However, with change of variable we introduce 

an additional constraint, rank{W} = 1. This constraint is non-convex, hence 

makes the whole optimization problem non-convex. Later, in the thesis, we will 

see that even after dropping this constraint the resulting optimization problem 

(which is now convex) returns a rank 1 matrix. However, it should be said that 

this may not necessary hold for all problems. 

3.4 Canonical Optimization Problems 

In this section, we provide the most general form of canonical optimization problem 

formulations, which is extremely useful in practice and for which efficient software 

packages are available. Once a problem is cast into one of these forms, the problem 

can be considered as essentially solved [61]. 

3.4.1 Linear Program 

The most simplest of these, is a linear program (LP), where the objective and the 

constraint functions are all affine. A general LP has the form 
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min cTx+d 
X 

s.t. Gx ::S h 

Ax=b (3.9) 

where G E !Rmxn and A E JRPXn. 

3.4.2 Quadratic Programming 

Secondly, we have a quadratic program (QP), this is where the objective function is 

quadratic, and the constraint function are affine. A QP has the form 

X 

Gx ::S h 

Ax=b (3.10) 

where PE§~, G E l!l.mxn, and A E JRPXn. In a QP, a convex quadratic function 

is minimized over a polyhedron. QP include LP as a special case, this may be obtain 

by setting P = 0 in the objective of (3.10). A variation of QP, is a quadratically 

constrained quadratic program (QCQP), here both the objective and the constraints 

are quadratic. This has the form 

min 
X 

Tp T x ox+ q0 x+ ro 

i=1,2, ... ,m 

Ax=b, (3.11) 
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where P; E §+, i = 1, 2, ... , m. In a QCQP, we minimize a convex quadratic 

function over a feasible region that is the intersection of ellipsoids. Similarly to a QP, 

setting P; = 0, i = 1, 2, ... , m in the constraints of (3.11) we obtain an LP. 

3.4.3 Second Order Cone Programming 

A second order cone program (SOCP) can be written as 

min fTX 
X 

s.t. [[A;x + b;f[2 S cf x + d; 

Fx=g 

i = 1,2, ... ,m 

(3.12) 

where x E !Rn is the optimization variable, A; E !Rn,xn, and FE ]RPXn. The first 

constraint in (3.12) is known as a second order cone constraint, since it requires the 

affine function (Ax + b, eT x +d) to lie in the second-order cone in JRk+1• Setting 

c; = 0, i = 1, 2, ... , m and squaring both sides of the constraints, we obtain a QCQP. 

Similarly, if A; = 0, i = 1, 2, ... , m, then the SOCP reduces to a LP. SOCP's are 

more general than both QCQP's and LP's. 

3.4.4 Semidefinite Programming 

The most general of all the form is a semidefinite program (SDP). This subsumes 

linear, quadratic and second-order cone programming. A SDP can be written as, 

min CTX 
X 

Ax=b (3.13) 
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where x E !Rn is the optimization variable and G, F 0 , F 1 , .•. , F n E §kx k are sym-

metric matrices, and A E JRvxn. The inequality constraints in (3.13) are also known as 

linear matrix inequality (LMI). A SDP simplifies to a LP if the matrices G, F1, ... , F n 

are all diagonal. 

So far we outlined the basic structure of the most commonly used form of the 

canonical optimization problem. However, it must be noted that not all optimization 

problems will have one of the above structures, namely a LP, QP, QCQP, SOCP 

or a SDP. This effectively means the readily available software for solving convex 

problems might not be useful and custom code (software) might be needed to solve 

the problem. In this case, one may employ the ellipsoid, subgradient or cutting plane 

methods, which offer exact stopping criteria and only need gradient information. On 

the other hand, if Hessian information is also available one may employ interior-point 

methods, which offer faster convergence [61]. 

3.5 Duality and KKT Conditions 

The Lagrangian L : !Rn x !Rm x JR• --> IR for the original (primal) problem in (3. 7) is 

defined as the objective function augmented with a weighted sum of the constraint 

functions. This can be written as 

m p 

L(x, >., v) = fo(x) + L >-.;j,(x) + L v;h;(x), (3.14) 
i=l 

where A; and 1/; are the Lagrange multipliers associated with the ith inequality 

j;(x) ~ 0 and equality h;(x) = 0 constraints respectively. 

The objective f 0(x) in (3.7) is known as the primal objective and the optimization 

variable x is termed the primal variable. Lagrange multiplier vectors >. and v associ-

ated with the problem (3. 7) are known as the dual variables and the dual objective or 

the dual function g : JRm x JRP --> IR is defined as the minimum value of the Lagrangian 
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over x : for A E JRm, v E ]RP 

g(A, v) = inf (!o(x) + f A;/;(x) + t v;h;(x)). 
xED 

i=l i=l 

(3.15) 

The dual function is concave even when the original problem is not convex, since 

it is pointwise infimum of a family of affine functions of (A, v) [61]. We say that A 

and v are dual feasible if A 2':: 0 and g(A, v) is finite i.e. g(A, v) > -oo. 

The dual function g(>., v) serves as a lower bound on the optimal value f* of the 

problem (3.7) [61]. For any feasible set (x, A, v): 

m P 

/o(x) > /o(x) + L A;/;(x) + L v;h;(x) 
i=l i=l 

> ~~b (!o(z) + ~A;/;(z) + ~v;h;(z)) 
- g(>.,v) (3.16) 

where we have used the fact that /;(x) :s; 0 and h;(x) = 0 for any feasible x and 

A; 2':: 0 for any feasible A; in the first inequality. Thus, for a feasible set (x, A, v), we 

have 

min/o(x) 2':: maxg(A, v). 
x .X,v 

(3.17) 

Duality gap is the measure of the difference between the primal objective f 0(x) 

and the dual objective g(A, v). We say, weak duality holds, if (3.17) is satisfied with 

strict inequality and if (3.17) is satisfied with equality strong duality holds. 

The best lower bound on the original problem may be obtained solving the fol­

lowing optimization problem 
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max g(>., v) 
.>.,v 

s.t. (3.18) 

Problem (3.18) is commonly known as the Lagronge dual problem and is always a 

convex optimization problem, since the objective to be maximized g(>., v) is always 

concave and the constraint is convex. This holds, regardless of whether or not the 

primal problem (3.7) is convex [61]. 

Note, as mentioned earlier, that mathematical optimization problem normally suf­

fers from arbitrary stopping criterion. However, the above results from the Lagrange 

dual problem provides a non-heuristic stopping criterion. This is simply because, that 

a primal-dual feasible point (x, (>., v)) localizes the optimum solution in the interval 

defined by the duality gap i.e. f* E [g(.>., v), f0 (x)]. If g(>.,v) = f0 (x), then the 

duality gap is zero, and both the primal and the dual variables are at the optimal 

solution. Let us denote the primal optimum variable as x and dual optimum variable 

as (>.*,v*). Since x* minimizes L(x,>.*,v*) over x, the gradient of L(x,>.*,v*) must 

vanish at x*, i.e., 

m P 

'V fo(x*) + L .\j\1 J;(x*) + L v;'Vh;(x*) = 0. (3.19) 
i=l i=l 

Thus we have 

J;(x*) :::; 0 i = 1,2, ... ,m, (3.20) 

h;(x*) - 0 i=1,2, ... ,p, (3.21) 

.\~ 
' 

> 0 i = 1,2, ... ,m, (3.22) 

.\jf;(x*) - 0 i = 1,2, ... ,m. (3.23) 
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Collectively, the conditions (3.19H3.23) are known as the Karush-Kuhn-'fucker 

(KKT) conditions for optimality [61]. Conditions (3.20) and (3.21) represent primal 

feasibility of x*. Condition (3.22) represent dual feasibility and the condition (3.23) 

signifies the complementary slackness for the primal and dual inequality constraint 

pair: fi(x) ::::; 0 and Ai 2:: 0. 

KKT conditions, in general are necessary but not sufficient for optimality. How­

ever, for convex optimization problems, KKT conditions are also sufficient [61]. KKT 

conditions reduces to the well known stationary conditions \1 fi(x*) = 0, in the ab­

sence of constraints, i.e. a minimum must be obtained at the point where the gradient 

of fo vanishes. However, in the presence of constraints, the optimal solution is at­

tained at a KKT point x*, which, together with some dual feasible vector (A*, v*) 

satisfies the KKT conditions (3.19H3.23). KKT conditions have proven to be very 

useful in practice to obtain solutions analytically (when possible). 

3.6 Robust Convex Optimization 

Robust optimization models in mathematical programming has received much 

attention recently see [ 66-68]. Here we will review some of these models and their 

extensions. Consider a convex optimization of the form 

min 
X 

fo(x) 

s.t. fi(x) ::::; 0, i = 1, 2, ... , m (3.24) 

where each fi is convex. In many engineering design applications, the data defining 

the constraint and the objective functions may be inexact, corrupted by noise, or may 

fluctuate around with time around a nominal value. In the application of multiuser 

beamforming such errors may arise due to imperfect CSI at the transmitter, receiver 
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or both. Recalling from §1.3.2, that we model the estimate of the channel covariance 

matrix as (1.5), where /:;, represents the errors (uncertainties ) in the CSI. The way 

these uncertainties in the CSI are modeled in the channel covariance estimate, the 

robust techniques may be classified into two categories, Bayesian (or stochastic) and 

the Maximin (or worst-case) approach [47,61]. 

• The Bayesian approach considers that the statistics of the error is known and 

in such cases the traditional approach simply solves (3.24) by using the nominal 

value (or mean) of the data. However, the stochastic design only guarantees a 

certain system performance averaged over the data that could have caused the 

current estimated data. No guarantee can be given in terms of the instantaneous 

performance. An example of such an approach can be found in [69, 70] respec­

tively, where a multi-antenna transmitter was designed to maximize the mean 

SNR and mean BER assuming errors due to Gaussian noise and quantization 

errors. 

• The maximin approach on the other hand, considers that the errors belongs 

to a predefined uncertainty region, and the final objective is the optimization 

of the worst system performance for any error in this region. In practice the 

assumption of error being bounded is satisfied with high probability. Let us 

denote the set of perturbed functions parameterized by 0 : /;(x; o), with 0 

taken from an uncertainty set S. Then a feasible robust solution x is the one 

that satisfies /;(x; o) ~ 0, Vo E s or, equivalently maxoES /;(x; o) ~ 0. We 

can write such an optimization problem as 

min max !o(x; o) 
oES 

(3.25) 

s.t. /;(x;o) ~ 0, VO E S, i = 1,2, ... ,m 
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the parameters to be in an uncertainty region, for example an ellipsoid. Some exam­

ples include [74-76, 105] where the presumed steering vector is modelled as 

s=s+e (3.38) 

where e is the noise vector and it is assumed to have norm bounded i.e ffe[[2 ::; 

E. Then the robust solution could be obtained by imposing a good response in all 

directions within the uncertainty region i.e., 

s.t. (3.39) 

Such a problem is a semi-infinite nonconvex quadratic problem and needs to be 

simplified. The single constraint minll•ll~• fwH(s+e)f2:: 1 is equivalent to the original 

semi-infinite set of constraints and then, by applying the triangle and Cauchy-Schwarz 

inequalities along with ffeff ::; E, the following is obtained 

(3.40) 

where the lower bound is indeed achieved if e is proportional to w with a phase 

such that wHe has opposite direction ofwH§ [105]. Now, since w admits any arbitrary 

rotation without affecting the cost, wH s can be forced to be real and nonnegative. 

The problem can be finally formulated in the convex form as 
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s.t. wHs;::: 1 + EjjwJJ 

Im{wHs} = 0 

A similar problem was considered in [105] for a general-rank signal model. 

3.9.2 Robust Multiuser Downlink Beamforming 

(3.41) 

In [78] the SDP based solution presented in (3.29), was extended to the case where 

only an erroneous estimate of the CSI is available at the transmitter using worst-case 

performance optimization (see §3.6). The final optimization problem which can be 

cast into a SDP using SDR is given as follows 

m in 
w, 

s.t. 

K 

L:tr(W;) 
i=l 

tr((R;- €;I)W;)- "Yi L tr((R; + E;I)WJ) ;::: "'(;0';, 

Hi 
W; ;::: 0, i = 1, 2, ... , K (3.42) 

where €; is norm of the uncertainty matrix (see §1.3.2). The problem of robust 

downlink beamforming under CSI errors was also presented using an approach of 

probabilistic constrained based optimization. Here as appose to optimizing the system 

for the worst-case the system is optimized for a given probability. An SDP based 

solution was recently proposed in [106]. 
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K 

~n :Ltr{W;} 
' i=l 

K 

s.t. tr{(R;- e;I)W;- "(; L tr{(R; + c;I)W;} ~ "(;o-;, 

W; ~o. 

j=l,j=f:i 

i=l, ... ,K. 
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{3.43) 

where e; = V2o-.erf-1(2p;-1) and o-~ is the variance of the elements of the channel 

uncertainty matrix, erf{·} denotes the Gaussian error function and p; is a pre-defined 

non-outage probability. 

3.10 Summary 

A brief overview of convex optimization theory has been provided in this chapter. 

Basic concepts and tools of convex optimization that are readily used in this thesis 

were introduced. The most generic forms of canonical optimization problems namely 

LPs, QPs, SOCPs and SDPs were presented. The concepts of Lagrange duality and 

KKT conditions were also discussed. Robust convex optimization, has also been dis­

cussed with special emphasis on worst-case performance optimization. Interior point 

methods, although out of the scope of this thesis, were included for the completeness 

of convex optimization theory. Finally, robust techniques based on convex optimiza­

tion theory were discussed, where the CSI available at the transmitter is assumed to 

be in error. 



Chapter 4 

Multiuser Downlink Beamforming 

based on Maximizing 

Signal-to-Leakage Ratio 

Multiuser multiple-input multiple-output (MU-MIMO) systems have gained a con­

siderable amount of interest in recent years due to their potential for providing high 

capacity, increasing diversity and interference suppression [12]. This, as established in 

Chapter 1, is possible due to the gains that could be achieved from a MIMO system, 

without additional spectrum. 

Recent research in MU-MIMO systems is aimed at developing techniques which 

allow users to efficiently share the scarce spectrum [107]. However, such systems 

generally suffer from eo-channel interference (CCI) induced due to frequency re-use, 

and multi-user interference (MU!), as a consequences of multiple users access the same 

frequency simultaneously. Thus, techniques are generally required for the suppression 

of interference so that the per user capacity in a multi user environment hindered by 

both CCI and MUI, should be closer to the capacity of a single user system [16]. 

The focal point of this chapter is on spatial diversity techniques in a downlink 
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wireless communication system, where a basestation (BS) could simultaneously serve 

multiple users without compromising available radio spectrum [59). This requires the 

BS to pre-compensate interference so that a particular user in the cell will not see 

the signals that are meant to be transmitted to other users. It is also possible for the 

BS to perform beamforming to suppress MUI to end users and to maximize overall 

capacity. 

In an attempt to suppress MUI, several techniques have been proposed [34,58,59, 

83,108-110]. One technique is to pre-process the signal at the BS so that MUI will be 

completely cancelled at the receiver for each user. Two such methods known as "block­

diagonalization" and "successive optimization" have been proposed in [58]. However, 

both these methods require the number of transmitting antennas to be greater than 

the sum of all receiving antennas of all users. Another approach proposed in [109] 

makes use of space-time block codes (STBC) to design a unitary precoder to cancel 

the CCI. Once again this method requires a large number of antennas. A closed 

form solution is presented in [110] which is based on maximizing a lower bound for 

the product of signal-to-interference plus noise ratio (SINR). The algorithm achieves 

good performance but again it requires the number of transmitting antennas to be 

greater than the number of receiving antennas. All these schemes provide superior 

performance, however they impose a restriction on the number of transmit antennas 

to be greater than the number of antennas of all users combined. 

An iterative algorithm based on uplink-downlink duality was presented in [34], 

where the global optimum for the downlink beamforming is obtained for the case of a 

single antenna at the receivers. However, in this chapter, we adopt a signal to leakage 

ratio (SLR) criterion proposed in [108], but propose various techniques to improve the 

performance further. Even though, this family of algorithms is not supported by any 

known optimality criteria, such as SINR or minimum mean square error (MMSE), we 

considered this criterion for its simplicity. 
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According to the approach in [108], the transmit weight vector for the ith user will 

be determined by maximizing the transmit power to the ith user while minimizing the 

interference (leakage) caused to all other users. However, instead of considering the 

interference at the output of the array of antennas of each user, we considered the 

interference at the output of the beamformer of each user. The rational behind this 

method is that the BS knows the set of beamformers that each user will eventually 

use, hence it can take advantage of this in the design process. We demonstrated 

the performance of the proposed method could be further improved by designing the 

transmit weight vectors using an iterative optimization approach. 

4.1 System Model 

Consider a downlink MU-MIMO system consisting of one BS with Nr transmit anten­

nas communicating with K users each having NR, receive antennas. A block diagram 

is shown in Fig. 1.2, where s;(t) denotes the signal for the ith user at time t. The 

signal s;(t) is then multiplied by a beamformer weight vector w;(t) before being trans­

mitted over a multi user channel. Hence, the Nr x 1 transmitted signal vector at time 

t is given by 

K 

x(t) = L::w;s;(t). ( 4.1) 
i=l 

It is assumed that the data s;(t) and the beamformer weights w; are normalized 

so that 

Els;(tW = 1 and, 

llwdl~ = 1, k = 1,2, ... ,K, 

The Nr x 1 signal vector x(t) is then transmitted over a multiuser channel. As-
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suming the channel is frequency non-selective (i.e. flat), the received signal vector 

Yi(t) for the ith user at timet is written as 

K 

Yi(t) =Hi LWJBJ(t) + ni(t), 
j=l 

(4.2) 

where n;(t) is the additive white Gaussian noise (AWGN) vector at the ith user 

with variance a[. The channel Hi is assumed to be block fading. Assuming the ith 

user employs Nn, antennas, the Nn, x Nr channel matrix can be written as 

h(l,l) 
I 

h(!,!) 
I 

h(!,NT) 
I 

h(2,1) h(2,2) h~2,NT) 

Hi= 
I I I (4.3) 

h(NR;,l) 
I 

h(NR,,2) 
I 

h(NR;,NT) 
i ' 

where hlp,m) denote the channel coefficient between the mth transmit and pth 

receive antennas for user i. We assume that the receiver for user i knows its own 

channel state information (CSI), Hi, perfectly and feeds it back to the BS without 

any errors. 

4.2 Algorithms 

In the remaining sections, we will drop the time index t for notational simplicity. 

Hence, we can rewrite equation ( 4.2) as 

Y;= Hiwisi 
"-v--' 

Signal of Interest 

K 

+ L Hiw;s;+ n;, 
. I . -'- . '-.,...' 

J= ,Jrt Noise 

(4.4) 

Interference 

where the second term quantifies the interference caused to user i from all other 

users. The aim is to mitigate this interference for all users. For simplicity, we assume 



4.2. Algorithms 62 

that the estimate of s; for the ith user is based on a maximum ratio combining (MRC) 1 

[108], i.e. 

HHH 
6 wi i Yi 

s; = IIH;w;ll~' (4.5) 

where 1~f!~~ denotes the MRC receiver. Then an estimate of the transmit symbol 

s; for the ith user, denoted as 8; can be written as 

HHH "'K H HHH _ wi i Wj=ld=/=i iwisi wi i ni 

S; = S; + IIH;w;ll~ + IIH;w;ll~' (4.6) 

and the output SINR for user i would be given by [108] 

(4.7) 

The power of the desired signal in (4.4) is given by IIH;w;ll~· Similarly, the 

interference caused by the ith user to the jth user is given by IIH;w;il~· The quantity, 

called leakage for user i, is the total power leaked from this user to all other users 

and is defined in [108] as 

K 

L IIH;w;ll~· (4.8) 
j=l,#i 

4.2.1 The Signal-to-Leakage Ratio Algorithm 

Given a fixed transmit power for each user, the weight vectors w;, i = 1, 2, ... , K, 

are designed such that the SLR is maximized for every user [108] 

1The receiver may employ other diversity combining techniques such as selection combining, 
switched combining or equal gain combining techniques see chapter 3 for further details. 
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max 
w; 

s.t. 
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E~t,jfi IIHiw;ll~ 
llwdl~ = 1, i = 1, 2, ... , K. (4.9) 

By denoting H; = [Hf ... H~1H{t 1 ... H~]H as an extended channel matrix that 

excludes the channel H;, the SLR for user i can be written as 

SLR; = III_I;w;[[ 2 = wf~fH;w;. 
IIH;w;[[ 2 wfHfH;w; 

( 4.10) 

The above equation can be solved using the Rayleigh-Ritz quotient result [111] 

(4.11) 

where Amax is the largest generalized eigenvalue of the matrix pair HfH; and 

HfH;. The equality holds only if W; is proportional to the generalized eigenvector 

corresponding to the largest generalized eigenvalue, i.e. 

( 4.12) 

where Pgen{A,B} returns the eigenvector corresponding to the largest general­

ized eigenvalue of matrix pair A and B. The proportionality constant is chosen to 

normalize W; to unity. If HfH; is invertible, then the generalized eigenvalue problem 

reduces to 

(4.13) 

and w; is the eigenvector corresponding to the largest eigenvalue of 
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4.2.2 The Proposed Algorithm 

The method proposed in [108] considers the interference present at the output 

of the array of antennas of each user in the design process. However, we observed 

consideration of the interference present at the beamformer output instead of the 

output of the array of antennas substantially improves the overall bit error rate (BER) 

performance. This is possible in the design, as the BS knows the beamformer vectors 

that will be eventually used by all users, as it knows the forward channel of all users. 

The proposed design is based on an iterative optimization approach. 

First Iteration 

In the first iteration the SLR considered for user 1 will be same as that in [108] 

SLR = wf~{'l~lwl 
I H H w 1 H 1 H 1w 1 

( 4.14) 

Similarly to (4.12) the solution to maximizing (4.14) is given by the Rayleigh-Ritz 

quotient result. Then the beamformer weight for user 1 is given by 

(4.15) 

In order to compute the weight vector for user 2 we use the fact that the BS 

knows the beamformer weight vector for user 1. Hence the channel from the signal 

Sz at the BS to the output of the beamformer of user 1 can be written as erHlw2, 

where 01 = H 1w 1 is the required beamformer for user 1. Therefore, the interference 

power caused by user 2 to user 1 can be written as w~Hre1erH1w2 instead of 

w~HrH1w2. We therefore, replace the term HfH1 in the denominator of (4.10) 

with a rank 1 matrix Hre~erHl = HrR1H1. 

We can now define the SLR for user 2 as 
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SLR = w:H:H2w2 2 
w:(Hf'R1H 1 + L:~3 HfH;)w2. 

( 4.16) 

Similarly, we can generalize ( 4.16) for the ith user in the first iteration as 

SLR. = wfHfH;w; 

( 

i-1 K ) 

wf ~ HfR;H; + ;~1 HfH; w; 

( 4.17) 

P; 

Therefore, in the first iteration, the beamforming weight vector for users excluding 

user 1 are computed according to the pseudocode described in algorithm 1. 

Algorithm 1 Iterative Multiuser Downlink Beamforming based on Maximizing 
Signal-to-Leakage Ratio - 1st Iteration 

1. Using the weight vector for user 1 to i- 1 in the 1st iteration, construct the P; 
matrix defined in ( 4.17). 

2. if 

• rank(P;) ~ NT; 
where rank{·} denotes the rank of the matrix. 

3. then 

• wJ = Pmax{P;}; 

4. else 

where Pmax{·} returns the eigenvector corresponding to the largest eigen­
value of the matrix. 

• wl = null{P;}; 
where null{·} returns the eigenvectors that are in the null space of the 
matrix. 

Other Iterations 

After the first iteration we have a set of beamformer weight vectors for all users. We 

can now use these weight vectors to carry out further iterations. Carrying out these 
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iterations will force the bearnformer weight vectors to converge to a set of weight 

vectors which will result in further reduction of CCI. In the l'h iteration, the SLR for 

user i is determined as 

(4.18) 

where wCI-l) is the weight vector obtained in the previous iteration i.e. l - 1. If 

the total number of antennas Nr at the BS is not less than the total number of users 

K, the beamformer weight vector for the i'h user will be computed according to 

w~ = null{Ql}. (4.19) 

For P; in (4.17) and Ql in (4.18), it is possible to have a null space of dimension 

greater than one. In this case, the beamformer weight vector should be chosen as a 

linear combination of all null vectors. The determination of the optimum combination 

in the sense of maximizing power transferred to the desired user is also an eigenvector 

problem. The linear combination coefficients are given by the eigenvector (denoted 

by g;) corresponding to the largest eigenvalue of (Afl'Hfl'H;A;), where A; is a matrix 

containing all the null vectors of P or Q for user i, and H; is the channel matrix of 

user i. The weight vector for user i is obtained as 

( 4.20) 

The proposed iterative algorithm has been summarized in algorithm 2. 



4.3. Numerical Examples 67 

Algorithm 2 Iterative Multiuser Downlink Beamforming based on Maximizing 
Signal-to-Leakage Ratio 

1. INITIALIZE l = 1 and lmax· 

1st Iteration I 
• Compute the downlink weight vector for the all users wl, i = 1, 2, ... , K 

in the 1st iteration using the pseudocode in algorithm 1. 

• if 

- rank{null{P;}} > 1. 

- Update weight vector for the ith user using ( 4.20). 

Other Iterations 

• REPEAT 

-l=l+l. 
- Using the weight vector of all users in the (l - l)th iteration wl-I, 

i = 1, 2, ... , K construct the Ql matrix defined in ( 4.18). 
- if 

* rank{null{Ql}} > 1. 
* Update weight vector for the ith user using (4.20). 

- Compute the downlink weight vector for the ith user in the zth iteration 
using (4.19). 

• UNTIL l = lmax· 

2. Use wlm~ as the beamformers for transmission. 

4.3 Numerical Examples 

We considered a MU-MIMO system with one BS equipped with Nr antennas and 

K users each equipped with Nn, antennas. The data symbols are generated using 

quadrature phase-shift keying (QPSK) modulation. The total transmitted power 

per symbol period across all transmit antennas is normalized to unity. The entries 

of channel H are zero mean independent and identically-distributed (IID) Gaussian 

random variables with unity variance and generated independently for each trans­

mission symbol. The noise is zero mean and spatially and temporally uncorrelated, 
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i.e. 

E{ ninfl} = o}INR,, and 

E{ Tr(HiHfl)} = Nn,Nr. 
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Fig. 4.1, depicts the difference between SLR and the proposed algorithm for the 

first iteration only. The result shows the BER performance of all the users using 

both SLR and the proposed algorithm. We have considered the case with Nr = 6 

transmitting antennas and K = 5 users each with Nn, = 3 receiving antennas. It can 

be seen that the SLR produces the same BER performance for all users as expected. 

On the other side, we note that the proposed algorithm produces different BER 

performance for all users. This is due to the fact that when the weights for user i 

are obtained by maximizing the signal to leakage ratio, it tends to reduce the leakage 

to all the other users. However, since we use the weight vectors of users 1 to i - 1 

in the design of weight vector of user i, users 1 to i - 1 are more likely to benefit 

in terms of interference suppression rather than users i + 1 to K. In order to gain 

from this effect we are encouraged to carry out further iterations. Also carrying out 

further iterations ensures that the average BER of all users is the same and therefore 

guarantees the same quality of service ( QoS) for all users. 

Similarly, in Fig. 4.2, the results presented consider the case with Nr = 6 trans­

mitting antennas and K = 5 users each equipped with Nn, = 3 receiving antennas. 

But unlike Fig. 4.1, in Fig. 4.2 the average BER of all users is depicted for various 

number of iterations. We note that the performance is greatly improved when the 

number of iterations is increased. But the performance converges roughly around 20 

iterations and further iterations have marginal improvement on the BER performance. 

To understand the proposed algorithm better, we look at the SINR outage (or 

cumulative distribution function (CDF)), which is plotted to show and compare the 

distribution of the SINR achieved at the output of the receiver. Figs. 4.3 and 4.4 
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Figure 'L 1: The BER performance for all Lhe us 'rs is plotted as a function of the 
SNR for a MU-MlMO system with Nr = 6 Lransm.it antennas and]( = 5 users, each 
equipped with Nn, = 3 i = 1 2, ... , 5 receiv antennas. 

show the SINR outage for t.he proposed algorithm as compared to the SI TR outage 

of [108] and t he conventional single user beamformiug solution [112] 

(4.21) 

In F ig. 4.3 the proposed algori thm achieves SINR of larger than 20dB for 0% 

of the channel real izations at an S R of 10 dB. Similarly in F ig. 4.4 the proposed 

algorithm achieves SlNR of larger than 15dB for 90% of the channel realizations 

at an S R of only 5 dB. Whereas both SLR and conventional beamfonn ing have 

relatively poor outage performances. 
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Figurr l. 2: The average :BER pcrformanc is plotted for SLR and th propo ed 
algorithm for various itera tions as a function of S ·n for a t..IU-l\Ill\10 system with 
1 r = 6 transmit antennas and l\' - 5 users, each equipped with Nu, = 3, i -
l , 2, ... , 5 rccciv antennas. 
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Figure 4.3: SI rn outage is plotLed for con vent ion al bea.rnforming, SLR and the 
propo. ed algorithm a t the lOth itera tion at a SNR of lOdD for a MU-MIMO sys­
tem with '!' = G tra nsmi t antennas and ]( = 5 users each equipped wiLh 
N n, = 3 i = 1 2 ... , 5 receive antennai:i. 
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Figure 4.4: SINR ouLage is plotted for conventional beamforming, SLR and the 
propo eel algorithm at the 20Lh itera tion at a S JR of 5dB for a MU- Il iO sys­
tem with T = 6 transmit antennas and K = 5 users, each equipped wi th 

n, = 3, i = 1, 2 .. .. , 5 receive antenn ru . 
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Figure 4.5: OFDl\II system model. 



4 .4. Frequency-Selective Channels 73 

4.4 Frequency-Selective Channels 

The performance of the above algorithms was tested over flat-fading channels. The 

algorithm can be extended to a frequency selective channels by employing techniques 

such as orthogonal frequency division multiplexing (OFDM). An OFDM system 

model is shown in Fig. 4.5. OFDM is a digital multi-carrier modula tion scheme, 

where a large number of closely-spaced orthogonal sub-carriers are used to transmit 

data. The data are divided into several parallel data streams or channels, one for each 

sub-carrier. Each sub-carrier is modulated with a conventional modulation scheme 

(such as quadrature amplitude modulation (QAM) or phase shift keying (PSK)) at 

a low symbol rate, maintaining total data rates similar to conventional single-carrier 

modulation schemes in the same bandwidth [113]. OFDM transforms a frequency 

selective channel into parallel fiat fading sub-channels, where N is the number of 

carriers. Therefore, the techniques developed for flat fading channels, may be simply 

extended to frequency selective channels using OFDM. In [2] we applied the algo­

rithm to a frequency selective channel model and used various error control codes to 

evaluate system performance. 

4.5 MIMO-OFDM System Model 

\1\fe consider the downlink of a MU-MIMO OFDM system with a BS equipped with N 

subcarriers a nd NT transmit antennas. There arc K geographically dispersed users , 

each equipped with N n. receive antennas. Fig. 4.6 and Fig. 4.7 represenL the block 

diagram for the transmitter and receiver at each user for a MU-MIMO-OFD i system. 

A block diagram of the MU-MIMO encoder is shown in Fig. 4.8, where s1(k) denotes 

the transmitted data (modulated symbol) intended for user i on the kLh tone. The 

signal si(k) is then multiplied by a beamiormer weight vector wi(k) , where wi(k) is 

the beamforming vector for user i for the kLh tone. Hence, the Nr x 1 signal vector 
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for the kth tone is given by 

I< 

x (k) = L W 1 (k)si(k). (4.22) 
i= l 

It is assumed that the data si(k) and the beamformer weights wi(k) are normalized 

so that 

Stacking the vectors x(k) for k = 01 21 ••• 1 N- 1 into a matrix of size Nr x N to 

form an OFDM block of transmit signal vectors that is to be transmitted over the 

lVIIMO channel is given by 

X = [x(O), x(1)1 ••• , x (N- 1)L (4.23) 

where each row vector of X of size 1 x N is the data vector to be transmitted over 

the mth transmit antenna. Before being t ransmitted, the data vector is modulated 

by an inverse Fourier transform (IDFT) into an OFDM symbol vector Ym(t). Then 

a cyclic prefix (CP) of length Ncr is appended to Ym(t). These operation may be 

written as 

N - L 

1 ""' 2'7/' Ym(t) = N L- X (m1 k)e 
k=O 

( 4.24) 

Ym = [Ym(N- Ncp), .. . , Ym(N- 1)ym(O) ~ ... 1 Ym(N - 1)r (4.25) 

The OFDM symbol vector Ym(t) is then transmitted through the mth antenna over 

a frequency selective multiuser channel of order Nh. To avoid inter-block interference 

(rBI), the guard interval is chosen to satisfy Ncr ~ Nh - 1. Assuming that the channel 

impulse response is invariant during the entire block interval , the signal received at 

the pth antenna of the ith user is given by 
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Nt 

Zp,i(t) = 'L Ym (t) * hf'm(t) + np,i(t) ( 4.26) 
m=! 

where hf'm(t) is the complex channel gain between the mth transmit and pth 

receive antenna of the ith user. np,i(t) is AWGN present at the pi.h receive antenna 

of the ith user. At the receiver, the CP is first removed (CPR) and then an N-point 

discrete Fourier transfo rm (DFT) is performed to yield the demodula ted signal vector 

Yp,i(k). This operation may be written as 

(4.27) 

( 4.28) 

As shown in Fig. 4.5, we can model the frequency select ive channel as a collection 

of N parallel fla t fading channels. Therefore, the received signal vector over the k~h 

tone Yi(k) (which can also be written as r;;:; Yv,i(k)) , for the ith user can be written 

as 

/( 

xi(k) = Hi(k) L wi(k)si(k) + ni(k), (4.29) 
i=l 

where ni (k) is zero mean circularly symmetric complex gaussian (ZMCSCG) noise 

vector with variance CY[. The channel matrix H1(k) represents the frequency response 

of the channel for user i for the kth tone. Assuming the ith user employs N R, antennas, 

the N R, x Nr channel matrix for the kth tone can be written as 

(4.30) 
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Data 

Data 

for User K 

76 

Figure 4.6: The block diagram of a MU-MIMO OFDM transmitter with Nrr trans­
mitting antennas. 

User 

Recovers 

Data 

Figure 4.7: The block diagram of a fU-MIMO OFDM receiver for the ilh user \>vith 
H, receive antennas. 

where h7t.p(k) denote the channel gain between the mth transmit and pth receive 

antennas, for user i. Here, we assume tha t the receiver for user i has acces to accurate 

CSI, H1. 

4.6 Algorithms and Simulation Results 

The algorithms presented in section 4.2.1 and 4.2.2 can be simply extended to fre­

quency selec tive channel using the MIMO-OFDM system presen ted in section 4.4. 

We considered a iVIU-Mli\10 OFDM system with one BS equipped with T = 6 

antennas and f( = 5 users each equipp ed with N 17 , = 3 antennas. The binary bits 

are generated randomly for each user and arc coded using coovol u tional codes and 
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Figure 4.8: The block diagram of a MU-MHviO encoder. 

randomly in.Lerleaved before being mapped into QPSK symbols. The total transmit-

ted power per symbol period across all transmit antennas is normalized to un ity. The 

channel tap between the pth receive and mth transmit antenna ftP,m arc Z~fCSCG 

random variables with variance a~ = 1. The noise is also Z 1CSCG and spatially and 

temporally uncorrelated, i.e. 

We have assumed that the I3S is equ ipped with N = 64 subcarriers and the channel 

length between the mth transm.it and pth receive antenna is 11 = 3 and hence we use a 

CP of length Ncp = 3 in the OFD~I modulator. In th next simulation we incorporate 

fo rward error correction and employ various convolutional codes sec Table 4.1 for 

code rates and generating polynomials. ln Fig. 4.6, the normalized throughput of the 

proposed algorithm is shown at the lOth iteration as compared to the throughput of 

the SLR algorithm. 'Ne note that the proposed algorithm achieves peak throughput 
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Figure 4.9: ormalized throughput for SLR and the proposed algorithm a t the lO~h 
itera t ion for various coding rates presented in Table 4.1. 

at lower SNR, which would be even lower if further iterations arc rmployed and the 

throughput is higher than the SLR algori thm for all the four different convolutional 

codes pr sen ted. 

Table 4.1: C d o e rate an d "al f h d genera mg po ynom1 s or t e co ers use d · simula tions. m. 
Coding RaLe Genera ting Polynomials 

c, G2 G3 G4 I 
.!. (1100101) (1011011) (0000111) -3 

.!. (1000) (1111) (1001) (1011) 4 

4.7 Summary 

'0/e proposed enhancements to a recently propo ed SLR design for multiuscr beam-

formers for both flat fading and frequency selective channel environments . Our 

method explicit ly considered the interference present at the beam£ormer ou tpu t in-
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stead of the interference present at the output of an array of antennas of any user. 

We demonstrated a significant improvement in the BER performance using the pro­

posed modifications. To further increase the performance, we proposed an iterative 

optimization approach which also guarantees a lower error floor and equal BER per­

formance for all users. 



Chapter 5 

Multiuser Spatial Diversity 

Techniques for Frequency Selective 

Channels using U plink Downlink 

Duality 

There has been considerable research interest in spatial multiplexing schemes, due to 

their potential to significantly improve spectral efficiency of a wireless communica­

tion systems [25, 114]. In particular joint beamforming and power control techniques 

have emerged as a suitable candidate for improving spectral efficiency at the cost of 

rela tively increased complexity [34,59,80- 82, 115] . 

In this chapter we consider the problem of downlink multiuser spatial multiplexing 

and power control techniques for frequency selective envi ronment. Frequency selective 

channels in a multiuser environment could introduce both intersymbol interference 

(ISI) and interuser interference (IUI), and we propose space-time (ST) pre-processors 

at the transmitter so that both ISI and IUI at the multiuser terminal are mitigated. 

For frequency flat channels a beamformer could be employed at the transmitter to 

80 
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mitigate IUI [34, 59, 60, 80- 82, 115]. However , for frequency selective channels, ST 

fillers are required at the transmitter to mitigate both IUI and ISI. We propose ST 

equalization (STEQ) and ST channel shortening (STCS) based schemes at the trans­

milter. A multiuser multiplexing based on pre-equalization is aimed at minimizing 

both ISI and IUI present at the user terminals. In this case the user terminal a t the 

receiving end is not expected to perform any equalization. In contrast, a pre-channel 

shorlening based spatial multiplexing scheme aims to mitigate IUI, but performs only 

a partial equalization so that the signal received at a user terminal will not have any 

contributions from other users. The received signal may contain controlled amount of 

ISI defined by the length of the target impulse response (TIR) of the channel short­

ening filter, i.e. the channel between the transmitter and each user terminal will be 

frequency selective. However the length of the effective channel will be shorter than 

the original channel. In this case, the receiver terminal will also need to perform 

equalization such as maximum likelihood detection. However , since the length of the 

effective channel can be controlled at the transmitter, the complexity of the receiver 

equalization can be controlled in the ST processor design. When the target length of 

the channel shortening fil ter is set to one, the proposed scheme will be identical to 

STEQ at the transmitter. 

Previous work known in the context of downlink beamforming based on uplink­

downlink duality (UDD) (34, 59, 60, 115] can be extended to frequency selective chan­

nels using orthogonal frequency division multiplexing (OFDM). In OFDM a cyclic 

prefix (CP) of length Nh -1, where Nh is the length of the channel impulse response, is 

usually appended to eliminate ISI. The redundancy introduced by CP is increased as 

the impulse response of the channel increases. However, the proposed scheme employs 

time domain channel shortening filters so that OFDM with reduced CP length could 

be used. Ioreover, the proposed scheme does not confine to OFD I schemes, and 

other radio access schemes such as time-division multiple access (TDMA) and code-
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division multiple access (CDMA) could a lso benefi t from the proposed approaches. 

T he designs for STEQ and STCS a t the receiver (uplink) are well established 

(38, 116- 120], however there has been little work performed on the design of STCS 

and STEQ a t the transmitter (for downlink) [3]. This is due to the fact that ST 

filters in the uplink can be opt imized independently for each user without taking into 

consideration of the ST filters of other users. However, in the downlink, the problem 

is difficult to solve as the ST fi lters of all users need to be optimized joint ly. Here, we 

show that the problem of opt imizing power and ST filters in the downlink is equivalent 

to solving a virtual uplink problem. Here we extend the results of UDD known 

for flat fading channels to design ST CS and ST EQ fi lters for a frequency selective 

environment. We also takes into consideration the complexity of the receiver which 

is controlled by the length of the T IR. Simulation results show that the STCS based 

design provides a superior performance in terms of minimizing the tota l transmit 

power over a STEQ based design. 

5.1 Downlink Spatial Multiplexing System Model 

A downlink spatial mult iplexing system based on a ST filter at the transmitter is 

shown in Fig. 5.1, where x(k) = [xl(k), X2(k), ... ' XJ((k)JT E cJ< xl denotes the signal 

vector to be t ransmitted to I< users at t ime k. T he signal component xj(k), j = 

1, 2, . . . J( denotes the data symbol intended for the ph user. T he signal transmitted 

from the i th antenna (i = 1, 2, . . . , Nr) at time k can be described as 

/( NF - 1 

rfL(k) = L L w(n)j,iqJf2xj(k - n) 
j = l n=O 

where wj,i(n) is the gain of the nth tap (n = 0, 1, ... , N1 - 1) of the filter at t he 

i th transmit antenna and designed for the lh user, qj is the power allocated to the 

Ph user, i.e. the Ph element of the power allocation vector q = [q1, q2, . . . , qg]T E 
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Table 5.1: Vectors and matrices used in the chapter 
I Vector /1Vlatrix I Dimension I 

x(k) CI( Xl 

k Cl< Nix l X k- (NJ-1) 
k CI<Nh x l 

xk-(N"-1) 
k Cl<(N,+N~r-1) X k-(NJ+N11-l) 

k CJ(Ni! X l 
r k-(N,. - 1) 

k CKN1,xl 
Y k-(NJ - 1) 

q JRKXl 

p JRI< Xl 

Q JR/(X/( 

p JR/( X/( 

Q r~,.'<NJxi<N1 

p JRI<N~t x i<Nh 

Q JRI<(N1+Nh -l)x J<(N1+ Nh- 1) 

p JRI< (N1+N1, - 1)x J<(N J+N1,-1 ) 

W (n) CNr x l< 

w fCNr x i<NJ 

W j fCNrNJxl 

w fCNrNhx J<(NJ+N,,-1) 

H (m) CNr x l< 

H: fCI< XNrN,, 

h j CNrNh 

:H c_NrN1x J< (NJ+N~t - 1 ) 

{3 JR I<x /( 

~j fC I XNb 

b j 
c_ l x l<(NJ+NI,- 1) 

B CI<xNb 

h UL C1xi<(NJ+Nh - 1) 
cff,j 

h DL C l x K (NJ+Nh -1 ) 
cff,j 

h~~.j Cl x l< (N1+Nh-1) 

h UL Cl x K (NJ+Nh- l ) 
wall,j 

h8~ •• j c_ l x i< (N1+N11 - t) 

h DL c_ 1x i<(NJ+NII-1) 
':!.all,j 

Hi fCNrNJ X I<(NJ+N~a- 1 ) 

flwin 
fCNrN f x J<(N 1+N~a - l ) 

Hwall 
fCNrN, x i<(NJ+Nh- 1) 

w j cNrNh X J<(N J+N~a - 1) 

W win cNrNh X J<(NJ+N~t-1 ) 

W wall fCNrNhx l<(NJ+Nh- 1) 

f UL JR I<x l< 

fDL ffi!K XI< 

y u L ]R I< x i< 

yDL JRKX /( 

0' JRI< x 1 

P ext 
JRU< + I ) x l 

<l> UL JR (/( + I ) X (/( + 1 ) 
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Figure 5.1: Downlink spa tial multiplexing system model. 

JRl< x 1. Stacking rfL (k) into a vector r 0L(k) = h (k) , 1·2(k) , ... , rNT(k)f" E CN'~'x 1 and 

defining Q = diag{[q1, q2 , ... , q1<]} E JR 1<x l<, we could wri te the t ransmitted signal as 

7.pL(k) Q l/ 2 0 0 

7'~ 1' (k) 
[ W(O) W ( I- 1) ] 

0 Q l/2 0 
W (1) 

1'~~(k) 
w 

0 0 Ql / 2 

Ql /2 

x (k ) 

x (k- 1) 

x (k - (N1 - 1)) 

(5.1) 
n=O 
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where W E e,Nrx l<Nt denotes the ST filter at the transmitter, Q E JR I<N hx J<Nh is 

a block diagona l matrix with Q as its block, and the the matrix 

wl , t (n) w l ,2 ( n) 

W (n) = 
w2,1(n) w2,2 (n) 

w 1.I< (n) 

w2· J< (n) 

contains the 'sna p-shof filter parameters for the n th delay. T he ST fi lter for p h 

user can be written in a vector form as 

Wj _ [ (W (O) l:Nr,if (W (1)l:Nr,if ... (W (NJ _ 1)1:Nr,j)T ] 
T 

[ (w;(O)JT (w;{l)f .. . (w;(N1 - I )JT r (5.2) 

Let {Ji denote the norm of w i before normalization and normalize ST filter of 

each user such that llwi 11 2 = 1. T he vector rPL is then transmitted over a frequency 

selective channel. The signal received at the jL11 user a t time k can be described as, 

Nr Nn - 1 

yfL(k) - L L (hi•i(m))*rfL (k - m)+ ni(k) 
i=l m=O 

where hi,i(m) is t he gain of the mth path (m= 0, 1, . .. , Nh - 1) of the channel 

between the i Lh transmit antenna and t he j Lh user and ni (k) denotes additive white 

Gaussian noise (AWGN) at the P11 user receive with va.riance 0';. The received signal 

yfL(k) for all users (only for the purpose of designing the transmitter fil ters) can be 

stacked into a vector y 0 L(k) as 
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0 0 Q l/2 x (k- (N1 - Nh - 1)) 

(5.3) 

where H" E r J <x NrNit denotes the downlink channel matrix between the BS and 

the users, W E r_NrN,, x K (NJ+N,,-t) is a convolutional matrix consisting of the ST 

filter coefficients W. We assume the power allocation matrix is fixed over a block 

period , so that Q E JR1«NJ+N,, - t )xK(NJ+ N,. - t ) is a block diagonal ma trix consisting of 

the power allocation matrix Q as its block element.The matrix 
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ht ,l (m) ht ,2(m) 

H (m) = 
h2,t (m) h2,2(m) 

hNr, l (m) hNr ,2(m) 

contains the 'snap-shot , channel parameters of the mth path. The jl11 user em­

ploys a simple receiver denoted by qj 112{3i . The estimate z~L (k ) of the data Xj (k) 

transmitted to the yth user is written as 

(5 .4) 

where hj is the channel vector between the BS and the yt11 user, defined in (5.5). 

h; ~ [ (H(O)l•NrJ)T (H(l )'•Nrd)T , , , (H(Nh -l)"Nr.i)T r (5.5) 

- [ (h;(OW (h;( IW .. . (h;(N•- I))T r 
5.1.1 Downlink MMSE based STEQ and STCS filt ers 

Fig. 5.2 shows the structure of the minimum mean square error (MMSE) STCS filter 

for the downlink. The ST CS filter for the Ph user w i is designed to t ransform the 

channel impulse response hj of the yth user to the TIR vector 
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where Nb is the T IR length . Define an augmented T lR vector for the / 11 user as (5.6), 

where 6 is t he qualization delay in Lh range 6 = 0, 1, ... N11 + 1 - b - l a nd 

s = . 11 + N1 - 1 b- 6 - 1. The first and the last al l-zero vectors arc to arcount for the 

suppr ssion of 1 , - b - 1 taps with equ al i :~,ation delay 6 aud the remaining all ;~,e ros 

vectors correspond to the the signals coming from the other user. to be suppressed. 

T he (chcumcl shor tening) equalization rror cfL(k) for the _jLh u er , is Lhe difrcrence 

between the ouLput signal zfL(k) and the target outpu t z~~(k) 

eJL(k) - z~~(k) - z?''(k ) 

b If X k _DL (k) 
J k (Nf + h- 1)- '"'.IJ..j · 

bj = [ Olx N-rt..J bj(O) Ol xN-r bj(l ) Ol xN·r · · · bj( b- 1) OlxN-rJOixs ] 

E c l x K (N,+N,, - 1) (5.6) 

Le t us now calcula te the m an square error ( lSE) cfL for the ph u er in th 

dmmlink as 
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E~L _ E{ ( e~L(k) ) ( e~L(k)) •} 

_ fJ} h~WQWh . - 2f3i h~WQb . + f3} a~+ b~b · 
qj J J ,fiij J J qj J J J 

(5.7) 

It should be noted that (5.7) is coupled with I< channel shortening filters and the 

transmit power allocation q . Hence it is quite difficult to optimize these powers and 

filters jointly. Note, when Nb is set to 1, we obtain a STEQ based design, which is 

also coupled in I< ST filers and the power allocation q . In the next section we will 

show that this problem is equivalent to solving a virtual uplink problem using UDD 

theorem. 

5.2 Problem Statement 

We wish to solve the downlink spatial multiplexing problem for the following opti-

mization criteria: 

5.2 .1 Criterion 1 (Cl): Max-Min Fa irness 

min 
W ,,(3,q,B 

s.t. 

max c-J? L 
l $j$f( J 

(5.8) 

where c-JL is the downlink MSE of the jth user, W is the ST filter , q is the power al­

location vector , B = [bf, bf, ... , bkJT is the T IR of all users, {3 = diag{[{31, {32, ... , fJK]} 

is a diagonal matrix with the norms of ST filters and Pmax is the maximum possi-
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ble transmission power. Here we minimize the maximum MSE among all users in 

the system, subject to a total power constraint. Later we will show that this design 

effectively balances the MSE of all users. 

5.2.2 Criterion 2 (C2): Min Power 

min 
W ,,(3,q ,B 

s.t. c:I?L < ~I?L 
J - '>J 

j = l , . .. ,K (5.9) 

where ~fL is the MSE target for the jth user. Here we minimize the total trans­

mission power subject to constraints imposed on the required quality of services. 

5.3 Virtual Uplink Model 

Fig.5.3 shows a virtual uplink model. This model is obtained by switching the roles of 

Lhe transmitter and the receiver from the downlink. It is assumed that the quantities 

W, H, B , {3 and crJ are the same as in the downlink, however the power allocation 

vector p may differ from the downlink power allocation q . Here J( users transmit 

simultaneously to a single BS. The signal transmitted by the jLh user in the uplink is 

given by 

Collecting the signal x;(k ) for j = 1, 2, . . . ) K into vector x (k) E cK x l and defining 

p = diag { [p } ) where p = [pl ) P2 ) . .. ) p /( r I is the power allocation vector in the 

uplink, the signal received by the BS from J( users can be written as 
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L H (m)P 112x(J.:- m)+ n(k) = HP 1/2x~-(; ,, - t) + n (k) (5.10) 
m = O 

whr r H E CNTx i<N,, denotes Lhe ch annel matrix in the uplink , P E JR''N,, x i\N, 
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is a block diagonal matrix with P as its block. The BS uses a ST fi lter to separate 

the users. The receiver for the l 1' user is given by pj 112 {Jiw f. To process the 

channel output y 0 L(k) with the filter pj 112{Jiw f , y 0 L(k) should be accumulated into 

a regressor of length NrN1 

+ 

0 0 

pl/ 2 

n(k) 

n(k- 1) 

x (k- (N1 - N~t- 1)) 

(5.11) 

H E cc_NrN, x J<(Nt+N~t -l ) is a convolut ional matrix consisting of channel coefficients 

H. Assuming the power allocation matrix is fixed over a block period, then P E 

JRK (Nt + Nh- l) x i<(N,+ Nh-l ) is a block diagonal matrix consisting of power allocation 

matrix P as its block element. The estimate zyL(k) of data xi (k) transmitted by the 
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Figure 5.11: Uplink MMSE ST fi lter design. 

/ 11 user at, the output of the 138 receiver is given by 

ZJ
!?L (k) - 1/2(3 11 - Pj Jw j Yk-(Nr l)~· 

(Jj 11 ( - - l / 2 k k ) 
- Vfijw J HP x k - (N11 +Np - l) + n k- (Nf - l ) ' 

el.JL 
J 
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(5.12) 

wh ' re W j E cf:rNj X I denotes the ST filter for the JL11 user in the uplink defin cl 

in (5.2). 

5.3.1 Uplink MMSE based STEQ and STCS filters 

Fig .5.4 shows the structure of the MMSE STCS filter in the up link. We define an 

equalization error eyL(k) for the i 11 user as 

z~~(k) - zJ'· (k) 

f/ 1 k UL (k) 
- j X k - (N1>+N1- 1) - Zt:,,j ~ 

ami determine the corresponding r fSE c-YL as 
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(5.13) 

We note that unlike (5.7), (5.13) is uncoupled as it is a function of the channel 

shortening filter Wj and the power allocation Pi for the jlh user. Hence these variables 

can be optimized independently for each user. Differentiating (5.13) with respect to 

wi and equating the result to zero, we obtain [119, 120] 

(5.14) 

Defining 

R = (I- pl/2:HH (:H:Pi'JB + o-Jirlapl/2). (5.15) 

and substituting (5.14) into (5.13), we obtain cJL in terms of the TIR vector 

bi [119, 120] 

(5.16) 

where Rj contains the parts of the matrix R selected by the nonzero part of the 

bj. To further minimize the MSE we need to optimize (5.16) subject to a constraint 

bfbi = 1 i.e., 
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min 
b; 

s.t. bfb; = 1. 
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(5.17) 

The solution to (5.17) is obtained using eigendecompostion, where b;,opt is given 

by [119, 120] 

bj,opt = 'Pmin ( R;) (5.18) 

where, 'Pmin(·) returns the eigenvector corresponding to the smallest eigenvalue. 

The algorithm to compute w;,opt> b;,opt and the optimum equalization delay .6.;,opt 

is summarized in algorithm 3. Note we use the above scheme to obtain results for 

STEQ based method by setting Nb = 1. 

5.4 Effective Channels in the Uplink and the Down-

link 

From previous section, we note that ST filters in the uplink are optimized inde­

pendently for each user. Therefore instead of solving Cl or C2 in the downlink, it 

is easier to solve the equivalent versions of Cl or C2 in the uplink. To obtain the 

equivalent formulations of Cl and C2 in the uplink, we first need to establish a dual­

ity between the downlink and uplink. To facilitate this we go through the following 

definitions. The effective channel seen at the BS in the uplink from the ph user is 

given by 

UL H-h rr. = w. H. e ~J 3 
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Algorithm 3 MMSE Channel Shortening Design 

1. INITIALIZE 

• tl.max = Nh +NF- Nb -1. 

• For a given power allocation vector p, construct P. 

• For given uplink CSI H, construct H. 

• ComputeR using (5.15). 

2. FOR j = 1 : 1 : K 

• Initialize SINRLl.,j,opt = -oo, Pwin,j = 0, Pwall,j = 0, Hj = 0, Hwin,j = 0, 
Hwan,j = o, and Ri = o . 

• Set Hj(:,j: K: 6.max)) = H((:,j: K: 6.max)) 

3. FOR .6. = 0 : 1 : 6.max 

• t =(Kt.)+ (j: K: KNb) 

• Ri = R(t, t). 

• Compute bi using (5.18). 

• Construct bi using (5.6). 

• Compute Wj using (5.14). 

• Pwin,j(t, t) = P(t, t) 

• Pwall,j = P- Pwin 

• Hwin,j(:, t) = H(:, t) 

• Hwall,j = H - Hwin 

C t SINR _ wfHwln,;Pwin,jH{tln,iWj 
e ompU e Ll. j - R (H p HR 2!) 1 W; wall,j wall,j wau,;+o-; Wj 

- if (SINRLl.,i > SINRLl.,j,opt) 

* Wj,opt = Wj 

* bj,opt = bj 

* bj,opt = bj 

* fl.j,opt = ,6. 

* SINR<l,j,opt = SINR<l.i 

-end if 

4. END FORt. 

5. END FORj 
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This can also be written as, 

K 
UL H-hff.=w.H3·+ e ,J 3 I: 

i=l,if:j 

where HJ defined in (5.20) is the channel convolutional matrix of the jth user 

augmented channel matrix HJ defined in (5.19). 

- [HJ(O) HJ(1) . . . HJ(Nh- 1)] (5.19) 

We write HJ in terms of window Hwin,J and wall part Hwall,J as follows [116], 

where 

is the window part and 

Hwall,j = Hj - Hwin,j 

is the wall part. We therefore write the window and the wall part of the effective 



5.4. Effective Channels in the Uplink and the Downlink 

channel as 

UL H-
hwin,j = W; Hwin,j 

K 
UL H-

hwall,j = W j Hwall,j + L: 
i=l,ifj 

We can rewrite the effective channel h~J:i as 

hUL 
eff,j 

K 

L: 
i=l,ifj 
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(5.21) 

Similar to uplink, effective channel seen by the user in the downlink can be written 

as 

h DL _ hDL + hDL 
eff,j win,j wa.ll,j 

K 

L: 
i=l,i=f:j 

(5.22) 

where Wj defined in (5.24) is the ST filter convolutional matrix of the jlh user 

augmented ST filter Wi defined in (5.23) and 
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is the window part and 

is the is the wall part. 

(5.23) 

(5.25) 

5.5 Duality 

Lemma 1: The equality ofL = ofL for j = 1, 2, ... , K holds if and only if, similar 

SINR targets 'Yl, ')'2 , ••• , /K can be achieved in both the up/ink, with power allocation 

vector p, and in the down/ink, with the power allocation vector q, for fixed W, f3 and 

B. 

Proof: Using the definitions from section 5.4, it can be shown that the MSE 

expressions in (5.13) and (5.7) can be written as 
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r::JL = /3} (tP;IIwfH;II~ + o} llw;ll~) - 2llwf:Hwin,;ll~ + 1 {5.26) 
p, i=l -r 

To prove Lemma 1 we show that r::JL = r::7L. From {5.26) and {5.27) we note only 

the first term in (5.26) differs from the first term in {5.27), as the second terms in 

(5.26) and (5.27) are equivalent from the relationship in (5.25) and the third and the 

final terms are also trivially equivalent. Hence, we are left to prove that the first terms 

in (5.26) and {5.27) equivalent. Using the definitions from section 5.4, we write the 

uplink and downlink SINR respectively in terms of the effective channel as follows: 

SINRDL = %11hfWwin,jll~ (5.29) 
1 q;llhfWw.u,;ll~ + 2:;;,.; q;llhfW;II~ + aJ' 

Assuming SINR targets achieved in the uplink with power allocation vector p are 

the same as the SINR targets achieved in the downlink with power allocation vector 

q for fixed W, j3 and B, we can state (5.28) and (5.29) are equal to each other: 

{5.30) 

Multiplying the LHS and RHS of (5.30) by ~ and ~ respectively, we obtain 
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-
,6JIIh.fWwall,jll~ + ~ 2:;,<; q;llhfW;II~ + ~o}. 

(5.31) 

From (5.25) we note that the terms on the numerator of both LHS and RHS of 

(5.31) are equal. Hence to prove that the LHS and RHS satisfy the equality, we need 

to prove that the denominators of both LHS and RHS of (5.31) are equal to each 

other. Equating the denominators on both sides of (5.31), we obtain, 

,6211 HH- 112 ,BJ" 11 HH- 11 2 ,BJ 2 
j W; wall,j 2 +- L...JPi W; i 2 + -aj 

P; i#i P; 

,6211hHW- 112 ,6J" llhHW- 112 ,6J 2 - j j wall,j 2+-L....Jqi j i 2+-aj. 
% i;'i % 

(5.32) 

Using definitions 

and 

we rewrite (5.32) as 
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(5.33) 

From (5.25) we note that 

2 H- 112 211 H - 112 f3j llwj Hwin,j 2 = f3j hj Wwin,j 2 

hence cancelling out these terms from both sides of (5.33) we obtain 

(5.34) 

Comparing (5.34) with the first terms in (5.26) and (5.27), we conclude that, 

~UL = ~DL 
~3 ~3 ° (5.35) 

D 

We now use the uplink-downlink duality along with Lemma 1 to show that uplink 

and downlink have the same MSE achievable region. 

Theorem 1. With W, {3, B, and total power Pmax 1 both links have the same 

MBE achievable region under a total power constraint. 

Proof: We can collect the uplink SINR values in (5.28) for j = 1, 2, ... K in 

a vector as in (5.36). Equation (5.36) can be rearranged to (5.37). Let us define 
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matrices and yuL and ruL as in (5o38), (5o39) and a vector u = [u~, u~, 0 0 0 , ui<Y 0 

Ptllwfiiwln,lll~ ,pc 
Pzllwfiiwtn,zlf~ 

;fL 

= 

PI Uwfiiwin,tll~ 
Pl Uwf Hwall,tll~+ L:i;.U Pdlwf Hi ll~+crf 

Pzllwfiiwin.zll~ 

H- 2 H- 2 2 Pdlwt Hwall,tll2 + L:i,.<tPillwt H;ll2 + 0'1 

P2llwfHwa1!,211~ + L:i,.<2PillwfH;II~ + 0'~ 

llwNHtll~ 

llwNii2ll~ 

Using (5o38), (5o39) and u, we can write (5o37) as 

Solving (5.40) for the uplink power allocation p, we obtain 

(5036) 

(5o37) 

(5o38) 

(5o39) 

(5.40) 

(5o4l) 
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Similarly one can characterize the downlink power allocation to achieve the same 

set of SINR targets as 

(5.42) 

where, i 0L and roL are defined in (5.43) and (5.44) respectively. Using the 

relationship in (5.25), we can rewrite (5.42) as 

JjhfW'waii,1JJ~ Jjhq'W1JJ~ 

JJhfW'2JJ~ JjhfW wal1,21l~ 
llh~Wdi~ 

llh~W2il~ 
(5.43) 

Now to complete the proof, we will show that the total transmit powers given by 

IIPih and JJqJJI are identical 

IIPih- 1~p=1~((ruL_ruLr1rCT 
- 1~ ( (rUL- ('fULf) -

1 
CT = 1~q = jjqjJI, 

(5.46) 

where power allocation q achieves the same SINR targets ')'1 , ')'2 , ... , "YK in the 

downlink with the same total power i.e. Jjqjj1 ::; Pmax· Hence, we have shown that 
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with the same W, B, {3 and appropriate power allocation p, we attain specified MSE 

targets c-1 , c-2 , .•. , ex in the uplink. These targets can also be achieved in the downlink 

with the same W, B, {3 and power allocation q with the total power constraint 

D 

5.6 Algorithms 

According to the UDD results, both the uplink and the downlink share the same 

normalized MSE regions for a given total power constraint. This effectively means 

that we can obtain solutions to the downlink optimization problems Cl and C2, by 

optimizing the MSE of the equivalent uplink problems. 

5.6.1 Cl: Max-Min Fairness 

Firstly we consider problem based on Cl in the downlink. The immediate consequence 

of Lemma 1 and Theorem 1 is that the solution to Cl can be obtained by solving the 

virtual uplink problem which can be written as 

min 
Wt~3,p,B 

s.t. (5.47} 

For each power allocation the optimum MMSE based ST filters have the structure 

as in (5.14}. The MMSE achieved with such a STCS filter is related to the maximum 

SINR as follows 

CUL,min _ 1 
j - 1 + SINR UL,max ' 

J 

(5.48} 
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Thus, instead of minimizing the maximum MSE, we can equivalently maximize 

the minimum SINR. We therefore write (5.47) as 

max 
W,,a,p,B 

s.t. 

min SINRUL 
1$j$K J 

(5.49) 

To solve this we follow the work in [34] and [121]. Letting Popt be the global max­

imizer of optimization problem (5.49), and assuming fixed W, {3, B while optimizing 

(5.49) over p, Popt can be characterized as 

Pext = P max{ <I>} (5.50) 

where Pmax{-} returns the eigenvector corresponding to the maximum eigenvalue 

of a matrix, Pext = (Popt l]T is an extended power allocation vector and <I> is an 

extended coupling matrix defined as 

(5.51) 

Popt is constructed from Pext such that [PextlK+I = 1. See (34] and [121] for a 

formal proof. We now obtain the optimum W, B and {3 for the optimization problem 

in (5.49) for a given power allocation vector p using Algorithm 3. We also obtain 

the optimum solution to (5.49) for fixed W, B and {3 from (5.50). The immediate 

consequence of this allows us to optimize one variable while keeping other fixed in an 

iterative manner. It can be shown that Cl is strictly monotonically increasing in Pmax 

and converges to the global optimum, (see (34] for proof). Problem Cl is commonly 

known as the fairness problem due to the identical SINR or MMSE achieved by all 

users at the optimum solution, as shown in the simulation results. The solution to 
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the optimization problem (5.49) is presented in Algorithm 4. 

5.6.2 C2: Min Power 

Similarly to Cl, C2 can be written into a virtual uplink problem as 

min 
W,,13,p,B 

s.t. 

IIPih 
cUL < cUL 

3 - ~3 

j = l, ... ,K. 
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(5.52) 

It follows that using (5.48) we replace the MSE constraints with SINR constraints. 

Hence (5.52) can be written as 

m in 
W,,l3,p,B 

s.t. SINRUL < ,.,uL 
3 - '3 

j= l, ... ,K, (5.53) 

where 1YL are the SINR targets required by Ph user. Problem (5.53) is related to 

the problem (5.49) since setting Pmax = Pmin,opt> where Pmin,opt = IIPII1 is the opti­

mum solution of (5.53), in (5.49) would give the same solution as (5.53). Additional 

degree of freedom to minimize the total transmission power is achieved if .>.ma~(>l>) > 1, 

where Amax{-} returns the maximum eigenvalue of a matrix as shown in [34]. Hence 

Algorithm 4 can be adopted, starting off with the same iterations as in Algorithm 4. 

If .>.ma~(>l>) < 1, as iterations goes to infinity, the problem is infeasible and initial con­

ditions must be relaxed e.g. dropping some users [34]. Once .>.m~(>!>) :2: 1 is satisfied, 

the global solution to (5.53) can be found by changing the power control policy in 
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the subsequent iterations, i.e. we allocate power such that the SINR constraints are 

satisfied with equality. This power allocation as shown previously, is given by (5.41). 

It can be shown that 02 is strictly monotonically increasing in IIPII1 and is shown to 

converge to the global optimum (see (34] for proof). Full algorithm to solve (5.53) is 

presented in Algorithm 5. 

Algorithm 4 Op1: Max-Min Fairness 

1. Initialize n = 0, P m•x• p0 , 1) which controls the required accuracy and compute 
the ST filters W0 , TIR B 0 and /30 using Algorithm 3. 

I Uplink Channel I 
2. REPEAT 

•n=n+1 

• For given Wn-! 1 Bn-1 1 f3n-l find Pn by solving (5.50). 

• Update the uplink ST filters W n• TIR Bn and !3n for power allocation Pn 
using Algorithm 3. 

• Compute the uplink SINR values for the given Pn, Wn , Bn and !3n· 

3. UNTIL { max1~;~KSINR; - min1~;~KSINR;} ~ 1). 

I Downlink Channel I 
• Compute the downlink power allocation q using (5.45), which should 

achieve the same SINR targets as in uplink with the same total power 
llqiii = Pmax = IIPniii· 

5. 7 Simulation Results 

A system comprising of a transmitter with N1 = 4 transmitting antennae and K = 3 

single antenna users is considered. We generate independent, unity power, transmit 

symbols which are scaled according to the power requirements prior to transmission. 

The frequency selective channel is fixed for each data block and is assumed to have an 

impulse response of length Nh = 12. It is however changed between blocks according 
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Algorithm 5 Op2: Min Power 

1. Initialize n = 0, power allocation vector Po, Pmin,o, TJ which controls the 
required accuracy and compute the ST filters W 0 , TIR Bo and (30 using 
Algorithm 3. 

I Uplink Channel I 

2. REPEAT 

• Assuming the problem is feasible, i.e. Am~(~) > 1. 

•n=n+l 

• For given ST filters Wn-1> TIR Bn-1 and f3n_ 1 , find Pn by solving (5.41). 

• Update Pmin,n = IIPnlh· 

• Update the ST filters Wn, TIR Bn and f3n for power allocation vector Pn 
using Algorithm 3. 

• Compute the uplink SINR values for the given Pn, Wn , Bn and f3n· 

3. UNTIL {Pmin,n- Pmin,n-1} :S TJ· 

I Downlink Channel I 
• Compute the downlink power allocation q using (5.45), which should 

achieve the same SINR targets as in uplink with the same total power 
llqll1 = Pmin,n = IIPnlh· 

to a zero mean complex Gaussian distribution. The noise is zero mean i.i.d complex 

circularly symmetric AWGN with variance u~ = 0.01. For a fair comparison between 

the performance of the channel shortening based spatial multiplexing scheme with 

that of an equalization based scheme, the lengths of the equalizer and the channel 

shortening filter are assumed to be the same, Np = (Nh- l)K = 33. 

Fig. 5.5 depicts the performance of both the channel shortening and the full 

equalization based multiplexing schemes in terms of achievable balanced SINR targets 

computed using (5.29). Note that the balanced SINR targets are plotted, i.e. these 

are the SINR values achieved by all users in the system. The results indicate that 

the channel shortening for a given total power achieves a higher balanced SINR level 

as compared to full equalization. 
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For clarity in Fig. 5.6, we have plotted the equivalent balanced MSE targets 

achieved by all users in the system. The MSE values have been computed using 

(5.7). Similarly as before, we note that STCS filters achieve lower balanced MSE 

targets as compared to the STEQ filters. It should also be noted from Fig. 5.5 and 

Fig. 5.6 that the relationship used to transform the MSE optimization problem into 

a SINR optimization based problem, (stated in (5.48)), holds. 

We now perform a simulation for C2, where we wish to minimize the total transmit 

power in order to attain some pre-defined SINR targets. We assumed that all users 

have the same SINR targets. Fig. 5.7 depict performance in terms of the required 

transmitter power for both channel shortening and full equalization at the transmitter. 

The results in Fig. 5. 7 indicate that full equalization at the transmitter requires 

relatively more total power as compared to channel shortening based scheme for 

various TIR lengths, in order to achieve identical SINR targets. Results of both 

problems indicate that the channel shortening based spatial multiplexing scheme has 

the ability to provide a superior performance. This is because the channel shortening 

filter has an extra degree of freedom to suppress IUI, by relaxing the requirement on 

IS I. 

We carry out further simulation for Cl to compare the BER performance in a 

CDMA based system. We considered a DS-CDMA scheme with spreading factor 

32. All three users use the same spreading code to study the spatial multiplexing 

performance. For channel shortening based multiplexer, we use Rake receivers for 

each user to coherently combine the remaining unequalized paths. The BER results 

depicted in Fig. 5.8 confirm the SINR and the MSE advantages seen in Fig. 5.5 

and Fig. 5.6 respectively, i.e. the channel shortening based spatial multiplexing 

scheme attains relatively better BER performance than a complete equalization based 

multiplexing scheme. 
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5.8 Summary 

Spatial multiplexing schemes based on channel shortening and full equalization at the 

transmitter has been proposed. The schemes are based on the results of UDD and 

solves the problem of multiuser downlink beamforming but over frequency selective 

channels. Algorithmic solutions for two problems with different optimization criterion 

have been proposed. Firstly, we proposed solutions to the problem of satisfying the 

QoS constraints of all users with a total power constraint, this as we saw from the 

simulation results, balances the SINR or the MSE targets of all users. The solution 

to this problem allocates all the available power to achieve the QoS targets. Thus, 

secondly, we proposed solutions to the problem of minimizing the total transmit 

power. subject to satisfying the QoS constraints of all users. We showed that for both 

optimization problems the channel shortening based spatial multiplexing provides 

better performance than full equalization based schemes. This is due to the fact 

that channel shortening based design is able to exploit the degree of freedom it has 

in terms of suppressing the ISI, whereas the equalization based design has a strict 

requirement of canceling the ISI completely. 



Chapter 6 

Robust Downlink Beamforming 

based on Maximizing 

Signal-to-Leakage Ratio 

Extensive research has been conducted on multiple-input multiple-output (MIMO) 

systems due to their potential for providing high capacity, increased diversity and 

mitigating interference in multi-user (MU) scenarios. Conventional techniques focus 

on the receiver for mitigating distortions such as channel impairment and interfer­

ence. However recent interests have been shifted for optimizing the transmitters in an 

attempt to keep the receiver complexity at low. The transmitter diversity can also be 

exploited to form multiuser multiplexing. In this chapter, we focus on a transmitter 

optimization technique based on spatial diversity in a downlink wireless communica­

tion system [59], where a basestation (BS) could simultaneously serve multiple users 

without compromising the available radio spectrum. To achieve this the BS pre­

compensates for the interference allowing users in the cell to maximize their signal 

power and to reduce interference. The BS can also perform beamforming to suppress 

multiuser interference (MUI) to end users and to maximize overall system capacity. 

114 
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Several transmit beamforming techniques have been proposed in the recent litera­

ture [1, 2, 34, 58, 83, 108-110], most of them however, require nearly perfect knowledge 

of the channel at the transmitter. But due to imperfections, the channel state infor­

mation (CSI) available at the transmitter will always be somewhat in error. These 

imperfections mainly arise due to time variations of the channels, feedback delay, 

quantization of CSI etc. The performance degrades substantially due to these imper­

fections. Hence, the motivation here is to design techniques which will incorporate 

such imperfections and still provide good performance. Some good examples are 

the recent advances in robust beamforming techniques [6, 74-76, 122]. Most of these 

techniques model the uncertainties as an unknown parameter which is bounded by a 

known norm based on some a-priori knowledge. The problem is then generally con­

verted into a constrained optimization program and solved for worst case performance 

optimization both analytically and numerically. One such example is proposed in [7 4] 

for general rank beamforming, where the received signal and noise plus interference 

covariance matrices are assumed to be in error. 

Here we will build on the recent results on the robust capon beamformer [122] and 

design a robust multi user beamformer which will be less sensitive to the expected CSI 

errors. A signal to leakage ratio (SLR) based optimization criterion is adopted [108] 

to design the robust multiuser beamformer. This optimization criterion is chosen be­

cause it provides a closed form solution as opposed to the iterative solutions obtained 

for signal-to-interference and noise ratio (SINR) criterion [34]. However similar ro­

bust techniques could also be applied to SINR based methods. In the SLR approach 

the transmit weight vector for the i 1h user is determined by maximizing the trans­

mit power to the i 1h user while minimizing the interference (leakage) caused to all 

other users. Here, we will extend this model by incorporating imperfect CSI by ex­

plicitly modelling the uncertainties and adopt a worst-case performance optimization 

criterion as proposed in [74] to design the proposed robust transmitter. 
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To model the CSI errors, we consider the errors are randomly generated according 

to a Gaussian distribution. Later we also discuss two practical examples, where errors 

in the CSI may arise due to imperfections. In the first example, the transmitter esti­

mates the CSI using the available feedback information based on Bayesian estimation 

theory. Such an estimate is sensitive to the feedback delay and hence introduces error 

which is an increasing function of the feedback delay, see as an example, Fig. 6.1. We 

therefore apply the proposed technique to demonstrate robustness against such errors 

and perform a simulation under this general setup to show a significant improvement 

in performance over the non-robust method. In the latter example, we consider an 

OFDM based MU-MIMO system (see Fig. 4.5 for the baseband representation of an 

OFDM system, which transforms a frequency selective channel into N parallel flat 

fading channels), where multi-user multiplexing is required in each frequency bin. It 

requires. feedback of equivalent MIMO CSI in each frequency for all users. This could 

result into excessive feedback overhead. One way to reduce this feedback is to ex­

ploit the correlation of feedback information in adjacent frequency bins. For example 

frequency bins could be divided into a number of groups and the average (mean) 

CSI for each group can be fed back. This has been illustrated in Fig. 6.2. This 

will however result into inaccurate CSI for each frequency bin, hence could reduce 

the performance significantly. We therefore propose to use robust MIMO multi-user 

beamforming technique to mitigate effect of CSI error. 

6.1 System Model 

Consider a downlink MU-MIMO system consisting of one BS with Nr transmit an­

tennas communicating with K users, each having NR; receive antennas. A block 

diagram is shown in Fig. 1.2, where s = [s1(t), ... , sK(t)] denote the transmitted sig­

nal vector whose elements are assumed to be independent and identically distributed 
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with unity variance, i.e. E{ssH} = I. The signal vector s(t) is then multiplied by 

a normalized beamformer matrix W = [w1(t), ... , wK(t)] with llwkll 2 = 1, before 

being transmitted over an multiuser channel. Hence, the Nr x 1 transmitted signal 

vector at time t is given by 

K 

x(t) - 2: wksk(t) = W(t)s(t) (6.1) 
k=l 

The signal vector x(t) is then transmitted over an multiuser channel. Assuming 

that the channel is frequency non-selective, the received signal vector y;(t) for the i'h 

user at time t, can be written as 

y;(t) - H;(t)x(t) + n;(t) (6.2) 

where n(t) is an additive white Gaussian noise (AWGN) vector. The matrix 

H;(t) is assumed to be block fading. Assuming the i'h user employs NR, antennas, 

the NR, x Nr channel matrix can be written as 

h(l,l) 

• 
h(l,N) 
• 

H;= (6.3) 

where, hf'm denote the channel coefficient between the m'h transmit and p'h receive 

antennas, for user i. Here, we assume that the receiver for user i has access to accurate 

CSI, H;. However, given the reasons mentioned previously, we will allow for imperfect 

CSI at the transmitter. 
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Figure 6.1: :Frobenius norm of Lhe error introduc-ed in the CSI due to feedback delay. 
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6.2 Algorithms 

For notational simplicity, let us drop the time index t and proceed to rewrite (6.2) as 

I< 

Yi = H iw isi + L H i w ksk + ni, 
k=J ,kfi 

(6.4) 

where the second term quantifies the interference caused to user i from all other 

users. The aim is to mitigate this interference for all users. The power of the desired 

signal in (6.4) is given by IIH;w;JI 2. Similarly, the interference caused by the i th user 

to the k th user is given by IIHkwill2 . The total power leaked from this user to a ll 

other users, the so called leakage for user i , is defined as [108] 

}( 

L 11Hkwill 2 (6.5) 
k=l,kfi 

6.2.1 Non-Robust Design 

Given a fixed transmit power for each user , the weight vectors w i, i = 1, 2, . .. , K , 

are designed such that the signal-to-leakage noise ratio (SLR) is maximized for every 

user [108] 

SLR for user i 

The solution to the above equation is given by the Rayleigh-Ritz quotient result 

[111] 

opt - p { (H-uH- )- 1 (HIIH )} W i - max i i i i ' (6.7) 

where P max {- } returns the principal eigenvector of the matrix, that is the eigen­

vector corresponding to its maximal eigenvalue. Also it = [H fl. .. Hf- 1H~ 1 ... H~~]11 
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is an extended channel matrix that excludes Hi only. 

6.2.2 Robust Design 

Now, let us proceed to consider the case where the CSI available at the transmit ter 

is imperfect. Then , we can wri te the CSI available a t the transmitter as 

(6.8) 

where the presumed MIMO channel matrix is denoted by H ip and the actual 

channel matrix is denoted by H ia . Here, ~i is the unknown matrix mismatch. These 

mismatches may occur due to quantization errors, erroneous feedback, feedback delay 

and variations of the channel. In simulation results we will consider the case where 

these mismatches arises due to feedback delay. For simplicity let us define ~ -

H{1Hi and R = Hfl.H:i. Hence, using (6.8) we can write , 

- -
~P = R ia + ~ 1, and R ip = ~" + ~2 (6.9) 

where the presumed matrices are denoted by R i,, and ~P respectively and the 

actual matrices are denoted by ~" and Ra. Here, ~ 1 and ~2 are the unknown 

matrix mismatches. In the presence of these mismatches the output SLR can be 

written as 

(6. 10) 

Let us assume that the mismatch matrices ~1 and ~2 are bounded in their norm 

by some constants as 

(6.11) 
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where c1 and c2 represent the radius of the assumed uncertainty sphere. To pro-

vide robustness to such norm-bounded mismatches, we use the result of [74]. The 

beamformer weight vector is obtained by maximizing the worst-case output SLR. 

T his corresponds to the following optimization problem 

max min 
w ; 6.1 ,6.2 

This problem can be written as 

To solve (6.13), we note that [74] 

wf1 (~a + .6.1 )wi 

wf (R ia + .6.2)wi 

where the worst-case mismatch matrices .6.1 and .6.2 are given by 

and 

Therefore, the optimization problem is reduced to 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6. 16) 

(6.17) 

Note the error bound c1 has to be smaller than the maximal eigenvalue of ~" 

[74]. T herefore, the parameter E which is smaller than the maximal eigenvalue of 
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~a has to be chosen. A simple interpretation of this condition is that the allowed 

uncertainty in the signal covariance matrix should be sufficiently small. Clearly the 

structure of the problem now is similar to that of the problem before. Using this fact, 

the solution can be expressed in the following form 

(6.18) 

6.2.3 Diagonal Loading 

In order to solve (6.18) and choose the values of parameters E1 and E2 we analyze 

the statistics of E1 and E2. We assumed circularly symmetric white Gaussian noise 

components for the elements of the MIMO channel Hi and the uncertainty matrix 

~i· To do this, we first derive the expressions for calculating the expected value of 

these norms. From (6.9) we see that 

~1 = ~n - ~p ~2 = Ro - RP 
(6.19) 

ll ~dl~ = tr{~f ~1 } ll~2ll~ = tr{~f ~2} 

We may simplify the expressions for Frobenius norm of ll ~ t l l~ and ll ~2ll~ m 

(6.19) as shown below. 

For a MIMO channel matrix of size Nni x NT, the matrix D.f D.i (i = 1, 2) will be 

of dimension NT x NT . We note that the expected values of all the diagonal elements 

of D.f D.i are equal and also the expected values of all the non-diagonal elements are 

also the same. It can then be shown tha t the expected values of the diagonal and the 

non-diagonal elements are given by (6.20) and (6.21) respectively, as shown overleaf, 

where D refers to the diagonal elements and ND refers to the non-diagonal elements . 

Hence the Frobenius norm of D.i is given by (6 .22). Expressions in equation (6.23) 

and (6.24), directly follow from this result, where NT is the number of transmitting 

antennas, N Ri is the number of receiving antennas, Nni = N n, (K - 1) and K is 
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the total number of users in the system. Furthermore, CJ~ and CJi are the variance 

of elements of channel matrix H and the misadjustment matrix ~ respectively. In 

the simula tion, we examine the effect of c1 and c2 by choosing various factors of 

Nn. 

E{ 11 t., 11'} o ~ E{ 11 t, L'>f h;hj' L'>; + L'>f <'.; 11' } ( 6. 20) 

Nn. 

E { 11 "'· 11'} NO ~ E { 11 t, hj' h;+t + hj' L'>;+t + L'>j' "'j+ I 11'} ( 6. 21) 

E{ II ~IiJ~ } - Nr { 2NRi CJ~rCJi + 2NR;CT1 + { Nk,- NR; }CJ1} 

+{ N~- Nr } { 2Nn; CT~1 CJi + N R;CT1 } 

6.3 Simulation Results 

(6.23) 

(6.24) 

We considered a MU-MIMO system with one BS equipped with Nr = 6 antennas and 

K = 3 users each equipped with N R; = 3 antennas. The data symbols are generated 

using QPSK modulation. The total transmitted power per symbol period across all 

transmit antennas is normalized to unity. 
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The entries of channel matrix H and the mismatch matrix ~, are zero mean 

Gaussian random variables with variances aJ-r = 1 and cr1 = 0.005 respectively. The 

Rayleigh fading channel coefficients are generated independently for each transmission 

symbol. The noise is zero mean and spatially and temporally uncorrelated, i.e. 

We choose the expected values of E! = 1.0412 and E2 = 1.4734 obtained from 

(6.23) and (6.24) for E1 and E2 in (6.18) to calculate the robus t multiuser beamforming 

vector. The rational behind this is examined later. Figure (6.3) depicts the difference 

between non-robust SLR and the proposed robust algorithm. The result shows the 

average BER performance of all the users using both the robust and the non-robust 

multi user beamforming algorithm. It can be seen that robust algorithm provides a 

gain of 4dB over the non-robust algorithm at a BER of 10- 2
. Table 6. 1 shows the 

gain in performance for different values of E1 and E2 as compared with the non-robust 

algorithm. We note from the previous section that increasing the values of E could 

result in a negative definite matrix, (Ra- E11) in (6.18). Therefore EL has be less than 

the largest eigenvalue of the matrix Ra, as explained in the previous section as well 

as in [74] . Hence, it is very important to choose the value of E1 and E2 appropria tely. 

We performed a set of simula tions for various values of E1 and E2 as a factor of their 

expected values and tabulated the performance gain in Table 6.1 . It appears from 

table 6. 1 that choosing the error bounds EL and E2 as their expected values {1 and 

E2 provides a satisfactory result. In practice, it may be possible to obtain these 

expected values using a priori knowledge of the channel variations, feedback delay 

and quantization errors. 

In the next section we discuss two practical application of the proposed robust 

beamformers. 
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Table 6.1: Gain (dB) of the robust algorithm over the non-robust algorithm to achieve 
a BER of 10- 2 . 

0.0€2 0 0 0.2 0.2 0.2 0 
0.2€2 2 2 2 2 3 2.5 
0.4c2 2 3 3 3 4 3 
0.6€2 3.5 3.5 3 3 4 4 
0.8€2 3.5 4 4 4 4 4 
l.Oc-2 3.5 4 4 4 4 4 

6.3.1 Example I- Mean Feedback in MIMO Systems 

In this example we assume that the transmitter only has access to imperfect channel 

feedback, see [123] for details on partial feedback. The channel H (t) is assumed to 

be Rayleigh fading and is generated us ing the following AR(1) random process with 

a forgetting factor p [123], 

H (t) = pH (t- 1) + f;W (t) (6.25) 

where, parameter p is obtained from the channel profile as follows, 

(6.26) 

where 10 (. ) denotes the zeroth-order bessel function of the first kind, and parameters 

T , Vmb, and A denote the dura tion of each data frame (or the interval between two 

consecutive feedback), mobile speed and carrier wavelength respectively. The entries 

of W (t ) are assumed to independent and identically distributed (i.i.d) circularly sym­

metric Gaussian, each with standard deviat ion p = J(1 - p2 ) . Assuming that the 

t ransmitter observes H(t) = H (t - d) at the output of the feedback channel, con­

ditioned on H (t) , the distribution of H(t) can be obtained as H "' N(J-L, a l ) [124], 
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where, 

JJ = E(H IH) 

a= var(H IH) 

- E(H ) + cov(H~H) (H - E(H )) 
var(H ) 

- pdH (t- d) 
2 ~ 

_ var(H ) _ cov (H: H ) 
var(H ) 

(1 - p2d) 
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(6.27) 

(6.28) 

Hence the transmitter uses H (t) = adH (t- d) as an estimate of H (t). The error 

between t he actual CSI and its estimate is then given by: 

E(t) = H (t) - pdH (t- d) 
d-l 

l H (t) + L piW (t - i) - pdH (t- d) 
i=O 

el-l 

= L PiW (t- i) (6.29) 
i=O 

where, the distribution of E(t) is given byE"' N(O, (1 - p2d)I)). 

Fig. 6.4 shows the BER performance of both robust and non-robust schemes for 

the mean feedback scenario. Here a feedback delay of one data frame is assumed i.e. 

d = T = 1 and p = 0.99. Similarly as before the robust beamformer outperforms the 

non-robust scheme. However in this scenario, the diagonal loading parameters have 

been simply chosen as 5% of ll~a 1!2 and liRa 1!2 for E1 and €2 respectively. 

6.3.2 Example 11 - Feedback in MIMO-OFDM 

In this example, we investigate the application of the robust beamformers to MU-

MIMO OFDM systems. In this case rnultiuser multiplexing is required to be per­

formed for each sub-carriers at the transmitter . Ideally this would require CSI feed-

back for each sub-carrier. Since this will result into excessive feedback overhead, an 
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Figw-c 6.3: The average BER performance for all the u ers is plott cl as a fun ction of 
the S R for a NIU-MIMO system with Nrr = 6 transmit antenna. and f( = 3 users 
each equipped with n, = 3 receive antennas. 
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Table 6.2: Experimental values of €1 and €2 used in the simulations. 

I Ne I Nh I Na I c1 I c2 11 Ne I Nh I Na I c1 I c2 I 
64 3 4 1.32 1.88 128 3 8 1.38 1.96 
64 3 8 2.82 4.07 128 4 8 1.91 2.70 
64 3 16 5.85 8.72 128 5 8 2.46 3.58 
64 3 32 9.64 14.66 128 6 8 3.04 4.45 

attractive solution is to feedback CSI for a group of adj acent sub-carriers instead of 

feeding back CSI in each sub-carrier. Hence we propose to feedback the mean CSI, 

obtained by averaging the CSI over a number of adjacent sub-carriers (here we refer 

to them as a block). Hence the difference between the mean CSI and the CSI of 

the individual sub-carrier should be considered as error in the available CSI at the 

t ransmitter. This error will increase as the block size N 8 or the channel length Nh is 

increased. We therefore apply our robust techniques to this scenario and analyze the 

performance for various block lengths N 8 and channel lengths N 11 . 

Fig. 6.5 , depicts the performance of both robust and non-robust algorithms based 

on the mean CSI feedback for various block lengths. We considered Ne = 64, Nh = 3, 

and N 8 = 4, 8, 16 and 32. We note that t he BER performance degrades as the block 

length is increased from 4 to 32 but the robust algorithm is able to outperform the 

non- robust algorithm in all cases. 

Similarly in Fig. 6.6, we fixed the block length N 8 to 8, but analyzed the perfor-

mance for various channel lengths Nh = 3 to 6. Again we see the BER performance 

degrades as the channel length increases but the robust algorithm is able to outper­

form the non robust-algorithm. 

Table 6.2 shows the values for c1 and c2 used in the above simulations. The values 

refer to the Frobenius norm of the mismatch matrices in (6.11). We chose these values 

based on the computation of mean c1 and c2 as discussed before. 
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Figure 6.5: The average BER perfonnanc for all th u er. i plotted a. a function of 
the SNR for a 1U- HMO OFDI\1 syst m with T = 6 tran mit antennas and J( = 
3 users, each equipped witb n, = 3 receive antennas. Here the multipath chann I 
ICJtgth N" i ~ fi xed to 3, but the block size N u is changed from 4 to 32. 
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Figure 6.6: The average BER performa nce for all th user. is plotted as a function of 
th ·R for a ~IU- ).lll\10 OFDl\1 system with T = 6 transmi t ru1tenna: and I\ = 3 
us r. , each equipped with Nn, = 3 receive alltenna'5. Here the block sir,c 11 is fixed 
to but the channel length h is varied from 3 to 6. 
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6.4 Summary 

A robust transmit beamforming scheme has been proposed for a rviU-~IIMO system. 

The proposed scheme incorporates for the errors in the CSI feedback from the re­

ceiver to the transmitter. The misadjustments have been modelled by Gaussian noise 

components and the Frobenius norm of the error matrix has been assumed to be 

bounded above by a known parameter based on some a-priori knowledge. Errors in 

the CSI due to feedback delay have been considered. Simulation results generated for 

a Rayleigh fading environment confi rm that the proposed algori thm outperform the 

non-robust algori thm over a wide range of SNR. We also demonstrated importance of 

using this robust technique in a couple of practical scenarios. In the first example we 

investigated lhe effect of feedback delay which resulted into a considerable amount 

of errors in the CSI available at the t ransmitter. In the second example, we ap­

plied the robust technique in a MIMO-OFDM scenario where limitation on feedback 

information could result into considerable amount of errors in the CSI. 



Chapter 7 

Robust Downlink Beamforming 

with Positive Semidefinite 

Covariance Constraints 

Throughput of a multiuser wireless system is limi ted and dictated by inter-user inter­

ference (IUI) and system resources such as bandwidth and transmit power. Spatial 

multiplexing based strategies significantly improve spectral efficiency of a multiuser 

wireless system by exploiting spatial characteristics of the propagation channel. In 

particular, the downlink beamforming based spatial multiplexing techniques have 

proven to be effective to mitigate IUI while minimizing the transmitter power, thus 

improving the spectral efficiency of a multiuser wireless system. 

In this chapter, firstly we consider the problem of joint multiuser downlink beam­

forming and power control in a single-cell environment, where independent data 

streams are transmitted from a single multi-antenna BS to several decentralized single 

antenna receivers, under the assumption that only an erroneous channel state infor­

mation (CSI) is available at the transmitters. Later, we extend the proposed schemes 

along with simulation results to the problem of joint multiuser downlink beamform-

132 



133 

ing, power control and BS assignment in a multi-cell environment. In this scheme 

independent data streams are transmitted from multiple BSs to several decentralized 

single antenna receivers. We also assume the CSI available at the BSs is in error. 

Several downlink beamforming methods within the contex t of single BS and per­

fect channel state information (CSI) have been developed in [34, 78,80- 82, 125, 126]. 

The problem of joint optimal beamforming and power control, fo r achieving a specific 

set of target SINRs while minimizing the total transmitted power, has been studied 

in [34, 78]. 

The scheme in [127] assumed perfect CSI at the transmitter. However in practical 

situations, perfect CSI may not be available and the performance of the transmit ter 

beamforming techniques of [34, 78,80- 82,125, 126] could severely degrade as the qual­

ity of the available CSI reduces. Typically, the estimates of CSI are made available 

to t he transmitter through feedback channels from the receivers. The CSI estimates 

are normally in error due to quantization, feedback delay, channel dynamics and esti­

mation errors. Therefore, robust techniques are required to mitigate the effect of CSI 

errors. Such robust transmi t beamformer design based on worst-case performance 

optimization has been proposed in [77] and [79]. In these designs, the Frobenius 

norm of mismatches between the presumed and the actual downlink channel covari­

ance matrices have been assumed to be bounded above by a known constant . The 

beamformer performance is then optimized fo r the worst-case mismatch. However, 

the worst-case performance optimization-based transmit beamformers of [77] and [79] 

ignore the positive sernidefin ite (PSD) const raints on the mismatched downlink chan­

nel covariance matrices. As a result, these techniques can be overly conservative in 

practical scenarios. 

As opposed to worst-case performance optimization, another popular approach 

is to use a probabilistic constra int based performance optimization. In [106], the 

problem of downlink beamforming has been solved using a probabilistic constraint 
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based optimization. In this approach, the worst-case constraints are replaced by 

more flexible probabilistic constraints i.e. the constraints are satisfied with a specific 

probability. The statistics of the mismatches between the presumed and the actual 

downlink channel covariance matrices are assumed to be known. Unfortunately the 

probabilistic based approach adopted in [106] violates the PSD constraints on the mis­

matched downlink channel covariance matrices. The proposed worst-case performance 

optimization based scheme in this scheme could also be extended to a probabilistic 

constraint based performance optimization with semidefinite constraints. 

In this chapter, we propose two novel robust transmit beamforming and BS as­

signment techniques within the framework of worst-case designs, but preserving the 

aforementioned PSD constraints on the mismatched downlink channel covariance ma-

trices. The resulting design corresponds to a non-convex optimization problem but 

can be approximated by a convex SDP problem using semi-definite relaxation (SDR). 

The complexity of the design based on the first approach is comparable to that of 

the worst-case design of [77]. Our second technique has a slightly higher complex­

ity than the worst-case design of [77] as it resorts to an algorithm involving several 

SDP iterations. However the proposed second technique offers a superior performance 

than the first technique. Simulation results demonstrate that for an imperfect CSI 

scenario, both of our proposed methods outperform the conventional robust transmit 

beamformer of [77]. 

7.1 Problem Formulation 

Let us consider a system with a single BS transmitter with NT antennas and K 

decentralized single-antenna receivers as shown in Fig.1.2. The BS transmits a vector 

x(t) E JRNTxl at timet as 
K 

x(t) = L s;(t)w; 
i=l 
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where W; (i = 1, ... , K) are the Nr x 1 complex beamforming vectors (to be deter­

mined) and s;(t) is the data symbol intended for the ith user. For simplicity, we assume 

that all s;(t) are uncorrelated and have the same normalized power E{Js;(t)i2} = 1. 

The vector x(t) is then transmitted over a flat-fading quasi-static channel. The re­

ceived signal at the ith user is then given by 

y;(t) = h;x(t) + n;(t) 

where h; is the 1 x Nr downlink channel vector for the ith user and n;(t) zero-mean 

circularly symmetric complex Gaussian (ZMCSCG) noise with variance a}. The SINR 

of the ith user is given by 

(7.1) 

where 

is the downlink channel covariance matrix for the ith user. A meaningful problem 

formulation is to minimize the total transmit power subject to user QoS constraints 

[80]. This optimization problem can be written as [78], [80] 

K 

min 'l:wflw; 
Wi i=l 

w!f0 ·w· 
t , .. ;, > 

S. ' "K H 2 - '"'(;' 
L..i=l,ifi wi R;wi +a; 

i = 1, ... ,K (7.2) 

or equivalently, 
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K 

min '2:wfw; w, 
i=l 

K 

s.t. wfR;w; - "(; '2: wfR;wi -"(;a; ?: 0, 
j=l,jt'i 
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i = l, ... ,K (7.3) 

where "(; is the minimal acceptable SINR for the i 1h user. This is a quadratic 

optimization problem with quadratic non-convex constraints. Such problems could 

be NP-complete in general, which makes it much difficult to solve directly. However, it 

has been shown in [77], that this particular problem inherits a structure that makes 

it possible to find the global optimum efficiently. In [78], an approach based on 

" semidefinite programming which is able to attain the optimum solution efficiently 

has been proposed. Using a change of variable W = wwH and using the property 

of the trace operator Tr{AB} = Tr{BA} [128], it follows that wRRw = Tr{RW}. 

Thus, introducing a change of variables, the problem in (7.3) can be written as, 

K 

min"" Tr{W;} 
W· L. 

' i=l 
K 

s.t. Tr{R; W;}- "f; 2: Tr{R;Wi}- "(;ai?: 0, 
j=l,j=j:i 

W; !::: 0, rank{W;} = 1, i = 1, ... ,K, 

(7.4) 

where additional constraint W; !::: 0 is required to ensure the positive semidefi­

niteness of the optimization variable and rank{W;} = 1 is required to ensure that 

the problem (7.4) is equivalent to the problem in (7.2). Thus, if the optimal solution 

to (7.4) has rank{W;} = 1, i = 1, 2, ... , K, then it is also the optimal solution to the 

original problem (7.2). However, the constraint, rank{W; = 1}, i = 1, 2, ... , K, is 

non-convex, which effectively makes the whole problem in (7.4) non-convex. Relaxing 



7.1. Problem Formulation 137 

the constraint on the rank of W;, would give a semidefinite optimization problem with 

an optimal cost which provides a lower bound for the original problem in (7.2) [77]. 

This technique is formally known as the semidefinite relaxation (SDR) or Lagrangian 

relaxation, since it is the Lagrangian dual of the original problem [129, 130]. Prob­

lem (7.4), without the rank constraint belongs to a class of SDP and can be effi­

ciently solved using interior point methods. Freely available softwares SeDuMi [33] 

or CVX [32] can be used for this purpose. 

Interestingly, it has recently been shown that the problem in (7.2) can be cast 

into a second-order cone program (SOCP). As an arbitrary phase rotation of all the 

weight vectors does not change the SINR i.e., if w; is optimum, w;ei<l><, i = 1, 2, ... , K 

will also satisfy the optimality. Thus, we can restrict ourself to the case where h?w; 

is real valued i.e. imag{h;w;} = 0. Taking this into consideration, we can recast the 

SINR constraint in a SOCP framework as [87] 

2 

h;W 
i = 1, 2, ... , K (7.5) 

0'; 
2 

where W = [w1, w2 , ... , WK]· Thus we can write the problem in (7.2) in a SOCP 

as 

m in 
w; 

s.t. i = 1,2, ... ,K (7.6) 
0'; 

2 

It can be verified that both (7.4) and (7.6) attain the same optimum solution with 

an arbitrary phase shift. 
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7.2 Worst-Case Robust Beamforming 

When the available CSI at the transmitter is imperfect, the performance of the non­

robust approach in (7.2) will severely degrade. Robust modification has therefore 

been proposed in [77], where the true channel covariance matrices are assumed to be 

R; = R; + .6.;, (7.7) 

where R; is the available estimate of the covariance matrix and .6.; is the un­

certainty matrix whose Frobenius norm is bounded above by a known constant €;, 

i.e. 

(7.8) 

Recall from Chapter 2, that (7.8) in 2-D defines a ball with a radius equal to €. 

The basic idea behind worst-case performance optimization is to identify the worst 

possible error and to optimize the cost function for this worst possible error. This 

effectively ensures that the system would perform satisfactorily for the whole range 

of errors within the bound in (7.8). Problem (7.2), under the worst-case performance 

optimization framework, can be written as 

i = l, ... ,K. (7.9) 

Here, we wish to minimize the total transmit power subject to the constraint that 

the worst-case (or the minimum) SINR is above a pre-defined threshold. In [7 4, 77] 

it has been shown that the worst case SINR occurs when the numerator in the SINR 

equation attains its maximum with respect to ~; and the denominator attains its 



7.2. Worst-Case Robust Beamforming 139 

maximum with respect to .6.;. Thus, problem (7.9) can be written as, 

i = 1, ... 'K.(7.10) 

where separate uncertainty matrices .6.1,; and .6.2,; are used in the numerator and 

denominator of the QoS constraints in (7.10). Hence we need to determine [74] 

(7.11) 

(7.12) 

The solutions to the subproblems (7.11) and (7.12) can be obtained analytically 

using Lagrange multipliers as in (7.13) and (7.14) respectively. See Appendix A for 

the proof. 

wf (R.; - E;l)w; (7.13) 

(7.14) 

Thus, as shown in [77], the robust worst-case performance optimization problem 
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can be approximated as 

K 

min:L:wfw; 
Wj i=l 

s.t. 
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i= l, ... ,K. (7.15) 

The above problem can be cast into a SDP and solved efficiently using interior­

point methods [77]. Unfortunately, the PSD constraints on the matrices :H.; + ~i 
have been ignored in (7.15). This is due to the negative diagonal loading, in the term 

wfl (R.; - E;l)w;. As a consequence, the matrix R- E;l will not be positive definite, 

, when E; is larger than the smallest eigenvalue of :H.;. Hence, the parameter E; less 

than the smallest eigenvalue of :H.; has to be chosen [122]. This can be interpreted 

as restricting the error in the channel covariance matrices to be sufficiently small. 

This, however might not be true in all practical scenarios. Therefore, to satisfy the 

PSD constraints and allowing for large errors on the channel covariance matrices, 

one must enforce the PSD constraints into the worst-case design. Another important 

observation is that worst-case design in practice are too conservative, as the worst-case 

errors could occur possibly with only a very low probability. 

In the next section, we build on the the framework of worst-case performance 

optimization based robust beamforming, by adding PSD constraints on the channel 

covariance matrices. We propose two novel methods for the worst-case robust beam-

forming with PSD constraints. Unlike the worst-case design, the proposed methods 

not only satisfy the PSD constraints but also are less conservative. 

7.3 Robust Beamforming with PSD Constraints 

In this section, we take into consideration of the PSD constraints and develop a 
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less conservative approach for the worst-case transmit beamforming. Our objective 

is to solve the following problem: 

K 

. " H mm L...J w; w; 
Wi i=l 

s.t. 
H -. w; (R; + A;)w; 

mm K H' 2~'Yi 
JIS,JI:S•• L,J=l#i wJ (R.; + A;)wJ +a; 

:R; +A; ~ 0, i = 1, ... , K. (7.16) 

Note an additional constraint :R; + A; ~ 0, as compared to worst-case design 

in (7.2), has been introduced to enforce the positive semidefiniteness on the channel 

covariance matrices. Instead of solving (7.16) directly, we follow the approach of [77] 

and [79], and approximate this problem into 

K 

min2:wfw; 
Wj 

i=l 

(7.17) 

where separate uncertainty matrices A.; and A; are used in the numerator and 

denominator of the QoS constraints in (7.17), respectively. Such an approximation 

strengthens the original QoS constraints of (7.16), [79, 122]. Introducing auxiliary 

variables~;, we can rewrite (7.17) as 
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K 

'""' H ' 't 2 ~i - max "(; L.., W; (R; + ~;)w; ~ "(;(J; 
IIA<Il~'' ·-1 ._,. J- ,,,., 

R; + .&; ~ 0, :R; +A; ~ 0, ~i ~ 0, i = 1, ... , K. (7.18) 

Let us split the problem into subproblems by separately establishing worst-case 

for the first and second constraints in (7.18). 

The sub-problem associated with the second constraint in (7.18) can be written 

as 

K 

'""' H ' 't max L.., W; (R; + ~;)w; 
iS., 

j=l,j.J:i 

s.t. :R; +A;~ 0, ll.idl :::; E;, i = 1, ... , K. 

The maximum objective value of (7.19) is given in [74] as 

K 

2: H ' 
W; (R; + E;l)w;. (7.19) 

j=l,j#:i 

where the related PSD constraints of (7.17) are automatically satisfied. 

Let us now consider the sub-problem corresponding to the first constraint in (7.18). 

If we solve this problem without taking into account the PSD constraints of (7.17), 

the resulting solution could lead to a negative diagonal loading [7 4]. As a result, the 

related PSD constraints will be violated. Therefore, to enforce the PSD constraints, 

let us write :R; = Qf Q; and model the uncertainties in Q;. In particular, Q; can 

be the training data matrix used to estimate the downlink covariance matrix R;. 
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Defining Li; as a norm-bounded uncertainty matrix in Q;, we can rewrite the sub-

problem in the first constraint of (7.18) as 

· H( - H - ) !I!lll W; Q; + ~;) (Q; + ~i W; 
a, 

s.t. IILidl ::;; TJi (7.20) 

where TJ; is some known bound on .ii;. To solve (7.20), we use the following lemma. 

Lemma 1: If the mismatch is sufficiently small so that 

then the solution to (7.20) is given by 

A.;.= 
' 

ry;Q;w;wf 
llw; Ill I Q;w; 11 

and the minimum value of the objective function is given by 

(7.21) 

Proof: Using the triangle and the Cauchy-Schwarz inequalities along with the 

constraint IILidl ::;; TJ;, we get 

II(Q; + .ii;)w;ll > IIQ;w;ll- IILi;w;ll 

> IIQ;w;II-IILi;llllw;ll 

> IIQ;w;ll- 'Tidlw;ll· 

It can be easily shown that if !J;IIw;ll ::;; IIQ;w;ll, then 

(7.22) 
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This completes the proof of Lemma 1. 

Using (7.21) and Lemma 1, the first constraint in (7.18) can be written as 

Using (7.19) and (7.24), the problem in (7.18) can be simplified as 

K 

• """ H mm L....J w; w; 
wi.e, i=l 
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(7.23) 

0 

(7.24) 

(7.25) 

In the next two subsections, we present two different SDR-based methods to solve 

the problem in (7.25). 

7.3.1 The First Method 

Using the Cauchy-Schwarz inequality, we obtain 

(IJQ;w;il - 7Jdlw;JI? = IIQ;w;JI 2 + 7J?IIw;ll
2

- 27JdiQ;wdlllw;JI 

~ IIQ;w;ll 2 + 7J?IIwdl 2
- 27J;IJQ;JIIIw;JJ

2
. (7.26) 

Using (7.26), the first constraint in (7.25) can be modified as 

(7.27) 
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Introducing a new variable 

and using the property 

we rewrite (7.27) as 

W; ~ 0, rank(W;) = 1. (7.28) 

Dropping the non-convex rank-one constraint in (7.28) and reformulating the ob­

jective function and the second constraint of (7.25) in terms of the new variable W;, 

we obtain the following problem formulation 

K 

min LTr{W;} 
wi.ei i=l 

s.t. Tr{Il;W;} + rylTr{W;}- 2ry;IIQ;IITr{W;} ~ ~i 
K 

"' • 2 ~i- 'Yi ~ Tr{(R.; + €;1)Wi} ~ "'(;U; 

#i 

W; ~ 0, ~; ~ 0, i = 1, ... , K. (7.29) 

This is a convex SDP problem that can be solved by means of, for example, 

interior-point algorithms [?,32,33,61, 131]. 

7.3.2 The Second Method 

Let us express the first constraint in (7.25) as 
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(7.30) 

Squaring both sides, we obtain, 

(7.31) 

Using a new variable W; = w;wf, we express the constraint (7.31) as 

W; :;::: 0, rank(W;) = 1. (7.32) 

where(;= V[;y'Tr{W;}. Using the SDR approach again, we drop the rank-one 

constraint in (7.32), and reformulate the objective function and the second constraint 

of (7.25) in terms of the new variable W;. This results in the following optimization 

problem: 

K 

min ETr{W;} 
Wi,{i i=l 

s.t. Tr{ft; W;} -17?Tr{W;} - ~; :;::: 21);(; 
K 

""' A 2 6 -7; L..t Tr{(R; + €;l)Wi} 2: /;Cl; (7.33) 
#i 

W;2:0, ~;2:0, i=1, ... ,K. 

However, the first constraint in (7.33) is still non-convex due to the term 21);(; on 

the right hand side. Therefore, we resort to an iterative scheme to solve (7.33). We 
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find W;,t and ~i,t in the lth iteration by means of solving the following optimization 

problem 

K 

min L Tr{W;,t} 
wi,z,ei,l i=t 

• 2 
s.t. Tr(R;W;,t)- 'T/; Tr{W;,t}- ~i,t 2: 2ry;(;,t-1 (7.34) 

K 

"' • 2 ~i,l _,i w Tr{(R; + E;I)W;,t} 2: /iO'; 

jfi 

W;,t 2:0, ~i,t 2: 0, i = 1, ... ,K 

where (;,t-1 - ~ y'Tr{Wi,t-1} is the solutions obtained in the (l - 1)th 

iteration. 

Similar to (7.29), each iteration of (7.34) belongs to a class of convex SDP problems 

which can be solved using modern convex optimization tools [32,33, 131]. 

The solutions to the problems in (7.29) and (7.34) may not be rank-one in general. 

In such cases, the so-called randomization techniques [132], [133] should be used to 

obtain approximate solutions to the original problem in (7.16). However, our simu­

lation results show that we always obtain a rank-one solution for W;. Therefore, we 

retrieve the beamforming weight vectors W; from W; using the principal eigenvector 

corresponding to its single non-zero eigenvalue. 

7.3.3 Relationship Between the Regularization Parameters 

Let us now obtain an approximate relationship between the parameters E; and 'T/i· We 

know that 

(7.35) 

Expanding (7.35), we can write 
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(7.36) 

Taking the Frobenius norms on both sides of (7.36) and using the triangle and 

Cauchy-Schwarz inequalities, we obtain 

llii.ll - IIQf A;+ AfQ; + A.f A;ll 

< IIQfA;II + IIAfQ,II + IIAfA,Il 

< IIQ•IIIIA,II + IIA;IIIIQ•II + IIAf A;ll 

< 21);11Qdl + 1);, (7.37) 

and, therefore 

(7.38) 

Using (7.38), for any given €; we can compute an approximate value for r,; by con­

verting the inequality in (7.38) to an equality. 

7.4 Joint Beamforming and BS Assignment 

So far, we considered a single BS transmitter serving multiple decentralized single 

antenna users. In these schemes, the assignment of mobile stations (MSs) to the 

BSs has been assumed to be known i.e. which MS has been connected to which BS 

is known. The assignment is performed in a decentralized manner, where a MS is 

assigned to a BS to which it has the best radio link in terms of channel gains. It 

is also possible to optimally assign BSs. The problem of joint optimal beamforming 

and power control has been extended to BS assignment in [127, 134]. The scheme 
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in [134] exploits the uplink-downlink duality to obtain an iterative solution. The 

BS assignment problem is solved for an equivalent uplink problem and the same 

assignment is used in the downlink as a solution to the problem of joint beamforming 

and power control. In [127], the authors proposed a semidefinite programming (SDP) 

based solution. In [127] the antenna array of each BS is considered as part of a single 

giant BS. The problem of joint downlink beamforming and power control with this 

single giant BS is then cast into a convex SDP and optimal beamforming vectors are 

obtained for this giant BS [127]. Although each MS is allowed to be connected to 

multiple BSs, the optimal solution turns out that each MS is connected only to a single 

BS [127]. Here, we will briefly outline the system model for a joint beamforming and 

BS assignment problem. The two novel methods developed in the previous sections 

can also be applied to this problem as illustrated in the simulation results. 

7.5 Problem Formulation 

Let us consider a system with N BS transmitters each equipped with Nr antennas 

and K decentralized single-antenna mobile stations (M Ss) in a flat fading channel 

environment as shown in Fig. 7.1. We wish to optimally design the downlink beam­

formers and assign each MS to a best possible BS. Each BS could serve multiple 

MSs, however the optimum solution turns out to be that each MS is connected only 

to a single BS. Let us denote the BS assigned to the ith user as K( i) and define 

S(n) = {i: K(i) = n} as a set of indices of mobiles that have been assigned to the 

nth BS. The BS n transmits a Nr x 1 signal vector at timet to a set of mobiles S(n) 

as 

Xn(t) = L W;S;(t), (7.39) 
iES(n) 

where w; E ICNTxl are the complex beamforming vectors to be determined and 
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Figure 7.1: Downlink system model. 
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s;(t) is the data symbol intended for the ith user. We assume that all s;(t) are 

uncorrelated and have the same normalized power E{ls;(t)i2} = 1. The vector Xn(t) 

is then transmitted from the nth BS over frequency flat channels. The signal received 

by the ith user is given by 

N 

Y;(t) = L h;,nXn(t) + n;(t), (7.40) 
n=l 

where h;,n E ClxNT is the complex channel vector between the ith user and the 

nth BS, n;(t) is the ZMCSCG noise with variance er?. Since ith user is connected to 

the BS "( i), the SINR of the ith user can be written as 

(7.41) 

where 

i = 1,2, ... ,K 

n = 1,2, ... ,N 

is the downlink channel covariance matrix between the nth BS and the ith user. 

Let us first assume the sets S(n), n = 1, 2, ... , N are known, i.e. the indices "(i) are 

known. This BS assignment can be performed in a decentralized manner, where a 

MS is assigned to a BS to which it has the best link in terms of channel gain. Now we 

wish to design the beamformers w; for all K users. A meaningful problem formulation 

is to minimize the total transmit power from all the BSs subject to satisfying each 

user's QoS (80]. This optimization problem can be written as [78], [80] 
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i = l, ... ,K (7.42) 

where "(; is the minimum acceptable SINR for the i 1h user. In [78], it has been 

shown that the non-convex problem (7.42) can be relaxed into a convex problem using 

SDR and can be solved efficiently using SDP. Nevertheless, the problem formulation 

in (7.42) itself is non-optimal as the indices ~;;(i) are assumed to be known or are 

determined in a decentralized manner. The optimum solution to downlink beam­

forming and BS assignment could be obtained if the problem is optimized over both 

the beamforming vectors w; and the BS assignment K(i). In [127] it has been shown 

that, a conceptually interesting way to solve this is to relax the problem in (7.42) and 

allow all BSs to simultaneously transmit to all MSs. This is possible by considering 

the antenna array of each BS as part of the antenna array of a single giant BS. This 

problem can be formulated as designing a single weight vector 

(7.43) 

for transmission over a single channel covariance matrix 

R.;l 
' 

ON,xN, ON,xN, 

R= 
ON,xN, R.;,2 ON,xN, 

(7.44) 

ON,xN, ON,xN, R.;,N 

for the i 1
h user. We assume that E{h~n, h;,n,} = 0 for all n1 f n2 and ON,xN, 

denotes a matrix of all zeros. Using w; and R;, we can write the SINR for the i 1h 
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user as, 

SINR; = wflll;w; 
L:K -Ho + 2 . 1 ._,. w. u.;w3· a. 

J= ,Jr'l 3 1 

(7.45) 

Now we wish to design the beamformers W; for all K users. This optimization 

problem can be written as [78], [80] 

K 

J1!in z= w[iw; 
Wi i=l 

-Ho -
t W; u.;W; > 

s. · LK -Ho - 2 - 'Yi 
._1 ._,. W · u.;W3· +a,. 
J- •Jr"' J 

(7.46) 

i = 1, ... ,K 

According to this new problem formulation, a MS can be served by multiple BSs, 

however, as we will see later (and as in [127]), the optimality will enforce each MS 

to choose only a single BS. The problem in (7.46) can be approximated to a convex 

SDP using SDR, [78] and [127]. 

The problem formulation in (7.46) assumes perfect CSI at the transmitter. We 

considered the problem of joint downlink beamforming and BS assignment with im-

perfect CSI at the transmitter using worst-case performance optimization with PSD 

constraints in [9]. The two novel schemes developed in §7.2 were also extended to the 

problem of robust beamforming and BS assignment in [9]. 

7.6 Simulation Results 

7.6.1 Single BS 

In the first section of simulations we consider the scenario used in [78], where the 

authors consider a single linear transmit antenna array of NT = 8 sensors spaced half 
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a wavelength apart. There are K = 3 single-antenna users. One user is located at 

lh = 10° relative to the array broadside and the other two are located at 02,3 = 10° ±<P, 

where <P is varied from oo to 10°. It is assumed that the users are surrounded by a 

large number of local scatterers corresponding to a spread angle of CTe = 2°, as seen 

from the BS. In such a scenario, the channel covariance matrix takes the form [78] 

. (k I) . 9 (7r(k-l)11p cos81)2 
[R.;]k I = d" - sm 'e ' , (7.47) 

The noise at each user is assumed to be additive white Gaussian with variance 

CT[ = 1 ( i = 1, ... , K). The same SINR threshold /; = 1 for all i = 1, ... , K is used for 

all the users. For each channel covariance matrix H.; ( i = 1, ... , K), the corresponding 

error matrix ~. has been uniformly and randomly generated in a sphere centered at 

zero with the radius E;. For simplicity we assume that E; = E for all i = 1, ... , K. In 

all the examples, we compare the proposed two methods to the robust and non-robust 

schemes presented in [78] and [77]. 

Fig. 7.2 depicts the total transmitted power versus the angular separation <P for € 

that is varied in the interval [0.05, ... , 0.2] where the corresponding values of TJ; are 

calculated using (7.38). The value of 1 used in this figure is 5 dB. We note that the 

power consumption of all robust beamformers increases as the value of E is increased. 

This is not unexpected as with an increment in €, the uncertainty region grows and 

the quality of available CSI degrades. However, we can see that the proposed robust 

techniques have better transmitted power requirements than the worst-case robust 

technique of [77] for the complete range of E. Note that, although our first method 

satisfies the PSD constraints, it is only able to offer minimal gain in terms of power 

over the worst-case design of [77]. However, our second method is able to offer a 

substantial gain in terms of the transmitted power. This is especially true in the case 

when the user angle separation is low. 

Figs. 7.3 and 7.4 depict histograms of the number of constraints versus the nor-



7.6. Simulation Results 155 

malized constraint value, (i, which is defined as 

K 

1 H 1 " H (i = --2 wi R;wi- 2 L.J W; R;w;. 
"(,(1. (Ji . I ·.J.. 

J= ,Jr'l. 

(7.48) 

Note that if (i <:: 1, then the corresponding constraint is satisfied; otherwise it is 

violated. 

In Figs. 7.3 and 7.4, we consider a set of scenarios with { € = 0.2, r/! = 7°} and 

{€ = 0.15, r/J = 6.5°}, respectively. The value of 'Y used in these figures is 5 dB. We 

can see from these two figures that the non-robust technique of (78] violates almost 

50% of the constraints. The robust technique in [77] satisfies all the constraints, but 

it is obviously too conservative and (i » 1 for all constraints (i.e. constraints are 

over-satisfied). Although the proposed techniques also over-satisfy the constraints, 

they do it in a lesser extent than the approach in [77]. This is especially true for the 

second method. 

Fig. 7.5 depicts the total transmitted power needed to achieve a given set of SINR 

thresholds 'Y = {3dB, ... , 8dB}. The value of € is varied in the range {0.05, ... , 0.2} 

and the angular separation used is r/! = 7° . Once again the corresponding values of TJi 

are calculated using (7.38). We can see a similar trend as we saw in Fig. 7.2, that the 

performance of the beamformers worsens when the value of € is increased. However, 

the proposed beamformers perform better than the worst-case robust beamformer 

of [77] for a range of SINR targets. 

7.6.2 BS Assignment 

In this section, we consider a scenario with multiple BSs, where each BS is equipped 

with a linear array of antennas (Nr = 8) spaced half a wavelength apart. For each 

user in the system, we generate a set of N channel covariance matrices using (7.47). 

The noise at each user is assumed to be additive white Gaussian with variance (Jl = 1 
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Figure 7.3: Histogram of the constraints versus the normalized constraint value for 
E = 0.2 and cf> = 7°. 
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( i = 1, ... , K). The same SINR threshold 'Yi = "( for all ( i = 1, ... , K) is used for 

all the users and €; = € for all (i = 1, ... , K). We then jointly solve the problem of 

beamforming and BS assignment. Note as mentioned earlier, each user is assigned 

only one BS, whereas one BS might have more than one users assigned to it. 

In the first simulation we consider a scenario with 2 BSs. There are K = 3 single­

antenna users. The first user is kept fixed and located at 81,1 = 10°,81,2 = 30° relative 

to the array broadside of BS 1 and BS 2 respectively. The other two users relative to 

user 1 and the two BSs are located at 82 ,k = 81,k + r/J, 83,k = 81,k- r/!, (k = 1, 2) , where 

rfJ is varied from 0° to 15°. An angular spread of 2° is considered. Fig. 7.6 depicts 

the total transmitted power from the assigned BSs versus the angular separation rfJ 

for € that is varied in the interval [0.05, ... , 0.2] where the corresponding values of 

1); are calculated using (7.38). The value of "( used in this figure is 5 dB. Similarly 

as before, we note that the proposed robust techniques have a better transmit power 

requirement than the worst-case robust techniques of [77] for a complete range of €. 

We note that the transmit power needed to achieve SINR targets of 5dB with BS 

assignment is comparably lower than power needed in a single BS scenario. This 

is simply because there are additional degrees of freedom to minimize the transmit 

power due to the availability of extra BSs. 

In the second simulation, we consider a scenario with N = 3 BSs and K = 3 single­

antenna users. The first user is kept fixed and is located at 81,1 = 15o, 81,2 = 35° and 

81,3 = 60° relative to the array broadside of BS 1, BS 2 and BS 3 respectively. The 

other two users relative to user 1 and the three BSs are located at 82,k = 81,k + r/J, 

83,k = 81,k - r/J, ( k = 1, 2) , where if! is varied from oo to 15°. An angular spread of 

2° is considered. Fig. 7. 7 depicts the total transmitted power from the assigned BSs 

versus the angular separation rfJ for "( that is varied in the interval [1, ... , 5]dB and € 

is kept fixed at 0.1 for the whole range of 'Y· The proposed robust techniques offer a 

better transmit power requirement than the worst-case robust techniques of [77] for 
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7.7 Summary 
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In this chapter, we discussed the problem of robust downlink beamforming under a 

worst-case performance optimization framework. We highlighted the fact that the 

worst-case based designs violate the positive semidefinite constraints on the channel 

covariance matrices and are highly conservative. We therefore, developed a worst-case 

based optimization technique by incorporating the PSD constraints. The proposed 

techniques use semi-definite relaxation to approximately convert the original beam-

forming problems into a convex semi-definite programming problem. The proposed 

techniques have shown to outperform the conventional transmit beamforming tech-

niques. 
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Chapter 8 

Robust Downlink Beamforming 

with Per Antenna Power 

Constraints 

Spatial multiplexing techniques significantly improve the spectral efficiency of wire­

less communication systems. In particular downlink beamforming has proven to be a 

simple, yet very efficient technique to improve spectral efficiency of a wireless commu­

nication system. Here we consider the downlink beamforming problem in a multi-user 

environment, where a basestation (BS) is equipped with multiple transmitting anten­

nas, simultaneously transmits independent data streams to multiple single-antenna 

receivers. 

The problem of conventional downlink beamforming can be defined as minimizing 

the total transmit power subject to satisfying the quality of services (QoS) such as 

the mean square error (MSE) or the signal-to-interference plus noise ratio (SINR) 

for all users in the system. Various advanced algorithms for conventional downlink 

beamforming have been proposed in [34, 77, 80, 81, 123] and references therein. In a 

practical system, each antenna of the transmitter may be equipped with its own power 

161 
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amplifier and thus a more meaningful problem formulation is to minimize the total 

transmit power subject to a per antenna power constraint and the QoS constraints. 

In [87, 135] several advanced algorithms for downlink beamforming with per antenna 

power constraints under the assumption that perfect CSI at the transmitter have been 

proposed. 

However, in practical situations perfect CSI may not be available at the trans­

mitter and the performance of the transmit beamforming methods could degrade as 

the quality ofthe available CSI reduces [34, 77,80,81,87, 123, 135]. Typically, only an 

estimate of CSI is available at the transmitter through a feedback from the receiver. 

This estimate is normally in error due to quantization, feedback delay, estimation 

errors etc. Therefore, robust techniques are required to take into account the CSI 

errors. 

In this chapter, we propose a robust solution to this problem of downlink beam­

forming with per antenna power constraints and QoS constraints under the assump­

tion that only erroneous CSI is available at the transmitter. We solve this problem 

using worst-case performance optimization. We assume that the mismatches between 

the presumed and the actual downlink channel covariance matrices are norm-bounded 

by a known constant. The beamformer performance is optimized for the worst-case 

mismatch. We demonstrate the proposed robust solution attains the QoS targets 

with probability one while the non-robust scheme attains the target QoS only with 

probability 0.5. 

8.1 Problem Formulation 

Let us consider a wireless system with one BS and K decentralized single antenna 

users. The BS transmits a multiplexed vector x(t) E CNTxl to K users at timet as 
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K 

x(t) = L WjSj(t), 
j=l 
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(8.1) 

where Wj E CNTxl is the complex beamforming vector for the jth user to be 

determined and sj(t) denotes the data symbol intended for the Ph user. We assume 

that all sj(t) are uncorrelated and have the same normalized power E{lsj(t)l 2 } = 1. 

The signal received by the Ph user can be written as 

Yi(t) - hjx(t) + ni 
K 

= hjwjsj(t) + L hjw;s;(t) + ni 
~ ii=i ~ 

(8.2) 

Interference 

where hi E ClxNT denotes the flat fading channel vector between the ph user and 

the BS and ni denotes the zero-mean additive white Gaussian noise (AWGN) with 

variance a-~. From (8.2), the signal-to-interference plus noise ratio (SINR) for the jlh 

user can be defined as 

(8.3) 

where Rj = E{hfhj}· A meaningful way to solve the problem of downlink 

beamforming with per-antenna power and QoS constraints is to solve the following 

optimization problem [135] 
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n=l 

s.t. n = 1,2, ... ,Nr 

(8.4) 

where /j is the minimum acceptable QoS for the jlh user and An is the maximum 

transmission power for the nth transmit antenna. The solutions to the above prob­

lem using second-order cone programming (SOCP) has been proposed in [87]. They 

propose elegant iterative algorithms based on the Lagrangian dual of the SOCP of 

the optimization problem in (8.4). However, the above problem formulation is not 

optimal from a system designer point of view, since it minimizes the the maximum 

power margin over all the antennas. Thus, a more appropriate problem formulation 

is to solve the following optimization problem which is aimed at minimizing the total 

sum power [135] 

mm 
w; 

s.t. 

K 

L:wfwj 
j=l 

[twjwfLn ~An n = 1,2, ... ,Nr 

wfRjwj 
K ?:. /j 

L:;ifj wfRjwi + a~ 
j = 1,2, ... ,K. (8.5) 

However, the above problem formulation is not optimal from a system designer 
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point of view, since it minimizes the the maximum power margin over all the antennas. 

Thus, a more appropriate problem formulation is to solve the problem in (8.5), which 

is aimed at minimizing the total sum power. 

However the solutions proposed in both [87] and [135] do not incorporate for the 

CSI errors. Hence, the performance of the design in [87] and [135] degrades as the 

quality of the available CSI worsens. In the next section we propose a robust solution 

to (8.5) based on worst-case performance optimization. 

8.2 Robust Design 

Let us assume that the true channel covariance matrices Rj are given as 

where Rj is the known covariance matrix at the transmitter and Aj is the unknown 

uncertainty matrix which is assumed to be bounded above as 

Using the framework of worst-case performance optimization, we wish to solve the 

following optimization problem 

m in 
w; 

s.t. 

K 

L.:wfwj 
j=l 

[~wjwfLn ~An n = 1,2, ... ,Nr 

H A 

. wj (Rj + Aj)wj 
mm K A ?:./j, j=1,2, ... ,K. 

ua;IIF:>~; L:ir'j wf(Rj + Aj)w; +a; 
(8.6) 
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To strengthen the QoS constraints in (8.6), we introduce two separate uncertainty 

matrices, aj and Aj in the numerator and the denominator of the SINR constraints 

respectively [105]. The resulting problem can be written as 

min 
w; 

s.t. n = 1,2, ... ,NT 

Problem (8.7) can be further written as 

min 
w;,(; 

s.t. 

K 

l:wfwj 
j=l 

[twjwfLn ~An n = 1,2, .. . ,NT 

H A • 

_min wj (Rj + t::..j)Wj- (j ~ 0 
11.3.; IIF$~; 

j = 1, 2, ... , K. (8.8) 

where (j is an auxiliary variable. Let us first solve sub-problems in the second 

and third constraints of (8.8) and the optimum solution is given by (8.9) and (8.10) 

respectively [77, 105]. 

m in 
llii.;ll$ry; 

(8.9) 
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max 
I!A;I!S~; 

K 
~ H. V 

L.J W; (R; + ~;)w; 
i#j 

K 
~ H • 

= L.J W; (R; + 7J))w;. 
i#j 
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(8.10) 

Substituting (8.9) and (8.10) into (8.8), and rewriting the objective and the con­

straints in the new variable W; = w;wf and using the property 'Tr{wfR;w;} = 

'Tr{R; W;}, we can write the final optimization based on worst-case performance 

optimization as 

min 
W; 

s.t. 

K 

2:tr{W;} 
j=l 

[~w;Ln :::;>-n n=1,2, ... ,Nr 

tr{ (R; -1Jji)Wj} - (; ?: o 

(;- 'Y; t tr{(R; + 7J;I)W;} + 'Y;a~ ?: o 
i#j 

W;?: 0, rank{W;} = 1, j = 1, 2, ... , K. (8.11) 

The non-convex rank constraint is dropped using semidefinite relaxation (SDR) 

and the resulting optimization, belongs to a class of SDP, and can be solved using 

interior-point methods [32, 33]. The solutions to the problem in (8.11) may not be 

rank-one in general. In such cases, the so-called randomization techniques [132, 133] 

should be used to obtain approximate solutions to the original problem. However, our 

simulation results show that we always obtain a rank-one solution for W;. There­

fore, we retrieve the beamforming weight vectors w; from W; using the principal 

eigenvector corresponding to its single non-zero eigenvalue. 
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8.3 Power Constraints Per Group of Antennas 

The problem formulations may be extended to, constraints on group of antenna. Let 

us suppose theN antennas have been partitioned into L sets as N1,N2 , ••• ,NL and 

the power of each set Ni is restricted to [1. In this case, the problem formulation is 

defined as 

min 
Wj 

s.t. 

K 

I::Wfwi 
j=l 

&; [twiwfL ~ I1 n = 1,2, .. . ,Nr 

wHH·w· 
LK 'n.; J 2 2: "Yi> j = 1, 2, ... 'K. 

i#i W; jWi +an 
(8.12) 

The robust design proposed in section 8.2, can be extended to the problem for­

mulation in (8.12). 

8.4 Simulation Results 

We consider a wireless system with 1 BS equipped with Nr = 8 antennas and K = 

3 single antenna users. We generate independent, unity power, transmit symbols 

which are scaled according to the power requirements prior to transmission. The 

frequency flat channel is fixed for each data block, however it is changed between 

blocks according to a zero mean complex Gaussian distribution. The noise is zero 

mean, complex circularly symmetric AWGN with variance a~ = 1. The maximum 

transmission power from each antenna is fixed to .>.,. = 1, n = 1, 2, ... , Nr. 

Fig. 8.1 depicts the required transmission power of the robust and the non-robust 

schemes for a wide range of SINR targets. For simplicity, identical SINR thresholds 

"Yi = 1 for all j = 1, 2, ... , K has been used. The results have been averaged over 
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100 random channels. The value of E; (j = 1, 2, ... , K) has been set to 0.2. As 

can be seen from the results, the robust scheme requires more transmission power as 

compared to the non-robust scheme. This result is not unexpected nor discouraging. 

This is because robust scheme always consider a worst scenario and in an attempt to 

achieve the target SINR for the worst possible error in the CSI, it draws more power. 

However the advantage of the robust scheme is demonstrated in the SINR profile in 

Fig. 8.1. 

Fig. 8.2 depicts the probability density function for the attained SINR targets 

for the robust and non-robust schemes. The results have been generated using 2000 

Monte-Carlo runs with /; = 5db (j = 1, 2, ... , K). For each channel covariance 

matrix R;(j = 1, 2 ... , K), the elements of the corresponding error matrix Ll;(j = 

1, 2 ... , K) has been uniformly and randomly generated in a sphere centered at zero 

with the radius TJ; = 0.05(j = 1, 2, ... , K). We note that the non-robust scheme 

violates the SINR constraint 50% of the time, where as the robust scheme scheme 

attains the SINR targets all the time. 

8.5 Summary 

We proposed a robust solution to the problem of downlink beamforming with con­

straints on per antenna power and quality of services. The proposed solution has 

been solved using worst-case performance optimization, where we assumed that the 

Frobenius norm of the mismatch matrices between the actual and the presumed chan­

nel covariance matrices upper bounded above by a known constant. The resulting 

problem is non-convex, however it is approximated as a convex problem using SDP 

and SDR. Simulation results confirm the superior performance of the robust scheme 

over the non-robust scheme. 
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Chapter 9 

Conclusions and Future Work 

9.1 Summary 

Simultaneous transmission of signals to multiple users in the same frequency band 

within a downlink spatial multiplexing setup has been studied. Novel spatial diversity 

techniques have been proposed for the cases of perfect and imperfect channel state 

information at the transmitters. The proposed techniques covered a wide range of 

access schemes such as TDMA, CDMA and OFDM and various channel profiles such 

as flat fading and frequency selective fading. The core of the contribution was on the 

proposal of convex optimization based beamformer design to tackle the problem of 

imperfect CSI at the transmitter. In particular, the contributions can be summarized 

as follows: 

1. An iterative method based on spatial multiplexing for a MU-MIMO downlink 

system using SLR criterion has been proposed. The results were presented for 

both flat fading and frequency selective fading channels. 

2. A Channel shortening based spatial multiplexing scheme based on uplink-downlink 

duality has been proposed. Simulation results demonstrated the power efficiency 

of channel shortening based spatial multiplexing scheme over full equalization 
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based design. 

3. A robust spatial multiplexing technique based on SLR criterion has been pro­

posed. Results were presented for both flat fading and frequency selective 

MIMO channels. An application of the robust design to an OFDM scenario 

with quantization error has also been presented. 

4. Two novel algorithms for downlink beamforming based on worst-case perfor­

mance optimization and SDP constraints have been proposed. The proposed 

algorithms have been demonstrated to be power efficient and to satisfy the 

PSD constraints as opposed to the conventional robust downlink beamforming 

techniques based on worst-case performance optimization. 

5. A robust solution to the problem of downlink beamforming with per antenna 

(as opposed to conventional beamforming, which has sum power constraint) and 

QoS constraint has been proposed. Simulations results confirm the superiority 

of the robust design over the non-robust design. 

In chapter 4, we proposed extensions to downlink beamforming techniques based 

on maximization of SLR criterion. Assuming that the BS has a priori knowledge of the 

receiver beamformers and the forward channel of all users, we proposed an iterative 

optimization approach, where beamformer weight vectors obtained in the {n- l}th 

iteration are used to optimize the beamformers in the nth iteration. The proposed 

solutions provided a superior performance in terms of BER and outage probability. 

In chapter 5, we proposed a channel shortening based spatial multiplexing scheme 

using uplink-downlink duality. We proved that the uplink-downlink duality theorem 

known for the flat fading channels holds for frequency selective channels. We firstly 

proposed an algorithm, which jointly optimizes the space-time filters and the power 

allocation for each user, in order to satisfy the QoS constraints of all users under a total 

power constraint. We then proposed an algorithm, where the space-time filters and 
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powers for all users are optimized jointly to minimize the total power while achieving 

a predefined set of QoS constraints. Simulation results confirmed the power efficiency 

of channel shortening based spatial multiplexing schemes over full equalization based 

spatial multiplexing schemes. 

In chapter 6, we proposed a robust counterpart to the SLR based downlink beam­

forming algorithm discussed in chapter 4. We assumed that the CSI known at the 

transmitter is in error and modelled uncertainties in the channel covariance matrices 

using a convex ball, with a pre-defined radius. We used the framework of worst-case 

performance optimization to obtain a robust solution. The solution to this problem 

also turns out to be a generalarized eigenvalue problem, however with regularization 

factors in the numerator and denominator of the SLR criterion. We also provided 

closed form expressions for these regularization factors. 

In chapter 7, we proposed two novel algorithms, which were built upon on the 

conventional worst-case performance optimization for downlink beamforming. The 

worst-case performance optimization violates the PSD constraints on the channel 

covariance matrices. Thus, the solution is over conservative as it is not restricted to 

a set of PSD matrices. We, therefore, propose two novel schemes which incorporate 

for the PSD constraints. Simulations results confirm the superiority of the proposed 

solutions over the worst-case based design which violates the PSD constraints. 

In chapter 8, we studied the problem of downlink beamforming with per an­

tenna power and QoS constraints. We investigated the problem under the worst-case 

performance optimization framework, and proposed a robust SDP based solution. 

Simulation results confirm superior performance of the proposed approach. 

9.2 Future Work 

The possible future directions include 
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1. Robust Spatial Multiplexing Techniques for Frequency Selective Channels 

• Our preliminary work on uplink-downlink duality based spatial multiplex­

ing techniques can be extended to take into account possible errors in the 

channel state information. The validity of the uplink-downlink duality 

theorem for imperfect CSI should be verified analytically and worst case 

optimization based design can be developed for both complete equalization 

and channel shortening based spatial multiplexers. 

2. Robust Joint Transceiver Design for Multiuser Multiplexing 

• The robust algorithms described in Chapter 6, 7 and 8, considered multi­

ple antennas at the transmitter and single antenna for the user terminals. 

When user terminals also employ multiple antennas, the optimality would 

require the spatial multiplexers at the transmitter and the receiver filters 

be jointly optimized. There has been some work on the joint transceiver 

design for point to point MIMO systems, however, joint transceiver design 

for multi-user MIMO multiplexing is relatively a more challenging prob­

lem, because the optimum filters need to be designed jointly for all users 

together with optimum power allocation. Moreover, the problem is even 

more difficult if errors in the CSI are also considered. This poses a very 

challenging and interesting problem to be looked upon in future. 



Appendix A 

Worst-Case Performance 

Optimization 

Here, we derive solutions to the problems 

min wf (R; + .6.l,i)wi 
~l,i 

(A.l) 

(A.2) 

From the linearity of the objective function of (A.l) in the variable .6.1,i, it fol­

lows that the inequality constraint ll.6.1,iiiF ~ Ei, may be replaced with the equality 

constraint ll.6.1,iiiF = Ei or equivalently ll.6.l,ill} = E~. Following this, the Lagrangian 

for (A.l) can be written as 
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(A.3) 

Differentiating the Lagrangian (A.3), with respect to ~l,i and equating the result 

to zero, we obtain 

(A.4) 

Hence, we obtain, 

(A.5) 

Substituting (A.5) into the constraint 11~ 1,;11} = €;, we obtain 

2 1 ( 11 2 2 
f; = 4>.2 wdl2) 

• 
(A.6) 

Taking into account that by definition >. ~ 0, from (A.5), we obtain 

(A.7) 

Substituting (A.7) into (A.5), we obtain the optimum ~1 ,; as 

H 
~· W;W; 

l,i = -€; llw;ll~ (A.8) 

Subsituting (A.8) into the cost of (A.l), we obtain the minimum objective as 

wf (R; - E;l)w; (A.9) 

Following, the same steps us above, and taking into consideration similar argu­

ments, one may obtain the optimum ~2,; as 
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(A.lO) 

and maximum objective to the subproblem (A.2), which are given by 

wf (R; + E;l)w;. (A.ll) 

The change in sign in the loading is introduced as the fact that (A.2) is a maxi­

mization problem, where as (A.l) is a minimization problem. 
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