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Preface 

ABSTRACT 

For many_y-"_<g"_s_t_!l._e_<;fl_aly_sj__s __ p_:(_dy_n_ami_c_signals __ ob_tained __ fr.om. 

aero engine mounted transducers has been performed either by 

using real time spectrum analysers within the test facility, or 

by making high quality tape recordings during engine tests and 

analysing the data via an off-line main frame computer. 

Although real time analysers produce the information where it 

is most needed, they provide no history of events and the 

results are operator dependent. Analysis from tape recordings 

enables information extraction algorithms to be performed and 

tables and graphs of notable events to be printed. However 

much of this information could be more effectively utilised if 

produced within the test facility and in real time. This 

thesis describes the design and development of a real time data 

acquisition, signal processing and information extraction 

system ideally suited for engine health and performance 

monitoring within test facilities. 

The thesis begins with a detailed description of the problems 

encountered in ~ynamic signal analysis\in the field of aero 

engine performance testing, and with an overview of digital 

signal processing and the latest technology signal processing 

micro processors that have made this project possible. It then 

describes the problems encountered and the subsequent solutions 

found during the design and development of the hardware and 

software needed for the·high bandwidth data acquisition and 

fast signal processing algorithms. 

The fast Fourier transform has been used for very many years in 

the field of spectrum analysis, ... however this technique has 

limitations which are overcome by some of the more modern 

spectrum estimation techniques. This thesis makes an assessment 

of some of these techniques, noting particularly their 

performance on aero engine type signals. The results of these 

tests are recorded and the possible use of the techniques in 

aero engine analysis is discussed. 
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DEFINITIONS 

--------Dynamic- data-- ----Digitised--data- samples---acquired--- from -a---­
conditioned transducer signal which has a 
bandwidth of greater than 5 Hz. 

Data reduction - The act of reducing data 
extracting specific information 
sequence. 

bandwidth by 
from a data 

Deterministic 
process 

Leakage 

Picket fence 
effect 

PDP-11 

Q-bus 

Stochastic 
process 

- Continuous time function, all values can be 
predicted at all times. 

- Smearing of signal energy into neighbouring 
frequencies caused by windowing the signal. 

The ripple in amplitude estimation across a 
DFT spectrum caused by windowing and sampling 
a signal. 

Mini-computer manufactured by the Digital 
Equipment Corporation (DEC) . Originally 
manufactured with a 16-bit backplane, now 
22-bit. Has had various standards of CPU and 
runs various operating systems, the most 
popular being RT-11. 

- 22-bit backplane of the PDP-11. 

- Random function or data sequence, 
stochastic processes have a 
probability distribution. 

stationary 
gaussian 

Test facility - A facility designed for testing aero engines 
or parts of. Generally consists of a bed in 
which the engine sits, and a control room to 
which the multitude of measured signals are 
relayed, conditioned, displayed and recorded. 
Also generally designed for either passing off 
production engines, or researching and testing 
development engines. 

- vi 
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CHAPTER 1 

Definition of Problem 

1.1 Introduction. 

During the design and development of aero engines, many 

hundreds of engine parameters are required to assess engine 

health and performance. For many years, aero engine 

instrumentation has provided the means for measuring, 

analysing and displaying these engine parameters in 

calibrated engineering units within the test facilities. In 

more recent years the instrumentation has progressed from 

individual analogue driven dial type gauges, to graphically 

generated dial and bar gauges which can be reconfigured for 

different tests. This progression has demanded the use of 

dedicated test facility computers to provide the control and 

means for acquisition, calibration and display of these 

parameters. The computer also allows menu driven 

configuration tables to be set up for different engines and 

various engine manoeuvres. 

The instrumentation computer used in most test facilities is 

the ubiquitous DEC PDP-11 mini-computer, this machine 

provides an operating system (RT-11) well suited to real time 

applications, and instrumentation manufacturers provide a 

multitude of plug-in cards enabling the acquisition of 

various signals, from thermocouples to high frequency phonic 

wheels. The combination of this hardware and R.R. software 

has produced a versatile instrumentation package (known in 

Rolls Royce as IRRIS) which provides test facility personnel 

with real time engine information, and the steady state data 

recording facility with calibrated engineering parameters. 

1 



CHAPTER 1 Definition of Problem 

Although IRRIS has made the task of engine instrumentation 

more versatile and straight forward it has not really 

introduced any more information about the engine to the test 

personnel. Due to _the __ r_elatively- -slow- -update-r,ate -of the 

IRRIS screens (ten times a second) and the fact that no real 

analysis is performed on the measured data other than 

calibration, only steady state and some limited transient 

information is available to the observers. To determine 

overall engine health, and confidently reschedule engine 

tests when problems have occured, more information is still 

required. This information is contained in the signals of 

higher bandwidths (anything between 5 Hz and 50 KHz) produced 

by such transducers as accelerometers and strain gauges. 

At present this information is obtained by recording the 

signals on 28 track FM tape, and then at a later date and in 

a different building, by analysing the tapes via a small 

general purpose main frame with associated array processors. 

The information, extracted via spectrum analysis, is then 

made available to design and development engineers in various 

printed formats, by this time it is obviously of no practical 

use to the test facility personnel. This system is shown in 

figure 1.1 

1.2 Extending into dynamic data analysis. 

In mid 1984 in became obvious that the capability to analyse 

and display information extracted from high frequency 

signals, on test facility instrumentation systems such as 

IRRIS, would soon become essential. The driving force behind 

this decision was that of trying to keep engine testing costs 

to a minimum while maximising the quantity and quality of 

test results. This came as a direct result of increasing 

pressures in the aero engine market place. 

A requirement thus emerged for a system that could perform 

signal acquisition, spectrum analysis, data reduction 

2 
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(information extraction), and very importantly be able to 

communicate with the already existing test facility 

instrumentation computer. The calibration and display of the 

dynamic data information also being performed by this 
compute;.- -It-;;as- de~med- necessary Eo- have a - separate -and­

distinct dynamic data acquisition and analysis system because 

the computational intensity of spectrum analysis and data 

reduction algorithms are such that they would bring a general 
i • 

purpose computer, such as the PDP-11 1n IRRIS, to a grinding 

halt. The planned system is shown in figure 1.2. 

1.3 Data reduction 

One of the desired features of this dynamic data analysis 

system is the ability to extract information from the high 

bandwidth input data, thus enabling low bandwidth data 

streams to be presented to steady state systems such as 

IRRIS. This type of data reduction can take on many forms, 

it may simply be to pick out the frequency components with 

the largest amplitudes, 

may be to track and 

vibration modes. In 

or alternatively and more likely, it 

pick out the amplitudes of various 

either case the bandwidth of the 

resulting information will be significantly lower than that 

of the original sampled data. 

1.4 Engine transducer signals and their spectral content. 

Many different types of dynamic signals are received from 

aero engine instrumentation and in general are produced by 

three basic types of transducers. These are 

1) Accelerometers - used to measure total engine vibration, 

these are usually mounted on the front and rear of the 

engine carcass. The signals are usually low in bandwidth 

(less than 400 Hz) and reveal shaft out -of- balance 

information. 

4 
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2) Pressure transducers used to measure pressure 

fluctuations around all the aerodynamic surfaces and 

cavities, e.g. pressures .between compressor stages and 

combustion chamber inlet and outlet pressures. These 

signals have bandwidth-s of----anything up To-5KHz and can 

reveal information about blade passing pressures, 

compressor surge and stall. 

3) Strain-gauges - used to measure blade stress and 

vibration and indirectly, aerodynamic.pressures on the 

blades. These signals can have bandwidths of at least 25 

KHz· and reveal information about blade twist and flap, 

and acoustic resonance. 

The spectral content of the signals mentioned above varies 

between each application. In the case of shaft vibration 

there may only be two or · three sinusoidal components and 

these would in most cases be. quite distinct. However, 

signals of blade vibration can exhibit twenty or thirty 

harmonically related engine order components, plus some 

non-integral components (not-related to engine speed, e.g. 

blade twist) which cross the other components during engine 

manoeuvres. The signal to noise ratio of these signals also 

varies between applications and can be anywhere between 20 

and 40 dB. 

To cope with the above range of signals the existing dynamic 

data analysis performed on tape recorded signals requires 

1024 point DFTS with spectrum bandwidth capabilities of at 

least 50 KHz. This type of performance must be replicated in 

any system introduced into the test facility environment. 

1.5 Post analysis and data reduction. 

Dynamic data analysis and the subsequent data reduction 

algorithms performed on tape recordings are as varied as the 

signals themselves. However, to provide some insight into the 

5 
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__ range _of analysis techniques which are performed, two .brief 

examples are given; 

__ J)_ Demons_trating ___ the __ f_act tha_t in many cas_es the exact 

information required is not known (this is typical in 

development engine analysis), a clear graphical 

representation of all of the information is produced. 

This is achieved by using density plots where time is in 

the x-axis, frequency is in the y-axis and the spectrum 

amplitude is represented by image density. An example of 

this is shown in figure 1.3, this clearly picks out five 

engine orders plus a non-integral component during an 

engine acceleration. The raw signal for this analysis has 

come from a pressure transducer mounted by the main 

compressor fan. 

2) A case where the information details are clearly defined 

is in the measurement of engine vibration. The main 

vibration components are found at the fundamental shaft 

rotation frequencies. Thus vibration measurement simply 

consists of picking out the amplitudes of the components 

at these frequencies, the rest of the data can then be 

discarded. An example of this is shown in figure 1.4 

where the vibration components of a three shaft engine 

(RB211-535E4) have been tracked and plotted against 

engine speed. The raw signal has come from an 

accelerometer mounted on the engine carcass while the 

engine was subjected to a two minute acceleration and a 

two minute deceleration. 

1.6 Real time dynamic data analysis system specification. 

The above brief outline concerning the requirement of real 

time signal 

resulted in 

1984; 

processing within aero engine test facilities 

the following specification being derived in late 

6 



CHAPTER 1 Definition of Problem 

A system is required that can be installed into test facility 

environments and be able to perform the following tasks 

------1) -·Acquis-ition of .signals_dir_ect;.lY: _f_rom transducer 

conditioning units. 

2) The acquisition hardware should perform all filtering, 

sampling and digitising. 

3) Acquisition rat~s should be variable and allow signal 

bandwidths of up to 50 KHz. 

4) Perform various signal processing algorithms, in 

particular a 1024 point Fourier transform. 

5) Perform various data reduction algorithms, some of which 

will inevitably involve knowledge of engine speed thus 

making measurement of speed also a requirement. 

6) Fast execution of the above two tasks, thus indicating 

the need for dedicated signal processing hardware. 

7) The ability to communicate at high speed with the PDP-11 

CPU. 

8) Allow hardware and software configuration under the 

control of the PDP-11 application programs. 

9) Allow multi-channel inputs for cross-correlation 

purposes. 

10) Calibration of the system and host should be straight 

forward and only necessary after lengthy periods (e.g. 

3-6 months) 

11) The cost should not be prohibitive when considering that 

some facilities may require 28 or more channels of 

analysis. 

7 
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1.7 Assessment of_the analysis system specification. 

There are only really three possible ways of performing the 

__ _Eb9v~_t~sk of dynamic data aquisition, analysis, data 
reduction and - c-o~unlcation -wit-h- the- ho-st·:- -Tne·se· -three­

options are 1) using readily· available spectrum analysers, 2) 

using a 

processor 

compatible 

general purpose computer with an associated array 

and acquisition hardware, and 3) using a DEC 

card specifically designed to perform these tasks. 

Spectrum analysers contain all the necessary hardware to 

perform data acquisition and spectrum analysis, and they can 

usually be communicated to, and controlled by, a host 

computer via the IEEE network. However their data reduction 

functions are usually basic, their communication bandwith 

low, and are generally quite bulky units. Spectrum analysers 

with anything like the sort of processing power required 

retail for at least~ 101<.. which is rather prohibitive. 

A general purpose computer using additional acquisition 

hardware and array processors or maths accelerators to 

perform the signal processing and data reduction would meet 

the technical specification. Indeed this is the type of 

equipment that is used to perform the post analysis on tape 

rec?rdings of engine signals. Systems of this nature 

however, have the same two problems as 

prohibitively expensive (at 

the spectrum 

least ~10k. analysers, they are 

per channel) and are 

of room available in 

excessively large for 

most test facilities. 

the limited amount 

The only real solution is a system comprised of one or more 

PDP-11 compatible plug in cards capable of performing the 

necessary data acquisition, the dynamic data analysis and the 

communication with a PDP-11 CPU over the PDP-11 backplane. 

Only one major problem existed with this solution, at the 

time when this specification 

hardware to do the job did not 

was derived the necessary 

exist and did not look like 

coming onto the market for a good deal of time. 

8 
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Once again, as happens quite regularly at Rolls Royce, the 

instrtimentation ~equirements needed to test and analyse aero 

engines had outgrown that for which the instrumentation 

market could supply. It was for this reason that research, 

-·--desrgh and development -into ·a·- rea·l time· ·dynamic- data 

acquisition and analysis system was embarked upon. Due to 

the limited amount of resource which can be applied to such 

projects, the entire research, design and development of the 

system was the sole responsibility of the author. 

The following chapters describe how the above specification 

was turned into a fully working productionised system. This 

work involved a considerable involvement with digital signal 

processing techniques, especially the fast Fourier transform, 

and with the Texas TMS32010 digital signal processing 

micro-processor. Examples are. given in later chapters of how, 

after two and a half years work, the productionised system 

was first put to use in both development and production 

engine test facilities. The final productionised system was 

called the "Intelligent Dynamic Data Acquisition System" or 

IDDAS. 

1.8 Assessment of modern spectrum analysis techniques. 

In certain circumstances the sinusoidal components within a 

signal either change in frequency or amplitude very quickly 

during a 1024 samples period, or are very close in frequency 

to the extent of being indistinguishable. This can lead to 

inaccurate and misleading results which can only be overcome 

by making the sample blocks smaller and increasing the 

resolution. It is of course impossible to do both of these 

simultaneously with the Discrete Fourier transform. 

Over the years many alternative spectrum analysis techniques 

have been derived. A few of these have been used in real 

applications (e.g. geophysics) but in general they have been 

restricted to academic applications. The author has spent 

9 
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part of his research time (approximately one fifth) in 

assessing these alternative techniques, and in applying the 

more relevant ones to aero engine type signal: ~n_a~ !~t~m~t_ 

-to-overcome--the -above-prol:Heriis :--Th-is work- has been performed 

on the Loughborough University main frame computer and no 

attempt has been made towards real time application of these 

techniques. This work is described in the later chapters of 

this thesis. 

10 
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CHAPTER 2 

Digital Signal-Processing ____ -

2.1 Digital signal processing fundamentals. 

As with analogue 

which obeys the 

systems, a 

principle 

linear discrete system is one 

of superposition, and a time 

invariant system is one in which the input to output 

transformation algorithm does not 

time invariant systems account for 

processing functions and are the 

analyse. 

change with time. Linear 

a wide variety of signal 

most straight forward to 

To perform signal processing with the aid of digital 

computers the input data must be represented as discrete 

values and in a format that a computer can understand, i.e. 

sampled and digitised into binary format. Certain 

precautions must be undertaken when sampling a signal at 

discrete linear time intervals, as not all the information in 

the signal can be precisely recovered. The information that 

can be recovered is described in Shannods sampling theory; 

A signal with no frequency components greater than Fs/2 

can be uniquely defined by its instantaneous values when 

sampled at Fs or more. 

Frequency Fs is known as the Nyquist sampling rate. Frequency 

components which occur above half this sampling rate are 

aliased (transformed) down to a frequency below half the 

sample rate, these components then become indistinguishable 

against the true lower frequency components, this is 

demonstrated in figure 2.1. 

To avoid confusion between real components and aliased 

13 



CHAPTER 2 Digital signal processing 

components an anti-aliasing filter must be employed prior to 

sampling a signal to remove all signal components above Fs/2 

Hz. Ideally this filter would be a brick wall low pass 

filter with a cut-off frequency at Fs/2 Hz. Realistically 

EnTs ·oc course ·-rs not--possible- --and ·the ·fi-lter would normaLly 

have a 3 dB cut off point of about 0.4Fs Hz. 

Fl F2. 
Kl\~ 

'\ 

1\ 

V V 

0 T 

f1 

Amp. 

1\ 

'\ 
\ 

V 

2T 

Fs/2 

{\, 

3T 

TIME 

-

" {\, "/I 
Y' 

!J 
V 

11 

/V V V 

4T 5T OT 

f2 

Fs 3Fs/2 

Figure 2.1 - Effects of aliasing 
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CHAPTER 2 Digital signal processing 

Having set the upper frequency limit and sampled the signal, 

the discrete value must be converted into a digital (binary) 

form that can be understood by a computer. The precision to 

which a signal is digitised depends upon the total number of 

di~-c;ete- levels ·-tha£ an -in-st-arita:neoUs value can be- assigned.-

This number also defines the digitising signal to noise ratio 

that occurs due to quantisation errors. This error and its 

corresponding S/N ratio is shown in figure 2.2. 

-2D -1D 

o/p 

2D 

lD 

-2D 

1D 

Figure 2.2 - Digitising error 

2D i/p 

The error (e) between actual signal (i/p) and digitised 

signal (o/p) is -

Noise power => 

Signal power => 

-D/2 < e < D/2 

1/D ;:2. .de = 
-% 

(E/2 ,/2)l = 

15 

D1 112 

where E = p.p. amp. 

of signal 



CHAPTER 2 Digital signal processing 

Signal/Noise => (E
2 /2). (3/D2 ) 

However D = E/2~ where N equals number of bits, thus 

----

S/N = 3 • 22N-I - = 4.77 + 3 (2N-:..1) dB-. 

= 1.77 + 6N dB 

This formula gives the following example values -

N No. of levels S/N CdBl 

8 256 50 . Note that this 

12 4096 74 
is only valid 
for sinusoidal 

16 1 ~65536 9El signals 

The hardware considerations that must be made in the light of 

the above information are discussed in chapter 4. 

2.2 Basic signal Processing algorithms. 

The following two techniques, correlation and convolution, 

are at the heart of most signal processing algorithms. The 

third technique described, the fast Fourier transform, is 

almost certainly the most highly used of any signal 

processing algorithm in the engineering and research fields. 

2.2.1 Correlation. 

The correlation integral of a linear time invariant system is 

defined as 

00 

Rxy (T) = _f fx (t) . fy (t-T) . dt 
-DO 

-oo < T < o0 

In the above case there are two different time functions and 

thus is refered to as the cross-correlation integral. More 

often there is only one time function and the integral is 

modified to become the auto-correlation function 

16 



CHAPTER 2 Digital signal processing 

oO 

Rxx(T) = Jfx(t) .fx(t-T) .dt 
-eo 

-OO<T<OO 

This function has the special property, known as the Wiener 

Khfntchine relationship, in that the double sided energy 

--spe-ct-rum --of the same time- function- is its Fourier_ transform 

pair. More specifically, when 

T=O the auto-correlation function is equal to the energy 

contained within that signal. 

2.2.2 Convolution. 

The output of a linear time invariant system is obtained by 

repeated evaluation of the convolution integral 

.... 
Y(T) = /h(t) .f(T-t) .dt 

-GO 

where h(t) is the impulse response of the system and f(t) is 

the input signal. Note that the only difference between this 

and the cross-correlation function, is in the time reversal 

of f(t). For discrete systems the convolution integral is 

slightly modified to produce the convolution sum 

00 

Y(k) = 2.. h(n) .x(k-n) -OC:.<k<OO 

n:.- .o 

where h(n) is the unit sample response of the system and x(n) 

is the input data sequence. This convolution sum can be used 

in many types of linear discrete systems, in 

discrete Fourier transform and windowing, 

described. 

17 
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CHAPTER 2 Digital signal processing 

2.3 Fourier analysis. 

As stated earlier, the main real time signal processing task 

required for engine analysis within engine test facilities is 

--- spectrum- analysis. - -The- -easiest -and -most -common _way of 

performing this is via the fast Fourier transform (FFT) [5, 

17, 23, 47] and it is by this technique that all engine data 

post analysis is currently performed. The FFT is a well 

documented, tried and tested algorithm whose behaviour can be 

predicted with high confidence. 

The following sections give a brief description of how the 

very popular radix 2 FFT is derived, and of how it can be 

made still faster by using radix 4 and real inputs only. 

2.3.1 Discrete Fourier transform. 

The Fourier transform for continuous signals is defined as 

follows 

oO 
f. -j:l.>rj;. 

X(f) = .J x(t) .e t".dt where f=1/T 

-coo 

and the complementary discrete Fourier transform (DFT) for 

sampled finite records is 

F(k) = 
N-1 

2:, x (n) 

11'00 

-j:l.tr.nk .e .,..- k=0,1, .. ,N-1 

The DFT output is thus a set of N samples taken from the 

continuous Fourier transform. The fundamental frequency of 

the samples being Fs/N 

frequency, and each sample 

These frequencies do not 

Hz, where 

frequency is 

explicitly 

Fs is the sampling 

given by Fs.k/N Hz. 

appear in the DFT 

summation however "k" can be interpreted as a harmonic number 

and "n" as the sample period number. Note also that when the 

input data sequence is purely real, as is usually the case 

for linear time samples, the output is a double sided 

spectrum. 

18 



CHAPTER 2 Digital signal processing 

2.3.2 Fast Fourier transform. 

Over many years the FFT has proved to be a very efficient and 

useful algorithm, especially when used in computer programs, 

- a~d-h~s- -f~u;;d applications- rn·- many -tasks·· other than· just­

spectrum analysis. For example, in some cases it is faster 

to do a convolution by performing two FFT's, a multiplication 

of the resulting spectra and then an inverse FFT. "Fast 

Fourier transform" is really a generic term for a multitude 

of slightly different algorithms all derived from the DFT, 

and designed to significantly reduce the computational effort 

involved in the DFT. The underlying similarity being that 

they all break down the DFT into small common blocks by 

utilising the periodicity and symmetry of the exponential 

term, thus eliminating a great deal of repetitive complex 

multiplication. The saving in computational effort is 

usually refered to as being proportional to [N**2/N.Log((N)], 

where "N" is the number of samples. It will be shown however 

that the saving in real application programs is even greater 

than this. 

2.3.3 Derivation of radix 2 FFT. 

For the sake of convenience (especially for the typist) the 

following definition will be used 

e-j21t.~ = W (nk) 

The DFT summation shown above, can now be rewritten as 

N-1 

F(k) = L,x(n).W(nk) k=O, 1, .. , N-1 

n2o 

If N is even, then the even and odd terms can be split as 

follows 
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~-1 

F (k) = L [x (2n) . W (2nk) + x (2n+1) . W ( (2n+1) k) ] 

fl:O 

=~-

~-I 

+ ~ (k} _2:: x (2n+1) . w (2nk) 
fl=o- - - - - B 

i.e. F (k) = A(k) + W(k) .B (k) 

where A(k) and B(k) are N/2 point transforms. If "k" is now 

replaced with "k + N/2" we have 

F(k+N/2) = A(k+N/2) + W(k+N/2) .B(k+N/2) 

However A and B are N/2 point transforms where 

A (k+N/2) =A (k), 

B(k+N/2)=B(k), 

and W(k+N/2)=-W(k) 

Inserting these equates into the above expression gives 

F (k+N/2) = A(k) - W(k) .B (k) 

The original N point DFT algorithm has now been split into 

two N/2 point OFT's plus the overhead of the following set of 

equations 

F (k) = A(k) + W(k) .B(k) k=O, 1, .. , N/2-1 

and F(k+N/2) = A(k) - W(k) .B(k) 

The operation formed by combining these equations is known as 

a butterfly and can be graphically represented as follows 

A (k) F (k) 

W[k] 
B (k) F(k+N/2) 

20 



CHAPTER 2 Digital signal processing 

This operation involves one complex multiply and two complex 
-- --. - - -- - -

additions, the arrangement of these butterflies in a 16 point 

Fourier transform is demonstrated in figure 2.3. 

-- ---'ffle--iearrangement -oY--th-e--i-npu_t_d.at-a sequen-ce--into -tile __ _ 

transform exhibits an interesting pattern which is known as 

bit reverse mapping. It is thus called because if each 

consecutive input sample assumes 

its corresponding address into 

an address of 0 to N-1, then 

the transform if found by 

reversing the binary version of that address. For example, 

refering to figure 2.3, the input address of A3 in binary is 

0011, the corresponding bit reversed address is then 1100. 

Thus at the beginning of the transform A3 is positioned where 

A12 is and subsequently A12 positioned where A3 is. 

Ao fo 

A. Fo 

A. f, 

A, fJ 

A• F,. 

As Fs 

A• F• 

117 ,, 
llt 

"' A. ... 
Aoo F~ 

A, F, 

A •• Fo1 

!Ios ,,, 
A .. Fo,. 

A os Fos 

Figure 2.3 - 16 point. radix 2 FFT 
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2.3.4 Computational saving of radix 2 FFT. 

It is now possible to demonstrate the computational saving 

that the FFT has over the DFT, note that in the following 

assessment a ·r.ea.l. -multiply operat"ioh is- represented- by ·"M",· a­

real addition by "A'', and that there are ''N'' samples. It is 

also assumed that a multiply and an addition take equal times 

to execute (this is true for the TMS32010 micro-processor). 

DFT computation : Each point requires N complex multiplies 

and N complex additions. Total of N points. 

=> N. [N(4M+2A) + N.2A] = 8N2 operations 

FFT computation : Each butterfly requires 1 complex multiply 

and 2 complex additions. There are N/2 butterflies in each 

column and Log2(N) columns. 

=> Log2(N) .N/2.[(4M+2A) + 2.2A] 

= 5N.Log2(N) operations 

However to be more precise, there are no complex 

multiplies in the first two columns, thus it can be 

modified to 

=> Log2(N) .N/2. (4M+6A) - 2.N/2. (4M+2A) 

= 5N.Log2(N) - 6N operations 

Applying these two expressions to a 1024 point transform the 

following values are obtained 

DFT 8388608 operations 

FFT 45056 operations 

the ratio of computation effort (DFT:FFT) being 186:1. 
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2.4 Radix 4 FFT. 

The analysis and factorisation of the discrete Fourier 

transform into a radix 2 fast Fourier transform, as shown 
-.- - -- - ~ ~ --- - - - - ~- . ~ -- --

above, is the most straight forward and easiest to understand 

of all FFT derivations. As a result, the FFT is almost 

always documented and introduced in its radix 2 form (as has 

been done here!), thus resulting in almost exclusive use of 

the radix 2 FFT in computer programs. However, just as the 

DFT can be broken down into butterflies of 2 inputs and 

outputs, it can also be broken down into butterflies of 4 

inputs and outputs. As will be demonstrated the radix 4 FFT 

is significantly more efficient than the radix 2 FFT. 

2.4.1 Derivation of Radix 4 FFT. 

As with radix 2 (r2), the radix 4 (r4) derivation breaks down 

the weighted summations of the DFT into smaller groups of 

summations by taking advantage of the periodices and symmetry 

of the DFT. Again we start with the definition of the DFT 

N-1 

F (k) = L x (n) . W (nk) k=O, 1, .. ,N-1 

/lo>O 

Factorising into four equal length parts we get 

~-r 
~ 

F(k)= L.x(4n).W(4nk)+ 
~-· L x (4n+l) .w ( (4n+1) k) 

ll=o /lCO 

~-· 
+ 2:,x(4n+2).W((4n+2)k) 

i!t., - I .. . 
+ 2, x (4n+3). W ( (4n+3) k) 

ll=o 11=0 

'*.-• "k,.-1 
F(k) = Ix(4n).W(4nk) +W(k) Lx(4n+1).W(4nk) 

ll:o AO ll:O A1 

~ _, ~-I 

+ W(2k) ~x(4n+2).W(4nk) + W(3k) Lx(4n+3).W(4nk) 

ll:o A2 fl=<> A3 
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Thus 

F (k) = AO (k) + W (k) .Al (k) + W (2k) .A2 (k) + W (3k) .A3 (k) 

~-~This~ _expression is true for any k, and in particular is true --- ----- - - - - - ------
for [k+r.N/4), thus giving 

F(k+r.N/4) = AO(k+rN/4) + W(k+rN/4) .Al(k+rN/4) 

+ W(2 (k+rN/4)) .A2 (k+r.N/4) 

+ W(3(k+rN/4)) .A3(k+r.N/4) 

But AO(k+r.N/4) = AO (k) These are outputs 

Al(k+r.N/4) = Al (k) from an N/4 point 

A2(k+r.N/4) = A2(k) transform, hence 

A3(k+r.N/4) = A3 (k) are periodic in N/4. 

-jt~:r 
(-j{ and W(rN/4) = e l = 

W(2rN/4) 
-jtt:r 

(-1{ = e = 

W(3rN/4) = 
-ilpr 

e = <+j r 

Letting r=O, 1, 2, 3 

F (k) = AO (k) + W (k) .Al (k) + W (2k) .A2 (k) + W (3k) .A3 (k) 

F(k+ N/4) = AO(k) - jW(k) .Al(k) - W(2k) .A2(k) + jW(3k) .A3(k) 

F(k+2N/4) AO(k) - W(k) .Al(k) + W(2k) .A2(k) - W(3k) .A3(k) 

F (k+3N/4) = AO (k) + jW(k) .Al (k) - W(2k) .A2 (k) - jW(3k) .A3 (k) 

As with the r2 butterfly we can now construct a graphical 

representation of these equations. 
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W [ Ok] 
AO(k) F (k} 

A2(k} F(k+N/.2} 

W[3k] j 
A3 (k} F (k+0~</4} 

2.4.2 Combining Radix 4 Butterflies. 

Having developed the basic building block for an r4 FFT a 

larger matrix can be built to show how the inputs, outputs 

and exponentials are arranged. Figure 2.4 shows this for a 

16 point transform. Each 4 point transform takes it inputs 

from the outputs of the preceeding 4 point transforms. Note 

that the initial inputs are also rearranged via a module 4 

address reversal (as compared to modulo 2 for the r2 FFT} . 

It can be seen from figure 2.4 that the r4 butterflies still 

involve rotation of the two middle inputs before being 

multiplied by W[k] and W[2k]. In order to simplify the 

matrix, and thus also of the programming, the rotating of 

butterfly inputs can be moved to the very front of the 

matrix. This is demonstrated in figure 2.5 together with the 

expansion of the first four 4 point transforms. It can be 

seen that the rearrangement of the initial inputs is now 

modulo 2 bit reversal. It can be shown that the construction 

of this more simplified matrix is general to any 4**n sized 

FFT. 
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Figure 2.5 - 16 point, radix 4 FFT 

2.4.3 Computational saving of a radix 4 FFT. 

To compute the radix 4 butterfly the following operations 

must be performed 

Templ = W(k) .Al(k), Temp2 

Temp4 = AO(k) + Temp2, 

Temp6 = Templ + Temp3, 

= W (2k) .A2 (k), Temp3 = W (3k) .A3 (k) 

TempS= AO(k} - Temp2 

Temp? = Templ - Temp3 
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F(k) = !emp4 + Temp6 

F(k+N/4) =TempS- jTemp7 

F(k+N/2) = Temp4 - Temp6 

F(k+3N/4) =TempS+ jTemp7 

____ The above computation requires a total of 3 complex 

m~~;i~lD:~-- -~~d 8 -;o~plex -a-dctitian·s-th.us ·giving a tota·l-of-12-- _ 

real multiplies and 22 real additions. In a complete FFT 

where there are N/4 butterflies in each column, and Log2(N)/2 

columns, then the number of operations would be 

=> log2(N)/2. (N/4). (12M + 22A) 

If it is also taken into account that there are no multiplies 

in the first column then this is modified to 

=> log2 (N) /2. (N/4). (12M + 22A) + (N/4). (16A-12M-22A) 

= N.log2(N). (1,SM + 2,7SA) -N. (3M + 1,SA) 

= 4,2SN.Log2(N) - 4,SN operations. 

As shown earlier, the number of operations for an r2 FFT is 

SN.Log2(N) - 6N operations. 

Comparing the number of arithmetic operations to 

1024 point transform via the r2 and r4 FFT's, the 

values are obtained 

Radix 2 

Radix 4 

4SOS6 operations 

38912 operations 

perform a 

following 

Thus the r4 FFT only requires 86% of the r2 FFT operations, 

this is a fair reduction in operations, and it will be shown 

later that when coded up for the TMS32010 microprocessor the 

benefits are increased further due to there also being less 

memory transfers. 
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2.5 Real input FFT. 

When using the discrete Fourier transform to convert data 

--from the_time_to th~ frequency domain, the input sequence is 

purely real. Thus d;t~ -i~ -o~l;- p~t -i~t-o -the i-eal- co-mponents 

of the complex input array and the imaginary components are 

initialised to zero. The result of this real input transform 

is a double sided spectrum where the information from 0 to 

Fs/2 is repeated from 0 to -Fs/2. This double sided spectrum 

has properties which allow more efficient use to be made of 

the transform by putting input data into both components of 

the complex array. It should be remembered that the FFT 

derivations shown so far are complex input algorithms. An 

analysis of this real input technique now follows [6]. 

2.5.1 Properties of a double sided spectrum. 

When real data is used as the input into a complex input DFT, 

i.e. by setting the imaginary components to zero, a double 

sided-spectrum is produced at the output. The real 

components of this spectrum are even in nature, and the 

imaginary components are odd (both centred around Fs/2), as 

demonstrated by the following relationships 

F = DFT (U) 

Real[F(n)] = Real[F(N-n)] 

Imag[F(n)] = -Imag[F(N-n)] 

F(O) and F(N/2) are purely real. 

29 
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If the real data is put into the imaginary components instead 

of the real components (and the real components subsequently 

set to zero) then the double sided spectrum which is produced 

displays slightly different characteristics to that above. 

In- th-is e:·ase-the rear-components are-odd in· nature -and- the-­

imaginary components are even, giving the following 

relationships 

Amp. 

Real 

G = OFT ( j. U) 

Real[G(n)] = -Real[G(N-n)] 

Imag[G(n)] = Imag[G(N-n)] 

G(O) and G(N/2) are purely imaginary. 

Amp. 

Imag. 

U is real, 

1 < n > N-1 

2.5.2 Derivation of a real input FFT. 

The relationships between components within double sided 

spectrums, as described above, can be used to good advantage. 

Due to the slight differences between the purely real input 

OFT and the purely imaginary input OFT it is possible to 

incorporate two separate sets of data into a single OFT and 

extract from the resulting spectrum the two double sided 

spectra that would have been produced by analysing each set 

of input 

the real 

imaginary 

extracted 

data separately. If one set of data [U] is put into 

components and another set [V] is put into the 

components then the two double sided spectra can be 

from the OFT output as follows 
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A = DFT[U] 

B = DFT [ j . V] 

F = DFT [U+j. V] 

- -- --- --- -- ---
Real [A (n) l Real[F(n)+F(N-n)f/2 1 < 

. -
N-1 = n > 

Imag [A (n) l = Imag[F(n)-F(N-n)]/2 

Real [B (n)] = Real[F(n)-F(N-n)]/2 

Imag [B (n) l = Imag[F(n)+F(N-n)]/2 

Real [A(O)] = Real[F(O)] 

Imag [B (0) l = Imag[F(O)] 

Note that it would be very unusual to actually want such a 

spectrum as B, and is much more likely that spectrum C, where 

C=DFT[V], would be required. To get this latter result the 

following transform can be performed on spectrum B 

C (n) = j . B (n) 

Real [C (n)] = Imag[B(n) l 0 < n < N-1 

Imag[C(n)] = -Real [B (n)] 

or Real[C(n)] = Imag[F(n)+F(N-n)]/2 1 < n < N-1 

Imag[C(n)] = Real[F(N-n)-F(n)]/2 

Real[C(O)] = Imag[F(O)] 

Thus two real input N-sized OFT's can be performed for 

practically the same computational effort as one complex 

N-sized DFT. This technique can be utilised to greatly 

improve the efficiency of an FFT. 

It can be seen in figure 2.6 that a DFT performed via the FFT 

technique can easily be split into two half sized FFT's for 

all except the final set of butterflies. Thus a real input 

FFT could be performed by splitting the input data into two 

halves, performing two real input N/2 point FFT's within one 

complex input FFT by using the above technique, and then 

reconstituting and performing the final stage of the larger 

FFT. This process is shown in figure 2.~ This method of 

performing a real input FFT requires only a touch more 
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computational effort than that for a complex FFT of half its 

size. The two to one relationship becoming closer as the 

size of the FFT increases. 
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2 X 4 point FFT 
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Figure 2.7- real ingut 8 gQint FFT 
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CHAPTER 2 Digital signal processing 

There is also the possibility of halving the memory 

requirement when using the real input FFT. This can be done 

by expanding out only two complex components of the combined 

N/2 point spectra, at a time. A butterfly operation can then 
' 

be performed. -on tile -two- -p-oints- -and one of the -double sided_ 

spectra components discarded. Thus only half of the complex 

components that would be required for an N point FFT are ever 

stored. 

2.5.3 Computational saving of a real input FFT. 

Again, the computational effort required to perform an FFT 

using this last method can be estimated. An N point 

transform now consists an N/2 point FFT, a spectrum splitting 

transform and then the last column of an N point FFT. 

If radix 4 butterflies are being used, which will be assumed 

to be the case, the equation to define the number of 

operations necessary will depend upon whether the number of 

points (N) is a power of four. If it is a power of four then 

the last butterfly will have to be split into two columns of 

radix 2 butterflies to enable the N point FFT to be halved 

right up to the last radix 2 column. If it is not a power of 

four then the existing radix 4 FFT will already have a final 

column of radix 2 butterflies allowing the FFT to be readily 

split up to this last column. 

The computational effort will only be estimated for a 

transform where N is a power of four, as it was also only 

this case that was considered in the r4 FFT case (chapter 

2.4.3). Note that this includes the 1024 point case which is 

of most interest. The computation consists of -

An N/2 point complex FFT : 

Two N/4 point radix 4 FFT's = 2[4,25(N/4) .Log2(N/4)-4,5(N/4)] 

plus an N/2 point column of radix 2 butterflies = SN/2 
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A spectrum separation : 

An N/2 point transform·= N/2.4A- 2N 

Last column of an N point FFT : 

--An N point· column of· radix 2 ··butterf·l·ies = -5N-

Total number of operations= 2,.125N.Log2(N/4) + 8,375N 

Thus a real input radix 4 FFT requires 25984 operations 

perform a 1024 point transform, this is just 67% of 

operations required for the complex input radix 4 FFT, 

only 58% of the original complex input radix 2 FFT. 

to 

the 

and 

This 

reduction in computational effort 

was this last algorithm that was 

is very significant and it 

coded up for the TMS32010 

signal processing micro processor, as will be described in 

chapter 4. 
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CHAPTER 3 

------.--FFT-windowing-and-power--est·imat·i·on---·-----.----------

3.1 Why the need for Fourier transform windowing. 

The Fourier transform operates on discrete data sequences 

which are usually taken from continuous processes. The act 

of taking these data blocks and subsequently assuming that 

everything outside the block is zero, affects the true 

frequency spectrum of that part of the data sequence. The 

extent of the spectrum modification as seen at the output of 

a discrete Fourier transform is variable and dependent upon 

the signal characteristics inside the data block. An 

analysis of the sampling process and of the Fourier transform 

output characteristics shows why this is so. 

Taking a block of samples from a continuous time function can 

be represented more precisely by 

x(t) = x(t) 

x(t) = 0 

-Tw/2 < t < Tw/2, 

elsewhere. 

i.e. the signal is multiplied by a window defined by 

W(t) = 1 

W(t) = 0 

-Tw/2 < t <Tw/2, 

elsewhere. 

Now, it is well known that multiplying signals in the time 

domain is equivalent to convolving them in the frequency 

domain, thus the above windowing has the effect of convolving 

the frequency spectrum of the sampled signal with that of the 

window. The above window is known as the rectangular window 

and its frequency response is derived, using the Fourier 

transform, as follows 
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CHAPTER 3 FFT windowing and power estimation 

oO 

Xw(f) = _f -j2rrH 
w (t) . e 

-00 

Xw(f) = [(Cos(2ttfTw/2) 

.dt= [ 

;i"l1:t-H ]1"~ 
- j . 2ttf 

_,..:=1:­
'l 

]sfn-<2«fTw/2l l -

(Cos(2~fTw/2) + jSin(2ttfTw/2)] I -j2ttf 

Xw(f) = Tw.Sin(r<fTw) = Tw.sinc(fTw) 

-n: fTw 

This function is commonly known as the "sine" function and is 

shown in figure 3.1. 

0.8 

0.6 

0.4 

0.2 

-o.4-l---,...---,----.---r---l-:---.---r--,.---.,---

Figure 3.1 - Sine function 
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CHAPTER 3 FFT windowing and power estimation 

The result of the convolution of this spectrum with that of 

the sampled signal, is presented for analysis to the DFT, 

an example of this is shown in figure 3.2. 

F(f) 

0 

Figure 3.2 - Convolution of sampled signal with the sine 

function 

Comparing the characteristics of the DFT output and of the 

sine function we find the following 

The output from a DFT is a discrete double sided 

spectrum, where each discrete filter is spaced at Fs/N, 

where Fs is the sampling frequency and N is the number of 

samples. 
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CHAPTER 3 FFT windowing and power estimation 

The sine function has zero points wherever f = 1/Tw, 

where Tw is the time duration of the rectangular window. 

- ___ No.w_F_s/N_.,_l/_(Ts.N) and Ts.N = Tw, hence the frequency 

spacing of the sine function zero-po-ihts and· the- -f-i-l-ter--­

spacing of the DFT output are the same. 

The effect of this relationship can be observed if we look at 

the spectrum for a signal with an integer number of cycles 

within the sample block, and also for a signal with a 

fractional number of cycles within the block. 

Case 1 : Integer number of cycles. 

It can be seen from figure 3.3 that when a sampled signal 

contains an exact number of cycles, one of the filters 

will lie exactly at the peak of the sine function central 

lobe and all the others will lie on the zero points of 

the function. As a result the actual spectrum seen at 

the output of the DFT is the true spectrum of the 

original signal. 

0.8 

••• g 
!:: 

t. 

Figure 3.3 - Effect of windowing an integer number of cycles 
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Case 2 : Fractional number of cycles, 

If a fractional number of cycles is sampled, the FFT 

output is somewhat different, the worst case being when 
---- --------h-arf-a:-cycle-rs-rrivolvea-. --ccinsTaerrn.-g-tnis case- --and--

refering to figure 3.4, it can be seen that the central 

lobe is only represented by two attenuated filters either 

side of the peak. The amplitude of these filters is 

o.e 

~-· 
~ 

t. 

Filter spacing = FsiN = liTw 

Therefore half spacing= li(2.Tw) 

=> Sin ( n: Twl (2. Tw)) = Sin (Tt' 12) 

rt Tw I ( 2 . Tw) rr I 2 

= 0.637 = -3.9 dB 

Figure 3.4 - Effect of windowing a fractional number of 

cycles 
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CHAPTER 3 FFT windowing and power estimation 

It can-also be seen that all of the filters outside of 

the central lobe lie exactly on the peaks of the 

side-lobes, thus the DFT output contains many spectral 

--------components no~_ pr~sent in the original signal, this 

effect is called leakage. The-first- side lobe- is-13-.5 .dB ____ _ 

down on the central lobe amplitude and only 9.5 dB down 

on the central lobe estimated peak. 

As a result of the spectrum missing the peak of the central 

lobe in all conditions other than case 1, the signal 

amplitude appears to vary by up to 3.9 dB as it moves from de 

to Fs/2, this is known as the picket fence effect [5] and 

appears as in figure 3.5 

Independent filters 

Harmonic number 

Power response 

1.0 

0.4 

Figure 3.5 - Picket fence effect 

Apart from the amplitude estimation errors caused by the 

picket fence effect, the sine function leakage is significant 

enough that a small signal can be obscured by a neighbouring 

large signal. This is demonstrated in graphs 3.1.1 & 3.1.2 

which show how a component five and a half filters away from 

another, and 20 dB smaller than it, is almost completely 

obscured by the larger ones side lobes components. 
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Thus there are two distinct problems associated with the 

rectangular window which must be alleviated if the OFT is to 

be of any real use -

-
l) the picket fence effect must be. re-duced, . 

and 2) the side-lobes (leakage) must be reduced. 

3.2 Aero engine transducer signal characteristics. 

Before tackling the above problems it is worth recapping on 

the type of signals which will be presented to the real time 

spectrum analysis system, as described in chapter 6. The 

characteristics of these signals and the information required 

from them are briefly 

1) The signal to noise ratio of engine signals is typically 

no better than 40 dB although on some rare occasions it 

can be better. The inherent level of the spectrum floor 

due to windowing should be lower than this noise floor so 

as not to obscure any information within it. Hence a 

spectrum amplitude range of approximately 50-60 dB is 

required over as much of the spectrum frequency range as 

possible. 

2) It is possible to have very many engine order related 

components within a signal, but more significantly there 

can also be non-integral components which inevitably pass 

through the other components during engine manoeuvres. 

Hence components should be distinguishable at frequencies 

as close together as possible. 

3) The results of the spectrum analysis will be passed on to 

some expert system to assess engine health and 

performance. To enable the expert system to extract as 

much information as possible, the general component 

shapes should be consistent irrespective of their actual 

position within in the spectrum. 
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3.3 Superior windows. 

The performance of the Fourier transform can be altered and 

-------improved iL.the _shap~ _of the convolution spectrum is modified 
-- -----

by reshaping the time domain rectangula-r -,.dndow. - Bearing- the - __ _ 

above three points in mind, the desirable features that this 

modified window should provide at the output of the FFT are 

1) narrow central lobe, 

2) minimal spectrum modification by side lobes above 

-60 dB of the largest component, 

and 3) consistent shape of spectrum components. 

Over the years many variations of weighting functions have 

been derived [22], all attempting to make the best compromise 

between central lobe width and side lobe levels. One of the 

most popular and simplest is the Hanning window, its time 

domain function being 

W(t) = 0,5 + 0,5.Cos(2~t/Tw) -Tw/2 < t < Tw/2 

This function is shown in figure 3.6 and its frequency 

response in graph 3.2.1. The side lobes are now much smaller 

than those for the rectangular window although the central 

lobe has widened, this is because the side lobe energy has 

effectively been transferred into the central lobe. This 

widening is not totally detrimental as the picket fence 

ripple is now only 1.42 dB. In general the central lobe 

cannot be narrower than two filter widths (2/Tw), as for the 

rectangular window, and a 20 dB drop in the side lobe levels 

results in one filter width (1/Tw) increase of the central 

lobe. Most of the superior windows tend to have a central 

lobe width of 3-4 filters. Some other window functions 

include 

Hamming - W(t) = 0,54 + 0,46.Cos(2nt/Tw) 
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Gaussian - W(t) 
. - ~2t\2 p21 

= e ~ Tw} 2 J 

-- ---------_;~-~Cos [Tw·.Cos-1
.(cx. Cos (l~)) ]j 

Dolph Tchebyshev - W(t) = FFT · 
Cosh (Tw. Cosh-1 (ex) ) 

where o<. = Cosh[ (1/Tw) .Ln (10p + J1o1P -1)] 

Kaiser Bessel - W(t) = 
Io [,Pj!- (2t/Tw) 

Io [,B] 

In a paper by F.J.Harris [22] the above described windows, 

and others, are compared against each other for properties 

similar to those stated in chapter 3.2. He concludes in his 

paper that the Kaiser Bessel and the Dolph Tchebyshev window 

functions give the best results for the test signal that he 

applied, and for this reason it is these two window functions 

that have been chosen for further analysis. The time domain 

functions are shown in figure 3.6 and their frequency 

responses in graphs 3.2.2 & 3.2.3. This analysis is also 

performed on the Hanning window as this is in common use and 

serves as a standard for the comparisons. 

One reason for the superiority of the Kaiser Bessel and Dolph 

Tchebyshev 

parameter 

windows is because they contain a 

( p ) which can be tailored to 

variable 

suit the 

requirements, and their side lobes have a near flat response. 

These parameters effectively vary the amount of energy that 

is distributed between the side lobes and the central lobe. 

3.3.1 Extent of window analysis. 

As stated above, the three windows of interest are the 

Hanning, the Kaiser Bessel, and the Dolph Tchebyshev. The 

Hanning window has no variable parameters and thus is 
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straight forward to implement, however the other two windows 

··both have a variable ·para·meter whrch affects-·ttierr side lobe 

levels. A considerable amount of pre-investigative work has 

been carried out on these window functions by the author [9] 
--- ---u sj:n·g-var i·ou·s-p·ar am·et·e·r-va·ru:e·s-on_a_ h urr\oe_r_b_f_dTff e ren t--ctat-a --

sequences. The findings shown below are a summary of this 

work and thus only include the results for the best Kaiser 

Bessel window and the best Dolph Tchebyshev window. The 

value of the parameter f3 used in the following cases was 6. 
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Figure 3.6 - Time domain resonse for Hanning, Kaiser Bessel 

and Dolph Tchebyshev 
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3.3.2 Simulated test data. 

To compare the windows against each other and to test that 

they meet the requirements, each window has been applied to 

·-;arious sTmul-ated da-ta- sequences-:- However;- for b-revity~ tnis 

summary only includes three of the data sequences that were 

used in the original work. The data sequences and the 

reasons for using them are as follows 

The first two data sequences (64 points each) are 

designed to show how well the windows allow small 

frequency components to be identified when they are close 

to larger components, and to show how the position of the 

components, on or inbetween filters, affect the overall 

spectrum. These two simulated data sequences are as 

follows 

1. Signal composed of two sinusoids -

i) one of amplitude 1.0 at harmonic 10 

and ii) one of amplitude 0.01 at harmonic 16 

2. Signal composed of two sinusoids -

i) one of amplitude 1.0 at harmonic 10.5 

and ii) one of amplitude 0.01 at harmonic 16 

The third data sequence (512 points) is designed to show 

the effect when there are several components, and what 

the general shape of the side lobes is over more 

realistically dimensioned OFT's. 

3. Signal composed of seven sinusoids -

i) five of amplitude 1.0 at harmonics 50.5, 55, 

100 .5, 150 .5, and 200 

and ii) two of amplitude 0.01 at harmonics 106 and 

155.5. 
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3.3.3 Real vibration data. 

The three windows have also been applied to a real vibration 

signal --taken ·from an- aero- engine mounted accelerometer. The 

vibration data was obtained from a conditioned signal-via-a 

12-bit analogue to digital convertor applied after an 

anti-aliassing filter. More information about this signal 

and its spectral content is given in chapter 9 where it is 

also applied to other spectrum estimation techniques. This 

signal obviously does not contain all the different 

conditions found in real signals, but it does give a good 

indication of the signal to noise ratio and of the noise 

colouration. 

3.4 Assessment of window performance using simulated data. 

The three windows are assessed in two tests using the three 

sets of data sequences 

3.4.1 Test A- Data sequences 1 and 2: 

Hanning window, graphs 3.3.1 & 3.3.2 :- The Hanning window is 

a significant: 'improvement on the rectangular window although 

it still displays very inconsistent side lobe amplitudes as 

components move across the filters. Although the 0.01 

amplitude component is clearly visible in the first spectra, 

it is almost completely obscurred in the second. In this 

latter case the side lobes are quite large around the central 

lobe although they do eventually decrease to very low levels. 

Kaiser Bessel window, graphs 3.4.1 & 3.4.2 :- This window has 

produced two very similar spectra. In each case the central 

lobe is quite compact and does not spread out ·excessively· at 

its base. The side lobes very quickly reduce to about 55 dB 

below the central lobe peak and then form a gently sloping 

base going beyond 60 dB. The 0.01 amplitude component is 

clearly visible in both spectra. 

46 



CHAPTER 3 FFT windowing and power estimation 

Dolph Tchebyshev window, graphs 3.5.1 & 3.5.2 :- This window 

produces fairly consistent .spectra .although there are some __ 

differences between their side lobe amplitudes. These side 

lobes however are very flat at 60 dB below the central lobe 

--peak-.- The 0.01--amplitude component .. is. clearly visible in_ 

both spectra. 

Comparing the performance of the Fourier transforms for the 

three windows it can be seen that there is little difference 

between any effects the central lobes may have, but the side 

lobe responses are quite different for each. As far as being 

able to distinguish the small component from the larger one, 

the Hanning window fairs badly compared to the other two 

which perform very similarly. 

3.4.2 Test B - Data sequences 3; 

Hanning window, graph 3.6 :- This graph clearly shows the 

extent to which the side lobe amplitudes decay, and 

demonstrates how the smaller components are again nearly 

obscurred by the side lobes of larger components. The 

inconsistency between central lobe shapes is also quite 

apparent. 

Kaiser Bessel window, graph 3.7 :-This window has produced 

consistently shaped central lobes with a amplitude floor at 

about 60 dB below the largest components, the smaller 

components are also very distinguishable from their larger 

neighbours. 

Dolph Tchebyshev window, graph 3.8 ·- This window has 

produced a very unusual effect in that the side lobe 

amplitudes appear to have combined to raise the amplitude of 

the floor to less than 50 dB below the largest components. 

This is a significant rise in the floor to the extent that 

the smaller components are nearly lost in it. The shape of 

the central lobes is however consistent and the amplitude 
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floor is extremely flat. 

Comparing with the first test, the Hanning and Kaiser Bessel 

windows have performed as expected. The Dolph Tchebyshev 
------------

window has -how-ever- produce·d- an· ·unusual -and detrimental e_ffect 

on the performance of the Fourier transform. 

3.5 Assessment of window performance using real vibration data. 

As can be seen from graphs 3.9.1, 3 . 9 . 2, & 3 . 9 . 3 the three 

different windows have produced very few differences in their 

Fourier transform outputs and certainly no more information 

can be extracted from any one of the three spectra. This 

however is not surprising as the noise floor is only about 25 

dB below the largest peaks. None of the windows has got any 

where near displaying their side lobes at this level. 

3.6 Overall assessment of window functions. 

The compar-isons and tests shown above, together with those 

performed in previous work, indicate that the Kaiser Bessel 

(beta=6) window will produce the optimum spectra for use in 

further analysis and data reduction from aero engine 

transducer data. As the last test shows, in many cases the 

window characteristics are actually of no real concern 

because of the high noise content ~n the signal, and only in 

relatively clean signals will the benefits of the Kaiser 

Bessel window be reaped. There are however no disadvantages 

in using this window and has thus been employed in the real 

time dynamic data analysis system, as described in chapter 5. 

3.7 Fourier transform power estimation. 

The amplitude of sinusoidal components estimated by the 

Fourier transform can be up to 15% in error (28% for power) 
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due to the picket fence effect (see figure 3.5), note that 

this value does alter slightly with different window types. 

The actual error for any 

0% and 15% depending upon 

particular component varies between 

where the component lies within the 

---Fourier--transform-- output-- f-ilters.-- -This error is. quite 

significant and is certainly higher than most measurement and 

instrumentation systems could tolerate. In the measurement 

of dynamic engine 

generally specified 

parameters total system accuracies are 

to anything between ±0.5% and ±5%. To 

improve on this situation a method is required which can more 

accurately extract a component's amplitude irrespective of 

its frequency. 

After conversion into the frequency domain via the Fourier 

transform, a sinusoidal component's power is distributed 

between its central and side lobes right across the spectrum. 

Thus the actual power of the sinusoid is proportional to the 

sum of all the filter powers across the spectrum. It would 

of course be ridiculous to estimate power this way because of 

other components which would inevitably be present in the 

spectrum. It should be noted however that the majority, and 

certainly a constant amount, of power is concentrated in the 

central lobe. Thus, over a particular range of filters 

around the central lobe, the power in this region will remain 

approximately proportional to the true power. 

The power in each filter is proportional to the amplitude 

squared, thus the true amplitude can be estimated via the 

root sum square of a number of filters around a sinusoidal 

components central lobe. The table below demonstrates the 

improved performance this technique provides and also shows 

how the number of filter summations affects the accuracy. 

49 



CHAPTER 3 

Frequency of 

inout signal 

Fb 

Root sum 
Fb-

1. 0000 

Fb+O.lFs/N 0.9938 

Fb+-o~iFsN r -o.9762 

Fb+0.3Fs/N 

Fb+O. 4Fs/N 

Fb+O.SFs/N 

0.9473 

0.9076 

0.8488 

Worst case error - 15% 

FFT windowing and power estimation 

square of amplitudes between 

Fb- +/~ 1- Fb +/- 2 

1.2513 1.25272 

1.2505 1.25272 

-1-.2489- 1.25272 

1. 2459 1. 25272 

1.2409 1.25272 

1. 2335 1. 25272 

1. 4% 0% (to 5 d.p.) 

The information above comes from six Fourier transforms 

outputs (all using Kaiser Bessel windows), all of which have 

been applied to sinusoids of unity amplitude but of different 

frequencies. The frequencies vary from an arbitrary base 

(Fb) which lies exactly on an output filter, up to that base 

plus half the output resolution. 

i.e. from Fb = n.Fs/N to Fb + 0,5Fs/N 

The three amplitude columns refer to the new amplitudes 

calculated by including 0, 1 and 2 filters from either side 

of the filter close to the central lobe peak (i.e. Fb). 

It can be seen from the table that a very marked increase in 

accuracy is obtained by taking into consideration the 

amplitudes of the central lobe surrounding filters, the 

accuracy of the last column itself being extremely good. The 

amplitude values in columns 2 and 3 are of course higher than 

the true amplitude, but this can easily be rectified by 

normalisation. In real applications,- even this is not 

necessary as all values are assumed to be of "banana" units 

and are effectively normalised during a calibration routine, 

assuming of course that the amplitude of the original 

calibration signal was estimated using this technique. 
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This technique can be applied to most Fourier transform 

applications as long as it is remembered- ·that ·very close 

components will have an effect on each other. For cases such 

--as- vibration, a,s __ i_n graph 3. 9, this technique is ideally 

suited and as will be seen in -chapt-er 6, -it- has successfully._ 

been employed in a real time application. 
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Graph 3.1.1 - 64 point DFT. rectangular window. sinusoids at 
harmonics 10 and 16. 
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Graph 3.1.2 - 64 point DFT. rectangular window. sinusoids at 
harmonics 10.5 and 16. 

52 



CHAPTER 3 FFT windowing and power estimation 

JB.' 

_., 

_,oo+---'-+-'---'--'-,.-JI..--'l.-ll_,...L...l'-IL-,"-.lL_~ 

Pxxl" 
t< 

Graph 3.2.1 - Frequency response of Hanning window . 
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CHAPTER 4 

· --TMS32010 architecture-and·FFT routines 

4.1 Why the TMS32010 micro-processor. 

One of the fundamental requirements for a real time dynamic 

data analysis system is a fast hardware arithmetic unit to 

enable fast execution of digital signal processing 

algorithms, especially the fast Fourier transform, and also 

to perform data reduction algorithms at high speed on the 

resulting spectra. Basically there are two ways to achieve 

this, either by using bit slice hardware custom built for the 

application, or by using a fast micro processor. 

The first option would enable a very fast arithmetic unit to 

be designed. However this type of hardware requires a 

substantial amount of circuit board area, and is not very 

flexible in terms of reconfiguration for different 

algorithms. It also requires a great deal of expensive 

development equipment which has to be tailored to each 

application. 

The second option allows a much more flexible approach to be 

taken, as a circuit design for the micro processor and its 

peripherals can be almost completely done irrespective of the 

actual application. All subsequent design work can then be 

directed at writing application 

well defined set of instructions. 

code using a standard and 

The cost of development 

equipment for this option is also significantly less. However 

there is a trade off for this flexibility, and this is of 

course execution speed. 

The second option was deemed to be the best choice as 

flexibility was of prime importance, especially as there were 
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many unknowns in the actual tasks that this system would 

eventually be applied to. However the over-riding incentive 

for choosing this option, 

_ .micr_q f>rocessors designed ----------

in mind. 

was the recent arrival of very fast 

specifically with signal processing 
• - -- ·• - - -- - . 

The speed at which computationally intense programs can be 

executed was initially enhanced by the introduction of 

arithmetic eo-processors such as the AM9511 floating point 

processor. This was then taken a step further by integrating 

the eo-processor and the CPU within the same device. This 

was achieved by DEC when they literally grafted their 

arithmetic unit and their 11/70 CPU together to form a very 

powerful, although somewhat bulky, processor known as the 

J-11. It was achieved differently by NEC, who basically 

incorporated a few general purpose micro processor 

instructions and a small amount of memory capacity into an 

arithmetic unit. This was called the NEC 7720 and was 

perhaps the first true signal processing micro processor. 

However it was in 1982 that the first really practical and 

fast signal processing chip came onto the market, this being 

the Texas TMS32010 micro processor. This CPU encompasses a 

flexible and general purpose instruction set, a fast 

arithmetic unit, and a unique architecture designed with 

signal processing algorithms in mind, and this all in a 40 

pin package. 

The TMS32010 software development system originally existed 

in the form of an assembler and linker for the Texas 9900 

work station and the IBM PC. To develop hardware Texas 

provided a very powerful in circuit emulator, the XDS/22. 

Having chosen the TMS32010 as the best signal processing 

micro, this development equipment was acquired. The emulator 

cost approximately 1 4, 000 which although not particularly 

cheap, did enable fast 

software. The cost 

approximately .( 120. 

and 

of 

easy development 

a TMS32010 chip 
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4.2 TMS32010 architecture. 

The Texas TMS32010 micro processor is fabricated in NMOS 

technology and can operate with a 20 MHz crystal giving a 
-- - -

bus speed - -of- Y MHz.- - The- -internal- - architecture. is 

significantly different from most micro processors. The 

usual design involves a Von-Neuman approach where the 

instruction and data memory both sit on the same bus 

structure. The TMS32010 however employs a Harvard 

architecture in which the instruction and data memory both 

sit on separate and distinct buses, thus allowing them to be 

addressed simultaneously. The hardware capabilities are 

summarised below. 

144 words of on chip ram 

4 Kw of external program rom 

1.5 Kw of internal masked program rom 

16 bit data and instruction buses 

200 ns instruction cycle 

Signed 2's complement arithmetic 

32 bit arithmetic accumulator 

200 ns 16x16 bit multiply 

0-15 bit barrel shifter (no time overhead) 

Eight 16 bit inputs and outputs 

Interrupt with context save 

Single 5V supply. 

It also features two auto increment/decrement indirection 

registers, a 4x12 bit stack, a single bit input line (BIO) 

and an on chip oscillator. Note that the internal and 

external program memories are hardware selectable and that 

only the external memory was ever used in the author's 

applications. 

In general, arithmetic instructions access a word in the data 

ram and pass it through the barrel shifter, which can 

left-shift by between 0 and 15 bits (depending upon the 

instruction) , to the ALU where it is either loaded into, 
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subtracted from, or added to the accumulator. After a result 

has 

this 

The 

been found it can then be stored back in the data ram, 

is usually in two parts 

result can also be left 

as the accumulator is 32 bits. 

shifted as it is stored, as an 

---aid to- scaling.- --A schematic oL this architecture __ is shown _in 

figure 4. 1 . It should be noticed that there is a link 

between the program and data buses (contrary to the strict 

harvard architecture) to allow program constants to be loaded 

into data ram. 
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Figure 4.1 Schematic of TMS32010 architecture 

63 



CHAPTER 4 TMS32010 architecture and FFT routines 

4.3 TMS32010 instruction set. 

As stated before, the TMS32010 is not just a pure signal 

processor but has a number of general purpose instructions 

·-such- as -- l:oop ·on- - condition- ·-operations, which- allow 

considerable flexibility and program control. Almost all of 

the instructions are single cycle allowing execution rates of 

up to 5 million a second. Only the infrequently used control 

and I/0 instructions are multicycle. 

Of all signal processing operations, the multiply and 

accumulate must be the widest and most often used, as 

employed in correlation and convolution. The TMS32010 has 

been designed with this type of operation in mind and has 

subsequently been given a special instruction to allow fast 

execution of a contiguous number of these operations. This 

instruction nmemonic is LTD and is used with the multiply 

instruction (MPY) as follows 

LTD ARO- ,ARP=ARl 

MPY ARl-, ARP=ARO 

LTD ARO- ,ARP=ARl 

MPY ARl-, ARP=ARO 

LTD ARO- ,ARP=ARl 

MPY ARl-, ARP=ARO 

etc. 

The two indirection registers are called ARO and ARl, and 

the indirection register pointer is called ARP. It is 

assumed that ARO points to an input data table and that 

ARl points to a constant table, and that both are in data 

ram. In the above sequence, each pair of instructions 

performs a 16xl6 bit multiply, addition of the result to 

the accumulator, auto-decrement of both the indirection 

registers and a single positive address move of the data. 

By using this instruction pair it is possible to perform a 64 

point correlation or convolution in just 25.6 micro-seconds, 
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and also be immediately ready to start the process again. 

For more information on the architecture and instruction set 

of the TMS32010 micro processor refer to the Texas 

Instruments "TMS32010 User's Guide" [46]. 

4.4 FFT optimally coded for the TMS32010. 

When programming an FFT into an integer machine with limited 

memory, such as the TMS32010, considerations such as scaling, 

data storage, constants storage, bit reversal, butterfly 

efficiency, and output formats must be tackled. The 

following two sections provide a basic description of how 

these were overcome in hardware and in software, together 

with some relevant examples. The two sections are split into 

radix 2 and radix 4 FFT development. The radix 2 version was 

the first to be implemented and accounts for most of the 

hardware and software design, development and debugging time. 

However it is the real input radix 4 implementation which has 
been finely tuned and installed in IDDAS. 

4.5 Radix 2 FFT. 

4.5.1 Data scaling. 

The scaling of data as it passes through an FFT must be 

considered carefully because of the integer operation of the 

TMS32010. This machine stores its data to 16 bit resolution, 

and effort must be made to keep the numeric values as high as 

possible without causing an overflow. 

Due to the Fourier transform being a data independent 

process, the highest possible gain that can occur in a 

butterfly can be predicted exactly, three cases exist 

1) The first column of butterflies involves no complex 

multiplies and hence no phase shifting. If the inputs to 
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the butterfly are bounded by ±1 on each axis then the 

output will be bounded by ±2: 

2) The second column of butterflies can only induce a phase 

... ~hift of ·go· degree-s~ ·thu·s- i·f-the ·inputs ·are· bounded-by -±1. _ 

then the output will again be bounded by ±2. 

3) All successive butterflies can have a multitude of phase 

shifts and in particular 45 degrees, if the inputs are 

again bounded by ±1, then in this case the output is be 

bounded by ±2.414. This is shown in figure 4.2. 

AO + 
·tt: 

Al*e'-'fi = 
1 1 2 

I m I m I m 

Re 1 Re 1 Re 2 

Figure 4.2 -Maximum gain from a radix 2 butterfly 

To ensure that no overflow occurs within a butterfly, the 

inputs to it must not exceed the value of ±2**13. Note that 

the maximum that can be represented is ±2**15 (2's complement 

arithmetic) . Although the maximum gain possible in some of 

the butterflies is 2.414, there is an overall gain limit of 2 

per stage. If input data comes from a 12 bit bipolar ADC (as 

described in chapter 5) then it has a maximum value of 

±2**11, and only allows 

occurs. Transforms of 

a total gain of 16 before overflow 

1024 points have a potential gain of 

1024 which 

problem an 

butterfly. 

is obviously far too high, to overcome this 

attenuation of two is needed at the end of each 

However to make the best use of the slight amount 

of gain which can be endured, the first set of "special 

butterflies" (which have no multiplies) can be left with no 
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attenuation. 

4.5.2 Storage of constants. 

Two sets of constants are required for an FFT, these are for 

1) the window coefficients and 2) the exponentials, note that 

both need to be stored in program memory. 

1) As explained in chapter 3, each input must be multiplied 

by a window coefficient before an FFT starts. Windows in 

general are symmetrical about the central point and hence 

N/2+1 coefficients are required for an N point FFT, i.e. 

513 coefficients for a 1024 point FFT. Apart from the 

central coefficient, which is usually equal to unity, all 

the coefficients are less than one, thus to enable them 

to be stored as an integer they must all be increased in 

value. To maximise precision they are all multiplied by 

2**15. 

2) An FFT requires exponential coefficients for every one of 

its butterflies, many of the butterflies use the same 

coefficients, however it can be seen that the last column 

of an FFT uses a different exponential for each 

butterfly. Thus for an N point FFT where there are N/2 

butterflies in each column, N/2 exponentials are 

required, i.e. N coefficients. Exponential coefficients 

also remain at or below unity and again must be 

multiplied by 2**15. 

As can be seen, for a 1024 point FFT, 1.5 Kw of the TMS32010 

4 Kw program memory has already been taken up by constants. 

4.5.3 Input data storage. 

The TMS32010 operates most efficiently when all data values 

are stored in internal ram. However it is only possible to 
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achieve this with an FFT of 64 or less input points as the 

internal memory is only 144 words in length and each point is 

complex and thus requires two locations. 

implemented in two manners 

Extra ram can be 

1) Part of the 4 Kw program memory can be 

data ram. This would make use of 

portioned off for 

the TBLR and TBLW 

2) 

instructions which allow transfers between the program 

and data buses. These instructions do however require 

three clock cycles to execute. 

Up to 64 Kw of external ram can be mapped into the I/0. 

This requires two ports, a unidirectional port for the 

memory address and a bidirectional port for the data. To 

keep I/0 accesses to a minimum (note that each I/0 

transfer requires two clock cycles) 

auto-increment register can be implemented 

a hardware 

on the address 

I/O port. Hence memory accesses on large arrays require a 

once only initial write to this register. 

The initial development board designed and built by the 

author, used the first method of external ram implementation. 

A 1024 point, complex input, radix 2 FFT was successfully 

executed on this hardware, it was however rather slow, taking 

approximately 90 ms to complete. Further development boards 

and IDDAS itself use the second method of implementation as 

this results in faster operation and allows full use of 

program memory and of larger data.memories. 

4.5.4 Bit reversal. 

As demonstrated earlier, 

arranged butterflies and to 

to achieve the 

keep the data values 

symmetrically 

in the same 

position throughout an FFT, the input data must be initially 

rearranged into bit reversed address locations. Note that 

for this input and butterfly arrangement, the FFT is refered 

to as a decimation in time algorithm. It is possible, 
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although not shown here, to breakdown the OFT equation and 

arrange the butterflies in such a manner that it is the 

ouputs which must be 

-thi-s -method. _is_ refered 

rearranged via 

to as decimation 

address bit reversal, 

in frequency. 

Decimation in time is by far the most common method used, and 

in real time applications has an advantage over the other 

method. This is because during data initialisation prior to 

performing an FFT, windowing and address reversal can be 

performed on each input sample as and when it is presented to 

the TMS32010 micro processor, rather than inputting a 

complete array of raw data, then windowing and bit reversing 

it. There will inevitably be some delay between input 

samples, especially at low sample rates, hence by windowing 

and bit reversing as above, their execution times are 

effectively lost in the acquisition period. 

Address bit reversal can be performed quite simply in the 

TMS32010 software due to the processors barrel shifter. 

However for a 1024 point FFT, where 10 bits must be reversed, 

this operation takes 40 cycles to execute, and together with 

the windowing which takes 10 cycles, the whole operation 

lasts 10 ps. At the highest required bandwith of 50 KHz the 

sample rate will be 131 KHz (as will be explained in chapter 

5), giving only 7.6 ps between input samples, making software 

address bit reversal too slow. This problem is easily and 

elegantly solved by utilising a hardware bit reverser. This 

is achieved by connecting one of the TMS32010 bidirectional 

ports to the input and output registers of a ten bit D-type 

latch in which the TMS32010 data lines for the inputs and 

outputs are connected in opposite orientations. The bit 

reversal operation is now reduced to an "OUT" and an "IN" 

instruction, and takes only 0.8 ps. to execute. 

4.5.5 Arrangement of butterflies and data. 

The FFT derived earlier is known as an "in place" algorithm. 
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It is called this because the final spectrum data occupies 

·the same memory locations as the initial address bit reversed 

input data, i.e. apart from manipulation within the 

butterflies, data effectively stay in their ~- ()_r:i,_gi!:lal_ 

-- --- -locat-ions-throughout an-FFT. -This- mean-s that the columns of 

an FFT must be evaluated in order from left to right, 

although the butterflies in a~y particular column can be 

evaluated in any order. 

In a 1024 point FFT where the data is stored in external 

memory, data pairs are brought into internal memory, operated 

on by an exponential constant and then outputted back to the 

external memory. 

many butterfly 

Some exponential constants are applied to 

data pairs (particularly in the early 

columns), thus to keep data transfer to a minimum, the data 

inputs can be arranged such that each exponential constant is 

only loaded once per column. 

It will be shown in 

data transfers is 

particular for IDDAS 

section 4.6 how the efficiency of the 

improved for a radix 4 FFT, and in 

which uses I/O mapped external ram. 

4.5.6 Radix 2 butterfly 

The centre piece of an FFT is its butterfly routine, for 

example in a 1024 point FFT this routine is executed 5120 

times. Hence the execution speed 

almost totally dependent upon 

butterfly. The efficiency of 

of the whole transform is 

the efficiency of the 

this routine is largely 

determined by the architecture of the processor on which it 

is performed. The butterfly requires four multiplies, six 

additions/subtractions and a certain amount of normalisation 

by shifting. The TMS32010 excells at both multiplication and 

shifting, and is certainly not slow at addition and 

subtraction. 
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Xhe butterfly algorithm can be generalised as follows 

F' (x) ; F (x) + W[n] .F (x+N/2) 

F' (x+N/2) ; F (x) - W[n] .F (x+N/2) 

where F and F' are complex data arrays and W is a complex 

constant array. The TMS32010 assembler routine which was 

written to perform this is shown below, note the following 

operand names and definitions -

F(x) ; XRP + jXIP 

COS ; 2**15.Cos(~x/N) 

F(x+N/2) ; XRQ + jXIQ 

SIN = 2**15.Sin(2rtx/N) 

; Real 
ZAC 

component of complex multiply 

LT 
MPY 
LTA 
MPY 
APAC 
SACH 

' 

XRQ 
cos 
XIQ 
SIN 

TEMP1, 1 

; zero accumulator 
; 
; ; XRQ.COS 
; 
; ; XIQ.SIN 
; ; (XRQ.COS+XIQ.SIN)/2**15 
; stored in templ 

; Imaginary component of complex multiply 
; zero accumulator ZAC 

MPY 
LTA 
MPY 
SPAC 
SACH 

' ; Real 
LAC 
ADD 
SACH 
SUBH 
SACH 

' 

cos 
XRQ 
SIN 

TEMP2,1 

components 
XRP, 15 
TEMP1,15 
XRP 
TEMPl 
XRQ 

; XIQ.COS 
; 

; 
; XRQ.SIN 

(XIQ.COS+XRQ.SIN)/2**15 
; stored in temp2 

of F' 
; 
; 
; XRP+(XRQ.COS+XIQ.SIN)/2**15 
; 
; XRP-(XRQ.COS+XIQ.SIN)/2**15 

; Imaginary components of F' 
LAC XIP,l5 ; 
ADD TEMP2,15 ; 
SACH XIP ; XIP+(XIQ.COS+XRQ.SIN)/2**15 
SUBH TEMP2 ; 
SACH XIQ ; XIP-(XIQ.COS+XRQ.SIN)/2**15 
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Each of the above instructions only requires a single clock 

cycle to execute, thus, including a subroutine call and a 

return (which take a total of 3 cycles) the above routine 

takes a mere 5.2 micro-seconds to complete. An estimation 

--for- -tli.e -totar butterfly -execution-time- f'or -a- 1 024-point FE:T 

comes to 26.6 milliseconds. The actual FFT execution time is 

of course greater than this as no consideration has been 

given to the loading of constants and the loading and 

unloading of data to the butterfly. 

4.5.7 Output format. 

After an FFT has been executed, a double sided complex 

spectrum is left in memory, from this magnitude and phase 

information can be extracted. In almost all cases (99.99%) 

of aero engine analysis only magnitude is required, and is 

even more so the case for real time applications, 

subsequently phase is not dealt with at all. Magnitude can 

be represented either in 

it is anticipated that 

linear or logarithmic formats, and 

both will be required for analysis/ 

display purposes. The first case requires squaring, adding 

and square rooting, and the second requires squaring, adding 

and logging. These functions are tackled as follows 

1) Linear output: Squaring two 16 bit values and adding them 

together could not be simpler for the TMS32010, however 

performing a 32 bit square root is another story. Square 

but is rooting 

usually 

on any 

tackled 

integer machine is 

by employing 

difficult, 

Newtons square root 

implemented algorithm. 

in TMS32010 

This algorithm was successfully 

software but was 

comsuming. The reason for 

found to be excessively time 

this is that this algorithm 

uses a divide as part of its 

only indirectly supported by 

code (nmemonic "SUBC") and 

iterative process. This is 

the TMS32010 instruction 

subsequently takes 32 

instruction cycles (6.4 ps) to perform a 32/16 bit 

divide. 
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The Newton square root algorithm was replaced by one of 

the author's aesigrY. This alternative algorithm uses the 

multiply, which is 32 times faster than a divide, as the 

major arithmetic operation within the iterative part of 

--the -rcn1t-ine .-- -The-- algorithm- sta-r-ts- by -making _a _square 

root guess equal to half the largest possible answer, 

i.e. $4000. This guess is then squared and compared 

with the input value, if it is larger, $2000 is 

subtracted from the guess and if smaller $2000 is added. 

The new guess is squared and the process repeated with 

either $1000 added or subtracted, and then again with 

$0800. Eventually the exact square root will be guessed 

or, as more often is the case, the iterative process will 

come to a completion after adding or subtracting $0001. 

This routine only uses multiplies, shifts, additions and 

subtraction, all of which the TMS32010 executes at high 

speed. An assembled printout of this routine is shown in 

appendix A. 

2) Logarithmic output In this case a logarithmic value 

must be evaluated from the 32 bit result of the squaring 

and addition operation. No existing integer logarithm 

routines could be found, so again a routine was designed 

by the author. 

The actual base to which the logarithm is taken is of no 

real consequence because as stated before, the data is in 

"banana" units prior to calibration. It was thus decided 

to use base two, as binary representations lend 

themselves to convertion in this base. The largest 

magnitude squared value that can result from an FFT is 

2**31 (2x[2**1SJ2 ), and hence the largest integer part of 

a base two logarithm is 31. The integer part can thus be 

represented by 5 bits and is evaluated by determining the 

bit field of the most significant "1" in the input value. 

The fractional part of the logarithm depends on the value 

of the remainder of the squared value following the top 
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most "1", notlng that the _actual position of this 

remainder is irrelevant. It is difficult to apply a 

___ fOE!!l_Ula to calculate the fractional part but can be 

readily and- quickly -found ._by _ l!S_ing the remainder as a 
--

pointer to a look up table of fractions. :tn· the ·original __ _ 

application the logarithmic output was primarily intended 

for use with a 12 bit DAC so that spectra could be 

displayed on an oscilloscope, thus only another 7 bits 

are required for the full logarithm. Putting the 5 bit 

integer part above the 7 bit fraction part effectively 

multiplies the base two logarithm by 128. An example of 

this procedure is shown below; 

Squared value X = 00000000000000101010101010101010 b. 

= 174762 d. 

Bit field of most significant "1" = 17. 

Lower seven bits (rounded up) = 0101011 = 43 

Look up table ·-
Lower Decimal value of Fraction 

7 bit:> l;hs;: LQg2 fJ::a!:;tion *128 

00 0.0000000 00 

01 0. 0011227 01 

42 0.4093909 52 

43 0. 4178525 53 

44 0.4262648 55 

127 0.9943534 127 

128 1.0000000 128 

The logarithm is thus equal to : (17*128) + 53 = 2229 

(The true value of 128.Log2(174762) is 2229.15) 

The output from this routine has a precision of ± half a 
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bit in eight (i.e. ±0.2%) over a 70 dB range, this is 

adequate for-most applications but can easily be improved 

by extending the lockup table, this will of course 

require more memory but will take no longer to execute. 

An --·asseffibleC:l · print·out· -of -this· rout-ine- is- shown -in 

appendix B. 

4.5.8 Radix 2 FFT development. 

To build up confidence and experience with TMS32010 assembler 

programs, and with the concept of the FFT, the first programs 

written were for 16 and 64 point transforms. These programs 

both used internal ram for data storage. Havin_g built the 

necessary hardware for external ram the transforms were 

extended from 64 points, in factors of two, until a 1024 

point transform was reached. It was found that the 64 point 

FFT could be executed in internal ram in 870 ps., and a 1024 

FFT in external ram in 90 ms. 

4.6 Radix 4 implementation. 

In a 1024 point radix 4 FFT the radix 4 butterfly is 

performed 1280 times, so again the execution speed of the 

whole FFT is largely determined by the efficiency of the 

butterfly and of the time required to get data into and out 

of it. The radix 4 butterfly is considerably more complex 

than the radix 2 butterfly having three times the number of 

exponential 

input data. 

coefficients and twice the number of complex 

As with the radix 2 case the TMS32010 assembler 

program was developed from a 16 point transform, through a 64 

point transform, to the full 1024 point FFT, so as to iron 

out any unforseen problems and errors at a simple stage. The 

radix 4 FFT was finally tuned for utmost speed by modifying 

it for real input data only. This modification was applied 

directly to the 1024 point transform. Similar consideration 

to those made for the radix 2 case are now covered for the 

radix 4 FFT. 
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4.6.1 Storage of constants. 

The radix 4 FFT uses exponential coefficients from W(O] to 

W[3((N/4)-l)), this is demonstrated in figure 2.5 where N=16 

and the -highest - exponential is w [-9)-. - In- -t-he - case. .where 

N=1024, the highest exponential is W[765), this means that 

254 more complex constants have to be stored in the radix 4 

FFT than the radix 2 FFT, and thus of course use 1/2 Kw more 

of program space. 

Although the highest exponential required for the 1024 point 

transform is W[765) not all of the exponential up to this 

point are actually required. Refering to figure 2.5, 

exponentials W[5) and W(8] are not used, thus demonstrating 

that it is not neccesary to store all 766 exponentials. 

However, the TMS32010 FFT program accesses this large array 

of exponential constants via indexing pointers, and to 

subsequently make the pointers take into account the missing 

constants is a relatively complex and inevitably time 

consuming task. Another solution to reduce the number of 

stored constants is by taking into account the fact that when 

any x in the exponential term W[x) is greater than N/2, the 

exponential is then equal to -W[(x-N/2)), thus bringing the 

highest required exponential back to W[N/2). However this 

again 

which 

involves some time consuming checks 

is to be avoided if at all possible. 

and arithmetic 

For these two 

reasons it was deemed necessary to store all 766 complex 

constants in the radix 4 FFT program, even though some of 

them would never be referenced. 

The same window as used for the ·radix 2 FFT is employed in 

the radix 4 FFT, this being the Kaiser-Bessel (beta=6) 

window. This requires 513 constants to be stored. A total of 

2045 constants are thus required for a radix 4 FFT. and 

leaves only 2 Kw of program memory left for the FFT program. 
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4.6.2 Memory Transfers. 

As with the radix 2 case, all of the data samples (stored in 

external ram) and all of the program constants have to be 

transfered- to -and- from -intoernal- memory--as each--butterfly is 

performed. As explained earlier, the external ram in the 

hardware used to develop this algorithm and also that of 

IDDAS employs an I/O mapped addres~ latch to point to I/0 

mapped ram locations. This latch auto increments when an 

external ram location is read from or written to. Hence to 

make the best use and efficiency of these memory accesses, 

four sets of butterfly data 

four sets of contiguous data. 

(of four complex points each) 

are transfered in one go using 

Subsequently four butterflies 

are performed at any one time 

on the data in internal memory. 

4.6.3 TMS32010 Radix 4 Butterfly. 

A radix 4 butterfly basically comprises one unmodified radix 

2 butterfly; one radix 2 butterfly extended to include an 

exponential multiply 

second, and then a 

subtractions. 

of the 

series 

first input as well as the 

of complex additions and 

The code generated to perform this task is shown in figure 

4.3, note the following operands and definitions 

AO (x) = AOR + jAOI Al (X) = AlR + jAli 

A2(x) = A2R + jA2I A3 (x) A3R + jA3I 

WlKCS + jWlKSN = 2**15 (Cos (2rt"x/N) + jSin (2ttx/N)) 

W2KCS + jW2KSN = 2**15(Cos(4rtx/N) + jSin (4ttx/N)) 

W3KCS + jW3KSN = 2**15(Cos(6ttX/N) + jSin(6ttx/N)) 
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; radix 2 butterfly 
; A2R*Cos+A2I.*Sin 
ZAC 
LT A2R 
MPY W2KCS 
LTA A2I 
MPY -- W2KSN 
APAC 
SACH 
; 
ZAC 
MPY 
LTA 
MPY 
SPAC 
SACH 
; 
LAC 
ADD 
SACL 
; 
SUB 
SACL 
; 
LAC 
ADD 
SACL 
; 
SUB 
SACL 
; 
; 
; 
ZAC 
LT 
MPY 
LTA 
MPY 
APAC 
SACH 
; 
ZAC 
MPY 
LTA 
MPY 
SPAC 
SACH 
; 
ZAC 
LT 
MPY 
LTA 
MPY 
APAC 
SACH 

TEMPlR, 1 
j(A2I*Cos-A2R*Sin) 

W2KCS 
A2R 
W2KSN 

TEMPll, 1 
AOR+(A2*W2K)re 
AOR 
TEMPlR 
TEMP4R 
AOR-(A2*W2K)re 
TEMPlR, 1 
TEMPSR 
AOI+ (A2*W2K) im 
AOI 
TEMPll 
TEMP4I 
AOI-(A2*W2K)im 
TEMPli,l 
TEMPS I 

Modified r2 but. 
AlR*Cos+Ali*Sin 

AlR 
WlKCS 
All 
WlKSN 

TEMP2R,l 
j(Ali*Cos-AlR*Sin) 

WlKCS 
AlR 
WlKSN 

TEMP2I,1 
A3R*Cos+A3I*Sin 

A3R 
W3KCS 
A3I 
W3KSN 

TEMP3R,l 

; 
ZAC 
MPY 
LTA 
MPY 
SPAC 

- SACH-
; 
LAC 
ADD 
SACL 
; 
SUB 
SACL 
; 
LAC 
ADD 
SACL 
; 
SUB 
SACL 
; 
; 
; 
LAC 
ADD 
SACH 
SUBH 
SACH 
; 
LAC 
ADD 
SACH 
SUBH 
SACH 
; 
LAC 
ADD 
SACH 
SUBH 
SACH 
; 
LAC 
ADD 
SACH 
SUBH 
SACH 

j(A3I*Cos-A3R*Sin) 

W3KCS 
A3R 
W3KSN 

!J.'EMP 3-I ,-1 - -- -­
(Al*WK)re+(A3*W3K)re 
TEMP2R 
TEMP3R 
TEMP6R 
(Al*WK)re-(A3*W3K)re 
TEMP3R, 1 
TEMP7R 
(Al*WK)im+(A3*W3K)im 
TEMP2I 
TEMP3I 
TEMP6I 
(Al*WK) im-.(A3*W3K) im 
TEMP3I, 1 
TEMP7I 

Second stage of but. 
AOR and AlR 
TEMP4R, 1S 
TEMP6R, 1S 
AOR 
TEMP6R 
AlR 
AOI and All 
TEMP4I,lS 
TEMP6I, lS 
AOI 
TEMP6I 
All 
A2R and A3R 
TEMPSR, lS 
TEMP7I,lS 
A2R 
TEMP7I 
A3R 
A2I and A3I 
TEMPS!, lS 
TEMP7R, lS 
A2I 
TEMP7R 
A3I 

Figure 4.3 - TMS32010 radix 4 butterfly 
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The number of instruction cycles required to perform the 

radix 4 butterfly is 69, this compares with 92 cycles -

required to perform four radix 2 butterflies which would do 

the same amount of computation. This in itself gives a 

-significant--saving -in execution -time, but to--add-to -this, .the­

data and exponential constants only have to be moved to and 

from internal ram half as many times. To fetch and store the 

data for four radix 2 butterflies requires 15 I/0 instruction 

per butterfly (I/O transfers require 2 instruction cycles}, 

giving a total of 120 instuction cycles. As compared to this 

the radix 4 butterfly requires 33 I/O fetch and store 

operations giving a total of 66 instruction cycles. The 

approximate overall total execution time for the two methods 

is thus : radix 2 - 212 cycles, radix 4-135 cycles, i.e. a 

36% reduction in execution time. 

Note that the first stage of the radix 4 FFT requires no 

multiplies at all and thus a considerably simpler butterfly 

to that shown in figure 4.3 is utilised. The butterfly used 

in the final stage of the FFT is also simplified to produce 

just the first two complex 

other two form part of the 

outputs rather than four, as the 

duplicated double sided spectrum. 

4.6.4 The overall complex input radix 4 program. 

A high level flow diagram of the radix 4 FFT is shown in 

figure 4.4. The computation time of this program in TMS32010 t.c 
assembler code is 27m;( and the total program space is $E90. s 
This includes 2 Kw of constants, and code to input, bit 

reverse and window the inputs. It does not include the 

output conversion routines but does in fact leave enough 

space to include both. Not that the input and output 

routines for the radix 2 and the radix 4 FFT's are identical. 

As will be seen in the next chapter there is no need for the 

output routines to be included with the FFT. 
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I 

Input 1024 data samples from ADC, 
Weight each sample using Kaiser Bessel window, 

·- Store each sample-in ·its bit-reversed location.-

I 
Perform 1st stage of FFT using a simplified 

butterfly (no multiplies or imaginary components) . 
Result allowed to increase by four times. 

1 
Perform full r4 butterfly on stages 2, 3, 4 and 5. 

I 
Convert the first 400 complex results to either 

magnitude or logs. Output results to DAC. 

I 

Figure 4.4 - Flow diagram of a radix 4 FFT 

4.7 Real input radix 4 FFT. 

In chapter 2 it was shown that the derivation of an FFT 

assumes the input data to be complex, but that by suitable 

manipulation real input data can be almost completely 

analysed by a half sized FFT. This manipulation has been 

applied to the TMS32010 radix 4 FFT to reduce computational 

effort even further. To demonstrate this manipulation it has 

been applied to a Fortran 77 program, this provides a compact 

example which can be understood more easily than in tens of 

lines of TMS32010 assembler code. Note that no high level or 

indeed low level language examples of this technique where 

found in other papers and so is included in Appendix c. 
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4.7.1 Fortran implementation. 

Implementing the real input FFT is quite straight forward and 

can be split into three distinct and simple parts. These are 

- - as- fol-lows-

1) Perform an N/2 point FFT on the bit-reversed complex 

input array. Note that the bit-reversal is performed on 

consecutive input pairs (the first going in the real 

component 

that it is 

and the second in the imaginary component) and 

an N/2 point bit-reversal. 

2) Separate the two resulting N/2 point spectra (including 

transformation of DFT(j.V) to DFT(V)) and create the 

final stage array of anN point FFT. 

3) Perform the final stage of the N point FFT, the 

spectrum being the same as if an N point FFT 

performed throughout. 

4.7.2 TMS32010 Implementation. 

resulting 

had been 

The process used for the implementation of a real input FFT 

in TMS32010 code is exactly the same as that described above 

for Fortran. 

the radix 

modifications 

The starting block for this implementation was 

4 complex FFT, as described earlier. The 

performed on this program were as following 

1) The 1024 point radix 4 program performs five columns of 

radix 4 butterflies. To be able to split the FFT into 

two 512 point FFT's, the last column of the radix 4 FFT 

has to be split into two radix 2 columns. Thus the radix 

4 program effectively 

butterflies followed 

butterflies. 

becomes 

by two 
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2) The 1024 point input array was reduced to 512 points in 

which each complex point- contained a pair of consecutive. 

real samples. The address of each pair or complex point 

being calculated via a 9-bit ''bit-reversal". 

3) The code for the first four radix 4 columns plus the 

first radix 2 column reduced from 1024 points to 512 

points. 

4) A spectrum separation routine was created to split the 

two spectra (DFT(U) and DFT(j.V)) contained within the 

output of the 512 point complex FFT. The DFT(j.V) 

spectrum was also transformed to DFT(V) and joined onto 

the end of DFT(U) to form a 1024 point complex array. 

5) The final radix 2 column (of modification 1) can then be 

applied to the resulting 1024 point complex array of 

above, without further modification. 

No examples of the above TMS32010 code are given as it is all 

quite straight forward code. The only really new piece being 

the spectrum splitting, and this is just an exact translation 

of the equivalent code in the Fortran example. 

4.8 Final FFT program as implememted in IDDAS. 

The program coded for the TMS32010 as used in IDDAS and 

employing all the optimal features as described above is a 

real input, in place, decimation in time, radix 4, 1024 point 

algorithm, and takes only 17 ms to execute. Remembering that 

the complex input, radix 4 FFT took 27 ms to execute and the 

complex input, radix 2 FFT running on unoptimised hardware 

took 90 ms, it is apparent that very significant savings in 

computational effort have been made. This final program 

allows the overall throughput of data across IDDAS to be 1024 

points in 25 ms, i.e. in excess of 40 KHz,thus giving a real 
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time bandwidth of 16 KHz, this is described in the next 

chapter. 
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IDDAS concepts and description 

5.1 Introduction to IDDAS. 

The primary purpose of the Intelligent Dynamic Data 

Acquisition System (IDDAS) is to perform fast real time 

spectral analysis on signals obtained from engine/rig mounted 

transducers, and supply information in engineering units to 

engine drivers and development/measurement engineers to 

enable them to make decisions on engine health and test 

rescheduling. When IDDAS is combined with a host computer 

such as the PDP-11/73, together with a proprietary graphics 

card, a very powerful data acquisition, analysis and display 

system can be built, as will be shown in chapter 6. 

IDDAS is comprised of an arithmetic card and an acquisition 

card linked together via two 40 way ribbon cables. This card 

system allows a multitude of signal processing techniques to 

be realised, such as IIR/FIR filters, convolution, 

correlation, and FFT analysis, together with a post 

processing facility to enable data reduction of spectra, 

correlations, etc. 

The arithmetic card can perform a real 1024 point FFT in 17 

ms, then perform data reduction algorithms on the results and 

finally pass the information onto a host computer. The 

acquisition card can filter an analogue input (51 KHz 

maximum), digitise the input to 12-bits at up to 131KHz, and 

store up to 4096 current samples in a ring buffer. It can 

also count three clock (tache) inputs. The sample rate, 

filter cut-off and tache counter period are all programmable 

from the arithmetic card. The system has been designed such 

that other acquisition cards can easily be designed and 
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interfaced to the arithmetic card when specialised inputs are 

~ required. 

This chapter provides a technical description of the more 

~~-interesting and unique design features~~ of_IDDAS ·~~ This ~wilL 

hopefully give the reader a good understanding of the systems 

configuration and operation, without actually involving the 

mathematics of FFT analysis. 

The design and development of IDDAS is split into the 

following stages; 

1) Addition of a second TMS32010 processor to perform 

averaging, data reduction, etc. 

2) Development of a programmable acquisition interface. 

3) Acquisition of engine tacho signals for use in data 

reduction of spectra. 

4) Addition of a third TMS32010 to act as a ring buffer of 

sampled data to allow overlap of transformed blocks. 

5) Enable multi-channel input. 

6) Develop interface between IDDAS and a supervisory host 

computer. 

These stages are roughly in chronological order and cover a 

period of approximately one and a half years development (not 

including the TMS32010 FFT development) . Finally a 

description is given of how IDDAS can be used with a host 

computer. 

5.2 Transfer of spectra to a second processor. 

As described in chapter 4, the TMS32010 can perform an FFT in 

17 ms, however this is still in a complex form which must be 
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converted to magnitude to allow for further analysis. This 

operation takes between 10 and 20 ms (for 400 points) 

depending on the nature of the data and whether the output is 

linear or logarithmic. 

As earlier explained, it is not the spectrum that the host 

requires but the information within it, thus further analysis 

is still needed. The resulting information must also be 

passed onto a host computer for calibration and display 

purposes. 

performed, 

In a system where 

throughput can 

multi-processing architecture, 

arranged either for 

several tasks are being 

be increased by using a 

in general this can be 

1) parallel processing, each processor performing near 

identical tasks on a multiplexed input and output, or 

2) serial (pipeline) processing, splitting the overall task 

into smaller tasks for each processor. 

It was decided that a second processor configured in the 

serial or pipeline arrangement would be of most benefit for 

the following reasons 

1) There would be no duplication of programs. This is 

important because the TMS32010 can only access 4Kw of 

program memory. The radix-4 FFT itself requires very 

nearly 4Kw of memory which does not leave much left for 

further data reduction algorithms. Thus,with a pipelined 

system a further 4Kw of memory becomes available for 

further analysis algorithms 

2) Less hardware. If two processors work in parallel then 

multiplexing hardware is needed for the processors to 

interface with the input device (ADC) and the host 

computer. Timing circuitry would also be required to 

ensure that the two processors worked on different input 

data. The only hardware required for pipelined 
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processors is a simple latch and handshake facility 

between the processors. 

3) Simpler management of the board. In a pipeline system 

--specific--tasks---can .be allocated_to _each process_or _eg_. __ one 

processor can take care of setting sample rates and cut 

off frequencies, communication with the host, dealing 

with error conditions, etc, without risk of confliction 

with a parallel processor. 

4) Different processors. As different tasks are being 

performed by the processors in a pipeline structure, the 

processors can be chosen optimally to suit their tasks. 

For example, if the code in the second processor needs to 

be changed fairly often by someone not experienced in TMS 

32010 assembler code then a processor for which a high 

level language is available could be used (eg. a 68000 

running 'C') . 

It was decided to use another TMS32010 as the second 

processor as this gives a high level of compatibility, no 

learning curve (as might be required for an unfamiliar 

processor), and most importantly, high speed for further data 

processing. It was also decided to split the overall task 

after the FFT algorithm. 

Thus the first processor (referred to as the FFT processor) 

gets the input data, performs windowing, bit reversal, an FFT 

algorithm and then passes the resulting complex spectrum onto 

the second processor. 

The second processor (referred to as the Data Reduction 

(D.R.) processor) receives the complex spectrum, converts 400 

complex points to magnitude, performs ensemble averaging, 

performs some form of information extraction or data 

reduction algorithm specific to an application, and then 

finally passes the information onto 

also read three engine speeds, set 
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filter cut-off frequency. 

The only disadvantage with the pipelined structure is that 

data must be passed from one processor to the next which 

·obvrou·sly reduces data ·throughput.- However,- if -the _transfer 

is tightly controlled then handshaking delays can be kept to 

a minimum. Hand-shaking with the TMS32010 is limited to two 

asynchronous single line inputs; 

1} BIO, and 2} Interrupt. 

It was considered preferable to leave the D.R. processor 

interrupt line for use by the host computer, thus the 

transfer mechanism had to make use of the BIO line. To 

achieve the fastest possible transfer rates the following 

design was conceived, reference should be made to figure 5.1 

A simple latch with tri-state outputs (74LS374} is used as an 

intermediate store between processors, a D-type latch is used 

to clock out a '1' to the BIO of the·D.R. processor when data 

is written to the latches by the FFT processor and cleared 

when data is read from the latch by the D.R. processor. 

Assuming that the FFT processor always transfers a spectrum 

after each FFT, and that the D.R. processor is polling the 

BIO line waiting for the first data transfer of a spectrum, 

then it is guaranteed that the D.R. processor will respond to 

a change of the BIO line by reading the latch within a period 

of 0.8 to 1.2 ps. If the FFT processor then continues to 

output to the latch at regular periods, the D.R. processor 

will be able to read this latch at these regular periods 

without getting out of step or receiving corrupt data. This 

does of course rely upon the two processors using the same 

clock period, they do not have to use the same physical clock 

although this does add an extra level of reliability. Thus 

the handshake facility has only really been used in the first 

data transfer and the actual transfer rate 

word per 1.2 ps (6 instruction cycles} 

demonstrated. 
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As extra level of integrity can be incorporated which allows 

the ~.R. · processor to operate totally asynchronous to the 

operation of the FFT processor. This is achieved by 

including a small amount of protocol within the initial part 

-- of -the- aa·ti:i -blo-ck ··to a·llow- the -D-. R.- -processor .to _synchr:on.i,_s~ 

to the start of a transfer. This process allows the D.R. 

processor to start polling its BIO line whenever it requires 

new data and guarantees that the data will be good. 

This protocol is in the 

before the spectrum and 

from the data within the 

form of a code which is sent directly 

must of course be distinguishable 

there is one value 

spectrum. 

guaranteed 

When transferring spectra 

not to appear within the 

transfer, this being negative full scale ($8000). If this is 

thus transferred by the FFT processor directly before the 

spectrum, then the D.R. processor can check for it before 

accepting any further data. 

IFFT) 
LATCH 

ID.R.) 

16 16 
DATA D Q / DATA 

32ete' 
32918 

CK OE 

- ADD - m ADD f--
1iE D'EN 

' 
CK OE 8v 

' 3 
, 8 ,v ,- 3 

c c - D gl--
3:8 3,8 

LATCH 

HI I .. L D CLR 

CK Q 

Figure 5.1 - FFT to D.R. processor transfer logic 
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The timing diagram for the transfer is shown in figure 5.2, 

the actual code required-in each processor is as follows 

FFT Processor - - - - D.R Processor 

THRE99 EQU 399 THRE99 EQU 399 

STXFER EQU $8000 STXFER EQU $8000 

; ; 

LARP 0 

LARP 0 LAR O,THRE99 

LAR O,THRE99 OUT ZERO,RAMADD 

OUT SPECTRUM,RAMADD IN TEMP,LATCH 

; ; 

OUT STXFER,LATCH LOOPl: BIOZ LOOPl 

NOP IN TEMP,LATCH 

NOP LAC TEMP 

NOP ADD ONE,l5 

NOP BNZ LOOPl 

NOP NOP 

NOP NOP 

; ; 

LOOPl: IN TEMP,RAMDATA LOOP2: IN TEMP,LATCH 

OUT TEMP,LATCH OUT TEMP,RAMDATA 

NOP NOP 

NOP NOP 

IN TEMP,RAMDATA IN TEMP, LATCH 

OUT TEMP,LATCH OUT TEMP,RAMDATA 

BANZ LOOPl BANZ LOOP2 

There are four things to notice about this section of code 

1) The first "IN TEMP,LATCH" instruction is necessary in 

cases where transfers have already occurred from the FFT 

processor, this will clear the BIO line and allow the 

following "BIOZ" instruction to synchronise correctly. 
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2) The loop counter is initialised to 399 (giving 400 

loops) not 799, due to the- auxiliary register only being 

modulo 512 when counting. Hence the loop does everything 

twice. 

I Tn 1- I T n 1- ~--1 1-1 -I I -·1 I I I - -- -
!5MHz clock 

CONTROL I I DATA •1 I I DATA 12 I I WORD 
(FFT) u-WE u u u 

(o.R.) 
BIO ------' 

(o.R.) ------, 
DEii U u u 

Figure 5.2 - Timing for FFT to D.R. data transfer 

3) The delay between the first and second output of data 

from the FFT processor is 2 instruction cycles longer 

than that for the inputs to the D.R. processor, this is 

to change the initial output 

two processor from 0.8-1.2 ps 

to input delay across the 

to 0.4-0.8 ps. 

4) The two apparently spare NOP's in the D.R. code are there 

for multiplexing reasons, as will be described in 5.5. 

A spectrum block transfer between 

occur in just 960 ps, which means 

the processors can 

that it only takes 

thus 

18 ms 

from the FFT processor acquiring a full set of input samples, 

to 400 complex points of the resulting spectrum residing 

within the D.R processor memory. This is very much closer to 

a real time process than achieved by most systems!. 
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5.3 Programmable acquisition interface. 

To provide flexible data acquisition, the interface to the 

analogue world must allow variable sample rates with 

"cor-responding. ~variable_" anti~aliasing __ filter c_ut~o_ff 

frequencies. Most spectrum analysers provide a frequency 

scaling as follows 

Frequency 

Bans;!width l Hz l re;;;oll,!tion 

200 .......... 0.5 

500 .......... 1. 25 

1000 .......... 2.5 

2000 .......... 5.0 

5000 .......... 12.5 

10000 .......... 25.0 

20000 .......... 50.0 

50000 .......... 125.0 

Note that the bandwidth is limited to the 400th FFT filter. 

This type of scaling is not particularly 

analysis, or the TMS32010, as almost 

optimal for engine 

all data reduction 

algorithms relate 

the following type 

the signal spectrum to engine speed 

of equation to locate where the 

engine orders are within the spectrum. 

spectral filter = (engine speed * engine order) 

frequency resolution 

and use 

various 

where engine speed is in hertz. 

in the TMS32010 micro processor 

The above division performed 

is relatively slow (6.4 ps) 

and could be executed more efficiently if the denominator 

were a power of two thus allowing it to be replaced by right 

shifts. Also, ergonomic considerations have been made in 

selecting the above scale, in that humans prefer ranges such 

as 1000, 2000, 5000, 10000, this of course does not matter to 

a machine. Thus, taking into consideration the above points 
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it was decided to use the ranges shown below. 

Frequency 

Bandwidth (Hz, l R~~Q.!,ytion 

--- 200 ___ ·--•···-· . ·•···· .. 0.5 

400 . . . . ... 1 

800 . . . . .... . 2 

1600 . . . . .... . 4 

3200 .... . . 8 

6400 .. . . . . . . 16 

12800 . . . . . . .. 32 

25600 . . . . . ... . 64 

51200 . . . . . .... . 128 

This type of binary scaling also makes the hardware very 

straightforward, all that is required is a clock at the 

highest sample rate (131.072 KHz) and a simple divide by 

2**N, where N is programmaqle, (this exists as the 74LS294 

TTL device) . The clock frequency is in fact 40 times 131 KHz 

because the smallest divide capable by the divider is 4, and 

a divide by ten is required to generate signals with the 

correct mark space ratio for the ADC, ie. a clock frequency 

of 5.243 MHz is used. 

As stated earlier, the sampling rate will be programmed by 

the D. R. processor. To make the operation of the. ·FFT 

processor handle any sample rates selected by the D.R. 

processor, it must either be told the sample rate and make 

certain program adjustments, or simply not care. To reduce 

software complexity the second option is clearly favourable. 

To ensure that the processor can 

per conversion and that it does 

only read one piece 

not care about the 

of data 

sample 

rate, the configuration shown in figure 5.3 has been used. 

Basically the BIO line is ~et either when the "end of 

conversion" is unasserted or when a "read ADC" occurs from 

the processor, thus the processor will only ever see the BIO 

line asserted once per conversion (when it will read the 
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ADC), and never low during a conversion. Note that the 

·line is set a fraction before the next conversion 

triggered to allow for latency between the "BIOZ" and 

ADC" instructions. The timing diagram for this is shown 

--figui'e- 5. 4-.---

Ran_ INPUT F 
FILTE R 

S/H 

1/P 

0/P 
S/H 

liP 

RDC 
·~ DATA 

STATUS 

ST CONY 

01 
07 

BUFFER 

• 
De DB 8E 

I 
I 

OE 

328UJ 
D 

08-07 • DATA 
16 

BUFFER 

LD I BiD 
ROD -

DIY IDE DEN 
SY 18 P1 L-e•_• I • 

CK CLR 

I 
c 

3:8 r-
'---• • DATA • 4 CODE PASSED FRO" DIY BY D D.R. PROCESSOR 

2N CK CK LATCH 

Figure 5.3 - Sampling and digitising logic 

--~~~~--------~r-1~-------

ADC STATUS --------~ 

• 
BIO --------~r-l--i r 

READ ADC----------------------~r--------------------

3 

Figure 5.4 - Timing for sampling and digitising logic 
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Having made the sample rate programmable, the anti-aliasing 

filter cut:...off. frequency must also be made· p!'og-rammable. This. 

is not a simple task as the filter must have a roll-off of at 

least 120 dB per octave and a stopband attenuation of 60 dB. 

'!'his- specificati-on ·ensures that -al-l - alia sed signals _are_ 

attenuated by at least 60 dB between d.c. 

filter. Switched 

National Semi MF 

capacitor filters were 

10), but these have a 

and the 400th FFT 

considered (eg. 

maximum cut-off 

frequency of 30 KHz and also give significant third order 

harmonic distortion. A 20 pole programmable analogue or 

digital filter could have been designed in house but this 

would have presented a significant demand on time and 

resources. As luck would have it, KEMO Ltd produced a new 

range of programmable filter board products in mid 1985. One 

of these was an 8-bit (256 binary step) programmable 

elliptical filter with any base cut-off frequency up to 200 

Hz, a roll off of 135 dB per octave and a stop band 

attenuation of 80 dB, and all on a standard size euro-card!. 

One of these Kemo filter cards (VBF33) with a base frequency 

of 200 Hz, allowing a top cut-off frequency of 51.0 KHz 

(255*200) was grafted into IDDAS. [Note that Kemo were not 

interested in licensing the art work] . The values required 

to set up the input sampling and corresponding anti-aliasing 

filtering are shown below 

Code to Code to 

BgnQ,wiQ.th DiviQ,~r F ilt~:r 

200 $A $FE 

400 $9 $FD 

800 $8 $FB 

1600 $7 $E7 

3200 $6 $EF 

61!00 $5 $DF 

12800 $4 $BF 

25600 $3 $7F 

51200 $2 $00 
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Thus control over input acquisition is managed purely by the 

D .-R. processor, -which may obtain its .commands from a_ host, 

and everything has been made completely transparent to the 

FFT processor. 

5.4 Engine speed acquisition. 

Nearly all data reduction algorithms require engine speed as 

one of the parameters, eg. location of fundamental frequency 

for vibration, or Nth engine order for blade flap analysis. 

The analogue speed signal from the majority of engines is a 

60 pulse per rev output, ie. the output frequency is equal 

to revs per minute. To measure speed in hertz it is simply a 

matter of counting pulses (R) for a pre-determined period (T) 

and then using the equation 

Speed = R/(T*60) Hz 

The timing period dictates how precisely speed is measured. 

If pulses can be counted during the timing period to within 

±1 pulse of the true value (the significance of one pulse is 

explained in figure 5.5), then the precision of the 

calculated speed is 

Precision = [1/(60.T)] Hz 

If T is large then at constant speeds we obtain high 

precision, however during engine manoeuvres it will cause 

significant errors due to the non-stationary signal, in this 

case a more reliable result will be obtained (at the time of 

reading the counter) if a smaller value for T is used. For 

most situations it was considered that 1/4 second would be 

suitable, this conclusion was reached after considering the 

following worst case situation. 
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1) Sample rate = 1024 Hz; Thus resolution = 1 Hz. 

·2) FFT filter number of 15th engine order required. 

3) Algorithm can look either side of filter for peak. 

-=>-Precision of speed-measurement. must be to ±l/15 __ Hz. 

(ie. ±1 Hz. at 15th engine order) 

Therefore => Counter period (T) = 15/60 1/4 second. 

TACHO 
INPUT -

FREQ. READ = ~ 
ACTUAL FREQ. • 

JUST > 4 

FREQ. READ • 3 
ACTURL FREQ. • 

JUST < 4 

HL_ 
Q 

Q CLR 
r- CK_ 

CLR TIMER 
I Q 

I 
CLR CLR 

ZERO - - CKEN OY CKEN 
X' INC 

;- CK_ Q l - CK Q 

OE OE 
I 

( ONE SECOND ----4' I 

Figure 5.5 - Tache counter logic. 

COUNTE R 
I'LATCH 

16 TO D .R. 
PROC. 

The circuit used 

in figure 5.5. 

second timing 

to perform the counting and timing is shown 

The best device found to perform the 1/4 

was the PX0-600, this is a programmable 
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timer/oscillator which will also allow time periods other 

than l/4 second to be used ... By_ using three of the top four 

bits left spare from the sample rate and filter programming 

word, the timing interval can be selected from one of the 

.. follow.ing by the D .. R. processor 

Bit 14 13 12 Timing Period C Se cl 

0 0 0 0.0833 

1 0 0 0.8333 

0 1 0 0.1667 

1 1 0 0.2500 

0 0 1 0.3333 

1 0 1 0.4167 

0 1 1 0.5000 

1 1 1 1.0000 

Note that the D.R. processor does not need to synchronise 

its speed readings with the elapse of the timing period. The 

devices used (74LS590), and the special way they are 

connected, means that they are only updated at the end of 

each timing period, but that they can be read at any time 

without upsetting the timing period or the contents of the 

counters. Quite simply, the speed reading obtained will be 

that due to the last timing period. It should however be 

noted that once a timing period has elapsed, then the next 

period will not start until the counters have been read, i.e. 

they are not free running. 

Analogue tache signals can vary in amplitude from ±1 volt 

peak to ± 30 volts peak. To cope with this, National 

Semiconductor LM1815 zero cossing detector chips have been 

used to buffer the tache inputs and to trigger the counters. 

These devices will allow an input of up to 40 volts peak and 

incorporate adaptive thresholding to reduce triggering on 

noise. 
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5.5 Ring buffered input data. 

The need for a ring buffer between the FFT processor and the 

ADC which allows the FFT processor immediate access to 1024 

samples of data-, came. about. from _the following .considerations 

1) Although the FFT algorithm has been heavily optimised_and 

tailored to run efficiently on the TMS32010, thus keeping 

the computation time to a minimum, it is of little 

consequence if the FFT processor then has to wait for up 

to a second to obtain the next 1024 sample points 

directly from an ADC (1.024 KHz sample rate). 

2) The integrity and smoothness of a spectrum can be 

improved by ensemble averaging, as this tends to push 

down the noise floor and steady the amplitudes of the 

larger signals. Averaging however, slugs the response of 

transient changes within the spectrum and could result in 

averaging time constants of many seconds if spectra are 

not available fast enough. 

3) Statistically, the best results are obtained from FFT's 

if their input data is overlapped, this is especially 

true when windowing is used, as is the case. It has been 

shown by A.H.Nuttal [33] that to obtain 98% of the signal 

energy density function then the overlap should be at 

least 60% (window dependent) . 

Hence faster throughput and overlapping of data is of 

significant benefit to the system. To enable this a ring 

buffer is required between the ADC and the FFT processor. Its 

task is to keep a buffer of the most recent 1024 samples 

(effectively storing the latest sample by over-writing the 

1025th previous sample) and at the same time make the buffer 

available, on request, to the FFT processor. This is not a 

trivial task as the input data from the ADC may appear at a 

rate of up to 131KHz (one per 7.6 ps) and at the same time a 

transfer to the FFT processor must occur as fast as possible. 
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To achieve this task a third TMS32010 has been employed!. The 

multi-tasking type operation is enabled by inputting data 

under interrupt control, and outputting data under BIO 

~ ~ __ c.o_n_trol. Each task has been made transparent and asynchronous 
·--- ·-----

to the other. ---- --

The input interrupt service routine simply reads in data from 

the ADC, increments the ring buffer address and then stores 

the data at the new address. Note however that this 

interrupt routine must be as efficient as possible because 

when an output block transfer is also being performed, the 

interrupt service routine will steal valuable processor time 

and cause longer transfer times to the FFT processor. 

The output routine, when signalled by the BIO line, outputs 

the most recent 1024 samples to the FFT processor. The 

output timing being such that the samples do not appear to 

the FFT processor faster than it can cope with, noting that 

windowing and bit reversal is still performed between each 

sample by the FFT processor. The minimum time in fact being 

4.6 ys per sample, hence if no interrupts occur during the 

block transfer, the transfer will take (1024*4.6) 4.6 ms. Of 

course when there are interrupts, as there inevitably will 

be, the transfer takes longer and at a worst case sampling 

rate of 131 KHz it will take 6.6 ms. 

The ring-buffer hardware is shown in figure 5.6 and the 

software in Appendix D. The ring-buffer operates as follows 

1) Input samples are read in from the ADC upon receiving an 

interrupt generated by a negative edge from the ADC 

status (end of conversion) . 

2) The output block transfer starts when the FFT processor 

latches a '1' onto the ring-buffer BIO line, the block 

length is not fixed but continues until the FFT processor 

resets the BIO line. Note that the data transfer starts 
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with the most recent sample and works backwards through 
the buffer. 

-·3r -The -ring- buffer_ si:;:e is actually 40 96 samples, this is 

necessarily larger than 1024 to stop -input samples-- -from. 

being written over the end of the 1024 point transfer 

buffer when sampling at high speed, i.e. if the transfer 

,....---

-

' r-3 

block size is 1024 

inputted for one 

large memory size 

buffers (eg. for 

(R.S.l 
I~ 

DATA 7 
BTci 

32819 
8/ v 

ADD 

WE 

samples then up to 3 samples can be 

output before overwriting occurs. The 

also provides contingency for larger 

2048 point FFT' S) • 

HI 
LATCH 

16 
(FFTl 

I) Q DATA 

32818 - / 

CK OE / 8 

BIO ADD -
DEN WE 

CK OE L 
'-- I) Q f.-- v 

3 
c LOW c 

'--
LATCH 

3,8 3,8 

t I 
D CLR c 

Q f--
CK r 3,8 

CLR PR 
Q 

Figure 5.6 - Ring buffer logic 
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4) Each output to the latch between the ring-buffer and the 

FFT processor, sets the FFT processor BIO high and each 

input from the latch to the FFT processor resets the BIO 

line (this exactly emulates reading the ADC as described 
-fn -s.-3).- ·----. 

It should be noted that overlap of the sample blocks which 

are sent to the FFT processor, does not occur for all 

sampling rates up to 131 KHz, the break point is in fact 

around 44KHz (17KHz bandwidth), as shown below 

1) Time for FFT -> 17 ms, 

2) Time for transfer from ring buffer to FFT 

processor -> 5.2 ms, 

3) Time for transfer from FFT processor to D.R. 

processor -> 1 ms. 

Total time for throughput of 1024 samples : 23.2 ms. 

:>Sample frequency: 1/(0.0232/1024) : 44_KHz. 

Hence if we sample faster, the ring buffer will have gathered 

more than 1024 samples between block transfers and data will 

be missed, and if we sample slower the ring buffer will 

receive less than 1024 samples between block transfers and 

overlapping of the blocks ~ill occur. 

The main point to note however, is that no matter what the 

sample frequency is, there will always be approximately forty 

spectra per second available to the D.R. processor for 

averaging and analysis. 

5.6 Multi-channel input. 

In many situations the signal bandwidth is much lower than 

the real-time bandwidth capability of the system described so 

far. Indeed in many cases lost sample data is also of no 

importance. Under these circumstances the system can be made 
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to operate more economically if multi-channels are allowed. 

The system has thus been designed such that up to sixteen 

acquisi~~n- ~ards can b~ paralleled into one arithmetic card. 

To enable this- fac-ilfty'tne- o-: R.- p·rcYcessor-i-s -able--to output- --­

in software a four-bit address to the acquisition cards. 

These cards each then have a four-bit toggle switch to enable 

any one of sixteen decode addresses to be set up. Only when 

the addresses match will data be allowed to flow to and from 

the arithmetic card and an acquisition card. It can be seen 

that the real-time bandwidth of any one channel is now 16 KHz 

divided by the number of acquisition cards. 

The time at which the D.R. processor changes channel number 

is very critical, it must be ensured that it does not do so 

while the FFT processor is part way through an input from a 

ring-buffer (as both are on different cards} . This can be 

done by outputting the new channel number at the start of a 

spectrum transfer from the FFT processor to the D.R. 

processor. At this point the FFT processor will have just 

finished an FFT and be just starting the 400 complex point 

transfer, and thus will definitely not be involved with a 

data transfer from one of the acquisition cards. It should 

be noted that the FFT processor neither knows nor cares from 

which acquisition card it receives its input data. 

The channel number output instruction replaces the two 

"NOP's" found in the D.R. processor transfer code (see· 

section 5.2}, the code now being as follows 

LOOPl: BIOZ LOOPl 

IN TEMP,LATCH 

LAC TEMP 

ADD ONE,l5 

BNZ LOOPl 

OUT NEWCHANNEL,CHANNUMBER 

LOOP2: IN etc 
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_Ngt_e that the channels can be accessed in any order, or in 

fact in disproportionate amounts, ie. one channel could be 

accessed every other time while the others would be accessed 

_ in_b~~ween, thus if there are eight channels, the first would 

have a real-tim~ bandwidth of 8 -KHz while -the others -would---­

have bandwidths of 1 KHz. 

This facility also allows a multi-input interface card to be 

designed were the channel number actually switches a 

multiplexer and the FFT processor then directly reads an ADC 

which is sampling the output of the multiplexer. This makes 

for a very economical system which is ideally suited to slow 

scan engine health monitoring type applications. 

5.7 IDDAS to host interface. 

One of the main objectives behind the IDDAS project was the 

requirement for a front end signal processing system which 

could quickly and easily communicate with a central data 

gathering and administrating host. This host would typically 

be situated within the test bed control room and could vary 

in computational power from an 8-bit micro such as the Syntel 

MC6809 computer to a 32-bit mini such as the Masscomp 5000 

series or a Vax, though typically would be a PDP-11. 

The following design 

interface configuration 

constraints were imposed on the 

1) The interface should not use excessive amounts of host 

memory. 

2) It should provide a directly accessible bidirectional 

control/status register. 

3) Interrupts should be available in both directions. 

104 



CHAPTER 5 IDDAS concepts and description 

4) The host should be able to transfer arrays of up to 2048 

points to and from the D.R. processor. 

5) The host should be able to download programs from host 

memory/cli-sc ·to-the ·o.R. processor;- the r-ing-buffer and 

FFT processor programs remaining fixed in EPROM. 

When considering computer to computer 

generally one of the following types of 

1) serial data transfer, e.g. RS232, 

communication links, 

interfaces is used 

2) parallel data transfer, e.g. IEEE 488, 

or 3) direct memory to memory transfer, e.g. via globally 

shared memory or DMA transfers. 

The transfer needs to be fast which eliminates serial methods 

and to some extent parallel methods due to the handshake 

overheads. Memory to memory transfers under processor 

control typically allow transfer rates of up to 500 Kb/sec, 

whereas DMA transfer can be at least twice this speed but 

does require added hardware and is not particularly flexible. 

It was considered that a shared global memory approach was 

best suited to IDDAS due to its ease of implementation, speed 

and flexibility. 

Most data transfers to and from the host computer will 

consist of an array of data varying in length from perhaps 10 

values (eg. 10 largest peaks in a spectrum) to 2048 values 

(eg. a complete complex spectrum), and the data arrays will 

almost always be in contiguous memory locations. Under these 

conditions it would be wasteful and prohibitive to directly 

map large areas of shared memory into host memory space. By 

employing an addressing technique similar to that used to map 

ram into the TMS32010 I/0 space (ie. by implementing an 

auto-incrementing address register) the actual amount of host 

memory locations required can be kept to a bare minimum. 
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Infact this approach allows the whole memory block to be 

accessed via only two--memory-locations. Including a third 

location for the status/control register we have 

MemQ~;:,:: agdr~ss W~;ite R~ad 

0 IDDAS control, reset IDDAS status 

interrupt, etc 

1 Memory data in Memory data out 

2 M~mor:,:: addr~ss nQJ; l,lS~d 

The main problem with global memory is that only one 

processor can access it at any one time, also ~he TMS32010 

can not tri-state its data and address buses. Therefore to 

allow both the TMS32010 and the host access to the same 

memory, dual port memory is 

implemented with standard 

required. 

static ram 

Initially this was 

tri-state transceivers, however 

and multiplexed 

in late 1985 Integrated 

1Kb and 2Kb fully implemented 

was followed in early 1986 by 

Devices Ltd began marketing 

dual port ram devices (this 

Advance Micro Devices with pin compatible devices}. This 

enabled a neat and compact way of providing a shared memory 

between IDDAS and a host. The D.R processor accesses the 

dual port memory as part of its normal I/0 mapped ram and the 

host accesses it as described above. 

The hardware configuration showing memory and status/control 

implementation is shown in figure 5.7, note that 2Kw of dual 

port ram has been allocated for bi-directional transfer of 

variables, spectra, etc, and 2Kw for downloading programs 

from the host to the D.R processor. 

The status/control register becomes very useful during 

periods of data transfer to stop memory contention occurring, 

ie. the status/control register can be used for handshaking 

and allowing only one processor to access the global memory 

at any one time. A typical sequence of events might be as 

follows 
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Figure 5.7- D.R. processor/host computer interface 

The TMS32010 D.R. 

conversion, averaging, 

processor performs 

data reduction, etc, 

magnitude 

and also 

periodically polls the host status register and tests the 

state of a specific bit (e.g. bit-2) to see if it has 

been set by the host, the state of this bit indicating 

whether the host is requesting access of the global 

memory or not. Note that any bit in this register can be 

used, but that it is not wise to use bit-0 or bit-1 as 

these are used to reset and interrupt the D.R. processor. 

When the D.R processor finds bit-2 of the host status 

register set, it sets a bit in the host control register 
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(eg. bit-3) as an acknowledgement, and then either sits 

in a tight loop continuously polling bit-2 until it is 

reset, or performs some other task which does not require 

access to the global memory, while also periodically 
- - p~o-lUng bit-2. -

After seeing the D.R. processor acknowledgement, the host 

can then transfer data from anywhere between $000 and 

$7FF of the global memory to its own 

later analysis, finally resetting 

completion. 

private memory 

control bit-2 

for 

on 

The D.R. processor, upon seeing this change of bit-2, 

resets bit-3 of the host control register and continues 

with its normal tasks. 

Note that the status and control registers as seen by each 

processor are completely separate, so in the above case both 

the host and the D.R. processor could have used bit-2 for 

their respective messages. There are of course many other 

protocol schemes based on this theme where for example the 

host is master and IDDAS the slave, or where interrupt 

control is used for faster responses .. But the .overall idea 

is that the risk of shared memory corruption by dual 

accesses upon the same memory locations is negligible. 

The host can download programs to the D.R._ 

writing to the dual port ram at address $800 

processor by 

and above. 

However it should be noted that, although the TMS32010 can 

access 4Kw of eprom memory, only 2Kw of dual port program 

memory is available. To download a program, the host must 

first set bit-0 of the control register to reset the D.R. 

processor, and then transfer the TM$32010 binary code to the 

dual port ram from location $800 onward. Bit-0 can then be 

reset to allow the processor to restart. As with eprom based 

programs, the first memory location must contain the reset 

vector. Note that a two position link is provided to swap 

between an eprom or a dual port ram based program. 
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5.8 Hardware configuration. 

Having explained the concepts behind the design of IDDAS, 

__ there now follows . a concise _description of _the har.dware 

configuration, control codes and protocol necessary to drive 

the system. It should be remembered that the FFT processor, 

the data reduction processor and their immediate peripherals 

are housed on the arithmetic card, and the ring-buffer, 

programmable filter, sample/hold, ADC and the three tacho 

counters are housed on the acquisition card. Circuit diagrams 

of the two cards are shown in appendix E, card inter­

connections, analogue inputs and outputs, and all switch 

settings are covered in detail in the author's Rolls Royce 

report EIR00987 [10]. 

photographs 5.1 and 5.2. 

The two cards are also shown in 

5.8.1 Memory mapPing. 

All three IDDAS TMS32010 processors can access the full 4Kw 

of program instructions in eprom, note that 8Kb eproms with 

150ns access times are actually used, as 4Kb eproms with 

150ns access times are not commercially available. The D.R 

processor can alternatively 

instructions in dual port memory 

access 2Kw of program 

(selectable by a link) for 

which the host computer also has access and is responsible 

for programming. 

Due to the TMS32010 limitation of only having 144 words of 

ram (all on-chip), all three processors have been given extra 

I/0 mapped ram to accommodate the large arrays which are 

used. Each processor has one output port interfaced to an 

auto-incrementing address register, and an input/output port 

interfaced to the ram data bus, note that reading or writing 

to the latter increments the address register. Note also 

that 2Kw of the D.R. processor's I/0 mapped ram is dual 

parted and accessable by the host to facilitate data 

transfers. External ram for each TMS32010 is mapped as 
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follows 

Ring-buffer· 

FFT processor 

-D .. R. processor 

$0000 

$0000 

$0000 

$2000 

IDDAS concepts and description 

-> $0FFF static ram 

-> $0FFF static ram 

-~- $1FFF static ram 

-> $27FF dual port ram 

The host computer addresses the above dual port ram from $000 

to $7FF and the program instruction dual port ram from $800 

to $FFF. These are also addressed via an auto-incrementing 

address register. 

5.8.2 Input/output port addressing. 

The TMS32010 can address up to 8 bidirectional 16-bit ports 

which it uses to output control codes to, and input data 

from, the real world. These are configured as follows 

p 

0 

1 

2 

3 

4-

R 

ADC 

Ram data 

RING-BUFFER 

110 

Wr' 

12-bit DAC 

Parallel link to FFT 

processor 

Ram address register 

Ram data 
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FFT Processor 

Port Read Write 

0 End transfer 

1 ADC/Ring_ buffer-- ____ Start transfer 

2 

3 12-bit DAC 

4 

5 

6 

7 

Ram data 

1_0_-Bit rPversal in 

Parallel link to D.R. 

Processor 

Ram address register 

Ram data 

10-Bit rever~a1 out 

A read from the 10-Bit reversal register returns the reversed 

lower 10-Bits of the last input to the register, the top 

6-Bits always return zero, for example 

Port 

0 

1 

2 

3 

4 

5 

6 

7 

D.R. Output = $0100001110011001 

D.R. Input = $0000001001100111 

D.R. Processor 

RP;orl Write 

Counter/speed 1 Counter/Sample/rate 

Filter cut-off control 

Counter/speed 2 

Counter/speed 3 

Host status Host control 

register register 

Parallel link FFT DAC 

processor 

Ram address 

register 

Ram data bus Ram data bus 

Channel number 
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The "Counter period/Sample rate/Filter cut-off" control word 

is confi~uted as follows:-

Bits 0 -> 7 Filter cut-off frequency. 

-sits 8 --> -11- . - Sample -rate. -

Bits 12 -> 14 Counter period. 

The sample rate control bits are shown below together with 

the filter cut-off control bits necessary to provide anti­

alias filtering after the 400th line of a 1024 point FFT. 

Sampling Band-

frequency width Resolution Control bits 

->11 

0.2 0.5 $FE $A 

1.024 0.4 1 $FD $9 

2.048 0.8 2 $FD $8 

4.096 1.6 4 $F7 $7 

8.192 3.2 8 $EF $6 

16.384 6.4 16 $DF $5 

32.536 12.8 32 $BF $4 

65.536 25.6 64 $7F $3 

2 1 2 12 2 

Timing Bits 

Ps:riod (~!;;:C) 14,13,12 

The counter period 0.0833 0 0 0 

control bits are 0.8333 1 0 0 

as opposite - 0.1667 0 1 0 

0.2500 1 1 0 

0.33:33 0 0 1 

0.4167 1 0 1 

0.5000 0 1 1 

1,QQQQ ). 1 l 
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The D.R. processor to host computer status/control bits are 

wired as follows 

.J:!C>St control register: 

(D. R. stauts register)---

D.R. control register: 

(Host status register) 

Bit 

Bit 

Bit 

Bit 

Bit 

0 

1-7 

0 

1 

2-7 

Host interrupt 

-General purpose_ 

Reset IDDAS 

D. R. interrupt 

General purpose 

Note that a 12-bit DAC has been included as an output for 

each of the three processors. These are primarily intended 

as debugging and diagnostic aids but may also have uses in 

real applications. 

5.9 Host interface and addressing. 

The majority of, and certainly the initial, applications that 

IDDAS will be employed in, involve interfacing with a PDP-11 

mini computer. For this reason the two cards making up IDDAS 

have been constructed to Q-bus quad-card dimensions and 

designed to draw their +5 volt supply directly from the 

Q-bus. The ±15 volt supply for the analogue circuitry is 

generated by a de to de convertor on the acquisition card. To 

make the PDP-11 interface compact and reliable but also to 

make it possible to interface IDDAS to other computers, two 

versions of the arithmetic card have been designed, as 

follows 

1) This version has an on-board, commercially available 

standard Q-Bus interface, this provides all the necessary 

decoding and address selecting for four contiguous 16-bit 

registers, plus interrupt control and interrupt vector 

address selection. Two sets of toggle switches allow the 

interface to be mapped anywhere within the standard 

PDP-11 I/0 page (16000-177770 octal) and the interrupt 

vector to be anywhere between 000 and 376 octal. The 
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three -interface registers !Status/control, address and 

data) are accessed using the first thre~ of these four 

decoded addresses. Note also that the fourth location is 

·used-to enable/dis<?-l:Jle the interrupt request onto the 

Q-bus. This arithmetic card ~an be plugged directly into 

a PDP-11 computer with no additional circuitry. 

2) This version is exactly the same as the above, except 

that there is no PDP-11 interface circuitry, instead, the 

three interface registers are accessed via a 34 way IDC 

connector. Thus when using this card, an additional 

interfacing circuit is required between it and the host 

backplane. A circuit to perform this ~ith the BBC 

micro-computer has been designed and is in use at R.R. 

Leavesden. 

The arithmetic card shown in photograph 5.1 is intended for 

use with a PDP-11, i.e. version 1. The four registers 

described in this version are shown below 

M§mQr:i ss:idrs:s:> Writ§ R!i:aQ 

0 IDDAS control, reset IDDAS status 

interrupt, etc 

1 Memory data in Memory data out 

2 Memory address not used 

~ In:t ensbleL9issble 

The interrupt request signal is enabled by writing "1" to 

location 3 and is disabled by writing "0". 

5.10 IDDASLPDP-11 in:terfsce sQf:twsre. 

Having provided an interface between IDDAS and the Q-bus, it 

was then necessary to provide a set of standard software for 

the IDDAS D.R. processor and the PDP-11, so that application 

software can easily and quickly be written. The intention 

being that Fortran programs within the PDP-11 can set up 
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IDDAS for selected bandwidths etc, and then call in a 

spectrum whenever required for manipul~tion, information 

extraction, display, etc. Having developed and tested the 

···-data-reduction_alg9rit:.hms in this high level enviroment, the 

algorithm can then be reprogrammed--for- the - -TMS320-10. --D. R. _ 

processor itself. Note however, that if the high level 

Fortran program is not short of time, there is no reason why 

the application program should not remain in Fortran and 

continue to use the standard software. This standard software 

is briefly as follows; 

IDDAS: The ring buffer and FFT processor software remain as 

described earlier in this chapter, i.e. 400 spectral 

complex points are available to the D.R. processor 

approximately 40 times every second. The D.R. 

processor software (in eprom) contains routines to 

convert the 400 complex points to logarithmic or 

linear magnitude and to perform five different levels 

of exponential averaging. The selection of one of 

ten routines, as well as the selection of one of nine 

bandwidths, is determined by a control code contained 

within the shared ram which must be set up by the 

PDP-11. The resulting spectra are then stored in the 

shared ram also making them available 40 times a 

second to the PDP-11. 

PDP-11: Several routines have been written in PDP-11 

assembler which can be called from Fortran programs. 

These allow such things as, downloading code from a 

disc resident file to the D.R. processor's 

instruction dual port ram, uploading or downloading a 

data array anywhere in the D.R. processor's shared 

ram, issuing an interrupt to the D.R. 

enabling/disabling interrupts onto 

processor, 

to Q-bus, and 

type/averaging setting up the bandwidth/magnitude 

control code. 
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Note that some of the PDP-11 routines rely on the standard 
IDDAS software being re-sident; but others, such- as . IDDAS 

reset, can be used with any D.R. processor software. All the 
above 

Rolls 
routines are listed and documented in the author's 

Royce report- -EIR01064. [ 1"1] ; - -Figure 5. 8 -shows an 

overview of the IDDAS hardware and the timing sequence of 

data through it. A more detailed schematic showing individual 

parts is shown in figure 5.9. 
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Figure 5.8 - Overview and general timing of IDDAS 
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Photo 5 . 1 - IDDAS Arithmetic card 
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Photo 5 . 2 - IDDAS Acquisition card 
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CHAPTER 6 

6.1 Applying IDDAS to test facility dynamic signal analysis. 

Throughout the design and development of the intelligent 

dynamic data acquisition system, there were many meetings and 

discussions held between the author and the measurement 

engineering, engine development, and data analysis areas of 

Rolls Royce. These concerned the type of data analysis, 

information extraction and real time dispiays that would be 

most useful and practical within aero engine test facilities. 

The details obtained from these meetings ensured that the 

IDDAS hardware covered as many of the potential applications 

as possible, and in the later stages, enabled basic 

application programs to be written to demonstrate to 

potential users the abilities of IDDAS using replayed engine 

signals. 

The demonstrations of the prototype IDDAS unit working with a 

PDP-11 and a graphics generator on real, although replayed 

signals, showed its ability to analysis dynamic signals and 

determine engine health as laid down by certain criteria. 

These type of demonstrations had previously only been 

performed with large and expensive computing equipment, and 

thus served to spur on the use of many IDDAS units in real 

test facility applications. 

The first 

described. 

two real applications 

It should be noted 

of IDDAS are now briefly 

how different the two 

applications are, demonstrating the versatility of both the 

software and hardware. The first application centres upon 

the speed at which spectra can be inputted into a PDP-11 
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CHAPTER 6 IDDAS Applications 

computer for calibration, minor analysis, and display. The 

second centres upon the facility to perform data ·reduction on 

multi-channel inputs, prior to · transfering 

information to a PPP-11 computer. 

extracted 

6.2 Aero engine real time health monitor. 

There are many occasions when the spectral content of a 

signal received from an engine transducer is not understood 

enough to enable data reduction algorithms to be defined. 

This is particularly the case when new engines or engine 

parts are being developed. On such occasions it is usually 

necessary to monitor the health of the engine or engine part 

during test running. Prior to the development of IDDAS, this 

was performed by watching the display of a spectrum analyser. 

The results obtained from this type of analysis are 

subjective and limited to observing instantaneous amplitudes 

at particular resonances. No trend analysis is performed and 

thus changes to the engine test schedule or test guidelines 

can not be made until a tape recording of the same signal has 

been passed through the off-line and remote dynamic data 

analysis and reduction system some time later. 

the engine may have already been derigged or 

damaged during continued running. 

In many cases 

worse still 

Thus a requirement rose for an instrument which could provide 

a spectrum analyser type display, a history of spectra for 

trending, and a quick look facility showing such things as 

engine speeds, and amplitude and frequency of component 

resonances. It was also a requirement that such things as 

engineering units, scale ranges, spectrum bandwidths and test 

remarks/titles be selectable via menu driven tables. During 

engine running, the spect~a also needed storing to enable 

replays, post analysis and hard copies of results to be 

produced immediately after an engine manoeuvre. 
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6.2.1 Hardware. 

·The standard test bed computer and graphics system used by 

the authors department (Electronics and Measurement 

- te-chniqu-esf at· the time-of' this· design -was the· PDP-11/-73 with 

an 80Mb. winchester and a Gresham Lion SBD-B graphics card 

and high resolution monitor. The graphics card plugs directly 

into the Q-bus backplane, provides a 574x768 pixel colour 

display and comes with a suite of powerful Fortran drawing 

routines. The majority of the above specification can easily 

be performed by this hardware, except of course for the data 

acquisition and spectrum analysis. This is where IDDAS 

becomes vital, being able to transfer up to 4.0 spectra a 

second to the PDP-11, and in allowing the PDP-11 to tell it 

which of the nine possible bandwidths (200 Hz to 52 KHz) to 

use. Note also that IDDAS can transfer to the PDP-11 three 

engine shaft speeds. 

6.2.2 Application software and operation. 

As mentioned in the 

development software had 

last chapter, a set of standard 

already been written for IDDAS and 

the PDP-11, which allow IDDAS to be set up for bandwidth, and 

spectra to be inputted into the PDP-11 via high level Fortran 

calls. By using these standard routines (note that no data 

reduction is required from the D.R. processor) very little 

signal processing is required by the Fortran program. In 

fact the bulk of the application software is concerned with 

the relatively simple tasks of data manipulation for 

displaying and storage and with performing minor analysis 

such as finding the amplitudes and frequencies of the largest 

resonances. Essentially, the PDP-11 sees the spectra as 

nothing more than 400 point integer arrays that could have 

come from any memory resident peripheral device. 

Calibration is performed by inputting into IDDAS a sinusoid 

of amplitude equal to some predefined engineering unit. The 
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resulting spectra are transfered by the usual means into the 

PDP-'11 and the amplitude of·the respective peak (in "banana" 

units at this stage) is stored for later use. Assuming that 

IDDAS is set up for linear output, then during normal running 

·the-spectrum input-·va·lue -are· -simply-divided by the -previously-­

stored calibration figure to convert them into calibrated 

engineering units. 

applied to data 

Thus it can 

as 

A high 

it passes 

level and 

be seen that the actual gain 

through IDDAS is of no 

slightly simplified flow consequence. 

diagram of 

figure 6.1. 

the real time part of this program is shown in 

The display produced by this program is shown in photo 6.1, 

note that the signals used to generate this were from a 

signal generator and not an engine transducer. A more 

realistic picture is shown in figure 6.2, this shows the 

vibration signature of an RB211-524D4 undergoing a two minute 

acceleration. Note that this figure has been produced by the 

replay facility of the machine on an ordinary dot matrix 

printer (hence being black and white) within the test 

facility itself. 

Other points to notice are; 

The two history plots (right hand side of picture) rotate 

around a four minute axis. 

Up to 99 events can be marked anywhere on the time axis 

to allow post analysis at these points. 

A marker can be moved up and down the spectrum plot, 

amplitude and frequency details at the marker are given 

in the table. 

The relationship of the three largest peak frequencies 

and of the spectrum marker frequency to any one of the 

shaft rotation frequencies is also given in the table. 

More information on this system can be obtained by refering 

to the Rolls Royce manual EIR14163. At the time of writing 

this thesis there were twelve of these systems installed in 

one of the Rolls Royce Derby site test facilities, enabling 
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very intensive monitoring 

compressor in the V2500 gas 

of the latest 

turbine engine. 

Reset IDDAS. 

Set up IDDAS to selected bandwith, 

linear output, and no averaging. 

Draw axes and labels of 

all graphs and tables. 

Get spectrum and speeds from IDDAS, 

Calibrate whole spectrum, 

Find amplitude and frequency of 

three largest resonances, 

Plot spectrum as a graph, 

Plot spectrum using density, 

Plot amplitude of largest peak and 

the three shaft speed readings, 

Fill in table with details of the 

Rolls 

shaft speeds and the three largest peaks. 

Figure 6.1 - Flow diagram of Real time monitor 
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6.3 Digital vibration system. 

Aero engine vibration is found by measuring the conditioned 

signals obtained from engine casing mounted accelerometers. 

The condit~ionTng ~consists~ ~of~ ~a~ -charge amplifier~ and an 

integrator to provide a velocity voltage signal for the 

analysis. Vibration signals consist mainly of sinusoidal 

components of relatively high "Q" at the fundamental 

frequency of the rotating shafts. 

For many years vibration has been measured in the test 

facilities by using band pass filters tracked to the engine 

speed. However these systems have a number of problems 

Being completely analogue, they tend to drift from their 

operating points, thus calibration must be frequent. 

They are tedious to calibrate as both vibration and speed 

signals with accurately set frequencies need to be 

injected while potentiometers are adjusted. 

Different standards of tracking filters are required for 

just about every shaft of every engine type. This is 

because speed signals are usually generated from 

tachometers which are inevitably geared differently on 

each engine type. Hence filter modules must be changed 

everytime a different engine type is tested. 

The vibration output (inches/second) is displayed in 

analogue form on a dial gauge, this means that recording 

of results is a manual task. 

The configuration for this analogue system is shown in figure 

6.3, note that broad band vibration is also measured to 

indicate 

vibration. 

when there is significant non-shaft related 

As can be seen, vibration measurement in the test facility is 
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time consuming, operator dependent and produces poor quality 

results. Infact tape 

also be made so that 

recorairigs of the vibration signals. must 

post analysis and plots of vibration 

levels can be more accurately produced. For such a straight 

forward analys{s- this is -obviously wasteful of prime computer 

time and delays are again inevitable. 
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Figure 6.3 - Analogue vibration measurement 

This unsatisfactory situation and the production of IDDAS 

resulted in a real time digital vibration system being 

designed, the basic outline specification of which follows 
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The system is capable of analysing three vibration . 

channels simultaneously. 

- vibrat:lon measurements ·are- given· for each shaft (two 

three depending upon the engine) and for broad band. 

or 

There is no changing of hardware for different engine 

types, i.e. this is done under software control. 

The results are made available to the test bed 

instrumentation computer (IRRIS) ten times a second for 

display purposes. 

The calibration procedure is straight forward and short. 

6.3.1 Hardware. 

The test bed instrumentation computer mentioned in the 

specification (IRRIS) had already been installed in the test 

facility. This computer takes care of the displays and 

operator interaction, thus the only extra hardware needed to 

enable the vibration analysis was IDDAS. To perform this 

analysis one arithmetic and three acquisition cards are 

required, this allows three vibration signals to be acquired 

and stored while the arithmetic card sequences around the 

acquisition cards, performing a data reduction algorithm on 

each. All results are then be transfered to the PDP-11 over 

the Q-bus. 

Only one arithmetic card is required because even when 

accessing three acquisition cards it can still analyse 40 

spectra a second. Thus, shared between three input signals, 

the analysis is performed approximat1ey 13 times a second on 

each channel. The configuration of this hardware, as used in 

Rolls Royce Derby production test facilities is shown in 

figure 6.4. 
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6.3.2 Application software and operation. 

Unlike the previous example where the standard D.R. processor 

-~oftware remained unchanged, this system required a major 
-

modification and addi-tion to the- -software.- In this -case- the 

D.R. processor does actually perform data reduction, or 

information extraction, on the incoming spectra. Note 

however that the FFT and ring buffer software is not 

modified. 
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Figure 6.4 - IDDAS vibration system. 

To cope with different engines the host 

initialises IDDAS by passing to it three shaft 

computer first 

to tache speed 

multiplication factors, this allows the D.R. processor to 
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convert the speed signal measurement to shaft rotation 

frequency and allows it to track the sha-ft fundamental 

vibration component within the spectra. The host also passes 

-the- top -and _botto_m frequencies for the broad band analysis 
--- --------

and the actual bandwidth to which -the a-cquisition· cards­

should be set. This set up procedure, controlled from 

Fortran and host set up tables, allows the system to cope 

with any engine type including those not yet designed, thus 

providing a trully universal system. Once initialised, IDDAS 

continuously sequences around the three acquisition cards, 

each time storing the four vibration measurments per channel 

(three shaft related plus broad band) in the shared ram for 

use by the PDP-11 host. 

As was mentioned in chapter 3, the amplitude of a sinusoidal 

component varies by approximately 15% as it moves between 

Fourier transform filters. This sort of error is unacceptible 

for vibration measurement, hence the method of amplitude 

measurement described in chapter 3 has been employed. This 

involves using the filters each side of the central (or 

tracked) filter in a squaring, adding and square root 

procedure, the error in this measurement being significantly 

less than 1%. 

Calibration of this system is extremely straight forward, a 

routine has been included in the D.R. processor software 

(entered by issuing an interrupt from the host) which simply 

finds the largest component in each of the incoming spectra, 

converts it to an amplitude as described above, and stores it 

in the shared ram for use by the PDP-11. Calibration thus 

consists of injecting into each acquisition card a sinusoidal 

signal representing 1 inch/sec, and then recording the 

resulting calibration figure found in the shared ram. Note 

that no speed signals have to be injected and also that the 

actual frequency of the 

During normal vibration 

from IDDAS simply need 

calibration 

analysis 

dividing 

the 

signal is not critical. 

12 data values read in 

figure to form calibrated data. 

by the recored calibration 

The results can then be 
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displayed in the same manner as any other engine parameter. 

As can be seen, the host computer has to do very little work 

or · computations .to_ obtain tracked and calibrated vibration 

information. Results obtained by ·a.nalys·ing the vibration ... 

signals from an RB211 aero engine, using the Rolls Rolls data 

reduction system (via tape recorded signals), and using the 

above IDDAS based system, are shown in figure 6.5. The two 

sets of graphs are almost identical except that the IDDAS 

plots are slightly smoother in shape. This is not due to lack 

of resolution or system response, but due to the improved 

amplitude estimation technique as described above. The data 

reduction system directly plots the amplitude of the tracked 

filter, resulting in the picket fence effect being clearly 

visible and somewhat misleading. Thus is can be concluded 

that not only does IDDAS produce vibration information in 

real time and in the test facility, but that the results are 

also of better quality. 

At the time of writing this thesis, this vibration system had 

been installed into two production test facilities and was to 

be installed in a further two within the following few 

months. 
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Photo 6 . 1 - Real time monitor display 
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CHAPTER 7 

Spectrum estimation techniques 

7.1 Introduction. 

The fast Fourier transform is almost always used to perform 

spectrum estimation due to its consistent and predictable 

performance. As has already been shown, the amplitude and 

frequency estimation is not as precise as is often required, 

but its ease and speed of execution has ensured its 

, popularity. There are however some occasions when the Fourier 

transform is unsuitable for spectrum analysis and can not be 

used. This usually occurs when the input data sequence is 

too short to provide adequate frequency resolution. 

The above problem commonly occurs in geophysics and astro­

physics where sample rates can be extremely low and the 

duration of an event relatively short (e.g. an earthquake). 

Consequently researchers in these fields have put much work 

into developing alternative spectrum analysis techniques 

which can cope with these conditions. Although the original 

work for many of the techniques dates back to the early part 

of this century, practical alternative spectrum analysis 

algorithms have only existed for about 20 years. As will be 

seen these algorithms are more complex than the FFT and are 

not straight forward to apply to input data. 

A paper produced by Kay and Marple titled "Spectrum analysis 

- A modern perspective" [27) brings together most of the 

modern techniques and performs a simple test of their 

spectrum estimation capabilities. The four best techniques, 

as found in this paper, have been used by the author as a 

starting point for an assessment of modern techniques on real 

data, especially aero engine signals. 
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The derivation and programming of the four algorithms is 

briefly covered (there are many references made to more· 

detailed discussions), followed by a fairly involved 

assessment of each one, together with modification and 
lmpr;v~m~nt -of- the two best -te-ch-nfques. · It snould oe · noted­

that the Fourier transform is also used as a standard in all 

the assessments. 

7.2 Fourier Transform !via FFT). 

The Fourier transform can be traced backed over 200 years and 

Fourier spectrum analysis to nearly 100 years.. In 1898/9 

Schuster published two papers [40,41] showing how he had 

attempted to fit "hidden periodices" to variations in 

sun-spot numbers, he also coined the term "periodogram". 

Another major step came in 1930 when Norbet Wiener published 

a paper [45] titled "Generalised Harmonic Analysis". From 

this developed the Fourier transform relationship between the 

autocorrelation function of a random process with the power 

spectral density. In 1959 a major publication from Blackman 

and Tukey [7] providing a practical implementation of Wieners 

autocorrelation approach. This implementation requires 

estimation of the autocorrelation lags, windowing, and a 

Fourier transform to obtain the psd. 

_The BT periodogram implementation soon became popular and 

many analytical computers became heavily loaded with spectrum 

analysis programs. In 1965 a major break through came with 

the introduction of the fast Fourier transform by Cooley and 

Tukey [17]. This new approach reduced the computational 

effort of the BT implementation proportionally from N**2 to 

N.log(N). The computational efficiencies obtained from the 

symmetries of the sine and cosine functions (as used in this 

new approach) can in fact be traced back to Danielson and 

Lanczos in 1942 [20], and to Runge and Konig in 1924 [39]. 

However for some reason, when machines became capable of 

processing large arrays of data, these earlier efficient 
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algorithms where overlooked. The fast Fourier transform, in 

·amongst its various forms, e.g. decimation- in .frequency,. 

decimation in time, prime factors and various radices, is 

currently the most widely used form of spectral analysis. 

The fast Fourier transform is basically just a fast method of 

performing the discrete Fourier transform, and as such can be 

derived from the equation for the OFT. This is described in 

chapter 2. The properties of a spectrum produced by the FFT 

algorithm are hence the same as those for a OFT spectrum, the 

three most significant being 

1) The resolution of a resulting psd is restricted at best 

to 1/sample window period. 

2) The true signal psd is modified due to the convolution 

which occurs between the signal psd and the sine 

function. 

3) The spectrum filters are at fixed and harmonically 

related frequencies. 

The second property, caused by assuming that data is zero 

outside of the Fourier sample block, is an undesirable 

feature which can be alleviated by using other shaped 

windows. Unfortunately these other windows result in a worse 

resolution, thus there is always a compromise between the 

effects of convolution and the resolution. 

In the real world no signal is totally deterministic and will 

always be embedded in random noise, ie a stochastic process. 

Fourier transforms of these processes result in statistical 

inaccuracies, and thus spectral ensemble averaging must be 

performed to reduce and smooth out these inaccuracies. The 

need for this averaging is illustrated by Oppenheim and 

Schafer [34], and Otes and Enachson [35]. The performance of 

the OFT is thus still further compromised. 

It can be shown that the OFT is equivalent to performing a 

136 



CHAPTER 7 Spectrum estimation techniques 

least squares fit with sinusoids of the following frequencies 

0, l.Fs/N, 2 .Fs/N, ... ' (N/2) .Fs/N 

Fs = sample frequency 

This highlights the fact that the DFT assumes that the input 

function can be represented by a preassigned number of 

harmonically related sinusoids of fixed frequency. This of 

course is very rarely the case, causing the algorithm some 

difficulty in representing sinusoids of frequencies other 

than the preassigned ones, and also in representing wide-band 

components. Bearing in mind the above points it becomes 

obvious that the DFT is not the most ideal techinique for 

spectrum analysis, as a result much work has been put into 

researching alternative spectral analysis techniques which do 

not put such severe restrictions and constraints on the data. 

7.3 Autoregressive DecomJ?osition. 

Transfer function modelling can be used to determine the psd 

of many deterministic and stochastic processes. The model is 

derived from known sampled data, representing an output 

sequence, and from an assumed function of known psd 

representing the driving sequence to the model. In this 

model the two sequences are related by a linear difference 

equation of the form 

~ 

x(n) = Lb(m).><(n-m) 
p L a(k) .x(n-k) 

1"\":0 I(• I 

this is generally termed as an Auto-Regressive Moving 

Averaging model. The system function H(z) is given by 

H(z) = B (z) /A(z) 
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Having determined the sy_stem_ function, the psd of the sampled 

data can be found by using the well known relationship 

P (Z) = H(z) .H10(1/"*) .Pn (z) where Pn is input noise 

Most research has gone into the Auto-Regressive model (where 

b(m)=O, m>1; b(0)=1) due to its computational efficiency over 

the full ARMA model. Algorithms developed for this model 

determine the poles of the AR filter from both the raw data 

and the estimated auto-correlation function. The most 

popular and well researched algorithms are Burgs maximum 

entropy method and the forward-backward least squares fit 

technique. These two will now be briefly examined. 

7.3.1 Burg's Maximum EntroPy AR Method. 

The maximum entropy method 

unknown autocorrelation 

is based upon the prediction of 

functions using sequences of 

autocorrelation functions estimated from .sampled data. No 

assumption is made of the data outside of the sample window. 

There are many ways of predicting the unknown autocorrelation 

functions, all of which produce different but valid results. 

Burg argued that the time series values produced by the 

predicted autocorrelation functions should have maximum 

randomness (ie maximum entropy) . Another way of thinking 

about this approach, is that the estimated all pole filter, 

when applied to the sample data, should result in the 

flattest possible psd. 

The autocorrelation function and AR parameters are linked by 

the Yule-Walker equations [12] shown below 

Rxx(k) = 

,. 
- La (m) .Rxx (-m) 

'"=' p 

- La (m) . Rxx (k-m) 

"'1: I 

Rxx = autocorrelation function, 
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-From the solution- of .. p+L_ of . these equations, _a ( 1) to a (p) 

can be found directly. However there is a recursive 

technique known as the Levinson-Durbin algorithm [21, 28] 

which- allows.increasing_orders to be evaluated starting from 

one AR parameter. 

Burg found that the above solution for the AR parameters did 

not produce very good resolution and in 1967 he introduced a 

somewhat different MEM approach to the AR estimation which 

could be considered as a constrained least squares 

minimisation. This technique sets out to minimise the sum of 

the forward and backward prediction error energies 

e(pn) = 

111-o 

E(pn) = ~I e (pn) 12 + 
!!cp 

p 

2: a (pk) . x (n-k) 

kso 

b(pn) = 

a(pO) = 1 

p L alt(pk) .x (n-p+k) 

K=o 

n=p, .. ,N-1 

The constraint being that the AR parameters must satisfy the 

Levinson recursion for all orders from 1 to p. The desire 

for this constraint is to ensure a stable AR filter (i.e. all 

poles within the unit circle). This is shown in Figure 7.1 

Initialisation - E:o = 

Compute reflection coefficient 

I 
Levison recursion 

I 
Update prediction errors 

Calculate A.R. spectrum 

Figure 7.1 - Burgs A.R. spectrum estimation 
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7. 3. 2 Forward-backwa.r6 least squares CFBLSl technique. 

The Burg method of least squares minimisation has several 

problems. which can ·be reduced. in severity by removing the 

Levinson recursion constraint, a method first introduced· 

independently by Ulrych and Clayton [44] and Nuttall [32] in 

1976. It also then minimises the forward and backward 

prediction errors for all of the AR parameters a(k) 

(k=1, .. ,p). The forward prediction equation is defined by 

where X = 

a = 

x.a = y 

X (k) x(k-1) 

X (k+1) X (k) 

x(N-1) x(N-2) 

a ( 1) 

a ( 2) 

a (k) 

y = 

X ( 1 ). 

x(2) 

x(N-k) 

x(k+l) 

X (k+2) 

x(N) 

and thus the forward prediction residual error is represented 

by 

e(forward) = y- X.a 

The least square solution is defined as any set of (a] which 

minimises the residual sum of squares S (where S =eT .e.), 

this condition is achieved when its first partial derivative 

is equal to zero (ie IS/la = 0) . Applying this condition, it 

follows that S is minimised when 

T T x .x.a = x .y 
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If R(f) = xT.x and S(f) = XT.y then the complete forward 

backward solution is represented by 

-~- -- ~~-~--~--~---

Thus the solution for a least squares fit is reduced to a 

straight forward simultaneous linear equation. This approach 

results in more computation than the MEM but as will be 

shown, the resulting spectra do not suffer from biasing. 

A recursive approach to the FBLS method was published in 1980 

by Barrodale and Erickson [4], which significantly reduces 

the computation effort, particularly when searching for the 

optimum length filter. Their approach also tackles the 

problems inherent in the LS method of parameters blowing up, 

and of inaccurate and sometimes negative residual parameters 

occurring. 

7.4 Pisarenko harmonic decomposition. 

The two auto-regressive methods described above can produce 

spectra with significantly better resolution than the FFT 

method because they do not assume anything about the data 

outside of the sample block. They also do not assume the psd 

to be constructed of fixed and harmonically related 

sinusoids. However, still better spectrum estimation can be 

made if it is based on some prior knowledge. The Pisarenko 

harmonic decomposition (PHD) technique [37, 38] assumes the 

input sequence to be composed of non-harmonically related 

sinusoids in white noise. 

Now a deterministic process consisting of p real sinusoids of 

the form sin(21Tft) can be represented by a 2p order 

difference equation of the form 
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2P 

x(n) =- ~ a(k) .x(n-k) n=2p, .. , N-1 

M:. I 

where the a(k) parameters are coefficients of the polynomial 

":l.p lp-1 z + a(l) .z + .... + a (p-1). zP'"' + a (p). zP p.l 
+ a (p+l I . z + 

p 
.... + a(2p-l) .z + a(2p) = n (z-z,) (z-zr) = 0 

i= I 

This has unit modulus roots that occur in complex conjugate 

pairs of the form: z (i) = exp(j2 rr f(i) .t) ,_ where the 

frequencies can be any where between -t/2 and t/2. It can 

also be shown that a(m) = a(2p-m) and with the addition of 

noise (w(n)) the difference order equation becomes 

2p 2: a (k) . y (n-k) = 

I( eO 

2p 

z:a(k) .w(n-k) 

K=o 

a (0) = l 

n=2p, .. , N-1 

y(n)=x(n)+w(n) 

By suitable eigenvalue analysis of the above matrices it can 

be shown [24] that 

'1 Ryy .A = 0"- .A 

When the dimension of Ryy is (2p+l) by (2p+l) or greater,~ 

is equal to the smallest eigenvalue of Ryy, and A is its 

corresponding eigenvector. The a(i) coefficients can then be 

used to find the roots of the polynomial which in turn reveal 

the frequencies of the sinusoids. The power of each sinusoid 

can then be calculated by solving the simultaneous equation 

F.P = r 
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where F = cos (2rcf, 6t) . . . . . cos (2,.fp6t) 

cos (2ttf, p6t) 

p = [ p (1) l 
p (p) 

[ 

Ry~ (1) l 
Ryy(p) 

r = 

A flow diagram is shown in figure 7.2. As with the AR methods 

the number of sinusoids and therefore the order of the 

polynomial must be determined for the best results. The PHD 

technique requires a lot of computational effort, and it was 

not until Hayes and Clement published an algorithm in 1986 

[24] providing an iterative approach to calculating the 

eigenvalues and associated vectors, that the process order 

could be more efficiently calculated. 

I 
p=1 

Compute 2.p+1 biased estimates 

I 
Solve for minimum eigenvalue 

and associated eigenvector "A" 

I 
Has minimum eigenvalue remained unchanged 

from previous order estimate 

Solve polynomial rooting from eigenvector "A" 

I 
Compute p sinusoid frequencies from roots 

I 
Determine the p sinusoid powers 

I 

Figure 7.2 - Pisarenko spectral line decomposition 
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7.5 Prony spectral line estimation (PLSEl technique. 

Prony's method 

assumes that the 

-additive ·noise;-

of spectral estimation, like Pisarenko's 

sampled process consists of sinusoids in 

The--original ·work by Prony- was -aimed at 

representing the expansion of gases by sums of exponentials, 

but this has undergone major changes over the years resulting 

in the modern extended Prony technique. This uses a least 

squares fit approach to estimate exponentials of the form 

p 

x (n) = 2: b (m) • z (m)n n = 0, 1, ... , N-1 
,., 

where b(m) = A(m) .J9 

however the solution to this equation is a difficult 

non-linear least squares problem [25]. 

To analyse a process of p real undamped sinusiods in noise a 

special variant of Prony's method can be used in which 04m is 

set to zero, resulting in the roots being complex conjugate 

pairs of unit modulus. Thus we must solve for the roots of 

the polynomial 

'l.P 

"¥ (Z) = 
p 

TT (z-z 1 ) (z-zil 
i,:q 

= L a (k) . z"lp-k = 0 

k•O 

where a(O) = 1 and a(k) are real 

Due to the roots_ being of unit modulus and occurring in 

complex conjugate pairs, it can be shown that a(k) = a(2p-k) 

(k=O, 1, .. , p) and hence that a( p) = 1 [27]. The solution 

is implemented by constraining the polynomial coefficients to 

be symmetrical about the centre element. Thus the linear 

prediction error can be written as 

p 

C n = La (k) . [x (n+k) + x (n-k)] 

KaO 
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From this point onwards a standard least squares fit 

algorithm can be applied to the problem, with the data matrix 

taking the form as shown below, note that X is Toeplitz and 

Hanke·l- ·in·- structure r{!ther than just Toeplitz as ~n the AR 

case 

where A = 

T = X (p+ 1) 

x(n-2p) 

X (p+l) 

[
E.. (~+l)l = X.A 

E (N-p) 

1/2 

a(l) 

a (p-1) 

a(p) 

X ( 1) 

X (p+l) 

x(N-2p) 

X = T + H 

H = X (p+l) 

x(2p+l) 

x(N-p) 

x(2p+l) 

x(N-p) 

x (N) 

Having determined p coefficients, a polynomial rooting can be 

performed to determine the complex conjugate root pairs which 

will then reveal the frequency components of the process. 

The power and phase information (ie the b(m) term) is then 

determined from the following equation 

-.B = X 

-= 1 1 1 B = [ b ( 1) ... b (p) ]T 

z ( 1) z ( 2) z (p) 

X = [ X ( 0) ... X (N-1) ]T 
III-I 

z (2)""' z (p)""' z ( 1) 
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The Prony spectral line estimation thus consists of the 

solution - of two· simultaneous- linear equat·ions -(least square 

fits) and a polynomial rooting. As with the other three 

methods the order of the process must be determined to obtain 

- --optimum results-.-- A flow diagram for ·this -technique i-s shown 

in Figure 7.3. This technique requires a great deal of 

computation especially as Barrodale and Ericksons recursive 

techniques (as used in the forward-backward LS method) cannot 

be used here due to the form of the AR filter matrix. 

Estimate the polynomial coefficients 
and model order using any least 
square fit estimation algorithm 

I 
Root polynomial determine frequencies 

I 
Use frequencies and input sequence 
to estimate amplitude and phase via 

a least square fit algorithm 

I 
Figure 7.3- Prony spectral line estimation 
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CHAPTER 8 

8.1 Form of assessment. 

In this chapter an assessment is made of the performance of 

four modern spectrum estimation techniques as described in 

chapter 7. This assessment is made by comparing the spectra 

obtained applying each of the techniques to .two different 

data sequences. These data sequences are as follows 

1) The data sequence as used by Kay and Marple [27] is used 

here to enable a cross check of results and provide 

confidence in the authors programs. 

2) A data sequence consisting of pure sinusoids is used to 

assess the performance of the four techniques with more 

realistic aero engine type signals. 

8.2 Kay and Marple data. 

The true power spectral density of the 64 point data sequence 

used by Kay and Marple, together with the psd's obtained from 

the DFT and the four the spectrum estimation techniques are 

shown in graphs 8.1.1 to 8.1.6. This input data sequence does 

not represent the type of signals expected from engine 

transducers but provides a useful check of the validity of 

the authors fortran programs. Note that Kay and Marple use 

the DFT without windowing, which is not really representative 

bf the way in which the DFT is usually used. They also do not 

show for the other techniques, to what extent the psd 

estimates change when the process order is chosen either too 

high or too low. 
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_8.2.1 Fourier transform. 
-.- ~ - - - - - -

Kay and Marple have used double zero padding in their DFT 

-~nalysis (graph 8.1.2), this has the effect of interpolating 

between filters but- does ·not provide· any extra resolution or. 

information. By windowing the input data however, a 

considerable difference can be made to the clarity and to the 

amount of information that can be extracted from the psd. 

Graphs 8.2.1 and 8.2.2 show the psd's obtained when the 

rectangular window and a Kaiser-Bessel window (beta=6) are 

used. As can be seen, a much better psd is obtained by using 

a window, although of course the two close sinusoids (0.20 

and 0.21 Fs) are still merged together. Note that the 

resolution of a 64 point DFT is 

so the two close sinusoids 

identified. Note also that the 

always worse than 0.016 Fs, 

can never be singularly 

reduced side lobes of the 

windowed DFT results in a more accurate psd due to reduced 

interference between neighbouring filters. 

The 0.2 Fs component of the windowed 

correct amplitude of 1, however the 

is approximately 1 dB down on its 

DFT is very close to its 

amplitude of the 0.1 Fs 

true value (-13% error) . 

This is a result of the picket fence effect which is inherent 

in DFT analysis. Note that the Y-axis power scale is 

referenced to peak amplitude and not rms amplitude (ie a peak 

amplitude of 1 is equal to 0 dB), and that the window 

weighting constants have been arranged to give an overall 

window gain of unity. 

The test signal clearly shows the picket fence effect and the 

lack of resolution which are inevitable in DFT spectrum 

analysis. 
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8.2.2 Burg's A.R. method. 

A psd plot produced by Burg's method is shown in graph 8.3, 

this was obtained by estimating 16 filter coefficients and 

·then- ca±cul:ating- the -power around the unit circle in 0, 0 0 5- Fs -

steps from these coefficients. The program used to perform 

this was taken from a paper by Ulrych and Bishop (43]. 

Comparing graph 8.3 with graph 8.1.3, there is very little 

difference to be seen, indicating correct programming of the 

algorithm. The only small difference between the two, being 

that the amplitude of the 0.1 Fs component in the authors psd 

is more accurate than that in Kay and Marple's. Although it 

is difficult to say exactly why this is, it is most probably 

due to the different computers and floating point software 

that have been used. This would almost certainly cause a 

slight difference between the AR coefficients used to 

calculate the psd, resulting in components occurring with 

very similar frequencies but slightly different powers. 

The effect of using the Levinson recursion constraint on the 

AR coefficients results in frequency biasing of the estimated 

components. This is high-lighted by the estimated frequencies 

of the 0.20 and 0.21 Fs components which are 0.2025 and 0.215 

Fs respectively. Note that the psd has been normalised to 

the largest component, thus absolute powers are' not indicated 

in the results, the actual power of the largest component 

before normalisation was 22.3 dB. The peaky nature of the AR 

filter can be seen in the broad band area of the spectrum, 

these peaks could easily be interpreted as real sinusoidal 

components. 

Burg's method produces a better result than the DFT when 

considering resolution of close sinusoidal components, but 

its power estimation 

frequency estimates. 

filter coefficients 

is poor and biasing has occured in its 

It must also be remembered that 16 

have been chosen by trial and error 

produce the best psd. Choosing the wrong number 

to 

of 

coefficients produces even worse estimates as is demonstrated 
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with the next data sequence. 

8.2.3 Forward-backward least squares technique. 

A psd produced by the forward-backward least squares 

technique is shown in graph 8.4, again the algorithm was used 

to estimate 16 AR coefficients and the psd calculated around 

the unit circle in 0.005 Fs steps. The program used to 

perform this was taken from a paper by Barrodale and Erickson 

[4]. Comparing graph 8.4 with graph 8.1.4, the two psd's are 

practically identical, again the only difference being that 

the amplitude of the 0.1 Fs component is more accurate in the 

authors psd than in Kay and Marple's. As with Burg's method 

this is assumed to be due to slight variations in the AR 

coefficients, caused by using different computers and 

software. 

In this case the three frequencies of the sinusoidal 

components have been estimated very accurately without any 

biasing and the relative power levels are a lot closer to the 

true values. Note however that the psd has again been 

normalised to the largest component, the actual estimated 

value of this component being 21.6 dB. This method produces 

a peakier response than with Burg's method, and again 

generates potentially confusing peaks in the broad band area. 

As with Burg's method this technique is much better at 

resolving close sinusoids than the DFT is, but its power 

estimation is again poor. The performance of this technique 

is also highly dependent on the correct filter order being 

chosen, as will also be shown later. 

8.2.4 Pisarenko harmonic decomposition. 

A psd produced by the PHD algorithm is shown in graph 8.5. 

The program for this was derived from a non-working program 
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started by Khaldoon Ghaidan for his speech 

[26), the Pisarenko pr~gr~m publlshed in a 
Clement [24) was not available to either 

analysis doctorate 

paper-by ·Hayes and­

Khaldoon or the 

--author __ when_ this work was started. Most of the matrix 

manipulation and eigenvalue analysis has been- achieved by 

using NAG routines supplied as part of the Fortran software 

library on the Loughborough main frame computer. The program 

uses no recursive techniques and is computationally intense. 

The algorithm was used to estimate eight complex conjugate 

root pairs. 

Comparing graph 8.5 with graph 8.1.5, there is one 

difference between the 

the component at 0.16 

two psd's, this is the 

Fs. It would seem 

significant 

amplitude of 

unlikely that this is due to a programming error as all of 

the other components exactly match. As in the earlier cases 

it is much more likely to be due to differences in floating 

point and library routines, especially as the power 

calculations are dependent upon a very small eigenvalue which 

has been found via several NAG matrix routines. It should be 

remembered that this component 

at all and is likely to be 

variations. 

should not be in the spectrum 

highly dependent on small 

The frequency and power estimates obtained by this algorithm 

are very poor, the psd shown in graph 8.5 is again normalised 

to the largest component, the actual estimated power of this 

component was -2.6 dB. The frequency estimation is 

significantly biased due to the use of biased auto 

correlation functions, the relative power estimates are not 

at all representative of the true powers, and the component 

at 0.16 F(s) is spurious and totally misleading. Although 

this algorithm is better than the DFT in that it manages to 

resolve the two close sinusoids, it becomes practically 

useless when it injects components such as the one at 0.16 

Fs. 
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8.2.5 Prony_spectral line estimation technique. 

A psd produced by the Prony technique is shown in graph 8.6, 

the algorithm was used to estimate eight complex conjugate 

root pairs of unit modulus. The- program used to perform this -

is entirely original to the author as no publications of 

programs already existing could be found, although it is 

assumed that either Hilderbrand or Kay and Marple have 

published something along these lines. Note that the authors 

program makes much use of the NAG library routines to perform 

simultaneous equations and complex polynomial rootings. A 

Fortran listing of this program is given in appendix F for 

reference. 

Comparing graph 8.6 and graph 8.1.6, no difference at all can 

be seen between the two psd's, indicating that the authors 

program is correct. The Prony method estimates the frequency 

and power of the three sinusoids extremely well as shown in 

the table below. 

Frequency 

[fraction of Fsl 

0.100039 

0.200267 

0.209599 

0.270987 

0.309460 

0.358735 

0.402381 

0.450810 

Amplitude 

rpeakl 

0.1033464 

1.0255654 

1.0396414 

0.0564410 

0.2108561 

0.1186532 

0.1971185 

0.0278794 

Phase 

[degrees] 

125.28 

156.47 

170.60 

36.35 

65.79 

174.40 

95.59 

32.93 

The frequency is particularly well estimated with only a 

fraction of a percent error. The two close sinusoids are 

also well resolved with seemingly no interference on each 

other. As with the Pisarenko technique, which also assumes a 

sinusoidal model, Prony's technique does not represent the 

broad-band components particularly well, although it does 

indicate the presence of power in this region. Again, this 
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algorithm is computationally intense and no recursive 

techniques have been used; -however compare& to the Pisarenko­

harmonic decomposition it produces significantly better 

results for a similar amount of computation. 

8.2.6 Summary of results using Kay and Marple test data. 

Comparing the above results obtained from the four spectrum 

estimation techniques, the following points can be noted 

The Burg and Pisarenko techniques both suffer from 

frequency biasing due to the constraints imposed by their 

respective algorithms. 

Power estimates by Burg's method and the forward backward 

least square technique, which both rely on accurate AR 

coefficients and residual power, are very poor. 

The least square and Prony techniques produce very 

accurate frequency estimates. 

Least square power estimation, as in Prony's technique, 

produces accurate results. 

None of the techniques represent the broad band frequency 

component very well. 
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8.3 Sinusoidal test signal. 

An assessment is now made on the performance of the four 

_spec_trum analysis, techniques when applied to a signal 

consisting entir~iy of sinusofdai ·components. - The 64 -point 

data sequence consisted of six sinusoids, as follows 

Frequency Amplitude Phase 

[fr;a~tiQn Q;( F:;;] [geak] (dB) [degrees] 

0.05 0.1 (-20) 0 

0.16 10.0 ( 20) 60 

0.25 1.0 ( 0) 45 

0.26 10.0 2 0) 120 

0.35 0.1 ( -2 0) 180 

0.425 1.0 ( 0) 90 

Two points to notice about these components 

1) There are two close sinusoids of different amplitudes 

(Kay and Marple's were of the same amplitude), 

2) There is a 40 dB difference between largest and smallest 

sinusoids (Kay and Marple's only differed by 20 dB). 

8.3.1 Fourier Transform. 

This technique was again applied using 

window, the resulting psd is shown in 

the Kaiser Bessel 

graph 8.7. This psd 

reveals no real surprises, the close sinusoids are not 

resolved, energy is spread into side lobes, and where 

components are not exactly on filters the power is less than 

the true value. 
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8.3.2 Burg's AR method. 

To demonstrate the need for the correct choice of the number 

of AR coefficients required to achieve an optimum psd 

estimate, Burg's method-has been tested with four different 

numbers of AR coefficients, these being 12, 14, 16 and 18. 

The resulting psd's are shown in graphs 8.8.1 to 8.8.4, note 

that the power has been normalised to the largest component. 

As can be seen, with only 12 coefficients only four of the 

six components have been extracted, with 14 and 16 

coefficients six have been extracted, and with 18 

coefficients eight components have been extracted. This is a 

variation from two sinusoids too few, to two _sinusoids too 

many over a change of just six coefficients. 

The optimum psd must be obtained somewhere in the relatively 

small range of 13 to 17 coefficients. The frequencies of the 

six_ components extracted in the psd's for 14 and 16 

coefficients do not seem to have suffered from biasing and 

are reasonably accurate. The difference in power between the 

largest and smallest components is approximately correct at 

40 dB, however the actual power estimate of each component 

before normalisation is very poor. The power of the largest 

component (0.16 Fs) being 36.9 dB for 14 coefficients, and 

41.8 dB for 16 coefficients. There is also clear evidence of 

line splitting at 0.25 Fs when 18 coefficients are used. 

8.3.3 Forward backward least squares technique. 

The Least squares technique has been tested in a similar 

fashion to Burg's method in that psd's have been estimated by 

using four different numbers of coefficients, in this case 

11, 12, 14, and 18. The resulting psd's are shown in graphs 

8.9.1 to 8.9.4, and have again been normalised to the largest 

component. 
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As can be seen there is a very sharp change in the spectrum 

response between i1 coeff1cl.en-ts a"n6 12· coefficients· , --where 

the "Q" of the peaks become very much higher and all six 

sinusoids are extracted. It is significant that the break 

point is at 12 -coefficient-s· ·as ·this is the number of 

coefficients required to represent the 6 complex conjugate 

root pairs which match with the 6 sinusoids. 

The frequency estimation of this technique is very good, 

producing an accurate and high "Q" response, and there is 

also no sign of line splitting. Power estimation however is 

not so good, as shown by the estimate of the largest 

component in the 14 coefficient psd, of 44 dB at 0.26 Fs 

before normalisation. 

8.3.4 Pisarenko harmonic decomposition. 

The PHD technique has been used to extract six complex 

conjugate root pairs from the test data, this being the 

correct number to represent six sinusoids, the resulting psd 

is shown in graph 8.10. Psd's for other numbers of root pairs 

are not shown as these result in totally inaccurate 

estimates. Note that, as with the two previous techniques, 

the power estimate is referenced to rms amplitude, i.e. a 

sinusoid of amplitude 10 should be equivalent to 17 dB on the 

graphs. 

As can be seen from the psd, the estimated power of the 

sinusoids at 0.16, 0.26 and 0.425 Fs are quite accurate, 

their frequency estimates are also reasonable although they 

do suffer from some slight biasing. The frequency estimate 

of the 0.05 Fs component is also not too bad but the power 

estimate is completely wrong, as is the frequency and power 

estimates of the two remaining components, thus making this 

psd practically useless. 
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8.3.5 Prony spectral line estimation. 

As with the PHD technique, only 

again this being for six complex 

one psd has been produced, 

conjugate root pairs, the 

resulting psd is shown-in· Figure 8.11; Note·tha~ the power 

estimate, as with the Fourier transform, is referenced to 

peak rather than rms amplitude. The results are extremely 

good, both frequency and magnitude have been estimated very 

accurately as shown below 

Frequency Magnitude Phase 

Lt:ri!~tiQn Qf E:> l [pei!k l [geg;;eesl 

0.05000000 0.9999926 0.000001 

0.16000000 10.000000 90.000165 

0.24999999 0.9999866 45.000087 

0.26000000 10.000010 119.999993 

0.34999999 0.1000010 180.000002 

0.42500000 1.0000008 90.000160 

This result is not unduly surprising as the model this 

technique is based on, is identical to the process presented 

to it in this test. 

8.4 Summgry Qf results. 

The two tests performed on the four spectrum estimation 

techniques have produced consistent results which can be 

summarised as follows 

8.4.1 Burg's AR method. 

Good points :-

Employs a recursive approach resulting in relatively 

efficient computation. 

High frequency resolution even with small sample blocks. 
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No assumption is made of the data outside of the sample 

blo-ck a~d- thus- th·e-re are no Teakage effects.­

Guaranteed stable linear prediction filter. 

Bad points . 

Constraint on AR coefficients causes frequency biasing. 

Overdetermination causes line splitting. 

Power estimates inaccurate and dependent on filter order. 

Must determine . order of AR filter. 

Burgs AR method works well in that it provides good 

resolution, a stable output and is computationally efficient. 

However, for analytical work where accurate. results are 

required this technique does not provide a good solution. 

8.4.2 Forward backward least sguares technigue. 

Good points :-

Employs a recursive approach. 

Higher frequency resolution than Burgs method. 

No line splitting. 

No assumption is made of the data outside of the sample 

block and thus there are no leakage effects. 

No frequency biasing. 

In general a stable AR filter (although not guaranteed) . 

Bad points :-

Power estimates inaccurate. 

Must determine order of AR filter. 

This technique 

estimation, the 

provides good frequency resolution and 

filter response being particularly sharp once 

the minimum set of coefficients has been calculated. Also, in 

the tests performed here, no conditions have been found where 

the algorithm is unstable, although as stated above this is 

not a guaranteed condition. The only problem with this 

technique is poor power estimation. As with Burg's method it 
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calculates the psd from the AR filter residual power. It has 

become quite obvious that.this is not a good way of doing it. 

Lacoss [29] has suggested that the peaks are proportional to 

the square of power and that the area under the peaks is 

proportional _t_o_ ·power.- This hypothesis was- --tr-ied -on the 

spectra shown in graphs 8.8 and 8.9, the results showed no 

real improvement in power estimates. 

there is a more fundamental problem 

It can be seen that 

in the fact that the 

peaks change in shape and amplitude in respect to each other ; 

as different numbers of AR coefficients are used. It is felt 

that estimation of power via the filter residue, as is the 

case for all the above estimates, is not the best approach. 

This problem is discussed further in chapter 9. 

8.4.4 Pisarenko harmonic decomposition. 

Good points :-

High frequency resolution. 

No assumption is made of the data outside of the sample 

block and thus there are no leakage effects. 

Reasonably accurate power estimate of some components. 

Bad points :-

Significant frequency estimation biasing due to 

auto-correlation constraints. 

Power estimates inaccurate. 

Produces spurious components. 

Must determine order of process. 

High degree of computation. 

This technique has not performed well in either of the two 

tests, showing significant inaccuracies in both frequency and 

power estimates. It would seem that this is also the opinion 

of other researchers, as this technique has been extended to 

what is called the "Music algorithm" [36] in which the 

results from several eigenvectors are averaged together to 

reduce the frequency biasing and the effect of spurious 
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components. 

8.4.4 Prony spectral line estimation technique. 

Good points :-

High frequency resolution. 

No assumption is made of the data outside of the sample 

block and thus there is no leakage effects. 

Accurate frequency estimation of sinusoids. 

Accurate amplitude estimation. 

Accurate phase estimation. 

Bad points :-

High degree of computation. 

Must determine order of process. 

Not guaranteed stable. 

This technique has produced by 

especially for purely sinusoidal 

far the 

signals. 

best results, 

As pointed out 

before, this is not totally surprising as this technique 

performs a sinusoidal least square fit for frequency 

estimation and a least squares fit for amplitude estimation, 

assuming in both cases that the signal consists entirely of 

undamped sinusoids. There are however two slight problems; 

The algorithm is not 100% stable. It has been found that 

if the wrong number of root pairs is used on any 

particular signal, then frequencies of 0.0 or 0.5 Fs 

occasionally occur. This is not too detrimental as the 

resulting amplitude estimation for these components is 

always very small. However occasionally a more serious 

and fatal error occurs, when the Fortran NAG routines 

exit early due to overflow errors during matrix 

manipulations. 

All of the other spectrum analysis techniques have 

methods for estimating when the correct order has been 

164 



CHAPTER 8 Assessment of S.E. techniques 

reached, and thus when further recursive computation can 

stop (eg Akiake' s · ·methods- for -the· Burg · and LS 

techniques) No reference has been found for a method of 

doing this on Prony's technique. 

8.5 Further assessment. 

The real test for any spectrum analysis technique comes when 

it is applied to a signal embedded in noise, such as aero 

engine transducer signals. The technique must provide 

accurate results and demonstrate a reasonable tolerance to 

noise. Based upon the points made in the above summary, only 

the forward backward least squares technique and Prony's 

spectral line estimation technique will be assessed further 

with this type of signal. In chapter 9, not only will 

resilience to noise be assessed, but also whether reliable 

order estimation methods can be developed, 

required for a final solution. 

as will be 
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CHAPTER 9 

-Further-assessment-of-FBLS -and Prony's techniques·-

9.1 Introduction. 

In this chapter further 

of the Prony and the 

assessment is made of the performance 

forward-backward least squares 

techniques. 

signals and 

selection. 

This involves testing them with simulated noisy 

developing rules and algorithms for order 

Finally an assessment is made of each technique 

using a real signal recorded from an aero engine mounted 

transducer. 

9.2 Test Signal. 

To simulate the type of noisy signals that might be 

encountered from an engine mounted transducer (e.g. strain 

gauge, pressure transducer or accelerometer), four data sets 

constructed from six sinusoids in varying amounts of gaussian 

noise have been generated. These data sets are 128 samples 

in length and the sinusoids are all of different phase and 

varying in amplitude. The six sinusoids are as follows 

Frequency 

(fraction of Fsl 

0.05 

0.16 

0.25 

0. 2 6 

0.35 

0.425 

Amplitude 

fpeakl (dB) 

1.0 ( 0) 

10.0 (2 0) 

1.0 ( 0) 

10.0 (2 0) 

4.0 ( 12) 

1.0 ( 0) 

Phase 

fdegreesl 

0 

60 

45 

120 

180 

90 

Six sinusoids is considered a fairly typical amount to find 
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in an average vibration signal and the amplitude range of 20 

.dB ... corresponds to vibration signals differing in power by a 

factor of 100. This is also considered typical for aero 

engine signals and is a large enough range for most types of 

analysis .. 

To simulate noise a random number generator with a gaussian 

distribution (provided as part of the Loughborough university 

NAG library) was used to produce the noise data, this was 

added to the above sinusoids at four different levels. Note 

that the time response of the four 

identical in shape, but different 

noise sequences are all 

in gain or standard 

deviation - [o- ] • The noise sequences were chosen with 

standard deviations of 0.25, 0.5, 1.0 and 2.0. 

Noise power of a gaussian distribution is defined as o-1 , thus 

the total noise power in each of the simulated data sequences 

is as follows 

o- Noise power 

0.25 -12 dB 

0.5 -6 dB 

1.0 0 dB 

2.0 6 dB 

Fourier transforms of the four data sequences are shown in 

should be noticed from graphs 9.1.1 to 9.1.4. Two points 

these spectra, i) the y-axis is referenced to peak amplitude 

rather than rms and ii) the noise power is spread and reduced 

by 1/64 (-18 dB) across all of the frequency bins. Thus for 

example, when the standard deviation is equal to 2, the noise 

floor across the spectrum is 

20.lg(2) + 20.lg( 2) + 10.lg(1/64) = -9 dB 

[noise] [rms->peak] [spread] 

It should be noted that the spreading effect of the noise 

power across the entire spectrum does mean that sinusoidal 
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components can be identified in poor noise conditions. It 

can -be seen- that -the components -with an- peak amplitude of-- 1-

(-3 dB power) can still be identified even when the total 

noise power is 3 dB higher ( ~ = 1), because the noise floor 

-is actually. 15 --dB .. lower_ than .. the _ sinusoidal components. __ 

However these components then disappear when the total noise 

power is 9 dB higher (~ = 2), even though the noise floor is 

still 9 dB lower, because of the uneven spread of the noise 

power. This uneven spread could be reduced by ensemble 

averaging which would flatten the noise floor but this would 

also slug any transient changes from spectrum to spectrum. 

9.3 Forward-backward least squares (FBLSl technique. 

As demonstrated in chapter 8, the forward-backward least 

squares technique provides good frequency estimation and 

resolution but very poor power estimation. When this 

technique was tried on the simulated data sequences this was 

again found to be the case. Refering to graphs 9.2.1 to 9.2.4 

it can be seen that when o- = 0.25 and 0.5 the components 

at 0.25 and 0.26 Fs can be distinguished apart and that the 

frequency estimates are very good. Note that the choice of 

30 AR coefficients is arbitrary (and also the maximum that 

this particular program could accept). If more than 30 

coefficients had been used then the two components at 0.25 

and 0.26 Fs would almost certainly be distinguished in theo­

= 1.0 and 2.0 cases as well, as will be seen. 

Although the sinusoid power levels are very inaccurate (note 

that the graphs have been normalised to the largest 

component), the noise power level is significantly lower than 

in the Fourier transform case. The shape of the noise power, 

as with the · Fourier transform is generally the same 

irrespective of its amplitude, thus displaying some stability 

within the algorithm. 

At this stage the FBLS technique looks more promising than 
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the FFT for frequency resolution and estimation even when 

·-·-there ·is- severe ·noise·. -·It ·is quite ··apparent-·however that the­

power estimation needs to be considerably better to enable 

this technique to be of any use. "The problem with the power 

-- -----est-imat-ion-as-it-stands-is--that --it---use s·-the--re s idua·l- ·power-­

from the AR filter. In most cases this is small and related 

more to the power taken out of the time series by the AR 

filter rather than to the power actually in the time series. 

To improve on this a different approach is necessary. 

9.3.1 Modified forward-backward least squares technique. 

It has been demonstrated and well documented in many papers 

that the DFT is in fact a loosely disguised least square (LS) 

algorithm in which the frequency matrix is made up of 

predetermined and harmonically related sinusoids. The 

unknown matrix contains the amplitude and phase information 

for each of these predefined sinusoids. When a time series 

contains a sinusoid of the same frequency as one of those in 

the frequency matrix, very accurate amplitude estimates are 

obtained. The Prony spectral line estimation technique 

blatantly uses an LS technique to perform its amplitude 

estimation. The difference between this and the DFT approach 

being that the frequencies chosen for the frequency matrix 

are first estimated from the time series and are thus not at 

fixed frequencies or harmonically related. As has been 

demonstrated, the Prony technique also gives very good 

amplitude estimates. This LS amplitude estimation technique 

can be applied to the FBLS technique. 

To use the LS amplitude estimation technique a frequency 

matrix is required, hence the AR coefficients found via the 

FBLS technique must be used to directly calculate the complex 

roots, and thus the frequency components, of the AR filter. 

This of course is very similar to the approach taken in the 

Prony technique. Applying the same polynomial rooting NAG 

routine as used in the Prony Fortran program, to the FBLS AR 
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coefficients produces 

are shown in table 9.1 

some very encouraging results, these 
-- . - - --

(page 2 02) . This table shows the 

roots, and their frequencies, produced by the polynomial 

rooti~g_a~plied to 30 AR coefficients produced by the FBLS 
-- - -- -

technique on the simulated data with G- = 0.5~ 

As can be seen the frequencies of the six sinusoids have been 

estimated reasonably accurately. The worst component being 

of 0.1%, this is quite 

still only equivalent to 

that at 0.25 Fs which has an error 

small when considering that it is 

one filter of a 1024 point DFT. 

Applying the 15 complex root pairs 

LS amplitude estimation routine 

found above, to the same 

as used in the Prony 

technique, causes an overflow and fatal error in the matrix 

inversion section of the routine. It was found that this is 

due to two of the roots sitting on the real axis (i.e. 

frequency = 0.0 or 0.5 Fs). When these two roots are removed 

the power estimation routine works without error; table 9.2 

columns 1 and 2 show the results of this LS routine. All of 

the amplitudes are reasonably accurate except for the rather 

high 0.25 Fs component. 

After trying various modifications to the basic approach, as 

described above, it was found that there are two ways in 

which the results to the LS power estimation can be 

significantly improved. 

1) As can be seen from table 9.1 column 2, the magnitude of 

the roots for the six sinusoids are very close to unity, 

but the other roots (all noise 

close. Now the final algorithm 

components) 

is supposed 

are not so 

to extract 

only pure sinusoids from a time series, thus to aid in 

this, all the roots can be modified in magnitude so that 

they locate exactly on the unit circle. The new amplitude 

estimates after placing all the roots on the unit circle 

are shown in table 9.2 column 3. 
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- -21- As.already described, the roots located on the real axis 

had to be removed from the root set for the matrix 

inversion to occur without error, this can be taken a 

_stage_ further by_ re!llovi11_g any roots not close to the unit 

circle. After some trial and error it was found that--a 

difference of ±0.025 in the root magnitude from unity 

provided a suitable breakpoint for this technique. The 

results for this are shown in table 9.2 column 4. 

By using both of these techniques even better amplitude 

estimation can be achieved, this is shown in table 9.2 column 

5, the complete algorithm used to obtain this will now be 

refered to as the modified FBLS technique. As can be seen the 

amplitude estimation is now very good, especially considering 

that the signal is embedded in noise. 

9.3.2 A.R. filter order estimation. 

Although the modified FBLS technique gives very good results, 

there is still one underlying problem. The number of AR 

coefficients used to obtain these results has been entered 

into the program by the author and is certainly not 

guaranteed to be the best choice. The effect of choosing 

different numbers of coefficients is shown in graphs 9.3.1 to 

9.3.4, 9.4.1 to 9.4.4 and 9.5.1 to 9.5.4, where the modified 

FBLS technique has been applied to the four sets of simulated 

data using 20, 30 and 40 AR coefficients respectively. 

It can be seen that the number of AR coefficients used in the 

modified FBLS technique can make significant differences to 

the resulting spectra. When the number of AR filter 

coefficients is too low some of the smaller components are 

missed, as in graph 9.3.4, and when it is too high noise 

components appear in the spectrum, as in graph 9.5.1. In 

general, as the noise power increases then the number of 

coefficients required to extract the sinusoidal components 

must also increase. There comes a point however when it is 
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impossible to extract all of the sinusoids without including 

some noise comp-onents- in-·th·e -spectrum. Th-e following -two 

important features can be seen from these graphs 

-- 1) From -all indicat·ions- it would appear that no matter ·how 

much an AR filter is over determined there is no 

frequency splitting. 

2) Even when noise components are introduced into the 

spectrum, their amplitudes are not unreasonable and do 

seem to be stable, as shown in graphs 9.5.1 to 9.5.4 

where the noise components stay in very similar 

positions. 

Over determining the AR filter does not seem to present any 

significant problems to the estimation of frequency or 

amplitude. Refering to table 9.3 which shows the frequencies 

and amplitudes of the components in graphs 9.3.2, 9.4.2 and 

9.5.2 there appears to be 

amplitude estimates of 

no degradation 

the sinusoidal 

of the frequency and 

component-s as the 

number of AR coefficients is increased from 20 to 40. The 

four extra components in the 40 coefficient case are not 

classed as spurious because 

colouration in the noise floor. 

they clearly represent 

The amplitude of the 0.26 Fs 

component changes significantly between 20 and 30 

coefficients because of the 0.25 Fs component which is not 

extracted for 20 coefficients but is for 30. In fact it 

would seem better to over determine the AR filter as the 

amplitude for the 0.25 Fs component is most accurate when 40 

coefficients are used. These findings indicate that good 

results can be obtained without the risk of spurious 

components or inaccurate estimates when the AR filter is over 

determined. 

To show how the number of AR coefficients and the level of 

noise affect the extraction of sinusoidal components a graph 

showing two limits has been constructed, see figure 9.1. The 

first limit shows the minimum number of AR coefficients 

177 



CHAPTER 9 Further assessment of S.E. techniques 

required to extract ~rl the sinusoids irrespective of whether -- . - - - -

noise components are also included. The second timit-shows-

__ the maximum number of AR coefficients that can be used before 

noise is introdu-ced into the spec_trum. Note that the x-axis 

is referenced to the smallest sinusoidal components;- for a -

reference to the largest add 20 dB. It can be seen that 

while the noise power is approximately 1 dB or more below the 

sinusoid power, then there is a region in which all of the 

sinusoids can be extracted without any noise components 

occuring . As the noise power increases then sinusoids are 

either lost, noise components are extracted, or both. As 

already stated the noise components are not really a problem 

as they are of acceptable amplitude, and in general they can 

be identified if the approximate noise power is known. 

.; 
~ c: ., 
·c:; 
:;:: -., 
0 
0 

a:: 
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Figure 9.1 - Modified FBLS technique; Maximum and minimum 

number of AR coefficients against signal to noise power 
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In most applications envisaged it will be required that all 

sinusoids present within· a -signal are -extracted-.-- Thus for a 

given signal to noise power ratio the number of AR 

coefficients used should be greater than or equal to the 
' -correspondfng number indicated- by -the minimum plot .. Note. that. 

for six sinusoids, the minimum plot is asymtotic to 12 

coefficients as noise power is decreased, and that the 

maximum number of AR coefficients is determined by the array 

boundries of the program (in this case 40). It is interesting 

to note that the maximum number of coefficients before noise 

is extracted is almost constant, this approximately 

represents the point at 

overdetermined. 

which the AR filter becomes 

Taking into account the above points, it 

derive some basic rules in respect of the 

is possible to 

number of AR 

coefficients that should be used in this modified FBLS 

technique. It should be noted that these are very general 

and are only based on the analysis of the four sets of 

simulated data. 

1) For signals in relatively low noise conditions (noise 

power at least 10 dB lower than any sinusoidal components 

of interest) then the number of AR coefficients chosen 

2) 

for the 

number. 

analysis 

This 

should be approximately 

should result in all 

double the ideal 

the sinusoid 

components being extracted 

Note that the ideal number 

without any noise components. 

comes from the fact that each 

sinusoid can be represented by a complex conjugate root 

pair and that each root pair is represented by two AR 

coefficients. Thus if there are 5 sinusoids present 

within a set of data, 20 AR coefficients should be used. 

Where the noise power is greater than that allowed above, 

three or four times the ide"al number of AR coefficients 

should be used. The resulting spectra should display all 

the sinusoids with power levels down to, or even below 
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the noise level. Note however that some noise components 

-wi-ll probably -also be extracted·,- but because- the noise is 

wide band in nature these components will tend to be 

quite low in amplitude. 

The above two general rules 

of the spectral content of 

obviously require 

the data sequence 

some knowledge 

under analysis. 

and could be This information need only be approximate 

obtained from an initial Fourier transform of the data. This 

will provide approximate details of the number of sinusoids 

present and power of the noise. 

9.3.3 Akaike's criterion. 

A well known method of determining the correct order of an AR 

filter for a given input data sequence is the Akaike method 

[2] . The criteria used to make this decision is based upon 

the residual power left when the input data sequence has been 

applied to AR filters of increasing order. The Akaike 

criterion is as follows 

FPE(p) = P. 
N + (p + 1) 

N - (p + 1) 

FPE : Final prediction 
error. 

P = residual mean sum 
square. 

If FPE(p) > FPE(p-1), 

then the AR filter order at (p-1) is correct. 

This method of determining the correct order of an AR filter 

has met with mixed success from other researchers, the 

general comment being that it only really works adequately 

when the input data sequence is of a purely auto-regressive 

nature. This of course is not usually the case for data 

sequences that have come from measured signals in noise .. As 

a result it has been found that this method usually results 

in the filter order being too small. 
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In general, as the AR filter order is increased (as naturally 

occurs during the recursive nature- of the FBLS technique) ·the· 

residual power decreases. However this reduction is not 

smooth but rather in sudden steps as the roots for each 

sinusoid are found;- The residual -power can a-l-so occasionally 

increase 

figures 

generated 

simulated 

by small amounts, these effects are shown in 

9.2.1 and 9.2.2. These show how the residual power, 

by the FBLS technique used on three sets of 

data a- = 0, 0.25 and 0.5), ·changes for 

increasing numbers of AR coefficients . 

.. 
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If the Akaike equation is applied to the same three data 

sequences~ as ~above, then~~ FPE ratios as- shown -in f~igu-re -9.3 

are produced. The criterion to stop the recursion is that 

the ratio should be greater than unity, refering to the 

~figure, -~the recursion ~-should - stop for all -three data--~-­

sequences at 10 AR coefficients. This is too early and would 

result in the 0.25 F(s} component not being found. It is 

surprising that even when there is no noise the Akaike method 

would stop the recursion early, as the data sequence in this 

case is auto-regressive. It can be seen that there are many 

places where the FPE ratio is greater than unity and that 

most of them signify nothing of importance. Judging from 

these results it would appear that Akaike'~s method of 

determining the filter order does not work particularly well. 
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Figure 9.3 - Akaikes criterion applied to FBLS technioue 
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9.4 Prony spectral line estimation technique. 

As previously demonstrated in chapter 8 the Prony spectral 

line estimation (PSLE} technique is capable of estimating the 

~~frequency and-~magnitude ~of ~pure~ s~inusoids- very~ accurately~, 

this being due to the constraints imposed by the algorithm 

upon the AR filter characteristics. The performance of this 

assessed by applying it to the same technique is 

simulated data 

assessment. 

attempted. 

now 

sequences as used in the FBLS 

Further development of the algorithm 

technique 

is also 

It was found that when the PLSE technique was applied to any 

of the simulated data sequences, the same problem occured 

with power estimation as was seen with the modified FBLS 

technique. As described earlier, the power estimation 

routine involves a matrix inversion which causes a fatal run 

error if the roots of the AR filter are not close to or on 

the unit circle. To alleviate this problem in the modified 

FBLS technique, roots not close to the unit circle were 

discarded and the rest forced onto the unit circle. This was 

tried in the PSLE program but unfortunately was found to be 

an unsatisfactory solution. Due to the fundamental nature of 

this algorithm, in that it tries to estimate pure sinusoids 

only, the roots produced from the AR filter tend to be either 

exactly on the unit circle (to within ±10e-6%} or 

significantly off the unit circle. In the cases where some 

of the roots in a root set are not on the unit circle, 

significant errors then occur throughout the whole root set, 

resulting in poor overall frequency estimation. It was found 

that in these cases it is not worth continuing with the power 

estimation, as the accuracy of this is also affected. This 

is demonstrated in table 9.4 (page 204} where this approach 

was tried on theo- = 0.5 data sequence using 30 coefficients 

(arbitrary choice} . In this case 14 coefficients were not on 

the unit circle and so were discarded, power estimation has 

then been performed on the remaining 16 coefficients (8 

sinusoids} . As can be seen both frequency and amplitude 
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estimates are very ~cor . 

. 9. 4 .. 1 Modified PSL~ .technique. 

To attempt to get round the above problem the PSLE program 

was modified to analyse all AR filters, initially starting 

with 2 coefficients (plus Ao which is always 1) and working 

up in pairs of coefficients testing each set of resulting 

roots for a complete set on the unit circle (i.e for a ''good 

root set"). Note that the number of coefficients by which 

the AR filter is increased must be two because of the double 

sided nature of the constrained AR filter. Each good root 

set is subsequently stored, and the last good root set 

discarded. There then comes a point when increasing the 

filter length produces no more good root sets, from trial and 

error it was found that this point comes by the time 12 bad 

roots have been found in consecutive bad root sets. The PSLE 

program was thus modified to include this test of 

completeness. A flow diagram of this program is shown in 

figure 9.4. 

When the above modified PSLE technique was applied to the 

simulated data sequences it was found that almost all numbers 

of AR coefficients produced bad root sets, although there was 

always at least one good set found at some point. Graphs 

9.6.1 to 9.6.4 and table 9.5 show the results obtained when 

this modified PSLE technique was applied to the four data 

sequences. As can be seen the algorithm has worked with 

varying degrees of success. When o- = 0.25 and 0.5 quite 

reasonable spectra have been produced, in both cases the 

algorithm has selected 20 coefficients as being the optimum 

AR filter length and has extracted all six sinusoids together 

with some noise components. However when the noise level is 

increased ( a- = 1. 0 and 2. 0) good root sets have only been 

found for AR filters of 4 coefficients, not surprisingly 

these produce very poor results. Thus the modified PSLE 

technique starts to have problems somewhere between a- = 0.5 
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(noise power 3 dB lower than the smallest sinusoids) and 0- = 

1.0 (noise power 3 dB greater), i.e. approximately when the 

noise power and the smallest sinusoid power are equal. 

Set number of 
"bad" roots 

to zero 

Number of AR coefficients=O 
Number of "bad ll roots=O 

Increment number of AR 
coefficients by two 

Perform Prony spectral line 
estimation and polynomial 

rooting 

Are all the 
~------------------< Y roots on the 

unit circl 

N 

Increment number of "bad" 
roots by number of roots 

not on unit circle 

Perform L.S. power estimation 
on last set of roots stored 

Figure 9.4 - Flow diagram of modified PSLE method 
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In an attempt to improve on the results obtained for 0- = 1.0 

and 2.0/ the approach shown earlier of discarding bad roots 

was again tried. In each case 20 and 40 coefficients were 

__ used/_ th~ resul1;:~ a_r~ shown in graphs 9.7.1/ 9.7.2 and 9.8.1/ 
9.8.2 and in tables 9.6 an-d- - 9-. i r-e-spect-i vely-. " The- result-s­

show that in all four cases six good root pairs have been 

found and also that these are exactly on the unit circle. 

However, the frequency estimates are very poor and do not 

necessarily correspond with the frequencies of the six 

sinusoids, this reaffirms the earlier conclusions found with 

this approach. 

problem, the 

These results also bring to light another 

combination of high noise levels and 

overdetermining the AR filter has caused frequency splitting 

to occur next to the 0.16 Fs and the 0.35 Fs components. In 

fact the surprisingly good estimate at 0.25 Fs is probably 

due to frequency splitting from the 0.26 Fs component as much 

as any other factor. 

Even with the lower noise levels there is yet another 

problem, referring to tables 9.4, 9.5 and 9.6, it can be seen 

that the polynomial rootings of the various AR filters have 

produced four duplicated root pairs, these being at 0.0442 Fs 

- table 9.4, 0.0516 Fs - table 9.5 and 0.2579 and 0.3575 Fs -

table 9.6. Apart from there being a significant error in 

each of the frequency estimates, the amplitude estimates are 

also poor. 

The results for the PLSE technique indicate that there is a 

point at which the noise level becomes too high for the 

algorithm and that inaccurate and misleading spectral 

components occur above this point. 

9.5 Comparison between the modified FBLS and PSLE techniques 

used on simulated data. 

Comparing the results obtained using the modified FBLS and 

PSLE techniques the following points can be made 

186 



CHAPTER 9 Further assessment of S.E. techniques 

1) At noise levels such as er = 0.5, the resultB from the 

FBLS technique are as accurate or better than those from 

_____ the PSLE technique. (especially witp 40 AR coefficients 

u;~d- i;-t-he ""FBL-S tech-nlcj1Je) -. -- Thi"s- 'isnot-particular-ly a 

poor reflection on the PSLE technique however as it only 

uses about half the number of AR coefficients to do the 

same analysis. 

2) When there are significant 

2) the PSLE technique is 

noise levels (e.g. 

inaccurate and 

0- = 1 or 

misleading 

whereas the FBLS technique can still accurately extract 

the larger components from the data sequences while the 

smaller components are simply lost in noise components of 

equivalent power levels. 

3) The PSLE program has to find many AR filters to obtain a 

good root set. This is computationaly very intense 

especially as there is no recursion involved in the 

algorithm. The modified FBLS technique on the other 

hand, can either recursively estimate the AR coefficients 

up to the desired number, or perform one full FBLS 

estimation for that number of coefficients. 

In general 

flexible as 

the PSLE technique does not appear to be as 

the FBLS technique when it comes to signals which 

are not totally comprised of pure sinusoids. This is not 

surprising when considering the constraints set up on the AR 

filter within the PSLE algorithm. 
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Roots - - -
- - - - - Root Root Frequency 

Real Imaainarv Amplitude -Fraction of Fs 
0.9505 -0.3055 0.9984 ---- 0.0495 
0.9505 0.3055 0.9984 ---- 0.0495 
0.5361 -0.8440 0.9999 ---- 0.1599 
0.5361 0.8440 0.9999 ---- 0.1599 
0.0060 -0.9790 0.9790 ---- 0.2490 
0.0060 0.9790 0.9790 ---- 0.2490 Sin 

-0.0632 -0.9975 0.9995 ---- 0.2601 soi 
-0.0632 0.9975 0.9995 ---- 0.2601 
-0.5877 -0.8090 0.9999 ---- 0.3500 
-0.5877 0.8090 0.9999 ---- 0.3500 
-0.8896 -0.4560 0.9996 ---- 0.4246 
-0.8896 0.4560 0.9996 ---- 0.4246 

0.9352 -0.1061 0.9412 ---- 0.0180 
0.9352 0.1061 0.9412 ---- 0.0180 
0.8272 -0.5037 0.9685 ---- 0.0871 
0.8272 0.5037 0.9685 ---- 0.0871 
0.6830 -0.6787 0.9628 ---- 0.1245 
0.6830 0.6787 0.9628 ---- 0.1245 
0.3220 -0.8678 0.9256 ---- 0.1935 Noi 
0.3220 0.8678 0.9256 ---- 0.1935 

-0.0494 -0.5794 0.5815 ---- 0.2635 
-0.0494 0.5794 0.5815 ---- 0.2635 
-0.3772 -0.8710 0.9492 ---- 0.3150 
-0.7273 -0.6312 0.9639 ---- 0.3862 
-0.7273 0.6312 0.9639 ---- 0.3862 
-0.9391 -0.2050 0.9612 ---- o .4658 
-0.9391 0.2050 0.9612 ---- o . 4 658 
-0.9719 0.0000 0.9718 ---- 0.5000 
-0 0677 o 0000 0_ 01i77 ---- _0 __ 5000 

Roots generated by the FBLS technique using 
30 AR coefficients and simulated data (0- = 0.5). 

Table 9.1 
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, - - . --
~ ~ 

~ 

Amplitude 
Frequency Basic Put all roots Only roots Both Modi-

(F~ \ Aloorirhm on urUc clLcle close to uni· fication" 
0.0495 1.0886 0.9923 1.1106 0.9997 
0.1599 10.0780 9.9642 10.0462 9.9558 
0.2490 1.9186 0.8995 1.5442 0.8736 
0.2601 10.4230 10.1741 10.3377 10.0031 
0.3500 4.1202 4.1278 4.1682 4.1292 
0.4246 1. 0365 0.9992 1.0282 0.9992 

0.0180 0.1109 0.1414 
0.0871 0.1865 0.1654 
0.1245 0.4252 0.0689 
o . 1934 0.6676 0.0398 
0.2636 7.2764 0.3437 
0.3150 0.4507 0.0945 
0.3862 0.3841 0.1071 
o <l658 n.1AA1 o 1005 

Power estimates using roots generated by the FBLS technique. 
30 AR coefficients, simulated data (a- = 0.5) . 

Table 9.2 

20 coefficients 30 coefficients 40 coefficients 

Frequency Fs Frequency Fs Frequency Fs 
/Amplitude JAmplitude /Amplitude 

0.0499 0.9949 0.0495 0.9997 o . 0495 0.9918 
0.1600 9.9625 o . 1600 9.9558 0.1600 9.9525 

0.2490 0.8737 0.2504 0.9239 
0.2601 9.8970 0.2601 10.0031 o .2601 10.0014 
0.3500 4.1283 0.3500 4.1292 0.3500 4.1327 
0.4245 1. 0030 0.4246 0.9992 0.4246 0.9961 

0.1301 0.1613 
0.1829 0.1278 
0.2192 0.1593 
0.3867 0.1(151 

Frequency and power estimates using the FBLS technique. 
Simulated data (er = 0.5). 

Table 9.3 
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Frequency 
-fr"c -of F'" 

0.0442 
0.0442 
0.1591 
0.1617 
0.2511 
0.2601 
0.3473 
o 3504 

Amplitude 
Df'ak 

15.8445 
16.0161 

6.9255 
3.3823 
0.9218 
9.9370 
0.6002 
<.h7QO 

Frequency and amplitude estimates obtained from the PSLE 
method - all roots not on units circle discarded. 

30 AR coefficients (14 discarded), 0- = 0.5. 

Table 9.4 

er - 0.25 ~- 0.5 c- _ 1.0 <>- = 2.0 
Freq. 
(F< )-

0.0500 
0.1600 
0.2504 
0.2601 
0.3501 
0.4254 

0.0532 
0.1345 

~.~~~~ 

Ampl. ~~:(. Amp 1. ~~:(. Ampl. Freq. Ampl. 
oeak oP"k n"~k (FS)" oe;'k 

1.0030 0.5156 0.2621 0.1827 0.7132 0.1857 0.3822 
9.9731 0.5156 1.1346 0.2755 0.5892 0.2749 1.1335 
0.9784 O. 1600 9.9408 
9.9957 0.2508 0.9723 
4.0727 0.2602 9.9771 
0.9827 0.3502 4.1573 

0.4275 0.7656 
0.0273 
0.0898 0.1346 0.1839 

g.g;~~ g.~~~~ g.g~~~ 

Frequency and amplitude estimates generated by the 
modified PSLE method; Simulated noise signal. 

Table 9.5 
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20 coefficients 
-Frequency .Amplitude. 

frac Fs ·oeak 
0.1346 0.3512 
0.1599 9.9120 
0.2517 0.9985 
0.2602 9.9457 
0.3508 4.2242 
0.3653 o 2130 

20 coefficients 
Frequency Amplitude 

F e k 
0.1344 0.6669 
0.1596 9.8401 
0.2527 0.8841 
0.2602 9.8114 
0.3527 3.6927 

26 2 

40 coefficients 
. Fregu.ency Amplitude 

frac Fs - ·oeal( 
0.1598 9.8862 
0.1718 0.3108 
0.2512 0.6463 
0.2598 9.8873 
0.3516 3.9191 
0.3612 0.4227 

40 coefficients 
Frequency Amplitude 
fr c F ak 
0.1598 9.7819 
0.1710 0.4704 
0.2579 6.9527 
0.2579 5.2779 
0.3575 10.9008 

57 1.677 

17""= 1. 0 
. 

0"= 2.0 

Frequency and amplitude estimates obtained via the PSLE 
technique - all roots not on units circle discarded. 

Table 9.6 
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9.6 Application to real aero engine vibration data. 

9.6.1 Source of data. 

The raw vibration signal from which the - vibration data 

sequence has been digitised, originates from the conditioned 

output of an accelerometer mounted on an aero engine fan 

cowling. The conditioning consists of a charge amplifier (to 

convert charge to voltage) and an integrator to convert from 

acceleration to velocity (inches/sec). The aero engine to 

which the transducer had been mounted was an RB211-535E4, 

this is a three shaft engine capable 

thrust. The vibration levels on 

of delivering 40,000 lb 

such an engine are 

determined by measuring the amplitudes of the sinusoidal 

velocity components at the three shaft rotation frequencies. 

Note that the three shafts are gas coupled, i.e. there is no 

gearbox, and hence their rotational speeds do not have a 

fixed relationship. 

The data sequence consists of 1024 samples (12-bit 2's 

complement), sampled at 512 Hz. The signal has also been 

filtered with an elliptical low-pass filter having a 

break-point at 200 Hz, a roll-off of 135 dB/octave and a 

stop-band attenuation of 80 dB. 

A second signal has also been sampled and digitised, this is 

a calibration signal representing a velocity of 2.0 

inches/sec at 120 Hz. The measurement and recording of this 

signal is essential to convert the accelerometer output into 

engineering units. 

9.6.2 Engine terminology. 

In the following analysis the three shafts of the RB211 

engine will be refered to as the LP, IP and HP shafts (low, 

intermediate and high pressure). Due to the blade dimensions 

on each shaft the LP shaft always rotates the slowest and the 
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HP shaft the fastest. From .-ground. idle to flight take off 

the shaft speeds cover the following approximate frequency 

ranges : LP - 15 to 82 Hz, IP - 39 to 128 Hz and HP - 106 to 

195 Hz. -. Off-line- vibration .. analysis is almost always 

performed via a 1024 point DFT, as shown in ;hapter6. 

9.6.3 Fourier transform. 

Discrete Fourier transforms (1024 points) of the calibration 

and vibration signals are shown in graphs 9.9 and 9.10 

respectively. In graph 9.10 the three sinusoidal vibration 

components related to each of the shafts can clearly be 

identified at :- LP - 0.1553 Fs [79.5 Hz], IP - 0.2217 Fs 

[113.5 Hz] and HP - 0.3301 Fs [169.0 Hz]. It should be 

remembered that the DFT frequency bins are spaced at 0.00097 

Fs [0.5 Hz], thus the estimated frequency of a component is 

only accurate to ±0.00048 Fs [±0.25 Hz]. The frequencies and 

amplitudes of the three components, together with some of the 

smaller components in the spectrum are tabulated in table 

9.7, note that the amplitude has been converted to 

engineering units using the amplitude of the 120 Hz signal 

shown in graph 9.9. 

A 128 point transform using the central 128 points of the 

above 1024 transform is shown in graph 9.11. The lack of 

resolution and increased effect of noise compared to the 1024 

point transform is quite evident. The noise floor is 

approximately 20 dB below the three main vibration 

components, which is 9 dB higher than for the 1024 point DFT. 

9.6.4 Modified FBLS technique. 

Spectra produced by the modified FBLS technique using 20, 30 

and 40 AR filter coefficients are shown in graphs 9.12.1 to 

9.12.3 and tabulated in table 9.8, the amplitudes again being 

converted to engineering units in the table. It can be seen 
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that this technique -has-worked extrememly well, clearly 

picking out the vibration components in all three cases of AR 

filter length. It should be pointed out that the calibration 

signal -onlyiequired-2 -AR- --filtec_c.o_et:ficients (the "ideal" 
f - - - ~ - ---

number) to -accurately extract the amplitude of the 120-Hz. 

component, as there is very little noise present in this 

signal (as seen in graph 9.9). Due to its simplicity this 

spectrum is not shown, the size of the calibration signal 

using this technique is 559.6 units at 120.9 Hz. 

As would be expected, as the number of coefficients is 

increased then the number of smaller components within the 

spectrum also increases. Not all of these components are 

noise, in fact if these spectra are compared to the DFT 

spectrum then it becomes apparent that most of these are 

genuine small vibration components or medium "Q" colourations 

in the noise. An important point being that the amplitudes 

of all the smaller components are reasonable in size and 

generally correspond in amplitude to those seen in the 1024 

point DFT. 

Refering back to the analysis of this technique on the 

simulated data sequences, two general rules were derived as 

to how many AR filter coefficients should be used with any 

particular set of data. These rules depend upon number of 

sinusoids and noise level 

vibration data sequence 

within 

the 

the data sequence; For -the 

number of sinusoids is 

approximately seven and the noise level is approximately lOdE 

lower than the smallest of these seven sinusoidal components 

(using information in the 1024 point DFT). Thus the AR 

filters should use approximately 28 coefficients [(7*2)*2], 

as defined in the first of the two general rules. As can be 

seen from the results in graph 9.12.2 and table 9.8, 30 AR 

coefficients has indeed extracted all three vibration 

components with no less accuracy than for 40 coefficients, 

but with more accuracy than for 20 coefficients. Note also 

that in the 30 coefficient case it has extracted exactly 

seven sinusoids - as predicted. 
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All of the· above results have come from the modified FBLS 

technique applied to the central 128 samples of the 1024 

point vibration data sample block. Using the central data 

·a-l-lows-the-resul.ts. to_l:?~ ___ com'pared with the results obtained 

from the DFT analysis where windowing tends to make--the---­

frequency and amplitude results more dependent upon the 

central· data. ·However as only 128 samples have been used, 

the analysis can also be applied to other areas within the 

1024 point block. The two resulting spectra obtained by 

applying this technique to the outer 128 data samples are 

shown in graphs 9.13.1 and 9.13.2. It can be seen that the LP 

vibration increases significantly between these two sample 

blocks, the increase being from 0.382 to 0.472 inches/sec 

(i.e. 24%). This example demonstrates the advantage of 

using small sample blocks which reduce the smearing or time 

averaging of the frequency and amplitude information within 

the sampled data. 

At the point during which this vibration data was sampled and 

digitised the engine speed was static, thus the change in LP 

vibration amplitude seen above would indicate a beating 

vibration component. 

9.6.5 Modified PLSE technique. 

The spectrum produced by the modified PLSE technique applied 

to the vibration data is shown in graph 9.14 and tabulated in 

table 9.9. The calibration spectrum again is not shown 

because of its simplicity, the actual calibration signal 

amplitude being 559.6 units at 120.9 Hz, exactly the same as 

for the FBLS case. This analysis has resulted in the 

algorithm selecting an AR filter of 14 coefficients in 

length, and has clearly picked out the vibration components. 

As with the FBLS case this technique has also been applied to 

the two outer 128 sample blocks, these spectra are shown in 

graphs 9.15.1 and 9.15.2. The spectrum produced for the 

first sample block again uses 14 AR coefficients and gives 
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very reasonable results, however for the second sample block 

this technique has only been able to use 12 AR coefficients 

causing significant errors in the amplitude estimates. 

The poor result shown in graph 9.15.2 is not su-rprisin-g iC 

the signal to noise ratio of the vibration data is taken into 

consideration. Remembering that when this technique was 

applied to the simulated data it was found that it began to 

have problems when the noise power and the sinusoid powers 

are approximately equal. It has already been pointed out 

that the noise floor of the vibration data (as seen in the 

128 point OFT) is approximately 20 dB below the vibration 

components. This means that the total noise power is only 2 

dB below the smallest vibration component, and 8 dB higher 

than the other components. 

The above results show that the modified PSLE technique can 

be used successfully with real and noisy engine data but that 

its noise tolerance is rather close to the noise level seen 

within vibration data (at least for the data used for this 

assessment) . 

9.7 Comparison between modified techniques. 

The analysis of the OFT, the modified FBLS technique and the 

modified PSLE technique applied to simulated sinusoids in 

noise, and to vibration data from 

provided a fairly clear picture of 

strengths. 

an accelerometer, 

their limitations 

have 

and 

In all of the tests the OFT has provided predictable results 

and noise has had no significant ill effects upon the 

algorithm, it merely being distributed, although not 

necessarily evenly, across the spectrum. The amplitude 

estimation is a problem (due to the picket fence effect) but 

can be alleviated by calculating the total energy within a 

peak as shown in chapter 3. The resolution within the 
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spectrum is only a serious problem. when.the sample blocks are 

small. Long sample blocks do however average out transient 

changes. 

The amplitudes of the vibration components, as calc·ui"ated by 

the OFT, should be quite accurate as each component lies 

almost exactly on a filter bin (purely by coincidence) . The 

amplitude results obtained by the modified FBLS technique 

certainly back this up for the IP and HP vibration components 

which are almost identical. This of course is also a good 

result for the FBLS technique because the OFT has shown very 

good power estimation when sinusoids have been coincident 

with filter bins. The LP vibration amplitude does not match 

up very well between the two techniques, but the FBLS 

technique has already shown that between the first and last 

data samples there is a significant change in the amplitude 

of this component, and is almost certainly the reason for the 

different results. The consequence of components lying in 

between the filter bins can be seen from the results of the 

small component at 0.31 Fs, the amplitude of this component 

given by the OFT is at least 14% lower than that given by the 

FBLS technique. 

The modified PSLE technique frequency and amplitude results 

from the vibration data do not appear to be as good as those 

from the FBLS technique or even the OFT, and it certainly 

appears to be on its operating limit with the vibration 

signal. 

When using the OFT there is no parameter selection to make 

before the analysis (except type of window), however the 

other techniques both require selection of their AR filter 

length (i.e. order selection). The modified FBLS technique is 

much more flexible than the PSLE technique in the number of 

AR filter coefficients which it can cope with. However some 

decision as to the filter order must still be made. No 

satisfactory algorithm (e. g. Akaike criterion) could be 

found to do this, although some basic rules have been 
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derived, which under 

reasonable 

- problem _ ():E 
technique 

guide lines. 

iimited testing, seem to provide 

Also, as demonstrated earlier, the 

selection with the modified FBLS precise order 
is not -too--miicn -of-- a-problem _as __ t}:lis technique is 

quite tolerant to overdetermined AR filters, exhibiting no ---­

ill effects such as frequency splitting. Thus, if the 

approximate filter order is not known, then it is quite 

reasonable to use many more coefficients than is perhaps 

necessary. All that will happen is that noise components will 

also be extracted, as always occurs anyway with the DFT. 

The noise tolerance and stability of the modified FBLS 

technique has proved 

DFT. The FBLS program 

to be very good, matching -that of the 

which has produced all of the above 

results is limited to 40 AR filter coefficients (due to 

memory limitations - the NAG library polynomial rooting and 

complex matrix inversion uses massive amounts of memory). If 

this program had allowed larger arrays this technique may 

well have been able to extract sinusoids even deeper in 

noise. 

The modified FBLS and PSLE techniques have clearly 

demonstrated their superior ability to estimate frequency and 

amplitude over the DFT. However noise does affect both of 

these techniques, in the FBLS case it simply causes it to 

extract less components for a given number of AR 

coefficients, whereas in the PSLE case it eventually 

prohibits the algorithm from functioning properly. This 

latter problem is considerable and seriously limits its use 

with noisy signals. 

9.8 Summary. 

In the last three chapters an assessment has been made of the 

performance of some modern spectrum analysis techniques. The 

forward-backward least squares technique and the Prony 

spectral line estimation technique -have shown the most 
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optimistic results, and subSequent modifications have been 

tried to further improve their performance. These have been 

fur.ther tested with a simulated noisy signal and with a real 

aero engine signal. 

It has been shown that the modified PSLE technique can 

perform very successfully but has restrictive limitations 

when dealing with signals in significant amounts of noise. 

The modified FBLS technique has been very successful and has 

proved to be the more flexible and tolerant of the two 

techniques especially when dealing with signals in 

considerable amounts of noise. Its frequency and power 

estimations have also been shown to be as good or better than 

those of the DFT, using data blocks eight times smaller. 
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Graph 9.11 - DFT. 128 points; Aero engine vibration signal 

Frequency 
fr f 

0.0176 
0.1357 
0.1553 
0.1865 
0.2217 
0.3105 

33 1 

z 
19.0 
69.5 
79.5 
95.5 

113.5 
159.0 

Amplitude 
ec ak 

0.061 
0.052 
0.454 
0.061 
0.478 
0.060 

2 

Frequency and amplitude estimates of main components 
in the 1024 point DFT of the vibration signal. 

Table 9.7 
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Graph 9.12.1 - Modified FBLS tech, 20 coeff; Vibration signal 
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Graph 9.12.2 - Modified FBLS tech, 30 coeff; Vibration signal 

216 



CHAPTER 9 Further assessment 

501 

50_ 

.0 

,0 
00 
." 
~ 20 " ~ 
<£ 

10 

0+-----------r-+_+-1--+~_+--r4--_+----+_-------

-10-

0.00 0.05 0.'0 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

frequency 

Graph 9.12.3 - Modified FBLS tech. 40 coeff: Vibration signal 

217 



CHAPTER 9 Further assessment 

60 

SO 

40 

30 

ID 
-0 
~ 

20 " '" ~ 
,0 

0 

-,0 

0.00 0.05 0.10 O.TS 0.20 0.25 0.30 0.35 0 .... 0 0.45 0.50 
Frequency 

Graph 9.13.1 - Modified FBLS tech, 30 coeff; Vibration signal 

448 samples before graph 9.12.2 

60 

50 

40 

30 

ID 
-0 
~ 

20 " '" ~ 
,0 

0 

-,0 

0.00 0.05 0.10 0.15 0.20 0.25 0 . .30 0.35 0 ... 0 0.45 0.50 
Frequency 

Graph 9.13.2 - Modified FBLS tech, 30 coeff; Vibration signal 

448 samples after graph 9.12.2 

218 

-



CHAPTER 9 Further assessment 

- - _ _ ___ Fr_equens;y ____ - - - ~- - Amplitude 
frac of Fs hertz -in /s-ec -oeak -

0.1555 79.61 0.422 
0.2218 113.56 0.479 
0.3292 168.55 0.242 

20 AR filter coefficients 

Frequency Amplitude 
fra_c. nf F"< hertz in/spc opak 

0.1551 79.41 0.422 
0.1886 96.56 0.134 
0.2217 113.51 0.479 
0.2723 139.42 0.077 
0.3117 159.59 0.076 
0.3302 169.06 0.250 
o 3768 192.92 o 026 

30 AR filter coefficients 

Frequency Amplitude 
frac. of Fs hertz in/sec oeak 

0.1003 51.35 0.030 
0.1296 66.36 0.047 
0.1553 79.51 0.420 
o . 1894 96.97 0.134 
0.2216 113.50 0.479 
0.2440 124.93 0.079 
0.2763 140.08 0.071 
0.3105 158.98 0.070 
0.3302 169.06 0.250 
0.3776 193.33 0.028 
~ 441~ 226.20 ~.~O~ 

40 AB filter coefficients 

Frequency and amplitude estimates obtained via the 
modified FBLS technique on the vibration signal. 

Table 9.8 
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- --fra"'-
J'r_equellcy 
of Fs h<>rtZ 

-- Amplitude 
fn ,'sec - oeak - - --

0.0073 3.73 0.043 
0.1441 73.78 0.014 
0.1567 80.23 0.400 
0.2217 113.51 0.477 
0.2607 133.47 0.070 
0.3294 168.~5 0.244 
() 3"14 17q. 2 0.006 

Frequency and amplitude estimates obtained via the 
modified PSLE method on the vibration signal 

Table 9.9 
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CHAPTER 10 

Summary and ConclusiOns· 

10.1 Intelligent Dynamic Data Acquisition System. 

In chapter one a specification was defined for a system that 

would perform acquisition and analysis of signals produced by 

aero engine mounted transducers. After a two year design and 

development period, a system meeting all of these 

specifications was finalised in a productionised package 

called IDDAS. During the development period many 

demonstrat.ions and lectures were given by the author to 

potential customers within Rolls Royce. As a result several 

systems very quickly went into service in the test facilities 

at Rolls Royce Derby. Systems were also bought by Rolls 

Royce Leavesden and Rolls Royce Bristol for appraisal and 

software development. Within ten months of the product ionised 

system being available there were 18 sets (at approximately 

I~ 2,000 a set) in use at Rolls Royce. 

One of the reasons this project was tackled was because there 

were no systems available in the market capable of meeting 

the specification. On the completion of IDDAS this situation 

still had not changed. In an attempt to recoup some of the 

development costs (and hopefully make some profit) several 

instrumentation manufacturers were approached with the offer 

of manufacturing and selling IDDAS under license. This offer 

was taken up by Data Basix of Newbury. This company has also 

agreed to sell the "Real Time Monitor" (see chapter 6) under 

license, and is currently developing an expert system which 

uses IDDAS to provide spectra at high speed. 
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-_Havin~ __ realised that IDDAS has several unique features, a 

patent application has been submitted for Europe and the USA, 

this is currently being persued by the Rolls Royce patents 

departmen~ ._ 

The considerable processing power availabl~ in IDDAS should 

ensure its use in engine analysis for several years to come. 

So far, no reasonable application has been found which IDDAS 

can not cope with, in fact in many applications it is an 

overkill. An example of this is in the "Real Time Monitor" 

(see chapter 6) in which only four out of the forty spectra 

available per second are actually used. This is due to the 

relatively slow graphics operations which the PDP-11 has to 

perform. The only remaining work involving IDDAS is in 

extending the software capabilities. One requirement which 

will inevitably be requested, is a zoom facility, there are 

no problems in adding this type of facility as there is 

plenty of data memory left, but due to time limitations has 

not been written yet. 

When IDDAS finally does become too 

further software changes for certain 

will have to be designed. There 

slow, or cannot 

applications, a 

are now many 

support 

mark II 

signal 

processing micro-processors available, including several 

upgrades on the TMS32010. The most powerful of these is the 

TMS320C25 which has many hardware and software enhancements 

over the TMS32010 and runs twice as fast. However this 

processor may not be the best choice for an upgrade of IDDAS 

as there are other processors such as the transputer which 

are at least as powerful. It is not particularly sensible 

for the author to recommend a successor to the TMS32010 at 

this stage because faster and more powerful processors will 

inevitably appear on the market by the time an upgrade is 

required. However it is worth suggesting that the new 

processor should perform fully implemented floating point 

arithmetic on board, and that it should have an optimised 

complier for a high level language such as "C". Both of 

these qualities will allow much more complex signal 
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processing algorithms than the FFT to be performed, and will 

allow faster and easier development-of programs in comparison 

to programming in assembly code. 

Summarising, it is- fair-to say-that the production of IDDAS 

has been an unqualified success and has met all the hopes of 

three years previous. There is no doubt that IDDAS has 

improved the quality of engine testing and already in one 

case may have saved a very expensive engine from self 

destruction! . 

10.2 Modern spectrum analysis technigues. 

An evaluation of some modern spectral estimation techniques 

has been carried out in order to assess the possibility of 

using one or more of them for aero engine analysis, Also, to 

determine what the performance advantages and disadvantages 

of these techniques are as compared with the FFT. 

Using the results obtained by Kay and Marple [27] as a 

starting point, four techniques were programmed onto the 

Loughborough main frame computer (using Fortran) and applied 

to two test signals. The results of these tests showed that 

Burg's autoregressive method and the Pisarenko harmonic 

decomposition technique were not very suitable for practical 

applications. This was because Burg's method exhibited 

frequency splitting and because they both exhibited frequency 

biasing, the latter being due to constraints within their 

respective algorithms. This was not the case however with 

the forward-backward least squares (FBLS) and the Prony 

spectral line estimation (PSLE) techniques which both 

displayed very good frequency estimation. Although the power 

estimation of the FBLS technique was not very good it was 

decided to further test these two techniques with more 

realistic and noisy signals. 
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Before _ further t~sting the FBLS technique an alternative 

method was developed for estimating power, which is based on 

a least squares method and involves the roots of the AR 
fil.ter_. _Tp.J? PEoved to be very successful and enabled 

accurate estimation of power. An- additional modification-was 

added which discards components with non-sinusoidal 

properties, this also served to improve the power estimation. 

The results of applying the FBLS and PSLE ~echniques to 

signals consisting of pure sinusoids in gaussian noise 

provided a clear indict ion of their capabilities. In general 

it was found that Prony's technique could not cope with 

conditions where the noise power was greater than that of any 

of the sinusoidal components. In these conditions, spurious 

components, worsening frequency and power estimates, and 

frequency splitting occured. It was also found that these 

effects appear very quickly, i.e. at a particular point the 

algorithm suddenly changes from producing good estimates to 

misleadin~ and inaccurate estimates. 

The FBLS technique provided somewhat different results. The 

effects of noise were much less marked and only gradually 

deteriorated the frequency and power estimates. Although it 

was also found that as noise increases, similar accuracies 

can be maintained simply by using more AR filter 

coefficients. At some point this eventually causes spurious 

components to occur in the spectra. It should be noted 

however that the amplitude levels of these components are 

always approximately equal to that of the noise floor. Thus, 

large enough amounts of noise will eventually stop small 

components from being identified, but that increasing noise 

does not cause any real concern for the algorithm and good 

frequency and power estimates are still retained for the 

larger sinusoids. 

Applying the FBLS technique to a signal obtained from an 

engine mounted accelerometer produced very encouraging 

results. A comparison is made between an FBLS spectrum 
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produced from 128 points with that of a 1024 point FFT. In 

the comparison -the FBLS techniques frequency and -power 

estimates appear to be as good, if not better, than those of 

the FFT. It is also shown that the FBLS technique detects a 

'significant - amplitude - change' - in --one- of- the vibration " 

components which is missed by the FFT due to the FFT's longer 

sample block. Only limited success was obtained with the 

PSLE because of the relatively high noise level. 

The problem of AR filter order selection has really not been 

solved in this work, but it has been shown that the FBLS 

technique can be used with highly over determined AR filters 

without detrimental effects, such as frequency splitting, 

occuring. This means that the order selection is not critical 

and that as long as a minimum number of filter coefficients 

are used then all, the required information will be obtained. 

Some rules of thumb are given for estimating this minimum 

number of coefficients, and largely depend on number of 

sinusoids and noise level. These are shown to work well with 

the vibration signal. 

Summarising, the forward-backward least squares technique, 

coupled with a power estimation method developed by the 

author can perform extremely well on real signals, and 

provides significant improvements over the performance of the 

FFT. This technique however is not straight forward to use 

and there is still a considerable amount of work to do in 

providing a robust package that can be used generally in 

engine analysis. 
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APPENDIX A TMS32010 Square root routine 

;**********************************************~*****~ *** 

• 

SQUARE ROOT SUBROUTINE 
Enter with value in accumulator 
Exit with square root in accumulator 

Copyright Roii~ Royce -1986 
*** BRUCE BOUSFIELD *** 

27-3-86 
j******************************************************** 
• 

047F 
0480 
0481 
0483 
0484 

5810 SQRT: 
5011 
FB0004AE 
6200 
FA000489 

0486 2EOO 
0487 F900048A 

0489 
048A 
048B 
048C 
048D 
048E 
048F 

0491 
0492 
0493 
0494 
0495 
0496 
0498 

049A 
049B 
049C 
049D 

2700 
5014 
5002 
2F02 
5802 
6200 
FA0004A4 

6510 
6111 
6A14 
6D14 
7F90 
FF0004BO 
FC00049F 

2014 
1002 
5014 
F900048C 

• 
LOWW: 
HIl: 

ROOT: 

• 
049F 
04AO 
04Al 
04A2 

2014 HIGHER: 
0002 
5014 
F900048C 

04A4 6510 
04A5 6111 

04A6 
04A7 
04AB 
04A9 

04AB 
04AC 
04AD 

6A14 
6D14 
7F90 
FD0004BO 

2014 
1000 
7FBD 

04AE 7FB9 
04AF 7F8D 

04BO 2014 
04B1 7F8D 

• END: 

• 
ZEROO: 

• 
FINI: 

SACH 
SACL 
BLEZ 
SUBH 
BLZ 

LAC 
B 

LAC 
SACL 
SACL 
LAC 
SACH 
SUBH 
BLZ 

ZALH 
ADDS 
LT 
MPY 
SPAC 
BZ 
BGZ 

LAC 
SUB 
SACL 
B 

LAC 
ADD 
SACL 
B 

ZALH 
ADDS 

LT 
MPY 
SPAC 
BGEZ 

LAC 
SUB 
RET 

ZAC 
RET 

LAC 
RET 

TEMPH 
TEMPL 
ZEROO 
ONE 
LOWW 

ONE.14 
HIl 

ONE.7 
XOLD 
TEMP 
TEMP. 15 
TEMP 
ONE 
END 

TEMPH 
TEMPL 
XOLD 
XOLD 

FINI 
HIGHER 

XOLD 
TEMP 
XOLD 
ROOT 

XOLD 
TEMP 
XOLD 
ROOT 

TEMPH 
TEMPL 

XOLD 
XOLD 

FINI 

XOLD 
ONE 

XOLD 

; store entry value 

branch if top word=O 

xold=1/2 of max root 
temp=1/2 of max root 

divide temp by two 

branch if temp WAS equal to 1 

acc=entry value 

acc=entry value - square of guess 
branch if guess**2=entry value 
branch if entry value higher 

if entry value smaller 
then reduce xold 

if entry value greater 
then increase xold 

final test after '1' was 
added/subtracted to check 
whether guess is still too big 

if too big reduce by 1 

return with zero 

jreturn with xold in accumulator 
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OOlA 0000 LOOS, ,WORD 0.1.3.4.6.7.8.10.11.13.14.15.17.18.19.20 
002A 0016 .WORD 22.23.24.26.21.28.29.31.32.33.34.35.31.36 
0038 0021 . WORD 39'.40.41.42.44.46.48.47.48.49.60.51.52.53 
0046 0037 . WORD 55.66.57.58.59.60.81.62.83.64.85.88.87.88 
0054 0045 . WORD 89.70.71.72.73.74.75.78.77.78.79.80.81.81 ~ 0062 0052 . WORD 82.83.84.85.88.87.88.89.90.91.91.92.93.94 
0070 005~ .WORD 95.98.97.97.98.99.100.101.102.103.103.104 '0 
007C 0069 ,WORD 105,106.107.107.108.109.110,111.111.112 trI 
0086 0071 .WORD 113,114.115.115.116.117.118.118,119.120 Z 
0090 0079 . WORD 121.121.122.123.124.124.126.126.127.127 0451 7913 AND LGt1ASK2 remove eisn extension; 10 • traction I:) 

009A 0060 . WORD 128 0452 OOO~ ADD LOOADD H 

0453 6710 TBLR TKt1PH set fraction from table X 
; •••••••••••• * ••••••• * ••••••••••••••••••••••••• ************.** 0454 2010 LAC TKHPH CO 0455 0703 ADD TRMPt.7 add bi t number;, 10' inte.er 

CONVERT 1 ON TO LOOARITHHIC VALUE 0456 OBOO ADD CHit. 11 add 16 coe its,the top word 
0457 F900047A B ~IN 

LOOS :enter with 32 bit number in acc 
:exit with 12 bit 108 in acc 0459 . 710F LOW: LARK ARt.£lS set count I to 15 (count 16) 

045A 2111 LOG3: LAC TEMPL.l ehift bottom word until the 
Copyrl,ht Rolle Royce·1985 0458 5011 SACL TEt1PL •• b overf,lowa • then branch 
•• * 8RUCK 80US'IKLD .** 045C P'A000460 BLZ DOHK2 

10-4-85 04511 '400045A 8AHZ LOO3 dec AR1 
;*********** ••• *********************.************.******.***** , 

0460 3103 DOHE2: SAR AR1. TEMPt ARI contalna bit nUlllb,er 
0461 2711 LAC TEMPL,7 set top 7 bita 

042F 6881 LOO, LARP £1 0462 OFOO ADD ONE.15 atop trun'catlon error 
0430 5810 SACH TKHPH 0463 5811 SACH TKMPL I 

0431 5011 SACL TK"PL save 32 bit input 0464 2011 LAC TE"PL 
0432 FFOO0477 BZ ZOUT branch if zero 0465 7913 AND LGHASK2 relDove sign extension; 10. ~raction 

0466 OOOP ADD LOGADD I 

0434 2010 LAC TB"PH 0467 6711 TBLR TEHPL ; .et trac~lon frolD table 
0435 FFOO0459 BZ LOW branch if nothing in top word 0468 2011 LAC TKHPL 

'" 0469 0703 ADD TEHPI,7 add bi t number; log integer 
~ 0437 1000 SUB ONB branch if top word 046A F900047A B FIN 

0438 FFOO046C BZ SCASB is equal to 1 ; 
046C 2711 SCASE: LAC TEMPL.7 get top 7 1 bitB of bottom word 

043A 710F LARt{ AR1,£15 eet counter to 15 (count 16) 046D OFOO ADD OHE,15 stop truncation error:, 
0438 2110 LOG I : LAC TEMPH.I shift the top word until 046E 5811 SACH TEMPL o-J 
043C 5010 SACL TEMPH the most significant bit 046F 2011 LAC TEMPL I 3: 
0430 FAOO0441 BLZ DONB1 overflows. then branch 0470 7913 AND LGHASK2 remove sign extension; 10. fraction Ul 

043F F400043B 8AHZ LOG1 dec ARl 0471 OOOF ADD LOGADD w 
0472 6711 TOLR TI!.HPL .et fraction frolD table '" 0441 3103 DONEl: SAR ARl.TE"Pl aD if by magic the eux reg 0473 2011 LAC TEHPL 0 

containe the bit number where 0474 0800 ADD ON!!:. I1 .dd 16; 'lDab WlIS In bit 16 .... 
the lDab was originally. 0.75 F900047A B FIN 0 

0442 6898 HAR .- decrement ARt le' 0443 2Fll LOG2: LAC TEHPL ,15 ahift right the bottolD word to 0477 7F89 20UT: ZAC 0 
OH4 5811 SACH TEMPL line up with the ehifted top word 0478 6880 LA RP .0 <Q 
0445 2011 LAC TEHPL 0479 1F8D RET return with zero in /3Iccumultltor 

'" OH6 7912 AND LGHASK1 relDove sign extension " 0447 5011 SACL TEHPL 041A 1900 FIN: SUB ONE,9 aubtracts 4 from log integer, this .... 
0448 F4000443 8AHZ LOO2 dec ARt 0418 FAOO0471 BLZ ZOUT relllovea aO.ll8 of ,the no i se! ! ; rt 

0470 6880 LA RP .0 
log I in 

::r 
044A 20tO LAC TEHPH add together the left shUted top 047E 7F8D RET return wi th .cc S 
044B 0011 ADD TEMPL and bottom words 
044C 5010 SACL TEHPH " 044D 2710 LAC TEMPH.7 ,et the top 7 bits of this word 0 
044£ OFOO ADD ONB.15 atop truncation error C 

rt 
044' 5810 SACH TE"PH .... 
0450 2010 LAC TE"PH :J 

(J) 



APPENDIX C Real input FFT (Fortran) 

c 
C M/2 stages, spectrum splitting, 
C then final ~tage ~f 2*M point FFT 
C 

C 
C 

C 

10 

m=m/2 
n=2**m 

-- do 201 =- 1-, m-­
le = 2**1 
lel = le/2 
u = (1.0,0.0) 
w = cmPlx(cos(pi/float(lel»,sin(pi/float(le1») 
do 20 j = l,le1 

do 10 i = j,n.le 
ip = i + lel 

Radix 2 butterfly 

t = x(ip)*u 
x(ip) = x(i) - t 
x(i) = x(i) + t 
u = u*w 

20 continue 
c 
c 

c 

x(n+l)=cmPlx(aimag(x(l».0.0) 
x(l)=cmplx(resl(x(l»,0.0) 

do 3 i = 2,n/2+l 
temp=resl(x(i»+real(x(n-i+2» 
temp2=aimag(x(i»-aimag(x(n-i+2» 
temp3=real(x(i»-real(x(n-i+2» 
temp4=aimag(x(i»+aimag(x(n-i+2» 
x(i)=cmplx(temp/2,temp2/2) 
x(n-i+2)=cmplx(temp/2,-temp2/2) 
x(i+n)=cmplx(temp4/2,-temp3/2) 
x(2*n-i+2)=cmPlx(temp4/2,temp3/2) 

3 continue 
C 

c 
c 
c 

90 

m=m1-1 
l=m 
n=2**m 
le = 2**1 
lel = le/2 
u = (1.0,0.0) 
w = cmPlx(cos(pi/float(le1»,sin(pi/float(le1») 
do 80 j = 1,le1 

do 90 i = j,n,le 
ip = i + le1 

Radix 2 butterfly 

t = x(ip)*u 
x(ip) = x(i) - t 
x(i) = x(i) + t 

u = u*w 
80 continue 
C 

233 
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W ... 

PAOE 1: 

0000 
0001 
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0002 
0003 

OUOO 
0001 
0J02 
0003 
000' 
OOOS 
0006 

0000 F!:IOO 0009 

0002 4103 
0003 2004 
000< IJOOO 
OOOS 500' 
0006 4A04 
0007 "'B03 
0008 7F8U 

NOVEH8fR 10 1966 

1 ..................................................... .. 2 _ 
3 _ . -5 _ 

8ruc. Bou.fi.ld 9-7-86 6 _ 
7 _ 

Copyrighl Roll. Roye. July 1986 6 _ 

9 ..................................................... .. 10 _ 

11 12 _ 

13 OOC 
14 ((",,-INK 
15 QOC 
16 RRHI·mn 
17 f./AHOAT 16 _ 

IS ONE 
20 lfRO 
21 POINT 
ZZ lE'" 
23 TOP 
2'" (OlJHT 
2SOUlPUT 
26_ 27 _ 

ilL 

Eau 
Eau 
EC.li 
Eau 
Eau 

""0 
DOTO 
DOTO 
DOTO 
OOTO 
""TO 
DOTO 

o 
1 
1 
2 
3 

I 
1 
1 
1 
I 
I 
I 

output OR( 
l.tch to Sf" 
inpul ADC 
•• t.rn.l r.m .ddr ••• l.tch 

1'_ d.b l.teh 

.1 
·0 
curr.nt .ddr ••• of output buff." 
tempo,..ry .tor. 
.ddr ••• of top Of input buff.r 
g.n.r.l count.,. .to,.. 
int.r~dial. output date .tor. 

28 .................................. . 2S _ 

30 31 _ 
32 _ " START r ••• t .... ctor 

33 ••••••••••••••••••••••••••••••••••• 3' _ 35 _ 

36_ 
37 .................................. . 
36_ 
39 1Nl 
'0 ., 
'2 
.3 
•• 
.5 
os-

IN 
L": 
000 
SOCL 
OUT 
OUT 
RET 

TEMP ,All: 
TOP 
ONE 
TOP Increment .ddr ••• 
TOP,RAf1ROO 
TEHP,RAHOAT put in~t .... lu. 

of top of buff. 

.t top of buff. 

PRGE 2: 

0009 F800 0027 

0008 7F62 
OOOC F600 0008 

OOOE 7F81 
OOCF 2004 
0010 lQ(X) 
0011 5(X)2 

0012 ?f62 

0013 7F61 
0014 4Q(12 
0015 4306 
0016 7F82 
0017 4906 

0018 ?f81 
0019 2002 
oolR 0000 
0018 5002 
00le 7F82 

0010 7F82 
001f ?f82 
oolF 7F8Z 
0020 7F62 
0021 7F82 
0022 71'82 

0023 F600 oooB 
0025 FSOO 0013 

~8 ••••••••••••••••••••••••••••••••••••••••• .9 _ 

SO-
51 -
52 -
53 -
54 5TRFH 
SS-
56 ME 
57 
sa-
59 
60 
61 
62 
63 

.... in Routin. 

[OLL INIT 

flNT 
BlOl ME 

DINT 
LO[ ToP 
SLa ONE. 10 
5O[L POINT 
flNT 

ini t i .. 1 i"e 

.n.ble interrupt 

... il '0' Ir.n"'er in.tuetion .. ~ 
dil.bl. interrupl 

.ublr.ct 104'4 'r om top o' b ... "er 

.tore in POINJ 
enAbl. lnt 

54 -65 •• n.u" •• il1t.rrupt rout in. not loe •• d oLI for more th.n I .. -67 _ 

68 LOOP 
69 
70 
71 
72 73 _ 

OINT 
OUT 
IN 
flNT 
OUT 

di •• ble ,nt 
POINT ,HW1/..IOO 
llJTPUJ ,RRHOAT get d.t. fr'om buffer 

enAble int 
OUTPuT,(OMLINK .end ,t to SP-proce •• ur 

74 •• top int.rrupt rout in. lockout 
75-
76 
77 
76 
79 
80 61 _ 

62-
63 • 

54 -
65 
66 
67 
66 
69 
90 91 _ 
92_ 
93 .. 
95-
96-
97 -

DINT 
LO[ 
000 
5O[L 
flNT 

flNT 
EINT 
flNT 
EINT 
EINl 
flNT 

BIOl 

• 

POINT 
ONE 
POINT 

HE 
LooP 

, 
increment output bu' fer .ddr,e •• 
en.bte inl I 

£INT i. required often •• it i. n 
in th_ interrupt routine (10 ... ,," 
Th. 5P proc c.n only .cc.pt • n •• 
• .... rv 28 clock cyc'e •. th ... ~ thi~ 
• llIinilnUl'l loop I t ime of 26 eye I .. " 
int.rrupt. uccur, ob ... iou~ty th" I 

,10'" down when int.rrupt, .re If 
but thi. ,. only nuliee.ble .t i., 
frequencie •• bove 66 Khz. 

Ch.ck to •• e if more ... nled by ~' 
if .0 c.rry on, 

~ 
'" trI 
Z 
Cl 
H 
X 

Cl 



APPENDIX E IDDAS Circuit diagram (Arithmetic 1) 
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APPENDIX E IDDAS Circuit diagram (Arithmetic 2) 
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APPENDIX E IDDAS Circuit diagram (Acquisition) 
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ID 

~ 
'U 
trI 
Z 
o 
H 
X 

ITJ 

;0 
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• 
2 
3 

• 
5 
0 
7 
8 

• •• 
11 
.2 
13 .. 
" .6 
'7 
.8 

•• 
7. 
2. 
22 
23 .. ., 
20 
27 
28 
2, 
3· 
31 
32 
33 
3" 

'" " "" 
30 

e 37 
38 
3. 

•• .. .. 
"' .. ., 
.0 

" 48 
4, 
5. 
51 
52 
53 
5' 
55 
50 
57 
58 
'9 
o. 
O. 
02 
63 
O. 
0, 
00 
6' 

c····················································· ..... ** •••••• ** 
C 
C Pron¥ spectral line •• timation 
C 

C····················································· .............. . 
C 

double preclaion xln(128). xt{21it,128). r(Ze.ze). yCi28). a(201 
double pl-aclalon t(lZ8,20>' h(t28,20), loc(128.20) 

'complex b(b"" temp2(~0) 
double ~r.cl.1on •• (20.20), wka}(20), wkd2(201. b{~0) 

double "reel_Ion tal. poly(41). zre(IU1). ZII1(IH/I) 
double pI'ec1810n Slim 
complex C8um 
,' •• 1 rea(Ze.)) 
Intell:er P. twopl 
complex zed(bS) 
complex "r.iC128,IUlI). phit{IUII,12B) 
complex 8p811n(40,4&) 
double "recision wlu,pce( •• e.IUI) 
dOLlblllt l'PfH:JllllolI <1.".I}nC",110,110) .• ,rlHIII'''(:I.b0) 
double ,',·eel.lon db(2,b0J 

data ,,1/0.1d0/ 

print •• 'enter ~" 
Input .,p 

open( IJnlt -5, tile .. I ret. det' ) 
openCunLt.6.fl1e_'Plotpn.dat') 
readC !:I •• lnn 

c ............ ···,····· ••• • •• ••••••••••••••••••••••• 
do 10 1 .. 1. nn 

read(').·)xln{ t I 
10 continue 

clo.eC» 

c·········································· 

twopt .. ;?·" .. 1 
I rOW~I\" - .... \. 
1 CO 1 .. P 

do lI0 lr .. t,lrow 
do tu, le-l.leol 

t(lr.ie).xlnC[,lc·lr) 
bll eont·ll1ue 

do 80 Ira 1.lrow 
do B0 tC:"l.lcol 

tIC Ir.lc) .. xln( Ir"le.,,) 

B0 eont llllle 

do 100 Il'''l.lrow 
do 100 le_l.leo) 

xxCII·,lc) .. t(lr,le)·r,(lr,.lc) 
xt(lc,lr)",xx(Lr,lc) 

10111 continue 

dO 110 lr-l,lrow 
V( lr).2d0.xl,,( ir·p) 

118 continue 

68 C •••••••• -••••••••••••••••••••••••••• " •••••••••••••• ,,*** 6. 
7. C 
71 
72 
73 ,. 
75 
76 
77 
7B 21" 

79 
8. 
Bl 21110 
82 
83 
8. 
85 
80 
B7 2J0 
88 
B9 220 
9. 

for~ r (Xt.X) And S (Xt.Y) 

do 20" ir .. I,icol 
do 2"0 .le-I.leol 

.ulll-0. 
do 210 J .. I, Irow 

sum"lIl1m.xt( II'. j )"xx{ j, Ic) 
continue 
r(lr,lc)"aum 

continue 

do 220 lr_l,leol 
ilium_B. 
do 230 j .. l.lrow 

lIum ... um.xt(lr.J)·.>'IJI 
continue 
allr')_III'Jm 

cont !nue 

9' 
92 

c· •••••••••••••••••••••••••••••••••••••••• " ........ " •••••• 

93 
9" 
95 
96 
97 
98 
99 

••• ••• '.2 
10.1 

evaluate 'a' for R.a _ S 

nop 

laa-2e 
Itlo.1 1 .. 1 

tlsL".Il IlnelOr ~qt route 

call tlll4attCr.lr.a.n,a,&a. l1'loa.wks1.wka2.lf8Ll) 

ir (lfall.eQ.III) Koto ?4111 
prlllt ., 'tailed' 

at 0(' ••• '.5 
•• 0 
'.7 
••• 

2i10 COllllllue 

c· •••••••• ".· •• ".····· •••••••••••••• ** ••••••• " ••• " •••• ~.,,~ • 
'.9 
110 C 

"' 11> 
113 

"" 115 300 
110 . " ... 
119 .2. .2. 
.22 
.23 
.20 

'20 
'20 
.27 
128 350 
.29 
13. 
13' 
132 
J)3 400 

crelote l.lolynomle.1 an., then rlnfl ;terOf!tl 

do J00 1 ~ I. P 
polylp .. t·II--·Ijo( 11 
po 1 y ( ". t . I I .. - a ( I ) 

eontlnut'!! 

poly( ,"I j .. 2<10 

t01">I";>68f(,.I) 

1 tall ·1 

call \:02aefl "oly. tWOLJ1, zre. zlrn. tol, I r .. 111 

It(ttall.e'~."l "otu ]')0 

prlllt .,' tall polv' 
!ltop 

p.2*" 
ao b"" 1\.,1, P 

zed(k)-cmplxlzre\kl,{zlrn(k))! 
cont11lue 

i;; 
'" trI 
Z 
tl 
H 
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III 
'0 
(1) 

o 
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APPENDIX G 

'1 )"---­

"5 
lJ6 
1,7 ,,. 
1)9 I.II.LIII 

". 

Prony spectral line estimation (Fortran) 

kk~k/Z 

re8(kk.l )_atan(ab8{alma~( r.e<j(kL) ),'real (r.edl k))) .'/ 2, i.'I.~;i, 
It(real(r.ed(k) ).It.13.e) re.lkk.l J_re .. fkk.1 )'0. ~ 

continue 

lUl C ••••••••••••••••••••••••••••••••••••••••••••••••••• * •• ~ 
"2 

'" ,oa 
", 
1~6 

,07 

"a 
"9 ". 
'" 152 

'" 1 5 4 

"5 
,,6 

c 

". 
50. 

1 57 810 

'58 
159 81313 ,6. 
161 
162 
16, 
16" 
165 56" 
166 

calculate amplitude 

do 5"0 l .. l,nn 
do 510 ,,_l.p 

pnt(1.")-~e~(")··(1_1) 

~nlt(J.I).conj~{pnl't."l) 
continue 

cont Inue 

do 800 1-l,p 
do 81313 J-l,p 

~!!,Jm .. cmplx( 13 •. 13. 
<108113 k_l,nn 

c8um-C8um-(phlt(l.k)·phl(k.J)) 
continue 
epo1l11n(I.,,).cll!lum 

corn Inue 

do 550 I_l,p 
cS'lm-cmplx(0 .• e.) 
dO 56111 kat. nn 

c8um-csum-(pnlt(l,k)*cmplx(xln(kl,0d0)) 
continua 
tempZ{I)-csum ,'7 ,., 55121 continua 

169 
'7. 

c···· •• ···.···· .• ·.· .. · ............................... . 
171 
'72 
17, 
'74 
175 6"" 
17' 
'77 
'7a 
179 
18111 6)" 
181 
182 
18, 

"4 
185 
186 
187 
188 
189 
19. 
191 
192 
193 61111 
19' 
195 62e 

,9' 
197 
19a 
199 
213e 6513 
201 
2.2 2., ,.4 2., 
286 66" 
2.7 
2.a 
219 
211 6813 
211 
212 
213 
.14 
'15 
216 91110 
217 
• 18 

'" 220 .. , 

do 6121" l-l,p 
do 6121121 J-l, p 

dep811n(1.1.")_real{epe11n(1,j)) 
dep8lln( 2. i.,,) -almac( eps11rd 1. J) ) 

continue 

1;30 6)13 l",l,p 
I;3temp2{1.1)"'real(tempZ(1)) 
dtemp2{Z.1)_almalt(temp2(il) 

continue 

1._4121 
tb-a" 
1 c.A" 
no. 
m_I 
itall_1 
call tl2ltladt(dapslln.1a,dt8mpZ, Ib.n,m,db,1c,wkspce. It&Ll) 
it(1r.II.aq.l2I) coto 61121 
print •• ' 1nvarse tall' 
stop 

dO 620 1-I.p 
bC I )-cmplx(db( 1.1) .db(Z.1) 

continua 

do 65121 l_Z.p.2 
kk ... I/2 
res(kk,)-(caoe(b(1))_cabe(b(1_1))J 

cont1nue 

do 6613 k_2,p.Z 
kk.k/Z 
rasf kk. 2). (atan (abe (alme~{ b( it» )/re8.1 (b( it) ) ) ),'",,1*180 
it(real(b(k») ,It. ", e) ree{kk,Z) .. reeCkk. 2) '18B 

continua 

do 6811 i-1. p/2 
print *, 'traq·', r.sC i,ll,' arnp·'. ra.( I, J).' .Phesea-. re.( 1. 2) 
continue 

wr1ta(6,*1'lnput data' 

0309111l1li 1"1.,,/2 
wr1te(6,e) res(1.1),','.2"*aloa:10(restl.31) 

continue 

wrlteC6.*)'aod •• 

etop 
.nd 

241 




