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Preface

ABSTRACT

For many years the analysis of dynamic_signals_obtained__from.
aero engine mounted transducers has been performed either by
using real time spectrum analysers within the test faclility, or
by making high quality tape recordings during engine tests and
analysing the data via an off-line main frame computer.
Although real time analysers produce the information where it
is most needed, they provide no history of events and the
results are coperator dependent. Analysis from tape recordings
enables information extraction algorithms to be performed and
tables and graphs of notable events to be printed. However
much of this information could be more effectively utilised if
produced within the test facility and in real time. This
thesis describes the design and development of a real time data
acquisition, signal processing and infermation extraction
system ideally suited for engine health and performance
monitoring within test facilities. |

The thesis begins with a detailed description of the problems
|

encountered in dynamic signal analysislin the field of aero
engine performance testing, and with an overview of digital
signal processing and the latest technology signal processing
micro processors that have made this project possible. It then
describes the problems encountered and the subsequent solutions
found during the design and development of the hardware and
software needed for thexhiéh'bandwidﬁh data acquisition and

fast signal processing algorithms.

The fast Fourier transform has been uséd for very many years in
the field of spectrum analysis, however this technique has
limitations which are overcome by some of the more modern
spectrum estimation techniques. This thesis makes an assessment
of some of these techniques, noting particularly their
performance on aero engine type signals. The results of these
tests are recorded and the possible use of the techniques in
aero engine analysis is discussed.
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DEFINITIONS

——————Dynamic-data-—- ———Digitised—-data— samples-—acquired-—-from —a———
conditioned +transducer signal which has a
bandwidth of greater than 5 Hz.

Data reduction - The act of reducing data bandwidth by
extracting specific information from a data
sequence.

Deterministic - Continuous time function, all values can be

process predicted at all times.

Leakage - Smearing of signal energy into neighbouring
frequencies caused by windowing the signal.

Picket fence - The ripple in amplitude estimation across a

effect DFT spectrum caused by windowing and sampling
a signal.

PDP-11 - Mini-computer manufactured by the Digital
Equipment Corporation (DEC) . Originally

manufactured with a 16-bit backplane, now
22-pbit. Has had variocus standards of CPU and
runs various operating systems, the most
popular being RT-11,

Q-bus - 22-bit backplane of the PDP-11.
Stochastic - Random function or data sequence, stationary
process stochastic processes have a gaussian

probablility distribution.

Test facility - A facility designed for testing aero engines
or parts of. Generally consists of a bed in
which the engine sits, and a control room to
which the multitude of measured signals are
relayed, conditioned, displayed and recorded.
Also generally designed for either passing off
production engines, or researching and testing
development engines.
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CHAPTER 1

Definition of Problenm

1 Introduction,

During the design and development of aero engines, many
hundreds of engine parameters are required to assess engine
health and performance. For many years, aero engine
instrumentation has provided the means for measuring,
analysing and displaying these engine parameters in
calibrated engineering units within the test facilities. 1In
more recent years the instrumentaticon has progressed from .
individual analogue driven dial type gauges, to graphically
generated dial and bar gauges which can be reconfigured for
different tests. This progression has demanded the use of
dedicated test facility computers to provide the control and
means for acquisition, calibration and display of these
parameters. The computer also allows menu driven
configuration tables to be set up for different engines and
various engine manoceuvres.

The instrumentation computer used in most test facilitiés is
the ubiquitous DEC PDP-11 mini-computer, this machine
provides an operating system (RT-11) well suited to real time
applications, and instrumentation manufacturers provide a
multitude of plug-in cards enabling the acquisition of
various signals, from thermocouples to high frequency phonic
wheels. The combination of this hardware and R.R. software
has produced a versatile instrumentation package (known in
Rolls Royce as IRRIS) which provides test facility personnel
with real time engine information, and the steady state data

recording facility with calibrated engineering parameters.
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Although IRRIS has made the task of engine instrumentation
more versatile and straight forward it has not really
introduced any more information about the engine to the test

personnel. Due to _the _relatively..slow -update rat€ of the

‘IﬁﬁIélscreens (ten times a second) and the fact that no real

analysis 1is performed on the measured data other than
calibration, only steady state and some limited transient
information is available to the observers. To determine
overall engine health, and confidently reschedule engine
tests when problems have occured, more infermation is still
required. This information is contained in the signals of
higher bandwidths (anything between 5 Hz and 50 KHz) produced
by such transducers as accelerometers and strain gauges.

At present this information 1is obtained by recording the
signals on 28 track FM tape, and then at a later date and in
a different building, by analysing the tapes via a small
general purpose main frame with associated array processors.
The information, extracted via spectrum analysis, is then
made available to design and development engineers in wvarious
printed formats, by this time it 1s obviously of no practical
use to the test facility personnel., This system is shown in
figure 1.1

Ex ing i nami n i

In mid 1984 in became obvious that the capability to analyse
and display information extracted from high frequency
signals, on test facility instrumentation systems such as
IRRIS, would soon become essential. The driving force behind
this decision was that of trying to keep engine testing costs
to a minimum while maximising the quantity and quality of
test results. This came as a direct result of increasing
pressures in the aero engine market place.

A requirement thus emerged for a system that could perform
signal acquisition, spectrum  analysis, data reduction
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(information extraction), and very importantly be able to
communicate with the already existing test ' facility
instrumentation computer. The calibration and display of the

dynamic data information also being performed Dby this

computer. It was deemed necessary to have a ~ separate -and-
distinct dynamic data acquisition and analysis system because
the computational intensity of spectrum analysis and data
reduction algorithms are such that they would bring a general
puépose computer, such as the PDP-11 in IRRIS, to a grinding
halt. The planned system is shown in figure 1.2.

Data reduction

One of the desired features o¢f this dynamic data analysis
system 1s the ability to extract information from the high
bandwidth input data, thus enabling low bandwidth data
streams t¢ be presented to steady state systems such as
IRRIS. This type of data reduction can take on many forms,
it may simply be to pick out the frequency components with
the largest amplitudes, or alternatively and more likely, it
may be to track and pick out the amplitudes of wvarious
vibration modes. In either case the bandwidth of the
resulting information will be significantly lower than that
of the original sampled data.

Engine transducer signals and their spectral content.

Many different types of dynamic signals are received from
aero engine instrumentation and 1in general are produced by
three basic types of transducers. These are

1) Accelerometers - used to measure total engine vibration,
these are usually mounted on the front and rear of the
engine carcass. The signals are usually low in bandwidth
(less than 400 Hz) and reveal shaft out --of - balance
information.
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2) Pressure transducers - used to measure pressure
fluctuations around all the éerodynamic surfaces and
cavities, e.g. pressures  between compressor stages and
combustion chamber inlet and outlet pressures. These

- signals have bandwidths of anything up to 5 KHz and can

reveal information about blade passing pressures,

compressor surge and stall.

3) Strain-gauges - used to measure blade stress and
vibration and indirectly, aerodynamic .pressures on the
blades. These signals can have bandwidths of at least 25
KHz® and reveal information about blade twist and flap,
and acoustic resonance.

The spectral ceontent of the signals mentioned above varies
between each application. In the case of shaft vibration
there may only be two or " three sinusoidal components and
these would in most cases be quite distinct. However,
signals of blade vibration can exhibit twenty or thirty
harmonically related engine order components, plus some
non-integral components (not-related to engine speed, e.g.
blade twist) which c¢ross the other components during engine
manoceuvres. The signal to noilse ratio of these signals also
varies Dbetween applications and can be anywhere between 20
and 40 dB.

To cope with the above range of signals the existing dynamic
data analysis performed on tape recorded signals requires
1024 point DFTS with spectrum bandwidth capébilities of at
least 50 KHz. This type of performance must be replicated in
any system introduced into the test facility environment.

Post analysis and data reduction.
Dynamic data analysis and the subsequent data reduction

algorithms performed on tape recordings are as varied as the
signals themselves. However, to provide some insight into the
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range _of analysis techniques which are performed, two brief

examples are given;

_-1) Demonstrating _the _fact that in many _cases the exact

information required 1is not known (this is typical 1in
development engine analysis), a clear graphical
representation of all of the information 1is produced.
This is achieved by using density plots where time is in
the x-axis, frequency is in the y-axis and the spectrum
amplitude is represented by image density. An example of
this is shown in figure 1.3, this clearly picks out five
engine orders plus a non-integral compeonent during an
engine acceleration. The raw signal for this analysis has
come from &a pressure transducer mounted by the main
compressor fan.

2) A case where the information details are clearly defined
is in the measurement of engine vibration. The main
vibration components are found at the fundamental shaft
rotation frequencies. Thus vibration measurement simply
consists of picking out the amplitudes of the components
at these frequencies, the rest of the data can then be
discarded. An example of this is shown in figure 1.4
where the vibration components of a three shaft engine
{RB211-535E4) have been tracked and plotted against
engine speed. The raw signal has come from an
accelerometer mounted on the engine carcass while the
engine was subjected to a two minute acceleration and a
two minute deceleration.

Real tim namic d nalysis system spe ication

The above brief outline concerning the requirement of real
time signal processing within aero engine test facilities
resulted in the following specification being derived in late
1984;
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A system is required that can be installed into test facility
environments and be able to perform the following tasks

e - o1y

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

“Acquisition of .signals directly from transducer

conditioning units. BT

The acquisition hardware should perform all filtering,
sampling and digitising.

Acquisition rates should be wvariable and allow signal
bandwidths of up to 50 KHz.

Perform various signal processing algorithms, in
particular a 1024 point Fourler transform.

Perform various data reduction algorithms, some of which
will inevitably involve knowledge of engine speed thus
making measurement of speed also a requirement.

Fast execution of the above two tasks, thus indicating
the need for dedicated signal processing hardware.

The ability to communicate at high speed with the PDP-11
CPU.

Allow hardware and software configuration under the
control of the PDP-11 application programs.

Allow multi-channel inputs for cross-correlation
purposes.

Calibration of the system and host should be straight
forward and only necessary after lengthy periods (e.gq.
3-6 months)

The cost should not be prohibitive when considering that
some facilities may require 28 or more channels of
analysis.
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1.7 Assessment of the analysis system specification.

There are only really three possible ways of performing the
__above task of dynamic data agquisition, analysis, data

reduction and communication with the host.” ~“ThHese “three- ——
options are 1) using readily' available spectrum analyseérs, 2)
using a general purpose computer with an associated array
processor and acguisition hardware, and 3) using a DEC
compatible card specifically designed to perform these tasks.

Spectrum analysers contain all the necessary hardware to
perform data acquisition and spectrum analysis, and they can
usually be communicated to, and controlled by, a host
computer via the IEEE network. However their data reduction
functions are usually basic, their communication bandwith
low, and are generally quite bulky units. Spectrum analysers
with anything 1like the sort of processing power required
retail for at least & 10k. which is rather prohibitive.

A general purpose computer using additional acquisifion
hardware and array processors or maths accelerators to
perform the signal processing and data reduction would meet
the technical specification. Indeed this is the type of
equipment that is used to perform the post analysis on tape
recprdiﬂgs of engine signals. Systems o©of this nature
however, have the same two problems as the spectrum
analysers, they are prohibitively expensive (at least £10«k.
per channel) and are excessively large for the limited amount
of room available in most test facilities.

The only real solution is a system comprised of one or more
PDP-11 compatible plug in cards capable of performing the
necessary data acquisition, the dynamic data analysis and the
communication with a PDP-11 CPU over the PDP-11 Dbackplane.
Only one major problem existed with this solution, at the
time when this specification was derived the necessary
hardware to do the job did not exist and did not look like
coming onto the market for a good deal of time.
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Once again, as happens quite regularly at Rolls Royce, the
instrumentation requirements needed to test and analyse aero
engines had outgrown that for which the instrumentation

market could supply. It was for this reason that research,

T "design and development “into a- real  time -dynamic— data

acquisition and analysis system was embarked upon. Due to
the limited amount c¢f resource which can be applied to such
projects, the entire research, design and development of the
system was the sole responsibility of the author.

The following chapters describe how the above specification
was turned into a fully working productionised system., This
work invelved a considerable involvement with digital signal
processing techniques, especially the fast Fourier transform,
and with the Texas TMS32010 digital signal processing
micro-processor. Examples are given in later chapters of how,
after two and a half years work, the productionised system
was first put to use 1in both development and production
engine test facilities. The final productionised system was
called the "Intelligent Dynamic Data Acquisition System" or
IDDAS.

1.8 Assessment of modern spectrum analysis techniques,

In certain circumstances the sinuscidal compoenents within a
signal either change in frequency or amplitude very quickly
during a 1024 samples period, or are very close in frequency
to the extent ¢f being indistinguishable. This can lead to
inaccurate and misleading results which can only be overcome
by making the sample.blocks smaller and increasing the
resclution. It is of course impossible to do both of these
simultaneously with the Discrete Fourier transform.

Over the years many alternative spectrum analysis techniques
have been derived. A few of these have been used 1in real
applications (e.g. geophysics) but in general they have been
restricted to academic applications. The author has spent
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part of his research time (approximately one fifth) in
assessing these alternative techniques, and in applying the

more relevant ones to aero engine type signals in an attempt

on the Loughborough University main frame computer and no
attempt has been made towards real time application of these

techniques. This work is described in the later chapters of
this thesis.
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CHAPTER 2

Digital Signal~Processing "~ - CoUTTT

2.1 Digital signal processing fundamentals.

As with analogue systems, a linear discrete system 1is one
which obeys the principle of superposition, and a time
invariant system 1is one in which the input to output
transformation algorithm does not change with time. Linear
time invariant systems account for a wide variety of signal
processing functions and are the most straight forward to
analyse.

To perform signal processing with the aid of digital
computers the 1nput data must be represented as discrete
values and in a format that a computer can understand, 1i.e.
sampled and digitised into binary format, Certain
precautions must be undertaken when sampling a signal at
discrete linear time intervals, as not all the information in
the signal can be precisely recovered. The information that
can be recovered is described in Shannons sampling theory;

A signal with no fregquency components greater than Fs/2
can be uniguely defined by its instantaneous values when
sampled at Fs or more.

Frequency Fs is known as the Nyquist sampling rate. Fregquency
components which occur above half this sampling rate are
aliased (transformed) down to a frequency below half the
sample rate, these components then become indistinguishable
against the true lower frequency components, this is
demonstrated in figure 2.1.

To avolid confusion between real components and aliased
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components an anti-aliasing filter must be employed prior to

sampling a signal to remdve all signal components above Fs/2

Hz. Ideally this filter would be a brick wall low pass

filter with a cut-off frequency at Fs/2 Hz. Realistically
"7 this of course 1s not possible- “and -the-filter would normally — —
have a 3 dB cut off point of about (0.4Fs EHz.

Fi f2
' ¥’
g
z
3
4] T i:’ ar 4'1' '.;T 6T
TIME
fl £2
f | 4
Amp
1 | 4 1
Fs/2 Fs 3Fs/2
Figure 2.1 - Effects of aliasing
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~Having set the upper frequency limit and sampled the signal,
the discrete value must be converted into a digital (binary)
form that can be understood by a computer. The precision to

which a signal is digitised depends upon the total number of

" discrete levels that an instantandous value can be-assigned.---——
This number also defines the digitising signal to noise ratio
that occurs due to quantisation errors. This error and its
corresponding S$/N ratio is shown in figure 2.2.

o/p

20 £

| A
Ve

-2D -1D 1D 2D i/p

—
A .

Figure 2.2 - Digitisin rror

The error (e) Dbetween actual signal (i/p) and digitised
signal (o/p) 1is

-D/2 < e € D/2

‘ 2
Noise power => 1/?}/2;2.de = p%/12
Signal power => (E/2 ./_2')2 = £2/8 where E = p.p. amp.

of signal



CHAPTER 2 ' Digital signal processing

‘Signal/Noise => (B%/2).(3/p%)

However D = E/21 where N equals number of bits, thus

s/N = 3.2 - 4,77 ¥ 3{eN=1y dB. - - e
1.77 + 6N dB

This formula gives the following example values -

N No. of levels S/N_(dB)
8 256 50 .+ Note that this
is only valid
12 4096 14 , for sinusoidal

16 "-65536. . 98 signals -

The hardware considerations that must be made in the light of
the above information are discussed in chapter 4.

Basic signal processing algorithms.

The following two techniques, correlation and convolution,
are at the heart of most signal processing algorithms. The
third technique described, the fast Fourier transform, is
almost certainly the most highly used o¢f any signal
processing algorithm in the engineering and research fields.

rrelation

The correlation integral of a linear time invariant system is
defined as

o0
Rxy{T) = Ifx(t) Ly (E-T) .dt - T < a0
- 00

In the above case there are two different time functions and
thus 1is refered to as the cross-correlation integral. More
often there is only one time function and the integral is
modified to become the auto-correlation function
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) o0
Rxx (T) = J/’fx(t).fx(t—T).dt -00 < T <00
-o0

This function has the special property, known as the Wiener
Khintchine relationship, in that the double sided energy
§§é¢frum'“of the same time-function:iS-its Fourier. transform
pair. More specifically, - . when
T=0 the auto-correlation function is equal to the energy
contained within that signal.

2 Convolution.

The output of a linear time invariant system is obtained by
repeated evaluation of the convolution integral

Y{T) = ﬁl(t).f(T—t).dt - < T < o0

-

where h(t) is the impulse response of the system and £(t) is
the input signal. Note that the only difference between this
and the cross-correlation function, is in the time reversal
of £(t). For discrete systems the convolution integral is
slightly modified to produce the convolution sum

[- ]
Y(k) = Zh(n).x(k—n) ~00 < k < o0

Nz - «0

where h(n) is the unit sample response of the system and x(n)
is the input data sequence. This convolution sum can be used
in many types of linear discrete systems, in particular, the
discrete Fourier transform and windowing, as will be
described.



.3.

CHAPTER 2 Digital signal processing
Fourier analysis.

As stated earlier, the main real time signal processing task

required for engine analysis within engine test facilities is

‘spectrum™ analysis. - -The -easiest -and -most .common _way of

performing this is via the fast Fourier transform (FFT) [5,
17, 23, 47] and it is by this technique that all engine data
post analysis 1is currently performed. The FFT 1s a well
documented, tried and tested algorithm whose behaviour can be
predicted with high confidence.

The following sections give a brief description of how the

very popular radizx 2 FFT is derived, and of how it <can be
made still faster by using radix 4 and real inputs only.

Discr Fourier nsform.

The Fourier transform for continuous signals is defined as
follows
o0
X(f) = /x(t).éjmr‘%.dt where £=1/T
-0

and the complementary discrete Fourier transform (DFT) for
sampled finite records is

N-}

F(k) = Zx(n) LHTERE k=0,1,..,N-1

n=o
The DFT output is thus a set of N samples taken from the
continuous Fourier transform. The fundamental frequency of
the samples being Fs/N Hz, where Fs is the sampling
frequency, and each sample frequency is given by Fs.k/N Hz.
These frequencies do not explicitly appear in the DFT
summation however "k" can be interpreted as a harmonic number
and "n" as the sample period number. Note also that when the
input data sequence is purely real, as is usually the case
for linear time samples, the output 1is a double sided
spectrum,
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Fast Fourier transform,

Over many years thé FFT has proved to be a very efficient and
useful algorithm, especially when used in computer programs,
and—hég__féuﬁd_iéppfiéatiaﬁé_’ih" many “tasks T other than- just -
spectrum analysis. For example, in some cases it is faster
to do a convolution by performing two FFT's, a multiplication
of the resulting spectra and then an inverse FFT. "Fast
Fourier transform”™ is really a generic term for a multitude
of slightly different algorithms all derived from the DFT,
and designed to significantly reduce the computational effort
involved in the DFT. The underlying similarity being that
they all break down the DFT into small c¢ommon blocks by
utilising the periodicity and symmetry of the exponential
term, thus eliminating a great deal of repetitive complex

multiplication. The saving in computational effort - is
usually refered to as being proportional to [N**2/N.Log((N)],
where "N" is the number of samples. It will be shown however

that the saving in real application programs is even greater
than this.

Derivation of radix 2 FFT.

For the sake of convenience (especially for the typist) the
following definition will be used

-] MT.nk
eJ - = W(nk)

The DFT summation shown above, can now be rewritten as

N=|
F(k) = Zx(n).W(nk) k=0,1,..,N-1

nzo

If N 1i1s even, then the even and odd terms can be split as
follows
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- |

M
Z [x(2n) .W(2nk) + x(2n+1).W((2n+1)k) ]

F(k) =
n=o
N %-!
— e - L _ . _ _=>» E(K}_frA_:Z;X(Zn)-W(an) + W(k) ji:i<(2n+l).w(2nk)
nzo S A- T T T ARe Tt B -~ - - - ——
i.e. F(k) = A(k) + W(k).B(k)

where A(k) and B(k) are N/2 point transforms. If "k" is now
replaced with "k + N/2" we have

F{k+N/2) = A(k+N/2) + W(k+N/2).B(k+N/2)
However A and B are N/2 point transforms where
A(k+N/2)=A(k),
B (k+N/2)=B (k),
and W({k+N/2)=-W(k)
Inserting these equates intc the above expression gives
F(k+N/2) = A(k) - W(k).B(k)
The original N point DFT algorithm has now been split into
two N/2 peint DEFT’s plus the overhead of the following set of

equations

F (k)
and F (k+N/2)

A(k) + W(k).B(k) k=0,1,..,N/2-1
A(k) - W(k).B(k)

The operation formed by combining these equations ié known as
a butterfly and can be graphically represented as follows

A (k) F (k)

Wik] -1
B (k) F(k+N/2)
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This operation involves one complex multiply and two complex
" additions, the arrangement of these butterflies in a 16 point
Fourier transform is demonstrated in figure 2.3.

transform exhibits an interesting pattern which is known as
bit reverse mapping. It is thus called because if each
consecutive input sample assumes an address of 0 to N-1, then
its corresponding address into the transform if found by
reversing the binary version of that address. For example,
refering to figure 2.3, the input address of A3 in binary is
0011, the corresponding bit reversed address is then 1100.
Thus at the beginning of the transform A3 is positioned where
Al2 is and subsequently Al2 positioned where A3 is.

I
X
:

N N A
— . X7 §§\ /ﬁ ;
> — D ERN\V/// A
- YA R\ (/A
N ==
” ' — B
R <~ N7
" 7AAN SN 7

N AN

Figure 2.3 - 16 point, radix 2 FFET

The rearrangement of the input data sequence into the
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2.3.4 Computational saving of radix 2 FFT.

It 1is now possible to demonstrate the computational saving
that the FFT has over the DFT, note that in the following

hiéééeééméhfna'féai*mdltiﬁli‘Epérétioh is represented by "M",- a
real addition by "A", and that there are "N" samples. It is
also assumed that a multiply and an addition take equal times
to execute (this is true for the TMS32010 micro-processor).
DFT computation : Each point requires N complex multiplies
and N complex additions. Total of N points.

=> N.[N(4M+2A) + N.22] = 8Nzoperations
FFT computation : Each butterfly requires 1 complex multiply
and 2 complex additions. There are N/2 butterflies in each

column and Leg2 (N) columns.

~=> Log2({N).N/2.[(4M+2A) + 2.2A)
= 5N.Log2 (N) operations

However to be more precise, there are no complex

multiplies in the first two columns, thus it can be
modified to

=> Log2(N).N/2, (4M+6A) - 2.N/2.{4M+22)
= BN.LogZ2{(N) - 6N operations

Applying these two expressions to a 1024 point transform the
following values are obtained

DFT : 8388608 operations
FFT : 45056 operations

the ratio of computation effort (DFT:FFT) being 186:1.
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2.4 Radix 4 FFT,

The analysis and factorisation of the discrete Fourier
transform into a radlx 2 fast Fourier transform, _as._shown
above, 1s the m6;£ stralght forward and easiest to understand
of all FFT derivations. As a result, the FFT is almost
always documented and intreduced in its radix 2 form (as has
been done here!), thus resulting in almost exclusive use of
the radix 2 FFT in computer programs. However, just as the
DET can be broken down into butterflies of 2 inputs and
cutputs, it can also be broken down into butterflies of 4
inputs and ocutputs. As will be demonstrated the radix 4 FFT
is significantly more efficient than the radix 2 FFT.

2.4.1 Derivation of Radix 4 FFT.

As with radix 2 (r2), the radix 4 (r4) derivation breaks down
the weighted summations of the DFT into smaller groups of
summations by taking advantage of the periodices and symmetry
of the DFT., Again we start with the definition of the DFT
N-1
F(k) = Zx(n).W(nk) k=0,1,..,N-1

n=o

Factorising into four equal length parts we get

N~ N
9
F(k) = Zx(4n) W (4nk) + zx(4n+1).wu4n+1)k)
nN=0o neso
%y G-
+ Zx(4n+2) M{dn+2)Yk) + 2x(4n+3) W (An+3) k)
t-¥e] nso '
%! Y|
F(k) = Zx(tln) W{4dnk) + W(k) Zx 4n+1) .W({4nk)
N=o Al nze Al
M. -t N -
+ W{2k) Xx(4n+2) .W{dnk) + W({3k) Ei'x(4n+3).W(4nk)
Nzo A2 neo A3
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Thus o o
F(k) = AO0(k) + W(k).AL(k) + W({2k}).A2(k) + W(3k).A3(k)

- -~ .This _expression is true for any k, and in particular is true

for [k+r.N/4], thus giving ’ T T s

F{(k+r.N/4) = AO0(k+rN/4) + W(k+rN/4).Al(k+rN/4)
+ W{2(k+rN/4)) .A2 (k+r.N/4)
+ W{(3{k+rN/4)) .A3(k+r.N/4)

But AQ0(k+r.N/4) = A0 (k) These are outputs
Al{k+r.N/4) = Al (k) from an N/4 point
A2 (k+r.N/4) = A2 (k) transform, hence
A3(k+r.N/4) = A3 (k) are periodic in N/4.
- r
and W(rN/4) = e 2 = (-9)
-
W(2rN/4) = e’ = (-1)
— A
WGBIN/4) = & = (49

Letting r=0, 1, 2, 3

F (k) = AO(k) + W(k).AL(k) + W(2k).A2(k) + W(3k).A3(k)
F({k+ N/4) = A0 (k) - JjW(k).Al(k) - W(2k).A2(k) + JwW(3k).A3 (k)
F(k+2N/4) = AOQ(k) - W(k).Al(k) + W(2k).A2(k) - W(3k).A3(k)
F(k+3N/4) = AQ(k) + jW(k).Al(k) - W(2k).AZ2(k) - Jw(3k).A3(k)

As with the r2 butterfly we can now construct a graphical
representation of these equations.
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W[0k]

‘AQ (k) —a F (k)

o W[2k]

Al (k) | g— — -F (k+N/4}) -
Wllk]

A2 (k) F(k+N/2)
W(3k] J

A3 (k) —— F (k+2N/4)

Combining Radix 4 Butterfli

Having developed the basic building block for an r4 FFT a
larger matrix can be built to show how the inputs, outputs
and exponentials are arranged. Figure 2.4 shows this for a
16 point transform. Each 4 point transform takes it inputs
from the outputs of the preceeding 4 point transforms. Note
that the initial inputs are also rearranged wvia a moduloc 4
address reversal (as compared to moduloc 2 for the r2 FFT).

It can be seen from figure 2.4 that the r4 butterflies still
involve rotation of the two middle inputs before being
multiplied by W[k] and W[(2k]. In order to simplify the
matrix, and thus also of the programming, the rotating of
butterfly inputs can be moved to the very front of the
matrix. This is demonstrated in figure 2.5 together with the
expansion . of the first four 4 point transforms. It can be
seen that the rearrangement of the initial inputs is now
modulo 2 bit reversal, It can be shown that the construction
of this more simplified matrix is general to any 4**n sized
FFT.
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Figure 2.5 - 16 point, radix 4 FFT

2.4.3 Computational saving of a radix 4 FFT,

Te compute the radix 4 butterfly the following operations
must be performed

Templ = W(k).Al(k), Temp2 = W(2k).A2(k), Temp3 = W(3k).A3 (k)

Tempd4 = AQ(k) + Temp2, Temp5 = A0 (k) - Temp2
Tempé = Templ + Temp3, Temp7 = Templ - Temp3

- 2'7 -
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F (k)
F(k+N/4)

Temp4 + Tempb F(k+N/2) = Tempd - Tempb
Temp5 - jTemp? F (k+3N/4) = Temp5 + jTemp?

. The = above computation requires a total of 3 complex

multiplies ;ﬁé“é_éoﬁﬁléi-éaaftiéﬁS‘Ehhs‘giving“a“totai-of-12-‘__
real multiplies and 22 real additions. In a complete FFT
where there are N/4 butterflies in each column, and LogZ2(N)/2
columns, then the number of operations would be

=> log2(N)/2.(N/4).(12M + 22A)

If it is also taken into account that there are no multiplies
in the first column then this is modified to

=> log2(N)/2.(N/4).(12M + 22A) + (N/4).(16A-12M-22A)
N.log2(N).(1,5M + 2,75A) - N.(3M + 1,5A)

= 4,25N.Log2 (N) - 4,5N operations.
As shown earlier, the number of operations for an r2 FFT is
SN.Log2 (N) - 6N operations.

Comparing the number of arithmetic operations to perform a
1024 point transform via the r2 and r4 FFT's, the following
values are obtained

Radix 2 -- 45056 operations
Radix 4 -- 38912 operations

Thus the r4 FFT only reguires 86% of the r2 FFT o¢perations,
this is a fair reduction in operations, and it will be shown
later that when coded up for the TMS32010 microprocessor the
benefits are increased further due to there also being less
memory transfers.
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2.5 Real input FFT.

When using the discrete Fourier transform te convert data
~--- - -- -from the_time_ to the frequency domain, the input sequence is
purely real. Thus data is onlyiﬁhé lﬁﬁb_thé_}ééi_hadhédnéﬁié
of the complex input array and the imaginary components are
initialised to zero. The result of this real input transform
is a double sided spectrum where the information from 0 to
Fs/2 is repeated from 0 to -Fs/2. This double sided spectrum
has properties which allow more efficient use to be made of
the transform by putting input data into both components of
the complex array. It should be remembered that the FFT
derivations shown so far are complex input algorithms, An

analysis of this real input technique now follows [6].

2.5.1 Properties of a double sided spectrum,

When real data is used as the input into a complex input DFT,
i.e. by setting the imaginary components to zero, a double
sided-spectrum is produced at the output. The real
components of this spectrum are even in nature, and the
imaginary components are odd (both centred around Fs/2), as
demonstrated by the following relationships

F = DFT(U) U is real,
Real[F(n)] = Real(F (N-n)] 1 <n > N-1
Imag[F(n)] = -Imag[F {(N-n)]

F(0) and F(N/2) are purely real.

Real

1 Imag,

ke
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If the real data is put into the imaginary components instead
of the real components (and the real components subsequently
set to zero) then the double sided spectrum which is produced
displays slightly different characteristics to that above.
In this case theé réal components are—odd in nature-- -and- the — —

imaginary components are even, giving the feollowing
relationships
G = DFT(3.U) U is real,
Real [G{n)] = ~-Real{G{(N-n)] 1l <n > N-1
Imag[G(n}] = Imag(G(N-n)]

G{0) and G(N/2) are purely imaginary.

Real

w
=
o
Py

2.5.2 Derivation of a real input FFT,

The relationships between components within double sided
spectrums, as described above, can be used to good advantage.
Due to the slight differences between the purely real input
DFT and the purely imaginary input DFT it is possible to
incorporate two separate sets of data into a single DFT and
extract from the resulting spectrum the two double sicded
spectra that would have been produced by analysing each set
of input data separately. If one set of data [U] is put into
the real components and another set (V] is put into the
imaginary components then the two double sided spectra can be
extracted from the DFT output as follows
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A = DFT(U]
B = DFT[].V]
F = DFT(U+3.V]
© ReallA(n)] = Real{F(M+F(N-m /27 ~17<'h 5 n-1
Imag[A(n)] = Imag[F(n)-F(N-n)]l/2
Real[B(n)] = Real[F(n)-F(N-n)}/2
Imag[B(n)] = Imag[F(n)+F(N-n)1/2
Real[A(0)] = Real[F(0)]
Imag(B(0)] = Imag(F(0)]

Note that it would be very unusual to actually want such a
spectrum as B, and is much more likely that spectrum C, where
C=DFTI[V], would be required. To get this latter result the
following transform can be performed on spectrum B

C(n) = j.B(n)
Real(C(n)] = Imag(B(n)] 0 < n < N-1
Imag(C(n)] = -Real[B{(n)]
or Real[C(n)] = Imag[F(n)+F(N-n)]/2 1 < n < N-1
Imag(C(n)] = Real[F(N-n)-F(n)l/2
Real [C({0)] = Imag[F{0)]

Thus two real input N-sized DFT’s can be performed for
practically the same computational effort as one complex
N-sized DFT. This technique c¢an be wutillsed to greatly
improve the efficlency of an FFT. .

It can be seen in figure 2.6 that a DFT performed via the FFT
technique can easily be split into two half sized FFT's for
all except the final set of butterflies. Thus a real input
FFT could be performed by splitting the input data inte two
halves, performing two real input N/2 point FFT’s within one
complex input FFT by using the above technique, and then
reconstituting and performing the final stage of the larger
FFT. This process 1is shown in figure 2.7 This method of
performing a real input FFT requires only a touch more
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computational effort than that for

size.
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The two to one relationship betoming

size of the FFT increases.
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There 1is also the possibility of halving the memory
requirement when using thé real input FFT. This can be done

by expanding out only two complex components of the combined

N/2 point'spectra, at a time. A butterfly operation can thgn

be §€rfofﬁéa“6ﬂ'Eﬁé'tﬁd“pbintS”‘and one of the-double sided. __
spectra components discarded. Thus only half of the complex
components that would be required for an N point FFT are ever
stored.

om ational vin f ar input FFT,.

Again, the computational effort required to perform an FFT
using this last method can be estimated. An N point
transform now consists an N/2 point FFT, a spectrum splitting
transform and then the last column of an N point FFT.

If radix 4 butterflies are being used, which will be assumed
to be the case, the equation to define the number of
operations necessary will depend upon whether the number of
points (N) is a power of four. If it is a power of four then
the last butterfly will have tb be split into two columns of
radix 2 Dbutterflies to enable the N point FFT to be halved
right up to the last radix 2 column. If it is not a power of
four then the existing radix 4 FFT will already have a final
column of radix 2 butterflies allowing the FFT to be readily
split up to this last column.

The computational effort will only be estimated for a
transform where N is a power of four, as it was also only
this case that was considered in the r4 FFT case (chapter
2.4.3). Note that this includes the 1024 point case which is
of most interest. The computation consists of -

An N/2 point complex FFT
Two N/4 point radix 4 FFT’'s = 2[4,25(N/4) .Log2(N/4)-4,5(N/4)]
plus an N/2 point column of radix 2 butterflies = 5N/2
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A spectrum separation
An N/2 point transform = N/2.4A = 2N

Last column of an N point FFT
~An N point-column of radix 2-butterfilies =-5N- B

Total number of operations = 2,125N.Log2(N/4) + 8,375N

Thus a real input radix 4 FFT requires 25984 operations to
perform a 1024 point transform, this 1is Just 67% of the
operations required for the complex input radix 4 FFT, and
only 58% of the original complex input radix 2 FFT. This
reduction in computational effort is very significant and it
was this last algorithm that was coded up for the TMS32010
signal processing micro processor, as will be described in
chapter 4.
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FFT-windowing-and-power-estimation———

3.1 Why the need for Fourier transform windowing.

The Fourier transform operates on discrete data sequences
which are usually taken from conﬁinuous processes. The act
of taking these data blocks and subsequently assuming that
everything outside the block is =zero, affects the true
frequency spectrum of that part of the data sequence. The
extent of the spectrum modification as seen at the output of
a discrete Fourier transform is wvariable and dependant upon
the signal characteristics inside the data block. An
analysis of the sampling process and of the Fourier transform
output characteristics shows why this is so.

Taking a block of samples from a continuous time. function can
be represented more precisely by

x(t)
x({t)

Il

x{t) -Tw/2 < t < Tw/2,
0 elsewhere.

Il

i.e. the signal is multiplied by a window defined by

W(t) -Tw/2 < t <Tw/2,
W({t) =0 elsewhere.

Now, it is well known that multiplying signals in the time
domain is equivalent to convolving them in the frequency
domain, thus the above windowing has the effect of convolving
the frequency spectrum of the sampled signal with that of the
window, The above window 1is known as the rectangular window
and its frequency response 1is derived, using the Fourier
transform, as follows
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© girmee ST
-jameE -
Xw(f) = IW(t).e dt= | -j.2nf
LT
e <00 A

Xw (£} = [(Cos (2efTw/2) = Sin(2eETw/2)) - = - - ..
(Cos (2afTw/2) + 3Sin(2afTw/2)] / ~2nf

Xw{f) = Tw.Sin(rrfTw) = Tw.sinc(fTw)
Tt £ Tw

This function is commenly known as the "sinc" function and is
shown in figure -3.1.

0.8+

0.6

0.4

-(.2
-0.4 T T T l2 0 5 L T T
E ra
Freq.
Figure 3.1 - Sinc function
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The result of the convolution of this spectrum with that of
the sampled signal, is presented for analysis to the DFT,
an example of this is shown in figure 3.2.

—
>

F(f}

W)

P N N P

5N T T
Fif) » W(h)

2 - nvolution sampl i 1l with the sin

Comparing the characteristics of the DFT output and of the
sinc function we find the following

The output from a DLDFT 1is a discrete double sided
spectrum, where each discrete filter is spaced at Fs/N,
where Fs is the sampling frequency and N is the number of

samples.
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The sinc function has zero points wherever f = 1/Tw,

where Tw is the time duration of the rectangular window,.

“ -----Now_Es/N_ = 1/(Ts.N) and Ts.N = Tw, hence the frequency
F T T T s —

spacing of the sinc functiéﬁ”EEEB“ﬁdihtS'and“the-—filter-ﬁ__
spacing of the DFT ocutput are the same.

The effect of this relationship can be observed if we look at
the spectrum for a signal with an integer number of cycles
within the sample block, and also for a signal with a
fractional number of cycles within the block.

Case 1 : Integer number of cycles, .
It can be seen from figure 3.3 that when a sampled signal
contains an exact number of cycles, one of the filters
will lie exactly at the peak of the sinc function central
lobe and all the others will lie on the zero points of
the function. As a result the actual spectrum seen at

the output of the DFT is the true spectrum of the
original signal.

0.8

0.6

HAGN ITUDE

0.4

0.2+

o T L) L) L] T T T T Ll

Freq

Fi e - Eff of windowing an integer number of e
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Case 2 : Fractional number of cycles,

If a fractional number of cycles is sampled, the FFT

output is somewhat different, the worst case being when

T T T TTTThalf T a Tcyclé isTinvolved. Considering this  case and
refering to figure 3.4, it can be seen that the central
lobe is only represented by two attenuated filters either
side of the peak. The amplitude of these filters is

Filter spacing = Fs/N = 1/Tw
Therefore half spacing = 1/(2.Tw).
=> Sin{ceTw/ (2.Tw)) = Sin(1c/2)
ct Tw/ (2.Tw) T /2

= 0.637 = -3.9 dB

1=

0.8 1

HAGNITUDE

0.4+

0.2

s

Figqure 3.4 - Effect of windowing a fractional number of
cycles
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‘It can-also be seen that all of the filters outside of
the central 1lobe 1lie exactly on the peaks of the
side-lobes, thus the DFT output contains many spectral

“---components .not present in the original signal, this
effect is called leakage. The first Side lobe 4s-13.5.dB .. __
down on the central lobe amplitude and only 9.5 dB down
on the central lobe estimated peak.

As a result of the spectrum missing the peak of the central
lobe in all conditions other than case 1, the signal
amplitude appears to vary by up to 3.9 dB as it moves from dc
to Fs/2, this is known as the picket fence effect [5] and
appears as in figure 3.5

Independent filters
1o

o] b 2 3 4 5 6 7 —>¢
Harmonic number

Pawer response

Figure 3.5 - Picket fence effect

Apart from the amplitude estimation errors caused by the
picket fence effect, the sinc function leakage 1is significant
enough that a small signal can be obscured by a neighbouring
large signal. This is demonstrated in graphs 3.1.1 & 3.1.2
which show how a component five and a half filters away from
another, and 20 dB smaller than it, 1is almost completely
obscured by the larger ones side lobes components.
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Thus there are two distinct problems associated with the
rectangular window which must be alleviated if the DFT is to
be of any real use -

1) the picket fence effect must be reduced,
and 2) the side-1lches (leakage) must be reduced.

3.2 Aero engine transducer signal characteristics,

Before tackling the above problems it is worth recapping on
the type of signals which will be presented toc the real time
spectrum analysis system, as described in chapter 6. The
characteristics of these signals and the information required
from them are briefly

1) The signal to noise ratio of engine signals is typically
no better than 40 dB although on some rare occasions it
can be better. The inherent level of the spectrum floor
due to windowing shculd be lower than this noise floor so
as not to obscure any information within it. Hence a
spectrum amplitude range of approximately 50-60 dB ié

required over as much of the spectrum frequency range as
possible.

2) It is possible to have wvery many engine order related
components within a signal, but more significantly there
can also be non-integral components which inevitably pass
through the other components during engine manoeuvres.
Hence components should be distinguishable at frequencies
as close together as possible.

3) The results of the spectrum analysis will be passed on to
some expert system to assess engine health and
performance. To enable the expert system to extract as
much infofmation as possible, the general component
shapes should be consistent irrespective of their actual
position within in the spectrum.
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Superi window

The performance of the Fourier transform can be altered and

“improved-if.the .shape of the convolution spectrum is modified

by reshaping the time domain reciéhéﬁléf’wiﬁdbw. "'Bearing-the - . __

above three points in mind, the desirable features that this
modified window should provide at the cutput of the FFT are

1) narrow central lobe,
2) minimal spectrum modification by side lobes above
-60 dB of the largest component,

and 3) consistent shape of spectrum components.

Over the years many variations of weighting functions have
been derived [22], all attempting toc make the best compromise
between central lobe width and side lobe levels. One of the
most popular and simplest 1is the Hanning window, its time
domain functien being

W({t) = 0,5 + 0,5.Cos (2wt /Tw) -Tw/2 < t < Tw/2

This function 1is shown in figure 3.6 and its frequency
response in graph 3.2.1. The side lobes are now much smaller
than those for the rectangular window although the central
lobe has widened, this 1s because the side lobe energy has
effectively been transferred into the central 1lobe. This
widening is not totally detrimental as the picket fence
ripple is now only 1.42 dB. 1In general the c¢entral lobe
cannot be narrower than two filter widths (2/Tw), as for the
rectangular window, and a 20 dB drop in the side lobe levels
results in one filter width (1/Tw) 1increase of the central
lobe. Most of the superior windows tend to have a central
lobe width of 3-4 filters. Some other window functions
include

Hamming - W{(t) = 0,54 + 0,46.Cos (217t/Tw)
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- &)2 £
Gaussian - W(L) = e T™w/ 2

- Cos[Twaoéﬂ{oLCos(?E%a))]_u

Cosh (Tw.Cosh ™' () )

where o = Cosh[ (1/Tw) .Ln(10F + J102P -1)]

Kaiser Bessel - W{t) = Iolx] =

Io(P]

o ¥a
Io[A/1- (2t/Tw) ] Z‘ (x/2)K
1+

K!
Kt

In a paper by F.J.Harris (22] the above described windows,
and others, are compared against each other for properties
similar to those stated in chapter 3.2. He concludes in his
paper that the Kaiser Bessel and the Dolph Tchebyshev window
functions give the best results for the test signal that he
applied, and for this reason 1t is these two window functions
that have been chosen for further analysis. The time domain
functions are shown in figure 3.6 and their frequency
responses in graphs 3.2.2 & 3.2.3. This analysis is also
performed on the Hanning window as this is in common use and
serves as a standard for the comparisons.

One reason for the superiority of the Kaiser Bessel and Dolph
Tchebyshev windows is because they contain a wvariable
parameter (2 which can be tailored to suit the
requirements, and their side lcbes have a near flat response.
These parameters effectively vary the amount of energy that
is distributed between the side lobes and the central lobe.

3.3.1 Extent of window analysis,
As stated above, the three windows of interest are the

Hanning, the Kaiser Bessel, and the Dolph Tchebyshev. The

Hanning window has no wvariable parameters and thus is
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straight forward to implement, however the other two windows
" "both have a variable parameter which affects their side 1lobe
levels. A considerable amount of pre-~investigative work has
been carried out on these window functions by the author [9]

—— T Tusing various parameter values on & number of different data
sequences. The findings shown below are a summary of this
work and thus only include the results for the best Kaiser
Bessel window and the best Dolph Tchebyshev window. The

value of the parameter P used in the following cases was 6.

0.8

e
[=1]
1

Amplitude

.CD
o~
|

0.2

L R
-7 o) kL4

Figure 3.6 - Time domain resonse for Hanning, Kaiser Bessel
and Dolph Tchebyshev
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3.3.2 Simulated test data.

To compare the windows against each other and to test that
they meet the requilrements, each window has heen applied to

" various simulated data sequences. However, for brevity, this
summary only includes three of the data sequences that were
used in the original work. The data sequences and the
reasons for using them are as follows

The first two data sequences (64 points each) are
designed to show how well the windows allow small
frequency components to be identified when they are close
to larger components, and to show how the position of the
components, on or inbetween filters, affect the overall
spectrum. These two simulated data sequences are as
follows

1. Signal composed of two sinusoids -
i) one of amplitude 1.0 at harmonic 10
and ii) one of amplitude 0.01 at harmonic 16

2. Signal composed of two sinusoids -
i) one of amplitude 1.0 at harmonic 10.5
and ii) one of amplitude 0.01 at harmonic 16

The third data sequence (512 points}) is designed to show
the effect when there are several components, and what
the general shape of the side lobes 1is over more
realistically dimensioned DFT's.

3. Signal composed of seven sinusoids -
i) five of amplitude 1.0 at harmonics 50.5, 55,
100.5, 150.5, and 200
and ii) two of amplitude 0.01 at harmonics 106 and
155.5.
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3.3.3 Real vibration data,

The three windows have also been applied to a real vibration
_giéﬁéi “taken ‘from an-aero-engine mounted accelerometer. The
vibration data was obtained from a conditioned signal via a
12-bit analogue to digital convertor applied after an
anti-aliassing filter. More information about this signal
and 1its spectral content is given in chapter 9 where it is
also applied to other spectrum estimation techniques. This
signal obviously does not contain all the different
conditions found in real signals, but it does give a good
indication of the signal to noise ratio and of the noise
colouration.

3.4 Assessgment of window performance using simulated data.

The three windows are assessed 1in two tests using the three
sets of data sequences

Test A - Data sequences 1 _and 2:

Hanning window, graphs 3.3.1 & 3.3.2 :- The Hanning window is
a significant , improvement on the rectangular window although
it still displays very inconsistent side lobe amplitudes as
components move across the filters. Although the (.01
amplitude component is clearly visible in the first spectra,
it is almost completely obscurred in the second. In this
latter case the side lobes are quite large around the central
lobe although they do eventually decrease to very low levels.

Kaiser Bessel window, graphs 3.4.1 & 3.4.2 :- This window has
produced two very similar spectra. 1In each case the central
lobe is quite compact and does not spread out excessively ' at
its base. The side lobes very quickly reduce to about 55 dB
below the central lobe peak and then form a gently sloping
base going beyond 60 dB. The 0.01 amplitude component is
clearly visible in both spectra.
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Dolph Tchebyshev window, graphs 3.5.1 & 3.5.2 :- This window
proeduces fairly consistent .spectra .although there are some.
differences between their side lobe amplitudes. These side
lobes however are very flat at 60 dB below the central lobe
- --peak.- The 0.0l.-amplitude .component_ is clearly visible in
both spectra.

Comparing the performance of the Fourier transforms for the
three windows it can be seen that there is little difference
between any effects the central lobes may have, but the side
lobe responses are quite different for each. As far as being
able to distinguish the small component from the lérger one,
the Hanning window fairs badly compared to the other two
which perform very similarly.

3.4.2 Test B - Data seqguences 3.
Hanning window, graph 3.6 :- This graph clearly shows the

extent to which the side lobe amplitudes decay, and
demonstrates how the smaller components are again nearly

cbscurred by the side 1lobes of larger components. The
inconsistency between central lobe shapes 1is also quite
apparent.

Kaiser Bessel window, graph 3.7 :- This window has produced

consistently shaped central lobes with a amplitude floor at
about 60 dB below the largest components, the smaller
components are also very distinguishable from their larger
neighbours.

Dolph Tchebyshev window, graph 3.8 :- This window has
produced a very unusual effect in that the side lobe
amplitudes appear to have combined to raise the amplitude of
the floor to less than 50 dB below the largest components.
This is a significant rise in the floor to the extent that
the smaller components are nearly lost in it. The shape of
the central lobes is however consistent and the amplitude
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floor is extremely flat.

Comparing with the first test, the Hanning and Kaiser Bessel
... ___windows have performed as expected. The Dolph Tchebyshev

window has however prodiaced am unusual-and detrimental effect
on the performance of the Fourier transform.

3.5 Assessment of window performance using real vibration data,

As can be seen from graphs 3.9.1, 3.9.2, & 3.9.3 the three
different windows have produced very few differences in their
Fourier transform cutputs and certainly no more information
can be extracted from any one ¢f the three spectra. This
however is not surprising as the noise floor is only about 25
dB below the largest peaks. None of the windows has got any
where near displaying their side lobes at this level.

3.6 Qverall assessment of window functions,

The comparisons and tests shown above, together with those

performed in previous work, indicate that the Kaiser Bessel
{beta=6) window will produce the optimum spectra for use in
further analysis and data reduction from aero engine
transducer data. As the last test shows, in many cases the
window characteristics are actually of n¢e real concern
because of the high noise content in the signal, and only in
relatively clean signals will the benefits of the Kaiser
Bessel window be reaped. There are however no disadvantages
in using this window and has thus been employed in the real
time dynamic data analysis system, as described in chapter 5.

3.7 Fourier tran m wer imation

The amplitude of sinusoidal components estimated by the
Fourier transform can be up to 15% in error (28% for power)
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due to the picket fence effect {see figure 3.5), note that
this "value does alter slightly with different window types.
The actual error for any particular component varies between
0% and 15% depending upon where the component lies within the
~Fourier--transform- output- filters.—.. _This error 1is quite
significant and is certainly higher than most measurement and
instrumentation systems could tolerate. In the measurement
of dynamic engine parameters total system accuracies are
generally specified to anything between +0.5% and +5%. To
improve on this situation a method is required which can more
accurately extract a component’s amplitude irrespective of
its frequency.

After conversion into the frequency domain via the Fourier
transform, a sinusoidal component’s power 1is distributed
between its central and side lobes right across the spectrum.
Thus the actual power of the sinusoid is proportional to the
sum of all the filter powers across the spectrum. It would
of course be ridiculcocus to estimate power this way because of
other components which would inevitably be present in the
spectrum. It should be noted however that the majority, and
certainly a constant amount, of power is concentrated in the
central lobe. Thus, over a particular range of filters
around the central lobe, the power in this region will remain
approximately proportional to the true power.

The power in each filter is proportional to the amplitude
squared, thus the true amplitude can be estimated wvia the
root sum square of a number of filters around a sinusoidal
components central 1lobe. The table below demonstrates the
" improved performance this technique provides and also shows
how the number of filter summations affects the accuracy.
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Frequency of | Root sum square of amplitudes between

input sigpal | Fb "~ Fb +/= 1 -~ -~ Fb +/= 2
Fb | 1.0000 1.2513 1.25272
Fb+0.1Fs/N |  0.9938 1.2505 1.25272

" "Fb+0.2Fs/N [ "0.9762 '~ - -1.2489- 1.25272 . .
Fb+0.3Fs/N |  0.9473 1.2459 1.25272
Fb+0.4Fs/N |  0.9076 1.2409 1.25272
Fb+0.5Fs/N |  0.8488 1.2335 1.25272

| | |

Worst case error - 15% 1.4% 0% (to 5 d.p.)

The information above comes from six Fouriler transforms
outputs (all using Kaiser Bessel windows), all of which have
been applied t¢ sinusoids of unity amplitude but of different
frequencies. The frequencies vary from an arbitrary base
{(Fb) which lies exactly on an output filter, up to that base
plus half the output resolution.

i.e. from Fb = n.Fs/N to Fb + 0,5Fs/N

The three amplitude columns refer to the new amplitudes
calculated by including 0, 1 and 2 filters from either side
of the filter close to the central lobe peak (i.e. Fb).

It can be seen from the table that a very marked increase in
accuracy is obtained by taking into consideration the
amplitudes of the central 1lobe surrounding filters, the
accuracy of the last column itself being extremely good. The
amplitude values in columns 2 and 3 are of course higher than
the true amplitude, but this can easily be rectified by
normalisation. In real application$, even this 1is not
necessary as all values are assumed to be of "banana" units
and are effectively normalised during a calibration routine,
assuming of course that the amplitude of the original
calibration signal was estimated using this technique.
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This technique can _be_applied to

most

Fourier

applications as long as it is remembered "that
components will have an effect on each cther. For

--asbvibration,”as__}ni_graph 3.9,

this

technique

estimation

transform

“very close

cases such
is ideally

suited and as will be seen in chapter 6, it has successfully..

been employed in a real time applic

ation.
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Wh he TM 10 micro-proce r.

One of the fundamental requirements for a real time dynamic
data analysis system is a fast hardware arithmetic unit to
enable fast execution of digital signal processing
algorithms, especially the fast Fourier transform, and also
to perform data reduction algorithms at high speed on the
resulting spectra. Basically there are two ways to achieve
this, either by using bit slice hardware custom built for the
application, or by using a fast micro processor.

The first opticn would enable a very fast arithmetic unit to
be designed. However this type of hardware requires a
substantial amount of c¢ircuit board area, and is not very
flexible in terms of reconfiguration for different
algorithms. It also requires a great deal of expensive
development equipment which has to be tailored to each
application.

The second option allows a much more flexible approach to be
taken, as a circuit design for the micro processor and its
peripherals can be almost completely done irrespective of the
actual application. All subsequent design work can then be
directed at writing application c¢ode using a standard and
well defined set of instructions. The cost of development
equipment for this option 1s also significantly less. However
there is a trade off for this flexibility, and this is of
course execution speed.

The second option was deemed to be the best cholce as
flexibility was of prime importance, especially as there were
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many unknowns in the actual tasks that this system would
eventually be applied to. However the over-riding incentive

for choosing this option, was the recent arrival of very fast

micro processors designed specifically with signal processing

in mind. e L

The speed at which computationally intense programs can be
executed was initially enhanced by the introduction of
arithmetic co-processors such as the AMYS511 floating peoint
processor. This was then taken a step further by integrating
the co-processor and the CPU within the same device.  This
was achieved by DEC when they literally grafted their
arithmetic unit and their 11/70 CPU together to form a very
powerful, although somewhat bulky, processor known as the
J-11, It was achieved differently by NEC, who basically
incorporated a few general purpose micro Processor
instructions and a small amount of memory capacity into an
arithmetic unit. This was called the NEC 7720 and was
perhaps the first true signal processing micro processor.
However it was in 1982 that the first really practical and
fast signal processing chip came onto the market, this being
the Texas TMS32010 micro processor. This CPU encompasses a
flexible and general purpose instruction set, a fast
arithmetic wunit, and a unigque architecture designed with
signal processing algorithms in mind, and this all in a 40
pin package.

The TMS32010 software development system originally existed
in the form of an assembler and linker for the Texas 9900
work station and the IBM PC. To develop hardware Texas
provided a very powerful in circuit emulator, the XDS/22.
Having chosen the TMS32010 as the best signal processing
micro, this development equipment was acquired. The emulator
cost approximately ,{4,000 which although not particularly
cheap, did enable fast and easy development of hardware and
software. The cost of a TMS32010 chip in 1983 was
approximately Z£120.
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4.2 TMS832010 architecture,

The Texas TMS32010 micro processor is fabricated in NMOS
technology and can operate with a 20 MHz crystal giving a
bus  speed ~6f 5 MHz. - The- —internal- - architecture . is
significantly different from most micro processors. The
usual design involves a Von-Neuman approach where the
instruction and data memory both sit on the same bus
structure. The T™S32010 however employs a Harvard
architecture in which the instruction and data memory both
sit on separate and distinct buses, thus allowing them to be
addressed simultaneously. The hardware capabilities are
summarised below.

144 words of on chip ram

4 Kw of external program rom

1.5 Kw of internal masked program rom
16 bit data and instruction buses

200 ns instruction cycle

Signed 2’'s complement arithmetic

32 bit arithmetic accumulator

200 ns 16x16 bit multiply

0-15 bit barrel shifter {(no time overhead)
Eight 16 bit inputs and outputs
Interrupt with context save

Single 5V subpiy.

It also features two auto Iincrement/decrement indirection
registers, a 4x12 bit stack, a single bit input line (BIOQ)
and an on chip oscillator. Note that the internal and
external program memories are hardware selectable and that
only the external memory was ever used in the author’s
applications.

In general, arithmetic instructions access a word in the data
ram and pass it through the barrel shifter, which can
left-shift by between 0 and 15 bits (depending upon the
instruction), to the ALU where it 1is either loaded into,
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subtracted from, or added to the accumulator. After a result
has been found it can then be stored back in the data ram,
this is usually in two parts as the accumulator is 32 bits.

The result can also be left shifted as it is stored, as an

-aid to. scaling...-A schematic of.this architecture_is shown _in

figure 4.1. It should be noticed that there 1is a 1link
between the program and data buses (contrary to the strict
harvard architecture) to allow program cconstants to be locaded
into data ram,.
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4.3 TMS32010 instruction set,

As stated before, the TMS32010 is not Jjust a pure signal
processcor but has a number of general purpose instructions

T""Tsuch T as T loop —on- -condition— --operatioens, —-which- allow
considerable flexibility and program control. Almost all of
the instructions are single cycle allowing execution rates of
up to 5 million a second. Only the infrequently used control
and I/0 instructions are multicycle.

0f all signal processing operations, the multiply and
accumulate must be the widest and most often used, as
employed in correlation and convolution. The TMS32010 has
been designed with this type of operation in mind and has
subsequently been given a special instruction to allow fast
execution of a contiguous number of these operations. This
instruction nmemonic is LTD and is wused with the multiply
instruction (MPY) as follows

LTD ARO- ,ARP=AR1
MPY AR1-, ARP=AR0
LTD ARO- ,ARP=AR1
MPY AR1-, ARP=AR0
LTD ARQ- ,ARP=AR1
MPY AR1-, ARP=AR0
etc.

The two indirection registers are called AR(C and AR1, and
the indirection register pointer 1s called ARP. It is
assumed that ARO points to an input data table and that
ARl points to a constant table, and that both are in data
ram, In the above sequence, each pair of instructions
performs a 16x16 bit multiply, addition of the result to
the accumulator, auto-decrement of both the indirection

registers and a single positive address move of the data.

By using this instruction pair it is possible to perform a 64
point correlation or convolution in just 25.6 micro-seconds,
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and also be immediately ready to start the process again.
For more information on the architecture and instruction set .
of the TMS32010 micro processor refer to the Texas
Instruments "TMS32010 User’s Guide"™ [46].

FET optimally coded for the TMS32010,

When pregramming an FFT into an integer machine with limited
memory, such as the TMS32010, considerations such as scaling,
data storage, constants storage, bit reversal, butterfly
efficiency, and output formats must be tackled. The
following two sections provide a basic description of how
these were overcome in hardware and in software, together
with some relevant examples. The two sections are split into
radix 2 and radix 4 FFT development. The radix 2 version was
the first to be implemented and accounts for most of the
hardware and software design, development and debugging time.
However it is the real input radix 4 implementation which has
been finely tuned and installed in IDDAS.

Radix 2 FFT,
Data scaling,

The scaling of data as it passes through an FFT must be
considered carefully because of the integer operation of the
TMS32010. This machine stores its data to 16 bit resolution,
and effort must be made to keep the numeric values as high as
possible without causing an overflow.

Due to the Fourier transform being a data independent
process, the highest possible gain that can occur in a
butterfly can be predicted exactly, three cases exist

1) The first column of butterflies involves no complex
multiplies and hence no phase shifting. If the inputs to
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the butterfly are bounded by +1 on each axis then the
output will be bounded by +2. -

2) The second column of butterflies can only induce a phase

shift of 90 dégrées; thus~ if-the -inputs-are- bounded_by .+l _ _ _

then the ocutput will again be bounded by #2.

3) All successive butterflies can have a multitude of phase
shifts and in particular 45 degrees, 1f the inputs are
again bounded by +1, then in this case the output is be
bounded by +2.414. This is shown in figure 4.2.

I
—pr—

20 + al*e %

1L 11 21

Im Im Im

Re 1 Re 1 ' Re 2

Figure 4.2 - Maximum gain from a radix 2 butterfly

To ensure that no overflow occurs within a butterfly, the
inputs to it must not exceed the value of #2**13. Note that
the maximum that can be represented is +2**15 (2's complement
arithmetic). Aithough the maximum gain possible in some of
the butterflies is 2.414, there is an overall gain limit of 2
per stage. If input data comes from a 12 bit bipolar ADC (as
described in chapter 5) then it has a maximum value of
+2**11, and only allows a total gain of 16 before overflow
occurs .- Transforms of 1024 points have a potential gain of
1024 which 1is obvicusly €far too high, to overcome this
problem an attenuation of two is needed at the end of each
butterfly. However to make the best use of the slight amount
of gain which can be endured, the first set of ‘"special
butterflies™ (which have no multiplies) can be left with no
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attenuation.

4,5.2 Storage of constants.

Two sets of constants are required for an FFT, these are for
1) the window coefficients and 2) the exponentials, note that
both need to be stored in program memory.

1) As explained in chapter 3, each input must be multiplied
by a window coefficient before an FFT starts. Windows in
general are symmetrical about the central point and hence
N/2+1 coefficients are required for an N point FFT, i.e.
513 coefficients for a 1024 point FFT. Apart from the
central coefficient, which is usually egqual to unity, all
the coefficients are less than one, thus to enable them
to be stored as an integer they must all be increased in
value. To maximise precision they are all multiplied by
2**15.

2) An FFT requires exponential coefficients for every one of
its butterflies, many of the butterflies use the same
coefficients, however it can be seen that the last column
of an FFT uses a different exponential for each
butterfly. Thus for an N point FFT where there are N/2
butterflies in each c¢olumn, N/2 expeonentials are
required, i.e. N coefficients. Exponential coefficients
also remain at or below unity and again must be
multiplied by 2**15,

As can be seen, for a 1024 point FFT, 1.5 Kw of the TMS32010
4 Kw program memory has already been taken up by constants.
4.5.3 Input data storage,

The TMS32010 operates most efficiently when all data values
are stored in internal ram. However it 1s only possible to
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eve this with an FFT of 64 or less input points as the

lex and thus requires two locations. Extra ram can be

emented in two manners

Part of the 4 Kw program memory can be portioned coff for

data ram. This would make use of the TBLR and

TBLW

instructions which allow transfers between the program

and data buses. These 1instructions do however require

three clock cycles to execute.

Up to 64 Kw of external ram can be mapped into the

This regquires two ports, a unidirectional port for

memory address and a bidirectional port for the data.

keep I/0 accesses to a minimum (note that each

I/0.
the
To
I/0

transfer requires twe clock cycles) a hardware
auto-increment register can be implemented on the address

I/0 port. Hence memory accesses on large arrays require a

once only initial write to this register.

initial development board designed and built by

the

used the first method of external ram implementation.

A 1024 point, complex input, radix 2 FFT was successfully

executed on this hardware, it was however rather slow, taking

approximately 90 ms to complete.

Further development boards

and IDDAS itself use the second method of implementation as
this results in faster operation and allows full wuse of
program memory and of larger data memories.

Bit fevgrsgl,

As demonstrated earlier, to achieve the symmetrically
arranged butterflies and to keep the data values in the same

posi

rear

for this input and butterfly arrangement,

to

tion throughout an FFT, the input data must be initially

ranged into bit reversed address locations. Note

that

the FFT is refered

as a decimation in time algorithm. It 1is possible,
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although not shown here, to breakdown the DFT equation and
arrange the butterflies in such a manner that it is the
ouputs which must be rearranged via address bit reversal,

this -method .is refered to as decimation in frequency.

Decimation in time is by far the most common method used, and
in real time applications has an advantage over the other
method. This is because during data initialisation prior to
performing an FFT, windowing and address reversal can be
performed on each input sample as and when it is presented to
the TMS32010 micro processor, rather than inputting a
complete array of raw data, then windowing and bit reversing
it. There will inevitably be some delay between input
samples, especially at low sample rates, hence by windowing
and Dbit reversing as above, their execution times are
effectively lost in the acquisition period.

Address bit reversal can be performed quite simply in the
T™™S32010 software due to the processors barrel shifter.
However for a 1024 point FFT, where 10 bits must be reversed,
this operation takes 40 cycles to execute, and together with
the windowing which takes 10 éycles, the whole operation
lasts 10 ps. At the highest required bandwith of 50 KHz the
sample rate will be 131 KHz (as will be explained in chapter
5), giving only 7.6 ps between input samples, making software
address bit reversal too slow. This problem is easily and
elegantly solved by utilising a hardware bit reverser. This
is achieved by connecting one of the TMS32010 bidirectioconal
ports to the input and output registers of a ten bit D-type
latch in which the TMS32010 data lines for the inputs and
outputs are connected in opposite orientations. The bit
reversal operation is now reduced to an "OUT" and an "IN"
instruction, and takes only 0.8 ps. to execute.

Arr men £ erfli nd da

The FFT derived earlier is known as an "in place” algorithm.
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It is called this because the final spectrum data occupies

“the same memory locations as the initial address bit reversed

input data, 1i.e. apart from manipulation within the
butterflies, data effectively stay in their original
- -~ locations—throughoit an FFT. This means that the columns of

.5.6

an FFT must be evaluated in order from 1left to right,
although the butterflies in any particular column can be
evaluated in any order.

In a 1024 point FFT where the data is stored in external
memory, data pairs are brought into internal memory, operated
on by an exponential constanﬁ and then outputted back to the
external memory. Some exponential constants are applied to
many butterfly data pairs (particularly in the early
columns), thus to keep data transfer to a minimum, the data
inputs can be arranged such that each exponential constant is
only loaded once per column.

It will be shown in section 4.6 how the efficiency of the
data transfers 1is improved for a radix 4 FFT, and in
particular for IDDAS which uses I/0 mapped external ram.

Radix 2 butterfly

The centre piece of an FFT 1is its butterfly routine, for
example in a 1024 point FFT this routine is executed 5120
times. Hence the execution speed of the whole transform is
almost totally dependent upon the efficiency of the
butterfly. The efficiency of this routine is largely
determined by the architecture of the processor on which it
is performed. The butterfly requires four nmultiplies, six
additions/subtractions and a certain amount of normalisation
by shifting. The TMS32010 excells at both multiplication and
shifting, and is certainly not slow at addition and
subtraction.
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The butterfly algorithm can be generalised as follows

F’ (x)
= L. . Fr(x+N/2)

F{x) + Win].F(x+N/2)
F(x) - Win].F(x+N/2)

where F and F’ are complex data arrays and W is a complex
constant array. The TMS32010 assembler routine which was
written to perform this is shown below, note the following
operand names and definitions -

F(x)
COs

XRP + JXIP F(x+N/2) = XRQ + 3XIQ
2*%*15.Cos (21(x /N) SIN = 2**15.Sin (2ax/N)

1

; Real component of complex multiply

ZAC ; zero accumulator

LT XRQO :

MPY CO0S ; = XRQ.COS

LTA XIQ H

MEBY SIN ;s = XIQ.SIN

APAC ; = (XRQ.COS+XIQ.SIN)/2**15

SACH TEMP1, 1
; Imaginary component of complex multiply
ZAC Zero accumulator

stored in templ

MPY Cos ; XIQ.COS

LTA XRQ ;

MPY SIN ; XRQ.SIN

SPAC ; (XIQ.COS+XRQ.SIN)/2**15
SACH TEMPZ2, 1 ; stored in temp2

; Real components of F’
LAC XRP, 15

ADD TEMP1, 15 ;

SACH XRP ; XRP+ (XRQO.COS+XIQ.SIN)/2**15
SUBH TEMP1 ;

SACH XRQ ; XRP-(XRQ.COS+XIQ.SIN)/2**15
; Imaginary components of F’

LAC XIP,15 ;

ADD TEMP2, 15 H

SACH XIP ; XIP+({XIQ.COS+XRQ.SIN)/2**15
SUBH TEMP2 ;

SACH XIQ ;s XIP-({XIQ.COS+XRQ.SIN)/2**15
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Each of the above instructions only requires a single clock
cycle to execute, thus, including a subroutine call and a
return {(which take a total of 3 cycles) the above routine
takes a mere 5.2 micro-seconds to complete. An estimation
“for the total butterfly -execution—time- for -a-1024. point FET
comes to 26.6 milliseconds. The actual FFT execution time is
of course greater than this as no consideration has been
given to the loading of constants and the loading and

unloading of data to the butterfly.

Qutput format.

After an FFT has been executed, a double sided complex
spectrum 1is left in memory, from this magnitude and phase
information can be extracted. In almost all cases (99.99%)
of aero engine analysis only magnitude is required, and 1is
even more s$o the case for real time applications,
subsequently phase is not dealt with at all. Magnitude can
be represented either in linear or logarithmic formats, and
it is anticipated that both will be required for analysis/
display purposes. The first case requires squaring, adding
and square rooting, and the second requires squaring, adding
and logging. These functions are tackled as follows

1) Linear output: Squaring two 16 bit values and adding them
;together could not be simpler for the TMS32010, however
performing a 32 bit square root 1is another story. Square
rooting on any integer machine is difficult, but is
usually tackled by employing Newtons square root

algorithm. ' This algorithm was successfully implemented
in TMS32010 software but was found to be excessively time
comsuming. The reason for this is that this algorithm

uses a divide as part of its iterative process. This is
only 1indirectly supported by the TMS32010 instruction

code (nmemonic "SUBC") and subsequently takes 32
instruction cycles (6.4 ps) to perform a 32/16 bit
divide.
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2)

The Newton square root algorithm was replaced by one of
the author's design. This alternative algorithm uses the
multiply, which is 32 times faster than a divide, as the
major arithmetic operation within the iterative part of
_Eﬁé‘Ebﬁtiné;“‘The*‘algofithm-starts- by -making _.a square
root guess equal te half the largest possible answer,
i.e. $4000. This guess 1s then squared and compared
with the input wvalue, if it 1is larger, $2000 is
subtracted from the guess and if smaller $2000 is added.
The new guess 1is squéred and the process repeated with
either $1000 added or subtracted, and then again with
$0800. Eventually the exact square root will be guessed
or, as more often is the case, the iterative process will
come to a completion after adding or subtracting $0001.
This routine only uses multiplies, shifts, additions and
subtraction, all of which the TMS32010 executes at high
speed. An assembled printout of this routine is shown in
appendix A.

Logarithmic output : In this case a logarithmic wvalue
must be evaluated from the 32 bit result of the squaring
and addition operation., No existing integer logarithm
routines could be found, so again a routine was designed
by the author.

The actual base to which the logarithm is taken is of no
real consequence because as stated before, the data 1s in
*pbanana"” units prior to calibration. It was thus decided
to use base two, as binary representations lend
themselves to converticon in this base. The largest
magnitude squared value that can result from an FFT is
2*%*31 (2x[2**15]2), and hence the largest integer part of
a base two logarithm is 31. The integer part can thus be
represented by 5 bits and is evaluated by determining the
pit field of the most significant "1" in the input wvalue.

The fractional part of the logarithm depends on the wvalue
of the remainder of the squared wvalue following the top
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most "1", noting that the _.actual position of this
remainder is irrelevant. It is difficult to apply a
»nuihfoggplg to calculate the fractional part but can be
readily éha‘éﬁiékly ~found . by using the remainder as a
pointer to a look up table of fractions. In the original __
application the logarithmic output was primarily intended
for use with a 12 bit DAC sco that spectra could be
displayed on an oscilloscope, thus only another 7 bits
are required for the full logarithm. Putting the 5 bit
integer part above the 7 bit fraction part effectively
multiplies the base two logarithm by 128. An example of
this procedure is shown below;

Squared value X 00000000000000101010101010101010 b.

= 174762 d.
Bit field of most significant "1" = 17.
Lower seven bits (rounded up) = 0101011 = 43
Lookup table :-
Lower Decimal wvalue of Fraction
7 bits the I.og2 fraction *128
00 - 0.0000000 - 00
01 - 0.0011227 - 01
42 - . 0.4093909 - 52
43 - 0.4178525 - 53
44 - 0.4262648 - 55
127 - 0.9943534 - 127
128 - 1.0000000 - 128
LY
The logarithm is thus equal to : (17%128) + 53 = 2229

(The true value of 128.Log2(174762) is 2229.15)

The output from this routine has a precision of + half a
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bit in eight (i.e. +0.2%) over a 70 dB range, this 1is
adequate for most applications but can easily be improved
by extending the lookup table, this will of course

require more memory but will take no longer to execute.
appendix B.
Radix 2 FFT development

To build up confidence and experience with TMS32010 assembler
programs, and with the concept of the FFT, the first programs
written were for 16 and 64 peint transforms. These programs
both used internal ram for data storage. Having built the
necessary hardware for external ram the transforms were
extended from 64 points, in factors of two, until a 1024
point transform was reached. It was found that the 64 point
FFT could be executed in internal ram in 870 ps., and a 1024
FFT in external ram in 90 ms.

Radix 4 implementation,

In a 1024 point radix 4 FFT the radix 4 Dbutterfly is
performed 1280 times, so again the execution speed of the
whole FFT 1is largely determined by the efficiency of the
butterfly and of the time required to get data into and out
of it. The radix 4 butterfly is considerably more complex
than the radix 2 butterfly having three times the number of
exponential ceoefficients and twice the number of complex
input data. As with the radix 2 case the TMS532010 assembler
program was developed from a 16 point transform, through a 64
point transform, to the full 1024 point FFT, s0 as to iron
out any unforseen problems and errors at a simple stage. The
radix 4 FFT was finally tuned for utmost speed by modifying
it for real input data only. This modification was applied
directly to the 1024 point transform. Similar consideration
to those made for the radix 2 case are now covered for the
radix 4 FFT.

An assembled printout —of -"this ' routine- is- shown -in..-
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Storage of constants,

The radix 4 FFT uses exponential coefficients from W([0] to
WI3((N/4)-1)], this is demonstrated in figure 2.5 where N=16
and ~ thé “highest ~exponential is W{9]-. - In- the - case. where
N=1024, the highest exponential 1is W{765], this means that
254 more complex constants have to be stored in the radix 4
FFT than the radix 2 FFT, and thus of course use 1/2 Kw more
of program space.

Although the highest exponential required for the 1024 point
transform is W([765] not all of the exponential up to this
point are actually required. Refering to figure 2.5,
exponentials W([(S] and W({8] are not used, thus demonstrating
that it is not neccesary to store all 766 exponentials.
However, the TMS32010 FFT program accesses this large array
of exponential constants via indexing pointers, and to
subsequently make the pointers take into account the missing
constants is a relatively complex and inevitably time
consuming task. Another solution to reduce the number of
stored constants 1s by taking into account the fact that when
any x in the exponential term W([X] is greater than N/2, the
exponential is then equal to -W[(x-N/2)], thus bringing the
highest required exponential back to W[N/2]. However this
again involves some time consuming checks and arithmetic
which is to be avoided if at all poésible. For these two
reasons it was deemed necessary to store all 766 complex
constants in the radix 4 FFT program, even though some of
them would never be referenced.

The same window as used for the radix 2 FFT is ecmployed in
the radix 4 FFT, this being the Kaiser-Bessel (beta=6)
window. This requires 513 constants to be stored. A total of
2045 constants are thus required for a radix 4 FFT. and
leaves only 2 Kw of program memory left for the FFT program.
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Memory Transfers,

As with the radix 2 case, all of the data samples (stored in

external ram) and all of the program constants have to be

transfered- to -and- from -internal- memory--as each butterfly 1is

performed. As explained earlier, the external ram in the
hardware used to develop this algorithm and also that of
IDDAS employs an I/0 mapped address, latch to point to I/0
mapped ram locations. This latch aute increments when an
external ram location is read from or written to. Hence to
make the best use and efficiency of these memory accesses,
four sets of butterfly data are transfered in one go using
four sets of contiguous data. Subsequently four butterflies
(of four complex points each) are performed at any one time
on the data in internal memory.

TMS32010 Radix 4 B fl

A radix 4 butterfly basically comprises one unmodified radix
2 butterfly, one radix 2 butterfly extended to include an
exponential multiply of the first input as well as the

second, and then a series of complex additions and
subtractions.

The code generated to perform this task is shown in figure
4.3, note the feollowing operands and definitions

AQ(x)
A2 {x)

AOR + jJAOI Al (x)
A2R + jJA2I- A3 (x)

AlR + JAlI
A3R + JA31

W1KCS + jWLKSN
W2KCS + jJW2KSN
W3KCS + JW3KSN

2**15 (Cos (20tx/N) + 3Sin(2ax/N))
2**15(Cos (4ux/N) + jSin (4ex/N))
2**15(Cos (6mx/N) + JSin(6nx/N})

+

i
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ZAC
LT
MPY
LTA
- MPY
APAC
SACH
ZAC
MPY
LTA
MPY
SPAC
SACH
LAC
ADD
SACL
SUB
SACL
LAC
ADD
SACL
SUB
SACL
ZAC
LT
MPY
LTA
MPY
APAC
SACH
:
ZAC
MPY
LTA
MPY
SPAC
SACH
’
ZAC
LT
MPY
LTA
MPY

APAC
SACH

radix 2 butterfly
AZR*Cos+A2I*Sin

AZR

W2KCS

AZI

W2KSN ~ =~ -

TEMP1R, 1
J(A2I*Cos—-A2R*Sin)

WZ2KCS
AZR
W2KSN

TEMP1I, 1

AQR+ (AZ2*W2K)re
AOR

TEMP1R

TEMP4R

AOR- (A2*W2K) re
TEMP1R, 1
TEMP5R

AOI+ (A2*W2K) im
AT

TEMP11I

TEMP4I

AOI- (A2*W2K) im
TEMP11I, 1
TEMP5I

Medified r2 but.
AlR*Cos+AlI*Sin

AlR
W1KCS
AlIl
W1KSN

TEMP2R, 1
J(AlI*Cos-AlR*Sin)

W1KCS
AlR
W1KSN

TEMP2I,1
A3R*Cos+A3I*3in

A3R
W3KCS
A3I
W3KSN

TEMP3R, 1

. ZAC

MPY
LTA
MPY
SPAC

SACH -

LAC
ADD
SACL
SUB
SACL
Lac
ADD
SACL
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Figure 4,3 - TMS32010 radix 4 butterfly
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The number of instruction c¢ycles required to perform the

~radix 4 butterfly 1is 69, this compares with 92 cycles.-

4

required to perform four radix 2 butterflies which would do
the same amount of computation. This in 1itself gives a
significant -saving-in -execution time, but to--add-to-this, the_
data and exponential constants only have to be moved to and
from internal ram half as many times. To fetch and store the

data for four radix 2 butterflies requires 15 I/0 instruction
per butterfly (I/0 transfers require 2 instruction cycles),
giving a total of 120 insﬁuction cycles. As compared to this
the radix 4 Dbutterfly requires 33 I/0 fetch and store

operations giving a total of 66 instruction cycles. The
approximate overall total execution time for the two methods
is thus : radix 2 - 212 cycles, radix 4-135 cycles, i.e. a

36% reduction in execution time.

Note that the first stage ©f the radix 4 FFT requires no
multiplies at all and thus a considerably simpler butterfly
to that shown in figure 4.3 is utilised. The butterfly used
in Ehe final stage of the FFT is also simplified to produce
just the first two complex outputs rather than four, as the
other two form part of the duplicated double sided spectrum.

he overa I x in dix r m

A high level flow diagram of the radix 4 FFT is shown in
figure 4.4. The computation time of this program in TMS32010 le
assembler code is 27@§/and the total program space is $E90. S
This includes 2 Kw of constants, and <code to input, bit
reverse and window the inputs. It does not include the
output conversion routines but does in fact leave enough
space to include both. Not that the input and output
routines for the radix 2 and the radix 4 FFT'’s are identical.

As will be seen in the next chapter there is no need for the
output routines to be included with the FFT.
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il

Input 1024 data samples from ADC,
Weight each sample using Kaiser Bessel window,
"~ Store each sample—in-its bit-reversed location.- |-

Perform 1st stage of FFT using a simplified
butterfly (no multiplies or imaginary components).
Result allowed to increase by four times.

Perform full r4 butterfly on stages 2, 3, 4 and 5.

Convert the first 400 complex results to either
magnitude or logs. Output results to DAC.

!

Figure 4,4 - Flow diagram of a radix 4 FFT

4.7 Real input radix 4 FFT.

In chapter 2 it was shown that the derivation of an FFT
assumes the input data to be complex, but that by suitable
manipulation real input data can be almost completely
analysed by a half sized FFT. This manipulation has been
applied to the TMS32010 radix 4 FFT to reduce computational
effort even further. To demonstrate this manipulation it has
been applied to a Fortran 77 program, this provides a compact
example which can be understood more easily than in tens of
lines of TMS32010 assembler code. Note that no high level or
indeed 1low 1level language examples of this technique where
found in other papers and s¢ is included in Appendix C.
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4.7.1 Fortran implementation.

Implementing the real input FFT is quite straight forward and
can be split into three distinct and simple parts. These are
~ - - = -as-follows— - - - . - o . _ -

1) Perform an N/2 point FFT on the bit-reversed complex
input array. Note that the bit-reversal is performed on
consecutive input pairs (the first going in the real
component and the second in the imaginary component) and
that it is an N/2 point bit-reversal.

2) Separate the two resulting N/2 point spectra (including
transformation of DFT(j.V) to DFT(V)) and create the
final stage array of an N point FFT.

3) Perform the final stage of the N point FFT, the resulting
spectrum being the same as if an N point FFT had been
performed throughout.

4.7.2 TMS32010 Implementation,

The process used for the implementation of a real input FFT
in TMS32010 code is exactly the same as that described above
for Feortran. The starting block for this implementation was
the radix 4 complex FFT, as described earlier. The
modifications performed on this program were as following

1) The 1024 point radix 4 program performs five columns of
radix 4 butterflies. To be able to split the FFT into
two 512 point FFT’s, the last column of the radix 4 FFT
has to be split into two radix 2 columns. Thus the radix
4 program effectively becomes four columns of radix 4
butterflies followed by two columns of radix 2
butterflies.
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2) The 1024 point input array was reduced to 512 points in
which each complex point - contained a pair of consecutive.
real samples. The address of each pair or complex point

being calculated via a 9-bit "bit-reversal”.
¥

3) The code for the first Efour radix 4 columns plus the
first radix 2 column reduced from 1024 points to 512
points.

4) A spectrum separation routine was created to split the
two spectra (DFT(U) and DFT(Jj.V)) contained within the
output of the 512 point complex FFT. The DFT(j.V)
spectrum was alsc transformed to DFT(V) and joined onto
the end of DFT{(U) to form a 1024 point complex array.

5) The final radix 2 ceolumn (of modification 1) can then be
applied to the resulting 1024 point complex array of
above, without further modification.

No examples of the above TMS32010 code are given as it is all
" quite straight forward code. The only really new piece being
the spectrum splitting, and this is just an exact translation
of the equivalent code in the Fortran example.

4.8 Final FFT program as implememted in IDDAS.

The program coded for the TMS32010 as used in IDDAS and
employing all the optimal features as described above is a
real input, in place, decimation in time, radix 4, 1024 point
algorithm, and takes only 17 ms to execute. Remembering that
the complex input, radix 4 FFT took 27 ms to execute and the
complex input, radix 2 FFT running on uncoptimised hardware
took 90 ms, it is apparent that very significart savings in
computational effort have been made. This final program
allows the overall throughput of data across IDDAS to be 1024
points in 25 m$, i.e. 1in excess of 40 KHz, thus giving a real
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time bandwidth of 16 KHz, this is described in the next
chapter.



5.
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CHAPTER 5

- —— IDDAS con t nd. descripticn

Intro ion to IDDAS.

The primary purpese o¢f the Intelligent Dynamic Data
Acquisition System (IDDAS)Y 1is to perform fast real time
spectral analysis on signals obtained from engine/rig mounted
transducers, and supply information in engineering units to
engine drivers and development/measurement engineers to
enable them to make decisions on engine health and test
rescheduling. When IDDAS is combined with a host computer
such as the PDP-11/73, together with a proprietary graphics
card, a very powerful data acquisition, analysis and display
system can be built, as will be shown in chapter 6.

IDDAS 1s comprised of an arithmetic . card and an acquisition
card linked together via two 40 way ribbon cables. This card
system allows a multitude of signal processing techniques to
be  realised, such as IIR/FIR filters, convolution,
correlation, and FFT analysis, together with a post
processing facility to enable data reduction of spectra,
correlations, etc.

The arithmetic card can perform a real 1024 point FFT in 17
ms, then perform data reduction algorithms on the results and
finally pass the information onto a host computer. The
acquisition card can filter an analogue input (51 KHz
maximum), digitise the input to 12-bits at up to 131 KHz, and
store up to 4096 current samples in a ring buffer. It can
also count three c¢lock (tache) inputs. The sample rate,
filter cut-off and tacho counter period are all programmable
from the arithmetic card. The system has been designed such
that other acquisition cards can easily be designed and
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interfaced to the arithmetic card when specialised inputs are

- required.

This chapter provides a technical description of the more

-dnteresting and unique design features..of IDDAS.. This will.

hopefully give the reader a good understanding of the system’s
configuration and operation, without actually involving the
mathematics of FFT analysis.

The design and development of IDDAS 1is split into the
fellowing stages;

1) Addition of a second TMS32010 processor to perform
averaging, data reduction, etc.

2) Development of a programmable acquisition interface.

3) Acquisition of engine tacho signals for use in data
reduction of spectra.

4) Addition of a third TMS32010 to act as a ring buffer of
sampled data to allow overlap of transformed blocks.

5) Enable multi-channel input.

6) Develop interface between IDDAS and a supervisory host
computer.

These stages are roughly in chronological order and cover a
period of approximately one and a half years development {not
including the TMS32010 FFT development) . Finally a
description 1is given of how IDDAS can be used with a host
computer.

ransfer of ctr Q n r or.

As described in chapter 4, the TMS32010 can perform an FFT in
17 ms, however this is still in a complex form which must be
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converted to magnitude to allow for further analysis. This
operation takes between --10 and 20 ms (for 400 points)
depending on the nature of the data and whether the output is
linear or logarithmic.

As earlier explained, it is not the spectrum that the host
requires but the information within it, thus further analysis
is still needed. The resulting information must also be
passed onto a host computer for calibration and display
purposes. In a system where several tasks are being
performed, throughput can ba increased by using a
multi-processing architecture, in general this can be
arranged either for

1) parallel processing, each processor performing near
identical tasks on a multiplexed input and output, or

2) serial (pipeline) processing, splitting the overall task
into smaller tasks for each processor.

It was decided that a second processor configured in the

serial or pipeline arrangement would be of most benefit for
the following reasons

1) There would be no duplication of programs. This is
important because the TMS32010 can only access 4Kw of
program memory. The radix-4 FFT itself requires very

nearly 4Kw of memory which does not leave much left for
further data reduction algorithms. Thus, with a pipelined

system a further 4Kw of memory becomes available for
further analysis algorithms

2) Less hardware. If two processors work in parallel then
multiplexing hardware 1is needed for the processors to
interface with the input device (ADC) and the host
computer. Timing circuitry would also be required to
ensure that the two processors worked on different input

data. The only hardware required for pipelined
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processors 1s a simple latch and handshake facility
between the -processcrs.

3) Simpler management of the board. In a pipeline system

-- --gpecific--tasks.can be allocated_to each processor_eg. one _
processor can take care of setting sample rates and cut
off frequencies, communication with the host, dealing
with error conditions, ete, without risk of confliction
with a parallel processor.

4) Different processors. As different tasks are being
performed by the processors in a pipeline structure, the
processors can be chosen optimally to suit their tasks.
For example, if the code in the second processor needs to
be changed fairly often by someone not experienced in TMS
32010 assembler code then a processor for which a high
level language is avallable could be used {(eg. a 68000
running 'C’).

It was decided to use another TMS32010 as the second
processor as this gives a high level of compatibility, no
learning curve (as might be required for an unfamiliar
processor), and most importantly, high speed for further data
processing. It was also decided to split the overall task
after the FFT algorithm.

Thus the first processor (referred to as the FFT processor)
gets the input data, performs windowing, bit reversal, an FFT
algorithm and then passes the resulting complex spectrum onto
the second processor.

The second processor (referred to as the Data Reduction
(D.R.) processor) receives the complex spectrum, converts 400
complex points to magnitude, performs ensemble averaging,
performs some form of information extraction or data
reduction algorithm specific to an application, and then
finally passes the information onto a host computer. It can
also read three engine speeds, set the sample rate and the
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filter cut-off frequency.

The only disadvantage with the pipelined structure is that
data must be passed from one processor to the next which

T dbviocusly reduces data-throughput. - However,..if _the _transfer

is tightly controlled then handshaking delays can be kept to
a minimum. Hand-shaking with the TMS32010 is limited to two
asynchronous single line inputs;

1y BIO, and 2) Interrupt.

It was considered preferable to leave the D.R. processor
interrupt line for wuse by the host computer, thus the
transfer mechanism had to make use of the BIO line, To
achieve the fastest possible transfer rates the following
design was conceived, reference should be made to figure 5.1

A simple latch with tri-state outputs (74LS374) is used as an
intermediate store between processors, a D-type latch is used
to clock out a "1’ to the BIO of the D.R. processor when data
is written to the latches by the FFT processor and cleared
when data is read from the 1latch by the D.R. processor.
Assuming that the FFT processor always transfers a spectrum
after each FFT, and that the D.R. processor is polling the
BICO 1line waiting for the first data transfer of a spectrum,
then it is guaranteed that the D.R. processor will respond to
a change of the BIO line by reading the latch within a period
of 0.8 to 1.2 ps. If the FFT processor then continues to
output to the latch at regular periods, the D.R. processor
will be able to read this 1latch at these regular periods
without getting out of step or receiving corrupt data. This
does of course rely upon the two processors using the same
clock period, they do not have to use the same physical clock
although this does add an extra level of reliability. Thus
the handshake facility has only really been used in the first
data transfer and the actual transfer rate c¢an occur at 1
word per 1.2 ps (6 instruction cycles) as will be
demonstrated.
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As extra level of integrity can be incorporated which allows
the D.R. processor to operate totally asynchronous to the
operation of the FFT processor. This 1is achieved by

including a small amount of protocol within the initial part

of the data block to allow the -D:R.--processor to synchronise

to the start of a transfer. This process allows the D.R.
processor to start peolling its BIO line whenever it requires
new data and guarantees that the data will be good.

This protocol is in the form of a code which is sent directly
before the spectrum and must of course be distinguishable
from the data within the spectrum. When transferring spectra
there 1is one value guaranteed not to appear within the
transfer, this being negative full scale ($8000). 1If this is
thus transferred by the FFT processor directly before the
spectrum, then the D.R. processor can check for it before
accepting any further data.

(FFT) LATCH (D.R.)
16 18
DATA — Py P - DATA
3ze1e _ 32010
CK  OE
— ADD —] B10 ADD
WE DEN
Yo cKk OF Y ,
\\3 L A3
G 3
D @
3:8 3.8
LATCH

D CLR
CK g
Fiqur 1 - T D.R r r tr logi
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The tlmlng diagram for the transfer is shown in figure 5.2,

the actual code required in each processor is--as follows

FFT Processor =~ = - -~ - - - D.R Processor _} o
THRE29 EQU 399 THRESS EQU 389
STXFER EQU $8000 STXFER EQU $8000
: LARP O
LARP 0 LAR 0,THRE99
LAR 0, THRE99 OUT ZERO, RAMADD
QUT SPECTRUM, RAMADD IN  TEMP,LATCH
QUT STXFER,LATCH LOOP1: BIOZ LOOP1
NOP IN TEMP, LATCH
NOP LAC TEMP
NOP ADD ONE, 15
NOP BNZ LOOP1
NOP NOP
NOP NOP

LOOP1: IN  TEMP,RAMDATA LOOP2: IN TEMP, LATCH
OUT TEMP,LATCH QUT TEMP, RAMDATA
NOP NOP
NOP NOP
IN TEMP, RAMDATA IN TEMP, LATCH
OUT TEMP, LATCH OUT TEMP, RAMDATA
BANZ LOOP1 BANZ LOOP2

There are four things to notice about this section of code

1) The first "IN TEMP,LATCH" instruction 1is necessary in
cases where transfers have already occurred from the FFT
processor, this will clear the BIO 1line and allow the
following "BIOZ" instruction to synchronise correctly.
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2) The loop counter 1s initialised to 399 (giving 400
loops) not 799, due to the. auxiliary register only being
modulec 512 when counting. Hence the loop does everything
twice.

o T rou T T e

| CEE;EPL |'| DATA #1 | | DATA #2 | |

( F_FT)

e L L L L
|

0% B R

(OR)
BEW U U =)

Figqure 2 - iming for FFT to D.R transf

3) The delay between the first and second output of data
from the FFT processor 1is 2 instruction cycles longer
than that for the inputs to the D.R. processor, this is
to change the initial output to input delay across the
two-processor from 0.8-1.2 ps to 0.4-0.8 ps.

4} The two apparently spare NOP’s in the D.R. code are there

for multiplexing reasons, as will be described in 5.5.

A spectrum block transfer between the processors can thus
occur in just 960 ps, which means that it only takes 18 ms
from the FFT processor acquiring a full set of input samples,
to 400 complex points of the resulting spectrum residing
within the D.R processor memory. This is very much closer to
a real time process than achieved by most systems!.
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P rammable acquisition interfa

To provide flexible data acquisition, the interface to the
analogue world must allow variable sample rates with

—-corresponding- -variable. .. anti-aliasing _ filter . cut-off

frequencies. Most spectrum analysers provide a frequency
scaling as follows

Frequency
Bandwidth {Hz) resolution
200 ... 0.5
500 ... 1.25
1000 ... 2.5
2000 ..., 5.0
5000 ..., 12.5
10000 ..., 25.0
20000  ....iee... ~50.0
50000  .......... 125.0

Note that the bandwidth is limited to the 400th FFT filter.

This type of scaling is not particularly optimal for engine
analysis, or the TMS32010, as almost all data reduction
algorithms relate the signal spectrum to engine speed and use
the following type of equation to locate where the various
engine orders are within the spectrumn.

spectral filter = (engine speed * engine order)

frequency resolution

where engine speed is in hertz. The above division performed
in the TMS32010 micro processor is relatively slow (6.4 ps)
and could be executed more efficiently if the denominator
were a power of two thus allowing it to be replaced by right
shifts. Also, ergonomic considerations have been made in
selecting the above scale, in that humans prefer ranges such
as 1000, 2000, 5000, 10000, this of course does not matter to

a machine. Thus, taking into consideration the above points
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it was decided to use the ranges shown below.

Frequency
Bandwidth (Hz .} Resolution
e o= 22000 e c e 2 00D . —
400 L. i
800  L.iiieeaan 2
1600 .. eieaenan 4
3200 caaeaan 8
6400 L. iiiiieen 16
12800 ... 32
25600 L.iiiaaeen 64
51200  ..... P 128

This type of binary scaling also makes the hardware very
straightforward, all that is required is a <clock at the
highest sample rate (131.072 KHz) and a simple divide by
2**N, where N is programmable, (this exists as the 7415294
TTL device). The clock frequency is in fact 40 times 131 KHz
because the smallest divide capable by the divider is 4, and
a divide by ten 1s required to generate signals with the
correct mark space ratio for the ADC, ie. a clock frequency
of 5.243 MHz is used.

As stated earlier, the sampling rate will be programmed by
the D.R. processor. To make the operation of the FET
processor handle any sample rates selected by the D.R.
processor, it must either be told the sample rate and make
certain program adjustments, or simply not care. To reduce
software complexity the second option is clearly favourable.

To ensure that the processor can only read one piece of data
per conversion and that it does not care about the sample
rate, the configuration shown in figure 5.3 has been used.
Basically the BIO 1line 1is set either when the "end of
conversion" is unasserted or when a "read ADC" occurs from
the processor, thus the processor will only ever see the BIO
line asserted once per conversion (when it will read the
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ADC), and never low during a conversion. Note that the BIO
‘line 1is set a fraction before the next conversion 1is
triggered to allow for latency between the "BIOZ" and "IN
ADC" instructions. The timing diagram for this is shown in

- - -—figure-5.4..--- - - - —- —- - e e

Y
S/M
INPUT FROM___| BUFFER
FILTER D11
o/P ] Q
= 1P
S/H
Aoe 12 08 =
DRTA | pg L OE
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0E
ST CONY 32010
o
pa-p? Q >~ DATRA
16
BUFFER
HI
—~—  RDD
L BIO __
DIVIDE D DEN
BY 18 -_— 3
q ck @
cX T —
TLR s
S o1
] 3:8
Q 4
DATA 7~ @ .
DIV BY : Y CODE PASSED FRON
N 8 b D.R. PROCESSOR
27 oK cK LATCH
Figur - mpling and digitisin ic

CLOCK 1 [ 1

2Nw10
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Having made the sample rate programmable, the anti-aliasing
filter cut-off fredquency must also be made programmable. This.
is not a simple task as the filter must have a roll-off of at
least 120 dB per octave and a stopband attenuation of 60 dB.

This specification -ensures that-all- aliased signals _ are.
attenuated by at least 60 dB Dbetween d.c. and the 400th FFT
filter. Switched capacitor filters were considered (egq.

National Semi ME 10), but these have a maximum cut-off
frequency of 30 KHz and also give significant third order
harmonic distortion. A 20 pole programmable analogue or
digital filter «could have been designed in house but this
would have presented a significant demand on time and
resources. As luck would have it, KEMO Ltd produced a new
range of programmable filter bcard products in mid 1985. One
cf these was an 8-bit (256 binary step) programmable
elliptical filter with any base cut-off frequency up to 200
Hz, a roll off of 135 dB per octave and a stop band
attenuation of 80 dB, and all on a standard size euro-card!.

One of these Kemo filter cards (VBF33) with a base frequency
of 200 Hz, allowing a tecp cut-off frequency of 51.0 KHz
(255*%200) was grafted into IDDAS. [Note that Kemo were not
interested in licensing the art work]. The values required
to set up the input sampling and corresponding anti-aliasing
filtering are shown below

Code to Code to

Bandwidth Divider Filter
200 ceas SA ceee $FE
400 ce $9 cees $FD
800 Cea $8 c e $FB
1600 ceee $7 ceen $E7
3200 e $6 e SEF
6300 cee $S cene $DF
12800 veus $4 een $BF
25600 cees $3 e $7F
51200 cee $2 cee $00
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Thus control over input acquisition is managed purely by the
D.R. processor, -which may obtain its .commands from a host, .
and everything has been made completely transparent to the
FFT processor,

5.4 Engine speed acguisition,

Nearly all data reduction algorithms require engine speed as
one of the parameters, eg. 1location of fundamental frequency
for wvibration, or Nth engine order for blade flap analysis.
The analogue speed signal from the majority of engines is a
60 pulse per rev output, ie. the output frequency is equal
to revs per minute, To measure speed in hertz it is simply a
matter of counting pulses (R) for a pre-determined period (T)
and then using the equation

Speed = R/ (T*60) Hz

The timing period dictates how precisely speed is measured.
If pulses can be counted during the timing period to within
#1 pulse of the true value (the significance of one pulse is
explained in figure 5.5), then the precision of the
calculated speed is

Precision = [1/(60.T)] Hz

If T 4is large then at constant speeds we obtain high
precision, however during engine manoeuvres it will cause
significant errors due toc the non-staticnary signal, in this
case a more reliable result will be obtained (at the time of
reading the counter) if a émaller value for T is used. For
most situations it was considered that 1/4 second would be
suitabkle, this conclusion was reached after considering the
following worst case situation.
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1 Hz.
- : -- 2) FFT filter number of 15th engine order required.

1) Sample rate = 1024 Hz; Thus resolution
3) Algerithm can look either side of filter for peak.

-- - == == -=>-Precision of speed_measurement must be to +1/15 Hz.
{ie. #1 Hz. at 15th engine order)

Therefore => Counter period (T) = 15/60 = 1/4 second.

HI
Lo _ _
Q LR
-1 CK
CLR TIMER
I Q
| COUNTER
R oLR ZLATCH
TACHO ZERO —CTKEN 0oV ICKEN
INPUT %X’ ING 16
—{cx_ o —{ck _ of—17— TPeac’
0E OE
READ

FREQ. READ =
ACTUAL FREQ. =
JUST > 4

—

w
L
-

FREQ. RERD =
ACTUAL FREQ.
JUST < 4

The circuit used to perform the counting and timing is shown
in figure 5.5. The best device found to perform the 1/4
second timing was the PX0-600, this 1is a programmable
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timer/oscillator which will also allow time periocds other
than 1/4 second to be used. .. By. .using three of the top four
bits 1left spare from the sample rate and filter programming

word, the timing interval can be selected from one of the

ey
=
'_l

Bit 1 Timing Period (Se
.0833
.8333
L1667
.2500
.3333
L4167
.5000

.0000

N I = = =T =
N = - i = =]
H O C 0 OO 0O O

Note that the D.R. processor does not need to synchronise
its speed readings with the elapse of the timing period. The
devices used (74LS559Q), and the special way they are
connected, means that they are only updated at the end of
each timing period, but that they can be read at any time
without wupsetting the timing period or the contents of the
counters. Quite simply, the speed reading obtained will be
that due to the last timing period. It should however be
noted that once a timing period has elapsed, then the next
period will not start until the counters have been read, i.e.
they are not free running.

Analogue tacho signals can wvary in amplitude from +1 wvolt
peak to + 30 wvolts peak. To cope with this, National
Semiconductor LM1815 zero «cossing detector chips have been
used to buffer the tacho inputs and to trigger the counters.
These devices will allow an input of up to 40 volts peak and
incorporate adaptive thresholding to reduce triggering on
noise.
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Ri buffered inpu a.

The need for a ring buffer between the FFT processor and the
ADC which allows the FFT processor immediate access to 1024
samples of data, came about- from_the following .considerations.

1) Although the FFT algorithm has been héavily optimised and
tailored to run efficiently on the TMS32010, thus keeping
the computation time to a minimum, it 1is of 1little
consequence 1f the FFT processor then has to wait for up
to a second to obtain the next 1024 sample points
directly from an ADC (1.024 KHz sample rate).

2) The integrity and smoothness of a spectrum can be
improved by ensemble averaging, as this tends to push
down the noise floor and steady the amplitudes of the
larger signals. Averaging however, slugs the response of
transient changes within the spectrum and could result in
averaging time constants of many seconds if spectra are
not available fast enough.

3} Statistically, the best results are obtained from FFT's
if their input data 1s overlapped, this 1is especially
true when windowing is used, as is the case. It has been
shown by A.H.Nuttal [33] that to obtain 98% of the signal
energy density function then the overlap should be at
least 60% (window dependent).

Hence faster throughput and overlapping of data is of
significant benefit to the system. To enable this a ring
buffer is required bhetween the ADC and the FFT processor. Its
task 1s to keep a buffer of the most recent 1024 samples
(effectively storing the latest sample by over-writing the
1025th previous sample) and at the same time make the buffer
available, on request, to the FFT processor. This is not a
trivial task as the input data from the ADC may appear at a
rate of up to 131 KHz (one per 7.6 ps) and at the same time a
transfer to the FFT processor must oécur as fast as possible.
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To achieve this task a third TMS32010 has been employed!. The
multi-tasking type opéfation is enabled by inputting data
under interrupt control, and outputting data under BIO
_qqn;rp;,_@aghkgask has been made transparent and asynchronous

to the cther. ' T T - oo L

The input interrupt service routine simply reads in data from
the ADC, increments the ring buffer address and then stores
the data at the new address. Note however that this
interrupt routine must be as efficient as possible because
when an output block transfer is also being performed, the
interrupt service routine will steal wvaluable processor time
and cause longer transfer times to the FFT processor.

The output routine, when signalled by the BIO line, outputs
the most recent 1024 samples to the FFT processor. The
output timing being such that the samples do not appear to
the FFT processor faster than it can cope with, noting that
windowing and bit reversal is still performed between each
éample by the FFT processor. The minimum time in fact being
4.6 s per sample, hence if no interrupts occur during the
block transfer, the transfer will take (1024*4.6) 4.6 ms. Of
course when there are interrupts, as there inevitably will
be, the transfer takes longer and at a worst case sampling
rate of 131 KHz it will take 6.6 ms.

The ring-buffer hardware 1is shown in figure 5.6 and the
software in Appendix D. The ring-buffer operates as follows

1) Input samples are read in from the ADC upon receiving an
interrupt generated by a negative edge from the ADC
status (end of conversion).

2} The output block transfer starts when the FFT processor
latches a ‘1’ onto the ring-buffer BI0O line, the block
length is not fixed but continues until the FFT processor
resets the BIO line. Note that the data transfer starts
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with the most recent sample and works backwards through
the buffer. '

'"'3Y‘The*ring—buffer_size_is__actually 4096 samples, this is

necessarily larger than 1024-toAstdp input samples--.from .

being written over the end of the 1024 point transfer
buffer when sampling at high speed, i.e. if the transfer
block size is 1024 samples then up to 3 samples can be
inputted for one output before overwriting occurs. The
large memory size also provides contingency for larger
buffers (eg. for 2048 point FFT’s).

HI
LATCH ’
(R.B) . 15 (FFT)
DATA /, D =} ra DATA
8I0
32010
32810 8l CK ©OE As
/1 BiO ADD
—1 ADD
WE DEN WE
Tk OE L1
N3 ,
D - a 13
T LOW T
LATCH
3:8 3:

L, &=

cK 3:

Figure 5,6 - Ring buffer logic
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4) Each output to the latch between the ring-buffer and the
FFT processor, sets the FFT processor  BI0 high and each
input from the latch to the FFT processor resets the BIO

line (this exactly emulates reading the ADC as described
. in' 5.3), 7 T -- R

It should be noted that overlap of the sample blocks which
are sent to the FFT processor, does not occur for all
sampling rates up to 131 KHz, the break point is in fact
around 44 KHz (17 KHz bandwidth), as shown below

1) Time for FFT -> 17 ms,

2) Time for transfer from ring buffer to FFT
processor -> 5.2 ms,

3) Time for transfer from FFT processor to D.R.
processor -> 1 ms.

Total time for throughput of 1024 samples = 23.2 ms.
=> Sample frequency = 1/(0.0232/1024) = 44 KHz.

Hence if we sample faster, the ring buffer will have gathered
more than 1024 samples between block transfers and data will
be missed, and if we sample slower the ring buffer will
receive less than 1024 samples between block transfers and
overlapping of the blocks will occur.

The main point to note however, 1s that no matter what the
sample frequency is, there will always be approximately forty
spectra per second available to the D.R. processor for
averaging and analysis.

5.6 Multi-channel input.

In many situations the signal bandwidth is much lower than
the real-time bandwidth capability of the system described so
far. Indeed in many cases lost sample data is also of no
importance. Under these circumstances the system can be made
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to operate more economically if multi-channels are allowed.

The system has thus been designed such that up to sixteen

acquisition cards can be paralleled into one arithmetic card.
o i_Egnéﬂégié_fhié_fééilii§%fﬁe'DiR.‘ processor “is -able--to -output
in software a four-bit address to the acquisition cards.
These cards each then have a four-bit toggle switch to enable
any one of sixteen decode addresses to be set up. Only when
the addresses match will data be allowed to flow to and from
the arithmetic card and an acquisition card. It can be seen
tha£ the real-time bandwidth of any one channel is now 16 KHz

divided by the number of acquisition cards.

The time at which the D.R. processor changes channel number
is wvery critical, it must be ensured that it does not do so
while the FFT processor is part way through an input from a
ring-buffer (as both are on different cards). This can be
done by outputting the new channel number at the start of a
spectrum transfer from the FFT processor to the D.R.
processor. At this point the FFT processor will have just
finished an FFT and be just starting the 400 complex point
transfer, and thus will definitely not be involved with a
data transfer from one of the acquisition cards. It should
be noted that the FFT processor neither knows nor cares from
which acquisition card it receives its input data.

The channel number output instruction replaces the two
"NOP’s" found in the D.R, processor transfer code (see’
section 5.2), the code now being as follows

LOCP1: BIO2 LOOP1

IN TEMP, LATCH

LAC TEMP

ADD ONE, 15

BNZ LOOP1

OuT NEWCHANNEL, CHANNUMBER
LOOP2Z: IN etc
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Note that the channels can be accessed in any order, or in
fact in disproportionate aﬁounts, ie. one channel could be
accessed every cother time while the others would be accessed

ip_bg;ween, thus if there are eight channels, the first would

have a real-time bandwidth of 8 KHz while the others -would--——
have bandwidths of 1 KHz.

This facility also allows a multi-input interface card to be
designed were the channel number actually switches a
multiplexor and the FFT processor then directly reads an ADC
which is sampling the output of the multiplexor. This makes
for a very economical system which is ideally suited to slow
scan engine health monitoring type applications.

5.7 IDDA h interfac

One of the main objectives behind the IDDAS project was the
requirement for a front end signal processing system which
could quickly and easily communicate with a . central data
gathering and administrating host. This host would typically
be situated within the test bed control room and could vary
in computational power from an 8-bit micro such as the Syntel
MC6809 computer to a 32-bit mini such as the Masscomp 5000
series or a Vax, though typically would be a PDP-11.

The following design constraints were imposed on the
interface configuration

1) The interface should not use excessive amounts of host
memory .

2) It should provide a directly accessible bidirectional
control/status register.

3) Interrupts should be available in both directions.
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4) The host should be able to transfer arrays of up to 2048
points to and from the D.R. processor. - Co- -

5) The host should be able to download programs from host
“memory/disc¢ to the D.R. processor; the ring-buffer and . . .
FFT processor programs remaining fixed in EPROM.

When considering computer to c¢omputer communication links,
generally one of the following types of interfaces is used

1) serial data transfer, e.g. RS232,
2) parallel data transfer, e.g. IEEE 488,

or 3) direct memory to memory transfer, e.g. via globally
shared memory or DMA transfers.

The transfer needs to be fast which eliminates serial methods
and to some extent parallel methods due to the handshake
overheads. Memory to memory transfers under processor
control typically allow transfer rates of up to 500 Kb/sec,
whereas DMA transfer can be at least twice this speed but
does require added hardware and is not particularly flexible.
It was considered that a shared global memory approach was
best suited to IDDAS due to its ease of implementation, speed
and flexibility.

Most data transfers to and from the host computer will
consist of an array of data varying in length from perhaps 10
values (eg. 10 largest peaks in a spectrum) to 2048 wvalues
(eg. a complete complex spectrum), and the data arrays will
almost always be in contiguous memory locations. Under these
conditions it would be wasteful and prohibitive to directly
map large areas of shared memory into host memory space. By
employing an addressing technique similar to that used to map
ram into the TMS32010 I/0 space (ie. by implementing an
auto-incrementing address register) the actual amount of host
memory locations required <c¢an be kept to a bare minimum.
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Infact this approach allows the whole memory block to be
accessed via only two--memory--locations. - Including a third
location for the status/contreol register we have

—Memory- address - = _Write . . . ._Read
0 IDDAS control, reset IDDAS status
interrupt, etc
1 Memory data in Menory data out
Memory address not used

The main problem "with global memory is that only one
processor can access it at any one time, alsoc the TMS32010
can not tri-state its data and address buses. Therefore to
allow both the TMS32010 and the host access to the same
memory, dual port memory 1is required. Initially this was
implemented with standard static ram and multiplexed
tri-state transceivers, however in late 1985 Integrated
Devices Ltd began marketing 1lKb and 2Kb fully implemented
dual port ram devices (this was followed in early 1986 by
Advance Micro Devices with pin compatible devices)}. This
enabled a neat and compact way of providing a shared memory
between 1IDDAS and a host. The D.R processor accesses the
dual port memory as part of its normal I/0 mapped ram and the
host accesses it as described above.

The hardware configuration showing memory and status/control
implementation is shown in figure 5.7, note that 2Kw of dual
port ram has been allocated for bi-directional transfer of
variables, spectra, etc, and 2Kw for downloading programs
from the host to the D.R processor.

The status/control register becomes very useful during
periods of data transfer to stop memory contention occurring,
ie. the status/control register can be used for handshaking
and allowing only one processor to access the global memory
at any one time. A typical sequence of events might be as
follows
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In- IIBI
NST
INS DATA . ¢, FOD
DUAL PORT RAM
PROG
o . _mp T RDD DATA 8
- - = - - ——- - -} Jcounter - - ' -
OE WE ZLATCH
l (3)
HEM L—————‘ o
CK L
5/0 -H- IIBI
MAPPED —_—
AbD Y RDD (2 KM.} DATA L WE2
DUAL PORT RAM
——i DATA ADD
O0E WE 0E ME
DENSB i 1 HE1
WES OE1
INT
LATCH BUFF
o e Po e “HOST"
CK OE
WE3 I’ | oEe
DEN3 ] [ WEB
oE cK
DATA o - o @ o OATA
BUFF LATCH
INT i
RES 0o
igure 5.7 - D.R sor/h mputer interfac
The TMS32010 D.R. processor performs magnitude

conversion, averaging, data reduction, etc, and also
periodically polls the host status register and tests the
state of a specific bit (e.g. bit-2) to see if it has
been set by the host, the state of this bit indicating
whether the host 1is requesting access of the global
memory or not. Note that any bit in this register can be
used, but that it is not wise to use bit-0 or bit-1 as
these are used to reset and interrupt the D.R. processor.

When the D.R processor finds bit-2 of the host status
register set, it sets a bit in the host control register
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(eg. bit-3) as an acknowledgement, and then either sits
in a tight loop continuously polling-bit-2 until it 1is
reset, or performs some other task which does not require
access to the global memory, while also periodically
polling bit-2.- - - -+~ -~ — - - -.- - - .

After seeing the D.R. processor acknowledgement, the host
can then transfer data from anywhere between $000 and
$7FF of the global memory to its own private memory for
later analysis, finally resetting control bit-2 on
completion.

The D.R. processor, upon seeing this change of bit-2,
resets bit-3 of the host control register and continues
with its normal tasks.

Note that the status and control registers as seen by each
processor are completely separate, so in the above case both
the host and the D.R. processor could have used bit-2 for
their respective messages. There are o¢f course many other
protocol schemes based on this theme where for example the
host is master and IDDAS the slave, or where interrupt
control 1is wused for faster responses, But the overall idea
is that the risk o0f shared memory c¢orruption by dual
accesses upon the same memory locations is negligible.

The host can download programs to the D.R. processor by
writing to the dual port ram at address $800 and above.
However it should be noted that, although the TMS32010 can
access 4Kw of eprom memory, only 2Kw of dual port program
memory is available. To downlcad a program, the host must
first set bit-0 of the control register to reset the D.R.
processor, and then transfer the TMS32010 binary code to the
dual port ram from location $800 onward. Bit-0 can then be
reset to allow the processor to restart. As with eprom based
programs, the first memory location must contain the reset
vector. Note that a two position 1link 1is provided to swap
between an eprom or a dual port ram based program.
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5.8 Hardware configuration.

Having explained the concepts behind the design of IDDAS,
._there now follows a concise description of .the hardware .
configuration, control codes and protocol necessary to drive
the system. It should be remembered that the FFT processor,
the data reduction processor and their immediate peripherals
are housed on the arithmetic card, and the ring-buffer,
programmable filter, sample/hold, ADC and the three tacho
counters are housed on the acquisition card. Circuit diagrams
of the two cards are shown in appendix E, card inter-
connections, analogue inputs and outputs, and all switch
settings are covered in detail in the author’s Rolls Royce
report EIRQ0987 [10]. The two cards are also shown in

photographs 5.1 and 5.2.

5.8.1 Memory mapping.

All three IDDAS TMS32010 processors can access the full 4Kw
of program instructions in eprom, note that 8Kb eproms with
150ns access times are actually used, as 4Kb eproms with
150ns access times are not commercially available. The D.R
Processor can alternatively access 2Kw  of program
instructions in dual port memory (selectable by a link) for
which the host computer also has access and is responsible
for programming.

Due to the TMS32010 limitation of only having 144 words of
ram (all on-chip), all three processors have been given extra
I/0 mapped ram to accommodate the large arrays which are
used. Each processor has one output port interfaced to an
auto-incrementing address register, and an input/output port
interfaced to the ram data bus, note that reading or writing
to the latter increments the address register. Note also
that 2Kw of the D.R. processor’s I/0 mapped ram is dual
ported and accessable by the host to facilitate data
transfers. External ram for each TMS32010 is mapped as
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follows
Ring-buffer’ : S$0000 -> SO0FFF ~- static ram
. FFT processor : $0000 -> $OFFF -- static ram
- -~ .' . _D.R. processor : $0000 -> S1FFF -- static ram_

$2000 -> $27FF -- dual port ram

The host computer addresses the above dual port ram from $000
to S7FF and the program instruction dual port ram from $800
to $FFF. These are also addressed via an auto-incrementing
address register.

5.8.2 Inpu tpu rt addressin

The TMS32010 can address up to B8 bidirectional 1lé-bit ports
which it wuses to output control codes to, and input data
from, the real world. These are configured as follows

RING-BUFFER

Port Read Write
0 12-bit DAC
1 ADC Parallel link to FFT
processor
2 ' Ram address register
Ram data Ram data
4-7 not used not used
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FET Processor

Port Read Write

0 End transfer
ADC/Ring-buffer.. ... | .Start transfer _
12-bit DAC

Parallel link to D.R.

Processor

B A S

w

Ram address register
Ram data Ram data

10-Bit reversal in 10-Bit reversal out

A read from the 10-Bit reversal register returns the reversed
lower 10-Bits of the last input to the register, the top

6-Bits always return zero, for example

D.R. Output = 50100001110011001
D.R. Input = $0000001001100111
D Proce by
Port Read Write
0 Counter/speed 1 Counter/Sample/rate

Filter cut-off control
Counter/speed 2
Counter/speed 3

Host status | Host control
register register

4 Parallel link FFT DAC
processor

5 Ram address

register
6 Ram data bus Ram data bus
7 Channel number
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The "Counter period/Sample rate/Filter cut-off" control word
is configured as follows:- -

Bits 0 -> 7 : Filter cut-off frequency.
- T .~ —° - "~ -Bits 8 --> -11 -: - Sample -rate. - _
Bits 12 -> 14 : Counter period.

The sample rate contrel bits are shown below together with
the filter cut-off control bits necessary to provide anti-
alias filtering after the 400th line of a 1024 point FFT.

Sampling Band-

frequency width Resolution Control bits

_(KHz) (KHz) (Hz.) 0->7 8->11
0.512 0.2 0.5 $FE $A
1.024 0.4 1 $FD $9
2.048 0.8 2 SFD $8
4.096 1.6 4 SE7 57
8.192 3.2 8 SEF 56
16.384 6.4 16 SDF $5
32.536 12.8 32 $BF $4
65.536 25.6 64 $TF $3
131.072 51.2 128 $0Q0 $2
Timing Bits

Period (Sec) 14,13.,12

The counter period 0.0833 -——- 0O 0 0

control bits are 0.8333 -—- 1 0 0

as opposite - 0.1667 ——— 0 1 0

0.2500 -—- 1 1 0

0.3333 --- 0 0 1

0.4167 -—- 1 0 1

0.5000 -—- 0 1 1

1.0Q00 === L 1 1
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The D.R. processor to host computer status/control bits are
wired as follows o "

Cee el Host control register: Bit 0 --— Host interrupt
(D.R. stauts register) Bit 1-7 --- General purpose.
D.R. control register: Bit 0 —-—-- Reset IDDAS
(Host status register) Bit 1 --- D.R. interrupt
Bit 2-7 —--- General purpose

Note that a 12-bit DAC has been included as an ocutput for
each o¢f the three processors. These are primarily intended
as debugging and diagnostic aids but may also have uses in
real applications.

Host interface and addressing.

The majority of, and certainly the initial, applications that
IDDAS will be employed in, involve interfacing with a PDP-11
mini computer. For this reason the two cards making up IDDAS
have been constructed to Q-bus gquad-card dimensions and
designed to draw their +5 volt supply directly from the
Q-bus. The x15 volt supply for the analogue circuitry is
generated by a dc to dc convertor on the acquisition card. To
make the PDP-11 interface c¢ompact and reliable but also to
make it possible to interface IDDAS to other computers, two
versions of the arithmetic card have been designed, as
follows

1) This wversion has an on-board, commercially available
standard Q-Bus interface, this provides all the necessary
decoding and address selecting for four contiguous 16-bit
registers, plus interrupt control and interrupt vector
address selection. Two sets of toggle switches allow the
interface to bé mapped anywhere within the standard
PDP-11 1I/0 page (16000-177770 octal) and the interrupt
vector to be anywhere between 000 and 376 octal. The
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three -interface registers (status/control, address and
data) are accessed using thé first threé of these four
decoded addresses. Note also that the fourth location is
""" used-to -enable/disable the interrupt request onto the
O-bus. This arithmetic card can be plugged directly into.

a PDP-11 computer with no additional circuitry.

2} This wversion 1s exactly the same as the above, except
that there is no PDP-11 interface circuitry, instead, the
three interface registers are accessed via a 34 way IDC
connector, Thus when using this card, an additicnal
interfacing circuit 1s required between it and the host
backplane. A circult to perform this with the BBC
micro-computer has been designed and is in use at R.R.
Leavesden.

The arithmetic card shown in photograph 5.1 is intended for
use with a PDP-11, i.e. version 1. The four registers
described in this version are shown below

Memory address Write Read
0 IDDAS control, reset IDDAS status
interrupt, etc
Memory data in Memory data out
Memory address not used
3 Int enable/disable

The interrupt request signal 1is enabled by writing "1" to
location 3 and is disabled by writing "Q".

5.10 IDDAS/PDP-11 interface software.

Having provided an interface between IDDAS and the Q-bus, it
was then necessary to provide a set of standard software for
the IDDAS D.R. processor and the PDP-11, so that application
software can easily and quickly be written. The intention
being that Fortran programs within the PDP-11 can set up
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IDDAS

for selected ‘baqdwidths etc, and then call in a

spectrum whenever required for manipulation, information

extraction, display, etc. Having developed and tested the
““-~data -reduction_algorithms in this high level enviroment, the

algorithm can then be reprogrammed for the -~ -TMS$32010 - D.R..

processcr itself. Note however, that 1f the high level

Fortran program is not short of time, there is no reason why

the application program should not remain in Fortran and

continue to use the standard software. This standard software

is briefly as follows;

IDDAS:

PDP-11:

The ring buffer and FFT processor software remain as
described earlier in this chapter, i.e. 400 spectral
complex points are available to the D.R. processor
approximately 40 times every second. The D.R.
processor software (in eprom) contains routines to
convert the 400 complex points to logarithmic or
linear magnitude and to perform five different levels
of exponential averaging. The selection of cone of
'ten routines, as well as the selection of one of nine
bandwidths, is determined by a contrel code contained
within the shared ram which must be set up by the
PDP-11. The resulting spectra are then stored in the
shared ram also making them available 40 times a
second to the PDP-11.

Several routines have been written in PDP-11
assembler which can be called from Fortran programs.
These allow such things as, downloading cecde from a
disc resident file to the D.R. processor’s
instruction dual port ram, uploading or downloading a
data array anywhere in the D.R. processor’s shared
ram, issuing an interrupt to the D.R. processor,
enabling/disabling interrupts onto to Q-bus, and
setting up the bandwidth/magnitude type/averaging
control code.

- 115 -



CHAPTER S IDDAS concepts and description

Note that some of the PDP-11 routines rely on the standard
IDDAS software being resident, but others, such- as .IDDAS
reset, can be used with any D.R. processor software. All the
above routines are listed and documented in the author’s

Rolls Royce report 'EIR01064 {11]: - -Figure .5.8 .shows an
overview of the IDDAS hardware and the timing sequence of
data through it. A more detailed schematic showing individual
parts is shown in figure 5.9.
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CHAPTER 6

'IDDAS Applications

Applyin DDA test facili dynamic signal analysis,

Throughout the design and development of the 1intelligent
dynamic data acquisition system, there were many meetings and
discussions held between the author and the measurement
engineering, engine development, and data analysis areas of
Rolls Royce. These concerned the type of data analysis,
information extraction and real time displays that would be
most useful and practical within aero engine test facilities.
The details cobtained from these meetings ensured that the
IDDAS hardware covered as many ¢f the potential applications
as possible, and in the later stages, enabled basic
application procgrams to be written t¢ demonstrate to
potential users the abilities of IDDAS using replayed engine
signals.

The demonstrations of the prototype IDDAS unit working with a
PDP-11 and a graphics generator on real, although replayed
signals, showed its ability to analysis dynamic signals and
determine engine health as laid down by certain criteria.
These type of demonstrations had previously only been
performed with large and expensive computing equipment, and
thus served to spur on the use of many IDDAS units in real

test facility applications.

The first two real '~ applications of IDDAS are now briefly
described. It should’ be noted how different the two
applications are, demonstrating the versatility of both the
software and hardware. The first application centres upon
the speed at which spectra can be inputted into a PDP-11
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computer - for calibration, minor analysis, and display. The
second centres upon the facility to perform data reduction on
multi-channel inputs, prior to . transfering extracted

‘itnformation to a PDPfll_FOmputer.

Aero _engine real time health monitor,

There are many occasiocns when the spectral content of a
signal received from an engine transducer is not understood
enough to enable data reduction algorithms to be defined.
This 1is particularly the case when new engines or engine
parts are being developed. On such occasions it is usually
necessary to monitor the health of the engine or engine part
during test running. Prior to the development of IDDAS, this
was performed by watching the display of a spectrum analyser.
The results obtained from this type of analysis are
subjective and limited to observing instantanecus amplitudes
at particular resonances. No trend analysis is performed and
thus changes to the engine test schedule or test guidelines
can not be made until a tape recording of the same signal has
been passed through the off-line and remote dynamic data
analysis and reduction system some time later. In many cases
the engine may have already been derigged or worse still
damaged during continued running.

Thus a requirement rose for an instrument which could provide
a spectrum analyser type display, a history of spectra for
trending, and a quick look facility showing such things as
engine speeds, and amplitude and frequency of component
resonances. It was also a requirement that such things as
engineering units, scale ranges, spectrum bandwidths and test
remarks/titles be selectable wvia menu driven tables. During
engine running, the spectra alsc needed storing to enable
replays, post analysis and hard copies of results to be
produced immediately after an ehgine manoeuvre.
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CHAPTER 6 IDDAS Applications

Hardware.,

"The standard test bed computer and graphics system used by

the author's department (Electreonics and Measurement
techniques) at the time of this design-was-the- PDP-11/73 with
an 80Mb. winchester and a Gresham Lion S$SBD-B graphics card
and high resolution monitor. The graphics card plugs directly
into the Q-bus backplane, provides a 574x768 pixel colour
display and comes with a suite of powerful Fortran drawing
routines, The majority of the above specification can easily
be performed by this hardware, except of course for the data
acquisition and spectrum analysis. This is where IDDAS
becomes wvital, being able to transfer up to 40 spectra a
second to the PDP-11, and in allowing the PDP-11 to tell it
which of the nine possible bandwidths (200 Hz to 52 KHz} to
use. Note also that IDDAS c¢an transfer to the PDP-11 three
engine shaft speeds. .

lication ftware and eration

As menticned in the last chapter, a set of standard
development software had already been written for IDDAS and
the PDP-11, which allow IDDAS to be set up for bandwidth, and
spectra to be inputted into the PDP-11 via high level Fortran
calls. By using these standard routines (note that no data
reduction is required from the D.R. processor) very little
signal processing 1s required by the Fortran program. In
fact the bulk of the application software is concerned with
the relatively simple tasks of data manipulation for
displaying and storage and with performing minor analysis
such as finding the amplitudes and frequencies of the largest
resonances. Essentially, the PDP-11 sees the spectra as
nothing more than 400 point integer arrays that could have
come from any memory resident peripheral device.

Calibration 1s performed by inputting into IDDAS a sinusoid.
of amplitude equal to some predefined engineering unit. The
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resulting spectra are transfered by the usual means into the
PDP=11 "and the amplitude of the respective peak (in "banana"
units at this stage) is stored for later use. Assuming that
IDDAS is set up for linear output, then during normal running
“the~spectrum input-value -are -simply-divided by—the~previously—Lw—
stored calibration figure to convert them into c¢alibrated
engineering units. Thus it can be seen that the actual gain
applied to data as it passes through IDDAS 1is of no
consequence. A high level and slightly simplified flow
diagram o¢f the real time part of this program is shown in
figure 6.1.

The display produced by this program is shown in photo 6.1,
note that the signals used to generate this were from a

signal generator and not an engine transducer. A more
realistic picture 1is shown in figure 6.2, this shows the
vibration signature of an RB211-524D4 undergoing a two minute
acceleration. Note that this figure has been produced by the
replay facility of the machine on an ordinary dot matrix
printer (hence being black and white) within the test
facility itself.

Other points to notice are;
The two history plots (right hand side of picture) rotate
around a four minute axis.
Up to 99 events can be marked anywhere on the time axis
to allow post analysis at these points.
A marker can be moved up and down the spectrum plot,
amplitude and frequency details at the marker are given
in the table.
The relationship of the three largest peak frequencies
and of the spectrum marker frequency to any one of the
shaft rotation frequencies is also given in the table.

More information on this system can be obtained by refering
to the Rolls Royce manual EIR14163. At the time of writing
this thesis there were twelve o¢of these systems installed in
one of the Rolls Royce Derby site test facilities, enabling
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very intensive monitoring of the latest Rolls Royce
compressor in the V2500 gas turbine engine.

Reset IDDAS.
Set up IDDAS to selected bandwith,

linear output, and no averaging.

Draw axes and labels of
all graphs and tables.

Get spectrum and speeds from IDDAS,
Calibrate whole spectrum,
Find amplitude and frequency of

three largest resonances,

Plot spectrum as a graph,
Plot spectrum using density,
Plot amplitude of largest peak and
the three shaft speed readings,
Fill in table with details of the
shaft speeds and the three largest peaks.

Figur .1 - Flow diagra f Real time monito
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CHAPTER 6 IDDAS Applications
Digital vibratjon system.

Aero engine vibration is found by measuring the conditioned
signals obtained from engine casing mounted accelerometers.
The conditidning ‘consists -of- - -a- -charge amplifier and an
integrator to provide a velocity voltage signal for the
analysis. Vibration signals consist mainly of sinusoidal
components of relatively high "Q" at the fundamental
frequency of the rotating shafts.

For many years vibration has been measured in the test
facilities by using band pass filters tracked to the engine
speed. However these systems have a number of problems

Being completely analogue, they tend to drift from their
operating points, thus calibration must be frequent,

They are tedious to calibrate as both vibration and speed
signals with accurately set frequencies need to be
injected while potentiometers are adjusted,

Different standards of tracking filters are required for
just about every shaft of every engine type. This 1is
because speed signals are usually generated from
tachometers which are inevitably geared differently on
each engine type. Hence filter modules must be changed
everytime a different engine type is tested.

The vibration output (inches/second) is displayed in
analogue form on a dial gauge, this means that recording
of results is a manual task.

The configuration for this analogue system is shown in figure
6.3, note that broad band vibration 1is also measured to
indicate when there 1is significant non-shaft related

vibration.

As can be seen, vibration measurement in the test facility is
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_time consuming, operator dependent and produces poor quality
results. Infact tape récordirigs of the vibration signals must
alsc be made so that post analysis and plots of vibration

_}evels can be more accurately produced. For such a stralight

forward analysis this i5 obviously wasteful of prime computer

time and delays are again inevitable.
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IRRIS IP —  TRACKING FILTER #2
POP-11

HP —P  TRACKING FILTER #3

i lHJ BROAD BAND FILTER

ANALYSIS II || O
PLOTS %
TABLES OO 4

DRIVERS PANELS (%)

igur - Analogue vibration m uremen
This unsatisfactory situation and the production of IDDAS

resulted in a real time digital vibration system being
designed, the basic outline specification of which follows
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The system is capable of analysing three vibration .
channels simultanecusly.

Vibration measurements -are - ‘given - for each shaft (two or
three depending upon the engine) and for broad band.

There 1s no changing of hardware for different engine
types, i.e. this is done under software control.

The results are made avalillable to the test bed
instrumentation computer (IRRIS) ten times a second for
display purposes.

The calibration procedure is straight forward and short.

6.3.1 Hardware,

The test bed instrumentation computer mentioned in the
specification (IRRIS) had already been installed in the test
facility. This computer takes care of the displays and
operator interaction, thus the only extra hardware needed to
enable the vibration analysis was IDDAS. To perform this
analysis one arithmetic and three acquisition c¢ards are
required, this allows three vibration signals to be acquired
and stored while the arithmetic card sequences around the
acquisition cards, performing a data reduction algorithm on
each. All results are then be transfered to the PDP-11 over
the Q-bus.

Only one arithmetic card is required because even when
accessing three acquisition cards it can still analyse 40
spectra a second. Thus, shared between three input signals,
the analysis is performed approximatley 13 times a second on
each channel. The configuration of this hardware, as used in
Rolls Royce Derby production test facilities is shown in
figure 6.4.
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lication softwar nd operation

Unlike the previous example where the standard D.R. processor

software emained unchanged, this system required a major

modification and addition to ~ the “software. In this -case-the .
D.R. processor does actually perform data reduction, or
information extraction, on the incoming spectra. Note
however that the FFT and ring buffer software is not
modified.

%

‘I% -
TRRﬂSDUCER %OND

3
ENG INE
—————Jp| Aca. . .
SPEEDS ACa Aca
- | _ 1DDAS
1 |
ARITH.
308 STEADY
STATE CHANNELS IRRIS
POP-11

‘__;_____J

ANALYSIS

PLOTS Efi i ORIVERS

TRBLES INSTRUMENT
PANEL (S)

Figur 4 - IDDAS wvibration stem
To cope with different engines the host computer first

initialises IDDAS by passing to it three shaft to tacho speed
multiplication factors, this allows the D.R. processor to
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convert the speed signal measurement to shaft rotation
frequency and allows it to track the shaft fundamental
vibration component within the spectra. The host also passes
the -- top-and bottom frequencies for the broad band analysis
and the actual bandwidth to which the acquisition - cards- -
should be set. This set up procedure, controlled from
Fortran and host set up tables, allows the system to cope
with any engine type including those not yet designed, thus
providing a trully universal system. Once initialised, IDDAS
continuously sequences around the three acquisition cards,
each time storing the four vibration measurments per channel
(three shaft related plus broad band) in the shared ram for
use by the PDP-11 host.

As was mentioned in chapter 3, the amplitude of a sinusoidal
component varies by approximately 15% as it moves bhetween
Fourier transform filters. This sort of errcr is unacceptible
for vibration measurement, hence the method of amplitude
measurement described in chapter 3 has been employed. This
involves wusing the filters each side of the c¢central (or
tracked) filter in a squaring, adding and square root
procedure, the error in this measurement being significantly
less than 1%.

Calibration of this system is extremely straight forward, a
routine has Dbeen included in the D.R. processor software
(entered by issuing an interrupt from the host) which simply
finds the largest component in each of the incoming spectra,
converts it to an amplitude as described above, and stores it
in the shared ram for use by the PDP-11. Calibration thus
consists of injecting into each acquisition card a sinusoidal
signal representing 1 inch/sec, and then recording the
resulting calibration figure found in the shared ram. Note
that no speed signals have to be injected and also that the
actual frequency of the <calibration signal is nect critical.
During normal vibration analysis the 12 data values read in
from IDDAS simply need dividing by the recored calibration
figure to form calibrated data. The results can then be
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displayed in the same manner as any other engine parameter.

As can be seen, the host computer has to do very little work

‘or“computations_to_obta;n_p;acked and calibrated vibration

information, Results obtainéa_”by_'énély5ing the vibration
signals from an RB211 aero engine, using the Rolls Rolls data
reduction system (via tape recorded signals), and using the
above IDDAS based system, are shown in figure 6.5. The two
sets of graphs are almost identical except that the IDDAS
plots are slightly smoother in shape. This is not due to lack
of resolution or system response, but due to the improved
amplitude estimation technique as described above. The data
reduction system directly plots the amplitude of the tracked
filter, resulting in the picket fence effect being clearly
visible and somewhat misleading. Thus 1is can be concluded
that not only does IDDAS produce vibration information 1in
real time and in the test facility, but that the results are
also of better gquality.

At the time of writing this thesis, this vibration system had
been installed into two production test facilities and was to
be installed in a further two within the following few
months.
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CHAPTER 7

- T T Spectrum estimation technigues

7.1 Introduction.

The fast Fourier transform is almost always used to perform
speCtrum estimation due to 1its consistent and predictable
performance. As has already been shown, the amplitude and
frequency estimation is not as precise as is often required,
but 1its ease and speed of execution has ensured its
~popularity. There are however some occasions when the Fourier

transform is unsuitable for spectrum analysis and can not be
used. This usually occurs when the 1input data sequence is
too short to provide adequate fregquency resolution.

The above problem commonly occurs in geophysics and astro-
physics where sample rates can be extremely low and the
duration of an event relatively short (e.g. an earthquake).
Consequently researchers in these fields have put much work
into developing alternative spectrum analysis techniques
which can cope with these conditions. Although the original
work for many of the techniques dates back to the early part
of this century, practical alternative spectrum analysis
algorithms have only existed for about 20 years. As will be
seen these algorithms are more complex than the FFT and are
not straight forward to apply to input data.

A paper produced by Kay and Marple titled "Spectrum analysis
- A modern perspective® [27] brings together most of the
modern techniques and performs a simple test of their
spectrum estimation capabilities. The four best techniques,
as found in this paper, have been used by the author as a
starting point for an assessment of modern techniques on real
data, especially aero engine signals.
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The derivation and programming of the four algorithms is
briefif covered (there are many references made to more
detailed discussions), followed by a fairly involved
assessment of each one, together with modification and
improvement of the two best techniques. It should be - noted
that the Fourier transfeorm is also used as a standard 1in all
the assessments.

Fourier Transform (via FFT),.

The Fourier transform can be traced backed over 200 years and
Fourier spectrum analysis to nearly 100 years.. In 1898/9
Schuster published two papers [40,41] showing how he had
attempted to fit "hidden periodices" to wvariations in
sun-spot numbers, he also coined the term "periodogram",
Another major step came in 1930 when Norbet Wiener published
a paper [45] titled "Generalised Harmonic Analysis". From
this developed the Fourier transform relationship between the
autocorrelation function of a random process with the power
spectral density. In 1959 a major publication from Blackman
and Tukey [7] providing a practical implementation of Wieners
autocorrelation approach. This implementation requires
estimation of the autocorrelation lags, windowing, and a
Fourier transform to obtain the psd.

The BT periodogram implementation soon became popular and
many analytical computers became heavily locaded with spectrum
analysis programs. In 1965 a major break through came with
the introduction of the fast Fourier transform by Cooley and
Tukey [17]. This new approach reduced the computational
effort of the BT implementation proporticnally from N**2 to
N.log(N). The computational efficiencies obtained from the
symmetries of the sine and cosine functions (as used in this
new approach) can in fact be traced back to Danielson and
Lanczos in 1942 [20], and to Runge and Konig in 1924 [39].
However for some reason, when machines became capable of
processing large arrays of data, these earlier efficient
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algorithms where overloocked. The fast Fourier transform, in
"amongst its various forms, e.g. decimation - in frequency.,-
decimation in time, prime factors and various radices, 1is

currently the most widely used form of spectral analysis.

The fast Fourier transform is - -basically just a fast method of
performing the discrete Fourier transform, and as such can be
derived from the egquation for the DFT. This is described in
chapter 2, The properties of a spectrum produced by the FFT
algorithm are hence the same as those for a DFT spectrum, the
three most significant being

1) The resolution of a resulting psd is restricted at best
to l/sample window period.

2) The true signal psd is modified due to the convolution
which occurs between the signal psd and the sinc
function.

3) The spectrum filters are at fixed and harmonically
related frequencies.

The second property, caused by assuming that data is =zero
outside of the Fourier sample block, 1s an undesirable
feature which can be alleviated by using other shaped
windows. Unfortunately these other windows result in a worse
resolution, thus there is always a compromise between the
effects of convolution and the resolution.

In the real world no signal is totally deterministic and will
always be embedded in random nolise, ie a stochastic ‘process.
Fourier transforms of these processes result in statistical
inaccuracies, and thus spectral ensemble averaging must be
performed to reduce and smooth out these inaccuracies. The
need for this averaging is illustrated by Oppenheim and
Schafer [34], and Otes and Enachson [35]. The performance of
the DFT 1s thus still further compromised.

It can be shown that the DFT is equivalent to performing a
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least squares fit with sinusoids of the following frequencies

0, 1.Fs/N, 2.Fs/N, ..., (N/2).Fs/N

. Fs = sample frequency

_ N - ¥

This highlights the fact that the DFT assumes that the input
function can be represented by a preassigned number of
harmonically related sinusoids of fixed frequency. This of
course is very rarely the case, causing the algorithm some
difficulty in representing sinusoids of frequencies other
than the preassigned ones, and also in representing wide-band
components. Bearing in mind the above points it becomes
obvious that the DFT is not the most 1ideal techinique for
spectrum analysis, as a result much work has been put into
researching alternative spectral analysis techniques which do
not put such severe restrictions and constraints on the data.

A r ive D m ition

Transfer function modelling can be used to determine the psd
of many deterministic and stochastic processes. The model is
derived from known sampled data, representing an output
sequence, and from an assumed function of known psd
representing the driving sequence to the model. 1In this
model the two sequences are related by a linear difference
equation of the form

9 P
x(n) = Z b(m).x(n-m) - 2 a(k) .x(n-k)
m=0 Kxat

this is generally termed as an Auto-Regressive Moving
Averaging model. The system function H(z) is given by

H{z) = B(z)/A(2)

where A(z) is the AR term
and B(z) is the MA term
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Having determined the system function, the psd of the sampled
data can be found by using the well known relationship N
_ . .P(z) .= H(z),ﬂ"jl[g*).gn(;) where Pn is input noise
Most research has gone into the Auto-Regressive model (where
b{m})=0, m>1; b{(0)=1) due to its computational efficiency over
the full ARMA model. Algorithms developed for this model
determine the poles of the AR filter from both the raw data
and the estimated auto-correlation function. The most
popular and well researched algorithms are Burgs maximum

entropy method and the forward-backward least squares fit
technique. These two will now be briefly examined.

Burg’s Maximum Entropy AR Method.

The maximum entropy method is based upon the prediction of
unknown autocorrelation functions wusing seguences of
autocorrelation functions estimated from .sampled data. No
assumption is made of the data outside of the sample window.
There are many ways of predicting the unknown autocorrelation
functions, all of which produce different but valid results.
Burg argued that the time series wvalues produced by the
predicted autocorrelation functions should have maximum
randomness (ie maximum entropy). Another way of thinking
about this approach, is that the estimated all pole filter,
when applied to the sample data, should result in the
flattest possible psd.

The autocorrelation function and AR parameters are linked by
the Yule-Walker equations [12] shown below

P
-Za(m).Rxx(-m) + o3 k =10

Rxx (k) = m.-.»Pt
- za(m) Rxx (k-m) k > 0
mz)
Rxx = autocorrelation function, O~ = gaussian noise.
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From the solution-of _p+l..  of . these equations, a(l) to a(p)

can be found directly. However there 1is a recursive

technique known as the Levinson-Durbin algorithm [21, 28]
‘which - allows .increasing orders to be evaluated starting from
one AR parameter. o

Burg found that the above solution for the AR parameters did
not produce very good rescluticn and in 1967 he introduced a
somewhat different MEM approach to the AR estimation which
could be ceonsidered as a constrained least squares
minimisation. This technique sets out to minimise the sum of
the forward and backward prediction error energies

N-1 N-1 .
Een) = >lent + Z!b(pn) 2
nzp n=p
p P
e({pn) = Za(pk) .x(n-k) , Db(pn) = Z a®(pk) . x (n-p+k)
K=o K=o
a(pd) =1 n = p, N-1

The constraint being that the AR parameters must satisfy the
Levinson recursion for all orders from 1 to p. The desire
for this constraint is to ensure a stable AR filter {(i.e. all
poles within the unit circle). This is shown in Figure 7.1

. |
Initialisation - £.0 = fo(k) 2
i

Compute reflection coefficient
Levison recursion A

Update prediction errors

Calculate A.R. spectrum

Figure 7.1 - Burgs A.R. spectrum estimation
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7.3.2 Forward-backward least squares. (FBLS) t chnigue.

The Burg method of least squares minimisaticon has several

problems which can -be reduced in _severity by removing the
Levinson recursion constraint, a method first introduced
independently by Ulrych and Clayton [44] and Nuttall {32] in
1976. It also then minimises the forward and backward
prediction errors for all of the AR parameters a(k)
{k=1,..,p). The forward prediction equation is defined by

X.a =y
where X = x (k) X(k—-1) eee  XA{1)
x (k+1) x (k) ee.  XA{2)
®{(N-1}) xX(N-2) ... X (N-k)
a = a(l) y = x(k+1)
a(2) X {k+2)
a (k) x (N)

and thus the forward prediction residual error is represented
by

e(forward) = y - X.a

The 1least square solution is defined as any set ¢of [a] which
minimises the residual sum of squares S (where S = e'.e.),
this condition is achieved when its first partial derivative
is equal to zero (ie 4S/da = 0). Applying this condition, it
follows that S is minimised when
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If R(E) = xT.%X and S(f) = XT.y then the complete forward

backward solution is represented by o o

[R(f) + R(b)J.a = S(f) + S(b)

€

Thus the sclution for a least squares fit is reduced to a
straight forward simultaneous linear equation. This approach
results in more computation than the MEM but as will be
shown, the resulting spectra do not suffer from biasing.

A recursive approach to the FBLS method was published in 1980
by Barrodale and Erickson [4], which significantly reduces
the computaticn effort, particularly when searching for the
optimum length filter. Their approach also tackles the
problems inherent in the LS method of parameters blowing up,

and of inaccurate and sometimes negative residual parameters

occurring.
7.4 Pisarenko harmonic decomposition,

The two auto-regressive methods described above can produce
spectra with significantly better resolution than the FFT
method because they do not assume anything about the data
outside of the sample block. They alsc do not assume the psd
to be constructed of fixed and harmonically related
sinusoids. However, still Dbetter spectrum estimation can be
made 1if it is based on some prior knowledge. The Pisarenko
harmonic decomposition (PHD) technique [37, 38] assumes the
input sequence to be composed of non-harmonically related
sinusoids in white noise.

Now a deterministic process consisting of p real sinusoids of

the form sin{(2Tft) can be represented by a 2p order
difference equation of the form
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2P
x(n) = - Z a (k) .x (n-k)

mz1 i 7 T

n=2p,..,N-1

where the a(k) parameters are coefficients of the polyncomial

2P+ a1y .2+ ... 4+ a(p-1).zP" + a(p).zP + a(p+l) .z +
P »
+ a{2p-1l).z + a(2p) = TT.(z-z;)(z—zl) =0

i=

This has unit modulus roots that occur in complex conjugate

pairs of the form: z{i) = exp(j2ccf(i).t),. where the
frequencies can be any where between -t/2 and t/2. It can
also be shown that a(m) = a(2p-m) and with the addition of

noise (w(n)) the difference order equation becomes

2p 20 a(0) =1
2 a(k).y(n-k) = Zra(k) . (n-k) n=2p, ..,N-1
K=0O K=o y (n)=x(n)+w{n)

By suitable eigenvalue analysis of the above matrices it can
be shown [24] that

Ryy.A = CF?.A

When the dimension of Ryy is (2p+l) by (2p+1l) or greater, o
is equal to the smallest eigenvalue of Ryy, and A is its
corresponding eigenvector. The a(i) coefficients can then be
used to find the roots of the polynomial which in turn reveal
the frequencies of the sinusoids. The power of each sinusoid
can then be calculated by solving the simultaneous equation

F.P =r
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where F = [ cos{(2nf,at) ..... cos (2nf,at)
| cos(2nf, pat) ..... cos (2ufppat)

P = [ P(1) r = [ Ryy (1)

L P (p) Ryy (p)

A flow diagram is shown in figure 7.2. As with the AR methods
the number of sinuseids and therefore the order of the
polynomial must be determined for the best results. The PHD
technique requires a lot of computational effort, and it was
not until Hayes and Clement published an algorithm in 1986
[24]) providing an 1iterative approach to calculating the
eigenvalues and assoclated vectors; that the process order
could be more efficiently calculated.

p=1

Compute 2.p+l1 biased estimates

Solve for minimum eigenvalue
and associated eigenvector "A"

Has minimum eigenvalue remained unchanged
from previcus order estimate

Solve polynomial rooting from eigenvector "A"

Compute p sinusoid frequencies from roots

Determine the p sinusoid powers

Figure 7.2 - Pisarenko spectral line decompgsition
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Prony spectral line estimation (PLSE) technigue,

Prony’s method of spectral estimation, like Pisarenko’s
assumes that the saméled process consists of sinusoids in
"additive noise.” Theoriginal ‘work by Prony- was -aimed at
representing the expansion of gases by sums of exponentials,
but this has undergone major changes over the years resulting
in the meodern extended Prony technique. This uses a least

squares fit approach to estimate exponentials of the form

P

k) = 3 bm.2m’ n=20,1 ..., N-1
mal

where b(m) = A(m) _eie and z(m) = e(“m*jlfff'tn)a(-

however the solution to this equation 1is a difficult
non-linear least squares problem [25]. A

To analyse a process of p real undamped sinusiods in noise a
special variant of Prony’s method can be used in which ©m is
set to zero, resulting in the roots being complex conjugate
pairs of unit modulus. Thus we must solve for the roots of
the polynomial

P 2p
Y (@) = TT (z-2;) (z-2) = Za(k) L
i=\ &~
where a(0) = 1 and a(k) are real

Due to the roots being of unit modulus and occurring in
complex conjugate pairs, it can be shown that a(k) = a(2p-k)
(k=0, 1, .., p) and hence that a( p}) =1 [27]. The solution
is implemented by constraining the polynomial cocefficients to
be symmetrical about the centre element. Thus the linear
prediction error can be written as

P

Cn- Za(k) .[x(n+k) + x{n-k)] n=p, ..,N-p-1
Kao
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From this point onwards a standard least squares £it
algorithm can be applied to the éréblem, with the data matrix
taking the form as shown below, note that X is Toeplitz and
Hankel" in--structure rather than just Toeplitz as in the AR
case : T

£ (p+1)

. = X.A
€ (-p)
where A = [ 1/2 1 X =T+ H

a(l)

a(p-1)

L a(p)
T = [ x{p+l) ... x(1) ] H=[ x(p+t1) ... x(2p+1)]
x{n-2p) X (p+1) X (2p+1) X (N-p)
| x(p+1) ... x(N-2p)] L x(N-p) ... x(N)

Having determined p coefficients, a polynomial rooting can be
performed to determine the complex conjugate root pairs which
will then reveal the frequency components of the process.
The power and phase information (ie the b{(m) term) is then
determined from the following equation

4. = X

.
il
=
=
=
m
]

[ b(1) ... b(p) 1T
z (1) z(2) v Z(P)

>
I

. X .. ) [ x(0) ... x(N-1) T
21y oz L. z(p)"
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The Prony spectral line estimation thus «consists of the
solution -~ of two simultaneous  linear equations (least ~ square
fits) and a polynomial rooting. As with the other three
methods the order of the process must be determined to obtain

-~optimum results:- A flow diagram for -this-technique is shown
in Figure 7.3. This technique requires a great deal of
computation especially as Barrodale and Ericksons recursive
techniques (as used in the forward-backward LS method) cannot
be used here due to the form of the AR filter matrix.

Estimate the polynomial coefficients
and model order using any least
square fit estimation algorithm

Root polynomial determine frequencies

Use frequencies and input sequence
to estimate amplitude and phase via
a least square fit algorithm

Fi 7 - N tr lin imation
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CHAPTER 8

Assessment of spectral estimation techmiques - - - -

8.1 Form of assessment,

8.2

In this chapter an assessment is made ¢f the performance of
four modern spectrum estimation techniques as described in
chapter 7. This assessment is made by comparing the spectra
obtained applying each of the techniques to two different
data sequences. These data sequences are as follows

1) The data sequence as used by Kay and Marple [27] is used
here to enable a c¢ross check of results and provide
confidence in the author’s programs.

2) A data sequence consisting of pure sinusoids is used to
assess the performance of the four techniques with more
realistic aero engine type signals.

K and M 1

The true power spectral density of the 64 point data sequence
used by Kay and Marple, together with the psd’s obtained from
the DFT and the four the spectrum estimation techniques are
shown in graphs 8.1.1 to 8.1.6. This input data sequence does
not represent the type of signals expected from engine
transducers but provides a useful check of the wvalidity of
the author% fortran programs. Note that Kay and Marple use
the DFT without windowing, which is not really representative
bf the way in which the DFT is usually used. They also do not
show for the other techniques, to what extent the psd
estimates change when the process order is chosen either too
high or too low.
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Fourier transform,

Kay and Marple have used double zerc padding in their DFT
analysis (graph 8.1.2), this has the effect of interpolating

between filters but does not provide any extra resolution or.

information. By windowing the input data however, a
considerable difference can be made to the clarity and to the
amount of information that can be extracted from the psd.
Graphs 8.2.1 and 8.2.2 show the psd’s obtained when the
rectangular window and a Kalser-Bessel window (beta=6) are
used. As can be seen, a much better psd is obtained by using
a window, although of course the two close sinusoids (0.20
and 0.21 Fs) are still merged together. Note that the
resolution of a 64 point DFT 1is always worse than 0.016 Fs,
s0 the two «close sinusoids can never be singularly
identified. Note also that the reduced side lobes of the
windowed DFT results in a more accurate psd due to reduced
interference between neighbouring filters.

The 0.2 Fs component of the windowed DEFT is very close to its
correct amplitude of 1, however the amplitude of the 0.1 Fs
is approximately 1 dB down on 1its true value (-13% error).
This is a result of the picket fence effect which is inherent
in DFT analysis. Note that the Y-axis power scale is
referenced to peak amplitude and not rms amplitude (ie a peak
amplitude of 1 1is equal to 0 dB), and that the window
weighting constants have been arranged to give an overall
window gain of unity.

The test signal clearly shows the picket fence effect and the

lack of resolution which are inevitable in DFT spectrum
analysis.
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Burg’s A.R. method.

A psd plot produced by Burg’s method 1is shown in graph 8.3,
this was obtained by estimating 16 filter coefficients and

‘then calculating-the -power around the unit circle in 0.005-Fs

steps from these coefficients. The program used to perform
this was taken from a paper by Ulrych and Bishop [43].
Comparing graph 8.3 with graph 8.1.3, there is wvery 1little
difference to be seen, indicating correct programming of the
algorithm, The only small difference between the two, being
that the amplitude of the 0.1 Fs component in the authors psd
is more accurate than that in Kay and Marple’s. Although it
is difficult to say exactly why this is, it is most probably
due to the different computers and floating point software
that have been used. This would almost certainly cause a
slight difference between the AR coefficients used to
calculate the psd, resulting in components occurring with
very similar frequencies but slightly different powers.

The effect of using the Levinson recursion c¢onstraint on the
AR coefficients results in frequency biasing of the estimated
components. This is high-lighted by the estimated frequencies
of the 0.20 and 0.21 Fs components which are 6.2025 and 0.215
Fs respectively. Note that the psd has been normalised to
the largest component, thus absolute powers are not indicated
in the results, the actual power of the largest component
before normalisation was 22.3 dB. The peaky nature of the AR
filter «can be seen in the broad band area of the spectrun,
these peaks could easily be interpreted as real sinusoidal
components.

Burg’s method produces a better result than the DFT when
considering resolution of close sinuscidal components, but
its power estimation is poor and biasing has occured in its
frequency estimates. It must also be remembered that 16
filter coefficients have been chosen by trial and error to
produce the Dbest psd. Choosing the wrong number of
coefficients produces even worse estimates as is demonstrated
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with the next data sequence.

; 8.2.3 EForward-backward least sguares technique.

A psd produced by the forward-backward least squares
technique is shown in graph 8.4, again the algorithm was used
to estimate 16 AR coefficients and the psd calculated around
the unit circle in 0.005 Fs steps. The program used to
perform this was taken from a paper by Barrodale and Erickson
[4]. Comparing graph 8.4 with graph 8.1.4, the two psd’s are
practically identical, again the only difference being that
the amplitude of the 0.1 Fs component is more accurate in the
authors psd than in Kay and Marple’s. As with Burg’s method
this is assumed to be due to slight wvariations in the AR

coefficients, caused by using different computers and
software.

In this case the three frequencles of the sinusoi@al
compenents have been estimated wvery accurately without any
biasing and the relative power levels are a lot closer to the
true values. Note however that the psd has again been
normalised t¢ the largest component, the actual estimated
value of this component being 21.6 dB. This method produces
a peakier response than with Burg’s method, and again
generates potentially confusing peaks in the broad band area.

As with Burg’s method this technique 1is much better at
resolving close sinusoids than the DFT is, but its power
estimation is again poor. The performance of this technique
is also highly dependent on the correct filter order being
chosen, as will also be shown later.

8.2.4 Pisaren harmoni m ition

A psd produced by the PHD algorithm is shown in graph 8.5.
The program for this was derived from a non-working program
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started by Khaldoon thidan for his speech analysis doctorate

[26], the Pisarenko program published in a paper by Hayes and - --

Clement ([24] was not available to either Khaldoon or the
author. when this work was started. Most of the matrix
manipulation and eigén#éiﬁéfahaIQSié'has‘been‘ achieved by
using NAG routines supplied as part of the Fortran software
library on the Loughborough main frame computer. The program
uses no recursive techniques and is computationally intense.
The algorithm was used to estimate eight complex conjugate
root pairs. '

Comparing graph 8.5 with graph 8.1.5, there 1is one
significant difference between the two psd’s, this is the
amplitude of the component at 0.16 Fs. It would seem
unlikely that this is due to a programming error as all of
the other components exactly match. As in the earlier cases
it is much more 1likely to be due to differences in floating
point and library routines, especially as the power
calculations are dependent upon a very small eigenvalue which
has been found via several NAG matrix routines. It should be
remembered that this component should not be in the spectrum
at all and 1is 1likely to be highly dependent on small
variations.

The frequency and power estimates obtained by this algorithm
are very poor, the psd shown in graph 8.5 is again normalised
to the largest component, the actual estimated power of this
component was -2.6 dB. The frequency estimation is
significantly biased due to the use of biased auto
correlation functions, the relative power estimates are not
at all representative of the true powers, and the component
at 0.16 F(s) is spurious and totally misleading. Although
this algorithm is better than the DFT in that it manages to
resolve the two close sinusoids, it becomes practically
useless when it injects components such as the one at 0.16
Fs.
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Prony spectral line estimation technigue.

A psd produced by the Prony technique is shown in graph 8.6,

~ the algorithm was used to estimate eight complex conjugate

root pairs of unit modulus. ~The program used to perform this
is entirely original to the author as no publications of
programs already existing could be found, although it is
assumed that either Hilderbrand o¢r Kay and Marple have
published something along these lines. Note that the authors
program makes much use of the NAG library routines to perform
simultaneous equations and complex polynomial rootings. A
Fortran listing of this program 1is given in appendix F for
reference.

Comparing graph 8.6 and graph 8.1.6, no difference at all can
be seen between the two psd’s, indicating that the authors
program is correct. The Prony method estimates the frequency
and power of the three sinusoids extremely well as shown in
the table below.

Frequency Amplitude Phase
fr ion of eak degre

0.100039 0.1033464 125.28
0.200267 1.0255654 156.47
0.209599 1.0396414 170.60
0.270987 0.0564410 36.35
0.309460 0.2108561 65.79
0.358735 0.1186532 174.40
0.402381 0.1971185 95.59
0

.450810 0.0278794 32.893

The frequency 1is particularly well estimated with only a
fraction of a percent error. The two close sinusoids are
also well resclved with seemingly no interference on each
other. As with the Pisarenko technique, which also assumes a
sinusoidal model, Prony’s technique does not represent the
broad-band components particularly well, although it does
indicate the presence of power in this region. Again, this

- 152 -



CHAPTER 8 Assessment of S.E. techniques

algorithm is computationally intense and no recursive
techniques have been used, however -compared to-the Pisarenko -
harmonic decomposition 1t produces significantly better
results for a similar amount of computation.

8.2.6 Summary of results using Kay and Marple test data.

Comparing the above results obtained from the four spectrum
estimation techniques, the following points can be noted

The Burg and Pisarenko techniques both suffer from
frequency bilasing due to the constraints imposed by their
respective algorithms.

Power estimates by Burg’s method and the forward backward
least square technique, which both rely on accurate AR
coefficients and residual power, are very poor.

The least square and Prony techniques produce very
accurate frequency estimates.

Least square power estimation, as in Prony’s technique,
produces accurate results.

None of the techniques represent the broad band frequency
component very well.
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techniques
10 A
0= - . - -
=10
[as]
Q
|
L1
z
Q
a
=204
=304
—‘0 L] T ¥ T L 1 T {
0.00 0.05 010 0.5 020 0325 03¢ 035 040 045 0.50
Frequency
Graph 2 - DFT, rectangul window; K&M data
10 -
)
—16
a
O
} .
Q@
S
e}
o
=20
—30
-40 T T T T
0.00 0.05 0.0 .15

T 1 L T
020 025 030 035 040 045 0.50
Frequency

Graph 8.2.2 - DF Kaiser-B el window; K&M data

- 155 -~




CHAPTER 8

Power dB

T 40

power dB

-10-
15
-204
254
-301

-35

Assessment of $.E. techniqgues

0.00

raph

-104

-1%5

~20

-5 4

~30~

~351

T
0.05

1 T T T T T T T
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

frequency

1
0.50

‘s method, 16 fficients; K&M data

T T
Q.25 0.30

frequency

T
0.20



CHAPTER 8

Power dB

Power dB

-—10 4

-15 4

—-204

~254

=30

Assessment of S.E. techniques

- T
0.00 .05

T
0.10

0.13

arenk

1 T
020 025 0.30 0.35
Frequency

eight r

=T T
0.40 0.45 0.50

irs; K&M dat

s
-104
5
=20 -
-25
~30

=35~

Graph 8.6 — Prony,

T 1
0.00 0.05

0.10

T

0.15

T

Frequency

eight root pairs:

—T T
0.20 0.25 0.30 0.35 0.40 0.45 0.50

K&M data

157 -



CHAPTER 8 Assessment of S.E. techniques

8.3 Sinusoidal test signal.
An assessment 1is now made on the performance of the four
_ Spectrum analysis, techniques when applied to a signral
- - - - e B L ) )
consisting entirely of sinusocidal components. "~ The 64 -point - -——
data sequence consisted of six sinusoilds, as follows

Frequency Amplitude Phase
[fraction of Fs] [peakl]l (dB) [degrees]
0.05 0.1 (20} 0
0.16 10.0 ( 20) 60
0.25 1.0 ¢ 0O) 45
0.26 10.0 ( 200 120
0.35 0.1 (-20) 180
0.425 1.0 ( O) 50

Two polints to notice about these components

1) There are two close sinusoids of different amplitudes
{(Kay and Marple’s were of the same amplitude),

2) There is a 40 dB difference between largest and smallest
sinusoids (Kay and Marple’s only differed by 20 dB).

8.3.1 Fourier Transform,

This technique was again applied using the Kaiser Bessel
window, the resulting psd is shown in graph 8.7. This psd
reveals no real surprises, the <c¢lose sinusoids are not
resolved, energy 1is spread into side 1lobes, and where
components are not exactly on filters the power is less than
the true value. '
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8.3.2 Burg’s AR method.

To demonstrate the need for the correct choice of the number
of AR coefficients required to achieve an optimum psd
"estimate, Burg’s method has been tested with four different .
numbers o¢f AR coefficients, these being 12, 14, 16 and 18,
The resulting psd’s are shown in graphs 8.8.1 to 8.8.4, note
that the power has been normalised to the largest component.
As can be seen, with only 12 coefficients only four of the
six components have been extracted, with 14 and 16
coefficients six have been extracted, and with 18
coefficients eight components have been extracted. This is a
variation from two sinusoids too few, to two sinusoids too
many over a change of just six ccefficients.

The optimum psd must be cbtained somewhere in the relatively
small range of 13 to 17 coefficients. The frequencies of the
six components extracted in the psd’s for 14 and 16
coefficients do not seem to have suffered from biasing and
are reasonably accurate. The difference in power between the
largest and smallest components is approximately correct at
40 dB, however the actual power estimate of each component
before normalisation is very poor. The power of the largest
component (0.16 Fs) being 36.9 dB for 14 coefficients, and
41.8 dB for 16 coefficients. There is also clear evidence of
line splitting at 0.25 Fs when 18 ccoefficients are used.

8.3.3 Forward b W ea squar technigue

The Least squares technique has been tested in a similar
fashion to Burg’s method in that psd’s have been estimated by
using four different numbers of coefficients, in this case
11, 12, 14, and 18. The resulting psd’s are shown in graphs
8.9.1 to 8.9.4, and have again been normalised to the largest
component.
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As can be seen there is a very sharp change in the spectrum
responée between 11 coefficients and 12 coefficients , --where
the "Q" of the peaks become wvery much higher and all six
sinusoids are extracted. It is significant that the break
ﬁéintiﬁis' at 12 coefficients as “this is the number of
coefficients required to represent the 6 complex conjugate
root pairs which match with the 6 sinusoids.

The frequency estimation of this technique 1is very good,
producing an accurate and high "Q" response, and there 1is
also no sign of line splitting. Power estimation however is
not so good, as shown by the estimate of the largest
component in the 14 coefficient psd, of 44 dB at 0.26 Fs
before normalisation.

isa k rmoni ecom iti

The PHD technique has been used to extract six complex
conjugate root pairs from the test data, this being the
correct number to represent six sinusoids, the resulting psd
is shown in graph 8.10. Psd’s for other numbers of root pairs
are not shown as these result 1in totally inaccurate
estimates. Note that, as with the two previous techniques,
the power estimate is referenced to rms amplitude, i.e. a
sinusoid of amplitude 10 should be equivalent to 17 dB on the
graphs.

As can be seen from the psd, the estimated power of the

. sinusoids at 0.16, 0.26 and 0.425 Fs are quite accurate,

their frequency estimates are also reasonable although they
do suffer from some slight biasing. The frequency estimate
of the 0.05 Fs component is also not too bad but the power
estimate is completely wrong, as is the frequency and power
estimates of the two remaining components, thus making this
psd practically useless.
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Prony spectral line estimation,

As with the PHD technique, only one psd has been produced,

again this being for six complex conjugate root pairs, the
resulting psd is shown in  Figure - 8.11: - Note-that the power .._

estimate, as with the Fourier transform, is referenced to
peak rather than rms amplitude. The results are extremely
good, both frequency and magnitude have been estimated very

accurately as shown below

This result is not
technique is based on,

surprising

Frequency Magnitude Phase
Jfraction of Fsl [peakl ~_ [degreesl
0.05000000 0.9999926 0.0009001
0.16000000 10.000000 90.000165
0.24999999 0.999%88¢66 45.000087
0.26000000 10.000010 119.999993
0.34999999%9 0.1000010 180.000002
0.42500000 1.0000008 90.000160

as the model this

is identical to the process presented

to it in this test.

mmar £ t

The two tests performed on the four spectrum estimation
techniques have produced consistent results which can be
summarised as follows

Burg’s AR method,
Good points :-
Employs a recursive approach resulting in relatively

efficient computation.

High frequency resolution even with small sample blocks.
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No assumption is made of the data outside of the sample
block and thus there are no leéakage effects. - - - - -
Guaranteed stable linear prediction filter.

Bad_points '-__L‘._ o 7 o I o -

Constraint on AR coefficients causes frequency biasing.
Overdetermination causes line splitting.

Power estimates inaccurate and dependent on filter order.
Must determine . order of AR filter.

Burgs AR method works well in that it provides good
resolution, a stable output and is computationally efficient.
Howéver, for analytical work where accurate. results are
required this technique does not provide a good solution.

Forward backward least squares technique

Good points :-
Employs a recursive approach.
Higher frequency resolution than Burgs method.
No line splitting.
No assumption is made of the data outside of the sample
block and thus there are no leakage effects.
No frequency biasing.
In general a stable AR filter (although not guaranteed).

Bad points :-
Power estimates inaccurate.
Must determine order of AR filter.

This technique provides good frequency resolution and
estimation, the filter response being particularly sharp once
the minimum set of coefficients has been calculated. Also, in
the tests performed here, no conditions have been found where
the algorithm is unstable, although as stated above this is
not a guaranteed condition. The only problem with this
technique is poor power estimation. As with Burg’s method it
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calculates the psd from the AR filter residual power. It has
‘become quite obvious that this is not a good way of doing it.
Lacoss [29] has suggested that the peaks are proportional to
the square of power and that the area under the peaks is

 proportional to ‘power.  This hypothesis was- -tried -on the
spectra shown in graphs 8.8 and 8.9, the results showed no
real improvement in power estimates. It can be seen that
there is a more fundamental problem in the fact that the
peaks change in shape and amplitude in respect to each other’
as different numbers of AR coefficients are used. It is felt
that estimation of power via the filter residue, as 1is the
case for all the above estimates, 1s not the best approach.
This problem is discussed further in chapter 9. .

8.4.4 Pisarenko harmonic decomposition,

Good points :-
High frequency resolution.
No assumption is madé of the data outside of the sample
block and thus there are no leakage effects.

Reasonably accurate power estimate of some components.

Bad points :-
Significant frequency estimation biasing due to
auto-correlation constraints.
Power estimates inaccurate.
Produces spurious components.
Must determine order of process.
High degree of computation.

This technigque has not performed well in either of the two
tests, showing significant inaccuracies in both frequency and
power estimates. It would seem that this is also the opinion
of other researchers, as this technique has been extended to
what 1s called the "Music algorithm”" {36] in which the
results from several eigenvectors are averaged together to
reduce the frequency bilasing and the effect of spurious
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components.

8.4.4 Prony spectral line estimation technigue.

Good polnts :-
High frequency resolution.
No assumption is made of the data coutside of the sample
block and thus there is no leakage effects.
Accurate frequency estimation of sinuscids.
Accurate amplitude estimation.

Accurate phase estimation.

Bad points :-
High degree of computation.
Must determine order of process.
Not guaranteed stable. ‘

This technique has produced by far the best results,
especially for purely sinusoidal signals. As pointed out
before, this 1is not totally surprising as this technique
performs a sinusoidal least square fit for frequency
estimation and a least sqguares fit for amplitude estimation,
assuming in both cases that the signal consists entirely of
undamped sinusoids. There are however two slight problems;

The algorithm is not 100% stable. It has been found that
if the wrong number of root pairs 1is used on any
particular signal, then frequencies of 0.0 or 0.5 Fs
occasionally occur. This is not too detrimental as the
resulting amplitude estimation for these components is
always very small. However occasionally a more serious
and fatal error occurs, when the Fortran NAG routines
exit early due to overflow errors during matrix
manipulations.

All of the other spectrum analysis techniques have
methods for estimating when the correct order has been
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reached, and thus when further recursive computation can
stop (eg Akiake’s methods  for “the ™ Burg - and LS
techniques). No reference has been found for a method of
doing this on Prony’s technique.

5 Further assessment,

The real test for any spectrum analysis technique comes when
it 1is applied to a signal embedded in noise, such as aero
engine transducer signals. The technique must provide
accurate results and demonstrate a reasonable tolerance to
noise., Based upon the points made in the above summary, only
the forward backward least sgquares technique and Prony’s
spectral line estimation technique will be assessed further
with this type of signal. In chapter 9, not only will
resilience to noise be assessed, but also whether reliable
order estimation methods <can be developed, as will be
required for a final solution.
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CEAPTER 9

9.1 Introduction,

In this chapter further assessment is made of the performance
of the Prony and the forward-backward least squares
techniques. This involves testing them with simulated noisy
signals and developing rules and algorithms for order
selection. Finally an assessment is made of each technique
using a real signal recorded from an aero engine mounted

transducer.

9.2 Test Signal.

To simulate the type of noisy signals that might be
encountered from an engine mounted transducer (e.g. strain
gauge, pressure transducer or accelerometer), four data sets
constructed from six sinusolds in varying amounts of gaussian
noise have been generated. These data sets are 128 samples
in length and the sinusoids are all of different phase and
varying in amplitude. The six sinuscids are as follows

Frequency Amplitude Phase
f ion of akl (d degree
0.05 1.0 ( 0) 0
0.16 10.0 (20) 60
0.25 1.0 ( 0) 45
0.26 10.0 (20) 120
0.35 4.0 (12) 180
0.425 1.0 ( Q) 920

Six sinusoids is considered a fairly typical amount to find
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in an average vibration signal and the amplitude range of 20
" dB corresponds to vibration signals differing in power by - a
factor of 100. This 1is also c¢onsidered typical for aerc

engine signals and is a large enough range for most types of
analysis. T T T ST T T

To simulate noise a random number generator with a gaussian
distribution (provided as part of the Loughborough university
NAG library) was used to produce the noise data, this was
added to the above sinusoids at four different levels. Note
that the time response of the four noise sequences are all
identical in shape, but different in gain or standard
deviation - [o= . The noise sequences were chosen with
standard deviations of 0.25, 0.5, 1.0 and 2.0.

Noise power of a gaussian distribution is defined as o°%, thus
the total noise power in each of the simulated data sequenées
is as follows

o= Noise power
0.25 -12 dB
0.5 -6 dB
1.0 0 dB
2.0 6 dB

Fourier transforms of the four data sequences are shown in
graphs 9.1.1 to 9.1.4. Two points should be noticed from
these spectra, 1) the y-axis is referenced to peak amplitude
rather than rms and ii) the noise power is spread and reduced
by 1/64 (=18 dB) across all of the frequency bins. Thus for
example, when the standard deviation is equal to 2, the noise
floor across the spectrum is

20.1g(2) + 20.1g( 2) + 10.1g(1/64) = -9 dB
[noise] [rms->peak] [spread]

It should be noted that the spreading effect of the noise

power across the entire spectrum does mean that sinusoidal
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components can be identified in poor neoise conditions. It
can - be seen that the compenents -with an- peak amplitude of.. 1.
(-3 dB power) can still be identified even when the total
noise power is 3 dB higher ( &= = 1), because the noise floor
is actually 15._dB. lower_ than .the . sinusoidal components.
However these components then disappear when the total noise
power is 9 dB higher (O~ = 2), even though the noise floor is
still 9 dB lower, because of the uneven spread of the noise
power. This uneven spread could be reduced by ensemble
averaging which would flatten the noise floor but this would

also slug any transient changes from spectrum to spectrum.

Forward-backward lea scquares (FBLS echnigqu

As demonstrated in chapter 8, the forward-backward least
squares technigque provides good frequency estimation and
resolution but very poor power estimation. When this
technique was tried on the simulated data sequences this was
again found to ke the case. Refering to graphs 9.2.1 to 92.2.4
it can be seen that when O~ = 0.25 and 0.5 the components
at 0.25 and 0.26 Fs can be distinguished apart and that the
frequency estimates are very good. Note that the choice of
30 AR coefficients 1s arbitrary ({(and also the maximum that
this particular program c¢ould accept}). If more than 30
coefficients had been used then the two components at 0.25
and 0.26 Fs would almost certainly be distinguished in the g~
= 1.0 and 2.0 cases as well, as will be seen.

Although the sinusoid power levels are very inaccurate (note
that the graphs have been normalised to the largest
component), the noise power level is significantly lower than
in the Fourier transform case. The shape of the noise power,
as with the Fourier transform 1is generally the same
irrespective of its amplitude, thus displaying some stability
within the algorithm.

At this stage the FBLS technique looks more promising than
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the FFT for frequency resclution and estimation even when

- - - - ---there "is-severe noise. ~If{ "is quite-apparent"however that the

power estimation needs to be considerably better to enable
this technique to ke of any use. °“The problem with the power

———«——~———estimation—aé—it—stands~is——thaﬁ——it“"useémthe*residuaijpower
from the AR filter. In mest cases this is small and related
more to the power taken out of the time series by the AR
filter rather than to the power actually in the time series.
To improve on this a different approach is necessary.

9.3.1 Modified forward-backward least sguares technique,

It has been demonstrated and well documented in many papers
that the DFT is in fact a loosely disguised least square (LS)
algorithm in which the frequency matrix 1s made up of
predetermined and harmonically related sinusoids. The
unknown matrix contains the amplitude and phase information
for each of these predefined sinusoids. When a time series
contains a sinusoid of the same frequency as one of those in
the frequency matrix, wvery accurate amplitude estimates are
obtained. The Prony spectral 1line estimation technique
blatantly uses an LS technique t¢ perform its amplitude
estimation. The difference between this and the DFT approach
being that the frequencies chosen for the frequency matrix
are first estimated from the time series and are thus not at
fixed frequencies or harmonically related. As has been
demonstrated, the Prony technique alsc gives vwvery good
amplitude estimates. This LS amplitude estimation technique
can be applied to the FBLS technique.

To use the LS amplitude estimation technique a frequency
matrix is required, hence the AR coefficients found via the
FBLS technique must be used to directly calculate the complex
roots, and thus the frequency components, of the AR filter.
.This of course is very similar to the approach taken in the
Prony technigue. Applying the same polynomial rooting NAG
routine as used in the Prony Fortran program, to the FBLS AR
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_coefficients produces some very encouraging results, these
are shown in table 9.1 (page 202). This table shows the
roots, and their frequencies, produced by the polynomial
_rooting applied to 30 AR coefficients produced by the FBLS
technique on the simulated data with ¢~ = 0.5. =~ ° ~ T
As can be seen the frequencies of the six sinusoids have been
estimated reasonably accurately. The worst component being
that at 0.25 Fs which has an error of 0.1%, this is gquite
small when considering that it 1is still only equivalent to
one filter of a 1024 point DFT.

Applying the 15 complex root pairs found above, to the same
LS amplitude estimation routine as wused 1in the Prony
technigque, causes an overflow and fatal error in the matrix
inversion section of the routine. It was found that this is
due to two of the roots sitting on the real axis (i.e.
frequency = 0.0 or 0.5 Fs). When these two roots are removed
the power estimation routine works without error; table 9.2
columns 1 and 2 show the results of this LS routine. All of
the amplitudes are reasconably accurate except for the rather
high 0.25 Fs component.

After trying various modifications to the basic approcach, as
described above, it was found that there are two ways in
which the results t¢ the LS power estimaticn c¢an be
significantly improved.

1) As can be seen from table 2.1 c¢olumn 2, the magnitude of
the roots for the six sinusoids are very close to unity,
but the other roots (all noise components) are not so
close. Now the final algorithm is supposed to extract
only pure sinusoids from a time series, thus to aid in
this, all the roots can be modified in magnitude so that
they locate exactly on the unit circle. The new amplitude
estimates after placing all the roots on the unit circle
are shown in table 9.2 column 3.
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--.2L,As;already described, the qupps_located on the real axis
had to be removed from the root set for the matrix
inversion to occur without error, this can be taken a

- . .stage further by removing any roots not close to the unit
circle. After some trial and error it was found that a
difference of +0.025 in the root magnitude from unity
provided a suitable breakpoint for this technique. The
results for this are shown in table 9.2 column 4.

:

By using both of these techniques even better amplitude

estimation can be achieved, this is shown in table 9.2 column

5, the complete algorithm used to obtain this will now bhe

refered to as the modified FBLS technique. As can be seen the

amplitude estimation is now very good, especially considering
that the signal is embedded in noise.

A.R, filter or estimation

Although the modified FBLS technique gives very good results,
there 1is still one underlying problem. The number of 2R
coefficients used to obtain these results has been entered
into the program by the author and is certainly not
guaranteed to be the best choice. The effect of choosing
different numbers of coefficients is shown in graphs 9.3.1 to
9.3.4, 9.4.1 to 9%.4.4 and 9.5.1 to 9.5.4, where the modified
FBLS technique has been applied to the four sets of simulated
data using 20, 30 and 40 AR coefficients respectively.

It can be seen that the number of AR coefficients used in the
modified FBLS technique can make significant differences to
the resulting spectra. When the number of AR filter
coefficients is too low some o¢f the smaller components are
missed, as in graph 9.3.4, and when it is too high noise
components appear in the spectrum, as in graph 9.5.1. In
general, as the noise power increases then the number of
coefficients required to extract the sinusocidal components

must also increase. There comes a point however when it is
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impossible to extract all of the sinusoids without including

" some noise components inTthe spectrum. The following "two’

important features can be seen from these graphs

-1y From -all indications it would appear that no matter - how
much an AR filter 1s over determined there is no
frequency splitting.

2) Even when noise components are introduced into the
spectrum, their amplitudes are not unreascnable and do
seem to be stable, as shown in graphs 9.5.1 to 9.5.4
where the noise components stay 1in very similar
positions.

Over determining the AR filter does not seem to present any
significant problems to the estimation of frequency or
amplitude. Refering to table 9.3 which shows the frequencies
and amplitudes of the components in graphs 9.3.2, 2.4.2 and
9.5.2 there appears to be no degradation of the frequency and
amplitude estimates of the sinusoidal compcnents as the
number of AR coefficients is increased from 20 to 40. The
four extra components in the 40 coefficient case are not
classed as spurious because they clearly represent
colouration in the noise floor. The amplitude of the 0.26 Fs
component changes significantly between 20 and 30
coefficients because of the 0.25 Fs component which is not
extracted for 20 <coefficients but 1is for 30. In fact it
would seem better to over determine the AR filter as the
amplitude for the 0.25 Fs component is most accurate when 40
coefficients are used. These findings indicate that good
results can be obtained without the «risk of spurious
components or inaccurate estimates when the AR filter is over
determined.

To show how the number of AR coefficients and the level of
noise affect the extraction of sinusoidal components a graph
showing two limits has been constructed, see figure 9.1. The
first limit shows the minimum number of AR coefficients
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required'tb”extfaCt*aIl‘the-sinusoids";rggspective of whether
noise components are also included, The séégha limit shows -
.the maximum number of AR coefficients that can be used before
noise is introduced into the spectrum. Note that the x-axis
is referenced to the smallest sinusoidal“cbmﬁbneﬁtS['for' a-
reference to the largest add 20 dB. It can be seen that
while the noise power is approximately 1 dB or more below the
sinusoid power, then there is a region in which all of the
sinuscoids can be extracted without any noise components
occuring . As the noise power increases then sinusoids are
either lost, noise components are extracted, or both. As
already stated the noise components are not really a problem
as they are of acceptable amplitude, and in general they can
be identified if the approximate noise power is known.
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In most applications envisaged it will be required that all
sinusoids present within a ~signal-are -extracted. -- Thus for a
given signal to noise power ratio the number of AR
coefficiengg used should be greater than or equal to the
’cbfréspbndfng'number indicated-by -the minimum plot.. Note. that.
for six sinusoids, the minimum plot 1s asymtotic to 12
coefficients as noise power 1is decreased, and that the
maximum number of AR coefficients is determined by the array
boundries of the program (in this case 40). It is interesting
to note that the maximum number of coefficients before noise
is extracted is almest constant, this approximately
represents the point at which the AR filter becomes
overdetermined.

Taking into account the above points, it 1is possible to
derive some basic rules in respect of the number of AR
coefficients that should be wused in this modified FBLS
technique. It should be noted that these are very general

and are only based on the analysis o©f the four sets of
simulated data.

1} For signals 1in relatively low noise conditions (noise
power at least 10 dB lower than any sinuscidal components
of interest) then the number of AR coefficients chosen
for the analysis should be approximately double the ideal
number. This should result in all the sinusoid
components being extracted without any noise components.
Note that the ideal number comes from the fact that each
sinusoid can be represented by a complex conjugate root
pair and that each root pair is represented by two AR
coefficients. Thus 1if there are 5 sinusoids present
within a set of data, 20 AR coefficients should be used.

2) Where the noise power is greater than that allowed above,
three or four times the ideal number of AR coefficients
should be used. The resulting spectra should display all
the sinuscids with power levels down to, or even below
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the noise level, Note however that some noise components

-will precbably -also be extracted,- but because- the noise is- -
wide band in nature these components will tend to be
quite low in amplitude.

The above two general rules obviously require some knowledge
of the spectral content of the data sequence under analysis.
This information need only be approximate and could be
obtained from an initial Fourier transform of the data. This
will provide approximate details of the number of sinusoids
present and power of the noise.

9.3.3 Akaike’s criterion,

A well known method of determining the correct order of an AR

filter for a given input data sequence is the Akaike method

[2]. The criteria used to make this decision is based upon
the residual power left when the input data sequence has been
applied to AR filters of increasing order. The Akailke

criterion is as follows

N + (p + 1) FPE : Final prediction
FPE(p) = P. error.,
N - (p + 1) P = residual mean sum
square.

If FPE(p) > FPE(p-1),
then the AR filter order at (p-~1l) 1is correct.

This method of determining the correct order of an AR filter
has met with mixed success from other researchers, the
general comment being that it only really works adequately
when the input data sequence 1is of a purely auto-regressive
nature. This of course is not usually the case for data
sequences that have come from measured signals in noise. .As
a result it has been found that this method usually results
in the filter order being too small.
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In general, as the AR filter order is increased (as naturally
"occurs during the recursive nature- of the FBLS technique) the-
residual power decreases. However this reduction 1is not
smooth but rather in sudden steps as the roots for each
sinusoid are found. The residual -power can also occasionally
increase by small amounts, these effects are shown in
figures 9.2.1 and 9.2.2. These show how the residual power,
generated by the FBLS technique used on three sets of
simulated data ( ¢— = 0, 0.25 and 0.5), - changes for
increasing numbers of AR coefficients.
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If the Akaike equation is applied te the same three data

-sequences- as -above, then -FPE ratics as-shown 4in figure 8.3 - -
are produced., The criterion to stop the recursion is that

the ratic should ke greater than unity, refering to the

. figure,.- the recursion ..should - stop for all -three data- --—
sequences at 10 AR coefficients. This is too early and would
result -in the 0.25 F(s) component not being found. It is
surprising that even when there is no noise the Akaike method
would stop the recursion early, as the data sequence in this
case 1s auto-regressive. It can be seen that there are many
places where the FPE ratic 1is greater than unity and that
most of them signify nothing of importance. Judging from
these results it would appear that Akaike’s method of
determining the filter order does not work particularly well.
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9.4 Prony spectral line estimation technigue.
As previously demonstrated in chapter 8 the Prony spectral
line estimation (PSLE) technique is capable of estimating the

--frequency and-magnitude -of -pure - sinusoids- very-accurately,
this being due to the constraints imposed by the algorithm
upcen the AR filter characteristics. The performance of this
technique 1is now assessed by applying it to the same
simulated data sequences as used 1in the FBLS technique
assessment. Further development of the algorithm 1is also
attempted.

It was found that when the PLSE technique was applied to any
of the simulated data sequences, the same problem occured
with power estimation as was seen with the modified FBLS
technique. As described earlier, the power estimation
routine involves a matrix inversion which causes a fatal run
error 1f the roots of the AR filter are not close to or on
the unit circle. To alleviate this problem in the modified
FBLS technique, roots not close to the unit circle were
discarded and the rest forced onto the unit circle. This was
tried in the PSLE program but unfortunately was found to be
an unsatisfactory solution. Due to the fundamental nature of
this algorithm, in that it tries to estimate pure sinusoids
only, the roots produced from the AR filter tend to be either
exactly on the wunit circle (to within +10e-6%) or
significantly off the unit circle. In the cases where some
of the roots 1in a root set are not on the unit circle,
significant errors then occur throughout the whole root set,
resulting in poor overall frequency estimation. It was found
that in these cases it is not worth continuing with the power
estimation, as the accuracy of this is also affected. This
is demonstrated in table 9.4 (page 204) where this approach
was tried on the @~ = 0.5 data sequence using 30 coefficients
{(arbitrary choice). In this case 14 coefficients were not on
the wunit circle and so were discarded, power estimation has
then been performed on the remaining 16 c¢oefficients (8
sinusoids). As can be seen both frequency and amplitude
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estimates are very poor.

Modified PSLE technique,

To attempt to get round the above problem the PSLE program
was modified to analyse all AR filters, initially starting
with 2 coefficients (plus Ao which 1is always 1) and working
up in pairs of coefficients testing each set of resulting
roots for a complete set on the unit circle (i.e for a "good
root set"). Note that the number of coefficients by which
the AR filter is increased must be two because ¢f the double
sided nature of the constrained AR filter. Each good root
set 1s subsequently steored, and the last good root set
discarded. There then comes a polint when increasing the
filter length produces no more good root sets, from trial and
error it was found that this point comes by the time 12 bad
rocts have been found in consecutive bad root sets. The PSLE
program  was thus modified to include this test of
completeness. A flow diagram of this program is shown in
figure 9.4.

When the above modified PSLE technique was applied to the
simulated data sequences it was found that almost all numbers
of AR coefficients produced bad root sets, although there was
always at least one good set found at some point. Graphs
9.6.1 to 9.6.4 and table 9.5 show the results obtained when
this modified PSLE technique was applied to the four data
sequences. As can be seen the algorithm has worked with
varying degrees of success. When O~ = 0.25 and 0.5 quite
reasonable spectra have been produced, 1in both cases the
algorithm has selected 20 coefficients as being the optimum
AR filter length and has extracted all six sinusoids together
with some noise components. However when the noise level is
increased (G~ = 1.0 and 2.0) good root sets have only been
found for AR filters of 4 coefficients, not surprisingly
these produce very poor results. Thus the modified PSLE
technique starts to have problems somewhere between &~ = 0.5
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In an attempt to improve on the results obtained for O = 1.0
and 2.0, the approach shown earlier of discarding bad roots
was again tried. In each case 20 and 40 coefficients were
_..used,_the results are shown in graphs 9.7.1, 9,7.2 and 9.8.1,

9.8.2 and in tables 9.6 and 9.7 respectively. —‘The results-

show that 1in all four cases six good root pairs have been
found and also that these are exactly on the unit circle.
However, the frequency estimates are very poor and do not
necessarily correspond with the frequencies of the six
sinusoids, this reaffirms the earlier conclusions found with
this approach. These results also bring to light another
problem, the combination of high noise levels and
overdetermining the AR filter has caused frequency splitting
to occur next to the 0.16 Fs and the 0.35 Fs components. In
fact the surprisingly good estimate at 0.25 Fs is probably
due to frequency splitting from the 0.26 Fs component as much
as any other factor.

Even with the lower noise levels there 1s yet another
problem, referring to tables 9.4, 9.5 and 9.6, it can be seen
that the polynomial rootings of the various AR filters have
produced four duplicated root pairs, these being at 0.0442 Fs
- table 9.4, 0.0516 Fs - table 9.5 and 0.257% and 0.3575 Fs -
table 9.6. Apart from there being a significant error in
each of the frequency estimates, the amplitude estimates are
also poor.

The results for the PLSE technique indicate that there is a
point at which the noise level becomes too high for the
algerithm and that inaccurate and misleading spectral
components occur above this point.

.5 m i betw he modified FRB nd PSL echni S
d im ed data

Comparing the results obtained using the modified FBLS and
PSLE techniques the following points can be made
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1) At noise levels such as o= = 0.5, the results from the
FBLS technique are as accurate or better than those from
the PSLE technique. (especially with 40 AR coefficients

used in the .FBLS technigueé)~.~ ~This is not-particularly a
poor reflection on the PSLE technique however as it only
uses about half the number of AR coefficients to do the
same analysis.

2) When there are significant noise levels (e.g. ©- =1 or
2) the PSLE technique is inaccurate and misleading
whereas the FBLS technique can still accurately extract
the larger components from the data sequences while the

smaller components are simply lost in noise components of
equivalent power levels.

3) The PSLE program has to find many AR filters to obtain a
good root set, This is computationaly very intense
especially as there 1s no recursion 1involved in the
algorithm. The modified FBLS technique on the other
hand, can either recursively estimate the AR coefficients
up to .the desired number, or perform one full FBLS
estimation for that number of coefficients.

In general the PSLE technique does not appear to be as
flexible as the FBLS technique when it comes to signals which
are not totally comprised of pure sinusoids. This is not
surprising when considering the constraints set up on the AR
filter within the PSLE algorithm.
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Roots : ~---. Root _Root Frequency
Real Imagipnary Amplitude Fraction of Fs
0.8505 -0.3055 0. --=-=- 0.0495
0.9505 0.3055 0 ~—== 0.0495
0.5361 ~0.8440 0. -—=-= 0.1589
0.5361 0.8440 0. -—-=--0.1599
0.0060 -0.%790 0. -——-= 0.2490
0.0060 0.8790 0. -—== (.2490 Sinu-
-0.0632 -0.8875 0. -—-—-  0.2601 soids
~-0.08632 0.9975 0. -——=- 0.2601
-0.5877 -0.80%0 0. --—=  (.3500
-0.5877 0.8090 0. -—=—-= 0.3500
-0.889%¢6 -0.4560 0. ~——= (0.4246
-0.8896 0.4560 0. -——=~— 0.4246
0.9352 -0.1061 0. --—— 0.0180
0.9352 0.1061 0. ~-——- 0.0180
0.8272 -0.5037 0. ---= 0.0871
0.8272 0.5037 0. --=-— 0.0871
0.6830 ~-0.6787 0. --—— 0.1245
0.6830 0.6787 0. —-———=  (0.1245
0.3220 ~-0.8678 0. -=-—-- 0.1935 Noise
0.3220 0.8678 0. —---— 0.1935
-0.0454 -0.5794 0.5815 =---- 0.2635
-0.0494 0.5794 0.5815 ---== (0.2635
-0.3772 -0.8710 0. —=—=0.,3150
-0.7273 -0.6312 0. --=—= 0.3862
-0.7273 0.6312 0. -—-= (.3862
-0.9391 -0.2050 0. --=—= 0.4658
-0.9391 0.2050 Q. ---- 0.,4658
-0.9719 0.0000 0. -—=- 0.5000
-0,0677 0.0000 Q. -——=- _0.5000

30 AR coefficients and simulated data

Roots generated by the FBLS technique using

Table 9.1
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Amplitude
Frequency Basic Put all roots Only rocots Both Modi-
{Fs} Algorithm op upit circle c¢lose to unity fications
- 0.0495 1.0886 0.9923 1.11086 0.9997
0.1599 10.0780 9.8642 10.04862 9,9558
0.24%0 1.9186 0.8995 1.5442 0.8736
0.2601 10.42390 10.1741 10.3377 10.0031
0.3500 4.1202 4.1278 4.1682 4.1292
0.4246 1.0385 0.9992 1.0282 0.9992
0.0180 0.1109 0.1414
0.0871 0.1865 0.1654
0.1245 0.4252 0.068%
0.1934 0.6676 0.0398
0.2638 7.2764 0.3437
0.3150 0.4507 0.0945
0.3862 0.3841 0.1071
0.4658 0.388]1 0.1005%

Power estimates using roots generated by the FBLS technique.
30 AR coefficients, simulated data (o~ = 0.5).

Table 8,2

20 coefficients 30 coefficients 40 coefficients
Frequency Fs Frequency Fs Frequency Fs
/amplitude /amplitude /Amplitude

0.0499 0.9949 0.0495 0.9997 0.0495 0.9918

0.1600 9.9625 0.1600 9.9558 0.1600 $.9525

0.249%0 0.8737 0.2504 0.%239

0.2601 $.8970 D.2601 10.0031 0.2601 10.0014

0.3500 4.1283 0.3500 4,1292 0.3500 4,1327

0.4245 1.0030 0.4246 0.9992 0.4246 0.9961

0.1301 0.1613

0.1829 0.1278

0.2192 0.1593

0.3867 0.1051

Frequency and power estimates using the FBLS technique.
Simulated data (&= 0.5).

Table 9.3
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Frequency “Amplitude
T -frac -of Fs . peak L

0.0442 15.8445 T T e
0.0442 16.0181
0.159%91 6.9255
0.1617 3.3823
0.2511 ¢.9218
0.2601 9.9370
0.3473 0.6002
0.3504 3.6790

Frequency and amplitude estimates obtained from the PSLE
method - all roots not on units circle discarded.
30 AR coefficients (14 discarded), &= = (0.5.

Table 9.4
o= 0,25 o-= 0,5 - =1.0 o-= 2.0
Freq. Ampl. Freq. Ampl. Freq. Ampl. Freq. Ampl.
(Fs}) peak (Fs) Deak (Fs) peak (Fg) peak
0.0500 1.0030 0.51586 0.2621 0.1827 0.7132 0.1857 0.3822
0.1600 9.9731 0.5156 1.1346 0.2755 0.5892 0.274% 1.1335
0.2504 0.9784 0.1600 9.9408
0.2601 9.9957 0.2508 0.98723
0.3501 4.0727 0.2602 9.9771
0.4254 0.9827 0.3502 4.1573
0.4275 0.7656
0.0532 0.0273
0.1345 0.0898 0.1346 0.1839
0.3647 0.0180 0.3651 0.0867
0.4536 0.0258 0.4520 0.0786

Frequency and amplitude estimates generated by the
modified PSLE method; Simulated noise signal.

Table 9.5
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20 coefficients 40 coefficients
1 -Frequency -Amplitude . |. Frequency Amplitude
frac Fs ‘peak frac Fs peak |
0.1346 0.3512 0.1598 9.8802
0.1598% 9.9120 0.1718 0.3108
0.2517 0.9985 0.2512 0.6463
0.2602 9.98457 0.2598 9.8873
0.3508 4.2242 0.3516 3.9191
0.3653 0.2130 g.3612 0.4227

20 coefficients 40 coefficients
Frequency Amplitude Frequency Amplitude
frac Fs peak frac Fs peak
0.1344 0.6669 0.1598 9.7819
0.15%6 9.8401 0.1710 0.4704
0.2527 0.8841 0.2579 6.9527
0.2602 9.8114 0.2579 5.2779
0.3527 3.6927 0.3575 10.9008
Q.3635 0.2682 0.3575 10.6770

techniques

Frequency and amplitude estimates obtained via the PSLE
technique - all roots not on units circle discarded.

a
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Application tg real aero engine vibration data.

Source of data.

The raw vibration signal from which™ the ~ vibraticn data

sequence has been digitised, originates from the conditioned
output of an accelerometer mounted on an aero engine fan
cowling, The conditioning consists of a charge amplifier {(to
convert charge to voltage) and an integrator to convert from
acceleration to velocity (inches/sec). The aero engine to
which the transducer had been mounted was an RB211-535E4,
this is a three shaft engine capable of delivering 40,000 1b
thrust. The vibration levels on such an engine are
determined by measuring the amplitudes of the sinusocidal
velocity components at the three shaft rotation frequencies,
Note that the three shafts are gas coupled, i.e. there is no
gearbox, and hence thelr rotational speeds do not have a
fixed relationship.

The data sequence consists of 1024 samples (12-bit 2's
complement), sampled at 512 Hz. The signal has also been
filtered with an elliptical low-pass filter having a
break-point at 200 Hz, a roll-off of 135 dB/octave and a
stop-band attenuation of 80 dB.

A second signal has alsc been sampled and digitised, this is
a calibration signal representing a velocity of 2.0
inches/se¢c at 120 Hz. The measurement and recording of this
signal 1is essential to convert the accelerometer output into
engineering units.

Engine terminglogyv.
In the following analysis the three shafts of the RB211
engine will be refered to as the LP, IP and HP shafts ({(low,

intermediate and high pressure}). Due to the blade dimensions
on each shaft the LP shaft always rotates the slowest and the
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HP shaft the fastest. From ..ground _ idle to flight take off

the shaft speeds cover the following approximaté frequency
ranges : LP - 15 to 82 Hz, IP - 39 to 128 Hz and HP - 106 to

195 Hz. Off-line--vibration. analysis is almost always
performed via a 1024 point DFT, as shown in chéééer'6.

Fourier nsform

Discrete Fourier transforms (1024 points) of the calibration
and vibration signals are shown in graphs 9.9 and 9.10
respectively. In graph 9.10 the three sinusoidal vibration
components related to each of the shafts can clearly be
identified at :- LP - 0.1553 Fs [79.5 Hz], IP - 0.2217 Fs
[113.5 Hz] and HP - 0.3301 Fs [169.0 Hz]. It should be
remembered that the DFT frequency bins are spaced at (0.00097
Fs [0.5 Hz], thus the estimated frequency of a component 1is
only accurate to +0.00048 Fs [+0.25 Hz]. The frequencies and
amplitudes of the three components, together with some of the
smaller components in the spectrum are tabulated in table
9.7, note that the amplitude has been converted to
engineering units using the amplitude of the 120 Hz signal
shown in graph 9.9.

A 128 point transform wusing the central 128 points of the
above 1024 transform is shown in graph 9.11. The lack of
resolution and increased effect of noise compared to the 1024
point transform is quite evident. The noise floor is
approximately 20 dB below the three main vibration
components, which is 9 dB higher than for the 1024 point DFT.

Modifi FBL chnigu

Spectra produced by the modified FBLS technique using 20, 30
and 40 AR filter coefficients are shown in graphs 9.12.1 to
9.12.3 and tabulated in table 9.8, the amplitudes again being
converted to engineering units in the table. It can be seen
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that this technique -has-worked extrememly well, clearly
picking out the vibration components in all three cases of AR
filter length. It should be pointed out that the calibration
-éiég‘r{aii’6h1§"'re‘qai'red-~2- ‘AR--filter. coefficients (the "ideal"”

f tT e
number) to -accurately extract the amplitude of the 120 Hz.

component, as there 1is very 1little noise present in this
signal (as seen in graph 9.9). Due to its simplicity this
spectrum is not shown, the size of the calibration signal
using this technique is 559.6 units at 120.9 Hz.

As would be expected, as the number o¢f coefficients is
increased then the number of smaller components within the
spectrum also increases. Not all of these components are
noise, in fact if +these spectra are c¢ompared to the DET
spectrum then it becomes apparent that most of these are
genuine small vibration components or medium "Q" colourations
in the noise. An important point being that the amplitudes
of all the smaller components are reascnable 1in size and
generally correspond in amplitude to those seen in the 1024
point DFT.

Refering back to the analysis of this technique on the
simulated data sequences, two general rules were derived as
to how many AR filter coefficients should be used with any
particular set of data. These rules depend upon number of
sinusoids and noise level within the data sequence; For the
vibration data sequence the number of sinusoids is
approximately seven and the noise level is approximately 10dB
lower than the smallest of these seven sinusoidal components
(using information in the 1024 point DFT). Thus the AR
filters should use approximately 28 coefficients [(7*2)*2],
as defined in the first of the two general rules. As can be
seen from the results in graph 9.12.2 and table 9.8, 30 AR
coefficients has indeed extracted all three wvibration
components with no less accuracy than for 40 coefficieﬁts,
but with more accuracy than for 20 coefficients. Note also
that in the 30 coefficient case it has extracted exactly
seven sinusoids - as predicted.
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All of the above results have come from the modified FBLS
technique applied to the central 128 samples of the 1024

point vibration data sample block. Using the central data

- -aklows- the .results. to be _compared with the results obtained

from the DFT analysis where windbwihg tends to makée ~the-
frequency and amplitude results more dependent upon the
central - data. However as only 128 samples have been used,
the analysis can also be applied to other areas within the
1024 point Dblock. The two resulting spectra obtained by
applying this technique to the outer 128 data samples are
shown in graphs 9.13.1 and 9.13.2. It can be seen that the LP
vibration increases significantly between these two sample
blocks, the increase being from 0.382 to 0.472 inches/sec
(1.e. 24%). This example demonstrates the advantage of
using small sample blocks which reduce the smearing or time
averaging of the frequency and amplitude information within
the sampled data.

At the point during which this vibration data was sampled and
digitised the engine speed was static, thus the change in LP
vibration amplitude seen above would indicate a beating
vibration component.

Modified PLSE technique,

The spectrum produced by the modified PLSE technique applied
to the vibration data is shown in graph 2.14 and tabulated in
table 9.9. The calibration spectrum again 1is not shown
because of its simplicity, the actual calibration signal
amplitude being 559.6 units at 120.9 Hz, exactly the same as
for the FBLS case. This analysis has resulted in the
algorithm selecting an AR filter of 14 coefficients in
length, and has clearly picked out the vibration components,
As with the FBLS case this technique has also been applied to
the two outer 128 sample blocks, these spectra are shown in
graphs 9.15.1 and 9.15.2. The spectrum produced for the
first sample block again uses 14 AR coefficients and gives
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very reasonable results, however for the second sample block
this technique has only been able to use 12 AR coefficients
causing significant errors in the amplitude estimates.

The poor result shown in graph- 9.15.2 ié hdt'§ﬁfprfé1n§'if
the signal to noise ratio of the vibration data is taken into
consideration. Remembering that when this technigque was
applied to the simulated data it was found that it began to
have problems when the noise power and the sinusoid powers
are approximately equal. It has already been pointed out
that the noise floor of the vibration data (as seen in the
128 point DFT) is approximately 20 dB below the wvibration
components. This means that the total noise power is only 2
dB below the smallest vibration component, and 8 dB higher
than the other components.

The above results show that the medified PSLE technique can
be used successfully with real and noisy engine data but that
its noise tolerance 1s rather «close to the noise level seen
within ~vibration data (at least for the data used for this
assessment) .

omparison betw modifi hni

The analysis of the DFT, the modified FBLS technique and the
modified PSLE technigque applied to simulated sinusoids in
noise, and to vibration data from an accelerometer, have

provided a fairly clear picture of their limitations and
strengths.

In all of the tests the DFT has provided predictable results
and noise has had no significant 1ill effects wupon the
algorithm, it merely being distributed, although not
necessarily evenly, across the spectrum. The amplitude
estimation is a problem (due to the picket fence effect) but
can be alleviated by calculating the total energy within a
peak as shown in chapter 3. The resoluticn within the
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spectrum is only a serious problem when the sample blocks are
small. Long sample blocks do however average out transient
_phanges.

The amplitudes of the vibration componentsgyaé7cél¢hléﬁéd by
the DFT, should be quite accurate as each component lies
almost exactly on a filter bin (purely by coincidence). The
amplitude results obtained by the modified FBLS technigue
certainly back this up for the IP and HP vibration components
which are almost identical. This of course is also a good
result for the FBLS technique because the DFT has shown very
good power estimation when sinuscids have been coincident
with filter bins. The LP vibration amplitude does not match
up very well between the two techniques, but the FBLS
technique has already shown that between the first and last
data samples there is a significant change in the amplitude
of this component, and is almost certainly the reason for the
different results. The consequence of components lying in
between the filter bins can be seen from the results of the
small component at 0.31 Fs, the amplitude of this component
given by the DFT is at least 14% lower than that given by the
FBLS technique.

The modified PSLE technigque frequency and amplitude results
from the vibration data do not appear to be as good as those
from the FBLS technique or even the DFT, and it certainly

appears to be on its operating 1limit with the vibration
signal.

When using the DFT there is no parameter selection tc make
before the analysis (except type of window), however the
other techniques both require selection of their AR filter
length (i.e. order selection). The modified FBLS technique is
much more flexible than the PSLE technique in the number of
AR filter coefficients which it can cope with. However some
decision as teo the filter order must still be made. No
satisfactory algorithm (e.g. Akaike criterion) could be
found to do this, although some basic rules have been
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derived, which wunder limited testing,. seem to provide

reasonable guide lines. Also, as demonstrated earlier, the
-problem of precise order selection with the modified FBLS

technique is not too muéh of a-problem_as this technique is
guite tolerant to overdetermined AR filters, exﬂzﬁigiﬁg no
ill effects such as frequency splitting. Thus, if the
approximate filter order 1s not known, then it is quite
reasonable to use many more coefficients than is perhaps
necessary. All that will happen is that noise components will
also be extracted, as always occurs anyway with the DFT.

The noise tolerance and stabkility of the modified FBLS
technique has proved to be very good, matching that o¢f the
DFT. The FBLS program which has produced all of the above
results 1is limited to 40 AR filter coefficients (due to
memory limitations - the NAG library polynomial rooting and
complex matrix inversion uses massive amounts of memory). If
this program had allowed larger arrays this technique may
well have been able to extract sinusoids even deeper in
noise,

The modified FBLS and PSLE techniques have clearly
demonstrated their superior ability to estimate frequency and
amplitude over the DFT. However noise does affect both of
these techniques, 1in the FBLS case it simply causes it to
extract less components for a given number of AR
coefficients, whereas 1in the PSLE case it eventually
prohibits the algorithm from functioning properly. This
latter problem is considerable and seriously limits its use
with noisy signals.

Summary,
In the last three chapters an assessment has been made of the
performance of some modern spectrum analysis techniques. The

forward-backward least squares technique and the Prony
spectral line estimation technique ‘have shown the most
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optimistic results, and subsequent modifications ‘have been
tried to further improve their performance. These have been

- further tested with a simulated noisy signal and with a real
aero engine signal. =~ =~ = - - ~

It has been shown that the modified PSLE technique can
perform very successfully but has restrictive limitations
when dealing with signals in significant amounts of noise.
The modified FBLS technique has been very successful and has
proved to be the more flexible and tolerant of the two
techniques especially when dealing with signals in
considerable amounts of noise. Its fregquency and power
estimations have alsc been shown to be as good or better than
those of the DFT, using data blocks eight times smaller.
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Frequency Amplitude
frac, of Fs hertz in/sec peak
0.0176 19.0 0.061
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0.1553 79.5 0.454
0.1865 95.5 0.061
0.2217 113.5 0.478
0.3105 159.0 0.060
0.3301 169.0 0.245
Frequency and amplitude estimates of main components
in the 1024 point DFT of the vibration signal.
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- .. - - . _ Freguency _ _ _ _ |  Amplitude
frac. of Fs hertz in/sec peak ~ ~ ) T
0.1555 79.61 0.422
0.2218 113.56 0.479
0.3292 168.55 0.242

20 AR filter coefficients

Frequency Amplitude
frac., of Fs hertz in/sec peak
0.1551 79.41 0.422
0.1886 96.56 0.134
0.2217 113.51 0.479
0.2723 139.42 0.077
0.3117 159.59 0.076
0.3302 169.06 0.250
00,3768 192.92 0.026
30 AR filter coefficients
Frequency Amplitude
frac. of Fs hertz in/sec peak
0.1003 51.35 0.030
0.1296 66.36 0.047
0.1553 79.51 0.420
0.1894 96.97 _ 0.134
0.2216 113.50 0.479
0.24490 124.93 0.079
0.2763 140.08 0.071
0.3105 158.98 0.070
0.3302 169.06 0.250
0.3776 193.33 0.028
0,4418 226.20 0.005
4 fi r coefficien

Frequency and amplitude estimates obtained via the
modified FBLS technique on the vibration signal.

Table 5.8
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- - |- - - Frequency . _ |  Amplitude
frac. of Fs hertz in/sec peak ~— F o oo
0.0073 3.73 0.043
0.1441 73.78 0.014
0.1567 80.23 0.400
0.2217 113.51 0.477
0.2607 133.47 0.070
0.3294 168.65 0.244
0.3514 179.92 _0.00s6

Frequency and amplitude estimates obtained wvia the
modified PSLE method on the vibration signal

Table 9.9
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CHAPTER 10

summary and Conclusidns =~ - .-

telligent Dynamic Data Acgquisition §

In chapter one a specification was defined for a system that
would perform acquisition and analysis of signals produced by
aero engine mounted transducers. After a two year design and

development period, a system meeting all of these
specifications was finalised 1in a producticnised package
called IDDAS. During the development period many

demonstrations and lectures were given by the author to
potential customers within Rolls Royce. As a result several
systems very quickly went into service in the test facilities
at Rolls Royce Derby. Systems were also bought by Rolls
Royce Leavesden and Rolls Royce Bristol for appraisal and
software development. Within ten months of the productionised
system being available there were 18 sets (at approximately
& 2,000 a set) in use at Rolls Royce.

One of the reasons this project was tackled was because there
were no systems available in the market capable of meeting
the specification. On the completion of IDDAS this situation
still had not changed. 1In an attempt to recoup some of the
development costs (and hopefully make some profit) several
instrumentation manufacturers were approached with the offer
of manufacturing and selling IDDAS under license. This offer
was taken up by Data Basix of Newbury. This company has also
agreed to sell the "Real Time Monitor" (see chapter 6) under
license, and is currently developing an expert system which
uses IDDAS to provide spectra at high speed.
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--Having. ..realised that IDDAS has several unique features, a
patent application has been submitted for Europe and the USA,

this 1is currently being persued by the Rolls Royce patents
department.

The considerable processing power available in IDDAS should
"ensure its use in engine analysis for several years to come.
So far, no reasonable application has been found which IDDAS
can not cope with, in fact in many applications it 1s an
overkill. An example of this 1is in the "Real Time Monitor"
(see chapter 6) in which only four out of the forty spectra
available per second are actually used. This is due to the
relatively slow graphics operations which the PDP-11 has to
perform. The only remaining work involving IDDAS 1is in
extending the software capabilities. One requirement which
will inevitably be requested, 1is a zoom facility, there are
no problems 1in adding this type of facility as there is
plenty of data memory left, but due to time limitatiens has
not been written vyet. '

When IDDAS finally does become too slow, or cannot support
further software changes for certain applications, a mark II
will have to be designed. There are now many signal
processing micro-processors available, including several
“upgrades on the TMS32010. The most powerful of these is the
TMS320C25 which has many hardware and software enhancements
over the TMS32010 and runs twice as fast. However this
processor may not be the best choice for an upgrade of IDDAS
as there are other processors such as the transputer which
are at least as powerful. It 1is not particularly sensible
for the author to recommend a successor to the TMS32010 at
this stage because faster and more powerful processors will
inevitably appear on the market by the time an upgrade is
required. However 1t 1s worth suggesting that the new
processor should perform fully implemented floating point
arithmetic on board, and that it should have an optimised
complier for a high level language such as "C". Both of
these gualities will allow much more complex signal
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processing algorithms than the FFT to be performed, and will
allow faster and easier development ‘of programs in comparison
to programming in assembly code.

‘Summarising, - it is fair-to say-that the production of IDDAS

has been an unqualified success and has met all the hopes of
three years previous. There is no doubt that IDDAS has
improved the quality o¢f engine testing and already in one

case may have saved a very expensive engine from self
destruction!.

Modern ectrum analysis t nigues.

An evaluation of some modern spectral estimation techniques
has Dbeen carried out in order to assess the possibility of
using one or more of them for aero engine analysis, Also, to
determine what the performance advantages and disadvantages
of these techniques are as compared with the FFT.

Using the results obtained by Kay and Marple [27] as a
starting point, four techniques were programmed onto the
Loughborough main frame computer (using Fortran) and applied
to two test signals. The results of these tests showed that
Burg’s autoregressive method and the Pisarenko harmonic
decomposition technique were not very suitable for practical
applications. This was because Burg’s method exhibited
frequency splitting and because they both exhibited frequency
biasing, the latter being due to constraints within their
respective algorithms. This was not the case however with
the forward-backward least squares (FBLS) and the Prony
spectral line estimation (PSLE) techniques which both
displayed very good frequency estimation. Although the power
estimation of the FBLS technique was not very goeod it was
decided to further test these two techniques with more
realistic and noisy signals.
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Before . further testing the FBLS technique an alternative
method was developed for éétihétiné power, which is based on
a least squares method and involves the roots of the AR
- filter. This proved to be very successful and enabled
accurate estimation 6f“§dwef.-_Anhadditiénal modification was
added which discards components with non-sinuscidal

properties, this also served to improve the power estimation.

The results of applying the FBLS and PSLE ‘techniques to
signals <consisting of pure sinusoids in gaussian noise
provided a clear indiction of thelr capabilities. 1In general
it was found that Prony’s technique could not cope with
conditions where the noise power was greater than that of any
of the sinuscidal components. In these conditions, spurious
components, worsening frequency and power estimates, and
frequency splitting occured. It was also found that these
effects appear very quickly, i.e. at a particular point the
algorithm suddenly changes from producing good estimates to
misleading and inaccurate estimates.

The FBLS technique provided somewhat different results. The
effects of noise were much less marked and only gradually
deteriorated the frequency and power estimates. Although it
was also found that as noise increases, similar accuracies
can be maintained simply by using more AR filter
coefficients. At some point this eventually causes spurious
components to occur in the spectra. It should be noted
however that the amplitude levels of these components are
always approximately equal to that of the noise floor. Thus,
large enough amounts of noise will eventually stop small
components from being identified, but that increasing noise
does not cause any real concern for the algorithm and good
frequency and power estimates are still retained for the
larger sinusoids.

Applying the FBLS technique to a signal obtained from an

engine mounted accelerometer produced very encouraging
results. A comparison is made between an FBLS spectrunm
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produced from 128 points with that of a 1024 point FFT. In
the comparison “the FBLS "~ technique’s frequency and “power
estimates appear to be as good, 1f not better, than those of
the FFT. It is alsc shown that the FBLS technique detects a
significant -~ amplitude ~ change "in ~“one~ of the vibration-
components which is missed by the FFT due to the FFT's longer
sample block. Only limited success was obtained with the
PSLE because of the relatively high noise level.

The problem of AR filter order selection has really not been
solved in this work, but it has been shown that the FBLS
technique can be used with highly over determined AR filters
without detrimental effects, such as frequency splitting,
occuring. This means that the order selection is not critical
and that as long as a minimum number of filter coefficients
are used then all the requirgd information will be obtained.
Some rules of thumb are given for estimating this minimum
number of coefficients, and largely depend on number of
sinusoids and noise level. These are shown to work well with
the wvibration signal.

Summarising, the forward-backward least squares technique,
coupled with a power estimation method developed by the
author can perform extremely well on real signals, and
provides significant improvements over the performance of the
FFT. This technique however 1is not straight forward to use
and there 1is still a considerable amount of work to do in

providing a robust package that <can be used generally in
engine analysis.
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APPENDIX A

047F
0480
0481
0483
0484

0486
0487

0489
048A
048B
048C
048D
048E
048F

0481
0492
0493
0454
0495
0496
0498

0484
048B
049C
048D

049F
04A0
0441
04A2

0444
04A5

04A6
0447
04A8
04A9

04AB
04AC
04AD

04AE
04AF

04BO
04B1

5810
5011
FBOOO4AE
6200
FADOO489

2E00
F9000484A

2700
5014
5002
2F02
5802
6200
FADOO4A4

6510
6111
6A14
6D14
TF30
FFO004B0
FCOOD49F

2014
1002
5014
F900048C

2014
0002
5014
F900048C

6510
6111

6A14
6D14
7F30
FDOOG4BO

2014
1000
7F8D

TF88
7F8D

2014
788D

TMS32010 Square root routine

; **t****x***t****#***************!X*****!*******f!x*3*_**** B

SQUARE ROOT SUBROUTINE
Enter with value in accumulator
_Exit with square root in accumulator

Copyright Rolls Royce 1986 SR

**%x BRUCE BOUSFIELD **x
27-3-86

2 K K KKK K K KRR KK KK K R KK KK K K 0K 0K 0K K R R KR K R K

¥
r
H
L]
. -
’
’
1]
L
)

éQRT:

ﬂOHW:
HII:

ROQT:

HIGHER:

END:

ZEROO :

FINI:

SACH
SACL
BLEZ
SUBH
BLZ

LAC
B

LAC
SACL
SACL
LAC
SACH
SUBH
BLZ

ZALH
ADDS
LT
MPY
SPAC
BZ
BGZ

LAC
SUB
SACL
B

LAC
ADD
SACL
B

ZALH
ADDS

LT
HPY
SPAC
BGEZ

LAC
SUB
RET

2AC
RET

LAC
RET

TEMPH
TEMPL
ZEROO
ONE
LOWW

ONE, 14
HII

ONE, 7
XOLD
TEMP
TEMP, 1
TEMP
ONE
END

TEMPH
TEMPL
XOLD
XOoLD

FINI
HIGHER

XOLD
TEMP
XOLD
ROOT

XOLD
TEMP
XOLD
RCOT

TEMPH
TEMPL

XOLD
XOLD

FINI

XOLD
ONE

XOLD

5

store entry value

branch if top word=(0

x0ld=1/2 of max root
temp=1/2 of max root

divide temp by two

branch if temp WAS equal to 1

acc=entry value

value - aquare of guess
guess¥**xZ2-entry value
entry value higher

acc=entry
branch if
branch if

if entry value smaller
then reduce xold

if entry value greater
then increase xold

final test after "1° was
added/subtracted to check
whether guess is still too big

if too big reduce by 1

~

return with zero

;return with xold in accumulator
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0014
0024
0038
0046
0054
0082
0070
007C
00886
0080
0094

042F
0430
0431
0432

0434
0435

L o437
0438

043A
043B
043C
043D
043F

0441

0442
0443
0444
0445
0446
Q447
0448

0444
044B
044C
044D
044E
044F
0450
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0018
0027
0037
0045
0052
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0069
0071
0079
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5810
5011
FFOO0477

2010
FFOO0459

1000
FFO0046C

T10F
2310
5010
FAO00441
F400043B

3103

6898
2F11
5811
2011
7912
5013
F4000443

2010
0011
5010
2710
OFO0D
5810
2010

LOGS:

.WORD
.WORD
. WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.HORD
, WORD
.WORD

0,1,3,4,6,7,8,10,11,13,14,15,17,18,19,20
22,23,24,26,27,208,29,31,32,33,34,35,37.38
39,40,41,42,44,45,48,47,48,49,50,51,52,53
55,68,57,58,50,60,61,62,683,64,65,88,87,68
69,70,71,72,73,74,75,76,77,78,79,80,81,81
82,53,84,85,86,87,88,69,90,91,91,82,93,94
95,986,87,97,96,99,100,101,102,103,103,104
105,106,107,107,108,109,110,111,111,112
113,114,115,115,116,117,118,118,119,120
121,121,122,123,124,124,125,128,127,127
128

i
T2 SRR 22t R R 2Rt PRS2 R i s R R s ROt ittt i sl

L

0G :

LOGY:

DONE]1 -

LOG2:

CONVERTION TO LOGARITHMIC VALUE

LOGS

LARP
SACH
SACL
B2

LAC
BZ

SUB
BZ

LARK
LAC
SACL
BLZ
BANZ

SAR

HAR
LAC
SACH
LAC
ANRD
SACL
BANZ

LAC
ADD
SACL
LAC
ADD
SACH
LAC

;entar with 32 bit nupber in acc
:exit with 12 bit log in ace

Copyright Rolla Royce- 1985
*xs BRUCE BOUSFIELD *»x

10-4-85

;EEREAER AR R NE RN AN RN NN AN TR RN R Rk R RN

£l

TEMPH

TEMPL ; eave 32 bit input

00T ; branch if zero

TEMPH

LOW ; branch {f nothing in top word
ONE ; branch if top word

SCASE ; is equal to 1

AR1,£15 ; sat counter to 15 {count 16)
TEMPH, 1 ; ehift the top word until
TEMPH : the momst significant bit
DONE1 : overflowa, then branch
LOG1 i dec AR1

AR1,TEMP1 ; ae if by wagic the aux reg
contains the hit number where
the msb waa originally.

- ; decrement AR1

TEMPL , 15 . shift right the bottom word to
TEMPL i line up with the shifted top word
TEMPL

LGHASK: ; remove aign extension

TEMPL -

LOG2 ; dec AR1

TEMFH ; add together the left shifted top
TEMPL i and bottom words

TEMPR

TEMPH,7 ; get the top 7 bits of this word
ONE,15 ; stop truncation error

TEMPH

TEMPH

0451
0452
0453
0454

- 0455

0456
0457

0459
D45A
045B
045C
045K

0460
04861
0462
0463
0464
0465
0468
0487
0468
0469
046A

046C
046D
04BE
046F
0470
0471
0472
0473
0474
0475

0477
0478
0479

047A
0478
047D
047E

" T10F

7813
000F
6710
2010
0703
0B0O
FO000474A

LOW:
2111 LOG3:
5011
FAQODAGD
F400045A
3103 DONE2:
2711
0FQ0
5811
2011
7913
Q00F
6711
2011
0703
FO00047A
)
2711 SCASE:
0F00
5811
2011
7813
QO0F
8711
2011
0B0OO
FI0004TA
7F89 20UT:
6880
TFap
1800 FIN:
FAQO0477
G8E0
TF8D

AND
ADD
TBLR
LAC
ADD
ADD

LARR
LaC
SACL
BL2
BANZ

SAR
LAC
ADD
SACH
LAC
AND
ADD
TBLR
LAC
ADD

LAC
ADD
SACH
LAC
AND
ADD
TBLR
LAC
ADD

ZAC
LARP
RET

SUB
BLZ
LARP
RET

remove sign extension;

LGHASK2 log fraction
LOGADD
TEMPH ; get fraction from. table
TEHPR !
TEMP1,7 ; add bit number; log integer
ONE, 11 ; add 186 “cos ita the top word
FIN
ARL,£15 ; met count!to !5 (count 16}
TEMPL, 1 ; shift bottom word until the
TEMPL ; mab overflowa., then branch
DONE2 !
LOG3 ; dec ARl
'
AR}, TEMP1 ; AR1 containe blt number
TEMPL, 7 i get top 7 bite )
ONE, 15 ; atop truncation error
TEMPL } .
TEMPL )
LGMASKZ ; remove mign extension: log fraction
LOGADD ' ;
TEHPL ; get fraction from table
TEMPL . :
TEMP1,7 ; add blt number; log integer
FIN . ,
TENPL, 7 ; get top T'bits of bottom word
ONE ,15 i atop truncation error
TEMPL j ’
TEMPL ) .
LGMASK2 . remove sign extension; log fraction
LOGADD
TEMPL ; get fraction from table
TEMPL : )
ONE, 11 ; add 16; owab was in bit 16
FIN !
' '
£0 , .
; return with zero in accumulater
ONE, 9 ; subtracts 4 from log integer, this
Z0UT ; removes some of the noise!!!
EO

; return with log'in ace

'

g XIANdddv
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O0o0

92
ae

Real input FFT (Fortran)

M/? stages._spectrum splitting,
then final stage of 2%M point FFT

m=m/2

n=2%%m :

do 20 1 =-L.m- - - .- .. .
le = 2%%}

lel = le/2
u = (1.2,9.2)
W o= cmplx(cos(pi/float(lel)).sin(pi/float(lel)))
do 20 J = 1,1lel
do 12 1 = J,n,le
ip = 1 + lei

Radix 2 butterfly

t = x(ip)*y

x(1ip) = x(1) - t
x{(1i) = x(1) + ¢
U = u¥w

contlnue

x(n+l)=cmplx(aimag(x(1)).0.@)
x{1l)=cmplx(real{x(1)),9.0)

do 3 1 = 2,n/2+1
tenmp=real(x(i))+real(x{n-1+2))
tempZ=ailmag(x(i})-aimag(x{n-1+2))
temp3=real{x(i))-real(x{n-1+2})
templ=aimag(x(1))+aimag(x{(n-1+2))
x{1)=cmplx{temp/2, temp2,/2)
®{n-1+2)=cmplx(temp/2, -temp2/2)
x(i+n)=cmpix{templ/2, ~-temp3/2)
x(2*n-1+2)=cmpix(tempd /2, temp3/2)

continue

m=m+1
i1=m
n=2%%m
le = 2%%]
lel = le/2
u = (1.0,2.9)
w = cmplx{(coa(pi/float(lel)),sin(pi/float(lel)))
do 88 3 = 1,1et
do 98 1 = j,.n,le
ip = 1 + lel

Radix 2 butterfly

t = x(ip)*u
x(ip) = x(i) - ¢
(1) = (i) « ¢t
u = u¥w

continue
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POGE 1:  ‘RING_BUFFER* NOVEHBER 10 1588
1 IﬂlI‘IIIIIIﬂIi.l.iI""l..‘..I.ﬂIIII.'.II“I.II..."*‘“‘
2
I Ring Buffer for 1DDAS
4 »
5 Bruce Bousfield 9-7-86
& n
7. Copyright Rolls Royca July 1986
8 =
L T L L T T T P Ty Py T Y e P Y T I Ty ]
0 =
1 T *RING_BUFFER'
12 &
0noo 13 DAC EQu 0 output DAC
0og? 14 (Om [N EQU 1 \atch to SP processar
Qo0 15 ADC EQLt 1 input ADC
0002 16 RAMHDD EOU 2 enternal ram address latch
Q003 17 RAMDAT  EQU 3 external ram dsta Latch
18 » .
Quoo 19 ONE para 1 1
Qoo 20 ZERD Data 1 =0
ouG2 21 POINT GATR 1 currant addrass of outpul buffer
oua3 22 TEMP pRTA 1 temporary stors
0004 23 10P DATR 1 sddress of top of input buffaer
0005 24 COUNT mia 1 gensral countar slore
0006 25 DuUTPuT DatRA 1 intermediate oulput dats store
26
27 a
26 O R 90 O 0 OO 0 0 o
29 »
0000 F900 0009 30 B START resel vector
I«
32
XTI TR A e et v e ey e ressls]
Ja n
I . Intercupt service routine
36 =
37 P00 A 00000 0
38«
0002 4103 39 INT IN TEMP ,ADC get input; wsinterrupt antry poin
Q003 2004 40 LRC roe
D004 000U 41 A0 ONE
0605 5004 42 SAcL TOP incremant sddress of top of buffe
D006 4aR04 43 our T0P, RAMADD
000? 4B03 44 our TEMP ,RAMDAT put input value at top of buffe
0008 7F8BD a5 RET
4“6 =

0012

0013
0014
0015

17

0018
D013
Q01A
0018
001C

002s

2: *RING_BUFFER'

F&ao0 0027

7FB2
F&00 0008

7F81
2004

7Fa2

?F81
4002

782
4906

JFa2
7F82
7Fa2
7FB2
7Fa2
7F8a2

FB00 0008
F300 0013

48
49
SO
81
52
53
5S4
55
o6
S7
58
S3
60
B1
62
63

NOVEHBER 10 1986

LTI LRI LR DRI S DR R R
-
“ Main Routine
"
"
u .
START CRLL  INITY initialise
-
ME EINT eneble interrupt
BIOZ ME wait for transfer instuction from
L] '
DINT diseble intarruplt
LAC ToP .
suUB ONE , 10 subtract 1024 from top of buffer
SACL  POINT store in POINY
EINT enable int

# ensures intefrupt routine not tocked oul for more than |1
"

-
LoOP OINT disable int
00Ul POINT HaHGDD !
IN OUTPUT ,RAMDAT get dats from bufier
EINT ansbie int .
our OUTPUT . COMUINK send il to SP_processor
-
# stop interrupt routine lockout
»
DINT disable int .
LAaZ  POINT )
AD0  ONE )
SACL  POINT increment oulpul buffer address
EINT enable int !
* EINT 1s required often a3 it is n
» in the interrupt routine (to save
L] The SP_prog can only accept & new
- every 28 clock cycles, thus this
EINT & minimum Loap ' time of 28 cycles
EINT interrupils occur, obviously the
EINT slows down when interrupls are tr
EINT but this is only noticesble &1 in
EINT fraquencies above 66 Khr.
! EINT
-
-
8102 HE chack to see if mare wanted by S~
B LDOP if s0 carry on
"
"
» .

d XIAaN3ddv

werboxd xszIng BuTY OT0ZESHL
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ove

Lol I I RS N T VR

CHOEAPSERBESREXRXRIERTRESIREEEERDRRESR ARG AR LB LN R RN R I REXE S R REERED &Y

C
C
[+

CHSESIRRERFISRERTZENEELNEZEB RISV ESENFEE SRS S S ERRENTREEE X EE R EE R E R R KR F

C

Prony spectral line sstimation

double preclejon xin(128), »t{28,.128), r{(20.290),
double pracieion t(128,20}), h(128,2@). =xx(128,20)
‘compleax b(4d), temp2{h40)
double pracision &4al{20,29)., wHel{20), wka2(28),
double precision toel, poly(#l)., zrelh2), zim{lo@}

double preciaion sum

complax csum

real res(2e,3)

integer p. Wopl

complex zed{48}

complex e¢hi{128,80), phit{8@,128)
complax epaliln(ia, aa)

double precieion whapcel(lil, ua)

double precision depelln(Z,.40,.08), dreme2(2.00)

double preclsion dbu(2, 4o}
data t1.79. 140/

print #,'enter p7?"'
input *,.p

cpen(unitef,fila~'ref.dat’)
openfunits6,file="plorpn.dat’)
read(5,*)nn

cttlltl*‘t"‘!'*l"t'.-...‘Bl!#!'t..#i‘.*"ll“*

1a

do t@ i=1.nn
read{%,.*)xin{1}
continue

close(5)

C‘.*.t-t-“till.-'-t"il"'."lt.‘.*#t"l#l

c

ae

180

110

create toeplitz plua hankel matrices

twople2%p:+ )
Jodwt i - 2%
icol=p

do 49 ir=1,irow
do 48 le=l,1col
tifr.de)axinip tesinr}
continue

do 8@ ir=1,irow
do 808 t1awi.leol
n{tr,1e)mxin{ivelesp)
continue

do 129 ir=1,1irow
do t0@ le=1,1col
’xlir te)stidr. te)-nilr, dc)
wti{le,Lp)=uxily,ic)
continue

do 118 1p=), irow
yilri=2desxin(ir-p}
continue

68
69
70
71
72
7
Th

76
77
78
79
de
L}
82
83
84
as
-86
87
ag
89
9@
91
g2
93
94
95

97
98

100
191
182
123
194
185
196
i1a7
108
109
118
111
112
113
114
115
116
117
118
119
120
121
122
123
128
12%
126
127
128
129
130
131
132
133

Cl*'tltl*l*li*'*l.llﬂl.t.tttt!tlt.txlltlt‘tttt-ttttatat

Cc form r (Xt.X) and 8 (Xt.¥)

do 289 ir=1,icol
Ao 200 icwi,.icol

sum=9.
do 21@ J=1,ivow
sumssum+xt{1r, 3 )*xx{1,1c)
21 continue
r{ir, lc¢)~aum

200 continue

do 229 lrel,icol
aum=@g,
do 23¢ Jel,lrow
sum=sum+sKt(ir, J)%y(J)

239 continue
a{lr)=gum
229 continue

CEREEERALAEAASES RSB AAERRAE RN ER AR N AN ER NN SR QAR B E N AR AN R E AR S

< evaluate 'a' for R.a = S using lineasr eqgt roule
1r=29

n=p

iaa=20

ifallvl

call fOdacflir.ir, g.n. 8,858, i6a, wkel, wha2z, 1Pall)
tr (1Pall.eq.0) goto 24@
erint * "fallea’
atop
249 continue
CRAREAZSRE SRS AN RS SR E SRR A RN AN R R AR KRR KA R R RN A kL B S A &
c create polynomlial and then find zeroes
do 30 1-i,p
pelyipslstl=—-nil}
poly{p-1-th=-aii})
e continue

polyipr1lrZad

tolex@2oaf{pl)
ifail -} f

call c@Zaafipoly, twovl,zre,zim, tol. 1fajl}

1r(ifall.eq.@) gotao 350
print *,'fajl poly’
atop

59 pi=l.®atan(l.B)

pr2*y
dc 480 kel,p
zed(k)=cmplxizre(k). . {ztm(k})}
LY-T] continue

XIONIadvy

9

UOTIJBWTIIASS® BuTty Texjoads Auoag

(uex3xo3)
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B T e

135 do 4U8 ke2.pl2 TTT- o

136 Kkek/2 e L
137 res{kk.l)satan(sbel{aimag(zea(u)) ), real(zedlh)}) {2, 0%p1, "~ —-- ...
138 if{reat{zed(K)). 1t , 8.2} resikk,l)i=sveslnk.1}1-2,5
139 tue continue

149

141 CEEEXBRURESERA RS AR EER AN E RN A A RS R RN R X B R A A RS S A KRR R RNk Rk K
142 - -

143 ¢ calculate amplitudce

tha

1485 do 598 iw=l.nn

tué do 519 3=1,p

147 ehi{l.3)=ceda{j)*® {1

148 phit(d.LY=conygi{phifiL, J))

149 51@ contlinue

15¢ 520 continue

151

152 do B0 1=1,p

153 do 898 J=i.p

1%4 ceum=cmplix{@,,Q.}

15% 4o Bl@ wkel,nn

156 caumacaum«{phit(i.k)®phi(k, J)}

157 810 continue

158 epailn{i,J)=caum

159 Bee continue

150

161 do 559 1a=1,p

162 caum=cmplx{(d.,d.)

163 de 560 K=1,nn

164 coumscaum+ {phit (1, k}®emplxixini{k),.dd0})
165 S6@ continue

166 temp2(1)=csum

167 %59 continue

168

169 CEEEEREREERXRERFRERERERENRARSFRRRR N A AR AR AT A NN AR K
17@

171 do $@80 (=1,p

172 do 6Q0 j=1.p

173 depsiln(l.1,J)=real{epeilni(i,d))

174 depeiln{2,1i.J)caimag(epalilni{il,J)}

175 6ee continue

176

177 do 630 i=1,p

L78 dtemp2{(1l,1)=real(temp2{L})}

179 dremp2{(2,1i)=aimag{temp2(1)}

18¢ 630 contlnue

181

182 fa=g@

183 ib=42

184 1lewld @

185 hwp

186 me1

187 1fail-1

188 call fotadf(depeliln,ia,dtemp2, ib.n.m.db, ic, wkEpce, 1fall)
189 1f{ifail.eq.8) gata 610

190 print %, 'inverse fail’

191 atop

192 .

193 610 de 620 1=1.p

154 Bi{l)=coplx(ab(l,1),4d0(2,1}))}

195 629 continue

196

197 do 650 if=2.p,2

198 k=12

199 res{kih,.3)=(cabs{b(1))scabai(bii-1)})

2@ &se continue

291

2e2 do 6560 k=2.p,2

283 Kkuk 2

2ea resikk,.2)s(atan{abe{aimag{p(i)}} Tealibir)))) pi*180
209 1f({real{bl(k)).le.@.2) res{kk,2)=reai{kk,2}) 189
286 669 continua

207

208 do 680 te1,ps2

209 print *,'freq='.ree(1.1},' amp=',res{i,3),'  phase=',res{!,2)
219 680 continuas

211

212 write(6,%) 'input data’

213

214 Jo 909 1~1.pr2

215 write{5,%) res(i,1}),',".20%logto0(restl.3})
216 9o continue

217

218 write(6,%) 'evd."

219

2292 atop

221 and

Prony spectral line estimation (Fortran)
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